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ABSTRACT

The central topic of this thesis is the problem of gross invest-
ment in production facilities at the level of the firm or centrally
controlled industry. This subject has particular relevance for managers
charged with the responsibility of planning for future additions and
deletions to plant or other operations facilities and may also be of
interest to the economist, relating more generally to capital budgeting
and the micro-economic theory of the firm. A normative approach is taken,
focusing on the problem of developing plans which are in some sense either
"good" or "optimal". This is one of the few subjects for which a signifi-
cant body of literature comes from economics, engineering, and business
sources.

Many factors must normally be taken into account in the pre-
investment planning process. For example, product demand relations and
their behavior over time are key input variables, in addition to the
technological relationships which determine production costs. Investment
costs, cost of capital, and depreciation schemes are other important inputs
as, of course, is information about how costs of all types are expected to
change with time or facility use. Obviously, expansion and replacement
decisions will also be highly dependent on the economic characteristics of
production facilities existing at the beginning of the planning interval.
Usually a single figure of merit is chosen to evaluate investment plans,
such as net present discounted value. '

In this thesis several situations are modeled, for which
possible solution techniques are suggested. Problems may have elements
of aging, represented by upward movement of operating costs through time,
encouraging replacement of o0ld producing units. Most problem formulations
are nonconvex programming problems and hence are not trivial to solve.
Dynamic programming may be used to solve some of these problems, given
that certain simplifications are made in the interests of computation.
The case of fixed-charge linear investment cost is shown to allow greater
computational efficiency using dynamic programming where aging is not
present, and an algorithm based upon enumeration of points satisfying the
Kuhn~Tucker necessary conditions for an optimum is an alternative to



dynamic programming when retirement of old facilities either does not
take place or is pre-specified in time.

Periodic replacement of production units under conditions of
static demand is of interest primarily because the model results, if
investment costs are fixed-charge linear, in a pure integer program which
lends itself readily to solution by a branch—and—bound procedure. Com-
putational experience with the dynamic programming models is described and
results of sensitivity analysis presented. More complex problem formula-
tions are likely to be beyond the practical limits of computability for
optimal solutions, as will be the case also with serially correlated
stochastic demand, so there appears to be much room for future development
of procedures which will provide good, although not necessarily optimal
solutions for more realistic models.

Thesis Supervisor: -Wallace B. S. Crowston
Title: ‘ - Associate Professor of Management
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.- CHAPTER I

EXPANSION DECISIONS IN PERSPECTIVE

The subject matter of this thesis belongs to the normative
theory of investment in gross production facilities at the level of the
firm or cooperative industry. Descriptive theories of capital invest-
ment behavior, for which a large body of economics literature exists,
will not be directly addressed. Although the term "capacity' may be
loosely used herein, it will simply be as a convenient substitute for
"existing production facilities" or "gross quantity of capital plant

' since capacity in the sense of

and equipment of appropriate types,'
capability to produce at a certain maximal rate may have nebulous

meaning in many instances.

For certain chemical and similar processes in near-continuous
production, physical capacity may be quite meaningful. However, for
many manufacturing and service processes, production can be increased
for a given set of facilities by increasing work force, going on over-
time production or additional shifts, leasing of space and equipment,
changes in purchasing, quality or service policies, Subcontracting, or
some combination thereof. 1In such cases, a much more useful concept

is that of an output-cost relation of a set of facilities. Although



10

some writers have attempted to define capacity in terms of output-coét
relations (Deleeuw [25), nothing useful is added for our purposes by

the artificial specification of "capacity" levels.

The approaches suggested in this thesis are especially
applicable td determining the size and time-phasing‘of independent pro-
duction units to be added to existing facilities. Such additions may

| be complete pafaliel plant facilities or simultaneous proportional
incre;ses in al1l capital, material, aﬁd labor inputs. - Under such cir-
cumstances the new cost-output beha&ior can ofteh Be reaAily déduce&

from the cost-output relations of each of the production units.

Embedded within any capital investment plan are implicit
assumptions about a host of operéting problems. The relatively
.uncomplicated operating probiem-of producing to maximize one-period
profit will be cqnsidered in the models presented in chapters three
four; and five. Within this production plan are lower-level problems
involving disaggregétion of the period production plan within a fixed
plant cbnfiguration;'such as work force determination, procurement,
inventory control, and production scheduling. The optimal solution to
such problems is assumed to be summarized bﬁ an app;oximate cost-output

relation for the firm.
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Many other factors are relevant in determining an optimal
expansion plan. Production and investment costs obviously must be known,
as must the form and parameters of the demand relation. If those para-
meters are stochastic, information about their distributions will be
useful. Solutions will be highly sensitive to the time-value of money
adopted, as it is primarily through this mechanism that multi-step
expansion will take place, and also in investment funds available. In
addition, aging of facilities may affect costs in a predictable fashion,
as may technological progress. Finally, the tax structure and depreciation

rate for capital investments must be known.

Chapter two reviews the currently available literature in
this field in a non-exhaustive fashion. Chapters three, four and five
present several models for expansion and replacement problems along with
suggested methods for solution. Chapter six contains computational
results for a simplified expansion-replacement situation, and chapter sev-
en discusses present limitations on the structure of probléms for
which solution to optimality is practical and suggests most promising

areas for further research.
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ChégterII
SURVEY OF PERTINENT LITERATURE

A. Preliminaries

The literature relating directly to problems of optimal
facility expansion is relatively dispersed and disorganized. This
chapter will describe models and solution techniques which have been
proposed by writers for problems of gross investment in prodﬁction énd
operation 'fa;ilities, as opposed to the timing and selgctioﬁ.of |
individual machine purchases. Also to be excluded from these dis-
cussions are thé.ﬁorks of investigators which relate primariiy to rent-
or-bpy decisions or warehouse capacity scheduling, as these are rather
distinct proﬁlems from tﬁose of piant expansion. For the reader |
interested in such topics, strongly suggested are the papers of Veinott

and Wagner [100],Fetter [34], and Weeks et al [105].

The facility expansibn problem has been variously defined by
its principal investigators. We will cbnsider a facility expansion
problem to be one which includes most or all of the following elements:
1) facility investment costs, where facilities are usually considered

to be plants or logistics system elements, but can include the

basic producing entity of service industries as well
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2) facility operating costs

3) time—dependént demand, where guantity demanded (or sales rate).
may be either dependent or independent of other actions of the

firm (such as price-setting)

4) essential constraints such as output limitations or finéncial

conditions to be met

5) an objective function or measure of merit of the investment plan.

The goal is to find a plan of action including:

15 the points in time at which investments are to take place
(or alternatively the plant configuration which should exist
at each point in time)

2) information-abodt the fashion in which the facilities'are to be

operated in each time period

which will optimize the objective function.

The basis for most of the literature in thé facility

~ expansion field is the classical present-value analysis. All costs

gnd all revenﬁes'afe referred to a commdn.point in time allowing direct
comparison of alternative courses of action.. Although there are véry
significan; conceptual problems remaining with this analysis (see Baumol

and Quandt [75], Lorie and Savage [57], Solomon [90] or Weingartner [107])
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for a firm with either limited sources of capital or multiple sources
of éapitalland uncertainty aﬁout the futﬁre, these have been largely
ignored by the investigators in this field. Either an appropriate rate
of discount is assumed to exist and be known to the decision-maker for
net—presént—Value (NPV) analysis, or internal rate of return is assumed

to be an appropriate measure of merit for the investment plan.

A general model using the criterion of net-present-value
for evaluéting investment policies has been preseﬁted by Riesman and
Buffa‘[SO]. The most general situatiqn that they describe is that
involving replacement (C), operating expenditures (E), revenues (R},
purchése price (B), and salvage value (§). For this "CERBS" case
the worth at time zéro of the invéstmen;.plan isP=B -8+ E-R,
or |

| -riw =) a,
P =gt By 8 - ko [8y(Type™ 2 Traay

: n T T
T r.~T % T, +1 -rt

-r % Tih j+1

j=0[ i=0.

R, (£)e TCat 1,

OHH
Cte
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where r is the rate of interest and n is the number of replacements

beiﬁg congsidered. Each item in a succession of replacements, ], may

j’

revenue and expense functions Rj(t) and Ej(t), and eéonomic life Tj.

have its own characteristic purchase price Bj’ salvage value S

Other investment models, drawn predominantly from the area of machine
replacenent policy, are sﬁown to be special cases of this model. For
example, the Terborgh [97] model including an "operating.inferiority
gradient" reduces to the "EB" subcase, in Riesman and Buffa's termin-
ology, while the Dean [23] model is the "ERBS" subcasé. Most of the
plant expansion problems in this section will fall into the "ERBS" or
""CERBS" subciasses and may, ;dditipnally, have elements of uncertainty.
It should be noted that, although fhe Riesman-Buffa model can be utilized
to evaluate‘any'deterministic plant expansion plan, it does not provide
a means of selecting an optimal one; normally there will be a large,
often infinite,numbér of alternative investment plans to consider. This
basig'framework.has also been adopted by Morris [76] in his discussion

of problems of "capacity maintenance," actually equipment replacement

policy.

As will become evident, most of the investigators in the
facility expansion area have directed their efforts to providing

solutions to this'problem of optimal planning and selection of an
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optimal investment strateéy from the many available. For the most
part, the operating proﬁlems considered have been quite'simple, often
merely to provide at least the number of units required in each time
period. Forecasts of sales are hence prime input to such models.
Although Corrigan and Dean [20] and others have cautioned that the siée
of the plant should be based on meticulous market research on static
priée-volume_rglationship, rate of growth of the product class, and the
rate of péﬁetration of the firm's product, many of .the analyses have

ignored such sources of information. As will be noted, several more

ambitious researchers have attempted to include more complex operating

problems»id their models, such as those‘involving_trénsportation and

backorder decisions.

B. Expansion as an Economic Problem

Much of the e#rly litérature.in the érea of micro-economic
theory is concerned with production By the firm. With the usual_objective
of each firm to maximize profits, the equilibrium conditioms in the - |
market have been examined for a variety of pathological ca#es. This
static analysis most offen presumes that but one production technology
is available to thé firm; héncé the short-run cost-quantity relation
differs from the long-run relation only because of limitations on

quantities of factors available, but not due to types of'factors
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(i.e. plant configurations). The dynamic case of productibﬁ to meet
time-dependent demands and appropriate choice of production tech-
nologies for the individudl producer have been largely neglected by

the early writers.

Although the consequences of any investment policy can be
evaluated on a period-by-period basis through use of such theory, :
little guidance is provided for selection of plant size, processes,
and time phasing in the classical literature. It has been relatively
recentiy that economists have addressea such.questioﬁs, motivated to

‘a great exteht‘by the modern-day development of input-output models by

Leontiéf.

‘Consideration of expansion decisions has sometimes been
included in economic thedries relating to.supply. Lucas [58] has
examined preseht-value optimizing conditions for firms in a competitive
industry. Assumptions include output a linear homogeneous fuﬁttion of
labor, capital, and investment goods purchases,' Q(t) = F(L(t), K(t),I(t)),
in order tb introduce the "fixity" of capital explicitly into the |
formulation, thereby distinguishing between the shbrt-run and long-run
supply behaviors. Hence a transitional period is required for the

firm to arrive at its new long-run equilibrium following a change in
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external market conditions. Physical capital depreciation by éxpo-

nential decay is assumed.

Thé usual marginal conditions are obtained, pfoviding the
interesting result that for constant prices, net capital stock ﬁill
grow at a constant rate. 0ddly enough, the slope of the short-run
firm supply curve may have either sign. Due to the adjustment lag
eduations, supply price (horizontal long4run supply curve in a
competitive industry) increases with the growth rate of industry-
demand, the demand growth mechanism operating proportionately in the

qﬁantity dimension.

Thé model indirectly provides firm and thus industry
.demand_relations for capital investment goods. From a practical stand-
point, however, such information may be of little valﬁe to an actual
firm facing horizontal supply of capital or purchasing specialized
equipment for which supply may even be downward-sloping but independent
of other firm's purchases. Homogeneity of capital and lack of purchase

economies in capacity are implicit.

Perhaps the best-known application-oriented economics

treatment of expansion investment is that of Alan S. Manne [65]. He
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has examined a succession of models in the area of optimal time-phasing
of production facility investﬁents, anid he has applied his results to
several industries. The simplest model described by Manne is that

for a linearly gfowing deterministic sales rate with plants of infinite
life. The object is to always have at least sufficient productive
capacity to meet the sales rate, while adding plants of a size which
will minimize the present value of costs over an infinite horizonm.
Excess capacit&, when plotted, then displays a sawtooth pattern similar

to that of the Wilson-type inventory model (Figure 2-1).

capacity-
demand

time
Figure 2-1

The installation costs that result from a single capacity increment
capable of producing x units are assumed to be given by a power func-
tion relation: kxa, k>0, 0<a<l where the physical unit capacity is
taken for cohveﬁience to be the annual increment in sales. Hence, if
C(x) is the sum of all future costs discounted by factor r, looking
forward to an infinite horizon, we may write down the following recurs-

ive equation: C(x) = kx° + e "“C(x).
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kx® -
-« We find the value of plant
capacity x which minimizes the stream of costs C by differentiating

It follows that C(x) -

with respect to x and setting the result equal to zero, obtaining

X
a= .

X
e ~1

For probabilistic sales increments it has been shown that
the above formula is modified pnly by replhcing t by a constaant factor
~ A which depends on the degree of uncertdinty.l It has been further
shown by Srinivdsan [91] that. for exponentially growing demand plant
~additions should take place at times t, =0, t, 2t, 3t, .., 0L, .o0p T
Cases involving backlogging, multiple producing areas, and other com-
plications to the basic model have aiso been worked out b& Manne and
Erlenko;ter [67], and have been applied to déta_from metals, cement,
and fertilizer industries of India. Wein and Sreedharan [104 have

applied a quite similar analysis to the Venezuelan steel industry.

The operating problems considered in such models are quite

simple: either keeping capacity always above demand or determining

1 The increase in average surplus capacity over time resulting from grow-
ing demand is consistent with a proof due to Smith [ ]. that an increase
in the variance of demand in the static case will result in an increase
in unutilized capital stock of the firm for production functions with
inelastic substitution of other factors for capital.
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how much of demand to meet in the case of penmalty costs for not meét-
iﬁg demand (imports create a balance of payments problem; hence an
import penalty cost). Marginal operating cbété are assuméd either
zero or constant up to some capacity level of output, at which point
they become infinite (Figure 2-2). Furthermore, as demand-price
relations are not explicitly considered as a determinant of output,
revenues do not appear in these analyses. The objective is always to

minimize the present value of costs.

AN

marginal cost

capacity

Figure 2-2

Another interesting model has been proposed by Kendrick [51]
fpr progtamming investment in the Brazilian steel industry. Basically,

demand for final product which must always be met is assumed to grow



22

over time, with a transportation-type linear program to be solved in
each time period for the optimal routing of intermediate products
between plants. Integer variables are used to represent the presence
or absence of new plants in each time period. Hence, a rather
difficult-to-solve mixed integer program results for the finite
horizon case, and a relatively complex operating problem is considered
for each period. Algorithms and heuristics for solving such fixed-
charge transportation problems have been developed by Sa [82] and
others, butonly relatively small problems can be solved at this time.
As in the Manne-type models, only additions of independent producing

units are considered, and a single basic product supplied.

Although such models are often useful for prescribing the
optimal growth ﬁath of large homogeneous industries, lending themselves
well to theories of gross investment behavior, their value to the
individual firm for determining its best expansion strategy is
questionable. The many assumptions abéut sales rates, costs, and
demand structure are unrealistic reflections of the environment of the
individual firm, and the models contain insufficient detail to make
use of all of the information that may be available to the manager.
Many of these deficiencies, from the point of view of the individual
business, have been ameliorated by models proposed by researchers in

the process engineering field.
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C. Engineering Approaches

The plant expansion investment problem has beern treated
in some depth in the process engineering literature. Mathematical
approaches to the subject may have been encouraged by the relatively
reliable relationships among inputs, costs, and outputs, particularly
in the chemical industries, and by the analytic trainihg of the
management personnel in such industries. The models developed, how-
ever, often have more general applicability than to one particular

technology.

