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Abstract
The standard LQR design technique is extended to systems with parametric uncer-

tainty in the open-loop "A" matrix. This design, called the robust LQR (RLQR), guar-
antees the stability of the uncertain system, and the same level of performance robustness
as standard LQR designs.

To determine the properties of the RLQR design, simulations are performed on various
mass-spring systems, and compared to a mismatched LQR controller, designed on the
"nominal" system. These simulations show the RLQR design first reduces the length
of the uncertain springs to their equilibrium value, so as to mitigate their effect on the
dynamics of the system, and then regulates the system to the zero position. Additional
control variables increase the performance robustness of the design. Simulations also
show that disturbances are attenuated, even better than in the mismatched LQR design.

The RLQR design differs from the standard LQR design in that two additional terms
are added to the standard LQR cost functional. The first is interpreted as a weighted
sum of the uncertain stored potential energies of the springs. The second is equivalent
to a "worst-case" disturbance in the direction of the parametric uncertainty. We then
show these interpretations hold in general structural systems with uncertain stiffness and
damping matrices.

We show that we are guaranteed better performance robustness than the mismatched
LQR design. The price we pay is less robustness to high-frequency unstructured uncer-
tainty. Also, we show that the design is conservative with respect to stability robustness.

Thesis Supervisor: Michael Athans, Professor of Electrical Engineering
Thesis Co-supervisor: Andreas von Flotow, Associate Professor of Aeronautics and As-
tronautics
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Chapter 1

Introduction

In this chapter, we will define structured uncertainty, and motivate the need for

controlling systems with such uncertainty. A brief summary of some of the previous

work in this area will be presented, and then we will state what this thesis adds to the

field.

1. 1 Motivation

Systems to be controlled have some inherent uncertainty in their models. This typi-

cally arises from modeling errors or the inability to precisely quantify certain parameters.

This uncertainty comes in two basic flavors: unstructured and structured uncertainty.

The former is typically the high frequency uncertainty which we account for by rolling

off the compensator. Structured uncertainty includes parametric uncertainty, and is to

be the type of uncertainty considered in this thesis.

A typical example of a system with both types of uncertainty is a large space structure.

We know that the system is open-loop stable; that is if we don't apply any controls

the structure should not fail apart. But in order to achieve our performance goals we

typically have to control the system very accurately. A typical large space structure is

a very flexible system, and thus is hard to model and control. Certain parameters, such
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as damping and stiffness coefficients, may only be known within a given range. Also,

precise knowledge of high frequency dynamics is not available. Methods of controlling

such a system need to be developed.

This thesis will consider a first step in understanding how to control systems with

structured parametric uncertainty. An extension of the standard linear quadratic reg-

ulator (LQR) design will be proposed for systems with certain types of parametric un-

certainty. This design will guarantee the stability of the closed-loop system, and also

provide some additional robustness guarantees. This can only be considered a first step

in the evolution of a robust design methodology because perfect knowledge of all states

must be assumed.

A major portion of this work will be devoted to understanding how such a robust

controller achieves its goal, using a combination of analysis and simulations. Though,

as shown in section 1.2, there have been a number of control designs for systems with

structured uncertainty proposed, an understanding of the basic nature of these robust

controllers is still lacking. By examining how the energy changes in an uncertain system

with a robust controller, a better understanding of how to design for parametric uncer-

tainty will be obtained. Thus, several simulations will be carried out so that the changes

in energy can be observed.

1.2 Background

Many tools exist for the analysis of systems with parameter uncertainty. Probably the

most basic is Kharitonov's Theorem [3]. Given a polynomial where all of the coefficients

can vary independently in prescribed ranges, the stability of the polynomial can be

deduced from the stability of only four polynomials. These four polynomials correspond

to those in the unknown set with the maximum or minimum imaginary parts, and the

maximum or minimum real parts. An elementary proof is shown in [21].

This theorem, though quite restrictive, initiated much research into the analysis of
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systems with structured uncertainty. Most notable is the work of Barmish [2, 3], who

extended the results of Kharitonov to include dependent variations in coefficients, and

Petersen [26, 27] who extended the results to include more general stability regions than

the left half plane, and also extended the theorem to include more general families of

polynomials. Dasgupta [11] extended the results for systems under nonlinear passive

feedback. Chappellat and Bhattacharyya [10] also extended Kharitonov's results to "in-

terval plants". Another major contribution was the work of Bartlett, Hollot, and Lin [5],

who proved the following "Edge Theorem": the stability of a polytope of polynomials

can be determined by checking the exposed edges of that polytope.

Many other techniques exist for the analysis of uncertain systems. To determine the

closed-loop poles of an uncertain system, Barmish created the "Robust Root Locus" [4],

which is a technique for generating the root loci of a feedback system with perturbations.

Mansour [20] examined the stability of interval matrices, which is a more difficult problem

than the stability of interval polynomials.

While all of this work is very important, it has the drawback that it can be used only

for the analysis of uncertain systems. Designing controllers for systems with structured

uncertainty is a much more difficult task.

Some simple schemes for designing controllers for uncertain systems have been pro-

posed. Hollot and Yang [18] presented necessary and sufficient conditions for a lead or

lag compensator to robustly stabilize a family of interval plants. Wei and Barmish [32]

presented a simple recipe to determine feedback gains to make a polynomial Hurwitz

invariant.

Many of the approaches involve finding gains which will "simultaneously stabilize"

a family of polynomials. For an example, see [17], in which the problem of stabilizing

a plant with an interval denominator and right half plane zeros is reduced to finding

a compensator which simultaneously stabilizes four plants. This is one example of an

application of Kharitonov's Theorem.

Another algorithm for stabilizing controllers with structural uncertainties was pro-
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posed by Wei [31]. This algorithm allows for time-varying uncertainties. A stabilizing

method is proposed, and necessary and sufficient conditions are given for when a system

can be quadratically stabilized.

One of the major contributions in the area of design for uncertain systems is the

work by Petersen, [23, 24, 25], who has used Lyapunov methods to design a stabilizing

controller for an uncertain system by solving a single Riccati-like equation. It relies on

a method called the "Petersen-Hollot bound" [28], which is a method of overbounding

a set of Lyapunov equations. The Petersen-Hollot bound approach has been followed in

many other works, this research included.

Other work using the overbounding approach is Bernstein's "Optimal Projection for

Uncertain Systems." In a series of papers, Bernstein uses an overbounding procedure to

extend the standard LQG theory to design a controller of a fixed (i.e. reduced) order,

and robust to parameter uncertainty. The result is a single design methodology which

requires the solution of two Riccati equations and two Lyapunov equations which are

coupled. Some of Bernstein's relevant works are [8], [7], [13], [14], [15], and [16]; see

[9] for an overview of the philosophy behind the work. Also see [6] for a comparison

between deterministic and stochastic methods for determining a robust controller, and

their application to Petersen-Hollot bounds. Our work will involve taking a small subset

of these optimal projection equations (i.e. full order controllers with full-state feedback),

and examining them in close detail to determine their properties, and the underlying

fundamentals behind this method of robust control for parametric uncertainty.

Although we can see from this small sampling that much work has been done in the

design of controlers for systems with parametric uncertainty, much more work needs to

be done before we can really understand how to design such a robust controller.
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1.3 Contributions of Thesis

This thesis will present a robust linear quadratic regulator, or RLQR, which is robust

to parametric uncertainty. The design relies on overbounding a set of equations, in

the same manner as Petersen [28]. In fact, as stated earlier, we use the overbounding

method proposed by Petersen called the Petersen-Hollot bounds in order to guarantee

performance-robustness of the uncertain system. The resulting controller is determined

by the solution of a Riccati-like equation, which has appeared in the literature.

Thus, the primary contribution of this thesis is not the novelty of the design equations.

Rather, it is the new perspective from which they are derived, as a direct extension of LQR

to a controller with certain guaranteed robustness for all parameter variations. Even more

importantly, this thesis tries to expose what are the underlying fundamentals necessary

to robustify a system to this type of uncertainty, including how a system compensates

for uncertain parameters, and the impact of additional control variables on performance

robustness. Several simulations are presented, which show certain intriguing (and initially

unexpected) properties of the design procedure. Then several novel interpretations are

made using energy and power uncertainty arguments, which help explain what physical

properties of the controller make it robust. This "uncertain energy" interpretation is

shown to hold for more general structural systems, with uncertain stiffness and damping

matrices.

The hope is that our results will provide a deeper understanding of the necessary

ingredients of a robust design. This will guide us in our future work in "robustifying"

more general controllers not considered in this thesis, such as controllers which do not

rely on full-state feedback.

1.4 Outline

The technical details of designing the robust LQR (RLQR) method is presented in

Chapter 2. First, we will review the standard classical LQR results, which is the optimal
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design on a system without uncertainty. Then we will extend the LQR equations to

account for parametric uncertainty.

To observe the behavior of the RLQR controller, several simulations are presented

in Chapter 3. We will start with a simple "benchmark" problem involving two masses

connected by an uncertain spring, and then examine some more complicated mass-spring

systems to compare the RLQR design to a design where we choose feedback gains based

on an LQR design of the "nominal" system.

Chapter 4 will provide an analytical framework for examining these RLQR properties.

It is in this chapter where we provide the interesting energy related interpretations of the

robust design properties and structure of the equations. The energy interpretations are

extended for general structural systems, with uncertain stiffness and damping matrices.

Finally, Chapter 5 will summarize our main conclusions, and show the directions for

future research.
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Chapter 2

Extension of LQR

In this chapter, we will extend the standard LQR methodology to account for para-

metric uncertainty. First we will state the LQR results, and show that they do not

guarantee stability in the case of parametric uncertainty. Then we will derive a new ver-

sion of LQR which is robust to this uncertainty, provided that a solution to a Riccati-like

equation exists.

2.1 Uncertain System

We assume we have an uncertain linear system of the form

+(t) = A(t) + Bu(t) (2.1)

We will study the case when there are uncertain, but constant, parameters. We will

further assume that all the uncertainty is in the "A" matrix. This is typical of large space

structures, where stiffness and damping coefficients which appear in the "A" matrix are

not known well, but values such as masses, which also influence the "B" matrix, are

known with a greater degree of accuracy.
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We model the uncertain A matrix in the form

p

A=Ao + qiEi lqil 1 (2.2)
i-=1

Ei = linT (2.3)

where Ao represents the "nominal" system, and each uncrtain constant parameter is

known to be in a bounded interval; we assume we have p uncertain parameters. The El

matrices represent the structure of the uncertainty, and are scaled so that the magnitudes

of the scalars qi are less than 1. We further assume that the rank of each Ei is equal to

1. The implications of this assumption will be discussed in section 4.5.2.

We assume we have exact measurement of all states for the purpose of feedback.

