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Abstract

Performance of fan-out cholesky factorization on multiprocessors can be improved by
introducing fine grain synchronization into the application. Fine grain synchronization
exposes greater parallelism over the coarse grain synchronization used in standard fan-out
implementations. With finer synchronization, it is also possible to redistribute cholesky
operations across processors for even more parallelism.

On an ideal machine, the exposed parallelism can substantially reduce execution time
of fan-out cholesky factorization. On a practical parallel machine, the execution time
can be more than halved over coarse fan-out factorization. This conclusion was reached
by executing coarse grain and fine grain versions of fan-out code using a high level
parallel factorization simulator. The simulator models the Alewife Machine, a research
multiprocessor with hardware support for fast word level synchronization. The machine is
under development in the Laboratory for Computer Science at the Massachusetts Institute
of Technology.
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Chapter 1

Introduction

The cholesky factorization of a large sparse positive definite matrix is a useful value

in scientific computations. Execution time can be substantially reduced by computing

the factorization in parallel. There are a number of parallel algorithms for performing

the computation. Only the fan-out algorithm will be studied in this thesis. As with any

parallel computation, establishing the optimal choice of synchronization, work distribution

and data distribution is a non-trivial issue.

Rothberg and Gupta of Stanford University have done a detailed study of paral-

lel cholesky factorization[l0, 9]. They experimented with algorithmic changes to in-

crease memory reference locality. Other researchers include Gilbert[5, 6], Kumar[8],

Venugopal[12] and Zhang[14]. Of these studies, only Gilbert[6] has attempted to use

more than 64 processors to perform the factorization. He found a moderate speedup in

factoring his test matrices on a data parallel Connection Machine 2.

What kind of speedup would there be on a large MIMD machine? Is the synchroniza-

tion method used in fan-out cholesky factorization adequate for large machines? How

does the performance change as machine parameters such as network latency, and mem-

ory system overhead change? This thesis will present an analysis of fan-out factorization

on a large MIMD machine with data from a simulator for parallel cholesky factorization.

9



1.1 Studying Parallel Cholesky on a Large Multiprocessor

Ideally, all experiments would be carried out using an easily configurable 1024 node

multiprocessor. Since no such machine is available, the best solution is a machine

simulator. The Alewife research group in the Laboratory for Computer Science at the

Massachusetts Institute of Technology has an advanced simulation environment for the

Alewife multiprocessor[l, 3]. Some very large matrices with factorization times on the

order of a billion cycles were used for this study. This number of cycles would take

an excessive amount of time to simulate under a detailed simulation environment like

Alewife's. The large simulation time effectively disallows any study with a range of

system parameters. Though NWO, the Alewife simulator, would have provided highly

accurate statistics, the simulation time was unacceptable.

The Proteus simulation system was also investigated as a possible platform for

study[2]. Proteus adds parallel functionality and statistics gathering to an application

without the overhead of detailed simulation. Even though Proteus applications can run

much faster than NWO, the simulation time is still high. As with NWO, studying large

matrices under a variety of system configurations would have taken an unacceptable

amount of time.

To decrease simulation time, this study relies on an event-based parallel factorization

simulator called CSIM. A similar simulator was developed by Rothberg for studying large

factorizations[10]. CSIM outperforms both Proteus and NWO. The key to the speed of

CSIM is that it does not perform the floating point operations of the factorization. Instead

it estimates the time a processor would take to perform the operation with attention to

cache effects, local and distributed memories, and synchronization. The processor's cycle

time is increased by this estimate. CSIM can handle very large matrices and machine

size up to 2048 processors. It is highly configurable and produces detailed statistics on

processor utilization, cache, local memory, and distributed memory performance. The

simulator also supports a fine grain synchronization mode with statistics.

Since CSIM is not a real cycle-by-cycle simulator of a multiprocessor, results from the

simulation cannot be highly accurate. This does not mean that they are unreliable. CSIM

10



results for a coarse-grain factorization are very close to results obtained by Rothberg from

a real machine and a simulator. This comparison of results along with the assumptions

made in CSIM and their resulting effects are discussed in greater detail later.

1.2 Fine Grain Synchronization in Cholesky Factorization

The fan-out algorithm for cholesky factorization limits parallelism to the column level by

synchronizing in a coarse way. Entire columns are locked, posing an unnecessarily strict

data dependency. Due to the nature of the computation, the locking processor does not

need a lock on an element after it has written to it. But the processor cannot release the

element; it must wait until it is done with the entire column. Thus, any processor waiting

to perform updates to the column must wait for the first processor to finish computing.

The solution is to have processors synchronize in a fine way by locking individual

column elements instead of whole columns. The effect of using fine grain synchronization

should be increased parallelism. Synchronizing on a memory element incurs an overhead

on each memory read and write. Also, if a synchronization fails, the memory system

must implement some mechanism to find out when the synchronization succeeds.

CSIM implements a simple fine grain synchronization model. Successful synchro-

nization operations incur a small overhead for determining when they were successful. A

backoff strategy is used for failed synchronizations. The fan-out algorithm was modified

to synchronize on matrix elements. Due to the statically scheduled order of the fac-

torization, this simple model is sufficient. The assumptions of the model are presented

later.

It turns out that the distribution of work to processors with the fan-out algorithm does

not leave much optimization for fine grain synchronization to perform. The resulting

increase in parallelism is slight. With the finer synchronization, however, the work can

be distributed in many more ways. A simple change in the distribution algorithm led to

much better performance of the fine grain cholesky application. The new distribution of

tasks is described in chapter 3.

11



1.3 Organization of Thesis

This thesis is organized into the following sections.

Ch. 2: Cholesky Factorization A detailed description of sequential and parallel cholesky

factorization.

Ch. 3: Fine Grain Cholesky Factorization Modifications to the algorithm for exploit-

ing fine grain synchronization.

Ch. 4: CSIM: An Event Based Parallel Factorization Simulator A Detailed descrip-

tion of CSIM.

