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ABSTRACT

The central topic of this thesis is the problem of gross invest-
ment in production facilities at the level of the firm or centrally
controlled industry. This subject has particular relevance for managers
charged with the responsibility of planning for future additions and
deletions to plant or other operations facilities and may also be of
interest to the economist, relating more generally to capital budgeting
and the micro-economic theory of the firm. A normative approach is taken,
focusing on the problem of developing plans which are in some sense either
"tgood" or "optimal". This is one of the few subjects for which a signifi-
cant body of literature comes from economics, engineering, and business
sources.

Many factors must normally be taken into account in the pre-
investment planning process. For example, product demand relations and
their behavior over time are key input variables, in addition to the
technological relationships which determine production costs. Investment
costs, cost of capital, and depreciation schemes are other important inputs
as, of course, is information about how costs of all types are expected to
change with time or facility use. Obviously, expansion and replacement
decisions will also be highly dependent on the economic characteristics of
production facilities existing at the beginning of the planning interval.
Usually a single figure of merit is chosen to evaluate investment plans,
such as net present discounted value.

In this thesis several situations are modeled, for which
possible solution techniques are suggested. Problems may have elements
of aging, represented by upward movement of operating costs through time,
encouraging replacement of old producing units. Most problem formulations
are nonconvex programming problems and hence are not trivial to solve.
Dynamic programming may be used to solve some of these problems, given
that certain simplifications are made in the interests of computation.
The case of fixed-charge linear investment cost is shown to allow greater
computational efficiency using dynamic programming where aging is not
present, and an algorithm based upon enumeration of points satisfying the
Kuhn-Tucker necessary conditions for an optimum is an alternative to



3

dynamic programming when retirement of old facilities either does not
take place or is pre-specified in time.

Periodic replacement of production units under conditions of
static demand is of interest primarily because the model results, if
investment costs are fixed-charge linear, in a pure integer program which
lends itself readily to solution by a branch-and-bound procedure. Com-
putationai experience with the dynamic programming models is described and
results of sensitivity analysis presented. More complex problem formula-
tions are likely to be beyond the practical limits of computability for
optimal solutions, as will be the case also with serially correlated
stochastic demand, so there appears to be much room for future development
of procedures which will provide good, although not necessarily optimal,
solutions for more realistic models.

Thesis Supervisor: Wallace B. S. Crowston
Title: Associate Professor of Management
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CHAPTER I

EXPANSION DECISIONS IN PERSPECTIVE

The subject matter of this thesis belongs to the normative

theory of investment in gross production facilities at the level of the

firm or cooperative industry. Descriptive theories of capital invest-

ment behavior, for which a large body of economics literature exists,

will not be directly addressed. Although the term "capacity" may be

loosely used herein, it will simply be as a convenient substitute for

"existing production facilities" or "gross quantity of capital plant

and equipment of appropriate types," since capacity in the sense of

capability to produce at a certain maximal rate may have nebulous

meaning in many instances.

For certain chemical and similar processes in near-continuous

production, physical capacity may be quite meaningful. However, for

many manufacturing and service processes, production can be increased

for a given set of facilities by increasing work force, going on over-

time production or additional shifts, leasing of space and equipment,

changes in purchasing, quality or service policies, subcontracting, or

some combination thereof. In such cases, a much more useful concept

is that of an output-cost relation of a set of facilities. Although
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some writers have attempted to define capacity in terms of output-cost

relations (DeLeeuw -5I), nothing useful is added for our purposes by

the artificial specification of "capacity" levels.

The approaches suggested in this thesis are especially

applicable to determining the size and time-phasing of independent pro-

duction units to be added to existing facilities. Such additions may

be complete parallel plant facilities or simultaneous proportional

increases in all capital, material, and labor inputs. Under such cir-

cumstances the new cost-output behavior can often be readily deduced

from the cost-output relations of each of the production units.

Embedded within any capital investment plan are implicit

assumptions about a host of operating problems. The relatively

uncomplicated operating problem of producing to maximize one-period

profit will be considered in the models presented in chapters three

four, and five. Within this production plan are lower-level problems

involving disaggregation of the period production plan within a fixed

plant configuration, such as work force determination, procurement,

inventory control, and production scheduling. The optimal solution to

such problems is assumed to be summarized by an approximate cost-output

relation for the firm.
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Many other factors are relevant in determining an optimal

expansion plan. Production and investment costs obviously must be known,

as must the form and parameters of the demand relation. If those para-

meters are stochastic, information about their distributions will be

useful. Solutions will be highly sensitive to the time-value of money

adopted, as it is primarily through this mechanism that multi-step

expansion will take place, and also in investment funds available. In

addition, aging of facilities may affect costs in a predictable fashion,

as may technological progress. Finally, the tax structure and depreciation

rate for capital investments must be known.

Chapter two reviews the currently available literature in

this field in a non-exhaustive fashion. Chapters three, four and five

present several models for expansion and replacement problems along with

suggested methods for solution. Chapter six contains computational

results for a simplified expansion-replacement situation, and chapter sev-

en discusses present limitations on the structure of problems for

which solution to optimality is practical and suggests most promising

areas for further research.
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Chapter II

SURVEY OF PERTINENT LITERATURE

A. Preliminaries

The literature relating directly to problems of optimal

facility expansion is relatively dispersed and disorganized. This

chapter will describe models and solution techniques which have been

proposed by writers for problems of gross investment in production and

operation facilities, as opposed to the timing and selection of

individual machine purchases. Also to be excluded from these dis-

cussions are the works of investigators which relate primarily to rent-

or-buy decisions or warehouse capacity scheduling, as these are rather

distinct problems from those of plant expansion. For the reader

interested in such topics, strongly suggested are the papers of Veinott

and Wagner [00,],Fetter [34], and Weeks et al [105].

The facility expansion problem has been variously defined by

its principal investigators. We will consider a facility expansion

problem to be one which includes most or all of the following elements:

1) facility investment costs, where facilities are usually considered

to be plants or logistics system elements, but can include the

basic producing entity of service industries as well
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2) facility operating costs

3) time-dependent demand, where quantity demanded (or sales rate)

may be either dependent or independent of other actions of the

firm (such as price-setting)

4) essential constraints such as output limitations or financial

conditions to be met

5) an objective function or measure of merit of the investment plan.

The goal is to find a plan of action including:

1) the points in time at which investments are to take place

(or alternatively the plant configuration which should exist

at each point in time)

2) information about the fashion in which the facilities are to be

operated in each time period

which will optimize the objective function.

The basis for most of the literature in the facility

expansion field is the classical present-value analysis. All costs

and all revenues are referred to a common point in time allowing direct

comparison of alternative courses of action. Although there are very

significant conceptual problems remaining with this analysis (see Baumol

and Quandt [ 5], Lorie and Savage [57], Solomon [90] or Weingartner [107])
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for a firm with either limited sources of capital or multiple sources

of capital and uncertainty about the future, these have been largely

ignored by the investigators in this field. Either an appropriate rate

of discount is assumed to exist and be known to the decision-maker for

net-present-value (NPV) analysis, or internal rate of return is assumed

to be an appropriate measure of merit for the investment plan.

A general model using the criterion of net-present-value

for evaluating investment policies has been presented by Riesman and

Buffa [80]. The most general situation that they describe is that

involving replacement (C), operating expenditures (E), revenues (R),

purchase price (B), and salvage value (S). For this "CERBS" case

the worth at time zero of the investment plan is P = B - S + E R,

or.

n n

p = Z [Bje T] _ Z [S (T )e (Ti+l]
j=O j i= ( j+1 i=o

n Tr
+ Z[ -r JtJj=O _e 9i(t)e-rdt]

n T

. e-r Ti. j+l ' rtJ=Oer iO -f ( )rtdt ] 
0
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where r is the rate of interest and n is the number of replacements

being considered. Each item in a succession of replacements, , may

have its own characteristic purchase price B, salvage value S,

revenue and expense functions R (t) and E (t), and economic life T.

Other investment models, drawn predominantly from the area of machine

replacement policy, are shown to be special cases of this model. For

example, the Terborgh [97] model including an "operating inferiority

gradient" reduces to the "EB" subcase, in Riesman and Buffa's termin-

ology, while the Dean [23] model is the ERBS" subcase. Mst of the

plant expansion problems in this section will fall into the "ERBS" or

"CERBS" subclasses and may, additionally, have elements of uncertainty.

It should be noted that, although the Riesman-Buffa model can be utilized

to evaluate any deterministic plant expansion plan, it does not provide

a means of selecting an optimal one; normally there will be a large,

often infinite,number of alternative investment plans to consider. This

basic framework has also been adopted by Morris [76] in his discussion

of problems of "capacity maintenance," actually equipment replacement

policy.

As will become evident, most of the investigators in the

facility expansion area have directed their efforts to providing

solutions to this problem of optimal planning and selection of an
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optimal investment strategy from the many available. For the most

part, the operating problems considered have been quite simple, often

merely to provide at least the number of units required in each time

period. Forecasts of sales are hence prime input to such models.

Although Corrigan and Dean [20] and others have cautioned that the size

of the plant should be based on meticulous market research on static

price-volume relationship, rate of growth of the product class, and the

rate of penetration of the firm's product, many of.the analyses have

ignored such sources of information. As will be noted, several more

ambitious researchers have attempted to include more complex operating

problems in their models, such as those involving transportation and

backorder decisions.

B. Expansion as an Economic Problem

Much of the early literature in the area of micro-economic

theory is concerned with production by the firm. With the usual objective

of each firm to maximize profits, the equilibrium conditions in the

market have been examined for a variety of pathological cases. This

static analysis most often presumes that but one production technology

is available to the firm; hence the short-run cost-quantity relation

differs from the long-run relation only because of limitations on

quantities of factors available, but not due to types of factors
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(i.e. plant configurations). The dynamic case of production to meet

time-dependent demands and appropriate choice of production tech-

nologies for the individual producer have been largely neglected by

the early writers.

Although the consequences of any investment policy can be

evaluated on a period-by-period basis through use of such theory,

little guidance is provided for selection of plant size, processes,

and time phasing in the classical literature. It has been relatively

recently that economists have addressed such questions, motivated to

a great extent by the modern-day development of input-output models by

Leontief.

Consideration of expansion decisions has sometimes been

included in economic theories relating to supply. Lucas [58] has

examined present-value optimizing conditions for firms in a competitive

industry. Assumptions include output a linear homogeneous function of

labor, capital, and investment goods purchases, Q(t) = F(L(t), K(t),I(t)),

in order to introduce the "fixity" of capital explicitly into the

formulation, thereby distinguishing between the short-run and long-run

supply behaviors. Hence a transitional period is required for the

firm to arrive at its new long-run equilibrium following a change in
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external market conditions. Physical apital depreciation by expo-

nential decay is assumed.

The usual marginal conditions are obtained, providing the

interesting. result that for constant prices, net capital stock will

grow at a constant rate. Oddly enough, the slope of the short-run

firm supply curve may have either sign. Due to the adjustment lag

equations, supply price (horizontal long-run supply curve in a

competitive industry) increases with the growth rate of industry

demand, the demand growth mechanism operating proportionately in the

quantity dimension.

The model indirectly provides firm and thus industry

demand relations for capital investment goods. From a practical stand-

point, however, such information may be of little value to an actual

firm facing horizontal supply of capital or purchasing specialized

equipment for which supply may even be downward-sloping but independent

of other firm's purchases. Homogeneity of capital and lack of purchase

economies in capacity are implicit.

Perhaps the best-known application-oriented economics

treatment of expansion investment is that of Alan S. Manne [65]. He

·t·
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has examined a succession of models in the area of optimal time-phasing

of production facility investments, arid he has applied his results to

several industries. The simplest model described by Manne is that

for a linearly growing deterministic sales rate with plants of infinite

life. The object is to always have at least sufficient productive

capacity to meet the sales rate, while adding plants of a size which

will minimize the present value of costs over an infinite horizon.

Excess capacity, when plotted, then displays a sawtooth pattern similar

to that of the Wilson-type inventory model (Figure 2-1).

capacity-
demand

lime

Figure 2-1

The installation costs that result from a single capacity increment

capable of producing x units are assumed to be given by a power func-

tion relation: kxa, k>O, O<a<l where the physical unit capacity is

taken for convenience to be the annual increment in sales. Hence, if

C(x) is the sum of all future costs discounted by factor r, looking

forward to an infinite horizon, we may write down the following recurs-

ie equatio: C(x) = kxa erX(x)ive equation: C(x)= kx + e C(x).
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a

It follows that C(x) - . We find the value of plant
--rX

1-el.,erx
capacity x which minimizes the stream of costs C by differentiating

with respect to x and setting the result equal to zero, obtaining

rx
a =.

rx_1e -l 

For probabilistic sales increments it has been hown that

the above formula is modified only by replacing r by a constant factor

- X which depends on the degree of uncertainty.1 It has-been further

shown by Srinivasan [91] that for exponentially growing demand plant

additions should take place at times tn = 0, t, 2t, 3t, ..., nt, ..., T.

Cases involving backlogging, multiple producing areas, and other com-

plications to the basic model have also been worked out by Manne and

Erlenkotter 67], and have been applied to data from metals, cement,

and fertilizer industries of India. Wein and Sreedharan [104 have

applied a quite similar analysis to the Venezuelan steel industry.

The operating problems considered in such models are quite

simple: either keeping capacity always above demand or determining

1 The increase in average surplus capacity over time resulting from grow-

ing demand is consistent with a proof due to Smith [ ]. that an increase
in the variance of demand in the static case will result in an increase
in unutilized capital stock of the firm for production functions with
inelastic substitution of other factors for capital.
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how much of demand to meet in the case of penalty costs for not meet-

ing demand (imports create a balance of payments problem; hence an

import penalty cost). Marginal operating costs are assumed either

zero or constant up to some capacity level of output, at which point

they become infinite (Figure 2-2). Furthermore, as demand-price

relations are not explicitly considered as a determinant of output,

revenues do not appear in these analyses. The objective is always to

minimize the present value of costs.

/

marginal cost

Qcapacity

Figure 2-2

Another interesting model has been proposed by Kendrick [51]

for programming investment in the Brazilian steel industry. Basically,

demand for final product which must always be met is assumed to grow
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over time, with a transportation-type linear program to be solved in

each time period for the optimal routing of intermediate products

between plants. Integer variables are used to represent the presence

or absence of new plants in each time period. Hence, a rather

difficult-to-solve mixed integer program results for the finite

horizon case, and a relatively complex operating problem is considered

for each period. Algorithms and heuristics for solving such fixed-

charge transportation problems have been developed by Sa [82] and

others,butonly relatively small problems can be solved at this time.

As in the Manne-type models, only additions of independent producing

units are considered, and a single basic product supplied.

Although such models are often useful for prescribing the

optimal growth path of large homogeneous industries, lending themselves

well to theories of gross investment behavior, their value to the

individual firm for determining its best expansion strategy is

questionable. The many assumptions about sales rates, costs, and

demand structure are unrealistic reflections of the environment of the

individual firm, and the models contain insufficient detail to make

use of all of the information that may be available to the manager.