Though this may not be realistic in real structures, understanding the underlying fun-

damentals in this framework will help direct us when we assume knowledge of only the

output variables.

2.2 Mismatched LQR

2.2.1 Optimal Regulator

The Linear Quadratic Regulator (LQR) is the optimal regulator for systems without

uncertainty. It is optimal in that it minimizes the cost functional given by

J = ((t)Qx(t) + puT(t)u(t))dt (2.4)

where Q = QT O0 is the state-weighting matrix, and p > 0 is the scalar control weighting.

We now summarize the LQR results. For more detailed explanations, see [19].
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Let us assume we have a system of the form

x(t) = Aox(t) + Bu(t) (2.5)

Let us further assume that [Ao, B] is stabilizable and [Ao, N] is detectable, where Q =

NTN for some matrix N (N exists since Q > 0). Notice that both these assumptions

hold in a structural system, which is inherently open-loop stable.

Given these assumptions, then the "optimal" controller is given by

u(t)= -Gx(t) (2.6)

where

G = BTP (2.7)

and P = pT> O is computed from the standard algebraic Riccati equation

-PAo-ATP - Q + -PBB TP = 0 (2.8)
P

Here, G is the feedback gain matrix. The loop transfer function can be shaped by the

choice of Q and p. For a discussion of loop shaping via these parameters, see [1].

2.2.2 Applying LQR to Uncertain Systems

Classical QR designs have some inherent robustness properties. Specifically, we are

guaranteed an infinite upwards gain margin, a downwards gain margin of .5, and a phase

margin of ±60 in each control channel independently and simulateously [29]. Thus, it

may be tempting to conjecture (as we did) that the linear quadratic regulator is somehow

robust to parametric uncertainty. However, this is not so. We have shown that "blindly"

designing an LQR controller on some nominal system does not guarantee the stability of

the actual system, even if the actual system is guaranteed to be open-loop stable. An

example of this is shown in Appendix A.
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We would like to adapt LQR so that we have robustness to parametric uncertainty.

Additionally, we would like to retain the robustness properties inherent in the LQR de-

signs, so that we will have limited robustness to unstructured uncertainty. The derivation

of this "robust LQR" is given in the next section.

2.3 Robust LQR (RLQR)

2.3.1 Frequency Domain Equality

We want to derive a multi-input multi-output (MIMO) LQR controller which is robust

to parametric uncertainty. One way to do this would be to look at Nyquist plots of the

uncertain system, and see if we can "bound" the uncertainty in the complex plane. It

turns out that this is a difficult thing to do. What is possible, however, is to get an

expression for the return difference function, which is the key to the Nyquist plot, in

terms of the LQR design parameters. This will help guide us in "robustifying" the LQR

design.

The remainder of this section is a derivation of such a frequency domain equation,

valid for MIMO designs. In the next section, we will show how this expression will lead

us to a robust controller. Then, in section 2.3.3, the robust controller will be derived

from the frequency domain equality.

We begin the derivation by repeating the LQR Riccati equation (2.8):

-PAo-ATP-Q + -PBB TP = 0 (2.9)
P

We notice here that we are designing a controller for the nominal system matrix A0. To

account for the uncertainty, we will add and subtract PA + ATP, where A is the unknown

(but constant) matrix. We also add and subtract sIP (where s is the frequency domain

16



variable) and rearrange to get

P A+ +( AT1P(sI - A) - (sI + AP + P(A - Ao) + (AT- AP - Q + 1pBBaP = 0
P

(2.10)

We now postmultiply both sides of the equation by (sI- A)-lB:

PB - (sI + AT)P(sI - A)-1B + P(A - Ao)(sI- A)-'B

+ (AT - AoP(sI - A)-B - Q(sI - A)-B + -PBBTP(sI - A)-B = O0
P

(2.11)

Similarly, we premultiply by BT(-sI- AT)-':

BT(-sI - A)-PB + BTP(sI - A)-B + BT(-sI - AT)-(A - Ao)(sI - A)-B

+BT(-sI - A)-'(AT - AOP(sI - A)-B - BT(-sI - A )-Q(sI

(2.12)+ BT(-sI - A)-1 PBBTP(sI - A)-B = 0
P

For more compact notation, we make the following definitions:

(s = I-A)-

G BTP
p

pG = BTP,

(2.13)

(2.14)GTp = PB

and thus our equation becomes:

BT$T(-s)GTp + pGI(s)B + BT$T(-s)[P(A - Ao) + (AT - A)P

+ BTaT(-s)GTpG4(s)B = 0

We rearrange terms to get:

17

- Q]§(s)B

(2.15)

-A)-1B
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pI + BTtT(-s)GTp + pG4(s)B + BT1T(-s)GTpG1(a)B

pI + BT1T(-s)[P(Ao - A) + (AT - AT)P + Q]¢I(s)B (2.16)

or equivalently:

[I+G(-s)B]ITI+G4(s)B] = I+ BTtT(-s)[P(Ao-A)+(AoT-A)P+ Q]t(s)B (2.17)
P

This is called the Robust FDE (RFDE), and is the main result of this section. Since G

is the set of feedback gains in LQR, this is a frequency domain relation for the actual

return difference transfer function matrix I + G$(s)B. This is significant because it gives

insight into how the Nyquist plot varies in the complex plane for different values of the

A matrix.

2.3.2 Method of Robustness

From the RFDE (2.17), it is clear that if

P(Ao - A) + (A T - AT)P + Q > 0 (2.18)

then we know that

P(Ao - A) + (A'- AZ)P + Q = FTF (2.19)

for some matrix F. Then it is clear, if we define GLQR = GI(s)B, that

i[I + GLQR(s)] = /1 + i[F(s)B] (2.20)

where (s) = -(I - A)-' as before.

This will guarantee the same robustness as LQR designs on certain systems described

earlier in terms of MIMO gain and phase margins. In the complex plane for SISO

systems, the expression states that the Nyquist plot of the uncertain system remains

18



outside the unit disc centered at the critical point. Thus, we will acquire a certain level

of robustness to unstructured uncertainty as well as stability and performance robustness

to the parametric uncertainty.

2.3.3 RLQR Riccati Equation

Having given the motivation and philosphy behind the robust controller, we will now

derive a Riccati Equation which guarantees (2.18). We will use a method known as the

Petersen-Hollot bounds [28]. The resulting controller will be called the "Robust LQR",

or "RLQR" design.

We start by substituting the standard Riccati equation for the nominal system into

equation (2.18). We want to find a value for Q which guarantees the bound, now given

by:

- PA - ATP + -PBBTP > O (2.21)
P

We substitute in the actual value of the A matrix (c.f. equations (2.2), (2.3)):

p

A=Ao + qiEi (2.22)
i=l

to get
P P 1

- PAo- ATP - qiPEi- qiE,P + -PBBTP > (2.23)
i=1 i=1 P

We know that the inequality (2.23) is true if and only if

1 p p
TT(-PAo - AP + PBBTP) - qixTPEiz - L qixTE'fPx > 0 Va E " (2.24)

P i=l i=l1

Because IqiI < 1, we know we can guarantee the inequality (2.24) if

1 P

:T(-PAo - AP + -PBBTP)x-2 IxTPEi~l>O Vz E x (2.25)
P i=l

19



Since we assumed that the matrix Ei is rank 1, we can substitute

Ei = lnT

to obtain

T(-PAo - ATP + -PBBTP) - 2 ITPInT > 0
P i=l

This is guaranteed to be true if

P 1 P xT(-PAo - ATP + !PBBTP)z - -TPirTPX
P i=1 Y

-_ zJyniTnTx > 0
i=1

¥V E Rn (2.28)

where we have used the well known inequality 21abi < 7a2 + b 2, with 

positive constant.

Let us make the following definitions:

an arbitrary

(2.29)

Hence our inequality now becomes

XT(-PAo - ATP + 1 PBBTP)x - -TPLLTP - 7zTNNTz > 0
p 7

(2.30)

This is guaranteed to be satisfied if

xT(-PAo - ATP + 1-PBBTP - Qo - PLLTP - 7NNT)x = 0
P 7

(2.31)

where Qo is some desired state weighting matrix, i.e. the state weighting matrix we would

use on the nominal system if there were no uncertainty. An equivalent statement is

PAo + AoTP + (Qo + 7NN) - P(-BBT- 1-LL)P = 0
P 7

(2.32)

20
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Thus to design a controller to guarantee stability and robustness, we need to find

the solution P to this modified Riccati equation (2.32). Similar Riccati equations have

appeared in the literature; for example, see [23]. This reference discusses sufficient con-

ditions for this type of Riccati equation to have a solution.

2.4 Summary

In this chapter, we have derived a controller which is robust to parametric uncertainty.

To summarize the methodology, assume the system is of the form

:(t) = Ax(t) + Bu(t) (2.33)

A = Ao + qE qil < (2.34)
i-=1

Ei = linT (2.35)

L = [11 12 13 ...]; N = [nl n2 n...] (2.36)

The full state controller is defined by

u(t) = -Gx(t) G= 1BTP (2.37)
P

where G is the constant control matrix and P = p > 0 is computed from the modified

algebraic Riccati equation

PAo + ATP + (Qo + 7 NN) - P( 1BB T - LL)P = 0 (2.38)
P 7

Here y is an arbitrary constant. In section 4.3, we will show that not only does 7 help

control the bandwidth of the system, but it also plays the role of a trade-off parameter

between the two terms 7NNT and 1-LLT, which add robustness to the system.

If such a solution P exists, then in addition to guaranteed stability, we are also provid-
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ing a certain level of robustness to unstructured uncertainty in terms of gain margins and

phase margins. Also, in view of (2.20), we should expect a certain degree of performance

robustness.

We now wish to determine some of the properties of the RLQR controller. Instead

of jumping into a mathematical derivation, the next chapter will motivate its proper-

ties through the use of simulations. Then the properties are explored in an analytical

framework in Chapter 4.
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Chapter 3

Simulations

In this chapter, we will examine the behavior of the RLQR controller through the

use of simulations. We will compare the RLQR controller to a standard LQR design.

