
Ubik: A Framework
of Distributed

for the Development
Organizations

by

Stephen Peter de Jong

B.S. Physics, Pennsylvania State University 1962
M.S. Operations Research, New York University 1968

Submitted to the
DEPlARITMENT OF ELECTRICAL ENGINEERING AND

SCIENCE
in partial fulfillment of the requirements

for the degree of

COM PU I'ER

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1989

© Massachusetts Institute of Technology 1989. All rights reserved

Signature of Author-
Department of Electrical Engineering and Computer Science

11 August 1989

Certified by
Carl E. Hewitt

Associate Professor, Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith, Chairman

Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNO.0GY

DEC 2 7 1980

UBRAIR6

ARCHIVES

Ubik: A Framework for the Development
of Distributed Organizations

by

Stephen Peter de Jong

Submitted to the
Department of Electrical Engineering and Computer Science
on 1 l August 1989 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in
Artificial Intelligence

Abstract
An organization in Ubik consists of interrelated applications, distributed

over multiple locations, executing in parallel. Applications are built out of
the Ubik basic computational object called a configurator. Configurators
represent both organizational structure and action. Structure is represented
by a linked network of configurators. Action is carried out by the config-
urators passing messages between themselves. The configurator networks
can be distributed over multiple computers. Special configurators called
constructors, tapeworms, and questers build, maintain, and reason over the
distributed networks.

Ubik has a high-level language which can be used by end-users to describe
their applications in such a way such that there is a close correspondence
between their mental model of the application and the Ubik representation
of it. This correspondence eases both the implementation and maintenance
of the applications.

Organizational power is the process by which an organization focuses its
limited resources to accomplish its most important goals. In Ubik, power
refers to the competition between the parallel executing configurators for the
limited computational resources. Ubik's configurators compete with each
other for computational power in such a way that the organizational goals
can be adequately met.

Organizational development refers to the continual evolution necessary in
a large organization to cope with the changing external environment. Ubik
can monitor its actions and reason over its structure; these abilities allow
Ubik to change its representation so that the internal computer model more
closely matches the needs of the external organization.

Ubik in its current stage of development is a framework for an organi-
zational development system. Much more design and implementation work
needs to be done to fully work out the Ubik concepts.

Thesis Supervisor: Carl Hewitt
Title: Associate Professor of Computer Science and Engineering

2

Acknowledgement s
'Thlis research was carrie out illn the Message P;assing Semalltics group, within

tihe Artificial Intelligence Laboratory at. MIT-. The group was founded by Carl Ile-
witt to pursue work in object-oriented progranmming, p)arallelism, distributed corn-
putation, and organizational senmantics. This thesis was strongly influenced by the
ideas generated by the group over any years. I would particularly like to thank
the following current and former menmbers of the group): Gul Agha, Jonathan Am-
sterdalm, nry ,iebernian, Carl Manning, and Thomas Reinlhardt. Carl M anning
provided detailed conunents on an earlier draft of the thesis, for which I'mn very
thankful. David Kirsh, a member of the Artificial Intelligence aboratory, provided
helpful suggestions when critiquing an earlier Ubik paper. His suggestions helped
improve the content and presentation of this thesis.

I would like to thank my thesis conimittee-Carl Hewitt, Marvin Minsky, and
Peter Szolovits--for encouraging this work. I would like to thank Carl llewitt,
my thesis advisor, for creating the environment in which this work was pursued.
Carl's work on Actors and our joint work on Open Systems provided in-mportant
technical background for this thesis. I have known and worked with Carl for many
years. I thank him for his long-time support. Marvin Minsky encouraged me to
pursue research in organizations and bureaucracies. IHis work o The Soczety of
lMinhd provided a foundation for mIuch of the thinking that went into Ubik. I would

particularly like to thank Peter Szolovits for his detailed discussions on the technical
aspects and presentation of this thesis. His help lead to a great improvement in the
thesis.

Much of the funding for this work came from the System Development Foun-
dation. I would like to thank Charles Smith, its program director, for his generous
support and encouragement.

Jim Gray, a colleague and friend for many years, continually encouraged me
to pursue this work. Technical discussions with Jim, on data base and operating
systems, has kept me in touch with the world outside of MIT. Sailing with Jim on
San Francisco Bay has kept the thesis in perspective.

Finally I need to thank my family for their many years of support, while I was
a student at MIT. Norma, my wife, carefully edited the many drafts of this thesis.
She kept the household going while I was otherwise preoccupied. I dedicate the
thesis to her. Deborah, my youngest daughter, is eight years old. Since I have
been at MIT for eight years, she thinks having a father as a student is natural. My
son, Stuart, and daughter, Sandy, are much older; they know having a father as a
student is unnatural. Stuart graduated from high school and college, and Sandy
from grammar school and high school, while I have been at MIT. I thank them
all for their support and sacrifices. Lastly I would like to thank my parents, who
have kept a close watch on my educational progress from Florida. Their help and
encouragement has been greatly appreciated.

'This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence
research is provided in part by the Systems Development Foundation and in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research contract NE00014-85-K-0124.

3

Contents

1 Introduction 10

2 Organizations 13
2.1 Bureaucracy 14
2.2 Typologies 15
2.3 Organizations and their Environment 16

3 Applications 18
3.1 Purchasing Organization 19

3.1.1 Gradual Automation 23
3.1.2 End-user Programming 24
3.1.3 Bureaucracy 27
3.1.4 Batching 31
3.1.5 Regrouping 34
3.1.6 Questers 38
3.1.7 Parasitic Tapeworm 41
3.1.8 Freedom of Action Tapeworm 44

3.2 Development of Large Software Systems 47
3.2.1 Version Dependency Sub-organization 47
3.2.2 Functional Management Sub-organization 48
3.2.3 Project Management Sub-organization 49
3.2.4 Organizational Model 49

4 Organizational Structure 53
4.1 Configurators 54
4.2 Constructors 57
4.3 Tapeworms 58
4.4 Prototypes 60
4.5 Questers 61
4.6 Distribution 63
4.7 Organiz,,ional Concepts 66

5 Action 68
5.1 Message Passing 69
5.2 Or Parallelism 72

4

5.3 And Batching
5.4 Bureaucratic Paths
5.5 Serializers

6 Tapeworms
6.1 Installation
6.2 Types...............................
6.3 Operations
6.4 Tapeworm and Quester Examples

6.4.1 Freedom of Action Tapeworms.
6.4.2 Parasitic Tapeworm
6.4.3 Self-propagating Quester

7 Power
7.1 Sponsor Structure
7.2 Interacting Sponsors

8 Development
8.1 Message Elimination.
8.2 Regrouping
8.3 Reclustering.
8.4 Regression.
8.5 Prototype Development . . .

8.5.1 Forming Collections . . .
8.5.2 Creating a Prototype from
8.5.3 Finding a Prototype . . .

8.6 Bureaucratic Development . . .

98
... 100
... 103............ 106

................107

... 108

................108

a Collection 108
... 109
... 110

9 Conclusion 112

A Early Ubik and Its Implementation
A.1 Operations.
A.2 Configurator Unification
A.3 Application Examples

A.3.1 Building a Network
A.3.2 Message Sending and Receiving . . .
A.3.3 Unifying with the Configurator Body
A.3.4 Configurator Variables
A.3.5 Distributed Message Send
A.3.6 Data Flow
A.3.7 More than Manager Query
A.3.8 Batching
A.3.9 Tapeworms

A.4 Implementation
A.4.1 Basic Objects

114
.......... ...118

..........119

... 120
.......... ..120

.......... ...121

.......... ...122

.......... ...124

.......... ...129

... 132
... 135

.......... ...136

... 138
.......... ...140

.......... ...141

A.4.2 Front-end 144

5

74
75

77
79
81

81
82
82
86
88

90
94
97

. 73

A.4.3 Evaluator
A.4.4 Model and Networks . .
A.4.5 Tapeworm.
A.4.6 Unification
A.4.7 Utilities.

A.5 Conclusion

B Related Work
B.1 Hypertext.
B.2 Relational Databases
B.3 Rule and Frame Based Systems
B.4 Semantic Nets..........

... 144

... 154

... 157

... 159

... 164

... 165

166
.... 167
... 177

.................187

... 199

206Bibliography

6

List of Figures

3.1 Ubik Configurator Format 19
3.2 Purchase Organization 21
3.3 Purchase Organization Forms 22
3.4 Purchase Requisition Interactive Dialog 23
3.5 End-user Written Purchase Requisition Dialog 25
3.6 Flow of Purchase-Requisition 26
3.7 Bureaucratic Decision Making in the Purchasing Department 28
3.8 Buyer Creating Purchase-order 29
3.9 Flow of Purchase-order 30
3.10 Batching of Shipping Department Forms 31
3.11 End-user Written Program to Batch Forms 32
3.12 Flow of Notification-of-receipt Form 32
3.13 Batching of Purchase-orders at the Billing Configurator . . . 33
3.14 Creating an Invoice from Multiple Purchase-orders 35
3.15 End-user Written Program to Create an Invoice 36
3.i6 Flow of Invoice 37
3.17 Quester to Find Purchasers of a Vendor's Products 39
3.18 Quester to Find Departments which Accept Purchase-orders. 40
3.19 Parasitic Tapeworm on Purchase-order 42
3.20 Installation of Parasitic Tapeworm 43
3.21 Freedom of Action Tapeworm 45
3.22 Installation of Freedom of Action Tapeworm 46
3.23 Version Dependency Sub-organization 48
3.24 Functional Management Sub-organization 49
3.25 Project Management Sub-organization 50
3.26 Software Development Organization 51
3.27 Software Development Organization Forms 52

4.1 Ubik Configurator and Link Types 55
4.2 Frame and Ubik Representation of an Employee 56
4.3 Constructor Configurators 57
4.4 Tapeworm Paycycle Censor 58
4.5 Tapeworm Salary Censor 59
4.6 Employee Prototype Hierarchy 60
4.7 Labeled Links 61

7

4.8 Quester Over Labeled Links.
4.9 Distributed Configurator
4.10 Message Passing between Distributed Configurators
4.11 Linking between Models.
4.12 Context and Individuals.

Message Passing
Flow Links
Reply Messages
Sending to Multiple Destinations . . .
Or Parallelism
And Batching
Bureaucratic Paths
Bank Account with Serializer

6.1 Tapeworm.
6.2 Installing Tapeworms .
6.3 Commutative Tapeworm
6.4 Freedom of Action Tapeworm Installed

partment.
6.5 Freedom of Action Tapeworm .
6.6 Parasitic Tapeworm
6.7 Self-propagating Quester .

7.1 Sponsor with Linked Configurators . .
7.2 Centralized Sponsor Control
7.3 Decentralized Sponsor Control
7.4 Coordinated Sponsor Control
7.5 Sponsor Interaction .

Blanket Purchase Orders
Purchase Order Draft
Regrouping.
Reclustering .
Regression .

. ·

.
·

in the Purchasing De-
.

.

.

.. . .·

62
63
64
64
65

69
69
70
71

72
73
74

76

78

79
80

84
85
87
89

92
94
95
96
97

............. .101

............. .102
............. .105
............. .106
............. .107

Early Ubik Two-Dimensional Notation
Organization Network
Message Sending
Unifying with the Configurator Body
Configurator Variables
Parallel And Expression
Parallel And Expression Flow
Data Flow
Batching Input Messages

A.10 When-modified Tapeworm .

....... . 115

....... . 117

....... .. 121

. 123

. 125

. 130

....... . 131

....... . 133

....... . 136
................... 138

8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

8.1
8.2
8.3
8.4
8.5

A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9

..

...

B.1 Nodes in the Notecard Hypertext System 169
B.2 Topic Browser for Notecard Hypertext System 170
B.3 KMS Distributed Hypertext System 170
B.4 Intermedia Webs 171
B.5 Intermedia Global Browser without a Focus of Attention . . . 173
B.6 Reducing Links Displayed with Subtree Detail Suppression . 174
B.7 Result of Frisse's Principles in Calculating Promising Brows-

ing Paths 176
B.8 Paradox Query 177
B.9 Paradox Join 178
B.10 Paradox Form for Viewing a Row in a Table 179
B.11 Paradox Form for Viewing Two Tables 180
B.12 Paradox Format for Printing a Report 181
B.13 Paradox Report 182

B.14 Paradox Bar Graph using a Crosstab table 183
B.15 Units 188
B.16 Automotive Unit 189
B.17 Kee Class Structure 190
B.18 KEE Multiple Inheritance 190
B.19 Rules and Units 191
B.20 KEE Worlds and Versions 192
B.21 KEE Active Images 192
B.22 KEEconnection 194

B.23 Rules and Tapeworms 196
B.24 KI-one Net 201
B.25 Ubik Network 201
B.26 Krypton and Kl-two 202
B.27 KI-one Classification 203
B.28 Ubik Statement of Kl-one Classification 204

9

Chapter 1

Introduction

Ubik is a system for building multiple, interrelated computer applications.
The applications are distributed over computer networks and can execute on
parallel computers. An organization in Ubik is a collection of applications,
and the end-users who interact with the applications. Ubik explores the
following issues in the construction, execution, and maintenance of organi-
zations:

1. Development of a high-level, object-oriented language to support in-
terrelated, distributed, and parallel applications.

2. Represent an organization external to Ubik, such that there is a close
correspondence between the structure and activities of the external or-
ganization and the structure and activities of the Ubik representation.

3. Explore the interaction between an organization's structure and action.
The structure is represented by a semantic net consisting of message
passing objects. The action consists of messages between the objects.

4. Use the Ubik representation for the high-level definition of new ap-
plications by the people within the organization who perform these
applications.

5. Support the gradual automation of a business organization where the
Ubik control of the organization coexists with the manual control and
activity of the organization.

6. Maintain the power relationships between the cooperating and com-
peting applications. Organizational power is the process by which an
organization focuses its limited resources to accomplish its most im-
portant goals.

7. Automatically develop new Ubik representations to more closely match
the continually changing business organization.

10

CIIHAPTER 1. INTIRO)lUCTI'ON

Organizations are represellted within Ubik as open, distributed, and par-
allel systems.

An organization is open in that it is a continually changing entity of
uncertain scope [38,39,41,12]. The closed world assumption, which is used
by most computer systems, states that the failure to find a goal within the
system is equivalent to the goal not existing. This assumption is not valid
for open systems. The finding of a goal within an open system is usually a
function of the amount of organizational resources committed to the search.
Within Ubik these resources are specified by the use of sponsors, as described
in chapter 7. Even if a goal is not completely found within Ubik, the search
can return partial information concerning the goal which can be used for
taking further organizational action.

An organization is a distributed collection of subparts. Each subpart has
its own goals. concepts, and action. Communication is possible within an or-
ganization to the extent that the subparts share common goals and concepts.
Some of the cost of communications is in establishing and maintaining the
goals and concepts. The independent action of the subparts leads to both
organizational conflict and robust behavior. The conflict comes from tak-
ing action on conflicting goals; the robustness comes from the redundancy of
overlapping actions. The issues of communications and conflict are discussed
throughout this thesis.

An organization operates in parallel. One of the prime purposes of an
organization is to marshall enough resources and support enough parallel
activity to accomplish a goal in a timely manner. Ubik objects naturally
execute in parallel. Many of the mechanisms within Ubik are to coordinate
this parallel activity.

Ubik views an organization as multiple collections of overlapping subor-
ganizations, where each suborganization is a collection of suborganizations,
people, activities, and materials. The organization is continually changing.
These changes are the result of the following:

* Changing environmental conditions. These changes can include new
economic conditions, material availability, personnel availability, and
customer demand.

· Accidental and planned changes in the organization structure and ac-
tivities. These changes can include new applications, new product
areas, changes in policies, and personnel changes.

· Internal power conflicts. These changes result from the internal com-
petition within an organization which arises when the organization,
with limited resources, must satisfy multiple organizational goals.

Computerized application systems need constant maintenance. This
maintenance attempts to match the computerized system to the changing

11

CHAPTER . INTRODUCTION

organizational conditions. Failure to maintain a computer application sys-
tem results in it either becoming irrelevant or a hindrance to the operation
of the organization.

To meet the goals of the Ubik system and the view of an organization
as a continually changing entity, Ubik is built in a coherent way out of col-
lections of objects called configurators. Collections of configurators form
an organization. These collections represent the organization, perform or-
ganizational activity, and continually reorganize themselves. Chapter 2, on
organizations, discusses various models of organizations. Chapter 3, on ap-
plications, describes the use of Ubik in writing and executing applications.
Chapter 4, on organizational structure, describes how organizational repre-
sentations are built out of configurators. Chapter 5, on action, describes
how configurators perform organizational action. Chapter 6, on tapeworms,
shows how configurators can be used to monitor, censor, and reason over
Ubik organizations. Chapter 7, on power, describes how the organization's
various suborganizations and activities compete for the limited computa-
tional resources. Chapter 8, on development, describes the ways in which
organizations, built out of configurators, can be reorganized. Appendix A,
on implementation, describes the implementation of an early version of Ubik.
Appendix B, on related work, discusses the relationship of Ubik to hypertext,
relational database, knowledge base, and semantic net systems.

T',e name Ubik was taken from a novel by Philip K. Dick [29]. Ubik
stands for ubiquity which is defined as follows [34]:

the state, fact, or capacity of being, or seeming to be, everywhere
at the same time; omnipresent.

Much of the complication of organizing is that an organization needs to
be everywhere, but can't be everywhere at the same time. This thesis deals
with the mechanisms needed to design computer applications around this
limitation.

Ubik in its current stage of development is a framework for an organi-
zational development system. Much more design and implementation work
needs to be done to fully work out the Ubik concepts.

12

Chapter 2

Organizations

Numbers, the fourth book of the Old Testament, describes the establishing
of an organization for the people of Israel. The book starts out with a census
of the twelve tribes of Israel. It then describes the structure of their land and
housing, which at this nomadic state of their development is a temporary
campground. During the book the structure of the priesthood, the judicial
system, the army, and the interpersonal relationships are established. In
addition, the relationship of the Israelite organization to the environment
evolves. The environment c,.isists of the following:

* Food supply - Much of their food comes from gathering manna, hunting
quail, and finding grazing land for their cattle. Their cattle are the
only food supply within the organization.

* Land over which they pass - Some of this land is owned by other tribes,
whom they must fight for passage.

* Other cultures - They must keep separate from the surrounding tribes
in order to avoid being absorbed into them.

The relationship between the Israelite organization and its environment
keeps changing. When the Israelites settle in Israel, the first two environ-
mental items, the food supply and land, become part of the organization.
The third item, the relationship to other cultures, is formalized.

The central organizational theme of Numbers is that the organization is
in dynamic flux. No sooner has one problem been solved, then another or
the same problem arises again. Every once in a while a new organizational
entity is created, and new authority relationships are established. Some of
these last for a section, some for a chapter, and some still exist. The insight
into the eternal nature of organizational conflicts is one of the reason the
Bible is still relevant. In fact, the organizational conflicts of Numbers is
currently more relevant than the actual organization described.

13

CIIAPTER 2. ORGANIZATIONS

2.1 Bureaucracy

Weber [64] specifies the concept of an organization as follows:

In the field of economically oriented action, 'organization' is the
technical category which designates the ways in which various
types of services are continuously combined with each other and
with non-human means of production... A profit-making orga-
nization is spoken of wherever there is continuous permanent
coordinated action on the part of an entrepreneur. Such action
is in fact unthinkable without an 'organization', though, in the
limiting case, it may be merely the organization of his own activ-
ity, without any help from others... But in a market economy, it
is possible for a number of technically separate organizations or
'plants' to be combined in a single enterprise. The latter receives
its unity by no means alone through the personal relationships
of the various units to the same entrepreneur, but by virtue of
the fact that they are all controlled in terms of some kind of
consistent plan in their exploitation for purposes of profit...

Weber, in the book The Theory of Social and Economic Organization,
creates some of the basic concepts of sociology in describing organizational
economic action, authority, and co-ordination. His emphasis is on the inter-
action of people which permits the creation of organizations. His concept
of a bureaucratic administration comes closest to what today would be a
computer organization:

Experience tends universally to show that the purely bureau-
cratic type of administrative organization-that is, the mono-
cratic variety of bureaucracy-is, from a purely technical point
of view, capable of attaining the highest degree of efficiency and
is in this sense formally the most rational known means of car-
rying out imperative control over human beings. It is superior
to any other form in precision, in stability, in the stringency of
its discipline, and in its reliability. It thus makes possible a par-
ticularly high degree of calculability of results for the heads of
the organization and for those acting in relation to it. It is fi-
nally superior both in intensive efficiency and in the scope of its
operation, and is formally capable of application to all kinds of
administrative tasks.

The development of the modern form of the organization of cor-
porate groups in all fields is nothing less than identical with
the development and continual spread of bureaucratic admin-
istration. This is true of church and state, of armies, political
parties, economic enterprises, organizations to promote all kinds

14

CHAPTER 2. ORGANIZATIONS

of causes, private associations, clubs, and many others. Its de-
velopment is, to take the most striking case, the most crucial
phenomenon of the modern Western state. However many forms
there may be which do not appear to fit this pattern, such as col-
legial representative bodies, parliamentary committees, soviets,
honorary officers, lay judges, and what not, and however much
people may complain about the 'evils of bureaucracy,' it would
be sheer illusion to think for a moment that continuous admin-
istrative work can be carried out in any field except by means
of officials working in offices. The whole pattern of everyday life
is cut to fit this framework. For bureaucratic administration is,
other things being equal, always, from a formal, technical point
of view, the most rational type. For the needs of mass admin-
istration to-day, it is completely indispensable. The choice is
only that between bureaucracy and dilletantism in the field of
administration.

A goal of Ubik is to build a computer bureaucracy. Weber's praise of
bureaucracy is gratifying. Most reactions to this goal of Ubik would be
quite negative, since it involves putting all the rigidity of the worst type of
human organizations into a computer. The negative reaction is somewhat
justified from Weber's static notion of a bureaucracy. The biblical notion of
a dynamic, continually tested, and changing organization is a better model
for a bureaucracy then Weber's.

Marvin Minsky's The Society of Mind [53] describes how a computer or-
ganization consisting of multiple special parts can be intelligent. His model
is both bureaucratic and dynamic. New organizational structures are con-
tinually created to supplement and, to a limited extent, replace the existing
structures. In his theory, a function which a human obtains early in life can-
not be replaced, because many other functions are built using it. So instead
of replacement, there is bureaucratic organization. Bureaucratic organiza-
tion creates decision making layers which decide under what conditions the
underlying functions can be used. This is summed up by Minsky in Papert's
Principle:

The hypothesis that many steps in mental growth are based less
on the acquisition of new skills than on building new administra-
tive systems for managing already established abilities.

2.2 Typologies

Classifications in sociology are called typologies. Organizational typologies,
according to Scott [59], are relatively weak and nonpredictive because by their
nature social organizations are open systems-highly permeated by and in-
terdependent with their environments and comprised of loosely linked and

15

CHAPTER 2. ORGANIZATIONS

semiautonomous component systems. Even though weak and nonpredictive,
typological analysis is a useful technique to gain insight into organizations.
Scott sums up the three views of organization discussed previously (bureau-
cratic, continually changing, and interacting with the environment) with the
following typology:

1. Rational System Definition - An organization is a collectivity oriented
to the pursuit of relatively specific goals and exhibiting a relatively
highly formalized social structure.

2. Natural System Definition - An organization is a collectivity whose
participants are little affected by the formal structure or official goals
but who share a common interest in the survival of the system and who
engage in collective activities, informally structured, to secure this end.

3. Open System Definition - An organization is a coalition of shifting
interest groups which develop goals by negotiation; the structure of
the coalition, its activities, and its outcomes are strongly influenced by
environmental factors.

Since there are many equivalent ways to organize, style is used to reduce
the organizational possibilities in a particular culture. Lammers and Hickson
call the cultural styles of organization rational myths. A rational myth
typology developed by Lammers and Hickson [47] is as follows:

1. Latin countries tend to have organizations of relatively high centraliza-
tions, rigid stratification, sharp inequalities among levels, and conflicts
around areas of uncertainty.

2. Anglo-Saxon countries tend to be more decentralized, have less rigid
stratification, and more flexible approaches to the applications of rules.

3. Third world countries tend to have parental leadership patterns, im-
plicit rather than explicit rules, and a lack of clear boundaries sepa-
rating organizational from non-organizational roles.

2.3 Organizations and their Environment

Where an organization ends and its environment begins is not clear. An orga-
nization has to exert effort in order to maintain its boundaries. A collection
of models and theories deals with different issues in maintaining organiza-
tional boundaries and relating the structure and action of the organization
to the environment in which it resides. The organization is not a unified
entity in reacting to the environment. Different parts of the organization
react to different parts of the environment, and different parts react differ-
ently to the same parts of the environment. In addition, an organization is

16

CHAPTER 2. ORGANIZATIONS

composed of suborganizations, each of which acts as an environment to the
other suborganizations.

Buffering strategies are a way that an organization maintains its bound-
aries with the environment. Buffers separate the interaction of the organi-
zational subcomponents with each other, and the organizational subcompo-
nents with the environment. Scott [59] emphasizes the boundary mainte-
nance function of the buffers; March and Simon [52] emphasize the cognitive
limits of the individual within an organization, and how the buffers reduce
the number of events which have to be dealt with at once. Galbraith [33]
emphasizes the creation of slack resources through the use of the buffers,
which reduces the amount of information needed during task execution.
The following is Scott's taxonomy of buffering strategies, along with the
Ubik mechanism which supports the taxonomic item.

1. Coding strategies to reduce the inferencing necessary when a mes-
sage is received and to increase the power of the knowledge represen-
tation. Configurators are the Ubik coded objects. They are discussed
in chapter 4.

2. Stockpiles such as material inventories and time buffers to reduce the
need for real time coordination. An important buffering mechanism
within Ubik is the batching of messages. Batching is discussed in
chapter 5.

3. Leveling, by which the organization attempts to reduce fluctuations
in its input or output environments. Leveling entails an active attempt
to reach out into the environment to motivate suppliers of inputs or to
stimulate demand for outputs. Ubik has a control mechanism called
sponsors, which can control the transaction rate by attracting or re-
ducing transactions. Sponsors are discussed in chapter 7.

4. Forecasting to anticipate change and recognize patterns and regu-
larities. Ubik continually attempts to monitor its activity in order to
create new organizational structures and reorganize existing structures,
in order to create a better match between the organizational structure
and the organizational action. Monitoring is discussed in chapter 6.

5. Growth to control the market. Ubik supports open systems which
continually grow and change. Reorganization is discussed in chapter
8.

Typologies, such as buffering strategies, are important in relation to Ubik
not because Ubik is built around any particular typology, but because they
represent ways which the people who build applications using Ubik can view
their applications. Ubik is built so that typologies can be defined within
Ubik and operate in a manner expected by the application builder.

17

Chapter 3

Applications

An organization can be viewed as a toolkit for constructing and processing
a range of applications. The toolkit has functions for dealing with the en-
vironment, such as sales, purchasing, and accounting. It has functions for
maintaining its organization, such as personnel, inventory, and middle man-
agement. It has functions which are part of the applications the organization
supports, such as design and manufacturing. An organization is continually
adapting its structure and action to improve its support of the existing ap-
plications and to support new applications. An example of a process which
adapts the structure of an organization originally built for one application
to another is functional autonomy. Minsky [53] describes this as the idea
that specific goals can lead to subgoals of broader character. In the context
of organizations, it can be described as a process in which subfunctions of
applications become detached from the original application, generalized, and
used to support other applications.

Application software systems are organizations of increasing complexity.
The early business systems consisted of simple organizations of stand-alone
applications. The introduction of real-time, database-oriented applications
established an organization out of which grew multiple applications, all shar-
ing the same communications and database facilities. The introduction of
distributed workstations is resulting in complex applications which cooper-
ate and compete with each other. Ubik contains facilities to support this
coordination and competition. This chapter presents two applications which
will illustrate the use of Ubik: a purchasing organization, and a software
development organization.

Ubik applications are built out of the basic Ubik computational object
called a configurator, as shown in figure 3.1. A configurator consists of the
following sections:

* Name - the name of the configurator

* Input - the messages which the configurator is prepared to receive. The
receipt of a message will trigger the configurator into action.

18

CHAPTER 3. APPLICATIONS

* Output - the messages which are sent when the configurator completes
processing.

a Link - one or more sections which specify other configurators linked
to this configurator. Ubik supports multiple types of links, as dis-
cussed in chapter 4 on organizational structure. If a configurator has
an unnamed section, this section, by default, is of type link.part.

* Action - the action taken by the configurator. The most common
action is associating the input messages to the output messages.

* To - configurators to which this configurator is sent as a message.

* Control - specifies miscellaneous information about how this configu-
rator is used and controlled.

input output

link

action

to

control

Figure 3.1: Ubik configurator format.

3.1 Purchasing Organization

The purchasing organization described here is loosely based on the MIT pur-
chasing system, as specified in the MIT Guide to Administrative Offices [5].
The purchase system is a subsystem of a larger organization and shares some
of the larger organization's subparts. It is composed of the employees in the
role of a purchaser; the purchasing, shipping, and accounting departments;
and the concept of an external organization called a vendor. The organiza-
tion is illustrated in figure 3.2, and the forms used to communicate between
the subparts are shown in figure 3.3.

The purchasing system works as follows:

19

CHAPTER 3. APPLICATIONS

1. The purchaser creates a purchase-requisition and sends it to the pur-
chasing department.

2. The buyers in the purchasing department create purchase-orders from
the purchase requisition and send copies of it to vendors and the ac-
counting department. A receiving-ticket is sent to the shipping depart-
ment, so the employees in that department know how to distribute the
purchased item once it arrives.

3. The vendor ships the purchased item to the customer's shipping de-
partment. Once a month, on the customer's bill date, an invoice is
prepared consisting of all the items ordered by the customer the pre-
vious month.

4. The shipping department receives the item, matches it to a receiving
ticket, and sends it to the purchaser. It also sends a notification-of-
receipt to the purchasing and accounting departments.

5. The accounting department sends the payment to the vendor, once it
receives the invoice and notification-of-receipt.

Figure 3.2 is a two-dimensional representation of the purchasing orga-
nization. In this example, the purchase-organization configurator has the
following sections:

* The name section has the value purchase-organization.

* The link.part section has references to the department and vendor
configurators. The department configurator in turn references the pur-
chasing, accounting, and shipping configurators.

* The link.flow section has a description of the message flow between the
configurators referenced in the link.part section.

20

CHAPTER 3. APPLICATIONS

purchase-organization I

Figure 3.2: The purchase organization is a suborganization used to carry out pur-
chasing activities. The purchase organization consists of three internal departments:
purchasing, accounting, and shipping; one external organization: vendor; and em-
ployees of the organization who take the role of purchaser. The link.part section
specifies the configurators which this configurator references. The link.flow section
specifies the message flow between the configurators.

link.part

vendor

link.flow

!

21

CHAPTEk 3. APPLICATIONS

receiving-ticket

po-number purchaser date

notification-of-receipt

po-number Idate

Figure 3.3: Purchase Organization Forms are as follows: purchase-requisition,
purchase-order, invoice, packing-slip, receiving-ticket, and notification-of-receipt.