Many of these deficiencies, from the point of view of the individual

business, have been ameliorated by models proposed by researchers in

the process engineering field.
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C. Engineering Approaches

The plant expansion investment problem has been treated

in some depth in the process engineering literature. Mathematical

approaches to the subject may have been encouraged by the relatively

reliable relationships among inputs, costs, and outputs, particularly

in the chemical industries, and by the analytic training of the

management personnel in such industries. The models developed, how-

ever, often have more general applicability than to one particular

technology.

In many of these analyses, the relation between initial

investment or fixed operating costs, K, and capacity, C (as an upper

bound on output) is of the form

K = b( ) 
0

where C, b and e are the values for some known investment K . Hess

and Weaver [43] have utilized this empirically determined relation in

determining optimal plant size for uncertain static demand. For the

criterion of maximum rate of return they show the optimal capacity C

to be the solution of
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* OK
prob. (demand > C ) 0 o

C 
0o

Using the power function investment cost relation, Salatan

and Caselli [83] have examined the optimal design of a multi-stage

plant for the case of a static sales rate but uncertain capacity.

When sequential stages of production each have stochastic capacities

2with mean u and variance s , the plant capacity will also be a pro-

bability distribution, but with mean u'<u and variance s < s2 This

is known as the concatenation effect (Figure 2-3). All investments

are evaluated according to their level of "present cash equivalent"

or NPV.

It is assumed in the Salatan-Caselli model that capital

costs vary as an exponential power of the mean expected plant capacity

of x units and that unit average operating costs can be expressed by

an equation of the form: AC= r + fCo/v,

0

where f = a proportionality factor

r marginal cost

CO = mean expected capacity, and

v = actual throughput.

Hence, a linear total cost function with positive intercept is required.
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required
takeoff v

