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ABSTRACT

Sound radiation from vibrating surfaces is of major concern in the field
of structural acoustics. The amplitude and frequency of vibration of each
surface wave present as well as the distribution of surface waves is needed
to determine sound radiation. A non-contacting method to obtain a direct
measurement of this information is presented. This method utilizes the
diffraction characteristics of an incident wave field on a vibrating surface to
measure its complete wavenumber distribution. Investigations into two
different types of incident wave fields are performed and the hardware to
fabricate a measurement system for each is specified. Experimental results
of the measured wavenumber distribution for a single mode of vibration of
a clamped-clamped plate are presented. The measured wavenumbers
present on the vibrating plate agreed well with the theory. The measured
amplitudes of these wavenumbers, however, was less than expected in each
case. The results of this work clearly indicate the possibility of using this
measurement method to measure the complete wavenumber distribution of a
vibrating surface.
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1. INTRODUCTION

1.1 Introduction to Structural Acoustics

Sound radiation from vibrating structures is of major concern in the field

of structural acoustics. Very often the design engineer is looking for ways in

which he can improve his design so as to make it radiate sound less efficiently.

Excessive sound radiated by naval vessels is an important problem since this

sound permits the acoustic detection and identification of the vessel. In room

acoustics, the enclosing surfaces of the room need to be designed so as to

minimize sound transmission into or out of the room. Minimizing the sound

radiation from a vibrating surface is accomplished by reducing or eliminating those

surface waves which are well coupled to sound in the fluid in contact with the

surface. In fact, any vibrating surface which produces unwanted sound or accepts

unwanted vibration from an incident sound wave can be redesigned to minimize

the coupling between the vibration and the acoustic field provided that the

complete vibration characteristics are known.

1.2 The Need for Research

To determine the characteristics of the structure which are causing the

unwanted radiation, a complete knowledge of the components of its vibration is

required. The amplitude and frequency of vibration at a few discrete points on
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the vibrating surface are not enough to determine the radiated sound. A

knowledge of each surface wave present as well as the distribution of surface

waves is needed to determine sound radiation. This is important since the radiated

sound is due primarily to the surface waves which are well coupled to the

acoustic field. The vibration is described by its complete wavenumber

distribution, which is the amplitude and frequency content of each surface wave.

Current measurement techniques employ a point by point measurement of

some type, whether by scanning across the surface with a single sensor or by

using an array of sensors. The vibration characteristics of each point in the scan

are then used to obtain the wavenumber distribution in the following way. The

maximum amplitude of the vibration at each point is acquired and this information

defines the spatial shape of the surface. Then, the fourier transform of this mode

shape is calculated. It's this spatial transform which is the wavenumber

distribution for the mode shape in question at the frequency of the vibration.

Unfortunately, for two dimensional surfaces this process is quite time consuming

and requires some minor signal processing.

There are also some problems introduced by the type of sensor which is

used to make the measurement. A sensor which contacts the surface, such as an

accelerometer, will locally load the vibrating surface in such a way that it will

slightly affect the vibration amplitude at that point. This effect becomes even

more important when arrays of surface contacting sensors are used. Since the

spatial resolution of the surface waves being measured depends on the spacing

-11-



between points in the array, a trade-off develops between the surface wave

resolution and the altering of the surface vibration from loading effects. The

problem associated with non-contacting surface sensors, such as a laser

interferometer, are that these sensing systems typically consist of expensive

components and require extremely accurate alignment. This forces the experiments

to be carried out under laboratory conditions and the measurement method tends to

be cumbersome for measuring large structures in the field.

A great need exists for a direct non-contacting method to acquire the

complete wavenumber distribution of a vibrating surface. Much of the research

being performed in structural acoustics is being carried out without this

information due to either the high cost of a computer system capable of handling

large arrays of sensors, or the amount of time required to make the point by point

scan. The research which is making use of this information could be performed

quicker with a more direct measurement method. The presence of a direct non-

contacting method to measure the complete wavenumber distribution of a vibrating

surface will aid research in the field of structural acoustics.

1.3 Research Goals

The above discussion describes the motivation behind the work performed

in this thesis and establishes the desired result of any research in this area. The

goal of this thesis research is simply to investigate the possibility of using the

diffraction characteristics of an incident wave field on a vibrating surface to

-12-



measure the complete wavenumber distribution. The apparent advantages of using

this type of measuring method are the following. The measurement is made

without contacting the test surface. The spatial information in the wavenumber

distribution is measured directly rather than calculated from the surface mode

shape. The measurement method could be employed out of the laboratory and

even underwater. Finally, the time required to make the measurement could be

substantially reduced. There are, however, some questions of the feasibility of

making the measurement in this way, and it is these questions which will be

investigated in the course of this thesis.

Upon completion of this research, the following will be accomplished;

1) The rules under which this measurement method may be employed

will be defined.

2) An investigation into the type of incident wave field to be used will

be performed.

3) The appropriate sensors to create and sense the wave field will be

determined.

4) Preliminary measurements of the wavenumber distribution of a

clamped-clamped plate will be made and compared to measurements

made with a conventional point by point scan.

In future work, this method should be thoroughly tested on an existing

model in the laboratory whose wavenumber distribution characteristics are known

-13-



quite well. This test will prove the feasibility of making field measurements on

"real" surfaces with this method.

1.4 Thesis Organization and Content

The goals described above describe the content of this research. Chapter 2

describes, in detail, the proposed method of measurement, and discusses its

shortcomings which become evident in the theoretical development. Chapter 3

displays the investigation into the choice of incident wave field to use, and

presents some qualitative results of some preliminary experiments. Chapter 4

outlines the prototype measurement system defined from theory and the

experimental methods. Chapter 5 presents the results of some measurements made

with this system. Finally, Chapter 6 presents the conclusions arrived at from this

research along with some recommendations for future work on this measurement

system.

-14-



2. THEORETICAL DEVELOPMENT

2.1 Introduction

As stated in Chapter 1, the aim of this research is to investigate the

possibility of using the diffraction characteristics of an incident wave field on a

vibrating surface to measure its complete wavenumber distribution. The basic idea

motivating the work in this thesis is the following. If a wave field of wavelength

Xi is normally incident on a statically deflected sinusoidal surface of wavelength A,

then the resulting diffraction pattern will contain intensity maxima at discrete

distances proportional to the surface wavelength (See Figure 2.1). The

wavenumber resolution in the diffraction pattern is inversely related to the number

of full surface waves present on the test surface. It is this phenomenon which

produces the surface wavenumber distribution directly.

In the theoretical development which follows, the incident wave field is

assumed to be generic since the theory applies equally well to any traveling wave

field. The basic ideas of the following discussion have been adapted from [1],

[2], [3], [4], [5], and [6] and extended to meet this particular application of

vibration measurement.
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2.2 The Diffraction Formula

The expression which governs the distribution of energy produced by a

traveling wave field which passes through a small opening in a screen can be

arrived at by considering the situation displayed in Figure 2.2. All of the

variables locating position in the plane of the source will have no subscripts,

whereas those locating points in the plane of the aperture will have the subscript

(). The variables locating points the plane of the diffraction pattern will be

indicated with a prime symbol ('). The energy which originates at a point P in

the source plane travels through the small aperture in the screen and arrives at

point P' in the plane of the diffraction pattern. There are some assumptions

which must be stated before the discussion is continued. The distances between

the screen and points P and P' must be large compared to the size of the aperture

and the direct path between points P and P' must also be very near to a straight

line.

z

g S .._ 
0

ZI

zo

Figure 2.02 Coordinate system and notation used in diffraction equations.
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Let the expression for the traveling wave incident on the screen be

U0 re (2.1)

where Uo is the amplitude at unit distance from the source

k is the wavenumber of the incident wave k=27/k

o is the frequency of the traveling wave

Huygens' principle, which states that every point on each wavefront is the

source of a new spherical wave, can be applied to each point in the aperture.

The presence of the incident wavefronts on the aperture creates elemental

Huygens' wavelets at all points Q in the aperture. There are varying path lengths

between each wavelet and a single point in the plane of the diffraction pattern.

These path differences generate phase differences between each of the elemental

spherical waves and cause some amount of cancellation or reinforcement at point

P'. An integral across the face of the aperture over each of these elemental

Huygens' wavelets may be calculated and results in the intensity at point P'. The

diffraction pattern is calculated by doing this for each point in the plane z=z'.

The following is the basic diffraction equation for an incident wave front passing

through an arbitrary aperture and yields the amplitude of the disturbance at any

point P' in the plane of the diffraction pattern.

( U rs ffe,-) dx s dy 
s (2.2)
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2.3 Fresnel Diffraction

By extending the earlier approximations, an equation may be derived which

is useful in solving many types of diffraction problems. Let the distance from the

source to the aperture be large enough that the wavefront generated by the source

is essentially plane. If the coordinate system which is shown in Figure 2.02 is

used, then the distances r and s may be expanded using the binomial theorem.

After dropping all powers of xo and Yo higher than the second, the following

expressions for r and s are obtained.

2r2 ro2 2

Xo2+ y2 XoX' + Y, (X oX + Yoy )2
s so + s2 S2 2S

0 0 0~~~~~~2~

(2.3)

(2.4)

An amplitude approximation is now made by substituting l/roso for 1/rs in the

coefficient of the diffraction formula. The diffraction equation may be rewritten as

iU~e''0 e-i(r +)A (,) = We r - i,( . )
uvpr

,roSo
le - '[( Y' )] dx dy.
S

Xf x + y y
f (XO, yO) = - r

(X2 + y2 X2 + y2

+[ 2r + 2So2ro s

_X X' + y'

(xox'+ y y2
2r 

(2.6)

(XoX' + Y Y')2

2s3
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Physical processes which follow the assumptions made here are called

Fresnel diffraction phenomena and are described by the above equation.