Interesting behavior of the controller in a simple "benchmark problem" is shown, and

then shown to hold true in other systems.

In the simulations, plots will contain either the output variable for various values of

the uncertain parameter(s), or typical transients of all state variables for a particular

choice of uncertain parameters. The former is shown when we wish to see how the

controllers act under different dynamic conditions, and the latter is shown when we wish

to see the details of how the closed-loop design performs.

3.1 Benchmark Problem

3.1.1 Original System

Our initial simulations will be performed on the benchmark problem proposed by Wei

and Bernstein [30], shown in figure 3-1. Here, two unit masses are coupled by a spring

with uncertain stiffness k E [.5,2]. We wish to control the position y(t) of the second

mass by exerting a control force u(t) on the first mass.

This system is representative of dynamical systems with uncertain modal frequencies,
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Figure 3-1: The Structure of the Benchmark problem, [30]

and thus is a good starting point for examining the behavior of our controller. Though

the system is a simple one, interesting interpretations of the behavior of the system

will allow us to understand the behavior of the RLQR controller on more complicated

systems.

The system can be written as = Ax + Bu, with the values

X1

X23

X4

0 010
0 0 0 1

-k k 0 0

k -k 0 0

0

0

1

0

(3.1)

where xl and x2 are the positions shown in figure 3-1, and x3 and X4 are their respective

derivatives (velocities). The open loop poles of this system are

Ai 0 ,O jk (3.2)

From a physical viewpoint, the potential energy stored in the spring is jk(xl - z2) 2.

Hence, the uncertainty in the spring stiffness implies uncertainty in the stored potential

energy. Since both masses are known, there is no uncertainty in the kinetic energy.

As a basis for comparison, we designed a standard LQR control for the nominal

system, characterized by the midpoint value = 1.25, and applied the control to the
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system with different values of the spring constant. The nominal design parameters were

p=.01 Qo 

0 0 0
0 1 0 0
0 0 0 0
0000

(3.3)

This choice of Qo implies that our main performance objective is the output transient

y(t) = 2(t). The resulting control gain and closed loop poles are shown in Appendix

B.1.

The output transients are shown in figure 3-2. The plot where k = 1.25 is the

nominal system for which we designed the control and computed the LQR gain, whereas

the control is mismatched in the other plots.

Note from figure 3-2 that the transient response can vary widely depending on the

actual value of the spring. The "differences" in the shape of the transient responses are

an indication of the "performance unrobustness" in this numerical example and are the

consequences of the wide variation of potential energy among the mismatched designs.

In this example, the system always remains stable, although this is not guaranteed in

mismatched classical LQR designs, as was shown in Appendix A.

To apply the RLQR controller, we wrote the uncertain A matrix as (c.f. eq. (2.2))

0 0 1 0

0 0 0 1

-1.25 1.25 0 0

1.25 -1.25 0 0

0 0 0 0

0 0 0 0

-. 75 .75 0 0

.75 -. 75 0 0

where IqI < 1 is unknown. Note that if q = 1 we achieve the maximum value k = 2, and
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if q = -1 we achieve the minimum value k = .5. So, in this example, (c.f. eq. (2.3))

O 0 0 0

0 0 0 0

-. 75 .75 0 0

.75 -. 75 0 0

0

0

.866

-. 866

[-.866 .866 0 0] (3.5)

so that
0 -. 866

0 .866
L = N = (3.6)

.866 0

-. 866 0

We solved equation (2.32) with y = I and with previous values for p and Qo. The

control gains and closed loop poles are listed in Appendix B.1.

The RLQR controller yields the transients shown in figure 3-3. In this instance, the

output transient y(t) looks very similar for all values of the spring constant. Compar-

ing figures 3-2 and 3-3, it is apparent that we achieved a certain level of performance

robustness with the RLQR design, as compared to the nominal one.

Additionally, there are some other interesting properties of these simulations. We

noted that in this system the uncertainty is contained solely in the potential energy of

the spring. The RLQR control responded, in all cases, so as to first move the two masses

so that the spring was at its equilibrium length, ( 1 - X2) - 0, (in which case there

is small uncertainty in the stored potential energy), and next the RLQR control moves

the two masses together slowly back to the desired equilibrium position. This behavior

was quite different than that of the classical LQR mismatched designs when the system

moved the masses towards their zero position and then reduced the spring length to

equibrium. Thus the RLQR design acted as if it "knew" that the uncertainty was in

the spring constant, and it worked to keep the uncertainty in the spring potential energy

from adversely affecting the dynamics of the motion. This was accomplished by the two
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ness.
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Figure 3-4: The Benchmark Problem with an Additional Control Force

additional terms 7 NNT and PLLTP in the modified Riccati Equation (2.32).

This, and other simulations, suggested to us that the RLQR design may have inter-

esting interpretations from a physical viewpoint, beyond the initial mathematical devel-

opment which attempted to preserve the robustness properties of standard LQR designs.

3.1.2 The Impact of Additional Control Variables

Since the physical interpretations of the RLQR control was to move ml and m to

force the uncertain spring to its equilibrium length, it is natural to inquire whether adding

another control acting on mass m2 would further improve the performance robustness

since we now have two forces acting on both sides of the spring. See figure 3-4

Using the same values for the design parameters as in section 3.1.1, we simulated

both a mismatched LQR design, as shown in figure 3-5, and an RLQR design, shown in

figure 3-6. The control gains and closed loop poles are shown in Appendix B.2.

It is clear that the additional control is greatly improving the performance of the

system. The settling ime is significantly decreased. In the mismatched LQR design,

the transients still vary with different values of the spring constant, but not by nearly as

much as before. In the RLQR design, the transients are all very similar, even for the case

when the spring constant attains its lowest value k = .5. Thus we see we have improved

transients in both designs.

In the mismatched design, the controller uses the extra available control to reduce
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the value of the cost defined by the cost functional. This includes moving the position

of the second mass back to equilibrium quicker. The position of the first mass is not

directly included in the cost, and thus the controller does not care directly where mass

ml is, other than in the way it will affect mass m2.

In the robust design, the extra control lets us get to the zero potential energy state in

less time. Thus, for the RLQR design, we are minimizing the effects of uncertain dynamics

of the system much quicker. This implies moving the masses so that the spring is at its

equilibrium length, thereby eliminating uncertainty in the stored potential energy. Since

the controller can now directly influence both ends of the spring, it is easier for it to set

the length of the spring to the equilibrium value. Thus we are increasing the performance

of the robust design by allowing it to take the uncertainty out of the dynamics in a shorter

time period.

We can therefore conclude that the additional control greatly increases our perfor-

mance. This is not surprising since additional controls give us more degrees of freedom

in dealing with the uncertainty.

3.2 Control at the Output

Let us now consider the case when the control directly influences the output, as shown

in figure 3-7. The control directly affects the position we wish to control, yet there are

uncertain dynamics affecting that position.

The system in this setup can be written as +i(t) = Ax(t) + Bu(t), with

x(t) =

Xli(t)

x2 (t)

x3(t)

Z4(t)

0 01 0
0 0 0 1

-k k 0 0

k -k 0 0

0

O

O

1

(3.7)

Note that the A matrix is the same as in section 3.1.1, and so we have chosen the same

32

A 

_ _ _ _

B=



U

~t1· 2x2=Y

.54k 2

Figure 3-7: System with Control at Output

design parameters as before. The difference is in the B matrix. The resulting gains and

closed loop poles are shown in Appendix B.3.

Typical transients are shown in figures 3-8 and 3-9. The potential energy (PE) of the

spring is also plotted so that we can directly determine the difference between the two

designs. We wish to determine if the controllers will reduce the length of the uncertain

spring to equilibrium, and since the controllers directly affect the position of mass m2,

we have chosen the initial condition to be z1 (O) = 1. This choice of initial conditions will

cause the differences in potential energy between the two designs to be more apparent.

Once again it is clear that the RLQR design handles the uncertain potential energy

better than the mismatched design. However, it is also clear the penalty which we pay.

The displacement of the output mass is significantly higher in the RLQR design than

in the mismatched design. The larger transients are a result of the controller's desire to

mitigate the impact of uncertain energy. Thus, mass m2s must be displaced so the spring

is at equilbrium.

3.3 A Two Spring Example

We would like to determine if the energy-based intepretation of the RLQR results

will still hold true for more complex systems with more than one uncertain spring. For

example, consider the system in figure 3-10, consisting of three unit masses connected
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Figure 3-10: Two Spring Example

by two uncertain springs, kl, k2 E [.5, 2]. We wish to regulate the position y of mass ms,

using the two controls acting on ml and m 2.

We can write our uncertain system as = Ax + Bu, with

XI

X2

X3

X4

X5

X6

0

0

0

-kl

k

0

0

0

0

kl

m]C -

k2

0

0

0

0

k2

- k2

100
010
001
000
000
000

0 0

0 0
0 0

1 0

0 1

0 0

(3.8)

with xl 2, and 3 the positions of the masses, and X4 zr, and zs their respective deriva-
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tives. Thus, we can write the uncertain A matrix as

0

0

0

-1.25

1.25

0

0

0

0

0

.866

-. 866

0

0

0

1.25

-2.5

1.25

0

0

0

0

1.25

-1.25

100
010
001
000
000
000

0

0

0

.866

-.866

0

[0 -. 866 .866 0 0 0]

[-.866 .866 0 0 0 0]

(3.9)

where ql determines the

L and N matrices are

value of kl, and q2 determines the value of k2. Thus, we see our

0

0

0

.866

-. 866

0

0

0

0

0

.866

-. 866O
-..866

-. 866

.866

0

0

0

0

0

-. 866

.866

0

0

0

(3.10)
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For purposes of design, we will pick

= 1 p=.01 Qo =

000000
000000
001000
000000
000000
000000

The selection of Qo implies the nominal goal of regulating the position zs of mass ms.

The resulting control gains and closed loop poles are shown in Appendix B.4.

Typical output transients are shown in figure 3-11, where the left column shows the

RLQR design for different values of the two spring constants, and the right column

shows the corresponding mismatched LQR design for kl = k2 = 1.25. The first plot is

the "nominal" system output. Thus, the LQR design is optimal in this plot with respect

to the standard cost functional.

