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ABSTRACT

Limits to high-speed robot control in complex environments are investigated both
theoretically and experimentally. The work focuses on dynamically-decoupled robots,
which have been shown to be fast and controllable. Three levels of control are inves-
tigated in theory and tested experimentally. The levels are: robust near time-optimal
control, reflex" control, and simple local planning. All three levels are integrated us-
ing configuration space. Experimental implementation is described for a two degree of
freedom, planar, dynamically decoupled arm.

First, a nonlinear nearly time-optimal control technique is derived and shown to be
globally stable and robust with respect to parametric uncertainty, unmodelled dynamics,-
and actuator saturation. Test results show an improvement in speed of a factor of four
over conventional linear control.

Variations on potential function control are used to define reflex" control, with
which automatic obstacle avoidance is implemented in coordination with high-speed servo
control. Configuration space is used to define a common representation for integrating
high-speed motion with reflexes. Methods for computing 2-D configuration space trans-
formations of moving obstacles at video rates (30Hz) are presented.

Reflex control is shown effective in preventing collisions, but does not guarantee
effective progress toward a goal. A low-level local planning algorithm is described with
variations for integration with reflexes and high-speed servoing.

Integration of the three levels of control leads to a suggested layered control orga-
nization in which cycle times are incrementally longer and complexity is incrementally
broader for successive layers. To accomplish integration of multiple layers without dete-
rioration of performance, each layer is defined as "expert" within some regime in which
it assumes full control responsibility.
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CH A P T E R I

INTRODUCTION

Robots were invented, in concept, over 60 years ago, by the playwright Karel

Capek in his play Rossum's Universal Robots." In science fiction literature,

the state of the art of robotics advanced by leaps and bounds. Meanwhile, the

technological state of the art lagged by a disappointing margin. Some 30 years

after Capek's introduction, the first robot patent application was filed. In 1961,

the first industrial robot was introduced by Unimation. It took 16 years before

Unimation showed its first profit. Meanwhile, more than 200 efforts worldwide

had been launched in robotics, most of which were abandoned. While the virtues

of robots were sung by robot manufacturers, many ambitious industrial projects

in robot automated manufacturing resulted in disheartening failures.

Industrial robots seem to inspire a sense of familiarity in the human observer.

Robot arms and grippers are typically suggestive of our own biological arms

and hands. The eerie sense of familiarity prompts us to compare the robot's

behavior to our own, a comparison which is inevitably a huge disappointment. In

short, robots are slow, clumsy and stupid, making these iron-collar workers easily

categorized as 'unemployable."

Research described in this document was motivated by the author's curiosity

as to why robots should be so incompetent. Examples abound of high-speed

machinery in fixed automation systems which dramatically outperform humans

at specific tasks. A wide selection of devices exist covering a variety, range and

resolution of sensing well beyond the capabilities of human sensors. Powerful

computing systems exist which can perform extremely fast logical and arithmetic

11
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evaluations. In the research presented here, it was the author's hope to uncover

fundamental issues in the limits to high-performance robot systems.

A long-range objective of robotics research is the realization of a system which

accepts commands as abstract goals, and accomplishes the goals effectively and

efficiently. The robot should perform its own planning and respond automati-

cally to unexpected changes. Such performance should be achieved without the

need for detailed programming, as the robot system should handle all details

autonomously.

In the present research, a more limited goal was defined: fast, safe and effective

motion of a 2-degree-of-freedom robot arm servoing to a sensed, moving goal in

cluttered, dynamic environments. The approach taken was "bottom-up", start-

ing from the design and construction of a very fast robot arm, a high-bandwidth

optical position sensor, and a powerful multiprocessor computing system. Con-

trol system development proceeded in layers, starting with robust time-optimal-

control. Control layers of reflexes" and local planning were defined and inte-

grated as concurrent processes. Techniques were developed and implemented for

high-speed computations of obstacle shapes in terms of robot joint coordinates.

Throughout, issues of generality were considered. Although the scope of the

work included only motion execution, the control analysis and implementation

were performed with the intent of making a system with a fundamentally sound

foundation on which higher levels of abstraction in control could be built.

This thesis is organized in seven chapters. Chapters 2 through 6 present con-

tributions which are logically distinct, but which integrate as a whole. Chapter 2

covers the design philosophy, design details and performance measurements of the

three major subsystems (arm; sensing; computing) of the experimental apparatus.

In Chapter 3, the lowest level control process is described: robust time-optimal

control. Chapter 4 presents theoretical and algorithmic developments for exe-

cuting fast transformations of sensed obstacles into equivalent forbidden regions

in joint space. Reflex control is introduced in Chapter 5. Here, the author's
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first instance of control integration is described, in which execution of high-speed

motion and guaranteed obstacle avoidance are realized simultaneously without

deterioration of the performance of either control layer. In Chapter 6, integra-

tion issues are explored more fully. Following the suggested control organization

guidelines, a third layer of control, local path planning, is introduced. Chapter 7

concludes with a summary and analysis of the work.

Each of the major ideas presented in Chapters 2 through 6 were treated the-

oretically and tested empirically. High-speed performance was a criterion for

evaluating success throughout. As a heuristic benchmark, machine performance

was considered adequate only if it outperformed a human by a substantial mar-

gin. The experimental hardware was used to verify theoretical contributions and

demonstrate their effectiveness in machine control. More importantly, though, it

was the author's impression that the machine directed the development of its own

control structure. Theory could not be force-fit to the hardware in violation of-

improper, often unrecognized implicit assumptions. Organization and implemen-

tation of the control system was harshly judged by the machine, which seemed

to demand its own preferred control design. On occasion, exasperated trial-and-

error attempts led to unanticipated specific successes, which in turn generalized

to broader theoretical contributions. In the author's opinion, metal and silicon

introduced uncompromising judgment and truthful guidance which justified the

bottom-up approach.



C H A P T E R II

EXPERIMENTAL APPARATUS: DESIGN AND CHARACTERIZATION

§ 1. Introduction

A goal of the work described in this document has been the investigation of

limits to high-speed operation of robots. To this end, an experimental apparatus

was designed and constructed which intentionally simplified the experimental

doma'n. The experimental apparatus consisted of three primary subsystems: an

electromechanical robot arm, an optical sensing system, and a computing system.

In the design of each subsystem, the priority was to emulate futuristic, high-

performance machines and devices. Generality and direct industrial applicability

were compromised in favor of constructing a system which would help spotlight

fundamental issues in the limits to high-performance machine controi.

Simplifications in the design of the robot arm included: limiting the mobility

to two degrees of freedom in a plane; ignoring issues of grippers and end-effectors;

ignoring issues of payload capacity and payload dynamic effects; and decoupling

the dynamics through (pseudo) direct drive actuation and dynamic balancing.

Since the arm was confined to motion in a plane, associated issues in sensing and in

dynamic and kinematic computations were considerably simplified. Further, since

the robot had only two moving links and did not carry an end effector or other

payload, it was possible to design it to be light and stiff. Low inertia permitted

high accelerations, and the high stiffness permitted high-bandwidth control while

bypassing the complications of structural flexibility. Most importantly, the direct

drive, dynamically decoupled design resulted in tremendous simplification of the

14
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dynamic equations, an effect which had strong influences on the structure and

effectiveness of ;he control system design.

Simplifications were also introduced in the design of the sensing system. It

was not within the scope of this investigation to consider issues in machine vision,

e.g. high-speed image processing, object recognition, or stereo camera telemetry.

Rather, some means of non-contact sensing was desired which would imitate an

ideal non-contact sensor, presumably an advanced vision system. The chief sim-

plification introduced was that each object to be sensed was instrumented with a

"beacon": a set of infrared light emitting diodes (LED's). The sensor employed a

planar photodiode which provided an analog indication of the x-y position of the

centroid of all collected light. By flashing the light beacons individually, instru-

mented objects were unambiguously identified and located. Since the experimen-

tal domain was constrained to a plane, no range information was required. In this

manner, the sensing problem was largely sidestepped; no real image processing-

was performed. The result, though, non-contact determination of object positions

and identities, was the same as would be delivered by a (successful) vision sys-

tem. However, the simplified optical sensor employed obtained this information

two orders of magnitude faster than today's fastest vision systems.

The third subsystem, the computing system, was also intentionally overde-

signed. In all, six powerful processors (MC68020) with a common high-speed

backplane (VME) and 17 megabytes of shared random access memory were cou-

pled in a multiprocessing system. Certainly, this level of computational capacity

seems disproportionately high for the control of such a simple robot arm. Excess

capacity was desired, however, so that limitations of computational power would

not disguise more fundamental limitations in robot control. Further, what today

is considered overkill in computational capacity will undoubtedly be considered

modest in the near future. Like the robot design and the optical sensor, the mul-

tiprocessor emulates a futuristic version of currently available elements of robot

systems.
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In the following text, details of the three major subsystems are provided.

§2. Experimental Arm Design

In this section, the design philosophy, design details, and performance data

are presented for the two degree-of-freedom, pseudo direct-drive dynamically de-

coupled planar robot arm.

§2.1 Design Philosophy

Design of high-performance robot arms has been investigated by a number of

researchers. Some of the fastest experimental robot designs are those described

in [2,3,4,5,13,21,42,52], in which direct-drive principles have been utilized.

The expression "direct drive" has become an increasingly popular phrase in

machine design, though some confusion exists over what constitutes direct drive.

A strict interpretation of direct drive is that no transmission is used; a moving

link is rigidly attached directly to the moving element of the drive system (typ-

ically an electric motor). In spirit, a direct-drive machine is one which does not

exhibit the nonlinear properties characteristic of transmissions. In fact, some

robot designs are referred to as direct drive, although they employ some form of

transmission. The M.I.T. "direct-drive" arm [3,4] actually directly drives only

two of its three degrees of freedom; the third link is driven through a parallel-

ogram linkage. In effect, though, the machine behaves like a direct-drive robot,

since the linkage does not introduce significant friction, backlash or compliance.

Similarly, the AdeptOne robot [13], is, in effect, direct drive in its first two links,

although its second link is driven through a transmission. In the Adept design,

the transmission consists of a pre-tensioned steel band between a drive pulley on

the motor and a driven pulley on link 2. Backlash and friction of the steel band

transmission are negligible.
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One of the features of direct-drive robots which makes them fast is that the

motors employed are markedly more powerful than those commonly used in in-

dustrial robots. A notable exception from this generallization of industrial robots

is the AdeptOne robot which is essentially direct drive in its first two links, does

utilize unusually powerful motors, and which is relatively fast. In a direct drive

machine, the transmission is typically eliminated, and link torques are generated

directly by the motor rotors, a fact which necessitates unusually powerful mo-

tors. Ordinarily, a transmission is used to amplify the relatively small torque

developed by a drive motor. As a consequence, the speed required of the drive

motor is correspondingly higher. A low power motor can not provide both high

torque and high speed, so the overall performance of the system is limited by the

capacity of the motors.

Actually, the use of more powerful motors permits a higher performance robot

design, not necessarily through the elimination of a transmission. When better

motors are used, a proper transmission design can still improve speed and acceler-

ation capabilities beyond that of direct-drive [see, e.g., 36]. An optimized perfect

transmission (zero backlash, zero friction, and zero compliance) would always be

capable of improving a robot design over a transmissionless design. A direct-drive

design, however, is easier to control than a machine which utilizes an imperfect

transmission, since backlash, friction and compliance introduce nonlinear effects

which are difficult to model, difficult to sense or infer, and difficult to stabilize

within a control loop.

Another important trend in robot design is the use of remote actuation. In

a design with remote actuation, the motor stators are secured to ground, as

opposed to mounting them on successive moving links. In such designs, there is

no penalty for the use of powerful, typically bulky motors, since the motor stator

masses do not have to be accelerated along with the machine links. Strategic

motor placement near ground is notable in the AdeptOne design, in the M.I.T.

direct-drive arm design, as well as in the designs of the J.P.L. and Utah/M.I.T.

hands [41,18].
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When massive motors are used, if the design permits mounting the motors

to ground then the links do not need to support the mass of the motors. Con-

sequently, the links may be designed to be lightweight, yet have high resonant

frequencies. High resonances are desirable, since it is recognized that low reso-

nances effectively limit practical controller designs to low bandwidths. Attempts

to control a robot at bandwidths beyond the system resonant frequencies are ex-

perimental at this point. Published techniques are difficult to implement and are

very sensitive to modeling errors and parameter variations [9,12]. In practice, a

robot design with high resonant frequencies is easier to control [16,511.

Remote actuation is apparently inconsistent with direct drive. However, the

essence of.direct drive, the elimination of the undesirable effects of common trans-

missions, can be realized although the actuators are placed remote from the re-

spective driven links. With remote actuation, a particularly useful property can

be achieved: decoupled actuation. With decoupled actuation, the actuators may-

exert efforts on individual links with respect to ground, without exerting direct re-

action efforts on the remaining links. Dynamic coupling may still exist, e.g. from

Coriolis or centrifugal forces, but there is no direct influence by the actuators on

any but the intended links.

Figure 1 illustrates a hypothetical 2-D robot design which incorporates remote,

decoupled actuation and virtual direct-drive behavior. With reference to this

figure, actuation of one of the motors exerts a torque on only one of the links.

The actuator for link 2 does have a transmission (a linkage), although it may

essentially be ignored, since the transmission ratio is 1, and the efficiency of the

linkage may approach unity. If motor 2 is driven, then there will be no reaction

torque on link 1. Alternatively, if the motor for link 2 had been placed at the

"elbow", any torque exerted on link 2 would be exerted equal and opposite on link

1. Decoupled actuation simplifies control, since feedforward decoupling torques

do not have to be computed in software, and actuator saturation limits may be

considered separately, regardless of simultaneous operation of multiple actuators.
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T2

Figure 1: Two d.o.f. Dynamically Decoupled Robot Arm

An important additional development in robot design is the practice of dy-

namic decoupling. This technique was proposed by Youcef-Toumi in [521. In order

to achieve dynamic decoupling in a machine design with decoupled actuation, the

mass distribution of each link is adjusted such that the center of gravity is in line

with the respective axis of joint rotation. Dynamic decoupling has been designed

into the M.I.T. direct-drive robot, at least for links 2 and 3.

Dynamic decoupling is illustrated in figure 1. Counterweights are shown on

the backs of links 1 and 2, where the weight is selected such that the links are
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each neutrally stable under gravity loads. A consequence of such balancing, in

combination with decoupled actuation, is that the dynamic equations are partic-

ularly simple in an appropriate reference frame. Following the convention of [6],

the dynamics of a robot may be expressed in general as:

n I n

E ijqj + EE hivjqk + Gi = Qi (11.1)
j=1 j=1 k=1

where qi is the i'th generalized coordinate, Qi is the i'th generalized force, G is

a gravity term influencing the i'th generalized displacement, and hijk are factors

derived from spatial derivatives elements of the inertia tensor, Hij.

For a dynamically decoupled manipulator, gravity terms are cancelled by bal-

ancing, and the inertia tensor is invariant. Since the inertia tensor is invariant,

(inertias do not change as a function of the position of the robot), the terms

hijk, which lead to Coriolis and centrifugal forces, are eliminated. Further, for

the proper choice of generalized coordinates, the inertia tensor is diagonal. In

particular, if absolute joint angles (i.e., angles referenced to ground rather than

referenced to other links) are chosen as generalized coordinates, then the iner-

tia tensor is diagonal. If, in addition, joint and transmission friction is low, i.e.

the machine is effectively direct drive, then the robot dynamics degenerates to a

decoupled collection of second-order, linear systems. Under these circumstances,

the system dynamics may be written in standard linear state-space form as:

z= A + Bf (II.2)

In the above, i is the state of the system in terms of joint positions and velocities,

T is a vector of joint efforts, and A and B are time-invariant matrices. For a

balanced manipulator, the A matrix can be arranged in block-diagonal form, and

for decoupled actuation, the B matrix will be in control canonical form [defined,

e.g. in 50]. The dynamic equations then describe a parallel array of reduced-

order subsystems, where each actuator effort affects a corresponding subsystem

independently.
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Dynamic decoupling results in a remarkable simplification of a robot's control

system. In fact, the simplification is so dramatic that dynamic control problems

which are intractable for common manipulators are trivial for the dynamically

decoupled manipulator [34].

Lessons from robot design studies have been incorporated in the design of

the two degree-of-freedom planar arm used in the present investigation. The

experimental arm utilizes oversized motors, remote actuation, virtual direct drive

via a nearly ideal transmission, and counterbalancing for dynamic decoupling.

Remote actuation permitted the design of lightweight, stiff links which achieved

high resonant frequencies. Further, the oversized motors permitted unusually

high link accelerations. The simplifications introduced by a nearly frictionless

steel-band transmission and counterweights for dynamic decoupling resulted in a

system which was particularly well suited for high-performance control.

§2.2 Design Parameters

Mechanical details of the experimental arm are shown in the photograph of

figure 2 and in the sketch of figure 3. The arm consists of two links driven by

respective d.c. servo motors through steel bands.

Link one consists of an aluminum box-beam, 2"x3" with a nominal wall thick-

ness of 1/8". The beam was cut to a length of 12.5", and the wall thickness was

machined down to 1/16" over most of the length. After machining, link one had

a mass of 385 grams. Link one is driven by an aluminum torque-tube with a

nominal diameter of 2" and a nominal wall thickness of 3/16". At the distal

end of link 1, a recessed channel was milled for guiding upper and lower bearing

plates, which housed ball bearings for a pulley secured to link 2.

Link 1 encloses a steel band which drives link 2. The steel band is type 301

high yield stainless steel, 1" wide, 0.004" thick and 26" long, laser welded along a

diagonal seam to form a continuous loop. The drive pulley for link 2 is apparent

in both figure 2 and 3. The drive pulley is a 2" diameter aluminum cylinder,
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Figure 2: Experimental Arm: Photograph
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Figure 3 Experimental Arm: Layout

1.5" in length with a 1/2 degree crown to aid in belt centering. It is attached to

a 7/8" diameter aluminum shaft, which is in turn joined to the shaft of motor

2 with a split-sleeve coupling. The drive shaft for link 2 is concentric with the

torque tube which drives link 1.

Design of the transmissions was a critical aspect of the arm construction.

Requirements were that the drive train be lightweight, yet exhibit high stiffness

with zero backlash and friction. Traction drive steel bands met the requirements.

For high stiffness, the cross-sectional area of the bands needed to be sufficiently

large, though the thickness of the bands was limited by bending stresses induced

by wrapping around the pulleys. Since the driven pulley for link 2 had to be

supported at the end of link 1, the mass of that pulley had a significant influence

on the inertia of link 1. Thus, the pulley mass was minimized by mix mizing

its dimensions, and fabricating it from magnesium. A pulley diameter of 2"

was selected, resulting in a distal pulley mass of 130 grams. At the specified

1" radius of curvature, a belt with thickness of 0.004" Lundergoes a strain of
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I~~~~~~~~~~~~~~~~~b
I \\1

I _N

I



24

2000 microstrain in wrapping around the pulley. Relative to the bending strains,

the loads induced by pretensioning and supporting the maximum motor output

torque are negligible. At the chosen belt thickness to pulley diameter ratio, the

expected fatigue life of the belt is roughly one million cycles. Over 14 months of

inadvertently abusive experiments, no failures were encountered.

To prevent belt slippage, the belts were pretensioned to 45 lbf. At this preten-

sion, the belts were always in tension, even at maximum motor torque. Further,

the coefficient of friction between the steel belts and aluminum pulleys (measured

at 0.61 static, 0.47 sliding) guaranteed no slip1 at pretensions well below the cho-

sen value. In order to pretension the steel bands, adjustment mechanisms were

built into the design. For link 2, the bearing plates located on link 1 were designed

to slide in channels along link 1. Adjustment screws on link 1 were provided to

incrementally displace the bearing plates radially outward from the axis of link

1, which permitted stretching the link 2 drive belt slightly for pretensioning. The-

nominal distance between the drive and driven pulleys of link 2 was 25 cm.

Both the drive and driven pulleys for link 2 were 2" in diameter, providing a

unity transmission ratio. The measured inertia of the link 2 system was 0.0035

Kg-m2, of which the motor rotor inertia was only 17%. The optimal transmission

ratio for the motor/load combination would have been 2.2:1, not 1:1. Use of the

optimal transmission would have resulted in 32% higher acceleration capacity.

However, a 1 radius pulley was the maximum tolerable curvatu:e for long life

of the 0.004" belt, so a transmission ratio of 2.2 would have required the use of

a 4.4" diameter driven pulley. The use of such a large pulley would have carried

a severe inertia penalty for link 1, which is already the slower of the two links.

Thus the 1:1 transmission ratio was accepted as preferable.

Link 2 had a substantially larger inertia than link 1, so a speed-reducing

transmission was desired. The chosen pulley ration was 4:1, realized with a 2"

diameter pulley and a 8 diameter pulley. As can be seen in the photograph

1see, though, section 2.4 regarding creep
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of figure 2, the driven (aluminum) pulley for link 1 consists of a thin rim, six

spokes for lateral bending stiffness, and a thin circular plate joining the inner and

outer radii for rotational stiffness. The resulting pulley is light and stiff, with

a relatively low inertia. This pulley joins to the link 1 torque tube through a

split collar. The link 1 pulleys also utilize a slight crown to help keep the steel

belt centered. The belt for link 1 is identical to that of link 2, except for its

circumference of 32.7". In figure 2, a third pulley can be seen in contact with the

drive belt of link 1. This pulley is an idler with an adjustable ,cation along a

slot, which enables pretensioning of belt 1. Like belt 2, belt 1 is pretensioned to

at least 45 lbf, though in practice the pretension has exceeded this value safely,

since the bending stresses induced by wrapping around the 2 pulley dominate

the stresses in the belt.

