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ABSTRACT

Sound radiation from vibrating surfaces is of major concern in the field
of structural acoustics. The amplitude and frequency of vibration of each
surface wave present as well as the distribution of surface waves is needed
to determine sound radiation. A non-contacting method to obtain a direct
measurement of this information is presented. This method utilizes the
diffraction characteristics of an incident wave field on a vibrating surface to
measure its complete wavenumber distribution. Investigations into two
different types of incident wave fields are performed and the hardware to
fabricate a measurement system for each is specified. Experimental results
of the measured wavenumber distribution for a single mode of vibration of
a clamped-clamped plate are presented. The measured wavenumbers
present on the vibrating plate agreed well with the theory. The measured
amplitudes of these wavenumbers, however, was less than expected in each
case. The results of this work clearly indicate the possibility of using this
measurement method to measure the complete wavenumber distribution of a
vibrating surface.

Thesis Supervisor ; Richard H. Lyon

Title : Professor of Mechanical Engineering



ACKNOWLEDGEMENTS

Thanks to Professor Richard H. Lyon for his supervision and guidance

throughout this project. His influence was the highlight of my MIT education.

Special thanks go to The Office of Naval Research / DARPA for providing

financial support for my work.

Thanks also go to Dr. Michael Hersher and Dr. Jerry Wenjtes of OPTRA,

Inc. for their extremely helpful insights during the earlier stages of this thesis.

Thanks to my friends and fellow lab members for our technical and non-

technical discussions which really helped me complete this work. They are

+  Smail Bouderba Lan Liu
Djamil Boulahbal Kevin McCoy
Craig Gardner Scott Miller
Yuksel Gur Larry Olivieri
Kay Herbert Charles Oppenheimer
Akio Kinoshita Bradley Starobin
Nobuo Kolzumi Mary Toscano
Alfred Levi Linda Ystueta

Finally, and most importantly, to my parents for their never-ending support

throughout my entire life.



TABLE OF CONTENTS

page

Abstract 2
Acknowledgements 3
Table of Contents 4
List of Figures 7
1. Introduction 10
1.1 Introduction to Structural Acoustics 10
1.2 The Need for Research 10
1.3 Research Goals 12
1.4 Thesis Organization and Content 14
2. Theoretical Development 15
2.1 Introduction 15

2.2 The Diffraction Formula 17

2.3 Fresnel Diffraction 19

2.4 Fraunhofer Diffraction. 20

2.5 The Aperture Function 21

2.6 The Rectangular Aperture 22

2.7 The Comb Function 23

2.8 The Phase Grating 27



page

2.9 The Complex Phase Grating 38
2.10 The Dynamic Complex Phase Grating 41
3. Preliminary Experiments 42
3.1 Determination of the Type of Incident Wave _ 42
3.2 The Prototype Laser Experiment | 43
3.3 Preliminary Findings ” 45
4. Final Experiments | ' 47
4,1 Choosing the Alternate Wave Field 47
4.2 Initial Ultrasonic Transducer Choice 48
4.3 The Ultrasonic Measurement System 51
4.4 The Test Surface 53
4.5 Generating and Measuring a Mode of Vibration 55
5. Results 67
5.1 Experimental Observations 67
5.2 Diffraction Pattern Measurements 68
6. Conclusions and Future Recommendations 70
6.1 Discussion of Results 70
6.2 Recommendations for Future Research 71



page

References 75
Appendix A 77
Appendix B 85
Appendix C 88
Appendix D 92



FIG 2.01
FIG 2.02
FIG 2.03
FIG 2.04
FIG 2.05
FIG 2.06
FIG 2.07

FIG 2.08

FIG 2.09

FIG 2.10
FIG 2.11

FIG 2.12

LIST OF FIGURES

Diffraction effect motivating the work in this thesis.
Coordinate system and notation used in diffraction equations.
The one-dimensional sinc function.

The one-dimensional comb function.

The fourier transform of the one-dimensional comb function.
The two-dimensional phase grating.

Geometric representation of the constant and variable phase
terms. |

The first five integer orders of the Bessel function of the first
kind.

Calculated diffraction pattern for a one-dimensional phase
grating with surface wavelength equal to 10 A;. The
distances r, and s, are equal to 400 A;.

Example of a triangular shaped wavenumber distribution.

Calculation of the diffraction pattern for the triangular surface

page

16
17
23
24
26
28
29

33

37

39
39

wavenumber distribution. This shows the effect of the overlapping

of the higher order Bessel functions of the individual phase
gratings, which form the wavenumber distribution.

Example of a sinusoidal shaped wavenumber distribution.

40



FIG 2.13

FIG 3.01
FIG 3.02

FIG 4.01
FIG 4.02
FIG 4.03
FIG 4.04
FIG 4.05
FIG 4.06
FIG 4.07

FIG 4.08

FIG 4.09

page
Calculation of the diffraction pattern for the sinusoidal surface =~ 40
wavenumber distribution. This shows the effect of the overlapping
of the higher order Bessel functions of the individual phase

gratings, which form the wavenumber distribution.

Schematic of the prototype laser experiment. 43
Photograph of the prototype laser experiment. 44
Schematic of the ultrasonic measurement system. 51
Photograph of the ultrasonic measurement system. 52
Drive point conductance measurement for the plate under 55
test.

Schematic of the mode shape measurement system. 57
Photograph of the mode shape measurement system. 57
Measured horizontal mode shape of the test surface at a 58

vibration frequency of 1234 hz.
Measured horizontal mode shape of the test surface at a 59
vibration frequency of 1706 hz.
Measured horizontal mode shape of the test surface at a © 59
vibration frequency of 3202 hz.
Calculated wavenumber distribution for the third fundamental 61

mode of vibration of the test surface.



FIG 4.10
FIG 4.11
FIG 4.12
FIG 4.13

FIG 4.14

FIG 4.15

FIG 4.16

FIG 4.17

FIG 4.18

FIG 5.01
FIG 5.02

Calculated diffraction pattern for the third fundamental mode
of vibration using a 40 khz sound wave.

Zoom view of the calculated diffraction pattern for the third
fundamental mode of vibration using a 40 khz sound wave.
Calculated diffraction pattern for the third fundamental mode
of vibration using a 75 khz sound wave.

Zoom view of the calculated diffraction pattern for the third
fundamental mode of vibration using a 75 khz sound wave.
Calculated wavenumber distribution for the sixth fundamental
mode of vibration of the test surface.

Calculated diffraction pattern for the sixth fundamental mode
of vibration using a 40 khz sound wave.

Zoom view of the calculated diffraction pattern for the sixth
fundamental mode of vibration u}s‘ing a 40 khz sound wave.
Calculated diffraction pattern for the sixth fundamental mode
of vibration using a 75 khz sound wave.

Zoom view of the calculated diffraction pattern for the sixth

fundamental mode of vibration using a 75 khz sound wave.

Diffraction pattern measurements using the 40 khz transducer.

Diffraction pattern measurements using the 75 khz transducer.

page
62

62
63

63

64
65
65
66

69
69



1. INTRODUCTION

1.1 Introduction to Structural Acoustics

Sound radiation from vibrating structures is of major concern in the field
of structural acoustics. Very often the design engineer is looking for ways in
which he can improve his design so as to make it radiate sound less efficiently.
Excessive sound radiated by naval vessels is an important problem since this
sound permits the acoustic detection and identification of the vessel. In room
acoustics, the enclosing surfaces of the room need to be designed so as to
minimize sound transmission into or out of the room. Minimizing the sound
radiation from a vibrating surface is accomplished by reducing or eliminating those
surface waves which are well coupled to sound in the fluid in contact with the
surface. In fact, any vibrating surface which produces unwanted sound or accepts
unwanted vibration from an incident sound wave can be redesigned to minimize
the coupling between‘ the vibration and the acoustic field provided that the

complete vibration characteristics are known.
1.2 The Need for Research
To determine the characteristics of the structure which are causing the

unwanted radiation, a complete knowledge of the components of its vibration is

required. The amplitude and frequency of vibration at a few discrete points on
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the vibrating surface are not enough to determine the radiated sound. A
knowledge of each surface wave present as well as the distribution of surface
waves is needed to determine sound radiation. This is important since the radiated
sound is due primarily to the surface waves which are well coupled to the
acoustic field. The vibration is described by its complete wavenumber

distribution, which is the amplitude and frequency content of each surface wave.

Current measurement techniques employ a point by point measurement of
some type, whether by scanning across the surface with a single sensor or by
using an array of sensors. The vibration characteristics of each point in the scan
are then used to obtain the wavenumber disj:ribution in the following way. The
maximum amplitude of the vibration at each point is acquired and this information
defines the spatial shape of the surface. Then, the fourier transform of this mode
shape is calculated. It's this spatial transform which is the wavenumber
distribution for the mode shape in question at the frequency of the vibration.
Unfortunately, for two dimensional surfaces this process is quite time consuming

and requires some minor signal processing.

There are also some problems introduced by the type of sensor which is
used to make the measurement. A sensor which contacts the surface, such as an
accelerometer, will locally load the vibrating surface in such a way that it will
slightly affect the vibration amplitude at that point. This effect becomes even
more important when arrays of surface contacting sensors are used. Since the

spatial resolution of the surface waves being measured depends on the spacing
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between points in the array, a trade-off develops between the surface wave
resolution and the altering of the surface vibration from loading effects. The
problem associated with non-contacting surface sensors, such as a laser
interferometer, are that these sensing systems typically consist of expensive
components and require extremely accurate alignment. This forces the experiments
to be carried out under laboratory conditions and the measurement method tends to

be cumbersome for measuring large structures in the field.

.A great need exiéts for a direct non-contacting method to acquire the
complete wavenumber distribution of a vibrating surface. Much of the research
being performed in structural acoustics is being carried out without this
information due to either the high cost of a computer system capable of handling
large arrays of sensors, or the amount of time required to make the point by point
scan. The research which is making use of this information could be performed
quicker with a more direct measurement method. The presence of a direct non-
contacting method to measure the complete wavenumber distribution of a vibrating

surface will aid research in the field of structural acoustics.
1.3 Research Goals

The above discussion describes the motivation behind the work performed
in this thesis and establishes the desired result of any research in this area. The

goal of this thesis research is simply to investigate the possibility. of using the

diffraction characteristics of an incident wave field on a vibrating surface to
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measure the complete wavenumber distribution. The apparent advantages of using
this type of measuring method are the following. The measurement is made
without contacting the test surface. The spatial information in the wavenumber
distribution is measured directly rather than'calculated from the surface mode
shape. The measurement method could be employed out of the laboratory and
even underwater. Finally, the time required to make the measurement could be
substantially reduced. There are, however, some questions of the feasibility of
making the measurement in this way, and it is these questions which will be

investigated in the course of this thesis.

Upon completion of this research, the following will be accomplished;

1) The rules under which this measurement method may be employed
will be defined.

2) An investigation into the type of incident wave field to be used will
be performed.

3) The appropriate sensors to create and sense the wave field will be
determined.

4) Preliminary measurements of the wavenumber distribution of a
clamped-clamped plate will be made and compared to measurements

made with a conventional point by point scan.