In many of these analyses, the relation between initial
investment or fixed operating costs, K, and capacity, C (as an upper

bound on output).is of the form

where Co’ b and 6 are the values:for some known investment Ko' Hess
and Weaver [43] have utilized4this.empirically determinéd relation in
determining optimal plant size for uncertain static demand. For the
criterion of maximum rate of return they show the optimal capacity C*

to be the solution of
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al=0
*
6K C
¢ ®
(]

' _ %
prob. (demand > C ) =

Using the power function investment cost relation, Salatan
and Caselli [83) have examined the optimal design of a multi-stage
plant for the case of a static sales rate bﬁt uncertain capacity.

When sequential stages of production each have stochastic capacities
with mean u and variance sz, the plant capacity will also be a pro-
bability distribution, but with mean u'<u and vafiance sz'< 52. This
is known as the concatenatibn effect (Figure 2-3). Ali investments

are evaluated according to their level of '"present cash equivalent"

or NPV.

It is assumed in the Salatan~Caselli model that capital
costs vary as an exponential power of the mean expected plant capacity
of X, units and that unit average operating costs can be éxpressed by

an equation of the form: AC = r + fColv,

where £ = a proportionalityAfactor
r = marginal cost
C, = mean expected capacity, and
Vv = actual throughput. |

Hence, a linear total cost function with positive intercept is required.
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probability distribution of
actual plant capacity

reduired
takeoff Y,

i *~+. probability distribution of
*~_ equipment unit capacity

~

- .

{
1
‘
] -
i
]
'
]

i Throughput, MM LB. YR.
! mean expected
equipment capacity

mean expected
plant capacity X,

B e T T

Static Case with Uncertainty in Plant Performance

0.6 integrated plant (aggregate of
ten units in series)
0.4 |
single process unit
0.2
-~

-20 ~-lo 0 +lo +20

Concatenation Effect on Probability Distribution of Capacity

Figure 2-3
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For constant demand rate and uncertain, normally dis-
triﬁuted design capacity, the marginal conditions for the optimal plant -
size Co with expected throughput X, have been obtained with the use of
the calculus. For increasing sales at an uncertain but const#nt rate
optimization leads to an integral eqﬁatibn which has been solved
numerically, under the assumpfion of deterministic design capac;ty.

The interactions of multiple stochastic elements in capacity, demand,
and rate of growth of demand have not been worked out,.howéver. Plant
expansion in more éhan éne step is not comsidered in this analysis. As
in the previous models, the marginal cost function is constaﬁt'up'to
sﬁochastic capacity output, at which point marginal cdst becomes
infinite.i The mathematicallprecision of the cost functions, as well

as the requirement of constant rate of growth in sales are further
limitations of this mefhod,,although for products with stable growth
and well-defined processes, as are often found in the chemical indus-

tries, such assumptions may not be unreasonable.

A quite similar model has been proposed by C§lem8n and
York [17]. The chief innovation of their presentation is the treatment
of sales,growtﬁ uncertainty. Rather than consider sales growth at a
constant but stochastic rate, sales are assumgd to grow at a constant,

known rate until a cutoff date, To’ at which a leveling off takes
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place (Figure 2-4).
Q

1

|

1 72 3
To To To

Figure 2-4
Uncertainty enters the model in the form of prior probabilities for

several estimates of To.

Plant expansion policies can thus be evaluated either

according to expected NPV or by following a minimax principle
(which is more appropriate for.  .decision-making in the face of

a conscious opponent or adverse nature). - In

the latter case the authora suggest designing the optimal plant for
each of the estimates of To, and choosing the one which minimizes the
maximum loss. By sacrificing some of the economies of scale by expand-
ing in small increments (regularly spaced as in Manne et al), the firm
is in this case able to hedge against an unfavorable demand.outcome

and at the same time assure a reasonably good position with respect to

the most favorable outcome.
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Another problem of interest in the chemical—engineEring?
economics field is the expansion of multi-stage facilities. Each of
N sequential_staées may be expanded independently, but the consequences
of expanding any stage will depend upon thg new state of its followiﬁg
stage. Generoso and Hitchcock [3¢] have examined the expansion in one
step of such multi-stage facilifies, based upon an earlier model of
Mitten and Nemhauser [73]. They assume that the return from éa;h
stage depends on}y on its own state and the state of the following

stage. Three possible decisions 6, are allowed for each production

3

stage:

1) replace the stage with one of higher capacity
2) add a new unit to the exisfing stage

3) use the existing stage at a‘greater throughput.

The optimality criterion is taken to be "venture profit,"
the incremental réturﬁ o#er the minimum acceptable.return (aefined
to be the interest rate times the increase in fixed and working
cap;tal). A recursion relation is developed at each stage n of the

form

£ (x

- ' 3
£ n-l) max {V(xn_l, 6n? + fn+l(xn)} )

j=1,2,3
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where V 1s the venture profit for the stage and X is the state result-
ing from decision en. Computer solution time for a six-stage, three-
state~per-stage dynamic program to solve the dbove is given as one

minute (IBM 7044) including calculation of all input parameters.

~Although the solution pethod optimizes expansion of the
entire production chain in one step only, the authors suggest (Case II)
that multi-step expansion can be treated for a finite horizon if all
possibie expansion paths of capacity by equally sized increments have
eacﬁ e#pansion step optimized by use of the single-step ﬁrocedure.‘ |
Each expansion réute then has embedded within it several single-step

problems, and there are likely to be many such routes to consider

(Figufe 2-5).
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Figure 2-5
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D. Plant Expaﬁsidn in the Managemenf Science and Related Literatures

.The managenent science literature in the area of plant and
facilities expansion draws heavily upon the economic and engineering
approaches to tﬁe subject. Those differencés that exist are likely to
be ones of emphasis in problem formulation arising from différences in
goals, information base, and the degree of abstraction believed to be
justifiable. Frequently the scope of the expansion.problem considered
is somewhere between the macro industry viewpoint of the economist and
the viewpoint of the process engineer often concerned with an indivi-
dual facility'prodﬁcing a pértieular homogeneous-chemicai as part of

a much larger production complex.

Before proceeding to thé dynamic case of plant expansion
to maét changing demand, a discussion of optimal plant size or type forl
a static environment may be useful. Usually choice of optimal pro-
duction technology under such conditions requires a tradeoff between
several cost c&tegories. One exﬁmple_of such a tradeqff is that
between marginal and capital or other fixed costs of the firm. A
teéhnology requiriﬁg great investment in facilities and equipment
usually has lower marginal (predominantly labor and materials) costs

than a less—capital-iﬁtensive operation, for pfdduction of the same
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product. Yet we sée few industries that are either totally capital
intensive or totally labor intemsive. Thus we suspect that some
intermediate mix of the two general factors is likely to be optimal in
such industries (Figure 2-6). Similarly, tradeoffs usually exist
between the capital costs of specialized machinery and defect costs
(perhaps due to uniformity or quality of the product), and between

general production costs and transportation costs.

Bowman [ 9] has considered the probiem of warehouse
sizing (also applicable to plant sizing) to be a tradeoff between
operations and transportation costs. Unit cost is assumed to be a
function of both scale of operations in terms of dollars of product

supplied (v) and the area served by the facility (A):

C=a+b/v+ cAL/Z.

The parameters a, b, and c are obtained from a cross-sectional regress-
ion analysis of existing facilities in each district. As c is an
empirically determined constant, the demand environment is assumed to
be static. Investment costs are ignored in this analysis. The optimal
scale of operations is found through use of the calculus for each

existing facility.
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A more complex pfoblem of optimizing plant location and
sizing, in which oniy a single-step expansion is allowed, has been
formilated by Klein and Klimpel [53]. Total production cost for each
of several potential production sites 1 is represented by a power
function of sales plus'a fixed charge. Transportation costs are linear
functions of the quantity to be shipped annually from each facility
to each demand point. For multiple demand points j and either finite
or infinite horizon, the nonlinear program with minimization of the

present value of all costs as the objective function results:

min: ENPV of production, investment (fixed), and shipping

costs , :
ZPigk = Mk
51205 Py 20

where Pi is the number of units shipped from i to j in period k,

jk

is the demand at j in period k, and S, is the plant size selected

k i
for site i. It is assumed that the single step establishment of plants

=

will take place simultaneously at all potential sites. Rosen's
gradient projection method is used to solve the above nonlinear program

for several small problems.
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As mathematical programming may be utilized to solve
certain other complex single—period operating broblems, a possible
method of identifying the best multi-step‘expansion plan is by enumera-
tion of alternative plans for faéility expansion, each solved for
optimal period operations, selecting the one with the greatest discounted
value of all revenues less costs. Rappoport and Drews [79] have adopted
this approach in a study of petroleum facilities expansion. A linear
program is sglved for each period and possible facility configuration
to satisfy all demands for petroleum products at minimum total operat-
ing cost. The present value of all operation and net investment costé
are then compared for each of the alternative facility expansion plans
examined. This procedure is obviously useful only when the number of

feasible investment plans is relatively small.

Other writers in the field have considered far less com-
plex operating problems, however. Lawless and Haas [55] approach the
problem of what size plant to build by considering a set of alterna-
tive courses of action over a relatively short horizon. Four possible

expansion plans are given in their example:

1) Build to match the six-year sales forecast

2) Build to match the three-year sales forecast and add
one increment of expansion during the third year to
meet the sixth-year requirement if needed



35

3) Build to match the two-year sales forecast and
add two increments to match the fourth and
sixth year forecasts if needed

4) Build the minimum-size plant required for the

first year forecast and add an increment of
expansion each year for five years if rneeded.

Thus, only equally spaced expansion increments are considered. Invest-.
ment costs of plant depend upon output capacity according to a power

function relation:

cost of plant a _ (capacity of a)e
cost of plant b capacity of b .

Six conditions, éorréspdnding to diffe;ent patterns of deviation of
actual sales from'tﬁe forecast are examined, and the NPV of each
expansion plan is calculated for each condition. The rather detailed
NPV calculations have been transformed to a set of easy~to-use nomo-
graphs. A feature of this model 1s that finite constructibn times for
plant and additions can be easily faken into account. Operating costs

of the plant configurations are ignored.

White [108] has also examined the problem of developing an invest-

ment plan for expansion to meet increasing demands for several products.
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The cost function that he uses is linear for each product:
=f +
E=f th s

where E is the total annual cost and Dt is the average annual demand
during the tth year. New parameters f and g result from each facility
expansion investment, assumed to be in increments which cost $10,000
each. Thus the Riesman-Buffa model could be easily utilized to deter-
mine the optimum expansion path in the absence of external constraints.
However, in this model the firm is assumed to have a limited amount of
capital, Z. Dynamic programming is used to determine the optimum
allocation of funds to expansion of facilities for each of the products.

The basic recursion relation is

fn(z) = max {g (xnvn) + fn—l(z_xnvn)})
O<Xn<z/vn

where n designates the product number, X is the number of increments
. s th .

of additional facilities for the n  product, v, is the cost of an

additional increment, and z is the unallocated capital at stage n. A

maximum of two increments in capacity for each of the products is

allowable within the finite horizon. Furthermore, no additional funds

are expected to be available in the future in this model. Rather
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laborious calculations are presented for a four-product, six-year

horizon example.

Only rarely in the literature have the prices of factors
of production been explicitly considered in seeking optimum expansion
policy. Horowitz [46] has considered the problem of optimizing plant
size for a dynamic price-quantity relation for a product which requires
conversion of raw materials and labor into a more-or-less homogeneous
product. He describes his article as "an exercise in algebra of dis-
counting which results in the presentation of (these) answers in a

form that is readily understood by management."

The net profit in a given year i from a plant constructed
by the conversion of a raw material m into a final product will be

equal to

mo= (Pqu -pa, ~W-F-V- D)(1 - tax rate) »

where g is the average quantity sold during the year,‘pm is the
average price paid for the raw material, 4, is the quantity of raw
material used during the year, W is the wage bill, F is fixed cost

other than depreciation, D is depreciation, and V is other variable
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costs. Horowitz then assumes functional forms for gq, p, W, V, and D,
and finds optimality conditions for the present value of net profits.
Multi-step expansion is not considered. Horowitz's analysis differs
from most economics approaches in that although the price-quantity
relations for the final product change over time, the sales price of
the product, once established, is constrained to remain constant over
the remainder of the planning period. Horowitz has also examined a
simple one-step plant expansion problem in which the price-quantity
function for the good is stochastic, taking expected present value as

the evaluation criteriom.

Another investigator who has explicitly considered the
price-quantity relation is Lesso [56]. He has developed a model for the
addition of independent producing units for a single product. For a
given number of producing units and price-demand relation for each period,
an allocation of production to each of the units may be féund which will
maximize after-tax earnings. Each production unit is assume to have a
linear or convex total cost function. An inconsistency in this sub-problem
exists, however, for total demand Dt as a forecasted constant appears in

constraints of the form

total output of existing producing _ D
units in perdiod t i

although optimizing after~tax earnings will generate prices and total demand

quantities which may not correspond to Dt'



39

A main proﬁlem is then formulated assuming that a solution
to the sub-problem has been found for each sub-period. A set of inte-
ger decision variables represent the point at which each of the pro-
ducing units is brought into operation, and an integer program to
maximize the net present value of all after-tax earnings subject to
constraints on the maximum allowable debt-equity.ratio of the firm
results. A branch~bound algorithm is presented to solve the complete
problem. Although the model is a deterministic one and cannot handle
arbitrary expansion of existing facilities, it does allow for fairly
complex treatment of financial variables and taxes, including depletion

and similar allowances.

A simple model which does allow’for arbitrary expansion
of existing facilities has been presented by Gavett [35]. Given an
economy of scale in capital costs and forecasted demands which must be
met the problem involves a trade-off between the economy of scale and
the capital cost of unutilized capacity. Operating costs are not con-
sidered in this model. If we define K(t,w) to be the capital cost of
expanding in period w to meet period t's demand and o to be the present
value of a dollar spent in w, the functional equation can be written

for a finite horizon T:
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1 4

£, = min (@*K(t,w) + £ ), OgtgT
osugt w

A simple example is presented utilizing this relation. Luenberger[sg]

has utilized a similar capacity model in illustrating a cyclic

dynamic programming procedure using Lagfange-multipliers. Here,
howevér, a rather simple aging process is assumed: capacity disappears
from the system after a fixed delayof L yéars regardless of the size of
the original capacity increment or date of installation. Unfortunately,

his algorithm fails miserably in an example using concave investment costs.

Practically all analyses of expansion have assumed that
the investment cost of specific facility alternatives are invariant
to when the expansions take place. Hinomoto [45], however, has in-
vestigated a problem of expansion in which investment cost W of a
facility of sizé‘x may either rise or fall as an exponential function

of the date of the period, too in which purchase takes place:
W= K(z)e_kta .

Similarly, the average operating cost curve of such a facility is assumed

to decline exponentially with ta due to technological progress.

Optimality conditions are worked out for optimum plant size
z of each facility to be added to the system and outputAand price in
each period for time-dependent price-demand relation. This type of
analysis is more of a contribution to the state of micro-economic theory

than an aid to actual decision-making, as the system of equations are
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likely to be impossible to solve for expansion in more than one step.
It is mentioned in this section, however, as it appears in a publication

oriented towards management sclientists rather than economists.

