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THE FEASIBILITY OF USING MgF2 FOR PHASE CHANGE HEAT STORAGE

IN A SPACECRAFT SOLAR THERMAL POWER SYSTEM

by

CHARLES ALAN LURIO

Submitted to the Department of Aeronautics and Astronautics on July 22, 1988
in partial fulfullment of the requirements for the

Degree of Doctor of Philosophy in Aeronautics and Astronautics

ABSTRACT

For spacecraft operating in Low Earth Orbit (LEO) electrical power can be
provided with lowered mass and drag area by the use of solar thermal dynamic
rather than photovoltaic power conversion. The dynamic systems require a
means of storing heat for operation during the eclipse portion of the orbit
and past studies have selected LiF (melting point 1121 K) to provide such
storage using heat of fusion.

A comparison shows that the use of MgF (melting point 1536K) instead will
reduce the power system mass by about 6% and solar collector drag area by
22% due to increased energy conversion efficiency. A theoretical evaluation
shows that MgF2 should be compatible with refractory metals. While water
contamination of the fluoride (100 ppm) can cause high initial pressures
(up to 19 atm for Ta) in sealed containers, H2 diffusion should result in
final pressures well below one atmosphere.

The compatibility of molten MgF2 with ASTAR 811-C (Ta-8W-lRe-0.7Hf-.025C)
and W-25Re test capsules was tested for 2089 hours in a vacuum furnace
(-10 torr). Metallographic and other tests showed no deterioration of the
latter alloy. The ASTAR capsule wall was nearly penetrated by MgF2 at
isolated points due to contamination by Fe embedded in the wall during
manufacture. Particles (-l/Am size) containing 71% Hf and none of the
other metals available were found scattered throughout the frozen MgF2 in
the ASTAR container.

Corollary tests showed MgF2 supercooling of -10-30 K and 50-90°K in the
W-25Re and ASTAR 811C containers respectively.
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CHAPIER 1

BACSKdR(]D AND SYSTEMS LEVEL NUrIVATIONS

1.1 Introduction

Provision of sufficient electrical power for spacecraft operations is a

major concern for the vehicle designer. The classical answer to this problem

for the vast majority of spacecraft has been the use of silicon solar cell

arrays with batteries for providing power when sunlight is unavailable.

Exceptions to this rule have occurred in a few instances: spacecraft

traveling to the outer solar system (where solar intensity is greatly

reduced); equipment placed where sunlight is absent for long periods (the

Apollo lunar surface experiments); and vehicles requiring high power in a

small package (Soviet military radar satellites).

All of the exceptions noted above have relied upon nuclear heat sources

and solid state energy conversion devices with efficiencies well under 10%.

This has reflected a "no moving parts" approach to reliability. As power

requirements increase, however, there is increased motivation to use a higher

efficiency energy system. There is also widespread public fear of

nuclear-based systems.

The proposed NASA space station would operate for 30 years in a Low Earth

Orbit (LEO) and provide 75-300 kW of electrical power [1] . In LEO, sunlight

is available for about two-thirds of a ninety minute orbit, the rest of the

time being spent in Earth's shadow. Also, at such altitudes, (200-300 miles),

drag caused by large area solar arrays translates into increased fuel

requirements for orbital maintenance. Alternatively, one could place the

tBracketed numbers refer to references; see List following fnal chapter.
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station at a somewhat higher altitude to start with, where drag is reduced;

however, the payloads that can be carried to a higher orbit are lower.

There are alternatives to using either solar arrays or nuclear systems.

These are the so-called solar-dynamic systems. Solar energy is collected by a

mirror, concentrated, and used to heat a working fluid (liquid or gas). This

fluid may be used to run a turbine (Brayton or Rankine cycles) or other heat

engine (Stirling .cycle~), which in turn drives a generator. Like solar

arrays, solar dynamic systems require some form of energy storage for the

shadow portion of the orbit. Shutting down and restarting the thermal engine

during each orbit may accelerate mechanical wear. The system could be kept

running if some form of heat storage were used.

One possible method of such storage is to use the heat released when a

substance undergoes a temperature change (sensible heat). However, a

generally more effective method (on the basis of J/kg) which, also, is ideally

isothermal, is to use heat liberated with phase change [2]. Heat of fusion

(liquid to solid) is preferred over heat of vaporization due to the much

smaller volume change that occurs with the former.

Figure 1.1 shows schematically the application of this method to an

orbital power system. While in sunlight ("insolation"), heat gathered not

only runs the heat engine, but also melts the heat storage material; during

shadow this material freezes, releasing heat that allows the engine to

continue operating.

The present work is concerned with examining the feasibility and

desirability of using Magnesium Fluoride (MgF2) as the phase change heat

storage material in a space solar dynamic power system. This chapter

7
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considers the systems level consequences of using MgF2. Subsequent chapters

describe the results of theoretical and experimental work. Finally, the

consequences of these results are examined.

1.2 Solar Dynamic Versus Photovoltaic Power

It is illuminating to briefly consider a numerical comparison of

photovoltaic and solar dynamic power systems. The basis of this comparison

shall be a total orbit efficiency defined as

total energy used over orbit
~tot total solar energy input over orbit

where for both photovoltaic and solar dynamic systems, this may be restated as

PL(tsun +tsh)
qtot = P t (1.2)

s sun

with

PL = constant user power demand, kW

P = input of solar energy during insolation (kW)

t = orbital time in sunlight, min.sun
tsh = orbital time in shadow, min.

Now, for the photovoltaic and solar dynamic systems respectively, the

following power balances may be defined, for the insolation period:

tsh 1

Ps A PL(1 + t (1.3a)sun sto
t 1tsh 1

Pse c PL(1+ t s (1.3b)sun sto

9



where

17A = array energy conversion efficiency

n1e = combined thermal/alternator conversion efficiency

7c = solar energy collection efficiency

qsto = energy storage efficiency

In Tablel.l, storage and conversion efficiencies have been gathered from a

variety of sources as noted. The total orbital efficiencies are from

combining equations (1.2), (1.3) to find

sun sh
[ ·+ tsh ]T (1.4a)t + shTAsun

T/sto

for photovoltaic and solar dynamic systems respectively. Where a range ist.3sun tystem sht + shsun 7/sto

for photovoltaic anSunf solar dynamic systems respectively. Where a range is

given in the table, the indicated intermediate values w ere used in the

calculation of T/tot' The value of T tot will be inversely proportional to the

required mirror or array area and thus to the atmospheric drag. The value of

solar dynamic coversion efficiency used is conservative.

1.3 Background of Solar Dynamic Systems

As pointed out by Baraona [7], the idea of using solar dynamic power

generation in space well antedates the flight of putntk i in 1957. During

the early 1960s both NASA and the Department of Defense (DOD) carried out

research under the Sunflower and ASTEC programs respectively [4]. In

parallel, through the '60s, extensive work was done on turbogenerators for

10



Table 1.1

Total Orbit Efficiencies ( ot) of Space Power Systems
tot

Silicon GaAs Solar Dynamic

Conversion 7-22 12-24 20-45
Storage 7 (1) 2 (2) 1 (3)

. (70)

Regenerative 62 (4) 13 17

fuel cells

N -C d

Battery 77 (5) 15 18

Ni-H2

Battery 79 (6) 15 18

Flywheels 85 (7) 15 19

Phase-change 90 (8) 23
heat storage

Sotar dynamic collection efficiency Tco = .8 from [3].

NOTES:

(1) low value from [4]; others from a survey of papers in [5]

(2) same as note (1)

(3) low value from [4]

(4) [6], Table 2, pg. 37

(5) [1], derived from Table 2.2.3-10, p. 2-66

(6) [1], Table 3.2.9, p. 3-45

indicates actual value used
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application to space nuclear reactors (such as the SNAP-8 90 kWe mercury

rankine device [8]).

Brayton cycle technology work was carried out by NASA, resulting in the

fabrication of the solar receiver unit illustrated in Figures 1.2a, b, c, and

used lithium fluoride (LiF) for thermal storage [9]. That compound, which

melts at 1121 K, was contained in corrugated tubes concentric with the cycle

working gas tubes. The purpose of the corrugations was to minimize fluid

redistribution in zero-g, which was a potential problem due to the

approximately 30% shrinkage of LiF on freezing. It is necessary that there be

a larger amount of LiF where the "cold" gas enters the receiver than at the

gas exit. The larger AT between gas and LiF at the start causes a greater

heat flux so a larger heat reservoir is required.

The LiF storage receiver program had included tests of the compatibility

of LiF with several alloys over 5000 hrs. including cycling through the melting

point [12]. While the project was shut down before the full receiver could be

tested, three receiver tubes did undergo limited testing in simulated

operating conditions [10].

By the mid to late 1960s (as shown in [4]) space solar dynamic work had

nearly halted. There was some development of the Brayton Isotope Power System

(BIPS) which uses nuclear decay heat to run a cycle instead of operating

thermoelectric conversion devices. Also, very large thermal engines (hundreds

of MW) were studied in connection with the various Solar Power Satellite (SPS)

studies.

In private industry since the 1960s, there has been considerable

experience with solar driven Organic Rankine Conversion (ORC). These ORC

12
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Figure 1.2aSolar Brayton System, LiF Heat Storage [11]
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units use a carbon-based working fluid, generally toluene, and have a

relatively low peak temperature ( 7000 K, [1]-Table 3.3.2.2-2). They often

have been installed in remote sites where they reliably produce a few

kilowatts power.

With the revival of space station work in the 1980s, NASA and its

contractors have considered solar dynamic systems for the reasons noted

earlier. The highest temperature system included in this work has generally

been limited by the melting point of LiF; however, recently some research has

been done on fluoride mixtures with melting points to 14000K [13].

1.4 Selection of gF2

Several years ago, the author began investigating the use of phase change

thermal storage materials with melting points above that of lithium fluoride.

The motivation for this was the potential for higher engine cycle

efficiencies. Beside melting point, energy per unit mass (/kg) is an

important parameter. Considering the data for these two quantities (shown in

Figure 1.3) silicon was selected for further study. The work performed in

[14] and [15] showed a favorable result for the specific mass of solar dynamic

systems using silicon when compared to solar array systems.

Subsequent to this, a wider survey of information showed that molten

silicon was unlikely to be containable for long periods in any material. In

particular, an experiment at General Electric several years before had shown

that containment in silicon carbide (which had been postulated in [14]) was

not possible [16].

16
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In searching for a replacement storage material it was clear that one

would not wish to much exceed the melting point of Si due to increasing

difficulty of containment. It was also desired that a reasonably safe

material for compatability tests be chosen. Thus, looking at the

possibilities shown in Figure 1.3, MgF2 was chosen for further research over

others such as Be.

Considerable effort was expended looking int'o what was known about the

material. Persons at MIT and Oak Ridge National Laboratory (ORNL) familiar

with fluoride chemistry indicated that it was likely to be stable and

containable. Literature searches showed relatively sparse data. Particularly

useful were the compilations by Eichelberger and Janz [17], [18] which listed

previously published corrosion tests. An important source of thermodynamic

quantities were the Joint Army, Navy, Air Force (JANAF) data tables [19] and

the compilations by Barin (referenced later).

Table 1.2 summarizes some important properties of MgF2 for comparison

with those of LiF. MgF2 requires slightly less heat of fusion than LiF but

has a smaller volume change when melting, which should reduce receiver design

difficulties. Unfortunately, no data is available on thermal conductivity of

the liquid or that of the solid at the melting point. Nor does data exist on

surface tension, although Eichelberger states that generally fluorides "creep

and flow easily" due to a combination of viscosity, wetting, and surface

tension effects (p. 190).

1.5 ass and Drag Area Comparison of LiF and YlgF2 Power Systems

This section considers an explicit comparison of mass and drag area for

two 100 kWe power systems, one using LiF heat storage and the other MgF2, with

18



Table 1.2

Properttes Comparisor of NgF2 and LLF

PROPERTY !gF2 LiF

Molecular weight
gm/mole 62.30 24.94

Melting point

°K 1536 50 K (1) 1121 10K (2)

Heat of fusion

J/kg 0.94 x 106 i 7X (3) 1.050 x 106 0.8% (4)

Density p of

liquid at melting

point (kg/m3 ) 2430 . 1% (5) 1810 (6)

Volume change
on melting, %
(AV/Vs)T 14.0 1.12 (7) -30 (8)

m

Thermal

Conductivity ("2.9 at 15360K (s)) ("5.3 at 11210K (s))

W/m - K (9) (10)

(1), (2), (3), (4) [19]

(5) [18]

(6) [17] no error bar given

(7) [19]

(8) [12] no error bar given

(9) Extrapolated from data referenced in [17] (see Appendix A) on solid MgF2,

"mean values" of data given

(10) Extrapolated from data referenced in [17] (see Appendix A) for solid,
accuracy 10%

19



common design assumptions. The purpose is not to produce a "global" optimum

for each system, though some optimization is performed. Rather, it is to

illustrate some of the consequences of using the higher temperature system.

1.5.1 Collector-Receiver (Collection) System Energy Optimization

As Jaffe points out in [3], the optimization of the collector mirror and

receiver cavity can only be done in tandem, as they are directly coupled. He

optimizes net energy collection efficiency to the receiver during insulation

for ground based systems. The model used here follows his except for

modifications appropriate to space based systems.

The problem of the energy balance for the collection system is shown in

Figure 1.4. The ideal paraboloid mirror is perfectly aligned with the sun,

has no error in surface slope or specularity, and is perfectly reflective.

The ideal receiver is perfectly insulated and sunlight enters through an

infinitely small hole so that no heat may escape there. This requires an

"ideal sun" subtending zero degrees of arc whose image is formed in the focal

plane at the receiver entrance.

With "non-ideal" surfaces, alignment, and sun, an extended image is

formed on the focal plane, and one may consider what receiver aperture radius

(or area Ar) results in the largest net heat input. There are also non-unity

values of mirror reflectivity and receiver absorbtivity, and the receiver

blocks some part of the incoming light to the mirror. There is radiative loss

out the aperture and, for a space system, radiative loss from the receiver

walls is the only other significant loss.

20
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Thus, the net heat collected may be stated as

Qc IA a Aera(Trb -T) A ewa(Tw4 -Tb) (1.5)

where

I = solar flux (low value 1323 w/m2 in LFO)

2
A = mirror projected area, m

p = mirror reflectivity

G = proportion of unblocked incoming light to mirror

= intercept factor: proportion of energy at the focal

plane which enters the receiver

a = effective absorbtivity of the chamber(aperture)

2
A = receiver aperture area, mr
e r = effective receiver emmissivity (aperture)

a = Stefan-Boltzmann constant (5.67 x 10-8 W/m2 K)

T = receiver interior temperature, OKr
Tbk = effective space background temperature, OK

2
A = outer wall area of receiver, m

w

w = emissivity of receiver outer wall

Note the assumption that the receiver has uniform interior and exterior

temperatures.

Now the receiver wall area Aw will depend critically on the detailed heat

transfer design of the receiver. But from a systems design point of view, it

is convenient to define a parameter "radiant loss fraction" f, which is the

fraction of energy entering the receiver that is lost by wall radiation. With

this definition, one may restate (1.5) as

c Ap (1-f) - A r a(Tr4Tbk) (1.6)

22



Dividing this by the solar energy intercepted by the mirror, IA, gives the

collection efficiency, i.e.

q = pG4((l-f) C Ir a(Tr 4-Tb4 ) (1.7)

where C is the concentration ratio, A/A .

To find , Jaffe applies a model in which the focal plane energy

distribution is assumed to be Gaussian, and is caused by Gaussian

distributions of slope and specularity errors, pointing misalignments, and the

finite solar disc. He argues that while the last of these is a crude model,

it will be a minor contributor to the overall distribution for practical

concentrators. The purpose of the model is to avoid the detailed optical work

that is inappropriate for a simple optimization.

Thus, the value of has the following relation to Ar,

2-A /2r 2
= 1- e r r (1.8)

with ar being the standard deviation of flux distribution in the focal plane,

in meters. This relates to the other assumed distributions by n qpproximaion to 
ay tra.c 3 aysi's 1 -1 2-cosO 2-2cosO 4sinO

2 R22 +
=r tan2 3 3sin3 sin 3cos 

(

- In tan--+ + In tat2 ]]

(1.9)

where

R = concentrator radius, meters

9 = rim angle (see Figure 1.4)

and

(2a s lope) +a 2 + p 2+ a2
slope W P sun

.23

(1.10)



with the following standard deviations,

aslope = slope errors

aa = specularity spread

ap = pointing error

a = incoming sunlight.sun

By defining a non-dimensional distribution,

a
r

a R- (1.11)

4 may be related to concentration ratio using (1.8), with the result that

C = 1 (1.12)
2 afln 1

Using (1.8) in (1.6), and differentiating with respect to Ar, results in

an optimum value of ( given by

2

4opt = 1 - IpGa(1-f) er(Tr 4 - Tb (1.13)

For reasonable value of mirror slope errors, the value of nlc from this optical

model is insensitive to choice of , which is related to focal ratio fr by the

relation

f F l+coso
r D - 4sinG (1.14)

where

F = focal length

D = 2R = mirror diameter

Let a Z e . 1, G = .96, a = 0.5 mrad, a = 2.3 mrad, based on Jaffe's work.

2
Also, let I = 1323 W/m2, p = .92, a = 0.2 mrad from [1]. Table 3.3.1-2. Set

p
f = .05 and try two values of 0, 450 and 600, and two of aslope' 2.0 mrad and

1 mrad. The values of aslope are both optimistic by Jaffe's standards, but

the latter was achieved in NASA Lewis's work on a rigid magnesium alloy

reflector in 1973 ([20], p. 42).
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Figure 1.5 shows the results of these assumptions on optimum collector

efficiency c with mirror slope error and rim angle as parameters. The

numbers along the curves note corresponding optimum concentration ratios. The

strongest effect of reducing mirror quality through aslop e is not on

collection efficiency but on concentration ratio. As mirror errors increase,

the focal image size does as well; the receiver aperture widens, thus

decreasing C. However, significant loss out this aperture -- reducing c --

does not occur until higher temperatures are reached. Thus, it is seen that

mirror quality (which will directly affect mirror mass) is of particular

concern for the system using MgF2 storage, which will operate at a receiver

temperature of about 15500K.