The inertia of link 1, including the driven pulley, the box beam, and the load

incurred by supporting link 2 and its driven pulley, was measured via dynamic-

tests to be 0.037 Kg-m2, or nearly 60 times the motor inertia. Such radical load

imbalances are characteristic of direct-drive systems. With the chosen transmis-

sion ratio of 4:1, link 1 peak acceleration is improved by a factor of about 3.2. The

optimal transmission ratio would have been about 8:1. Use of the optimal trans-

mission would have theoretically improved the peak acceleration by an additional

25%. However, a ratio of 8:1 would have required an impractically large diameter

driven pulley, which would have increased the inertia of link 1 significantly, thus

reducing the peak acceleration. The chosen design is nearly optimal.

Link 2 is constructed from a simple tube of aluminum, 3/4" in diameter, 12.8"

long. with a wall thickness of 0.040". The tube joins to its drive shaft, a 3/8"

hollow stainless steel tube with a 1/16" wall thickness, using a magnesium clamp.

The drive shaft is joined to the magnesium link 2 driven pulley by means of a

thermal shrink fit. Link 2 weighs 80 grams, and the magnesium shaft clamp

weighs 8 grams. In addition, link 2 supports an instrumented Delrin tip (12

grams) and brass counterweights (75 grams). The length of link 2 between its

joint axis and the center of its tip is 25 cm. The counterweights are an important
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feature; they are used to shift the center of mass of link 2 to a position coincident

with the joint 2 axis. The position of the weights is adjustable along the rear of

link 2 by means of a fine-pitch thread. Two weights are rotated differentially to

lock them in place at the determined balance position.

In order to get power or signals to or from the tip of link 2, slip rings have

been provided. The slip rings and brushes are apparent on the torque tube of

link 1 in figure 2. Slip rings and brushes are also located on the shaft of the distal

link 2 pulley, though they are less obvious in the figure. The slip rings consist of

grooves machined in a phenolic ring, inlaid with 0.005" x 0.020" conductive metal

strip. The brushes are 0.012" diameter wires, which are pretensioned against the

conductive strips. Eight parallel tracks were installed for link 2, and 4 for link

1. Redundant brush packs were installed and wired in parallel to reduce brush

noise. The conductive strip material was Paliney 7, and the wires were Neyoro

G, both proprietary alloys of precious metal (J.M. Ney Co., Bloomfield Conn.)-

optimized for long-life electrical brush applications.

The motors selected to drive links 1 and 2 are pancake-type printed circuit

armature d.c. servo motors (JR16M4CH, PMI Motion Technologies, Commack,

NY). The motors have a particularly low inertia and inductance, which makes

them well-suited for high acceleration servo applications. Since the links are

remotely actuated (by means of the steel bands), the motors are mounted to

ground. Thus, their mass, which is disproportionate to the mass of the links, does

not need to move, and the design is not penalized for using oversized motors.

No provision was made in the system design for forced-air cooling of the

motors. The maximum continuous current rating without forced cooling is .6

amps, at which the motors produce a safe, continuous stall torque of 3.5 N-rm (495

oz-in). Peak torque is limited by demagnetization of the permanent magnets and

by transient heating; the rated peak torque is an order of magnitude larger than

the stall torque. In practice, the transient torque capability of the motors was

not utilized. The amplifiers were set to current limit at the rated continuous stall
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current of the motors. This was done to protect the motors, since a low duty

cycle of peak torque commands could not be assured during normal operation.

The motors were driven by pulse-width modulated amplifiers (PWMNI) oper-

ated in transconductance mode. The amplifiers (PMI CX-90/125) operated at a

switching frequency of 6kHz with voltage limits of +/- 125 Volts and current lim-

its of 30 Amps peak, 15 Amps continuous. The continuous power output capacity

was 1.875 kW per amplifier. In operation, the amplifiers were set to current limit

at about 10 Amps, the maximum safe continuous current of the motors. The

amplifier circuitry was modified by the author for operation in transconductance

mode; the gain was adjusted to 1 Amp motor current per 1 Volt input command.

Optical incremental position encoders and tachometer/generators were pur-

chased installed on the motors for link position and velocity sensing. The optical

encoders output A and B pulse trains in quadrature at 2048 pulses per revolution.

Utilizing all four transitions of the A and B signals per pulse, rotor position was-

detected to one part in 8192, for a resolution of 0.77 milli-radians. For link 1,

with a pulley reduction of 4:1, the angular resolution of link 1 motion was 1 part

in 32768: about 0.19 ruilli-radians, or 40 arc-seconds. The tachometer sensitivity

was 3 Volts/ 1000 pm. Although he robot was capable of high accelerations,

its velocity was n;ve. large for any normal move (less than a full rotation). As

a result, the tachometer sensitivity was too low to be of use. At low velocities,

noise generated by the switching amplifiers dominated the small signal generated

by the tachs.

§2.3 Performance Measurements

The success or failure of the design can be characterized by four crucial mea-

surements: the bandwidth of the amplifiers; the resonant frequencies of the links;

the maximum acceleration of the links; and Coulomb friction.

Amplifier bandwidth was measured by obtaining a transfer function of the

current output vs the command voltage with the motors connected. White noise
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Figure 4: ransconductance Amplifier Frequency Response

was sent to the amplifier input, and motor current was measured and processed

by a spectrum analyzer. During these tests, the motor rotors were not locked,

since, in transconductance mode, the amplifiers were controlled to compensate

for motor armature resistance, inductance and back EMF. A sample plot of the

results appears in figure 4, which shows output current vs input voltage as a

function of frequency. Due to the nature of the FFT algorithm, data near 0

frequency is not valid. The response is actually quite fiat from 0 Hz out to about

1.5kHz. An inconvenient artifact of the spectrum analyzer is that the frequency

scale is linear rather than logarithmic. Thus, it is difficult to infer a system

model by inspection of the transfer function plot. Nonetheless, it is clear that the

amplifiers are essentially ideal over a wide range.

Transfer function tests were performed on the links as well. An accelerometer

was mounted to link near joint 2, and white noise was sent to the amplifier

input of link 1. The resulting acceleration was processed by a digital spectrum

analyzer. The same test was repeated for link 2, with the accelerometer mounted

on the tip of link 2. The results are shown in figures 5 and t, respectively.

Link tests revealed a first resonance at 212 Hz. The first link 2 resonance

appeared at 125 Hz. The tests are most accurate for link 1, since the added

mass of the accelerometer (13 gin) hardly influenced the load of link 1, but did
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have a nonnegligible effect on link 2. With the added mass of the accelerometer,

the observed resonant frequency of link 2 is a conservative underestimate of the

unloaded natural frequency. Nonetheless, the measured frequencies indicate an

unusually stiff system.

Peak acceleration measurements were obtained both with an accelerometer,

and by step-input torque transients with rapid position sampling of the encoders.

Measured accelerations at the maximum safe continuous current ev s were 290

r/s 2 and 960 r/s 2 for links 1 and 2, respectively.

Friction was measured using force gauge to back-drive the links with the

amplifiers off. Measured frictional torques were 0.30 N-m for link 1 and 0.085

N-m for link 2. The measured friction is attributable entirely to friction inherent

in the motor armature, presumably due to the brushes.

Overall, the electromechanical system met the design objectives of providing

an extremely fast and controllable arm.

i
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§2.4 Suggested Modifications

In using the experimental apparatus, it became apparent that the sensing

means could be improved. As mentioned earlier, the tachometers did not turn

out to be useful, since their signals were too small at low velocities. Velocities

inferred from te incremental encoders were reasonably accurate at moderate

velocities, but problems were encountered at low velocities. At low speeds, the

data rate from the optical encoders is too slow to specify the velocity. Between

pulses from the encoders, it is not clear how the velocity might be changing.

Better velocity sensing is desirable. The author suggests the use of resolvers in

place of the optical encoders, since velocity information is directly available from

the resolver converter electronics.

A second sensing problem is that the optical enco- are located directly
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on the motors rather than on the links. Thus, information about link positions

must be inferred from the motor rotor positions. However, since the machine is

capable of continuous rotation of both links, nonideal (non-integer) transmission

ratios introduce errors which can accumulate to the point where the motor rotor

angle is a poor estimate of the link angle. It would be better to place the sensors

directly on the links, rather than on the motors. At the least, some type of home

sensor, independent of the motors, should be implemented to null accumulating

errors.

Another source of errors between motor position and link position is the

phenomenon of belt creep. Although the belt does not slip if adequately pre-

tensioned, belt creep can occur under high accelerations. When the belt transmits

a large torque, one side of the belt is in greater tension than the other. Conse-

quently, as the pulley rotates, the section of the belt which rolls onto the pulley

is under a different strain than the section which rolls off; stretched (elongated)

belt winds onto the drive pulley while relaxed belt winds off. As a result, the

belt seems to worm" its way across the pulley. This effect does not restrict the

controllability of the system, but it does invalidate the placement of sensors on

the motors for high precision position sensing.

§3. Optical Sensing System

In this section, the optical sensing system is described, beginning with an

overview of the design concept followed by design specifics and performance data.

§3.1 Design Concept

As mentioned in the introduction, no attempt has been made to implement a

general vision system. Existing vision systems are expensive, complex, unreliable

and slow. In a typical vision system, a charge coupled device (CCD) detector is

used in the image plane of a camera lens. The CCD detector samples light inten-
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sities at discrete pixels" in a square array, most commonly 256x256 elements.

The intensity values of the individual elements are read out serially, typically re-

quiring 16.7 msec to transfer the complete set of data. An image processor then

analyzes the data, either statistically or by extracting low-level image features

such as edges and corners, to try to identify and locate objects in the field of view

of the sensor. Image analysis is a computationally intensive process, which can

take hours on mini computers. One of the fastest specialized image processors to

date, the PIPE machine [19], can extract low-level features in "real-time". Object

identification still requires additional, slower processing. In the area of machine

vision, real-time processing is a highly ambitious goal, though, "real-time" in this

field generally implies a mere 60 Hz or lower throughput, and substantial pipeline

processing delays from input to output. Such limitations makes vision currently

unsuitable for use in high-performance feedback systems.

Vision systems of the future may be expected to overcome the current severe

restrictions. For the present experiments, a detector was desired which would

emulate a futuristic vision system. Thus, it was decided to simplify the problem

domain by marking each obstacle to be detected with a light beacon. Further,

rather than tolerate the time delay associated with serial communication of dis-

crete data, an analog detector was used.

The key component of the sensing system design was a PIN (P-type layer,

Intrinsic layer, N-type layer) lateral effect photodiode. This two-axis detector has

four electrodes on its edges. When a light spot is focused on the sensitive area,

a photocurrent is produced which divides up among the four electrodes, roughly

proportional to the distance of the light spot from those electrodes. Thus, by

measuring the currents through each of the electrodes, the position of the light

spot can be inferred. In this manner, generality (recognition of arbitrary objects)

has been sacrificed for speed. Whereas 60 Hz is considered exceptionally fast for

general vision systems, PIN photodiodes can respond at gigahertz rates.

With a planar photodiode detector, it is not necessary to sharply focus light
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inputs. Since the detector is roughly linear in spot position vs electrode current,

a blurred spot results in the same electrode currents as a focused spot. The

electrode currents divide up according to the position of the centroid of the light

hitting the detector. If a single light source is observed by the detector, then

the detector currents determine the position of that source. The light source

need not be a point source, though; the sensed position of a distributed source

is the centroid of the light emitters. Therefore, light power emitted by a marked

object, and thus signal strength of the detector, may be increased by employing

multiple emitters per object. By the same process, however, if light beacons were

energized simultaneously on distinct objects, the signal would be perceived as a

single input, and a meaningless conglomerate position measurement would result.

In order to detect multiple objects, the light beacons of each object are flashed

sequentially, one light source at a time. Thus, multiple targets are perceived by

multiplexing their signals, and associating the detector currents with the light

flashed at any instant. Consequently, the sample rate of detecting any one object

is inversely proportional to the number of objects. In the present design, eight

objects are detected.

Fcur signals (the currents through each of the electrodes) are provided by the

detecting element, although only two pieces of information are desired: the x and

y positions of a light spot. A pair of electrodes essentially determines the light

spot position along each axis, where the current difference of each pair is (nearly)

proportional to the spot position along the respective axis. As the intensity of the

spot increases, the currents of each electrode increase nearly linearly. Therefore,

an absolute position measurement can be obtained by normalizing the difference

in currents for each electrode pair with respect to the sum of the respective

currents. The resulting signals are relatively insensitive to varying intensities of

the target light sources. In the present design, the normalization process is done

in analog. Currents through each electrode are sensed, and the difference and sum

of each pair are obtained as analog voltages. The sum and difference voltages for

each pair are in turn used as numerator and denominator inputs, respectively, to
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analog division chips. The result is a pair of analog voltages which are a measure

of the x and y positions of a detected light source.

Coordination of flashing light beacons and acquisition of sensor data is per-

formed by a control computer. The computer flashes the LED of each object

for a programmed length of time, samples the detector voltages, performs digi-

tal filtering of the position signals, and stores the result in memory where it is

accessible to other processors. The sensing process is cycled continuously, and

the most recent position information for each obstacle is always made available

in shared memory. In this manner, the use of position information is made inde-

pendent of the specifics of the sensor. Any type of sensor at all may replace the

chosen electro-optical system without affecting the control code running on other

processors. hi particular, an advanced vision system could replace the current

optical detector; the only requirement is that the results be made available in

common memory.

§3.2 Electro-Optical Design

The heart of the position sensing system is a lateral effect photodiode, (PIN-

SC25D, United Detector Technology, Hawthorne, CA). The detector has a square

sensitive area, 0.74"X0.74". The responsivity is 0.25 Amps electrode current per

Watt of light power input over a spectral range of 350nm to 1100nm. n order

to minimize interference from room lighting, a daylight filter (850 nm half power

point) was installed between the lens and detector, which blocked visible light

and passed near infrared (865 nm).

Electrode currents were sensed, amplified, and input to an analog divider chip

(Burr-Brown DIV 100 HP). The analog divider chip had a small-signal frequency

response of 350 kHz, and a full-power bandwidth of 30kHz. The resulting signals

were filtered with first order active filters with a 40 microsecond time constant,

and input to parallel 12-bit analog to digital converters (AD574A, Analog Devices,

Norwood, Mass.).
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Infrared light-emitting diodes were used as light sources. Three diodes (TRW

Optron OP233W) were wired in series for each object. Instrumented objects

included five cylindrical Delrin obstacles, the tip of the robot, the tip of a hand-

held wand, and the wrist of a small stepper-motor driven instructional robot

(Microbot Teachmover, Microbot, Inc, Mountain View, CA). Pulse currents of

560 mA were excited sequentially in each of the 8 sets of diodes, resulting in a

12.5% duty cycle. The rated continuous current for the LED's is 100 mA, at

which the power dissipation is 200 mW. At 560mA, the power dissipation is 8

times greater, so a duty cycle of 12.5% results in an LED life corresponding to

continuous operation at rated continuous current. Under continuous operation,

the light output will slowly degrade (about 5% over 1000 hours). The wavelength

of emission is 880 nm, at which the energy is hardly attenuated by the daylight

filter. Power output is 45mW per LED at 560 mA current, which is distributed

at nearly constant intensity +/- 20 degrees about normal, with sharp attenuation

at greater angles.

The detector was placed behind a wide-angle lens (28mm focal length), with

a 19mm aperture. The lens collected and focused light energy over a 32mm

diameter. The system was placed 1.6m above the plane of the LED's, resulting in

a field of view 1 meter in diameter; since the detector was square, the actual sensed

area was square, 0.7x0.7m (1 meter diagonal). At 1.6 meters above the plane of

the light sources, the wide-angle lens intercepted only 0.05% of the emitted light

power, or about 70 microWatts of light power.

Each LED was pulsed for a duration of 250 microseconds. The control com-

puter initiated each current pulse, then waited the full pulse duration before

sampling the analog detector signals. A pulse period of 250 microseconds allowed

adequate time for the the analog dividers and the analog filters to settle. For the

eight marked objects, the resulting sample rate was 500 Hz for each object.
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§3.3 Sensory Control Computer

A single-board computer was used to control the timing and sequence of bea-

con flashes, to sample the detector data, and to perform additional filtering and

communicate the results to additional computers. For the requirements of the

sensing system, a simple processor or discrete logic would have been adequate.

However, for compatibility with the rest of the parallel processing system and

for ease of development and modifications, a relatively sophisticated computer

used which was identical to the other processors in the computing system. The

sensory computer (PV682, Pacific Microcomputers, Inc, Cardiff, CA), was based

on the Motorola MC68020 microprocessor running at 16.7 MHz. The computer

board included 1 Mbyte of RAM, and was VME compatible. It was installed in

a VME rack with a common backplane connection to the other five processors

of the computing system. A common memory board, independent of all of the

processor boards, was also installed in the VME rack. This memory was used'

for communications among the processors and, in particular, held the table of

object positions which was continuously updated by the sensory computer. The

position of each of the eight instrumented objects was distinguished, though the

sensory computer assigned no information as to the use of the various positions.

Ordinarily, the wand tip was treated as a goal position, and the cylinders were

treated as obstacles. Such decisions,though, were not within the realm of the

sensory processor.

A useful feature of the chosen computer boards was the addition of a pri-

vate connector, independent of the VME bus, which was directly accessible by

the CPU. The private connector was used as an interface port for custom elec-

tronics. For the sensory computer, a parallel input/output interface board was

constructed for controlling the current drivers for the LED beacons, for initializ-

ing conversion cycles for the parallel analog to digital converters, for testing flags

indicating completion of conversion cycles, and for reading the digital data from

the converters. All of this I/O was performed by the sensory computer without
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VME bus accesses. In this manner, bandwidth of the VME bus was reserved for

communications among processors rather than private I/O.

In addition to coordinating the timing of the electro-optical system, the sen-

sory computer also performed digital filtering of the input signals. Each of the 16

signals (x and y for 8 LED's) were filtered using a simple finite impulse response

algorithm: a running average of the 32 most recent signals was continuously up-

dated. The filtered x and y position signals were continuously updated in a table

in shared memory at 500 Hz per object.

Both the detector and the wide-angle lens introduced distortions in the lin-

earity of the position signals. Linearity was improved in operation by creating

a calibration lookup table which converted raw (distorted) position information

into approximate true coordinates. Calibration data was obtained by controlling

the arm to servo to 1296 points in view of the sensor, spaced every 2 cm in a

square grid, and flashing a set of LED's on the tip of the arm at each specified lo--

cation. Actual LED position was computed from the link lengths and link angles

(as indicated by the encoders) of the robot. The data gathered in this way was

stored as voltages x and y vs actual x and y, i.e. two tabulated functions of two

variables. The two functions were then inverted numerically to obtain tabulated

functions of actual x and y vs signal voltages x and y.

§3.4 Sensing System Ferformance v

The sensing system performed adequately, though not as well as was hoped.

Noise and thermal drift limited the absolute accuracy and the resolution of the

detected positions. After calibration and tabulation of position lookup tables,

the position of LED's on the tip of the robot were optically sensed and compared

with the computed tip position based on the encoder angles. After digital filtering

(32 sample running average), the noise of the position signals corresponded to a

position uncertainty of +/- 3mm over a range of 0.70 meters. This resolution

limit corresponds to about 0.5%, approximat.ely the same resolution as a 256x256
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Figure 7: Sample Camera Calibration Scan

CCD detector. Thermal drift, however, resulted in steady offset errors as large

as 18mm. For accurate sensing, it was necessary to allow the electronics to

operate continuously for several hours to thermally equilibrate before performing

a calibration scan. Sensing performed immediately after a recalibration did not

suffer from a thermal offset.

Data from a sample calibration run is shown in figure 7. The figure shows

x voltage vs y voltage of the detector sensing the robot tip as the robot was

scanned back and forth over the field of view (0.70m by 0.70m). The path of the

tip was horizontal (parallel to the x-axis) along each traversal between maximum

and mi.iimum x positions. Each line scan was displaced by 2cm in y. Thus, a

perfec~ sensor would hav~e resulted in a calibration plot with perfectly straight

lines and a uniform separation between lines. In the actual calibration scan, it

is apparent that there is significant distortion away from the center of view. In

fact, the top-most line scan resulted in signals which overlapped the previous

line scan, indicating that the robot tip was nearly out of view, and the data was

-- -

- ------ - - J



39

distorted by lower intensity and possible reflections inside the lens and aperture

arrangement. Near the center, the lines are nearly straight and have a relatively

wide spacing. The spacing between lines is widest where the sensitivity is best,

since a large spacing corresponds to a large voltage change, while the physical

y-displacement of the tip between any two successive line scans was always 2cm.

A more serious problem encountered was that the position signals remained

sensitive to LED intensities, in spite of normalization by analog division. Thus,

not only thermal drift, but also LED aging resulted in misperception of LED

locations. For the tip, periodic recalibration was sufficient to compensate for LED

aging. For LED sets which marked obstacles, however, the intensities were not

the same as that of the tip, resulting in position sensing errors. The LED current

driver was not well regulated, and differences in LED currents were observed

among the various LED's. With normalization, the minor differences in LED

currents should not have mattered. In practice, x and y position errors as large.

as 15mm resulted from the LED intensity differences.

