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Abstract

Variability in manufacturing throughput times creates factory performance fluctuations
that contribute to poor customer service. Recognizing the importance of on-time delivery
in customer satisfaction, Intel wants to use the concept of variability to make better, more
accurate planning and scheduling decisions.

This project examines the manufacturing throughput times for five microprocessor
products which Intel makes. The analysis follows the same five products through the four
manufacturing stages of wafer fabrication, wafer sort, assembly, and test in Intel's
production process. Lot-for-lot transaction information directly from the factory shop
floor tracking systems provides the cycle time data.

The analysis characterizes the overall throughput time and variability for each production
stage. The individual lot throughput times generate summary statistics and distributions
which show the variability for the different stages, the different processes run in each
stage, and the selected microprocessor products. The analysis compares actual
throughput time distributions with common mathematical models such as the normal and
gamma distribution. Aggregate data analysis shows the difficulty in predicting
manufacturing throughput times from past performance.

In addition to the variability characterization, a deeper analysis occurs for the wafer
fabrication stage. Examining potential throughput time variability sources exhibited in this
stage results in a description of the various shop floor prioritization rules and incentives.
Individual lot entry and exit events show how processing selections affect the factory flow
and the individual throughput times. Correlations between factory inventory levels and
throughput times show some relationship between these two indicators.

The different sources of variability uncovered during this project helps highlight areas for
further investigation. The variability information also provides the inputs for a new
manufacturing planning and scheduling system. By incorporating throughput time
variability in the scheduling decisions, Intel can make the tradeoffs between the probability
of on time delivery and the expected manufacturing leadtime to better satisfy customers.

Thesis Supervisors: Professor Stephen C. Graves, Management
Professor Alvin W. Drake, Engineering
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Chapter 1 - Introduction and Overview

Company Background and Industry History

Intel sits atop the semiconductor industry, ranking #93 on the Fortune 500, with estimated
net revenues of over $8 billion for 1993. As the world's largest computer chip maker,
Intel components appear in products ranging from automobiles and automated teller
machines to the newest personal computers and personal digital assistants. But when
Robert Noyce and Gordon Moore founded Intel twenty-five years ago in 1968, the
semiconductor industry was still in its infancy. The large scale integration of transistors
onto silicon was just an emerging business with an uncertain future.

Intel pioneered semiconductor memories, and the company faced the challenge of having
to develop both the manufacturing process technology and the product design
simultaneously. By the mid-1970's Intel had invented the first microprocessor, but it was
IBM's choice of the Intel 8088 microprocessor as the brains of the first IBM PC in the
early 1980's that really launched Intel's microprocessor business.

The overwhelming popularity of the IBM PC cemented Intel's microprocessor
architecture, now in its fifth generation with the Pentium™ processor, as the dominant
design for the world's personal computers. Spawning dozens of corporations, personal
computer sales have entered into mass-market and retail distribution channels, with Intel
selling tens of millions of microprocessors a year.

The New Computer Industry

With the tremendous growth in the computer industry over the past years, competition has
increased and customer service has become an important priority for both computer
manufacturers and their component suppliers. With personal computer use becoming
more widespread, manufacturers increasingly compete on price and availability. In
response, they employ more just-in-time manufacturing methods and demand 100% on
time delivery to the exact day specified. Manufacturers no longer tolerate late deliveries,
and few accept early deliveries. This forces the suppliers to deliver better customer
service.

As the world's largest semiconductor manufacturing firm, Intel supplies the
microprocessors that power over 70% of the worlds personal computers in addition to a
variety of other semiconductor-based products. Despite the tremendous success of the
company's product lines, Intel's largest complaint is delivery performance. The
inconsistent and mostly disappointing progress in improving the company's "Vendor of
Choice" indicator (the percentage of customers rating Intel as an excellent or primary
supplier), makes customer service a high priority.



Service and delivery become even more important with the threat of new competition in
the microprocessor marketplace. Many companies are interested in producing products to
compete with Intel's main microprocessors. For example, the new PowerPC™ chip poses
the threat of lower demand and narrower profit margins. Japanese firms have also shown
a renewed interest in the lucrative microprocessor business.

For Intel, uncertainty in manufacturing throughput times contributes to poor customer
service. With the increasing competition in the semiconductor industry, the ability to
deliver a high level of customer service will differentiate the players. On time delivery
plays a key role in customer satisfaction, and the ability to more accurately schedule
manufacturing capacity will help enable better on time delivery.

The New Planning System

In response to this need for better customer service, the company began an effort to
develop a new manufacturing planning system. Known as the Integral Planning and
Delivery System, or Integral, the new system represents paradigm shifts for Intel in both
planning concepts and planning systems.

Instead of building up a large finished good inventory for delivery to the customers, the
prioritized customer demand will get matched directly to the expected factory supply.
Planning will occur in daily or weekly, rather than monthly, cycles, and a detailed capacity
analysis will help schedule orders.

To ensure orders get filled on time, the systems must accurately predict the timing of
factory supply output and match it with the customer demand. Thus, the new planning
system incorporates manufacturing throughput time variability in determining the
probability the expected output date meets the order due date.

Project Overview

This project focuses on characterizing the throughput time variability exhibited by the
different manufacturing operations. Ultimately, this information will provide the inputs for
the new planning and scheduling system and the methodology for determining capacity
consumption. Beyond the overall description of the variability, the analysis highlights
some of the potential sources of variability.

The project examines the manufacturing throughput times for five microprocessor
products which Intel produces. The analysis follows the same five products through the
four-factory manufacturing process of wafer fabrication, wafer sort, assembly, and test.
Lot-for-lot transaction information collected directly from the factory shop floor tracking
systems provide the necessary data to calculate throughput times.
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The analysis characterizes the overall throughput time and variability for each production
stage. The individual lot throughput times generate summary statistics and distributions
which show the variability for the different stages, the different processes run in each
stage, and the selected microprocessor products. In an attempt to determine the
predictability of throughput times, the analysis compares actual throughput time
distributions with common mathematical models such as the normal and gamma
distribution as well as evaluates correlations between past performance and throughput
times. In addition, the analysis examines the relationship between factory inventory levels
and throughput times.

In addition to the variability characterization, a deeper analysis occurs of the wafer
fabrication stage. Examining potential throughput time variability sources results in a
description of the various shop floor prioritization rules and incentives. Individual lot
entry and exit events show how processing selections affect the factory flow and the
individual throughput times.

Company Impacts

A fundamental business change will result from the knowledge and use of throughput time
variability information in planning and scheduling. The ability to make tradeoffs between
the scheduled leadtime and the customer service level distinguishes the new system from
traditional order scheduling. Through some criteria, orders will get ranked in terms of
importance for on-time delivery. Based on this ranking, different levels of customer
service can be associated with each order. Selecting different levels of customer service
associates a different planned leadtime with an order; a leadtime based on the distribution
of actual factory performance data rather than single point estimates. Intel feels that using
a distribution rather than just a point estimate will significantly improve delivery
performance.

The current system vision uses the throughput time distribution information to assist the
sales and marketing organization choose expected completion dates for orders taken.
Intel feels that because throughput times determine expected completion dates, the
organization that communicates those dates to the customers would better understand the
tradeoffs between choosing a longer or shorter time, and the probability of meeting that
time. The long run goal for the system involves including current factory conditions, such
as the current work in process level, the current product mix, or the expected available
capacity, in determining when to expect lot completions.

Variability Sources

Highlighting the sources of variability represents another key benefit in examining factory
throughput times. Determining the causes of variation helps define the critical parameters
that enable leadtime predictability. Examining the different dispatching and work

scheduling rules helps build an understanding of the fundamental practices that contribute
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to different throughput times. Helping pinpoint the relationship between factory practices
and the throughput time variability leads to opportunities for further investigation.

Future Directions

In addition to including factory conditions in the prediction of throughput times, variability
concepts touch a number of potential areas for further investigation, such as:

e Determining inventory levels

« Executing integrated order commits
e Guiding internal factory analyses

e Including yield variability in planning

Understanding the factory output variability can help determine optimally sized
inventory buffers to minimize the expense of both shortfalls and surpluses.
Strategic location of these inventories can insulate the customers from some of
the effects of factory variability.

The ultimate vision for the new planning and delivery system is known as
"Integrated Commit". This process allows for the receipt and scheduling of a
customer order on-line.

The factory throughput time variability analysis done for this project can also guide
subsequent studies on individual factories and their internal workings.
Studying an individual factory in-depth can help pinpoint the sources of
extreme variability which impact customer service.

Finally, factory and process yields represent another important planning parameter
which exhibits variability. A yield analysis can use the same methods used to
analyze and characterize the variability in factory throughput times. Thus,
factory planning can occur while using the major sources of manufacturing
variability.

Understanding manufacturing throughput time variability helps enable better delivery
performance. Since variability affects areas ranging from order scheduling to capacity
modeling, including variability information in planning and scheduling results in more
reality-based decision making. In addition to enabling better decision making, focusing on
variability issues helps target the sources of variability. Reducing variability levels
increases planning accuracy and makes the entire manufacturing process more predictable.

Customer service has become an important competitive element in the new computer
industry. The ability to accurately plan, schedule, and promise delivery to the customer
represents not a source of competitive advantage, but a basic requirement for industry
participation.
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Chapter 2 - Manufacturing at Intel

Understanding the role of throughput times in planning and scheduling manufacturing
activities requires an understanding of the production systems being analyzed. The brief
summary of Intel's organization and its semiconductor production process that follows
provides the necessary background for understanding the source of the throughput time
information studied. Rather than provide a detailed description of the different processes,
this chapter highlights the major activities performed by each organization in the
manufacturing of Intel's semiconductor components.

Intel Corporate Structure

In a simplistic way, the Intel organization consists of four major functional groups falling
under the control of the Office of the President. Figure 2.1 shows these four areas as
Technology Development, Product-line Divisions, Sales and Marketing, and
Manufacturing.

The Technology Development (TD) organization defines the basic sequence of chemical
and mechanical steps used to fabricate semiconductors as well as the different processes
and materials used in the different factories. The TD group defines both the process
operations and the equipment employed. In addition to holding responsibility for choosing
the proper mix of technologies to ensure the consistent production of the latest designs,
TD also defines a set of design rules that the product-line divisions must follow in creating
the next generation of product.

The Product-line Divisions (Divisions) represent the profit and loss centers for the
company. Each division holds responsibility for the design and marketing of its product
line. The divisions not only design new products, but also help define the product
manufacturing. For example, the division will define which package a chip uses,

Manufactutiiig;

Development Divisions Marketing

Figure 2.1: The basic four functions of the organization.
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considering issues like heat dissipation, cost, and reliability.

Known as geographies because of the way they divide up the world, the Sales &
Marketing regions consist of the Americas, Europe, Asia-Pacific, and Japan. As the
company's link to the customer, each geography accepts and manages the customer orders
and needs for the geographic region it serves. Geographies provide the demand forecasts
that the manufacturing organization tries to meet. The geographies also hold
responsibility for customer satisfaction, and therefore control the finished goods inventory.

The Manufacturing Organization

Intel produces some 22,000 unique end items starting from around 500 silicon-based
products in factories located in the U.S., Europe, and the Far East. In addition to the
familiar microprocessors found in personal computers, Intel produces memory
components, embedded microcontrollers, and multimedia and supercomputing processors.

The manufacturing organization exists as a cost center that supports the different product
divisions. Manufacturing accepts new products designed by the divisions and
manufactures them employing new processes developed by the technology development
group.

Manufacturing builds Intel's various products in quantities specified by the manufacturing
planning organization. Forecasts of the sales & marketing organizations, guided by
product-line strategies, provide the basis for the manufacturing volumes.

The Four Factory Production Chain

Intel's manufacturing process consists of a four-factory chain which takes raw silicon
wafers and turns them into chips. While subtle differences exist in the processes used
depending on the type of chip, the general description that follows applies for Intel's
microprocessor manufacturing. Figure 2.2 shows the four production stages along with
the two primary inventory locations for the manufacturing process. Any individual factory
runs a number of different processes, each having an expected throughput time. Due to
the different flows through the factory, the actual throughput times range above and below
this expectation with some variability.

While each factory houses a single stage of the production process, in most instances fab
and sort factories are collocated as are assembly and test factories. Eight major locations
(both domestic and international) process wafers which get sent to one of three major
assembly/test sites.

The chip making process begins with the fabrication factory, or fab, where products spend

the bulk of the total manufacturing time. Whole silicon wafers, as the substrate material of
semiconductor devices, undergo a series of precisely chemically engineered steps.
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Figure 2.2: Intel's four-factory production process flow with primary inventory
points. Typically, fab and sort factories are collocated as are assembly and test
Jactories.

Processes such as photolithography, chemical vapor deposition, and ion implantation add
or subtract material in different layers to create the complex microelectronic circuitry of a
chip.

Typically wafers travel through fab in lots of 25 wafers. All wafers in a lot undergo
identical processing, and produce a single product. Wafers may be 4, 6, or 8 inches in
diameter and, depending on the complexity of the product, hold hundreds of individual
squares known as die, where each die represents a potential chip.