Jaffe states that the optical approximations represented above have an

error of about 5-10%; he also states that more complex solutions indicate

that the maximum efficiency for a paraboloid mirror is achieved with

fr = 0.6 ( = 45o) as long as ) is close to 1. The rim angle of 45 is

adopted here; a consequence is an increase of about 4% in mirror area over

that of a flat surface of the same diameter. Also, henceforward it is assumed

that surface slope error is 2 mrad.

Based upon the work done by NASA Lewis described in [11] and by Rockwell

in [1], it is reasonable to assume that a means of closing the receiver

aperture is available. With the receiver aperture closed during shadow,

losses during that period are essentially limited to radiation from the outer

walls. If the temperature of the cavity remains the same during shadow as

during insolation, the radiative loss rate will remain the same. This shadow

period loss must be made up with additional phase change thermal storage

material.
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Thus, the storage efficiency is defined here as

Tisto = 1 - energy energy radiated during shadow from walls (1 15)
sto = energy collected for storage during insolation

The energy lost by radiation during shadow is given by

Hrs = IAPC ftsh (1.15a)

which may be combined with the expression for mirror area required,

PL tsh
A a I'q (1 + S totsun) (1.15b)ITcyalt TlS totsun

where thermal engine ( cy) and alternator (alt) efficiencies are now

separated. The energy collected during insolation for use during shadow is

P
H =L tsh (1.15c)sh =- 71sto7cy alt

Combining these two with (1.15) and solving for Tlst gives

1 1 1( tsh
6ptf sun

T7sto = n [ s (1.15d)

which becomes unity as the radiation loss factor goes to zero.

1.5.2 Thermal Engine Cycle

For the purposes of the present comparison, a non-optimized regenerated

Brayton cycle is used, as schematically outlined in Figure 1.6. Starting with

the assumptions in Table 1.3, which are derived from [15] and [21], the

following relations are used to derive the cycle efficiencies and temperatures

there. Let

T4 P3
t T3 t P (

T1 P1

co To 9 co P0 (1.16b)
co To'W co PO

27



Heat Source
(Direct Solar or,

r

2

5

28

Compr

Entropy

Figurel6: Brayton Cycle with Regeneration

4)
$4

.6i

E-

-$



Table 1.3

Regenerated Bryton Cycle Characteristics

LiF BOTH gF2

Assumed temperatures ( K)
Peak (T3) 1071 1486

Bottom (To) 350 350

Compressor pressure
ratio (c) 2.4 3.3

Pressure loss factor (L) .90

Component efficiencies:
Turbine .9
Compressor .85
Alternator .9

Effectiveness
Regenerator .9
Radiator Heat
Exchanger .9

Working fluid He-Xe, with molecular weight = 40,

R = 208 c 519.75 (r = 1.67)
g kgok p kgok

Cycle temperatures (OK)
T1 523 602

T2 787 973

T4 816 1014

T5 552 643

T7 328 317

T8 530 610

Cycle efficiency lcy .289 .429cy

NOTES: Peak temperature is assumed to be 50 K below melting point of
respective storage material. Following the model of [15], peak
pressure is assumed to be ~2 atm to obtain reasonably sized
turbogenerator components. The pressure ratios for LiF and MgF2

were from system optimizations done by [21] and [15] respectively.

(The latter one was for a system using storage at 1685 K but the
cycle efficiency is relatively insensitive to pressure ratio in the
regenerated Brayton cycle.)
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If we assume an ideal gas with cp(T) = constant, we may state for turbine and

compressor efficiencies respectively,

T3 -T 4

=t T3 - Tb (1.17a)

Ta TO

co = T1 - TO (1.1b)

from which

r-1

Tt -1 ] (1.18a)

w-1
(kc) 1 - 1

T = 1+ (1.18b)
co Uc

The factor L represents an assumed 10% pressure loss around the cycle

occuring mainly in the heat receiver tubing. This is a conservative

assumption.

The effectiveness of the regenerator and of the radiator heat exchanger

can be defined respectively as

T2 -T 1

61 I T4 -T1 (1.19a)

T8 - T7

2 T5 T7 (1.19b)

thus resulting in

T2 = T1 + 61(T4-T1) (1.20)

If it is assumed that heat losses from the heat exchangers are minimal, and

that the system can be constructed so that

(mCp)He-Xe = (mCp)radiator (1.21a)
gas fluid

i.e. that

T4 - T5 = T - T2 (1.21b)
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then

T5 = T4 - e1(T4-T1) (1.21c)

It can then be shown that

T7 = ( 1)(1 - e1)T4 + [(1 - )Tco + 1JT1 (1.22)
2 2

Thus the temperatures shown in Table 1.3 are derived, along with the

efficiency given by

(T3-T4) - (T1-T )
'qcy (1.23)~cy ~ T3 -T2

The thermal throughput of the regenerator is

Pt =mcp(T4-T5) (1.24a)

where

?L 1

qalt cp[(T3-T4) - (T1-T0 ) (1.24b)

1.5.3 Receiver Nodel

The thermal receiver is modeled as a sphere consisting of several layers

of metallic insulation supported by trusswork and containing He-Xe gas flow

tubes (Figure 1.7a). This model is based on [21], but with some corrections

and improvements. The tubes are surrounded by an annulus of energy storage

material which for simplicity is assumed to be evenly distributed along the

tube. The innermost insulation layer forms a reflective surface. Reasonable

geometric rules indicated in the figure are used to determine the size of the

sphere. Explicitly

L = 3TR (1.25)p 4 c

and

2rRcsin2e0 = N(1+t2i- )D O (1.26)
p0
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for circumferential packing of pipes and reflectors at level "C", where

Lp = pipe length, m

R = sphere radius, m

D = pipe diameter, including storage and outer tube
P0

N = number of pipes

0 16

Now the ratio of pipe length to diameter may be obtained by assuming

fully developed turbulent flow and considering a control volume of length dL.

In the steady state the sum of heat transported into the volume by the wall

and by the gas flow per unit time is set to zero, thus obtaining

6T 4h (T -T (L))

=CIL pc D u ~~(1.27a)
OL - pDpU 

with

W
hg = heat transfer coefficient of gas, 2

T = wall temperature, OK
W

T = gas temperature, K

u. = gas velocity, m/sec

p = gas density, kg/m3

D = flow tube diameter
p
cp = gas specific heat, /kg OK

which may be restated as

aT 4S
8-&L = +---(T -T (L)) (1.27b)
adL -D w g -P

If the Stanton number St and wall temperature Tw are assumed constant along
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the pipe, this gives

L Tw-T

D 4S T -T (1.27c)
p t w goutout

where the gas temperatures refer to the beginning and the end of the pipe.

For turbulent flow in smooth tubes, the classical Moody plot friction

factor can be approximated as

.046
ff 462 20,000 o Re 300,000 (1.28a)
Re'

while the Stanton number with the modified Reynolds approximation is given by

ff 1
St 2 2/3 (1.29)

For the cases considered here we assume Pr = .7. Pitts and Sissom [22],

p. 170, recommend a modification based on viscosity ratio to the 0.14 power

when the difference between the wall and the bulk temperature exceeds 560K,

but the error caused here is not significant given the overall level of

approximation.

The tube diameter is found by equating the required thermal power input

per tube to the power picked up by the gas in each tube in the heating

process, i.e.

PL
mcp(T3-T2) = n (1.30a)

or

rD 2 P

INPm 4P cp(T3 -T2) = al (1.30b)

4 PL 1 1]1/2D = - (1.31)
P naltncycp(T3-T2) u N | 

densi.v and- vloctt
where Pm, um are assumed to be median values for the gas,6ver the tube length
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based upon temperatures T2 and T3 defined in Table 1.3. Pressure losses along

the pipe can be approximated as

XP = 2ff DP @ (1.32)P fDP
where median values are again assumed.

For the conditions encountered here, choice of M = 0.1 at the end of the

pipe results in losses of a few per cent. Consequently, conditions at the

pipe entrance can be found by assuming pressure constant (at 2 atm) and

applying continuity. Median Reynolds number is obtained by combining these

conditions with gas viscosity for the He-Xe gas as derived using the gas

mixture relations given by Rohsenow and Hartnett [23].

The diameter of the tube to the outer edge of the storage material is

expressible as

D p(Dp+2t)2 + 4 sto 1/2
Pm [( 2 -I* PstoLpN (1.33a)

where

4sto = storage mass, kg

Pto = storage material density, kg/m2 (liquid)sto
t = tube thickness, m

and the value of D is ust
Po

D =D + 2t (1.33b)
PO Pm

with the assumption that the outer tube thickness is the same as that for the

inner one.

The above equations allow an iterative solution for the values of N, Dp,

Lp Rc D . and D . A refinement can be made by considering the effect of

the storage material thickness on heat transfer to the gas. The "worst case"
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conditions (in terms of required heating length Lp) occur at the end of the

Earth eclipse (or shadow) portion of the orbit. At that time the storage

medium surrounding the gas tube is entirely frozen, or nearly so, and the

thermal gradient through the storage is the largest possible. The effect is

to introduce a thermal resistance between the heat source and the bulk gas.

So one may define an effective heat transfer coefficient h based upon the
geff

gas tube diameter an4 +hcrmal coJduc+iv;i oF tke so(;diJ; sftrage mattlaI ke) as

h = (1.34)
geff 1 D D (1.34)

h 2k D
g s p

Then, using the definition of Stanton number, an effective value of St may be

expressed as

h
geff

Stef hff St (1.35)
teff -g t

where S t is as defined in (1.29).

So a parallel iteration may then proceed. One iterates over N, Dp, etc.,

to provide a proper geometric fit. St is revised after the fit is obtained
eff

and used in place of St to revise Lp /Dp for the next iteration over N. This

proceeds until L /D converges.

1.5.4 Component Masses

Using the above models, masses of the various system components may now

be developed. Specific masses, temperatures, and other data relevant to these

calculations are summarized in Table 1.4, except where they have been

tabulated earlier.
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Table 1.4

&Sunmry of AIss Determining Assumptions

4 kg/m2 C13

Nb-lOHf, 8800 kg/m3 , for LiF system

ASTAR 811C, 16700 kg/m3, for MgF2 system

Thickness, .25 mm, identical for all tubes;
double tubing mass for manifolds; heat storage
material of constant thickness along tube

Insulation:

Frame:

Mo sheet, 5 x 10 5 m thick
Emmissivity - .12
Double number of sheets for leakage, and
miscellaneous related items (e.g. spacers,
reflectors)

Background temperature 250 K

Silicon carbide members with E = 60 x 106 psi,

density = 3220 kg/m3

Two sections

NaK above 4500K, 12 kg/m2

H20 below 4500K, 4.8 kg/m2

Includes tubes, fins, headers, heat exchanger liquid, and system
pumping penalty

Pipe thickness set by 10-yr mean period to puncture

25% spare panels included

Emmissivity 0.9, background temperature 2500K

Regenerator 0.54 kg/kW t tl

Turbo-
aLternator 3.4 kg/kWe L1]
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The amount of phase change heat storage material required is given by

M = 1 [ Lsh ] (1.36)
s hf nsto cyna

where

hf = heat of fusion, W/kg

7a = alternator conversion efficiency

Mirror mass is expressed as

P 1 th
M = (1.042) Iy a to tun (1.37)

where the fac a to t suni

where the factor 1.042 accounts for the parabolic shape. The mass per unit

area, Am, is assumed to be about 4 kg/m2 which is from [1]. Judging from

[19], this is a conservative figure.

Following the data in [1], the turbogenerator is take to have a mass of

about 3.4 kg/kWe , and to be the same for both the LiF and MgF2 storage

systems. An additional component is the regenerator. If the thermal

throughput for the LiF system regenerator in [1] is similar to that for the

LiF system here, the regenerator system mass will be about 0.54 kg/kWt.

In [21], Annen developed a space radiator model based on the use of a

pumped fluid -- NaK above 4500K and water below that point. He also

developed an expression for an effective radiator temperature given inlet,

outlet, and background radiation temperatures. The radiator pipe thickness

was set by a 10-year mean period to meteroid puncture and the model included a

25% allowance for spare panels. If one includes in the accounting the

radiator tubes and fins, headers, heat exchangers, liquid and a pumping

penalty, the effective mass (over one side) is about 12 kg/m2 for the NaK

portion and 4.8 kg/m2 for the H20 part. For comparison, [1, pp 3-108, 3-109],
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proposes a radiator using "FC-85" fluid (for a brayton cycle using LiF

storage) which has a mass of 8.46 kg/m2 .

The receiver insulation is assumed to be molybdenum sheet .05 mm thick,

with an emmissivity of 0.12. The cavity temperature is slightly above the

storage material melting point, and space background is 250 K. The number of

molybdenum sheets required is doubled at the end of the calculation to

compensate for leakage.

For the receiver tubing one must consider criteria for pipe thickness.

Say that for purposes of fabricability the minimum is 0.25 mm. Another lower

limit on pipe thickness is set by creep due to internal gas pressure over the

lifetime of the system. Figures 1.a and 1.8b show creep data as compiled

from various sources by Conway in [24]. Now Nb-lZr was used for the NASA LiF

storage receiver. If we assume a 10-year lifetime at 11350 K, internal

pressure of 2 atm, the Larson-Miller Parameter (LMP) is about 40.7 x 103.

This requires an extrapolation of the Nb-lZr curve shown in the figure and for

a pipe diameter of about 3.8 cm (found from the iteration in the previous

section) leads to a required thickness of about 1 mm. If. the Nb-1OHf alloy is

used, the minimum thickness is reduced to below .25 mm. (Conway notes that

there is considerable uncertainty in the Nb-lZr creep data, but the

correlation shown is conservative.)

For the MgF2 storage system, the higher temperature to which the metal is

exposed (assumed to be 15500 K) leads to an MP of 55.6 x 103 and the choice of

the tantulum alloy ASTAR 811-C. With a pipe diameter of 2.5 cm the wall

thickness required is less than .10 mm, based on Figure 1.8a. However, note

that Figure 1.8b implies that, given the test data scatter, a 2a certainty of
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being within 1X creep is unachievable. However, this is probably not critical

for the receiver tubing.

A pipe thickness of .25 mm for Nb-1OHf is chosen for the system using LiF

and .25 mm ASTAR for the one using MgF2. This mass is then doubled to account

for required manifolding. (By accident this leads to pipe masses for each

system which are within 10% of each other.)

The structural mass of the truss work surrounding the receiver insulation

is scaled from the mass derived by the author in [14]. The truss work forms

an octagonal frame, and the beam cross sections are determined by the static

bucking load of a member in the lower third of the frame when the receiver is

subjected to 3 g's acceleration. Then one may show that the structural mass

in kilograms can be scaled as the relation

Mstr = 16.2 1.06 2 1 3 3

where 9g, the mass supported by a single lower member is assumed to be given

by

9M 8 turbine Mregenerator Mradiator]

8 [ insulation storage tubing manifolding]

The implicit assumption is that the items in the first bracket are located

above the receiver in the launch vehicle. Those in the second bracket are

within the receiver and are partially supported by side braces during launch.

The structural material is SiC.

Results of the mass calculation are shown in Figure 1.9 as a function of

the receiver heat loss factor f. At low values of f, insulation requirements
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raise the system mass; at high values, the collection mirror mass drives

system mass as losses must be made up. A mass breakdown for the near optimum

systems is given in Tables 1.5 and 1.6. As might be expected, insulation

requirements for the MgF2 system receiver impose a mass penalty over the

other. Radiator and regenerator masses are less for the higher temperature,

greater efficiency system. The overall mass change would be significantly

reduced if the mirror mass/area went down. Such a reduction would be more

likely to be achievable in the LiF system, which, since it operates at lower

temperature can tolerate lower mirror accuracy for a given collection

efficiency (as shown in Figure 1.5). In sum, then, the mass advantage of the

MgF2 system is encouraging but not definitive.

A more robust result may be represented by the comparison of potential

drag areas noted in Table 1.6. This stems directly from collection, storage,

and cycle efficiencies, and implies a direct reduction in fuel required to

make up drag effects over the system lifetime. The mirror (flat projected)

area requirements for a range of values of the factor f are plotted in Figure

1.10 and show the trend causing increased system mass at higher f. Figure

1.11 gives a dimensional comparison of the two optimized systems.
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Table 1.5

Suaory of Receiver-Collector ChOractertstics at Opttimum

Storage Type:
f 

LiF gF22

Masses

Receiver 1823 1993
Storage 958 754
Tubing,manifolding (sum) 318 384
Insulation 408 762
Structure 139 88

Mirror 2865 2222

Parameters and Dimensions

Mirror diameter 29.6m 26.0m
Radiative loss factor (f) .10 .12
Aperture intercept

factor () .9919 .9710
Concentration ratio (C) 2280 3098
Collection efficiency ( c) 7573 .6749
Storage efficiency (sto) .8285 .7811sto
Number of insulating

layers (doubled quantity) 10 28
Receiver radius 2.519 m 2.059 m
Gas pipe diameter (Dp) 4.03 cm 2.57 cm

Pipe diameter including
storage (Dp) 6.92 cm 5.35 cm

m

Pipe length 5.99 m 4.82 m
Number of pipes 36 38
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Table 1.6a

Mass Swary for Power Systems (kg)

Storage Type:

LiF

Receiver

Mirror

Radiator
NaK section
H20 section

Regenerator

Turbogenerator

TOTAL

Net Mass Change
from LF to MgF2
System

241
447

1823

2865

688

193

340

5909

Table 1.6b

Areas Ccwrtson for Power Systems ( 2 )

Storage Type:

LiF Yg2 Change

Mirror 687 533 - 22.4%

Radiator 113 52.9 - 53.2%
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Solar View
LiF Storage

Solar View
Mgk'2 storage

Figure 1.11 Dimensional Comparison of Power Systems
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CHIAPFER II

ATEFRIAL CONIPATIBILIT IN THE APPLICATION OF NgF 2 TO SOLAR TEMAL SIDRAGE

2.1 Introduction

Having demonstrated the possible systems level effects of using MgF2

thermal storage, it is appropriate to turn to more detailed technical issues.

These may be summarized as follows:

· thermochemical stability of MgF2 itself, its potential for undesirable

interactions with the containment material directly or in combination

with contaminants remaining from manufacture or acquired from the

environment -- this to be considered over the lifetime of the system, a

minimum of 10 years. Broadly put these can be called issues of

corrosion.

