
RADIATIVE TRANSFER THEORY
FOR ACTIVE AND PASSIVE REMOTE SENSING OF SEA ICE

by

Hong Tat Ewe

B.Eng., University of Malaya, Malaysia
August 1992

Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

) Massachusetts Institute of Technology 1994
All rights reserved

Signature of Author
Department of Electrical Engineering and Computer Science

May 1994

JCertified by

Certified by

Professor Jin Au Kong
Thesis Supervisor------I-~~~~~~~~~ ) -

rn n ixi Dr. Robert T. Shin
nt / Thesis Supervisor

Accepted by
roessor Frederic R. Morgenthaler

Chairma ¢ ,sittee on Graduate Students
WlHDRAWN

Lng. R@

JUL 13 1994

L!BRAR:ES



I



RADIATIVE TRANSFER THEORY
FOR ACTIVE AND PASSIVE REMOTE SENSING OF SEA ICE

by
Hong Tat Ewe

Submitted to the Department of Electrical Engineering and Computer Science
May 1994 in partial fulfillment for the requirements of the

degree of Master of Science

ABSTRACT

A large number of measurements at microwave frequencies have been carried
out to study the feasibility of using airborne and spaceborne sensors to measure
sea ice properties. However, in order to better interpret the electromagnetic sig-
natures from sea ice, a good understanding of the scattering mechanisms involved
is essential. In this thesis, a theoretical model is developed based on the sea ice
physical properties. The sea ice is modeled as a multilayer structure where each
layer has randomly orientated scatterers embedded in the pure ice background. The
scatterers can model both the brine inclusions and the air bubbles.

The approach is to use the radiative transfer theory to solve for the fully po-
larimetric bistatic scattering coefficients for active remote sensing and the brightness
temperatures for passive remote sensing. For two layer model, numerical method is
applied where radiative transfer equations are first expanded in Fourier series in the
azimuthal direction and the resulting equations for each harmonic are discretized
using Gaussian quadrature method. The numerical solutions are obtained by solv-
ing for the eigenvalues and eigenvector and matching the boundary conditions. The
bistatic scattering coefficients are obtained by re-introducing the azimuthal depen-
dence. Rough surface effects are incorporated into the model by modifying the
boundary conditions using the first-order solution based on the small perturbation
method. The results show that co-polarized (HH and VV) returns are higher than
cross-polarized (HV) returns in the forward and backward directions, and vise versa
in the direction of k = 90°. It is also shown that cross-polarized scattering coef-
ficients in the forward and backward directions depend strongly on the shape of
scatterer. For spherical and spheroidal scatterers aligned in the vertical direction,
the cross-polarized returns arise from multiple scattering and are lower than those
of ellipsoidal scatterers.

The two layer model is then extended to multilayer case which is solved by
implementing the effective boundary condition method. The method starts by first
solving the bottom two layer problem. This is followed by applying the effective
boundary conditions obtained to the calculation of next two layer case above. This
process is repeated until the top layer is reached. The calculation of both first-year
(FY) sea ice and multi-year (MY) sea ice cases using the multilayer model shows the
significance of the air bubbles, compared to the brine inclusions, in the scattering
characteristics. The MY case shows significantly higher scattering returns.



The emissivity of the sea ice layer is obtained by integrating the bistatic scat-
tering coefficients over the upper hemisphere and relating the reflectivity to the
emissivity. By assuming uniform physical temperature for sea ice, the brightness
temperature is then computed. It is shown that the brightness temperature is sen-
sitive to the dielectric constant of the scatterers which affects the absorption and
scattering characteristics of the layer. The effect of the bottom rough interface on
the brightness temperature is larger than that of the top rough interface when the
waves can penetrate through the medium. For FY sea ice with mostly brine in-
clusions, the brightness temperature calculated is higher than that of the MY sea
ice.

Thesis Supervisor: Professor J. A. Kong
Professor of Electrical Engineering

Thesis Supervisor: Dr. Robert T. Shin
Assistant Group Leader, Lincoln Laboratory
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Chapter 1

Introduction

1.1 Background

It is known that global climate change depends on a large number of factors, among

them sea ice. Since sea ice covers roughly 13% of the world ocean surface during

some portion of the year and vigorously interacts with the atmosphere and the

ocean, any change in the thermal and geological properties of sea ice will affect

the global climate directly [1,2]. There is also a vast amount of water restored

and frozen within the sea ice area. If only a small amount of the world's sea ice

melts because of global warming due to the greenhouse effect, it is believed that the

rise in the sea level would flood large areas of flat and highly populated land with

water. Navigation through the sea ice area also requires a better understanding of

ice drift and sea ice extent [1]. All of these factors make the study of the thermal

and mechanical properties of sea ice very important.

Over the years, many detailed measurements of sea ice properties have been

carried out by researchers. These include on-site measurement and airborne and

17



CHAPTER 1. INTRODUCTION

spaceborne remote sensing measurements. Spaceborne remote sensing is becoming

more popular, because large areas can be covered without direct physical access to

the hostile environment. For the remote sensing of sea ice, altimeters and optical

sensors are used in conjunction with microwave sensors. The advantages of using

microwave sensors over the other type of sensors are that microwaves can penetrate

through clouds and do not depend on the illumination of the sun.

There are two basic types of microwave sensors, active and passive. Active sen-

sors such as radars, synthetic aperture radars (SAR) and scatterometers, transmit a

microwave signal to the target area, and then receive the radar return in magnitude

and phase. The measured data is then fed into a computer for further processing.

Passive sensors do not transmit any signal, but instead measure the thermal emis-

sion from the area sensed. For active remote sensing, there are two ways of carrying

out the measurements: monostatic and bistatic. In monostatic measurements, the

sensor transmits and receives microwave signals at the same location, whereas in

bistatic measurements, the sensor transmits in one location and receives the return

signal in a different location. References [3]-[13] report on active remote sensing

measurement results, mostly in the form of backscattering coefficients versus the

angle of incidence. Recently, there has been a great deal of interest in obtaining

additional measurements for bistatic scattering coefficients. As is pointed out in

[14], in order to reconstruct sea ice parameters such as the dielectric constant of

ice from measurements, bistatic measurement are essential. Measurement results of

sea ice from passive sensor systems are found in references [15-22]. Normally, these

results are presented in the form of emissivity or brightness temperature versus the

18



1.1. BACKGROUND

looking angle or frequency. Emissivity is defined as 1 - r, where r is the reflectivity

of the medium, and brightness temperature is the product of the emissivity and

the uniform physical temperature of the medium. Some efforts have been made to

combine the measurement results of active and passive remote sensing [23,24]. This

will provide more information about the sea ice properties, such as age (first year or

multiyear), thickness, extent, fractional volume of brine inclusions, ice extent and

surface roughness.

The need to develop an accurate theoretical model for the correct interpre-

tation of remote sensing measurement results is apparent. In order to develop the

model, a good and accurate understanding of sea ice physical properties and pa-

rameters is very important. From [25,26], it is known that a first year sea ice layer

consists of parallel pure ice platelets with brine inclusions (salted water solution)

embedded within them. The shape of the brine inclusions is almost ellipsoidal. Gen-

erally, the brine inclusions are more randomly distributed near the air-ice interface,

and become more vertically distributed away from the air-ice interface. During the

summer time, some of the ice melts and the brine is drained into the ocean. This

leaves the inclusions filled with air. This process repeats year after year developing a

type of ice called multiyear ice. Based on this understanding, a theoretical model of

the sea ice layer can be constructed and studied. The important parameters which

will affect the electromagnetic returns are the dielectric constants of the pure ice,

ocean water and brine inclusions, the shape, size, fractional volume and distribution

of the brine inclusions, frequency, thickness of sea ice layer, temperature, salinity

and the roughness of air-ice and ice-water interfaces [27-31].

19



CHAPTER 1. INTRODUCTION

There are three approaches to characterize scattering and emission for active

and passive measurements using the proposed physical model of sea ice. They

are Wave Theory (WT), Radiative Transfer Theory (RT) and Modified Radiative

Transfer Theory (MRT).

In the wave theory, Maxwell's equations are used to solve for the scattering

properties of sea ice by introducing the scattering and absorption characteristics of

the medium [32-42]. All the multiple scattering, interference and diffraction effects

can be incorporated into the theory. However, due to its complicated formulation,

certain approximations have to be made before numerical method can be applied

to solve practical problems.

Radiative transfer theory, on the other hand, has been used widely in the

microwave remote sensing community to calculate the scattering properties of dif-

ferent terrains such as vegetation and sea ice [43-55]. This theory is based on the

energy transport equation and was used chiefly in the study of astrophysics [56].

However, for the past twenty years, its use has been expanded to other fields. The

theory assumes no correlation between the fields and thus only considers the ad-

dition of intensities. The propagation of energy in the medium is characterised by

the phase matrix and the extinction matrix [57]. The advantage of RT theory over

wave theory is that it is simple and, more importantly, multiple scattering effects

can be handled more easily. Furthermore, rough surface effects can be included by

modifying the boundary conditions of the interfaces. For surfaces with large radius

of curvature the Kirchhoff's approximation can be used [57]. In the case where the

wavelength is small compared to the scale of roughness, a special case of Kirch-

20



1.1. BACKGROUND

hoff's's method called the Geometrical Optics approximation (GO) is used. If the

surface RMS height is much smaller than the wavelength, the Small Perturbation

Method (SPM) can be applied [57,58].

Modified Radiative Transfer Theory (MRT) can be derived from Maxwell's

equations. It includes the coherent effects between the scatterers and the boundaries

[57]. These coherent effects are used to explain the oscillatory behavior of the

scattering coefficients as a function of frequency.

For this research, a theoretical model of sea ice based on the physical properties

of sea ice is constructed. Radiative transfer theory is chosen because of its simplicity

and ability to incorporate multiple scattering effects in the calculations. The extinc-

tion matrix and phase matrix of a medium with ellipsoidal scatterers is calculated.

Rough surface effects is incorporated by modifying the boundary conditions, and

the Small Perturbation Method (SPM) is used. The discrete ordinate-eigenanalysis

method is applied to solve for the polarimetric bistatic scattering coefficients of the

multilayer sea ice model. The emissivity (e) or brightness temperatures for such

a configuration are also calculated. The effect of different sea ice parameters on

the polarimetric bistatic scattering results and the brightness temperature for co

and cross-polarization is explored. Some comparisons with the available passive

measurement data is also carried out.

21



CHAPTER 1. INTRODUCTION

1.2 Sea Ice Physical Structure

Since sea water is not pure water but contains dissolved material such as inor-

ganic salts and organic material, the freezing process of sea ice is very complicated

[25]. Basically, when the surface of sea water approaches the freezing point, small

platelets of pure ice parallel to the sea surface form in large numbers on top of the

sea water. Because of the effects of wind and wave movement which tend to force

the platelets toward a vertical position, the brine inclusions embedded within these

platelets are randomly distributed [25,26]. As the freezing process proceeds, thicker

sea ice layers are formed. Due to the vertical temperature gradient which favors

ice growth in the vertical direction, the brine inclusions formed are more vertically

distributed. The brine inclusions are generally ellipsoidal [30,31]. The amount of

brine incorporated is also largely growth-rate dependent. In frazil ice, the brine

inclusions are located between the crystal boundaries whereas in columnar ice, the

inclusions are trapped within the ice crystals [25]. During the next warming sea-

son, draining channels are created when the brine inclusions expand. Due to the

gravity force, some of the brine will flow through the channels towards the ocean

leaving air inclusions where the brine inclusions were. In fact, brine drainage starts

immediately after ice formation, but at a very slow rate during the growth season.

As a result, multiyear sea ice layer normally contains a combination of brine and

air inclusions.

22



1.3. MODELING OF SEA ICE

1.3 Modeling of Sea Ice

Generally, the size of sea ice extent varies strongly with the season. Reports on

the sea ice coverage over the past 18 years [68] show that in the spring of each

polar region, sea ice extends to the mid-latitudes, and in late summer and early

fall, the size decreases to the region of the Artic Basin and the Antartic margins.

Even within a short period of time, the change in thickness of ice layer, its physical

temperature, and its brine distribution vary. This makes the work of getting a

correct model of sea ice pretty complicated. However, with a better understanding

of the real sea ice physical structure and the freezing process involved, a feasible

model can be obtained. For both first year (FY) and multiyear (MY) sea ice, a

multilayer structure is constructed. Each layer consists of a pure ice background

with a certain fractional volume of brine inclusions. The shape, size and distribution

of the brine inclusions can be chosen to fit in the real physical dimensions. The

difference between the two types of ice is that for multiyear ice, there are two kinds

of scatterers, brine and air ellipsoids, whereas first year ice contains only brine

ellipsoids. The configurations for both the first year and multiyear sea ice model

are shown in Figures 1.1 and 1.2.

1.4 Description of the Thesis

This thesis consists of six chapters. The first chapter gives an introduction to

microwave remote sensing, a short review of the methods available to predict theo-

retical returns from geophysical terrain and a description of ice formation process.
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1.4. DESCRIPTION OF THE THESIS

Configurations of the sea ice model constructed are also included.

The Stokes vector, bistatic scattering coefficients and other parameters are

defined in Chapter 2. A description of radiative transfer theory is presented. This

is followed by the definition of the extinction and phase matrices. The boundary

conditions for the sea ice model are then discussed. A complete numerical procedure

for solving the radiative transfer equations for a two layer medium with planar

interfaces is also included. Theoretical results are plotted and the effects of various

physical parameters on the calculated bistatic scattering coefficients are illustrated.

The approach is extended to a two layer medium with rough interfaces in

Chapter 3. New boundary conditions have to be derived to incorporate the rough

interface effects and these are elaborated.

For a multilayer medium, the fully polarimetric numerical calculations become

more complicated. Thus, the layer by layer approach, which uses the concept of an

effective reflection matrix, is presented in Chapter 4.

Chapter 5 starts with a brief introduction to passive remote sensing. The

numerical method involved is elaborated. Theoretical results are obtained for all

the configurations of sea ice mentioned above. The trends are studied and compared

with the available measurement data.

Finally, summary and suggestions for future work are presented in Chapter 6.
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Chapter 2

Theoretical Model for a Two
Layer Random Medium with
Planar Interfaces

2.1 Configuration and Definition

Let us first define (Ei) as the incident field, and we are interested in the scattered

field (E,) when the electromagnetic wave enters a layered medium. This scattered

field can be related to the incident field by a scattering matrix (F) as in the following

expression:

ES 1_ eik f.-v fvh Evi
Eh - r fhv fhh Ehi 

where the incident field (Ei) is decomposed into two polarizations, the vertically

and horizontally polarized electric fields (Ei, Ehi). The scattered field is also de-

composed into the same two polarizations. In the above equation, k = WV/'T is the

wave number, r is the distance between the layered medium and the receiver, and

f,p is an element of the scattering matrix.

27



28 CHAPTER 2. THEORETICAL MODEL ... WITH PLANAR INTERFACES

The Stokes vector can also be used to represent the incident and scattered

specific intensities. It has four parameters, I,, Ih, U and V, where Iv is the vertically

polarized specific intensity, Ih is the horizontally polarized specific intensity, and

U and V represent the correlation between two polarizations. The incident and

scattered specific intensities are defined as [57]

Ihi EiEi
hi = Iei - EhiE)i (2.2)

Vi 2 Im (E,i Ehi )

and

Ih, r2 (Eh E. 3 )~ 1 2Re, (2.3)
Us r/ ;7 A cos 0 2 Re E,,sEhs )

VU 2 Im (E,,sEh,)

where rl is the characteristic impedance, A is the illuminated area, 0, is the scattered

angle and () denotes ensemble average.

The unit of specific intensity is watts m-2Sr-1Hz-'. The radiation field is

homogeneous if the intensity is the same at all points and is considered isotropic if

the intensity in all directions is the same. It is also invariant along the ray path in

free space [57].