Opératiné and planning decisions may require information
not only about investment and production costs, but about other costs
as well. Erlehkottef [30] Has examined multi-step expansion for
several producing locations. His model seeks to minimize total dig-
counted shipment and production costs which are directly proportional
.to quantity plus incurred investment costs over a finite horizon, while
meeting projeéted demand quantitiés. Reveﬁues are not explicitly '
considered. Dynaﬁic progfamming is used with n-dimensional state and
decision variables, where n is the numbér'of potential production sites.
The operating problem employs a simplek;like algorithm to minimize
total transportation and production costs for each state. Computa-
tional results are presented for problems involving at most three

producing locations.

Other researchers have, while employing relatively simple
models, attempted to investigate the relationship among other mana-
gerial variables. Chang et al [13] have utilized the basic Manne
equation for optimal investment intervals previously described to
examine key managerigl measures. Principle findings include uniﬁ

capital costs as a décreasing convex function of the growth rate of
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demand, risk of idle capacity ( taken to be mean absolute deviation of
excess capacity as a percentage of average capacity between expansiois)
relatively insensitive to the discount rate in the short run, and risk
of idle capacity SQ an increasing comcave function of demand growth
rate. An analysis of the paper industry indicates that the larger the
firm, the lower the apparent discount rate tha£ has been applied to
capital budgeting (inplying a lower risk premium and a greater |
aggressivenéss for such firms), Discount rates are imputed from
expansion according'ib the Manne model, given a éapacity scale economy
factor of .8 and historic observations of expansion intervals. It is
'found that market share has generally incréased with increasing risk
preﬁiums, suggestiﬁg that hitherto unexaminedAoperating diseconomies

may exist fdr larger firms.

Along similar lines, Chang and Henderson [12] have noted
that; for capacity additions as predicted by such models, industries
with linearly growing demand will have a floor beneath thch unit
capacity costs can never fall, while such is not the case for geometric
demand growth. .In addition, smaller size firms will in either case
exhibit greater changes in unit capacity costs (assuming constant

relative market shares over time), présumably contributing to their
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greater profit volatility.

~Although not necessarily associated with a particular
model or solution metho&, corporate simulation techniques have been
employed as an aid to business planning in which capital investment
is a major factﬁr. Using Industrial Dynamics, Swanson [95] has
analyzed the problem of developing effective management decision
rules for the firm in a competitive environment. The firm is
assumed to control the flow of resources (possibly including
physical and working capital, production and engineeriqg personnel,
and marketing effort) which detefmine the firm's competitive
position (delivery delays, product performance, reliability, and

price, etc.) in the market.

Information gained from observations of the firm's
present and past performance is then employed, in part,.in making
resource control decisions (Figure 2-7). The merit of capital and
other resource policies may lie noﬁ only in the pattern of future
cash flows, but also in the robustness, rapidity, and longevity of
uninterrup;ed sales growth, or other non-monetary measures. Although
the projected performance of relatively compiex nonlinear feedback

systems including the essentials of several functional areas can be
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observed through simulation for a variety of different policies,
the optimal policy can rarely Se found. A good, bit suboptimal

- solution tb a more realistic mbdel including capital expenditure
mé&, however, prove to be.of greater value‘than an optimal solution

to a simpler model.

E. Comments and Conclusions

The literature in the field of plant expansion appears
to be somewhat chaotic. There does not exist two or three basic
problem formnlations for which investigators have suggested soiution
techniques, as there is in the facilities location 1itefature, for
example. Nearly every inveétigatof haslset forth a differeqt p:cblem
within the general area of plant and facilities expansion, with a
unique set of givens, constraints, and objective function. Hence we can
point to no work or group of works that represent the ''state of the

art" today.

There are many areas for improvement and extension in the
treatment of capacity expansion'investﬁent decisions. Of course, one
could mention thaf a synthesis of the distinc; features of the
specialiéed models would be a significant sfep to take.. For example,

including elements of uncertainty, technological improvement, capital
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rationing, and multi-products, or combinations thereof in a single
multi-step modél wquld be an advance. Including the price-quantity
relation in those models that ignore.revenues would likewise produce
useful models, although pefhaps ones quite difficult to solve. It is
unlikely that solutions including complex operating problems relating
to transportation f&r multi~location expansion will be satisfactorily -
obtained in the near future for large problems, for even the static
plant location problem has by no means yet been completely conquered.
The incorporation of seasonal sales fluctuations in forecasts for a
model including price—quéntity relations should nqt'be too difficul;,
however, and may provide more accurate estimates of points in time to

phase in capacity.

Othér significant questions have not been considered at ail
in the literature to date. For example, deterio:ation in facility
effiéiency as a result of age and obsolescence is one important factor
influencing actual facility eipansion decisions. 1In addition, all
approaches described in this paper for handling uﬁcertainty ignore the
learning that may také_place when demand either misses or exceeds the
forecasted levels at intermediate points of time in the forecasted

planning period. It may be possible to apply decision theory in the
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solution of such a problem.1

Another phenomenon worth investigating is the interaction
of the expansion plan and long-range pricing policies. Expansion
with explicit price-demand relation will, in general, determine the
optimal price to prevail at each point of time in the planning
horizon. However, management may desire constraints on the price
that they will charge in this period, or simply require that
significant fluctuations in price (which may become optimal when
the design capacity for the facility is approached) be avoided.
Evaluation of the effects of these and other comnstraints on the

optimal expansion plan would then be of value to the decision-maker.

lSobel [89] has examined a short-range stochastic problem involving

the joint regulation of production and capacity which can be acquired
and disposed of at constant per-unit cost. The resulting analysis of
optimal policies appears to heavily depend upon the convexity of such
costs. :
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CHAPTER III

‘A MODEL OF EXPANSION

The seléction of an optimal expansion plan is essentially
a éroblem in production system design. For each of the possible
combinations of facility'éonfigurations that may exist at poiats in
time within thé planning period, a figure of merit, cumulated net
discounted profit, may be obtained. The calculation of net operating
profit in each time period assumes optimal operation of the availabie
facilities. In the models to be examined in this chapter, optimal
operation simply requires determination of the best outpuf quantity of
the product at each point in time for the.design-determinéd operating
cost characteristic of the firm. Although a single product is assumed
in thé analysis to follow, the principles are readily generalizable to
the multi-product firm, requiring only operating costs a function of
the output of each of the products and a price-demand relation for each
product. This section will treat expansion to meet non-decreasing
demand in which the production system design for each point in time can
be completely described by but one or two parameters in the operating
cost function, and in which the set of feaaible designs is limited to

those for which retirement of production units is either prespecified
or nconexistent. ' '
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" Unfortunately; from thé standpoint of efficient
computation of_opéimal inveétmen£ policies, the ébjective functiﬁns in
such models are generally neither conve# nor -concave functions of all
‘the decision variagles. Hence, local-optimum-seeking methods may be
of limited ﬁse fbr Such probla@s; Variables will-reflect.physical
éhanges made to the productioq system, such as capital additions to .
take place at points in'timé. Capital investment will not normally
be a continuous function of time, in contrast to models advanced by
Lucas [58] and others for homogeneous capital without economies of

acquisition or process teéhnology.

A. Revenueg

Two éxémplés of concave revenue functions are'those
associated with linear and constant-elastic demands. The linear demand
model is

R .
p =7 =D() -cg, ¢ D0t ,

where T denotes time. . ‘

Revenues are clearly concave in q for this case: .

R = D(1)q - qu

2 .
'8—3=-2C<0 »

aq

1For simplicity of exposition and because of possible practical difficulties
in estimating future demand parameters, we assume that only one of these

is time-dependent. One could, however, assume that C also changes with
time. ’ '
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For constant-elastic demand,

1l/e

P =.% = D(T)q D>0, e<—1, wherelelis a constant

demand elasticity .

Revenues are also concave in this case:

R = D(’T‘)qlle +1
ézﬁ 1 l/e -

) 2 = D(T)( + 1) <0 »
9q

Revenues depend on time-dependent demand parameter(s) D(T) and thus
R = R(D(1),q). For non-stochastic demand parameters we'may simply con-
: , dp
sider R = R (1,q9). In any case, it will~sematimesbg assumed that E?->o'and

that an increase in D will result in the new demand curve being every-

where above the old one.

B. Operating Costs

One useful function that may approximate the actual operat-

ing cost behavior of a size S plant is
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J ajqj
TC(S,q)= FC(S) + ¢ - ,ajio,s>o. 3.2.1
- =1 ¢

Fixed operating costs dre represented By FC, while quantity-variable
operating cost is a weighted Jth—order polynomial of output., If
ij = j-1 and if fixed operating cost i1s proportional to S,
FC = aoS s
then the minimum-average-cost point in q for this cost function

will be independent of S. This is easily demonstrated.

Average'cost, AC, in this case is

+ I --J—'—-l——- .
q =1 s¥

* *
Let AC be minimum average cost. At AC necessary conditions for
a minimum include

. R
3AC o - aOS . g aj(j 1)q 3.2.2
TV T T2 i-1
8aq q Jj=1 S
Multiplying 3.2.2 by q, we obtain
a, J ' j-1
Q i=1

where Q = q/S.A Q*, the solution to 3.2.3, will be a constant for

fixed parameters aj. Then



52

a J
ac” = 2 +1I a (Q*)j_:L )
Q" =1

minimum average cost, will be the same for any plant size, so there

are no long-run economies of scale (figure 3-1).

A more realistic assumption is that such scale economies are
present, and that minimum average cost declines with plant size
(figure 3-2). With fixed cost proportional to S this will occur for
ij > j-1 in (3.2.1). Another mechanism by which this may take
place is by fixed production costs (including overhead) being less

than proportional to plant size. For example, take

FC = (aos)B ., 0<g<l.

a qj
With ijzp, the terms ——ii— in (3.2.1) are convex functions of
S. Thus for FC = a,.S , TC ig convex as the sum of convex functions.

0
Where convexity of TC 1s required with fixed cost scale economies,

the condition

2 a

i:+1)1 3
= aO‘B(B—i)SB—Z + (i iy

i < 0
Sij+2 -
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must obtain for the plant sizes and outputs in question.

Such an operating cost function, with or without the requirement that
ij=j-l, is a relatively rich one, as it can easily approximate a wide
variety of actual output-cost relationships if J is made sufficiently
large., Hence it has been employed in the computational work

described in Chapter VI.
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TC/q |
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Figure 3-1

Figure 3-2
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In order for an aggegregate size parameter, S= ESk, where'Sk
represents the size of the kthpast capital increment, to be sufficient
to accurately describe the operating cost function in the case of
perfectly independently operating production units certain properties
of marginal cost (MC(S,q)) are desired. TC(S,q) in this case must
implicitly provide an allocation of production to existing units in
an optimal fashion - on the basis of equal marginal costs., For this
to be so with knowledge only of size parameter S we require that the
actual inverse marginal cost function g = q(MC,S) have the following

property:
q(MC,8) = gq(Mc,sk). 3.2.4

Consequently, the marginal cost function of size S plant with
optimum allocation is the horizontal summation of the marginal cost
functions of each production unit. This is 1llustrated in figures
3-3a,b,and c.

If marginal cost of one or more production units is decreasing
for some values of g, actual production system marginal cost can
be kinked, as in figure 3-4¢, Equation (3.2.4) is not applicable, as
the single-valued inverse does not exist in this case. One would
then require knowledge of each of the S If each production unit
' 4=3-1 and identical

»j=1..J, then (3.2.4) will be wvalid and an aggregate size parameter

k.
has total operating cost given by (3.2.1) with i
%3
will suffice to degcribe the system.
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In addition to size, the plant age may be an important determinant
of operating costs. A parameter H which increases with ége may then
be included in the production cost Ffunction. Fdr example, we may
replace somé or all of the a, by ng or some more complex function
of H. In any case, the essential idea is to include a simple means

by which aging can be reflected in production costs.,

C. Operating Profits

?rofits are assumed to depend on demand parameter.which changes
with time (D(7)), production system state ( €), and output (q) only.
operating profits are defined as revenues (R) less operating costs
(TC) adjusted for taxeslz

1(n(t),0,9)= [R(D(1),q) - TCE@,q)] [1 - tax rate]

System state 6may be size (S), size and average age (scalars S,H),
sizes and ages of individual units (vectors S,H), etc. The optimal
profit function 7 is defined to be the maximum profit obtainable

at time T from facility of configuration: €:

n(D(1),0) = max {1(D(1); §0)} . 13.3.1
_ q
_ * .
At optimal output q satisfying (3.3.1) marginal cost will be

equated with marginal revenue:

3 TC R
= — * . ) 3.3.2
) g-q* dq q

1 This is not the accountant's '"operating profit," usually defined
to be sales revenue less all production and operating expenses, since
depreciation is not included as an operating expense.
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Should cost be a convéx function of q and S and revenues be concave in q,
then II will be a concave function of both q and S and w¥will be a concave

function of S as the maximum over q of a coiicave function.

For discrete-time formulations the average nth-period demand parameter,
D , may be substituted for D(t) in the profit function m .

With single size pavameter S _the operating profif funetton

is likely to have the general shape illustrated in fdgure 3-5.
With inclusion of a single age parameter H in the operating cost
function, the isoprofit lines will be everywhefe further to

the riéht (left) in the diagram as H is increased (decreased).

. T=2e
\ .

‘ R LS
———
D (or T 1if gg > 0)
Figure 3-5 ?
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D. Investment Costs

Investmeﬁt costs are defired as those net costs to the firm
after subtraction of discounted future tax savings through depreciation.
For example, with accelerated double-declining balance depreciation
factor 0<d<l, the one-period depreciation allowance n years after
capital increment of size s costing I(s) is ZIdn(l—d). Hence, the

increment in after-tax profit in year h is 2(taxrate)Indn(1_d), and
1

l+r

the present value discounted by factor a = of all such potential

net profit increments at the fime of investment is
. S n.h
2(taxrate) I(s) (1-d) 2, od” ,

So net investment cost is

_ 2(taxrate) (1 - d)

I(s) =Ir(s)j 1 1 ~od. .

It should be noted that the double-declining balance method

of depreciation assumed here is quite common and requires that the
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depreciétion_for,each year be found by applying a rate to the book
value of the asset at the begihning of that year rather then to the
original cost of the asset. Book value is cost less total depreciation
accumulated up to that time., If the declining-balance method is used,
the tax law permits the firm to take double fhe rdte allowed wider the
straigﬁt-line method. For Fhe purposes of this model, the depféciafion
rate d chosen is assumed to refléct'the average life of simiiar plants
(probably in the neighborhood of 25 years), chosen solely to satisfy
Internal Revenue Service regulations. A typical value of d might be ;9.'
In actuality, the rate of obsolescence and deterioration of the plant
may be treafed quite independently of the depreciation structure in this
model, being perhaps reflected by rising operating cost curves for the

aging facility.

This analysis assumes, further, that significant operating
profits will be obtained in each subsequent year, so that the antici-
pated tax savings will be realized. For a well-established firm con-
templating major capital expenditures such an assumption is not unreason-
able, and this treatment constitutes also a good approximation to costs
when losses occurring in énbmalous years can be carried forward for

tax purposes.
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Facility investment costs are often characterized by
economieés of size. Thus, the per-unit cost of the production unit
decreases wiﬁh increasing size. Approximation to such costs may be

1

through a variety of functional forms." For example, the fixed-charge

linear investment cost function.