· acquisition of data on the properties of MgF2 relevant to component

design, among which are: supercooling of the liquid, thermal

conductivity, surface tension and wetability with various materials. The

last two are important to the issue of void formation on freezing, which

could thermally isolate some MgF2, particularly in zero gravity

conditions. Thermal conductivity, as shown in the previous chapter, will

affect the length of tubing required to heat the system working gas.

Supercooling refers to a delay in crystallization and release of stored

heat when the storage medium is cooled below its melting point.

This chapter will be concerned with a theoretical treatment of potential

corrosion problems. Some qualitative data was acquired on some of the

material properties as a corollary to corrosion tests. These will be

discussed later.
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2.2 Corrosion and Containment

2.2.1 gF2 Stability Alone and With Oxygen

Magnesium Fluoride is regarded as an ionic divalent halide and appears in

the single crystal form as the mineral sellaite ([25], p. 822,825; [26],

pp. 5-7). For formation from the standard state at 1600 K, the free energy

change

Mg(g) + F2g - MgF2(1) AG -198kcal/mole ([19],[27],[28]) (2.1)

shows that with a pressure of 1 atm for each gas, the MgF2(1) is the stable

component. If we consider deviation from standard conditions at this

temperature, then

r

AG = AG 0 + 2 vi(i-Ai) - AG + AGi (2.2)

i=1

where i is chemical potential, vi is the stoichiometric coefficient for each

substance "i" in the equation (2.1).

At equilibrium, AG = 0 by definition and the equilibrium "constant" for

1600°K is given by

-AGo 198 kcal/mole
log K = RTlnlO = (1.987 cal/moleo K)(2.303)(1600oK) 27.05

(2.3a)

and at the same conditions

K (Q)eq = 1027.05 (2.3b)

where the ideal gas assumption for F2, Mg is implicit (the partial pressures
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are in atmospheres). If one sets the fluoride activity to one (pure liquid)

the result is

PF PMg = 8.913 x 1o 2 8 (2.4)

which shows the minimal product of partial pressures for stability above MgF2.

Consider next the possibility of an exchange reaction

F 2(1) + 1/2 02(g) < = > (s) F(g) (2.5)

for which AGo 105.51 kcal/mole. With the assumption of unit activities for

the non-gaseous components, one obtains at 16000K

K = 10- 13 .867 P 2
- 1/2

Po2

or

PF= 1.357 x 10 1/2 (2.6)
2 P 2

Say that the maximum pressure of 02 in a vessel containing MgF2 is 105

torr (1.316 x 10-8 tm) (this is approximately the chamber pressure under

which the test capsules to be described below were welded). The consequence

of this, using (2.6) and (2.4) is that pF2 > 1.557 x 10 18 atm (1.557 x 10- 1 3

Pa) will prevent formation of MgO, and in turn that PMg = 5.726 x 10- 10 atm

(5.802 x 10- 5 Pa).

The above suggests the stability of MgF2, but to proceed further one must

consider the environment encountered in the present application.
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2.2.2 Selection of Containment Materials

To operate a system at the MgF2 melting point, one has two options in

materials: high temperature ceramics or refractory metals. Initially,

ceramics looked attractive because of their relatively low density. However,

the problems inherent in fabricating them led to assigning them low priority.

The samples that were prepared were of refractory metal alloys.

Much of the investigation into the field of refractory metals was

assisted by the expertise and suggestions of Mr. Jack DeVan of the Oak Ridge

National Laboratories (ORNL) and Professor John Elliott of MIT. Some time was

spent searching for previous work on molten MgF2 compatibility with refractory

metals. None was found in the compilations of Janz [18] or Eichelberger [17]

or in a computerized literature search. The local manufacturer of high purity

MgF2 crystals (mainly for optical applications) uses graphite crucibles [29].

A refractory metal distributor claimed that industry experience had shown Ta

to be "most resistant," Mo and W less so [30], but the results to be discussed

here show different results in the cases of Ta and W alloys.

Recently, a Japanese patent was discovered for a tantalum crucible for molten

fluorides, including MgF2. The text presents a design solution to overcome

problems with fluorides that are difficult to remove from certain crucible

components due to good wetting qualities [31].

As mentioned in [24], a rough rule is that an alloy should not be used in

a situation where temperatures exceed 50-60% of its absolute melting

temperature. This suggests that the limiting temperature for superalloys is

~1273K while that for Nb is around 14730 K.

51



Refractory metals are transition elements with half-filled or less outer

"d" subshells, giving strong interatomic bonding. This results in desirable

properties such as high melting point and low creep (Figures 1.8 and 2.1).

However, they are also subject to complex mechanisms that can cause

brittleness and fabrication problems.

Alloying can be used to change metal properties. Reactive metals such as

Hf will combine with oxygen diffused into W or Ta and form precipitates that

strengthen the material but reduce ductility. Tungsten added to tantalum

provides solution strengthening. Creep strength is improved using materials

that increase elastic modulus by decreasing self-diffusivity. In some cases,

C or N is intentionally added to form strengthening precipitates with the

reactive components. Some typical alloying additions are listed in Table 2.1.

On a "global" level the effects of oxygen, nitrogen, carbon, and hydrogen

in the environment on the pure refractory metals has been outlined by

Wilkinson [32] and DeVan. These elements will diffuse into solution in the

metals; once the solution limit is reached, they will form compounds with the

refractory. The surface exposed to (for example) 02 gas will form an oxide

layer. This layer may volatilize (for example, MoO3 at 1473 K) or it may form

a semi-protective surface (tungsten at 14330K). Such considerations will

determine the corrosion rate-laws as a function of temperature and pressure.

As typical cases, longterm service temperatures in air for tungsten are

limited to 1273 K and for molybdenum to 773 K. Tantulum and niobium have a

much higher solubility for oxygen than molybdenum or tungsten, which will

delay the formation of an oxide layer.
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Table 2.1 Alloy Additions Used in Creep Resistant
Refractory Metal Alloys
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Alloy Substitutional Reactive Interstitial
Base So lutes Elements Elements

V Cr, Cb, Ta, Mo, Fe Zr, Ti C, N

Cb W, Mo, Ta Zr, Hf C, N
Ta W, Re, Mo Zr, Hf C, N

Cr W, Mo, Cb, Ta Ta, Cb, Ti, Zr, Hf C
Mo W, Re Ti, Zr, Cb C, N
W Re, Hf, Cb, Ta Hf C



In alloys containing reactive metals such as Hf, the latter will act as

getters, reacting with oxygen before the base metal does, and increasing the

effective solubility. Once these getters are exhausted, corrosion will

proceed as in the pure material.

At conditions in a low earth orbit, pressures should be sufficiently low

that massive corrosion as described above will not be a concern. Instead, the

main effect of the gasses mentioned above is on brittleness (ductility).

Ductility of refractory metals presents a complex picture. At room

temperatures, W and Mo are brittle and difficult to fabricate, whereas Ta and

Nb are ductile and retain this condition regardless of the presence of oxygen.

Tantalum and Nb become brittle within a few weeks with an oxygen partial

pressure of 10 7 torr (1.3 x 10 5 Pa) at 12730K.

This difference in behavior stems from two different mechanisms for loss

of ductility, and the wide difference in interstitial oxygen solubility

between the two classes of refractories. (At 2/3 of their melting point

temperatures, Ta and W have oxygen solubilities of 10 atomic and 5 x 10-5

atomic % respectively ([32], p. 7).) In Mo and W, brittleness at room

temperature is caused by interstitials operating at crystal boundaries in a

way that is not fully understood [DeVan]. As temperatures go up (starting at

about 4230K for Mo and 773-8730K for W) the mobility of slip planes at the

boundaries becomes high enough that ductility is achieved. Addition of

alloying metals can move this transition temperature down.

In the case of Ta or Nb, loss of ductility is caused by the oxygen or

other element going into interstitial solution within the grains themselves.

(At low temperatures this is prevented by low oxygen mobility.) While
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ductility is lost, strength is improved (Wilkinson). The effect on creep

may also be an-improvementaccording to DeVan.

It should be noted here that hydrogen does not cause embrittlement of

refractories at elevated temperatures, though loss of ductility can occur when

the material is cooled. Further, hydrogen has the effect of reducing the

activity of oxygen by having the potential to combine and form water.

Even if embrittlement does occur, it is not necessarily fatal to the

system. For example, the T-1ll (tantalum alloy) cannisters containing the

radioisotope heat source in the Voyager spacecraft power system have not

failed despite their presumed brittle state. The criterion is that there be

no sudden loads, such as those caused by vibrations.

Refractory metals are quite dense, which is undesirable for space

applications; for example, ASTAR 811C provides an ultimate tensile strength

of 42 ksi (29 kgf/mm2 ) at 1262 C (1535 K) and a density of 16.7 g/cm ([24],

p. 233). Another problem (mainly for small scale experimental work) is that

many of the alloys were manufactured at experimental or pilot production

levels in the 1960s and are not available commercially. Much of the detailed

manufacturing expertise developed at that time has dissipated.

Particularly in consideration of creep criteria, two of the leading

candidates for refractory containment are ASTAR 811C (Ta-8W-1Re-.7Hf-.025 C)

and W-25Re (the numbers are in weight percent). By a fortunate coincidence,

recent work on a space nuclear power reactor resulted in limited production of

these alloys in a usable form. They were provided to the author in the form

of tubing and plate by Mr. R.L. Heestand of ORNL. Table 2.2 summarizes and

compares the attributes of some leading candidate materials.
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Table 2.2

Some Leading Candidate Containments

ASTAR 811-C
(Ta-SW-lRe-7Hf--0.025C) Besides capabilities of creep resistance, this

alloy has excellent fabricating and welding
qualities (Buckman, et al., [33], p. 26).

W-25Re Low diffusion rate of impurities (from W) and
creep properties comparable to ASTAR make this
alloy attractive with the brittleness of W being
alleviated by the Re (Hagel, et al., [24], p.
109).

T-1ll Creep strength good, ultimate tensile strength
close to that of ASTAR ([24], p. 237),
commercially available.

T-222 Creep strength better than T-111
(see Figure 1.8)

TZM
(Mo-0.5 Ti-0.08Zr-0.02C) Fairly good tensile strength, though

substantially inferior in creep at MgF2 melting

point (Hagel, et al., [24], p. 109).

TZC
(Mo-1 Ti-0.3Zr-0.4C)
MHC

(Mo-1 Hf-0.3C) Superior tensile properties to TZM (Hagel, et
al., [24], p. 104)
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2.2.3 System Contaminants

For a space system containing molten MgF2, there will be several external

sources and types of contaminants for which some possibilities are listed in

Table 2.3. This assumes the environment around a space station, for which

exact particle collision rates will depend on altitude, propulsion systems,

etc. Initial outgassing of the system could be a contributor to embrittlement

or corrosion; to prevent this, the system might not be heated until several

weeks after going on orbit, or might be heated slowly. Ram collision with the

atmospheric atomic oxygen stream, such as that encountered by the shuttle,

should not be a problem since the hot parts containing MgF2 will be enclosed

within the receiver cavity.

Other sources of contamination will be internal to the system. One is

that resulting from impurities is the hot gas loop, and it is considered next.

The other is moisture present even in high quality single crystal MgF2. This

problem will be treated later, after some further development of the

thermodynamic data.

2.2.3.1 Gas Loop Contamination

It is probably impossible to achieve a sufficiently low level of

contaminant species in the He-Xe Brayton cycle working gas (molecular weight =

40) to prevent embrittlement of Ta based alloys over the system lifetime

([24], p. 78). Let us say that (based on [24], p. 77) we can allow a maximum

oxygen partial pressure of 10- 8 torr (1.333 x 10 - 5 Pa) with tantalum alloys.

Based on Chapter 1, this is out of a total pressure of the order of 2 atm.
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Table 2.3 Contaminant Gasses and Their Sources

H , H2

He

N2H4, N H3

C H4 and ionized products

OH +

0

H20

CO, CO2

N 2

NO

Ar

Heavy hydrocarbons,
(e.g., Freons, trichlorethylene)

Possible Sources

H20 dissociation

Atmospheric, propellant pressurization

Propulsion systems

Thruster firings, Reaction of N2 H4 with 0

From H20

Atmosphere

Thrusters, liquid dumps, atmospheric,
vehicle and EVA leakage

Atomic 0 reactions, atmospheric, vehicle
and EVA leakage

Atomic 0 recombination, vehicle and EVA
leakage

Atmospheric, propulsion systems, vehicle
leakage

Thruster firings

Atmospheric

Coolant system leaks, cleaning fluid residues
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The mass deposition rate of (for example) 02 on a surface is given by

rn n c0 YO C0 kg
I 0202° 02 [ kg 2 2(2.7)

44 m - sec
where c is the mean thermal speed, n particle density at about one mean free

path from the wall, and m mass per molecule. But in the presence of the

flowing carrier gas there must be diffusion of 02 through the boundary layer

to the absorbing wall such that the above "n" may be substantially lower than

the bulk concentration. In actual conditions there will be turbulent pipe

flow of the working gas. Assume a diffusion boundary layer (02 depleted),

whose thickness 6 is of the same order as that for near wall mornntum transfer

(i.e. for the laminar sublayer within the turbulent flow). Then diffusion

limited mass flux to the wall is

rD S Po u~ (2.8)
2

where Stanton number St can be used if the heat and mass transport

rates are similar. Here xtis the core flow velocity. Then if the Stanton

number is expressible in terms of friction factor as approximately ff/2

(ignoring for the moment the Prandtl number correction factor) we have

ff
rD - pO u (2.9)

2 2

The oxygen density is that in the core flow. For comparison, in the absence

of the carrier gas the mean free path would exceed the tube diameter and (2.7)

would apply directly. Thus, taking the ratio of (2.7) and (2.9),

D
- 2ff u- (2.10)

S c

Assuming the axwellian distribution, for which J= and conditions

2 -Mo
02 adcniin
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for the MgF2 storage system from Chapter 1, (c 991 m/sec, uo - 70 m/sec, ff

, .00678) one finds that

rD" o15 (2.11)
1045

thus implying that critical contamination levels of oxygen can be eased by

about three orders of magnitude. This means an improvement from He-Xe gas

contamination levels of 5 parts per trillion to 5 parts per billion. In [24],

p. 75, it is stated that achieving and detecting the lower level is presently

impossible; but that current techniques should be able to detect 1 ppb

concentration.

2.2.4 Metal Containment Fluoride Interactions

Given a particular alloy, MgF2, and contaminants, it is possible to

consider the equilibrium conditions for the interior of a closed system.

Table 2.4 lists several products for the general reaction of the form.

(1/2)MgF2(1 ) + (1/x)M(s) < = > (I/x)MFx + 1/2Mg(g) (2.12)

where the metal M undergoes the process at 1600 K. The standard free energies

of reaction (Table 2.4) are from [27] and [28] (Barin) and are generally in

close agreement (better than 1%) with those from [19] (the JANAF tables). The

main difference between the two is that while the latter lists heats of

formation for each species at each temperature (AGf or AFf), the former lists

values of G with respect to a fixed temperature; i.e., using Barin we may say

for (2.12) that
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Table 2.4

Standard Free Energies of Reaction for Formation of Firides from
lgF2 and Refractory Netats at 16000K (per mote F)

Reaction: .MgF 4.. - F Renr 2 N2(t) tiXN) KMx gMg)

AG° kcal/mole F

Species Barin [27].[28] JANAF [19] Notes

TaF(g) 26.096 no data5 5(g)

ReF 71.458 no data
ReF6(g)

1
4HfF No data above no data From Barin HfF

4 4(?) 4 4(s)'

1100 K AG = 15.823 at 11000K
Extrapolate 10-13 kcal/mole

at 16000K.

6 WF'6 g) 48.701 47.350 For JANAF, from

1 0FO 30
(AF - 3F MgF2

1
MgF -96.828 -98.988 Free energy of formation fromMgF2(1)

elements in standard states,
per mole F

2 (g) F2 (g) + MgF2(1))

Touloukian claims that HfF) sublimates at 8730K [46].

62



AG° = [( 1/2Mg(g) + (/x)GMF ] - (1/2MgF 2 (1) + (1/x)GM(s)] (2.13)

where the values of G are read directly from the tables. The high positive

values of AGO from the table make it evident that the reactions will go

backwards when the gaseous components start at standard pressure (latm), but

for a closed system starting with vacuum there will be small equilibrium

pressures of the fluorides.

Table 2.5 lists free energies of formation for several possible

refractory metal oxides. Unfortunately, data for these are quite spotty.

Chang and Phillips surveyed data on refractory metal-oxygen systems for W, Mo,

Ta, and Nb [35]. They. found considerable confusion on the stability of

various W oxides, particularly those of mixed valence between W02 and W03, but

they did note the dominating stability of Ta205 in the Ta-O system.

Both Barin and JANAF give thermophysical quantities for the mixed

valence oxides, WO2.72 WO2.90, W02 96 but listing them here would be

excessive detail. One may note that the transformation W02(s) to W03 (s) is

favored when the oxygen partial pressure is above 1.075 x 10- 9 atm

(8.93 x 10 7 torr) at 16000K.

The listing of free energies in both Tables 2.4 and 2.5 is per atom of

fluorine or oxygen respectively. By doing this we see directly the relative

"strengths" of the fluorine or oxygen bonds across compounds. In the case of

oxygen, this can be translated into relative equilibrium partial pressures

(lowest for the most Dnsitive free energy change). The data concerning HfO2

are confirmed by the results of Liu, Inouye, and Carpenter in [36]. There, a
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Table 2.5

Standard Free Energies of Formation of Oxides from 02(g)

at 16000K (per olte 0)

AG0 (kcal/ - mole oxide)x

Species Barin [27].[28] JANAF [19] Notes

Ta205(> -65.076 -65.0205 5(s)

-ReQ to 1300 K no data At 13000K, AG =-25.016 kcal/2 2(s)
mole from Barin

3 ReO ) to 433 K no data3 3(s)

7. Re207(s) to 600 K no data At 298°K, AG°= -36.3 kcal/

mole ([34], p. 8)

2 2(s) -98.864 no data At 298 K, AG = -126.1 kcal/2(s)
mole ([34], p. 8)

1 O2 WO2(s) -36.604 -35.514 At 2980K, AGO= -61 kcal/mole'0~2(s)~'

1 0 O
3 W03 (s) -35.299 -35.256 At 298 K, AG = -60.6 kcal/mole

MgO(s) -96.087 -96.530

MgO0(S) 101.531 101.506 For formation by the exchange

1
reaction MgF + 2 2g

2(1) 2 2(g)

gO(s) + F2(g)
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tantalum alloy (Ta-8 wt. % W-2 wt. Hf, or Till) exhibited formation of HfO2

rather than Ta or W oxides when oxygen was diffused in at 12730K.

