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ABSTRACT

The second-order sum- and difference-frequency wave excitations and resonant
responses of moored vessels and compliant offshore platforms are important
design considerations when their natural frequencies are substantially above
or below that of significant ocean wave energy. In this thesis, the complete
deterministic and stochastic analyses of second-order wave forces on large
bodies are presented.

We study in Part One the second-order diffraction and radiation problem for
vertical axisymmetric bodies in plane monochromatic and bichromatic waves.

The second-order sum- and difference-frequency potentials and local quantities
such as pressures and run-up as well as wave excitations and body responses
are obtained. A sequence of boundary integral equations involving free-
surface ring sources of general order are formulated and solved for each
Fourier mode of the second-order potential. The solution is expedited by
analytic integration in the entire local-wave-free outer field of a requisite
free-surface integral. The method is validated by extensive convergence tests
and comparisons to available semi-analytic solutions. The complete wave
excitation quadratic transfer functions (QTF) are computed for a number of
different geometries and compared to those of various aproximation methods.

In Part Two, the statistical properties of the sum- and difference-frequency
wave forces are studied using the complete QTF's and a two-term Volterra
series model. In particular, the probability density functions (PDF) and
spectra of the second-order excitations in unidirectional Gaussian seas are
derived. Comparisons of the present PDF's to those calculated from
approximated QTF's reveal that the extreme and rms second-order forces can be
severely underestimated by existing approximation methods. Finally, the
theory is extended to multidirectional random seas, where it is found that
unidirectionality is not necessarily a conservative assumption when second-
order wave effects are included.
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CHAPTER O. GENERAL INTRODUCTION

O0f making many books there is no end,
and much study wearies the body.

- OLD TESTAMENT, Ecclesiastes 12:12 -

When nonlinear effects are included in the diffraction or radiation
of waves by a body, there are, at second order, interactions at the sums
and differences of the component frequencies of the incident waves.
Although the magnitudes of these nonlinear effects are in general only
second order, they act at frequencies away from that of the ambient wave
energy, and may therefore be of primary concern especially when such
excitations are near the natural periods of the body motions or where
restoring or damping forces are small. Typical examples are the
subharmonic resonance of moored vessels or offshore platforms, and the
superharmonic resonance of tension-leg platforms. In certain other cases,
such as for non-wall-sided geometries (e.g. conical gravity platforms,
Jamieson et al, 1985), second-order effects may also be an appreciable
part of the total excitation and are therefore important corrections to
the linearized results.

Despite its importance, the consistent theoretical developments of
the second-order wave body interaction problem have until recently been
scant. The principal difficulties are the correct treatment of the
second-order free-surface boundary conditions and a proper specification

of the radiation condition for the second-order diffracted waves. In a



monochromatic incident wave, the second-order pressure and the resulting
force consist of mean and second-harmonic components. The mean drift
force can be obtained entirely from the first-order potential, hence has
been studied extensively (for a review, see Pinkster, 1980). The double-
frequency force, however, includes contributions from the second-order
potential, the solution of which was considered controversial even for the
simplest case of diffraction by a vertical circular cylinder. Issacson
(1977) maintained the insolvability of the second-order problem by the
usual perturbation procedure, which was later found to be incorrect by
Wehausen (1980) and Hunt & Baddour (1981). Most of the published results
on this subject (e.g. Chakrabarti, 1978; Hunt & Baddour, 1981; Chen &
Hudspeth, 1982; Rahman, 1983; Sabuncu & Goren, 1985; etc.) appear to be
inconsistent, and their numerical results differ significantly. Among )
other shortcomings, a common difficulty is a failure to satisfy either the
inhomogeneous free-surface condition or the second-order radiation
condition or both.

A seminal work was that of Mo:in (1979), who by decomposing the
second-order diffraction potential into free and forced terms satisfying
respectively homogenous and inhomogenous free-surface conditions, obtained
consistent radiation conditions for the separate components. These
results have also been formally founded and extended to bichromatic waves
by Wang (1987) who studied the long-time limit of the initial-value
problem. To obtain integrated second-order quantities such as forces,
Molin avoided the explicit solution of the double-frequency second-order

potential by introducing a fictitious assisting radiation potential at



that frequency. Applying Green's identity, an expression for the second-
order force can be obtained in terms of the assisting potential and
functions of first-order quantities. The method requires the vanishing of
a far-field integral -- a weak radiation condition guaranteed by the
asymptotic behaviors of the second-order potentials. The same approach
was suggested independently by Lighthill (1979), and was in fact used by
Faltinsen & Loken (1978) for the two-dimensional problem. Molin's
solution has since been extended, for example, by Molin & Marion (1986),
who obtained some results for second-order motions; by Loken (1986), who
also attempted a solution of the second-order potential; and by Eatock
Taylor & Hung (1987), who developed a method for the evaluation of the
free-surface integral based on leading asymptotics.

In the presence of bichromatic waves, the second-order forces occur
at the sum and difference frequencies, and are often called 'springing'
and 'slowly-varying' forces, respectively. The complete solution of these
forces for three-dimensional bodies was first attempted by Loken (1986),
whose results suffer from a number of numerical difficulties, especially
those associated with the poor convergence of the free-surface integral.
Subsequently, the free-surface integrals for slowly-varying forces were
treated more carefully by Benschop et al (1987) and Hung & Eatock Taylor
(1987). In these treatments, however, the convergence with the free-
surface truncation radius is still essentially algebraic. Recently,
Sclavounos (1988) developed a new approach in infinite water depth based
on 'second-order Green functions'. By using the second-order Green

function on the body, the difficult free-surface integral is avoided. The



Green function itself, however, is quite complicated and the use of the
approach for practical applications has not been attempted yet.

Because of the complexity of the complete solution, numerous
approximation methods for slowly-varying drift forces (e.g. Newman, 1974;
Pinkster, 1980; Standing & Dacunha, 1982; Marthinsen, 1983) and for
springing forces (e.g. De Boom et al, 1983; Herfjord & Nielsen, 1986;
Petrauskas & Liu, 1987) have been suggested and widely used in practical
applications. Without the complete solutions, however, the superiority of
one approximation over another and indeed the validity of a particular
method cannot be established.

In Part One, we consider the solutions of the second-order
diffraction and radiation problems for monochromatic (Chapter I) and
bichromatic (ChapterII) incident waves. A Green's theorem integral
equation is obtained for the second-order diffraction potential involving
the 1inear (at sum or difference frequencies) wave-source Green function.
This equation is similar to that for the linear problem with the exception
of a slowly-converging integral over the entire free surface. An
effective and accurate evaluation of this integral is essential to the
solution of the problem and a detailed asymptotic method which performs
the integration analytically in the entire local-wave-free outer domain is
developed. Since the second-order potential is obtained explicitly, the
complete second-order local quantities such as pressures, -velocities, and
surface elevations are readily available in addition to the forces and
moments.

For simplicity, we consider bodies which possess vertical axes of

symmetry. Expressing the potentials in terms of Fourier series in the

-9 -



circumferential coordinate, we obtain after integration a sequence of one-
dimensional integral equations along the generator of the body for each
Fourier component with free~surface ring-source kernels of the
corresponding order. For linear problems involving axisymmetric bodies,
the ring-source distribution method was used by Black (1975), and later by
Fenton (1978), Hulme (1983), and Fernandes (1983), who gave particular
attention to the treatment of singularities and the convergence of
representations of the ring source and its derivatives. Their numerical
examples are, however, limited to the first two Fourier modes. For the
diffraction problem, we present here an analysis and numerical method for
the arbitrary-order ring source potential and its gradient.

The validity and accuracy of the method is demonstrated by extensive
results for convergence with respect to body discretizations, number of
circumferential modes, and free-surface integral evaluation, as well as by
comparisons to semi-analytic solutions for the second-order forces and
moments on a vertical cylinder. Detailed results for the linear and
second-order mean and double-frequency (or difference- and sum-frequency)
forces, moments, pressure distributions and run-up on the bodies are
presented and discussed. One of the most interesting results is that
there are components of the second-order pressures which decay very slowly
with depth. Newman (1988) formally found this algebraic attenuation of
the second-order diffraction potential based on the asymptotic analysis
which is valid at large depth. For vessels with large draft, the
resulting contributions may dominate the first-order components.

Based on the quadratic transfer functions (QTF) computed in Part One,

the stochastic properties of the second-order wave excitations and
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responses in Gaussian random seas are studied in Part Two. For this
purpose, the two term Volterra's series (the nonlinear system with memory)
is used as a mathematical model. The complete probabilistic distribution
of this system was first developed in the communication field by Kac &
Siegert (1947) and Bedrosian & Rice (1971), and introduced to ocean
engineering applications by Neal (1974). Since then, the approach has
received a lot of attention, and has been reexamined and applied to the
stochastic analyses of second-order forces and responses (e.g. Vinje,
1983; Naess, 1986; Langley, 1987). Their numerical examples, however,
were typically based on idealized QTF's or those of two-dimensional bodies
(Faltinsen & Loken, 1978) only, and are therefore of limited practical
applications.

In Chapter III, the theory of Bedrosiarn & Rice (1971) is reviewed,\
and the complete probabilty density functions of slowly-varying wave
excitations on a large draft vertical cylinder are calculated for
unidirectional random seas. The results are compared to those based on
approximated QTF's. It is found that the probability of extreme forces
can be substantially underestimated using the approximations of Newman
(1974) and Standing et al (1982).

In Chapter IV, the theory developed in the earlier chapter§ is
applied to the sum-frequency resonant vertical-plane responses of a
tension-leg platform (TLP) in unidirectional random seas. Our numerical
results reveal that the second-order sum-frequency potential contributes
significantly to the total springing excitations due primarily to the
deeply penetrating nonlinear potential pressures. It is shown that

existing approximations, which exclude the contribution of the second-
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order potential (e.g. De Boom et al, 1983; Nordgren, 1986; Petrauskas &
Liu, 1987), are inadequate for the prediction of springing excitations on
a TLP. The resulting tendon-tension load rms obtained by the present
complete theory is two to three times larger than that predicted without
second-order potential contributions. Thi§ fact is also confirmed by
large-scale TLP experiments (Petrauskas & Liu, 1987).

Several recent experimental and field reports have pointed to the
importance of wave directional spreading on slowly-varying drift forée§
and motions. In a series of experiments on the tension-leg platform,
Teigen (1983) observed considerable reductions of the main direction drift
forces in short crested waves. Grancini et al (1984) reported severe
dynamic responses in the field when their moored tanker encountered storm
and swell seas at the same time from different directions. These reporis
motivate Chapter V, where the slowly-varying wave drift forces in short
crested irregular seas are considered. As a preliminary study for this,
we maintain Newman's (1974) frequency domain assumption, but treat the
directional spreading exactly. The monochromatic bidirectional quadratic
transfer functions are then developed for this purpose. Because the
directional sﬁreading is treated exactly, the present method has a wider
range of validity for general short-crested seas than existing
approximation methods (e.g. Marthinsen, 1983) but does not appreciably
increase the computational effort. From our numerical example, a
surprising result is found which indicates that the amplitude of the
slowly-varying force can be substantially amplified when the wave systems

are incident from opposing directions. We conclude that the
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unidirectionality of the sea is not necessarily a conservative assumption
when the second-order effects are concerned (cf. Eatock Taylor et al,

1988).

This thesis is composed of two parts and a total of seven chapters.
Part One contains Chapters I and II, and describes the second-order
deterministic theory. Part Two contains Chapters III,IV and V, and
addresses the second-order stochastic theory. For convenience, equations,
tables, and figures in each chapter are numbered independently of other
chapters (starting from (1) or (1.1) for section 1 etc.), and are
differentiated by chapter number, if necessary. Figures for each chapter
are located after the last page of the text of that particular chapter.

References and appendices are placed at the end of the entire thesis.
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PART ONE

THE SECOND-ORDER DETERMINISTIC THEORY

Singularity is almost invariably a clue.

- Sir Arthur Conan Doyle -
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CHAPTER I

THE COMPLETE SECOND-ORDER DIFFRACTION SOLUTION FOR‘AN AXISYMMETRIC BODY IN
MONOCHROMATIC INCIDENT WAVES.

1. INTRODUCTION

In this chapter, we consider the direct solution of the second-order
diffraction problem. A Green's theorem integral equation is obtained for _
the second-order diffraction potential involving the (double-frequency)
wave-source Green function. This equation is similar to that for the
linear problem with the exception of a forcing term involving products of
first-order potentials which is a slowly-converging integral over the
entire free surface. An effective evaluation of this integral is
essential to the solution of the problem and a detailed asymptotic method
which performs the integration analytically in the entire local-wave-free
outer domain is developed. Since the second-order potential is obtained
explicitly, complete second-order local quantities such as pressures,
velocities and surface elevations are readily available in addition to
integrated forces and moments.

For simplicity, we consider bodies which possess vertical axes of

symmetry. Expressing the potentials in terms of Fourier series in the
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circumferential coordinate, we obtain after integration a sequence of one-
dimensional integral equations along the generator of the body for each
Fourier component with free-surface ring-source kernels of the
corresponding order.

To illustrate the present method, we present computational results
for a uniform vertical circular cylinder and for a truncated conical body
both in finite depth. The validity and accuracy of the method is
demonstrated by extensive results for convergence with respect to body
discretizations, number of circumferential modes, and free-surface
integral evaluation, as well as comparisons to semi-analytic solutions for
the second-order forces and moments for the vertical cylinder derived in
Appendix B. [ctailed results for the linear and second-order mean and
double-frequency forces, moments, pressure distributions and run-up on ihe
bodies are presented and discussed in §4. Important features of second-
order diffraction effects are summarized in §5.

We study in this chapter the diffraction by a single monochromatic
wave. The solution of sum- and difference-frequency second-order
diffraction in the presence of bichromatic incident waves as well as the
radiation problem are considered in Chapter II. Many of the techniques
developed here can be extended to general three-dimensional bodies (see

Chapter VI).

- 16 -



2. FORMULATION OF THE SECOND-ORDER PROBLEM

2.1 The boundary-value problem

We consider the linear and second-order diffraction of é plane
monochromatic incident wave, frequency w, linear amplitude A, by a fixed
three-dimensional body in constant water depth, h. Cartesian coordinates
with the x-y plane in the quiescent free surface and z positive upward are
chosen. Assuming potential flow and weakly nonlinear waves, we express
the total velocity potential & as a perturbation series in the wave-slope

parameter, e=kA{{l:
d = € Q(1)+ 52 Q(2)+ eoe (2'1)
where k is the incident wavenumber given by the dispersion relationship

u2=gk tanh(kh), g being the gravitational acceleration. For monochromatic

incident waves, we separate the time dependencies explicitly and write

Re {${) (x,y,2) 7194},

0(1)(X.y.1.t)

0(2)(X.y.2.t)

Re {2 (x,y,2) e 1%y 4 3§ (x,y,2). (2.2)

Note that the contribution of the steady part of the second-order
potential in (2.2) to the pressure (hence forces) or free-surface
elevation is at most O(e3). At each order, the boundary-value problem is
linear and we decompose ¢ into incident(gy) and diffracted (¢p)

pote tials: ¢(1)=g7(1)+gp(i), i=1,2. The incident potentials are given

from Stokes' waves:

(1) _ -igA cosh k(z+h) eikx
¢ I 7w cosh kh ' (2.3a)
@ -3iwA? cosh 2k(z+h) .12k

L8 ik (2.3b)

- 17 -



for a wave incident from x~-o, The boundary-value problems governing the

first- and second-order diffraction potentfals are respectively:

V2¢(é) = 0, in the fluid (z€0); ( )
2.4a
(-w? + g 8/dz) ¢él) = 0, on z=0 (SF); (2.45)
2.4
a¢§1)/az =0, on z=-h; (2 4‘)
JAc
a¢él)/an = - 8¢£1)/an, on the body (SB): (2.44)
.4
Tin 47 (8/8p - ik) {1 = o, kedd1 (5,);:
kp+o (2.4¢)
and
v2p(2) - o, in the flutd (20);
.5a
(-4u2+ g 8/82) ¢62) = q, on z=0 (SF);
(2.5b)
8¢$?) sz - o, on z=-h; 2,50
.5¢
a¢éZ)/6n - a¢§2)/an. on the body (Sg); (2.54)
.5

plus a suitable radiation condition at infinity. In the above
p=(x2+y2)1/2 {s the radial distance from the origin, and 3/dn the normal
derivative into the body. The first-order problem (2.4) is classical, and
a variety of numerical methods are now available (e.g., Mei, 1978).

The second-order problem is complicated by the inhomogeneous forcing
term in the free-surface boundary condition (2.5b), which is given in

terms of quadratic products of the first-order potential:
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(1) a24(1)
q= [- %S (1) (2 %% *g g;% ) + 10(V¢(1))Z]z=0 - Qqqe

(2.6)
where the contribution from quadratic products of the incident potential
¢1(1) itself, qry, is subtracted out due to the free-surface condition
satisfied by (2.3b). The specific radiation condition for ¢p(2) depends
on the far-field behavior of q. In general, if the free-surface forcing
is absolutely integrable, the validity of a Sommerfeld-l1ike radiation
condition (2.4e) follows directly from Cauchy-Poisson theory (Stoker,
1957). In the present case, q contains quadratic products of ¢D(1) itself
(app) . as well as products of ¢D(1) and a non-diminishing 41(1) (q1p). and
a more careful asymptotic analysis is necessary. From (2.4e), qpp decays

as 0(1/p) for p>>1, while the far-field asymptotic of qyp is

w p71/2 gikp(1tcost) | o ,-3/2) 1.

9D (2.7)

Following Molin (1979), we decompose ¢D(2) into a homogencous (free
waves), ¢y, and a particular (locked waves) solution, ¢p, which satisfy
respectively the homogeneous and inhomogeneous free-surface conditions
(2.5b), and jointly the inhomogeneous body boundary condition (2.5d). The
boundary-value problem for ¢y is similar to (2.4) and its far-field

behavior is given by:
- kop -

where ko is the double-frequency wavenumber satisfying 4w2=k2g tanh (k2h).

From (2.7), ¢p has the asymptotic form

6o - 5712 p(g,2) ekp(1+cos) , o1/, M1, (2.9)

- 19 -



where satisfying the bottom condition, and the field equation to leading
order, P(8,z) is given by

P(8,z) = p(6) cosh [kiZ(1+cos@) (z+h)] + 0(p-1/2)~ (2.10)

Note that this "forced" second-order potential does not attenuate with
depth on the weather-side ray, 8=r, far away from the body. The
asymptotic forms (2.8,9) for the free and locked wave potentials were
first obtained by Molin (1979) and subsequently confirmed by the analysis
of Wang (1987) who considered the long-time 1imit of the initial-value

problem.

2.2 The boundary-integral equation for the second-order potential

We introduce the linear wave-source Green function at double- \
frequency (2w), G*(x,x'), where x, x' represent respectively the field and
source points. Applying Green's second identity to ¢D(2) and G*, and
using (2.5) and the boundary conditions satisfied by G*, we obtain for

x'eSg a second kind Fredholm integral equation for ¢D(2):

) a¢(2)
2% ¢y (x ) + }} ¢é2) aG dx = jj 6t 551— dx + é jf q 6t dx,
Sg Sg Sg (2.11)

where the integral over the far-field vanishes as p+w:

II (2 6¢D et - ¢[()2) 36" ) dx = 0,
(2.12)

upon using the method of stationary phase in conjunction with the
asymptotic results (2.8,9). From the point of view of the integral

equation (2.11) (not considering irregular frequencies associated with
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Sg), the "weak" radiation condition (2.12) is sufficient for the
uniqueness of the diffraction problem (Finkelstein, 1957; Peters &
Stokers, 1957). Interestingly, it can be shown that (2.12) holds for the
diffraction potentials at all orders.

The integral equation (2.11) is identical in form to that for a
linear diffraction problem with the exception of the free-surface integral
which extends to infinity. From the far-field behaviors of q and G*, the
integrand diminishes only as p‘l for p>>1, and is highly oscillatory,
being the product of three wave-like functions. An accurate and efficient
evaluation of this slowly converging forcing term is essential to the
solution of (2.11) and a procedure involving analytic integrations in the
local-wave-free domain is developed in §2.3.

For bodies which are vertically axisymmetric about p=0, the 1ntegr£]
equation (2.11) over a surface can be reduced to a sequence of boundary-
integral problems over a line in the p-z plane. To accomplish this, we
expand ¢1(2), ¢p(2), q and G* into Fourier-cosine series in the

circumferential coordinate @:

2 2
¢§'%(plalz) - ; ¢§.l))n(p'z) cos ne'
q (p,o) n=0 qn(P)
L
G (p,6,2;p',0',2') = nEO T G;(P-Ziﬂ'vz') cos n(6-6"), (2.13)

where €g=1, €p=2 for n21. Substituting (2.13) into (2.11), performing the
integration in @ and equating Fourier coefficients in §', we obtain a one-

dimensional integral equations for each Fourier mode, ¢Dn(2)=
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(2) (2) %n In o, ]
27 fpp + } 4o 45 J dl p Gt g I dp 5 ntiy +
oF (2.14)
where the line integrals are along the traces 3B, dF of Sg and Sf
respectively on (p,z). In the above, the n-th mode of the inhomogeneous

free-surface forcing term, g,, can be obtained from (2.6):

(1) (1) (1) (1) e
® ¢ 2
%= 1% L %m{(" 32 - az:m )5 2[(tfm )2 + (a:m )21+ r: m o3 - g
on o ,(3% - ¢(1) ot gD oglD)
I 72 m§0 lavg— - " )¥n 3p 9z 0z
p
1) 2,01 1) 2,01 )
Jde T ol oty ? ¢l§l )”(1) 1, T 8 ¢§+3.)¢(1)
2 -0 25 0z az2 n+m 2" 9z 372
(1) 4,(1) (1) 54(1)
o, ~ 9¢ of, * ¢
L el ekt et T g ¢ Mgl 3 - agn
n=1,2,¢e.,
(2.15)

where VEUZ/g, ¢m(1) is the m-th Fourier coefficient of ¢(1), and all
quantities are evaluated on z=0. Noting that G*(p,8,z;p',0',2') =
G*(p,z;p',2';c0s(6-8')), the n-th mode ring-source defined in (2.13) can
also be expressed as

2x
G;(p,z;p',z') = j G+(p,z;p'z';cos(6-0‘)) cos n(6-6') d(6-6').
0 (2.16)

- 22 -



2.3 Evaluation of the general-order ring-source potential and its

derivatives

The ring-source potential and its normal derivative in (2.14) have
been analysed by a number of investigators (Fenton, 1978; Hulme, 1983;
Fernandes, 1983) although numerical results have usually been restricted
to the zeroth and first mode only. In order to solve for the diffraction
potential itself, we develop here a computational algorithm for the
general-order problem.

The wave-source Green function G(x;x') can be expressed as a sum of
its Rankine source and image, and a regular part:

G=1/r+ 1/r" + W, (2.17)

where r2zR2+(z-z')2, r'2=R2+(z+z')2, and R2zp2+p'2-2pp'cos(6-6').
For the 1/r Rankine part of (2.17) (the analysis for 1/r' is

analogous), the circumferential integration (2.16) can be obtained

analytically for any n in terms of second-kind Legendre functions of

integral-minus-haif order (Abramowitz & Stegun, 1964):

27
R, = j Egﬁ—giﬂlﬁll d(6-9') = —% Opo1/230/b0) ¢ M0,1,2,...
0 1rp' (2.18)

where ay=p2+p'2+(z-z')2 and bo=2pp'. For the first two modes, n=0,1,
(2.18) can be evaluated directly in terms of complete elliptic integrals

of the first and second kind (K and E respectively):

o = 2 (X/pp")

R

=2 (o) V2 XA - VB, (2.19)

where X=2b,/(ag+bg) and Z=ag/bg.
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For the higher modes, evaluations using the forward recurrence
relationship for Qp-1/2 starting from (2.19) are unstable. Thus for n22,
we utilize instead the hypergeometric function representation of Q:

_ _drx I(n+1/2) ¢(n,3 n,l 1
O-1/2(0) = )n+1/2 -élﬁiéyl F(2+3.2+4.N+1.22).

(2z (2.20)

where I' and F are respectively gamma and hypergeometric functions, and Z)1
in (2.20). If the field point is not close to the ring source, the
hypergeometric series representation:

® T m+"+3 r m+"+1
Rl | e
r(g+1)r(g+z) m=0 1M m i

(2.21)

converges rapidly, and (2.20) can be evaluated accordingly. As the field
point approaches the ring source, i.e. as Z+1+, the logarithmic

singularity can be excluded explicitly:

. I (n+1 » (n/2+¢3/4) (n/2+1/4) .
F = CR72R T A YY.

[28 (m+1) ¥ (n/2+3/4+m) -# (n/2+1/4+m)-1n(1-1/28)] (1-1/2%)", (2.22)

where ¥ is Euler's psi function and (x)p=l(x+m)/T'(x); and (2.22) is useful
for Z-1{1.

The singularity of the n-mode ring source near the source ring is
given by the asymptotic behavior of Qu-1/2 as Z+1, which can be inferred
from (2.22) for m=0:

1 1
U172 ~ -3 Inll - 25) + ¥(1) - ¥(n+1/2) + In2,  Is1.

(2.23)

The corresponding behavior for R, is
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Ry = Z% {-% nl(p-p")2+(z-2)81 + mp+3 M2 -l (2.24)

where cp are constants given by coy=0, and

=2[1+1/3+1/5+ ... +1/(2n-1)], for n21.

It is of interest to note that the logarithmic singularity of R, is the
same for all n. For computations, the two complementary expressions
(2.21,22) for the hypergeometric functions are first converted to
economized Chebyshev polynomials for a specified equal-ripple error in the
whole domain ZD1 (Luke, 1975).

The n-th mode Rankine kernel of the integral equation (2.14) can be
obtained in a similar manner:

[ 9

= n { (Z) 2n-1 b
) P*PP tn-1/2 ao+bo[a°Qn-1/2(Z) B an-3/2(Z)] }
e 2201 o oo pH(z-zn,] [2,0 (2)-b Q )]
ipp* az-bz P n-1/2 n-3/2\6 1

(2.25)

where np and n; are respectively the components of the unit normal vector
n in the p and z directions. The apparent Cauchy singularity in the last
term of (2.25) vanishes identically when the source point approaches the
interior of piece-wise linear segments approximating the body boundary 3B,
and is otherwise finite for a body contour with continuous slope.

The behavior of (2.25) as the field point approaches the source ring

is given by
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dR -n
——n ~ -—£ - -]-'- =-n' 2 -7! 2
n 75" {- 5 nl(p-p')"+(z-2')7] + Tnp + 3102 - d .} 2.26
where d, are constants given in terms of cp: dg=1, and
dn = (n+1/2)cn - (n“I/Z)Cn-l 7 nzl. (2.27)

As before, the logarithmic singularity is identical for all n.
For the nonsingular part of the Green function (2.17), the n-th mode
ring source, Wy, is simply the Fourier-series coefficient of W:

2%
wn(p,z;p',z') = f W(p.z;p'.2';cos(8-8')) cos n(9-8') d(6-8'), n20.

0 (2.28)
Since W is periodic in (8-68'), the convergence of Wy with n is a function
only of the smocthness of W. For computations, we truncate the number of
modes at n=N, and the Wp's are given by discrete inverse Fourier
transform:

N

Wy =& :TN L %‘ cos (nmx/N) W(cos(mx/N)) , n=0,1,...,N,
n"n” m=0 “m (2.28)

where €,'s2 for n=0,N, and e,'=l for n=1,2,...,N-1. Thus, only N+1
evaluations of the Green function W are required to evaluate the N+1 modes
of the regular ring source W, and the error is measured by the last term
Wy. In practice, the convergence of Wy with n may be slower than that of
the potentials so that more evaluations, say Ny>N, are used for the Wp,
n=0,1,...,N. Efficient algorithms for the evaluation of W are now
available (e.g., Newman, 1985a) and are not detailed here.

We now turn to the far-field behavior of the general-order ring

source. For R/hDD1, a useful expression for G is (John, 1950)
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G = 2riC, cosh k(z+h) cosh k(z'+h) Ho(kR)

[
+ 4% C_cos x_(z+h) cos «_(z'+h) K_(x_R),
m=1 M m m o'm (2.29)

where Hy, Ko are the zeroth-order first kind Hankel function and second

kind modified Bessel function,

Co® (yz-kz)/(kzh-v2h+u) . Cp = (5ﬁ+uz)/(u§h+vzh-v). (2.30)

and &y, m=1,2,..., are the real roots of the equation

uz = -x.g tan xmh, (m-%)f 4 &mh < mr.

(2.31)

For finite depth, the second term in (2.29) are local (evanescent) modes
which decays exponentially with radial distance, xyR, and the far-field.
asymptotic of G is given by the first term which represents outgoing
waves:

-x,R
1 ).

G = 2riC, cosh k(z+h) cosh k(z'+h) H,(kR) + O(e (2.32)

The far-field asymptotic of the ring sources, upon using the addition

theorem, is

-£.R
6, = -4r%iC, cosh k(z+h) cosh k(z'+h) J,(kp*) H,(kp) + O(e ).

n (2.33)

We remark that as depth increases, the rate of exponential decay of the
local modes decreases according to (2.31), and is only algebraic (~R-2)

for infinitely deep water (Newman, 1967):

6 = 2riv & (Z 204 0R) + 0®D). (2.34)
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2.4 Evaluation of the free-surface integral in (2.14)

The most difficult and computationally expensive aspect of the
solution of the integral equations (2.14) is the efficient and accurate

evaluation of the free-surface integrals:

I.(p"2') = dp p a,(p) Gy (p,0,:p'.2'),

[T=§ =
WHS

(2.35)

where a is the radius of the waterplane. The forcing terms, q,, are given
in (2.15) in terms of first-order potentials, which may in turn be
obtained through an integral equation of the form (2.14) (minus the free-
surface integral). We use instead a source-distribution representation
for the first-order potential:
D = [ a1r pra (x)6, (xix"),

9B (2.36)

where the ring-source strengths, g,, satisfy the second-kind Fredholm

integral equation:

200, (x) + f d1* p'o, (x*) 86, /on = - 062 (x)/am,  n=0,1,...

o8B (2.37)
Eq.(2.36) is preferred over a mixed-distribution in evaluating (2.15)
since it reduces by one the order of derivatives of the Green function
required. Eq.(2.37) is solved numerically following a standard procedure
of discretizing 8B into linear segments, assuming a constant source
strength over each panel, and selecting collocation points at the mid-
points of the segments. The details are omitted. The derivatives of the
potential in (2.15) are evaluated by successive differentiation of (2.36).

The free-surface integral, (2.35), is evaluated over two intervals,
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(a,b) and (b,»), where the radius b is chosen so that the latter interval
is evanescent wave free:
® ®
I, = % [ I dp FqnG; * j dp pana; * I dp p(qnG;'ana;)
b b (2.38)
In the above, (*) represents terms which contain contributions from
propagating waves only. In our computations, the near-field integral in
(2.38) over the finite interval (a,b) is computed by numerical quadrature
(Romberg integration) with controlled tolerance. The last integral is
made negligibly small by a suitable choice of the partition radius b
according to (2.32).

We evaluate the second integral, which is over an infinite domain,
analytically. The integrand consists of products of three propagating -
waves and has a decay rate of p=1/2 for pd>1. The local-wave-free first-
order potential is given by

¢(1) = 4121C°cosh k(z+h) H_(kp) j d1'p'a,(x')J, (kp') cosh k(z'+h),
o8 (2.39)

where the integral over 3B is simply the n-th mode Kochin function which

we denote as Lp. Substituting (2.39) into (2.15), we obtain
2

2.2 2 © € m
- -1k"g"A cosh kh 2 r/3 2 1 m
q I =[(5 tanh®kh - 5 + —)S_ _(kp)+T_ (kp)],
~ 2,252 2 n-
g, = —Lk-d A cosh kh ¢ zO[( tanh’kh - i?ifii n-m,m(%#)*To_p,m (k)]

nem (k04T (k)] 3,

v 21 [(- tanhkh - = + iﬂiﬂlg)s
m=0 (kp)
n=1,2,...,
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where,
Sm,n(ke) = aa H (ko)H, (kp)+p e 3. (kp)H, (ko)+a p Hy (ko)d, (kp),

Tm,n(kp) = amanHﬁ(kp)Hﬁ(kp)+ phanJé(kp)Ha(kp)+aman6(kp)J6(kp),
(2.40)

and primes denote derivatives with respect to argument. The coefficients
an, Pn. are given by a;=-4x2iCol,, and pp=eniN/cosh(kh). Using (2.33) for
En, we obtain an expression for the local-wave-free integrand, Panan- of
the free-surface integral consisting of triple products of Bessel and
Hankel functions multiplied by powers of kp. The final outer-field

integral can be expressed in terms of definite integrals of the forms:

- e (kp)
I3, (k) = {; (ko) ® Hy (kp) [ H:(kp) ] H, (kyp) d(kp),

s=0,+1; 1,m,n=0,1,...
(2.41)

where ( )* denotes complex conjugate. A method for the evaluation of
these integrals is outlined in Appendix A.