I(8) = k, + k,8, 8>0 k

1 2 k,>0

1* ™2

= 0 s=0
has such economies, as does the power-function relation

k - |
I(s) = kg 2 0¢ky<l, k>0 3.1

The latter has been observed to hold for certain industry'groups

(Chilton [16]) with .5<k .<.9,In addition, such investment costs may

2

depend on the time in which such investment takes place, and thus have

time-dependent parameters,

E. Expansion in k Steps

A k-step expansion policy is defined as the set of expansion
time-action pairs (7,;36,), 1 = 1...k, where @, représents the parameter(s)

which completely describe the operating cost function of the firm after

_One can think of S and s as being measured in "matural" units
of capital, defined solely by the way in which operating costs
are affected. If different production technologies are available
at the same point in time, the investment cost function would
then be the lower envelope of the investment cost functions of
all such technological alternatives.
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the ith action. For the simplest model of expansion a.single parameter
Si’ representing.cumulated capital iﬂ?estments, will be employed; hence
0, = si = Sy + 'ilsj' The objective function to be maximized is the
present value o% profits less investment costs, where all prices and

costs are relative to the price of capitdl goods (a numeraitre)$

k i+l et k ~rt,
fo = igo £ T(D(t ),@i)e dt - igl I(si)e 3.5.1
i
To $T1< 12 ...<Tk §Tk+1 "

The fixed planning period in this case is C?o’?k+1)' As operating

profits are taken to be contimuously twice differentiable

in T, fo will be quasi-concave in each of the 7. d1if at every stationary
i

point, fo is locally concave 1in ti.l

ofo “TTy “rTy + -TT,

BTi =0 =-ﬂ(D(Ti),@i)e + rI(si)e : n(D(Ti),Oi_l)e 3.5.2
1

For fixed delay L, in operationality of the ith investment, the
limits of integration in (3.5.1) may have the constant Li added, and
the quasi-concavity property will remain.
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azf -rT ' -rT -rT,

i~ ‘ i
—r'I(s,)e  Tawn(@(r,),0; ;e

% =+ ETD(r,),0,)e
ot

1

- om(®(1y),0,) e-r'ti + om(d(t),0, ;) e-r'ti
9Ty _ 9Ty

Combining Equations (3.5.2) and (3.5.3)

2

%f _-BW(D(Ti),@i N 3T(D(1,)0,.) e_rTi
i
2
°°f
Thus ) ____% < 0 1f
BTi

) am(d(1,),0,) N QW(D(Ti),Gi_l)
AT, 8Ty

$ 0

3.5.3.

3.5.4

For the simple expansion model, a sufficient condition for-(3.5.4)

to hold is

o 2n

989t % .

30 5-5
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Although it is not‘imme&iately apparent, if 6pt1m§l output
is non-decreasing with time (%%f > 0), as will always be the case ﬁith
~ the cost and revenue functions considered herain, (3-11) will hold for
‘a tem#rkably léfge class of 'rr-_-functionsf As agimple = example,
consider |

# ) ,5) = R(q(t)) - TC(a(,8) = R(g(t)) ~ FC(S)

JA‘ »
i a,q ‘OJ

a0, - q(9 = D(D
= |

7

=1

Cte

S
the case of infinitely inelastic demand and a cost function with
variable operating costs a Jth order weightéd positive polyﬁomial
of output, ‘ |

Then

_1 d& J ja qj-l. d

2 j(J-l)a |
om z dq
89T (jtl SJ } ar 7 O

More generally,

2T0ER 8 )0, ) fACG,ey), 1), %
T T T . 9q aq 3R

°’lx
e
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can never be positive with revenues nondecreasing with time, positive
marginal reveriue at optimal output q* , and marginal cost no greater
after the investment than before, conditions all of which hold for the
functions previously described and are likely to exist for most problems
of this sort.
HfO ‘
From (3.5.2) it may be noted that e g(Ti,Q), a function
i .

of T only for fixed expansion sizes. Hence, fo is separable in 7!
f. = Zf.('r @) . However this does not ensure that f., is a quasi-
0 i7it i 0
concave function of T; indeed, it can readily be shown that the sta-

tionary point in T of fo(Tl,Tz, g)may be locally convex for

T, = AlTl + kz, 0<A1<:1.

F. A Solution Procedure

Gross expansion planning problems typically involve a relatively
few expansion steps (perhaps k<K = 5), over realistic planning horizons
of perhaps 10-25 years, due to the compound effects of discounting and
uncertainty in long-range forecasts. Thus, if optimal solutions for

k =1, ...,K have been obtained, one might with reasonable certainty



65

assume that the optimal expansion policy has not been overlooked.

If the number of non-zero potential expansion sizes s is m,
the number of potential expansion size combinations for a k expansion
policy is mk. For m fairly small the continuous-time formulation admits
to ready solution. For a given sequence of facility configurations
f0 may be maximized by maximizing each of the fi over the planning
period (?b’%k+l

Golden section, bisection or similar search techniques may be utilized

) individually with respect to T, due to separability.

i

for these quasiconcave maximizations. If the solution Ti*, i=1l,...k,

obtained satisfies the feasibility constraints ?6511< ToeeoT

20 TS Tea

expansion policy (T*,0) is retained. If not, the expansion set corres-
ponding to © 1is rejected. This process is repeated for each of the
mk expansion sets, and of those whose expansion timings are feasible,
the optimal one i1s that which yields the greatest value of fo. Note

that when infeasible timings T *  result from the unconstrained

T
i 74+l

optimization} no solution enforcing feasibility T S for the

T+l

expansion sizes need be considered, for a solution of no lower value of

f0 must exist with '& = Ti

+1 due to quasiconcavity, and this possi-
3

bility has already been covered by the k-1 expansion optimization

problem.

l o - )
This can occur only at the end-points Ty OF Tyiq for q:Si if (3.5.5) holds.
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G. Properties of the Optimal Solution

From the optimality conditions (3,5,2) and (3.5.4), several
intuitively plausible observations may be made about the behavior of

~ this solution. First, an increase in investment cost for a given

h

expansion size s, will have the effect of delaying only the 1t

th

i
expahsion, whilé an increase in the 1
h

expansion size itself will
always result in a delay in the i*® and al11 following investments,
in each case possibly requiring a fewer: number of expansions to become

optimal.

In -addition, by use of (3.5.2) it is found that

LR {CRE |

= e < 0 3
3 " ImOT),E)  an(ber,)0;_))

- 9T, M ot

i

so a marginal increase in the discount rate will have the effect of
advancing all éxpansions, possibly allowing a greater number.of
expansions to become optimal. - For the case of convex or liqear invest-
ment costs (including fixed charge with the number of investments
given) the objective function (3.5.1) for simple expansions will be a
concave function of s for fixed values of the Ti,.as a concave function

of linear functioms.
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H. Forecast Uncertainty

For a maximum expected value solution to the simple expansion
problem with known and independently distributed investment costs and
demands, one need only substitute expectations E(I) and E(ﬁ) for
the quantities I and 7 appearing in the preceding sections and solve
as a deterministic problem. However, stochastic demand parameters
D(t) more typically will be correlated in some fashion. For example,
one might postulate behavior of demand parameter D(t+dt) given D(7)
according to a continuous diffusion process with trend §(t) and
independently distributed uncertainty terms é(r)dr ; E(}(r)) - =0,

Henée 5( T+dT) = B(T) + [8(1) + E(T)]dT-l

Nevertheless, it is interesting to note that solution as a deter-
ministic problem with approximation of E(w(ﬁ(r), §)) by n(E(ﬂ(t)),Gi)
will normally result in planned expansion timings being delayed from
those projected to be optimal at time 1, for a giveﬁ set of expansion
sizes in this naive case.2 For the process above expectations E(B(T))
at Ty can be readily obtained:

~ T
E (D)) = D(xo) +T£ § ¢ ()dt. With

1 Under some circumstances it may be more realistic to take rates of
change of demand parameter, d(D)/dt, to be governed by a similar stochastic
process. '

2 of course, with constant review of actual demands and other market
information distributions for future demand can be updated over the
planning period, resulting in a strategy contingent on realized demands,

assuming that the firm makes efficient use of all available information.
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marginal revénue increasing with D, T will be corivex in D;

2 ., 9R
T (D 3q*(D,0 )

——2—=——-g-— ‘ [ — }0

5D - 3D 3D ' 3.8.1

since optimal output q* will never decrease with upward shifts in
* : -

demand, %——30 K 3.8.2
o 3R
L LR
In addition, with ) BZR - 'lec
qu 3q?

from differentiation of the optimal output relation implied by (3{3.2)

and

326(0,6, ) . Zeta,0)
3q2 . “ aqz : _ 3.8.3
it follows that
'8, ) 2470,0)

T < T > 3.8.4

I. For 6, = S5 s

, O,ml j ‘ _

marginal co;t function satisfying the horizontal additivity requirement
(3.2.4), as well as for others. '

this inequality will prevail for any non-decreasing
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i.than for 61_1 from

(3.8.1) and (3.8.4). The following inequality will hold for these

so T is everywheré :no less convex in.D for ©
unequally cdnvex functions of random variables:

E(n(D,0, p-E(n(D,0)) < m(EMLe P~ m(E@,0) .
It is obvious then that the expahsion timings‘determined througﬁ use
of w(E(ﬁLO)‘ as a substitute for #(D,0) to satisfy eﬁuation (3.5.3)

will be no earlier than the maximal expected value timings émploying

‘E(n(ﬁ,@)) in place of m(D,0) in this equation.

I. Discrete-Time Formulation

The simple expansion investment problem can be formulated
as a discrete-time,dyn;mic program. Period profits nn(Dn,Sn) represent
the total maximgl.operating profit in period n from capacity Sn’ based
upon the average demand characteristics for.that period. For finife
horizon N problems and known demand relations, the basic recuréion

relation is
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fh(sn) =7 (D S ) + :afo{~1 (s ) + af (Sn + sn)}

n= 1,|‘|,N_l

with fN(SN¥wN(qWSN), where s, is the expansion size in period n,

1
l1+r

a = is a discount factor, and the planning interval [1,N] is
entered with some initial plant size §1.l With demand parameter Dn
for each period known with certainty, one-period profits may be
represented by nn(sn) instead of wn(Dn,Sn). For stochastic demand
parameters and investment costs with initially known independent
distributions for each period a maximal expected-value plan

given available information in period 1 can be obtained by using

the expected one-stage returns El(ﬂ(D,S) and E;(I(s)) in place

of 7(D,S) and I(s) above., More realistically, however, distributions
of future demand parameters will depend on their past values.

If demand distributions are (discrete) markovian in nature

(depending only on prior period demand) with transition probabilitieé
Pn(Dn+1/Dn) and realized demands observable (as will usually be the
case), then D, can be treated as an additional state variable,

and the .recursion relation rewritten as

Periods may be of unequal length, suitably reflected in the values for
7 and a . For computational purposes it may be desirable to use periods
longer lengths towards the end of the planning period, as one might
expect early decisions to be least sensitive to errors due to time
discretization later in the planning period.
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fn(Dn,Sn) = 'nﬁ(Dn,Sn) + max {—In(sn) + oE(f

s 20 n+l(Dn+l,Sn+sn))}
n
where
_ , _ . ' 1
E (fn +1 (Dn +1° Sﬁ+sn) ) 1 f bl (Dn +1° sn+sn)_ P (1)n +1/Dn),
D
“n+l

The above procedure will provide an optimal solution to the
problem as.statéd. As a large number of other inputs will usually
also not be known with precision initially, it wduld be heuristically
desirable to update these as new information becomes available, and

to resolve the problem periodically (a "rolling strategy").

J. Fixed-Charge Linear Investment Costs

The search procedure for identifying optimal values of
expansion size (s) for each capital level (S) can be simplified

considerably for the case of fixed-charge linear_inVestment costs.,

Similar treatment of markovian demand ts-possible for the
more complex dynamic programming models in later sectioms.
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If we let Fn(Sn,sn) = - In(Sn) + afn+1(Sn + sn), then

fn(sn) = wn(sn) + zafan(Sn’sn)' For clarity we temporarily drop the
subscript ‘n-ons and”S. Let s*(S) be the wvalue of s

which ‘maximizes Fn(S,s). For the fixed-charge linear
investment cost function,
In(S) ='an + Ihs, s>0 Ih,an>0,
=0 s =0,
we have
- - + 0
fn(S) = ﬂn(S) + max { a_ + max{Fn (S,s) 1}, F (s)}

s>0

+ = - 0 = *%
where Fn (S,s) Ihs + afn+l(S + s) and Fn (S,s) af (s). Lgt s

o+l

+
maximize Fn (S,8). Then s*(S8), the optimal expansion size for

.

capital level S, is

>

gk* + '
’ s'according as -a_ + Fn (S,s**)g

0

<

For the remainder of this section subscripts n, ntl will be omitted

entirely, and we define 8y = S**(Sl)-

Lemma 1: If s, 6§, s, - & are >0, then s, - § = s**(S1 + §).

1 1

+
Proof: Since sl maximizes F (Sl,s) s.t. s>0, we have
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+ +
F'(8; 8{)2F (51,8)  ¥s20, or
_Isi + qf(Sl +Sl)2TIS + af(Sl +s).

Letting s' = s - §, so that s = s' + §, we substitute into the above

inequality, obtaining
ﬁISl + af(Si +sl)3yI[s' + 8] + af(Si+s'+6), #s' +8 3§
-I[s; - ¢] +af((8; +8) + (sy = 8))2-Ts' + af((8; + 8) + s")¥s'2-6 |
from which it follows that
FN((s, + 8),(s; = 8))2F ((S, +6),5') ¥a'>-6; hence also ¥s'>0.

Therefore it must be that g, - § = s**(S1 + 6)3§ .

QED .

Corollary to Leﬁmg 1: 1f §, s, are >0, then only if s, -6< Q can

1 1

Kk ;
s (S1 + §) be > L
Proof: None is necessary. The case of 8 - 6<0 is not covered by

Lemma 1.

The import of Lemma 1 and corollary is that as S is
increased, s**(S) will decrease by equal amounts (if originally non-

zero), until some point S. at which s**(sb)= 0. As S is further

b

increased beyond Sb, s**(S) may again at some point take on a positive



74

value, then decrease again in.the same fashion. A sawtooth-1like
pattern will then result (Figure 3-6). Lemma 2 will aid in computing
the positive value which may possibly be taken on by s**(S) as S is

increased beyond such points as Sb.

s

— e - e -y

Figure 3-6

Lemma 2: Take Sy to be the smallest feasible value of S and si>0,
i=1,...,m, the m positive valueg(if any egist) of s' which

loéally maximize F+(So,s’) s.t. 8'>0. Let &(8) = tslysst - s + S0>0.
I1f S>Sg and s 0, then s = sj - S3 + 8p, where sst(S') and

F' (Sg,87)2F (Sg,81)¥s7eG(s) .

Proof: The proof is in two éarts. First, we will prove that s; =

sj - 81+ Sp, where sjeG(qp. Then it will be proven by contradiction
that F+(So,sj)_>_F+(So .si)VsieG(S,i)

Part 1: Conéider any state, optimal-decision pair, S, si, with

S »Sp and s8>0. Since s maximilzes F+(So,s) s.t. 8>0, we have.
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o ot _
F (S1,81)%F (51,8) ¥s20, or

Let s"l =g1+ S1 - Sg and s' =5+ S1 - Sp, so that s1 = sj -8S1+ 8§

and s = 8' - 51+ Sp. Substituting into (3.10.1) we obtain
--.Z'[sj - 81+ Sg] + of (S + s'-l --81+ §g)>-I[s' - S1+ §]

+af(S1+s' -8+ 8) ¥s' - 5148720 ; Hence

Isd + af(Sy + s3)>=Is' + af(Sy + 8")¥s'>S; - §¢>0
or

F' (S0,83)>F (59,8") ¥s'>S; - §,0.
Therefore s'-j

gl = s1+ 831 - Sp and s 0, sj>Sl - Sge It follows tha.t:‘s:l at least

maximizes F+(So,s') s.t. 8'>57 - §5>0. Note that since

locally maximizes F+(So,s')- s.t. 8'>0. In addit;ion, sj -8+ 8p =

s 0. Hence sjeG(S.). |

Part 2: Proof is by contradiction. It has been proven in Part 1 that
8] = sj - 83 + S; where SjeG(S]).. Suppose that it is not the case thai:

3y«

F_'*'(So,sj)g_F+(So,'si) VsieG(S v+ Then there exiaté sk eb(sl) such that F+(So,s

—Isj + af(Sq + sj)<-Isk + af(Sgp + sk).
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h 3

We have s = 8" - S1+ Sg, so s° =s1+ S1 - Sp. We may also let
s2 = sk - S+ Sg, 80 that s* = 83 + §1 - Sy, and substitute into the

above inequality, obtaining

~I[s1+ Si-Sp]l +af(Sg+ s1+ 81 - Sg)<-I[sp + Sy - Spl

+df(So+82+Sl—SO)

- Is1+ af(S1+ sP<=Isy + af(S1 + s83). 3,10.2

Since sksG(Sl), 8; = sk - §1+ 8¢>0, resulting with 3.10.2.1# a-contraﬁiction
to (3.10.1). Therefore, it must be that F (Sg,S9)>F (Sg,s1) ¥ sleG(sy).
QED
Lemma 2 tells us that we need oniy consider as a potential

3 3 provides the

non-zero level of Sy the value s” - S + 8g, where s
greatest noﬁ-zaro local maximum to F+(So,s') s.t. 8'>0 for which
§1= sj - 8] + 80>0. The values sieG(So) may be iﬁitially arranged
in decreasing order of F+(So,si) and thus only the first element in
the list need be examined for any value of S. As S ispincreased,
once a value s1 becomes less than S - Sp, it may be pefmanently (for
this stage) removed from G(S). It is of computational vélue.to note

also that if S, is any point at which G(Se) becomes empty, s**(S) = @ for

s>s .1
-—e

1 At the expense of considerably more notational complexity the same
results would have been obtained for every fixed value of D in the
n

markovian demand formulation of section III-I,
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K. Sufficiency of Unimodal Search

If In(sn) is convex and nn(Sn) i8 concave for all n, then one-stage
returns are concave. As a result of concave one-stage returns, nth-
stage cumulated returns fn(sn) will be concave.1 Fn(Sn,sn) will then

obviously be cancave. A less-restrictive sufficient condition for

concavity of Fn exists, however.

