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ABSTRACT

The second-order sum- and difference-frequency wave excitations and resonant

responses of moored vessels and compliant offshore platforms are important

design considerations when their natural frequencies are substantially above

or below that of significant ocean wave energy. In this thesis, the complete

deterministic and stochastic analyses of second-order wave forces on large

bodies are presented.

We study in Part One the second-order diffraction and radiation problem for

vertical axisymmetric bodies in plane monochromatic and bichromatic waves.

The second-order sum- and difference-frequency potentials and local quantities

such as pressures and run-up as well as wave excitations and body responses

are obtained. A sequence of boundary integral equations involving free-

surface ring sources of general order are formulated and solved for each

Fourier mode of the second-order potential. The solution is expedited by

analytic integration in the entire local-wave-free outer field of a requisite

free-surface integral. The method is validated by extensive convergence tests

and comparisons to available semi-analytic solutions. The complete wave

excitation quadratic transfer functions (QTF) are computed for a number of

different geometries and compared to those of various aproximation methods.

In Part Two, the statistical properties of the sum- and difference-frequency

wave forces are studied using the complete QTF's and a two-term Volterra

series model. In particular, the probability density functions (PDF) and

spectra of the second-order excitations in unidirectional Gaussian seas are

derived. Comparisons of the present PDF's to those calculated from

approximated QTF's reveal that the extreme and rms second-order forces can be

severely underestimated by existing approximation methods. Finally, the

theory is extended to multidirectional random seas, where it is found that

unidirectionality is not necessarily a conservative assumption when second-

order wave effects are included.
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CHAPTER 0. GENERAL INTRODUCTION

Of making many books there is no end,
and much study wearies the body.

- OLD TESTAMENT, Ecclesiastes 12:12 -

When nonlinear effects are included in the diffraction or radiation

of waves by a body, there are, at second order, interactions at the sums

and differences of the component frequencies of the incident waves.

Although the magnitudes of these nonlinear effects are in general only

second order, they act at frequencies away from that of the ambient wave

energy, and may therefore be of primary concern especially when such

excitations are near the natural periods of the body motions or where

restoring or damping forces are small. Typical examples are the

subharmonic resonance of moored vessels or offshore platforms, and the

superharmonic resonance of tension-leg platforms. In certain other cases,

such as for non-wall-sided geometries (e.g. conical gravity platforms,

Jamieson et al, 1985), second-order effects may also be an appreciable

part of the total excitation and are therefore important corrections to

the linearized results.

Despite its importance, the consistent theoretical developments of

the second-order wave body interaction problem have until recently been

scant. The principal difficulties are the correct treatment of the

second-order free-surface boundary conditions and a proper specification

of the radiation condition for the second-order diffracted waves. In a
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monochromatic incident wave, the second-order pressure and the resulting

force consist of mean and second-harmonic components. The mean drift

force can be obtained entirely from the first-order potential, hence has

been studied extensively (for a review, see Pinkster, 1980). The double-

frequency force, however, includes contributions from the second-order

potential, the solution of which was considered controversial even for the

simplest case of diffraction by a vertical circular cylinder. Issacson

(1977) maintained the insolvability of the second-order problem by the

usual perturbation procedure, which was later found to be incorrect by

Wehausen (1980) and Hunt & Baddour (1981). Most of the published results

on this subject (e.g. Chakrabarti, 1978; Hunt & Baddour, 1981; Chen &

Hudspeth, 1982; Rahman, 1983; Sabuncu & Goren, 1985; etc.) appear to be

inconsistent, and their numerical results differ significantly. Among

other shortcomings, a common difficulty is a failure to satisfy either the

inhomogeneous free-surface condition or the second-order radiation

condition or both.

A seminal work was that of Moin (1979), who by decomposing the

second-order diffraction potential into free and forced terms satisfying

respectively homogenous and inhomogenous free-surface conditions, obtained

consistent radiation conditions for the separate components. These

results have also been formally founded and extended to bichromatic waves

by Wang (1987) who studied the long-time limit of the initial-value

problem. To obtain integrated second-order quantities such as forces,

Molin avoided the explicit solution of the double-frequency second-order

potential by introducing a fictitious assisting radiation potential at

-7-



that frequency. Applying Green's identity, an expression for the second-

order force can be obtained in terms of the assisting potential and

functions of first-order quantities. The method requires the vanishing of

a far-field integral -- a weak radiation condition guaranteed by the

asymptotic behaviors of the second-order potentials. The same approach

was suggested independently by Lighthill (1979), and was in fact used by

Faltinsen & Loken (1978) for the two-dimensional problem. Molin's

solution has since been extended, for example, by Molin & Marion (1986),

who obtained some results for second-order motions; by Loken (1986), who

also attempted a solution of the second-order potential; and by Eatock

Taylor & Hung (1987), who developed a method for the evaluation of the

free-surface integral based on leading asymptotics.

In the presence of bichromatic waves, the second-order forces occur

at the sum and difference frequencies, and are often called 'springing'

and 'slowly-varying' forces, respectively. The complete solution of these

forces for three-dimensional bodies was first attempted by Loken (1986),

whose results suffer from a number of numerical difficulties, especially

those associated with the poor convergence of the free-surface integral.

Subsequently, the free-surface integrals for slowly-varying forces were

treated more carefully by Benschop et al (1987) and Hung & Eatock Taylor

(1987). In these treatments, however, the convergence with the free-

surface truncation radius is still essentially algebraic. Recently,

Sclavounos (1988) developed a new approach in infinite water depth based

on 'second-order Green functions'. By using the second-order Green

function on the body, the difficult free-surface integral is avoided. The
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Green function itself, however, is quite complicated and the use of the

approach for practical applications has not been attempted yet.

Because of the complexity of the complete solution, numerous

approximation methods for slowly-varying drift forces (e.g. Newman, 1974;

Pinkster, 1980; Standing & Dacunha, 1982; Marthinsen, 1983) and for

springing forces (e.g. De Boom et al, 1983; Herfjord & Nielsen, 1986;

Petrauskas & Liu, 1987) have been suggested and widely used in practical

applications. Without the complete solutions, however, the superiority of

one approximation over another and indeed the validity of a particular

method cannot be established.

In Part One, we consider the solutions of the second-order

diffraction and radiation problems for monochromatic (Chapter I) nd

bichromatic (ChapterIl) incident waves. A Green's theorem integral

equation is obtained for the second-order diffraction potential involving

the linear (at sum or difference frequencies) wave-source Green function.

This equation is similar to that for the linear problem with the exception

of a slowly-converging integral over the entire free surface. An

effective and accurate evaluation of this integral is essential to the

solution of the problem and a detailed asymptotic method which performs

the integration analytically in the entire local-wave-free outer domain is

developed. Since the second-order potential is obtained explicitly, the

complete second-order local quantities such as pressures,-velocities, and

surface elevations are readily available in addition to the forces and

moments.

For simplicity, we consider bodies which possess vertical axes of

symmetry. Expressing the potentials in terms of Fourier series in the
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circumferential coordinate, we obtain after integration a sequence of one-

dimensional integral equations along the generator of the body for each

Fourier component with free-surface ring-source kernels of the

corresponding order. For linear problems involving axisymmetric bodies,

the ring-source distribution method was used by Black (1975), and later by

Fenton (1978), Hulme (1983), and Fernandes (1983), who gave particular

attention to the treatment of singularities and the convergence of

representations of the ring source and its derivatives. Their numerical

examples are, however, limited to the first two Fourier modes. For the

diffraction problem, we present here an analysis and numerical method for

the arbitrary-order ring source potential and its gradient.

The validity and accuracy of the method is demonstrated by extensive

results for convergence with respect to body discretizations, number of

circumferential modes, and free-surface integral evaluation, as well as by

comparisons to semi-analytic solutions for the second-order forces and

moments on a vertical cylinder. Detailed results for the linear and

second-order mean and double-frequency (or difference- and sum-frequency)

forces, moments, pressure distributions and run-up on the bodies are

presented and discussed. One of the most interesting results is that

there are components of the second-order pressures which decay very slowly

with depth. Newman (1988) formally found this algebraic attenuation of

the second-order diffraction potential based on the asymptotic analysis

which is valid at large depth. For vessels with large draft, the

resulting contributions may dominate the first-order components.

Based on the quadratic transfer functions (QTF) computed in Part One,

the stochastic properties of the second-order wave excitations and
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responses n Gaussian random seas are studied in Part Two. For this

purpose, the two term Volterra's series (the nonlinear system with memory)

Is used as a mathematical model. The complete probabilistic distribution

of this system was first developed n the communication field by Kac &

Siegert (1947) and Bedrosian & Rice (1971), and introduced to ocean

engineering applications by Neal (1974). Since then, the approach has

received a lot of attention, and has been reexamined and applied to the

stochastic analyses of second-order forces and responses (e.g. Vinje,

1983; Naess, 1986; Langley, 1987). Their numerical examples, however,

were typically based on idealized QTF's or those of two-dimensional bodies

(Faltinsen & Loken, 1978) only, and are therefore of limited practical

applications.

In Chapter III, the theory of Bedrosian & Rice (1971) is reviewed,

and the complete probabilty density functions of slowly-varying wave

excitations on a large draft vertical cylinder are calculated for

unidirectional random seas. The results are compared to those based on

approximated QTF's. It is found that the probability of extreme forces

can be substantially underestimated using the approximations of Newman

(1974) and Standing et al (1982).

In Chapter IV, the theory developed in the earlier chapters is

applied to the sum-frequency resonant vertical-plane responses of a

tension-leg platform (TLP) in unidirectional random seas. Our numerical

results reveal that the second-order sum-frequency potential contributes

significantly to the total springing excitations due primarily to the

deeply penetrating nonlinear potential pressures. It is shown that

existing approximations, which exclude the contribution of the second-
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order potential (e.g. De Boom et al, 1983; Nordgren, 1986; Petrauskas &

Liu, 1987), are inadequate for the prediction of springing excitations on

a TLP. The resulting tendon-tension load rms obtained by the present

complete theory is two to three times larger than that predicted without

second-order potential contributions. This fact is also confirmed by

large-scale TLP experiments (Petrauskas & Liu, 1987).

Several recent experimental and field reports have pointed to the

importance of wave directional spreading on slowly-varying drift forces

and motions. In a series of experiments on the tension-leg platform,

Teigen (1983) observed considerable reductions of the main direction drift

forces in short crested waves. Grancini et al (1984) reported severe

dynamic responses in the field when their moored tanker encountered storm

and swell seas at the same time from different directions. These reports

motivate Chapter V, where the slowly-varying wave drift forces in short

crested irregular seas are considered. As a preliminary study for this,

we maintain Newman's (1974) frequency domain assumption, but treat the

directional spreading exactly. The monochromatic bidirectional quadratic

transfer functions are then developed for this purpose. Because the

directional spreading is treated exactly, the present method has a wider

range of validity for general short-crested seas than existing

approximation methods (e.g. Marthinsen, 1983) but does not appreciably

increase the computational effort. From our numerical example, a

surprising result is found which indicates that the amplitude of the

slowly-varying force can be substantially amplified when the wave systems

are incident from opposing directions. We conclude that the
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unidirectionality of the sea is not necessarily a conservative assumption

when the second-order effects are concerned (cf. Eatock Taylor et al,

1988).

This thesis s composed of two parts and a total of seven chapters.

Part One contains Chapters I and II, and describes the second-order

deterministic theory. Part Two contains Chapters III,IV and V, and

addresses the second-order stochastic theory. For convenience, equations,

tables, and figures in each chapter are numbered independently of other

chapters (starting from (1) or (1.1) for section 1 etc.), and are

differentiated by chapter number, if necessary. Figures for each chapter

are located after the last page of the text of that particular chapter.

References and appendices are placed at the end of the entire thesis.
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PART ONE

THE SECOND-ORDER DETERMINISTIC THEORY

Singularity is almost invariably a clue.

- Sir Arthur Conan Doyle -
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CHAPTER I

THE COMPLETE SECOND-ORDER DIFFRACTION SOLUTION FOR AN AXISYNNMMETRIC BODY IN

MONOCHROMATIC INCIDENT WAVES.

1. INTRODUCTION

In this chapter, we consider the direct solution of the second-order

diffraction problem. A Green's theorem integral equation is obtained for

the second-order diffraction potential involving the (double-frequency)

wave-source Green function. This equation is similar to that for the

linear problem with the exception of a forcing term involving products of

first-order potentials which is a slowly-converging integral over the

entire free surface. An effective evaluation of this ntegral is

essential to the solution of the problem and a detailed asymptotic method

which performs the integration analytically in the entire local-wave-free

outer domain is developed. Since the second-order potential is obtained

explicitly, complete second-order local quantities such as pressures,

velocities and surface elevations are readily available in addition to

integrated forces and moments.

For simplicity, we consider bodies which possess vertical axes of

symmetry. Expressing the potentials in terms of Fourier series in the
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circumferential coordinate, we obtain after integration a sequence of one-

dimensional integral equations along the generator of the body for each

Fourier component with free-surface ring-source kernels of the

corresponding order.

To illustrate the present method, we present computational results

for a uniform vertical circular cylinder and for a truncated conical body

both in finite depth. The validity and accuracy of the method is

demonstrated by extensive results for convergence with respect to body

discretizations, number of circumferential modes, and free-surface

integral evaluation, as well as comparisons to semi-analytic solutions for

the second-order forces and moments for the vertical cylinder derived in

Appendix B. EPtailed results for the linear and second-order mean and

double-frequency forces, moments, pressure distributions and run-up on the

bodies are presented and discussed in §4. Important features of second-

order diffraction effects are summarized in §5.

We study in this chapter the diffraction by a single monochromatic

wave. The solution of sum- and difference-frequency second-order

diffraction in the presence of bichromatic incident waves as well as the

iradiation problem are considered in Chapter II. Many of the techniques

developed here can be extended to general three-dimensional bodies (see

Chapter VI).
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2. FORMULATION OF THE SECOND-ORDER PROBLEM

2.1 The boundary-value problem

We consider the linear and second-order diffraction of a plane

monochromatic incident wave, frequency w, linear amplitude A, by a fixed

three-dimensional body in constant water depth, h. Cartesian coordinates

with the x-y plane in the quiescent free surface and z positive upward are

chosen. Assuming potential flow and weakly nonlinear waves, we express

the total velocity potential as a perturbation series in the wave-slope

parameter, e-kA<<1:

0 = e (1)+ 2 (2)+ *.., (2.1)

where k is the incident wavenumber given by the dispersion relationship

w2=gk tanh(kh), g being the gravitational acceleration. For monochromatic

incident waves, we separate the time dependencies explicitly and write

0 (1 ) (x,y,z,t) = Re {#(1)(x,y,z) e-iWt},

(2 ) (x,y,z,t) = Re {[(2)(x,y,z) e- i2 t } + (2)xyz). (2.2)

Note that the contribution of the steady part of the second-order

potential in (2.2) to the pressure (hence forces) or free-surface

elevation is at most 0(e3). At each order, the boundary-value problem is

linear and we decompose into incident(OI) and diffracted (D)

potr tials: (i)=OI(i)+0D(i), i=1,2. The incident potentials are given

from Stokes' waves:

(1) -iqA cosh k(z+h) ikx

0 I w cosh kh (2.3a)

(2) = -3iwA2 cosh 2k(z+h) ei2kx
I 8 sinh4 kh (2.3b)

- 17 -



for a wave incident from x-m. The boundary-value problems governing the

first- and second-order diffraction potentials are respectively:

V2 ( 1 ) = O in the fluid (z<O);

(2.4a)

(-_2 + g 8/8z) (1) = o
D = 0,

80(1)/az = o,

8al)/an = - 8(1)/8n ,

lim 4p (8/8p - ik) 1 ) = O
kp D °

V2 (2)= 0,
O ,

(-4w 2 + g /z) (2) = q,

ao (2 ) / o = o,

a(2)/an = - ,(2)/a n ,

on z=O (SF);

on z=-h;

on the body (SB);

kp>>l (S);

in the fluid (z(O);

on z=O (SF);

on z=-h;

on the body (SB);

plus a suitable radiation condition at infinity. In the above

p-(x2+y2)1/2 is the radial distance from the origin, and 8/8n the normal

derivative into the body. The first-order problem (2.4) is classical, and

a variety of numerical methods are now available (e.g., Mel, 1978).

The second-order problem is complicated by the inhomogeneous forcing

term in the free-surface boundary condition (2.5b), which is given in

terms of quadratic products of the first-order potential:

- 18 -
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(2.4b)

(2.4c)

(2.4d)

(2.4e)

(2.5a)

(2.5b)

(2.5c)

(2.5d)



q = (1) ( (1) + g a2(1) + iW(V(1 ))2] 0 - qII.
8z2

(2.6)

where the contribution from quadratic products of the incident potential

ti(1) itself, qII, is subtracted out due to the free-surface condition

satisfied by (2.3b). The specific radiation condition for fD(2 ) depends

on the far-field behavior of q. In general, if the free-surface forcing

is absolutely integrable, the validity of a Sommerfeld-like radiation

condition (2.4e) follows directly from Cauchy-Poisson theory (Stoker,

1957). In the present case, q contains quadratic products of D(1) itself

(qDD), as well as products of 0D(1) and a non-diminishing I(1) (qID), and

a more careful asymptotic analysis is necessary. From (2.4e), qDD decays

as O(l/p) for p)l, while the far-field asymptotic of qID is

qIOD " p-1/2 etkp(1+cose) + 0(p3/ 2), p 1. (2.7)

Following Molin (1979), we decompose D(2 ) into a homogerlous (free

waves), H, and a particular (locked waves) solution, p, which satisfy

respectively the homogeneous and inhomogeneous free-surface conditions

(2.5b), and jointly the inhomogeneous body boundary condition (2.5d). The

boundary-value problem for H is similar to (2.4) and its far-field

behavior is given by:

-1/2 ik2P + o(p-3/2) (2.8)

where k2 is the double-frequency wavenumber satisfying 4w2=k2g tanh(k2h).

From (2.7), p has the asymptotic form

p p-1/2 P(O,z) eikP(1+Co° s ) + (1/p), p>>l, (2.9)
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where satisfying the bottom condition, and the field equation to leading

order, P(O,z) is given by

P(O,z) = p(9) cosh [k42(1+cos9) (z+h)] + (p-1/2 (2.10)(2.10)

Note that this "forced" second-order potential does not attenuate with

depth on the weather-side ray, =r, far away from the body. The

asymptotic forms (2.8,9) for the free and locked wave potentials were

first obtained by Molin (1979) and subsequently confirmed by the analysis

of Wang (1987) who considered the long-time limit of the initial-value

problem.

2.2 The boundary-integral equation for the second-order potential

We introduce the linear wave-source Green function at double-

frequency (2w), G+(x,xl), where x, x' represent respectively the field and

source points. Applying Green's second identity to D( 2 ) and G+, and

using (2.5) and the boundary conditions satisfied by G+, we obtain for

X'ESB a second kind Fredholm integral equation for D(2):

,2 )

2r (2)(x) + ff (2) G+ dx - f G dx + q G dx,
D D 8n f a dx+ ffqG

SB SB SF (2.11)

where the integral over the far-field vanishes as p+m:

82 )

ff( an2)OG(( ag D G+ '(2) aG ) dx = O,
Sao (2.12)

upon using the method of stationary phase in conjunction with the

asymptotic results (2.8,9). From the point of view of the integral

equation* (2.11) (not considering irregular frequencies associated with
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SB), the "weak" radiation condition (2.12) is sufficient for the

uniqueness of the diffraction problem (Finkelstein, 1957; Peters &

Stokers, 1957). Interestingly, it can be shown that (2.12) holds for the

diffraction potentials at all orders.

The integral equation (2.11) is identical in form to that for a

linear diffraction problem with the exception of the free-surface integral

which extends to infinity. From the far-field behaviors of q and G+, the

integrand diminishes only as p-1 for p1l, and is highly oscillatory,

being the product of three wave-like functions. An accurate and efficient

evaluation of this slowly converging forcing term is essential to the

solution of (2.11) and a procedure involving analytic integrations in the

local-wave-free domain is developed in §2.3.

For bodies which are vertically axisymmetric about p=O, the integral

equation (2.11) over a surface can be reduced to a sequence of boundary-

integral problems over a line in the p-z plane. To accomplish this, we

expand I(2), OD(2), q and G+ into Fourier-cosine series in the

circumferential coordinate :

(i(p,,Z) ( 2) (p|z)
ID~1 £ I,Dn ' co nO
q (p,O) n=O qn ( p )

G+(p,,z;p, ' ,z') = G+(pZ;,zl) cos n(-),
n=O (2.13)

where o=l, n=2 for n1. Substituting (2.13) into (2.11), performing the

integration in and equating Fourier coefficients in ', we obtain a one-

dimensional integral equations for each Fourier mode, Dn(2):

- 21 -



dl (2 OG (2)
2r (2)+ dl p (2) n dl In G + dp P qG'Dn f On nn 'n -d n p ,

0B 8B (2.14)

where the line integrals are along the traces B, F of SB and SF

respectively on (p,z). In the above, the n-th mode of the inhomogeneous

free-surface forcing term, qn, can be obtained from (2.6):

qO= i2 E 12 mO Em z

n, 8n m o(1)
I2 m 1 ( n,-m

qn .~£{1 v8 1

2 ((1)

.2 )(1+2[( )2at~~~§~1
a2 (1)

_ § Onm (1)
8z 2 m

§+ 8 2 (1)
8 z p m1

§() () + (0 ) (1)
ap ap az aOz

_ (n-m)m (1) (1) }
p2 n-m m

(1)
+ ( n+m

§Oz

2 (1)
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(2.15)

where vw 2/g, m(1) is the m-th Fourier coefficient of (1), and all

quantities are evaluated on z=O. Noting that G+(p,G,z;p',6',z') =

G+(p,z;p',z';cos(8-')), the n-th mode ring-source defined in (2.13) can

also be expressed as

= f G+(p,z;p'z';cos(8-8')) cos n(G-0') d(6-8').
0 (2.16)
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2.3 Evaluation of the general-order ring-source potential and its

derivatives

The ring-source potential and its normal derivative in (2.14) have

been analysed by a number of investigators (Fenton, 1978; Hulme, 1983;

Fernandes, 1983) although numerical results have usually been restricted

to the zeroth and first mode only. In order to solve for the diffraction

potential itself, we develop here a computational algorithm for the

general-order problem.

The wave-source Green function G(x;x') can be expressed as a sum of

its Rankine source and image, and a regular part:

G = 1/r + 1/r' + W, (2.17)

where r2-R2+(z-z')2, r2_R 2+(z+z)2, and R2 -p2+p'2 -2pp'cos(G-G').

For the 1/r Rankine part of (2.17) (the analysis for 1/r' is

analogous), the circumferential integration (2.16) can be obtained

analytically for any n in terms of second-kind Legendre functions of

integral-minus-half order (Abramowitz & Stegun, 1964):

2r

Rn If cos n(-) d( = Qn-1/2(ao/bo), n=1,2,..

0 4PP (2.18)

where ap 2 +p'2+(z-z) 2 and bo,2pp'. For the first two modes, n=O,1,

(2.18) can be evaluated directly in terms of complete elliptic integrals

of the first and second kind (K and E respectively):

Ro 2 (Xpp') 1/ 2 K(X),

R1 = 2 (pp') 1 12 [ZX1l 2K(X) - 2X1/ 2 E(X)], (2.19)

where X2bo/(ao+b o) and Z=ao/bo.
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For the higher modes, evaluations using the forward recurrence

relationship for Qn-1/2 starting from (2.19) are unstable. Thus for n2,

we utilize instead the hypergeometric function representation of Q:

=-12() ·nl]F(n+l/2) .n 3n 1 .l 1
Qn-1/2( Z) =/ (2z)n+l/2 Fn+l) 2~,2+ ,+1 (2.20)(2.20)

where r and F are respectively gamma and hypergeometric functions, and Z>1

in (2.20). If the field point is not close to the ring source, the

hypergeometric series representation:

F = (n+l) " r(m+2+4 r(m+ 4) 1
nr(+ )r(n+) M=0 r(m+n+l)r(m+l) z2m`Z ) 2 +42 (2.21)

converges rapidly, and (2.20) can be evaluated accordingly. As the field

point approaches the ring source, i.e. as Z+1+, the logarithmic

singularity can be excluded explicitly:

r(n+1) (n/2+3 /4 )m(n/2+1/4)m
F 2

r(n/2+3/4)r(n/2+1/4) m r(m+1)2
m=O r{m+l)

[29(m+1)-Y(n/2+3/4+m)-(n/2+1/4+m)-ln(1-1/Z2)] (1-1/Z2)m, (2.22)

where is Euler's psi function and (x)nmr(x+m)/r(x); and (2.22) is useful

for Z-1<<1.

The singularity of the n-mode ring source near the source ring is

given by the asymptotic behavior of Qn-1/2 as Z+1, which can be inferred

from (2.22) for m=O:

Qn/ 2(Z) ~ - ln(1 - ) + (1) - (n+1/2) + n 2 Z+1.

Tezcors b v (223)

The corresponding behavior for Rn is
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Rn {- 2 ln[(p-p') 2 +(z-z') 2] + In p + 3 In 2 - c}, (2.24)

where cn are constants given by co=O, and

c n = 2 [1.+ 1/3 + 1/5 + ... + 1/(2n-1)], for n1.

It is of interest to note that the logarithmic singularity of Rn is the

same for all n. For computations, the two complementary expressions

(2.21,22) for the hypergeometric functions are first converted to

economized Chebyshev polynomials for a specified equal-ripple error in the

whole domain Z>1 (Luke, 1975).

The n-th mode Rankine kernel of the integral equation (2.14) can be

obtained in a similar manner:

a R = (n a + n a) R n

2 2n-1z1p pp, { Qn-l/2 ( Z) + ao+bo[aoQn-l/2(Z) - boQn-3/2(Z)] }

+ 2 2n-1 [(p-p')n +(z-z )n z ] [aoQn_/2(Z)-b oQ n 3/ 2

4Ipp' ao-bo P[ [ Qn

(2.25)

where np and nz are respectively the components of the unit normal vector

n in the p and z directions. The apparent Cauchy singularity in the last

term of (2.25) vanishes identically when the source point approaches the

interior of piece-wise linear segments approximating the body boundary 8B,

and is otherwise finite for a body contour with continuous slope.

The behavior of (2.25) as the field point approaches the source ring

is given by
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OnR ~ p ' { -1 1ln[(p-p') 2 +(z-z') 2] + lnp + 31n2 - dn} 

Oa~~ ~~ n 2pp' 2 n ~(2.26)

where dn are constants given in terms of cn: do=l, and

dn = (n+1/2)cn - (n-1/2)cn.l , n1. (2.27)

As before, the logarithmic singularity is identical for all n.

For the nonsingular part of the Green function (2.17), the n-th mode

ring source, Wn, is simply the Fourier-series coefficient of W:

2r

Wn(P,z;p'.z') = f W(p,z;p',z';cos(9-8')) cos n(9-8') d(G-9'), nO,.

0 (2.28)

Since W is periodic in (-8'), the convergence of Wn with n is a function

only of the smoothness of W. For computations, we truncate the number of

modes at n=N, and the Wn's are given by discrete inverse Fourier

transform:

4 N N

Wn - eeN E cos (nmr/N) W(cos(mv/N)) , n=0,1,...,N,
n N m=0 m (2.28)

where en'-2 for n=O,N, and en'S1 for n=1,2,...,N-1. Thus, only N+1

evaluations of the Green function W are required to evaluate the N+1 modes

of the regular ring source Wn , and the error is measured by the last term

WN. In practice, the convergence of Wn with n may be slower than that of

the potentials so that more evaluations, say NW>N, are used for the Wn,

n=0,1,...,N. Efficient algorithms for the evaluation of W are now

available (e.g., Newman, 1985a) and are not detailed here.

We now turn to the far-field behavior of the general-order ring

source. For R/h>>l, a useful expression for G is (John, 1950)
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G = 2riC0 cosh k(z+h) cosh k(z'+h) H(kR)

+ 4 Cm cos rm(z+h) cos m(z'+h) Ko(/mR), (2.29)

where Ho, Ko are the zeroth-order first kind Hankel function and second

kind modified Bessel function,

Co= ( 2-k2 )/(kh-2 h+v) Cm (2+2)( h+v2h-v) (2.30)m (2.30)
and sm, m=1,2,..., are the real roots of the equation

2 (m-~)f ~ Amh r.1
2 = m9g tan mh, (m-)r h m. (2.31)

(2.31)

For finite depth, the second term in (2.29) are local (evanescent) modes

which decays exponentially with radial distance, mR, and the far-field

asymptotic of G is given by the first term which represents outgoing

waves:

G = 2iC o cosh k(z+h) cosh k(z'+h) Ho(kR) + O(e . (2.32)

The far-field asymptotic of the ring sources, upon using the addition

theorem, is

2 -s R
Gn -4 2r iCo cosh k(z+h) cosh k(z'+h) Jn(kp') Hn(kp) + O(e 1 ) 2
n 0 n n (2.33)

We remark that as depth increases, the rate of exponential decay of the

local modes decreases according to (2.31), and is only algebraic (R
- 2)

for infinitely deep water (Newman, 1967):

G = 2riv eV(Z+Z')Ho ( R) + O(R-2 ). (2.34)
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2.4 Evaluation of the free-surface integral in (2.14)

The most difficult and computationally expensive aspect of the

solution of the integral equations (2,14) is the efficient and accurate

evaluation of the free-surface ntegrals:

In(P ,ZI) -g dp p qn(p) G(p,O,;p,z')

a (2.35)

where a is the radius of the waterplane. The forcing terms, qn, are given

in (2.15) in terms of first-order potentials, which may in turn be

obtained through an integral equation of the form (2.14) (minus the free-

surface integral). We use instead a source-distribution representation

for the first-order potential:

(D1)(x)= f dl' p'an(x')Gn(x;x').

B8 (2.36)

where the ring-source strengths, n, satisfy the second-kind Fredholm

integral equation:

2rn(x) + f dl' p'an(x') 8Gn/8 n =- O8 n)(x)/8n, n=0,1,...

BB (2.37)

Eq.(2.36) is preferred over a mixed-distribution in evaluating (2.15)

since it reduces by one the order of derivatives of the Green function

required. Eq.(2.37) is solved numerically following a standard procedure

of discretizing B into linear segments, assuming a constant source

strength over each panel, and selecting collocation points at the mid-

points of the segments. The details are omitted. The derivatives of the

potential in (2.15) are evaluated by successive differentiation of (2.36).

The free-surface integral, (2.35), is evaluated over two intervals,
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(a,b) and (b,.), where the radius b is chosen so that the latter interval

is evanescent wave free:

=1 [ f~ + ++ 

I = [|dp pqnGn + f dp pqnGn + dp p(qn n-qn n )

a b b (2.38)

In the above, (^) represents terms which contain contributions from

propagating waves only. In our computations, the near-field integral in

(2.38) over the finite interval (a,b) is computed by numerical quadrature

(Romberg integration) with controlled tolerance. The last integral is

made negligibly small by a suitable choice of the partition radius b

according to (2.32).

We evaluate the second integral, which is over an infinite domain,

analytically. The integrand consists of products of three propagating

waves and has a decay rate of p-1/2 for p>>l. The local-wave-free first-

order potential is given by

(1) = -4r2 1Cocosh k(z+h) Hn(kp) f dl'p'n(x')Jn(kP') cosh k(z'+h),

8B (2.39)

where the integral over B is simply the n-th mode Kochin function which

we denote as Ln. Substituting (2.39) into (2.15), we obtain

emm2
qo -Ik2 2A2cosh2kh 2kh + )Sm (kp)+Tm (kP)]

2w m=O m 2 2 2(kp) MM

q =- -1k2a2A2coshkh n 3 2 - 1 - m(k)+ ,(kp)

n 2w m=O (kp)2 n-m, nmm

+ 2 [(2 tanh2kh _ i + (n+m)m ,m(kp)+T (kp)] },
m=O 2 2 (kp)2 n+mm n+m,m ,

n=1,2,...,
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where,

S n (kp) aH,(kp)H (kp)+PmanJm(kp)Hn (kp)+amPnHm(kp p

Tm,n (kp) amanH(kp)Hn (kp)+ PmanJ (kp)Hn(kp)+amnH(kp)J (kp) 

(2.40)

and primes denote derivatives with respect to argument. The coefficients

an, Pn, are given by an--4r 2iCoLn, and pn-enin/cosh(kh). Using (2.33) for

Gn, we obtain an expression for the local-wave-free integrand, PqnGn, of

the free-surface integral consisting of triple products of Bessel and

Hankel functions multiplied by powers of kp. The final outer-field

integral can be expressed n terms of definite integrals of the forms:

Ismn(kb) f (kp)s H1(kp) Hm(kp) Hn(k2p) d(kp)

kb L

s=0,1l; l,m,n=0,1,...
(2.41)

where ( )* denotes complex conjugate. A method for the evaluation of

these integrals is outlined in Appendix A.