In future work, this method should be thoroughly tested on an existing

model in the laboratory whose wavenumber distribution characteristics are known

-13-



quite well. This test will prove the feasibility of making field measurements on

"real” surfaces with this method.
1.4 Thesis Organization and Content

The goals described above describe the content of this research. Chapter 2
describes, in detail, the proposed method of measurement, and discusses its
shortcomings which become evident in the theoretical development. Chapter 3
displays the investigation into the choice of incident wave field to use, and
presents some qualitative results of some preliminary experiments. Chapter 4
outlines the prototype measurement system defined from theory and the
experimental methods. Chapter S presents the results of some measurements made
with this system. Finally, Chapter 6 presents the conclusions arrived at from this

* research along with some recommendations for future work on this measurement

system.

-14-



2. THEORETICAL DEVELOPMENT

2.1 Introduction

As stated in Chapter 1, the aim of this research is to investigate the
possibility of using the diffraction characteristics of an incident wave field on a
vibrating surface to measure its complete wavenumber distribution. The basic idea
motivating the work in this thesis is the following. If a wave field of wavelength
A; is normally incident on a statically deflected sinusoidal surface of wavelength A,
then the resulting diffraction pattern will contain intensity maxima at discrete
distances proportional to the surface wavelength (See Figure 2.1). The
wavenumber resolution in the diffraction pattern is inversely related to the number
* of full surface waves present on the test surface. It is this phenomenon which

produces the surface wavenumber distribution directly.

In the theoretical development which follows, the incident wave field is
assumed to be generic since the theory applies ._equally well to any traveling wave
ﬁeld. The basic ideas of the following discussion have been adapted from [1],
[2], [3], [4], [5], and [6] and extended to meet this particular application of

vibration measurement.
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Figure 2.01 Diffraction effect motivating the work in this thesis.
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2.2 The Diffraction Formula

The expression which governs the distribution of energy produced by a
traveling wave field which passes through a small opening in a screen can be
arrived at by considering the situation displayed in Figure 2.2. All of the
variables locating position in the plane of the source will have no subscripts,
whereas those locating points in the plane of the aperture will have the subscript
(o). The variables locating points the plane of the diffraction pattern will be
indicated with a prime symbol (‘). The energy which originates at a point P in
the source plane travels through the small aperture in the screen and arrives at
point P’ in the plane of the diffraction pattern. There are some assumptions
which must be stated before the discussion is continued. The distances between
the screen and points P and P’ must be large compared to' the size of the aperture

*and the direct path between points P and P’ must also be very near to a straight

line.

P
I‘ — ~
N~-
x.! ror -
z '

29

Figure 2.02 Coordinate system and notation used in diffraction equations.

-17-



Let the expression for the traveling wave incident on the screen be

A U,

= 2yl - kr)
U, =—Fe @2.1)
where U, is the amplitude at unit distance from the source
k is the wavenumber of the incident wave k=2n/A

o is the frequency of the traveling wave

Huygens' principle, which states that every point on each wavefront is the
source of a new spherical wave, can be applied to each point in the aperture.
The presence of the incident wavefronts on the aperture creates elemental
Huygens' wavelets at all points Q in the aperture. There are varying path lengths
between each wavelet and a single point in the plane of the diffraction pattern.

% These path differences generate phase differences between each of the elemental
spherical waves and cause some amount of cancellation or reinforcement at point
P’,  An integral across thé face of the aperture over each of these elemental
Huygens' wavelets may be calculated and results in the intensity at point P’. The
diffraction pattern is calculated by doing this for each point in the plane z=z".
The following is the basic diffraction equation for an incident wave front passing
through an arbitrary aperture and yields the amplitude of the disturbance at any
point P’ in the plane of the diffraction pattern.

A (P') ivu,et™

U(P’)= e™ ™M+ 9dx dy,
Ars J;f 2.2)
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2.3 Fresnel Diffraction

By extending the earlier approximations, an equation may be derived which
is ﬁscful in solving many types of diffraction problems. Let the distance from the
source to the aperture be large enough that thé wavefront generated by the source
is essentially plane. If the coordinate system which is shown in Figure 2.02 is
used, then the distances r and s may be expanded using the binomial theorem.
After dropping all powers of x, and y, higher than the second, the following

expressions for r and s are obtained.

~
l

{ X2+ y2 x,x+Yy,y (x,,x+y,y)2]
=rfl+ -

2r3 r} 2?': (2.3)
: K24y xx 3,y (XX 3,90
S=slt g - s2 - 2s;
o - o (2.4)

An amplitude approximation is now made by substituting 1/r,s, for 1/rs in the

coefficient of the diffraction formula. The diffraction equation may be rewritten as

- ik( r,+ .ro)

Ar o iU % —alf(x,
0(p) = et [fe el g ay,

0% s (2.5)

where
( XX+ Y,y Xx'+y,y
e @.6)
X242 xZ+yr (xx+ y,,y’)2 (x,x"+ )n,y’)2
M 2r, T2 2r? - 2s3
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Physical processes which follow the assumptions made here are called

Fresnel diffraction phenomena and are described by the above equation.
2.4 Fraunhofer Diffraction

The equation describing situations of Fresnel diffraction can be further
simplified and still handle a large class of problems. If each of the distances r,
and s, are very large compared to the maximum values of x, and y, in the plane
of the aperture, then the bracketed terms in the Fresnel diffraction equation may be
neglected. In addition to this, if the source is located on the z-axis so that x~0
and y~0 and the source is small enough corﬁpared to the aperture size to be
considered a point source, then the first term in equation 2.6 may also be
xteglected. With these assumptions, the function f (x,,y,) is written as

X, x'+ y, ¥
f (5o vy =(- 222

0 2.7
and the Fresnel diffraction equation may be rewritten as
N ker +s
’ lU € ‘o e ( ¢ o) i x +
0(p) === [l (hemer o) e gy,
ol $ 2.8)

where ky =x'IAs,

ky = y’/ASO
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This equation describes the cases when diffraction effects can be observed
at distances which are considered large with respect to the aperture size. The type
of diffraction effects observed under these conditions are termed Fraunhofer

diffraction.
2.5 The Aperture Function

The diffraction equation contains an integration over the area of the aperture
in which the effects of its size and shape are included into the determination of
the diffraction pattern. It is often times convenient to define an aperture function
which is introduced into the integral in the diffraction equation and contains all of
this size and shape information. If this is done, the evaluation of the diffraction
equation for different apertures becomes simplified. Let the aperture function be

denoted by F(x,,y,). The aperture function is dimensionless and when included

into the above theory, the Fraunhofer diffraction equation becomes

Af s iU giar g (e *%) )
0(p") = —=—; [[F (2 y0)e dx dy,
r,S, »
) (2.9)

i2n(k, x, +k y,

Since the surfaces which will be tested are rectangular, the first aperture
shape which will be studied is the rectangular aperture. The significance of the
. rectangular aperture in this research is that the diffraction pattern produced by this

aperture is the same that will be produced by a finite plate at rest.
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2.6 The Rectangular Aperture

Consider a rectangular aperture of height 2a¢ and width 2b. This aperture

can be mathematically represented by the following

Raxo) =1 when Ixyl < a
Ra(x0) =0 when Iyl > a
Rp(yo) =1 when ly,l < b
Rp(yo) =0 when ly,l > b

The aperture function F(x,,y,) is then just the product Ra(x5)Rp(¥o)-
When this aperture function is included in the Fraunhofer diffraction formula, the
variables can be separated and the limits of integration can be changed from
covering the area of the aperture to covering from negative infinity to positive

infinity. The result is

ik(r¢+.r¢) s oo

0(p) = ieri::s [ R.xe ™ ][Ry (yaye™™ ™ Jix,ay,
2o L (2.10)
ier‘“" eik(f,+ %) = iamk x, < i2xk y,
= AT,S, _J,,R"(x")e %, .J:.R"(y")e . 2.11)

This expression is just the two dimensional fourier transform of the
aperture function with the exception of the constants in front of the two integrals.

The aperture function is a finite pulse whose fourier transform is the well known

-22.



sinc function, sinc(x) = sin(x)/x , whose value at x=0 is one and has zeros at

integer multiples of x.
. The One-Dimensional Sinc Function

Amplitude
1.2 ¢
8.9
0.4}
8\ .
-0.4 |
1 —l L S | i L 1 1
-8 . -4 (] 4 8
X/®
sin( x)

p 4
Figure 2.03 The one-dimensional sinc function.

The final expression for the diffraction pattern produced by a rectangular
aperture, which is also the diffraction pattern produced by a flat finite plate at rest
is

i 4abU, eiwe *(7e* %)
(P’ .

= sinc (2nk, a sinc (2nk b
A7, ) (2nk ,b) 2.12)

2.7 The Comb Function
To continue with the theoretical development, it is useful to define a two-

dimensional comb function. This function is obtained by first deriving a one-

dimensional comb function and then extending the result to two-dimensions. The
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comb function is just a sequence of N, Dirac delta functions and is defined
below. The variable L, will represent the length of the test surface in the
succeeding sections. The significance of shifting the delta functions in this way

will also be shown later.

[l = NZ'IS{[(q -1k - -}

7=1 | ©(2.13)

A Fa,)

L L Ll Ll Gedal L@kl o,
2 2 2 2 2 2 2 2

Figure 2.04 The one-dimensional comb function.

The fourier transform of the comb function is of interest to this discussion
and is obtained by first looking at the transform of the shifted Dirac delta
function. The fourier transform of the delta function at the origin is unity, but the
fourier transform of a shifted delta function 8[(x1/2-Lx/2)-x,] is

f(%- )

o

[éx )_ xo:l ei 21|:lr.l x'dxo = e—i21¢k,[-?l-
(2.14)
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The desired fourier transform is then obtained from a summation over Ny
delta functions which have been appropriately shifted. Let the double ended arrow
signify the fourier transform in one direction and the inverse fourier transform in

the other.

s $o{l(e- 01~ 4] = e

—-o0q =1 (2.15)

L

o gl

(2.16)

sin (N, Tk , x,)

ixk, (L,~ N, x) :
[Ix)e e sin ( Tk, X,) (2.17)

Section 2.8 will show that only even integer values of kxx; will be of
interest to the work in this thesis. In this case the exponential term will turn out
to be a complex constant of unit magnitude. To see how this transform behaves,
it is advantageous to look at its magnitude and consider only even integer values
of Nyxkgx1. Then let two variables, denoted by w1 and w2, be defined to group
the arguments of the sine functions such that @w2=N,w] and W1=kxxi. Upon

doing so the comb function is written as

sin (0) Jt)

H(x,) sin (co n) (2.18)
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The numerator can be considered to have a higher effective frequency than
the denominator. Its frequency is higher by a factor of Ny and will have a zero
value N,-1 times in between the common zeros of the numerator and denominator.
The ratio is an indeterminate form at a common zero. Application of L'Hopital's
rule to this ratio will show that the ratio will approach Ny at a common zero. In
addition to the N,-1 zeros, there will also be Ny-2 maxima in between these
zeros. The amplitude of these maxima will be much. smaller than those which
occur at common zeros. Thus the original*ra_xtio will reach a maximum value of
Ny whenever the argument of the denominator is an integer multiple of ® and will
have substantially smaller amplitude elsewhere. A plot of this function is

presented below.