probability distribution of
actual plant capacity/ 

I - ' I probability distribution of
.,t "'-,equipment unit capacity

, , s~~~~~~,

~~~ .1 I _ _ _

Throughput, MM LB. YR.
mean expected mean expected
plant capacity x equipment capacity

Static Case with Uncertainty in Plant Performance

0.6

0.4

0.2

f

-2 -1 o 0 +1 a +2

Concatenation Effect on Probability Distribution of Capacity

Figure 2-3
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For constant demand rate and uncertain, normally dis-

tributed design capacity, the marginal conditions for the optimal plant

size C with expected throughput x have been obtained with the use of
o o

the calculus. For increasing sales at an uncertain but constant rate

optimization leads to an integral equation which has been solved

numerically, under the assumption of deterministic design capacity.

The interactions of multiple stochastic elements in capacity, demand,

and rate of growth of demand have not been worked out, however. Plant

expansion in more than one step is not considered in this analysis. As

in the previous modelss the marginal cost function is constant up to

stochastic capacity output, at which point marginal cost becomes

infinite. The mathematical precision of the cost functions, as well

as the requirement of constant rate of growth in sales are further

limitations of this method, although for products with stable growth

and well-defined processes, as are often found in the chemical indus-

tries, such assumptions may not be unreasonable.

A quite similar model has been proposed by Coleman and

York [17]. The chief innovation of their presentation is the treatment

of sales.growth uncertainty. Rather than consider sales growth at a

constant but stochastic rate, sales are assumed to grow at a constant,

known rate until a cutoff date, To, at which a leveling off takes
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place (Figure 2-4).

T1 T2 T30 0 0

Figure 2-4

Uncertainty enters the model in the form of prior probabilities for

several estimates of T
0

Plant expansion policies can thus be evaluated either

according to expected NPV or by following a minimax principle

(which is more appropriate.for . 4ecision-making in the face of
a conscious opponent or adverse nature). In

the latter case the authors suggest designing the optimal plant for

each of the estimates of T , and choosing the one which minimizes the

maximum loss. By sacrificing some of the economies of scale by expand-

ing in small increments (regularly spaced as in Manne et al), the firm

is in this case able to hedge against an unfavorable demand outcome

and at the same time assure a reasonably good position with respect to

the most favorable outcome.

Ql
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Another problem of interest in the chemical-engineering-

economics field is the expansion of multi-stage facilities. Each of

N sequential stages may be expanded independently, but the consequences

of expanding any stage will depend upon the new state of its following

stage. Generoso and Hitchcock [36] have examined the expansion in one

step of such multi-stage facilities, based upon an earlier model of

Mitten and Nemhauser [73]. They assume that the return from each

stage depends only on its own state and the state of the following

stage. Three possible decisions 0 are allowed for each production

stage:

1) replace the stage with one of higher capacity

2) add a new unit to the existing stage

3) use the existing stage at a greater throughput.

The optimality criterion is taken to be "venture profit,"

the incremental return over the minimum acceptable return (defined

to be the interest rate times the increase in fixed and working

capital). A recursion relation is developed at each stage n of the

form

fn(xnl) max {V(xnl 0n) + fn+l(xn)} j
n n-i j-1,2,3 n+l n
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where V is the venture profit for the stage and x is the state result-
n

ing from decision n. Computer solution time for a six-stage, three-

state-per-stage dynamic program to solve the above is given as one

minute (IBM 7044) including calculation of all input parameters.

Although the solution method optimizes expansion of the

entire production chain in one step only, the authors suggest (Case II)

that multi-step expansion can be treated for a finite horizon if all

possible expansion paths of capacity by equally sized increments have

each expansion step optimized by use of the single-step procedure.

Each expansion route then has embedded within it several single-step

problems, and there are likely to be many such routes to consider

(Figure 2-5).

0 1 2

Y ear

3 4 0 1 2 4

Year

Figure 2-5

44

X 36

m28
Po

20

12

44

.36
P4

28

P20

12

) 1 2

Year

3 4

15~~~4

_ A I '



30

D. Plant Expansion in the Management Science and Related Literatures

The management science literature in the area of plant and

facilities expansion draws heavily upon the economic and engineering

approaches to the subject. Those differences that exist are likely to

be ones of emphasis in problem formulation arising from differences in

goals, information base, and the degree of abstraction believed to be

justifiable. Frequently the scope of the expansion problem considered

is somewhere between the macro industry viewpoint of the economist and

the viewpoint of the process engineer often concerned with an indivi-

dual facility producing a particular homogeneous chemical as part of

a much larger production complex.

Before proceeding to the dynamic case of plant expansion

to meet changing demand, a discussion of optimal plant size or type for

a static environment may be useful. Usually choice of optimal pro-

duction technology under such conditions requires a tradeoff between

several cost categories. One example of such a tradeoff is that

between marginal and capital or other fixed costs of the firm. A

technology requiring great investment in facilities and equipment

usually has lower marginal (predominantly labor and materials) costs

than a less-capital-intensive operation, for production of the same
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product. Yet we see few industries that are either totally capital

intensive or totally labor intensive. Thus we suspect that some

intermediate mix of the two general factors is likely to be optimal in

such industries (Figure 2-6). Similarly, tradeoffs usually exist

between the capital costs of specialized machinery and defect costs

(perhaps due to uniformity or quality of the product), and between

general production costs and transportation costs.

Bowman [9 ] has considered the problem of warehouse

sizing (also applicable to plant sizing) to be a tradeoff between

operations and transportation costs. Unit cost is assumed to be a

function of both scale of operations in terms of dollars of product

supplied (v) and the area served by the facility (A):

1/2
C = a + b/v + cA /

The parameters a, b, and c are obtained from a cross-sectional regress-

ion analysis of existing facilities in each district. As c is an

empirically determined constant, the demand environment is assumed to

be static. Investment costs are ignored in this analysis. The optimal

scale of operations is found through use of the calculus for each

existing facility.
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A more complex problem of optimizing plant location and

sizing, in which only a single-step expansion is allowed, has been

formulated by Klein and Klimpel [53]. Total production cost for each

of several potential production sites i is represented by a power

function of sales plus a fixed charge. Transportation costs are linear

functions of the quantity to be shipped annually from each facility

to each demand point. For multiple demand points j and either finite

or infinite horizon, the nonlinear program with minimization of the

present value of all costs as the objective function results:

msin: NPV of production, investment (fixed), and shipping
i costs

st. ZP Mj
iijk jk

Si>0 , Pijk > 0 

where Pijk is the number of units shipped from i to j in period k,

Mjk is the demand at j in period k, and Si is the plant size selected

for site i. It is assumed that the single step establishment of plants

will take place simultaneously at all potential sites. Rosen's

gradient projection method is used to solve the above nonlinear program

for several small problems.
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As mathematical programming may be utilized to solve

certain other complex single-period operating problems, a possible

method of identifying the best multi-step expansion plan is by enumera-

tion of alternative plans for facility expansion, each solved for

optimal period operations, selecting the one with the greatest discounted

value of all revenues less costs. Rappoport and Drews [79] have adopted

this approach in a study of petroleum facilities expansion. A linear

program is solved for each period and possible facility configuration

to satisfy all demands for petroleum products at minimum total operat-

ing cost. The present value of all operation and net investment costs

are then compared for each of the alternative facility expansion plans

examined. This procedure is obviously useful only when the number of

feasible investment plans is relatively small.

Other writers in the field have considered far less com-

plex operating problems, however. Lawless and Haas [55] approach the

problem of what size plant to build by considering a set of alterna-

tive courses of action over a relatively short horizon. Four possible

expansion plans are given in their example:

1) Build to match the six-year sales forecast

2) Build to match the three-year sales forecast and add
one increment of expansion during the third year to
meet the sixth-year requirement if needed
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3) Build to match the two-year sales forecast and
add two increments to match the fourth and
sixth year forecasts if needed

4) Build the minimum-size plant required for the
first year forecast and add an increment of
expansion each year for five years if needed.

Thus, only equally spaced expansion increments are considered. Invest-

ment costs of plant depend upon output capacity according to a power

function relation:

cost of plant a (capacity of an
cost of plant b capacity of b' 

Six conditions, corresponding to different patterns of deviation of

actual sales from the forecast are examined, and the NPV of each

expansion plan is calculated for each condition. The rather detailed

NPV calculations have been transformed to a set of easy-to-use nomo-

graphs. A feature of this model is that finite construction times for

plant and additions can be easily taken into account. Operating costs

of the plant configurations are ignored.

White [108 has also examined the problem of developing an invest-

ment plan for expansion to meet increasing demands for several products.
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The cost function that he uses is linear for each product:

E = f + gDt

where E is the total annual cost and Dt is the average annual demand
th~~~~~~~~~

during the t year. New parameters f and g result from each facility

expansion investment, assumed to be in increments which cost $10,000

each. Thus the Riesman-Buffa model could be easily utilized to deter-

mine the optimum expansion path in the absence of external constraints.

However, in this model the firm is assumed to have a limited amount of

capital, Z. Dynamic programming is used to determine the optimum

allocation of funds to expansion of facilities for each of the products.

The basic recursion relation is

f (z) = max {gn(x v ) + fn-l(Z-Xnvn)}
n Ox</ n n n n-l n n 

n n

where n designates the product number, x is the number of increments

th
of additional facilities for the n product, v is the cost of an

n

additional increment, and z is the unallocated capital at stage n. A

maximum of two increments in capacity for each of the products is

allowable within the finite horizon. Furthermore, no additional funds

are expected to be available in the future in this model. Rather



37

laborious calculations are presented for a four-product, six-year

horizon example.

Only rarely in the literature have the prices of factors

of production been explicitly considered in seeking optimum expansion

policy. Horowitz [46) has considered the problem of optimizing plant

size for a dynamic price-quantity relation for a product which requires

conversion of raw materials and labor into a more-or-less homogeneous

product. He describes his article as an exercise in algebra of dis-

counting which results in the presentation of (these) answers in a

form that is readily understood by management."

The net profit in a given year i from a plant constructed

by the conversion of a raw material m into a final product will be

equal to

= (Pfqf - pmqm - W - F - V - D)(1- tax rate) ,

where qf is the average quantity sold during the year, pm is the

average price paid for the raw material, qm is the quantity of raw

material ued during the year, W is the wage bill, F is fixed cost

other than depreciation, D is depreciation, and V is other variable
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costs. Horowitz then assumes functional forms for q, p, W, V, and D,

and finds optimality conditions for the present value of net profits.

Multi-step expansion is not considered. Horowitz's analysis differs

from most economics approaches in that although the price-quantity

relations for the final product change over time, the sales price of

the product, once established, is constrained to remain constant over

the remainder of the planning period. Horowitz has also examined a

simple one-step plant expansion problem in which the price-quantity

function for the good is stochastic, taking expected present value as

the evaluation criterion.

Another investigator who has explicitly considered the

price-quantity relation is Lesso [56]. He has developed a model for the

addition of independent producing units for a single product. For a

given number of producing units and price-demand relation for each period,

an allocation of production to each of the units may be found which will

maximize after-tax earnings. Each production unit is assume to have a

linear or convex total cost function. An inconsistency in this sub-problem

exists, however, for total demand Dt as a forecasted constant appears in

constraints of the form

total output of existing producing < D
units in period t t

although optimizing after-tax earnings will generate prices and total demand

quantities which may not correspond to Dt.
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A main problem is then formulated assuming that a solution

to the sub-problem has been found for each sub-period. A set of inte-

ger decision variables represent the point at which each of the pro-

ducing units is brought into operation, and an integer program to

maximize the net present value of all after-tax earnings subject to

constraints on the maximum allowable debt-equity ratio of the firm

results. A branch-bound algorithm is presented to solve the complete

problem. Although the model is a deterministic one and cannot handle

arbitrary expansion of existing facilities, it does allow for fairly

complex treatment of financial variables and taxes, including depletion

and similar allowances.

A simple model which does allow for arbitrary expansion

of existing facilities has been presented by Gavett [35]. Given an

economy of scale in capital costs and forecasted demands which must be

met the problem involves a trade-off between the economy of scale and

the capital cost of unutilized capacity. Operating costs are not con-

sidered in this model. If we define K(t,w) to be the capital cost of

expanding in period to meet period t's demand and to be the present

value of a dollar spent in , the functional equation can be written

for a finite horizon T:
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ft = min (cvK(t,w) + f) 0<t<T

A simple example is presented utilizing this relation. Luenberger[59]

has utilized a similar capacity model in illustrating a cyclic

dynamic programming procedure using Lagrange multipliers. Here,

however, a rather simple aging process is assumed: capacity disappears

from the system after a fixed delayof L years regardless of the size of

the original capacity increment or date of installation. Unfortunately,

his algorithm fails miserably in an example using concave investment costs.

Practically all analyses of expansion have assumed that

the investment cost of specific facility alternatives are invariant

to when the expansions take place. Hinomoto [45], however, has in-

vestigated a problem of expansion in which investment cost W of a

facility of size x may either rise or fall as an exponential function

of the date of the period, t, in which purchase takes place:

W = K(z)e-kta 

Similarly, the average operating cost curve of such a facility is assumed

to decline exponentially with t due to technological progress.
a

Optimality conditions are worked out for optimum plant size

z of each facility to be added to the system and output and price in

each period for time-dependent price-demand relation. This type of

analysis is more of a contribution to the state of micro-economic theory

than an aid to actual decision-making, as the system of equations are
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likely to be impossible to solve for expansion in more than one step.

It is mentioned in this section, however, as it appears in a publication

oriented towards management acientists rather than economists.

Operating and planning decisions may require information

not only about investment and production costs, but about other costs

as well. Erlenkotter [30] has examined multi-step expansion for

several producing locations. His model seeks to minimize total dis-

counted shipment and production costs which are directly proportional

to quantity plus incurred investment costs over a finite horizon, while

meeting projected demand quantities. Revenues are not explicitly

considered. Dynamic programming is used with n-dimensional state and

decision variables, where n is the number of potential production sites.

The operating problem employs a simplex-like algorithm to minimize

total transportation and production costs for each state. Computa-

tional results are presented for problems involving at most three

producing locations.

Other researchers have, while employing relatively simple

models, attempted to investigate the relationship among other mana-

gerial variables. Chang et al [13] have utilized the basic Manne

equation for optimal investment intervals previously described to

examine key managerial measures. Principle findings include unit

capital costs as a decreasing convex function of the growth rate of
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demand, risk of idle capacity ( taken to be mean absolute deviation of

excess capacity as a percentage of average capacity between expansions)

relatively insensitive to the discount rate in the short run, and risk

of idle capacity as an increasing concave function of demand growth

rate. An analysis of the paper industry indicates that the larger the

firm, the lower the apparent discount rate that has been applied to

capital budgeting (implying a lower risk premium and a greater

aggressiveness for such firms). Discount rates are imputed from

expansion according to the Manne model, given a capacity scale economy

factor of .8 and historic observations of expansion intervals. It is

found that market share has generally increased with increasing risk

premiums, suggesting that hitherto unexamined operating diseconomies

may exist for larger firms.

Along similar lines, Chang and Henderson [12] have noted

that, for capacity additions as predicted by such models, industries

with linearly growing demand will have a floor beneath which unit

capacity costs can never fall, while such is not the case for geometric

demand growth. In addition, smaller size firms will in either case

exhibit greater changes in unit capacity costs (assuming constant

relative market shares over time), presumably contributing to their
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greater profit volatility.

Although not necessarily associated with a particular

model or solution method, corporate simulation techniques have been

employed as an aid to business planning in which capital investment

is a major factor. Using Industrial Dynamics, Swanson 95] has

analyzed the problem of developing effective management decision

rules for the firm in a competitive environment. The firm is

assumed to control the flow of resources (possibly including

physical and working capital, production and engineering personnel,

and marketing effort) which determine the firm's competitive

position (delivery delays, product performance, reliability, and

price, etc.) in the market.

Information gained from observations of the firm's

present and past performance is then employed, in part, in making

resource control decisions (Figure 2-7). The merit of capital and

other resource policies may lie not only in the pattern of future

cash flows, but also in the robustness, rapidity, and longevity of

uninterrupted sales growth, or other non-monetary measures. Although

the projected performance of relatively complex nonlinear feedback

systems including the essentials of several functional areas can be
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observed through simulation for a variety of different policies,

the optimal policy can rarely be found. A good, but suboptimal

solution to a more realistic model including capital expenditure

may, however, prove to be of greater value than an optimal solution

to a simpler model.

E. Comments and Conclusions

The literature in the field of plant expansion appears

to be somewhat chaotic. There does not exist two or three basic

problem formulations for which investigators have suggested solution

techniques, as there is in the facilities location literature, for

example. Nearly every investigator has set forth a different problem

within the general area of plant and facilities expansion, with a

unique set of givens, constraints, and objective function. Hence we can

point to no work or group of works that represent the "state of the

art" today.

There are many areas for improvement and extension in the

treatment of capacity expansion investment decisions. Of course, one

could mention that a synthesis of the distinct features of the

specialized models would be a significant step to take. For example,

including elements of uncertainty, technological improvement, capital
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rationing, and multi-products, or combinations thereof in a single

multi-step model would be an advance. Including the price-quantity

relation in those models that ignore revenues would likewise produce

useful models, although perhaps ones quite difficult to solve. It is

unlikely that solutions including complex operating problems relating

to transportation for multi-location expansion will be satisfactorily

obtained in the near future for large problems, for even the static

plant location problem has by no means yet been completely conquered.

The incorporation of seasonal sales fluctuations in forecasts for a

model including price-quantity relations should not be too difficult,

however, and may provide more accurate estimates of points in time to

phase in capacity.

Other significant questions have not been considered at all

in the literature to date. For example, deterioration in facility

efficiency as a result of age and obsolescence is one important factor

influencing actual facility expansion decisions. In addition, all

approaches described in this paper for handling uncertainty ignore the

learning that may take place when demand either misses or exceeds the

forecasted levels at intermediate points of time in the forecasted

planning period. It may be possible to apply decision theory in the
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solution of such a problem.

Another phenomenon worth investigating is the interaction

of the expansion plan and long-range pricing policies. Expansion

with explicit price-demand relation will, in general, determine the

optimal price to prevail at each point of time in the planning

horizon. However, management may desire constraints on the price

that they will charge in this period, or simply require that

significant fluctuations in price (which may become optimal when

the design capacity for the facility is approached) be avoided.

Evaluation of the effects of these and other constraints on the

optimal expansion plan would then be of value to the decision-maker.

Sobel [89] has examined a short-range stochastic problem involving
the joint regulation of production and capacity which can be acquired
and disposed of at constant per-unit cost. The resulting analysis of
optimal policies appears to heavily depend upon the convexity of such
costs.
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CHAPTER III

A MODEL OF EXPANSION

The selection of an optimal expansion plan is essentially

a problem in production system design. For each of the possible

combinations of facility configurations that may exist at points in

time within the planning period, a figure of merit, cumulated net

discounted profit, may be obtained. The calculation of net operating

profit in each time period assumes optimal operation of the available

facilities. In the models to be examined in this chapter, optimal

operation simply requires determination of the best output quantity of

the product at each point in time for the design-determined operating

cost characteristic of the firm. Although a single product is assumed

in the analysis to follow, the principles are readily generalizable to

the multi-product firm, requiring only operating costs a function of

the output of each of the products and a price-demand relation for each

product. This section will treat expansion to meet non-decreasing