22

purcbaw-rquiiuoo

poramr poa-ume ri

woount-no daia-requmd ctaga

quatty daro
-- -- -- -- -- -- -- -- ---:- -- --l- -- -- -- -
- --- -- - --- --_- - - - - - --- - - - - - - - - - -- - - - - -

- _-- - - - - - - - - - -

pumrhae-~r

po-sumber ompany requlMtnoa-numbra

date-ms dta-qmludad , taql
,v4=r buer

....--------.----------.... .
.--------- ----------- . ----- _ -

totl

invoa

quanUty pert number dMolption unit-pl' moulL

--.--...- - - --... -- -- - - - - -------------
total

pkem

quatU part amber deeorlptin

s .

_ _

CHAPTER 3. APPLICATIONS 23

3.1.1 Gradual Automation

Ubik supports the gradual automation of an application. Initially an appli-
cation, placed into Ubik, closely matches the preexisting non-computerized
organization. Gradually, on a localized basis, the application can be au-
tomated. Automation will never be complete. Some parts of an applica-
tion require cooperative interaction with an end-user. The filling out of the
purchase-requisition form by an end-user is a cooperative interactive activity
between the purchaser and the Ubik system. The initial automation of the
filling out of the purchase-requisition form consists of displaying the form
on the computer screen. After the purchaser has completed the form, Ubik
sends it to the purchasing department. The next stage in automation is
for a Ubik action to support an interactive dialogue with the end-user, as
illustrated in figure 3.4. In this example the top form shows the fields which
the user fills in; the bottom form shows the fields which the system, in an
interactive dialog with the user, fills in. When the user fills in a field, the
Ubik system immediately fills in all the fields which can be generated from
that field.

Figure 3.4: Purchase-requisition interactive dialog. Ubik displays a purchase-
requisition on the computer screen. The user fills in the purchaser, date-requested,
and item fields, as shown in the top form. Ubik fills in the account-no, requisition-
number, and category, as shown in the bottom form.

purchae-requliaon

purchaser jill po-number requisiUon-number

accoun t-no de-requested 9/9/90 ctegory

item
quantity description

.... ! l......as.........er ite ...
1 i IBM PS/2 80............. -/...

..

purchase-requition

purchaser po-number requistion-number 235

account-no 5lI date-requested category computers

item
quantity description

L X - owa I
--.....---------...
...... - .s

............. .%..

CHAPTER 3. APPLICATIONS

3.1.2 End-user Programming

End-user programming is facilitated in Ubik by allowing the user to program
within two-dimensional pictures of the objects. An end-user program to
support the purchase-requisition interactive dialogue is shown in figure 3.5.
A variable in Ubik is a symbol preceded by a question mark. Variables
are used to link the various fields in the form with the configurators which
specify the action taken.

The configurator with the name interactive-purchase-requisition
represents the program. The configurator has no input section. The out-
put section specifies that after the configurator is evaluated, the purchase-
requisition is sent to the purchasing department. The action section consists
of a collection of configurators which perform as follows:

1. The unnamed configurator's control section has a display command
which will display the purchase-requisition on the end-user's display
device. The fields are filled in the following order:

(a) The requisition-number is filled when the form is displayed. This
is indicated by variable ?R which links to the pr-no configurator.

(b) When the user fills in the purchaser field, the account-no config-
urator triggers, filling in the account-no field.

(c) When the user fills in the description field, the category configu-
rator is triggered, filling in the category field.

2. The account-no configurator fills in the account-no on the purchase-
requisition form. It is triggered when ?X receives a value by the user
filling in the purchaser field, and it produces a value for ?Y. It consists
of the configurator account-table. The table associates the ?X with
the ?Y variable.

3. The pr-no configurator has an output section and no input section.
The configurator is automatically triggered to produce a value for the
?R variable, which is the requisition-number. The value will appear
in the purchase-requisition form without any user interaction. The
action is not shown, but can consist of a Ubik program or a program
in any language whose interface is supported by Ubik. The action will
produce the next requisition-number.

4. The category configurator finds the category from the description. Its
action is not shown. The action can consist of a simple table lookup
as in the account-no box, or a complex program to attempt to find
the category from an unformatted text description given by the user.
The action might consist of a further dialog with the end-user.

After the purchase-requisition form is filled out, it is sent to the purchas-
ing department, as shown in figure 3.6.

24

CHAPTER 3. APPLICATIONS

interactive-purchase-requisition

department.purchasing

action

control

display

account-no

?X I ?Y

account-table name account-no

?X ?Y

category

aD C C

action

Figure 3.5: End-user written purchase requisition dialog.

purchase-requisition

purchaser ?X po-number requisition-number ?R

account-no ?Y date-requested category ?C

item

quantity description

?D
. ...-...-.. - --.-.. ..

........ ~..............................c.~....~....~.~._._...

25

APPLICATIONS

Figure 3.6: Flow of purchase-requisition form to purchasing department.

CHAPTER 3. 26

CHAPTER 3. APPLICATIONS

3.1.3 Bureaucracy

An organization is represented by a collection of linked configurators. Since
each configurator within an organization can take organizational action and
direct organizational messages, the configurators can be said to form a bu-
reaucracy. An example of an organization with bureaucratic decisions is
shown in figure 3.7. This example operates as follows:

1. The message is received by the department .purchasing configurator.
It is forwarded to the sections configurator, as specified by the flow-
.purchase-requisition link.

2. The message is received by the sections configurator. The input sec-
tion of this configurator contains a purchase-requisition configurator.
The purchase-requisition configurator has a link.part section and a
to section. The link.part section specifies that the variable ?cat is
to be bound to the value of the category field on the form. The to sec-
tion specifies that the purchase-requisition is to be ent as a message
to a configurator, with the name specified in the ?cat variable.

3. The message is received by one of the configurators named in the cat-
egory field. This configurator will forward the message to its buyer
configurator, as specified by the flow link.

4. The message is received by a buyer configurator. The buyer pro-
duces purchase-orders from the purchase-requisition, as shown in fig-
ure 3.8. In figure 3.8 there are two items in the purchase-requisition,
each of which is processed by a different vendor. Figure 3.9 shows the
purchase-order being transmitted to the vendor.

A more complex bureaucratic decision is shown in section 5.4.

27

CHAPTER 3. APPLICATIONS

department.purchasing

flow.purchas- requisition

sections .

purchase-requlsition.?p

category.?cat

to
?cat

computers

rnw.

chemicals

DIb pu i a eq sltio
I l Ir

office-supplies general-purchase

flow.p -reqislion flo.prcheq tion
FITY . __

Figure 3.7: Bureaucratic decision making in the purchasing department at the
sections configurator. This configurator determines which buying section will
receive the purchase-requisition.

· · ·

i~~I"'" d1K t PU"P- -wf I U I'&

]. ,, , I . .

28

CHAPTER 3. APPLICATIONS 29

I buyer I

purchase-requisition oompan.?I

?I

Figure 3.8: Buyer creating purchase-orders from the purchase-requisition.

purchas-requidlUon

purchaser Jill po-number requiton-number 235

acount-no 56021 date-requested /9/90 oategory computers

item

quanity description

1 apple laserwriter nI
1 i B P/z 28

.............

purchase-order

po-number O ompany _ Mr requistion-number 235

date-sent 1/6/90 date-requeutd 3/9/90 category computers

vendor apple buyer mike

item

quantity part number description unit-price uamount
i * l

I 0207731 applelaserw teril 4030 4000

........... _. . - - - - - -a : 4
...........

total: 4000

purchase-order

po-number 691 company ET requisition-number 235

date-sent 1//90 date-requested 3/9/90 category computers

vendor IBM buyer mike

item

quantity part number description unit-price amount

_.1 12553a ,IB PS/2 a 10000 10000

----------- --------
....... - ...-------- ---

total ' 10000

APPLICATIONS

Figure 3.9: Flow of purchase-order from purchasing department to vendor.

CHAPTER 3. 30

CHAPTER 3. APPLICATIONS

3.1.4 Batching

Batching is the accumulation of messages at the input section of a configura-
tor. Batching is specified with an and expression of input message patterns
in the input section of a configurator. The configurator is not triggered until
all the messages in the and expression arrive.

The shipping department in the purchasing application receives a receiving-
ticket and notification-of-receipt forms. The receiving-ticket is sent by the
purchasing department. The notification-of-receipt is created from the pack-
ing slip of an item received by the shipping department. For a particular
purchase-order, both the receiving-ticket and notification-of-receipt must be
matched before the item received can be sent to the purchaser. In figure
3.10, a collection of receiving-tickets and notification-of-receipts are batched
on the input section of the shipping department. The forms are matched for
purchase-order 6860 and 6890. These forms can be processed by the ship-
ping department. The receiving-ticket for purchase-order 6891 cannot yet
be processed.

notification-of-receipt

po-number | 6890 date 4/1/90

notification- of-receipt

po-number 6860 date 4/1/90

Figure 3.10: Batching of shipping department forms.

The end-user program for the batching at the shipping department is
shown in figure 3.11. The input section and expression has two operands:
receiving-ticket and notification-of-receipt. They are linked by the ?PO vari-
able on the po-number field. For the configurator to trigger, the two forms
have to be received with matching po-number fields. After triggering, the

I

31

CHAPTER 3. APPLICATIONS

output section in figure 3.11 specifies that the notification-of-receipt is dis-
tributed to the accounting and purchasing departments, as shown in figure
3.12.

receiving I

Figure 3.11: End-user written program to batch forms.

Figure 3.12: Flow of notification-of-receipt form to accounting and purchasing
departments.

Another example of batching is the accumulation of purchase-orders to
produce an invoice. The invoices are produced once a month on the cus-
tomer's bill date, as shown in figure 3.13. In this example, three events need
to occur before the billing configurator will trigger:

1. A purchase order for the company has to have arrived. The variable

MD

receiving-ticket notification-of-receipt
po-number ?PO p Purchaer date to

accounting
purchasing

notflcaton-of-recept

po-number IPO dte Id

32

CHAPTER 3. APPLICATIONS

?po is bound to the purchase-order; the variable ?com is bound to the
company issuing the purchase-order.

2. The time of day is 16:00, as specified in the control section.

3. The bill day for the customer is today. The action section of the
purchase-order contains an and expression which references a quester
and a boolean expression. A quester is a configurator which sends
itself through the organization seeking information. In this case the
quester sends itself to the customer-file configurator to find the bill
day for the company. The quester has an input section which specifies
the company in variable ?com, and returns the bill date in variable
?bill-day. The boolean expression matches the bill day with today's
date. If they match, the billing configurator will process all the batched
purchase-orders for the company and produce an invoice.

billing

purchase-order.?po]

company.?com

to
?com

action

?com ?bill-day ((today) ?bill-day)

to
customer-file

customer.?com I

bill-day.?bill-day

control
timer.16:00

Figure 3.13: Purchase-orders are batched at the billing configurator until the
following three events occur: a purchase-order arrives, the purchasing company's
bill date is today, and the time is 16:00.

33

CHAPTER 3. APPLICATIONS

3.1.5 Regrouping

Regrouping is a remapping process in which parts of multiple input messages
are mapped onto a new message. The production of an invoice requires
the remapping of information from multiple purchase-orders. In figure 3.14,
invoice 367334 is produced from purchase-orders 6860 and 6891. The invoice
po-number, and item fields contain accumulated information.

The end-user program for automatically producing the invoice from the
purchase-orders is shown in figure 3.15. The program works as follows:

1. The invoice po-number field contains a (union ?po) operation. This op-
eration accumulates the purchase-order numbers from all the purchase-
orders. The ?COM variable restricts the accumulation to purchase-
orders from the same company.

2. The item fields accumulated information from all the purchase-orders
specified by the union operation and company restriction. For each
part number, description, and unit-price a new line item is created.
The (?Q) expression sums the quantity for each part number from
all the purchase orders. The (* quantity.? ?U) expression multi-
plies the quantity for each line item by the unit price. quantity.?
references the contents of the invoice quantity field for this line item.
The (+ amount. ?) expression sums all the amount fields on the invoice
form to create the total amount. The amount. ? expression references
all the amount fields on the invoice.

3. The invoice-no configurator produces a new invoice number.

4. The date configurator produces the current date.

After the invoice is produced, the output section of figure 3.15 specifies
that the invoice is sent to the company which issued the purchase-orders, as
shown in figure 3.16.

34

CHAPTER 3. APPLICATIONS

billing

(0OP nOL-dy l~l~ l~lbllT-day)Vtoeer-me I

Iusemer. I

Umw. 18.00

Figure 3.14: Creating an invoice from multiple purchase-orders.

35

ptuinb-orn,

p-emawo Ml oo.puay requiUou-aumbor

db-st nt 1/6/00 dt-aqud d /o/0 tqao aput
vedr MM buyer mum

Ha
quanUty prt nwbw daripUm n unl-p ie amouvt

.............

o 0000

po-ur m m u amd

dar-e t /s/ date,- rqdd /1o/0 oataor7 epun

Tenda u buyer mk

It=

qaty port nmber jdewlplou ta-piwt : amin

1 126836 !MPS9180 10 000

..10

invoice 367334

po-numbersa 880 company YT I date 3/30/90

item

quantity pert number description unit-price amount

2 . 1255838 IBM PS/2 80 10000 ! 20000

.............. ...:----
..............

20000total

-

CHAPTER 3. APPLICATIONS

billing

purcba.-ordr.o I

to
?com

action

invoice ?[NV-NO

po-numbers I (union ?po) I compan ?CO date ?date

item

quantity ipart number i description unit-price i amount

(+ ?Q) ?P ?DU (* quantity.? ?U)
- ~----- - - -- ----------------- ---------

total i (+ amount.?)

invoice-no

?INV-NO

action

puruba-order

po-number ?P oompany YCOM nqslon-°-mber

date-snt data-requested oateory

vendor buyer

item

quantity pt number dplon unit-pes amount

Q j ?P j i D j ?U

........., ,

totl :

action

._ b a.-dy ?i-day)

ontroml
tmer.1:00

Figure 3.15: End-user written program to create an invoice from multiple purchase-
orders.

- - - - - - -

- - -

36

APPLICATIONS

Figure 3.16: Flow of invoice from vendor to accounting department.

CHAPTER 3. 37

CHAPTER 3. APPLICATIONS

3.1.6 Questers

Questers are configurators which search the organization. The input sec-
tion contains input messages to the quester; the output section contains the
message which gives the result of the search. The to section contains the
configurators which are being searched.

In figure 3.17, a quester is searching for the purchasers who are ordering
products from a specified vendor. The input section contains the vendor,
and the output section contains the resulting purchasers. There are two
forms which must be searched to find the results. The purchase-requisition
form contains the purchaser; the purchase-order form contains the vendor.
The forms are linked on the requisition-number field.

In figure 3.18, a quester is searching for all departments which accept
a purchaser-order as input. The query is on the name of the departments
whose input section contains the message purchase-order. *? is a wild-card
which will transitively follow links from the link.part section. The wild-
card (*? ?dept) will transitively search all the part links in the purchasing
organization. The wild-card (*? purchase-orders) will transitively search all
part links in the input section for a purchase-order configurator. The result
will be bound to the ?dept variable.

Questers are used for both open and closed searches. In figure 3.17, two
files are searched. Since these files can be explicitly located, the quester can
answer queries to these files accurately. This would be a closed search. In
figure 3.18 the organization as a whole is searched. Since the organization
can not be frozen while the search is being conducted, the accuracy of the
query depends on the stability of the organization. If an organization's
structure and contents are changing during the search, the query can only
return an approximate result. A quester seeking information throughout an
organization would have to be transmitted to many distributed locations.
The accuracy of the results depends on the amount of resources which are
given the quester and how long one is willing to wait for the answer. This
is an open search.

38

CHAPTER 3. APPLICATIONS

quester.purchasers I

COM ?PUR

to

file.purchase-requisition I

file.purchase-order I

Figure 3.17: Quester to find purchasers of a specified vendor's product.

39

purchase-requisition

purchaser ?PUR po-number requisition-number ?PR

account-no date-requested category

Item

quantity i description

...

purchase-order

item

quantity i part number description i unit-price
! ! :

--------- -~ - ---~~....--- - - - - - - - - - -- -
-------- ---- -----..~..1..~---- -..-- , _ :.. -- ..--------------------------.

.. Jtotal

total:

I

:amount

i
i
i

APPLICATIONS

quester.input-po I

?dept

-1 -

Figure 3.18: Questers to find departments which accept purchase-orders.

CHAPTER 3. 40

CHAPTER 3. APPLICATIONS

3.1.7 Parasitic Tapeworm

Tapeworms are configurators which can be attached to other configurators.
They are used as monitors or censors. A configurator is a tapeworm if
the tapeworm command appears in its control section. A tapeworm at-
taches itself to the configurators which are specified in its input section.
In figure 3.19 a monitor tapeworm is attached to a purchase-order. This
tapeworm will trigger on the due date of the purchase-order, as specified
in the date-requested field. When the tapeworm triggers, it will send a
copy of the purchase-order to the buyer. The tapeworm will travel with
the purchase-order as the purchase-order is sent throughout the organiza-
tion. This tapeworm is part of an expediting subsystem which tracks and
facilitates purchases. A tapeworm used in this manner is called a parasitic
tapeworm.

To insure that a parasitic tapeworm is placed on all purchase-orders,
another tapeworm is attached to the buyers in the purchasing department,
as shown in figure 3.20. This tapeworm attaches the parasitic tapeworm
to a purchase-order when the purchase-order is created and transmitted by
a buyer. This tapeworm triggers on the sending of a purchase-order, as
specified in the control section by the tapeworm command. The tapeworm
command specifies that this is a monitor which triggers on a send operation.
When this tapeworm triggers, its action part installs the overdue-purchase-
order-tapeworm on the purchase-order. Section 6.4.2 gives a more detailed
description of parasitic tapeworms.

41

CHAPTER 3. APPLICATIONS

.:.........;,,............
,~~~

--- '----- - ---- ----- - '' '-'-"-'- r--- --- -------- - ---- ---- --- ---- ---

total

tapiworm-''--'--'I --'-'-----"- ''"''''--1'tape w o r m '"'-' '''" ''- -

Figure 3.19: Parasitic tapeworm on purchase-order which triggers when purchase-
order is overdue.

purchase-order

po-number ?PO company requisition-number

date-sent date-requested ?date category

vendor buyer ?B

item

quantity part number description !unit-price i amount
. . . i

-

42

CHAPTER 3. APPLICATIONS

I department.purchasing I

flow.purchasi

Istiozna I

-requisition

compu ers oflce-suppliesI general-purchase

IO~II~Yt~PI~rr~rry IIP~P-I~W llprwy I~nL~n Iffice -upplieAdfi z Nl

1ui - X -I 1F

.

tW.~,.--

parasitic-tapeworm I

purchase-order.?po

action

control

tapeworm I
type.ciensor
operation.send

Figure 3.20: Installation of parasitic tapeworm in purchasing department.

?te

| - . t -- !

Y

·- ·~~~~

43

I

CHAPTER 3. APPLICATIONS

3.1.8 Freedom of Action Tapeworm

A freedom of action tapeworm is the use of a tapeworm to monitor the
action of other configurators, and to report when the action exceeds specified
limits. A manager will use a tapeworm in this manner to monitor the work
of his employees. Figure 3.21 shows a freedom of action monitor which
triggers when a buyer sends a purchase-order. It sends a purchase-order
to the buyer's manager if the buyer exceeds the maximum item cost on a
purchased item. This tapeworm's action section contains an and expression
with three references, as follows:

1. A purchase-order form which has a purchase-order number ?PO as input
and finds the part number ?PN and unit-price ?PU.

2. A maximum-item-cost table which looks up for the part-number ?PN,
the max-cost ?MC.

3. A boolean expression which finds if the unit-price is greater than the
max-cost. If it is, the tapeworm's output message is sent.

The freedom of action tapeworm is installed such that it monitors all
purchase-order output of the buyers, as shown in figure 3.22. Section 6.4.1
gives a more detailed description of freedom-of-action tapeworms.

44

CHAPTER 3. APPLICATIONS

freedom-of-action-tapeworm I

?po

purchase-order.?PO to

department.purchasing

manager I

action

and

control

tapewor I
type.moni.or
operation.send

Figure 3.21: Freedom of action tapeworm, in which a manager monitors the buyers'
pricing of purchased items.

45

?PO (?PN ?UP)

purchase-order

po-number ?PO ompany requisition-number

dale-ent date-requested category

vendor buyer ?B

item

quantity part number description unit-price amount

?PN , : ?UP
......... - --

............ L.............................

............ :.................................._ _ total

total

?Part-number max-coYC

maximum-item cost |part-number ?MCo

PN I ?HC

__

I

(> ?UP ?C)
o,-

CHAPTER 3. APPLICATIONS

I department.purchasing

flow.purchasi- requisition

sections

It

46

computers coffice-supplies general-purchase

'---] I - I

mtmd

...... ' -----.........1

-"-"-1-Il -"-I -
~~-1' - ~ I

Figure 3.22: Installation of freedom of action tapeworm in purchasing department.

CHAPTER 3. APPLICATIONS

3.2 Development of Large Software Systems

One important application area of Ubik is the development and mainte-
nance of large software systems. The model of software development de-
scribed in this section requires four sub-organizations: version dependency,
functional dependency, project management, and organizational flow. Each
sub-organization is separately defined. Message flow is used to coordinate
the actions of all four suborganizations.

3.2.1 Version Dependency Sub-organization

A software system consists of multiple programs, each of which has multiple
versions. A software system also consists of subsystems, each of which also
has multiple versions. The version dependency sub-organization coordinates
the collecting of programs into subsystems, and subsystems into released
systems. This sub-organization is based on the model supported in the
System Building Systems [26]. Figure 3.23 shows a version dependency sub-
organization.

Version dependency performs two types of control:

1. Program versions - two taxonomies, versions and history, keep track
of the versions for a program. The version taxonomy contains the
programs and the versions for each program. The history taxonomy
contains the programs and the relationship between each version for a
program. For example, program A contains three versions: 1,2 and 3,
Version 2 and version 3 were both created by modifying version 1.

2. Subsystem versions - the department.testing maintains four subsys-
tems: subsystem-X, subsystem-Y, integration, and released-system.
The subsystems are related to each other, in that subsystem-X and
subsystem-Y are combined to become the integration systems. The
integration system eventually becomes the released system. A process
called promotion moves the programs in a subsystem into the next
subsystem. Promotion is an on-going process, in that new systems
are always being developed and released. Each subsystem represents
a testing level. There are criteria developed by the testing department
which determine when a system is ready for promotion.

A coordination problem occurs when fixes are made to subsystems which
will be promoted into. For example, if a fix is made to the released system to
quickly correct a problem which users of the system have encountered, and
the corresponding fix is not made to the integration subsystem, subsystem-
X, and subsystem-Y, then when promotion replaces the released system, the
error will reappear. The version dependency sub-organization prevents this
problem from occurring by keeping careful track of the version dependencies.
In this example, when subsystem-X is promoted into integration, the version

47

CHAPTER 3. APPLICATIONS

dependency sub-organization will discover that program A version 3 is not
a derivative of program A version 2. They are both derivatives of version
1. The functions represented by version 2 and version 3 will have to be
combined to assure that no fixes are lost.

Figure 3.23: Version dependency sub-organization

3.2.2 Functional Management Sub-organization

Software systems can be specified in terms of the functions which comprise
the system. The functional composition of the system does not necessarily
correspond to the program composition. For example, multiple programs
might have to be changed to support a new device, such as CD ROM. These
programs already support other functions, so that the mapping of functions
to programs is many-to-one, and the mapping of programs to functions is also
many-to-one. Figure 3.24 shows a functional management sub-organization.

A program is changed for a reason. The reason is represented by a PTM,
program trouble memo, or a DM, design memo. These memos specify the

48

CHAPTER 3. APPLICATIONS

function which the change supports. The function taxonomy contains, for
each function, the programs which support the function, and the memos
which describe the function.

I software-development]

I function-management{

department.implementation

Figure 3.24: Function management sub-organization

Figure 3.24: Function management sub-organization

3.2.3 Project Management Sub-organization

Software systems are constructed by programmers over a period of time.
The project management sub-organization contains the resources required to
implement a software system. A project consists of people, implementation
phases, schedules, collections of programs, and locations, some of which are
shown in figure 3.25. In this example only the flow links are shown. There
are three projects. Each project consists of the phases and the program flow
between the phases. Project-1 and project-2 consist of phases implement
and component-test. The programs flow from implement to program test.
Project-3 consists of the phase integration test. It receives programs from
project-1 and project-2.

3.2.4 Organizational Model

The organizational model relates the various organizational departments
which are involved in the specifying and building of the software system.

functin- 1]

program memo

4mot

1' 2 49.
1 2 3

49

CIAPTER 3. APPLICATIONS

Figure 3.25: Project management sub-organization

The software project, as shown in figure 3.26, involves the following depart-
ments: design, programming, documentation, test, and release. The actions
of the various departments are coordinated with messages as follows:

1. DM - the design memo is sent from the design department to the im-
plementation and documentation departments. The implementation
department constructs programs according to the design. The docu-
mentation department produces manuals based on the design.

2. Manual - is produced by the documentation department and sent to
the design, implementation, and testing departments. It is also sent
to the customers.

3. PTM - the program trouble memo is created by and sent from the
department which finds the problem. It is received by the release
department from customers who encounter a problem. The PTM is
sent to the implementation department, where a fix is made. The
implementation department sends it to the design department, where
it can become the basis for a design change.

4. Programs - flow from the implementation department to the testing de-
partment, and from the testing department to the release department,
from which they are sent to the customers.

50

CHAPTER 3. APPLICATIONS

5. Promotion - is a message which initiates promotion action. Promotion
initiates the movement programs between subsystems.

Figure 3.26: Software development organization

Figure 3.27 shows the forms used to coordinate action between all the
software development models.

51

CHAPTER 3. APPLICATIONS

ptm,
program

description

promotion

from

to

Figure 3.27: These are the some of the forms which are used to coordinate the
action within the software development organization. The PTM (program trouble
memo) form is used to report errors. The promotion form is used to promote systems
to higher test and release levels. The version-creation form is used to create new
versions of programs.

version-creation

program

base-version

test-model

new-version

52

Chapter 4

Organizational Structure

Configurators are bound together structurally with the use of links. Links
come in various types, as shown in figure 4.1. A link type represents a
structural aspect of an organization. Relationships between configurators
which are not explicitly represented by links are implicitly implemented by
the message passing actions of a configurator. There are multiple types of
links.

A link of type part is a link which connects two configurators, where one
configurator is a subpart of another. A chain of part links forms a nested
structure of parts. When Ubik reasons over an organization's structure, it
can transitively follow part links.

A link of type prototype is a link which connects two configurators, where
one configurator is a subclass of another. The subclass configurator uses its
prototype's structure as a default when it is created. An organization is
continually changing. To reflect this change, all links between configurators
can be changed. Prototype links tend to be the most stable type of links,
but even they can change. For example, an organization might introduce a
new class of employee, such as service employee, and reclassify some of its
existing employees to the new class.

A link of type flow is a part link which designates a message which
can flow along it. Messages can be sent explicitly by one configurator to
another. A flow link represents a more stable relationship between configu-
rators, where all messages specified in the flow link will automatically flow
from one configurator to another.

A link of type value is a part link which specifies for a configurator that
the attached configurator is to be interpreted as its value. A part link is
usually interpreted as an attribute. A value link is then interpreted as the
value of the attribute. For example, if an employee has a part link of salary,
then the value link attached to salary would be the actual salary. Value links
are specified using a dot notation. A salary of 30000 would be written as
salary.30000.

A link of type tapeworm specifies for a configurator all the other con-
figurators which are monitoring or censoring it. Tapeworms maintain an

53

CHAPTER 4. ORGANIZATIONAL STRUCTURE

organizational network by monitoring the network's action and constraining
its modification.

A link of type sponsor controls the action of the configurators within an
organizational network. Each configurator which can take act on has a link
to a sponsor, which gives it the computational power to carry out the action.
The relationship between the sponsors and configurators determines the ex-
ecution speed of the parallel acting configurators which in turn determines
the organization's focus of attention.

A link of type batch specifies for a configurator the configurators which
it has received as messages but cannot yet process. When a configurator
receives a message, it can execute the message, reject the message, or batch
the message.

All links can be labeled. A label specifies the name of a link. Questers
which can reason over networks of configurators use the labels to process
subsets of links.

4.1 Configurators

A configurator is the basic computational object in Ubik. It takes action by
sending and processing messages. It is triggered into action when it receives
a message. It is composed of multiple sections, as shown in figure 4.1. The
sections are name, input, output, actions, to, control, and link.

The name section identifies the configurator. A configurator only needs
to be named if it will be the explicit target of a message. A configurator can
be the indirect target of a message with the use of flow links.

The input section specifies the configurators which this configurator is
prepared to accept as messages. A configurator will reject messages sent to
it which do not appear in the input section. The input section can contain
an and expression of configurators. The configurators which are received
and only partially satisfy the and expression are batched. A configurator is
fully specified by name, or partially specified with the use of variables.

The output section specifies the messages that the configurator will send
or return.

The action section specifies the operations and expressions which will
be executed when the configurator is triggered with the receipt of an input
message. The most typical action is the relating of the input messages to
the output messages.

The to section specifies the configurators to which this configurator will
be sent when it is triggered into action. Variables can be used to partially
specify the destination configurators. The variables are bound when the
configurator arrives at its destination. Questers are configurators which use
the variables to reason over the organizational structure.

The control section specifies the configurator's execution types and power.
The execution type of a configurator are normal, distributed, tapeworm, and

54

CHAPTER 4. ORGANIZATIONAL STRUCTURE

constructor. The power of a configurator is the number of cycles it has for
execution.

The link section specifies the links used by this configurator to reference
other configurators. There can be a separate link section for each type of
link. A section without a name is a link.part section by default.

M11WL-->EM

M-qQM---->0D
label

M-P!~a] M----->EM

value
IDJ 1E......-f] >[]E A.B

Figure 4.1: Ubik configurator and link types. An organization is a network of
linked configurators.

A frame is a structure in a knowledge base system which has a name and
slots. The slots have values and facets. The facets are constraints on the
values which can be inserted in the slots, and specify attached procedures
which are triggered when a value is inserted in the slot or a message is
received by the frame. A configurator has some similarities to a frame.
The example in figure 4.2 shows an employee frame with two slots: mgr
and salary. The facets in this example are restrictions and handler. The
restrictions are used to specify bounds on a slot value; the handler is triggered
when a message is sent to the slot. An instance of a frame is a copy of the
frame with the slot values filled in. In this example, the employee frame
has an instance name of jill, the mgr slot has a value of mike, and salary
slot has a value of 30000. In Ubik, the employee frame is represented by a
collection of linked configurators. This example shows two ways to display a
configurator and its links: the Ubik linked representation uses explicit part
and prototype links; the Ubik configurator representation uses configurator
link sections. In this example there are two link sections: link.part and
link.prototype. The Ubik correspondence to frame facets will be discussed
later, in section 4.3.

55

CHAPTER 4. ORGANIZATIONAL STRUCTURE

Frama Renresentation

instance

Ubik Link Representation

Ubik Confiaurator Representation

employee.jill I

Figure 4.2: Frame and Ubik representations of an employee concept, with at-
tributes mgr and salary.

frame

fame name instance name

employee ?

s/ots
name facets

mgr ?
restrictions
handler

salary ?

restrictions
handler

fame name n stance name
employee jill

name facets
mgrmike

salary 30000

link.part

mgr.mike
salary.30000

link.prototype

employee

__

56

CHAPTER 4. ORGANIZATIONAL STRUCTURE 57

4.2 Constructors

A constructor configurator is used to construct an organizational network.
A constructor configurator consists of the following sections:

1. To - specifies the configurator to which links are added.

2. Link - specifies the links to add.

3. Control - specifies the operation. The constructor operations are insert,
delete, and update.

Figure 4.3 illustrates the use of three constructors.