We remark that the exact evaluation of the local wave free integral
above is critical to the efficacy of the present method. Substituting
(2.39) into (2.15), combining with (2.33), and using the leading
asymptotics of J, and H, for large arguments, it is easy to show that the
free-surface integrand has the leading behavior: kpGlan ~
[exp (1 (2k+kp) p)+exp (ikop) 1 (kpp)=1/2 for kp,kgpddl. Thus if the free-
surface integral is simply truncated at b (e.g., Loken, 1986), the
truncation error decreases only as b-1/2, For accurate results, the

effort involved in numerical quadrature over a large domain becomes
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prohibitive. On the other hand, the convergence can be improved by
evaluating the integral of the leading asymptotic term only from b to
infinity in terms of Fresnel integrals (Eatock-Taylor & Hung, 1987). The
neglected terms are then of 0[p=3/2(k-1lky-1/2+4kp-1k-1/2)], so that the
convergence with b is still only algebraic, in contrast to the exponential
decrease of error with b associated only with the evanescent modes in the

present case.

3. SECOND-ORGER EXCITING FORCES, MOMENTS AND SURFACE ELEVATION

The boundary-integral equation (2.14) for pgn(z) 1s solved using a
discretization procedure similar to that for the first-order problem. The
hydrodynamic pressure can be calculated from the first- and second-order

potentials according to Bernoulli equation:

MO go‘l) '
(2)
2@1p, = f—+ § w2, (3.1)

where go denotes the fluid density. The second-order forces and moments,
fj(z)(t), j=1,2,...,6, can be obtained by integrating the pressure on the
wetted body surface:

f§2)(t) = ff p(z)njds + ff (p(l)-pOQZ)anS.
Sg S¢(t) (3.2)

where (n1,n2,n3)=n, (ng,ns,ng)=rxn, and Sg and S¢(t) are respectively the
mean and time-varying portions of the instantaneous wetted body surface.

For a harmonic incident wave, the second-order forces and moments

contain double-frequency and steady components:
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2 - 2) -21wt 2
f} Nty = Re{F§ Je-2iuty F§ ), (3.3)

The double-frequency forces and moments can be further split into that due
to contributions from the quadratic preducts of the first-order potential,
F1(2), and that due to the second-order potential, Fp(2); i.e., F4(2) =
Fj1(2)+sz(2). These are given, for wall-sided bodies, by:

P 2
4 - I s £ g0 ]

Sg Wy (3.4)
F§§) = 21up, [ ¢(2)anS ,
Sg (3.5)

where W, is the mean waterline. The mean second-order component is:
e
P .. { jj vgiZny0s - £ [ 1912 an ]
S8 Yo (3.6)

For vertically axisymmetric bodies, the surface integrals can be reduced
to 1ine integrals along 3B by integrating in 8 and using orthogonality.
Thus, for example, the horizontal force component, Fll(z), can be written

as:

(@ . P o $(14(1)

11 4g neo € 1 |,
. (1) (1) 5g(1) (1)
_ Zg b [ [21 (a¢ a:n+1 Ao Mnely , moel) (1)4(1);,
98 (3.7)

If the body is not wall-sided, an extra factor, (1-n;2)~1/2, appears in

the waterline terms.
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For the free-surface elevation, ¢(t), we expand the exact free-
surface condition in a Taylor expansion about z=0, and obtain the second-

order elevation

2) oy [ =1 joa(1)y2 . 1 80(1) 325(1) 1 gp(2
P - 7g ({12 4 2 ot %8z " g ot Bt ]z=0 .

(3.8)
As with the velocity potential, 5(2)(t) can be decomposed into a time-
independent term, 7(2), and a double-frequency term of amplitude »(2),
which in turn can be written as a sum of contributions from the first-

order (11(2)) and second-order (72(2)=pp(2)+9;(2)) potentials:
@ () - pe [(”§2)+q§2))e-21ut] + 5@,

(3.9)
and from (3.8):

@ _ [ 21 a2 & ,01) 3¢l
no = [ 3g (9" ) 2;2 $ " 8z ]z=0 (3.10)
”§2) = "( ) (2) = 2'“0 [¢(2) + ¢(2)]Z=0 (3.11)

(1)

-(2 -1 1),2 1

7@ - [ o vp(1) |2 ¢( ) ] (3.12)

If only integrated second-order quantities such as forces are
required, an alterrative method (Molin, 1979; Lighthill, 1979), which does
not require the solution for ¢D(2) explicitly, is to apply Green's theorem
with the use of an assisting radiation potential, AL which satisfies the
first-order boundary-vaiue problem (2.4) at double-frequency, with the
body boundary condition

oy
- H ‘=
ani - on the body (Sg)i j=1,2,....6. (3.13)
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Applying Green's identity to ¢D(2) and ¢4, and taking advantage of the boundary
conditions they satisfy, we obtain:

(2)
Y
[ #§Pngas < - [[ 9y gi—as + G [[ angeas
Sg 3g S (3.14)

so that the second-order forces are expressed in terms of first-order
potentials only. For axisymmetric bodies, the free-surface integral in
(3.14) has similar properties to that in (2.14) and the techniques of §2.4
are directly applicable. We remark that the computational effort involved
in this indirect approach is not significantly different from the direct
solution of §2, since in both cases, an additional boundary-value problem
at double-frequency (Eq.2.14 or that for ¢) and an evaluation of similar
free-surface integrals are involved. )
For a uniform bottom-extended vertical cylinder, the first-order
potentials can be expressed in closed form, so that semi-amalytic
expressions (not involving solutions of integral equations) for the
second-order forces and moments can be derived using (3.14). These are
summarized in Appendix B, and provide useful comparisons for the numerical

results of §2 for this geometry.

4, NUMERICAL RESULTS AND DISCUSSION

For illustration we consider the diffraction of ptane monochromatic
vaves by two axisymmetric geometries: (a) a bottom-seated uniform vertical
cylinder (radius a, depth h=a) for which semi-analytic sclutions for the
forces are available (Appendix B); and (b) a conical island or gravity

platform (waterplane radius a, depth h=a, toe angle 60°) where second-
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order effects are expected to be particularly important.

The integral equations (2.14) and (2.37) for the second- and first-
order problems respectively are discretized and solved numerically
following a standard procedure: (i) approximate the body contour, 8B, by
Np straight line segments; (i1) assume constant values for the potential,
¢Dn(2)- or ring-source strength, o,, over each segment; (111) collocate
the equations at the center of each segment to obtain a system of linear
algebraic equations for the segment unknowns, which is then solved. In
calculating the influence coefficients, the singularities of the kernels
in §2.2 are subtracted out and integrated analytically. The sources of
numerical error are those associated with: (i) the truncation to a fin!*:
number, N, of Fourier modes in 8; (ii) the assumed constant variations of
the unknowns over each segement; and (iii) the geometric approximation of
the body contour by Np piece-wise linear segments.

For the present geometries, the body contours are described exactly
by straight segements, and the numerical errors are controlled by proper
choices of Np and N. Table 1 shows the errors in the modulus of the
first-order horizontal diffraction force on the uniform cylinder as a
function of Np (Ny=20 is used for the evaluation of the ring-source Green
functions). To describe the more rapid variations near the free-surface
(especially for the second-order potential), cosine-spaced segments (with
smaller lengths near the surface) are used in all our calculations. The
convergence with Np is approximately quadratic. Hereafter, Np=20 segments

are used for both the fiist- and second-order problems.



LF, acA, on_a uniform vertical cylinder (a/h=1) for different
requencies, vasw¢a/g, as a function of the number of cosine-spaced
segments, Np, on the body; compared to exact values.

Tabl? 1. Msgnitude of the first-order horizontal diffraction force,
)|/p9

va = 1.2 2.0 2.8
exact 2.6282 1.6281 1.0529
Np = 10 2.6250 1.6243 1.0481

20 2.6276 1.6271 1.0515
30 2.6281 1.6276 1.0520

To show the convergence with increasing numbers, n¢N, of azimuthal
Fourier modes, we tabulate the modal amplitudes of the first- and second-
order potentials on the vertical cylinder at (p,z)=(a,0) (which are
proportional to the run-up) in Table 2. For comparison, the amplitudes .of
the modes of the second-order incident and diffraction potentials are
given separately. From partial wave decompositions of the incident waves,
it 1s clear that the mode number beyond which the amplitudes attenuate
rapidly increases with increasing frequency. This is seen for the larger
wla/gsva as well as for the double-frequency potentials. It is of
interest to note the large magnitudes and relatively slow decrease of
|ﬂDn(2)| compared to the double-frequency incident wave. In all our
calculations up to va~0(3), N=9 and 14 are used respectively for the
linear and second-order problems.

A significant portion of the computational effort is in the
evaluation of the free-surface integral in (2.14). For the free-surface

forcing pressure terms, qn (2.15), ¢(1) is calculated from first-order
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Table 2.

and 2.8.

Convergence of the linear and second-grder surface elevation
angular modal amplitudes (normalized by A and A¢/a respectively) on the
circumference (p=a) of a uniform vertical cylinder (a/h=1) for va=1.2,2.0
(* indicates values less than le-10).

va = 1.2 2.0 . 2.8
(1) 2), .(2) 1), .(2) 2) (1) ,.(2) ,(2)

Iny~" 1 lnén I ing,’ lvﬁ I Inp,” | lv§n T A I g I T g

n=0  0.6339 0.3242 0.0966 0.5308 1.1600 0.0793 0.4704 0.4404 0.0024

1 1.3028 0.8133 0.5301 1.1048 1.1375 0.0471 0.9477 2.3280 0.0400

2  0.8704 0.7719 0.5810 1.1422 1.1666 0.1358 1.0170 1.9287 0.0191

3 0.2018 0.3300 0.3201 0.6365 0.9640 0.1786 1.0089 1.6163 0.0265

4  0.0339 1.4545 0.1215 0.1639 0.2415 0.1236 0.5051 1.2758 0.0473

5  0.0047 1.4183 0.0355 0.0338 0.8139 0.0608 0.1431 0.6720 0.0405

6  0.0005 0.5586 0.0085 0.0059 1.2414 0.0235 0.0341 0.3541 0.0246

7 0.0001 0.1152 0.0017 0.0009 1.0073 0.0076 0.0070 1.0061 0.0118

8  0.5E-5 0.0194 0.0003 0.0001 0.5904 0.0021 0.0013 1.0968 0.0048

9  0.36-6 0.0029 0.56-4 0.1E-4 0.2228 0.0005 0.0002 0.7860 0.0016

10  0.2E-7 0.0004 0.6E-5 0.1E-5 0.0490 0.0001 0.3E-4 0.4555 0.0005

11  0.1E-8 0.0001 0.8-6 0.1E-6 0.0086 0.2E-4 0.4E-5 0.2263 0.0Q01

12 *  0,6E-5 0.9E-7 0.1E-7 0.0014 0.4E-5 0.5E-6 0.0862 0.3E-4

13 *  0.6E-6 0.1E-7 0.9E-9 0.0002 0.6E-6 0.5E-7 0.0208 0.8E-5

14 *  0.5E-7 0.1E-8 *  0.2E-4 0.9€-7 0.5E-8 0.0036 0.2E-5

source strengths via (2.36) and its first and second derivatives from

direct differentiation of (2.36).

are evaluated analytically from (2.18).

The Rankine part and its derivatives

At the free-surface body intersection point, we encounter two types

of difficulties.

The first one is the mathematical weak singularity of

the potential at that point due to the confluence of boundary conditions.

For a vertical (wall-sided) intersection, it is shown that the linear

potential for horizontal motions has a weak, r21nr type, singularity,

while those for vertical motions or wave diffraction are regular at the

intersection point (Kravtchenko, 1954; Miloh, 1980; Sclavounos, 1988).
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The type of singularity for a nonvertical intersection case has not been
completely resolved yet. We are also interested in local results such as
run-up on non-wall-sided bodies. In this case, the validity of our
results {s established through careful convergence tests. Table i) shows,
for example, the convergence (with decreasing grid size) of the (first-
order) run-up at a given point (p=a, 6=0, z=0) on a 60 degree cone. The
convergence of the linear diffraction potential at the intersection point
is quite evident.

Table i) Convergence of the linear diffraction potential (at p=a, z=0,

& 0=?: va=2) for a 60 degree cone (h=a) with increasing the number of
panels.

Np= 10 20 30 .
l¢p(1)| 2.818 2.827 2.825

When the linear potential has a weak singularity given above (e.g. surge
radiation potential), the second derivatives of the linear potential at
that point are logarithmically singular but still integrable. Therefore,
the evaluation of the free-surface integral presents no theoretical
difficulties. To avoid evaluations of the second derivatives near the
intersection point, a weaker formulation for the free-surface integral can
be used, alternatively, after integration by parts (e.g. Chau & Eatock
Taylor, 1988).

Another kind of singularity is also encountered when a body has sharp
corners (e.g. ®~r2/3, at the corner of a truncated vertical cylinder). To

account for this behavior, the cosine-spaced segments near the corner are
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used whenever we have sharp corners (e.g. Newman, 1985b).

The second type of difficulty is rather a methodological one
associated with a panel method. With the use of constant-strength
segments, the potential and its derivatives on the free surface from
(2.36) are not accurate in a small neighbourhood (of the order of a
segment length) near the intersection with the body (e.g., Korsmeyer,
1988). This is clearly shown in Figure 1a, where the diffraction
potential and its derivatives for a vertical cylinder near the
intersection point are calculated by (2.36). Higher accuracy is obtained
by using cosine spacing compared to regular spacing (Np=20), especially
close to the intersection point. For cosine-spaced body segments, the
typical relative errors in ¢ and $p for (p-a)2 0.02a are 0(0.1%). The
above trend is not sensitive to changing frequencies. In practice, we
obtain ¢,(1)(a,0) and ¢p(1)(a.0) from ¢(1) (a,0) using free-surface and
body boundary conditions, respectively; ¢pp(1)(a,0) from three-point
differencing of 'P(l) at (a,0), (1g,0), and (21g,0); and ¢zz(1)(a,0) from
applying Laplace's equation at the intersection point. The values for
asps21g are then obtained by three-point quadratic interpolations. In the
following table, the free-surface forcing pressure at the intersection
point with changing the lower boundary (1g) of using (2.36) are given.
Table ii) The free-surface forcing pressure Jqll at the intersection

point, p=a & z=0, of a vertical cylinder (h=a), and for va=3, with varying
1g/a (Exact solution is |q1(0)}=2.550).

1g/a= 0.030 0.025 0.020 0.015

la1]= 2.526 2.530 2.540 2.568
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As already observed in Figure la, 1g~0.02a is the optimum value in this
case. The accuracy of q inside 1g is local and does not change global
quantities such as Fg(z) significantly (typically 0(0.1%) for the values
of 1g in Table i1). A similar behavior is also observed for the 60 degree
cone. In all our computations, then, 13=0.02a is used. Figure 1b shows
the comparisons between computed results and analytic solutions (cf.
Appendix B) for the first three modes of the forcing pressure outside a
uniform cylinder for va=2. Computed free-surface pressures even at the
intersection point agree well with those of analytic solutions. The
slowly decaying and oscillatory behaviour of the profiles are quite
evident.

The frez-surface integral in (2.14) is calculated using the method of
§2.4. To estimate the convergence of the integral with the partition ‘
radius b, we consider a typical local mode in the second term of (2.29).
Using the addition theorem for Ky:

K, (%, R) = Loe I (s0') K, (x p) cosn(6-6'), @.1)

it is clear that for p' on the body, the decay of the local modes with p
is exponential with a rate given by gy or in fact p/h according to
(2.31). In general, for a given tolerance, we select a fixed (b-a)/h to
control the error associated with neglected evanescent waves in ihe outer
integral. Table 3 shows typical convergence of results with (b-a)/h for
the second-order potential horizontal force and overturning moment (with

respect to the bottom) on a uniform vertical cylinder (a/h=1).
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Table 3. Magnitude of the second-order potential horizontal force and
overturning moment (normalized by pgaA2 and pga2A2 respectively) on a
uniform vertical cylinder, a/h=1. The results are for different partition
radii b for the free-surface integral evaluation compared to semi-analytic
solutions (Appendix B).

va = 1.2 2.0 2.8
R I U I S R U ST S B U]
exact 2.263 1.239 2.694 1.439 4.229 2.429
(b-a)/h= 2 2.258 1.237 2.663 1.430 4.193 2.418
3 2.262 1.238 2.691 1.437 4.227 2.429
4 2.263 1.238 2.694 1.439 4.231 2.431

It is seen that a partition radius of b-a~3h is adequate for 3 significant
decimals of accuracy and is used in later computatfons. The accuracy with )
relatively small numerical integration requirements again underscores the
efficacy of the method of §2.3 compared to methods which have only
algebraic convergence.

We now turn to the results for the two geometries. Table 4 shows the
first- and second-order forces and moments on the uniform circular
cylinder (computed from pressure integration on the body) compared to
semi-analytic resuits derived using assisting potentials (Appendix B).

For the evaluation of the second-order mean (Fx(z) and ﬁy(z)) and that
part of the double-frequency (Fxi(2) and Myl(z)) forces and moments given
by the first-order potential, the gradients of the linear potential on the
body are required and are calculated by 3-point centered-differences of
collocation point values. The errors in Table 4 increase somewhat with

frequency but are less than 1% for all the quantities shown. In all cases
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Table 4.

order horizontal force and overturnin
on a uniform vertical cylinder (a/h=1

integration on the body.

using assist
quantities F
and pgaZpZ r

iy i

espectively.)

and M

va =

1.2

2.0

2.8

Fy (1)

0.708,-2.531
0.708,-2.531

~-0.264,-1.606
-0.264,-1.606

-0.746,-0.743
-0.745,-0.742

£ (2

0.826
0.826

0.711
0.711

0.656
0.655

Fxl(z)

-1.648,-0.308
-1.648,-0.305

-1.094, 0.849
-1.076, 0.846

0.892, 1.341
0.887, 1.345

sz(Z)

2.259,-0.136
2.258,-0.135

1.972,-1.835
1.973,-1.830

-2.209,-3.606
-2.208,-3.604

Fy (2)

0.611,-0.444

0.878,-0.986

-1.317,-2.265

My(l)

0.401,-1.431
0.400,-1.431

-0.165,-1.004
‘0.165.-10003

-0.511,-0.509
-0.510,-0.509

i, (2)

0.870
0.870

0.822
0.823

0.777
0.778

Myl(z)

-1.485,-0.385
-1.485,-0.382

-1.063, 0.801
-1.044, 0.797

0.835, 1.268
0.829, 1.272

BMyz(Z)

1.201,-0.303
1.200,-0.302

1.041,-0.993
1.042,-0.990

-1.360,-2.012
_10360,-2.013

My(Z)

-0.284,-0.688

-0.022,-0.192

-0.525,-0.744

Real and imaginary parts (real,imag) of the first- and second-

moment (with respect to the bottom)

obtained by direct pressure

For comparison, semi-analytic solutions obtained

(Appen?iy B) are given on the first rows.
2) are normalized by pga?A, pgadA, pgaAl

(The

for the force, the contribution of the second-order potential is larger

than that of guadratic products of first-order quantities.

two effects are generally out of phase so that the net second-order
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excitations are relative small compared to the linear quantities but
increase with increasing wave frequency. Thus for moderately steep waves,
say kA~0.2, the double-frequency second-order force amplitude is only
about 4~16% for va=1.2~2.8. The situation for the overturning moment is
similar but with somewhat smaller ratios of Myz(z) to Myl(z). This is
related to the relative centers of pressure of the different pressure
components (see Figures 3 and 4).

The magnitudes of the first- and second-order force coefficients are
plotted in Figures 2 as a function of incident frequency. The comparisons
with semi-analytic results are uniformly good except for small
discrepancies in a neighborhood of va2.4 which corresponds to the first
irregular frequency of the integral equation (2.37). (The frequency is
given by the homogeneous interior Dirichlet solution at the first zero 6f
Jo(ka) at kax2.405 or vaz2.366. The effects of the irregular frequencies,
v, associated with (2.14) which are one-fourth those of (2.37) are much
weaker.) The force components due to the second-order potential are
major portions of the total second-order quantities and their‘magnitudes
relative to the other second-order contributions increase with increasing
frequency. Thus, in no situation is it valid to ignore FZ(Z) in favor of
quadratic contributions of the first-order potential. This invalidates
many recent engineering estimates of second-order wave effects on
structures (e.g., Herfjord & Nielsen, 1986; Petrauskas & Liu, 1987)
wherein the second-order potentials were ignored. Note that both F2(2)
and Mz(z) blow up as va=vh+0, and the second-order result becomes invalid.
This is related to failure of Stokes' expansion (see Eq. 2.3) as kh<{{1 for
fixed kA. As pointed out earlier, Fz(z) and Fl(z) (as well as the
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moments) are generally out of phase, so that the net double-frequency
excitation amplitude is usually smaller than that of Fz(z) and important
only for steep incident waves.

Unlike earlier work such as Molin (1979) and Eatock-Taylor & Hung
(1987), we obtain the second-order potential explicitly so that useful
local second-order quantities such as pressure distribution, velocities
and wave run-up are also available. Figures 3a,b show the amplitudes of
the linear and components of the second-order pressure distributions on
the cylinder on the lee (6=0) and weather (8=r) sides respectively for
va=2. Analytic results, where available (from Eq.B.1), are also shown.

The pressures p1(2) and p(2) which are due to quadratic products of the
first-order potential, as well as the pressure due to ¢I(2) attenuate with

depth with a rate of ~2k, whereas the pressure associated with the second-
order double-frequency free waves (¢y) has a decay rate given by kp~4k.

On the other hand, the portion of the nonlinear potential second-order
pressure, pz(z), which is forced by the inhomogenous surface term (2.6)
has a much slower attenuation with depth dictated by (2.6). This is
especially evident on the weather side. The phenomenon can be seen in
general from the far-field behavior of ¢p (Eq.2.10), where the depth-
dependence of the potential varies from being a constant on the weather
side (8=x) to cosh 2k(z+h) on the lee side.

For longer waves, the situation is even more interesting, where the
pressure may not decrease (monotonically) with depth and the minimum p2(2)
may not in general be at the bottom. This is shown in Figure 4 for the
case of va=1.2 for different circumferential positions along the cylinder.

Along the Teeward (6=0) edge, the second-order potential pressure first
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decreases with depth, reaching a minimum at around mid-draft and then
begins to increase towards the bottom. At the waveward quarter (§=3x/4)
the pressure has a minimum close to the surface and then increases
monotonically with depth.

For deeper water, the total hydrodynamic pressure may be dominated by
that due to the second-order potential. Figures 5 show the pressure
distributions on a uniform cylinder of depth h=4a at va=2. As expected,
all pressure components given by ¢(1) (fI(z) or ¢y) attenuate
exponentially while pz(z) (which is proportional to ¢p at deeper depths)
has only an algebraic-l1ike decay with depth. This has a very important
consequence for the forces on deep-draft bodies. Figure 6 shows the
horizontal force components on a uniform cylinder of varying depth h/a for
va=2. With the attenuation of linear-potential pressures with depth, the
quantities Fy(1) and Fy1(2) (as well as forces due to ¢7(2) and gy) reach
constant values rapidly as h/a increases. The force due to the second-
order potential, ¢p, however, continues to increase in magnitude and
converges to a constant asymptotic very slowly. For information, the
magnitudes of the first- and second-order components of the free-surface
elevation on the cylinder (at 8=x) are also plotted, which show that the
increase in sz(z) is not due to the magnitude of the potential on the
surface. For truncated cylindrical bodies, this phenomenon gives rise to
unexpected second-order vertical forces even when vH>0(1), where H is the
draft of the body (see Chapter IV).

We next show the first- and second-order run-up on the uniform
cylinder as a function of the azimuthal angle 6 for va=2 (Figure 7). The

amplitudes of the run-up components generally increase from the lee (6=0")
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to weather side, whereas ”2(2) has another maximum at the lee quarter.

The relative magnitudes and phases between 51(2) and 2(2) depend on 9,
and in general the total deuble-frequency run-up can be several times
larger than the second-order mean set-up(down), which itself has a trend
similar to ”1(2), with a maximum setup on the weather side and setdown
along the leeward portion of the cylinder. The general behavior of the
various run-up components is sensitive to the incident wave frequency. In
Figure 8, we plot the maximum amplitude, over 8, and the position of the
maximum (6pax) of these components as a function of va. Except for

the lower frequency, the maximum |91(2)| 1s greater than |92(2)| by almost
a constant factor, while both quantities as well as the maximum |7(2)]
(which are all for 6(2))0) tend to increase with frequency. The maximur
net double-frequency amplitude |nj(2)+92(2)| is less sensitive to \
frequency as is the case for the linear run-up, lq(l)l. The dependence on
water depth has been plotted in Figure 6 for va=2. In general, the
amplitudes, including |92(2)|, are not sensitive to increasing depth
beyond vh>~2. On the other hand 42(2) increases rapidly in shallow water
as a consequence of Stokes' expansion for long waves as pointed out
earlier.

We next turn to results for a bottom-seated truncated vertical cone
(waterplane radius a, water depth h=a, and a toe angle of 60°). Such a
geometry has been proposed for gravity platforms in the Arctic (e.g.,
Sarpkaya & Isaacson, 1981), or may be considered as a model for a circular
island. In this case, the non-vertical body wall is expected to lead to
more important second-order effects.

Figures 9 show the magnitudes of the components of horizontal and
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vertical forces and overturning moment (with respect to the bottom center)
on such a body. As a check, the results for |Fx2(2)| and |Fzz(2)|
obtained independently using assisting potentials (Eq. 3.14) are also
plotted. These second-order potential forces dominate all other second-
order contributions throughout the frequency range. Although the relative
phases between F1(2) and Fz(z) still cause the amplitudes to partially
cancel, the net second-order double-frequency forces on the cone may be an
appreciable part of the total excitation especially for higher
frequencies. For example, for wave slope of kA=0.2, |Fx1(2)+Fx2(2)| at
va~2.4 and |F21(2)+F22(2)| at vaz2.8 are respectively 60% and 180% of the
corresponding 1inear amplitudes at those frequencies. For the overturning
moment, Mz(z) is comparable in magnitude to Ml(z) and they both oscillate
with frequency. In this case, however, the components are roughly in )
phase and the net double-frequency moment is comparable to the linear
moment only for steep waves (say kA)~.25 at va~2.5).

The run-up along the circumference of the cone is plotted in Figure
10 for the first- and second-order double-frequency and steady components
for va=2. The double-frequency run-up is much greater than that for the
vertical cylinder and shows large variations along the waterline. The net
amplitude is given essentially by the second-order potential component and
has a maximum at the sides of the cone where it may be comparable to the
first-order run-up there for kAD~.13. Again the detail features depend
very much on the specific incident frequency, and the results are
summarized in Figure 11 where the maxima, over 8, of the amplitudes of the
various run-up components are plotted as a function of va together with

the positions (@pax) of the respective maxima. Comparing to Figure 8 for
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the vertical cylinder, we observz that: the magnitudes of the second-order
components are much larger; |ﬂ1(2)|max is now quite small compared to
|ﬂ2(2)|max: the maximum total double-frequency run-up increases more
rapidly with frequency; the locations of the maxima are more sensitive to
frequency; and the interesting fact that the maxima of li(z)l are now all
for mean set-down (i.e., 7(2)<0).

We have also calculated the components of the pressure on the cone.
With the exception of a sharper rise of pz(z) towards the free surface,

the qualitative features are similar to those for the vertical cylinder.

5. CONCLUSION

Using a general order ring-source boundary-intejral equation method,
the second-order diffraction problem for an axisymmetric body in the )
presence of plane monochromatic incident waves is solved for the nonlinear
sum-frequency potential. An important part of the solution is the
efficient and accurate calculation of the forcing term which requires the
evaluation of an oscillatory and slowly decaying integral on the free
surface. An approach which treats the entire local-wave-free outer region
analytically is developed and shown to be efficacious. Although the
second-order potential is solved explicitly, the present method is
comparable in computational effort to existing approaches (Molin, 1979;
Lighthi11, 1979) which utilize fictitious assisting potentials to obtain
global second-order quantities. An important benefit is that complete
second-order local quantities such as pressure distributions and surface
elevations are now available.

For.illustration, the second-order diffraction problem for a uniform
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vertical cylinder and a truncated vertical cone are studied in some
detail. In addition to convergence tests with respect to truncation and
discretizations, comparisons of the second-order forces and moments for
both geometries with independent results obtained using assisting
potentials confirm the validity and accuracy of the present calculations.

From our numerical examples, several important second-order
diffraction features are observed:
(1) The relative importance of second-order effects generally increase
with frequency, w2a/g, and with the draft of the body, wZH/g.
(2) The second-order potential can not be neglected in favor cf quadratic
contributions of the linear potential. Double-frequency results obtained
without accounting for this potential will likely be inadequat: in all but
very specialized cases. )
(3) The second-order double-frequency diffraction potential can penetrate
much deeper than even the linear (incident-frequency) potentials. The
pressure or velocities associated with this nonlinear potential may not in
general be negligible even for [w2z/g|>0(1). In particular, the vertical
force otherwise absent on a deep truncated cylinder can be nontrivial due
to this potential.
(4) When the body side walls are outward sloping towards the bottom, such
as in the case of a vertical cone, second-order effects such as run-up are
amplified and may indeed be greater than first-order quantities for
moderately steep incident waves.

The present method can be generalized to the case where the incident

waves contain multiple frequency components as well as the radiation

problem -- these are considered in Chapter II.
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Figure 1f. Comparison between analytic and computed results (+) for the
amplitude of the first three modes of the second-order free-surface
forcing pressure outside a uniform vertical cylinder (h=a, Va=2) as a
function of radial distance. The curves are analytic results for:
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Figure 2. Amplitudes of the linear and components of second-order wave
excitations on a uniform vertical cylinder (a=h) as a function of incident
frequency, Va. The curves are for semi-analytic solutions for:
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pitch moment with respect to the bottom, My.
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Figure 9. Amplitudes of the linear and components of second-order wave
excitations on a truncated vertical cone (h=a, toe angle 60 ) as a
function of incident frequency, Va. The curves are for results computed
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the bottom, My.
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CHAPTER II

THE COMPLETE SECOND-ORDER DIFFRACTION AND RADIATION SOLUTIONS FOR AN
AXISYMMETRIC BODY IN BICHROMATIC INCIDENT WAVES.

1. INTRODUCTION

Many compliant offshore platforms are designed so that their natural
periods are substantially below or above that of significant ocean wave.
energy. As a result, second-order sum- (springing) and differrence-
frequency (slowly-varying) wave excitations and the associated resonant
responses are important design considerations. Theoretical developments
and numerical results for the complete sum- and difference-frequency wave
excitations and/or body responses in the presence of bichromatic waves
are, however, still scarce. The major difficulty for a complete solution
is the presence of complicated body boundary terms for floating bodies and
the slowly-convergent free-surface integrals. As a result, a number of
approximation methods for slowly-varying drift forces (Newman, 1974;
Pinkster,1980; Standing & Dacunha, 1982; Marthinsen, 1983) and springing
excitations (De Boom et al, 1983; Herfjord & Nielsen, 1986; Petrauskas &
Liu, 1987) have been proposed and are widely used in practical

applications. In the absence of the complete solutions, however, the
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validity and relative merit of each method have so far not been
established.

In this chapter, the complete second-order diffraction method for
axisymmetric bodies in a regular wave train, which is detailed in Chapter
I, 1s extended to sum- and difference-frequency diffraction and radiation
problems in bichromatic incident waves. A Green's theorem integral
equation is obtained and solved for the second-order sum- and difference-
frequency potentials, respectively. For illustration, the complete sum-
and difference-frequency wave excitation QTF's as well as local quantity
QTF's are calculated for bottom-mounted vertical cylinders in different
water depths and for respectively fixed and freely-floating hemispheres.
The validity and accuracy of the method are demonstrated by extensive
results for convergence with respect to body discretizations, Fourier
modes, and free-surface integral evaluations, as well as by comparison to
semi-analytic solutions for the bottom-mounted vertical cylinder derived
in Appendix C. Salient features of the second-order problem and
especially the behaviors of local effects due to the second-order
potential are discussed in §5. Based on this, the validity of various
existing approximation methods is thoroughly examined. The deficiencies
of these apprnximations are particularly severe for large draft bodies.

Given the complete excitation and response QTF's for bichromatic
incident waves, the statistics of second-order excitations and responses

in general Gaussian seas can be readily obtained. This will be considered

in Part two.

- 65 -



2. FORMULATION OF THE PROBLEM

We consider the 1inear and secononrder wave body interaction
problems for fixed or freely-floating three-dimensional bodies in plane
progressive bichromatic incident waves from x=-e., Cartesfan coordinates
with the x-y plane in the quiescent free surface and z positive upward are
chosen. Assuming potential flow and weak nonlinearities, we write the
total velocity potential as a purturbation series with respect to small

wave slope €:

0-coDe 2@, ., (2.1a)

For each order, the related boundary value problem is linear and we can
decompose & into the incident(#y), diffraction(dp), and radiation(#g)
potentials:

0= (oe oLy o)) 4 2 (40D, 42, 4@ .. (2.1b)

At first order, the diffraction potential represents the scattered waves
due to the presence of the fixed body, and the radiation potential the
radiated waves due to first-order body motions. At second order, QD(Z)
represents the second-order diffraction potential for the body undergoing
first-order motions, while QR(Z) is the second-order radiation potential
due to second-order motions in the absence of ambient waves.