We remark that the exact evaluation of the local wave free integral

above is critical to the efficacy of the present method. Substituting

(2.39) into (2.15), combining with (2.33), and using the leading

asymptotics of Jn and Hn for large arguments, it is easy to show that the

free-surface integrand has the leading behavior: kpGq n

[exp(i(2k+k2)p)+exp(ik2p)](k2p)-
1/2 for kp,k2p>>1. Thus if the free-

surface integral is simply truncated at b (e.g., Loken, 1986), the

truncation error decreases only as b- 1/2. For accurate results, the

effort involved in numerical quadrature over a large domain becomes

- 30 -



prohibitive. On the other hand, the convergence can be improved by

evaluating the integral of the leading asymptotic term only from b to

infinity in terms of Fresnel integrals (Eatock-Taylor & Hung, 1987). The

neglected terms are then of O[p-3/ 2 (k-1 k2-1/2 +k2-1k-/ 2 )], so that the

convergence with b is still only algebraic, in contrast to the exponential

decrease of error with b associated only with the evanescent modes in the

present case.

3. SECOND-ORDER EXCITING FORCES, MOMENTS AND SURFACE ELEVATION

The boundary-integral equation (2.14) for fDn ( 2 ) is solved using a

discretization procedure similar to that for the first-order problem. The

hydrodynamic pressure can be calculated from the first- and second-order

potentials according to Bernoulli equation:

.p(1)/o a )t '

p ( 2 ) ½'P 1 (1))2
-P(2), = at + (v 1 , (3.1)

where o denotes the fluid density. The second-order forces and moments,

fj(2)(t), J=1,2,...,6, can be obtained by integrating the pressure on the

wetted body surface:

f|2)(t) = ff P(2)njdS + ff (p(1)-Pogz)njdS,
S B Se(t) (3.2)

where (nl,n2,n3)=n, (n4,n5,n6)=rxn, and SB and S(t) are respectively the

mean and time-varying portions of the instantaneous wetted body surface.

For a harmonic incident wave, the second-order forces and moments

contain double-frequency and steady components:
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f(2)(t) = Re{F(2)e-2it} + F(2)

The double-frequency forces and moments can be further spilt into that due

to contributions from the quadratic products of the first-order potential,

F1 (2), and that due to the second-order potential, F2(2); i.e., Fj(
2) =

Fj1(2)+Fj2 (2). These are given, for wall-sided bodies, by:

F(2) = _ (1))2 N2 f (1))2
ji = - ff (V# )2njdS + f ((1 ))2 njdl ,

S8 Wo (3.4)

F! 2 ) = 2iwpo ff (2)nJdS

SB (3.5)

where Wo is the mean waterline. The mean second-order component is:

F(2) = - ff IV# (1) 2njdS f I#(1)l2njd l .

SB Wo (3.6)

For vertically axisymmetric bodies, the surface integrals can be reduced

to line integrals along 8B by integrating in and using orthogonality.

Thus, for example, the horizontal force component, F1 1(
2), can be written

as:

2

F(2) P o pan LT (1) (1)
11 4g nE=O n n+ z=

o §0ni) n() )(1)0(1)
Po E f dl pn [2 (n n+ + n 1 a )+ (1)(1)]

4-e n=O Pel nB a p z I Z) + 2 n n +
(3.7)

If the body is not wall-sided, an extra factor, (1-nz2)-1 /2 , appears in

the waterline terms.
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For the free-surface elevation, (t), we expand the exact free-

surface condition in a Taylor expansion about z=O, and obtain the second-

order elevation

s(2)(t) = g-1 (V 0) + I o( 1 ))2 +2 ( 1 *(.2)

2g 92 9t atez g t = (3.8)

As with the velocity potential, (2)(t) can be decomposed into a time-

independent term, (2), and a double-frequency term of amplitude ,(2),

which in turn can be written as a sum of contributions from the first-

order (1(2)) and second-order (2(2)=D(2)+q(2)) potentials:

(2)(t) = Re [(1(2)+ (2))e-21it] + (2)(2) (t) Re [t/1 /2 + '

and from (3.8):

(2) = [I (VO(l))2 2 (1) a 
1 4g 2 2g2 jZ- (3.10)

(2) = (2)+ (2) 21w 2) + (2)] (3.11)
2) 9 D I CI]= (3.11)

-(2) = [1 Iv() 2 + 2 (1) 6 (1)* 

7 Lg2g2 J=(3.12)

If only integrated second-order quantities such as forces are

required, an alternative method (Molin, 1979; Lighthill, 1979), which does

not require the solution for fD(2) explicitly, is to apply Green's theorem

with the use of an assisting radiation potential, j, which satisfies the

first-order boundary-value problem (2.4) at double-frequency, with the

body boundary condition

a.S
j= n on the body (SB); j=1,2 ... 6. (3.13)an~~ '' " (3.13)
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Applying Green's identity to Do(2) and #J, and taking advantage of the boundary

conditions they satisfy, we obtain:

( 2 )

ff ,2)ndS - fJ j n dS + ff qjdS 
SB SB SF (3.14)

so that the second-order forces are expressed in terms of first-order

potentials only. For axisymmetric bodies, the free-surface integral in

(3.14) has similar properties to that in (2.14) and the techniques of §2.4

are directly applicable. We remark that the computational effort involved

in this indirect approach is not significantly different from the direct

solution of §2, since in both cases, an additional boundary-value problem

at double-frequency (Eq.2.14 or that for ) and an evaluation of similar

free-surface integrals are involved.

For a uniform bottom-extended vertical cylinder, the first-order

potentials can be expressed in closed form, so that semi-analytic

expressions (not involving solutions of integral equations) for the

second-order forces and moments can be derived using (3.14). These are

summarized in Appendix B, and provide useful comparisons for the numerical

results of §2 for this geometry.

4. NUMERICAL RESULTS AND DISCUSSION

For illustration we consider the diffraction of plane monochromatic

waves by two axisymmetric geometries: (a) a bottom-seated uniform vertical

cylinder (radius a, depth h=a) for which semi-analytic solutions for the

forces are available (Appendix B); and (b) a conical island or gravity

platform (waterplane radius a, depth h=a, toe angle 60) where second-
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order effects are expected to be particularly important.

The integral equations (2.14) and (2.37) for the second- and first-

order problems respectively are discretized and solved numerically

following a standard procedure: (i) approximate the body contour, B, by

Np straight line segments; (ii) assume constant values for the potential,

ODn(2), or ring-source strength, n, over each segment; (iii) collocate

the equations at the center of each segment to obtain a system of linear

algebraic equations for the segment unknowns, which is then solved. In

calculating the influence coefficients, the singularities of the kernels

in §2.2 are subtracted out and integrated analytically. The sources of

numerical error are those associated with: (i) the truncation to a fin~t'

number, N, of Fourier modes in ; (ii) the assumed constant variations of

the unknowns over each segement; and (iii) the geometric approximation of

the body contour by Np piece-wise linear segments.

For the present geometries, the body contours are described exactly

by straight segements, and the numerical errors are controlled by proper

choices of Np and N. Table 1 shows the errors in the modulus of the

first-order horizontal diffraction force on the uniform cylinder as a

function of Np (NW=20 is used for the evaluation of the ring-source Green

functions). To describe the more rapid variations near the free-surface

(especially for the second-order potential), cosine-spaced segments (with

smaller lengths near the surface) are used in all our calculations. The

convergence with Np is approximately quadratic. Hereafter, Np=20 segments

are used for both the first- and second-order problems.
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Table 1. Mqgnitude of the first-order horizontal diffraction force,
Fxtl)J/pgaA, on a uniform vertical cylinder (a/h=1) for different
frequencies, vasw2a/g, as a function of the number of cosine-spaced
segments, Np, on the body; compared to exact values.

va = 1.2 2.0 2.8

exact 2.6282 1.6281 1.0529

Np = 10 2.6250 1.6243 1.0481
20 2.6276 1.6271 1.0515
30 2.6281 1.6276 1.0520

To show the convergence with increasing numbers, nN, of azimuthal

Fourier modes, we tabulate the modal amplitudes of the first- and second-

order potentials on the vertical cylinder at (p,z)=(a,O) (which are

proportional to the run-up) in Table 2. For comparison, the amplitudes of

the modes of the second-order incident and diffraction potentials are

given separately. From partial wave decompositions of the incident waves,

it is clear that the mode number beyond which the amplitudes attenuate

rapidly increases with increasing frequency. This is seen for the larger

w2 a/g-va as well as for the double-frequency potentials. It is of

interest to note the large magnitudes and relatively slow decrease of

I/Dn(2)1 compared to the double-frequency incident wave. In all our

calculations up to va=0(3), N=9 and 14 are used respectively for the

linear and second-order problems.

A significant portion of the computational effort is in the

evaluation of the free-surface integral in (2.14). For the free-surface

forcing pressure terms, qn (2.15), (1) is calculated from first-order
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Table 2. Convergence of the linear and second-order surface elevation
angular modal amplitudes (normalized by A and A/a respectively) on the
circumference (p-a) of a uniform vertical cylinder (a/h=1l) for va=1.2,2.0
and 2.8. (* indicates values less than le-10).

va = 1.2 2.0 2.8

#(1)l l12), 1(2), 1(l), 1(2), 1(2) 9 (l)l 1(2)l 1(2) 

n= 0 0.6339 0.3242 0.0966 0.5308 1.1600 0.0793 0.4704 0.4404 0.0024
1 1.3028 0.8133 0.5301 1.1048 1.1375 0.0471 0.9477 2.3280 0.0400
2 0.8704 0.7719 0.5810 1.1422 1.1666 0.1358 1.01/0 1.9287 0.0191
3 0.2018 0.3300 0.3201 0.6365 0.9640 0.1786 1.0089 1.6163 0.0265
4 0.0339 1.4545 0.1215 0.1639 0.2415 0.1236 0.5051 1.2758 0.0473
5 0.0047 1.4183 0.0355 0.0338 0.8139 0.0608 0.1431 0.6720 0.0405
6 0.0005 0.5586 0.0085 0.0059 1.2414 0.0235 0.0341 0.3541 0.0246
7 0.0001 0.1152 0.0017 0.0009 1.0073 0.0076 0.0070 1.0061 0.0118
8 0.5E-5 0.0194 0.0003 0.0001 0.5904 0.0021 0.0013 1.0968 0.0048
9 0.3E-6 0.0029 0.5E-4 O01E-4 0.2228 0.0005 0.0002 0.7860 0.0016
10 0.2E-7 0.0004 0.6E-5 0.1E-5 0.0490 0.0001 0.3E-4 0.4555 0.0005
11 0.1E-8 0.0001 0.8E-6 O.1E-6 0.0086 0.2E-4 0.4E-5 0.2263 0.0Q01
12 * 0.6E-5 0.9E-7 0.1E-7 0.0014 0.4E-5 0.5E-6 0.0862 0.3E-4
13 * 0.6E-6 0.1E-7 0.9E-9 0.0002 0.6E-6 0.5E-7 0.0208 0.8E-5
14 * 0.5E-7 0.1E-8 * 0.2E-4 9.9E-7 0.5E-8 0.0036 0.2E-5

source strengths via (2.36) and its first and second derivatives from

direct differentiation of (2.36). The Rankine part and its derivatives

are evaluated analytically from (2.18).

At the free-surface body intersection point, we encounter two types

of difficulties. The first one is the mathematical weak singularity of

the potential at that point due to the confluence of boundary conditions.

For a vertical (wall-sided) intersection, it is shown that the linear

potential for horizontal motions has a weak, r2lnr type, singularity,

while those for vertical motions or wave diffraction are regular at the

intersection point (Kravtchenko, 1954; Miloh, 1980; Sclavounos, 1988).
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The type of singularity for a nonvertical intersection case has not been

completely resolved yet. We are also interested in local results such as

run-up on non-wall-sided bodies. In this case, the validity of our

results is established through careful convergence tests. Table i) shows,

for example, the convergence (with decreasing grid size) of the (first-

order) run-up at a given point (p=a, =0, z=0) on a 60 degree cone. The

convergence of the linear diffraction potential at the intersection point

is quite evident.

Table ) Convergence of the linear diffraction potential (at p=a, z=O,
& 9=0; va2) for a 60 degree cone (h-a) with increasing the number of
panels.

Np= 10 20 30

IOD(1) I 2.818 2.827 2.825

When the linear potential has a weak singularity given above (e.g. surge

radiation potential), the second derivatives of the linear potential at

that point are logarithmically singular but still integrable. Therefore,

the evaluation of the free-surface integral presents no theoretical

difficulties. To avoid evaluations of the second derivatives near the

intersection point, a weaker formulation for the free-surface integral can

be used, alternatively, after integration by parts (e.g. Chau & Eatock

Taylor, 1988).

Another kind of singularity is also encountered when a body has sharp

corners (e.g. Or 2/3, at the corner of a truncated vertical cylinder). To

account for this behavior, the cosine-spaced segments near the corner are
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used whenever we have sharp corners (e.g. Newman, 1985b).

The second type of difficulty is rather a methodological one

associated with a panel method. With the use of constant-strength

segments, the potential and its derivatives on the free surface from

(2.36) are not accurate in a small neighbourhood (of the order of a

segment length) near the intersection with the body (e.g., Korsmeyer,

1988). This is clearly shown in Figure la, where the diffraction

potential and its derivatives for a vertical cylinder near the

intersection point are calculated by (2.36). Higher accuracy is obtained

by using cosine spacing compared to regular spacing (Np=20), especially

close to the intersection point. For cosine-spaced body segments, the

typical relative errors in and p for (p-a)2 0.02a are 0(0.1%). The

above trend is not sensitive to changing frequencies. In practice, we

obtain #z(1)(a,O) and p()(a,O) from (1)(a,O) using free-surface and

body boundary conditions, respectively; pp(l) (a, O) from three-point

differencing of p(l) at (a,O), (1G,0), and (21G,O); and zz(1)(a,O) from

applying Laplace's equation at the intersection point. The values for

aSp21lG are then obtained by three-point quadratic interpolations. In the

following table, the free-surface forcing pressure at the intersection

point with changing the lower boundary (lG) of using (2.36) are given.

Table ii) The free-surface forcing pressure qlj at the intersection
point, p=a & z=O, of a vertical cylinder (h=a), and for va=3, with varying
lG/a (Exact solution is ql(O)1=2.550).

1G/a= 0.030 0.025 0.020 0.015

Iqll= 2.526 2.530 2.540 2.568
J _ _ 
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As already observed in Figure la, G-0.02a is the optimum value in this

case. The accuracy of q inside 16 is local and does not change global

quantities such as F2(
2) significantly (typically 0(0.1%) for the values

of 1G in Table ii). A similar behavior is also observed for the 60 degree

cone. In all our computations, then, lG=0.02a is used. Figure lb shows

the comparisons between computed results and analytic solutions (cf.

Appendix Bj) for the first three modes of the forcing pressure outside a

uniform cylinder for a=2. Computed free-surface pressures even at the

intersection point agree well with those of analytic solutions. The

slowly decaying and oscillatory behaviour of the profiles are quite

evident.

The free-surface integral in (2.14) is calculated using the method of

§2.4. To estimate the convergence of the integral with the partition

radius b, we consider a typical local mode in the second term of (2.29).

Using the addition theorem for Ko:

Ko ( m
R ) n= en In(xmp') Kn(xmP) cosn(-8),.

n=O (4.1)

it is clear that for p' on the body, the decay of the local modes with p

is exponential with a rate given by mP or in fact p/h according to

(2.31). In general, for a given tolerance, we select a fixed (b-a)/h to

control the error associated with neglected evanescent waves in the outer

integral. Table 3 shows typical convergence of results with (b-a)/h for

the second-order potential horizontal force and overturning moment (with

respect to the bottom) on a uniform vertical cylinder (a/h=1).
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Table 3. Magnitude of the second-order potential horizontal force and
overturning moment (normalized by pgaA 2 and pga2 A2 respectively) on a
uniform vertical cylinder, a/h=1. The results are for different partition
radii b for the free-surface integral evaluation compared to semi-analytic
solutions (Appendix B).

va 1.2 2.0 2.8

IF(2) IM(2) F(2) I"(2) IF (2) 1 I"(2)

exact 2.263 1.239 2.694 1.439 4.229 2.429

(b-a)/h= 2 2.258 1.237 2.663 1.430 4.193 2.418
3 2.262 1.238 2.691 1.437 4.227 2.429
4 2.263 1.238 2.694 1.439 4.231 2.431

It is seen that a partition radius of b-aw3h is adequate for 3 significant

decimals of accuracy and is used n later computations. The accuracy with

relatively small numerical ntegration requirements again underscores the

efficacy of the method of §2.3 compared to methods which have only

algebraic convergence.

We now turn to the results for the two geometries. Table 4 shows the

first- and second-order forces and moments on the uniform circular

cylinder (computed from pressure integration on the body) compared to

semi-analytic results derived using assisting potentials (Appendix B).

For the evaluation of the second-order mean (FX( 2) and Ry(2 )) and that

part of the double-frequency (Fx1(2) and My1(2)) forces and moments given

by the first-order potential, the gradients of the linear potential on the

body are required and are calculated by 3-point centered-differences of

collocation point values. The errors in Table 4 increase somewhat with

frequency but are less than 1% for all the quantities shown. In all cases
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Table 4. Real and imaginary parts (real,imag) of the first- and second-
order horizontal force and overturning moment (with respect to the bottom)
on a uniform vertical cylinder (a/h=l) obtained by direct pressure
integration on the body. For comparison, semi-analytic solutions obtained
using assisttng potentials, (Appenjix B) are given on the first rows. (The
quantities F(17, M1) , F 2) and M 2) are normalized by pga2 A, pga3 A, pgaA2

and pga2A2 respectively.)

va = 1.2 2.0 2.8

Fx( 1 ) 0.708,-2.531 -0.264,-1.606 -0.746,-0.743
0.708,-2.531 -0.264,-1.606 -0.745,-0.742

Fx(2) 0.826 0.711 0.656
0.826 0.711 0.655

Fxj(2) -1.648,-0.308 -1.094, 0.849 0.892, 1.341
-1.648,-0.305 -1.076, 0.846 0.887, 1.345

Fx2(2) 2.259,-0.136 1.972,-1.835 -2.209,-3.606
2.258,-0.135 1.973,-1.830 -2.208,-3.604

Fx(2) 0.611,-0,444 0.878,-0.986 -1.317,-2.265

My(l) 0.401,-1.431 -0.165,-1.004 -0.511,-0.509
0.400,-1.431 -0.165,-1.003 -0.510,-0.509

Ay(2) 0.870 0.822 0.777
0.870 0.823 0.778

MyjI (2) -1.485,-0.385 -1.063, 0.801 0.835, 1.268
-1.485,-0.382 -1.044, 0.797 0.829, 1.272

My 2(2) 1.201,-0.303 1.041,-0.993 -1.360,-2.012
B 1.200,-0.302 1.042,-0.990 -1.360,-2.013

My(2) -0.284,-0.688 -0.022,-0.192 -0.525,-0.744

for the force, the contribution of the second-order potential is larger

than that of quadratic products of first-order quantities. However, these

two effects are generally out of phase so that the net second-order
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excitations are relative small compared to the linear quantities but

increase with increasing wave frequency. Thus for moderately steep waves,

say kAO.Z, the double-frequency second-order force amplitude is only

about 416% for va=1.22.8. The situation for the overturning moment is

similar but with somewhat smaller ratios of My2(2) to My( 2 ). This is

related to the relative centers of pressure of the different pressure

components (see Figures 3 and 4).

The magnitudes of the first- and second-order force coefficients are

plotted in Figures 2 as a function of incident frequency. The comparisons

with semi-analytic results are uniformly good except for small

discrepancies in a neighborhood of va=2.4 which corresponds to the first

irregular frequency of the integral equation (2.37). (The frequency is

given by the homogeneous interior Dirlchlet solution at the first zero of

Jo(ka) at ka-2.405 or va=2.366. The effects of the irregular frequencies,

v, associated with (2,14) which are one-fourth those of (2.37) are much

weaker.) The force components due to the second-order potential are

major portions of the total second-order quantities and their magnitudes

relative to the other second-order contributions increase with increasing

frequency. Thus, in no situation is it valid to ignore F2(
2) in favor of

quadratic contributions of the first-order potential. This invalidates

many recent engineering estimates of second-order wave effects on

structures (e.g., HerfJord & Nielsen, 1986; Petrauskas & Liu, 1987)

wherein the second-order potentials were ignored. Note that both F2(
2)

and M2(
2) blow up as va=vh+O, and the second-order result becomes invalid.

This is related to failure of Stokes' expansion (see Eq. 2.3) as kh<<l for

fixed kA. As pointed out earlier, F2(
2) and F1(

2) (as well as the
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moments) are generally out of phase, so that the net double-frequency

excitation amplitude is usually smaller than that of F2(
2) and important

only for steep incident waves.

Unlike earlier work such as Molin (1979) and Eatock-Taylor & Hung

(1987), we obtain the second-order potential explicitly so that useful

local second-order quantities such as pressure distribution, velocities

and wave run-up are also available. Figures 3a,b show the amplitudes of

the linear and components of the second-order pressure distributions on

the cylinder on the lee (=0) and weather (=r) sides respectively for

va=2. Analytic results, where available (from Eq.B.1), are also shown.

The pressures p1(2) and p(2) which are due to quadratic products of the

first-order potential, as well as the pressure due to fi(2) attenuate with

depth with a rate of ~2k, whereas the pressure associated with the second-'

order double-frequency free waves (H) has a decay rate given by k2~4k.

On the other hand, the portion of the nonlinear potential second-order

pressure, p2(2), which is forced by the inhomogenous surface term (2.6)

has a much slower attenuation with depth dictated by (2.6). This is

especially evident on the weather side. The phenomenon can be seen in

general from the far-field behavior of p (Eq.2.10), where the depth-

dependence of the potential varies from being a constant on the weather

side (=r) to cosh 2k(z+h) on the lee side.

For longer waves, the situation is even more interesting, where the

pressure may not decrease (monotonically) with depth and the minimum p2(2 )

may not in general be at the bottom. This is shown in Figure 4 for the

case of va=1.2 for different circumferential positions along the cylinder.

Along the leeward (=0) edge, the second-order potential pressure first

- 44 -



decreases with depth, reaching a minimum at around mid-draft and then

begins to increase towards the bottom. At the waveward quarter (8=3r/4)

the pressure has a minimum close to the surface and then increases

monotonically with depth.

For deeper water, the total hydrodynamic pressure may be dominated by

that due to the second-order potential. Figures 5 show the pressure

distributions on a uniform cylinder of depth h=4a at va=2. As expected,

all pressure components given by #(1) (I(2) or fH) attenuate

exponentially while p2(2 ) (which is proportional to Up at deeper depths)

has only an algebraic-like decay with depth. This has a very important

consequence for the forces on deep-draft bodies. Figure 6 shows the

horizontal force components on a uniform cylinder of varying depth h/a for

va=2. With the attenuation of linear-potential pressures with depth, the

quantities F(1) and Fx1(2) (as well as forces due to i(2) and H) reach

constant values rapidly as h/a increases. The force due to the second-

order potential, p, however, continues to increase in magnitude and

converges to a constant asymptotic very slowly. For information, the

magnitudes of the first- and second-order components of the free-surface

elevation on the cylinder (at =r) are also plotted, which show that the

increase in Fx2(2) is not due to the magnitude of the potential on the

surface. For truncated cylindrical bodies, this phenomenon gives rise to

unexpected second-order vertical forces even when H>O(1), where H is the

draft of the body (see Chapter IV).

We next show the first- and second-order run-up on the uniform

cylinder as a function of the azimuthal angle for va=2 (Figure 7). The

amplitudes of the run-up components generally increase from the lee (=0')
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to weather side, whereas 12(2) has another maximum at the lee quarter.

The relative magnitudes and phases between 11(2) and r2(2) depend on 8,

and in general the total double-frequency run-up can be several times

larger than the second-order mean set-up(down), which itself has a trend

similar to 1(2), with a maximum setup on the weather side and setdown

along the leeward portion of the cylinder. The general behavior of the

various run-up components is sensitive to the incident wave frequency. In

Figure 8, we plot the maximum amplitude, over , and the position of the

maximum (max) of these components as a function of a. Except for

the lower frequency, the maximum 111(2)1 is greater than 12(2)1 by almost

a constant factor, while both quantities as well as the maximum 1j(2)l

(which are all for (2)>O) tend to increase with frequency. The maximum

net double-frequency amplitude 1r/(2)+2(2)1 is less sensitive to

frequency as is the case for the linear run-up, Ir(1)I. The dependence on

water depth has been plotted in Figure 6 for va=2. In general, the

amplitudes, including 1q2(2)1, are not sensitive to increasing depth

beyond vh>-2. On the other hand r2(2) increases rapidly in shallow water

as a consequence of Stokes' expansion for long waves as pointed out

earlier.

We next turn to results for a bottom-seated truncated vertical cone

(waterplane radius a, water depth h=a, and a toe angle of 60'). Such a

geometry has been proposed for gravity platforms in the Arctic (e.g.,

Sarpkaya & Isaacson, 1981), or may be considered as a model for a circular

island. In this case, the non-vertical body wall is expected to lead to

more important second-order effects.

Figures 9 show the magnitudes of the components of horizontal and
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vertical forces and overturning moment (with respect to the bottom center)

on such a body. As a check, the results for IFx2(2)1 and IFz2(2)1

obtained independently using assisting potentials (Eq. 3.14) are also

plotted. These second-order potential forces dominate all other second-

order contributions throughout the frequency range. Although the relative

phases between F1(
2) and F2(

2) still cause the amplitudes to partially

cancel, the net second-order double-frequency forces on the cone may be an

appreciable part of the total excitation especially for higher

frequencies. For example, for wave slope of kA=0.2, IFxl(2)+Fx2(2)1 at

va-2.4 and IFz1(2)+Fz2(2)1 at vya2.8 are respectively 60% and 180% of the

corresponding linear amplitudes at those frequencies. For the overturning

moment, M2(
2) is comparable n magnitude to M1(

2) and they both oscillate

with frequency. In this case, however, the components are roughly in

phase and the net double-frequency moment is comparable to the linear

moment only for steep waves (say kA>).25 at va~2.5).

The run-up along the circumference of the cone is plotted in Figure

10 for the first- and second-order double-frequency and steady components

for va=2. The double-frequency run-up is much greater than that for the

vertical cylinder and shows large variations along the waterline. The net

amplitude is given essentially by the second-order potential component and

has a maximum at the sides of the cone where it may be comparable to the

first-order run-up there for kA>-.13. Again the detail features depend

very much on the specific incident frequency, and the results are

summarized in Figure 11 where the maxima, over 8, of the amplitudes of the

various run-up components are plotted as a function of a together with

the positions (max) of the respective maxima. Comparing to Figure 8 for
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the vertical cylinder, we observe that: the magnitudes of the second-order

components are much larger; n1q(2)Imax is now quite small compared to

192( 2)lmax; the maximum total double-frequency run-up increases more

rapidly with frequency; the locations of the maxima are more sensitive to

frequency; and the interesting fact that the maxima of jI(2)l are now all

for mean set-down (i.e., j(2)<0).

We have also calculated the components of the pressure on the cone.

With the exception of a sharper rise of p2(2) towards the free surface,

the qualitative features are similar to those for the vertical cylinder.

5. CONCLUSION

Using a general order ring-source boundary-integral equation method,

the second-order diffraction problem for an axisymmetric body in the

presence of plane monochromatic incident waves is solved for the nonlinear

sum-frequency potential. An important part of the solution is the

efficient and accurate calculation of the forcing term which requires the

evaluation of an oscillatory and slowly decaying integral on the free

surface. An approach which treats the entire local-wave-free outer region

analytically is developed and shown to be efficacious. Although the

second-order potential is solved explicitly, the present method is

comparable in computational effort to existing approaches (Molin, 1979;

Lighthill, 1979) which utilize fictitious assisting potentials to obtain

global second-order quantities. An important benefit is that complete

second-order local quantities such as pressure distributions and surface

elevations are now available.

For illustration, the second-order diffraction problem for a uniform
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vertical cylinder and a truncated vertical cone are studied in some

detail. In addition to convergence tests with respect to truncation and

discretizations, comparisons of the second-order forces and moments for

both geometries with independent results obtained using assisting

potentials confirm the validity and accuracy of the present calculations.

From our numerical examples, several important second-order

diffraction features are observed:

(1) The relative importance of second-order effects generally increase

with frequency, 2a/g, and with the draft of the body, w2H/g.

(2) The second-order potential can not be neglected in favor of quadratic

contributions of the linear potential. Double-frequency results obtained

without accounting for this potential will likely be inadequate in all but

very specialized cases.

(3) The second-order double-frequency diffraction potential can penetrate

much deeper than even the linear (incident-frequency) potentials. The

pressure or velocities associated with this nonlinear potential may not in

general be negligible even for Iw2z/gl>0(1). In particular, the vertical

force otherwise absent on a deep truncated cylinder can be nontrivial due

to this potential.

(4) When the body side walls are outward sloping towards the bottom, such

as in the case of a vertical cone, second-order effects such as run-up are

amplified and may indeed be greater than first-order quantities for

moderately steep incident waves.

The present method can be generalized to the case where the incident

waves contain multiple frequency components as well as the radiation

problem -- these are considered in Chapter II.
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Figure la. Relative errors in computing linear diffraction potential and
its derivatives for a bottom-mounted vertical cylinder of h=a & a=3 near
the free surface body intersection point. Computed values are for:

:z(X1 W (),, & o lZZ (0) for regular spacing; and 01 (+). hlp (A), &
fizz (o) or cosine spacing.
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frequency, a. The curves are for semi-analytic solutions for:
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are computed results for: Ip(l) ( - - - ); P(2) (- - ); tpl(2
(- · -); and p2(2)1 ( --- ). Analytic results obtained from the
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Figure 6. Amplitudes of the linear and components of second-order

horizontal force and run-up (at e=r) for uniform vertical cylinders (va=2)

as a function of the depth, h. Connected symbols are for computed values
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Figure 9. Amplitudes of the linear and components of second-order wave
excitations on a truncated vertical cone (h-a, toe angle 60 ) as a

function of incident frequency, Va. The curves are for results computed
from pressure integration for: JF(1)j (--_ ) (2 ) ( JF1(2)I (- -); IF2(2) ( ); and IF1 +F2(2)I( - )
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force, Fx; (b) vertical force, Fz; and (c) pitch moment with respect to
the bottom, My.
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Figure 9. Amplitudes of the linear and components of second-order wave

excitations on a truncated vertical cone (h=a, toe angle 60 ) as a

function of incident frequency, Va. The curves are for results computed

from pressure integration for: IF(1) ( - - ); F(2) ( - );

IFl(2) (- -); IF2 (
2 ) ( ); and F1 (

2 )+F2(2 )1 (- - -).

The ymbols () denote results calculated from (3.14). (a) Horizontal

force, Fx; (b) vertical force, Fz; and (c) pitch moment with respect to

the bottom, My.
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Figure 9. Amplitudes of the linear and components of seconf-order wave

excitations on a truncated vertical cone (h-a, toe angle 60 ) as a

function of incident frequency, a. The curves are for results computed

from pressure integration for: IF()I ( - - (2) (- - - );

IF1 (
2)I (- * -); IF2 (

2)1 ( ); and IFI()+F2(2)1 (- - )

The symbols (A) denote results calculated from (3.14). (a) Horizontal

force, Fx; (b) vertical force, Fz; and (c) pitch moment with respect to

the bottom, My.
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60 , va=2) as a function of the azimuthal angle, . The curves are for
computed values for: 1V(1) (- - - ); [1(2)[ - - ; l1
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(8max) of the linear and components of second-order wave run-up on a

truncated vertical cone (h=a, toe angle 60 ) as a function of incident

frequency, Vsa. The symbols are for: Il(')l (A); j(2) (X); 1q1(2)1 (+);

172(2)1 (); and lq1(2)+12(2)1 (). Note that a different scale is used

for plotting second-order amplitudes.
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CHAPTER I!

THE COMPLETE SECOND-ORDER DIFFRACTION AND RADIATION SOLUTIONS FOR AN

AXISYIIETRIC BODY IN BICHROMATIC INCIDENT WAVES.

1. INTRODUCTION

Many compliant offshore platforms are designed so that their natural

periods are substantially below or above that of significant ocean wave.

energy. As a result, second-order sum- (springing) and differrence-

frequency (slowly-varying) wave excitations and the associated resonant

responses are important design considerations. Theoretical developments

and numerical results for the complete sum- and difference-frequency wave

excitations and/or body responses in the presence of bichromatic waves

are, however, still scarce. The major difficulty for a complete solution

is the presence of complicated body boundary terms for floating bodies and

the slowly-convergent free-surface integrals. As a result, a number of

approximation methods for slowly-varying drift forces (Newman, 1974;

Pinkster,1980; Standing & Dacunha, 1982; Marthinsen, 1983) and springing

excitations (De Boom et al, 1983; Herfjord & Nielsen, 1986; Petrauskas &

Liu, 1987) have been proposed and are widely used in practical

applications. In the absence of the complete solutions, however, the
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validity and relative merit of each method have so far not been

established.

In this chapter, the complete second-order diffraction method for

axisymmetric bodies in a regular wave train, which is detailed in Chapter

I, is extended to sum- and difference-frequency diffraction and radiation

problems n bichromatic incident waves. A Green's theorem integral

equation is obtained and solved for the second-order sum- and difference-

frequency potentials, respectively. For illustration, the complete sum-

and difference-frequency wave excitation QTF's as well as local quantity

QTF's are calculated for bottom-mounted vertical cylinders in different

water depths and for respectively fixed and freely-floating hemispheres.