-]1
to

employee.jill
link.value

bill
control
update

Figure 4.3: Configurators can be used to construct an organizational network. The
insert configurator will produce employee.jill. The update configurator will change
employee.jill to employee.bill. The delete configurator will change employee.bill to
employee.

to
employee
link.value

jill
control
insert

to
employee.bill

link.value
bill

control
delete

11

I

T I
I

--

CHAPTER 4. ORGANIZATIONAL STRUCTURE

4.3 Tapeworms

A tapeworm is a configurator which can be attached to another configurator.
There are two types of tapeworms: monitors which report on an event, and
censors which can prevent an event from occurring. A tapeworm is specified
by a configurator with the following sections:

1. Input - specifies the configurator to which the tapeworm is being at-
tached.

2. Action - specifies the action which is to be taken when the tapeworm
triggers.

3. Control - specifies that this is a tapeworm command.

Figure 4.4 illustrates a censor tapeworm which will ensure that a paycycle
is either weekly or monthly. The tapeworm's input section specifies that it
is to be triggered when the paycycle value link for an employee configurator
is modified. The tapeworm's control section specifies that it is a tapeworm
of type censor, and it censors insert, update, and delete operations. The
tapeworm's action section specifies that a boolean expression is evaluated
when the tapeworm is triggered. If the boolean expression produces a false
result, then the operation is censored.

employee.?

Figure 4.4: The tapeworm paycycle censor ensures that a paycycle has the values
weekly or monthly.

link.part

salary.?

mgr.?

paycycle.?----

action

(= ?x (or weekly monthly))

control
tapeworm
type.censor
operation,(insert upda elete

__

58

CHAPTER 4. ORGANIZATIONAL STRUCTURE

Figure 4.5 is a censor which ensures that an employee will not make more
than his or her manager. The tapeworm is attached to the salary value link;
when triggered, the action section executes as follows. The quester configu-
rator with variable ?e as input sends itself to the employee configurator which
caused the tapeworm to trigger. It returns the manager of the employee in
variable ?m. The quester configurator with variable ?m as input sends it-
self to the employee configurator of the manager and returns his salary in
variable ?sm. The boolean expression tests whether the manager's salary is
greater than the employee's. If it isn't, then the operation is censored.

employee.?

Figure 4.5: The tapeworm salary censor ensures that an employee does not make
more than his or her manager.

link.pa

salary

paycg

59

CHAPTER 4. ORGANIZATIONAL STRUCTURE

4.4 Prototypes
A prototype is a concept which best represents a collection of concepts. Sec-
tion 8.5, on prototype development, discusses the construction and recogni-
tion of a prototype. A prototype is used within Ubik as follows:

1. To supply default links for the creation of a new configurator. A con-
figurator in Ubik can change its prototype. When this occurs, the new
configurator keeps the links it inherited from its prototype at the time
of its construction.

2. To supply a class type for the configurators which reference it. When
a configurator changes its prototype, it changes its class.

A configurator can have multiple prototypes. Conflicts between links in
the multiple prototypes can result in a non-viable configurator.

An example of a prototype is shown in figure 4.6. In this example,
the configurator employee is used as a prototype for the manager and non-
manager configurators. These configurators inherit the links from the em-
ployee configurator. The manager configurator is used in turn by the config-
urator manager.mike. This configurator inherits all the links from employee
and manager. The only links shown are part links, but other types of links,
such as tapeworm links, are also inherited.

Figure 4.6: The employee prototype hierarchy consists of an employee configurator
used as a prototype for the configurator's manager and non-manager, and a manager
configurator used as a prototype for the configurator manager.mike.

60

CHAPTER 4. ORGANIZATIONAL STRUCTURE

4.5 Questers

A configurator with a to section is called a quester. The configurator seeks
information from the configuritors specified in the to section. A quester is
used to search the organizational network. An example of a quester has been
given in figure 4.4. The action section required two questers, one to find an
employee's manager, and the other to find the manager's salary.

Labels can be added to links to increase the amount of information spec-
ified by the network. Figure 4.7 shows a network with two sets of labeled
part links: label.employee and label.level. The level-hierarchy is constructed
using the label.level links. The references to employees from the levels is ac-
complished by using label.employee links. Figure 4.8 shows a quester using
the label links. This quester finds all the employees below top management.

managers-taxonomy

level-4ierarchy to middle

top-management , ,o.

v label.lee labelem

middle-management
|label.level oe

first-level- managemen
non-managers-taxonomy

label.level

reguTar supplemental temporary

! v label.employee 4regular-employee e ?e

supplemental-employee
Ilabel.level labe

temporary employee

Figure 4.7: Labeled links are used to distinguish between the level hierarchy and
the employees who are referenced by the hierarchy.

61

CHAPTER 4. ORGANIZATIONAL STRUCTURE

?e

to

level-hierarchy41labeLlevel
top-management

label.level

? > ?e
labelemployee

Figure 4.8: The quester examines the structure of the organization to find all the
employees below top management.

62

CHAPTER 4. ORGANIZATIONAL STRUCTURE

4.6 Distribution

Configurators can represent the distribution of an organization over multi-
ple locations. All configurators representing an organization have a root link
in a distributed configurator. An organization consists of at least one dis-
tributed configurator. A distributed configurator is specified by a location
command in the control section, as shown in figure 4.9. The control section
can also contain a directory command which specifies the other distributed
configurators known to this one. Communications between distributed con-
figurators can be by message passing, as shown in figure 4.10, or by link
transversal, as shown in figure 4.11.

control
location
directory

Figure 4.9: A distributed configurator is one with a location command in its
control section. The directory command specifies the location of other distributed
configurators.

Figure 4.10 shows three distributed configurators: configurator A at lo-
cation.X, configurator B at location.Y, and configurator C at location.Z.
Configurator A sends configurator M1 to B. The location of B is specified in
A's directory. It also sends configurator M2 to C. The location of C is not
in A's directory, so it is explicitly specified in M2's to section.

Figure 4.11 has two distributed configurators, A and B. B is attached to
A with a part link. Links can be followed from A to B, or configurators linked
to B, without specifying a location. The transversing of the distributed links
are automatically handled by Ubik.

All names are local in Ubik. Top-level distributed configurator names
are local to their locations. All other names are relative to the configurators
to which they are linked. Figure 4.12 shows a distributed configurator which
contains multiple occurrences of the same name in different contexts. In
the ubik-inc, the name employee appears once as the top-level name, and
three times in the context of the department configurator. It also appears in
the distributed configurators ubik.massachusetts and ubik.california. Each
of these appearances is called a context of employee. Each context has
a different organizational meaning and appears in different organizational
actions. For example, the employees in the sales department have a commis-
sion attribute to support the paying of commissions; the employees in the
manufacturing department have the shift attribute to support the assigning
of personnel to shifts; and the accounting department has the certification

63

CHAPTER 4. ORGANIZATIONAL STRUCTURE

Figure 4.10: Message passing between distributed configurators.

link.part

control

location.X

Figure 4.11: Linking between models.

B I

link.part

control
location.Y

--

64

CHAPTER 4. ORGANIZATIONAL STRUCTURE 65

attribute to support federal reporting requirements of that department.
An individual is a concept which has an existence independent of its

context. In figure 4.12, the configurators jill, mike, dick, and joe appear in
multiple contexts, yet each refers to an individual. In this example, links
with the label individual connect all the different contexts of jill.

ubik-inc I

link.part

employee

* Jill mike dick

salary salary a

label.individual
, _. ·L J -

department

sales manufacturing accounting
employe em ployee em loyee

' e. dick

commissionon a t cel tion
label.individual

label.individual

ubik.massachusetts I

control

locatlon.new-york

Figure 4.12: Names within Ubik appear within a context. An individual can
appear in multiple contexts. Jill is an individual who appears in three contexts. All
the contexts are connected by links labeled individual.

link.part

employee

mike joe

holidays holidays

control
location.massachusetts

link.part

employee

-* jJIB dick

holidays holidays

control
location.california

I m I

CHAPTER 4. ORGANIZATIONAL STRUCTURE

4.7 Organizational Concepts

A network of configurators represents a theory of an organization's structure
and action. A configurator represents an organizational concept. Ubik's
representation has been influenced by the following observations of human
concepts:

Concepts are not individual objects; they come in clusters. To Murphy
and Medin [54], a cluster of concepts is coherent only if it conforms to a
person's naive theory of the world. Similarity, according to Murphy and
Medin, is insufficient to account for conceptual coherence for the following
reasons:

1. It leads naturally to the assumption that categorization is based solely
on attribute matching.

2. It ignores the problem of how one decides what is to count as an
attribute.

3. It engenders a tendency to view concepts as being little more than the
sum of their constituent components.

Some conceptual clusters have no similar features to hold them together.
Barsalou [11] shows conceptual clusters which are goal-derived rather than
similar. The following objects form a goal-derived conceptual cluster: chil-
dren, jewelry, portable TVs, paintings, manuscripts, and photograph albums.
The goal that defines the cluster is taking things out of one's home during a
fire.

A theory forms a conceptual cluster according to Carey [18], by con-
straining induction, explicating causal notions and ontological commitments,
analyzing whether terms refer to natural kinds, and specifying aspects of the
initial state. A theory is characterized by the phenomena in its domain, its
laws and otL_ explanatory mechanisms, and the concepts that articulate
the laws and the representations of the phenomena. Explanation, to Carey,
is at the core of theories. A concept is not a concept in a theory unless it
has an explanatory position in the theory. She uses this view to show how
children develop concepts between the age of five and ten. For example,
the child's concept of eating at the age of five is not a biological concept
but a psychological concept. The child associates eating with the ritual of
the family dining. At ten, the child associates eating with the biological
transformation of food. Eating, although the word is the same, is a dif-
ferent concept at the age of five than at the age of ten, because it has a
different explanatory position in a different theory. Similarly, the concept
of employee within an organization is a different concept depending on the
context in which it appears. The concept of an employee to the personnel
department represents a person with a name and address, and a salary. The
concept of an employee to the legal department represents a person who falls

66

CHAPTER 4. ORGANIZATIONAL STRUCTURE

under the labor relations law. The concept of an employee to the manufac-
turing or sales department is a person who participates in the activities of
his respective department. Within Ubik, a concept exists within a network
of other concepts and actions. The position of a concept within this network
determines its meaning to the organization which it is representing.

Organizations support the assembly of resources in order to perform one
or more tasks in a distributed and parallel manner. An organization can be
thought of as a coherent collection of conceptual clusters. The division of
labor within an organization permits experts in different fields of endeavor to
work together on common goals. This notion of the coordination of multiple
experts is the basis of Minsky's Society of Mind [53]. Putnam [58] points
out that the idea of division of labor extends to the meaning of concepts in
multiple minds within a community. A concept is a sociological idea which
requires the cooperation of multiple individuals. Gold is an example of a
distributed concept. Each member of a community is said to know what
gold is if they acquire the stereotype of gold for that community. Putnam
calls obtaining this stereotypical concept linguistic obligation. The linguistic
obligation for gold in our community might only be that it is yellow, valuable,
and used in jewelry. The division of labor of the concept of gold occurs
because there are members of the community who have a greater knowledge
of the concept of gold: there are assayers who can determine if something
is gold, there are financial experts who can tell the monetary value of gold,
and there are jewelers who can fashion gold into jewelry.

67

Chapter 5

Action

Organizational action is both interactive and cyclic. The interactive actions
consist of unscheduled, although not necessarily unplanned, activities. Ex-
amples are: order entry, credit checks, and ad-hoc queries. Cyclic actions
are the scheduled activities. Examples are: the closing of books and other
accounting cycles, invoice billing, payroll, and scheduled reports. Action is
initiated by the receipt of a message, and all the actions are executed in par-
allel with each other. A configurator, on the receipt of a message, performs
one of the following:

1. Execute - the message is accepted and processed by the action.

2. Reject - the message fails to match an input pattern associated with
the action.

3. Batch - the message cannot be currently processed. It is batched until
it can be processed.

Action can be performed explicitly with the receipt of a message by a
configurator, or implicitly with the interception of a message by a tapeworm.
Messages can be sent explicitly to configurators or can be implicitly sent
using flow links.

Ubik action is based on the actor model of computation. Actors are a
computational model pioneered by Carl Hewitt [37,40]. The message passing
semantics group at MIT, under Hewitt's direction, has developed the theory
[9,20,36] and implementation [43,48,49,51] of actor systems. An actor is a
computational object with the following properties:

1. Contains references to other actors. It can dynamically obtain addi-
tional actor references.

2. Accepts a message which can cause it to change its state. A change of
state is accomplished by changing its references.

3. Sends a message asynchronously to an actor it references.

68

CHAPTER 5. ACTION

Actors execute in parallel with each other. Synchronous message sending,
such as calls to subroutines, requires a collection of actors which communi-
cate using continuations [23,40]. Actors can be serialized or unserialized.
A serialized actor locks itself when it receives a message. All subsequent
messages are queued until the actor unlocks. A serialized actor is used for
actors which change their state, such as bank accounts. Unserialized actors
can always accept messages. An unserialized actor is similar to program
functions which have no internal state.

5.1 Message Passing

The most basic communication in Ubik is the sending of a message asyn-
chronously, as illustrated in figure 5.1. In this example, configurator A sends
configurator M2 as a message to B. A flow link can be used to specify default
paths for messages leaving a configurator. The example in figure 5.2 uses a
flow link to specify the sending of all M2 messages from A to B.

Figure 5.1: Configurator A sends message M2 to configurator B.

l l ~ llflow. >

Figure 5.2: A flow link is used to specify that all messages from configurator A
are to be sent to configurator B.

Synchronous communication is the sending of a message and waiting for
a reply. Replies are handled automatically by the Ubik system if a vari-
able in the output section of a nested configurator is referenced within the

69

CHAPTER 5. ACTION

outer configurator. Figure 5.3 illustrates the explicit specification of a re-
ply by an end-user with the use of the reply command in a configurator's
control section. In this example, the output operation sends a purchase-
requisition to the purchasing department and expects a purchase-order in re-
ply. The purchase-requisition contains a reply command which specifies that
a purchase-order is to be returned with the purchase-order value link bound
to the variable ?x. The department.purchasing binds the puchase-order.1209
to the output configurator pattern purchase-order.?po. Ubik unifies the re-
ply configurator pattern with the output configurator pattern, resulting in
the variable ?x being bound to the value 1209.

[purhase-order.120]

purohase-requition640

to

department.purchain

control

1 puen -rer.7z

Figure 5.3: The purchaser sends a purchase-requisition message to the purchasing
department. The purchasing department replies with a purchase-order.

action

purchase-requisition.640 I
to

department.purchan

control

reply- I

_

70

CHAPTER 5. ACTION

Communications can be sent to multiple destinations, as illustrated in
figure 5.4. In this example, the notification-of-receipt message is sent to the
purchasing and accounting departments.

Figure 5.4: The notification-of-receipt message is sent to the multiple destinations
of department.purchasing and department.accounting.

action notification-of-receipt I

notification-of-receipt I

link.part
po. 30

to

department.purchasing

department.accounting

link.part
po.3 0

to
department.purdhasing

notification-of-receipt L
link.part
po.30

to

department.accounting

!

71

.......>

------->

CHAPTER 5. ACTION

5.2 Or Parallelism

Or parallelism is the triggering of more than one configurator by the receipt
of a message. An example of or parallelism is shown in figure 5.5. In this
example, the employee message is received by the assign-employee configu-
rator. The message is sent to the legal and personnel configurators, which
are flow linked to assign-employee. Both these configurators trigger when
they receive the message.

assign-employee I

Figure 5.5: Or parallelism is the receiving of the same messages by multiple con-
figurators.

employee.?

link.flow

I

72

CHAPTER 5. ACTION

5.3 And Batching
Applications frequently require the receipt of multiple messages before an
action can take place. Batching is specified by an and expression in a config-
urator's input section. All the configurators in the and expression must be
matched before the configurator will trigger. Figure 5.6 illustrates the use of
and batching. In this example, a receiving-ticket and an item-received with
the same purchase-order number trigger the department.shipping configura-
tor. Unmatched input messages are automatically linked to the configurator
with a batch link by the Ubik system. In this example, the receiving-tickets
with purchase-order numbers 10, 11, and 12 are waiting in the batch for
item-received messages with those numbers.

department.shipping I

Figure 5.6: And batching is used to delay the sending of the receiving-ticket until
a matching item-received form has arrived.

and

link.batch

receiving-ti-fcet !receiving-ticket receiving-ticket

i nkpart link.purt link.part

po.10 po.ll po.30

.

73

CHAPTER 5. ACTION

5.4 Bureaucratic Paths

A bureaucracy contains multiple layers of middle management which control
the flow of messages and tasks. Bureaucratic paths are flow links attached
to configurators. The configurators take bureaucratic action by redirect-
ing the message flow. In figure 5.7, the flow.employee-message link feeds
employee-messages into the exceptional-employees configurator. This con-
figurator sends the employee-message to all the employees who make more
than their managers. It operates as follows:

1. The quester with the empty input section and the output section with
variables (?emp, ?s, and ?m) finds all the employees with their manager
and salary.

2. The quester with the input section with variable ?m and the output
section ?sm finds the salary for each manager.

3. The boolean tests the employees' salary against the managers'; only
the employees whose salary are greater than their managers will remain
bound to the variable ?emp.

4. The input message which is in variable ?message is sent to all the
employees specified in variable ?emp.

Figure 5.7: A bureaucratic path is a flow link which feeds into a configurator, which
redirects the message flow. In this example, the exceptional-employees configurator
sends the message to all the employees who make more than their manager.

74

CHAPTER 5. ACTION

5.5 Serializers

A serialized configurator locks itself when it receives a message. It is unlocked
when it is updated or explicitly unlocked with an unlock operation. A serial-
ized configurator is specified with a serialize command in its control section.
Figure 5.8 shows a bank account application. The bank-account configura-
tor contains four configurators flow linked to it: balance, balance-handler,
deposit-handler, and withdrawal-handler. The balance configurator is se-
rialized. The bank-account configurator receives either a balance-request,
withdrawal, or deposit message. The message is forwarded along the ap-
propriate link to the handler which will accept it. The handlers work as
follows:

1. The input section of the bank-account configurator specifies that the
configurator will accept the messages balance-request, withdrawal, and
deposit. Its link.part section specifies the balance configurator which
will contain the balance for the bank account. It is a serialized con-
figurator. The link.flow section contains the configurators which pro-
cess the input messages. The input section of the configurators in
the link.flow section specify the messages each configurator will pro-
cess. The output section specifies the variable ?t which will contain
the transaction slip. The bank-account configurator's output section
returns the transaction slip, as specified in variable ?t, to the configu-
rator which sent the bank-account message being processed.

2. The balance-handler configurator is a quester which is sent to the bal-
ance configurator when triggered, and returns its value in variable ?b.
The output section creates a transaction slip with the balance.

3. The deposit-handler is triggered by the receipt of a deposit message.
Its action section contains an update constructor which will update
the balance by the amount deposited. The output section creates a
transaction-slip which returns the amount of the deposit.

4. The withdrawal-handler is triggered by the receipt of a withdrawal
message. Its action section contains a complex constructor which is
sent the to the balance configurator. The action section of the con-
structor is written in Ubik linear syntax. It contains a let statement
which binds the variable ?new-balance to the balance, minus the with-
drawal amount. Next, a condition statement is executed as follows:

(a) If ?new-balance is equal to or greater than zero, then the balance
is updated to the value bound to the ?new-balance variable us-
ing an update operation. After completion, the update operation
unlocks the serialized balance configurator. In parallel, a trans-
action slip is created by the reply operation. The reply operation
binds the transaction slip to the output variable ?t.

75

CHAPTER 5.

(b) If ?new-balance is less than zero, then the balance configurator
is unlocked with the unlock operation and the reply operation
creates a transaction slip.

Figure 5.8: The bank account consists of four configurators. The balance configu-
rator is serialized; it will lock when it receives a message.

ACTION 76

Chapter 6

Tapeworms

Simon [61] notes the complexity of organizational goals as follows:

In the decision-making situations of real life, a course of action,
to be acceptable, must satisfy a whole set of requirements, or
constraints. Sometimes one of these requirements is singled out
and referred to as the goal of the action. But the choice of one
of the constraints, from many, is to a large extent arbitrary. For
many purposes it is more meaningful to refer to the whole set of
requirements as the (complex) goal of the action.

Goals in artificial intelligence research usually refer to objects which
search for solutions in a problem space. Using this interpretation, the prob-
lem space within Ubik is the organizational network. The searching objects
are configurators of type constructors, questers, and tapeworms. The search
space is constrained by the power conflicts between the search objects as rep-
resented by sponsors. The goals of an organization are implicitly represented
by the structure of the organization and, given a situation, the organization
will tend to react in a way largely predetermined by its structure. Tape-
worms add to the organizational structure by providing constraints within
and between the configurators which comprise the network.

Tapeworms and questers are used for many purposes within Ubik, some
of which follow:

* Monitor the applications.

* Maintain application constraints.

* Censor or replace organizational activity which, if allowed to continue,
would cause an application error.

* Seek information or initiate activity throughout the distributed orga-
nization.

77

CHAPTER 6. TAPEWORMS

A tapeworms has been described by John Brunner in "Shockwave Rider"
[15] as a computational entity which lays in wait until a condition occurs to
trigger it. A tapeworm has a head, which is used to navigate the tapeworm
into the part of the organization in which it can take action, and a tail
which contains the action. Tapeworms can have both positive and negative
effects. To Brunner, a tapeworm is positive in that it provides a way for the
hero of his story to blackmail the government into keeping a public interest
group on the national computer-net. If the government, in the story, acts
against the group, the hero's tapeworm will wipe out important databases
accessed though the net. To the government, though, the tapeworm has a
negative effect. The communication mechanism used by the tapeworm is
the same mechanism used to run nationwide distributed applications. In the
biological analogy, a virus (which has a negative effect) uses the same mech-
anism the body uses to run body-wide applications. Rather than something
to be avoided, tapeworms are becoming an important computer processing
technique, as organizational applications spread over distributed networks.

A tapeworm is a configurator with a tapeworm command in its control
section, as shown in figure 6.1. A tapeworm has the following attributes:

control

type
installation
operation
duration

Figure 6.1: Tapeworm

1. Installation - how the tapeworm is to be installed. The values are
commutative and not-commutative.

2. Type - specifies whether the tapeworm is a monitor or censor.

3. Operation - the operation which will trigger the tapeworm. The
values are insert, delete, update, send, receive, and query.

4. Duration - duration of the tapeworm. The values are as follows:

(a) Fire - the number of times this tapeworm will fire.
(b) Continuous - the tapeworm is of continuous duration. This is

the default.
(c) Time-function - a time function which specifies the lifetime of

the tapeworm.

78

CHAPTER 6. TAPEWORMS

6.1 Installation

The tapeworm is installed on a configurator within an organizational net-
work. The to section specifies to which configurators the tapeworm is to be
attached. The input section specifies which configurators are being moni-
tored or censored. In figure 6.2 tape-l's to section specifies that the tape-
worm is attached to configurator A, and the input section specifies that it is
also monitoring any modification to A. Tape-2's to section specifies that the
tapeworm is to be attached to configurator A, and the input section specifies
that it is monitoring configurator A and B. Tape-2 is triggered only when
both configurators A and B are modified.

tapeworm

r.................>

-)

tape-1

A

to
A

control
tapeworm I

installation.commutitive
type.monitor
operation.(insert delete update)

Figure 6.2: Tapeworm tape-1 is attached to and monitoring configurator A. Tape-
worm tape-2 is attached to configurator A and is monitoring both configurators A
and B.

I A I

control

tapeworm I

installation.commutitive
type.monitor
operation.(insert delete update)

79

JL

I f

I

CHAPTER 6. TAPEWORMS 80

The concept of commutativity comes from the scientific community meta-
phor model proposed by Kornfeld and Hewitt [45]. This model describes
how communities of distributed scientists communicate. The model is com-
posed of distributed knowledge bases, consisting of predicates and goals,
which travel between knowledge bases. Because of the distribution, at any
one knowledge base a goal might arrive before a predicate, or a predicate
might arrive bpfore a goal. For a non-commutative knowledge base, if the
goal arrives before the predicate, it will never be satisfied, even though the
knowledge and the goal are in the same knowledge base. In a commuta-
tive knowledge base, the goal will be satisfied even if it arrives first. In
Ubik, a tapeworm has the installation attribute of either commutative or
non-commutative. These are used as follows:

1. Commutative - the tapeworm triggers on all the configurators in the
taxonomy at the time of its installation.

2. Non-commutative - the tapeworm triggers on only the monitored
operations which arrive after installation.

Figure 6.3 illustrates the use of this attribute.

employee

link.value

jill

Jonn

joe

A 1

Figure 6.3: The tapeworm is installed with the commutative attribute. If message
M arrives before the tapeworm A, or A arrives before M, the results will be the
same, that is the tapeworm will be triggered with employees: jill, john, joe, and
mike. If the tapeworm has the non-commutative attribute and if M arrives before
A, the tapeworm will be triggered with employee mike; if A arrives before M, the
tapeworm will not be triggered.

employee.?e
n

employee.?

control

tAneworrn I
type.monitor
operation.insert
installation.commutiUtive

.

--- ·------ ·-----

CHAPTER 6. TAPEWORMS

6.2 Types

The tapeworm type attribute has the values monitor and censor. A monitor
tapeworm is triggered in parallel with the triggering operation. When a
censor is triggered, it halts the execution of the triggering operation. The
censor's action section is evaluated. The action section contains a boolean
expression. If the boolean produces a true value, the triggering operation is
allowed to continue; if it produces a false value, the triggering operation is
censored.

Censors are used in maintaining organizational constraints and in devel-
oping organizational applications. Once an application is operational and
being used by multiple other applications, it becomes difficult to restruc-
ture the application. An alternative is for the organization to anticipate
under what conditions an application is not working, and censor these con-
ditions. Minsky [53] uses this observation to include censors as one of the
basic cognitive functions of the mind. As concurrent systems become more
complex, and more central to an organization's operations, censors, rather
than rewriting, will be used to augment and restrict applications.

6.3 Operations

Operations specify the activity on a configurator which will trigger an at-
tached tapeworm. The operations are as follows:

1. Insert - Insert performed by an insert constructor.

2. Update - Update performed by a update constructor.

3. Delete - Delete performed by a delete constructor.

4. Query - Query performed by the quester.

5. Send - Sending of a message by a configurator.

6. Receive - Receiving of a message by a configurator.

The operation attribute can contain multiple operations. A tapeworm
which would trigger on the modification of a configurator would specify the
operations insert, update, and delete.

Modern knowledge base systems such as Kee [3] and GoldWorks [1] use
multiple types of high-level objects to perform only some of the functions
which Ubik performs. By taking a unified approach in supporting the mecha-
nisms of application development, Ubik simplifies the use of the mechanisms,
and supports the use of combinations of the mechanisms. The following is a
list of knowledge base system concepts, followed by the corresponding Ubik
concept:

81

CHAPTER 6. TAPEWORMS

* forward rule - commutative tapeworm with operations insert, delete,
and update.

* backward rule - commutative tapeworm with operation query.

* when-modified daemon - non-commutative tapeworm with operations
insert, delete, and update.

* when-referenced daemon - non-commutative tapeworm with operation
query.

Ubik supports the following variations of the above concepts not found
in either Kee or Goldworks. Some of the variations are as follows:

* rule-insert - commutative tapeworm with operation insert.

* when-receive - non-commutative tapeworm with operation receive.

* when-send - non-commutative tapeworm with operation send.

6.4 Tapeworm and Quester Examples

Some common uses of tapeworms and questers are illustrated in this sec-
tion. They are freedom of action tapeworms, parasitic tapeworms, and self-
propagating questers.

6.4.1 Freedom of Action Tapeworms

A freedom of action tapeworm is the use of a tapeworm to monitor boundary
conditions on the operation of configurators. An example is shown in figure
6.4, where the manager of the purchasing department monitors the price the
buyers are paying for purchased items. When a buyer purchases an item for
over a predetermined maximum price, a message is sent to the manager. The
purchasing department is represented by a configurator with the following
sections:

1. Input - purchase-requisition which is received by the purchasing de-
partment.

2. Output - purchase-order which is produced by a buyer in the depart-
ment.

3. Link.part - the manager configurator and files configurator are part
linked to the department.purchasing. The files configurator has the
maximum-item-cost part linked to it.

4. Link.flow - The sections configurator is flow linked to the depart-
ment.purchasing. The sections configurator has the following sections:

82

CHAPTER 6. TAPEWORMS

(a) Input - purchase-requisition which is received from the depart-
ment.purchasing. The purchase-requisition contains a category
field. The to section of the purchase-requisition form sends the
form to the configurator which has the same name as the category
on the form.

(b) Output - purchase-orders are sent from the sections configurator.

(c) link.part - the following configurators are part linked to the sec-
tions configurator: computers, chemicals, office supplies, and gen-
eral purchases. These configurators accept purchase-requisitions
as input and produce purchase-orders. Each of these configura-
tors has a buyer configurator flow linked to it. The buyer accepts
purchase-requisitions and produces purchase-orders.

The freedom of action tapeworm is attached to each buyer in the purchas-
ing department, as shown in figure 6.4. It will trigger when a purchase-order
is sent by the buyer.

The freedom of action tapeworm is shown in figure 6.5. It has the fol-
lowing sections:

1. The to section specifies that the tapeworm will be attached to all
buyers in the department.purchasing. The configurator in the link.part
section of the department.purchasing has a name of *?. This is a
wildcard which specifies that all the part links emanating from the
department will be traced until a buyer is found. In this example the
buyers will be found after tracing through the sections configurator
and all configurators link.flow connected to it. Since the tapeworm
operation is send, the tapeworm will be attached to the output section
of the configurator. Any message sent will be bound to the variable
?po.

2. The action section contains an and expression with three conjuncts.
The configurator with input variable ?po will find each part number
and its corresponding unit price. It will return the part number in
variable ?pn and the unit price in variable ?up. The configurator with
input variable ?pn will look up the maximum cost of that item and
return it in variable ?mc. The boolean expression will check if the unit
price is greater than the maximum cost. If it is, a copy of the purchase
order is sent to the department.purchasing's manager.

83

CHAPTER 6. TAPEWORMS

tapwprm tpewqom tapeworm

. 1. . ..

freedom-of-action-tapeworm

Figure 6.4: Freedom of action tapeworm which will trigger when a buyer in the
purchasing department sends a purchase order.

84

CHAPTER 6. TAPEWORMS

freedom-of-action-tapeworm I

po I

to
purchase-order.?po

link.part

manager

to
department.purchasing

link.part

link.part

action

and

?renc)

control

type.monitor
operation.send

Figure 6.5: This freedom of action tapeworm is attached to the buyers in the
purchasing department. It monitors the price of the items the buyer orders.