) is concave. Then max {F_,,
s_,.>0

n+l—
2 .
(Sn+l,sn+ﬂ}'must be concave.” But Fn(Sn,sn) = [-In(sn) +

Suppose that Fn+l(sn+1’sn+1

(5,01 + {
n+l’ - max >0

" R
» n+l—

ar g )}, where S 41 = Sn +8 . Hence,

a sufficient condition for Fn(sn’sn) to be concave is that the
expression in squared brackets be concave, or that the concavity of
I be less than that of am for admissible values of s_ and "S_.
n n+l g n n

Since last-stage returns m, are concave, these conditions are

N
sufficient for Fn(Sn,sn) to be concave for all n (by induction)} Under
such circumstances, golden section, bisection or similar unimodal

search techniques may be employed to determine optimal expansion

sizes sn*(Sn) at each stage.

lA discussion of this well-known property appears in Hadley [40], p. 375.

2The maximum within a convex set of a concave function in any subset

of its arguments is concave.
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" L. Age-Dependent Production Costs

Aging may affect the producing facilities of the firm in g -
variety of ways. Replacement of production units may become mandatory
at points in time due to their pliysical exhaustion alone, or the effects
of aging may show up in the output-cost relation of the fifm; In the
latter case, it will be assumed here that a single state variable, H,asa
parameter in the operating cost function will be sufficient to completely
describe all aging effects. Implicit in this assumption is the property
that if at any_point in time additional capital, 8. is added to the

- production system of size § the new age variable Hn+l will depend only

o
on the variables Sn}%land Hn' Thus no "memory" of each specific past

addition size is necessary.

For example, if no action is taken between periods n and n+l,
we may adopt a growth pattern for H: Hn+1 = HnYn’ Y,> 1. For an
addition of size s in n, the new value Hn+1 might be weighted by old
and new capacities, where a neW unit begins with new-unit parameter

2
hn’ adjusted by Yn.l’ Anticipated technological improvements may allow

hn to decrease with increasing n. Hence,

1
Hn-hn corresponds to Terborgh's cumulative inferiority gradient for

the entire production system.
2. The correct age parameter must always result after several additioms
by this process since weighted average w has the property that

w(a,b,c) = w@»(a,b); c).
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' | S.ﬁH.n_*sﬁhn - | or
H'n+l’= 's_+s,,,Yn
n n

(sn+sh)Hn+l =sn‘HnYn +sﬂthn'

This is probably the simplest fashion in which Hn+1 can be
a function of %aiﬂxland Hn which makes reasonable economic sense.

Consider Hn affecting only fixed operating costs which are a power

function of plant size (as suggested in sectdon 3B)in the following manmer:

Fcn(sn’Hn) = (Hﬁao SE)B 0<B<1

FCn+1 (Sn + ®n? Hn+1) = -Fcn+l <sn’ Sn? Hn) = [San a2 'oY'n + snhna an] g
Note that for B = 1 (fixed costs directly proportional to faéility size),
the fixed costs of oid and newly added units are simply summed to obtain
the total fixed cost for the period, which is precisely what dne would
expect in the absence of fixed-cost economies. Of course, the age factor
H may appe#r in the quantity—variable terms of the‘operating cost

function as well, giving rise to the effect of increasing marginal cost

with age.
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The dynamic programming recursion relation for this
situation of aging with expansion but inadmissible replacement of old

units is

H) + - - -
fn(sn’Hn) = In(Sn, n) :a:o { I (sn) + dfn+l(Sn + Sn’Hn+l)}’n 1,...8-1
n?

with

£ (SyoHy). = My (SyaHy).
As there are two-state variables and but one decision variable in this
- formulation, computational feasibility is likely for reasonably fine
discrete finite grids imposed on sn,Sn,and Hn, and interpolation of
values of fn+1 over Hn+1 should be satisfactory due to continuity of T

and thus f in H. Aséuming that a realistic upper bound §ﬁcan be placed

on expansion size, H can be also be bounded:

at+l
SH +sh
n nn<H

n <H v .
Y S .+ 8 = P~ n"n
n n™ n
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© . M. Other Approaches

Dynamic programming as a solu#ion method has several dis-
advantages, iﬁcluding a significant increase in computational.effott
required for finer finite grids imposed upon variables, the difficulty
of tightly boundig potentially optimsl variable values, and the non-
availability of good solutions short of the final iteratioms. In addi-
tion, one cannot easily constrain the number of periods between invest-
ments or number of expansions. -for the purpose of sehsitivit§ analy-
sis, to avoid implicit consideration of policies which are believed
to be non-optimal, or because of practicai restraints related to:-cash
flow, debt levels, etc.- We will discuss ahofher approach which avoids
many of these difficulties while'intréducing a few of its own.

Let us examine the programming formulatidxof the invest-
ment;aéing problem, which requires maximization of all discounted
operating profits less investment costs subject to state-stage transi-

tion constraints:
N N-1

. = n n
Max: fo = EE& o w (S, H)- 57 a In(s)
, ' n= ~ n=1
8.t., Sl -§1 =0 (la)
Sn"‘"l - Sn - Bn =0 n=l,l‘lQlN—1 (lb)
HyH; = 0 . (2a)
SH +8h .
nn
Ho, - ¥ 57 sz 23 =0 pe=1,..... N-1 - (2D)

8 30 n=1,.....N=1 3)
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The firm is assumed to enter the planning interval with given size and age,
§1 and ﬁl; Coﬁsider next the Kuhn-Tucker (K-T) ﬁéceésary conditions for an
optimal splution, assuming differentiability of all ﬂn and In (the constraint
- qualification iéltrivially satisfiedj. With multipliefs A, U, and V.assoc— '

jated with constraint sets (1), (2), and (3) above, respectively, these are

om : :
n n . - _
o :
N N _
“ o e <O )
N .
n aﬂn' '
o ' . : o
N N - _ ,
dI g (H -h )
n n'n n _ - _
—a" g —-Xn + S+ 3 + vn = 0 | n=1l,...N-1 (8)
n n
\)nsn = 0 . - n=1, .0 oN"l (9)
Vp 2 0 ' n=l,...N-1 (10)
where
. YSn
Cn = un rr— n=l,...N-1 (1)
n n

Suppose that we are given values for Ao (associated with la) and My (associ-
ated with 2a). Assume for the moment that these are optimal values for Ao
and Moe Then it will be possible to obtain K-T satisfying points by solving

(1)-(11) sequentially rather than simultaneously.
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Thé'procedure isistraightforward, Suppose that at any
intermediate stagé we have values for S Hos A _gs and uh—l. Then
(4) may be solved for An and () solved for %} If it is possible
for s, tb be positive, solving (8) with;dg’='0 will provide the
appropriate value. One must consider also the possibility at each
étage that én?05 for this will always satisfy K;T. Equations (11)
will provide a value for » given values for S, , Sy and,ins and (1b)
and (2b) will give values for Sn+l and Hn+1’ respectively. The pro-
céss may now be repeated for stage nt+l.

Several observations ﬁay be made about thié procedure:
(1) with ™ concave in S and concave or convex in H there will be no
ambiguity in determining values for Aﬁ and’ Ch from (4) and (6).
With I concave in s there will be no ambiguity about a positive.
value.for L .
(2) At most 2V! combinations need be examined (for s =0 or s x0).
Preliminary computational experience suggests, however, that the
actual number will be nearér to 2m, where m is the number of times
that investment takeg place in the optimal solution, (this may be
a small number) since (8) and (9) cannbt always be éatisfied with
sn>09
(3) The best of the solutions so generated will, if Ao and Ho were
chosen correctly, be the optimal and thus (5) and (7) will be automatically

satisfied.

1 As partial solutions may be discarded when their upper bounds (some
of which are obvious) exceed the objective function value
for the best solution at hand, this number may be reduced further.
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The optimal values of Xo.and1%’are gsually not known beforehaﬁd,
however. If the initial quantity of'cﬁpifal (§1) were optimai with respect
to the planning.interval éﬁployed, §ptimal 30 would equal zero (this may be.
4 poor stateé to arrive at with respect to the firm's present value of cash'.
flow at earlier'poiﬁts in time;'thgugh). A smaller value for §1 would

imply optimal Ao positive while a larger value for S, would imply optimal

1
Ao negative. The optimal values of all M, must be negative with qpérating
costs increasing in age parameter. Somé search over Xo and uonwill generally
be requ:_l.red.1 Investment periods may be fixed at any point in the search,
avoiding the combinational p;oblem. Terminalneonditions (S)Iand (7) will
come close to being satisfied with good solutions for a sufficiently iong'
horizon (as GN’AN-l’ and Mg all approach zéro), althoughAwith expansion
periods fixed Ao and uo may be perturbed in an attempt to secure exact

fulfillment of these conditions (due to resulting continuity of the terms

in (5) and (7) in A, and uo).z

1 A similar procedure applied to the simple problem of expansion without
aging would require only the one-dimensional search over Ao and may thus
be more competitive with the dynamic programming approach.

2 It is worth noting that the discrete maximum principle is not applicable
to this problem. Since Hp>h, and U,<0, the Hamiltonian is found to be
always maximized either with s, = 0 or sy = ®, values which will usually
result in a poor solution. The weak form of the discrete maximum principle
provides only necessary conditions for an optimum and does not avoid the
combinational problem since the stationary point of the Hamiltonian is not
always the maximizing point (Converse[i9), section 5.8). Many of the
classical iterative procedures based on this principle (for example, Fan
and Wang [32] p. 17 £f£f.) will be highly dependent on starting values for
A, U, and each of the s in this problem and thus appear to be most
uSeful for perturbing a solution in order to get conditioms (5) and (7)
-to hold, for which they are unlikely to be worth the effort.
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N. Stochastic Independeéntly Distributed Demand
Parameters and Expansion Costs

In the case of uncertain forecast of expansion costs and
demand parameters, the dynamic programming structure may, under some

circumstances, be appropriate for obtaining efficient expected vglue -

variance solution pairs. For the case of stochastic.

expansion éosts and demand parameters with known and indepéndent>
distributions, use of multipiiers A Ae [0,1],

‘3A. 1 - . agssociated with total return-expected value and variance,
respectively, may-ﬁe_§OSSible wi&hout increasing the state dimensionality
of the problem'té be solved for each valﬁe of A} Since the objective
function' will take the form of a weighted sum of single—étage returns

and variances, the following recursion relation for the nth stage is

found to result:

g (8) = max {A[E(T(D_,6 ) - E(I(s )I-

830
o D ,0.) - 2 . .
Ao 55 . V(Dn) + V(I(s))
' E(Dn)

+- Ol»gn_’__l(@n_i_ )}9

Again we seek an open-loop solution without considering feedback from

observing realized values of stochastic variables over the planning

interval. This is, admittedly, an unrealistic situation, but it

may provide an approximate solution to problems involving serially
correlated demand.
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a linear approximation to 7 at E(ﬁn) being taken to estimate V(nn).
Unfortunately, multipliers may not exist for all efficient pairs, as the
expected total return is not generally a concave function of the

decision variables,

To arrive at efficient solutions explicitly considering
positive covariances between stochastic quantities between periods
would necessitate the addition of at least another state varisble,
resulting in a severe increase in computational difficulty. Note,
however, that reducing any expansion size Sn will always lower the total

solution variance(as'o<an(Diei:f< Bn(D,Gg -
3 T oD > o1

so that an unimaginative heuristic procedure for reducing solution vari-
ance: beginning with a maximal expected-value solution might involve
successive decrements of expansion sizes by amounts proportional

to marginal contribution to variance,1 followed byire—optimization of

timings, repeated until a tolerable value of variance is obtained.

1/

=/ Profit covariances can be approximated as

covy = oD 3D cov(Dn’Dk>
n,k ~

E@ ) ECDR)

Bﬂ(D,On) t Bﬂ(D,@k)
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0. Retirement of Production Units

The major results of this chapter can easily be extended to
encompass the éaSe of new investment with retirgment at prespecified
 times of productién units in existence at the beginning of the
planning interval. All that is required is to subtract from S at
any point in time T or period n the sum of sizes of production wmits
already retired. Age parameters can similarly be computed relative
to existing éld‘production units (for example using weighted averages)
at any point in time. The solution method suggested in section
IIIM additionally allows the possibilit& of retiring production
units.introduced within the planning interval, as parfial solutions
are available af every point in the procedure. Without retirement
times being prespecified, however, the combinatorial aspects of

this problem would obviously be greatly increased.

The rétirement decision, particularly when existing capital
is 'large relative to future increments, is often as important
economically as the invéstment decision and difficult ﬁo separate
from the latter. In many cases investments will simply coincide
in time with retirements (due in part to capital acquisition
economies). Retirement time will'bé treated as a decision variable

in the remaining chapters.
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Chapter IV

THE STATIC REPLACEMENT PROBLEM

A. Nature of the Problem

For the static replacement problem, it is assumed that the
output of each of the several existing production units is invariant

with time.: Such will be the case under either of the follawing con-
ditions:

1) marginal costs unaffected by age of the production
unit

2) outputs of each production unit are not inter-
changeable (for example, different product lines

or sequential’production), and demands are infinitely
inelastic

if the price-déménd function is stationary'with respect to time from

the beginning of the planning period and known with certainty.r

As production units age, then, their production costs
rise in some assumedly predictable fashion. Total production costs

will rise in the absence of replacement: of production units.
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Reblacement units may or may not be more efficient than the units
they replace, to be reflected in the production cost—agelfunction.
Investment costs will, in general, depend on the numbéf, sizes $n¢
ages of the production units replaced at any point in timé, aha may
usually be concave in the total capacity replaced. Both initial

and replacement production units are assumed indivisible.

Clearly, if demand were stationary over all time, past and
future, optimal expansion policy with economies of capacity acquisition
wouid likely'require but a single production unit, with periodic re-
placement of éame, and indeed over an infinite horizon such a policy
may become optimal beyond some point in time. ‘However, fhe firm begins
the planning period with a set of ¢ production units of possibly
differing ages and sizes, presumably due to demand having Been growing
during some prior time interval. Revenues may be neglected as they

remain constant in this static case.