Each fab houses equipment for a certain level of sophistication, with newer equipment
producing the latest products. The wafer fabrication for Intel's products gets distributed
among the different factories considering both the fab's technological capability and
production capacity. In addition, except for very new or very old products, no one factory
will produce all the volume of any single product which minimizes the risk in the event of
disaster.

Once the wafers complete the many, often over 150, fabrication steps, the lot moves to the
sort factory. In sort, each individual die on a wafer gets electrically probed to test the
success of the manufacturing process. A number of electrical leads from an electronic
tester make physical contact with the die and perform a functional test. If a chip does not
operate as expected, the tester deposits a dot of ink, marking the chip as bad so it will not
undergo further processing.

The time a lot takes to travel through the probe step of the sort factory depends on the
number of individual die per wafer. Testing each and every die means the more die per
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wafer, the longer the processing time. In general, however, the time spent in sort
represents the least amount of all the factories.

Once sorted, the lot then feeds the first primary inventory point known as assembly die
inventory (ADI). Located at each assembly site, ADI serves as a decoupling point
between the first two manufacturing stages and the last two. The buffering inventory
absorbs any fluctuations in either the manufacturing process and transportation time
upstream or the assembly and test process, finished goods inventory, and customer
demand downstream.

The assembly factory actually encases the silicon chip in a ceramic or plastic package to
create a usable chip. A diamond toothed cutter saws whole wafers into individual die and
then the unmarked, good die get attached to the package leadframes. Ultra-thin wire
bonds connect the silicon die to the metal leads and the package is sealed, readying the
chip for use. Chips must also pass quality tests including hot/cold and gross/fine package
leakage.

Lot sizes during the assembly stage vary depending on the size and weight of the package.
Depending on the fab/sort production yield (the number of good die per wafer processed)
as well as the package type, wafer lots may be split or combined to form correctly sized
assembly lots.

The test factory creates the finished product that customers see. Both internal electronic
operation (clock speed, voltage range) and environmental performance abilities
(temperature, humidity) determine the price Intel can charge for a chip. In contrast to the
sort factory, where only a functional test gets performed, now that the chip can be plugged
in and used, it undergoes a much more sensitive testing regimen. The test factory
measures the speed and performance characteristics of each chip to both classify the
products and reaffirm functionality. Since the tests segregate chips with different
performance characteristics, lots will again be split or combined depending on the yields of
the different performance levels.

To ensure quality, units undergo an environmental and electronic stress test known as
burn-in. The test factory also labels the chips with identifying marks and sometimes with
either the generic Intel logo or a customer specific design. The units then get packaged
into tubes, trays, or reels and boxed for shipping.

The factory components warehouse stores the now ready for sale chips. In some cases,
the products get shipped directly from this point, but more often, the units get transferred
to a distribution center. In many cases the factory inventory and distribution location may
be identical, and only a logical distinction separates the inventories, where the
manufacturing organization controls factory inventory and the geography controls the
distribution inventory. The majority of customer orders get filled from geographic
distribution inventory.

16



Where Does the Time Go?

Any item spends the majority of its manufacturing throughput time in fabrication, with
most of the time there spent waiting in queue. For most products, the time spent in fab
accounts for over half the manufacturing time. Depending on the product complexity,
wafer lots can spend anywhere from 10 to 60 days in a fab. For comparison, typical times
spent in either the sort, assembly, or test factories can range from less than one day to two
weeks.

The complexity of the processes run in fab dictate the long throughput times. Even when
only a few processes run in a fab, the processes re-use the same pieces of equipment
several times, which means time must be spent waiting for machine availability. Fab
throughput times observed were 1.5 to 6 times the theoretical minimum time. In general,
a typical product will spend three to five times its theoretical minimum going through the
fab. This means a lot spends some 75% of its time in the fab waiting in queue.

The amount of time spent in the fab depends on the loading of the factory. In cases where
the fab is not capacity constrained, the factories can make more setup changes and the lots
can run at much closer to their theoretical throughput time. For those factories running at
maximum capacity, the amount of activity and work in process results in longer runs with
fewer setups, more waiting, and longer throughput times.

For sort, the throughput time depends more on the number of die per wafer, which
determines how long a lot takes to process. In addition, since lots require only a few
processing steps, machine availability constraints also impact the amount of time a lot
takes to run through the sort factory. In sort, with actual processing times measured in
minutes or hours but throughput times in days, a lot spends over 90% of the time waiting
in queue.

In assembly and test, the type of package and the number of leads govern its throughput
time. Highly complex packages increase the assembly processing time, while tester
availability for the more complex packages constrains the test throughput. In addition, the
number of processing steps, each with significant processing time, means more
opportunities for a lot to wait in queue. Like the fab, the assembly and test factories try to
minimize the number of setups, and the expected throughput times fall in the same range
of 1.5 to 6 times the theoretical minimum throughput time.

Most of Intel's semiconductor products traverse the four-factory manufacturing process.
With the number of different factories all running a number of different processes for a
tremendous number of different products, the problems faced by planning and scheduling
due to differences in factory throughput times become apparent.

17



Chapter 3 - The Current Planning and Scheduling Process

Understanding why Intel undertook the effort to replace its current planning and
scheduling system with the new Integral system under development requires a brief
overview of the current process. This chapter attempts to highlight those reasons in
describing the organization, the information flow, and the roles and responsibilities each
group has within the customer order to product delivery cycle for the current planning
process.

The Planning Organization

From a manufacturing planning perspective, the Intel organization reduces into three
distinct groups: geographies, divisions, and manufacturing.

The geographies represent the company's link to the customer, and have accountability for
customer satisfaction. Dividing the world up into different areas, the geographies are
responsible for the sales forecasts for all products in their part of the world. The
geographies also take and enter customer orders into the system.

Each division holds responsibility for a specific product line or product set. The divisions
determine product strategy and pricing, and define the aggregate plan based on all
forecasts from the various geographies. Thus, a division planner communicates the
desired quantities for the division's product line considering the overall product strategy.

Manufacturing builds the actual products, with factories adjusting the mix and volume in
an attempt to meet the build plan. The factories have autonomy in executing the
production plans, and only need to meet their build targets on a weekly basis as committed
once a month.

The Planning Cycle

The current planning cycle occurs on a monthly basis, and takes about three weeks to
complete. The cycle begins with the geographic planners submitting a forecast for every
product line over the planning horizon. These forecasts account for actual customer order
backlog, inventory replenishments, and anticipated business.

Each division collects the forecasts from the geographies and aggregates them into a
single forecast. The divisions then adjust the plan based on the specific product strategy.
For example, an upcoming price change may increase the anticipated sales of a product, so
more should be planned. A product may be phasing out, so less should be planned. A
new product may not be selling now, but anticipation inventory is desired so more should
be planned. The manufacturing organization cannot use the unadjusted demand forecast
to load their factories directly because near-term opportunities in the marketplace often

18



conflict with long term product strategy. Using purely short-term financial measures may
sacrifice a future position for short-term gain.

The desire to convert the marketplace from an old technology to a new technology shows
how two different product strategies can conflict. While immediate financial gains could
result from continuing to sell an older product, restricting its supply generates new
demand for (and frees up manufacturing capacity to produce) a newer product.

Once each division compiles the geographic forecasts and adjusts for individual product
strategies, the divisions bring the adjusted plans to a meeting with all the other divisions.
At this meeting, each division's plans get modified again in an attempt to fit as much
production as possible into the available capacity. It is essentially a chance for each
division to "fight for their products” to get as much capacity as possible to meet their
targets. This meeting also represents Intel's attempt to rationalize the production with the
overall corporate strategy in mind.

These re-revised plans then go to a central master scheduling office. The master
scheduling office acts as the liaison between the individual divisions and the factories. The
master scheduling office takes the build plans from the divisions and distributes the
quantities amongst the factories based on each factory's capacity and capabilities. For
example, production of a microprocessor requiring sub-micron technology must occur at a
factory with that technology. Some products can be produced at only a few sites, some at
many. The master scheduling office also divides the production of any one product as a
means of spreading risk.

The factories then commit to the build plan. A customer service planner will then segment
the factory outputs to the different geographies. This lets the geographies know what to
expect per their forecasts. Each factory is responsible for its detailed near term schedule,
which gets created from the first two months of the build plan. This drives the ordering of
supporting materials, packaging, etc. Since factories set their own short-term schedule
based on the current forecast, they have little visibility (other than demand forecast due
dates) into the priority of any particular order. Expediting occurs on an ad hoc basis.

Because of the long leadtimes required for production, the farther up the factory chain
away from the end customer, the harder it becomes to drive the schedule with firm orders.
Thus, fab/sort sites tend to work more from forecasts, supplying products into the large,
buffering assembly die inventory in the middle of the factory chain.

Managing Customer Orders
From the order entry side, orders get taken by the geographies and input into the sales
tracking system (STAR). Currently, committed factory output is known only for the

current month and the next month. If an ordered product is unavailable during that two
month window, the customer is given a promise date using a standard leadtime. This
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leadtime gets chosen without accounting for the current demand for a product, or the
planned production. The promise dates get set using the following process:

1. Customer calls in order and requests due date (Date #1).

2. If the uncommitted supply within the requested leadtime can fill the order, then the
geography takes the order to support the first date (Date #1). Otherwise, Intel
checks standard leadtime and commits to another date (Date #2). This date rarely
matches the customer requested date, and is never early. The standard leadtime
does not accurately account for available supply or capacity constraints, nor does it
have any regard for specific product or order characteristics.

3. If the manufacturing runs late or a different factory schedule takes precedence, a
revised commit date gets entered (Date #3). The date can change multiple times
with no apparent penalty.

4. On time delivery gets measured based on whether the shipment was "on-time" relative
to the final commit date, not the original commit date.

5. Since customers expect poor delivery performance, they request earlier delivery than
they truly require hoping the late delivery will be closer to their actual need date.
This, of course, only leads to more congestion in the factory.

Contractual agreements dictate whether customers can revise orders and by how much.
Some contracts allow up to a 50% increase, known as an upside, to a 100% decrease in
order quantity. The contracts also state how long before the delivery date a customer may
change an order. The frequency of customer revisions to orders depends on the product.
The more customer specific the product, the less likely order specifications will change.
More generic products like microprocessors may get revised based on fluctuations in
consumer demand, by changes in the product mix, or by availability of substitutes from
other suppliers.

This kind of behavior towards customer satisfaction represents just one illustration of the
problems faced by the current planning and scheduling process. The customers need
better customer service to remain competitive in their industry. Intel needs to deliver
better customer service to remain competitive in its industry.

The Changing Customer Environment

Computer manufacturers that rely on Intel as the supplier of the primary components for
their products face tremendous challenges in the increasingly competitive PC market.
Intel's most important strategic customers all compete with each other in a market that
exhibits tremendous price sensitivity and little brand loyalty.

These conditions create tremendous demand fluctuations for the PC manufacturers that
make forecasting both order volume and product mix difficult. But since cost
competitiveness drives sales, the manufacturers minimize inventories and employ just-in-
time methods. Manufacturers now demand 100% on time delivery, with little tolerance
for either late or early shipments. Because of Intel's poor delivery performance history,
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some customers have even requested Intel to stock on consignment. This forces Intel to
carry all the risk and burden in order to guarantee customer satisfaction.

As the key supplier to its customer's operations, Intel must respond to its customer
demands. It not only bears the burden of starving a customer's production line when
shipments arrive late and holding inventory when shipments arrive early, but also must
respond to the same changes in order mix and volume faced by the computer
manufacturers.

Increasing product complexity and higher customer sophistication add to Intel's challenge.
As with most firms, the customer can specify not only the product specifications, but also
the delivery terms. Thus, a customer order for 100,000 units may get shipped in 10,000
unit increments over time, or it may get shipped all at once after being held in inventory
until a sufficient quantity is built (the more common scenario at Intel). This means Intel
must manage the production of the large orders while meeting the customer's product
specifications, carrying the cost of the inventory, and delivering on time.

In addition, many core products will have companion or supporting products that enhance
performance. Customers that need both the main and the companion chips order them
together in matched quantities. Since Intel must ship these bundled items together -- items
that often have very different throughput times, volumes, yields, and processing -- the
production must again be closely coordinated to ensure on time delivery.

Current System Drawbacks

These customer order fluctuations create tremendous production difficulty for Intel
because the current planning cycle occurs only monthly. When a customer's demand
volume or mix changes, the manufacturing organization cannot react quickly enough
because the factory mix and volume for the current month were committed during the
previous month's planning cycle. This means any changes only get reflected during the
next planning cycle having actual output, or at best during the next month's production.
When the customers demand weekly deliveries, reflecting changes on a monthly basis
becomes unacceptable.

The demand fluctuations and the monthly cycle create even more problems further up the
production chain. When the factory throughput times in the fabrication stage run upwards
of 60 days, production must begin based on forecasts for what products will be needed
two months out.