85

CHAPTER 6. TAPEWORMS

6.4.2 Parasitic Tapeworm

A parasitic tapeworm is a tapeworm which attaches itself to a configurator
which is sent as a message. Figure 6.6 shows a parasitic tapeworm which
travels with the purchase-order, triggering when the purchase-order's request
date has arrived. The tapeworm has the following sections:

1. The to section attaches the tapeworm to all the buyers in the purchas-
ing department.

2. The action section executes when the buyer sends a purchase-order.
It contains the overdue purchase order tapeworm. This tapeworm
attaches itself to the purchase order being sent. It has the following
sections:

(a) The to section attaches the tapeworm to the purchase-order.

(b) The input section finds the date-requested and buyer fields from
the purchase-order.

(c) The control section contains a timer command. The timer com-
mand triggers the tapeworm at the purchase-order date-requested,
as specified in the variable ?due.

(d) The output section sends a copy of the purchase order to the
buyer who created it.

3. The control section specifies that the parasitic-tapeworm is of type cen-
sor. This tapeworm stops the purchase-order before it is sent, attaches
the overdue-purchase-order-tapeworm to the purchase-order, and then
allows the sending of the purchase-order to continue.

86

CHAPTER 6. TAPEWORMS

parasitic-tapeworm I

purchase-order.?po

to
department.purchasingI

link.part

action

overdue-puch.ise-order-tapevorm

purchase-order.?po

link.part
date-requested.?due b
buyer.?b

to

purchase-order.?po

control
timer.?due

ty e.mon r

control

type.monitor
operation.send

Figure 6.6: The configurator named parasitic-tapeworm attaches itself to the buy-
ers in the purchasing department. When a buyer sends a purchase-order, the action
section of the tapeworm contains another tapeworm which installs itself on the
purchase-order. It triggers when the purchase-order's due date arrives.

I

87

CHAPTER 6. TAPEWORMS

6.4.3 Self-propagating Quester

A self-propagating quester is one which reissues itself when it arrives at
its destination. Figure 6.7 shows a self-propagating quester which sends
itself to all the distributed configurators contained in the local distributed
configurator's directory. When it arrives at its destination, it reissues itself.
The action section of the quester operates as follows:

1. The configurator named quester searches through all the configurators
in the current location, looking for purchase-orders from the Holland
Shade Company.

2. The configurator with output variable ?other-location is a top level
distributed configurator, as specified in its control section. The vari-
able ?other-locations is bound to all the locations which appear in the
directory.

3. The configurator named find-locations finds the locations not yet vis-
ited. It has as input the variables ?visited and ?other-locations. ?vis-
ited contains all the locations the purchase-order-quester has already
visited. ?other-locations contains all the locations known to the top-
level distributed configurator. The configurator produces an output
variable ?not-yet-visited which contains the set-difference between the
?other-locations and the ?visited-locations. The configurator also up-
dates the visited configurator with the union of the ?visited and ?other-
locations.

4. The configurator named ?poq is bound to the purchase-order-quester
configurator. This results in the purchase-order-quester sending itself
to all the locations specified in the ?not-yet-visited variable.

88

CHAPTER 6. TAPEWORMS

purchase-order-quester.?poq I

?c

linl.part

visited.?visited

action

I

?poq
.no -ye -vlsi e

to
location.?not-yet-visited

Figure 6.7: The purchase-order-quester locates all the purchase-orders for
company.holland-shade-company, and also sends itself to all the distributed con-
figurators it has not yet visited.

quester ?other-location

control
top-level

l directory I

location.?other-locations

I ?
_ ___1 to

purchase-order.?po

company.holland- shade--companyr

89

I

Chapter 7

Power

An organizational network can consist of multiple configurators, each ca-
pable of executing in parallel. A distributed configurator is one which has
a computer network location. Distributed configurators, which reside on
different computational devices, can execute in parallel with each other.
Parallel execution is also possible within a computer network location, if
that location supports computation over multiple processors. Organizations
are structured so that applications can execute in parallel. Even thought
there is a potential for massive parallel execution within an organization,
the parallelism must be controlled for the following reasons:

1. The organization can generate a greater amount of parallel action than
there are processors. The parallel action must be mapped to the pro-
cessors, so that the application's time constraints are met.

2. An organization needs a focus of attention. Even if there is less action
available for execution than processors, it might not be appropriate to
execute all available action.

Power, according to Scott [59], is the way organizations focus their at-
tention. Scott apportions power among organizational subunits as follows:

1. Subunits that cope more effectively with environmental uncertainty
are more likely to acquire power.

2. The lower substitutability of a subunit, the greater its power.

3. The more central and pervasive a subunit, the greater its power.

A Ubik configurator has a processing power given to it by a sponsor con-
figurator. Resource control within Ubik is determined by the relationship of
the configurators te 'heir sponsors. The following is some of the information
which must be considered when adjusting power within an organization:

90

CHAPTER 7. POWER

1. Pervasiveness of a goal throughout the organization. A goal in Ubik
is represented by questers and tapeworms. A goal is pervasive if a
quester references many configurators, or a tapeworm is attached to
many configurators. A pervasive goal gets more power.

2. Competing active configurators using the same sponsor. The system's
power gets divided among the configurators, reducing the power for
each one.

3. A configurator which interfaces with the environment can control the
message input rate to the organization. If the configurator operates
interactivrely, then it must have enough resources to support real-time
message interaction.

Formal power is largely determined by how the organization is separated
into subsystems, and how the subsystems are coordinated. Each subsystem
has a relatively stable interface which determines what part of the organi-
zation and environment affects it, and also what parts it can ignore. March
and Simon [52] use the term bounded rationality to describe this interface.
These subsystems are also said to satisfice, in that they are not searching
for optimum solutions to their goals, but just acceptable solutions. Once
these interfaces are established, the organization has to allocate some of its
resources to maintaining them. The competition for power described above
is one of the ways in which the organization maintains bounded rationality.

The competition for power also leads to organizational behavior which is
not preplanned, but is an emergent behavior of the system from the action
of its parts. Adam Smith calls this emergent behavior the invisible hand.

A sponsor with linked configurators is shown in figure 7.1. A sponsor is
a configurator with a sponsor command in its control section. A sponsor has
the following attributes.

1. Regeneration-cycles - the amount of cycles generated in each sponsor
regeneration. The cycles are used to determine the processing time of a
configurator. The cycles are evenly distributed to all the configurators
attached to the sponsor. The cycles are given when the configurator
requests its cycles, so that a sponsor does not need to keep track of
the location of the configurators linked to it.

2. Regeneration-time - the time between sponsor regeneration. When a
sponsor regenerates itself, a new collection of cycles is available for
distribution.

3. State - the state of the sponsor. The states are as follows:

(a) Inhibit - the sponsor will not distribute cycles. Cancellation of
configurator action is accomplished by inhibiting the sponsor.
The attached configurators will continue operating until they run

91

CHAPTER 7. POWER 92

out of cycles. When they ask the sponsor for more cycles, they
will be inhibited from further action.

(b) Activate - the sponsor distributes cycles.

Each configurator can have a power command in its control section. The
power command has the following attributes:

1. Cycles - the amount of cycles the configurator currently possesses.

2. Saturation-level - the maximum amount of cycles that the configurator
can possess.

x I
link.part

Figure 7.1: A sponsor with linked configurators.

oontrol
locaton

CHAPTER 7. POWER

The sponsor model of control was first used by Kornfeld and Hewitt in
the scientific community metaphor [45] to simulate the control a sponsoring
agency, such as the National Science Foundation, has on directing scientific
research. Kornfeld [44] uses sponsors to control parallel reasoning. Gold-
Works [1] uses sponsors to control reasoning in a non-parallel expert system.
Acore [51] uses sponsors to control an actor based system of parallel execut-
ing message passing objects. Ubik uses a revised sponsor model to control
organizational power.

The Ubik sponsor cycle works as follows:

1. Regeneration: A sponsor gives cycles to requesting configurators.
When a sponsor gives up all its cycles, all further requests are batched
until regeneration time. At regeneration time, the sponsor replenishes
its supply of cycles. Both the supply of cycles for a sponsor and the
regeneration time are adjustable. Also, which sponsors can regenerate
cycles is adjustable.

2. Fair Distribution: During a regeneration cycle, a sponsor will only
honor one request from a configurator to process a message. All sub-
sequent requests will be batched until the next regeneration cycle.

3. Delegation: Some sponsors cannot regenerate cycles; these sponsors
will delegate the configurator's cycle request to another sponsor. Con-
figurators attached to delegation sponsors will probably have less power
than configurators attached to regeneration sponsors, because they will
have more configurators to compete with for cycles.

4. Cancellation: A sponsor can take a request to cancel a configurator.
This cancellation request will result in the sponsor sending a cancel
message to the canceled configurator when the configurator requests
cycles for processing a message. The cancellation request will only be
in effect for a specified period of time.

93

CHAPTER 7. POWER

7.1 Sponsor Structure
A sponsor structure consists of a hierarchical collection of sponsors and con-
figurators, where the nodes are sponsors and the leaves are sponsors and
configurators. Sponsors in a sponsor structure both regenerate cycles and
distribute cycles. Not all the sponsors are regenerating sponsors, but all the
sponsors distribute cycles. The distribution of regenerating sponsors in a
structure determine how the sponsor structure allocates power.

Centralized sponsor control, as shown in figure 7.2, consists of the sponsor
at the head of the structure regenerating cycles, and the rest of the sponsors
distributing the cycles. Power in this type of structure is authoritarian,
where the all the action is subservient to the head sponsor. In this example,
sponsor S1 generates 20 cycles. 6 cycles are distributed to sponsors S2, S3,
and D. 6 cycles are distributed to A. 3 cycles are distributed to B and C.

x l

link.part

Figure 7.2: Centralized sponsor control consists of one central sponsor giving out
cycles to all the actions and configurat.ors in its structure.

control
loation

94

CHAPTER 7. POWER

Decentralized control, as shown in figure 7.3, consists of each action
having its own sponsor. Formal power in this type of control is evenly
distributed. In this example, configurators A, B, and C each receive 10
cycles.

x 1

link.part

control

location

Figure 7.3: Decentralized control with the use of multiple sponsors. Each of these
actions gets the full cycles of its attached regenerating sponsor.

95

CHAPTER 7. POWER

Coordinated sponsor control, as shown in figure 7.4, is achieved by hav-
ing multiple regeneration sponsors in the sponsor structure. This is the
most flexible type of control, in that any sponsor in the structure can be
dynamically made into a regeneration or non-regeneration sponsor, in order
to adjust the organization's actions to its needs. In this example, 6 cycles
are given to S2, S3, and D. 6 cycles are given to A. S3 generates 10 cycles
in addition to the 6 given to it from S1; therefore, B and C receive 8 cycles
each.

link.part

control

location

Figure 7.4: Coordinated control is achieved by having multiple regeneration spon-
sors in one structure.

-

96

CHAPTER 7. POWER

7.2 Interacting Sponsors

When a configurator with a sponsor is sent to another configurator with a
sponsor, the cycles from both sponsors are combined. In figure 7.5, config-
urator A with sponsor S1 is sent to configurator B with sponsor S3. The
processing power of B to process the message A is calculated by combining
the cycles in the power command for each configurator. In this example, it
would be 15. When the sponsors regenerate the cycles in each configurator,
these cycles will also be combined. The saturation level will be the maximum
of the saturation level for A or B.

x I

Figure 7.5: Sponsor interaction occurs when a configurator is sent to another as a
message. A and B will combine their cycles when B processes message A.

link.part

control

InrPtnnI
I u~u

97

Chapter 8

Development

Organizations continually change: the environment in which they reside
changes; new applications are added; old applications are extended. A com-
puter system which represents the organization has to change so that it is
still relevant to the organization. The failure to change leads to the obsoles-
cence of the computer system. In traditional computer systems, maintain-
ing a system is costly. In these systems, the computer representation of the
organization is quite different from the human mental conception of the or-
ganization. The translation between these representations is difficult. If the
original system developers are no longer involved with the system, much of
the translation knowledge is lost. Ubik's representation of the organization
is at a higher, more human, understandable level. In addition, Ubik can
read and reason about its representation. This self-reasoning, along with
Ubik's control of the action, permits it to measure the mismatch between
the computer representation of the organization and the actual organization.
Some of the ways this mismatch appears within Ubik follows:

1. The rate and kind of errors generated.

2. The difference in representation between a prototype, and the config-
urators generated from the prototype.

3. The rate of increase in the number of censors placed on frequently
activated procedures.

4. The number of deadlines missed.

5. The number of frequently executed goals which cannot be solved.

6. The amount of organizational deadlock.

7. The rate of increase in suspended messages.

8. The increasing interactive processing in established applications. This
indicates that the established application coverage is decreasing.

98

CHAPTER 8. DEVELOPMENT

Development in Ubik occurs in two ways: from an interactive dialogue
between Ubik and an end-user, or by Ubik using the mismatch measures in
order to reduce the difference between its internal representation and the
external organization. Ubik performs the following type of developments:

1. message elimination

2. regrouping

3. reclustering

4. regression

5. prototype development

6. bureaucratic development

Reorganization must take into account the full range of organizational
activities. If an organization does not have to react to a changing environ-
ment, then the reorganizing will continue until the organizational descrip-
tion becomes saturated, that is until the organizational description perfectly
match the organizational action. Saturation is a concept described by Stan-
ley Cavell in Pursuits of Happiness, The Hollywood Comedy of Remarriage
[19] in the context of genre.

... a narrative or dramatic genre might be thought of as a
medium in the visual arts, or a "form" in music. The idea is that
the members of a genre share the inheritance of certain condi-
tions, procedures and subjects and goals of composition, and that
in primary art each member of such a genre represents a study
of these conditions, something I think of as bearing the responsi-
bility of the inheritance. There is, on this picture, nothing one is
tempted to call the features of a genre which all its members have
in common. First, nothing would count as a feature until an act
of criticism defines it as such. (Otherwise it would always have
been obvious that, for instance, the subject of remarriage was a
feature, indeed a leading feature, of a genre.) Second, if a mem-
ber of a genre were just an object with features then if it shared
all its features with its companion members they would presum-
ably be indistinguishable from one another. Third, a genre must
be left open to new members, a new bearing of responsibility for
its inheritance; hence, in the light of the preceding point, it fol-
lows that the new member must bring with it some new feature
or features. Fourth, membership in the genre requires that if an
instance (apparently) lacks a given feature, it must compensate
for it, for example, by showing a further feature "instead of" the
one it lacks, Fifth, the test of this compensation is that the new
feature introduced by the new member will, in turn, contribute

99

CHAPTER 8. DEVELOPMENT

to a description of the genre as a whole. But I think one may
by now feel that these requirements, thought about in terms of
"features," are beginning to contradict one another ...

Take an example. I have mentioned that one feature of the
genre of remarriage will be the narrative's removal of the pair to
a place of perspective in which the complications of the plot will
achieve what resolution they can. But It Happened One Night
has no such settled place; instead what happens takes place on
the road. I say that what compensates for this lack is in effect
the replacement of a past together by a commitment to adven-
turousness, say to a future together no matter what. But then it
will be found that adventurousness in turn plays a role in each of
the other films of remarriage. And one may come to think that
a state of perspective does not require representation by a place
but may also be understood as a matter of directedness, of being
on the road, on the way. In that case what is "compensating"
for what? Nothing is lacking, every member incorporates any
"feature" you can name, in its way. It may be helpful to say
that a new member gets its distinction by investigating a partic-
ular set of features in a way that makes them, or their relation,
more explicit than in its companions. Then as these exercises
in explicitness reflect upon one another, looping back and forth
among the members, we may say that the genre is striving to-
ward a state of absolute explicitness, of expressive saturation.
At that point the genre would have nothing further to generate.
This is perhaps what is sometimes called the exhaustion of con-
ventions. There is no way to know that the state of saturation,
completeness of expression, has been reached.

8.1 Message Elimination

Message elimination refers to the partial elimination of messages used to run
applications within organizations. Eliminating messages reduces the cost of
communicating the message and the coordination required to respond to
the message. The cost of message elimination is the removal of the con-
trol supported by the message. Ubik needs to analyze the message traffic
in an organization, eliminate some messages, and substitute tapeworms to
establish some of the control lost with the eliminated message.

The purchase organization example from chapter 3 uses messages to ini-
tiate and coordinate the actions of multiple departments. The MIT purchase
organization system, as described in the Guide to MIT Administrative Of-
fices [5], contains two methods of message elimination: blanket purchase
orders, and purchase-order drafts.

Blanket purchase orders are pre-approved purchase-orders, as shown in
figure 8.1. Purchase-order drafts are purchase-orders in which the payment

100

CHAPTER 8. DEVELOPMENT

goes to the vendor with the purchase-order, as shown in figure 8.2.

original organization re-organization

Figure 8.1: Blanket purchase orders are pre-approved purchase-orders. The
purchase-requisition goes to the purchasing department for initial approval. There-
after the purchaser can issue a purchase-order directly to the vendor. The figure on
the left is the initial organization; the figure on the right is the organization for the
blanket purchase order. Blanket orders save the step of the purchasing department
processing the purchase-requisition for each purchase-order. Blanket orders are usu-
ally issued with budget limits. The tapeworm provides a censor which maintains
the budget limit constraint.

101

CHAPTER 8. DEVELOPMENT

flow.payment

vendor

flow.invoice

fow.p has-order

purchaung departmen accounts-payable

flow.pu hase-requisition

purchaser

original organization

102

re-organization

Figure 8.2: Purchase-order drafts are purchase-orders in which the payment goes to
the vendor with the purchase-order. It eliminates the need to receive and process
the vendor invoice. The figure on the left is the initial organization; the figure
on the right is the organization for the purchase-order draft. The purchase-order
draft eliminates the step of the purchasing department processing the purchase-
requisition for each purchase-order, and the accounts payable department processing
the invoice. Purchase-order drafts are usually issued with budget and purchase-
order limits. The two tapeworms provide censors to maintain these constraints.

vendor

flow.purchase-order
with payment

tap wtrm tawp,,orm

I-m, -nt-I t bud-~- t

e1enr1 ~ tke.eeLo

WCTI08-

j

CHAPTER 8. DEVELOPMENT

8.2 Regrouping

Regrouping is a method of eliminating messages by batching input messages,
and periodically sending the batched input messages in one output message.
The batched input messages are usually transformed into the output m s-
sage, as shown in figure 8.3. In this example, multiple input purchase-orders
are transformed into one invoice. The billing configurator in this example
works as follows:

1. The input section contains a purchase-order form which specifies that
a configurator will be triggered under the following conditions:

(a) A purchase-order arrives.

(b) The time is 16:00, as specified by the timer command in the con-
trol section.

(c) The company's bill day is today. The bill day is found by a quester
which searches the customer-file; it is bound to variable ?bill-day.
The boolean expression compares the bill day to today's date. If
they are the same, the billing configurator triggers, and all the
customers with today's bill day are processed by the configurator.

2. The action section contains three configurators. The invoice-no config-
urator produces the invoice number. The date configurator produces
today's date. The invoice configurator creates an invoice. The invoice
fields are calculated as follows:

(a) The po-numbers are contained in the variable ?po. The union op-
eration specifies that one invoice is produced for all the purchase-
orders.

(b) The company and date are input variables.

(c) The item fields sum the totals from all the purchase-orders. The
quantity (+ ?q) is the sum of all quantities for a part-number ?p,
description ?d and unit-price ?u. The amount (* quantity.?
?u) is the quantity value multiplied by the unit price.

(d) The total field (+ item.amount.?) is the sum of all the amount
fields for all the items.

Regrouping eliminates the communications and processing costs of send-
ing invoices more frequently. On the negative side is the loss of interest as
a result of receiving payment at a later time. Electronic funds transfer is
changing the cost advantage of regrouping. It drastically reduces the cost
of sending a message, as the following New York Times article [57] indi-
cates. It will soon be practical to bill the customer for each purchase-order
immediately.

103

CHAPTER 8. DEVELOPMENT

Like many corporations, Sears, Roebuck & Co. used to love
paying suppliers by mail. As far as Sears executives were con-
cerned, the longer the check took to arrive, the better - all the
more interest income for Sears. But these days, the preferred way
of paying is electronically transferring money from Sears' bank
account to suppliers' accounts. The a/antages of electronic pay-
ments - lower processing and po'taee costs, fewer clerical errors
and a more predictable cash flow - more than compensate for
any loss in interest income, according to companies like Sears,
Du Pont and RJR Nabisco...

The cost and complexity of setting up an automated system
varies depending on the extent to which the corporation is com-
puterized, but it can be as little as $100,000. "Regardless of
how much it costs, it won't take too long to recoup the invest-
ment," said Dean A. Bitner, a Sears assistant treasurer. Sears
saves about 40 cents for every electronic payment it makes and
its suppliers can save up to $1.10, he said. Harp said GE saves
between 75 cents and $1.50 for every electronic payment received
instead of a check.

104

CHAPTER 8. DEVELOPMENT

Figure 8.3: The regrouping of purchase-orders into invoices on a monthly basis.
The accounts receivable department receives purchase-orders and produces the in-
voices.

105

CHAPTER 8. DEVELOPMENT

8.3 Reclustering

Links can cross distributed configurator boundaries. Reclustering is a pro-
cess of reorganization, where the configurators are migrated into the dis-
tributed configurator which most frequently references them. Reclustering
is illustrated in figure 8.4. The original organization has the employee.jill
located in the file.personnel. It has three configurators part linked to it.
The salary and mgr configurators are located in file.personnel, and the
address configurator is remotely located in file.name-and-address. The re-
organization has placed all the part configurators in the same location, which
is file.personnel.

employee.ill

saar.3000
mgr.mike

street."545 Technology Square"
town."Cambridge.Ma."

control

file.peraonel

original organization
re-organization

Figure 8.4: Reclustering moves configurators remotely referenced in a distributed
configurator into the local distributed configurator. The address part is initially in
file.name-and-address. In the re-organization it was moved into the same location
as the rest of the employee parts.

106

CHAPTER 8. DEVELOPMENT

8.4 Regression

Regression is the process of moving a tapeworm closer to the source of the
activity which it is monitoring or censoring. Regression is illustrated in
figure 8.5. In this example, the amount-limit-tapeworm is censoring all the
purchase-requisitions received by the purchasing department. Regression can
move the tapeworm closer to the location where the purchase-requisitions
are being produced. In this example, the tapeworm is moved onto the pur-
chase configurator. The operation is changed from censoring the purchase-
requisitions received to censoring the purchase-requisitions sent.

eing ,---tapeworm
I department.purchasing I ------------- >

flow.purcl lase-requisition

| purchaser I taP-mrm-...>

amount-limit-tapewlorm

amount-limit-tapeworm I

Figure 8.5: Regression of a tapeworm (1) to tapeworm (2). Tapeworm (1) is
placed on the department.purchasing to censor all the purchase-requisitions over a
certain amount which do not have at least three bids. Regression is used to move
the tapeworm closer to the activity in which the bids are obtained. Regression has
determined that all purchase-requisitions are issued by an employee with the role
purchaser. Tapeworm (2) moves tapeworm (1) onto the role of a purchaser. It
changes the operation from receive to send. This is the earliest point at which a
completed purchase-requisition can be censored, since before this time the purchase-
requisition is not yet complete.

action
purchase-requisition over a
certain amount needs to have
three or more bids from
vendors

control

type.censor
operation.receive

0

0

action
purchase-requisition over a
certain amount needs to have
three or more bids from
vendors

control

type.censor
operation.send

107

CHAPTER 8. DEVELOPMENT

8.5 Prototype Development

A prototype serves as a characterization of a collection of configurators.
Configurators are continually created and modified. Over time a prototype
might no longer be an adequate characterization of the collection of config-
urators created from it. Alternately, a configurator might no longer belong
in the collection characterized by the prototype. Some of the indications for
prototype mismatch are as follows:

1. The inability to find an adequate prototype for use in the creation of
a configurator.

2. Significant deviation of individual configurators from their prototype.

3. A configurator is better characterized by a prototype different from its
current prototype.

Some configurators are part of a prototype collection for reasons other
than structure. For example, a configurator representing a natural kind such
as a bird will use a bird as a prototype no matter how its structure changes,
unless the concept of a bird undergoes change, or a prototype representing an
action or goal has no structure in common with the configurator it represents.

8.5.1 Forming Collections

The first step in developing a prototype is to create a collection of configu-
rators. Some of the methods for creating collections within Ubik follow:

1. Instances - The instances of a prototype.

2. Individuals in all contexts - Similarly named configurators in dif-
ferent contexts.

3. Similarity - Configurators with the same configurator part linked to
it.

4. Reference - A collection of explicitly referenced configurators.

5. Action - All configurators which take place in a common action.

8.5.2 Creating a Prototype from a Collection

Once the collection is formed, the prototype must be created. Below are
some ways to create prototypes, the last three of which were described by
Tversky [62]:

1. Designation - the prototype is specified directly, without regard to
any characteristics of the collection.

108

CHAPTER 8. DEVELOPMENT

2. Similarity - the prototype is created out of some attributes which
occur frequently within the configurators of the collection. The proto-
type created does not necessarily match any one configurator within
the collection, but is best in some sense in representing the whole col-
lection.

3. Exemplar - the prototype is chosen from one of the configurators
within the collection which is determined to best represent the collec-
tion.

4. Family resemblance - the collection as a whole serves as the pro-
totype. A given configurator is declared as part of the collection if it
matches this collection better than another.

8.5.3 Finding a Prototype

Given a configurator, some of the ways of choosing the prototype or collection
to which the configurator belongs follow:

1. Designation - the collection is specified.

2. Name - the name of the configurator determines its prototype.

3. Metonymic prototype - the name of the configurator determines its
prototype indirectly. For example, the prototype of employee is not
necessarily the prototype employee. George Lakoff in Women, Fire,
and Dangerous Things [46] describes Metonymy as the taking of one
well-understood or easy-to-perceive aspect of something and using it
to stand either for the thing as a whole or for some other aspect or part
of it. A Metonymic prototype of employee might be employee.manager
rather than employee.

4. Similarity - given a configurator with some attributes, a prototype is
chosen which is similar to this configurator. Marvin Minsky in The So-
ciety of Mind [53] gives a mechanism to accomplish this, which works
as follows: the configurators which match the attributes are chosen.
If the chosen configurators contain other attributes, the configurators
with noncompatible attributes are removed. The remaining configu-
rator with the closest structure to the given configurator is chosen as
the prototype.

5. Metaphoric - Given a configurator with some attributes, a prototype
is chosen by some mapping function. For example, a configurator might
be related to a prototype because they both cause a similar batching
operation.

109

CHAPTER 8. DEVELOPMENT

8.6 Bureaucratic Development

Bureaucratic development refers the adaptation of an organization to chang-
ing application and environmental conditions. Bureaucratic development
can be used to expand the purchasing application from a non-shared pur-
chase system, which only supports one purchaser per item, to a shared sys-
tem, which supports multiple purchases per item. It can also be used to
adapt an organization for cooperation with other organizations. Bridging
strategies are bureaucratic development techniques to enhance the security
of an organization by increasing the number and variety of linkages with
competitors. The following is Scott's typology of bridging techniques [59]:

1. Bargaining is a family of strategies by means of which the focal orga-
nization attempts to ward off dependence. Bargaining is a pre-bridging
strategy which is used to establish the other bridging strategies.

2. Contracting is the negotiation of an agreement for the exchange of
performances in the future. This reduces uncertainty by coordinating
future behavior, in limited and specific ways, with other units. In Ubik,
contracting permits simplification of internal organizational procedures
because of message protocol agreements between organizations.

3. Cooptation entails the incorporation of representatives of external
groups into the decision-making or advisory structure of an organiza-
tion. Ubik looks at an organization as a semi-fluid collection of objects
which can migrate between suborganizations. Established and main-
tained organizational boundaries can prevent objects from migrating.
Cooptation is a constrained easing of these boundaries.

4. Joint Ventures occur when two or more firms create a new orga-
nization to pursue some common purpose. This entails only a lim-
ited pooling of resources. Ubik's flexible organizational representation
would allow existing applications to be easily reorganized for joint ven-
tures.

5. Mergers is a strategy in which separate organizations are combined.
Like joint ventures, Ubik would allow the maintenance of existing ap-
plications during mergers.

6. Associations are arrangements which allow similar organizations to
work in concert to pursue mutually desired objectives. An example is
a trade association or cartel.

7. Governmental Connections affect transactions among organiza-
tions by helping to determine the overall context of organizational
action, placing constraints on selected organizations or activities, and
providing resources for organizations.

110

CHAPTER 8. DEVELOPMENT 111

8. Institutional linkages provide concepts, structure, and action which
support their existence. For example, a school organization seeks ac-
creditation, which defines how the school is to organize and act.

Chapter 9

Conclusion

Ubik is a system within whose framework the following issues are being
explored: high-level distributed language development, organizational rep-
resentation, the relationship between organizational structure and action,
end-user programming, gradual automation, the support of competing and
cooperative applications, and the maintenance of organizations consisting of
interrelated applications.

Ubik contains an object-oriented language for developing interrelated,
distributed, and parallel applications. As a language, Ubik is at the same
level as frame and rule based systems; this is higher than procedural lan-
guages, and lower than natural languages. Ubik has language and system
constructs for distributed and parallel operation. These constructs include
tapeworms, questers, constructors, sponsors, distributed configurators, and
links which cross computer network boundaries. The unification of config-
urators traveling as messages with the receiving configurators provides the
basic reasoning mechanism within Ubik. This technique allows the organi-
zational action to proceed with partial information. Variables are used to
indicate the information which is not yet known. As the action proceeds,
these variables are incrementally bound. Much of the organization action
takes place in physically distributed locations. Variables in messages pro-
vide a means for communicating between the distributed locations, and to
perform distributed reasoning.

Ubik is a language for representing organizations, such that there is a
close correspondence between the structure and activities of the external
organization and the structure and activities of the Ubik representation.
Some small scale applications have been represented in Ubik. Further work
needs to be done to see if the Ubik representation scales up.

Ubik is a language for describing an organization's structure and action.
The structure is represented by a semantic net, consisting of message pass-
ing objects. The action consists of messages between the objects. Ubik has
produced a tight integration between a message passing system and a se-
mantic net system. The messages can be explicitly passed between objects,

112

CHAPTER 9. CONCLUSION

or implicitly passed using flow links. Bureaucratic paths allow an organiza-
tion to increase its computational power by the incremental introduction of
new organizational levels. These levels make new decisions on message flow
without requiring changes in existing configurators. Tapeworms can trig-
ger on the sending or receiving of messages. Tapeworm censors can provide
replacement behavior for a message passing object.

Ubik is a system for end-user programming. Only a subset of Ubik has
been implemented, as discussed in appendix A. This subset does not include
high-level end-user interfaces. Query-by-Example, a relational data base
system, has proven very successful as an end-user program. Ubik represents
an expansion of the interface ideas in Query-by-Example, and should increase
the amount of programming an end-user can perform.

The Ubik system supports the gradual automation of a business organi-
zation, where the Ubik control of the organization coexists with the manual
control and activity of the organization. This support has not been designed
or implemented, but the approach would be to replace the action section
of a configurator with an end-user interactive dialog handler. When the
configurator is triggered, it would interact with an end-user.

Ubik maintains the power relationships between the cooperating and
competing applications. A mechanism has been defined to describe power
relationships; it has not been implemented. Experiments are needed to find
the values of the sponsor and power attributes which would effectively focus
the organization's attention.