The Fourier Transform of the One-Dimensional Comb Function
Amplitude 21 delta functions in the comb

208

-

10

[ s o

-10 L

-2 T e 1 —
x/n
sin ( Nx)
sin(x)

-
3

Figure 2.05 The fourier transform of the one-dimensional comb function.
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In two dimensions, the comb function is simply a product of two terms

similar to equation 2.17.

o ixk, (L, -N,z)+ & (L, - N, y)] sin(N,mk,x) sin(N,znk,y)
[Tz v o e sin (Tk , x) sin (Tk, ¥,)

(2.19)

The bandwidth of the intensity peaks in the diffraction pattern are
controlled by this function. The noise bandwicith of the intensity peaks is
inversely related to the number of delta functions which make up the comb
function. The noise bandwidth, which is denoted by A, is given by the following

expression.

N.N, (2.20)
2.8 The Phase Grating

The basic motivation of the work of this thesis lies in the theory of the
phase grating. The diffraction effects discussed thus far are equally valid for a
perfectly reflecting surface with finite dimensions as they are for an aperture,
which is in essence a completely transmitting surface provided that the area
surrounding the reflecting aperture completely absorbs the incident wave field.
Therefore, the reflecting surface functions exactly as the aperture and the
diffraction effects may be observed by 1ookiﬁg at its reflected wave field. The
phase grating is a surface which induces a sinusoidally varying phase shift across

the incident wavefront,
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Suppose the surface forming the grating is perfectly reflecting and has a

surface profile which is given by

. xo . yo
Z(Xo» Yo) = Zx sxn(Zn—A ) z, sin (ZE-K—-)
x : y

(2.21)

A, ij_zy

Figure 2.06 The two-dimensional phase grating.

A; is the wavelength of the sinusoidal surface displacement in the it#
direction and zxzy is the amplitude of this displacement, The amplitude zyzy is
assumed to be small compared to the distance A; between the surface wave crests.
The amplitude is in fact so small that the maximum surface slope at any point is

on the order of milliradians.

When a plane wave field is normally incident on this surface, there is a
sinusoidal phase variation produced across the wavefront by the surface
displacement. The surface slopes are so small, however, that the change in
direction of the reflected waves on the diffraction pattern is negligible compared to

the induced phase variation. The reflected wave will have a constant phase term
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as well as a varying phase term. The constant phase term is not significant since
it carries no information about the surface deformation. The varying phase term,
which was induced by the surface profile, carries with the reflected wave all of
the information needed to recreate this profile. The variable phase term is given

by

P(Xp ¥o) = k[22(X,5 ¥,)] (2.22)

ZTC X, . yo
=—2 2z,8in (21: ) z sm(Zw—)]
A [ A A, (2.23)

O(Xor ¥o) "ﬂ[z z sin(Zn ol ) sin(Zn—Zo—)]
B As Ay (2.24)

Variable phase term
includes the extra

travel distance from the Cpnstant phase term
mean plane which is is measured from
22(xp ¥y ) the mean plane

z (xo Yy

Figure 2.07 Geometric representation of the constant and variable phase

terms.
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The reflected wave then takes the following form (Notice the spatial
dependence on x, and y,, which is transverse to the direction of propagation of

the reflected wave.)

A U, o ~ ko, -0(2,3,)]

Us=7¢ (2.25)
10 yo

A Ua x{a)t —k¢a-T|:zx z, sin(21th‘] sm[21c ’H}

Vo=7ye (2.26)

The comb function is a mathematical way of incorporating the effect of
multiple periods of the surface wave into the discussion. If the effect of one
complete period of the surface wave is represented by one of the delta functions
in the comb, then the entire comb will represent multiple periods of the surface
wave. The spacing of the delta functions in the comb must reflect the surface
wavelength for this to be accurate. To accomplish this, a surface function,
denoted by Fs(x,Y0), is created to represent one period of the surface wave in

each direction.

[ -i%lz' b m(“::J o (M"l:-}] for |x,|< Az" BA S-j—\i{-

0 otherwise
(2.27)
The convolution of a delta function, which has been shifted from the origin
by an amount (x3,y1), with the surface function will just reposition F g (x,,y,) to

have its center at (x1,y1). If the distances between the delta functions in the two-
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dimensional comb function, x1 and yi, is set to equal the corresponding surface
wavelengths, Ay and Ay, then the aperture function for the statically deflected
sinusoidal surface is just the convolution of the comb function with the surface

function.

Gp(xo, Y= H(xo’ Y,) * Fa(xa’ Yo) (2.28)

where Gp(x0.Yo) is the phase grating aperture function

* is the symbol for convolution -

The number of complete surface waves present is now equal to Ny in the
x direction and Ny in the y direction. The dimensions of the phase grating are

NxAx by NyAy. All of the incident waves, which fall outside these boundaries,
will not be reflected. The diffraction equation for the phase grating can now be

written as

. i ik(r°+.vo

(l}(P’)= ane e

)
P | AR
5

i 21:(&1 x, +k

y Yo) dx, dy,

(2.29)

The integral in the above equation is just the spatial fourier transform of
the convolution of two functions represented by Gp(x4,y,). The fourier transform
of the convolution of two functions is just the product of the fourier transforms of
the functions themselves. The fourier transform of the comb function has already

been found in section 2.7 (See Equation 2.19). Therefore, to evaluate the
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diffraction equation for the phase grating, the fourier transform of the surface

function must be found. It is written as follows.

A.V Ax
T T —i“‘ 2,2, m[2u—°} nn[lti]] .
Fairayy o [ fe " SR R ) gy,
A’ A,
T2 T2

(2.30)

The integral can be simplified by making the following change of variables.

n=k,A, m=k,A,

27 A
Uu=——x -— X
Ax ] dxo 21‘; du
2% A
t="Y, =
A, Yy dy, 3 dt
v =4—7:tzxz, sin (z)

Thus
AN, ¢
F(x,,y,) < TR j

-%

1 ‘ iCu—vsin u) } imt
— e dupy e™dt
{2" j (2.31)

If n is an integer, then the integral in the braces is the definition of a

Bessel function of the first kind of order n and argument v [7]. The first five
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integer orders of the Bessel function are shown in Figure 2.08. The reason only

integer orders are of interest will be shown shortly.

1.0
03
0.6
04
0.2

0

=02

-04

Figure 2.08 The first five integer orders of the Bessel function of the first

kind.
If n is an integer, then the integral above is written as

AxAy P 4t . .
F(x, y,) © —5 jJ,[Tz,z, sm(t)] e™dt

- B

The exponential term is now expanded to yield

T

A A
F(x, ¥,) ———z—ﬁi j.l,,l:—‘%z,,zy sin(t)] [cos(mt ) + i sin (mt)]dt

-~
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This integral is now split up into two different parts. The first part of the
integral contains even values of the integer n. The Bessel function is an even
function when the order is even [7]. The Sine function in the argument of the
even Bessel function makes the Bessel function an even function of period 2x.
The integral over a full period of an even function times an odd function is equal
to zero. The integral of an even function times another even function over a full
period is equal to twice the value of the integral evaluated over a half period.
Therefore, the only surviving terms are those containing an even order Bessel
function times a cosine term. Similarly, the second part of the integral contains
odd values of n. The Bessel function becomes an odd function when the order is

~odd [7]. The argument of the odd Bessel function causes it to be an odd
function of period 2x. The integral over a full period of an odd function times
any other function is equal to zero. There are no surviving terms in the second

part of the integral. The integral reduces to the following.

T

F(x,, y,) e Axh, 2 jJ[4nz z sin(t)]cos(mt)dt
a( 0? o) 2“ .n l x%y
o (2.34)
n = even
This integral is found from (8] to be equal to
F(x,,9,) A A, cos(ﬂzﬂ) J,,_,,,(2—?:t-zx z,y,+m(%£z, z,)
2 2 (2.35)

n = evén
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The cosine term causes only even values of m to be important. Therefore, the
final result for the spatial fourier transform of the surface function for even integer

values of n and m is

F(x,,5,) ©AA, J»_;__m_(%?'zx Zy )’-*2—1(277”2 z’) (2.36)

n, m= even

Substitution for n and m in the above equation and for xj and yj in
equation 2.19, yields the final expression describing the diffraction pattern
produced by a two-dimensional statically deflected sinusoidal surface. The

diffraction equation is

7 (P iU,gio g (") 27 2
vAF)= Ar,s A’A’J*A-k,A,(Tz'z’)'k.A.+'=,A,(Tz'z’)'
— 5 :
infk L - kL] sin (N,®k,A,) sin(N,mk,A,)
¢ sin(mk,A,)  sin(m,A,)

(2.37)

To understand how this equation behaves, it's advantageous to look again
at the terms in.\fhe braces. The ratio of sines terms produce a main peak of
interest whenever mkyAx and mwkyAy are even integer multiples of ®. The
magnitudes of these peaks are NyNy. The secondary peaks in between these are
much smaller in amplitude and may be neglected in the response. Therefore, the
largest response occurs at the main peaks in the braced terms. The effects of the
Bessel functions are important only at these main peaks in the braced terms, since

in between these peaks the response is negligible.
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The magnitude of the Bessel function is determined by both its argument
and its order. Since the order of the Bessel functions are (kxAx-kyAy)/Z and
(kxAx+kyAy)/2 and the main peaks in the response occur when kxAy and kyAy, are
even integers, it is seen that only even integer order Bessel functions are important
in the diffraction equation. The argument of the integer order Bessel functions
determines the distribution of radiant energy in the diffraction pattern. The
amplitude of the surface deformation has been assumed to be very small.
Therefore, the argument of the Bessel functidps, v=27zx2y/A, is also small. Itis
seen from Figure 2.8 that the energy in the diffraction pattern is distributed
between the different integer orders of the Bessel function with most of the energy
in the zeroth and first order. This says that a sinusoidal surface displacement in
the ith direction will produce peaks in the diffraction pattern when mk;A; equals
integer multiples of . The magnitudes of these peaks are governed by the

corresponding even integer order Bessel functions.

The magnitudes of the peaks in the diffraction pattern are related to the
surface wave amplitudes through the Bessel functions. Experience has shown that
the amplitude of a sound wave, which is reflected off of a vibrating surface, will
fluctuate with time. Therefore, the surface wave amplitudes will be measured as
described in section 2.10 and not through a measurement of the intensity in the
diffraction pattern. The calculated values of the intensity are only important for

overall signal to noise considerations.
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The following plot shows a typical calculation of the distribution of energy
in the diffraction pattern for a one-dimensional phase grating with surface
amplitude equal to one tenth the wavelength of the incident wave field and
wavelength equal to ten times the incident wavelength. The distance from the
source and receiver to the phase grating is equal to four hundred incident
wavelengths.

Diffraction Pattern for a Single Surface Wave
Normalized Intensity

1.2 1

ool |
\

0.4 \

B I T T
Distance from the center of the diffraction pattern (cm)
1i=0.46 cm Surface wave amplitude A=21/10

Figure 2.09 Calculated diffraction pattern for a one-dimensional phase
grating with surface wavelength equal to 10 A;. The

distances r, and s, are-equal to 400 A;.

