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Abstract

Interphases - regions between the composite matrix and its fibers - influence the
performance of composite materials. Ultrasonic nondestructive evaluation (NDE) is an
attractive technique for characterizing the physical and geometrical properties of fiber
composite interphases. Multivariate correlation and multiple regression techniques are
used to describe relationships between interphase parameters and NDE output wavefields.

The interphase thickness parameter is predicted through linear and nonlinear multiple
regression. It is shown that knowledge of one or more interphase parameters such as
density, Poisson's ratio and modulus of elasticity can help to improve estimates of inter-
phase thickness. The methods are not specific to the inverse problem under study; on the
contrary, they can be applied to the general NDE inverse problem.

Thesis Supervisor: James H. Williams, Jr.
Title: SEPTE Professor of Mechanical Engineering



Acknowledgments

I thank Shiva and Hyunjune for sharing their research experience with me. Shiva was

always a prolific innovator and Hyunjune possessed detailed insights into this problem

which proved invaluable. Liang-Wu provided much-appreciated tips to facilitate word

processing.

I thank Professor James H. Williams, Jr. for his encouragement that I work through

the details of my research until they were sharp. To him I attribute the efficacy of my

writing.

Thanks to all the people here in Cambridge who have made life interesting: Doug,

Laurie, Ravi, Bill and the Roland factor.

I gratefully acknowledge the Department of Defense for its award of the National

Defense Science and Engineering Graduate Fellowship, without which this work would

not be possible.

Finally, thanks to my parents who have always supported my interests and encouraged

me to become whatever it was that I felt in my heart.



I dedicate this work to my fiancee Yvonne Ann, who has been a source of

love and support from the beginning.



Contents

1 Introduction

1.1 Foreword. ..........

1.2 The NDE Inverse Problem

1.3 Motivation .........

1.4 Literature Review.

1.5 Objective ..........

2 Solution Strategy for the Interphase Inverse Problem

2.1 Problem Definition .............................

2.2 Data Generation . . . . . . . . . . . . . . . . .

2.3 Approach .................................

2.3.1 Multivariate Correlation ......................

2.3.2 Multiple Regression.

3 Results of Statistical Analyses

3.1 Correlation Analysis Results.

3.2 Regression Analysis Results ...................

3.2.1 Case of Unknown Interphase State ...........

3.2.2 Cases with Interphase Information Known .......

3.2.3 Evaluation of Estimated Values: Prediction Intervals ..

3.3 Discussion ............................

3.4 Error Interpretation . . . . . . . . . . . . . . . . . .

5

9

9

11

11

12

16

17

17

19

20

20

21

25

25

28

28

29

35

36

41

................................................

........................

........................

........................

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .



4 Future Work

4.1 Introduction to Artificial Intelligence . . . . . . . . . . . . . . . . . . .

4.2 Overview of AI Terminology .......................

4.3 Literature Review.

4.4 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . .

5 Conclusions

References

Appendix A Data Generation

Appendix B Correlation

B. 1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.2 Procedure .................................

Appendix C Multiple Regression

C. Purpose .................

C.2 Formulation ...............

C.2.1 Regression Model ........

C.2.2 Coefficient of Determination R2

C.2.3 Mallows' Statistic Cp ......

C.2.4 Prediction Intervals.

Appendix D Stepwise Regression

D. 1 Purpose . . . . . . . . . . . . . . . . .

D.2 Procedure .................................

Appendix E Data Set

Appendix F SAStm Programs

6

42

42

42

45

48

51

58

59

65

65

66

68

68

70

70

71

73

74

76

76

77

79

83

..................................

.................

.................

.................

.................



List of Figures

1-1 Representative plot of fathers' and sons' heights, according to Galton. . 13

2-1 Two-dimensional model of single fiber scatterer .............. 18

2-2 Wavefield stress components. ....................... 19

2-3 Data set showing possible subset cases for evaluation ........... 23

3-1 Subset cases with interphase information available. ............ 30

3-2 Determination coefficients for known interphase material state cases. .. 32

3-3 Summary plot of cases with known interphase material state ..... . 34

3-4 Solution space . ............................... 40

4-1 Artificial intelligence implementation for inverse interphase problem. . . 50

A-1 Three-dimensional view of single fiber scatterer .............. 60

A-2 Two-dimensional view of single fiber scatterer ............... 62

A-3 Wavefield stress components. ....................... 63

B-1 Some sample scatters to illustrate various values of r. .......... 67

C-1 Measures of variation in a data set . .. . ................. 72

C-2 Prediction intervals ............................. 75

7



List of Tables

2.1 Constituent Material Properties. ....................... 18

3.1 Correlations Between Interphase Parameters and Output Stresses. .... 28

3.2 Determination Coefficients for Regression Models of Interphase Thick-

ness t. ................................... 31

3.3 Determination Coefficients for Known Interphase Material State Cases. . 33

3.4 Grouped R2 Values for Known Interphase Material State Cases ...... 33

3.5 Prediction Interval Size for Regression Models of Interphase Thickness t. 36

A. 1 Ranges and Discrete Values of Domain for Output Calculation. ..... 61

A.2 Applied Steady Stress Wave Excitations .................. 64

8



Chapter 1

Introduction

1.1 Foreword

Composites are at the forefront of materials technology today. They have had copious

research interest for over two decades and still are of primary importance to materials

and engineering professionals today. New applications for composite materials are being

discovered as the technology "matures" and emphasis is being shifted away from the

defense interest so paramount in the recent past.

These materials have great potential yet to be exploited, since some areas of com-

posite science and manufacture are still misunderstood. Composite performance can be

improved and cost can be reduced as advances in research of automated manufacturing,

joining technologies, and curing science become available. Innovations in these and

other parallel disciplines will certainly begin to eliminate some of the obstacles to future

composite progress.

One unique characteristic of composite materials is their ability to assume different

properties utilizing the same constituent material. This characteristic, called tailorability,

allows the design of the end product to be intimately related to the design and selection

of the material. In the past, parameters such as constitutive material types, volume

fractions, reinforcing patterns, and fiber coatings have been changed to tailor properties

in fiber properties.

9



It has been shown that there exists a distinct material layer, called the interphase,

between the fiber and the matrix which is critical to the overall properties of fiber com-

posites [1, 2]. Other terms for this intermediate layer are mesophase, interlayer, or

reaction zone. The interphase layer is a result of physiochemical reactions which occur

during composite processing, and is used as a micromechanics model of the boundary

layer between the two phases of fiber and matrix. Or, the interphase may be designed

into the composite. Interphase physical and geometrical properties and features directly

influence the stiffness, strength and failure mode of the composite, which is the reason

it has been the subject of investigation [1, 3].

If it were possible by conventional techniques to evaluate this interphase, composite

performance could be better predicted from such knowledge of the interphase. However,

interphase properties are difficult if not impossible to determine without specialized lab-

oratory techniques. Some of these techniques, for instance thermo-gravimetric analysis

(TGA) or metallographic evaluation, do not permit service usage of the material subse-

quent to testing. For this reason, nondestructive evaluation (NDE) techniques have been

suggested for implementation in this problem. Various measurement techniques are avail-

able, such as P-backscattering, X-fluorescence method, and acousto-ultrasonic methods.

Problems arise in applying these methods universally to interphase evaluation because

the applicability is limited by characteristics of the interphase layer such as conductivity,

permeability, and absorption [4]. However, acousto-ultrasonic testing methods do not

suffer these shortcomings and are deemed appropriate for composite material property

evaluation. Acousto-ultrasonic methods typically utilize input waves in the frequency

range 20 kHz - 100 Mhz. It has been shown that properties such as modulus can be

determined from acousto-ultrasonic testing, with very good accuracy, in materials such

as concrete, ceramics, and composites [5].
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1.2 The NDE Inverse Problem

NDE is essentially an inverse problem: using a (presumably) nonunique set of NDE

outputs, one is to determine the unique set of inputs which created the output set. For

the problem at hand, the NDE researcher has equipment capable of sending a particular

wave through a material and of measuring stresses and displacements at the surface(s) of

that material. Thus, one can only be sure of the relationship between material state and

measurable stresses when one knows both. Typically a researcher will test the techniques

on specimens of known material state and then use this information as a database to study

unknown material states.

In the case of interphase properties, it can be shown that the problem is characteristic

of an inverse-source problem, or inverse problem [6]. In order to solve this inverse

problem, linear and nonlinear regression techniques are proposed. The proposed method

will create the relationship between measured output stresses and material state, so that

it can be used to learn about unknown samples. This in turn will find one solution to the

inverse problem, the most likely one. More complex methods can then incorporate this

technique to find a more complete solution to the general inverse problem.

1.3 Motivation

The field of NDE is a small but very active field of research. It has been growing

and will continue to grow over the next decade into the twentieth century. Papadakis [7]

predicts ultrasonic testing to be a part of this growth. Specifically, it has been projected

that ultrasonics will be used to determine material property correlations. Another point

from this same author [7] is the importance that artificial intelligence (AI) will have in the

development of NDE. Ultrasonics will have to be interfaced with AI to produce new "so-

lution packages." Some strides in this direction already taken include: automatic learning

networks, expert systems, fuzzy logic, and approximate reasoning. Such disciplines will

increase the utility of ultrasonic techniques in the future, and will be needed to extract

information from the signal processing used for interpreting NDE data.
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Data analysis is named as critical to the successful future of NDE. Vary [8] writes

that there is a need for models which identify the degree to which various microstructural

factors interact and govern mechanical properties and structural response. Such models

would guide and focus interrogation, for unraveling microstructure-property interrelations

would also require more advanced tools such as computational simulation of wave prop-

agation. All of these techniques would serve as the bases needed for interpretation of

NDE data.

1.4 Literature Review

Regression is not a new topic. The term "regression" originated with the work of

Francis Galton [9]. The studies of inheritance inspired by the work of Charles Darwin led

Galton to believe that everything could be studied quantitatively. One of Galton's studies

involved the linear trend between the heights of fathers and their sons (see Fig. 1-1). The

slope of the trend line in this particular study was positive but less than one, so Galton

called the relationship a "regression toward the mean." The term "regression" was then

applied to any linear trend. It was an unfortunate term, however, because the slope of a

least-squares trend line need not be less than one. Be that as it may, its applications are

as widely varied as the social sciences, economics and engineering. It continues to be

developed through the present day.

For the purpose of predicting material property parameters, regression techniques

have been utilized before albeit not to a great degree. One study performed by Grotz and

Lutz [10] investigated the relations between material characteristics and electromagnetic

quantities, particularly eddy current signals. An analysis of piston pins was completed

wherein it was desired to predict surface hardness, case-hardening depth, and core tensile

strength from regression utilizing eddy current signal components as predictors.

Schneider, Schwarz and Schultrich [4], developed a method to determine the thickness

and the elastic modulus of surface layers simultaneously from surface wave dispersion.

Here the inverse solution of the surface wave dispersion equation in a homogeneous,

12
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Figure 1-1: Representative plot of fathers' and sons' heights, according to Galton.

isotropic material coated with a homogeneous, isotropic layer was carried out by nonlinear

regression. The results demonstrated the power of the multidimensional algorithm for

material property inferences and the value of ultrasonic testing for material property

estimation.

Regression analysis was applied to hardenability prediction. Two papers, the first

written by Lund [11] and the second by Thomas, et al. [12] discussed the use of forms

of regression analysis to address the issue of data scatter. Both implemented the com-

positional elements of metals as the regressor variables in the regression equation. The

benefit of this approach was that a material property (hardenability) could be linked with

a microstructural characteristic (composition), thereby enabling one to ascertain exactly

what effect a change will have, in this case a change in composition. It was reported that

regression techniques are the most effective solution to the problem, having succeeded

in explaining the variation better than any other available methods.

In the composites area, multivariate statistical analyses were used for failure predic-
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tion. Hill [13] discussed predicting the burst pressures for filament-wound composite

pressure vessels using acoustic emission data. Specifically, acoustic emission amplitude

and energy measurements during a low proof test were used as the regressors in the analy-

sis. In addition, variables such as cure mode, burst temperature, preimpregnated material

batch, and pressurization scheme were included in the analyses. While the methodology

appears sound and the published results seem useful, there are certain intricacies of the

analyses which preclude the conclusions. In any particular analysis, no more than eight

points were used. This data set is not likely to be representative, random, nor sufficiently

large. Depending on the number of degrees of freedom, this will almost certainly provide

a good result due to inherently low variation in data.' Another intricacy was that for

certain models data were omitted and identified as outlier. This was done on the basis

that the said data points did not fit the model. In this case a different model should have

been considered. Important however was verification of the correlation between certain

acoustic emission parameters and composite defects. The work further demonstrated the

connection between material parameters and acoustic emission test data.

