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Abstract
We study the nonlinear interactions of surface waves with general two- and three-
dimensional bodies which are either stationary, or undergoing imposed oscillatory
or steady motions. Despite the success of linearized theory for a wide variety of
wave-body problems, nonlinear effects are important and even essential for many ap-
plications. These include cases when the leading-order answer from linearized theory
is trivial or singular, and when the solution is dominated by strong resonant or cou-
pled nonlinear interactions. Through analyses and numerical simulations, this thesis
addresses three general and related classes of problems for which such nonlinear ef-
fects are of theoretical interest and practical importance to naval architecture and
coastal engineering. For simplicity of the numerical simulation - a high-order spec-
tral method using free-surface Fourier basis functions is employed- we consider only
submerged bodies or bottom variations.

A significant problem for which linearized theory predicts trivial (zero) result is the
horizontal drift force on a submerged circular cylinder. By including nonlinearities
up to third order, we quantify a negative drift force which is in good agreement
with experiments. Surprisingly, this force is a result of quadratic interaction between
the first- and third-order (first-harmonic) waves rather than self-interaction of the
second-order (second-harmonic) waves. Similar interactions also play a major role for
three-dimensional bodies. A systematic study is performed for submerged spheroids
where it is shown that nonlinear mean effects generally oppose linearized predictions
and, for slender geometries, can be comparable in magnitude. Thus, the mean pitch
moment in head seas, for example, can be positive, negative or zero depending on
wave steepness and submergence.

When forward speed is present, nonlinear effects of the seakeeping problem be-
come more critical because of the dependence of wave radiation on forward speed. In
particular, at critical frequency corresponding to r wU/g=1/4, the group veloc-
ities of two of the wave components vanish, the associated energy can no longer be
radiated away, and classical analysis predicts an unbounded solution. By considering
the full geometry rather than a point source, we obtain an analytic proof that the



linear solution is in fact bounded for a general class of submerged and surface-piercing
geometries. Further analyses establish also the important consequence that transient
effects associated with body accelerations actually decay an order of magnitude faster
than classical-theory predictions. We confirm these findings by detailed numerical
simulations. Despite the above, linear results near critical frequency are still unre-
alistically large. When nonlinear interactions are included, a third-order change in
the dispersion relationship is found to produce appreciable corrections to the motion
coefficients. Such corrections are shown to be first-order in wave steepness.

Nonlinear effects must also be considered when resonance occurs. We investi-
gate this by considering Bragg reflection of waves by an undulated bottom. The
high-order spectral method is extended for this case to confirm existing theoretical
and experimental results for linear and subharmonic Bragg resonances. When wave
nonlinearities are included, we discover a new superharmonic Bragg mechanism for
reflected and transmitted waves associated with quartet interactions between the free
surface and the bottom.

This thesis addresses the important nonlinear effects in wave interactions with
submerged bodies in the context of potential theory. With the use of free-surface
Chebyshev or Legendre basis functions, the present high-order spectral method can
be generalized to surface-intersecting bodies.

Thesis Supervisor: Dick K.P. Yue
Title: Associate Professor of Ocean Engineering
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Chapter 1

Introduction

The nonlinear interaction of surface waves with a body and/or bottom topography is

a fundamental problem of theoretical interest and practical importance in naval ar-

chitecture, offshore and coastal engineering. When a circular cylinder is fixed under

the free surface in the presence of waves, for example, it has been observed in ex-

periments (Salter et al. 1976; Longuet-Higgins 1977; Inoue & Kyozuka 1984; Miyata

et al. 1988) that the body experiences a negative horizontal drift force which is not

predicted by linearized potential theory (Maruo 1960; Ogilvie 1963). The existence

of such negative drift force can be attributed to high-order free-surface effects (Liu

et al. 1992). The accurate prediction of this force is of evident importance to the

design of mooring lines of underwater pipebridges. For a submerged spheroid in head

seas, the inclusion of strong nonlinear wave effects can change the direction of the

mean pitch moment from bow-down to bow-up (Lee & Newman 1991; Liu & Yue

1994a). Because of no restoring force, a large rotation of the spheroid can be resulted

from even a small steady moment if it acts on the body for a sufficiently long pe-

riod of time. Thus, the understanding of nonlinear effects of this problem should be

critical for the operation of submarines and underwater vehicles. In addition, it has

been known that second-order difference- and sum-frequency wave excitations may

cause large subharmonic resonant motions of moored vessels or offshore platforms

(e.g. Ogilvie 1983; Emmerhoff & Sclavounos 1992; Newman 1993) and 'springing'

(superharmonic resonance) of tension-leg platforms (TLP's) (e.g. Ogilvie 1983; Kim
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& Yue 1988). Recently, the third-order wave effect (e.g. Newman 1994) has also been

found to play a major role for the occurrence of 'ringing' of offshore structures in deep

water (Jefferys 1993; Stokka 1994). For ship-motion problems, on the other hand,

it is well known that classical theories (e.g. Haskind 1954; Havelock 1958; Newman

1978) fail to provide any satisfactory predictions at the critical frequency where two

of the wave components are resonant. To suppress resonance and obtain reasonable

answers there, the third-order free-surface effects must be included (Dagan & Miloh

1982; Akylas 1984; Liu & Yue, 1994c). In nearshore areas, wave motions are gen-

erally known to be highly nonlinear due to the effect of bottom topography (Mei

1983). When surface waves propagate over an undulated bottom, in particular, large

resonant reflection can be caused from both linear and high-order Bragg resonances

(Davies & Heathershaw 1984; Mei 1985; Guazzelli et al. 1992; Liu & Yue 1994d). Such

resonance mechanisms in wave-bottom interactions provide an important alternative

for the protection of beaches. In open seas, significant energy transfer among differ-

ent wave components (Philips 1960; Longuet Higgins 1962) occurs due to quartet or

quintet wave resonances. This nonlinear resonant effect is of obvious significance to

the prediction of the spectrum of ocean waves (e.g. Hasselmann 1962, 1963a, 1963b;

Resio & Perrie 1991).

Despite the importance of nonlinear wave-body/bottom interaction problems,

a general analytical method or numerical scheme which can account for nonlinear

boundary effects accurately and efficiently is not available yet. Most existing non-

linear solutions have so far been obtained through numerical simulations. A com-

monly used numerical scheme for the study of wave-body/bottom interactions is the

boundary-integral-equation method (BIEM) using wave-source Green's function (Mei

1978; Korsmeyer et al. 1988; Lee et al. 1991). Because no Green's function satisfies the

nonlinear free-surface boundary conditions, the discretization of the entire free sur-

face is generally necessary. This leads to a linear system involving a large number of

unknowns (typically N = 0(104'5)) and its solution requires O(N 2~ 3 ) computational

efforts in general. The associated numerical error due to boundary discretizations is

typically of O(AI' 2 ), where A represents the size of boundary elements (panels). For
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practical problems, the required minimum computational burden may not be afforded

by available computational facilities. In the study of nonlinear wave kinematics using

a quadratic-boundary-element method, for example, the use of 0(1000) elements on

the free-surface in a doubly-periodic domain requires 0(100) Cray-Y/MP cpu hours

in order to observe wave overturning phenomena (Xu & Yue 1992). In addition to

the BIEM, the finite-difference and finite-volume methods are also used for solving

nonlinear wave-body/bottom problems. Compared to the BIEM, these methods need

to discretize the whole fluid domain and the number of total unknowns involved is

even much larger. Overall, the success of these numerical methods employing di-

rect surface or volume discretizations has so far been limited to two-dimensional or

axisymmetric problems (e.g. Longuet-Higgins & Cokelet 1976; Vinje & Brevig 1981;

Dommermuth & Yue 1987a). Based on the assumption of weak nonlinearity and

mode-coupling idea, a high-order spectral method (Dommermuth & Yue 1987b) has

recently been demonstrated to be effective for the study of nonlinear wave-wave in-

teractions. However, the usefulness of this method is limited to moderately steep

waves.

In summary, nonlinear boundary effects are critical even in the absence of viscosity

for many wave-body/bottom applications. These include cases when the leading-

order prediction from linearized theory is trivial or singular, and when the solution is

dominated by strong resonant or coupled nonlinear interactions. Due to the limitation

of theoretical and computational capabilities, the understanding of such significant

nonlinear effects has been far from satisfactory.

This thesis focuses on the study of nonlinear wave interactions with general two-

and three-dimensional bodies which are either stationary, or undergoing imposed os-

cillatory or steady motions. Through analyses and numerical simulations, we address

three general and related classes of nonlinear problems of theoretical interest and

practical importance to naval architecture and coastal engineering: (1) mean wave

effects on a body at zero forward speed; (2) the behaviour of seakeeping solution

near the critical frequency; (3) Bragg resonant reflection of surface waves by bottom

ripples. For the numerical formulation, a high-resolution nonlinear spectral method
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is extended to include bodies. For simplicity, free-surface Fourier spectral functions

are employed and submerged bodies are considered. The major finding and results

include: (i) the quantification of the negative horizontal drift force on a submerged

circular cylinder; (ii) nonlinear solutions of the mean wave force and pitch moment on

a submerged spheroid; (iii) a formal proof that the linear seakeeping solution at the

critical frequency is bounded for a general class of submerged and surface-piercing

bodies; (iv) an analysis to show that the decay rate of linear transients associated

with body accelerations is actually an order of magnitude faster than classical the-

ory predictions; (v) nonlinear solutions for the motion coefficients of the seakeeping

problem near the critical frequency; (vi) the discovery of a new superharmonic Bragg

mechanism for reflected and transmitted waves associated with quartet resonant in-

teractions between the surface and the bottom.

(I) The negative horizontal drift force on a submerged circular cylinder

A problem for which linearized theory fails to provide the leading-order prediction is

the mean wave force on a fixed submerged circular cylinder. In this case, it has been

known that the horizontal drift force vanishes up to second-order in wave steepness

according to linearized potential theory (Maruo 1960; Ogilvie 1963). This result is

in contrast to experimental observations (e.g. Salter et al. 1976) that a free cylinder

just awash experiences a negative drift force which causes it to move towards the

wavemaker. Longuet-Higgins (1977) suggested that this negative drift force can most

likely be attributed to wave breaking. The measurements of Miyata et al. (1988)

and Inoue & Kyozuka (1984) do not support all of Longuet-Higgins' predictions.

They found that as the cylinder was moved closer to the free surface, which led to

more intense breaking, the negative horizontal drift force was actually reduced and

ultimately reversed sign. Such disagreement between predictions and measurements

leads to a presumption that the negative horizontal drift force is due to high-order

potential effects.

According to a regular perturbation analysis beyond the second-order, the next

possible contribution to the mean force is fourth-order due to quadratic interactions
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of high-order potentials, which include self-interactions of the second-order zeroth-

and second-harmonic waves, and quadratic interaction of the first- and third-order

first-harmonic waves. For a submerged body in deep water, in general, locked waves

are small compared to free waves at the second-order. Thus the effect of the zeroth-

harmonic wave should be unimportant compared to that of the other two harmonics.

On the other hand, the second-harmonic (free) wave becomes considerable only when

the body is very close to the free surface because it decays with depth much faster

than the first-harmonic wave. To corroborate with the measurements of Miyata et al.

(1988) and Inoue & Kyozuka (1984), we deduce that the negative drift force must be

a result of the quadratic interaction of the first- and third-order first-harmonic waves

rather than the self-interaction of the second-order second-harmonic waves which may

actually reduce this force. Such intuitive deduction is fully confirmed by our fourth-

order potential-flow calculations (in chapter 3) which agree well with the laboratory

experiments of Miyata et al. (1988).

(II) The mean force and moment on a submerged spheroid

The question then arises as to whether nonlinear interactions play an equally im-

portant role for a three-dimensional body. To address this, we consider the mean

force and moment on a spheroid. Under beam sea conditions, there is no horizon-

tal drift force according to the strip theory prediction (for circular sections). If the

three-dimensional effect is included, a positive second-order horizontal drift force is

expected in principle, which vanishes as the body aspect ratio increases. When strong

nonlinear interactions are involved, a fourth-order negative horizontal drift force can

also be anticipated for a near-surface spheroid. Thus, three-dimensional and non-

linear effects produce opposing horizontal drift forces. For a given spheroid in an

ambient wave field, there must be a particular depth at which the total horizontal

drift force is identically zero.

In head seas, the slender body theory (e.g. Lee & Newman 1971) predicts that

the vertical drift force is dominated by the 'IB' interaction between the incident wave

(I) and the body disturbance (B), whereas the mean pitch moment vanishes as the

23



'IB' interaction is symmetric about the midbody section. A three-dimensional panel

method solution (Lee & Newman 1991), however, reveals the presence of a positive

(bow-down) mean pitch moment which is due to the quadratic (BB) interaction of the

body disturbance itself. Such non-zero mean pitch moment has strong dependence

on body slenderness. For a high aspect-ratio spheroid near the free surface, nonlinear

wave effects can thus be expected to be critical.

Through careful initial-value simulations, in chapter 4, we obtain accurate nonlin-

ear solutions for the mean force and pitch moment on the body including complete

fourth-order corrections. In particular, it is found that when nonlinear free-surface

effects are included, the mean pitch moment changes its direction from bow-down to

bow-up as the incident wave steepens or when the submergence is decreased. Like the

horizontal drift force in beam seas, for a given sea state and body aspect ratio, a sub-

mergence can be found at which the mean pitch moment is minimized. Significantly,

we are able to establish a simple formula to estimate that depth.

(III) The classical seakeeping solution near the critical frequency

When forward speed is present, nonlinear effects of the seakeeping problem become

even more critical because of the effect of the forward speed on the radiation of

wave energy. Of particular interest is the case where the group velocities of two

of the wave components vanish so the associated energy can no longer be radiated

away. This happens at the particular value of the frequency (w) and forward speed

(U) combination r = Uw/g = -, where g is the gravitational acceleration. Before

detailed nonlinear simulations are performed, it is necessary to perceive the linear

solution completely.

For a single source, it is well known that the Green's function becomes unbounded

at r = 1 (Haskind 1954; Wehausen & Laitone 1960). Physically, this may be explained

in terms of the group velocities (in still water) of two components of the accompanying

wave which approach U as r - 1 (from below). The associated energy can no

longer be radiated away, and the amplitudes of these wave components tend to grow

indefinitely. Since the problem for a general body can, in principle, be represented by
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an appropriate distribution of such sources, it is widely accepted that the resulting

seakeeping problem must likewise be singular at r = (e.g. Dagan & Miloh 1982).

This appears also to be confirmed by existing approximate theories and calculations

(e.g. Havelock 1958; Newman 1959; Wu & Eatock Taylor 1988) suggesting that this

difficulty may be inherent in the linearized problem.

With careful numerical calculations for the case of submerged circular and ellip-

tical cylinders, Grue & Palm (1985) and Mo & Palm (1987) recently offered strong

numerical evidence that the amplitudes of the resonant upstream and downstream

waves approach the same finite limit as r -- . Since their equations are singular at

= , they consider the problem undetermined at this limiting value. Through an

asymptotic analysis, in chapter 5, we offer a formal proof in the frequency domain

that the linear solution of the seakeeping problem is finite if and only if a certain

geometric condition is satisfied. This is in contrast to existing theories based upon

the single source result. For a submerged body, a necessary and sufficient condition

is that the body must have non-zero volume. For a surface-piercing body, a sufficient

condition is derived which has a geometric interpretation similar to that of John

(1950). As an illustration, we provide an analytic (closed-form) solution for the case

of a submerged circular cylinder oscillating near r = , which compares well with the

calculations of Grue & Palm (1985). Also, we identify the underlying difficulties of

existing approximate theories and numerical computations near = 4' and offer a

simple remedy for the latter.

(IV) The time-dependence of the wave resistance of a body

An immediate implication of the frequency-domain result is the time-dependence of

the force on a body due to an initial change in the velocity. This is directly related to

the question of how rapidly transients associated with the abrupt motions of a floating

body decay. The rate at which transient oscillations vanish and measurements taken is

of some concern in model tests especially for unsteady and local effects. The question

of the behavior of transients comes up also in almost all numerical simulations in the

time domain and directly affects our ability to extract steady-state predictions for

25



resistance problems and to obtain meaningful results for general seakeeping problems.

Despite the obvious importance, this problem appears to have been addressed

only for the idealized case of a single translating source of known strength. Havelock

(1949) considered the two-dimensional problem of the wave resistance of a submerged

circular cylinder impulsively started from rest. By approximating the body as a point

dipole of constant strength, he derived a closed-form solution for the wave resistance.

The significant finding is that for a given forward speed U, the resistance oscillates

about the steady value with the frequency w, = g/4U, and the oscillation decays only

like t-2eict as t -- oo. This result was extended to three dimensions by Wehausen

(1964) who considered a constant source started abruptly and obtained that the

unsteady resistance vanishes like t-leiwct as t --, oo.

The frequency-domain result suggests that with the removal of the r = 4 singu-

larity, the actual decay rate of transients must necessarily be an order of magnitude

faster than the single-source predictions of Havelock (1949) and Wehausen (1964) for

a body which satisfies the requisite geometric condition. In chapter 6, this is proved

in a thorough analysis of the time-dependence of the wave resistance of a body start-
3

ing from rest. The exact decay rate is found to be respectively proportional to t-2

and t-2 for two- and three-dimensional bodies in contrast to t-2 and t-1 derived by

approximating a body using constant sources at a particular point or on a special

plane. These results are confirmed by our detailed numerical simulations.

(V) Nonlinear wave radiation near the critical frequency

Due to weak wave radiation near the cut-off, the linear solution is still very large and

varies sharply near = 4. Nonlinear effects must then play a prominent role especially

through corrections in group velocities of resonant waves. For a single source, the

third-order change in the dispersion relation due to free-surface nonlinearity has been

shown to be critical in suppressing the first-order resonance at the critical frequency

and obtaining a finite solution (Dagan & Miloh, 1982). In principle, such nonlinear

effects should also be contemplated for a real physical body. To address this, in

chapter 7, we consider nonlinear wave radiation of a submerged circular cylinder
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which moves forward while undergoing small oscillations.

With long-time simulations, steady-state (limit-cycle) solutions for the radiation

force on the body can be obtained. When nonlinear interactions are included, the

group velocities of resonant waves near r = retain a significant change which is

found to be first-order in wave steepness. Because of this, the nonlinear steady-state

solution is reached much faster than the linear solution in initial-value simulations.

Like that for a single source, the inclusion of the third-order free-surface nonlinearity

is demonstrated to produce appreciable corrections to the motion coefficients near

the critical frequency. Such corrections are shown to be first-order in wave steepness.

(VI) Nonlinear wave reflection by an undulated bottom

Finally we consider a problem for which nonlinear effects are amplified due to a near-

periodic placement of weak scatterers. Because of strong Bragg resonance, large re-

flection can occur for surface waves travelling over undulated bottom topography.

Laboratory experiments of Davies & Heathershaw (1984) confirm this prediction

and suggest a possible practical application of this mechanism for the protection

of beaches. For mild wave and bottom slopes, reflection at or near Bragg resonance

is well predicted by perturbation theory based on multiple scales and the assumption

of linearized surface waves (Mei 1985).

For moderate to large wave and/or bottom steepnesses, higher-order Bragg res-

onances must also occur due to nonlinear interactions between surface waves and

bottom undulations. Of especial interests are the second-order Bragg resonances

which result from second-order bottom or free-surface effects. In principle, they

could be understood as the quartet wave resonance, which is well known in ocean

wave hydrodynamics (Philips 1960), with certain wave components replaced by bot-

tom undulations. Depending on the inclusion of bottom or free-surface nonlinearity,

there can be different types of second-order Bragg resonances.

The significance of the second-order Bragg resonance due to bottom nonlinear-

ity has been demonstrated in experiments of Guazzelli et a. (1992). For a bottom

containing unidirectional doubly-sinusoidal ripples, they observed significant Bragg
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reflection corresponding to differences of the bottom ripple wavenumbers even for

small undulation amplitudes. Moreover, this nonlinear resonant reflection can be

comparable in magnitude (although not at the same frequency) to that due to linear

Bragg effect. Since this phenomenon is a result of high-order bottom effects, it cannot

be predicted by the theory of Mei (1985).

When free-surface nonlinearity is included, the second-order Bragg resonance cor-

responding to sums or differences of incident wave frequencies can also exist. The

simplest case for such resonance is when a single normally-incident wave travels over

a horizontal bottom with uniformly-sinusoidal ripples. Under the quartet condition

(with the incident wave counted twice), a large superharmonic (double-frequency)

wave can be reflected or transmitted. Due to this high-order Bragg resonance, signifi-

cant energy transfer from low to high frequency occurs in a spectrum of ocean waves.

Despite its apparent importance in the development of wave spectra in coastal zones,

this nonlinear resonance mechanism has not been addressed yet.

In chapter 8, we extend the nonlinear spectral method for this problem and accu-

rately calculate Bragg resonant reflection by undulated bottom topography including

nonlinear effects of the free surface and bottom. For both normal and oblique inci-

dences, our numerical solutions confirm existing theoretical and experimental results

for linear and subharmonic Bragg resonances. Significantly, we are able to examine

the second-order Bragg resonance due to free-surface nonlinearity. For surface waves

propagating over a horizontal rippled bottom with uniformly sinusoidal undulations,

as an example, we obtain accurate predictions for the resonant superharmonic re-

flected waves. For moderate bottom slope and wave steepness, the present numerical

result agrees well with the regular perturbation theory prediction.

(VII) The high-order spectral method

For numerical work in this thesis, we employ an efficient high-resolution computa-

tional method which is an extension of the high-order spectral method of Dommer-

muth & Yue (1987b) for nonlinear gravity wave-wave interactions. This method

allows interactions between surface waves and the body/bottom up to an arbitrary
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order M in wave steepness, and exhibits exponential convergence with respect to M

and the number of spectral modes N. With fast transform techniques, the computa-

tional effort is only linearly proportional to M and N. The efficiency and accuracy of

the present nonlinear spectral method provides a computational capability for high-

resolution calculations not readily available using other numerical methods employing

direct surface or volume discretizations. The mathematical formulation and numerical

issues associated with the extension of the high-order spectral method to wave-body

interaction problems are summarized in chapter 2, while those for wave-bottom in-

teractions are separately given in chapter 8.

This thesis is composed of a total of nine chapters. The development of the

numerical method is presented in chapter 2. Except in chapters 5 and 6 where the

effect of the critical frequency to the classical linear seakeeping solution is addressed,

the understanding of basic nonlinear mechanisms in wave-body/bottom interactions

is focused in chapters 3, 4, 7 and 8. Conclusions are drawn in chapter 9. For clarity,

major symbols are used consistently and equations, tables, and figures are numbered

in terms of chapter number. For convenience, figures for each chapter are located

after the last page of the text of that particular chapter. References and appendices

are placed at the end of the entire thesis.
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Chapter 2

The high-order spectral method

for nonlinear wave-body

interactions

In this chapter, we extend a high-order spectral method which was originally de-

veloped for nonlinear wave-wave interactions (Dommermuth & Yue 1987b, hereafter

denoted by DY) to the study of nonlinear wave interactions with a submerged body.

The present method accounts for the nonlinear interactions among NF wave modes

on the free surface and NB source modes on the body up to an arbitrary order M in

wave steepness. By using fast-transform techniques, the operational count per time

step is only linearly proportional to M and NF (typically NF >> NB). For a (closed)

submerged body in moderately steep waves, exponential convergence with respect to

M, NF and NB is obtained.

The high-order spectral method developed by DY is formally based on the Za-

kharov equation (Zakharov 1968; Crawford et a. 1981) / mode-coupling (Phillips

1960; Benney 1962) idea. The method models interactions up to an arbitrary order

M in wave steepness and follows the evolution of a large number (typically N 103

per dimension) of wave modes through a pseudo-spectral (Fornberg & Whitham 1978)

treatment of the nonlinear free-surface conditions. The method exhibits exponential

convergence with respect to M and N for waves up to 80% (kA 0.35) of Stokes
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limiting steepness (beyond this the convergence is only algebraic), and its efficacy for

a variety of wave interaction problems is now well established (see also Dommermuth

& Yue 1987c).

This method can be generalized to nonlinear wave-body interactions. At each

time step, the nonlinear boundary-value problem is solved up to a specified order M

in wave steepness by using perturbation expansions and the spectral method. Given

surface elevation and potential, the nonlinear problem is expanded into a sequence of

linear boundary-value problems for the perturbation potentials (m),m = 1,, ,M,

with Dirichlet and Neumann conditions imposed on mean positions of the free surface

and body. The solution for the potential at each order is represented in terms of global

free-surface and body basis (spectral) functions. The unknown modal amplitudes are

determined by invoking the free-surface and body boundary conditions. The basis

functions can be suitably constructed in terms of singularity distributions on the mean

free surface and body. For simplicity, free-surface Fourier basis functions are used and

submerged bodies are considered. The convergence of the solution with respect to

the numbers of free-surface and body spectral modes, NF and NB, as well as the

perturbation order M is exponentially rapid. By using fast transform techniques,

the computational effort per time step is linearly proportional to M and NF. The

efficiency and accuracy of this high-order spectral method provides a computational

capability for high-resolution calculations not readily available using other numerical

methods employing direct surface or volume discretizations.

In §2.1, the general initial-boundary-value problem for wave-body problems is

reviewed. The numerical formulation for the high-order spectral method including

a submerged body is summarized in §2.2, and the implementation of the method

is presented in §2.3. After systematically discussing sources of numerical errors in

§2.4, we finally establish a simple relation (in §2.5) between results obtained using

the present time-domain approach and that by the frequency-domain perturbation

methods.
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2.1 The general initial-boundary-value problem

Consider nonlinear wave interactions with a submerged body in a uniform current.

A Cartesian coordinate system is chosen with the origin at the mean water level, the

x-axis pointing into the current of speed, -U, and the z-axis positive upwards.

The fluid is assumed homogeneous, incompressible, inviscid, and its motion irro-

tational. The flow can be described by a velocity potential:

4 '(x, t) = +(x, z) + (x, z, t) (2.1)

where x = (x, y) is a vector in the horizontal plane, ~ represents a certain base flow,

and $P is the wave disturbance. The potential, 4, satisfies Laplace's equation within

the fluid and the normal velocity vanishes on the bottom, , = 0 on z = -ho.

Here the water depth ho is assumed to be constant (and the problem with variable

bottom configurations is separately studied in chapter 8). The kinematic and dynamic

boundary conditions to be satisfied at the instantaneous free surface z = 7/(x,t) are

respectively given by:

i7t + Vx'. 77 - , = X -4,z Vx ,
I (2.2)At + 977 + +(v * = -*t -- *

for zero atmospheric pressure, where Vx - (0/Ox, 8//y) denotes the horizontal gra-

dient, and g is the gravitational acceleration. The kinematic boundary condition

applied on the body, SB(t), can be written as:

, = - + V(t) n on SB(t) (2.3)

where n = (n,, ny, nz) is the unit normal out of the body, V represents the instan-

taneous body velocity. For initial conditions, the velocity potential §(x, 0) and the

surface elevation (x, 0) are prescribed. This completes the initial-boundary-value

problem for k. For calculations, we impose periodic boundary conditions in both
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horizontal directions.

The pressure on the body is determined according to Bernoulli's equation:

P(x,zt) 1 1 (,- t -V. V - V .ha - VU2 (2.4)
p 2 2 2

where p is the fluid density. The instantaneous force on the body is obtained by direct

integration of (2.4).

2.2 Formulation of the high-order spectral method

In this section, we employ the time-domain perturbation scheme to develop an efficient

high-order spectral method for solving the initial-boundary-value problem for .

Following Zakharov (1968), we define the surface potential

'(x, t) = (x, (x, t), t) , (2.5)

where the free surface z = /(x,t) is assumed to be continuous and single-valued.

Upon using chain rules

t ,(, 77,) = (,,,t), - l.(x, 7, t)7t, and (2.6)

Vx (x, 7, t) = Vx'(x, t)- §z(x, ?,t)V , (2.7)

we can rewrite the free surface boundary conditions (2.2) as:

77t + Vx7 VxV' - (1 + Vxq Vx,7),(x,T, )

= ((X, v) - Vx7 · VX(X, 7),

+ 9 + V~xJ * \xJ-(1 + Vx -Vx)(2(X, (, t)

= - 2v(,, ) * VO(x, ) 

(2.8)

An apparent advantage of using (2.8) instead of (2.2) as free-surface boundary cond-
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tions is that given the initial values of 77 and 4°, (2.8) can be readily integrated in time

for the new values of 7 and b' provided that the surface vertical velocity z (x, 77, t)

can be obtained from the boundary-value problem.

In order to solve the boundary-value problem, we assume that 7 and 4 are O(E)

quantities, where , a small parameter, is a measure of the wave steepness. We then

expand 4P in a perturbation series in E up to order M:

M

4 (x,z,t) = E ()(x, z,t), (2.9)
m=l

where ()(m) denotes a quantity of O(em). We further expand each 4(m) evaluated on

z = 77 in Taylor series about z = 0, so that

M M-m 771 a0
t·'(x,t)- (x,,71t) = E A e! azo(m)(x,, t). (2.10)

m=1 =0 z

The method we develop will, in principle, be able to account for nonlinearities up

to an arbitrary order M in e. In practice, however, (2.10) places a limit on the

maximum steepness of the free surface we can consider. In particular, the validity

and convergence of (2.10) is limited by the radius of convergence (from z = 0) of 4t,

which cannot extend beyond the first singularity in the analytic continuation of )

above z = .

At a given instant time, and q4' can be obtained by the nonlinear evolution

equations (2.8). Thus, we can treat (2.10) as a Dirichlet boundary condition for

the unknown . Expanding (2.10) and collecting terms at each order, we obtain a

sequence of boundary conditions for the unknown 4 (m) on z = 0:

t()(x, 0, t) = Qi ,

o(m)(X,,t) = -E e! az ( "- ( X,,t), m = 2,3, , M. (2.11)
For small body motions, the kinematic boundary condition (2.3) applied on the body

For small body motions, the kinematic boundary condition (2.3) applied on the body
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SB(t) can also be expanded in Taylor series about its mean position SB:

n + a + (SB(t) - SB) (V(nC + V) +... = V(t) n on SB (2.12)

where SB(t)- SB = O(e) is the body displacement from its mean position. After

substituting (2.9) into (2.12) and collecting terms at each order, a sequence of body

boundary conditions for the unknown (m) applied on SB are obtained:

() -n - (SB(t) -SB) V) + V(t) n, I> (2.13)
(M() = f(1, (t), = 1,2, ... , m-1), m = 2, -.. , M. 

The Dirichlet and Neumann conditions (2.11) and (2.13), in addition to being doubly-

periodic in the horizontal plane and 4(m) = 0 on z = -ho, define a sequence of

boundary-value problems for (m), m = 1,2,... ,M, in the domain z < 0.

As in a typical mode-coupling approach, we represent each {("m) as an expansion

of coupled free-surface and body basis functions:

00 00

(m)(x, z,t) d= nm)(t)!Fn(x, z) + E 4 (m)(t)B(X, Z) (2.14)
n=O n=O

where /(m)(t) and a(m)(t) denote the unknown modal amplitudes. The basis functions

Fn(x, z) and Bn(X, z) are defined to be harmomic within the fluid and periodic in

x, and satisfy the bottom boundary condition. With this construction, (2.14) satisfies

Laplace's equation and all the boundary conditions with the exception of those on

the mean free surface and the body. Substituting (2.14) into (2.11) and (2.13) for

each order, the modal amplitudes y(m)(t) and (m)(t) are determined successively for

m = 1,..., M, in terms of the known surface elevation 77(x, t) and potential S(x, t).

After the boundary-value problems for 4~(m) are solved up to the desired order M,

the vertical velocity on the free surface is given by

M M-m 7t 0Zt+1
· (xlt) = CE e! d.L0+ (-)( 0, t). (2.15)

m=l =O
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The vertical derivatives here (and in (2.11)) are obtained in terms of the modal

amplitudes:

()(x, 0,t) = m) (t) 'Fn (x,0) + E an)(t) z ,(x,0) (2.16)
n=O0 = 0

Thereafter, higher derivatives are found by using Laplace's equation (e.g., (-) =

-(m) - (), (zz) = -(4im)),- ((zm))~, ...), and the (, y)-derivatives are easily
evaluated in the spectral space. The evolution equations (2.8) can then be integrated

for the new values of · s and ri. The process is repeated starting from initial condi-

tions. The potential on the body is available from (2.14), and the pressure on the

body SB(t) can be evaluated according to (2.4).

Note that the basis functions TFn and g'Bn, in general, depend on the body ge-

ometry and the periodic domain. A straightforward way to construct these functions

is to treat them as the influences of certain singularity distributions on the mean free

surface and the body. For high-resolution calculations and minimum computational

effort, in practice, we make them orthogonal so that the convergence of (2.14) is

exponentially rapid with increasing the numbers of spectral modes.

2.3 Implementation

The time simulation of the nonlinear wave-body problem up to an arbitrary order

M consists of three main steps. Beginning from initial values for S and q7, at

each successive time step: (i) solve the boundary-value problem for the perturbation

velocity potentials (m)(x,z, t), m = 1,... ,M; (ii) evaluate the vertical velocity at

the free surface OZ(X, , t); and (iii) integrate the evolution equations (2.8) forward

for S(x, t + At) and 7(x, t + At); and the process is repeated.