In the presence of two frequency waves, we can write the first-order

velocity potential as

2
e (x,t) = Re [ ¢(}>(x) e } (2.2)
§=1
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and the second-order potential as a superposition of sum- and difference-

frequency terms:

2 2 -
2 (x,1)- el I S0 eVt L gt et (2.3)

where w~=wj-w1 and u+=uj+u1. The difference-frequency potential, ¢~ in
(2.3), 1s related to the slowly-varying wave excitations and body
responses, while the sum-frequency potential, ¢+, to the springing wave
exitations and superharmonic responses. This sum- and difference-
frequency potentials can be solved independently after formulating each
boundary value problem seperately.
The first-order bichromatic incident wave potential with amplitude A

and for water depth h is given by:

2 -igA, cosh kj(z+h) ika

J
jEI Wy cosh kjh € (2.4)

,(%)=

where the frequency wj and wavenumber kj satisfy dispersion relation;
ujz=kjg tanhkjh, g being the gravitational accelaration. The second-order
bichromatic incident wave potential, 01(2), satisfies the Laplace
equation in the fluid region, zero vertical velocity on the sea bottom

(z=-h), and inhomogeneous free-surface condition given by:

ao{t), a%{l)  ge{l)

3 191 9 817 8 (rall)y2
g Bt 82 52 *979z ) (ve';’) 10
5

o]
(=, +g33)
at2 9z

2
‘% )- Qr

where (2.5) can be obtained from the Taylor's expansion of the exact free-
surface condition about z=0. Upon substituting (2.2~4) into (2.5) and

solving for QI(Z), we obtain sum- and difference-frequency second-order

- 67 -



incident wave potentials as follows:

+ +
71t 7 + +
'; - 11 IJ) cosh k £z+h) e 1k'x (2.6a)
2 cosh k' h
2 2
here 7+ i -1gAjA] kj(l-tanh kjh) + ijk](l-tanhkjhtanhk]h)
J 20y vt - k*tanhk*h (2.6b)
and
- -k -
;o Tm* Ny ) coshk™ (z+h) . 1k™x (2.72)
I coshk™h
-igA.A,"  K2(1-tanh®k.h) - 2k .k, (1+tanhk,htanhk,h)
A ] i i1 ] 1 (2.7b)

where 73]= TR

-

v~ - k“tanhk"h

In above equations, * represents complex conjugate, and v+ and k+ are
defined respectively by:

2

and Kkt = ky * Ky (2.8)

s

S -
g

When wj+uwy, ¢1~ becomes time independent and its contribution to force or
surface elevation is at most 0(e3), while ¢1* in (2.6) is reduced to well

known second-order Stokes wave for a regular wave train:

_aqunl Cosh2k(z+h)  i2kx
R e _ (2.9)

8 sinh?kh

One can easily check from (2.6) that ¢;* vanishes for kjh>>1, kih>>1. In
this 1imit, g7~ still contributes and reduces to the form for (kj-ki)h

=0(1):
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_ TAAY (wy-wy) ¥ cosh k™ (z+h -
¢; ~—L1 'LJ_J 2 (f L 1Kx (2.10a)
(UJrUI) - (uJ ])tanhk h cosh k'h

and for (kj-kj)h>)1:

¢~ 1AJA']" ("-"g) "J:' o v (2.10b)
(uJ- )"~ |UJ- oyl
We next consider the interaction of the linear and second-order
bichromatic incident waves with three-dimensional freely-floating bodies.
Defining a body disturbance potentfal as a sum of the linear diffraction
and radiation potentials; ¢g(1)=gp(1)+gg(1), ¢g(1) satisfies the Laplace
equation in the fluid region, zero normal velocity on the bottom (z=-h),

and following boundary conditions:

(-u + 952) f(l)- on the free-surface Sp (2.11a)

D) apl)

3 - " B - W n-(§(1)+ oMy ¥)  on the body Sg (2.11b)
1mip (& - k) (1) 4o at infinity s (2.11c)
P 3p ’B Y O .

e

where r and p represent the position vector on the body surface and radial
distance from the origin, respectively, and n=(ny,n2,n3) outward unit
normal vector. The first righthand side term of the body boundary
condition in (2.11b) is for the linear diffraction potential, ¢p(1), and
the second term for the linear radiation potential, gg(l). The

translational () and rotational(a) first-order motions in the presence of
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two frequency waves are given by:

=(1) e 21 #(1) ey o-lugt (1), (1) (1) (1)
2 (x,t) R°J§1[ €00 e T, gy =65y 657 653))  (2123)

u(l)(x,t) = Rej%l[ a(})(x) e luyt 4 (1) (a(l),ajé),a(l)) (2.12b)

where the subscript 1,2, and 3 in (2.12) represent the translational and
rotational modes with respect to x, y, and z axis respectively. Solving
(2.11) for fo(l) and jR(l) seperately, we obtain first-order wave exciting
forces (or moments) and hydrodynamic coefficients (added mass &
hydrodynamic damping) for six degree-of-freedom 1inear motions. For
example, the added mass(Akk') and hydrodynamic damping(dik') in.x-th
direction due to k'-th mode can be obtained from the radiation potential, -

¥r(1), for the unit velocity:

Mt S ds p, j j o) n as ( k,k'=1~6 ) (2.13a)
where
3
¢é1)= -lw kEI ( fél)féi)+ a(l) é%)+3)) and v x n=(ng,ng,ng)
(2.13b)
and the linear wave exciting force for k-th mode from:
F{l)= Re { p 1w [ [ CoDs gy n as3 (2.14)

Sg

where po is the fluid density.
After solving the first-order potentials and motions, we can

calculate boundary forcing terms of the second-order diffraction probiem,
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which are given in terms of quadratic products of linear solutions. The
inhomogeneous free-surface and body-surface conditions for the second-
order potentfal, 0(2), can be otained by using Taylor's expansion of the
associated exact boundary conditions about respective quiescent positions.
This procedure is detailed in Ogilvie(1983), and will not be elaborated
here. We define the second-order diffraction potential, QD(Z). as the
solution which satisfies the following inhomogeneous free-surface and
body-surface boundary conditions, where the body is undergoing linear

motions but free from second-order motions:

(1) 2,4(1) Q
3 8 ) o2 gzl B
(5;2‘“9&)’6)'0’5 _%__q_z_(aa:z+gg_zo_; gemh? | - oy
2=
(2.15)
2e(2) 9e(2)
D, =B

nefir - ne[((V+ «Mx peviveMs (@ Mx mepa (s HOPE PR )
where (upper ¢) denotes the derivative with respect to the time. In
(2.16), H matrix, which is second order, is composed of the quadratic

products of the first-order rotational motions:

(u2+ az) 0 0
1 23, 2
H= -3 —2«112 (al+ a3) 0 (2.17)

As pointed out by Ogilvie (1983), H matrix depends on the sequence of

rotation, and the order roll-pitch-yaw is used here. In the absence of
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linear rotational motions, the body forcing term B in (2.16) can be

simplified as
B(x,t) = - ne(z(Me 7ypa(D) | (2.18)

Being quadratic product of the linear solutions, the free-surface and

body-surface forcing terms, Q and B in (2.15,16), have the forms:

Q(x, t) 2 2 Q') -iw't Q) -t
= Rel L [ e + e ] (2.19)
B(x,t) Jj=11=1 B (x) B (x)

Then, each of the sum- and difference-frequency second-order dfffraction
potentials satisfies the following boundary value problem respectively,

and can be solved independently:

Vg5 = 0 in the fluid (2.20a)
(w4 o) ¢t = & at z=0 (2.20b)
8¢5 / 8z = 0 at z=-h © (2.20¢c)

+
E;E = - ;;i + 8% at Sy (2.20d)
condition at infinity as p+o (2.20e)

In (2.20b), the sum- and difference-frequency free-surface forcing terms

can be written in symmetric forms as foliows:

Q" = (qjy* ayy) / 2 and Q= (ajyraiy) /2 (2.21)
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2D 524(1)

~{wy. ¢
G VAT ) Gy e

1 2,(1
qjl’ 1;% '(%)* ( _“g 2;;31 q ngéj)) ) iulv,(}).v¢(%)* ) quj] (2.23)
The free-surface forcing, Q+, contains all kinds of possible interaction
of incident, diffracted, and radiated waves, which can be symbolized as
(IR,ID,RD,RR,DD). (IR,ID) and (RD,RR,DD) decay at rates of 1/ip and 1/p,
respectively as p+». For the second-order scattering problem by fixed
bodies, terms involving R vanish, while for the forced oscillation
problem, all interaction terms except RR are zero. The sum- and

difference-frequency body-surface forcing terms can be obtained in a

similar way, and equation (2.18), for example, has the form:

B" = (bjy+by;) /2 and B = (bj+bjy) /2 (2.24)
by = -3 ne( £ v)n(D) (2.25)
bjy = -3 ne( €% )v¢(}) (2.26)

With these forcing terms, we can solve boundary value problem (2.20) for
¢p+, and resulting sum- and difference-frequency second-order wave
excitations. ‘

Finally, the sum- and difference-frequency second-order radiation
potentials associated with corresponding second-order motions satisfy the

Laplace equation, bottom condition, and following boundary conditions:
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( _.12+ g%i ) $g =0 at z=0 (2.27a)

d¢g

a = (€ et x ) at Sg (2.27b)
-,8 P '

Tim ip ('67 - ‘”(-2- ) fﬁ +0 at S, (2.27¢)

where ky* are the wavenumbers associated with sum and difference
frequencies w*. The total second-order motfons, in (2.27b), can be

written in the form:

2 2 i
5(2)(x.t) =ReI L {€(x) e'i“+t + £ (x) ety (2.28)
@ (x,5) I gy a ()

The boundary value problem of the second-order radiation potential, ¢p+,
associated with second-order motions is identical to that of the linear
radiation potential except for the shift of the pertinent frequency. The
added mass and hydrodynamic damping for second-order motions can be
obtained exactly the same way as the linear problem.

So far, we set up the entire linear and second-order boundary value
problems clearly except for the radiation condition of the second-order
diffraction potential in (2.20e). The radiation condition of the second-
order diffraction potential for monochromatic waves was first obtained by
Molin (1979), and is extended here to bichromatic waves. Considering the
boundary value problem (2.20) is still linear, we decompose the second-
order diffraction potential, ¢p*, into a homogeneous, ¢y*, and particular
solution, ¢p*, which satisfy homogeneous and inhomogeneous free-surface

conditions respectively, and inhomogeneous body-boundary condition
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Jointly. The homogeneous second-order diffraction potential, ¢y+, has the

conventional asymptotic behavior as p+e:

+_ e 1k%’ -3/2
#g~ ——= +0(p9) (2.29)

The asymptotic form of the particular second-order diffraction potential,
#pt, can be obtained from that of the free-surface forcing pressure, which
is composed of quadratic products of the 1inear body disturbance
potentials, Qgg, and cross products of the lTinear incident and body
disturbance potentials, Qig. Using asymptotic forms of the linear

potentials,
(1) Tkyp - -3/2
fg j - © [dp  + 0(p™7) (2.30a)
ik, pcosé

we can easily see that Qgg decays as fast as 0(1/p), while Qrp at a rate
of 0(1/4p), and Qi has the following asymptotic form:

1P(kji kycosé)

Qg ~ e /4p + 0(1/p) (2.31)

For the particular second-order diffraction poteﬁ%ial to satisfy the

inhomogeneous free-surface condition up to the leading order, 0(1/4p), as

pre, we write:

ip(kji kycosb)

#5 ~ E},(a,z) e /ip + 0(1/p) (2.32)

Furthermore, this asymptotic form should satisfy the bottom condition and
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leading order Laplace equation at infinity. Then, we can determine Et+ in

the form:

£5(0,2) = 83 (6) cosh {( K+ K 2kjkjcose )2 (z+h)} (2.33)

Finally, 8(8) can be obtained from the free-surface condition. This condition
for a infinite depth was also derived by Wang (1987). When j=1, the sum-

frequency part reduces to the same asymptotic form given in Molin (1979).

3. SOLUTIONS FOR THE SUM- AND DIFFERENCE-FREQUENCY SECOND-ORDER
POTENTIALS.

In this section, we solve the linear and second-order boundary value
problems formulated in Section 2 by the boundary integral equation method/
ring source distribution method. Let's first consider the boundary value
problem (2.20) for the second-order diffraction potential, épt, and
introduce the sum- and difference-frequency linear pulsating source
potentials, G+, associated with frequencies w*. Applying Green's theorem
for ¢pt and G*, we obtain Fredholm integral equation of the second kind
for ¢pt:

36> g+
Jj¢———ds jjei{si-——l}ds»f%jjoieids (3.1)
Sg on S
where the source strengths on the body- and free-surface in the right hand
side are known a priori and given by the body- and free-surface forcing
terms, respectively. In deriving (3.1), the vanishment of the far field
integral ("weak radiation condition" for the sum- and difference-frequency

second-order diffraction potentials) can be proved by the method of
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stationary phase integral using asymptotic forms for ¢p* and G*.

In solving the integral equation (3.1) numerically, as was already
adressed in Chapter I, the most difficult task is the evaluation of the
right hand side integrals, particularly the slowly convergent free-surface
fntegral. In difference-frequency problems, the composite wavenumber of
free-surface integrands for p>>1 is kj-kjcosé+kz~, hence associated
wavelength is in general much longer than that of sum-frequency problem
whose characteristic wavenumber is kj+kjcos@+kp*. Despite small
amplitudes, the resulting relative convergence of difference-frequency
free-surface integrals with increasing p are extremely slow especially
when two frequencies are close. In sum-frequency cases, the decaying rate
of the freejsurface integral is faster but the integrand becomes more
highly oscillatory with larger amplitudes compared to the difference-
frequency problem. Therefore, any simple truncation (e.g. Loken, 1986) of
these integrals are computationally prohibitive. Furthermore, the moving
average technique (e.g. Molin & Marion, 1986) is expected to be
ineffective for bichromatic waves because of the non-uniform oscillaion of
the integrands. An elaborate method involving analytic integrations in
entire local-wave-free domain was developed in Chapter I for monochromatic
waves, and extended here to bichromatic waves.

If the body has a vertical axis of symmetry, we integrate (3.1) first
with respect to 6 and obtain a sequence of one dimensional integral
equations for each Fourier mode. For this purpose, we expand the second-
order diffraction potential ¢p*, free-surface and body-surface forcings Q*

and B*, and linear pulsating Green function G* by Fourier cosine series:
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%(Pnarz) - 'En(ﬂaz)

*(p,8) = T 0% (») cos nb (3.2a)
B%(p,0,2) BY (pi2)
+ by en +
and G-(p,8,2;p',6',2'), = 20 3¢ G(pi2ip',2') cos n(6-0') (3.2b)
n=

where en=1 for n=0 and 2 for n21. Substituting (3.2) into (3.1) and using
orthogonality of the trigonometric functions in 8 integration, we obtain a

one dimensional integral equations for each n:

+ +
+ Gﬁ + a"I'n T aF 1 + .+
2wty + [ a1 g5 =2 - [ (g -y gegfadae
% % 8 (3.3)

where the line integrals are along the traces 8B,dF of Sg and Sf
respectively, and outward unit normal vector along dg is given by
n=(np.nz). The n-th mode sum-frequency free-surface forcing, Qu*, can be

obtained by rearranging the double products of Fourier series (2.22) as

follows:
. @ , _ tanh%kh k 2
doj1= mfo o [( > + Fj tanhk;h tanhk)h + = = W)) v #m
2 1
_;a’n‘?u 1,4 o Oy | .
2otk Ki alkyp) Blkyp) T 'ze0 (3.42)

2, J 1
'igAA %y, * ky 9y, Oy
__.__L_i] [E{Xj]’—’m 1.._._..'.'..5'_’].;._]_ n-m__m

17 2 2
g a(k2)® ™ Ky 3(kyp) B(kyp)
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( 8 fnim 1, O ¥y

e, n 1 1 1
+m’-:0{ XJ] “nim'm""%'n-&m) - i 3 (k )Z'M 3 (k )Z'nﬂn

a¢n+m oy , ol wy ) )|
O(kjp) 8(k;p)  8(kjp) B(kyp) 2= (3.4b)

2
X _tanh k:h k] k] (n m)m
where . SR W + E- tanhkjh tanhk] + & 1E3;7?E—_)

X3 2 (3.5)

In above equations, ymi represents the m-th Fourier mode of the total
linear potential of frequency wj and normalized by -igAj/wj. The free-
surface condition for ¢ has already been exploited in deriving (3.4).

The n-th mode difference-frequency free-surface forcing, Qz~, can also be~
obtained similarly using (3.2) and (2.23). We also express the n-th mode
sum- and difference-frequency body-surface forcings, B¥, in terms of
single Fourier cosine series. For example, in the absence of rotational
modes, the sum-frequency body-boundary forcing term (2.25) has the

following expression:

-2 b;]= (3‘6)
(1) (1) g25(1)  52,(1) (1) ¢(1)524(1) (1)
(fu)“ Lo 24 5(1)__'.1_),, (fu)_ﬁ_f U, e
22 P oma ) oz 2P sz P ome T a2l

where ¢,(1)=¢,(1)cos, £5(1)=-¢x(1)sing, and we set &, (1) to be zero
without loss of generality for axisymmetric bodies. Then, above equation

can be rearranged as a single Fourier series as follows:
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(1) 24(1) 2,(1) (1) (1) 2,(1) 2,(1)
£x1 0%, 1, 87015 1 ¥y €2 "¢ L j
%ﬂ"T'["ap zuap*;iﬁ]'%'[% p oz "2 ]m7)
(1) 2,(1) 2,(1) 2,(1) (1) (1)
€x1 8¢y 09 L) 8% -1 O
bnsls B 4 [ "p( a,’2 My a:%lj) *n az"a:J an;%J) npl gnlJ

a1) f(1) L,
sl g 22l gy —J" ] |
P "pBpor "2 52 (3.8)
The other terms including rotational modes or the corresponding expression
for By~ can be treated in a similar way.
The sum- and difference-frequency ring sources used in (3.3) can be
obtained from:
2%

Gﬁ(p.Z:p'.Z') = I G=(p,2ip'.2";cos(6-6')) cos(n(6-6')) d(6-6")
0 (3.9)

The method for the evaluation of general order ring sources, Gu+, and
their normal derivatives, Gp+/8n, as well as their important asyﬁptotic
properties are detailed in Chapter I.

For the second-order diifraction problem, we have used Green's
theorem directly to derive the pertinent integral equation for ¢p+. For
the linear problem, however, we used ring source distribution method in
preference to the combined distribution since it reduces the order of
derivatives of the Green function by one in calculating velocitites and
accelerations. Then, the linear body disturbance potential, ¢Bn(l)=
¢Dn(1)+¢Rn(1)c is obtained by distributing ring sources (o,= opn+oRn) On
0B:
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W = [ o1t o (x) 6, (xix')
% (3.10)
where the diffraction ring source strength, op,, is determined from the

following integral equation (for ogn, the right hand side is replaced by
the associated term in (2.11b)):

. (1)
8G_(x:
2y aDn(x) + j p'd]' UDn(x') _..';..(..x__x..)= - 3'._;—“—({1

Bg "x "x (3.11)

The integral eqations {3.3) and (3.11) are solved numerically following a
standard procedure of discretizing 8B into linear segments, assuming
constant source strength or potential over each panel, and selecting
colocation points at the mid points of the segments.

As was pointed out earlier, the most difficult and computationally
expensive part in solving second-order diffraction potential ¢pp* in (3.3)
is the evaluation of the free-surface integrals given by:

I(p".2') = dp p Q2(p) GZ(p,2=0:p",2")

7= F 2N
o —— 8

(3.12)

where a is the radius of the waterplane. The free-surface forcings, Q,t,
are given on the entire free surface (a,») in terms of first-order
potentials of frequencies wj and ) and their derivativeg, which may in
turn be obtained through (3.10) and its differentiations. In the present
method, the free-surface integral (3.12) is evaluated in two intervals,
(a,b) & (b,»), where partition radius b is chosen so that the latter

interval is entirely local-wave-free:
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heg Ll o raie «[us
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A,

6 1

2

(3.13)

The first integral is numerically evaluated by Romberg quadrature with
controlled tollerence, while the second integral, where all local modes
are exponentialiy small, is treated anallytically. 1In the above, (")

represents terms which contain contributions from propagating wave only

and these are given by:

G, 7= -ax1ct cosh ky(z+h) cosh kz(z*+h) J (kzp') H,(K3p) (3.18)
~e -10PAAKE 4. 1,4
Q04T —J_J‘zuj coshkh coshk;h m)-:o m[ (Agy+ ’T k‘"‘k’ St % T omim)
(3.15a)
2
A "1g A A k n k
+ 1 21 (n-m)m J 1, 1 T J.
a3y j coshkjh coshk]h {mfo[ (AJ] kj kjpk]p S e F} -~ m]
Ky k
1 LN | 1
¥ 2 [ (Ajl F} kn;m mp )(S;+% m ; ﬂ+m) ks ( Tn+%,m ; g+m) 1}
(3.15b)
Jhere tanhzkih 1
j + —j tanhkjh tanhk-'h - '2‘ (3.16)
Shra (ol ag + o b+ Y ap) WY Wy + ol fo Wk Wy B ay Y (3.17)

+j, 1 1 Wou'd o'l L e i* 41
KJm'(“lj(“““KPm*l’lj(“m)”Kj”m"“f(pmHKjH +pf(amH(3lg)
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In the above, J and H are the Bessel and Hankel functions of the first
kind respectively, and (') in (3.18) represents differentiation with
respect to the arguments. The coefficients a,p used in (3.17,18) are

given respectively by:

2
ai - -aric L{ and p{ = 1% /2 coshk,h (3.19)

The function L is the Kochin function which describes the far-field
behavior of the Tinear disturbance potential in (3.10), and is given by:

L% = f di’ p' ag(x') Jn(ka‘) cosh kj(z'+h)
DB (3.20)

The coefficient ¢ in (3.19) is c=(¥2-k2)/(k2h-12h+v); v=w2/g, and c+ in
(3.14) can be obtained from the same equation v and k replaced by v+ and
ko+. From (3.14,15), we easily see that the local-wave-free integrand,
pQ 16 n, 1s basically composed of triple product of Hankel functions. One
of such integrals has the form:
®
1= [ dp p Hylkgp) Hylkyp) H,(5p) 3.21)
b .

A method for accurate evaluation of highly oscillatory and slowly
convergent integrals, such as Ii, for monochromatic waves is outlined in
Chapter I. In sum-frequency problem, the characteristics of free-surface
integrals are in general similar to those of double frequency problem.
For the difference-frequency problem, however, the oscillation and
relative decay of the free- surface integrand (or the resulting integral)

become much slower than that of sum-frequency problem especially when two
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incident wave frequencies are close. In this case, relative convergence
of leading asymptotic method (e.g. Eatock Taylor & Hung, 1987) is
extremely slow. With the present method, this slow decay of the
propagating waves does not cause any problem since we only concern about
the decaying rate of the local waves, which is not very sensitive to

changing propagating wave frequencies but depends primarily on the ratio

p/h.

4. THE COMPLETE SUM- AND DIFFERENCE~FREQUENCY QUADRATIC TRANSFER FUNCTIONS
In previous sections, we described boundary value problems and
solution methods for the sum- and difference-frequency second-order
potentials. As a resiult, we can calculate not only second-order forces
and moments but also local quantities such as pressures and free-surface
elevations. The hydrodynamic pressure(P) and free-surface elevation(g¢)
can be expanded as a purturbatfon series like & in (2.1a), and the linear

and second-order terms are given respectively by:

2
o(1), _, ao{V) o(2), _, 282 20 (V)2

“Po Bt ’ “Po B3t " (4.1)

(1) (1)524(1) 1 2g(2)
-18 2)_ -1 1)y2 .1 _3%'"737¢ 12¢
- 8t |, «(?)- 5 mell)) * 2 ot otz “g oot |, P

In the presence of bichromatic waves, the second-order terms in (4.1) &

(4.2) can be written in the form:

+ . -
t * - - -iw t
+ AjAl(le"’jl) e o ]

2 2
@), D)) =reL L [AA®G]m) "

where pj1+ and 941+ are quadratic transfer functions for pressures and

-84 -



free-surface elevations. The complete pressure and free-surface run-up
QTFs consist of the linear quadratic term, (pq.qq), and second-order

potential contribution, (pp,np):

+ + + + + +
(P]lc ’Ij‘]) (P‘dj]c 'IEJ]) + (PEJ]. ’IBJ]) (4.4)
Each component for sum-frequency problem has the form:.

P
O R s I e L ALV I O

+ 1 ) U gt y) )4 in'g’
Tai1® [' f( e V¢§ ). 1‘4 gz f} )f§ )] / AJA] ' ﬂpj] guAjA]
(4.5)

/t
The wave forces and moments on a body can be obtained by integrating .

the fluid pressure over the instantaneous wetted-body surface, S(t):

(F(t),M(t)) = [ [ P (n,rxn) as (4.6)
S(t)

Hereafter, we will only give expressions for the forces, and the
corresponding moment expressions can be readily obtained by replacing n by
rxn. Using Taylor's expansion for both the pressure and unit normal
vector of the instantaneous position S(t) in (4.6) with respect to the
body surface at rest (Sg), the above pressure integrai over S(t) can be
transformed to surface- and waterline- integrals of the quiescent body
position, Sg, as detailed in Ogilvie (1983). After collecting the first-
and second-order contributions, we can write the complete first- and

second-order hydrodynamic forces as follows:
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F(l)' F(i)... F(%)"’ F(ll))+ F‘Sé) (4.7)

F(Z)’ F(%)... F(?* F(§)+ Fl_(é)+ F(g) (4-8)

At first order, 59(1) gives added mass and hydrodynamic damping forces,
FHs(l) the hydrostatic restoring forces for the first-order motions,
whereas Fy(1) & Fp(1) are acting as the linear wave exciting force. Each

force 1s given by:

- ] [ ZRL °’R 0 p ds (4.9)

R - - pgan, (20 yaBl x o)) i (4.10)

where Ay is the waterplane area, k the unit vector in z direction, and xf
& yf are the locations of the longitudinal and transverse center of
floatations. Similarly at second order, FR(Z) & FHS(Z) are the radfation-
and hydrostatic- forces for the second-order motions, while the other
forces, Fy(2), Fp(2), and Fq(z). contribute as the second-order wave

exciting force. Each forces are given by:

Fé, =" P j j Ze.L0 n ds @.11)

Fe - pan, (234 ya@ @)k (4.12)
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2
F&x -p, { [t v s (Wy pyelo@bV)in + (@ Vx mFb!)1as
B

P8 (. (1)2
+ ._g_j { s(l) - zs(l)( E(;)... y a(i)_ X G(;)) } N d]
WL

- po9A, { a(i)( xf«(i)+ yfa(;)) } k (4.13)

where N=n/{(1-n32), and for the wall-sided geometry at z=0; N=n. The
equivalent expression of (4.13) using relative wave heights can be readily
obtained after rearranging (4.13). The force, Fq(Z), represents the
contribution from quadratic products of the linea~ solutions. The first-
and second-order motions can then be obtained from the eqilibrium of the
enertia force and the forces given above. For exampie, the translational

motions at each order can be calculated from:

MR My ) < D) (4.14)

M ('2(2)+°§(2)x e )

F2_ wh v, (4.15)

where M is the mass of the body and rg the position vector of the center
of gravity. As pointed out earlier, the second-order radiation problem,
for QR(Z), is identical to that of the linear problem except for the
shift of frequency, hence the added mass and hydrodynamic damping for the
second-order motions can be obtained like (2.13a). We consider here

second-order wave exciting forces somewhat detail, where all interesting

nonlinear aspects are included.
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The second-order exciting forces are given by the terms in (4.11,13):

ng). F.‘%’"’ F(§)+ F(i) (4.16)

In the presence of the bichromatic waves, the second-order wave excitation
(4.16) has the form:
(z) . -iw't -0t
Fe (t) = Re t 2 [ AJA] jl e ]

*
j=1 1=1 ¥ AJA] fd‘ ¢ (4.17)

f]‘ = f— J] (4.18)

where f* are the complete sum- and difference-frequency force quadratic
transfer functfon(QTF). In (4.18), qu represents contribution from

quadratic products of linear solutions, while fpj from the second-order
potential. For example, these forces, for the case of fixed bodies, are
given by (More general expression for freely-floating bodies can readily

be derived from (4.11) and (4.13)):

e 1 1 Po¥1¥1 1),(1

fo [23,”"(3)' 1) nas - —°;&—jfj( Jo(n a1 ] /A (4.19)
Sg WL

- 1 1)* Po¥i*1 1),(1)* *

fon [P-gjfv;(j)- 717 s + -—°—4~91—j¢(J s a1 17 ap (4.20)
Sg WL

0= [pte [[Cop+95)nas17 agpam) (4.21)

Sg
For later discussion, we further split fp=fy+fg+fg, where f1 represents

the second-order Froude-Krilov term, and fg and fg are contributions due
A

to body and free-surface forcings respectively.
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For vertically axisymmetric bodies, the 8 integrals in (4.19~21) can
be integrated explicitly. For example, the horizontal component of qul*
in (4.19) has the form upon integrating with respect to 8:

2
+ poga n ' T j Po g
Txagt” ;z;';ifilz (T fre* t #udt) 20 * T oo t pnpdl X

oyl op | oy oy d, oyl oy !l oyl oy
4 n+1 _Tn+l n+1 n n+1 (n+ )
[ 3, bp “8p = 0p Bp * 78z T8z 9z 8z )+ ( ’j'n+1 ’n'n+l]
(4.22)
The previous equatfons for bichromatic waves can easily be generalized to
irregular seas after summing up all wave ccmponents in (4.3) and (4.17).
If only integrated quantities such as second-order forces are -

required, an alternative method (Molin, 1979; Lighthill, 1979), which does

not require the solution for ¢p+ explicitly, can be used as follows:

+
[Joines- [ oG df et

Sg g S¢ (4.23)
where ¥)+ are the linear assisting radiation potentials for k mode
associated with wt, and satisfy the body boundary condition 3¥y+/dn=ng.
In (4.23), B+ contain the second spatial derivatives of the 1inear
potential on the body, which are difficult to calculate with sufficient
accuracy. To circumvent this problem, an alternative expression of fggji+
which is free from the second spatial derivatives can be derived using

Stoke's theorem and some vector identities as follows:

-89 -



[ [ net1iefV+ afx ryevivgg as -
s
B

[ arere wp{Vx (Vs a{Vx 0] - [ [ novetx (7p{Vx &{V+ afVx 1] as
r SB

(4.24)
where I' is the surounding boundary of Sg. For a uniform bottom-mounted
vertical cylinder, the first-order diffraction and radiation potentials
can be expressed in closed forms, so that semi-analytic expressions for
the second-order forces and moments can be derived using (4.23). These
are summarized in Appendix C, and provide useful benchmark for the second-

order numerical results.

5. NUMERICAL RESULTS AND DISCUSSION

For 11lustration, we consider the diffraction of plane bichromatic
waves by the bottom-seated uniform vertical cylinder (radius a, depth
h=a,4a) for which semi-analytic expressions for forces are available
(Appendix C). We also calculated the second-order wave excitations and
responses of the fixed or freely-floating hemispheres (radius a, depth
h=3a) in the presence of bichromatic incident waves.

The numerical procedure for solving integral equations (3.1) and
(3.11) for the second- and first-order problems is in general same as
Chapter I, say: (i) approximate the body contour, 3B, by Np straight line
segments; (ii) assume constant values for the potential ¢pp*, or ring
source strength g, over each segment; (iii) colocate the equations at the

center of each segment to obtain a system of linear algebraic equations
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for the segment unknowns, which is then solved. Then, the numerical
errors are controlled by the number of panels and azimuthal Fourier modes.
In the follow%nﬁ. we present the convergence of the second-order sum- and
differency-frequency calculations with respect to the number of panels
(Np), Fourier modes(N), and partition radius(b) of the free surface
integral. For comparison, two typical frequency pairs, which are close
and far apart, respectively, are chosen.

Table 1 shows the convergence of the nonlinear potential force QTF,
fpj1+, with increasing the number of panels. To describe the more rapid
variations near the free-surface (especially for the second-order
potential), cosine-spaced segments (with smaller lengths near the free
surface) are used in all our calculations. As expected, we achieve faster
convergences for fpj]‘, and hence may use less number of segments in the -
difference-frequency problem. In the following calculation, Np=20
segments are used for both the linear and second-order sum- and

diffferency-frequency calculations.