2.4 Fraunhofer Diffraction

The equation describing situations of Fresnel diffraction can be further

simplified and still handle a large class of problems. If each of the distances ro

and so are very large compared to the maximum values of x, and Yo in the plane

of the aperture, then the bracketed terms in the Fresnel diffraction equation may be

neglected. In addition to this, if the source is located on the z-axis so that x-O

and y-O and the source is small enough compared to the aperture size to be

considered a point source, then the first term in equation 2.6 may also be

neglected. With these assumptions, the function f (xo,yo) is written as

f (x, Y) s=(_ xx + y Y (2.7)

and the Fresnel diffraction equation may be rewritten as

U( p) = iUei eI s Y X Y
Xr.Ef s i 2( , k L ,) d o

~~~~~~~s ~(2.8)

where kx = x'/.so

ky = y7/.so
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This equation describes the cases when diffraction effects can be observed

at distances which are considered large with respect to the aperture size. The type

of diffraction effects observed under these conditions are termed Fraunhofer

diffraction.

2.5 The Aperture Function

The diffraction equation contains an integration over the area of the aperture

in which the effects of its size and shape are included into the determination of

the diffraction pattern. It is often times convenient to define an aperture function

which is introduced into the integral in the diffraction equation and contains all of

this size and shape information. If this is done, the evaluation of the diffraction

equation for different apertures becomes simplified. Let the aperture function be

denoted by F(xo,yo). The aperture function is dimensionless and when included

into the above theory, the Fraunhofer diffraction equation becomes

U(P = iUew F (X y)i2(k X + k ddy
rs 0 JJF(x0 , y0 )e (2.9)

Since the surfaces which will be tested are rectangular, the first aperture

shape which will be studied is the rectangular aperture. The significance of the

rectangular aperture in this research is that the diffraction pattern produced by this

aperture is the same that will be produced by a finite plate at rest.
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2.6 The Rectangular Aperture

Consider a rectangular aperture of height 2a and width 2b. This aperture

can be mathematically represented by the following

Ra(Xo)

Ra(xo)

Rb(Yo)

Rb(Yo)

=1

=0

=1

=0

when

when

when

when

Ix0l a

xol > a

lyol b

lyol > b

The aperture function F(xo,yo) is then just the product Ra(Xo)Rb(yo).

When this aperture function is included in the Fraunhofer diffraction formula, the

variables can be separated and the limits of integration can be changed from

covering the area of the aperture to covering from negative infinity to positive

infinity. The result is

iUoei eak( +S)U(P ) e i e

iUoe~ e e( + So)

Jf[Ra(xo)e i 2, x.] [Rb,( yo)e i 2 " yXdy

JRa(xo)e i2 " dxo JRb(yo)e i2 y, dy0
0 _

This expression is just the two dimensional fourier transform of the

aperture function with the exception of the constants in front of the two integrals.

The aperture function is a finite pulse whose fourier transform is the well known

-22-
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sinc function, sinc(x)

integer multiples of .

1.2

8.8

8.4

-8.4

= sin(x)/x , whose value at x=O is one and has zeros at

The One-Dimensional Sinc Function

x/x

sin(x)
x

Figure 2.03 The one-dimensional sinc function.

The final expression for the diffraction pattern produced by a rectangular

aperture, which is also the diffraction pattern produced by a flat finite plate at rest

is

A(P,) = i 4abUeiwe '(r'+,)
~,roSo

sinc (2 ck, a) sinc (27ck yb)
(2.12)

2.7 The Comb Function

To continue with the theoretical development, it is useful to define a two-

dimensional comb function. This function is obtained by first deriving a one-

dimensional comb function and then extending the result to two-dimensions. The

-23 -



comb function is just a sequence of Nx Dirac delta functions and is defined

below. The variable Lx will represent the length of the test surface in the

succeeding sections. The significance of shifting the delta functions in this way

will also be shown later.

q=1 (2.13)

11I0)

.

-""+&. -L+3l 4-+5xl -L+7Xl -L+9xi22 2 2 2 2 2 2 2 2
Figure 2.04 The one-dimensional comb function.

2 2
2 2

The fourier transform of the comb function is of interest to this discussion

and is obtained by first looking at the transform of the shifted Dirac delta

function. The fourier transform of the delta function at the origin is unity, but the

fourier transform of a shifted delta function [(Xl/2-LxJ2)-xo] is

x, L,, i 2 k - i2xk1 (T_ ,( Lx2 )_ x0 e 2 Od = -e ( 2 2 )
_ _ (2.14)
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The desired fourier transform is then obtained from a summation over Nx

delta functions which have been appropriately shifted. Let the double ended arrow

signify the fourier transform in one direction and the inverse fourier transform in

the other.

l-( ° l6 -")=' 2 °} @(2.15)

<_),e =[( 2 1 2¢]

q= 1 (2.16)

nx) <- ei k(L-Nx,) sin(N,,7k x)
~sin ( ck, x,) (2.17)

Section 2.8 will show that only even integer values of kXl will be of

interest to the work in this thesis. In this case the exponential term will turn out

to be a complex constant of unit magnitude. To see how this transform behaves,

it is advantageous to look at its magnitude and consider only even integer values

of Nxkxxl. Then let two variables, denoted by col and 2, be defined to group

the arguments of the sine functions such that 2=NxCol and Col=kxxl. Upon

doing so the comb function is written as

sin ( O 2 )
(X0) sin(c0,la:) (2.18)
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The numerator can be considered to have a higher effective frequency than

the denominator. Its frequency is higher by a factor of Nx and will have a zero

value Nx-1 times in between the common zeros of the numerator and denominator.

The ratio is an indeterminate form at a common zero. Application of L'Hopital's

rule to this ratio will show that the ratio will approach Nx at a common zero. In

addition to the Nx-1 zeros, there will also be Nx-2 maxima in between these

zeros. The amplitude of these maxima will be much smaller than those which

occur at common zeros. Thus the original ratio will reach a maximum value of

Nx whenever the argument of the denominator is an integer multiple of X and will

have substantially smaller amplitude elsewhere. A plot of this function is

presented below.

The Fourier Transform of the

__ Amplitude

Zs

-1

-to
_z -1

One-Dimensional Comb Function
21 delta functions in the comb

a
x/x

sin ( Nx)
sin (x)

I 2

Figure 2.05 The fourier transform of the one-dimensional comb function.
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In two dimensions, the comb function is simply a product of two terms

similar to equation 2.17.

,[k (L - N. A) + ky (Ly -N y)] sin ( N, k x) sin (Ny sky y1)
rI(xo, y) <- eq Y sin (:k, xl) sin (ky Y 1)

(2.19)

The bandwidth of the intensity peaks in the diffraction pattern are

controlled by this function. The noise bandwidth of the intensity peaks is

inversely related to the number of delta functions which make up the comb

function. The noise bandwidth, which is denoted by A, is given by the following

expression.

2

N NY (2.20)

2.8 The Phase Grating

The basic motivation of the work of this thesis lies in the theory of the

phase grating. The diffraction effects discussed thus far are equally valid for a

perfectly reflecting surface with finite dimensions as they are for an aperture,

which is in essence a completely transmitting surface provided that the area

surrounding the reflecting aperture completely absorbs the incident wave field.

Therefore, the reflecting surface functions exactly as the aperture and the

diffraction effects may be observed by looking at its reflected wave field. The

phase grating is a surface which induces a sinusoidally varying phase shift across

the incident wavefront.
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Suppose the surface forming the grating is perfectly reflecting and has a

surface profile which is given by

z(X, Yo) = sin(2 ) sin( ° ) (2.21)

Zy

Figure 2.06 The two-dimensional phase grating.

Ai is the wavelength of the sinusoidal surface displacement in the ith

direction and Zxzy is the amplitude of this displacement. The amplitude Zxzy is

assumed to be small compared to the distance Ai between the surface wave crests.

The amplitude is in fact so small that the maximum surface slope at any point is

on the order of milliradians.

When a plane wave field is normally incident on this surface, there is a

sinusoidal phase variation produced across the wavefront by the surface

displacement. The surface slopes are so small, however, that the change in

direction of the reflected waves on the diffraction pattern is negligible compared to

the induced phase variation. The reflected wave will have a constant phase term

-28-
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as well as a varying phase term. The constant phase term is not significant since

it carries no information about the surface deformation. The varying phase term,

which was induced by the surface profile, carries with the reflected wave all of

the information needed to recreate this profile. The variable phase term is given

by

(p(xo, y) = k[2z (xo, y,)] (2.22)

2i:[2 z

P(X, Y) = zx(P(X., Y) = X ,Y

sin(2 )

s(A, )

(2.23)

(2.24)

Z sin (27+ )]

sin(2: Y, )]
siAy~)

Variable phase term
includes the extra

travel distance from the

mean plane which is

2z(xo Yo )

Constant phase term
is measured from

the mean plane

.. ...... . .

Z(Xo o )

Figure 2.07 Geometric representation of the constant and variable phase

terms.
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The reflected wave then takes the following form (Notice the spatial

dependence on xo and Yo, which is transverse to the direction of propagation of

the reflected wave.)

A Uo i[ -k 0o-P(xo,,Y)]UO ro (2.25)
Ad u0 i{cot (P z sin 2 sin 2<-JI[A = -77 o e A 

0O "e (2.26)

The comb function is a mathematical way of incorporating the effect of

multiple periods of the surface wave into the discussion. If the effect of one

complete period of the surface wave is represented by one of the delta functions

in the comb, then the entire comb will represent multiple periods of the surface

wave. The spacing of the delta functions in the comb must reflect the surface

wavelength for this to be accurate. To accomplish this, a surface function,

denoted by Fs(xoyo), is created to represent one period of the surface wave in