Background lighting did not present a problem, at least within the labora-

tory setting of the apparatus. Lighting conditions were essentially constant, and

constant background effects were automatically compensated in the calibration

process. Further, the laboratory lighting was fluorescent and thus had a low

infrared output. The remaining spectral emission of the fluorescent lights was

effectively blocked by the daylight filter. Also, since the infrared LED's confined

virtually all of their light emission to a solid angle of 0.38 steradian (0.06% of

a hemisphere), and since the emitters were all directed straight up at the over-

head camera, transient reflections were not a problem. Moving objects were not

permitted in the space illuminated by the LED's. Static objects within the illu-

minated space may have produced reflections which affected the camera voltages.

However, such reflections were not a concern, since their influence was eliminated

in the calibration process.

Noise observed in the camera system was larger than expected from the noise
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equivalent power of the detector alone. Some noise may be expected from vari-

ations in background lighting, though this source did not seem to explain the

magnitude of noise observed. Oscilloscope waveforms suggested electromagnetic

noise pickup. With more careful shielding and grounding practices, the opti-

cal detector should be capable of resolution better than the best available CCD

detectors.

§3.5 Suggested Modifications

Lower noise and immunity to LED intensity variations are possible. As a first

step, a better regulated current driver for the LED's would result in less variation

among LED intensities. Better still, the current driver could be designed to adjust

the current for each LED dynamically to achieve a constant light power at the

detector, regardless of the age, efficiency or location of the emitter. The sum of all

currents through the four electrodes of the detector could be used as a feedback

signal to adjust current levels in the LED's during pulses. No normalization

would then be required, and each LED set would conform to a single calibration

lookup table.

A larger field of view would have been desirable. However, large diameter

lenses with focal lengths shorter than the one selected (28mm) are impractical,

and using a larger focal length (i.e. placing the lens further from the plane of the

LED's) results in a signal loss proportional to the square of the distance from the

light sources. Some signal loss can be tolerated if the noise level is reduced as

well. Better shielding and more careful grounding practices could be implemented

to reduce the major source of noise: electromagnetic interference.

Linearity was not an issue in the present system, since a calibration lookup

table was used. In 3-D, though, a dense three-dimensional lookup table could be

impractical. In that case, good linearity would be a desirable feature, since the

lookup table could then be more sparse, or perhaps eliminated altogether. Better

linearity could be achieved by using a more linear lens (larger focal length), and
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by using only the center region of the detector. Both of these changes would

reduce the field of view, which would require placing the camera at a greater

distance from the sensed work volume. To reduce the power loss from placing

the LED's at a greater distance from the camera, LED's with a smaller emission

angle would be required.

§4. Computing System

The computing system is the third and final major subsystem of the experi-

mental apparatus. Its construction did not require much design. Commercially

available modules were combined in a straightforward manner to produce a sim-

ple, yet powerful multiprocessing system. The effectiveness of the multiprocessor

depends heavily on the programmer's proper use of the system. At least an

overview knowledge of the system architecture is essential for efficient program-

ming. No operating system was used; details of communications among processors

had to be specified explicitly by the programmer.

The multiprocessor consisted of 5 single-board computers (PV682, Pacific

Microcomputers, Cardiff, CA) on a common high-speed VME backplane (Dawn

VME Products, Santa Clara, CA). Each of the computer boards contained a

16.7MHz MC68020 microprocessor, a MC68881 floating point coprocessor, 1

Megabyte of RAM, a VME-bus interface, and an additional private interface

connector wired directly to the microprocessor. Roughly, the computing power

of each of the boards was equivalent to DEC VAX 780.

Only interprocessor communication was performed over the bus. All other

I/O was performed through custom electronics interfaced to the private connec-

tors. Two such interface boards were constructed. An interface board with a

multiplexed parallel interface was constructed for camera control. Signals from

this board were used for turning currents on and off for each of 8 sets of LED's,

for initiating conversions of detector voltages to digital form, for testing end-of-
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conversion status, and for reading the digitized camera data. The second interface

board was used for robot I/O. It included two digital to analog converters used

for sending analog commands to the PWM amplifiers, and two sets of logic cir-

cuitry for counting transitions from the robot's optical encoders. In addition, a

2MHz clock and counter were built on this board to obtain time information for

control routines. The 16-bit counter continuously incremented with each clock

pulse until its maximum value, then wrapped around to zero and started over. By

sampling the counter at intervals no longer than the wraparound time (32.7ms),

accurate time increments could be measured. This feature was essential in pro-

grams which made logical decisions resulting in actions of varying complexity. In

such programs, no fixed time constant or sampling period could be pre-assigned.

Thus, operations which required filtering, time differentiation or integration could

only be performed by having access to a time base which was independent of the

program execution.

Memory on each of the computer boards could be accessed off-board as well,

via the VME bus. This feature was not used, however. Instead, a separate 8

Megabyte RAM board (CI-VMEMORY-8, Chrislin Industries, Canavanas, PR)

was connected to the common backplane. This global" memory was accessible

by all boards for both reading and writing. All communications among processors

were performed by reads and writes in global memory. Assigning and protecting

memory space for communications was the user's responsibility.

The last component connected to the VME bus was a VME bus repeater

(PT-VME-902, Performance Technologies, Inc, East Rochester, NY). The bus

repeater connected the backplane of the multiprocessor with the backplane of a

Sun 3/75 workstation (Sun Microsystems, Mountain View, CA). Bus arbitration

was performed by the Sun and communicated to the multiprocessor bus via the

repeater. The Sun workstation utilized an architecture nearly identical to that of

the individual boards of the multiprocessor. The Sun 3/75 contained a MC68020

microprocessor, a MC68881 floating point coprocessor, 4 Mbytes of RAM, and a

2-slot VME backplane. Off-line storage was performed by a fileserver (Sun 3/260)
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over an Ethernet local area network.

The Sun workstation acted as the host and development system Lr the mul-

tiprocessor. Code written and debugged on the Sun was downloaded via the bus

repeater into program memory of the multiprocessor boards. All code was written

in "C" and compiled on the Sun's compiler. Since the processors of the Sun and

Pacific Micro computers were identical, code compiled on the Sun ran on either

machine. Thus, the operating system (Sun UNIX 4.2), program development

tools and graphics of the Sun were available for writing and debugging software

to run on the multiprocessor. The Sun was also useful for testing program op-

eration in near real time. Actually, the Sun ran somewhat faster, since it used

fast cache memory and a 20MHz p. cessor. On the other hand, the multi-tasking

UNIX operating system caused occasional interrupts of programs running on the

Sun, making the Sun unsuitable for time-critical control programs. For programs

in which brief ( ms) interruptions were not a problem, the Sun could act as a-

sixth computer in the multiprocessing system. All global memory was accessible

by the Sun as well as by the Pacific Micro computer boards.

For the experiments described in this document, the individual computer

boards were programmed to execute separate but coordinated tasks, as described

in here in separate chapters. The first processor acted as a sensing computer,

as described in this chapter, which controlled the timing, data acquisition and

processing of position information from the electro-optical sensor. The second

board performed robot servo control using the sliding-mode time-optimal control

theory presented in chapter 3. The third board used the data from the sensory

board, as deposited in global memory, to rapidly compute and update configu-

ration space transforms for moving obstacles, as described in chapter 4. A map

of obstacle boundaries in configuration space was maintained in global memory,

accessible to other processors. The fourth processor executed reflex control, as

described in chapter 5, which examined local regions of the configuration space

map for possible danger, and prevented the robot from entering forbidden re-

gions. The last processor executed local planning, as described in chapter 6. The
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local planner also accessed the configuration space map in global memory, and

provided short-range paths for the robot to escape from local stall points (local

energy minima) of the reflex controller. The Sun workstation was used for diag-

nostics and real-time graphics while the robot was running. A display of evolving

configuration space, as read from global memory, was continuously updated on

the Sun graphics monitor, along with the current position of the robot and its

goal. Communications among the processors were also monitored and displayed

by the Sun during robot control.

§5. Conclusion

In this chapter, the motivation and design details for the three subsystems of

an experimental robot system have been presented. In each subsystem, simplifi-

cations were made either by restricting the problem domain or by overdesigning-

the components for their task. It was the intent to design a system which would

expose fundamental issues and impediments in high-performance robot control.

A simple, but very fast and stiff 2 degree-of-freedom planar robot arm was

designed and built using the principles of (virtual) direct-drive, remote drive,

and dynamic decoupling. High accelerations, low friction, zero backlash and high

resonant frequencies were designed in, since each of these effects are known to

influence the controlled performance of electromechanical systems.

A non-contact, high-bandwidth optical sensing system was implemented to

detect locations of moving obstacles and moving goals. Generality was sacrificed

for performance. Complex and time-consuming image processing operations for

object identification and location were sidestepped by marking each of the objects

to be sensed with LED light beacons. Further, object motions were restricted to

a plane at a known distance from the detector.

A powerful multiprocessing system was assembled for sensor and servo control.

The computing system was intentionally overdesigned so as to avoid encountering



45
control limitations due to processing delays. While efficiency of control software

is a basic issue, processing limitations of common computing systems would have

posed an artificial and rapidly changing constraint.

Although each of the subsystems was designed for idealized experiments, the

technology employed in each is applicable to current manufacturing systems. The

experimental arm is limited to motion in a plane, and has been designed to carry

virtually no payload. The principles of the design, however, are applicable to more

general machines. Further, even the two-degree-of-freedom machine has applica-

tions, e.g. in laser cutting, water-jet cutting, and perhaps small parts handling

(e.g., electronic components). The optical sensing system is by no means as gen-

eral as a machine vision system. However, it too has industrial applicability.

Although it would be impractical to mark all components in an assembly line

with light beacons, it is entirely feasible to instrument reusable conveyor palates

and parts feeders. A simple analog optical system sensing light beacons can easily_

be cheaper, faster, and more reliable than a full vision system. The multiproces-

sor is the most immediately applicable subsystem of the three. It uses technology

which, while state of the art, is commercially available at reasonable cost. A

user-friendly multiprocessor operating system would make the system more use-

ful to the casual programmer, but the current system is certainly immediately

applicable in industrial control.

Using the hardware described here, empirical investigations and verifications

of theoretical developments in robot control were performed. Elements of the

experimental apparatus emulate anticipated high-performance systems of the fu-

ture: fast robots, efficient vision systems and powerful computing systems. In

avoiding the known technological limitations of robot control, more fundamen-

tal issues were exposed. Specifically, given fast sensing, high-speed robots and

powerful computers, how can a robot be made to execute fast, safe, and effec-

tive motions? How should the control be organized? What principles of classical

and modern control theory apply, and what types of new theory are needed?

Given powerful elements, how can an integrated system realize the full potential
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of its combined components. In the following text, some partial answers to these

questions are presented rigorously. Some broader, speculative generalizations are

inferred from experimental results on the present hardware. Most of the area

remains an open field of research, in which the current work represents a single

data point.



C H A P T E R III

ROBUST NEAR TIME-OPTIMAL CONTROL

§1. Introduction

In this chapter, theoretical developments and experimental evidence are pre-

sented for a new realization of nearly time-optimal control. The technique in-

volves the combination of traditional bang-bang" time optimal control with the

methods of sliding-mode control. The result is a nonlinear feedback scheme for

maintaining a desired functional relationship among dynamic variables, in this

case imitating the idealized dynamics of time-optimal control. The approach is

nearly time optimal rather than exactly time optimal, since the bang-bang control

components are restricted to values below full actuator saturation, which allows

some actuator overhead for servoing to a set of desired dynamics. In addition,

the bang-bang regime of control is blended with linear control near a stable goal

location. Lyapunov stability proofs are given for the proposed controller. Results

of implementation on a planar, dynamically-decoupled, pseudo direct-drive robot

are presented.

§2. Bang-Bang Control

The simplest interesting case of time-optimal control is exhibited in second

order systems, e.g. a pure inertia driven by an actuator with effort saturation.

Actuator saturation is a mathematically necessary requirement for a time-optimal

solution to exist. In the time-optimal solution, the actuator is driven in full

47
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saturation at all times, a characteristic which motivated the name bang-bang

control", [22]. This is in sharp contrast to linear control, in which it must be

assumed that actuators never saturate in order for the linear equations to remain

valid.

Figure 1 illustrates the time-optimal control solution for a step command of

a simple second order system described by:

i = U
where u < umaz.

In the example of figure 1, the time-optimal control solution is illustrated for

such a system with initial conditions (0) = -1 rad, w(0) = 0 and final con-

ditions (tf) = 0, w(tf) = 0. The optimal torque history consists of maximum

acceleration towards the goal, switching to maximum braking midway between

the initial and final positions. The velocity ramps up linearly until the switch

point, then ramps down again. The position increases quadratically until the

midpoint and blends to a second quadratic function at an inflection point which

occurs at torque switching. In this ideal scenario, the transition is made perfectly:

the system reaches the goal in absolute minimum time without overshoot.

A phase-plane representation of optimal control for this system is shown in

figure 2. A convenient coordinate frame is chosen in which the desired final

state is described as the origin of the phase plane, (tf) = 0, w(tf) = 0. Time-

optimal control solutions for arbitrary initial conditions are then expressed in the

phase plane in terms of a switching curve. For all states "above" the switching

curve, maximum negative control effort is exerted. For all states below the curve,

maximum positive control effort is exerted. The equation of the switching curve

is defined implicitly by:

8(6, ) + =0 (III.2)=u 0z/

The phase-plane description of optimal control suggests a nonlinear state-variable
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Figure 1: Bang-Bang Control of a Pure Inertia

feedback law [221:

above the switching curve:
below the switching curve:

on the switching curve:

U = +Uma::

U = -UMz
U = +Umaz

U =-Umz

for s > 0
for s <0
for = 0 and w < 0
for s = 0 and w > 0

The state-variable feedback law enables optimal control implementation in 

closed loop form, rather than a pre-computed ballistic open loop form.

Bang-bang control is useful for establishing a theoretical bound on the best

possible controlled system performance. Implementation of optimal control, how-

(III.3)

· · · ·

a
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I I I I
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ever, is generally impractical. The effectiveness of executing pre-computed torque

histories suffers from modeling inaccuracies and unpredicted disturbances. Espe-

cially during long moves, minor errors in inertia estimates or friction estimates,

minor external disturbances and minor timing errors can result in substantial tra-

jectory errors [32]. Sensitivity to modeling errors is reduced by using a nonlinear

state-dependent feedback law, (equation HI.3), based on a pre-computed switch-

ing curve, (equation III.2). However, implementation of the nonlinear feedback

law is typically impractical. Sensitivity to parameter estimation is less severe,

but the presence of unmodeled dynamics, e.g. mechanical vibration modes, can

easily make the feedback unstable. Even when stability is achieved, the results

can be unsatisfying; the system tends to chatter" near the switching curve, and

parameter estimate errors can still lead to substantial overshoot. In addition,

bang-bang control is not well behaved at the goal state. Chatter, characteristic

near the switching curve, also occurs at the goal point.

The virtue of bang-bang control is its time optimality. Sensitivity to parameter

0



51

uncertainty and unmodeled dynamics, and violent behavior along the switching

curve and at the goal point are features which must be addressed to make bang-

bang control practical. A technique for achieving these aims is presented next.

§3. Sliding Mode Optimal Control

Nonlinear state variable feedback for optimal control based on the equation

of a switching curve suggests a sliding-mode, [6,46,47,531, implementation. In

equation III.3, the function s(O,w) describes a switching curve implicitly by the

relation s = 0. The relation s = 0 also represents a description of the desired

dynamics. That is, if one could maintain the relation s = 0, the system trajectory

would correspond to motion along the switching curve. Such motion is exactly the

perfect dynamics for completing the theoretically time-optimal trajectory. The

objective of the sliding-mode implementation, then, is to force convergence to the

relation s = 0 as quickly as possible, then maintain the relation = 0 in a stable

and robust manner.

The analysis here parallels that of Slotine in [6,46,47]. In the examples given

by Slotine, the equation of desired dynamics is chosen to imitate a linear system.

Nonlinear feedback is then applied to force the system to exhibit the chosen set

of dynamics. In the present case, the desired dynamics are nonlinear, based on

the time-optimal control solution, and sliding-mode feedback is applied to imitate

the time-optimal dynamics.

In order to exert sliding-mode corrections, the nominal control history must

stay within the actual saturation bounds. That is, some actuation overhead

must be available to drive the system back to = 0 when modeling errors or

disturbances cause a deviation. Thus, a nearly time-optimal solution is computed

based on an underestimate of the true saturation effort. The nominal dynamics
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to be achieved are expressed as:

(@) -- + 2I-WI = 0 (III.4)~(e~w e +2i2/I

where i is an underestimate of the actual saturation torque. It is used to express

the bang-bang actuation levels corresponding to the theoretical minimum-time

solution, given the restriction that the control effort may not exceed the chosen

limit, U.

The first proposed feedback law is:

U = -[sgn(w) + sgn(.)] (III.5)

To consider the effects of parametric modeling errors, the term I is introduced.

Evaluation of the switching function depends on a knowledge of the system inertia,

I. An imperfect estimate of I results in an imperfect computation of a, denoted-

as . It will be assumed that state measurements are performed accurately. The

value of i used in the computation of the control policy is:

g(o,') _-- + l/ = (HI.6)2t/I

The first term in the computation of control effort mimics the control policy

for bang-bang optimal control along the switching curve = 0. Since an underes-

timate of the saturation effort has been employed, an additional term is included

to utilize the overhead of remaining actuator effort to achieve and regulate the

condition i = 0.

Uncertainty in the estimated inertia has the effect of making the chosen set of

dynamics deviate from the theoretically perfect set of dynamics. Enforcing the

condition i = 0 forces the system to imitate a pure inertia of magnitude I. Under

open-loop bang-bang control, such an error would result in over or undershoot of

the goal. With the reserved effort overhead, however, corrections can be made to

make the system imitate the erroneous inertia. An incorrect estimate of inertia
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does not affect stability; rather, it affects the choice of desired dynamics. If that

choice deviates significantly from reality, then a correspondingly large torque

overhead must be allocated to compensate.

The chosen dynamics s = 0 can be interpreted intuitively in terms of a braking

distance. If a pure inertia of magnitude I is moving with a velocity w, then an

actuation effort of u,,z can bring the system to rest in a braking distance of

w2I/u,,z. Thus, if s = 0, then a braking control effort of u,,. should bring the

system to rest as it coasts to the origin. Such behavior corresponds to following

the optimal control switching curve to the origin. Following the imperfect law

8 = 0 corresponds to tracking an estimate of the switching curve.

The proposed control scheme can be proven to converge on the dynamics

described by = 0. The proof follows. The function defined by V = I is

proposed as a Lyapunov function. It is positive semidefinite (in ) and is equal to

zero only at the desired final condition, = 0. To determined whether V1 satisfies-

the properties of a Lyapunov function, examine V1.

V1 = sgn(g) (III.7)

Evaluate as follows:

8= (r~sa - / Iw ( + w sg1()11] + .8)2u/I

Substituting in the proposed control law u(.i, w) yields:

= w[1 - I/I]- lEjwIsgn(i)(I/I) (III.9)

Substituting from equation III.9 into equation III.7 for 1 yields:

V1 = sgn(g)w(1 - I/I) - EIw(I/I) (III.10)

In order to prove global stability, it is sufficient to guarantee that V1 < 0,
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where equality holds only at the desired stable point. This relation can be guar-

anteed by making epsilon large enough. In specific:

E> -1 (III.11)

Under the preceding condition, the system will converge on = 0, and imitate

optimal control of a system with inertia I and saturation control effort a. Im-

plicit in the proof is that the actuators are capable of exerting the control efforts

determined by the proposed control law. This restriction will be relaxed later.

First, though, the proposed control law will be modified to make it smoother and

more robust.

§4. Sliding Mode Control with Smoothing

Tke proposed nonlinear control law has been shown globally stable and insen-

sitive to parametric errors. However, it has not been shown to be insensitive to

unmodeled dynamics, nor is the resulting behavior guaranteed to be chatter-free.

An improved control law is:

U = -[sat(w/1w,t) + Esat(8/sat)] (II.12)

The preceding control law invokes the saturation function, sat" which is defined

as:

for all Izi > 1: sat(z) = sgn(z) (II1.13)
for all l 1: sat(x) = 

In the region w > w..t and > s,.t, the new control law behaves the same as the

previous control law: is driven monotonically towards zero. As . or w decline

below saturation, the behavior differs from that of the original sharply-switching

controller. Three cases need to be considered: 1) w < ,.t and > st; 2)

> wat and < 8.sa; and 3) w < at and . < s,at. It will be convenient to
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redefine the functional saturation values of w and g as:

Wo,, = U/b
sat EU/K (III.14)Ssat = EU'/K

For Case 1, the control law of equation III.12 may be written as: u -- i [w/woat +

Esgn(g)]. Substituting this expression for u into equation III.8 yields a modified

version of equation III.9:

S = w[i - (wI/wot)(I/I)] - Elwlsgn(s)(I/I) (11.15)

Invoking equation III.15 in equation III.7 results in:

V1 = sgn()w[1 - (Iwl/w,at.)(I/I)] - EIw l(I/I) (III.16)

Convergence to i = 0 is guaranteed if V1 < 0, which is true according to equation

HI.16, provided wI < wat, (which is true for Case 1), and provided is chosen-

such that:

>I/ (III.17)
Given the above, Case 1 conditions result in a convergence of i to 0. Thus, Case

1 eventually evolves into Case 2 or Case 3.