Perhaps the most skillful and thorough use of regression analysis in the literature was

performed by Capener [ 15]. The project was to ascertain the ability of ultrasonic testing to

evaluate potential flaws due to intergranular stress-corrosion cracking (IGSCC) in boiling-

water reactor piping. Regression analyses of the ultrasonic testing depth measurement

upon transformed variables of the actual depth and thickness dimensions of the flaw

were performed. The end result was a statistically significant model which described

the ultrasonic data as a function of the actual flaw depth and thickness. Although this

model would not provide the desired actual dimensions explicitly, it can be inferred that

such information would be available through comparison with other testing methods.

The conclusion was that ultrasonic testing has weaknesses for estimating flaw size in

this application, and other methods and techniques should be included into the design

of ultrasonic performance testing. No predictive value was obtained from this model,

'For instance, consider the case of fitting three data points. A second order fit is able to model these
exactly as a curve, in the form y = a +/,lzl +/,2zl. See reference [14].

14



but statistics uncovered the problem of assuming this testing was sufficient for flaw

characterization. The numerical details in this particular study were well documented,

and the procedure offered a brief explanation for many statistical parameters.

A study was published by Harris [16] to refine the selection of parameters to con-

sider for inclusion into a model. Stepwise regression optimally reduced the unprocessed

batch of variables to a refined set. The author [16] reported that inspection success rate

was 400 percent higher when those variables identified by the stepwise analysis were

present in inspection. Grabec, Sachse and Grabec [17] used non-parametric multidimen-

sional regression to evaluate the surface roughness for certain manufacturing processes.

Alternatively they [17] offered a system which includes neural networks to discrimi-

nate acoustic emission (AE) signals generated during the process in order to characterize

the surface roughness. This very recent work is symbolic of the position that artificial

intelligence methods will assume in the future.

There are interesting examples of research available from many disciplines which

utilize statistics. For instance, Zhang [18] used multivariate statistical techniques for low

cycle fatigue life prediction, and Saniie [19] utilized them for ultrasonic grain signals

classification. Roth, et al. [20] discussed a complete analysis of ultrasonic velocity-pore

fraction relations in the context of statistics for polycrystalline materials. These are

mentioned only as a sample of the wide cross section which has been researched using

statistics.

Thus, the previous work has shown that regression analysis is very capable of solving

problems of the inverse, predictive nature, especially for interests in material properties.

Also, these methods have been applied to NDE data in the laboratory. Coupled with

the motivation discussed in a previous section, regression analysis appears promising for

application to the problem of predicting interphase properties.

15



1.5 Objective

In the case of fiber composite interphase properties, a direct correlation between

interphase properties and the output stress wavefields resulting from traditional acousto-

ultrasonic testing has not been proven. In earlier work [21], it has been shown that ultra-

sonic data can reveal characteristics about the interphase, but under general circumstances

no direct correlation is available. The goal of this thesis is to strengthen confidence in

the relationship between ultrasonic stress wavefields and interphase properties, and also

to develop a system to describe such relationships.

Since the relationships between interphase properties and ultrasonic output wavefields

are quite complex, multiparameter estimation techniques are suitable for uncovering those

relationships. Multiparameter techniques can explain trends in terms of actual variable

quantities, such as the components of a wavefield. Certain methods are also good for

prediction; it is an aim of this work to investigate these methods. A data set as large as the

one to be considered here has not been addressed in the literature; this data set represents

the entire domain of the interphase problem, not a specific range of consideration. While

this task may be more formidable, information learned through it will be potentially more

valuable.

Given a particular ultrasonic output stress wavefield, one should be able to quanti-

tatively identify characteristics of the composite interphase which affected it. Various

schemes for this assessment based on multivariate regression techniques, and their per-

formance, are presented.

Through the above problem, it is desired to demonstrate the feasibility of statistical

methods for solving the general NDE inverse problem.

16



Chapter 2

Solution Strategy for the Interphase

Inverse Problem

2.1 Problem Definition

The material selected for study of interphase property prediction is a metal matrix

composite (MMC). The matrix is aluminum (type AA 520) with alumina (A12 03 ) fibers

and a fiber coating of zirconia (ZrO2) [22, 23]. The material properties of each of these

constituents are found in Table 2.1 [24-29]. Several sources have been utilized to confirm

the accuracy of these properties.

A single fiber elastic model [30] is used to approximate the effect of changes of

interphase properties on NDE ultrasonic output. Briefly, the three-constituent MMC is

modeled as a single cylindrical fiber scatterer surrounded by an interphase layer, em-

bedded in an infinite matrix material. An excitation in the form of a steady-state plane

longitudinal (P) or in-plane shear (S) stress wave is assumed at the boundary and the cor-

responding stress state is determined within the three distinct regions of fiber, interphase

and matrix. The constituents are assumed to be elastic, and the interfaces between the

constituents are perfectly bonded. The single fiber elastic model is sketched in Fig. 2-1.

The interphase is identified by its physical and geometrical properties. They are thick-

ness, density, Poisson's ratio, and modulus of elasticity. Since the interphase properties

17



Table 2.1: Constituent Material Properties.
Matrix: Interphase: Fiber:

AA 520 aluminum zirconia alumina
Elastic modulus 66 GPa 97 GPa 360 GPa

Density 2.6 g/cm3 6.3 g/cm3 3.7 g/cm3

Poisson's ratio 0.31 0.33 0.25

of a particular composite are fixed, for purposes of study the properties are considered to

vary. In this way an unknown interphase can be evaluated, presumably without knowl-

edge of the actual interphase property values. In particular, the interphase thickness is

varied over a large range, in order to study thickness effects on the output wavefield. The

interphase parameters are varied about the nominal values of the interphase properties

listed in Table 2.1 to create the ranges of consideration.

Matrix

i Em , Vm, Pm

__W_

__W

x

E ,v ,p
Propagation direction of
incident plane wave

Figure 2-1: Two-dimensional model of single fiber scatterer.

An output wavefield is created for each set of interphase parameters considered. The

stress components of this wavefield are shown in Fig. 2-2. Two locations of particular

interest are labeled A and B in Fig. 2-2. Location A has r,O coordinates of (20a,0)

and location B has r,# coordinates of (20a,7r). The wavefield components at location A

have the additional subscript '1', and those at location B have the additional subscript '2'.

18



Thus, the stress components at location A are r,,l, uttl and artl and the stress components

at location B are ,rr2, tt2 and o, t2. Displacement wavefield components ur, and ut,

exist at A and Ur 2 and ut2 exist at B. Also, the wavefield components at location A are

called the transmitted wavefield components and the wavefield components at location

B are called the scattered wavefield components. The scattered wavefield is the total

wavefield minus the incident wavefield, also called the back scattered wavefield. All

wavefield components are amplitudes normalized by the excitation wave amplitude.

r ,.

B A

Incident plane wave

.......... .... .... .........
.....

Figure 2-2: Wavefield stress components.

2.2 Data Generation

Data used for purposes of analysis were created according to the procedure outlined in

Appendix A. This process was done once at the beginning of the work and subsequently

the stored information was retrieved as required.

The actual data set consists of 18,480 records. Each record consists of a particular

interphase state and the accompanying stress and displacement field. The interphase state

in each record contains the following interphase physical and geometrical properties:

thickness t, density p, Poisson's ratio v, and modulus of elasticity E. The thickness

19



t is normalized by the radius of the fiber, a. The parameters p and E are normalized

by the nominal matrix density value p, and the nominal matrix modulus value E,,

respectively, found in Table 2.1. The wavefield in each record includes the following

stress and displacement components: a,,l, ttl, u,1, rr2, 0rtt2, Ur2, rtl, Utl, o't2, Ut2-

The data set is configured in the following form:

t, p v, E, rrl O'ttl Utrl rr27 O'tt27 r27 rtl) tli Ort2) t2

A small sample of the data set can be found in Appendix E.

2.3 Approach

2.3.1 Multivariate Correlation

In order to determine whether there is a linear relationship between two scalar vari-

ables, simple or bivariate correlation is used. The two variables under consideration may

or may not be simply related or may not even possess the same units. Correlation anal-

ysis merely intends to describe the change of one variable with respect to the variation

of another variable, that is the degree to which the quantities are linearly related. It is

concerned with measuring the relationship or strength of association among variables

[31].

Correlation provides a method to determine the independence of the variables in a data

set, and here is utilized to show whether a meaningful relationship exists between certain

interphase parameters and output wavefield components. Also, correlation analysis allows

for the simplification of the subsequent regression analyses by reducing the number of

necessary known variables (regressors) [32]. The measure of correlation between two

20



variables, say, x and y, is called the correlation coefficient r, defined as [14]

n

r i=1 (2.1)

E(wi - )2 e(Yi-- y)2
A i=l i=l

where xi and y are the ith observations of the variables and y in the data set, respec-

tively, and x and y are the average values of the variables x and y, respectively.

The correlation coefficient can range from -1 to +1. Thus, a perfect positive cor-

relation between two variables is equivalent to a correlation coefficient of +1, while a

perfect negative correlation is equivalent to a value of -1. A value of zero indicates no

correlation between two variables.

Multivariate correlation analysis, as the name implies, is concerned with the correla-

tions that exist among several variables and is the general case of bivariate correlation.

The only requirement is that all observations of data are made with respect to each

and every variable under consideration. A correlation matrix is used as a convenient

representation of the correlation coefficients among the variables.

For the problem at hand, all correlations are to be found between t, p, v, E, ,rl, attl,

Url, irr2, tt2, Ur2, rtl, Utl, 0 rt2, Ut2. The correlation analysis can identify relationships

in the interphase inverse problem and thereby can allow improved regression models

for interphase thickness. The mathematical details of correlation analysis are found in

Appendix B.

2.3.2 Multiple Regression

The principal means for study in this research is regression. This is a method of fitting

a particular function to a set of (,y) points in order to use the function for subsequent

interpolation. Specifically, the function is generated by a least squares minimization

process, such that the sum of the squares of the differences between the actual data

points y and the predicted values i is minimized (yi - i is called the residual at a

21



point). The function will depend on the data set considered, but is not sensitive to small

changes in the contents of the data set. This fact makes regression techniques ideally

suited for scientific prediction. Multiple regression extends this concept to data sets of

more than two variables. The model for multiple regression has the form [9]

= a + lXl + 2X2 + 32X3 + -- + PkXk (2.2)

where y is the predicted value of the variable of interest, ao is the intercept or constant in

the equation (which is often called bias), j,(j=1,2,3,...,k) are the coefficients corresponding

to the variables x j, and xj,(j=l,2, 3,...,k) are predictor variables or regressors, namely, some

parameters which can be measured, known or estimated. The xj can be transforms of a

variable, such as 2, ix, or 3x + 4. The multiple regression procedure is explained in

detail in Appendix C.

It has been determined that a multiple regression technique can provide a good model

of the interphase inverse problem solution surface. For the sake of study, the interphase

thickness t is considered as the variable y to be predicted (the criterion variable). The

output stress components ,,rl, ,rr2, rtl, ort2 are the bases for the predictor variables.

Regression models are developed here for the data set and subsets thereof, to show

that subsidiary information about the interphase can contribute to improved interphase

thickness prediction. Subsets are created by considering certain interphase parameters

fixed, as depicted schematically in Fig. 2-3. For example, in case A, a subset is considered

which has p constant at some known value pi, and all other parameters are free to vary.

Or, in case E, p, v, and E are fixed at some known values p, vl, and E1, respectively,

so t is the only interphase parameter permitted to vary.

The criterion variable for all analyses is t and the predictor variables (or regressors)

for all analyses are the output wavefield components, or a transform thereof. The linear

multiple regression analysis utilizes Ur,1, ,,r2, trtl, rt2 as regressors xl, 2, X3, X4 . The

nonlinear multiple regression analysis includes all regressors from the linear analysis,

and also considers 'r2l, rt 2 as regressors X5, 6 . These models simulate the potential
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problem of an NDE researcher who seeks to learn about a specific interphase while being

able to measure only these output wavefield components.

Figure 2-3: Data set showing possible subset cases for evaluation.