Within the current planning system itself, the changes that occur over each month create
still more problems. Since the information only gets updated monthly, maintaining the
numerous changes over time becomes an unwieldy task. Many of these changes don't get
reflected in the current plan, so decisions made on what appears in the system could be
based on incorrect or inaccurate information.
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As an example, while the factory output is determined on a weekly basis, the commitment
process only occurs monthly. This means the amount of knowledge of upcoming factory
output can vary from the next 8 weeks (just after the cycle completes) down to just the
next 4 weeks (just before the next cycle completes). This shrinking and growing of the
product availability sometimes impacts Intel's ability to schedule customer requests. Ifa
customer order was desired in six weeks, but at the time Intel only had visibility of the
next 5 weeks of factory output, that order would get scheduled for sometime in what is
currently the third month of the schedule. Once the planning cycle completed, that order
may be satisfied during the early part or the later part of what becomes weeks 5-8 of the
new schedule. Satisfying customers with accurate on time delivery becomes impossible
without better visibility to production output.

Intel faces the same challenges as its customers. In order to maintain a competitive
position, the company must manage inventory costs and become flexible and responsive to
its customers. This conflicts with holding more inventory to ensure customer satisfaction
through on time delivery. The costs of holding extra inventory coupled with the costs of
lost business due to mismatched supply demonstrate the need of a more accurate and
flexible planning system.
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Chapter 4 - The Next Generation Planning System (Integral)

Incorporating manufacturing throughput time variability represents just one of many
changes that the next generation planning system will bring. As the previous chapter
indicated, several areas of the current planning process require improvement. This chapter
describes the changes the new system brings, its underlying philosophy, and more
specifically where the throughput time variability concept impacts the development.

Addressing Customer Needs

Manufacturing planning systems rarely address variability in making scheduling decisions.
Typically, only average values determine decisions about manufacturing leadtimes and
expected delivery dates. With a variable manufacturing process, the actual values fall
above and below these average values in a distribution, with some orders arriving early
and some arriving late. If planning and scheduling occurs using only point estimates for
leadtimes, these estimates often become inflated in an attempt to minimize the effect of
factory fluctuations. This impacts customer service by creating factory schedules using
only higher than average times, which result in longer throughput times and higher work in
process inventories.

The problem of high work in process inventories and long leadtimes gets exacerbated
when the products being produced do not match the customer's needs. This occurs at
Intel because the current planning system runs on a monthly cycle and sets factory
schedules based on a fixed monthly forecast. Because of the dynamic nature of the
computer manufacturing industry, these monthly forecasts often commit the factories to
the wrong mix or volume of products, and the monthly planning cycle means changes to
customer orders or factory schedules take too long to become reflected in a new plan.

With the ever-evolving nature of the microprocessor business, current products become
obsolete very quickly so having excess inventory can be costly. The costs of excess
inventory coupled with the costs of lost business due to mismatched supply demonstrate
the need for a more accurate and flexible planning system.

In response to the need for better customer service, Intel began an effort to develop a new
manufacturing planning system. Touted as the company's next generation planning
system, it addressed both how to better serve the external customers purchasing Intel's
products and how to better serve the internal system users (geographies, divisions,
factories) in enabling better delivery performance. Known as the Integral Planning and
Delivery System, or Integral, the new system represents paradigm shifts for Intel in both
planning concepts and planning systems.

The Integral team undertook a two-pronged approach to address the different paradigm
shifts. First, modernizing the basic planning principles enables a change in the planning
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process. Second, the use of distributed databases in a client-server environment provides
a better, more flexible system that will replace old, obsolete ones.

In modernizing the planning principles, the Integral team outlined a handful of key goals
which address the critical shortcoming of the current system. Those goals are:

o Daily build-to-order capability in assembly and test factories
o Daily, lot-level work in process and inventory visibility

o Weekly overall planning cycle with daily updates

o Demand prioritized factory loading

e Link to Intel capacity model

Addressing the problems of the current system and achieving the above goals brought a
new approach to planning at Intel. The order mapping process lies at the heart of this new
approach. The order mapping process links customer orders directly to current work in
process through an order prioritization scheme. Managing this order mapping process
requires accurate factory supply information as well as a good capacity model to predict
when that current work in process will complete.

Rather than build up a large finished goods inventory for delivery to the customers, the
prioritized, real customer demand will get matched directly to the known, capacity feasible
factory supply. Most completed orders will ship from the finishing factory straight to the
customer, eliminating the unnecessary expense, time, and handling of the majority of
finished goods inventories.

In enabling better access to more accurate information, the new system provides fewer
opportunities for manual intervention and the introduction of errors. Using shorter time
buckets, where planning will occur in weekly rather than monthly cycles, means the system
reflects changes sooner and more often, minimizing the impact of drastic changes. This
makes the planning groups more responsive, since having better insight to the current
production status means more accurate information to make decisions.

Manufacturing Performance Linked to Customer Service

The decisions using the new build to order concept now have an explicit link to on-time
delivery. Forging a link between manufacturing performance and customer delivery
performance, the implementation of a new planning system enables the examination of the
factory metrics used to judge its execution.

In order to ensure orders get filled on time, the system must accurately predict the timing
of factory supply output and match it with the customer demand. A detailed capacity
analysis helps accomplish this task. As part of this capacity analysis, the new planning
system must incorporate manufacturing throughput time variability.
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Including Variability Concepts in Planning

Addressing variability occurs in several different areas within the new planning system
such as:

e Order scheduling and order mapping
o Capacity resource consumption

o Variability highlighting

o Planning parameter comparison

Understanding throughput time variability helps the order scheduling and order
mapping process because estimating the leadtime of a lot through the factory
plays an important role in scheduling an order. Just using point estimates does
not capture the stochastic nature of the leadtimes, which provides the
motivation for including variability. The factory leadtime estimates help
determine when to expect a particular lot out of a factory, and whether that lot
can satisfy a particular customer order. Including some estimate of the
variability helps determine a range of expectations for potential delivery, which
planners can use to make more accurate scheduling decisions.

Variability also plays an important role in capacity scheduling. In much the same
way that current work in process gets scheduled to satisfy customer orders,
that same factory supply gets scheduled through critical capacity resources.
Accurate capacity scheduling means predicting when a particular lot will
consume a critical factory resource. Understanding the variability of
throughput times gives a better estimate of the timing for resource utilization.

Having characterized the throughput time variability through the different factories
also helps highlight extremely variable areas for process improvement. In
addition to cycle time reduction, controlling throughput time variability
represents a key to successfully executing a build-to-order strategy. The more
predictable a manufacturing process, the more accurately it can be scheduled.

Finally, analyzing the throughput times will directly result in means (averages) and
variances calculated using actual factory data. These actual values provide a
basis for comparison against the estimates currently used by the manufacturing
planning systems. Using planning parameters based on actual data will help
move the planning decisions to more reality-based information.

The above discussion provides the motivation for studying the manufacturing throughput

time variability. In the sections that follow, the actual throughput times are analyzed as
well as the potential sources for the variability. In addition, Chapter six provides a
methodology for the use of the information.

25



Chapter 5 - Throughput Time Data Analysis

Characterizing the manufacturing throughput time variability for Intel's various operations
requires an analysis of factory data. This chapter describes the factory data collection and
analysis. It describes the information sources, the types of products produced, the
different processes run, and the typical leadtime expectations.

In conducting this analysis, each factory was treated as an essentially independent "black
box", where lot entry and exit time stamps determine the throughput times. This project
excludes the transportation times between the different factories and the amount of time
spent waiting to enter a given factory as part of the throughput time analysis. While these
times certainly exhibit variability, and often make up a significant portion of the total
leadtime, the focus for this analysis was to characterize the throughput time variability for
the actual manufacturing time spent inside each factory.

Collecting Factory Information

As discussed in Chapter 3, each factory operates independently in trying to meet its output
goal for the current month as determined during the planning cycle. Since each factory
can act independently, each site runs an independent shop floor execution system. These
shop floor execution systems track the progress of work in process lots through the
various manufacturing operations. The systems keep a tally of the location, status, and the
extent of completion for each lot in a factory.

The central planning system requires inputs from the independent factory systems to
update its information on available factory supply. An automated computer program
extracts the shop floor tracking transactions directly from the factory system and feeds
them to the central planning system through a data transfer process.

In addition to feeding the central planning system, the same data in the extract files also
provides lot-for-lot throughput time information, which forms the basis for this analysis.

A custom program scans the transaction extract file, matching the entering and exiting
transactions for a given manufacturing lot (eliminating all the in-process transactions). For
example, in the case of the fab, the entering transaction corresponds to issuing raw silicon
wafers to the shop floor, and the exiting transaction corresponds to the receipt of the lot
back to the stockroom between fab and sort. In all cases, the initial entering transaction
would not occur if the raw materials were unavailable, but the calculated throughput times
include any impacts of materials shortages or machine breakdowns while in process.

Calculating the difference between the date and time a lot enters the factory and the
corresponding date and time it exits the factory determines its throughput time. In most
cases, since the factories examined work a seven-day-per-week schedule, calculating the
entry and exit time difference provided the throughput time. However, in those cases
where a holiday or factory shutdown occurred, that time was eliminated from the

26



calculation. Along with the matched entry and exit date, the extract file provides the
manufacturing product identifier for sorting out the different products.

Because the date and time stamp marking the entry and exit transactions held not only the
date, but also the hour, minute, and second the transaction occurred, the difference could
be calculated to the second. In conducting this analysis, differences were maintained as
raw decimal numbers which were used in calculating the summary statistics. These
statistics were rounded to the nearest tenth for presentation and comparison. Units of
days were used since planning occurs using days as the time increment. The nearest tenth
was used because any finer detail implies accuracy in the throughput time that cannot
necessarily be assumed. Thus, any average throughput time has a tolerance window of
one tenth of a day, or 2.4 hours.

Data collection, otherwise known as the scanning of the lot transaction files, began in mid-
May and continued through late October. Only those production lots that entered a
factory on or after the mid-May start date and completed on or before the data collection
cutoff date appear in the lot sample. Since production lots tend to receive priority
processing in the factory, special engineering or test lots do not appear in the analysis.

The data collection process for one of the factories providing data for this project was
examined during a visit to the facility. The data collected was compared with the actual
calculated times done at the factory as well as with the data from other factories not used
in this analysis. These comparisons verified the validity of the data collected and used in
this analysis.

Factory Fundamentals

As described in Chapter 2, the Intel manufacturing process consists of a four-factory
production chain: fab, sort, assembly, and test. For this particular project, the analysis
follows the same order as the four production stages. Beginning with the fabrication
factory, overall throughput time data provided the basis for analyzing a handful of key
products. From the total data set, a detailed data analysis occurred for five high volume
products. The analysis examines each product through each of the four stages. Table 5.1
lists the five products and their typical applications. Table 5.2 shows the factories which
provided data for the detailed analyses.

The five products examined represent some of the key revenue generating products for the
company. The core family of microprocessors will ship some 40 million units in 1993,
while Intel's newest microprocessor has just begun to ship in full production volumes.
These products take up a significant portion of microprocessor production capacity for the
company.

Each factory of each type runs a number of different processes that represent production
flows through the factory. Those flows have throughput times that depend on the type of
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Product Main Applications

Product #1 ' High end desktop systems;
calculation intensive applications

Product #2 Lower cost version of Product #1
for desktop systems

Product #3 | Laptops/low power applications

Product #4 Updated version of Product #2;
functionally identical

Product #5 High end desktop systems and
high speed data servers

Table 5.1: The five products examined and their main industry uses.

product produced. The sections below summarize the different processes within each
factory type and describe the basis for the lot groupings made.

The distinctions between the process used and the products produced become important
when examining the factory flows. Because the different processes and products define
machine settings or process recipes, they impact the preservation of machine setups, work
staging, and lot batching. In conducting the analyses, logical grouping of the data
occurred based on the different factory processes.

Fab Throughput Time Analysis

All five products get their start at Intel's flagship fab facility located in Rio Rancho, New
Mexico. As one of Intel's largest and most sophisticated factories, the fab processes
wafers for the majority of Intel's high-end microprocessors.

Starting with raw silicon wafers, the fab runs three basic processes to create die on wafers.
Often, the basic processes will receive slight changes, creating a sub-process. Most basic
fab processes have a handful of sub-processes which define the actual machine settings

Factory Location

Fab Rio Rancho, New Mexico
Sort Rio Rancho, New Mexico
Assembly Penang, Malaysia
Assembly Chandler, Arizona

Test Penang, Malaysia

Table 5.2: The factories providing throughput time information.
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and running times for the process steps, where the basic process will define the number of
layers used to create the chip.

While the fab process determines the sequence of precise chemically engineered steps to
add and subtract material, the specific product determines which designed patterns get
used to create the layers of a chip's complex microelectronic circuitry. Thus, the same
fabrication process can create a number of different products. Each basic process
produces around 20 distinct components.