Behavior of the system under the conditions 2) and 3) will be analyzed with

respect to a new candidate Lyapunov function, V2.

w2 2v, =I2 + K (2 sII1)

The proposed Lyapunov function is positive semi-definite, with V2 = 0 only at

the origin, w = 0, e = 0. The time derivative, V12, is:

2' = w + K00
= wu + KOw (.19)

Equation III.19 may be evaluated by substituting for u from equation III.12. For

Case 2, the control law may be written as: u = -[sgn(w) + ES/lsat]. In this
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regime, substituting for u in equation III.19 yields:

V2 = -wi sgn(w) -WU(s/saat) + KOw
= -Iwf1-Kiw-tK0w (III.20)
= -IwJ-Kw(e + wIwI/(2u))+ 1K0w
= -IwI.-Kw2 IwlI/ (2 )

Equation 111.20 proves that, under the conditions of Case 2, V2 satisfies suffi-

cient conditions for global stability of the proposed controller: 2 < 0 with no

trajectories in V12 = 0.

For the conditions of Case 3, the control law corresponds to: u = -[w/Wat +

Es/8s,at] = -bw - KwwII/(2u) - K. In this regime, V 2 is:

V2 = wu+KOw
= (111.21)

= W KW:!wI/(2a)

Case 3 results in V2 decreasing faster than a polynomial in w2, and no trajectories

lie in V2 = 0 except the origin.

The preceding proofs show that Case 1 conditions will force towards 0,

during which the system will enter Case 2 or Case 3. Once in Case 2 or Case 3,

the system will converge asymptotically to the origin.

§5. Analysis of Overshoot

Overshoot of a goal location is often an important consideration, e.g. when

the goal position abuts a hard or fragile surface. Ideally, zero overshoot would

occur, but at the least any overshoot should be predictable so that a safe subgoal

may be specified. For linear systems, critical damping is the typical approach to

preventing overshoot. For the present nonlinear system, aaalysis of linear control

can be invoked for a bounding behavior of the nonlinear controller.

In the proposed smoothed controller, equation III.12, the values of s.at and

Wsat were defined in terms of K and b in order to interpret the behavior of the
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system under the conditions of Case 3: w < wt and 5 < s,.t. The control law in

this case resembles a proportional plus derivative linear feedback,(u -bw- KO),

plus an additional non-linear term proportional to w2. The values of K and b may

be selected based on linear control principles; the third, nonlinear term provides

additional damping. Thus, K and b may be selected to achieve critical damping

based on linear feedback; the additional nonlinear term can not increase overshoot

beyond that predicted by linear control.

For short moves, the nonlinear controller of equation III.12 will behave like a

linear controller, so the selection of b for critical damping will prevent overshoot.

For a long move, however, the nonlinear controller behaves differently. The con-

dition = 0 will be regulated, and the goal will be approached with a nominal

braking control effort of magnitude u. As the approach velocity falls to within

wat, nearly-linear control will be exerted. Assuming the nonlinear controller suc-

cessfully regulates 9 ; 0, the initial conditions upon entering the nearly-linear-

regime will satisfy:

0o + wolwolI/(2f) = 0 (III.22)

and

Iwol = woat (III.23)

Employing the definition of wot and using the definitions w, = v/K/I and b/I =

2~w, where = 1 for critical damping, results in the initial conditions in terms

of control parameters:

Oo = sgn(Oo) 82 (III.24)

and

i2/lWo =-sgn(Go)- (III.25)
2w,,

Upon entering the regime of Case 3, the initial conditions satisfy:

wo = -4w,0o (111.26)
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Although the control parameters K and b may have been picked for critical damp-

ing, zero overshoot is only guaranteed if the initial approach velocity is below a

limit based on wn,. To find the limiting zero-overshoot approach velocity, consider

the solution of a critically damped linear system:

O(t) = Ooe-Wnt + t(wo + 0ow)e -wnt (III.27)

where 00 and wO are the initial conditions. For zero overshoot, the second term on

the right side of equation 111.27 must have the same sign as the first term. The

maximum approach velocity for zero overshoot is thus wo = -own. Equation

111.26 indicates that the approach velocity at w = weat, S = 0 is four times larger

than the limit for zero overshoot with critical damping.

For the initial conditions of equations Ii.24 and 111.25, linear control with

critical damping would result in an overshoot of (.770)0o. A solution of the

nonlinear controller with = 1 was obtained numerically for the initial conditions

of equations III.24 and 111.25. With the nonlinear damping term, overshoot is

somewhat lower, at (0.6825)0o. For w,, chosen large, the value of 00, the position

at which bang-bang control blends with linear control, will be small, and the

subsequent overshoot will be correspondingly small.

§6. Influence of Unmodeled High-Frequency Dynamics

It has been shown that the control law of equation III.12 is asymptotically

stable in all regimes. Further, the definitions of sat and W,at allow an interpreta-

tion of the choice of b and K in terms of linear control. The result is a blend of

(nearly) bang-bang control and (nearly) linear control.

The value of b in the definition of weat may be selected to choose damping

based on the bounding linear system behavior. The value of K also has a linear

interpretation. By increasing K, the time constant of convergence in the (nearly)

linear region is decreased. This is equivalent to increasing the proportional gain.
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For an ideal second-order linear system, the proportional gain may be increased

without bound and stability will be preserved. In reality, high-frequency dynam-

ics, which were not included in the second order system model, will cause the

system to go unstable at high gain. Thus, the choice of K for stable control is

limited by unmodeled dynamics.

As an illustration of the influence of unmodeled dynamics, consider the ideal-

ized system of equation III.1, which has a transfer function given by:

e = 1 (III.28)
u J8 2

For a linear control law given by:

u = -bw- KO (III.29)

the characteristic equation of the closed loop system is:

82 + (b/J)s + (K/J) = 0 (I.30)

The feedback parameters define a closed-loop frequency, wI = VK/J, and closed-

loop damping, 2w ! = b/J. For all positive values of b and K, the roots of the

characteristic equation have positive real parts, which implies that the closed-

loop system will be stable. As long as the model remains valid, the feedback

coefficients may be increased without bound and stability will be preserved. At

high bandwidths, however, the system will exhibit high frequency dynamics which

were not included in the system model. To examine the effects of unmodeled

dynamics, consider the augmented transfer function:

e ~~~~~2- = ~~~~~~~~~~~~(III.31)
u Js2 s2 + 2wu + w 2 (.31)

In the above, the second factor on the right is a term which introduces two

more dynamic variables into the transfer function. At frequencies well below

the natural frequency of the unmodeled dynamics, wu, the transfer function of
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equation III.31 closely matches that of equation III.28. Only at high frequencies

are the additional dynamics apparent. Now, using the feedback law of equation

III.29 results in a characteristic equation of:

s4 + 2,,ws s + s2w 2 + s2/ww 2 + wf 2w2 = 0 (III.32)

The roots of the characteristic equation determine the poles of the closed-loop

system. In order for the system to be stable, all of the poles must have negative

real parts. For the transfer function of equation III.30, stability only requires

K > 0 and b > 0. For the transfer function of equation III.32, two additional

conditions must be satisfied:

Wf < WuX (111.33)

and

W1 < Wu. +ag 2 (III.34)

The largest allowed value of w! occurs for f = ~u, (which may not be a desirable

choice of f! in terms of system overshoot), at which the maximum stable value of

wf is one half wu. For other choices of f (e.g., critical damnping), the maximum

stable closed-loop natural frequency, wf, may be substantially lower than one

half w,. For any non-zero choice of b, (or sf), it it is always possible to choose

a K, (i.e., a wf), low enough to satisfy the stability criteria. The high-frequency

dynamics introduced in equation .31, however, impose an upper bound on the

choice of K.

In section 3, it was proven that the controller of equation III.5 is globally

stable. In section 4, smoothing was added by changing signum functions to sat-

uration functions. It can be shown that this change also increases robustness

with respect to unmodeled dynamics. Near the goal state, the choice of K, (i.e.,

the choice of Sat), determines the effective proportional feedback gain. As K is

increased to infinity, (or as st -- 0), the saturation function of .8 approaches the

behavior of a signum function. Thus, near the origin, signum functions behave
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like extremely high gain proportional feedback. As illustrated in the preceding

analysis, though, the maximum permissible proportional feedback gain is limited

by unmodeled high-frequency dynamics. The former proof of stability for the

controller of equation III.5, while mathematically rigorous, is deceptive. It de-

pends on the assumption that the system equation includes all dynamics. Any

system model, however, is only a truncated approximation of the real dynamics.

With the smoothing functions of controller equation III.12, robustness to

unmodeled dynamics is incorporated. The choice of K determines the equiva-

lent linear proportional feedback. The equivalent linear natural frequency of the

closed-loop system is w! = vK/I. For choices of w! well below the first natural

frequency of unmodeled dynamics, w., the system model of equation III.1 will be

a good approximation of the actual system over the bandwidth of the controller.

Under these conditions, the stability proof based on the assumed model with

truncated dynamics, although not fully rigorous, will give the correct stability re-

sult. As illustrated above, the value of K may be chosen low enough (at sacrifice

of system performance) to select a w! for which high-frequency dynamics do not

destabilize the controller.

§7. Sliding Mode Control Saturation

It has been shown that the controller of equation III.12 is stable and robust.

Within the linear domains of the saturation functions, the prescribed control

effort is guaranteed to be feasible, since the control effort does not exceed u, a

parameter intentionally chosen to be less than the true actuator saturation level,

uWz. In the stability proof of section 5, however, it was implicitly assumed that

the control effort of equation III.12 could be realized. This condition can be met

by choosing and such that:

utmz > u(1 + E) (III.35)
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Given the above, the computed control effort is always realizable. However, such

a restriction on E and u is undesirable. For the system response to approach that

of true time-optimal control, i should be close to u,,. At the same time, to

have good regulation of the condition s = 0, should be set as large as stability

permits. Under these conditions, the exerted control effort will saturate at umz

although the control law may exceed this value. If the prescribed control law is

not enforced, the stability proof is invalidated. With saturation, the control law

of equation III.12 will behave according to:

u = -u,,zsat{/,,az[sat(w/w,t) + Esat(i/s.t)]} (III.36)

It will be shown that this physically saturated control law is also stable. The

previous proofs apply when the argument of the outermost saturation function

is less than 1, i.e. when the result of equation III.36 is less than Urna,. Proof

extensions are required for cases where the outermost saturation function is in

its nonlinear region, in which case:

1 < sat(w/w,.t) + esat(Is,,,t)I (III.37)

For the above inequality to be true, the expression sat(w/w,.t) + sat(./a,at)

must have the same sign as . Since the first term saturates at 1, w, saturation

can never lead to control saturation by itself. If the second term on the right

of equation HI.37, (the term in ), has the same sign as w, then control effort

saturation can occur. Alternatively, if is greater than 1, then the second term

can dominate the first term to result in control saturation. In either event, the

expression sat(w/lw.t) + esat(i/s,t) is guaranteed to have the same sign as 

whenever the magnitude of the expression exceeds unity.

Invoking the preceding deduction, the control law of equation III.36 behaves

like equation III.12 when not in saturation, and when in saturation it reduces to:

u = -Umaz, sgn () (III.38)

The test function V1 l = has been shown to satisfy the Lyapunov criterion which

guarantees convergence to = 0, provided u is not saturated. The test can be
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extended o consider saturation. Equations III.7 and III.8 remain valid regardless

of control saturation. Under control saturation, equation III.38 applies for the

value of u in equation III.8. Substituting u from equation III.31 into equation

III.8 results in:

s = / wI(-u..sgn(i)) + w (III.39)
iS

Substituting equation III.39 into equation III.7 for V1 results in:

fV1 = -(u,,/a) (I/I) lw I + w (III.40)

The first term on the right side of equation III.40 dominates the second term,

provided:

< umazi/i (III.41)

By choosing u to satisfy equation III.41, equation III.40 indicates that V1 < 0 as

long as the control is saturated. This extends the stability proof for the proposed

controller from physical saturation levels through the nearly linear regime about

the origin.

Since stability in saturation is guaranteed, large choices of are permitted,

even when is chosen close to u,.a,. A large value of can force a rapid con-

vergence to the condition i = 0, and maintain a tight regulation of the equality.

In doing so, the controller will closely mimic true time-optimal control. When 

is large, the control law of equation III.36 behaves like the optimal control law

of equation III.3. For the example of figure 1, the error in will be initially

large, and, with large , the term in will dominate the term in w. Control will

begin with maximum effort, u,,,, just as in the theoretically perfect case. As 

approaches zero, the system converges to a switching curve based on a nominal

maximum control effort of u. For u = u, and for I = I, the system converges

to the theoretically perfect switching curve. Near the nominal switching curve,

(the switching curve based on a control limit of a), braking of magnitude a will

be exerted, due to the term in w. The term is S will act to servo the system to
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the equation = 0. As the velocity decreases near the goal point, the control

behavior will blend into linear, critically damped motion.

For the limit of - u,, - oo00, w0t - 0 and t - 0, equation I.36

becomes identical to the theoretically perfect control law of equation III.3. The

ideal controller is intolerant of model uncertainty, however. An underestimate of

uWz is used for u in the siding-mode controller in order to tolerate uncertainty

in I. Non-zero values of woat and Sat are used to reduce chatter and to make the

control stable for real systems which contain unmodeled dynamics. The value of

E may be chosen arbitrarily large, according to the preceding proof. However,

unmodeled dynamics will also impose a practical upper bound on e.

If a system existed which corresponded to a perfect second order model with

perfectly known parameters, the sliding mode control law proposed here would

degenerate to the theoretically perfect time-optimal control policy. For real sys-

tems, the proposed controller is robust and is nearly time optimal. Experimental

results from implementation of equation III.36 on a mechanical system are pre-

sented next.

§8. Implementation Results

The proposed control policy, equation III.36, was implemented on a mechan-

ical system: the two degree-of-freedom planar, dynamically decoupled, pseudo

direct-drive robot described in Chapter 2. Since the robot was constructed such

that the two links are dynamically independent (when expressed in absolute joint

coordinates), the control of link 1 is independent of the control of link 2. Control

results for link 1 are presented here.

Link 1 is driven through a pulley and steel band transmission with a reduction

of 4:1. By pretensioning the steel band, backlash was eliminated while preserv-

ing low friction. Relevant system parameters for link 1 are summarized here,

expressed with respect to the output of the transmission (motion of link 1). Mea-
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sured friction was 0.30 N-m. The first resonant mode occurred at 212 Hz. The

motor for link 1 was driven by a PWM amplifier operated in transconductance

mode with current saturation. The current saturation corresponded to an out-

put torque saturation of 13 N-m. Motor current (within saturation bounds) was

measured to track commanded current over a bandwidth of 1.5kHz. Inertia with

respect to the transmission output (i.e., linkl inertia + 16 times motor rotor in-

ertia) was measured via dynamic tests to be I = 0.047Kg-m2. To an unusually

good approximation, the dynamics of the experimental system agreed with the

model of equation III.1.

System control was performed on a single-board computer based on the Mo-

torola 68020 running at 16.7 MHz. Position measurements were obtained from

optical encoders on the motors. Velocity measurements were not directly avail-

able. Instead, velocity was inferred from an observer running on the control

computer [see e.g. 27 and Appendix]. Observer dynamics introduce additional-

dynamics in the controlled system, which, like mechanical resonances, imposes

limitations on the validity of the second order plant model.

A sliding-mode controller was implemented on the control computer, as per

equation III.36. The value of u was selected to be 10.5 N-m, 20% below the full

torque saturation of u,, = 13 N-rm. The sliding-mode gain, , was set to 4.

The values of W.t and 8s.at were 1.8 rad/sec and 0.23 radians, respectively, which

correspond to a linear-region proportional gain of K = 185 N-m/rad and damping

of b = 5.9 N-m/(rad/sec). These values correspond in turn to a linear equivalent

natural frequency of wn 10Hz * 27r and critical damping (= 1). With these

values of K, w,, b, u and I, the predicted overshoot (0.6825 Oo) is 0.0048 radians.

Transient measurements were taken for a step command of 3 rad. An initial

condition of w =- 0 and 0 = -3 rad was imposed at the onset of control. The

control computer measured the link positions, computed an observed velocity,

computed torque commands according to equation III.36, sampled a real-time

clock, and stored samples of position, velocity, torque and time in memory for
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Figure 3: Robust Optimal Control; Angle vs Time

analysis. The cycle time of the routine was 660 microseconds. Position, velocity

and torque histories are shown plotted in figures 3, 4 and 5. The time history of

i is plotted in figure 6. These results are physical measurements, not simulation.

The trajectory shown in figure 3 is similar to that of the ideal case shown

in figure 1. The curve consists of a pair of quadratics which match the initial

and final conditions, and which blend together at an inflection point near the

middle of the transient. As expected, a slight overshoot did occur, although it

is not apparent from the scale of the graph. The link first passed through the

goal at time = 0.214 seconds. The overshoot peaked at 0.0017 radians, at time

= 0.2195 seconds. Overshoot is lower than the predicted value of 0.0048; the

difference is attributable to extra damping due to friction which was not included

in the system model. During its return to the goal position, the link behaves like

a 10Hz critically damped second-order system. The goal position was reached

within 2 encoder counts (.0004 rad), by time 0.230 seconds. Very near the goal,

non-idealities of coulomb friction and position measurement resolution make the
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system dynamics deviate from ideal linear behavior.

Deviations from ideal time-optimal control are more apparent in figures 4 and

5. Figure 4 shows a velocity profile similar to the ideal profile of figure 1, but

with several distinguishing features. First, the slope of the velocity rise is steeper

than that of the fail. The reason for this is apparent from the torque history of

figure 5. Initially, the system dynamics are far from the desired relation = 0;

i.e. the initial state does not lie near the ideal switching curve. Maximum torque,

utWX, is exerted to achieve the condition = 0 as rapidly as possible. On the

decelerating half, though, the condition i = 0 is achieved and regulated, so the

braking torque exerted is close to u, which has been chosen 20% below the true

saturation torque. Thus, the link decelerates more slowly than it accelerates. The

resulting behavior closely imitates that which would occur under ideal optimal

control with a positive saturation torque of 13 N-m and a negative saturation

torque of 10.5 N-m.
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Another distinguishing feature of figure 4 is the smoothed transition from

positive acceleration to negative acceleration. Ideal bang-bang control results in

a sharp corner at the velocity peak. Smoothing introduced by the saturation

functions in the sliding-mode control law blunts the velocity peak.

A third important feature of figure 4 is the velocity overshoot near the end

state. Since the system overshot its goal position by 0.0017 rad, a negative velocity

transient was produced by the linear-regime controller to return the system to

the goal. The peak velocity in figure 4 is 27 rad/sec, which occurs at time = 0.098

seconds. The system first returned to zero velocity upon peak position overshoot

at time 0.2195. The peak velocity resulting from the linear-regime controlled

return to the goal point was -0.14 rad/sec.

The torque profile in figure 5 shows full saturated torque of 13 N-m exerted

from onset to time 0.0985 sec, at which time the torque rapidly reverses. Under

ideal time-optimal control, torque reversal would occur at time 0.104 seconds:

The sliding-mode controller anticipates braking the system at -10.5 N-m instead

of at full saturation; consequently, braking is initiated sooner than under time-

optimal control. Also, under perfect bang-bang control the transition from max-

imum positive torque to maximum negative torque would occur instantaneously.

With smoothed sliding-mode control, the transition occurred over 10 control loop

iterations (about 7 ms).

Upon switching to braking torque, the sliding mode controller commands

torques which vary about the nominal safe braking torque of -10.5 N-m. If the

system model and all measurements were perfect, the braking torque exerted

would be flat at -10.5 N-m. Due to nonidealities such as observer dynamics,

parameter estimation errors, unmodeled friction, unmodeled resonances, finite

computing speed and finite position measurement resolution, torque corrections

about the nominal braking torque are required to maintain the condition = 0.

It is suspected that the dominant source of the chatter is due to the influence

of discretized position measurements of the observer dynamics (see Appendix),
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although this has not been confirmed in the present study.

From figure 6, it is apparent that the controller is quite successful in enforcing

s = 0. Initially, the system starts far from the switching curve. The initial value

of /',aat is -12.57. At the onset of torque reversal, the value of 9/1st has fallen to

-0.662. By the time the rapid torque reversal is complete, (7ms later), the value

of 5 has fallen to 3% of saturation. Regulation of 5 = 0 continues to improve to

better than 1% of s.at over the duration of the move.

At time 0.212 sec, the link velocity falls below wat, and the controller enters

the near-linear regime in which both and w are below saturation. The braking

torque begins to approach zero rapidly under the influence of near-linear, critically

damped proportional plus derivative control. Ideally, continued braking at -10.5

N-m would have brought the system to rest at the goal in an additional 6.4 ms.

Instead, the P-D controller brings the system to rest in 10.3 ms. with a slight

overshoot. Subsequently, the P-D controller corrects for the overshoot.

A perfect bang-bang controller with torque saturation at 13 N-m would have

performed the 3 rad step in a time of 0.208 seconds, with a torque transition

at 0.104 seconds. A perfect bang-bang controller with a positive torque limit

of 13 N-m and a negative torque limit of -10.5 N-m would have performed the

transition in 0.2209 seconds, with a torque reversal at t = 0.0982 seconds. The

sliding-mode controller reached its maximum position (with slight overshoot) at

0.2195 seconds, with a torque transition at 0.0985 seconds.