In practice, the numbers of free-surface and body spectral modes are truncated at

some suitable numbers, say, NF for IFn and NB for 1Bn. Given the boundary-value

problems for ( "m), m = 1,...,M, the modal amplitudes p(m)(t), n = O0,... ,NF, and

n(m")(t), n = 0,... , NB, are determined by satisfying the Dirichlet and Neumann con-
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ditions at NF and NB control points on the mean free surface and body respectively.

The resulting NF + NB linear equations can be formally represented as:

[C,,,]M(m) + [C4,]a(m) = {f(m)} 1
(2.17)

[C¢,,]L(m) + [C].]a(m) = {B(m)} J

where [C,,], [C], [Cs,], and [C,,] are respectively the NF x NF, NF x NB, NB x NF,

and NB x NB modal influence matrices given in terms of the basis functions; and p(m),

r(m), the vectors of the unknown modal amplitudes p(m), n = 0,..., NF, and ?(m),

n = 0, ... , NB. Solving these equations, we obtain, again formally:

,(m) = [Taf]{f(m)} + [Tab]{B(m)} 

(2.18)

() = [T,] { f(m)} + [T,]a(m) J
where [Tif] (NB x NF), [T.b] (NB x NB), [TIf] (NF x NF), and [Tw] (NF x NB), are

related to the inverses of the influence matrices in (2.17).

Once L("m) and o("m) are obtained, the perturbation vertical velocities at the control

points on the free surface follow from (2.16), which take the form:

{(mz"} = [W,](m) + [W,]c.(m) , (2.19)

where [W,] (NF x NF), and [W,] (NF x NB) are known matrices given by (2.16) in

terms of the basis functions.

In practice, the boundary-value problems are solved using a pseudo-spectral ap-

proach, wherein all the spatial derivatives are evaluated in the spectral representation,

while nonlinear products (such as those in (2.11)) are computed in physical space at

the discrete control points. The rapid transformations between the representations

are effected by fast-Fourier transforms (FFT's).

It is important to note that in the present high-order method, the [T] and [W] ma-

trices in (2.18) and (2.19) are functions of the mean geometry only. Therefore, they
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are independent of time and need to be evaluated only once for the entire simula-

tion. More significantly, since for typical applications (especially for three-dimensional

problems), NF >> NB, in the spectral approach, the NF x NF matrices [Tmf] and

[W,] need not be explicitly realized as the contributions [T,f]{f(m)} and [W4,]#(m)

can be evaluated in O(NF n NF) operations via FFT. Consequently, the net com-

putational effort is approximately proportional to NF and not NF. Specifically, the

total operational count of the method is [O(MNF ln NF) + O(MNFNB)] per time

step, with an initial set-up effort of [O(NBNF) + O(NBNF In NF)].

With the surface vertical velocities thus obtained from (2.19) and (2.15), the

nonlinear evolution equations (2.8) can be integrated as a coupled set of nonlinear

ODE's. We employ the fourth-order Runge-Kutta (RK4) scheme which requires twice

as many evaluations as the commonly used multi-step predictor-corrector (e.g., the

Adams-Bashforth-Moulton, ABM) methods of the same order but has a somewhat

lower global truncation error and a larger stability region (see, e.g., Dommermuth et

al. 1988).

2.4 Error considerations

The main sources of computational error for the present high-order wave-body sim-

ulations are: (i) errors due to truncation in the numbers of spectral modes NF, NB,

and the perturbation order M; (ii) error due to the finite (periodic) computational

domain for a given simulation time, Ts; (iii) amplification of round-off and truncation

errors; (iv) aliasing errors of the pseudo-spectral method; (v) errors due to numerical

time integration; and (vi) for estimates of mean and harmonic force coefficients etc.,

errors due to the finite simulation time, Ts, of the initial-value problem.

2.4.1 Errors due to truncation of modes NF, NB, and order

M

For sufficiently smooth 7 and °, the numerical error in the spectral representations of

(m), m = 1, .. , M, vanishes exponentially as NF and NB oo. Similarly, for mild
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nonlinearities, the truncation errors after order M is 0(EM+l ), and the convergence is

exponential with increasing M. As pointed out after (2.10), such convergence ceases

beyond a certain wave steepness. For regular Stokes waves, the maximum wave

steepness for exponential convergence of the method is found to be = kA ', .35 (see

DY Table 1). The corresponding maximum local slope is L (/X),maz - .38.

In the presence of a submerged body, the incident Stokes wave steepness is neither

the limiting nor useful parameter due to local wave steepening over the body. Using

eL instead, our present calculations with a body confirm the result of DY based on

Stokes waves. It is important to point out that converged results (not necessarily

exponentially fast) for large local slopes up to EL - 1.5 can and have been obtained

in the present simulations (see also DY figures 2 and 5).

2.4.2 Error due to the finite computational domain

For a computational domain fixed relative to wavelength and body dimension, the

solution in the near field of the body will eventually be distorted due to 'reflections'

from the periodic boundaries as the simulation time Ts is increased. This error is

avoided by successively increasing the sizes of the periodic domain until the quan-

tities of interest no longer vary. We remark that with the O(NF) efficiency of the

present method, the computation cost increases only linearly with the area of the

computational domain.

2.4.3 Amplification of round-off and truncation errors

In any computational model without dissipation, nonlinear interactions cause energy

in the lower modes to cascade to higher modes which eventually accumulates at the

highest wavenumbers retained in the model. As pointed out in DY, this is accompa-

nied by an amplification of numerical error in the modal amplitudes which increases

with the mode number. This combined effect is the root cause of large wavenumber

instabilities in our nonlinear simulations. To avoid such instabilities, we follow DY
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and apply an ideal numerical low-pass filter in the Fourier space:

AI(n,y) = for n < -yNF (2.20)
0 for n > NF

Typically, we apply AI with y = 0.8 to the spectra of 77 and D" every five time steps.

2.4.4 Aliasing errors

In a pseudo-spectral approach, the product h= fg, represented respectively by Fourier

modes h f,, gn, n < N, are performed in physical space at equally-spaced points.

This results in aliasing errors due to the finite Fourier representations. It is well

known that the best approximation (in the mean square sense) to the product is the

so-called alias-free sum (e.g., Orszag 1971). To obtain this, we double the number

of Fourier modes and the number of collocation points to 2N, calculate the product

H = FG, as before in physical space, where (Fn,Gn) = (f,,gn) for In < N and

(Fn, Gn) = (0, 0) for N < InI < 2N, and define the alias-free product, h, by hn = Hn

for nl < N. For products involving two or more terms, the multiplication is done

successively where each factor is made alias-free before multiplying by the next term.

2.4.5 Errors due to numerical time integration

The fourth-order Runge-Kutta (RK4) scheme we use is conditionally stable for the

linearized equation for gm,,At 2 < 8, where ,,= is the maximum grid (Nyquist)

wavenumber. This should be a necessary condition for the nonlinear problem. The

local truncation error of RK4 is O(At 5 ), so that the global truncation error for Ts =

0(1) is fourth-order in At.
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2.4.6 Errors in the estimation of mean and limit-cycle force

coefficients

One of the main interests in the study of wave-body interactions is the mean and

harmonic force components on the body. To obtain them from the initial-value sim-

ulation, we define for definiteness

i /o +T t
F(= I F(t)e-i dt , (2.21)

where F(t) is the time-dependent force on the body, T the fundamental period (of the

incident wave), w = 27r/T, and r0 a time interval selected so that limit-cycle values

are obtained. The (rapid) convergence of F with ro is an important and desired

property.

2.5 Relation to frequency-domain perturbation

results

Although the present approach is strictly a time-domain (initial-value problem) one,

and steady and harmonic amplitudes are obtained via harmonic analysis of the limit-

cycle time histories, these results can be related in a direct way to the linear and

higher-order components of perturbation methods in the frequency domain. In a

typical frequency-domain approach, the time dependence is factored out explicitly

and the velocity potential written as:

00

n=O

where w = 2r/T. Each qn is then expanded in a perturbation series in the wave

steepness, e:
o

n = E Em,(m), (2.23)
m=l
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and the boundary-value problems for (m) are solved. In the present method, the

initial-boundary-value problem for (x, z, t) is integrated accurately to the specified

order M in e. Despite the truncation at M (cf. (2.9) and (2.10)), the presence of

the nonlinear terms in (2.8) eventually causes all time harmonics to be present in A,

in fact in each (m). Upon reaching limit cycle, the (complex) amplitudes of these

harmonics are then extracted via Fourier decomposition:

(m") = -1 , +()(t)eitdt n = 1,2,...; m= 1,2,...,M. (2.24)T To

It should be pointed out that, in general, (m), n > m (and also n = 0, m = 1), are

small as expected but do not vanish. In the high-order time-domain approach, there

is no direct relationship between m-th order terms in (2.24) and those in (2.23) (cf.

(2.11)). For direct comparisons then, it is useful to define the amplitude:

M

O<M> E +(m) 7 = 1 2,..., (2.25)
m=l

where M is the order of the simulation. Note that the magnitude of q<M> is O(En)

except for q0<M> which is of second order. With this notation, then, the amplitudes

in (2.23) and (2.25) are related by:

(2) = 0<2> + 0(E3) It ~ (2.26)
+(n) <M> + O(+l) n > 0, and M > n; On n n>O, andMn;

while such simple relationships cannot, in general, be written for the amplitudes in

(2.24). Similar formulae and results apply also to other quantities such as forces,

wave amplitudes, etc. We remark that, in some sense, the present results are more

'physical' in that they correspond directly to what one might measure in a laboratory.
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2.6 Conclusions

Based on time-domain perturbation expansions and using mode-coupling approach,

a high-order spectral method is developed for the study of nonlinear wave-body inter-

actions. The method accounts for the nonlinear interactions among NF wave modes

on the free surface and NB source modes on the body up to an arbitrary order M

in wave steepness. By using fast-transform techniques, the operational count per

time step is only linearly proportional to M and NF (typically NF >> NB). For

a (closed) submerged body in moderately steep waves, the exponential convergence

with respect to M, NF, and NB is obtained. The efficiency and accuracy of the spec-

tral method provides a computational capability for high-resolution calculations not

readily available using other numerical methods employing direct surface or volume

discretizations.

In chapters 3-7, we apply this method to investigate nonlinear interactions between

surface waves with submerged bodies. In chapter 8, this method is extended to the

study of nonlinear wave-bottom interactions. The finite-depth effect can be easily

included by the present method. This is considered in appendix C. With slight

modification in the implementation, the present efficient computational method can

be used to simulate the evolution of an ocean wave field including long-short wave

interactions. For this purpose, some analytical results for the calculation of free-

surface vertical velocity are summarized in Appendix D.

Finally we point out that for a general nonlinear problem, it is known that a

sinusoidal forcing may not necessarily lead to a steady periodic response at the driving

frequency in the limit of large time (e.g. Aranha et al. 1982). This implies that the

solution obtained using the frequency-domain approach may be unrealistic. From this

point of view, the time-domain approach would be superior to the frequency-domain

scheme for general wave-body/bottom problems.
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Chapter 3

Nonlinear wave diffraction by a

submerged circular cylinder

As a special application of the high-order spectral method, in this chapter, we study

the nonlinear diffraction of Stokes waves by a fixed and submerged circular cylinder.

This is a special nonlinear problem for which the horizontal drift force on the cylinder

vanishes up to second-order in wave steepness according to linearized potential theory.

By including high-order free surface effects, we show that the horizontal drift force is

negative and of fourth-order in magnitude. This prediction agrees well with experi-

mental measurements. It is found that the dominant contribution of this force is due

to the quadratic interaction of first- and third-order first-harmonic waves rather than

the self-interaction of second-order second-harmonic waves, which in fact reduces the

negative drift force.

Wave diffraction by a submerged circular cylinder is a well studied problem for

which a number of established theoretical, computational and experimental results

are available. Using conformal mapping, Dean (1948) found, to leading order in wave

steepness, that a circular cylinder held fixed under waves does not reflect waves, and

transmitted waves merely experience a change in phase but not amplitude. Ursell

(1950), using a multipole expansion, found the complete linear solution and showed

that it was unique. Following Ursell's approach, Ogilvie (1963) showed that the linear

potential leads to a mean (second-order) vertical force but that the horizontal mean
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force at second order vanishes identically. This result agrees with the prediction from

a far-field formula of Maruo (1960), but is in contrast to experimental observations

(e.g., Salter et al. 1976) that a free cylinder just awash experiences a negative drift

force which causes it to move towards the wavemaker.

Longuet-Higgins (1977) suggested that this negative drift force can be attributed

mostly to wave breaking, and, to a lesser degree, to the second-harmonic component

of the transmitted wave. The measurements of Miyata et al. (1988) and Inoue & Ky-

ozuka (1984) do not support all of Longuet-Higgins' predictions. They found that as

the cylinder was moved closer to the free surface, which led to more intense breaking,

the negative horizontal drift force was actually reduced and ultimately reversed sign.

Using a Stokes expansion, Vada (1987) solved the second-order (frequency-domain)

diffraction problem but was unable to calculate all the terms (at fourth order) of the

non-vanishing mean horizontal force, since third-order potentials are involved (see

§3.3.4). For the second-order oscillatory forces, however, Vada's results were in good

agreement with the measurements of Chaplin (1984), thereby confirming Chaplin's

suggestion that inviscid flow models would be good for Keulegan-Carpenter numbers

less than about two for second-order forces. As pointed out by Chaplin, however, this

is not necessarily true for first-order forces (see §3.3.3).

A number of fully-nonlinear (time-domain) computations of this problem were

also attempted. Vinje & Brevig (1981) used the mixed Eulerian-Lagrangian method

of Longuet-Higgins & Cokelet (1976) to study the forces acting on a cylinder under a

breaking wave, but their results were only qualitative. Using a similar method, Cointe

(1989) obtained higher-order harmonic forces and transmission coefficients but did not

focus on the question of the mean horizontal drift force. Stansby & Slaouti (1983)

used the method of Zaroodny & Greenberg (1973) to study the forces on cylinders

under waves and found that steady-state was rapidly approached. No conclusions

were made, however, regarding the steady forces.

For the reflected and transmitted waves, the theoretical prediction of Dean (1948)

and Ursell (1950) of no leading-order reflected waves was confirmed by the measure-

ments of Chaplin (1984) to even higher order for mild waves. Grue (1991) performed
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a careful set of experiments which showed that the transmitted waves are, however,

significantly affected by nonlinear wave interactions over the submerged body. Moti-

vated by these results, there are a number of recent theoretical demonstrations (Friis

1990; McIver & McIver 1990; Wu 1991) of the fact that the reflection coefficient

is identically zero to second order. The most general result to date is the work of

Palm (1991), who proved that the leading order component of any harmonic of the

reflected wave also vanishes. These analytical results and experimental observations

are confirmed by our numerical computations of high-order (up to M = 3) reflected

and transmitted waves in §3.3.2

We use the high-order spectral method to solve the present nonlinear wave-body

interaction problem up to the order M = 4 in the incident wave slope. Extensive con-

vergence tests are performed and presented in §3.2. In §3.3, numerical computations

for nonlinear diffraction of a submerged circular cylinder are presented and compared

to available measurements and theoretical predictions. Results are given for the non-

linear mean and harmonic amplitudes of the diffracted waves and oscillatory forces,

with a special emphasis on the horizontal drift force on the cylinder.

3.1 Computational issues

Consider the wave diffraction by a submerged circular cylinder in deep water. The

high-order spectral method is used to solve this problem up to an arbitrary order

M. With initial-value simulations, we obtain the transient solutions for the nonlinear

forces on the body and the high-order diffracted wave field. The frequency harmonic

amplitudes are extracted via the Fourier transform of steady-state time histories.

For numerical computations, we choose a global Cartesian coordinate system (, z)

which is located at the mean water level directly above the cylinder center with z

positive upward and z positive in the direction of wave propagation. A local cylin-

drical coordinate system (r, 0) is placed at the center of the cylinder, which is at a

depth H below the mean water level. Thus, r2 = 2 + (z + H)2 and is measured

counter-clockwise from positive x.
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For the zero speed problem, the base flow is chosen to be 4 = 0. In the horizontal

direction, periodic boundary conditions are imposed far upstream and downstream,

say at x = ±L. On the body, normal velocity vanishes:

Qm)(R, , t) = O m = 1, , M (3.1)

for 0 < 8 < 2r, where R is the radius of the cylinder. The velocity potential at

each order m = 1,...,M is represented in terms of global free-surface and body

basis functions, IQFn and Bn. The modal amplitudes are determined through the

imposition of Dirichlet and Neumann conditions on the mean free surface and the

body. For NF free-surface and NB body modes, the convergence of the solution with

NF, NB and M is exponentially rapid. This spectral accuracy allows us to obtain high-

resolution results for nonlinear quantities such as the forth-order negative horizontal

drift force on the body.

3.1.1 The basis functions

To construct the basis functions Fn(x, z) and B,(zX, z), we distribute dipoles p(x)

over the mean free surface, and sources (O) on the circular cylinder. Since i(x)

and cr(8) are 2L- and 2ir-periodic in x and respectively, we expand them as Fourier

series:

(X) = ein7r/L ) = e , (3.2)= one (3.2)
n=O n=O

where real parts of the complex quantities are implied. The basis functions can then

be considered as the influences of the n-th mode dipole and source distributions on

the mean free surface and body respectively. In terms of the Fourier integrals, they

can formally be expressed as:

FFn(X ,Z) = J ein '/LGz,(x, z; ',O)dx' , (3.3)

rB(X, Z) = ein'G(r, 8; R, 8')Rd', (3.4)

47



where G(z, z; x', z') is the 2L-periodic source potential in two dimensions:

2 i - ' 2 '.
G(x,z;x',z') = 1og sin2( 2L/ ) + sinh2( L ) (3.5)

3.1.2 Numerical implementation

The time simulation of the present nonlinear problem up to an arbitrary order M

consists of three main steps. Beginning from the initial values for i' and 77, at

each successive time step: (i) solve the boundary-value problem for the perturbation

velocity potentials ()(X,z,t),m = 1,...,M; (ii) evaluate the vertical velocity at

the free-surface ,(z, ,t); and (iii) integrate the evolution equations (2.8) forward

for 4'(x, t + At) and 7(x, t + At); and the process is repeated.

In solving the boundary-value problem, in practice, the series in (3.2) and (2.14)

are truncated at suitable numbers, NF and NB. For sufficiently smooth surface ele-

vation v and potential d', the convergence of (3.2) and (2.14) with respect to NF and

NB is exponential. NF and NB control points on the mean free surface and the body

are equally spaced in x and so that the rapid transformations between spectral and

physical representations can be effected by the FFT's. Thus, the computational effort

is linearly proportional to NF only (usually NF > NB).

For the time integration of the nonlinear evolution equations (2.8), the fourth-

order Runge-Kutta scheme is used. The resulting global error is expected to be

O(At/T) 4 . As initial conditions, we choose exact deep-water Stokes waves of steepness

= kA (2A *rmaz - 77min), wavelength A = 2L/N,, i.e., N,, complete waves in the

periodic domain [-L,L], and period T. To calculate the initial values (zx,O) and

s(zx, 0), we follow Schwartz (1974), but solve the mapping (Schwartz' Eqs. 2.6) by

direct numerical iterations.

3.2 Numerical convergence tests

Before focusing on the nonlinear solution of the wave-body problem, we first perform

systematic numerical tests to verify the accuracy and convergence of the present
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Table 3.1: Convergence of the normalized horizontal drift force, P/pgAZ2 , on a
submerged circular cylinder with increasing number of wavelengths N, of the periodic
domain and for different order M. kA=0.04, kR=0.4, HIR = 2; and NF=64N,,
NB=256, T/At=64, r0 =5T.

NB M=2 M=3 M=4
64 -1.0656 -1.0845 -1.0880
128 -1.0778 -1.0869 -1.0900
256 -1.0784 -1.0876 -1.0907

Table 3.2: Convergence of the normalized horizontal drift force, FP/pgA2 e2, on a
submerged circular cylinder with increasing number of body modes NB and order M.
kA=0.04, kR=0.4, H/IR = 2; and N,=16, NF=64N,, T/At=64, r0=5T.

method. For specificity, we consider only the horizontal (mean) drift force F, on the

submerged circular cylinder. This offers a severe test on the accuracy of the high-

order method since the horizontal drift force is zero up to second order (Ogilvie 1963)

and its magnitude is (at most) fourth-order in the incident wave steepness.

Table 3.1 shows the results for the horizontal drift force for increasing N, , keeping

kA, kcR and kH fixed. For N,=16, FP shows convergence up to three significant

figures. The convergence with number of body modes, NB, keeping NF and other

parameters fixed, is shown in table 3.2. For a given order M, FP converges to its limit

exponentially fast as NB is increased, although NB needs to be sufficiently large for

the exponential convergence with M to take place.

Similar rapid convergence with respect to the number of free-surface modes, NF,

and with order M is displayed in table 3.3 for a range of incident wave steepness,

e = kA. Again, the exponential convergence with NF is achieved for any M, while

that with M requires first that NF is adequately large. When the maximum local

slope, L, of the free surface (typically above the cylinder) exceeds 0.4, however,
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Nw, M=2 M=3 M=4
8 -1.0650 -1.0750 -1.0800
16 -1.0784 -1.0876 -1.0907
32 -1.0800 -1.0890 -1.0920



Table 3.3: Convergence of the normalized horizontal drift force, P3/pgA2 e2 , on a
submerged circular cylinder with number of free-surface modes NF and order M for
different incident slopes e = kA. kR=0.4, H/R = 2; and N,=16, NB=256, T/At=64,
r0 =5T.

the convergence becomes only algebraic. This has occurred, for example, for the case

of e-.16 in table 3.3.

We next show the approach to the steady-state limit (limit-cycle) of the forces on

the cylinder by considering the convergence of (2.21) with r0 . This is shown in table

3.4 for different order M. The steady-state limit is reached rapidly after r0 - 2T.

Finally, we show the convergence of the numerical time integration with At in table

3.5. The expected O(At/T) 4 global error is obtained provided that the solution to

Table 3.4: Convergence of the normalized horizontal drift force, FP_/pgA2 E2 , on a
submerged circular cylinder with duration of simulation r0 and order M. kA=0.04,
kR=0.4, H/R = 2; and NU=16, NF=64:,, NB=256, T/At=64.
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NF/N, M=2 M=3 M=4
.04 32 -1.0479 -1.0520 -1.0550

64 -1.0784 -1.0876 -1.0907
128 -1.0804 -1.0898 -1.0930

.08 32 - .9399 -.9617 -.9717
64 -1.0083 -1.0435 -1.0561

128 -1.0072 -1.0432 -1.0588
.12 32 -.8276 -.8713 -. 8885

64 -. 8977 -.9722 -1.0079
128 -.9102 -.9643 -.9910

.16 32 -. 7365 -.8152 -.8427
64 -. 7512 - .8620 -.9438

ro/T M=2 M=3 M=4
0 -5.8477 -5.9392 -5.9414
1 -. 9742 -.9811 -. 9821
2 -1.0724 -1.0847 -1.0869
3 -1.0877 -1.0919 -1.0941
4 -1.0662 -1.0916 -1.0926
5 -1.0784 -1.0876 -1.0907



Table 3.5: Convergence of the normalized horizontal drift force, FP/pgA2 e2 , on a
submerged circular cylinder with integration time step At and order M. kA=0.04,
kR=0.4, H/R = 2; and N,,=16, NF=64N,,, NB=256, r0=5T.

the boundary-value problem itself is sufficiently accurate.

Unless otherwise stated, for all subsequent computations, we use N,=16, NB=256,

NF=64N,, 0 =5T, and At = T/64. Based on the foregoing numerical tests, we

anticipate the maximum error for F. to be less than 1%.

In addition to these convergence tests, all our computations are checked for the

conservation of volume, J'L rdx, or alternatively the vanishing of the volume flux,

fL ?tdx; as well as the invariance of the total energy:

f VSSds + f/2dx , (3.6)

where Us is the normal velocity on the free surface SF, and the first and second terms

are proportional respectively to the kinetic and potential energies. For all later results

we present, the volume flux is within - 10- 5, and the volume and total energy do

not deviate by more than 1% from their initial values.

The force on the cylinder can also be obtained by applying the momentum theo-

rem:

-, = | tnRdO + d nds, (3-7)
P dt

where the unit normal vector n is positive into the fluid domain. In all cases, the

force from (3.7) compares well with that obtained by direct integration of the pressure

(2.4) over the body surface. For the fourth order horizontal drift force in §3.3.4, for

example, the difference between the two is always less than 1%.
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T/At M=2 M=3 M=4
32 -1.0766 -1.0862 -1.0893
48 -1.0775 -1.0868 -1.0900
64 -1.0784 -1.0876 -1.0907



Ogilvie (1963) Vada (1987) Present Results
F.,/pgRA 1.15 1.15 1.1406 (M=1)
Fz 2/pgA 2

- .28 0.2754 (M=2)
T2 /kA -I 2.65 2.7025 (M=2)

Table 3.6: Comparisons between existing frequency-domain and the present time-
domain results for the (normalized) first- and second-harmonic horizontal force and
the second-harmonic transmission coefficients. kR=0.4, H/R = 2 and kA=0.08.

3.3 Numerical Results

We consider the diffraction of Stokes waves by a fixed, submerged circular cylinder.

We present results for the high-order diffracted wave amplitudes, the oscillatory force

coefficients, and finally the mean forces on the cylinder. Comparisons to theoretical,

computational and experimental results are made whenever they are available.

3.3.1 Verification of the relation between time- and frequency-

domain perturbation results

With the present high-order time-domain approach, the steady and harmonic ampli-

tudes are obtained via Fourier analysis of the limit-cycle time histories. As discussed

in §2.5, they can be directly related to the results obtained from the frequency-domain

perturbation methods by a simple formula (2.26). To verify the relationship, table 3.6

shows the correspondences (2.26) for the normalized harmonic forces and transmission

coefficient. The frequency-domain values are taken from Ogilvie (1963) (first order)

and Vada (1987) (second order). The discrepancies between the present time-domain

and existing frequency-domain results are indeed of O(e) or less. This confirms the

relation in (2.26).

3.3.2 Diffracted waves

For the diffraction of surface waves by a submerged circular cylinder in deep water,

Dean (1948) and Ursell (1950) show that the linear potential produces no reflected
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waves and all incoming waves are transmitted downstream. This is confirmed ex-

perimentally by Chaplin (1984), suggesting further that the reflected waves may be

small even to higher order. Recently, Palm (1991) proves analytically that the lead-

ing order part (at order m) of wave mode of frequency mw is not reflected. For the

transmitted wave, however, experiments by Grue (1991) show that the amplitudes are

significantly affected by the nonlinear interactions between the cylinder and the free

surface. Here we compare the high-order spectral method predictions of the reflected

and transmitted wave amplitudes to these analytical and experimental results.

Expecting the reflected wave amplitude to be at most O(e2 ), we write the free

surface elevation far upstream of the cylinder as:

1 2,7(x, t) = al cos(kx - wt) + 2ka, cos 2(kx - wt) + 8 k2a cos 3(k - t)

+ a' cos(kx + wt + 6) + a' cos(4kx + 2wt + 58) + a' cos(9kx + 3wt + 83)

+ 0(e4 ), < O . (3.8)

Similarly, far downstream we write:

7(x, t) = b cos(kx - wt 1)+ ) + kb cos2(kx - t + 1)

+ 8 k2b cos 3(kx -wt + ) + b2 cos(4k - 2wt + 8 2)

+b3 cos(9kz - 3wt + 53) + 0(E4), X > 0. (3.9)

The reflection and transmission coefficients for each harmonic are defined accordingly

by R1 = a/a,, R2 = a'/al, R3 = a'/a 1 , and T1 = bi/al, T2 = b2/al, T3 = b3/a1, etc.

In numerical simulations, we record the time series of the free-surface elevation at

a location far upstream (at x = -8R), and another far downstream ( = 8R), the

latter corresponding to the measurement position of Grue (1991). At these positions,

the limit cycle for the surface elevation up to third harmonics is approached after

typically ro/T 7-8. (The simulations themselves are typically stopped after 10T

before any appreciable effects due to images of the periodic boundaries are felt.) The

harmonic amplitudes of the transmitted and reflected waves are then obtained via
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n=M = 1 n=M = 2 n = M = 3
{RI<M> o0.0250 0.0025 0.0003

Table 3.7: Harmonic amplitudes of the reflection coefficient for the diffraction of
Stokes waves by a submerged circular cylinder, kA=0.05, kR=0.4 and H/R = 2. The
numerical parameters are N.=16, NF=64N,, NB = 256, T/At = 64, and ro = 9T.

Fourier analysis of the limit-cycle time histories at these two locations.

To study the effect of nonlinearity on wave reflection and transmission, we first fix

kR = 0.4 and kH = 0.6, and consider the dependence of R, and Tn on the incident

wave slope kA. For the reflected wave amplitudes, the dominant contribution for each

n > 0 harmonic is at order m = n, i.e., R(). In view of (2.26), this can be estimated

to leading order by R <n > . Table 3.7 shows a typical example for kA = 0.05. It is seen

that R<n> n = 1,2, 3, is at most of O(e") and is at least one order higher than the

transmission coefficients (which are 0(1)). These (limited) results provide a direct

numerical confirmation of the analytical predictions of Palm (1991).

The dependence of the first-harmonic transmission coefficient, T, on incident

wave steepness e = kA is shown in figure 3-1. For linear theory, T1 1 and is

not a function of e. However, the measurements of Grue (1991) show that T1 in

fact decreases appreciably from 1 as e increases. Our converged numerical results

confirm this nonlinear dependence quantitatively up to e - 0.08. (Beyond e - 0.08,

extensive wave breaking over the cylinder is reported by Grue (1991). For clarity,

these experimental data points are omitted from this and subsequent figures.) From

figure 3-1, we also conclude that it is necessary to include third-order (M = 3)

contributions to correctly account for the behavior of T1.

Figure 3-2 shows the comparisons for the second-harmonic transmission coefficient

T2 among our high-order numerical results, Vada (1987)'s second-order frequency-

domain computations, and Grue (1991)'s experimental data. The strong nonlinear

interactions over the cylinder result in a significant reduction of T2 from the second-

order perturbation result (which predicts a linear dependence on e). Although our

numerical results show some indication of convergence at M=4, comparison to the
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measured data indicates that even higher order effects are present in T2 for near-

breaking conditions.

Figure 3-3 summarizes the dependence of transmitted wave amplitudes on e = kA

for this case (kR = 0.4, kH = 0.6). Also shown are our predictions for T3 and

T4 which have been obtained for the first time. It is interesting to note that as 

increases beyond -0.055, T2 decreases while T3 continues to grow, so that for steep

waves (e >- .065) T3 becomes greater than T2. A direct experimental confirmation for

these very high harmonics, however, may be difficult and has not yet been obtained.

We caution that the present results for Ts3 and T4 have been obtained up to M=4

only. Although the dominant components are included, higher values of M may lead

to some reductions of their amplitudes (cf. figure 3-2).

Finally, we study the dependence of T, on the body submergence H/R by fixing

kR = 0.4, kA = 0.08 and consider varying kH. The numerical results for T and

T2 are shown in figure 3-4. For this case, two experimental points at H/R=1.5 and

2 are available from Grue (1991). For large HIR, T approaches 1 rapidly, while

T2 decreases monotonically. The coefficients are overpredicted by these asymptotes,

however, as the cylinder approaches the surface and nonlinear effects evidently be-

come important. This is seen from the differences among the results for M = 2, 3,

and 4. Indeed, comparison with experimental data suggests that even higher-order

interactions play a role.

3.3.3 Oscillating forces

As demonstrated in table 3.4, limit cycle for the force time history is reached rapidly

after ro/T 3. The amplitudes of the force harmonics are then obtained using

Fourier analysis (with ro/T=5).

Figure 3-5 shows the comparisons for the first-harmonic horizontal force amplitude

F, 1 among our high-order (M = 4) numerical results, linear (potential flow) analytic

solution (Ogilvie 1963), and experimental measurements of Chaplin (1984). Following

Chaplin, we plot F1 here as a function of the Keulegan-Carpenter number defined

as KC = re-kHA/R, which is based on linear deep water waves. Comparing just the
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theoretical and computed results, it is remarkable that the first-harmonic amplitude

is affected very little by nonlinear effects at least up to Kc 1. On the other hand,

as suggested by Chaplin, effects of (clockwise) circulation around the cylinder result

in a sharp decrease of Fl 1 for Kc > 0.5 (possible effects of flow separation and

wave breaking also cannot be ruled out). Our numerical results also show a reduction

due to nonlinear diffraction but the magnitude is small compared to that due to

circulation or real fluid effects.

In direct contrast to the first-harmonic force, circulation does not appear to affect

the higher-harmonic forces as shown in figure 3-6 for F_2 and F 3 . The higher-order

(potential flow) results are in excellent agreement with Chaplin's data up to Kc 1,

beyond which the effects of wave breaking most likely are important. The computed

data also readily confirm the expected quadratic and cubic dependencies respectively

of F, 2 and F 3 on the Keulegan-Carpenter number.

3.3.4 Mean forces

We finally turn to the steady (drift) forces on the cylinder which is the main focus of

this study.