We once again see that the transient varies significantly as the values of the spring

constants change in the mismatched LQR design. Conversely, the RLQR design produces

similar transients for all values of the spring stiffnesses. Additionally, the RLQR design

still has the same property of seeming to "know" that the uncertainty lies in the potential

energy of the springs, and works to keep the springs at equilibrium length. It appears as

though the energy interpretation is still valid.

So that the reader can examine the transients of all the state variables, typical tran-

sients are shown for the mismatched LQR design (figure 3-12) and the RLQR design

(figure 3-13).
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Figure 3-11: Output Response for Two Spring Example. The left column contains RLQR
output responses, while the right column denotes mismatched LQR transients (designed
with kl = k = 1.25). The performance robustness of RLQR designs is self-evident.
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3.4 Partially Known System

If the energy interpretation is valid, the RLQR control should only worry about

minimizing the length of uncertain springs. Suppose we let the spring k2 be known in

figure 3-10. We would like to observe how the controllers will behave in this "partially

known" system.

We designed both controllers with k2 = 1.25, while as before, k E [.5,2]. So our A

matrix becomes

0 0 0 1 0 0

0 0 0 010

0 0 0 001

-kl kl 0 0 0 0

kl -k 1l-1.25 1.25 0 0 0

0 1.25 -1.25 0 0 0

0 0 0 1 0 0

0 0 0 01 0

0 0 0 001

-1.25 1.25 0 0 0 0

1.25 -2.5 1.25 0 0 0

0 1.25 -1.25 0 0 0

0

0

0

.866

-. 866

0

[-.866 .866 0 0 0 0]

(3.12)
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so in this case

and we once again choose

-= p = .01 Qo =

000000
001000
000000
000000
000000
0 0 0 0 0 0

The resulting control gains and closed loop poles are shown in Appendix B.5.

Typical transients for this system are shown in figures 3-14 and 3-15 for kl = .5. Note

that since the LQR design was mismatched, the resulting transients contain significant

ocsillations. However, the RLQR design once again successfully regulates the output for

all values of kl .

Comparing the transients in figure 3-15 with the previous example in figure 3-13,

we see that the RLQR control indeed only reduces the length of the unknown spring.

Once again, because of the additional terms in the modified Riccati equation (2.32), the

controller "knows" where the uncertainty lies, and mitigates the effect of the uncertain

dynamics from the response of the system.

43

0

0

0

.866

-. 866

0

-. 866

.866

0

0

0

0

(3.13)

(3.14)

L N=



0 . 0_.

K 0.2

0 -0.2

0 5 10 15 20 !1 5 10 15 2

Tim

I

0.5

0

-035

-1

'rm
5 10 15 :

Time

5 10 15 20

Time

I

0

-1

-2

0 5 10 15 20 0 5 10 15 20

mune Trun

Figure 3-14: Typical Transients of Mismatched LQR Design for Partially Known System,
with kl = .5.

44

)

1

0.5

0o

(J

0.2

a 0

-0.2 WY--

-

un. - y [iA l [ ,[. [ . [ .[[ [

. . *!

. . . .

Ia, I --r

AI Al

0.4 02

4. _-zI I I [ I .iA
A AI

I

-·-
.

I

-1 - - I - -.
Am-

A ·

MA

�iii�-_



0.6

OA

0.2

0

-0.2
0 5 10 IS 15 2

Tim

n A_ 

1

0O

-0.5

-O
5 10 15 20

Tim

0.6

O.4

0.2

0

0 5 10 15 2:

I 0.5!r

0

O

0.5

0 -OJ

0.5 

0 1

-1

0 5 10 15 20 0 5 10 15 20

Time ms

Time Trnr

Figure 3-15:
hk = .5

Typical Transients of RLQR Design for Partially Known System, with

45

K

U

IJ_ H . ;

*- w . -

- 1~1111

I I ! m

.u.z I . . I

L

-

0

O



x .1 M2k
.54k4 2

Figure 3-16: The Benchmark Problem with Disturbance at Input

3.5 Disturbances

From the preceding transient simulations, in response to initial conditions, it is obvi-

ous that we have gained a certain level of performance robustness in the RLQR design.

However, engineering is a set of tradeoffs, and we must ask what they are.

Two obvious candidates are the ability to reject disturbances, and stability-robustness

to unstructured uncertainty (e.g. unmodelled dynamics). Given the performance robust-

ness of RLQR in the initial state transients, we should suspect performance robustness in

disturbance rejection. This is also to be suspected due to the higher gains associated with

the RLQR designs, noted in Appendix B. In this section, we discuss some simulations

carried out to test disturbance rejection. We defer discusion of unstructured uncertainty

to Chapter 4, when we talk about various properties of the RLQR design.

We now consider a version of the benchmark problem shown in figure 3-16. In addition

to our control u, we also have a disturbance d force acting on ml. Since the uncertain

system is the same as in section 3.1.1, we have chosen the same design parameters for

both the mismatched LQR design, and the RLQR design. The simulations begin with

the system at rest. The control must try to attenuate the disturbance.

As a first disturbance, let us consider simulated white noise. The output transients for

the mismatched LQR design are shown in figure 3-17, and for the RLQR design in figure

3-18. We can see that both systems successfully attenuate the disturbance for all values

of the spring stiffness. But we see the RLQR design is superior than the mismatched
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design, even for the spring stiffness for which the LQR was designed.

Let us try another disturbance which is not broadband. We will apply a pulse function

with a period of approximately 9 seconds. This will provide us with a fundamental

frequency of .7 rad/sec, which is below the first mode of the mass-spring system, but will

have harmonics in the frequency of the first mode. Output transients are shown in figure

3-19 for the mismatched LQR and in figure 3-20 for the RLQR. The RLQR disturbance

rejection performance is two to three times better than that of the mismatched LQR

design. Both controllers attenuate the disturbance, though the output of the very loose

spring (k = .5) does appear to be growing in the mismatched LQR design.

Based on these observations, we might conjecture that the RLQR design always has

better disturbance rejection than a mismatched LQR design. Indeed, this is so, and it is

one of the properties discussed in an analytical framework in Chapter 4.

3.6 Summary

In this chapter we presented and interpreted several simulations. By comparing the

behavior of the RLQR controller to a standard LQR design, we have discovered some

intriguing properties. The RLQR design appears to minimize the uncertain stored po-

tential energy in the springs, and thus produces very similar outputs for different values

of the uncertain stiffness parameters. The RLQR also seems able to reject disturbances

better than a mismatched LQR controller.

Comparing the RLQR design to the mismatched LQR design, we see that the RLQR

design provides higher gains. In doing so, it is effectively adding more damping to the

system, moving the closed-loop poles farther away from the jw axis. It also moved the

poles farther away from the uncertain open-loop poles of the system.

In the next chapter, we will examine some of the properties of the RLQR controller

in greater detail. We will provide some analytical interpretations and explanations of

why the RLQR design added performance robustness while preserving stability, and
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why it was able to minimize the impact of the uncertain energy. We will also examine

the bandwidth of the RLQR design, and its implications in robustness to unstructured

uncertainty. We will generalize the results to general systems composed of uncertain

springs and also uncertain dampers.
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Chapter 4

Properties of RLQR

In this chapter, we will show various properties of the RLQR design. These properties

will explain the interesting behavior of the controller in the simulations, and summarize

the characteristics of the robust controller. First we will show how we can interpret

the RLQR controller in terms of LQR designs. Then we will extend the interpretations

to more general systems. This will lead to an understanding of how the parameter 7

affects performance. We will then show that have better performance robustness than

mismatched LQR designs. Finally, we will demonstrate that the RLQR design is conser-

vative with respect to stability robustness.

4.1 Interpretations

4.1.1 Equivalent LQR Problem

First, we will look at the RLQR design as equivalent to an LQR design. This will

explain why we are guaranteed the same robustness as in LQR designs - because it is an

LQR design itself.

If we find a solution P = pT > 0 in the Robust Riccati equation (2.32), we could
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define a matrix Q by

A 1 1Q ~ -PAo - ATP + -PBBTP = Qo + yNNT+ PLLTP (4.1)
P 7

Then the RLQR controller is the optimal controller when we are minimizing the cost

functional

J = (zT(t)Qx(t) + puT(t)u(t))dt (4.2)

Thus the RLQR can be interpreted as an LQR design, with a suitably modified state

weighting matrix Q. As shown in the next section, it is the way in which this Q matrix

is defined which makes the design robust to parametric uncertainty.

4.1.2 Equivalent Cost Functional

Substituting Q = Qo + yNNT+ 1PLLTP into the cost functional (4.2), we can write

J = j (ZT(t)QoZ(t) + zT(t)yNNT-,(t) + zT(t) PLLTPx(t) + puT(t)u(t))dt (4.3)

Let us interpret each term in this cost functional.

The quadratic term T(t)Qox(t) is the state weighting, and represents the performance

penalty we would choose in the nominal case of no uncertainty, as discussed in Chapter 2.

The quadratic term 7zT(t)NNTx(t) is equal to 1.57(1I - Z2 )2 in the benchmark prob-

lem in section 3.1.1, which is proportional to the uncertain stored potential energy in the

spring in that example. We observed in the simulations in section 3.1.1 that the RLQR

controller reduced the uncertain potential energy; this is because we were designing an

optimal controller which minimized a cost functional containing this energy. In section

4.2, we will show that in general the RLQR minimizes the potential energy of uncertain

stiffness elements, and show a similar result for uncertain dampers. This will explain our

observations of the uncertain energy reduction in all of the simulations.

The quadratic term :zT(t)PLLTPx(t) in equation (4.3) is equivalent to an t.o term.It\j YrUV UYUUI~\LV ~~YUCLl VaU1·0I~LU
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In fact, we could replace this term in the cost functional with a disturbance term

-yd(t)Td(t), which represents a disturbance coming into the system in the direction

of the "L" matrix:

di(t) = Aoz(t) + Bu(t) + Ld(t) (4.4)

Thus, through this term zT(t)PLLTPz(t) we are finding the disturbance which maxi-

mizes the cost functional, or the worst possible disturbance coming through the L matrix.

Of course, this "equivalent" disturbance arises from the mismatched dynamics. For more

on ,, controllers in this state-space setting, see [12]. In section 4.5.3, we will compare

this C,o disturbance to the actual errors in the system.

The quadratic term puT(t)u(t) is the control weighting term, which is necessary to

prevent infinite control magnitudes. The numerical value of p > 0 is important in deter-

mining the bandwidth of the system.

