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A Study in the Design of Digital
Beamformers

Sherk Chung

Abstract

Standard beam forming methods for communication satellites make use of microwave
circuits to shape E"d direct the beams. Due to recent advances in digital technology,
independent beam forming networks (BFN) can be implemented digitally and designed
to fit on a series of chips. Certain digital designs will overcome many of the obstacles
commonly encountered in analog BFNs. This thesis discusses the issues affecting the
design of multibeam digital beamformers, and the trade-offs associated with
implementing the beamformer as a digital system. A design of a beam forming system,
which is intended for use onboard communication satellites, is also included. The
proposed beamformer will control and shape multiple beams simultaneously in a large
phased array antenna.
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1. OVERVIEW

1.1 Introduction

The use and demand for communication satellite links increase as the

markets for mobile communications continue to grow. Also growing are the

demands in coverage requirements imposed upon the satellites. The satellite

links must be able to support multiple beams with frequency reuse and power

sharing between the beams. Ever changing traffic patterns of mobile

communication units also require the system to steer and re-configure the

beam. These needs are best furnished with onboard satellite beamformers.

To date most satellites use analog (microwave) beam forming systems to

handle the mul.ibeam communication process. As cellular applications

expand, satellites will be required to handle more beams, and have the ability

to adaptively null interference from other signals. The solution for multiple

beam handling on analog systems is to route the signals with microwave

switch matrices (MSM) and beam forming matrices (BFM), which are

functionally separate from the onboard digital processor and antenna

apertures. Although these BFMs give analog beamformers the capability to

simultaneously direct multiple beams, their size and power losses grow as a

function of both the number of radiating antenna elements and the number

of beams generated by the system.

With a digital version of the beam forming system, all the routing is

performed at baseband, as an extension to the onboard processor (see Figure

1.la). The beam forming circuitry can also be distributed across the antenna,

and in the case of phased array antennas, may be integrated into the active
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radiating elements. The cost and implementation advantages resulting from

the compact size and modularity of integrated Digital Beamformer (DBF)

chips provide a strong incentive to use DBFs in lieu of equivalent analog

systems.

Figure 1.la: Satellite block diagram.

1.2 Theoretical Overview

To explain the concept of beam forming, the antenna is modeled as an

array of radiating elements. To transmit the beam in a certain direction, the

beam is split evenly into the array elements and incremental delays are added

across the elements, thus affecting the phase of the signals radiating from the

antenna (see Figure 1.2a). The phase changes will cause the beam to converge

in a certain direction, and in other directions the beam will be out of phase

and may appear as sidelobes. Simply stated, given a look direction 0 and an

7
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antenna array of N elements, the phase of the split signals would change by

2ntksin(O)/X for k = 1 to N (where X is the wavelength of the signal). In some

applications, it is also desirable to change the shape of the outgoing beam.

This is accomplished by scaling the amplitude of the signals.

Phase Shifters
A . ow-

.. \ .>£\o 

11.250

Figure 1.2a: Conventional beamformer.
Incremental delays are added across the antenna elements to change the phase
of the radiating elements.

Conventional microwave RF beam forming methods implement the

required delays using microwave phase shifters. The phase shifters may

consist of a number of cascaded modules, with the first causing a n phase

shift, the next a n7/2 phase shift, the next a /4 phase shift, etc. If only 5

modules are cascaded to form a delay, it could have up to a nr/32 error margin

for the phase. Amplitude scaling is performed using RF attenuators.
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Figure 1.2b: Beam forming matrix.
Each element radiates a sum of the weighted signals.

Whereas in analog systems the signals must be passed through

attenuators and phase shifters, in a digital system the entire beam forming

process for multiple beams can be reduced to complex multiplications and

additions. To control the direction and shape of a beam, each individual

signal radiating from the antenna elements must be scaled in magnitude and

in phase, which is equivalent to multiplying the signal by a complex number

(commonly referred to as a weight). To transmit multiple beams, the beam

forming process described above is repeated in parallel for each beam (see

Figure 1.2b). Each antenna element radiates a sum of weighted signals. The

weight is varied according to the position of the element and the direction of

the beam. The beams are weighted independently and simultaneously, so the

look directions of the beams need not be the same.
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2. REQUIREMENTS FOR MULTIPLE BEAM SATELLITES

2.1 On Board Circuit Restrictions

The BFN must adhere to some basic restrictions. Among other

limitations, size, weight, and power usage are common to all satellite systems.

In a system that uses an onboard digital processor, it may be possible to

implement the DBF as a small extension to the processor, and would thus

contribute minimally to the size and weight of the payload. If the DBF acts as

an independent processor, the layout must be carefully designed as to not

exceed any of the power and mass limitations.

2.2 Cost and Reliability

The DBF mrust be designed to keep the implementation of the system at

a relatively low cost. If the entire system consists of identical modules

without complicated connectivity, the modules can be mass produced and

assembled at a lower cost. Since digital circuits tend to be lighter and smaller

than their analog counterparts, hardware modularity becomes a necessity.

Redundancy is needed for high reliability. Failing to meet these requisites

may render the satellite a financial burden rather than an asset.

2.3 General System Features

The DBF must also support flexibility and reconfigurability. Changing

traffic patterns make it essential that the satellite be able to dynamically

redirect beams to different locations. Conflicts in channel usage may require

the satellite to reconfigure carrier frequencies on the fly. Sharing the power

between beams allows for such changes. The DBF must be flexible enough to

meet all these demands.
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2.4 Frequency Reuse

Another important factor is the requirement of frequency reuse. If two

beams that are being transmitted from the same antenna are directed far

enough away from each other, both beams may be able to use the same

frequency without interfering with each other as long as the sidelobe levels of

the beams are kept within certain bounds. When two beams containing

signals that use the same frequency are steered too close together, the BFN

must compensate by moving the signals of one of the beams to a different

frequency channel. Providing this feature will affect both the size and

computational burden of the DBF.

3. CHANNELIZATION

3.1 Usage of Channelization

The means for frequency reuse fall primarily on the channelization

processor. Channelization is an operation commonly associated with beam

forming, but is not in itself a requirement in steering beams. It is required

when signals need to be broken down to individual channels for re-

assignment. Although it can be functionally independent of the BFN, if the

beam forming is performed across individual channels instead of the full

bandwidth of the signals, the beam forming and channelization operations

can be combined. For the purposes of this text, beam forming and

channelization are both important to the satellite communication process,

and the channelizer will be considered as a component of the beamformer.
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3.2 The Polyphase Filter

The means for breaking the beam down into individual channels is

through a polyphase filter. A common polyphase filter consists of a bank of

filters that have the same amplitude response but are shifted in frequency.

Extracting channels from a frequency spectrum makes good use of a

polyphase network. The filter that was used to extract the first channel is the

same one used to filter out the second channel with a shift in frequency

(which corresponds to a phase scaling in the time domain). A shift in

frequency by fo will lead to a scaling of e-j2ifon in time. Hence given a lowpass

filter g[n] each polyphase filter hp[n] will be:

h,jn] = g[n]e- 2 ,""' P" for p=l to N

where N is the number of channels (see Figure 3.2a). Convolving the input

signal with each hp[n] we get

y[n] = E hp[k] x[n - k]

= x[n - k]. g[n]e- j 2' rf (" PEN)

which can be reduced to an altered DFT algorithm, thus allowing the use of

an FFT module. The sign refers to the modulo operator.

After each channel is extracted, the output can be decimated, since the

resulting bandwidth of the channel is necessarily smaller than the composite

wave form composed of all the channels. If there are N channels aligned

side-by-side, then each channel can be decimated by a factor of N. But since

12



there are N of these outputs, the total number of output samples equals the

total number of input samples, and the bit rate remains constant throughout.

Figure 3.2a: Polyphase filters.
The filters used to extract channels from the beam have the same magnitude
and differ only in phase. They are shifted along the frequency axis to filter out
the different channels.

4. TRADE-OFFS AFFECTING THE DBF

Employing a digital circuit as a beamformer has both advantages and

downfalls. The analog BFN can only be implemented as a hardware system,

while the DBF may simply be a program run by an onboard computer. This

gives the DBF the flexibility to incorporate additional features, such as error

correction and data compression, without additional hardware. However, the

processing must be done in real-time, which may not be so practical.
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4.1 Advantages in Digital Beam Forming

From an implementation point of view, there are several advantages

and some limitations that the DBF has when compared to the analog BFN. A

DBF can generate multiple independently steerable beams with no loss in

signal-to-noise ratio during the computation. It can also adaptively cancel

interference from other beams, adding corrections for mutual coupling effects

and incorporating corrections for gain and phase mismatch errors in the

receiver channels. As the number of beams and antenna elements extends

into the hundreds, the interconnectivity of the analog BFN becomes a serious

design problem. The circuitry for the DBF can be implemented as a series of

integrated circuits, giving the beamformer the desired modularity and

eliminating the RF cabling associated with analog BFNs.

4.2 Limitations to Digital Beam Forming

The limitations of the DBF are those shared by all real-time digital

systems. Namely, the quantization effects and sampling speeds are key issues.