Ubik supports the automatic development of new Ubik representations
to more closely match the continually changing business organization. A
start has been made on describing some of the ways an organization can
develop. Ubik has described a framework for thinking about this issue. An
implementation of the full Ubik system would allow the discovery of effective
measures for when development should occur, and to experiment with the
development techniques.

A Ubik prototype was built [24,25]. This prototype supports the follow-
ing configurator sections: input, output, action, and link.part. The type of
links supported are the following: batch, part, and tapeworm. Only monitor
tapeworms have been implemented. The prototype includes a parallel uni-
fication algorithm and supports distributed reasoning using variables. The
Ubik prototype and its implementation is described in appendix A.

113

Appendix A

Early Ubik and Its
Implementation

Early Ubik is the predecessor system to Ubik, as described in this thesis.
The Early Ubik configurator has three sections:

1. Name - the name of the configurator. If the configurator resides in a
network, the name contains its path through the network. For example,
a configurator with a path name a.b.c specifies that configurator c
can be reached by the path a.b.c.

2. Input section - the input section specifies the message that the con-
figurator will accept.

3. Output section - the output section specifies the final message which
will be sent or returned by the configurator.

4. Body section - the body section is a combination of the Ubik action
and link.part section.

The types of links supported in Early Ubik are batch, part, and tape-
worm. Not supported are configurator sections to and control, tapeworms
of type censor, distributed configurators, and links of type flow, label, pro-
totype, sponsor, and value. A prototype was implemented on the Acore
parallel processing system [51].

The configurator format is shown in figure A.1.

114

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION 115

Figure A.1: Early Ubik two-dimensional box notation. The box has a name, input,
output, and body section.

_ i

I _

input output

body

biu

]

__

--- I

brA ir-

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

The BNF syntax of Early Ubik is shown below. It uses the following
metasyntax:] specifies optional clauses; <> specifies non-terminal clauses;
* specifies multiple occurrence. I specifies one of the listed clauses.

<configurator>=(<name> [<input>] [<output>] [<body>])

<name>=<atom> (<atom>*)
1<atom>. <atom>*

1(<atom>.<atom>*)

<input>= (INPUT [<expression>]

[BATCH <expression>])

<output>=(OUTPUT <expression> [(TO <configurator>*)]

[(REPLY expression)]

<body>=(BODY <expression>)1(<expression>)

<expression>=(AND <expression>) (OR <expression>)

I(NOT <expression>)1(<WHEN> <expression>)

I(EVAL-LISP <expression>)1<configurator>

1(<configurator>*)

<when>=WHEN-INSERTED I WHEN-DELETED I WHEN-JPDATED
I WHEN-MODIFIED I WHEN-REIERENCED

<list>=(<atom>*)

<atom>=variable1constant

Configurators can be assembled into structures to represent an organi-
zation. Figure A.2 shows a structure consisting of ten configurators:

This example, in linear syntax, would be as follows, where the dot nota-
tion is used to indicate a new network level:

(ubik

(.employee
(.peter

(body (salary.30)

(mgr.mike)))

(.jill
(body (salary.40)

(mgr.mike))))

(.department
(.purchasing.buyer. (peter

(body (responsibility.computers))))

(.shipping.clerk.jill)))

The body section need not be labeled. Jill in the above example could
be written as:

116

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

model ubik-inc

Figure A.2: Organization network consisting of two employees and two depart-
ments.

117

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(jill
(salary .40)
(mgr.mike))

A.1 Operations

Early Ubik operations are used to create, modify, and query the configura-
tors.

Early Ubik runs on one processor. Ubik configurators reside in a struc-
ture called Ubik memory, which is divided into models. A model consists
of a network of configurators. Each model has associated with it a current
context. This is a default path used to reference configurators within the
model. The following operations are used to create and modify the memory
and models:

* (Oreset-memory) - initializes Ubik memory.

(create-model name) - creates a new model in memory with the
specified name.

* (Qset-current-model name) - sets the context for the memory to the
specified model name.

* (©set-current-context location) - sets the context to the specified
location.

* ((expunge-model) - removes deleted configurators from the net-
works within a model.

Networks of configurators are built with the following operations:

(I network) - create or insert the specified network.

(U network) - update the specified network.

(D network) - delete the specified network.

Networks are queried using the following operation:

(Q network) - query the specified network.

Actions are evaluated using the following operation:

* (OX configurator) - evaluate the specified configurator.

118

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

A.2 Configurator Unification

Unification is the process of matching two configurator patterns and binding
any variables within the patterns. The following examples illustrate how
unification works within Early Ubik. In each example the first pattern is
unified with the second. The resulting variable bindings are then shown.

pattern 1 (a.b)
pattern 2 (a.?x)

unify to 2 ((?x=b))

pattern I (a (?x))
pattern 2 (a (c)(d))

unify 1 to 2 ((?x=c)(?x=d))

pattern 1 (a.?y (?x))

pattern 2 (a.employee (customer))

unify 1 to 2 ((?y=employee ?x=customer))

pattern l(a.b.c (?r.e)(?x.e))

pattern 2 (a.b.c (m.e)(l.e))

unify 1 to 2 ((?r=m ?x=l)(?r=l ?x=m))

pattern 1 (a.b.c (?r.e)(?y))

pattern 2 (a.b.c (m.el)(l.e))

unify 1 to 2 ((?r=l ?y=m))

pattern I (a.b.c (?r.el)(?x.e))

pattern 2 (a.b.c (m.el)(l.e))

unify to 2 ((?r=m ?x=l))

The direction of unification is significant. In the following, pattern 1 will
completely match pattern 2, but pattern 2 will not match pattern 1 because
configurator (e) does not appear in pattern 1.

pattern 1 (a.b (c)(d))
pattern 2 (a.b (c)(d)(e))

unify to 2 - nil

unify 2 to 1 - fail

Unification occurs in an environment. In the following example, pattern 3
will unify pattern 4, producing the environment (?x=el ?y=bl). Unification
of pattern 1 to pattern 2 in this environment will produce a failure because
?y will be bound to dl, which is incompatible with the current binding to
?y of bl.

119

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

pattern 1 (a.b.c (cl.el)(al.?y))

pattern 2 (a.b.c (al.d1)(xi.?y)(cl.?xl))

pattern 3 (a.b.c (cl.el)(al.?y))

pattern 4 (a.b.c (ai.bl)(xl.?y)(ci.?xl))

unify 3 to 4 ((?xl=ei ?y=bl))
unify 1 to 2 failure in environment ((?xl=el ?y=bl))

Configurator variables are variables which unify with the configurator
rather than the name of a configurator. They are specified by a variable
with a double question mark. ??x designates configurator variable x. The
following example shows the distinction between the use of a variable and a
configurator variable.

pattern 1 (a.b.c (?b))

pattern 2 (a.b.c (??b))

pattern 3 (a.b.c (al.bl)(xl.?y2)(cl.?x2)))

unify 1 to 3 ((?b=al) (?b=xl) (?b=cl))

unify 2 to 3 ((??b=((al.bl)(xi.?y2)(cl.?x2))))

The bindings to a configurator variable will unify with the bindings of
another configurator variable, as illustrated below:

pattern 1 (??a)

pattern 2 (??b)

pattern 3 (a.b.c (??a))

pattern 4 (a.?z.c (al.bl)(xl.?y)(cl.b3))

pattern 5 (a.b3.c (??b))

pattern 6 (a.?w.c (al.bl)(xl.b2)(cl.?x))

unify 5 to 6 ((?w=b3 ??b=((al.bl)(xl.b2)(cl.?x))))

unify 3 i;o 4 ((?z=b ??a=(al.bl)(xl.?y)(cl.b3))))

unify 1 to 2 ((?w=b3 ?z=b ?y=b2 ?x=b3))

A.3 Application Examples

The following examples of Early Ubik were used as regression test cases for
the prototype. They illustrate how business applications can be built using
Ubik.

A.3.1 Building a Network

The following example builds the network partially illustrated in figure A.2.
The first operations set up the two models within the memory: mit and
ubik-inc.

(Qreset-memory)
(Qcreate-model 'mit)

(create-model 'ubik-inc)

(fset-current-model 'ubik-inc)

120

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION 121

The following operations build the network:

(6I (ubik. employee)))
(QI (ubik. department)))

(aset-current-context (ubik.employee)))

(eI (.peter (salary.30)(mgr.mike))))

(CI (.jill (salary.40)(mgr.mike))))

(I (.mike (salary.50))))

(Qset-current-context (ubik.department)))

(CI (.purchasing)))

(eI (.shipping)))

(Cset-current-context (ubik.department.purchasing)))
(CI (.buyer.peter (responsibility. computers))))

(Oset-current-context (ubik.department.shipping)))

(MI (.clerk.jill (lifting-weight.150))))

The following operations modify the network. Jill's lifting weight is
changed from 150 to 125, and the employee peter is deleted and expunged.

(Qset-current-context (ubik.department.shipping)))

(CU (.clerk.jill (lifting-weight.125))
(Qset-current-context (ubik. employee)))

(OD (.peter))

(Cexpunge-model))

A.3.2 Message Sending and Receiving

In the following example an order is sent to the accounting department and
an invoice is returned. Figure A.3 graphically illustrates this example.

ubik-inc

Figure A.3: Message sending in which an order is sent to the ubik accounting
department.

to
[(order.ubiaccounting

(order.640) | lreply

| invoice.?Y |

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

1. Build an accounting configurator which would receive orders and send
invoices.

(6I (ubik.accounting
(input (order.?X))

(output (invoice.?X)))))

2. Send an order message to the accounting department and receive an
invoice in reply.

(QX (output (order.640)
(to (ubik.accounting))

(reply (invoice.?Y)))))

The order message will unify with the input pattern as follows:

message (order.640)
input (order.?x)

unify message to input ((?x=640))

The reply pattern will unify with the output message as follows:

reply (invoice.?y)

output (invoice.?x)

environment ((?x=640))

unify reply to output ((?y=640))

Instantiation replaces variables with their values.

reply (invoice.?y)

environment (?x=640)

instantiate reply (invoice.640)

A.3.3 Unifying with the Configurator Body

When a message is sent to a configurator the following occurs:

1. The message is unified with the input section.

2. The input section is unified with the body, if the body contains a
network of linked configurators.

3. The output message specified in the output section is sent.

In the following example an invoice message is received by the accounting
configurator and unified with its body, as graphically illustrated in figure A.4.

122

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

ubik-inc

Figure A.4: Unifying with the configurator body occurs when a message is sent to
a configurator which has a network of linked configurators in its body.

1. Build accounting configurator with an input and output pattern and
a body of linked parts.

(QI (ubik.accounting
(input (invoice.?find

(customer. ?c)))

(output (invoice.?find))

((invoice.23

(customer. a))

(invoice.24

(customer.b))

(invoice.25

(customer.a))))))

2. Send an invoice message to the accounting configurator.

(OX (output (invoice.?x

(customer. a))

(to (ubik.accounting))

(reply (invoice.?Y)))))

The unification will be as follows:

123

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

input (invoice.?find (customer.?c)))

output (invoice.?find)

body ((invoice.23 (customer.a))

(invoice.24 (customer.b))
(invoice.25 (customer.a))))

message (invoice.?x (customer.a))

reply (invoice.?Y)

unify message to input ((?x=?find ?c=a))

unify input to body ((?find=23) (?find=25))

unify reply to output ((?y=?find))

instantiate reply ((invoice.23)(invoice.25))

If the output box is empty, then the input section message will also
become the output section message. In the example below, the output box
is empty and the invoice has a body which contains both a customer and
salesman. This example will return the same result as above.

(QI (ubik.accounting

(input (invoice.?find

(customer. ?c)))

(body

(invoice.23
(customer. a)

(salesman.joe))

(invoice.24

(customer.b)

(salesman.mike))

(invoice.25

(customer. a)

(salesman.jill)))))

(OX (output (invoice.?x

(customer. a))

(to (ubik.accounting)))))

A.3.4 Configurator Variables

Configurator variables can be used in the input section to allow the config-
urator to accept a variety of messages, as illustrated in figure A.5. In this
example any message received is accepted and unified with the configurators
in the body.

124

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

ubik-inc

to
oIutput > ~ubik.accountng

(invoice.?x reply
(customer.a))

invoice.?Y

ubik

accounting

??c

((invoice.23
(customer.a))

(invoice.24
(customer.b))

(invoice.25
(customer.a)))

Figure A.5: A configurator variable binds to the input configurator. In this exam-
ple the configurator which binds to ??c will be directly unified with the configurators
linked to the body of the configurator.

A configurator variable can be imbedded in a configurator. In the exam-
ple below the accounting configurator will accept all invoice messages. The
configurator variable ??c will bind to the body of the invoice message.

(6I (ubik.accounting
(input (invoice.?y

(??c)))

Below
returned.

((invoice.23
(customer.b)

(salesman.joe))
(invoice.24

(customer.b)

(salesman.mike))

(invoice.25

(customer.a)

(salesman.mike))

(invoice.26

(customer. l)
(salesman.jill))))))

are messages sent to the accounting configurator and the replies

1. Invoices with customer.b.

125

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(QX (output (invoice.?x

(customer.b))

(to (ubik.accounting)))))

The reply is:

((invoice.23 (customer.b)(salesman.joe))

(invoice.24 (customer.b)(salesman.mike)))

2. Invoices with salesman.mike.

(OX (output (invoice.?x

(salesman.mike))

(to (ubik.accounting)))))

The reply is:

((invoice.24 (customer.b)(salesman.mike))

(invoice.25 (customer.a)(salesman.mike)))

3. All invoices in ubik.accounting.

(0X (output (invoice.?x

(??m))
(to (ubik.accounting)))))

The reply is:

((invoice.23

(invoice.24

(invoice.25

(invoice.26

(customer.b)(salesman.joe))

(customer.b)(salesman.mike))

(customer.a)(salesman.mike))

(customer.l)(salesman.jill)))

4. Invoices with salesman.mike and customer.b.

(ex (output (invoice.?x

(salesman.mike)

(customer.b))

(to (ubik.accounting)))))

The reply is:

((invoice.24 (customer.b)(salesman.mike)))

5. Salesman and customer for invoice.24.

(OX (output (invoice.24

(salesman.?s)

(customer.?c))

(to (ubik.accounting)))))

126

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION 127

The reply is:

((invoice.24 (customer.b)(salesman.mike)))

6. Invoice.24's body.

(OX (output (invoice.24
(??m)

(to (ubik.accounting)))))

The reply is:

((invoice.24 (customer.b)(salesman.mike)))

7. Salesman and customer for order.24.

(QX (output (order.24

(salesman.?s)

(customer.?c))

(to (ubik.accounting)))))

The reply is nil.

8. Query ubik.accounting for the invoice which contain salesman.mike
and customer.b.

(Q (and (ubik.accounting

(invoice.?x

(salesman.mike)))

(ubik.accounting

(invoice.?x

(customer.b)))))

The reply is:

(and (ubik.accounting
(invoice. 24

(salesman.mike)))

(ubik.accounting

(invoice.24

(customer.b)))))

9. Send a message to find invoices which contain salesman.mike and cus-
tomer.b.

(and (OX (output (invoice.?x

(salesman.mike))

(to (ubik.accounting))))

(OX (output (invoice.?x

(customer.b))

(to (ubik.accounting))))))

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

The reply is:

(and (invoice.24
(salesman.mike))

(invoice.24

(customer.b)))

10. Find the invoices which contain salesman.mike and return its customer.

(and ((output (invoice.?x

(salesman.mike))

'(to (ubik.accounting))))

(OX (output (invoice.?x

(customer.?y))

(to (ubik.accounting))))))

The reply is:

((and (invoice.24
(salesman.mike))

(invoice.24

(customer.b)))

(and (invoice.25

(salesman. mike))
(invoice.25

(customer. a))))

11. Return the body of the invoices which contains salesman.mike.

(and (X (output (invoice.?x

(salesman.mike))

(to (ubik.accounting))))

(OX (output (invoice.?x

(??m))

(to (ubik.accounting))))))

The reply is:

((and (invoice.24

(salesman.mike))

(invoice.24

(customer.b)

(salesman.mike)))

(and (invoice.24

(salesman.mike))

(invoice.25

(customer. a)

(salesman.mike))))

128

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

A.3.5 Distributed Message Send

Messages can be used to collect information from multiple configurators, as
illustrated in figure A.6. In this example a message is sent to the invoice-
search configurator. The body of this configurator contains an action con-
sisting of an and expression. This expression sends two messages in parallel.
One message goes to the salesman configurator and the other to the customer
configurator. The flow is illustrated in figure A.7.

The Ubik code for this example follows:

1. The salesman configurator is built.

(6I (ubik.accounting.invoice.salesman

(input (invoice.?y

(??c)))

((invoice.23

(salesman.joe))

(invoice.24

(salesman.mike))

(invoice.25

(salesman.mike))

(invoice.26

(salesman.jill))))))

2. The customer configurator is built.

(MI (ubik.accounting.invoice.customer

(input (invoice.?y

(??c)))
((invoice.23

(customer.b))

(invoice.24

(customer.b))

(invoice.25

(customer. a))

(invoice.26

(customer.))))))

3. The invoice-search configurator is built. This configurator contains an
and expression in its body which sends messages to the salesman and
customer configurators, requesting invoices as specified in the input
message.

129

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

-............................

(invoice.?x
(salesman.mike)
_bcutomr.?y)) I invoice.?Y I

ubik-inc

Figure A.6: Parallel and expression will process its operands in parallel.

((invoice.23
(salesman.joe))

(invoice.24
(salesman.mike))

(invoice.25
(salesman.mike))

(invoice.26
(salesman.jill)))

(and (OX (output (invoice?x
(salesman>?s))

(to (ubik.accounting.invoice.salesman))))
(OX (output (invoice.?x

(customer.?c))
(to (ubik.accounting.invoice.customer)))))

((invoice.23
(customer.b))

(invoice.24
(customer.b))

(invoice.25
(customer.a))

(invoice.26
(customer.l)))

130

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION 131

Figure A.7: Parallel and expression flow.

(6I (ubik.invoice-search
(input (invoice.?x

(salesman.?s)

(customer.?c)))

(body

(and

(eOX

(output
(invoice.?x

(salesman.?s))

(to (ubik.accounting.invoice.salesman))))

(eOX

(output

(invoice.?x

(customer.?c))

(to (ubik.accounting.invoice.customer))))

)))))

4. This output message requests all the invoices and customers for sales-
man mike.

(OX (output (invoice.?x

(salesman.mike)

(customer.?y))

(to (ubik.invoice-search)))))

The reply is:

((invoice.24

(salesman.mike)

(customer.b))

(invoice.25

(salesman.mike)

(customer. a)))

5. A new invoice-search configurator is substituted for the previous one.
Its body contains an or expression instead of an and expression. It

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

will find all the invoices which have either the specified salesman or
the specified customer.

(OU (ubik.invoice-search
(input (invoice.?x

(salesman.?s)

(customer.?c)))

(body

(or

(eX

(output

(invoice. ?x
(salesman.?s))

(to (ubik.accounting.invoice.salesman))))

(eX

(output
(invoice.?x

(customer.?c))

(to (ubik.accounting.invoice.customer))))

)))))

A.3.6 Data Flow

A configurator can be viewed as a filter. The combination of broadcasted
messages and configurator filters allows the specification of applications in
a data flow style, as shown in figure A.8. In this example a sender sends a
message to the configurators orderl, order2, and order3. Orderl and order3
accept the message and pass it on to the invoice configurator.

The Ubik code is as follows:

1. The invoice file is built.

(CI (ubik.file.invoice

(input (??in))

(output (??in))

(body (invoice.23

(salesman. joe)

(customer.b)

(item.dress))
(invoice.24

(salesman.mike)

(customer.b)

(item. auto))

(invoice.25

(salesman.mike)
(customer.b)

(item.dress))

(invoice.26

(salesman.jill)

(customer. a)

(item.dress))))))

132

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

organization

flow

Figure A.8: Data flow control can be achieved by sending messages to a collection
of configurators. Each configurator filters the messages it will accept. The top
diagram is the organization structure, and the bottom diagram is the message flow.

/I --- ~-------~

\1. I

133

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

2. The orderl configurator accepts only order messages with customer.b
and outputs invoices with salesman.mike.

(O1 (ubik. accounting.orderl

(input (order.?o

(customer.b)

(item. ?d)))

(output (invoice.?iv

(salesman.mike)
(item.?d))

(to ubik.file.invoice)))))

3. The order2 configurator accepts only order messages with customer.a
and outputs invoices with salesman.jill.

(eI (ubik.accounting.order2
(input (order.?o

(customer.a)

(item.?d)))

(output (invoice.?iv

(salesman. jill)

(item.?d))

(to ubik.file.invoice)))))

4. The order3 configurator accepts only order messages with customer.b
and outputs invoices with salesman.joe.

(eI (ubik.accounting.order3

(input (order.?o
(customer.b)

(item.?d)))

(output (invoice.?iv

(salesman.joe)

(item.?d))

(to ubik.file.invoice)))))

5. An order message is sent to find invoices with item.dress and cus-
tomer.b. It will be accepted by configurators orderi and order3 and
sent to the invoice configurator. A reply containing the invoice num-
bers, salesman, and item are expected.

(OX (output (order.640
(item.dress)

(customer.b))

(to (ubik.accounting.??))

(reply (invoice.?I

(salesman.?s)

(item.?d))))))

The reply is:

134

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

((invoice. 23

(salesman. joe)
(customer.b)

(item.dress))

(invoice.26
(salesman.mike)

(customer.b)

(item.dress)))

A.3.7 More than Manager Query

The employee who makes more than his manager query is written as follows:

1. The employee configurator is built.

(eI (ubik.file.employee

(input (??in))
(output (??in))
(body (employee.joe

(salary. 30)
(mgr.mike))

(employee.mike

(salary.20)

(mgr.bill))
(employee. bill
(salary.100))))))

2. Two messages are sent to the employee configurator. One will request
all the employees with their salary and manager. The other will request
all the employees and their salary. The combination of the and ezpres-
sion and the > expression will restrict the replies to only the employees
who make more than their managers. This example is the first use of a
configurator without an input statement. Evaluating the configurator
will cause the immediate evaluation of its body. Eval-lisp is a Ubik ex-
pression which will invoke the underlying Lisp interpreter for specified
expression. Before Lisp is invoked, the variables are instantiated.

(OX (ubik.make-more

(output (employee.?e
(salary.?s)
(mgr.?m)))

(body (and (OX (output (employee.?e

(salary.?s)

(mgr.?m))

(to (ubik. file.employee))))

(OX (output (employee.?m

(salary. ?ms))

(to (ubik.file.employee))))

(eval-lisp (> ?s ?ms)))))))

135

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

The reply is:

(employee. joe
(salary.30)

(mgr. mike))

A.3.8 Batching

Batching of input messages is achieved with an and expression within the
input section, as shown in figure A.9. In this example receiving-tickets and
notification-of-receipt messages are received. A batch exists which contains
all messages without a matching purchase-order.

1batchI

Figure A.9: Batching input messages is achieved with an and expression in the
configurator input section.

1. The shipping configurator is built which receives and batches receiving-
tickets and notification-of-receipts. It sends notification-of-receipts to
the accounts-payable configurator when a purchase-order match has
occurred.

(OI (ubik.dept.shipping
(input (and (receiving-ticket.?X

(purchase-order.?po))
(notification-of-receipt.?Y

(purchase-order.?po))))

(output (notification-of-receipt.?Y

(purchase-order.?po))

(to (ubik.dept.accounts-payable))))))

136

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

2. The accounts-payable configurator receives a notification-of-receipt and
places it in the file.payable.purchase-order.

(GI (ubik.dept.accounts-payable

(input (notification-of-receipt.?n

(purchase-order.?po)))

(body ((file.payable.purchase-order

(purchase-order.?po)))))))

3. A receiving-ticket is sent.

(OX (output (receiving-ticket.30
(purchase-order.1))

(to (ubik.dept.shipping)))))

4. A query of the batch will show that it contains receiving-ticket.30.

(SQ (ubik.dept.shipping

(input (batch (receiving-ticket.?x

(purchase-order.?po)))))))

The reply is:

(receiving-ticket.30

(purchase-order.1))

5. A notification-of-receipt is sent.

(OX (output (notification-of-receipt.2

(purchase-order.1))
(to (ubik.dept.shipping)))))

6. A query of the batch will show that the receiving-ticket is no longer at
the shipping department.

(GQ (ubik.dept.shipping

(input (batch (receiving-ticket.?x

(purchase-order.?po)))))))

The reply is nil.

7. A query of the purchase-order file will show that it contains a purchase-
order.

(SQ (file.payable.purchase-order

(purchase-order.?X))))

The reply is:

(file.payable.purchase-order

(purchase-order.1))

137

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

A.3.9 Tapeworms

A tapeworm can be attached to a configurator. A when-modified tapeworm
will trigger whenever the configurator to which the tapeworm is attached or
any configurator below it is modified as shown in figure A.10.

new-employee

Figure A.10: When-modified tapeworm is installed in on a configurator. Instal-
lation is a two step process. The tapeworm is installed on the configurator as
indicated by its name (ubik.dept.personnel). The When expression in its input
section specifies the configurator which it is monitoring (ubik.file.employee). The
tapeworm reference is installed in the monitored configurator. When triggered, a
message is sent to the tapeworm.

The Ubik code for this example follows:

1. A organizational network is built.

(WI (ubik.file.employee.peter)))

2. A tapeworm is added which will trigger when the network is modified.
The input section contains the configurator which is being monitored.
The tapeworm itself is placed on dept.personnel. When the tapeworm
is triggered, it will build a configurator called new-employee, which will
contain the employee configurator which caused the triggering action.

(I (ubik.dept.personnel

(input (when-modified (ubik.file.employee.?x)))

(body (I (new-employee.?x))))))

3. The employee configurator is modified with the addition of employee.jill.

(CI (ubik.file.employee.jill)))

_ ,

138

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

4. The tapeworm is triggered and is added to the new-employee configu-
rator as this query will show.

(@Q (new-employee.?x)))

The reply is:

(new-employee.jill)

Tapeworms can be combined with batching. In the following example
the tapeworm will trigger when the employee file is modified and a record-
employee message is received for the employee.

1. The tapeworm is created.

(QI (ubik.dept.personnel

(input (and (when-modified (ubik. file.employee.?x))
(record-employee.?x)))

(body (I (new-employee.?x))))))

2. The employee file is modified. The modification will be batched at the
tapeworm.

(QI (ubik.file.employee.peter)))

3. A record-employee message is received for the employee.peter. This
will cause the tapeworm to trigger.

(OX (output (record-employee.peter)

(to (ubik.dept.personnel)))))

4. A query of the new-employee configurator will now show that new-
employee.peter is there.

(QQ (new-employee.?x)))

The reply is:

(new-employee. peter)

A when-deleted tapeworm will be triggered when a configurator is deleted.
In this example, when the deletion occurs, the tapeworm will create a
changed-employee configurator.

(QI (ubik.dept.personnel

(input (when-deleted (ubik. file.employee.?x)))

(body (QI (changed-employee.?x))))))

A when-updated tapeworm will be triggered when a configurator is up-
dated. In this example the changed-employee configurator will be created
when an employee file is updated.

139

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(QI (ubik.dept.personnel

(input (when-updated (ubik.file.employee.?x)))

(body (I (changed-employee.?x))))))

A when-referenced tapeworm will be triggered when a configurator is
referenced. In this example the referenced-employee configurator will be
created when an employee file is referenced.

(WI (ubik.dept.personnel

(input (when-referenced (ubik.file.employee.?x)))

(body (I (referenced-employee.?x))))))

A.4 Implementation

The initial framework for the implementation was based on the Logic Pro-
gramming system of Abelson and Sussman [8]. This system uses Scheme,
a sequential language, for its implementation. The system unifies queries,
which are patterns containing variables, against a database of relations. The
unification results in frames of variable bindings. These frames are gathered
together in streams. Complex queries are decomposed into multiple simple
queries. Each simple query is sequentially evaluated, with the stream of
frames providing communications between the queries. A database of rules
also exists. The query specified by the user must either match a relation or
a rule within the database, to be successfully processed. Rules are treated as
subgoals of the original query. The rules eventually decompose into simple
queries against the database.

Ubik's framework differs from Abelson's and Sussman's as a result of
the more complex Ubik language and the parallel implementation. The lan-
guage processes distributed databases consisting of configurators rather than
relations. Rules are replaced by messages to configurators and tapeworms
attached to the configurators. A complex Ubik action is decomposed into
simpler actions, all of which can execute in parallel. The parallelism results
in multiple streams of frames rather than the single stream in the Abelson
and Sussman system. Ubik uses the fine grained parallelism supported by the
underlying Actor system [51] to increase the parallel processing. Parallelism
comes from the following sources:

* The message traffic between configurators, as specified in the appli-
cation. Each configurator which receives a message can execute in
parallel.

* The tapeworms which are triggered as side-effects of referencing the
configurator.

* The parallel processing of the and expressions and or expressions.

140

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* The Ubik interpreter, which is written in the parallel language Acore.
The Acore written functions, such as configurator searching and unifi-
cation, execute in parallel.

The Acore language, which is used to implement Ubik, is a parallel
object-oriented language. The Ubik implementation consists of a collection
of Acore objects and functions which reference these objects. The following
are the sections which describe the implementation.

* Section A.4.1 Basic-objects - the objects which comprise Ubik.

* Section A.4.2 Front-end - the functions which communicate with the
user and transform the user input into Ubik objects.

* Section A.4.3 Evaluator - the functions which execute a configurator.

* Section A.4.4 Model and networks - The functions which build models
and networks.

* Section A.4.6 Unification - the unification functions.

* Section A.4.5 Tapeworms - the tapeworm functions.

* Section A.4.7 Utilities - the utility functions.

A.4.1 Basic Objects

The Acore objects which implement the basic Ubik objects are divided into
memory, configurator, and communicator objects. An object consists of
acquaintances and methods.

Memory

Ubik networks are built in models which reside in Ubik memory. The mem-
ory object has the following acquaintances:

1. Name - the name of the memory.

2. Lock-controller-actor - manages the locks on networks. It supports
read and write locks. It accepts messages with continuations. The
messages specify whether a read or write lock is requested. The lock
requested is set if possible; if not, the request is queued. When a lock
is set, the continuation within the lock message is executed. The locks
are managed as follows

(a) read lock message - if there is no write lock set or queued, then
the read lock is dispatched. If there is a write lock set or queued,
the read lock message is queued.

141

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(b) write lock message - if there is a read lock or write lock set, then
the write lock message is queued. No more read locks will be
initiated once a write lock is queued.

(c) read lock removed - if there are no more read locks and a write
lock is queued, it is dispatched.

(d) write lock removed - if there are write locks queued, then one is
dispatched, if not, and read locks are queued, then all the read
queued read locks are dispatched.

3. Tapeworm-scheduler-actor - manages the scheduling of triggered
tapeworms.

4. Memory-contents - location of the network.

The memory object has the following methods:

1. Index - methods to maintain a two-level index.

2. Instantiate - methods to instantiate the network of configurators
within the memory.

The memory is divided into models. Each model has a top-node to which
all the configurators within the model are attached, and a current-context
which is the default position within a network.

Configurator

The configurator is the central Early Ubik object. Networks are composed
of collections of attached configurators. A configurator can be attached to
another configurator at the lattice-in, lattice-out, and body acquaintances.
A configurator attached to the lattice-in acquaintance is a parent configu-
rator. Configurators attached to the lattice-out acquaintance are children
configurators. Configurators attached to the body acquaintance are nested
configurators.