The validity and accuracy of the method are demonstrated by extensive

results for convergence with respect to body discretizations, Fourier

modes, and free-surface integral evaluations, as well as by comparison to

semi-analytic solutions for the bottom-mounted vertical cylinder derived

In Appendix C. Salient features of the second-order problem and

especially the behaviors of local effects due to the second-order

potential are discussed in §5. Based on this, the validity of various

existing approximation methods is thoroughly examined. The deficiencies

of these approximations are particularly severe for large draft bodies.

Given the complete excitation and response QTF's for bichromatic

incident waves, the statistics of second-order excitations and responses

in general Gaussian seas can be readily obtained. This will be considered

in Part two.
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2. FORNULATION OF THE PROBLEM

We consider the linear and second-order wave body interaction

problems for fixed or freely-floating three-dimensional bodies in plane

progressive bichromatic incident waves from x-m. Cartesian coordinates

with the x-y plane in the quiescent free surface and z positive upward are

chosen. Assuming potential flow and weak nonlinearities, we write the

total velocity potential as a purturbation series with respect to small

wave slope e:

* .e (1)+ e2(2)+ · . (2.1a)

For each order, the related boundary value problem is linear and we can

decompose into the incident(0I), diffraction(D), and radiation(R)

potentials:

* _ i ( *(1)+ (1)+ (1)) + 2 ( (2)+ (2)+ (2)) (2.1b)
I D R I D R

At first order, the diffraction potential represents the scattered waves

due to the presence of the fixed body, and the radiation potential the

radiated waves due to first-order body motions. At second order, D(2)

represents the second-order diffraction potential for the body undergoing

first-order motions, while R(2) is the second-order radiation potential

due to second-order motions in the absence of ambient waves.

In the presence of two frequency waves, we can write the first-order

velocity potential as

2 -iwj t

*(1)(x,t) = Re { ( ( x ) e } (2.2)

j=1
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and the second-order potential as a superposition of sum- and difference-

frequency terms:

#(2)(x,t) = Re { (x) e - w t + (x) e + t (2.3)
j=1 1=1

where u"=wj-wl and +=wj+wl. The difference-frequency potential, t- in

(2.3), is related to the slowly-varying wave excitations and body

responses, while the sum-frequency potential, +, to the springing wave

exitations and superharmonic responses. This sum- and difference-

frequency potentials can be solved independently after formulating each

boundary value problem seperately.

The first-order bichromatic incident wave potential with amplitude A

and for water depth h is given by:

2 -igA cosh k (z+h) ikjx

I 1 I e iii (2.4)
I J=1 Ilj cosh kh e

where the frequency wj and wavenumber kj satisfy dispersion relation;

wj2=kjg tanhkjh, g being the gravitational accelaration. The second-order

bichromatic incident wave potential, 0i(2), satisfies the Laplace

equation in the fluid region, zero vertical velocity on the sea bottom

(z=-h), and inhomogeneous free-surface condition given by:

8 1) .2(1) - 1 )(l) 2 it2 I a II g at , it2+9 az at I ) 

(2.5)

where (2.5) can be obtained from the Taylor's expansion of the exact free-

surface condition about z=O. Upon substituting (2.2-4) into (2.5) and

solving for 0I(2), we obtain sum- and difference-frequency second-order
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incident wave potentials as follows:

05 a( i1 7 )
2

where + -l gAjA1where = 2wj 7jl' 2ua

I = ( 7 1+ 7 )I 2Z

cosh k+(z+h) e 1k+x

cosh k+h

k (1-tanh2kjh) + 2kjk1 (l-tanhkjhtanhk h)

V - k+tanhk+ h

coshk (z+h)

coshk-h
e k-x

-igAjA 1

where 7j = 2w

k2(1-tanh2 k h) - 2k k (1+tanhklhtanhklh)

v - ktanhk'h

In above equations, * represents complex conjugate, and v+ and k+

defined respectively by:

4-.
+ w-
- = -

9

(2.7b)

are

2

and k - = k + k (2.8)

When wj+wl, I' becomes time independent and its contribution to force or

surface elevation is at most 0(e3 ), while I+ in (2.6) is reduced to well

known second-order Stokes wave for a regular wave train:

_3iwA2 cosh2k(z+h)

'I = 8 sinh4kh
e
i2kx

(2.9)

One can easily check from (2.6) that 0I+ vanishes for kjh>>l, klh>)l. In

this limit, I- still contributes and reduces to the form for (kj-kl)h

=0(1):
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iAjA] (w-w 1 ) ] . . cosh k(z+h) ik

I 2 2 e (2.1a)
Hl (Ni- )tanhkh cosh k h

and for (kj-kl)h>>l:

tt - iAjA - l e V- z + x (2.10b)IA 1 2 2 2('j- 'l ) 2' I~- "I

We next consider the interaction of the linear and second-order

blchromatic incident waves with three-dimensional freely-floating bodies.

Defining a body disturbance potential as a sum of the linear diffraction

and radiation potentials; B(1)=#D(1)+OR(1). B(1) satisfies the Laplace

equation in the fluid region, zero normal velocity on the bottom (z=-h),

and following boundary conditions:

(-w2+ 0 ) ( 1) = 0 on the free-surface SF (2.11a)

g)) 8(#)

B a I 1rw n(((1)+ (1)x r) on the body SB (2.11b)

lim lp ( a- Ok ) #(*) 0 ° at infinity S, (2.11c)

where r and p represent the position vector on the body surface and radial

distance from the origin, respectively, and n=(nl,n2,n3) outward unit

normal vector. The first righthand side term of the body boundary

condition in (2.11b) is for the linear diffraction potential, D(1), and

the second term for the linear radiation potential, R(1). The

translational () and rotational(z) first-order motions in the presence of
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two frequency waves are given by:

C(1) (xt) 2 eWJt Ja',ReE I ( ) () ] 
e1

a(1)(X t)=ReE d(1)(x) e t] ,
J=l

1=(a 'j2 J3)

where the subscript 1,2, and 3 in (2.12) represent the translational and

rotational modes with respect to x, y, and z axis respectively. Solving

(2.11) for OD(1) and R( 1) seperately, we obtain first-order wave exciting

forces (or moments) and hydrodynamic coefficients (added mass &

hydrodynamic damping) for six degree-of-freedom linear motions. For

example, the added mass(Xkk,) and hydrodynamic damping(dkk,) n.k-th

direction due to k'-th mode can be obtained from the radiation potential,

tR(1), for the unit velocity:

Xkk+ dkk= Po ff (1) nk dSkk' kRk' 
SB

where

1)= ( k Rk k R(k+3)k=1

( k,k'=1l6 )

and r x n=(n4,n 5,n 6)

and the linear wave exciting force for k-th mode from:

F(1) Re [ poi ff ((1)+ (1)) dS 
exk- 0 .P I D k

S B

where Po is the fluid density.

After solving the first-order potentials and motions, we can

calculate boundary forcing terms of the second-order diffraction problem,
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which are given in terms of quadratic products of linear solutions. The

inhomogeneous free-surface and body-surface conditions for the second-

order potenttial, (2), can be otained by using Taylor's expansion of the

associated exact boundary conditions about respective quiescent positions.

This procedure is detailed in Ogilvie(1983), and will not be elaborated

here. We define the second-order diffraction potential, 0D(2), as the

solution which satisfies the following inhomogeneous free-surface and

body-surface boundary conditions, where the body is undergoing linear

motions but free from second-order motions:

+ g ) (2)= Q (1)a a2,(1) a(l a (1 ))
at Og at Oz +g

(2.15)

ao(2) (2)
an+ an = B

On On

neAr - n(E (1)+ ga(l)x r).V]V4)(1)+ (a(1)x n).[((1)+ c(1)x r) - ,( 1)]

(2.16)

where (upper *) denotes the derivative with respect to the time. In

(2.16), H matrix, which is second order, is composed of the quadratic

products of the first-order rotational motions:

H 2 -2,1,2 (l+ a3) (217)
-2a -2aa (a2+ a2

2, 3 2, 3 2

As pointed out by Ogilvie (1983), H matrix depends on the sequence of

rotation, and the order roll-pitch-yaw is used here. In the absence of
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linear rotational motions, the body forcing term B in (2.16) can be

simplified as

B(x,t) - n.( ( 1) . 7)V ( 1) (2.18)

Being quadratic product of the linear solutions, the free-surface and

body-surface forcing terms, Q and B in (2.15,16), have the forms:

Q(x,t) 2 2 Q+(x) -iw+t Q'(x) -fiwt
= Re E E B e + e ] (2.19)

B(x,t) J=l 1=1 B+(x) B'(x)

Then, each of the sum- and difference-frequency second-order dffraction

potentials satisfies the following boundary value problem respectively,

and can be solved independently:

V2 = 0 in the fluid (2.20a)

_2+ a = at z=0 (2.20b)

8, / az = 0 at z=-h (2.20c)

8n = 8n + t at SB (2.20d)

condition at infinity as p (2.20e)

In (2.20b), the sum- and difference-frequency free-surface forcing terms

can be written in symmetric forms as follows:

Q= ( qjl+ ql) / 2 and Q = ( qj+q ) q 2 (2.21)i ij i ij~~~~~~~~~~~~2.1
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~q~j~lw' !iJ ! ( + 2 ) + iltV j 1Vt -1 qjIj1 (2.22)

,,, · 0-( ) a2t( 
(i), ... ) g 82+ ( ) 1vO(1)* - qjj l (2.23)

Qjlu 29 1 ( 1 aZ + 9)-J 1 I

The free-surface forcing, Q+, contains all kinds of possible interaction

of incident, diffracted, and radiated waves, which can be symbolized as

(IR,ID,RD,RR,DD). (IR,ID) and (RD,RR,DD) decay at rates of l/Jp and l/p,

respectively as pm. For the second-order scattering problem by fixed

bodies, terms involving R vanish, while for the forced oscillation

problem, all interaction terms except RR are zero. The sum- and

difference-frequency body-surface forcing terms can be obtained in a

similar way, and equation (2.18), for example, has the form:

+ 2
B+ = ( bjl+ b) /2 and B- = ( bl+ b) / 2 (2.24)

b+ 1 n ( (1), )V(1) (2.25)ji = -~ 1 ?)V

b 1 n () V )V(1) (2.26)

With these forcing terms, we can solve boundary value problem (2.20) for

dD+ , and resulting sum- and difference-frequency second-order wave

excitations.

Finally, the sum- and difference-frequency second-order radiation

potentials associated with corresponding second-order motions satisfy the

Laplace equation, bottom condition, and following boundary conditions:
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( -e2+ i ) o4 0 at zo (2.27a)

Wn a -1 n(C + x r) at SB (2.27b)

lim I ( - k+ ) 4 +0 at S (2.27c)

where k are the wavenumbers associated with sum and difference

frequencies +. The total second-order motions, in (2.27b), can be

written in the form:

2 2 + iW+t
(2) (x,t) = Re (+(x) e t + (-(x) e-i t (2.28)

a(2)(x,t) J=- 1=1 e+(x) e (x)

The boundary value problem of the second-order radiation potential, TR±,

associated with second-order motions is identical to that of the linear

radiation potential except for the shift of the pertinent frequency. The

added mass and hydrodynamic damping for second-order motions can be

obtained exactly the same way as the linear problem.

So far, we set up the entire linear and second-order boundary value

problems clearly except for the radiation condition of the second-order

diffraction potential in (2.20e). The radiation condition of the second-

order diffraction potential for monochromatic waves was first obtained by

Molin (1979), and is extended here to bichromatic waves. Considering the

boundary value problem (2.20) is still linear, we decompose the second-

order diffraction potential, D+, into a homogeneous, H+, and particular

solution, p+, which satisfy homogeneous and inhomogeneous free-surface

conditions respectively, and inhomogeneous body-boundary condition
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Jointly. The homogeneous second-order diffraction potential, H. has the

conventional asymptotic behavior as p:

e t + o(p_3 / 2 ) (2.29)

The asymptotic form of the particular second-order diffraction potential,

p+, can be obtained from that of the free-surface forcing pressure, which

is composed of quadratic products of the linear body disturbance

potentials, QBB, and cross products of the linear incident and body

disturbance potentials, QIB. Using asymptotic forms of the linear

potentials,

(1) e J/ + O(p 3/ 2) (2.30a)

'(1) ' e ikjpcos9
t I " e(2.30b)

we can easily see that QBB decays as fast as 0(1/p), while QIB at a rate

of 0(1/4p), and QIB has the following asymptotic form:

+ ip(kj+ kcose)
QT~B e / Jp + O(l/p) (2.31)

For the particular second-order diffraction potential to satisfy the

inhomogeneous free-surface condition up to the leading order, 0(1/p), as

p+n, we write:

ip(k + k cosG) 4 E+ (ez) e (kj kcs) / p + O(1/p) (2.32)

Furthermore, this asymptotic form should satisfy the bottom condition and
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leading order Laplace equation at infinity. Then, we can determine E+ in

the form:

E- l(2, =2g 1/2
Ej (z) = 81(8) cosh {( k+ k+± 2kjklcose ) (z+h)} (2.33)

Finally, 8(8) can be obtained from the free-surface condition. This condition

for a infinite depth was also derived by Wang (1987). When J=l, the sum-

frequency part reduces to the same asymptotic form given in Molin (1979).

3. SOLUTIONS FOR THE SUN- AND DIFFERENCE-FREQUENCY SECOND-ORDER

POTENTIALS.

In this section, we solve the linear and second-order boundary value

problems formulated in Section 2 by the boundary integral equation method/

ring source distribution method. Let's first consider the boundary value

problem (2.20) for the second-order diffraction potential, D_, and

introduce the sum- and difference-frequency linear pulsating source

potentials, G+, associated with frequencies w+. Applying Green's theorem

for OD+ and G+, we obtain Fredholm integral equation of the second kind

for fD+:

+ 8G+ +
2r + | D f - dS = G{B- { dS + 1 f Q± G dS (3.1)

#6 /ff an an
n SB SF

where the source strengths on the body- and free-surface in the right hand

side are known a priori and given by the body- and free-surface forcing

terms, respectively. In deriving (3.1), the vanishment of the far field

integral ("weak radiation condition" for the sum- and difference-frequency

second-order diffraction potentials) can be proved by the method of
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stationary phase integral using asymptotic forms for D+ and G+ .

In solving the integral equation (3.1) numerically, as was already

adressed in Chapter I, the most difficult task is the evaluation of the

right hand side integrals, particularly the slowly convergent free-surface

integral. In difference-frequency problems, the composite wavenumber of

free-surface integrands for p>>l is kj-klcosV+k2 , hence associated

wavelength is in general much longer than that of sum-frequency problem

whose characteristic wavenumber is kj+klcose+k2+. Despite small

amplitudes, the resulting relative convergence of difference-frequency

free-surface integrals with increasing p are extremely slow especially

when two frequencies are close. In sum-frequency cases, the decaying rate

of the free-surface integral is faster but the integrand becomes more

highly oscillatory with larger amplitudes compared to the difference-

frequency problem. Therefore, any simple truncation (e.g. Loken, 1986) of

these Integrals are computationally prohibitive. Furthermore, the moving

average technique (e.g. Molin & Marion, 1986) is expected to be

ineffective for bchromatic waves because of the non-uniform oscillaion of

the integrands. An elaborate method nvolving analytic integrations in

entire local-wave-free domain was developed in Chapter I for monochromatic

waves, and extended here to blchromatic waves.

If the body has a vertical axis of symmetry, we integrate (3.1) first

with respect to e and obtain a sequence of one dimensional integral

equations for each Fourier mode. For this purpose, we expand the second-

order diffraction potential 0D+ , free-surface and body-surface forcings Q'

and B+, and linear pulsating Green function G+ by Fourier cosine series:
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(, ,z) +n(z)

Q±(p,e) - Q + (p) cos nO (3.2a)
n=O

B±(p,e,z) BT (P,z)

and G±(p,e,z;p',B',z'), = E g a (p,z;p',z') cos n(9-9') (3.2b)
n=O

where en=l for n=O and 2 for nl. Substituting (3.2) nto (3.1) and using

orthogonality of the trigonometric functions in Integration, we obtain a

one dimensional integral equations for each n:

+ n+ +In21 n + f P d n =l f P dl ( n ) - p d G

OB iB 8F (3.3)

where the line integrals are along the traces B,8F of S and SF

respectively, and outward unit normal vector along 8B is given by

n=(np,nz). The n-th mode sum-frequency free-surface forcing, Qn+, can be

obtained by rearranging the double products of Fourier series (2.22) as

follows:

+ tanh2k h k klem m2

ql= o 2 [ (' tanhk.h tanhklh+ kj 2 (kjp)(kP)) m m

+ 2 j 11 1 _m 1 m1 {>24 1 kl ei. atz (3.4a)

-i g A k n 1 nim 1 kl nim a
njl= 2w 0 ;Jln-m m 2 2(kz)2 m'qnj= 2wj [ £ { -m m - = a(kiz) kj a(kjp) (klP)

2wj nm=O0(--jz g m + -- " ' }
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+ {^ (J 1+ 1 1 Otn+m 1 #m 1

mO J n ,n+ m m n+m) 2 ( (k z)2 2n+m) +nmmmnm 8(kz) O(kiz)

sfn+m aL + Ot 8tn+m .
j 8(kjp) 8(klP) 8(kjp) 8(klP) z=O (3.4b)

Xj1 tanh2k h k k1 (n + m)m

where Zji + v tanhkjh tanhklh + + (k p)(k p)

In above equations, m J represents the m-th Fourier mode of the total

linear potential of frequency j and normalized by -igAj/wj. The free-

surface condition for has already been exploited in deriving (3.4).

The n-th mode difference-frequency free-surface forcing, Qn-, can also be

obtained similarly using (3.2) and (2.23). We also express the n-th mode

sum- and difference-frequency body-surface forcings, B+, in terms of

single Fourier cosine series. For example, in the absence of rotational

modes, the sum-frequency body-boundary forcing term (2.25) has the

following expression:

-2 b 1l= (3.6)

a2 (1) 82,(1) 82 (1) .2,() C(1 329(1) 82,(1)
n (1) ' + U (1)" vj .1) i + nz --

n p (pl + P azae Z 2

where fp(1)={x(1)cos8, (l1)=-{x(1)sin9, and we set y(1) to be zero

without loss of generality for axisymmetric bodies. Then, above equation

can be rearranged as a single Fourier series as follows:
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(1) 2(1) 2 1) a {1) (1) .2,(1) 1a2, )
b u l [ + i-, ) Z d 

a 28z2 (3.7)
(I21) (1) 2 (1) a2 (1)11)

njlm + z 4 2 + z ( a2z(i p n a

+ l 8ti lJ ' Pi +
p an ] 2 P p n 8z 2 (3.8)

The other terms including rotational modes or the corresponding expression

for Bn - can be treated in a similar way.

The sum- and difference-frequency ring sources used in (3.3) can be

obtained from:

2r
G(p.Z;p',') = G±(p,z;p',z';;cos(-8')) cos(n(8-G')) d(e-e')

O (3.9)

The method for the evaluation of general order ring sources, Gn+, and

their normal derivatives, Gn+/8n, as well as their important asymptotic

properties are detailed in Chapter I.

For the second-order diffraction problem, we have used Green's

theorem directly to derive the pertinent integral equation for D+. For

the linear problem, however, we used ring source distribution method in

preference to the combined distribution since it reduces the order of

derivatives of the Green function by one in calculating velocitites and

accelerations. Then, the linear body disturbance potential, Bn(1)=

ODn(1)+lRn(1), is obtained by distributing ring sources (n= aDn+aRn) on

aB:
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(1) (x) J p'dl ' o(x') Gn (x;x')

s8 (3.10)

where the diffraction ring source strength, aDn, is determined from the

following integral equation (for Rn, the right hand side is replaced by

the associated term in (2.lib)):

OGn(X;X') 8' l)(1 )

2f aDn() + p'dl' Dn(X') (;) I n

B Xnx Xnx (3.11)

The integral eqations (3.3) and (3.11) are solved numerically following a

standard procedure of discretizing B into linear segments, assuming

constant source strength or potential over each panel, and selecting

colocation points at the mid points of the segments.

As was pointed out earlier, the most difficult and computationally

expensive part in solving second-order diffraction potential Dn+ in (3.3)

is the evaluation of the free-surface integrals gen by:

I P 1Z) + +
In(P'Z') = d p Q(p) G(p,z=O;' ,z')

a (3.12)

where a is the radius of the waterplane. The free-surface forcings, Qn+,

are given on the entire free surface (a,.) in terms of first-order

potentials of frequencies wj and l and their derivatives, which may in

turn be obtained through (3.10) and its differentiations. In the present

method, the free-surface integral (3.12) is evaluated in two intervals,

(a,b) & (b,u), where partition radius b is chosen so that the latter

interval is entirely local-wave-free:
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I 1 | dp p Gi + Jdp p 
n n n

a b (3.13)

The first integral is numerically evaluated by Romberg quadrature with

controlled tollerence, while the second integral, where all local modes

are exponentially small, is treated anallytically. In the above, (^)

represents terms which contain contributions from propagating wave only

and these are given by:

Gn- -421c± cosh k(z+h) cosh k-(z'+h) Jn(kp') H(-1~~ 1~ nkj) n(Y

qojT 2wj coshk h coshklh m* m

'^+ Agk92A mk=O n
qnJig 2j coshkjh coshklh { E [ (A

qnjl 2wj m=0

+ekl m2 -+j ,+ k +j 
2 k kjp kp': m,m Tmm

(3.15a)

kl (n-m)m )S+ Jl + l T , ]
Jl k kj pklP n n-m,m n-mm

£'[ ( + kl (n+m)m )(S+ :jl+ + j1 + j, T + J1
m= k kp nmm mnm n+m,n+m m,n+m 

tanh 2 k h k
where I 1

l l 2 tanhk tanhkh -tanhkh
Hj H +K Q H

s~,= a 4I+ ajm 1 +K al) HK Hi + 4 H +4 aIm HHK:m K~m ( aJ a Kam P 

3.15b)

(3.16)

(3.17)

T+Jm (K a+ aK j + a ) H Hml H Hm Hi Hl
K, m = ( + aK K Km ' m K m ( m

(3.18)
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In the above, J and H are the Bessel and Hankel functions of the first

kind respectively, and (') n (3.18) represents differentiation with

respect to the arguments. The coefficients a,p used in (3.17,18) are

given respectively by:

J = -4r 2 ic LJ and iK / 2 cshkh (3.19)

The function L is the Kochin function which describes the far-field

behavior of the linear disturbance potential in (3.10), and is given by:

m= fd p (x') J(kjp') cosh k(z'+h)

eB (3.20)

The coefficient c in (3.19) is c=(v2-k2)/(k2h-v2h+v); vw=2/g, and c in

(3.14) can be obtained from the same equation v and k replaced by + and

k2. From (3.14,15), we easily see that the local-wave-free integrand,

pQ^nG n, is basically composed of triple product of Hankel functions. One

of such integrals has the form:

I1= f dp p HK(kjp) Hm(klp) Hn(kp) (3.21)
7P (3.21)

A method for accurate evaluation of highly oscillatory and slowly

convergent integrals, such as 11, for monochromatic waves is outlined in

Chapter I. In sum-frequency problem, the characteristics of free-surface

integrals are in general similar to those of double frequency problem.

For the difference-frequency problem, however, the oscillation and

relative decay of the free- surface integrand (or the resulting integral)

become much slower than that of sum-frequency problem especially when two
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incident wave frequencies are close. In this case, relative convergence

of leading asymptotic method (e.g. Eatock Taylor & Hung, 1987) is

extremely slow. With the present method, this slow decay of the

propagating waves does not cause any problem since we only concern about

the decaying rate of the local waves, which is not very sensitive to

changing propagating wave frequencies but depends primarily on the ratio

p/h.

4. THE COMPLETE SUN- AND DIFFERENCE-FREQUENCY QUADRATIC TRANSFER FUNCTIONS

In previous sections, we described boundary value problems and

solution methods for the sum- and difference-frequency second-order

potentials. As a res::lt, we can calculate not only second-order forces

and moments but also local quantities such as pressures and free-surface

elevations. The hydrodynamic pressure(P) and free-surface elevation()

can be expanded as a purturbation series like in (2.1a), and the linear

and second-order terms are given respectively by:

p(1)= -Po 8(t) p(2)= P a(2) o (() (41)
aP0 t '~o at 2(p( - (4.1)

;(1)= -1 8(1)1 S(2)= -1 ((1)) 2 + 1 (1) ( 1) I (2) (4.2)
t W z o 2g g2 at taz g t I z=O

In the presence of bichromatic waves, the second-order terms in (4.1) &

(4.2) can be written in the form:

(P(2)(t), (2)(t)) = Re E [ A jA(pJl,jl) e +t+ AjA(pJ, ,l e ]

Jw1 1=1 (4.3)

where Pjl± and jl±+ are quadratic transfer functions for pressures and
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free-surface elevations. The complete pressure and free-surface run-up

QTFs consist of the linear quadratic term, (pqtq), and second-order

potential contribution, (Pp,sp):

(j 'I J1) ( t 1) ( (4.4)

Each component for sum-frequency problem has the form:.

PqJl 4 Po 1)* V A 1 PpJ1= pori+ AJA (4.4)

qjl. .4
(1- tw. (1) (1+ v) /+ 1 # 1)* vo(m nu ( V 1) (I) / AAl + vpjl AJAqjl= 4 t4/ pjl= g 1

(4.5)

The wave forces and moments on a body can be obtained by ntegrating

the fluid pressure over the instantaneous wetted-body surface, S(t):

(F(t),N(t)) = f f P (n,rxn) dS (4.6)

S(t)

Hereafter, we will only give expressions for the forces, and the

corresponding moment expressions can be readily obtained by replacing n by

rxn. Using Taylor's expansion for both the pressure and unit normal

vector of the instantaneous position S(t) in (4.6) with respect to the

body surface at rest (SB), the above pressure integral over S(t) can be

transformed to surface- and waterline- integrals of the quiescent body

position, SB, as detailed in Ogilvie (1983). After collecting the first-

and second-order contributions, we can write the complete first- and

second-order hydrodynamic forces as follows:
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F(2 ) FR) + F( F(1)+ F( ) (4.7)

F (2) + 2 F( 2)+ F (2 (4.8)

At first order, FR(1) gives added mass and hydrodynamic damping forces,

FHS(1) the hydrostatic restoring forces for the first-order motions,

whereas FI ( 1 ) & FD(1) are acting as the linear wave exciting force. Each

force is given by:

FRIDR Po D n dS (4.9)R,1,D f at
BF = -PgA ( )+ yfa(1)f -xf() ) k (4.10)

where Aw is the waterplane area, k the unit vector in z direction, and xf

& yf are the locations of the longitudinal and transverse center of

floatatlons. Similarly at second order, FR(2) & FHS(2) are the radiation-

and hydrostatic- forces for the second-order motions, while the other

forces, FI(2), FD(2), and Fq(2), contribute as the second-order wave

exciting force. Each forces are given by:

j(2)
F(2) 0R. ID I dS

S B (4.11)

HS o (2)+ (2 )_ x(2) ) k (4.12)
HS PO w 3 Y3 1 2
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F(2 ff [ v(1)2 + (;(l)+ ()x r)-.L(vPl))jn + ((')x n)hS1)]dS

SB

+9 f(12 2(1)( ) y x ) N dl

WL

- pog~ a (l) Xf(l)+ yfa(2)) k (4.13)

where Nn/J(1-n 3
2 ), and for the wall-sided geometry at z=O; N=n. The

equivalent expression of (4.13) using relative wave heights can be readily

obtained after rearranging (4.13). The force, Fq(2), represents the

contribution from quadratic products of the linear solutions. The first-

and second-order motions can then be obtained from the eqilibrium of the

enertia force and the forces given above. For example, the translational

motions at each order can be calculated from:

M (*~(1)+*~(1)x rG ) = F(1) (4.14)

M (*A(2)+'*(2)x rG ) = F(2)- MA rG (4.15)

where M is the mass of the body and rG the position vector of the center

of gravity. As pointed out earlier, the second-order radiation problem,

for R(2), is identical to that of the linear problem except for the

shift of frequency, hence the added mass and hydrodynamic damping for the

second-order motions can be obtained like (2.13a). We consider here

second-order wave exciting forces somewhat detail, where all interesting

nonlinear aspects are included.
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The second-order exciting forces are given by the terms in (4.11,13):

f (2), 2)+ F(2)+ F(2) (4.16)
ex I 0 q

In the presence of the bichromatic waves, the second-order wave excitation

(4.16) has the form:

Fex(t) Re AJAl f ~l e AAl f e ] (4.17)
jl 1=1

f f 1 + f 1 (4.18)

where f+ are the complete sum- and difference-frequency force quadratic

transfer function(QTF). In (4.18), fq+ represents contribution from

quadratic products of 11near solutions, while fp+ from the second-order

potential. For example, these forces, for the case of fixed bodies, are

given by (More general expression for freely-floating bodies can readily

be derived from (4.11) and (4.13)):

qj = J VJ(') V(1) n dS - P o | 1)N dl / AAl (4.19)

SB WL

fqjl= 1) ()*n dS + Poi f ( l) *N dl] AjA (4.20)
q ~ f f~vI( 4v j 1 (A.2)

SB W

fij 1= [tPiwff ( + ) n dS ] / (AjA,AA 1) (4.21)
SB

For later discussion, we further split fp=fI+fB+fF, where f represents

the second-order Froude-Krilov term, and f and fF are contributions due

to body and free-surface forcings respectively.
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For vertically axisymmetric bodies, the integrals in (4.19-21) can

be integrated explicitly. For example, the horizontal component of fqjl+

in (4.19) has the form upon integrating with respect to 0:

+ po, ndI
fxq 2 1/2 e( n n+ n n+l ) z=O 4 "j 1 n=O pnp xxqJl4(1-n 2z) 1 2 n=O -n

r n Iin+l + 80n n+l n n+4+ 81) + I. lJ]
en OP p 8p ap az z oz n 2 p2 n n nfn+l+

(4.22)

The previous equations for bchromatic waves can easily be generalized to

irregular seas after summing up all wave components in (4.3) and (4.17).

If only integrated quantities such as second-order forces are t.

required, an alternative method (Molin, 1979; Lighthill, 1979), which does

not require the solution for D+ explicitly, can be used as follows:

+ 1
Jl|t nkdS S J ( 8g- 1f ) dS |dS

SB SB SF (4.23)

where tkl are the linear assisting radiation potentials for k mode

associated with w+, and satisfy the body boundary condition 8#tkt/n=nk.

In (4.23), B+ contain the second spatial derivatives of the linear

potential on the body, which are difficult to calculate with sufficient

accuracy. To circumvent this problem, an alternative expression of fBBjl+

which is free from the second spatial derivatives can be derived using

Stoke's theorem and some vector identities as follows:
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f f n.9± [((M)+ 41)x r).V]JV dS 5

SB

dleo[ V 1 x (((1)+ ()x r)] - nV+x [VOX (((I)+ 60)x r)] dS

r SB
(4.24)

where r is the surounding boundary of S. For a uniform bottom-mounted

vertical cylinder, the first-order diffraction and radiation potentials

can be expressed in closed forms, so that semi-analytic expressions for

the second-order forces and moments can be derived using (4.23). These

are summarized in Appendix C, and provide useful benchmark for the second-

order numerical results.

5. NUMERICAL RESULTS AND DISCUSSION

For llustration, we consider the diffraction of plane bichromatic

waves by the bottom-seated uniform vertical cylinder (radius a, depth

h=a,4a) for which semi-analytic expressions for forces are available

(Appendix C). We also calculated the second-order wave excitations and

responses of the fixed or freely-floating hemispheres (radius a, depth

h=3a) in the presence of bichromatic incident waves.

The numerical procedure for solving integral equations (3.1) and

(3.11) for the second- and first-order problems is in general same as

Chapter I, say: (i) approximate the body contour, B, by Np straight line

segments; (ii) assume constant values for the potential Dn+, or ring

source strength n, over each segment; (iii) colocate the equations at the

center of each segment to obtain a system of linear algebraic equations
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for the segment unknowns, which is then solved. Then, the numerical

errors are coatrolled by the number of panels and azimuthal Fourier modes.

In the following, we present the convergence of the second-order sum- and

differency-frequency calculations with respect to the number of panels

(Np), Fourier modes(N), and partition radius(b) of the free surface

Integral. For comparison, two typical frequency pairs, which are close

and far apart, respectively, are chosen.

Table 1 shows the convergence of the nonlinear potential force QTF,

fpjl+, with ncreasing the number of panels. To describe the more rapid

variations near the free-surface (especially for the second-order

potential), cosine-spaced segments (with smaller lengths near the free

surface) are used In all our calculations. As expected, we achieve faster

convergences for fpjl-, and hence may use less number of segments in the

difference-frequency problem. In the following calculation, Np=20

segments are used for both the linear and second-order sum- and

diffferency-frequency calculations.