demand in which the production system design for each point in time can

be completely described by but one or two parameters in the operating

cost function, and in which the set of feasible designs is limited to

those for which retirement of production units is either prespecified
or nonexistent.



49

Unfortunately, from the standpoint of efficient

computation of optimal investment policies, the objective functions in

such models are generally neither convex nor concave functions of all

the decision variables. Hence, local-optimum-seeking methods may be

of limited use for such problems. Variables will reflect physical

changes made to the production system, such as capital additions to

take place at points in time. Capital investment will not normally

be a continuous function of time, in contrast to models advanced by

Lucas [58] and others for homogeneous capital without economies of

acquisition or process technology.

A. Revenues

Two examples of concave revenue functions are those

associated with linear and constant-elastic demands. The linear demand

model is

R
p -- D(T) - Cq, D>O 1

q
where denotes time.

Revenues are clearly concave in q for this case:

R -- -Cq 2

2
a 2R=_ 2 0O ,

Bq

For simplicity of exposition and because of possible practical difficulties
in estimating future demand parameters, we assume that only one of these
is time-dependent. One could, however, assume that C also changes with
time.
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For constant-elastic demand,

p= R = D(T)ql/e D>O, e<-l, wherelelis a constant
q demand elasticity .

Revenues are also concave in this case:

R D(T)qi/e + 

2 2R DT 1 + ll/e- 1DC(-+ l)q< 0 
2 ) e l e

Bq

Revenues depend on time-dependent demand parameter(s) D(T) and thus

R = R(D(T),q). For non-stochastic demand parameters we may simply con-

dD
sider R = R (T,q). In any case, it will sometimesbe assumed that - >0 and

that an increase in D will result in the new demand curve being every-

where above the old one.

B. Operating Costs

One useful function that may approximate the actual operat-

ing cost behavior of a size S plant is
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j
J. ajq

-TC(S,q)- FC(S) + I -
1 , = siJ

, a>0, S>O.

Fixed operating costs are represented by FC, while quantity-variable

operating cost is a weighted Jth-order polynomial of output. If

i. = -1 and if fixed operating cost is proportional to S,
J

FC = a S
0'

then the minimum-average-cost point in q for this cost function

will be independent of S. This is easily demonstrated.

Average cost, AC, in this case is

.a0 J

A j=l

j -1

- l

*
Let AC be minimum average cost. At AC necessary

a minimum include

aAC a S J
=0=- + Z

. q q j=l

conditions for

aj -l) q -2

Sj -1

3.2'.2

Multiplying 3.2.2 by q, we obtain

ao. J
0 = - + a (J-1)Q

Q j=1 

3.2.3

where Q = q/S. Q*, the solution to 3.2.3, will be a constant for

fixed parameters a. Then

3.2.1

*
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, a0 *
AC = ° + Z a(Q) 

Q j1 j

minimum average cost, will be the same for any plant size, so there

are no long-run economies of scale (figure 3-1).

A more realistic assumption is that such scale economies are

present, and that minimum average cost declines with plant size

(figure 3-2). With fixed cost proportional to S this will occur for

i. > j-l in (3.2.1). Another mechanism by which this may take
J
place is by fixed production costs (including overhead) being less

than proportional to plant size. For example, take

FC = (aS) , 0<s<1.
0

a qj
With i>0, the terms i in (3.2.1) are convex functions of

S. Thus for C = a0 S , TC is convex as the sum of convex functions.

Where convexity of TC is required with fixed cost scale economies,

the condition

2TC = a (jB-1)S 2 + )ijq

o ~~~~ij+ 2

as 2 0

must obtain for the plant sizes and outputs in question.

Such an operating cost function, with or without the requirement that

ij=j-l, is a relatively rich one, as it can easily approximate a wide

variety of actual output-cost relationships if J is made sufficiently

large. Hence it has been employed in the computational work

described in Chapter VI.
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In order for an aggegregate size parameter, S= Sk, where Sk

represents the size of the kpast capital increment, to be sufficient

to accurately describe the operating cost function in the case of

perfectly independently operating production units certain properties

of marginal cost (MC(S,q)) are desired. TC(S,q) in this case must

implicitly provide an allocation of production to existing units in

an optimal fashion - on the basis of equal marginal costs. For this

to be so with knowledge only of size parameter S we require that the

actual inverse marginal cost function q = q(MC,S) have the following

property:

q(MC,S) = jq(MC,S). 3.2.4

Consequently, the marginal cost function of size S plant with

optimum allocation is the horizontal summation of the marginal cost

functions of each production unit. This is illustrated in figures

3-3a,b,and c.

If marginal cost of one or more production units is decreasing

for some values of q, actual production system marginal cost can

be kinked, as in figure3-4c. Equation (3.2.4) is not applicable, as

the single-valued inverse does not exist in this case. One would

then require knowledge of each of the Sk. If each production unit

has total operating cost given by (3.2.1) with i=j-l and identical

aj,j=l..J, then (3.2.4) will be valid and an aggregate size parameter

will suffice to describe the system.
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In addition to size, the plant age may be an important determinant

of operating costs. A parameter H which increases with age may then

be included in the production cost function. For example, we may

replace some or all of the a by Ha. or some more complex function

of H. In any case, the essential idea is to include a simple means

by which aging can be reflected in production costs.

C. Operating Ptofits

Profits are assumed to depend o demand parameter which changes

with time (D(T)), production system state ( e), and output (q) only.
operating profits are defined as revenues (R) less operating costs

(TC) adjusted for taxes:

I(D(T),S,q)= [R(D(T),q) - TC(e,q)] [1 - tax rate] .

System state. may be size (S), size and average age (scalars S,H),

sizes and ages of individual units (vectors S,H), etc. The optimal

profit function is defined to be the maximum profit obtainable

at time T from facility of configuration: e:

r(D(T), ) = max {I(D(T), 4q)} . 3.3.1
q

At optimal output q satisfying (3.3.1) marginal cost will be

equated with marginal revenue:

aR -
- q * 3.3.2

q R q ·

This is not the accountant's "operating profit," usually defined
to be sales revenue less all production and operating expenses, since
depreciation is not inclu'ded as an operating expense.
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Should cost be a convex function of q and S and revenues be concave in q,

then will be a concave function of both q and S and Twill be a concave

function of S as the maximum over q of a concave function.

For discrete-time formulations the average n th-period demand parameter,

Dnp may b substituted for D(T) in the profit function .

With single size parameter S .the operating profit function

is likely to have the general shape illustrated in figure 3-5.

With inclusion of a single age parameter H in the operating cost

function, the isoprofit lines will be everywhere further to

the right (left) in the diagram as H is increased (decreased).

D (or if > ')
F.ure 3-5 
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D. Investment Costs

Investment costs are defined as those net costs to the firm

after subtraction of discounted future tax savings through depreciation.

For example, with accelerated double-declining balance depreciation

factor O<d<l, the one-period depreciation allowance n years after

capital increment of size s costing I(s) is 2 dn(l1-d). Hence, the

increment in after-tax profit in year h is 2(taxrate)Idn(ld), and
1

the present value discounted by factor 1--+ of all such potential

net profit increments at the time of investment is

2(taxrate)i(s)(l-d) hO a ndn .

So net investment cost is

I(s) =I (s) 1 2(taxrate)(l - d)]
1 - a.

It should be noted that the double-declining balance method

of depreciation assumed here is quite common and requires that the
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depreciation for each year be found by applying a rate to the book

value of the asset at the beginning of that year rather than to the

original cost of the asset. Book value is cost less total depreciation

accumulated up to that time. If the declining-balance method is used,

the tax law permits the firm to take double the rate allowed uxider the

straight-line method. For the purposes of this model, the depreciation

rate d chosen is assumed to reflect the average life of similar plants

(probably in the neighborhood of 25 years), chosen solely to satisfy

Internal Revenue Service regulations. A typical value of d might be .9.

In actuality, the rate of obsolescence and deterioration of the plant

may be treated quite independently of the depreciation structure in this

model, being perhaps reflected by rising operating cost curves for the

aging facility.

This analysis assumes, further, that significant operating

profits will be obtained in each subsequent year, so that the antici-

pated tax savings will be realized. For a well-established firm con-

templating major capital expenditures such an assumption is not unreason-

able, and this treatment constitutes also a good approximation to costs

when losses occurring in anomalous years can be carried forward for

tax purposes.
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Facility investment costs are often characterized by

economies of size. Thus, the per-unit cost of the production unit

decreases with increasing size. Approximation to such costs may be

through a variety of functional forms. For example, the fixed-charge

linear investment cost function.

I(s) = k1 + k2s, s>0 k1, k2>0

= 0 s=O

has such economies, as does the power-function relation

k2I(s) = kls2 Ok2< 1 , kl> 0 3.4.1

The latter has been observed to hold for certain industry groups

(Chilton 16]) with .5k2< 9. In addition, such investment costs may

depend on the time in which such investment takes place, and thus have

time-dependent parameters.

E. Expansion in k Steps

A k-step expansion policy is defined as the set of expansion

time-action pairs (Ti;i), = 1...k, where Qi represents the parameter(s)

which completely describe the operating cost function of the firm after

tne can think of S and s as being measured in "natural" units
of capital, defined solely by the way in which operating costs
are affected. If different production technologies are available
at the same point in time, the investment cost function would
then be the lower envelope of the investment cost functions of
all such technological alternatives.
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the ith action. For the simplest model of expansion a single parameter

S, representing cumulated capital investments, will be employed; hence
i

0® = S = S + s.. The objective function to be maximized is the
i j=l j

present value of profits less investment costs, where all prices and

costs are relative to the price of capital goods (a numeraire):

k %i+l k -rTf -~~~rt i3.1fo io (D(t ),®i)e dt i , I(si)e 3.5.1
Ti

TO T1 < T2 *...<Tk Tk+l 

The fixed planning period in this case is (Y oTl). As operating

profits are taken to be continuously twice differentiable

in T, f will be quasi-concave in each of the T if at every stationary
o 1

1point, f is locally concave in T i .0

a f o-rTi -rTi -rTi
--- = 0 =- T(D(Ti ) ,i)e + rI(si)e +N(D(T ) , 1 )e 3.5.2
~Ti

1 ~~~~~~~th
For fixed delay L. in operationality of the i investment, the
limits of integration in (3.5.1) may have the constant Li added, and
the quasi-concavity property will remain.
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U"I

f0 - rnX
-2 iI

B~IC

-rTi 2 )
-rT -r

- ~rD iT i) ,hi-1)e

TDi(l(Ti),Oi) -rti + a(D(Ti),_ l )
- ~ ~ ~ ~ ~ ~~~~, . i v -:

eT i , aTi

Combining Equations (3.5.2) and (3.5.3)

f J 1(D(Ti) ,Oi _ _(D(Ti)_-_ ',= _~~~~~~~i
2
ti L. 

Thus, o f0Th < 0

P1i

- 7T(D (Ti) ,e i )

aTi

if

+ =(D(T!) ,EiI)
Ti

For the simple expansion model, a sufficient condition for (3.5.4)

to hold is

2- ; >V ;* - 3.5.5
'aSa o

e
3.5.3.

-rTi
e

Dari J

3.5.4I O

ii
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Although it is not immediately apparent, if optimal output
is non-decreasing with time > 0), as will always be the case with

the cost and revenue functions considered herein, (3-11) will hold for

a remarkably large class of w-functions. As a imple example,

consider

),S) R(q(t)) - TC(q(IS) .R(q(t)) - C(S)

j-1 Sj-1

the case of infinitely inelastic demand and a cost function vith

variable operating costs a' th order weighted positive polynomial

of output.

Then

jjJ-1]aTr d o jaqi l d

a 131 dT °

More generally,

a n(D 1),j >-(~),3i ~, j arc(q,e )~ *a . - j. aq JSj_ j D d2 ·
OI~ 

More generally,

I
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can never be positive with revenues nondecreasing with time, positive

marginal revenue at optimal output q* , and marginal cost no greater

after the investment than before, conditions all of Which hold for the

functions previously described and are likely to exist for most problems

of this sort.

af0
From (3.5.2) it may be noted that T = g(i,Q), a function

of T. only for fixed expansion sizes. Hence, f is separable in T:

f = Zfi(Ti ,e) . However this does not ensure that f is a quasi-

concave function of T; indeed, it can readily be shown that the sta-

tionary point in T of f0(T1,t2, ))may be locally convex for

T2 ll + X2' O<Xl <1.

F. A Solution Procedure

Gross expansion planning problems pically involve a relatively

few expansion steps (perhaps k = 5), over realistic planning horizons

of perhaps 10-25 years, due to the compound effects of discounting and

uncertainty in long-range forecasts. Thus, if optimal solutions for

k = 1, ...,K have been obtained, one might with reasonable certainty
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assume that the optimal expansion policy has not been overlooked.

If the number of non-zero potential expansion sizes s is m,

the number of potential expansion size combinations for a k expansion

k
policy is m . For m fairly small the continuous-time formulation admits

to ready solution. For a given sequence of facility configurations

fo may be maximized by maximizing each of the fi over the planning

period (OTk+l) individually with respect to T due to separability.

Golden section, bisection or similar search techniques may be utilized

for these quasiconcave maximizations. If the solution T*, i=l,...k,
1

obtained satisfies the feasibility constraints T~0T1
< T2... Tk Tk+l

expansion policy (*"0) is retained. If not, the expansion set corres-

ponding to 0 is rejected. This process is repeated for each of the

k
m expansion sets, and of those whose expansion timings are feasible,

the optimal one is that which yields the greatest value of f' Note

that when infeasible timings i*)Ti+l* result from the unconstrained

optimizationD no solution enforcing feasibility Ti < Ti+ for the

expansion sizes need be considered, for a solution of no lower value of

f0must exist with = i+l due to quasiconcavity, and this possi-

bility has already been covered by the k-l expansion optimization

problem.

1 for ifif . (5_ 5 holds.

This can occur only at the end-points 1or k+l iThis can occur only at the end-points or Tk~ for- VlSi if (3.5.5) holds.
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G. Properties of the Optimal Solution

From the optimality conditions (3.5.2) and (3.5.4), several

intuitively plausible observations may be made about the behavior of

this solution. First, an increase in investment cost for a given

expansion size s i will have the effect of delaying only the ith

th
expansion, hile an increase in the i h expansion size itself will

always result in a delay in the ith and all following investments,

in each case possibly requiring a fewer number of expansions to become

optimal.

In ,addition, by use of (3.5.2) it is found that

X r* -Is') 

-T + aTii ~ii

so a marginal increase in the discount rate will have the effect of

advancing all expansions, possibly allowing a greater number of

expansions to become optimal. For the case of convex or linear invest-

ment costs (including fixed charge with the number of investments

given) the objective function (3.5.1) for simple expansions will be a

concave function of s for fixed values of the Ti, as a concave function

of linear functions.
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H. Forecast Uncertainty

For a maximum expected value solution to the simple expansion

problem with known and independently distributed investment costs and

demands, one need only substitute expectations E(I) and E(r) for

the quantities I and appearing in the preceding sections and solve

as a deterministic problem. However, stochastic demand parameters

D(T) more typically will be correlated in some fashion. For example,

one might postulate behavior of demand parameter D(T+dT) given D(T)

according to a continuous diffusion process with trend 6(T) and

independently distributed uncertainty terms (T)dT ; E(E(T)) =0.

Hence D( T+dT) D(T) + [6(T) + (T)]dT.

Nevertheless, it is interesting to note that solution as a deter-

ministic problem with approximation of E(r(D(T), el)) by (E(D(T)),Oi)

will normally result in planned expansion timings being delayed from

those projected to be optimal at time T for a given set of expansion

2
sizes in this naive case. For the process above expectations E(D(T))

at To can be readily obtained:
T

TO (D(z)) D(T o ) +Tf 6 T 0 (t)dt. With

1 Under some circumstances it may be more realistic to take rates of

change of demand parameter, d(D)/dT, to be governed by a similar stochastic
process.

2 Of course, with constant review of actual demands and other market
information distributions for future demand can be updated over the
planning period, resulting in a strategy contingent on realized demands,

assuming that the firm makes efficient use of all available information.
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marginal revenue increasing with D, will be convex in D;

2= ad..
2 DaD . 3

aq*(D, )

D 3.8.1

since optimal output q* will never decrease with upward shifts in

demand, t D D 1 3.8.2

*
In addition, with D 

3D

from differentiation of the optimal output relation implied by (3.3.2)

and

a -(q , )
1

aq2

3.8.3

it follows that

aq*(Dai )

an 
aq*(D ,O ) '

aD 3.8.4

1. or S s this inequality will prevail for any non-decreasingi O0ul
. marginal cost function satisfying the horizontal additivity requirement

(3.2.4), as well as for others.

·,1%2-

a2R
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so is everywhere -ou less convex in D for Oi than for 8i 1 from

(3.8.1) and (3.8.4). The following inequality will hold for these

unequally convex functions of random variables:

E (7(D, 0 ,)-F.(7r( 2) 4 7r(E (Do -, Tr(E() 

It is obvious then that the expansion timings determined through use

of I(E(j,G) as a substitute for (D,O) to satisfy equation (3.5.3)

will be no earlier than the maximal expected value timings employing

E(wr(D,E)) in place of wr(D,E) in this equation.

I. Discrete-Time Formulation

The simple expansion investment problem can be formulated

as a discrete-time dynamic program. Period profits n(Dn,Sn) represent

the total maximal operating profit in period n from capacity Sn, based

upon the average demand characteristics for that period. For finite

horizon N problems and known demand relations, the basic recursion

relation is
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f (S ) = (D, S ) + max {-I (s ) + f (S + s)}
n n 9 s n n+ln fl

n-

n -i,...,N-l

with fN(SN)= N(DNSN), where s is the expansion size in period n,

a= 1 is a discount factor, and the planning interval [1,N] isl+r
entered with some initial plant size S1 With demand parameter D

n

for each period known with certainty, one-period profits may be

represented by n(Sn) instead of rn (DnSn). For stochastic demand

parameters and investment costs with initially known independent

distributions for each period a maximal expected-value plan

given available information in period 1 can be obtained by using

the expected one-stage returns E(r(D,S)) and E(I(s)) in place

of (D,S) and I(s) above. More realistically, however, distributions

of future demand parameters will depend on their past values.

If demand distributions are (discrete) markovian in nature

(depending only on prior period demand) with transition probabilities

Pn(Dn+i/D) and realized demands observable (as will usually be the

case), then Dn can be treated as an additional state variable,

and the recursion relation rewritten as

Periods may be of unequal length, suitably reflected in the values for
and a . For computational purposes it may be desirable to use periods

o? longer lengths towards the end of the planning period, as one might
expect early decisions to be least sensitive to errors due to time
discretization later in the planning period.
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(D ,Sn) = -n(nD Sn) + max {-I ( ) + E( fn+(D S +s))}
n n n n n n 'n n n~l nl, n n

s ~0
n

where

E (fn~ (Di SZ)) f 1 (D~+ S S+s) P (D+1 /DlP(fn+l n+lSn+sn) ) n+l +l' sn+n)Pn(nn+l/Dn)'

D
n+l

The above procedure will provide an optimal solution to the

problem as stated. As a large number of other inputs will usually

also not be known with precision initially, it would be heuristically

desirable to update these as new information becomes available, and

to resolve the problem periodically (a "rolling strategy").

J. Fixed-Charge Linear Investment Costs

The search procedure for identifying optimal values of

expansion size (s) for each capital level (S) can be simplified

considerably for the case of fixed-charge linear investment costs.

Similar treatment of markovian demand is possible for the
more complex dynamic programming models in later sections.
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If we let F (Sns) = - I (sn ) +f (S + s ), then
n nn n fn+l n n'

f (Sn ) T n(Sn) + max F (Snsn). For clarity we temporarily drop the
S >0n

subscriptan<,ons andnS. Let s*(S) be the value of s

which maximizes F (S,s). For the fixed-charge linear
n

investment cost function,

I (S) = a + I s, s>0 I ,a >0,
n n nnf

=0 s = 0,

we have

f (S) = (S) + max {-a + max{F + (S,s)}, F (S)}
n n n s> n n

where F +(S,s) = -I s + af (S + s) and F 0(S,s) = f (S) Let s**
n n n+l n n+l

maximize F (S,s). Then s*(S), the optimal expansion size for
n

capital level S, is

according as -a + F (S,s**) F (S).
n n

For the remainder of this section subscripts n, n+l will be omitted

entirely, and we define sl M s**(Sl).

Lemma 1: If s, 6 s 1 - 6 are >0, then s - 6 = s**(S + 6).

Proof: Since s maximizes F (Sl,s) s.t. s>O, we have
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F+ (S1 si)>F+ (Sl, s) Vs>O, or

-Is + f(S1 +l)>-Is + f(S1 +s).

Letting s' = s - 6, so that s = s' + 6, we substitute into the above

inequality, obtaining

-is + f(S +l)>-I[s + ] + af(Sl+S'+6), Vs + >0

-I[s 1 -6] +f((S 1 +6) + (s1 -6))>-Is' + af((S1 + 6) + s')Vs'>-6

from which it follows that

F ((S + 6 ),(s 1 -6))>F ((S1 +6),s') Vs'>-6; hence

Therefore it must be that s1 - 6 s**(S + )>0 .

Corollary to Lemma 1: If , s are >0, then on_ if s
1 -1

s**(S 1 + ') be > s .

Proof: None is necessary. The case of s 1- 6<0 is not

Lemma 1.

also s'>O.

QED 

-6 < 0 can

covered by

The import of Lemma 1 and corollary is that as S is

increased, s**(S) will decrease by equal amounts (if originally non-

zero), until some point Sb at which s**(Sb) O. As S is further

increased beyond Sb' s**(S) may again at some point take on a positive
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value, then decrease again in. the same fashion. A sawtooth-like

pattern will then result (Figure 3-6). Lemma 2 will aid in computing

the positive value which may possibly be taken on by s**(S) as S is

increased beyond such points as Sb 

!~~~~~~
I

I I
I I

I I

I * I

Sb . S
·b

Figure 3-6

Lemma 2: Take So to be the smallest feasible value of S and si>0,

i = l,...,m, the m positive valuef(if any exist) of s' which

locally maximize F (So,s') s.t. s'>O. Let G(S) = {si}/s - S + SO>0.

If S >S0 and s 1>0, then s = sJ - S + So, where scG(S!) and

F (SO,s )>F (Sosi)Vs eG(S).

Proof: The proof is in two parts. First, we will prove that s1 =

si - S + So, where sG(SV. Then it will be proven by contradiction

that F +(Sos)>F (S O ,s )VsicG(Sj)

Part 1: Consider any state, optimal-decision pair, S 1, s , with

S>So0 and sj>O. Since s1 maximizes F (SO,s) s.t. s>0O, we have

S*. t
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F (S 1, 1) ;F (S 1,s) Vs>0, or

-Is 1 + af(S 1 + s )>-Is + af(S1,s) Vs>0. ~ .10.1)

Let s sl 1+ S1 - So and s' = s + Sl - So, so that sl = sj - S + SO

and s = s' - S 1 + So. Substituting into (3.10.1) we obtain

S .+S)-I[s'I[sj - S1+ SO] + af(Si + s -S + So)>-I[s' - S1 + So]

+ f(Sl + s' - S1 + So) v s' - S i+So!>0O; hence

-IsJ + af(So + s)>-Is ' + f(S0 + s')Vst>S1 - So>0

or

+i F (So,s ) >F (So,s') Vs'>S 1 - SO >0.

Therefore s maximizes F (So,s') s.t. s'>S - S0>O. Note that since

s = + S - S and s>O, s >Sl - So -It follows that sj at least

locally maximizes (So,s') s.t. s'>0. In addition, s - S + So =

s 1>O. Hence s j G(S ! ).

Part 2: Proof is by contradiction. It has been proven in Part 1 that

sl = sJ - S1 + S where s G(S ). Suppose that it is not the case that

F+(SosJ)>F (So,s ) Vs eG(S1). Then there exists sk G(S1 ) such that F+(SOs j)<

FtS 0 ,osk). Thus

-Isj + f(So + sj)<- Isk + oaf(So + sk).
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We have sl= sJ - S1 + So, so s j = 1 + S 1 - S. We may also let
k k~~~

S2 S - S + So, 8 that s = s + S 1 - S, and substitute into the

above inequality, obtaining

-I[sl + Si - SO] + f(S + sl + S1 - S0)<-Zs2 + S So]

+ f(S + 2 + S1 - So)