The plot is a direct measure of the wavenumber distribution of the phase
grating provided that the argument of the Bessel functions are controlled so as to
keep the amplitude of the first order much larger than the second. The
wavenumber of the surface wave is directly related to the location of the intensity

peak in the diffraction pattern.
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2.9 The Complex Phase Grating

The theory of the phase grating can be extended to examine any
complicated surface deformation through fourier analysis. Basically, any complex
surface deformation can be fourier decomposed into its component spatial
frequencies, each of which can act as a separate phase grating. The superposition
of the diffraction patterns produced by each of these phase gratings will be the
wavenumber distribution of the original surface. This is the case since each
component phase grating produces a single peak in the diffraction pattern. The
diffraction equation for a complex statically deformed finite surface now involves

an integration over each surface wavelength present and becomes

iw , Tots,)
U(P,) J‘J. = }\,rs A"A’J"‘ A -k A (%z,z,)lhj\‘ +h A, (%Ez,z,)o

2 2
ein[k‘l.‘-k,L,] sin (N, mtk,A,) sin(N,mk,A,)
sin(nk,A,) sin (Tk , A )

}dA,dA,

(2.38)

The following plots show calculations for the one-dimensional diffraction
patterns produced by some proposed surface wavenumber distributions. These
unrealistic shapes for the proposed wavenumber distributions were chosen to show
the effect of the overlapping of the higher order Bessel functions of the individual
phase gratings on the diffraction pattern. It is clear that the calculated diffraction

patterns are direct reconstructions of these surface wavenumber distributions.
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Triangular Shaped Wavenumber Distribution
Amplitude / A;

8.12 |

8.08 | P "N

0.84 r: / \\\
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a 2 4 6 ] 16 12

Wavenumber (1/cm)

Figure 2.10 Example of a triangular shai)ed wavenumber distribution.

Diffraction Pattern for Triangular Shaped Wavenumber Distribution
Normalized Intensity

1.6 |
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Distance from the center of the diffraction pattern (cm)

ro.50=1.0 meter A;=0.46 cm

Figure 2.11 Calculation of the diffraction pattern for the triangular surface

wavenumber distribution. This shows the effect of the

overlapping of the higher order Bessel functions of the

individus! phase gratings, which form the wavenumber

distribution.
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Sinusoidal Shaped Wavenumber Distribution
Amplitude / A;

8.08 | 7 \\ / 5\
0.84 | //

-8.94 L— 1 X 1 s !
a 2 4 6 8 10 12

Wavenumber (1/cm)

Figure 2.12 Example of a sinusoidal shaped wavenumber distribution.

Diffraction Pattern for Sinusoidal Shaped Wavenumber Distribution
Normalized Intensity '

1.6
1.2}
- A“l\ _ﬁ"\
0.8} {v" N
! '\,"
e.e |V
er L_
_o' 4 i 1 . 3 1 4 4 1 L e
) 208 40 68 80 108
Distance from the center of the diffraction pattern (cm)
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Figure 2.13 Calculation of the diffraction pattern for the sinusoidal surface

wavenumber distribution. This shows the effect of the

overlapping of the higher order Bessel functions of the

individual phase gratings, which form the wavenumber

distribution.
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2.10 The Dynamic Complex Phase Grating

The work'in this thesis is aimed at measuring the wavenumber distribution
for a vibrating surface. As the surface becomes dynamic, the reflected waves will
be frequency modulated at the vibration frequencies due to the doppler shift
imposed by the changing surface velocity. This allows the waves reaching the
plane of the diffraction pattern to carry with them information about the surface
vibration amplitudes without changing the diffraction effects. The amplitude of the
vibration is directly related to the amount of frequency modulation in the reflected
wave and is directly measured by measuring the amount of frequency modulation
of the reflected wave. This places an additional restriction on the incident
wavelength. The incident wavelength must be on the order of the vibration
amplitude or smaller in order to produce a substantial amount of frequency
modulation. A larger the amount of frequency modulation will produce a higher

signal to noise ratio in the vibration amplitude measurement.

The complete wavenumber distribution can be measured in the following
way. The location of a receiving sensor in the diffraction pattern determines the
wavenumber of interest and its direction of travel on the surface. The spectrum
of the frequency modulation of the reflected wave at this location provides the
amplitudes of the frequencies of vibration of the wavenumber being measured.
By scanning the diffraction pattern to cover all wavenumbers of interest, the
complete wavenumber distribution for the vibrating surface can be measured

directly.
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3. Preliminary Experiments
3.1 Determination of the Type of Incident Wave

To verify the theory and test this method of measurement, the type of
incident wave field to use had to be determined. The theory brought about the
following considerations.

1) There must be a relatively easy way in which to separate the incident

and reflected wave field.

2) The wavelength of the incident wave field must be on the order of

magnitude of the vibration amplitude or smaller.

3) The incident wave field must strike the vibrating surface with plane

rather than spherical wavefronts.

4) The source size must be much smaller than the dimensions of the

surface under investigation.

S) The appropriate transducers to send and receive the wave field as well

as a means to frequency demodulate the reflected wave must be readily

acquired.

Laser light was chosen to be the incident wave field since it met each of
‘these requirements quite well. A coherent beam of single frequency light could be
easily created and expanded to the appropriate beam width. The light beam would

automatically have plane wavefronts and travel long distances. The incident and
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reflected waves could be easily separated with a beamsplitter and the demodulation

could be performed with two Bragg cells and a signal analyser.
3.2 The Prototype Laser Experiment

Once the choice of using laser light had been made, the following system

was designed and fabricated.

15 cm. Square Bruel & Kjaer
' Mini Shaker
Meade 8" by 0.0635 cm. i .
i ; Aluminum with Wilcoxon
Schmidt-C
T:Iescopé e Plate \ Impedance Head
5 mW Uniphase B i
HeNe Laser eamsplitter
| ]
. Macintosh 40 Watt
Bragg Bruel & Kjaer Audio Amp
Cells Two Channel
Signal Analyser i l
i A

N V-

External Lens R
s - X- XX
n ®
. o® ce (o) = ™
g:s?ﬁ‘:xn;g Frequency Modulation glavetek 2Mhz
unction Generator
Table Spectrum
Position Information
Specifying Surface
Wavenumber and
Direction

Figure 3.01 Schematic of the prototype laser experiment.
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Figure 3.02 Photograph of the prototypé laser experiment.

A 5 milliwatt Uniphase HeNe laser provides the coherent beam of incident
light. This light beam travels through a beamsplitter and into the eyepiece of a
Meade LX5 eight inch Schmidt-Cassegrain telescope, which expands the beam to a
diameter of eight inches. The expanded beam of light reflects off the vibrating .
plate and travels back through the telescope, where it is reduced to its original
beam width, and is turned ninety degrees by the beamsplitter. Two oppositely
acting Bragg cells separate the frequency modulated part of the beam of light from
the light at the carrier frequency. An external lens is positioned after the
beamspitter to bring the image of the diffraction pattern down to a focus. The
diffraction pattern occurs in the focal plane of the external lens. A photocell is
used to measure the light in the diffraction pattern. The modulation signal from
the photocell is fed into a Bruel & Kjaer Dual Channel Signal Analyser Type

2032 to display the vibration frequency spectrum.
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3.3 Preliminary Findings

Initial tests were carried out with this system and encountered the following
problem was encountered. The amount of light which arrived at the plane of the
diffraction pattern was of too low a level to measure. The reason for this was
found to be due to two effects. First, the incident wavelength of the laser light
was so small that the measurement was being effected by the surface irregularities
on the plate. When the plate is at rest, the diffraction pattern should be that
formed by a fectangular aperture. Any reﬂected light should arrive at the
diffraction pattern with no frequency modulation and should form a two
dimensional sinc function as stated in the theory. Instead of this, the light in the
diffraction pattern was a low level spatially broad band illumination. This
diffraction pattern turned out to be the wavenumber distribution of the random
surface irregularities on the plate. In other vs./ords, the non-vibrating plate didn't
appear flat to the incident wave field. Second,. since the spatial frequency content
of the surface irregularities was more or less white, most of the incident light
intensity was reflected at angles which were too great to successfully make it back
through the telescope and beamsplitter and to the diffraction pattern, and was
therefore lost. When the surface was vibrated and sinusoidal disturbances were
superimposed over these surface irregularities, the signals in the diffraction pattern
due to the vibration were much lower in intensity than those due to the surface
irregularities. Thus, the signal (imposed vibration wavenumber distribution) to
noise (wavenumber distribution of the surface irregularities of the plate) was too

low to feasibly make the desired measurement.
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The solution to this problem was to make the static plate appear flat to the
incident wave field. This could be done in.two ways. Either a plate, which was
flat to within a wavelength of HeNe laser light, had to be used or the incident
wave field needed to have a longer wavelength. The latter solution was chosen

so that this method could be used on surfaces of interest for structural acoustics

experiments.

In support of this choice, it was also noted that the use of the laser caused
the measurement system to be very sensitive to alignment. The laser system was
so sensitive that the entire experiment had to be performed on an optical table.

This would make field measurements with the laser system unfeasible.
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4. Final Experiments
4.1 Choosing the Alternate Wave Field

The added requirement of enlarging the incident wavelength brought about
an investigation into both infrared and ultrasonic wave fields. Infrared has the
advantage of being able to travel long distances without much attenuation, but has
the drawback of requiring some very expensive hardware. It also didn't appear
possible to generate infrared waves of sufficient wavelength to avoid the same
types of problems encountered with the laser light. The use of sound waves

seemed promising for the following reasons.

1) The incident wavelength could be easily adjusted to meet the particular
| vibration amplitude and surface roughness conditions.
2) The sound waves would travel in wéter as well as in air.
3) The longer incident wavelength would cause the measurement system to
be less sensitive to alignment.
4) The sensors required to generate and detect high frequency sound waves

were relatively inexpensive.
Despite the expected problems of large amounts of attenuation with distance

traveled and the separation of the incident and reflected wave fields, ultrasonic

sound waves were chosen as the incident wave field.
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4.2 Initial Ultrasonic Transducer Choice

The appropriate transducers to send and receive the sound waves must
meet each of the requirements outlined in Chapter 3. The main requirement of the
theory is that the incident wavefronts are plane. This demands that the source be
a sufficient distance from the vibrating plate to ensure a large radius of curvature
of the spherical wave emanating from the point source. A forty kilohertz sound
wave traveling in air a distance of five meters will be attenuated about thirty-five
decibels. When the sound wave is reflected off of the vibrating surface, there is
an additional attenuation of between one to three decibels. The high amount of
attenuation of the amplitude of the sound wave at the ultrasonic frequencies was
the most important consideration in the choice of transducers. Therefore, the ideal
source is one which would transmit an ultrasonic sound wave at the desired
frequency a long enough distance to make the wavefronts appear plane. The ideal
receiver is one that is extremely sensitive, and has a flat response over a
frequency band twice as wide as the vibration frequencies of interest. The
operating frequency of the transducers must also be high enough to be
substantially modulated by the small vibration amplitudes. A tradeoff developed
between the incident wavelength (operating frequency) and the distance of travel of

the sound wave.
The chosen designs were resonant transducers produced by Massa Products

of Hingham, Mass. Transducers operating at frequencies of 23, 31, 40, 75, 150,
and 215 kilohertz were offered. The TR-89/B Type 40 (40khz) and E-152/75
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(75khz) transducers were chosen since they were the transducers which generated
the highest frequency sound wave capable of traveling a great enough distance to
approximate plane waves incident on the plate and still be able to travel back to
the plane of the diffraction pattern. The higher frequency transducers were much
more desirable with respect to generating a substantial frequency modulation for a
given vibration amplitude, but had the disadvantage of a short travel distance in
air. The specifications for the Massa Products transducers are included in
Appendix A along with some calculations indicating how close to plane the
incident wavefronts would be on the vibrating plate given the maximum distance

of travel of the generated sound wave.