Ch. 5: Results and Analysis Coarse and fine grain factorization results from CSIM

along with analysis.

Ch.6: Conclusions Concluding remarks with discussion of further work.

Bibliography A list of references from this thesis.
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Chapter 2

Cholesky Factorization

2.1 Math of Cholesky Factorization

Cholesky factorization is an intensive matrix computation that is common in structural

analysis, device and process simulation, and electric power network problems. Given a

positive definite matrix A, the Cholesky factor is a lower triangular matrix L, such that

A = LLT. This factorization simplifies finding solution of linear systems of A.

Ax = B (2.1)

LLTX = B (2.2)

By replacing A with its factors, LLT, the system Ax = B can be quickly solved by

backward and forward substitution.

L is found by writing A = LLT and using the following relations.

All A 12 ... L 11 L 12 ...

A= A 2 1 A 22 - , L L21 L22 ...

Al l = L2l (2.3)

Ail = Li!Ljj (2.4)

Li = Ail1/L 1 (2.5)

13



Ai2 = LilL 21 + Li2L22 (2.6)

L22 = /A 22-L (2.7)

These relations can be expanded to compute every element in the factor matrix, L.

A simple sequential algorithm for calculating L follows.

for k = 1 to n
Lkk = VLk
for i = k + 1 to n

Lik = Lik/Lkk
for j = k + 1 to n

for i = j to n
Lij = Lij - Lik * Ljk

Figure 2-1: Sequential Algorithm for Cholesky Factorization

2.2 Sparse Cholesky Factorization

In scientific computations, the A matrix is commonly a sparse matrix. For example, a

large set of differential equations describing the mechanical structure of a system might

be written as a banded matrix. A majority of elements in a banded matrix are zero (non

zero elements are O(n) as opposed to O(n 2 )). Blindly following the technique outlined

in figure 2-1 wastes computation time on factor elements in L that will turn out to be 0.

The non-zero elements of L can be predetermined by the non-zero structure of A. With

this information, sparse factorization algorithms spend resources on only these non-zero

elements of L.

The dense cholesky algorithm of figure 2-1 is rewritten as in figure 2-2[9]. The first

difference from figure 2-1 is that for clarity, two pieces of code have been moved into

subroutines called cdiv and cmod. The main difference is that for faster sparse matrix

factorization times, the cmod operation is only performed on non-zero entries.

14



CDIV:
Lkk = VL
for i = k + 1 to n

Lik = Lik/Lkk

CMOD:
for i = j to n

Lij = Lij - Lk * Lk

for k = 1 to n
cdiv(k)
for each j such that Ljk V: 0 do

cmod(j, k)

Figure 2-2: A Sparse Cholesky Factorization Algorithm

2.3 Sparse Parallel Cholesky Factorization

2.3.1 Where is the Parallelism?

The parallelism available in the sparse factorization algorithm is best illustrated through

an example. Figure 2-3 shows the non-zero structure of a sample matrix, A, along with the

non-zero structure of its factor, L. Columns are numbered along the diagonal. Element

values are not important-so non zero elements are marked with bullets(o). Notice that

the factorization algorithm needs the non-zero structure of L precomputed. This step

is performed sequentially and is quick. (There are techniques for minimizing non-zero

elements in L through column reordering in A, but these optimizations were not studied.)

With the non-zero structure of L, an elimination tree can be built.

Given a matrix A, with factor L, the parent of column j in the elimination

tree of A is: parent(j) = min {ilLij , i > j}[9].

The elimination tree shows an important relationship between columns. Columns are only

modified by their descendants in the elimination tree. Figure 2-4 shows that columns

15
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2.3.2 Fan-out Factorization

Various parallel algorithms have been developed to find the cholesky factorization of

sparse matrices. One is the fan-out algorithm developed at the Oak Ridge National

Laboratory[4]. In fan-out factorization, the columns are first divided among processors.

Each processor able to perform a cdiv operation does so. It then sends the result to

all processors that will use the data for a cmod. When a column has received all the

modifications it can receive, it is completed with a cdiv operation. Now this column

can be sent to processors that need it. The algorithm is shown in figure 2-5. (This

pseudo-code(figure 2-5) is copied directly from [9]).
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while I own a column which is not complete do
if nmod[k] = 0 then - k is ready to be completed

cdiv(k)
send k to processors which own columns {jlj > k, Ljk # 0}

else
receive a column k
for each j such that Ljk # 0 which i own do

cmod(j, k)

Figure 2-5: Fan-Out Algorithm for Cholesky Factorization

The nmod[k] structure is introduced so that each column can keep track of column

modifications. It is initialized to the number of cmod operations that each column will

receive. When a column has a cmod operation performed, the column's value in nmod[k]

is decremented. When the value reaches zero, the column is completed with a cdiv and

distributed.

2.3.3 Determining Tasks

The algorithm in figure 2-2 uses send and receive primitives for data communication. In

a shared memory implementation, the column data will reside in global memory. Explicit

sends and receives are replaced by column locks and shared memory reads and writes.

The column locks are used to synchronize between producer and consumer processors.

Data is communicated by reading from and writing to shared memory.

To support a shared memory model, the fan-out algorithm was modified to include a

task determining step. All cdiv and cmod operations are predetermined by examining the

non-zero structure of the L matrix. Figure 2-6 shows all the cdiv and cmod operations

required to calculate L for the sample matrix from figure 2-3.

These operations have been placed on a time line. Operations within the same time

step may be performed in parallel. A box with a single digit inside represents the cdiv

operation, such as X and m]. All other boxes represent cmod operations as in 3.1 and

5]. The notation 3.1 stands for column 3 getting modified by column 1.