3.10.2'..- Isl + f(S + s 1)<-Zs2 + af(S 1 + s2). 3.10.2

k k
Since sk cG(S, s2 - s - S + S>0, resulting with 3.10.2 in a contradiction

to (3.10.1). Therefore, it must be that F+(So,SJ)>F+(So,si) V seG(S1).

QED

Lemma 2 tells us that we need only consider as a potential

non-zero level of s the value - S1 + s, where sj provides the

greatest non-zero local maximum to F+(So,s') s.t. s'>0 for which

s1 = s - sj + S0 >O. The values s G(SO0 ) may be initially arranged

in decreasing order of F+(So,si) and thus only the first element in

the list need be examined for any value of S. As S is increased,

i
once a value s becomes less than S - So, it may be permanently (for

this stage) removed from G(S). It is of computational value to note

also that if S is any point at which G(Se ) becomes empty, s**(S) = 0 for
Se

S>S . 1-e

At the expense of considerably more notational complexity the same

results would have been obtained for every fixed value of D in the
markovian demand formulation of section III-I. n
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K. Sufficiency of Unimodal Search

If I (n ) is convex and r (Sn ) is concave for all n, then one-stagen n n n
th

returns are concave. As a result of oncave one-stage returns, n h -

stage cumulated returns f (S ) will be concave. Fn(Sn,s ) will thennn n nun

obviously be cancave. A less-restrictive sufficient condition for

concavity of F exists, however.
n

Suppose that Fn+l(Sn +l' Sn+ ) is concave. Then max {Fn+
n~~l n~~~l n~~l Snl>_

(S +lsn+l~} must be concave.2 But F(Sn,s n) [-I(n) +s
n+l1n. n n ni n n

n+l(S n+l)] + max {Fn+l(SlSn+l)} where Sn+l = S + . Hence,n~~~l S~ ~ nln+lO n n
n+l-M

a sufficient condition for F(Sn,s) to be concave is that the

expression in squared brackets be concave, or that the concavity of

I be less than that of a for admissible values of s and S .
n n+l n n

Since last-stage returns N are concave, these conditions are

sufficient for Fn(Sn,sn) to be concave for all n (by induction). Under

such circumstances, golden section, bisection or similar unimodal

search techniques may be employed to determine optimal expansion

sizes s *(Sn) at each stage.
n n

A discussion of this well-known property appears in Hadley [40], p. 375.

2The maximum within a convex set of a concave function in any subset
of its arguments is concave.
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L. Age-Dependent Production Costs

Aging may affect the producing facilities of the firm in a

variety of ways. Replacement of production units may become mandatory

at points in time due to their physical exhaustion alone, or the effects

of aging may show up in the output-cost relation of the firm. In the

latter case' it will be assumed here that a single state variable, Hn, as a

parameter in the operating cost function will be sufficient to completely

describe all aging effects. Implicit in this assumption is the property

that if at any point in time additional capital, sn, is added to the

production system of size S the new age variable Hn will depend only

on the variables S ,s and H . Thus no "memory" of each specific past
n

addition size is necessary.

For example, if no action is taken between periods n and n+l,

we may adopt a growth pattern for H: Hn+ = Hn n , > 1. For an
n+l n~n' Yn>. Fra

addition of size in n, the new value Hn+1 might be weighted by old

and new capacities, where a new unit begins with new-unit parameter

1,2
hn adjusted by Yn ' Anticipated technological improvements may allow
n n

h to dectease with increasing n. Hence,
n

1

H -h corresponds to Terborgh's cumulative inferiority gradient for
n n

the entire production system.

2. The correct age parameter must always result after several additions

by this process since weighted average X has the property that

w(a,b,c) - C((a,b), c).
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,n+l a Ynrn n

(S+s)Hil =SjHny +shny.

This is probably the simplest fashion in which H+, can be

a function of S Gland H which makes reasonable economic sense.

Consider H affecting only fixed operating costs which are a power
n

function of plant size (as suggested i section 3B)in the following manner:
.

FC (Sn Hn ) = ( & A) 0< 1i

FCn+l (S +n'Hn+l) FCn+(SnsnHn) [SnH a y + nh a yn]

Note that for 1 = 1 (fixed costs directly proportional to facility size),

the fixed costs of old and newly added units are simply summed to obtain

the total fixed cost for the period, which is precisely what one would

expect in the absence of fixed-cost economies. Of course, the age factor

H may appear in the quantity-variable terms of the operating cost

function as well, giving rise to the effect of increasing marginal cost

with age.
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The dynamic programming recursion relation for this

situation of aging with expansion but inadmissible replacement of old

units is 

fn(SnHn) = n(Sn Hi ) + ax { (sn) + (S + Hn+)} n=l .Nn n n n n n s > n~~~fn~ n '+ ' ' '+

with

fN (S N, -HN N(SN%).

As there are two-state variables and but one decision variabl1e in this

formulation, computational feasibility is likely for reasonably fine

discrete finite grids imposed on s Sn,and Hn, and interpolation of

values of fn+l over Hn+l should be satisfactory due to continuity of 

and thus f in H. Assuming that a realistic upper bound %ncan be placed

on expansion size, H+ can be also be bounded:

S H + s h

S. + s < Hn+l-ynn n n
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M. other AP . aChes

Dynamic programming as a solution method has several dis-

advantages, including a significant increase in computational effort

required for finer finite grids imposed upon variables, the difficulty

of tightly bound* potentially optimal variable values, and the non-

availability of good solutions short of the final iteratioms. In addi-

tion, one cannot easily constrain the number of periods between invest-

ments or number of expansions -for the purpose of sensitivity analy-

sis, to avoid implicit consideration of policies which are believed

to be non-optimal, or because of practical restraints related to cash

flow, debt levels, etc. We will discuss another approach which avoids

many of these difficulties while introducing a few of its own.

Let us examine the programming formulatim of the invest-

ment-aging problem, which requires maximization of all discounted

operating profits less investment costs subject to state-stage transi-

tion constraints:
N N-1

Max: fo= an (s n , ) In()
- no irn(Sn n nnnl n

s.t.. S1 -Si = 0 (la)

Sn+l S Sn sn 0 n=l,.,..N-l (lb)

Hl-H = 0 (2a)

SH +shHm~i_~ nn nnH~~~~~~~~~~. (2b)S + ] = 0 n.=l, ...... N-1
n n 

n> n =l, .... N-l 3)n" 0 C3~~~~)
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The firm is assumed to enter the planning interval with given size and age,

S and Hi. Consider next the Kuhn-Tucker (K-T) necessary conditions for an

optimal solution, assuming differentiability of all and I (the constraint
n n

qualification is trivially satisfied). With multipliers , P, and v assoc-

iated with constraint sets (), (2), and (3) above, respectively, these are

arw

n as n + Xn-l
n

N N
a aS-+ '-1

(SN 

n
11

n-l,...N-l

=0

a an + n-1 -n ' 0

air
N

a' a + N1 = o

.dI (H -h)_ e n _ X . + n n n + =0
ds n S + s n 
n n n

Vs =0n

V . O1
n

YSn

n n S + s
n n

n=l,...N-l

nl,...N-l

n=l,...N-l

n=l,...N-l

n=l,...N-l

Suppose that we are given values for (associated with la) and o (associ-
0 

ated with 2a). Assume for the moment that these are optimal values for .
0 

and U0. Then it will be possible to obtain K-T satisfying points by solving

(1)-(11) sequentially rather than simultaneously.

(4)

(5)

where

(6)

(7)

(8)

(9)

(10)

(11)
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The procedure is straightforward. Suppose that at any

intermediate stage we have values for Sn H nl and 1n-l. Then

(4) may be solved for and (6) solved for ~. If it is possible
n n

for sn to be positive, solving (8) with v,! =0 will provide the

appropriate value. One must consider also the possibility at each

stage that Sn=0,b for this will always satisfy K-T. Equations(11)

will provide a value for n given values for Sn , and. aiid (lb)
n n ' n n*

and (2b) will give values for Sn+l and Hn+1, respectively. The pro-

cess may now be repeated for stage n+l.

Several observations may be made about this procedure:

(1) with concave in S and concave or convex in H there will be no

ambiguity in determining values for and from (4) and (6).
n n

With I concave in s there will be no ambiguity about a positive

value for s .
n

(2) At most 2 1 combinations need be examined (for 0 or sn0).

Preliminary computational experience suggests, however, that the

actual number will be nearer to 2 , where m is the number of times

that investment takes place in the optimal solution, (this may be

a small number) since (8) and (9) cannot always be satisfied with

sn>oGl

(3) The best of the solutions so generated will, if and were
0 0

chosen correctly, be the optimal and thus (5) and (7) will be automatically

satisfied.

1 As partial solutions may be discarded when their upper bounds (some

of which are obvious) exceed the objective function value
for the best solution at hand, this number may be reduced further.
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The optimal values of X .and are usually not known beforehand,
0 0

however. If the initial quantity of capital (S1) were optimal with respect

to the planning interval employed, optimal o would equal zero (this may be

a poor state to arrive at with respect to the firm's present value of cash

flow at earlier points in time, though). A smaller value for S1 would

imply optimal positive while a larger value for S would imply optimal

X negative. The optimal values of all pn must be negative with operating
0

costs increasing in age parameter. Some search over 0 and U0 will generally
o

1
be required. Investment periods may be fixed at any point in the search,

.· 

avoiding the combinational problem. Terminal conditions (5) and (7) will

come close to being satisfied with good solutions for a sufficiently long

horizon (as aN,i 1 , and N-1 all approach zero), although with expansion

periods fixed X0 and may be perturbed in an attempt to secure exact

fulfillment of these conditions (due to resulting continuity of the terms

in (5) and (7) in and o ) 2

A similar procedure applied to the simple problem of expansion without
aging would require only the one-dimensional search over X and may thus
be more competitive with the dynamic programming approach.°

2
2 It is worth noting that the discrete maximum principle is not applicable
to this problem. Since Hn>hn and n<O, the Hamiltonian is found to be
always maximized either with sn = 0 or n - , values which will usually
result in a poor solution. The weak form of the discrete maximum principle
provides only necessary conditions for an optimum and does not avoid the
combinational problem since the stationary point of the Hamiltonian is not
always the maximizing point (Converse[l9], section 5.8). Many of the
classical iterative procedures based on this principle (for example, Fan
and Wang [32] p. 17 ff.) will be highly dependent on starting values for
X , , and each of the n in this problem and thus appear to be most
useful for perturbing a solution in order to get conditions (5) and (7)
.to hold, for which they are unlikely to be worth the effort.
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N. Stochastic Independently Distributed Demand
Parameters and Expansion Costs

In the case of uncertain forecast of expansion costs and

demand parameters, the dynamic programming structure may, under some

circumstances, be appropriate for obtaining efficient expected value -
... ...

variance solution pairs. For the case of stochastic

expansion costs and demand parameters with known and independent

distributions, use of multipliers , X [0,1],

Am 1 - A associated with total return expected value and variance,

respectively, may be possible without increasing the state dimensionality

of the problem to be solved for each value of A.1 Since the objective

function, will take the form of a weighted sum of single-stage returns

th
and variances, the following recursion relation for the n stage is

found to result:

g 0nOn max {¶XE(T(D EG) - E(I(a SW]-
s~O

~2[ r a(D 'in) | V(D ) + V(I(s))1

1T~(D ~ 'E(D )
n

+ ogn+l(Onl)},-

Again we seek an open-loop solution without considering feedback from
observing realized values of stochastic variables over the planning
interval. This is, amittedly, an unrealistic situation, but it
may provide an approximate solution to problems involving serially
correlated demand.
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a linear approximation to at E(D ) hbeing taken to estimate V(Tr).
nn

Unfortunately, multipliers may not exist for all efficient pairs, as the

expected total return is not generally a concave function of the

decision variables.

To arrive at efficient solutions explicitly considering

positive covariances between stochastic quantities between periods

would necessitate the addition of at least another state variable,

resulting in a severe increase in computational difficulty. Note,

however, that reducing any expansion size s will always lower the total
n

r (D'G 0- 367T(DG?
solution variance (as 0< ( '_ I_ ('iD _

'aD a:D ' T > )

so that an unimaginative heuristic procedure for reducing solution vari-

ance; beginning with a maximal expected-value solution might involve

successive decrements of expansion sizes by amounts proportional

1
to marginal contribution to variance, followed by re-optimization of

timings, repeated until a tolerable value of variance is obtained.

/ Profit covariances can be approximated as

Dr(D,O3n | 7(D,ok 
cov~~~ |D' (Dcov(D Dk

fn,k (D) E(Dk)n

t(D E (Dk )
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O. Retirement of Production Units

The major results of this chapter can easily be extended to

encompass the case of new investment with retirement at prespecified

times of production units in existence at the beginning of the

planning interval. All that is required is to subtract from S at

any point in time T or period n the sum of sizes of production units

already retired. Age parameters can similarly be computed relative

to existing old production units (for example using weighted averages)

at any point in time. The solution method suggested in section

IIIM additionally allows the possibility of retiring production

units introduced within the planning interval, as partial solutions

are available at every point in the procedure. Without retirement

times being prespecified, however, the combinatorial aspects of

this problem would obviously be greatly increased.

The retirement decision, particularly when existing capital

is large relative to future increments, is often as important

economically as the investment decision and difficult to separate

from the latter. In many cases investments will simply coincide

in time with retirements (due in part to capital acquisition

economies). Retirement time will be treated as a decision variable

in the remaining chapters.
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Chapter IV

THE STATIC REPLACEMENT PROBLEM

A. Nature of the Problem

For the static replacement problem, it is assumed that the

output of each of the several existing production units is invariant

with time. Such will be the case under either of the following con-

ditions:

1) marginal costs unaffected by age of the production
unit

· .

2) outputs of each production unit are not inter-
changeable (for example, different product lines
or sequential production), and demands are infinitely
inelastic

if the price-demand function is stationary with respect to time from

the beginning of the planning period and known with certainty.

As production units age, then, their production costs

rise in some assumedly predictable fashion. Total production costs

will rise in the absence of replacement of production units.
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Replacement units may or may not be more efficient than the units

they replace, to be reflected in the production cost-age function.

Investment costs will, in general, depend on the number, sizes and

ages of the production units replaced at any point in time, ad may

usually be concave in the total capacity replaced. Both initial

and replacement production units are assumed indivisible.

Clearly, if demand were stationary over all time, past and

future, optimal expansion policy with economies of capacity acquisition

would likely require but a single production unit, with periodic re-

placement of same, and indeed over an infinite horizon such a policy

may become optimal beyond some point in time. However, the firm begins

the planning period with a set ofv production units of possibly

differing ages and sizes, presumably due to demand having been growing

during some prior time interval. Revenues may be neglected as they

remain constant in this static case.

B. Fixed-Charge Linear Investment Costs

For the case in which investment costs are fixed-charge

linear functions of replacement size, the static replacement problem

can be formulated as an integer program. Let Hkni H kni(Si) be the

production cost in period n associated with unit i introduced in period k.
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Hkni = ,k>n. Let Dki = dk si be the linear portion of net invest-

ment cost associated with replacing a unit of size si in period k. Fk

will represent the fixed charge incurred in period k from any new

investment. Salvage values are assumed independent of age and may be

netted from replacement costs.

The variables are:

Xkni = 1 if production unit i introduced in k is in use
in period n

= 0 otherwise

Yki = 1 if production unit i is replaced in period k

= 0 otherwise

Zk = 1 if any production unitis replaced in k

= 0 otherwise

As he planning period is entered with a set of pro-

duction units, Yoi 1, i = 1,.... The object is to find a minimal

discounted cost replacement policy over the finite discrete time

interval [,N] while maintaining constant total capacity Esi . The

mathematical program is
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MPI

~,L~o + ZZD ak+EFZ k
(1) min k iXkniknia + i kDkia k k k

subject to

(2) Ok ni
o k i

= 1

(3) Xi Yki

(4) Yki < Zk

i - 1...,~b

.i = 1,. .. 0,

i = 1,... ,

n 1,...,N

n = 1,... ,N

k = 1,...,N

(5) 0 < X, Y, Z < 1

(6) Y integer

Constraint set (2) ensures that total output remains constant over

the planning interval. Constraint sets (3) and (4) assure that the

linear and fixed-charge, respectively, portions of period k investment

cost are incurred if a production unit of a given vintage n-k is

employed in n. Constraint set (7), perhaps difficult to interpret,

ensures only that whole production units are replaced.

i = 1 , .. I(DP = 14 .. Vt 9,= s. .. k-(7) Yk> i i i
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For any feasible solution in Y to MPI, clearly an integer

solution in Z is optimal; Zk is fixed at zero unless constraint set (4)

forces it to be fixed at one. In addition, Xkni is set to one for the

greatest kn for which Yik -= 1; to zero for all other k. Thus, only

the newest production units in existence are used, as these have the

lowest operating costs Hkn i

C. A Branch-Bqund Algorithm

One technique that may be employed to solve this problem

is that of branch-and-bound.

Lower bounds on the optimal solution to PI can be obtained

by solving a series of less-constrained problems. Define the surrogate

constraints:

(3a) Z Xkn i Yki(N - k)
n>k

(4a) iYki z ()
i

MP2 is the less-constrained problem (1), (2), (3a), (4a), (5). Branch-

ing takes place by successively fixing variables Yki to their extreme

values, zero and one. If at any stage of the branching process, U is

the set of indices ik of Y variables fixed at 0, V is the set of

indices of Y variables fixed at 1, and W contains free variable indices,
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then the solution to MP2 will provide a lower bound to the solution to

MPI for Yik' ikCUJV, fixed at integer values. Search is terminated

beyond any node (representing a set V) for which the lower bound

obtained from MP2 exceeds the value of the least-cost feasible solution

to MPI obtained thus far (the incumbent).

Upon inspection of the dual to the linear program MP2,

an optimal solution is found to be one in which

-Xni = 1 for all kwhich provide the minimum value to

D Fk
r{min {min}{in n DH k i kk k t
ikeV ni ikeW (kni + N-k + )}

kL n kin

ni = 0 for all other k

n Xkni

ki- kiW

ki
Z all kieW
k
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and thus a lower bound to PI is obtained. In addition, constraint

set (7) involving only Y variables can be utiiized to prevent branch-

ing to infeasible replacement policies. One may scan fixed values of

Yik for the most recent (if any) period i which replacement of i

took place (Yiz = 1). If any other facility was replaced simul-

taneously with i in (Yj, = 1), and if facility j has been replaced

in k(Yjk - 1), then a branch to Yk 0 cannot be made. Similarly,

if facility j has been denied replacement in k (Yjk 0), then a

branch to Yik 1 cannot be made.

ik

D. Piecewise-Linear Concave Investment Costs

At the expense of considerably more computational diffi-

culty, the static investment-replacement model may be generalized to

encompass the case of piece-wise-linear fixed-charge concave investment

costs. As is well-known, a piecewise linear concave fixed-charge

function g(s) may be represented in the following fashion;

g(s) = inlrfr(s r ) ] s s s ,s > 0
r r r r r r r

= minf r(S) + Erf m(0)] min[f r(s)]
r MO, r
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where frare each fixed-charge linear functions. Therefore, it is only

necessary to allow any one of a numiber of fixed-charge investment cost

functions to be utilized in each time period to represent any piece-

wise linear concave investment function. All linear portions of

investment costs must remain proportionate across facilities:

Dkir = Si r, where is the proportionality factor associated with

investment cost function r. Fixed charges Fkr now also depend on the

investment cost function selection, r. Bounds are developed in the

same way as before, although new branching restrictions are that Ykir

cannot be fixed at one if Ykim' m y r, has already been fixed at one.

It is doubtful whether large problems can be solved in this fashion,

although it may be possible to solve small problems involving two- or

three-segmented investment functions.
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CHAPTER V

EXPANSION WITH REPLACEMENT AND OTHER EXTENSIONS

A. General Model

The case in which new investment in production

facilities may take place in response to both nonstationary product

demand and the aging of existing facilities, requiring replacement,

is the subject of this chapter. In addition, technological improvements

may reduce the operating costs of a potential new production unit

in a specific fashion, further encouraging replacement of existing

production facilities. This situation may be most compactly described

using recursion relations, for which dynamic programming is, in

principle, a solution technique. It may be noted at the outset that

all of the dynamic programming approaches to solution of problems

allowing retirement of production units are especially suited to cases

in which demand is expected to decline beyond some point in time, as

the computational method does not require nondecreasing demand, and

as it is admissible for retired production units to be replaced with

ones of smaller or zero size.
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For each of the N discrete time periods within the

planning interval, two state vectors, describing the sizes and ages

of potentially existing production units may be defined:

S = (S1,...S 1)T , production unit sizes representing

initial plus subsequent capital additions

H = (H .. Hr+n) production unit age parameters.

If the planning interval is entered with r production units, the

state vectors for the nt h stage will have r + n - 1 dimensions.

Decisions are s, the size of the addition to be made in period n, if

any, and a replacement vector X, where Xj 1 if production unit j

is to be retired, Xj = 0 otherwise.

eCursion relations for this problem are

fn(S,H) = max {n(S,H) - I (s) + Rn(SX HXT) + afn+l(S',H')}n n ~ ~~~~~ n ' '
s~O

X

n = l...N-l

with fN(S,H) N(SH) ,
N(SIH). 1N (S'H) 

where

= (x) H (1-X) 
St -_ , Hi = .

s h
'n1
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Period profits T n depend on the sizes (S) and ages (H) of existing
n

production units2.

R is some salvage value of retired units, defines the growth of

each age parameter H from one period to the next, and h is the agej~~~~~~ n
parameter of a new unit introduced in period n. If m addition sizes

are possible in each period, then there will be 2 (n - 1) states

and as many as m2 n- decisions for each possible state even for

this highly structured model. Thus, computation is likely to be

impractical for problems of realistic size using this approach.

B. Suboptimal Solutions

For a given sequence of expansion-retirement actions,

optimal timings can in many cases be obtained by solving the set

of quasi-concave optimization problems described in Chapter 3. For

th
consistency, assume again the timing for the i h action can be re-

presented by the continuous variable Ti. From (3.5.4) the only

condition required for quasi-concavity of total discounted net

profits in each of the Ti is

Dr(D(T),H',S' ) 3 (D(T),H ,S. )+ - O, i = l...k.
aT
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It is readily seen that these conditions will obtain

under non-decreasing demand, positive marginal revenues at optimality,

and marginal cost non-increasing in each of the S and non-decreasing

in each of the H if replacements are always with units of at least

equal size S As in the expansion-only situation of Chapter 3,

demand uncertainty will again result in advances in optimal timings

for the initial plan for independently distributed demand parameters.