The scattering effects of geophysical terrain can be studied through the Mueller

matrix (M), which relates the incident and scattered Stokes vectors. The relation-

ship is shown below:



2.1. CONFIGURATION AND DEFINITION

I,(, + r) = M Ii(r - 0, ) 

Mll M12 M13 M14
M 2 1 M22 M 23 M 2 4

M 3 1 M 3 2 M 3 3 M 3 4

M4 1 M 4 2 M4 3 M 44

Ii(w--, 0)

where

lim 1 (If 12)
A-+oo A cos 0

1
- lim (Ifvhl)

A--oo A cos 0

1
- lim A Re (fvf,*h)

A--oo A cos 0

1
- lim A Im (f ,,f*h)

lim 1 (Ifh. 2)
A--oo A cos 0

m 1 (Ifhh 2)

A--oo A cos 

1
= lim 

A-too A cos 0
Re (fhv fh)

1
- lim Im(fh fh)

A-.oo A cos 0

1
- lim A 2 Re (fvvf,,)

A--oo A cos 0

1
- lim 2 Re ( fvhfhh)

A-.oo A cos 0

- lim Re (f.vfh + fvhfh,)A-oo A cos 

1
= - lim A lm (Jvvfh ,(h - h.v)

A-too A cos 

(2.4)

M12

M 13

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

M31

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

29

I 
(2.16)M34



30 CHAPTER 2. THEORETICAL MODEL ... WITH PLANAR INTERFACES

1-- lim 2 Im (fvvfh,)
A-+oo A cos 0

1
: lim A 9

2 Im(fvhf h)x--,oo A cos 

1
-lim A c m(fvvfh+fvh
A-- A cos n

= lim I v1
A--oo A cos 0 Re (ffh - fhfh)

where A is the illuminated area, r is the observation distance

the scattered and incident angles and fan are the elements of

It can also be seen that the elements of Mueller matrix are

elements of scattering matrix.

from the receiver, is

the scattering matrix.

closely related to the

The bistatic scattering coefficients ya(0os,, o; 0oi, oi) are defined as

,6 (00, 40o; oi , qoi ) = 47r
cos Oo, IopL (O , os)

Cos 0i Io i
(2.21)

where a,,3 = v (vertical polarization) or h (horizontal polarization), Ion, is the

scattered power of polarization /3, and Io,,i is the incident power of polarization

a. In the backscattering direction, 0o, = oi and bo, = r- o, and thus the

backscattering cross sections per unit area are defined to be

(2.22)o3a(0oi) = cos 0oi Y3a(0oi, ir + Oi; o9i, i)

For passive remote sensing, the emissivity is given by [57]

e,(0oi) = 1 - Ep J doS sin 0S, f d 0os o3a(0os, 05o;,

M4 1

M 43

(2.17)

(2.18)

(2.19)

(2.20)

O8i, 0. (2.23)



2.1. CONFIGURATION AND DEFINITION

where 70(Oo,,q0o,;8o,qio0i) is the bistatic scattering coefficient. By finding the

bistatic scattering coefficients for different scattered angles and polarizations and

then summing them up for a particular incident polarized wave (a) at an incident

angle (oi), the emissivity of the medium can be calculated.

The definition of the absorptivity of a body is the ratio of the total thermal

energy absorbed to the total incident thermal energy [57]. For a black body, the

absorptivity a is equal to 1, which means the emissivity is also equal to 1. For

most of the real materials, the emissivity is less than unity and depends on the

angle of observation and the polarization. Let I(0,~ ) be the specific intensity

received by a radiometer from the observed object where a is the polarization and

(0,~ ) denotes the angular dependence. A new parameter called the brightness

temperature TOB(G, ) can be defined as follows:

TaB(, q) = (0, b) K (2.24)

where A is the wavelength and K is Boltzmann's constant. The brightness temper-

ature can be further related to the real physical temperature T by the following

expression:

TB(G, q) = ea(#m)T (2.25)

where again e(8GO) is the emissivity.

The physical configuration of the problem is shown in Figure 2.1. This two-

layer structure with flat interfaces is the basic structure of the problem. Later,

31
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ZT -t- k\

IEb, o10

Region 0
=O

() 0 69 Region 1

El F 2,0 0 0
1 .sN, 0 . ..

,,,,Regio 2:

Figure 2.1: Configuration for two layer medium with planar interfaces

types of scatterers.

with different

rough surfaces can be added in and multilayer structures can be constructed based

on this simple configuration. Region 0 is the free space halfspace with e0o and /o0.

Region 1 is a dielectric slab (Elb, Og) with N types of discrete scatterers embedded

in it. These scatterers can be either vertically distributed or randomly distributed.

The shape, size and permittivities (,1,e,2, ..., E,N) of the scatterers can be chosen

to fit the realistic sea ice configurations. The thickness of the slab is d. Region

2 is a homogeneous dielectric halfspace characterized by E2 and /t0. Theinterfaces

between regions (z = 0, z = -d) are flat. The incident specific intensity Io(ir - 8, $)

is also shown.

In Figure 2.2, the polarization vectors for upward () and downward (82)

propagation are shown. The angle (8) is measured from the axis and the angle
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z

k(01, )

y

k(02,0 2)

X

v(01,0 I) ^ ;(02, 2)

Figure 2.2: The polarization vectors for upward (01) and downward

tion.
(02) propaga-

(q) extends from the i axis. The i, h and k vectors are orthogonal to each other

and can be expressed in the cartesian coordinates as follows:

k = sin0cos 2 + sin0sin by + cos (2.26)

V = cos0cos 2 + cos0sin4 - sin 0 (2.27)

h = -sin +cos COS 

33

z

0.

h(02,0 2)

y
I

V

(2.28)
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2.2 Radiative Transfer Theory

The radiative transfer equation is based on the energy transport equation, which

deals with the propagation of intensities in the medium. It has been widely used

in the microwave remote sensing community to model the returns from geophysical

media [43-55]. In general, there are two scattering effects which affect the measured

brightness temperature and radar scattering coefficients: volume scattering and

rough surface scattering. Volume scattering is due to the inhomogeneities in the

medium. There are two theoretical models which deal with volume scattering: (1) In

discrete scatterer model, the medium is treated as a homogeneous dielectric medium

embedded with scatterers of different sizes, shapes, orientations and permittivities.

Among the different shapes of the scatterers, spheres, spheroids, ellipsoids, discs and

cylinders are widely used. (2) In random medium model, the permittivity of the

medium consists of two parts, a mean part and a fluctuating part. The fluctuating

part is characterized by its variance and spatial correlation. In this thesis, the

first model is chosen because the physical geometry of the scatterers can be better

related to the numerical solutions in this model.

The Stokes vector mentioned in Section 2.1 is used in the radiative transfer

equation. The Mueller matrix can be obtained from the solution of the radiative

transfer equation. The radiative transfer equation in region 1 is shown below:

c(,,)=d/ P(O,,)(,,) (2.29)
Cos adz 7(0, , Z) = -e(O, 4) .7(0, ', Z) +]| dO' P(8, 4; 6', 4") * I(6', 4', z) (2.29)

where P(O, 4'; ', ') is a 4 x 4 phase matrix, which relates scattered intensities (, )
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to the incident intensities (8', 0') and Je is the extinction matrix which includes the

absorption loss in the background medium and scatterers as well as scattering loss

due to the scatterers.

2.3 Phase and Extinction Matrix

2.3.1 Single Species of Scatterer

As defined in Section 2.1, the scattered field (E,) is related to the incident field (Ei)

by the scattering function matrix F(O,, O.; 0i, Xi). The relation is shown below:

eikr
E, =--F(O., .; Oi, hi) . 6iEor (2.30)

Both E, and Ei can be decomposed into vertically and horizontally polarized com-

ponents; the relation is:

Es eikr [ fv(O., s.; i,q i) fhh(O., .; Oi, Xi) j [ Evi 1
EhJ L fhv(s, ; 8iX p) fhh(, ; iL Ehi

(2.31)

with

fab(O., .; O, Oi) = la. F(O., .; i, i) ig (2.32)

and a, b = v, h.

The incident Stokes vector and the scattered Stokes vector can be related by
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the following expression:

1=
I. = - L(O., O.; 82, qS) * I

r2

where L is the Stokes matrix.

By using

IE,12

/Ih =
77

2
U = -Re(E,E*)

2
V = -Im(EE)

r7

and the scattering function matrix F(O., O.; 0i, 0,), the Stokes matrix L(O., 0q; 6i, j)

can be derived and has the final form of:

(., O.; 0i, I) =

Ifv 12

I fhv 12

2 Re (ffh,,)
2 Im (fvvfR)

Re (f,, fh)
Re ( fhfh )

Re (fv fhh + fhf/hi)
Im (fvv fh + f hfh )

Ifh 12

Ifhh 12

2 Re(fvhfhh)

2 Im(fhfhh)

- Im(fvvf*h)
- Im (fhv. f)

- Im(fvv fhh - fhf )
Re (f.,, fh - fvhf )

The phase matrix P(9O, ~; Oji, i) is obtained by incoherent averaging of the

Stokes matrix over the type, size, shape and spatial orientation of the scatterers.

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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Zb

C

b
Yb

a

Xb

Figure 2.3: Ellipsoidal scatterer in its primary coordinate system b, yb and b-

The phase matrix for a mixture of one species of ellipsoids (Figure 2.3) is given by:

f daf dbdcfda dIf dy

*p(a, b, c,x a, f3, A) L(O., ,; i, hi) (2.39)

37

where no is the number of scatterers per unit volume; a, b, c are the length of the

ellipsoid semi-major axis; a, , y are the Eulerian angles which describe the orien-

tation of the ellipsoid and p(a, b, c, a, /, 7) is the joint probability density function

for the quantities a, b, c, a, , 7.

Phase matrices for single species of ellipsoidal scatterers with vertical and

random orientation distributions are given in the Appendix B.2.
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The extinction matrix in the radiative transfer equation actually represents

the attenuation rate in the coherent wave propagation [46,57]. It is given by:

-2 Re (M,)
0

et(e, ¢) = -2 Re (Mh.)

2Im(Mh,,)

-Re (Mvh)
-Re (Mhv)

-Re(M,, + M
-Im (M,, - M

Mpq = i2;rn oMPQ = (f(e, ; e, ke

where

0

-2 Re (Mhh)
-2 Re (Mvh)
-2Im(Mh)

- Im(Mvh)
Im(Mh)

hh) Im(M,, - Mhh)
hh) -Re(M, + Mhh)

)>) p, q = v, h

and () is the ensemble average over the size and orientation distribution of the scat-

terers. In order to use this definition, the real and imaginary part of the scattering

functions must be calculated to a sufficient accuracy [45].

The total extinction matrix is actually a summation of the scattering loss

due to the scatterers and also the absorption losses due to the scatterers and the

background medium [46].

ae(0, >) = Kab + as (O, 4) + s..(s, a) (2.42)

C~ab is given by:

Scb = 2Im (kb)(1 - f) I

(2.40)

(2.41)

(2.43)
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where I is the identity matrix, kb is the complex wave number in the background

medium and f is the fractional volume occupied by the scatterers.

The approach to obtain the scattering loss matrix is straightforward. By sum-

ming up all the components scattered from direction (i, qi) into other directions,

the scattering loss matrix can be readily calculated from the phase matrix as follows:

IC..(Oi , i ) 0 0 .(Oi Xi= r-sh(o P o (2.44)
K. 0 O O() 0 0 0ii)

where:

u,(@ Xi) = j2w dQS j sin 0.d9[pi (O., q; Oi, qi) + P21(0,, 0,; Oi, qi)] (2.45)

r,h(Oi,Xi) 0 = j dqO j sin 6,dO.[p12 (O.,k A;Oi, i) + P22 (O,, .;O i,q i)] (2.46)

A more detailed description of the extinction matrix for vertically and randomly

distributed ellipsoidal scatterers can be found in the Appendix B.3.

2.3.2 Multiple Species of Scatterer

The calculation of extinction matrix can be easily extended to a layer containing

N different types of scatterers. Each type of scatterer will have its own size, shape

and orientation. This combination is very useful in the modelling of realistic sea ice

structures, especially for multilayer sea ice. The phase matrix for multiple species

of scatterers can be computed by averaging the phase matrix for a single species of
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the scatterers incoherently. The expression is shown below:

N _
Ptotail(9, ; 0', qS) = E Pi( S ; ', S)

where Pi is the phase matrix for scatterers of type i.

The same practice can be applied to the calculation of the extinction matrix,

which gives

N
= E Ka ,(, )

i=1

N

: E ..i (, )
i=l

N _

= 2Im(kb)(1-E f- ). I
i=1

(2.48)

(2.49)

(2.50)

2.4 Boundary Conditions

Boundary conditions at interfaces z = 0 and z = -d are needed to completely solve

the radiative transfer equation. Based on the principle of conservation of energy,

the boundary conditions for planar surfaces are shown below [46]:

Let the incident source in region 0 be

Ioi,(e, 0o) = IoiS(cos 0 - cos oOi)(oo - obi) (2.51)

then the boundary conditions are:

(2.47)

rt".tot., (01 0)

rsastot.1 (0 0
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Interface 1 (z = 0):

I(7r - 9, , z = 0) = Tol(9o) .oi(7 - Oo, ko) + Ro(0) . (9, 4, z = 0) (2.52)

Interface 2 (z =-d):

[(0, q¶, z = -d) = R12() -I(7r - 9, q, z = -d) (2.53)

where R1o(0) is the reflection matrix which relates the upward going intensities in

region 1 to the reflected downward going intensities in the same region at interface 1

(z = 0), R12(8) is the reflection matrix which relates the downward going intensities

in region 1 to the reflected upward going intensities in the same region at interface 2

(z = -d). Similarly, Tol(9) is the transmission matrix which relates the downward

going intensities in region 0 to the transmitted downward going intensities in region

1 at interface 1 (z = 0).

The solution of radiative transfer equation inside region 1 is then matched

with the following boundary condition to obtain the scattered Stokes vector:

7O8.(o,Qo, z = 0) = Ro1(80) · Ii(7r - 80,0) + T1o() I(8 , ,z = 0) (2.54)

where b and 0o are the same, and Snell's law can be used to find the relation

between and o.
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2.5 Numerical Solution

The radiative transfer equation is again shown below:

cos 0d I(0, , ) =-e(0, ) - ( 0, , ) +4 d P(0, ; 0', ')I(0', ', z) (2.55)

There are two ways of solving this equation, the iterative and numerical methods.

Generally, if the scattering is small compared to the absorption (small albedo), a

closed form solution can be obtained through an iterative approach. This is carried

out by transforming the radiative transfer equation and the boundary conditions

into an integral equation form and then solving for the first and second order so-

lutions. However, when the albedo is not small, a numerical method is preferred

[45]. The illustration of this method will be presented in the following parts of this

section.

2.5.1 Fouries Series Expansion

First of all, the radiative transfer equation can be expanded into Fourier series in

the azimuthal direction (). Let

m=o (1 + So)7r

[ mc(, 0') cos m(q - ') + (ms( 0') sin m(- ')] (2.56)

1(0, +, z) = E [Im(9, z) cos m(4 - ') + Ims(0, z) sin m(b - 4/)] (2.57)
m=O
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and for the incident Stokes vector:

Ioi(7r - 0o, o) = oi (coso -os oS ) 6S(o - os)

00 1
= Io 6(cos o - cos0oi) (1 + )1 cosm(0 - )(2.58)

r~-=o (1 +&0 7r

where P and P are respectively m-th cosine and sine term of Fourier expansion

of the phase matrix in the azimuthal direction, and Sij,the Kronecker delta function,

is defined as:

1 if i=j
ij 0 if izj (2.59)

Substituting (2.56) and (2.57) into (2.55), then carrying out the integration

with respect to qb, and finally collecting terms with the same sine or cosine depen-

dence, we obtain the following set of equations:

cos 0 d-I mc(, ) = -(8) Ic(8 z) + 0 dO' sin 8'

[m(, 8') .7Ic(O z) - Pm ( ,'). im(O , ',)] (2.60)

o+ d m"(, ) = - ,e(8) * 7m(, Z) + do' sino'

P[I (, 8') Imc(1', z) +PmC(, 8') .-m"(',z )] (2.61)

These equations do not have a S dependence, which will save a large amount of

computation time.

For azimuthally isotropic media, it is shown that the phase matrices P (0, 0')
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be written as [46]:

Pmc(, 0')

P (, 0')

mc

p c

0

0

0

0
ms

ps

1341

P12 0

P P33
0 pmc

o p23

O "So p2%., 0
ms

P42 0

0

0
mc

p34
p4Mc

p44~ I

(2.62)

m1
P24

0
0]

(2.63)

By taking advantage of the symmetry of (2.62,2.63), we can decouple equations

(2.60,2.61) by first defining

Ime(0 Z)

I (, Z)

[

1r'C(9, z) 
Ih.c(o, Z)
Umj(0, Z)
VMS (0 z) Ivm(,)J

(2.64)

(2.65)

I rS(0, Z)

Urm (0, z)
vmc(, Z)

(2.66)

where superscripts e and o represent the even and odd modes of the Stokes vector.