Since columns 1 and 2 are not receiving any modifications they can be computed

17



Figure 2-6: Work Available

in parallel in time step 1. A column may not be modified until its modifier has passed

through the cdiv operation. So operations 3.1, 5.2 and 7.1 must wait till time step 2-

when columns 1 and 2 are available. Once a column has received all of its modifications,

it can be cdived, as in columns 3 and 5 in time step 3.

2.3.4 Multiprocessor Operation

With the tasks established, let us see how they might be distributed among 4 processors.

The fan-out algorithm requires that processors modify only the columns that they own.

Columns have been assigned using a mod function-Processor 0 owns column 1 and 5,

Processor 1 owns 2 and 6, Processor 2 owns 3 and 7 and Processor 3 owns 4 and 8.

Figure 2-7 shows the timelines of four processors executing the tasks determined in

figure 2-6. For simplicity, the amount of work in each block is assumed to be identical.

Synchronization overhead and memory latencies are not shown.
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:Processor 0 

Processor 1

Processor 2

iProcessor 3

I 1 1 5 .2 ( 5 1 .... ......... ........ ......... ........ ........1 5.2 5 ... Idle.......................................................

........ .................. .......................................Ii2 _iI ..... e 6.5 6 . Idle .

Idle 3.1 3 7.1 7.3 7.4 7.61 7 | Idle

..... 4.3 4 8.4 .. 8.7 8........................ ...........Idle 4.3 |4 |8.41 Idle |8.|8
,......................... . ...........

Time '

Figure 2-7: 4 Processor Operation

2.4 Mod Mapped Column Distribution

Fan-out factorization has one important variable that affects performance-the distribution

of columns to processors. If, for some reason, all the independent columns are assigned

to the same processor, the performance of the system decreases dramatically due to lost

parallelism. In this study, the columns will be distributed using a mod function. Each

processor will get the columns where:

Column mod Processornumber = 0 (2.8)

19



Chapter 3

Fine Grain Cholesky Factorization

With fine-grain synchronization, a consumer processor can grab the smallest amount

of data as soon as it is available from the producer. For a discussion of fine grain

synchronization implementations in multiprocessors, see Kranz, Lim, and Agarwal[7].

As the Cholesky application is currently written, consumers must wait until producers

release the entire column they are computing. This poses an artificial data dependency

that inhibits parallelism. Two things can be done.

1. Using fine grain synchronization, allow a processor to grab data as soon as it is

available from the producer.

2. Reschedule the computation to allow multiple accesses to columns, synchronize

with fine grain synchronization.

3.1 Fine Grain Fan-Out

The effect of choice 1 is that consumers are allowed to read data as soon it is available.

Figure 3-1 shows when consumers are waiting for data from producers in the example.

Arrows mark the locations where fine grain synchronization would help. For example,

Processor 1 waits for Processor 0 before it can compute E6.5 since it needs column 5

from Processor 0.

20



Processor 0 '