Table 1. Magnitudes of the second-order potential horizontal force QTF,

Ifpl+/pgaAjAlI, on a uniform vertical cylinder (h/a=1l) with ncreasing the
number of cosine-spaced segments, Np, on a body; (Partition radius (b-a)/h=3
is used)

Difference-frequency Sum-frequency

(vja,vla) (1.0,2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6)

semi-analytic 1.936 0.435 2.656 2.875

Np=1 1.935 0.435 2.664 2.876
20 1.936 0.435 2.661 2.876
30 1.936 0.435 2.660 2.875
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To sh, the convergence of I+ with increasing numbers, nN, of

azimuthal Fourier modes, the modal amplitudes of sum- and difference-

frequency potentials at (p,z)=(a,O) (which are proportional to the run-up)

are given in Table 2. It was already pointed out in Chapter I that the

mode number beyond which the amplitudes attenuate rapidly increases with

increasing mean frequency. For the same frequency pair, much faster

convergences are obtained in the difference-frequency problem. The

convergence rate of #f becomes faster as the frequency difference

Table 2. The convergence of the sum- and difference-frequency potential modal
amplitudes normalized by 1# /(gAAl/2Jw1la)l on the circumference (p=a) of
a uniform vertical cylinder (h/a=l). (* ndicates values less than 1.E-4)

Di fference-frequency

(1.0,2.0) (1.4,1.6)

2.4178 12.5268
4.2202 4.1827
1.3129 0.2759
0.2763 0.0118
0.0361 0.0036
0.0169 0.0039
0.0016 0.0001
0.0010 0.0001
0.0001 *

* *

* *

Sum-frequency

(1.0,2.0) (1.4,1.6)

0.2368 0.2015
1.2925 1.3914
0.6589 0.7688
0.1915 0.0446
1.0461 1.0093
1.5603 1.4606
1.1920 1.1262
0.4556 0.4683
0.0969 0.1027
0.0168 0.0177
0.0023 0.0026
0.0002 0.0003

* *
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decreases, however, that of #+ is not sensitive to changing frequency

differences. The convergence of the sum-frequency second-order potential,

O+, is generally slow and requires more Fourier modes when compared to

linear potentials. From the slower and less uniform decrease of + with

Increasing n, we expect large variations of the sum-frequency wave run-up

in the circumferential direction, which will be shown later. In the

following calculations, N=9 and N=(14,9) are used respectively n the

linear and second-order sum- and difference-frequency problems.

The free-surface integral given in (3.13), which is extremely

expensive in computations and crucial for the accuracy, is calculated

using the method described n section 3, and its convergence is checked

with increasing the partition radius b. As pointed out in Chapter I, the

decay rate of local waves primarily depends on the ratio p/h. Table 3

shows the typical convergence of the sum- and difference-frequency second-

order potential force QTFs, fpJl±o on a uniform vertical cylinder (a/h=l)

with increasing partition radius. We can see much weaker Influence of

local waves, in the difference-frequency problem, with Increasing distance

from the body (equivalently, much faster convergences of the free-surface

Integrals). This was also pointed out by Kagemoto & Yue (1986) in the

study of multiple-body Interactions Including evanescent waves. It is

seen that a partition radius of (b-a)~3h is sufficient for 3 significant

decimals of accuracy and used in later computations. The accuracy with

relatively small numerical ntegration requirements again underscore the

efficacy (particularly in the difference-frcquency problem where the

propagating waves decay very slowly) of the entire local-wave-free method.
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Table 3. Magnitudes of the second-order sum- and difference-frequency
potential force QTFs, Ifpjl+/pgaAjA , on a uniform vertical cylinder
(h/a-l). The results for aifferent partition radius b are compared to
semi-analytic solutions (Appendix C).

Difference-frequency Sum-frequency

(vja,vla) (1.0,2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6)

exact 1.936 0.435 2.656 2.875

(b-a)/h-2 1.936 0.435 2.668 2.861
3 1.936 0.435 2.661 2.876
4 1.936 0.435 2.659 2.877

Until recently, numerous approximation methods for sum- (springing)

and difference-frequency (slowly-varying) wave excitations and resulting

responses have been suggested and widely used primarily due to the

difficulty in calculating the second-order potential contributions. In

the absence of the complete QTF, the preference for one method over the

others, or even the validity of each method (which is clearly a function

of frequency combinations, body geometries, and water depths) have been

quite controversial (Ogilvie, 1983). With the complete sum- and

difference-frequency wave excitation and response QTFs available by the

present method, we nvestigate the general behavior of the springing and

slowly-varying excitation QTFs in the bifrequency domain, and examine the

validity of various approximation methods. For this purpose, () bottom-

mounted vertical cylinders of two different drafts; h/a=1 & 4, and (ii)

fixed and freely-floating hemispheres for h/a=3 are selected. In addition
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to the force and moment QTFs, interesting local quantity QTFs such as

pressures and run-up are also available by the present method. Many

interesting nonlinear aspects of the integrated quantities can be clearly

understood with the behavior of these local solutions, as will be shown

later.

(i) Difference-frequency problem

For the approximate estimation of the slowly-varying wave excitations

in irregular seas, Newman (1974) used the mean drift force operator, fqjj-

, based on the narrow band assumption of the input spectrum. Marthinsen

(1983) suggested a similar approximation method using the slowly-varying

wave envel'ne concept. These methods greatly simplify the problem and are

most widely used in engineering applications even though the validity

depends critically on the narrow-bandedness of the nput spectrum and the

slope of QTF near the diagonal. Other existing approximation methods

include partly the contributions of the second-order potential. For

example, the incomplete QTF operators (fqjl-+fIJl-) and (fqjl-+fij1'

+fBgjl-) were used by Standing et al (1982) and Pnkster (1980),

respectively.

In Table 4, the complete second-order slowly-varying force QTF on a

bottom-seated vertical cylinder and each of its components are given for

two water depths (h/a=1, 4) and various combinations of incident

frequencies. In the vicinity of the diagonal (small frequency difference,

Ava), the linear quadratic term, fqJl-, dominates other contributions.

For the larger frequency difference, however, the contributions due to the
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second-order incident wave (fIjl-,fBjl-) are greatly increased and become

dominant over fqjl-. The free-surface contribution, fFJl-r remains small

overall. The contributions, fIJl- and fBJl-, are nearly in phase, and

hardly cancel each other. For fixed sum-frequency and increasing

frequency difference, all contributions from the second-order potential,

#-, increase almost linearly starting from zero for (vj-vl)a = va = 0.

The slopes of fBJl' and fIjl- with increasing direction of Ava are much

larger than fFJl-. The linear square term, fqJl-, is less sensitive to

changing frequency differences. Interestingly, the magnitudes of all

second-order components become smaller with increasing water depth or

cylinder draft. For fixed va and varying sum frequency, fl- and fBjl-

continue to increase with decreasing sum frequency, while fFJl- increases

slowly with increasing sum frequency.

These results show that the validity of Newman's or Marthinsen's

approximation methods is very sensitive to the narrow bandedness of the

input spectrum due to the large slope of fIjl- and fBJl- near the diagonal

w=l. While, Pinkster's (QIB)** approximation is expected to give better

results for a broader class of input spectra without considerable increase

of the computing time. This is also pointed out by Eatock Taylor et al

(1988). Fortunately, the small contribution from the free-surface forcing

makes it possible to avoid the most cumbersome free-surface integral in

many engineering applications.
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Table 4. Magnitudes of the complete second-order slowly-varying force QTF,

I fjl/pgaAAl I1, and each of its components on a uniform vertical cylinder.
The upper triangular matrix is for h/a=1, and lower part for h/a=4. On the
diagonal, fIj_ fil-, and () for h/a=4. Each element satisfies the symmetry
relation f jl-flj . Computed values are for: first row;lfalIl, second
row; Ifjl-, thlrd row;IfBJl-I, fourth row;IfFjl-l, and fifth row; the complete
QTF fjli-.

va= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 0.918 0.864 0.811 0.765 0.722 0.680
(0.666) 0.297 0.550 0.770 0.963 1.131

1.0 0.302 0.568 0.794 0.966 1.063
0.037 0.097 0.166 0.229 0.273
0.982 1.163 1.347 1.489 1.575

0.647 0.826 0.791 0.758 0.723 0.685
0.168 (0.636) 0.255 0.481 0.683 0.864

1.2 0.167 0.259 0.493 0.697 0.854
0.034 0.036 0.097 0.166 0.226
0.689 0.870 1.011 1.165 1.294

0.612 0.612 0.772 0.753 0.729 0.698
0.337 0.166 (0.603) 0.229 0.437 0.626

1.4 0.331 0.165 0.231 0.445 0.632
0.088 0.034 0.036 0.099 0.166
0.763 0.640 0.810 0.925 1.054

0.578 0.588 0.594 0.748 0.735 0.712
0.504 0.332 0.164 (0.600) 0.211 0.406

1.6 0.481 0.325 0.164 0.213 0.411
0.150 0.093 0.035 0.037 0.101
0.856 0.701 0.615 0.777 0.867

0.552 0.567 0.583 0.602 0.732 0.717
0.664 0.497 0.329 0.163 (0.615) 0.198

1.8 0.602 0.471 0.322 0.163 0.200
0.208 0.158 0.096 0.037 0.038
0.943 0.788 0.678 0.619 0.749

0.534 0.547 0.566 0.593 0.615 0.711
0.809 0.653 0.491 0,327 0.163 (0.624)

2.0 0.676 0.586 0.463 0.319 0.162
0.243 0.215 0.161 0.099 0.038
1.009 0.877 0.765 0.678 0.629
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Table 5 shows the slowly-varying pitch moment QTF on the uniform

vertical cylinders with respect to the center of the waterplane. In this

table, the behavior of the body-surface forcing contribution, MBJ1l- is

very similar to that of Mjl-, as in Table 4, hence is not given

separately. From Table 5, the pitch-roll moment QTFs associated with I'

, MIjl- and MBJl-, in general dominate other contributions due to the slow

depth attenuation of I- predicted by (2.7a). Despite decreasing

amplitudes of I- for larger h, MIjl- and MBjl- for h/a=4 are even more

important due to the lower pressure center (equivalently, larger moment

arm) associated with I-. As Ava approaches zero, the magnitude of the

second-order potential pressure, which is proportional to w-, decreases

but penetrates even deeper, hence the resulting pitch moment QTF close to

the diagonal is still appreciable. To show these phenomena more clearly,

we present In Figure la,b the second-order potential pressure QTF, PpJl-,

as well as linear quadratic term, Pqjl-, along the vertical cylinder of

h/a=4 for two incident frequency combinations; (vj,vl)=(1,2) and

(1.4,1.6). The behavior of the second-order potential pressure, PpJl-, is

dominated by I- and its diffracted free waves, hence its depth decaying

rate is characterized by the wavenumber kj-kl or k2-. For smaller va,

PpJl- becomes smaller in magnitude but penetrates deeper on both sides of

the cylinder as shown in Figure 1. When va is small, I- behaves like

shallow water long waves, and the pressures are almost uniform to the

bottom. These deeply penetrating local pressures contribute significantly

to the pitch moment because of their large moment arms. However, Pqjl-

attenuates much faster than Ppjl- according to the rate kj+kl and does not

contribute appreciably to the pitch moment. As a result of the above
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discussion, for fixed sum-frequency and increasing frequency differences,

MIj1 - and MBJ1 - have the largest slope near the diagonal. It is

interesting to note that relative magnitudes of MFJ1' near the diagonal

are also appreciably increased due to the slow depth attenuation of locked

waves at the lee side, which can be expected from (2.33).

Due to these behaviors of the second-order incident wave or free

waves associated with it, the validity of Newman's or Marthinsen's

aproximation methods should be carefully examined, particularly for the

pitch-roll excitations of large draft bodies. The results above have

important applications for the prediction of the slowly-varying pitch

moments on offshore platforms, particularly when the center of pitch

rotation is located close to free-surface. In this case, Newman's or

Marthinsen's approximation methods are expected to underestimate the total

pitch-moment QTF substantially, so do not lead to a safe design.

In Figure 2, the second-order potential pressure QTFs, PpJl-, for

h/a=1 and (a,via)=(1,2) are plotted along the five angular positions of

a vertical cylinder. Due to dominant contributions from fI-, behaviors of

Ppjl- around the circumference of the cylinder are quite uniform in

contrast to those of the sum-frequency case which will be shown later.

The free-surface forcing term, whose decaying rate is angularly dependent

and given by (2.33), has a minimum attenuation on the lee side (=0).

This contribution, however, is not important compared to the sum-frequency

problem where deeply penetrating pressures on the weather side (=1)

contribute significantly.
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Table 5. Magnitudes of the complete second-order pitch moment QTF, IMj-
/pgaZAAl 1, and each of its components, on a uniform vertical cylinder with
respect to the center of waterplane. The upper triangular matrix is for h/a=1,
and lower part for h/a=4. On the diagonal, Mqjl-=MJi-, and () is for h/a=4.
Computed values are for: first row;lMqil-I, second row;JMIjljl, third row;

IMFJl-i, and the complete QTF in fourth row;IMjl-l.

vja= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 0.003 0.063 0.115 0.155 0.185 0.207
1.0 (0.173) 0.148 0.272 0.377 0.464 0.533

0.018 0.048 0.080 0.110 0.130
0.345 0.624 0.848 1.016 1.126

0.203 0.044 0.080 0.120 0.154 0.182
1.2 0.318 (0.173) 0.127 0.238 0.334 0.415

0.055 0.017 0.047 0.080 0.108
0.729 0.303 0.548 0.750 0.908

0.257 0.196 0.076 0.099 0.128 0.157
1.4 0.559 0.315 (0.178) 0.114 0.216 0.306

0.130 0.055 0.018 0.048 0.080
1.232 0.708 0.281 0.500 0.687

0.299 0,235 0.194 0.096 0.111 0.134
1.6 0.702 0.552 0.312 (0.181) 0.105 0.201

0.197 0.133 0.056 0.018 0.049
1.539 1.184 0.690 0.267 0.469

0.321 0.264 0.218 0.188 0.106 0.117
1.8 0.766 0.691 0.546 0.310 (0.176) 0.099

0.249 0.207 0.138 0.058 0.018
1.682 1.465 1.144 0.673 0.259

0.325 0.282 0.240 0.205 0.178 0.112
2.0 0.782 0.753 0.683 0.542 0.309 (0.165)

0.268 0.258 0.211 0.143 0.060
1.717 1.597 1.412 1.113 0.661

In Figure 3, we present the second-order potential run-up QTF, pjl-,

and linear quadratic contribution, qjl-, around the uniform vertical

cylinder of h/a=1 for two incident frequency combinations. The variation

of /pjl- with respect to the angular position is much smoother than that
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of qJl-, which can be expected from the behavior of I-. For smaller

Ava, the free-surface elevation, pJl-, is more invariant in the

circumferential direction.

We next consider slowly-varying wave excitations on the fixed and

freely-floating hemispheres of radius a (h=3a) in bichromatic incident

waves. We first present fable 6 the complete slowly-varying force QTF

and each of its components for a fixed hemisphere. In contrast to the

cylinder case, fqJl- is the most important contribution in all frequency

ranges considered, especially for horizontal forces. The components fIJl-

and fBIJl- also contribute appreciably but their effects are much

alleviated compared to those of the vertical cylinders in Table 4. The

free-surface contribution again remains small, hence the QIB approxirmation

is expected to give fair results for a broad range of input spectra. For

slowly-varying vertical forces, fqjl- and (fIjl-+fBjl-) are in general

reinforcing each other so that the complete QTF, fjl-, is always larger

than individual contributions; however, the opposite trend is found for

horizontal forces. For fixed va and increasing sum frequency, fpjl has

milder variations compared to fqjl-, but the opposite trend results for

fixed sum frequency and increasing Ava.

For fixed sum frequency and increasing Ava, (fIxjl-+fBxjl-) increases

according to the increase of associated pressures, while (fIZJl-+fBzjl-)

decreases due to the shallower penetration of 0I- for larger Ava.
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Table 6. Magnitudes of the complete second-order force QTF, Ifjl-/pgaAjAl*l,
and each of its components for a fixed hemisphere of h/a=3. The upper
triangular matrix is for horizontal forces, and lower part for vertical forces.
On the diagonal, Ifqjl-i=Ifl -i and () fr vertical mean forces. Each element
satisfies-the symmetry relation fjl-flj- . Computed values are for: first
row ft1 ', seconrowow; Ifijt+ fj third row;IfFJl-i, and fourth row; the
complete QTF Ifjl-I.

vJa= 1.0 1.2 1.4 1.6 1.8 2.0

Yla= 0.471 0.493 0.498 0.497 0.495 0.494
(0.538) 0.061 0.140 0.246 0.369 0.495

1.0 0.014 0.038 0.070 0.104 0.132
0.482 0.459 0.415 0.360 0.304

0.512 0.513 0.517 0.516 0.515 0.513
0.280 (0.499) 0.060 0.138 0.241 0.362

1.2 0.011 0.013 0.038 0.069 0.102
0.803 0.505 0.472 0.422 0.362

0.478 0.477 0.523 0.525 0.526 0.52r
0.258 0.272 (0.468) 0.059 0.136 0.238

1.4 0.040 0.012 0.013 0.037 0.069
0.770 0.760 0.511 0.478 0.428

0.440 0.449 0.450 0.531 0.536 0.538
0.232 0.250 0.267 (0.442) 0.059 0.135

1.6 0.082 0.042 0.013 0.012 0.037
0.731 0.734 0.728 0.522 0.489

0.398 0.414 0.424 0.425 0.545 0.551
0.211 0.222 0.245 0.264 (0.417) 0.058

1.8 0.137 0.087 0.044 0.013 0.012
0.681 0.701 0.706 0.701 0.536

0.356 0.376 0.392 0.401 0.401 0.560
0.225 0.201 0.215 0.241 0.262 (0.392)

2.0 0.203 0.144 0.090 0.045 0.013
0.621 0.655 0.676 0.681 0.675

As a result, the slope of the vertical force QTF near the diagonal is very

steep with positive sign. Therefore, a severe underestimation of slowly-

varying vertical forces by Newman's approximation is expected. The mean
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vertical drift force, which is given on the diagonal, has a minus sign and

is comparable in magnitude with the horizonal mean drift force.

For freely-floating bodies, we separate contributions due to body

forcing into two terms, fBIJl- and fBBJl-, where fgBIJ- represents the

diffraction effect of I-, and fBBJl- the contribution from the first-

order motions. The contribution fBBJl- is calculated from (4.24) which is

free from the second spatial derivatives on the body, hence, is

numerically more favorable. For the contribution fIJl-+fBIJl-, there is

no difference between fixed and freely-floating bodies, hence is not given

separately in Table 7. The general tendency for relative magnitudes of

individual contributions is similar to that of the fixed hemisphere. As

expected, the effect of the first-order motions decreases with increasing

sum frequency. The contribution of the body forcing due to linear

motions, fBBJl-, as well as the free-surface contribution, fFJl-, are

found to be less important especially near the diagonal. However, due to

the possible phase cancellation among the contributions, neglecting fFJl-

or fBBjl' for certain cases :nay not lead to reasonable approximation

particularly for large Ava. For example, when (va,vila)=(2,1) in Table 7,

the horizontal force QTF from the free-surface integral reaches 70% of

total QTF. For difference-frequency forces, no dramatic change of the

QTFs is observed after including linear motions. This effect is more

significant for the sum-frequency problem as will be shown later.
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Table 7. Magnitudes of the complete second-order force QTF, Ifjl-/pgaAJAl*l,
and each of its components for a freely-floating hemisphere of h/a=3. The
upper triangular matrix is for horizontal forces, and lower part for vertical
forces. On the diagonal, Ifqjl1=lf-I, and () for vertical forces. Each
element satisfies the symmetry relation fl-=flj- . Computed values are for:
first row;lfq -lI, second row; IfBBjl, third row;IfFjl-l, and fourth row; the

complete QTF lfjl-l.

va= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 0.519 0.719 0.619 0.534 0.482 0.447
1.0 (0.306) 0.015 0.026 0.040 0.060 0.084

0.028 0.072 0.129 0.189 0.247
0.709 0.591 0.483 0.407 0.354

0.189 0.878 0.783 0.718 0.681 0.653
1.2 0.030 (0.494) 0.004 0.010 0.020 0.036

0.023 0.020 0.060 0.109 0,160
0.469 0.766 0.660 0.570 0.487

0.376 0.526 0.717 0.677 0.660 0.648
1.4 0.063 0.018 (0.488) 0.005 0.010 0.019-

0.039 0.015 0.015 0.047 0.087
0.630 0.817 0.658 0.598 0.529

0.430 0.516 0.457 0.652 0.645 0.639
1.6 0.090 0.040 0.014 (0.426) 0.003 0.008

0.061 0.040 0.012 0.013 0.042
0.681 0.820 0.742 0.627 0.581

0.447 0.499 0.434 0.407 0.644 0.643
1.8 0.113 0.060 0.028 0.012 (0.392) 0.002

0.098 0,.077 0.039 0.011 0.013
0.694 0.813 0.730 0.686 0.626

0.448 0.476 0.409 0.386 0.378 0.646
2.0 0.134 0.077 0.043 0.023 0.010 (0,370)

0.150 0.126 0.080 0.041 0.012
0.680 0.788 0.713 0.676 0.655

The mean drift forces for a freely-floating hemisphere are given in Table

7 along the diagonal and they interestingly change signs from + to - in

the vicinity of the heave resonance (vaNl). This was also observed by
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Pinkster (1980) and Molin (1983).

We next consider the second-order motion transfer function of a

freely-floating hemisphere. Having obtained the complete force QTF, fl,

heave and surge response QTFs can readily be calculated from (4.15).

Interestingly, the second-order heave and surge motions are uncoupled but

each of them is affected by first-order surge and heave motions via

second-order wave exciting forces. If any pair of bichromatic waves is

such that their frequency sum or difference falls on the heave natural

frequency, second-order heave resonance occurs. A typical example of the

difference-frequency resonance of a freely-floating hemishere is given in

Table 8. There, we observe a resonance for a wave pair, (Yja,via)=(1,4),

whose frequency difference is close to the heave natural frequency.

Because of the substantial hydrodynamic damping at that frequency the

resonance is weak, as shown in Table 8. In this frequency range, the

surge response QTF is much smaller than that of heave, although the

horizontal and vertical force QTFs are comparable. Any pair of long waves

can generate similar types of sum-frequency resonances. If the natural

frequency (wn) of the system is very low or high, the corresponding wave

damping and linear exciting force are typically small near n. We may

then have prominent second-order resonances, which may be more important

than the linear one. Typical examples are slowly-varying large-amplitude

platform surge motions or the superharmonic vertical plane resonance of

Tension-Leg Platforms.

- 105 -



Table 8. Difference-frequency heave and surge response QTFs, ICI-a/AAl*I, of a
freely-floating hemisphere of h/a=3. Computed values are for; irst row: the
complete exciting force QTF, second row: the complete response QTF. Values in
() are for surge excitling force and response QTFs.

vja= 0.6 1.0 1.4

vla= 0.161 (0.175) 0.378 (0.188) 0.366 (0.133)
3.6 0.207 (0.049) 0.455 (0.067) 0.240 (0.075)

0.150 (0.230) 0.373 (0.170) 0.338 (0.103)
4.0 0.112 (0.051) 0.684 (0.050) 0.298 (0.044)

0.144 (0.205) 0.333 (0.219) 0.300 (0.029)
4.4 0.071 (0.041) 0.495 (0.056) 0.390 (0.010)

(1i) Sum-frequency problem

For an estimation of sum-frequency (springing) wave excitations in

irregular long-crested seas, HerfJord & Nielsen (1986) and Petrauskas &

Liu (1987) used a linear quadratic operator, fqjl+, to approximate the

complete sum-frequency QTF, fjl+. More terms (fqjl++fIjl++fBIJl+ ) are

included by De Boom et al (1983) with the exception of the free-surface

contributions. The weakness of these approximation methods will be

discussed in the following.

In Table 9, we present the sum-frequency horizontal force QTF on a

bottom-mounted vertical cylinder for two different water depths. Unlike

the difference-frequency problem, components relating to the second-order

inciden ve, fijl+ and fBjl+, are almost negligible in the frequency

range considered, and hence are not given separately. Actually, i+ and

its contributions vanish in infinitely deep water. Therefore, we presume
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that most of the contributions of fpjl+ are from the free-surface

integral, fFJl+, which is larger than fqjl+ in the frequency range

considered. This free-surface term becomes more important for deeper

water depths (or larger drafts) due to the deep penetration of the

associated second-order potential pressure, as shown in Table 9. For

fixed Ava and increasing sum-frequency, fpjl+ increases fast in an

oscillatory manner, especially for h/a=4. This accounts for the relative

importance of second-order potential contributions for larger sum

frequency. For a fixed sum-frequency and increasing frequency

differences, fpjl+ decreases rapidly (specially for h/a=4) due to the

expected cancellations in the interaction between long and short waves.

This phenomenon is mainly due to the particular behavior of the second-

order potential pressure predicted by (2.33), whose effects become more

clear and important for the pitch moment QTF. It is noteworthy that fqjl+

and fpjl+ are in most cases 180 degrees out of phase, hence decreasing

each other. This fact was also addressed in Chapter I for the case of

monochromatic waves. From these results, we can conclude that any

approximation methods used for sum-frequency excitations without involving

free-surface contributions should be very restrictive regardless of the

shape of the input spectra.
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Table 9. Magnitudes of the complete sum-frequency force QTF, Ifjl+/pgaAjA1l,
and each of its components for uniform vertical cylinders. The upper
triangular matrix is for h/a=1l, and lower part for h/a=4. On the diagonal, ()
for h/a=4. Each element satisfies the symmetry relation fl+=flj +. Computed
values are for: first row; Ifqjl+l, second row; nfpjl+l, and third row;
I fjl+l =I sfdJlfpJj+.

vja= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 1.440(1.493) 1.577 1.709 1.802 1.828 1.778
1.0 1.636(3.004) 1.963 2.308 2.582 2.710 2.661

0.939(1.518) 0.782 0.778 0.850 0.903 0.886

1.546 1.676(1.641) 1.764 1.813 1.797 1.709
1.2 3.179 2.262(3.723) 2.549 2.752 2.807 2.682

1.641 0.752(2.084) 0.847 0.959 1.013 0.973

1,681 1.774 1.805(1.868) 1.808 1.753 1.634
1.4 3,408 4.035 2.754(4.472) 2.876 2.857 2.671

1.748 2.262 0.971(2.612) 1.074 1.105 1.037

1.850 1.909 1.945 1.772(1.957) 1.689 1,556
1.6 3.685 4.211 4.654 2.930(4.975) 2.872 2.668

1.853 2.302 2.714 1.160(3.021) 1.184 1.114

1.969 1.981 1.957 1.910 1.593(1.820) 1.467
1.8 3.769 4.162 4.454 4.843 2.816(5.097) 2.688

1.809 2.182 2.505 2.935 1.226(3.277) 1.227

1.995 1.959 1.878 1.786 1.677 1.368(1.544)
2.0 3.613 3.852 3.961 4.159 4.695 2.693(5.043)

1.620 1.899 2.094 2.375 3.018 1.334(3.502)
i. . . " 

In Table 10, the complete sum-frequency pitch moment QTF (Mjl+) as

well as linear quadratic (Mqjl+) and second-order potential terms (Mpjl+)

with respect to the center of waterplane are given for the cases where

h/a=1 and 4. In this case, Mpjl+ Is generally much larger than Mqjl+

especially for deeper water. This is attributable to the deep penetration

of the sum-frequency second-order potential. To show this more clearly,

we have plotted the pressure distributions on the lee(-=O) and weather

- 108 -



side(9=r) of the vertical cylinder, as a function of depth, in Figure 4a,b

for two different combinations of incident wave frequencies. In this

figure, a dominant second-order potential pressure on the weather side can

be noted. The linear quadratic pressures, Pqjl+, attenuate according to

wavenumber (kj+kl), while the nonlinear potential pressures, Ppjl+, appear

to decrease only algebraically with depth. Due to this slow attenuation

of pjl+, the pressures on a deeply submerged portion of large-draft

bodies are still nontrivial and contribute significantly to the pitch

moment through a large moment arm. Appreciable heave excitations on a

large draft TLP leg, which have been reported in experiments but cannot be

predicted by the linear theory, can be attributed to above phenomena. For

fixed sum-frequency, ppjl+ penetrates deepest on the weather side of the

cylinder (especially when two frequencies are close), as shown in Figure

4. This interesting phenomenon can partly be explained by the asymptotic

behavior of p+ given in (2.32,33). The decay rate of p+ with increasing

depth is characterized by the angular dependent wavenumber k=

(kj2+kl2+2kjklcosO)1/2, which has a minimum (maximum) for kj=kl and =r(0)

and Increases with increasing kj-(+)kl. Due to this interesting behavior

of p+, the pitch moment QTF decreases rapidly for a fixed sum frequency

and increasing Ava, as shown in Table 10, especially for the case h/a=4.

The above discussion emphasizes the importance of second-order

potential contributions and/or the weakness of existing approximation

methods used in the estimation of sum-frequency wave excitations on large

draft bodies. An important example of this is superharmonic wave

excitations and resulting resonant responses of a Tension-Leg Platform in

vertical plane motions (see Chapter IV). Interestingly, it was reported
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in Petrauskas & Liu (1987) that large scale experiments tended to give 3-4

times larger rms tendon loads than their predictions entirely based on

fqjl+ . This large discrepancy may be attributable to the contributions of

the second-order potential.

Table 10. Magnitudes of the complete sum-frequency pitch moment QTF,

IMjl+/pga2AAll and each of its components for uniform vertical cylinders
with respect to the center of waterplane. The upper triangular matrix is
for h/a=1l, and lower part for h/a=4. On the diagonal, () is for h/a=4. Each
element satisfies symmetry relation MJl+=M1l+. Computed values are for:
first row;lMqjl+l, second row;lMpjl+, and third row IMql++Mpjl+l.

vja= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 0.217(0.235) 0.199 0.184 0.166 0.145 0.121
1.0 0.785(4.472) 0.942 1.08S 1.194 1.228 1.179

0.635(4.309) 0.794 0.939 1.048 1.094 1.063

0.254 0.181(0.262) 0.164 0.147 0.126 0.103
1.2 4.220 1.071(4.934) 1.181 1.252 1.256 1.180

4.028 0.927(4.738) 1.039 1.117 1.136 1.079

0.272 0.267 0.147(0.259) 0.130 0.109 0.086
1.4 3.762 4.777 1.251(5.237) 1.285 1.262 1.167

3.524 4.554 1.116(5.011) 1.162 1.156 1.082

0.279 0.264 0.245 0.112(0.223) 0.094 0.073
1.6 3.481 4.333 5.079 1.295(5.580) 1.265 1.179

3.219 4,092 4.851 1.185(5.364) 1.173 1.106

0.270 0.248 0.223 0.196 0.078(0.168) 0.063
1.8 3.088 3.739 4.332 5.231 1.255(6.037) 1.217

2.829 3.505 4.120 5.037 1.178(5.869) 1.155

0.246 0.221 0.191 0.164 0.138 0.058(0.116)
2.0 2.569 3.008 3.351 3.983 5.421 1.254(6.502)

2.331 2.798 3.168 3.821 5.283 1.198(6.387)

In Figure 5, the second-order potential pressure QTFs, ppjl+, along

the vertical cylinder of h/a=1 are given for five angular positions. In
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this case, variations in Ppjl+ for different angular positions are large

due to the dominant contribution from angular-dependent free-surface

pressures. The decay rate at the waveward side is much slower than that

of leeward side. Along the leeward edge(e=O), the nonlinear potential

pressure initially decreases with depth, reaches a minimum, and then

begins to increase towards the bottom. We also see that a minimum of

PpJl+ may not occur at the bottom OT the cylinder. Similar trends were

given for monochromatic waves in Chapter I.

In Figure 6, we present the second-order potential run-up QTF, pjl+,

as well as the linear quadratic contribution, qjl + , around a vertical

cylinder of h/a=1, for two different incident frequency combinations;

(vJa,vla)=(1,2) and (1.4,1.6). Both pjl+ and qjl + are not sensitive to

changes in Ava when compared with the difference-frequency case (see

Figure 2). The magnitude of 'qjl+ generally increases from the lee(G=O)

to weather side(e=r), whereas pjl+ has two peaks near 9=r/4 and , which

are comparable in magnitude.

We next consider, in Table 11, the horizontal and vertical sum-

frequency force QTFs on a fixed hemisphere of h/a=3. Again, contributions

associated with dI+, fjl+ and fijl +, are negligible in the bifrequency

range considered, and hence are not given separately. In the horizontal

direction fqjl+ and fpjl+ are comparable in magnitude, but in the vertical

direction, fpjl+ is dominant over fqjl+. This is due to appreciable

second-order potential pressures on the bottom of the sphere, which was

previously observed. For both horizontal and vertical forces, fqji+ and

fpjl + are generally out of phase, and hence the complete QTF is much

smaller than the individual sum. Interestingly, the complete vertical
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sum-frequency forces are large and become even more important with

increasing sum frequency.

In Figure 7, we present the sum- and difference-frequency potential

run-up, p+, around a fixed sphere for two frequency combinations. The

general trend for p- is very close to that of the vertical cylinder given

in Figure 3. For pjl+ , the trend is similar to Figure 6 with the

exception that we have a more dominant peak on the weather side.