Table 1. Magnitudes of the second-order potential horizontal force QTF,
|fpj1+/pgahjAr|, on a uniform vertical cylinder (h/a=1) with increasing the
numger gf cosine-spaced segments, Np, on a body; (Partition radius (b-a)/h=3
is used

Difference-frequency Sum-frequency
(vja,va) (1.0,2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6)
semi-analytic 1.936 0.435 2.656 2.875
Np=10 1.935 0.435 2.664 2.876
20 1.936 0.435 2.661 2.876
30 1.936 0.435 2.660 2.875
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To show. the convergence of ¢* with increasing numbers, nsN, of
azimuthal Fourier modes, the modal amplitudes of sum- and difference-
frequency poteﬁtials at (p,z)=(a,0) (which are proportional to the run-up)
are given in Table 2. It was already pointed out in Chapter I that the
mode number beyond which the amplitudes attenuate rapidly increases with
increasing mean frequency. For the same frequency pair, much faster
convergences are obtained in the difference-frequency problem. The

convergence rate of ¢~ becomes faster as the frequency difference

Table 2. The convergence of the sum- and difference-frequency potential modal
amplitudes normalized by |¢ +/(gA1A]/2Ju wia)| on the circumference (p=a} of
a uniform vertical cylindernTh/a= ). (* 4nd1cates values less than 1.E-4).

Difference-frequency Sum-frequency

(vja,;na) (1.0,2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6)
n=0 2.4178 12.5268 0.2368 0.2015
1 4,2202 4,1827 1.2925 - 1.3914
2 1.3129 0.2759 0.6589 0.7688
3 0.2763 0.0118 0.1915 0.0446
4 0.0361 0.0036 1.0461 1.0093
5 0.0169 0.0039 1.5603 1.4606
6 0.0016 0.0001 1.1920 1.1262
7 0.0010 0.0001 0.4556 0.4683
8 0.0001 * 0.0969 0.1027
9 * * 0.0168 0.0177
10 * * 0.0023 0.0026
11 * * 0.0002 0.0003

12 * * * %*

13 * * * *

14 * * * *
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decreases, however, that of ¢* is not sensitive to changing frequency
differences. The convergence of the sum-frequency second-order potential,
¢, 1s genef%ily slow and requires more Fourier modes when compared to
Tinear potentials. From the slower and less uniform decrease of ¢t with
increasing n, we expect large variations of the sum-frequency wave run-up
in the circumferential direction, which will be shown later. In the
following calculations, N=9 and N=(14,9) are used respectively in the
linear and second-order sum- and difference-frequency problems.

The free-surface integral given in (3.13), which is extremely
expensive in computations and crucial for the accuracy, is calculated
using the method described in section 3, and its convergence is checked
with increasing the partition radius b. As pointed out in Chapter I, the
decay rate of local waves primarily depends on the ratio p/h. Table 3 )
shows the typical convergence of the sum- and difference-frequency second-
order potential force QTFs, fpj1+, on a uniform vertical cylinder (a/h=1)
with increasing partition radius. We can see much weaker influence of
local waves, in the difference-frequency problem, with increasing distance
from the body (equivalently, much faster convergences of the free-surface
integrals). This was also pointed out by Kagemoto & Yue (1986) in the
study of multiple-body interactions including evanescent waves. It is
seen that a partition radius of (b-a)~3h is sufficient for 3 significant
decimals of accuracy and used in later computations. The accuracy with
relatively small numerical integration requirements again underscore the
efficacy (particularly in the difference-frequency problem where the

propagating waves decay very slowly) of the entire local-wave-free method.
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Table 3. Magnitudes of the second-order sum- and difference-frequency
potential force QTFs, |fpj1+/pgaAjA;], on a uniform vertical cylinder
(h/a=1). The results for different partition radius b are compared to
semi-analytic solutions (Appendix C).

Difference-frequency Sum-frequency
(yja,v]a) (1.0,2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6)
exact 1.936 0.435 2.656 2.875
3 1.936 0.435 2.661 2.876
4 1.936 0.435 2.659 2.877

Until recently, numerous approximation methods for sum- (springing)
and difference-frequency (slowly-varying) wave excitations and resulting
responses have been suggested and widely used primarily due to the
difficulty in calculating the second-order potential contributions. In
the absence of the complete QTF, the preference for one method over the
others, or even the validity of each method (which is clearly a function
of frequency combinations, body geometries, and water depths) have been
quite controversial (Ogilvie, 1983). With the complete sum- and
difference-frequency wave excitation and response QTFs available by the
present method, we investigate the general behavior of the springing and
slowly-varying excitation QTFs in the bifrequency domain, and examine the
validity of various approximation methods. For this purpose, (i) bottom-
mounted vertical cylinders of two different drafts; h/a=1 & 4{ and (if)
fixed and freely-floating hemispheres for h/a=3 are selected. In addition
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to the force and moment QTFs, interesting local quantity QTFs such as
pressures and run-up are also available by the present method. Many
interesting nonlinear aspects of the integrated quantities can be clearly
understood with the behavior of these local solutions, as will be shown

later.

(1) Difference-frequency problem

For the approximate estimation of the slowly-varying wave excitations

in irregular seas, Newman (1974) used the mean drift force operator, fqjj~
. based on the narrow band assumption of the input spectrum. Marthinsen
(1983) suggested a similar approximation method using the slowly-varying
wave envelope concept. These methods greatly simplify the problem and are
most widely used in engineering applications even though the validity
depends critically on the narrow-bandedness of the input spectrum and the
slope of QTF near the diagonal. Other existing approximation methods
include partly the contributions of the second-order potential. For
example, the incomplete QTF operators (fqj1~+f1j1~) and (qu]'+f131'
+fBIjl') were used by Standing et al (1982) and Pinkster (1980),
respectively.

In Table 4, the complete second-order slowly-varying force QTF on a
bottom-seated vertical cylinder and each of its components are given for
two water depths (h/a=1, 4) and various combinations of incident
frequencies. In the vicinity of the diagonal (small frequency difference,
Ava), the linear quadratic term, qu]‘, dominates other contributions.

For the larger frequency difference, however, the contributions due to the
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second-ordér incident wave (f1j1~,fpj1”) are greatly increased and become
dominant over fqj1=. The free-surface contribution, ffj1~, remains small
overall. The contributions, fyj1~ and fgj1~, are nearly in phase, and
hardly cancel each other. For fixed sum-frequency and increasing
frequency difference, all contributions from the second-order potential,
¢~, increase almost linearly starting from zero for (uj-u])a = Ava = 0.
The slopes of fgj1~ and frj1~ with increasing direction of Ava are much
larger than frj1~. The linear square term, fgqy1~, 1s less sensitive to
changing frequency differences. Interestingly, the magnitudes of all
second-order components become smaller with increasing water depth or
cylinder draft. For fixed Ava and varying sum frequency, fyrj1~ and fgjy~
continue to increase with decreasing sum frequency, while fFJ]‘ increases
slowly with increasing sum frequency.

These results show that the validity of Newman's or Marthinsen's
approximation methods is very sensitive to the narrow bandedness of the
input spectrum due to the large slope of f1j1~ and fgji~ near the diagonal
wi=w]. While, Pinkster's (QIB)** approximation is expected to give better
results for a broader class of input spectra without considerable increase
of the computing time. This is also pointed out by Eatock Taylor et al
(1988). Fortunately, the small contribution from the free-surface forcing
makes it possible to avoid the most cumbersome free-surface integral in

many engineering applications.

** pinkster used only fgy as a body-forcing contribution even for freely-
floating bodies. In this sense, the QIB approximation, which includes
both fgy and fgg as a body-forcing contribution, is more general.
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Table 4. Magn{ tudes of the complete second-order slowly-varying force QTF,
If§17/pgaRsA1" |, and each of its components on a uniform vertical cylinder.

The upper triangular matrix is for h/a=1, and lower part for h/a=4. On the
diagonal, fqll‘- f{1-, and () for h/a=4. Each element satisfies the symmetry
relation fi3 -flj' . Computed values are for: first row;lfqg]'l, second
r°":|f1jl'1- third row; |fgj1~|, fourth row;|frj1~|, and fifth row; the complete

QTF [fj1°].
vjas= 1.0 1.2 1.4 1.6 1.8 2.0
vias 0.918 0.864 0.811 0.765 0.722 0.680
(0.666) 0.297 0.550 0.770 0.963 1.131
1.0 0.302 0.568 0.794 0.966 1.063
0.037 0.097 0.166 0.229 €.273
0.982 1.163 1.347 1.489 1.575
0.647 0.826 0.791 0.758 0.723 0.685
0.168 (0.636) 0.255 0.481 0.683 0.864
1.2 0.167 0.259 0.493 0.697 0.854
0.034 0.036 0.097 0.166 0.226
0.689 . 0.870 1.011 1.165 1.294
0.612 0.612 0.772 0.753 0.729 0.698
0.337 0.166 (0.603) 0.229 0.437 0.626
1.4 0.331 0.165 0.231 0.445 0.632
0.088 0.034 0.036 0.099 0.166
0.763 0.640 0.810 0.925 1.054
0.578 0.588 0.594 0.748 0.735 0.712
0.504 0.332 0.164 (0.600) 0.211 0.406
1.6 0.481 0.325 0.164 0.213 0.411
0.150 0.093 0.035 0.037 0.101
0.856 0.701 0.615 0.777 0.867
0.552 0.567 0.583 0.602 0.732 0.717
0.664 0.497 0.329 0.163 (0.615) 0.198
1.8 0.602 0.471 0.322 0.163 0.200
0.208 0.158 0.096 0.037 0.038
0.943 0.788 0.678 0.619 0.749
0.534 0.547 0.566 0.593 0.615 0.711
0.809 0.653 0.491 0.327 0.163 (0.624)
2.0 0.676 0.586 0.463 0.319 0.162
0.243 0.215 0.161 0.099 0.038
1.009 0.877 0.765 0.678 0.629
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Table 5 shows the slowly-varying pitch moment QTF on the uniform
vertical cylinders with respect to the center of the waterplane. In this
table, the behavior of the body-surface forcing contribution, Mgj1~, is
very similar to that of M1j1~, as in Table 4, hence is not given
separately. From Table 5, the pitch-roll moment QTFs associated with g1~
» M1j1~ and Mgj1~, in general dominate other contributions due to the slow
depth attenuation of ¢1~ predicted by (2.7a). Despite decreasing
amplitudes of ¢1~ for larger h, Mrj1~ and Mgj1~ for h/a=4 are even more
important due to the lower pressure center (equivalently, larger moment
arm) associated with ¢7-. As Ava approaches zero, the magnitude of the
second-order potential pressure, which is proportional to w~, decreases
but penetrates even deeper, hence the resulting pitch moment QTF close to
the diagonal is still appreciable. To show these phenomena more clearly,
we present in Figure la,b the second-order potential pressure QTF, Ppj1~s
as well as linear quadratic term, Pqj1~, along the vertical cylinder of
h/a=4 for two incident frequency combinations; (yj,u])=(1,2) and
(1.4,1.6). The behavior of the second-order potential pressure, Ppj1-. 1s
dominated by ¢1~ and its diffracted free waves, hence its depth decaying
rate is characterized by the wavenumber kj-ky or kz~. For smaller Ava,
Ppj1~ becomes smaller in magnitude but penetrates deeper on both sides of
the cylinder as shown in Figure 1. When Ava is small, ¢1~ behaves like
shallow water long waves, and the pressures are almost uniform to the
bottom. These deeply penetrating local pressures contribute significantly
to the pitch moment because of their large moment arms. However, pqji1~
attenuates much faster than ppj1~ according to the rate kj+kj and does not

contribute appreciably to the pitch moment. As a result of the above
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discussion, for fixed sum-frequency and increasing frequency differences,
Mrj1~ and Mgy1~ have the largest slope near the diagonal. It is
interesting to note that relative magnitudes of Mpj)~ near the diagonal
are also appreciably increased due to the slow depth attenuation of locked
waves at the lee side, which can be expected from (2.33).

Due to these behaviors of the second-order incident wave or free
waves asscciated with it, the validity of Newman's or Marthinsen's
aproximation methods should be carefully examined, particularly for the
pitch-roll excitations of large draft bodies. The results above have
important applications for the prediction of the slowly-varying pitch
moments on offshore platforms, particularly when the center of pitch
rotation is located close to free-surface. In this case, Newman's or
Marthinsen's approximation methods are expected to underestimate the tota1~
pitch-moment QTF substantially, so do not lead to a safe design.

In Figure 2, the second-order potential pressure QTFs, ppji1~. for
h/a=1 and (vja,v1a)=(1,2) are plotted along the five angular positions of
a vertical cylinder. Due to dominant contributions from ¢1~, behaviors of
Ppj1” around the circumference of the cylinder are quite uniform in
contrast to those of the sum-frequency case which will be shown later.

The free-surface forcing term, whose decaying rate is angularly dependent
and given by (2.33), has a minimum attenuation on the lee side (6=0).
This contribution, however, is not important compared to the sum-frequency
problem where deeply penetrating pressures on the weather side (8=7)

contribute significantly.
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Tabl JMagnitudes of the complete second-order pitch moment QTF, [Mj;j~
/pga {A] l, and each of its components, on a uniform vertical cylinder with
respect to the center of waterplane. The upper triangular matrix is for h/a=1,
and lower part for h/a=4. On the diagona] Mqj1~=Mj1~, and () 1s for h/a=4.
Computed values are for: first row; | ﬂ] |, second row; [M1j1°|, third row;

IMFj1-1, and the complete QTF in fourt row; |Mj1-|
vja= 1.0 1.2 1.4 1.6 1.8 2.0
vias= 0.003 0.063 0.115 0.155 0.185 0.207
1.0 (0.173) 0.148 0.272 0.377 0.464 0.533 -
0.018 0.048 0.080 0.110 0.130
0.345 0.624 0.848 1.016 1.126
0.203 0.044 0.080 0.120 0.154 0.182
1.2 0.318 (0.173) 0.127 0.238 0.334 0.415
0.055 0.017 0.047 0.080 0.108
0.729 0.303 0.548 0.750 0.908
0.257 0.196 0.076 0.099 0.128 0.157
1.4 0.559 0.315 (0.178) 0.114 £.216 0.306
0.130 0.055 0.018 0.048 0.080 .
1.232 0.708 0.281 0.500 0.687
0.299 0.235 0.194 0.096 0.111 0.134
1.6 0.702 0.552 0.312 (0.181) 0.105 0.201
0.197 0.133 0.056 0.01& 0.049
1.539 1.184 0.690 0.267 0.469
0.321 0.264 0.218 0.188 0.106 0.117
1.8 0.766 0.691 0.54¢6 0.310 (0.176) 0.099
0.249 0.207 0.138 0.058 0.018
1.682 1.465 1.144 0.673 0.259
0.325 6.282 0.240 0.205 0.178 0.112
2.0 0.782 0.753 0.683 0.542 0.309 (0.165)
0.268 0.258 0.211 0.143 0.060
1.717 1.597 1.412 1.113 0.661

In Figure 3, we present the second-order potential run-up QTF, #pj1~,
and linear quadratic contribution, 7gj1 around the uniform vertical
cylinder of h/a=1 for two incident frequency combinations. The variation

of 7pj1” with respect to the angular position is much smoother than that
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of nqj1~, which can be expected from the behavior of ¢;~. For smaller
Ava, the free-surface elevation, Npj1 is more invariant in the
circumferential direction.

We next consider slowly-varying wave excitations on the fixed and
freely-floating hemispheres of radius a (h=3a) in bichromatic incident
waves. We first present ~ Table 6 the complete slowly-varying force QTF
and each of its components for a fixed hemisphere. In contrast to the
cylinder case, qu]' is the most important contribution in all frequency
ranges considered, especially for horizontal forces. The components fIJ1‘
and fg1j1~ also contribute appreciably but their effects are much
alleviated compared to those of the vertical cylinders .in Table 4. The
free-surface contribution again remains small, hence the QIB approximation
is expected to give fair results for a broad range of input spectra. For
slowly-varying vertical forces, fqj1~ and (frj17+fgj17) are in general
reinforcing each other so that the complete QTF, fj]', is always larger
than individual contributions; however, the opposite trend is found for
horizontal forces. For fixed va and increasing sum frequency, fpji1~ has
milder variations compared to fqj1~, but the opposite trend resuits for
fixed sum frequency and increasing Ava.

For fixed sum frequency and increasing Ava, (fixj1~+fgxj1~) fincreases
according to the increase of associated pressures, while (fIzJ1‘+fsz1')

decreases due to the shallower penetration of ¢1~ for larger Ava.
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Table 6. Magnitudes of the complete second-order force QTF, |f 1'/pgaAjA|*|,
and each of 1ts components for a fixed hemisphere of h/a=3. Tﬂe upper
triangular natrix 1s for horizontal forces, and lower part for vertical forces.
On the dfé&gonal, i 17|, and () fgr vertical mean forces. Each element
satisfies the symme ry rela {ion fj1-=f13~ . Computed values are for: first
row; lf j1°1. second row;|frjj-+ fgj] third row; [fpj17|, and fourth row; the
complete QTF |fj1-].

vja= 1.0 1.2 1.4 1.6 1.8 2.0
via= 0.471 0.493 0.498 0.497 0.495 0.494
(0.538) 0.061 0.140 0.246 0.369 0.495
1.0 0.014 0.038 0.070 0.104 0.132
0.482 0.459 0.415 0.360 0.304
0.512 0.513 0.517 0.516 0.515 0.513
0.280 (0.499) 0.060 0.138 0.241 0.362
1.2 0.011 0.013 0.038 0.069 0.102
0.803 0.505 0.472 0.422 0.362
0.478 0.477 0.523 0.525 0.526 0.52F
0.258 0.272 (0.468) 0.059 0.136 0.238
1.4 0.040 0.012 0.013 0.037 0.069
0.770 0.760 0.511 0.478 0.428
0.440 0.449 0.450 0.531 0.536 0.538
0.232 0.250 0.267 (0.442) 0.059 0.135
1.6 0.082 0.042 0.013 0.012 0.037
0.731 0.734 0.728 0.522 0.489
0.398 0.414 0.424 0.425 0.545 0.551
0.211 0.222 0.245 0.264 (0.417) 0.058
1.8 0.137 0.087 0.044 0.013 0.012
0.681 0.701 0.706 0.701 0.536
0.356 0.376 0.392 0.401 0.401 0.560
0.225 0.201 0.215 0.241 0.262 (0.392)
2.0 0.203 0.144 0.090 0.045 0.013
0.621 0.655 0.676 0.681 0.675

As a result, the slope of the vertical force QTF near the diagonal is very
steep with positive sign. Therefore, a severe underestimation of slowly-

varying vertical forces by Newman's approximation is expected. The mean
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vertical drift force, which is given on the diagonal, has a minus sign and
is comparable in magnitude with the horizonal mean drift force.

For freely-floating bodies, we separate contributions due to body
forcing into two terms, fgrj1~ and fpgji~, where fgyj)~ represents the
diffraction effect of ¢1-, and fggj1~ the contribution from the first-
order motions. The contribution fggj1~ is calculated from (4.24) which is
free from the second spatial derivatives on the body, hence, is
numerically more favorable. For the contribution f1j1~+fgrji~, there is
no difference between fixed and freely-floating bodies, hence is not given
separately in Table 7. The general tendency for relative magnitudes of
individual contributions is similar to thdt of the fixed hemisphere. As
expected, the effect of the first-order motions decreases with increasing
sum frequency. The contribution of the body forcing due to linear
motions, fggj1~, as well as the free-surface contribution, fgj1~, are
found to be less important especially near the diagonal. However, due to
the pessible phase cancellation among the contributions, neglecting ffj7~
or fggji~ for certain cases may not lead to reasonable approximation
particularly for large Ava. For example, when (uja,u1a)=(2,l) in Table 7,
the horizontal force QTF from the free-surface integral reaches 70% of
total QTF. For difference-frequency forces, no dramatic change of the
QTFs is observed after including linear motions. This effect is more

significant for the sum-frequency problem as will be shown later.
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Table 7. Magnitudes of the complete second-order force QTF, |fj;1~/ gaAJA] *1.
and each of its components for a freely-floating hemisphere of h/a 3.

upper triangular matrix is for horizontal forces, and lower part for vertica]
forces. On the diagonal, |fqy1=|=[fj1~|, and () for vertical forces. Each
element satisfies the symmetry relation fi17=f14~ . Computed values are for:
first row; |fq } , second row; |fggj1-], t 1rd row; |frj17], and fourth row; the
complete QTF 1 3171

vja= 1.0 1.2 1.4 1.6 1.8 2.0
via=  0.519 0.719 0.619 0.534 0.482 0.447
1.0 (0.306) 0.015 0.026 0.040 0.060 0.084
0.028 0.072 0.129 0.189 0.247
0.709 0.591 0.483 0.407 0.354
0.189 0.878 0.783 0.718 0.681 0.653
1.2 0.030 (0.494) 0.004 0.010 0.020 0.036
0.023 0.020 0.060 0.109 0.160
0.469 0.766 0.660 0.570 0.487
0.376 0.526 0.717 0.677 0.660 0.648
1.4 0.063 0.018 (0.488) 0.005 0.010 0.019.
0.039 0.015 0.015 0.047 6.987
0.630 0.817 0.658 0.598 0.529
0.430 0.516 0.457 0.652 0.645 0.639
1.6 0.090 0.040 0.014 (0.426) 0.003 0.008
0.061 0.040 0.012 0.013 0.042
0.681 0.820 0.742 0.627 0.581
0.447 0.499 0.434 0.407 0.644 0.643
1.8 0.113 0.060 0.028 0.012 (0.392) 0.002
0.098 0.077 0.039 0.011 0.013
0.694 0.813 0.730 0.686 0.626
0.448 0.476 0.409 0.386 0.378 0.646
2.0 0.134 0.077 0.043 0.023 0.010 (0.370)
0.150 0.126 0.080 0.041 0.012
0.680 0.788 0.713 0.676 0.655

The mean drift forces for a freely-floating hemisphere are given in Table
7 along the diagonal and they interestingly change signs from + to - in

the vicinity of the heave resonance (ra~1). This was also observed by
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Pinkster (1980) and Molin (1983).

We next consider the second-order motion transfer function of a
freely-floating hemisphere. Having obtained the complete force QTF, fj]‘,
heave and surge response QTFs can readily be calculated from (4.15).
Interestingly, the second-order heave and surge motions are uncoupled but
each of them is affected by first-order surge and heave motions via
second-order wave exciting forces. If any pair of bichromatic waves is
such that their frequency sum or difference falls on the heave natural
frequency, second-order heave resonance occurs. A typical example of the
difference-frequency resonance of a freely-floating hemishere is given in
Table 8. There, we observe a resonance for a wave pair, (Vja,u}a)=(1,4),
whose frequency difference is close to the heave natural frequency.
Because of the substantial hydrodynamic damping at that frequency the
resonance is weak, as shown in Table 8. In this frequency range, the
surge response QTF is much smaller than that of heave, although the
horizontal and vertical force QTFs are comparable. Any pair of long waves
can generate similar types of sum-frequency resonances. If the natural
frequency (wp) of the system is very low or high, the correspording wave
damping and linear exciting force are typically small near wp. We may
then have prominent second-order resonances, which may be more important
than the linear one. Typical examples are slowly-varying large-amplitude

platform surge motions or the superharmonic vertical plane resonance of

Tension-Leg Platforms.

- 105 -



Table 8. Difference-frequency heave and surge response QTFs, |¢§ ] ~a/AjA *], of a
freely-floating hemisphere of h/a=3. Computed values are for; 4 rst row- the
compiete exciting force QTF, second row: the complete respoise QTF. Values in
() are for surge excitiing force and response QTFs.

vya= 0.6 1.0 1.4
vya= 0.161 (0.175) 0.378 (0.188) 0.366 (0.133)
3.6 0.207 (0.049) 0.455 (0.067) 0.240 (0.075)
0.150 (0.230) 0.373 (0.170) 0.338 (0.103)

4.0 0.112 (0.051) 0.684 (0.050) 0.298 (0.044)
0.144 (0.205) 0.333 (0.219) 0.300 (0.029)

4.4 0.071 (0.041) 0.495 (0.056) 0.390 (0.010)

(11) Sum-frequency problem

For an estimation of sum-frequency (springing) wave excitations in

irregular long-crested seas, Herfjord & Nielsen (1986) and Petrauskas &
Liu (1987) used a linear quadratic operator, qu|+, to approximate the
complete sum-frequency QTF, fj1*. More terms (fgji*+f1j1*+fprj1*) are
included by De Boom et al (1983) with the exception of the free-surface
contributions. The weakness of these approximation methods will be
discussed in the following.

In Table 9, we present the sum-frequency horizontal force QTF on a
bottom-mounted vertical cylinder for two different water depths. Unlike
the difference-frequency problem, components relating to tﬁe second-order
inciden  we, frj1* and fgj1*, are almost negligible in the frequency
range considered, and hence are not given separately. Actually, ¢1t and

its contributions vanish in infinitely deep water. Therefore, we presume
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that most of the contributions of pr]+ are from the free-surface
integral, fgy1*, which is larger than fgj1* in the frequency range
considered. This free-surféce term becomes more important for deeper
water depths (or larger drafts) due to the deep penetration of the
associated second-order potential pressure, as shown in Table 9. For
fixed Ava and increasing sum-frequency, fpj]* increases fast in an
oscillatory manner, especially for h/a=4. This accounts for the relative
importance of second-order potential contributions for larger sum
frequency. For a fixed sum-frequency and increasing frequency
differences, fpj]+ decreases rapidly (especially for h/a=4) due to the
expected cancellations in the interaction between long and short waves.
This phenomenon is mainly due to the particular behavior of the second-
order potential pressure predicted by (2.33), whose effects become more
clear and important for the pitch moment QTF. It is noteworthy that qu1+
and pr]+ are in most cases 180 degrees out of phase, hence decreasing
each other. This fact was also addressed in Chapter I for the case of
monochromatic waves. From these results, we can conclude that any
approximation methods used for sum-frequency excitations without involving
free-surface contributions should be very restrictive regardless of the

shape of the input spectra.
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Table 9. Magnitudes of the complete sum-frequency force QTF, |fj1+/pgaAJA1|,
and each of its components for uniform vertical cylinders. The upper
triangular matrix fs for h/a=1, and lower part for h/a=4. On the diagonal, ()
for h/a=4. Each element satisfies the symmetry relation fj1+=f1j+. Computed
values are for: first row; [fgqy1*|, second row; [fpj1*], ahd third row;

1+l =1fq1t+fpn*.

vja= 1.0 1.2 1.4 1.6 1.8 2.0
via= 1.440(1.493) 1.577 1.709 1.802 1.828 1.778
1.0 1.636(3.004) 1.963 2.308 2.582 2.710 2.661
0.939(1.518) 0.782 0.778 0.850 0.903 0.886
1.546 1.676(1.641) 1.764 1.813 1.797 1.709
1.2 3.179 2.262(3.723) 2.549 2.752 2.807 2.682
1.641 0.752(2.084) 0.847 0.959 1.013 0.973
1.681 1.774  1.805(1.868) 1.808 1.753 1.634
1.4 3.408 4.035  2.754(4.472) 2.876 2.857 2.671
1.748 2.262  0.971(2.612) 1.074 1.105 1.037
1.850 1.909 1.945  1.772(1.957)  1.689 1.556
1.6  3.685 4.211 4.654  2.930(4.975) 2.872 2.668
1.853 2.302 2.714  1.160(3.021) 1.184 1.114
1.969 1.981 1.957 1.910  1.593(1.820)  1.467
1.8 3.769 4.162 4.454 4.843  2.816(5.097) 2.688
1.809 2.182 2.505 2.935  1.226(3.277) 1.227
1.995 1.959 1.878 1.786 1.677  1.368(1.544)
2.0 3.613 3.852 3.961 4.159 4.695  2.693(5.043)
1.620 1.899 2.094 2.375 3.018  1.334(3.502)

In Table 10, the complete sum-frequency pitch moment QTF (Mj]+) as
well as linear quadratic (qu]*) and second-order potential terms (ij]+)
with respect to the center of waterplane are given for the cases where
h/a=1 and 4. In this case, ij1+ is generally much larger than qu]+
especially for deeper water. This is attributable to the deep penetration
of the sum-frequency second-order potential. To show this more clearly,

we have plotted the pressure distributions on the lee(8=0) and weather

- 108 -



side(6=r) of the vertical cylinder, as a function of depth, in Figure 4a,b
for two different combinations of incident wave frequencies. In this
figure, a dominant second-order potential pressure on the weather side can
be noted. The linear quadratic pressures, qu]+, attenuate according to
wavenumber (kj+k]), while the nonlinear potential pressures, ppj]+, appear
to decrease only algebraically with depth. Due to this slow attenuation
of ppJ]+, the pressures on a deeply submerged portion of large-draft
bodies are still nontrivial and contribute significantly to the pitch
moment through a large moment arm. Appreciable heave excitations on a
large draft TLP leg, which have been reported in experiments but cannot be
predicted by the linear theory, can be attributed to above phenomena. For
fixed sum-frequency, pp31+ penetrates deepest on the weather side of the
cylinder (especially when two frequencies are close), as shown in Figure
4. This interesting phenomenon can partly be explained by the asymptotic
behavior of ¢p+ given in (2.32,33). The decay rate of ¢p+ with increasing
depth is characterized by the angular dependent wavenumber kg=
(kj2+k12+2kjkicos8)1/2, which has a minimum (maximum) for kj=kj and 6=r(0)
and increases with increasing kj-(+)kj. Due to this interesting behavior
of ¢p*. the pitch moment QTF decreases rapidly for a fixed sum frequency
and increasing Ava, as shown in Table 10, especially for the case h/a=4.
The above discussion emphasizes the importance of second-order
potential contributions and/or the weakness of existing approximation
methods used in the estimation of sum-frequency wave excitations on large
draft bodies. An important example of this is superharmonic wave
excitations and resulting resonant responses of a Tension-Leg Platform in

vertical plane motions (see Chapter IV). Interestingly, it was reported
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in Petrauskas & Liu (1987) that large scale experiments tended to give 3~4
times larger rms tendon loads than their predictions entirely based on
qu1+. This large discrepancy may be attributable to the contributions of

the second-order potential.

Table 10. Magnitudes of the complete sum-frequency pitch moment QTF,
%] */pga A%A]l, and each of its componerts for uniform vertical cylinders
h respect to the center of waterplane. The upper triangular matrix is
for h/a=1, and lower part for h/a=4. On the diagonal () is for h/a=4. Each
element satisfies symmetry relationi Mi1 *=M Computed values are for:
first row;[Mgj1*|, second row; |Mpj17|, and tgird row |[Mgj1 Mpj1tl.

vja= 1.0 1.2 1.4 1.6 1.8 2.0
via=  0.217(0.235) 0.199 0.184 0.166 0.145 0.121
1.0 0.785(4.472) 0.942 1.08S 1.194 1.228 1.179
0.635(4.309) 0.794 0.939 1.048 1.094 1.063 -
0.254 0.181(0.262) 0.164 0.147 0.126 0.103
1.2 4,220 1.071(4.934) 1.181 1.252 1.256 1.180
4.028 0.927(4.738) 1.039 1.117 1.136 1.079
0.272 0.267 0.147(0.259) 0.130 0.109 0.086
1.4 3.762 4,777 1.251(5.237) 1.285 1.262 1.167
3.524 4,554 1.116(5.011) 1.162 1.156 1.082
0.279 0.264 0.245 0.112(0.223) 0.094 0.073
1.6 3.481 4,333 5.079 1.295(5.580) 1.265 1.179
3.219 4.092 4.851 1,185(5.364) 1.173 1.106
0.270 0.248 0.223 0.196 0.078(0.168) 0.063
1.8 3.088 3.739 4.332 5.231 1.255(6.037) 1.217
2.829 3.505 4.120 5.037 1.178(5.859) 1.155
0.246 0.221 0.191 0.164 0.138 0.058(0.116)
2.0 2.569 3.008 3.351 3.983 5.421 1.254(6.502)
2.331 2.798 3.168 3.821 5.283 1.198(6.387)

In Figure 5, the second-order potential pressure QTFs, ppj]+, along

the vertical cylinder of h/a=1 are given for five angular positions. In
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this case, variations in ppj]+ for different angular positions are large
due to the dominant contribution from angular-dependent free-surface
pressures. fhe decay rate at the waveward side is much slower than that
of leeward side. Along the leeward edge(#=0), the nonlinear potential
pressure initially decreases with depth, reaches a minimum, and then
begins to increase towards the bottom. We also see that a minimum of
ppj]+ may not occur at the bottom or the cylinder. Similar trends were
given for monochromatic waves in Chapter I.

In Figure 6, we present the second-order potential run-up QTF, qu1+,
as well as the linear quadratic contribution, qu]+, around a vertical
cylinder of h/a=1, for two different incident frequency combinations;
(vja,v1a)=(1,2) and (1.4,1.6). Both 7pj17 and qu1+ are not sensitive to
changes in Ava when compared with the difference-frequency case (see
Figure 2). The magnitude of qu]+ generally increases from the lee(6=0)
to weather side(d=r), whereas npj1* has two peaks near 6=x/4 and x, which
are comparable in magnitude.