First, we show the dependence of mean forces on body submergence by varying

kH with fixed kR = 0.4 and kA = 0.12. This is shown in figures 3-7 and 3-8 where

our high-order calculations using M = 2, 3, 4 are compared with the measurements of

Miyata et al. (1988). The horizontal drift force F2, figure 3-7, is negative (against the

direction of wave propagation) with a magnitude which increases, as expected, with

decreasing submergence. Except for relatively shallow submergence, HIR < 1.75,

the numerical predictions agree well with measurements. Since our computations do

not account for wave breaking, it is evident that nonlinear diffraction effects rather

than wave breaking is the dominant cause of the negative drift force. For HIR <a

1.75, extensive wave breaking is observed in the experiments, and the magnitude of the

negative drift force is smaller compared to the diffraction results. This provides some

evidence that the presence of wave breaking may lead to positive mean horizontal

forces on the cylinder.
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For the mean uplift force Fz, figure 3-8, our numerical results compare well with

both the second-order analytic solution (Ogilvie 1963) and the measurements of Miy-

ata et al (1988). Higher-order interactions and wave breaking effects are evidently

less important for the vertical mean force.

It is clear that since FP,=0 up to second order in wave steepness (Ogilvie 1963),

the next available contribution is at most fourth order. Likewise, one may expect

a fourth-order correction to the second-order F.. These expectations are confirmed

by our calculation of the mean forces for varying incident wave slopes kA (fixing

kR = 0.4 and kH = 2.0). Figure 3-9 shows the numerical results (M=2,3,4) for

F, and F, which have been normalized by their expected leading-order magnitudes

proportional to 4 and E2 respectively. As expected, these normalized values approach

constant asymptotes for small kA. For the mean uplift force, this asymptote is well

predicted by the second-order value based on the (analytic) first-order potential only.

Hereafter, we concentrate on the 'truly' nonlinear horizontal drift force.

To assist us in understanding the horizontal drift force results, it is useful to obtain

an estimate based on the conservation of energy and linear horizontal momentum. We

neglect wave reflection (cf. §3.3.2) and consider the incident/transmitted wave am-

plitudes far up/down stream of the body. Let a, and b be the n-th harmonic of the

incident and transmitted wave amplitudes respectively. Following Longuet-Higgins

(1977), we further assume that all a, b, n = 1, 2,... are of the same order of mag-

nitude and consider only 'bi-linear' interactions. With this assumption, application

of the conservation of horizontal momentum yields an expression for the horizontal

drift force which, to leading order, is given by:

F = b4n (3.10)
n=l

From the conservation of energy, a and bn are related by

Ea 2/n = Eb 2/n. (3.11)
n=l n=l1

For Stokes incident waves, the first-harmonic amplitude a is much greater than all
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other harmonics, so that we can neglect all a,, n > 1 terms in (3.10) and (3.11).

Substituting (3.11) into (3.10), we obtain finally

F = -Pg E b'(n- 1)/n. (3.12)
n=2

Equation (3.12) provides a way to estimate F, given the transmitted wave harmonic

amplitudes, and is a generalization of a result of Longuet-Higgins (1977) who included

the first (b2 ) term only. Note that in view of the 'hbi-linear' assumption, higher-order

interaction terms involving different harmonics (especially in the transmitted waves)

are neglected in (3.10) and (3.11). Therefore (3.12) must be considered only as an

approximate formula valid primarily for small wave steepness.

The prediction using (3.12) based on computed transmitted wave amplitudes is

compared to that obtained by direct pressure integration in figure 3-10, where FP, is

plotted as a function of kA. For small wave slopes, kA <- 0.03, (3.12) with only b2

provides an adequate estimate. As kA increases further beyond -0.05, b2 reaches its

maximum (cf. figure 3-3) and consequently also the estimated drift force based on ba,

while the actual FP continues to increase. The prediction based on (3.12) is improved

if third harmonic transmitted waves are taken into account, and the discrepancy is not

appreciable until after kA 0.05. Not completely unexpected, applications of (3.12)

with even higher transmitted wave harmonics included (not shown) do not produce

appreciable further improvements unless wave reflection and higher-order interactions

are also considered. In so far as independent ways are used to obtain F,, figure 3-10

can be considered a further validation of our predictions of the fourth-order negative

drift force.

In the context of a frequency-domain perturbation approach, we see from the

expression for the pressure on the body (2.4) that steady forces must be due to

quadratic interactions of the perturbation potentials (m). Specifically, the horizontal

drift force on the circular cylinder is given, up to fourth order in the wave slope, by:

F dO R cos B (Vl1 . ) 
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+2'V(1) V(3)* + V( 2 V 2)* + + c.c.) , (3.13)
1 1 

where * denotes complex conjugate, and "c.c." the complex conjugate of the preceding

terms. Equation (3.13) is obtained by direct integration of the pressure over the

cylinder and taking time average.

As shown by Ogilvie (1963), the first term in (3.13), which is second order, has no

contribution to the mean force, so that the drift force results from the remaining three

fourth-order terms. For later convenience, we denote the 2nd, 3rd and 4th terms in

(3.13) by F1, F22, and F0oo respectively. With the present accurate high-order (albeit

time-domain) results, it is possible to deduce the respective contributions of F11, F22,

and Foo to F.,. (We solve the problem up to M=3, obtain the steady-state potential

,<3>, from which we determine the amplitudes 0<3>, q<3 >, and q <3> via harmonic

analysis. Using (2.26), we calculate 22 and Foo to leading (fourth) order using q<3>

and <3> instead of (22) and (2). Finally, since there is no drift force due to (1) (and

there is no -2)),we deduce that Fi is produced by the self-interaction of 0<3>.)

The drift force components P11, 22 , and Foo are plotted in figure 3-11 as functions

of H/R. As expected, all three components have magnitudes which diminish with

body submergence. Overall, the magnitude of Foo is much smaller than P1 and

F22 which implies that the self-interaction of zeroth-harmonic waves has negligible

effect on FP. More importantly, we note that for any body submergence, F22 is

non-negative, while F is always negative and much greater in magnitude. Thus,

the negative horizontal drift force is a result of the difference between these two

magnitudes. An immediate consequence of this is that one indeed needs to solve the

third order perturbation problem to obtain F-, and a frequency-domain solution up

to and including 4(2), for example, is inadequate, and in fact would produce the wrong

sign for the horizontal drift force!

One advantage of having identified the components in (3.13) is that one can now

deduce how F2 would, in principle, attenuate with body submergence. Specifically,

for small kR, we expect the self-interaction of first-harmonic waves (first- and third-

order) to decay as Fi e4kH; while that for second-harmonic waves as F 22 esk.
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These are qualitatively confirmed in figure 3-11 (although the actual attenuation

rates are somewhat slower probably due to the effect of finite body radius.) By

accounting for these submergence dependencies (and magnitudes) of F1l and F2 2,

it is evident that in general F_ is negative and dominated by Fl except possibly

for small submergence. As kH decreases, F22 increases more rapidly than Fl, so

that at very shallow submergence, the magnitude of the negative drift force may be

reduced appreciably by F22. This is in qualitative agreement with the experimental

observations of Miyata et al. (1988) and Inoue & Kyozuka (1984).

Finally, we point out that by considering the radiation stress (Longuet-Higgins

1977), the horizontal drift force is related to the mean set-down above the cylin-

der. Figure 3-12 plots the separate contributions to the mean set-down associated

with F22 and Fu1. The corresponding time-averaged pressure distributions on the

cylinder associated with these two interactions are also shown. The larger (smaller)

downstream mean set-down for F22 ( 1 ) and the distribution of the mean pressure

provide immediate qualitative confirmation of the positive (negative) sign and mag-

nitude of its contribution to FP. (Note that this is not inconsistent with figure 3-10

since b depends on (3).)

When the body submergence is sufficiently small and/or the incident wave steep-

ness is sufficiently large, wave breaking above the cylinder must be expected and the

present method and results are no longer applicable. It has been suggested (Longuet-

Higgins 1977) that wave breaking provides the dominant contribution to the negative

drift force. This is not completely supported by measurements (for example, Miyata

et al 1988) which indicate that as the body submergence is reduced and wave breaking

therefore enhanced, the magnitude of the negative drift force may, in fact, decrease.

Although the present method is not valid for breaking (and near breaking) waves, our

results compare well with experimental data (not in the breaking range) and explain

the potential flow mechanism for the negative drift force. Not insignificantly, we are

also able to offer an explanation for the observed decrease of its magnitude with small

submergence (due to F22) which may be manifest even in the presence of intensifying

wave breaking.
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3.4 Conclusions

The efficient high-order spectral method has been employed to study nonlinear wave

diffraction by a submerged circular cylinder. Extensive convergence tests are carried

out to validate the accuracy and its dependence on the computational parameters.

Results are presented for the harmonic amplitudes of the transmitted and reflected

waves, and the mean and harmonic amplitudes of the forces on the cylinder. Cor-

roborations with theoretical and computational predictions and experimental mea-

surements are made whenever they are available. The comparisons are in uniformly

good agreement. Of special interest is our quantification of the horizontal drift force

which is fourth order in the incident wave steepness and negative. It is shown that

the dominant contribution of this force is a result of the interaction between first-

and third-order first-harmonic waves. The effect of similar nonlinear interactions on

a three-dimensional body will be investigated in the next chapter.
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Figure 3-1: Dependence of the first-harmonic wave transmission coefficient T1 on the
incident wave slope kA. Experiments (Grue 1991) (); linear solution ( ); and
present high-order results for M = 2 (A), M = 3 (), and M = 4 (). (kR =
0.4, H/R = 1.5.)
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Figure 3-2: Dependence of the second-harmonic wave transmission coefficient T2 on
the incident wave slope kA. Experiments (Grue 1991) (>); second-order computation
(Vada 1987) ( ); and present high-order results for M = 2 (A), M = 3 (a), and
M = 4 (). (kR = 0.4, H/R = 1.5.)
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Figure 3-3: High-order
coefficients T 1, T2, T3, T 4

1.5.)

spectral solution (M =
as a function of incident

4) of harmonic wave transmission
wave slope kA. (kR = 0.4, H/R =

1.0

0.5

n n
1.

m- 4 WT2

. I I I . , I I I I III

4 1.6
H/R

1.8 2.0

Figure 3-4: Dependence of the first- and second-harmonic wave transmission coeffi-
cients on the body submergence H/IR. Experiments (Grue 1991) (0); and present
high-order results for M = 2 (A), M = 3 (), and M = 4 (). (kR = 0.4, kA =
0.08.)
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Figure 3-5: The first-harmonic horizontal force F as a function of Keulegan-

Carpenter number KC. Experiments (Chaplin 1984) (); linear result (Ogilvie 1963)
( ); and present high-order results for M = 4 (). (kR = 0.21, H/R = 2.0.)
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Figure 3-6: The second- and third-harmonic horizontal forces F.2, F. 3 as a function

of Keulegan-Carpenter number K,. Experiments (Chaplin 1984) ('); and present
high-order results with M = 4 for F.2 (*) and F.3 (@). (kR = 0.21, HIR = 2.)
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Figure 3-7: Horizontal drift force as a function of body submergence. Experiments
(Miyata et al. 1988) (O); and present high-order results for M = 2 (A), M = 3 ( ),
and M = 4 (). (kR = 0.4, e = kA = 0.12.)
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Figure 3-8: Vertical drift
(Miyata et al. 1988) (O
present high-order results
0.4, e = kA = 0.12.)

force as a function of body submergence. Experiments
); linear potential solution (Ogilvie 1963) (- - -); and
for M = 2 (A), M = 3 (), and M = 4 (). (kR =
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Figure 3-10: Comparison of the horizontal drift force as a function of wave slope kA.
The results are from direct high-order simulation with M = 4 (-); Eq. (3.12) using
b2 only (- - -); and Eq. (3.12) including b2 and b3 (- -). (kR = 0.4, H/R = 1.5.)
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Figure 3-12: Separate contributions associated with the self-interactions of the first-
harmonic ( ) and second-harmonic ( )22 waves to the mean free surface: i 11/kA 2

(- - -); fi22/kA2 (- - -); and the mean pressure on the cylinder surface: 5l/pgkA 2

(- -- ); 5 22/pgkA2 (---). Pressure is plotted positive into the body. (kR =
0.4, H/R = 1.5, kA = 0.04.)
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Chapter 4

The mean force and pitch moment

on a submerged spheroid

After finding significant and strong high-order free-surface effects on a two-dimensional

submerged body, in this chapter, we investigate nonlinear wave interactions with

a three-dimensional body. To illustrate interaction mechanisms, we consider wave

diffraction by a submerged spheroid and especially focus on the study of nonlinear

solutions for the steady force and moment on the body.

Compared to unsteady components, the steady force and moment are usually small

in magnitude, and thus have no significant influence on body oscillations. However,

they can be important when considering drifting motions of the body. Especially

for a submerged body, since there is no hydrostatic restoring force in both vertical

and horizontal planes, a large excursion or rotation of the body can result from even

a very small wave-induced steady force or moment if it acts over a sufficiently long

period of time. This large drifting motion may be of even greater significance than

oscillatory motion for the operation of submarines and underwater vehicles.

For a submerged spheroid in beam seas, there is no horizontal drift force according

to the strip theory prediction. If the three-dimensional effect is included, a positive

second-order horizontal drift force is expected in principle, which diminishes as the

body becomes more slender. When strong nonlinear interactions are involved, it is

known that there can be a negative drift force even on a two-dimensional submerged
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circular cylinder (chapter 3). Such nonlinear effect can of course also be anticipated for

a near-surface spheroid. Thus, linear three-dimensional and nonlinear effects produce

opposing horizontal drift forces. For a given spheroid in an ambient wave field, there

must be a particular submergence where the total horizontal drift force is identically

zero.

In head seas, the slender body theory (e.g. Lee & Newman 1971) predicts that the

vertical drift force is dominated by the 'IB' interaction between the incident wave (I)

and the body disturbance (B), whereas the mean pitch moment vanishes since the

'IB' interaction is symmetric about the midbody section. A three-dimensional panel

method solution (Lee & Newman 1991), however, reveals the presence of a non-zero

mean pitch moment which is primarily due to the quadratic (BB) interaction of the

body disturbance itself. Such non-zero mean pitch moment has strong dependence on

slenderness of the body and vanishes rapidly as the aspect ratio of the body increases.

For a high aspect-ratio spheroid near the free surface, we generally expect nonlinear

wave effects to be dominant for the mean pitch moment on the body.

We here employ the high-order spectral method (developed in chapter 2) to solve

the present nonlinear wave-body problem up to order M = 3 in the incident wave

slope. Nonlinear solutions (§4.3) including complete fourth-order corrections for the

steady force and moment on the spheroid are obtained. It is found that when nonlinear

wave effects are included, the mean pitch moment changes its direction from bow-

down to bow-up as the incident wave steepens or when the submergence is decreased.

Similar to the horizontal drift force in beam seas, for a given sea state and body

aspect ratio, a submergence can be found at which the mean pitch moment vanishes.

Through systematic study of the dependences of the linear solution and high-order

corrections on effective parameters, a simple formula is established to estimate this

special depth.
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4.1 Computational issues

We consider the diffraction of nonlinear gravity waves by a fixed, submerged spheroid

in deep water. The center of the body is submerged a distance H beneath the mean

free surface. For convenience, we denote the major and minor axes of the spheroid

by a and b. The high-order spectral method is employed to solve this wave-body

problem by accounting for nonlinear free-surface effects up to an arbitrary order M in

wave steepness. Through accurate initial-value simulations, we obtain high-resolution

transient solutions for the nonlinear force and moment on the body. The harmonic

components are obtained via the Fourier transforms of steady-state time histories.

As in two dimensions, the base flow is chosen to be q(x, z) = 0. On the body,

the condition of zero normal velocity ($,n = 0) is applied. For a three-dimensional

body, we impose doubly-periodic boundary conditions at x = ±L and y = ±W in

the horizontal plane. As initial conditions, the surface elevation r/(x, 0) and potential

V'(x, 0) are prescribed from Stokes waves.

With the high-order spectral method, at each time step, the nonlinear boundary-

value problem is decomposed into a sequence of linear boundary-value problems for

perturbation potentials (m), m = 1, ... , M by expanding the nonlinear free-surface

boundary conditions about the mean free surface z = 0. These linear problems are

successively solved up to the specified order M in wave steepness using global basis

functions expansions. After obtaining the free-surface vertical velocity z 2(x, 1, 0), the

overall problem is integrated in time via (2.8) starting from initial conditions.

4.1.1 The basis functions

To construct the basis functions JrFn and Bn,, as in two dimensions, we distribute

dipoles pt(x) on the mean free surface (z = 0) and sources cr(O, Ao) on the body, where

(8, I) are respectively the polar and azimuthal angles of a point on the body with

respect to its center. Noting that the dipole distribution is periodic in both x and y,
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we can expand L(x) in double Fourier series:

p(x) = E Z p. eir(P/L+qyI/w) (4.1)
p q

As a single-valued function, a(O, Ap) can be periodic in either or cp. In order to retain

rapid convergence for the expansion of o, it is necessary to use a representation whose

exponential convergence does not depend on the end conditions. Here, we choose to

expand a in a Fourier-Chebyshev expansion:

a(e, Vp) = E E oaT(1 - 2/7r)eik . (4.2)
k 

Similarly to that in two dimensions, the basis functions Fn and Bn can be con-

sidered as the influences of the pq-th mean free-surface dipole and kL-th body source

distributions, respectively. In terms of double-Fourier and Chebyshev-Fourier inte-

grals, they can be formally expressed as:

Fn = IFQ(Xx, ) = J L G (, Z; x', O)ei(Z'I/L+qI'/W)dxldy, (4.3)

and

'B. --= 'l(X, z) = fj G(#, ; 9', ')T(1 - 2/7r)eik~"ds' (4.4)

where G is the doubly-periodic Rankine source potential. With such construction

for the basis functions, the convergence of the perturbation potentials in (2.14) is

exponential with respect to the number of spectral modes.

4.1.2 Doubly-periodic Green function

The Green function G(x, z; x', z') represents the velocity potential at the point (x, z)

due to a sequence of periodic Rankine sources located at (x' + 2jL, y' + 2nW, z'). Here

the integers j and n take any positive and negative values as well as zero. In a series
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representation, G can be formally expressed as:

G(x, ; x', Z) = E E {[(x + 2jL _- ')2 + (y + 2nw - y')2 + ( -_ ')-1/2
j=-oo n=-oo

-[(jL)2 + (nW)2]-1/2} + [(X - x')2 + (y _ y')2 + ( _ Z')2]-1/2 (4.5)

where Ljl + n > 0. Note that due to slow convergence with respect to j and n, in

practice, the series in (4.5) cannot be directly summed. For an efficient evaluation of

G, we follow Newman (1992) and rewrite the Green function G as a summation of

single-periodic Green functions g,, n = 0, ±1, -.... Here gn represents the potential

resulting from a single-periodic array of sources in the y-direction. Then we expand

each g, in a series involving trigonometric functions of y - y' and modified Hankel

functions of Rn = [(x - x' + 2nL)2 + (z - zI)2]1/2. Such expansions converge rapidly

with increasing n except when R, < min(2L, 2W). To complement this, we use two-

dimensional Chebyshev expansions in y - y' and R, for R, < min(2L,2W). With

these effective series expansions, the computational effort for the calculation of G as

well as its derivatives with the accuracy of 0(10 -6 ) is only 0(10) times more than

that for a single Rankine source.

4.1.3 Numerical implementation

The numerical procedure for the time simulation of three-dimensional nonlinear wave-

body interactions is identical to that in two dimensions (cf. §3.1.2) except for a slight

difference in distributing free-surface and body control points.

In three-dimensional calculations, the numbers of free-surface and body spectral

modes are truncated at NF = NNY and NB = N9N, respectively. Since the basis

functions are orthogonal, the convergence of (2.14) is exponentially rapid with respect

to NF and NB. On the mean free surface, NF control points are uniformly spaced

in the x- and y-directions with Ax = 2L/Nz and Ay = 2W/Ny. On the body,

NB control points are collocated at the zeros of TN(1 - 28/7r) while equally spanned

in p with A = 27r/N,. With these distributions of control points, the transform

between the spectral and physical representations can be effected by the use of the
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Table 4.1: Convergence of the normalized mean pitch moment, My/pgb2 A2, on a
submerged spheroid in head seas with increasing the number of wavelengths N, of
the doubly-periodic domain and for different order M. kA=0.05, ka = r/2, a = 0.1,
H/a = 0.2; and N, = Ny = 16N,, N, = NE = 8, T/lt=64, r0=5T.

FFT's. The computational effort required is merely a linear function of the number

of spectral modes NF (in general NF > NB).

4.2 Convergence tests

The main sources of the computational error for the present high-order wave-body

simulations are: (i) errors due to the truncation in the numbers of Fourier and Cheby-

shev spectral modes N ,, Ny,, N,, No, and the perturbation order M; (ii) error due to

the finite (periodic) computational.domain for a given simulation time Ts; (iii) ampli-

fication of round-off and truncation errors; (iv) aliasing errors of the pseudo-spectral

method; (v) errors due to numerical time integration; and (vi) for estimates of mean

force and moment coefficients etc., errors due to the finite simulation time, Ts, of the

initial-value problem.

To verify the accuracy and convergence of the present method, we conduct system-

atic numerical tests for the mean pitch moment MMy on a submerged spheroid in head

seas. For numerical calculations, the body parameters are chosen to be: the major

radius ka = 7r/2, the slenderness 7 = b/a = 0.1, and the submergence H/a=0.2.

We first test the convergence of the solution with increasing size of the compu-

tational domain. For a square computational domain (L = W), table 4.1 shows the

results for the mean pitch moment for increasing N,, keeping kA, ka, 7 and H/a

fixed. For N,=8, it is seen that My converges up to three significant figures.

For sufficiently smooth and ~I, the numerical errors in the (Fourier and Cheby-
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N, M= 1 M=2 M=3
4 .09210 .05390 .05450
8 .09761 .05677 .05745
16 .09802 .05707 .05752



Table 4.2: Convergence of the normalized mean pitch moment, M/pgb 2 A 2, on a
submerged spheroid in head seas with number of body mode NB = NeN, and order
M. kA=0.05, ka = ir/2, = 0.1, H/a = 0.2; and N, = 8, N , = N = 16N,,
T/t=64, ro=5T.

NI/N M=1 M=2 M=3
8 .14343 .13890 .14192
16 .09761 .05677 .05745
32 .09810 .05662 .05677

Table 4.3: Convergence of the normalized mean pitch moment, M/pgb 2A 2, on a
submerged spheroid in head seas with number of free-surface mode NF = NNy
and order M. kA=0.05, ka = r/2, = 0.1, H/a = 0.2; and N, = 8, N = N,,
NW= NE = 8, T/At=64, , 0 =5T.

shev) spectral representations of 77, V, and (m"), m = 1,.. , M vanish exponentially

as NF = NN, and NB = NeN, are increased. Similarly, for mild nonlinearities, the

truncation errors after order M is O(eM+l), and the convergence is also exponential

with increasing M. The convergence with the number of body modes, NB = NNP,

keeping NF = NN,, and other parameters fixed, is shown in table 4.2. At a given

order M, MY converges to its limit exponentially fast as NO and N,, are increased.

Similar rapid convergence with respect to the number of free-surface modes, NF, as

well as order M is displayed in table 4.3. As in two dimensions, we must note that such

fast convergence ceases when the maximum local surface wave slope EL = (077/X),ma

(usually occuring on the top of the body) exceeds its limit .38. It is important to

point out that beyond this limit, converged results (not necessarily exponentially fast)

for large local slopes up to EL . 1.5 can still be obtained.
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(N,N) M = 1 M=2 M=3
(4,8) .07510 .03699 .03850
(8,8) .09761 .05677 .05745

(16,8) .09801 .05692 .05760
(8,4) .06350 .06537 .06643
(8,8) .09761 .05677 .05745

(8,16) .09820 .05647 .05662



In general, the steady-state limit (limit-cycle) in three dimensions is reached

quicker than that in two dimensions. For the mean pitch moment on the spheroid,

we note that the required simulation time is typically about (2 - 3)T. The global

truncation error for Ts = 0(1) is fourth-order in At due to the use of the fourth-order

Runge-Kutta scheme for the numerical time integration.

Unless otherwise stated, for all subsequent computations, we use N,=8, N, =

Nv=16N,, N, = N9=16, r0 =5T, and At = T/64. Based on the foregoing numerical

tests, we anticipate the maximum error for M. to be less than 1%.

In addition to these convergence tests, all our computations are checked for the

conservation of volume, as well as the invariance of the total energy. For all of

following results we present, the volume and total energy do not deviate by more

than 1% from their initial values.

4.3 Numerical Results

We consider the nonlinear diffraction of Stokes waves by a submerged spheroid. The

spectral method is applied to solve this problem up to third order (M = 3) in wave

steepness. Nonlinear solutions for the mean (drift) and harmonic force and moment

coefficients are obtained. In addition to further validation of the present method, we

focus on the study of nonlinear solutions with a special emphasis on the mean pitch

moment on the body.

4.3.1 Comparisons to frequency-domain solutions

To further verify the solution by the present time-domain approach, we make direct

comparisons to the linear and high-order components of perturbation methods in the

frequency domain.

For a submerged stationary sphere, we accurately calculate the wave force on the

body including high-order free-surface effects using the present efficient computational

method. The harmonic amplitudes are compared to the theoretical and numerical re-

sults of Wu & Eatock Taylor (1987) and Kim & Yue (1989). Both results of Wu
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Table 4.4: Comparisons between existing frequency-domain and the present time-
domain results for the first-harmonic vertical force coefficient F(l)l/pga2A. H/a = 1.5
and e = kA=0.03.

Table 4.5: Comparisons between existing frequency-domain and the present time-
domain results for the second-harmonic vertical force coefficient IF(2)l/pgaA 2. H/a =
1.5 and e = kA=0.03.

& Eatock and Kim & Yue are directly obtained in the frequency domain. Specifi-

cally, Wu & Eatock Taylor analytically solved the linearized problem for a submerged

spheroid by expanding the source distribution on the body in a series of Legendre

functions, while Kim & Yue solved the complete second-order problem for an axisym-

metric body using a panel method. For the case of H/a = 1.5, the comparisons for

the first- and second-harmonic vertical forces are respectively shown in tables 4.4 and

4.5 for a range of incident wavelength ka. The agreements among results by differ-

ent methods are very good and thus confirm the accuracy of first- and second-order

potentials of the present method. In particular, the discrepancies between results

obtained by the present time-domain method and that by the frequency-domain ap-

proaches for normalized force amplitudes are all seen to be within the limit of O(E).

This further supports the relation in (2.26).

We remark that with the use of sufficiently many panels, the results of Kim &

Yue (1989) in tables 4.4 and 4.5 are accurate to the third decimal place.
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ka Wu & Eatock Taylor Kim & Yue M = 1 M = 2
0.5 1.6474 1.6497 1.6423 1.6344
1.0 1.3929 1.4003 1.3889 1.3898
1.5 0.8703 0.8752 0.8689 0.8682
2.0 0.5047 0.5078 0.5047 0.5039

ka Kim & Yue M = 2 M = 3
0.5 .3921 .3625 .3716
1.0 .2563 .2460 .2492
1.5 .1302 .1214 .1253
2.0 .0641 .0572 .0581



4.3.2 Mean pitch moment in head seas

Under head-sea conditions, the incident wave is assumed to propagate in the negative

x-direction, parallel to the body axis. The bow of the spheroid is referred to the

end (x = a) which faces the incoming waves. This definition is important for later

discussion regarding to the sign of the mean pitch moment.

We consider a spheroid with a major axis of ka = r/2, a slenderness of Y = 0.1, and

a submergence of H/a = .2, and carry out the computations up to M = 3 by varying

the surface wave slope kA. The results for the mean pitch moment with M = 1,2

and 3 are displayed in figure 4-1, where the linear (frequency-domain) panel-method

solution of Lee & Newman (1991) is also shown. It is seen that the linear solution

(M = 1), denoted by Mfl, agrees well with that of Lee & Newman (1991) and is

always positive (bow-down). After including high-order potential effects (M = 2,3),

we surprisingly find that the total mean pitch moment, My, changes its direction

from bow-down to bow-up as the incident waves steepen. This implies that quadratic

interactions among high-order potentials must contribute a significant bow-up pitch

moment.

For a slender body, it is generally expected that the mean pitch moment is dom-

inated by the distribution of the vertical drift force Fz(x), while the effect of the

horizontal drift force is relatively small and can be neglected. To assist us in un-

derstanding the mean pitch moment results, we split the vertical drift force into a

symmetric part, PZ(x), and an asymmetric part, Fza(x), with respect to the mid-

body section ( = 0). Clearly, the mean pitch moment is due to the action of F,

but not F2,. For the case of kA = .14, the distributions of Fz and Fza are depicted in

figure 4-2 where the linear solution, (F/) 1, and the nonlinear correction, (Z)NL are

presented separately. We clearly see that (Fza)NL is comparable to (Fza)ll in magni-

tude, and the resulting pitch moments should also be comparable, i.e. MNL M11-.

Furthermore, (z)NL and (za),, are seen to have opposite sign, and the total mean

pitch moment is thus a result of the difference between NL and Ml1.

In the following, we establish a simple formula for the estimation of the total mean

pitch moment on the body by analyzing the dependences of the solution on effective
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factors such as wave steepness, submergence and slenderness.

First we identify the associated potential interactions with both the linear and

nonlinear solutions. To do that, we write the mean pressure on the body up to

fourth-order in the wave slope as:

=P (V 'V V+(')* + 2( 1) * +(. 3) + V 2(2 v. V(2)' + .. ) .(4.6)
P

From (4.6), we see that the steady moment is due to quadratic interactions of the

perturbation potentials, q(m). Specifically, the linear solution M1 results from the

first term in (4.6) which represents the self-interaction of the linear potential ¢).

The nonlinear correction (up to fourth-order), MNL, is produced by the remaining

three terms in (4.6) which are the result of quadratic interactions among high-order

potentials. For the convenience of later discussions, these high-order potential effects

are denoted by M13 , M22 , and Moo, respectively.

Based on the perturbation analysis, it is clear that Mll is of second-order in the

wave slope. This is confirmed by the linear solution (M = 1) in figure 4-1, where

normalized M11 is nearly constant. Since the first-order first-harmonic potential ¢1)

is known to attenuate with body submergence like e-k, the linear solution Ml, which

is due to the self-interaction of ?1), is generally expected to be proportional to e- 2kH

particularly for small bodies. According to the slender body solution derived by Lee

& Newman (1971), 3M1 1 is a result of the self-interaction of the body disturbance and

is asymptotically proportional to 7 4 . Upon factoring out these leading dependences

on the wave slope, body submergence, and slenderness, the linear solution for the

mean pitch moment can be written as

M1l = C(ka, kH, )' 4(kA)2e-2kH(pga4) (4.7)

where the dimensionless coefficient C needs to be determined through simulations.

For a finite three-dimensional body, we anticipate that the coefficient C has slow

dependences on body submergence kH and slenderness y.

In principle, all three components M13, SM22, and Moo due to high-order potential
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effects are fourth-order in the wave slope, and so is their sum, MNL. By separating

MNL from the total mean pitch moment M., we plot MNlL, normalized by (kA) 4 ,

as a function of the wave slope in figure 4-3. As expected, these normalized values

approach a constant asymptote for small kA.

Without the presence of a body, it is well-known that there are no second-order

waves in deep water. We therefore believe that the inclusion of a submerged slen-

der spheroid will not generate significantly large second-order zeroth- and second-

harmonic waves unless the body is very close to the free surface. As a result, M00 and

M22 should be negligibly small compared to M/1 3 . In figure 4-4, we make comparisons

among these three components by varying body submergence. Overall, we see that

the magnitude of .Moo is much smaller than that of M122 and M13 . This confirms our

expectation that the self-interaction of zeroth-harmonic waves has negligible effect

on M,. Except for very small body submergence, figure 4-4 shows that M2 2 is also

negligible compared to M13. This is due to the fact that the second-harmonic wave

decays with body submergence much faster than the first-harmonic wave in general.

Therefore, it is reasonable to consider MNL as dominated by the quadratic interaction

between first- and third-order (first-harmonic) waves, i.e. MNL - 1 3-

The first-order first-harmonic potential ~) is known to attenuate with body sub-

mergence like e-". The dominant part of the third-order first-harmonic potential

1?) can be considered to arise as a result of nonlinear interactions of three first-order

first-harmonic waves so that q(3) should decay as e - 3kH in principle. The other non-

linear interactions involving free second-harmonic waves all decay faster than e-3kH

and thus can be neglected for deep submergence. For small bodies, therefore, the

interaction between q1 and 3) is expected to attenuate with body submergence

like M 1 3 e- 4 .

Based on the slender body solution of Lee & Newman (1971), the interaction

between the incident wave (I) and the body disturbance (B) produces the dominant

part of the vertical drift force which is of second-order in 7y, but no mean pitch moment

since the interaction itself is symmetric with respect to the midbody section of the

spheroid. In principle, there in no reason to show that the fourth-order interaction
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(IBIB) is also symmetric. We thus consider this interaction to give the dominant

contribution to the fourth-order mean pitch moment MNL which then should have 74

dependence on slenderness. All other possible effective interactions have slenderness

dependence higher than 74 and can be neglected for a high aspect-ratio body. Such

deduction is confirmed by our numerical results of M 1 and M13 (normalized by 74)

shown in figure 4-5, which approach to constant asymptotes as 7 is decreased.