The procedure to form a model for the interphase thickness as a function of the output

wavefield and to develop the necessary statistical parameters for unbiased comparison is

as follows. Stepwise regression (Appendix D) is used to optimize the predictive capability

of the model for any particular case. Next, conventional multiple regression implements

that model and the relevant parameters needed for unbiased comparison between models

are created. Also, the predictive capability of every model must be described. Two

statistical quantities are considered for this purpose: coefficient of multiple determination

R2 and the prediction interval on the predicted values.

Coefficient of Determination R2

The coefficient of multiple determination is defined as [32]

SSRR2 =S
3YY

(2.3)

where SSR is equal to E'i 1(i - y)2 and S is equal to E (- y)2 . SSR is known

as the sum of squares due to regression, while S is also called the total sum of squares.
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Thus, R2 is a ratio of the variability in y explained by the regression model to the

total variability in criterion variable y. For instance, a model which explains y totally

has R2 equal to 1, while a model with no ability to explain y has a value of zero.

Prediction Intervals

Multiple regression yields coefficients which are used to create a model of a particular

data set. The regression equation will then output one value for any given combination

of input predictor values. For predicting the single observed value yo, the best estimate

is the point on the regression line at a, = a0 + Z=13 j(xo)j.

Since any solution surface is likely to include fluctuation about the actual data points,

analytic techniques used for prediction often yield an interval estimate for the solution.

This is true in regression, and the interval is the prediction interval. The prediction

interval for a value predicted by regression is defined as [9]

i=1 =

where (1 - a) is the percent confidence desired, t,n-k-1 is the student's t statistic [9]

which in the limit as n oo approaches the normal z statistic [9], xz is the specific

known value of predictor xi, and pij are the elements of the solution coefficient matrix

from the minimization of residuals [9]. s 2 , is the variance about the trend line, and is

computed as [9]

, C~"=l~y; -~(, 2y2Z'= n-% -) (2.5)s0 =n- k-

Concisely stated, the prediction interval is that region of the criterion variable range

within which future observations of new data are found, with a specified confidence. It

is an expression which considers the variability of the data, the regression performed, the

number of observations in the data set and the values of the predictor variables. Details

of both R2 and prediction intervals are available in Appendix C.
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Chapter 3

Results of Statistical Analyses

3.1 Correlation Analysis Results

As a preliminary step for understanding trends which exist in the problem, multivariate

correlation analysis is implemented (see Appendix B). Correlation analysis enables one

to ascertain relationships between any two quantities of interest. A correlation coefficient

is found for all combinations of variables in the data set.

The correlation matrix in Table 3.1 contains the results from the multivariate corre-

lation analysis. The correlation between any two quantities is found by the intersection

of the corresponding column and row. For example, the correlation found in Table 3.1

between t and 2,,2 is -0.781. All correlation analyses are performed with SAS'm, the

Statistical Analysis System software package [33].

As a check on the values in Table 3.1, it can be seen that there are correlations of zero

between the four interphase parameters t, p, v, E; this is expected since the interphase

parameters are specified independently, and there should not be any linear relationship

between them. Also, all diagonal elements have a value of one. Initially, it is beneficial

to reduce the number of variables in the set of output which have to be measured. This

simplifies both the procedure for gathering data as well as the complexity of the model.

We look to the correlation table for insight into similarities among the variables.

Immediately striking is the perfect correlation between o-,, and u,, and the almost
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perfect correlation between ar,, and orttl. This observation indicates that only one of the

variables ,,rl, attl and ur, needs to be retained to contain the unique information present

in the group. Since there is a perfect correlation between Or,, and url, it is most wise to

retain one of these two variables. Also, the most readily available experimental apparati,

such as piezoelectric transducers, measure stresses at the surface of a material; therefore,

,,rl is the single best choice to represent this group of three highly correlated quantities,

0o'rl, ttl and url.

Analogous to the above case is that of the scattered components rr 2, att2, and ur2.

The three are perfectly correlated to one another and hence all three need not be kept for

analysis. The scattered component of the radial stress (r,,2) is retained using the same

logic as before.

Other variables in Table 3.1 which are highly correlated are the stress and displace-

ment components resulting from shear wave excitation, ,tl , t2, Ut2. The trans-

mitted components o,tl and utl have a correlation coefficient of one as do the scattered

components rt2 and ut2. For these two pair the stress components are kept and the

displacement components are disregarded since all the information they contain as a set

is already represented by the stress components.

As a prefix to the regression analysis to be explained later, the correlation relation-

ships between the interphase quantities t, p, v, E and C,,,, ?rr2, ,rtl, o't2 are studied.

Ideally, a perfect correlation between the interphase parameters and the output stresses

would provide knowledge of the interphase parameters simply by measuring the output

stresses; however, the potential nonuniqueness of this NDE problem suggests that perfect

correlation will not be the case. Upon examination of the values in the Table 3.1, one can

see that there are no perfect correlations, but some strong negative correlations between t

and a,, 2 (-0.781), t and crt 2 (-0.792); and fair positive correlation between p and r,,rl, p

and atl (0.560 and 0.440 respectively). Modulus of elasticity E shows a similar degree

of correlation as p, having fair negative correlation to both rr,,l and ,rtl (-0.384 and

-0.502). Conversely, there is no output stress component considered which correlates

well with v. Thus, these correlation coefficients reinforce the concept from earlier work
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Table 3.1: Correlations Between Interphase Parameters and Output Stresses.
t p v E

rr,1 0.289 0.560 -0.239 -0.384
r,,2 -0.781 -0.373 0.083 0.067

oti 0.061 0.440 0.097 -0.502
a,t2 -0.792 -0.227 -0.057 0.259

[21] that there are relationships between the interphase parameters and the components

of the output wavefield, most notable of which are those which include the interphase

thickness t.

From this information it is evident that interphase thickness shows the most promise

for a regression model using the output stresses as regressors. It is important to note that

this analysis has enabled the number of required measurable variables to be reduced from

ten to four. The complexity of the model is therefore reduced quite significantly, allowing

for a more efficient model, requiring less computational time. Also, utilizing an efficient

method allows the scope of the analysis to be increased if the need arises. Table 3.1

summarizes the significant correlation relationships between the interphase parameters

and the output stresses.

3.2 Regression Analysis Results

3.2.1 Case of Unknown Interphase State

A linear multiple regression model is first considered for predicting the interphase

thickness t. This is to say that all predictors xj are linear as are all parameter coefficients

/j. The predictors considered for inclusion in the model by the stepwise analysis are C,,ul

ar,2, ,rtl, art2. The criterion variable is t. This and all subsequent regression analyses

are performed with SAS m.

This first model produces quite successful results, explaining 79. 1% of the variability

in the criterion variable t, shown in Table 3.2. This model is a linear, multiple regression

model, the first model to be considered in any regression analysis. No knowledge of
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interphase parameters is assumed. Evident in this result is the good correlation (see

Table 3.1) between the two scattered components a,2 and 0 rt2 and the criterion variable t.

In this work, the adjusted coefficient of multiple determination R24d (eqn. C.5) is not

utilized for analysis. Due to the similar number of regressors in all models considered,

the values of R24 do not deviate significantly from the unadjusted R2 values. Also,

Mallows' statistic Cp (eqn. C.6) remains within a narrow range, and it does not indicate

a sizable difference in the models created. These facts suggest that all models in this

study are of equivalent worth.

Nonlinear multiple regression models are formed from eqn. 2.2 by considering non-

linear transforms of output wavefield components as predictors xj. In addition to those

predictors considered in the linear analysis, ar2 and 7t2 are considered for inclusion

in the nonlinear model. The nonlinear model of interphase thickness increases the de-

termination coefficient to a very satisfactory value of 88.7%. An R2 value such as

this indicates a reliable fit with which the interphase thickness can be predicted, with

acceptable precision.

3.2.2 Cases with Interphase Information Known

Of interest is the issue of how prediction ability improves if the unknown material

state can be characterized before analysis. For example, an unknown interphase can

be characterized by identifying the value of one of its material properties, such as p.

Fig. 3-1 illustrates the data set, and possible subsets defined by fixing a parameter or

several parameters of the interphase material state. For any subset case, regression of t

onto the output wavefield components produces a model for that case represented by a

function fj,(j=1,2,3....) with prediction intervals represented by 8j,(j=1,2,3,...). Comparisons

among these models permit the study of how interphase parameters can affect the ability

to predict t.

Analyses are completed for each of the discrete values in the domain of the interphase

density. First, the data set is transformed into several smaller ones which contain three

unknown variables, t, v and E and one known value p. Regression is used on each of
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t =f ( ,rt1 2 ',2 ) + 8

t =f(%., a, rr 1 ' F2 ',,2 ',) + 8

P = P,

v unknown

E unknown

t = f ( ,%i ,1t 2 ,%Tn2 ) + 8
t =f( ,, ,, '2 'C(a2 ', 2 t) + 6

6 2 26

P unknown

v unknown

E = E,

t =f3(a, ', o, 2 2 ) + 83

t = f (r, 1 ,, 2 rr 2 2 rr ) + 84

P unknown

v=V
E unknown

t = f7( a-, ,, , ,,2 ) + 87

t =f8(, ' ',,2 '' 2 'r2 ' ) + 88

P=P2
V=V

E = E,

Figure 3-1: Subset cases with interphase information available.

these smaller data subsets to generate regression models for each. In doing so, the effect

of p is removed from the analysis; the results prove to be very satisfactory. A situation

such as this mimics the case where a researcher knows the value of interphase density, but

does not know other properties. Table 3.2 contains the determination coefficients from

the regression analysis cases for each particular p. The results are plotted in Fig. 3-2.

Considered next is the situation with elastic modulus known in the interphase region.

For cases with the interphase modulus fixed and all other parameters allowed to vary, a

summary of results is available in the middle portion of Table 3.2, shown graphically in

Fig. 3-2.
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Table 3.2: Determination Coefficients for Regression Models of Interphase Thickness t.
p v E R2 : linear R 2: nonlinear

unknown unknown unknown 0.791 0.887

1.2115 unknown unknown 0.962 0.983
1.4538 unknown unknown 0.966 0.990
1.6962 unknown unknown 0.965 0.965
1.9385 unknown unknown 0.972 0.985
2.1808 unknown unknown 0.960 0.982
2.4231 unknown unknown 0.950 0.980
2.6654 unknown unknown 0.930 0.970
2.9077 unknown unknown 0.880 0.950
3.1500 unknown unknown 0.820 0.920
3.3923 unknown unknown 0.740 0.870
3.6346 unknown unknown 0.620 0.770

unknown unknown 1.0284 0.600 0.770
unknown unknown 1.1754 0.680 0.815
unknown unknown 1.3223 0.840 0.890
unknown unknown 1.4692 0.860 0.904
unknown unknown 1.6161 0.830 0.908
unknown unknown 1.7631 0.850 0.927
unknown unknown 1.9100 0.867 0.941
unknown unknown 2.0569 0.873 0.942
unknown unknown 2.2038 0.880 0.940
unknown unknown 2.3507 0.894 0.941
unknown unknown 2.4977 0.910 0.946
unknown unknown 2.6446 0.922 0.951
unknown unknown 2.7915 0.929 0.953
unknown unknown 2.9384 0.930 0.951

unknown 0.10 unknown 0.789 0.896
unknown 0.16 unknown 0.787 0.901
unknown 0.22 unknown 0.783 0.908
unknown 0.28 unknown 0.787 0.905
unknown 0.34 unknown 0.807 0.887
unknown 0.40 unknown 0.830 0.880
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Figure 3-2: Determination coefficients for known interphase material state cases.

Interestingly, should a researcher have knowledge of the interphase Poisson's ratio

value, no real benefit can be asserted for explaining interphase thickness. Table 3.2

summarizes the results for analysis cases with known interphase Poisson's ratio. The

lack of a distinct trend in Fig. 3-2 also makes the absence of improved results apparent.