To verify that these transducers produce a substantial output, their sound
power output was measured at a distance of one foot and compared to the sound
power output of a stereo tweeter. This test was performed to find out how much
better these resonant transducers are than more conventional design. The tweeter's

frequency response curve is located in Appendix A. The results of the tests are

displayed below.
SPL (dB re 20 microPa)
Transducer 40 Khz 75 Khz
TR-89 1159 | --ee-e-
E150/75 |  ------- 95.2
Tweeter 120.1 100.8

Table 4.1 Maximum sound power output of chosen sensors at a distance

of one foot.
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Although the sound power produced with the tweeter is slightly higher than
that produced with the chosen transducers, it was seen that the amplitude of the
generated wave varied with time. This is due to overdriving the tweeter to
produce this high output. In this light, the chosen transducers were more

desirable than the conventional stereo tweeter in generating the high frequency

- wave field.
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4.3 The Ultrasonic Measurement System

The ultrasonic measurement system was modeled after the prototype laser

system and built as shown below in Figures 4.01 and 4.02.

Wavetek 2Mhz Macintosh 30 Watt ‘

Function Generator Audio Amp 15 cm. Square Bruel & Kjaer
by 0.0635 cm. Mini Shaker

H @ 0000 Aluminum with Wilcoxon

H ces * Plate Impedance Head

) _
7]

(( — @ puei]
Resonant Transducers
General Radio Bruel & Kjaer r:;l:t‘l:: 41(i)ﬁ\;1'att
= Frequency Meter T_wo Channel p.
and Descriminator Signal Analyser i ' l
Ithaco ® "
Model 432 O o E | “"J\’w n
Am o
p o T ! ns
0060
? J ceoe o o 7]
L J \ Frequency Modulation (K
Spectrum ) Wavetek 2Mhz
Function Generator
\ Position Information
Specifying Surface
Wavenumber and
’ Direction

Figure 4.01 Schematic of the ultrasonic measurement system.
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Figure 4.02 Photograph of the ultrasonic measurement system.

The incident wave field was generated by driving the transducer at its
resonant frequency with a Wavetek 2Mhz Function Generator Model 20 and a
Macintosh 30 Watt Audio Amplifier. A horn, which reduces the cone angle of
the sound waves leaving the source, was designed and built to increase the overall
signal to noise ratio. The horn makes the beam width of the incident waves just
large enough to completely cover the plate but keeps it from becoming so much
bigger than the plate that a substantial portion of the incident intensity is lost.
The separation of the incident wave field from the reflected wave field was
accomplished by scanning with the receiver in the plane of the source parallel to
the plane of the vibrating plate. This method allows the entire diffraction pattern
to be measured except for the point where the source is located. The receiving

response of the transducers is broadened to a band around the transmitting
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frequency by placing the transducer in parallel with an inductor and a resistor of

the appropriate values (See Appendix A).

The signal received in the diffraction pattern is amplified with an Ithaco
Model 432 amplifier and then high pass filtered with a Krohn-Hite Model 3550
filter to pass only the modulated carrier signal. The frequency modulated signal is
then fed into a General Radio Frequency Meter and Discriminator Type 1142-A.
This device generates a pulse train of constant amplitude and duration with a
frequency that follows the input frequency. This signal has a average value that
varies directly with the frequency modulation of the input signal. This signal is
put into the Bruel and Kjaer Dual Channel Signal Analyzer Type 2032. The
analyzer automatically low pass filters the signal below the carrier frequency
leaving only the varying DC component. The frequency spectrum of this signal is
displayed on the screen and is the spectrum of .the modulation component in the
received signal. Therefore, this spectrum is a measure of the vibration amplitude
and frequency associated with the particular \&avenumber under investigation as

given by the position of the receiver.
4.4 The Test Surface

To verify the theory, a surface vibrating with a known wavenumber
distribution is required. This suggests exciting a resonant mode of a finite plate
that would be relatively easy to detect in the diffraction pattern. The surface

which was chosen was a fifteen centimeter square by 0.0635 centimeter thick
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aluminum plate, which was clamped at its boundaries and driven at its centerpoint.
The reasons for this choice are the following. The boundary conditions used
needed to be as uniform as possible around the perimeter of the plate to set up
simple symmetrical mode shapes. Experimentally, clamped-clamped boundary
conditions are most easily generated. The plate was made out of thin aluminum
to increase the velocity of vibration as much as possible while avoiding membrane
like vibration of the plate. .The greater the vibration velocity, the greater the
amount of frequency modulation in the reflected sound waves. The drive point
was chosen to be at the center of the plate to force any spurious drive point

effects to retain cross-axis symmetry.

The plate was excited with a Bruel and Kjaer Mini Shaker Type 4810.
~ The shaker was driven with a Wavetek 2Mhz Function Generator Model 20 and a
Macintosh 40 Watt Audio Amplifier. A Wilcoxon Research Model Z-602
impedance head was used to make the drive péint transfer function measurements.
The test rig, which supports the plate, was designed so that the entire plate could
be tilted at any angle relative to the normally.incident plane wavefronts. T:his
feature aided in accurately aligning the measurement system. Acoustic foam
sﬁrrounded the plate to absorb the sound waves which are incident on the

supporting surfaces.
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4.5 Generating and Measuring a Mode of Vibration

Figure 4.03 displays a drive point conductance measurement, which was

made with the impedance head, and shows the resonant frequencies of the plate.
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Figure 4.03 Drive point conductance measurement for the plate under test.

Given the distance of travel and frequéncy of travel of the sound waves
supplied by the chosen transducers, it was determined that the higher order modes
of vibration would be most easily detected in the diffraction pattern. These modes
cause the peaks in the diffraction pattern to be spread further apart than those due
to the lower modes. The bandwidth of the peaks is inversely related to the
number of full surface waves on the plate. Since the higher modes contain more
full surface waves, the wavenumber resolution of the measurement system is
greater for these modes of vibration. The theory predicts a peak in intensity to be

generated in the center of the diffraction pattern, which can be interpreted as the
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DC level of the surface wavenumber distribution. This center peak is usually the
largest in the diffraction pattern, since its amplitude is controlled by the zeroth
order Bessel function. Therefore, it is desirable to set up a higher order mode of
vibration so that the peaks due to the surface waves are as narrow as possible and
are not overshadowed by the large center peak. In addition to this, the peaks
must be spread apart at least as much as twice the transducer size. With this in
mind, three of the cleanest and largest ampliiude resonant frequencies were chosen

for testing. These frequencies were 1234 hz, 1706 hz, and 3202 hz.

Once the choice of resonant modes had been made, the plate was excited at
these frequencies and the resultant horizontal mode shapes were measured by
scanning across the surface with a Mechanical Technology Incorporated Model
KD-45A Fotonic Sensor. The fotonic sensor measures the maximum vibration
amplitude at each point. The phase of the vibration at each point with respect to
the input force was also recorded to help reconstruct the mode shape. The
calibration curve and specifications for the fotonic sensor are presented in

Appendix B. The experimental setup is shown in Figures 4.04 and 4.05.
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Figure 4.04 Schematic of the mode shape measurement system.
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Figure 4.05 Photograph of the mode shape measurement system.
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Since the diffraction pattern was to be scanned in the horizontal direction,
three horizontal scans of 32 points each were made across the plate at each
frequency. The horizontal mode shapes were defined quite well with the three
scans. The results of these measurements are displayed pictorially below. The
actual data, which was taken to yield these pictures of the generated mode shapes,

is included in Appendix C.

‘:\ 15 ¢m 7\
N

cm

S cm

Figure 4.06 Measured horizontal mode shape of the test surface at a

vibration frequency of 1234 hz.
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\Scm /"\/'\\

5 cm

Figure 4.07 Measured horizontal mode shape of the test surface at a

vibration frequency of 1706 hz.

Figure 4.08 Measured horizontal mode shape of the test surface at a

vibration frequency of 3202 hz.
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From these pictures, it appears that the third fundamental mode of vibration
was set up in the horizontal direction at 1234 hz and 1706 hz input frequencies.
At 3202 hz the sixth fundamental mode of vibration was present in the horizontal
direction. The drive point effects can be seen only along the plate centerline and
are damped out as the scans were away from the plate centerpoint. These modes
correspond to spatial wavelengths of 10 cm and 5 cm respectively. The bending
wavelengths associated with the input frequencies were calculated with the

following equation and are displayed in Table 4.2.

where Ap is the bending wavelength
x is the radius of gyration of the plate

¢y is the longitudinal wave speed in the plate

wy is the vibration frequency

Vibration Bending
Frequency | Wavelength
(hz) (cm)
1234 6.9
1706 58

3202 4.3

Table 4.2 Bending wavelengths associated with each input frequency.
The measured mode shapes are oblique. That is, the bending waves are

not traveling horizontally or vertically on the plate. The scans are measuring the

horizontal component of the bending waves traveling on the plate.
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The expected diffraction pattern produced by the horizontal modes of
vibration were predicted with a computer program, which is presented in Appendix
D. The computer program first calculates the wavenumber distribution for a
specified horizontal mode of vibration of the finite plate and then calculates the
intensity in the resulting diffraction pattern. The expected amplitude of the
wavenumber distribution is found from the mode shape measurements with the
fotonic sensor. The average maximum amplitude of the horizontal mode shape
was used to scale the predicted diffraction patterns to the appropriate displacement
magnitude. Plots of the calculated wavenumber distributions corresponding to the
horizontal mode shape measurements and their expected diffraction patterns are

shown in Figures 4.09 through 4.16.

Wavenumber Distribution for the 3rd Fundamental Mode of Vibration
Amplitude / A;

8.12 |
8.08
8.84 |
8 -
_0‘04 i i 1 1 1 i 1 1
8.8 1.2 1.6 2
Wavenumber (1/cm)

Figure 4.09 Calculated wavenumber distribution for the third fundamental

mode of vibration of the test surface.
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Diffraction Pattern for the 3’rd Fundamental Mode of Vibration
0.3 Vibration Amplitude (um)

0.2 |
8.1
a 5
61 3 10 15 28 25
Distance from the center of the diffraction pattern (cm)
ro.50=1.8288 meters Ai=0.8625 cm

Figure 4.10 Calculated diffraction pattern for the third fundamental mode

of vibration using a 40 khz sound wave.

Zoom Diffraction Pattern for the 3rd Fundamental Mode of Vibration
Vibration Amplitude (1um)

8.916
0.012 |
8.0808
0.804
a -
_'.804 i L 1 d L 1 1 e 1 1 1 1
4 8 12 16 20 24
Distance from the center of the diffraction pattern (cm)
roS0=1.8288 meters . A;=0.8625 cm

Figure 4.11 Zoom view of the calculated diffraction pattern for the third

fundamental mode of vibration using a 40 khz sound wave.
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Diffraction Pattern for the 3™ Fundamental Mode of Vibration
Vibration Amplitude (Lm)

39 }
20
10 +
' -
-1 g ' s ' ] 12
Distance from the center of the diffraction pattern (cm)
ro50,=1.8288 meters Ai=0.46 cm

Figure 4.12 Calculated diffraction pattern for the third fundamental mode

of vibration using a 75 khz sound wave.