In many problems of metallurgical thermodynamics, one is considering a

situation in which boundary conditions can be set for a desired end, eg. the

partial pressure of oxygen po over molten iron can be lowered to reduce

hematite (Fe203) to other oxides until the oxide phase disappears altogether

[37]. However, the present case is that of a closed system evolving to an

equilibrium given a temperature (16000 K) and certain starting species (alloy,

MgF24 liquid, contaminants). This requires three sets of equations:

reactions between species, gas-solution equilibrium for each species, and

conservation of atoms.

Consider a system consisting initially of only molten MgF2, and tungsten

metal. Final conditions will be determined by four equilibria and one

conservation equation, i.e.

3MgF2(1) + W(c) < = > WF6 (g) + 3Mg(g) (2.14)

MgF2 (1 ) < = > MgF2 (g) (2.15a)

WF6(1)< WF6(g) < (2.15b)

Mg(1) < = > Mg(g) (2.15c)

and

total moles Mg _ 1
total moles F - 2

or

g g M +n. 1
MgF2 ng MgF2 m 1

W~Fg I +6F2 n1 2n1 2 (2.16b)

W6 lgF 2 WF6 MgF2
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The values of the molar numbers "n" in the liquid can be approximated as

I 1 1 1 1 V

nM = 2(nmg + nMgF2 n WF6 ) 1
VMgF2

1 1 1 1 1 1 V (

2gF

1 1 V1
=WF6 XWF (2.17c)

MgF2

where "X" is mole fraction, V1 is volume of the liquid, v is molar volume of

MgF2 (m3/mole). The parenthetical terms for mole numbers of Mg and WF6 are

considered negligible compared to that for the MgF2, for which the mole

fraction is assumed to be close to unity.

For the gas phase, with application of the ideal gas law, one may state

PMgF2V

gF2 RT (2.18a)NF2 - RT

PMgV

nMg= RT (2.18b)

PWF V
g =
"WF6 RT (2.18c)

where p is partial pressure', Vg is the gas volume, and R the universal gas

constant. Using the molar quantity expressions in the conservation

expression, (2.16b), results in

(PM -1 1 V 1

(pMg - 3p T-= (3XvF - X) 1 (2.19)
`hr6 6 i M VMgF2

where terms involving XMgF2 pMgF have dropped out.
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Now the gas-solution equilibia merely state that AGA for a member of the

species "A" in going from the liquid solution to the gas phase is zero -- the

chemical potential A is the same for each. As shown in Lulis ([38], pp.

108-9) for moderate pressures, and with the assumption of an ideal solution,

this implies

PA
aA XA~ PA (2.20)

where aA is activity in the liquid and PA is the vapor pressure of pure liquid

A at the temperature of interest. (This also applies to a solid solution, but

with the additional criterion that PA is over A in the same structure as the

solvent.)

Applying the last equation in the present case, XMg and XF may be

replaced in (2.19) to result in

1 1

VMgF2 .1 gF 2 1
(r RT +P )PMg = 3(rV RT PW F

PMg If6 6

or
1

vMgF 2 1

3(r V RT +P )

PMg -
3(rV RT *' F ~ 6 (2.21)

PWF6 VMgF 2 1

(rv RT )
PMg

where r is the volume ratio

V

rV = V (2.22)V= V1

and the units of the pressures are Pascals.
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The equation (2.14) implies an equilibrium of the form

AG = -RT ln pWF Mg (2.23)

where the pressures are in atmospheres, if both the MgF2(1) and the W(c ) are

in the pure standard state for that temperature. Combining this with the last

relation between Pg and PF gives the desired result.

To proceed one requires the vapor pressures PMg and PWF, for which there

are two methods of estimation (given that there are no direct data). These

are as follows:

1. Integration of the Clausius-Clapeyron equation for condensed phase-vapor

equilibrium, where the molar volume of the condensed phase is small

compared to the vapor and the vapor behaves as an ideal gas, whence

T
A~5H (T)

lnP - lnP(To) = evap dT (2.24)

RT2

where

T

AH (T) = Hevap(T o) + (c(v)(T) - c (1)(T))dT (2.25)

To

H evap(T ) is most often available for the boiling point at one

atmosphere (760 torr). In the case of Mg, T - 13780K, AHevap(T) 30.5

kcal/mol and c (V) = 4.968 cal/mol-°K, c ( l ) = 2.75 x 10-3T + 8.86 cal/mol-'(
P P

for the temperature range of concern. The result is PMg(16000K) =

4.501 atm.

2. Equating 4 ) to (4g) gives (using Lupis p. 109)

°o(l) (g)

PMg = e (atmospheres) (2.26)
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Now the JANAF tables list AGf(T) for Mg in both liquid and gas states.

It is of course zero for the gas in the standard state (1 atm) above the

boiling point, but for the liquid is precisely the (excess) free energy

in the numerator of the exponent, and is 4.826 kcal/mol at 16000 K. (This

is AGO(1 ) - AGo(g) when the equations for formation in either state are

added to obtain WF6(1)< = > WF6 (g). ) The result is Pg = 4.567 atm.

Proceeding similarly, for WF6 one can obtain PWF = 161 atm by method 1 and

170 atm by method 2. Apply the pressures obtained by method 2 (in Pascals)

1 -53
with R = 8.314 J/ K-mole, MgF = 2.599 x 10 -5m 3/mole (from Janz, [18]), and a

volume ratio of 1.417 (from W-25 Re capsule to be described later). The

result is Pmg = 5.856 x 10-6Pa (5.780 x 1011 atm), PWF = 6.972 x 10-5Pa

(6.881 x 10- 1 0 atm).

For the case of reaction of MgF2 with tantalum to form TaF5(g) (with

vapor pressure 226 atm at 1600 K) one finds product pressures of

pMg= 0.2716 Pa (2.681 x 10 6 atm) and PTaF 5 = 13.46 Pa (1.328 x 10 atm) at

equilibrium.

Projection of the available free energy data for HfF4 from 1100 K to

16000K (see Table 2.4) indicates that it may be more reactive with MgF2 than

any of the other refractories considered here. This is interesting in view

of the experimental results to be discussed in Chapter III. Rhenium, udging

by the data in Table 2.4, should be less reactive than the other metals.
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Formation of refractory nxides at high temperatures is clearly favored

thermodynamicallyA as indicated in Table 2.5 as well as by long historical
(Here gain, 4$ is most reacts ve)

experience [32]. As noted before, at high pressures and high temperatures,

corrosion will be rapid and destructive. But even at low pressures, long term

effects on ductility will occur in tantalum alloys.

In sum then, thermodynamic data indicates the stability of MgF2 itself

with refractory alloys.

2.2.5 Effect of Residual Moisture in Fluoride

The recent paper by Misra [13] has noted the possible results of residual

water contamination of fluorides. According to that source, water present in

a fluoride may lead to production of hydrofl ric acid (gas) which then can

react (either in solution or in the free space of the container) with the

metal Container. For the particular case of MgF2, the rapid formation of HF

and MgO is supported by the comments of Mr. R. Sparrow of Optovac, Inc. [29].

One would have

Mg 2(1) + H20(g) s MgO(S) + 2HF(g) AG = 5.512 kcal/mole (2.27)

(Production of a hydrate of Mg, Mg(OH)2, is also possible, but results in

AG° = 154 kcal/mole, so it will be ignored here.)

Reaction with a metal can then proceed as in the following two examples:

W(S) + 6HF(g) = WF6 (g) + 3H2(g) AG° = 101.2 kcal/mole (2.28a)

Ta(s) + 5HF(g) = TaF5(g) + H2 A(g) lG = 26.66 kcal/mole (2.28b)
T(s ) + 5Fg)=T5(g) + 2H2(g)
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Here it will be assumed that, following the ideal solution model noted

earlier, solubility of the gasses H2 , Hi20 HF, in liquid MgF2 at 16000K can be

ignored, while that of WF6 and TaF5 is not. That is, if the activity is given

by

p
a x -
g g Pg

where xg is mole fraction in solution, pg is partial pressure, and Pg is vapor

pressure, then for molecules with low boiling points, P will be very large
g

and x negligible (Denbigh in [39] notes that above the critical temperature

of a substance, the model can be used if integration of the Clausius-Clapeyron

expression for vapor pressure is fictitiously extended). For the moment also,

it is assumed that the solubility of magnesia (MgO) in the liquid fluoride is

negligible, so that the oxide activity is close to one. In other words, any

MgO that appears will immediately precipitate.

Sparrow, [29], states that it is difficult to determine moisture

contamination levels in fluorides; however, for optical (high-quality) single

crystal MgF2 , 100 mole ppm is a reasonable value. For a closed vessel,

interior corrosion will be limited by this supply (i.e. 10 - 4 mole MgO per mole

MgF2 in (2.27)). Another result, however, will be production of the gasses

noted in the above equations. These can easily pressurize the container to a

value approaching or exceeding 1 atm, depending upon the ratio of MgF2 to free

volume.

For example, using (2.27) and (2.28), one can show that for the test

capsules noted earlier (which are 40% filled with MgF2) internal pressures
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will be (in Pa)

PHF = 2.16 x 104

PH = 12.0

pH O = 2.16 x 104 > for Tungsten

PWF6 = 8.90 x 10- 2

Ptotal = 4.780 x 104 (0.4717 atm)

PHF = 4.72 x 103

p = 5.56 x 104

PH20 = 1.24 x 103 for Tantalum

PTaF =811 

Ptotal = 6.24 x 104 (0.615 atm)

(This is with vapor pressure PTaF = 225 atm derived as before.)

If the capsules are assumed to be 95% filled, considerably higher pressures

are found

PHF = 1.26 x 105

pH2 = 377

pH2o = 8.94 x 105

PWF = 0.113
P6

Ptotal = 1.02 x 106 (10.1 atm)Ptotal =

for Tungsten
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PHF = 2.81 x 104

= 1.93 x 106
H2 

pH 0o = 4.43 x 104 for Tantalum

PTaF5 = 862
5

Ptotal = 2.00 x 106 (19.8 atm)

Note that the significant pressure increases are for those gasses assumed to

be insoluble in the liquid. If MgO activity were lowered (i.e. if the

magnesia were below saturation in the molten fluoride) then more of the water

contaminant would be consumed, increasing the amount of HF available for

reaction with the metal. That this is so here is suggested by the ideal

solubility of MgO in any liquid for the given temperature ([39], p. 267).

In x - R (1 1) (2.29)
m

where x is the mole fraction solubility of the magnesia, R the gas constant,

Tm the magnesia melting point (29150 K). This comes to about 7% when the heat

of solution L is approximated by the heat of fusion (77,330 J/mole). This

solubility is very high compared to the amount of MgO that can be produced

with the available oxygen. If one assumes all the H20 to be consumed, then

the total pressures come to 18.9 atm and 20.2 atm for the tungsten and

tantalum tubes respectively (at 95% filled).

Along with reaction of the trapped moisture with the fl ride to produce

HF and metallic fluorides, there may also be interaction of the water and the

metal directly to produce metallic oxides. Using free energy change (per mole

H20) as a criterion, the most dominant would be
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W(s) + 3 H2 0(g) < = > W3(s) + 3H2 AG = 7.930 kcal/mole (2.30a)

W(s) + 20 (g) < = > W 2() + 2(g) AG = 2.677 kcal/mole (2.30b)

2Ta(s ) + 5H20(g) = > Ta205(s) + 5H2 (g) AG = -135.67 kcal/mole (2.31)

Ignoring the oxide solubilities, this suggests that the tantalum container

would be more apt to react with the water than would the tungsten one.

However, there is another consideration that must be folded into this

analysis. Hydrogen gas produced in the container is likely to diffuse out

within a short period due to a very high mobility in the metal. [40] notes

values of the diffusion coefficient D of 2.21 x 10- cm2/sec (2.21 x 10- 8

m2/sec) for W and 2.98 x 107 4 cm2/sec (2.98 x 10 - 8 m2 /sec) (extrapolated) for

Ta around the melting point of MgF2.

An order of magnitude estimate of the time required for a significant

reduction in the hydrogen pressure in the container can be made as follows.

Start with Fick's equation for diffusion,

6c 02cat -a (2.32)t 0x2

where c is the concentration of atoms or moles per unit volume of the

diffusion medium, x is distance, and t is time. The time required to

establish a linear concentration gradient (if we had a steady state

concentration at either end) is of the order

() 2

At D(5) (2.33)
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where 6 is the metal thickness. For the present case (the capsules described

in the next chapter), At , 13.5 sec for Ta and 7.5 sec for W. So only a short

time is required to establish a steady state. One is tempted to assume that

the time to reduce the internal pressure will be relatively large, and thus a

quasi-steady model may be applied, i.e. there will be a succession of linear

concentration gradients of lower slope as the internal pressure is reduced.

ac
With at =, the expression for the concentration as a function of position

"x" in the wall with 6 the total thickness is

c = co(1 - -) (2.34)

where c is the hydrogen concentration ust within the inner wall. Then the

flux through the wall J is related to the concentration gradient by the

general expression

J = -D d (2.35a)

which, using (2.34), would give

Dc
J = 5° (2.35b)

Now we relate the H2 pressure in the interior of the container,po to the

concentration of hydrogen within the inner wall surface, c . It is clear from

any number of references that hydrogen molecules must first be broken into

atoms and then go into solution before diffusing through the metal.

Similarly, they must come out of solution at the other end. DeVan asserts

that these processes should not significantly affect the time required for

hydrogen leakage at the temperature of interest. So, the hydrogen

concentration driving the diffusion process is assumed to be directly related
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to the interior pressure p0 as

Po
co ART A (2.36)

where R is the universal gas constant and A is Avogadro's number.

The values of p0 and thus co (formally incompatible with the earlier

assertion that c/8t = 0) are now taken to vary with time as the gas leaks

out. Then interior pressure is related to flux by using the relation

A Jdt = -Vdc (2.37)

along with (2.36) applied in the differential form to the right side and in

the form shown to (2.35b) which is inserted in the left. Then cancelling

terms one obtains

dpo -A D 1

dt = 6V o = T (2.38)

Here Ar is the container wall area, V the interior volume. r a cylindrical

container of radius r, the value of the time constant T is expressible as

r 6
T = 2D (2.39)

For the test cylinders described in the next chapter, the value of T comes to

28 sec for the W cylinder and 34 sec for the Ta. So the assumption of a

quasi-steady diffusion was a bit rough, but the main point is that the

contained pressure should be significantly lowered within a few minutes. (For

comparison, from Figure 34, p. 99 of [32], the perm ation rate for H in Nb at

Ethrogks S.m tk6c k ftjd-Ii Hz pressu re= latm 
temperature)hshows a loss of 0.0054 mole/hour and there are only 4.17 x 10-6

moles present in the partly filled cylinders. The rate for loss through W is

shown to be about Ar ordersof magnitude less by the same author.)

The consequence of this will be that the reactions (2.27) and (2.25a) or

(2.30) or (2.31) will indeed proceed to completion, that is, that the hydrogen
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will be drained off and the water vapor used up to produce fluoride and/or

oxide reaction products. The interior pressure will depend upon the final

thermodynamic balance between these products. (Of course, the reaction

kinetics will determine when this balance is reached.)

By combining the previously stated equilibria of this section so as t

eliminate the hydrogen, we have:

.3MgF2(1) + W3(s) < = > 3Mg(s) ) + WF6(g ) AG = 109.8 kcal/mol

31gF2 (1) + 2(s) < > (s) + 3MgO(s) + WF6(g)

MgF2 (1) + Ta2 5(s) < = > (s) + 2 TaF5(

(2.32a)

AG = 109.8 kcal/mole

(2.32b)

AG = 21.18 kcal/mole

(2.33)

Qualitatively, the result must be a decrease in the internal pressures

relative to the results with metal oxides but without H2 loss, since the gas

species involving hydrogen have been "pulled out."

Considering the tantalum equilibrium in the last equation, if the solid

species are both present (and we ignore their solubility) at equilibrium so

their respective activities are unity, then the required equilibrium pressure

-3
for TaF5(g) is 6.013 x 10 Pa. By conservation of oxygen and of the Mg to F

ratio, this implies that there are 1.658 x 10711 mole of solid MgO and 4.706 x

-7
107 mole Ta205 in the partially filled cylinder. Again, ideal solubility of

TaF5 is assumed, as well as an ideal gas in the empty space.
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In other words, we say that

1 ns

MgF2 nMgF2 +rMgO 11 + ++n 12
NMgF 2 gF 2 5nTaF5+ 5naF5

22gF2 - a +1
nT aF5 ) (2.34a)

or

5 VV 1 1

N1F T(aFRT5P TaF5 (2.34b)

and

5nT +Ng =ns (2.35a)

os - go
LTa 2 5 Os5 MgO (2.35b)

where nOS is the amount of oxygen we start with given the initial

contamination with water. As determined by (2.33) and the assumed activities,

the equilibrium pressure of TaF5(g) must be the same in the 95% filled

cylinder as in the partially filled one, though the amounts of the oxides

differ (3.862 x 10-11 and 1.177 x 10- 6 mole for MgO, Ta205 respectively).

A similar situation, judging by the standard free energy changes, should

obtain for the tungsten cylinder. By writing only (2.32) and (2.33) we have

assumed that the presence of the gasses Mg, F2, 02 can be ignored in both

cylinders. A consideration of the equilibria for formation of the oxides will

show that this assumption is reasonable. The conclusion from the last

calculations would be that the major constituent of the gas in the cylinders

will be the vapor of MgF2, with a pressure of 30.4 Pa at 16000K

([18], p. 387).
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The equilibria stated in (2.33), (2.34) will, however, be shifted if the

oxides are sufficiently soluble in the MgF2 that they are below their

solubility limits. The activities of the oxides in solution in the simplest

model would be given by

X nia=i Xsat ni
sat

where the mole numbers may substitute as above when X, Xsat are small. The
~sat sat

values of solubility given by (2.29) are = 0.0726 and X a 0 00211

There is far too little oxygen available to reach these limits. If again one

allows for the solubility of TaF5 in the liquid, one obtains (in the tantalum

case) pressures for that gas of 797 and 850 Pa in the partially and 95% filled

cylinders respectively.