The signals must be sampled quickly enough to satisfy the Nyquist rate. In

systems such as INTELSAT where total signal bandwidths can range up to 500

MHz, sampling at the Nyquist rate becomes a serious obstacle. And when

hundreds of beams and antenna elements are involved, the computational

burden of the DBF may be overwhelmingly large. In addition, the burden is

increased by the down/up conversions required to do the beam forming at

baseband. It may then become necessary to break down the traffic into smaller

bands and process each band in parallel. This can be achieved by using a

hybrid analog/digital system, where microwave components are used to filter

out the separate bands that are then passed onto the DBF for digital

14



processing. Even then, microwave filters can be bulky, and having several

filters per antenna element may present a size problem.

Digital beam forming is attractive, however, if other functions of the

onboard processor are done digitally. Then the down/up conversions and

analog to digital conversions are done regardless of the BFN type.

5. SENSITIVITY ANALYSIS OF THE DBF

The error induced by quantization of the analog to digital converters

(ADC) will have a direct impact on the performance of the satellite antenna.

In a DBF system, the number of bits used to represent the signal and

corresponding weights must be determined based on the required

performance. Using a large number of bits to represent a sample will yield

high accuracy, but will greatly increase size, weight, power consumption, and

cost of the system, as well as complicate interconnectivity between the chips

and add to the computational load. On the other hand, using an inadequate

number of bits will degrade the quality of the signal. The optimal solution is

to find a size that is small enough to keep the circuit size acceptable, and will

also maintain the accuracy needed in the DBF.

5.1 Quantization Error of the ADC

A common measure of signal quality is the signal-to-noise ratio (SNR),

defined as the ratio of signal variance (or power) to noise variance. The

number of bits used to represent the signal will have a direct effect on the

SNR. A (B+1) bit quantizer will yield a noise variance:
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2-2B 2

12

where X, is the full-scale value of the quantizer (in this case the ADC).

Expressed in decibels, the SNR becomes:

~SNR I4:10 lo =6.02B+ l0.820log0 2

We can see that the SNR increases roughly 6 dB for each additional bit. Xm is

a parameter of the quantizer and is usually fixed. ox is the rms value of the

amplitude of the signal, and therefore must be less than the peak amplitude

of the signal. If ax is too large, then the peak amplitude of the signal will

exceed the full-scale value of the quantizer, resulting in a distortion of the

original signal. When this happens the formula given above does not apply.

However, if ax is too small, we can see from the term

-20 log, 0 X

that the SNR is decreased. It is therefore important that the peak amplitude

of the signal be matched carefully to the full-scale value of the quantizer.

5.2 Error Tolerance for Weighting Coefficients

The weighting coefficients are not signals as such, and therefore

another standard must be used to determine the word length that will yield

the accuracy needed for the DBF.
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Figure 5.2a: Phase errors due to quantization.
Quantization of the weights will cause an error in the phase alignment. On
average, the errors cancel each other out and only the gain of the beam is
affected.

5.2.1 Error Tolerance Requirements

Although issues such as peak gain and steering accuracy are of some

concern, the most important requirement is the suppression of sidelobe

levels in the areas of frequency reuse. As discussed earlier, the beam is

formed by weighting the input signal with complex coefficients. Ordinarily,

the phase component of the weight is the sole input needed to direct the

beam. The magnitude of the weight is used primarily to taper off sidelobe

levels. Quantizing the phase of the weight will yield an error in the phase of

the signal being radiated by an antenna element. Since some signals have a

positive error and some negative, these phase errors average each other out,

and the radiating signals converge in the predetermined direction (see Figure

5.2a). The only important side effect to phase mismatch errors is a slight

reduction in gain. Quantizing the magnitudes of the weights also has a

minor effect on the gain of the beam. These changes in gain, however, are

only noticeable when very few bits are used, and even then the error margin

17



is very small. One major factor that is altered by quantization is the

suppression of sidelobes. Using too few bits to represent the magnitude could

mean a rise in sidelobes in the areas of frequency reuse.

5.2.2 Analysis Using ARRAY

Computer simulations were performed to analyze the performance of a

beam former with different weight quantization sizes. The ARRAY program,

developed at COMSAT Laboratories as a tool in designing antenna arrays, was

used to generate a set of complex coefficients in polar form (i.e., in the form

AejO) to shape a beam. Different antenna sizes, amplitude distributions, and

beam angles were used. The coefficients were then quantized from 4 to 12 bits

successively, and used to shape a beam. The original unquantized complex

coefficients were generated to keep the sidelobe levels at -25 dB relative to the

beam peak in the isolated areas of frequency re-use, when the beam is steered

within 10° from boresight. The shaped beams were evaluated on peak gain

and sidelobe levels in the areas of frequency reuse. The successive

improvement with each additional bit can be seen in Figures 5.2b-g.

Complex numbers in digital circuits are separated into I and Q channels

(in rectangular form, i.e., A+jB). It was necessary to verify that complex

weights would yield the same results in I/Q format as they did in the ARRAY

program. The coefficients from the ARRAY program were converted to

rectangular form, quantized (again, from 4 to 12 bits), converted back to polar

form, and used to shape a beam. There was an increase in accuracy and

sidelobe suppression up to 6 bits. After 8 bits, there was no significant

improvement.
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Figure 5.2b: Signal weighted with unquantized coefficients.
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and phi are the horizon and azimuth spans (in degrees) of the corresponding
contour plot.
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Figure 5.2d: 6-bit Quantization of weights.
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Figure 5.2e: 7-bit Quantization of weights.
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Figure 5.2f: 8-bit Quantization of weights.
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5.2.3 Simulation Results

The beams shaped with the 4-bit weights produced a pattern which

barely resembled the nominal pattern, with very high sidelobe error margins.

A vast improvement resulted from increasing the number of bits

representing the coefficients from 4 to 6. At 6 bits, the shaped beam closely

resembled the original, the peak gains were nearly equal, and the sidelobe

levels were down to an acceptable range (25 dB down). After six bits, the

increase in accuracy was negligible, as was the peak gain, and there was no

betterment in sidelobe level. After 8 bits there was no apparent improvement

whatsoever (as shown in Figures 5.2b-g).

Figure 5.2h: Quantization effects on areas of frequency reuse.
Shaded circles represent areas of frequency reuse. Notice that 4-bit
quantization is not enough to suppress the sidelobes in the designated area.
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Farfield contour plots of a beam are shown in Figure 5.2h. The same

beam was formed with weights quantized to 4, 6, and 8 bits successively. In

this example we can see that although a 4-bit representation of the weights is

insufficient, going to 6-bit word lengths gives us the desired sidelobe level

tapering for frequency reuse, and nothing vital is gained by increasing the

quantization level to 8 bits.

6. THE SATELLITE ANTENNA

An important part of the designing process of a beamformer is to

choose the size and type of the satellite antenna.

6.1 Antenna Type

Two of the main categories of satellite antennas are focused reflector

systems and direct-radiating phased arrays. The functional difference between

the two is that the former uses only a small number of elements to transmit a

beam, while the latter uses all the array elements to form a beam. Phased

array antennas radiate directly from the elements in all directions. Reflector

antenna elements reflect the signal off a dish to increase directivity. For

phased arrays the standard beam forming procedures of complex weighting is

used. For reflector arrays, however, the direction of the beam can be altered

by using a different cluster of elements on the antenna and weighting them

differently in magnitude and/or phase (see Figure 6.1a).
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Focused Reflector Fed Array

Figure 6.1a: Focused reflector-fed array.
Reflector arrays use only a small number of the available elements to transmit
a beam. In the figure above, darker elements represent heavier magnitude
weighting. The striped cluster will scan the beam horizontally due to the
uneven magnitude scaling, while the center cluster will keep the beam at
boresight.

The design of the antenna will have a direct effect on the design of the

BFN. Usage of only a fraction of available elements will require switching

networks to route the outgoing beams to the correct elements. Although

fewer signals are amplified, the complexity of the switching networks will

grow as a function of elements and beams. Currently most satellites use the

reflector system to transmit a relatively small number of beams. In the

future, satellites must be able to support non-uniform and time varying

traffic distributions, and may require a very large number of simultaneous

beams. The gain requirements and antenna size restrictions for such
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applications may favor the usage of phased array antennas. The remainder of

this thesis will deal mainly with systems using phased arrays. Unless

otherwise specified, all future mentions of antennas may be assumed to be

phased array antennas.

6.2 Antenna Directivity and Gain

The size of a phased array antenna aperture will affect the directivity of

the beam. The directivity of the beam in a certain direction is denoted by

D 4rA
D= ~r/

where A is the total surface area of the antenna aperture, A is the wavelength

of the signal, and r is the aperture efficiency. Directivity is the ratio between

an isotropic pattern and the array pattern (see Figure 6.2a). More directivity

means that the signal is stronger in a certain direction. The term gain is used

to describe the directivity minus some efficiency loss due to associated

circuitry. Thus,

47A
G= yD= y 72

where y includes the aperture efficiency and the efficiency associated with

conduction, dielectric, and mismatch losses. It is clear that the larger the

antenna, the higher the directivity it can attain.
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Directivitv

Figure 6.2a: Directivity of a phased array antenna element.
Directivitv is the difference between the actual and theoretical radiation
patterns of an isotropic element. It is a measure of signal strength in a given
direction.