We next consider, in Table 11, the horizontal and vertical sum-
frequency force QTFs on a fixed hemisphere of h/a=3. Again, contributions
associated with ¢1*, frj1* and fgrj1*, are negligible in the bifrequency
range considered, and hence are not given separately. In the horizontal
direction fgqj1* and fpj1* are comparable in magnitude, but in the vertical
direction, fpj1+ is dominant over fgqj1*. This is due to appreciable
second-order potential pressures on the bottom of the sphere, which was
previously observed. For both horizontal and vertical forces, qu1+ and
fpj]+ are generally out of phase, and hence the complete QTF is much

smaller than the individual sum. Interestingly, the complete vertical
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sum-frequency forces are large and become even more important with
increasing sum frequency.

In Figure 7, we present the sum- and difference-frequency potential
run-up, fpt, around a fixed sphere for two frequency combinations. The
general trend for 7p~ 1s very close to that of the vertical cylinder given
in Figure 3. For gpj1*, the trend is similar to Figure 6 with the

exception that we have a more dominant peak on the weather side.

Table 11. Magnitudes of the complete sum-frequency force QTF, |fj]+/pgaAjA]|,
and each of its components for a fixed hemisphere of h/a=3. The upper
triangular matrix is for horizontal forces, and lower part for vertical forces.
On the diagonal, s) is for vertical forces. Each element satisfies the symmetry
relation fy)1*=f14*. Computed values are for: first row; |fgj1*|, second row;
[fpj1*|. and third row; the complete QTF |fj1*].

vja= 1.0 1.2 1.4 1.6 1.8 2.0
via= 1,247(0.320) 1.268 1.317 1.399 1.485 1.538
1.0 1.104(1.229) 1.249 1.412 1.594 1.747 1.830
0.730(0.914) 0.704 0.692 0.681 0.655 0.610
0.278 1.333(0.237) 1.409 1.496 1.569 1.600
1.2 1.192 1.426(1.182) 1.604 1.777 1.905 1.954
0.918 0.663(0.948) 0.642 0.628 0.603 0.560
0.230 0.191 1.488(0.147) 1.560 1.607 1.607
1.4 1.055 1.055 1.774(0.937) 1,918 2.00€6 2.015
0.827 0.865 0.614(0.790) 0.600 0.579 0.541
0.187 0.151 0.114 1.604(0.094) 1.617 1.586
1.6 0.909 0.968 0.859 2.024(0.874) 2.079 1.995
0.722 0.819 0.745 0.592(0.781) 0.585 0.518
0.157 0.126 0.100 0.096 1.598(0.108) 1.545
1.8 0.816 0.812 0.836 0.971 2.057(1.187) 2.032
0.660 0.687 0.736 0.877 0.563(1.083) 0.570
0.139 0.116 0.102 0.107 0.122 1.484(0.133)
2.0 0.759 0.789 0.859 1.055 1.342 2.017(1.572)
0.620 0.673 0.758 0.951 1.225 0.606(1.444)
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We next investigate how the trend of sum-frequency excitation is
changed when we allow first-order motions. In contrast to the difference-
frequency case, displayed in Table 7, the body-surface forcing term due to
linear motions; fpgj1*, contributes significantly and this effect is even
stronger for vertical forces. The linear square term, qu]*, is amplified
in both the horizontal and vertical directions when we include linear
motions, especially near the heave resonance frequency. Major
contributions in this case, as shown in Table 12, are qu]+, fBle+: and
fFj]+. These forces generally do not act in phase, hence the magnitude of
the total QTF is much less than the individual sum. Nevertheless,
magnitudes of the complete horizontal and vertical force QTFs are
increased by first-order body motions. With increasing sum-frequency and
fixed Ava, fpj1* continues to increase its relative importance over the
other contributions, while fggji~ decreases, and fqj1~ approaches the
result of the fixed sphere due to the decreasing effects of linear motion.
As a result, fgqj1* and fggj1* are the most important contributions in the
small sum-frequency region, (vj+v1)a < 2.8, but frj1* dominates other
contributions for (vj+v7)a > 2.8. It is also noticible that qu]+ and
fBBj1+ are greatly increased near the heave resonance frequency, which was

not conspicuous in the difference-frequency case.
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Table 12. Magnitudes of the complete sum-frequency force QTF, |fi1%/pgaAiAy],
and each of its components for a freely-floating hemisphere of h7a=3. Tﬂe
upper triangular matrix is for horizontal forces, and lower part for vertical
forces. On the diagonal, 5) is for vertical forces. Each element satisfies
the symmetry relation, fy1¥=f13*. Computed values are for: first row; |f jttl,
second row; [fggy1*|, third row;|frj1*+fgrj1*+fry1*|, and fourth row:lfj1*?.

vja= 1.0 1.2 1.4 1.6 1.8 2.0
vja= 2.646(3.467)  2.551 2.107 1.916 1.797 1.677
1.0 1.198(4.427)  0.999 0.762 0.682 0.648 0.623
1.573(0.984)  1.767 1.568 1.459 1.357 1.226
1.041(1.461)  0.977 0.812 0.733 0.678 0.632
2.702  2.871(2.085)  2.548 2.373 2.263 2.151
1.2 3.8 1.031(3.219)  0.829 0.727 0.675 0.642
0.778  2.336(1.208)  2.282 2.233 2.169 2.060
1.877 1.067(2.338)  0.948 0.879 0.822 0.761
1.539 1.200  2.302(0.720)  2.154 2.061 1.965
1.4 2.459 2.034  0.653(1.254)  0.555 0.504 0.474
0.565 1.134  2.293(1.142)  2.266 2.216 2.117 .
1.517 1.866  0.857(1.516)  0.806 0.760 0.705
0.962 0.771 0.496  2.010(0.378) 1.916 1.823
1.6 1.747 1.483 0.897  0.458(0.638)  0.409 0.368
0.517 1.109 1.180  2.249(1.331) 2.215 2.079
1.280 1.632 1.372  0.778(1.383)  0.759 0.694
0.656 0.553 0.393 0.330  1.822(0.307) 1.735
1.8 1.356 1.102 0.697 0.502  0.348(0.399)  0.322
0.522 1.022 1.204 1.456  2.169(1.696) 2.141
1,159 1.375 1.305 1.451  0.752(1.653)  0.766
0.473 0.431 0.340 0.306 0.295  1.665(0.284)
2.0 1.103 0.901 0.575 0.419 0.338  0.291(0.288)
0.493 0.994 1.191 1.473 1.786  2.178(1.977)
1.051 1.278 1.254 1.450 1.734  0.829(1.918)

6. CONCLUSION

The second-order diffraction and radiation problems for fixed or

freely-floating axisymmetric bodies in the presence of plane bichromatic
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incident waves are solved by the ring-source integral equation method. An
important part of the solution is the efficient and accurate evaluation of
the boundary forcing terms, particularly the poorly convergent free-
surface integrals. An approach which treats the entire local-wave-free
outer region analytically is developed and shown to be efficacious for
both sum- and difference-frequency problems. Although the second-order
sum- and difference-frequency potentials and associated local solutions
are solved explicitly, the present method is comparable in computational
effort to existing approaches (Eatock Taylor et al, 1988; Matsui, 1988)
wifch utilize fictitious radiation potentials to obtain global second-
order quantities. On the other hand, the availability of the second-order
potential allows us to discover and explain many important local second-
order phenomena associated with the pressures and free-surface elevations.

For illustration, the sum- and difference-frequency problems for
bottom-mounted vertical cylinders of h/a=1 and 4, and fixed and freely-
floating hemispheres, are studied in some detail. Convergence tests with
respect to truncations and discretizations, as well as, comparisons to
semi-analytic solutions for the vertical cylinders (Appendix C), confirm
the validity and accuracy of the present calculations.

From our numerical examples, several important features of the
second-order solutions have been observed:

(1) Difference-frequency problem: Among the individual contributions
to the second-order force, the linear quadratic term, qu]_, and second-
order incident wave contributions, fyj1~ & fgrj1~, are found to be the

most important. The second-order difference-frequency incident potential,
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#1°, attenuates slowly with depth especially for small frequency
differences. As a result, frj1~ & fgrj1~ have large slopes near the
diagonal and are particularly important when the draft of a body is large,
or when major porticns of the body are deeply submerged. The resulting
slowly-varying vertical forces for these bodies may be appreciable. In
this case, the validity of Newman's or Marthinsen's approximation methods
may no longer be justified. On the other hand, Pinkster's (or QIB)
approximation is expected to give good engineering results for a broad
class of input spectra without a substantial increase in computing time.
The pressures and run-up associated with ¢~ are found to be relatively
constant around the body, especially when the two frequencies are close.
Any pairs of waves in a sea spectrum, which satisfy w™=wp, can excite
slowly-varying resonant responses, and are particularly important when
damping forces are small at that frequency.

(2) Sum-frequency problem: In contrast to the difference-frequency
problem, the second-order locked wave potential, ¢p+. plays an important
role. This free-surface contribution cannot be neglected in favor of
other contributions, and hence any approximation method excluding this
term will likely be inadequate regardless of the shape of the input
spectra. On the other hand, contributions associated with ¢1* are
negligible except for the long wave (or equivalently, shallow water)
regime. The body-boundary forcing contribution due to linear motions,
fBBj1+: is found to be much more important in the sum-frequency problem.
The second-order sum-frequency potential, ¢+, attenuates slowly with

depth, especially on the weather side. Interestingly, this second-order
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potential bressure, ppj]+, penetrates deeper for smaller freguency
difference pairs. Because of these phenomena, pitch-roll moments of large
draft bodies can be greatly magnified particularly when the center of
rotation is close to the free surface. A typical example is the
superharmonic pitch-roll excitation and résponse of a TLP. Petrauskas &
Liu's (1987) method, which is based on an approximated QTF fgji™,
substantially underestimates the springing motions of the TLP when
compared to experimental measurements. This large discrepancy may be
attributed to contributions from the second-order potential (see Chapter
IV). The sum-frequency second-order potential pressures and run-up have
large variations around the body due to significant contributions from the
free-surface forcing pressures.

The present theory and numerical results for bichromatic waves can be
easily applied to the estimation of the slowly-varying or springing wave
excitations and responses in irregular seas. This will be studied in Part

two.
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PART TWO

APPLICATION TO RANDOM SEAS AND STATISTICS

There are three kinds of 1ies; lies, damned lies, and statistics

- Benjamin Disraeli -
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CHAPTER III

THE STATISTICAL DISTRIBUTION OF SECOND-ORDER WAVE EXCITATIONS IN
UNIDIRECTIONAL RANDOM SEAS.

1. INTRODUCTION

When the natural frequency of a offshore structure is much lower or
higher than the appreciable wave energy band of the input spectrum, the
second-order wave forces and responses may dominate linear quantities and
become critical to engineering design. Typical examples are the resonant
vertical-plane springing motions of tension-leg platforms and the large-
amplitude slowly-varying surge motions of moored vessels.

It is well known that for time-invariant linear system the output due
to a Gaussian input is also Gaussian, and the output spectrum gives
sufficient information for its statistical distribution. For nonlinear
systems with memory (e.g. a two-term Volterra series), the output process
due to a Gaussian input is non-Gaussian, and hence the spectral analysis
gives only limited information about the probabilty distribution. In
general, then, the probability density functions of second-order forces
and responses in Gaussian random geas must be derived based on the input
wave spectrum and the quadratic transfer function(QTF) of a system.

In Chapter II, we obtained the complete force quadratic transfer
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functions(QTF) for bichromatic incident waves. Based on this information,
we consider 1n this chapter the complete statistical properties of the
second-order forces in unidirectional Gaussian random seas. The most
widely used mathematical model for the present problem is a two-term
Volterra functional polynomial expansions (or Volterra series). The
complete probabilistic distribution of this model was first developed in
the communication field by Kac & Siegert(1947) and Bedrosian & Rice(1971),"
and introduced to ocean engineerng applications by Neal(1974). Since
then, the theory has been reexamined and applied mainly to the study of
slowly-varying wave forces (e.g. Pinkster, 1980; Vinje, 1983; Naess,
1986) .

Despite the progress made in the statistical theory, the Volterra
model has so far only been applied to some two-dimensional geometries
because complete QTFs for three-dimensional bodies have not been available
until recently. In view of the theoretical and numerical difficulties
associated with the second-order problem, numerous approximation methods
based on approximated QTFs (see Chapter II) have been widely used in
engineering applications without necessarily any confidence that they will
lead to a safe design.

In this chapter, we study the statistical properties of the second-
order wave excitations in unidirectional random seas (for multidirectional
seas, see Chapter V). For illustration, we calculate the complete
difference-frequency force PDFs and spectra for a large-draft truncated
vertical cylinder, and compared them to those based on approximated QTFs
(e.g. Newman, 1974; Pinkster, 1980; Standing & Dacunha, 1982). Our

numerical results reveal that some approximation methods may substantially
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underestimate the probabilty of difference-frequency extreme loads.

For the related sum-frequency problem, the analysis follows closely
with the exception that explicit expressions for the probability
distribution are in general not possible and numerical evaluations are
required. As is commonly known, the PDF's themselves are typically not so
important for springing forces in view of practical applications where
information on the spectra and variance (rms) are more relevant, for
example, for the fatigue design of mooring cables. This is addressed in

the case of a tension-leg platform in Chapter IV.

2. THE COMPLETE PROBABILITY DISTRIBUTION OF A TWO-TERM VOLTERRA SERIES
We consider the aeneral statistical properties of the second-order

wave loads on a body due to stationary Gaussian random seas. A two-term

Volterra series is used as a mathematical model for this problem. Then,

the total wave force F(t) has the following expression:

Fit)= FD(t) + F@(y) -

[0 (r) g(t-r) ar + [ [ 0B (rr) sltor)) cltory) drydr,
-0 -0 -0 (2.1)

where h(1) () and h(Z)(rl,rz) are respectively the linear and quadratic
impulse response functions. The unidirectional (Gaussian with zero mean)
random sea surface ¢(t) at some reference point can be expressed as a sum
of component waves:

jw,t

¢(t)= g 3 cos( wjt + ej) = Re ? Aj e Y
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(2.2)

where aj, ¥y, and €5 are the amplitude, frequency, and phase of the j-th
wave component, and €j is a uniformly distributed random variable in
[0,2x]. Subsfituting (2.2) into (2.1), we obtain an equivalent expression
of F(t) in the frequency domain: \

i
F(D ()= pe & A H(l)(uj) e Uit (2.3)
J
F@ (t)= F(t) + FH(t) =
* f(wg-w, )t T(w 4w )t
Re I L[ A H®) (0,0 e AL AAHP) (w0 e "™ 12 "

where ()* represents the complex conjugate of a quantity. The first term
of (2.4) describes the difference-frequency (slowly-varying) forces, and
the second term the sum-frequency (springing) forces. H(1) and H(2) are
the linear and quadratic transfer functions of F(1) and F(2),

respectively. These are given by the Fourier transforms of h(1) and h(2);

HD @) = [ n D7) 17 or

® -1 (w7 4w, 7,)
H(Z)(uj,uk) = f I h(z)(rl,rz) e T dr,dr, o5
-® 2.5

The quadratic impulse response or transfer functions may, without loss of
generality, be assumed to be symmetrical. The quadratic transfer function

H(z), for example, satisfies the following symmetric conditions:
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H(Z)(Uju‘"k) = H(Z)*(uk,-uj) ' H(z)(UJ'Uk) = H(z)(uk'vj) (2.6)

The complete probabilistic theory for a nonlinear time-invariant
Volterra system represented by (2.1) or (2.4) was first obtained by Kac &
Siegert (1947), and later reexamined by Bedrosian & Rice (1971) and Neal
(1974). As shown in the above references, F(t) may be decomposed in the
following way:

2
F(t)= L [ c W (t) + 2 Wo(t) ]
n nn nn (2‘7)
where Wh(t) are normalized Gaussian variables which are mutually
independent. The coefficients A, are the eigenvalues of the following

integral equation:

I K(w,w') 7(w') do* = X q(w)
- (2.8)

The Hermitian kernel K(w,w') is given by:
K(w,w') = 45@) H® (u,-u") I3T07) (2.9)

where s(w) is a two-sided input wave spectrum, From the properties of a
Hermitian kernel, \p are real, and the orthonormal eigenfunctions, 7n,

satisfy n(-w)=7n"(w). The coefficients ¢, in (2.7) are given by:

i I H(l)(u) {s(w) 7, (W) dw
-0 (2.10)

Then, the characteristic function of F(t) is given by:
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92 2
: &xp [ - ey ]
m(1- 12Xn9 )1/2 n 2 (1- 12Xn0 )
n (2.11)

GF(O) =

and the corresponding probability density function of F(t) can be obtained

from the inverse Fourier transform of (2.11): |

®
p(A)= 3= [ 8(8) e ~1F g5
-9 (2-12)
In general, (2.12) can only be computed numerically except for some

special cases, as shown in the next section.

3. THE EXPLICIT PROBABILITY DENSITY FUNCTION OF THE DIFFERENCE-FREQUENCY
WAVE EXCITATIONS
If we only consider the second-order term, F(2)(t), cp=0 in (2.11),
and we obtain a simpler form:

1

172
m(1-ian.0
n n® ) (3.1)

8 =
F(z)(a)

The probability distributions of the slowly-varying extreme forces
and corresponding large-amplitude motions are important design
considerations, and we focus hereafter on the second-order difference-
frequency wave forces represented by the first term of (2.4):

- *
F(t)=Re L L AjAk Djk e

Jk (3.2)

For convenience, we use the notation; Djk = fjk~ = 2H(2)(uj,-uk) for

wj,wk20, where Djy=Dj”*. The mean of F-(t) is obtained when j=k in (3.2):
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[ ]
swvazaﬁ%J=qu»oum)m
J 0 (3.3)
where S(w) 1s a one-sided input wave spectrum (S(w)= 2s(w) for w20, and
S(w)=0 for w{0). The one-sided spectrum of F~(t) can be obtained from the
continuous form of the autocorrelation function of (3.2) after using

Wiener-Kinchin relation (see Chapter V) as follows:

®
S () =8 [ SW) S(wp) [D(w,whp)|? du

F 0 (3.4)
The variance of F-(t) is then simply given by the area of Sg.. As pointed
out by Naess (1986), the probability density function of F- can be derived
in an explicit form. For difference-frequency excitations only, we set
H(Z)(w,u')=0 for wew'D0. The integral equatifon (2.8) then generates a set
of double eigenvalues, Azp-1=A\2p=vp, and can be rewritten in the form:

[ Kww') p*) du* = v pu) (w20)

0 (3.5)
where K(w,w') = {S(w) D(w,w') 1S(w'). Again, the eigenvalue problem (3.5)
must in general be solved numerically given D(w,u').

From (3.1) and the independence property of Wn(t), we obtain:
1

e (a) = -
- —ng - i2v ) (3.6)

Using residue theorem, (3.6) can be inverted analytically leading to the

following explicit probability density function of F-(t):
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(F)e T 520 Exp [ - 5o for F-
P = 5 Exp L -3 or F 20
n=1 ¥ 2vy

LN e i
PEF)- ey o) B0 L 2[5, for £ <0 (3.7)

where N is the total number of eigenvalues, and vp»0 for n=1,eee M and
n<0 for n=M+1,eee N, The coefficients A, are given by:
N v
b= 1 7 : v
m=1, (m#n) “n” “m (3.8)

The mean and variance of F-(t) can be obtained from the eigenvalues of

(3.5) as follows:

- N 2 N oo
E(F) =2 ¢ v, . co"=41¢ v,
n=1 F n=1 (3.9)

If the input spectrum is sufficiently narrow banded and the slope of
the QTF with respect to the frequency difference is small near the
diagonal, wj=wg, we may write; Djix = DJJ+0(UJ-Hk), and the exact
expression (3.2) can be approximated by (Newman, 1974):
1(uj-uk)t

- *
F(t) =Re [ L Aj Ay Djj e

J ok (3.10)

If Newman's approximation is employed, the eigenvalue problem (3.5) can be
solved explicitly, as shown in Chapter V. In this case, (3.5) has only

two eigenvalues, v+, and they are given by:

1. E(F r 2 1/2
e JLEE) + om, { S(w) D%(wow) dw } ] (3.11)
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where Mg is the zeroth moment of the input spectrum, S(w), and E(F") is
given in (3.3). The probabilistic distribution of (3.10) then has the
following form:

, i . )
p(F7) = % Exp [ - 1£—£ ] where ¥ for F 20
2|-| v for F K0 (3.12)

The variance of (3.10) can be obtained from (3.9):

p -2
ai_ = 2 M, f S(w) Dz(u,u) dw + Eig_l

0 (3.13)

The spectrum (one-sided) of (3.10) is given by (see Chapter V):

Sp-() = 2 [ S@W) Swwp) [ D(w,) + D(wp,wp) 12 o

0 (3.14)

4. NUMERICAL RESULTS AND DISCUSSION

As an application of the theory in the previous section, we consider
the second-order difference-frequency wave excitations on a large-draft
truncated vertical cylinder (radius a=15m, draft H=4a) in unidirectional
irregular seas in water depth h=2H. A two parameter Pierson-Moskovitz
spectrum of significant wave height Hy/3=6m and mean period Tp= 8 sec is
used as the input spectrum. For computations, the small wave energy
outside the frequency band 0.4<w<1.15 is assumed to be zero.

4 2

w. H w
s(y) = ——L/3 ¢ - (MY
(w) sy o5 xp [ - ()7 7] (4.1)

where mean frequency wp=2x/Tp.
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The complete difference-frequency wave excitation QTFs, D(ui,uk), for
the truncated vertical cylinder are calculated by the numerical method
detailed in Chapter II, and are given in Table 1. For comparison, those
of Standing et al's (1982) and Pinkster's (1980) approximation methods are
also given (see Chapter II).

Table la shows the horizontal force QTFs for various combinations of
incident frequencies. For Newman's (1974) approximation, only mean drift

data on the diagonal are necessary. As pointed out in Chapter II, the

Table la. The difference-frequency horizontal-force QTFs for a truncated
vertical cylinder of radius a=15m, draft H=4a. Computed values (Re,Im) are
for first row: fqjx~+f1jk~ (Standing et al, 1982); second row: fqjx~+fIjk~
+fBjk” (Pinkster, 1980{; and third row: fgjk +fpjk~ (complete theory).

wy= 0.40 0.55 0.70 0.85 1.00 1.15
wk= 0.04,0.00 0.13,0.02 0.28,0.25 0.33,0.64 0.22,0.91 0.05,0.97
0.40 0.13,0.13 0.27,0.65 0.22,1.41 -0.16,1.70 -0.06,1.07
0.12,0.13 0.19,0.60 0.10,1.23 -0.33,1.43 -0.43,0.81
0.23,0.00 0.40,0.15 0.46,0.52 0.36,0.79 0.22,0.86
0.55 0.40,0.31 0.44,0.99 0.26,1.54 -0.01,1.33
0.37,0.29 0.35,0.89 0.09,1.37 -0.24,1.15
0.56,0.60 0.61,0.24 0.52,0.53 0.37,0.67
0.70 0.61,0.45 0.51,1.07 0.27,1.34
0.57,0.40 0.39,0.93 0.14,1.12
0.65,0.00 0.58,0.19 0.46,0.44
0.85 0.58,0.44 0.44,1.02
0.51,0.38 0.31,0.82
0.59,0.00 0.56,0.19
1.00 0.56,0.49
0.47,0.41
0.62,0.00

1.15
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components due to the second-order incident wave potential, fijk~ and
fgjk~. contribute significantly, and they are equally important. Oue to
these terms, the slope of QTF (especially the imaginary part) near the
diagonal is very steep. Therefore, neither Newman's nor Standing et al's
method, which neglect both or one of these terms respectively, is expected
to give fair results compared to the complete theory. On the other hand,
the contribution from the free-surface integral is generally small except
for large w* and w- (u*=wj+uk, u‘=UJouk), hence Pinkster's method which
excludes only this contribution seems to be more robust.

The vertical force QTFs are given in Table 1lb, where we see that
there 1s a small pressure on the bottom of the cylinder even for the high
frequency pairs. Because of the fast depth-attenuation of the linear
potential, the linear square term, quk'- is almost negligible except for
very low frequency pairs. In contrast, ¢~ penetrates to large depths,
particularly for smaller w- (see Chapter II), and cause the large
gradients near the diagonal. Due to these combined effects, Newman's
approximation is expected to underestimate severely the difference-
frequency vertical force of large-draft bodies. Interestingly, the free-
surface contribution, frjk~, is equally important in this case compared to

the other contributions.
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Table 1b.

vertical cylinder of radius a=15m, draft H=4a.

The difference-frequency vertical-force QTFs for a truncated
Computed values (Re,Im) are

for first row: fqik~+f1ik~ (Standing et al, 1982); second row: fqik +f1ik~
+fBjk~ (Pinkster?JIQBO}g and third row: quk'*fpjk' (compliete thg ry). Ik
wi= 0.40 0.55 0.70 0.85 1.00 1.15
Uk‘ -0o0810|00 '0.15'0-00 "0009'0.00 "0.03.0.00 -0001'0000 0-00,0.00
0040 -0014'0000 _OOOS'OQOZ -0.02,0.06 -0.04,0006 0.06’0003
-0014‘,0000 "0005,0000 "0.01.0.01 0000,0001 0.00,0-00
-0.02,0.00 -0.10,0.00 -0.05,0.00 -0.01,0.00 0.00,0.00
0.55 -0.08,0.01 -0.01,0.04 -0.01,0.08 -0.06,0.07
—0.08.0000 -0002.0000 0000.0001 0.00'00011
1 0.00,0.00 -0.08,0.00 -0.03,0.00 -0.01,0.00
0.70 -0.05,0.01 0.01,0.05 -0.01,0.11
‘0.06'0000 "0001.0000 0.00.0-00
0.00,0.00 -0.07,0.00 -0.02,0.00
0085 -0003,0001 0003,0-07
-0.05,0.00 0.00,0.00
0.00,0.00 -0.06,0.00
1.00 -0.02,0.02
-0.04,0.00
0.00,0.00
1.15

The pitch moment QTFs with respect to the center of waterplane are

given in Table 1c. The fast increase of QTF (especially the imaginary

part) near the diagonal with increasing frequency difference is
noteworthy. As pointed out earlier, this is due to the slower
attenuation of ¢~ for smaller w~. The deeply penetrating pressure

associated with ¢~ greatly magnifies the pitch moment through its large

moment arm. Consequently, Newman's or Standing's approximations are
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hardly applicable in this case even for a sufficiently narrow banded

input spectrdm.

Table 1c. The difference-frequency pitch-moment (with respect to the center
of waterplane) QTFs for a truncated vertical cylinder of radius a=15m, draft
H=4a. Computed values (Re,Im) are for first row: Majk +M1jk” (Standing et
al, 1982); second row: Mgk +M1jk~+Mpjk~ (Pinkster, {980): and third row:
Mgik *+Mpik~ (complete theory).

wj= 0.40 0.55 0.70 0.85 1.00 1.15
wg= 0.04,0.00 0.09,-0.48 0.16,-1.02 0.17,-1.30 0.15,-1.28 0.08,-1.04
0.40 0.09,-0.68 0.18,-1.60 0.34,-2.25 0.63,-2.05 0.20,-1.11
0.11,-0.68 0.25,-1.53 0.41,-2.04 0.72,-1.82 0.52,-0.87
0.14,0.00 0.18,-0.53 0.19,-1.03 0.18,-1.21 0.13,-1.09
0.55 0.18,-0.79 0.22,-1.69 0.36,-2.08 0.42,-1.51
0.22,-0.76 0.28,-1.55 0.42,-1.90 0.57,-1.36
0.19,0.00 0.19,-0.57 0.19,-1.03 0.14,-1.16
0070 0019'-0089 0021'-1073 0030"1083
0.23,-0.82 0.27,-1.55 0.30,-1.59
0.18’0000 0018'-0060 0016,"0.97
0085 0018,-0098 0018,"1069
0.24,-0.89 0.23,-1.44
0.18,0.00 0.17,-0.62
1.00 0.17,-1.06
0024.-0o93
0.17,0.00
1.15

Based on the QTF data given in Table 1 and the input spectrum (4.1),

the eigenvalue problem (3.5) and the corresponding PDF (3.7) are

calculated for each method.

interpolated using the values given in Table 1.

For this calculation, the QTFs are linearly
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convergence of (3.7) with increasing number of eigenvalues (equivalently,
the number of frequency discretizations) is tested. As shown in Table 2
or Figure 2, we obtain rapid convergences with increasing Ny, which shows
the efficacy of. the complete theory for such applications. Similar rates
of convergences are also obtained for the other approximations, and Ny=20

is used for all later results.

Table 2. Convergences of the mean and variance of the complete
horizontal force PDF with increasing number of eigenvalues, Ny.

Mean (E(F-)) variance (of.2)
Ng=5 1.681 8.486
10 1.678 8.330
20 1.678 8.315
30 1.678 8.312

Figures 3a~c show the PDFs of the difference-frequency wave
excitations obtained using the complete theory as well as those of
existing approximation methods. The overall results confirm the earlier
observations regarding the QTFs. It is seen that the PDFs based on
Newman's approximation differ significantly from the exact solutions and
greatly underestimate the probability of extreme values. Futhermore, the
large probability of negative horizontal forces and positive vertical
forces can not predicted by Newman's approximation. Pinkster's
approximation, which includes all but free-surface contributions,
slightly overestimates the exact solution, and appears acceptable for
engineering applications. In Table 3, we summarize the mean and standard

deviation of each method obtained from (3.9).
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Table 3. The mean and standard deviation of the difference-frequency
wave excitation.

horizontal force vertical force pitch moment

E(F-) OF- E(F) OF- E(M™) M-
Newman: 1.678 1.768 -0.076 0.095 0.636 0.646
Standing: 1.678 2.239 -0.077 0.263 0.636 2.932
Pinkster: 1.678 3.260 -0.077 0.239 0.636 4.679
complete: 1.678 2.584 -0.077 0.212 0.636 4,351

From this table, we see that the mean drift forces can be obtained
correctly by any method. On the other hand, Newman's approximation
severely underestimate (e.g. 61%, 45%, and 15%, respectively, for the
horizontal and vertical forces and pitch moment) the exact standard
deviation.

The variances of the difference-frequency excitations can also be
obtained from the area under the associated spectra given by (3.4) or
(3.18). We present in Figures 4a~c these spectra for each method. The
results are again consistent with the earlier observations. As expected,
all the curves converge to the exact value as w™+0, but differ
signifficantly for large w. When the natural frequency of a system is
very lTow (e.g. wn<<0.1) and associated damping is small, the siowly-
varying response spectra based on approximation methods may be obtained

more correctly because of the filtering by the motion transfer function.
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5. CONCLUSION

In this chapter, we review the general statistical properties of a
two-term Volterra series and obtain expiicitly the PDFs and spectra of
the second-order difference-frequency wave excitations in unidirectional
Gaussian seas. Specifically, we calculated the complete probability
distributions of the difference-frequency wave excitations on a large-
draft truncated vertical cylinder, and compared them with those based on
approximated QTFs. ”

From our numerical results, we found that Newman's (1974) and
Standing et al's (1982) approximation methods severely underestimate the
variance and the probability of extreme forces and may, therefore, not be
acceptable for many engineering applications. This emphasizes the
necessity of the use of complete theory, or at least Pinkster's (1980)
approximation which appears to be more robust than the other aproximation
methods.

The present complete theory is directly applicable to predictions of
the probability distributions of the second-order responses as long as
the equation of motion is assumed to be a time invariant linear system.

When nonlinear damping or restoring forces are present, however, the two-

term Volterra model is not adequate for the statistical analysis of the

nonlinear responses (Naess, 1986).
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Figure 1. Two parameter (H1/3=6m. Tp=8sec) Pierson-Moskovitz input
amplitude spectrum.
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Figure 2. Convergence of the complete PDF for
forces with increasing number of eigenvalues.
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Figure 3a. PDFs of the difference-frequency horizontal force on a
truncated vertical cylinder (radius a=15m, draft H=4a) obtained using:
Newman's ( ) ). Standing's(— - —) and Pinkster's(— - = —)

approximations, and the complete theory(
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Figure 3b. PDFs of the difference-frequency vertical force on a truncated

vertical cylinder (radius a=15m, draft H=4a) obtained using: Newman's
{, Standing's(— - —) and Pinkster's(— - - —)\

(—— o

approximations, and the complete theory(
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Figure 3c. PDFs of the difference-frequency pitch moment on a truncated
vertical cylinder (radius a=15m, draft H=4a) obtained using: Newman's

. , Standing's(— - —) and Pinkster's(— - - —)}
approximations, and the complete theory(
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Figure 4a. One-sided amplitude spectra of the difference-frequency

horizontal force on a truncated vertical cylinder (radius a=15m; draft
H=4a) obtained using: Newman's{— ¢ —), Standing's(— - —), and
Pinkster's(—— - - —) approximations, and the complete theory(
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Figure 4b. One-sided amplitude spectra of the difference-frequency
vertical force on a truncated vertical cylinder (radius a=15m, draft H=4a)

obtained using: Newman's(~—— ¢ —), Standing's{— - —), and
Pinkster's(—— - — —) approximations, and the complete theory( —3.
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Figure 4c. One~sided amplitude spectra of the difference-frequency pitch

moment on a truncated vertical cylinder (radius a=15m, draft H=4a)

obtained using Newman's(—— ¢ —), Standing's(~—— - —), and
Pinkster's(~— — ~ —) approximations, and the complete theory(
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CHAPTER 1IV.