each direction.

F3(xoYO) =, x Y for I0 xo < 2 and I YI y 2

lo otherwise

(2.27)

The convolution of a delta function, which has been shifted from the origin

by an amount (xl,yl), with the surface function will just reposition Fs(xo,yo) to

have its center at (xl,yl). If the distances between the delta functions in the two-
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dimensional comb function, xl and Yl, is set to equal the corresponding surface

wavelengths, Ax and Ay, then the aperture function for the statically deflected

sinusoidal surface is just the convolution of the comb function with the surface

function.

GP(xo, Y) = (x, yo))= (Xo, yo) (2.28)

where Gp(xo,yo) is the phase grating aperture function

* is the symbol for convolution

The number of complete surface waves present is now equal to Nx in the

x direction and Ny in the y direction. The dimensions of the phase grating are

NxAx by NyAy. All of the incident waves, which fall outside these boundaries,

will not be reflected. The diffraction equation for the phase grating can now be

written as

^U(P') = XrS JJGp(xo, y)e ' ' dxody
s (2.29)

The integral in the above equation is just the spatial fourier transform of

the convolution of two functions represented by Gp(xo,yo). The fourier transform

of the convolution of two functions is just the product of the fourier transforms of

the functions themselves. The fourier transform of the comb function has already

been found in section 2.7 (See Equation 2.19). Therefore, to evaluate the
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diffraction equation for the phase grating, the fourier transform of the surface

function must be found.

A A

2 2 i4c 

A A
2 2

It is written as follows.

( ^X)
. JY"~c-

sin 2 17

The integral can be simplified by making the following change of variables.

n = k, Ax

AXo

t = 2tA Yo
Y,

m = kAy

Ax
dx = 2 du

A,
dyo - 2 dt

sin (t)

Thus

27
1 

( -

dn )du} ei"dt
(2.31)

If n is an integer, then the integral in the braces is the definition of a

Bessel function of the first kind of order n and argument v [7]. The first five
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integer orders of the Bessel function are shown in Figure 2.08. The reason only

integer orders are of interest will be shown shortly.

Figure 2.08 The first five integer orders of the Bessel function of the first

kind.

If n is an integer, then the integral above is written as

(2.32)

The exponential term is now expanded to yield

F,(xo,y y) A J . z zY sin(t)][cos(mt)+ i sin (mt )]dt
-g
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This integral is now split up into two different parts. The first part of the

integral contains even values of the integer n. The Bessel function is an even

function when the order is even [7]. The sine function in the argument of the

even Bessel function makes the Bessel function an even function of period 2n.

The integral over a full period of an even function times an odd function is equal

to zero. The integral of an even function times another even function over a full

period is equal to twice the value of the integral evaluated over a half period.

Therefore, the only surviving terms are those containing an even order Bessel

function times a cosine term. Similarly, the second part of the integral contains

odd values of n. The Bessel function becomes an odd function when the order is

odd [7]. The argument of the odd Bessel function causes it to be an odd

function of period 2. The integral over a full period of an odd function times

any other function is equal to zero. There are no surviving terms in the second

part of the integral. The integral reduces to the following.

F,(x, y) A2-> 2 fJF. 4h Zx sin (t)]cos(mt)dt
o (2.34)

n = even

This integral is found from [8] to be equal to

F(x , y ) AevA Cose n Z X Z Z
2 2 (2.35)

n even

-34-



The cosine term causes only even values of m to be important. Therefore, the

final result for the spatial fourier transform of the surface function for even integer

values of n and m is

F ) 2 J., (2.36)

n, m = even

Substitution for n and m in the above equation and for xl and Y in

equation 2.19, yields the final expression describing the diffraction pattern

produced by a two-dimensional statically deflected sinusoidal surface. The

diffraction equation is

A iUoei a eA(" + ,)U(P) A= zzzz).Xr( skr x y A k,^ r ( y kA, +k^ X ,,zy
2 2

{ ik LX-kYLX] sin (N, k A=) sin( Nnk A) 
sin(7ck. ,A.) sin (k yAy) 

(2.37)

To understand how this equation behaves, it's advantageous to look again

at the terms in the braces. The ratio of sines terms produce a main peak of

interest whenever gikxAx and 7;kyAy are even integer multiples of c. The

magnitudes of these peaks are NxNy. The secondary peaks in between these are

much smaller in amplitude and may be neglected in the response. Therefore, the

largest response occurs at the main peaks in the braced terms. The effects of the

Bessel functions are important only at these main peaks in the braced terms, since

in between these peaks the response is negligible.
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The magnitude of the Bessel function is determined by both its argument

and its order. Since the order of the Bessel functions are (kxAx-kyAy)/2 and

(kxAx+kyAy)/2 and the main peaks in the response occur when kxAx and kyAy are

even integers, it is seen that only even integer order Bessel functions are important

in the diffraction equation. The argument of the integer order Bessel functions

determines the distribution of radiant energy in the diffraction pattern. The

amplitude of the surface deformation has been assumed to be very small.

Therefore, the argument of the Bessel functions, v=27szxzy/X, is also small. It is

seen from Figure 2.8 that the energy in the diffraction pattern is distributed

between the different integer orders of the Bessel function with most of the energy

in the zeroth and first order. This says that a sinusoidal surface displacement in

the it h direction will produce peaks in the diffraction pattern when nkiAi equals

integer multiples of ir. The magnitudes of these peaks are governed by the

corresponding even integer order Bessel functions.

The magnitudes of the peaks in the diffraction pattern are related to the

surface wave amplitudes through the Bessel functions. Experience has shown that

the amplitude of a sound wave, which is reflected off of a vibrating surface, will

fluctuate with time. Therefore, the surface wave amplitudes will be measured as

described in section 2.10 and not through a measurement of the intensity in the

diffraction pattern. The calculated values of the intensity are only important for

overall signal to noise considerations.
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The following plot shows a typical calculation of the distribution of energy

in the diffraction pattern for a one-dimensional phase grating with surface

amplitude equal to one tenth the wavelength of the incident wave field and

wavelength equal to ten times the incident wavelength. The distance from the

source and receiver to the phase grating is equal to four hundred incident

wavelengths.
Diffraction Pattern for a Single Surface Wave

Normalized Intensity

1.2

0.8

8.4

-A - 4
8 8t 20 30 48

Distance from the center of the diffraction pattern (cm)

Xi=0.46 cm Surface wave amplitude A= i./1O

Figure 2.09 Calculated diffraction pattern for a one-dimensional phase

grating with surface wavelength equal to 10 i. The

distances r and so are equal to 400 Xi.

The plot is a direct measure of the wavenumber distribution of the phase

grating provided that the argument of the Bessel functions are controlled so as to

keep the amplitude of the first order much larger than the second. The

wavenumber of the surface wave is directly related to the location of the intensity

peak in the diffraction pattern.
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2.9 The Complex Phase Grating

The theory of the phase grating can be extended to examine any

complicated surface deformation through fourier analysis. Basically, any complex

surface deformation can be fourier decomposed into its component spatial

frequencies, each of which can act as a separate phase grating. The superposition

of the diffraction patterns produced by each of these phase gratings will be the

wavenumber distribution of the original surface. This is the case since each

component phase grating produces a single-peak in the diffraction pattern. The

diffraction equation for a complex statically deformed finite surface now involves

an integration over each surface wavelength present and becomes

U (P) iU e J k ( 2" XA\ ( ), r)JsLoI o AZ, AAY k A- Y A_ ,A+AyAy Y
2 2

{ ijk 1 L.- yL,] sin (N.ickA,) Sin(Nyrk)}dAdA)
ei~ [s (xk A.,) sin (, k y Ay) ) y

(2.38)

The following plots show calculations for the one-dimensional diffraction

patterns produced by some proposed surface wavenumber distributions. These

unrealistic shapes for the proposed wavenumber distributions were chosen to show

the effect of the overlapping of the higher order Bessel functions of the individual

phase gratings on the diffraction pattern. It is clear that the calculated diffraction

patterns are direct reconstructions of these surface wavenumber distributions.
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-A 

0'
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Triangular Shaped Wavenumber Distribution
Amplitude / i

0 2 4 6 8 10 12

Wavenumber (1/cm)

Figure 2.10 Example of a triangular shaped wavenumber distribution.

Diffraction Pattern for Triangular Shaped Wavenumber Distribution
Normalized Intensity

1.6

1.Z

8.8

0.4

e

a i I I i I I I I

. e e 40e 6e Be 10

Distance from the center of the diffraction pattern (cm)

ro so=l.O meter ki=0.46 cm
Figure 2.11 Calculation of the diffraction pattern for the triangular surface

wavenumber distribution. This shows the effect of the

overlapping of the higher order Bessel functions of the

individual phase gratings, which form the wavenumber

distribution.
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8.12

8.08

8.04

6

-a MA

Sinusoidal Shaped Wavenumber Distribution
Amplitude / xi

. 2 4 6 8e 1 12

Wavenumber (1/cm)

Figure 2.12 Example of a sinusoidal shaped wavenumber distribution.

Diffraction Pattern for Sinusoidal Shaped Wavenumber Distribution
Normalized Intensity

1.6

1.2

8.8

a6.4

-0.4

Figure 2.1'

i , I I , I 4 6 8 I I 6

0e e 40 66 8o Iee

Distance from the center of the diffraction pattern (cm)

ro,so=l.0 meter ki=0.46 cm
3 Calculation of the diffraction pattern for the sinusoidal surface

wavenumber distribution. This shows the effect of the