The configurator object has the following acquaintances:

1. Name - Name of configurator.

2. Input - Input section object.

3. Output - Output section object.

4. Body - Body, contains the linked configurators or nested actions.

5. Lattice-in - Parent configurator for the linked network of configura-
tors.

6. Lattice-out - Children configurators in network of linked configura-
tors.

142

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

7. Nest-in - Configurator whose body this configurator is in.

8. Tapeworms - Tapeworms which are monitoring this configurator.

9. Status - A tapeworm can be attached to a configurator which doesn't
currently exist. The status of inserted is given to a configurator which
exists. The status of virtual is given to a configurator which doesn't
exist. A virtual configurator is either a deleted configurator which has
not yet been expunged, or a tapeworm monitored configurator which
has not yet been installed.

The configurator object has methods for initiating the building, evaluat-
ing, and instantiating of itself. These functions will be described later.

Input Section

The input section object is referenced by the configurator input acquain-
tance. It has the following acquaintances:

1. Message - Pattern to match the incoming message.

2. Batch - The batch associated with the input. The batch contains an
entry for the input section message, or multiple entries when the input
section message is an and expression or an or expression. In the latter
case, an entry is kept for each expression within the and expression or
or expression. Each entry in the batch will contain the environments
which result from unifing the input section message with the incoming
message. See section A.4.3 for a detailed explanation of the use of the
batch.

Output Section

The output section object is referenced by the configurator output acquain-
tance. It has the following acquaintances:

1. Message - Output message pattern.

2. To - Output message destination.

3. Reply - Reply message pattern.

Communicator

A communicator object transfers messages between configurators. It con-
tains the following acquaintances:

1. Operation - specifies whether the communicator message is for a tape-
worm or non-tapeworm.

143

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

2. Message - message being sent.

3. To - destination configurator.

4. Reply - reply configurator.

5. Send-environment-id - unique id used to qualify the variables in the
message being sent.

6. Receive-environment-id - unique id used to qualify the variables in
the input section message of the destination configurator.

7. Environment - stream of frames which contains the bindings of the
variables in the message. As a message is sent from one configurator to
another, the environment grows. When a message starts returning to
the customers of the configurators, the environment shrinks. This pro-
cess is similar to the growing and shrinking of a subroutine invocation
stack.

A.4.2 Front-end

These are the routines which support the interface to the end-user. The
prototype used a very simple interface, in which the end-user embeds a
linear Ubik expression as a parameter of a function named ubik. A slightly
more complex interface routine would establish a Ubik listener, in which the
end-user enters the linear Ubik expression. More complex interfaces would
use 2-D pictures. All these interfaces would eventually require the following
two routines:

Driver

ubik - function which accepts input from the end-user. The input is parsed,
evaluated, and then instantiated.

Parser

parser - converts the linear language input into networks of configurators.

A.4.3 Evaluator

The evaluator executes Early Ubik actions. The basic evaluation cycle is as
follows:

1. input section evaluation - An incoming message is unified with the
input section message. The unification occurs with the environment
transmitted with the incoming message. An augmented environment
is created as a result of the unification.

144

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

2. body section evaluation - The body section either contains configu-
rators or actions. If it contains configurators, the input section message
is unified with the configurators in the body, using the environment
from the input section. If the body section contains actions, they are
executed by the appropriate action function.

3. output section evaluation - The output section contains the mes-
sage that will be either transmitted to another configurator, or be
returned to the configurator which sent the message causing this con-
figurator to execute. The sender of the message to this configurator
is called the customer of this configurator. A communicator is con-
structed to send the message. The environment created or augmented
by the evaluation of this configurator is sent with the communicator.

Evaluate

Most of the evaluation routines have the following three parameters:

1. configurator - The configurator currently being evaluated.

2. communicator - The communicator which caused this configurator
to be triggered.

3. environment - The environment in which the evaluation is taking
place. An environment is a collection of variable bindings, as described
in section A.4.6.

The routines which comprise the evaluator are as follows:

· eval-ubik - Evaluation of end-user entered configurators. The end-
user either specifies the operation which is used to evaluate the con-
figurator or a query operation is assumed. When the end-user entered
configurator is parsed, the operation attached to the configurator is in-
terpreted as the name of a configurator whose body is the end-user en-
tered configurator. For example, (I (ubik. accounting)) is parsed
as a configurator with name GI and body ubik. accounting.

Eval-ubik invokes the eval-command function to evaluate the com-
mand, as specified in the configurator name. If the name of the con-
figurator is not a command, then the eval-query function is invoked.

* eval-non-installed-configurator - When an evaluation operation
@X is encountered on an action, this routine is invoked. If the config-
urator has an output section, eval-output is invoked or else eval-body
is invoked.

* eval-command - Routine which examines the name of a configurator
to determine if it is an operation. If it is, the appropriate operation
routine is invoked. The operations, along with the function for pro-
cessing the operation, are as follows:

145

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

- GI- insert-command

- OD - delete-command

- OU - update-command
- Oreset-memory- Oreset-memory
- Ocreate-model- Ocreate-model
- Oset-current-model- ©set-current-model
- Qset-current-context - @set-current-context
- Qexpunge-model - expunge-model
- OX - eval-non-installed-configurator
- Q - eval-query
- eval-lisp- eval-lisp-expression

- not - not-expression
- and - and-expression
- or- or-expression

* eval-configurator - Used by the evaluator routines to initiate the
basic evaluation cycle. It invokes, in the following order, eval-input,
eval-body, eval-output.

· eval-body - The body contains a collection of configurators. For each
configurator the following occurs:

- Eval-command is invoked. If the configurator's name is an opera-
tion, the function will invoke the appropriate operation function.

- Unify-environment is invoked if the configurator name is not an
operation. The input section message is unified to the configura-
tor.

All the environments produced by evaluating the body are combined
by the or-environment function.

Input

The input section routines unify the incoming message with the input section
message. The input cycle is as follows:

1. Unify the incoming message to the input section messages which are
on the batch, using the environment associated with the incoming mes-
sage. The batch contains multiple input section messages if the input
contains an and expression or an or expression. Place the environment
resulting from the unification in the batch onto the batch entry associ-
ated with the message. Also place a unique-id into all the new frames
resulting from the unification.

146

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

2. Invoke and-environment or or-environment to all the environments in
the batch. The resulting environment will represent the collection of
messages which trigger the configurator. Each of the frames in the
resulting environment contains a unique-id. Remove the frames on
the batch with these unique-ids, since these frames are currently being
processed, and thus no longer need to be batched.

An example of the input cycle follows:

1. A configurator containing an and-expression is placed into the network
of linked configurators.

(OI (batch-example
(input (and (a (po.?x))

(b (po.?x))))))

2. After parsing, the batch contains the following entries.

entry 1 - (a (po.?x))
environment 1 -

entry 2 - (b (po.?x))
environment 2 -

3. Message (a (po. 1)) arrives.

entry 1 - (a (po.?x))
environment 1 - ((*100 (?x 1)))

entry 2 - (b (po.?x))
environment 2 -

4. Message (a (po.2)) arrives.

entry - (a (po.?x))

environment - ((*100 (?x 1)) (*101 (?x 2)))

entry 2 - (b (po.?x))
environment 2 -

5. Message (b (po.3)) arrives.

entry - (a (po.?x))

environment - ((*100 (?x 1)) (*101 (?x 2)))

entry 2 - (b (po.?x))

environment 2 - ((*102 (?x 3))

6. Message (b (po.1)) arrives.

147

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

entry 1 - (a (po.?x))

environment 1 - ((*100 (?x 1)) (*1O01 (?x 2)))

entry 2 - (b (po.?x))

environment 2 - ((*102 (?x 3)) (*103 (?x 1)))

7. And-environment (see section A.4.6) is invoked after each message is
processed. With the current batch, it will produce the following envi-
ronment.

environment I - ((*100 (?x 1)) (*101 (?x 2)))

environment 2 - ((*102 (?x 3)) (*103 (?x 1))

and-environment - ((*100 *103 (?x 1)))

8. The entries from the batch with the unique-ids are removed.

entry - (a (po.?x))
environment - ((*101 (?x 2)))

entry 2 - (b (po.?x))
environment 2 - ((*102 (?x 3)))

9. The input section evaluation returns the environment ((?x 1)).

The input section functions are as follows:

* eval-input - Invokes input-batch.

* input-batch - Invokes input-unify for the incoming message to each
message on the batch. Places the resulting environments on the batch.
Invokes input-execute and then input-return.

* input-execute - evaluates the input section's message. The pattern
is in the format of a configurator. The action performed depends on
the name of the configurator.

- and - invoke input-and-execute
- or - invoke input-or-execute
- not - invoke eval-ubik
- eval-lisp - invoke eval-ubik

- else return the environment from the batch

e input-return - removes all the frames which are successfully unified
from the batch.

e input-unify - invokes unify-environment to unify the incoming mes-
sage to the input section messages.

148

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* input-unify-tapeworm - When the incoming message is from a tape-
worm, this function is invoked rather than input-unify. A message from
a tapeworm has a different format than a non-tapeworm message.

* input-and-execute - and-environment is invoked to find the frames
which are ready to execute.

* input-or-execute - or-environment is invoked to combine the frames
which have been created by input-unify.

Output

Output routines send and receive messages. A message can be sent in the
following ways:

1. Output operation - the output operation s.upplies the message and
destination.

2. Output section - the output section message is used. If the output
section supplies a destination, it is used. If not, the message is returned
to the customer.

3. Input section, no output section - the input section message is used.
There is no output destination; the message is returned to the cus-
tomer.

4. No input or output section - the configurator is entered by the end-
user. The driver routine will instantiate the output and display it on
the end-user's display device.

An output message is packaged for sending in a communicator. The
communicator contains the message, the current environment, the destina-
tion, and a send-id, and receive-id. The send and receive ids are unique ids
needed to distinguish variables during unification. Each time a message is
received by a configurator it is unified with patterns within the configurator.
All the variables involved in the unification are qualified using the receive-id.
When a message is sent from the configurator to another configurator, a new
receive-id is created. The receive-id for the current configurator becomes the
send-id in the communicator. When the message arrives at a configurator
and is unified with the input section message of the configurator, the incom-
ing message is qualified with the send-id and the input section message is
qualified with the receive-id.

The to attribute specifies the destination of the message. It specifies a
network path. For example to a.b.c would send the message to configu-
rator c on path a.b. There can be multiple to attributes which will send
the message to multiple destinations. A to attribute can contain variables.
For example to a.b.? would send the message to all the child configura-
tors of b. (to a.b.?x) would send the message to the configurators whose

149

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

names are bound to ?x in the environment. Before a message is sent, the to
attribute is instantiated to resolve all its variables.

The message is not sent to the output section or statement directly to the
configurator; it is sent to a Ubik memory object. Each memory object has
a receive function named ubik-receive. The receive function determines the
model, network, and configurator which will receive the message. It invokes
eval-configurator to start the evaluation process.

If there is no to attribute, then the output message is returned to the
customer. The customer is actually implicit within the underlying Actor
system. A version of Ubik implemented on a non-actor system would have
to maintain the customer within the communicator. Ubik, as opposed to
Early Ubik, explicitly maintains the customer.

A reply attribute in the output section, or on an output operation, is
processed when the output is returned to the customer. The reply message
is unified to the output message. During unification, the reply is qualified
with the sent-id and the output message is qualified with the receive-id.

The output routines are as follows:

* ubik-send - sends a message to each destination.

* ubik-receive - receives a message. Determines the configurator within
a network to which the message was sent, and invokes eval-configurator
for that configurator.

* eval-output - if there is an output section, then its message is used;
if not, the message in the input section is used. If there is a des-
tination, eval-output-transmit is invoked, or else eval-output-return-
environment is invoked.

* eval-output-return-environment - if there is a reply message, the
reply message is unified to the returned output message. The environ-
ment is then returned to the continuation of the sending configurator.
The continuation is maintained by the underlying Actor system.

* eval-output-transmit - the communicator is set up for sending to a
destination. Ubik-send is then invoked.

* instantiate-to - instantiates the to message. All variables must be
instantiated in order to determine the message destinations.

* instantiate-lattice - finds the configurator in the network to which
the message is sent. Messages can be sent to destinations specified
by wildcards. This function finds all the destinations implied by the
wildcard.

150

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

Expression

Expressions can appear within an input section or body section. The pro-
cessing of the and expression and or expression within the input section
has been previously described. These are the functions for processing the
expressions within the body section:

* and-expression - invokes eval-ubik in parallel for all the conjuncts of
the and-expression, except for eval-lisp and not conjuncts. They are
processed sequentially after the other conjuncts have returned. Eval-
ubik will return an environment for each conjunct. The environments
are combined by the and-environments function. This function takes
the cartesian product of the conjunct environments. After this carte-
sian product takes place, a frame might have multiple copies of the
same variable. If the values for a variable are incompatible, the frame
is removed. An example follows:

(and (X (output (a (b.?x))))
(eX (output (c (d.?x)))))

conjunct 1 (OX (output (a (b.?x))))
conjunct 2 (X (output (c (d.?x))))

conjunct 1 environment (((?x 1)) ((?x 2)))

conjunct 2 environment (((?x 3)) ((?x 1)))

cartesian product

(((?x 1) (?x 3)) ((?x 1) (?x 1))

((?x 2) (?x 3)) ((?x 2) (?x 1)))

results after incompatible values are removed
(((?x 1)))

results when instantiated
(and (a (b.1)) (b (d.1)))

* or-expression - invokes eval-ubik in parallel for all the disjuncts
of the or-expression. The frames returned are combined by the or-
environments function. An example follows:

151

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(and (X (output (a (b.?x))))

(OX (output (c (d.?x)))))

disjunct I (OX (output (a (b.?x))))

disjunct 2 (X (output (c (d.?x))))

disjunct 1 environment (((?x 1)) ((?x 2)))

disjunct 2 environment (((?x 3)) ((?x 1)))

results after or-environments

(((?x 1)) ((?x 2)) ((?x 3)))))

results when instantiated

(or (a (b.1)) (a (b.2)) (a (b.3))

* not-expression - invokes eval-ubik for the expression within the not.
If it returns a failure, then the not-expression succeeds. If it returns
a valid environment, then the not-expression returns a failure. An
example follows:

(and (a (b.?x))
(not (c (d.?x)))

expression (a (b.?x)) results (((?x 1)))

The not expression is processed after expression 1, using the bindings
generated by expression 1.

expression 2 (a (b.?x)) with environment (((?x 1)))

results of evaluation (((?x 1)))

not expression 2 results - fail

and-expression results - fail

If the evaluation of expression 2 fails, then the example will succeed.

expression 2 (a (b.?x)) with environment (((?x 1)))
results of evaluation fail

not expression 2 results - nil
and-expression results - (((?x 1)))
results when instantiated

(and (a (b.i)) (not (c (d.1))))

* eval-lisp-expression - instantiates the expression within the eval-lisp
expression. Lisp apply is then invoked on the instantiated expression.
An example follows:

152

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

(and (a (b.?x))
(eval-lisp (> 2 ?x)))

expression (a (b.?x)) results (((?x 1))(?x 2)))

The eval-lisp expression is processed after expression 1, using the
bindings generated by expression 1.

instantiation of eval-lisp expression
(eval-lisp (> 2 1)))
(eval-lisp (> 2 2)))

and-expression results - (((?x 1)))

results when instantiated

(and (a (b.1))

(eval-lisp (> 2 1)))

Query

Query supports direct reasoning over the structure of a network. A config-
urator pattern specified in the query is unified with the configurators in a
network which match the pattern. For example, the following queries can be
issued: find all the configurators which have an input section which accepts
orders; find all the configurators which send an order; find the contents of
the batch in a configurator. Query is implemented by the following routines:

* eval-query - finds the configurator in a model which corresponds to
the specified configurator. The following routines are then invoked in
order: query-lattice, query-input, and query-output.

* query-lattice - unifies the body of the query configurator to the body
of the configurator in the model.

* query-input - if the input section contains a batch expression, then
invoke query-input-batch, or else invoke query-input-unify.

a query-input-unify - unifies the query input message with the model
input message.

* query-input-batch - unifies the query input message pattern with
the messages in the batch.

* query-output - unifies the query output message pattern with the
model output message.

153

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

A.4.4 Model and Networks

A memory consists of multiple models. Each model has the following at-
tributes:

* model-name - the name of the model.

* current-context - the path name of a location within a network. The
following example illustrates a path name into a network.

path name - a.b.c

network - (a (.b.c.d) (.e.f.g))

* top-node - the root of the networks within a model.

Model

The routines in this section locate and walk networks within a model. The
following examples illustrate the way configurators are found in models given
a path.

(top-node (a (.b.c.d) (.e.f.g))
(x (.b.c.d))

current-context (a.b.c)

path (x (.b.c)) - locate 'c' configurator on 'x' path

path (.c) - locate 'c' configurator on 'a' path using context

path (.d) - locate 'd' configurator on 'a' path using context

* Ocreate-model - creates a model with the specified name in memory.

· Oset-current-model - sets the default model in memory to the spec-
ified model.

* Oget-current-model - retrieves the current model location.

*· set-current-context - sets the current context in the current model.

* context-walk-back - walks backward from the specified position within
the context.

* find-actual-top-node - finds the top-node of a network.

* get-current-context - gets the current context from the current
model.

* Oreset-memory - resets memory.

154

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* Otop-node - gets top node of current model.

* get-max-level - when searching for a configurator within a network,
more than one configurator can have the same name. This routine
returns the longest path to a configurator with the same name. The
longest path represents a configurator with the most context. If multi-
ple paths have the same length, then an error is returned. For example:

(top-node (a (.b.c.d) (.e.f.g))
(x (.b.l.c.d))

path (.c) would return (x.b.l.c) because path is longest.

path (.b) would return an error because two paths are

the same length.

* find-position-in-model - given a network, this finds the path to a
specified configurator within the network. There are many utility func-
tions used by this function, which walk and match networks. The
parameters of this function are as follows:

- top-node - top node of model, or position where search starts.

- configurator - configurator being located.

- use-context - if true, then use current context in model to locate
position.

- status - find position on one of the following: inserted and virtual
nodes, or inserted nodes. Virtual nodes are nodes created to
contain tapeworms for which a configurator does not yet exist.

There are a collection of network matching utilities used by find-position-
in-model. The names of the functions are as follows:

lattice-first-match

lattice-equal

lattice-last-equal

lattice-bottom

lattice-backward-visited

node-equal?

find-lower-configurators

find-higher-configurators

find-deleteable-paths

copy-lattice-between-name-and-configurator

find-on-path

copy-lattice-between-configurators

155

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

Network

These are the routines which insert, delete, and update a configurator within
a network. These routines have to locate the configurator, perform the
operation, and trigger any when tapeworms.

A modification of a network requires multiple configurators to be mod-
ified. To assure the coherence of the change, a write lock is placed on the
network. This write lock also reduces the chance of deadlock, which can
occur if two modification are using the same configurators. This deadlock
is a result of the low level locking which automatically occurs on serialized
objects within the underlying actor system.

The network functions are as follows:

* lattice-command - main modification routine. Instantiates configu-
rator to be processed. Places a write lock on the network. Invokes one
of the network command functions. After the command function has
completed, the write lock is released and any tapeworms which were
triggered as a result of the modification are dispatched.

* insert-command - inserts a configurator into the current model. This
function performs the following: invokes command-in-body to find the
location and the perform insertion; command-in-body returns path
to inserted configurator; marks all configurators along path inserted;
invokes collect-tapeworms to find all the tapeworms on the insert path;
invokes filter-tapeworms to keep only the when-inserted and when-
deleted tapeworms, and schedules the tapeworms for activation.

If the configurator to be inserted is a tapeworm, insert it. The input
section of a tapeworm specifies the configurators which it can trig-
ger. These configurators are found, and the tapeworm reference is
placed in the configurators acquaintance. The configurator, which the
tapeworm references, might not be currently installed. Configurators
are created to hold the tapeworm references. These configurators are
marked virtual, since they were not explicitly created. If they are
explicitly inserted later, they will be marked inserted.

* delete-command - deletes a configurator from the current model.
The last configurator in the network path specified will be deleted,
along with all the configurators below it. Deletion consists of marking
the deleted configurators with the status virtual. They will be removed
by the @expunge-model function. Command-in-body performs the
delete.

If a tapeworm is deleted, its reference is removed from all the affected
configurators. Tapeworms can be deleted implicitly, because they lie
below the configurator being deleted.

All triggered when-delete and when-modified tapeworms are scheduled.

156

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* expunge-model - will remove all the configurators in network with
status virtual, except the paths which lead to a tapeworm.

* update-command - updates last configurator in path. Command-
in-body performs the update. Updating a tapeworm can change the
configurators which will be triggered. All triggered when-update and
when-modified tapeworms are scheduled.

* command-in-body - function which locates the place in a network to
modify, and performs the modification. It returns all the configurators
along the path to the modification. The following are the routines
which it invokes:

- not-in-model - modification path not in model. A new network
is added to the model.

- not-in-context - modification path is not in current context of
model.

- not-completely-matched - add to the middle of a network
path.

- compiete-match-no-body - completely matches a current net-
work path.

- complete-match-no-model-body - completely matches a cur-
rent network path; the input configurator has a body but the
configurator in the network doesn't.

- complete-match-body - completely matches the network; enter
the body to start a new network search. The body of a configu-
rator can be the anchor of multiple networks.

- delete-configurator - delete a configurator.

- update-configurator - update a configurator.
- reset-nest-in - reset the nest acquaintance of a configurator to

specify the configurator into whose body the configurator was
inserted.

A.4.5 Tapeworm

A tapeworm is installed in a network. The input section message of the
tapeworm is installed in the configurator which will trigger the tapeworm.
When a triggering action occurs, the action which caused the triggering is
sent as a message to the tapeworm. The eval-configurator function is used
to execute the tapeworm.

A tapeworm is triggered as the result of a modification or a reference to
a network. The tapeworm is discovered when the path to the modified or
referenced configurator is being resolved. When a configurator is involved
in the resolution, and has a tapeworm attached, that tapeworm is triggered.

157

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

The modification or reference network pattern becomes the message which
is sent to the triggered tapeworm. For example:

model (top-node (a.b (.c.d) (.x.y)))

(tapeworm-1

(input (when-modified (a.b.c))))

modified configurator - c

message to tapeworm- - (a.b.c)

modified configurator - b

tapeworm-1 not triggered.

(tapeworm-2

(input (when-modified (a.b.?x)))

modified configurator - d

message to tapeworm-2 - (a.b.c.d)

The executing of a tapeworm will not cause the triggering of another
tapeworm. This is a restriction of the prototype to prevent a tapeworm
from indirectly causing itself to be reinvoked. This reinvocation can cause a
tapeworm loop. In future versions of Ubik this restriction should be relaxed.

The tapeworm activation is delayed. This delay is necessary in the proto-
type implementation to reduce the occurrence of deadlock. The underlying
actor system supports a low level locking system, in which each configurator
can be locked itself when it receives a message. A modification of a network
requires the modification of multiple configurators. If the tapeworm ref-
erences these configurators and locks other configurators, the possibility of
deadlock is high. To reduce deadlock, Ubik has a higher level locking scheme,
in which a network is locked when a modification operation takes place. Any
new modification operation is prevented from executing until the current one
is completed. Tapeworms resulting from a modification are scheduled un-
til the modification is complete. In future versions of Ubik, which contain
adjustable locking granularity, this restriction should be eliminated.

The following are the collection of routines which schedule and dispatch
tapeworms:

* collect-tapeworms - given a list of configurators, collects all the tape-
worms on the list. The list is collected by one of the network functions
while searching a network. For example, in the process of inserting a
configurator into a network, all the configurators along the path from
the top-node to the place where the insertion is to take place would
appear on this list.

158

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* filter-tapeworms - finds tapeworms in a collection of tapeworms
which are monitoring the specified event. Removes the tapeworms
which are for events which did not occur.

* tapeworm-scheduler - object which contains queue of tapeworms
which have been triggered. Receives two messages: schedule tape-
worm and dispatch tapeworm. A schedule tapeworm will queue the
tapeworm; a dispatch-tapeworm will start the execution of all the tape-
worms on the queue by invoking eval-configurator for each tapeworm.

A.4.6 Unification

The unification routines consist of the functions which perform unification,
instantiation, and environment maintenance.

Unify

These are the routines which implement the unification, as described in
section A.4.6. Unification consists of matching one pattern to another. The
order is significant because all of the first pattern needs to match the second,
but not all of the second need match the first. In this section the first pattern
is called pattern and the second is called lattice.

* unify-environment - externally called unification routine. If any of
the patterns to be unified are installed in a network, then read lock
is placed on the network. The function unify-lattice is invoked. Its
parameters are as follows:

- pattern - pattern to be unified to lattice parameter.

- el - id, which is used to qualify the variables in pattern.

- insl - specifies whether the pattern parameter is installed in a
network.

- lattice - pattern which will be unified with pattern parameter.

- e2 - id, which is used to qualify the variables in lattice.

- ins2 - specifies whether the lattice parameter is installed in a
network.

- environment - stream of variable bindings.

- operation - input message type currently being processed. The
types are tapeworm and non-tapeworm. This is needed so that
the unification which occurs when processing a tapeworm does
not trigger other tapeworms.

* unify-lattice - The pattern configurator is compared to the lattice
configurator. The matching is as follows: a constant match results
in examining the children of the two configurators. A failure occurs

159

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

if two constants do not match. Each path in the pattern configurator
must match a path of the lattice configurator. The function returns an
environment with new bindings or the symbol fail. The unify-frame
function is invoked for each frame in the environment.

unify-frame - recursive routine which walks the lattice network for
each path of the pattern network. The pattern configurator can be a
list of configurators. For example, when walking the network

pattern (invoice.24 (body ((customer.?x)))

lattice (invoice.24 (body ((customer.a)(salesman.24))))

the function process-lattice is invoked for the path invoice.24, and
then for the path customer.?x. Before invoking the function, instance-
configurator is invoked to instantiate any configurator variables in the
pattern.

After unification is complete, merge-frames is invoked so that the con-
figurator body, as represented by the configurator variables, is reassem-
bled as follows:

initial ((invoice. 24 (customer. a))

(invoice.24 (salesman.mike)))

reassembled (invoice.24 (customer.a)(salesman.mike))

* process-lattice - recursive routine which walks the each path in the
lattice network. For example, when walking the network

pattern ((customer.?x))

lattice ((customer.a)(salesman.24))))

unify-frame-inner-body is invoked as follows:

pattern (customer.?x)

lattice (customer.a)

and

pattern (customer.?x)

lattice (salesman.24)

Before invoking unify-frame-inner-body, instance-configurator is in-
voked to instantiate any configurator variables in the lattice config-
urator.

160

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* instantiate-configurator-variables - substitutes the configurators
which are values of the variables for the variables. This supports the
indirect reference facility of the configurator variables, as shown in
section A.3.4.

* unify-frame-inner-body - continues recursive walk down network. If
pattern and lattice configurators are equal, then invokes either unify-
frame or unify-body to continue the walk down the lattice as follows:

pattern (invoice.?x (body (customer.a)))

lattice (invoice.a (body (customer.a)))

Invoke unify-equal? to match invoice. If equal, move down the lattice
and invoke unify-frame with

pattern (?z (body (customer.a))

lattice (a (body (customer.a))

When the body is the next move down the lattice, unify-body is in-
voked.

* unify-body - invokes unify-lattice to continue the network walk with
the body of the pattern and lattice.

* unify-equal? - matches the name of the pattern configurator with the
name of the lattice configurator. The possible names are as follows:

1. ? - wildcard

2. ?? -configurator wildcard

3. ?x - variable

4. ??x - configurator variable

5. x- symbol

6. 1 - number

The wildcards and variables will match anything. When they match,
unify-extend-frame is invoked to place the variable in the frame. If
both the pattern configurator and lattice configurator contain a symbol
or number, they must be equal to each other or a unification failure
results.

* unify-extend-frame - will invoke extend-frame with the new variable
binding to place the variable in frame. If the variable is already bound
in the frame, then unify-equal? is invoked to check whether the bind-
ings are compatible. Process-reference-tapeworms is invoked to check
whether reference tapeworms should be triggered. Free-for is invoked
to see if the variable name occurs in the configurator matched to the
variable.

161

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* free-for? - checks to see if a variable name occurs in the configura-
tor matched to the variable. For example, the following configurator
contains an invalid variable name occurrence:

pattern (?x)
lattice (a (b.?x))

e process-reference-tapeworms - if the pattern configurator or the
lattice configurator are installed in a network, they are checked to see
if any when-reference tapeworms are attached. If they are, tapeworm-
when-referenced is invoked to schedule the tapeworm.

Environment

An environment has the following structure:

<environment> := (<frame>*)

<frame> := (<bind>*)

<bind> := (variable id (<value-list>*)

<value-list> := (value id configurator)

A variable is a configurator-variable ??x or a variable ?x. An id is a
unique number which qualifies the variable. Value is the variable, symbol,
or number which is the value of a variable. The value is the name of a
configurator object. Configurator is the configuratur object which contains
the name.

* bind-in-frame? - determines if a variable with corresponding id is in
a frame.

* extend-frame - adds a value-list to a frame.

e extend-environment - adds a frame to an environment.

* lookup-in-frame - finds the value list associated with a variable in a
frame. If the value is a variable, keeps searching until a constant value,
if any, is found.

* instantiate-environment - when a configurator returns a message
to its customer, the variables in the environment for that configurator
will no longer be used. This routine removes all these variables. Before
these variables are removed, any constant values indirectly associated
with these variables will replace them.

* or-environments - combines multiple environments into one environ-
ment.

162

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* and-environments - Parallel and expression create multiple environ-
ments which must be combined. The combination consists of taking
the cartesian product of frames in the environments. Frame-cartesian-
product is invoked.

* frame-cartesian-product - takes a list of environments and returns
the cartesian product of their frame-lists. For example:

in ((framel frame2) (frame3 frame4))

out ((framel-frame3) (framel-frame4)
(frame2-frame3) (frame2-frame4))

If the resulting frame has a non-configurator variable with more than
one value, then the frame is deleted. A variable with more than one
value would cause a unification failure if the and expression conjuncts
were unified sequentially rather than in parallel.

* merge-frames - merges a list of frames into an environment. There
are two types of merge. Single-frame is used by frame-cartesian-product
to remove all frames with variables which have multiple values. Multiple-
frame produces a new frame for each multiple value found for a vari-
able.

In addition, there are multiple utility routines for searching and manip-
ulating an environment. The names of these routines are as follows:

multiple-frame-handling

merge-configurator-variables

union-environment

merge-variables

merge-value-list
collect-variables-in-frame

collect-variables-in-bind

collect-frame-identifiers-for-env

collect-frame-identifiers-for-frame

remove-frame-from-environment

remove-all-frame-identifiers

reset-variable-env

single-frame-handling

empty-environment?

variable-wildcard?

configurator-var?

configurator-wildcard?

frame-identifier?

any-var?

163

APPENDIX A. EARLY UBII AND ITS IMPLEMENTATION

Instantiate

These are the routines which replace the variables in a pattern with their
values from the environment.

* instantiate - initiates instantiation of a configurator.

* instantiate-output - initiates instantiation of a top-level configurator
which was created by the end-user using Ubik's linear syntax.