Thus we can interpret our results as adding guaranteed stability robustness to struc-

tured uncertainty and robustness guarantees by adding terms to the nominal LQR cost

functional. These terms have the effect of minimizing the impact of the uncertain po-

tential energy of the spring, and hedge against a worst-possible disturbance acting in the

directions defined by the uncertain parameters. The relative importance of these terms

in the cost functional is determined by the trade-off scalar y. This issue will be explored

further in section 4.3.

4.2 Generalizations

4.2.1 Uncertain Springs

We want to extend the RLQR results for more general systems. Specifically, we wish

to intepret the 7aT(t)NNTz(t) term in the equivalent cost functional (4.3) and determine

if the potential energy interpretation is valid. As an example, we assume that we deal
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with a structural dynamic system, which can be written as

Mi(t) + Ds(t) + (K + k)v(t) = f(t) (4.5)

where v(t) is a generalized position vector, f(t) is a force vector, M = MT > 0 is a mass

matrix, D = DT > 0 is a damping matrix, K = KT > 0 is a stiffness matrix consisting

of elements whose stiffness values are known, and K = kT > 0 is a stiffness matrix

consisting of uncertain elements. We can rewrite the system (4.5) as

1~(t) r ' V(t) 1 r ] t) (4.6)

(t) = MIK-M-1K -M- M-D ] (t) + M-

Note that the system has the nominal matrix

-M-1K -MM-D (4.7)

and an uncertain term

[-1k o ] (4.8)

Let us assume there are p uncertain stiffness parameters in the system. Then we will

write

= i ki (4.9)
i=l

where Ki = K T > 0 is a known matrix which represents the structure of how the ith

uncertain stiffness element affects the system, and fi > 0 is a scalar which represents

the uncertain value of the unknown stiffness element. Let us assume, as is true in mass-

spring-dashpot systems, that each Ki is rank 1.

Given uncertainty intervals for each uncertain stiffness element, we can scale each Ki

so as to write

f = o + q jqiI < 1 (4.10)
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where iio is the "nominal" value of the it h uncertain element, and is chosen at the midpoint

of the interval, and qj represents the uncertain value.

To make this setup more clear, let us see how the examples of chapter 3 fit into this

framework. The benchmark problem of figure 3-1 can be written as (t) = Az(t) + Bu(t)

with values listed in equation (3.1), repeated here:

0

0

-k

k

0

0

k

-k

1 0

0 1

00
0 0

0

O

1

0

(4.11)

This example fits in the general framework with the parameters

M=[ j
L 1

D[ ]
o 0

K = K: k k

Since k E [.5, 2], we can write fK = (o + ql)Kl, with

flo = 1.25 k1 = -. 75
.75

.75

-. 75

(4.12)(t) = -I (t)

(4.13)(t) = u (t )

the values

]
<ql 1 (4.14)

Note that D = 0 because we assume no damping in figure 3-1, and that K = 0 because

there are no known stiffness elements.

As a second example, let's look at the two spring example of figure 3-10. We have

previously written the system in the form i(t) = Az(t) + Bu(t), with the values listed in
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equation (3.8), which are:

XI

X2

X3

X4

X6

0

0

0

kl
0
Ic

0

0

0

kl

-k -

k2

0

0

0

0

k2kksa
-k2r

In the general framework, our parameters are

1

M= 
O

00
I 0
0 1

0

D= 0

0

0

K= 0

0

flo = 1.25

0 0

00
0 0

-kl

kl

O

-. 75 .75

;2o = 1.25 K1 = .75 -. 75

0 O

kl

-k - k2
k2

0

k 2

-k2

This time there are two uncertain parameters, kl, k2 E

0

0

0

U, (t)] f(t) = u2(t) (4.17)

0.5], we 

[.5,2], so we can seperate k as

(4.18)

0
.75

-. 75
(4.19)

The potential energy contained in the general setting (4.5) is equal to

2vT(t)(K + k)v(t)i
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K2 = 
0

0

0

0

-. 75

.75

100
010
001
00 0
000
00 0

00
00
0 O

1 0

0 1

OJ

(4.15)

00
0 0

0 0]

l (t)
V(t) = (t)= (t)

La(t) 

(4.16)

K = (O + ql)kl + (2o + q2)k2

(4.20)



and we can therefore see that the uncertain potential energy in the system is

2I ' (t)K(t) =j (ii ° + qi)vT(t)kiv(t) (4.21)
i=1

Hence the potential energy in the i th uncertain stiffness element is

1(io + qi)vT(t)Kiv(t) (4.22)

To understand the potential energy setup, we see that the potential energy in the

second example of the two spring system of figure 3-10 is

lt'T(t)(K + )v(t)= yT(t)Kli(t) (4.23)

=(lo + ql)vT(t)klv(t)+ 1 ( 2o + q2)vT(t)K2v(t) (4.24)

= kl(zl(t) - 02(t)) 2 + 1k 2(x 2 (t) - a3(t))2 (4.25)

We can see the potential energy in the first uncertain spring is (j;lo + q,)vT(t)Klv(t),

and the potential energy in the second uncertain spring is '( 20 + q2)vT(t)k2v(t).

Returning to the general framework, since each Ki is symmetric, positive-semidefinite,

and rank 1, we can write

i = 7qiU (4.26)

where 1i is a vector of appropriate length. However, there are other ways to factor Ki,

and to represent this in a general form, we will write

(--1 )(7 7! (4.27)
where a scalar scaling factor which represents how we factored the matrix Ki. We

where -t is a scalar scaling factor which represents how we factored the matrix ki. We
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can now write the total uncertainty in the RLQR setup of equation (2.2) as

00 = 0 [T 0
qiE = E E ] | ] (4.28)

i=1 ~=q i=1

Note that the midpoint matrix is grouped with the nominal matrix in the RLQR frame-

work, and thus the term fioK is not in the uncertainty matrix. Also, q in the RLQR

framework is exactly the same q as in equation (4.10), and explains our choice of notation.

We are finally in position to look at the z(t)NNTa(t) term in the equivalent cost

functional (4.3). From equation (4.28), we see our N matrix is

N [ 7111 [ 7 ] [ 738 ] ] (4.29)

so that

XT(t)NNTz(t)- = I) [ 7 72?2 7313

71i
T

72172

7371sT
v(t) (4.30)

p

= E ?fT(t)i77i(t) (4.3i)
i=1

Comparing equations (4.31) and (4.22) we see that TNNTZ in this general setup is

proportional to a weighted sum of the energies in each of the uncertain stiffness elements.

The weighting depends upon how the matrix for each uncertain parameter was factored.

Thus, we see that for all structural systems of the form (4.5), the RLQR design

minimizes a weighted sum of the uncertain potential energies of the uncertain stiffness

parameters. We can conclude that the previous interpretation of minimizing uncertain

energy is valid in a more general setting.
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4.2.2 Uncertain Dampers

We would also like to interpret the term T(t)NNTx(t) in the case when there is

uncertainty in the "D" matrix in the general system form

Mi(t) + (D + D)i,(t) + Kv(t) = f(t) (4.32)

where v(t) is the generalized position vector, f(t) is the force vector, M = MT > 0 is

a mass matrix, K = KT > 0 is a stiffness matrix (which in this example is known),

D = DT > 0 is a damping matrix consisting of elements whose values are known, and

D = f)T> 0 is a damping matrix consisting of uncertain elements.

In this case, the system equation can be written as

(t) I (t) +(433)

l (t) J l -M-1K -M-D - M-1 D j (t) M-1

with the uncertain term

[~ ~~0Lo~ l0~ ~(4.34)
L 0 -M-lb ]

Following the same steps as before, assuming p uncertain damping elements, we can

write the uncertainty as

P P

b = i = (io + qi)Di Iqij < 1 (4.35)
i=1 i=1

where A = DT > 0 is rank 1, io is the scalar representing the midpoint of the bounds

on the ith uncertain damper, and q represents the uncertainty.

Once again, we factor Di as

Db = (7i)(*iqn (4.36)
,Yi
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We write the uncertainty in the RLQR framework of equation (2.2) as

E qiE, = E -M- 1

This time, we see our N matrix isThis time, we see our N matrix is

[ 711 [o [31[ 212 j LY33j
so that

p

XT(t)NNTx(t) = y,(t)7iT(t)
i=1

To interpret this term, let us consider the energy in the system (4.32)

1FE uvT(t)Kv(t)
2

KE = i,(t)Mi'(t) TE = -vT(t)Kv(t) +
2

~1 T(t) (4.40)

(4.40)

where PE is potential energy, KE is kinetic energy, and TE is the total energy of the

system, the sum of potential and kinetic energies.

The rate of change of total energy in the system is

d (TE) = l( T(t)M(t) + T(t)Mi(t) + T(t)Kv(t) + vT(t)KiO(t)) (4.41)

Substituting equation (4.32) into equation (4.41), we obtain

d(TE) = (-,T(t)(D + b)i(t) - vT(t)Ki'(t) + fT(t)i(t) - iT(t)(D + b)(- t)

- T(t)Kv(t) + iT(t)f(t) + iT(t)Kv(t) + vT(t)Ki,(t)) (4.42)

= i T(t)(-(D + b)i(t) + f(t)) (4.43)

The term i,(t)f(t) is the rate of change of energy due to the force vector, and
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i,T(t)(D + bD)(t) is the rate of dissipation of energy due to the damping matrices (the

negative sign signifies energy is leaving the system).

So the rate of change of energy (dissipated power) through the ith uncertain damper

is

iT(t)(fio + qi)Dii(t) = (io + qi)i'T(t)rTi75Ti(t) (4.44)

Now we can clearly see that

p

xT(t)NNTX(t) = 2iT(t)miT>(t) (4.45)
i=l

is a weighted sum of energy dissipation rates through the uncertain dampers in the

system. Once again, the RLQR design is robust to parametric uncertainty by minimizing

the effect of the uncertain energy on the system.

Of course when there is uncertainty in both K and D, it is clear that the xT(t)NNTz(t)

term represents a weighted sum of uncertain potential energies and uncertain energy

dissipation rates. The weights evolve from the choice of the factorization of Ei into i

and ni. Thus, we can use this knowledge to intelligently choose the factorization. We

put larger relative weights on those uncertain elements whose dynamics degrade our

performance to a greater degree. For example, to further reduce the uncertain potential

energy of the ith uncertain spring, we would change our factorization from E = lin to

Ei= (li)(7inT), with y > 1.