overlapping of the higher order Bessel functions of the

individual phase gratings, which form the wavenumber

distribution.
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2.10 The Dynamic Complex Phase Grating

The work in this thesis is aimed at measuring the wavenumber distribution

for a vibrating surface. As the surface becomes dynamic, the reflected waves will

be frequency modulated at the vibration frequencies due to the doppler shift

imposed by the changing surface velocity. This allows the waves reaching the

plane of the diffraction pattern to carry with them information about the surface

vibration amplitudes without changing the diffraction effects. The amplitude of the

vibration is directly related to the amount of frequency modulation in the reflected

wave and is directly measured by measuring the amount of frequency modulation

of the reflected wave. This places an additional restriction on the incident

wavelength. The incident wavelength must be on the order of the vibration

amplitude or smaller in order to produce a substantial amount of frequency

modulation. A larger the amount of frequency modulation will produce a higher

signal to noise ratio in the vibration amplitude measurement.

The complete wavenumber distribution can be measured in the following

way. The location of a receiving sensor in the diffraction pattern determines the

wavenumber of interest and its direction of travel on the surface. The spectrum

of the frequency modulation of the reflected wave at this location provides the

amplitudes of the frequencies of vibration of the wavenumber being measured.

By scanning the diffraction pattern to cover all wavenumbers of interest, the

complete wavenumber distribution for the vibrating surface can be measured

directly.
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3. Preliminary Experiments

3.1 Determination of the Type of Incident Wave

To verify the theory and test this method of measurement,; the type of

incident wave field to use had to be determined. The theory brought about the

following considerations.

1) There must be a relatively easy way in which to separate the incident

and reflected wave field.

2) The wavelength of the incident wave field must be on the order of

magnitude of the vibration amplitude or smaller.

3) The incident wave field must strike the vibrating surface with plane

rather than spherical wavefronts.

4) The source size must be much smaller than the dimensions of the

surface under investigation.

5) The appropriate transducers to send and receive the wave field as well

as a means to frequency demodulate the reflected wave must be readily

acquired.

Laser light was chosen to be the incident wave field since it met each of

these requirements quite well. A coherent beam of single frequency light could be

easily created and expanded to the appropriate beam width. The light beam would

automatically have plane wavefronts and travel long distances. The incident and
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reflected waves could be easily separated with a beamsplitter and the demodulation

could be performed with two Bragg cells and a signal analyser.

3.2 The Prototype Laser Experiment

Once the choice of using laser light had been made, the following system

was designed and fabricated.

Meade 8"
Schmidt-Cassegrain

15 cm. Square
by 0.0635 cm.
Aluminum

Bruel & Kjaer
Mini Shaker
with Wilcoxon
· _ 1____ _

Specifying Surface
Wavenumber and
Direction

Figure 3.01 Schematic of the prototype laser experiment.
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Figure 3.02 Photograph of the prototype laser experiment.

A 5 milliwatt Uniphase HeNe laser provides the coherent beam of incident

light. This light beam travels through a beamsplitter and into the eyepiece of a

Meade LX5 eight inch Schmidt-Cassegrain telescope, which expands the beam to a

diameter of eight inches. The expanded beam of light reflects off the vibrating

plate and travels back through the telescope, where it is reduced to its original

beam width, and is turned ninety degrees by the beamsplitter. Two oppositely

acting Bragg cells separate the frequency modulated part of the beam of light from

the light at the carrier frequency. An external lens is positioned after the

beamspitter to bring the image of the diffraction pattern down to a focus. The

diffraction pattern occurs in the focal plane of the external lens. A photocell is

used to measure the light in the diffraction pattern. The modulation signal from

the photocell is fed into a Bruel & Kjaer Dual Channel Signal Analyser Type

2032 to display the vibration frequency spectrum.
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3.3 Preliminary Findings

Initial tests were carried out with this system and encountered the following

problem was encountered. The amount of light which arrived at the plane of the

diffraction pattern was of too low a level to measure. The reason for this was

found to be due to two effects. First, the incident wavelength of the laser light

was so small that the measurement was being effected by the surface irregularities

on the plate. When the plate is at rest, the diffraction pattern should be that

formed by a rectangular aperture. Any reflected light should arrive at the

diffraction pattern with no frequency modulation and should form a two

dimensional sinc function as stated in the theory. Instead of this, the light in the

diffraction pattern was a low level spatially broad band illumination. This

diffraction pattern turned out to be the wavenumber distribution of the random

surface irregularities on the plate.. In other words, the non-vibrating plate didn't

appear flat to the incident wave field. Second, since the spatial frequency content

of the surface irregularities was more or less white, most of the incident light

intensity was reflected at angles which were too great to successfully make it back

through the telescope and beamsplitter and to the diffraction pattern, and was

therefore lost. When the surface was vibrated and sinusoidal disturbances were

superimposed over these surface irregularities, the signals in the diffraction pattern

due to the vibration were much lower in intensity than those due to the surface

irregularities. Thus, the signal (imposed vibration wavenumber distribution) to

noise (wavenumber distribution of the surface irregularities of the plate) was too

low to feasibly make the desired measurement.
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The solution to this problem was to make the static plate appear flat to the

incident wave field. This could be done in two ways. Either a plate, which was

flat to within a wavelength of HeNe laser light, had to be used or the incident

wave field needed to have a longer wavelength. The latter solution was chosen

so that this method could be used on surfaces of interest for structural acoustics

experiments.

In support of this choice, it was also noted that the use of the laser caused

the measurement system to be very sensitive to alignment. The laser system was

so sensitive that the entire experiment had to be performed on an optical table.

This would make field measurements with the laser system unfeasible.
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4. Final Experiments

4.1 Choosing the Alternate Wave Field

The added requirement of enlarging the incident wavelength brought about

an investigation into both infrared and ultrasonic wave fields. Infrared has the

advantage of being able to travel long distances without much attenuation, but has

the drawback of requiring some very expensive hardware. It also didn't appear

possible to generate infrared waves of sufficient wavelength to avoid the same

types of problems encountered with the laser light. The use of sound waves

seemed promising for the following reasons.

1) The incident wavelength could be easily adjusted to meet the particular

vibration amplitude and surface roughness conditions.

2) The sound waves would travel in water as well as in air.

3) The longer incident wavelength would cause the measurement system to

be less sensitive to alignment.

4) The sensors required to generate and detect high frequency sound waves

were relatively inexpensive.

Despite the expected problems of large amounts of attenuation with distance

traveled and the separation of the incident and reflected wave fields, ultrasonic

sound waves were chosen as the incident wave field.
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4.2 Initial Ultrasonic Transducer Choice

The appropriate transducers to send and receive the sound waves must

meet each of the requirements outlined in Chapter 3. The main requirement of the

theory is that the incident wavefronts are plane. This demands that the source be

a sufficient distance from the vibrating plate to ensure a large radius of curvature

of the spherical wave emanating from the point source. A forty kilohertz sound

wave traveling in air a distance of five meters will be attenuated about thirty-five

decibels. When the sound wave is reflected off of the vibrating surface, there is

an additional attenuation of between one to three decibels. The high amount of

attenuation of the amplitude of the sound wave at the ultrasonic frequencies was

the most important consideration in the choice of transducers. Therefore, the ideal

source is one which would transmit an ultrasonic sound wave at the desired

frequency a long enough distance to make the wavefronts appear plane. The ideal

receiver is one that is extremely sensitive, and has a flat response over a

frequency band twice as wide as the vibration frequencies of interest. The

operating frequency of the transducers must also be high enough to be

substantially modulated by the small vibration amplitudes. A tradeoff developed

between the incident wavelength (operating frequency) and the distance of travel of

the sound wave.

The chosen designs were resonant transducers produced by Massa Products

of Hingham, Mass. Transducers operating at frequencies of 23, 31, 40, 75, 150,

and 215 kilohertz were offered. The TR-89/B Type 40 (40khz) and E-152/75
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(75khz) transducers were chosen since they were the transducers which generated

the highest frequency sound wave capable of traveling a great enough distance to

approximate plane waves incident on the plate and still be able to travel back to

the plane of the diffraction pattern. The higher frequency transducers were much

more desirable with respect to generating a substantial frequency modulation for a

given vibration amplitude, but had the disadvantage of a short travel distance in