Then, the decoupled equations can be written as

d-m
cos0 d ,a( Z)

dz

o' dO' sin 0'P-m (0, 0') 7"ma(0 , z)

T;

- -K,(0) - (0, Z

(2.67)
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where a = e or o (even and odd modes) and

pll
P21pms

mp21C

pms

P41

mcP12
pmC

pm

P2 ,

P4
-PI'

pms
mc

rm$c

P33
ns mc
2 P43

P14msP34
pmcmeP4 C 

(2.68)

(2.69)

Following the same procedure, we can arrive at the new

conditions as shown below (0 < < 7r/2):

form of the boundary

?m(7 - ,z = 0) = Tol(Oo)- Ioi(r - Oo) + Rio(6) . I"(0, z = 0) (2.70)

I (0, z = -d) = R12(8) . (r-O, z =- d) (2.71)

where Rpy and Tp, are the coherent reflection and transmission matrices for planar

surface. A more detailed description of Rop and Tp, is given in the Appendix A.1.

The incident Stokes vectors for the even and odd modes are, respectively,

Ivoi

0 o

7moi (tr - 0) = 

Voi

(2.72)

(2.73)

Pre( 6')

P (8, ')

45
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Thus, the scattered Stokes vector in region 0 can be calculated using

Ios,(o) T 1o(0) Im(0, z - 0) + Rol(So) . Ioi ( - ao)

where 0o(incident angle in region 0) is related to by Snell's law.

For both the even and odd modes in (2.67), we can further divide the Stokes

vector into 1(0, z) and I 2(9, z) as follows:

r1(9, z)

72(0, Z)

=[

=[

Iv(, z)
Ih(0, z)

u(9, Z)
V(O, Z)

I

]

(2.75)

(2.76)

Then, (2.67) can be rearranged to take the form shown below:

cos 0dI1(0, z)
dz -- -Kel (0) I (0, z) + dO' sin 0'

[ 1(0, ') . I1(0', z) + P12(9, 8') I2(0', z)]

cos 8,I2(, z)dz = - e2(0) I2(9, z) + dO' sin O'

ri21(0, '). I71(0', Z) + P22(8, 9') 2( t', Z)]

(el ()

Ie2(0)

0

Ke22(8)

0ell(o)

]

Ke,344() ]
K~e44 (08) 

(2.74)

(2.77)

where

(2.78)

(2.79)

(2.80)

46 CHAPTER 2.
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p[ P1(, e0')

_ P13(8, 01)
p23(0, 0')

P12(O, e') 1
p22(o, ') j

P14(O, 9')

p24(0, 0')

(2.81)

(2.82)
]

P2 1( , ')

P2 2(0, 0')

p3 1 (0, O)I p41(0,8 )

[P33(0,')
- LP43(0, 0')

P32(0, 0' ) 
p42(O, ') 

P34(0, 8')

p44(0, 0')

(2.83)

(2.84)
]

Breaking up I, (y = 1,2) into upward (I,(O, z)) and downward (,(r - , z))

propagating intensities, we can rewrite (2.77 and 2.78) as:

cos 8 - 11(, Z)
dz

= -Ke() -71(9, Z) + o7r/2
-~,,,(e)~.,_(e,~

[Pii(o, 9') . I1(0', z) + Pll(, r - '). L(7 -o', )

+ P1 2,(, 8') 72,(', z) + P12 (9, r - 9') . 2( - 9', z)]

(2.85)

- cos 0 -I 1(r - 9, z)dz -el( 0 ) 1(r - 0, z) + dO' sin 9'
JO

11,(, - ') . 7
1 (o', ) + Pll(o, 9') * I(7 -o', )

- P 2,(, Ir - '). 72(', z) - P 2,(o, 9'). 72 ,( - 9', Z)]

(2.86)

dcos 
dz = -,e2(0) I2(0, ) + ad' sin 0'

,O

P1 I(9, 0')

P1 2(9, 9')

dO' sin O'

," .-I..-'-
i' ''~ AA'o 1

.~5--(1) ~ /S j .IIX ,--/
I .. - 1

Y.,

47

A.

r_ _ =
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L21(0, 0') I1(9', z) + P 21 (0, 71 - 01) I1(71r - ', z)

+ P2 2(0, 0') 2(9, z) + P 22 (, 7r - 0') 2((7 - ', z)]

(2.87)

-cos 0 -1 2 ( - 0, z) 
dz

2(9) 12(w - r/z) 2d' sin
dO

[-P21(0, - ') I(', z) - P21(9, ') i(7r - O', z)

+ P2 2(0, - 0') 72(o', z) + P2 2 (0, 0') 2 (7 - 9', Z)]

(2.88)

2.5.2 Gaussian Quadrature Method

The integrals in the radiative transfer theory can be replaced with a weighted sum

over n intervals between n zeroes of the even-order Legendre polynomial. Thus, the

discretized elevation angles are chosen so that the cosine of the angles correspond to

the zeroes () of the Legendre polynomial. Letting f(cos 0) be a function of cos 0,

the Gaussian quadrature integration method is given by [46]:

or
/2 n

dO sin f(cos ) - E aif(pui)
i=1

(2.89)

where ai are known as the associated Christoffel weighting functions. The Gaussian

quadrature method is used to discretize equations (2.85)-(2.88) into 4n first order

ordinary differential equations where n is the number of discretized elevation angles.
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The equations are shown below:

=, d -+
z .dI

49

= 7-+ =l -+ =' I +F12 ' -I2 +--~j +Fl ' a i B11 ·a $- 11+ ia , + B12 '1a ·

(2.90)

=, d__
-p .- I1 =dz 

-= -- -a + =I -+- =' _1 2 -a' - -t 2--n1· 'I +Bll' a .1 1 + F11 a · I- 1- R12 I2 -F12 -1 

(2.91)

I=, a a + = + 12 =, r=d I = -ke2-'2 +F21-a *1'1 + B21 .I7 +F 22-a I 2 +B2 2.a 12

(2.92)

=, d --
dzI 2 = -Ke2 I2 -B 21 a I' -+ - F2 = + B22 a I2 + F22 a -I 2

(2.93)

where I and I2 are 2n x 1 vectors

Id(±tlt, z)

Iv(±At,n Z)

lh(±ClL, Z)

U(±I, Z)
V(± 1i, z)

V(±,n) z)

-
1 - -12 -- (2.94)
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and Fp and B,a are 2n x 2n matrices

Pa 31i (1, 1)

Pap 11

Pa1 32 1

Pao32 (un, /1)

· P. (m1, un)

Pa.p. (n, -Ln)
- P 2 1 (P, (n )

Pa12 1 (/-n , un)

PaoP2 (G1, 1i)

Pai 2(Gln, g1i)
PaP22 (G1, g1i)

Pap22( Ln ui)

.. Pa,3 12 (n, n)

Pa.. P 2( , ( ) n)

Pa2 2 ((n., n)
P.z(~, .L

Pa1 . (g1,-ui)

PaP21 I,-u1)

Pa132 (, -1i)

P.. ?f 1 (un ,-g n)
P.. Pa. 2 (g1, -n)

Pa1 3 12

PaP3 22

(/un, -/gl)

(gi, ,-g )

Pa 3P12 (1i, -jUn)
. o

PaP1 2 ( n, - un)

PaP22 (g1, unn)

PaP32 (n, -g1) Pa1 21 ( n,,, - un) PaP22 (gun, u1) ·.. Pa,32 (n, -n) 

(2.96)

and i' and a' are 2n x 2n diagonal matrices

T = diag[,--,* n/l,,L ***,l] (2.97)

a = diag[a,- *.,an,a,-* ,an] (2.98)

where ±ti are the zeroes of the Legendre polynomial P2n(ut) and ai are the corre-

sponding Christoffel weighting functions. Note that ai = ai and gui = -- i.

The system of 8n first-order differential equations, (2.90)-(2.93), can be further

simplified by defining

]
-= - I ]

__+ 1 
(2.99)

a,3

(2.95)
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and rearranging the equations. The simplified equations are shown below:

= d

dz

_ d
dz

= WIs,

= A- Ia

where W and A are the 4n x 4n matrices

- 0

=_ _[O0

- B11)
- B21)

+ B 21)

+ B21)

(F12

(F22

+ B12 )

+ B22 )

(F12

(F22

and and =a are 4n x 4n diagonal matrices

IL-= diag [l, ,. * *n,/ l *,* i nl, , / *n, l .. , *n]
a = diag[a,.,an,a,...,a ,al, ,a,,al,...,a] (

2.5.3 Eigenanalysis Solution

The homogeneous solution for equations (2.100) and (2.101) are of the form

Ia = Iaoez (

IS = Ioez (

(2.102)

(2.103)

2.104)

2.105)

2.106)

2.107)
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Substituting these two equations into (2.100) and (2.101), we have

al ,,aoez

P .aIoe"

- W Isoe,'z

= A Iaoeaz

The 4n eigenvalue equations can be obtained by rearranging the above two equa-

tions:

(-1 =w- --1 .-A- 27) ao = 0(iu--· W ·, ] A (2.110)

(2.111)

where I is an identity matrix. This is an eigenvalue problem with eigenvalues

i±a. The corresponding eigenvectors Ii can be obtained to form the eigenmatrix

E (4n x 4n matrix). The solutions will be

+ E U(z + d) -

, = QD(z)- -Q. U(z +d).

= diag [ealz,- .- e"4Z]

- diag [e- ,- ,e-Ct4z]

(2.108)

(2.109)

Ia = E D(z) 
2

where

(2.112)

(2.113)

D(z)

U(z)

(2.114)

(2.115)
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-Q= pI- A E -a- (2.116)

c = diag [l, , 4 n] (2.117)

and x and y are 4n x 1 unknown vectors which can be solved by matching the

boundary conditions.

We can write these equations in term of Stokes vector by using equation (2.99),

and the final form of the solutions will be:

7+(Z)

717z)

= (E+Q) D(z) .+(E-Q)-U(z+d) y

= ( + ') () + ( - Q)-. U (z +d)- 

where

=---1 --E = .W .Q-a (2.120)

=I -1 ' - -- 1
Q = /~ .A.E.-a (2.121)

and

(2.118)

(2.119)

-_ [ Kel
- 0

- [ -K0e

O

0

-- e2
+ (F - B11)

-(=F21 -=B21)

Ke2 [ L(F2 1 + B21 )

(F2 + B1 2 )
-(F22 + B22)

-(F12 -B12)
(22 - B22 )

W
I

I

(2.122)

(2.123)
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The unknowns x and y of the upward and downward propagating intensities

can be obtained by matching the solutions with the boundary conditions shown

below:

I+(z =-d) = ,R1 .-(z =-d)

- (z = ) := Rlo +( = ) + Tol *Ioi

(2.124)

(2.125)

where R12 and R10o are the 4n x 4n reflection matrices and To1 is the 4n x 4n

transmission matrix at n discrete quadrature angles.

Since Ii is a delta function, the discretization of it will be in the form of [55]

rIor. j [ L °i] i ajeo cos 0k
= 3 cos~~

Substituting equations (2.118),(2.119),(2.126) into the boundary conditions

(2.124),(2.125), we obtain the following system of 8n x 8n equations

(E-Q)- 12 (E- ]1

(2.127)

(2.126)

(E + Q~i) - i ( + )

(E + 1) - 12 · (E =') D(-d
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x and y can be calculated by solving the linear algebra equation above and

then substituted into (2.118) to obtain 7+(z = 0). The scattered Stokes vector in

region 0 is given by the equation below (from (2.74)):

70o = Tio +(z = 0) + Rol.I i (2.128)

The above calculation process is repeated for each harmonic, and the total

scattered intensities in region 0 can be obtained by reconstructing the Fourier series

for the even and odd modes as follows:

1 5(qS) = {Rol + T1lo F I Rio R12 exp[-= ' Ked]] Tol}

7~iE(0 - q0j) + E To. L +(z = 0)

-F .R , -' exp - 1 .- Ked]] ' Tol. Ii]

cosm(o - qi) + Xo i' (z = O) sinm(Bo, - 0bo)} (2.129)
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2.6 Theoretical Results and Discussion

THe sensitivity of the theoretical results to the change in the model parameters

is examined in this section. Figure 2.4 shows the numerical solution for a two

layer medium with embedded spherical scatterers. The fractional volume of the

randomly orientated scatterers is 5 % and the dimension is 0.05 cm for the a, b and

c axes. The permittivity of the scatterers is (40+i10.0)eo and the permittivity of the

background medium is (3.15+i0.0017)eo. The frequency is 5 GHz and the thickness

of region 1 is assumed to be infinite. For parts (a) and (b) of Figure 2.4, the bistatic

coefficients for VV, HV, VH and HH are plotted against the incident angle (j). The

scattered angle (.) is the same as the incident angle (i) and the scattered direction

is the same as the incident direction. For this case, the co-polarized scattering

coefficients (VV and HH) are the same and the difference between the co-polarized

returns (VV and HH) and cross-polarized returns (VH and HV) is about 20 dB.

For comparison, the plots for scattered direction where = 180° are also included

in parts (c) and (d) of Figure 2.4. Generally, they show the same trend.

Parts (e) and (f) of Figure 2.4 are for ( = 900). The interesting part is that

the co-polarized scattering coefficients (HH and VV) now behave differently. In

order to better understand the theoretical results, we consider the scattering pattern

from a single spherical scatterer. When the size of the scatterer (0.05 cm) is small

compared to the wavelength (6 cm), the Rayleigh scattering can be used to describe

the scattering mechanism involved. When an electromagnetic wave is incident upon

a single spherical scatterer, it will induce surface current on the scatterer, and then

the sphere will act as a dipole and re-radiate the scattered field. The pattern of the
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radiated power is of a donut shape. For the HH case, the scattered electric field is

always perpendicular to the dipole of a HH receiver at = 90° for all . Thus, for

a two layer medium with randomly distributed spherical scatterers, the scattered

HH should be almost the same level for different . This can be shown in part (e)

of Figure 2.4. On the other hand, for the VV case, the scattered electric field is

perpendicular to the dipole of the VV receiver at = 0 and gradually aligns to

it as the looking angle (0,) increases. This explains why the bistatic coefficient for

VV in the direction of -= 90 ° increases with the observing angle (0,). For a more

complete derivation and explanation of the scattering from a single dipole, please

refer to Appendix C.

Next, the calculated bistatic scattering coefficients for both co-polarized and

cross-polarized returns (VV, HV, VH and HH) are plotted against the azimuthal

angle () for different scattered angles (). The incident angle (i) is the same

as the scattered angle (0,). When the observing angle (,) is close to the surface

normal, we expect the co-polarized returns (VV and HH) to be higher than the

cross-polarized returns (VH and HV) at b = 0°. This is because the scattered field

for VV and HH will be parallel to the axis of the dipole of the respective receiving

antenna. As we move the direction of observation from = 0° to qb = 900, the co-

polarized receiver (VV and HH) will gradually lose its alignment with the scattered

field of the induced dipole (See Appendix C). This will decrease the received level of

co-polarized returns and increase the cross-polarized returns. The trend is clearly

shown in parts (a) and (b) of Figure 2.5.

As we increase the observing angle (0,), we notice that the symmetry of the
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VV curve no longer exists but the HH curve continues to show symmetry about the

center of the plot. Parts (c), (d), (e) and (f) of Figure 2.5 clearly demonstrate this

trend. The minimum of VV apparently shifts to the left hand side of the graph (to

smaller angle). Referring to Appendix C, it can be shown that because of the

geometrical shape of the dipole radiation pattern, the scattered electric field pattern

from a spherical scatterer will be perpendicular to the dipole axis of the VV receiver

at different azimuthal angles (o,) for different incident angles (0). However, this

does not happen in the HH scattered returns as the axis of the induced dipole on the

scatterer is always perpendicular to the plane of the incidence for different incident

angles () and the dipole axis of the HH receiver will always be perpendicular to

the scattered E field at q = 900. Thus, moving the HH receiver in the azimuthal

direction to observe the horizontally polarized scattered field will give us the same

curve form for different elevation angles.