B. Fixed-Charge Linear Investment Costs

For the case in which investment costs are fixed-charge
linear functions of replacement size, the static replacement problem
can be formulated as an integer program. Let H_ ., =H'kni(si) be the

production cost in period n associated with unit 1 introduced in period k.
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Hk = o ,k>n, Let D., = d. s, be the linear portion of net invest-
ni ki k "1

ment cost associated with replacing a unit of size h in period k. Fk
will represent the fixed charge incurred in period k from any new

investment. Salvage values are assumed independent of age and may be

netted from replacement costs.

The variables are:

L}
[

if production unit 1 introduced in k is in use
in period n

ani

. = 0 otherwise

Yki = 1 if production unit 1 is replaced in period k

= 0 otherwise

Z. = 1 if any production unit.is replaced in k

= 0 otherwise

As the planning period is entered with a set of ¢ pro-
duction units, Yoi =1, 1=1,...9. The object is to find a minimal
discounted cost replacement policy over the finite discrete time

interval [],N] while maintaining constant total capacity Esi' The

mathematical program is



(1

(2)

(3

4

(5)

(6)

)
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MPI

in 2 Z2Zx B o+ D .oX+IFZ o
2in 3 g o Xknifkni® T O§ £0%di% T wFkAC

subject to

OSIZ(-Sﬂxkhi=l i=1,...,0 n=1,...,N

xkni < Yki i = l’ll."@’ n = l’...’N )
Ogksn
Yki\< Zk j..= 1,.--,‘&, k=1’¢.¢,N

Y integer

Yik ; ijng‘YiR‘ i = l,uc-3¢, j = l’lll,é’ 20 = l,ou-’k_l

Constraint set (2) ensures that total output remains constant over

the planning interval. Constraint sets (3) and (4) assure that the

linear and fixed-charge, respectivgly, portions of period k investment

cost are incurred if a production unit of a given vintage n-k is

employed in n. Constraint set (7), perhaps difficult to interpret,

ensures only that whole production units are replaced.
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For any feasible solution in Y to MPI, clearly an integer:
solution in Z is optimal; Z, is fixed at zero unless constraint set (4)
forces it to be fixed at one. In additionm, Xﬁni is set to one for the

greatest kgn for which Y,. = 1; to zero for all o:her k. Thus, oﬁly

ik

the newest production units in existence are used, as these have the

lowest operating costs Hkni'

C. A Branch-Bpund Algorithm

One technique that may be employed to solve this problem

is that of branch-and-bound.

Lower bounds on the optimal solution to MPI can be obtained
by solving a series df less~constrained problems. Define the surrogate

constraints:
(3a) z ani $ Yki(N - k)
n>k

(4;) §Yk 1 €400

MPé is the less-constrained problem (1), (2), (3a), (4a), (5). Branch-
ing takes place by sucéessively fixing wvariables Yki‘to their extreme
values, zero and one. If at any.stage of the branching process, U is
the set of indices ik of ¥ variableé fixed at 0, V is the set of

indices of Y variables fixed at 1, and W contains free variable indices,
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then the sdluti_on to MP2 will provide a lower bound to the solution to.
MPI for Y,,, AikﬁULN‘, fixed at integer values. Search is terminated
beyond any node (representing a set UUV) for which the lower bound
obtained from MP2 exceeds the value of the least-cost feasible solution

to MPI obtained thus far (the incumbent).

Upon inspection of the dual to the linear program MP2,

an optimal solution is found to be one in which

thi = 1 for all k which provide the minimum value to

k&
, . D, F. o
{min B o™ ,imin (g a" + XL oK Ko )
| ikeVHkni ikeW Tnt N-k (N-k)r

L k$n .~ kgn

0 for all other k

Xltni

X .
>k kni
Y{: ;= —_ _ kieW
"N=k -
: iYki ,
Zi’: = all kiew
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and thus a lower bound to MPI is obtained. In addition, comstraint
set (7)'in€olving only Y variables can be utilized to prevent branch-
ing to infeasibié replacement policiesf One maj scan fixed values of
-Yik for the most recent (if any) period £ in which replateﬁent of 1
took place (Yig'anl). If any other facility j was replaced simul-

taneously with 1 in & (Y = 1), and if facility j has been replaced

iz

in k(Yjk = 1), then a branch to Yik = 0 cannot be made. Similarly,

if facility j has been denied replacement in k (Y,. = 0), then a

jk

branch to Yik = 1 cannot be made.

D. Piecewise-Linear Concave Investment Costs

,At the expense of considerably moré computational diffi-
culty, the static invéstment-replacement mo&el may be generalized to
encompass the case of piecé—wise-linear fixed-charge concave investment
costs. As is well-known, & piecewise'linear cdncave fixed?charge

function g(s) may be represented in the following fashion:

g(8)

Ig =
.ginléfr(sr)]’ =8 . BpeS 2 0

min[f_(s) + mgrfm(on = min[f_(s)]

r r
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where f are each fixed-charge linear functions. Therefore, it is only
necessary to allow any one of a number of fiked-charge investment cost
functions to be utilized in each timé period to.represent any piece-
wise linear concave investment function. All linear portions of
investment oosts must remain proﬁortionate across facilities:

Dkir = sidksr’ where Br is the proportionality facfor issocioted with
investment cost function r. Fixed charges Fkr now also depend on the
investment cost fﬁnc;ion selection, r. Bounds are developed in the
same way as before, althoogh new bfanching restrictions are that Ykir
cannot be fixed at one if Ym,'m# r, has alreody been fixed a_t'one.
It is doubtful whether large problems'can be solved in this fashion,
although it may be possible to solve'smallrproblems involving two- or

three~segmented investment functions.
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CHAPTER V

EXPANSION WITH REPLACEMENT AND OTHER EXTENSIONS

A. General Model

The case in which new investment in production
facilities may take place in response to both nonstationary product
demand and the aging of existing facilities, requiring replacement,
is the subject of this chapter. In addition, technological improvements
may reduce the operating costs of a potential new production unit
in a specific fashion, further encouraging replacement of existing
production facilities. This situation may be most compactly described
using recursion relations, for which dynamic programming is, in
principle, a solution technique. It may be noted at the outset that
all of the dynamic programming approaches to solution of problems
allowing retirement of production units are especially suited to cases
in which demand is expected to decline beyond some point in time, as
the computational method does not require nondecreasing demand, and
as it is admissible for retired production units to be réplaced with

ones of smaller or zero size,
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For each of the N discrete time periods within the
planning interval, two state vectors, describing the sizes and ageé

of pdtentiéliy existing production uriits may be defined:

'S = (Sl""sr+n-l)T’ production unit sizes representing
initial plus subsequent capital additions

H= (Hl,...Hr )T, production unit age parameters.

+n-1

If the planning interval is entered with r production units; the

~ state vectors for the nth stage will have r + n - 1 dimensions.
Decisions are s, the size of the addition té be made in period n, if
any, and a replacement vector X, ﬁhére Xj = ] if production unit j
is to be retired, X, = 0 otherwise.

J

Recursion relations for this problem are

fn(S,H) = max {n_(5,H) - I (s) + Rn(SXT,HXT) + afn+l(sf,ﬂ')}

s20
X
n=1.,.N-1
with £ (S,H) = = mg(S,H)
where
sI-nT" H(I-x)T
S' = ’ H! =y, - .
s h
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Period profiﬁs‘rﬁ depend on the sizes (8) and ages (H) of existing
production units.

R is some salvage value of retired units, ya'defines the growth of
each age parametér Hj from one period to thé next, and hn is the age
parameter of a new unit introduced in period n. If m addition sizes
are pdssible in each period, fhen thére will be 2r(n - 1)m states
and as many as m2r+n—l decisions for each poséible state even for

this highly structured model. Thus, computation is likely to be

impractical for problems of realistic size using this approach.

B. Suboptimal Solutions

For a given sequence of expansion-retirement actioms,
optimalrtimings can in many cases be obtained by solving the set
of.quasi-concave.optimization problems described.in Chapter 3. For
consistency,‘aésume again the timing for the ith acti0n~can be re-

presented by the continuous variable T From (3.5.4) the only

i.
condition required for quasi-concavity of total discounted net

profits in each of the Ty is

am(D(t),H",s") an(D(1),H 5. ) .
- o+ ' g0, i=1.,.k,
T oT
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It is readily seen that these conditions will obtain
under non-decreasing demaﬁd, positive marginal revenues at 6ptimality,

and marginal cost non-increasing in each of the S, and non-decreasing

J
in each of the Hj if replacements are always with units of at least
equal size Sj. As in the expansion-only situation of Chapter 3,
demand uncertainty will again result in advances in optimal’ timings .

for the initial plan for independently distributed demand parameters.
For k given expansion timings Tt 05% is;k+l’ dynamic
programming might be employed to solve realistically sized action-

only problems. The recursion relation at each stage i is

- "1+l et
fi(S,H) = max { [w(D(t)S,H )e ~dt
s20 Ty :
X
+ -r(T,,,=T T T ore
e i+l i’ PI(s) + R(SX", HX") + fi+l(s W2 ) D;

ir = 0.- -k"‘l

. T -
_ - e y
with fk & ,H) . f ™ (D(t) S,He rtdt ¢

Tk
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The number of possible states at stage i in this case is
2T @)1, while the number of possible decisions is at most m2tTi L
Typically, k will be a fairly small number, and thus the total number

of states and decisions could easiiy be manageable.

Unfortunately, there appears to be no obvious way of.
simultaneously determining both optimal actions and timings. Although
it may be possible to alternately solve to optimality the pure action
and pure timing problems, holding the complementary set of variables
constant in each case until no further impro§ement results, a globally i

optimal set of action-timing pairs will not necessarily be forthcoming
as the objective functionm, as:in the case of simple expansion, is not
geherélly a unimodal function of all its variables, although it may
be everywhere differentiable for continuous time. Furthermore, if at
some point in this process tﬁe optimul,solﬁtion to the timing problem
involves a reduction from k to k - 1 actions, such a method would not
allow for one to subsequently considef actions at k points in time,

which may be the optimal number for the action-timing problem.



101

C. Restricted Replacement Policy

If candidates for replacement are limited to those
production units in operation at the beginning of the planning
period, the number of states may be reduced considerably in a dynamic
programming formulation of the problem. Let S represent total
capital installed between periods 1 and n and s represent the addition

size in period n. Define vectors X,Y such that X, = 1 if production

k|
unit j (of size Sj and age factor Hjn) is replaced, Xj = 0 otherwise
and Yj = 1 if production unit i has not yet been replaced s Yj =0

otherwise. H is the summary age factor for all units added within
the planning period, as discussed in section 3 . The recursion

relations are

£ (8,H,Y) = ‘:ff; {r_(8,HY) - 1 (s) +R_ (X)

X/ %Y

+‘afn+l(S,H”,(Y-X)) n=1l...N-1

with £ (5,4,Y) = ﬂN(S,H,Y),

where '
. gH + sh
- H' (H Y LI «
(458,8) ( S+s ) Ya

Period profits w_ depend only on new capital and its current age, S,/,
n : '
and existing old production units of given sizes and age parameters

H. which may increase in a similar fashion:

in
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It is likely that in many situatioﬁs.solutiop of a problem allowing
retirement of fécilities added within the planning period ﬁill‘result
in the solutioh not requiring such retirements. Furthermore,
retirement of facilities not yet in existeénce, if optimal, will
probably occur quite late in the planning period, and thus have
mininal impact on the early investment decisions, which are of most
immediate concern to the planner. If these models are to be used
periodicélly as new information and revised predictions become
available, all production units will obviously eventually become

candidates for replacement.

D. Treatment of Horizon

In many éases the use of a finite planning horizon determined by
the ability to provide usable forecasts may be inappropriate for an
enterprise contemplating major capital expansion. Except possibly for
the case of a firm owned by the entrepreneur who can predict his end
with certainty and will leave no survivors, the assumption of the firm
going out of business affer N years may be unrealistic. As with many
non-stationary sequential decision problems, the alternatives are

limited to

l . .

For consistency, whenever an, age parameter appears in the. firm's
operating cost function,one should use the weighted average of #
and each of the Hj's as a single age parameter.
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.c)
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fixing a terminal production system configuration.

Iﬁ this case the solution obtained may coincide with

an infinite horizon solution. The difficulty is that
there is usually no way of identifying the optimal
terminal state from the large, perhaps infinité, number of
possibilities.

arbitrariiy assuming that the problem at some point

becomes stationary. Aging ceases and demands and factor

‘prices become proportional and remain so. In this case it

may be possible to evaluate infinite horizon returns
directly once a state is obs;rved to be pepeated.
dllowiqg either variable or fixed terminal system state
with a finite horizon largef than the deéired planning-
pefiod would require. The solutions obtained with this
approacﬁ are likely to have the early investment decisions
closely approximating those of the theoretical infinite-
horizon solutions, since these early actions should be
relatively insensitive to the decisions for the later
portion of the planning period due to thé éffecfs of

discounting. It is also straightforward to implement.
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E. Integration of Investment, Pricing and-Financing Policy

For the expansion-replacement problems that have been -
discussed, the optimalrproduct prices generated when plotted Against
time will typically display a sawtooth-like pattern such as that in

Figure 5-1.

wa*)

time

Figure 5-~1

Each major disconﬁinuity will correspond to a point in time at which
" a change in production system configuration is to take place, causing
a reduction in marginal cost and allowing a greater output and thus
lower price to beéome optimal. Between consecutive.inveétmeﬁts
optimal price will increase as a result of a rising demand function

and/or marginal cost (if aging is reflected in this way).

Although such manipulation of product prices from one

period to the next may be neither practical nor desirable, the long-
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term trend obtained could be of some interest to management. An
exponential or other function might be fitted to the resultant price-
time curve, or the investment problem solved for varlous fixed rates
of increase or decrease in price. The effects of simply imposing
constraints on the number or spacing of price changes within the
planning period (resulting in price a step-function of time) might

also be investigated.

Other aspects of pricing policy include those associlated
with competitors' responses to price changes. For example, one
elementary static economic model (Sweezy [96]) suggests that demand
elasticities of firms in oligopolistic markets are greater for
increases than for decreases in price. To describe this situation
fully would require that demand shift leftward for any production
system change resulting in a lower optimal price. This case could
be represented in the dynamic programming format by allowing the
demand parameter(s) to constitute an additional state descriptgr to
be modified by potential investment decisions. If competitors'
responses are stochastic and immediate, a sequential ﬁarkoviaﬁ'decision

problem will result.
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 Should the investment problem have a éufficiently limited
number of production system states, additional variables migh; dlso be
‘ employed to represent financial and other conditions relevant to the
investment decision. Existing debt may, as suggested by Lesso [56], be
an importanf determinant of investment feasibility. For example, an
upper limit O<mxl could be placed on the allowable debt-equity ratio

of the firmy

DEBT
n \<n

EQUITYn . .

If earnings are'applied to dividends and debt-retirement (ﬁR) only,

depending on the level of operating profits, we have

1
DEBTn+1 = DEBTn + In(s) - DR(wﬁ(a)) 5.5.1
and
EQUITYn+1 = DEBTn +1 + OWNEREQUITY ol - 5,5.2
OWNEREQUITYn 4 = OWNEREQUI'IYn + DR(wﬁ(G))+NEWOWNEREQUITYn.

The choice of expansions in each period n would then be limited by

constraints of the form

Salvage value from sale of retired equipment may be included here
as well.
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In(s) $n [OWNEREQUITYn]/(l -n7) - DEBTn 5.5.3

" and the impact of differing long-term financing plans upon average and
cumulated discounted earnings per share or other performance measures

could be inve'stigated.1

One might alternatively employ financial constraints more consistent
with the contemp&rary "debt capacity" approach to investment financing
decisions.®> In this case the additional debt and hence indireéﬁly the
investment size is constrained by the debt capaéity of the firm rather
than by debt-equity le&el. Debt capacity, DC,, is assumed to depend
upon the tgmporal_probability distributions of -cash fiows, which are
further assumed (as a first approximation) to be direcfly relatéd to
the physical asseﬁs'of the firm, ¢, due to the possibility of cash

. ' 3
inadeguacy.