Farfield Cross-Cut Pattern of a 61 Element Hexagonal
Array With 1.51 Spacing.
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Figure 6.3a: Grating lobes.
The graph above is a cross-section of a farfield contour plot such as the ones
shown in Figure 5.2h, where theta and phi are the horizon and azimuth of the
farfield contour plot. Grating lobes are replicas of the main lobe that appear at
intervals determined by the antenna element spacing and the beam
wavelength.
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C

Figure 6.3b: Grating lobe movement.
As the antenna elements are spread farther apart, the gain increases, but the
grating lobes move closer to the main lobe.

6.3 Grating Lobe Elimination

Grating lobes are replicas of the main lobe that appear in the farfield at

27r intervals (i.e., when the path length differences are a full wavelength).

The angle between the grating lobes to the main lobe is inversely

proportional to the distance between array elements (see Figure 6.3a).

Specifically, the angles of the grating lobes are:

- cos-' -\dj

where 0 is the direction of the main lobe and d is the distance in between

array elements (see Figure 6.3b). By spacing the elements closely together, the
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grating lobes can be made to appear off the scope of the coverage area. From a

typical geosynchronous satellite orbit, the earth spans about 9 from the

center. Thus if the grating lobes are more than 18° from the main lobe, they

will not interfere with satellite communications. However, by moving the

elements closer together, more array elements are needed to fill the total

aperture of the antenna. Keeping this in mind, it would be preferable to have

a DBF whose complexity does to not grow inordinately large as the number of

elements increases.

7. DESIGNS FOR A DBF

In this section DBF architectures with different antenna types will be

compared, and designs will be proposed for a DBF with a phased array

antenna.

7.1 Narrow-Band vs. Wide-Band DBF

A narrow-band (NB) DBF is not to be confused with a system that

handles signals of small aggregate bandwidths. Instead, an NB DBF is a

system that performs the needed computation on a channel by channel basis

(hence narrow-band), whereas a wide-band (WB) DBF does the computation

across the entire frequency spectrum of the incoming signals. To illustrate

this point let us consider a case where the entire traffic (perhaps of 10 MHz)

transmitted through the satellite consists of one signal that occupies three

channels of 32 KHz each. The NB DBF will isolate each 32 KHz channel and

process it separately, while the WB DBF will process the entire 10 MHz to

form the beam.
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Figure 7.2a: Conventional WB DBF design.
The DBF circuit takes input from all the array elements and outputs all the
beams simultaneously.

7.2 Conventional DBF Matrix

A common way to implement the DBF is shown in Figure 7.2a, with

the DBF modules implemented in the form of a weighted matrix, as shown

in Figure 1.2b. This (WB) design closely resembles a conventional analog

BFN matrix, and carries some of the drawbacks accompanying it. Being like

the analog BFN, the circuit requires complicated layering of component paths.

Notice that the DBF circuit increases as both the number of antenna elements

and the number of beams are increased. Also note that the number of beams

that this system can transmit is fixed. The complexity of the interconnections

makes the DBF expensive and less robust. A switching network is also

required to re-route channels to different beams (shown as the Reorder

Buffer). These problems make it necessary to break the DBF matrix into

modular components to reduce cost and increase reliability.
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Figure 7.3a: A design for a distributed WB DBF.
This design distributes the beam forming circuitry across the antenna elements,
eliminating the complicated cabling seen in the matrix BFN.

7.3 Improved Design for a WB DBF

A design that distributes the DBF across the array elements and thus

eliminates the wiring problem is shown in Figure 7.3a. As opposed to the

matrix design shown in Figure 7.2b, all the beam forming is done

sequentially. The receive DBF must replicate each input sample as many

times as there are beams and multiply each replica by the correct weight. The

output will be a multiplexed sequence of beams (i.e., the first sample from

beam 1, the first sample from beam 2, . . ., the first sample from beam M, and

then the second sample from beam 1, etc.) The frequency demultiplexer

(DEMUX), however, cannot work on a time multiplexed sequence. Thus the

decoder is required to separate the sequence into separate beams, whose

signals are then re-mapped to the desired channels by way of the
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DEMUX/Reorder/REMUX circuits. The re-mapped beams are then time

multiplexed, weighted separately at each array element, and transmitted.

Figure 7.4a: A design for a distributed NB DBF.
The system is composed of a series of modules that can be implemented as an
extension to the antenna. Unlike the WB DBF, no switching matrix is required
to re-route channels to different beams.

7.4 Design for a Distributed NB DBF

Some problems still remain. A switching network across all beams is

still needed to re-route channels, and the size of the system still grows with

both the number of array elements and beams. The number of beams also

remains fixed, and the power usage of a WB DBF with a phased array antenna

can be extremely large. In a case such as telephone transmissions, where

phones are used heavily during business hours and barely at all during pre-

dawn hours, a system using this design will be required to support the

maximum bandwidth used during business hours. During pre-dawn hours,
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much of the DBF computations in a WB DBF are "wasted," since all the

channels are processed while only a very few are actually used. During these

hours a substantially smaller system could be used. These drawbacks can be

resolved by forming the beam at narrow band. Keeping in mind the

advantages to a distributed modular system, a design for NB DBF was drawn

as shown in Figure 7.4a.

7.4.1 NB Receive DBF Algorithm

The incoming signal is down converted from RF to baseband, digitized,

and then frequency de-multiplexed. The DEMUX module performs the

frequency de-multiplexing that will yield a mapping from frequency to time

(see Figure 7.5c). Given a signal composed of N channels as input, the output

of the DEMUX module would yield the first sample from channel 1, the first

sample from channel 2, . .. , the first sample from channel N, and then the

second sample from channel 1, the second sample from channel 2, etc. Each

sample is multiplied by its corresponding weight in the Receive DBF module,

and then added to the samples from the rest of the antenna elements to

complete the beam forming process. The output from the adder is a TDM

sequence of the channels as described above, i.e., the channels interleaved in

time. If one channel contains information from two signals (as is the case of

frequency reuse) the Receive DBF module will generate two output samples

from each input sample of that channel, with each output sample weighted

according to the direction each signal is coming from (see Figure 7.4b).

32



B
A

Figure 7.4b: The Receive DBF process.
All incoming signals are mapped to a TDM by channel format via the DEMUX.
The Receive DBF module replicates samples that contain information from
more than one signal, and multiplies each sample by its correct weight.
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Figure 7.4c: The Transmit DBF process.
Each sample is weighted by the Transmit DBF module to place the channel in
the correct beam. The samples are then reordered in time as a preprocess to the
REMUX, which maps the samples from time to its corresponding frequency.

7.4.2 NB Transmit DBF Algorithm

On the transmit side, each DBF chip receives the same outgoing sample

(in parallel) and multiplies it by the weight containing the correct phase delay
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that will make the beam converge in a given direction. Hence, the beam (or

direction) the channel is sent to is decided at the DBF chip. Once the samples

are weighted, thev are then reordered on the time axis (by the Reorder Buffer)

as a setup for the REMUX module. The REMUX module maps the samples

from time to frequency (the inverse of the DEMUX module). Thus, a

reordering of the samples in time will allow the REMUX to map the samples

to different frequency channels. Using this the DBF can re-configure the

individual channel usage of the beams. Furthermore, by adding samples to

the same time slot, the sum is mapped to the same frequency, giving the DBF

the ability to support frequency reuse (see Figure 7.4c).

7.4.3 Design Appraisal

The modularity of the system allows the DBF to be implemented as an

extension to the antenna array. The signal for each element is processed

separately, so there are no complicated interconnectivity problems. No

switching network is required to re-route channels, since that operation is

now done on a per-element basis. Since the processing is done per element,

the size of the system is a function of the number of elements, but does not

change with an increase in the number of beams. In situations where the

number of beams transmitted varies drastically over a period of time, this is

an ideal system to use. Having such a layout increases the reliability of the

DBF, since no one path is critical to the forming of the beams. If one of the

array elements fails, the resulting beam can still be formed from the

remaining elements, with only a slight loss in signal strength. The one

critical path following the adder can be backed up with redundant routes to

separate adders. Since all the elements contain identical DBF chips, the

uniformity of the system is preserved. Finally, using identical modules will
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allow the chips to be mass produced, thus reducing the overall cost of the

DBF.

There are some disadvantages to forming the beam at narrow band.

The beams are formed in a time-division multiplexed (TDM) format. If the

onboard processor includes functions such as signal compression and error

correction, a TDM format may not be compatible with the standard

compression and error correction algorithms. However, if a simple receive-

transmit operation is desired, the NB DBF design is an excellent choice.