For k given expansion timings TO<TiTk+, dynamic

programming might be employed to solve realistically sized action-

only problems. The recursion relation at each stage i is

t

fi(S,H) = max { (D(tS,H. )e -rtdt
s>0-3 i

X

+ er(Ti+lT i) FI(s) R(SXT, HXT) + fi+l(S'H')]}

i= O...k-l

Ti 
= 'k+l

with fk(SH) | (O(t) $,H)e dt

ok
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The number of possible states at stage i in this case is

r i-i r+i-l
2r(m)i 1, while the number of possible decisions is at most m2 i

Typically, k will be a fairly small number, and thus the total number

of states and decisions could easily be manageable.

Unfortunately, there appears to be no obvious way of

simultaneously determining both optimal actions and timings. Although

it may be possible to alternately solve to optimality the pure action

and pure timing problems, holding the complementary set of variables

constant in each case until no further improvement results, a globally

optimal set of action-timing pairs will not necessarily be forthcoming

as the objective function, as in the case of simple expansion, is not

generally a unimodal function of all its variables, although it may

be everywhere differentiable for continuous time. Furthermore, if at

some point in this process the optimal solution to the timing problem

involves a reduction from k to k - 1 actions, such a method would not

allow for one to subsequently consider actions at k points in time,

which may be the optimal number for the action-timing problem.
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C. Restricted Replacement Policy

If candidates for replacement are limited to those

production units in operation at the beginning of the planning

period, the number of states may be reduced considerably in a dynamic

programming formulation of the problem. Let S represent total

capital installed between periods 1 and n and s represent the addition

size in period n. Define vectors X,Y such that Xj = 1 if production

unit j (of size S and age factor H n) is replaced, X 0 otherwise

and Y = 1 if production unit i has not yet been replaced , Y = 0

otherwise. H is the summary age factor for all units added within

the planning period, as discussed in section 3 . The recursion

relations are

f (S,H,Y) max {n (S,HY) - I (s) +R (X)
n n n

s,> 0n

X/Yx/x~Y

+ afn+l (s'H,(Y-X)) n = 1...N - 1

with f(S,#Y) N(S,H,Y),

where S
H'(HSs) .) +

Period profits Wn depend only on new capital and its current age, S,H,

and existing old production units of given sizes and age parameters

Hjn which may increase in a similar fashion;
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H ~Hy *

jn+l n n'

It is likely that in many situations solution of a problem allowing

retirement of facilities added within the planning period will result

in the solution not requiring such retirements. Furthermore,

retirement of facilities not yet in existence, if optimal, will

probably occur quite late in the planning period, and thus have

minimal impact on the early investment decisions, which are of most

immediate concern to the planner. If these models are to be used

periodically as new information and revised predictions become

available, all production units will obviously eventually become

candidates for replacement.

D. Treatment of Horizon

In many cases the use of a finite planning horizon determined by

the ability to provide usable forecasts may be inappropriate for an

enterprise contemplating major capital expansion. Except possibly for

the case of a firm owned by the entrepreneur who can predict his end

with certainty and will leave no survivors, the assumption of the firm

going out of business after N years may be unrealistic. As with many

non-stationary sequential decision problems, the alternatives are

limited to

1 .
For consistency, whenever a-gg parameter appears in the firm's
operating cost function,.one shoulduse the weighted average of A/F
and each of the Hj's as a single age parameter.
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a) fixing a terminal production system configuration.

In this case the solution obtained may coincide with

an infinite horizon solution. The difficulty is that

there is usually no way of identifying the optimal

terminal state from the large, perhaps infinite, number of

possibilities.

b) arbitrarily assuming that the problem at some point

becomes stationary. Aging ceases and demands and factor

prices become proportional and remain so. In this case it

may be possible to evaluate infinite horizon returns

directly once a state is observed to be repeated.

c) llowing either variable or fixed terminal system state

with a finite horizon larger than the desired planning

period would require. The solutions obtained with this

approach are likely to have the early investment decisions

closely approximating those of the theoretical infinite-

horizon solutions, since these early actions should be

relatively insensitive to the decisions for the later

portion of the planning period due to the effects of

discounting. It is also straightforward to implement.
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E. Integration of nvestment, Pricing and-Financin Polic

For the expansion-replacement problems that have been

discussed, the optimal product prices generated when plotted against

time will typically display a sawtooth-like pattern such as that in

Figure 5-1.

time

Figure 5-1

Each major discontinuity ill correspond to a point in time at which

a change in production system configuration is to take place, causing

a reduction in marginal cost and allowing a greater output and thus

lower price to become optimal. Between consecutive investments

optimal price will increase as a result of a rising demand function

and/or marginal cost (if aging is reflected in this way).

Altho.ugh such manipulation of product prices from one

period to the next may be neither practical nor desirable, the long-
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term trend obtained could be of some interest to management. An

exponential or other function might be fitted to the resultant price-

time curve, or the investment problem solved for various fixed rates

of increase or decrease in price. The effects of simply imposing

constraints on the number or spacing of price changes within the

planning period (resulting in price a step-function of time) might

also be investigated.

Other aspects of pricing policy include those associated

with competitors' responses to price changes. For example, one

elementary static economic model (Sweezy [96]) suggests that demand

elasticities of firms in oligopolistic markets are greater for

increases than for decreases in price. To describe this situation

fully would require that demand shift leftward for any production

system change resulting in a lower optimal price. This case could

be represented in the dynamic programming format by allowing the

demand parameter(s) to constitute an additional state descriptor to

be modified by potential investment decisions. If competitors'

responses are stochastic and immediate, a sequential markovian decision

problem will result.
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Should the investment problem have a sufficiently limited

number of production system states, additional variables might also be

employed to represent financial and other conditions relevant to the

investment decision. Existing debt may, as suggested by Lesso [56], be

an important determinant of investment feasibility. For example, an

upper limit 0<irl could be placed on the allowable debt-equity ratio

of the firm;

DEBT

nEQUITYn 

If earnings are applied to dividends and debt retirement (DR) only,

depending on the level of operating profits, we have

I1~~~~~DEBT DEBT + I (s) - DR(rf(B)) 5.5.1
n+l n n n

and

EQUITYn+ = DEBTn+ + OWNEREQUITY+1 , 5.5.2
n~l n+l n+l

OWNEREQUITYn+ OWNEREQUITY + DR(i ) (6) +NEWOWNEREQUITY.
n+1 ~n n U

The choice of expansions in each period n would then be limited by

constraints of the form

1
Salvage value from sale of retired equipment may be included here
as well.
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(s) [OWNEREQUITYn]/(1 -) - DEBT 5.5.3 
n n

and the impact of differing long-term financing plans upon average and

cumulated discounted earnings per share or other performance measures

could be investigated.

One might alternatively employ financial constraints more consistent

with the contemporary "debt capacity" approach to investment financing

2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

decisions.2 In this case the additional debt and hence indirectly the

investment size is constrained by the debt capacity of the firm rather

than by debt-equity level. Debt capacity, DCn , is assumed to depend

upon the temporal probability distributions of cash flows, which are

further assumed (as a first approximation) to be directly related to

the physical assets of the firm, e, due to the possibility of cash

3
inadequacy.

This formulation allows part or all of actual accounting net profits
less dividends to remain in the form of liquid assets, without
immediate debit to long-term liabilities in periods in which debt/
equity does not constrain the investment decision. In such a case,
(5.5.1) and (5.5.2) define potential debt and equity levels, respectively.
However, it is assumed that in periods when (5.5.3) is binding the
cumulated past additions to liquid assets are used to retire debts,
relaxing this constraint to the fullest.
2For a linear programming approach to simultaneous determination of
investment projects and financing methods using this approach see Myers [77].

3DCn obviously depends, in a complex fashion, on future decisions as well.
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Hence investment constraints for each period (assuming but

one class of debt) would have the form

In(s) DCn(~n) - DEBT n 55.4
.~~~~~~~~~~ %

In either case, wherever period profits appear terms TX(DEBTn)

and -FIN(In(s))may be added to reflect tax savings due to the

interest expense and net cost of financing without introducing

additional complication. Both of these approaches, although crude,

would appear at least to preclude arriving at solutions requiring

clearly impossible financing actions.

Again assuming that investments are financed by debt.Again assuming that investments are financed by debt.
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CHAPTER VI

COMPUTATIONAL RESULTS

In this chapter we will discuss some computational experience

acquired using the deterministic dynamic programming models of sections

III-L and V-C for expansion with and without replacement of production

units available at the beginning of the planning interval. An algorithm

which will solve both of these problems has been programmed for use on

MIT's Multics (Multiplexed Information and Computing Service, currently

implemented on the GE-645) time-sharing computer system. Multics has

proven to be a useful tool for developing and debugging the experimental

programs and for performing model sensitivity analyses.

A. Model Description

The investment cost function employed is the power-function (3.4.1),

while linear price-demand function is assumed for each of the discrete

time periods. Operating costs are given by (3.2.1), with fixed operating

.7
costs proportional to S 7 and variable operating costs a third-degree

weighted polynomial of output, q (in (3.2.1) J3 and i -l.). The square of

age parameter (or weighted average of age parameters of old and new pro-

duction units in the case of retirable production units) is applied to both

fixed and variable production costs. All revenues and costs are assumed

to be less taxes.
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S and have been discretized into eleven and seven values, respec-

tively, for most but not all of the computations, with linear interpolation

used to evaluate returns for intermediate values (since one-stage returns

th
are continuous in S and H, so are n h-stage returns). With retirement,

integer variables indicating the presence or absence of production units

are employed. Expansion size s is discretized into at least six values

in evaluating nth-stage returns for each of the possible states, and into

1
at least twenty-one values in recovering the optimal solution. Neither

of the two increment sizes for s need be multiples of those for S, and will

not necessarily correspond with the latter in the resulting solution even

using linear interpolation. Program listings and more detailed descrip-

tions of usage may be found in the Appendix.

B. Computation Time

Computation time (CPU) can be divided into two parts: a fixed

component and a variable component. Fixed computation time includes

that required for locating and reading files, establishing linkages to

subroutines, and performing calculations of a set-up nature. A typical

value would be 20 seconds. After an initial problem has been solved,

however, and with changes in inputs made, the fixed computation time is

1
Optimal decisions are never actually tabulated for each state and stage;

it is pointed out in Hadley [40], pp.370-72, that the only method which
guarantees that continuous decisions are determined accurately when
discretizing continuous state variables is the one in which direct com-
putation is used to recover decisions. However, all state-stage returns
f(O) need to be tabulated when using this method, so storage requirements
are not greatly reduced.
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reduced to about 14 seconds for subsequent problem runs. Variable com-

putation time is about 5ms/iteration, with the number of iterations

approximately equal to

SSH3r,

where N is the number of time periods, r is the number of replaceable

production units, and S,s, and H are the number of discrete values for

which intermediate returns are evaluated. Recovery of the optimal

solution even with s finely discretized requires only a relatively small

(on the order of a few percent of the total) amount of CPU time. As

an example then, a problem with r=2, N=22, S11, s=6, and H=7 would

have a variable computation time of about 500 seconds using this

1
formula. Increasing the complexity of operating cost or revenue

functions would in most cases increase variable computation time further;

use of a subroutine allowing operating costs to be a fourth degree

polynomial in q was found to triple variable computation time.

1We are assuming the best of conditions. Speed of computation becomes
significantly degraded when many users are on Multics.
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C. Sensitivity Analyses

The sensitivity analyses discussed in the remainder of this

chapter involve one-at-a-time changes in inputs, since consideration

of all combinations of input parameters would result in too large

a number to be practical for the purposes of this thesis. Results

must therefore be cautiously interpreted, being rather more

illustrative than definitive. The solutions are presented on the

diagrams in the following manner: prices and age parameters are plotted

on the same scale, with expansion size in a square box ( )

immediately above the graph and aligned with the appropriate time

period. The lower solid curve is age parameter, while the upper one

is price. In the case of retirement of production units, the

weighted average of old and new production unit age parameters

(which directly enters the operating cost function) is represented

separately by a broken line, and a period during which a retirement

takes place is indicated by a diamond ( O ) containing the number

of the retired unit.

Problem 1 Base Case I; Expansion Without Replacement

This is a tpical problem of expansion planning without replacement.

Inputs are as follows: horizon N=22, discount factor =.85,

investment cost parameters kl=2.0,k2 =.7, initial capital S 1.5,

initial age parameter H = 1.0, new capital age parameters hn
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decrease at the rate techrate=.05 per period. Cost function

parameters are a = .3 a = .5, a2 -0, a3 = 1.0. Demand slope

C = .25, vertical intercept D(n) in periods 1-18 according to

a quadratic function which begins with D(1) - 2.0 and rises to its

maximum in period 18 with D(18) 8.0. D(n) 8.0 for n 1 18,and

age parameter growth factor y - 1.06 (six percent growth per period).

Discretization numbers are S - 11, H 7, and s = 5.

In this case demand parameter D increases smoothly, but at

decreasing rate, and becomes stationary after reaching its maximum

value of 8.0 in period 18. The trend is for price to rise, but

at a decreasing rate, and, as seen on the diagram, investments

of sizes s=11,15, and 9 take place in periods n5,10, and 16 in the

optimal solution.

Problem 1 : Base Case I (see text)

l l

i,

1! I
II-.-. .

.... i

n
Figure 6-1
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Problems 2-5: Changes in Computational Parameters (not illustrated)

In order to test the effects of discretization, S, H, and 

were each doubled to 22, 14, and 10, respectively (problem 2).

No change in the solution resulted, although computation time increased

dramatically as expected. Although finer discretizations may increase

accuracy of intermediate returns, f(e), the effects on the optimal

decisions themselves appear to be minimal.

In order to test for. Offects.of increasing length of horizon.

Base Case I was run with horizon N = 30 (Problem 3) and N = 50

(problem 4). No change ia the solution resulted in the first case,

while in the second the size of the third capital increment was

reduced from 9 to 8, with an additional investment of size

s = 8 taking place at n 29. Horizon length thus appears not to

be critical.

In problem 5 the investment scheduled for period 10 in Base

Case I was prevented by temporarily placing a great cost on

all investments for this period (kl(10) = 10000). The new solution

has investments of size 11, 16, and 8 at periods 5, 11, and 16, but

the objective function value is increased by only .94 % from that

of Base Case I, indicating a relative insensitivity of the problem

to investment timings, due primarily to the possibility of compensation

by changing investment sizes and prices.



115

Problems 6-17 use the data of Base Case I with the

exception of the input parameter(s) indicated on the corresponding

diagram. We observe that inflation appears to be a way of life

for the firm that cannot divest itself of deteriorating capital.

Problems 6-8: Investment Economies

As economies of capital: acquisition are reduced, investments

predictably become more frequent and of smaller size in these problems,

leading ultimately, one would expect, to investment becoming a

continuous function of continuous time, as in the Lucas[58] model.

Problem 6
k2-.95''
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4

3

. 2

1

0

Figure 6-2
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Problem 7
- .k 2=1.O

Problem 
k2= 55

3 

5

4

3

.2

1
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�
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Problems 9,10: Discount Factor

Choice of discount factor for the data employed is non-critical

with respect to the first investment; for a= .75,.85, and .95 the

first investment will be of size s = io or 11 in period 5. It is

interesting to note that this behavior is in contradistinction to

that of the classical "capacity" models, in which investment sizes rapidly

increase with (in the limit becoming infinite as a-1.0 for strictly

increasing demand)due to acquisition economies . This does not

occur in our case due both to the presence of aging (the firm

would otherwise be left with a large, old,. and thus expensive to

operate plant later on in the planning interval) and to fixed

production costs which can increase with plant size as fast as,

or faster than, savings from acquisition economies.

Problem -9
a-. 75

I
Figure 6-5

I
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Problem 10
a-.95

0o

Figure 6-6

Problems 11,12: Aging

The proportional increase in age parameter per period () affects

price primarily early in the planning interval in these problems.

Towards the end prices become nearly the same.

I

5

3

2

1
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Problem 11
y=1 .0

HOP dI

5

Figure 6-7
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Problems 13-15: Fixed Operating Costs

As fixed operating costs rise relative to variable costs

(the greater a) the first investment is delayed, but subsequent

investments may be delayed or advanced. As a point of reference,

fixed operating costs average about one-half of total operating

costs over the planning interval in ase Case I (aom.3).

Problem 13
ao-.6

Figure 6-9

1
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Problem 14
A-=. .5

Z. .
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Problem 15
ao.l5
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Problems 16,17: Technological Change

The greater the (embodied) technological improvement rate

(techrate), the more moderate increases in optimal price becomes

in these problems, a very reasonable result.

Problem 16
techrate=O. 0

5 lo 15 20

Figure 6-12

5

3

2

1

n
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Problem 17
techrate=.08

Figure 6-13

Problem 18 (Base Case II): Expansion with Replacement

This case has identical input data as Base Case I (Problem 1)

except that two "old" replaceable production units of sizes

51, S2 and ages H, H2 are present in the system initially, and

that demand parameter growth begins with D(1) = 4.0 instead of 2.0

as in Base Case I. Salvage values are zero.
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Problem 18: Base Case II (see text)
S-8 S2=4 .

Problems 19-28 use the data of Base Case II except for changes

noted in the text and on the diagrams.' Note that Problems 20 and

21 have identical output and so employ a common graph.

Problems 19-25: Characteristics of Existing Production Units

There is a pronounced tendency for identical initial age

parameters to require simultaneous replacement when "old" production

units are relatively large or when their age parameters are

nearly the same (problems 20-24). However, even with very nearly
.· 

identical age parameters, if production units are small retirements

are more likely to be staggered (problem 25). As expected,

retirements and new investment usually take place simultaneously

(the only exception occurs in problem 19). In problem 22

price (and by implication marginal cost) rises rather than falls

as is usually the case, immediately after the first investment.

The decision is nevertheless justified by the decrease in fixed

operating costs which result from replacement of old capital.

II

I
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Problem 19
S1=8 S2=4

Problem 20
S1=8 S2-4
Hll1.3 H2-1.3

Problem 21
Sl=11 S2=l
H1=1.3 =2-1.3
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Problem 22

S1=12 S2=12
Bzy~lp H1=1.3 H2-1.3 
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Problem 25
S1=3 S2-3

1 = 11 9.1 9
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Problems 26-28: Changes in Demand
4. ·

In problem 26 the demand slope C is increased to .35 from

the value of .25 in Base Case II. Problem 27 is identical to

Base Case II except that demand parameter D(n) reaches its maximum

value of 8.0 in period 9 rather than in period 18, and thereafter

remains constant. In problem 28 D(n) also reaches its maximum

in period 9, but then continues to decline (in the same quadratic

fashion) to a value of 2.0 in period 18, beyond which it remains

constant.

We observe that the first investment is increased in size,

but unaltered in time for problems 27 and 28 relative to Base Case II.

The first decision is not very different for the two cases although

the behavior of demand later in the planning interval is quite

different, suggesting for this data a relatively low value for

perfect information about demand far into the future.
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Problem 28
·

Figure 6-23

It is hoped that these problems are suggestive of:the potential

utility of such investment-replacement models for managerial decision-

making. In particular, since solutions to these fairly rich models

require only minutes of computer time, it should be possible to

obtain solutions to some of the more complex formulations (such as

with markovian demand) with costs of computation which are negligible

relative to the anticipated solution payoffs for the larger firm,



131

CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Any discussion of capital investment problems is likely to include

the subjects of data collection and reliability, solution methods, and

objectives. With regard to data required for the kinds of interdependent

investment problems examined in this thesis little of novelty will be said.

Statistical cost analysis can, of course, be employed in developing cost

relations in those industries of long history with homogeneous outputs

and stable technology. Reliable point estimates or distributions are

unlikely to be easily obtained, however, for such required inputs as

technological change and aging coefficients, or for long-term rates of

inflation in factor and product markets. Demand parameter estimates

beyond a few years may be mere guesses for many firms not providing a

utility or engaged in one of the basic industries. Fortunately, though,

the objective function of discounted cash flows is very forgiving of

errors in forecasts far into the future; immediate optimal actions may

be little affected by alternative levels of demand, let us say, twenty

years hence.

Development of efficient solution procedures for the more complex

problem formulations presents a real challenge for the more mathematically

inclined. Inclusion of additional variables to represent financial and

other measures or for multiple producing locations will quickly limit
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the practical size of problems which can be handled by dynamic pro-
~~~~~~~~. . . .