1
This formulation allows part or all of actual accounting net profits

less dividends to remain in the form of 1liquid assets, without

immediate debit to long-term liabilities in periods in which debt/

equity does not constrain the investment decision. In such a case, °
(5.5.1) and (5.5.2) define potential debt and equity levels, respectively.
However, it is assumed that in periods when (5.5.3) is binding the

cumulated past additions to liquid assets are used to retire debss,
relaxing this constraint to the fullest.

2For a linear programming approach to simultaneous determination of
investment projects and financing methods using this approach see Myers[77].

3
DC, obviously depends, in a complex fashion, on future decisions as well.
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Hence investment constraints for each period (assuming but
one class of debt)_would have the form
1

In(s) € DC (0 ) - DEBT, . 5.5.4

In either case, wherever period profits m dppear terms TX(DEBTn)
and -FIN(I,(s)) may be added to.reflect tax-savings due to the
interest expense and net cost of financing without introducing
additional compiication. Both of these approaches, although crude,
would appear at least to preclude arriving at solutions requiring

clearly impossible financing actioms.

1
Again assuming that investments are financed by debt.
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CHAPTER VI
COMPUTATIONAL RESULTS

In this chapter we will discuss some computational experience
acquired using the deterministic dynamic programming models of sections
IIi—L and V-C for expansion with and withotit replacement of production
units availgble at the beginning of the planning interval. An algorithm
which will solve both of these problems has been programmed fﬁr use on
MIT's Multics (Multiplexed Information and Cdmputing Service, currently
implementéd on the GE-645) time-sharing'dqmputér system. Multics has
proven to be a useful tool for de§eloping and debugging the experimental

programs and for performing model sensitivity analyses.

A. Model Description

The investmént cost function em?loyed is the power-function (3.4.1),
while linear price-demand function is assqmed‘for each of the discrete
time pefiods. Operating costs are given by (3.2.1), with fixed operating
cosfs proportional to S'7 and variable opefating'costs a ﬁhird-degree
weighted polynomial of output, q (in (3.2.1) J=3 and ij=j—l).<Th¢ square of
age parameter (or weighted average of age parameters of old and new pro-
duction units in.the case of retirable productioﬁ uhits) i1s applied to both

fixed and variable production costs. All revenues and costs are assumed

to be less taxes.
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S and H have been discretized into eleven and seven values, respec-
tively, for most but not all of the computations, with linear interpolation:
used to evaluate.returns for intermediate values (since one-stage returns
are continuous in S and H, so are nth—stage.returns). With rétirement,
integer variables indicating the presence or absence of production units
are employed. Expansion size s is discretized into at least six values
in evaluating nth—stageAreturns for each of the possible states, and into
at least twenty-one values in reéoﬁering the optimal aoluﬁion;l ﬁeiiher
of the two increment sizes for s need bé multiples of those for S, and will
not necessarily_cdrrespond with_the latter in the resulting solution even
using iinear intérpolation. Program listings and more detailed descrip~-

tions of usage may be found in the Appendix.

B, Computation Time

Computation time (CPU) can be divided into two parts: a fixed
component and a variable component. Fixed computétioﬁ time includes |
that required for locating and reaﬂing files; establishing linkages to
subroutines, and performing calculations of a set—ﬁp naﬁure. A typical
value would be 20 seconds. After an initial problem has been solved,

however, and with changes in inputs made, the fixed coﬁputation time is

1 Optimal decisions are never actually tabulated for each state and stage;
it is pointed out in Hadley [40], pp.370-72, that the only method which
guarantees that continuous decisions are determined accurately when
discretizing continuous state variables is the one in which direct com-
putation is used to recover decisions. However, all state-stage returns
£(0) need to be tabulated when using this method, so storage requirements
are not greatly reduced.
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reduced to about 14 seconds for subsequent problem runs. Variable com~-
putation time is about 5ms/iteratiom, with the number of iteratiors
approximately equal to

SemNTF

where N is the number of time periods, r is the number of replaceable
production uﬂits, and S,s, and H are the number of discrete values for
which intermediate returns are evaluated. Recovery of the optimal
solution even with s finely discretized requires only a relativgly.small'
(on the order of ‘a few percent of the total) amount of CPU time. As _

an exém@le then, a problem with r=2, N=22, S=11, s$=6, and H=7 would
have a variable computation time of about 500 seconds using this
formula.1 Increasing the complexity of operating cost or revenue
functions would in most cases increase variable computétion time further;
use of a subroutine allowing operating costs to be a fourth degree

polynomial in q was found to triple variable computation time.

1We are assuming the best of conditions. Speed of computation becomes
‘significantly degraded when many users are on Multics.
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C. Sensitivity Analyses

The Seﬁsitivity analyses discussed in the remainder of this
chapter involve one-at-a-time changes in inputé, since consideration
of all combinations of input parameters would result in too large
a number to be practical for the purposes of this thesis. Results
must therefore be cautiously interpreted, being rather more
illustrative than definitive. The solutions are presented on the
diagrams in the following manner: prices and age parameters are plotted
on the same scale, with expansion size in a square box ( {::] )
immediately above the graph and aligned with the appropriate time
pefiod. The lower solid curve is age parameter, while'thé upper one
is price. 1In the case of retirement of production units, the
weighted average of old and new production unit age parameters
(which directly enters the operating cost function) is represented
separately by a broken line, and a period during which a retirement

takes place is indicated by a diamond ( <<:> ) containing the number

of the retired unit.

Problem 1: Base Case I; Expansion Without Replacement

This is a t&pical‘;¥obiem of expansion planning without replacement.
Inputs are as follows: horizon N=22, discount factor o =.85,
investment cost parameters kj=2.0,ky=.7, initial capital §i= 1.5,

initial age parameter ﬁi = 1.0, new capital age parameters h;
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decrease at the rate techrate=.05 per period. Cost function
parameters are a_ = ,3, a, = .5, a, = o, a, = 1.0. Demand slope

C ='.25, vertical'intercépt D(n) in periods 1-18 according to

a quadratic function which begins with D(1) = 2.0 and rises to its
maximum in period 18 with D(18) = 8.0. D(n) = 8.0 for n ® 18 ,and
age parameter growth factor y = 1.06 (six percent growth per period).
Discretization numbers are §=11,H=17, and s = 5.

In this case demand parameter D increases smoothly, but at
decreasing rate, and becomes stationary after reaching its maximum
value of 8.0 in period 18. The trend is for price to rise, but
at a decreasing rate, and, as seen on the diagram, invés;ments

of sizes s=11,15, and 9 take place in periods n=5,10, and 16 in the

optimal solution.

Problem 1.; - Base Case I (see text)
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Problems 2-5: Changes in Computational Parameters (nmot illustrated)

In ordgr to test the effects of discretization, §, E} and s
were each doubled to 22, 14, and 10, respectively (pfoblem 2).
No change in ihe solution resulted, although computation time increased -
dramatically as expected. Although finer discretizétiohs may increasée
accuracy of intermediate returns, f£(g), the effects on the optimal
decisions themselves appear to be minimal.

In order to test fop ©ffects of increasing 1ength of horizon.r
Base Case I was run with horizon N = 30 (Problem 3) and N = 50
(problem 4). No change in the solution resulted in the firat'case,
while in the second the size of the third capital increment was
reduced from 9 to 8, wi;h an additional investment of size
s = 8 taking place at n = 29, Horizon length thus appears not to
be critical. | |

. In problem Slthe investment scheduled for period 10 in Base

Case I was prevented by temporarily placing a great cost on
all investments for this period (k7 (10) = 10000). The new solution
has investments of size 11, 16, and 8 at periods 5, 11, and 16, but
the objective function value is increased by only .94 % from that
_of Base Case I, indicating a relative insensitivity of the problem
to investment timings, due primarily to the possibility of compensation

by changing investment sizes and prices.
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Problems 6~17 use the data of Base Case I with the
exceptibn of the input parameter(s) indicated on the corresponding
diagram. We observe that inflation appears to be a way of life

for the firm that cannot divest itself of deteriorating capital.

Problems 6-8: Investment Economies
As ecoﬁomies of capital: acquisition are reduced, inﬁesfments
predictably become more frequént and of smaller size in these ﬁroblems,
leading ultimately, one would expect, to investment becoming a

continuous function of continuous time, as in the Lucas[58] model.

.Problem 6
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Problen 7
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Problems 9,10: Discount Factor

Choice of discount faétor for theidaﬁa employed is non-critical
with réspecf to the first iﬁvestment; for a= .75,.85, and .95 the
first investment will be of size s = 10 or 11 in period 5. It is
interesting to note that this behavior is in contradistinction to
. that of the classical "capacity” models, in which investment sizes rapidly
increase with a(in the limit becoming infinite as dﬁl;o for strictly
increasing demand)due to acquisition economies . This does not
occur in our case due both to the presence of aging (the firm
would otherwise be lef; with a large, old,. and thus expensive to
operate plant later on in the planning interval) and to fixed
production costs which can incrgase with plant size-as fast as,

or faster than, savings from acquisition economies.

"~ Problem 9
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Problem 10
o=,95
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Problems 11,12: Aging

The pi'oportional'increase in age parameter per period (Y) affects
price primarily early in the planning intérval in these problems.

Towards the end prices become nearly the same.
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'?roblem 11
Y=160

Figure 6f7
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Problem 12
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Problems 13-15: Fixed Operating Costs
As fixed operating costé rise relative to variable costs
(the greater ag) the first investment is delayed, but subsequent
investments ﬁay be delayed or advanceé. As a point of referegce,
fixed operatiﬁg coéts éverage about one-half of total operating

costs over the planning interval in Base Case I (a,=.3).

Problem 13
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Problem 14
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Problems 16,17: Technological Change
The greater the (embodied) technological improvement raté
(techrate), the motre modei:ét'e increases in optimal pi:icé becbmed

in these problems, a very reasonable result.

Problem 16
techrate=0.0
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- ‘Problem 17
techrate=.08
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Problem 18 (.Bas_e Case II): Expansion with Replacement
This c#se has identical input data as Base Case I (Problem 1)
except that‘two "0ld" replaceable producﬁion units of sizes
81, 52 and ages Hl, H2 are present in the system initially, and
that demand parameter growth begins with D(1) = 4.0 instead of 2.0

- as in Base Case J. Salvage values are zero.
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Problem 18: Base Case Il (see text)
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Problems 19-28 use the data of Base Ciae II except for changes
noted in the text and on the diagrams.” Note that Problems 20 and

21 have identical output and so employ a common graph.

Problems 19-25: Characteristics of Existigg??roduction Units

There is a promounced tendency for identical initial age

n

parameters to require simultaneous replacement when "old" production :

uﬁits are relatively large or when their ége pdrameters are

nearly the same (problems 20-24). However, even with very nearly
identical age parameters, if production units are smail fetirements
are more likely to be staggered (problem 25). As expected,
retirements and new investment usually take élace simultaneously
(the only excepfion occurs in problem 19); in problem 22

price (and by implication marginal cost) rises rather than falls
as is usually the case, immediately after the first investment.

The decision is ngverthéless justified by the decrease in fixed

operating costs which result from replacement of old capital.
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Problem 19
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Problem 22 |

S1=12  §2=12
Hl=1.3 ~ H2=1.3 o
i T Pigure 6-17
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Problems 26-28: Changes in Demand

In problem 26 the demand slbpe C is increased to .35.from
the value of .25 in Base Case II. Problem 27 is identical to
Base Case II except that demand parameter D(n) reaches its maximum
value of é.O in period 9 rather than in period 18, and the;eafter
remains constant. In problem 28 D(n) also reaches its maximum
in period 9, but then continues to decline (in the same qu#&ratic
fashion) to a value of 2.0 in period 18, beyond which it remains
constant.

We observe that tﬁe first investment is increased in sizg,
but unaltered in time for proﬁléms 27 and 28 relative to Base Case.II.
The first decision is not very different for the two cases although
the behavior of demand later in the planﬁing interval -is quite
different, suggesting for this data a relatively loﬁ value for

perfect information about demand far into the future.
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Problem 28 -
(see text)
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It‘ is hoped that these problems are suggestive-of?the potential
utility of such investment-replacement models for managerial decision-
making. In particular, since solutions to these fairly rich models
require oﬂly minutes of computer time, it should be possible to
obtain solutions to some of the more complex formulations (such as
with markovian demand) with costs of computation Which are negligible

relative to the anticipated solution payoffs for the larger firm.
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CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Any discussion of capital investment problems is likely to include
the subjects of data collection and reliability, solution methods, and
objectives. With regard to data required for the kinds of interdependent
investment problems examined in this thesis little of novelty will be said.
Statistical cost analysis can, of course, be employed in developing cost
relations in those industries of long history with homogeneous outputs
and stable technology. Reliable point estimates or distributions are
unlikely to be easily obtained, however, for such required inputs as
technological change and aging coéfficients, or for long-term rates of
inflation in factor and product markets. Demand parameter estimates
beyond a few years may be mere guesses for ﬁany firms not providing a
utility or engaged in one of the basic industries. Fortunately, though,
the objective function of discounted cash flows is very forgiving of
errors in forecasts far into the future} immediate optimal actions may
be little affected by alternative levels of demand, let us say, twenty

years hence.

Development of efficient solution procedures for the more complex
problem formulations presents a real challenge for the more mathematically
inclined. Inclusion of additional variables to represent financial and

other measures or for multiple producing locations will quickly limit
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the practical sizé-of problems which can be handled bf dynamic pro-
gramming_(the "éursg of dimgnsionality"-at work). _Another difficulty‘
is that this method cannot satisfdctorily handle correlated stochastic
quantities or frequently récur;ing accounting losses. In the latter
case net investmept costs cannot properly be evalﬁated, since they will
depend on the periods (if any) in which losses occur,'siﬂce‘tax‘savings
~due to the depreciation allowance will not be forthcoming in such periods.
The timings and magnitudes of losses will, in turn, depend to some
extent on the investment strategy followed, so will usually not be knbﬁn
' beforehaﬁd. Algorithms capable of economically solving large general
ﬁonconvex mixed programming problems appear not yet to be available,

so further research might profitably focus oﬁ the deveiopment of

specialized algorithms for the more realistic formulatioms.

It is likely that the sélection of investment strategy using more
comprehensive models, particularly with the inclusion of uncertainty,
can best be approached with the aid of simulation techniques. However,
the investment‘decision procéss wjll, in geﬁeral, be more involved than
the usual use of simplé "decision rule" equations. A fairly complex
subproblem might be solved at each.point in time, for example, to arrive
at locally optimal decisions based on an approximaﬁion tq_the marginal
conditions which ought to prevail. Moreover, since fixing some variables
will usually cause the partial optimization problem in the remaining

variables to become much simpler, simulation runs might be made to
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determine "good" values for one set of variables (such as retirement
times)_acgording to one set of criteria, while the others are subsequently
chosen using an optimal-seeking method, possibly even according to

different criteria.

Although simulation can be employed to determine period returns
for more detailed systems (for example including the intermediate-range
production planmning decisions, aspects of stochastic consumer and com-
petitor‘responéé to marketing policy, logistics problems, etc.), evalua-
tion of all state-period profits, even within_the restricted state space
provided by transition feasibility constraints, is likely to be impractical.
One could very Qell, however, emplﬁy an elaborate detail model to examine
the response surface in the neighborhood of any solution, in order to
provide more accurate information for further computations. Several
iterative procedures can be easily envisioned. Furthermore, in this
approach the detailed economic responses to every possible decision and
system state need not be pre-specified; the manager can possibly suppiy

these as'_needed;l’2

1 Green [37] has shown that heuristically coupling a detailed simulation
model of the production environment with an intermediate-range (aggregate
production planning) model could yield significant cost benefits. We

are suggesting that some sort of coupling between a more detailed
intermediate-range and a long-range planning model is 1likely also to
result in better decisionms.