Figure 7.5a: The DBF module.
The DBF module contains a replicator to account for samples which contain
information from more than one signal (as in the case of frequency reuse).
Samples are then multiplied by complex weights corresponding to the shape
and direction of the output beam.

7.5 DBF Components

The components of the NB DBF are quite simple. The

DEMUX/REMUX modules are polyphase synthesizers that can be bought and
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programmed to perform the desired FFT function. The layouts of the DBF

and Reorder Buffer circuits are quite simple, and can be produced at low cost.

7.5.1 DBF Module

A possible layout of the DBF circuit is shown in Figure 7.5a. The

Replicator is modeled as a FIFO queue where the input may be clocked at a

different rate than the output (in the cases of frequency reuse). The complex

weights are held in a random access memory buffer and used to scale

incoming samples. There are a finite number of beams that will cover the

entire scope of the earth (usually about 200, depending on the application).

Thus all the weights can be stored in a small memory module and need not

be computed onboard the satellite. Instead, this information can be uploaded

from a ground satellite station.

7.5.2 Reorder Buffer

Since the DEMUX/REMUX modules provide the correct time-

frequency mappings, the reorder buffer only needs to re-arrange the time

sequence of the samples. This is done by writing the samples into a memory

buffer in the desired order. An accumulator is required to support frequency

re-use, since more than two samples may occupy the same time slot (and

therefore share the same frequency after the REMUX). This is done by

reading the target address of the buffer and adding the incoming sample to

the already existing sum. Thus many samples can be summed into the same

time slot to support frequency reuse (see Figure 7.5b).
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From Ground Link

Figure 7.5b: The Reorder module.
The Reorder Buffer places samples in the desired order in its memory buffer,
adding samples that are placed in the same time location. Samples that are
added to the same time slot will share the same frequency.

7.5.3 DEMUX/REMUX

Afunctional block diagram of the DEMUX module is shown in Figure

7.5c. In reality, since all filters are equal in magnitude and differ only in

phase, a polyphase synthesizer will perform the required filtering without

having to branch off into N different parallel filtering paths. As described

earlier, each extracted channel can be decimated by a factor of N, since the

signal was sampled for N times the channel bandwidth. The REMUX does

the opposite. It first interpolates and replicates (in parallel) the channels

across the frequency spectrum, and then filters out the replicas that are in the

desired frequency area, using the same polyphase filters.
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Figure 7.5c: The DEMUX module.
The DEMUX filters out each channel and then interleaves the channels in time.
The filtered signal can be decimated by N since its bandwidth is 1/N times the
bandwidth of x[n].

8. SUMMARY AND CONCLUSIONS

8.1 Conclusions on Error Analysis

From the simulations performed using the ARRAY program, it is

evident that 6 bits is a good choice for the complex coefficients given sidelobe

level requirements of -25 dB. This yields an adequate bus size that will not

make connectivity an unconquerable problem, but will maintain the accuracy

needed to satisfy peak gain and frequency reuse requirements.

The number of bits used to quantize the incoming signal will depend

largely on the application of the satellite. For instance, video signals require a
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higher SNR than audio, since video signals require a sharp image, while the

human ear is very good at filtering out background noise.

8.2 Design Summary

The following conclusions were drawn about the DBF designs.

8.2.1 Conclusions on Satellite Antenna Study

The antenna type plays a major role in the design of the DBF. A WB

DBF with a phased array antenna uses too much power, since it processes the

total bandwidth of the beam over all the elements. Its circuitry also increases

as a function of beams and elements regardless of the antenna type. The

power consumption of the WB DBF with a focused antenna is about the same

for the NB DBF wth both phased arrays and reflector arrays. However, using

a phased array antenna design with a NB DBF yields an inherent robustness

not achieved with the alternate options.

8.2.2 Usage of NB/WB DBF

The WB DBF may be preferable to the NB DBF when the satellite

transmits a fixed number of beams with an outstandingly large number of

antenna elements. The computational load increases less than the NB DBF as

the number of elements grows, since some of the processing is done per beam

instead of per element (see Figure 8.2a). Note that since all the array elements

are used, these designs are relevant only to direct radiating phased array

antennas, and are inadequate for a reflector antenna design that uses only a

small number of the available elements to form a beam.
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Figure 8.2a: Distributed NB DBF vs. Distributed WB DBF.
The NB DBF does all the processing per element, while the WB DBF does the
beam forming per element and the channelization per beam.

If the number of beams transmitted varies over time, however, the NB

DBF would be the appropriate choice. The NB DBF is modular, surmounts

the interconnectivity issue, and eliminates the need for a switching network.

Furthermore, the processing is done per element, which allows a variable

number of beams to be processed without affecting the layout of the DBF.

8.3 Reliability of the DBF

The NB DBF has inherent redundancies that make it more robust than

its WB counterpart. Since all the processing is done separately per element, a
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failure in one array element does not affect the results from the other

elements. In the WB DBF matrix shown in Figure 1.2b the signal coming

from one element affects the entire system. There are no critical paths in the

NB DBF save the adder, which can be backed up with other adders. Even

then, adders are simple and robust circuits, and are less likely to fail than

more complex modules such as the polyphase synthesizer.

8.4 Suggestions for Improvements on DBF Design

There are many alterations and additions that could improve the

performance of the DBF, such as the inclusion of adaptive error correction

modules. The most outstanding setback to DBFs is the technology needed to

create processors that can multiply millions of complex numbers per second.

Current CMOS technology, which is used in most instances, is usually limited

to the order of tens of MHz, thus limiting the bandwidth of the beams

transmitted by the DBF. Future implementations might include the usage of

GaAs chips, which are able to perform multiply-accumulate operations on the

order of hundreds of MHz. This would be ideal for INTELSAT applications,

which require the support of bandwidths of up to 500 MHz.

41



References

Acampora, A. S. "Digital Error Rate Performance of Active Phased Array
Satellite Systems," IEEE Transactions on Antennas and Propagation. Vol AP-
26, No. 6. Nov. 1987.

Barrett, M. & Coromina, F. "Development and Implementation of an
Adaptive Digital Beamforming Network for Satellite Communication
Systems," ERA Technology Ltd.

Beach, M. A., Swales, S. C., Bateman, A., Edwards, D. J., & McGeehan, J. P.
"An Adaptive Antenna Array for Future Land Mobile Satellite Terminals,"
Univ. of Bristol, UK.

Devred, H. & Roger, J. "Experimental Digital Beam Forming Antenna,"
Thompson CSF-DRS.

Humbert, W. R. & Brandow, W. IV. "Error Analysis in a Practical Digital
Beamformer," Rome Labs.

Pridham, Roger G. & Mucci, Ronald A. "A Novel Approach to Digital
Beamforming," Ratheon Co., Submarine Division. 1977.

Robertson, W. & Pincock, D. "A New Architecture for Digital Time Domain
Beamforming," IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol ASSP-35, Dec. 1987.

Oppenheim, A.V. & Schafer, R.W. Discrete-Time Signal Processing. Prentice
Hall, 1989.

Swartzlander, Earl E. Jr. "Signal Processor Design for Digital Beam Forming,"
TRW.

Zaghloul, A.I., Sorbello, R.M., & Assal, F.T. "Development of Active Phased
Array for Reconfigurable Satellite Antennas," European Space Agenct's COST
213/KUL Phased Array Workshop, Leuven, Belgium, October 26-27, 1988.

42



ADppendix 1: Glossary of Terms

A/D Analog-to-Digital
ADC Analog-to-Digital Converter
BFN Beam Forming Network
CMOS Complementary Metal-Oxide Semiconductor
DAC Digital-to-Analog Converter
dB Decibel
DBF Digital Beamformer
D/C Down Converter
FFT Fast Fourier Transform
FDM Frequency Division Multiplex
GaAs Gallium Arsenide
GEO Geostationary Earth Orbit
Inmarsat International Maritime Satellite Organization
Intelsat International Telecommunications Satellite Organization
I/Q In-Phase/In-Quadrature
MAC Multiply-Accumulate
NB Narrow Band
RF Radio Frequency
SAW Surface Acoustic Wave
SNR Signal-to-Noise Ratio
TDM Time Division Multiplex
WB Wide Band
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Appendix 2: The ARRAY Program

Usage of the ARRAY Program

The ARRAY program, designed and implemented at COMSAT Laboratories, is a

menu driven program intended for use as a tool to facilitate satellite antenna design. It takes

as input a file that contains descriptive information of the modeled antenna (such as number

of elements, geometry, complex weighting of the individual elements, etc). The input file

can be created interactively from the ARRAY program, which prompts the user for all

necessary values. The ARRAY program can then form a beam using the antenna element

weights. and plot the resulting waveform on a pre-selected graphical interface window.