Of the most striking results are those cases in which the interphase material state

is known (p, v, E are known) and it is desired to predict interphase thickness. Al-

though testing every possibility is impractical (and most probably implausible), many are

analyzed. Table 3.3 lists the particular cases investigated, and the results of the analysis.
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Table 3.3: Determination Coefficients for Known Interphase Material State Cases.
p v E R 2: linear R 2 : nonlinear

1.2115 0.28 1.0284 0.998 1.00
1.2115 0.40 1.1754 1.00 1.00
1.4538 0.28 2.6446 0.999 1.00
1.6932 0.16 1.4692 0.987 1.00
1.6932 0.16 2.7915 0.998 1.00
1.6962 0.34 1.1754 0.994 1.00
1.9385 0.40 1.3223 0.985 1.00
2.1808 0.28 2.0569 0.996 1.00
2.1808 0.34 1.0284 0.985 0.999
2.4231 0.40 1.9100 0.997 1.00
2.6654 0.10 1.1754 0.989 0.989
2.6654 0.28 1.3223 0.983 0.983
2.6654 0.40 1.1754 0.988 0.999
2.9077 0.34 2.4977 0.996 0.998
3.1500 0.34 1.9100 0.956 0.993
3.3923 0.16 2.9384 0.985 0.996
3.3923 0.28 2.0569 0.977 0.989
3.3923 0.40 1.6161 0.815 0.903
3.6346 0.10 1.4692 0.833 0.894
3.6346 0.16 1.7631 0.815 0.828

Table 3.4: Grouped R2 Values for Known Interphase Material State Cases.
Number of Cases

R2 linear analysis nonlinear analysis
0.800 - 0.900 3 2
0.900 - 0.950 0 1
0.950 - 0.980 2 0
0.980 - 0.990 7 3
0.990 - 1.000 8 14
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Figure 3-3: Summary plot of cases with known interphase material state.

34

40l

Z

i I



Table 3.4 summarizes the coefficients of multiple determination and their frequency

from the cases of known material state. This table is organized in the following fashion:

for a total of twenty cases considered, the number appearing in the second column is the

number of cases which have the coefficient of multiple determination listed in the same

row as the value. For instance, of the twenty linear analyses which have been completed,

three have an R2 value between 80% and 90%, and eight have values from 99% to 100%.

This same information is plotted in Fig. 3-3.

3.2.3 Evaluation of Estimated Values: Prediction Intervals

To evaluate the precision of the interphase thickness estimates, prediction intervals

are required. The size of the prediction interval is used to describe the prediction ability

for comparison purposes. A smaller prediction interval implies that the value is more

tightly bounded and more useful for competently describing the interphase thickness of

the fiber composite. The prediction interval is specified as a range around the predicted

value. A 95% confidence level is utilized to determine all prediction intervals. Table 3.5

includes prediction intervals for selected regression cases.

The size of the prediction interval from the linear analysis of the original data set is

±0.0255. Implementing a nonlinear analysis on the original data set enables the size of

prediction interval to be reduced by 20%, to ±0.0190. This is not a trivial result and

instead implies that the resolution increases by using a nonlinear analysis. The trend

continues in further analyses.

Cases with known interphase density have resulted in increased determination coef-

ficients for the regression models of t. Three such cases of known interphase density

are tabulated in Table 3.5. The first tabulated value of p = 1.4538 corresponds to a

very successful regression case, the second value of p = 2.6654 is a good analysis case

and the last value of p = 3.3923 is a case unimproved from the case with no interphase

information known, as evidenced by its R 2 value.

A known modulus also is able to permit improved interphase thickness prediction.

This situation is summarized for three cases of known interphase modulus in Table 3.5.
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Table 3.5: Prediction Interval Size for Regression Models of Interphase Thickness t.
linear analysis nonlinear analysis

P v E R2 interval R 2 interval
unknown unknown unknown 0.791 J 0.0255 0.887 0.0190

1.4538 unknown unknown 0.966 0.0105 0.990 ±0.0056
2.6654 unknown unknown 0.930 +0.0153 0.970 ±0.0107
3.3923 unknown unknown 0.740 ±0.0294 0.870 4±0.0209

unknown unknown 1.0284 0.600 +0.0363 0.770 ±0.0276
unknown unknown 1.9100 0.867 zt0.0209 0.941 ±0.0140
unknown unknown 2.9384 0.930 zt0.0151 0.951 ±0.0128

1.2115 0.28 1.0284 0.998 +0.0001 1.00 ±6.57e-5
2.6654 0.10 1.1754 0.989 ±0.0083 0.989 ±0.0035
3.3923 0.16 2.9384 0.985 J 0.0103 0.996 ± 0.0056

The prediction intervals behave in the same manner as those of the known interphase

density case, with respect to the coefficient of multiple determination: low values of R2

correspond to large intervals, and vice-versa. Modulus value cases tabulated are examples

of poor, good, and excellent predictive results.

The remainder of Table 3.5 includes cases of known material state. The intervals

from these cases indicate excellent results, as expected from their high coefficients of

multiple determination. Such cases emulate the idealized situation wherein an investigator

is certain of the material parameters of the interphase under consideration, and only needs

an estimate of interphase thickness.

3.3 Discussion

For most analysis cases of known interphase density, nonlinear regression analyses

provide determination coefficient values which are well into the ninety percent range, as

are over half of the R2 values from linear analyses. Low R2 values from such analyses

appear to surface when the interphase density value is known, and is high in the range

considered. Accordingly, a loss of the ability to explain the variation of interphase

thickness accompanies these particular cases. Utilizing a nonlinear model permits good

results for all cases but two, that is eighty percent of the cases here. However, if we look
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to the physical meaning of these p values, we can determine more.

The cases with known interphase density values providing less than desirable results

(that is, R2 < 0.90) are the cases corresponding to the four highest density values in the

range considered. Even if nonlinear analysis is utilized, the cases corresponding to the

two highest values in the interphase density domain are those which yield poor results.

However, these interphase density values are quite unlikely to be encountered in actual

practice. The lowest value of concern is p = 2.9077, which corresponds to an actual

interphase density value of 7.56 g/cm3 . In comparison, recall the density of alumina is

3.7 g/cm3 and that of zirconia is 6.3 g/cm3, each less than the value for interphase density

assumed in this case. Similarly, for the remaining three questionable cases the values

used for the known interphase density are 8.19, 8.82, and 9.45 g/cm3, respectively. These

larger density values are even more unlikely to be encountered in the actual composite,

by the same reasoning.

If this is indeed the case, then those particular values of interphase density can be

omitted from the domain as extremely unlikely to be encountered. Hence, what remains

are very favorable results for the analysis cases in which interphase density is known.

A known interphase modulus of elasticity is also successfully utilized to improve the

models for predicting interphase thickness. It is seen from Table 3.2 that for this situation,

high modulus values provide the best basis for interphase thickness prediction. In fact, if

90% is demanded as the minimum acceptable coefficient of multiple determination, only

the cases of the three lowest modulus values are unacceptable. This leaves almost eighty

percent of the interphase elastic modulus domain which is very accurately modeled with

regression.

Linear models of the data subsets with known v do not appear to significantly improve

the results in comparison to the initial linear model of the entire data set. Recall the

determination coefficient for the original instance was 79. 1%. One can see from Table 3.2

that having knowledge of the interphase Poisson's ratio does not permit much improved

R2 for the interphase thickness regression model. Analysis of the case corresponding to

the last value in the domain of Poisson's ratio yields a coefficient of determination value
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of 83.0%, from Table 3.2. This may indicate that prediction ability is better for this

one case, but that may not be a statistically significant difference. The effects of known

interphase Poisson's ratio on the ability to predict interphase thickness appear unclear

from these results.

Nonlinear models for cases of known interphase Poisson's ratio do not appear to

ameliorate the situation. In comparison to the R2 value of 88.7% from analysis of the

case with no information known, the R2 values ranging from 88.0% to 90.8% for known

v cases are not substantive enough to justify the added effort. It is clear from both

the linear and nonlinear cases that the effect of known interphase Poisson's ratio on the

ability to predict interphase thickness is insignificant, or perhaps random at best. This

conclusion is also evidenced in Table 3.1 from the correlation relationships between v

and the output wavefield components. Correlations between v and any component tend

to be small, less than 23%, typically less than 10%. Therefore having knowledge of v

in this NDE problem does not help to narrow down the number of potential solution

wavefields for a given interphase material state, and thus cannot contribute to improved

estimation of interphase thickness t.

From the equations of motion and constitutive equations for wave mechanics which

have been used in the solution to this problem [34, 35], one can see that Poisson's ratio

appears in terms like (1-v)2, (1-v2) or (3-v). Typically, these become higher order terms

in the dynamic analysis and hence as v changes over the range considered in this study,

there is not much effect on the output wavefield, as corroborated from the correlation

table. With this rationale in mind, the above results relating to v are well founded.

Table 3.3 contains the excellent results for regression cases of known material state.

The lowest R2 value encountered during the analysis was actually 81.5%, for particular

material states to be described. Next, one might notice the predominance of virtually

perfect determination coefficients - especially for the nonlinear cases considered. The

implication here is that if one has a known interphase material state, such as in the

example of a fiber sizing, a value for interphase thickness is available with exceptional

accuracy. This same task for the determination of fiber sizings has been accomplished in
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the past through typically destructive methods (e.g. thermo-gravimetric analysis (TGA)

[36] or metallographic evaluation), and has been of interest for researchers across several

disciplines.

Also, the poorest results from the analysis cases of known interphase material state

occur for particular interphase material states wherein the interphase density is high.

Note that is also the situation for the cases of known interphase density, summarized

in Table 3.2. Similarly, if the cases of known interphase material state with high inter-

phase density can be eliminated by the logic utilized before, there is no exception to the

capability of the regression methods which are provided in cases of known interphase

material state.

Known interphase information allows improved thickness estimation. In fact, when

any outside information is available to the analysis, its inclusion can only improve the

results unless the outside information is insignificant to the trends of the problem. Con-

sider, for example, the case of a known interphase density value; the regression model

makes no provision for including this known information as a regressor. However, it is by

reducing the number of degrees of freedom in the data set that the results have changed,

because some possible wavefields are eliminated as solution possibilities for the particu-

lar model under consideration. That is, the dimensionality of the output wavefield data

is reduced with the fixed interphase parameter by considering a specific subset of entire

data set. Consider Fig. 3-4, which depicts a scheme for the interphase inverse problem.

The domain of the forward problem can map onto the solution space as indicated by the

dotted arrows. The inverse problem is to draw conclusions about the interphase domain

based on the output wavefield, as represented by bold arrows.

The interphase inverse problem with known interphase density is of smaller dimension

than the interphase inverse problem with no known interphase information. The additional

information of known interphase density allows the solution space to be reduced, thereby

removing the effects of interphase density from those which are to be modeled with

regression. Hence, there is less variation in the stress solution space which is to be

accounted for by the regression model. Similar logic applies to the cases of known
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elastic modulus, cases of known Poisson's ratio, and the cases of known material state.

In the cases of known Poisson's ratio, the solution space is not reduced whereas in the

cases of known material state, the solution space is reduced quite considerably.

The primary concern is to demonstrate the relationship between the output stress

wavefield components and the properties of the interphase. It is entirely possible that

there is a need for increased resolution to study effects which are unexplainable at this

time, such as the effect interphase Poisson's ratio has on the wavefield. However it has

been shown that there are effects which are readily resolved utilizing information about

the problem. Preprocessing in other forms such as principal component analysis would

likely have a positive effect also.

Interphase Domain Output Stress Solution Space

Inverse Problem

Figure 3-4: Solution space.
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3.4 Error Interpretation

One can consider the regression results in terms of error, and how this error was

affected. There are two types of error involved in the analysis. One source of error is

inherent in the procedure of prediction intervals, and is called a Type I error. A Type I

error is the error of misclassification, that is, the percentage of predicted values for new

data which really do not fall within the prediction interval. This is the error evidenced

in the significance level which is fixed at 5% (1.00 - 0.95), and its only recourse is

to increase the size of the prediction intervals thereby reducing the effectiveness of the

algorithm. This error can not ever be eliminated completely, but it is small, and not cause

for concern.

By assuming knowledge of interphase parameters, the ability to decrease the size of

the prediction interval is demonstrated. However, the size of the prediction interval in

itself is error. Ergo, one can only assume the entire prediction interval to be the error

for a particular point estimate of interphase thickness, to provide the most conservative

estimate for a range on the predicted interphase thickness value.

Thus there are two distinct types of estimation error to be concerned about here: the

Type I error, and the error due to the spread of the data. The former can be controlled,

at the expense of affecting the certainty of an estimate. The latter can be decreased by

utilizing information which is pertinent to the trends in the problem, in order to improve

the fit of the model to the data. This is the method which is utilized to improve estimation

in this work.
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Chapter 4

Future Work

4.1 Introduction to Artificial Intelligence

The field of NDE is beginning to acknowledge the need for automation of its pro-

cesses. The primary reason for this need is to keep nondestructive evaluation techniques

competitive with and cost-effective in comparison to other testing techniques, especially

in the manufacturing industry. Interest in artificial intelligence (AI) has grown in the

context of NDE because of its ability to be applied to general problems, and the great

potential it has for solving problems usually too complex for a machine to model. Also,

AI can automate much of the work which is presently done with human skill, and thereby

can improve speed and reduce error.