Table 11. Magnitudes of the complete sum-frequency force QTF, fjl+/pgaAjAll,
and each of its components for a fixed hemisphere of h/a=3. The upper
triangular matrix is for horizontal forces, and lower part for vertical forces.
On the diagonal, ) is for vertical forces. Each element satisfies the symmetry
relation fl+=fl. Computed values are for: first row; Ifqjl+l, second row;

Ifpjl+l, and third row; the complete QTF Ifjl+l.

vja= 1.0 1.2 1.4 1.6 1.8 2.0

vla= 1.247(0.320) 1.268 1.317 1.399 1.485 1.538
1.0 1.104(1.229) 1.249 1.412 1.594 1.747 1.830

0.730(0.914) 0,704 0.692 0.681 0.655 0.610

0.278 1.333(0.237) 1.409 1.496 1.569 1.600
1.2 1.192 1.426(1.182) 1.604 1.777 1.905 1.954

0.918 0.663(0.948) 0.642 0.628 0.603 0.560

0.230 0.191 1.488(0.147) 1.560 1.607 1.607
1.4 1.055 1.055 1.774(0.937) 1.918 2.006 2.015

0.827 0.865 0.614(0.790) 0.600 0.579 0.541

0.187 0.151 0.114 1.604(0.094) 1.617 1.586
1.6 0.909 0.968 0.859 2.024(0.874) 2.079 1.995

0.722 0.819 0.745 0.592(0.781) 0.585 0.518

0.157 0.126 0.100 0.096 1.598(0.108) 1.545
1.8 0.816 0.812 0.836 0.971 2.057(1.187) 2.032

0.660 0.687 0.736 0.877 0.563(1.083) 0.570

0.139 0.116 0.102 0.107 0.122 1.484(0.133)
2.0 0.759 0.789 0.859 1.055 1.342 2.017(1.572)

0.620 0.673 0.758 0.951 1.225 0.606(1.444)
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We next investigate how the trend of sum-freqJency excitation is

changed when we allow first-order motions. In contrast to the difference-

frequency case, displayed in Table 7, the body-surface forcing term due to

linear motions; fBBJl+, contributes significantly and this effect is even

stronger for vertical forces. The linear square term, fqjl+, is amplified

in both the horizontal and vertical directions when we include linear

motions, especially near the heave resonance frequency. Major

contributions in this case, as shown in Table 12, are fqjl+, BBJl + , and

fFjl+. These forces generally do not act in phase, hence the magnitude of

the total QTF is much less than the individual sum. Nevertheless,

magnitudes of the complete horizontal and vertical force QTFs are

increased by first-order body motions. With increasing sum-frequency and

fixed Ava, fFjl+ continues to increase its relative importance over the

other contributions, while fBBjl- decreases, and fqjl- approaches the

result of the fixed sphere due to the decreasing effects of linear motion.

As a result, fqjl+ and fBBggl+ are the most important contributions in the

small sum-frequency region, (vj+vl)a < 2.8, but fFjl+ dominates other

contributions for (vj+vl)a > 2.8. It is also noticible that fqJl+ and

fBBjl+ are greatly increased near the heave resonance frequency, which was

not conspicuous in the difference-frequency case.
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Table 12. Magnitudes of the complete sum-frequency force QTF, Ifl l/pgaAtAll,
and each of its components for a freely-floating hemisphere of h7a=3. The
upper triangular matrix is for horizontal forces, and lower part for vertical
forces. On the diagonal, ) is for vertical forces. Each element satisfies
the symmetry relation, f =flj+ . Computed values are for: first row; If a1+

second row; fBBJl+, third row; fIjl++fBIJl++fFjl+l, and fourth row; fjl+ 1? .

uVa= 1.0 1.2 1.4 1.6 1.8 2,0

vla= 2.646(3.467) 2.551 2.107 1.916 1.797 1.677
1.0 1.198(4.427) 0.999 0.762 0.682 0.648 0.623

1.573(0.984) 1.767 1.568 1.459 1.357 1.226
1.041(1.461) 0.977 0.812 0.733 0.678 0.632

2.702 2.871(2.085) 2.548 2.373 2.263 2.151
1.2 3.826 1.031(3.219) 0.829 0.727 0.675 0.642

0.778 2.336(1.204) 2.282 2.233 2.169 2.060
1.877 1.067(2.338) 0.948 0.879 0.822 0.761

1.539 1.200 2.302(0.720) 2.154 2.061 1.965
1.4 2.459 2.034 0.653(1.254) 0.555 0.504 0.474

0.565 1.134 2.293(1.142) 2.266 2.216 2.117
1.517 1.866 0.857(1.516) 0.806 0.760 0.705

0.962 0.771 0.496 2.010(0.378) 1.916 1.823
1.6 1.747 1.483 0.897 0.458(0.638) 0.409 0.368

0.517 1.109 1.180 2.249(1.331) 2.215 2.079
1.280 1.632 1.372 0.778(1.383) 0.759 0.694

0.656 0.553 0.393 0.330 1.822(0.307) 1.735
1.8 1.356 1.102 0.697 0.502 0.348(0.399) 0.322

0.522 1.022 1.204 1.456 2.169(1.696) 2.141
1.159 1.375 1.305 1.451 0.752(1.653) 0.766

0.473 0.431 0.340 0.306 0.295 1.665(0.284)
2.0 1.103 0.901 0.575 0.419 0.338 0.291(0.288)

0.493 0.994 1.191 1.473 1.786 2.178(1.977)
1.051 1.278 1.254 1.450 1.734 0.829(1.918)

. ·. , .

6. CONCLUSION

The second-order diffraction and radiation problems for fixed or

freely-floating axisymmetric bodies in the presence of plane bichromatic

- 114 -



incident waves are solved by the ring-source integral equation method. An

important part of the solution is the efficient and accurate evaluation of

the boundary forcing terms, particularly the poorly convergent free-

surface integrals. An approach which treats the entire local-wave-free

outer region analytically is developed and shown to be efficacious for

both sum- and difference-frequency problems. Although the second-order

sum- and difference-frequency potentials and associated local solutions

are solved explicitly, the present method is comparable in computational

effort to existing approaches (Eatock Taylor et al, 1988; Matsui, 1988)

whch utilize fictitious radiation potentials to obtain global second-

order quantities. On the other hand, the availability of the second-order

potential allows us to discover and explain many important local second-

order phenomena associated with the pressures and free-surface elevations.

For illustration, the sum- and difference-frequency problems for

bottom-mounted vertical cylinders of h/a=1 and 4, and fixed and freely-

floating hemispheres, are studied in some detail. Convergence tests with

respect to truncations and discretizations, as well as, comparisons to

semi-analytic solutions for the vertical cylinders (Appendix C), confirm

the validity and accuracy of the present calculations.

From our numerical examples, several important features of the

second-order solutions have been observed:

(1) Difference-frequency problem: Among the individual contributions

to the second-order force, the linear quadratic term, fqjl-, and second-

order incident wave contributions, fIjl & fBIJI-, are found to be the

most important. The second-order difference-frequency incident potential,
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#I', attenuates slowly with depth especially for small frequency

differences. As a result, fIJl' & fBIJl- have large slopes near the

diagonal and are particularly important when the draft of a body is large,

or when major portions of the body are deeply submerged. The resulting

slowly-varying vertical forces for these bodies may be appreciable. In

this case, the validity of Newman's or Marthinsen's approximation methods

may no longer be justified. On the other hand, Pinkster's (or QIB)

approximation is expected to give good engineering results for a broad

class of input spectra without a substantial increase in computing time.

The pressures and run-up associated with 0- are found to be relatively

constant around the body, especially when the two frequencies are close.

Any pairs of waves in a sea spectrum, which satisfy w=wn, can excite

slowly-varying resonant responses, and are particularly important when

damping forces are small at that frequency.

(2) Sum-frequency problem: In contrast to the difference-frequency

problem, the second-order locked wave potential, p+, plays an important

role. This freesurface contribution cannot be neglected in favor of

other contributions, and hence any approximation method excluding this

term will likely be inadequate regardless of the shape of the input

spectra. On the other hand, contributions associated with HI+ are

negligible except for the long wave (or equivalently, shallow water)

regime. The body-boundary forcing contribution due to linear motions,

fBBggl+, is found to be much more important in the sum-frequency problem.

The second-order sum-frequency potential, +, attenuates slowly with

depth, especially on the weather side. Interestingly, this second-order
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potential pressure, pjl+, penetrates deeper for smaller frequency

difference pairs. Because of these phenomena, pitch-roll moments of large

draft bodies can be greatly magnified particularly when the center of

rotation is close to the free surface. A typical example is the

superharmonic pitch-roll excitation and response of a TLP. Petrauskas &

Liu's (1987) method, which is based on an approximated QTF fqjl +,

substantially underestimates the springing motions of the TLP when

compared to experimental measurements. This large discrepancy may be

attributed to contributions from the second-order potential (see Chapter

IV). The sum-frequency second-order potential pressures and run-up have

large variations around the body due to significant contributions from the

free-surface forcing pressures.

The present theory and numerical results for bichromatic waves can be

easily applied to the estimation of the slowly-varying or springing wave

excitations and responses in rregular seas. This will be studied in Part

two.
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Figure la. The second-order slowly-varying pressure QTFs at the lee side

(e=o) of a vertical cylinder of h/a=4 The curves are for: IPqjl-l for
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Figure lb. The second-order slowly-varying pressure QTFs at the 
weather

side (8=r) of a vertical cylinder of h/a=4. The curves are for: IPqJl-

for vja,vla= 1,2 ( * ); 1.4,1.6 ( - -), and IPpJl- for

vja,via= 1,2 (--- -); 1.4,1.6 ( ).
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Figure 2. The slowly-varying second-order potential pressure QTFs,
IPpjll, for (vJa,vila)=(1,2) around a vertical cylinder of h/a=l. The
curves are for: =0 (------ ), =/4 (- * -), =:/2 (- - -),
8=3r/4 ( - - -), and =r ( --).
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Figure 3. The second-order slowly-varying run-up QTFs, qlj - and 'jl-,
around a vertical cylinder of h/a=1. The curves are for: 7qjl] for
vJaLla= 12 (- * -) 1.4,1.6 ( - -), and Ilpjl-i for vja,vla1;2 (- - - -); 1.4,1.6 ().
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Figure 4a. The second-order sum-frequency pressure QTFs at the lee side
(9=0) of a vertical cylinder of h/a=4. The curves are for: IPqjl+l for

vja,vla= 1,2 (- * -); 1.4,1.6 (- - -), and IPpjl+l for vja,vla=1,2 (-- - -); 1.4,1.6 (- ).
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Figure 4b. The second-order sum-frequency pressure QTFs at the weather

side (e=r) of a vertical cylinder of h/a=4. The curves are for: IPqjl+I

for ja,vla= 1,2 (- *--); 1.4,1.6 (- - -), and Ppjl+)j for
vja,vla= 1,2 (-- -); 1.4,1.6 (

- 123 -



Cu

Cu

'V

4C
-
ke

a

C0

"o. so

-::X0:; X

\ '\
4, - - - - j1

0.2 0.4 0.6 0.8 i.0

-z/h

Figure 5. The sum-frequency second-order potential pressure QTFs,
IPpJ1+l, for (via,va)=(1,2) around a vertical cylinder of h/a=l. The
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Figure 6. The second-order sum-frequency run-up QTFs, qjl+ and pjl + ,
around a vertical cylinder of h/a=l. The curves are for: I1qjl+{ or
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Figure 7. The sum- and difference-frequency second-order potential run-up
QTFs, Ipl+, around a fixed hemisphere of h/a=3. The curves are for:
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PART TWO

APPLICATION TO RANDOM SEAS AND STATISTICS

There are three kinds of lies; lies, damned lies, and statistics

- Benjamin Dlsraeli -
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CHAPTER III

THE STATISTICAL DISTRIBUTION OF SECOND-ORDER WAVE EXCITATIONS IN

UNIDIRECTIONAL RANDOM SEAS.

1. INTRODUCTION

When the natural frequency of a offshore structure is much lower or

higher than the appreciable wave energy band of the input spectrum, the

second-order wave forces and responses may dominate linear quantities and

become critical to engineering design. Typical examples are the resonant

vertical-plane springing motions of tension-leg platforms and the large-

amplitude slowly-varying surge motions of moored vessels.

It is well known that for time-invariant linear system the output due

to a Gaussian input is also Gaussian, and the output spectrum gives

sufficient information for its statistical distribution. For nonlinear

systems with memory (e.g. a two-term Volterra series), the output process

due to a Gaussian input is non-Gaussian, and hence the spectral analysis

gives only limited information about the probabilty distribution. In

general, then, the probability density functions of second-order forces

and responses in Gaussian random seas must be derived based on the input

wave spectrum and the quadratic transfer function(QTF) of a system.

In Chapter II, we obtained the complete force quadratic transfer

- 128 -



functions(QTF) for bchromatic incident waves. Based on this information,

we consider n this chapter the complete statistical properties of the

second-order forces in unidirectional Gaussian random seas. The most

widely used mathematical model for the present problem is a two-term

Volterra functional polynomial expansions (or Volterra series). The

complete probabilistic distribution of this model was first developed in

the communication field by Kac & Siegert(1947) and Bedrosian & Rice(1971),

and introduced to ocean engineerng applications by Neal(1974). Since

then, the theory has been reexamined and applied mainly to the study of

slowly-varying wave forces (e.g. Pinkster, 1980; VinJe, 1983; Naess,

1986).

Despite the progress made in the statistical theory, the Volterra

model has so far only been applied to some two-dimensional geometries

because complete QTFs for three-dimensional bodies have not been available

until recently. In view of the theoretical and numerical difficulties

associated with the second-order problem, numerous approximation methods

based on approximated QTFs (see Chapter II) have been widely used in

engineering applications without necessarily any confidence that they will

lead to a safe design.

In this chapter, we study the statistical properties of the second-

order wave excitations in unidirectional random seas (for multidirectional

seas, see Chapter V). For illustration, we calculate the complete

difference-frequency force PDFs and spectra for a large-draft truncated

vertical cylinder, and compared them to those based on approximated QTFs

(e.g. Newman, 1974; Pinkster, 1980; Standing & Dacunha, 1982). Our

numerical results reveal that some approximation methods may substantially

- 129 -



underestimate the probabilty of difference-frequency extreme loads.

For the related sum-frequency problem, the analysis follows closely

with the exception that explicit expressions for the probability

distribution are in general not possible and numerical evaluations are

required. As is commonly known, the PDF's themselves are typically not so

important for springing forces in view of practical applications where

information on the spectra and variance (rms) are more relevant, for

example, for the fatigue design of mooring cables. This is addressed in

the case of a tension-leg platform in Chapter IV.

2. THE COMPLETE PROBABILITY DISTRIBUTION OF A TWO-TERM VOLTERRA SERIES

We consider the eneral statistical properties of the second-order

wave loads on a body due to stationary Gaussian random seas. A two-term

Volterra series is used as a mathematical model for this problem. Then,

the total wave force F(t) has the following expression:

F(t)= F( 1)(t) + F(2 )(t) =

j h(1)(r) (t-r) dr + f f h(2)(r1,r2) (t-r1) (t-r2) drldr2

~- --u (2.1)

where h(1)(r) and h(2)(r1,r2) are respectively the linear and quadratic

impulse response functions. The unidirectional (Gaussian with zero mean)

random sea surface (t) at some reference point can be expressed as a sum

of component waves:

iwjt
5(t)= aj cos( ujt + ej) = Re E Aj ei i ti ) =eEA
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(2.2)

where aj, j, and ej are the amplitude, frequency, and phase of the J-th

wave component, and ej is a uniformly distributed random variable in

[0,2r]. Substituting (2.2) into (2.1), we obtain an equivalent expression

of F(t) in the frequency domain:

F( 1 )(t)= Re A H( 1) () e j(2.3)