THE SECOND-ORDER SUM-FREQUENCY WAVE EXCITATION AND RESPONSE OF A
TENSION-LEG PLATFORM.

1. INTRODUCTION

The deep water tension-leg platform (TLP) is designed so that the
natural periods of the vertical-plane motions (typically 1~4 seconds) are
substantially below that of most of the ocean wave energy. In the absence
of appreciable damping mechanisms, the resonant TLP responses and
resulting tension-leg loads depend critically on any source of high-
frequency excitations. It is now widely accepted that higher-order sum-
frequency wave exciting forces, often called 'springing' forces, are
important mechanisms for the vertical-plane resonant excitation of a TLP.
In addition to the need for better estimates of damping forces, a reliable
calculation of these nonlinear wave loads in irregular seas is critical
for the design of the tension leg tendons.

Despite the progress in second-order wave-diffraction theory and
computations in recent years, there has not been a complete calculation of

the sum-frequency forces on a TLP in the presence of bichromatic incident

- 151 -



waves. A main reason is the theoretical and computational difficulties in
obtaining the general sum-frequency force quadratic transfer function
(QTF) associated with the nonlinear potential. Thus, recent calculations
of springing forces on TLPs have relied on simplifying approximations
whose validity cannot in general be justified. For example, Nordgren
(1986) neglected nonlinear effects completely, while Petrauskas & Liu
(1987) included second-order contributions due to the first-order
potential only. The comparisons to experiments are, overall, not
satisfactory. For example, measured rms values of tendon loads which are
factors of three or more higher than predictions using experimental
damping values are reported in Petrauskas & Liu (1987).

In previous chapters, we developed a complete second-order
diffraction-radiation method for the calculation of sum- and differ‘ence-~
frequency forces on an axisymmetric bedy for any combination of incident
frequencies (ud,v]). The nonlinear sum- and difference-frequency
potentials are obtained explicitly so that in addition to the forces and
moments, important local quantities, such as second-order pressures,
particle velocities, and surface elevations are also available.

In this chapter, we apply the method to calculate the springing
resonant tendon loads of a TLP in irregular seas. In §2, the exact
second-order sum-frequency forces and moments on a single TLP leg are
obtained in terms of the QTF for a general combination of incident wave
frequencies. These results are used in a model for a typical four-leg
four-pontoon TLP in §3. A number of damping ratios and wave spectrum
parameters are considered in calculating the resultant rms tendon-tension

loads., Several important conclusions are given in the final section.
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2. SPRINGING WAVE EXCITING FORCES AND MOMENTS ON A SINGLE TLP LEG.

We first consider the springing excitations on a fixed single TLP leg
in this section. The complete theory for second-order sum-frequency
diffraction problem was already detailed 1n'Chapter ITI and will not be
elaborated here. In the presence of bichromatic incident waves, (uj,u]),

we can write the total sum-frequency wave excitation in the form:

2 2 ~i(w,+ wy)t '
f+(t) =Ref! [ AJA] f;] e (HJ U]) (2.1)
Jj=1 1=1
+ ot +
1= Tar* fop (2.2)

where the complete sum-frequency force QTF, fj]*, consists of two
components; that due to quadratic products of the linear potential, qu]+,
and that due to the second-order potential itself pr]*.

For long-crested irregular seas, the incident wave elevation can be

expressed as a sum of regular wave components:

7(t) = Re Aj e (A;= a e ) (2.3)

"=
—

J

where aj and €j are the amplitude and phase of the j-th component wave,
and the random phase €j 1s uniformly distributed in 0 and 2x. The
component amplitude is given by aj=i2S{(wj)Aw, where S(w) is the (one-
sided) input amplitude spectrum. The total second-order springing forces
due to all the components in (2.3) is given by:

N N ~i(w;+ wy)t
ff(t) =Re £ L AJA] f}l e ("j “ (2.4)
j=1 1=1
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From (2.4), it is clear that f*(t) is a zero-mean process. Upon deriving
its autocorrelation function in continuous form and using the Wiener-
Kinchin relation, the spectrum (one-sided) of the springing force can be
expressed in the form:
w2 + + + +
se) =8 SE+WSE-p I G p G0 P (2.5)
0

We now present results for a single TLP leg. For definiteness, we
consider a circular cylindrical leg of radius a, draft H = 4a, in deep
water. This radius-draft ratio is the same as the bottom-seated (h = H)
cylinder in the single-leg experiment of Petrauskas & Liu (1987). For
this bottom-seated geometry, Figure 1 shows a comparison of the horizontal
springing force due to a regular incident wave of wavenumber ka. Despife
fairly large scatter in the experimental data, the improved overall
correlation of the present complete theory with measurements is evident.

For the actual deep-water TLP leg, we present in Tables 1 the sum-
frequency QTF for a broad range of bichromatic wave combinations (wy,01).
In most cases, fpj1+ is greater in magnitude than qu]+, but the two are
generally out of phase. For the horizontal force (and pitch moment) in
regular waves wj~w], the relative contributions of the second-order
potential increase dramaticaliy with higher sum frequencies, and account
for the general increase of the total springing force amplitude with
frequency. In general, for fixed u+=uj+u1, the amplitude of the QTF
decreases rapidly with the difference of the component frequencies, 2p=
wj-w1, due to expected cancellations in the interaction between long and

short waves. The gradient of the total QTF with respect to u near the
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diagonal is typically larger for increasing w*.

A surprising result is found for the vertical force in Table 1(b).
For all but the lowest frequency incident waves, the effect of the first-
order pressure at the bottom of the leg is very small. For free waves at
the sum frequency w*, and for products of the first-order potentials, it
is clear that the wavenumbers must be greater than kj or ki so that
contributions to the vertical force are negligible. On the other hand,
the nonlinear locked potential which is forced by the inhomogeneous
surface pressure decays slowly, and the effect on the bottom of the leg
can be appreciable (cf. Newman, 1988), and in fact may increase with sum
frequency w*. To show this more clearly, we plot the pressure
distributions on the lee (8=0) and weather side (6=r) of the leg as a
function of depth in Figure 2 for two different combinations of incident
wave frequencies. The Tinear quadratic potential pressures, qu]*,
attenuate exponentially with a wavenumber k*=kj+kj, but the nonlinear
potential pressures, ppj]+, appears to decrease only algebraically with
depth. For fixed w*, ppj]+ penetrates deepest for wj=w], even though
longer incident wavelengths are involved when p>0. On the lee side, the
second-order pressure is generally smaller and attenuates more rapidly,
but shows an interesting non-monotonic behavior for the case wj=wj. Some
of these features, as already adressed in Chapter II, can be seen from the
far-field asymptotic behavior of the nonlinear potential. For deep water,
the decay of far-field locked potential with depth is exponential with a
rate (kj2+k]2+2kjk]c050)1/2, which has a minfmum (maximum) for kj=kj and

6= (0) and increases with increasing kj-(+)kj.
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Table 1. Magnitude of the second-order sum-frequency force QTF for a TLP
leg (a=25 ft, H=4a) fer incident wave frequencies wi, w1 for a) horizontal
force F 1A1. b) vertical force F A1, nd ¢) pitch moment
with regseet he center of the waterpfgne /pga A1. For
comparison, three uantities, |[Fqs1*| (first row} | (second row);
and |F ]++F M| ?third T'OW) are shown. Due to symme ry. only upper half
of the able 5 given

Table la

wj= 0.8 1.0 1.2 1.4 1.6 1.8 2.0

w1= 1.503 1.505 1.215 1.172 1.410 1.376 1.248
0.8 1.523 1.469 0.913 1.433 1.875 1.832 1.619
0.406 0.299 0.585 0.923 0.845 0.602 0.508

1.560 1.434 1.620 1.893 1.754 1.533
1.0 2.186 2.093 2.697 3.306 2.622 1.951
0.714 0.822 1.258 1.208 0.888 0.430

1.561 1.835 1.990 1.685 1.421
1.2 3.159 3.784 3.762 2.707 1.925
1.601 1.953 1.773 1.060 0.504

1.949 1.838 1.398 1.324
1.4 4.544 4.003 2.468 2.165
2.598 2.179 1.074 0.879

1.573 1.363 1.576

1.6 4.625 3.893 3.927
3.054 2.540 2.357

1.530 1.639

1.8 5.895 5.225
4.371 3.588

1.433

2.0 6.263
4,821

The center-of-pressure of fpj1* is deeper compared to fqj1*. so that the
second-order potential pitch moment, ij1+, with respect to the centey of

the leg waterplane is also greater(cf. Table 1c).
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Table 1b

wy= 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1= 0.014 €.005 0.001 0.000 0.000 0.000 0.000
0.8 0.249 0.154 0.039 0.006 0.002 0.001 0.000
0.239 0.150 0.039 0.006 0.002 0.001 0.000

0.002 0.000 0.000 0.000 0.000 0.000
1.0 0.419 0.152 0.029 0.007 0.002 0.000
0.418 0.152 0.029 0.007 0.002 0.000

0.000 0.000 0.000 0.000 0.900
1.2 0.392 0.105 0.026 0.005 0.001
0.392 0.105 0.026 0.005 0.001

0.000 0.000 0.000 0.000
1.4 0.313 0.105 0.017 0.003
0.313 0.105 0.017 0.003

0.000 0.000 0.000
1.6 0.567 0.100 0.013
0.567 0.100 0.013

0.000 0.000
1.8 0.491 0.086
0.491 0.086

0.000
2.0 0.665
0.665

As will be seen later (§3), the small nonlinear potential vertical force
can have an appreciable effect on the total pitch moment on the TLP, since
its moment arm is typically greater than that of the horizontal forces
with respect to the center of rotation. Furthermore, the wave effects on
other structural members such as horizontal pontoons may not be negligible

depending on the gradients of these nonlinear potentials wiich persist

with depth.
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Table 1c.

wj= 0.8 1.0 1.2 1.4 1.6 1.8 2.0

wi= 0.277 0.195 0.144 0.213 0.212 0.151 0.103
0.8 1.767 1.554 0.734 1.022 1.019 0.728 0.505
1.489 1.364 1.608 0.811 0,808 0.578 0.402

0.213 0.226 0.277 0.259 0.179 0.121
1.0 2.911 2.387 2.290 1.919 1.188 0.730
2.723 2.197 2.023 1.664 1.011 0.610

0.255 0.273 0.235 0.146 0.099
1.2 3.951 3.673 2.778 1.441 0.842
3.759 3.426 2.553 1.299 0.744

0.241 0.177 0.097 0.092
1.4 4.607 3.384 1.476 1.108
4.379 3.211 1.380 1.018

0.119 0.096 0.114
1.6 ‘ 5.309 3.455 2.472
5.190 3.361 2.360

0.112 0.107

1.8 6.142 4.125
6.040 4.020

0.079

2.0 6.684
6.605

In the analysis of 1ightly-damped vertical motions of a TLP, we are
primarily concerned with the details of the excitation near the heave-
pitch natural frequency wy. In Figure 3, we plot the springing force and
moment ROA's for w'=2.6,3.0, as a function of the difference of the
interacting frequencies, Zu=wj-wy. For comparison, the second-order
contribution from quadratic products of first-order potentials only are
also shown. In all cases, the first-order potential approximations are

inadequate, underpredicting the horizontal force for lower values of g and
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substantially underpredict the vertical force and pitch moment. For the
horizontal force and moment, there is a gradual decrease of the total RAO
with g, although the first-order potential component appears almost
constant with increasing frequency difference. For the vertical force,
qu]+ is almost zero, while fpj]+ decreases rapidly with increasing u, so
that the penetration of ¢* with depth is primarily due to waves which are

relatively close in frequency.

3. RESONANT VERTICAL-PLANE MOTIONS AND TENDON TENSIONS OF A TLP IN LONG-
CRESTED IRREGULAR SEAS.

In this section, we consider the resonant wave excitations and tendon
loads of a TLP in irregular seas. The incident waves are assumed tc be
unidirectioﬁa], although it is now known (e.g. Kim & Yue; 1988a) that this
is not necessarily a conservative assumption when second-order effects are
concerned.

For numerical illustration, we use a simplified TLP model consisting
of four circular cylindrical legs (radius a=25', draft H=100') connected
by four circular cylindrical horizontal pontoons (radius 12.5', length
150', and centerline depth 82.5'). The legs form a square with center-to-
center distance 2L=200' and the TLP is symmetric with respect to the x and
y axes which are fixed at the center of the platform in the quiescent free

surface and z is positive upwards. The main particulars of the TLP are

summarized in Table 2.
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Table 2. Main particulars of the TLP.

Total mass: Mo = 1.8 x 106 _slugs

Total displaced mass: Ag = 2.14 x 106 slugs

Total moment of inertia: Ixx= Iyy= 1.5 x 1010 slug-ft2
Location of the center of gravity: G = 2& ft

- 60 ft

Location of the center of buoyancy: zg

Number of tendons: 16 tendons, 4 on each leg
Individual tendon stiffness: ke = 1.2 x 106 1bf/ft
Tendon length: 1t = 1400 f

Total submerged weight of tendons: Wt = 5 x 10° 1bf

Total tendon pretension: To = 1.1 x 10/ 1bf

We focus on the motions of the platform near its vertical-plane
natural periods, wp. While the calculation for the single leg in §2 is
accurate and exact in the context of a complete second-order theory, we
make several important simplifications in this section whose validity mdst
be tested against experiments and three-dimensional computations for the
whole TLP. In view of the high natural frequencies compared to draft ,
and the rapid decrease of the QTF with frequency difference y (Figure 3)
(i.e, Tonger waves do not contribute appreciably), we ignore wave effects
on the pontoons and include only their infinite-fluid properties. As
pointed out earlier, this may not be fully justified in view of the
penetration of the nonlinear potential in depth. Similarly, since
wn2L/gOD1, we ignore hydrodynamic interactions among the legs (including
phasing), which may be conservative. For this problem, an exact
interaction theory for first-order effects (Kagemoto & Yue; 1986), and a
wide-spacing approximation for second-order diffraction (Abul-Azm &
Williams; 1988) can be applied, but is not pursued here in view of the

other simplifying assumptions and uncertainties (for example, damping).
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For a perpendicular incidence angle, the yaw and roll motions are not
involved and we consider the three degree-of-freedom 1inearized equation

of motion of the TLP:
(m+a)°% + bk + cx = f (3.1)

where XT=(X1,Xz,X3) are the displacements in surge, heave and pitch; m,a,
b,c the mass, added mass, (1inearized) damping, and linear restoring
(stiffness) matrices; and f the exciting force vector.

For the wave exciting forces, we ignore hydrodynamic interactions and
relative phases and write fy = 4Fy, f3 = 4F3, and f5 = 4(F5+LF3), where Fj
are the single-leg results including both first-order excitation at wave
frequency and all second-order sum-frequency contributions. The mass
matrix, m, is given in Table 2, and the added mass matrix, a, is obtained
by the sum of the frequency-dependent added masses of the legs (ignoring
interactions), Aij. plus the infinite-fluid added mass of the pontoons,
AP: a1y = 4Aj) + AP1); a33 = 4A33 + AP33; aj5 = asy = 4A15 + APp5; and ass
= 4{Ag5 + L2 A33) + APg5. Assuming vertical-plane natural frequencies in
the range of 2.5~3 rad/sec, (first order) radiation calculations give A11

.24 x 106 slugs, A33 = .06 x 106 slugs, Aj5 = -.13 x 108 slug-ft and Ass

.08 x 1010 slug-ft2, which remain fairly constant over the frequency
range. The linear restoring matrix coefficients can be calculated from
Table 2: c11 = (Tg -W¢/2)/1¢; c33 = 16 k¢ + 47pga2; c15 = -H c11; and cs5
= H2 ¢11 + L2 c33 - zg (Mog) + zp (Agg).

For high-frequency motions of the TLP, the damping is very small and -
estimation of b in (3.1) is at the same time difficult and important. The

total damping is, in general, a sum of wave radiation damping, viscous
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damping and mechanical damping. For wave damping, an estimate can be
obtained from four times that of individual leg damping, B. From linear
radiation calculations, we have 4By; = (7.6 ~ 2.4) x 10% slug/sec; 4Bys5 =
(-3.8 » -0.9) x 105 slug-ft/sec and 4Bs5 = (5 ~ 1) x 105 slug-ft2/sec for
frequencies in the range of 2.5 ~ 3 rad/sec. The viscous drag is
associated with boundary-layer friction, separation and vortex shedding.
For TLP vertical motions, the amplitudes are small (relevant Keulegan-
Carpenter nunber { 1) and the viscous effects are dominated by skin-
friction drag. We estimate these forces for small Keulegan-Carpenter
numbers from empirical models (e.g. Pearcy; 1979, Jonsson; 1978),
corresponding to flows such as perpendicular cross flows over cylindrical
members, parallel flows on side walls, and vertical flows against the
bottom of the legs. We obtain the following estimates of viscous damping, .
bY, for the TLP: bYyy = 8 x 102 slug/sec, b¥33 = 9 x 103 slug/sec, b¥y5 =
- 6 x 104 slug-ft/sec and bVs5 = 8 x 107 slug-ftZ/sec. These damping
coefficients are obtained after equivalent linearization for motion
amplitudes of ~0.5 ft at the corner legs, and decrease approximately
linearly with decreasing motion amplitudes in that vicinity. From the
above, we observe that for heave and pitch motions, viscous damping
dominates wave damping while the opposite is true for surge motions.
Hydrodynamic estimates of damping coefficients represent lower-bound
values, since they must, in general, be augmented by mechanical/material
damping, especially when external damping devices are employed. On the
other hand, the present viscous damping coefficients are probably high (by

a factor of about 5) since the actual vertical leg displacement rms (from

Table 3, say) is only 0(0.1').
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The heave motion in (3.1) is uncoupled and we have:
[ X ] [
(Mo + a33) Xq * b33 Xg + C33 Xy = f3 (3.2)

The natural heave frequency is given by w3 = (c33/(Mo+a33))1/2 = 2.74

rad/sec, and the heave response RAO is

1/c33

3.
[ {1-(w/w3) 232 (2g,0/w) 21172 (3.3)

where the damping ratio in heave is defined by ¢3 = b33/2i (Mg+a33)c33.
The equation for the surge-pitch coupled motion is given by: )

Mot a3 MoZgt 35 ] [ ] [bll b15] [x1] . [°11 °15] [xll ] [f1]
MoZe* 315 Tyy* 255 xgl legs 55l Ixgl U5l

bys5 bsg
(3.4)

Considering the undamped homogeneous equation of (3.4), we obtain the two
natural frequencies and eigen-modes: (i) wh*~ 2.86 rad/sec, x12 0.16 Lxs;
and (i1) wy~> 0.046 rad/sec, Lxs® 2.6 x 10-4 xj. The first mode is a
high-frequency surge-pitch coupled motion with a center of rotation at zcx
-.16L; while the second mode is essentially a slowly-varying surge motion
which does not contribute to springing tendon tension loads and will be
ignored hereafter. For the high-frequency mode (hereafter referred to as
‘pitch' mode), we substitute x; = .16Lxs in (3.4) and obtain the pitch

modal equation:
[ X ] [ 4
m, Xg + b0 Xg + Cy Xg = f0 (3.5)

where the modal total mass, damping and restoring coefficients are given
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by my = (Iyy + as5) + .16L (Mozg + a15) = 2.35 x 1010 slug-ft2; by = bsgs +
.16 L by5; co = c55 + .16Lcy5 = 19.2 x 1010 1bf-ft; and fo = f5 - z 1.

The modal response RAO is then given by:
Xg 1/c

Z = = - > 3.6
1T Th - i) 2¥o (2 uiut) 211/ o0

where the modal damping ratio is ¢g = bg/2imycy.

The tendon tension load RAO's for heave, H3, and ‘‘pitch'', Hq,
motions are simply ktZ3 and ktLZo. These are plotted in the neighborhood
of the natural frequencies for a range of damping ratios 0.05%, .1%, and
.2%, 1n Figure 4. Note that our earlier estimates for wave plus viscous
damping give values of ¢x 0.06% for b33 and bss. From (3.3) and (3.6), we
see that the peak response amplitudes are inversely proportional to the -
damping ratio.

In (3.2) and (3.5), the modal exciting forces are respectively f3 =
4Fz and fo = f5 - z¢f) = 4 (My + LF; - zcFy) for the heave and pitch
motions. The single-leg forces consist of a first-order linear component
due to incident waves near the natural frequencies, and second-order sum-
frequency components due to combinations of longer waves whose sum of the
frequencies are resonant. From linear diffraction calculations, the
first-order force and moment RAO's for a single leg are: |Fx(1)|/pga2A2
.336; Fz(1)= 0; and |My(1)|/pga3a= 0.051; at w* 2.8 rad/sec. For typical
ocean spectra, the second-order contributions dominate (see Table 3).
From Figures 3 for the case w*= 3 rad/sec and u=0, we see that LFZ(Z) and
chx(z) contribute up to 25% and 20%, respectively of the total ‘pitch'

moment fo. Surprisingly, for small g, the heave force Fz(z) has a greater
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effect than the surge force Fx(z) because of the longer moment arm L
compared to z.. On the other hand, Fz(z) decreases rapidly with g, so
that its overall contribution to the total pitch moment is smaller than
Fx(2) for a typical spectrum.

We now consider the heave-pitch response of the TLP in irregular
waves. As input, we use the two-parameter Pierson-Moskowitz spectrum for

fully-devéloped seas:

v W v
s = 2L b [ - ()Y 1] (3.7)
T

where wy and Hy/3 are the mean frequency and significant wave height,
respectively. For numerical illustration, two différent conditions are
considered — sea state A: Hy/3= 20', Ty=2%/wp= 8 sec; and sea state B:
H1/3= 8', Ty= 6 sec.

From (2.5), we see that the quadratic input wave energy at springing
frequency w* due to two components in the spectrum frequencies 2u apart is
S(w*/2+p)S(w*/2-p). This is plotted in Figure 5 for the two spectra A, B,
for w*= 2.6 and 3.0 rad/sec respectively, as a function of the frequency
difference p. Note that the maximum quadratic input is, in general, not
at u= 0 but increases with u, reaching a peak before rapidly diminishing.
Taking into account the rapid attenuation with g of the square of the
exciting force QTF (Figure 3) in the integrand in (2.5), however, the
final contribution to the resonant response from long and short wave
interactions (large p) is still relatively small.

Performing the integral (2.5) for the full TLP, we obtain the spectra

of the second-order sum-frequency modal excitation in heave, S¢3, and
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pitch, Sfo. Figures 6 show these results in the vicinity of the
respective natural frequencies. The results are compared to the
approximation of Petrauskas & Liu (1987) in which contributions of the
second-order potentials are excluded. The excitation spectra are
underestimated by a factor of 5 or more in the approximate theory.
Finally we calculate the TLP motion response and the resulting
tension loads. The total tendon response is given by x3 + Lxs. For
simplicity, we consider the heave and pitch modes separately and calculate
the spectra of the tendon-tension load due to these uncoupled motions:
Sr3(w)= |H3(w)|2S¢3(w), and Spo(w)= |Ho(w)|2Sfo(w), respectively. The
variances of the tendon-tension loads, 02, are simply the areas under the

curves:

o?= [s @) do=[ |Hw) % 5;(0) du (3.8)
0 0

Since the damping ratios are small, the width of the peak in H(w) is

narrow compared to the rate of variation of the excitation spectrum and

(3.8) can be approximated by:

(3.9)

i -

? k
o2 2 scw) [ IHW) |2 do = Se(w) (HZF
0 gw

= W

upon evaluating the definite integral analytically. Thus the variance of
the tendon load is proportional to the value of the excitation spectrum at

natural frequency and inversely proportional to the damping ratio.
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Table 3. Summary of tendon tension load rms (in kips) for a damping ratio
of ¢= 0.05 %.

Spectrum A Spectrum B

first-order excitation only
heave mode: g3- 0 0
pitch mode: ool 10 7
approximate theory without ¢+

eave mode: 03 0 0
p1tch moﬂe: oot 47 21

ot + o 57 28
complete second—order theory
heave mode: a3 12 6
pitch mode- oot 111 51

ot + ol 133 64

Table 3 summarizes the tendon-tension load rms (for ¢=0.05%) for the
present complete theory compared to that obtained by ignoring the
contributions of the second-order potentials, as well as 1inearized first-
order results. By including the contributions of the second-order sum-
frequency potentials from all bichromatic frequency pairs in the spectrum,
the present estimates of the tendon load rms are two to three times
greater than those using quadratic contributions of first-order potentials
only, while the results from first-order theory only are totally
inadequate. In the complete theory, the tendon load rms due to second-
order sum-frequency heave forces is only slightly over 10% of that due to
pitch, although the result may be quite sensitive to the draft/radius
ratio of the legs.

We have considered only normal (0 degree) wave incidence here. The

calculation for other incidence angles is similar. For 45 degree
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incidence, the restoring moment is provided by only two of the four legs,
and may be the more critical case for tendon design. For short-crested
irregular seas, the present analysis can be readily extended. Without a
careful analysis, however, it is unclear whether ignoring the wave

directionality will necessarily result in a more conservative design.

4. CONCLUSION

The complete second-order sum-frequency diffraction theory for
axisymmetric bodies is applied to a TLP leg to obtain the second-order
sum-frequency wave force quadratic-transfer functions for an arbitrary
pair of incident wave frequencies. Ignoring hydrodynamic interactions
among the major member and wave effects on the pontoons, these QTF's are
used in the motion analysis of a four-leg four-pontoon TLP in the presenée
of an irregular sea. Some of the major findings are:
1) The effect of the second-order sum-frequency potential is a major part
of the total second-order forces and moments on a leg. As the difference
between the two incident frequencies increases, this effect is decreased
but may still be comparable to quadratic contributions of the first-order
potential.
i1) The second-order potential attenuates slowly with depth. The vertical
forces on a leg even at high frequencies may not be small and contributes
measurably (~10% in this case) to the tendon loads. This effect is more
important for small frequency differences of the incident waves. The
effects of the second-order potential velocity and pressure on the
pontoons may not be negligible in general.

iii) The springing excitation spectra in irregular waves is increased by a
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factor of five or six when effects of the nonlinear sum-frequency

potentials are included.

iv) The tendon-tension load rms is two to three times larger than that
predicted by an approximate second-order theory using only first-order
potentials. This explains the large discrepancies between TLP

measurements and the approximate wave-thecry predictions reported by

Petrauskas & Liu (1987).
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| F2*' | /pgas®

Figure 1. The second-order double-frequency horizontal force on a bottom-seated vertical cylin-
der, radius a, depth 4a, due to a regular incident wave, wavenumber ka, amplitude A. The
present complete theory (— - —) is compared to the measurements (O) and approximate the-
ory (~——) of [4], as well as experimental data (A) attributed to [12] (from [4]).
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Figure 2. The second-order pressure on a TLP leg, radius a=25', draft
H=4a, in deep water, plotted against depth for two azimuthal positions:
(a) 0=0 (lee side); and (b) O=r (weather side). The curves are for:
Ippj1*l for wy,wy=1.4,1.4 (— * —); 1.0,1.8 (— — —); and |pgj1*|
for ¥y,w1= 1.4,1.4 (———); 1.0,1.8 (— — ~ ).

- 171 -



7t

| F2* | /ogad, A,

.0 0.4 0.2 0.3 0.4 0.5 #=(w, —w)/2 (rad/sec)

L v

K 1 . -

| F2*' | /pgaA, A,
0.2

0.12

g 2 ) e 2
B = (w; ~w)/2 (radfsec) b.00 0.10 0.20 0.30 0.40 0.50

v v L] v

(c)

4.8

| Mi™ | [pga® A, A,

o. o ) 0.5 b= —w)/2 (rad/sec)

Figure 3. The second-crder sum-frequency force QTFs on a TLP leg ( (a)
horizontal force, (b) vertical force, and (c¢) pitch moment ). The curves
are for: |fp41%| for w*=2.6 (————); and 3.0 (— ¢ )y and |£q51*|
for w*=2.6 (— = = —); and 3.0 (— = —).
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Figure 4. Tendon tension load RAO for the heave H,(w) and “pitch® mode H,(w) of the TLP
for a range of damping ratios ¢ =0.05%, 0.1%, 0.2%.
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Figure 6. Second-order sum-frequency excitation spectrum for a full TLP for (a) “pitch” mode,
and (b) heave . The curves are plotted against sum-frequency w* for wave spectrum A: complete
theory (0), approximation without ¢/ (+) (=~ 0 for heave); and wave spectrum B: complete
theory (A), approximation without ¢(?) (x) (= O for heave).

- 175 -



CHAPTER V

SLOWLY-VARYING WAVE DRIFT FORCES IN MULTIDIRECTIONAL IRREGULAR SEAS.

1. INTRODUCTION

Compliant deep-water structures and moored vessels often have very
small restoring forces, and are susceptibie to large resonant responses
due to higher-order slowiy-varying wave drift excitations. There have
been many investigations of the second-order slowly-varying phenomena in
the past decade, but they are mostly limited to unidirectional irregular
waves, while studies of the more realistic short-crested seas are
surprisingly rare.

A main difficulty of predicting second-order forces in general is the
need to include the contribution of the second-order potential which is
computationally difficult to obtain especially for three-dimensional
bodies. For slowly-varying excitations, a number of engineering
approximations have been proposed which include the index approximation of
Newman (1974) and the envelope method of Marthinsen (1983a). These
approximations assume that the spectra are narrow banded so that the exact
quadratic transfer function (QTF) can be approximated by its monochromatic

(mean drift force) value which is given from the first-order potential
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only. For many applications, the validity of a narrow-band frequency
assumption is confirmed, for example in the numerical work of Faltinsen
and Loken (1978) for two-dimensional bodies.

For multidirectional seas which are narrowly spread, the fndex and
envelope approximations can be extended in a straightforward manner,
although the additional assumption of narrow spreading can often be overly
restrictive as pointed out by Marthinsen (1983b).

The fact that the inherent difficulty in solving for the exact QTF is
not due to multi-directionality but to multiple frequencies leads us to
the present approach, where Newman's narrow frequency band approximation
is retained but the directional spreading is treated exactly. This is a
useful approximation since in practice wave energ!as are typically fairly
narrow banded and drift response periods very long, while on the other _
hand wave directional spreadings are often not narrow especially when more
than one wave system is present. Thus the present work has a wider range
of validity for general short-crested seas, but is otherwise not
appreciably different from existing approximations in terms of analytical
complexity or computational effort.

To provide some understanding of slowly-varying forces in short-
crested seas, time-series simulations and spectral analyses of the forces
are performed for the present method and for the index and envelope
approximations. The statistics obtained from simulations agree well with
those from the power spectra. For the probability distribution of the
slowly-varying drift force, existing theories for the index and envelope
methods are reexamined and generalized. In the index approximation, a

remarkably simple closed-form probability density function (PDF) is
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obtained after taking advantage of the separability of summation
expressions, which can be interpreted as a special case of the more
general theory of Bedrosian and Rice (1971). This problem was also
investigated in Vinje (1983), which unfortunately contained an important
error. For the method of envelope, Langley(1984) derived the PDF for
long-crested waves, which we extend to multidirectional seas and obtain
also the probability distributions of related local variables such as the
Tocal amplitude, frequency, wavenumber and direction. All these results
are confirmed by histograms obtained from direct numerical simulations of
the processes.

For illustration, we consider the special case of a uniform vertical
circular cylinder in the presence of combined storm and swell seas from
different directions. A surprising result is obtained which indicates
that the amplitude of the slowly-varing force can be substantially
amplified when the wave systems are from opposing directions. This
previously unreported phenomenon may be related to the field experience of
Grancini et al (1984). Definitive experimental investigations are much

needed.

2. SLOWLY-VARYING DRIFT FORCES

We consider the second-order slowly-varying drift forces on a body in the
presence of irregular seas. The linear and second-order hydrodynamic
forces on a body due to stationary Gaussian random seas can be in general

expressed as a two-term Volterra series:
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Fi(t) + Fp(t) = [ ny(ng(t-r) dr+ [ [ ny(r,,m)g(t-r))s(t-r,) dryor,
-n -8 =0

(2.1)

where h1(7) and ha(r1,72) are respectively the linear and quadratic
impulse response functions. For example, hp(t-rq,t-rp) is the second-
order exciting force at time t due to two unit-amplitude inputs at times
71 and 72 respectively. ¢(t) is the ambient wave free-surface position at -
some reference point.