It is reported by the manufacturer that tests on the Optovac MgF2 showed

a general oxide solubility of 250 ppm, but they consider this number to be of

questionable reliability. Application of this to find the internal pressures

as outlined in the previous paragraph was made; the results are TaF5

pressures of 38.6 and 40.3 Pa for the partially and 95% filled tubes.

Despite these uncertainties, it appears that the diffusion of hydrogen

will keep water contamination requirements on the MgF2 at levels currently

available from manufacturers.
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CaAPER III

CO(EION TESTS

3.1 Introduction

To obtain data confirming the theoretical compatibility of molten MgF2 in

refractory metal contaiment a high temperature vacuum furnace was designed and

constructed. Clearly it was impractical to test the materials for ten years

(> 80,000 hrs.). As noted before the LiF compatibility tests had run for 5000

hours (7 months). A goal of 2000 hours (83 days) was set here, and was

exceeded. Such relatively short tests compared to system lifetime are at

least coarse screens of compatibility. With close examination of the metal

surfaces exposed to the substance contained one can reasonably make

projections over the system life. This was done both in the LiF work and in

the more recent tests by Misra, which were carried out for 100 and 500 hours

[13]. Of course, one must be cautious in making such projections since

contaminants peculiar to the sample preparation may be responsible for

apparent corrosion problems.

3.2 Sample Preparation

As noted above, the alloys ASTAR 811C and W-25Re were supplied by

courtesy of ORNL. From a local supplier MgF2 was purchased in macroscopic

crystalline form. This was used rather than a powder to reduce adsorbed water

and oxygen. The manufacturer stated that total impurity levels in the crystal

were probably below 100 molar parts per million. The crystals were broken

into a size that would fit into the tubing, then were cleaned with acetone,
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weighed out and put into separate pyrex containers. Thermoelectron

Corporation performed assembly of the test capsules shown in Figure 3.1 after

the metal was cleaned with solvent.

The tubing had been nma afactured by drilling in the case of ASTAR and by

extrusion in the case of W-25Re. On the internal wall of the ASTAR were

visible short (< 2mm) dents (< .lmm depth) arranged in approximately

circumferential clusters, evidently formed when the drill caught on the

surface. The outer surface of the ASTAR showed a dull polish with a barely

visible (by unaided eye) scratch pattern while its inner wall showed slightly

deeper circumferential scratches. The W-25Re inner wall exhibited clusters of

adjacent longitudinal scratches with a maximum length of about 6 mm and a

maximum depth approaching 1/4 of the wall thickness. The W-25Re cylinder

surface was brighter and more finely polished than the ASTAR's. The outer

surface showed some faint longitudinal scratches; the inner one showed

variable but generally circumferential scattered scratches of apparently

greater depth than those on the outside. Both types of alloy showed

considerable variation in wall thickness longitudinally and circumferentially.

For the ASTAR this variability exceeded 50%; for the W-25Re it was less than

"20%.

The W-25Re material had to be cut by electro-discharge machining. Both

capsules were electron beam welded, which encapsulated the ~10 - 5 torr (1.33 x

10-3 Pa) atmosphere of the welding chamber. (This level of pressure was

relatively good; it was the result of a specially requested overnight

pumpdown of the system.) As indicated in Figure 3.1, two W-5Re/W-25Re

thermocouples were welded to each capsule. Also, a small piece of the

81



O. 13 cm

(0.64 cmW 1/4

34"
(1.91 c)

I 

t
3/

(I.91l 

·f

O.,D. = 0.762cn

I.D. = 0.635cm

ASTAR 811-C
(Ta - 8W - Re - 0.7Hf - 0.025C)

ouple

~(o.64 GW)
I,-,

volume after
melted

O.D. = 0.686

I.D. = 0.605'

W - 25Re

Figure 3.1 Test Capsule Configuration.

82

I .E - -

: M)

0.16cm

V(S-Oe oa CM

-"



endplate material (< 5 mm. in any dimension) was put inside to provide a

sample further shielded from the furnace environment, if needed.

3.3 Vacuum Furnace

3.3.1 Design and Construction

Work on the test capsules run in parallel with design and construction of

a vacuum furnace with which to test them.

[24] recounts the stringent contamination requirements that were imposed

on high temperature vacuum tests of niobium and tantalum alloys by ORNL. The

motivations for these conditions were to avoid two possible problems caused by

interstitial oxygen contamination: (1) embrittlement and, (2) intergranular

attack by lithium and boiling potassium. The intended applications of the

alloys tested were space nuclear reactor systems.

The following quote conveys the magnitude of the problem encountered. It

required...

"...bakeable, cold-wall chambers pumped by ion-sputtering, titanium

sublimation or turbomolecular pumps.....Even with this equipment... the

major problem was to control the desorption of oxygen from heater

surfaces, reflective insulation and vacuum chamber accessories so that

the bulk of this oxygen was picked up by the vacuum pumps and not the

refractory metal test components. In many cases the refractory metal

components were wrapped with tantalum, molybdenum or titanium foil to

effect a mechanical barrier between the component and the chamber

environment. The bakeout cycle and heat-up of the test system were

controlled to limit the vacuum atmosphere to < 1.3 x 10-6 Pa (10- 8 torr)

83



once the system had reached a temperature of 450 C. After the system

operating temperatures were attained, the steady-state ambient pressure

in the vacuum chamber was usually well below 1.3 x 10 - 6 Pa (10- 8 torr)

and hydrogen was the dominant species in the residual gas."

([24], p. 78)

This information was conveyed orally to the present author by Mr. DeVan

of ORNL before the publication and distribution of [24] in January 1984.

Obtaining a new vacuum system to satisfy these criteria would have been

prohibitively expensive. In an MIT laboratory there was a surplus system that

had historically attained pressures in the "mid- 10-8 torr range" (1.33 x 10-6

Pa). The bell Jar was bakeable, but the seals were not, as they used rubber

rather than copper O-rings. Pumping was by a diffusion pump using 304 silicon

fluid and the baffles (traps) separating the pump from the chamber used open

loop LN2 cooling. Mr. DeVan's opinion was that this system could be employed

usefully, particularly if the test samples were covered in protective foil.

After considerable refurbishment of the vacuum system, including

conversion of the baffle cooling to a closed freon loop, the furnace shown in

Figure 3.2 was constructed. The core of the furnace is a tantalum frame and

heating elements that were obtained on indefinite loan from ORNL. Surrounding

it are layers of tantalum and molybdenum (as insulating radiation shields)

sheet and a water cooled copper acket.

Two feed-throughs allow for as many as 12 high temperature (W-Re)

thermocouples. There is a feed-through for lower temperature thermocouples,

and two commercially constructed watercooled power feed-throughs bolted to

adapter rings. The remaining three feed-throughs are for the coolant water,

roughing pump and ion gauge.
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A substantial leak of air or water into the vacuum while the furnace is

hot would cause rapid oxydation of the metal parts. In case of a pressure

jump the ion gauge, diffusion pump and heater power are cut off. Another

interlock shuts down the latter two in case of a significant drop in coolant

water flow. The 1/2" thick stainless steel plate supporting the furnace

alignment rods provides protection of the diffusion pump in the event of

catastrophic melting.

There are two water filters in parallel in the supply line so that

filters can be replaced during system runs. The Hewlett-Packard (HP) power

units are operated as current controllers within a set voltage limit. (They

may also be operated with voltage controlled and current limited, but the

furnace resistance is too low for that to be practical.) They would indicate

a voltage drop if a short circuit occurred, and the furnace is grounded except

for the heating elements.

3.3.2 Testing of Furnace

To test the furnace system two types of thermocouple were used. Some

were of high temperature W-26Re/W-5Re and others were of iron-constantan. Of

the former, one was bare, with its tip resting on the platform of the sample

holder frame, another was clipped to the end of a heater frame, and the third

was clipped to one end of the outer molybdenum shield (Figure 3.3). One of

the low temperature type was clipped to the side copper acket and another

held to the bottom copper plate under a furnace frame support bolt.

Some oxydation of the molybdenum parts took place due to a water leak,

but significant portions of the oxydation products evaporated under heating.

86



Thermocouples (Held with Mo clips)
Heater Cylinc

Thermocouple

Copper Jacket

Lower Cu Plate

Outer Mo Shield

olybdenum Shields

Thermocouple

(Clipped to outside)

nocouple

(On underside, held with
heater support bolt )

Figure 3.3 Placement of Thermocouples for Furnace Tests
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Temperature and power data were recorded by hand for two furnace test

runs. A particularly large amount of outgassing occurred during the first run

shown in Figure 3.4, and the power was turned off as the pressure climbed into

the 10- 4 torr (1.33 x 10 - 2 Pa) range. (The pressure meter reads directly in

torr.) With this test was noted a lower than expected heater resistance and

there was some concern about being able to reach the MgF2 melting point. A

few days later (the diffusion pump was off during most of that time) a

proof-test with little data recorded showed that this temperature could be

reached.

Some days afterward, the recorded run shown in Figure 3.5 was performed.

Considerably less outgassing occurred this time. (Again the diffusion pump

had been off between tests.) From the pattern of up-down pressure changes in

Figure 3.5 one can hypothesize that outgassing occurred in stages as the

radiation shields heated up. For use with test samples, the heating was done

more slowly to minimize outgassing. (The thermocouple error bar shown is

given by the factory, and does not include set-up errors.)

When operating at peak power, the furnace draws "2.72 kW at 78A, 35V from

the two HP6479 DC power supplies. The outer molybdenum radiation shield is at

995 K and the end of the heater frame at 1406 K; the bare center thermocouple

reads 15830K (no samples present).

3.+ Long Duration Corrosion Test

3.4.1 Preparation

Two samples -- one of each type alloy -- were cleaned with

trichlorethylene and acetone and mounted into the loading frame (Figure 3.6, a

photograph actually taken after the furnace test). Ceramic insulators for the
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tungsten thermocouple wires were first cleaned in boiling nitric acid. During

the threading of the very brittle wire through the insulators, the upper

thermocouple became detached from the ASTAR sample.

Thermoelectron Corp. had wrapped several turns of tungsten wire around

each sample near the center to keep the thermocouple leads from breaking off.

It had been intended to remove this other wire before installing the samples

in the furnace, but due to concern about lead breakage, it was not removed.

This wire probably shorted the thermocouples. In the absence of any

resistance in the wrapping wire, the effect would be to cause both

thermocouples to read out the temperature at the wrapping (see Appendix B).

In view of the previously noted warnings concerning the effects of

outgassing on tantalum alloys, some tantalum foil (1 mil thick) was wrapped

around the samples. The upper half of each cylinder was wrapped to provide

comparable gas exposure to part of both. The lower half of the ASTAR was

partially covered to see if there was any variation in metal corrosion with

different gas exposures and the MgF2 together.

Once the extension wires were welded in place, the frame containing the

samples was loaded into the furnace and the vacuum system started. Some

effort was expended trying to achieve vacuum pressures below the 10- 6 torr

(1.33 x 10 - 4 Pa) range. Outgassing was allowed to go on for several weeks,

including some bell jar heating. It became evident that condensation on the

refrigerated vanes was controlling chamber pressure.
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3.4.2 Operations

To start the long duration test, furnace power was applied in steps over

a period of days. In addition to avoiding a pressure peak, this was done to

prevent thermal shock that might cause thermocouple detachment. At about

11:00 am on 21 January, the power setting was turned to 70A, then to 76A by

1:35 in the afternoon. The setting was at 76A until the early afternoon of 27

January. On that date, the power units developed a rapping noise and output

instability. Current was reduced to 70A, at which the problem did not recur.

Due to thermocouple recordings made the previous day, it was clear that the

MgF2 was melted at that level. (This will be explained in the next chapter.)

A water shutdown for the building had been scheduled for two days later.

The diffusion pump and furnace power could not remain on, so the system was

shut down to begin diagnostic tests of the power supplies for which a "dummy"

load using power resistors was constructed. The tests showed that the

components were operating within their specified range. Nonetheless, for

safety, the air filters were cleaned and it was decided not to operate above

70A for long periods.

A broken ion gauge filament made it necessary to open the chamber long

enough to remove the unit and effect a repair; meanwhile, a dry nitrogen

backfill was used to minimize moisture uptake. After a reheating process over

several days, at 10:15 am on 18 February current was set at 68A for the

remainder of the duration test (except for cycling through the melting range,

as explained later).

At 11:10 am on 20 February an anomalous event in the MIT power system

caused all power to the building to shut down for 12 minutes. By the time the
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power returned, the pressure in the chamber was above 10- 4 torr (1.33 x 10 - 2

Pa), the ion gauge limit, but below 10-2 torr (1.33 Pa), the machanical gauge

limit. The temperature of the core platform thermocouple (unattached to the

samples) had dropped to about 810 K. By early that afternoon, the furnace was

once again operating at the 68A level.

Chamber pressure generally cycled with the refrigeration, staying

approximately in the range 1.2-2.5 x 10- 6 torr (1.60-2.67 x 104 Pa). For

nearly a month the refrigerator did not cycle; as a consequence, pressures

fell and stayed in the range from about .5 to .7 x 10-6 torr (6.67-9.33 x 10- 5

Pa). No adjustments had been made to the system, and it reverted to its

previous behavior.

On May 11 at approximately noon, current was turned down to 50A.

Thermocouple measurements showed the phase transition to solid in both

cylinders as the heater was cooled. The power was reduced over the next two

days as some final thermocouple measurements were taken. At 10:00 am on 14

May all power to the heaters was shut off.

3.+.3 Temperature and Time Data

In Table 3.1 is a summary of temperature data as recorded at various

amperage (power) levels of the furnace. The table also includes times at

these levels, which are not necessarily identical with times at the respective

temperatures; transients of temperature when changing power levels were not

always recorded on a thermograph, and when recorded the times required are

lumped into the times at the equilibria for the power levels set. For

example, if the power level were at 50A and turned up to 60A, the time at 60A
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Table 3.1

EquLttbrtum Temperature Data -- Crtpltbility Test

W-25Re ASTAR

Amps Volts Power Lower Upper Lower Center Time at this Estimated
level time

accuracy

78 34.9 2722 5 min

76 33.2 2523 1602 1643 1653 1583 142.38 hr ± 30 min

2475

2083

1924

1739

1416

1144

905

1591

1530

1507

1468

1402

1335

1264

1632

1569

1543

1504

1434

1362

1288

1640

1577

1562

1514

1448

1375

1301

1564

1507

1480

1449

1383

1313

1241

3.66 hr

12.15 hr

1926 hr

6.733 hr

8.967 hr

7.011 hr

75.633 hr

± 5 min

± 45 min

i 1.5 hr

i 15 min

± 15 min

± 15 min

± 1 hr

NOTES:

* 2.83 hr 5 min at 74A, and 2 hr 30 min which is uncertain (either 70A or
76A)

* Total time above melting point: 2089 hr 1 hr (form + moc.lnJ~ei1 s)
* Center thermocouple was resting on sample platform unattached to either

sample cylinder

95

75

70

68

65

60

55

50

29.75

28.3

26.75
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18.1
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would be counted from the moment the setting was changed. Changes in the

power levels were made intermettantly throughout the long duration test to

investigate the melting/freezing cycle (see Chapter 4). The time given in the

table as minimum in the melted condition is derived directly from the

melting/freezing data as recorded. Temperature variability at a given power

setting has several possible sources:

a. Difficulty in setting amperage of power units. Fractional amperage

levels had to be estimated by eye and this was impeded since the

units were not operating perfectly in parallel (the slaved unit put

out slightly less current than the other). A marking system

superimposed on the ammeters eventually allowed settings that gave

temperatures consistent to within 1-2K.

b. Voltmeter and recorder drift. Calibration was done as often as

possible but an error bar of 1-2°K is probable.

c. Cooling water temperature variation. Cooling water temperature

varied by about 5 K during furnace operation. For parallel plate

radiative heat transfer in the furnace this would have negligible

effect on the core (cylinder thermocouple) temperatures.

d. Change in thermocouple electrical characteristics over time. This

is possible due to metallurgical changes in the thermocouples. At

the end of the duration test they were even more brittle than at the

start.

In all, however, variability at given power levels was less than " 3 K when

care was taken with factors a and b.
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These variable effects are superposed over other, more nearly constant

sources of error. In particular, one sees a difference in temperature between

the upper and lower thermocouples on the W-25Re cylinder, and this is

unexpected given that they were shorted together, as noted above. Possible

reasons for this are the following:

a. Vartabttty tin calibratton of thermocouple wire in manufacture. The

producer of the thermocouple wire (Omega) states that variability

may be as much as 1% relative to the operating temperature which

amounts to 15-16°K here.

b. Effects of the short on the cylinder or of accidental shorts to

ground elsewhere in the circuit. One can show formally that these

could cause errors, with a magnitude that is uncertain (see Appendix

B). There was no evidence of shorting "beyond" the cylinders in the

circuit when the furnace was opened.

In addition, it later became evident that the calibration standard, which

originated in a digital voltmeter (DVM), varied between DVMs by an amount

equivalent to 1.5-30 K. However, the capsule temperatures were all made

based upon a single DVM during the long duration test.

3.5 Examination of Long Duration Furnace-Tested Samples

3.5.1 Outer Surfaces

On being removed from the furnace, the samples, wrapping foil, frame and

ceramic insulators all appeared in excellent condition. All metal parts were

very clean, having a silver-like shine. The ceramics were white except for a

slight darkening near the top end, and some considerable black-coppery
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coloring near the location where the horizontal pieces exited between the top

cap and the main furnace body. The former is explained by volatile

accumulation at the cooler end of the furnace, the latter by the same

mechanism but with greater effect as the thermocouple exit was a channel for

volatiles.

Upon removing the foil shields from the samples, their covered surfaces

were seen to have the same appearance as the uncovered ones. At a few small

("1 mm2 ) spots on each cylinder, the foil had evidently vacuum-welded itself

to the surface. On close inspection, a thin (.120 mm) circumferential line

of white particles was found on the ASTAR cylinder, located where the bottom

edge of the upper Ta shield had been close to or in contact with the cylinder.