The sliding-mode controller performed nearly as well as the theoretically per-

fect controller. For a comparison with conventional linear control, two more

control routines were implemented and measured: a proportional plus derivative

control with torque saturation, and an unsaturated proportional plus derivative

control. The same hard' are was used for these experiments, and the sampling

and data acquisition rate of 1.5 kHz was preserved.

Performance of the first alternative controller, saturated P-D control, is shown

in figures 7 and 8. In this example, the same values for K and b were used as
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in the near-linear regime of the sliding-mode controller: 185 N-m/rad and 5.9 N-

m/r/s, respectively. If torque saturation were not present, then the system would

have exhibited critical damping with a natural frequency of 10Hz. However, with

torque saturation at 13 N-m, the proportional term alone causes saturation for

a position error of only 0.07 radians, which is only 2.3% of the example 3 radian

step command. Control was implemented as though saturation did not occur,

and the resulting torque commands were saturated by the physical limits of the

amplifier.

Position vs time is shown in figure 7. Although linear theory predicts zero

overshoot, violation of linear assumptions due to torque saturation resulted in an

overshoot of 0.71 radians, or 24% of the 3 rad step command.

The torque history, shown in figure 8, clearly indicates the influence of torque

saturation. The torque profile starts with full positive saturation for 0.220 sec-

onds. Since theoretically perfect control would exert maximum torque for only-

0.104 seconds, the saturated P-D controller has accelerated the link well beyond

the point at which overshoot can be prevented. At 0.220 seconds, the controller

rapidly switches to negative torque saturation. Although maximum braking is ap-

plied, the inertia passes through the goal position with a velocity of 22 rad/sec.

At 0.270 seconds, the controller switches torque again to positive saturation. The

valid linear region is entered only after 0.30 seconds, at which time the torque

command falls below saturation and continues to decline monotonically to zero

under valid linear control. No more oscillations are observed after entering the

linear control region.

The second alternative controller is also proportional plus derivative. How-

ever, the gains K and b were reduced to 4.33 N-m/rad and 0.90 N-m/(rad/s),

respectively. This choice of gains results in critical damping with a natural fre-

quency of about 1.5 Hz. These choices for K and b are the absolute best linear

gains which: 1) preserve linear assumptions (no torque saturation for a 3 rad

step command); 2) guarantee zero overshoot; 3) satisfy the previous conditions
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in minimum time under P-D linear control. The results are shown in figures 9

and 10.

Figure 10 shows the torque history under unsaturated linear control. Initially,

the torque command is the maximum feasible torque of 13 N-m. After time zero,

the torque continues to fall, and thus remains within the valid linear control region

throughout the trajectory. Any higher value of K would cause torque saturation,

which invalidates the linear analysis used to select the controller.

The resulting position history is plotted in figure 9. No overshoot occurs,

but after 0.50 seconds, the link is still 0.264 radians from its goal. The gains

which preserve linearity are so low that the torque commands fall to within the

magnitude of-Coulomb friction after 0.37 seconds, at which time the link is still

0.51 radians from its goal. Under linear control, the response is slow, and the

regulation is poor.
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§9. Summary and Conclusions

A sliding-mode controller has been presented which imitates time-optimal

control, but does so robustly. The limitations of bang-bang control, sensitivity to

parametric errors and instability resulting from unmodeled dynamics, have been

alleviated in the proposed scheme. The controller is tolerant of control effort

saturation, parametric uncertainty, and unmodeled high-frequency dynamics. A

design procedure was presented for smoothly blending bang-bang control into

linear control with small overshoot. Global stability proofs were presented for

all regimes of operation: saturation, unsaturated sliding-mode regulation, and

(nearly) linear control about the goal state.

The analysis presented here has been restricted to a frictionless, second-order

system. Generalization to higher dimensions should follow analogous deductions

and proofs, but such generalization is not attempted here.

The sliding-mode controller was implemented on a planar, two-link robot.
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Test results for link 1 for a large (3 rad) step command demonstrated a move

time which was only 6% slower than theoretically perfect control, and exhibited

an overshoot of only 0.06%. Torque histories resulting from the sliding-mode con-

troller approximated the bang-bang control law derived by time-optimal control.

In the decelerating half of the control history, high-frequency torque variations

were observed. Control smoothing through the use of saturation functions should

have eliminated such chatter. The source of the remaining chatter was not de-

termined; discretization of the position measurments (via optical encoders) is a

suspected contributor. The torque chatter damped out during deceleration, and

did not lead to instability or poor control performance in the present case. How-

ever, the source of chatter should be investigated for future extensions of the

theory.

Linear proportional plus derivative controllers were tested for comparison with

the sliding-mode optimal controller. The linear controllers exhibited large over-

shoot when torque-limited, or very slow response for the best unsaturated linear

control. For an allowed overshoot equal to that of the sliding-mode controller,

the best linear controller is approximately four times slower than the optimal

controller for the chosen 3 radian step command. For longer moves, the perfor-

mance comparison between the optimal controller and the best linear controller

will be more dramatic. On the other hand, as the commanded move approaches

zero, the optimal controller will degenerate to a linear controller; no advantage

in movement speed will then be observed.

The key feature of the new control law is that feedback control is applied to

drive a system to imitate some desirable and feasible set of dynamics. The desired

dynamics in the present case were specified as a state constraint corresponding

to motion along the switching curve of a time-optimal control law. The state

constraint is expressed as a relation between velocity and position. This is in

contrast to conventional approaches in which a torque history or desired posi-

tion trajectory is pre-computed. The success of the present approach suggests

application to other types of control in which some desired set of dynamics is
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to be achieved. Potential application areas include balancing, walking, catching,

control of two-handed operations and operations involving intermittent contact.

In each case, some desired set of dynamics should be deduced, rather than any a

priori position, velocity or force trajectory, and the sliding-mode technique should

be adapted to enforce the chosen dynamic relationship.



CHAPTER IV

CONFIGURATION SPACE TRANSFORMS FOR OBSTACLE AVOIDANCE

§1. Introduction

In the previous chapters, first design and then control for a very high speed

two degree of freedom, planar manipulator were described. The high-speed capa-

bilities accentuate the danger of collision with possible obstacles within reach of

the robot. The problem of collision avoidance involves three major issues which,_

it will be shown, can be treated separately and implemented as separate but

coordinated modules. First, there is the problem of observation, computation

and representation of the obstacles within the robot's reach. Second, there is

the servo-level issue of reconciling very high-speed robot motion with guaranteed

safety in the presence of reachable obstacles. Finally, there is the planning-level

issue of finding a path among the obstacles which successfully moves the robot to

a goal location without collisions. These three issues will be treated, respectively,

in the following three chapters.

In this chapter, obstacle computation and representation will be treated. Ob-

jectives of the obstacle computation/representation scheme are, in short, speed

and generality.

Any obstacle-based computations must be fast to accommodate dynamic en-

vironments, (cases in which the obstacles are not all stationary). Although fast"

is a relative term, a heuristic qualification of a fast computation can be described

in terms of the speeds of the moving obstacles. A fast" computation is one

which performs obstacle-based computations rapidly enough to competently track

77
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moving obstacles. Another aspect of the speed issue is that the representation

scheme should permit efficient use of the obstacle computations. The representa-

tion should be efficient enough that access time should be transparent, and that

further transformations for use by the robot controller and path planner should

be minimal. The maximum speed of the robot should be limited only by phys-

ical constraints of the electromechanical design, not by information access and

processing delays.

Generality is the second major requirement of an obstacle computation and

representation approach. The scheme should be extensible to arbitrarily complex

environments, including obstacles and robots of arbitrary shape, very cluttered

environments, and high-dimensional cases. Further, the ideal approach would

provide arbitrarily high resolution. The preceding virtues should not compromise

computation speed.

In this chapter, a fast and general approach is presented for obstacle transfor--

mations and representation. The technique is detailed for the 2 d.o.f manipulator

described in chapter 2. The procedure uses discretized "configuration space"

Both static and dynamic obstacles are included in a common representation.

Dynamic obstacles are updated in configuration space at very high rates. The

chosen representation, which has been implemented in 2-D, effectively handles

arbitrarily complex 2-D environments. The chosen space (joint space) is ideal for

high-speed access by both the servo controller and the planner. The techniques

demonstrated in 2-D are generalizable to higher dimensions, albeit with penalties

in storage requirements and computation times.

§2. Configuration Space Description of Obstacles

The manifold objectives of the obstacle representation scheme comprise com-

peting criteria. A good compromise among the conflicting requirements will be

described here in terms of configuration space" [17,25,26,391. In configuration
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space, an obstacle is represented with respect to a particular robot in terms of

forbidden regions in the joint space of the robot. Each point in the joint space

of a robot corresponds to a unique pose, or "configuration" of the robot. Not all

points in joint space can necessarily be reached in practice, since physical joint

limits typically impose bounds on attainable joint positions. Joint limits, though,

are merely feasibility constraints; every point in joint space is mathematically well

defined as a robot pose. There are no complications with redundant degree-of-

freedom kinematics, multiple solutions, undefined states or singularities, as there

are in a task-space representation [201. On the other hand, describing obstacles

in terms of robot joint angles can be non-intuitive and difficult to compute.

Obstacles in configuration space appear as forbidden regions of joint values.

For a 2 d.o.f. robot, the regions are areas; in three dimensions, the regions are

volumes; in higher dimensions the regions are hyper-volumes. Edges (or surfaces

or hypersurfaces) of the forbidden regions correspond to poses of the robot for-

which some point on the physical envelope of the robot is in contact with some

point on the physical envelope of an obstacle. In this representation, joint limits

of the robot can be expressed in the same manner as other obstacles. A joint

limit "obstacle" in configuration space is the half plane (half space, half hyper-

space) bounded by the line (plane, hyperplane) defined by the one-dimensional

constraint: joint variable = joint limit. In addition to encountering individual

joint limits, a robot may be capable of striking its own body. Joint angles which

correspond to such a condition can also be expressed in terms of forbidden regions

in joint space. The conceptual visualization of forbidden regions in joint space

has suggested the alternative name, image space" [28,29,30].

The simplest example of an image space is that of a point automaton moving

among a set of obstacles. In this case, image space is the same as the space

in which the automaton moves, and the forbidden regions are identically the

physical volumes of the obstacles. A slightly more complex case is that of a

spherical automaton moving among obstacles. The corresponding configuration

space map looks much like the original space of obstacles, only the boundaries
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of the obstacles in configuration space are grown" by an amount equal to the

radius of the automaton. (See, e.g., [25,26,49]).

For a Cartesian manipulator, the configuration space map is similar to that of

the spherical automaton, in that the configuration space obstacles are typically

identifiable as corresponding to physical obstacles. The configuration space ob-

stacles are "grown" by an amount depending on the cross-sectional dimensions of

the robot links. In addition, however, interference with the robot links can result

in more dramatic "outgrowths" of the physical obstacle boundaries in configura-

tion space. Nonetheless, configuration space maps are relatively easy to compute

for Cartesian robots. Articulated robots, on the other hand, have configuration

space maps which can be both difficult to compute and difficult to interpret.

In the use of configuration space described here, joint space is discretized into

minimum resolution areas which, extending the "image space" analogy, will be

referred to as "pixels" (or voxels' in 3-D). Implementation has been limited

to two dimensions, conforming to the joint space dimension of the experimental

robot described in chapter 2. A high-resolution discretization of joint space be-

comes inefficient in storage and computation as the number of dimensions grows.

However, it will be shown that two dimensions is entirely practical with current

technology, and that three dimensions is not unrealistic. Although most indus-

trial robots have four to six degrees of freedom, a configuration sub-space map of

only two or three dimensions is arguably adequate.

An important practical example is the popular SCARA type robot, [13,31],

which has four degrees of freedom. If the gripper is not carrying large tools or large

parts, then the fourth degree of freedom (wrist roll) may be ignored by modeling

the gripper with a bounding cylinder. Then, configuration-space obstacles may

be adequately described in terms of the three remaining joint coordinates.

For robots with higher degrees of freedom, the same approximation is often

valid. For articulated robots as well as Cartesian robots, typical designs use three

long links which essentially determine the position of the end effector. A spheri-
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cal wrist" [37,38] is often employed, which controls orientation of the end effector.

With a spherical wrist, at least two of the link lengths are zero. If the length

of the end effector is reasonably short, or if a gripper at the end is not handling

large parts, then the wrist and end-effector may be approximated by a reasonably

small bounding sphere centered at the intersection of the wrist axes. The bound-

ing sphere approximation reduces a six-dimensional configuration space to only

3 dimensions. Even in cases where the bounding-sphere approximation seems

overly conservative, its use may be justified by the tremendous savings in com-

putation time and storage space resulting from reducing the problem dimension

from 6 to 3.

§3. Properties of Configuration Space Obstacles

In this section, some general observations will be made about configuration

space obstacles with particular reference to the robot described in chapter 2. The

chosen joint space for this robot is absolute joint angles, not relative joint angles.

That is, if joint 1 is moved while joint 2 is kept constant, the angle of the elbow

will change. The center of gravity of link 2 would translate as link 1 moves, but

link 2 would not rotate with respect to a Newtonian frame of reference. Since

this is a particularly convenient coordinate system for robot control, it has been

chosen also to be the coordinate system for configuration space.

Since the robot under consideration is capable of continuous rotation of both

links, its configuration space representation must accommodate periodicity in

both dimensions. A representation which satisfies the 2-D periodicity require-

ments is the surface of a torus. The surface of a torus is two dimensional, and a

coordinate system can be defined on this surface which is periodic in both dimen-

sions. For further description of this representation, see [28,29,301. Configuration

space maps presented herein appear to be planar figures, though they should be

understood to imply periodicity: the top edge joins the bottom edge and the right
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edge joins the left edge of each map.

The most fundamental obstacle in configuration space is a point obstacle. In

fact, point obstacles are not physical; a dimensionless obstacle" could hardly

pose much of a threat. Point obstacles are well-defined mathematically, though,

and are highly useful in computing configuration space representations of real

obstacles.

Although a point obstacle has zero area (or volume), its configuration space

image may consume substantial area (or volume, or hypervolume). A point obsta-

cle can map into configuration space as multiple, disconnected forbidden regions,

as a single region, or as nothing at all. Forbidden regions are by no means guar-

anteed to be convex. Separate obstacles in task space, which may be spaced far

apart, can produce forbidden regions which overlap dramatically in configuration

space.

Some representative examples of point obstacle transformations for the 2-D-

planar robot are shown in figures 1 through 6. The figures shown were generated

physically by tracing about a small (2mm) diameter pin placed within reach of

the robot. For each location of the pin, the robot was moved manually while

maintaining contact between the pin and the robot. The joint angles of the robot

were recorded by the control computer during this operation, and plotted out

afterwards. Each point obtained in this manner corresponds to a point on the

edge of a forbidden region in configuration space. The edge points form one

or more closed contours which enclose forbidden regions in configuration space.

Figures 1 through 6 correspond to pin placements along the x-axis of the robot's

workspace; the x-axis was defined (arbitrarily) as an axis along which to define

the origin of joint space. When the arm is in its pose corresponding to 0 angle

of both joints, it is at full extension, outstretched along the positive x-axis of its

workspace. The pin placements of figures 1 through 6 correspond to x placements

of 45 cm, 40 cm, 35 cm, 28.5 cm, 20 cm, and 10 cm, respectively. Any point

obstacle beyond 51.5 cm has a null mapping in configuration space, since it is
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impossible for the robot to reach the obstacle. Any obstacle within 3.8 cm maps

onto the complete configuration space, since such points are within the body of

the robot, and no combination of joint angles can prevent the overlap.

In figure 1, the configuration space map is shown for a point obstacle near the

extreme reach of the robot. Although the ideal point obstacle has zero area in

task space, (and the actual pin used has negligible area), the forbidden area in

configuration space is certainly non-negligible. Essentially, the point obstacle is

"grown" by an amount related to the width of the robot arm. The locus of points

comprising the contour in figure 1 is the locus of joint angles for which some part

of the surface of the robot is in contact with the pin. Equivalently, this means that

the point x= 45cm, y=0 lies on the boundary of the area corresponding to the

image of the robot projected on the x, y plane. The area enclosed by the contour

in figure 1 corresponds to all positions of the robot for which the projected profile

of the robot contains the point y=0, x= 45 cm. All possible collisions between-

the robot and the pin at the chosen location are represented by a single closed

region in configuration space. The only possible collisions with the chosen point

occur within the robot's tip, or somewhere within the envelope of link 2 beyond

20 cm from link 2's revolute joint. It is not possible for any part of the "tail" of

link 2, the section supporting the countermass, to intersect the specified obstacle.

The obstacle is also beyond the reach of link 1.

Figure 2 was obtained in the same manner, with the point" obstacle moved

to 40 cm on the x axis. The resulting configuration space map is conceptually

similar to that of figure 1, though broader and distorted. Still, only a single closed

region is formed. The obstacle at this location is beyond the reach of the tail of

link 2.

In figure 3, the obstacle has been moved to x = 35cm, which is within reach

of the tail of link2. It is still beyond the reach of link 1, though. The closed

region containing the origin corresponds to collisions betvw een the front" of link

2 and the point obstacle. It is similar to the obstacle regions in figures 1 and 2.
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In addition, though there is a new region which corresponds to the joint angles

of the robot for which the tail of link 2 contains the point obstacle. The locus

of edge points for tail collisions does, in fact, form a closed contour, since the

top of the graph is periodic with the bottom of the graph. The two sections at

the top and bottom of the graph are two halves of a single region. Thus there

are only two separate, closed regions in the map of figure 3; these regions will be

referred to in the following as "link2-front" and link2-rear" configuration space

obstacles.

Figure 4 shows the point obstacle at 28.5cm, which is almost within reach

of the elbow. Both the link2-front and link2-rear obstacles are distorted from

their respective images in figure 3. The edges of the obstacle regions have slopes

opposite that of centers. The link2-rear obstacle clearly shows the outline of the

countermass on the tail of link2.

Figure 5 appears quite different from the preceeding cases. In this figure, the-

point obstacle is at 20cm, which is within reach of both the front and rear of

link 2, as well as within reach of link 1. Actually, the link2-front and link2-rear

collision regions are still present, but there is an additional obstacle region de-

scribing collisions with linkl. This additional region excludes a vertical stripe in

configuration space, which overlaps both the link2-front and link2-rear regions.

The new region will be called a "link1" configuration space obstacle. The borders

of the linkl region appear in figure 4 as two vertical lines. The area contained be-

tween these lines comprises a band of forbidden poses; the top of the band wraps

around to join the bottom of the band to form a continuous strip. The edges

of a linkl obstacle are vertical, since contact between linkl and an obstacle is

independent of the position of more distal links (link2). Although link1 obstacles

are compatible with the 2-D configuration space representation, linkl collisions

could be fully described by a one-dimensional representation. This is a general

principal. For serial links numbered sequentially from the ground to the most

distal link, link I"i obstacles require an i-dimensional configuration space repre-

sentation. Links closer to ground can be mapped fully into lower dimensional
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VI

Figure 7: Configuration Space Obstacle Types vs Radius

obstacle representations.

In figure 6, the point obstacle is at z = 10cm. At this location, the obstacle

is within reach of the front of link2, and is within reach of link 1, but is not

within reach of the rear of link 2. At its closer proximity, the obstacle excludes a

broader stripe in configuration space due to the linkl obstacle contribution. The

link2-front contribution is still prevent, though its connectedness is obscured by

the overlayed linkl obstacle.

The regions of existence of the three obstacle types are illustrated in figure 7.

In figure 7, point obstacles in configuration space are classified as falling within

six regions. Region I includes all points within 3.8cm of the axis of link 1. Points

within this region fill configuration space entirely. Actually, it is only the linkl
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type map which fills all of configuration space; since linki is 3.8cm wide, collisions

between link 1 and the obstacle point occur for all angles of link 1, regardless of

the angle of link 2. Obstacle points within this region also may collide with the

front of link 2, though the link2-front obstacle map does not fill all of configuration

space.

In region II, which contains points lying between radii of 3.8 cm and 12 cm,

configuration space is no longer completely filled. Both linki and link2-front type

obstacles appear in configuration space for points in this region.

For obstacle points in region III, which lies between radii of 12 cm and 27.5

cm, all three types of obstacles appear in configuration space: linkl, link2-front,

and link2-rear. In region IV, between 27.5 cm and 38 cm, linkl obstacles disap-

pear, and link2-front and link2-rear obstacles are present as completely separate

regions. In region V, between 38 cm and 51.5 cm, only link2-front obstacles are

present. Finally, region VI, which contains all obstacle points beyond a radius of-

51.5 cm, generates no forbidden regions at all in configuration space.

It will be useful to distinguish the separate obstacle types and their respective

regions in computing configuration space transforms.

§4. Constructive Geometry for Configuration Space Images

Although the mapping from points in task space into forbidden regions in

configuration space seems complex and ill-behaved, some powerful mathematical

properties of the mapping can be deduced.

First, a general property of the mapping of sets from task space to sets in

configuration space can be stated as follows: For sets 01 and 02 in task space, the

transformation T which maps task space points into configuration space images

satisfies the identity:

T (1 u 02) = T (0 1) U T (0 2) (IV.1)
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That is, the transformation of a union is equivalent to the union of the transforma-

tions. This property follows from the definition of transformations of individual

points from task space to configuration space. A point in task space, X, maps

onto an "image" set, Iv of points y in configuration space, Y via the transforma-

tion T: Iv = T(x). Alternatively, a point y = (, 02) in joint space defines an

inverse image in task space, denoted by R (y). The inverse image is simply the

set of all points in task space which lie within the physical envelope of the robot

when the robot is in position y. The mapping from task space into configuration

space is actually defined in terms of this inverse map. That is, a point y is an

element of I = T (x) if and only if z is an element of R (y).