Artificial intelligence research is quite active, and there is much room for growth in

this technology. Accordingly, NDE has not yet gleaned the benefits from this research

work. Many prospective applications have been published, and a sample is discussed

below. This is certainly an indication that the field of NDE will gain significant contri-

butions from AI, as they are developed.

4.2 Overview of AI Terminology

Artificial intelligence is a general term used to describe all processes of integrating
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human knowledge into computer systems. An equivalent term for this is knowledge

engineering. A knowledge based system is one type of artificial intelligence system which

contains some kind of knowledge base and an inference mechanism. The distinction for

these systems is that they are a set of state-driven processes rather than hard-coded ones.

State-driven processes are those in which decisions about how to process data are part of

the knowledge of the system. Many variants of Al technology have developed in recent

years, and each of the major types will be discussed below.

Expert Systems have proven to be the most versatile of all knowledge based systems.

An expert system is an information system that can pose and answer questions relating to

information borrowed from human experts. This is accomplished by a software system

that mimics the deductive and inductive reasoning of experts. Since its knowledge base

comes from human experts, its facts and rules are not totally certain nor consistent. An

inference procedure permits automatic extraction of pertinent rules from the description

of the data provided to it. Any method of drawing conclusions from facts which seem

to be correct is called plausible reasoning. Plausible reasoning is usually heuristic, but

can also be mathematically sound. Expert systems presently find use in capital intensive

areas, since in such areas it is easy to recapture the initial high capital expenditures

required for startup. Examples include oil exploration and drilling. Detailed explanation

is available in references [37, 38].

As already explained, expert systems require a collection of facts and rules and a way

of making inferences from those facts and rules. A rule is a pattern-invoked program,

activated whenever certain conditions hold in the data. These examine the current state of

facts and in turn can change the current state of facts. A production system is made up of

a set of rules, also called production rules, which operate in cycles according to the input

to the system. In each cycle, the conditions of each production rule are matched against

the current state of facts. One benefit of this architecture is modularity. This allows

decisions to be made without complete information, unlike algorithmic code solutions.

For the user, this translates into the effect of helping to focus more on the problem

itself than on the implementation of the underlying software. This is possible because
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expert systems are self-regulated systems, intelligent systems free to act according to

internalized goals. A movement governed by an internalized goal (such as retrieving the

current structure of facts) is called pullback. It is contrasted with feedback wherein a

system is externally regulated with respect to a margin of error in reference to an external

goal.

Fuzzy logic is the system of manipulation for fuzzy sets. To say a word is "fuzzy"

is to say that sometimes there is no definite answer as to whether the word applies to

something. Note that this is due to an aspect of the meaning of the word, not due to the

state of our knowledge. Fuzzy sets in contrast to crisp sets can be thought to include the

entire universe as members. However, characteristic of fuzzy sets is that each element

has a degree of membership value, which is in the range of zero to one. As such, since

many members will have a degree of membership of zero, the set of all elements which

remain with nonzero membership are often referred to as a fuzzy subset. Fuzzy subsets

are very valuable when trying to encode natural spoken language into a system, because

of the open textured nature of language i.e. the possibility of omitting some unintended

meaning for a word. Thus it is ideal for expert knowledge which is often imprecise and

intricate [39].

Generating much excitement as of late are neural networks, also known as learning

networks, parallel distributed processing, or auto-associative processing. Artificial neu-

ral networks (ANN) are different from knowledge based systems because there is no

knowledge base nor inference mechanism. Instead, the function of the knowledge base

is supplanted by training data, which the software uses to map the domain under consid-

eration. Subsequent navigation of this domain may allow classification of an unknown

and completely unique data point through complex fits. Many efforts have been directed

into utilizing this technology for problem solving. They require no a priori information

or built-in rules; rather, they acquire knowledge of a system through the presentation of

examples.
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4.3 Literature Review

Imaging has long been important in quality assessment, and is constantly being up-

dated with new technology. In work by Papadakis [40, 41], a method is proposed to utilize

quality-related imaging information without actually forming the image. This is done to

prevent much secondary processing, which can be avoided with the use of computerized

interpretation of the imaging data. As an added benefit, human interpretation of output is

unnecessary, and hence can be removed from the loop. The proposed automated process

for a manufacturing system would utilize a computer to gather the NDE output, control

the imaging function, and create control charts. Artificial intelligence algorithms would

then interpret the data and ideally offer correction to process flaws. This system would be

flexible to other operations, and even offer time-sharing to balance several processes at

once. Most significantly, the availability of expert systems and learning networks would

reduce error and diagnostic time required once evaluation signals a faulty process.

A large fraction of all AI research has been directed towards the neural network

branch of the science. Neural networks have proven to be effective for certain types of

pattern recognition problems. An article by Hill, Israel, and Knotts [42] discusses the

use of backpropagation neural networks to predict ultimate strengths in aluminum-lithium

welds. Acoustic emission flaw growth activity was monitored in the weld specimens from

the onset of tensile loading until failure. The data used to train the network, however,

were only that from initial loading to 25 percent of the expected ultimate strength. The

fully interconnected network had one hidden layer, and the worst case prediction was

found to be 2.6 percent in error. It was shown previous to this study that AE data taken

during proof loading were correlated with ultimate strengths in both composites and in

metals. The advantage in this case was the ability of the neural network to provide an

automated technique for sorting out the AE associated with the various mechanisms and

determine the functional form of the desired relationships.

The inverse problem of eddy current data has been addressed with neural networks.

Mann, Schmerr and Moulder [43] explored the application of neural networks for the
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inversion of eddy current data in determining flaw sizes. Training experiments were

run using data generated with theoretical solutions, as well as actual experimental data.

Three parameters were sought, the depth, thickness and length of a surface flaw. Their

conclusion is that the neural networks show great promise in being able to solve the

problem, and more work is needed to refine the application. No effort in this work

was aimed at optimizing the structure, however fair accuracy was obtained. This paper

like that of Hill [42] is good evidence that neural networks are capable of modeling the

inverse problem for particular NDE data, in this case eddy current data.

Udpa and Udpa [44] also concentrated on the classification of eddy current defect

signals in their work. Their view was that pattern recognition algorithms could be utilized

for signal interpretation, and hence the classification of a defect as a "solution" to the

inverse problem. Interestingly they employed preprocessing of the data through Fourier

descriptors in an effort to derive a parametric model. In turn, this data set was the one used

for further classification needs. The results they present are quite successful, showing

that the neural network was correctly able to classify the processed defect data into one

of four possible defect categories. They compare the results to traditional classification

techniques, e.g. K-means clustering.

Thomsen and Lund [45] looked into the ability of an ANN to model a nonlinear

classification problem on ultrasonic power spectra. As in the work by Hill, Israel and

Knotts [42], correlation of the ultrasonic stress wave factors with composite fabrication

quality already existed, so the neural network was implemented to perform an accurate

classification of the ultrasonic signals. The results reported classification success rates of

86 to 96 percent, depending on category. Neural networks were in this respect said to be

superior to the conventional stress wave factor analysis.

Common to all authors was the acknowledgment that neural networks have major

drawbacks. For classification problems, the most considerable drawback is the network's

inadequacy in handling any data type which was not presented in the training data. So

unless a particular feature is able to be comprised of other, recognizable features, the

neural network will be unable to handle the disparity [45]. Other problems specific
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to back-propagation methods (the type of neural network used in all the works cited)

are its susceptibility to becoming "trapped" in local minima and thereby not accurately

modeling the true global minima of a set [43]. Also, training can be quite lengthy, and

care is needed to insure the network does not lose its ability to generalize [6, 43]. More

fundamentally, the holistic nature of neural networks makes them difficult to understand

logically, since neural processing is a complex solution not explained in terms of the

problem of interest. Also, it is unreasonable to expect to be able to determine if the

found solution is indeed the correct one [6].

Expert systems can circumvent these particular problems. Two examples of their

application to NDE are found in the works of Chapman et al. [46] and Shankar, Williams,

and Avioli, Jr. 1[47]. Chapman discusses the application of a commercial expert system

software package to accomplish the pattern recognition and decision analysis for the

inspection of cracks in an aircraft compressor disk. The results were compared with a

human expert's interpretation of the eddy current signals, as well as the analysis provided

by SEM. It was found that the system performed significantly better in detecting cracks

than the experienced observer, and almost as well as the SEM analysis. An added benefit

was the real-time classification of the signals, which is realistically limited in speed only

by the acquisition equipment. Features of eddy current data are readily decomposed for

crack detection analysis, and are well-suited to expert system methods.

Rule-based decision logic has already been implemented in ultrasonic weld examina-

tion of boiling water reactors [47]. The system described is quite powerful because it is

configured in a question-and-answer format. The knowledge base consists of over 200

rules, confined to consultation on ultrasonic data and specimen information. These rules

were developed to emulate operators while integrating data from testing. The inference

engine of the system is of the backward-chaining type, i.e. it attempts to match known

feature classes with available data. The research did not seek to demonstrate system per-

formance per se, but instead only to evaluate functionality, accuracy of knowledge base,

and direction for improvement. It has succeeded in these respects for discriminating weld

IGSCC from benign weld features, in this limited application. The most useful result was
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the creation of a valid decision logic to assist in the detection of cracks from conventional

ultrasonic signal parameters, which could be utilized in other similar problems.

4.4 Proposed Work

Considering both the previous areas which have been researched as well as the pre-

dicted future of NDE, a proposal is presented for solving the inverse interphase property

problem. The concept is to utilize a hybrid method involving several artificial intelligence

techniques in concert with a reliable statistical descriptor. This permits several benefits

over any of the methods alone.

Where statistics appear unable to handle the inverse interphase problem, artificial

intelligence methods appear to be quite applicable. That is, statistics are generally unable

to solve a pattern recognition problem, although they can reveal trends in some data and

provide predictive capabilities. But here is where knowledge based systems can become

quite useful; through progressive manipulation of the information in a problem, several

systems combine effects to produce the best solution to the problem.

Expert systems while promising are yet undeveloped for NDE purposes. While this

is expected to be alleviated as time passes, at the present it is an obstacle. Furthermore,

these systems may only be as valuable as the individuals used to generate them; no new

understanding is likely to come out of this technology. To their advantage, expert systems

incorporate the speed, accuracy and efficiency of computers while still incorporating

insight supplied by human expertise and experience.

The proposal is depicted in Fig. 4-1 and functions as follows. A sample "signature"

is created for the material via conventional acousto-ultrasonic techniques. This signature

is a discretization of output characteristics provided by the processing of the ultrasonic

signal in the acquisition equipment. A pattern recognition algorithm then attempts to

classify the signature into any of several classes predetermined to the procedure. Upon

successful identification, this produces information which is used by the expert system to

specify which statistical models are to be implemented on the signature. The statistical
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analyzer then computes the desired interphase properties, based on the models identified

for consideration.

A second expert system is utilized to process the output from the statistical analyzer,

and sort the possible interphase states of which the unknown could be. This second

expert system assigns probabilities to each solution based on information provided by

the statistical analysis and the first expert system. It outputs the solution, statistical data,

and the presumptions used to generate that solution.

Thus, multiple solutions are obtained with a spectrum indicating the likelihood of

each, as a method of dealing with the inverse problem. Humans can make final analytic

decisions from this information, or specify further analysis.
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Chapter 5

Conclusions

It was shown that there exists considerable correlation (approximately 79%) between

interphase thickness t and the scattered output wavefield components. Noticeable cor-

relation of fort), to sixty percent exists between the output wavefield components and

the interphase density p and the interphase elastic modulus E. Correlation between any

output wavefield component and interphase Poisson's ratio v was limited to 24%, at best.

The results from regression analyses ranged from fair to exceptionally useful. Inter-

phase thickness was described on the basis of the output wavefields. Improved estimates

of interphase thickness were attained when other interphase parameters were known or

were estimated.

Regression techniques enabled the prediction of t when output wavefield components

were known. Precision of prediction increased when selected information about the

interphase, such as interphase elastic modulus or interphase density, was known. The

coefficient of multiple determination for such analyses ranged from 79. 1% to 100%. The

95% prediction intervals on interphase thickness t ranged from 0.0035 to 0.0190.

Smaller intervals were the result of added information about the composite interphase.

Higher methods were proposed which incorporate artificial intelligence techniques

to address the nonunique aspect of the inverse interphase problem. These are used in

concert with the statistical analysis techniques described in detail herein.