Sample ARRAY Input File

1 90 90 60.00 120.00 60.00 120.00
5
1.500 .140 .000 1.000 .000 1.000 90.000

61
10.39200 6.00000 .00000
10.39200 3.00000 .00000
10.39200 .00000 .00000
10.39200 -3.00000 .00000
10.39200 -6.00000 .00000
7.79400 7.50000 .00000
7.79400 4.50000 .00000
7.79400 1.50000 .00000
7.79400 -1.50000 .00000
7.79400 -4.50000 .00000
7.79400 -7.50000 .00000
5.19600 9.00000 .00000
5.19600 6.00000 .00000
5.19600 3.00000 .00000
5.19600 .00000 .00000
5.19600 -3.00000 .00000
5.19600 -6.00000 .00000
5.19600 -9.00000 .00000
2.59800 1 ).50000 .00000
2.59800 7.50000 .00000
2.59800 4.50000 .00000
2.59800 1.50000 .00000
2.59800 -1.50000 .00000
2.59800 -4.50000 .00000
2.59800 -7.50000 .00000
2.59800 -10.50000 .00000
.00000 12.00000 .00000
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.00000

.00000

.(0000

.00000
.00000
.00000
.00000
.00000

-2.59800
-2.59800
-2.59800
-2.59800
-2.59800
-2.59800
-2.59800
-2.59800
-5.19600
-5.19600
-5.19600
-5.19600
-5.19600
-5.19600
-5.19600
-7.79400
-7.79400
-7.79400
-7.79400
-7.79400
-7.79400

-10.39200
-10.39200
-10.39200
-10.39200
-10.39200

.02607

.02607

.02607
.02607
.02607
.02607
.09432
.09432
.09432
.09432
.02607
.02607
.09432
.17869
.17869
.17869
.09432
.02607
.02607
.09432
.17869
.24694
.24694
.17869

9.00000
6.00000
3.00000
.00000

-3.430000
-6.00000
-9.00000

-12.00000
10.50000
7.50000
4.50000
1.50000

-1.50000
-4.50000
-7.50000

-1 0.50000
9.00000
6.00000
3.00000
.00000

-3.00000
-6.00000
-9.00000
7.50000
4.50000
1 .50000

-1.50000
-4.50000
-7.50000

6.00000
3.00000
.00000

-3.00000
-6.00000
45.58
139.35

--126.88
-3 3.11
60.66

-149.59
-55;.82

37'.95
1311.72

--134.51
-401.74
15.25

109.02
- 1517.21
-63.44
30.33

124.10
-142.13
-179.92
-86.15

7.62
101.39

-164.84
--71.07

.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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.09432 22.70

.02607 116.47

.02607 -15.08

.09432 78.69

.17869 172.46
.24694 -93.77
.27301 .00
.24694 93.77
.17869 -172.46
.09432 -78.69
.02607 15.08
.02607 -116.47
.09432 -22;.70
.17869 71.07
.24694 164.84
.24694 -.1011.39
.17869 -7.62
.09432 86.15
.02607 179.92
.02607 142.13
.09432 -124.10
.17869 --30.33
.17869 63.44
.17869 157.21
.09432 -109.02
.02607 --15,25
.02607 40.74
.09432 134.51
.09432 -131.72
.09432 -37.95
.09432 55.82
.02607 149.59
.02607 --60.66
.02607 33.11
.02607 126.88
.02607 -139.35
.02607 -45.58
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Appendix 3: DBF Toolkit Source Code

**FILE: antenna.c
** AUTHOR: Sherk Chung
**DATE: 7/23/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: functions used to calculate
** beamformer weights

#include "headers.h"

Number Wavelength (float freq)
{
return ((Number) (1 Oe-3*C/freq)); /* Mult by 10e-3 since freq is in MHz */

/* Wavelength in Um */

BeamArrayPtr CalculateWeights (int beamnum, float **beamangles,
float *beamfreqs)

{
BeamArrayPtr cap;
int k, i,j;
Number lambda, theta_x, theta_y, phase;
ComplexPtr weight = CN_NewP(0,0);

fprintf (stderr, "Calculating Weights .");
cap = BA_New (beamnum, ANTENNA_ELMS);

for (k = 0; k < beamnum; k++) {
lambda = Wavelength (beamfreqs[k]);
theta_x = beamangles[k][0];
theta_y = beamangles[k][1];

/* Set Phases horizontally (x-direction)
----------------------------------------*/

for (j = 0; j < ANTENNA_WIDTH j++) {
phase = (Number) (2*pi*j*sin(theta_x)/lambda);
for (i = 0; i < ANTENNA_HEIGHT; i++) {

BA_SetNum (cap, k, i*ANTENNA_WIDTH+j, 1l,phase);
}

}
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fprintf (stderr, ".")

/* Set Phases vertically (y-direction)
-------------------------------------*/

for (i = 0: i < ANTENNA_HEIGHT; i++) {
phase = (Number) (2*pi*i*sin(theta_x)/lambda):
for (j = 0; j < ANTENNA_WIDTH; j++) {

CN_SetNum(weight, 1,phase);
CN_Mult2 (BA_Num(cap,k,i*ANTENNA_WIDTH+j ), weight);

}

fprintf (stderr, "DONE\n\n");
return (cap);
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**FILE: array.c
** AUTHOR: Sherk Chung
**DATE: 6/29/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: support for array structure

#include "headers.h"

/* ---------------- ( Complex Arrays )------------------------*/

ComplexArrayPtr CA_New (int size)

int i;
ComplexArrayPtr cap = malloc (sizeof (ComplexArray));
ComplexPtr *ca = calloc (size, sizeof (ComplexPtr));
for (i = 0; i < size; i++) ca[i] = CN_NewP (0, 0);
ELMS(cap) = size;
CURR(cap) = 0;
DATA(cap) = ca;
return (cap);

void CA_Free (ComplexArrayPtr cap)

int i;
for (i = 0; i < ELMS(cap); i++) CN_Free (DATA(cap)[i]);
free (cap);

}
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**FILE: beam.c
** AUTHOR: Sherk Chung
**DATE: 6/29/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: support for beam array structure

#include "headers.h"

/* --------------------------( Beam Arrays )--------------------------/

BeamArrayPtr BA_New(int length, int signal_length)

int i;
BeamArrayPtr ba = malloc (sizeof (BeamArray));
BeamPtr *bp = calloc (length, sizeof (BeamPtr));
for (i = 0; i < length; i++) bp[i] = Beam_New(signal_length);
ELMS(ba) = length;
CURR(ba) = 0;
DATA(ba) = bp;
return (ba);

void BA_Free (BeamArrayPtr bap)
{
int i;
for (i = 0; i < ELMS(bap); i++) Beam_Free (DATA(bap)[i]);
free (bap);

I

void BA_Scale (BeamArrayPtr bap, float num)

int i, j, nr;
BeamPtr bp;

for (i = 0; i < ELMS(bap); i++) {
bp = DATA(bap)[i];
for (j = 0; j < ELMS(bp); j++) {
nr = (int) ((float) MAG(DATA(bp)[j]) * num);
Beam_SetNum (bp, j, nr, PHASE(DATA(bp)tj]));

I
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BeamAlTayPtr BA_Transpose (BeamArrayPtr bap)

int i, j;
ComplexPtr tmp;
Number rl, in;
BeamArrayPtr newbap = BANew (BA_WIDTH(bap), BA_HEIGHT(bap));

for (i = 0; i < BA_HEIGHT(bap); i++) {
fprintf (stderr., ".");
for (j = 0; j < BA_WIDTH(bap); j++) 
rl = MAG(DATA(DATA(bap)[i])U[]);
im = PHASE(DATA(DATA(bap)[i])[j]);
BA_SetNum (newbap, j, i, rl, im);

return (newbap);

BeamArrayPtr BA_Mult (BeamArrayPtr bap 1, BeamArrayPtr bap2)

int i,j,k,m, width, h ight;
ComplexPtr num = CN_NewP (0,0);
BeamArrayPtr prod = BA_New (BA_HEIGHT(bapl), BA_WIDTH(bap2));

if ((width = BA WIDTH(bapl)) != (height = BA_HEIGHT(bap2)))
ERROR("Incompatible BeamArray Sizes","BeamArrayPtr");

for (i = 0; i < BA_HEIGHT(bapl); i++) {
fprintf (stderr, ".");
for (k = 0; k < BA_WIDTH(bap2); k++) {

CN_SetNum (num. 0,0);
for (j = 0 j < BA_WIDTH(bapl); j++) 

CN_Add2 (num. CN_Mult (DATA(DATA(bapl)[i])[j],
DATA(DATA(bap2)U])[k]));

}
if (MAG(num) >= 255) ERROR ("Overflow", "BA_Mult");

return (prod);

51



/************ ********************************
** FILE: beamformer.c
** AUTHOR: Sherk Chung
** DATE: 6/29/93
** LOCATION: COMSAT Labs. Clarksburg, MD

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: main program used to simulate a
** digital beamformer.