air. The specifications for the Massa Products transducers are included in

Appendix A along with some calculations indicating how close to plane the

incident wavefronts would be on the vibrating plate given the maximum distance

of travel of the generated sound wave.

To verify that these transducers produce a substantial output, their sound

power output was measured at a distance of one foot and compared to the sound

power output of a stereo tweeter. This test was performed to find out how much

better these resonant transducers are than more conventional design. The tweeter's

frequency response curve is located in Appendix A. The results of the tests are

displayed below.

SPL (dB re 20 microPa)
Transducer 40 Khz 75 Khz

TR-89 115.9 ---

E150/75 ------- 95.2
Tweeter 120.1 100.8

Table 4.1 Maximum sound power output of chosen sensors at a distance

of one foot.
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Although the sound power produced with the tweeter is slightly higher than

that produced with the chosen transducers, it was seen that the amplitude of the

generated wave varied with time. This is due to overdriving the tweeter to

produce this high output. In this light, the chosen transducers were more

desirable than the conventional stereo tweeter in generating the high frequency

wave field.
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4.3 The Ultrasonic Measurement System

The ultrasonic measurement system was modeled after the prototype laser

system and built as shown below in Figures 4.01 and 4.02.

Wavetek 2Mhz
Function Generator

Macintosh 30 Watt
Audio Amp 15 cm. Square Bruel & Kjaer

ht.. n novas 9-- t- -X _ -_I___

ead
[ead

Wavenumber and
Direction

Figure 4.01 Schematic of the ultrasonic measurement system.
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Figure 4.02 Photograph of the ultrasonic measurement system.

The incident wave field was generated by driving the transducer at its

resonant frequency with a Wavetek 2Mhz Function Generator Model 20 and a

Macintosh 30 Watt Audio Amplifier. A horn, which reduces the cone angle of

the sound waves leaving the source, was designed and built to increase the overall

signal to noise ratio. The horn makes the beam width of the incident waves just

large enough to completely cover the plate but keeps it from becoming so much

bigger than the plate that a substantial portion of the incident intensity is lost.

The separation of the incident wave field from the reflected wave field was

accomplished by scanning with the receiver in the plane of the source parallel to

the plane of the vibrating plate. This method allows the entire diffraction pattern

to be measured except for the point where the source is located. The receiving

response of the transducers is broadened to a band around the transmitting
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frequency by placing the transducer in parallel with an inductor and a resistor of

the appropriate values (See Appendix A).

The signal received in the diffraction pattern is amplified with an Ithaco

Model 432 amplifier and then high pass filtered with a Krohn-Hite Model 3550

filter to pass only the modulated carrier signal. The frequency modulated signal is

then fed into a General Radio Frequency Meter and Discriminator Type 1142-A.

This device generates a pulse train of constant amplitude and duration with a

frequency that follows the input frequency. This signal has a average value that

varies directly with the frequency modulation of the input signal. This signal is

put into the Bruel and Kjaer Dual Channel Signal Analyzer Type 2032. The

analyzer automatically low pass filters the signal below the carrier frequency

leaving only the varying DC component. The frequency spectrum of this signal is

displayed on the screen and is the spectrum of the modulation component in the

received signal. Therefore, this spectrum is a measure of the vibration amplitude

and frequency associated with the particular wavenumber under investigation! as

given by the position of the receiver.

4.4 The Test Surface

To verify the theory, a surface vibrating with a known wavenumber

distribution is required. This suggests exciting a resonant mode of a finite plate

that would be relatively easy to detect in the diffraction pattern. The surface

which was chosen was a fifteen centimeter square by 0.0635 centimeter thick
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aluminum plate, which was clamped at its boundaries and driven at its centerpoint.

The reasons for this choice are the following. The boundary conditions used

needed to be as uniform as possible around the perimeter of the plate to set up

simple symmetrical mode shapes. Experimentally, clamped-clamped boundary

conditions are most easily generated. The plate was made out of thin aluminum

to increase the velocity of vibration as much as possible while avoiding membrane

like vibration of the plate. The greater the vibration velocity, the greater the

amount of frequency modulation in the reflected sound waves. The drive point

was chosen to be at the center of the plate to force any spurious drive point

effects to retain cross-axis symmetry.

The plate was excited with a Bruel and Kjaer Mini Shaker Type 4810.

The shaker was driven with a Wavetek 2Mhz Function Generator Model 20 and a

Macintosh 40 Watt Audio Amplifier. A Wilcoxon Research Model Z-602

impedance head was used to make the drive point transfer function measurements.

The test rig, which supports the plate, was designed so that the entire plate could

be tilted at any angle relative to the normallyincident plane wavefronts. This

feature aided in accurately aligning the measurement system. Acoustic foam

surrounded the plate to absorb the sound waves which are incident on the

supporting surfaces.
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4.5 Generating and Measuring a Mode of Vibration

Figure 4.03 displays a drive point conductance measurement, which was

made with the impedance head, and shows the resonant frequencies of the plate.
7 Ro ESP . HAG MAIN Y. 44.S

Y* X, . h1 1d XG . 40M

TUK X. O. 6. LN00
SITUP V12 UA. 100

Type 2032
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Figure 4.03

2.

II.

0 -- -1 --.

o Ik' 2k k 4k ek Ik

W]7 CERENCE MAl" Y. ls.
Y. .1.00 X 1240t

e oH . _.H. LIN
SITUP Wvi A.a 100

Drive point conductance measurement for the plate

Given the distance of travel and frequency of travel of the sound waves

supplied by the chosen transducers, it was determined that the higher order modes

of vibration would be most easily detected in the diffraction pattern. These modes

cause the peaks in the diffraction pattern to be spread further apart than those due

to the lower modes. The bandwidth of the peaks is inversely related to the

number of full surface waves on the plate. Since the higher modes contain more

full surface waves, the wavenumber resolution of the measurement system is

greater for these modes of vibration. The theory predicts a peak in intensity to be

generated in the center of the diffraction pattern, which can be interpreted as the
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DC level of the surface wavenumber distribution. This center peak is usually the

largest in the diffraction pattern, since its amplitude is controlled by the zeroth

order Bessel function. Therefore, it is desirable to set up a higher order mode of

vibration so that the peaks due to the surface waves are as narrow as possible and

are not overshadowed by the large center peak. In addition to this, the peaks

must be spread apart at least as much as twice the transducer size. With this in

mind, three of the cleanest and largest amplitude resonant frequencies were chosen

for testing. These frequencies were 1234 hz, 1706 hz, and 3202 hz.

Once the choice of resonant modes had been made, the plate was excited at

these frequencies and the resultant horizontal mode shapes were measured by

scanning across the surface with a Mechanical Technology Incorporated Model

KD-45A Fotonic Sensor. The fotonic sensor measures the maximum vibration

amplitude at each point. The phase of the vibration at each point with respect to

the input force was also recorded to help reconstruct the mode shape. The

calibration curve and specifications for the fotonic sensor are presented in

Appendix B. The experimental setup is shown in Figures 4.04 and 4.05.
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Two Channel
Signal Analyser

ZTest Surface

Figure 4.04 Schematic of the mode shape measurement system.

Figure 4.05 Photograph of the mode shape measurement system.
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Since the diffraction pattern was to be scanned in the horizontal direction,

three horizontal scans of 32 points each were made across the plate at each

frequency. The horizontal mode shapes were defined quite well with the three

scans. The results of these measurements are displayed pictorially below. The

actual data, which was taken to yield these pictures of the generated mode shapes,

is included in Appendix C.

15 cm

Figure 4.06 Measured horizontal mode shape of the test surface at a

vibration frequency of 1234 hz.
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15 cm

Figure 4.07 Measured horizontal mode shape of the test surface at a

vibration frequency of 1706 hz.

I Cr 

Figure 4.08 Measured horizontal mode shape of the test surface at a

vibration frequency of 3202 hz.
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From these pictures, it appears that the third fundamental mode of vibration

was set up in -the horizontal direction at 1234 hz and 1706 hz input frequencies.

At 3202 hz the sixth fundamental mode of vibration was present in the horizontal

direction. The drive point effects can be seen only along the plate centerline and

are damped out as the scans were away from the plate centerpoint. These modes

correspond to spatial wavelengths of 10 cm and 5 cm respectively. The bending

wavelengths associated with the input frequencies were calculated with the

following equation and are displayed in Table 4.2.

Xb =2x -o,

where Xb is the bending wavelength

Ic is the radius of gyration of the plate

cl is the longitudinal wave speed in the plate

cov is the vibration frequency

Vibration Bending
Frequency Wavelength

(hz) (cm)
1234 6.9
1706 5.8
3202 4.3

Table 4.2 Bending wavelengths associated with each input frequency.

The measured mode shapes are oblique. That is, the bending waves are

not traveling horizontally or vertically on the plate. The scans are measuring the

horizontal component of the bending waves traveling on the plate.