The numerical calculations are repeated for different values of imaginary part

of the permittivity of the scatterers (Case 1 to Case 4, c",=[0.0] o, [10.0]Eo, [20.0]Eo

and [30.0] Eo) as shown in Figures 2.6 and 2.7. This corresponds to the albedo (K,/'¢e)

of 0.09021, 0.00758, 0.00474 and 0.00409. Generally, the bistatic coefficients for all

angles (,) increase as we decrease el,. From the definition of albedo, we know that

high albedo means that the ratio of scattering extinction over the overall extinction

is high and thus the higher scattered returns. Therefore, as we add an imaginary

part (c'o) to the permittivity of the scatters in region 1, they become lossy which

decreases the bistatic coefficients as well as the albedo. However, as we increase e1,

further, the returns decrease only by a small amount. This is due to the fact that
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the scattering loss of the scatterers is also dependent on the difference between the

background permittivity (b) and the permittivity of the scatterers. The higher the

difference is, the stronger the scattered field is. This effect can be shown in the

local Fresnel reflection coefficient. As we increases Elb further, the attenuation due

to the absorption loss will be compensated by the increase of the scattering loss.

This effect can be shown clearly by the leveling off of the albedo. Parts (a), (b) and

(c) of Figure 2.6 show this trend for the VV case, whereas similar plots are drawn

for the HH case in parts (d), (e) and (f) of Figure 2.6. The HV case is demonstrated

in parts (a), (b) and (c) of Figure 2.7. For each case, the graphs for k = 00, k = 900

and X = 1800 are plotted.

Next we investigate the effect of different scatterer shapes on the calculated

bistatic coefficients. A halfspace medium is again considered. The frequency used

is 5 GHz and the background medium has a permittivity of [3.15 + iO.002]Eo and 5%

fractional volume of vertically orientated scatterers. The various scatterer shapes

selected are spheres (a = 0.02 cm, b = 0.02 cm, c= 0.02 cm), prolate spheroids (a =

0.01 cm, b = 0.01 cm, c = 0.08 cm), prolate ellipsoids (a = 0.02 cm, b = 0.005 cm, c

= 0.08 cm), oblate spheroids (a = 0.04 cm , b = 0.04 cm, c = 0.005 cm) and oblate

ellipsoids (a = 0.08cm, b = 0.02 cm, c = 0.005 cm). Figure 2.8 shows the different

shapes of the scatterers chosen. The permittivity of the scatterers is [40.0 + i30.0]eo.

The dimensions of the scatterers are chosen so that the volume occupied by them

is the same regardless of their different shapes. In each case, the numerical solution

is calculated for each of the shape of the scatterers mentioned above.

A first glance at parts (a) and (b) of Figure 2.9 and parts (a) and (b) of
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Figure 2.10 shows that the VV and HH returns at = 0° (forward direction)

and = 1800 (backscattering direction) do not depend greatly on the shape of

the scatterers. For the HV case, because the returns for spheres and spheroidal

scatterers only come from the multiple scattering effects, their returns are lower

than those of ellipsoidal scatterers. Now, if we look at the plots (Figure 2.11) for

the case when the incident wave comes in at 0 = 0 and the receiver is looking at

= 900, the VV and HH returns for ellipsoidal scatterers are higher than those of

the spherical and spheroidal scatterers at low angle 0. For the VV case, because

of the geometrical effect described in Figure 2.4, the bistatic coefficients for the

spherical and spheroidal scatterers will gradually rise as shown in part (a) of Figure

2.11. Note that the effect is larger for prolate spheroids than for oblate spheroids

due to their shapes. Also, as expected, at q = 900, the HV returns for all shapes of

the scatterers are almost the same.

2.7 Summary

In this chapter, the configuration of the two layer medium with ellipsoid inclusions

was presented. The formulation of the numerical method involved was explained

in detail. laid out step by step. Definitions of the parameters used were properly

inserted where they are necessary. The brief introduction to the radiative transfer

theory, the extinction matrix and the phase matrix, was followed by the elaboration

of the numerical techniques based on ice. Finally, the theoretical calculations were

carried out for different sets of input parameters and the trends for each case were

studied. It was found that generally the co-polarized bistatic scattering coefficients
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are higher than the cross-polarized bistatic scattering coefficients when the observ-

ing angle is close to either ' = 0° or = 1800°, whereas the opposite is true when

the receiver is looking at = 90°. It is shown that HH returns will always start

high at = 0° and reach a minimum point at = 90° and then rise again to a

maximum at = 180° for different elevation angles. On the other hand, though the

VV returns show a rather similar trend, the curve will reach its minimum sooner

(smaller ) as we increase the elevation angle 0,. This can be easily explained by

considering the scattering from a single scatterer. The multiple scattering effects

are also important and account for the cross-polarized returns observed. Numeri-

cal solutions were then calculated for different values of the imaginary part of the

permittivity of the scatterers. The results show that the actual scattering and ab-

sorption phenomena are more complicated. Increasing the imaginary part of the

permittivity of the scatterers on one hand make the scatterers more lossy and on

the other hand increase the scattering loss. Finally, a study of the effects of different

shapes of the scatterers on the bistatic scattering coefficients was carried out. From

the various plots presented, it is clear that the bistatic returns for different shapes

of scatterers show a slightly different curve form from the spherical scatterers.
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Chapter 3

Theoretical Model for a Two
Layer Random Medium with
Rough Interfaces

3.1 Configuration and Definition

The theoretical model for a two layer random medium discussed in Chapter 2 is

modified to incorporate rough interfaces. In this case, two scattering mechanisms

are involved: volume scattering and rough surface scattering. The effects of rough

surface scattering is investigated in this chapter.

Rough surfaces can generally be classified by two surface parameters, the root

mean square (RMS) height of the surface and the correlation length. Let h(-f) be

the height of a point on the rough surface relative to a planar reference surface and

T is the position vector for points on the reference surface. Then, the root mean

square (RMS) height of the surface is given by

rms = (h())2) (3.1)
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where (... ) means spatial average. The other important parameter is correlation

length, which indicates the rate of change of surface height with distance along the

surface. A surface correlation function can be defined by

C(R) = (h(2)h(z + ))J (3.2)

and the correlation length is the distance over which the correlation function falls

by 1/e.

Over the years, several methods have been developed to calculate scattering

from rough surfaces. Depending on the surface parameters (roughness, correlation

length), different methods are used, though so far no exact solution for a general

case is available. When the radius of curvature of the surface is large, the Kirchhoff's

approximation can be used [57]. In the case where the wavelength is small compared

to the scale of roughness, the Geometrical Optics approximation (GO) is used. If the

surface RMS height is much smaller than the wavelength, the Small Perturbation

Method (SPM) is applied [57,58]. Scattering from randomly perturbed periodic and

quasiperiodic surfaces has also been studied [59].

In this thesis, the small perturbation method (SPM) is used. The Extended

Boundary Condition (EBC) formulation is applied to obtain the SPM solutions [57].

First, the scattered and transmitted fields are expressed as a function of the surface

tangential fields using the extinction theorem and Huygens' principle. Since the

surface height and derivatives are small, the tangential fields can then be expanded

in a perturbation series and solved for each order, using the previous order solutions.
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zT _ /,Z Xr . r AN

z=O

ClM s O0 O 0 0 Region 1l

1 S2.s2,0 0 0 2, )

SIN, P O (a, 12--R--i z=-d
Figure 3.1: Configuration for two layer medium with rough interfaces with different

types of scatterers.

The configuration for the two-layer random medium with rough interfaces

is shown in Figure 3.1. The planar interfaces in two-layer model in Chapter 2

are replaced with rough interfaces. The surface profile function and the spatial

correlation of this function are assumed to be Gaussian. As shown in the same figure,

the top and bottom interfaces may have different roughness parameters. Scatterers

with different sizes, shapes, orientations and dielectric constants are embedded in

region 1 (thickness = d). The dielectric constant of the background medium in

region 1 is denoted as elb and those of region 0 and region 2 are respectively e0 and

2 -

I
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3.2 Boundary Condition

The reflection and transmission matrices for a rough surface consist of two parts:

coherent and incoherent. The coherent part, which accounts for the specular term,

obeys Snell's law of reflection and transmission, whereas the incoherent part includes

the diffuse reflection and transmission due to rough surface scattering. Therefore,

the boundary conditions in Chapter 2 must be modified to take care of this extra

term. The boundary conditions at the top and bottom rough interfaces are shown

below:

Interface 0:

7(7r-0, ,= ) = ) Rlo(, ) (0, , z = )

+ j d' | dO' sin ' Rlo(,4 ;O ',') .7I ( O', ',z = O)

+ To (eo, 0 ) i o(7r - 0o, 0o)

+ To1(O, ; 0oi, oi) - oi (3.3)

Interface 1:

7(0,q ,z=-d) = R1j(O,) .( r-O,,z =-d)

+ |' d dO' sin ' R1i2(, 4; 0', 41).(-7r - ', ', = -d)(3.4)
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where

= Rp(0, ) 6(4 - b') (cos 0 - cos9')

-R
+ R,(0, 4; 0', 4')

- T,(0, q) (q - :') 6(cos 0 - cosO')

+ T 6(s, ; 0o',' )

Thus, the scattered intensities in region 0 will be

Ios(8o, o, Z = 0)
= -

= Rol(0o, o) Io(7r - 90, 0o)

+ Rol(8o, o; oi, io0) II

+ Tlo(,+) .I(, ,z = 0)

+ X d+' | dO' sin ' To(0o, Bo; 9', ') I(0'', z =' 0)(3.7)

where the coherent components (R , T ) couple the incident intensity into the

specular reflection and transmission directions while the incoherent components

(R, T ) couple to all reflection and transmission directions.

The elements of the bistatic scattering matrix y can then be calculated by

cos sIos(s, 4qs)
,ap (Os, O; Oi, bi) = 4rCos0os IOs)

cos 8i 1poi
a, -= 1,2,3,4 (3.8)

where 11, I2, I3 and 14 are respectively I,, Ih, U and V of the Stokes vector.
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3.3 Numerical Solution

3.3.1 Fourier Series Expansion and Even and Odd Modes

Following the same approach presented in Chapter 2, we apply the Fourier series

expansion to the radiative transfer equation to eliminate the +-dependence of the

equation. We let

00 1

Ii(1r - ; °) = IoiS(cos 0 - COS 0i) (1 + m)r cos m(, - (.)
rr=. 01+6~ 

and, for a, 3=0,1,2,

R,,a(, q; 0', b ') = R,,()(cos e - cos 0')
oo 1

m= ( + m)(

°° 1

m-o (1 + 6mO)r

[R(, ') cosm( - k') + R~((O,O ')sinm(q - k')] (3.11)

00 1
= T(O)6(c°sO - cos0) E (1 + Em)ir cosm(b -k') (3.12)

1

m E (1 + 6mO)7r

[Tomc(0, 0,') cos m(o - 0) + T"(0, 0') sin m(e - O/)]

(3.13)

where 08 and 0 are related by the Snell's law.

Equations (3.9)-(3.13) can then be substituted into equations (3.3),(3.4) and

(3.10)
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(3.7). The d' and db' integrations are carried out. After that, the boundary

conditions are restructured into the even and odd modes following the definitions

in Chapter 2. The decoupled boundary conditions can be expressed as

I mX( - , z = 0) R= ,() .7-(, z = 0)

+ dO'sin' RlOc (,').7-I m (',z = O)

+ Tol (o) *7omi" - 00 )

+ T 1o (0, oi) Ioi

71(, z = -d) = R12() .7( -, z = -d)

+ dO' sin R ( ,').7(r - O',z = d)

and the scattered field in region 0 is expressed as

7(Oo, o ) = = R(eo) C 7(i - Oo)

+ R0 (oo, o,).0a

+ T(O) .ma(O, z = 0)

+ | dO' sin ' Tlo (0o, ') (0', z = 0)
o~~

(3.14)

(3.15)

(3.16)
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where for A = R or T, and a,f3 = 0,1,2,

= me

= mo
Aaf (, t')

Amc, (0,0 ')
A 2 (0, 0')

A. 3 (9, e')[ A," (, 0')

a2, (0, 0')
-A (,')
-A,~"~,(OO')

A, 2(9, 9')Am (At
A 2(, e')
A 2 (' O
A22 (O O'

-Am"-A 32 (9, t
-Ams t--ca,042\ ,0 t

-Ams
-Am,a23 (, ')

A033 (t, ')

A,"43 (0, ')

) AMa2 (8, ')
') AMC (, ')

-Am(
-A 24(0, 0')
a (, 0')
at,044 (, ')
A," 1 4(0, 0')
A 24(9, 9')

A. 34(0, 0')
Af$44(0, 0')

The expression for the coherent and incoherent matrices for both reflection and

transmission matrices can be found in Appendix A.2. The incident intensity in

region 0 is then

I ( - 0o) = m"* S(cos 0 - cos 9o) (3.19)

3.3.2 Discretization and Eigenanalysis Solution

Breaking up the intensities into upward (+) and downward (-) propagating intensi-

ties, and applying the Gaussian quadrature method, the boundary conditions can

now be expressed as

7+(z = -d)

I-(z = 0)

(3.20)

- =.a)I+(z= + +T3.21(= 00 ' a = o o\~·r10 +R,, \-. i +~ -I~ (3.21)

}3.17)

I3.18)
I

= (R 12 R12 a .- (z =-d)
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where a is 4n x 4n a diagonal matrix containing the Christoffel weighting functions

a= diag [a1,...,a,, a,. .. , a,,... a, aa, .. ., a,n] (3.22)

[4 cos 01 

60 COS 001

61 cos 81 

Eo COS 00. e o os 0o

'' c'1 COS 0, 'E Cos O1 '

E0 COS 00,1

.'' I COS nE1 co

60 COS COt

6E cos 01 'co

0O COS 00,

'1 CO s n

O cos O_ 1
""'61 cos n

which are the constants from the discretization of the delta function.

Following the same procedure in the previous chapter, we come to a system

of 8n x 8n equations:

{((E +Q)-

1 =_ = ma

((E ) -Q)(R,+ o a
(E- Q)- (Ri~ + R12

) (E -Q) }D(-d)
·a) (E -Q )

Once these equations are solved, we can insert the obtained and y into

and

(3.23)

]
r;1

(To,- 6 + To )-I0
0 ]

(3.24)
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Figure 3.2: Bistatic scattering coefficients are plotted against scattered angle , for
different elevation angles ().

angle 0,.

The incident angle 0i is the same as the scattered

(2.118). The scattered Stokes vector in region 0 is then

=C -_ - --T =C = ma -

I 0 (Tl0 + T10 ' a) (z +(z- 0)+(Ro. ' - Ro ) loi (3.25)

The final solution can be obtained by reconstructing the Fourier series for the

odd and even modes.

I
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3.4 Theoretical Results and Discussion

The contribution of rough surface scattering effects to the total bistatic scatter-

ing returns is examined in this section. Numerical calculations are carried out for

a two layer medium with varying scales of roughness. The background permit-

tivity is again chosen to be (3.15 + i0.0017)Eo and the permittivity in region 2 is

(63.4 + i39.1)Eo. Randomly orientated ellipsoid scatterers with dimensions a=0.1

cm, b=0.015 cm, c=0.05 cm are embedded in region 1. The permittivity of the

scatterers is (46.4 + i45.5)Eo and their fractional volume is 4.5%. The thickness of

region 1 is 7.5 cm and the frequency is 5.0 GHz. Interfaces with different scales

of roughness (or= 0.01 cm, 0.03 cm, 0.05 cm and 0.07 cm, 1=0.8 cm) are chosen

and the numerical results of these cases are then compared with that of the planar

interface.

The co-polarized (VV and HH) and cross-polarized (HV) returns are plotted as

a function of the elevation angle () in Figures 3.2, 3.3 and 3.4 for b = 0°, 90° , 180°.