Each individual lot in the data sample has a calculated throughput time based on the
factory entry and exit times. Grouping these lots into appropriate categories creates
different throughput time distributions. Table 5.3 shows a summary of the three basic
processes run in the fab with their corresponding planned leadtimes and calculated average
throughput times. From a planning perspective, each fab process and sub-process has a
defined planned leadtime. Note how the planned leadtimes listed match well with the
actual calculated aggregate throughput times.

One possible explanation for this seemingly self-fulfilling behavior may result from the
aggregation of the different products all using the same process. While the Process #1
may produce several products, some lots run much higher volumes and have lower than
average throughput times, and some run lower volumes and have higher than average
throughput times. Thus, the aggregate distribution actually consists of the distributions
for several different products, which in the aggregate, all meet the planned leadtime. In
addition, the work in process usually gets selected by an age priority scheme. Thus, lots
running closer to or above the expected time will run first, so the net average throughput
time comes close to the planned time.

Using a product-process cross reference listing, the process producing each product was
attached to each record in the data sample. This allowed for sorting the data by the
process name. Table 5.4 lists a sample of those fab sub-processes and their corresponding
calculated average throughput times. From a product specific vantage, Table 5.5 shows a
listing of the highest volume products, along with their corresponding processes, factory
estimated throughput times, and calculated average throughput times.
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Fab Planned Calculated Average Number of
Process | Leadtime (days) | Throughput Time (days) Lots
Process #1 35 34.3 2346
Process #2 52 52.6 2373
Process #3 59 61.3 618

Table 5.3: Fab basic processes with their corresponding leadtimes and production

volumes.

Basic Sub-Process Calculated Average | Number
Process Throughput Time (days) | of Lots
Process #1 Process #1a 33.7 1741
wwwww _ Process #1b | 35.2 348
Process #2 | Process #2a 51.9 1491
Process #2b 54.3 625
Process #3 | Process #3a 61.4 431

Table 5.4: Fab sub-processes with corresponding average throughput times and
production volumes.

While each fab process has an estimated leadtime for overall planning purposes, different
throughput times arise due to differences in production volumes. Note the differences
between the calculated throughput times for the sub-processes and the overall process
throughput time averages for those processes with very high production volumes; now
compare the product specific calculated throughput times with those for their
corresponding processes. For those products that have the highest production volumes,
their calculated throughput times consistently fall below the calculated average for the
process used. The results match expectations because the higher the production volume,
the higher the potential for a lot to preserve a setup or match a process setting, and thus
receive faster processing.

Product Name Process Planned | Calc Average Number of
LT (days) TPT (days) Lots
Product #1 Process #1a 35 328 785
Product #2 Process #1a 35 33.9 663
Product #3 Process #2a 52 50.0 570
Product #4 Process #2b 52 53.8 490
Product #5 Process #3a 59 60.3 372

Table 5.5: A sample of high volume products run on various processes in the fab with
their corresponding throughput times.
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A distribution of throughput times produced the calculated averages shown in the above
tables. Figure 5.1 and Figure 5.2 show the aggregate throughput time distributions,
ignoring outliers, for Process #1 and Process #2 respectively. Throughput times outside a
three-standard-deviation bound above and below the average defined the outliers. For
comparison, the actual throughput time histograms overlay a normal curve matching the
calculated distribution parameters (mean and standard deviation) for the data samples.

For these and all similar figures, each column represents the number of values greater than
or equal to the bin label, but less than the next label falling into the corresponding bin.
Notice how the distributions nearly fit the normal curve, but some significant differences
exist. These two figures for the aggregate process throughput times shows the
distribution for the overall times for a process producing multiple products.

Table 5.6 summarizes the data shown in the two figures. Note how the distributions come
close to falling in a normal distribution. This indicates that no artificial limitations affect
the throughput times. In other words, no ceiling that limits the maximum possible
throughput time appears in the picture of the distribution.

Also, note how the elimination of a small percentage (approximately 1%) of the outlying
points dramatically reduces the standard deviation and range of values with minimal effect
on the mean. This again indicates some confidence that the data shows a valid and
representative sample of the throughput time distributions. If the outlying points were not
so evenly clustered around the average, it would indicate that some extremely unusual
circumstances created the outlying values, and those values greatly affected the average.
Instead, the average remained pretty much the same, and the outlier elimination reduced
the variance.

Figure 5.3 and Figure 5.4 show throughput time histograms for the higher running
products on Process #1 and Process #2 respectively. Figure 5.3 shows the throughput
time distribution for 78S lots of Product #1 product running on Process #1a. The sample
has an average throughput time of 32.8 days and a standard deviation of 2.89 days.
Figure 5.4 shows the throughput time distribution for 570 lots of Product #3 running on
Process #2a. The sample has an average throughput time of 50.0 days and a standard
deviation of 5.1 days. As expected, both the average and the standard deviation for these
specific products fall below the values calculated for their overall processes (see Table
5.5). These distributions show the typical spread in throughput times for high volume
products running in the factory.

For these two examples, notice how the distributions look far from normal. This indicates

that an individual product receives different handling from another, and the overall
aggregate throughput time does not apply for any single product.
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An autocorrelation analysis conducted on the series of daily average throughput times
indicated that after only about 13 days the correlation between the throughput times of the
past days and the prediction of future throughput times tends towards zero. Since the
leadtimes for these fab lots fall well above 13 days, this indicates that knowing what the
throughput times for products completing today does not help predict what the time will
be for lots starting today. This suggests the long term average throughput time represents
the best predictor of future leadtimes.

As described in Chapter 2, the chip manufacturing process spends the bulk of its time in
wafer fabrication, with some three quarters of that time waiting in queue. As the above
analysis shows, the fab processes have longer leadtimes that fall in a variable distribution.
Thus, throughput time variability in fab presents a good opportunity for minimization.
Fortunately, as just the first stage in the production chain, more opportunity exists to
minimize the fab variability impact on the end customer at the downstream sites.

Process #1 | Process #1 | Process #2 | Process #2
Fab Statistics Aggregate | No outliers | Aggregate | No outliers
Mean (days) 34.3 34.2 52.6 52.4
Standard Deviation 3.8 3.4 7.7 6.3
Variance 14.1 11.7 59.8 39.6
Range 49.4 21.3 124.2 442
Minimum 6.7 243 6.0 30.0
Maximum 56.1 45.6 130.2 74.2
Count (lots) 2346 2323 2373 2341
Fraction of points 1.0% 1.3%
lignored as outliers

Table 5.6: Summary statistics for Process #1 and Process #2 distributions.
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Figure 5.4: Throughput time distribution for Product #3.

Throughput Time (Days)

140 -+
120 4 —
w 100 4 ]
5 ]
5 80+ M) |
g
2 1
=)
Z 40+
0‘~_jIjI NI L I W A A =y
§3§&8°88°‘ 333585 eIex
Throughput Time (days}
Figure 5.3: Throughput time distribution for Product #1.
Fab Process #2a Product #3 TPT Histogram (570 lots)
70 - ~
60 +
w 90 1 —
8 [ _
5 40 4 m B
]
o 30
E
)
Z 20|
10 { HH
0 '—J;'—':”:Hﬂ: iy + [—II_I HH“‘ S e T
89%‘3#98%3888%3382

34




Sort Throughput Time Analysis

Since fab and sort sites tend to be collocated, the next stage of throughput time analysis
focused on the sort facility in New Mexico. This sort factory processes wafers coming
primarily from a couple of different fabs, both located in Rio Rancho, New Mexico.

Receiving the completed wafers from the fab, the sort factory performs a functional test
on each and every die on a wafer. The time taken to process a wafer lot depends on the
number of wafers in the lot (since some lots may lose wafers during fab processing), the
number of die per wafer, and the complexity of the product. As each die on the wafer gets
probed, the dwell time (the time the probe spends in contact with the die) depends on the
complexity of the functional test that determines whether the chip gets packaged or not.

Thus, in the sort factory, no overall process exists as in the fab factory. Because of the
potential product-to-product differences in processing times described above, the
throughput time data analysis occurred in product specific lot groupings.

Figure 5.5 shows the aggregate throughput time histogram for all lots in the sort sample.
Like the fab throughput time graphs, the columns display to the number of values falling
into the corresponding bin. For example, in the case of the zero bin, this column shows
the number of throughput times greater than zero but less than 0.5 days.

In contrast with the even distribution about the average for fab throughput times, the sort
throughput times skew heavily to the right. Since a less-than-zero throughput time cannot
occur, and because the sort throughput times are relatively short, the values tend to get
stacked up near zero and the distribution looks more like a gamma distribution rather than
a normal distribution. The theoretical throughput times for the sort factory are quite short
(usually measured in hours, not days) relative to the fab process. This means a lot spends
the bulk of its time in queue rather than in process, and the distribution shows more the
spread in queue times rather than in processing times.

The distribution also indicates that the majority of lot throughput times fall between 0.5
and 1.5 days. The theoretical factory throughput time for any lot in sort is much less than
0.5 days, so all throughput times higher than this consist mainly of queue time. The
cumulative percentage curve for the throughput time distribution indicates that over 90%
of all lots travel through the sort factory in less than 2.5 days.

Figure 5.6 show a typical throughput time distribution for one of the five products
analyzed in the previous fab section. Note how its distribution looks quite similar to the
overall sort factory distribution, indicating some commonalty in waiting times. This
results because the equipment sets and operations tend to be similar among all the
products, so the queue times tend to be similar. Table 5.7 summarizes the statistics for the
distributions of the aggregate sort information and the five individual products.
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In examining the five products, all show the consistent pattern of Figure 5.6 with a peak
near zero and a long tail of higher throughput times. In addition, all the throughput time
mean and standard deviation values fall within reasonable tolerances of each other. This
indicates that the single aggregate sort throughput time distribution can serve as a good
approximation for any specific product. Autocorrelation results support the use of the
overall average throughput time as the best predictor of future throughput times. With
such short throughput times, no time exists for any predictability to build up from day to

day.
Sort Statistics Products

All lots Aggregate  #1 #2 #3 #4 #5
Mean (days) 1.7 1.2 1.6 1.5 20 1.7
Standard Deviation 1.8 1.3 1.5 12 . 20 1.8
Variance 3.1 1.8 2.4 1.4 41 3.4
Range 26.8 265 i 123 9.5 | 267 | 16.6
Minimum 0.2 02 : 02 03 | 03 0.2
Maximum 270 266 126 ¢ 98 270 | 168
Count (lofs) 7618 784 i 732 i 506 | 771 389

No ovutliers

Mean (days) 1.6 1.1 1.4 14 1.8 1.5
Standard Deviation 1.1 0.8 1.1 0.8 10 ¢ 1.2
Variance 1.2 0.6 1.3 06 | 10 1.5
Range 6.8 49 | 59 48 | 7.4 7.0
Minimum 0.2 0.2 0.2 03 03 02
Maximum 7.0 5.1 6.1 50 77 72
Count (lots) 7478 772 . 718 . 494 761 | 381
Fraction of points 1.8% 1.5% 2.1%

lignored as outliers

1.9%

24%

1.3% |

Table 5.7: Summary statistics for products in the sort factory.
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Assembly Throughput Time Analysis

After going through the sort process, the wafers get shipped to an assembly site for
packaging. The packaging of a chip not only makes the electrical connections so the chip
can communicate with the outside world, but also serves to dissipate heat, repel moisture,
and block electromagnetic interference. The customers define how they want their
microprocessor packaged.

In general, Intel microprocessors appear in two main package types: ceramic and plastic.
Assembly throughput times vary depending on the complexity of the package and the
number of connections made as well as the severity of testing. For instance, chips sold
packaged for military use undergo extensive testing beyond the normal regimen.

The five products analyzed through wafer fab and sort in New Mexico now appear at two
different assembly locations. Four of the five products travel half way around the world to
Intel's largest assembly factory in Penang, Malaysia, and one product goes the shorter
distance to Chandler, Arizona. Both these sites package chips from wafers fabricated at
sites scattered around the world.

As discussed earlier, the calculated throughput times do not include transportation times
between factories or the time lots spend waiting to enter a factory. From a logistical
standpoint, the time spent in transit depends primarily on the distance traveled. Lots going
from New Mexico to Penang by air freight usually get scheduled for 4 or 5 days in transit.
Lots traveling domestically can reach their destination overnight, but normally take a
couple of days. The total travel time depends on the flight schedules going to the
destination as well as the customs schedules. If a lot arrives too late to clear customs, and
the office is closed for the weekend, an extra few days gets added to the in transit time.

Completed wafers arrive whole at the assembly site with ink dots showing the results of
the sort process. The wafer gets sawed into individual die with the good die going into
packages. Package type and device complexity as well as special customer requirements
determine the factory flow. Analysis of the five products occurred based on both the
product and its specific package. Thus, throughput times are only comparable for similar
products receiving identical packaging.

Figure 5.7 shows the throughput time distribution for Product #1 packaged at the Penang
assembly site. All the lots represented in this distribution received a ceramic package. Lot
sizes vary based on the size and weight of the package, but all lots within the factory have
a consistent number of units. Figure 5.8 shows the throughput time distribution for
Product #3 packaged at the Arizona site. This product received a very complex plastic
package. Note how for this product no lots took less than 1.5 days to complete.