Zoom Diffraction Pattern for the 3™ Fundamental Mode of Vibration
Vibration Amplitude (pum)

0.016
0.012 +
09.0088 -
-
0.0804 |
R
-8.084 1 L M : A .
2 4 6 8 19 12 14
Distance from the center of the diffraction pattern (cm)
r050=1.8288 meters A;=0.46 cm

Figure 4.13 Zoom view of the calculated diffraction pattern for the third

fundamental mode of vibration using a 75 khz sound wave.
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Wavenumber Distribution fqr the 6th Fundamental Mode of Vibration

Amplitude / A;
8.12 +
8.88 |-
}-
0.04
B -
_B.u ] L 1 1 i L 1 1
¢ 8.8 1.2 1.6 2

Wavenumber (1/cm) .

Figure 4.14 Calculated wavenumber distribution for the sixth fundamental

mode of vibration of the test surface.

Diffraction Pattern for the 6th Fundamental Mode of Vibration
Vibration Amplitude (um)

8.3
8.2 -
8.1 I
o - e SN
Ol ez 3w a8 %
Distance from the center of the diffraction pattern (cm)
ro.5,=1.8288 meters Ai=0.8625 cm

Figure 4.15 Calculated diffraction pattern for the sixth fundamental mode

of vibration using a 40 khz sound wave.
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Zoom Diffraction Pattern for the 6th Fundamental Mode of Vibration
Vibration Amplitude (um)

8.812
8.008
8.804
9}t
- i 1 i L A . i 1 1 1
9.804 18 28 30 48 58
Distance from the center of the diffraction pattern (cm)
r0.50=1.8288 meters A;=0.8625 cm

Figure 4.16 Zoom view of the calculated diffraction pattern for the sixth

fundamental mode of vibration using a 40 khz sound wave.

Diffraction Pattern for the 6th Fundamental Mode of Vibration
3 Vibration Amplitude (um)

“h

a.1
|
-8.1 i 1 L 1 1 1 L
8 S 18 15 28 25 30
Distance from the center of the diffraction pattern (cm)
ro.50=1.8288 meters Ai=0.46 cm

Figure 4.17 Calculated diffraction pattern for the sixth fundamental mode

of vibration using a 75 khz sound wave.
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Zoom Diffraction Pattern for the 6t Fundamental Mode of Vibration
Vibration Amplitude (um)

8.812 |
8.0088 |-
!
8.084 |-
[ 3
-9.004 ' L ' ' ' '
5 18 15 20 25 30
Distance from the center of the diffraction pattern (cm)
ToSo=1.8288 meters A;i=0.46 cm

Figure 4.18 Zoom view of the calculated diffraction pattern for the sixth

fundamental mode of vibration using a 75 khz sound wave.

The large value of the vibration amplitude at the center of the diffraction
pattern is a result of the zeroth order Bessel function acting on each wavenumber
present in the calculated wavenumber distribution. This would indicate a large DC
vibration amplitude, Which is not ac-tually present. For a given argument, the
amplitude of the zeroth order Bessel function is much larger than that of the first
order. This causes the unrealistic large peak to be predicted in the center of the
diffraction pattern. This center peak has side.lobes, whose amplitude is on the
order of the amplitude of the peak due to the surface wave. Neither the center
peak nor its side lobes should be expected in the surface wavenumber distribution
and should be subsequently ignored. These plots will be compared to the

measured diffraction patterns.
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5. Results

5.1 Experimental Observations

In the course of scanning the diffraction pattern to detect these peaks in

frequency modulation, it was found that the amplitudes of the FM signals

displayed on the signal analyser were of low level and varying in magnitude.

This was found to be due to the fact that the maximum vibration amplitudes were

a small percentage of the incident wavelength. The small amplitude is associated

with a very small surface velocity with respect to the speed of sound, and

generates a small amount of frequency modulation. (See Table 5.1). This

unfortunate fact was due to the restriction of plane incident wavefronts, which

forced the use of the lower frequency transducers and caused the incident

wavelength to be too large.

Vibration |Maximum Vibration Amplitude as a

Frequency | Percentage of Incident Wavelength
(hz) 40 Khz 75 Khz
1234 1.60% 3.00%
1706 0.50% 1.00%
3202 0.30% 0.17%

Table 5.1 Maximum amplitude of vibration as a percentage of the incident

wavelength.

In addition to this, it was also noted that an amplitude modulation was

introduced into the reflected waves at the vibration frequency. The magnitude of
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the induced amplitude modulation was observed to be between zero and forty
percent of the amplitude of the reflected wave. The measurement system was
tested for its sensitivity to amplitude modulation and the results are presented in
Table 5.2. These results show that the measurement system is quite insensitive to
amplitude modulation in the reflected sound waves.

The vibration amplitude

measurements were not affected by this unexpected phenomenon.

Amount of Amplitude Modulation
as a Percentage of the
Maximum Signal Amplitude

Amount of Induced Frequency
Modulation Due to the Amplitude
Modulation in the Reflected Wave

(%) (dB)
90 = 10
50 = 3
30 =1
10 —

Table 5.2 Effect of amplitude modulation on the frequency modulation

measurements.
5.2 Diffraction Pattern Measurements

The amplitude of the frequency modulation introduced into the reflected
waves at the vibration frequencies of 1706 hz and 3202 hz was so low that
repeatable measurements of the diffraction pattern produced by these modes of
vibration were not obtained. However, at 1234 hz some repeatable measurements
were obtained. The FM measurements made using the 40 khz transducer were
more stable than those made with the 75 khz transducer. This fact was attributed

to the larger overall signal to noise level of the reflected sound waves at 40 khz.
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The results of the diffraction pattern measurements are displayed below in Figures

5.01 and 5.02. .
Diffraction Pattern Measurements Using the 40 khz Transducer

Vibration Amplitude (m)

8.816
0.012 |
8.008 -
8.604 |
I A\
(. R
1 1 [ 1 | S | 4 ¢ N N ' .
¥ 8 12 6 28 24
Distance from the center of the diffraction pattern (cm)
ro.50=1.8288 meters 1;=0.8625 cm o Test |
A Test 2

Figure 5.01 Diffraction pattern measurements using the 40 khz transducer.

Diffraction Pattern Measurements Using the 75 khz Transducer
Vibration Amplitude (1m)

8.0816

8.812

= AV

b

R

1 1
2 4 6 8 18 12 14
Distance from the center of the diffraction pattern (cm)

r0.50=1.8288 meters 1;=0.46 cm ® Test |
4 Test 2

Figure 5.02 Diffraction pattern measurements using the 75 khz transducer.
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6. Conclusions and Future Recommendations
6.1 Discussion of Results

As can be seen in Figures 5.01 and 5.02, the results agree quite well with
the theoretical predictions with respect to the position of the peaks in the
diffraction pattern. The amplitudes of these peaks, however, are much smaller
than expected by the doppler shift calculatiohs.‘ This can be due to the following.
First, the vertical mode shape of the vibrating plate will cause the generated peaks
in the diffraction pattern to be located off .thé horizontal axis. Although the
vertical mode shapes were not measured, they were inferred from the bending
wavelength associated with the input frequency and the horizontal mode shape.
The diffraction pattern was scanned off the horizontal axis in search of the larger
amplitude peaks. This search was unsuccessful in measuring larger amplitude
peaks in the diffraction pattern, but was successful in locating the peaks as
predicted by the theory. Second, the signal levels of the FM component of the
reflected waves were only about 5 to 8 decibels above the noise floor. This low
signal to noise ratio could be causing some of this discrepancy. Third, the
amplitude of the reflected waves in the diffraction pattern also varies with position.
When the amplitude of the reflected wave becomes very small the total signal to
noise ratio also becomes very low. This could also be contributing to the
incorrect amplitude readings. Fourth, the mode of vibration which was tested
contained only three half wavelengths of the vibrating surface wave. The amount

of frequency modulation induced into the reflected sound waves is probably

-70-



dependent on the number of full surface waves present on the test surface just as
the wavenumber resolution is. Therefore, another problem contributing to the
amplitude mismatch could be due to the few number of complete surface waves

on the test surface.

Despite the fact that the method was tried on only a single mode of
vibration, the results look promising. The position of the peaks in the diffraction
pattern were shown to be in agreement with the theoretical predictions. The
amplitude measurements did not follow the theory, but there are some good
indications of signal to noise problems which could cause this. The accuracy of
the entire experiment is driven by the chosen transducer. The limits of the
experimental setup are solely due to the difficulty in finding appropriate
transducers. As stated in section 4.2, the chosen transducers were the best
commercially available and were suitable to test the feasibility of this measurement
system. There are some ideas for improvements to this measurement system for
future work, which focus around improving. the ultrasonic transducers. These

ideas are discussed in the following section.
6.2 Recommendations for Future Research

The work in this thesis has shown the feasibility of using the diffraction
characteristics of an incident wave field to measure the complete wavenumber

distribution of a vibrating surface. The results have also brought about some

recommendations for future work which can help to fully develop this method.
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These improvements to the existing experimental setup are necessary to allow this

measurement method to be used in practice.

The two problem areas which require further work are increasing the
overall signal to noise ratio and increasing the frequency modulation signal to
noise ratio. A transducer, which outputs a higher amplitude and frequency sound
wave than was used in this thesis, will improve both signal to noise ratios. From
the tests that were performed with the tweeter, is seems possible to generate a
larger output with a specially designed or even a high grade commercial tweeter.
The limiting factor in finding a suitable tweeter will most likely be its operating
frequency range, but the possibility of using some type of tweeter as the source

of the incident field still merits some investigation.

To increase the frequency modulation signal to noise ratio, the following
idea should be explored. A lock-in amplifier should be tried instead of the
frequency meter and discriminator to make the FM measurement. Past experience
with these types of amplifiers indicate their possible benefits, with respect to FM

signal to noise ratio, over the current method.

If the optimum transducers produce signal to noise ratios which are still
too low to accurately make the measurement, then two other options should be
investigated to remedy these problems. The large output amplitude of the
transducer is needed so that it may be placed far enough away from the vibrating

surface to generate plane wavefronts. This restriction may be relaxed if the
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possibility of using incident spherical wavefronts is considered. The effect of
these waves on the diffraction pattern could be calculated and possibly subtracted
out of the measurement. If this turns out to be a feasible thing to do, then the
overall signal to noise ratio problem is eliminated by simply moving the
transducers closer to the test surface. An investigation into this idea will also
provide some insight into the similar problem of finding the diffraction pattern

produced by the hull of a cylindrical body, such as a submarine. This is a

desired future extension of the work in this thesis.