The incident elevation angle () is kept the same as the scattered elevation angle

(9.). Generally, as we can see from parts (a) and (d) of Figures 3.2 and 3.4, the

co-polarized returns (VV and HH) are higher for the rough surface case due to the

rough surface scattering. On the other hand, the cross-polarized returns are not

affected by the change in the roughness of the surface. This is partly due to the fact

that only the first-order SPM solution is implemented and the second-order SPM

solution which gives cross-polarized returns in the backscattering direction is not

implemented. This is clearly shown in parts (c) of Figures 3.2 and 3.4.
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If the observing angle is changed to = 90°, the curve forms for co-polarized

and cross-polarized returns are interchanged (Figure 3.3). For the VV and HH case,

when is large, the effective propagation path for returns in region 1 is longer.

Therefore, the attenuation is higher for large , which means that the scattered

return is lower for large . The curves for HH with different roughness are almost

the same because the rough surface effects are not seen when the dipole axis of the

receiver is perpendicular to the scattered field at all 0. However, for the VV case, as

we increase the angle , the dipole axis of the receiver becomes more aligned with

the scattered E field, and brings the returns up. For the flat surface case, this effect

will bring up the curve at large 0 and thus show a rather flat line. At the same time,

we see the effect of rough surface scattering because the increase in the roughness of

the interfaces will make the transmitted incoherent part of the intensity dominant

and thus enhance the multiple scattering effects. This will increase the scattered

returns proportional to the scale of the roughness.

The effects of rough surface scattering are also demonstrated in Figure 3.5

where the bistatic coefficient is plotted against the azimuthal angle qb for 0 = 7.5° .

It is clear that when the receiver dipole is perpendicular to the scattered field (for

VV, HH, = 90°; for HV, VH, = 0°,180°), the returns are not affected by

the scale of the roughness of the interfaces. However, when there is an alignment

between the receiver dipole and the scattered field (for VV, HH, = 0, 180°; for

HV, VH, 4 = 90"), the rough surface scattering effects are not to be neglected.
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3.5 Summary

In this chapter, rough interfaces were incorporated into the two layer random

medium model. The rough surface scattering effects were taken into account by

modifying the boundary conditions. The small perturbation method (SPM) was

used to calculate the rough surface reflection and transmission matrices. The same

numerical procedures presented in Chapter 2 were applied with slight differences as

elaborated in the formulation section of this chapter. Basically, adding the rough

interfaces into the model will makes it more similar to the actual physical sea ice

layer. The study of this new configuration of the model enables us to examine the

scattering effects that the rough surfaces add to the bistatic scattered returns. The

numerical results presented showed that the additional scattered returns due to the

rough surface scattering are generally proportional to the scale of roughness of the

interfaces. This demonstrates the fact that for a real physical sea ice layer, the

actual scattered polarimetric returns are dependent on a large number of factors.



Chapter 4

Theoretical Model for a
Multilayer Random Medium

4.1 Configuration

In this chapter, the theoretical model in Chapter 3 is extended to a multilayer

structure with rough interfaces. The background permittivity for each region is

assumed to be the same and each region contains ellipsoidal scatterers with different

sizes, shapes, orientations, permittivities and fractional volume. This configuration

can be used to model sea ice more accurately since real sea ice has a layered structure

and the fractional volume and orientation of the brine inclusions and air bubbles

depends greatly on the type of ice and their distance from the air-ice interface.

Figure 4.1 shows the configuration for the multilayer random medium.
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Figure 4.1: Configuration for the multilayer random medium with random rough
interfaces and discrete ellipsoidal scatterers.
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4.2 Radiative Transfer Equations and Boundary
Conditions

Radiative transfer equations are again used and the generalized form for multilayer

model (region 1 to M-1) is:

cos d (6, 1 z)
dz = - Ken(, k) n1(8o, , z)

+ dQ'P 1n(o,q ; o', ') (o', ', ) (4.1)

where I, P and =ten are the Stokes vector, phase matrix and extinction matrix

inside layer n, respectively.

The boundary conditions are also generalized and have the following form

Interface n:

- R=_ 49,) * n(8 , z =-dn- )

+ j do' | dO sin ' Rnn=,--d' sin )

+ Tn-l,n(n-1 , n-1) I7n-1 ( r - on-, n-1, Z = -dn-1)

+ rJ '_2 l J dOn 1 sin On Tn-1,n(61, O; n-1 in-1)
I = I

L,,v_1, z = - d7 -) (4.2)

n(7r - , q, z = -dn_ )

'7n-1(7 - On-:
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Interface n+1 :

In (9, , z =- dn) = Rnn+l(8, ) In(7r - , , = -dn)

+ | do' | dO' sin ' R,n+l (8, k; , 0')

-I,(7 - ',) ', z = -dn)

= c -

+ Tn+ln(On+l,¢n+l) In+l(On+ l, tn+ 1Z - -dn)

+dql |+ d 2O' +sin On+1 Tn+ln(0 qb; of+1 7 55n+1 )

n' nn+1 ,dc+)

(4.3)

where n = 2,3,..., M-2 and n-,_ and n+1 are the elevation angles in the local

coordinate system of layers n-1 and n+l, respectively, and are related to 0 by

Snell's law.

If the background permittivities of regions 1 to M - 1 are the same, then we

can simplify the above boundary conditions to

Interface n:

In(7I' - ,0, z - -dn-l) - In-l(7r - On-1 n-1 z = -dn-l) (4.4)

Interface n+1 :

(4.5)
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For interface 1, we have to take into account the incident wave Ioi. Thus, the

boundary condition has the form:

Il(r - 9, , z = 0) = R 1o(,q ) 1 (, X, z = 0)

+ j d' d' sin 9' RL0(, ; 0', b')

-*1(9', ', z = 0)

+ To,(Io, qo) oi(r - oo, 0o)

+ To(9, ; i, Xoi) Ioi

and for interface M, the boundary condition is:

= C
= RM-1,M(, ) IM-1(7r -, , z = -dM-l)

+ |Jd 'do ' f dO' sin 8' RM-1,M(O, 0; 9', 0)

'iM-1(T - ', ', Z = -dM-)

where again 80 is related to 8 by Snell's law.

The incident wave in region 0 is

Io(7r - 0, o) = Ioi --(cos 0o - cos 0oi) 6(4o - Qoi)

Finally, the following boundary condition can be applied to solve for the scat-

(4.6)

IM-1(O,,, = -dM-l)

(4.7)

(4.8)
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tered waves in region 0:

Ios(0o, o) = Rol(0o, o) IOi(7r - Oo, o)

+ Rol(0o, o; 0oi, o)-) oi

=c

+ T,(0, ) 1(0, ,= 0)

+ | d+jd' dO' sin 0' T10o(o,q oq; ') i I(0,lz = 0) (4.9)

4.3 Numerical Solution

Using the same numerical method described in Chapters 2 and 3, we can solve

for the upgoing and downgoing intensities for each bounded layer by matching the

boundary conditions at M interfaces simultaneously. However, this involves too

many unknowns, and a large memory size is required for numerical calculations.

However, the concept of effective boundary conditions can be used to simplify the

whole computation process. Consider only regions M, M - 1 and M - 2, we

can apply the numerical techniques for two-layer medium case to calculate for the

upgoing intensities in region M - 2. Then the effective boundary condition at

interface M - 1 can be expressed as

-+ =eff (4.10)
IM-2 = RM-2(M-1) ' IM-2 (4.10)

--eff
where the effective reflection matrix RM-2(M-1) contains all the information for

regions M - 1 and M. Next, we will consider regions M - 1, M - 2 and M - 3 as
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the new two layer medium problem and RM-2(M-1) will be the reflection matrix at

interface M - 1. A new effective reflection matrix can then be computed, and the

whole process can be repeated until we reach the top two layers. This procedure

is carried out for each harmonic (m=0,1,2,...) and each mode (even e and odd o).

The final scattered Stokes vector can be found from equation (4.9). This approach

simplifies the computation process by enabling us to deal with two layer problem

=eff
at a time. Note that, at interface M, ,RM-1(M) = RM-1(M)

4.4 Theoretical Results and Discussion

Numerical calculations are carried out for a multilayer structure in this section. The

parameters were chosen to represent a real physical ice layer. The temperature pro-

file of a grown ice sheet was from the measurement data taken during CRRELEX93

[72]. Since the permittivity of brine inclusions is temperature dependent, we can

obtain the corresponding permittivity of brine inclusions for each layer using the

Debye type relaxation equation [27],[28]:

Cbrine = Eo + + i-2f 2of (4.11)
1 - i27rfr 27eof

where e and Eo are the limiting static and high frequency values of the real part

of ebrine, f is the frequency, r the relaxation time, a the ionic conductivity of

the dissolved salts and eO the permittivity of free space. e,, c,o, r and a are all

related to the temperature [27]. A five layer medium is constructed with different

thickness and permittivity of brine inclusions. From top to bottom, the parameters
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Figure 4.2: Bistatic scattering coefficients are plotted against different angle 0

(Oi = 0) for = 0° .

are (thickness = 1 cm, Ebrine = 50.28 + i44.80), (2 cm, 52.52 + i44.04), (2 cm,

54.98 + i42.98), (3 cm, 57.70 + i41.57), (7 cm, 60.76 + i39.79). The background

permittivity for each layer is kept the same (b = 3.15+i0.0017) and the permittivity

of sea water is (63.4 + i39.1). The dimensions of the ellipsoids embedded in the

background medium are a=0.1 cm, b=0.015 cm and c=0.050 cm. Fractional volume

of scatterers for each layer is 4.5%. For the top layer, the ellipsoidal scatterers are

chosen to be randomly oriented, whereas for all the other layers, the-scatterers

are vertically oriented. This is to model the orientation of the scatterers correctly

as described in Chapter 2. A slightly rough air-ice interface (=0.048 cm, 1=0.669

cm) and ice-seawater interface (r=0.048 cm, 1=1.600 cm) are chosen. The frequency

used is 5 GHz. This case will be referred as Case 1.
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Figure 4.3: Bistatic scattering coefficients are plotted against different angle 

(0i = ,0) for 0= 90.

As mentioned in Chapter 1, brine drainage occurs in multiyear sea ice, which

leaves air bubbles where the brine inclusions were. Normally, close to the ice-

seawater interface, there are still brine inclusions left. Therefore, for Case 2, instead

of having brine inclusions for the top three layers, we substitute them with air

bubbles of the same size, dimension, orientation and fractional volume. The purpose

is to investigate the difference in the bistatic scattering coefficients for Case 1 and

Case 2.

Figures 4.2, 4.3 and 4.4 show the comparison of the numerical results for both

cases. Generally, for all (, scattering returns for Case 2 (air bubbles) are higher

than those of Case 1 (brine inclusions). This is because brine inclusions are very

lossy due to their large imaginary part of permittivity, whereas the air bubbles
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merely act as scatterers without any energy absorption. As a result, waves scatter

more in Case 2 than Case 1.

4.5 Summary

In this chapter, the theoretical model for a two layer medium with rough interfaces

in Chapter 3 has been extended to a multilayer structure. The discrete eigenanal-

ysis method was again used to perform the computation. The effective boundary

condition concept was introduced and implemented, thus enabling us to solve the

linear algebra equations one layer at a time. Two cases of multilayer structure have

been constructed. The comparison of the numerical results reveals that the model

which has mostly air bubbles embedded within the layers generally shows higher
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bistatic scattering coefficients than the one which has brine inclusions instead.
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Chapter 5

Passive Microwave Remote
Sensing of Sea Ice

5.1 Introduction

Passive remote sensing of sea ice has been investigated for more than two decades

and a great amount of measurement data has been collected. By carefully studying

the radiometric signatures, researchers have been able to identify the three dominant

surfaces in the Arctic, which are open water, first-year ice and multiyear ice [68].

Although the collection of measured scattering data from sea ice provides great

information about the scattering mechanisms and physical properties of sea ice, this

knowledge can be further enhanced by studying the passive radiometric signatures

of sea ice.

In general, the sensors can be characterized into three classes. For small spatial

scales, surface-based sensors are used. This enables the study of local variability

of electromagnetic returns. The advantages of this method are that ground truth

can be easily collected on the spot and measurements can be repeated for different
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looking angles and different weather conditions. Measuring on a small spatial scale

will also reduce the heterogeneity of the electromagnetic returns. As a result, correct

interpretation of the measured data is much easier.

Features such as ridges, hummocks, melt ponds and floes can be captured

by using the aircraft-based sensors which provides images with resolution of 10 to

100 m. Regional variability in the electromagnetic returns can be applied to the

classification of wide areas of sea ice. Different frequencies are also used to reveal

more of the texture of various surfaces.

The capability to monitor the entire polar ice region on a daily basis makes

the satellite-based sensors popular. Measurements can be carried out regardless of

the time or the cloudiness. A spatial resolution of 15 to 30 km gives a good estimate

of the change and total size of ice extent. The measured data can also be fed into

global climate prediction models.

5.2 Configuration and Formulation

The theoretical model shown in Figure 2.1 is used to calculate the emissivity. Sub-

sequently, rough interfaces is added and followed by extension of this model to a

multilayer sea ice model. There are generally two approaches to solve the passive

problem. The first one is by directly solving the radiative transfer equation shown

below:

C dos d I(O , z) - ( ) *(, , z) + C, GT + j dQfl P(6' , -(; '') (', (, Z)
(5.1)
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where Kc0 denotes the emission coefficient, C1 = Kete/A2, K is the Boltzmann's

constant and T is the physical temperature in Region 1. The second term on the

right hand side of equation (5.1) is not omitted as in the case for active calculations

because the contribution of this term in the absence of incident waves is no longer

negligible.

On the other hand, a second approach is to make use of the solution to the

active calculations done in the previous chapters. The bistatic scattering coeffi-

cients ,(8O,,¢; 0oi;, ,oi) for different scattered angles and polarizations are first

calculated and then added up for a particular incident polarized wave () at an

incident angle (o), and the emissivity is given by [57]

e,(GO) = 1- r,1 ( 0o) )-# j 2 dO, sino. o dos, (s0oos; 0, ,j) (5.2)

where r 1(O0O) is the coherent reflected term in the specular direction. The computed

emissivity is further related to the brightness temperature T,B(O, ) by:

TaB(O, ) = e,(0oG)T (5.3)

where T is the physical temperature of the medium, and it is assumed that there is

no radiation from the sky.

5.3 Theoretical Results and Discussion

Figure 5.1 (a) shows the numerical results for two layer medium with flat inter-

faces. The brightness temperature is plotted as a function of looking angle .
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The background permittivity of the bounded region is (1.5 + iO.0015)Eo and the

bottom half space has a permittivity of (6.0)co. The dimensions of the vertically

distributed spherical scatterers are a = b = c = 0.05 cm and their permittivity is

(3.2 + i0.0005)eo. A fractional volume of 5% is chosen for the scatterers. The thick-

ness of the bounded layer is 20.0 cm and frequency used is 5 GHz. The medium

has a uniform physical temperature of 265.0 K. At normal incidence, the brightness

temperatures for both V and H polarized waves are the same. As we increase the

angle, brightness temperature for H will fall whereas that of V will first increase

before falling at angle 81. In fact, the pattern of these two curves are very similar to

a up side down of the plot for reflectivity for TE and TM waves, with the Brewster

angle effect for the TM case. The contribution of volume scattering by the scat-

terers to the brightness temperature can be demonstrated by comparing Figure 5.1

(a) and Figure 5.1 (b) where Figure 5.1 (b) is the same plot for two layer medium

without the volume scattering effect (no scatterers).

The following section investigates the effect of the change in the permittivity

of the scatterers on the brightness temperature. The background permittivity is

(3.15 + iO.0030)Eo and the permittivity of the bottom halfspace is (40.0 + i30.0)Eo.

The vertically aligned scatterers have dimensions of a = b = c = 0.05 cm and

occupy 5% of unit volume.The imaginary part of the scatterers (") is kept constant

at 20.0eo for all the six cases and the real part () is varied from 5.0Eo to 50.0c0.

The thickness of the bounded layer is 5 cm. The frequency is chosen as 5 GHz

and the uniform physical temperature is 265.0 K. Figure 5.2 shows the numerical

results. This figure shows that increasing the real part of the permittivity of the
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Figure 5.1: Brightness temperatures are plotted as a function of looking angle 0.

(a) is with scatterers. (b) is without scatterers.
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scatterers lowers the brightness temperature. Higher real part of permittivity of the

scatterers results in more scattering and less penetration of waves into the medium.

This means less power will be absorbed. As a result, we have a higher albedo and

thus a lower brightness temperature. This is true for both the V and H polarization

cases.