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The expected diffraction pattern produced by the horizontal modes of

vibration were predicted with a computer program, which is presented in Appendix

D. The computer program first calculates the wavenumber distribution for a

specified horizontal mode of vibration of the finite plate and then calculates the

intensity in the resulting diffraction pattern. The expected amplitude of the

wavenumber distribution is found from the mode shape measurements with the

fotonic sensor. The average maximum amplitude of the horizontal mode shape

was used to scale the predicted diffraction patterns to the appropriate displacement

magnitude. Plots of the calculated wavenumber distributions corresponding to the

horizontal mode shape measurements and their expected diffraction patterns are

shown in Figures 4.09 through 4.16.

Wavenumber Distribution for the 3rd Fundamental Mode of Vibration
Amplitude / xi

0.12

0.08

0

I I I I I I I

8.8 1. 1.6 2

Wavenumber (1/cm)

Figure 4.09 Calculated wavenumber distribution for the third fundamental

mode of vibration of the test surface.
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Diffraction Pattern for the 3rd Fundamental Mode of Vibration
Vibration Amplitude (m)

8.2

8.1

_ I

Figure 4.10

8 S 18 1s 28 2S

Distance from the center of the diffraction pattern (cm)

ro,so=1.8288 meters Xi=0.8625 cm

Calculated diffraction pattern for the third fundamental mode

of vibration using a 40 khz sound wave.

Zoom Diffraction Pattern for the 3rd Fundamental Mode of Vibration
...- Vibration Amplitude (m)
U.Blb

8.812

8.088

8.884

8

I .. I I I I 4 ~ ~~ ~~~ ~~~ ~~~ ~~~~~~~~~~~ 0 12 1282
4 a 12 16 2O 24

Distance from the center of the diffraction Dattern (cm)

rO,so=1.8288 meters X,=0.8625 cm

Figure 4.11 Zoom view of the calculated diffraction pattern for the third

fundamental mode of vibration using a 40 khz sound wave.
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Diffraction Pattern for the 3 rd Fundamental Mode of Vibration
Vibration Amplitude (m)

38

Zs

18

-IN

Figure 4.12

8 4 8 12

Distance from the center of the diffraction pattern (cm)

r,so= 1.8288 meters i=0.46 cm

Calculated diffraction pattern for the third fundamental mode

of vibration using a 75 khz sound wave.

Zoom Diffraction Pattern for the 3rd Fundamental Mode of Vibration

.. , Vibration Amplitude (m)
U. Ul10

0.812

6.1048J.66J86.6694

-A miD I

Figure 4.13

Z 4 6 8 18 12 14

Distance from the center of the diffraction pattern (cm)

ro.so=1.8288 meters ,--0.46 cm

Zoom view of the calculated diffraction pattern for the third

fundamental mode of vibration using a 75 khz sound wave.
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Wavenumber Distribution for the 6th Fundamental Mode of Vibration
Amplitude / Xi

8.12

8.84

6. 64

Figure 4.14

I I I I I I

0.8 1.2 1.6 2
Wavenumber (1/cm)

Calculated wavenumber distribution for the sixth

mode of vibration of the test surface.

fundamental

Diffraction Pattern for the 6th Fundamental Mode of Vibration
. Vibration Amplitude (m)G.j

8.2

8.1

-S 4

Figure 4.15

18 26 38 49 s5

Distance from the center of the diffraction pattern (cm)
ro,so=1.8288 meters Xi=0.8625 cm

Calculated diffraction pattern for the sixth fundamental mode

of vibration using a 40 khz sound wave.

-64-

I .I I I I I I I . I I I I



Diffraction Pattern for the 6 th Fundamental Mode of Vibration
Vibration Amplitude (m)

le 28 30 48 58
Distance from the center of the diffraction pattern (cm)

ro,so=1.8288 meters Xi=0.8625 cm

4.16 Zoom view of the calculated diffraction pattern for the sixth

fundamental mode of vibration using a 40 khz sound wave.

Diffraction Pattern for the 6th Fundamental Mode of Vibration
Vibration Amplitude (m)

8.3 .

Figure 4.17

0 5 16 15 26 25 36
Distance from the center of the diffraction pattern (cm)

roso=l.8288 meters Xi=0.46 cm

Calculated diffraction pattern for the sixth fundamental mode

of vibration using a 75 khz sound wave.
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Zoom Diffraction Pattern for the 6th Fundamental Mode of Vibration

0.812

B. see

8.804

-. 084

-0.004
5 1s 15 20 25 36

Distance from the center of the diffraction pattern (cm)
r,,s,=1.8288 meters ki=0.46 cm

Figure 4.18 Zoom view of the calculated diffraction pattern for the sixth

fundamental mode of vibration using a 75 khz sound wave.

The large value of the vibration amplitude at the center of the diffraction

pattern is a result of the zeroth order Bessel function acting on each wavenumber

present in the calculated wavenumber distribution. This would indicate a large DC

vibration amplitude, which is not actually present. For a given argument, the

amplitude of the zeroth order Bessel function is much larger than that of the first

order. This causes the unrealistic large peak to be predicted in the center of the

diffraction pattern. This center peak has side lobes, whose amplitude is on the

order of the amplitude of the peak due to the surface wave. Neither the center

peak nor its side lobes should be expected in the surface wavenumber distribution

and should be subsequently ignored. These plots will be compared to the

measured diffraction patterns.
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5. Results

5.1 Experimental Observations

In the course of scanning the diffraction pattern to detect these peaks in

frequency modulation, it was found that the amplitudes of the FM signals

displayed on the signal analyser were of low level and varying in magnitude.

This was found to be due to the fact that the maximum vibration amplitudes were

a small percentage of the incident wavelength. The small amplitude is associated

with a very small surface velocity with respect to the speed of sound, and

generates a small amount of frequency modulation. (See Table 5.1). This

unfortunate fact was due to the restriction of plane incident wavefronts, which

forced the use of the lower frequency transducers and caused the incident

wavelength to be too large.

Vibration Maximum Vibration Amplitude as a
Frequency Percentage of Incident Wavelength

hz) 40 Khz 75 Khz
1234 1.60% 3.00%
1706 0.50% 1.00%
3202 0.30% 0.17%

Table 5.1 Maximum amplitude of vibration as a percentage of the incident

wavelength.

In addition to this, it was also noted that an amplitude modulation was

introduced into the reflected waves at the vibration frequency. The magnitude of
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the induced amplitude modulation was observed to be between zero and forty

percent of the amplitude of the reflected wave. The measurement system was

tested for its sensitivity to amplitude modulation and the results are presented in

Table 5.2. These results show that the measurement system is quite insensitive to

amplitude modulation in the reflected sound waves. The vibration amplitude

measurements were not affected by this unexpected phenomenon.

Amount of Amplitude Modulation Amount of Induced Frequency
as a Percentage of the Modulation Due to the Amplitude

Maximum Signal Amplitude Modulation in the Reflected Wave
(%) (dB)

90 10
50 = 5
30 = __
10

Table 5.2 Effect of amplitude modulation on the frequency modulation

measurements.

5.2 Diffraction Pattern Measurements

The amplitude of the frequency modulation introduced into the reflected

waves at the vibration frequencies of 1706 hz and 3202 hz was so low that

repeatable measurements of the diffraction pattern produced by these modes of

vibration were not obtained. However, at 1234 hz some repeatable measurements

were obtained. The FM measurements made using the 40 khz transducer were

more stable than those made with the 75 khz transducer. This fact was attributed

to the larger overall signal to noise level of the reflected sound waves at 40 khz.
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The results of the diffraction pattern measurements are displayed below in Figures

5.01 and 5.02.

6.816

8.812

8.6 8

8.684

a

Diffraction Pattern Measurements Using the 40 khz Transducer

Vibration Amplitude (m)

I I _. 8 1
4 8 12

Distance from the center

ro,so=1.8288 meters

16 26 24
of the diffraction pattern (cm)

Xi=0.8625 cm * Test I
A Test 2

Figure 5.01 Diffraction pattern measurements using the 40 khz transducer.

Diffraction Pattern Measurements Using the 75 khz Transducer

98.16

8.612

8.88

8.804

a

Vibration Amplitude (m)

z 4 6 8 16 12 14
Distance from the center of the diffraction pattern (cm)

r,so=1.8288 meters i=--0.46 cm
* Test I
* Test 2

Figure 5.02 Diffraction pattern measurements using the 75 khz transducer.
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6. Conclusions and Future Recommendations

6.1 Discussion of Results

As can be seen in Figures 5.01 and 5.02, the results agree quite well with

the theoretical predictions with respect to the position of the peaks in the

diffraction pattern. The amplitudes of these peaks, however, are much smaller

than expected by the doppler shift calculations. This can be due to the following.

First, the vertical mode shape of the vibrating plate will cause the generated peaks

in the diffraction pattern to be located off the horizontal axis. Although the

vertical mode shapes were not measured, they were inferred from the bending

wavelength associated with the input frequency and the horizontal mode shape.

The diffraction pattern was scanned off the horizontal axis in search of the larger

amplitude peaks. This search was unsuccessful in measuring larger amplitude

peaks in the diffraction pattern, but was successful in locating the peaks as

predicted by the theory. Second, the signal levels of the FM component of the

reflected waves were only about 5 to 8 decibels above the noise floor. This low

signal to noise ratio could be causing some of this discrepancy. Third, the

amplitude of the reflected waves in the diffraction pattern also varies with position.

When the amplitude of the reflected wave becomes very small the total signal to

noise ratio also becomes very low. This could also be contributing to the

incorrect amplitude readings. Fourth, the mode of vibration which was tested

contained only three half wavelengths of the vibrating surface wave. The amount

of frequency modulation induced into the reflected sound waves is probably
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dependent on the number of full surface waves present on the test surface just as

the wavenumber resolution is. Therefore, another problem contributing to the

amplitude mismatch could be due to the few number of complete surface waves

on the test surface.

Despite the fact that the method was tried on only a single mode of