iProcessor 1

:Processor 2

:Processor 3.-- - - - - -

1 1 5.2 1 5 > Idle

2 Idle 6.5 6 Idle...i........ e I ................;:&....................
~~~~~~~~~~~~~~~~~.....~... ......

ide;| 3.1 1 3 7.117.3 7.417. 6| 7 ;. Idle

................ . ... d ... 
.....Idle t 4 . 3 4 8.4 Idle'| S.7 8

Figure 3-1: 4 Processor Operation-Arrows mark Data Dependencies

With fine grain synchronization, Processor 1 does not have to wait for Processor

0 to completely finish its cdiv operation on column 5. It can grab parts of column 5

as soon as they are available. To implement fine-grain synchronization, column locks

were removed from the fan-out code. A locking structure was assumed for every matrix

element. Before, a processor locked a column, computed, and then unlocked the column,

now it locks an element, computes, and then unlocks the element. This optimization

changes the finish time as shown in figure 3-2.

?Processor 0

Processor 1

IProcessor 2 

Processor 3 _

Old Finish Time N
New Finish Time

1 52, 5.........................................
1 5.2 5 IdleI1 I-I2 1 5....................................................

LI Idle.. 6.5 Idle

3.1 3 7.1 1 7.3 1 7.4 1 7.6 1 7 Idle.

........... I ................
Idle 4.31 4 8.4 Idl 8.7 8

' Fine Grain Synchronization

Time

Figure 3-2: 4 Processor Operation With Fine Grain Synchronization
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* Processor 1 begins computing 6.5 earlier.

* Processor 2 begins computing 3.1 earlier.

* Processor 3 begins computing 4.3 earlier.

* Processor 3 begins computing 8.7 earlier.

Figure 3-2 assumes no overhead related with fine grain synchronization.

3.1.1 Fine Grain w/Task Redistribution

With finer synchronization, we get greater parallelism. But how much? From the example

in the previous section, fine grain synchronization helped out only part of the time. What

was the problem? This optimization helps only during a cdiv operation with cmod

waiters. Cmod operations waiting for the cdiv to complete can grab data as soon as it

is available.

The trouble is that for a matrix of size n, only n cdiv operations will be performed.

This is compared to a very large number of cmod operations. Furthermore, not every

cdiv will have a waiter. So, this fine grain optimization should prove to have very little

speedup over the coarse fan-out algorithm. Can fine grain synchronization be exploited

more in cholesky factorization?

The answer lies in the observation that a cmod operation is associative. In the running

example, column 8 needs two cmods, 8.4 and 8.7. These operations can occur in

either order. More importantly, they can be interleaved and still produce the correct final

value. With the fan-out algorithm, interleaving of cmod operations is impossible since

all operations on a particular column are handled by the same processor. In figure 3-2,

Processor 4 will do both 8.4 and 8.7. If they were handled by different processors,

then they could be run in parallel with fine grain synchronization. With many cmods

handled in this way, the resulting speedup should be higher than with simple fan-out with

fine grain.

So cdiv and cmod operations have to be assigned to processors in another way. The

current assignment method is good because it promotes data locality. Moving cmod tasks
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to other processors reduces the overall locality in the application. Hopefully the loss in

locality will be offset by an increase in parallelism of the cmod operations.

How should the tasks be redistributed? Many factors are now important for optimal

performance-data locality should be kept high. Parallelism should be increased and the

load should be balanced. This study relies on a simple solution that proves to be effective.

Columns are still assigned using a mod function. But the cdiv and cmod operations are

distributed sequentially. The first operation is given to Processor 0, the next to Processor

1 and so on.

This simple remapping of tasks gives the performs as shown in figure 3-3. The tasks

from figure 2-6 have been mapped sequentially across the processors.

Fine Grain Finish Time
- .. ......... .. se Finish Time \

Fine Grain

Processor O

Processor 1

Processor 2

:Processor 3

w/lask Redistribution Finish

I 1 5.2 I i1 4 Ii1 7.4 1 8.7 1

i- S1 5 6.5 7.6 i dle 8

3.1 7.1 6 7 Idle

Idle 3 4.3 7.3 8.4 Idle

Figure 3-3: 4 Processor Operation With Fine Grain Synchronization and
bution

Task Redistri-

This implementation has reduced data locality since processors are assigned work on

columns they do not own. Figure 3-3 does not take into account any locality effects. It

assumes that the decrease in locality does not affect performance. This assumption is

made to illustrate the possible gains in parallelism. CSIM, described in the next chapter,

was used to carefully study the performance. For our idealized case, it is clear that

remapping the tasks decreased the execution time.

Many other task mapping schemes are possible. A heuristic-based scheme that at-
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tempts to preserve some locality might perform better in a real system. Other schemes

have been left open for study.
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Chapter 4

CSIM: An Event Driven Parallel

Factorization Simulator

CSIM is a parallel cholesky factorization simulator that can process large matrices at very

high speeds. It can simulate a large machine with caches and a simple network model.

The introduction gave a brief motivation for the development of CSIM.

CSIM's target was a model of the Alewife machine. The Alewife Machine is a

scalable multiprocessor with identical processing nodes connected in a 2-D mesh. Each

node consists of a 32 bit RISC processor, a floating point chip, 64 KB cache, 8 MBytes

of dynamic RAM and a network routing chip[7]. The distributed memory of the machine

appears as a shared memory to applications. Hardware for cache coherence maintains

this abstraction. The machine has hardware support for fine grain synchronization at the

lowest level of memory-processors in an Alewife system can arbitrate on a single word

of memory.

CSIM simulates machine operations at the column level. The smallest events char-

acterized are individual cdiv and cmod operations from figure 2-5 and figure 2-6. The

simulator is initialized with a matrix to factor, A. The structure of A's factor matrix,

L, is then computed. This structure is used to determine the cdiv and cmod operations

as in figure 2-6. For a coarse grain simulation, the tasks are assigned to processors as

in figure 2-7. For a fine grain simulation, the tasks are assigned as in figure 3-2 or

figure 3-3.
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With the tasks' now assigned to processors, the parallel simulation begins. The

simulator goes down the task queue of each processor and tries to see if the task at the

head of the queue can execute. A task can execute if the data requested by the task is not

locked. If it is locked, the simulator stalls the processor and continues to the next. This

process continues until all processor queues are empty. At the end of the simulation, a

breakdown of cycles is presented from the factorization, with total and average number

of cycles spent on the following:

Table 4.1: Statistics Gathered

4.1 CSIM Internals

4.1.1 Processor Simulation

For each processor in the simulation, a detailed set of statistics is kept. As each individual