4.3 The Role of y

From the equivalent cost functional in section 4.1.2, we can see that the parameter

7 can be interpreted as a tradeoff between minimizing unknown uncertain energy and

worst case disturbances in the direction of parametric uncertainty. To understand the

tradeoffs, let's look at the limiting cases, when 7 is very large or very small.

If y is very large, we are heavily weighting the uncertain energy in the system. Such
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a high weighting is sufficient to robustify the design to parametric uncertainty, since

the cost of uncertain dynamics is so high. Conversely, if y is very small we are heavily

weighting the worst case disturbance in the direction of the uncertainty. As 7 approaches

zerol , we are not allowing any disturbance in this "uncertainty direction," and therefore

not allowing the uncertain parameter to influence the response.

So an intermediate value of y is a tradeoff between penalizing the uncertain energy,

and a worst-case equivalent disturbance. Since 7 affects the bandwidth of the closed-

loop system, an intermediate value is desired (very high or very low 7 results in a high

bandwidth). It is not surprising to find the bandwidth of the system with the RLQR

design higher than that with the mismatched LQR design, since we are desensitising the

system to parameter variations. The parameter 7 can help tune the bandwidth to an

acceptable level. Note that a higher bandwidth implies less robustness to high-frequency

unstructured uncertainty [1]. This is one of the prices we pay for robustness to parametric

uncertainty. The impact of 7 on bandwidth and robustness to unstructured uncertainty

will be illustrated in the next section.

4.4 Guaranteed Performance

We observed in the simulations that the RLQR design attenuated disturbances. This

should not be surprising: when we guaranteed au[I + GLQR(s)I] > 1 is section 2.3.2,

we guaranteed the singular values of the sensitivity function are less than unity, i.e.

ri[I + GLQR(s)] - < 1, and therefore we have guaranteed performance robustness. This

is a property of LQR designs (though note that it is not guaranteed to hold when we

design an LQR controller for one system and apply it to another system).

What is more surprising was that the RLQR design seemed to attenuate disturbances

better than the mismatched LQR design. We will now prove that we are guaranteed

better performance robustness in an RLQR design than a mismatched LQR design.

'Note that such a controller will not exist in general, since we are forcing the system to completely
eliminate the effect of the disturbances.
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First, a preliminary lemma we will need later in the proof:

Lemma 4.1 Suppose X > Y > 0, with X and Y symmetric. Then Amin(X) Ž Am,i,(Y).

Proof 4.1 For Z > 0, Z symmetric, then

Amin(Z) = min xTZz (4.46)
I11=1

Thus we have

Amin(X) = min XzXz > XTY2 > min yYy = Ain,(Y) (4.47)
-1=1 -- - -Ilvl=1

To prove the main result, let us recall the two designs we are comparing. The "mis-

matched LQR" is designed by solving the Riccati Equation

1
PAo + AoTP - PBBTP + Qo = 0 (4.48)

p

and has the associated Frequency Domain Equality

[I + Go$(-s)B][I + God(s)B] = I + !BT$T(-s)Qo4(s)B (4.49)
P

where this FDE is derived in the same manner as the robust FDE.

The RLQR is designed by solving the modified Riccati Equation

PAo + AoP - -PBBTP + Qo + -PLLTP + NNT= 0 (4.50)
P 7

and has the associated robust FDE:

[I+G4(-s)B]jIN+G(s)B] = + BT (T(-s)[P(Ao-A)+(AT-A2 )P+Q]+q (s)B (4.51)
P

Theorem 4.2 The maximum singular value of the sensitivity function of the actual plant

with the RLQR design is always less than or equal to the maximum singular value of the

sensitivity of the same plant with the mismatched LQR design at any given frequency.
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Proof 4.2 Let us subtract (4.51) from (4.49):

[I + GoQ(-s)B]NI + Go-(s)B - [I + GI(-s)B]I + G$(s)B]

1
= BT T (-)[Qo - Qo - P(Ao - A) - (AO- A)PJ](s)B (4.52)

Substituting A = Ao + EP=1 qiEi and the Riccati Equations (4.48) and (4.50), algebraic

manipulations produce

[I + Go(-s)BS]I + Gol(s)B] - [I + Gk(-s)B]I + Gt(s)B]

1 P
= -BTTi(-s)[P E qEi

p i=1

P
+ j qiETP - 7 NNT 1 PLLTP]c4(s)B

i=1 7

Since N and L were chosen such that

it is clear that

(4.54)
P P 1

P E qiiE + gqiETP < 7NNT+ IPLLTP
i=l i=l t

P P 1

P E iEi +E qET - -yNNT_- IPLLTP < 0
i=1 i=1 7y

Thus the right hand side of (4.53) is negative definite, which implies

[I + Go(-s)B]NI + Go4(s)B] < [I + GI(-s)B]~I + GI(s)BI

Using Lemma 4.1, we see that

Ami,,([I + Go(-s)B]fI + Gok(s)B]) < ),min([I + Gk(-s)B]NI + G~'(s)B])

= ,,min(I + Go'(s)B]) < ,min(I + G,(s)B])

(4.55)

(4.56)

(4.57)

(4.58)
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ma, {(I + Go'(s)BI)l} > O,.ma {(I + GI(8)BI)- } (4.59)

Equation (4.59) is the result we desired, since this equation says that the maximum

singular value of the sensitivity function of the mismatched LQR design is greater than

that of the RLQR design at every frequency. This implies greater performance robustness

in the RLQR design.

As an example, let us look at typical sensitivity plots for the benchmark problem of

figure 3-1. This is a single input-single output system, so the maximum singular value

of the sensitivity function is equal to the magnitude of the sensitivity function. We

calculated the sensitivity function for the system with k = 2, and with the gains listed in

Appendix B.1. For comparison, we also calculated the sensitivity function for the RLQR

design with y = .5.

The representative plots are shown in figure 4-1. Note that since the LQR design

is "mismatched", we are not guaranteed that the sensitivity function is less than 1 for

all frequencies. Also notice that we have increased performance robustness with 7 = .5

compared to - = 1, although in general one value of y will not necessarily have better

performance robustness over all frequencies compared to another value of 7.

We have also plotted the corresponding complimentary sensitivity functions in figure

4-2. Notice that the RLQR designs have a higher bandwidth than the mismatched LQR

design, which implies that we are more sensitive to unstructured uncertainty. Also, the

affect of y on bandwidth is evident, as in this case the design with 7 = .5 has a higher

bandwidth, and thus is less robust to high-frequency unstructured uncertainty.

4.5 Conservatism

The RLQR design is definitely conservative with respect to stability robustness. That

is, if we can design an RLQR controller by finding a solution to the RLQR Riccati

equation (2.32), then we have guaranteed that the uncertain system is stable. However,
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Figure 4-1: Typical sensitivity plots of the benchmark problem with k = 2.
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Figure 4-2: Typical sensitivity plots of the benchmark problem with k = 2.
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not being able to find a solution to (2.32) does not imply that we can not find stabilizing

gains (though finding stabilizing gains does not imply we have found gains which will

give us the same performance as an RLQR design).

This section will try to quantify the ways in which the design is conservative.

4.5.1 Level of Conservatism

To understand the conservatism of the RLQR design, we will compare it to the well-

known "Small Gain Theorem."

In section 2.1, we have modelled our uncertain system as

p

(t) = (Ao + E qilinT)x(t) + Bu(t) (4.60)
i=l

We can equivalently write this system as

(t) = Aox(t) + LANTx(t) + Bu(t) (4.61)

where A = diag(ql, q, ..., qp), and L and N are defined as in equation (2.29):

L = [11 12 13...]; N = [nl n 2 n...] (4.62)

After designing an RLQR controller, the closed loop system becomes

k(t) = (Ao - BG)x(t) + LANTx(t) (4.63)

where G = BTP, P is the solution of the RLQiQ Riccati equation (2.32).

Note that all the uncertainty of the system is in te A matrix. Thus we can seperate

the "uncertain" part of the system, as shown in figure 4-3.

With the above framework in mind, Obradovic [22] showed that the Petersen-Hollot

overbounding procedure, used in section 2.3.3, is just as conservative as the following
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Figure 4-3' System with Uncertainty Seperated from the plant
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Figure 4-4: The Structure of the Small Gain Theorem

"Small Gain Theorem":

Theorem 4.3 Given a plant K with an uncertainty A, IIAfloo < 1, as shown in figure

4-4, then a sufficient condition for the system to be stable is IIKII < 1.

Note that since A = diag(q,q2,...,qp), qij < 1, we satisfy the condition llAIl.o < 1.

Obradovic showed that the Small Gain Theorem is satisfied for our system in

figure 4-3 if and only if the Riccati equation which results from the Petersen-Hollot

bounding procedure has a solution P = pT > 0. Thus there is a one-to-one correspon-

dence between the Petersen-Hollot bounds and the Small Gain Theorem.

Notice that the Small Gain Theorem is only a sufficient condition for stability. This

is because it does not take into account the structure of the A matrix. In our system, A

has a very special structure; it is diagonal. The Small Gain Theorem guarantees stability

for all possible A matrices satisfying lAll[, < 1, and not just diagonal matrices. Thus,

we are compensating for modelling errors which do not exist. (But recall that we are

interested in not only stability, but also performance).
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4.5.2 Factorization

We have seen that the assumption that the uncertainty matrices Ei are rank 1 is

valid for our mass-spring-dashpot systems. However, system identification techniques are

often formulated such that this will not hold; the parameters we identify with uncertainty

regions result in matrices which are rank 2.

In the case where this is not true, we must consider each Ei as a sum of rank 1

matrices. This will lead to additional conservatism. The system will try to compensate

for two parameters which vary independently, when actually it is only one uncertain

parameter.

To make this more clear, let us look at a simple acedamic example. Let us assume

we are looking at a system with two complex conjugate poles, where the frequency of

the pole is uncertain, and can vary independant of the known value of the damping.

While there is not necessarily a system with such a physical parameter which causes this

particular variation, it will demonstrate the type of conservatism that results when the

rank 1 assumption is violated.