Optical inspection of these particles showed a translucent crystalline
(ScnrAi.g El6ctr.1V ictoscop.)

appearance. An investigation was conducted using the SEMAand associated EDX

analysis. The SEM showed thin (.2 pm) mica-like layering and that the

particles were not continuous with the cylinder surface. In addition, charge

build-up difficulties indicated poor electrical conductivity.

The EDX can perform semi-quantitative elemental analysis for atomic

number nine and above (this excludes C,N, and 0). There was considerable

difficulty in applying it here due to overlap of characteristic electron

energy emission lines amongst the refractory elements. The apparent detection

of some silicon on both the particles and the cylinder surface may be spurious

because of overlap problems with a W line. Nonetheless, the silicon could

have originated with the diffusion pump oil, particularly during the 12 minute

power failure. Other elements -- Al, Mg, K, F -- did seem to be present in

the particles by an order of magnitude greater (a few %) than on the cylinder

surface. Tantalum was the major constituent of the particles.

98



Galasso in [41] discusses several crystalline complex oxides which have a

layered structure, and it is likely that the particles fall into this

category. They were probably formed from the edge of the Ta

shield. A few apparently similar particles were seen on the W-25Re cylinder

at a similar location. However, they did not show the distinct layering, and

EDX analysis was inconclusive; they may have been later contaminants.

3.S.2 General Interior Conditions

The samples were each cut approximately in half using a low-speed saw and

Isomet cutting fluid. Saws were conditioned with graphite and consumed about

0.5 mm width. The slow speeds (20 minutes for ASTAR and 1-1/2 to 3 hours for

W-25Re depending on pressure used) resulted generally in < 10 um relief.

Later cuts were made through the cylinder and frozen MgF2 simultaneously.

Acetone and distilled water were used to try to clean out the cutting oil, but

it had evidently penetrated the cracks in the frozen MgF2 during the cutting

process. Using a vacuum or ultrasonic wash was the most effective method to

remove the oil.

When first cut, the cylinders showed no obvious signs of corrosion. The

melted and frozen MgF2 adhered to the wall, though more tenaciously in the

case of the ASTAR than the W-25Re cylinder. On the inner wall of the ASTAR

cylinder were scattered frozen droplets of MgF2, and possibly a uniform thin

layer of the fluoride as well. Figure 3.7 shows these droplets seen edge on;

the dark spots on the cylinder cross section are from ink applied to reduce

glare. No fluoride droplets or layer was evident in the W-25Re cylinder.
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The distribution of MgF2 in each cylinder is of interest. Figure 3.8

shows a series of sketches based on observations made after the initial cuts.

Note that the majority of MgF2 in the W-25Re cylinder appears to be in the

upper half. The central hole through the crystal in each cylinder is

consistent with what is seen when a fluid that shrinks on freezing rystalizes

from the walls inward.

Figure 3.9 shows the frozen melt looking towards the bottom of the ASTAR

cylinder. Vertical streaks may have been caused by accumulation of graphite

from the cutting process. In Figure 3.10 one can see the edge of the flouride

on the wall of the same cylinder; fragments beyond the edge suggest good

wetting, or may only result from shrinkage of the melt when freezing.

The fluoride in the W-25Re top half cylinder is shown in Figure 3.11.

The frozen state contact angle is close to 900.

It would have been useful to be able to compare cylinder wall thickness

before and after the furnace test. It had been assumed that this could be

done by comparing samples tested with the small remaining unused cylinder

sections. Unfortunately, it was not realized until after the cylinders were

manufactured that the considerable variations in wall thickness along the

cylinder lengths made this method unuseable. In retrospect, the manufacturer

of the capsules should have been asked to measure and specify wall thickness

for specific locations along the tubes.

In view of this error, the conclusions to be presented here on

experimental material compatibility results are based upon the weight of

evidence from optical examinations, composition analysis, and observations of

crystal grain boundaries. However, we briefly digress to consider whether
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useful conclusions can be drawn from the interesting distribution of MgF2 in

the cylinders.

3.5.2.1 Fluoride Distribution and Surface Wetting

The presence of solidified fluoride in the upper parts of the test

cylinders, taken together with the thermocouple data to be discussed in the

next chapter, shows that liquid fluoride was suspended in the upper parts of

the cylinders at various times. One may ask whether this information provides

any useful conclusions concerning the wetting properties of the fluorides on

the alloy cylinders. That is, given the height of the suspended column, and

the size of the cylinder, can one put a bound on the wetting angle a or

surface tension?

At least for conditions of static stability, it appears that the answer

is in the negative. Recall that the contact angle for a fluid with a wall is

determined by

a cosa + = alg ls sg
where alg ls' and sg are the liquid-gas, liquid-solid, and solid-gas

surface tensions, identical to Helmholtz surface free energy for pure

materials. In zero gravity conditions, this angle a will be identical to the

one seen on a macroscopic scale, and either end of a liquid in a tube will

form a section of a sphere (Figure 3.12a).

Now if we moved the tube into a gravitational field, and if again the

macroscopic angle were determined by surface energy as a, then the droplet

would fall unless supported by a pressure difference, 2 - P1 (Figure 3.12b).

But what is actually observed is that the apparent contact angle assumes

105



;S 5

'dA5Ibrs

sl >

Figure. 3.12a Liquid in Tube,
zero-g conditions

Pt

2-'P.Z

g

Figure 3.12b Liquid in Tube
under gravity(zero surface
roughness)

f,

eC(L

Figure 3.12c Liquid in Tube Under Gravity
Observed Behavior

106

r

_ 7-

ie

I

_-

Aj



different values at the leading and trailing edges, aL and a, and the upper

and lower surfaces distort (Figure 3.12c). If one integrates the surface

tension along the upper and lower edges with the apparent contact angles, one

finds that it provides a force supporting the liquid in addition to any

pressure difference.

Experimentally it has been found that for a given liquid, gravitational

field, and tube size there is a limit on how large the leading angle, and how

small the trailing angle, can become. Myshkis et al in [42] note that though

this phenomenon is not fully understood, there is experimental evidence

showing a correlation with surface roughness. The same author states that

Deryagin developed a theory to relate the limiting apparent contact angle ai

with the a which must exist at a microscopic scale on the wall, since it is

determined solely by surface energies. This states that

cosa = kcosa

where k is a measure of surface roughness that goes to unity as perfect

smoothness is approached. Under that condition, the apparent contact angle

would be limited to the microscopic one, and the droplet in a cylinder would

fall absent a supporting pressure difference. Conceptually, surface roughness

means that on the microscopic scale the liquid makes contact at locations that

allow an upward force at the apparent contact angle.

In the present context, the above discussion implies that to obtain the

ideal contact angle a, one need know the value of k and of the limiting

apparent angle a; or, if one knew the apparent angles at top and bottom for

a given column height, one could deduce the value of a from the force balance

(given a known pressure difference). Clearly there is insufficient data here

for either of these methods.
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However, one can place a lower limit on surface tension a (or alg) using

the stability criterion discussed by Satterlee and Reynolds in [43]. This

criterion is one of dynamic stability of the meniscus, namely

that no small disturbance of the shape will lead to a reduction in total

potential energy. The results are correlated by the Bond number

B =o a

where p is liquid density, g the gravitational constant, and R the tube

radius. Bond number compares gravitational to surface tension forces.

The stablest case occurs with apparent contact angle a = 90 , for which

B < 3.3; the least stable are with completely wetting or nonwetting

conditions, for which B < 0.70. Using the value of R for the W-25Re cylinder

and p for MgF2 liquid, one finds

a 66 dyne/cm (90° contact angle)

a 311 dyne/cm (completely wetting or nonwetting)

This only sets a broad lower boundary. But it is interesting to note that

[25] sets the surface tension of LiF at 250 dyne/cm. If MgF2 indeed wets

well, then the second bounds above suggest surface tension similar to that of

LiF. Working backward, using the stability criterion, this implies B of the
order one; i.e., gravitational and surface tension forces were of the same
order. This result does not affect the validity of the present work for zero-g
conditions.
3.5.3 Auger Analysis of Cylinder Cross-sections

Slices were made, using the low speed saw, of the flouride-filled parts

of the cylinder as was indicated in Figure 3.8. At this point no sign of

corrosion was seen in the W-25Re, but the ASTAR seemed to have a problem at

several spots where it appeared that MgF2 had penetrated the wall. The worst

of these wall inclusions, which had penetrated about 3/4 of the wall, was

studied using Auger surveys.

108



3.5.3.1 Principles of Auger Analysis

When a sufficiently high energy electron beam is used to ionize an atom,

a core level hole can be created, which may then be filled by an electron from

a higher energy level. Energy released by this transition is emitted by the

atom as an x-ray photon or "Auger" electron. Detection of the former is the

basis of x-ray fluorescence analysis (ESCA) and of the latter of Auger

Spectroscopy.

The penetration depth of the Auger technique is 1-2 atomic layers; for

this reason, a Ar+ beam is used to sputter-clean the surface. With many hours

of careful work on the machine, one can obtain quantitative measures of

elements present to an accuracy of about 0.1%. Elements except hydrogen are

detectable.

The data are usually presented as a normalized plot of the derivative of

the number of Auger electrons detected with respect to kinetic energy versus

kinetic energy in electron volts. Conventionally, the spikes (dips) in the

plot, since they are sharper than the peaks, are used to identify elements.

As example of data is shown in Figure 3.13, which was a scan mode survey of

monocrystalline MgF2 after being sputtered for 3 minutes, which removed some

surface carbon. Changes in the intensity of these peaks occur for elements

appearing in compounds due to electron cloud modifications in bonding.

Time limitations made it impossible to achieve the potential accuracies

stated above. With the scan times used, the detection limit was about 1%.

With knowledge of appropriate sensitivity factors for the elements and

compounds, quantitative percentages for them could be obtained. These factors

1.09
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are available only for the elements; for compounds they would have to be

compiled experimentally from known pure substances.

3.5.3.2 W-25Re Auger Analysis

Figure 3.14 is an SEM micrograph of the W-25Re/MgF2 interface region.

The metal is in the upper part center, the MgF2 below to the lower right. The

mottled dark regions to the left and right are silver paint applied to provide

a shorter conduction path for electrons impinging on the non-conductive MgF2.

Streaking is due to charge buildup and the white regions are probably

anomalous charging areas of the MgF2 or the paint. (There was some change in

them between photographs. Also, sputtering had been used to reduce charging,

and some areas may have been partly shielded from the Ar+ beam.)

The irregular metal surface at the interface is consistent with the

finish of the cylinder interior, and was probably revealed because of MgF2

chipping. Attempts to perform a surface analysis there were impeded by the

irregular "valley." At another location difficulty occurred due to carbon

particles (probably from the graphite used to condition the saw blade) that

had become lodged at the interface. Nonetheless, an analysis was performed on

the metal at the latter location within 50 m of the interface. The survey

(which was preceded by several minutes of sputtering) is shown in Figure 3.15.

Tungsten is present in several lines and due to line overlaps is probably

"hiding" the Re. The carbon shown is considerably reduced from pre-sputter

values, so it probably originated with surface contamination. The sample used

was from the top half of the cylinder and may not have contained fluoride for

the entire furnace test, though thermocouple data indicate that there was melt

separation within the first week of being above the melting point.
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3.5.3.3 ASTAR-811C Auger Analysis

Examination of this sample concentrated on a comparison of the wall

inclusion noted earlier to a more typical interface zone.

The former area is shown in the SEM micrograph, Figure 3.16. At the top

center is the MgF2, below it the inclusion zone, and then the apparently

unaffected metal. The edge wall of the cross-section falls off to the lower

left. Note that the MgF2 is present in "veins" in the inclusion.

Auger surveys of points in the unaffected metal and the inclusion zone

are shown in Figures 3.17a and 3.17b respectively. In both oxygen is present

and probably results mainly from surface adsorption. The crucial difference

is the presence of iron in the inclusion zone. Indeed, there are several

possible Fe-Ta phases as shown in the phase diagram presented by Kubaschewski

([44], p. 144), and reproduced by Moffat [45]; see Figure 3.18. None of

these displays a melting point at or below the operating temperature of the

furnace test, so solid state diffusion must have been the mechanism of the

inclusion growth, unless the presence of W and the minor constituents- resulted

in a major change in behavior.

In Figure 3.19a, a closer view of a region at the inclusion/unaffected

metal boundary is shown. It is about halfway to the right and halfway down

from the center of the last photograph. A survey showed the large black

object in top center to be carbon. The data mapped in Figures 3.19b and 3.19c

result from scanning for particular elemental lines over the same area. The

presence of Fe within the inclusion and its absence outside are clearly shown.

At the same time tantalum is fairly uniform, with perhaps a small depletion
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within the inclusion. Oxygen shows a similar pattern with bright points on

the carbon fragments that probably are oxides. (There was some indication of

low electrical conductivity there.)

Consider now another region of the ASTAR-MgF2 disc where there was no

inclusion or other obvious sign of corrosion (Figure 3.20a). The rectangular

region's surface conduction effect resulted from close-up scanning such as

that in Figure 3.20b. (Note that both of these SEM micrographs are at a 600

angle to the surface which was chosen to try to mitigate MgF2 charging

problems.)

Surveys were made at three points: one on the metal peninsula near the

center, one ust adjacent in the dark area, and one near the bottom of the

frame. The first showed only tantalum and carbon, the second carbon, oxygen,

and aluminum, and the third magnesium and fluorine.

3.5.3.4 Conclusions from Auger Analysis

The Auger test provided tentative confirmation of the visual inspection

results showing no general corrosion. The salient result of the present

analysis has been a diagnosis of the local corrosion zones of the type shown

in Figure 3.16 that were seen in the ASTAR sample. Iron fragments could

easily have become embedded in the ASTAR wall as a result of the drilling

process. As noted before, there would have been diffusion of the iron into

the wall while the sample was in the heated furnace. DeVan of ORNL believes

that brittle intermetallic compounds were then formed which could break off

into the fluoride, particularly during melting/freezing cycles. The embedded

iron could be simultaneously going into solution in both the fluoride and the

wall.
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Clearly, it would be desirable to exercise care to avoid contamination

with iron of tantalum alloys to be used for liquid MgF2 containment. Such

precautions are made more difficult by the relatively soft condition of

tantalum at room temperature.

As to the aluminum contamination, again it could have resulted from the

manufacturing process, say as leftover fragments from other alloys processed

with the same equipment; or it may have originated in assembly of the

capsules. In any case there were no obvious deleterious effects.

3.5..4 Netallographic Examination

In order to carry out further investigations of the effect of MgF2 on the

refractory alloys, samples from the cylinder cross-sections were polished,

etched, and examined under magnification after being set in an acrylic

mounting. To improve edge retention, Coors SC alumina (.2 mm diameter)

powder was added to the acrylic mix. The following were used as etchants on

recommendation of a metallographer at ORNL.

ASTAR 811C: W-25Re:

50 ml Glycerol 50 ml Ammonium Hydroxide

30 ml Lactic acid 50 ml Hydrogen Peroxide

20 ml Nitric acid

20 ml Hydroflouride acid

3.5.4.1 ASTAR-SllI Alloy

Figure 3.21a shows a 500x magnification of the cylinder inner wall

cross-section for a sample not tested in the vacuum furnace. The long linear

markings are scratches from a 6 pm diamond grit polish. Grain boundaries are

distinguished; further polishing (3 mu) and a re-etch did not determine

whether the spots at the boundaries represent another phase.
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By comparison, we see in Figure 3.21b no indication of such a phase in

the furnace tested sample, or of any penetration or damage at the grain

boundary that was in contact with the MgF2. This photograph was from a wall

cut made along the longitudinal axis of the cylinder. The grains appear

larger than those in the previous figure, but there was considerable variation

and in other areas they were of about the same size as those in the unheated

sample. Figure 3.21c shows the grain distribution through a circular cut of

the furnace sample, before the etchant had been applied.

3.5.4.2 -25Re Aloy

The extrusion process by which the tungsten alloy cylinder was

manufactured left clear evidence in the wall structure. In Figure 3.22a one

sees an etched cylinder cross-section showing distorted grains and perhaps an

intergranular phase. Figure 3.22b is from another location on the same

cross-section, showing an example of a wall defect. There are some ellipsoid

depressions here, which are probably due to localized overetching. It was

difficult to prevent excess etchant from seeping up between the metal and the

acrylic mount. Ultrasonic cleaning was found to be most effective at

preventing this.

When the furnace tested sample was polished, scattered spots of lighter

color were seen on the cylinder cross-sectional cut; the longitudinal cut

showed similar spots, but these were mainly aligned with the cylinder long

axis.

The cross-sectional cut was etched in stages. After the first,

depressions were seen in a pattern resembling that of the spots seen before.

After two more applications of the etchant, grain boundaries also became

visible (Figure 3.23). These show no indication of deterioration at the wall

adjacent to the fluoride, but clearly there has been recrystallization. The

apparent second phase can be identified with the a phase in the W-Re phase
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diagram (Figure 3.24). At 25 wt. % Re alloy this phase begins to appear at

just about the melting point of MgF2, if we extrapolate the data to that

relatively "low" temperature. More appears as Re solubility drops with

temperature.

3.5.5 icroprobe Analysis

With the availability of polished samples from the metallographic work,

it became possible to perform a quantitative elemental analysis of the frozen

MgF2 using the electron microprobe (full name: Wavelength Dispersive Analysis

using an Electron Microprobe X-ray Analyzer). A small amount of additional

polishing using 0.25pm alumina was required; this was followed by deposition

of a carbon layer to provide a conduction path. Several days were needed to

outgas the mountings.

The bulk MgF2 in both samples showed no residue of the respective metal

alloy elements to the detection limits of the system for a 200 sec probe

(Table 3.2). The limit of detection was about 250 ppm (weight percent basis).

Indirect means showed also that Fe was absent to about this level. This

accuracy was not required for the bulk constituents (Mg and F) so a shorter

scan was used for them. Relative accuracy refers to both atomic and weight

percents; e.g., the abundance of Mg in Table 3.2 is 33.24 atomic percent

i 0.6 % of the same quantity.