cdiv and cmod operation is processed, the processor statistics are updated. The most

important statistic is the current time-maintained in cycles for a processor. For each cdiv

and cmod operation, the processor time is incremented by the number of cycles it takes

to perform the operation.

The amount of time taken by an operation is determined by the amount of work and

the location of the required data.2 A cdiv operation is handled as follows. An element

in a cdiv operation is: Lik = Lik

'On a real machine, these tasks would not be high level processes. Each node would run a single
process and would manage its own cdiv and cmod operation queue. This setup is easy to model and is a
good implementation.

20Other operations, such as loop indexing, are not added.
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Utilization Average Processor Utilization for the Simulation
Column Wait Idling Average Column Wait Idling Time per Processor

Fine Grain Overhead Average Fine Grain Overhead for the Simulation
Coarse Grain Overhead Average Coarse Grain Overhead for the Simulation

Remote Misses Average Time Spent servicing Remote Misses
Local Misses Average Time Spent servicing Local Misses

Idle Average Idle Time



Lik is a memory read. It may be a cache access, a local memory access or a
remote memory access.

Lkk is a cached value. It is read at the beginning of the of each cdiv operation.
The time to read it into the cache for the first time is not added to the processor
time.

divide is a floating point operation.

Lik is a memory write.

Summing up the cdiv operation:

1 Cache Accesses
2 Memory Accesses
1 Floating Point Operation

Table 4.2: Simulated cdiv operation

A single element cmod operation, Lij = Lij - Lik * Lik is simulated as follows:

Lij is a memory read.

Lik is a memory read.

Ljk is cached.

subtract is a floating point operation.

multiply is a floating point operation.

Lij is a memory write.

Summing up the cmod operation:

1 Cache Accesses
3 Memory Accesses
2 Floating Point Operation

Table 4.3: Simulated cmod operation

To calculate the time for each cmod and cdiv operation, the amount of taken for a

single element computation is scaled by the number of elements. Various overheads,

discussed below, are also added.
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4.1.2 Modeling Coarse Grain Synchronization

A task queue is maintained for every processor by CSIM. Before a task can execute, the

column required by the task must be available for reading (i.e. not locked by any other

processor). CSIM stalls the consumer processor until the data is available for reading.

But in a real machine, the consumer must incur an overhead for waiting.

CSIM models this by adding a polling overhead. Any consumer that receives data

from a producer pays this overhead on the wait time between the request and the receipt

of the data. Figure 4-1 illustrates the computation.

Tstart = Time Consumer starts polling for data from Producer

Tready = Time Producer is ready with the data.

Twait = Tready - Tstart

Toverhead = Twuait * POLLING-OVERHEAD
Tread = Tstart + Twait + Toverhead (4.1)

Tready Time

Figure 4-1: Polling Overhead Model for Coarse Cholesky

The polling overhead is a constant value that is a function of the machine size. This

value is based on the following assumptions:

* Synchronizations are infrequent. This is the main assumption that allows the use

of this polling model for coarse cholesky synchronization.

* Network traffic is low or alternatively, the network bandwidth is very high. Low
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network traffic means that the only penalty a consumer pays for waiting is the

polling overhead.

When multiple consumers are waiting for a producer, each incur a polling overhead.

But since the producer can service only one consumer at a time, each consumer incurs

an additional delay that is a function of two values: Its order in arrival at the producer,

and the amount of time the producer takes to send out the requested data. The first value

means that the first consumer reads first, the second reads second and so on. The second

value means that the second consumer must also wait an additional time equivalent to

the time it takes for the producer to service the first.

What is the extra time that the second consumer must wait? The producer has to send

data to the first consumer. With an infinite network buffer, this time can be modeled as

the amount of time it takes the producer to copy the data from its cache to the network.

Ttartl = Consumer 1 Requests Data from Producer

Tready = Producer is ready with the data.

Twaitl = Tready - Tstartl
Toverheadl = Twaitl * POLLING-OVERHEAD

Treadl = Tstartl + Twaitl + Toverheadl (4.2)

Tstart2 = Consumer 2 Requests Data from Producer

Twait2 = Tready - Tstart2

Toverhead2 = T.ait2 * POLLING-OVERHEAD
Tsendl = #elements * CACHE ACCESS TIME

Tread2 = Tstart2 + Twait2 + Toverhead2 + Tsendl (4.3)

4.1.3 Modeling Fine Grain Synchronization

A task queue is still maintained for every processor by CSIM. But these tasks use finer

synchronization and synchronize at the matrix element level. So a task can execute as

soon the first part of the data it requires is available.
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The polling overhead model in figure 4-1 is inadequate for fine grain synchronization.

First, every synchronization operation is slower. Even successful synchronizations pay

a small penalty to check the synchronization structures. An analysis of fine grain syn-

chronization with an application on Alewife was done by Yeung[13]. CSIM models this

with a FINEGRAINOVERHEAD parameter. This parameter adds a constant overhead

to every successful synchronization.

Determining whether a synchronization will succeed or fail is tricky. Timing between

producers and consumers becomes critical in determining the total waiting time for the

consumer. There are five cases that must be dealt with individually.

* Consumer and Producer Start at Similar Times.

This is the worst case for fine grain synchronization between producers and consumers.

The two might start thrashing on individual cache lines. The consumer will read a line.

The producer will shortly invalidate it. Both proceed forward in this manner, producing

many cache coherence protocol packets. This can severely hurt application performance.

CSIM handles this case by forcing the consumer to back off for a constant amount

of time. The time is equivalent to the time taken by 2 cmod iterations. 2 iterations will

fill one cache line3. To compute this value, we assume the worst case for the the cmod

iteration-a remote read and a remote write. BACKOFFTIME is calculated as follows:

T1 cmod = (1 * CACHEACCESS + 3 * REMOTE-ACCESS
+2 * FLOATOP)
(1.0 + FINEGRAINOVERHEAD)

BACKOFFTIME = 2 * T1 cmod (4.4)

With this backoff time, a consumer is guaranteed to be behind the producer. After

waiting, The consumer can proceed with all synchronizations succeeding.

* Consumer Starts a Little After the Producer.

3Each operation is on a double value-two words.
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The important question in this case is what is "a little after"? If the consumer starts

after the BACKOFFTIME window then most synchronizations will be successful. The

only penalty that the consumer will pay is the overhead of a fine grain vs. a regular read.