vibration, the results look promising. The position of the peaks in the diffraction

pattern were shown to be in agreement with the theoretical predictions. The

amplitude measurements did not follow the theory, but there are some good

indications of signal to noise problems which could cause this. The accuracy of

the entire experiment is driven by the chosen transducer. The limits of the

experimental setup are solely due to the difficulty in finding appropriate

transducers. As stated in section 4.2, the chosen transducers were the best

commercially available and were suitable to test the feasibility of this measurement

system. There are some ideas for improvements to this measurement system for

future work, which focus around improving the ultrasonic transducers. These

ideas are discussed in the following section.

6.2 Recommendations for Future Research

The work in this thesis has shown the feasibility of using the diffraction

characteristics of an incident wave field to measure the complete wavenumber

distribution of a vibrating surface. The results have also brought about some

recommendations for future work which can help to fully develop this method.
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These improvements to the existing experimental setup are necessary to allow this

measurement method to be used in practice.

The two problem areas which require further work are increasing the

overall signal to noise ratio and increasing the frequency modulation signal to

noise ratio. A transducer, which outputs a higher amplitude and frequency sound

wave than was used in this thesis, will improve both signal to noise ratios. From

the tests that were performed with the tweeter, is seems possible to generate a

larger output with a specially designed or even a high grade commercial tweeter.

The limiting factor in finding a suitable tweeter will most likely be its operating

frequency range, but the possibility of using some type of tweeter as the source

of the incident field still merits some investigation.

To increase the frequency modulation signal to noise ratio, the following

idea should be explored. A lock-in amplifier should be tried instead of the

frequency meter and discriminator to make the FM measurement. Past experience

with these types of amplifiers indicate their possible benefits, with respect to FM

signal to noise ratio, over the current method.

If the optimum transducers produce signal to noise ratios which are still

too low to accurately make the measurement, then two other options should be

investigated to remedy these problems. The large output amplitude of the

transducer is needed so that it may be placed far enough away from the vibrating

surface to generate plane wavefronts. This restriction may be relaxed if the
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possibility of using incident spherical wavefronts is considered. The effect of

these waves on the diffraction pattern could be calculated and possibly subtracted

out of the measurement. If this turns out to be a feasible thing to do, then the

overall signal to noise ratio problem is eliminated by simply moving the

transducers closer to the test surface. An investigation into this idea will also

provide some insight into the similar problem of finding the diffraction pattern

produced by the hull of a cylindrical body, such as a submarine. This is a

desired future extension of the work in this thesis.

In the results section, it was noted that in addition to frequency

modulation, the reflected sound waves also contained a substantial amount of

amplitude modulation at the vibration frequency. This indicates that the

mechanism by which the amount of radiating energy that is introduced into the

reflected waves as frequency modulation might be different than expected. That

is, the doppler shift equation might be a function of the number of surface waves

present on the test surface as well as the vibration frequency. In addition to this,

it appears that a much larger amount of amplitude modulation is introduced into

the reflected waves. Therefore, the physical mechanism by which both forms of

modulation are introduced into the diffraction pattern should be investigated fully.

Perhaps, a measurement of the amplitude modulation may be used in conjunction

with the frequency modulation measurement to indicate the surface wavenumber

amplitude in the diffraction pattern measurement.
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To improve the results, the entire experiment should be carried out under

water. The increased speed of sound in water should improve the overall signal

to noise ratio in the following way. Although the operating frequency for a given

incident wavelength will increase, the amount of attenuation of the sound wave

with distance will decrease. Therefore, the source and receiver may be placed a

greater distance away from the vibrating plate. This will cause the incident

wavefronts to appear more plane and should improve the results. It is also

possible to generate higher sound pressure levels in water than it is in air. Since

many experiments in structural acoustics are carried out under water, this is

probably where this measurement system should be developed.
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Massa
Products
Corporation

280 Lincoln Street, Hingham, Massachusetts 02043
Tel: 617-749-4800 TWX:710-348-6932 FAX:617-740-2045

Model TR-89/B Series
Types: 23,31,40

Description

TR-89/B
The TR-89/8 Series Transducers are rugged electroacoustic

devices designed for the efficient generation of ultrasonic energy in
a-r They are Ideally suited for a wide vanety of low power, general
purpose applications such as ultrasonic intrusion alarms, proximity
detection devices, remote control devices and energy manage-
ment systems.

The transducers consist of a one piece housing with integral
ciaphram. This provides a moisture-proof unit, suitable for both in-
door and outdoor use when mounted so that the rear terminals are
protected from exposure to the direct outdoor environment. The
units operate at resonance on the first harmonic overtone. This al-
lords greater efficiency (higher transmitting and receiving
response) than an equivalent size device operating at Its
fundamental.

The standard TR-89/B, Type 23, provides peak untuned receiv-
Ing respvnse at 23 kHz : 2 kHz. The standard TR-89/B, Type 31
and Type 40, provide peak untuned receiving responses at 31 kHz
and 40 kHz t 2 kHz respectively. The units provide different direc.
t;onal characteristics at the various frequencies and provide
greater range at the lower frequencies due to the attenuation char.
acteIrstics of sound In air. Thus, the TR-89/B family offers the user
a choice of units whose characteristics will match any requirement.
Special frequencies, matched transmitting and receiving pairs and
other custom features are available on special order (consult fac-
tory). There are several million TR489/B transducers In use in a
variety of applications throughout the world.

Massa Products Corporation Is a leading designer and manufac-
turer of a wide variety of electroacoustic transducers and syst ems
for use in air and underwater with over 35 years ot specialized
exoerince in the field.
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Products
Corporation

280 Lircoln Street, Hinrgham, Massachusetts 02043
Tel: 617-749-4800 TWX: 710-348.6932 FAX 617-740-2045

MODELS E-152/40
E-1 52/75

BROAD BEAM
ULTRASONICTRASONIC TRANSDUCER

Description

E- 152/40

The Massa Model E.152/40 is a miniature air ultrasonic trans-
ducer having many applications In short range sensing and remote
control where non-contact Is desired. The transducer operates at
40 kHz, its fundamental resonant frequency, thereby producing a
relatively broad directional response, free of minor lobes, The
housing and diaphram are one piece and made from stainless steel
to provide high resistance to corrosive atmospheres. Each trans-
ducer is provided with 2 feet of twlsted pair cable potted at in the
back of the housing. Other lengths of cable or different terminations
are available on special order. An external horn may be attached
to reduce the beam angle for highly directional applications and
maximum range.

E-152/75

The Massa Model E.152/75 Is physically the same as the E.152/
40 but operates at 75kHz. Operation at 75 kHz permits better resol-
ution and performance In short range applications.

Massa Products Corporation Is a leading designer and manufac-
turer of a wide variety of electroacoustic transducers and systems
for use in air and underwater, with over 38 years of specialized ex.
perience In this field.
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Indication of How Close to Plane are the Incident Waves

T
L/2

L=15 cm So =
Total Travel in Air

2

S = S2 + 4

Frequency Incident Wavelength Total Travel in Air So (S 1-So)/ncident Wavelength
(hz) (cm) (cmC) (%)
40 0.86 457.2 ~ 228.6 14.3
75 0.46 335.3 - 167.6 36.5
150 0.23 228.6 114.3 106.9
215 0.14 137.2 68.6 292.1

The numbers in the last column indicate how much later the points on the

edge of the plate see the waves from the source than those in the center do. At

150 khz, the phase difference between points in the center of the plate and those

on the edge is almost a full wavelength.
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Radio Shack Tweeter Frequency Response

Enhance the Performance of ANY Stereo System
with this

SUPER TWEETER
Cat. No. 40-1310B
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Mechanical Technology Incorporated Fotonic Sensor Specifications
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Fotonic Sensor Calibration Curve

Calibration Curve for the Photonic Sensor on the Aluminum Plate
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Mode shape measurement at a vibration frequency of 1234 hz.

Average peak amplitude of horizontal mode shapes is 83 micrometers.
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Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at 5 cm. below centerline

Center of Plate Displacement Phase vs. Input Displacement Phase vs. Input Displacement Phase vs. Input
(cm) (micrometers) (deg) (micrometers) (de) (micrometers) (deg)

-7.50 9.60 -37.40 8.61 114.00 16.00 -99.20
-7.00 26.76 -38.00 20.10 112.80 36.00 -107.90
-6.50 46.76 -36.00 32.77 111.60 63.88 -103.00
-6.00 67.85 -38.70 46.92 114.50 85.85 -99.70
-5.50 81.85 -37.50 60.31 116.30 106.15 -101.10
-5.00 93.08 -37.50 68.77 118.60 112.31 -101.10
-4.50 89.85 -37.50 72.31 118.30 113.69 -94.20
-4.00 83.23 -37.80 78.15 119.00 116.92 -100.40
-3.50 72.31 -37.60 77.69 114.90 106.31 -100.30
-3.00 57.54 -40.70 63.38 116.00 85.38 -97.00