The methods presented here proved to be quite useful for the single fiber model data.
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Besides their application to the completely unknown interphase state, it is important

to realize that these methods are more powerful than previous methods for predicting

interphase properties from this model [30] because they can be applied to other situations,

such as a multiple fiber model or actual test data. No assumptions about the configuration

or origin of the data set were made in the solution approach. The parameters which were

used as predictor variables can be any NDE parameters which are measurable in the

laboratory. The criterion variable for prediction can be any property or characteristic of

interest. In this way the concepts presented here can be introduced into uses outside

interphase property prediction, to experimental NDE in general.
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Appendix A

Data Generation

Data used for purposes of analysis have been created from a double precision program

designed to run on UNIX based workstations, written and developed by Yim [30]. The

FORTRAN code utilized the single fiber elastic model depicted in Fig. A- to approximate

composite material behavior. The three-constituent model contains a single cylindrical

scatterer, surrounded by the interphase layer of interest, embedded in an infinite elastic

material. An excitation in the form of a steady-state plane longitudinal (P) or in-plane

shear (S) stress wave is assumed at the boundary and the corresponding stress state

is determined within the three distinct regions of fiber, interphase and matrix. The

constituents are assumed to be elastic, and the interfaces between the constituents are

perfectly bonded. The form of solution is that of Bessel series, and the output consists

of stress and displacement components at particular locations in the matrix. The stresses

and displacements at the specified locations are calculated for a set of the interphase

parameters.

Input to the model include: type of excitation wave (P or SV), wavenumber of ex-

citation wave, locations to measure stresses and displacements, physical and geometrical

interphase properties (see Fig. A-2), particular stress and displacement components to be

output, and form of output data (real or complex). The matrix and fiber properties are

selected, and fixed.

The physical and geometrical interphase properties are: thickness (t) normalized
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Figure A-1: Three-dimensional view of single fiber scatterer.

by the fiber radius a, density (p) normalized by the density of the matrix material,

Poisson's ratio (v), and elastic modulus (E) normalized by the elastic modulus of the

matrix material.

Since the interphase properties of a particular composite are fixed, for purposes of

study the properties are considered to vary. In this way an unknown interphase can

be evaluated, presumably without knowledge of the actual interphase property values.

In particular, the interphase thickness t is varied over a large range, in order to study

thickness effects on the output wavefield. The interphase parameters are varied about

the nominal values of the interphase properties to create the ranges of consideration.

Also, the single fiber elastic model can only be analyzed for discrete interphase property

values, so the ranges of interphase properties are discretized. The ranges over which the

interphase properties vary are listed in Table A. 1, along with the particular discrete values

of the domain at which the output has been calculated. The ranges of consideration are

based on the nominal values of the interphase properties, namely pi, vi, Ei, and the fiber

radius a.

An output wavefield is created for each set of interphase parameters considered. The

stress components of this wavefield are shown in Fig. A-3. Two locations of particular

interest are labeled A and B in Fig. A-3. Location A has r,O coordinates of (20a,0)
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Table A. 1: Ranges and Discrete Values of Domain for Output Calculation.
t p Iv E

range: 0.005 - 0.100 0.5pi/pm - 1.5pi/pm 0.1 - 0.4 0.7Ei/E, - 2.0Ei/E,
discrete 0.005 1.2115 0.10 1.0284
values: 0.010 1.4538 0.16 1.1754

0.015 1.6962 0.22 1.3223
0.020 1.9385 0.28 1.4692
0.025 2.1808 0.34 1.6161
0.030 2.4231 0.40 1.7631
0.035 2.6654 1.9100
0.040 2.9077 2.0569
0.045 3.1500 2.2038
0.050 3.3923 2.3507
0.055 3.6346 2.4977
0.060 2.6446
0.065 2.7915
0.070 2.9384
0.075
0.080
0.085
0.090
0.095
0.100
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Figure A-2: Two-dimensional view of single fiber scatterer.

and location B has r,O coordinates of (20a,r). The wavefield components at location A

have the additional subscript '1', and those at location B have the additional subscript '2'.

Thus, the stress components at location A are ar,,, ottl and ortl and the stress components

at location B are ,rr2, ctt2 and crt2. Displacement wavefield components ur, and utl exist

at A and ur2 and ut2 exist at B. Also, the wavefield components at location A are called

the transmitted wavefield components and the wavefield components at location B are

called the scattered wavefield components. The scattered wavefield is the total wavefield

minus the incident wavefield, also called the back scattered wavefield. All wavefield

components are amplitudes normalized by the excitation wave amplitude. These output

stress components are defined as follows:

r,,r: Amplitude of the normal stress at location A, normalized by the amplitude of the

incident P-wave.

ottl: Amplitude of the hoop stress at location A, normalized by the amplitude of the

incident P-wave.

or,,2: Amplitude of the normal stress at location B, normalized by the amplitude of the

incident P-wave.
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0 tt2: Amplitude of the hoop stress at location B, normalized by the amplitude of the

incident P-wave.

a,tl: Amplitude of the shear stress at location A, normalized by the amplitude of the

incident S-wave.

0 rt2: Amplitude of the shear stress at location B, normalized by the amplitude of the

incident S-wave.

: ao.. ..................................................................... ..... ~.

rt 

B A

Incident planewave
............... ........

Figure A-3: Wavefield stress components.

The material model is subjected to excitations of P and SV plane waves with different

nondimensionalized wavenumbers summarized in Table A.2. Nondimensional wavenum-

bers resulted from multiplying the wavenumber by the fiber radius a to yield a unitless

quantity to represent the scatterer. Such wavenumbers have been determined from spec-

tral plots which have indicated that an interphase is most discernible at the values chosen.

Solution wavefields are calculated individually, as if only one excitation is applied at any

particular time. The output components from each of these excitation waves is also listed

in Table A.2.

The actual data set consists of 18,480 lines of data known as records. Each record

consists of a particular interphase material state and the accompanying wavefield it creates

when excited. The interphase state in each record contains the following interphase
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Table A.2: Applied Steady Stress Wave Excitations.
wave type wavenumber non-zero outputs outputs of interest

P 22.50 arrl., attl, Url, arr2, tt2, Ur2 Orrl, Ottl, Url

P 10.35 0,rl, O'ttl, Url, 0rr2, tt2, Ur2 ,rr2 , Utt2, U,2

S 26.35 0rtl, Utl, 0rt2, Ut2 ,rtli, Uti
S 11.10 ' rtl, Utl, Urt2, Ut2 Urt2, Ut2

properties: thickness t, density p, Poisson's ratio v, and modulus of elasticity E. The

output wavefield components in each record are: a,,rrl, ttl, url, ,tr2, att2, Ur2, 0 tl, Utl,

a,t2, ut 2 . Both P and SV wave excitations are considered for each interphase material

state; however in the data set the wavefields resulting from each excitation are contained

in the same record along with the interphase properties which created them.
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Appendix B

Correlation

B.1 Purpose

Among the most widely used comparison procedures in statistics are forms of cor-

relation. It is used as an exploratory tool, that is one designed for prediction and/or

evaluation purposes. There are many variants of correlation, such as simple correla-

tion, canonical correlation, or serial correlation. All have in common the basic idea that

two quantities are under consideration, although the two quantities may be aggregate or

otherwise processed quantities of data.

In order to determine if there is a linear relationship between two scalar quantities,

simple or bivariate correlation is used. The two variables under consideration may or

may not be simply related or may not even possess the same units. Correlation merely

intends to describe the change of one with respect to the change of the other, i.e. the

degree to which the variables are linearly related. It is concerned with measuring the

relationship or strength of association among variables [31].
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B.2 Procedure

The measure of correlation between two variables, say, x and y, is called the corre-

lation coefficient r, defined as [14]

r (i-i )(i -y)
r i= (B.1)

Enri - x)2 (Yi_ y)2
i=1 i=l

where xi and yi are the ith observations of x and y in the data set, respectively and x

and y are the average values of x and y, respectively.

The correlation coefficient can range from -1 to +1. Thus, a perfect positive cor-

relation between two variables is equivalent to a correlation coefficient of +1, while a

perfect negative correlation is equivalent to a value of -1. A value of zero indicates no

correlation between two variables. In the case of perfect correlation, one variable can be

expressed as a function of the other, such as y = 2x - 3, or y = x. Fig. B-1 [32] depicts

sample x, y plots for various correlation coefficients r.

Nonlinear correlation is the application of simple correlation to transformed variables.

That is, should one desire to find the correlation between a quantity y and a quantity x 2,

just two steps are necessary:

1. The set of data x2 is created for each value in the domain of x.

2. Simple correlation between y and the transformed variable x 2 is performed.

In a similar way other transformed variables can be considered for correlation.

Multivariate correlation analysis as the name implies, is concerned with the correla-

tions that exist among several variables. "Multivariate" suggests that many (i.e. more

than two) variables are involved, and indeed this is the general case of the bivariate

situation. The only requirement is that all observations of data are made with respect to

each and every variable under consideration. A correlation matrix is used as a convenient

representation of the correlation coefficients among the variables.
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Figure B-1: Some sample scatters to illustrate various values of r.

67

* 
I

· 0

* 0

0

0. .Sn* .

0.00:

Y

Y

Y

i ·~~~~~~~~~~

.
.

I



Appendix C

Multiple Regression

C.1 Purpose

In order to discuss multiple regression, a comment on terminology is necessary. The

terms criterion variable and predictor variable are used in lieu of the more common

terms dependent variable and independent variable, respectively [48]. The reason for

this is to avoid confusion with the more widespread definition of the mathematical terms

dependent and independent. Dependent relationships are those where a known value of

one variable fixes the value of another dependent on it, such as in the function y = x + 4,

where y is fixed by x and thus x is the independent variable and y is the dependent

variable.1 And when two variables are said to be independent, the implication is that

they do not covary with one another to any degree.

In correlation and regression analysis, those perceptions are not entirely an accurate

description of the underlying relationships. While two variables may in fact generally

increase with one another, they may not be mathematically dependent. Similarly if we

consider a model with several "independent" variables, then according to our definition

the model would be of no use because the variables are independent of the variable of

interest. To avoid this confrontation, the name criterion variable is applied to the variable

1 0r equivalently, the expression z = y - 4 where z is the dependent variable and y is the independent
variable.
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we are interested in predicting, and the name predictor variable or predictor is applied

to the variable about which some knowledge is assumed, for prediction. In the case of

regression analysis only, the predictor variables are also called regressor variables or

regressors.

Regression is a method of fitting a function to a set of x,y points in order to use

the function for subsequent interpolation. The function will depend on the data set

considered, but is not sensitive to small changes in the contents of the data set. This fact

makes regression techniques ideally suited for scientific prediction. Multiple regression

extends this concept to data sets of more than two variables.

Multiple regression accounts for more than one predictor variable x. It allows the

investigation of the effects on the criterion variable y of several variables simultaneously.

Even if one predictor variable is deemed sufficient for prediction by some analysis, it is

wise to include other variables influencing y for several other reasons [32]:

1. To reduce stochastic error, or random error due to inherent variability. This in turn

reduces the residual variance (that portion of variability unexplained by regression

modeling), which has the important effect of making prediction intervals more

precise.

2. To eliminate bias due to considering a single variable as affecting y. Since it is

assumed that a perfect correlation with the criterion variable is not available (lest

one would not be looking to this approach), any single predictor will tend to either

overestimate or underestimate the criterion variable, generally. The implication is

that with more than one variable, the bias will tend to decrease.

As a consequence of implementing multivariate concepts, a better overall fit to the

data is available, i.e. the average fluctuation of the data points about the fitted model is

reduced. This allows more precise statistical conclusions about how a given x affects y.

It also permits the effect of one predictor alone on y to be studied as well as the combined

effect of several predictors. The end goal of all regression analyses is to reduce the error

of prediction, or equivalently to account for more of the variance in the criterion variable.
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C.2 Formulation

C.2.1 Regression Model

The multiple regression equation has the form [9]

= a + X + X2 + 3X3 + ...-- + kk (C.1)

where y is the predicted value of the criterion variable, ao is the intercept or constant in

the equation (which is often called bias), 1j,(j=,2,3,...,k) are the coefficients corresponding

to the predictor variables xj, and Xj,(j=1,2,3,...,k) are predictor variables, namely, some

parameters which can be measured, known or estimated.