(2 .
F(2)(t)= F(t) + F+(t) =

Re £ [ AAk H(2)(w,-k) e k)t + AkH(2 J e( ]j+wk)t
J k * (j-N k) eI

~~~~j ~~~~~~~~~~~k ~(2.4)

where ()* represents the complex conjugate of a quantity. The first tern

of (2.4) describes the difference-frequency (slowly-varying) forces, and

the second term the sum-frequency (springing) forces. H(1) and H(2) are

the linear and quadratic transfer functions of F(1) and F(2),

respectively. These are given by the Fourier transforms of h(l) and h(2 ):

H( 1 )(w) = f h(1)(r) ew r dr

-OO

H (2 ) { k ) -h ()rT 2) e drldr 2

-2 (2.5)

The quadratic impulse response or transfer functions may, without loss of

generality, be assumed to be symmetrical. The quadratic transfer function

H(2), for example, satisfies the following symmetric conditions:
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H (2) ("J ") = H (2) *( w kIJ) H(2) (WJWk) = H(2 ) (WkWJ) 2.6)

The complete probabilistic theory for a nonlinear time-Invariant

Volterra system represented by (2.1) or (2.4) was first obtained by Kac &

Siegert (1947), and later reexamined by Bedrosian & Rice (1971) and Neal

(1974). As shown in the above references, F(t) may be decomposed in the

following way:

F(t) £E [ c nWn(t) + nW 2(t) ]
n nn nn (2.7)

where Wn(t) are normalized Gaussian variables which are mutually

independent. The coefficients n are the eigenvalues of the following

integral equation:

K(w,w') 7(w') du' X 7(w)

-. (2.8)

The Hermitian kernel K(u,w') is given by:

K(u, ') = `s- ) H(2) (,- ) JIs-I) (2.9)

where s(w) is a two-sided input wave spectrum. From the properties of a

Hermitian kernel, Xn are real, and the orthonormal egenfunctions, n,

satisfy 7n(-))=7n* (). The coefficients cn in (2.7) are given by:

cn= f H(L)(w) (Jws) 7n(I) dw

_- (2.10)

Then, the characteristic function of F(t) is given by:
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e2 ¢2
SF(O)= ( 1 2 1/2 Exp [ 2 ( - "12 0) ]

1 ( - I10 nn
n (2.11)

and the corresponding probability density function of F(t) can be obtained

from the inverse Fourier transform of (2.11):

p(F)= fJ 8(,) e -1tF de

-- (2.12)

In general, (2.12) can only be computed numerically except for some

special cases, as shown n the next section.

3. THE EXPLICIT PROBABILITY DENSITY FUNCTION OF THE DIFFERENCE-FREQUENCY

WAVE EXCITATIONS

If we only consider the second-order term, F(2)(t), cn=O in (2.11),

and we obtain a simpler form:

= 1
e (2)(e) = 1/2

F II ( 1 - i 2 n )1/2
n (3.1)

The probability distributions of the slowly-varying extreme forces

and corresponding large-amplitude motions are important design

considerations, and we focus hereafter on the second-order difference-

frequency wave forces represented by the first term of (2.4):

i (wj-wk t
F-(t)= Re E jAk Dk e i k)t

j k k k(3.2)

For convenience, we use the notation; Djk fjk- - 2H(2)(wj,-wk) for

wj,wkO, where Djk=Dkj*. The mean of F-(t) is obtained when J=k in (3.2):
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0
E(F) a2 D 2 f S(w) D(uw) du

j 0 (3.3)

where S(w) is a one-sided input wave spectrum (S(w)= 2s(w) for w;O, and

S(w)=O for <0). The one-sided spectrum of F-(t) can be obtained from the

continuous form of the autocorrelation function of (3.2) after using

Wiener-Kinchin relation (see Chapter V) as follows:

S () = 8 f S(w) S(w+p) ID(,w+#)I12 dw

0 (3.4)

The variance of F-(t) is then simply given by the area of SF-. As pointed

out by Naess (1986), the probability density function of F- can be derived

in an explicit form. For difference-frequency excitations only, we set

H(2)(w,w')=0 for ww'>O. The integral equation (2.8) then generates a set

of double egenvalues, X2n-1=X2n=Vn, and can be rewritten in the form:

f K(w,w') p(w') d' = v (w) ( w 0)

O (3.5)

where K(w,w') J 4S(w) D(w,w') S(w'). Again, the egenvalue problem (3.5)

must in general be solved numerically given D(w,w').

From (3.1) and the independence property of Wn(t), we obtain:

n n() (3.6 1)

n (3.6)

Using residue theorem, (3.6) can be inverted analytically leading to the

following explicit probability density function of F-(t):
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M A F
p(F-) - E - Exp - for F- 0

N A F

p(F-)= E Exp [ for F < 0
n-M+1nl -'nl (3.7)

where N is the total number of egenvalues, and n>O for nl,oo*,M and

vn(O for nM+1,0.0,N. The coefficients n are given by:

N %

n m,(mn) 'n- m (3.8)

The mean and variance of F-(t) can be obtained from the egenvalues of

(3.5) as follows:

N 2 N 2

E(F') = 2 E v n , 2 = 4 £ vn
n=l F nl (3.9)

If the input spectrui is sufficiently narrow banded and the slope of

the QTF with respect to the frequency difference is small near the

diagonal, j=wk, we may write; Djk = Djj+O(wj-wk), and the exact

expression (3.2) can be approximated by (Newman, 1974):

F-(t) = Re A A e (-k)t
J k k jj (3.10)

If Newman's approximation is employed, the egenvalue problem (3.5) can be

solved explicitly, as shown in Chapter V. In this case, (3.5) has only

two eigenvalues, v+, and they are given by:

= F-) + o f S(w) D2(w) d 112 2 + {D(3.11)
0
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where o is the zeroth moment of the input spectrum, S(w), and E(F-) is

given in (3.3). The probabilistic distribution of (3.10) then has the

following form:

p(F-) = Exp [ - ]where for 
22u-l v for FO (3.12)

The variance of (3.10) can be obtained from (3.9):

2_ = 2 Mo S(w) D2 (w,w) d+ E(2 (313

0

The spectrum (one-sided) of (3.10) is given by (see Chapter V):

6o

SF_() = 2 f S(u) S(w+#) [ D(w,u) + D(+p,+) ]2 d (3.14)

4. NUMERICAL RESULTS AND DISCUSSION

As an application of the theory in the previous section, we consider

the second-order difference-frequency wave excitations on a large-draft

truncated vertical cylinder (radius a=15m, draft H=4a) in unidirectional

irregular seas in water depth h=2H. A two parameter Pierson-Moskovitz

spectrum of significant wave height H1/3=6m and mean period Tm= 8 sec is

used as the input spectrum. For computations, the small wave energy

outside the frequency band 0.4•wS1.15 is assumed to be zero.

4 H2

S(w) = m 1/3 Exp [- ( )4/ ]
4w w5 - (4.1)

where mean frequency wm=2 /Tm.
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The complete difference-frequency wave excitation QTFs, D(wj,wk), for

the truncated vertical cylinder are calculated by the numerical method

detailed in Chapter II, and are given in Table 1. For comparison, those

of Standing et al's (1982) and Pinkster's (1980) approximation methods are

also given (see Chapter II).

Table la shows the horizontal force QTFs for various combinations of

incident frequencies. For Newman's (1974) approximation, only mean drift

data on the diagonal are necessary. As pointed out in Chapter II, the

Table la. The difference-frequency horizontal-force QTFs for a truncated
vertical cylinder of radius a=15m, draft H=4a. Computed values (Re,Im) are
for first row: fqJk-+fIJk- (Standing et al, 1982); second row: fqjk-+fIjk-
+fBjk (Pinkster, 1980); and third row: fqjk-+fpJk- (complete theory).

0.40 0.55

0.04,0.00 0.13,0.02
0.13,0.13
0.12,0.13

0.23,0.00

0.70

0.28,0.25
0.27,0.65
0.19,0.60

0.40,0.15
0.40,0.31
0.37,0.29

0.56,0.60

0.85

0.33,0.64
0.22,1.41
0.10,1.23

0.46,0.52
0.44,0.99
0.35,0.89

0.61,0.24
0.61,0.45
0.57,0.40

0.65,0.00

1.00

0.22,0.91
-0.16,1.70
-0.33,1.43

0.36,0.79
0.26,1.54
0.09,1.37

0.52,0.53
0.51,1.07
0.39,0.93

0.58,0.19
0.58,0.44
0.51,0.38

0.59,0.00

1.15

0.05,0.97
-0.06,1.07
-0.43,0.81

0.22,0.86
-0.01,1.33
-0.24,1.15

0.37,0.67
0.27,1.34
0.14,1.12

0.46,0.44
0.44,1.02
0,31,0.82

0.56,0.19
0.56,0.49
0.47,0.41

0.62,0.00

1.15
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components due to the second-order incident wave potential, fIjk- and

fBjk', contribute significantly, and they are equally important. Due to

these terms, the slope of QTF (especially the imaginary part) near the

diagonal is very steep. Therefore, neither Newman's nor Standing et al's

method, which neglect both or one of these terms respectively, is expected

to give fair results compared to the complete theory. On the other hand,

the contribution from the free-surface integral is generally small except

for large u+ and w- (+=wj+yk, 1-=wj-Wk), hence Pinkster's method which

excludes only this contribution seems to be more robust.

The vertical force QTFs are given in Table lb, where we see that

there is a small pressure on the bottom of the cylinder even for the high

frequency pairs. Because of the fast depth-attenuation of the linear

potential, the linear square term, fqjk-, is almost negligible except for

very low frequency pairs. In contrast, #- penetrates to large depths,

particularly for smaller w- (see Chapter II), and cause the large

gradients near the diagonal. Due to these combined effects, Newman's

approximation is expected to underestimate severely the difference-

frequency vertical force of large-draft bodies. Interestingly, the free-

surface contribution, fFjk-, is equally important in this case compared to

the other contributions.

- 138 -



Table lb. The difference-frequency vertical-force QTFs for a truncated
vertical cylinder of radius a15m, draft H-4a. Computed values (Re,Im) are
for first row: fqJk-+flk- (Standing et al, 1982); second row: fJk-+fIJ k-

+fBJk' (Pinkster, 1980J; and third row: fqJk-+fpjk- (complete theory).

Wj 0.40 0.55 0.70 0.85 1.00 1.15

Wk= -0.08,0.00 -0.15,0.00 -0.09,0.00 -0.03,0.00 -0.01,0.00 0.00,0.00
0.40 -0.14,0.00 -0.05,0.02 -0.02,0.06 -0.04,0.06 -0.06,0.03

-0.14,0.00 -0.05,0.00 -0.01,0.01 0.00,0.01 0.00,0.00

-0.02,0.00 -0.10,0.00 -0.05,0.00 -0.01,0.00 0.00,0.00
0.55 -0.08,0.01 -0.01,0.04 -0.01,0.08 -0.06,0.07

-0.08,0.00 -0.02,0.00 0.00,0.01 0.00,0.01

1 0.00,0.00 -0.08,0.00 -0.03,0.00 -0.01,0.00
0.70 -0.05,0.01 0.01,0.05 -0.01,0.11

-0.06,0.00 -0.01,0.00 0.00,0.00

0.00,0.00 -0.07,0.00 -0.02,0.00
0.85 -0.03,0.01 0.03,0.07

-0.05,0.00 0.00,0.00

0.00,0.00 -0.06,0.00
1.00 -0.02,0.02

-0.04, 0.00

0.00,0.00
1.15

The pitch moment QTFs with respect to the center of waterplane are

given in Table c. The fast increase of QTF (especially the imaginary

part) near the diagonal with increasing frequency difference is

noteworthy. As pointed out earlier, this is due to the slower

attenuation of #- for smaller w'. The deeply penetrating pressure

associated with 0- greatly magnifies the pitch moment through its large

moment arm. Consequently, Newman's or Standing's approximations are
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hardly applicable in this case even for a sufficiently narrow banded

Input spectrum.

Table c. The difference-frequency pitch-moment (with respect to the center
of waterplane) QTFs for a truncated vertical cylinder of radius a15m, draft
H=4a. Computed values (Re,Im) are for first row: Mqgk-++Mjk (Standing et
al, 1982); second row: MqJk-+MIJk-+MBjk- (Pinkster, 1980); and third row:

Mqjk-+Mpjk- (complete theory).

w 0.40 0.55 0.70 0.85 1.00 1.15

uk- 0.04,0.00 0.09,-0.48 0.16,-1.02 0.17,-1.30 0.15,-1.28 0.08,-1.04
0.40 0.09,-0.68 0.18,-1.60 0.34,-2.25 0.63,-2.05 0.20,-1.11

0.11,-0.68 0.25,-1.53 0.41,-2.04 0.72,-1.82 0.52,-0.87

0.14,0.00 0.18,-0.53 0.19,-1.03 0..18,-1.21 0.13,-1.09
0.55 0.18,-0.79 0.22,-1.69 0.36,-2.08 0.42,-1.51

0.22,-0.76 0.28,-1.55 0.42,-1.90 0.57,-1.36

0.19,0.00 0.19,-0.57 0.19,-1.03 0.14,-1.10
0.70 0.19,-0.89 0.21,-1.73 0.30,-1.83

0.23,-0.82 0.27,-1.55 0.30,-1.59

0.18,0.00 0.18,-0.60 0.16,-0.97
0.85 0.18,-0.98 0.18,-1.69

0.24,-0.89 0.23,-1.44

0.18,0.00 0.17,-0.62
1.00 0.17,-1.06

0.24,-0.93

0.17,0.00
1.15

, , .

Based on the QTF data given in Table 1 and the input spectrum (4.1),

the eigenvalue problem (3.5) and the corresponding PDF (3.7) are

calculated for each method. For this calculation, the QTFs are linearly

interpolated using the values given in Table 1. First of all, the
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convergence of (3.7) with increasing number of elgenvalues (equivalently,

the number of frequency discretitzations) is tested. As shown in Table 2

or Figure 2, we obtain rapid convergences with ncreasing N, which shows

the efficacy of the complete theory for such applications. Similar rates

of convergences are also obtained for the other approximations, and N=20

is used for all later results.

Table 2. Convergences of the mean and variance of the complete
horizontal force PDF with ncreasing number of egenvalues, N.

Mean (E(F-)) Variance (aOF2)

N.= 5 1.681 8.486
10 1.678 8.330
20 1.678 8.315
30 1.678 8.312

Figures 3a-c show the PDFs of the difference-frequency wave

excitations obtained using the complete theory as well as those of

existing approximation methods. The overall results confirm the earlier

observations regarding the QTFs. It is seen that the PDFs based on

Newman's approximation differ significantly from the exact solutions and

greatly underestimate the probability of extreme values. Futhermore, the

large probability of negative horizontal forces and positive vertical

forces can not predicted by Newman's approximation. Pinkster's

approximation, which includes all but free-surface contributions,

slightly overestimates the exact solution, and appears acceptable for

engineering applications. In Table 3, we summarize the mean and standard

deviation of each method obtained from (3.9).
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Table 3. The mean and standard deviation of the difference-frequency
wave excitation.

horizontal force vertical force pitch moment

E(F') aF_ E(F-) aF- E(M-) OM-

Newman: 1.678 1.768 -0.076 0.095 0.636 0.646
Standing: 1.678 2.239 -0.077 0.263 0.636 2.932
Pinkster: 1.678 3.260 -0.077 0.239 0.636 4.679
complete: 1.678 2.684 -0.077 0.212 0.636 4.351

From this table, we see that the mean drift forces can be obtained

correctly by any method. On the other hand, Newman's approximation

severely underestimate (e.g. 61%, 45%, and 15%, respectively, for the

horizontal and vertical forces and pitch moment) the exact standard

deviation.

The variances of the difference-frequency excitations can also be

obtained from the area under the associated spectra given by (3.4) or

(3.14). We present in Figures 4a-c these spectra for each method. The

results are again consistent with the earlier observations. As expected,

all the curves converge to the exact value as w*+O, but differ

signifficantly for large v. When the natural frequency of a system is

very low (e.g. un<O0.1) and associated damping is small, the slowly-

varying response spectra based on approximation methods may be obtained

more correctly because of the filtering by the motion transfer function.
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5. CONCLUSION

In this chapter, we review the general statistical properties of a

two-term Volterra series and obtain explicitly the PDFs and spectra of

the second-order difference-frequency wave excitations in unidirectional

Gaussian seas. Specifically, we calculated the complete probability

distributions of the difference-frequency wave excitations on a large-

draft truncated vertical cylinder, and compared them with those based on

approximated QTFs.

From our numerical results, we found that Newman's (1974) and

Standing et al's (1982) approximation methods severely underestimate the

variance and the probability of extreme forces and may, therefore, not be

acceptable for many engineering applications. This emphasizes the

necessity of the use of complete theory, or at least Pinkster's (1980)

approximation which appears to be more robust than the other aproximation

methods.

The present complete theory is directly applicable to predictions of

the probability distributions of the second-order responses as long as

the equation of motion is assumed to be a time invariant linear system.

When nonlinear damping or restoring forces are present, however, the two-

term Volterra model is not adequate for the statistical analysis of the

nonlinear responses (Naess, 1986).
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Figure 2. Convergence of the complete PDF for slowly-varying horizontal
forces with increasing number of egenvalues.
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Figure 3a. PDFs of the difference-frequency horizontal force on a
truncated vertical cylinder (radius a=15m, draft H=4a) obtained using:
Newman's(- * -), Standing's(- - -) and Pinkster's(- - - -)
approximations, and the complete theory( ).

- 146 -



-0.75 -0.60 -0.45 -0.30 -0. 15 0.00 0.5 0.30

F-/pga

Figure 3b. PDFs of the difference-frequency vertical force on a truncated
vertical cylinder (radius a=15m, draft H=4a) obtained using: Newman's
( - * -) Standing's(- --) and Pinkster's( - - ,
approximations, and the complete theory( ).
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vertical cylinder (radius a=15m, draft H=4a) obtained using: Newman's
(- * - ), Standing's(- --) and Pinkster's( - - -
approximations, and the complete theory( ).
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Figure 4a. One-sided amplitude spectra of the difference-frequency
horizontal force on a truncated vertical cylinder (radius a=15m, draft
H=4a) obtained using: fNewman's( -- -), Standing's( -- ), and
Plnkster's(- - - - ) approximations, and the complete theory( ).
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Figure 4b. One-sided amplitude spectra of the difference-frequency
vertical force on a truncated vertical cylinder (radius a=15m, draft H=4a)
obtained using: Newman's(- -), Standing's(- - - ), and
Pinkster's(- -- -) approximations, and the complete theory( - ).
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obtained using Newman's(-* -), Standing's(- - -), and
Plnkster's(- - - - ) approximations, and the complete theory( . ).
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CHAPTER IV.

THE SECOND-ORDER SUM-FREQUENCY WAVE EXCITATION AND RESPONSE OF A

TENSION-LEG PLATFORM.

1. INTRODUCTION

The deep water tension-leg platform (TLP) is designed so that the

natural periods of the vertical-plane motions (typically 14 seconds) are

substantially below that of most of the ocean wave energy. In the absence

of appreciable damping mechanisms, the resonant TLP responses and

resulting tension-leg loads depend critically on any source of high-

frequency excitations. It is now widely accepted that higher-order sum-

frequency wave exciting forces, often called 'springing' forces, are

important mechanisms for the vertical-plane resonant excitation of a TLP.

In addition to the need for better estimates of damping forces, a reliable

calculation of these nonlinear wave loads in irregular seas is critical

for the design of the tension leg tendons.

Despite the progress in second-order wave-diffraction theory and

computations in recent years, there has not been a complete calculation of

the sum-frequency forces on a TLP in the presence of bichromatic incident
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waves. A main reason is the theoretical and computational difficulties in

obtaining the general sum-frequency force quadratic transfer function

(QTF) associated with the nonlinear potential. Thus, recent calculations

of springing forces on TLPs have elied on simplifying approximations

whose validity cannot in general be Justified. For example, Nordgren

(1986) neglected nonlinear effects completely, while Petrauskas & Liu

(1987) included second-order contributions due to the first-order

potential only. The comparisons to experiments are, overall, not

satisfactory. For example, measured rms values of tendon loads which are

factors of three or more higher than predictions using experimental

damping values are reported in Petrauskas & Liu (1987).

In previous chapters, we developed a complete second-order

diffraction-radiation method for the calculation of sum- and difference-

frequency forces on an axisymmetric body for any combination of incident

frequencies (j,ul). The nonlinear sum- and difference-frequency

potentials are obtained explicitly so that in addition to the forces and

moments, important local quantities, such as second-order pressures,

particle velocities, and surface elevations are also available.

In this chapter, we apply the method to calculate the springing

resonant tendon loads of a TLP in irregular seas. In §2, the exact

second-order sum-frequency forces and moments on a single TLP leg are

obtained in terms of the QTF for a general combination of incident wave

frequencies. These results are used in a model for a typical four-leg

four-pontoon TLP in §3. A number of damping ratios and wave spectrum

parameters are considered in calculating the resultant rms tendon-tension

loads. Several important conclusions are given in the final section.
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2. SPRINGING WAVE EXCITING FORCES AND MOMENTS ON A SINGLE TLP LEG.

We first consider the springing excitations on a fixed single TLP leg

in this section. The complete theory for second-order sum-frequency

diffraction problem was already detailed in Chapter II and will not be

elaborated here. In the presence of bichromatic incident waves, (jaul),

we can write the total sum-frequency wave excitation in the form:

f+(t) = Re AA f l e (2.1)

j=1 1-1 j

f+l= fjl+ fl (2.2)

where the complete sum-frequency force QTF, fjl+, consists of two

components; that due to quadratic products of the linear potential, fqJl+ ,

and that due to the second-order potential itself fpJl+ .

For long-crested irregular seas, the incident wave elevation can be

expressed as a sum of regular wave components:

N -iwjt ie

i(t) = Re E A e ( aJ e (2.3)

where aj and ej are the amplitude and phase of the j-th component wave,

and the random phase ej is uniformly distributed in 0 and 2r. The

component amplitude is given by aj=J2S(wj)Aw, where S(w) is the (one-

sided) input amplitude spectrum. The total second-order springing forces

due to all the components in (2.3) is given by:

+ N N -i(Wj+ wl)t

f+(t) = Re E e AAl f (2.4)

j=l 1=1
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From (2.4), it is clear that f+(t) is a zero-mean process. Upon deriving

its autocorrelation function in continuous form and using the Wlener-

Kinchin relation, the spectrum (one-sided) of the springing force can be

expressed in the form:

V+/2+2 + + + 

0We now present results for a single TLP leg. For definiteness, we

We now present results for a single TLP leg. For definiteness, we

consider a circular cylindrical leg of radius a, draft H = 4a, in deep

water. This radius-draft ratio is the same as the bottom-seated (h = H)

cylinder in the single-leg experiment of Petrauskas & Liu (1987). For

this bottom-seated geometry, Figure 1 shows a comparison of the horizontal

springing force due to a regular incident wave of wavenumber ka. Despite

fairly large scatter in the experimental data, the improved overall

correlation of the present complete theory with measurements is evident.

For the actual deep-water TLP leg, we present in Tables 1 the sum-

frequency QTF for a broad range of bichromatic wave combinations (w,Wl).

In most cases, fpjl+ is greater in magnitude than fqjl+, but the two are

generally out of phase. For the horizontal force (and pitch moment) in

regular waves wjWl, the relative contributions of the second-order

potential increase dramatically with higher sum frequencies, and account

for the general increase of the total springing force amplitude with

frequency. In general, for fixed w+=wj+wl, the amplitude of the QTF

decreases rapidly with the difference of the component frequencies, 2#=

wj-wl, due to expected cancellations in the interaction between long and

short waves. The gradient of the total QTF with respect to # near the
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diagonal is typically larger for ncreasing u + .

A surprising result is found for the vertical force in Table (b).

For all but the lowest frequency incident waves, the effect of the first-

order pressure at the bottom of the leg is very small. For free waves at

the sum frequency + , and for products of the first-order potentials, it

is clear that the wavenumbers must be greater than kj or kl so that

contributions to the vertical force are negligible. On the other hand,

the nonlinear locked potential which is forced by the inhomogeneous

surface pressure decays slowly, and the effect on the bottom of the leg

can be appreciable (cf. Newman, 1988), and in fact may Increase with sum

frequency +. To show this more clearly, we plot the pressure

distributions on the lee (=0) and weather side (O=r) of the leg as a

function of depth n Figure 2 for two different combinations of incident

wave frequencies. The linear quadratic potential pressures, Pqjl+,

attenuate exponentially with a wavenumber k+=kj+kl, but the nonlinear

potential pressures, Ppjl+, appears to decrease only algebraically with

depth. For fixed w+, PpJl+ penetrates deepest for w=wl, even though

longer incident wavelengths are nvolved when >O. On the lee side, the

second-order pressure is generally smaller and attenuates more rapidly,

but shows an nteresting non-monotonic behavior for the case wJ=wl. Some

of these features, as already adressed in Chapter II, can be seen from the

far-field asymptotic behavior of the nonlinear potential. For deep water,

the decay of far-field locked potential with depth is exponential with a

rate (kj2+kl2+2kjklcos)l 1/2 , which has a minimum (maximum) for kj=kl and

G=r (0) and increases with ncreasing kj-(+)kl.

- 155 -



Table 1. Magnitude of the second-order sum-frequency force QTF for a TLP
leg (a-25 ft, H4a) for incident wave frequencies uj, Wl for a) horizontal
force FxJil+//gaAjA1; b) vertical force FzJl+/pgaAtA1; A nd c) pitch moment
with respect to the center of the waterplane MyJl /pgazAiAl. For
comparison, three quantities, IFqJl+l (first row); IFptl I (second row);
and IFqjl +Fpil+l (third row) are shown. Due to symnmetry, only upper half
of the table ts given

Table la

aJn 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Wl= 1.503 1.505 1.215 1.172 1.410 1.376 1.248
0.8 1.523 1.469 0.913 1.433 1.875 1.832 1.619

0.406 0.299 0.585 0.923 0.845 0.602 0.508

1.560 1.434 1.620 1.893 1.754 1.533
1.0 2.186 2.093 2.697 3.306 2.622 1.951

0.714 0.822 1.258 1.208 0.888 0.430

1.561 1.835 1.990 1.685 1.421
1.2 3.159 3.784 3.762 2.707 1.925

1.601 1.953 1.773 1.060 0.504

1.949 1.838 1.398 1.324
1.4 4.544 4.003 2.468 2.165

2.598 2.179 1.074 0.879

1.573 1.363 1.576
1.6 4.625 3.893 3.927

3.054 2.540 2.357

1.530 1.639
1.8 5.895 5.225

4.371 3.588

1.433
2.0 6.263

4.821

The center-of-pressure of fpjl+ is deeper compared to fqjl+, so that the

second-order potential pitch moment, Mpjl+, with respect to the centevr of

the leg waterplane is also greater(cf. Table c).
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Table lb

wj: 0.8 1.0 1.2 1.4 1.6 1.8 2.0

l= 0.014 0.005 0.001 0.000 0.000 0.000 0.000
0.8 0.249 0.154 0.030 0.006 0.002 0.001 0.000

0.239 0.150 0.039 0.006 0.002 0.001 0.000

0.002 0.000 0.000 0.000 0.000 0.000
1.0 0.419 0.152 0.029 0.007 0.002 0.000

0.418 0.152 0.029 0.007 0.002 0.000

0.000 0.000 0.000 0.000 0.000
1.2 0.392 0.105 0.026 0.005 0.001

0.392 0.105 0.026 0.005 0.001

0.000 0.000 0.000 0.000
1.4 0.313 0.105 0.017 0.003

0.313 0.105 0.017 0.003

0.000 0.000 0.000
1.6 0.567 0.100 0.013

0.567 0.100 0.013

0.000 0.000
1.8 0.491 0.086

0.491 0.086

0.000
2.0 0.665

0.665

As will be seen later (3), the small nonlinear potential vertical force

can have an appreciable effect on the total pitch moment on the TLP, since

Its moment arm is typically greater than that of the horizontal forces

with respect to the center of rotation. Furthermore, the wave effects on

other structural members such as horizontal pontoons may not be negligible

depending on the gradients of these nonlinear potentials wiich persist

with depth.
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Table 1c.

NJ- 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Wl" 0.277 0.195 0.144 0.213 0.212 0.151 0.103
0,8 1.767 1.554 0.734 1.022 1.019 0.728 0.505

1.489 1.364 1.608 0.811 0,808 0.578 0.402

0.213 0.226 0.277 0.259 0.179 0.121
1.0 2.911 2.387 2.290 1.919 1.188 0.730

2.723 2.197 2.023 1.664 1.011 0.610

0.255 0.273 0.235 0.146 0.099
1.2 3.951 3.673 2.778 1.441 0.842

3.759 3.426 2.553 1.299 0.744

0.241 0.177 0.097 0.092
1.4 4.607 3.384 1.476 1.108

4.379 3.211 1.380 1.018

0.119 0.096 0.114
1.6 5.309 3.455 2.472

5.190 3.361 2.360

0.112 0.107
1.8 6.142 4.125

6.040 4.020

0.079

2,0 6.684
6.605

In the analysis of lightly-damped vertical motions of a TLP, we are

primarily concerned with the details of the excitation near the heave-

pitch natural frequency M n. In Figure 3, we plot the springing force and

moment ROA's for u+=2.6,3.0, as a function of the difference of the

interacting frequencies, 2#=-wJ-1l. For comparison, the second-order

contribution from quadratic products of first-order potentials only are

also shown. In all cases, the first-order potential approximations are

inadequate, underpredicting the horizontal force for lower values of p and
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substantially underpredict the vertical force and pitch moment. For the

horizontal force and moment, there is a gradual decrease of the total RAO

with p, although the first-order potential component appears almost

constant with increasing frequency difference. For the vertical force,

fqJl+ is almost zero, while fpjl+ decreases rapidly with increasing , so

that the penetration of + with depth is primarily due to waves which are

relatively close In frequency.

3. RESONANT VERTICAL-PLANE MOTIONS AND TENDON TENSIONS OF A TLP IN LONG-

CRESTED IRREGULAR SEAS.

In this section, we consider the resonant wave excitations and tendon

loads of a TLP in rregular seas. The incident waves are assumed to be

unidirectional, although it is now known (e.g. Kim & Yue; 1988a) that this

is not necessarily a conservative assumption when second-order effects are

concerned.

For numerical illustration, we use a simplified TLP model consisting

of four circular cylindrical legs (radius a=25', draft H=100') connected

by four circular cylindrical horizontal pontoons (radius 12.5', length

150', and centerline depth 82.5'). The legs form a square with center-to-

center distance 2L=200' and the TLP is symmetric with respect to the x and

y axes which are fixed at the center of the platform in the quiescent free

surface and z is positive upwards. The main particulars of the TLP are

summarized in Table 2.
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Table 2. Main particulars of the TLP.

Total ms: NM - 1.8 x 106 slugs
Total displaced mass: AB = 2.14 x 106 slygs
Total moment of inertia: IXX= IY 1.5 10Ou slug-ft2

Location of the center of gravity: zG = 2Yft
Location of the center of buoyancy: ZB = - 60 ft

Number of tendons: 16 tendons, 4 on each leg
Individual tendon stiffness: kt = 1.2 x 106 lbf/ft
Tendon length: lt = 1400 ft
Total submerged weight of tendons: Wt = 5 x 10° bf
Total tendon pretension: To = 1.1 x 10 / lbf

We focus on the motions of the platform near its vertical-plane

natural periods, n. While the calculation for the single leg in §2 is

accurate and exact in the context of a complete second-order theory, we

make several important simplifications in this section whose validity must

be tested against experiments and three-dimensional computations for the

whole TLP. In view of the high natural frequencies compared to draft ,

and the rapid decrease of the QTF with frequency difference (Figure 3)

(i.e, longer waves do not contribute appreciably), we ignore wave effects

on the pontoons and include only their infinite-fluid properties. As

pointed out earlier, this may not be fully justified in view of the

penetration of the nonlinear potential in depth. Similarly, since

wn2 L/g>>l, we ignore hydrodynamic interactions among the legs (including

phasing), which may be conservative. For this problem; an exact

interaction theory for first-order effects (Kagemoto & Yue; 1986), and a

wide-spacing approximation for second-order diffraction (Abul-Azm &

Williams; 1988) can be applied, but is not pursued here in view of the

other simplifying assumptions and uncertainties (for example, damping).
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For a perpendicular incidence angle, the yaw and roll motions are not

involved and we consider the three degree-of-freedom 11nearized equation

of motion of the TLP:

(+a) + bx + cx f (3.1)

where xT=(xl,x2,x 3) are the displacements in surge, heave and pitch; m,a,

b,c the mass, added mass, (linearized) damping, and linear restoring

(stiffness) matrices; and f the exciting force vector.

For the wave exciting forces, we ignore hydrodynamic interactions and

relative phases and write fl = 4F1, f 3 = 4F3, and f 5 = 4(F5 +LF3), where Fj

are the single-leg results including both first-order excitation at wave

frequency and all second-order sum-frequency contributions. The mass

matrix, m, is given in Table 2, and the added mass matrix, a, is obtained

by the sum of the frequency-dependent added masses of the legs (ignoring

interactions), Aj, plus the infinite-fluid added mass of the pontoons,

AP: all = 4All + AP11 ; a33 = 4A33 + AP33; a15 = a51 = 4A1 5 + AP15; and a55

= 4(A5 5 + L2 A33) + AP5 5. Assuming vertical-plane natural frequencies in

the range of 2.5-3 rad/sec, (first order) radiation calculations give All

" .24 x 106 slugs, A3 3 .06 x 106 slugs, A1 5 -.13 x 108 slug-ft and A5 5

= .08 x 1010 slug-ft2, which remain fairly constant over the frequency

range. The linear restoring matrix coefficients can be calculated from

Table 2: cll = (To -Wt/2)/lt; c33 = 16 kt + 4rpga2 ; c15 = -H c1 l; and c55

= H2 cll + L2 c33 - zG (Mog) + B (ABg).

For high-frequency motions of the TLP, the damping is very small and

estimation of b in (3.1) is at the same time difficult and important. The

total damping is, in general, a sum of wave radiation damping, viscous
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damping and mechanical damping. For wave damping, an estimate can be

obtained from four times that of individual leg damping, B. From linear

radiation calculations, we have 4B1 1
= (7.6 2.4) x 104 slug/sec; 4B1 5 =

(-3.8 -0.9) x 105 slug-ft/sec and 4B55 (5 1) x 105 slug-ft2/sec for

frequencies in the range of 2.5 3 rad/sec. The viscous drag is

associated with boundary-layer friction, separation and vortex shedding.

For TLP vertical motions, the amplitudes are small (relevant Keulegan-

Carpenter number << 1) and the viscous effects are dominated by skin-

friction drag. We estimate these forces for small Keulegan-Carpenter

numbers from empirical models (e.g. Pearcy; 1979, Jonsson; 1978),

corresponding to flows such as perpendicular cross flows over cylindrical

members, parallel flows on side walls, and vertical flows against the

bottom of the legs. We obtain the following estimates of viscous damping,

bV , for the TLP: bV1 1 " 8 x 102 slug/sec, b 3 3 9 x 103 slug/sec, b 1 5

- 6 x 1Q4 slug-ft/sec and b 5 5 8 x 107 slug-ft2/sec. These damping

coefficients are obtained after equivalent linearization for motion

amplitudes of -0.5 ft at the corner legs, and decrease approximately

linearly with decreasing motion amplitudes in that vicinity. From the

above, we observe that for heave and pitch motions, viscous damping

dominates wave damping while the opposite s true for surge motions.

Hydrodynamic estimates of damping coefficients represent lower-bound

values, since they must, in general, be augmented by mechanical/material

damping, especially when external damping devices are employed. On the

other hand, the present viscous damping coefficients are probably high (by

a factor of about 5) since the actual vertical leg displacement rms (from

Table 3, say) is only O(0.1').
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The heave motion in (3.1) is uncoupled and we have:

(Mo + a3 3)' 3 + b3 3 3 + 3 3 3 f3 32)

The natural heave frequency is given by 3 = (c3 3/(Mo+a33))
1/2 - 2.74

rad/sec, and the heave response RAO is

1/c33

3 = I x3 /f 3 [ {l-(w/3)2}2+ (2S3w/"3)
2 1/2 (3.3)

where the damping ratio in heave is defined by S3 b33/2J(M0+a33)c33 -

The equation for the surge-pitch coupled motion is given by:

[ M+ a11 MOZG+ a 15 1 [X 1 + [b 1 1 b1 51 [X1 + [c 1 1 15 1 1 f= 1l

MOZG+ a1 5 Iyy+ a55 x5 b15 b5 5J X5 C15 55 X5 5

(3.4)

Considering the undamped homogeneous equation of (3.4), we obtain the two

natural frequencies and eigen-modes: () n+ 2.86 rad/sec, xlz 0.16 Lxs;

and () un- 0.046 rad/sec, LxV 2.6 x 10 - 4 x1. The first mode is a

high-frequency surge-pitch coupled motion with a center of rotation at Zc-

-.16L; while the second mode is essentially a slowly-varying surge motion

which does not contribute to springing tendon tension loads and will be

ignored hereafter. For the high-frequency mode (hereafter referred to as

'pitch' mode), we substitute xl = .16Lx5 in (3.4) and obtain the pitch

modal equation:

mo x5 + bo X5 + Co x 5 = fo

where the modal total mass, damping and restoring coefficients are given
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by mob (Iyy + a55) + .16L (MoZG + a15) 2.35 x 1010 slug-ft2; bo b5 5 +

.16 L b15; co c55 + .16Lc15 19.2 x 1010 lbf-ft; and fo f5 - Zc fl.

The modal response RAO is then given by:

x5 /co
Z. 1 7 = o +22 _2+21/2 (3.6)

0 n [ E1 -( O + (2So/wn)

where the modal damping ratio is o bo/2Jmoco.

The tendon tension load RAO's for heave, H3, and "pitch"'', Ho ,

motions are simply ktZ3 and ktLZo. These are plotted in the neighborhood

of the natural frequencies for a range of damping ratios 0.05%, .1X, and

.2%, in Figure 4. Note that our earlier estimates for wave plus viscous

damping give values of g= 0.06% for b3 3 and b5 5. From (3.3) and (3.6), we

see that the peak response amplitudes are inversely proportional to the-

damping ratio.

In (3.2) and (3.5), the modal exciting forces are respectively f3 =

4Fz and fo = f5 - zcfl = 4 (My + LFz - zcFx) for the heave and pitch

motions. The single-leg forces consist of a first-order linear component

due to incident waves near the natural frequencies, and second-order sum-

frequency components due to combinations of longer waves whose sum of the

frequencies are resonant. From linear diffraction calculations, the

first-order force and moment RAO's for a single leg are: Fx(1)l/pga2A

.336; Fz(l) 0; and My(1)1/pga3Az 0.051; at rw 2.8 rad/sec. For typical

ocean spectra, the second-order contributions dominate (see Table 3).

From Figures 3 for the case w+= 3 rad/sec and =O0, we see that LFZ(2) and

zcFx(2) contribute up to 25% and 20%, respectively of the total 'pitch'

moment fo. Surprisingly, for small , the heave force F( 2) has a greater
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effect than the surge force Fx(2) because of the longer moment arm L

compared to Zc. On the other hand, Fz(2) decreases rapidly wth p, so

that its overall contribution to the total pitch moment is smaller than

Fx(2) for a typical spectrum.

We now consider the heave-pitch response of the TLP in irregular

waves. As input, we use the two-parameter Pierson-Moskowitz spectrum for

fully-developed seas:

4 H2

S() = 5 Exp [ ( )4 r (3.7)

where nm and H1/3 are the mean frequency and significant wave height,

respectively. For numerical illustration, two different conditions are

considered - sea state A: H1/3= 20', Tm;2/wm= 8 sec; and sea state B:

H1/3= 8', Tm= 6 sec.

From (2.5), we see that the quadratic input wave energy at springing

frequency + due to two components in the spectrum frequencies 2# apart is

S(u+/2+#)S(w+/2-s). This is plotted in Figure 5 for the two spectra A, B,

for w+ = 2.6 and 3.0 rad/sec respectively, as a function of the frequency

difference . Note that the maximum quadratic input is, in general, not

at /s= 0 but increases with , reaching a peak before rapidly diminishing.

Taking into account the rapid attenuation with of the square of the

exciting force QTF (Figure 3) in the integrand in (2.5), however, the