#include "headers.h"

void ERROR (char *mesg, char* loc)

fprintf (stderr," *****< E R R O R >***** \n %s in function %s\n\007",
mesg, loc);

exit (1);
}

BeamArrayPtr BeamForm (BeamArrayPtr beams, BeamArrayPtr weights)

int i,j;
BeamArrayPtr outbeams, beamatrix;

fprintf (stderr, "Forming BEAM .");
beamatrix = BA_Transpose (beams);
outbeams - BA_Mult (beamatrix, weights);
fprintf (stderr, ".DONE\n\n");
return (outbeams);

void main(int argc, char *argv[])
{
BeamArrayPtr beams: /* Input Beams ' /
BeamArrayPtr outbeams; /* Radiating Element signals */
BeamArrayPtr weights; /* Weights to direct antenna */
float **beamangles, *beamfreqs;
int i, j, beamnum;
char *outfile, *beamdir;

if (argc != 4) {
fprintf (stderr, " USAGE: beamformer <beams directory> <#beams> <outfile>\n");
exit (0);

/* Parse Arguments
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beamdir = strdup (argv[ I]);
beamnum = atoi (argv[2]);
outfile = strdup (argv[3]);

beamfreqs = calloc (beamnum, sizeof (float));
beamangles = calloc (beamnum, sizeof (float *));
for (i = O; i < beamnum: i++) beamangles[i] = calloc (2, sizeof (float));

/* Read Input Files

beams = ReadInputBeams (beamdir, beamnum, beamangles, beamfreqs);

/* Do BeamForming

weights = CalculateWeights (beamnum. beamangles, beamfreqs);
outbeams = BeamForm (beams, weights);

/* Write Output File

WriteOutpul:Signal (outbeams, outfile);
}
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* FILE: complex.c
** AUTHOR: Sherk Chung
** DATE: 6/29/93
** LOCATION: COMSAT Labs, Clarksburg, MD

**' LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: Routines to support struct complex numbers
** defined in complex.h

****** ****** **** ***************************** /

#include "headers.h"

ComplexPtr CN__NewR (Number mag, Number phase)
{
ComplexPtr num3 = malloc(sizeof (Complex));
REAL(num3) = mag;
IMAG(num3) = phase;
num3->rect = TRUE;
num3->polar = FALSE;
return (num3);

ComplexPtr CN_NewP (Number mag, Number phase)
{
ComplexPtr num3 = malloc(sizeof (Complex));
MAG(num3) = mag;
PHASE(num3) = phase:
num3->polar = TRUE;
num3->rect = FALSE:
return (num3);

}

ComplexPtr CN_Copy (ComplexPtr cp)
{
if (cp->polar) return (CN_NewP (MAG(cp), PHASE(cp)));
else if (cp->rect) return (CN_NewR (REAL(cp), IMAG(cp)));
else ERROR ("Unknown Type", "CN_Copy");

ComplexPtr CN_Polar2Rect (ComplexPtr n)

return (CN_N ewR(MAG(n) *cos(PHASE(n)), MAG(n)*sin(PHASE(n))));
}
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ComplexPtr CN_Rect2Polar (ComplexPtr n)
{
return (CN NewP(sqrt(REAL(n) * REAL(n) + IMAG(n) * LMAG (n)),

atan(IMAG(n) / REAL(n))));

ComplexPtr CN_Mult (ComplexPtr numl, ComplexPtr num2)
{
ComplexPtr num3:

if (numl->rect && num2->rect) {
num3 = CN_NewR ((REAL(numl) * REAL(num2)) - (IMAG(numl) * IMAG(num2)),

(REAL(numl) * IMAG(num2)) + (IMAG(numl) * REAL(num2)));
} else if (numl->polar && num2->polar) {
num3 = CN_NewP (MAG(numl) * MAG(num2), PHASE(numl) + PHASE(num2));

} else {

ERROR ("Incompatible types", "CN_Mult");

return (num3);

ComplexPtr CN_Mult2 (ComplexPtr numl, ComplexPtr num2)
{
if (numl->rect && num2->rect) {
CN_SetNum(numl, (REAL(numl) * REAL(num2)) - (IMAG(numl) * IMAG(num2)),

(REAL(numl) * IMAG(num2)) + (IMAG(numl) * REAL(num2)));
} else if (numl->polar && num2->polar) I
CN_SetNum(numl, MAG(numl) * MAG(num2), PHASE(numl) + PHASE(num2));

} else {
ERROR ("Incompatible types", "CN_Mult2");

return (numl);
}

ComplexPtr CN_Add (ComplexPtr numl, ComplexPtr num2)

ComplexPtr num3;
ComplexPtr num4, num5;

if (numl->rect && num2->rect) {
num3 = CN_NewR (REAL(numl) + REAL(num2), IMAG(numl) + IMAG(num2));

} else if (numl->polar && num2->polar) {
num4 = CN_Polar2Rect (numl);
num5 = CN_Polar2Rect (num2);
num3 = CN_Rect2Polar (CN_Add (num4, num5));

} else 

ERROR ("Adding Diff Types", "CN_Add");

return (num3);
}
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ComplexPtr CN_Add2 (ComplexPtr numl. ComplexPtr num2)

ComplexPtr num3:
ComplexPtr num4. num5:

if (numl->rect && num2->rect) {
CN_SetNum (numl, REAL(numl) + REAL(num2). IMAG(numl) + IMAG(num2));

} else if (numl->polar && num2->polar) {
num4 = CN_Polar2Rect (numl);
num5 = CN_Polar2Rect (num2);
num3 = CN_Rect2Polar (CN_Add (num4, num5));
CN_Free(num3);
CN_Free(num4);
CN_Free(num5);
CN_SetNum(num 1. REAL(num3), IMAG(num3));

} else {
ERROR ("Adding Diff Types", "CN_Add2");

return (numl);

ComplexPtr CN_Expt (ComplexPtr numl, Number k)

ComplexPtr num, num2;

if (numl->rect) 
num2 = CN_Rect2Polar (numi);
PHASE(num2) *= k:
num = CN_Polar2Rect (num2);

} else if (numl->polar) {
num = CNCopy (numl);
PHASE(num) *= k:

}
return (num);

void CN_Free (ComplexPtr cp)
I
free (cp);

}
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/* File: control.c
Used to generate signals

*/#include <stdio.h>

#include <stdio.h>
#include <stdlib.h>
#include <math..h>

#define C 1.0
#define C1 5,0

float f(int i)
{
float x = (float) i;
return (1.0 - (exp(-x/C 1))*(sin(x/C) + cos(x/C)));

void main ()

int i;

for (i = O; i < 100; i++)
printf ("%f\n", f(i));

}
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** * * * * * ** ************** ** ******* **

** FILE: dft.c
** AUTHOR: Sherk Chung
** DATE: 6/29/93
** LOCATION: COMSAT Labs,
**

** LAST MODIFIED:
** MODIFICATIONS:
**

** COMMENTS: fft function

**

Clarksburg, MD

#include <stdlib.h>
#include <math.h>
#include "beamformer.h"
#include "array.h"

BeamPtr dft (BeamPtr bp)
{
int k, n;
ComplexPtr *x, *X;
BeamPtr newcp = (BeamPtr) Beam_New(ELMS(bp));
ComplexPtr W = (Complex *) CN_NewP (1, -2*pi/ELMS(bp));

X = DATA(newcp); x = DATA(bp);
for (k = 0; k < ELMS(bp); k++) 

for (n = 0; n < ELMS(bp); n++) {
X[k] += CN_Mult (x[n], CN_Expt (W, k*n));

}

** FUNCTION: Massive Dft
** USAGE: NewCmplxArray = MassiveDft (ComplexArrayPtr ComplexArray)
** PURPOSE: Perform DFT of an array of beams,
** each beam of length ELMS(cp)
*/
BeamArrayPtr MassiveDft (BeamArrayPtr cp)
{
int k, n, i, j;
ComplexPtr *X;
BeamArrayPtr newcp = (BeamArrayPtr) BA_New (ELMS(cp), 0);

for (i = 0; i < ELMS(cp); i++) 
DATA(newcp)[i] = dft (DATA(cp)[i]);

I
return (newcp);
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** FILE: error.c
** AUTHOR: Sherk Chung
**DATE: 8/25/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: Yields angular error beamformer due to phase quantization
** for given quant level. signal wavelength, distance between
** antenna array elements, and scan angle of beam.