-2.50 35.54 -39.70 47.85 118.60 67.69 -101.00
-2.00 10.85 -39.40 27.08 117.50 41.38 -93.20
-1.50 8.82 141.50 7.82 105.70 17.08 -87.30
-1.00 27.23 137.40 6.52 -35.70 8.65 67.80
-.50 38.62 140.80 6.38 -37.60 24.77 79.50
.00 42.01 141.70 6.88 98.20 31.54 89.10
.50 41.08 141.40 35.23 118.70 28.92 84.50

1.00 26.92 142.70 55.23 120.70 17.08 76.20
1.50 6.91 148.10 71.54 123.70 6.12 -60.20
2.00 14.15 -44.70 75.54 123.50 26.62 -84.30
2.50 40.92 -41.30 75.54 123.00 54.62 -94.90
3.00 66.15 -40.10 62.01 123.30 82.31 -90.50
3.50 80.46 -37.30 43.54 124.20 110.62 -93.90
4.00 94.46 -38.90 26.46 125.10 125.85 -97.80
4.50 91.23 -40.40 6.55 130.60 136.62 -93.70
5.00 83.23 -39.30 3.65 . -67.80 127.69 -96.20
5.50 66.46 -39.70 10.06 -57.10 105.23 -93.00
6.00 50.31 -39.30 13.54 -57.70 87.69 -91.10
6.50 26.92 -38.60 10.01 -53.10 54.77 -89.80
7.00 11.29 -39.50 5.68 -55.00 26.77 -88.30
7.50 .31 -142.40 2.08 -48.00 5.95 -87.10



Mode shape measurement at a vibration frequency of 1706 hz.

Average peak amplitude of horizontal mode shapes is 27 micrometers.
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Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at 5 cm. below centerline

Center of Plate Displacement Phase vs. Input Displacement Phase vs. Input Displacement Phase vs. Input
(cm) (micrometers) (deg) (micrometers) deg) (micrometers) (deg)

-7.50 1.38 -25.50 8.98 -45.00 .78 42.40
-7.00 2.43 -65.80 22.92 -48.70 .42 41.20

-6.50 3.82 -85.60 36.62 -47.70 .27 53.80
-6.00 5.42 -92.90 46.00 -49.30 .83 141.80
-5.50 6.40 -103.20 48.15 -50.00 .98 137.10
-5.00 6.29 -115.30 38.62 -49.70 3.09 134.70
-4.50 4.86 -123.40 20.15 -52.70 3.65 140.30
-4.00 3.97 -121.60 4.80 -53.10 4.60 131.10
-3.50 3.57 -99.30 11.52 122.00 1.82 144.00
-3.00 5.06 -70.40 25.08 117.60 2.29 -53.70
-2.50 9.45 -57.40 29.23 117.60 7.75 -50.00
-2.00 16.00 -52.60 25.38 111.80 17.54 -53.90
-1.50 21.38 -50.30 14.05 109.20 29.38 -52.80
-1.00 28.15 -49.30 1.40 81.70 37.23 -55.00
-.50 32.31 -46.40 1.31 -34.30 42.46 -55.10
.00 33.69 -45.30 1.95 101.30 48.15 -60.50
.50 35.54 -45.70 15.17 107.80 44.46 -61.60

1.00 32.62 -45.60 23.38 121.00 40.15 -62.00
1.50 24.77 -42.20 27.69 125.40 31.08 -61.20
2.00 17.85 -42.80 24.62 107.70 17.85 -64.70
2.50 10.51 -37.30 17.69 130.40 8.82 -66.10
3.00 4.92 -22.30 5.40 130.80 2.06 113.90
3.50 2.78 68.70 9.55 -50.10 11.69 112.90

4.00 5.85 105.40 25.54 -47.50 18.62 112.30
4.50 8.15 109.30 37.54 -48.40 22.46 113.60
5.00 8.88 111.30 41.54 -46.00 22.31 110.50
5.50 7.69 112.30 42.46 -46.00 20.15 117.50
6.00 6.49 110.20 35.54 -47.00 16.92 110.00

6.50 3.60 111.40 23.85 -45.10 12.37 109.60
7.00 2.40 117.10 9.38 -43.30 6.23 113.10
7.50 .59 131.00 .42 91.10 .93 123.40



Mode shape measurement at a vibration frequency of 3202 hz.

Average peak amplitude of horizontal mode shapes is 11 micrometers.

-91-

Distance from Scan at 5 cm. above centerline Scan across the centerline Scan at 5 cm. below centerline
Center of Plate Displacement Phase vs. Input Displacement Phase vs. Input Displacement Phase vs. Input

(cm) (micrometers) (deg) (micrometers) (deg) (micrometers) (deg)
-7.50 1.38 65.30 .24 -88.60 .18 74.30
-7.00 2.20 66.70 .18 41.20 .43 103.70
-6.50 2.31 66.40 .27 -33.30 .17 -152.50
-6.00 .23 -2.70 1.68 -90.50 .70 -99.10
-5.50 3.91 -103.50 3.94 -95.70 4.25 -90.90
-5.00 6.40 -103.90 5.40 -99.80 6.60 -88.80
-4.50 6.60 -103.40 5.09 -97.90 7.08 -87.60

-4.00 4.08 -101.60 2.28 -102.70 6.97 -86.20
-3.50 1.26 68.10 4.28 77.40 3.77 -86.60
-3.00 6.40 74.00 11.02 76.80 2.34 -87.70
-2.50 12.37 74.80 14.49 77.50 6.05 90.80
-2.00 14.72 78.00 12.98 79.30 11.02 87.50
-1.50 12.54 76.30 7.52 76.80 11.35 93.80
-1.00 7.00 75.00 2.43 67.20 8.54 89.20

-.50 .34 -54.10 1.86 62.80 2.83 92.60
.00 6.66 -99.90 5.95 78.10 4.66 -80.20

.50 11.46 -99.70 12.54 79.20 8.09 -84.10
1.00 9.28 -99.70 13.88 81.60 8.82 -83.50
1.50 3.37 -98.70 10.57 84.10 6.18 -82.80
2.00 4.89 76.10 3.71 85.20 .83 -79.00
2.50 12.37 79.40 5.00 -97.30 3.82 97.00
3.00 15.06 79.40 10.68 -94.40 6.52 96.10
3.50 14.15 76.80 12.86 -94.20 8.09 88.60

4.00 7.98 79.00 9.66 -94.10 5.37 91.40

4.50 .36 -81.00 2.29 -89.30 .37 75.60
5.00 8.43 -100.80 6.22 76.60 5.42 -90.50
5.50 13.09 -101.90 13.88 79.30 10.00 -91.10
6.00 12.69 -100.30 16.31 81.70 11.08 -90.00
6.50 9.15 -100.60 13.15 80.30 8.37 -90.50
7.00 4.77 -93.60 7.65 79.50 3.77 -87.80

7.50 .36 -7.40 2.20 77.10 .60 -82.20



APPENDIX D
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Turbo Pascal computer program to calculate the expected diffraction pattern.

program PLATE VIBRATION DIFFRACTION PATTERN;

C $i

($i
C$i

$i

input .inc
hal opl ot. inc
modfile.pas
bessjO.pas
bessj 1 .pas
bessj.pas

3

}

3

3)

3

3

= 0.0046;
= 0. 15;
= 1.2;
= 345;
= 200;

r meters }
{ meters 3
( kg/m**3 
( meters/sec 3

wavenumber = record
mag,lambda : real;
N : integer;

end;

wavenumber array = a rray[ 1 ..size] of wavenumber;

x
kmin,kmax,delta k,
starting x,
stopx ,so,b,ro,amplitude,
stepsize,multiplier
counter ,mode
source ,desti n
filename

: wavenumber array;

: real;

: integer;

: text;

: string[64];
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const

type

lambda 1

length
rho o
c
size

var
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I



procedure CREATE(var' k:wavenumber' array; kmi
amplitude factor:real; m:integer;

I

n, kmax,deltakl<,

var i:integer);

var check : integer';
wave,km : real;

begin
newgraph;
check := m mod 2;
k<m := m*pi/length;
wave :- kmin;
i := O;
deltak := (kmax - kmin) / size;
repeat

i := i + 1;

if wave = km then
k[i].mag := 0.5

else if (check = 0) then
k[i].mag := sin(0.5*wave*length)/(0.5*km*length*

(1-sqr(wave)/sqr(km)) )
else

k[ i].mag

k[i].mag

k[i ].lambda
k[ i ].N
wave
pl otpoi nt (wa
until wave >=
displaygraph(
i := i - 1;

end;

:= cos(0.5*wave*l ength)/(0. 5*lm*l ength*
(1-sqr'(wave)/sqr(km)

:= (sqr(k[i].mag)/0.25) amplitude factor
lambda

:= 2*pi/wave;
:= trunc(length/k[i].lambda);
:- wave + deltak;
ve/ 100,k[i].mag/lambda 1,1);
kmax;

1) ;

));
*
1;

function BESSEL(m:integer'; c:real) :real;

= 0 then BESSEL

= 1 then BESSEL

BESSEL

:= bessjO(c)
:-= bessjl(c)
:-= bessj(m,c);
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.r:

procedure CALCULATE(k:wave number arr.ay; counter:integer);

val" Wn,W,x,v,ratio,y,low,high
i ,j,step,number

: real;
: integer;

begin
if starting x > 0.02 then

assign(destin, c:\user\bob\data\acoust

el se
assign(destin,'c:\user\bob\data\acoustic\'+f

rewrite(destin);
newgraph;
x := starting x;
Cl rScr;
gotoxy(33,10);
write('WORKING ');
gotoxy(15,13);
write( 'Distance from center o
gotoxy(15,16);
write('Current Wavenumber bei
step : = 0;
repeat
gotoxy(48,13);
wr'ite(x:6:3);
step := step + 1;
j 0;

Wn := 0.0;
W := 0.0;
for i := 8 to counter do
begin
if step = maxint then step
step := step + 1;
gotoxy(53,16);
write(i:3);
case (step mod 128) of
0 ,127 : begin

f pattern 

ng calculat

ic\'+filename+
',sml')

i ename+

i.big');

m. ');

ed = ');

:- 0;

gotoxy(30,10);
write('l');
gotoxy(42,10);
wr'ite( 'I);

end;
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31,158 : begin

end;
63, 189 : begin

go
w r

go
wr

end;
95,221 : begin

toxy(42,10);
ite( I\');
toxy(30,10);ite('/');

toxy(30,10);
ite( I - ');
toxy(42,10);
ite( '-' );

toxy(42,10);
ite( I'/);
toxy(30,10);ite('\');

end;
end;
ratio := x*k[i].lambda/
j : -1;

low := -0.5;
high := 0.5;
number := 0;
repeat
if (ratio>low) and (rat
else begin

low := low + 1;
high := high + 1;
number := number + 1

end;
until
v : 

Wn :=

W :_

(lambda l*so);

io<high)

(j=number);
4*pi*k[i].mag/lambda 1;
sqr( sin((2 *k[i ] N 1 )*pi
/sin(pi*k[i ].lambda*x/(
W + sqr(BESSEL(j,v)) *

end;
y : sqr((2 * b * amplitude)/(

x := x + stepsize;
writeln(destin,x,y);
plotpoint(x*100,y*mul

until (x >= stopx);
close(destin);
displaygraph( 1);

end;

then j := number

*k[i].1 ambcda*x/(lambda l*so))
lambda l so)) );
Wn * sqr(k[i] .lambda);

lambda 1 * so * ro)) * W /
(r ho o c) ;

tiplier',l);
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procedure PLOT;

var x,y : real;
i : integer;

begi n
i := 0;
assign(source,filename);
reset(source);
newgraph;
gotoxy(30,17);
write( 'WORKING ');
r epeat
i := i + 1;
readln(source,x,y);
plotpoint(x,y, 1);
gotoxy(39, 17);
case (i mod 64) of

0,63 : write(' l);
15,79 : write('/');
31,95 write( -);
47,111 : write( '\);

end;
until eof(source);
close(source);
displaygraph( 1);

end;

procedure SINUSOID(var k :wavenumber' array;
va r counter : i nteger );

var i : integer;

begin
counter := size;
newgraph;
i := 8;
repeat

k[i].lambda :=
k[ i ] .mag :

k[i] .N
pl otpoint( ( 2p
i :- i + 1

until i = (count.
displaygraph( 1);

end;

2*pi / ( 1250 * (i/counter));
amplitude factor * lambda 1 *

sqr( sin(2*pi*i/counter) );
trunc(length/k i ] .lambda);

i/k[ i] .1 ambda)/100,k[i] i ].magm/lambda 1,1);

er + 1);
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procedure TRIANGLE(var k:wavenumber array;
var counter:integer);

var i : integer;

begin
counter := size;
newgraph;
i := 8;
repeat

k[il.lambda :

if i <=(count
k[ i ] .mag :

= 2*pi/(1250 * (i/counter));
:er/2) then
= amplitude factor * lambda 1 *

(2*i/counter')
else

k[i].mag := amplit

k[i].N
pl otpoint
i := i +

((2*p
1;

until i = (counter
displaygraph( 1);

end;

tr'unc (
ilkCi ].

udefactor * lambda 1 *
(2 - (2*i/counter'));

length/k[i].lambda);
lambda)/100,k[i].mag/lambda 1,1);

+ 1);

begin (main}
repeat

Cl rScr;
gotoxy(15,10);
write('Enter one of the following
gotoxy(25, 12);
wr'ite('"p" to plot existing data');
gotoxy(25,14);
write('"c" to calculate and plot ne
gotoxy(25, 16);
write( ' "x" to exit program');
gotoxy(45, 10);
r'eadln(ch);
if (ch = 'c') or (ch = I'p) then

);

w data');
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begin
Cl rScr;
gotoxy(15,12);
write('Enter the name of the file to contain the data.
gotoxy(30, 14);
readln(filename);
Cl rscr;

end;
if (ch = 'c') then
begi n

inputdata;
inputr( 'tarti ng X val ue in pattern' starti ng ' _x' m)
i nputr( 'Ending X value in pattern I, stopx, 'i');
i nputr( 'Stepsize Across the Patternl, stepsize, m);
i nputr( 'Smal est wavenumber of i nterest , kmi n, ' 1/m. );
i nputr( 'Largest wavenumber of inter'est', kmax, ' 1/m. '
inputi( 'Mode number of the vibration' ,mode, '');
inputr('Max Vibration Amplitude = # * lambda 1',

amplitude factor,
inputr(('Amplitude of the incident wave' ,amplitude, 'Nt/
inputr('Distance from the light source',ro,'m');
inputr('Distance to the diffraction pattern' ,so,'m');
inputr('Characteri stic width of- the lrating' ,b, ' m');
i nputr( 'Scal i ng factor' for' pl ot' ,mul tip ier,' ');
di spl ayi nputdata;
CREATE(x,kmin,kmax,delta k,amplitudce factor ,mode,count
L

SINUSOID(x,counter);
TRIANGLE(x,counter);

CALCULATE(x,counter);
end;
if (ch = 'p') then PLOT;

until(ch x 'x');
Cl rScr;

end.
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