In the results section, it was noted that in addition to frequency
modulation, the reflected sound waves also contained a substantial amount of
amplitude modulation at the vibration frequency. This indicates that the
mechanism by which the amount of radiating energy that is introduced into the
reflected waves as frequency modulation might be different than expected. That
is, the doppler shift equation might be a function of the number of surface waves
present on the test surface as well as the vibration frequency. In addition to this,
it appears that a much larger amount of amplitude modulation is introduced into
the reflected waves. Therefore, the physical mechanism by which both forms of
modulation are introduced into the diffraction pattern should be investigated fully.
Perhaps, a measurement of the amplitude modulation may be used in conjunction
with the frequency modulation measurement to indicate the surface wavenumber

amplitude in the diffraction pattern measurement.
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To improve the results, the entire experiment should be carried out under
water. The increased speed of sound in water should improve the overall signal
to noise ratio in the following way. Although the operating frequency for a given
incident wavelength will increase, the amount of attenuation of the sound wave
with distance will decrease. Therefore, the source and receiver may be placed a
greater distance away from the vibrating plate. This will cause the incident
wavefronts to appear more plane and should improve the results. It is also
possible to generate higher sound pressure levels in water than it is in air. Since
many experiments in structural acoustics are carried out under water, this is

probably where this measurement system should be developed.
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4 Al Products
/‘V‘| Corporation

280 Lincoln Street, Hingham, Massachusaelts 02043
Tel: 517.743-4800 « TWX:710-348-6932 » FAX:617-740-2045

Model TR-89/B Series
Types: 23,31,40

Description
TR-89/B

The TR-89/B Series Transducers are rugged eleciroacoustic
devices dasigned for the efficient generation of ultrasonic energy in
a'r They are Ideally suited for a wide variety of low power, general
purpose applications such as ultrasonlc inlrusion alarms, proximity
datection devices, remate conirol devices and energy manage-
ment systems,

Tha transducers consist of & one piecs housing with integral
diaphram, This providas a moisture-proof unit, suitable for both in-
door and cutdoor use whan mounted so that the rear terminals are
protected from exposure 10 the direct outdoor environmant. The
units operate at resonance on (he first harmonic overtone. This at-
lords grealer afficiency (higher transmitting and receiving
rasponse) than an equivalent size device operaling at its
fundamental.

The standard TR-89/8, Type 23, provides peak untuned raceiv-
ing response at 23 kH2 ¢ 2 kHz. The standard TR-89/8, Type 31
and Type 40, provide peak untuned recaiving rasponsas at 31 kH2
and 40 kHz + 2 kHz respectively. The units provide different direce
tional characteristics at the various frequencies and provide
greater range at the lower frequancies due to the attenuation char-
actecistics of sound In alr. Thus, the TR-89/B family oHers the user
a choice of units whose characteristics will match any requiremant.
Special Irequencies, matched transmitting and receiving pairs and
other custom features are available on special order (consult fac-
tory). There are several milllon TR-89/B transducers in use in a
variaty of applications throughout the world.

Massa Products Corporation Is a leading designer and manutacs
lurer of & wide variety of electroacoustic transducers and systems
for use in alr and underwater with aver 35 years of specialized
expariance in he fleld.
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Qutline Dimenslons

Madel TR-89/8 Series — | —; D o
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Massa

/AL /Al Products
74 /4 1] Corporation

280 lircoln Street, Hingham, Massachusetts 02043
Tel:617-749-4800 * TWX:710.348.6932 + FAX' 617.740-2045

MODELS E-152/40
E-152/75
BROAD BEAM
ULTRASONIC TRANSDUCER

Description
E-152/40

The Magsa Model E-152/40 Is a miniature air ullrasonic trans-
ducer having many applications In short range sensing and remote
control where non-contact Is desired. The iransducer operates at
40 kHz, its lundamental resonant frequency, thereby producing a
relatively broad directional response, free of minor lobes. The
housing and dlaphram ars one piece and made from staintess steal
lo provide high resistance to corrosive atmosphares. Each trans-
ducer is provided with 2 {aet of twisted pair cable polted at in the
back of (he housing. Otherlengths of cable or ditferent terminations
are available on spaclal order. An external horn may be sttached
to reduce the beam angle for highly directionat applications and
maximum range.

E-152/75

The }Massa Model E-152/75 Is physically the same as the E.152/
40 but operates at 75kHz, Operation at 75 kHz permits better rasol-
ution and performance In short range applications.

Massa Products Corporation is a leading designer and manufac-
lurer of a wide variety of elactroacoustic lransducers and systems
for use in alr and underwater, with aver 35 years of speclalized ex-
perienca inthig field.
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Models E-152/40
E-152/75

Specifications
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Indication of How Close to Plane are the Incident Waves

L

¥

~
(]

./ J U

_ Total Travel in Air
L=15 c¢m S, = )

L?.
5= /s§+T

Frequency | Incident Wavelength | Total Travel in Air So (S1-So)/Incident Wavelength
(hz) (cm) (cm) (cm) (%)
40 0.86 4572 ©228.6 143
75 0.46 335.3 1676 36.5
150 0.23 228.6 1143 106.9
215 0.14 137.2 ] 68.6 292.1

The numbers in the last column indicate how much later the points on the
edge of the plate see the waves from the source than those in the center do. At

150 khz, the phase difference between points in the center of the plate and those

on the edge is almost a full wavelength. .
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Mechanical Technology Incorporated Fotonic Sensor Specifications
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Fotonic Sensor Calibration Curve

Calibration Curve for the Photonic Sensor on the Aluminum Plate
Output Voltage (v)

2

1.6 |

1.2

8.8

0.4

o L
0.4 ® i é 5 1
Gap Between Sensor and Plate (mm)

Gap DC Voltage Gap DC Voltage Gap DC Voltage
(mm) (volts) (mm) (volts) (mm) (volts)
0.00 0.528 1,15 0.962 2.30 0.406
0.05 1.009 1.20 0.932 2.35 0.388
0.10 1.256 1.25 0.902 2.40 0.371
0.15 1.371 1.30 0.872 2.45 0.354
0.20 1.426 1.35 0.843 2.50 0.337
0.25 1.445 1.40 0.815 2.55 0.321
0.30 1.446 1.45 0.788 2.60 0.304
0.35 1.436 1.50 0.761 2.65 0.289
0.40 1.418 1.55 0.734 2.70 0.273
0.45 1.394 1.60 0.709 2.75 0.258
0.50 1.368 1.65 0.685 2.80 0.243
0.55 1.339 1.70 0.661 2.85 0.228
0.60 1.309 1.75 0.637 2.90 0.214
0.65 1.277 1.80 0.613 2.95 0.201
0.70 1.245 1.85 0.59 3.00 0.187
0.75 1.212 1.90 0.568 3.05 0.175
0.80 1.181 1.95 0.546 3.10 0.164
0.85 1.151 2.00 0.524 3.15 0.153
0.90 1.119 2.05 0.503 3.20 0.141
0.95 1.086 2.10 0.483 3.25 0.129
1.00 1.055 2.15 0.463 3.30 0.117
1.05 1.024 2.20 0.444 3.35 0.106
1.10 0.993 2.25 0.425
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Mode shape measurement at a vibration frequency of 1234 hz.

Average peak amplitude of horizontal mode shapes is 83 micrometers.

Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at 5 cm. below centerline
Center of Plate | Displacement | Phase vs. Input | Displacement | Phase vs. Input | Displacement | Phase vs. Input

(cm) (micrometers) (deg) (micrometers) | (deg) micrometers) (deg)
-7.50 9.60 -37.40 3.61 114.00 16.00 -99.20
-7.00 26.76 -33.00 20.10 112.80 36.00 -107.90
-6.50 46.76 -36.00 32.77 111.60 63.88 -103.00
-6.00 67.85 -38.70 46.92 114.50 85.85 -99.70
-5.50 81.85 -37.50 60.31 116.30 106.15 -101.10
-5.00 93.08 -37.50 68.77 118.60 112.31 -101.10
-4.50 89.85 -37.50 72.31 118.30 113.69 -94.20
-4.00 33.23 -37.30 78.15 119.00 116.92 -100.40
-3.50 72.31 -37.60 77.69 114.90 106.31 -100.30
-3.00 51.54 -40.70 63.38 116.00 85.38 -97.00
-2.50 35.54 -39.70 47.85 118.60 67.69 -101.00
-2.00 10.85 -39.40 27.08 117.50 41.38 -93.20
-1.50 8.82 141.50 7.82 105.70 17.08 -87.30
-1.00 27.23 137.40 6.52 -35.70 8.65 67.80
-.50 38.62 140.80 6.38 -37.60 24.77 79.50

.00 42.01 141.70 6.88 98.20 31.54 89.10

.50 41.08 141.40 35.23 118.70 28.92 34.50
1.00 26.92 142.70 55.23 120.70 17.08 76.20
1.50 6.91 148.10 71.54 123.70 6.12 -60.20
2.00 14.15 -44.70 75.54 123.50 26.62 -34.30
2.50 40.92 -41.30 75.54 123.00 54.62 -94.90
3.00 66.15 -40.10 62.01 123.30 32.31 -90.50
3.50 80.46 -37.30 43.54 124.20 110.62 -93.90
4.00 94.46 -38.90 26.46 125.10 125.85 -97.80
4.50 91.23 -40.40 6.55 130.60 136.62 -93.70
5.00 83.23 -39.30 3.65 -67.80 127.69 -96.20
5.50 66.46 -39.70 10.06 -57.10 105.23 -93.00
6.00 50.31 -39.30 13.54 -57.10 87.69 91,10
6.50 26.92 -38.60 10.01 -53.10 54.77 -89.80
7.00 11.29 -39.50 5.68 -55.00 26.77 -88.30
7.50 31 -142.40 2.08 -48.00 5.95 -87.10
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Mode shape measurement at a vibration frequency of 1706 hz.

Average peak amplitude of horizontal mode shapes is 27 micrometers.

[ Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at 5 cm. below centerline
Center of Plate | Displacement { Phase vs. Input | Displacement | Phase vs. Input | Displacement | Phase vs. Input
(cm) (micrometers) (deg) (micrometers) (deg) (micrometers) (deg)
-1.50 1.38 -25.50 8.98 -45.00 78 42.40
-7.00 243 -65.80 22.92 -48.70 .42 41.20
-6.50 3.82 -85.60 36.62 -47.70 .27 53.80
-6.00 5.42 92.90 46.00 -49.30 .83 141.80
-5.50 6.40 -103.20 48.15 -50.00 .98 137.10
-5.00 6.29 -115.30 38.62 -49.70 3.09 134.70
-4.50 4.86 -123.40 20.15 -52.70 3.65 140.30
-4.00 3.97 -121.60 4.30 -53.10 4.60 131.10
-3.50 3.57 -99.30 11.52 122.00 1.82 144.00
-3.00 3.06 -70.40 25.08 117.60 2.29 -53.70
-2.50 9.45 -57.40 29.23 117.60 7.75 -50.00
-2.00 16.00 -52.60 25.38 111.80 17.54 -53.90
-1.50 21.38 -50.30 14,05 109.20 29.38 -52.80
-1.00 28.15 -49.30 1.40 81.70 37.23 -55.00
-.50 32.31 -46.40 1.31 -34.30 42.46 -55.10
.00 33.69 -45.30 1.95 101.30 48.15 -60.50
.50 35.54 -45.70 15.17 107.80 44.46 -61.60
1.00 32.62 -45.60 23.38 121.00 40.15 -62.00
1.50 28.77 -42.20 27.69 125.40 31.08 -61.20
2.00 17.85 -42.80 24.62 107.70 17.85 -64.70
2.50 10.51 -37.30 17.69 130.40 8.82 -66.10
3.00 4.92 -22.30 5.40 130.80 2.06 113.90
3.50 2.78 68.70 9.55 -50.10 11.69 112.90
4.00 5.85 105.40 25.54 -47.50 18.62 112.30
4.50 8.15 109.30 37.54 -48.40 22.46 113.60
5.00 8.88 111.30 41.54 -46.00 2231 110.50
5.50 7.69 112.30 42.46 -46.00 20.15 117.50
6.00 6.49 110.20 35.54 -47.00 16.92 110.00
6.50 3.60 111.40 23.85 -45.10 12.37 109.60
7.00 2.40 117.10 9.38 -43.30 6.23 113.10
7.50 .59 131.00 42 91.10 .93 123.40
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Mode shape measurement at a vibration frequency of 3202 hz.