* configurator-instantiate - creates an instantiated configurator for
each frame in the environment.

* instantiate-name - instantiates the name section of a configurator;
invokes copy-and-instantiate to walk the network of which the config-
urator is a part.

* copy-and-instantiate - walks the configurator, instantiating the in-
put, output, and body section. Invokes instantiate-name for the name
of each configurator.

Lispify

Instantiates memory and models in varying levels of detail.

A.4.7 Utilities

Initialize

Initializes the Ubik system when it is loaded. Creates a memory object and
an object for generating unique-id's.

Utility

Collection of functions which map over lists in parallel.

* make-dot-name - input is (a b c); output is a.b.c

* add-dots - subfunction of make-dot-name.

* mapcarO - parallel version of mapcar.

* filter-mapcarO - parallel version of mapcar which also removes spec-
ified symbol or number.

* mapappendO - parallel flatten.

* filter-mapappendO - parallel flatten which also removes specified
symbol or number.

* mapcQ - parallel mapc.

164

APPENDIX A. EARLY UBIK AND ITS IMPLEMENTATION

* assocO - parallel assoc.

* sort-configurators - sorts a list of configurators by the configurator
name.

* merge-configurators - merges and sorts two lists of configurators.

* unique-id - generates a unique-id. Used for generating environment
ids.

A.5 Conclusion

Ubik is a high-level language. Structures such as models, networks, con-
figurators, and tapeworms are built into the language. The rationale for
this is that these constructs are fundamental in describing organizations and
their applications. Unification over these structures is a powerful reason-
ing facility. It enables the organization to reason over its own structure, as
represented in Ubik.

Prolog [21] and Concurrent Prolog [60] represent alternatives to Ubik.
These languages use unification over relations, functions, and lists. The sim-
plicity of these languages allows a small interpreter to be built to evaluate
the languages. A hoped for advantage of Ubik over Prolog-based languages
is that it is much easier to use in writing business applications. Ubik could
have been written in Prolog or Concurrent-prolog; it is not clear that this
would have made the implementation of Ubik easier than its current imple-
mentation in Acore.

Ubik has many facilities not present in Early Ubik, such as power, de-
velopment, censors, distribution, and prototypes. A future prototype will
need to implement these additional facilities. Early Ubik has configurator-
variables which were discovered as a direct result of using the Early Ubik
implementation to build applications. Ubik, as described in this thesis, does
not have configurator variables. It will probably need them.

Efficiency of implementation was not an objective of the prototype. A
future implementation where it is an objective might require further Ubik
language development.

165

Appendix B

Related Work

This section contains descriptions of systems which raise the level of appli-
cation development. The systems will be analyzed by describing how they
fit into the Ubik framework. The Ubik framework is as follows:

1. Structure - What are the basic objects of the system? How are these
objects combined? What is the level of support for composite objects?
Does the system contain prototypes? Is there support for object ver-
sions?

2. Distribution - How are logical and physical distribution handled?
How is context handled?

3. Action - What is the interactive end-user interface? Does the system
support end-user programming, batch processing, parallel computa-
tion, bureaucratic paths, passive messages, and active messages?

4. Tapeworms - Does the system support monitors and censors? Is the
tapeworm installation commutative and distributed? What are the
operations which are supported?

5. Questers - Can a quester query a system's structure and content?
Are distributed questers supported?

6. Development - Can the system's representation be reorganized? Is
there support for message elimination, regrouping, reclustering, bu-
reaucratic development, and prototype development?

7. Power relationships - What are the facilities for cooperative and
competitive processing? How is focus of attention handled?

8. Integration - How do the various system functions interact with each
other? Does the system support or require the use of multiple lan-
guages and subsystems?

166

APPENDIX B. RELATED WORK

The following systems are described using this typology: hypertext in
section B.1, relational databases in section B.2, rule and frame based systems
in section B.3, and semantic net systems in section B.4.

B.1 Hypertext

A hypertext system is used to provide a cross referencing capability between
multiple text documents. This capability includes an end-user interface to
display multiple documents, a linking facility to create the cross references,
and a browser to display the links and move between text documents. Hy-
permedia is a generalization of hypertext in which pictures and sound, in
addition to text, can be cross referenced. The first hypertext proposal,
Memex, was described by Vannevar Bush in 1945, in the article As We May
Think [16]. Bush hypothesizes that the human brain works by associations
between its concepts. A hypertext system, to him, mimics the way the brain
works. This view of human thinking, combined with the end-user interfacing
philosophy known as what you see is what you get (WYSIWYG), has guided
the way hypertext systems are constructed.

Superficially, hypertext systems do not seem to have much in common
with application development and Ubik organizations. However, as hyper-
text systems become more complex and are integrated into the general com-
puting environment, they are evolving into Ubik type systems. Halasz, in
the article Reflections on Notecards: Seven Issues for the Next Generation
of Hypermedia Systems [35], discusses this evolution as follows:

1. Search and query in a hypermedia network - search must include both
the structure and content of the network.

2. Composites - augmenting the basic node and link model such that
groups of nodes and links are treated as first class objects.

3. Virtual structures for dealing with changing information - the hy-
permedia model needs to be augmented with a notion of virtual or
dynamically-determined structures.

4. Computation in (over) hypermedia networks - active computational
engines for particular applications need to be integrated into the hy-
permedia model.

5. Versioning - a mechanism to deal with changes needs to be integrated
into the network.

6. Support for collaborative work - the support of simultaneous multiuser
access to a common network, and the social interactions involved in
collaboratively using a shared network, must be improved.

7. Extensibility and tailorability - make it easy for the end-user to make
small changes to the system with a minimal amount of effort.

167

APPENDIX B. RELATED WORK

Structure

The basic object in a hypertext system is a node, consisting of a piece of
text, and links to other nodes. Figure B.1 is an illustration of the Notecard
hypertext system [35]. This example contains three nodes which appear as
windows on a display screen. The end user retrieves a node onto the display
screen by selecting a boxed string of text. In this example, if the end-user
selects the boxed text US TNF Missiles in the node characteristics of
TNF Missiles, then the node US TNF Missiles appears on the screen.
These two nodes are called file nodes. The FILE BOXES section of the file
node provide a hierarchical index. The NOTE CARDS section of the file
node provides a link to a non-file box node. If the boxed text Capabilities
of New Missiles is selected in the NOTE CARDS section, the correspond-
ing node will appear as a window on the screen. This node has a boxed
text Guidance of Pershing II which links to another related node when
selected.

A Browser is a window which gives a global view of the linked nodes in
a hypertext system. Figure B.2 illustrates a browser for the file box nodes
in the previous example.

Distribution

Hypertext databases are distributed as follows:

1. The database is distributed physically over multiple computers, but
the end-user does not see the distribution. For example, the KMS [10]
system uses the Sun NFS file system to link the distributed databases
into one logical database, which the end-user manipulates. This is
illustrated in figure B.3. In this example there are six computers com-
municating over a local area network. Four of these computers contain
files which are part of the KMS hypertext database.

2. Multiple contexts are maintained in one hypertext database. For exam-
ple, the Intermedia system [65] maintains multiple collections of links
between text documents. Each collection is called a web. A database
is viewed through a web, with only the links in the web currently be-
ing viewed on display. Intermedia only maintains one level of webs;
there are no webs of webs. Figure B.4 illustrates a database with two
webs. Web 1 displays links b and g in document A, and a and f in
document B. Web 2 displays links f and g in document A, and g and f
in document B.

3. Multiple versions can be maintained for one node in a database. Mul-
tiple versions of collections of nodes, as described in section 3.2 on
software development, are not maintained.

168

APPENDIX B. RELATED WORK

0o

Figure B.1: Nodes in the Notecard hypertext system. The
file nodes, the lower one is a non-file node.

two upper nodes are

haracteristics of TNF Miss iles

FILE BOXES

US TNF Missiles

[Soviet TNF issiles

Third-Country Nuclear Forces

NOTE CARDS

US & SOVIET INF's (table)

US TNF Missiles

FILE BOXES

Pershing II characteristics

| GLCM characteristics

NOTE CARDS

Capabilities of New Missiles

I US Controls New Missiles

I Missile Numbers I

Capabilities of New Missiles

Even though the weapons in question
replace older weapons (the Pershing
1A and the Vulcan bomber), both are
capable of more destruction faster
than their predecessors. This is the
result of new radar guidance
systems, with new levels of accuracy.
Also have sufficient range to make
vulnerable installations and cities in
the Western USSR, in the case of the
P 2, within a matter of minutes.

(P. 371) See uidance of Pershing III

_ _

I

169

I

APPENDIX B. RELATED WORK

Topic Browser

Thrd-Country Nulea Force s
ichraoterhftrs of nrF ypilf /t

I Of S~~~~~~~~oiet 1NF Yillles -152 Caacsi~S

-Pershl ncharacrs tic|

Figure B.2: Topic browser for notecard hypertext system.

/II
/

/

Figure B.3: The KMS hypertext system can be distributed over multiple computers
linked by a local area network.

170

r - - - - - - - - - - - - - - _-R -_

/

APPENDIX B. RELATED WORK

web 1 web 2

Display ScreenI..

A

hypertext database
*------ -- --.---------------------- ------.

Figure B.4: Intermedia webs are used to maintain context in a hypermedia data-
base.

B

m

f ~ ~ ~ ~ ~ ~ ~
{ -

IN---

-

r

171

I
--

APPENDIX B. RELATED WORK

Action

The nodes in a hypertext system are passive; they do not include programs.
Programmable interfaces are provided in most hypertext systems. These
interfaces are used by application subsystems to reference the hypertext
database. Apple's Hypercard, which runs on the Macintosh computer, comes
with its own programming language, which can make decisions based on the
values filled into hypercard fields.

Tapeworms

Tapeworms are not supported in any of the systems.

Questers

Hypertext systems support many types of querying, some of which follow:

1. Browsers are an important part of hypertext systems. A browser
provides facilities for the end-user to navigate through the network
of nodes. Current research in hypertext systems involves creating
browsers which help the user keep a frame of reference when navi-
gating unfamiliar hypertext databases. Browsers are discussed further
in the section on power relationships.

2. Graphical query languages would provide future hypertext systems
with the ability to search a hypertext systems for specified linking
patterns.

3. Link attributes, which exist on some current hypertext systems, allow
a combination of semantic and structure queries. A query of this type
could perform a structure query on only those links whose attributes
are specified.

4. Text search treats a hypertext database as an unordered collection of
text. The search for specified patterns can occur on the actual text,
or on indexes built from the text.

5. Text and structure searches use a combination of text search and links.
This type of search is discussed in the section on power relationships.

Development

Hypertext systems cannot be easily reorganized. The heart of the hypertext
system is the explicit links between nodes. These links impose a structure
on the system. There is not much information on the intent of the links, so
any reorganization will result in lost hypertext information.

172

APPENDIX B. RELATED WORK

Power Relationships

Cooperative processing entails a group of people working on the same col-
lection of nodes. A KMS node can be used as a mailbox, bulletin board, or
discussion area. KMS users grow a conversation at a node in the database.
The end-user views the conversation as text editing rather than message
sending.

Focus of attention mechanisms in hypertext are as follows:

1. Browsers both provide a focus of attention on the nodes in which the
end-user is interested, and a framework in which the end-user can view
the complete database. A browser which does not focus attention can
become unusable, as shown in figure B.5. In this example a global
browser for part of an Intermedia database is shown.

/iris/ny/class/docs/English/Context32.204.780:Global Map

DG-Rossetti-Bio Tory literary-Relations Crusoe Dickens-Religion Crusoe-Alone

Figure B.5: An Intermedia database can become too complex for use with a non-
focused global browser.

The focusing and framework mechanisms are as follows:

(a) Fish eye display focuses on a set of nodes and reduces the resolu-
tion and size of the surrounding nodes.

(b) Two-level windows provide a detailed window for the focused
frames and a high-level window for the global view. The high-
level window has an indication of the area the low-level window
is displaying.

-Mem

173

APPENDIX B. RELATED WORK 174

(c) The complexity of the database is reduced by displaying only the
links for a specified web.

(d) The complexity of the database is reduced with subtree detail sup-
pression, which replaces suborganizations of nodes with a common
father node. A suborganization is expanded only when the end-
user wants to navigate though it [30]. This is illustrated in figure
B.6. In this example nodes are collected into sets. Links to nodes
within a set are replaced by links to the set as a whole.

.......... S : , ..
['"~,.................. .

Figure B.6: A Browser suppressing links displayed by using subtree detail sup-
pression.

2. Hypertext query processing should provide the end-user with optimal
starting points for browsing. The query needs to use the node content,
node context, and link semantics for finding these starting points. Out
of research in searching for information in a hypertext medical hand-
book, Frisse developed the following principles for query processing
[32]:

(a) The utility of a card can be approximated by a computed numeric
weight consisting of two components. The intrinsic component
is the value computed from the number and identity of the query
terms contained within the card. The extrinsic component is the
value computed from the weight of immediate descendant cards.

(b) The intrinsic card weight should be proportional to the number
of times each query term occurs in the card, and inversely pro-
portional to the number of cards that contain each query term.

(c) The extrinsic card weight component should be inversely propor-
tional to the number of immediate descendant cards. A card with
many immediate descendant cards, but only one query term on
one immediate descendant card, should have a lower weight than

APPENDIX B. RELATED WORK

does a card with fewer immediate descendant cards and only one
query term on one immediate descendant card.

(d) The optimal starting point for graphical browsing is the card with
the highest weight. The next most optimal starting card is the
card with the next highest weight that is not a descendant of any
card with higher weights. If the next card is an immediate ances-
tor of any previously identified starting point card, the ancestor
card should assume the descendant's role as a starting point card.

The results of Frisse's principles is illustrated in figure B.7. In this
example a page from the medical handbook is shown. There are four
links in this page. The labeled tree below the page shows the results
of applying the principles. The path S1.IV.B.1 is the most promising
path. The path S1.IV.E.1 and S1.IV.E.3 are the next most promising
paths.

3. Hypertext can be used for problem exploration, as described in Con-
klin's Hypertext survey [22]. Synview [50] is a problem exploration
system in which users post issues and arguments. The users of the
system vote on the validity and relevance of a posting. The users can
use the voting score to focus on the postings with the highest values.

Integration

Hypertext systems consist of the integration of an interactive user interface,
links, and a browser which navigates the links. Other facilities needed in
an application development system are missing or added on in an ad-hoc
manner. The most important of the missing facilities is an integrated action
system.

175

APPENDIX B. RELATED WORK

0 SI..A.

S1.IV.B --- 76 S1.lV.B.1

S1.IV.C.

SI.IV.D.

S.IV.E.

S.IV.E.1.

S.V.E.2.

S1.IV.E.3.

S1.IV.E.4

S1.IV.E.5.

U l.lV..b.

Figure B.7: Result of Frisse's principles in calculating promising browsing paths.

S1.V.ENDOREACTRACHEAL INTUBATION

V. Endotracheal Intubation and Tracheostomy. Endotracheal
diameter of their lumen e.g. a no. 8 tube is one with an 8
mm lumen. Since the resistance to airflow is proportional to
the fourth power of the tube radius, a large tube e.g.> no. 8 is
preferable to minimize airway resistance and work of
breathing. A large tube also permits easier suctioning and
allows passage of the bronchoscope when bronchoscopy is
indicated.

S .IV.A INDICATIONS. THE MOST COMMON

S 1.V.B. ENDOTRACHEAL INTUBATION SHOULD BE

S 1.IV.C. TRACHEOSTOMY IS INDICATED WHEN|

S 1.1V.E. PROBLEMS AND COMPUCATIONS

263 S1.IV.

176

APPENDIX B. RELATED WORK

B.2 Relational Databases
The relational database model provides a tabular view of data along with
operations for manipulating the tables. The operations have the power of
first-order predicate calculus. This tabular view of data, provided by the
model, has been used to develop end-user oriented application development
systems. The System for Business Automation (SBA) [17,27,28,67] and its
subset Query-by-Example (QBE) [66] are early examples systems of this
type.

Paradox [7] is a product running on the IBM personal computer which
is based on Query-by-Example. A Paradox query is shown in figure B.8.
This query finds all the customers whose zip code is greater or equal to
90000 and whose credit is greater than 100000. The answers are selected
from the customer table. A table in Paradox contains a name and columns.
Operations written within the skeleton of the table define the query. In this
example, the check marks indicate which columns are to be displayed in the
answer. The selection expressions =90000 and L,100000 are placed in the
Zip code and Credit columns respectively. Paradox returns the result in a
table called ANSWER.

CUSTOMER[Cust last NameTIitf Street] CitY] Sta t Zip Countr redit-
I~1~1,=9 0 II>= >100000 I

ANSWER- ast Name -ity tate Credit-

1 Connors S Belair CA 900.000.00
2 Harris Atherton CA 750000.00
3 Matthews San rancisco CA 1,250.000.00
4 McDougal L Seattle VA 150,000.00
5 Montaigne S Dellevue WA 450,000.00

Figure B.8: A Paradox query which finds all the customers whose zip code is
greater or equal to 90000 and credit is greater than 100000.

Tables can be combined using a join operation. Join operations in Para-
dox are written as examples of how an end-user would manually look up the
results in a table. Figure B.9 illustrates a join. The query in this example
relates the customer id with the item he ordered after 6/1/88, and a descrip-
tion of the item. The customer id is in the orders table, and the description
is in the products table. The tables are joined on the stock # column. This
is indicated in this example by the use of the xyz symbol.

Structure
The table is the basic Paradox object. A table consists of rows and columns.
Each row in a table must be unique. Each column must be of the same data
type. The data types are alphanumeric, number, currency, date, and short

177

APPENDIX B. RELATED WORK

ORDERS-- Order 7 Cust ID Stock Date Emp #

PRODUCT Stock --- escription T Quant r-Price

ANSYER ust id tck #-Date Description

1 2117 632 11/22/89 Portable suntan machine
2 2779 898 8/01/88 Matching panthers/leashes
3 3266 519 12/16/90 Robot-valet

Figure B.9: A Paradox query with a join. This query relates the customer id with
the items ordered after 6/1/88 and a description of each item.

number. A family consists of a table and its related objects. These related
objects are as follows:

1. Form - A table can be viewed through a form, as shown in figure B.10.
In this example, the Luxury Gifts Department Customer Information
Form displays a form for each row in the customer table. The user
assigns the columns in the table to positions on a form by conducting
an interactive dialog with the end-user.

A form can be composed of two tables as shown if figure B.11. A two
table form uses one table as a master table, and the other as a detail
table. In this example the customer table is the master table and the
bookord table is the detail table. The tables are linked through an
interactive dialog on the cust id column.

2. Report - An object to display a table. A report can sort and group
rows, calculate fields and totals, enter titles and headings, and arrange
the table data in a variety of formats. Figure B.12 illustrates the spec-
ification of a report format. Figure B.13 shows the report generated
by the format. A report format consists of bands. The bands are as
follows:

(a) Report band - indicates header for report.

(b) Page band - indicates page heading and footings

(c) Group band - indicates column that the report is being grouped
on. The table being printed is sorted on the group column. When

178

APPENDIX B. RELATED WORK

CUSTOMER-Cust Ut - Last Name-Init Street

1 13 | Aberdeen F 145 Utah
2 13 1 Svenvald I I Gouve

Street lWai
ument House Re'

Cit Stte- r-

City Sat& - WamZCountrI --Credi

hjikton DC 20032 50,000.00
/]ja v " ,M IIceland.1,250,000.00

LUXURY GIFTS DEPARTMENT
CUSTOMER INFORMATION FORM

* Customer Number: 1386

Name: F. Aberdeen

Address: 45 Utah Street
Washington DC 20032

Credit Limit: $ 50,000.00

Figure B.10: A Paradox form for viewing a row in a table.

*
*I

*

rttrlrrrrtrClrPSftttrlrS�SCtStStSSrCS�tr

179

APPENDIX B. RELATED WORK

C Gut lE -LtLt Namr S Citry t -ZIP-Count Hre

1 13 iAberdeen Ir l Utah Street Wasinon DI I 2 000.0
Z 1 138 Swmald Ij Gousrnmsnt Houue Reykajavik Iceland 1.20.000.00

BOOKORD -- Cust Date--Item - Uol--Quant Emp

2 1386 18/20/89 I NI 21 146
3 1386 1i/20/89 2 1M27 11 146
4 1784 5/05/88 1 118 23 517

Viewing Bookord table with form FI: Record 1 of 7 (1-1 Group)

LUXURY GIFTS BOOK CLUB
ORDER FORM

ID:
Name:

Address:

Date

2/18/90
5/18/90
5/18/90
9/14/90

3128
R. Elspeth, III
1 Hanover S.uare
London
England

Item # Vol Quant Sold by

1 I16 10 146
2 M64 11 146
3 E22 I 5 146
1 S09 14 775

Figure B.11: A Paradox form for viewing two tables. The customer table is the
master table, and the bookord table is the detail table. The tables are linked on
the cust id column, as specified with an interactive dialog with the end-user.

, , 1 "3'i

, I I

180

APPENDIX B. RELATED WORK

the value data in the group column changes, a total for that value
can be printed on the report.

(d) Table band - the format of the table being printed. In this ex-
ample the table has columns stock #, ID, Quant, Date, Emp #,
and order #.

Changing report R2 for Orders table Report Inr 1/1

REPORT OF ORDERS BY STOCK NUMBER

For eioal Quarter ended mm/yy

PAGEBREAK
--page

Orders by Stook Number

*table , ,

stock m m

9999 99999

Page 999 M o n t h dd yyyy
hh:mm pm

I I I I

Quant Date Emp f Order f

999 mm/dd/yy 9999 99999
, ! I

Total number of orders for item 99999: 9999

--group Stock f

Luxury Gifts Department

- page

Total number of orders to date: 9999

Figure B.12: Paradox format for printing a report. The report table is grouped
on the stock # column. Group and page totals are printed.

3. Graph - A collection of objects which can display a table. Release 3.0 of
Paradox supports the following types of graphs: stacked bar, standard
bar, rotated bar, 3D bar, XY graph, area graph, line graph, pie chart,
marker graph, and combined lines and markers. A bar graph is shown
in figure B.14. In this example an answer table is generated, and
then a crosstab table is generated from the answer table. A crosstab
table takes the values of data in a specified column and makes them
the names of the columns in the crosstab table. The graph labels are
specified by an interactive dialog with the end-user.

4. Index - An object defined for each table column which facilitates quick
retrieval of a value from that column.

Report Band

Page Band

Group Band

Tale Band

1, i, 11

181

��" "M~

-"""
' bn&

I

APPENDIX B. RELATED WORK

REPORT OF ORDERS BY STOCK NUMBER

For Fiscal Quarter Ended 4/88

Orders by S

Stock #

130

235

244
244

tock Number Page 1

ID Quant Date

April 28, 1988
10:00 am

Emp # Order #

4277 1 2/28/87 775

Total number of orders for

7008 1 3/04/89 517

Total number of orders for

9004 5 9/04/89 422
5341 3 12/24/88 146

Total number of orders for

Total number of orders

2280

item # 130:

5119

item # 235:

3885
4492

item # 244:

to date:

1

1

8

10

Luxury Gifts Department

Figure B.13: The Paradox report for the report format shown in figure B.12.

182

APPENDIX B. RELATED WORK 183

MASTERRBKTDate-Employee Customer State Ho Group TYearTTotal
T / T /T T T 1]

ANSWER- Employee --Customer tate Group -Hotal -

1 [Christiansen Aberdeen DC Manners 658.98
2 [Christiansen Aberdeen DC Manners 1,258.95
3 Christiansen Aberdeen DC Manners 989.45
4 Morris McDougal WA Investment 2,068.85

CROSSTAB -Employee Estate--Trave--anner

1 Chambers 1,139.05 1,707.15 8,543.20
2 Christiansen 3,714.75 2,068.25 4,555.80
3 Kling 2,307.60 479.60 1,528.75
4 Lee 5,934.60 1,558.65 0.00
6 Morris 2,067.45 3,774.50 1,168.75

Figure B.14: A Paradox bar graph using a crosstab table.

APPENDIX B. RELATED WORK

5. Validity check file - A file which contains a constraint or check placed
on values in a column.

6. Image setting file - A file which contains information on how the table
is to be viewed.

A composite object is an object constructed from multiple tables. A
form can be a composite object, consisting of two tables. A table itself can
be a composite object, composed of multiple tables. Tables of these types
can only be used for data entry. Data entered in this table are automatically
placed into the tables linked to this table. A more general relational database
concept, not supported by Paradox, is a view. A view is a table which does
not actually exist; it is composed from underlying tables. The view can be
queried as any other table and, to a limited extent, modified.

The use of composite objects are quite restricted in Paradox. Whereas
tables can be used to create composite objects, composite objects cannot be
used to create other composite objects. Tables can be queried using Query-
by-Example. Composite objects can only be queried by using an interactive
dialog or a function based language.

Distribution

Paradox can operate on files distributed over a local area PC network. The
network supports the paths to the files. Paradox supports table protection
and locking. Paradox does not support database transactions. A transaction
ensures that a database operation, which consists of multiple table accesses
or modifications, occurs as an atomic operation. Either the transaction
is successful or it is aborted. An aborted transaction will remove all the
database modifications made within the transaction.

Name context in Paradox is as follows: a table name is unique within a
database, and a column name is unique within a table.

Action

Paradox supports both interactive and batch action. The interactive action
consists of a menu interface which supports an end-user dialog. This in-
terface can be used to create, browse, and query the Paradox objects. In
browse mode the user can locate, display, and edit objects. A script can be
made to package and repeat the user interaction. Query consists of forming
Query-by-Example expressions which can be used to display and create ob-
jects. The interactive dialog can also be used to create custom interfaces to
run particular applications. Batch processing consists of a C-type program-
ming language called PAL. This language provides functions to reference the
Paradox Objects.

184

APPENDIX B. RELATED WORK

Tapeworms

Paradox does not support general monitoring or censoring. It provides two
types of censors: validity checks and referential integrity. Validity checks
assure that the values in a column pass certain criteria. The validity checks
are as follows: low value, high value, and one of a collection of specified val-
ues. Referential integrity is a guarantee of internal consistency for an object,
even when the object is stored in two or more tables. General referential
integrity is not supported. A limited type is supported in multitable forms.

Questers

Paradox supports an extensive set of query operations which are integrated
with the Query-by-Example linking variables. The operations are catego-
rized as follows: selection, projection, join, modification, calculation, group-
ing, set, and, or.

Development

Paradox supports extensive regrouping facilities. These facilities follow:

1. Query-by-Example queries support the creation of new tables out of
existing tables. The new tables can be projections, joins, or aggrega-
tions of values in the existing tables.

2. Reports support sorting, column value breaks, and aggregating op-
erations. With these operations, reports can be written with group
headers and footers.

3. Graphs support crosstabing a table. A crosstab table is a table created
from a relational table in which the data in one field is summarized by
expressing it in terms of two other fields. Crosstabing involves selecting
a first column whose values will supply the graph x axis labels, a second
column whose values will supply the graph y axis labels, and a third
column whose values will be the graph entries. The entries will either
be the sum, min, max, or count of the values associated with the x
and y graph axis.

Power Relationships

Cooperation in Paradox is through sharing of tables among multiple users.
The support of sharing in Paradox is very primitive. Most modern relational
database systems support transactions and fine-grain locking. Paradox does
not support transactions, and its locks are at the table level.

185

APPENDIX B. RELATED WORK

Integration

Paradox's application development languages include a menu-based dialog
language, a Query-by-Example query language, and a C-type programming
language called PAL. The languages are well integrated. An end-user can
start constructing his application using the dialog and Query-by-Example.
He can drop down to the PAL programming language when he needs to
express some application logic too complex for the higher level languages.

Query-by-Example is a powerful end-user programming language. Para-
dox treats Query-by-Example as just one of many interfaces, rather than as
a unifying programming language for application development. In Paradox,
Query-by-Example can only be used on tables, not other objects such as
forms, reports, and graphs. An interactive dialog is used for querying these
non-table objects. In Paradox, Query-by-Example is not used for directory
management, specifying integrity constraints, or invoking actions. Ubik uses
the Query-by-Example operations in a uniform manner for all the operations
it supports.

186

APPENDIX B. RELATED WORK

B.3 Rule and Frame Based Systems

Model-based reasoning consists of representing the structure of an applica-
tion area, defining the behavior of the application objects, and reasoning
over the structure and objects. The most widely used model-based reason-
ing systems consist of rules and frames. The frames are used to represent the
structure of the application, and the rules to reason over the frames. KEE
[2,3] is the most complete system of this type. KEE consists of the following
multiple interrelated subsystems:

1. Units - these are the KEE frames used to model an application. A unit
consists of named slots which contain values.

2. Rule system - these are the objects which reason over the units. Rules
monitor the slots within a unit. When the value of the monitored slot
changes, the monitoring rule is triggered. A triggered rule can take
action by invoking procedures and changing slot values.

3. Object-oriented programming - a way of taking action by sending a
message to a slot. A program associated with the slot is executed
when the slot receives the message.

4. Active Values - a way of taking action by changing the value in a slot.
A program associated with the slot is executed when a value within
the slot is changed.

5. Pictures - a subsystem which allows the building of interactive window
displays.

6. Active images - a subsystem which provides graphic displays of the
values in a unit.

7. Worlds - a context mechanism which maintains multiple versions of
units.

8. Truth Maintenance - a subsystem which uses derivation rules and jus-
tifications to maintain consistent collections of units within a world.

9. TellAndAsk - a subsystem which provides English-like syntax for spec-
ifying rules.

Structure
The basic objects in KEE are rules and units. A unit contains slots. A slot
contains facets, each of which contains values, as shown in figure B.17. The
facets of a slot in KEE are as follows:

1. Value - value of the slot.

187

APPENDIX B. RELATED WORK

2. Comment - slot documentation.

3. Value class - Allowable values in a slot.

4. Cardinality max and min - number of values that are allowed in a slot.

5. Inheritance - how the slots within a unit are inherited from superclass
units.

6. Method - method which is invoked by the receipt of a message.

7. Active value - method which is invoked when the value of the slot
changes. This is further described in the section on tapeworms.

unit

fa~et f t f ffe et

value value value value value

Figure B.15: A unit is composed of slots. Each slot is composed of facets with
values.

Figure B.16 is an example of an automobile unit. The unit contains three
slots: color, number.of.doors, and owner. The slots have a value of unknown.

Units can be organized into a class structure. A subclass inherits the slots
and facets from superclass. In figure B.17, sedans and station.wagons are
subclasses of automobiles. They inherit the three slots from the automobiles
class. The sedans unit gives the number.of.doors slot a value of 4. The
station.wagons unit gives the number.of.doors slot a value of 5 and adds the
length.of.cargo slot. The unit marys.car is a subclass of sedans. This unit
inherits the slots from automobiles and sedans. In addition, it gives the
value red to the color slot and mary to the owner slot. The unit joes.car
inherits from automobiles and station.wagons. It gives the value blue to the
color slot and joe to the owner slot.

A unit can inherit slots from multiple classes. Figure B.18 shows joes.car
as a subclass of both station.wagons and fuel.injection.systems.

Rules are composed of two parts: antecedent (If clause), and consequent
(Then clause). The rules can be run in a forward or backward direction, as
described later in section on tapeworms. The If section of a rule contains ex-
pressions which monitor the slots in units. When the monitored slots change,
the rule is triggered. In figure B.19 a forward rule is illustrated. The rule
will trigger when the ignition.key slot and the ignition.system slot are both

188

APPENDIX B. RELATED WORK

Figure B.16: Automotive Unit consisting of three slots.