Our system matrix will be of the form

A [ Wo+ J AI < 1 (4.64)
-wo -A ao

In this case, we must break the uncertainty into the two matrices

0 1 0 0
El = ] E2 = (4.65)

But this is equivalent to considering the following uncertain system:

A = [ -wo - n~ao wo ] I~il_< 1 (4.66)
--O - A2 aO
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Here, Al and A2 are independent perturbations. Thus we are designing a controller for

the case when the two poles are not complex conjugates, which is physically impossible.

Similarly, in physical systems when a parameter has a rank 2 uncertainty matrix, we must

seperate the uncertainty into two parameters, and then the RLQR design is compensating

for situations which are physically impossible.

Some extensions of the Petersen-Hollot bounds have been proposed to alleviate this

problem. For instance, see [23]. However, all attempted extensions are just as conserva-

tive as assuming we have rank 1 matrices. Thus, our assumption may impose additional

conservatism.

4.5.3 Worst-Case Disturbance

We can write the uncertain system matrix as

A = Ao + LANT (4.67)

where A = diag(qi, q2, ..., qp). Thus, we can consider the system as:

i(t) = Aox(t) + LANTx(t) + Bu(t) (4.68)

If we consider the term ANTx(t) as a disturbance d(t), we can write the system

equations as

2(t) = Aox(t) + Ld(t) + Bu(t) (4.69)

Now, an 7-, design on the system will find the "worst-possible" d(t) [12]. This will

turn out to be of the form

d*(t) = LTPx(t) (4.70)
7

where P is the solution of the -,oo Riccati equation

PAo + AoP + Qo -P(BBT LLT)P 0 (4.71)
P 7
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We have noted that in the equivalent cost functional (4.3), we are finding a "worst-

case" disturbance. But this worst-case disturbance may not be in the form of ANTx(t).

To demonstrate this, let us look at the benchmark problem of figure 3-1. With the same

choices of Qo, p, and y as in section 3.1.1, the solution P to (4.71) is

.3155

.1698

.0939

.4152

.1698

.7913

.0254

.4549

.0939

.0254

.0437

.1070

.4152

.4549

.1070

.6666

(4.72)

so that the value of LTP is
-y

1LTP [-. 278 3 -. 3719 -. 0548 -. 4846]
7y

(4.73)

and the worst case disturbance, d*+, is

d*(t) = -. 2783x 1(t) - .3719x2 (t) - .0548x3(t) - .4846x4(t) (4.74)

However, the "actual disturbances" in the system are

ANTx(t) = [ -.866 .866 0 0 x() = -. 866qx1 (t) + .866qX2 (t)

For any value of q such that ql < 1, we see the actual value of the disturbance as a

function of time will not be the worst-case disturbance.

Thus we see that we are adding some conservatism on the design by accounting for

equivalent disturbances which may not exist.

4.5.4 No Solution

We have shown that the RLQR design is a conservative one with respect to stability

robustness. This means that if we can design an RLQR controller for a system with
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5 kHk2 2

Figure 4-5: Example with No RLQR solution

parametric uncertainty, then we will guarantee the stability of that system for all values

of the uncertain parameters. However, we may not be able to design an RLQR controller

when stabilizing gains do exist; that is, the RLQR Riccati equation (2.32) may not have

a solution for any value of 7y but we can still stabilize the system. For a discussion of

when solutions exist to these type of Riccati equations, see [25].

As an example, let's look at the 2 uncertain spring example of section 3.3. But now

assume that we have only one control, as shown in figure 4-5. We have chosen our

parameters p and Qo as:

p = .01 Qo =

000000
000000
00 1 000
000000
000000
000000

We could not find a solution to the RLQR Riccati equation (2.32) for this choice of

p and Qo, and for any choice of the factorization of the Ei matrices. In fact, even the

mismatched LQR design is not stable for all values of the uncertain springs.
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However, gains do exist which stabilize the system; one such gain is

G= [7.3804 1.8252 0.7944 3.8420 10.4976 8.9988 ] (4.77)

These gains were found by trial and error, and tested with an exhaustive search over

the possible values of the uncertain stiffness values. They actually correspond to an LQR

design with the same values of p and Qo, but with a design system corresponding with

kl = .875 and k2 = 1.25 in figure 4-5.

So this is an example of when we can not find a solution to the RLQR Riccati equation

(2.32), but when stabilizing gains so exist.

4.6 Summary

We have derived and explained the properties of the RLQR controller. We gain

stability and performance robustness by minimizing a weighted sum of the uncertain

energies in the system, and also consider "worst-case" disturbances acting in the direction

of the uncertainty. We have also shown that we have gained better disturbance rejection

guarantees than LQR designs. These properties are due to the higher gains in RLQR

designs, which effectively adds more damping to the system. However, the price we

pay is a higher bandwidth, and therefore less robustness to high-frequency unstructured

uncertainty.

This uncertain energy minimization appears to be the key to controlling a parametri-

cally uncertain system. We are able to minimize the effects of uncertain energy because

we could directly measure all states of the system. The problem would be much more

difficult if, for example, we could only measure y, the position of the second mass in the

benchmark problem. The controller can not minimize the energy unless it can measure

it in some way. Thus, the output feedback problem is a much more difficult one.

The price we pay for the RLQR design is a high degree of conservatism, and a higher

bandwidth. This higher bandwidth implies less robustness to high-frequency unstruc-
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tured uncertainty.

These properties of the RLQR design will hopefully guide us in designing robust

controllers using only output feedback.
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Chapter 5

Conclusions

In this chapter we will summarize the main results of this thesis, and describe some

of the next steps in the evolution of a robust controller.

5.1 Contributions

We have presented an extension of the standard LQR called the robust LQR (RLQR).

It is derived using an overbounding technique known as Petersen-Hollot bounds. The

result of this overbounding is a guarantee of stability in the presence of parametric

uncertainty, and also guaranteed robustness in terms of gain and phase margins. The

resulting full-state controller is designed by solving a single Riccati-type equation. This

Riccati Equation is identical to ones which have appeared in the literature with this

overbounding method.

The novelty presented in the derivation was the interpretation of the controller as an

extension of LQR. In fact, we have shown that the RLQR design is equivalent to an LQR

design with an extremely intelligent choice of the state weighting matrix, or a modified

full-state 7' 2/oo design. It is this choice of the state weighting matrix which makes the

system robust to parametric uncertainty.

To understand the properties of the RLQR, we have conducted simulations for some
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simple systems. These systems consisted of masses connected by springs with unknown

stiffness. Several different configurations were examined, and in all of them the RLQR

design appeared to be reducing the unknown potential energies stored in the springs,

so as to mitigate their effect on the dynamics of the system. The effect of additional

control variables was additional performance robustness. Other simulations showed that

the RLQR design was able to attenuate disturbances, even better than a "mismatched"

LQR design.

We were then able to show analytically how the choice of the "equivalent state weight-

ing matrix" added robustness to the system. In the standard LQR design, we minimize

a cost functional which contains quadratic weights on the states and on the control In

the RLQR design, the state weighting matrix adds two more quadratic terms to this cost

functional. The first is equivalent to the stored potential energy of the springs. The

second is a term which is the same as a worst-case disturbance in the direction of the

uncertain parameters. These two terms were sufficient to guarantee robustness to the

parametric uncertainty, as well as some additional robustness guarantees stated earlier.

However, the RLQR design has a higher bandwidth, which we can adjust by trading the

relative weighting of these two additional items in the cost functional.

These interpretations were shown to generalize to structural systems with uncertain

stiffness and damping elements. With uncertain stiffness elements, we are minimizing a

weighted sum of the uncertain potential energy stored in each element. For uncertain

damping elements, we are minimizing a weighted sum of the rate of dissipation of energy

through each element. In either case, we are minimizing the impact of the uncertain

elements on the stability and performance of the system.

We were able to show that the RLQR design attenutated disturbances better than a

mismatched LQR design. We were then able to show that in fact we are guaranteed to

have better performance in the RLQR design, because the maximum singular value of

the RLQR sensitivity function is always smaller than that of the standard LQR design.

One of the prices we pay for this robustness to parametric uncertainty is that the
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design is very conservative with respect to stability robustness. In fact, we showed that

it is at least as conservative as the Small Gain Theorem. The result of this conservatism

is that there may be no RLQR controller for a given system, even when stabilizing gains

do exist.

In summary, we have examined a full-state controller which is robust to parametric

uncertainty. It achieves its performance robustness by minimizing the effect of uncertain

stored energy and uncertain dissipated power. However, it is a high-bandwidth design.

5.2 Future Work

Before this control technique can be implemented on a real system, several extensions

need to be made. Throughout this thesis, we have assumed complete knowledge of all

state variables in the system. In a real structure, this is impossible. Thus, we need

to extend the results to the case of output feedback, when only some of the states are

available.

One possible scheme for output feedback would be to create the dual to the robust

LQR. This would be a model-based observer, which would estimate the state of the

system based upon the output measurements and knowledge of a model of the system.

A basic problem with this scheme is that the model of the system is uncertain, and thus

our observer will not necessarily be matched to the system. Research should be done in

this area to determine possible methods for compensating for this problem.

Another assumption throughout this thesis was that the uncertain parameters were

known to be within a bounded interval. To actually implement a robust controller, a

method of determining these bounds must be found for real systems. This is a question

of system identification. We need to determine how system identification techniques can

be used to help in robust control.

We would also like to extend the results to more general types of uncertainty. For

instance, we would like to remove the "rank 1" assumption on the uncertainty matrices.
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This would require an extension of the Petersen-Hollot bounds. The types of uncertainty

we must examine in real systems are the ones which are a result of the system identifi-

cation; that is, if we can use system identification to determine one type of uncertainty,

we must adapt the robust control techniques to handle this uncertainty. Preliminary

results show that system identification techniques on large space structures may result in

uncertainty matrices which are rank 2. Thus an extension of the overbounding technique

is needed.

Finally, we would like to actually design and implement a robust controller on a large

space system. Such a system has uncertainty in modal frequencies and damping values,

and thus we can immediately see the need for a robust controller.

So although a deeper understanding of how to rbustify a system has been achieved,

much work needs to be done to design and implement robust controllers.
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ppendix A

Applying LQR to an Uncertain

System

This appendix presents an example of the fact that classical LQR methods do not

necessarily imply closed-loop stability for open-loop stable plants with uncertain param-

eters.