After anticipating leading dependences on the wave slope, body submergence and

slenderness, the leading nonlinear correction to the mean pitch moment is then given

by

MNL M13= D(ka, kH, y)4(kA) 4 e 4 kH (pga4 ) (4.8)

Where D is a dimensionless coefficient and has slow dependences on kH and 7 for a

finite three-dimensional body.

After the establishment of solution forms for Mll and MNL, the total mean pitch

moment on the spheroid can be written as:

M = Mil + MNL = Ml [1- E(ka)e-'2 k(kA) 2 ] (4.9)

where the coefficient E is given by -D/C. Although the coefficients C and D have

slow dependences on 7 and kH, we find through systematic numerical simulations that

their ratio (-E) is nearly independent of 7 and kH. To understand the influence of

a on E, we plot in figure 4-6 the ratio of M 1 3 and Ml, as a function of 7. It is seen

that M13/M11 is almost constant for three different submergences. This indicates

that the coefficient E has no significant dependence on 7. As for the effect of the

body submergence kH, the results for e2kHM13/Mil are shown in figure 4-7 as a

function of kH for three different incident wavelength ka. It is seen that the quantity

e2kHtM13 /MlIu is roughly constant, which implies that the body submergence kH has

no significant influence on the coefficient E.

The importance of equation (4.9) is that the nonlinear solution including fourth-

order corrections for the mean pitch moment M. can be determined provided that

the linear solution M/17 and the coefficient E are known. Since the evaluation of the
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linear solution and the coefficient E are relatively simple, (4.9) greatly reduces the

calculations for estimating the general nonlinear solution of the mean pitch moment.

In figure 4-8, we provide a set of results for the coefficient E as a function of ka,

which are obtained by using the present high-resolution spectral method.

For a body in a given ambient sea state, a special interest of practical significance

is to determine the position where the mean pitch moment vanishes. Such position

is critical for the operation of submarines and underwater vehicles. Based on (4.9),

the condition for My = 0 is found to be:

1 - E(ka)e2 kH(kA)2 = 0 (4.10)

which is independent of body slenderness y. Given ka and kA, equation (4.10) gives

a particular submergence kH at which the mean pitch moment is identically zero.

4.3.3 Mean horizontal force in beam seas

We now turn to study the horizontal drift force on the spheroid in beam seas. The

incident wave is assumed to propagate in the positive y-direction, parallel to the

minor axis of the body.

Under beam sea conditions, the second-order horizontal drift force does not van-

ish in contrast to strip theory predictions (for circular sections). In the presence of

three-dimensional effects, a positive second-order drift force can be expected in prin-

ciple. When strong nonlinear interactions (due to steep incident waves or shallow

submergence) are involved, it is known that there can be a negative drift force on

a two-dimensional submerged circular cylinder (in chapter 3). For high-aspect ratio

spheroids, this effect can of course also be anticipated. Thus, like the mean pitch

moment in head seas, three-dimensional and (higher-order) nonlinear effects produce

opposing horizontal drift forces on the spheroid.

In figure 4-9, we plot our converged numerical results with the order M = 1, 2

and 3 for the horizontal drift force on the body as a function of the incident wave

slope at a fixed body submergence. As expected, the horizontal drift force changes
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its sign from positive to negative as the incident wave slope is increased if nonlinear

free-surface effects are included (M = 2 and 3). For a fixed incident wave steepness,

the dependence of the horizontal drift force on the submergence is displayed in figure

4-10, where again for a given wave steepness, there exists a depth at which the

steady horizontal force vanishes. Like that for a submerged two-dimensional circular

cylinder, the negative drift force on the spheroid is believed to be a result of the

quadratic interaction between the first- and third-order first-harmonic waves.

4.4 Conclusions

In this chapter, the high-order spectral method is employed to study nonlinear wave

diffraction by a fixed and submerged spheroid. Of particular interest is to understand

the high-order potential effects to the steady force and moment on the body. If

nonlinear free-surface effects are included, we find that the mean pitch moment in

head seas and the horizontal drift force in beam seas change their directions as the

surface waves steepen or when the body is moved closer to the free surface. Through

systematic numerical computations, the dominant nonlinear correction for both the

mean pitch moment and horizontal force is found to be a result of the quadratic

interaction between first- and third-order (first-harmonic) waves. Significantly, we

find that the linear solution and high-order corrections are generally of opposite signs

so that for given body aspect ratio and ambient surface waves, there is a particular

submergence at which the mean pitch moment or horizontal drift force vanishes. For

the mean pitch moment, in particular, we establish a simple formula to estimate

this special position, which should be useful for the operation of submarines and

underwater vehicles.

Having found interesting and significant nonlinear wave effects on a fixed sub-

merged body, we will address the question of how wave-body interactions are affected

by forward speed of the body in the subsequent three chapters.
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Figure 4-1: The mean pitch moment as a function of the incident wave slope. Panel
method solution of Lee & Newman (1991) (-- -), and present numerical solutions
forM = 1(0), M = 2 () and M = 3(E). ( = kA, ka = 'r/2, y = 0.1, H/a = 0.2.)
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Figure 4-2: (a) symmetric and (b) asymmetric vertical drift force on the submerged
spheroid. linear solution ( ) and nonlinear corrections (-.- -). = (0, r)=
(stern, bow). (e = kA=0.14, ka = 7r/2, 7 = 0.1, H/a = 0.2.)
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Figure 4-3: Dependence of the mean pitch moment due to nonlinear corrections on
the incident wave slope. M = 2 (A), M = 3 (). (e = kA, ka = r/2, 7 = 0.1,
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Chapter 5

Classical seakeeping solution near

the critical frequency r - UW -

Compared to that of the zero-speed problem, nonlinear effects of the seakeeping prob-

lem become even more critical because forward speed of a body can influence the

radiation of wave energy. Of particular interest is the case where the group veloci-

ties of certain wave components vanish so that the associated energy can no longer

be radiated away and is thus accumulated in the near field of the body. This hap-

pens at the particular value of the frequency (w) and forward speed (U) combination

r Uw/lg = , where g is the gravitational acceleration.

Before detailed nonlinear simulations are performed, in this chapter, we theoret-

ically show that the linear solution of the seakeeping problem is finite if and only if

a certain geometric condition is satisfied. This is contrary to the existing theories

based upon the single source result. For a submerged body, a necessary and sufficient

condition is that the body must have non-zero volume. For a surface-piercing body, a

sufficient condition is derived which has a geometric interpretation similar to that of

John (1950). As an illustration, we provide an analytic (closed-form) solution for the

case of a submerged circular cylinder oscillating near -= . Finally, we identify the

underlying difficulties of existing approximate theories and numerical computations

near r = , and offer a simple remedy for the latter.

The linearized problem is classically solved by approximating the body with a dis-
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tribution of singularities typically taking advantage of the slenderness (or thinness) of

the body (e.g. Hanaoka 1957; Havelock 1958; Newman 1959; Maruo 1967; Ogilvie &

Tuck 1969; and Newman 1978, which also contains an extensive review). Satisfactory

predictions can generally be obtained except in the neighborhood of the critical fre-

quency r Uwig = . Despite a substantial body of work for the general linearized

problem, the nature of the solution near this critical frequency for a realistic body

has not been satisfactorily resolved.

For a single source, it is well known that the Green's function becomes unbounded

at , = 1 (Haskind 1954; Wehausen & Laitone 1960). Physically, this may be explained

in terms of the group velocities (in still water) of certain components of the accompa-

nying wave which approach U as T - (from below). The associated energy can no

longer be radiated away, and the amplitudes of these wave components tend to grow

indefinitely. Since the problem for a general body can, in principle, be represented by

an appropriate distribution of such sources, it is widely accepted that the resulting

seakeeping problem must likewise be singular at r = (e.g. Dagan & Miloh 1982).

This appears also to be confirmed by existing approximate theories and calculations

(e.g. Newman 1959; Wu & Eatock Taylor 1988) suggesting that this difficulty may be

inherent in the linearized problem.

The present work is motivated in a large part by careful numerical calculations

for the case of submerged circular and elliptical cylinders by Grue & Palm (1985) and

Mo & Palm (1987). For the submerged circle, Grue & Palm (1985) offered strong

numerical evidence that the amplitudes of the resonant upstream and downstream

waves approach the same finite limit as r - . They were able to support this by

examining the coefficients of an infinite set of equations which resulted from Fourier

discretizations of the source strengths on the circle. Since their equations are singular

at r = , they considered the problem undetermined at this limiting value. Similar

finite results were obtained for the submerged ellipse near r = 4 by Mo & Palm

(1987). From these results, they again reasoned that the amplitudes should be finite
1as r --+

Here we offer a formal proof that a finite solution exists at r = - for a general
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class of bodies. In particular, a simple necessary and sufficient geometric condition

is found for such finite solutions. This condition depends on and must be satisfied

for all possible values of the frequency w but is not a function of U. When the body

is submerged, the condition is satisfied if and only if the body has non-zero volume

(e.g. a submerged cylinder but not a point source or dipole). For a body intersecting

the free surface, sufficient conditions can be obtained by considering deviations of

the body from a vertically uniform geometry of the same waterplane and draft. The

resulting condition has a similar geometric interpretation as that of John (1950) in

another context (the uniqueness of the solution of the floating body motion problem

without forward speed).

For analyses in this chapter, we concentrate only on the neighborhood of 62

11- 4r I< 1. The linearized boundary-value problem and the behavior of the Green's

function near r = are reviewed in §5.1. We reformulate this problem as source-

distribution boundary-integral equations on the body for both submerged (§5.2) and

surface intersecting bodies (§5.3) and discuss the solutions as r -, . It is shown

that the solutions are bounded for a general class of geometries satisfying an integral

condition with simple geometric interpretations. As an illustration, we consider in

§5.4 the special case of a submerged circular cylinder and obtain a closed-form (finite)

solution for motions in the neighborhood of r = 1.

For simplicity and the sake of closed-form answers, we present the problem mainly

in two dimensions although similar results and geometric conditions follow directly for

three-dimensional bodies. This is outlined in §5.5. Finally, in the discussions, §5.6,

we identify the difficulties inherent in existing approximate theories and in direct

numerical solutions of the integral equations as r -4 . In the latter case, a simple

remedy is provided based on an alternative form of the integral equation valid for

small 62 .
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5.1 The boundary-value problem and Green func-

tion

We consider the generalized Kelvin-Neumann problem (Haskind 1946) of a two-

dimensional body translating with constant forward speed U parallel to the undis-

turbed free surface in deep water while at the same time undergoing small oscillatory

motion and/or encountering small amplitude waves at frequency w. A Cartesian co-

ordinate system o-xz is chosen fixed with the mean position of the body, with o-z

in the undisturbed free surface, x pointing in the direction of forward speed, and z

positive upwards. The fluid is assumed inviscid and incompressible, and the motion

irrotational. The flow can be described by a velocity potential:

*(x, , t) = +(x, z) + (x, z, t) = +(x, z) + {4(x, z)eiwt} (5.1)

where 4 is the potential due to the steady forward motion of the body, and · the

unsteady potential associated with the body oscillations and/or incident waves. We

focus on the unsteady potential 4 and do not further concern ourselves with ~ which

is related to the steady wave resistance problem.

The time independent potential satisfies Laplace's equation within the fluid and

vanishes at large depth, VO -+ 0 as z - -oo. For small amplitude incident waves or

body motions, the linearized free-surface condition is

(iw - U )2 + g = 0 , on z = O. (5.2)

The kinematic boundary condition applied at the mean position of the wetted body

surface, SB, can be written as

on SB, (5.3)

where n = (n,,nz) is the unit normal out of the body. In (5.3), the forcing term

f(x, z) is given in terms of the imposed body oscillations and incident wave as well
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as the so-called "m-terms" due to the steady potential (e.g. Newman 1978). The

boundary-value problem for b is complete with the imposition of an appropriate

radiation condition, in this case a physical requirement that only waves with group

velocity greater than (less than) the forward speed can be present far up (down)

stream of the body.

At this point, we should remark that a general uniqueness theory for the boundary-

value problem with the free-surface condition (5.2) is as yet unavailable. Despite this,

the solution of the present problem has been pursued in a large number of studies (see,

e.g. Newman 1978). For submerged bodies in steady motion, the Kelvin-Neumann

problem is shown (with some restrictions, see Kochin 1937; Dern 1980) to possess

a unique solution. We are unable to extend this result and simply postulate the

uniqueness of the stated problem at least for the general case when r y 4.

We define a Green function, G(x, z; x', z'), which is harmonic everywhere in the

fluid except at (', z') where it is source like. In addition, G satisfies the linearized

free surface condition (5.2), the radiation condition, and vanishes at large depth.

Physically, G represents the potential due to a translating point source, velocity U,

with a pulsating strength, frequency w.

The solution for G was obtained by Haskind (1954), which we rewrite as follows:

G(x, z; x',z') = Go + G1 + G2 + G3 + G4 (5.4)

where

Go = -{ln[(x - X')2 + (z _ Z1)2 ] - ln[(x - X')2 + (z + ') 2], (5.5)

eG1 += i [-i(t-)+(z+z)] + ,1 o 1 em[i(z=_)+(z+z')dm, (5.6)

GI i ek [-i(._,)+(+,)]+ _ 1 -f 1 emI-i(-')+(+z')]dm , (5.7)-11 - 4r 

o f rn-k2
G3 -ir eks[i(-z')+(Z+z')] + 1 n mz-+( (5.8)

G ___ _ 1001 om eo(i-')+(z+z')Idm (5.8)

G4 = t ek4[i(zM',)+(z+z,)] I 1 em[i(--')+(z+z')]d , (5.9)
¥x + 4 m- rk4
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and Cauchy principal-value integrals are indicated. In the above, we define r = U/g

and the four wavenumbers are defined by

kl,2 = (1 -2r + vl- 4); k3,4 = 2 (1 + 2 i± v'7l +4); (5.10)

where 4w2 / g .

The far-field wave behaviour can be readily seen from (5.10). For r < , all four

wavenumbers are real and the k1 , k3, and k4 waves propagate downstream (behind

the body), while the k2 wave appears upstream. For > , k3 and k4 are still

real, whereas k and k2 become complex. As a result, the k3 and k4 waves remain

downstream, while the kl and k2 waves are evanescent.

Our interest is in the neighborhood of r = , where kl and k2 approach a common

value, and G1 and G2 become singular. Physically, this corresponds to the kl and k2

waves merging into a single wave with group velocity equal to U. For a single source,

the energy of this wave can not radiate away to infinity resulting in an unbounded

build up of energy, at least in the context of linearized theory (see Dagan & Miloh

1982). The key finding of this chapter is that for an actual physical body, the wave

sources of non-trivial strength may combine in such a way that the total solution

remains finite as r --. . We prove that this is indeed the case subject to a necessary

and sufficient condition on the geometry of the body.

For convenience, we define 62 1= - 4r1. For 62 < 1, we have from (2.10):

k1,2 = [1 + 0(6)] , 62 < 1 . (5.11)

In the following, we consider asymptotic expansions valid for li- - c[I = o(1) as

- 0. Note that the limit of - oo such that rlx- xlI8 -+ oo while << 1 requires

special care and is taken up in Appendix A.

From (5.6), (5.7), we write

G1 + G2 = 2ri e[-i(W-')+(z+z')] + G'+ 0(8) , 2 1 (5.12)G~ + G, = -T ,'5
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In (5.12), G' = 0(1) results from the principal-value integrals in (5.6) and (5.7), and

is given by

G' + 1 = [-i(x- ') + (z + z')]et -i( -')+(z+z') f 1em[-i(-')+(z+z')Idm . (5.13)

5.2 Submerged bodies

We construct a solution of the problem in terms of a source distribution (Brard 1972):

(X, z) = s o(x', z')G(, z; ',z')ds', (5.14)

where (x',z') is the source strength distribution on the body. Clearly, (5.14) sat-

isfies all the conditions of the boundary-value problem except for that on the body.

Imposing the body boundary condition (5.3), we obtain an integral equation for the

unknown source strength a:

,r.(X, Z) + A (;) ,)G(x,z; X', ')ds' = f(x, ) , (x, z) E SB. (5.15)

As with the original boundary-value problem, we assume that a unique solution to

(5.15) exists in general for r . As r - , the kernel of (5.15) becomes unbounded

everywhere due to the presence of G1 and G2. Our interest is in this neighborhood,

so that for 62 < 1, we substitute the asymptotic behaviour of G1 + G2 in (5.12) into

(5.15) and rewrite the integral equation as

7ru(x, z) + +(n, + in,)et('i+z) (x',( z')e(''+z')d

+ ja(x', z')On(x,z; ,', z')ds' = f(z, z) + 0(5), 2 << 1 ,(5.16)

where the principal-value integral involving = G' + Go + G3 + G4 is continuous as

1
4.
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We now define the Kochin function

a, j ol(x, z)e(i+z)ds , (5.17)

and rewrite (5.16) as

(z z) =_ 2Nal (n, + inz)e' (- i' +z)

-- o(x', z')Gn,(, z; x',z')ds' + f(6) o(, 2 < 1 . (5.18)

The forcing function f, which is due to the incident and steady Kelvin waves as well

as imposed body motions is, in general, finite and assumed to be 0(1).

To determine the magnitude of a, we substitute o in (5.18) into (5.17), and solve

for al. After using the divergence theorem, we obtain

ai = (4 + 2ir) [r_ - a(x', z')Pl(x', z')ds'] + 0(62) (5.19)

where the kernel P1 is given by

Pl(x', z) = . e(i+z) (G' + Go)ds , (5.20)

and the constants YF and r are given by

Y = | f(x, z)e K(i'+z)ds, (5.21)

r= |(-in, + nz)e 2nzds. (5.22)

YF and P1 are independent of 5 and can be at most 0(1). In (5.22), r is a function of

the body geometry only for a given frequency r.

Depending on the body geometry, there are now two possibilities. If r 0, we

substitute (5.19) back into (5.18) to obtain a new integral equation for or:

(n, + ini) e ( i + Z))P(, Z)d
ro-(x, z) - ( i + ir + ) (x',z')PI(x',z')ds'8/2r + iF

95



+ (x' z')G,(x, z; x', z')ds' = F(x, z) + () , (5.23)

where

F(x, z) = f(x, z)- ( + i reK(i+z) = 0(1) (5.24)8/2x+ ir
The kernels in (5.23) are bounded and continuous as r -+ . Thus (5.23) is regular

and, for sufficiently smooth SB, has a bounded solution a = 0(1) except possibly at

an enumerable number of discrete values of X; for which the Fredholm determinant

vanishes (e.g. Ursell 1968. For steady motions and two- and three-dimensional sub-

merged bodies these are shown to be absent for sufficiently small Froude numbers,

Kochin 1937). This is a difficulty associated with the general problem and not specif-

ically with the limit - 0. Since our interest is in the latter, we do not consider this

possibility any further. From (5.19), it is also clear that a = 0(8) forr 0.

We remark that for arbitrary geometries, (5.23) can be solved in general by direct

numerical means for the finite solution. The velocity potential is finite as r' -4 1 and

is given by

( z) = 2ria e(i'+z +s a(x', z')G(x, z; x', z')ds' + O() (5.25)

which is bounded for o0. Note that in view of the approximation in (5.12), (5.25)

is strictly valid for jlX - xl = o(1). The potential in this case is in fact finite

everywhere even for Jxl -- oo (see Appendix A).

If r = 0, then from (5.19), a is at least 0(1). It follows from (5.18) that =

0(8-1) which becomes unbounded as - 0.

In summary, then, a finite solution to the problem exists as r -4 if and only if

r _ (-in + n)e2 zda # 0, (5.26)

which is a condition that depends on the geometry SB and the frequency K- = 4w2 /g

only. If rP = 0 for any frequency , then a forward speed U2 = g/4K. can always

be found for which the solution becomes unbounded. Physically, (5.26) represents a
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requirement that the resonant wave components must not be orthogonal to the body

boundary condition.

With the use of divergence theorem, we obtain immediately

r= 2 ffl e2 z dS, (5.27)

where B is the (mean) body section. Since the integrand in (5.27) is positive definite,

r / 0 if and only if the (submerged) body has non-zero cross-section area. The known

singular solution for a point source turns out to be a special case of r = 0.

5.3 Surface intersecting bodies

An analogous result can be obtained for the case where the body intersects the free

surface. We assume (locally) vertical intersections, and again write the potential in

terms of a body surface source distribution (e.g. Ursell 1980)

(x, z) = o(x', z')G(x, z; x', z')ds'- l[o-G(x, z; x_, 0) + +G(x, z; x+, 0)], (5.28)

where £ U2 /g, and oa, represent the source strengths at the two intersection points,

= +.

For 62 < 1, we proceed as before and write

Iro(x, z) = i 'ra 2K (n. + inz)e (-i+z) - S(X Z')Gn(X, z; x2 X z)d8'

+ [o_,Gn (x, z; _, 0) + +Gn(x, z; +,0)] + f(z, z) + O(S), (5.29)

where the Kochin function a2 is defined to be

a2 = sB c(xz)e(i+'z)ds - +£[-e- + c+ei+ (5.30)

Again, it is clear from (5.29) that or = 0(1) if a 2 < O(S). Otherwise, E becomes

unbounded as r -- 4'
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Substituting (5.29) into (5.30), we have

(8 + 2ir)r [ + Q - S (x, z')P2(', z')ds'] + 0(82) (5.31)

where the kernel P2 is given by

P 2(x', z') = f Gn(x,z;x',')e"(i+z)d , (5.32)

and the constant Q is defined as

Q= L [ _0(x, z; x_, O) + o+((, z; x+, )]e(i+z)ds - r[_e'- + o+eiK'+].

(5.33)

, Q and P2 are independent of 6 and can be at most 0(1). If r = 0, a 2 = 0(1) and

a = O(8-'), and no finite solution exists as r -+ . If r # 0, a 2 = 0(8) and o = 0(1)

and we may substitute (5.31) back into (5.29) to obtain a new integral equation for

a:

8 /(x, z) in, + z ( iz+z) L a(x', z')P2(x', z')ds'

+ fo(x', z')Gn(, z; x', z')ds' - [o_ Gn(x, z; x_, 0) + +Gn(x, z; x+, 0)]

= F(x, z) + Q(x, z) + 0(6), (5.34)

where
= n, + in e(_iz+~).Q(x, z) = -n, +in, e (5.35)5/2r + iQ

Now, every term in (5.34) is finite as r -+ , so that (5.34) is regular and a bounded

solution for can be obtained, after which the Kochin function a 2 can be determined

from (5.31). The problem is thus solved with

A(x, x) = 2iia2 e(-+z) + B (x', z')G(x, z; x', z')ds'

- e[_G(x,z;x_,0) + a+G(x, z; +, )] + 0(6) , (5.36)
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Figure 5-1: Geometric condition for a body intersecting the free surface. (a) B' < 0;
(b) B' > O; (c)-B; = B1 < 0.

which is finite.

As with the submerged case, the necessary and sufficient condition for a finite

solution is (5.26), i.e., r 0o. Use of the divergence theorem here yields

r = 2 B e2"zdS- L,, (5.37)

where L = z+- x>0 is the waterline width of the body. Let us divide the mean body

section B into two parts: B = Bo + B', where Bn is the rectangle with width Lw

and depth H equal to the maximum draft of the body, and B' the difference between

B and BE (see figure 5-1). The double integral over Bo can be evaluated yielding

r = 2c ff e2 dS - Lwe - 2 . (5.38)

If the body B is completely enclosed by B 0 , B' is negative and so also the negative

integral over B' in (5.38). Whence r is negative definite and B C Bo is a sufficient

condition for (5.26).

If B ¢ Bo (for example, figure 5-1b), the integral over B' may be positive, and

a value of rK may exist for which r = 0. To illustrate this further, consider the case

of a circular cylinder, radius R, which intersects the free surface (for simplicity still
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Figure 5-2: Dimensionless frequency KoR for r = 0 as a function of the submergence
of a floating circle.

assuming the body to be locally vertical at the intersection points). If the center of the

cylinder z is above the free surface, z > 0, then B C BO and r is negative definite.

If the cylinder is completely submerged, z < -R, then from (5.27), r is positive

definite. For the intermediate case of -1 < z/R < 0, however, (5.38) shows that r

is negative for sr = 0 but increases monotonically with r. and eventually changes sign.

For any z/R E (-1,0), there exists a particular value of the frequency ar = o > 0

for which r = 0. It follows that a finite solution does not exist at that frequency and

at a forward speed corresponding to r = given by U2 = g/4ro. Figure 5-2 shows a

plot of roR as a function of 0 - sin-l(-z,/R) for this case. Note that xoR - In 0/0

as - 0.

The sufficient condition on the geometry, B C B, is similar to that of John

(1950) for the motions of a floating body (without forward speed) which requires that

for every point of the mean free surface (in this case z: [x, x+]), the entire vertical

segment below it must not intersect the mean body. The actual requirement of r o 0
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is, however, more general (less restrictive) and admits, for example, a geometry such

as that depicted in figure 5-1c.

5.4 Application to a submerged circular cylinder

As an illustration, we consider the special case of a translating and oscillating sub-

merged circular cylinder near r = . Grue & Palm (1985) investigated this problem

computationally using a source distribution (cf. (5.15)) represented by Fourier series.

They obtained solutions very close to r = 4 although the kernel of their integral equa-

tion becomes everywhere singular as r -, ' (cf. (5.16)). In this section, we obtain the

finite solution to this problem in the neighborhood of r = (62 < 1). In particular,

we provide closed-form asymptotic solutions for the far-field amplitudes of the kl and

k2 waves (which have a common finite value at r = ).

A local cylindrical coordinate system (r, 0) is placed at the center of the cylinder,

which is at a depth H below the mean water level. Thus, r2 = 
2 + (z + H)2 and 0 is

measured counterclockwise from positive x. The geometry parameter r for a circular

cylinder can be found in closed form

r = 2rRe-2,HIl(2R), (5.39)

in which R is the radius of the cylinder and I the modified Bessel function of the

first kind.

For a circular cylinder, we can easily prove the following relationship

(x', z) a ds' = o(x', z')ds' (5.40)· o n (5.40)

Since no fluid crosses the surface of the rigid body, the net source vanishes. As a

result, there is no Go term in 0 nor in the kernel P1. Given the forcing function F,

the solution to the integral equation (5.23) must, in general, be obtained numerically.

For relatively deep submergence, r;H, however, the problem simplifies. In particular,

the amplitudes of the k1,2 waves can be obtained in closed form and interestingly do
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not explicitly depend on the source strength a.

The Kochin function, a1 , is calculated from (5.19). Since the kernel P1 (without

Go) diminishes with submergence rH like e - 3
.H (cf. (5.20)), the second term in (5.19)

can be neglected for large submergence:

C11 ^' (5.41), - (6 + 2iKr) (5.41)

which is O(emH) since r = O(e-2UH) from (5.39). To determine the potential, we

substitute G = G' + G3 + G4 into (5.25). Since G' diminishes as e-"H for sources

on the cylinder, its contribution to the rn wave is small compared to that due to al

which is proportional to eH. The potential field is then given by

( Z) = a re z) + o(x', z')(G3+ G4)ds' + O((8) (5.42)
From the dynamic free surface condition, the surface elevation 7 is given by

14
7(=) -(iw - U )q(x,0) (5.43)

The wave elevations far upstream and downstream of the body are

77 = A 2e-i"2 x 00, (5.44)

77 = Ale- ikl + A3eik3 + A 4eik4L , X -+ -00 , (5.45)

with the wave amplitudes given from (5.42) by,

A1,2 = 2'(W + 2rUk) + o(6), (5.46)g(6 i2r)
A 3,4 = 2r(w - Uk 3,4) f r(X, z)ek34(-'i+z)ds + 0(8) . (5.47)Ag ,4 14 J/S+

From (5.46), it is clear that A1,2 are independent of the source strength . Thus, the

amplitudes of the kl and k2 waves are explicit and do not require the solution of the

integral equation (5.23).
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In principle, it is necessary to solve the steady problem first to provide for the

body boundary condition f(z, z). Again for relatively deep submergence, we neglect

the free surface effect and write the potential for steady flow past the circular cylinder

as that around a dipole
R2

(X, z) = -Ux(1 + 2 ). (5.48)

Considering only the radiation problem, f is then given by

2U 2U
f(6) = (i cos 6 + cos 20) + iz(iw sin 9 + sin 28), (5.49)

where f= and fz are respectively the amplitudes of the sway and heave motions of the

body.

For the calculation of the coefficient F, we first replace (x, z) by its corresponding

cylindrical coordinates (r, 0), and expand the exponential in (5.21) in Taylor series.

The integration over can be readily carried out yielding

: = 7rrR2e-H(w + KU)(-, + i), (5.50)

which is the limiting value for F with 62 < 1. For somewhat larger 6, the accuracy of

(5.50) is improved by simply replacing the wave number with kl,2 respectively for

A1,2. (This is equivalent to factoring out ekl,2z rather than e in (5.12).) Substituting

F and r into (5.46), we obtain finally

A1,2 27rk,2Re- k ,2H 1 ± v/- 4r)2 ) (5.51)
ic + z - ivll -4+ 4I4,RI(2nR )e- 2 H( 2F, + 0(8), (5.51)

where F, - U/g/_R is the Froude number.

Equation (5.51) is consistent with the known result for a submerged circular cylin-

der that the far-field waves generated by unit sway or heave motion have the same

amplitude but are shifted in phase by .

Figure 5-3 plots (5.51) for A1 ,2 as a function of r for the parameters HIR = 2 and

F, = 0.4. The limiting value of A1,2 /(i, + z) as r --* 1 is 4.018.... These parameter

values for HIR and F, coincide with one of the two computed cases by Grue & Palm
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Figure 5-3: Amplitudes of the kl (upper branch) and k2 (lower branch) waves radiated
by the heave and sway oscillations of a submerged circular cylinder as a function of
r Uw/g. Asymptotic solution (5.51) (-); direct numerical calculations (Grue &
Palm 1985) (- - -). (F, = U/(gR)2=0.4, H/R=2.)

(1985) for which they provide values for r very close to . For comparison, their

numerical values are reproduced in figure 5-3. The comparison both in terms of the

magnitudes and asymptotic slopes is quite satisfactory for this moderate submergence.

Finally, we consider the value of A1,2 at = 4 as a function of wave frequency i.R

(= (2F,)-2). Evaluating (5.51) at r = , we obtain

A,2 ; Re' rH
Al, s~e617 (5.52)(i~. + ) - 21(2R) (5.52)

Figure 5-4 shows a plot of this limiting amplitude normalized by e- H. As a check,

at the other value of F, = 1.0 (R = 0.25) computed by Grue and Palm (1985),

the extrapolated value at = from their curves again agrees well with the value of

A1,2 /(iz. + ~,) = 0.799... given by (5.52). For low frequency (and large U), (5.52) has

the limit of as .R -- 0 - a surprisingly simple result. For high frequency, KR > 1,

the amplitude vanishes exponentially, Al,2e- Hg/(i2. + (,) -x(R) 3/2e- 2iR.
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Figure 5-4: Limiting amplitude at r Uw/g = of the kl,2 waves due to the forced
heave and sway oscillations of a submerged circular cylinder as a function of the
dimensionless frequency rcR. (H/IR = 2.)

5.5 Generalization to three dimensions

The foregoing analyses and results can be generalized to three dimensions. The key

requirement is the separability of the dependence on and z' in the leading-order

term of the Green's function for 62 < 1 (cf. (5.12)) leading to the factoring of the

Kochin functions a1 and a 2 (cf. (5.18), (5.29)).

The three-dimensional Green function for this problem (e.g. Wehausen & Laitone

1960) can be rewritten for r < as

1 1 2 fo dO 1 1
G(o, y, z; ±', ',4oO k- kk) x(,' k)dkr r, X l 1-4rco s fo -kl k-k2

2 r" dOo 1 1
+ - k_ )X(O, k)dk, (5.53)

in which

= [( - ')2 + (y y)2 + ( F Z')2]i (5.54)
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x(9, k) = k cos[k(y - y') sin ]ek((+')-'(-')cos" , (5.55)

1 - 2r coS O T 1 - 4T cos O
kl,2 = - 2-r cos 4os (5.56)

8r 2 cos 2 0

The wave numbers k3 and k4 have solutions of the same form as kl and k2. To satisfy

the radiation condition at infinity, the integration paths for k over the singularities

in (5.53) are defined as kl - i, k2 + i, k3 - i, k 4 - i as - O0+. After the use of

the Plemelj formula, the k integrals reduce to Cauchy principle-value integrals plus

the contribution from the four singularities at k, k2, k3 and k4. As r - , the4

term (1 - 4r cos 0)- becomes unbounded along 0 = 0. Thus G is dominated by the

integration near 0, i.e.,

G(x, y, z; ',y', z') = d 1, k)dk
- Ovl - 4,rcos9 k -k k - k)

- 2ij X(,ki) + X(, k2) dO + 0(1) as - (- 5 7)
x1 - 4i- cos 

It can be shown that the double integral in (5.57) remains finite as -4, . By

expanding cos 8 in Taylor series about = 0, the single integral can be carried out

yielding finally

G(x,y,z;x',y',z') = i8Vs/. ln(v/1- 4))e[[( z+z')-i("'- )] + 0(1) as r - (4)_

(5.58)

The result is identical for 7 -r ()+ and can be obtained similarly by considering this

limit for the expression of G for > 4.