While the assembly process takes a bit longer than the sort process, the overall
distributions look similar in their right-skewness. Because of the longer processing times,
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no lots travel through the assembly factory in less than a day, with very few making the
trip in less than two days. However, as with the other factories, most of the time spent is
waiting in queue. Because of the number of different processing steps, the number of
opportunities to get caught waiting also increases. With typical throughput times at
around 4 times the theoretical minimum, a lot will spend some 75% of its time waiting.
Both the distributions shown in the figures represent typical throughput times for the two
factories.

Table 5.8 lists the summary statistics for the five specific products in their respective
assembly factories. Like the other factories, a large reduction in variance occurs by just
ignoring a small percentage of the very high throughput time lots.

Because each distinct product-package combination has a unique set of manufacturing
parameters, aggregation becomes impossible. The assembly plant will treat each unique
combination as a separate factory flow primarily to prevent mixing of different chips that
appear in similar packages.

Like the sort factory, the assembly factory has relatively short throughput times, and

autocorrelation results for day-to-day times indicate no predictability beyond the overall
average.
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Penang Assembly Ceramic Packaged Product #1 TPT Histogram (1382
lots, no outliers)
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Figure 5.7: Assembly throughput time distribution for ceramic packaged Product #1
processed in Penang, Malaysia.
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Figure 5.8: Assembly throughput time distribution for plastic packaged #3 product
processed in Chandler, Arizona.
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Assembly Statistics

Products

#1  #2 #3 | #4 #5
Assembly Site Penang | Penang | Arizona | Penang | Penang
Package Type Ceramic  Ceramic| Plastic | Plastic |Ceramic

All lots 1
Mean (days) 4.2 4.7 4.3 6.1 4.7
Standard Deviation 2.9 2.4 1.6 3.9 3.0
Variance 8.3 58 2.5 15.2 8.9
Range 35.6 17.5 10.8 24.7 12.0
Minimum 1.2 1.7 1.6 2.1 1.3
Maximum 36.8 19.2 12.4 26.8 13.2
Count (lofs) 1415 712 656 S01 122
No outliers

Mean (days) 3.8 4.5 4.2 5.8 4.7
Standard Deviation 1.8 1.9 1.4 3.1 3.0
Variance 3.2 3.8 1.9 9.8 8.9
Range 11.6 10.1 7.3 15.3 12.0
Minimum 1.2 1.7 1.6 2.1 1.3
Maximum 12.8 11.8 8.9 17.4 13.2
Count (lots) 1382 698 644 494 122
Fraction of points 2.3% 20% | 1.8% 1.4% 0.0%
ignored as outliers |

Table 5.8: Summary statistics for products in the assembly factory.
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Test Throughput Time Analysis

Once packaged by the assembly factory, the chips can communicate with the outside
world. The test factory now determines what performance level the chip satisfies, which
determines the orders the chips can satisfy. The test factory ensures orders get filled with
product meeting the quality specifications defined by the company and requested by the
customer.

Within the test factory, a process known as binning separates the chips by their various
performance characteristics into separate quantities known as bins. This process not only
classifies products by their functional abilities, but also eliminates any poor quality units.
General tests will separate out chips according to the clock speed at which they can still
function properly. More specific tests under different environmental conditions, like
temperature and voltage, further determine a chip's functionality. Bins with quantities
needed to satisfy a given specification continue through the factory. Those bins without
demand get moved to a staging area.

To ensure quality, units undergo an environmental and electronic stress test known as
burn-in. Burn-in represents the bulk of the processing time a chip spends in the test
factory. Depending on the customer specification, burn-in can last anywhere from 3 to
168 hours. Queue time, however, tends to dwarf even these figures. Customers will
request different burn-in specifications depending on their desire to ensure proven quality.

After the testing process determines all the performance characteristics and allocates all
the material that satisfies the different specifications, those quantities get assigned to fill
either specific customer orders or replenish generic inventories. From this assignment the
factory knows what finishing process to use to mark the packages and pack the units for
shipping. For example, a generic product may receive the Intel logo and get packed into a
plastic tray for shipping while a customer specific product would receive its own marking
and get packed into a tape and reel format.

Because the different characteristics of a given assembly package require package specific
testing equipment and testing processes, capacity utilization issues become important.
Units not only require different amounts of time on a testing machine or in a burn-in
environment, but also depending on the package dimensions, the number of units that a
machine can run simultaneously changes.

As the lots travel through the testing factory, different quantities fall into the various bins.
These quantities split from their original lot and often combine with similar bins from other
lots to form new lots. This creates an extremely complex manufacturing process flow
which confounds any attempt to calculate factory throughput times. This becomes
especially complicated when the yield for a given performance characteristic is very low.
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For example, a new microprocessor product may sell at speeds of fast, faster, and fastest.
If only a small fraction of each lot yields the fastest chips, many of these bins must
combine in order to fill an order, and many lots must start in order to produce a sufficient
quantity. In the meantime, the majority of the chips may fall into the fast bin, but their
supply may well exceed demand for these lower performing chips, and excess inventory
becomes a problem.

Due to the extremely complex process flow through the test factory, throughput time
analysis occurred for only those lots that traveled directly from the beginning to the end,
commonly known as the primary bin flow. With functionally identical products assembled
into different packaging undergoing different testing regimens, all with different burn-in
times and equipment requirements, factory throughput times become dependent not only
on the product and package but also the customer specifications.

Based on the specification-dependent throughput time conclusion, a throughput time
analysis for the five products followed in the manufacturing process was performed for the
specifications with the highest volume of lots that traveled directly from the beginning to
the end of the test factory.

Figure 5.9 shows a typical test throughput time distribution for a microprocessor product,
in this case Product #1. The times shown represent all lots that satisfy a high clock speed,
6-hour burn-in specification. Product #1 appears primarily in high-end desktop systems
used for calculation intensive applications. The high demand for these kind of parts tends
to drive the throughput times lower.

Figure 5.10 shows the test throughput time distribution for microprocessor Product #4
satisfying a medium clock speed specification. Product #4 comes in low, medium, and
high speed flavors. Since this part represents a middle performance specification, one
expects lower demand. But this speed has the highest yield, so due to the excess supply,
lots will often get held up in processing, extending their throughput times.

For products with high demand, test throughput times tend to be relatively low when
compared with products with lower demand. In addition, the complex test factory process
flows contribute to more variable throughput times. For example, with different quantities
from each lot able to satisfy a particular specification, those lots eventually combine to
form a single completed lot. This means some smaller quantity lots may end up waiting
for a while before they can combine with other lots. Throughput time data appears for
each lot that forms a final quantity. The smaller lots end up appearing in the throughput
time distribution as the higher values.
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Figure 5.9: Penang test factory throughput time distribution for Product #1 satisfying
high demand high speed performance specification.
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Figure 5.10: Penang test factory throughput time distribution for Product #4 satisfying
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Table 5.9 lists the summary statistics for the 3 products which have direct primary bin
flows. The splitting and combining of lots through the test factory makes an assessment of
the accuracy or validity of the calculated leadtimes difficult. Primary bin flows represent
the products and specifications with the higher demand, but the majority of products
running through the test factory do not follow this path.

For those products that do not appear in the analysis, the production flow becomes
extremely complex. The first part of the test process classifies the units by speed. The
different speed bins will then combine with other lots matching the characteristics to form
larger lots. Those units undergo various tests which again splits units from the group.
The units split from the group may get classified as having passed a certain test, but not
another, while the main quantity continues through the process. The split units may wait
or may combine with other lots to continue towards satisfying a different specification
depending on the customer demand. Thus, tracing the separation and combination of lots
through the factory to calculate a throughput time becomes quite difficult, warranting the
focus on the primary bin flows.

Test Statistics Product #1 Product #2 | Product #4
Specification High speed | High speed | Med speed
Mean (days) 3.2 3.5 10.0
Standard Deviation 1.5 1.5 54
Variance 2.4 2.4 29.6
Range 11.4 9.7 29.0
Minimum 0.8 0.6 3.5
Maximum 12.2 10.3 32.6
Count (lots) 351 132 102

Table 5.9: Summary statistics for test products.
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Data Analysis Conclusions

A number of conclusions result from conducting the data analysis on the different factories
which may help in formulating future strategies:

o The basic throughput times fit neither normal nor gamma distributions
o Autocorrelations indicate no link between past times and future times
o Lots start in clumps with their cohorts

e Lots do not travel in FIFO order through the factory

Mathematical Distributions

From the previous figures for the fab throughput time distributions, the normal
distributions based on the calculated parameters appear quite close to the actual values for
the aggregate processes. However, the distributions for the specific products do not
match well with a normal distribution. Chi-square goodness-of-fit tests performed
between the calculated and actual values cannot conclude a good fit.

Appendix A shows the chi-square goodness of fit analysis performed for Process #1 and
Process #2. For Process #1, the total chi-square value amounted to 115.2, while based on
the number of degrees of freedom and a 95% confidence bound, the chi-square value must
be less than 10.9 to conclude goodness of fit. For process #2, the total came to 132.4, but
the total must be less than 28.1 to conclude goodness of fit. Thus, in both cases, while the
figures for the throughput times look somewhat normally distributed, chi-square testing
cannot conclude that a normal distribution fits.

Normal distributions seem closest for fab throughput times given the high magnitude of
the values and their even spread above and below the mean. Referring to the figures for
the other three factory types, the distributions obviously do not fit a normal curve. The
condition of no less-than-zero throughput times indicates a non-negative distribution like a
gamma distribution would fit the data better.

Autocorrelation Analysis

Autocorrelations run for the day-to-day series of daily average throughput times fail to
indicate any predictability of future leadtimes based on the past. For the fab processes
with their longer throughput times, correlation coefficients between one day's average and
another started at 0.8 for a one day difference, but fell to zero within 20 days or so. Since
the average leadtimes exceed 30 days, this indicates that knowing the throughput times for
lots finishing today helps little in predicting the times seen by lots starting today. Figure
5.11 shows the rapid descent of the correlation coefficient for Product #1 fab throughput
times.
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For the sort factory, with its much shorter throughput times, the autocorrelation results
showed no correlation at all. This was expected since the average throughput times for
some products often fall less than two days, and for Product #1 shown in Figure 5.12 the
average throughput time is just 1.1 days. Thus, the day-to-day average throughput times
have little ability to predict future throughput times.

Despite the slightly longer leadtimes for the assembly factory, the autocorrelation resuits
for the products going through the assembly factory also indicated little predictability
beyond the overall average throughput time.

Lot Starts

An examination of the starting times for specific product lots on any given day indicate
that the lots start in clumps at roughly the same time. This means several lots of the same
product enter the factory simultaneously, but an examination of their completion times
shows they exit in a random order over random times. Since identical lots require the
same machine setups, starting those lots all at the same time increases their chances of
processing with their cohorts. Differences in processing along the way must separate
those lots from each other.

In some cases, these cohort lots may get separated by different events within the factory.
For instance, the last lot to run before a setup change will be well ahead of the lot that
would have run next. If a machine breaks down, lots that have made it through that
operation will continue, while lots that were waiting will continue to wait or get held up in
traffic competing for space on the remaining machines. Also, lots requiring rework will
take longer.

Appendix B shows a sample transaction listing for one product. The shaded area depicts a
group of lots started at the same time, but finishing at different times. Notice how the last
lot to start actually finishes first, well ahead of its cohorts. Even though these lots are
identically processed, they still change order within the factory. This leads to the next
subject of FIFO flow.

First In First Out Flow

An examination of the entry and exit order for lots in the data sample producing the
identical product show that lots do not travel through the factory in FIFO order. This
implies that lots can skip ahead and fall behind their cohorts within the factory. Thus, a lot
started today may finish before a lot started yesterday. This kind of behavior directly
impacts throughput time variability.

When a lot started today finishes before a lot started yesterday, it automatically means that
one lot took more time and one lot took less time. This difference in processing times
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contributes to throughput time variability. If lots were processed more in FIFO order, the
lots would have a better chance of having closer throughput times, or at least not have
automatically different throughput times, lowering the variability.

Figure 5.13 shows a typical look at the non-FIFO flow of a single product through the fab.
the plot shows the difference between the starting order and the ending order, where a
positive change means a lot finished ahead of where it started. Of course, any single lot
that gets out of order can result in a number of lots out of order, but the graph shows the
frequency of position changes.

Figure 5.14 shows the same FIFO analysis for the sort factory. In this case, with the
exception of some large position changes, the changes in order are more confined. This
may result from the shorter throughput times not allowing enough time for order changes
to occur. Extreme position changes may result from special handling (in the case of an
advance) or from a quality hold (in the case of a fallback).

The data conclusions drawn above assume stable throughput times during the data
collection period. Since fairly mature products and processes appear in the analysis, the
data collected from the factories reflects well established throughput times and the
assumption holds.