Despite these data, another result has caused concern. Figure 3.25 is an

electron micrograph of particles that appeared in the MgF2 of the ASTAR

sample. These were of much greater density than the surrounding fluoride,

which made them difficult to image sharply. They were mainly concentrated
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Abundances

Table 3.2a

of Elements in ASrAR Sample Bulk IgF2

Element Atomic Z Weight Z Relative Detection Limit
Accuracy Z (weight )

Mg 33.24 38.50 ± 0.6 *-

F 66.76 61.20 ± 0.4 .-

Ta undetectable undetectable *0 O.0223

W 0.0236

Re 0.0292

Hf " " 0.0211

Table 3.2b

Abundarncs of Elements in W-25Re Sample Bulk lgF2

Element Atomic Weight Relative Detection Limit
Accuracy Z (weight )

Mg 33.24 38.23 i 0.6

F 66.75 60.78 ± 0.4 -

W undetectable undetectable *- 0.0236

Re " " *- 0.0292
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along grain boundaries in the fluoride. Microprobe analyses were performed,

the results of one of which are in Table 3.3. The device operator believed

that the percentages of Mg and F could only be taken as upper limits for the

particle, due to possible scattering from the adjacent MgF2 (because of the

small size of the particle). There was no sign of the presence of any of the

refractory metals or Fe except for Hf.

What does the value of 72 wt ( 5 relative) Hf say about the particle

composition? Clearly some other element (or elements) is present. Some

possible species are: HfF 4 (70.2 wt % Hf), HfO2 (84.8 wt % Hf), HfC (93.7 wt

% Hf), and HfC2 (88.1 wt X Hf). The first comes closest to the Hf wt %

measured, but we should be seeing more F. There is also the question of

whether HfF4 is a gas phase when at the MgF2 melting point (see note, Table

2.4). Then whatever HfF4 is present might be precipitated through the

fluoride at room temperature as a result of the gas in solution at the higher

temperature.

Oxygen content would have been difficult to find quantitatively using the

present method. Oxygen might have originated in water contaminating the

flouride. Carbon could be present but the carbon layer applied would have

made a reading useless.

That the particles include Hf as their only refractory constituent is

consistent with the data in Chapter 2 (Tables 2.4, 2.5) showing Hf to be the

most reactive of the refractories with oxygen and fluoride. Recall also from

that chapter that Hf is intentionally added to ASTAR as an agent that will

increase hardness by reacting to form HfO2.

133



Table 3.3

Abundances of Elements in Particles

Atomic X Weight Z

(10.86) (2.46)

(46.57) (8.36)

42.57 71.55

undetectable undetectable
V VW

.. 9.

tn NgF2 of STAR Sample

Relative Accuracy

i 5.0%
t9

O0

Percentages distorted by scattering from bulkh gF2
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In the end, one wants to know whether the appearance of the particles

will cause a debilitating effect on the metal over the projected lifetime of

the power system. Clearly, the Hf has been coming out of solution in the

metal and entering the fluoride, where it reacts to form another species. A

very rough estimate may be made of the depth of metal affected by this

process. Figure 3.25 shows an atypical region (cluster) of particles, perhaps

representative of 10% of the fluoride surface. Idealizing the particles as

spheres of diameter 1lim the number visible (10) are those that were within one

diameter, in the normal direction, of the cut plane. One obtains a particle

density of 1.27 x 10-3 / 3 fluoride. The volume of fluoride in the cylinder

comes to 5.29 x 1011m 3; thus there are 6.72 x 107 particles present. If

their density is close to that of HfO2 (9.68 g/cm3 from [46],

p. 192) the mass of Hf present is 6.51 x 10-7 kg. Then the depth (d) of the

wall depleted of Hf (assuming for a moment total depletion there and none

beyond) is given by

6.51 x 10 -7kg
2rr chc ( 01 ) PHf

where rc and hc represent the radius and height of the cylinder (the factor

(.01) is included by the assumption that the volume fraction of the Hf in the

alloy is close to its mass fraction). With the Hf density PHf = 13310 kg/m3 ,

-3 -2
re= 6.35 x 10 m, hc= 1.90 x 10 m (height of liquid in partially filled

cylinder), the result is d 6.5 pun.

A naive extrapolation for 10 year's time gives 273 Wim or about half the

wall thickness. Clearly the actual affected region would include the entire

wall. Presumably, wall properties would change, and the wall might actually

shrink. So it will be critical to determine exactly what the particles

are, what caused their formation and whether their appearance is prevent-

able. If their formation is not preventable, one would require a deter-

mination of the effect of Hf depletion on the metal properties.
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CIAPrER IV

ANALYSIS OF TIEXXJCPLE DATA

4.1 Introduction

It was noted in the previous chapter that temperature data for the test

capsules were gathered during the long duration metallurgical tests.

Unfortunately, due to the wire tying the thermocouples to the cylinders, this

data was distorted. To clarify the data, a second, short duration furnace run

was performed with a second set of cylinders and with thermocouples on each

that were not tied together. This chapter discusses the evidence gathered in

both test runs.

4.2 Long Duration Test Thermocouple Data

Despite the uncertainties in the thermocouple readings discussed earlier,

it was possible to distinguish when the fluoride in the test capsules was

undergoing a phase transformation. For example, the freezing of the fluoride

is shown for the W-25Re capsule in Figure 4.1. The power setting on the

furnace was turned down from a level of 68A to 50A. Temperature on the

cylinder initially follows a smooth decay. After a drop of the order of

100 K, it suddenly increases by about 10K, decays again, increases again by

about 30°K, then finally decays along a curve that eventually appears to be a

continuation of the initial decay. A similar behavior is shown for the ASTAR

cylinder temperature in Figure 4.2, but here only one "hump," with a

temperature jump of 40 K occurs.
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What each of these jumps represents is heat being released as distinct

fluid volumes suddenly start to crystallize into the solid state, starting

from a metastable condition below the melting point. Such crystallization may

take place either by formation of nucleating particles in the liquid

(homogeneous nucleation) or by growth from "foreign" nucleation sites such as

impurities or wall surfaces [47]. In either case, energy must be used to form

the solid surface (form the interface between solid and liquid) and this is

provided by free energy released by the phase transition.

Under the classical theory of Gibbs, there is a critical radius that a

homogeneously nucleating particle must achieve to continue growth:

2a
rk =

k nhls

where a is surface tension, hs the heat of fusion per unit volume, and q the

relative supercooling defined as

T -Tm
'7 T

with Tm the melting point. If the particle size is larger than rk, free

energy will be minimized by continued growth. As the degree of supercooling

increases, the size of particles required for nucleation decreases.

Eventually the size is sufficiently low that aggregates of molecules (which

are always forming and dissolving in the liquid and whose number increases

with supercooling) grow indefinitely.

However, the fluoride distribution in the cylinders here, showing a

shrinkage tube down the middle, indicates that it is most likely that

crystallization began at the wall and grew inward. Nucleation on a "foreign"

surface is referred to as heterogeneous. Current theories state that a
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material whose solid phase has close affinity for the solid surface should

crystallize with little or no supercooling. (A later section will consider

what might be done to reduce supercooling for MgF2.)

The degree of supercooling for MgF2 is difficult to state based on these

data alone, due to the thermocouple uncertainties. Generally, the ASTAR

exhibited a greater delay in crystallizing after the furnace power was turned

down. The number of "humps" (crystallizations) when the capsules were cooled

varied. Sometimes there were as many as three for a particular capsule. This

could change between freezing tests done within a short period of each other

(< 1 hr.). Some of these changes seem to have been caused by random

variations in the time that crystallization was triggered (humps overlap or

separate on the temperature outputs) while others apparently represent real

changes in the distribution of MgF2 in the cylinder (humps change in size or

number).

The last freezing recorded was similar to those shown in Figures 4.1 and

4.2, which indicate one large volume of MgF2 in the ASTAR and two smaller ones

in the W-25Re. This correlates with the distributions seen after capsules

were cut open (Figure 3.8) even though the fluoride was melted again for a

short period (< 2 hrs.) before the final freezing to check some other

temperature data.

Melting of the fluoride presented less dramatic, but nonetheless

distinct, evidence, as is shown in Figures 4.3 and 4.4 for the W-25Re and

ASTAR capsules respectively. These were obtained when the power level was

turned up from 65A to 70A. The lowered slopes of the curves represent a

temperature deficit that shows heat being absorbed for the phase change. This
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is perhaps seen more clearly in Figure 4.5. Figure 4.5a shows a series of

heating steps as they affected the ASTAR thermocouple measurement. The steps

before and after the phase change follow simple exponentials. If the time

constant is interpolated, one can draw a curve for temperature absent the phase

change, as shown in Figure 4.5b, along with the actual data.

A single compound undergoing melting would be expected to be isothermal

during the phase change. One explanation for the slope exhibited by the data

in Figure 4.5b is a thermal gradient radially in the cylinder if the fluoride

melts only from the outside toward the center. Such a gradient would allow

one to calculate a thermal conductivity of the molten fluoride. But it seems

unlikely that the solid would not also melt at the bottom and sink.

The thermocouple was shorted near the tube center, so (referring to the

fluoride distribution in Figure 3.8) it was less likely to be adjacent to the

melt than if it had not been shorted. As the furnace heated up during

fluoride melting, the temperature measured increased since the tube wall was

not a perfect conductor to the melting, isothermal fluoride. Once the melting

was completed, the tube temperature measured increased, with steeper slope,

toward that of the furnace (as occurred at about 400 sec in Figure 4.3). Say

this were followed by a second melting, of another mass of fluoride (as

apparently occurred in Figure 4.3 from 400-600 sec and Figure 4.5b from

300-500 sec). The furnace would be by this time more nearly at equilibrium

temperature for the particular power setting. So the thermocouple temperature

would be more and more nearly isothermal, somewhere between the temperature of

the melt and that of the furnace. Finally, when the second melting was

completed, the measured temperature would increase again toward that of the
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furnace (as at about 400 sec and 550 sec in Figures 4.3 and 4.5b

respectively). The presence of two separate masses of fluoride and two

meltings is supported by freezing curves showing two humps before each of

Figures 4.3 and 4.5b. (The freezing curve for the former is Figure 4.1.)

4.3 Second Test Capsule Set Furnace Run - Thermocouple Data

4.3.1 Purpose and Set-up

A second set of test capsules was used to try to clarify the thermocouple

data. The placement of thermocouples on these was modified to the

configuration shown in Figure 4.6. The lower thermocouples that had been

welded to the cylinders were retained, but the wrapping wires were moved down

as close to the weld points as possible. The upper welded thermocouples were

removed, and the wires used to make new thermocouples. These were then fixed

as closely as possible to the top ends of the cylinder by wrapping them with

tungsten wire. The result of this was that these wires were probably shorted

to the top edge of the cylinder, but care was taken to avoid shorting to the

Ta sheet. This sheet was wrapped on the cylinders as shown in order to

reproduce as closely as possible the thermal conditions experienced in the

first test run. Considerable trial and error was required to set up the

thermocouples while avoiding breakage and undesirable shorting. The alloy

capsules were placed in the furnace in the same positions with respect to the

heating elements as in the long duration test. The purpose was to reproduce

any small variations in temperature caused by different view factors of the

heating elements or furnace frame gap (see Figure 3.2).
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It was hoped that by having a thermocouple at each end of the cylinder,

the transfer of fluoride from one end to the other could be tracked. As a

corollary it became possible to determine thermocouple errors and the

temperature of one end of each cylinder.

4.3.2 eltinrg-Freezing Results - General Description

Figures 4.7 and 4.8 condense the temperature curves obtained in the

melting-freezing cycles. (There were no cycles before these.) In both of

these figures, the temperature scales are from the directly read voltages.

Preceding each melting is a stepped heating sequence to the 65A level (not

shown). Relatively short times in the molten state (1 hr. 43 min.; 1 hr.

32 min.) preceded the first two freezing events. Longer times as a liquid

preceded the second two (42 hr. 57 min.; 42 hr. 17 min.). These times are

from the beginning of the melting process (flattened curve) to the power being

reduced to the 50A level from 68A.

Consistent with an isothermal phase change, the outputs for the lower

thermocouples on the cylinders are nearly flat during melting except for some

irregularities toward the end of each cycle. The upper ones show a lower

slope than if no melting had occurred.

As the melting point (barring significant impurities in the fluoride)

should be fixed, the flat curves can be used to find the error in the

respective lower thermocouples. For the ASTAR, this is about -14 30K and,

for the W-25Re, -125 3 K. The large value of the latter may be explainable

by a short of the thermocouple. When the furnace was opened it was noted that

the material preventing the W-25Re thermocouple wires from touching a

radiation shield at a break in the ceramic insulation had been displaced.
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The upper thermocouple curves look similar to those obtained from melting

during the long duration capsule test. The curve recorded is clearly affected

by the melting, but in both cases the temperature measurement point was

separated from the melt along the tube. Note that in the data from the upper

ASTAR thermocouple in each of cycles II and IV, there is an initial section

followed by a kink at the points marked "1," which are both at the same

temperature level. (During cycle III the chart recorder pen was partially

malfunctioning.) The longer flattening in the fourth cycle implies an

increase of material undergoing phase change near the thermocouple, though not

enough to be so overwhelming an influence that the curve is perfectly flat.

(Or it may be that the upper thermocouples, which are not welded to the tube

and have a bead of about 1 mm diameter, are just not as well coupled to the

tube temperature.) Using this flattening as a benchmark for the melting point

gives a thermocouple error of -18 30K.

Turning now to the freezing parts of the cycle, consider the outputs from

the lower thermocouples of each capsule. As in the long duration tests, one

sees the "humps" showing heat released on crystallization, but now they all

peak at the same level for a given cylinder, a level which is at or slightly

below the melting levels in the previous figure. This correlation is

reasonable. When the supercooled fluoride begins to freeze, it releases

energy in the phase change which provides sensible heat to raise the

temperature back to the melting point. If the cylinder were now perfectly

insulated, freezing would stop.

Consider the upper ASTAR thermocouple data. The point labeled "A" in

each cycle corresponds in time with the start of the crystallizations recorded
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by the lower thermocouple. In the first cycle, the hump following "A" decays

smoothly, and it appears that what is being seen is the transmitted heat pulse

from the lower end of the cylinder (Appendix C). In the next cycles there is

superposed a growing spike which was most likely caused by material

accumulating over time at the top end of the cylinder. Note that the spike

peak at G is below the level of the melting on the same thermocouple. (If

used as a melting point benchmark, the thermocouple error would be -46 K.)

The data from the upper W-25Re thermocouple is more difficult to

interpret. The points labeled "B" where the slope decreases in magnitude

correspond in time to the crystallizations (with little supercooling) recorded

by the lower thermocouple. However, there is no correspondence of the large

hump labeled "C" and recorded in cycle III with a slope change in the upper

thermocouple temperature. There are simultaneous decreases in slope magnitude

in both the upper and lower W-Re thermocouple traces at D and D' respectively.

In the fourth cycle also, the crystallization starting at point E does not

show up at the upper end, but a hump does appear about 50 seconds later.

It is reasonable to assert that, given the smaller temperature jump on

MgF2 freezing at the lower end (less supercooling) of the W-25Re cylinder

compared with the other cylinder, the effect at the top end should be

attenuated. (This would be reinforced by lack of the lower half tantalum

sheet cover, which acts as an insulator on the ASTAR cylinder.) So the muted

responses at the points marked "B" are not suprising. However, the lack of

time correlation in the final two cycles suggests the possibility of separate

processes going on at the two ends.

152



At least for the ASTAR cylinder, transport of fluoride from the bottom to

the top end has certainly been traced here. The impression is of a process

that is proportional to time, probably attributable to transport caused by

temperature and thus vapor pressure differences between the two ends of the

cylinder.

In Table 4.1a are listed temperatures as read from the raw data. Error

bars in each box indicate variations in readings at particular power settings,

not absolute errors. Table 4.lb shows "corrected" temperatures using the

absolute errors calculated above from melting point levels. Given the

reproduction of thermal conditions in this test, the values in Table 4.1b

should be close to the actual temperatures, for corresponding positions on the

cylinders and power settings, that the cylinders experienced during the long

duration test. (The correction factor for the upper ASTAR measurement has an

error bar determined by the top and bottom of the depressed slope section in

cycle IV). Since the thermocouple will be "leading" the temperature of the

melting fluoride during the furnace temperature rise, the correction factor is

taken at the upper limit, or 21 K. A 3 K error bar is then added as an

estimate. All error bars in the corrected temperatures are from adding

correction errors to existing ones in part a of the table. No error bar is

added at the 75A level since there was only one data point (the data at 76A

are extrapolated).

The "corrected" temperatures all are above those tabulated previously for

the long duration test (Chapter III). The exception is at 68A, where the

earlier value is between that for the upper and lower thermocouples shown

here. It also should be mentioned that temperature corrections are probably a
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Table 4.la
Uncorrected Temperatures from Second Capsule Set Furnace Run (KX)

Current (A) Lower W-25Re Upper W-25Re Lower ASTAR Upper ASTAR

50 1204 f 3 1249 + 1 1300 2 1290 1

55 1262 2 1315 3 1375 3 1360 3

60 1329 ± 1 1382 ± 1 1446 ± 3 1430 ± 2

65 1391 ± 2 1446 ± 1 1514 ± 3 1498 ± 2

68 1426 ± 1 1484 ± 1 1551 ± 2 1535 ± 1

70 1449 ± 2 1505 ± 3 1577 ± 2 1559 2

75 1506 1566 1641 1620

melt 1411 3 --- 1522 ± 3.3 1518 ± 3

correction +125 3 * - +14 ± 3.3 +18 3 (center)

21 K (ufcrFlimit

From low end of temperature plateau during melting (Cycle IV, Figure 4.7)
Table 4. lb

"Corrected Temperatures from Second Capsule Set Furnace Rn ( K)

Current (A) Lower W-25Re Lower ASTAR Upper ASTAR

50 1329 6 1314 5 1311 4

55 1387 5 1389 6 1381 6

60 1454 4 1460 6 1451 5

65 1516 5 1528 6 1519 5

68 1551 4 1565 5 1556 4

70 1574 5 1591 5 1580 5

75 1631 1655 1637

76e

melt

(1643)

1536

(1667)

1536

(1652)

1536

Extrapolated for comparison with data of first capsule set furnace run
(Chapter III).