On the other hand, if the consumer starts within the BACKOFFTIME window, then it

will have to take the BACKOFFTIME penalty. The simulator keeps careful track of this

timing and correctly handles this case.

· Consumer Starts Much Later Than Producer.

This case is not very different from coarse grain synchronization. Every read by the

consumer will be met with success. The only penalty that the consumer will pay is the

overhead of a fine grain vs. a regular read.

· Many Consumers

All three scenarios above become more complex as the number of consumers increases

beyond 1. CSIM imposes the backoff penalty on each consumer and insures that the

producer serves sequentially serves the consumers.

* Many Writers

Many processors attempting to modify locations in the same cache line at the same

time will be heavily penalized by cache coherence protocol overhead. As explained

below, CSIM avoids the cache coherence protocol issue altogther. This case is handled

just like the Many Consumers case, with the writer suffering a backoff penalty and being

handled sequentially by owner.

4.1.4 Cache Simulation

· Coarse Grain Factorization

CSIM maintains a 64K cache for each processor. Cache coherence is not maintained.

In coarse grain operation, this is not a problem. The owner of a column is the only

processor that attempts any writes to the column. Readers of that column will not attempt

to read it until it is completed by the owner. Since after the completion, no further writes

occur, there are no coherency issues.
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The caches are maintained with a random replacement strategy. Cache contents can

include local and remote locations. A cache hit takes 2 cycles.

* Fine Grain Factorization

In the fine grain case, multiple processors might attempt to write to the same location.

To avoid maintaining coherent caches in the simulator, remote locations are not allowed

to be cached if they are being written. This restriction effectively turns off caching of

remote locations.

Due to the complexity associated with cache coherence, CSIM does not support remov-

ing this restriction. With cache coherence, the overall results of fine grain factorization

should be better.

4.1.5 Local Memory

Local Memory is maintained for each processor as a list of columns that it owns. The

size of memory is not bounded. Though, it is unlikely that any processor will get an

unevenly large number of columns assigned due due to the mod mapping of columns.

Local memory accesses produce a cache line of 4 words in 15 cycles. Or a per double

word access time of 7.5 cycles.

4.1.6 Shared Memory/Network Model

CSIM simulates a distributed shared memory. Each memory access is mapped to local

or global memory by a vector that maintains the location of columns. This in effect

simulates a shared memory since in a real machine, a memory access would use some

bits in the address to determine where the location is stored.

Shared memory access times are determined by the square root of the total number of

processors. Alewife takes about 2 cycles per network hop. On an P processor machine

configured in a 2-D mesh, the average distance should be about --. Access times are

constant across a simulation. No contention on the network is modeled. The formula

used for the access time is:
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T = - + 15
2

(4.5)

This time is the latency for a cache line(4 words) read. A remote column read uses

the per word time multiplied by the number of words read to compute the latency for the

read.

4.2 Knobs and Switches

Table 4.4 summarizes important controls in the simulator.

P Number of processors in the simulation
CACHESIZE Size of per processor cache

FLOATOP Cycle Time to perform a floating point operation.
CACHEACCESS Cache Line Access Time
LOCALACCESS Local Memory Access Time on a Cache Miss

REMOTEACCESS Remote Memory Access Time on a Cache Miss
POLLINGOVERHEAD Overhead added to polling for data.

FINEGRAIN OVERHEAD Fine Grain Read/Write Overhead
BACKOFFTIME Backoff time for a failed synchronization

Table 4.4: CSIM controls

4.3 Equipment Required

CSIM is written in C and runs on UNIX workstations. Simulation time for a 3466 column

matrix with 13681 non zeros with 512 processors is about 5 minutes on a Sparc Station

10/30.
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Chapter 5

Results and Analysis

Five test matrices were used in this study. The first four matrices, part of the SPLASH

suite of benchmarks[ll] are the same matrices used by Rothberg[9]. The fifth matrix,

w15.1, is bcsstkl5 sampled to 1/3 the number of columns. w15.1 was created for rapid

testing.

A quick summary of the matrices:

Matrix Number of Columns Number of Non Zeros

bcsstkl4 1806 32630
bcsstk15 3948 60882
d750.0 750 281625
lshp.0 3466 13681
w15.1 1316 7341

Table 5.1: Test Matrices

Ideal machine and practical machine results will be presented for the following three

variations of fan-out cholesky factorization.

Coarse: This is the fan-out algorithm modified for shared memory. A column lock

mechanism is used for synchronization between processors.

Fine No Task Redistribution: The coarse grain version was modified to use fine grain

synchronization on matrix elements. cdiv and cmod tasks are assigned in the same

way as the Coarse grain version.
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Fine w/Task Redistribution: Fine grain synchronization is used on matrix elements.

Cdiv and cmod tasks are redistributed using a round robin system.

5.1 Ideal Machine Resuts

To see how the three versions of the fan-out algorithm compare, ideal machine results

are presented first. In the results that follow, CSIM was configured to have a uniform

memory access time of 1 cycle. All floating point compuations took a cycle as well.

5.1.1 Ideal:Coarse-Single Processor Run Times

CSIM was configured as follows to produce single processor run times.

Matrix 1 Processor Run Time

bcsstkl4 5.9838e+07
bcsstk15 9.89893e+08

d750.0 4.23282e+08
lshp.0 2.84074e+07
w15.1 2.97619e+07

Table 5.2: Ideal:Coarse-Single Processor Run Times
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Parameter Value

P 1

CACHESIZE 64 KB

FLOATOP 1 cycle

CACHEACCESS 1 cycle

LOCALACCESS 1 cycle

REMOTEACCESS n/a

POLLINGOVERHEAD n/a

FINE GRAIN OVERHEAD n/a

BACKOFFTIME n/a



5.1.2 Ideal:Coarse-Speedup Curves

The coarse grain simulation uses a polling overhead model that imposes an overhead

on all synchronization waiting times. For this ideal run, the overhead was set at zero.

Speedup curves, shown in figure 5-1 were produced relative to an ideal single processor

coarse grain performance. The simulator was configured as follows:

Parameter Value

P Number of Processors

CACHE SIZE 64 KB

FLOATOP 1 cycle

CACHE ACCESS 1 cycle

LOCALACCESS 1 cycle

REMOTEACCESS 1 cycle

POLLINGOVERHEAD 0.0

FINE GRAIN OVERHEAD n/a

BACKOFFTIME n/a
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128 160 192 224 256 288 320 352 384 416 448 480 512

128 160 192 224 256 288 320 352 384 416 448 480 512
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Figure 5-1: Ideal:Coarse Grain Speedup

36

"- 208

Q 192

176

"' 160

e 144

. 128

CC 112

96
q)
c 80

64

48

32

16

0



From figure 5-1, it is clear that even on an ideal machine, the fan-out version of the

application shows moderate speedup. The best performance is bcsstkl5's speedup, at

about 208 on 512 processors. The worst is w15.1, at about 80 for 512 processors. Since