The complement of Iv(xz), denoted by CI (), is the set of all points in Y which

are not in I(x). The complement of Iv(x) is "free space" since for every point y

in CI,(z), the point z in X is not contained in R (y). That is, the pose y does not

result in a collision between the robot and the point obstacle, x. Transformations

of sets of points in X can now be defined in terms of transformations of points in

X.

The definition of the transformation of a set of points in X, S, will be written

with the same notation: I(S) = T(S 2). Set transformations will be defined

based on preservation of the notion of free space. Specifically, the complement of

I/(S), C/(S.), consists of all the points y for which the intersection of R.(y) and

S, is empty. In other words, free space in Y means that the robot does not collide

with any of the points in S.. Free space in Y is defined with respect to point 1

in X by the complement of the point transformation, CT (xi). Free space in Y

with respect to X2 in X is CT ( 2). A point y in Y satisfies the criterion for being

in the free space of Y with respect to the set of points S. = Xl, X2 if and only if y

is an element of CT(xi) and y is an element of CT(X 2), i.e., y lies within the free

space corresponding to each of the points. Based on the definition of free space

for set transformations, the following is true:

CT(SZ) = CT (r) n CT(X2 ) (rv.2)
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That is, the free space resulting from of the set of points xl and x2 is the inter-

section of the free space corresponding to x and the free space corresponding to

Xr2 .

Taking the complement of equation IV.2 yields the relation:

T(xi U x2) = T(x1 ) U T ( 2 ) (IV.3)

Equation IV.3 expresses an identity for the transformation of a set consisting

of two points. The identity may be applied recursively to generalize it to arbi-

trary sets in X, which establishes the set relation of equation IV.1. There is no

restriction on the type of sets in X which satisfy equation IV.1; e.g. convexity,

closure, connectedness, etc.

The above approach to computing configuration space obstacles is rigorous,

but inefficient. A dramatic efficiency improvement may be obtained by realizing

that it is only necessary to map points on the boundary (surface) of the physical

obstacle into configuration space. This is a consequence of equation IV.1. A

lemma of equation IVol can be stated as follows: a subset of the domain of any

configuration space transformation maps into a subset of the range of the orig-

inal transformation. Consequently, a physical obstacle which is fully contained

within a larger obstacle has a configuration space map which is fully contained

within the configuration space map of the larger obstacle. A limiting case of

this property is that the configuration space image of any obstacle is contained

within the the image of the obstacle's boundary. Therefore, it is only necessary

to transform points on the edge (surface) of an obstacle to create a map which

fully contains all collision states of the robot for the entire area (volume) of the

obstacle. In practice, a fairly coarsely spaced, finite subset of boundary points

may be transformed to obtain a good approximation of the bounding shell of the

complete configuration space map. Roughly, the spacing of sample points on the

physical obstacle's boundary should be somewhat smaller than the width of the

smallest robot link.
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Figure 8: Concentric Obstacles at 35cm: C-Space Representation

Since arbitrary obstacles can be constructed in configuration space through

the union of point transformations, it is only necessary to be able to perform

point transformations efficiently. Further improvements in speed, however, can be

obtained by introducing additional elements for constructing configuration space

geometries. In particular, circles (or spheres) are convenient building blocks.

Figure 8 shows three superimposed outlines corresponding to the configuration

space link2-front forbidden regions for a point (actually a 0.030" diameter pin),

a 2" diameter circle, and a 5.75" diameter circle. Each of the obstacles was

centered about the position x= 35 cm, y = 0. As deduced, the larger circles in

task space, which completely enclose the smaller circles, map onto configuration

space regions-which completely enclose those corresponding to physically smaller

obstacles. Transformations of circles into configuration space may be used to

construct configurations space images of more complex obstacles. An obstacle

in task space may be modelled as the union of disks of various diameters. The

resulting configuration space transform is the union of the transforms of the
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individual disks.

In practice, the composite model in task space is permitted to contain holes,

since only the shell of the task space obstacle requires transformation. As long as

the complete boundary of the task space obstacle is contained within one or more

of the model elements, the union of the transformations of the model elements

will produce a configuration space mapping which completely encloses the exact

configuration space mapping of the actual obstacle.

Modeling elements may be added to task space at will, and the corresponding

joint space image of each element may be superimposed on the configuration space

map. Subtraction of images from configuration space is not as easily performed,

however, since:

T(01 - (1 n 02)) T(o,01) - T(0 1 n 02) (V.4)

An additional valuable constructive geometry technique is the use of swept"

primitives. For example, a line in task space may be thought of as a set of points,

or a single point swept along the line. A stripe (cylinder) in X may be modelled

as a swept circle (sphere). The advantage of this viewpoint is that instead of

superimposing images in Y from a high density of points in X, images in Y may

be constructed from a blend" of images of a sparse set of points in X. Blending

configuration space images is an interpolation technique which is justified only

under the condition of functional continuity.

The concept of continuity of a function requires the definition of a metric. An

acceptable metric for the configuration space transformation may be defined by:

dA(T(xl), T(z 2)) Area(T(:zi)) + Area(T(Xz:2) - Area(T(zl) n T(X:2)) (V.5)

where Area" is understood to mean the surface integral (or volume integral in

higher dimensions) of the areas (volumes) contained in the closed region(s) of the

argument (configuration space images). A suitable metric on task space is the

Euclidean norm (minimum distance between points).
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To prove continuity of the mapping T(x) about a point o, it is sufficient to

show that given any > 0, there exists a 6 > 0 such that dA(7(x), T(xo)) <

E whenever I Ix- xol I 6. For the chosen metric, the preceding statement is

equivalent to saying that as a point x approaches the point x0 the image of x in

Y, I = T(x), becomes increasingly similar to the image T(xo). This condition is

not rigorously proven here, but has been empirically observed to be true, at least

within each of the regions demarcated in figure 7. Continuity of the configuration

space transformation does not hold across the boundaries of the regions in figure

7.

A net configuration space mapping for the 2 d.o.f. planar arm may be thought

of as a composite of the three individual mappings, each of which is continuous

within specified ranges. In particular, linkl obstacles are well behaved within re-

gions II and III of figure 7. Incremental perturbations of obstacle point positions

within these regions result in incremental variations of the configuration space-

maps. Linkl obstacle mappings are continuous within this range, and may be in-

terpolated, but linki obstacles may not be interpolated across the inner boundary

of region II or across the outer boundary of region III.

Link2-rear obstacles are also generated by a continuous mapping from points

in task space to a single closed region in joint space. The region of continuity

includes the regions III and IV in figure 7, excluding the boundaries between

regions II and III and between regions IV and V. Link2-front obstacles have a

continuous mapping everywhere within the boundary of region VI.

Having justified constructive geometry based on circles (spheres), and having

justified the use of numerical interpolation for configuration space transforms,

a fast configuration space transformation computation process can now be de-

scribed.
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Figure 9: 2 Obstacles at 0 deg and 45 deg; C-Space

§5. Configuratioin Space Transformations for Circular Obstacles

An implementation of fast transformations is described here. It has been

realized for 2" diameter circles, i.e. cylindrical obstacles in the workspace of the

planar robot. The same technique is immediately applicable to circular obstacles

of any diameter.

For fast transformations of circular sets in task space, it is most efficient to pass

through an intermediate frame of polar coordinates. Pcint obstacles in task space

which lie at the same radius from the axis of joint 1 rotation have geometrically

identical images in configuration space. A non-zero polar angle causes a pure shift

of the forbidden region in joint space, without scaling or distorting the image.

Figure 9 shows the link2-front configuration space representation of two 2"

obstacles at the same radius (33cm) but at different polar angles ( deg and

+45 deg). The images in configuration space differ only by a pure translation.

The obstacle on the x-axis (polar angle of 0 deg) has odd symmetry about the

X_-PI

Is-z
0

-PI

Ii'1ftI. I 

I

i '

i i i 1
I I I~ttF

+ I . . . , I I

I _4

fI I Io i I I 1 ; I I I I.
_

1 1 I - 1 1 ' -

i
i eI LI I I I II t i i i i

. .

---- - --- ,

i -

�ti it_ ' i i f 1 ! If I i i !' I ! I !



96

CONFIGURATION SPACE

PI

CI

I-z
0

-p1

r - T I i±'-W ]-r 1 1 i I FIl bl

I :[ [ i.4 

-Pi JOINT P I

Figure LO: 2" Obstacle at 30cm; C-Space

origin (01 = 0, 02 = 0). The 2 obstacle at (r, a) = (33 cm, +45 deg) has a

corresponding configuration space image with odd symmetry about the point

(e, 02) = (+45 deg, +45 deg) in joint space. Thus, the transformation of points

from polar coordinates in task space to forbidden regions in joint space is a linear

transformation in polar angle a, and nonlinear only in radius, r. Consequently,

to perform efficient transformations of points from task space to configuration

space, it is sufficient to know how to perform the efficient transformations for

points along the positive z axis only.

A fast transformation method for circles along the positive x-axis is described

here in terms of bounding polygons. Examples of exact configuration space images

for 2" diameter obstacles are shown in figures 10 and 11. In figure 10, the obstacle

is centered at = 30 cm, y = 0. All three obstacle types are apparent: link2-

front, link2-rear and linkl. In figure 11, only link2-front obstacles are graphed.

Obstacle transforms for three different radial placements are superimposed.
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Figure 11: 2" Obstacles on x-axis; C-Space

In order to approximate the radial dependence of obstacle placement on con-

figuration space images, the three types of obstacles are considered separately.

The chosen approximation for link2-front obstacles is illustrated in figure 12. In

figure 12, 8 polygonal approximations of the true configuration space images for

8 placements of the obstacle along the x-axis are shown superimposed. In all,

14 empirical tracings were obtained, and 14 polygonal approximations were cre-

ated. Each polygon has 12 vertices and odd symmetry. Thus, an approximating

polygon can be fully described by an ordered list of 6 points corresponding to six

sequential vertices. The entire database for link2-front obstacles consists of 84

points (coordinate pairs) in configuration space.

The relatively coarse spacing of samples along the x-axis would be inade-

quate if the polygonal approximations were used identically to define configura-

tion space areas corresponding to obstacle locations between sample points. A

sparse database is made possible by interpolating images between sample points.

Interpolation of images is performed by linear interpolation of vertex locations
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Figure 12: Polygonal Obstacle Approximations; Link2-front

from the exact locations of corresponding vertices in the database. This is made

possible by ordering the vertex coordinates in the database in a consistent manner

such that there is a logical correspondence among vertices of various sample im-

ages. In specific, each of the polygons in figure 12 has a vertex which is uniquely

identifiable as the "upper left corner' of each polygon. This vertex has been given

the label "0" for each stored polygon. Vertices "1" through "5" are identified as

the vertices encountered sequentially while tracing the contour of the polynomial

counterclockwise, starting at vertex "0"

An example of linear interpolation of vertices follows. The coordinates of

vertex "0" are (, 2) = (-2600,700) (in encoder units of 0.011 deg/unit ) for

the link2-fronrt polygonal approximation of an obstacle at radius 42 cm. Vertex

"0" has coordinates (-2800,800) for the polygon corresponding to an obstacle at

radius = 38 cm. For an obstacle placed at radius = 40 cm, an equivalent vertex

0 may be computed by linear interpolation to be at the point (-2700,750) in joint

space.
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The complete process of computing a link2-front obstacle consists of: 1) con-

vert the obstacle's center coordinates in (, y) to polar coordinates, (r, ca); 2) find

the least upper bound and greatest lower bound radii of stored obstacle data

with respect to r; 3) compute the coordinates of each vertex of the approximat-

ing polygon from interpolation of the corresponding vertex locations of the upper

and lower bound images in the database; generate remaining vertices from odd

symmetry; 4) increment each computed coordinate by an amount equal to the

polar angle of the obstacle center in task space; 5) join successive vertices with

vectors in joint space. The resulting contour encloses a region in joint space which

is a close approximation of the set of robot poses which would result in a collision

between some part of the circular obstacle and some part of the front of link 2.

An identical procedure is followed for constructing link2-rear obstacles. Twelve

sided polygons are also used in the link2-rear database. Ten samples were stored,

covering the range from 12 cm to 38 cm, outside of which all points within the-

obstacle set lie outside regions III and IV of figure 7. The database for link2-rear

obstacles contributes another 60 points of required storage.

Linkl obstacles are also stored as a function of radius, measured at discrete

radii. A single, one-dimensional point is all that must be stored to describe

a linki obstacle. For a circular obstacle on the x-axis, the linki configuration

space contribution appears as a vertical stripe. The width of the stripe is an

adequate description of the forbidden region, which is centered about the origin

in configuration space. For points off the x axis, the center of the stripe is shifted

by an amount equal to the polar angle of the obstacle center position. Linear

interpolation of stripe widths is performed between bounding samples stored at

selected radii. Thirteen data points were stored at selected radii within regions

II and III of figure 7.

Link2-front and link2-rear obstacles become difficult to measure when the

physical obstacle is within reach of linkl. The presence of link1 prevents a com-

plete trace of the contours for link 2 interference. However, the existence of link1
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Figure 13: Approximation of Link2-front Obstacle in C-Space

obstacle stripes on configuration space makes a detailed description of Iink2 obsta-

cles pointless within the regions occluded by the linkl stripe. Thus, the bounding

polygon approximations may make liberal assumptions about the link2 obstacle

shapes within the regions of linki obstacles. An example is shown in figure 13.

Only the curved portions of the graph correspond to actual contact between the

front of link2 and the obstacle on the x-axis. The vertical line segments of the

graph correspond to the limits of link travel with respect to the obstacle. The

true shape of the link2-front obstacle within these bounds has not been deter-

mined. The approximating polynomial simplifies the obstacle shape within these

bounds by employing horizontal and vertical line segments. No loss of accuracy

is introduced by this model, since the unknown region of the link2-front obstacle

is covered by the linkl obstacle.

The database of polygonal approximations was constructed for a density of

sample points which was empirically judged to provide good accuracy for interpo-

lated polygons. Given that linear interpolation between stored samples is valid,
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a simple means for transforming task space "swept" obstacles into configuration

space can be described.

First, consider an obstacle which has been swept tangentially (at constant ra-

dius) in task space. The joint-space images of the obstacle corresponding to the

start and finish locations of the sweep are identical, except for a diagonal shift in

joint space. Consider the approximating polygons for the start and finish loca-

tions. Connect each of the corresponding vertices with line segments (vertex o"0"

to vertex "0" etc). The resulting graph forms a closed region (containing a num-

ber of superfluous internal line segments) which completely encloses the forbidden

states corresponding to the entire swept obstacle region. If the approximating im-

ages at the two endpoints were perfect, the image swept" in configuration space

by joining corresponding vertices would perfectly describe the exact transforma-

tion of the swept region in task space. This is a consequence of the fact that the

transformation can be expressed as a composite function: f(a, r) = f (, fr(r)).-

Since the transformation in polar angle is linear, linear interpolation based on

this variable is exact.

Task-space obstacles which are swept radially do not map as easily into config-

uration space. However, they may be approximated in configuration space using

incremental linear interpolation. The database of configuration space images was

constructed such that linear interpolation between successive samples was deemed

sufficiently accurate. To the same accuracy, an obstacle which is swept between

successive stored radial locations may be approximated in configuration space

by joining corresponding vertices of the stored polygons. A long radial sweep in

task space may be realized in configuration space by multiple piece-wise linear

interpolations (linear vertex connections) among successive stored mappings.

A swept motion which is both radial and tangential in task space is swept in

configuration space in the same manner. Intermediate positions of the swept ob-

stacli are computed, and respective vertices are connected. The choice of density

of intermediate positions is based solely on the change in radius in task space,
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since linear interpolation of the tangential variations is exact over arbitrarily large

tangential sweeps.

Using swept obstacles, task-space features such as lines and arbitrary contours

can be mapped efficiently into configuration space.

§6. Discretization of Configuration Space

The process detailed above describes the construction of polygons in config-

uration space which enclose forbidden regions. To detect if a robot is near an

obstacle, it would be necessary to select the point in configuration space which

corresponds to the robot's position, and determine the distance to each line seg-

ment in the configuration space map. To avoid collisions with obstacles, it is

necessary to prevent the robot from crossing any line segment in the map. The

process of determining the distance to each line segment can take arbitrarily long

as the number of obstacles grows. In order to make the representation more

efficient, the configuration space has been discretized.

To discretize configuration space into "pixels" a pixel is turned on" if it con-

tains any part of any line segment of configuration space bounding polygons. (A

slightly more conservative discretization has actually been implemented). Figure

14 shows the boundaries of five circular obstacles transforme:d into configuration

space and discretized into a space of 128x128 pixels. The original bounding poly-

nomials are inscribed in two of the images. In this example, 120 line segments

are present before discretization. To determine if a robot is about to collide with

an obstacle, it would be necessary to compute the distance to each of the 120

line segments. Once discretized, though, a robot can tell if it is in danger by

examining whether the pixel which it occupies is on"

Two additional features of discretized configuration space have been imple-

mented which aid in the computation of dynamic obstacles and in the realization

of servo-level obstacle avoidance. That is, each pixel has gray" levels, and four
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Figure 14: Obstacles in Discretized C-Space

sub-categories. The four sub-categories indicate edge-normal (surface-normal)

information. The gray level indicates the number of contributors to each on"

pixel.

For automatic obstacle avoidance, it is important to know not only that a

potential collision is near, but also which direction to move the robot to avoid the

possible collision. The direction which the robot should take to avoid collision is

the direction of the outward surface normal of the configuration space obstacle.

Once a configuration space obstacle has been discretized, each of its elements has

a surface normal which points in one (or more) of four directions. The interpre-

tation of surface normals within a pixel is as follows. If a robot pose (or point

automaton) is within an on" pixel, then by moving in the direction of any of

the surface normal components (i.e. up, down, left or right) the robot will not

enter the interior of the forbidden region bounded by the on" pixel. Alterna-

tively, an "on" pixel can be thought of as repelling the robot in the direction of

its edge (surface) normal. For each computed obstacle, edge normal information
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is implicit in the ordering of the vertices. Since the vertices have been recorded in

counterclockwise sequence, each edge component is actually a vector. Rotation of

each edge vector by -90 degrees provides the corresponding edge normal vector.

The signs of the 81 and 02 components of the edge normal vector determine the

directions of repulsion for each on" pixel derived from a given edge. Te utility

of this scheme will become apparent in the next chapter.

The use of gray levels for each pixel enables extensibility to moving obstacles.

When an obstacle moves, its configuration space mapping can change dramati-

cally. The process of computing edges of bounding polynomials is efficient enough

to keep track of rapidly moving obstacles. However, once an obstacle has been

discretized into pixels, the original obstacle loses its identity. The new repre-

sentation fully describes the effect of continuous obstacle mappings, but, once

discretized, it is impossible to tell which physical obstacle was responsible for

affecting any given pixel. Thus, as an obstacle moves, it is hard to decide which-

pixels should be restored to their "off" state.

A natural approach to resetting pixels when an obstacle moves is to construct

an entire new map from a reset state (all pixels off). For a single obstacle,

this approach would be adequate. However, complex environments can involve

a combination of static obstacles and dynamic obstacles, the former being more

common. Recomputing the discretized configuration space map would require

recomputing all of the obstacles present; not just the obstacle which moved.

An alternative candidate approach is to keep track of the old position of a

moving obstacle, erase (turn off) all pixels corresponding to its former position,

and turn on all pixels corresponding to its new position. Pixels to be erased

can be computed by retracing the old image, or by storing a list of active pixels

associated with each obstacle. Storing a list of pixels, though, would quickly

consume exorbitant memory as the number of obstacles increased. In either event,

there is a problem with erasing pixels of an old image, since multiple obstacles may

affect the same pixel. That is, the joint angles corresponding to a single pixel in
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configuration space may correspond to multiple intersections between the robot's

envelope and the volumes of various obstacles. Obstacles which appear widely

separated in task space may have configuration space images which are largely

overlapping. Thus, erasing a pixel which appeared in the mapping range of the

old position of an obstacle can result in inadvertently allowing robot motion in a

region which results in collisions with a different obstacle.

A solution to this problem utilizes gray levels. As each obstacle is discretized

all affected pixels on the border of the obstacle are incremented; i.e., each pixel

holds a count of the number of contributors to its on" state. As an obstacle

is removed, each pixel affected by the obstacle's former state is decremented.

When the gray level of a pixel is reduced to zero, then the contained region of

configuration space is guaranteed to be free space. Static obstacles and dynamic

obstacles may share this same representation. Further, multiple processors may

operate on the same map without knowledge of each other, and the interpretation-

of on" and off" pixels will remain valid.

In the algorithm implemented, 2-dimensional configuration space has been

discretized into 16k regions (128x128 pixels), each with 128 gray" levels (28, or

1 byte of storage per pixel). Obstacle centroids are continuously updated by the

sensing system, and configuration space maps are continuously updated. In the

process, a "new" obstacle transformation is added to the map by incrementing

the value of each pixel which contains some part of the polygon's boundary.

The "Cold" obstacle state is stored in terms of the former position of the cen-

troid in task space. After computing the new obstacle image, the former image

may be erased from the map by recomputing the configuration space image from

the old task space location, and decrementing all affected pixels. The order is

important. New images are overlayed before erasing old images so that obstacles

do not seem to disappear" or open up voids during computations. The configu-

ration space map may thus be accessed at any time, not just at the completion

of a transformation. A best approximation of the state of the world is always
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available to the robot.