gramming (the "curse of dimensionality"' at work). Another difficulty

is that this method cannot satisfactorily handle correlated stochastic

quantities or frequently recurring accounting losses. In the latter

case net investment costs cannot properly be evaluated, since they will

depend on the periods (if any) in which losses occur, since tax savings

due to the depreciation allowance will not be forthcoming in such periods.

The timings and magnitudes of losses will, in turn, depend to some

extent on the investment strategy followed, so will usually not be known

beforehand. Algorithms capable of economically solving large general

nonconvex mixed programming problems appear not yet to be available,

so further research might profitably focus on the development of

specialized algorithms for the more realistic formulations.

It is likely that the selection of investment strategy using more

comprehensive models, particularly with the inclusion of uncertainty,

can best be approached with the aid of simulation techniques. However,

the investment decision process will, in general, be more involved than

the usual use of simple "decision rule" equations. A fairly complex

subproblem might be solved at each point in time, for example, to arrive

at locally optimal decisions based on an approximation to the marginal

conditions which ought to prevail. Moreover, since fixing some variables

will usually cause the partial optimization problem in the remaining

variables to become much simpler, simulation runs might be made to
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determine "good" values for one set of variables (such as retirement

times) according to one set of criteria, while the others are subsequently

chosen using an optimal-seeking method, possibly even according to

different criteria.

Although simulation can be employed to determine period returns

for more detailed systems (for example including the intermediate-range

production planning decisions, aspects of stochastic consumer and com-

petitor response to marketing policy, logistics problems, etc.), evalua-

tion of all state-period profits, even within the restricted state space

provided by transition feasibility constraints, is likely to be impractical.

One could very well, however, employ an elaborate detail model to examine

the response surface in the neighborhood of any solution, in order to

provide more accurate information for further computations. Several

iterative procedures can be easily envisioned. Furthermore, in this

approach the detailed economic responses to every possible decision and

system state need not be pre-specified; the manager can possibly supply

these as needed. 1,2

1
Green [37] has shown that heuristically coupling a detailed simulation

model of the production environment with an intermediate-range (aggregate
production planning) model could yield significant cost benefits. We
are suggesting that some sort of coupling between a more detailed
intermediate-range and a long-range planning model is likely also to
result in better decisions.
2
2 For a compendium of recent corporate simulation models see

Schreiber [85].
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It would be a mistake to interpret the lack of analytic solutions

in this thesis to mean that none were sought. The results published

for the classical capacity expansion problem could lead one to strongly

suspect that investments or inter-investment intervals of constant or

systematically increasing or decreasing size may be optimal for certain

patterns of demand and profit and investment functions over an infinite

horizon.