For unidirectional seas, the surface elevation ¢(t) can be expressed

as a sum of frequency components:

1wit

¢(t) =L a, cos(wit + 61) =ReLA e
i i (2.2)

where aj, wi, and e are the amplitude, frequency, and phase of the i-th
wave component, and € is in general a uniformly-distributed random
variable. We can rewrite the second term of (2.1) in an equivalent form
in bifrequency domain:
F,(t) = Re EL A;A, D;, e + Re LT AA; S e
2 iy "ij 173 713
1 3 (2.3)
where ()* represents complex conjugate of the quantity. Dij = D(wj,wj)
and Syj = D(u1,-uj) are respectively the difference- and sum-frequency
quadratic transfer functions (QTF), defined as the double Fourier
transform of ha(71,72):
o o
~{ (s, -w.T,)
i'l 2
D(ui,uj) = J j hZ(TI,TZ) e J dr,dr,
- e (2.4)
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Hereafter, we focus only on the slowly-varying (difference-frequency)
part of the second-order force, F(t), represented by the first term of
(2.3):

1(w;-w,)t
Hﬂ=nmy§m1e‘3
1] (2.5)
and Dyj satisfies the symmetry relation:
Dy, = D,
i3 = 3 (2.6)

Note that (2.6) implies that hp(rj,72)=hp(T2,71) which may not be true in
general for a quadratic system. However, such a symmetry can always be
achieved without loss of generality resulting in a simpler analysis.
The time-average of ?(t) which gives the mean drift force F, is obtained
by setting 1=j in (2.5):

®

Fegafog, - 2 [ S(u) D(u,v) dv

o (2.7)
where S(w) is the (one-sided) wave amplitude spectrum.

The exact QTF, Dij, in general depends on quadratic combinations of
the first-order potential, and also on the nonlinear petential of the
second-crder problem. Since the seminal work of Molin(1979) and
Lighthi11(1979), a satisfactory treatment of the second-order problem is
now available (e.g. Kim & Yue;1988c,d, Eatock Taylor et al;1988), although
the computational effort is still quite substantial especially for
multidirectinal sea application. For monochromatic incident waves, the
difference-frequency component of the second-order force is steady, and

the single-frequency QTF, D{j, can be obtained in terms of first-order
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potentialslonly. For very low frequency excitations, such as those
relevant to the horizontal motions of a mocred ship or deep-water
compliant platform, this fact can be exploited in a narrow-band
approximation, wherein the bi-frequency QTF, Djj, which depends on the
second-order potential is replaced by the single-frequency QTF, Dijj, which
does not depend on the second-order problem:

DiJ = Di' + 0(”1' j)

so that (2.5) can be approximated as:

*
F(t) =~ Re LI AjAg Dy e

13 (2.8)

This approximation will be termed "index approximation” hereafter. For
narrow-banded wave spectra and/or for slowly-varying excitations due to
wave components close to each other in frequency, (2.8) should be useful
provided that the gradient of Dij with respect to frequency difference is
sufficiently small near the diagonal Djj (Ogilvie; 1983). Numerically,
the validity of (2.8) has been investigated by Faltinsen & Loken(1978) for
certain two-dimensional bodies and by Kim & Yue(1988d), Eatock Taylor et
al(1988) for three dimensional bodies.

For multidirectional irregular seas, we can write ¢(t) as a double

summation with respect to both frequency and incident direction:
iuit
¢(t) = LL ay cos(wit+eik) = Re LL Ay, e
ik 1k (2.9)
where aik‘is the amplitude of a wave component of frequency wj and

incidence angle fi, and ejk its uniformly distributed random phase. The

difference-frequency drift force in this case is given by:
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T(w;-w,)t
F(t) = Re LEEE AjAsy Dygq e |

1kl

(2.10)

where Dijk1 = D(wy,wj,fk.f1) is the bichromatic-bidirectional quadratic
transfer function, 1.e., the (complex) second-order slowly-varying force
due to the simultaneous incidence of two unit amplitude regular waves of
frequency and direction wi, fx and ¥j, p1 respectively. As before, Dij)

satisfies the symmetry relation:
D D,
1jk1 Jilk (2.11)

The mean force with respect to time can be obtained when 1=j in (2.10):
i(e;, -€,4)
- ik “11
F = Re LIL ajayg Dyyy @
(2.12) -
where the time average F still depends on the set of random phases for a
specific realization. Upon taking the ensemble average with respect to

the phases, we have:

27 ®
£(F) - 52 a8 Dy =2 [ sw.p) Dw.w.p.p) dudp
0 0

(2.13)

If the input spectrum is narrow in directional spreading in addition to
narrow-banded in frequency, Newman's index approximation can be extended
to the angular spreading and we write:
T(wi-wy)t
#(t) = Re ELLL A1kA;] Dijie & | 9
1jki

(2.14)

where Dijkk. the QTF for a monochromatic wave with direction fik, can again

be obtained in terms of the linear wave-body interaction problem only.
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Although the assumptions of narrow input frequency band and/or
slowly-varying motion responses are usually quite acceptable, the
analogous requirement of narrow spreading in incidence direction is often
overly restrictive, and the approximation clearly fails when one is
interested in two or more storms or storm-swell combinations from
different directions. A much more reasonable approach is to assume
narrow-bandedness for the frequency only but leave the directional
spreading arbitrary in (2.10):

F(t) = Re 11:%: AikA;] Dyl e‘(ui' 3t

(2.15)
This is the basis of our present approximation which has a larger range of
validity than (2.14) for general short-crested seas, yet the analytical
complexity or computational effort required are in fact not appreciably
different. This is due to the fact that the major difficulty in
calculating the exact QTF in (2.10) arises from bichromaticity and not the
directional spreading. Thus, the monochromatic-bidirectional QTF Djik)
can still be evaluated in terms of the first-order potential only. A
derivation of Djjk] utilizing the far-field approach is given in the
Appendix D. Djik] can be interpreted as the mean drift force due to an
arbitrary combination of two waves of the same frequency from different
directions.

Equation (2.13) for the ensemble-averaged mean drift force can be
recovered identically from efther (2.14) or (2.15), and the reduction of

the mean drift force in the main direction due to directional spreading is

given by the ratio of (2.7) and (2.13):
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2z ® ©
Re= [ | S 0wwp.0) s / [ SID@.) v
°° ° (2.16)

An alternative but similar approach to the index approximation is the
“envelope method" first suggested by Hsu and Blenkarn(1970) who regarded
each element of a time series as part of a regular wave so that the
slowly-varying drift force could be obtained from successive mean drift
calculations within each element. This approach was placed on a somewhat
more rigorous basis by Marthinsen(1983) using the concept of a modulated
incident wave. For later reference, the formulation of the envelope
method is outlined here. Consider the Hilbert transform pair for the
ambient wave:

(st8)) - Ly (sin) (oyteey)

(2.17)

If the input spectrum is narrow-banded, ¢(t) and 5(t) can be rewritten in
the form of a slowly-modulated wavetrain:

{gm} i {'Iz:‘} !1: a, ei((.I'i_““’)ﬁei)empt = {'xz;} a(t) e

1(upt4a(t))
(2.18)

where a(t) and (t) are the amplitude and phase of the slowly-varying

envelope, and wp the frequency of the carrier wave:

A(t) + r2(t)
tan~1[p(t) /¢(t)]

a2(t)

a(t) + upt

(2.19a,b)

Using the local frequency, w|, defined as the time derivative of the

phase:
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d
t) =w + -5151
“w(t) =% t (2.20)

the slowly-varying drift force can then be approximated by:

B(t) = a?(t) D(w (t),u (1)) (2.21)

Note that since Dyi is always positive, according to (21), F(t) 1s also
positive definite.

If the input directional spectrum is narrow-banded in both ¥requency
and direction, this envelope method idea can be extended directly to
multidirectional random seas by considering the Hilbert transform pair:

§ }} = I k (ST} (ot - kpox + €
(2.22)

which can be rewritten in the form:

{$§x.t;} %) a,t) ei[wpt-kpox+0(x,t)]

] (2.23)

In this case, the amplitude and phase of the envelope are slowly-varying
functions of both time and direction. The local frequency and local

wavenumber vector are defined as:

80 (x,t
() - wy ¢ 2t (2.24)

ke (x,t) = (kjcosp k sing ) = ky - V6(x,t) (2.25)

where the local direction fi(x,t) is given by:

-1
P (x,t) = tan™" [(k sing,-86/8y)/ (k,cosp,-86/8x)] (2.26)

If we choose x=0 as the reference point (for the definition of the QTF),
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the slowly-varying drift force is now given by:

~ a2
F(t) = a®(t) D(w..w,.8,.8) (2.27)

where w) and p| are evaluated at x=0 from (2.24) and (2.26), and F(t) acts
instantaneously in the direction fg|.

We point out that although in certain applications it may be more
convenient to use the local wavenumber k| instead of the local frequency
w in (2.21) and (2.27); this cannot be done by direct substitution of the
(deterministic) dispersion relation which s no longer valid between the

random varjables.

3. TIME-SERIES SIMU!ATION AND SPECTRAL ANALYSIS
For a given input amplitude spectrum S(w), a time-series for the zero-mean
Gaussian unidirectional seas can be realized by summing a large number of

wave components with random phases1 ):

¢(t) =

—te
[ e B4

. 42 Sluiidu cos(uit+ei)
(3.1)

Here N and Aw are the number and interval of frequency divisions, and €j

is a random phase uniformly distributed between 0 and 2r. The time series

1) As pointed out by Tucker et al(1984), the component amplitudes must in
general be calcuated from the Rayleigh distribution, while (3.1) relies
on the central limit theorem to guarantee the Gaussian property of ¢(t)
in the limit. In this work, we use the latter for the sake of more

direct results such as (3.7).
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(3.1) has a perfodicity of 25/Aw, so that a sufficiently small Aw(large N)
1s necessary for long-time simulations. This can be prohibitive for the
direct simulation of F(t) where the operation count typically increases as

N2, Thus, for long simulations, we adopt a modified method and write:

N '
¢(t) = £ 12 SluiiAu cos(vit+e1)
1=1 (3.2)

where wj=wi+6wi, and swj 1s a random perturbation uniformly distributed

between -Aw/2 and Aw/2.

Short-crested irregular seas can be simulated in a similar way:

N K !
S-(t) =¥ E 12 S(”.I .ﬁk)A“Ap COS(Uit"'e-!k)

where in addition the incident directions are subdivided into K intervals
of increment angle Af, and e{k is a random phase uniformly distributed
between 0 and 2¢ in w-p space.

For a given realization of ¢(t), a simulation of F(t) can be obtained
from the QTF by evaluating the series (2.5) or (2.8), or the expression
(2.21), at each time instant for unidirectional seas; or alternatively
(2.10,14,15) or (2.27) for short-crested seas. If direct summation is
used (egqs. 2.5,8,10,14,15), the QTF is calculated once for all arguments
and stored for later times. When the envelope method is employed (egs.
2.21,27), however, the QTF need to be calculated at each time instant for
the instantaneous local frequency and direction. To avoid possible bias
in F(t) due to a particular sets of random phases, several simulations
with different sets of random phases are typically made, and their

statistics averaged (Jefferys; 1987).
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For the input directional spectrum, we use a Pierson-Moskowitz
spectrum with cosine-powered directional spreading where the separability

with respect to frequency and direction is assumed:

S(v,p) = s(w) S,(p)

S(v) = m%fe&qu4
(]

s (g = ¢C cos?" ' n=0,1,2,...; -%/2$p< x/2
n'P n €07 Pt

Here g 1s the gravitational acceleration, U the wind speed, and the
normalization C, in (3.4) is chosen so that [ Sp(p)df = 1. As n
approaches infinity, the unidirectional spectrum S(w) is recovered.

For the given directional spreading (3.4), the spreading reduction
factor Ry in (2.16) can be obtained in closed form for vertically

axisymmetric bodies:

7/2 2n+1 2n11)2
= n+ _ 2 nl!
Ry = I Cpcos™ "pdp = 3 Garl)il(zn-D) 1!

-x/2 (3.5)

where n!!=(n-2)!!n and 1!!=0!!=1,
The spectrum of the slowly-varying drift force, Sg, can be expressed
in terms of the wave spectrum for the preceding approximations. We

rewrite (2.5) for F(t) in the form:

F(t) =21IX 1Dy, W)t ey - €+ 9y4]
(t) o a;a5 1045 cos[(w, uJ) €5 - €5+ ¥4y

i
with (129) (3.6)

1y
ij = IDijl e 1
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where the case isj (i.e. F) is not included here. The autocorrelation

function Rg(r) 1s then given by:

RF(f) s F(E)F(Lt+T) = 2 Et a?aﬁ IDUI2 cos(vi- j)r
(1>3)

=8 [ duy [ duy S(y)S(0)) 1D(w;,0)17 cosly -y )7
‘6 ° (3.7)

After a change of variables (wi-wj=p, wj=w) and using the Wiener-Kinchin

relation, we obtain the spectrum of the exact F(t):

Sew) =8 [ S@)S(e+p) 1D(w,w4p)1? du
0 (3.8) .

For the index approximation (2.8), we can follow a similar procedure and

obtain the spectrum:

Se@) =2 [ S@S(wts) [D(w,)+Dwsp,wwp)]? do |
| 0 (3.9)

In the case of multidirectional seas, the time-averaged

autocorrelation function Rp(r) for (2.10) is still a function of the
phases. Thus if we take ensemble average over the random phases, and
using the symmetry relation (2.11), we obtain the ensemble-mean
autocorrelation function:
E[Rg(7)] = 2 i a2 &8y 10 gy 1? cosug-w))T
(i>3)
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© o 2y 2%
= 8 [du, I-d"j [ap, [ap, S(1.8)S(4;.8,) 100wy 5.8y 12 cOSuywy)7
Uj e o 0

‘ (3.10)
The spectrum of the exact F(t) is then given by:
® 2r 2r
Se(n) = 8 faw [ap, [ap, SW.p) Sty 1DGwppypy) 12
o o o (3.11)

Corresponding results for the double index approximation (2.14) as well as
our present approximation (2.15) are respectively:

® 27 2r
Se(n) = 2 [du [dp, [dpy S(ap) SGrvmnpy) [D(w,w. 8y ) *D(whm it 2y 0712
o o o (3.12)

and
o 2 2%

¥
Se) = 2 [au [dp, [dp; Sw.p)S (w0 (10,0, 0,.0)) 1%+ 1D (v, w4, By, |2
o O o

+ 2 ID(.'vlpklp")I ID(U"‘I‘-U"’I‘-P] -ﬁk)l COS['(U.U.PR.P])‘*f(ﬂ*’llaﬂ*lhﬂ] .Pk)]
(3.13)

Provided that the wave spectrum is narrow-banded in frequency, the
approximation (3.13) gives reasonable results for small p for all
directional spreadings. When one is interested in the response spectra of
Tightly-damped low-natural-frequency systems, the prediction based on
(3.13) is even more reliable since the transfer function of the system can
be expected to filter out the relatively poorly approximated higher-

frequency range.
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4. APPLICATION TO STORM-SWELL MIXED SEAS

The appibxilation (2.15) allows us to study the slowly-varying forces
on a body due to -the simultaneous presence of seas from different
directions. Grancini et al(1984) reported an interesting field
observation of the SALS mooring system and a tanker ship installed in the
Sicily Channel, where large dynamic roll motions were observed when
combined storm and swell seas from different directions were preseit. To
characterize such sea conditions, we write the total spectrum of the mixed

seas as a sum of two spectra:

Sw.p) = S;(w.p) + s,(w)6(p-p,) (4.1)

where S; 1s the spectrum of a short-crested storm sea, and Sy that of a
long-crested swell with direction po. From (2.7) and (2.13), the mean
drift force in waves specified by (4.1) can be obtained by simply
superposing each contribution:

o 2y

E(F) = 2 [dufdp S,(0,0) D(w,w,.0) + 2 [dw S,(w) D(v,0,4,.8,)
0 0 (4] (4.2)

This superposition is, however, no longer valid for the spectrum or the
variance of F(t). Using spectrum (4.1) in (3.11), we obtain the spectrum

of the slowly-varying force F(t) in the storm-swell irregular seas:

SF(I‘) = SFII(I‘) + SFZZ(I‘) + SFIZ(I‘)

(4.3)
where
0 2y 27 )
g, ) = 8 Jau Jo [apy 5 (p) S (wmpy) Dwwn By 1®
o 0o o (4.4)
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S, ) = 8 fdu S, S0 (v fyu8) 1
0 (4.5)

® 27
Sp,, ) = 8 [du [dp 15,(0.0) Sy0e) [DCwwiipipy) 12
0 o

+ SI(U"'I‘Ip) SZ(H) ID(U00+"lpo'p)|2] (4.6)

The first and second terms of (4.3) are respectively contributions from
the storm and swell alone, while the last term represents the additionail
contribution to the spectrum due to the interaction between the storm and
swell. Because of this third term, the variance of F(t) in a storm-swell
mixed sea is always greater than that obtained from direct superposition
of the individual contributions. If the storm and swell spectra do not
overlap and are not close in frequency, (4.6) shows that the interaction
effect 1s confined to large y and is therefore relatively unimportant to
low-natural-frequency systems. On the other hand, a change to S¢ near p=0
is critical to slowly-varying response. In this sense, usual low-
frequency swells are less important than those whose frequency is within
the energy band of the storm waves. Confining ourselves to this case, the
narrow frequency band approximations of the previous sections can be
applied directly. For the double index approximation (3.12), the
interaction term can be written as:

» 27
S, ) = 2 Jau [ap {5y 0mp) S,0) Do) 00w, pT?
0 0

+ 5, (0,0) S,(wtp) [D(w,p)+D(wis, )1} o)
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while the approximation (3.13) gives:
® 2r
S, ) = 2 {du [dp € 15, (wtn, 25, )45, (0, 0)5,(w+m)] * [ID(w,w,0,,0) 12
o ,

+1D (w0, 9,) 12 + 21D(w,w, B0 ) 11D (Wi, w0, 1 0,) | @

cos (p(w,w, 8, 0) +9(wp,w+p, 0. 0,))] }
(4.8)
Since (4.8) 1s not restricted to narrew spreading, 1t is of interest to
investigate the dependence of Sg on different incidence directions, po, of
the swell with respect to the storm waves. The results clearly depend on
the behavior of the QTF in pfy-p1 space as well as the shape of the input
directional spreading. As will be shown in our numerical results, the
interaction effect is sensitive to changes in the direction of the swell,
and large amplifications of the slowly-varying force is often possible.
This phenomenon has 1mbortant implications for the operation and safety of

moored or dynamically-positioned vessels in mixed seas.

5. STATISTICS OF SLOWLY-VARYING DRIFT FORCES

In addition to quantities such as mean, variance and frequency spectrum,
the probability distribution and in particular the extreme values of the
slowly-varying drift forces are of engineering importance. For general
nonlinear Volterra systems, a probability theory was developed in
communication theory (e.g., Bedrosian & Rice; 1971), and was first applied
to second-order wave forces by Neal(1974). In contrast to time-invariant

Tinear systems, the second-order force in a Gaussian sea is in general not
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a Gaussian process, so that information on the force spectrum alone is

of 1imited usefulness. For the index and envelope approximations, the
probability density function (PDF) of F(t) can be obtained in closed form,
while for the exact QTF, the PDF must be calculated numerically.

Index Approximation Method

Applying the index approximation, the summations in (2.8) and (2.14)
become separable, and the PDF of ¥ can be obtained analytically. The
following approach was essentially followed in Vinje(1983), which
unfortunately contains an error in the starting assumption in applying
Newman's index approximation to both sum- and difference-frequency terms
(his Egs.4 & 5) leading to incorrect results.

If we define the Hilbert transfom pairs (x,X) and (y,Y):

- T4 { Sn ) Gytre: v - L 23Dy {sn) (”1t+‘1)(5.1)
then (2.8) e€an be written in the form:

F(t) = x(t)y(t) + X(t)Y(t) (5.2)

where x,X,y and Y are zero-mean Gaussian random variables. The covariance

matrix of these four variables is given by:

[ g, m 0 O
m o2 0 0
Cov(x,y,X,Y) = Yo,
0 O Oy m
0 0 m o2
| y | (5.3)
where
[ ]
2 _ -
g, = 0Oy = f S(w) dw
0 (5.4)
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02 03 = j S(w) Dz(u,u) dw
° (5.5)

<

and
®

E(XY) = [ S(w) D(w,w) dw
0 (5.6)

m = E(xy)

The wean value of F(t) is then:
E(F) = E(xy) + E(XY) = 2m (5.7)

and is identical to (2.7). Noting that xy and XY are independent random
variables whose covariance is zero, the variance of F is simply:

2 _ .2 2 2 _ .2 _ 22 2
of = ”xy + Oyy i with ”xy = Oyy = dx’y +m (5.8).

This result can also be derived from (3.9). It is cenvenient to introduce
the normalized Gaussian random variables z4 and z., which are mutually

independent:

Z,

[ x/a, y/ay 1/v2(1+)p)

(5.9)

where
cov(xy)/o

©
n

o
Xy (5.10)
is the correleration coefficient of x,y. Defining the nondimensional

force f1 = xy/oxay, we can express it in terms of z4 and z_:

f, = 22(pr1)/2 + 22(p-1)/2

1 (5.11)

z2/2 have Gamma distributions whose characteristic functions are given by

(1-19)-1/2, Eq. (5.11) is a special case of Bedrosian & Rice's general
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theory, where the corresponding equation contains an infinite sum of Gamma
distribution variables. From the independence of z4 and z_, the

characteristic function of f; can be shown to be equal to:

e (6) = { [1-1(p+1)6] [1-1(p-1)6]) y1/2

A similar analysis can also be performed for the random variable f =
XY/oxgy. Using the independence of xy and XY, we obtain finally the

characteristic function of the random variable defined by f = ?/axay =

(xy+XY) /oxoy:
I (8) = { [1-1(p+1)6] [1-1(p-1)6] }~! (5.12)

Taking the inverse Fourier transform of (5.12), we obtain a remarkably
simple form for the probability density function p(f) which depends on the -

single parameter p:

1 o AfL ., <
pf) =z ew{- 75 kL fs0 (5.13)

It is interesting to note that there is a small but nonzero probability of
negative f which is confirmed by direct numerical simulation. In the
limit of an extremely narrow-banded input spectrum (p+1), (5.13) is simply
the exponential distribution and f is always positive as is expected for
the case of drift force due to a single regular wave. The parameter p can
be obtained from (5.10), or equivalently from the result of spectral

analysis:

p = E(F) [202 - E2(H)17Y/2

Note that since by definition, |p| $ 1, it follows that the inequality,
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of 2 E2(F), is always true.

For multidirectional seas, the foregoing analysis can be extended in
a straight-forward manner using the Hiibert transform pairs (x,X) and
(y,Y) defined as:

{J - i pUs ) eyt ) - I% 31Prikk {80} ey
(5.14)

and identical results are reached upon substituting the following for

(5.4~6) :
® 2 2%
o2 = o= [du [dp Sw.p): ot - jau jdp S(w,p) D2(w,u,0,p)
° (5.15)
and
® 2
= E(xy) = E(XY) = [du [dp S(.p) D(w,w.0.9)
o o (5.16)

Envelope Approximation Method

When the envelope approximation is used, the requisite result for the
PDF can be obtained using multipie transforms of the local variables. If

we redefine the Hilbert transform pair:

St} = att) {55 oxt) = 2 {695} [y t- (k- Yxve,
(5.17)

the covariance matrix of the four slowly-varying Gaussian random
variables, ¢,9,¢t and g¢, can be written as:

m, 0 0 m1

} 0 m -my 0 (5.18)
cov(gimie ) = | o -m, m, 0 ¥



where the n-th central moment m, is defined as:
[ J
My = 5 (w-wp)" S(w) dw (5.19)

The choice of the carrier-wave frequency, wp, is arbitrary at this point,
and we can diagonalize the covariance matrix by selecting wp SO that the
first central moment m; is zero. Thus, we set wp=M;/Mp, where the moment

Mp is defined as:

j " S(w) dw
o (5.20)

Then, from the independence of the variables ¢,n,$t and n¢, the joint
distribution can be found easily:

2, 2 2, 2
PG geny) = —— e [ (SH)/my + (spmi)/my 172
MM (5.21)

Transforming these variables to the set, {a,at,8,0¢}, and integrating with
respect to the dummy variables a¢ and @, we obtain the joint distribution

of a and 6¢ :
al e-(az/mo + azailmz)/z

p(alat) =
my {2mm, (5.22)

Integration of (5.22) with respect to 6t yields the well known Rayleigh
distribution. Upon further transformation of (5.22) into variabies ¥ and
wy, we finally obtain the joint distribution for the slowly-varying drift

force and local frequency:
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{F
2 Jiiig moD(u

p(Fw) = L)l.i exp{ ’iﬁiEIT [1/mg + (w-M;/M)%/m,])

(5.23)

Formula (5.23) was also obtained by Langley(1984). However, his choice
of wp=1(M2/Mp), which do not diagonalize (5.18), led to an incorrect later
result for p(F). Integrating (5.23) with respect to w_ (or F) yields the

POF of F (or w):

p(®) = [ p(Fiu) duy
- (5.24)
PO = e [1/mg + Gy /M) o/m,y) 2
072 (5.25)
The cumulative density function of ¢ is given by:
prob(uLs w) = (1+ ew/11+55 )/2 ; where € - Jmo7m2 (u~M1/Mo)
(5.26)

From (5.25) we note that there is finite probability of negative w, which
is non-physical and for which F=0, so that there is an integrable
singularity in the probability distribution of F (Eq.5.24) at F=0. Since
there is not an explicit relationship between the local frequency and
local wavenumber, a direct transformation of (5.23) or (5.25) cannot be
used to obtain the PDF for k. If the probability density for k| is
desired, it is convenient to start with variables ¢,7n,¢$x and fx instead.

The covariance matrix can then be diagonalized by selecting wavenumber of

the carrier wave kp = Mz/Mqg:
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Mo 0 0 O
0 Mo 0 O 2 2
COV(g.q.ggx,gr]x) = 0 0 02 0 = diag [MO'MO'G 0 ]
0 0 0 o° (5.27)
where
®
62 = I S(w) (uz-us )2 dw = M, - M%/Mo
o (5.28)

and deep water is assumed. Note that for the Pierson-Moskowitz spectrum
(3.4), the moment Mg is unbounded and a suitable spectral cut-off is in
general required (see §6). A similar procedure leads to the joint

probability distribution of ¥ and k:

iF X 2 2,2
p(F.k,) = — gy —  exp{ IN] ti/m_ + g<(k, -M,/gM _)“/0"1}
-t (5.29)
and the PDF of ¥ and k| are given respectively by:
o
p® = [ p(Fik) di
-0 (5.30)
p(k) = ‘5595- [1/m, + gz(kL-M2/9M0)2/02]-3/2
0 (5.31)

similar to (5.24), p(F) in (5.30) contains an integrable singularity at F
=0. The cumulative density of k_ can be obtained from the integration of
(5.31), and is given by (5.26) with €, replaced by e defined as:

€ * gdﬁ; (k-M,/gM ) /o (5.32)

For multidirectional seas, the foregoing analysis can be extended by

using the Hilbert transform pair:
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(G = a0 {53 o0t) = o ayy {09 Ll ) one oy toeyd
(5.33)

If we choose the direction and wavenumber of the carrier wave as pp=0, and

- wuC

where

{"gj} I’ IZ' i cost
= | dw | df S(w,p) w { }
M?j o o sindp (5.34)

the covariance matrix of the six variables, {g.gx,gy.q,qx,qy} can again be

diagionalized to yield:

2 2 2 2
cov (19,96, 198197, 9n,) = diagM,M,,07,05,07.05] (5.35)
where
2 _ € C 2 . 2 _ S
0y = Mg,2 - M3 )My 0 o =My, (5.36)
and again deep water and symmetry of the directional spreading are
assumed. The joint distribution of these six variables are:
_ 1 2.2 2,2, .2 2, 2,2 2 2
p = PR ) exp{-[(s"+n") /2M +g" (g +n)) /207 +9" (S +ny ) /20513
012 (5.37)

Transforming (5.37) to the variables {a,ax,ay,a,ax,ay}, and integrating
with respect to the variables ay,ay and 4, we have:

2.3

_ _g‘a .2 2,2,2. 2,2,2
p(a.ox.ay) 2 o7, exp{-a“[1/M +g°8 /o] +g Gy/az]lz}

(5.38)

Integrating (5.38) with respect to fx and 8y yields the same Rayleigh
distribution as (5.22), and transformation into the variables, ?,kL,pL

gives the joint distribution:
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. gsz?
p( okLlpL) = 4'Hoalﬂzb(kL.ﬁL)ID(kvaL)l

exp{ - 'iﬁrgzjﬁ[y [1/M°+g2(kp-kLcospL)2/af+(gkLs1nﬁL)zlogl}
(5.39)

where F must have the same sign as D(kj,p). The result (5.39) was also
obtained by Vinje(1985) via a much more indirect way. Integrating (5.39)

with respect to k_ and g leads finally to the PDF of F(t):

o 2x
p(®) - [ ok [ o pCFuip)
o o (5.40)

Note that there is no singularity at F=0 in the above PDF since there is
no finite region in k_-p_ space for which Fzo0.
For vertically axisymmetric bodies, the result is simplified:

g%, |F| oo, Ak A)
47 _g,0,0% (k, ) cos?p, PL” 20Tk ) cos

p(?:kchL) =
(5.41)

where Q(ky,fL) is a quadratic polynomial given by:

2 2 2
Ak .fy) = e - a,k cosp, + a,kicos"p + azk/

with
- mC . _ C . _ 2 _ S ] = a2/
i c C 2
and q-= M0M4'2 - (MZ,I) (5.42)
The joint distribution of k. and i can be obtained from (5.41):
_ 2 2
Pk A) = 6%k / MM310,0 (5.43)

Integrating with respect to ki gives the PDF of f:
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1.5

{2/a + ZaIA' cos p, [r/Z-tan'l(-alcos pL/JK)] }

2
p( ),_9_.
P Moo,

- 2 2

which is the probability distribution of the direction of the slowly-
varying drift forces acting on an axisymmetric body.

For numerical integration of (5.24) and (5.30), it is convenient to
subdivide the domain of integration into three parts, so that for (5.30)
for example, we write:

o

€ ®
p(F) = { f +f +f Y pti
€

-0 0

py(F) + p,y(F) + py(F)

In the first interval, -<k; <0, D(ky) is identically zero, and the
integral can be obtained analytically:

-F/2M 6

pl(?) 2 ;13 fﬁiﬁ e 0 erf[-(MZ/aMo) 157; (5.45)

Thus, pl(?) behaves 1ike a delta function at F=0, and the contribution of
p1(F) to the cumulative density of ¥ can be obtained from the probability
P(k $0) in (5.32). In the second interval, 0k <e, D(k.) is typically
small and pp depends on the asymptotic behavior of D(kp) for ki< 1. For
uniform vertical cylinders (see Appendix D), D(k_) decreases as k 3 for
ki <K1, so that pz(?) has contributions only near F=0 and decreases
exponentially for F>0(e3). The range of pp can be limited near 0+ by
choosing a sufficiently small e, and the cumulative density obtained from
P(0<kiSe€). The integrand in p3 is regular and the integral is readily

obtained by direct quadrature (Romberg quadrature is used here).
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Similar analyses and numerical procedure-are used for (5.40, 41)
where both the limits k; +0 and fi+¥/2 are treated asymptotically. In this
case, negative values of F are possible when |f[2%/2 and there is no
singularity at F=0 since F 1s not identically zero in any interval of ki
and f.

6. NUMERICAL RESULTS AND DISCUSSION

With the preceding formulation, the exact mean and approximate slowly-
varying drift forces and statistics can be obtained for unidirectional and
short-crested irregular seas. For simplicity, we consider a vertically
axisymmetric body in deep water. Specifically, we choose a uniform
vertical cylinder of radius a=10m, and a wind speed of U=30 knots in the
Pierson-Moskowitz spectrum (3.4). To ensure the narrow-bandedness of the
spectrum, the wave energy is assumed to be zero for frequencies wS.3s-1
and w21.3s-1. In general, the narrow-bandedness can be quantified by the
parameter qs2=1-Mj2/MgMp, where qg2 is equal to 0 for monochromatic seas.
For the present truncated spectrum, the value of qg is 0.27, whereas a
typical value for a North Sea wave spectrum is qg=0.3.

In this case, the monochromatic bidirectional QTF, Djjk1. can be
obtained analytically and is presented in the Appendix D. Table 1 shows
the values of Dy(w,w,pk,p1) for a range of incidence angles fx and fy, and
frequency w2a/g kga=0.5. Along the diagonal (fk=p1), the real part of Dy
(or Dy) has cosine (or sine) behavior, and the imaginary part is zero
since the single-wave QTF is real. It is interesting to note that the
magnitude of Djjk} for different incident angles fy#f can be several

times greater than that for a narrow directional spreading case.
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Table 1. Quadratic transfer function, Dyik1=0D(w,w,Pk.f1). for the drift
force in the x direction in the presence o¥ two inci ent waves, frequency
wa/g=kga=0.5, and incidence anales P and py. The results are normalized
by pga. Note that Dijk1=Dii1k .