We now note that the dependence of G on , x' in (5.58) is identical to (5.12) for

the two-dimensional case. The analyses in §§5.1, 5.2 thus follow directly leading to

geometric conditions (5.27) and (5.37) for submerged and surface-intersecting bodies

respectively. The integrands remain identical, but now the integrals are to be per-

formed over the mean two-dimensional surface of the body. For (5.37), the waterline

width L is now replaced by the waterplane area of the body.
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5.6 Discussions

The present findings can be motivated somewhat by physical arguments. Although

the single source (Green function) becomes unbounded everywhere as - , the

distribution of such sources on the body satisfies a finite forcing. Physically, this

requires that the Kochin function al/8, which measures the net contribution of the

sources at a fixed point, remains finite (i.e., al < 0(6)) as - 0. The necessary

and sufficient condition for this to be true for a given body is the geomatric condition

r 0, a function of the frequency ar but not of U. We reason that r $8 0 is in effect

a requirement that the Green's function (in fact just the resonant kl,2 waves) is not

orthogonal to the boundary condition on the body.

We note that the present problem is a classical one for which a number of approx-

imate theories (e.g. Havelock 1958; Newman 1959; Dagan & Miloh 1981) exist, all of

which indicate that the solution to the problem is singular as r - . The apparent

contradiction with the present finding turns out to be the result of a common feature

of the existing theories, namely, that the body boundary condition is enforced only

in an approximate manner.

Consider, for example, a submerged circular cylinder represented by a single dipole

Green function G, at the center. For r not near , the error in the normal velocity

on the body surface is e . e-2UH which vanishes as the body submergence increases.

For 82 < 1, however, e N e-2rH/8 since G,, - 0(8-1), and the approximation is

unacceptable as r - 1 for any finite KH. Interestingly, for a point-like body, which

may be a valid approximation for a very deeply submerged object, r = 0 according

to (5.27). The solution at r = 1 is then in fact unbounded and is consistent with

existing results.

It is noteworthy that existing numerical solutions to this problem (e.g. Grue &

Palm 1985; Wu & Eatock Taylor 1988) have likewise met with difficulties close to

r = . The computational difficulty arises from a direct solution of the integrall' = ~.
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equation (5.15) as - . From (5.16) and dividing by (n: + inz)e'(-i+z)/8, we have4.

z2 ~ a(x', z')erK(i'+z')ds' + e [r(i-(x,)z
fSB n i - )

+- a(x, ') ( zl)d'] - - - -+ . -- i f(x, z) + 0(62) . (5.59)
In a typical numerical solution, (5.59) is discretized by subdividing SB into N seg-

ments, and local basis functions are assumed for the source strength a over each

segment, say resulting in N unknown values for a. Eq. (5.59) is then colocated at N

selected points (say one in each segment) resulting in a system of N linear equations

for the N unknowns. The resulting coefficient matrix may be formally expressed as

([A1] + [A2]8) + 0(2), (5.60)

where [A1] and [A2] are the N x N influence matrices corresponding to the first and

second terms respectively on the left side of (5.59) and are formally independent of

6. As - , (5.60) reduces to [A1] + 0(8). From (5.59), it is clear that [A1] is

not a function of the field point . Thus, the coefficient matrix has identical rows

regardless of the position of the collocation points and is singular. The nature of the

computational difficulty in the solution of (5.59) for 62 < 1 is hence clear.

It is useful to point out that our analysis in §§5.1, 5.2 provides a simple remedy to

the computational problem. For r near the critical frequency, the numerical difficul-

ties are easily avoided by solving the regular equations (5.23) for a submerged body

or (5.34) for a surface-piercing body in favor of the singular equation (5.15).

5.7 Conclusions

We consider a floating or submerged body in deep water translating parallel to the

undisturbed free surface with a steady velocity U while undergoing small oscillations

at frequency w. It is known that for a single source, the solution becomes singular

at the resonant frequency given by _ Uw/g=. In this chapter, we show that for
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a general body, a finite solution exists as r - if and only if a certain geometric

condition (which depends only on the frequency w but not on U) is satisfied. For

a submerged body, a necessary and sufficient condition is that the body must have

non-zero volume. For a surface-piercing body, a sufficient condition is derived which

has a geometric interpretation similar to that of John (1950). As an illustration,

we provide an analytic (closed-form) solution for the case of a submerged circular

cylinder oscillating near = . Finally, we identify the underlying difficulties of

existing approximate theories and numerical computations near r = , and offer a

simple remedy for the latter.

An immediate implication of the above result is the time-dependence of the force

on a body due to an initial change in the velocity, which will be focused in the next

chapter.

109



Chapter 6

The time dependence of the wave

resistance of a body

An immediate and important extension of the finding in the preceding chapter is

the time-dependence of the force on a body due to an initial change in the velocity.

Based again on a single source starting from rest and maintaining constant strength,

it is known (Havelock 1949; Wehausen 1964) that the wave resistance displays a

slowly-decaying time oscillation at the frequency w, corresponding to = . Our

frequency-domain result (chapter 5) suggests that with the removal of the r =

singularity, the actual decay must in fact be faster for a body which satisfies the

requisite geometric condition. In this chapter, we will prove this and derive the exact

decay rate based on a thorough analysis of the time-dependence of the wave resistance

of a body starting from rest.

The question of how rapidly transients associated with the abrupt motions of a

floating body decay is one of fundamental theoretical interest as well as practical

importance. The rate at which transient oscillations vanish and measurements taken

is of some concern in model tests especially for unsteady and local effects. The ques-

tion of the behavior of transients comes up also in almost all numerical simulations in

the time domain and directly affects our ability to extract steady-state predictions for

resistance problems and to obtain meaningful results for general seakeeping problems.

Despite its obvious importance, the problem appears to have been addressed only
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for the idealized case of a single translating source of known strength. Havelock (1949)

considered the two-dimensional problem of the wave resistance of a submerged circular

cylinder started impulsively from rest. By approximating the body as a point dipole

of constant strength, he derived a closed-form solution for the wave resistance. The

significant finding is that for a given forward speed U, the resistance oscillates about

the steady value with frequency w, = g/4U, and the oscillation decays only like

t-eiwt as t - oo. This result was extended to three dimensions by Wehausen (1964)

who considered a constant source started abruptly and obtained that the unsteady

resistance vanishes like t-leiw 't as t oo.

The above results can be understood by considering the associated classical sea-

keeping problem in the frequency domain, wherein it is known that (for a single

source) the solution is in fact singular at the frequency Uw,/g = (Haskind 1954).

In the preceding chapter, we just showed that for an actual body the solution at the

critical frequency is finite for a general class of bodies (admissible bodies) subject to

a single geometric condition. An immediate consequence of this finding is that the

decay rate of transients must necessarily be an order of magnitude faster than the

single-source predictions of Havelock (1949) and Wehausen (1964) for this class of

geometries.

Here we consider the starting from rest to steady speed of a general body. The

initial-boundary-value problem is reviewed in §6.1. To solve the problem, we use

a transient source distribution on the wetted surface of the body, where in general

the singularity strengths are unsteady and part of the solution of the problem. Our

analyses (§§6.2, 6.3) show that for admissible bodies, the transient decay rate is indeed

more rapid than for constant strength isolated singularities, with the unsteady wave

resistance in two and three dimensions decaying respectively like O(t - l, t-2 ei'c t) and

O(t 2 , t 2 eiwct) as t -- oo. As a theoretical verification, we rederive these results (§6.4)

using the Fourier method (e.g. Ursell 1964) based on the frequency-domain solution

of the classical seakeeping problem. For a submerged circular cylinder and a Wigley

hull, these results are further confirmed by carefully controlled numerical simulations

in the time domain (§6.5).
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6.1 The initial-boundary-value problem

We take a right-handed Cartesian coordinate system o- xyz with the (, y)-plane in

the undisturbed free surface, the x-axis pointing in the direction of forward speed,

and the z-axis vertically upwards. This system moves forward at constant speed U

and is fixed on a body at t = 0, which is started impulsively from rest. The fluid is

assumed to be incompressible, homogeneous and inviscid, and its motion irrotational.

The flow can be described by a velocity potential:

4'*(, t) = -Ux + 4(i, t) (6.1)

where I represents the body disturbance in the flow. The potential, , satisfies

Laplace's equation within the fluid and vanishes at deep water, V - 0 as z - -oo.

Assuming the amplitudes of waves generated by the forward motion of the body are

small, the free surface condition for can be linearized and it follows that

( -U )2 4 g =oI on z=0. (6.2)

The kinematic boundary condition applied on the wetted body surface, SB, can be

written as:

084ig U t > 0,
(9= Un., t > on SB, (6.3)

0 otherwise,

where n = (n,, ny,nz) is the unit normal out of the body. At the time t = 0, the zero

initial conditions are prescribed

( ,0) = ,t(x-, 0) = O, for z < 0. (6.4)

The velocity potential ·4 is defined completely after imposing the radiation condition

that no waves can appear at far upstream of the body at any time.

The general uniqness theory for this initial-boundary-value problem is as yet un-

available. Despite this fact, considerable amount of efforts have been devoted to find
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the solution both theoretically and numerically (e.g. Havelock 1949; Lunde 1951; We-

hausen 1964; Lin & Yue 1990; Bingham 1994). It should be noted that the large

time limit of the present problem tends to the well-known steady Kelvin-Neumann

problem for which, a unique solution has been shown (Kochin 1937; Dern 1980) to

exist in the case of submerged bodies. We are unable to extend this result and simply

postulate the uniqueness of the present problem for general bodies.

For a general body, the exact solution of the stated problem is very difficult

to be obtained without the use of numerical techniques. In the following sections,

we seek to understand transient behaviours of the solution at large time through

systematic asymptotic analyses in both the time domain and the frequency domain.

The determination of the decay rate of the transient solution is of theoretical interest

and practical importance for experimental measurements of the wave resistance of a

body and time-domain numerical simulations of the seakeeping problem.

6.2 Time-domain analyses

In this section, we solve the stated problem (§6.1) directly in the time domain and

derive the explicit time-dependence of the solution through large-time asymptotic

analyses. Based on the source formulation, the potential is constructed in terms

of an instantaneous wave source distribution over the wetted body surface. The

unknown source strength at any point on the body at any time is determined by

an integral equation resulting from the imposition of the body boundary condition.

Based on large-time expansions of single-source potentials, the time-dependence of

the source distribution can be determined from the integral equation. After obtaining

the solution for the source strength, the transient solution of the velocity potential X

follows directly.

For the sake of clarity, in this section, we present our analyses in detail only for

two-dimensional submerged bodies. The extension to surface-intersecting and three-

dimensional bodies is straightforward and will be outlined in the next section (§6.3).
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6.2.1 Single-source potential

Consider a source of variable strength, (t), located at '. The resulting velocity

potential, denoted by T(x, z, or(t)), is defined to be harmonic everywhere in the fluid

except at the source position. In addition, satisfies the linearized free surface

condition (6.2) as well as the radiation condition, and vanishes at large depth. It is

noted that is identical to the conventional Green's function (Havelock 1949) if r(t)

is constant.

The general solution of T can be derived by making use of classical transform

techniques (for details, see Wehausen & Laitone 1960). In two dimensions, we write

I in a conventional form:

(:, ,))= a(t)xn(-)

00 e(Z+Z )t L

2 dk e 1 (r) cos[k(x - x') + kU(t - r)] sin[(gk)i(t - r)] dr (6.5)
- (gk) 0

where r2, r2 = ( - ')2 + (Z :T z') 2 . For convenience in analytical manipulation, we

rewrite (6.5) in a more convenient form by expressing the trigonometric functions in

complex exponential form

it(-x, o, (t)) = o-(t)l (I )

.| dk ek+il+ (gk)½]t | (r)e-i[kU+(k)2]r dr + c.c.
9 ,,+i(gk)i J-oo

i| d e fk+iU(gk)i]t J (r)e-ikU-()l dr + c.c. (6.6)
2 f (gk)i

where Ob = i(a - x') + (z + z') and c.c. denotes the complex conjugate of the preceding

terms. Changing variable with k = m2 and manipulating the range of integration a
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bit, it follows that

(xx', a(t)) = (t)ln -r

+i2g | dm e'm2+i(m2U+mgA)t f o()e- i(m2U+mgY) dr + c.c.

-ig2 f rdmem2M+i(m2U - mG)t o(r)e-i(m2 Ug-2) dr + c.c.. (6.7)

In order to find the explicit time-dependence of the velocity potential (4 in the near

field of the body, it is necessary to first asymptotically expand X for - = o(1)

as t - oo. For a given function of o(t), in principle, the expansion of can be

obtained from (6.7) by using the method of steepest decent. In the following, we

summarize three major expansions of T for specially-anticipated source functions,

which are useful for later analyses. The detailed derivation of these expansions is

shown in appendix B.

Case I: a(t) = qo = 1 for t > 0 and o = 0 elsewhere

For a source with constant strength at t > 0, the potential at large time can be

expanded as:_ ) e-iC. ¢e
2P(xx',qo) = I(k,x) + er .¢. + o (-iw) as t - oo (6.8)

where the wave number K. = g/(4U2), the constant Co = 8(U)2 ei4, and the time-

independent function G is given by

c(x, x) = ln(rri) + 2rek(') sin ko(x- ') + 2 cos0 k(z - x e(z+zI) dk (6.9)

with ko = 4.
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Case II: a(t) = a(t) 0 for t E (0, to) and &(t) = 0 elsewhere

If a source is suddenly brought into the existence at t = 0 and taken out of the fluid

at t = to, the resulting potential at large time can be expanded as:

( (W ee+c+

,i(, ,, ( t)) = wV,(-)e + . e-
tl t' xi e' ct 2 t' ti

as t - oo (6.10)

where W is independent of time and is given by

fv(xf) = (9 )e 4 o &(r)ei"c' dr . (6.11)

Case III: oa(t) = ql = t-2e -iwt for t > to and q = 0 elsewhere

If a source is brought into the fluid at t = to with variable strength given by t- e-iwct

the resulting potential at large time can be expanded as:

r(X'X 1 q1) = Cie-iwte + C1 e- + C
t 

-e- 1 e \
+ H(X, x + ,

t'i t t

eiwct te '
t 2

as t -- 0oo (6.12)

where * denotes the complex conjugate and the constants

tively given by

C1 = e-l (kU) r E (2n 1) '
(2n + 1)n! 

C 1, C1, and C 1 are respec-

(6.13)

and

C1 = e (27r) W 2(koU/2) .

The regular function H(x', x') is independent of time and is given by

H() = ( ) + i/ (emf _ em2) + k {2 eM 2
ri .+ iJZ~r (em:~' 1 I (m + 02/2)2
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m2 drn+ eM dm (6.15)
o em + m)(m - 2) n(m - m)(m + m2) 

where ml,2 = k(V/ ±- 1)/2, and $ indicates the path of integration to go below

the pole. The contour C extends from -oo to +oo in the complex m-plane and is

indented to pass below the pole at m = ml and above the pole at m = -m 2.

6.2.2 Submerged bodies

For a submerged body moving in the direction of ox with constant forward speed U,

the solution can be constructed in terms of a continuous source distribution (Havelock

1949; Lunde 1951):

4(,t)= I (, -( , (t)) d ', (6.16)

where (x:,t) represents the source distribution on the body. Since the solution

eventually reaches the steady state, in general, we can decompose the source strength

o(x, t) into steady and unsteady components:

(', t) = a(x') + (;', t) (6.17)

in which the time-dependent part & is expected to vanish at large time. After substi-

tuting (6.17) into (6.16), the velocity potential can be expressed as:

(,t) = ( (xao) ds' +I j (x 'xi,(XI', t)) d'. (6.18)

To find the asymptotic solution of i, at large time, it is clear from (6.18) that it is

necessary to construct the asymptotic expansion of the single-source potential T. For

doing this, the time dependence of the unsteady source C must be known in advance.

In order to derive the asymptotic expansion of the unsteady source distribution,

we further split & into two parts:

(X, t) = (x,t) + &(x', t) (6.19)
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where & is assumed to be a continuous function of the time for t E (0, to) and vanishes

for t > to, while & is identically zero for t E (0, to) and decays as t - oo. Due to such

decompositions, the velocity potential in (6.18) can then be rewritten as:

b(xt)- ( ()T(x qo) ds +J (XBx d a(t)) ds' +jS (X, i, (XI, t)) ds'.

(6.20)

By substituting the asymptotic expansions of Q(x, ', qo) and 'I into (6.20), it follows

that

m- t) = j 7)(XI) ds' + j ~ , 8 (XI, t)) ds'

+ l e-'et.(i+z) + c.c. + 0 - t) as t oo (6.21)
+ 2 t' t2

in which the Kochin function al is defined by

cal = s [Coa(x) + W(x)] e(iz'+z') ds'. (6.22)

Clearly, the solution constructed in (6.21) satisfies all conditions of the initial-

boundary-value problem except for that on the body. Imposing the body boundary

condition (6.3) to (6.21), an integral equation for the unknown source strengths is

obtained:

i[4() + &(X, t)] + (:) O(X,' ) ads' + 1( t))d+ O-(k, ', '(, t)) da'
-- + X- ailK(in2 + nz)eK(i2+z) + c.c. = Un + 0 (- ) as t - 00(6.23)

for any on the body. Because the time-dependent terms in the equation decay for

large time, (6.23) can be separated into steady-state and time-dependent components:

7r&() + J [)( d)Gs(', ds= Un, (6.24)
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and

-ba(, ) + fs ,n(, x, (X, )) ds'

e-iwct Ciw~t
+ , ait(in~ + n)e(i+Z) + c.c. = 0 , as t - oo (6.25)

for E SB.

Equation (6.24) governs the steady source a which is associated with the well-

known Kelvin-Neumann problem. The solution of (6.24) has been investigated by

many researchers both theoretically and numerically (e.g.Wehausen 1973; Nakos &

Sclavounos 1990). Since our focus is on the unsteady solution, we here just simply

assume the existence of a unique finite solution for a and will not consider equation

(6.24) any further.

Equation (6.25) governs the unsteady source E at large time. Based on (6.25)

and the large-time expansion of $(x, x, ql), we deduce that in general, the unsteady

source a must formally take the following asymptotic expansion in time:

-iwt (1 eiwt
(x',t) = Re (x)-i +0o - ) as t -- 00 (6.26)

where a, is complex. In the following, however, we shall show that subject to a body

geometric condition, al(x') is identically zero for any x' on the body.

Now we substitute (6.26) back into (6.25) and obtain

+ -i ' la(ina, + nz)eK,(i+z) + c.c. = O I e-iwt as t - oo . (6.27)

Substituting the asymptotic expansions of 'I'(, , ql) into (6.27), it follows that

ei~ ¢t e-iwct

1 6(-inw, + fz)eK(i+z) + {7r 1(x)
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+ =f0 c i(x') x) ds' + (6.28)

as t --* oo, where the constants 31 and 32 are Kochin functions respectively defined

by

31 = C + 01 j u(z)e`(i'+z') ds' (6.29)

and

/32 = a, + (CItO + Cl) Is '()e^(-i'+z) ds' . (6.30)

By identifying the coefficients of each time harmonic in (6.28), we have

,3,(-in, + nz)ei (- i +z) = 0 (6.31)

and

~7ri() + fo( I) H x) d' = -32.(in + nz)e(iz+z) (6.32)

as t --- oo.

Since (6.31) needs to be satisfied for any x on the body, it immediately follows

that the Kochin function /31 must vanish.

Notice that integral equations (6.30) and (6.32) are coupled for unknowns al and

al. To decouple these equations and find the solution of al, we follow the procedure

employed in §5.2. First, we rewrite (6.32) as:

1]sX - ,
al()'=-- J (x') Hn,() ,)ds' (iz + nz)e"(i+z) . (6.33)

r Ja 7

We then substitute (6.33) into (6.30) and solve for the Kochin function t32 to obtain

/32= +(C, + [I - (C t' + C1) Ls ,()P 1(z) ds'] (6.34)
? + (Cjt2 + ci),,r

where the kernel P1 is given by

P(x) = Js e(-i+)H(a ) ds (6.35)
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and the geometric constant r is given by (5.22).

Depending on the body geometry, there are two possibilities. If r Z 0, we substi-

tute (6.34) back into (6.32) to obtain a new integral equation for al:

in, + nfl, p
Vral(X) +fos()H.(~, X) ds r e cl()Pl(x) ds' = 0 (6.36)

as t -- oo. Note that equation (6.36) is homogeneous and its kernels are regular.

According to the Fredholm theorem, (6.36) possesses a trivial solution except possibly

at an enumerable number of discrete values of r. for which the Fredholm determinant

vanishes and nontrivial homogeneous solutions can exist. Since our major interest is

on the general problem, we will not be particularly concerned with this possibility.

It then follows that if r 0o, al(o() = 0 for any on the body and thus (x,t) =

O(t-1,t e -ict) from (6.26) as t - oo.

From (6.32), it is clear that the constant /2 must be identically zero as t -+ oo.

This leads to the Kochin function al = 0 according to (6.30), which also follows from

(6.29). In this case, the velocity potential in (6.21) reduces to:

4 ( LXBt) &(x')G(aXI) ds' + j (,zX',&(xa, t)) ds' + 0 e ) (6.37)

where (X',t) = O(t-l,t-eiwt) as t -- oo.

Following the above procedure with &(x, t) = O(t-l)+O(t 2e-it) we can further

show that at the order t-l, there is a monotonically decaying term but no oscillatory

term O(t-le -iwct) in the expansion of the potential 4p. Thus we can rewrite (6.37) as:

( ) ( )O(x, xI) d8 + 0 (, ) as t -- o (6.38)

which indicates that the transient potential vanishes in the same way as the unsteady

source distribution .

If r = , the substitution of (6.34) into (6.32) gives

(7raa) ±H,, (i XI) d' + ar(in, + n.) eM(ix+z)
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= (Clt + 1C)(in. + nz)es(i+z) 1()P() d' + o (A) (6.39)

as t -* oo. Note that the right-hand side of (6.39) becomes unbounded for ol 0

as t -, oo and the solution of al depends on the constant al. In general, we can

only have al 0 for discussing the solution of oa. From (6.39), al must be at least

0(1) for al $ 0. As a result, the unsteady potential 4 due to k6 must be larger

than 0(1) as t -, oo. This implies that if r = 0, the steady-state solution does not

exist for the original initial-boundary-value problem based on linearized theory. It

is remarked that such solution behaviour was also found by De Prima & Wu (1956)

and Akylas (1984) for water waves generated by a moving disturbance which has a

constant magnitude but oscillates in time at the critical frequency wc.

In summary, we conclude that for a submerged two-dimensional body, the tran-

sient potential due to an initial acceleration of the body decays like O(t-, t-2e- ict)

as t -- oo if r 0o. On the other hand, no steady-state solution exists if r = 0. Note

that according to Bernoulli's equation (2.4), the wave resistance of the body has the

same leading time dependence as the velocity potential.

For a submerged body, as discussed in §5.2, the condition I: 0 corresponds to

the requirement that the body has non-zero volume.

6.3 Generalizations

In this section, we extend the time-domain analysis of the preceding section to surface-

intersecting and three-dimensional bodies.

6.3.1 Surface-intersecting bodies

As with the demonstration for the frequency-domain problem (§§5.2, 5.3), the tran-

sient analysis (§6.2) for submerged bodies can be generalized to surface-intersecting

bodies with the extra complication of a waterline integral.

By assuming (locally) vertical intersections, we again write the velocity potential
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in terms of a body surface source distribution (e.g. Ursell 1980)

(x, ) = jf O(,(,I t)) ds' - t[T(X x_, ,_) + (Xt+,+)] (6.40)

where e =- U2 /g, and o represent the source strengths at the two intersection points,

x = (x,0). Based on (6.40) and following the same procedure as in §6.2.2 for

submerged bodies, we can show that the unsteady potential in (6.40) decays like

O(t- 1, t-eiwct) if the surface-piercing body satisfies the geometric condition r 0.

Otherwise, the steady state of the original initial-boundary-value problem may not

exist.

For surface-piercing bodies, the evaluation of the constant r as well as the geo-

metric interpretation of the condition r f 0 are discussed in detail in §5.3 and thus

omitted here.

6.3.2 Three-dimensional bodies

The analytical procedure in §6.2.2 can be directly applied to a three-dimensional

body. Upon decomposing the source strength into three components a, &, and ,

the velocity potential can be represented as the sum of their influences:

1(x t) =/j a(a) -( $, q)ds'+j ~X( X, a,(t))ds'+ s( , , &(x, t))ds'. (6.41)

where E represents the three-dimensional single-source potential (e.g. Wehausen &

Laitone 1960). Like that for AQ, the large-time expansion of _ can also be obtained

by using the method of steepest decent for given source functions. For three source

functions used in following analyses, the resutls are presented in appendix B.

After substituting the larg-time expansions of (x, x, go) and -(2, x, (t)), equa-

tion (6.41) can be rewritten as:

4(Xt = ( () (I, ) d'' +' (XXI6,(X , )) d'
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(le e+ ale- "t e(i=+) + c. + t2 , as t oo (6.42)
t t2 ' t2

where the Kochin function al is defined by

al = j [CO() + W(x1t)] e (- i'+z') ds'. (6.43)

Based on the integral equation for the unknown source distribution &(X', t) and using

the large-time expanion of ((z, x', ql) (in appendix B), we proceed as in §6.2.2 and

can show that If r # 0, the source strength = O(t-2,t-2e -iwt) and the Kochin

function al = 0 as t - oo. In this case, the potential a in (6.42) can be rewritten as:

) XSB (X)(,x) ds' + (t2 t- 2 ) as t --+ oo. (6.44)

If r = 0, no steady-state solution can be obtained based on linearized theory.

6.4 Frequency-domain analyses

In this section, we apply the Fourier method to rederive the solution (§§6.2, 6.3)

obtained by the time-domain asymptotic analysis.

With the inverse Fourier transform, we can write the potential $ as:

(,t) = - b(, w)e"' dw+ c.c. (6.45)

where b is the Fourier transform of A. From (6.45), it is clear that the potential I

at large time is dominated by the integration in the neighbourhood of the end point

w = 0 and the singularities of 4 on the positive w-axis.

In order to determine b, we apply the Fourier operator J' e-iwt · · · dt to the govern-

ing equations of the initial-boundary-value problem of 4P (§6.1). After taking account

of initial conditions, a complete boundary-value problem for is obtained, which is

identical to the classical seakeeping problem with the body boundary condition given
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by

nzU [I(w) + .] on SB (6.46)

where 6(w) is the dirac delta function. Based on (6.46), we can write as:

(,w) = U [r(w) + t (:,w) (6.47)

where qo represents the solution with the body forcing 'o = n,.

For the seakeeping problem, it is known that o is generally regular except at

the critical frequency, w, = g/4U, where the single-source solution (Green function)

(Haskind 1954; Wehausen & Laitone 1960) is singular. By using a source distribu-

tion on the submerged body surface and through systematic asymptotic analyses, in

chapter 5, we showed that do is actually bounded at the critical frequency if the body

satisfies the geometric condition r ¢ 0. Despite this, the integration in (6.45) near

the critical frequency may still dominate the time oscillation of '4 at large time due

to the nonsmoothness of 4o. By neglecting exponentially small contributions, we can

thus rewrite (6.45) as:

= X {j + J } (w) + - k ) o(,w)eiw t dw + c.c. as t --+ (6.48)

where is a positive small number. To evaluate the integrals in (6.48), it is necessray

to have the explicit dependence of b0o on the frequency w.

6.4.1 Two-dimensional bodies

For a two-dimensional body satisfying the condition r # 0, the asymptotic solution

near the critical frequency can be derived according to (5.25) and (5.36). If r 0,

we obtain the solution for qo which can be expressed in a symbolic form:

b ( ,w) = ( + smaller terms 1W- W., < 1 (6.49)(w - w)} + rFD
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where the function f and the constant D are independent of frequency w. Note that

b0o is clearly bounded, but its first w-derivative possesses a square-root singularity at

w = wc.

In order to establish the expansion of o at low frequency, we first asymptotically

expand the wave-source Green function (Haskind 1954) about w = 0 to obtain:

G(i, x, w) = G(/, XI) + wE(x, x') + O(w2) << 1 (6.50)

where the function E is regular and independent of w. Based on the source formula-

tion, it can be easily shown that q0o must take the similar expansion:

o(2, W) = 0oo(0() + wo0 1() + O(w2) << 1 (6.51)

where 0oo and ol are also independent of w.

By substituting (6.49) and (6.51) into (6.48) and employing integration by parts

and the method of steepest decent, we obtain that if r 0,

( +'2 ( t)- t) - as t -+ . (6.52)2 + t O t
Here we note that the unsteady potential in (6.52) decays in the same way as that in

(6.38) obtained using the direct time-domain analysis (§6.2).

6.4.2 Three-dimensional bodies

For a three-dimensional body, we follow the procedure outlined in §5.5, to derive the

solution for 0o near the critical frequency. If r 0o, we obtain

Fo(,w I) - + lnO(jw - + ( -wo) + smaller terms 1W - < 1
'D + rrn 1 - 'l-

(6.53)

where the function F and the constant V) are independent of frequency w. Clearly, 0O

is bounded as w - w. As in two dimensions, the expansion of qo at low frequency can

be found by expanding the three-dimensional Green function (Wehausen & Laitone
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1960) about w = 0. The result can be expressed in a symbolic form:

qo ,w) = o00o() + w2qbo1(~) + smaller terms w < 1. (6.54)

Substituting (6.53) and (6.54) into (6.48) and upon integration by parts, it follows

that

U4oo(i) DUF(i) eiwt _ __ eit
'tp2 +i-We t + d

1 e - iwet
t2' t- as t -- 00. (6.55)

The use of the method of steepest decent for the integral in (6.55) leads to

( ) OO() + VDUF( (e t 0)ct [+_ e-__t/+_e__ _
(It)2 \ rWy t o [ip + 2r(ir/2 + In e)]2

O(~~~c~, t)= + ro~

1cc e-ict+ c.c.+ t t-- as t -- 00o. (6.56)

The integral in (6.56) is formally similar to Vortela integral which is known to vanish

exponetially as t -+ oo. Therefore, we can write (6.56) as:

+~~~e c + c.c. +0 e:, ct\UO () VUF() e-t i,,t 1 -iwt4b~-, t)2= -Irw t (C,2 7W' t t2 t2
(6.57)

as t --+ oo, where the constant y - e-.2r determined from V + c2rln = 0. We

remark that neglecting the exponential decay, the time dependence of in (6.57) is

identical to that in (6.44).

6.5 Numerical confirmation

In this section, we confirm our theoretical results through direct long-time numerical

simulations in the time domain.

The first problem we consider is that of a two-dimensional submerged circular
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cylinder started impulsively from rest to constant forward speed. We solve this lin-

ear problem using the spectral method developed in chapter 2, and obtain accurate

transient results. For the case of Froude number F, = U/g/g = 1 and submergence

H/R = 2, figure 6-1 shows the comparison between the numerical result and the fitted

asymptotic solution based on the above analysis for the unsteady wave resistance on

the body. The behavior of the decaying transient solution is well corroborated. Fig-

ure 6-2 shows the time-dependent behavior of the source strength on the body. For

simplicity, only the first (circumferential) Fourier mode is plotted. The comparison

between theoretical prediction and numerical result is excellent.

As a second problem we consider the unsteady resistance of a surface-piercing

three-dimensional body. Specifically, we choose a Wigley hull with a beam-length

ratio of b/a = 0.1 and a draft-length ratio of H/a = 0.0625 at a Froude number of

F, = U/V/i = 0.15. The numerical simulation is performed using a time-domain

transient Green function method of Lin & Yue (1990). The comparison between

the theoretical asymptotic solution and numerical calculation for the time-dependent

resistance is shown in figure 6-3. The agreement is again excellent and confirms the

O(t-2 ) approach to steady-state resistance.

Finally, we remark that in deriving the large-time transient solution, exponentially-

decaying terms are always neglected. Thus, the theoretical prediction of the decay

rate becomes apparent only after these exponential-decay terms become smaller than

the leading algebraic asymptotes. As shown in (6.57), the exponential decay is con-

trolled by the dimensionless geometric parameter K2r for a three-dimensional body.