For a given set of data, the regression model utilizes the least squares method to

determine the regression coefficients ao and ,j. Similar to simple regression, the process

is to determine the regression coefficients which minimize the squared residual error sum

=l(Yi - i)2, which is expressed as a function of the ao and pj. The term (yi - i)

is called the residual at a point, and y is the actual value of the point in the data set

whereas Pi is the value predicted by the regression model. For a regression equation with

k predictors on a set of data with n elements, the function to minimize becomes a set of

k + 1 simultaneous linear equations for the unknowns ao and 3j. The solution to this set

of equations is unique, thereby providing one unique regression equation for a particular

model and set of data.

Multiple regression models are readily adaptable to the nonlinear case, taking the xj

to be transformed variables of the original predictors. The nonlinear models are nonlinear

only in the predictor variables, not in the coefficients of those variables. Therefore, the

general expression for a model of this form is:

y + PnlX + n2, + Pn3T + ... +/ Pmix +,3m 2X + /m 3X + ... (C.2)

where p, q, r and s indicate powers of :j, which may not be equal.

Here we can have 21 = 2:, with I and n denoting arbitrary subscripts and q some
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power of interest. Then the transformed variable xi is treated just like another regressor,

as the model has no knowledge of the transformation. This technique is often referred to

as polynomial regression. This is a misnomer of sorts, since q can be any real number,

and is for no reason restricted to integers.

Once the model is established, its capability to predict must be evaluated. For this

there are two statistical measures of model effectiveness: coefficient of multiple deter-

mination R2 and Mallows' statistic C,.

C.2.2 Coefficient of Determination R2

The coefficient of multiple determination is defined as [32]

R2 i=1 (C.3)

i=1

or, more succinctly as
SSRR2= - (C.4)
SYY

where SSR is (.i - ,y)2 and S, is defined by E l (y, - )2. SSR is known as the

sum of squares due to regression, while Sy is called total sum of squares.

The determination coefficient is a ratio of the variability in y explained by the regres-

sion model to the total variability in criterion variable y. For instance, a model which

explains y totally has R 2 equal to 1, while a model with no ability to explain y will have

a value of zero. Fig. C-1 offers a graphical explanation of the terms in the eqn. C.3 for

R2 . The variation of a single point is y - , and the variation of a single estimated

point is i- . Thus, a measure of the entire variabilty in a data set is available from

%=i(Yi- .)2. The portion of the variability in a data set which is explained by the mul-

tiple regression model is E7 1 (j. - )2. Hence, R2 measures the fraction of variability

in a data set that can be accounted for through regression.

It is important that two models of different k quantities not be compared on the basis
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Figure C-1: Measures of variation in a data set.

of R2 alone; this is because R2 will increase for a particular model with the addition of

any regressor variable, as long as 3j for that regressor is not zero. The adjusted R2 is

needed for comparison between two regression models of interest when the difference

in number of parameters becomes large. It is calculated from the standard coefficient of

multiple determination according to [9]

1 -(1- R2)(n-1) (C.5)
n - k-1

Comparing R2 and Rdi permits more accurate quantification of the relative usefulness

of more than one regression model.
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C.2.3 Mallows' Statistic Cp

Mallows' statistic Cp also permits comparison of the effectiveness of several models.

It is a more complex summary of the model behavior, and aids in determining what

experimental value, if any, is realized from the addition of another predictor variable to

the regression equation. Its definition is [9]

S SSR _ n + 2p (C.6)
M SMSEfullmod

where n is the number of observations in the data set, p is the number of parameters

(predictor variables and intercept) in the regression equation and MSEfullmod, known as

the model variance:
MSEfullfmod _ SSRfullmod

MMSEfullmod -Y (C.7)

where k is the maximum number of predictor variables (or regressors) in the equation,

with all possible variables included.

This statistic weighs the increase in variability explained by the addition of a regressor

to the total model variance, accounting for the added complexity of the additional term.

That is to say, the Cp statistic is a ratio of the total variance unaccounted for in the model

to the total model variance possible, and then adjusted for the number of parameters in

the equation. It is essentially measuring the "unexplained variance per regressor" and

therefore is a good quantity for comparing to models generated from the same data. A

desirable Cp is a low value, typically very close to the value of p. The full model always

has a Cp of p.

Most important when analyzing Cp values is that any models used have similar Cp

values. Although the lowest value represents the best model from this standpoint, the

range on Cp can be great; thus, any two similar values indicate acceptable models. A

researcher typically uses this information in concert with other information to make a

decision about which model to choose; it is a part of a voluminous amount of secondary

information which is available for model evaluation.

73



C.2.4 Prediction Intervals

Multiple regression yields coefficients which are used to create a model of a particular

data set. The regression equation will then output one value for any given combination

of input predictor values. For predicting the single observed value y,, the best estimate

is the point on the regression line at x, o = a0 + E= 1 p3j(xo)j .

Since any solution surface is likely to vary from the actual data points, analytical

techniques used for prediction often yield an interval estimate for the solution. This is

true in regression, and the interval is the prediction interval. The prediction interval for

a value predicted by regression is defined as [9]

PIi_, = t,,-k-_ , (1 + -+ p -)( - (C.8)
i=1 j1

where (1 - a) is the percent confidence desired, ts,n-k-l is the student's t statistic [9]

which in the limit as n - oo approaches the normal z statistic [9], is the specific

known value of the predictor xi, and pij are the elements of the solution coefficient matrix

from the minimization of residuals [9]. s 2
, is the variance about the trend line, and is

computed as [9]

8_Z n- -) (C.9)
The quantity s 2 , is the greatest contributor to the prediction interval size, since s 2 is

dependent not only on the regression performed but also on the variability in the data

set.

Concisely stated, the prediction interval is that region of the criterion variable range

within which future observations of new data are found, with a specified confidence. It

is an expression which accounts for the variability of the data, the regression performed,

and the number of observations in the data set.

The prediction interval curve takes the general shape shown in Fig. C-2. Thus it is

apparent that the intervals are not the same at every point of the domain, and tend to be

wider towards the ends of the predictor domain. This is due to the nature of the analysis
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in the respect that the interpolation near the endpoints is not as reliable as that closer to

Y

PI for y
at x=x*

x

x

Figure C-2: Prediction intervals.

The limits of the prediction interval are those within which the specified confidence

percentage of future observations are expected to lie. This confidence percentage can be

increased albeit at the "cost" of wider intervals; conversely, the prediction interval can

be decreased in size at the expense of reduced confidence [14].

The type of techniques discussed herein are called inferential statistics because they in-

volve the drawing of conclusions regarding population characteristics (parameters) based

on information (statistics) obtained from the analysis. They deal with both estimating

parameters and testing hypothesized values of the population parameters.
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Appendix D

Stepwise Regression

D.1 Purpose

When there are a large number of regressors, it becomes important to determine

which ones are important to have in the model for prediction purposes. It also becomes

important to protect against "data mining," or using the data to determine what the model

should be, instead of choosing a model based on suspected relationships or additional

information [32]. Multicollinearity can become a problem due to two regressors being

highly correlated to one another. Stepwise regression is a process which starts with the

simplest model and then adds regressors one at a time, in order of their contribution to

the model. Additionally it will check all regressors at each step and delete those whose

contribution drops due to the addition of another predictor variable. As a result the model

has those (and only those) variables which are statistically significant for the prediction of

the criterion variable. This procedure and ones like it are often called search procedures

because of their incremental checking nature. Stepwise regression is perhaps the most

widely used search procedure.

The most important benefit of this procedure is that the uncertainty associated with the

question of which regressors to choose has essentially been eliminated from the problem

under study. Accordingly, other effects can be analyzed without this complication.
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D.2 Procedure

The procedure takes place in steps, which are either an addition or deletion of a

variable from the model. The steps can be summarized as follows [31]:

1. The stepwise process begins by including in the model the one predictor variable

x having the highest simple correlation with the criterion variable y. Recall the

simple population correlation coefficient for a group of data was defined by:

E(xj - )(Yi-
i=1

r-=

A statistical test called an F test [14] is used to determine the statistical significance

of a variable in a regression equation. If the F statistic for this variable equals or

exceeds the critical value needed to become part of the model equation (denoted

FE), the variable is included and the process continues. Should it be less than

the critical value FE, then the process terminates and no independent variables are

included in the model, that is no model is created.

2. Once the first independent variable (called xl) is included in the model, the con-

tribution of each of the remaining k - 1 predictor variables is determined for the

model that already includes variable x1. A partial F test [14] (an F test which

accounts for the already included regressors) is then performed for each of these

variables, given that variable x is already included in the regression model. If

the largest partial F value (largest statistical significance) from these tests equals

or exceeds the critical value of F needed to enter the model (FE), then a second

variable (call it x 2) is included in the model. On the other hand, if the largest

partial F is less than the critical value FE, the process terminates and only one

variable is included in the regression equation.
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3. A feature of the stepwise procedure is that a variable which has been entered into

the model at an earlier stage may subsequently be removed once other predictor

variables have been evaluated. Presuming at this point that the model contains at

least two predictor variables (x1 and x2), it may now be determined whether any

of the variables already included are no longer important given that others have

been subsequently added. Then these could be deleted from the model. A partial

F statistic for each variable already included in the model is computed, taking into

account the effect of the other variables in the model. If the smallest of these F

values (least significant) is less than or equal to the critical value of F for removal

(denoted FR), then the particular variable corresponding to that F value is removed

from the regression model. However, if the smallest partial F value is greater than

FR, then the corresponding variable is not removed from the model.

4. To complete the process for the remaining predictor variables, the last two steps

are repeated until there are no other variables to consider as regressors, or no other

variable is significant enough to be added to the model. In this fashion an optimized

model is attained which contains only variables which are significant to the model.
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Appendix E

Data Set

The following is a condensed version of the original data set used. Ellipsis points appear

where data have been omitted.

t, p, v, E, trt2 Ut2

0.0050 1.2115 0.1000 1.0284 0.418071 0.188308 0.418120 0.123810 0.055622 0.123812 0.365506

0.366617 0.102449 0.102456

0.0050 1.2115 0.1000 1.1754 0.414292 0.186641 0.414343 0.124015 0.055714 0.124017 0.362124

0.363239 0.102355 0.102361

0.0050 1.2115 0.1000 1.3223 0.411475 0.185393 0.411527 0.124175 0.055786 0.124177 0.359472

0.360592 0.102299 0.102306

0.0050 1.2115 0.1000 1.4692 0.409332 0.184439 0.409384 0.124303 0.055844 0.124305 0.357329

0.358452 0.102271 0.102277

0.0050 1.2115 0.1000 1.6161 0.407678 0.183697 0.407730 0.124406 0.055890 0.124408 0.355553

0.356679 0.102262 0.102268

0.0050 1.2115 0.1000 1.7631 0.406389 0.183115 0.406441 0.124490 0.055928 0.124492 0.354050

0.355178 0.102266 0.102273

0.0050 1.2115 0.1000 1.9100 0.405380 0.182655 0.405432 0.124559 0.055959 0.124560 0.352756

0.353886 0.102282 0.102288

0.0050 1.2115 0.1000 2.0569 0.404590 0.182291 0.404642 0.124615 0.055984 0.124617 0.351625

0.352756 0.102306 0.102312

0.0050 1.2115 0.1000 2.2038 0.403974 0.182003 0.404026 0.124662 0.056005 0.124663 0.350624
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0.351756 0.102336 0.102343

0.0050 1.2115 0.1000 2.3507

0.350860 0. 102372 0.102379

0.0050 1.2115 0.1000 2.4977

0.350049 0.102412 0.102419

0.0050 1.2115 0.1000 2.6446

0.349309 0.102456 0.102462

0.0050 1.2115 0.1000 2.7915

0.348629 0.102503 0.102509

0.0050 1.2115 0.1000 2.9384

0.347998 0.102552 0.102558

0.0050 1.2115 0.1600 1.0284

0.367727 0.102531 0.102537

0.0450 3.6346 0.4000 2.0569

0.345450 0.083829 0.083834

0.403499 0.181777 0.403551 0.124700 0.056022 0.124702 0.349727

0.403140 0.181601 0.403191 0.124732 0.056036 0.124733 0.348916

0.402876 0.181469 0.402928 0.124757 0.056048 0.124759 0.348176

0.402694 0.181372 0.402745 0.124778 0.056057 0.124779 0.347495

0.402579 0.181305 0.402630 0.124794 0.056064 0.124796 0.346864

0.417241 0.187885 0.417289 0.123775 0.055607 0.123777 0.366617

0.536312 0.239659 0.536300 0.054270 0.024369 0.054270 0.344340

0.0450 3.6346

0.330476 0.085547

0.0450 3.6346

0.326398 0.087159

0.0450 3.6346

0.326229 0.088689

0.0450 3.6346

0.327918 0.090152

0.0450 3.6346

0.331582 0.091561

0.0450 3.6346

0.337448 0.092924

0.0500 1.2115

0.368597 0.090904

0.0500 1.2115

0.332354 0.089401

0.0500 1.2115

0.4000 2.2038

0.085551

0.4000 2.3507

0.087164

0.4000 2.4977

0.088693

0.4000 2.6446

0.090156

0.4000 2.7915

0.091565

0.4000 2.9384

0.092928

0.1000 1.0284

0.090908

0.1000 1.1754

0.089405

0.1000 1.3223

0.523452 0.233618 0.523430 0.053294 0.023930 0.053294 0.329093

0.510834 0.227974 0.510810 0.052461 0.023555 0.052461 0.324799

0.499094 0.223159 0.499084 0.051759 0.023240 0.051759 0.324465

0.488985 0.219395 0.489000 0.051174 0.022976 0.051173 0.326018

0.480637 0.216385 0.480676 0.050687 0.022757 0.050687 0.329559

0.473285 0.213436 0.473336 0.050277 0.022572 0.050277 0.335316

0.473023 0.213021 0.473075 0.124388 0.055882 0.124390 0.367424

0.475451 0.213972 0.475496 0.121051 0.054383 0.121052 0.331064

0.461929 0.207778 0.461968 0.118923 0.053426 0.118925 0.307487
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0.308925 0.088643 0.088648