NOTE: Error bars in each box indicate variation in readings at each
temperature, not absolute errors over the four test cycles. To obtain
"corrected" temperature error bars, correction errors are added to
original errors (no error bar at 75A level since data from only one
cycle due to power supply problem).
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function of temperature, and thus their use substantially away from the

melting points introduces its own error.

4.3.3 Supercooling Behavior and Control

Using the lower thermocouple data from each cylinder, the supercooling

ATs for each cycle were tabulated in Table 4.2. Clearly there is substantial

scatter in these values, 50% or more. Misra and Whittenberger [13]

encountered similar scatter for supercooling of various fluoride salt mixtures

for particular samples, although Eichelberger ([17], p. 199) claims that only

"impure" MgF2 will supercool.

The problems with the long duration test temperatures make it difficult

to quantatively evaluate the subcooling seen there. If a thermocouple is not

directly adjacent to the freezing fluoride, the peak temperature measured in a

freezing "hump" will be below the melting point of the fluoride: due to

radiative loss along the tube length, the AT measured is low. During the long

duration test the thermocouples were shorted near the tube center, and were

thus probably most of the time separated by some length from the fluoride.

Nonetheless, qualitatively one sees similar supercooling behavior when

comparing the two metal containers -- generally, substantially more

supercooling in ASTAR than in W-25Re.

What are the consequences of supercooling for a power generation system?

During the supercooling period there will be lowered system conversion

efficiency. In [48] we showed a 27% reduction in cycle efficiency with a

400 K peak temperature drop from 1900 to 1500 K, which forced the system into

an off-design condition. The consequences here should be less significant,

since even the worst supercooling in the ASTAR cylinder was under 1000K.
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Table 4.2

Supercooting Data

Supercooling. OK

Cycle Number ASTAR 811-C W-25Re

I 80 9

II 92 17

III 50 31

IV 68 20
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As is evident from Figure 4.8, the time spent in supercooled condition

varies in proportion to the amount of supercooling. So even though the

precise supercooling is unpredictable each time, one could devise a control

law for compensating, which would presumably require a battery storage system.

However, thermal dampening effects in the receiver might render such a system

unnecessary.

However, it would clearly be more desirable to avoid the initial problem,

so the question arises as to what could be done to decrease the supercooling.

One option is simply to prefer the tungsten alloy over the ASTAR.

Another possibility is to add to the fluoride a substance that will

promote nucleation. One procedure, as outlined by Lane in [47], involves

selecting materials with similar crystalline structures and dimensions on the

theory that they will have an affinity for the heat storage material, i.e. act

as templates for crystallization. However, it is often found that, due to the

complexities of nucleation and growth, other materials, with no apparent

structural similarity to the storage material, will work as well or better.

A problem is that historically it has been found difficult to obtain

nucleators whose effectiveness will persist over thousands of cycles. A

further difficulty a priort for MgF2 nucleation is that the high temperature

implies relatively fewer solid materials available as candidate nucleators.

Nonetheless, Table 4.3 presents two candidate nucleators selected by the

process suggested by Lane. Magnesium fluoride has a tetragonal lattice (base

length a, vertical dimension length c, all angles 900), and substances with

dimensions within a few percent have been chosen based on the data in Donnay

[49].
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Table 4.3

Some Candtdate RcLeators for lgF2 2

Cell Dimension X

Substance a c Melting Point

Magnesium Fluoride 4.621 3.050 1536 K

0
Nickel Foride (NiF2) 4.710 3.118 1747 K

Titanium Dioxide (TiO2) 4.593 2.959 2098 K
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CHAPMT V

SUEdARYg, aCNLUSIOHS, AD EXrFD)HAATIOIS

The purpose of this work has been to consider the feasibility of using

MgF2 for heat-of-fusion energy storage in a space solar thermal electrical

generating system. The following steps have been accomplished:

1., Systems Level Comparison of Solar Thermal System Using MgF2 us. one

using LF

This has shown that the system using MgF2 heat storage can reduce system

mass for a given power output by about 15Z, despite increased insulation

requirements for the higher temperature system. The mass comparison is

very sensitive to mirror mass/area. A firmer result is a reduction in

mirror area '(and thus drag penalty) by about 22X.

2. Theoretical aterial Compattbilitty Evaluation of MgF2 Storage

Available literature and expertise suggests that refractory metal alloys

will be most suitable for MgF2 containment, though long-term

embrittlement will be a problem for tantalum-based alloys.

Thermochemical calculations indicate the compatibility of MgF2 with

refractory metals. The permeability of these metals to hydrogen shows

that pressure buildup in containers due to reactions with residual water

should only be a transient phenomenon.

3. Experimental Compattbtility Test

A vacuum furnace capable of temperatures exceeding the melting point of

MgF2 was designed and constructed. Two capsules containing gF2 , one

each of the alloys W-25Re and ASTAR-811C, were kept above the MgF2
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melting point of 15360K for over 2000 hours. Subsequent examinations of

the capsules showed no indication of deleterious effects on the tungsten

alloy. The ASTAR wall had deterioriated at isolated inclusions,

apparently because of iron contamination during the manufacturing

process. Later tests on the same capsule revealed the presence of an

apparent hafnium compound as particles frozen into the fluoride. This is

consistent with the relatively high reactivity of Hf.

4. Data on lettng-Freeztng Behavtor of gF2

Tests in the vacuum furnace showed clearly both the isothermal melting of

MgF2 and its supercooling when frozen. The melting point was used to

extract corrected thermocouple temperatures. The magnitude of the latter

was "50-80 K for the ASTAR capsule and 10-30 K for the W-25Re. There

was flouride migration in the capsule indicated both by the distribution

of the frozen melt and the thermocouple data.

Thus, no basic obstacles have been found to the use of MgF2 for solar

thermal energy storage. To extend the results given here, the following steps

are suggested.

* A more detailed thermo-optical design of the mirror-receiver system,

paying particular attention to whether relaxed mirror qualities for

lower temperature systems will reverse the advantage of the MgF2

system;

· Further testing to understand the nature of the particles found in the

ASTAR sample and the effect of their formation on the metal

properties. One would like to be able to do standard mechanical

properties tests on metal slices held in MgF2 for sufficient periods
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to cause Hf depletion, but this may be too slow to be practical. On

the other hand, it may be found that the particle formation can be

controlled by controlling contaminant levels (e.g. of 02, N2 C) in

and around the container.

Accelerated thermal cycling tests of alloys containing MgF2. DeVan

suggests that the solubility of refractory metals in liquid MgF2 may

be sufficient that over the power system lifetime thermal gradients

would cause net transport of metal through the liquid. In testing one

would have to reproduce as many cycles of the system life as possible.

Zero-g testing to eliminate convective effects is probably required.

An intermediary experiment to find metal solubility in liquid MgF2

could be performed by melting the fluoride in a metal container,

pouring it into a vessel of another material (probably ceramic) then

counting metal deposited there and left in the solidified NgF2.

* Effects of supercooling. The actual effects on system performance of

supercooling, given thermal inertia effects and various cooling rates,

should be studied.
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APPENDIX A

Thermal Conductivity of Solid LF and NgF2

As noted above, properties data for the fluorides considered here is

sparse. Figure Al shows data on thermal conductivity from several sources.

Koyama [Al] determined the conductivity of polycrystaline opacified MgF2

between 298 and 11730K which follows the relation

K 3.17 + 0.85 W (Al)
(T(OK)xlO- 3 ) m- K

Without specifying the crystal structure, Sreenivasan and Altman [A2]

show a similar curve for LiF to the same temperature which, however, exhibits

considerable flattening before the melting point. By contrast, the data

reproduced by Touloukian [A3] shows increasing conductivity of LiF. This last

set of data was derived from work on monocrystalline LiF. There may be

radiative transmission effects present here.

In view of the polycrystalline nature of the fluoride in the thermal

energy storage system, Koyama's data was extrapolated to obtain conductivity

at the melting point. (The frozen MgF2 after the vacuum melting was

polycrystalline.) Given the similarity of the curves, the LiF data from

Sreenivasan is also accepted and extrapolated. Note that due to the higher

temperatures, radiative effects might increase the effective conductivity of

MgF2 relative to that of LiF.

No data on molten conductivity of MgF2 has been found.
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APPENDIX B

Effect of Thermocouple Ctrcutt Errors

Faults in thermocouple circuits can cause significant errors. A few

examples are given here along with the ideal circuit. These are only formally

correct, and intended to show some of the characteristics of the circuit

errors.

B.1 Ideal Circuit

The thermocouple operates by taking advantage of the Seebeck voltage

generated by a wire in a thermal gradient, i.e.

dE = aAdT (B1)

where

E = emf

T = temperature

a = Seebeck coefficient for a homogeneous wire

Consider the circuit in Figure Bla, consisting of two types of wire welded

together at two points: where the temperature is to be measured at T2, and at

a reference point with lower temperature To . The circuit is open, the voltage

measured with a voltmeter, the reference point being in the "negative" let as

seen from there. Assuming that aA, aB are both positive and adding voltage

drops clockwise around the circuit

- V - aA(T2-Tm) + aB(T2 -To) - aA(Tm -To) = 0 (B2a)

V = (aB-aA)(T2-To) (B2b)

- A(T2-To) (B2c)
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where aBA is the relative Seebeck coefficient (actually a function of T) used

to determine temperatures relative to a standard (most often OOC), and the

temperature at the voltmeter Tm drops out. For the temperature measurements

carried out in this research the ideal circuit would be unavoidably grounded

at the measurement point T2, because the capsules were metal and supported by

the metal, grounded part of the furnace isolated from the heating circuit.

This should have no effect on temperature measurements, as long as the rest of

the circuit is kept isolated from ground.

B.2 Circuit Faults

Faults in the thermocouple wiring cause currents in parts of the circuit,

which by Ohm's law change the voltage read at the voltmeter. For example,

consider the circuit shown in Figure Blb, which includes a short across the

leads at temperature T. There are two voltage loops to be considered; in the

lower one there is a current IL . Adding voltage drops in the upper and lower

circuits gives, respectively,

- V - A(T1 Tm) + aB(Tl-To) - aA(Tm-To) - ILR = 0 (B3a)

IL(R+RA+RB) - aA(T2-T1) + aB(T 2-T1) = 0 (B3b)

Solving for I L in (B3b) and substituting into B3a gives

V = aAB(Tl-To) - ( R+RA+ )aBA(T-T1)R+RA+ )A( 2 1)

which formally shows that the effect of this type of short will be to read out

the temperature of the short, as long as (T2-T1) << (T1-To). This is similar

to, but not precisely identical with, the condition encountered in both

furnace tests. (The difference between the tests was in the quantity T2-T1

which was potentially greater in the first than in the second due to the
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larger physical separation of the thermocouple head and the shorting wire.)

In both tests, the wrapping wire caused a short to ground which is represented

schematically in Figure Blc. This introduces additional potential biasing

currents which depend upon the peculiarities of the grounding connection.

Another example of a circuit fault is shown in Figure B2. In this case

there is an inadvertent ground in the circuit, similar to what might have

occurred in the second furnace test where, as stated in the main text, there

was a possibility of a short to the insulation (here assumed to be at

temperature T1). Formally counting voltage drops around the loop for the

upper part and lower right one respectively gives

- V - aA(T2-Tm) + aB(T2-TO) - aA(T-T ) - IR 1 = 0
Io(Rgl+R +R1) +aA(T 2-Tj)=
o g1 g2 2

Combining and cancelling terms,

R

V = BA(T2-To ) + R +R +R1 aA(T 2-T 1)
gl g2 1

While R , R are unknown (they are probably from contact resistance) and R
g 1 g2

is just the wire resistance, one could plausibly argue that the resistance

ratio may not be far below 1. The value of (T1-Tm)/(T2-Tm) depends upon

exactly where the short is, but might be about 1/3. Then also aA is by

definition larger than aBA. So it is quite reasonable that substantial errors

in the signal (such as those in the W-25Re thermocouples in the second furnace

run) could occur in this or a similar way.
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APPENDIX C

Heat Transtisston and Loss During Phase Change

Figure 4.8 showed thermocouple data during freezing of the fluoride in

the two samples. As noted in the main text, the heat pulses recorded by the

lower thermocouples during freezing seemed to be detected at the same time by

the upper thermocouples, though with lower temperature peaks.

One plausible mechanism for this is transmission of heat by conduction

along the tube, accompanied by losses by radiation to the sides. The model

below considers these effects.

Start with a tube of length L and thickness 6. At any point along the

length the heat balance per unit length may be stated as

Acp T Ak a 2T Da(T4-Tbk) (C1)

where

A = cross-sectional area, m2

c = specific heat J/kg-K

p = metal density kg/m3

k = thermal conductivity W/m-OK

T = local temperature, OK

Tbk = temperature of surrounding background environment, OK

D = tube diameter

e = tube emmisivity

ca = Stefan-Boltzmann constant
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It is assumed that the wall thickness is relatively small, i.e. that A Z rD5

and also that (T-Tbk) is small enough that the radiation term may be

4 4 3
linearized ((T -Tbk) " 4Tbk(T-Tbk)). Then this becomes

aT a02T 4 Tb
Ot = 2 bkCp6 (T-Tbk) (C2)

where the thermal diffusivity a -- k/pc . As the coefficient of the second
p

term has the units 1/time a characteristic radiation time TR is defined.

Also, let T' = T-Tbk be used instead of T.

OT 2 ' (T-) (C3)
at a2 TR

Assume that initially the value of T' = 0 throughout the tube, then take the

Lapace transform of (C3), which gives

sT a dx _ T (C4)
dx2 R

where the transform is represented by T. This can be restated as

d 2 Ts 1d _ ( + ) T = (C5)

Then let the solution of this be given as

T = A(s)e(s)x + B(s)e- 3 (s)x (C6a)

with

a(s) -_- + " ' (C6b)
a R

At x = O, T = A + B sets a boundary condition if the transform of the value of

T' over time is known. Let it be that T' follows a step function that

at t = 0 umps to the value Ti (the difference between the fluoride melting

point Tm and Tbk) and then drops to back to zero at a time t. This

represents the jump in temperature at the end of the experimental cylinder

175



that contains the freezing MgF2. The transform of this jump is

os^r -stT(x--O) = jef(t)dt = )0

f(t) = Ti

=0

(C7a)

< t < t

t > ti

T -st 1
s (1-e ) =A+B
S

(CTb)

Another boundary condition may be set by assuming the tube end is insulated,

x=L

dT
= 0 or ( d )

x=L
= 0

which gives

AeP()L - Bel3(s)L = 0

Resolving (C7b) and (CSa) results in

Ts -stl
( 1-e )

1 + e2PL

Ti -st1 e2PL
B = -(1-e ) e

1 +e2 WL

which is then substituted into (C6a) to give

Tll-St
^ 1-e 1 )

T 1 + I + e2PL [e1x + e[2L-x]]

but since our interest is in the temperature at the tube end, set x = L which

results in the simplification

- T1 -s t
T=---{1-e

Ti=5.

1

coshL

1

cosh(s 1 L

TR Jr-

)

+'1
S

-st 1
e

cosh(7F L
TR J-

(C11)
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The basic reverse transform is achieved with the first term; the second will

be the same but for a shift in time to t1 so that it is present only for

t > t and evaluated at t - t1 rather than t.

Referring to Bateman, p. 259 C1], transform #40 is useable with the

1 L 1
identification of this quantities as p = s + , 1 , i = , x = 0

TR J; TR

where p is his transform variable. Thus there is required an exponential term

in the reverse transform by the identity for a general reverse transform f1

that

^-l(p _ a) = eat
f (p-a) =e f(t) (C12)

1
where here a =

TR

Then the first term of

-

-t/T R
T'(t,L) = Tie

(t<t 1)

_=T i [
Lcosh( L 

aTR

transforms to

0 (n2+ 1 122a 
t]n=0 (n+--) + a

2 TR

-2 (n+)1) -[(n+ 2 2 R
- 2 n'r) 2 2 L TR

n= +TR a

(C13)

The large bracketed factor will henceforward be designated as g(t). Thus the

full expression for T'(t,L) can be stated as

T'(t,L) = T[0.4280-2r(0.1065e-0 1165t- 6139e 6065t 3912e- 1 .5865t

-0.02842e-3 0505t+.**)] + Tu(t-tl)g(t-tl) (C14)

where u(t-tl) is .a unit step function that is zero before t = t. Here some
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reasonable estimates of the constants have been made: a = 2.5 x 10- 5 m2/sec

[C2] (for tantalum), L 3.175 x 10 2 m (from the empty tube length in the test

capsules), t x 90 sec (from Figure 4.8, cycle I, thermocouple 16). Also,

with cp ~ 157 J/kg°K, 65 .8 x 10-3m, e = .15, and Tbk - 1500 K there results

TR = 18.1 sec.

One can compare the result (C14) with that from the case of zero

radiation loss, i.e. with e = 0 or TR -- c, which is

T'(t,L) T 1 - 27r(O.2026e-O 6125to.o6755e -0 ' 5 5 1 3 t

(no radiatton loss)
+0.04053e-1.5313t -0.02895e - 3 .0013t+. )

(C15)

Both (C14) and (C15) are plotted (normalized) in Figure C1. It is seen that

the radiant loss both slows the temperature increase and limits the peak value

of T'(L) which is determined by the first term in (C13). Recalling the data

in Figure 4.8, cycle I for the upper ASTAR thermocouple, #17, clearly the peak

reached was not close to 40% of the temperature jump on the lower

thermocouple. Nonetheless, the general shape, though superposed on a rapidly

decreasing background temperature, is similar.

Changes in the constants contributing to the first term of (C13) can have

an effect on the achievable value of T'. For example, if a drops to 2 x 1075

m2/sec (the lower end of the range given in the reference) then the peak of T'

is 0.364T'. An increase in emissivity would also reduce T' (for example. for

e = .2 the peak is at 0.346T').

The effect of a change in Tbk correlates well with the data. Referring

back to Figure 4.8, the umps marked "A" are larger the larger the

corresponding umps on the lower thermocouple #16. Then consider the
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derivative of T'(L) with Tbk

3 1/2
T'"(L) -1 (T-Tbk)Tbk3

sinh(-aT3/26T - 3/2 2 32 sinh(-aTbk )
bk cosh(aT ) cosh (aTbk )

where a is a constant. Clearly as Tbk grows larger (the jump at the lower

thermocouple becomes less) the value of the ump represented by T'(L) does as

well.
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