The AUTOMOBILES Unit in AUTOSIM Knowledge Base

Unit: AUTOMOBILES in knowledge base AUTOSIM
Created by MULFORD on 10-29-87 15:29:25
Modified by root on 3-27-88 15:27:51

Superclasses: ENTITIES in GENERICUNITS
Subclasses: SEDANS, STATION.WAGONS, SPORTS.CARS
Member of: CLASSES in GENERICUNITS

Member slot: COLOR from AUTOMOBILES
Inheritance: OVERRIDE.VALUES
Comment: "What color is this car?"
Values: UNKNOWN

Member slot: NUMBER.OF.DOORS from AUTOMOBILES
Inheritance: OVERIDE.VALUES
Comment: "How many doors does this car have?"
Value: UNKNOWN

Member slot: OWNER from AUTOMOBILES
Inheritance: OVERRIDE.VALUE
Comment: "Who owns this car?"
Values: UNKNOWN

189

APPENDIX B. RELATED WORK

SEDANS
COLOR: UNKNOWN
NUMBER.OF.DOORS: 4
OWNED: UNKNOWN

MARYS.CAR
COLOR: RED
NUMBER.OF.DOORS: 4
OWNER: MARY

Figure B.17: The KEE

AUTOMOBILES

STATION4ACONS

class structure provides for the inheritance of slots.

FUEL-SYSTEMS

FUEL.INfgCTION.SYSTEMS CARBURETOR.SYSTEMS

JOES.CAR

Figure B.18: KEE supports multiple inheritance. Joes.car inherits slots from
station.wagons and fuel.injection.systems.

AUTOMOBILES
COLOR: UNKNOWN
NUMBER.OF.DOORS: UNKNOWN

OWNED: UNKNOWN

'I'A'UiN.WAUUN
COLOR: UNKNOWN
LENGTH.OF.CARGO: UNKNOWN

NUMBER.OF.DOORS: 5
OWNER: UNKNOWN

JOES.CAR
COLOR: BLUE
LENGTH.OF.CARGO: UNKNOWN

NUMBER.OF.DOORS: 5
OWNER: JOE

n I A AIIA

190

A,-"- elm_ n - .

APPENDIX B. RELATED WORK

changed within the same unit. When the rule triggers the sparkplug.activity
slot of the unit is changed to a value of firing.

KNOWEDGE BASE BEFORE RULE FIRING

(JOE.CAR (MARY.CAR
IGNITION.KEY: ON IGNITION.KEY: OFF

IGNITION.SYSTEM: OKAY IGNITION.SYSTEM: OKAY

SPARKPLUG.ACTIVITY: OFF) SPARKPLUG.ACTIVITY: OFF)

(R1.ANY.CAR
(IF (THE IGNITION.KEY OF ?ANY.CAR IS ON)

(THE IGNITION.SYSTEM OF ?ANY.CAR IS OKAY)
THEN

(CHANGE.TO (THE SPARKPLUG.ACTIVITY OF
?ANY.CAR IS FIRING))))

KNOWLEDGE BASE AFTER RUTE FTRING

(JOE.CAR (MARY.CAR

IGNITION.KEY: ON IGNITION.KEY: OFF
IGNITION.SYSTEM: OKAY IGNITION.SYSTEM: OKAY

SPARKPLUG.ACTIVITY: FIRING) SPARKPLUG.ACTIVITY: OFF)

Figure B.19: The rule is fired when the ignition.key slot and ignition.system slot
are modified for a unit. The rule sets the sparkplug.activity slot to firing.

Worlds [31] are KEE structures which can provide a context for units.
Without worlds, all the units in a knowledge base are said to exist in the
background. When the slots in a unit change, the unit in the background is
changed. If the slots in a unit are changed in a world, then the changed unit
exists in a world, and the unchanged unit exists in the background. Multiple
worlds can exist. Figure B.20 shows four worlds: autowl, autow2, autow2.1,
and autow2.2. Worlds autow2.1 and autow2.2 contain modifications of au-
tow2. KEE rules can be restricted to the context of a world. They will only
fire when changes are made to the world they are monitoring. When a rule
fires it can create a new world.

Active Images supports the mapping of slots in KEE units to graphic
images. When the values of the slot changes, the images change. Figure B.21
shows a collection of images which can be attached to slots in an automotive
application.

191

APPENDIX B. RELATED WORK

Figure B.20: In KEE, a world contains versions of a collection of units. Autow2.1
and autow2.2 contain modifications of autow2.

I OFF I ON

ENGINE TEMP

250
205
jRA n

I
I "tmo" I

115
70
25

-20

OVERHEATING

>= 200

Figure B.21: KEE Active Images supports the connection of graphic images to
unit slots. When the values of the slots change, the images change.

KEEworlds Browser

AUTOW2AUTOWI

0

JOE'S IGNITION

OF
JOE'N UEL TANK

1/4 1/2 3/4EMPTY -1}

· I·rr I Ir-

192

APPENDIX B. RELATED WORK

Distribution

KEE has no support for execution of distributed knowledge bases. Multiple
knowledge bases can be used for storage of rules and units. All knowledge
bases which are involved in an execution must be loaded together.

KEEconnection [4] is a subsystem which permits KEE to dynamically
reference data stored in distributed relational databases. This subsystem
consists of three modules, as follows:

1. Mapping module - describes how the relations in the databases are
mapped onto units and slots in the knowledge base. The mapping
does not have to be direct from relational columns into slots. A unit
can consists of values from relations which have been joined together.

2. Translation - when the value of a slot is needed which references a
relational database, the translation module dynamically retrieves the
value using the SQL relational database language. When the value of
a slot referencing a relational database is modified, the value is stored
into the database.

3. Data communication - uses network facilities to transmit and receive
data and queries from databases which can reside on different host
computers.

Figure B.22 illustrates KEEconnection. The relational database contains
the tables products and order-items. KEEconnection automatically creates
the product and order-items units.

Name context within KEE is relative to a knowledge base A unit name
must be unique within a knowledge base. A slot name must be unique within
a unit. Versions of units can be created using worlds. The units must be
unique within a world. Class provides a content but not name context. The
names of units are unique within a knowledge base. A knowledge base can
consist of multiple class structures. The classes specify slot inheritance type
classes. A unit has two types of slots: member and own. Only member slots
are inherited.

Action

KEE supports a wide variety of actions, some of which follow:

1. Messages can be sent to activate programs within unit slots.

2. Active values can invoke programs when slot values change.

3. Triggered rules can change slot values and invoke programs.

4. End-users using a menu interface can modify, query, and browse the
knowledge base.

193

APPENDIX B. RELATED WORK 194

FAIILT IAPIIIa SN TRHOUCH KRECONECTION'S GRAPHIC RDITOR

KRE IKNOWLmDC~ RASE

Figure B.22: KEEconnection provides for
database tables onto KEE units.

the automatic mapping of a relational

(PRODUCTS
PRODUCT: UNKNOWN
NAME: UNKNOWN
PRICE: UNKNOWN
BUDGET: UNKNOWN)

(ORDER-ITEMS
ORDERING: UNKNOWN
PRODUCT: UNKNOWN
QUANTITY: UNKNOWN
REBATE: UNKNOWN)

PRODUCISz PRODUCTS
class table

PRODUCT PRODUCT
NAME I NAME
PRICE PRICE
BUDGET BUDGET

ORDER-ITEMS - ORDER-ITEMS
class table

ORDERN ORDERNO
PRODUCT PRODUCT
QUANIITY I QUANTITY
REBATE < REBATE

PRODUCTS

PRODUCT NAME PRICE BUDGET

P211 JUICE-BOTTLE-# 950 87880
P212 WINE-BOTTLE-BURG. 640 171110
P213 PRESERVE-JAR-140Z 750 95680
P214 BABY-FOOD-JAR-#1 230 37050
PZ16 JUICE-GLASS-40Z 520 51350

ORDER-ITEMS

ORDERNO PRODUCT QUANTITY REBATE

02151 P213 1500 25
02151 P483 2000
02152 P212 3500
02153 P214 3500

01 ------------ N-

= -I

,

.

I

j
J

APPENDIX B. RELATED WORK19

Action can be confined to a world. The truth maintenance system sup-
ports the retraction of action.

KEE does not directly support batch processing, parallel action, dis-
tributed action, action messages, or bureaucratic paths.

Tapeworms

KEE has two types of triggers: rules and active values. Rules trigger when
a value in a slot changes. Active values trigger on the following conditions:

1. Adding an active value facet.

2. Referencing a value in a slot.

3. Changing a value in a slot.

4. Removing an active value facet.

5. Adding an assertion to a world.

6. Changing the focus to another world.

7. Changing the world inheritance flag. This flag specifies whether the
world can be inherited.

Rules and active values are related to Ubik tapeworms as follows:

1. Commutativity - active values can be commutative or non-commutative.
Rules are commutative.

2. Distribution - since there is no support for distributed knowledge bases
in KEE, active values and rules cannot be placed on distributed knowl-
edge bases and do not travel with messages.

3. Operations - active values and rules trigger on the modification of slot
values. Rules running in the backward direction trigger on queries.
Ubik tapeworms trigger only in the forward direction, but can trigger
on query, insert, delete, sending of messages, and receiving of messages
(or any combination of these operations), as shown in figure B.21.

4. Censoring - censors are provided by constraint facets, such as cardi-
nality and value class. These restrict the values which can be placed
within a slot. Censors are also provided by constraint rules. These are
rules whose action are the issuing of false statements. A false state-
ment issued within a world makes the world inconsistent. The truth
maintenance system will make all the worlds which inherit from an in-
consistent world also inconsistent. Constraint rules are weak censors,
in that they don't prevent the inconsistent action from happening,
but they prevent further action from occurring within the inconsistent
worlds.

195

APPENDIX B. RELATED WORK

RULES

FORWARD BACKWARD

IF (AND IF action
A . THEN
B modify (AND query
C) A Iur

THEN B

action C)

TAPEWORMS

tapeworm

(AND A B C D)

action

query
insert
delete
send
receive

Figure B.23: KEE rules trigger on modification of slot values in the forward di-
rection, and queries in the backward direction. Ubik tapeworms trigger only in the
forward direction. They trigger on query, insert, delete, send, and receive (or any
combination of these operations).

196

APPENDIX B. RELATED WORK

Questers

Rules running backwards in KEE provide a querying facility which works as
follows:

1. KEE looks for units which match the query. If they are found, the
query is completed; if not, processing continues, as discussed in 2.

2. KEE looks for rules whose consequence match the query. For the rules
found, the antecedent of the rules are used to start a new subquery,
and processing continues, as discussed in 1.

A query for forward rules can be devised by asserting a value within a
world, and monitoring all the rules which fire as a result of the assertion.
The truth maintenance system can be used to retract the assertion and undo
the result of the assertion. This method might not completely work, because
there are rules whose action cannot be reversed.

KEE provides browsers, which can display and navigate the unit's class
and world structure. It also supplies active images, which display graphically
the knowledge in the system.

KEE does not provide an ad-hoc query language which understands the
structure of the KEE system, or the structure of the models built within the
system. A query cannot examine the structure of the rules and what they
reference. To find out how the rules and units are related, the user must
cause the rules to be triggered and see the results, as described above. There
is no support for tracing embedded units in slots.

KEEconnection provides for distributed queries, when the queried unit
references a relational database.

Development

Not much development is possible within KEE. The class structure provides
a tight connection between units. A change in the class structure would
cause a change in all the units which inherit from the modified classes. This
global propagation of changes ensures a system in which all the pieces are
tightly tied together, making incremental changes difficult.

Ubik prototypes operate differently from classes. Ubik propagates changes
to configurators created from prototypes at the time of a configurator's cre-
ation. After creation, the configurator is only loosely coupled to its proto-
type. During prototype development, a configurator can change the object
it considers its prototype.

Regrouping is easily achieved in KEE. KEE's reasoning facility can create
new units and slots from combinations of existing units and slots.

197

APPENDIX B. RELATED WORK

Power Relationships

The concept of cooperation and competition is not well defined in KEE.
Worlds provide a notion of cooperation by permitting reasoning to simultane-
ously proceed in parallel worlds. Conflict can occur when worlds are merged.
Consistency rules provide a means of weeding out inconsistent worlds. Mul-
tiple inheritance provides a form of competition in which conflicting facets
can be inherited. An elaborate set of heuristics and procedures are provided
to determine which facets take precedent when inheritance conflicts occur.

Focus of attention facilities are provided to schedule and dispatch rules.
When an event occurs within a knowledge base, multiple rules can fire. These
rules are scheduled using separate criteria for forward and backward rules.
The forward rule schedule can be determined from the rule's priority and
the complexity of the rule's antecedent clause. The backward rules can be
specified as breadth-first or depth-first. A breadth-first rule is scheduled at
the end of the dispatching queue; the depth-first rule is scheduled at the
beginning of the dispatching queue.

Integration

KEE is a big system. All the pieces work together, but some are better inte-
grated then others. For example, the world and truth maintenance system is
well integrated with the rule system. This integration requires two types of
rules: deduction rules and action rules. Additional commands are provided
to restrict the triggering of a rule to the context of a world. A less-well
integrated subsystem is the message system. The rule system is not aware
of the message system, and cannot be triggered on the receipt or sending of
a message.

198

APPENDIX B. RELATED WORK

B.4 Semantic Nets
A semantic net is a linked collection of objects. The objects in KEE are
called units; they are linked together in an inheritance hierarchy. The ob-
jects in Ubik are called configurators. Ubik supports multiple kinds of links
between the configurators. KEE and Ubik permit direct access to the im-
plemented links; therefore, the behavior of the applications which use the
semantic net is dependent on how they are implemented. Kl-one [13] is a
semantic net system which takes a different approach. A Kl-one semantic
net is composed of objects similar to units and configurators, but the im-
plementation of the net cannot be directly referenced. Kl-one comes with a
language which is used to describe. access, and change the net. Kl-one nets
can be implemented in different ways, but the language interface ensures
that all the implementations will produce the same behavior.

There are no defaults in a Kl-one net. Definitions represent solid un-
changing facts about the world. Replacing definitions by defaults, according
to Ron Brachman [14], would put the world on shaky pinnings by allowing
the most obvious facts to be changed.

A complete application system cannot be built with Kl-one. KI-one con-
tains the concepts which make up an application, but it does not describe
individual objects within the application or the application action.

Networks of Ubik configurators have the following properties, which are
different than Kl-one nets:

* A Ubik network contains both objects and actions.

* The organization's structure and applications determine the position
of an object in a taxonomy. A conceptual framework separate from
the organization and its applications is not maintained.

* Organizational development incrementally changes the network to keep
it relevant to the organizational action. The continual reorganization
which occurs in organizations makes the Kl-one notion of fixed defini-
tions impossible to maintain.

* The meaning of the network is in the use made of it. There is no
abstract, application independent notion of meaning as in Kl-one.

* The implementation of the Ubik network can affect the action taken
by the applications.

In business organizations, action can also be dependent on the organi-
zation's implementation, as shown in the following example. The MIT
purchase system has a subsystem for creating a purchase-order. Using
this system, creation of a purchase-order usually takes a few days. A
purchase-order can be created in one day if the purchase-requisition is
hand-carried to the purchasing department. The purchasing depaxt-
ment is a few blocks from my office at MIT. Rather than spend the

199

APPENDIX B. RELATED WORK

time getting all the approvals and hand-carrying the purchase order, I
will usually purchase computer software by charging it to my personal
credit card, and file for a reimbursement. If the implementation of the
MIT purchasing system was changed, such that the purchase depart-
ment was in the same building as my office, I would use purchase-orders
for my software purchases.

Structure

A Kl-one net contains two type of concepts: primitive concepts, and de-
fined concepts. A primitive concept is one which the Kl-one system cannot
completely characterize. It has a name and attributes (called roles). The
attributes form necessary conditions for a new concept to be subsumed by it.
A defined concept is one that the Kl-one system can completely character-
ize. Its attributes form necessary and sufficient conditions for its identity. A
newly defined concept which has the same attributes as an existing defined
concept is identical with it. A defined concept need not have a name.

A Kl-one net is illustrated in figure B.24. At the top of a Ki-one net
is one or more primitive concepts. For example, person* in figure B.24 is
a primitive concept. A primitive concept is specified with an "*" after the
concept's name. All other concepts in the net are subsumed by these top
concepts. The subsumed concepts specify the difference between themselves
and the concept to which they are attached. Difference can be specified as
follows:

1. For a named primitive concept which inherits from the parent concepts,
the difference is specified by the name of the concept and its position.

2. For a named primitive concept with roles which inherits from a parent
concept, the difference is specified by the name of the concept, its
position, and the roles. For example, from figure B.24, the following
concepts differ from person* as follows:

(a) the concept man* has role sex, value restriction male and cardi-
nality a min and max of one.

(b) the concept parent* has role offspring, value restriction child
which is a subtype of person, and cardinality a min of one.

(c) the concept woman* has role sex, value restriction female, and
cardinality a min and max of one.

3. For a defined concept which inherits from the parent concepts, the
difference is completely specified by its position. For example, from
figure B.24, the following concepts differ from man, parent, and woman:

(a) father inherits from man* and parent*.

(b) mother inherits from parent* and woman*.

200

RELATED WORKI

v/r

Figure B.24: A Ki-one net which specifies the terms which make up some family
relationships.

In figure B.25 the Kl-one net is specified as a Ubik network. In Ubik, all
concepts are primitive, roles are specified as prototype and part links, value
restrictions specified by tapeworms.

Figure B.25: A Ubik network which specifies the terms which make up some family
relationships.

Distribution

There is no notion of distribution in KI-one.
Context is provided by position not name. Each net has a name dic-

tionary. Names are needed for primitive concepts. These names are global
for a net. Defined concepts do not need a name, since they are completely
defined by their position and roles. A name for a defined concept serves as

APPENDI B. 201

APPENDIX B. RELATED WORK

its documentation.

Action

A Kl-one net describes the conceptual structure of an application area. It
doesn't state whether any individuals actually exist within the application.
KlI-one has a primitive mechanism for describing individuals. More elaborate
mechanisms have been designed in the Kl-two [63] and Krypton [12] systems.
These systems use a Ki-one net for the description of the concepts, and a logic
language for stating individuals, as shown in figure B.26. In this example,
the logic expression states that two individuals exist, a father and mother.
From the Ki-one net the system can deduce that a man, woman, parent, and
person also exist.

v/r

ExEy d (x) - d (y)

Figure B.26: Krypton and K-two have two components: the conceptual net lan-
guage and assertional language. The conceptual net states the conceptual structure
of the application; the assertional language specifies which individuals exist.

Action is not well defined within Kl-one. Applications using KI-one in-
terface with programs in one of the following ways: the application consist
of multiple subsystems which have programs which access the Kl-one net, or
the Kl-one net contains programs attached to the concepts which are invoked
when the net is referenced or modified.

Tapeworms

Tapeworms in Kl-one are in the form of role restrictions and procedural
attachment. KI-one supports the following types of role restriction.

1. Value - the type of value which can be placed into a role.

2. Cardinality - the minimum and maximum number of values which can
be placed in a role.

202

APPENDIX B. RELATED WORK

3. Inheritance role restriction - restricts the cardinality of inherited roles.

4. Inherited role differentiation - differentiates an inherited role into mul-
tiple roles.

5. Multiple role restriction - restriction between more than one role of
the same concept. The Ubik tapeworm which restricts the salary of an
employee to be less than his manager's is a restriction of this type.

Questers

The most fundamental operation of Kl-one is classification. Given a concept
whose position is not known in the net, classification finds its position such
that it is below all the descriptions which subsume it, and above all the
descriptions which it subsumes. Figure B.27 shows a concept which inherits
from person* and has a role offspring which is of type child and a role
sex which is female. Classification, in the net shown in figure B.24, would
find that this concept is the same as mother.

v/r

Figure B.27: The K-one classification operation would find that this concept is
the same as mother, in the net in figure B.24.

Ubik does not contain a classification operation; if it did, the concept
shown in figure B.28 would be classified as a mother in the Ubik network
shown in B.25. Without classification, Ubik can not determine that it is a
mother, but it can discover that it partially matches a parent and a woman.

Classification has many uses within Kl-one, some of which follow:

1. Incremental net building - In Ubik and KEE, the end-user would have
to specify the placement of a new concept into a net; in Kl-one, the
system can determine the placement from the structure of the net.

2. Query - Classification of an input concept would determine all the
concepts which are equal to it, are subsumed by it, and it subsumes.

203

APPENDIX B. RELATED WORK

person

pro ype

+1-~~fprn -

Figure B.28: This is the Ubik statement of Il-one classification, as shown in figure
B.27.

3. Search - Given a goal concept and an input concept, classification can
discover if the input concept subsumes the goal. If it does, then the
search can be restricted to the concepts in a net between the goal and
the input concept.

Classification is a costly operation. Kl-one systems have taken two ap-
proaches in dealing with the complexity. The most frequent approach is to
have a heuristic which can classify a concept. The heuristic approach can
produce a sound classification-the placement conforms to the subsumption
requirement; but the classification is not complete--the placement does not
take in account all the possible placements. NIKL [6,56] represents a Kl-one
system of this type. The other approach is to simplify the complexity of the
KI-one descriptions such that the classification is sound, complete, and can
occur in polynomial time. Kandor [55] represents a Kl-one like system of
this type.

Development

In the philosophy of Kl-one, a net represents permanent facts in the world.
Other, more changeable concepts are represented in a different manner out-
side of Kl-one. Kl-one does not address development. If it did, development
would entail modifying a part of the net, and then reclassifying all the other
concepts in the net to relate them to the changed concept. This view of devel-
opment would result in a change destablizing the whole conceptual structure
of the organization.

Ubik views organizational development as a state in which the concep-
tual structure of the organization is continually changing. In Ubik, the net
is defined by its current structure. A change in the structure would be
confined to the specifically changed configurators. This local change could
have significant effect on the action of the organization, but it would not

204

APPENDIX B. RELATED WORK

have a significant effect on the structure of the organization. An even more
constrained change can be made using a tapeworm censor with replacement
behavior. This change would not change the structure of the organization,
but would partially change the action which the structure supports.

Power Relationships

Since distributed processing is not defined within Kl-one, the notion of power
is not developed. Conflicts within KI-one can result from multiple inheri-
tance of roles. Kl-one has various heuristics to deal with this conflict.

Integration
Kl-one systems focus on the integration of defining and asserting concepts.
Action in general is outside the scope of KI-one, and thus not well integrated
with the Kl-one system.

205

Bibliography

[1] Gold Works, Expert System Reference Manual. GoldHill Computers Inc.,
Cambridge, Ma., 1987.

[2] KEE Primer. IntelliCorp, 1988.

[3] KEE Version 3.1 User's Manual. IntelliCorp, 1987.

[4] KEEconnection: A Bridge Between Databases and Knowledge Bases.
IntelliCorp, 1987.

[5] MIT Guide to Administrative Offices. MIT Personnel Office, June 1984.

[6] The NIKL manual. Information Sciences Institute, University of South-
ern California, April 1986.

[7] Paradox. Borland International, Scotts Valley, Ca, 1988.

[8] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. MIT Press, 1985.

[9] Gul A. Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, 1986.

[10] Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS:
a distributed hypermedia systems for managing knowledge in organiza-
tions. Communications of the ACM, 31(7):820-835, July 1988.

[11] L. W. Barsalou. Ad hoc categories. Memory and Cognition, 11:211-227,
1983.

[12] R. J. Brachman, R. E. Fikes, and H. J. Levesque. Krypton: a functional
approach to knowledge I presentation. IEEE Computer, 16(10):67-73,
1983.

[13] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9:171-216, 1985.

[14] Ronald J. Brachman. "I Lied about the Trees" Or, Defaults and Defi-
nitions in Knowledge Representation. AI Magazine, 6(3):80-93, 1985.

206

BIBLIOGRAPHY

[15] John Brunner. Shockwave Rider. Harper and Row, 1975.

[16] Vannevar Bush. As we may think. Atlantic Monthly, 101-108, July
1945.

[17] Roy J. Byrd, S. E. Smith, and S. Peter de Jong. An actor-based pro-
gramming system. In Conference on Office Information Systems, ACM
SIGOA, June 1982.

[18] Susan Carey. Conceptual Change in Childhood. MIT Press, Cambridge,
Massachusetts, 1985.

[19] Stanley Cavell. Pursuits of Happiness, The Hollywood Comedy of Re-
marriage. Harvard University Press, Cambridge, Massachusetts, 1981.

[20] W. D. Clinger. Foundations of Actor Semantics. AI-TR- 633, MIT
Artificial Intelligence Laboratory, May 1981.

[21] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, 1981.

[22] Jeff Conklin. Hypertext: an introduction and survey. IEEE Computer,
17-41, January 1988.

[23] Peter de Jong. Compilation into actors. SIGPLAN notices, October
1986.

[24] Peter de Jong. Ubik: a system for conceptual and organizational devel-
opment. In W. Lamersdorf, editor, Office Knowledge: Representation,
Management, and Utilization, North-Holland, 1988.

[25] Peter de Jong. The ubik configurator. In ACM Conference on Office
Information Systems, March 1988.

[26] S. Peter de Jong. The System Building System (SBS). IBM Research
Report RC 4486, IBM, 1973.

[27] S. Peter de Jong. The system for business automation - SBA: a uni-
fied application development system. In Proceedings of the 1980 IFIP
Congress, IFIP, Tokyo, 1980.

[28] S. Peter de Jong and Roy J. Byrd. Intelligent Forms Creation in the
System for Business Automation. IBM Research Report RC 8529, IBM,
1980.

[29] Philip K. Dick. Ubik. Doubleday, Garden City, New York, 1969.

[30] Steven Feiner. Seeing the forest for the trees: hierarchical display of
hypertext structure. In Conference on Office Information Systems,
pages 205-212, ACM SIGOIS and IEECS TC-OA, 1988.

207

BIBLIOGRAPHY

[31] Robert E. Filman. Reasoning with worlds and truth maintenance in a
knowledge-based system shell. Communications of the ACM, 31(4):382-
401, April 1988.

[32] Mark E. Frisse. Searching for information in a hypertext medical hand-
book. Communications of the ACAM, 31(7):880-886, July 1988.

[33] Jay Galbraith. Designing Complex Organizations. Addison-Wesley Pub-
lishing Company, 1973.

[34] David B. Guralnik, editor. Webster's New World Dictionary. William
Collins + World Publishing Co. Inc., Cleveland, Ohio, second college
edition, 1974.

[35] Frank G. Halasz. Reflections on notecards: seven issues for the next
generation of hypermedia systems. Communications of the ACM,
31(7):836-852, July 1988.

[36] C. Hewitt, G. Attardi, and H. Lieberman. Specifying and proving prop-
erties of guardians for distributed systems. In Proceedings of the Confer-
ence on Semantics of Concurrent Computation, INRIA, Evian, France,
July 1979.

[37] C. Hewitt and H. Baker. Laws for communicating parallel processes. In
1977 IFIP Congress Proceedings, IFIP, 1977.

[38] Carl Hewitt. The challenge of open systems. Byte, 10(4):223-242, April
1985.

[39] Carl Hewitt. Offices are open systems. ACM Transactions on Office
Information Systems, 4(3):271-287, July 1986.

[40] Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8:323-364, 1977.

[41] Carl Hewitt and Peter de Jong. Analyzing the roles of descriptions and
actions in open systems. In Proceedings of the National Conference on
Artificial Intelligence, AAAI, August 1983.

[42] Carl Hewitt and Peter de Jong. Open systems. In M. L. Brodie, J. L.
Mylopoulos, and J. W. Schmidt, editors, Perspectives on Conceptual
Modeling, Springer-Verlag, 1983.

[43] Carl E. Hewitt. The apiary network architecture for knowledgeable
systems. In Conference Record of the 1980 Lisp Conference, Stanford
University, Stanford, California, August 1980.

[44] W. Kornfeld. Concepts in Parallel Problem Solving. PhD thesis, Mas-
sachusetts Institute of Technology, 1982.

208

BIBLIOGRAPHY

[45] W. A. Kornfeld and C. Hewitt. The scientific community metaphor.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1),
January 1981.

[46] George Lakoff. Women, Fire, and Dangerous Things. The University
of Chicago Press, 1987.

[47] Corneilis J. Lammers and David J.Hickson. A cross-national and cross-
institutional typology of organizations. In Corneilis J. Lammers and
David J.Hickson, editors, Organizations Alike and Unlike, pages 420-
434, Routledge and Kegan Paul, London, 1979.

[48] H. Lieberman. A Preview of Act-1. A.I. Memo 625, MIT Artificial
Intelligence Laboratory, 1981.

[49] H. Lieberman. Thinking About Lots of Things At Once Without Get-
ting Confused: Parallelism in Act-1. A.I. Memo 626, MIT Artificial
Intelligence Laboratory, 1981.

[50] David G. Lowe. Cooperative structuring of information: the represen-
tation of reasoning and debate. International Journal of Man-Machine
Studies, 23:97-111, 1985.

[51] Carl Manning. Acore: The Design of a Core Actor Language and its
Compiler. Master's thesis, Massachusetts Institute of Technology, 1987.

[52] James G. March and Herbert A. Simon. Organizations. John Wiley
and Sons, Inc., New York, 1958.

[53] Marvin Minsky. The Society of Mind. Simon and Schuster, 1986.

[54] G. L. Murphy and D. L. Medin. The role of theories in conceptual
coherence. Psychological Review, 92(3):289-316, 1985.

[55] Peter F. Patel-Schneider. Small can be beautiful. In Proceedings IEEE
Workshop on Principles of Knowledge Based Systems, October 1984.

[56] Peter F. Patel-Schneider. Undecidability of subsumption. Artificial
Intelligence, 39(2), June 1989.

[57] Teresa L. Petramala. Don't try to tell me that the check is in the mail.
New York Times, March 1989. Weekend Advance 3/24/89, Copyright
1989 The New York Times.

[58] Hilary Putnam. The meaning of 'meaning'. In H. Putnam, editor,
Mind, Language, and Reality, pages 215-271, Cambridge University
Press, New York, 1975.

[59] W. Richard Scott. Organizations. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981.

209

BIBLIOGRAPHY

[60] Ehud Shapiro. Concurrent Prolog, chapter A Subset of Concurrent
Prolog and Its Interpreter. The MIT Press, Cambridge, Ma., 1987.

[61] Herbert A. Simon. On the concept of organizational goal. Administra-
tive Science Quarterly, 9:1-22, June 1964.

[62] A. Tversky. Features and similarity. Psychological Review, 84:327-352,
1977.

[63] Marc Vilain. The restricted language architecture of a hybrid represen-
tation system. In IJCAI-85, pages 547-551, 1985.

[64] Max Weber. The Theory of Social and Economic Organization. The
Free Press, New York, 1947.

[65] Nicole Yankelovich, Bernard J. Haan, Norman K. Meyrowitz, and
Steven M. Drucker. Intermedia: the concept and the construction of
a seamless information environment. IEEE Computer, 81-96, January
1988.

[66] M. M. Zloof. Query by example. In Proceedings of the NCC, pages 431-
438, AFIPS, 1975.

[67] M. M. Zloof and S. Peter de Jong. The system for business automation
SBA: programming language. Communications of the ACM, 20(6), June
1977.

210