§7. Computation Efficiency

To this point, the proposed configuration space transformation technique

has been demonstrated to have negligible memory requirements for the image

database, and generality of shapes based on circular primitives which may be

superimposed and swept. The practicality of the technique hinges on the speea

at which the primitives can be converted from task space to configuration space.

The interpolated polygonal approximation method was implemented and eval-

uated for 2" diameter circular obstacles. The computer used was an MC68020

based single board computer running at 16.7 MHz. Configuration space maps

were stored in off-board RAM which was accessed via a VME bus backplane.

The code was written in C"

The polygonal image approximation database consisted of 144 points in 2-

D space and 13 points in 1-D space. Interpolated polygons corresponding to

the image space of arbitrarily placed 2" obstacles were computed extremely fast.

Polygon constructions were timed at 1.67 ms (600 Hz) for obstacles in region II

of figure 7, 3.33 ms (300 Hz) in regions III and IV, and 1.67 ms in region V.

Roughly, it takes 100 microseconds to interpolate a vertex. The algorithm would

behave identically for point obstacles, and circular obstacles of arbitrary radius.

The process of discretizing the polygonal obstacles consumed a considerably

longer time. Each obstacle is traced about its perimeter to determine which pixels

in configuration space are affected, and each of these is incremnented. An obstacle

update also requires an identical computation to erase its former image. Complete

representative cycles of update plus erasure were timed with the following results:

Obstacles in region II ook 20 ms; obstacles in region III required from 20 ms to

30 ms; obstacles in region IV took 14 ms, and region V obstacles took 7 ms. Thus,

the dicrretized configuration space map can be updated at nominally 50 Hz, 33
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Hz in the worst case, for a single moving circular obstacle.

In implementation, an obstacle update is performed only if the obstacle has

moved since the last time its transform was computed. With this addition, the

complexity of a dynamic environment depends on the number of obstacles which

move simultaneously, and not on the number of movable obstacles.

The processing speeds noted above are for a single processor. As noted ear-

lier, the use of discretized configuration space with gray levels supports the use of

multiple processors. A naive application of multiple processors would be to assign

one or more obstacles to each CPU. The individual processors would be entirely

compatible without requiring any knowledge of each other. The assignment of

obstacles to processors, though, would not generally balance the computation

load evenly. For example, all of the obstacles assigned to one processor might be

standing still while all of the obstacles assigned to another processor are mov-

ing. In this case, the additional processor does not improve the speed of the-

configuration space map evolution.

Alternatively, a circular list could be maintained of all obstacle positions

and their former positions at the time of their most recent transformation. A

semaphore would indicate the current obstacle to be transformed. As a CPU

becomes available, it would select the flagged obstacle for transformation, note

the current and former positions, update the record of most recent position of

transformation to be the current obstacle position, advance the semaphore to

the next obstacle in the cycle, and begin its task of transforming the selected

obstacle. If the new" obstacle position is the same as the old" obstacle posi-

tion at which the obstacle was previously transformed, a new transformation will

be skipped. The CPU will quickly return for a new assignment. In this man-

ner, the computational load of obstacle transformations will be evenly balanced

among N processors. Thus, the configuration space transformation rate will be

N times faster with N processors (within bus bandwidth limitations). Each pro-

cessor would run the exact same program and operate on the same map in global
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memory. The system is robust in that the failure of any one processor will not

invalidate the transformation process; it would only affect the speed. In fact,

as long as at least one processor continues to function, the configuration space

transforms will still be rigorous, albeit slower.

The rate of transformation computations for obstacles in 2-D is sufficiently

fast. Speed of transformations alone, however, is not sufficient to safely monitor

high-speed moving obstacles. A fast-moving obstacle should be represented in

configuration space not only by its current position, but by the swept positions

along its anticipated trajectory for some critical time in the future. The critical

time is a function of both the transformation rate and the speed and proximity

of the robot. Discontinuities are of particular concern. Near a discontinuity

of the configuration space map, e.g. near the robot's elbow, a small motion of

an obstacle can correspond to a major alteration of configuration space. The

moving obstacles should be represented by their "blurred" images of along their

anticipated respective trajectories for a time At in the future. The blurred view

in task space is conceptually the same as a photograph of the moving obstacles

taken with an exposure time of At. Uncertainty in the anticipated trajectory of

an obstacle is reflected in additional blurring of the obstacle to cover the region

of uncertainty.

§8. Generalization to Higher Dimensions

The transformation technique which has been implemented in 2-D is generaliz-

able to higher dimensions, albeit with potentially severe penalties in computation

and storage requirements. As discussed earlier, though, 3-D configuration spaces

are arguably adequate for most industrial robots. Extensions to 3-D are consid-

ered specifically.

Previous deductions of set properties for configuration space transformations

were not restricted to 2-D. Constructive geometry via point transformations ap-
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plies in higher dimensions. In 3-D, points and spheres are useful task-space geo-

metric primitives. Constructing unions and swept volumes are useful operations

in the efficient transformation of arbitrary shapes in higher dimensions. Fur-

ther, mrp d;--ontinuities ao occur in higher dimensions. Discontinuities occur

at boundaries at which an obstacle type" appears or disappears (e.g., link "i"

obstacles). Within regions of continuity, interpolation of configuration space vol-

umes is valid.

The chosen polygonal approximation of 2-D configuration space images gener-

alizes naturally to polyhedra in 3-D. Sample forbidden volumes in configuration

space can be enclosed by a shell, (not necessarily convex), consisting of facets.

Each facet may be described by its bounding vertices. The order of the vertices

is sufficient to determine the direction of the surface normal of the facet. Thus,

volumes in configuration space may be approximated by polyhedra and stored

compactly in terms of the coordinates of the vertices. Memory requirements for-

this approach are modest.

The number of polyhedral volume samples should be kept to a minimum.

The savings incurred by the use of an intermediate coordinate system in 2-D

(polar coordinates) is also possible in 3-D, depending on the robot involved. For

any 3 d.o.f. robot, if two consecutive joints are revolute and their axes intersect

orthogonally, an intermediate frame of spherical coordinates centered about the

intersection point should be used. In this intermediate frame, the configuration

space mapping of a point is geometrically identical for all points at the same

radius. Variations in azimuth and altitude correspond to pure translations of

obstacle shapes in joint space. Thus, sample volumes (polyhedra) need to be

stored as a function of radius only.

Virtually all industrial robots which are not Cartesian or SCARA satisfy the

criterion for simplification. This is no coincidence, since the same criterion sim-

plifies the inverse kinematics of the robote Example robots which satisfy the

criterion for the spherical coordinate simplification include the Stanford Arm,
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the Unimation Puma series, and the M.I.T. Direct-Drive Arm. Industrial robots

with successive rotational joints are built either with the joint axes parallel (as in

SCARA designs) or orthogonal. Joints with skewed axes are certainly possible,

but are never built in practice. With rare exceptions, orthogonal axes of rotation

are designed to intersect.

The remaining two popular classes of robots, SCARA and Cartesian, also

have simplifications for their configuration space transforms. Configuration space

transforms are especially simple for Cartesian robots, since configuration space

is similar to the actual workspace. For SCARA robots, an intermediate frame of

cylindrical coordinates is useful. Points of equal radius and altitude have identical

geometries in configuration space. Variations as a function of altitude are linear,

at least within specified regions. Points within the axial and radial reach of links

1 and 2 must be considered separately. The swept volume of links 1 and 2 defines

a region in which additional obstacle "types" appear (corresponding to collisions-

with link1 or link2). The transformation discontinuity across the boundary of this

region may be treated in the same manner as described in 2-D. The configuration

space transformations of each obstacle type" are still linear in z and a, requiring

only a one-dimensional database i r.

Discretization of 3-D configuration space can be performed analogous to that

in 2-D. For each polyhedron, each face is swept to determine which voxels" in 3-D

contain some part of the face. Each affected voxel is incremented in one or more of

its directional categories. For a cube in 3-D, there are six possible surface normal

components, as opposed to the four directions in 2-D. The memory required for a

map in 3-D with the same resolution as the 2-D example is: 128x128x128x6 bytes,

which is 12Mb of memory. This memory requirement is significant by current

standards, but is not unreasonable. Storage of a map of this size is possible on

the computer system used in the experimental setup described in chapter 2. It

may be expected that this magnitude of memory will be considered minor in the

near future.
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A more serious question is the computational penalty involved in higher di-

mensions. The computational speed of the approach described here depends on

the number of affected voxels. As an illustrative example, consider a square in 2-

D configuration space with dimensions of 10 pixel widths. If the square is aligned

with the coordinate axes, then the number of pixels affected by an edge is 10.

The number of pixels affected by tracing the perimeter of the square would be

40 (a primitive algorithm would double count corners). This example may be

compared to that of a cube in 3-D configuration space aligned with the axes of

the coordinate system. Let the face of the cube have the same dimensions as the

square considered in 2-D. The number of voxels affected by a face is 100, and the

number of voxels affected by all six faces is 600. For this example, the config-

uration space discretization of the faces of the cube in 3-D may be expected to

be 15 times slower than the discretization of the edges of the square in 2-D. The

comparison between computations in 3-D vs 2-D depends on the specific images-

to be discretized. Very roughly, though, 3-D computations may be expected to

take 1 to 2 orders of magnitude longer than the 2-D computations. Since 2-D

transformations are quite fast, practical implementation of 3-D transformations

of moving obstacles should be possible using parallel processing.

§9. Conclusions

In this chapter, a method has been presented for computing and storing con-

figuration space representations of obstacles. The method depends on two im-

portant properties of configuration space maps: 1) the transforms of a union of

obstacles is the union of the transforms of the obstacles; and 2) the transforms

are continuous within known regions. The first property justifies the use of simple

modeling primitives (points, circles, spheres) in the construction of more complex

shapes (via union or swept region of points, circles, spheres). Property (1) also

justifies reducing the transformation of a task space region (volume) to the trans-
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formation of is border (surface). Property (2) justifies the use of interpolation

among discrete values" (images) of the configuration space transformation. The

use of an intermediate coordinate frame in task space (polar coordinates) reduces

the problem to a one-dimensional functional interpolation.

The use of discretized configuration space permits rapid interpretation of ob-

stacle transformations. Further, the use of gray levels in discretized configuration

space makes the computation of incremental evolution of the configuration space

obstacles possible. In addition, it enables the efficient use of parallel computing.

The proposed method was implemented in 2-D for the rapid transformation

of circular obstacles. Transformations were performed (nominally) in 20 ms per

obstacle per CPU.

Extensions of the implementation to 3-D were considered and found to be

practical or nearly practical with existing technology.



CHAPTER V

OBSTACLE AVOIDANCE USING REFLEX CONTROL

§1. Introduction

In Chapter 3, a robust technique for high-speed robot control was presented.

In the treatment there, it was implicitly assumed that the motion resulting from

the controller was feasible. If obstacles are present within reach of the robot, then

possible collisions must be prevented, especially when the robot has high-speed

capability. In Chapter 4 it was shown how obstacles may be transformed into

forbidden regions in configuration space. Collisions with obstacles are avoided

provided the trajectory resulting from the control scheme does not enter any of

the forbidden regions. The controller, however, does not use any explicit trajec-

tory pre-computation, so path intersections with forbidden regions are not known

a priori. In this chapter, a technique called "Reflex Control" is presented which

reconciles high-speed robot control with guaranteed obstacle avoidance. Reflex

control derives its name from attributes of its behavior which are analogous to

reflexes: it is normally transparent to planned activities, but is capable of rapidly

responding to environmental conditions by assuming motor control with prece-

dence over higher levels of reasoning.

Reflex control is derived from a variation on potential function control. In

the following, potential functions are used to describe a compatible formalism

for combining optimal control with guaranteed obstacle avoidance. First, poten-

tial functions are considered in one dimension. Several important concepts are

introduced, including logical combinations of potential functions, the definition

113



114
of an "arrest point", the computation of a limited lookahead window, and the

determination of reflex subgoals. The concepts are then generalized to higher

dimensions. Finally, implementation results in 2-D are presented.

§2. Potential Function Control: Background

In potential function based control, scalar functions are defined over the space

spanned by a system (e.g., the joint space or the workspace of a robot) and are

used to define control efforts. Individual potential functions are combined, and a

virtual force field is computed by taking the gradient of the net potential. The

system is made to imitate a response to the virtual forces by exerting actuator

efforts which are equivalent to the effect of the virtual forces acting on the system.

The use of potential functions for manipulator control has been described

by various researchers. Khatib [20] and Myers [33] invoke the use of potential

functions in operational space" to control a robot for which the dynamics are

decoupled through a transformation in feedback. IL this case, potential func-

tions for attraction, repulsion and damping are all expressed in task (Cartesian)

coordinates; only robot joint limitations are expressed as potential functions in

joint space. Goals exert virtual attractive forces on the robot, and obstacles exert

virtual repulsive forces. Multiple obstacles are protected by individual repulsive

potential fields which are combined by arithmetic superposition. The sum of all

virtual forces is used to describe an apparent net force on the robot. The robot is

controlled to imitate Cartesian dynamics in response to the virtual forces. Khatib

defines dynamic constraints of maximum acceleration and maximum velocity in

task coordinates.

Takegaki and Arimoto [48] describe the effects of potential functions in terms

of a Hamiltonian formulation. They show that potential function control in joint

space using joint attractors and joint damping functions is globally stable, pro-

vided there are no local equilibria. The proof for stability using potential func-
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tions in task space depends on the existence of a uniquely invertible Jacobian, i.e.

avoiding singularities and ignoring left hand/ right hand type multiple solutions.

They go on to show how potential function control is compatible with performing

kinematically constrained tasks, e.g. turning a crank.

Andrews and Hogan [1] presented potential function control in the context of

impedance control. A potential function approach was used to avoid a moving

obstacle while heading for a fixed goal. In addition, the same approach was shown

to be effective in turning a crank, where the path constraint of the crank handle

was not specified a priori.

Krogh [24] introduced enhancements on potential function control through

the use of a "reserve avoidance time." Here, potential functions increase their

amplitudes depending on the minimum braking distance to stop a manipulator

from colliding with an obstacle. Krogh also proposed the nonlinear, (and non-

conservative), operation of setting an obstacle's potential function to zero if the-

manipulator is headed away from the obstacle. He also described combining

optimal control with obstacle avoidance by adding the equivalent force vectors of

optimal control and of each obstacle potential field.

Koditschek [23] applied topological analysis to potential function based control

schemes to derive a procedure for eliminating local minima from a control scheme.

In this work, the potential functions are added linearly, and grown individually

in a manner which assures at most one stable point.

In prior work, potential functions have been used to describe the presence of

obstacles in terms of their direct influence on a robot's motion. Such a description

permits inherent obstacle avoidance at low levels of a control hierarchy, as opposed

to conventional approaches in which a robot is controlled to track a pre-computed

trajectory. By incorporating obstacle avoidance directly into motor control levels,

a robot may respond interactively in dynamic environments. Interactive control

is desirable, since it enables the robot to instantly respond to a changing envi-

ronment. In each of the preceding works, obstacles are theoretically protected by
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making the respective protective potential functions wide and/or steep enough.

For the proofs of obstacle avoidance to remain valid, however, it was necessary

in each case to assume that the robot was capable of infinite acceleration. In

addition, the protective fields described are typically overly conservative, result-

ing in an unnecessarily large influence on the robot. Overly influential potential

functions often lead to obstruction of the goal location or obstruction of a valid

path to the goal. In general, the proofs of guaranteed safety remain valid in

cases where the robot is moving at speeds well below its capacity. Enough extra

actuator effort is then available to exert the equivalent efforts prescribed by the

potential fields.

In the present work, begun in [35], dynamically decoupled systems are con-

sidered. Potential functions are used as a basis for reconciling optimal control

with guaranteed obstacle avoidance. Explicit consideration of manipulator dy-

namics and actuator limits is incorporated in the potential function formulation-

using an energy interpretation. An absolute minimum potential function influ-

ence is derived which is guaranteed both safe and feasible, at least for dynamically

decoupled robots.

§3. Potential Function Control in On-e Dimension

In this section a single link of a frictionless, dynamically decoupled manipu-

lator is considered. The dynamics of the robot link are assumed to be described

by:

10 U (V.1)
where Iui < u,z(,

The preceding equation is a good model for each of the links of the robot described

in Chapter 2. Since the links are dynamically decoupled, their controls may be

considered separately.

The rotational kinetic energy, T, of a manipulator link with angular velocity
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Figure 1: 1-D Potential Function Control of a Pure Inertia

w is:

T = Iw2/2 (V.2)

Attraction to a target position, e90o, may be achieved by imposing a potential

function sloped toward the goal. In figure 1, such a function is shown, labeled

Uatt,,ct. In this figure, the manipulator is defined to start at = 0 with initial

kinetic energy To. The attractive potential function is defined to have a poten-

tial energy of -To at the manipulator's starting location. Under the influence

of the attractive well, the manipulator will accelerate toward the goal, gaining

additional kinetic energy exactly equal to the potential energy decrease defined

by the attractive function.

Acceleration towards the goal, however, is not sufficient in itself to obtain

desirable manipulator control. Attraction alone would result in oscillation about

the goal position. Deceleration is required to absorb all of the manipulator's



118
kinetic energy to bring it to rest at the goal. Any feasible potential function

with an energy peak of U,,~ = 0 centered on the goal position will perform the

desired braking. Such a braking potential is shown in figure 1, labeled Ubrake. The

two potentials, attraction and braking, are combined into an appropriate control

policy through a logical (vs arithmetic) operation. For a set of potential functions

U containing individual potential functions Ui(6), the effective potential Unet at

any location is given by:

Unt(O) = Uj(e) where VU, E U: (6) < Uj(e) (V.3)

That is, the highest energy potential function at each point defines the net field

at that point.

Actuator efforts are exerted on the manipulator proportional to the gradient

of the net potential function. In one dimension:

d
u =d 7 Uet(e) (V.4)

If Uattract decreases monotonically towards the goal, and if Ubrak, increases rt.)no-

tonically towards the goal, then the logical combination of potential functions

given by equation V.3 results in braking within some neighborhood about the

goal and attraction outside that region. The transition from attraction to brak-

ing occurs at the point labeled = ,witch in figure 1. Besides monotonicity, no

specification of the potential function shapes has yet been prescribed. Any choice

of attractive valley and repulsive hill will result in driving the manipulator to

rest at the goal position without overshoot, provided the potential energy zero-

reference and peak are selected as described, and provided the initial position of

the manipulator does not lie within the region < 1goal - switchl. If the manip-

ulator does start within the braking region, then the initial energy is too high to

prevent overshoot within the saturation limits of the actuators.

The shape of the potential functions determines the magnitude of forces ex-

erted on the manipulator, as given by equation V.4. For the potential functions
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to prescribe feasible forces, the slopes of the functions must not exceed the effort

saturation bounds of the actuator. For the actuator limits described in equation

V.1, the slope of the potential functions should not exceed umaz in magnitude.

Since any set of potential functions with the defined maximum and zero reference

will bring the manipulator to the goal without overshoot, it is clear that potential

functions with maximum allowable slopes will perform the task in minimum time.

In figure 1, both the attractive and braking functions are constructed with

maximum allowable slopes. As a result, the manipulator would be driven by

bang-bang control, with a switching point at 0owitch, and would come to rest at

the origin in minimum time. Thus, for this simple system, optimal control policies

are easily described with a logical combination of simple potential functions.

Arguments of the preceding discussion can be applied to obstacle avoidance

as well. In figure 1, if the goal position is interpreted instead to be the boundary

of an obstacle, (as represented in joint space), then the proposed braking function-

forces the manipulator to come to rest at the obstacle boundary, thus preventing

collision. The attractive part of the net potential field may be an arbitrary

subset of the control fields constructed for goal interception. Regardless of the

magnitude or shape of this field, any obstacle potential function with energy 0 at

the obstacle's (joint space) boundary will protect the obstacle from collision witn

the manipulator.

Additional aspects of logical field combinations are illustrated in figure 2. In

Case A, an obstacle protection function, UOb, is constructed over a large obstacle

centered at obo.. The energy of the function at the obstacle boundaries is 0, and

the slope of the function corresponds to the maximum feasible actuator effort.

Part of a target attraction function, U,0o, is also shown. The fields are combined

using equation V.3.

In Case B, the obstacle is represented as two smaller abutting obstacles. Two

protection functions are constructed, each with energy 0 at their respective ob-

stacle boundaries. When the obstacle functions and the original goal potential
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Figure 2: Logical and Arithmetic Potential Function Combinations

function are combined logically, the resulting field has the same effect as Case A,

as it should. The switch point for transitions from manipulator acceleration to

manipulator braking occurs at precisely the same location, all slopes define feasi-

ble actuator efforts, the obstacles are guaranteed safe, and they exert minimum

influence on the original goal control policy.

In Case C, the situation is identical to Case I, except the potential fields are

superimposed arithmetically, as proposed by previous researchers. The resulting

potential field has lost all of the desired properties. The control efforts prescribed

by the net potential field include magnitudes which exceed the feasible limits. The

I
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original goal attractive field is completely swamped by the obstacle fields, which

push the manipulator out to infinity. Further, the shape of the net potential

no longer coincides with the actual obstacle boundaries, which, in some cases,

will leave the obstacle borders unprotected. If the long obstacle in Case A is

subdivided into many small obstacles, potential combination via equation V.3

will still give the same control result as Case A. If the many individual obstacle

potentials are summed, however, the result will be correspondingly worse than

the two-obstacle example of Case C.