For a compendium of recent corporate simulation models see
Schreiber [85]. :
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It would be a mistake to interpret the lack of analytic solutioﬁs
in this thesis to mean that none were sought. The results published
for the classical capacity éxpansion problem could lead one to strongly
suspect that inVesﬁments or inter-investment intetrvals of constant or
systematically increasing or decreasing size may be optimal for certain
patterns of demand and profit and investment functions over an infinite

horizon.

For the relatively uncomplicated case of a single size parameter
describing the production system a variety of such relations which might
have some economic justification (including period profits linear or
exponential in time, power-function, linear, and exponential in size,
and linear homogeneous in size and time; and investment costs fixed-charge
linear and power-function of capital increment) were fruitlessly investi-
gated with the objective of maximizing either the sum of discounted net
profits or average per-period net profits (in those cases in which dis-
counted net profits over an infinite horizon can become infinite). A
difficulty is that the recursive expression for returns at any point in
time, if one exists, will probably not be of an obvious or simple form.
Crowston and Sjogren [21] have worked out a periodic policy for a
similar one-parameter problem using nonlinear production costs, but their
solution will generally be a suboptimal one as allocation of production
is done in a suboptimal fashion, with all but the most recently added
production unit operating at its minimum-average-cost point. Clearly,

much remains to be done in this area.
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Actual objectives for investment policy may not be adequately
represented by the measure of net discounted present value.l Such é
criterion may be appropriate for making decisions on a smaller scale,
such as for individual machine purchases, or for the well-diversified
firm, since the effects on the firm's cash flow and capital structure
will tend to even out when mény investments take place, each of which
is of relatively small size. In addition, it is the rare company (or
shareholder) which evaluates the performance of its decision-makers solely
on the basis of the expected present value of long-term plans. It is
probable that thé manager's utility‘functioﬁ will then be vector-valued,

including several other more difficult-to-quantify elements.

of course; one component of the manager's utility function will
include accounting profits, but probably in a nonlinear fashion.
Negative profits, in particular, are likely to receive a greater weighting
than positive profits.2 Such factors as rapidity and smoothness of
growth in profits and sales through time may be important also, as well
as longevity of such growth. Robustness in the face of uncertainty is to

be desired as well. For problems of this nature the Industrial Dynamicists

1Rate of return is even less appropriate for large-scale capital decisions
since the pattern of cash flows which occur (a sequence of positive and
negative flows, both generally increasing in absolute value through time)
is the sort which is likely to result in multiple rates of return.

2Another weakness of dynamic programming as a solution technique is that

a nonlinear utility function for accounting profits cannot be employed
since, unlike present value of cash flows, intertemporal utility is usually
not additive.
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would probably be correct in giving greater attention to the paths taken
by key variables through time than to scalar measures of performancé.
Growth in market share, size, and consequently importance of the firm and
preseige for its officers often will take prgcedence over return to
present equity holders (witness some Japanese textile producérs who have
proudly claimed that, while greatly increasing séles over the past

decade, they have been working with a net margin of 2% or less).

Weingartner1 has proposed ; model for selecting independent
investment projects in which the objective is to maximize the last of
a finite sequenée of nondecreasing dividend payments; such an objective
may be apﬁropriate'for4our problem as well. Ngvertheless, incorporating
a nonliﬁear utility fﬁnction appears to be a worthwhile direction for
extending the present wﬁrk, but one that would probably require a
completely new approach.to solution than those discussed iﬁ this thesis,
since the difficulty of obtaining an optimal solution is increased by
several orders of magnitude by the "utility cost" of any investment
being dependenﬁ on other investment and retirement decisions. The
operationality of developing more sophisticated criteria for investment,

however, is likely to remain questionable for some time to come.

1 "Criteria for Programming Investment Project Selection," pp.201-212,
in Weingartner [106]. :
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APPENDIX

This appendix contains the PL-1 source fext for the
pfograms employed in the computational work of Chépter VI.
Complete understanding of the functioning of these programs,
particularly with regard to input and output, is best obtained
after an understandiﬁg of the operation of interactive compufational
systems, and of Multics, a sophisticated remote access service
currently implemented on the GE-645, in particular. Programs
are of two general types, those that relieve the user from the
laborious tas# of entering masses of data, and those associated
with the algorithm itself., Brief descriptions of the pfograms

are below, followed by the source texts.

QDEMAND: The demand parameter generating program for the case
of quadratic growth. Acquires key inputs concerning
demand growth over time from the user.

ATANDEMAND: = Similar to QDEMANb, but generates demand parameters
which grow in an aéymptotic fashion (according to the
arctangent function). This program was not used in the
computational work discussed.

TECH: Generates exponentially deplining production unit age

parameters to represent technological change.
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AﬂEW: The.ﬁqst reéent vefsion of the contrb1 prégfam for tﬁe
backwazd an& fotWafd dynamic programming subroutines, ONE
‘and TWO. Aéﬁuires and proéeséés data frémffiles
_established by the demand program used and TECH, and
information from the user, including input constants,
_pfobiem options, variable bounds and discretization, oﬁtpgt
fOrmgt, etc.‘ Allows any ﬁumber of data elements to be
individually changed for recomputation and allows re-
ekecution of TWO alone with certain changes of data.

ONE: Computes state-stage‘cumulﬁted returns f(.).using
cne-pefiod profits from sqbroutine.PIFUN.

TWO: Récovers ﬁhe opfimal solu;ibn, also using PiFUN.

PIFUN: Computes omne-period frofits with weighted cubic

Qﬁerating cost function and linear demand.

Further information concerning these programs may be obtained from

the author.
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QDEMAND

gcemand: procedure;
dcl d(50);
put list ("prozram for quadratic lowbtounded demand p

arameter"):
put list ("input initial d, maximum d, lower bLound,

and peaking perioc");

put skip;

get list (initial_d,dmax,bound,npeak);

conput:do n=1 to 50;

d(n)= %ﬁax - ((n-=npeak)**2«(drax-initial_d))/(1l-npea
ifkg;:péak & d(n)<bound then d(n)=bound; ’

end comput;

put fife(filedem) 1ist ({(<{n) dec n=1 to 50),"a");

close file(filedem);end gcemand;
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AT AND EMAND

at andemand: proc;

dcl (d(50),initiald.cmax.t,c)float bin(27) real,(n,

mmax) fixed bin(1l7) real;

put 1ist (Uprogram for atan demandparameter. lnput
initial d, dmax, n/d(n)=.,9dmax");

get list (nnxtlald cmax, nmax) ;

c=(dmax-initiald)*2e0/3.1415€e0;

comput:do n=1 to 50;

b=(n-1) *6.314e0/(nmax=1);

d(n)=c*atan(b)+initiald;

end comput;

put file(filedem) list ((d{n) do n=1l to 50),"a");

close file(filedem);

end atandemand;
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TECH

tech:procedure;

dc1 h(50);

put list ("input h(1), tech rate");

put skip;

get list (h(1),tech_rate);

ccmput:do i=2 to 50;
h(i)=h(i-1)*(l-teck_rate);end corput;

put file(filetech) list ((h(i) do i=1 to 50));
put file(filetech) list ("a");

close file(filetech);

end tech;
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ANEW,ONE, TWO

ariew: procedure;

dcl (osl,o0s2,cl,ohl.oh2,ss,hh,avk,bl,b2,al,a2,al,pi,copt)

float bin(2 .
dcl dem(50) float bLin(z/): réa]? rezl external static;

dcl (n,iyl,iy2) fixed bin(17) real external static;

dcl h(50) float bin(27) real,(ssmax, smax, hhmax, s, alpha, pi

max, ssdel, hhdel, sdel,
wl.w? wﬂ,wu,upwcs upwth,x]owts xlowtk,ctnvfun,turn,hhh,ss

s, fb, k1. k2,rate,rrctk,cnnv( 20,50)) float hin(27) real;

dcl (expan_size,fa) ftoat b|n£27; real,(ixlopt,ixzopt, kk
k) fixed bin(1l7) real;

del f(50,0:10,0:6,0:1,0:1) float bin(27) real initial((1
5400)J) ;

del (111, nmax,issmax,|hhmax,|smax,r1 nyl,ny2,isss,ikhh,ih

h,iss,i,is) fixed bin(17) real,
dcl iter fixed bin(l7) real; e '
put list ("to retire type 1');
put skip;
get list (iil);
put list ("type nmax, issmax, ssmax, i hhmax, hhmax, ismax, smax
. , 7amma, alpha,rate, k1, k2'");
put skip; o :
get 1ist(nmax,issmax,ssmax,ihhmax,hhmak.|sﬁax'snax gamma,
alpha,rate, kl,ks);
put list ("type osl os2,ohlinit,oh2init,te,al,a?, al, cl"),
put skip;
- get list (osl,os2,ohlinit,oh2init,b2,al,a2,ak,cl);
put skip; '

get file(filedem) list ((dem(n) do n=1 to 50));
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get file(filedem) list (({dem(n) do n=1 to 50)); .
close file(filedem);

get fiie(fi1ete¢h) list ((h{i) do i=1 to 50));
close fiIe(fi1ete§h); |

repeat:ssdel = ssmax/issmax;hhdel = hhmax/ihhmax;sdeT =
smax/ismax;

rrate=1e0;combut:do n=l to 50;rrate=rate*rrate;rdr is=0
cinv(is,n)=rraterkl*((is*sdel)*»*xk2); to 1smax;
end comput; |

call onejcall two;

one:procedure;

iter=0}

ndec: do n = nmax to 1 by -1; bl=dem(n); ohl=nhlinit*ga
rira**n;ohZ=ohZinit* gamma**n;nl = n+l;state: do ith = 0

to ihhma
hh = ihh*hhdel; do iss = 0 to issmax;ss = iss*sscel;

do iyl = 0 to iil;do iy2 =0 to iil;

call pifun;

f(n,iss,ihh,iyl,iy2) -le6;
decision:do is=0 to ismax;s=is*sdel;

cinvfun = cinv(is,n);turn = pi=cinvfun;

sss= ss+s; if sss>0 then hhh = gamma* (s*h(n)+ss*hh)/sss;
else hhh=gamma*hh;

if hhh>hhmax then hhh=hhmax;

if sss>ssmax then sss=ssmax;

ihhh = hhh/hhdel;isss = sss/ssdel;

upwts = mod(sss,ssdel)/sscdel;xlowts = l-upwts;
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upwts = mod(sss,ssdel)/ssdel;xlowts = l-upwts;

[}

mod(hhh,hhdel)/hhdel; xlowth = 1-upwth;

upwth
wl = xlowts*xlowth*alpha;w?2 = upwts*xlothxalpha;w3 = x
]owts*upwth*alpha;wh = upwts*upwth*alpha;
wierd:do nyl = 0 to iyl; c nyZ = 0 to iyz;
if ndnmax then fbt = turn+
wl*f(nl,isss, ihhh, nyl,ny2)+
w2*f(nl,isss+1l,ihhh, nyl,ny2)+
w3*f(nl,isss,ihhh+l,nyl,ny2}+
wlh*f(nl, isss+1l,ihhh+l,nyl,ny2);
€lse ft = turn;
if fb>f(n,iss,ihh,iyl,iy2) then f(n,iss,ith,iyl,iy2
itve)r :I t?;";l;
end wierd;
skipO:iter=iter;
end decision; |
end state;
put Tist (n);
if n=1 then gg:do; put data (iter); end gg;
put skip;
end hdec;
end one;

two:procedure;

put list ("type ismax,initial_new_s");



put list (M"type ismax,initial_new_s");
put skip;
get Tist (ismax,ss);

sdel=smax/ ismax;

rrate=le0;comput:do n=1 to 505?rate=rate*rratn;dc is=0
cinv(is,n)=rratexkl*((isv¥sdel)*#k2); to ismax;
end comput;
hh=1;
iy1=iil;iy2=ii1;
iter=0;
ndec:do n=1 to nmax; nl=n+l;
oh1=oh1init*gawma**n;thsthinit*?amma**n;
bl=dem(n);
call pifun;
fa = ~leb;
loop:do is=0 to ismax;s=Isxscel;
cinvfun = cinv(is,n);turn = Ei-cinvfun;
css = ss+s; if sss>0 then hhh = ganme® (s*h({n)+ss*hh)/
else hhh=gammax hh; 5584
i f hhh>hhmax then hhh=hhmax;
if sss>ssﬁax then sss=ssmax;
ihhh = hhh/hhdel;isss = sss/sscel;
i f ihhh>ihhmax then ihhh=ihhmax; if isss>issmax then i

Sss=issmax;
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if ihhh>ihhmax then ihhh=ihhma¥; if isss>issmax then iss
upwts = mod(sss,sscdel)/ssdel;xlowts = l-upwts; s=i§smax;
upwth = med(hhh,hhdel)/hhdel; xlowth = l-upwth;
wl = xlowts*xlowth*alnha;w2 = upwts*xlowtt*alpha;w3 = x1
wierd:do nyl = 0 ggtﬁ;fﬁggﬂ;ﬁ}gfﬁfwgo=I;f?ts*upwth*alpha;

if ndnrax then ft = turn+

wl*f(nl,isss,ithh,nyl,ny2)+

w2xf(nl,isss+1,ihhh,nyl,ny2)+

w3*f(nl,isss, ihhh+l,nyl,ny2)+

wh*f(nl,isss+1, ihhh+1,nyl,ny2);

else fb = turﬁ; :

if fb>fa then eat:do; fa = fL;
quantity=qopt;pricesbl=~b2*qgopt;
piﬁax=pi; | |
expan_size=s;ixlopt=iy1~ny1;ix20pt=iy2-ny2;end eat;
iter=iter+l; | |
end wiercd;
skipO:iter=iter;
end loop;
put data (n,fa);
put skip;
put data (iter);

put skip;
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put data (ss,hh,avh,expan_size,quantity,price.cimax.iy
1,iv2);
if ixlopt=1 then rr:de; put Vist ("//////////replace o

he///////////"); end rr;
if ix2opt=1 then wwi:do; put Yist (“//////]1///replace t

wo//ll111111]"M); end ww;
put skip; .
put skip;
if sstexpan_size>0 then hh=gammra*( hhxss+h(n)*expan_siz
_ e)/(ss+expan_sizc);
else hh=gamma*hh;
ss=ss+expan_size;
iyl=iyl-ixlopt;iy2=iy2~ix2opt;
end ndec;
end two;
put data (iil);
put skip;
put list ("again?"); put skip;get V1ist (kik); if (kkk)
v =1l then sub:do;
put list ("enter changes"); rut skip; get cdata; put sk
ip; =20 to repeat: end sub;
if (kkk)>1 then call two;

end anew;

EOF
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PIFUN

pifun:procedure;
del (osl,ns2.¢l, ohl.oh2,ss,bh,avh,sstot,tl,t2,al, a2,
alk,pi,qopt) float bin(27) real external static:

dcl (n,iyl,iy2) tixed bin(l7) real external static;
sstot=ss+osl*iyl+os2*iy2;

if sstot<.000le0 then sstot=.000lel;
avh=(hh*ss+ohl*iylxosl+oh2«iyZ*x0s2)/sstot;

if avh<0 |bl<a2 then aaido;

put data.(hh,ss,osl,osZ,sstot,avh,al,a2,ah,cl,n,bl,bzy
end‘aa;ﬂ

if ayh<.0001e0 then avh=.0001e0;
qopt=(sstot**2+(2a0%*b2=((2e0#b2)**2+12c0%( b1 -a2) % alix(
avh**2) /sstot**2)*%,5e0))/(~Eel*{avhw*2)*ali);

pi=-((avh**Z)*(sstpt**cl)*al +a’*qopt +((avis*2)wvalxq
Opt**3e0) /sstot**2) + blrqopt-b2roopt**2;

end pifun;
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