Clearly, the decay is faster for larger values of 2r. To see the exponential decay, for

the Wigley hull, we increase the Froude number to F? = U/IE = 0.3. This reduces

the wave number rI and thus slows down the exponential decay. In figure 6-4, we

show the transient wave resistance as a function of time. It is seen that the numer-

ical solution matches O(e- 00 242wt/t) very well. In this case, the leading asymptotic

algebraic decay O(t - 2) will overdominate the exponetial-decay effect after about 540

critical wave periods.
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6.6 Conclusions

The decay behaviour of the transient solution due to an initial acceleration of a body

is addressed. For simplicity in analyses, the body is considered to be impulsively

started from rest and then move forward with a constant velocity U. The initial-

boundary-value problem is directly solved in the time domain using a transient free-

surface source distribution on the submerged body surface. The linearized body

boundary condition is satisfied exactly on the instantaneous position of the moving

body. Based on large-time asymptotic expansions of the single-source potentials, the

explicit time-dependence of the transient solution is derived. The result is found

to depend on the same body-geometric condition which censors the boundedness

of the frequency-domain solution of the classical seakeeping problem at the critical

frequency w, = g/4U. If the body satisfies the requisite geometric condition (r 0),

the unsteady resistance on the body decays like O(t - 1, t-2eict) in two dimensions and

O(t- 2,t-2eict) in three dimensions as t -- oo. Otherwise, the steady linear solution

may not be reached. As a theoretical verification of the direct time-domain analysis,

the same result is rederived by using the Fourier method based on the frequency-

domain solution of the general seakeeping problem. For a submerged circular cylinder

and a Wigley hull, direct time-domain numerical simulations are carried out to further

confirm the analytical predictions.
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Figure 6-1: Comparison between numerical simulation result () and fitted asymptotic
solution (- -) for unsteady wave resistance on the cylinder. (F,=1, H/R=2.)
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Figure 6-2: Comparison between numerical result () and fitted asymptotic solution
(- --) for the first (circumferential) Fourier mode of the source distribution on the
cylinder. (F,=l, H/R=2.)
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Figure 6-3: Comparison between numerical result () and fitted asymptotic solu-
tion (- -) for unsteady wave resistance on the Wigley hull. (F,=0.15, b/a=0.1,
H/a=0.0625.)

2.5E-4

F(t) -F.
pgabH 1.5E-1 

-2.5E-4

Wct

Figure 6-4: Comparison between numerical result () and fitted asymptotic solu-
tion (- -) for unsteady wave resistance on the Wigley hull. (F,=0.3, b/a=0.1,
H/a=O.0625.)
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Chapter 7

Nonlinear motion coefficients near

the critical frequency

Having shown that the linear seakeeping solution is bounded at the critical frequency

under a simple geometric condition r $ 0, we next focus on the study of nonlinear

solutions in the neighbourhood of r = . The primary interest is to understand the

high-order effects of quadratic and cubic interactions among steady and unsteady

surface waves upon body-motion coefficients. As a numerical example, we choose

to study nonlinear wave radiation from a submerged circular cylinder in a uniform

current using the high-order spectral method.

The linear asymptotic solution (5.52) at r = - for a submerged circular cylinder

shows that the amplitude of the kl,2 waves increases exponentially with the body

submergence. This implies that coupled interactions of surface waves must play a

significant role for the seakeeping solution near the critical frequency for deeply sub-

merged bodies.

On the other hand, the group velocity of the kl, 2 waves is known to vanish at

r = according to linearized theory. As a result, the associated wave energy is

trapped in the near field of the body. When nonlinear interactions are included, the

third-order change in the dispersion relation is generally expected to increase wave

radiation through the change of the group velocity. For the case of a single source, this

third-order effect has been shown to be critical for obtaining the bounded solution at
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the critical frequency (Dagan & Miloh, 1982). For a real physical body, in principle,

this nonlinear free-surface effect must also be significant near r = .

7.1 Numerical aspects

We apply the high-order spectral method to study nonlinear wave radiation from a

submerged circular cylinder in a uniform current. The body is forced to oscillate

periodically in deep water with the frequency near r = . As initial conditions, the

free-surface elevation (zx,0) and potential -$(x,z0) are prescribed to be zero. At

each time step, the boundary-value problem is solved up to an arbitrary order M in

surface wave steepness using the spectral method. With long-time simulations, we

obtain steady-state solutions for the radiation force on the body including nonlinear

free-surface and body effects. The harmonic components are then extracted via the

Fourier transform of steady-state time histories.

In the following, we address several numerical aspects associated with the imple-

mentation of the high-order spectral method for the present nonlinear forward speed

problem.

7.1.1 The base flow

With the high-order spectral method, in principle, any harmonic function can be

used for the velocity potential b of the base flow. In practice, we choose ~ to be the

leading order solution of the steady problem so that the perturbation potential ik can

converge rapidly with respect to the order M in computations. For the present study,

we use the double-body flow as the base flow. By approximating the circular cylinder

with a dipole, we obtain a closed-form solution for 6:

~(x,z) = -Ux - (,rUR' sin2ix/L)
\ 2L ) sin2( rx/2L) + sinh2[7r(z + H)/2L]

- (7rUR2 \ sin(rx/L) (7.1)
\%2L sin2(7rx/2L) + sinh2[7(z - H)/2L]
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where U is the speed of the current, R the radius of the cylinder, H the body sub-

mergence, and 2L the length of the periodic domain.

7.1.2 The body boundary conditions

For heave radiation, the Neumann boundary conditions for perturbation potentials

( " ), m = 1, M, applied on the mean position of the body SB are explicitly given

by (cf. 2.12):

d
n() = -- 2)zn + nzd2(t) 1 (7.2)

_'[e m M-1 E-I t,
(m) -= 1 n -E ik! k.Ozn- m = 2,.. M (7.3)

k=l

where 62(t) denotes the forced heave motion of the body. For sway radiation, the

similar boundary conditions can be written as:

n() = -~ - Ein + nd. (t) (7.4)

n - m ° m - k!O zx ° k ) , m = 2,...,M (7.5)
k=!

where 1(t) is the forced sway motion of the body.

7.1.3 Perturbation pressures and radiation forces

Once the boundary-value problem for the potential 4t is solved up to the specified

order M, the pressure on the instantaneous body surface, in general, can be ob-

tained from (2.4). To be consistent with the potential calculation, we also expand

the pressure in a perturbation series:

M
P(x, z,t) = P(m)(x,z,t). (7.6)

m=l

Upon substituting (7.6) and the perturbation expansion of $P (2.9) into (2.4) and then

expanding (2.4) in Taylor series about the mean body position SB, each perturbation
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pressure p(m) on the body can be determined in terms of 4(m) and the body motion

(61,2). For heave radiation, we write p(m) evaluated on SB as:

P(1) Ps _ 2 (P)z [tI( ) + V * VI(1)] (7.7)
P P P

P(2) 2 E ( ) + v V( -k)] - 1 , (7.8)
p(3) - .•p(p - '1Z k +7v82 k

_ _ (p)Z _ E k _ [,(3-k) + V V (3- k)]
P 6p k= 2 WZ-ALt

-v ( ) ·v( 2 )- 4.(V(') .· v(')) , (79)
2

p (24p )- 2 zk (4-k) + V.* V( 4- k)] _ Vi(2) .V. ( 2)

2p 2 kk=O 2

-V(1) (3) -_ 2 (Vw() i )), (7.10)
4

where P, = (V. V - U2) depends on the base flow only. Here the solution for

m > 4 is omitted since the resulting force on the body with M up to 4 is accurate

enough for the present study, as demonstrated in §§7.2 and 7.3. For sway radiation,

similarly, p(m) can be expressed as:

p P.= - _ (Pa) , - [~) + v * V,(")], (7.11)
P P P

p( 2 ) 2 1 qr(2-k))] -V 1(P). 4->(J) v-('.,(7.12)
2

p(3) 3 2 +

P 24p ( )Z1. E 61 aZ_ k [at + V * V( )]k=O

-V(1) . V(3 ) - (V~( ') . V~(l)) (7.14)

The instantaneous force on the body can be obtained by integration of the pressure

over the body. The harmonic components can be extracted from the steady-state

(limit-cycle) time history via the Fourier transform. The conventional added mass
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and damping coefficients can be determined from the complex amplitude of the first-

harmonic force. For sway oscillation l(t) = 2 sin(wt), for example, the added mass

and damping of the body can be calculated by:

A = 2RF,/f,2 X A, = 2F1) w2 

(7.15)

BX= -2ZF.)/w, Bz = -2sF1)/2w. (7.15)

where Aij (Bij) respresents the added mass (damping) in the i-direction due to the

body motion in the j-direction, and FV1) and F(1) are corresponding complex ampli-

tudes of the first-harmonic force in the x- and z-directions respectively.

7.1.4 Evaluation of spatial derivatives of n(m) on the body

For the calculation of body boundary conditions (7.3 and 7.5 ) and perturbation pres-

sures (7.7-7.14), it is necessary to evaluate high spatial derivatives of I(m) accurately.

To do that, we transform (x, z)-derivatives into cylindrical coordinates (r, 0) by using

chain rules:

=cos - sin - and = sin r + cos (7.16)
YX iar rao r rOB

Since ("m) and its r-derivatives on the circular cylinder are periodic in B, their deriva-

tives with respect to can be easily evaluated in the spectral space. Once the first

r-derivative of ("m) is determined (from the body boundary condition), the second

r-derivative can be obtained from Laplace's equation:

= r - L ,( (7.17)

and the higher r-derivatives follow from the differentiation of (7.17).
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7.1.5 Enabling long-time simulations

For a computational domain fixed relative to wavelength and body dimensions, the

solution in the near field of the body will eventually be distorted due to 'reflections'

from the periodic boundaries as the simulation time T, increases. In general, this

error is avoided by successively increasing the length of the periodic domain until the

steady-state solution of interest is reached.

For the forward speed problem, however, the steady state is approached very

slowly due to the influence of the critical frequency. More seriously, we deal with the

seakeeping solution near the critical frequency in the present study. The minimum

length of the periodic domain required exceeds the limit allowed by the available

computational facilities. In order to obtain steady-state solutions, it is then necessary

to develop a procedure which allows for long-time simulations in a fixed computational

domain.

To do that, we follow Dommermuth & Yue (1988) and smoothly truncate the free-

surface elevation and potential at the longitudinal ends of the computational domain

after each time step. Specifically, we multiply and V'J by a tapering function 0(x, A)

which is equal to one in the middle and smoothly approaches zeros at the ends:

1, Ix < L- 

O(X, A) = (7.18)

l ((xl - L + )), L - < 11 <l

where A measures the width of the tapering region and is a parameter to be chosen.

Here the Hermitian polynomial, II(s), 0 > s < 1, is defined to be:

II(s) = 1- 46286 + 1980s7 - 3465s8 + 3080s9 - 1386s10 + 252s11 (7.19)

where II(O)= II(1) = 0, and (dk/dsk)l(O) = (dk/dsk)II(1) = 0 for k = 1,... ,5. Note

that such smooth tapering function II(s) will not cause Gibb's phenomena. As the

numerical tests in §7.2 indicate, this simple tapering procedure is remarkably effective

and allows us to carry out very long simulations and obtain steady-state linear and
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nonlinear solutions for the radiation force on the body near the critical frequency.

7.2 Convergence tests

We need to test the accuracy and convergence of our numerical method with respect

to the order M, the maximum numbers of body and free-surface modes, NB and

NF. In addition, we also need to determine the tapering parameter A for conducting

long-time simulations.

The convergence of numerical time integration is similar to that for the zero speed

problem (chapter 3). With the use of fourth-order Runge-Kutta integration scheme,

the global error is expected to be O(At/T) 4 provided the boundary-value problem

itself is sufficiently accurate. Based on numerical tests in table 3.5 and to be more

conservative, we here use T/At = 128 for all of following calculations.

7.2.1 Convergence of the boundary-value problem solution

First, we test the high-order solution of the boundary-value problem by considering

the steady wave resistance of a submerged circular cylinder at a Froude number of

F, = U/(gR)2 = 2.4. The computational domain is chosen to contain 64 steady

wavelengths, i.e., 2L = No = 64Ao. To minimize the initial disturbance and

accelerate the approach of steady states, we multiply the free-surface forcing in (2.8)

by a smooth time function, tanh(t/3T,), where Tc is the critical wave period. This

is equivalent to a smooth start of the body motion in simulations. With this simple

procedure, the steady-state solution for wave resistance of the body is reached rapidly

after T. = 6T.

Table 7.1 shows the convergence of wave resistance of the body with respect to the

number of body modes NB for different order M, keeping NF fixed. Similar to the

results at zero forward speed (§3.2), the solution converges to its limit exponentially

fast as NB is increased for any given M. For NB = 64, steady resistance of the body

shows convergence up to three significant figures.

Similar rapid convergence with respect to the number of free-surface modes NF
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Table 7.1: Convergence of the normalized wave resistance, I I /pgR2 , on a submerged
circular cylinder with increasing the number of body modes NB and order M. F,=2.4,
H/R=4; and NW = 64, NF = 32N,, Tc/At=128, T, = 10T.

Table 7.2: Convergence of the normalized wave resistance, JFl l/pgR2 , on a submerged
circular cylinder with increasing the number of free-surface modes NF and order M.
F,=2.4, H/R=4; and N,, = 64, NB = 64, T/At=128, T, = 10TI.

and with order M is displayed in table 7.2. Again, exponential convergence with both

NF and M is achieved. For subsequent computations of wave resistance, we employ

Nw=64, NFIN, = 32, NB=64, Tc/At = 128, and T,/TC = 10. Based on the foregoing

numerical tests, we anticipate the maximum error for resistance of the body to be

less than 1%.

7.2.2 Determination of the tapering parameter A

To determine the tapering parameter A, we consider sway radiation of a submerged

circular cylinder at the critical frequency r = . For computations, we choose the

motion amplitude /R = 0.1, the submergence H/IR = 2, and the Froude number

F, = 1. For numerical parameters, we use N,, = 128 and NF/N,=16, NB = 64 and

T,/At = 128. Based on convergence tests in tables 7.1 and 7.2, we expect the error

of the boundary-value problem solution to be within 5%.

For different values of A, we calculate the linear (M = 1) first-harmonic force

on the body. Table 7.3 shows the results for the horizontal force component at
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NB M = 1 M=2 M=3
32 0.2760 0.2543 0.2527
64 0.2773 0.2560 0.2540
128 0.2776 0.2562 0.2538

NF/N M=1 M=2 M=3
8 0.2650 0.2460 0.2430
16 0.2752 0.2545 0.2520
32 0.2773 0.2560 0.2540
64 0.2780 0.2563 0.2544



Table 7.3: The effect of tapering on the first-harmonic horizontal force, IF(1)l/pg,R
on a submerged circular cylinder with a forced sway oscillation. ,/R = 0.1, F, = 1.0,
HIR = 2.0; and N, = 128, NF/N, = 16, NB = 64, To/At = 128.

different simulation time T,. It is seen that the result without the use of tapering is

eventually distorted by the disturbance reflected from the computation boundaries

as the simulation time is increased up to T. = 40T,. On the other hand, the tapered

simulations with A/Ao=3 and 5 perform quite well and the steady-state solution for

the first-harmonic force on the body seems to be achieved when T./TC = 40 - 50.

Note that for nonlinear computations, in general, the steady state is reached

much faster than that in linear simulations, as shown later in figure 7-5. Therefore,

the tapering procedure in principle allows for a smaller computational domain. For

convenience, we fix the computational domain for both linear and nonlinear calcula-

tions and use N, = 128, A/Ao=5, NF/N, = 16, and NB = 64 for all of the following

simulations of the wave radiation problem.

7.3 Numerical results

Having established the accuracy and convergence of the present method, we apply it to

study wave resistance and wave radiation of a submerged circular cylinder in a uniform

current, -U. Our major concern here is to understand the nonlinear seakeeping

solution, particularly near the critical frequency r = . The primary results include

linear and nonlinear solutions for the added mass and damping coefficients as well as

wave resistance on the body. The comparisons to theoretical and numerical results

are made whenever they are available.
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/Ao T./T = 20 T,/T = 30 T,/T = 40 T,/T, = 50
0.0 1.4815 1.4970 1.5220 1.7030
1.0 1.4815 1.4970 1.5050 1.6100
3.0 1.4815 1.4971 1.5030 1.5050
5.0 1.4815 1.4971 1.5010 1.5020



7.3.1 Wave resistance

We first study the wave resistance problem. For this problem, there exists an analytic

second-order solution obtained by Tuck (1965) who approximated the body with

high-order singularities and considered the second-order free-surface effect using the

extended Wehausen scheme (Wehausen & Laitone 1960). Due to the second-order

free-surface effect, significant nonlinear correction was found for resistance of a circular

cylinder at moderate submergence.

We employ the high-order spectral method to solve this problem including non-

linear free-surface effects. The body boundary condition is satisfied exactly. For the

submergence HIR = 4, we show our linear and nonlinear results for resistance on the

body in figure 7-1 as functions of the Froude number, F, = U/(gR) . For compar-

isons, we reproduce the theoretical solutions of Tuck and also plot them in figure 7-1.

Overall, the agreement is very good for both the linear and complete second-order

solutions. As noted by Tuck, the high-order correction due to nonlinear free-surface

effects is considerable, especially at small Froude numbers. According to regular per-

turbation theory, linear wave resistance of the body is of first-order in steady wave

steepness, while the leading nonlinear correction is of second-order. For this case, the

steady wave slope is found to be koAo 0.35.

Figure 7-2 shows our convergent spectral-method results for the vertical drift

force on the body. Similarly, an important high-order correction due to nonlinear

free-surface effects is found. Note that the lift force on the body changes its direction

from upward to downward as the Froude number increases. Not surprisingly, this

phenomenon is associated with the presence of a forward speed.

In general, it is expected that when the body is moved closer to the free surface,

steady waves steepen and nonlinear interactions become stronger. For example, our

first-order solution (M = 1) indicates that when H/R = 2, the steady wave steepness

koAo 2.0. For this case, perturbation expansions in both Tuck (1965) and the

present method diverge. To obtain reliable prediction of the resistance on the body,

a fully nonlinear scheme has to be adopted.
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7.3.2 Motion coefficients

We now turn to study the problem of wave radiation from a submerged circular

cylinder in a uniform current. The body is forced to perform periodic oscillations with

the frequency near r = . The emphasis here is on the understanding of nonlinear

solutions for the added mass and damping coefficients near the critical frequency.

It must be noted that in principle, the present method can provide steady-state

solutions for both near- and far-field quantities (cf. §3.3) provided that the compu-

tational domain is sufficiently large. For the seakeeping problem particularly near

the critical frequency, however, this method should be viewed as a near-field scheme

since the steady state in far-field is reached very slowly in time-domain simulations.

For such a problem, it may not be practical to compute far-field quantities through

initial-value simulations. In this study, therefore, we focus on the radiation force on

the body only and will not pursue any numerical solution for the wave field.

Linear solutions

For the linearized problem, a simple approximate solution for the damping coeffi-

cient under deep submergence can be derived by using the far-field formula (Grue &

Palm, 1985):

- __ [ (A2 A+ AkA 2+
F k 1 2 3 pg + h2 k)k(14T) + ( + 4)(14r)i (7.20)

where A1,2,3,4 represents the wave amplitudes corresponding to wavenumbers kl,2,3,4.

Near = , A1,2 can be calculated according to our asymptotic solution (5.51). For

i- away from 4, Grue & Palm (1985) obtained:

2(kl,2 R)t. exp(-kl, 2 H) (r < 1 - 62);
(1-4r)2 

A, = (7.21)

o, (i-> 4).

As shown in chapter 5, A3,4 are continuous across the critical frequency = 1 and4
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can be calculated by (Grue & Palm, 1985):

A3,4 34R exp(-k 3,4H) (0 < < o) . (7.22)
(1 + 4r)2

As the results shown in figures 7-4, 7-7 and 7-9 indicate, (7.20) together with the use

of (5.51), (7.21) and (7.22) for Al,2,3,4 gives a fair approximation to the linear damping

coefficient for a circular cylinder with moderately deep submergence for 0 < r < 00.

Through rigorous asymptotic analyses in the frequency domain, in chapter 5, we

have theoretically shown that the linear solution of the general seakeeping problem at

the critical frequency r = is always bounded for a submerged body with non-zero

volume. Such a finding can actually be further verified by the present initial-value

simulations. To do that, we consider sway radiation of a submerged circular cylinder

with the submergence HIR = 2 at a Froude number of F, = 1. For =,/R = 0.05, time

histories of the linear force (M = 1) on the body are shown in figure 7-3. The rapid

approach of the steady state after the simulation time T, = 10To indicates that the

frequency-domain solution is finite. Due to computational expenses, we are unable to

verify the asymptotic solution (5.52) for far-field waves with the present time-domain

approach.

For r , Grue & Palm (1985) numerically solved the integral equation resulting

from the application of the boundary-integral equation method in the frequency do-

main and obtained the linear seakeeping solution for the case of a submerged circular

cylinder. To illustrate the efficacy of the present numerical method, we compare our

linear solution with their numerical result. For the case of F, = 0.4 and HIR = 3,

the comparison for the sway damping coefficient is shown in figure 7-4 as a func-

tion of dimensionless frequency r, where the approximate solution by (7.20) is also

depicted. In general, the agreement between the present solution (M = 1) and the

numerical result of Grue & Palm (1985) is excellent and thus confirms the validity

of the present numerical method. In addition, it is also seen that (7.20) gives a very

good approximation in this case.

Nonlinear solutions
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After understanding the linear solution, we now turn to study the nonlinear prob-

lem. Based on a perturbation analysis, it is clear that up to third-order in wave

steepness, there are two different interactions which affect the first-harmonic radi-

ation force on the body. One is the quadratic interaction between the steady and

unsteady waves which is of second-order. The other is the third-order self-interaction

of unsteady waves. To understand the importance of each interaction in the nonlin-

ear solution, we first choose to study sway radiation with parameters H/R = 6 and

F, = 0.75. Under such deep submergence, the steady wave is so small (koAo ~ 0.01)

that its interaction with unsteady waves can be neglected.

Accoding to linearized theory, at the critical frequency r = 4, the group velocity of

the kl,2 waves is known to vanish so that the wave energy associated with these waves

is trapped in the region near the body. This implies that the steady-state solution

in initial-value simulations is reached very slowly. When nonlinear interactions are

included, the third-order change in the dispersion relation makes the group velocity

of the kl,2 waves different from zero so the radiation of wave energy is increased.

As a result, the steady-state nonlinear solution should be approached more rapidly

than the linear solution. In figure 7-5, we present time histories of the complex

amplitude of the first-harmonic horizontal force on the body oscillating at the critical

frequency. The comparisons among numerical results with M = 1, 2, and 3 support

our expectation that the inclusion of high-order free-surface effects accelerates the

approach of steady states in time-domain simulations.

To quantify the influence of self-interactions of unsteady surface waves on wave

radiation, we calculate linear and nonlinear solutions for the added mass and damp-

ing coefficients at the critical frequency by changing the sway motion amplitude while

keeping other parameters fixed. Figure 7-6 shows results for added mass and damping

coefficients at r = as functions of the body motion amplitdue. Since both normal-

ized linear and nonlinear solutions are independent of the motion amplitude, the

nonlinear correction due to cubic self-interactions of unsteady waves is of first-order

in wave steepness (or body motion amplitude). This surprising finding can actually

be justified by using the nonlinear single-source solution.
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By including third-order free-surface nonlinearity, Dagan & Miloh (1982) obtained

a nonlinear solution at the critical frequency for a point source. For a source located

at (x', z') with a strength of O(e), the solution of the velocity potential can be formally

expressed as: GNL(X, Z; ', Z') 2 exp[ir.(x - x') + +(z + z')] + O(e). In principle,

the nonlinear solution for a physical body can be constructed in terms of a source

distribution on the body. Because the leading-order term of GNL has the same space

dependence as the singular term of the linear Green's function in (5.12), the analytical

procedure in §§5.2 and 5.3 can be applied here to show that for a O(e) body forcing,

the nonlinear seakeeping solution at r = is O(e) for a body satisfying the geometric

condition r 0. This is consistent with our numerical results shown in figure 7-6.

Figure 7-7 shows our nonlinear solutions with the order M up to 3 for added mass

and damping coefficients in the neighbourhood of r = . The approximate solution

for the damping coefficient based on (7.20) is also plotted there. For both added mass

and damping, the linear solutions (M = 1) vary sharply near r = . When nonlinear

free-surface and body effects are included, the peaks of added mass and damping are

considerably reduced. Such important nonlinear corrections are seen to exist only in a

small region near r = 4. For r away from -, nonlinear effects are insignificant for this

case. Figure 7-8 shows the results for coupling added mass and damping coefficients.

Similarly, significant nonlinear free-surface effects are seen near r = .

To understand the effect of the quadratic interaction between steady and unsteady

waves, we change the body submergence to be H/IR = 4. For this case, the steady

wave steepness is found to be koAo x 0.2. Since the second-order wave component

generated by this interaction is locked to the steady wave, in general, it does not

radiate any wave energy to the far field. In principle, we thus expect that such

interaction can influence the added mass only, but not the first-harmonic damping.

Figure 7-9 shows our converged numerical results with M up to 3 for added mass

and damping coefficients near r = . In particular, the contribution of the quadratic

interaction between steady and unsteady waves is separated from the total nonlinear

solution for the added mass and is also presented in figure 7-9. It is seen that this

contribution varies very smoothly near = . This indicates that the second-order
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interaction between steady and unsteady waves does not exert any special effect on

the solution near the critical frequency. We also find that such interaction is not

important to coupling added mass and damping coefficients, which are presented in

figure 7-10.

7.4 Conclusions

To elucidate nonlinear seakeeping solution near the critical frequency r = -, we study

nonlinear wave radiation of a submerged circular cylinder in a uniform current using

an efficient computational method. Through long-time simulations, we obtain non-

linear steady-state (limit-cycle) solution for the radiation force on the body including

high-order effects of the free surface and body. Compared to the linear solution,

the nonlinear correction due to cubic self-interactions of unsteady waves is shown

to be of first-order in wave steepness. Such strong nonlinear effect persists only in

the neighbourhood of r = where the radiation of wave energy is significantly am-

plified through the change of wave group velocities by free-surface nonlinearity. On

the other hand, we find that the quadratic interaction between steady and unsteady

waves influences the added mass only, but not the first-harmonic damping.
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Figure 7-1: Wave resistance on the submerged circular cylinder as a function of the
Froude number F, = U/(gR)2. Linear (- -) and complete second-order (---)
solutions of Tuck (1965), and present numerical results for M = 1 (), M = 2 (),
M = 3 (). (H/R = 4.)
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Figure 7-2: Mean vertical force on the submerged circular cylinder as a function of
the Froude number F, = U/(gR)L. M = 1 (), M = 2 (A), M = 3 ( ). (HIR = 4.)
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Figure 7-3: Time histories of (a) horizontal and (b) vertical forces on the submerged

circular cylinder under sway oscillation. (H/IR = 2., F, = 1.0, 4./R = 0.05)
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Figure 7-4: Sway damping coefficient as a function of the dimensionless frequency
r. Linear solution of Grue & Palm (1985) (-), approximate solution by (7.20)

( .- ), and present numerical result M = 1 (e). (HIR = 3., F, = 0.4)
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Figure 7-5: Time histories of the complex amplitude of the first-harmonic horizontal
force on the submerged circular cylinder. M = 1 (), M = 2 (A), and M = 3 ().
(H/R = 6., F, = 0.75, &,/R = 0.075, r = )
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Figure 7-6: (a) Added mass and (b) damping coefficients at the critical
r = as functions of the body motion. M = 1 (), M = 2 (), and M
(HR = 6., F, = 0.75)
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Chapter 8

Resonant reflection of surface

waves traveling over bottom

undulations

In this chapter, we develop an efficient computational method to investigate nonlinear

resonant reflection of surface waves by an undulated bottom topography. Specifically,

we extend the study of the Bragg scattering problem by including nonlinear boundary

effects of both the free surface and bottom. The major objective here is to understand

and quantify the effect of higher-order Bragg resonances on wave propagations over

bottom undulations. This study has significant implications in the prediction of the

spectrum of ocean waves in coastal zones and the protection of beaches.

The resonant reflection of surface waves by patches of bottom undulations has

been extensively studied recently, owing to its importance in the development of

shore-parallel bars. A straightforward perturbation analysis shows that large reso-

nant reflection occurs under a Bragg condition, namely when the bottom undulation

has a wavelength half that of the incident waves (Davies 1982). Laboratory experi-

ments of Davies & Heathershaw (1984) confirm this prediction and suggest a possible

practical application of this mechanism for the protection of beaches. For mild inci-

dent wave and bottom slopes, reflection at or near Bragg resonance is well predicted by

perturbation theory based on multiple scales and the assumption of linearized surface
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waves (Mei 1985). For small surface waves, this Bragg reflecton can also be predicted

by using the boundary-integral-equation method (BIEM) (Dalymple & Kirby 1986)

and Miles' (1967) successive-application-matrix model (SAMM) (Guazelli et al. 1992;

O'Hare & Davies 1993). A notable drawback with these numerical schemes employ-

ing direct discretization of bottom surface is that free-surface nonlinearity cannot be

accounted for and extension to a two-dimensional bottom topography is difficult and

probably infeasible in practice. Based on the extended-mild-slope equation, Kirby

(1986) included free-surface nonlinearity and found no significant nonlinear effect on

the magnitude of Bragg resonant reflection for steep incident waves. However, the

occurrence of higher-order Bragg resonances was not studied.

For moderate to large wave and/or bottom steepnesses, it is generally expected

that higher-order Bragg resonance must also occur due to nonlinear interactions be-

tween surface waves and bottom undulations. For a bottom containing unidirectional

doubly-sinusoidal ripples, significant Bragg reflection corresponding to differences of

the bottom ripple wavenumbers is observed in experiments even for small undulation

amplitudes (Guazzelli et al. 1992). This second-order Bragg resonant reflection can

be comparable in magnitude (although not at the same frequency) to that due to lin-

ear Bragg effect. Since this phenomenon is a result of higher-order bottom nonlinear

effects, in principle, it can be predicted by the BIEM and SAMM, but not the theory

of Mei (1985).

When nonlinear free-surface effects are included, second-order Bragg resonance

corresponding to sums or differences of incident wave frequencies can also exist in

principle. The simplest case for such high-order Bragg resonance is when a single

incident wave travels over a horizontal bottom with uniformly-sinusoidal ripples. By

considering quartet interactions between surface waves and bottom ripples (with the

incident wave counted twice), a free superharmonic (double-frequency) wave is gener-

ated and reflected. Despite its obvious importance in the development of the spectrum

of ocean waves, this nonlinear Bragg phenomenon has not been addressed yet.

In this chapter, we extend the high-order spectral method to study nonlinear

wave interactions with bottom ripples. In contrast to existing theories and numer-
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ical schemes such as BIEM and SAMM, the present method is able to account for

both free-surface and bottom nonlinearities up to an arbitrary order M in surface

wave and/or bottom steepness. Upon using spectral expansions for the solution, the

method retains exponential convergence with respect to the number of spectral modes

N. Significantly, with the use of fast transform techniques, the computational effort

per time step is linearly proportional to M and N. Moreover, the present method

can be directly applied to study general three-dimensional wave-bottom problems.

This powerful method is used here to investigate nonlinear resonant reflection

of surface waves by patches of bottom undulations. For both normal and oblique

incidences, our efficient and high-resolution computations confirm existing theoretical

and experimental results. Furthermore, we are able to examine the effect of second-

order Bragg resonances due to both free-surface and bottom nonlinearities. For waves

propagating over a horizontal bottom containing uniformly sinusoidal undulations, in

particular, we obtain accurate prediction for the resonant superharmonic waves. For

moderate surface wave and/or bottom slopes, the present numerical result compares

well with the analytical prediction based on regular perturbation expansions.

8.1 Mathematical formulation

We consider surface wave propagation over a rippled bottom z = -h + ((x) with

constant mean water depth h. Under the usual assumption of potential flow, the

boundary-value problem for the velocity potential (x, z, t) consists of Laplace's equa-

tion within the fluid, no flux condition on the bottom,

z(x, z, t) = Vx Vb, on z = -h + C(x) , (8.1)

and nonlinear kinematic and dynamic boundary conditions on the free surface. For

initial conditions, the free surface elevation (x,O 0) and velocity potential (x,z, 0)

are prescribed.

For simplicity, we ignore the current effect. Then the free surface boundary con-
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ditions (2.8) reduce to:

77t + Vx7 Vxo' -(1 + Vx 7 V x),(X,ti, t) = o, 

(8.2)

+ 97 + Vx4 -Vx ( + x7 1 + VX vx7),2(x, 7, t) = 0. J
In a typical initial-value solution scheme, these nonlinear equations are used as evo-

lution equations for 77 and IS with the surface vertical velocity kz(x,-r,t) obtained

from the boundary-value problem.

To solve the boundary-value problem, we consider regular perturbation expan-

sions in both the bottom undulation C(x) and the instantaneous free surface (x,t)

simultaneously. For simplicity (and without loss of generality), we assume that e < 1

measures both the bottom and free-surface wave slopes. Our intention is to solve the

problem to arbitrary high order M in e using the spectral method. To do that, we

first write the potential e in a perturbation series up to order M, (2.9). In order to

find the free-surface and bottom boundary conditions for each perturbation potential

(m), we expand the bottom boundary condition (8.1) and the surface potential S

in separate Taylor series with respect to the mean surfaces z = -h and 0 respectively.

Collecting terms at the respective orders, we finally obtain a sequence of Neumann

boundary conditions on z = -h:

· ()(x,-h,t)= 0,

-pm)(X, -h t)= E M; (l.)

+ [( z(t-l)(m-)(, -h, t)] m = 2,3, .. , M; (8.3)

and a sequence of Dirichlet boundary conditions (2.11) on z = 0.