The above calculations are repeated with the same set of parameters except

for the permittivity of the scatterers. This time, the real part of en is kept constant

at 10.0Eo and E" is varied from 5.OEo to 50.0E0. The numerical results are shown in

Figure 5.3. As we increase the imaginary part of the permittivity of the scatterers,

more power will be absorbed and thus the ratio of the scattering loss to the total

extinction loss (low albedo) decreases. This results in the increase of brightness

temperature. However, as we increase further, the brightness temperature starts

to drop. This is due to the fact that scattering coefficients of Rayleigh scattering

for small particles (compared to the wavelength) are proportional to the dielectric

constant of the scatterers, both the real and imaginary part. Therefore, as we

increase e" to a value comparable to e', the scattering effect contributed by E"

dominates over its absorption effect and the albedo increases. This then lowers the

brightness temperature. Again, this is true for both the V and H polarization cases.

The effects of rough interfaces on the brightness temperature are examined by

calculating the following cases for a two layer medium sea ice structure. A 4.5%

fractional volume of vertically aligned ellipsoidal scatterers with dimension a=0.1

cm, b=0.015 cm and c=0.050 cm are embedded within the pure ice background

(Eb = [3.15 + iO.0017]eo) with the thickness of 5.0 cm. The scatterers are brine
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Figure 5.3: Brightness temperatures are plotted against the imaginary part of dielec-
tric constant of the scatterers for different looking angles. (a) is for V polarization
and (b) is for H polarization.
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Figure 5.4: Brightness temperature as a function of looking angle for rough surface

at top boundary.

inclusions with permittivity e, = [46.4 + i45.51]o. The frequency is 5 GHz and the

physical temperature is assumed to be uniform (265 K). The permittivity of the sea

water in the bottom half space is [63.4 + i39.1]eo at this frequency. The three cases

run are (1) only the top boundary is rough, (2) only the bottom boundary is rough

and (3) both the top and bottom boundaries are rough. The roughness parameters

chosen are ur = 0.120 cm and correlation length = 0.800 cm.

Figures 5.4, 5.5 and 5.6 present the numerical results computed for the three

cases compared with those of the flat boundary case. The effect of the rough bound-
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temperature as a function of looking angle for rough surface

aries is shown by plotting the brightness temperature as a function of observation

angle for the vertical and horizontal polarizations. Figures 5.4 (a), (b) and (c) cor-

responds to Cases 1, 2 and 3 mentioned above where (v,V) representing the vertical

polarization and (h,H) representing the horizontal polarization. Generally, there is

an increase of brightness temperature due to the rough surface effects. Comparison

of results show that the increase in the brightness temperature (T,,,Th) is mostly

due to the reflection of the bottom rough boundary which enhances the absorption

effects of the scatterers and background medium.
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Passive RT (Rough Top and Bottom Boundaries)
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Three Layer Configuration
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Figure 5.7: A Three Layer Configuration.
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A three layer configuration is shown in Figure 5.7. The orientation, shape,

dimension and fractional volume of the scatterers for regions 1 and 2 are the same

as those in the previous case. The rough surface parameters are rl=0.048 cm,

11=0.669 cm, c3=0.048 cm, 13=1.600 cm. Since the background media in regions 1

and 2 are the same, 0Y2 and 12 can be left out as there will be total transmission and

no reflection across the region 1 - region 2 interface. For Case 1, brine inclusions

are assumed to be embedded in regions 1 and 2, whereas for Case 2, air bubbles

will replace brine inclusions in region 1. Case 1 is modelled to represent the first

year sea ice, and Case 2 represents multiyear ice. The dielectric constant of the air

bubbles is the same as that of the free space and , = [46.4 + i45.5]co is assumed for

the brine inclusions at 5 GHz. The thickness of regions 1 and 2 is chosen as 10 cm.

The results are illustrated in Figures 5.8 and 5.9. Since the air bubbles in Case 2

are not lossy and contribute only to the volume scattering effect, albedo for Case 2

should be higher than that of Case 1. Thus, brightness temperatures calculated for

Case 2 should be lower than those of Case 1. This trend is clearly shown in Figures

5.8 and 5.9.

Numerical calculations for a multilayer sea ice structure were carried out to

simulate the change in the brightness temperature as a function of the sea ice

thickness for the frequency of 1 GHz. The fractional volume of the vertically aligned

brine inclusions for each layer is obtained by assuming a parabolic salinity profile

and a linear temperature profile [71]. The size of the ellipsoidal brine inclusions was

kept the same for each layer. The permittivity of the brine inclusions for each layer

was calculated from Debye equations [27]. The number of the layers was chosen
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Figure 5.8: Brightness temperature as a function of looking angle for vertical po-

larization. Case 1: regions 1 and 2 contain brine inclusions, Case 2: region 1: air

bubbles; region 2: brine inclusions
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Figure 5.9: Brightness temperature as a function of looking angle for horizontal

polarization. Case 1: regions 1 and 2 contain brine inclusions, Case 2: region 1: air

bubbles; region 2: brine inclusions

I I I I I I

h h

H H H h
H h

H

h
H

h cose (1)

H case (2) 

. . . . I . I

y

I--
,)

cr
tD

I J II & J · '



114 CHAPTER 5. PASSIVE ... SEA ICE

250

"I
Y

I.0

Ea

.-

r
.21

200

150

0 20 40

Thickness (cm)

60

Figure 5.10: Brightness temperature as a function of sea ice thickness.

to be 20. The brightness temperatures for the vertical and horizontal polarizations

are plotted in Figure 5.10 for 0 = 52°. The results illustrate the increase in the

brightness temperature with the increase in the sea ice thickness. The rate of

increase depends on the thickness of sea ice as well as the absorption and scattering

characteristics of sea ice.

5.4 Summary

This chapter focused on the modeling for passive remote sensing of sea ice. A brief

introduction to different passive sensor systems was followed by a discussion on

the solution methods available to compute numerical results for brightness tem-
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peratures of a sea ice structure. The bistatic scattering coefficients calculated in

previous chapters are related to the emissivity through the principles of conserva-

tion of energy (e = 1 - r, where e is emissivity and r is reflectivity) and reciprocity.

The theoretical results for different configurations were presented and the effects

of different sea ice physical parameters on the brightness temperature were investi-

gated. For a two layer sea ice structure with planar interfaces, the contribution of

volume scattering for lossy scatterers to the brightness temperature was illustrated.

The effects of different permittivity of scatterers on brightness temperature were

also presented. The increase of the real part of the permittivity of the scatterers

led to the decrease in the brightness temperature, whereas the trend of brightness

temperature for increasing E, is dependent on the ratio of (e,'/e). The effects of

bottom rough interface on brightness temperature were larger than that of the top

rough interface. The two layer configuration was later extended to a multilayer

structure when the effect of different types of scatterers on the brightness tempera-

ture was examined. Generally, bounded regions with air pockets embedded within

showed lower brightness temperature than the regions which contained brine inclu-

sions. Therefore, multiyear sea ice which has more air pockets than first year sea

ice should give lower brightness temperatures.
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Chapter 6

Summary

In this chapter, material covered in the previous chapters are briefly reviewed, and

the results which are important will be pointed out. This is then followed by some

suggestions for future works.

In Chapter 1, a brief discussion of the background research for this thesis was

presented. A survey of the available theoretical methods to solve the problem was

also included. This was then followed by a study of sea ice physical structure. A

multilayer sea ice configuration was later proposed to imitate real sea ice structure.

A concise description of the thesis was also included.

Chapter 2 started with the definition of Stokes vector, Mueller matrix, bistatic

scattering coefficients and brightness temperatures. The configuration of a two layer

sea ice model with flat interfaces was also included. The chapter then proceeded to

the elaboration of the radiative transfer theory. The phase matrix and extinction

matrix were defined and briefly discussed. The boundary condition issue was then

highlighted before a step by step derivation of the numerical method used was pre-

sented. The calculated bistatic scattering coefficients for different cases were shown.
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It was found that generally, the co-polarized scattering returns are higher than the

cross-polarized ones in the forward and backward direction. However, due to the

orientation of scattering pattern of the scatterers in the medium, cross-polarized

terms become dominant over the co-polarized returns at 4 = 90°. Later in the

chapter, several cases were run for different E" (imaginary part of the permittivity

of the scatterers). It was shown that though there is an inverse relation between the

lossy property of the scatterers and the bistatic returns, a more appropriate indica-

tor is the albedo which is the ratio of scattering loss over the total extinction loss.

A study on the effects of different shape of the scatterer was also performed. In the

forward and backward directions, generally, there is little difference in co-polarized

scattering returns for different shapes. For cross-polarized returns, the returns of

spherical scatterers and spheroids are only due to multiple scattering, and thus are

lower than those of ellipsoids.

The theoretical model in Chapter 2 was then extended to a two layer random

medium with rough interfaces in Chapter 3. The surface profile function and the

spatial correlation of this function were assumed to be Gaussian distributed and

the rough surface could be characterized by the surface rms height and correlation

length. The rough surface effect was incorporated by modifying the boundary con-

ditions which were elaborated in the chapter. For rough interfaces, the reflection

and transmission matrices have both the coherent and incoherent components. The

appropriate modification in the numerical calculation process was also presented.

The theoretical results showed that the rough surface effect will add on to the

co-polarized scattering returns in both forward and backward directions and the
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increase in the returns is proportional to the scale of roughness. Since the SPM

method applied takes into account only the zeroth and first order solution, there

is no change in the cross-polarized returns for different scale of roughness of the

interfaces.

Chapter 4 focused on the further extension of the two layer model to multi-

layer model. A generalized configuration for the multilayer random medium was

illustrated. The effective boundary condition concept was implemented. This ap-

proach not only simplifies the computation process but also reduces the complexity

of the problem by dealing with two layer problem at a time. For theoretical results,

a comparison between two cases which imitate the first year and multilayer sea ice

was carried out. It was found out that the case which has air bubbles embedded

within the background medium (first year sea ice) has higher scattering returns

than the other case which contains only brine inclusions. This was due to the fact

that air bubbles are not lossy and mainly contribute to the scattering effect.

In Chapter 5, a general introduction to passive remote sensing was presented.

This was followed by the description of different passive measurement methods.

Numerical methods available to solve radiative transfer equations for passive case

were examined, and the active approach one was selected because numerical pro-

cedures and data structure implemented in previous chapters can be applied too.

The plots for brightness temperature for the vertical polarization (TM) and the

horizontal polarization (TE) resemble the up side down plots of the reflectivity for

both polarizations. The contribution of volume scattering by the scatterers was

shown to be important. The analysis on the effects of permittivity of the scatterers
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on brightness temperature showed that lossless scatterers which have higher per-

mittivity generally scatter more and thus give lower brightness temperature. On

the other hand, for lossy scatterers, scattering effects will be dominant over the

attenuation effects when the imaginary part of the permittivity is comparable or

larger than the real part. It was also shown that the brightness temperature for a

rough interface will be higher than that of planar interface. Lastly, a three layer

case was run to show that for a layered medium with air pockets, the brightness

temperature will be lower than the one which has brine inclusions embedded within

it. This means that for thermal radiation, multilayer sea ice will be colder than first

year sea ice.

In this thesis, a multilayer theoretical model has been developed to enhance

our understanding of the sea ice scattering problem for both the active and passive

cases. This model can be further improved to represent more accurately the real

sea ice physical structure. One of the modifications which can be implemented is

the combination of the multilayer sea ice structure and a top layer of snow using

the dense medium radiative transfer equations. The addition of the second-order

SPM solution to the rough surface scattering effects is also suggested. This forward

model can also be applied to the sea ice inversion problem to reconstruct sea ice

physical parameters. The bistatic scattering coefficients and brightness tempera-

tures calculated are particularly important in the attempt to solve for the inversion

problem. More detailed ground truth such as the scatterer type, orientation, shape,

permittivity and the distribution as a function of depth and a more accurate surface

profile should be obtained. This will eventually make full use of the multilayer model
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developed and the results from data comparison can further suggest improvements

to the existing model.
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Appendix A

Reflection and Transmission
Matrices

A.1 Planar Surface

For a planar surface, the coherent reflection matrix at the interface a - 3 is given

below [57]:

- Isapll

Raj(8Oa) = O

L 0

0

Rapl2
0

0O
O

0

0

Re (SajaR')
Im (SaR*O)

0

0

- Im (Sa R* )
Re (S.PR*,)

The coherent transmission matrix is

0

0

O cos Re(Y,sX*,s)

0° Im (Y, X;.)

0

0

cos ( Y- ,
o Re (YX;*,)Cos 0 .P
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IY. 12

-T c 0( O

o
0

0

lX. 3 2

]

(A.2)
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where

koezi - kzi
Ra" = kai kzi = Xa-1 (A.3)

k +,, + y z

Sc3 = kkzi + kk = Y -1 (A.4)

Saf3 and Yp are reflection and transmission coefficients for vertically polarized waves

respectively and Ra13 and X,, are reflection and transmission coefficients for hori-

zontally polarized waves respectively. For planar surface, the incoherent reflection

and transmission matrices are zero.

A.2 Slightly Rough Surface

A.2.1 Coherent Reflection and Transmission Matrices

This section is adapted from [45]. The coherent matrix is again given by equation

(A.1) and (A.2) where Ra, Sc,B Xq 35 and Yap are [57]:

Ra = Rh + k 1 k dk exp (k2 + kl2 ]

(kazi + k,6zi) 2 2 o 4 'P in

(k6 - k) kazkz + k + I()
aC2 k3i + Ioai

(k,, z + k,) ka,, zkz + 2 k o2 z 2 k2 k2 + ( )

(kP2 + kk .)2 1tJO 4 Pj

k kpI k2( -k kB kk k+
{It:z Io(x) - 2lca_;:,3 + a 2 , ()

kzkz kz
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k+ - fk f. k f i (Io(x)
kc,,z + koz k k,,zk3z + k2

k2 - k2 k2k 2 1

k+ z + kaz kzkz + k 2k2 Io() }

1 + Rho + kazi (k( + ki)2 2
(kazt- + kozi)2 2 o0

kc,zk + k xP

1- (kzi
2-5

- k,) Io(x)}

1 + Ro + kazi (k2 -k 21) l2
00 k

ok (k kozi + kk zi) 2 Jo

(k 2 kiZ - kk,,zi)lo(x) - (k 2 - 2) K(k2k, + kk ,) o(x)

(k f - kszci'ziI6o(x) +
(kaz -I- k,3.) zjk,~I(x) ±

kc,z + k a
CK 0,fl~l,

(k2 12 P(k2 -azikazi 11(X)
(k - k (~kz ± k 2kIaz) 1IO(X) - x)

- kkazi)I()} (A.8)

where x = k k 12, and 1o and I1 are the zeroth- and first-order modified Bessel

functions, respectively. RMS height of the surface is denoted as er and I is the

correlation length for a Gaussian correlation function

A.2.2 Incoherent Reflection and Transmission Matrices

The incoherent matrices for the first order SPM solution [45,57] are given by:

(Ifvv 2)

(Ifh 12)

2 Re((fr fh *))
2 Im((fr f *

(I frh 12)

(lfhh 2)
2 Re ((fthfhh*))
2 Im((fh fhh *))

125

Izx))

(A.6)

XaP 3

(kaz

kp dkp exp -(k2
P P [ 4 P

1O(X) -

YaC

+ k2)2]

(A.7)

dkp exp - (k2 + k2 )12]2 ]i

= i
Ro,,

- k)
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Re ((f fh *))
Re ((fh, fhh *))

Re ((f fhh* + fhfhv *))
Im((fr,,fhh* + frhfr*))

(I f<l, 12)
(lfhv 12)

2 Re ((f, f,*))
2 Im((f,, fh,*))

Re((f,vfh*))
Re ((f fhh *) )

Re ((fv fh* + fh fL
Im ((f, fh* + fvhfh

(fqfJ,*=) = (g )- (gU,)*

-Im((fv,,fvh*))
- Im ((fh fh *) )

-Im ((frv fhr* - fhfhv.*))
Re ((fr fh* - frhfr,*))

(I fh 12)

(lIfh 12)

2 Re ((fhfhh*))
2 Im ((f.hfhh,*))

- Im ((f, fh *))
- Im ((fhv fhh*))

,*)) -Im((ft fhh* - fhfhv*))
,*)) Re((f t fhh* -fthf ))

7 = rT,t and p,q, u,w = h,v

= m(Ot, oi) {(k2kz + k.)(k2, + kk ) [kak sin .sin Oi
_a .... kH )(k~ + 

-kk 2kpZi cos(o. - 0i)] } (A.12)

(kf - k2 )ck 13z
(k/k 1 3z + kIca)(ckazi + k 3 i)

} sin( - i)

= .mr(6t 0i)
(k,-k)k k13 i } sin(s - b/i)

(kk 13 zi + 1k kazi)(kaz + Iz) Ja '6~ cz)Jul*k
= ma(9i) {(k + k 13 )(ka-i + k }i) 

(A.14)

]

(A.9)

where

I

(A.10)

and

9vv

(A.11)

9vh
{

ghv

(A.13)
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and

t mt~ot Oj) 16 Ci [k k,6 sin t sin Oi
a .Iz a Bi

-k,,,kzi cos(oqt - i)]} (A.16)

t m t(o t,) { (, + kk)kk ± } sin(bt- q0) (A.17)
gvh : m(o kpk, + k kz)(k,, + 3)

9htv =(m(t,) (kk- +k2 )(k +k )}sin(Qt - 0i) (A.18)

(k2-k}) } cos(t- i)(9t~m t (9.ot, 1 ( __ COS(qt - q0(A.19)ghh = "~ 1.(kaz + kpz)(kcezi + kazi)

with

r m(O, ,i) 2 k 1212 COS 0s COS iel/4(sin 2 61+in 2 i)k 12m 1s/4( i+sin Oi)k 
7r

.e1/2(sine.sin.si )k 12 cos(~,-qbi) (A.20)

t(ti1 2 1ak2 k21 2 COS Ot COS2 i _/4(ksin2t+kin2)12

-1/4(k sn2 sin
2 8i)12

.el/2(sinSt sinS)k~,kS 12 Cos(0t-_) (A.21)

where 77 is the medium impedance and ( = 1 when the incident wave propagates

in the downward direction (Rol, To, R12, ... ) and ¢ = -1 when the incident wave

propagates in the upward direction (Ro, Tlo, -).