Real(Dyik1):

: Pu/7 =
p/r 1 -1 -75 -5 -25 0 .25 .5 .5 1

-1 -.286 -.214 -.083 -.012 .000 -.012 -.083 -.214 -.286

-.75 -.202 -.089 .000 .012 .000 -.029 -.118 -.214
-5 .000 .089 .08 .029 .000 -.029 -.083
-.25 .202 .214 .118 .029 .000 -.012

|
|
|
i
0 : .286 .214 .083 .012 .000
!
!
|

.25 .202 ..089 .000 -.012

5 .000 -.089 -.083

75 -.202 -.214

1 -.286
Imag(Diik1):

: Pi/x =

pi/s | -1 -5 -5 -25 0 .25 .5 .15 1
-1 .000 -.032 .152 .665 .962 .665 .152 -.032 .000
-.75 .000 -.077 .215 .665 .681 .275 .000 .032
-5 .000 -.077 .152 .275 .000 -.275 -.152
-.25 .000 -.032 .000 -.275 -.681 -.665

|
I
I
|
0 | .000 .032 -.152 -.665 -.962
I
I
|
|

.25 .000 .077 -.215 -.665
5 000 .077 -.152
.75 .000 .032
1 .000

Given two reqgular waves of the same frequency, the mean drift force
on the body is in general a function of the wave amplitudes (aj,a2),

phases (e1,€2), and incident angles (f#1,f2). Fixing the wave frequency at
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koa=0.5 and amplitude aj=ap, we show in Figures la and b the mean drift
force in the x and y direction respectively as a function of the

difference in phase Ae=ep-€1, for the different incident angles p;=0, and

p2/%=0,.25,.5,.75 and 1. For the main direction steady drift force Fy,
the maximum amplitude for fp=x, depending on relative phases, is almost
twice as large as that for p»=0. As expected, the drift force is always
positive for two incident waves in the same direction, whereas Fy is an
odd function of Ae for waves in opposing directions. Thus the (phase
ensemble-averaged) mean steady force is still largest for f2=0. For the
transverse drift force, we note another interesting result in that the
maxima for any Ae occur when g2 is at an obtuse angle 3x/4 rather than at
the normal incidence of 90°. These observations are, however, directly
dependent on the frequency of the incident waves. This is shown in
Figures 2, where the maximum (over all Az) of the drift force in the
Tongitudinal and transverse directions respectively for f>=0 and », and
fo=r/2 and 37/4, are compared over a range of wavenumbers kopa. In both
cases, the incident waves at obtuse angles have greater maximum F in the
long-wave range (kga < ~2/3), whereas the opposite is true for shorter
waves. These deterministic results have much relevance to the case of
multi-directional irregular incident waves as will be discussed later.
When the directional spreading is small, the double-index and envelope
approximations give reasonable estimates, but fail as the directional
speading increases. Consequently, the interesting dual wave interaction
results above are not predicted by these methods. For example, Figure 3
shows the maximum (over all phase combinations) x-direction drift force as

a function of the second incident wave angle f2. Our exact result shows a
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minimum at pp~80°, but a maximum Fy of over 1.6 times its value at pp=0
when the waves are from opposite directions. As expected, the predictions
based on narrow-spreading approximations are poor except for small values
of po.

We next consider the time series of the slowly-varying drift force.
For these simulations, the input wave spectrum is subdivided into N=K=25
segments in both the frequency and directional domains. A sampling
interval of At= 2 seconds is used which satisfies the Nyquist criterion.
First we show the results for unidirectional seas (Figures 4) using the
envelope approximation, the index method, and an Inverse Discrete Fast
Fourier Transform (IDFFT) method suggested by Oppenheim & Wilson(1980).
The method of envelope always gives non-negative forces, and remains zero )
whenever the local frequecy (or wavenumber) becomes negative. This is a
numerical confirmation of the integrable singularity observed earlier in
the PDF of F at F=0. The index approximation, on the other hand, gives
negative values, and although the time history qualitatively resembles
that of the envelope method, the amplitudes in general tend to be somewhat
smaller. In contrast, the results from IDFFT using the spectrum of F are
unacceptable since the second-order force is in fact not a Gaussian
process and only the freguency of F can be preserved by this method.
Similar results for short-crested seas with a directional spreading of
coszp are shown in Figures 5. In this case, the envelope method gives
negative values whenever |f 127/2, and as pointed out earlier, has a
finite PDF at F=0. The results from all three approximation methods
(envelope, index and the present one) are qualitatively similar, with the

present method predicting the smallest amplitudes, which is also indicated

- 207 -



in the later spectral analysis results.

Using the time history data, the statistics of the slowly-varying
drift force can be calculated numerically. This is shown in Table 2 where
the results are compared to statistics obtained from the power spectra
(Egs. 3. 9,12,13). Note that since the multfdirectional simulations are
in general not ergodic, eight simulations with different sets of random
phases are made in each case, and the ensemble averages are used for these
and later results. From Table 2, we see that the statistics from
numerical simulations and theoretical predictions are in good agreement.
Envelope approximation overpredicts both the mean and variance of ?x,
whereas the present method for short-crested waves is overestimated by the
index method for the main direction mean force, but underestimated for the

transverse mean force.

Table 2. Mean, E(F), and standard deviation, o, of slowly-varying drift
forces obtained from time simulations and from theoretical power spectra.
A11 values are normalized by pga and given in units of mé. Results from
power spectra are in brackets ([...]).

Unidirectional seas

E(F) ¢

envelope approximation .942 1.167
index approximation .803 [.804] .961 [.932]
cos2g directional spread seas

E(rx) E(?y) TFx ”Fv
envelope approximation | .749 -.012 .902 .388
index approximation .666 [.683] -.014 [0] | .776 [.801] .375 [.369]
present method .680 [.683] -.003 [0] .696 [.746] .444 [.422]
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The spectrum of the slowly-varying drift force in a multidirectional
sea can be obtained in terms of the wave spectrum from (3.12) & (3.13) for
the index and present approximation respectively. These are plotted in
Figures 6 for directional spreadings of cos?p and cos8p. As the waves
become more short-crested, the longitudinal force results deviates more
from the unidirectional force spectrum. 1In all cases, the present
approximation predicts lower main direction but higher transverse
direction force amplitudes at all slowly-varying frequencies p.

When the directional spreading of the incoming seas is not small, the
index or envelope approximations are no longer valid and the present
method must be used. To illustrate this, we consider the important case
of the simultaneous presence of storm and swell seas from different
directions. For definiteness, the storm sea is assumed to be given by
(3.4) (my=1.55 m2) with a cos2p directional spreading about x=0, and the

swell is approximated as a long-crested monochromatic waves of frequency

Wwp=.6 rad/s and amplitude ag=i2my, so that the storm and swell overlap in
wave frequency and have the same total energy. Eq.(4.1) for the swell

spectrum is now simply:

s,W) = (23/2) 6(w-u,)

In this case, our approximation (4.8) reduces to a single integral with
respect to f. Five incidence angles of the swell, f,/7=0,.25,.5,.75 and 1
are considered. In Figures 7, we plot that part of the longitudinal and

transverse force spectra due to the interaction of the storm and swell
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waves (Eq.4.3) for the different swell angles. Comparing to Figure 6a, we
note that the interaction spectra are typically much greater than that due
to the storm waves alone. The large amplification of the spectrum in
Figures 7 for certain obtuse values of g, especially for small x is most
noteworthy. For example, in the case of the x-direction slowly-varying
force, the increase in the force magnitude near u~0 due to storm-swell
interaction can be up to 4 and over 5 times larger for the case when the
swell seas are incident at 135° and 180* to the main direction of the
storm waves than when they are arriving from the same direction. For the
tranverse slowly-varying force, we again observe the interesting result
that the interaction contribution is actually larger for a 135° swell
angle than one at 90° to the main storm divection. These observations are
also confirmed by direct simulations of (2.15). We remark that although ‘
the variance of the slowly-varying forces due to storm-swell interactions
are greater for certain opposing swell angles, the net mean drift forces
are always greatest for the case of fy=0 and fy=x/2 for the longitudinal
and transverse directions respectively. These results have important
implications for ocean operations under storm and swell conditions such as
those reported by Grancini et al(1984).

Although the results of Figures 7 are anticipated from our earlier
deterministic calculations, we note that existing approximations such as
the index method are incapable of making such predictions because of the
narrow directional spreading assumptions. Thus a direct calculation of
the storm-swell interaction effect based on the double-index approximation

(4.7) leads to qualitatively incorrect results except for small values of

Po (see Figure 8).
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We now turn to the probability distribution of the slowly-varying
forces in unidirectional and short-crested seas. Figure 9 shows the index
approximation PDF and CDF for the main direction drift force ?x for three
different directional spreadings. For the short-crested waves used, the
probability densities are qualitatively similar and tend towards the long-
crested result as the spreading is decreased. As expected, the probabiity
of extreme values of ?x are higher for smaller directional spreadings. As -
pointed earlier, there is a small probability for the drift force to be
negative. These theoretical PDF's are also confirmed by direct numerical
simulations of the time-varying drift force. This is shown in Figures 10
where there is good comparison between simulated histograms and the PDF's.

The results using the envelope method are likewise obtained. For
unidirectional seas (Figures 11), there is a finite probability for
negative values of the local frequency w; or wavenumber ki, which results
in an integrable singularity in p(?) at F=0. The histograms obtained from
simulations are also shown in Figures 11, and the comparisons are
satisfactory for all three local variables (amplitude, frequency and
wavenumber). The PDF and CDF of the slowly-varying force for different
directional spreadings are plotted in Figure 12. The probability of
extreme values are generally somewhat higher than those predicted by the
index approximation. (For example, for coszp seas, the probability P(F24)
is .012 for the envelope method but only .006 for the double-index
approximation.) For unidirectional waves ?x is always positive, while for
short-crested seas, the probabilty of negative force is nonzero
corresponding to the situation where the absolute value of the local

direction is greater than x/2. The PDF for Fy for uni- and multi-
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directional seas, and for the local direction g, i.e. the instantaneous
d1rect10nsof the drift force in short-crested waves, are compared to
simulated histograms for the envelope method in Figures 13. The
comparisons, including the prediction of negative values in directional
seas, are quite reasonable.

Although the theoretical methods for unidirectional waves may still
be useful, a statistical theory for second-order forces in general
directional seas has yet to be developed and is a subject of current
research. In this chapter, we show only comparisons of the theoretical
PDF's of ?x obtained from the envelope and double-index approximations
which assume narrow directional spreading to the simulated histograms
using the present arbitrary-spreading approximation. This is shown in
Figure 14 for the case of a cos2f spreading. It appears that the enve]épe
method overpredicts the probability near the peak at 0, but underestimates
the probability of neagtive values. Overall, the histogram from the
present approximation is closer to and compares fairly well to the double-

index result.

7. CONCLUSION .

A new method for the calculation of slowly-varying wave drift forces in
short-crested irregular seas is presented and compared with existing
theories based upon envelope and index approximations.  These methods
assume both a narrow band in the frequency of the waves and a narrow
spreading in wave directionality. The present method retains Newman's
narrow-band assumption of the wave frequency, but allows for arbitrary

directional speading which is treated exactly. For typical short-crested
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storm waves with cosZ"p spreadings, the present thoery predicts
respectively lower and higher amplitudes for the main and transverse
direction slowly-varying forces. For wide directionally spread waves,
such as in the important case of the simultaneous presence of both storm
and swell seas from different directions, the existing approximations are
invalid and the present approach must be used. For the examples we
consider, surprising results are found which indicate that the slowly-
varying forces can be several times larger in the main direction when the
sterm and swell are incident from opposite directions than when they are
from the same direction. Similarly, for the slowly-varying drift force
transverse to the main storm wave direction, the largest amplitude is
reached not when the swell is incident at 90° but when the swell is coming
from an obtuse angle.

For the probability distribution of second-order slowly-varying
forces in unidirectional and short-crested seas, existing resultsld,16,19
for the index and envelope approximations are reexamined and in several
cases corrected and generalized. These theoretical probability densities
are shown to compare well with numerically simulated histograms.

For general wave frequencies and directions, a complete analysis will
require not only the exact bifrequency bidirectional quadratic transfer

functions (QTF), but also a probabilistic theory for these processes.
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Figure 2.

Maximum mean drift force (over all possible phase combinations)
on a uniform vertical cylinder (radius a) in the presence of two regular
waves, amplitudes aj and aj, as a function of the common wavenumber kga.
The curves shown are for (1) the x-direction force for incidence angles
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Figure 3. Maximum x-direction mean drift force (over all possible phase
combinations) on a uniform vertical cylinder (radius &) in the presence of
two regular waves, amplitudes aj and a3, and wavenumber kya=.5, as a
function of incidence angle f; (f1=0). Three results obtained using
respectively the (1) index approximation (— ¢ ): (ii) envelope
approximation (—— — —); and (1ii) present method ( ) are shown.
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Figure 6. Power spectra of the slowly-varying drift force as a function
of the slowly-varying frequency p. Two short-crested seas with
directional spreading (a) coszp; and (b) cossﬁ are considered. The curves
shown correspond to results for x-direction force for (i) unidirectional

seas { )3 (i{) present method (—— —— ——); (iii) index
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method (—— ¢ —); and (v) index approximation (— — — —).
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Figure 11. Comparisons between the theoretical probability density
function and that obtained from numerical simulation of local random
variables of the envelope approximation method in unidirectional seas.
The results are for (a) local amplitude; (b) local wavenumber; and (c)

local frequency.
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CHAPTER VI. CONCLUDING REMARKS

Like all other arts, the Science of Deductin and Analysis is
one which can only be acquired by long and patient study, nor
1s 1ife Tong enough to allow any motal to attain the highest
possible perfection in it. - Sir Arthur Conan Doyle -

In this thesis, the second-order wave effects on a large body are
studied both in the presence of regular and irregular waves. The only
assumption made is that the body is vertically axisymmetric. The théory
is otherwise complete in the context of second-order diffraction theory.

The second-order sum- and difference-frequency potentials are
obtained explicitly by a ring-source integral equation method. An
important part of the solution is the development of the local-wave-free
method for the efficient and accurate evaluation of the slowly-convergeﬁf
free-surface integrals. For irregular seas, explicit results for the
spectra and probability distributions of the second-order forces are
obtained using a two term Volterra model.

The accuracy and efficacy of the numerical method are established
through systzmatic convergence tests and comparisons to available semi-
analytic solutions. Detailed computations are performed for bottom-
mounted and truncated vertical cylinders, conical gravity platforms, and
fixed and freely-floating hemispheres.

From our numerical examples, a number of important second-ofder
phenomena, which have not been reported previously, are found:

(1) The second-order sum-frequency diffraction potential penetrates deep
especially at the weather side of a body and when the two frequencies are

close. As a result of this, a number of existing approximation methods
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which exclude this contribution may greatly underestimate the second-order
sum-frequency wave loads and resonant responses of large-draft offshore
platforms.
(2) When the body side walls are outward sloping towards the bottom, such
as 1n the case of a vertical cone, second-order excitations and run-up are
amplified and may indeed be greater than first-order quantities for
moderately steep incident waves.
(3) Body boundary terms due to 1inear motions and free-surface forcing
pressures in the boundary value problem of the second-order diffraction
potential contribute significantly to the total sum-frequency excitations.
These are, however, not so important in the difference-frequency problem.
(4) Comparisons of the probability density functions and spsctra of the
second-order wave loads obtained from the present complete QTF's to thoge
calculated from approximated QTF's show that the extreme and rms second-
order forces in irregular seas can be severely underestimated by
approximation methods.
(5) Our preliminary study of the slowly-varying wave forces for
multidirectional seas reveals that unidirectionality is not necessarily a
conservative assumption when second-order wave effects are included.

When second-order wave effects play an important role, the necessity
of a complete second-order theory for the safe design of large offshore

structures is underscored.

For numerical efficiency, we have only considered axisymmetric bodies
in this work. The present method, however, can readily be generalized for

arbitrary three-dimensional bodies using a three-dimensional source
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potential and associated two-dimensional integral equation. The local-
wave-free method for the free-surface integrals is still applicable in
this case.

For general three-dimensional bodies, the two-dimensional free-

surface integral has the form:

I(x) = ff q(x) G(x:x) dx ,
Sk (1)

where q is the free-surface inhomogeneity, and the linear potential ¢(1)

can be given, say, by a source distribution on the body:

¢(1)(X) = II a(x') G(x;x ) dx .
8 . (2)

Using the far-field asymptotic of G (see 2.32 of Chapter I), and the

addition theorem for Hankel functions, we have after a simple expansion:

G o g (x') cos nf + g (x') sin ng
~ Cn Sn
{ﬁ(l)} nEO Hn(kp) { LCn cos né + LSn sin na} o ko1,

(3)

where gcp, dsp are known functions of the point, x', on the body, and L¢p,

Lsp are the Kochin functions:
L (G (X))
Cn Cn
= 1] o(x) { ' } dx .
{LSn} lj On (X )
B

Using (2)-(4) in (1) in the locai-wave-free farfield, the @ integral can

(4)

be integrated explicitly, and (1) reduces to sums of one-dimensional

integrals over the radial coordinate p, and the method of Appendix A is

directly applicable.
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APPENDIX A: EVALUATION OF THE TRIPLE-HANKEL INTEGRALS

We consider, as an example, the integral:

() = | x H(x) H(x) H_(ax) dx,
*o (A.1)

where xo=kb, and a=kp/k. To evaluate (A.1), we expand each Hankel
function in polynomials of xo/x, whose coefficients can be determined from
an equivalent Chebyshev polynomial expansion for a specified equal-ripple

error (Luke, 1975):

—  i(x- _
Hn(x) = |2 e (x 1") L C

= ni(xolx)i, i=1,2,...

(A.2)

where y,=(n/2+1/4)x. The integral (A.1) can then be written as a triple

sum:

[ ]
: i(2+a)x
1 -k i+j+k e
Ilmn = Amn E g i Clicmjcnk“ Xo j x1'+j+k+1/2 dx,
Xa (A.3)
3 Tty
where Ayan = ?if e 1 m"n .
ra

Using a change of variable, y=(2+a)x, we obtain

-k i+j+k "
Lay Cy:C .C_ U(i+j+k),
K o 1i™mj “nk (A.4)

1 _
I1mn - Blmn

=~ [~

L
J
where yo=(2+a)Xo, Bimn=(2+a)=1/2A1pn, and U is defined to be the definite

integral
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1y
U(n) = nil 5 dy.
y
Yo (A.5)

Upon integration by part in (A.5), the following recurrence formula for

U(n) can be derived:

1y0
U(n) = £ =73 * 1 U(n-1), n=1,2,...
2) Yo n-s (A.6)

The starting value U(0) is given from Fresnel integrals (Abramowitz &

Stegun, 1964):
U(0) = 477 [F(1+1)-C,(y,)-1S,(y,)]. (A.7)

The recurrence formula (A.6) is stable in the forward direction. Since-
U(n) decreases rapidly with n, to avoid underflow cancellation in
computations, it is convenient to define U(n)=T(n+1/2)U(n), which has the

neutrally stable forward recurrence formula
0n) = T(n-1/2)e "OgY/2 M 4 10(n-), n=1,2,..., (A.8)

with the starting value 0(0)=ix U(0). The use of U in (A.4) is
numerically more robust and preferred. In practice, the summations in
(A.4) are truncated for a prescribed equal-ripple tolerance according to
the magnitudes of the original Chebyshev coefficients. The other
integrals in (2.41) of Chapter I are evaluated in a similar manner.

To give an indication of the accuracy of the present method, we

calculate (A.1) for two partition points xj, x2 according to (A.4), and
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compare their difference to that computed by numerical Romberg quadrature

over (x1,x2). The results for a range of orders 1,m,n are given in Table

A. The accuracy is satisfactory but diminishes somewhat with increasing
orders due to round-off cancellations associated with the slow convergence

of (A.4).

Table A. Numerical verification of (A.4) for evaluating the integral of’
tr1p1e products of Hankel functions, (A.1). The difference I1pnl(x2)-
I1mnl(x1) obtained from two evaluations of (A.4) and from direct Romberg
quadrature (tolerance 10-6) over the interval (xj,xp) are compared for
x1=10, x2=11, and a=4.

1 m n Eq.(A.4) Romberg quadrature

1 2 3 ( 0.001886, 0.003742) ( 0.001886, 0.003742)
5 3 6 (-0.006758, 0.002120) (-0.006758, 0.002120)
9 9 12 (-0.011812,-0.034072) (-0.011812,-0.034072)
11 11 14 ( 0.109891, 0.000471) ( 0.109891, 0.000471)
14 9 17 (-0.361132, 0.022987) (-0.361132, 0.022987)
12 12 15 (-0.040432,-0.246567) (-0.040433,-0.246565)
13 13 17 (-0.240835, 0.712153) (-0.240853, 0.712166)
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APPENDIX B: SEMIANALYTIC SOLUTIONS FOR THE SECOND-ORDER FORCES AND
MOMENTS ON A BOTTOM-MOUNTED VERTICAL CYLINDER

The solution for the second-order horizontal force on a bottom-seated
vertical cylinder has been studied by Molin (1987) and Eatock Taylor &
Hung (1987). We extend the results to the second-order overturning moment

also. The first-order total potential is:

¢(1) 7—5— —%%2—5151—) z €, [J (kp) - S ka) ——— H,(kp)] cosng,
n=0 Holka) " (.1)
and the first-order forces and moments are given in closed form.
From (3.6) and (3.7) of Chapter I, the compcnent of the second-order
mean and double-frequency horizontal force and overturning moment (about
the center of the cylinder bottom) due to quadratic products of the first-

order potential can be evaluated:

r(2) ® n ( )

p,g2A°  x(ka)? n=0 H_(ka)H_,, (ka) ST 2Kh © 7 20 'S Tnh 2R

(B.2)

(2)

M L n
A . Moy LU g, siﬁ,’ﬁ"z‘(h[(" "—fll+1)Z(kh) -1
pogahA x(ka)“ n=0 Hn(ka)Hn+1(ka)

(8.3)
Fﬁz) - (e2kh . [1-n(n+1)/(ka)1?
pogahe  w2(ka)® T ST 200 15 2 (ka) 4y 2 (ka) 100, 2, (ka)+Y, 2 (ka)]

‘ (8.4)
A - re(=; & : L2 ()2 (k) -9)1)
pogahA2 f(ka)2 n=0 H;(ka)Hézl(ka) sinh Zkh a)2 2( ;

B.5
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where Z(kh)=Z1/4+(2kh sinh 2kh - cosh 2kh +1)/8(kh)2, and the Wronskian
Jn(ka)Hp' (ka)-Jdn ' (ka)Hp(ka)=21/xka is used.

From (3.5) of Chapter I, the second-order potential forces and
moments (Fz(z)) have components which depend on the second-order incident
wave ¢1(2) (F21(2)) and diffracted wave ¢p(2) (Fop(2)) respectively.
Expanding the incident wave potential into partial waves, the Froude-

Krylov components can be readily calculated:
Fﬁg} _ -3ind, (2ka)
pogaAz 2 sinhzkh (B 6)

(@) ;
y2I _ _ -3ix tanh kh 3, (2ka) [sinhZZkh _ cosh Zkh-‘]

pogahA2 2 sinh*h 4kh

(B.7)

The diffraction component can be obtained via (3.14) of Chapter I in terms
of assisting radiation potentials for horizontal translation (y;) and

pitch rotation (with respect to the bottom) (#5). These potentials are

given by:
[¢1] - cost {[Alo] cosh kgfz+h) ”}(kgfl X ; [Alm] cos LZm(z+h) K}(anp)}
¥s Aso Ky Hy(k,a)  m=1 [Asm Kom Ky (Kp2)
' (B.8)

The coefficients Ay, A5 are obtained by integrating the vertical
eigenfunctions with 1 and (z+h) respectively in z:

4 sinh k2 h
A = "'mk h '
1m 2k2mh + sinh 2 om

- 243 -



m=0,1,2,...
4(k2mh sinh k oph - cosh koph + 1)

Aoy = (‘fz‘h + sinh 2k ) ' (B.9)

where koozk2, kop=i1k2m, m=1,2,..., and x2p are the real roots of (2.31) of
Chapter I with w replaced by 2w.
From (3.14) of Chapter I, the diffraction components are given by:

gp | . [Pz (o 20 ot o
42 4 2) o (2) Zipoua dz da ['5 fﬂafpdp q[,5]z=o
(8.10)

yZD y2H y2pP

Using (B.8), the first term can be integrated to yield:

[ ﬁ%&/pogaAz ] 3rikZtanh kh Ji(Zka) Alo] l(kza) - [Alm] I Kl(ana)

;g&/pogahA sinh*kh bsol k Hl(kza) m-l ) Kom 1(‘2ma)
(B.11)
where
I - 1 [ sinh(2k+kgm)h . sinh(Zk-kZN)h ] 012
2 2k+k2m Zk-kZm ' PorSaees 0
(B.12)

The second term of (B.10) represents the contribution due to ¢p and is

simplified somewhat after integration in @:

(2, qan? . /
[ 5 Pod® ] = 8ri [ dikp) kp G [’1 : ] :
z2=0,0=0

2
My2p/PogahA ka $5/ah (B.13)

where
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Gy = B D" Ke Ty (ko) = 3 (ko) ) +

[T, (ke) T, (kp) = 3, (kp), (k)] cﬂfﬁif% - 3+ 3 tanh®n]}
p
(B.14)

and Tn(kp)zdn(kp)-(Jdn' (ka)/Hy' (ka))Hp(kp). The free-surface integral in
(B.13) can be evaluated as described in Appendix A.
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APPENDIX C: SEMIANALYTIC SOLUTIONS FOR SUM- AND DEFFERENCE-FREQUENCY
FORCES ON THE BOTTOM MOUNTED VERTICAL CYLINDER

Here, we consider the second-order sum- and difference- frequency
forces on the bottom-mounted vertical cylinder in the presence of
bichromatic waves. These solutions can be obtained following the formula

given in Chapter II with the analytic first-order potential:

-1gA cosh k (z+h) » J' (k a)
1
’§ )- Wy cosh kjh nE €l [ n(ksp) - ";TF%ET Hn(kjp) ] cosnzc.l)

where (') represents differentiation with respect to arguments.
Substituting (C.1) into (4.19) and (4.20) of Chapter II and performing &
integration, quli are given respectively by: '

f 3 (k;h) (kyh) (I7+ T*n(n+1)/(k,a) (k;a)
gil AN AR
PgaR A, " fIE‘E71E;a) E (1) M1+ 7S Coshkyh coshi;h }
(c.2)
- - + .
f il _24 2.1 - (kjh)(k]h) (I'+1 n(n+1)/(kja)(k]a))
pgaAjA x(E“)(kla) oTnj1 wiwih/g coshk;h"coshk;h
(C.3)
where + 1 c.4)
Ung1™ W ) Aika) K 3 (D) .
- 1 1
fn = * - (C.S)
T (ka) BT (a)  H(kga) e (ga)
+ -
1+ -1 _sinh kh L, _sinhkh
2 | K'h T kTh (C.6)
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The second-order Froude-Krilov type excitation QTF can be obtained from

the first integral of (4.21) of Chapter II, which leads:

+ O N5 tanh i
rapu— —— J( k*a)

A
- -
1 (11+ 1y) k=

(c.7)

where qj1+ are given in (2.6) and (2.7) of Chapter II. The diffraction

component can be evaluated via'(4.23) of Chapter II in terms of sum- and

difference-frequency assisting radiation potentials for horizontal

translation, #x*, which have following explicit expressions:

+

coshgfé(z+h) Hl(kéf) . E & cos f%m(2+h) Kl(x%mp)

i§= cosé [ Bs

k% Hl(k%a) m=1 M

+ Qg
kom Kl(‘ima)

(c.8)

where K is the second kind modified Bessel function, and the coefficients,

B¥, in (C.8) are given by:

4 sinh ki h
= 2m = oe
B0 T T b s sinh 2Kon (m=0.1,2,00 )
2m 2m

(C.9)

where kog=k2, kop=ik2m, and kop represents evanescent mode and is given by

the real roots of the following equation:

+
wil- -x%mg tan ;%mh . (m-1/2)x < K5gh S mr

(c.10)

Upon integrating the first integral of (4.23) of Chapter II, the body

forcing contribution is obtained in explicit form as follows:

Y k=h J, (k=a Hy (k5 Ta) ®
e et [ T O
(3] 13 )J cosh kth (k =a) m=1
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K (E‘é’m&)

K3 Ky (K2)
(C.11)



where ( & ) ( + .+
sinh(ki+ h sinh(k—-ks_)h
n.; = .1:. [—.——-—.—-—. + +Z.m ] , M=0,1,2, 000

2 +
g, k= kzp, (C.12)

From (3.4a) of Chapter II and (C.1), the sum- and difference-frequency

free-surface forcing for n=1 are given respectively by:

2
Zg AA k k ky ~
P ___J_LL (-1) m(m+1 X1 a+
RELEN [ ][“3‘ K "JP )" * ZRLERRE

where AJ] is given in (3.16) of Chapter II and

+_53 5 jo 1 Jj J g

Tm = Znr1ln * Zn Zm1” "m+1"m I Ime1 (C.14)
rt -7 ‘3.’ 'J '3

T m+lzm * Zm+1 ‘]m+1"m In e (C.15)

. (k;a)
3 - 3a0k) - S Pl

N
.
]

(c.16)

The corresponding difference-frequency terms in (C.14 & 15) can be
obtained by taking complex conjugate for each term containing superscript
1. Finally free-surface forcing contributions are given by the infinite

line integral:

i L I % p O [*§1z=o,o=o (c.17)

This free-surface integral can be evaluated as described in Appendix A.

- 248 -



APPENDIX D. DERIVATION OF THE MONOCHROMATIC-BIDIRECTIONAL QTF.

The QTF, Dijk1, for a general body in arbitrary water depth for
monochromatic bidirectional dual waves is derived using the far-field
method (Newman, 1967). In the presence of two incident waves, wavenumber
ko, and incident angles fyx and gy, the far-field asymptotic forms of the
incident(¢y) and diffracted (¢p) potentials can be written as:

ik - ik 0-
¢; ~ -(g/w)f(2) [ Ae o cos(8-p,) ‘e oF cos(6-p;)
(D.1)
i(k, r+x/4)
#p ~ -(19/w)f(2) 1, 72ar [ A (x+0) + Ay (r+6) ] e (0.2)

for koro)1, and f(z)= cosh ko(z+h)/cosh koh. Here, Ak, Ay are the complex
amplitudes of the incident waves, and K, Kj the Kochin functions defined

by:
9 ik (xcos@ + ysing)
k(o) = [ as (-a—:—i by ) f@ e
body (D.3)

j=k,1, where #Dj is the diffracted potential associated with the jth
incident wave alone. Using momentum conservation for the fluid volume,
the mean force on the body can be expressed in terms a far-field integral

given by:

3 o 61 (1 2438 2638 2

X _ cos — - - *
[F]-G(koh)'a‘f;[Idar{sino}l25%66 Br or I‘*>¢”]z=o
y 0

jda{sino [a gg*+g¢g¢*]z-o]

cos 8
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where ¢=¢1+¢p, and G(koh) = tanh(koh)+koh sechZkoh, 1s a depth factor
which goes to unity as koh+e. Substituting (D.1,D.2) into (D.4), and
using the method of stationary phase for the resulting integral, we obtain
the drift force QTF:

D 2x '
X pak _G(k_h)
kl 0 ‘0 cosé
[Dyk]} - I K (r+0)K, (r+0) {957} o
0

cosp * cosf
- 1%9 G(koh) [( Kk('+pl){s1np:} - K]('+pk){s1np:}] ‘(D 5)

which satisfies the symmetry relationship Dy = D1k*. The QTF is related
to the mean drift force by:
2 2

F _ *

XY k=11= .
k=1 1=1 (0.6)

For vertically axisymmetric body geometries, the Kochin functions Ky need
to be calculated only for one incident wave angle, since Ki(@)=Kj(6+p1-
Pk)., and the computational effort is greatly reduced.

In the special case of a uniform vertical cylinder (radius a), the

total potential g5 and hence the QVF can be expressed in closed form:

1gA . 3. (k_a)
$y = - 51 f2) I egt” [ (k) - —f(—f; H, (k,r)] cos n(g-p;)
n-o (0.7)

where Jp, H, are Bessel and Hankel functions of the first kind, primes
denote derivatives with respect to argument, and ey=1, ep=2 for n2l.

Substituting gpj in (D.7) into (D.3), the Kochin function can be evaluated

to be:
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KJ(1+0) = %i nEO e,,cos n(a-pj) J;(koa)/H;(koa) 0.0

Using (D.8) in (D.5), we have finally:

[4 ]

D
Xk1 paaG(k h) o cosp, cospy) «
[Dyk]} - ka tanhokoﬁ n§0 [ 37cos n(p-py) ( sing, [Tn(ko2)* sing, T (k 2))

cos[(n+1)p,-np;] cos[(n+1)p1-np 1\ &
[sin[(n+1)pk-np]]}kn o? {sin[(n+1)p]-npk]]Rn(koa) ]

(0.9)
where the functions T, and R, are defined by:
T, (k,2) = J,(ka) / H " (ka)
R (kya) = do,1(k,a) 3 (kja) / Ko (ka) H ™ (k a) .10

In the special case of a single incident wave (fk=p1=p), the single
frequency and direction QTF, D(w,w,p,p), reduces to the familiar result:

kak i 2pgae(koh) {cosp}
ka ~ kja tanh kb Asing

gﬁ [ ;ﬂ Real{T (k,a)} - Real{R (k,a)} ]
= (D.11)

which has the asymptotic value of (2/3)pga{cosf,sinf} in the limit of

short waves (koa,koh+»); and the long-wave (koa, koh+0) asymptote of:

kak 512 3 [cos
D, ~ g pealksa) {sing}
k (D.12)
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