0.0500 1.2115 0.1000 1.4692

0.293826 0.088319 0.088323

0.0500 1.2115 0.1000 1.6161

0.283937 0.088254 0.088258

0.0500 1.2115 0.1000 1.7631

0.277275 0.088346 0.088350

0.0850 2.6654 0.4000 2.4977

0.408810 0.054859 0.054861

0.0850 2.6654 0.4000 2.6446

0.395812 0.058103 0.058105

0.440289 0.198101 0.440327 0.117577 0.052821 0.117578 0.292242

0.416388 0.187590 0.416432 0.116751 0.052450 0.116753 0.282225

0.393805 0.177815 0.393860 0.116282 0.052239 0.116284 0.275454

0.436211 0.199931 0.436379 0.081366 0.036555 0.081367 0.406915

0.436277 0.199677 0.436435 0.082890 0.037241 0.082891 0.394096

0.0850 2.6654

0.366826 0.061020

0.0850 2.6654

0.334032 0.063669

0.0850 2.9077

0.468302 0.017561

0.0850 2.9077

0.677264 0.022551

0.0850 2.9077

0.683205 0.026293

0.0850 2.9077

0.628272 0.031193

0.0850 2.9077

0.615039 0.036990

0.4000 2.7915

0.061021

0.4000 2.9384

0.063671

0.1000 1.0284

0.017579

0.1000 1.1754

0.022567

0.1000 1.3223

0.026307

0.1000 1.4692

0.031204

0.1000 1.6161

0.036998

0.429866 0.195742 0.429990 0.084019 0.037749 0.084021 0.365263

0.419520 0.189684 0.419597 0.084796 0.038098 0.084798 0.332529

0.352289 0.158351 0.352344 0.017663 0.007936 0.017663 0.465531

0.495692 0.225781 0.495860 0.001331 0.000597 0.001331 0.674065

0.682652 0.305296 0.682680 0.012183 0.005474 0.012184 0.680439

0.758406 0.341312 0.758488 0.017996 0.008086 0.017996 0.625744

0.739844 0.334829 0.739978 0.020500 0.009210 0.020500 0.612996

0.1000 3.6346 0.3400 2.9384 0.397353 0.175803 0.397284 0.067522 0.030336 0.067523 0.467890

0.469304 0.060746 0.060760

0.1000 3.6346 0.4000 1.0284 0.480604 0.217389 0.480697 0.113714 0.051091 0.113716 0.572137

0.576394 0.035229 0.035265
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0.1000 3.6346 0.4000 1.1754 0.738006 0.334128 0.738162 0.107419 0.048262 0.107420 0.508559

0.511155 0.022377 0.022329

0.1000 3.6346 0.4000 1.3223 0.711451 0.323425 0.711623 0.092469 0.041544 0.092470 0.375567

0.377876 0.047445 0.047418

0.1000 3.6346 0.4000 1.4692 0.643528 0.292150 0.643670 0.079733 0.035824 0.079735 0.518759

0.521661 0.069735 0.069731

0.1000 3.6346 0.4000 1.6161 0.611279 0.276900 0.611392 0.069877 0.031393 0.069878 0.545168

0.547694 0.088809 0.088828

0.1000 3.6346 0.4000 1.7631 0.560440 0.254759 0.560573 0.063328 0.028446 0.063328 0.460664

0.462560 0.100299 0.100333

0.1000 3.6346 0.4000 1.9100 0.526865 0.240149 0.527016 0.062323 0.028000 0.062324 0.381823

0.383688 0.100469 0.100507

0.1000 3.6346 0.4000 2.0569 0.520321 0.235938 0.520433 0.062584 0.028122 0.062585 0.405538

0.407964 0.092149 0.092182

0.1000 3.6346 0.4000 2.2038 0.510972 0.228480 0.510976 0.060258 0.027070 0.060258 0.499995

0.502831 0.081130 0.081155

0.1000 3.6346 0.4000 2.3507 0.473548 0.209047 0.473460 0.058434 0.026242 0.058434 0.582975

0.585938 0.071701 0.071718

0.1000 3.6346 0.4000 2.4977 0.413248 0.182468 0.413168 0.060847 0.027329 0.060847 0.614673

0.617544 0.065613 0.065626

0.1000 3.6346 0.4000 2.6446 0.349046 0.156029 0.349042 0.065365 0.029368 0.065366 0.598306

0.600905 0.062446 0.062458

0.1000 3.6346 0.4000 2.7915 0.305485 0.137560 0.305524 0.068018 0.030562 0.068020 0.559192

0.561431 0.060802 0.060815

0.1000 3.6346 0.4000 2.9384 0.310640 0.139151 0.310667 0.068556 0.030798 0.068557 0.509927

0.511774 0.059575 0.059588
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Appendix F

SAStm Programs

The following are the programs input into the SAS " package to perform the necessary

calculations to complete this research. Although some values have been changed for

particular analyses, one of each program utilized is provided. Also, other programs have

been utilized to prepare the data for input into the SASM architecture; such programs are

not included here. Discussion of SASt m features and usage is found in references [49-5 1].

Program 1: Tglm

titlel ' First Iter Analysis: linear in stresses only';

title2 'Infile is paro.nonu';

data parOO;

infile ' /mit/bitbucket/steve/thesis/paro.nonu ';

input t r n e srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2;

srtsq = srt2*srt2;

srrsq = srr2*srr2;

run; 10o

proc corr data=parOO;

var t--srrsq;

run;
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title3 ' Correlation Analysis';

* Thickness Analysis;

20

* proc stepwise data=par00; title3;

* model t= srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2 /stepwise sle=.05 sls=.05;

* run;

proc stepwise data=par00 ;

model t= srrl srr2

title3;

srtl srt2 /stepwise sle=.05 sls=.05;

run;

30

* proc stepwise data=par00;

* model t= srrl srr2

*

title3;

srtl srt2 /stepwise sle=.05 sls=.05;

run;

* data interp;

* input t r n e srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2;

* cards;

* . . .2333 .1567 . .1263 .0010 . .8130 . .1099

* ..... 6500.3700. .0104 .0600. .9010 . .0545

* . . .3078 .1934 . .0978 .0123 . .4567 . .0543

*

* run;

* data res;

* set par00 interp;

* run;

50
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* proc glm data=res;

* model t= srrl

* output out=guess

* run;

srr2

* title2 ' T

srtl srt2

regressed on stresses';

/ cli alpha=.10;

predicted=predt;

proc stepwise data=par00 ; title3;

model t= srrl srtsq srr2 srrsq srtl srt2 /stepwise sle=.05 sls=.05;

run;

60

* proc stepwise data=par00O;

* model t= srrl srr2

title3;

srtl srt2 /stepwise sle=.05 sls=.05;

* run;

proc glm data=res; title2 ' T regressed on stresses';

model t=srrl srr2 srtl srt2 srtsq srrsq/cli alpha=.10;

* output out=guess predicted=predt;

run;

titlel ' Plot analysis :::' ;

title2 'Infile is paro.005' ;

proc plot data=par00O;

plot t*srrl; plot t*srr2; plot t*srtl; plot t*srt2;plot t*srtsq;plot t*srrsq;

run;
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Program 2: Treg

titlel 'First Iter Analysis: linear in stresses only';

title2 'Infile is parot.dat';

data parOO;

infile '/mit/bitbucket/steve/thesis/parot.dat ';

input t r n e srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2;

run;

proc corr data=parOO;

var t--ut2;

run;

title3 ' Correlation Analysis';

10

* Thickness Analysis;

proc stepwise data=parOO ; title3;

model t= srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2 /stepwise sle=.05 sls=.05;

run;

20

proc stepwise data=parOO;

model t= srrl srr2

title3;

srtl srt2 /stepwise sle=.05 sls=.05;

run;

* proc stepwise data=parOO

* model t= srrl srr2

* run;

title3;

srtl srt2 /stepwise sle=.05 sls=.05;

* Modulus (E) Analysis;
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* proc stepwise data=par00 ; title3;

* model e= srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2 /stepwise sle=.05 sls=.05;

* run;

data interp;

input t r n e srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2;

cards;

..... 2333 ..1567.

... . . . 6 5 0 0 .3 7 0 0 .

. . . . .3078 .1934 .

.1263 .0010 . .8130 . .1099

.0104 .0600 . .9010. .0545

.0978 .0123 . .4567 . .0543

run;

data res;

set par00 interp;

run;

proc reg data=res; title2 'T regressed on stresses';

model t= srrl srr2 srtl srt2 / clm cli;

* output out=guess predicted=predt;

run;
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Program 3: classify

options nodate nonumber pagesize=1800 linesize=80;

titlel ' First Iter Analysis: linear in stresses only';

title2 Infile is paro.nonu';

data parOO;

infile ' /mit/bitbucket/steve/thesis/paro.nonu';

input t r n e srrl sttl url srr2 stt2 ur2 srtl utl srt2 ut2;

srtsq=srt2*srt2;

srrsq=srr2*srr2;

run;

* proc corr data=par00

* var t--srrsq;
* run;

* title3 ' Correlation Analysis';

* proc stepwise data=par00;

* titlel ' Stepwise - Linear';

* model t= srrl srr2 srtl srt2 /stepwise sle=.05 sls=.05;

* run;

* proc stepwise data=parOO;

* titlel ' Stepwise - Nonlinear';

* model t= srrl srtsq srr2 srrsq srtl srt2 /stepwise sle=.05 sls=.05;

* run;

* proc reg data=par00 ;
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* titlel 'REG, with stepwise & 195/u95';

* model t= srrl srtsq srr2 srrsq srtl srt2 /selection=stepwise sle=.05 sls=.05;

* output out= guessl predicted= predtl 195 = 1ow195 u95 = up195;

* run;

proc glm data=parOO; 40

titlel ' GLM linear, cli alpha';

model t= srrl srr2 srtl srt2 /nouni; * /cli alpha=.10;

output out= guessl predicted = predtl 195 = 1ow195 u95 = up195;

run;

proc glm data=parOO;

titlel 'GLM nonlinear, cli alpha';

model t= srrl srtsq srr2 srrsq srtl srt2 /nouni; * /cli alpha=.10;

output out= guess2 predicted = predt2 195 = 1ow295 u95 = up295; 50

* press=names rstudent= names;

run;

titlel;

data goodl bad 1;

set guess 1;

keep t predtl 1ow195 up195 zz;

zz = .0001;

60

if (up195-1ow195) > zz then zz = (up195-1ow195);

if t <= up195 and t => low195then outputgoodl;

else output badl;

run;
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data good2 bad2;

set guess2;

keep t predt2 low295 up295 zz;

zz = .0001;

if (up295-low295) > zz then zz = (up295-low295);

if t <= up295 and t => low295 then output good2;

else output bad2;

run;

80

proc print data= goodl;

run;

proc print data= badl;

run;

proc print data= good2;

run;

proc print data= bad2;

run;

* titlel 'Plot analysis :::';

* title2 'Infile is paro.005';

* proc plot data=par00O;

* plot t*srrl;

* plot t*srr2;

* plot t*srtl;

* plot t*srt2;

* plot t*srtsq;
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* plot t*srrsq;

* run;
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