Finally, the Fourier series for these expressions can easily be obtained by using
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the following relations:

00 1

1 + EO* [Im-.(R) + Im+.(R)] cos(nx)

= E [Imn(R) - Im+n(R)] . sin(nx)
n=O

(A.22)

(A.23)

where Im±n(R) is the (m ± n)-th order modified Bessel function of argument R.
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Appendix B

Phase and Extinction Matrices

B.1 Scattering Matrix for a Single Ellipsoid

Appendix B is adapted from [45]. The scattering matrix for a single ellipsoidal

scatterer with prescribed orientation a, 3, and characterized by a permittivity ,

and semi-major axis lengths a, b and c, is given by [45,57]: The scattering matrix

for a single ellipsoidal scatterer can be described as [45,57]

F= fvv aF =[f fhh (B.1)

where

k2 ~E . 1P, * ib)(. * i) (P. Yb)(.b i)
fPq = 4VO f 1 + dAa 1 + dAb

with p, q = h or v, e is the permittivity of the scatterer,

angles of the scatterer and a, b and c are the semi-major

(B.2)

c,3p and a are the Eulerian

axis lengths of an ellipsoid.

The propagation (k) and polarization (v, h) vectors are shown below:

129

pr1 + dAc



APPENDIX B. PHASE AND EXTINCTION MATRICES

(B.3)k, = sin , cos , + sin 0,sin ,0j + cos 0,i

, = cos 0, cos 0,J + cos 0, sin q,y - sin 8,z

h, = -sin . + cos b

(B.4)

(B.5)

ki = sin Oi cos ii + sin i sin iY + cos Oi

vi = cos 0i cos ix + cos 0i sin i - sin i

hi = -sin Oi: + cos ig

(B.6)

(B.7)

(B.8)

47r
Vo = abc

3

Vd

(B.9)

(B.10)
abc e, -
2 e

At =
-- o°

ds

(s + 2)/(S + a2 )(S + b2 )(S + C2) (B.11)

with t = a, b or c.

The coordinate system of the ellipsoid (ib, Yb, b) can be related to the global

coordinate system (, , ) in the following way [45,57]:

[x][ all a12 a13 r
a2l a2 2 a 2 3 - Yb (B.12)

z ~ a3l a32 a33 Zb
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with

all

a1 2

a1 3

a21

a 22

a2 3

a 31

a 3 2

a 3 3

= cosy 7cos cos a - sin y sin a

= cos cos sin a + sin y cos a

= - cos sin,

= - sin y cos , cos - cos y sin a

= - sin y cos sin a + cos y cos a

= siny sin J

= sin , cos a

= snsin a

- cos 

B.2 Phase Matrix

B.2.1 Vertically Aligned Ellipsoids

In this subsection the phase matrix for a set of ellipsoids of dimension a = ao, b = bo

and c = co, with their semi-major axis co parallel to the i-axis and uniformly dis-

tributed in the azimuthal direction, is given. The joint probability density function
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(B.18)

(B.19)
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is given by

p(a, b, c,a, , y) = 6(a - a,)S(b - bo)6(c - c,)((-t)6y) (B.22)

Then the phase matrix can be calculated from (B.2) and is given by

P(,;, ) - 1 + crn ( Co°s(m(s-q)) + P sin(m(, - i))) (B.23)
m m=O

and

=Oc
P=lc

p2c

Oc
p 11

Oc
P21
0
0

Ic
pul

0
0

0

2c

2c

0
0

poC o

p22 O0000

0000
0 p33
0 p3

2c
P12

2c

0
0

(

(

(

p!

A(p

0
0

P3 3
0

[_ 0 P1 O OP

Pi, 0 0 0

)C

34

14

0 1

0 Lc 
14

(B.24)

(B.25)

(B.26)

(B.27)

]
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-0
2j O 0

P =2 2s
P31

0

o p13 o

o p~; o

0 0 0000]O

Pl = Iql 2nor [(TA 2 + TB2) cOS2 0s COS2 Oi + 2 TC2 sin2 0, sin2 Oi] (B.29)

P2 = Iql2nOw7r 
2 (TA 2 +

= q12 nOw [2

= Iql nr [ 22I

TB2) Cos2 s]

(TA 2 + TB2) cos 2 o]

(TA2 + TB2)]

= Iql2 no7 [TABBA COS 0, COS Oi]

,P = 12n n [1
11, 2

= iql n 07r 1

(TBCCB + TCAAC ) COS , sin es cos Oi sin i

Re (TCA + TCB) sin 0s sin oil

= -jq 2 n7r [2 Im (TCA + TCB) sin 0, sin 92]

= lqljnr 1

= Iqlnj2 n[r 2

Im (TCA + TCB) sin s3

Re (TCA + TCB) sin 0,

sin i]

sin 0]

(B.37)

(B.38)

Pi = Iq 12nor [8 (TA2 + TB2 + TABBA) COS2 , Cos2 i]

where

(B.28)

Oc
P21

Oc
P22

Oc
P44

(B.30)

(B.31)

(B.32)

(B.33)

lc
P33

P3 4

(B.34)

(B.35)

(B.36)

lc

P43

Pc
P44
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P2c = -lq 2 nor [(TA 2 + TB 2 + TABBA)COS 2 (B.4P12 (B.40)

P21 -- q12 no r [8(TA 2 TB2 TABBA)COS 2 (B.41)

P22 InO[8(TA2 +TB2 +TABBA) (B.42)

P33 Iql
2no 7 r [(TA 2 + TB 2 + TABBA) COS cos0i] (B.43)

P13 ql n7 [ Re (TCA + TB) cos s, sin sin Oi] (B.44)

P14= - ql 2nor Im (TCA + TCB) cos 90 sin , sin i] (B.45)

p3 = -Iql 2nor [ Re (TCA + TcB)sin , cos i sin O2 ] (B.46)

p4"1 -q1 2 no7r [ Im(TCA + TCB) sin , cos Oi sin 0i] (B.47)

41 T
P13 = [qj

2nor [(TA 2 + TB2 + TABBA) cos s cos oi] (B.48)

.s = q2non [ 1 ]2 - n7r [ (TA2 + TB2 + TABBA) cos O] (B.49)

P31 = -Iq 2 nor [ (TA2 + TB2 + TABBA) cos o, cos2 i (B.50)

P32 Iql nor |4(TA2 + TB2 + TABBA)COS0s] (B.51)

with

k2 (E- E) (B.52)
q 7 
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and

1 2

1 + vdAa

1 2

1 + VdAb

1 2

1 + VdA,

1 1

(1 + VdAa) (1 + VdAb)*

1 1

(1 + vdAb) (1 + VdAa)*

1 1

(1 + VdAb) (1 + vdAc)*

1 1

1 1

(1 + vdAc) (1 + VdAb)*

1 1

(1 + vdAc) (1 + VdAa)* (1 + vdAa) (1 + vdAc)*

1 1

(B.57)

(B.58)

(B.59)
(1 + dAc) (1 + VdAa)*

1 1
ICB -

(B + vdAc)(1 + VdAb)*
where v, Vd and At are given by (B.9), (B.10) and (B.11), respectively.

B.2.2 Randomly Oriented Ellipsoids

(B.60)

In this subsection the phase matrix for a set of ellipsoids of dimension a, b and

c, with random orientation distribution is given. The joint probability density

function is given by

p(a, b, c, ca, ,y) = (a - a)(b - bo)(c - c) sin 1
27 2 2w

TA2

TB2

TABBA

(B.53)

(B.54)

(B.55)

(B.56)

TBCCB

TCAAC

TCA

aM

(B.61)
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The phase matrix can be calculated from (B.2) and is given by

P(O, ; 0i i) = 1 8+ m 0 cos(m(s, - qi)) + P= sin(m(s - qb))) (B.62)

and

POl P1 2 0 ]
po c PO21 p22 o (B.63)P (B63)

= 0 0 0

=lc 0 0 o (B.64)

o o o J

pO pl~O °

OP O 0 O= C 0 2 0 0

P s (B.65)0 0 0 0

21 2 (B.65)

0 0p 0 
-- 2s 0 O

=2 PI 0 0 ] (B.67)P~~~~~2 
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where

pOc Isl q2no [(n T
Pil 15 T

1 ) cos 2 0 cos i + 5 T1 +
± -T 2 ) cos2 9T cos2 8 ( ± T230 5 15

) sin2 08 sin 2 oi

2 1 2]COS2 0 + COS2 s2 0_)+ -Tl -T2 )(sin2 0, cos2 + cos2 O sin2 i15 15 

Oc = Iq12no [(nr T

P21 T[(T

1
+ -T 2) cos2 ,

30

1
+ T2 ) cos2 i

30

2
+ ( 2 T,

2
+( T,

15

- T2) sin 2 0,]

15- ]-g T2) sin

- Iql2nor [4T + T2]

- Iql2no7r [3T2 os, cos cos]

lc= Iq l2nor [(15TPi 1 T

lc

p33

lc
p4 4

2c
p1 1

5 T 2) cos 0, sin 0, cos Os sin Oi

- -Iq2no7r [( Ti + 1T2 ) co 2 ]

['15 20

- Iq2 n7r [-151 ± 20 T 2 )]
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(B.68)

P22po,

Oc
p44

(B.69)

(B.70)

(B.71)

(B.72)

-= q2ninr [T15 T+ 10 T2)sin 0, sin i]

-= q 2no7r [T 2 sin sinOi]

- Iq 2n. [(gTi + 1 T 2 ) cos2 0, cos 2 I
--{q{2no7I [5 20q-~

(B.73)

(B.74)

(B.75)

(B.76)

2c
p1 2

2c
P21

2c
P22

(B.77)

(B.78)

(B.79)
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Iqlnor [(n1.+ T j1 T 2 ) cos 0 cos ]

= Iq 2n0 7r [(-T + oT 2) cos s sin 0 sin Oi]

PHASE AND EXTINCTION MATRICES

(B.80)

(B.81)

P31 = -q 2n [( 4 

P13 - Iq n ( T +

P23 = -q no7r [(- T1

p3 = --q|r2iow [215

T 2) sin 0, cos i sin i

1T 2 )

1

20

cos2 0 cos Oi]

2) cos oi

+ T 2) cos0, cos2 i

P32 Iq2no [( 15+

with

and

T1 = TA2 + TB 2 + TC2

T2 = TABBA + TBCCB + TCAAC

where TA2, TB2, TC2, TABBA, TBCCB and TCAAC are respectively given by (B.53)-

(B.55) and (B.56)-(B.58).
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2c
p 33

p 13

(B.82)

(B.83)

(B.84)

(B.85)

oT2) cos10 o]

k2 (E, - )
q = 4rVo e

47 IE

(B.86)

(B.87)

(B.88)

(B.89)
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B.3 Extinction Matrix

B.3.1 Vetically Aligned Ellipsoids

In this section, the absorbtion and scattering loss matrices due to vertically aligned

ellipsoidal scatterers are presented. The joint probability density function for ori-

entation and size distribution is given by (B.22).

The absorption matrix due to the scatterers is calculated using the extinction

theorem and is given by:

roas, 0 0 0[ 0 K,, 0 0

as= a 22 0 0 (B.90)

O 0 -aa43 'as.44

where

rtasil = Im {',i q [cos2 (TA +TB) +sin2 Tc]} (B.91)

k 2Ca' = Im { k 2 (TA+TB)} (.2)

= asl + (B.93)

Kas44 = Reas33 (B.94)

~asU = Re k in 2 (T TB)-Tc (B.95)

(B.96)4as43 = -- as34
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and

1
TA = 1 (B.97)

+ dA.

TB = (B.98)
1 + VdAb

1
T = (B.99)

1 + dAc

where no is the scatterer density and q, vd and At are given by equations (B.52),

(B.10) and (B.11), respectively.

The scattering loss matrix is

4 no= 'ql2 {Cos2 (TA2 + TB 2 ) + 2 sin2 TC2} (B.100)

3esh = 3 (TA2 + TB2) (B.101)

where TA2, TB2 and Tc2 are given by equations (B.53- B.55).

B.3.2 Randomly Oriented Ellipsoids

In this section, the absorbtion and scattering loss matrices due to randomly orien-

tated ellipsoidal scatterers are obtained. The joint probability density function for

orientation and size distribution is given by (B.61).

The absorption matrix due to the scatterers is calculated using the extinction
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theorem and is given by

!as [
rasl 1

0

0

0O
O

O 0 0O

as2 2 0 0

0 Ias33 0
0 0 /"as44

where

1 asl1
1
- (TA
3

Kas33

'as44

TA, TB and Tc are given by equations (B.97-B.99), no is the scatterer density and

q, Vd and At are given by equations (B.52), (B.10) and (B.11), respectively.

The scattering loss matrix is

Cb,, = no~rlq{2 8
9

1sh - Ksv

(B.107)

(B.108)

where T1 is given by equation (B.88).

141

(B.102)

+ TB + Tc)} (B.103)

(B.104)

(B.105)

(B.106)

= I 47n( ,
tasll

= Nsi
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Appendix C

Single Dipole Scattering

C.1 Radiation Pattern of a Dipole

The electromagnetic scattering from a scatterer which is much smaller than a wave-

length is characterized as Rayleigh scattering. A plane wave polarized in the i

direction is incident upon a spherical scatterer with permittivity e, and permeabil-

ity ,, and radius a. The scattered electric and magnetic fields are given by

Ee = -( )k2a-eik sin (C.1)

H,1 = fEe (c.2)

The radiation pattern has the same pattern as that of the Hertzian dipole. Figure

C.1 shows the radiation field pattern.
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z

X Y

Figure C.1: Radiation field pattern for a scatterer (ka << 1).



C.2. BISTATIC SCATTERING PATTERN

The scattering cross section is

EP. 8r e- - )k 4a6 (C.3)
~'- =l,~o!' = 3 (e + 2e

2 r3

C.2 Bistatic Scattering Pattern

If we move around the scatterer, the received E field will vary depending on the

observation angle and the polarization of the receiver. Imagine that the induced

dipole axis of a scatterer will be parallel to the incident E field; for an incident angle

of i = 0, the dipole will be orientated horizontally and for i = 300, the dipole

will make a 600 degree elevation angle with the axis. By transforming the local

coordinates to the global coordinates and also taking into account the orientation

of the scatterer, we can plot the normalized scattering returns as a function of

azimuthal angle b as shown in Figure C.2.