Average peak amplitude of horizontal mode shapes is 11 micrometers.

Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at § cm. below centerline
Center of Plate | Displacement | Phase vs. Input | Displacement | Phase vs. Input | Displacement | Phase vs. Input
(cm) (micrometers) (deg) {micrometers) (deg) (micrometers) (deg)
-1.50 1.38 65.30 24 -88.60 18 74.30
-7.00 2.20 66.70 .18 41.20 43 103.70
-6.50 2.31 66.40 27 -33.30 17 -152.50
-6.00 23 -2.70 1.68 -90.50 .70 -99.10
-3.50 3.91 -103.50 3.94 -95.70 4.25 -90.90
-5.00 6.40 -103.90 5.40 -99.80 6.60 -88.80
-4,50 6.60 -103.40 5.09 -97.90 7.08 -87.60
-4.00 4,08 -101.60 2.28 -102.70 6.97 -86.20
-3.50 1.26 68.10 4.28 77.40 3.77 -86.60
-3.00 6.40 74.00 11.02 76.80 2.34 -87.70
-2.50 12.37 74.80 14.49 71.50 6.05 90.80
-2.00 14.72 78.00 12.98 79.30 11.02 87.50
-1.50 12.54 76.30 7.52 76.80 11.35 93.80
-1.00 7.00 75.00 2.43 67.20 3.54 89.20
-.50 34 -54.10 1.86 62.80 2.83 92.60
.00 6.66 -99.90 5.95 78.10 4.66 -80.20
.50 11.46 -99.70 12.54 79.20 8.09 -84.10
1.00 9.28 -99.70 13.88 81.60 .82 -83.50
1.50 3.37 -98.70 10.57 84.10 6.18 -82.80
2.00 4.89 76.10 3.7 85.20 .83 -79.00
2.50 12.37 79.40 5.00 -97.30 3.82 97.00
3.00 15.06 79.40 10.68 -94.40 6.52 96.10
3.50 14.15 76.80 12.86 -94.20 8.09 88.60
4.00 7.98 79.00 9.66 -94.10 3.37 91.40
4.50 .36 -81.00 2.29 -89.30 37 75.60
5.00 8.43 -100.80 6.22 76.60 5.42 -90.50
5.50 13.09 -101.90 13.88 79.30 10.00 91.10
6.00 12.69 -100.30 16.31 81.70 11.08 -90.00
6.50 9.15 -100.60 13.15 80.30 8.37 -90.50
7.00 477 -93.60 7.65 79.50 3.77 -87.80
7.50 .36 -7.40 2.20 77.10 .60 -82.20
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Turbo Pascal computer program to calculate the expected diffraction pattern.

program PLATE_VIBRATION DIFFRACTION PATTERN;

{$1 input.inc 3
{$i haloplot.inc }
{$1 modfile.pas 1}
{$1 bessjO.pas 3
{$1i bessji.pas 3
{$i bessj.pas 3
const lambda_1 = 0.0046} { meters }
length = 0.15; { meters 3}
rho_o = 1,23 { kg/m*x*3 3
c = 345; { meters/sec }
size = 200;
type wavenumber = record
mag, lambda : real;
N : integer;
end;
wavenumber array = array[1..size] of wavenumber;
var X ! wavenumber_array;

kmin,kmax,delta k,
starting_x,

stopx,ys50,b,ro,amplitude,
stepsize,multiplier : real;

counter,mode
source,destin
filename

integer;
text;
string[64];
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procedure CREATE(var k:wavenumber array; kmin,kmax,deltak,
amplitude factorireal; miinteger; var i:iinteger);

var chack ! integer;
wave,km : real;

begin
newgraph;
check = m mod 2;
km = m¥pi/length;
wave t= kming
i = 03
deltak := (kmax - kmin) / size;
repeat

o= 4 o+ 1y
if wave = km then

k[i]l.mag := 0.5
else if (check = 0) then
k[i].mag := s5in(0.5%waveXlength)/(0.5*%km*lengthX
(1-sqgr{wave)/sqr{km)))
else
k[i].mag := cos5(0.5*%waveXlaength)/(0.5%km*lengthx
(1-sar(wave)/sar(km)));
k[i].mag v= (sqr(k[i]l.mag)/0.25) * amplitude factor X
lambda 1

k[i].1ambda := 2%¥pi/wave;
K[T].N := trunc(length/k{i].lambda);
wave 1= wave + deltak;
plotpoint(wave/100,k[{i].mag/lambda_1,1);
until wave >= kmax;

displaygraph(1);

it= 1 - 13

end;

function BESSEL(m:integer; cireal):ireal;

begin
if m = 0 then BESSEL := be=zsj0(c)
else if m = 1 then BESSEL := bessji(c)
else BESSEL := bessj(m,c);:
end;

-94.-



procedure CALCULATE(k:wavenumber array; counter:iinteger);

var Wn,W,x,v,ratio,y,low,high : r=al;
i,j,step,number : integer;

begin
if starting x > 0.02 then
assign(destin, 'ci\user\bob\datalacoustic\'+filename+
besml!)
else .
assign(destin,'ci\user\bob\data\lacoustic\'+filename+
tubig') s
rewrite(destin);
newgraph;
x = starting_x;
ClrsScr;
gotoxy(33,10);
write( 'WORKING ');
gotoxy(15,13);
write('Distance from center of pattern = m. ');
gotoxy(15,16);
write('Current Wavenumber being calculated = ')
step = 0;
repeat
gotoxy{(48,13)
write(x:6:3);
step = step + 1
j :

-

= 0
wn := 0.0
W 1= 0,03
for i := 8 to counter.do
begin

if step = maxint then step := 0;
step 1= step + 1;
gotoxy(53,186);
write(ii3);
case (step mod 128) of
0 ,127 : begin

gotoxy(30,10);

write('|"');

gotoxy(42,10);

writa('|"');
and;
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31,158 : begin

gotoxy{(42,10);

write('\');

gotoxy(30,10);

write('/');
end;

63,188 : begin
gotoxy(30,10);

write{'-"')3

gotoxy(42,10);

write('-"');
end;

95,221 : begin e
gotoxy(u2,10);
write('/");
gotoxy(30,10);
write('\')

end;
end;
ratio 1= x*k[i].lambda/(lambda_1*s0);
j p= -1y
1ow 1= -0.5
high t= 0.5
number := 0;
repeat

if (ratio>low) and (ratio<high) then j := number
else bagin

1ow = Jow + 1;

high := high + 13

number := number + 1;
end;

until (j=number);

v i= 4XpiXk[i].mag/lambda 1,
Wn = sar(sin((2*%k[i] . N+1)*pi*k[i].lambda*x/(lambda 1%*s0))
/sin(pi*k[i].1ambda*x/(1ambdaw1*so)) - Y
W := W + sgr(BESSEL(J,v)) * Wn ¥ sar(k[1].lambda);
end;

y := 39r((2 * b * amplitude)/(lYambda 1 * z0 X ro)) * w /
- (rho o * ¢);

x = x + stepsize; -
writeln(destin,x,y);
plotpoint(x*¥100,y*multiplier,1);

until (x >= stopx);

close(destin);

displaygraph(1);

end;
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procedure PLOT;

var X,y : real;
i : integer;
begin
i t= 03
assign(source,filename);
reset(source);
newgraph;
gotoxy(30,17);
write( 'WORKING ')}
repeat
i o= 1 o+ 1y
readln(source,x,
plotpoint(x,y,1)
gotoxy(39,17);
case (i mod 64) of
0,63 ¢ write(!'|');
15,79 : write('/');
..l),
N

-

y)
}

31,95 ¢ owrite(!
47,111 write(!
end; A
until eof(source);
close(source);
displaygraph(1);
end;

procedure SINUSOCID(var Kkiwavenumber array;
var counter:integer);

var 1 ¢ integer;
begin

counter := size;
newgraph;

i 1= 83
repeat
k[il.lambda := 2%pi/(1250 * (i/counter));
k[i].mag := amplitude factor * lambda 1 *
: sar(sin(2¥pi*i/counter));
kK[i].N := trunc(length/k[i].1ambda);

plotpoint((2*pi/k[i].lambda)/100,k[i].mag/lambda 1,1);
(I B -

until i = (counter + 1)
displaygraph(1);
end;
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procedure TRIANGLE(var kiwavenumber array;

var i : integer;

begin
counter := size;
newgraph;
i 1= 83
repeat

var counter:integer);

k[i].lambda := 2%pi/(1250 % (i/counter));

if i <=(counter/2) then

k{i]l.mag := amplitude factor * lambda 1 *
- (2%i/counter)
elsa
k(i].mag := amplitude_factor * lambda_1 *
~ (2 - (2%i/counter));
k[i].N = trunc({length/k[1].1ambda)
plotpoint((2*pi/k[i].1ambda)/100,k[1].mag/lambda_1,1);
io= 9+ 1
until 1 = (counter + 1);

displaygraph(1);
and;

begin {main}
repeat
Cirscr;
gotoxy(15,10);

write('Enter one of the following

gotoxy(25,12);

write('"p" to plot existing data');

gotoxy(25,14);

')

write('"c" to calculate and plot new data');

gotoxy(25,16);

write('"x" to exit program');
gotoxy(45,10);

readlin(ch);

if (ch = '¢') or (¢ch = 'p') then
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begin
Clrscr;
gotoxy(15,12);
write('Enter the name of the file to contain the data.');
gotoxy(30,14);
readin(filename);
Clrscr;
end;
if (ch = 'c¢') then
begin
inputdata;
inputr('starting X valus in pattern',starting x,'m');
inputr('ending X value in pattern',stopx,'m' Yy
inputr('stepsize Across the Pattern',stepsize,'m');
inputr('smallest wavenumber of intareat' kmwn,'1/m. Y3
inputr('Largest wavenumber of intse est‘,kmmx,'1/m.' )
inputi('Mode number of the vwbrafwow',mode,"),
inputr('Max Vibration Amplitude = # * lambda 1',
amplitude factor,'');
nputr{'Amplitude of the incident wave',amplitude,‘Nt/m');
nputr{'Distance from the light source',ro,'m');
nputr{'Distance to the diffraction paftetn’,so m');
nputr('Characteristic width of the grating',b,'m');
inputr('scaling factor for plot!',multiplier,'');
displayinputdata;
CREATE(x,kmin,kmax,delta k,amplitude factor,mode,counter);
§
X
SINUSOID(x,countar);
TRIANGLE(x,counter);

g —dz 2y

—ax

i

3
CALCULATE(x,counter);
end;
if (ch = 'p') then PLOT;
until(ch = '"x');
clrscry
end.
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