final contribution to the resonant response from long and short wave

interactions (large ) is still relatively small.

Performing the integral (2.5) for the full TLP, we obtain the spectra

of the second-order sum-frequency modal excitation in heave, Sf3, and
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pitch, Sfo. Figures 6 show these results In the vicinity of the

respective natural frequencies. The results are compared to the

approximation of Petrauskas & Liu (1987) in which contributions of the

second-order potentials are excluded. The excitation spectra are

underestimated by a factor of 5 or more in the approximate theory.

Finally we calculate the TLP motion response and the resulting

tension loads. The total tendon response is given by x3 + Lx5. For

simplicity, we consider the heave and pitch modes separately and calculate

the spectra of the tendon-tension load due to these uncoupled motions:

Sr3(y)= H3(&)j2Sf3(W), and So(&)= IHo(v) 12Sfo(w), respectively. The

variances of the tendon-tension loads, a2, are simply the areas under the

curves:

2 = S.(w) d = IH(w)12 Sf(w) d (3.8)

O 0

Since the damping ratios are small, the width of the peak in H(u) is

narrow compared to the rate of variation of the excitation spectrum and

(3.8) can be approximated by:

k I

2~ Sf(w n ) I IH(w)1Z dw = Sf(n) ( 4 )2 3 (3
0 n

upon evaluating the definite integral analytically. Thus the variance of

the tendon load is proportional to the value of the excitation spectrum at

natural frequency and inversely proportional to the damping ratio.
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Table 3. Summary of tendon tension load rms (in kips) for a damping ratio
of Ad 0.05 .

Spectrum A Spectrum B

first-order excitation only

heave mode: e3 L 0 0
pitch mode: oL 10 7

approximate theory without ~+
heave ode: 03~ 0 0
pitch mole: 0o+ 47 21
o+ + L 57 28

complete second-order theory
heave mode: 3+ 12 6
pitch mode: o+ 111 51
a+ + L 133 64

Table 3 summarizes the tendon-tension load rms (for =-0.05%) for the

present complete theory compared to that obtained by ignoring the

contributions of the second-order potentials, as well as linearized first-

order results. By including the contributions of the second-order sum-

frequency potentials from all bichromatic frequency pairs in the spectrum,

the present estimates of the tendon load rms are two to three times

greater than those using quadratic contributions of first-order potentials

only, while the results from first-order theory only are totally

inadequate. In the complete theory, the tendon load rms due to second-

order sum-frequency heave forces is only slightly over 10% of that due to

pitch, although the result may be quite sensitive to the draft/radius

ratio of the legs.

We have considered only normal (0 degree) wave incidence here. The

calculation for other incidence angles is similar. For 45 degree
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Incidence, the restoring moment is provided by only two of the four legs,

and may be the more critical case for tendon design. For short-crested

irregular seas, the present analysis can be readily extended. Without a

careful analysis, however, it is unclear whether ignoring the wave

directionality will necessarily result in a more conservative design.

4. CONCLUSION

The complete second-order sum-frequency diffraction theory for

axisymmetric bodies is applied to a TLP leg to obtain the second-order

sum-frequency wave force quadratic-transfer functions for an arbitrary

pair of incident wave frequencies. Ignoring hydrodynamic nteractions

among the major member and wave effects on the pontoons, these QTF's are

used in the motion analysis of a four-leg four-pontoon TLP in the presence

of an irregular sea. Some of the major findings are:

1) The effect of the second-order sum-frequency potential is a major part

of the total second-order forces and moments on a leg. As the difference

between the two incident frequencies ncreases, this effect is decreased

but may still be comparable to quadratic contributions of the first-order

potential.

ii) The second-order potential attenuates slowly with depth. The vertical

forces on a leg even at high frequencies may not be small and contributes

measurably (10% In this case) to the tendon loads. This effect is more

important for small frequency differences of the incident waves. The

effects of the second-order potential velocity and pressure on the

pontoons may not be negligible in general.

iii) The springing excitation spectra in irregular waves is increased by a
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factor of five or six when effects of the nonlinear sum-frequency

potentials are ncluded.

iv) The tendon-tension load rms is two to three times larger than that

predicted by an approximate second-order theory using only first-order

potentials. This explains the large discrepancies between TLP

measurements and the approximate wave-theory predictions reported by

Petrauskas & Liu (1987).
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Figure 1. The second-order double-frequency horizontal force on a bottom-seated vertical cylin-
der, radius a, depth 4a, due to a regular incident wave, wavenumber ka, amplitude A. The
present complete theory (- · -) is compared to the measurements (0) and approximate the-
ory (--) of 4], as well as experimental data (A) attributed to [12] (from [4)).
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CHAPTER V

SLOWLY-VARYING WAVE DRIFT FORCES IN ULTIDIRECTIONAL IRREGULAR SEAS.

1. INTRODUCTION

Compliant deep-water structures and moored vessels often have very

small restoring forces, and are susceptible to large resonant responses

due to higher-order slowly-varying wave drift excitations. There have

been many investigations of the second-order slowly-varying phenomena in

the past decade, but they are mostly limited to unidirectional irregular

waves, while studies of the more realistic short-crested seas are

surprisingly rare.

A main difficulty of predicting second-order forces in general is the

need to include the contribution of the second-order potential which is

computationally difficult to obtain especially for three-dimensional

bodies. For slowly-varying excitations, a number of engineering

approximations have been proposed which include the index approximation of

Newman (1974) and the envelope method of Marthinsen (1983a). These

approximations assume that the spectra are narrow banded so that the exact

quadratic transfer function (QTF) can be approximated by its monochromatic

(mean drift force) value which is given from the first-order potential
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only. For many applications, the validity of a narrow-band frequency

assumption s confirmed, for example in the numerical work of Faltinsen

and Loken (1978) for two-dimensional bodies.

For multidirectional seas which are narrowly spread, the index and

envelope approximations can be extended in a straightforward manner,

although the additional assumption of narrow spreading can often be overly

restrictive as pointed out by Marthinsen (1983b).

The fact that the inherent difficulty in solving for the exact QTF is

not due to multi-directionality but to multiple frequencies leads us to

the present approach, where Newman's narrow frequency band approximation

is retained but the directional spreading is treated exactly. This is a

useful approximation since in practice wave energles are typically fairly

narrow banded and drift response periods very long, while on the other

hand wave directional spreadings are often not narrow especially when more

than one wave system is present. Thus the present work has a wider range

of validity for general short-crested seas, but is otherwise not

appreciably different from existing approximations in terms of analytical

complexity or computational effort.

To provide some understanding of slowly-varying forces in short-

crested seas, time-series simulations and spectral analyses of the forces

are performed for the present method and for the index and envelope

approximations. The statistics obtained from simulations agree well with

those from the power spectra. For the probability distribution of the

slowly-varying drift force, existing theories for the index and envelope

methods are reexamined and generalized. In the index approximation, a

remarkably simple closed-form probability density function (PDF) is
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obtained after taking advantage of the separability of summation

expressions, which can be interpreted as a special case of the more

general theory of Bedrosian and Rice (1971). This problem was also

investigated in Vinje (1983), which unfortunately contained an mportant

error. For the method of envelope, Langley(1984) derived the PDF for

long-crested waves, which we extend to multidirectional seas and obtain

also the probability distributions of related local variables such as the

local amplitude, frequency, wavenumber and direction. All these results

are confirmed by histograms obtained from direct numerical simulations of

the processes.

For llustration, we consider the special case of a uniform vertical

circular cylinder in the presence of combined storm and swell eas from

different directions. A surprising result is obtained which ndicates

that the amplitude of the slowly-varing force can be substantially

amplified when the wave systems are from opposing directions. This

previously unreported phenomenon may be related to the field experience of

Grancini et al (1984). Definitive experimental investigations are much

needed.

2. SLOWLY-VARYING DRIFT FORCES

We consider the second-order slowly-varying drift forces on a body in the

presence of rregular seas. The linear and second-order hydrodynamic

forces on a body due to stationary Gaussian random seas can be in general

expressed as a two-term Volterra series:
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Fl(t) + F2(t) ' f hl(r)(t-r) dr + f f h2(rlr2)C(t-1l)(t-r2 ) ddr 2

(2.1)

where hl(r) and h2(rl,72) are respectively the linear and quadratic

impulse response functions. For example, h2 (t-r1,t-r2) is the second-

order exciting force at time t due to two unit-amplitude inputs at times

r1 and r2 respectively. !(t) is the ambient wave free-surface position at

some reference point.

For unidirectional seas, the surface elevation (t) can be expressed

as a sum of frequency components:

Adit
c(t) = E a cos(wit + e) = Re E A e

1 1 (2.2)

where ai, wi, and ei are the amplitude, frequency, and phase of the i-th

wave component, and ei is in general a uniformly-distributed random

variable. We can rewrite the second term of (2.1) in an equivalent form

in bifrequency domain:

* (U-uj)t 1 (ui+uj)t
F2 (t) = Re EE AA j De e j + Re EE AA j S1j e

ij ij (2.3)

where ()* represents complex conjugate of the quantity. Dj D(uiwj)

and Sij _ D(wi,-wj) are respectively the difference- and sum-frequency

quadratic transfer functions (QTF), defined as the double Fourier

transform of h2(T1, r2 ):

S ~ -1 (irl-w r2 )
D (wi,wj = f f h2 (r1 2) e j dr 1dr 2"- -' (2.4)
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Hereafter, we focus only on the slowly-varying (difference-frequency)

part of the *cond-order force, (t), represented by the first term of

(2.3):

r(t) = Re EE AA Dj ei(yryj)t
jJ (2.5)

and Dij satisfies the symmetry relation:

Dtj = ji (2.6)

Note that (2.6) implies that h2(,r1 2)=h2(r2,T) which may not be true in

general for a quadratic system. However, such a symmetry can always be

achieved without loss of generality resulting in a simpler analysis.

The time-average of (t) which gives the mean drift force F, is obtained

by setting =j in (2.5):

F = E a D, 2 S() Do(w,) di

o (2.7)

where S(w) is the (one-sided) wave amplitude spectrum.

The exact QTF, Dij, in general depends on quadratic combinations of

the first-order potential, and also on the nonlinear potential of the

second-order problem. Since the seminal work of Molin(1979) and

Lighthill(1979), a satisfactory treatment of the second-order problem is

now available (e.g. Kim & Yue;1988c,d, Eatock Taylor et al.;1988), although

the computational effort is still quite substantial especially for

multidirectinal sea application. For monochromatic incident waves, the

difference-frequency component of the second-order force is steady, and

the single-frequency QTF, Dij, can be obtained in terms of first-order
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potentials only. For very low frequency excitations, such as those

relevant to the horizontal motions of a moored ship or deep-water

compliant platform, this fact can be exploited in a narrow-band

approximation, wherein the bi-frequency QTF, D, which depends on the

second-order potential is replaced by the single-frequency QTF, Diil, which

does not depend on the second-order problem:

Dij ' Di + O(Wl-W)

so that (2.5) can be approximated as:

Y(t) L- Re EE AA D ei(v · j)t
j t (2.8)

This approximation will be termed "index approximation" hereafter. For

narrow-banded wave spectra and/or for slowly-varying excitations due to

wave components close to each other in frequency, (2.8) should be useful

provided that the gradient of Dij with respect to frequency difference is

sufficiently small near the diagonal Dii (Ogilvie; 1983). Numerically,

the validity of (2.8) has been investigated by Faltinsen & Loken(1978) for

certain two-dimensional bodies and by Kim & Yue(1988d), Eatock Taylor et

al(1988) for three dimensional bodies.

For multidirectional irregular seas, we can write (t) as a double

summation with respect to both frequency and incident direction:

wit
;(t) = E aik cos(wit+elk) = Re EE Aik e

ik ik (2.9)

where aik is the amplitude of a wave component of frequency wi and

incidence angle Pk, and elk its uniformly distributed random phase. The

difference-frequency drift force in this case is given by:
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(t) - Re ££EE A kA1 DiJtkl e
tjkl (2.10)

where DiJkl D(wl,J,Pk,P1l) is the bichromatic-bidirectional quadratic

transfer function, i.e., the (complex) second-order slowly-varying force

due to the simultaneous incidence of two unit amplitude regular waves of

frequency and direction wu, Pk and wj, P respectively. As before, Djkl

satisfies the symmetry relation:

Dijkl Djilk
(2.11)

The mean force with respect to time can be obtained when i-t in (2.10):

F Re EE a a
ikI1k Diikl e (2.12)

(2.12)

where the time average F still depends on the set of random phases for a

specific realization. Upon taking the ensemble average with respect to

the phases, we have:

2rw 

E(F) = alk D1lk = 2 S(,p) D(w,w,p,p) ddp
k

0 0 (2.13)

If the input spectrum is narrow in directional spreading in addition to

narrow-banded in frequency, Newman's index approximation can be extended

to the angular spreading and we write:

r(t) - Re £EE A kAl D kk e

fijkl ik JI Diik(2.14)

where Diikk, the QTF for a monochromatic wave with direction Pk, can again

be obtained in terms of the linear wave-body interaction problem only.
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Although the assumptions of narrow input frequency band and/or

slowly-varying motion responses are usually quite acceptable, the

analogous requirement of narrow spreading in incidence direction is often

overly restrictive, and the approximation clearly falls when one is

interested n two or more storms or storm-swell combinations from

different directions. A much more reasonable approach is to assume

narrow-bandedness for the frequency only but leave the directional

spreading arbitrary in (2.10):

ikl Aiki e(wi-wj)t
(t) Re EEEE AkAjl D i e

ijkl (2.15)

This is the basis of our present approximation which has a larger range of

validity than (2.14) for general short-crested seas, yet the analytical

complexity or computational effort required are in fact not appreciably

different. This is due to the fact that the major difficulty in

calculating the exact QTF in (2.10) arises from bichromaticity and not the

directional spreading. Thus, the monochromatic-bidirectional QTF Diikl

can still be evaluated in terms of the first-order potential only. A

derivation of Diikl utilizing the far-field approach is given in the

Appendix D. Diikl can be interpreted as the mean drift force due to an

arbitrary combination of two waves of the same frequency from different

directions.

Equation (2.13) for the ensemble-averaged mean drift force can be

recovered identically from either (2.14) or (2.15), and the reduction of

the mean drift force in the main direction due to directional spreading is

given by the ratio of (2.7) and (2.13):
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2o o o

0 0 0 (2.16)

An alternative but similar approach to the index approximation is the

"envelope method" first suggested by Hsu and Blenkarn(1970) who regarded

each element of a time series as part of a regular wave so that the

slowly-varying drift force could be obtained from successive mean drift

calculations within each element. This approach was placed on a somewhat

more rigorous basis by Marthinsen(1983) using the concept of a modulated

incident wave. For later reference, the formulation of the envelope

method is outlined here. Consider the Hilbert transform pair for the

ambient wave:

t a tsin ( t+el)
(2.17)

If the input spectrum is narrow-banded, (t) and (t) can be rewritten in

the.form of a slowly-modulated wavetrain:

{Rt) (W i((-Wp)t+ei) iwpt ( i(Wpt+9(t))

where a(t) and (t) are the amplitude and phase of the slowly-varying

envelope, and p the frequency of the carrier wave:

a2(t) = e(t) + 2 (t)

@(t) + pt tan-1/(t)/(t)]

Using the local frequency, L, defined as the time derivative of the

phase:
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ML(t) - p + dt (2.20)

the slowly-varying drift force can then be approximated by:

F(t) ! a2(t) D(WL(t),uL(t))
(2.21)

Note that since Dii is always positive, according to (21), Ft) is also

positive definite.

If the input directional spectrum is narrow-banded in both frequency

and direction, this envelope method idea can be extended directly to

multidirectional random seas by considering the Hilbert transfor pair:

ix. t3) = EE ak Lson (w1t - k x + ek)
(2.22)

which can be rewritten in the form:

5 X't Re a~xtt) i[Wp t-kpox+e(x,t)]
{4x'tl) = {IJ a(xt) ePt (2.23)

IV X.t = M (2.23)

In this case, the amplitude and phase of the envelope are slowly-varying

functions of both time and direction. The local frequency and local

wavenumber vector are defined as:

WL(xt) = p + at(x.t (2.24)

kL(x,t) = (kLcosL,kLsinL) = kp - V(x,t) (2.25)

where the local direction PL(x,t) is given by:

PL(x,t) = tan- 1 [(k psinnp-89/8y)/(kpcosPp-8e/8x)] (2.26)

If we choose x=O as the reference point (for the definition of the QTF),
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the slowly-varying drift force is now given by:

P(t) a2 (t) D(WL°WL'PL°L ) (2.27)

where L and PL are evaluated at x-O from (2.24) and (2.26), and (t) acts

instantaneously in the direction PL.

We point out that although in certain applications it may be more

convenient to use the local wavenumber kL instead of the local frequency

WL in (2.21) and (2.27); this cannot be done by direct substitution of the

(deterministic) dispersion relation which is no longer valid between the

random variables.

3. TIME-SERIES SIM'ATION AND SPECTRAL ANALYSIS

For a given input amplitude spectrum S(w), a time-series for the zero-mean

Gaussian unidirectional seas can be realized by summing a large number of

wave components with random phasesi ):

N

(t) = E J2 S(Wl)Aw cos(wtt+e 1)
1=1 (3.1)

Here N and Aw are the number and interval of frequency divisions, and et

is a random phase uniformly distributed between 0 and 2r. The time series

1) As pointed out by Tucker et al(1984), the component amplitudes must in
general be calcuated from the Rayleigh distribution, while (3.1) relies
on the central limit theorem to guarantee the Gaussian property of f(t)
in the limit. In this work, we use the latter for the sake of more
direct results such as (3.7).
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(3.1) has a periodicity of 2r/A, so that a sufficiently small 6A(large N)

is necessary for long-time simulations. This can be prohibitive for the

direct simulation of (t) where the operation count typically ncreases as

N2 . Thus, for long simulations, we adopt a modified method and write:

N I

(t) = £E 2 S(wui)w cos(wut+et)

(3.2)

where iuj=-w+6w, and 6vu is a random perturbation uniformly distributed

between -Au/2 and hw/2.

Short-crested irregular seas can be simulated in a similar way:

N K I

(t) = E 2 S(w t ,p k ) AwAp cos(w i t+eik)
1=1 k=1 (3l3)

where n addition the incident directions are subdivided nto K ntervals

of increment angle Ap, and elk is a random phase uniformly distributed

between 0 and 2 n -P space.

For a given realization of (t), a simulation of (t) can be obtained

from the QTF by evaluating the series (2.5) or (2.8), or the expression

(2.21), at each time instant for unidirectional seas; or alternatively

(2.10,14,15) or (2.27) for short-crested seas. If direct summation is

used (eqs. 2.5,8,10,14,15), the QTF is calculated once for all arguments

and stored for later times. When the envelope method is employed (eqs.

2.21,27), however, the QTF need to be calculated at each time instant for

the instantaneous local frequency and direction. To avoid possible bias

in (t) due to a particular sets of random phases, several simulations

with different sets of random phases are typically made, and their

statistics averaged (Jefferys; 1987).
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For the nput directional spectrum, we use a Person-Moskowitz

spectrum with cosine-powered directional spreading where the separability

with respect to frequency and direction is assumed:

Sp(w) S(w) Sn(P)

S(w) .0081 2 e -0.74(g/U)4

Sn(p) = Cn cos2p n=0,1,2,...; -r/2 p 5 r/2
(3.4)

Here g is the gravitational acceleration, U the wind speed, and the

normalization Cn n (3.4) is chosen so that I Sn(P)dp = 1. As 

approaches infinity, the unidirectional spectrum S(w) is recovered.

For the given directional spreading (3.4), the spreading reduction

factor Rm in (2.16) can be obtained n closed form for vertically

axisymmetric bodies:

r/2
Rm = Cn cos2n+lp dp = 2 (2nl!)2

-r/2 (3.5)

where n=(n-2)!!n and 1!=0!!-1.

The spectrum of the slowly-varying drift force, SF, can be expressed

in terms of the wave spectrum for the preceding approximations. We

rewrite (2.5) for (t) in the form:

P(t) 2 aaj IDlj.I cosU(Vl-wj)t + eI - ej + lj]
ij

with (3.6)

D = IDoj e 
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where the case i-J (i.e. F) is not included here. The autocorrelation

function RF() is then given by:

RF(f) = F(t)F(t'r~) = 2 EE aa ID J12 cos( 1 -wJ)

(1I)

wj o
Ili 0 (3.7)

After a change of variables (-wj=#, uj=w) and using the Wiener-Kinchin

relation, we obtain the spectrum of the exact (t):

tl2
SF() = 8 | S(w)S(w+#) ID(u, +p)l 2 dw

o (3.8)

For the index approximation (2.8), we can follow a similar procedure and

obtain the spectrum:

SF(F) " 2 j S(m)S(w+F) [D(.,w)+D(Y+p,w+#)]
2 dw

o (3.9)

In the case of multidirectional seas, the time-averaged

autocorrelation function RF(T) for (2.10) is still a function of the

phases. Thus if we take ensemble average over the random phases, and

using the symmetry relation (2.11), we obtain the ensemble-mean

autocorrelation function:

E[RF(r)] = 2 E£ k aikajl IDijkil cos(wj-wj)r(klJ
(>j)

- 189 -



w m 2w 2r

8 iv 1 fdVij IdPk fdPI S("iIPk)S(NJUgl) IO(mi "JIPkIPI)1 2 Cos(V-V

j o0 o o 0N1J 0 O 0(3.10)

The spectrum of the exact (t) is then given by:

m 2r 2r

SF(/) 3 8 dI IdPk dp1 S( cPk) S("+, P) ID(w,w+pPk, Pl)12

o o o (3.1.1)

Corresponding results for the double index approximation (2.14) as well as

our present approximation (2.15) are respectively:

2r 2 r

SF(p) 2 d Idpk fdPl S(NPk) S(w+P.Pl)[D(wwk.tpk)+D(w+'"+p'Plpl)]

o 0 0 (3.12)

and

* 2r 2wr

SF(p) 2 fId IdPk fdll S(.Pk)S(+#.pl){lD(.w,PkPl)l+ 1lD(2+. P l Pk2
o 0 0

+ 2 ID( uPk,.Pl))1 ID(W+,w+l,P1Pk)I coS[(w,.PkPl)+(W+/a,w+P,PlPk)]

(3.13)

Provided that the wave spectrum is narrow-banded in frequency, the

approximation (3.13) gives reasonable results for small for all

directional spreadings. When one is interested in the response spectra of

lightly-damped low-natural-frequency systems, the prediction based on

(3.13) s even more reliable since the transfer function of the system can

be expected to filter out the relatively poorly approximated higher-

frequency range.
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4. APPLICATION TO STOI-SWELL NIXED SEAS

The approximation (2.15) allows us to study the slowly-varying forces

on a body due to the simultaneous presence of seas from different

directions. Grancini et al(1984) reported an interesting field

observation of the SALS mooring system and a tanker ship nstalled in the

Sicily Channel, where large dynamic roll motions were observed when

combined storm and swell seas from different directions were present. To

characterize such sea conditions, we write the total spectrum of the mixed

seas as a sum of two spectra:

S(,P) = S(,p) + S2(w)6(p-pO) (4.1)

where S1 is the spectrum of a short-crested storm sea, and S2 that of a

long-crested swell with direction Po. From (2.7) and (2.13), the mean

drift force in waves specified by (4.1) can be obtained by simply

superposing each contribution:

2r 

E(F) 2 fdjdp S1(v.,) D(vY,P.P) + 2 fd S2 (w) D(w,&,popO)

o0 o (4.2)

This superposition is, however, no longer valid for the spectrum or the

variance of (t). Using spectrum (4.1) in (3.11), we obtain the spectrum

of the slowly-varying force (t) in the storm-swell irregular seas:

SF(p) SFl()+ SF22 SF12 (4.3)

where

- 2f 2r

SF () = 8 fd fdPk fdpl S ( w ,Pk ) S1(w+1 ,P 1 ) JD(w.W+uPkPl)1 2
11 (4)0 0 0 ~~~~~~~~~(4. 4)
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SF22 ) 8 d S2(U) S2(w+P) ID(w.p.,Po0 P0)l 222 0(45)
(4.5)* 22

SF1(#) 8 fd fdp [Sl(w) 2,p (w) S( ) D(.,+.,P,P 0)1
2

12 0 0

+ S1(w+P.p) S2() ID(w,w+#,PoP) 22 ]

(4.6)

The first and second terms of (4.3) are respectively contributions from

the storm and swell alone, while the last term represents the additional

contribution to the spectrum due to the interaction between the storm and

swell. Because of this third term, the variance of (t) n a storm-swell

mixed sea is always greater than that obtained from direct superposition

of the ndividual contributions. If the storm and swell spectra do not

overlap and are not close n frequency, (4.6) shows that the nteraction

effect is confined to large # and s therefore relatively unimportant to

low-natural-frequency systems. On the other hand, a change to SF near =O

is critical to slowly-varying response. In this sense, usual low-

frequency swells are less mportant than those whose frequency is within

the energy band of the storm waves. Confining ourselves to this case, the

narrow frequency band approximations of the previous sections can be

applied directly. For the double ndex approximation (3.12), the

interaction term can be written as:

* 2Y

SF12 () = 2 fdw fdp { S(w+p,p ) S2(w) [(,o)+D(w+,)] 2

0 0

+ S1(w,p) S2(W+P) [D(w,P)+D(i+s,o)] 2

(4.7)
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while the approximation (3.13) gives:

- 2r

SF (/) 2 fd. fdp { [S 1 (+,p)S 2 ()+S l1(,p)S 2 (w+p)I [ID(v.i,pop)1 2

0 0

+ID(.+,.+p,, po) 12 + 2ID(.u,Upo)IID(+i,i+p,,8Po)l ·

cos(#(w,w,p0op)+ (w+,w+ppO) )] }
(4.8)

Since (4.8) is not restricted to narrow spreading, it is of interest to

investigate the dependence of SF on different incidence directions, Po, of

the swell with respect to the storm waves. The results clearly depend on

the behavior of the QTF in Pk-Pl space as well as the shape of the input

directional spreading. As will be shown in our numerical results, the

interaction effect is sensitive to changes in the direction of the swell,

and large amplifications of the slowly-varying force is often possible.

This phenomenon has important implications for the operation and safety of

moored or dynamically-positioned vessels in mixed seas.

5. STATISTICS OF SLOWLY-VARYING DRIFT FORCES

In addition to quantities such as mean, variance and frequency spectrum,

the probability distribution and in particular the extreme values of the

slowly-varying drift forces are of engineering importance. For general

nonlinear Volterra systems, a probability theory was developed in

communication theory (e.g., Bedrosian & Rice; 1971), and was first applied

to second-order wave forces by Neal(1974). In contrast to time-invariant

linear systems, the second-order force in a Gaussian sea is in general not
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a Gaussian process, so that information on the force spectrum alone is

of limited usefulness. For the index and envelope approximations, the

probability density function (PDF) of (t) can be obtained in closed form,

while for the exact QTF, the PDF must be calculated numerically.

Index Approximation Method

Applying the ndex approximation, the summations in (2.8) and (2.14)

become separable, and the PDF of can be obtained analytically. The

following approach was essentially followed in Vnje(1983), which

unfortunately contains an error in the starting assumption in applying

Newman's index approximation to both sum- and difference-frequency terms

(his Eqs.4 & 5) leading to incorrect results.

If we define the Hilbert transfom pairs (x,X) and (y,Y):

=E aj os { (Wjt+E = E a cos (Wr t+Ei)
sin ) j kj i ( sin 

(5.1)

then (2.8) can be written in the form:

F(t) = x(t)y(t) + X(t)Y(t) (5.2)

where x,X,y and Y are zero-mean Gaussian random variables. The covariance

matrix of these four variables is given by:

1)

Cov(x,y,X,Y) =

ax m 0 0

m 2 0 0

o 0 a2 m

O O m a
V.

where

2
x = 0 = I S(w) dw

0 (5.4)
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a2 = f S(W) 2 (w,u) dw

o (5.5)

and

m = E(xy) = E(XY) = f S(w) D(w,u) dw
o (5.6)

The mean value of (t) is then:

E(r) = E(xy) + E(XY) = 2m (57)

and s identical to (2.7). Noting that xy and XY are Independent random

variables whose covariance is zero, the variance of is simply:

o2 2 +o 2 2 2 2 2 2
a2 _xy + X2y; with axy= ° = xy +mF xy wtxy XY x+m (5.8)-.

This result can also be derived from (3.9). It is convenient to introduce

the normalized Gaussian random variables z+ and z, which are mutually

independent:

z+ = [x/O y/y ] / 2(1 + p)
(5.9)

where

p = cov(xy)/Oy (5.10)

is the correleration coefficient of x,y. Defining the nondimensional

force fl xyl/axy, we can express it in terms of z+ and z_:

fl = z2(p+1)/2 + z2(p-1)/2 (5.11)

zi/2 have Gamma distributions whose characteristic functions are given by

(1-i8)-1/2. Eq. (5.11) is a special case of Bedrosian & Rice's general
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theory, where the corresponding equation contains an infinite sum of Gamma

distribution variables. From the independence of z+ and z, the

characteristic function of fl can be shown to be equal to:

Ifl () = { [1-i(p+l)9] [1-i(p-1) 9] 1/2
1

A similar analysis can also be performed for the random variable f2
-

XY/axoy. Using the independence of xy and XY, we obtain finally the

characteristic function of the random variable defined by f - /xoy =

(xy+XY) /xay:

If () = { [1-i(p+l)0] [1-i(p-1)9] }-1 (5.12)

Taking the inverse Fourier transform of (5.12), we obtain a remarkably

simple form for the probability density function p(f) which depends on the

single parameter p:

p(f) = exp { - f3)
2 1 : P > (5.13)

It is interesting to note that there is a small but nonzero probability of

negative f which is confirmed by direct numerical simulation. In the

limit of an extremely narrow-banded input spectrum (p.l), (5.13) is simply

the exponential distribution and f is always positive as is expected for

the case of drift force due to a single regular wave. The parameter p can

be obtained from (5.10), or equivalently from the result of spectra

analysis:

p = E(r) [2a2 - E2( )]- 1 / 2

Note that since by definition, IpI 1, it follows that the inequality,
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a? 2 E2 (F), is always true.

For multidirectional seas, the foregoing analysis can be extended in

a straight-forward manner using the Hilbert transform pairs (x,X) and

(y,Y) defined as:

x al { cos fy =
{ = EE aj { sin I (It+ej) l =E aik iikk( S } ({iEk)

nik s ( )
(5.14)

and identical results are reached upon substituting the following for

(5.4~6):

o 2r

a2 = a = fdw fdp S(,.p);

0 0

- 2r

0.2 = 2 = d dp S(.,p) D2 (w.. ,Pp)

0 0 (5.15)

and
d 2r

m = E(xy) = E(XY) = fd fdp S(w,p) D(wv,,p)

0 0 (5.16)

Envelope Approximation Method

When the envelope approximation is used, the requisite result for the

PDF can be obtained using multiple transforms of the local variables. If

we redefine the Hilbert transform pair:

(x t)) = a(x,t) {cs} (x,t) = E ai Con) [(w1- )t-(i-k )x+e]

the covariance matrix of the four slowly-varying Gaussian random

variables, g,/,gt and Vt, can be written as:

mo 0 0 m

0 m - 0

cov(g',V'ti't) O -m m2 0

m1 0 0 m2

(5.17)

(5.18)
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where the n-th central moment mn is defined as:

mn = (u-up) n S(u) d (5.19)
0

The choice of the carrier-wave frequency, up, is arbitrary at this point,

and we can diagonalize the covariance matrix by selecting up so that the

first central moment ml is zero. Thus, we set p=Ml/Mo, where the moment

Mn is defined as:

Mn _ f n S() du

o (5.20)

Then, from the independence of the variables .,/,gt and t, the Joint

distribution can be found easily:

P (5, ,-t4/t) = 1 e- ( 2+ 2)/mo + (2+ 2)/m2 ]/2

42 mom2 (5.21)

Transforming these variables to the set, {a,at,8,Gt}, and integrating with

respect to the dummy variables at and , we obtain the joint distribution

of a and Et :

P(at) a2 e-(a2/mo + a2 2/2)/2
p(a,St) t .2).

mO 4J2rm2 (5.22)

Integration of (5.22) with respect to At yields the well known Rayleigh

distribution. Upon further transformation of (5.22) into variables v and

WL, we finally obtain the Joint distribution for the slowly-varying drift

force and local frequency:
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p(,W L) 2 2 exp{ 2'[1/m o + (L-Ml/Mo) /m2]}

(5.23)

Formula (5.23) was also obtained by Langley(1984). However, his choice

of p=4(M 2/Mo), which do not dagonalize (5.18), led to an incorrect later

result for p(r). Integrating (5.23) with respect to L (or ) yields the

PDF of (or uL):

p() . f P(,wL) dL
-- (5.24)

1I' [1/m + (L1-M/Mo) 2 /m2]-3 1 2

p(u L) = 2mo4M2 11/m2 (C
(5.25)

The cumulative density function of L is given by:

prob(wL ) = (1 + e/l1+e2 )/2 ; where Ew = 'm/m 2 (-M 1/Mo)

(5.26)

From (5.25) we note that there is finite probability of negative L, which

is non-physical and for which -0, so that there is an ntegrable

singularity in the probability distribution of (Eq.5.24) at =0. Since

there is not an explicit relationship between the local frequency and

local wavenumber, a direct transformation of (5.23) or (5.25) cannot be

used to obtain the PDF for kL. If the probability density for kL is

desired, it is convenient to start with variables 5,1,gx and x instead.

The covariance matrix can then be dagonalized by selecting wavenumber of

the carrier wave kp = M2/Mog:
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No 0 0 0 

0 Mo 0 0 22
cox(fg )0 = 20 = dag [M,No, 2,u2]

0 0 0 a2 (5.27)

where

2 = f S(w) (2_. 2 )2 du = M4- M2/No

o (5.28)

and deep water is assumed. Note that for the Pierson-Moskowitz spectrum

(3.4), the moment M4 is unbounded and a suitable spectral cut-off is in

general required (see §6). A similar procedure leads to the Joint

probability distribution of F and kL:

p(,k) = expf [L/m + g(k M2/gM)2/ 2]
2 2 m (kL 1.5k L 2

(5.29)

and the PDF of F and kL are given respectively by:

p() = f p(?,kL) dkL

-- (5.30)

p(kL) = 2mo- [1/mo + g (kL-M2/gM 2]/ 2

(5.31)

Similar to (5.24), p(r) in (5.30) contains an integrable singularity at F

=0. The cumulative density of kL can be obtained from the integration of

(5.31), and is given by (5.26) with ew replaced by k defined as:

k gJM O (k-M2 /gMo)/a (5.32)

For multidirectional seas, the foregoing analysis can be extended by

using the Hilbert transform pair:
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x t a(xt) (cos= (x,t) = E ak cslX~tl lsinJ £ k1k stin [(kl-kp)xv-(it-Wp)t+e lk]

(5.33)

If we choose the direction and wavenumber of the carrier wave as Pp=O, and

k = M, 1 /gM o

where

tM*j f dv d S(vfl) (cosJ)

ij o osin (5.34)

the covariance matrix of the six variables, [{fx.!y.'ix.Vy} can again be

diagionalized to yield:

cv(§/'9x' 9 gSy'9ry ) = diag[MoMo,al'a2'Ul'2] (5.35)

where

o2 =MC =MC )2/M 2 = MS
1 42 (M2 0 2 4,2 (5.36)

and again deep water and symmetry of the directional spreading are

assumed. The joint distribution of these six variables are:

1P 3 expf[(2 +/ 2)/2M+g2 2 2/22+g2 22)/22]
o(2) Mo 2 Yu 0 (5.37)

Transforming (5.37) to the variables a,ax,ay,8,ex,ey , and integrating

with respect to the variables ax,ay and , we have:

p(a, ,2a3) expa2 2 2 2 2 2 2
P(axY) = 21oala2 exp{-a /M+g x/l+g Y /2/2 (5.38)

Integrating (5.38) with respect to x and y yields the same Rayleigh

distribution as (5.22), and transformation into the variables, ,kL,PL

gives the joint distribution:
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P(.,kL'PL) u IL' .

exp - 2D(k L ) [1/+g2 (kp-kLcosL) 2/2+(gksinL) 2/a2]}
(5.39)

where must have the same sign as D(kL,PL). The result (5.39) was also

obtained by VinJe(1985) via a much more indirect way. Integrating (5.39)

with respect to kL and pL leads finally to the PDF of (t):

a 2r

p() = dkL f dPL p(',kL'PL)
0 0

Note that there is no singularity at =0O in the above PDF since there is

no finite region in kL-PL space for which 0O.

For vertically axisymmetric bodies, the result is simplified:

p(r,kL'P L) 
92kLlIr

4oOala 2D2 (kL)OS 2 p L

F Q(kL,PL)
exp{- 2D(kL) cos PL }

(5.41)

where Q(kL,pL) is a quadratic polynomial given by:

Q(kLLp) = aO - alkLcosPL + a2k L cosL + a3k L

with

ao = MC /q ;4,2 a1 = 2gMC /q ; a 2 g92 (M/q - 1/MS 2) ; a3 = g2/MS 2a3 g 4,2

and q = MoC 2 - (2 1)2

The Joint distribution of kL and PL can be obtained from (5.41):

p(kLPL) = g2k L / M0al 2 Q2

Integrating with respect to kL gives the PDF of PL:
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2
P(PL) 2 , { 2/A + 2a-1.5 5 COS PL [r/2-tanl(-al cs PL/J0)] }

A = 4aoa3 + (4 0 2-al) cos (544)
(5.44)

which is the probability distribution of the direction of the slowly-

varying drift forces acting on an axisymmetric body.

For numerical integration of (5.24) and (5.30), it is convenient to

subdivide the domain of ntegration into three parts, so that for (5.30)

for example, we write:

o e

-. o eP(T) ' ( I +! +I j dkL ) = (l + P2() + P3(r)
In the first interval, -kLO, D(kL) is identically zero, and the

integral can be obtained analytically:

Pl(r) l 1 e erf[-(M2/M o) 1F/6 (5.45)

Thus, pl(r) behaves like a delta function at =0, and the contribution of

P1(r) to the cumulative density of r can be obtained from the probability

P(kL~O) in (5.32). In the second interval, OSkLIe, D(kL) is typically

small and P2 depends on the asymptotic behavior of D(kL) for kL<<l. For

uniform vertical cylinders (see Appendix D), D(kL) decreases as kL3 for

kL<<l, so that p2(r) has contributions only near =0 and decreases

exponentially for >)0(e3). The range of P2 can be limited near 0+ by

choosing a sufficiently small e, and the cumulative density obtained from

P(O•kLSe). The integrand in p3 is regular and the integral is readily

obtained by direct quadrature (Romberg quadrature is used here).
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Similar analyses and numerical procedure are used for (5.40, 41)

where both the limits kL+O and PL+r/ 2 are treated asymptotically. In this