At each order m, (m) satisfies Laplace's equation in the mean fluid domain -h <

z < 0, the Neumann boundary condition (8.3) on z = -h, and the Dirichlet boundary

condition (2.11) on z = 0. In a spectral approach, we represent Q((m) in terms of
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global basis functions which satisfy the field equation and the homogeneous surface

and bottom conditions. To accomplish this, we follow Dommermuth & Yue (1987b)

and write (m) = (m) + #(m), where

a(M )(Xt) = a(m)(t) cosh[lkl(z + h)]eikfx + c.C. (8.4)E - cosh~lk,(h)a(m)(x,zt) = n ( t) cosh(iklh) e +cc (8.4)n=-0

,3()(x, z, t) =- (m)z + (t) lklosh(l(keiknX + c.c. . (8.5)

Here, k, = (k,, ky) is the wavenumber vector, and the summation in n implies sum-

ming over all integer values of k and k. In the above, a(m) and (m) respectively

satisfy zero Neumann condition on z = -h and zero Dirichlet condition on z = 0.

The amplitudes of the orthogonal spectral modes, a(m) and ,3(m), are then determined

by taking the inner product of eikn.x with (2.11) and (8.3) respectively. For smooth

(periodic) C(m), am) and P3(m) decay exponentially with increasing wavenumber k,.

After the boundary-value problems for (m) are solved sequentially up to the

desired order M, the vertical velocity on the free surface can then be determined

from (2.15). The overall problem is integrated in time via (8.2) starting from initial

conditions.

8.2 Conditions for Bragg resonances

If assuming harmonic time dependence, the present problem can be formulated as a

boundary-value problem for the amplitude of the velocity potential. For small surface

wave and/or bottom slopes, this boundary-value problem can then be solved using

regular perturbation expansions. At certain wavenumber combinations of surface

waves and bottom ripples, the boundary-value problem becomes degenerate and so-

called Bragg resonances occur.

The condition for leading-order Bragg resonance is simple and well known (Davis

1982, Mei 1985), while those for higher-order Bragg resonances are relatively complex

and have not been systematically discussed yet. In the following, we derive higher-

order Bragg conditions through the relation to those for nonlinear wave resonances
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in a multiple-wave dynamic system. To be complete, the linear Bragg condition is

rederived here.

Class I Bragg condition

Let two surface waves with wavenumbers kl and k2 propagate on a rippled hor-

izontal bottom with wavenumber k,. The general condition for resonance due to

quadratic interactions between the surface waves and the bottom is (Mei 1985):

kl k2 k, = and w1 i w 2 = (8.6)

where wi denotes the frequency corresponding to ki. For propagating waves, wavenum-

ber ki and frequency wi need to satisfy the dispersion relation

?w = glkil tanh kilh (i = 1,2). (8.7)

An apparent combination of kl, k2, and k, for (8.6) to be satisfied is

k,k = -k2 = (8.8)
2

which is the well-known condition for linear Bragg resonance (Davies 1982). In order

to distinguish from those for higher-order Bragg resonances, we call (8.8) class I Bragg

condition.

Class II Bragg condition

For a bottom containing doubly-sinusoidal undulations with wavenumbers kl

and k,2, the condition for quartet resonance between the surface waves and bottom

undulations reduces to

kl k2 k,l 1 k,2 = 0 and w1 i w 2 = O (8.9)

where kl and k2 satisfy the dispersion relation (8.7). It is straightforward to verify
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that one simple solution to (8.9) is:

k,. : k,2k = -k 2 = 2 (8.10)

which is the (linear) Bragg condition corresponding to the sum or difference of bottom

wavenumbers (Guazelli 1992). We call (8.10) class II Bragg condition.

Class III Bragg condition

For three surface waves traveling over a horizontal bottom containing uniformly-

sinusoidal ripples, the general condition for quartet resonance is:

k : ±k2± k k, = 0 and wl w2 w3 = 0. (8.11)

Here wavenumber k3 and frequency w3s must also satisfy the dispersion relation in

(8.7). The simplest possible case for this resonance is when k2 = k3. From (8.11), we

then have:

kl = 2k2 k, and w = ±i22 . (8.12)

After imposing the dispersion relation to kl and wl, it follows that

4tk2l tanh Ik2lh = 12k2 + kl tanh 2k2 ± k,lh . (8.13)

This resonance condition is new for wave/bottom interactions and called class III

Bragg condition. Given any one of kl, k2 and k,, the other two can be determined

from (8.12) and (8.13) so that they form a resonant quartet system (with k2 counted

twice).

We remark that in nonlinear wave dynamics, it is well known that quartet reso-

nance does not exist for one-dimensional waves traveling over a flat bottom. If one

of surface waves is replaced by bottom ripples, however, we here find that quartet

resonance indeed can occur. As shown in §§8.4.4 and 8.5.3, this high-order Bragg

resonance can cause significant superharmonic wave reflection by patches of parallel

bottom undulations.
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8.3 Numerical method

8.3.1 Implementation

The implementation of the nonlinear spectral method for wave reflection by an undu-

lated bottom is slightly different from that for nonlinear wave-body interactions. The

numerical procedure for a problem using N wave modes and retaining nonlinearities

up to a specified order M consists of two major parts:

(a) Given the surface elevation (x, t) and potential (V(x, t) on that surface at

some instant of time t, the modal amplitudes a(m) and 3(m) subject to the Dirichlet

condition (2.11) and the Neumann condition (8.3) are solved using a pseudospec-

tral method. Specifically, all spatial derivatives of (m), Be and r are evaluated in

wavenumber space while nonlinear products are calculated in physical space at a dis-

crete set of points xj. For periodic boundary conditions where the eigenfunctions

expansions are represented in Fourier series (8.4 and 8.5), xj are equally spaced and

fast-Fourier transforms are used to project between the wavenumber and physical

domains. At each order, (2.11) and (8.3) are solved in wavenumber space by equating

Fourier modes, and the number of operations required is O(N In N). For perturba-

tions up to order M, the operation count is then O(MN Iln N) per time step.

(b) The evolution equations (8.2) are then integrated in time to obtain the new

values ,7(x, t + At) and -(x, t + At). For the present computations, we use a fourth-

order Runge-Kutta integrator with constant time step At.

The two steps (a)-(b) is repeated starting from initial conditions.

8.3.2 Convergence tests

To test the accuracy and convergence of the present method, we consider the wave

reflection by a patch of uniformly sinusoidal bottom undulations. For numerical

calculations, we choose a rippled horizontal bottom with a bed length of Lo = 20r/k,,

a bottom slope of kd = 0.31, and a mean water depth of h = 6.25d, where d represents

the (bottom) ripple amplitude. As initial conditions, the solution of exact Stoke's
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N, M=2 M=3 M=4
16 0.7250 0.7080 0.7080
24 0.7115 0.7111 0.7113
32 0.7115 0.7112 0.7113

Table 8.1: Convergence of the amplitude of the reflection coefficient, R1 I = la,/al,
with increasing number of wavelengths Nw of the periodic domain and for different
order M. k = k,/2, kA=0.05, Lo = 20ir/k,, k,d=0.31, d/h=0.16; and NF=64N,,
T/At=64, T.=20T.

wave is used.

As in the simulation of nonlinear wave-body interactions, the radiation condition

at the far-filed of bottom undulations is considered by imposing the periodic boundary

condition in the horizontal direction. The error due to 'reflection' from the periodic

boundaries is avoided by successively increasing the length of the periodic domain

until the quantities of interest no longer vary. Table 8.1 shows the results for Bragg

resonant reflection by increasing N,,, keeping kL 0, kd, and d/h fixed. For Nw = 32,

the amplitude of reflection coefficient, IR1 I, shows convergence up to four significant

figures.

In practice, the number of spectral modes in (8.4) and (8.5) is truncated at a

suitable number Np. Because of the use of orthogonal global basis functions, the

convergence of (8.4) and (8.5) with respect to NF is expected to be exponentially

rapid for mild surface wave and bottom slopes. Table 8.2 shows the convergence of

Bragg resonant reflection with the number of spectral modes NF by keeping other

parameters fixed. The results in table 8.2 confirm exponential convergence of the

solution with respect to N.

We next show the approach of the steady-state limit (limit-cycle) of Bragg resonant

reflection by bottom undulations by considering the convergence of IRll with the

simulation time T. This is shown in table 8.3 for different order M. The steady-

state limit is reached rapidly after T, 15T. Finally, we note that the convergence

of the numerical time integration with At is similar to that for nonlinear wave-body

interactions, which has been systematically tested in §3.2. The global error is expected
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NF/N M=2 M=3 M=4
16 0.7125 0.7110 0.7155
32 0.7110 0.7106 0.7107
64 0.7115 0.7112 0.7113

Table 8.2: Convergence of the amplitude of the reflection coefficient, R1 -= la,/all,
with number of spectral modes NF for different order M. k = k,/2, kA=0.05, Lo =
20r/k,, krd=0.31, d/h=0.16; and N,=32, T/At=64, T,=20T.

Table 8.3: Convergence of the amplitude of the reflection coefficient, R11 = la,/a l,
with duration of simulation T, and perturbation order M. k = k,/2, kA=0.05,
Lo = 207r/k,, kd=0.31, d/h=0.16; and N,=32, NF = 64N,,,, T/At=64.

to be O(At/T) 4 due to the use of fourth-order Runge-Kutta scheme as the integrator.

Unless otherwise stated, for all subsequent computations in this chapter, we use

N,, = 32, NF = 64N,, T = (15 25)T, and At = T/64. Based on foregoing

numerical tests, we anticipated the maximum error for Rll to be less than 1%.

8.4 Normal incidence over a patch of periodic

bars

First we study a relatively simple case where a normally incident wave propagates over

a patch of parallel bottom undulations. It is well known that Bragg resonant reflection

occurs when the bottom undulation has a wavelength half that of the incident waves.
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T,/T M=2 M=3 M=4
11 0.7615 0.7550 0.7510
12 0.7455 0.7352 0.7320
13 0.7310 0.7265 0.7250
14 0.7200 0.7180 0.7170
15 0.7150 0.7130 0.7125
16 0.7116 0.7113 0.7112
17 0.7115 0.7114 0.7111
18 0.7113 0.7112 0.7112
19 0.7114 0.7113 0.7112
20 0.7115 0.7112 0.7113



When nonlinear free-surface and bottom effects are included, strong reflection can also

occur due to higher-order Bragg resonances (see §8.2). Our primary interest here is to

understand the effect of these higher-order Bragg resonances on wave propagations.

8.4.1 Calculation of the reflection and transmission coeffi-

cients

To determine reflection and transmission of an incident wave by bottom undulations,

the approach of Goda & Suzuki (1976) is used here. After factoring out the fast

dependences on space and time, we can write the surface elevation (x, t) as:

,(x, t) = a,(x) cos(kx + wt + S,) + at(x) cos(kx - wt + t) + ... (8.14)

where the amplitudes of the reflected and transmitted waves, a,(x) and at(x), vary

slowly with space x. Through a time harmonic analysis, 7(x, t) can also be expressed

as:

7(x, t) = r/ (x) cos wt + r7i(x) sin wt + * (8.15)

where the amplitudes, .r(x) and ,i(x), have fast dependence on . From (8.14) and

(8.15), we have

a,(zx) cos(kx + wt + ,) + at(x) cos(kx - wt + Et) = 7,(x) COswt + i(x) sinwt (8.16)

for the first-harmonic wave. Applying (8.16) at two discrete points (x and x + Ax)

and solving for a, and at, we obtain:

a"() = 1 sin a [(r2 - ,l cos kAx + ril sin kAx)2

+(272 - l sin kAx - il cOs kAj)2]2 (8.17)
+(72-,l sin kAx - il cos kAx )2] 2 (8.17)
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and

at(x) = 2 sin1kA [(7r2 - r1l cos kAx - 7il sin kAx) 2

+(7i2 + ?,l sin kAx - il cos kAx)2] 2 (8.18)

where ,lri = r,.(), ,r2 = 77r,(X + AX), il = 7i(x), and 77i2 = ri(X + Ax). The

reflection and transmission coefficients are then defined by Rl(x) = a,(z)/ai and

TI(x) = at(x)/al with a representing the first-harmonic amplitude of the incident

waves.

Note that since the approximation a,,t(x) = a,t(x + Ax) is applied in deriving

(8.17) and (8.18), small Ax should be used in practice in order to obtain accurate

solutions for a, and at.

8.4.2 Class I Bragg resonance

Let k2 represent an incident wave and kl the reflected wave. Under class I Bragg

condition (8.8), the reflected wave will be resonated due to quadratic interactions

between the incident wave and bottom undulations. This resonant reflection by peri-

odic bottom ripples was confirmed by experiments of Davies & Heathershaw (1984).

For mild incident wave and bottom slopes, reflection at or near class I Bragg reso-

nance can be well predicted by perturbation theory based on multiple scales and the

assumption of linearized surface waves (Mei 1985).

To illustrate the efficacy and usefulness of the present numerical method, we con-

sider a single wave propagation on a horizontal bottom with uniformly sinusoidal

ripples and accurately calculate the wave reflection near class I Bragg resonance.

Nonlinear solutions are obtained and compared to experiments of Davies & Heather-

shaw (1984) and perturbation theory (Mei 1985).

In order to compare with experiments, we choose to study a particular case of

Davies & Heathershaw (1984) where the horizontal bottom contains 10 sinusoidal

ripples with a constant slope of kd=0.31. In figure 8-1, we show results for the

amplitude of the total reflection coefficient in the vicinity of class I Bragg resonance.
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The present numerical results with order M = 3 are compared to experiments of

Davies & Heathershaw (1984) and theoretical solution of Mei (1985). The agreement

among them is excellent. By varying incident wave steepness, our numerical solutions

indicate that nonlinearity of the free surface has little effect on the amplitude of the

reflection coefficient near linear Bragg resonance. This was also found by Kirby (1986)

based on the extended-mild-slope equation.

In figure 8-1, peak reflection in experiments and the present numerical results is

slightly shifted to the downside of the Bragg point (2k/k, = 1). In general, this can

be attributed to high-order boundary effects. Since nonlinearity of the free surface is

known to lengthen the incident waves, it moves the peak reflection to the upside of

Bragg resonance. Therefore, the downside shift must be caused by nonlinear bottom

effects. To understand this, we write the dispersion relation for a small surface wave

on a mild-slope bottom as:

w2 = gk tanh k[h + C(x)] ·. (8.19)

Since < h, we can expand wavenumber k(x) in a perturbation series:

k(x) = k0 + kl(x) + k2() + ... . (8.20)

Substituting (8.20) into (8.19) and solving for the perturbation wavenumbers, we

obtain:
k() 2koC(x) (8.21)

ko- 2koh + sinh2koh '

and

k 2 (X) = 2 (ko°(x )) 2 [4k0h + (3 + cosh 2koh) sinh 2koh] (8.22)
ko (2koh + sinh 2koh)3

where ko is independent of x and is governed by w2 = gko tanh koh. After taking

space average of k(x), it follows that

(2k= h + sinh 2k( ) [4koh + (3 + cosh 2k0oh) sinh 2koh] + *- . (8.23)(2koh -sinh 2oh)3
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From (8.23), it is clear that bottom nonlinearity shortens surface waves and thus

shifts the peak reflection to the downside (lower frequency) of Bragg resonance.

Figure 8-2 shows the comparisons among the present nonlinear spectral-method

solution (M = 3), experiments of Davies & Heathershaw (1984), and perturbation

theory of Mei (1985) for the amplitude of the reflected waves in the region of bottom

ripples. The agreement is very good and thus confirms the validity of the present

numerical method for the study of nonlinear wave-bottom interactions.

8.4.3 Class II Bragg resonance

For a horizontal bottom consisting of doubly-sinusoidal ripples with wavenumbers k,l

and k 2, according to (8.10), resonant reflection can also occur if the incident waves

satisfy the condition k = (kl 1 ± k, 2)/2. This corresponds to the quartet resonance

by cubic interactions between surface waves and bottom undulations. In general, the

wave reflection due to such high-order Bragg resonance becomes stronger as increasing

bottom length and ripple amplitudes while reducing water depth.

In their experiments, Guazzelli et al. (1992) observed significant Bragg reflection

corresponding to differences of the bottom ripple wavenumbers for mild undulation

amplitudes. We here apply the high-order spectral method to calculate resonant wave

reflection which we compare to the measurements of Guazzelli et al.;

We choose to study a experimental case in Guazzelli et al. where the rippled hori-

zontal bottom has a bed length of Lo = 161r/kl = 24ir/k,2 = 48cm, ripple amplitudes

of d, = d = cm, and a mean water depth of h = 4cm. Nonlinear results with order

M = 3 are obtained and compared to experiments in figure 8-3, where the solutions

near class I Bragg resonances are also shown. Both numerical and experimental results

indicate that the nonlinear resonant reflection due to subharmonic (class II) Bragg

resonance can be comparable in magnitude (although not at the same frequency) to

that due to linear (class I) Bragg effect. The agreement between the present numerical

results and the experiments is seen to be very good.

We note that in general, subharmonic resonant reflection is much stronger and

more important in practice than that due to superharmonic Bragg resonance (k =
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(k,l + k, 2)/2) since the bottom effect is weaker on surface waves with shorter wave-

length for a fixed water depth.

8.4.4 Class III Bragg resonance

For one-dimensional waves propagating on a flat bottom, it is known that no quartet

resonance exists. If the bottom contains a patch of periodic undulations, however, the

quartet resonance indeed can occur under the condition (8.11). Despite its obvious

significance in predicting the development of the spectrum of ocean waves in coastal

zones, such resonance phenomenon has not been addressed yet.

In order to understand the resonance mechanism, we just consider the simplest

case where a single surface wave travels over a horizontal bottom with uniformly

sinusoidal ripples. Upon accounting for the incident wave twice, the cubic interaction

between surface waves and bottom undulations is resonant under the condition (8.13).

As a result, the double-frequency (superharmonic) wave component becomes a free

(propagating) wave and its amplitude grows as it travels over the rippled bottom

by absorbing energy from the incident wave. Although the energy transfer due to

quartet resonance is generally of third-order in surface wave and bottom slopes, the

free (resonated) superharmonic wave can still be substantially developed over a long

patch of bottom undulations.

Depending on the incident waves and bottom topography, in practice, the tertiary

(resonated) wave can be either reflected or transmitted over bottom ripples. From

(8.13), it follows that the double-frequency wave is transmitted if

4k tanh kh = (2k + k,)tanh(2k + k,)h, (8.24)

while it is reflected if

4k tanh kh = (k, - 2k) tanh(k, - 2k)h (8.25)

with k, - 2k > 0. The simple relations between k and k, in (8.24) and (8.25) are

168



plotted in figure 8-4.

For quartet wave resonance in deep water, Longuet-Higgins (1962) derived an ana-

lytic solution for the initial growth of the tertiary wave based on a regular perturbation

analysis. This solution was later confirmed by the experiments of Longuet-Higgins &

Smith (1966). For the present problem, likewise, we can also derive an perturbation

solution for the resonant superharmonic waves using the approach of Longuet-Higgins

(1962).

Perturbation solution for resonant superharmonic waves

For simplicity, we here present the perturbation solution for reflected resonant

superharmonic waves only although that for transmitted resonant waves can be easily

obtained in a similar way.

Referring to a small parameter e which measures both free-surface and bottom

slopes, we expand the velocity potential (x, z,t) and the surface elevation (x, t)

in perturbation series. Upon expanding nonlinear free-surface and bottom boundary

conditions in Taylor series about mean positions z = 0 and -h respectively, we

obtain a sequence of linear boundary-value problems for perturbation potentials ("),

m = 1, 2,.... We write them in a general form as:

(m) + () = o for -h < z < (8.26)

tm) + g() = F(m)((l),..., O(m-l)) on z = 0 (8.27)

q§(m) = H(")((~(l),... (m- ),C() on z =-h (8.28)

where ((x) = dsin(kx) = 0(e) represents the bottom elevation. Here the free-surface

and bottom forcings at m-th order, F(m) and H(m), are given in terms of the solutions

at lower orders and the boundary-value problems for (m) can be solved sequentially.

At the first order, we have F( 1) = H(1 ) = . We choose a right-going progressive

wave to be the first-order solution:

A(s) cosh k(z + h)=k~) g} COSh kh sin(kx - wt) , and (8.29)
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7(1) = A cos(kx - wt)

where A is the incident wave amplitude.

At the second order, the free-surface and bottom forcings are found to be:

F(2) _ 3)
g2(kA) 2

w cosh2 kh
sin(2kx - 2wt) , and (8.31)

H(2) - gkAd
2w cosh kh(k 

k) cos[(k, + k)x - wt]

+(k, - k) cos[(k, - k) - wt]} . (8.32)

The solutions of the second-order potential and surface elevation are then given by:

osh gkAd
2w cosh kh

g(k, - k) - W2 tanh(k, - k)h
w2 - g(k - k) tanh(k, - k)h

x cosh(kr - k)(z + h) cos[(k, - k)x + wt]

+ sinh(k, - k)(z + h) cos[(k, - k)x + wt]

+ sinh(k, + k)(z + h) cos[(k, + k)x - wt]

g(k, + k) - w2 tanh(k, + k)h
W2

- g(k,. + k) tanh(k, + k)h

3gkA2 cosh 2k(z + h)
+ 4 Si

4wJ sinh 2kh sinh2 kh

I cosh(k, + k)(z + h) cos[(k, + k)x -

n(2kx - 2wt),

kA 2
r (2) 

2 sinh 2kh
kA 2

2

2 + cosh 2kh
tanh 2 kh sinh 2kh

cos(2kz - 2wt)

Adk(k, + k) sin[(kr + k)x - wt]
k sinh 2kh cosh(kr + k)h - (kr + k) cosh kh sinh 2(kr + k)h

Adk(kr - k) sin[(k, - k) + wt]
(8.34)
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(8.t3)

(8.33)

Ik sinh 2kh cosh(k - k)h - (k, - k) cosh kh sinh 2(k, - k)h'

(8.30)



In the third-order free-surface and bottom forcings, there are resonant and non-

resonant terms. In the present calculation, we are interested only in the resonant

forcing. Omitting others, we have

3 _ gwA2d(k, - k)[(k2 - 6kk) cosh2 kh + 6k2] cos[(k, - 2k)x + 2wt]
2[(k, - k) tanh(k - k)h - k tanh kh] sinh 2kh cosh kh cosh(k, - k)h (8.35)

and

H(3 ) = kwA2d(k, - 2k) sinh- 4 kh cos[(kr - 2k)x + 2wt]. (8.36)
8

If we now have 4w2 = g(k, - 2k) tanh(k, - 2k)h, a solution of equations (8.26)-(8.28)

is:

~(3) - gA2dcosh(k, - 2k)(z + h) 3k(kr - 2k)
. 8 cosh(kr - 2k)h 4 cosh(k, - 2k)h sinh4 kh

+ (kr - k)[(k,2 - 6krk) cosh2 kh + 6k2 ] cosh-l(kr - k)h L
[(k, - k) tanh(k, - k)h - k tanh kh] sinh 2kh cosh kh 

xt sin[(kr - 2k)x + 2wt] (8.37)

which represents a wave whose amplitude grows in time. The corresponding wave

amplitude is given by:

wtA 2 d 3k(k, - 2k)
17(3)1 

4 4 cosh(kr - 2k)h sinh4 kh

(kr - k)[(k2 - 6krk) cosh2 kh + 6k2] cosh-l(k - k)h
[(k, - k) tanh(k - k)h - k tanh kh] sinh 2kh cosh kh

which becomes unbounded as t -* oo.

If the incident waves interact bottom undulations for an unlimited time but over

only a finite distance L,, measured in the direction of propagation of the resonated

wave, it is necessary only to replace t in (8.38) by L/Cg, where Cg is the group

velocity of the resonated wave.

Nonlinear spectral-method solution
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To study class III Bragg resonance, as an numerical example, we consider a hor-

izontal bottom with a bed length of Lo 727r/k, = 27.257rh and a ripple amplitude

of d = 0.0946h. For incident waves with wavenumber k = 0.6/h, the superharmonic

wave is resonated and reflected according to (8.25). With a fixed incident wave steep-

ness kA = 0.04, we accurately calculate nonlinear wave reflection by varying incident

wavenumber k. The present numerical results with order M = 3 and 4 for the am-

plitude of superharmonic reflection coefficient, R2 - la2/all, near class III Bragg

resonance are shown in figure 8-5. The maximum amplitude of the resonated super-

harmonic waves reaches up to 30% of that of the incident wave. Due to nonlinear

bottom effects, the peak reflection is again slightly shifted to the downside of the

resonance point (kh = 0.6).

For small incident waves and bottom undulations, the initial growth of the re-

flected superharmonic wave due to quartet resonant interactions between the incident

waves and bottom undulations can be analytically calculated from (8.38). For a finite

patch of bottom ripples, the final amplitude of the superharmonic wave can simply

be obtained by replacing the time in (8.38) by Lo/C9. For above case, we obtain the

amplitude of the reflected superharmonic wave over bottom undulations:

= 0.00577k(- - x) , - < < . (8.39)
lail 2 2 2

In figure 8-6, our numerical results (M = 3 and 4) at peak reflection for the amplitude

of the superharmonic wave over the bottom undulations are compared to that of small-

amplitude perturbation theory (8.39). The agreement is seen to be excellent and thus

supports the present numerical simulations.

We summarize that according to perturbation theory and the present numerical

calculations, the amplitude of the resonant superharmonic wave due to class III Bragg

resonance is linearly proportional to bed length and (bottom) ripple amplitude, while

it is of second-order in surface wave steepness.
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8.5 Oblique incidence over a strip of parallel bars

In this section, we study Bragg resonant reflection of oblique incident waves by parallel

bottom undulations lying within the strip -Lo/2 < x < Lo/2 on a sea of constant

mean water depth h. Compared to the case of normal incidence, the important

concern here is to understand the effect of oblique angle 0 on the resonant wave

reflection.

8.5.1 Class I Bragg resonance

For an oblique incident wave propagating on a horizontal bottom containing infinitely-

long parallel ripples, linear Bragg resonance can also occur when the x-component of

incident wavenumber (k~ = k cos 0) satisfies the class I Bragg condition, i.e., k cos 0 =

kr/2. Here the oblique angle is measured by rotating the x-axis to the incident

wave ray in the horizontal x-y plane.

To simulate oblique wave interactions with parallel bottom undulations, the doubly-

periodic computational domain is chosen to be N,A, long and N,,yy wide, where

A, = A/ cos 0 and y = A/ sin 0, for incident waves at an oblique angle O=tan-(Noy/N..).

Since the reflection and transmission coefficients are independent of y, they can again

be calculated by using (8.17) and (8.18) with an arbitrarily selected y.

To illustrate the dependence of linear Bragg reflection on oblique angle, as an

example, we consider a rippled horizontal bottom with a bed length of Lo = 20r/k,

a ripple amplitude of d = 0.16h, and a mean water depth of h = 0.3125A,. This

bottom configuration is identical to that used for normal incidence in §8.4.2. For

a fixed incident wave steepness kA = 0.05, we calculate the reflection coefficient,

IRI = la,/all, including nonlinear free-surface and bottom effects by varying incident

wavenumber and oblique angle.

In figure 8-7, numerical results for the amplitude of the reflection coefficient under

the exact Bragg condition are shown as a function of incidence angle . The compar-

ison is made to the perturbation theory of Mei et al. (1988). Agreement is seen to

be excellent. A noticeable result is that at the critical incidence angle = 7r/4, the
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bottom ripples lose all effects on surface waves.

In figure 8-8, the amplitude of the reflection coefficient in the neighbourhood of

class I Bragg resonance (k, = k,/ 2 ) is presented for a fixed incidence angle 0 = 19.47 ° .

The agreement between the present numerical results and the perturbation theory of

Mei et al. (1988) is again excellent.

8.5.2 Class II Bragg resonance

For an oblique incident wave traveling over a horizontal bottom containing parallel

double-sinusoidal undulations, the reflected wave is resonated due to subharmonic

Bragg resonance under the class II Bragg condition, i.e., k = (k,l - k 2)/2. To

study the influence of an incidence angle upon the resonant reflection, we consider

a rippled bottom with a bed length of Lo = 727r/kr, = 487r/k,2, ripple amplitudes

of dl/h = d2 /h = 0.125, and a constant mean water depth of h = 21r/kr,. With the

x-component of incident wavenumber fixed by the subharmonic Bragg condition, we

calculate nonlinear wave reflection by varying incidence angle .

Figure 8-9 shows a plot of the amplitude of the reflection coefficient due to sub-

harmonic Bragg resonance as a function of incidence angle 9. Numerical solutions are

convergent with respect to the perturbation order M. For a fixed bottom configura-

tion, the effect of the subharmonic resonance on surface waves releases slightly as the

oblique angle increases.

8.5.3 Class III Bragg resonance

For oblique incidence over a patch of infinitely-long parallel ripples, class III Bragg

resonance occurs if the incident waves satisfy the condition:

41k tanh klh = 2k ± k,el t tanh 12k k,el h (8.40)

where e1 is the unit vector in the x-direction. As a result, the superharmonic (double-

frequency) wave with its wavenumber vector given by 2k ± k,el is resonated and

its amplitude grows with the time for which the incident waves interact with bot-
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tom ripples. For given bottom configurations, the solution of (8.40) for the incident

wavenumber vector k is plotted in figure 8-10.

To study the effect of an oblique angle upon class III Bragg resonance, the

same bottom configuration as that for normal incidence in §8.4.4 (Lo = 72r/k,,

k,d = 0.25, and krh = 2.642) is used here. For numerical calculations, an incidence

angle = 19.470 is chosen. With such a bottom configuration and at this incidence

angle, according to (8.40), class III Bragg resonance occurs when kh = 0.62443 and

the resonated superharmonic wave is reflected with the wavenumber vector given by

kh = (-1.4646,0.4163). For an incident wave steepness kA = 0.04, we calculate

the amplitudes of the resonated superharmonic waves near class III Bragg resonance,

which are shown in figure 8-11. Compared to the result in normal incidence, the peak

reflection at class III Bragg resonance is reduced for oblique incident waves.

8.6 Conclusions and discussions

An efficient computational method is developed for the study of nonlinear wave-

bottom interactions. The method employs spectral basis functions and numerically

accounts for arbitrarily high order expansions in both the free surface steepness and

bottom slope. For moderately steep slopes, the method retains exponential conver-

gence of the solution with both the number of spectral modes and the order of the

expansions. With the use of fast transform techniques, the computational burden is

only linearly proportional to the number of spectral modes and to the free surface

and bottom perturbation orders.

This powerful method is used to predict Bragg resonant reflection of surface waves

by patches of periodic bottom undulations including nonlinear free-surface and bot-

tom effects. For both normal and oblique incidences over a stripe of parallel bars,

we confirm existing theoretical and experimental results for both linear and subhar-

monic Bragg resonances. When free-surface nonlinearity is accounted for, we find a

new superharmonic Bragg mechanism associated with quartet resonant interactions

between surface waves and bottom undulations. Based on a perturbation analysis
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and the present computations, the amplitude of the resonant superharmonic waves

is found to be linearly proportional to bed length and ripple amplitude, while it is

of second-order in surface wave steepness. Even for small bottom undulations, the

reflected superharmonic wave can be comparable in magnitude to the incident waves.

This new high-order Bragg effect must play a important role in the evolution of the

spectrum of ocean waves in nearshore areas.

Having shown basic mechanisms associated with linear and high-order Bragg res-

onances and demonstrated the computational capability of the nonlinear spectral

method for general three-dimensional problems, it is of interest to study the following

three general cases:

* propagation of multiple surface waves over a strip of parallel sinusoidal bars;

* travelling of a single surface wave over a bottom containing two-dimensional

sinusoidal ripples;

* propagation of multiple surface waves over a two-dimensional undulated bottom

topography;

Finally, we remark that for a bottom containing disordered ripples, localization of

surface waves has been predicted by theory (Devillard et al. 1988) and observed in

experiments (Belzons et al. 1988). The present efficient method will be useful for the

study of this localization phenomenon for providing an alternative for the protection

of beaches.
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Figure 8-1: Reflection coefficient near Bragg resonance (2k/k, = 1). Experiments
(Davies & Heathershaw 1984) (); perturbation theory (Mei 1985) (- -); and
present high-order results for M = 3 (). (kA = 0.05, k,d = 0.31, d/h = 0.16, d-
ripple amplitude)
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Figure 8-2: Variation of the reflection coefficient over the bottom ripples under Bragg
condition (2k/k, = 1). Experiments (Davies & Heathershaw 1984) (O); perturbation
theory (Mei 1985) (- -); and present high-order results for M = 3 (-). x 
distance along the direction of incident waves. A, - ripple wavelength. The bottom
ripples are from z = -5A, to z = 5A,. (kA = 0.05, k,d = 0.31)
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Figure 8-3: Comparison between the present numerical results for M = 3 () and
the experiments (Guazzelli et al. 1992) (0) for the resonant reflection coefficient. fi:
k = k,1/2; f2: k = k,2/2; and f_: k = (kl - k,2)/2. (kA = 0.05)
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Figure 8-4: Dimensionless incident wavenumber kh under class III Bragg condition
as a function of dimensionless bottom wavenumber k,h with the tertiary wave trans-
mitted (-- -) or reflected ( ).
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0.240 k/k,

Figure 8-5: Reflection coefficient of the superharmonic
resonance. M = 3 () and M = 4 (0). (kA = 0.04, kd

wave near class III Bragg
= 0.25, k,h = 2.642)

-20 -10 0 1
/I

0 20 c/A,.