there is no overhead of any sort in these simulations, the lack of parallelism must be due

to the algorithm and the data.

5.1.3 Ideal:Fine Grain no Task Redistribution Speedup

This is the first fine grain implementation. Column locks were replaced by element locks.

All fine grain overhead was removed from the simulator for this run. Figure 5-2 shows

much better speedup over the coarse grain application. The best speedup is delivered

by d750 at about 224, the worst by w15.1 at about 90. These results suggest that the

few cdiv operations are important because they provide the data for cmod operations to

continue.

Parameter Value

P Number of Processors

CACHE SIZE 64 KB

FLOATOP 1 cycle

CACHEACCESS 1 cycle

LOCALACCESS 1 cycle

REMOTEACCESS 1 cycle

POLLINGOVERHEAD n/a

FINEGRAINOVERHEAD 0.0

BACKOFFTIME 0.0
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Figure 5-2: Ideal:Fine Grain-NO Task Redistribution Speedup

5.1.4 Ideal:Fine Grain w/Task Redistribution Speedup

In the version of the application, the tasks have been redistributed as well, figure 5-3

shows by far the best performance-approaching a speedup of about 448 for all matrices.

This ideal run allows certain behavior that cannot be allowed in a real machine. For

example, many readers and writers can be accessing the same memory location without

penalty. This kind of behavior would be severely penalized in a real machine by cache

coherency protocol overhead.
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Parameter Value

P Number of Processors

CACHESIZE 64 KB

FLOATOP 1 cycle

CACHEACCESS 1 cycle

LOCALACCESS 1 cycle

REMOTE-ACCESS 1 cycle
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BACKOFFTIME 0.0
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

512

480

448

416

384

352

320

288

256

224

192

160

128

96

64

32
n

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of Processors

Figure 5-3: Ideal: Fine Grain w/Task Redistribution Speedup

5.1.5 Ideal: Coarse-Utilization

The following set of figures show the processor utilization, for an ideal machine with

the coarse grain simulation. The X-axis is the number of processors. They Y-axis is the

average processor utilization. Right above the utilization curve is the local miss curve.

Above that is the remote miss curve. Above that is the Column Sync Idle curve. This
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curve represents the average amount of time spent waiting for column synchronizations.

Finally, above that, is the idle time from lack of work. From these curves, it is clear

that after 256 processors, from a quarter to more than half the time is spent waiting for

Column Synchronizations-or column locks.
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Figure 5-5: Ideal:bcsstkl5 Coarse Grain Utilization Curve
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Figure 5-7: Ideal:lshp Coarse Grain Utilization Curve
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Figure 5-8: Ideal:w15.1 Coarse Grain Utilization Curve
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5.1.6 Ideal:Fine Grain w/Task Redistribution-Utilization Curves

The following figures show the utlization curves for a fine grain simulation with task

redistribution. In comparing the curves with their respective coarse grain versions, we

see that overall idle time has been nearly eliminated. The Column Sync Idle time has been

substantially reduced. Remote misses, on the other hand, have increased dramatically.

This suggests that the performance on a real machine will depend on the remote latency.
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Figure 5-9: Ideal:bcsstkl4 Fine Grain w/Task Redistribution Utilization Curve
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Figure 5-10: Ideal:bcsstklS5 Fine Grain w/Task Redistribution Utilization Curve
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Figure 5-11: Ideal:d750. 0 Fine Grain w/Task Redistribution Utilization Curve
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5.2 Practical Machine Results

5.2.1 Coarse-Single Processor Run Times

CSIM configured as follows produced the results in table 5.3 for single processor run

times of the coarse grain model. All apropriate overheads have been reintroduced.

Matrix 1 Processor Run Time

bcsstkl4 2.18823e+08
bcsstkl5 3.6707 le+09

d750.0 1.63593e+09
lshp.0 1.00731e+08
w15.1 1.06694e+08

Table 5.3: Coarse-Single Processor Run Times

5.2.2 Coarse-Speedup Curves

Speedup curves, shown in figure 5-14 were produced relative to single processor coarse

grain performance. The simulator was configured as follows:
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Parameter Value

P 1

CACHESIZE 64 KB

FLOAT OP 5 cycles

CACHEACCESS 2 cycles

LOCALACCESS 15 cycles

REMOTEACCESS n/a

POLLING OVERHEAD n/a

FINE GRAIN OVERHEAD n/a

BACKOFFTIME n/a
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CACHESIZE 64 KB

FLOATOP 5 cycles

CACHEACCESS 2 cycle
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FINE GRAINOVERHEAD n/a

BACKOFFTIME n/a
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Figure 5-14: Coarse Grain Speedup

Figure 5-14 shows little speedup at large machine sizes for the coarse grain version.

The best performance is shown by the lshp matrix, which gets a speedup of about 60

on 512 processors. The worst is shown by the d750 matrix. This matrix is a dense

matrix and its performance is dependent on column distribution. As the utilization curve

in figure 5-20 shows, this matrix requires few remote accesses for small machine sizes.

But as the machine size is increased, the locality gets completely destroyed-resulting in
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extremely poor performance.

5.2.3 Comparison of CSIM's output to Rothberg

Rothberg presents speedup numbers from a simulated multiprocessor for lshp, bcsstkl5

and dense750. His speedup numbers are relative to single processor run times of the

parallel code. Rothberg's numbers in the table below were read from a graph-so they

are approximate.

Matrix Processors Rothberg CSIM
Speedup Speedup

bcsstkl5 16 14 15.3
bcsstkl5 32 24 29.3

d750.0 16 16 17.4
d750.0 32 33 34.5

lshp.0 16 7.5 14.0
lshp.0 32 10.5 21.3

Table 5.4: Comparsion of CSIM with Rothberg's results

CSIM performs comparably with Rothberg's simulator on d750 since it has very good

locality for small machine sizes. Lshp doubles in performance. Why is d750 comparable

and lshp different? The difference is that lshp requires many more remote accesses

than d750. The remote latency model under CSIM gives lower latency numbers than

Rothberg's model. As a result, the matrix runs about twice as fast. BcsstklS5 shows

similar speedup.

5.2.4 Fine Grain no Task Redistribution Speedup

Figure 5-15 shows the performance of the fine grain application without any task re-

distribution. Speedup is relative to the 1 processor coarse grain version. All matrices

perform better. d750 especially improves. Even though the fine grain memory acceses

take 10% longer to complete, the extra parallelism exposed more than overcomes this

penalty. Since this version is not better than fine grain w/task redistribution, utilization

curves for this implementation will not be shown. CSIM was configured as follows:
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Parameter Value

P Number of Processors

CACHESIZE 64 KB

FLOATOP 5 cycles

CACHEACCESS 2 cycle

LOCALACCESS 15 cycles

REMOTEACCESS T = + 15