** USAGE: error <quant bits> <lambda> <dist> <scan angle>
** WHERE: <quant bits> = number of bits to use for phase quantization
** <lambda> = wavelength of signal
** <dist> = distance between antenna arrav elements
** <scan angle> = beam direction relative to boresight

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265
#define R2D(n) n* 180.0/pi
#define DEBUG 1

float quantize (int qlevel, float num)
/*
** FUNCTION: quantize
** ARGUMENTS: qlevel = number of bits to quantize to
** num = number to quantize

** PURPOSE: To quantize a number to a certain number of bits
*/

{
float maxout. minout, n2, n 1, n;

/* Find Range of Qlevel Bits

minout= 1.0;
maxout = pow(2.0, (float) qlevel);

/* Linear Interpolate from 0-360 to minout-maxout, and truncate
to integer value. Then interpolate back to 0-360 scale.

n =((num*(maxout-minout))/(360.0)+minout); /* Interpolate */
nl = (int) n; /* Round Off to */
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if ((n - (float) nl) > 0.5) nl++: /* Nearest Int /
n2 = (((float) nl-minout*360.0/(mminout)*360.0)/(maxout-minout); /* Interpolate Back */

return (n2):

/*----------------------------( Main Program )-----------------------------

void main (int argc, char *argv[])

int qlevel:
float error. in, denom, dist, lambda, theta, qtheta, qphase, phase:

if (argc != 5) {
fprintf(stderr,"USAGE: error <quant bits> <lambda> <dist> <scan angle>\n");
exit (0);

/* Parse Input

qlevel = atoi (argv[l]); /* Quantization Level */

lambda = atof (argv[2]); /* Wavelength of signal /
dist = atof (argv[3]); /* Dist between Antenna Elms */
theta = atof (argv[4]); /* Scan angle */

/* Convert to radians
--------------------*/

theta = (theta*pi)/180.0;

/* Find Correct Phase

phase = (dist*2.0*pi*sin(theta))/lambda;

/* Find quantized phase
----------------------*/

qphase = quantize (qlevel, phase);
if (DEBUG) fprintf (stderr, "Phase 1: %f\nPhase2: %f\n", phase. qphase);

/* Find Angle Corresponding to Quantized Phase
---------------------------------------------,*/

qtheta = asin ((qphase*lambda) / (dist*2.0*pi));
if (DEBUG) fprintf (stderr, "Thetal: %f\nTheta2: %f\n", theta, qtheta);

/* Find and Print Difference Between Real Angle and Angle Obtained
from Quantized Phase.

----------------------------------------- */
error = R2D((theta - qtheta));
printf ("\nWith %d bits, %f signal wavelength, and %f Element spacing, \n the error is:

%f degrees \n",qlevel, lambda, dist, error);
}
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**FILE: io.c
** AUTHOR: Sherk Chung
**DATE: 6/29/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: I/O functions used in beamformer.c

#include "headers.h"

FILE *OpenBeamFile (char *beamdir, char *ext)

char name[40], beamname[80];
FILE *beamfile;

strcpy (name, "/beam.");
strcpy (beamname, beamdir);
strcat (beamname, name);
strcat (beamname, ext);
beamfile = fopen (beamname, "r");
if (beamfile == NULL) {
strcat (beamname, ": FILE not Found");
ERROR (beamname, "ReadlnputBeams");

}
return (beamfile);

}

BeamArrayPtr ReadInputBeams (char *beamdir, int beamnum, float **beamangles,
float *beamfreqs)

{.
int i, j, num;
FILE *beamfile;
char bnum[4];
BeamArrayPtr bap;

fprintf (stderr, "Reading Input Beams .... \n"); **/

bap = BA_New (beamnum, SIGNAL_LENGTH);

for (i = 0; i < beamnum: i++) {
sprintf (bnum, "%d", i+l);
fprintf (stderr, " Reading Beam #%s\r",bnum);

/* Open File
----------- */
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beamfile =: OpenBeamFile (beamdir. bnum):

/* Read Frequency

fscanf (beamfile "%f', &(bearnfreqs[i]));

/* Read Direction
---------------- *"
fscanf (beamfile, "%f', &(beamangles[i][0]));
fscanf (beamfile, "%f', &(beamangles[i] [ 1 ]));

/* Read data from File
--------------------- */
for (j = 0; j < SIGNAL_LENGTH; j++) {
fscanf (beamfile, "%d", &num);
BA_SetNum (bap, i, j, num, 0);

fclose (beamfile);

fprintf (stderr," DONE Reading Beams \n\n"):

return (bap);

float *ReadInputAngles (char *beamdir, int beamnum)

int i;
float angle, *alist;
char *ext = strdup ("angles");
FILE *anglefile;

alist = calloc (beamnum, sizeof (float));
anglefile = OpenBeamFile (beamdir, ext);

for (i = 0; i < beamnum: i++) (
fscanf (anglefile, "%f', &(alist[i]));

}
return (alist);

void WriteOutputSignal (BeamArrayPtr outbeams, char *outfile)

{
int i, j;
FILE *fp;

fprintf (stderr, "Writing Output to %s .",outfile);
fp = fopen (outfile, "w");

for (i = 0; i < ELMS(outbeams); i++)
fprintf (fp, "Beam #%d%d",0,i);

for (j = 0; j < SIGNAL_LENGTH; j++) {
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for (i = 0: i = ELMS(outbeams : i++) {
if (j == 0) fprintf (stderr, ".");
fprintf (fp, "%d %d

MAG(BA_Num{ outbeams.i.j)),
PHASE(BA_Num(outbeams.i,j)));

}

tprintf (stderr, ".DONE\n\n");

/* */
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/* File: rnakeant.c
Makes list of floats. Used for testing.

#include <stdio.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void main()
{
FILE *fp;
int i, j;

fpl = fopen( "ant", "w");

for (i = O;i < 8; i++) {
for (j =O;j 8;j++) 

fprintf (fp, "%f. ". sqrt((double) i*i + j'j));

fprintf (fp, "\n");

fclose (fp);}close (fp);
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/* *** * * * * * * * * * * * * * * * * * * * * * * *

** FILE: maxerror.c
** AUTHOR: Sherk Chung
** DATE: 8/23/93
** LOCATION: COMSAT Labs. Clarksburg, MD

** LAST MODIFIED:
** MODIFICATIONS:
**

COMMENTS: Yields maximum angular error beamformer due to phase
for given quant level, signal wavelength, and distance between
antenna array elements.

quantization

USAGE: maxerror <quant bits> <lambda> <dist>
WHERE: <quant bits> = number of bits to use for phase quantization

<lambda> = wavelength of signal
<dist> = distance between antenna array elements

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265
#define R2D(n) n* 180.0/pi
#define DEBUG 0

void main (int argc, char *argv[])
{
int qlevel:
float error, m, denom, dist, lambda, theta, qtheta, qphase. phase;

if (argc != 4) {
fprintf (stderr, "USAGE: maxerror <quant bits> <lambda> <dist>\n");
exit (0);

}
/* Parse Input

*/-------------
qlevel = atoi (argv[l]); /
lambda = atof (argv[2]);
dist = atof (argv[3]); /*
theta =0:

'* Quantization Level */
/* Wavelength of signal */
Dist between Antenna Elms */

/* Set phase = 0 and qphase to be next step size to find
max error level */

m = 360.0 / pow(2.0, (float) qlevel);
phase = 0;
qphase = m/2.0; /* Max error oci

/* Step size */

curs midway between step sizes */
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if (DEBUG) fprintf (stderr. "Phase 1: %cf\nPhase2: %f\n", phase. qphase);

qtheta = asin ((qphase*lambda) / (dist*2.0*pi));
if (DEBUG) fprintf (stderr, "Thetal: %f\nTheta2: %f\n", theta. qtheta);

error = R2D((qtheta - theta));
printf ("\nWith %d bits. %f signal wavelength, and %f Element spacing, \n the

MAXIMUM error is: %f degrees \n",qlevel, lambda, dist. error);
I
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/* File: makesignal.c
Generates a discrete signal into a file. Used for testing.

*l

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "beamformer.h"

main (int argc, char *argv[])
{
int i;
float num, x, j, deg, hsl;
FILE *fp;

if(argc != 3) {
fprintf (stderr, " USAGE: makesignal <num> <filename>\n"):
exit (0);

}

num = atof (argv[l]);
fp = fopen(argv[2], "w");
fprintf (fp, "%f ", (foat) num); /* Frequency */
fprintf (fp, "%f ", (pi/num)*0.5); /* X direction */
fprintf (fp, "%f ", (pi/num)*0.2); /* Y direction */

hsl = SIGNAL_LENGTH/5.0;
for (i = 0; i < SIGNAL_LENGTH; i++) {
j = ((float)i)/hsl;
deg = j*j*j;
while (deg > 360.0) deg -= 360.0;
x = sin((float)num*j);
x = x*127.5 + 127.5; /**/
fprintf (fp, "%f %f\n", x, deg);

I
fclose (fp);
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**FILE: quant.c
k* AUTHOR: Sherk Chung
**DATE: 8/19/93
** LOCATION: COMSAT Labs, Clarksburg, MD

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: Quantizes Complex Coefficents of ARRAY Input Files

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX_NORM 1.0 /* Output Normalized from MIM_NORM to MAX_NORM */
#define MIN NORM 0.0
#ifndef NUM
#define NUM 1000
#endif

void main (int argc, char *argv[])
{

int i,j, retval, count, verbose = 0;
int qlevel, amp, phi;
char *infile, *outfile, line[160];
float amps[NUM], phase 1 [NUM], maxamp, minamp, maxout, minout:
FILE *infp, *outfp;

if (argc < 4 11 argc > 5) {
fprintf (stderr, "USAGE: quant <Qlevel> <infile> <outfile>\n");
exit (0);

}
/* Parse Input
-------------*/

qlevel = atoi (argv[ 1]); /* Quantization Level */
infile = argv[2]; /* Input File */
outfile = argv[3]; /* Output File */
if (argc == 5) /* Set VERBOSE to ON */

if (!strcmp(argv[4], "-v")) verbose = 1;