Let us consider the system of the form

i(t) = Ax(t) + Bu(t) (A.1)

y(t)= Cx(t) (A.2)

with the values

0 1

O O

o 0

O 0

0 0

-4 -a1

0

1

0

0

0

-164.8186

0 0

0 0

1 0

o 1

o 0

-a 3 -40

0

0

0

0

1
O

O

C

O

O00

i 

I1 

(A.3)
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= .5 1.5 0 O 0] (A.4)

with the uncertain parameters bounded by

as E [10, 12] (A.5)

a [ 82.875, 90 ] (A.6)

al [ 7.1171, 126.2908 (A.7)

This system has the characteristic function given by

86 + as5s + 40s4 + a38s3 + 164.818682 + als + 4 (A.8)

and thus it is simple to check with Kharitonov's Theorem [3] that this system is indeed

stable regardless of the values of the uncertain parameters.

For a nominal system, let us pick

as = 10 a = 90 a = 7.1171 (A.9)

Though this is not the "midpoint" of the intervals, it will demonstrate the basic principle.

It is quite likely that we could find an example with the nominal system at the midpoint

if we go to a higher order system.

For design, we choose

p = 10 Qo - CTC (A.10)

The resulting LQR gains are given by

G [ .0031 .1162 .0641 .0287 .0072 .0007 (A.11)

It is easy to check that the closed loop system is not stable for all values of the
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parameters in (A.5)-(A.7). Thus we see that examples do exist where an LQR design

does not guarantee stability. Such examples are not easy to find for systems with such a

low order. Higher order examples should be easier to find since there are more degrees

of freedom.
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Appendix B

Simulation Control Gainrs and

Closed-Loop Poles

This appendix will list the control gains and closed loop poles for various values of

the spring constant(s) from each of the simulations in Chapter 2.

B.1 Benchmark Problem (c.f. 3.1.1 )

Mismatched LQR Design gains (k = 1.25):

G = [8.0902 1.9098 4.0225 8.9945 ] (B.1)

RLQR Design gains:

G-[ 25.5316 -1.2656 7.4831 33.1313] (B.2)

Note that some of the RLQR gains are significantly larger than the mismatched LQR

gains. Also notice that the second RLQR gain, the one that multiplies the position of

n 2, is negative. This implies that the RLQR magnifies the displacement of mass m2.

This does not cause instability due to the large gains on the other state variables.
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Closed-Loon Poles:

Mismatched LQR

-1.7089 ± 1.8164j

-0.3023 ± 0.8441j

-1.2977 ± 1.4828j

-0.7135 ± 1.3208j

-1.4406 ± 0.8152j

-0.5706 ± 2.0583j

-1.5911 ± 0.4605j

-0.4201 ± 2.3971j

. . . .

-0.3154 d: 2.6564j

-1.9806

-1,4111

RLQR

-3.3448 ± 3.0737j

-0.3967 ± 0.6562j

-2.8644 + 2.7733j

-0.8771 ± 0.7526j

-1.9798 ± 2.7396j

-2.4316

-1.0918

-1.4386 ± 3.2035j

-3.7540

-0.8518

-1.1533 ± 3.5826j

-4.3973

-0.7791

Note that the significant damping has been added to the poles in the RLQR design.

Also, the frequency of the closed loop poles is farther away from the uncertain value of

the open-loop pole (c.f. 3.2), which is in the range w = 1 to w = 2.

B.2 Benchmark Problem with Additional Control

Variable (c.f. 3.1.2 )

Mismatched LQR Design gains (k = 1.25):

0.5174

1.2150

-0.3192

8.7831

1.0025

0.1726

0.1726

4.1876
(B.3)
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RLQR Design gains:

6.8354

L 2.4089

-2.7445

11.5444

3.6621

-0.6306

-0.6306

4.7866
(B.4)

Once again, some of the gains are larger, and the others have the opposite sign. Due

to the extra control variable, the magnitude of the control gains, in both designs, is

reduced.

Closed-Loop Poles:

Mismatched LQR

-2.1090 ± 2.2001j

-0.4861 : 0.9185j

-2.0936 ± 2.2779j

-0.5015 : 1.0936j

-2.0721 ± 2.3545j

-0.5230 : 1.2343j

-2.0452 4 2.4304j

-0.5498 ± 1.3523j

-2.0136 

-0.5815 at

2.5061j

1.4534j

RLQR

-2.5331 ± 2.6712j

-1.6912 ± 1.7213j

-2.5288 ±- 2.7950j

-1.6955 ± 1.7404j

-2.5236 ± 2.9155j

-1.7007 : 1.7555i

-2.5181 3.0329j

-1.7062 ± 1.7676j

-2.5127

-1.7116

At 3.1473j

A 1.7773j

The RLQR design has higher damping than the mismatched LQR design. Note that

with the additional control, the pole locations are almost identical in the RLQR design

for all values of the stiffness k.
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B.3 Benchmark Problem with Control at Output

(c.f. 3.2 )

Mismatched LQR Design gains (k = 1.25):

G = [0.7295 9.2705 1.0165 4.3059 ] (B.5)

RLQR Design gains:

G= [-15.6044 32.4151 41.2569 8.5358 ](B.6)

The magnitudes of the RLQR gains are much larger in this example. Also, note that

we are magnifying the position error of ml in this case.

Closed-Loop Poles:

Mismatched LQR

-2.130 ± 2.2397j

-0.0226 ± 0.7230j

-2.1083 + 2.3024j

-0.0447 ± 0.9465j

-2.0821 ± .3633j

-0.0709 : 1.1203j

-2.0521 + 2.4227i

-0.1008 ± 1.2656j

-2.0184

-0.1345

± 2.4810j

± 1.3918j

RLQR

-3.8457 ± 3.4373j

-0.4222 ± 0.3710j

-3.3480 ± 3.1530j

-0.5317

-1.3081

-2.5334 ± 3.0999j

-0.4317

-3.0372

-1.9316± 3.4878j

-0.4025

-4.2702

-1.5907 ± 3.8632j

-0.3878

-4.9665
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The RLQR has added significant damping, and also moved the poles away from the

uncertain pole frequency, w = 1 to w = 2.

B.4 Two Spring Example (c.f. 3.3 )

Mismatched LQR Design gains (kl = k2 = 1.25):

0.5177 -0.4232 -0.2056 1.0005 0.1854 -0.3413 (B7)

1.2696 6.3750 2.3548 0.1854 3.5659 8.9512

RLQR Design gains:

8.2237 3.7014 -2.3270 4.1559 0.6094 12.7251 (
O = (B.8)

l1.1708 27.6731 -1.9246 0.6094 7.8550 36.9120

In this case, the two control variables allow the RLQR design to have control gains

whose magnitudes are comparable to the mismatched LQR gains, even though there are

two uncertain springs.
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Closed-Loop

Mismatched LQR

-1.4778 ± 1.6313j

-0.4757 ± 1.1173j

-0.3296 ± 0.7806j

-0.1318 ± 2.7163j

-0.4601 ± 0.8851j

-1.9597

-1.4230

-1.4044 ±- 1.8988j

-0.5740 ± 1.2369j

-0.3048 + 0.8714j

-0.4815 i 2.2483j

-0.4778 + 1.2330j

-1.3239 + 0.7986j

-0.2100 ±t 2.7685j

-0.4939 ± 1.2405j

-1.5792 i 0.2806j

-1.3115 ± 2.1799j

-0.6693 - 1.3015j

-0.3024 ± 0.9021j

-0.3158

-0.4715

-1.4959

±t 2.8378j

± 1.5370j

± 0.3794j

RLQR

-3.5473 ± 3.2032j

-2.0647 + 2.0869j

-0.3934 ± 0.6522j

-1.3752 + 3.6575j

-1.8599 ± 2.1660j

-0.7693

-4.7714

-3.5238 ± 3.3098j

-2.0890 ±: 2.2574j

-0.3926 ± 0.6514j

-2.4036 ± 3.1766j

-1.6674 + 2.0081j

-2.8201

-1.0488

-1.4766 ± 3.6580j

-1.7957 ± 2.4290j

-0.7667

-4.6994

-3.4873 - 3.4186j

-2.1261 ± 2.4011j

-0.3919 ± 0.6509j

-1.6205 ± 3.6685j

-1.6830 ± 2.6634j

-4.6391

-0.7647

90

k k2

.5 .5

.5 2

1.25 .5

1.25 1.25

1.25 2

2 .5

2 2

Poles::



We again see much more damping in the RLQR design than in the mismatched LQR

design.

B.5 Partially Known System (c.f. 3.4 )

Mismatched LQR Design gains (k1 = 1.25):

0.5177 -0.4232 -0.2056 1.0005 0.1854 -0.3413 (B.9)

1.2696 6.3750 2.3548 0.1854 3.5659 8.9512

RLQR Design gains:

G = 6.8601 -1.3862 -1.4464 3.6912 -0.4745 3.5000 (B.10)

-2.3532 10.2218 1.2952 -0.4745 4.5172 8.2181

The mismatched LQR gains are the same as those for the two uncertain spring exam-

ple, since the nominal system is the same. However, the magnitude of the RLQR gains

has been significantly reduced, since there is less uncertainty in the system.
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Closed-Loop Poles:

Mismatch(!d LQR

-0.3417 ±- 2.1847j

-0.4528 ± 0.8709j

-1.4887 ± 0.7117j

-0.4027 ± 2.2111j

-0.4770 ± 1.0558j

-1.4035 ±t 0.7782j

-0.4815 ± 2.2483j

-0.4778 ± 1.2330j

-1.3239 + 0.7986j

-0.5772 ± 2.3090j

-0.4395 ± 1.3872j

-1.2665 ± 0.7903j

-0.6730

-0.3788

-1.2314

± 2.4035j

± 1.4955j

± 0.7741j

RLQR

-2.1751 ± 2.4874j

-0.5854 ± 1.8620j

-1.3438 + 0.7527j

-2.1823 ± 2.6425j

-0.5809 ± 1.8561j

-1.3410 ± 0.7497j

-2.1891 ± 2.7878j

-0.5764 ± 1.8514j

-1.3387 ± 0.7473j

-2.1955 ± 2.9250j

-0.5721 ± 1.8477j

-1.3367 ± 0.7455j

-2.2013

-0.5680

-1.3350

± 3.0553j

± 1.8448j

± 0.7440j

Since we have the same mismatched control gains as section B.4, we will have the

same closed-loop poles (with k2 = 1.25). However, we gain added robustness in the

RLQR design. Note that there is little variation in the closed-loop poles of this system,

with two control variables and only one uncertain spring.
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