The fab represents the only factory where a throughput time may significantly change over
time. With the introduction of a new product or process into the fab, throughput time
targets ramp downwards over the course of a few months until they match the target for
the overall process. The flagship New Mexico fab providing data for this project has
produced high-end microprocessors using well-established processes for the past several
years.

Figure 5.15 shows the daily average fab throughput time for completions of Product #1
lots. The figure demonstrates the stability of the processing times for the fab over the
course of the analysis period. In addition to the overall stability of the process represented
by the seven-day moving average, note how the moving average predominantly appears
below the 35-day target. This confirms both the stability assumption and the high volume
product conclusion.

While the fab throughput time represents the longest amount in the full manufacturing
process, the throughput time variability has its highest impact in the test factories. With
the other factories, differences in throughput times can offset, so long as the overall output
meets the weekly targets. But in the test factory, where products often time become
customer specific and the number of specifications grows, any variance in throughput time
alters the ability to deliver to the customer.
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Chapter 6 - The Variability Methodology

Knowing the throughput time characteristics of the various production stages allows the
development of a methodology to include leadtime variability information in planning and
scheduling. This chapter describes the proposed methodology based on the data analysis
performed.

Company Impacts

As discussed in Chapter 4, addressing variability occurs in two main areas within the new
planning system:

e Order scheduling and order mapping
o Capacity resource consumption

A fundamental business change will result from the knowledge and use of throughput time
variability information in planning and scheduling. The ability to make tradeoffs between
the scheduled leadtime and the customer service level distinguishes the new system from
traditional order scheduling. Through some criteria, orders will get ranked in terms of
importance for on-time delivery. Based on this ranking, different levels of customer
service can be associated with each order. Selecting different levels of customer service
associates a different planned leadtime with the order; a leadtime based on the distribution
of actual factory performance data rather than single point estimates. Intel feels that using
a distribution rather than just a point estimate will significantly improve delivery
performance.

A detailed capacity analysis represents another of the key features that Intel's new
manufacturing planning system provides. In addition to using leadtime information in
order scheduling, the new system relies on accurate throughput time data as the basis for
capacity calculations. Determining the timing of capacity consumption requires an
estimate of when a lot will arrive at a production stage; throughput times provide that
estimate. Thus, the methodology proposed impacts both the order scheduling and
capacity planning elements.

The current system vision uses the throughput time distribution information to assist the
sales and marketing organization choose expected completion dates for orders they take.
On the manufacturing side, factories would still commit to a single target throughput time,
fully knowing that the actual times would vary. Intel feels that because the throughput
times determine expected completion dates, the organization that communicates those
dates to the customers would better understand the tradeoffs between choosing a longer
or shorter time, and the probability of meeting that time. In addition, setting multiple
targets for the factories would create confusion. The distribution information becomes
useful to the manufacturing organization if it can help inform and educate the factories
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about their throughput time variability, and create an impetus for addressing the sources of
variability.

The long run goal for the system involves including current factory conditions, such as the
current work in process level or the expected available capacity, to determine expected
completion times. This enables a fully integrated customer order to manufacturing supply
cycle that accounts for known delays and adjusts expectations accordingly. This helps
maintain a high customer service level while balancing the factory load.

Setting Expectation Levels

The tradeoff between expected factory throughput time and customer service level sets an
expectation level, or probability, that the customer order will ship on time. Increasing the
expected leadtime adds a margin of safety to the usual throughput time, which increases
the probability that the order will finish within that time window. The sales and marketing
organization would use different leadtimes to schedule orders, but the factories would still
work to a single throughput time target.

For example, suppose the factory leadtime target equals the average for the throughput
time distribution. If the throughput time distribution followed a symmetric distribution
like the standard normal distribution, then choosing a leadtime equal to the average
associates a 50% probability that the leadtime value will exceed the average and a 50%
probability it will beat the average. However, if the sales and marketing organization
selected a leadtime equal to the average plus one standard deviation, the chances of the
actual value exceeding that time decreases to 16%, which means an 84% on-time chance.
Thus, having sales and marketing increase the assumed leadtime increases the probability
that manufacturing will complete on time.

The long manufacturing leadtimes force the factories to start work before knowing the
actual orders. Work gets released to the factories based on the current forecast. Thus,
having sales and marketing use longer-than-average throughput times does not cause
manufacturing to release work early to the factory. Actually, as orders arrive they will get
scheduled based on the order due date and the probability of on time delivery desired.

For example, if an order is due in five days, choosing some current work in process that
would take an average of five days to complete associates a 50% probability of completing
on time (again, assuming a symmetrical distribution). The new planning system will
examine the expected factory supply for work with a probability to complete within 5 days
that matches the desired level. In other words, based on the leadtime distribution for the
remaining work the proportion that completes within 5 days equals or exceeds the desired
probability.

The costs of excess inventory offset the benefits of planning using longer-than-average
throughput times. Thus, it becomes unrealistic to expect 100% on-time delivery without
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incurring some negative side-effects. Common sense and judgment in conjunction with
the importance of the order must guide the selection of leadtimes.

Determining Probabilities From Leadtime Distributions

As the data analysis showed, the throughput time distributions for the various production
stages follow neither the normal nor the gamma mathematical distributions. Asa
computer and data based application, the new manufacturing planning system must easily
determine the proper values based on a minimum of data. The lack of standard
mathematical models requires a numerical solution.

The analysis also showed that no simple set of parameters formed an easy predictive
model for future throughput times. The autoregressions indicated little correlation
between day-to-day throughput times. Thus, only the distributions themselves provide
any information towards future performance, and the overall average represents the best
predictor of future leadtimes.

The proposed methodology uses the following steps to determine the times associated
with a probability:
o Select a round number of the latest data points (i.e. 500).
o Sort the throughput times in ascending order
o Equate probabilities with the fraction of data points
e Choose the minimum throughput time such that the corresponding fraction of points
equals or exceeds the desired probability of on time delivery

The data collected provides lot-for-lot throughput times. By selecting a round number of
lots like the latest 200, 500, or 1000 lots processed for a given product, easy
determination of the throughput time values associated with different probabilities can
occur.

Suppose the latest 500 data points for a particular product represent one month's worth of
production. This means the distribution of those throughput times will be large enough to
capture most of the different events that occur over a month without emphasizing any one
event.

Ordering those 500 lots in ascending order results in a sorted list of throughput times.
Finding the probability associated with any leadtime means finding the fraction of points in
the list represented by that time. Thus, the 400th time in the sorted list corresponds to
80% probability, since 400 points represents 80% of a 500 number listing.

The number of points included in any specific products list can vary based on its volume
and variability. The number of points needs to be sufficient to generate a typical
distribution of throughput times, but can be altered to capture as much or as little of the
past history as desired.
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A Simple Example

Suppose the following 20 times represent a typical distribution of throughput times for

one product at one production stage (in days):

Entry Value Entry Value Entry Value Entry Value
1 1.5 6 3.0 11 2.5 16 2.4
2 0.9 7 2.5 12 2.7 17 1.2
3 2.2 8 2.6 13 23 18 4.1
4 2.4 9 1.0 14 5.6 19 3.2
5 4.7 10 3.6 15 2.1 20 1.3

Figure 6.1 shows the histogram for the points listed above. Those points, when sorted in
ascending order, appear as:

Entry Value Entry Value Entry | Value Entry Value
1 0.9 ) 2.1 11 2.5 16 3.2
2 1.0 7 2.2 12 2.5 17 3.6
3 1.2 8 2.3 13 2.6 18 4,
4 1.3 9 2.4 14 2.7 19 4.7
5 1.5 10 2.4 15 3.0 20 5.6

The distribution has an average of 2.6 days and a standard deviation of 1.2 days.

However, note how according to the cumulative percentage on the histogram, 50% of the
values fall below 2.5 days. From the sorted listing, note that at 2.6 days, 13 of 20 points
fall at or below the average. This suggests a probability of 65% is associated with the

mean.
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Figure 6.1: Distribution of example throughput times

Suppose an order needs to be scheduled to complete this stage within 4 days with an 80%
probability of on time delivery. Using the sorted list above, we see that 4 days
corresponds to the 18th point in the list. Based on the distribution, this work has a 90%
(18/20 = 0.9) chance of finishing within 4 days. Since the 90% probability exceeds the
80% desired, using the work starting at this stage will satisfy the order. If this stage could
not meet the desired level, then a later stage would be used. Since this stage slightly
exceeded the desired level, an earlier stage may better match the time and probability.

Representative Samples

The number of points chosen to represent the throughput time distribution depends on
how much information captures the essence of the variability. The more points that
appear in the sample, the more of past history that appears in the values, while using too
small a sample may not capture the overall throughput time distribution. Keeping more
points also allows more extreme values to appear. Thus, too large a sample may not
properly reflect the influence of other factors such as process changes or capacity
increases if it includes much of the past.
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Figures 6.2, 6.3, 6.4, and 6.5 show the assembly factory throughput time distributions for
the last 1000, 500, 250, and 100 lots of Product #1 respectively. As the distributions
show, the last 1000 lots capture the overall distribution but also capture the extreme
throughput time points indicated by the times greater than 12.5 days. The 500 lot sample
mimics the 1000 lot distribution without the extreme points. The 250 lot sample begins to
lose the shape of the distribution and also loses some of the lower throughput times as
well as the high ones. The 100 lot distribution shows the spread of the values, but does
not capture the shape of the distribution, and shows a muiti-modal histogram.

Thus, in the case of Product #1 assembly throughput times, a sample greater than 250, and
perhaps closer to 500 seems to provide the better sense of the distribution. The actual
sample size used would depend on the level of detail desired for estimating probabilities,
and the amount of past historical information that provided the best leadtime estimates.

Figures 6.6, 6.7, 6.8, and 6.9 show the advantage of using the actual distribution rather
than a mathematical model. The figures show the evolution of the throughput time
distribution for 400 lot groups -- a quantity between 250 and 500 -- taken from the 1000
lots shown in figure 6.2. Starting with the first 400 lots completed and moving forward
traces the changes in the distribution.

Table 6.1 shows the summary statistics for each 400 lot distribution. Notice how the
distributions change over time. The groupings cover the time period from early July to
mid-August, mid-July to late August, mid-August to early September, and late August to
late September respectively. Over this period, the mean throughput time drops from 5.1
days to 2.9 days and the standard deviation drops from 4.2 days to 2.2 days. This
indicates that over these months, the processing of this product became more stable and
consistent.

Completion Statistics Lots Lots Lots Lots

1-400 201-600 401-800 601-1000
Mean (days) 5.1 4.2 3.2 29
Standard Deviation 4.2 3.2 23 2.2
Variance 17.3 10.2 5.2 4.7
Range 34.9 34.2 29.6 29.6
Minimum . 1.9 1.7 1.2 1.2
Maximum 36.8 36.0 30.8 30.8
Count (lots) 400 400 400 400

Table 6.1: Summary statistics for Product #1 assembly completions taken at various
intervals for the last 1000 lots completed.
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The histograms shown in Figures 6.6 through 6.9 show how the throughput time
distributions looked. Notice how over this time period, the height of the distributions near
the mean increase indicating a higher concentration of points. The number of extreme
points, lots with throughput times greater than 12.5 days decreases as do the number of
lots having throughput times between 6.0 and 12.0 days. Also notice how the minimum
throughput times shift with the decreasing means.

Using the actual distribution captures not only the variability in the throughput times, but
also the fluctuations in the overall shape and boundaries of the values. The danger in
using the actual distribution stems from the analysis in the previous chapter which showed
the difficulty in predicting future throughput times from past performance. Using the past
history of the latest 400 lots to complete as an estimate for probabilities involving future
completions may not reflect the current conditions and the times for the lots already in
progress. Thus, the more points included in the distribution used for the predictions, the
longer the lag in completely refreshing the information, resulting in a less responsive
prediction.

Implementing the Methodology

Understanding the tradeoffs and the impacts in selecting different leadtimes for different
orders becomes critical to the success of using the new methodology. The scheme
presented above allows for easy machine computation and for data collection with minimal
interaction.

The methodology works with any kind of throughput time distribution and allows for a
flexible quantity of data. Independent from any standard mathematical distributions, no
parameters need calculation. Only the maintenance of a sorted list of values and a
knowledge of the total number of entries in the listing.

However, the self-fulfilling prophecy represents one danger that exists in using inflated
throughput time expectations to determine the probability of on time delivery. A lot
expected to complete in 4 days, scheduled to complete in 5 days based on the desired
probability, that actually takes five days will still meet the on time delivery criteria. In
meeting the criteria, the lot consumed an extra day as work in process and it increased the
overall throughput time average. If this occurs repeatedly, this results in an overall
increase in the throughput time distribution, which means new orders scheduled with a
similar on time probability must carry a larger leadtime cushion. This presents a problem
of ever-growing throughput times.