case, negative values of are possible when IPLi2r/2 and there is no

singularity at =0 since is not dentically zero in any interval of kL

and PL.

6. NUMERICAL RESULTS AND DISCUSSION

With the preceding formulation, the exact mean and approximate slowly-

varying drift forces and statistics can be obtained for unidirectional and

short-crested rregular seas. For simplicity, we consider a vertically

axisymmetric body in deep water. Specifically, we choose a uniform

vertical cylinder of radius a=lOm, and a wind speed of U=30 knots in the

Pierson-Moskowitz spectrum (3.4). To ensure the narrow-bandedness of the

spectrum, the wave energy is assumed to be zero for frequencies ws.3s-1

and v21.3s-1 . In general, the narrow-bandedness can be quantified by the

parameter qs2--1-M 1
2 /MoM2 , where qs2 is equal to 0 for monochromatic seas.

For the present truncated spectrum, the value of qs is 0.27, whereas a

typical value for a North Sea wave spectrum is qs=0.3.

In this case, the monochromatic bidirectional QTF, Diikl, can be

obtained analytically and is presented in the Appendix D. Table 1 shows

the values of Dx(w,w,Pk,Pl) for a range of incidence angles Pk and P1, and

frequency 2a/g koa=0.5. Along the diagonal (Pk=Pl), the real part of Dx

(or Dy) has cosine (or sine) behavior, and the imaginary part is zero

since the single-wave QTF is real. It is interesting to note that the

magnitude of Diikl for different incident angles Pk•Pl can be several

times greater than that for a narrow directional spreading case.
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Table 1. Quadratic transfer function, Dkl=D(u,Wpk,Pl), for the drift
force in the x direction in the presence of two incident waves, frequency
vwa/g=koa=0.5, and incidence ales k and P1. The results are normalized
by pga. Note that Di1kl=Diilk

Real(Diikl):

I Pk/r =

Pl/r I -1 -.75 -.5 -.25 0 .25 .5 .75 1

-1 I -.286 -.214 -.083 -.012 .000 -.012 -.083 -.214 -.286
-.75 1 -.202 -.089 .000 .012 .000 -.029 -.118 -.214
-.5 I .000 .089 .083 .029 .000 -.029 -.083
-.25 I .202 .214 .118 .029 .000 -.012
0 I .286 .214 .083 .012 .000
.25 I .202 ..089 .000 -.012
.5 1 .000 -.089 -.083
.75 I -.202 -.214
1 1 -.286

Imag(D i kl):

I Pk/r=
P1r I -1 -.75 -.5 -.25 0 .25 .5 .75 1

-1 I .000 -.032 .152 .665 .962 .665 .152 -.032 .000
-.75 1 .000 -.077 .215 .665 .681 .275 .000 .032
-.5 1 .000 -.077 .152 .275 .000 -.275 -.152
-.25 1 .000 -.032 .000 -.275 -.681 -.665
0 1 .000 .032 -.152 -.665 -.962
.25 1 .000 .077 -.215 -.665
.5 1 .000 .077 -.152
.75 I .000 .032
1 1 .000

Given two regular waves of the same frequency, the mean drift force

on the body is in general a function of the wave amplitudes (al,a2),

phases (1,e2), and incident angles (P1.P2). Fixing the wave frequency at
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koa-0.5 and amplitude al=a2, we show in Figures la and b the mean drift

force n the x and y direction respectively as a function of the

difference in phase 6-eE2-e1, for the different incident angles P1=0, and

P2/=0,.25,.5,.75 and 1. For the main direction steady drift force Fx,

the maximum amplitude for P2=r, depending on relative phases, s almost

twice as large as that for P2=0. As expected, the drift force is always

positive for two ncident waves In the same direction, whereas Fx is an

odd function of he for waves in opposing directions. Thus the (phase

ensemble-averaged) mean steady force is still largest for P2=0. For the

transverse drift force, we note another nteresting result in that the

maxima for any he occur when 2 is at an obtuse angle 3r/4 rather than at

the normal incidence of 90'. These observations are, however, directly

dependent on the frequency of the incident waves. This is shown in

Figures 2, where the maximum (over all Ac) of the drift force in the

longitudinal and transverse directions respectively for P2=0 and , and

p2=r/2 and 3r/4, are compared over a range of wavenumbers koa. In both

cases, the ncident waves at obtuse angles have greater maximum F in the

long-wave range (koa < 2/3), whereas the opposite is true for shorter

waves. These deterministic results have much relevance to the case of

multi-directional irregular incident waves as will be discussed later.

When the directional spreading is small, the double-index and envelope

approximations give reasonable estimates, but fail as the directional

speading ncreases. Consequently. the interesting dual wave interaction

results above are not predicted by these methods. For example, Figure 3

shows the maximum (over all phase combinations) x-direction drift force as

a function of the second incident wave angle P2. Our exact result shows a
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minimum at P2-80', but a maximum Fx of over 1.6 times its value at P2=0

when the waves are from opposite directions. As expected, the predictions

based on narrow-spreading approximations are poor except for small values

of P2-

We next consider the time series of the slowly-varying drift force.

For these simulations, the input wave spectrum is subdivided into N=K=25

segments in both the frequency and directional domains. A sampling

interval of At= 2 seconds is used which satisfies the Nyquist criterion.

First we show the results for unidirectional seas (Figures 4) using the

envelope approximation, the index method, and an Inverse Discrete Fast

Fourier Transform (IDFFT) method suggested by Oppenheim & Wilson(1980).

The method of envelope always gives non-negative forces, and remains zero

whenever the local frequecy (or wavenumber) becomes negative. This is a

numerical confirmation of the integrable singularity observed earlier in

the PDF of r at =0. The index approximation, on the other hand, gives

negative values, and although the time history qualitatively resembles

that of the envelope method, the amplitudes in general tend to be somewhat

smaller. In contrast, the results from IDFFT using the spectrum of are

unacceptable since the second-order force is in fact not a Gaussian

process and only the frequency of r can be preserved by this method.

Similar results for short-crested seas with a directional spreading of

cos2p are shown in Figures 5. In this case, the envelope method gives

negative values whenever IPLI2r/2, and as pointed out earlier, has a

finite PDF at =0. The results from all three approximation methods

(envelope, index and the present one) are qualitatively similar, with the

present method predicting the smallest amplitudes, which is also indicated
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in the later spectral analysis results.

Using the time history data, the statistics of the slowly-varying

drift force can be calculated numerically. This is shown in Table 2 where

the results are compared to statistics obtained from the power spectra

(Eqs. 3. 9,12,13). Note that since the multidirectional simulations are

in general not ergodic, eight simulations with different sets of random

phases are made in each case, and the ensemble averages are used for these

and later results. From Table 2, we see that the statistics from

numerical simulations and theoretical predictions are in good agreement.

Envelope approximation overpredicts both the mean and variance of Fx,

whereas the present method for short-crested waves is overestimated by the

index method for the main direction mean force, but underestimated for the

transverse mean force.

Table 2. Mean, E(r), and standard deviation, a, of slowly-varying drift
forces obtained from time simulations and from theoretical power spectra.
All values are normalized by pga and given in units of m2. Results from
power spectra are in brackets ([...]).

Unidirectional seas

envelope approximation .942 1167
index approximation .803 [.804] .961 [.932]

cos2f directional spread seas

E(rx) E( ) aFx aFy

envelope approximation .749 -.012 .902 .388

index approximation .666 [.683] -.014 [0] .776 [.801] .375 [.369]

present method .680 [.683] -.003 [0] .696 [.746] .444 [.422]
m
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The spectrum of the slowly-varying drift force in a multidirectional

sea can be obtained in terms of the wave spectrum from (3.12) & (3.13) for

the index and present approximation respectively. These are plotted in

Figures 6 for directional spreadings of cos2p and cos8p. As the waves

become more short-crested, the longitudinal force results deviates more

from the unidirectional force spectrum. In all cases, the present

approximation predicts lower main direction but higher transverse

direction force amplitudes at all slowly-varying frequencies .

When the directional spreading of the incoming seas is not small, the

index or envelope approximations are no longer valid and the present

method must be used. To illustrate this, we consider the important case

of the simultaneous presence of storm and swell seas from different

directions. For definiteness, the storm sea is assumed to be given by

(3.4) (mo=1.55 m2) with a cos2p directional spreading about x=O, and the

swell is approximated as a long-crested monochromatic waves of frequency

Wo=. 6 rad/s and amplitude ao=42m, so that the storm and swell overlap in

wave frequency and have the same total energy. Eq.(4.1) for the swell

spectrum is now simply:

S2 (w) = (a2/2) 6(w-uo )

In this case, our approximation (4.8) reduces to a single integral with

respect to p. Five incidence angles of the swell, o/r=O,.25,.5,.75 and 1

are considered. In Figures 7, we plot that part of the longitudinal and

transverse force spectra due to the interaction of the storm and swell
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waves (Eq.4.3) for the different swell angles. Comparing to Figure 6a, we

note that the interaction spectra are typically much greater than that due

to the storm waves alone. The large amplification of the spectrum in

Figures 7 for certain obtuse values of Po especially for small is most

noteworthy. For example, in the case of the x-direction slowly-varying

force, the increase in the force magnitude near =0O due to storm-swell

interaction can be up to 4 and over 5 times larger for the case when the

swell seas are incident at 135' and 180' to the main direction of the

storm waves than when they are arriving from the same direction. For the

tranverse slowly-varying force, we again observe the interesting result

that the nteraction contribution is actually larger for a 135' swell

angle than one at 90' to the main storm direction. These observations are

also confirmed by direct simulations of (2.15). We remark that although

the variance of the slowly-varying forces due to storm-swell interactions

are greater for certain opposing swell angles, the net mean drift forces

are always greatest for the case of Po=O and po=r/2 for the longitudinal

and transverse directions respectively. These results have important

implications for ocean operations under storm and swell conditions such as

those reported by Grancini et al(1984).

Although the results of Figures 7 are anticipated from our earlier

deterministic calculations, we note that existing approximations such as

the index method are incapable of making such predictions because of the

narrow directional spreading assumptions. Thus a direct calculation of

the storm-swell interaction effect based on the double-index approximation

(4.7) leads to qualitatively incorrect results except for small values of

lo (see Figure 8).
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We now turn to the probability distribution of the slowly-varying

forces in unidirectional and short-crested seas. Figure 9 shows the index

approximation PDF and CDF for the main direction drift force x for three

different directional spreadings. For the short-crested waves used, the

probability densities are qualitatively similar and tend towards the long-

crested result as the spreading is decreased. As expected, the probabilty

of extreme values of x are higher for smaller directional spreadings. As

pointed earlier, there is a small probability for the drift force to be

negative. These theoretical PDF's are also confirmed by direct numerical

simulations of the time-varying drift force. This is shown in Figures 10

where there is good comparison between simulated histograms and the PDF's.

The results using the envelope method are likewise obtained. For

unidirectional seas (Figures 11), there is a finite probability for

negative values of the local frequency L or wavenumber kL, which results

in an integrable singularity in p(V) at =0. The histograms obtained from

simulations are also shown in Figures 11, and the comparisons are

satisfactory for all three local variables (amplitude, frequency and

wavenumber). The PDF and CDF of the slowly-varying force for different

directional spreadings are plotted in Figure 12. The probability of

extreme values are generally somewhat higher than those predicted by the

index approximation. (For example, for cos2p seas, the probability P(hŽ4)

is .012 for the envelope method but only .006 for the double-index

approximation.) For unidirectional waves x is always positive, while for

short-crested seas, the probabilty of negative force is nonzero

corresponding to the situation where the absolute value of the local

direction is greater than r/2. The PDF for x for uni- and multi-
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directional seas, and for the local direction PL, i.e. the instantaneous

directioof the drift force in short-crested waves, are compared to

simulated histograms for the envelope method in Figures 13. The

comparisons, ncluding the prediction of negative values in directional

seas, are quite reasonable.

Although the theoretical methods for unidirectional waves may still

be useful, a statistical theory for second-order forces in general

directional seas has yet to be developed and is a subject of current

research. In this chapter, we show only comparisons of the theoretical

PDF's of x obtained from the envelope and double-index approximations

which assume narrow directional spreading to the simulated histograms

using the present arbitrary-spreading approximation. This is shown in

Figure 14 for the case of a cos2p spreading. It appears that the envelope

method overpredicts the probability near the peak at 0, but underestimates

the probability of neagtive values. Overall, the histogram from the

present approximation is closer to and compares fairly well to the double-

index result.

7. CONCLUSION

A new method for the calculation of slowly-varying wave drift forces in

short-crested irregular seas is presented and compared with existing

theories based upon envelope and index approximations.' These methods

assume both a narrow band in the frequency of the waves and a narrow

spreading in wave directionality. The present method retains Newman's

narrow-band assumption of the wave frequency, but allows for arbitrary

directional speading which is treated exactly. For typical short-crested

- 212 -



storm waves with cos2np spreadings, the present thoery predicts

respectively lower and higher amplitudes for the main and transverse

direction slowly-varying forces. For wide directionally spread waves,

such as in the important case of the simultaneous presence of both storm

and swell seas from different directions, the existing approximations are

invalid and the present approach must be used. For the examples we

consider, surprising results are found which indicate that the slowly-

varying forces can be several times larger in the main direction when the

storm and swell are incident from opposite directions than when they are

from the same direction. Similarly, for the slowly-varying drift force

transverse to the main storm wave direction, the largest amplitude is

reached not when the swell is incident at 90O but when the swell is coming

from an obtuse angle.

For the probability distribution of second-order slowly-varying

forces n unidirectional and short-crested seas, existing results1 5S 1 6, 19

for the index and envelope approximations are reexamined and in several

cases corrected and generalized. These theoretical probability densities

are shown to compare well with numerically simulated histograms.

For general wave frequencies and directions, a complete analysis will

require not only the exact bifrequency bidirectional quadratic transfer

functions (QTF), but also a probabilistic theory for these processes.
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Figure 1. Mean drift force on a uniform vertical cylinder (radius a) in
the presence of two regular waves, frequency W2a/g=kOa-.5, amplitudes al
and a2, and phases 61 and 62. The results are shown for (a) x-direction
force; and (b) y-direction force; as a function of the phase difference e

el-eZ2 for incident angles P1-0 and P2/f' - ( ); .25 (- - -
); .5 ( - ); .75 ( ); 1 ( - - ).
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Figure 2. Maximum mean drift force (over all possible phase combinations)
on a uniform vertical cylinder (radius a) in the presence of two regular
waves, amplitudes a and a2, as a function of the comnnon wavenumber ka.
The curves shown are for (i) the x-direction force for incidence angles

P1=0 and 2 and P2 0 ( and ( - -); and (ii) the y-direction force
for P1-O and P2 - r12 ( - -) and 3r/4 (- * )
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Figure 3. Maximum x-direction mean drift force (over all possible phase

combinations) on a uniform vertical cylinder (radius a) in the presence of
two regular waves, amplitudes a 1 and a2, and wavenumber koa-.5, as a

function of incidence angle P2 (1O 0 ). Three results obtained using

respectively the (i) index approximation ( -); (ii) envelope

approximation (- - -); and (iii) present method ( ) are shown.
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Figure 4. Simulated time histories for the case of unidirectional seas
incident on a uniform vertical cylinder for (a) the free surface
elevation; and slowly-varying drift force obtained using (b) the envelope
approximation; (c) the index approximation; and (d) inverse discrete FF?
from power spectrum of the slowly-varying force.
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Figure 5. Simulated time histories for the case of directional seas

(cos2p spreading) incident on a uniform vertical cylinder for (a) the free

surface elevation; and slowly-varying main direction drift force obtained

using (b) the envelope approximation; (c) the double-index approxinmat:ro;

and (d) the present method. - 218 -
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Figure 6. Power spectra of the slowly-varying drift force as a function

of the slowly-varying frequency p. Two short-crested seas with

directional spreading (a) cos 2p; and (b) cos 8
1 are considered. The curves

shown correspond to results for x-direction force for (i) unidirectional

seas ( . ); (ii) present method (- -- ); (iii) index
approximation ( - - ); and for y-direction force for (iv) present

method ( - * -); and (v) index approximation ( - - - - ).
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Figure 8. Interaction component of the power spectrum of the x-direction

slowly-varying drift force due to the presence of combined storm and swell

seas as a function of the slowly-varying frequency i. The results are
obtained by the double-index approximation for the x-direction force for
storm wave main direction of 1-0, and swell incident angle of 2/If = 0
( . ); .25 ( - - .); .5 (- - -); .75 (- * --); 1
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Figure 9. Probability density function and cumulative density function of
the main direction slowly-varying drift force of the index approximation
method. The results are for (a) long-crested waves ( ); (b) cos2p
spread directional seas (- · -); and (a) cos8l spread directional seas(....... ).
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Figure 10. Comparisons between the theoretical probability density

function and that obtained from numerical simulation of the main direction

slowly-varying drift force using the index approximation method. The

results are for (a) long-crested waves; and (b) cos 2 p spread directional
seas.
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Figure 11. Comparisons between the theoretical probability density
function and that obtained from numerical simulation of local random
variables of the envelope approximation method in unidirectional seas.
The results are for (a) local amplitude; (b) local wavenumber; and (c)
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Figure 11. Comparisons between the theoretical probability density
function and that obtained from numerical simulation of local random
variables of the envelope approximation method in unidirectional seas.
The results are for (a) local amplitude; (b) local wavenumber; and (c)
local frequency.
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Figure 12. Probability density function and cumulative density function of
the main direction slowly-varying drift force of the envelope
approximation method. The results are for (a) long-crested waves
( ); (b) cos2p spread directional seas (- * - * - ); and (c)
cos8 spread directional seas (- - - -).
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Figure 13. Comparisons between the theoretical probability density
function and that obtained from numerical simulation of the slowly-vav:-.g
drift force using the envelope approximation method. The results are -:
the force magnitude for (a) long-crested wavers (b) cos 2 O sread
directional seas; and (c) the direction of the force in cos spread
directional seas.

- 227 -

-

aboW

AO-Lpe

Al

rl

-1 .0



.4

Ape 

00

Figure 13. Comparisons between the theoretical probability density
function and that obtained from numerical simulation of the slowly-varying
drift force using the envelope approximation method. The results are for

the force magnitude for (a) long-crested waves; (b) cos2p spread

directional seas; and (c) the direction of the force in cos spread
directional seas.
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Figure 14. Probability density function of the main direction slowly-
varying drift force in cos2p spread directional seas. The histogram
obtained from numerical simulation of the present approximation is
compared to the theoretical distributions of (i) the index approximation
( ); and (ii) the envelope approximation ( - * ).
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CHAPTER VI. CONCLUDING REMARKS

Like all other arts, the Science of Deductin and Analysis is
one which can only be acquired by long and patient study, nor
is life long enough to allow any motal to attain the highest
possible perfection in it. - Sir Arthur Conan Doyle -

In this thesis, the second-order wave effects on a large body are

studied both in the presence of regular and irregular waves. The only

assumption made is that the body is vertically axisymmetric. The theory

is otherwise complete in the context of second-order diffraction theory.

The second-order sum- and difference-frequency potentials are

obtained explicitly by a ring-source integral equation method. An

important part of the solution is the development of the local-wave-free

method for the efficient and accurate evaluation of the slowly-convergent

free-surface integrals. For irregular seas, explicit results for the

spectra and probability distributions of the second-order forces are

obtained using a two term Volterra model.

The accuracy and efficacy of the numerical method are established

through systematic convergence tests and comparisons to available semi-

analytic solutions. Detailed computations are performed for bottom-

mounted and truncated vertical cylinders, conical gravity platforms, and

fixed and freely-floating hemispheres.

From our numerical examples, a number of important second-order

phenomena, which have not been reported previously, are found:

(1) The second-order sum-frequency diffraction potential penetrates deep

especially at the weather side of a body and when the two frequencies are

close. As a result of this, a number of existing approximation methods
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which exclude this contribution may greatly underestimate the second-order

sum-frequency wave loads and resonant responses of large-draft offshore

platforms.

(2) When the body side walls are outward sloping towards the bottom, such

as in the case of a vertical cone, second-order excitations and run-up are

amplified and may indeed be greater than first-order quantities for

moderately steep incident waves.

(3) Body boundary terms due to linear motions and free-surface forcing

pressures in the boundary value problem of the second-order diffraction

potential contribute significantly to the total sum-frequency excitations.

These are, however, not so important in the difference-frequency problem.

(4) Comparisons of the probability density functions and spectra of the

second-order wave loads obtained from the present complete QTF's to those

calculated from approximated QTF's show that the extreme and rms second-

order forces in irregular seas can be severely underestimated by

approximation methods.

(5) Our preliminary study of the slowly-varying wave forces for

multidirectional seas reveals that unidirectionality is not necessarily a

conservative assumption when second-order wave effects are included.

When second-order wave effects play an important role, the necessity

of a complete second-order theory for the safe design of large offshore

structures is underscored.

For numerical efficiency, we have only considered axisymmetric bodies

in this work. The present method, however, can readily be generalized for

arbitrary three-dimensional bodies using a three-dimensional source

- 231 -



potential and associated two-dimensional integral equation. The local-

wave-free method for the free-surface Integrals is still applicable in

this case.

For general three-dimensional bodies, the two-dimensional free-

surface integral has the form:

I(x ) = q(x) G(x:x ) dx ,

SF (1)

where q is the free-surface nhomogeneity, and the linear potential (1)

can be given, say, by a source distribution on the body:

1)(x) = a(x) G(x;x ) dx

S , (2)

Using the far-field asymptotic of G (see 2.32 of Chapter I), and the

addition theorem for Hankel functions, we have after a simple expansion:

(1) H (k gCn(x )cos ne + gn(x) sin n)l

(1) nO [k LCn cos n + LSn sin nO kp>1,~J } gn=Xos nOg nX sn } (3)

where 9Cn, gSn are known functions of the point, x', on the body, and LCn,

LSn are the Kochin functions:

{Ln =(x, ) {gcn(X)) d
1 S BJJgsn (4)x X

SB (4)

Using (2)-(4) in (1) in the local-wave-free farfield, the 0 integral can

be integrated explicitly, and (1) reduces to sums of one-dimensional

integrals over the radial coordinate p, and the method of Appendix A is

directly applicable.
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APPENDIX A: EVALUATION OF THE TRIPLE-HANKEL INTEGRALS

We consider, as an example, the ntegral:

In1(x o ) X Hl(X) Hm(x) H (ax) dx,

Xo (A.1)

where xo-kb, and a-k2/k. To evaluate (A.1), we expand each Hankel

function in polynomials of x/x, whose coefficients can be determined from

an equivalent Chebyshev polynomial expansion for a specified equal-ripple

error (Luke, 1975):

Hn (x) = J e -n Cni(xo/x), 1=1,2,...
- (A.2)

where 7n-(n/2+1/4)r. The integral (A.1) can then be written as a triple

sum:

1 r ~-k i+j+k f~OI i (2+a)x
Ilmn Amn l mn E £ CliCmJnkQ kxi++k + 2 dx,

xo (A.3)

where Almn - 4_ e7n
rImn ra

Using a change of variable, y=(2+a)x, we obtain

Ilmn Blmn E a-ki+ + k C CnkU(i+j+k),
i k limin (A.4)

where yo-(2+a)xo, Blmn-(2+a)-l/2Almn, and U s defined to be the definite

integral
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(n) ; - 2 dy.

Yo (A.5)

Upon integration by part in (A.5), the following recurrence formula for

U(n) can be derived:

U(n) = e n + U(n-1), n=1,2,...
(n 2) yo n 2(A.6)

The starting value U(O) is given from Fresnel integrals (Abramowitz &

Stegun, 1964):

U(O) = t [(l+i)-C2 (Yo) -iS2 (Yo)]. (A.7)

The recurrence formula (A.6) is stable in the forward direction. Since'

U(n) decreases rapidly with n, to avoid underflow cancellation in

computations, it is convenient to define 0(n)-r(n+1/2)U(n), which has the

neutrally stable forward recurrence formula

0(n) = r(n-1/2)e oyl/2-n + i(n-), n=1,2,.. (A8)
0Yo ' ''' '" (A.8)

with the starting value 0(O)=4r U(O). The use of 0 in (A.4) is

numerically more robust and preferred. In practice, the summations in

(A.4) are truncated for a prescribed equal-ripple tolerance according to

the magnitudes of the original Chebyshev coefficients. The other

integrals in (2.41) of Chapter I are evaluated in a similar manner.

To give an indication of the accuracy of the present method, we

calculate (A.1) for two partition points x, x2 according to (A.4), and
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compare their difference to that computed by numerical Romberg quadrature

over (xl,x2). The results for a range of orders l,m,n are given in Table

A. The accuracy is satisfactory but diminishes somewhat with increasing

orders due to round-off cancellations associated with the slow convergence

of (A.4).

Table A. Numerical verification of (A.4) for evaluating the integral of
triple products of Hankel functions, (A.1). The difference Ilmnl(x2)-
Ilmnl(Xl) obtained from two evaluations of (A.4) and from direct Romberg
quadrature (tolerance 10-6) over the interval (xl,x2) are compared for

x1=10, x2=11, and a=4.

1 m n Eq.(A.4) Romberg quadrature

1 2 3 ( 0.001886, 0.003742) ( 0.001886, 0.003742)
5 3 6 (-0.006758, 0.002120) (-0.006758, 0.002120)
9 9 12 (-0.011812,-0.034072) (-0.011812,-0.034072)
11 11 14 ( 0.109891, 0.000471) ( 0.109891, 0.000471)
14 9 17 (-0.361132, 0.022987) (-0.361132, 0.022987)
12 12 15 (-0.040432,-0.246567) (-0.040433,-0.246565)
13 13 17 (-0.240835, 0.712153) (-0.240853, 0.712166)
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APPENDIX B: SENIANALYTIC SOLUTIONS FOR THE SECOND-ORDER FORCES AND

NMOENTS ON A BOTTOM-MOUNTED VERTICAL CYLINDER

The solution for the second-order horizontal force on a bottom-seated

vertical cylinder has been studied by Molin (1987) and Eatock Taylor &

Hung (1987). We extend the results to the second-order overturning moment

also. The first-order total potential is:

J'(ka)
(1) = wqA cosh k(z+h) in n

w" cosh kh nO enn[Jn(k) - H,) Hn(kp)] cosn,
n H k (B.1)

and the first-order forces and moments are given in closed form.

From (3.6) and (3.7) of Chapter I, the compenent of the second-order

mean and double-frequency horizontal force and overturning moment (about

the center of the cylinder bottom) due to quadratic products of the first-

order potential can be evaluated:

F(2) I
xl - 21 E . 3 -_l n 2kh n(n+ ) 2khF(2) 2 (-1), [3 - kh + ( 1, 
pgaA2 r(ka)2 n=O Hn (ka)Hn+l(ka) slnh 2kh (ka)2 sinh 2kh

(B.2)

M(2) 
={ 41 - E + 2kh nh[(n+l)l1)Z(kh) 1]} 

pogahA2 r(ka)2 n=O Hn (ka)Hn+1(ka) snh kh (ka)

(B.3)

F(2) 22
x = 4 F 2kh rl-n(n+l)/(ka)212

pgaA2 2(ka)3 (sinh 2 khn=O [J'2(ka)+Y2 (ka)][Jn+2 (ka)+Yn+ ]

(B.4)

Re-4i 1 2kh n(n+l) (kh )]}2 Ref 2 E.,
pogahA2 r(ka) n=O Hn (ka)Hn+l(ka) sinh 2kh (ka)

(B.5)
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where Z(kh)21/4+(2kh sinh 2kh - cosh 2kh +1)/8(kh)2, and the Wronskian

Jn(ka)Hn'(ka)-Jn' (ka)Hn(ka)=2i/rka is used.

From (3.5) of Chapter I, the second-order potential forces and

moments (F2(
2)) have components which depend on the second-order incident

wave I(2) (F2 I(
2)) and diffracted wave D( 2 ) (F2D(2)) respectively.

Expanding the incident wave potential into partial waves, the Froude-

Krylov components can be readily calculated:

Fx2I -3i1J1(2ka)

pogaA2 2 sinh2kh (B.6)

21I -3if tanh kh sinh 2kh cosh 2kh-i
v < = A lJ,(2ka) -n2 _ 4kh 

pogahA2 2 sinh4 kh J2k) 2 4kh
(B.7)

The diffraction component can be obtained via (3.14) of Chapter I in terms

of assisting radiation potentials for horizontal translation (1) and

pitch rotation (with respect to the bottom) (5). These potentials are

given by:

[1 [A1o] cosh k2(z+h) H(k 2 p) cos m 2m(Z+h) Kl(+c2mp)
1 cos A

tS1i. mrs [L5o 2 H1(k2a) m=l 5 2m K1 ("2m
a )

(B.8)

The coefficients A1, A5 are obtained by integrating the vertical

eigenfunctions with 1 and (z+h) respectively in z:

4 sinh k2 mh

Alm 2k2mh + sinh 2k2 mh'
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m=O,1,2 ...
4(k2mh sinh k2mh - cosh k2mh + 1)

Sin k2 m(2k2mh + sinh 2k2mh)
(B.9)

where k20-k2, k2uix2m, m=1,2,..., and 2m are the real roots of (2.31) of

Chapter I with w replaced by 2w.

From (3.14) of Chapter I, the diffraction components are given by:

22ir [F] |(2) 10 2 (2) 21PO, 2w 1
'x2 - x2H x2PI =rpiadzfd i ' 0 -1fdfpdp q i5 z1O

M(2) / (2)+M(2) 05. 8P 9 0 z=a
y2D J y2H y2PJ -h 0 a

(B.10)

Using (B.8), the first term can be integrated to yield:

2
3,ik2tanh kh J(2ka) [Alo IoH l(k 2a ) - [Alm IImmK1("2m

a )

a) [- k H +(a) I 1
sinh kh 5o k2 H(k 2 a) m=1 L5m 2 mK1(k 2ma)

(B.11)

where

1 sinh(2k+km)h
1m 2 [ 2 k+k2m

si nh (2 k-k 2 m) h

+ 2kk2 I
.... m

m=O 1,2 ... 

The second term of (B.10) represents the contribution due to p and is

simplified somewhat after integration in 8:

= 8ri f d(kp) kp 1

ka

It l / a]

t5/ah.z=o, =0 (B.13)

where
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ql E (-l)nTn(kp)Tnl(kp) - Jn(kp)Jn+l(kp) +
nso

[Tn(kp)Tn+l(kP) - Jn(kP)Jn+l(kp)] n(n+) - 2 + tanh2kl]} ,
(kp) (8.14)

and n(kp)-Jn(kp)-(Jn ' (ka)/Hn' (ka))Hn(kp). The free-surface Integral In

(B.13) can be evaluated as described in Appendix A.
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APPENDIX C: SENIANALYTIC SOLUTIONS FOR SUN- AND DEFFERENCE-FREQUENCY

FORCES ON THE BOTTON MOUNTED VERTICAL CYLINDER

Here, we consider the second-order sum- and difference- frequency

forces on the bottom-mounted vertical cylinder in the presence of

bichromatic waves. These solutions can be obtained following the formula

given in Chapter II with the analytic first-order potential:

(1) -gA cosh k (z+h) n J' (ka)

cosh n Jn(k n) Hn(kJP) ] cosne
j ~~n= n i~ (C.1)

where (') represents differentiation with respect to arguments.

Substituting (C.1) into (4.19) and (4.20) of Chapter II and performing 

integration, fqjl± are given respectively by:

+ 2 a n (kjh)(k h) (I-+ I+ n(n+l)/(k a)(ka)
pgaAA1 r(ka)(ka)n lh/ coshkh coshklh

(C.2)

fqJ -21 ' (kjh)(k 1h) (I-+ I+n(n+l)/(kja)(ka))
paAA fr(kja)(kza) nIj 1 Iih/g- coshk h coshk h 

pgaAjAl n 
(C.3)

where +

nJ Hn+1(ka) Ha) H nH,(kl a) (C.4)

1(C.5)
nj Hn +1(k a) Hn (k a ) H (kla) (C.5)n+

I+ 1 [ k+h sinh k+h + s

2 k+h k-h (C.6)
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The second-order Froude-Krilov type excitation QTF can be obtained from

the first integral of (4.21) of Chapter II, which leads:

tanh k-h J(k±a)

(C.7)

4 =1 ra+ + (7 1+ 71j)

where 7jl1 are given in (2.6) and (2.7) of Chapter II. The diffraction

component can be evaluated via (4.23) of Chapter II in terms of sum- and

difference-frequency assisting radiation potentials for horizontal

translation, x+_, which have following explicit expressions:

+ cosh (z+h) H(kjp) a Cos (z+h)
: CosL + + +' + M. +k~ HI (sa m ',lmX O 2 xa]m~ m

K1(2mP) ]

K; ( ma)
(C.8)

where K is the second kind modified Bessel function, and the coefficients,

B+, in (C.8) are given by:

4 sinh k h

2k2mh + sinh 2k2mh
( m=0,1,2,**. )

(C.9)

where k2 0=k2, k2m=
1i2m, and 2m represents evanescent mode and is given by

the real roots of the following equation:

~+2 -s+ +
-+ mg tan ~2mh

(C.10)

Upon integrating the first integral of (4.23) of Chapter II, the body

forcing contribution is obtained in explicit form as follows:

f paw7 ? k±h J k-a) + H(ka a) + + K( ma)

( (p + j j*) cosh k2h L HI ) mml 2m 1 (2ma)

(C.11)
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where +

sinh(k k2m)h + nh(k )h ,m=0,1,2,

k±++kim k±- kjm (C.12)

From (3.4a) of Chapter II and (C.1), the sum- and difference-frequency

free-surface forcing for n=1 are given respectively by:

2g2AjAlk u k kl )]
+ 4 1 r [ (-1) 1[ ( 1A+

CT Y m=O JI k k (c.13)

where Ajl is given in (3.16) of Chapter II and

m m+1 m m m+1 m+1 m m m+1 (C.14)

: zl + zaizil - JI -J 1Ijl
rm = m+lZm + Zm Z1- Jm+lJm- Jm mi+ (C.15)

J'(k a)

Zm Jm(jp) (k a) Hm(kjp) (C.16)

The corresponding difference-frequency terms :n (C.14 & 15) can be

obtained by taking complex conjugate for each term containing superscript

1. Finally free-surface forcing contributions are given by the infinite

line integral:

1 g

a (C.17)

This free-surface integral can be evaluated as described in Appendix A.
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APPENDIX D. DERIVATION OF THE MONOCHROMATIC-BIDIRECTIONAL QTF.

The QTF, Dikl, for a general body in arbitrary water depth for

monochromatic bidirectional dual waves is derived using the far-field

method (Newman, 1967). In the presence of two incident waves, wavenumber

ko, and incident angles Pk and P1, the far-field asymptotic forms of the

incident(#I) and diffracted (ODt) potentials can be written as:

ikor cos(O-Pk) ikor cos(O-pl)
fi ~-(lg/)f(z) [ Ake + Ale ]

(D.1)

i (kor+r/4)
D ~ -(ig/w)f(z) ko/2rr [ AkKk(r+O) + A1 Kl ( r+) e (D.2)

for kor>>l, and f(z)- cosh ko(z+h)/cosh koh. Here, Ak, Al are the complex

amplitudes of the incident waves, and Kk, Kl the Kochin functions defined

by:

8#Di 8 ik (xcos9 + ysinO)
Kj(B) = J dS ( -- ) f(z) e

body (D.3)

j=k,l, where #DJ is the diffracted potential associated with the jth

incident wave alone. Using momentum conservation for the fluid volume,

the mean force on the body can be expressed in terms a far-field integral

given by:

Gkoh ) [ r { sin 0 } 2 e e 8r 8r 0 ]

~y 0 0 z-O

2r * *
+ dO sin + A ]

J~ cos 8r 8 a8r a z=O
o (D.4)
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where #"I+tD, and G(koh) - tanh(koh)+koh sech2koh, s a depth factor

which goes to unity as koh... Substituting (D.1,D.2) into (D.4), and

using the method of stationary phase for the resulting ntegral, we obtain

the drift force QTF:

IXkll gkoG(kh) 2 cose 

tDyki! pgk0 G8T J Kk(w+e)Kl(r+G) {sin) d
Oykl j =

4 G(koh) [( Kk(r+Pl) osinpl - Kl(c+Pk)TstnPkl 
sinp, 1 k)sinPkj (D.5)

which satisfies the symmetry relationship Dkl = Dlk*. The QTF is related

to the mean drift force by:

2 2
F = E E AkAlD
xly k=l 1=1 x'Ykl

(0:6)

For vertically axisymmetric body geometries, the Kochin functions Kk need

to be calculated only for one incident wave angle, since Kk(9)=Kl(e+pl-

Pk), and the computational effort is greatly reduced.

In the special case of a uniform vertical cylinder (radius a), the

total potential j and hence the QTF can be expressed in closed form:

igA f(z) E eni" [Jn(kor) n(ka Hn(ko r)] cos n(-P)
W Yn=O Hn(koa)

(D.7)

where Jn, Hn are Bessel and Hankel functions of the first kind, primes

denote derivatives with respect to argument, and e=l, en=2 for n1.

Substituting DJ n (0.7) into (D.3), the Kochin function can be evaluated

to be:
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K (+) = nEO ecos n(O-pj) Jn (koa)/Hn(koa)
Using (D.8) n (D.), nally

Using (.8) n (.5), we have finally:

pgaG(koh)

koa tanh koh

" e nA cl cosk 1csP1 *
[ -cos n(P-P) ( 1 np T(ka)+Tsln plTn(k oa))

n=O (k-) sn n sinplj n 0

cos[(n+)pk-nPl l cos[(n+l)Pl-nPk] * a 

- [sin[(n+1)pk-npl] Rn(koa) - sn[(n+1)pl-npk] Rn(koa) ]

(D.9)

where the functions Tn and Rn are defined by:

Tn (ka) = Jn (ka) / Hn (koa)

Rn (koa) = Jn+(koa) Jn(koa) / Hn+1(koa) Hn (koa) (D.10)

In the special case of a single incident wave (k=P1l=P) the single

frequency and direction QTF, D(w,wPp), reduces to the familiar result:

2pgaG(koh)

k0 a tanh k0 h
[COS~
Cosffp
(sin

m e
£ [ 2- Real{Tn (koa)} - Real{Rn (ko a)} ]

nC11
(D.11)

which has the asymptotic value of (2/3)pga{cosp,sinp} in the limit of

short waves (koa,koh+w); and the long-wave (koa,koh+O) asymptote of:

D

0 kk %JD
58r2 p~~ka3 cos/ 
-- pga(koa) LsinpJ

(D.12)
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TXkk

OykJ