For the relatively uncomplicated case of a single size parameter

describing the production system a variety of such relations which might

have some economic justification (including period profits linear or

exponential in time, power-function, linear, and exponential in size,

and linear homogeneous in size and time; and investment costs fixed-charge

linear and power-function of capital increment) were fruitlessly investi-

gated with the objective of maximizing either the sum of discounted net

profits or average per-period net profits (in those cases in which dis-

counted net profits over an infinite horizon can become infinite). A

difficulty is that the recursive expression for returns at any point in

time, if one exists, will probably not be of an obvious or simple form.

Crowston and Sjogren [21] have worked out a periodic policy for a

similar one-parameter problem using nonlinear production costs, but their

solution will generally be a suboptimal one as allocation of production

is done in a suboptimal fashion, with all but the most recently added

production unit operating at its minimum-average-cost point. Clearly,

much remains to be done in this area.
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Actual objectives for investment policy may not be adequately

1
represented by the measure of net discounted present value. Such a

criterion may be appropriate for making decisions on a smaller scale,

such as for individual machine purchases, or for the well-diversified

firm, since the effects on the firm's cash flow and capital structure

will tend to even out when many investments take place, each of which

is of relatively small size. In addition, it is the rare company (or

shareholder) which evaluates the performance of its decision-makers solely

on the basis of the expected present value of long-term plans. It is

probable that the manager's utility function will then be vector-valued,

including several other more difficult-to-quantify elements.

Of course, one component of the manager's utility function will

include accounting profits, but probably in a nonlinear fashion.

Negative profits, in particular, are likely to receive a greater weighting

2
than positive profits. Such factors as rapidity and smoothness of

growth in profits and sales through time may be important also, as well

as longevity of such growth. Robustness in the face of uncertainty is to

be desired as well. For problems of this nature the Industrial Dynamicists

1
Rate of return is even less appropriate for large-scale capital decisions
since the pattern of cash flows which occur (a sequence of positive and
negative flows, both generally increasing in absolute value through time)
is the sort which is likely to result in multiple rates of return.

Another weakness of dynamic programming as a solution technique is that
a nonlinear utility function for accounting profits cannot be employed
since, unlike present value of cash flows, intertemporal utility is usually
not additive.
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would probably be correct in giving greater attention to the paths taken

by key variables through time than to scalar measures of performance.

Growth in market share, size, and consequently importance of the firm and

prestige for its officers often will take precedence over return to

present equity holders (witness some Japanese textile producers who have

proudly claimed that, while greatly increasing sales over the past

decade, they have been working with a net margin of 2% or less).

Weingartner has proposed a model for selecting independent

investment projects in which the objective is to maximize the last of

a finite sequence of nondecreasing dividend payments; such an objective

may be appropriate for our problem as well. Nevertheless, incorporating

a nonlinear utility function appears to be a worthwhile direction for

extending the present work, but one that would probably require a

completely new approach to solution than those discussed in this thesis,

since the difficulty of obtaining an optimal solution is increased by

several orders of magnitude by the "utility cost" of any investment

being dependent on other investment and retirement decisions. The

operationality of developing more sophisticated criteria for investment,

however, is likely to remain questionable for some time to come.

"Criteria for Programming Investment Project Selection," pp.201-212,

in Weingartner [106].
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APPENDIX

This appendix contains the PL-1 source text for the

programs employed in the computational work of Chapter VI.

Complete understanding of the functioning of these programs,

particularly with regard to input and output, is best obtained

after an understanding of the operation of interactive computational

systems, and of Multics, a sophisticated remote access service

currently implemented on the GE-645, in particular. Programs

are of two general types, those that relieve the user from the

laborious task of entering masses of data, and those associated

with the algorithm itself. Brief descriptions of the programs

are below, followed by the source texts.

QDEMAND: The demand parameter generating program for the case

of quadratic growth. Acquires key inputs concerning

demand growth over time from the user.

ATANDEMAND: Similar to QDEMAND, but generates demand parameters

which grow in an asymptotic fashion (according to the

arctangent function). This program was not used in the

computational work discussed.

TECH: Generates exponentially declining production unit age

parameters to represent technological change.
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ANEW: The most recent version of the control program for the

backward and forward dynamic programming subroutines, ONE

and TWO. Acquires and processes data frog files

established by the demand program used and TECH, and

information from the user, including input constants,

problem ptions, variable bounds and discretization, output

format, etc. Allows any number of data elements to be

individually changed for recomputation and allows re-
~~~~~~~~. .

execution of TWO alone with certain changes of data.

ONE: Computes state-stage cumulated returns f(.) using

one-period profits from subroutine PIFUN.

TWO: Recovers the optimal solution, also using PIFUN.

PIFUN: Computes one-period profits with weighted cubic

operating cost function and linear demand.

Further information concerning these programs may be obtained from

the author.
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QDEMAND

qdcemand: procedure;

dcl d50);

put list ("proeramn for uadratic lowbounded demand p
arameter" )

put list ("input initial d, maximum d, lower bound,
and peaking eriod");
put skip;

get ist (initial_d,drrax,bound,npeak);

conput:do n=1 to 50;

d(n)= dax - ((n-npeak)**2*(Cdmax-initial_d))/(1-npea
,x)*.2;_

if n>npeak & d(n)<(bound then d(n) =bound;

end comnput;

put file(filedem) list ((d(n) do n=1 to 50),"a");

close file(filedern);end qdemand;
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ATAND EMAND

atandemand: proc;

dcl (d(50),initiald. dmax.b,c)float bin(27) real,(n,

nimax) fixed bin(17) real;
put I i St v"programr for atan demiandparameter. Input

Initial d, dmax, n/d(n).9drrax");
get list (initiald,dmax,nmax);

c=(dm-,ax-ini t ald)*2eO/3.14156eO;

cornput:do n=1 to 50;

b=(n-1) *6.314eO/(nniax-1);

d(n) =c*atan(b) + i nitiald;

end cormput;

put file(filedem) 1 st d(n) do n=1 to 50),"a");

close file( fil edem);

end atandemand;
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TECH

tech: proc

dcl h(50)

put list

put skip;

get 1 ist

ccmput: do

h( i ) =h( i-

put file(

put file(

close fil 1

end tech;

:edu re;

( " nput h(1), tech rate");

(h(1) ,tech_rate);

i=2 to 50;

1)*(1-tech_rate);end cormput;

filetech) list ((h(i) do i=l to 50));

filetech) list ("a");

e( f t 1 etech);
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ANEW, ONE,TWO

anewv: procedure;

dcl (osl,os2,cl,ohl .oh2,ss,hh, avh, b, b2,al,a2,a4,pi,qcopt)

float bin(27) reEl external stat ic;
dcl dem(50) float iri(21Y redl;

dcl (n,iyl,iy2) fixed bin(17) real external static;

dcl h( 50) float bin(27) real ,(ssmax, srrax, hhmrax, s, alpha, pi
max, ss de , hhde l, s del,
wl w2 w ,w4,upwts upwt h, x owts, x owth, ci nvfun, turn, hhh, ss
s, fb, k1. - k2, rate, rat , cinv(O:Z0,50)) float bin(27) real;

dcl (exparsize,fa) ftoat L.ih(27) real, tiXlopt,'ix2opt, kl
k) fixed bin(17) real;

dcl f(50,0:10,0:6,0:1,0:1) float bin(27) real initial(C1
5400) O) ;

dcl (iil,nmax,issmax,ilhhniax,ismax, l,nyl,ny2,isss, ihhh, ih
J, iss,i,is) fixed bin(l7) real,

dcl iter fixed bin(17) real;

put list ("to retire type 1");
put skip;

get list (iil);
put 1 ist ("type nmax, issmax, ssrnax, i hhmax, hhmnax, ismrax, smax

vamma, alpha, rate, k1, k2");
put skip;

get 1 i st( nmax, i ssmax, ssmax, hhmax, hhmax. i srrax. srax. amma,
alpha, rate, kl, k.);

put list ("type osl,os2, ohlinit,oh2init,;, a1,a2, a4, cl"),

put skip;

get 1 ist (osl,os2,ohlinit,oh2init,b2,ai,a2,a4,cl);

put skip;

get file(filedem) list ((den(n) do n=l to 50));
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get fi
close

get fi

close

repeat

1 e( fil ederr) list ((derr(n) do n=l to 50));

fil e(fil edem);
le(filetech) list ((h(i) do =1 to 50));
f i e( fi letech);

:ssdel = ssnax/issmax;hhdel = hhrrax/ i hhmax;sdel =
smax/ i smax;

rrate=leO;comrput:do n to 50;rrate=rate*rrate;.dr' is=O

to i smax;cinv( is,n)-rrate*kl*( ( is*sdel )**k2); to ismax;

end conput;

call one;call two;

one: procedure;

i ter=0;

ndec: do n - nmax to by -1; bl=den-(n); oh1=nhlinit*ga

r.r.a**n;ohZ=ohZinit*garriTa**n;nl n+l;state: do ih = 0

to i hhma
hh = ihh*hhdel; do iss = 0 to issrnax;ss = iss*ssde 1;

do iyl = 0 to iil;do iy2 = 0 to iil;

call pifun;

f(n,iss,ihh, iyl,iy2) = -le6;

decision:do is=O to isrrax;s-=is*scdel;

cinvfun = cinv(is,n);turn = pi-cinvfun;

sss- ss+s; if sss>0 then hhh = ammra* (s*h(n)+ss*hth)/sss;

else hhh=garmma*hh;

if hhh>hhrrax then hhh=hhmax;

if sss>ssmax then sss=ssmax;

ihhh = hhh/hhdel;isss = sss/ssdel;

upwts 5 mod(sss,ssdel)/ssdel;xlowts =-l-upwts;
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= mod(sss,ssdel)/ssdel;xlowvts = 1-urpwts;

= mod(hhh,hhdel)/hdel; xlowth : 1-upwth;

xlowts*xlpwth*alrpha;w2 upwts*xl',-tt ',*alph-;w3 = x
lowts*upwth*alpha;w4 = upwts*upwth*alpha;

d: co ny! = 0 t iyi;1 n2 0 to iyi;

if n<nmrax then fb = turn+

wl*f(nl, isss, i hhh,nyl,ny2)+

w2*f(nl, isss+1,ihhh, nylny2)+

w3*f(nl , isss, ihhh+1, nyl,ny2)+

w4.* f ( n, iss s 1, i hhh+ 1, nyl,ny2);

else ft = turn;
if fb>f(n, iss,ihh, iyl,iy2) then f(n, iss

) = fb;
i terl ter+1;

end wierd;

skipO: iter=iter;

end decision;

end state;

put list (n);

i f n=1 t hen gg: do; put data i ter); end gg;

put skip;

end ndec;

end one;

two: procedure;

put list ("type ismax, initial_nev_s");

; it h, iyl, i y2

upwts

upwt h

wl =

wier
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put ist ("type ismax, initiai_hews");

put skip;

get list (ismaxss);

sdel=smax/i smax;

rrate=leO;comput:do n1 to 5O;rrate=rate*rrat-;dr is-O

cinv( is,n)=rrate*kl*( ( i s*sdel)**k2); -to i smax;

end comput;

hh =1;

iyl=i i; 1iy2=i ii1;
iter=O;

rdec:do n1 to nmax; nln+1;

ohl=ohl i n i t* garrma** n; oh2Boh2 i n i t* anina** n;

bl=dem( n);

call pifun;
fa = -e6;

loop:do is=O to ismax;s=1s*sdel;

cinvfun cinv(is,n);turn pi-cinvfunr;

sss ss+s; if sss>O then hhh ga!mm* (s*h(n)+ss*hh)/
sss;

else hhh=gammra*hh;

if hhh) hhrrax then hhh=hhmrax;

if sss>ssmrax then sss=ssmax;

ihhh = hhh/Ihdel;isss = ss/ssdel;

if ihhh>ihhmax then ihhh=ihhmrrax; if isss>issmax then i

sss=i ssmax;
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if ihhh>ihhmax then ihhh=ihhmax; if isss>issmax then iss

upwts mod(sssssdel)/ssdel;xlowts = 1-upwts; 5 Ssnax;

upwth = -r:cd(hhh,hhdel)/hhdel; xlowth = 1-upwth;

wl = xowts*xlowth*alnha;w2 = upwvts*xlowtk*alphe;w3 xl
Owts*upwth*alpl;;w4 * upwts*upwth*alpha;

wierd:do nyl = 0 to yl;co nyz = 0 to iyZ;

if n<nr--- then fb = turn+

wl*f(nl, isss,ihhh,nyl,ny2)+

w2*f(n1,isss+1,ihhh,nyl,ny2)+

w3*f(nl,isss, ihhh+l1,nyl,ny2)+

w4*f(ni, i sss+l, ihhh+l,nylny2);

else fb turn;

if fb>fa then eat:do; fa -fl';

quantity=qopt;pr i ceabl-b2*qopt;

pi ax=p i;

expan_size=s;ix1opt=iyl-nyl;ix2opt.iy2-ny2;end eat;

iter=iter+1;

end wierce;

skipO:iter=iter;

end loop;

put data (n,fa);

put skip;

put data (iter);

put skip;
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put data (ss,hh,avh, expansize,quantity, rice. imax. i y
1, i y2) ;

if ixlopt=l then rr:dc; put list ("//////////replace o

he/l////////" end rr;
if ix2opt=l then ww:do; put list ' //////////replace t

wo/////// ////"); end ww;
put skip;

put skip;

if ss+expan_size>O then hh-garrnma*(hh*ss+h(n)*expan_siZ.
e)/(ss+expansi zc);

else hh=gamma* hh;

ss=ss+expan_s i ze;

iyl=iyl-ixlopt;iy2=iy2-ix2opt;
end ndec;

end two;

put data (i i1);

put skip;

put list ("again?"); put skip;get list (C-Ok); if (kkk)
-= then sub: do;

put list ("enter changes"); F:Lt skip; get ata; put sk
iD; o t repeat: end sub;

if (kkk)>1 then call two;

end anew;

E0F
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PI FUN

pi fun: procedure;

dcl 1 (osl.os2 .cl, ohl.oh2,ss, hh, avh, sstot, bl, 2, al, a2,
a4,pi,qopt) float bin(27) real external static;

dcl (n,iyl,iy2) tixec binUl7) real external static;

sstot=ss+osl* iyl+os2* 1y2;

if sstot<.OOOleO then sstot=.ODOleO;

avh=(hh*ss+ohl*iyl*osl+oh2* i y2*os2)/sstot;

if avh<O bl<a2 ten aa:do;

put data (hh, ss, osl ,os2,sstot,avh,al, a2,a4,cl,n, l1, h2);

end aa;

if avh<.O0OleO then avh=.OQOleO;

qopt=( $~tot**2*( 2eO*b2-( (.2eO*b2)**2+12eO*( b] -a?)* ;4-(
avh**2)/sstot**2)**.5eC))/( -EeO*avh**2)*a4);

pi=-((avh**2)*(sstot**cl)*al +a2*qopt +((Pvb-**2)*a4*q
opt**3eO)/sstot**2) + bl*qopt-b2*oopt**2;

end pifun;
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