This problem gets exacerbated when order scheduling consistently occurs using large on
time delivery probabilities (values close to 100%). In this situation, finding suitable work
in process to fulfill the order becomes difficult. In implementing this methodology, the
proper incentives must exist to prevent the abuse of the leadtime cushion. The incentives
must carry an understanding of the costs associated with carrying extra inventory or work
in process.
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Distribution for last 1000 lots of Product #1
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Figure 6.2: Last 1000 assembly lot throughput times for Product #1.
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Figure 6.3: Last 500 assembly lot throughput times for Product #1.
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Distribution for last 250 lots of Product #1
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Figure 6.5: Last 100 assembly lot throughput times for Product #1.
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Figure 6.4: Last 250 assembly lot throughput times for Product #1.
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Distribution for Product #1 Completions 1-400
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Figure 6.6: Product #1 assembly lot throughput times for completions 1-400.
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Figure 6.7: Product #1 assembly lot throughput times for completions 201-600.
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Distribution for Product #1 Completions 401-800
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Figure 6.8: Product #1 assembly lot throughput times for completions 401-800.
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Figure 6.9: Product #1 assembly lot throughput times for completions 601-1000.
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Chapter 7- Variability Sources

Understanding the corporate impacts of manufacturing throughput time variability requires
an understanding of the variability sources that create the different factory leadtime
distributions. During the course of the analysis conducted, a number of different topics
arose regarding the causes of the variable throughput times. This chapter discusses those
potential variability causes and suggests possible abatement strategies to help both
manufacturing and planning address variability.

Throughput Time Predictability

As the throughput time analysis evolved, it became clear that no simple set of variables
could create an accurate prediction of future throughput times based on the past times.
Lots started from day to day all completed with random throughput times above and
below the average, and no set of parameters available from the shop floor tracking data
allowed the prediction of the leadtimes.

In the case of the fab, anecdotal evidence from production personnel and Operations
Management theory, specifically Little's Law, suggest a link between throughput times and
the work in process inventory. However, because different random factors affect lots of
one product differently from another, it becomes much more difficult to quantify that
relationship.

Figure 7.1 shows the week-by-week relationship between the inventory level and the
throughput time for Process #1 in the fab. In general, it appears that the two indicators
move in conjunction, but tracing cause and effect becomes difficult. The correlation
coefficient for these two indicators came to 0.68.

With the fab throughput times observed, a lot can spend several weeks in the factory.
Attempts to correlate the lot throughput times with the inventory changes during the
period lots spent in the factory were inconclusive. Delays and other factors confounded
the effects of inventory changes on the overall throughput times. With only weekly
inventory levels available, the lot-to-lot variability tended to overshadow any underlying
trends in throughput times due to the work in process.

Autocorrelation analysis showed no viable relationship between past performance and
future throughput times beyond the overall average time. Since products of different
volumes or importance receive different treatment within the factory, one expects lower
than average throughput times for those products at the expense of other products. Yet
any random event within the factory affects all lots within the factory. Add the fact that
fab processes repeatedly use the same equipment for each successive layer, and creating a
predictive throughput time model based on known factory parameters becomes a difficult
task.
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Week-ending Inventory and TPT for Process #1 over time
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Figure 7.1: Week by week relationship between week-ending inventory and throughput
time for Process #1.

Other attempts were made to create throughput time predictability using moving averages.
Both single day and multiple day moving averages were created as an attempt to predict
throughput times (one example appears in Figure 5.15). However, as the analysis in
Chapter 5 showed, autocorrelations indicated that very little information beyond the long
term average throughput time helps predict what would occur with lots started today. Lot
completions occur with such random throughput times that the latest completion does
little to help predict what will happen over the next 30 or 40 days to a lot starting today.

Despite the relatively small fractional change an extra day makes for the fab throughput
time, the fab may still hold the highest impact. The longer fab throughput times in
comparison to the other factory types mean the fab incurs the majority of the
manufacturing costs associated with a chip. Coupled with the extremely high expense of
building and operating a fab facility, the long leadtimes result in fabs that rarely run with
excess capacity. While other factories can absorb variability with excess capacity, the fab
must rely on inventory to counteract factory fluctuations. The extra inventory contributes
to the lengthening of throughput times and their variability.

The analysis conducted in this project found no set of parameters that could predict future
throughput times based on data from past observations. The best estimate of the overall
times came from the overall mean on a product specific basis. Using a simulation to



model the various operations within the factory presents one possible avenue for
investigation into throughput time predictability.

Non-FIFO Factory Flow

Regardless of the factory, certain decisions within each facility emerge as potential sources
of variability. The longer leadtimes and interdependent factory processes within a fab
allow more of those decisions to occur, and contribute to the fab's variability. The
relatively fast processing in the other factories minimizes the impact at those sites. The
flow of lots through any factory exhibits the common theme that the first lot to enter a
factory is not the first lot to exit the factory.

As was shown in Chapter 5, the fab exhibited the most disrupted first in, first out flow,
even within a product grouping. The shorter throughput time factories showed much less
disruption, with only a few lots moving a large number of places impacting the overall
order. Due to the complex splitting and recombination of lots within a test factory, the
concept of FIFO flow becomes irrelevant.

One expects the lack of first in, first out behavior for different lots on the shop floor since
it enables setup preservation. The incentives for all factories focus purely on gross output,
and do not emphasize low volume lots. Therefore, to save setup time and process more,
high volume lots needing the same processing get batched together at the expense of low
volume lots that require equipment changes and adjustments. This enhances both the
overall factory output and the individual machine utilization rates; an outcome that brings
accolades and rewards.

One of the biggest factory incentives is simply output per week. This means the factory
activity increases towards the end of each week, and downstream factories receive the
majority of the material expected at the end of the week. Because the fab has traditionally
been considered the constraint to production, fab output gets emphasized even more. This
means more behavior like that outlined above, where high volume lots receive priority
processing, saving time, and increasing output numbers.

Surprisingly, however, lots of identical products also do not exhibit FIFO flow. This
means a lot started today may finish before a lot of the identical product started yesterday
(or after a lot started tomorrow). Setup preservation cannot explain this phenomenon
since the lots are identical.
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Random Events

For any one product, every factory strives for FIFO flow through their facility, but random
events occur to disrupt it. Within a fab, where the complex process flow brings a lot
repeatedly through the same machines, the timing of its movements can contribute
significantly to its throughput time outcome. A "lucky" lot that happens to complete one
operation just as it's needed for another operation will result in faster than average
processing times. "Unlucky" lots, or those unable to travel directly through a factory
process, result in slower than average times.

Within a grouping of identical lots all needing the same processing, any lot that requires
rework will lose its place in the FIFO order and disrupt the intended flow. Currently,
approximately 3% of the lots within a fab undergo some kind of rework. Quality issues
within the other factories also contribute to the non-FIFO flows at those sites. If a lot
reaches the sort factory but gets put on hold for some evaluation, other lots will skip
ahead in the order.

In addition to rework, if a machine breaks down in the middle of processing a particular
lot, that lot gets held up, which allows others to pass it in the FIFO order. Machine
breakdowns also affect the overall throughput times for all lots within a factory due to the
reduction in capacity.

Local Dispatching

Expediting or different priorities within the factory also disrupt the flow. Lots receive
different treatment depending on their status (VIP, Hot), their due dates (late, early), their
type (production, engineering), and their volume (high, low). In addition, random events
like machine breakdowns will have a greater effect on lower volume lots because those
lots have fewer in process to smooth out fluctuations, where for high volume lots, early
lots from some days make up for late lots from previous days.

The production control function within a factory determines the status of a lot. A VIP lot
will receive processing above all other lots, even if it requires a setup change. The factory
uses VIP lots to ensure a lot that would normally take a long time gets processed as fast as
possible. Usually, VIP lots represent engineering tests with critical results impacting the
entire factory.

Production control uses the hot lot status to flag lots needing help getting through the
factory. Lots running late or lower volume lots going stale may receive a hot status to
move them along. Since hot lots get processed before normal production lots, a hot lot
may pass its counterparts in the FIFO order.
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Finally, the factory conditions govern the production control decisions dispatching work
to various operations. If a machine breakdown occurs or a large amount of work in
process exists at an operation, fewer lots that feed the operation get processed. This
attempt at balancing the loads within the factory results in some lots having to wait,
adding to their throughput times.

Variability Abatement

Production control and factory incentives represent the two main drivers of throughput
time variability. Within any factory, the production control priorities determine which lots
get processed first, and which lots wait. The factory incentives for output and machine
utilization drive high volume lots through the factory at the expense of lower volume lots.

By reducing the number of special status lots, fewer opportunities for disruption would
exist which would help eliminate some variability. Late lots should only bear a hot status
so long as no other lots are later than the expedited one. This way, late lots will catch up
to their counterparts without passing others that should finish earlier. Preserving this
order can achieve a more consistent throughput time, reducing the variability.

The output focused factory incentive needs to change to embody lower volume, but
extremely important lots. As an example from the fab, when a microprocessor sells as part
of a chip set, or a group of chips designed to work together, the microprocessor
represents the high volume lots and the supporting chips the low volume lots (since many
more of the smaller supporting chips get produced with each lot). Thus, the high volume
lots may make their way through the fab much quicker than the supporting chips.
However, both chips must finish processing in order to supply them together as part of a
set. The factory incentive for output has effectively reduced the usable production
because the high volume microprocessors must now wait for the support chips to catch

up.

For the lots within any given product grouping, eliminating the effects the random events
of machine breakdowns and rework prove difficult. Better control over this type of
variability requires a closer study of the different scenarios that result in the loss of FIFO
order.

Improving throughput time variability not only helps planning with better leadtime
predictability, but also helps improve the overall throughput times for lots within the
factory. With increasing time-based competition coupled with the expense associated with
running a fab, the impact of long cycle times becomes even more exacerbated. The
importance of both faster throughput times and better yields grows with the expense of
production.

Figure 7.2 shows a reproduction of an estimate of cycle time impacts on both

manufacturing cost and die yield. It shows that to achieve near theoretical throughput
times (below 2 times theoretical), the capital investment in excess capacity becomes
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prohibitively expensive. Above this point, as the throughput time extends to larger
multiples of the theoretical time, the cost increases steadily. The chart shows the
minimum cost at somewhere around 2.5 times theoretical.

However, yield decreases linearly with cycle time. The longer a lot spends in the factory,
the more likely some defect causing event will occur. Also, a longer throughput time
might indicate that processing interruptions may have occurred leading to lower quality
output. Thus, addressing the issues of cycle times as well as variability becomes
important.

Yield and Cosdt va Cycle Time

—a— Cog L

—8— Yield —r

Die Yield
e
\\
Die Cost

- [y ] (2] < n (-] ~ [
Cycle Time (multiples of theoretical)

Figure 7.2: Impact of cycle time on die yield and die cost

Source: Thomas Group Inc. © 1986
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Chapter 8 - Future Directions and Recommendations

The throughput time variability analysis conducted as part of this project characterized the
different leadtime distributions for each stage of Intel's manufacturing process. The
characterizations will help provide inputs to planning and scheduling decisions and help
enable a more accurate planning and scheduling system. The analysis uncovered a number
of different sources for manufacturing throughput time variability which other projects can
address.

This chapter indicates seven areas with opportunities to extend the scope and application
of this work for future projects and study:

o Integrated commit

e Detailed internal factory analysis
e Yield variability planning

« Inventory level optimization

e Delivery performance indicators
o Multi-parameter characterization
o Comparisons with factory actuals

Integrated Commit

As described in Chapter 4, the Integral Planning and Delivery system represents a
paradigm shift in Intel's planning principles. Throughput time variability information
enables tradeoffs between manufacturing leadtimes and customer service levels. Called
Integrated Commit, the ultimate vision for making these tradeoffs marries supply and
demand in a single process.

Within the Integrated Commit framework, customer orders will link directly to factory
supply in real time. This means the system must simultaneously determine the available
factory supply and the timing of this availability given the current factory conditions and
the customer service level desired. Thus, the new process integrates customer demand
and factory supply in real time. This scheduling process must comprehend all the different
areas of variability to ensure customer orders ship on-time in the correct quantities.

The order taking process will automatically assign the factory supply satisfying the
customer order and maintain the capacity consumption as well. As described previously,
the manufacturing throughput time variability plays an important role in both order
scheduling and capacity resource allocation.

Thus, the variability methodology must extend on a product specific level so the new

system can commit any end item to a customer order. The amount of data required for a
given level of granularity in scheduling (i.e., hours vs. days) and the large number of
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distinct end items Intel sells requires further investigation for the incorporation of leadtime
variability.

Detailed Internal Factory Analysis

The factory throughput time analysis was performed at an aggregate level treating each
factory as a whole. Chapter 7 describes the main sources of throughput time variability
discovered during the analysis. However, effectively targeting areas for variability
reduction requires an in-depth analysis of the operations within each factory that comprise
the overall throughput time. In addition, detailed operation-by-operation knowledge of
throughput time variability enables a much more accurate capacity model for scheduling
purposes.

Understanding the causes of extreme variability by following the detailed processes within
any given production stage will help highlight the key areas impacting the leadtimes. The
analysis performed for this project shows the kind of throughput time distributions
produced by the different factory types and discusses some of the main sources of
variability, but it needs more detail to determine the specific variability causes.