Figure 8-6: Variation of the amplitude of the reflected superharmonic wave over the
bottom undulations. The perturbation theory (- - -), and the present numerical
results for M = 3 (-- -) and M = 4 ( ). z - distance along the direction of
incident waves. A, -= ripple wavelength. The periodic undulations are from x = -18A,
to = 18A,. (kA = 0.04, kh = 2.642, k,d = 0.250, k/k,. = 0.225)
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Figure 8-7: Reflection coefficient as a function of incidence angle 0 at Bragg resonance
(2k2/k, = 1). Perturbation theory (Mei et al. 1988) (- - ); and present high-order
numerical results for M = 2 (A), and M = 3 (). (kA = 0.05, kd = 0.31,
d/h = 0.16)
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Figure 8-8: Reflection coefficient near Bragg resonance (2k./k, = 1) for fixed inci-
dence angle 0 = 19.470. Perturbation theory (Mei et al. 1988) (- -); and present
high-order numerical results for M = 3 ( ). (kA = 0.05, kd = 0.31, d/h = 0.16)
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Figure 8-9: Reflection coefficient as a function of incidence angle at subharmonic
Bragg resonance (2k,/(kbl - kb2) = 1). M = 3 () and M = 4 (). (kA = 0.05,
Lo = 727r/k,l = 487r/k,2,d 1/h = d2/h = 0.125, h = 27r/k 1)
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Figure 8-10: Dimensionless incident wavenumber kh under class III Bragg condition
(8.40) as a function of incidence angle 9. (a) solution with plus sign in (8.40) and (b)
solution with minus sign in (8.40).
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Figure 8-11: Reflection coefficient of the superharmonic wave near class III Bragg
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k,d = 0.25, kh = 2.642)
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Chapter 9

Conclusions and further studies

This chapter summarizes the conclusions of this thesis and offers some suggestions

for further studies.

9.1 Conclusions

This thesis focuses on the study of nonlinear wave-body/bottom interaction problems

of theoretical interest and practical importance. The body can be either stationary or

undergoing imposed oscillatory or steady motions. Nonlinear solutions are obtained

through careful numerical simulations using an extended efficient high-order spectral

method. To assist us in understanding the nonlinear seakeeping solution, theoretical

analyses regarding the linear-solution behaviours near the critical frequency corre-

sponding to r _ wU/g = 1/4 as well as the decay of the transients associated with

the abrupt motions of a body are included. For simplicity of the numerical simulation,

we consider submerged bodies only.

The principal contributions of this work include:

1. the discovery of the following critical high-order effects in nonlinear surface wave

interactions with bodies and/or bottoms that:

* the quadratic interaction between the first- and third-order (first-harmonic)

waves produces a significant fourth-order negative horizontal drift force on
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a submerged circular cylinder;

* nonlinear free-surface and linear three-dimensional effects produce compa-

rable (in magnitude) and opposing (in direction) mean pitch moments on

a submerged spheroid in head seas;

* the third-order change in the dispersion relation due to free-surface non-

linearity causes first-order corrections to the motion coefficients of the sea-

keeping problem near the critical frequency r = ;

* the resonant quartet interactions between surface waves and bottom un-

dulations generate significant superharmonic reflected and/or transmitted

waves;

2. analytic proofs that the linear seakeeping solution at the critical frequency r = 

is actually bounded for a geneal class of submerged and floating bodies, and that

the decay of the transient solution due to an initial acceleration of a submerged

or floating body is an order of magnitude faster than classical theory predictions;

3. successful extension of the high-resolution nonlinear spectral method to the

study of wave interactions with general two- and three-dimensional submerged

bodies which can be either stationary or undergoing imposed oscillatory or

steady motions.

(I) Nonlinear wave diffraction by a submerged circular cylinder

For wave diffraction by a fixed and submerged circular cylinder, high-resolution non-

linear solutions for the force on the body and the diffracted wave field are obtained.

Comparisons to available measurements as well as existing theoretical/computational

predictions are in good agreement. The most important result is the quantification

of the negative horizontal drift force on the cylinder which is fourth-order in the in-

cident wave steepness. It is found that the dominant contribution of this force is

a result of the quadratic interaction of first- and third-order waves rather than the

self-interaction of second-order waves which in fact reduces the negative drift force.

To correctly predict this force, third-order wave effects must be considered.
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(II) The mean force and pitch moment on a submerged spheroid

To understand the effect of similar interactions on a three-dimensional body, we con-

sider the mean force and pitch moment on a submerged near-surface spheroid. If

nonlinear interactions are included, both the horizontal drift force in beam seas and

the mean pitch moment in head seas change their directions as the surface waves

steepen or when the body is moved closer to the free surface. Based on systematic

simulations, the dominant nonlinear corrections for both the mean force and pitch

moment are found to be due to the quadratic interaction of the first- and third-order

waves. The linear solution and high-order correction are generally of opposite signs

such that for a given body in an ambient wave field, there must be a particular sub-

mergence at which the horizontal drift force or the mean pitch moment is minimized.

For the mean pitch moment, in particular, a simple formula for the estimation of such

a special position is established.

(III) The linear seakeeping solution near the critical frequency

To study the nonlinear seakeeping problem, it is necessary to understand the linear

solution, particularly near the critical frequency r = . Through rigorous asymptotic

analyses in the frequency domain, we offer a formal proof that the linear solution

of the seakeeping problem is finite if and only if a certain geometric condition is

satisfied. This is in contrast to existing theories based upon the single-source result.

For a submerged body, a necessary and sufficient condition is that the body must have

non-zero volume. For a surface-piercing body, a sufficient condition is derived which

has a geometric interpretation similar to that of John (1950). As an illustration,

we provide an analytic (closed-form) solution for the case of a submerged circular

cylinder oscillating near = , which compares well with the calculations of Grue

& Palm (1985). Also, we identify the underlying difficulties of existing approximate

theories and numerical computations near r = , and offer a simple remedy for the

latter.
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(IV) The time-dependence of the wave resistance of a body

An immediate implication of the frequency-domain result is that with the removal of

the = singularity, the actual decay of the transients associated with the abrupt

motions of a floating body must necessarily be an order faster than the single-source

predictions for a body which satisfies the requisite geometric condition. We are able

to prove this in a thorough analysis of the time-dependence of the wave resistance of
3

a body starting from rest. The exact decay rate is found to be proportional to t-2

and t-2 for two- and three-dimensional bodies in contrast to t-2 (Havelock 1949) and

t - 1 (Wehausen 1963) obtained by approximating a body using sources at a particular

point or on a special plane. These theoretical results are confirmed by our direct

time-domain simulations.

(V) Nonlinear wave radiation near the critical frequency

After understanding the linear solution completely, the nonlinear seakeeping problem

near the critical frequency is studied. To elucidate the basic nonlinear mechanism, we

consider the nonlinear wave radiation of a submerged circular cylinder in a uniform

current. With long-time simulations, nonlinear steady-state (limit-cycle) solutions

for the radiation force on the body are obtained including high-order effects of the

free surface and body. Compared to the linear solution, it is found that the nonlinear

correction due to cubic self-interactions of unsteady waves is of first-order in the wave

slope. Such strong nonlinear effect persists only in the neighbourhood of r = where

the radiation of wave energy is significantly amplified through the first-order change

of wave group velocities due to free-surface nonlinearity. On the other hand, the

quadratic interaction between steady and unsteady waves is found to influence the

added mass only, but not the first-harmonic damping.

(VI) Nonlinear wave reflection by an undulated bottom topography

To study a problem for which nonlinear effects are amplified due to a near-periodic

placement of weak scatterers, we consider surface wave propagation over patches of
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bottom undulations. Because of strong Bragg resonance, large wave reflection can oc-

cur for certain incident waves. In addition to the confirmation of existing theoretical

and experimental results associated with linear and subharmonic Bragg resonances,

we discover a new Bragg mechanism corresponding to superharmonic transmitted

and/or reflected waves. We obtain this by including free-surface nonlinearity and

considering resonant quartet interactions between surface waves and bottom undu-

lations. For moderately steep waves and mild bottom slopes, the amplitude of the

resonant superharmonic wave is linearly proportional to the bed length and the ripple

amplitude, whereas it is of second-order in the surface wave slope.

(VII) The extended high-order spectral method

The numerical scheme used in this thesis is an extension of the high-order spectral

method of Dommermuth & Yue (1987b) for nonlinear wave-wave interactions. This

method allows interactions between surface waves and the body/bottom up to an

arbitrary order M in wave steepness, and exhibits exponential convergence with re-

spect to M and the number of spectral modes N. Significantly, with fast transform

techniques, the computational effort is only linearly proportional to M and N. The

efficiency and accuracy of the present nonlinear spectral method allows us to perform

high-resolution calculations for nonlinear wave-body/bottom interaction problems of

practical importance.

9.2 Further studies

We present three suggestions for the extension of the present study:

1. For the problem of wave propagation over an undulated bottom topography,

we have found the basic Bragg resonance mechanisms and demonstrated the

computational capability of the nonlinear spectral method for the general three-

dimensional problem. It is now of interest to study the solutions of the following

general cases:
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* propagation of multiple surface waves over a strip of parallel sinusoidal

bars;

* normal incidence of a single wave over a rippled bottom containing two-

dimensional sinusoidal ripples.

* travelling of multiple surface waves over a two-dimensional undulated bot-

tom topography.

2. The extension of the efficient high-order spectral method to a surface-piercing

body should be very useful for practical problems. The key difference from

the case of a submerged body is that the free surface is now not continuous at

the intersection with the body. As a result, the surface elevation and velocity

potential cannot be expanded in Fourier series. To retain rapid convergence, the

solutions must be represented in terms of spectral functions such as Chebyshev

or Legendre polynomials, whose exponential convergence is independent of the

end conditions.

3. Traditional mode-coupling theories are generally known to be incapable of de-

scribing the long-short wave interactions because the expansion of the velocity

potential on the free surface about a reference surface diverges as a product of

the long-wave amplitude and short-wave number. However, the key in using

the high-order spectral method for the study of nonlinear long-short wave in-

teractions is the accurate evaluation of the vertical velocity on the free surface.

Following Brueckner and West (1988), in appendix D, we are able to analyt-

ically cancel out all divergent terms in the expansion of the vertical velocity

on the free surface and obtain a convergent series in terms of products of the

short-wave amplitude and long-wave number. Because of this, we can avoid the

numerical summation of divergent terms in calculations and are able to extend

the high-order spectral method to the study of long-time evolution of an ocean

wave field including long-short wave interactions.
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Appendix A

The velocity potential at large

distances

In this appendix, we consider the behavior of the solution in the limit Il - oo such

that Ixl4 - oo while < 1. For simplicity, we consider the case of a two-dimensional

submerged body.

As Ix -+ oo, Go vanishes and the principle-value integrals in (5.6) to (5.9) can be

integrated analytically via contour integration. For x - +oo, G1, G3, and G4 vanish,

while

G2 -ie 2 e k[- i(==,)+(Z+,)] (A.1)

For x - -oo, G2 vanishes, while

C3, 4 '-' i2r (A.3)G1 *v , ekl [-i(2-B')+(z+zl)] (A.2)G3,4 -_ii27e3,4[i(X-')+(Z+Z')] (A.3)

Substitution of (A.1)-(A.3) into (5.14) gives

qO(x, z) 6l - ek
2(

-
i+Z ) a u(x', z')ek2(iZ''+z')ds (A.4)
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for x - +oo00, and

8i2r k (-i.a+z) l u(x', zI)ekli ( +z )ds' + j o(x', z')(G3 + G4)ds' (A.5)

for x - -oo. In the neighborhood of 6 < 1, we expand the kernel ekl,2(iz'+z') in

Taylor series about k1,2 = K:

ekl,2(i'+z') = eq(i"'+z')[l i 2,(i' + z')8 + 0(62)] 62 < 1 . (A.6)

After substituting (A.6) into (A.4) and (A.5), we obtain

+(x, z) i27r(al/8 - a3)ek2(-i+z) + 0(8) (A.7)

for -- +oo00, and

t(x, z)- i27r(ai/8 + a3)ekl (-i2+z) + o(x', z')(G3 + G4)ds' + O(8) (A.8)

for x -4 -oo. Here, the constant Ca3 is given by

a 3 = 2 L (ix + z)')(x', zI')e(i'+z')ds ' , (A.9)

and can formally be at most 0(1) for finite u. For r $ 0, al/S = 0(1) and u = 0(1).

Thus the potentials in (A.7) and (A.8) are bounded as 8 -+ 0.

We remark that the kl,2 potentials in (A.8) and (A.7) respectively approach the

same finite limit as 8 -+ 0. This is due to the fact that a3 is 0(8) which can be shown

starting from just before (5.12). The analysis itself is a detail and is omitted here.
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Appendix B

Large-time expansions of

single-source potentials

In this appendix, we derive asymptotic expansions of single-source potentials T and

'" for a variety of source functions under li-'t = o(1) as t --+ o.Ut '

B.1 Two-dimensional sources

Given time dependence of a two-dimensional source, the large-time asymptotic ex-

pansion of the corresponding potential T can be derived starting from equation (6.7).

Case I: or(t) = qo = 1 for t > 0 and qo = 0 elsewhere

For o(t) = 1, the integration with respect to r in (6.7) can be carried out to give

(, x', qo) = n + 2 -ek() cos k(x - x') dk

2Jo° ( 1 1 e+ ) m2+i(m2 U+mg)t dm + c.c.

O + J - m i 0 imu d +cc(B.1)He W 1 ) e,2v,+i(m2U _Mg2)t dm + c.c. (B.1)
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where ko = g/U2 , m0 = k2. Here Cauchy principal-value integrals are indicated and

the first integral in (B.1) is independent of time.

At large time, the second integral in (B.1), denoted by 12, is dominated by the

integration near m = 0. By use of the method of steepest decent, the integration path
1

can be changed to the line of steepest decent (namely, the line m = il/g2). Upon

expanding the integrand in Taylor series about = 0, we have

12 9 o U-r2 + o0() e-et de + c.c. as t - o (B.2)

where is a small positive number. After Changing variable with A = t, it follows

that

12 - 4 t dA + ) as t -- o . (B.3)

Note that although the integral in (B.3) diverges, it can be dropped in the expansion

of 'T(i, x', qo) as an arbitrarily-large constant.

The last integral (3) in (B.1) possesses a saddle point at m = tg2/2~ with ~ =

a:- ' + Ut, and two poles at m = 0 and m = mo. Since we seek for the large-time

expansion of IF under l = o(1), can be considered positive. Deforming the pathUt

of integration to the lines of steepest decent given by ml, 2 tg2 /21 q ±e'f , we obtain

13 = 2reko(z+ z') sin ko(x - x')

em (z l ) m(z+z')j( -2 emi ern , (z+z') 2Mo( -) 2 (o- ) e- e ' de + c.c.. (B.4)
o Ml(mo - -M2)

For large , the integral in (B.4) can be evaluated by using Laplace's method. By

expanding the terms inside square-brackets in Taylor series about e = 0, it follows

that

13 27rek°(+z') sin ko(x - x') 2 - x
tg2 (2mo - tg2)
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xe 4 )+ (Z+z') f [ + O(e2)] e- 2 d + c.c. as (- oo (B.5)

Extending the upper limit of the integration to infinity and carrying out the resulting

integral, we obtain

I3 = 2reko(z+ z') sin ko(x - x')

(/g) g2 )+ (( + cc as oo . (B.6)
t(2~ - Ut) -- 

Substituting = x- x' + Ut for (B.6) and applying the condition I = o(l), we

can further expand (B.6) in a simpler form:

I3 = 2rek°( +z') sin ko(x - x')

+ 4 ( ) 1) e ?iwt+i + c.c. + O (e3) as t oo (B.7)

where es = ko/4 and w, = g/4U.

In summary, the expansion of T can be written as:

T(S,,qo) = G(,) + c. 0 + eiwctO - ) as t - oo (B.8)

where the constant Co = 8(ru)½ ei and the time-independent function G is given by

G(X ) = ln(rri) + 2ieko(+z) sin ko(x - x') + 2 j cos k( - x')e('+')dk. (B.9)

Case II: (t) = &(t) $ 0 for t E (0,to) and &(t) = 0 elsewhere

If a source is suddenly turned on at t = 0 and turned off at t = to, the resulting

potential for t > to can be expressed as:

(t a, J(t)) = i2g9j dm em '+i(mU+mg2)t j&(r)e-i(m2 U+mg2) dr + ..
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_00 .igf dm em 2+(mU-mg)tj,/3(T)e-i(m2U-mg) d7 + c.c.. (B.10)

Assuming &(r) a smooth and continueous function of r, the integrals with respect to

r in (B.10) are generally regular. At large time, the integrals with respect to m are

dominated by the integration near the stationary phase point at m = mo/2. Upon

using the method of stationary phase, we obtain

(~, xx, (t)) = W(')- e' + c.c. + 0 as t -, oo (B.11)

where the time-independent function W is given by

= ( e-4 J &(r)eiWC dr. (B.12)

Case III: o(t) = q = t-e -it for t > to and q = 0 elsewhere

By substituting o(r) = r- e- iwT, for r > to into (6.7), the resulting velocity potential

for t > to can be writ-ten as:

(: xi,)= ln(-)

+ i2g e"m2 +i(mU+mg)t dm j v-2e -i(m2U+mg+U)1 dr (B.13)

i2g- 2g em22*- i(m' U+mg)t dm - ei(m 2 U+mg -U)r dr (B.14)

O to
ig2 g em2" + i ( mU - m g )t dm r-2e -i( m 2U - m g2 + u) dr (B.15)

+ ig2 em ' *-i( m U - mg L)t dm (m -mg -U) dr . (B. 16)00 
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In order to determine the integration with respect to r in (B.13)-(B.16), we first

evaluate the following integral

r = +O as t--+oo (B.17)rtivr Wl2z ivt ) tB Jto 2 V2 iZt 2 t2

where v is a positive constant and W1,2 are regular functions of v and given by

Wl, 2(v) = j (cos A ± i sin A) dA . (B.18)
fto 2

After carrying out the integration with respect to r, (B.13) can be written as:

o2 em 2i+i(m 2 U+mg 2 )t
I1 = i2moU2 X W2[(m + mo/2)U] m + m/2 dm

-iwt co e m 2
0 -iw~ t

- Jo (dm +0 e3 as t -- oo . (B.19)
ty fo (m + o/2)2

Upon integration by parts, it is clear that the first term of I, is 0(t) for large t. The

large-time asymptotic expansion of I1 can then be expressed as:

e-iwet f°° eM2 1
I1 = -2m 1 dm +0 as t - . (B.20)

M (m + mo/2)2 

After using (B.17), we can write (B.14) as:

1 ( m2 W 2 0 Wl em2 ,b* - i(m2 U+mg2 )t
I2 = -i2OU 1 + dm

(m m -m)}(M2 - M) m2 (- m2) (m + ml)

e`iwct 00 m2/. e- iwet
-2mo 1- dm +0 3 as t -- oo(B.21)

t2 Jo (m + ml)(m -2) t2

where ml,2 = mo(vx2 1)/2, and the path of integration is indented to pass below the

pole at m = m 2. The integrals inside the brackets have neither pole nor stationary

phase point for m E (0, oo). As t - oo, they are dominated by the integration near

end points. Using the method of steepest decent, it can be shown that the integration

from the interval near m = 0 is O(1/t), while it is O(1/tl) near m = m2. Omitting
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detailed derivation, we write the expansion for 12 as:

1 =
I2 =-{i [WI(0)e-i 4 + W2(0)e'] em

+ 2mo f )( dm + as t + ( oo .(B.22)o (m + ml)(m - m2) t

For (B.15), we can rewrite the integral with respect to r in terms of error functions:

1 . 1 io ,to em2 t,+i(m-mO/2)2Ut
I3 =-e4mo(rU)e- ct Im /21

[erf(ei(Ut)lm- mo/21)- erf(ei4(Uto) Im- mo/2)] dm .(B.23)

Since the error function tends to zero as m -- mo/2, the integral in (B.23) is regular.

The main contribution to this integral comes from the interval near the stationary

phase point (m = mo/2). Replacing the first error function in (B.23) by its series

expansion and applying the method of steepest decent, we obtain the asymptotic

expansion for 13: 2 1 _2iw_

13 = e-['-moU+ e-i'Cte + (B.24)
n=O (2n + 1)n! t(wt

as t -+ oo, where the series can be shown to be convergent as n -- oo.

After using (B.17) for the integration with respect to r, (B.16) can be written as:

-m 2 em2_°-i(m2U-mg2 )t
I4 = iOU / W, 2 2 dmJ-oo (m - m) (-m - m2)1

1 ml em2p_-i(m2U-mg )t

1r em2i(m2U-mg2 )t
L (m- m)(m + m)2
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eiwct m2 '. e-iwct
+ mo l dm 0 t3 

t 2 c (- l)( + 2) t2-
as t - o (B.25)

where the contour L extends from -oc to +oo in the complex m-plane and is indented

to pass above the pole at m = -m 2 and below the pole at m m. Clearly, no pole

exists in the first three integrals of 13. The main contribution to these integrals thus

comes from the region near the stationary phase point (m = mo/2) and the end points

of the integration (m = ml, -m 2). These contributions can be easily determined by

using the method of steepest decent. The final result can be expressed as:

iwt
14 ei 27W2 (m U/2)L e e

t2

+it~W() 4+ i4 {ml 

+ i [Wi(O)e- i + W2(0)ei ] eic { ±eml em2}
v2 t2

e-it iem 2
* (e-iwct X

+- mO --/ dm- +0 ° 
t i L (m-ml)(m+ m2) ta 

as t oo .(B.26)

In summary, the large-time expansion of the velocity potential due to a varying

source ql can be expressed as:

- i w ct , t

(, ,q) = (Clt 2 + C1 ) e + c0- , e
t2 t2

e -iwt (1 e - iwt)+H(~,x)- -+ t ty t' t
as t - oo (B.27)

where the constants C1, C1, and C1 are given by

-C1 = e-i o (n + )
n=e (2n + )n!

C1 - e 4 /2W 2(m 2U/2)

(B.28)

(B.29)
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and the time-independent function H is given by

H(x, x') = n ( [W(0)e- + W2(0)e'4] {em - em ' }

+mo { °°j em2 di- em2 dm(m + mo/2)2 dm - (m + ml)(m - m2) d

+L (m- m)(m + m2) (B.30)

B.2 Three-dimensional sources

In three dimensions, the velocity potential E due to a source located at x' with a

strength of o(t) can be expressed as (Wehausen & Laitone 1960):

( j1) i 2| d* o(gk) ek[(+z')+i,()] X

x { eit(gk) jt()e-i[(g k)2 +kU COS]' dr

e-it(gk) at(r)ei[(gk)2-kUcosE]Tr dr}dk + c.c. (B.31)

in which R 2, R = ( - x') 2 + (y _ y) 2 + (Z T z') 2 and w(0) = cos + (y - y') sin 0.

Reducing the range of integration from (-7r, ,r) to (0, ir/2) and changing variable with

k = m 2 , we can rewrite (B.31) as:

X XI 0',(t) = (t) -

- i4 j 2 dO jX(n, m) eim 2 dm (r) e-i(mg2+m2cos)T dr + c.c.

+i /o djB lX (m ) e- mtg dm (r)e d + c B32)+i g *M OS0- dr + c.c. (B.32)7r 0 00 i'
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in which x(m, 8) = m2 cos[m 2(y - y') sin 81em2(z+z')+im2 cos'

Case I: (t) = q = 1 for t > 0 and qo = 0 elsewhere

After carrying out the integration with respect to r in (B.32), we get

, _ )= 1 1
R R

-4ko df e ( + z ) cos[k(y-y') sin cos[( - ') cos] dk (B.33)t: d n ~~'k os20 - kod

4 oo o dM(+,,) COS 2s
12 1- I d@ mem2 (z+z ) cos[m2(y -y') sin 9] dm + c.c. (B.34)X o o m cos 9 + mo

+ n defr mem(z9+z') cos[m2 (y - y') sin ] dm + c.c. . (B.35)
X O -a m cos - mO

From (B.33) to (B.35), it is clear that E(, x', qo) is symmetric about y-y' = 0. Thus

we only need to consider the case y - y' > 0.

(B.33) is independent of time and thus a part of the steady solution. Its evaluation

has been investigated by Newman (1987) and is omitted here. For the integration

with respect to m in (B.34), we see that there exists neither a pole nor a stationary

phase point within the range of integration. The leading contribution to this integral

comes from the end region m (0, e). Changing the path of integration to the line

of steepest decent (m = i/g ) and making an expansion of the integrand around

e = 0, (B.34) becomes

2 , IO dOj mgU + O(e2) e- t d= (Ut + ( (B.36)

as t -- oo.

In order to evaluate the integrals in (B.35), we first rewrite (B.35) as:

7r

200



where 1,2 = CoS 0 ± (y - y') sin 0 and the function 0 is defined by

O(C =M (z+. )+i¢_2 2
(9, 9) = -co m _ em2 (zz)+i(m 2Cm(tg2) dm (B.38)

with = mo sec 0. We notice that as long as 2 , ¢1,2 are definitely positive for

x-'31 = o(1) as t -+ oo . We thus only need to consider the case ( > 0 in evaluating

0. From (B.38), it is seen that 0 is dominated not only by the pole at m = but

also by the stationary phase point located at m = tg2/2(. To obtain the complete

asymptotic expansion for 0 at large time, the method of steepest decent is again

used. After changing the path of integration to the line of steepest decent given by

m 1 ,2 = tg /2 ± eei¥4, it follows that

O((, ) = iret(t+Z )+i(22C-9tg)

j(" g)tt [mlem 2( + z ') M 2 em2(Z

+e4(r - e- C de (B.39)

in which the first term results from the residue at the pole m = t. By use of Laplace's

method, we can carry out the integral in (B.39) to obtain

O(((,0)= i ea('+i ')+rd ( &-g½)

+ t(7rg) ei( _ -t2 )+t (Z+Z) 1+ t Irg) 4 4C+2 I [ 3i as -* o. (B.40)
tg2 - 2t9C

Substitution of (B.40) into (B.37) gives

13 = 4 Jfog 2 sin[moV(x - x')] cos[O 2 sin O(y - y')]e 2 (Z+Z') dO

gt2 2( ) t2 2

+ te -7 ¢2 -4C 2 .
(tg½ - 2j) (tg½ - 2(2)
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[1+0 (-$ )1 d i- c.c.
I +1 (22Ili j

as 1, 2 - 00 -

After plugging C1 and C2 into (B.41), it becomes clear that the terms inside the

brackets have neither pole nor stationary phase point for 8 (0,7r/2). It can be

easily shown that this integral is dominated by the integration in the region near

0 = 0. After taking the end expansion around 0 = 0 and extending the range of

integration to infinity, the resulting integral can be integrated to give

13 = 4 j t2 sinmo 9(1X-X ')j cosd2 sin O(y- yt)1eb(z+z') d(3 =- - 4 0 2 sin [m00 (x _ X']cs0 sin (y - ')]e )dO

+ 2mO (U' 1 / ) e-i 44 + 41 1 (z + c.c.
tg2 - 2rmo t

Substituting (

expressed as:

as t -+ oo . (B.42)

for (B.42) and taking Taylor expansion about I='-" o(1), 13 can beUt

r

13 - 4/ j 2 sin[mol(x - x')] cos[t 2 sin (y

2V 'ict e- + .c. + e t)

- y')]e9 2(z + z') dO

as t -o . (B.43)

The asymptotic expansion of (x-, ', qo) is summarized as follows:

-iwcte-iwt 
(:Q, xi, qo) (x, x') + Co t e + c.c. + 0 e t)t

as t -+ oo (B.44)

in which the constant Co = - , and the time independent part 9 is given by

1 1 4ko /2 dS 00ek(z+ ) cos[k(y - y')sin ] cos[k( - ') cos] d
R R1 Cos, 

-4koJ sec2 0 sin[ko sec (x - x')] cos[ko sec2 0 sin (y - y')]ek° se 2 (z+z') d .(B.45)
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Case II: a(t) = (t) 7: 0 for t C (0,to) and a(t) = 0 elsewhere

If a source in the fluid is turned on at t = 0 and turned off at t - to, the resulting

velocity potential at large time can be expanded as:

) -w t + c.c. + w(') t t2+ as t --- o (B.46)

where W is independent of time and is given by

w(x) = i2V2 to)/V(Xl) -~o '()eiwCr dr .

Case III: cr(t) = ql = t-le-iwct for t > to and ql = 0 elsewhere

For a source of variable strength given by t-le- i "wt for t > to, the resulting velocity

potential at large time can be expanded as:

-iwct
E(x, P, q) = (C1 ln t + C, ) eKV6 +

t

eiwct

t

eiwt

t

as t -+ o (B.48)

where the constants C1 = i2v/2K, Cl and C1 are given by

C1 = i2v/2K (-lnto
oo

n=l

r(n + )1 
n!n

and the time-independent function 7- is given by

1 1
(, x') ---+i2

R R 1 Jo2
cos 

(1 + cos )
M 2) - (M 1)] dO

dO j

AI _ -

mmo 4- m2 cos 0 + 

E(m)
+ Mi)(m- M2)

dm

dm
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C1 = -i2v/2K
oo

ko Uto
2

e-iX
A dA
,X,

(B.49)

+ 7fo 7'J

J+ 4 mo 
4o7r fo Jo (m

I III

Io t' e- iw'tt



r fo
dO J(m -F)(m) + M)

L(M- M)( + M) d

with wave numbers M 1,2 and function F given by

(1 + cos ) 1
2 cos 0

.(m) = m2 cos[m2 (y - y') sin 9]em2 [ (Y-Y') - i( x - z') Cos]
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Appendix C

Nonlinear wave-body interactions

in finite depth

In this appendix, we extend the high-order spectral method for nonlinear wave-body

interactions to include the effect of finite depth.

In finite depth, the velocity potential P needs to satisfy the zero Neumann bound-

ary condition , = 0 on the bottom z = -h, where the water depth h is assumed

to be constant. In principle, this requires the consideration of the image of the body

with respect to the bottom.

With the high-order spectral method, the bottom condition can be treated as an

essential boundary condition for the basis functions. In the construction of these

global basis functions, the images of singularity distributions on the body and the

mean free surface with respect to the bottom must be considered. This can be easily

accomplished by replacing the deep-water Green function G in (3.3), (3.4), (4.3), and

(4.4) by the finite-depth Green function Gh. Here Gh satisfies the zero Neumann

boundary condition on the bottom and is simply given by:

Gh(x, z; x', z') = G(x, z; x', z') + G(x, z; x', -z' - 2h) . (C.1)

To study the effect of finite depth, as an example, we choose to study the wave

diffraction force on a fixed and submerged circular cylinder. With parameters kA =
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h/R I F~/pge2A 2 Fz pgA2

00 oo -12.0075 0.6737
4.0 -7.2700 0.6628
3.5 1.2574 0.6310

Table C.1: The mean horizontal and vertical forces on the fixed and submerged
circular cylinder for different water depth h. e = kA = 0.04, kR = 0.4, H/R = 1.5;
and N,=32, NF=64Nw, NB = 256, T/At=64, r0o=5T.

0.04, kR = 0.4 and H/R = 1.5 fixed, table C.1 shows the nonlinear results with

order M = 4 for the mean horizontal and vertical forces on the body for a range of

water depth. The decrease of the water depth reduces the magnitude of the negative

horizontal drift force and eventually changes the sign of the drift force to be positive.

The mean vertical force is also reduced as the water depth becomes smaller.
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Appendix D

Evaluation of the vertical surface

velocity in long-short wave

interactions

In this appendix, we present explicit formulae for the evaluation of the vertical surface

velocity in extending the high-order spectral method to the study of long-short wave

interactions.

As shown in the evolution equation (2.8), the key to the success of time simulations

of nonlinear wave-wave/body interactions is the accurate and efficient evalutation of

the vertical surface velocity P,(x,q(x,t),t).

With the high-order spectral method, at a given instant of time, we first solve

boundary-value problems for the perturbation potentials t(m) up to a specified order

M and then calculate , (x,(x, t), t) in terms of its Taylor series expansion about

the mean free surface z = 0.

In a mode-coupling approach, it is known that the surface potential expansion

diverges as the perturbation order increases when two different length scales are en-

countered. Therefore, the high-order spectral method is believed to fail in the presence

of long-short wave interactions. However, Brueckner and West (1988) recently showed

that the perturbation expansion for (x, (x,t), t) on the free surface is convergent

with respect to the order M although that for the surface potential Q4(x, (x, t), t) is
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divergent. This implies that the high-order spectral method is actually valid for the

study of long-short wave interactions if the vertical surface velocity can directly be

evaluated (i.e. not through the calculation of the perturbation potentials).

Base on the surface potential expansion and through theoretical analyses, we

derive the following explicit formulae for the direct calculation of the vertical surface

velocity in terms of known surface elevation (x, t) and potential (x, t):

z(x, q(X, t), t) = W() + W(2)+ W(3) + ... , (D.1)

where the perturbation velocities are given by

W ) a z = ; (D.2)

a a
W(2)= ( a z -z)W(l ) z = 0; (D.3)

a a
W (3) = (7az a )W(2)

+ " a - a a )'+2 L[)az - az - (77- - aZ2 X z=0. (D.4)

In a typical mode-coupling approach, ?? and Ad are expanded in Fourier series:

7 (x, t) = 77,(t)eikx ; (D.5)
n

' (X,t) = Z t (t)eiknx, (D.6)
n

and the z-derivatve of 4ba is calculated by

z(x, t) = kn~i (t)ekx . (D.7)
n
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