POLLING-OVERHEAD n/a

FINEGRAIN OVERHEAD 0.10

BACKOFFTIME see equation
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Figure 5-15: Fine Grain-NO Task Redistribution Speedup

5.2.5 Fine Grain w/Task Redistribution Speedup

Figure 5-16 shows the performance of the fine grain code with the tasks redistributed.

Speedup is relative to the 1 processor coarse grain version. These results are much

better than the coarse grain and the fine grain without task redistribution version. The
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simulator was configured as follows. Figure 5-17 shows the ratio of the fine grain w/task

redistribution runtime to the coarse grain runtime.

Parameter Value

P Number of Processors

CACHESIZE 64 KB

FLOATOP 5 cycles

CACHE ACCESS 2 cycle

LOCALACCESS 15 cycles

REMOTEACCESS T = v + 15

POLLING-OVERHEAD n/a

FINEGRAINOVERHEAD 0.10

BACKOFFTIME I see equation
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Figure 5-16: Fine Grain w/Task Redistribution Speedup

It is interesting that all speedup curves in figure 5-16 follow a similar path. Why is

that? It is worthwhile to look at what the processors are spending their time on to answer

this question.
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Figure 5-17: Fine Grain w/Task Redistribution Speedup

5.2.6 Coarse-Utilization Curves

The following set of figures show the processor utilization for the coarse grain version of

the application. C)n the X-axis is the number of processors. The Y-axis is a cumulative

plot of the average time spent on utilization, local misses, remote misses, and overhead.

The time above the highest line is idle time.

All of these curves show a similar distribution of time as the machine size is increased.

First, the overall idle time from lack of parallelism increases. Second the idle time from

consumers waiting for producers, Column Sync Idle, increases. Local misses become

negligible as the machine size increases.
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Figure 5-19: bcsstkI5 Coarse Grain Utilization Curve
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Figure 5-20: d750.0 Coarse Grain Utilization Curve
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Figure 5-21: Ishp Coarse Grain Utilization Curve
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Figure 5-22: w15.1 Coarse Grain Utilization Curve
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5.2.7 Fine Grain w/Task Redistribution-Utilization Curves

The following set of figures show the processor utilization for the fine grain w/task

redistribution version of the application. These figures look very different from the

coarse grain utilization curves. The overall idle time from lack of parallelism is now

negligible. So, the fine grain version has much much better load balancing. A substantial

amount of the time is spent on fine-grain overhead. This is the amount of time the

machine takes to service a successful synchronization along with the backoff delay from

polling. By far, the biggest difference is the increased percentage of remote references.

This was expected as the task redistribution destroyed data locality.

It is now possible to answer why the speedup curves shown in figure 5-16 all seem

to follow a similar path. Almost all the operations performed in the application are cmod

operations. With fine grain synchronization and task redistribution, there is almost perfect

load balancing. So the speedup curves follow the speedup of one cmod operation. The

amount of time a cmod operation takes depends on the remote miss latency. This latency

scales with the square root of the number of processors. So ideally, the order of the

speedup curve for the fine grain application is O(v/f).
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Figure 5-23: bcsstkl4 Fine Grain w/Task Redistribution Utilization Curve
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Figure 5-24: bcsstklS5 Fine Grain w/Task Redistribution Utilization Curve
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Figure 5-25: d750.0 Fine Grain w/rask Redistribution Utilization Curve
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Figure 5-26: shp Fine Grain w/Task Redistribution Utilization Curve
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Chapter 6

Conclusions

Performance of the fan-out algorithm for Cholesky factorization can be improved using

fine grain synchronization. By replacing locks on columns with locks on element, cmod

operations can start without waiting for their cdiv operations to finish. This optimization

gives moderate speedup over coarse grain fan-out (column locks) factorization. The

performance increased from 16% percent to 45% over coarse grain for the test matrices.

Performance can be improved even more by redistributing the cmod and cdiv opera-

tions. A round robin task redistribution scheme is sufficient. With this new distribution,

cmod operations on the same column run in parallel. The resulting speedup is much

higher than fine grain without task redistribution. Speedup increased from 100% to

400% over the coarse grain version for the test matrices. It increased from 71% to 123%

over the fine grain without task redistribution.

Since the processor load is close to balanced for the fine grain w/task redistribution,

the overall speedup is defined by the time it takes to perform a cmod operation. This

time is bounded by communication and can be computed as having order of O(v) for

a 2-D network. This value is identical to the scaling of communication cost in the model.

Output from CSIM shows speedup curves to be of order O(v/f).

Due to the nature of the coarse grain factorization, CSIM's results should be compa-

rable to a real machine. Since there are no cache coherency issues in the computation,

the simulator allows remote values to be cached locally. CSIM supports a polling model

for column locks with a polling overhead. Multiple readers of a column are serviced
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sequentially by the owner. CSIM's remote read latency model does not take into account

network contention.

The fine grain simulation has an important limitation-it does not model cache co-

herency. Remote accesses are not cached. A backoff delay model was used with the

delay time computed at exactly one cache line. With this delay time, there should be

no thrashing on a cache line by two writers. Each additional writer to the cache line is

also delayed by the delay time-again insuring no thrashing. This model does not take

into account any overhead of the cache coherency protocol. Using caches, should give

better performance. Though CSIM's model attempts to minimize protocol overhead by

avoiding thrashing, it remains to be verified on a real machine.

In an ideal machine, fine grain factorization gives far better performance than coarse

grain factorization. Though CSIM is a good tool for getting rapid results for a multi-

processor cholesky factorization run, it does not effectively model all aspects of a real

machine. Most important are network contention and cache coherency. Without writing

a complete multiprocessor simulator, it is difficult to model both of these issues. The

Alewife machine will soon be available. The coarse grain and the fine grain cholesky

factorization algorithms will be run on the machine to test the effectiveness of each and

verify the CSIM models.
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