Characterizing the direct causes of throughput time variability also creates the opportunity
for a much more accurate capacity model. Distributions of throughput times can help
determine when to expect capacity consumption or order delivery in an integrated fashion
more accurately than point estimates for operation times.

Yield Variability Planning

Factory yields represent another key planning parameter not addressed by this project.
Since yields fall in a distribution in the same way as throughput time, the manufacturing
planning system can make tradeoffs between yield and customer service in the same way
as for throughput times.

Since an order can ship late but cannot ship without full quantity, this added restriction
makes incorporating yield variability slightly more difficult. However, making the
tradeoffs and choices for satisfying customer orders can still occur with knowledge of
yield distributions.

Inventory Level Optimization

Comprehending yield variability in conjunction with throughput time variability also allows
for optimally sizing inventories. An inventory level that accounts for fluctuations in both
the leadtime and quantity based on the known throughput time and yield distributions
could represent potential savings in excess inventory costs. Properly sizing inventories not
only saves carrying costs, but also ensures the availability of the needed products at each
production stage.
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In addition to properly sizing inventory levels, the knowledge of the different distributions
for the planning parameters allows for the potential elimination of some costly inventories.
If the leadtime and variability reduction occurred to the point where fewer buffers could
still deliver the same level of customer service, then increased inventory savings and better
planning accuracy result.

Delivery Performance Indicators

During the time period for this project, Intel's Business Performance Metrics Team
developed a new set of indicators to both measure the success of the new systems
development and to encourage improvement in Intel's planning and delivery performance.
Intel management chartered the group to create a set of corporate performance indicators
in order to assess the progress and success of the Integral project, the other systems under
development, and of Intel's business as a whole. The metrics should ensure the progress
towards the overall objective of "reducing customer leadtime and improving delivery
precision while increasing Intel's responsiveness and ease of doing business and reducing
the cost to Intel".

The Metrics team defined six separate metrics to measure Intel's business:

e On time delivery performance

e Cycle time (manufacturing throughput time)

e Inventory

o Customer inquiry satisfaction

e Planning productivity

o Planning cycle time (administrative processing time)

Both long term goals and interim implementation targets define the desired improvements
in the listed metrics. Some of the metrics, such as the planning productivity indicator, deal
with the administrative improvements the new system should bring about, while others
deal with improvements in the company's operations.

The comprehension of manufacturing throughput time variability can both play a part in
the improvement of the operations and provide valuable information in the calculation of
the indicators. The previous section discussed the potential use of throughput time
variability for optimizing inventory levels. This would result in inventory levels set by
some optimization algorithm rather than setting an arbitrary target level or number of
inventory turns (the ratio of total inventory used during the year to the average inventory
level held).

The calculated throughput times, and the different product groupings used in the analysis

for this project can also provide the basis for the cycle time performance metric.
Calculated leadtimes provide a baseline for comparison to current metrics and can assist in
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setting new targets. In addition, the data collection methods provide a good starting point
for the automation of throughput time calculations.

Multi-parameter Characterization

As discussed in Chapter 7, throughput time predictability proved difficult when based
solely on past leadtime data. However, anecdotal evidence from the fab production
personnel suggests a link between several manufacturing parameters such as throughput
time, work in process inventory, line yield, die yield, product mix, and the number of lots
started into the factory.

For example, as throughput times increase, yields may decrease due to the extended
period of potential exposure to contaminants and risk of damage. Longer throughput
times may also contribute to higher costs, since problems get recognized later and affect
more lots when leadtimes grow longer. But those higher throughput times may result
from the current inventory level, which in turn may depend on the number of lots started
at any one time.

The close relationship between all these factors suggests a comprehensive multi-parameter
characterization of the factory can occur. This may require complex simulation in order to
achieve valuable results, but gaining an understanding of the interdependencies between all
these different factory variables allows for optimization across all the factors.

Comparisons with Factory Actuals

Finally, the calculated throughput times provide a basis for comparison between the
leadtime planning parameters used for factory scheduling and the actual throughput times
seen by the lots. The analysis discussed in Chapter 5 indicated product specific leadtimes
for products of different volumes within the factory, but planning occurs using an overall
process leadtime.

The factories recognize and acknowledge that lower volume lots often have longer
throughput times, but they still schedule using a single estimate. The study and
characterization of manufacturing throughput time variability can help communicate the
product-to-product differences that exist within the factory. These differences can then be
explicitly planned for a more accurate schedule or used to make production control
tradeoffs between those lots requiring priority handling.
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Implementation Issues

A single statement summarizing the key implementation issues faced when addressing the
subject of manufacturing throughput time variability is "structure influences behavior".
The factory incentive system and the corporate organization represent the two structures
which in particular influence the behaviors seen in this analysis.

The factory incentive for output encourages the production environment to take full
advantage of the resources available. However, an emphasis placed solely on the quantity,
but not the mix, of output, creates an incentive to just produce, rather than provide the
needed quantities of different products. Thus, setups are preserved, and high volume lots
receive processing priority at the expense of low volume lots. This increases throughput
time variability.

In the use of factory throughput time distributions to set expected leadtimes for orders,
the danger of a self-fulfilling prophecy creates a hazard to implementation. In cases where
a high probability of on time delivery is desired, longer leadtimes are chosen and expected.
This allows for a longer leadtime without penalty. If the result is a longer leadtime, the
overall distribution shifts, and hence creates longer leadtimes for all production. Thus,
choosing different leadtimes may add to leadtime variability in the attempt to minimize the
effects of variability.

The Intel organizational structure also limits the ability to implement methodologies that
address variability. While each factory has output driven incentives, no incentive exists for
cross-factory or cross-organizational optimization. Each individual site strives to meet its
individual goals in a locally optimized system.

The separation between the geographies, divisions, manufacturing, and planning systems
creates an artificial barrier to information sharing. Without any structure to guide towards
a globally optimized objective, these groups continue to focus on individual incentives.
Thus, the organizational structure itself creates impediments to implementation.

In Closing

The increasing competitiveness in today's computer industry forces manufacturers to
adopt better production techniques. These new methods force their suppliers to deliver
better customer service and more reliable on time delivery.

This project examined the manufacturing throughput time variability of Intel's various
production stages. The analysis characterized the throughput time variability for the
different factory types and discussed a number of different factors which influence both the
throughput times and their variability. The areas mentioned above highlight some of the
most promising potential extensions to the use of throughput time variability information.
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A new planning and scheduling system which incorporates manufacturing variability
concepts impacts several different areas both directly and indirectly. By introducing new
ideas in the area of manufacturing systems, the new systems can potentially provide the
required impetus for business process change.

Throughput time variability impacts all areas of Intel's business from manufacturing to
order fulfillment to business process performance indicators. Manufacturing throughput
time variability represents only the beginning of fully incorporating variability concepts in
all aspects of their operations.
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Defining Intel: 25 Years/25 Events, Intel Publication, © 1993.
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Goodness of fit analysis

Appendix A -- Goodness of fit analysis

Actual] Nommal Chi

Fab Process #1 Summary |Number of| Expected] Square
Statistics (no outliers) TPT (days) Lots Count Values
23 0 22 22

Mean 342 24 1 5.2 34
Standard Deviation 34 25 7 113 1.6
Variance 11.7 26 19 22.5 0.5
Kurtosis 0.2 27 52 41.2 28
Skewness 03 28 68 69.4 0.0
Range 21.3 29 93 107.4 1.9
Minimum 24.3 30 141 152.8 0.9
Maximum 45.5 31 208 199.7 0.3
Count 2323 32 265 239.9 26
33 317 264.7 10.3

34 283 268.3 0.8

Chi Square DOF =23 -3 20 35 286 250.0 5.2
Chi Square (0.95, 20) = 10.9 36 177 214.0 6.4
37 105 168.3 23.8

38 75 1216 17.9

39 75 80.8 0.4

40 63 493 3.8

41 43 276 8.6

42 22 14.2 42

43 15 6.7 10.2

Cannot conclude 44 4 29 04
goodness of fit. 45 4 1.2 6.8
Totals 2323 115.2

Normal Expected Count based on the total number of lots and a normal
distribution having a mean and standard deviation equalling the values listed

in the above table.

Chi-Squared value = (Actual count - Expected count)*2 / Expected count
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Appendix A -- Goodness of fit analysis

Goodness of fit analysis

Actual Normal

Fab Process #2 Summary Number of| Expected| Chi Square
Statistics (no outliers) TPT (days) Lots Count Values
30 1 0.4 1.4

Mean 524 31 0 06 06
Standard Deviation 6.3 32 o] 1.0 1.0
Variance 396 33 1 1.7 03
Kurtosis 03 7 0 27 27
Skewness 0.4 35 0 41 4.1
Range 442 36 6 6.2 0.0
Minimum 300 37 10 9.2 0.1 J
Maximum 74.2 38 14 13.2 0.0
Count 2341 39 7 185 7.1
40 15 25.2 41

41 28 33.6} 09

Chi Square DOF =45-3 = 42 42 30 436 42
Chi Square (0.95, 20) = 28.1 43 61 55.2 0.6
74 68.1 0.5

100 81.9| 40

124 96.2 8.0

47 11 110.1 0.0

133 1228 08

49 167 1337 83

151 1419 0.6

51 159 146.8 1.0

52 142 148.2 0.3

126 1458 27

54 124 1399 18

55 146 130.9 1.7

56 119 119.4 0.0

57 101 106.3 0.3

58 63 92.2 9.2

59 62 78.0 33

60 43 64.3 7.1

61 44 51.8 12

62 38 40.6 0.2

63 33 314 0.1

64 24 232 0.0

65 26 16.9 50

66 1 120 0.1

67 18 83 1.4

68 4 56 0.4

69 7 37 3.0

70 6 24 56

71 4 15 43

72 5 0.9 18.7

Cannot conclude 73 2 0.5 40
goodness of fit. 74 1 0.3] 15
Totals 2341 | 1324

Normal Expected Count based on the total number of lots and a normal
distribution having a mean and standard deviation equalling the values listed
in the above table.

Chi-Squared value = (Actual count - Expected count)*2 / Expected count
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Appendix B - Sample transaction listing

Calc TPT
From Date From Time To Date To Time (days)
5/20/93 15:02:02 6/16/93 10:04:19 26.7933
5/22/93 6/17/93 2:00:14 26.0812
5/22/93 6/22/93 31.1133
5/22/93 6/21/93 29.8753

5/23/93

5/23/93
5/23/93
5/24/93
5/24/93
5/24/93 :06:
5/24/93 0:08:15
5/24/93 12:44:58
5/24/93 12:45:02
5/24/93 12:45:04
5/24/93 12:45:11
5/24/93 12:45:17
5/25/93 0:44:54
5/25/93 14:32:19
5/25/93 14:33:13
5/25/93 14:34:05
5/25/93 14:34:55
5/25/93 14:35:56
5/25/93 14:36:51
5/25/93 14:40:45
5/25/93 14:41:49
5/25/93 14:42:28
5/25/93 14:43:24
5/25/93 14:44.03
5/25/93 14:44:38
5/26/93 12:29:22
5/26/93 12:29:23
5/26/93 23:48:15
5/26/93 23:49:07
5/26/93 23:49:46
5/26/93 23:50:31
5/26/93 23:51:52
5/26/93 23:52:46
5/26/93 23:54:31
5/26/93 23:55:23

6/22/93

6/21/93
6/22/93
6/23/93
6/22/93
6/23/93
6/21/93
6/21/93
6/21/93
6/22/93
6/22/93
6/23/93
6/22/93
6/21/93
6/22/93
6/22/93
6/21/93
6/23/93
6/21/93
6/23/93
6/22/93
7/2/93
6/25/93
6/21/93
6/22/93
6/22/93
6/22/93
6/24/93
6/22/93
6/23/93
6/24/93
6/23/93
6/25/93
6/24/93
6/25/93
6/25/93

:54:20
10:38:29
1:48:09
10:30:18
8:43:58
12:29:45
10:48:08
16:03:29
16:30:59
16:07:53
10:01:39
6:13:07
8:52:09
3:55:43
15:34.01
16:06:22
15:26:47
14:13:55
19:57:57
4:38:14
21:47:27
5:28:26
14:17:44
16:53:46
14:42:57
9:07:02
13:02:37
13:43:12
17:20:59
1:31:35
17:50:19
12:59:34
12:44:40
0:01:21
5:26:33

29.4469
30.0773
29.4377
30.3614
28.5159
28.4444
28.1379
29.1569
29.1408
29.8864
28.7277
27.3384
27.5579
28.0422
27.0641
29.0360
26.9847
29.2230
27.5816
38.2956
30.6153
26.9822
28.0901
27.9988
26.8595
29.0231
26.5798
27.7305
28.0707
27.7499
29.5470
28.5360
29.0047
29.2300

Calc TPT = (To Date + To Time) - (From Date + From Time)

84



85