As we can see, the HH, VH and HV returns are symmetrical about ~ = 90°,

but is not true for the VV case. We observed the same trend in the numerical

calculations in Chapter 2.
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Figure C.2: Scattering for a single scatterer (ka << 1).

9

I

I

t
3

1

E
z

0-. ()

'f
I

1;
aI

t

-9- () 09'. ()



Bibliography

[1] Hall, D.K. and Martinec, J.(1985), Remote Sensing of Ice and Snow, Chapman
and Hall, New York, NY.

[2] Massom, R. (1991), Satellite Remote Sensing of Polar Region, Belhave Press,
London, U.K.

[3] Onstott, R.G., Moore, R.K. and Weeks W.F.(1979), "Surface-Based Scat-
terometer Results of Arctic Sea-Ice", IEEE Trans. Geosci. Remote Sensing,
GE-17(3), pp. 78-85.

[4] Kim, Y.S., Moore, R.K., Onstott, R.G. and Gogineni(1985), "Towards Iden-
tification of Optimum Radar Parameters for Sea-Ice Monitoring", J. Glaciol.,
31(109), pp. 214-219.

[5] Kim, Y.S., Moore, R.K. and Onstott, R.G. (1984), "Theoretical and Experi-
mental Study of Radar Back Scatter from Sea Ice", RSL Tech. Rep. 331-37,
University of Kansas Center for Research, Inc., Lawrence , Kansas.

[6] Lin, F.C (1988), "Theoretical Models for Microwave Remote Sensing of Snow-
covered Sea Ice", Ph.D. Thesis, Department of Physics, Massachusetts Insti-
tute of Technology, Cambridge MA.

[7] Drinkwater, M.K. (1989), "LIMEX'87 Ice Surface Characteristics: Implica-
tions for C-Band SAR Backscatter Signatures", IEEE Trans. Geosci. Remote
Sensing, GE-27(5), pp. 501-513.

[8] Livingstone, C.E. and Drinkwater, M.K. (1991), "Springtime C-Band SAR
Backscatter Signatures of Labrador Sea Marginal Ice: Measurements versus
Modeling Predictions", IEEE Trans. Geosci. Remote Sensing, GE-29(1), pp.
29-41.

[9] Bredow, J.W. and Gogineni, S. (1990), "Comparison of Measurements and

147



References

Theory For Backscatter from Bare and Snow-Covered Saline Ice", IEEE Trans.
Geosci. Remote Sensing, GE-28(4), pp. 456-463.

[10] Onstott, R.G. (1992), "Examination of the Physical, Electrical, and Microwave
Evolution of Sea Water Into Young Ice", IGARSS'92 Conf. Proc., pp. 1259-
1261.

[11] Hosseinmostafa, R. and Lytle, V. (1992), "Comparison of Radar Backscatter
from Antarctic and Arctic Sea Ice", IGARSS'92 Conf. Proc., pp. 1533-1535.

[12] Toikka, M. and Hallikainen, M. (1992), "Radar Backscatter Signatures of Baltic
Sea Ice", IGARSS'92 Conf. Proc., pp. 1527-1529.

[13] Ulander, L.M.H and Carlstr; A. (1992), "C-Band Signatures of Old Ice in the
Central Arctic", IGARSS'92 Conf. Proc., pp. 958-960.

[14] Golden, K.M. et. al, (1993), "Electromagnetic Properties of Sea Ice, Year
1:Theory Summary", Technical Report, The Office of Naval Research.

[15] Tooma, S.G., Mennella, R.A., Hollinger, J.P. and Ketchum, R.D. (1975),
"Comparison of Sea-Ice Type Identification between Airborne Dual-Frequency
Passive Microwave Radiometry and Standard Laser Infrared Techniques", J.
Glaciol., 15(73), pp. 225-239.

[16] Rotman, S.R., Fisher, A.D. and Staelin, D.H. (1981), "Analysis of Multiple-
Angle Microwave Observations of Snow and Ice Using Cluster- Analysis Tech-
niques", J. Glaciol., 27(95), pp. 89-97.

[17] Tiuri, M., Hallikainen, M. and Liikperi, A. (1978), "Radiometer Studies of
Low-Salinity Sea Ice", Boundary-Layer Meteorology, 13, pp. 361-371.

[18] Carsey, F.D. and Pihos, G. (1989), "Beaufort-Chukchi Seas Summer and Fall
ice Margin Data From Seasat: Conditions With Similarities to the Labrador
Sea", IEEE Trans. Geosci. Remote Sensing, GE-27(5), pp. 541-550.

[19] Cavlieri, D.J., Gloersen, P. and Wilheit, T.T.J. (1986), "Aircraft and Satellite
Passive Microwave Observations of the Bering Sea Ice Cover During MIZEX
West", IEEE Trans. Geosci. Remote Sensing, GE-24(3), pp. 541-550.

[20] Grenfell, T.C. (1986), "Surface-Based Passive Microwave Observations of Sea
Ice in the Bering and Greenland Seas", IEEE Trans. Geosci. Remote Sensing,
GE-24(3), pp. 378-382.

148



References

[21] Swift, C.T., Dehority, D.C., Tanner, A.B. and McIntosh, R.E. (1986), "Passive
Microwave Spectral Emission from Saline Ice at C-Band during the Growth
Phase", IEEE Trans. Geosci. Remote Sensing, GE-24(6), pp. 840-848.

[22] Grenfell, T.C., Winebrenner and Wensnahan, M.R. (1992), "Passive Microwave
signatures of Simulated Pancake Ice and Young Pressure Ridges", IGARSS'92
Conf. Proc., pp. 1253-1255.

[23] Gray, A.L., Hawkins, R.K., Livingstone, C.E., Arsenault, L.D. and Johnstone,
W.M. (1982), "Simultaneous Scatterometer and Radiometer Measurements of
Sea-Ice Microwave Signatures", IEEE J. Oceanic Engineer., OE-7(1), pp. 20-
32.

[24] Livingstone, C.E., Keshava, P.S. and Gray, A.L. (1987), "Seasonal and Re-
gional Variations of Active/Passive Microwave Signature of Sea Ice", IEEE
Trans. Geosci. Remote Sensing, GE-25(2), pp. 159-173.

[25] Pounder, E.R. (1965), The Physics of Ice , Prgamon Press Ltd., New York,
NY.

[26] Weeks, W. and Ackley, S. (1982), The Growth, Properties and Structure of Sea
Ice, CRREL Monograph 82-1, US Army CRREL, Hanover, NH.

[27] Strogryn, A. and Desargant, G.J. (1982) "The Dielectric Properties of Brine in
Sea Ice at Microwave Frequencies", IEEE Trans. Ant. Propag., AP-33(5), pp.
523-532.

[28] Strogryn, A. (1987), "An Analysis of the Tensor Dielectric Constant of Sea Ice
at Microwave Frequency", IEEE Trans. Geosci. Remote Sensing, GE-25(2),
pp. 147-157.

[29] Arcone, S.A., Gow, A.J. and Mcgrew, S.(1986) "Microwave Dielectric, Struc-
tural, and Salinity Properties of Simulated Sea Ice", IEEE Trans. Geosci. Re-
mote Sensing, GE-24(6), pp. 832-838.

[30] Hallikainen, M. (1992), "Review of the Microwave Dielectric and Extinction
Properties of Sea Ice and Snow", IGARSS'92 Conf. Proc., pp. 961-965.

[31] Nakawo, M. and Sinha, N.K. (1981), "Growth Rate and Salinity Profile of
First-Year Sea Ice in the High Antarctic", J. Glaciology, 27(96), pp. 315-330.

[32] Nghiem, S.V (1991), "Electromagnetic Wave Models for Polarimetric Remote

149



References

Sensing of Geophysical Media", Ph.D. Thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, Cam-
bridge MA.

[33] Zuniga, M.A., Habash, T.M. and Kong J.A. (1979), "Active Remote Sensing of
a Layered Random Media", IEEE Trans. Geosci. Remote Sensing, GE-17(4),
pp. 296-302.

[34] Tsang, L., Kong, J.A. and Newton, R.W. (1982), "Application of Strong Fluc-
tuation Random Medium Theory to Scattering of Electromagnetic Waves from
a Halfspace of Dielectric Mixture", IEEE Trans. Ant. Propagat., AP-30-2, pp.
292-302.

[35] Tsang, L., Kong, J.A. and Newton, R.W. (1981), "Application of Strong Fluc-
tuation Random Medium Theory to Scattering of Electromagnetic Waves from
a Vegetation-Like Half Space", IEEE Trans. Geosci. Remote Sensing, GE-
19(1), pp. 62-69.

[36] Fung, A.K. and Fung, H.S.(1977), "Application of First-Order Renormaliza-
tion Me-thod to Scattering from a Vegetation-Like Half Space", IEEE Trans.
Geosci. Remote Sensing, GE-15(4), pp. 189-195.

[37] Lang, R.H. (1981), "Electromagnetic Backscattering from a Sparse Distribu-
tion of Lossy Dielectric Scatterers", Radio Science, 16-1, pp. 15-30.

[38] Borgeaud, M., Kong, J.A. and Lin, F.C. (1986), "Microwave Remote Sensing
of Snow-covered Sea Ice", IGARSS'86 Conf. Proc., pp. 73-89.

[39] Borgeaud, M., Nghiem, S.V., Shin, R.T. and Kong, J.A. (1989), "Theoreti-
cal Models for Polarimetric Microwave Remote Sensing of Earth Terrain", J.
Electromagnetic Waves and Applications, 3-1, pp. 61-81.

[40] Lin, F.C., Kong, J.A. and Shin, R.T. (1987), "Theoretical Models for Active
and Passive Microwave Remote Sensing of Snow-covered Sea Ice", IGARSS'87
Conf. Proc., pp. 1121-1125.

[41] Lee, J.K. and Kong, J.A. (1985), "Active Microwave Remote Sensing of an
Anisotropic Random Medium Layer", IEEE Trans. Geosci. Remote Sensing,
GE-23(6), pp. 910-923.

[42] Lee, J.K. and Kong, J.A. (1985), "Passive Microwave Remote Sensing of an
Anisotropic Random Medium Layer", IEEE Trans. Geosci. Remote Sensing,
GE-23(6), pp. 924-932.

150



References

[43] Tsang, L. and Kong, J.A. (1980), "Thermal Microwave Emission from a Three-
Layer Random Medium with Three-Dimensional Variations", IEEE Trans.
Geosci. Remote Sensing, GE-18(2), pp. 212-216.

[44] Tsang, L. and Kong, J.A., (1979), "Radiative Transfer Theory for Scattering
by Layered Media", J. Appl. Phys., 50(4), pp. 2465-2469.

[45] Coutu, P. (1993), "Radiative Transfer Theory for Active Remote Sensing of Sea
Ice", SM. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge MA.

[46] Shin, R.T. and Kong, J.A. (1989), "Radiative Transfer Theory for Active Re-
mote Sensing of Two-layer Random Media", pp. 359-417, PIER1, Progress in
Electromagnetics Research, Elsevier, New York, NY

[47] Han, H.C. (1992), "Electromagnetic Wave Phenomena in Inhomogeneous and
Aniso-tropic Media", Ph.D. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge MA.

[48] Shin, R.T. (1980), "Radiative Transfer Theory for Active Remote Sensing of
Layered Homogeneous Media Containing Spherical Scatterers", M.S. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge MA.

[49] Shin, R.T. and Kong, J.A. (1981), "Radiative Transfer Theory for Active Re-
mote Sensing of a Homogeneous Layer Containing Spherical Scatterers", J.
Appl. Phys., 6, pp. 4221-4230.

[50] Tsang, L., Kong, J.A. and Shin, R.T. (1984), "Radiative Transfer Theory for
Active Sensing of a Layer of Nonspherical Scatterers", Radio Science, 19, pp.
629-642.

[51] Chuang, S.L., Kong, J.A. and Tsang, L. (1980), "Radiative Transfer Theory
for Passive Microwave Remote Sensing of a Two-layer Random Medium With
Cylindrical Structure", J. Appl. Phys., 51-11, pp. 5588-5593.

[52] Ishimaru, A., Lesselier, D. and Yeh C. (1984), "Multiple Scattering Calcula-
tions for Nonspherical Particles Based on the Vector Radiative Transfer The-
ory", Radio Science, 19-5, pp. 1356-1366.

[53] Tsang, L., Kubacsi, M.C. and Kong, J.A. (1981), "Radiative Transfer Theory
for Active Remote Sensing of a Layer of Small Ellipsoidal Scatterers", Radio
Science, 16-3, pp. 321-329.

151



References

[54] Shin, R.T. and Kong, J.A. (1981), "Theory for Thermal Microwave Emission
from a Homogeneous Layer with Rough Surfaces Containing Spherical Scat-
terers", J. Geophys. Res., 87-B7, pp. 5566-5576.

[55] Shin, R.T. (1984), "Theoretical Models for Microwave Remote Sensing of Earth
Terrain", Ph.D. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge MA.

[56] Chandrasekhar, S., (1960), Radiative Transfer, Dover, New York, NY.

[57] Tsang, L., Kong, J.A. and Shin, R.T. (1985), Theory of Microwave Remote
Sensing, John Wiley Sons Inc., New York, NY.

[58] Ulaby, F.T., Moore, R.K. and Fung, A.K. (1982), Microwave Remote Sens-
ing Active and Passive, Volume I-II-III, Addison-Wesley Publishing Company,
Reading, MA.

[59] Yueh, H.A., Shin, R.T. and Kong, J.A. (1989), "Scattering from Randomly
Perturbed Periodic and Quasiperiodic Surfaces", pp. 297-358, PIER1, Progress
in Electromagnetics Research, Elsevier, New York, NY.

[60] Winebrenner D.P., Grenfell T.C. and Tsang, L. (1992), "On Microwave Sea
Ice Signature Modeling: Connecting Models to the Real World", IGARSS'92
Conf. Proc., pp. 1268-1270.

[61] Fung, A.K. Dawson M. and Tjuatja S. (1992), "An Analysis of Scattering from
a Thin Saline Ice Layer", IGARSS'92 Conf. Proc., pp. 1262-1264.

[62] Fung, A.K. (1982), "Application of a Combined Rough Surface and Volume
Scattering Theory to Sea Ice and Snow Backscatter", IEEE Trans. Geosci.
Remote Sensing, GE-20(4), pp. 528-536.

[63] Tsang, L. and Kong J.A. (1977), "Thermal Microwave Emission from a Ran-
dom Homogeneous Layer over a Homogeneous Medium Using the Method of
Invariant Imbedding", Radio Science, 12, pp. 185-195.

[64] Kong, J.A. (1990), Electromagnetic Wave Theory, John Wiley Sons Inc., New
York, NY.

[65] Rice, S.O. (1951), "Reflection of Electromagnetic Waves from Slightly Rough
Surfaces", Commun. Pure Appl. Math., 4, pp. 351-378.

152



References

[66] Valenzuela, G.R. (1967), "Depolarization of EM Waves by Slightly Rough Sur-
faces", IEEE Trans. Ant. Propagat., AP-15-4, pp. 552-557.

[67] Veysoglu, M.E., Yueh, H.A., Shin, R.T. and Kong, J.A. (1991), "Polarimetric
Passive Remote Sensing of Periodic Surfaces", J. Electromagnetic Waves and
Applications, 5-3, pp. 268-280.

[68] Carsey, F.D., (1992), Microwave Remote Sensing of Sea Ice, American Geo-
physical Union, Washington, DC

[69] Beaven, S.G. et. al., (1993), "Radar Backscatter Measurements From Sim-
ulated Sea Ice During CRRELEX 90", Technical Report, RSL, Lawrence,
Kansas.

[70] Zabel, I.H.H.and Jezek, K.C., (1993), "CRRELEX 93: Surface Roughness and
Physical Properties Measurements", Technical Report, Byrd Polar Research
Center, Columbus, Ohio.

[71] Perovich, D. K. and Gow, A. J., (1991), "A Statistical Description of the
Microstructure of Young Sea Ice", Journal of Geophysical Research, Vol. 96,
No. C9, PP. 16,943-16,953.

[72] Perovich, D. K., (1993), CRRELEX93 measurement data, Cold Region Re-
search and Engineering Laboratory (CRREL).

153