/* Read Input File
*-------------/

infp = fopen (infile, "r");
if (infp == NULL) (

fprintf (stderr, "FILE: %s NOT FOUND\n", infile);
I
outfp = fopen (outfile, "w");
if (outfp == NULL) {
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fprintf (stderr, "FILE: %s CANNOT BE OPENED\n". outfile):

retval = 1;
maxamp = 0.0;
minamp = 1000000.0;

if (verbose) printf ("Reading Input File .");

/* Copy 1st 4 lines (antenna description)
----------------------------------------*/

fputs (fgets (line, 160, infp), outfp);
fputs (fgets (line, 160, infp), outfp);
fputs (fgets (line, 160, infp), outfp);
fputs (fgets (line, 160, infp), outfp); /* This is # of Array Elms */
count = atoi (line);

/* Copy next 'count' lines */
for (i = 0; i < count: i++)

fputs (fgets (line, 160, infp), outfp);

for (i = 0; i < count; i++) {
retval = fscanf (infp, "%f %f', &(amps[i]),

&(phase 1 [i]));
if (retval == EOF)
fprintf (stderr, "Unexpected EOF encountered in %d\n", infile);

if (phase 1 [i] < 0.0) phase 1 [i] += 360.0;
if (verbose) printf (".");

maxout = pow(2.0, (float) qlevel);
minout = 0.0;
maxamp = 1.0;
minamp = 0.0;

if (verbose) 
printf ("DONE.\n\nQuant RANGE: %f ---> %f \n", minout, maxout);
printf ("Amplitude RANGE: %f ---> %f\n", minamp, maxamp);
printf ("\nQuantizing Values .");

for (i = 0; i < count; i++) {
/* Normalize amps and phases to range from 1 to 2^qlevel */
if (minamp == maxamp) {

while (minamp > 1.0) minamp /= 10.0;
maxamp = minamp;

} else {
amp = (int)(((amps[i]-minamp)*(maxout-minout))/(maxamp-minamp)+minout);

}
phl = (int) (((phase [i]-0.0)*(maxout-minout))/(360.0)+minout);

/* Quantize to Integer values, then cast them to float */
amps[i] = (float) amp;
phase 1 [i] = (float) ph 1;
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/* Normalize amps to range from 0.0 to 1.0 */
if (maxamp != minamp) amps[i] = (amps[i] - minout)/(maxout-minout);

/* Normalize phases to range from 0.0 to 360.0 */
phase 1 [i] := (phase 1 [i]-minout)*(360.0))/(maxout-minout);

/* Write output to file */
fprintf (outfp, " %f %f\n", amps[i], phasel[i]); **/

if (verbose) printf ("."):

if (verbose) printf ("DONE.\n\n");
fclose (infp);
fclose (outfp);
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**FILE: rquant.c
** AUTHOR: Sherk Chung
** DATE: 9/7/93
** LOCATION: COMSAT Labs, Clarksburg, MD

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: Quantizes Rectangular Complex Coefficents of ARRAY Input Files

#include <stdio.h>#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX_NORM 1.0 /* Output Normalized from MIM_NORM to MAX_NORM */
#define MIN_NORM 0.0
#ifndef NUM
#define NUM 1000
#endif

#define pi 3.14159265
#define d2r(x) ((x*pi)/180.0)
#define r2d(x) ((x* 180.0)/pi)
#define REAL(m,p) (float) m*cos(d2r(p))
#define IMAG(m,p) (float) ((double)m*sin((double)d2r(p)))
#define MAG(r,i) (float) hypot ((double)r,(double)i)
#define PHASE(r,i) (float) r2d(atan ((double)(i/r)))

void main (int argc, char *argv[])

int i,j, retval, count, verbose = 0;
int qlevel, amp, phl;
char *infile, *outfile, line[160];
float amps[NUM], phase I [NUM], maxamp, minamp, maxout, minout, tmp_amp;
float tmp_phl;
FILE *infp, *outfp;

if (argc < 4 11 argc > 5) 
fprintf (stderr, "USAGE: quant <Qlevel> <infile> <outfile>\n");
exit (0);

}
/* Parse Input

*-------------/
qlevel = atoi (argv[l]); /* Quantization Level */
infile = argv[2]; /* Input File */
outfile = argv[3]; /* Output File */
if (argc == 5) /* Set VERBOSE to ON */

if (!strcmp(argv[4], "-v")) verbose = 1;

/* Read Input File
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infp = fopen (infile. "r");
if (infp == NULL) {

fprintf (stderr, "FILE: %s NOT FOUND\n", infile);
}
outfp = fopen (outfile, "w");
if (outfp == NULL) {

fprintf (stderr, "FILE: %s CANNOT BE OPENED\n", outfile);
I

retval = 1;
maxamp = 0.0;
minamp = 1000000.0;

if (verbose) printf ("Reading Input File .");

/* Copy 1st 4 lines (antenna description)
----------------------------------------*/

fputs (fgets (line, 160, infp), outfp);
fputs (fgets (line, 160. infp), outfp);
fputs (fgets (line, 160, infp), outfp);
fputs (fgets (line, 160, infp), outfp); /* This is # of Array Elms */
count = atoi (line);

/* Copy next 'count' lines */
for (i = 0; i < count; i++)

fputs (fgets (line, 160, infp), outfp);

for (i = 0; i < count; i++) {
retval = fscanf (infp, "%f %f', &(amps[i]),

&(phase 1 [i));
if (phase I [i] < 0.0) phase I [i] += 360.0;
if (retval == EOF)

fprintf (stderr, "Unexpected EOF encountered in %d\n", infile);

/* Convert from Polar to Rectangular Coords */
tmp_amp = REAL(amps[i],phasel [i]);
tmp_phl = IMAG(amps[i],phase l[i]);

/*fprintf (stderr, "%f %f %f %f\n", tmp_amp, tmp_phl, amps[i], phasel[i]); /**/

phase l[i] = tmp_phl;
amps[i] = tmp_amp;
if (verbose) printf (".");

maxout = pow(2.0, (float) qlevel);
minout = 0.0;
minamp = -1.0;
maxamp = 1.0;

if (verbose) 
printf ("DONE.\n\nQuant RANGE: %f ---> %f \n", minout, maxout);
printf ("Amplitude RANGE: %f---> %f\n", maxamp, minamp);
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printf ("\nQuantizing Values .");
I
for (i = 0; i < count; i++) {
/* Normalize amps and phases to range from I to 2^qlevel */
amp = (int)(((amps[i]-minamp)*(maxout-minout))/(maxamp-minamp)+minout);
phi = (int)(((phase I [i]-minamp)*(maxout-minout))/(maxamp-minamp)+minout);

/* Quantize to Integer values, then cast them to float */
amps[i] = (float) amp;
phase l[i] = (float) phi; /**/

/* Normalize real and imag to range from -1.0 to 1.0 */
amps[i] = ((amps[i] - minout)*(maxamp-minamp))/(maxout-minout)+minamp;
phase 1 [i] = ((phase 1 [i] - minout)*(maxamp-minamp))/(maxout-minout)+minamp;

/*fprintf (stderr, "%d %d %f %f\n", amp, phi, amps[i], phasel[i]);/**/

/* Convert back to Polar Coords */
tmp_amp = MAG(amps[i],phase I [i]);
if (tmp_amp == 0.0) {

if (phase 1 [i] == 0.0) phase I [i] = 0.0;
else if (phase I [i] > 0) phase I [i] = 90.0;
else if (phase I [i] < 0) phase I [i] = 270.0;

} else phase 1 [i] = PHASE(tmp_amp,phase [i]);
amps[i] = tmp_amp;

/* Write output to file */
fprintf (outfp, " %f %f\n", amps[i], phasel[i]); /**/

if (verbose) printf (".");

if (verbose) printf ("DONE.\n\n");
fclose (infp);
fclose (outfp);

}
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** FILE: snr.c
** AUTHOR: Sherk Chung
** DATE: 8/19/93
** LOCATION: COMSAT Labs, Clarksburg, MD
**

** LAST MODIFIED:
** MODIFICATIONS:

** COMMENTS: Finds SNR of a quantizer for a certain number of bits

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void main (int argc, char *argv[])

int bits;
float B, snr, msa, mqa, Xm, VARx;

if (argc < 2 11 argc > 4) {
fprintf (stderr, "USAGE: snr <bits> [<max sig ampl> <max quant ampl>]\n");
exit (0);

}
/* Parse Input

bits = atoi (argv[l]); /* Quantization bits */
if (argc > 2) {
msa = atof (argv[2]); /* Max Signal Ampl. */

) else {
msa = 1.0; /* Default msa

if (argc > 3) {
mqa = atof (argv[3]); /* Max Quantizer Ampl. */

} else {
mqa = 1.0; /* Default mqa */

B = (float) bits - 1.0;
VARx = msalsqrt(2.0);
Xm = mqa;

snr = 6.02*B+10.8 - 20*log(Xm/VARx);
printf ("%f\n", snr);

I
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