Logical combination of potential functions provides a net potential field which

conserves energy. Another useful logical operation on potential fields is the sup-

pression of any repulsive field from which the manipulator is receding. Heuristi-

cally, it is apparent that a field which is imposed to prevent a collision is unneces-

sary if the manipulator is heading away from the obstacle. While this operation

is useful and intuitively appealing, it is non-conservative. For example, if the-

manipulator climbs up a potential hill, comes to rest, then begins to slide back

down the potential hill, when it returns to the bottom of the hill it will have the

same energy with which it started. If, however, the potential is suppressed when

the manipulator reverses direction, energy will not be conserved; the manipula-

tor will not regain the kinetic energy which was converted to potential energy by

the obstacle field. Selectively suppressing potential fields is nonetheless a useful

operation; a new energy computation of the remaining fields must be performed,

however, if an active potential field gets suppressed.

Energy conservation is also violated if the potentials are moving. In the static

case, obstacle protection is guaranteed by setting each obstacle potential to zero

at its respective obstacle boundary. With moving potentials, however, energy

is not conserved, and obstacle protection is no longer guaranteed. This is not

merely a flaw of potential-based control schemes, though. In fact, no control law

whatsoever can guarantee prevention of collisions in a space of moving obstacles.

Consider, for example, the one dimensional case of a manipulator situated be-

tween two obstacles which are both moving towards the manipulator. Collision
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with the obstacles is inevitable, regardless of the control policy. This example

represents a geometric limitation which applies as well in higher dimensions.

Analogous cases in higher dimensions can be easily visualized in terms of con-

figuration space, in which the obstacles are represented in terms of forbidden sets

of robot joint angles. As shown in chapter IV, configuration space obstacles can

easily overlap, although they might be widely separated in task space. Even a

seemingly sparse field of obstacles can result in configuration space forbidden re-

gions which combine to form a closed hull surrounding the manipulator's current

configuration point. In such an event, it is geometrically impossible for the ma-

nipulator to escape from the obstacle confines. If the obstacles are moving, then

the surrounding hull of obstacles in configuration space may collapse inwards on

the manipulator, resulting in inevitable collision. In this scenario, the impossibil-

ity of escape is certain, although the obstacles may move arbitrarily slowly and

the robot may be arbitrarily agile. The restriction is purely geometric, and no-

control policy whatsoever can guarantee safety.

Under potential function control, when the controller can not guarantee ob-

stacle avoidance, the situation will be flagged by a violation of conservation of

energy. Violation of conservation of energy does not imply that a collision is

certain, however. Rather, it indicates that the safety guarantee based on en-

ergy conservation does not apply. Some types of nonconservative operations may

preserve safety guarantees although energy is not conserved. For example, the

nonconservative operation of suppressing a potential field when the manipulator

is receding from the respective obstacle does not conserve energy, but the effect

is purely dissipative. For static obstacles, invoking this operation will not cause

collisions.
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§4. Optimal Control With Obstacle Avoidance in One Dimension

In the preceding section, it was shown how the construction of potential func-

tions can be used to describe time-optimal control (in the absence of obstacles)

and guarantee obstacle avoidance (for static obstacles). In the present section,

the one-dimensional developments will be taken further to introduce a means for

implementing robust time-optimal control with obstacle avoidance.

Optimal control may be represented in terms of the potential functions il-

lustrated in figure 1. Using the techniques presented in Chapter 3, a feedback

controller can be implemented which forces a system to conform to the idealized

model of equation V.1 and the ideal behavior expected from the influence to the

potential functions in figure 1. The controller of Chapter 3, however, only follows

the optimal control potential functions; it is unaware of the influence of obsta-

cle fields. To combine robust time-optimal control with obstacle avoidance, the

concepts of a "minimally influential obstacle field", an "arrest point", a "limited

lookahead window", and a reflex subgoal" will be introduced.

A potential function will be defined as "active" at a point in space if it defines

the value of U,,,, as per equation V.3. The "minimally influential" potential

field of an obstacle is the field corresponding to the potential function which:

1) can guarantee collision prevention without exceeding feasible actuator efforts;

and 2) is "active" over the smallest possible region in joint space. In figure 1,

the potential function Ub,ake satisfies the properties of a minimally influential

potential function wh;ch protects a point obstacle at the position 0goal. Since the

slope corresponds to maximum braking effort, no feasible potential function may

have a steeper slope. Also, since imposition of this function would result in the

system coming to rest precisely at goa the obstacle field is influential only at

the last possible moment, i.e., in the smallest possible region.

A useful property of minimally influential potential functions is that they do

not occlude feasible goal locations. If the default control policy for target acqui-

sition would not result in collisions with obstacles, then a minimally influential
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obstacle protection field will have absolutely no effect on the goal interception

policy. This is an automatic result of the logical potential function combinations

defined by equation V.3.

An arrest point will be defined for a system in terms of its state (w, 0), and

actuator saturation limits. For state (, 6), the arrest point is the point closest

to at which the system can be brought to rest within actuator limitations. The

set of points lying between the current position, , and the arrest point, arrest,

will be referred to as the "arrest region". For the simple system of equation V.1,

the arrest point corresponding to the state (w, 6) is:

arrest + 2uaz/ (V.5)

The arrest point of a system has a simple relationship with respect to minimally

influential obstacle fields. Under potential function control, when the minimally-

influential potential field of an obstacle is active, the system arrest point coincides

with the physical boundary of the active obstacle. That is, coming to rest as soon

as possible coincides with coming to rest at the boundary of the obstacle.

An alternative interpretation of this observation is the following: if there are

no obstacle boundaries present between a system's current position and the sys-

tem arrest point, i.e., if no obstacles intersect the arrest region, then no obstacle

potential field is active on the system. This fact may be employed to make po-

tential function computations more efficient. For the computation in equation

V.3, every potential function in the space of the manipulator must be evaluated

at 6 to determine which one is active. If all obstacle potential functions are min-

imally influential, then the arrest point may be used to reduce the computation.

An inspection of the arrest region in configuration space may be performed to

determine if a boundary of any obstacle lies within this region. If no boundary

is found within this range, then no obstacle field is active. The nearest bound-

ary encountered in this range corresponds to the boundary of a dominant active

obstacle. Under conservative potential function control, no obstacle boundary
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should approach closer than the arrest point; obstacle repulsion corresponds to

maintaining the arrest point precisely at the obstacle's boundary.

A search for obstacle boundaries in the range - arret is more effective than

execution of equation V.3 when many obstacles are present. As more obstacles

are added, more comparisons are required to evaluate equation V.3. If an obstacle

map (e.g., as described in Chapter IV) is available, however, a forward search for

the first obstacle boundary encountered is as fast (indeed, faster) in a crowded

environment as in a sparse environment.

In effect, the computation of equation V.3 may be restricted to those poten-

tials which correspond to obstacles within view of a "limited lookahead window."

At most, it is only necessary to examine the arrest region to determine if any

obstacle potentials act on the system. In fact, it is not necessary to examine the

entire arrest region. Since (static) obstacles can only enter the arrest region by

passing through the arrest point, it is only necessary to continuously examine a

small neighborhood about the arrest point to sense the presence of obstacle avoid-

ance fields. Choice of the inspection neighborhood defines the limited lookahead

window. For a perfect system, the lookahead window shrinks to a single point: the

arrest point. Under perfect potential function control with minimally influential

obstacle fields, any obstacle potential which is active corresponds to an obstacle

with a boundary precisely at the arrest point. n real systems, it is necessary to

examine a finite neighborhood about the arrest point in order to accommodate

model and control imperfections.

A critical nonideality of potential function control implementation is the com-

putation time required to perform the evaluation of equation V.3, or equivalently,

the time required to perform the neighborhood scan about the arrest point. Dur-

ing evaluation of the obstacle fields, the arrest point may be moving. The neigh-

borhood which is examined about a sample arrest point should be large enough

to contain the instantaneous arrest point, as well as all possible trajectories of the

arrest point which can occur during the examination cycle. The rate at which
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the arrest point moves is:

d arrest = d + 2Uz/ I)

= W + (V.6)
- w + Iwlu/urz

Under maximum deceleration, u = -sgn(w)u,,.., and thus darrt = 0. There-

fore, under maximum braking, the arrest point is stationary. This is logically

consistent, since the closest point at which a system can be brought to rest

should remain the same as the system is brought to rest as quickly as possi-

ble. On the other hand, if the system is accelerating at the maximum feasible

rate, u = +sgn(w)u,a,=, then the arrest point advances at the rate rre°t = 2w.

Therefore, if a map scan for obstacle boundaries requires a computation time of

dt, the neighborhood to be scanned should include the anticipated arrest point

at time t + dt. Thus, the width of the neighborhood to be inspected should be at-

least 2wdt.

The neighborhood to be tested for the presence of obstacles corresponds to

a lookahead window which extends from earret to arreot + 2wdt. In addition to

scanning forward from err,,t, it is pragmatic to scan a limited distance backwards

as well. It was shown in Chapter 4 that obstacles may be computed and stored in

configuration space more efficiently in terms of their edges (or shells) than their

complete ranges (volumes). Ideally, the edge of an obstacle remains coincident

with the system arrest point whenever the obstacle's i-,king field acts on the

system. Imperfect execution of potential function control, however, can result in

the edge of an obstacle moving inside the arrest range, --+ arret. If an obstacle's

interior is not represented in configuration space, and if the interior of the arrest

range is not inspected, then if the boundary of the obstacle enters the arrest

range, the ostacle will not be discovered by inspection of the proposed limited

lookahead window. Thus, the obstacle's repulsive fields would be incorrectly

ignored. Even if the control implementation were perfect, an obstacle boundary

could still enter the arrest range if the obstacle moves unexpectedly. In this event,
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the robot must detect the encroaching edge, and move away from the approaching

obstacle. Since it is possible, in practice, for an obstacle boundary to enter the

arrest range, the limited lookahead window should include a neighborhood about

the arrest point which extends inside the arrest range.

A search for obstacle boundaries within a neighborhood of configuration space

about a system's arrest point is an efficient means of determining whether an

obstacle's potential function is active on the system. If an obstacle potential

function is active, then the nominal control policy for time-optimal motion to

the goal location must be aborted, and obstacle avoidance initiated. When an

obstacle boundary is detected at the system arrest point, immediate braking

with maximum effort will bring the system to rest before colliding with the de-

tected obstacle. In practice, the arrest point may be computed with respect to

a conservative estimate of the feasible braking effort, t < u,,z. Braking may

then be implemented robustly using the controller described in Chapter 3. Using-

the conservative computation of the arrest point, some penetration of an obsta-

cle edge into the arrest region can be tolerated and corrected before an actual

collision occurs. The percentage of permissible edge invasion is equal to the per-

centage of effort overhead reserved. That is, collisions can still be prevented if:

10o, - 1/11arret-el > d/uaxz

If an obstacle edge is detected within the limited lookahead window, then

immediate braking must be initiated. Immediate maximum braking is equivalent

to suddenly assigning the obstacle edge location as the goal point for the controller

of Chapter 3. Since this controller enforces (nominal) maximum braking as it

approaches a goal, it effectively enforces the control prescribed by an obstacle's

braking field.

It has been shown that enforcing optimal control potential functions as per

figure 1 is equivalent to invoking the controller of Chapter 3 with a setpoint of

0 aool. Further, enforcing obstacle avoidance with minimally influential potential

functions is equivalent to suddenly reassigning the setpoint to the edge of any
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obstacle which is observed within a limited lookahead window. The sudden re-

action to an impending collision is heuristically similar to reflexes. The normal

behavior (in this case, time-optimal motion to a goal), is unaffected by the pres-

ence of obstacles, unless obstacle avoidance measures are absolutely necessary.

When danger of a collision is imminent, the "reflexes" override any commands to

the motors and invoke their own evasion commands by substituting a new, safe

setpoint. The reflexes do not attempt to optimize any criteria; they only act to

assure safety. In this sense, the reflexes are not intelligent, yet they may assume

a priority which overrides higher-level comrnmanIs.

The sudden change in setpoints which is invoked by the reflexes upon encoun-

tering an active obstacle may be executed more smoothly and robustly without

reducing the performance of the time-optimal controller. This may be accom-

plashed through the use of reflex subgoals. A reflex subgoal is closely related to

the arrest point. Under time-optimal control, whenever a goal setpoint is located-

outside the arrest region, time-optimal control will prescribe maximum acceler-

ation towards the goal. Braking only occurs when the arrest point approaches

the goal setpoint. If a time-optimal controller, e.g. that of Chapter 3, is given a

moving setpoint, then the controller will continue to exert maximum acceleration

in the direction of the goal as long as the goal lies outside the arrest region. This

observation leads to the definition of a reflex subgoal.

Examination of the limited lookahead window includes an inspection of the

region from ar,,et(t) to arret(t + dt). If an obstacle is found within this region,

then the control setpoint is set to the edge of the obstacle. If no obstacle lies

within this range, then the goal setpoint m3v be set to a subgoal at oarret (t + dt).

Since this location is included in the inspection region, and since, by assumption,

no obstacles lie within the inspection region, this location is known to be safe.

Further, since this setpoint lies beyond the arrest point from time t until time t +

dt, the system will continue to accelerate toward the subgoal at maximum control

effort until the next inspection cycle. Maximal acceleration towards the subgoal,

however, has the same effect as maximal acceleration towards the ultimate goal.
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Thus, the proposed selection of reflex subgoals results in a sequence of setpoints

which either achieves time-optimal control to the ultimate goal, or brings the

robot to a safe halt at the edge of a blocking obstacle.

The use of reflex subgoals is ideally identical to suddenly switching setpoints

from an ultimate goal to an obstacle edge when an obstacle becomes active. The

use of reflex subgoals is more robust, though, since the robot is never given a

command which is unsafe. Thus, if the reflex controller were to suddenly stop

functioning, the last subgoal computed would remain as the robot's setpoint, and

this setpoint is guaranteed safe and feasible (at least when the obstacles are not

moving). The robot would come to a halt at the subgoal, and fail to progress

further toward the ultimate goal. This type of failure is more desirable than the

alternative. If incremental safe subgoals are not used, then a failure of the reflex

controller will result in the robot proceeding at maximum speed towards the goal,

regardless of obstacles in its path.

Reflex subgoals are also valuable for automatically restricting the speed of the

robot to a bound within which the reflex controller is competent. As the speed of

the robot increases, the reflex controller must examine a correspondingly larger

neighborhood about the arrest point. If incremental subgoals are not used, then

the robot may continue to accelerate until its velocity becomes so large that

the reflex controller is incapable of keeping up with the moving arrest point.

Consequently, the robot may penetrate active repulsive fields before the reflex

controller has time to exert their influence on the robot, resulting in a collision.

Collision avoidance is thus only guaranteed if the reflex controller is known to be

capable of examining an entire critical lookahead window before the system arrest

point exits the window region. With the use of reflex subgoals, the arrest point can

never escape the most recent neighborhood which has been fully inspected. As the

robot's velocity grows, if the reflex controller is incapable of scanning ahead faster

than the motion of the arrest point, then the system will begin to decelerated

towards the last subgoal computed by the reflex controller. Deceleration will

reduce the robot's velocity until the velocity of computed subgoals equals the
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velocity of the robot. Thus, the velocity of the robot is automatically constrained

by reflex setpoints to keep the dynamics of the robot within the competence of

the reflex controller.

To this point, the analysis of potential functions and their invocation in terms

of sliding-mode optimal control and reflex control has been treated only in one

dimension. For a dynamically decoupled system, sliding-mode optimal control

may be implemented separately on each subsystem. The concepts of minimally

influential potential fields, the arrest point, the limited lookahead window, and

reflex subgoals generalize to higher dimensions, with some additional considera-

tions. Potential functions will first be reconsidered in higher dimensions, which

will lead to a generalization of reflex control.

§5. Potential Function Control in Higher Dimensions

In the preceding one-dimensional analysis, several important observations and

definitions were made. For dynamically decoupled systems, e.g. the robot de-

scribed in Chapter 2, it is tempting to try to extend the one-dimensional results

to higher dimensions by applying the one-dimensional definitions and procedures

to each degree of freedom independently. At the level of motor control, such an

approach is feasible, since, in a dynamically decoupled system, the position, veloc-

ity and acceleration of any joint variable do not affect the dynamics of any other

joint variable. For obstacle avoidance, however, coordination of the individual

control systems is required.

The dynamics of an arbitrary dynamically-decoupled, frictionless system can

be expressed as a generalization of equation V.1:

I0 = u(V.7)
where Iui < u,, i(

For a dynamically decoupled system, the inertia matrix, I, consists of constants

along the diagonal. Thus, each link satisfies equation V.1. The total system
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kinetic energy may be defined as a sum of energy components associated with

individual links. The kinetic energy associated with link i, Ti, is defined as:

T = I,i(w,) 2/2 (V.8)

Obstacle attraction fields which perform bang-bang time-optimal control may be

constructed independently along each axis, following the same procedures as the

1-dimensional case described earlier. For each axis, the potential function slopes

are set by the respective link actuator limits. The peak energy of each braking

potential along each axis is set to zero. The energy of an attractive function

along any axis is set to the negative of the kinetic energy associated with the

respective link. The fields assembled in this manner will, in the absence of obstacle

fields, drive the system to a goal position in minimum time. In the absence of

obstacies, potential functions constructed in this manner and assembled for each

axis according to equation V.3 will result in fields which drive the system to a

goal location in minimum time. Thus, construction of potential functions for the

realization of time-optimal control in higher dimensions is no more difficult than

in the one-dimensional case.

Construction of obstacle fields in higher dimensions is not as simple as the

construction of target fields. The objective of a target field is to drive the manip-

ulator to a specified point on each axis and hold it there until all orthogonal goal

coordinates are achieved simultaneously. For obstacles, however, the manipulator

should avoid a specified region in space, which is equivalent to avoiding simultane-

ity of link positions which lie within configuration space obstacles. That is, target

interception requires interception along all axes, whereas obstacle avoidance only

requires avoidance along at most one axis.

An illustration of the obstacle potential field approach in two dimensions is

given in figure 3. A rectangular obstacle (in configuration space) and a goal po-

sition are plotted in 01, 0 2 . The manipulator is defined to start at the origin with

zero initial kinetic energy. Attractive, braking and obstacle fields for both direc-

tions are constructed independently according to the rules for the one-dimensional
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Figure 3: Potential Function Obstacle Avoidance in 2-D

case. The corresponding energy vs 81 and energy vs 82 plots are shown adjacent

to the 81 vs 2 plot. The obstacle boundaries define strips in the 81 and 82 direc-

tions, the intersection of which comprises the obstacle area. In addition, dashed

lines parallel to the 91 and to the 2 axes are extended from the switching points;

these lines correspond to potential valleys of the energy plots.

If all potentials were constructed as shown, then obstacle safety would be

guaranteed. However, the manipulator would be forever confined to the lower

left region bounded by the obstacle boundary extension strips. Such an approach

is grossly conservative, and prevents any solution to the simple target acquisition
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problem. Therefore, instead of enforcing both 1 and 82 avoidance simultaneously,

avoidance in either 81 or 82 alone should be performed. This may be accomplished

by selectively suppressing the influence of obstacle potential fields.

For purposes of selective field suppression, it will be useful to define three

categories of potential functions. The three categories are defined with respect

to a "surplus energy", S,j, for each axis i of each obstacle j. The surplus energy

of the potential function along axis i associated with obstacle j is defined with

respect to the state of the manipulator as:

Sj = Ui,j ((,) + Ti (w) (V.9)

where T is the kinetic energy of the ith axis of the manipulator. Equation

V.9 assumes that the zero-energy level of U has been defined such that the rest

energy of each link is 0. With respect to zero rest energy, conservative potential

function control will maintain the relation: U,,,,t + Ti = 0. Thus, if Sij = 0, then

Lrj = Ui,,,,t. A potential function which satisfies Sj = 0 t a point defines the

value of Ui,,t at that point. A potential function which defines a component of

U,,,t will be called a "binding" potential function.

According to equation V.3, the binding potential function at any point along

an axis is the function with the greatest energy at that point. When a potential

field is selectively suppressed, its potential function may be excluded from the set

of candidate functions which determine U,,t in equation V.3. A function which

is excluded from consideration in equation V.3 will be called "suppressed". A

function which is not suppressed will be called "active. "

Normally, the surplus energy of a potential field is negative, meaning some

other potential function, (the binding function), is controlling the motion of the

robot. The surplus energy of a component potential function is zero when it is

binding. If the surplus energy associated with some component potential function

is positive, it is an indication that the function has been suppressed. In suppress-

ing a potential function, the manipulator will not respond to the respective field.

The manipulator may then burrow into a potential hill rather than climb its
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slope. The result is an apparent surplus energy associated with the suppressed

potential.

Any potential function with nonnegative surplus energy at some point will

be called "exposed" at that point, since its energy equals or exceeds that of the

binding potential. At points where the surplus energy of a potential function is

negative, the function will be called "submerged", since its energy lies below that

of the binding potential.

With respect to the definitions above, rules can now be stated for selective

suppression of obstacle potentials. Below, a very restricted class of obstacles

will be considered: obstacles in configuration space which are rectangular (or

rectangular prisms, or hyper-prisms), and which have edge (surface, hypersurface)

normals aligned with the axes in joint space. The example obstacle in figure 3

falls within this class. Such obstacles have particularly simple, nearly-decoupled

potential function construction and suppression les. In reality, it would be

highly unusual for a real obstacle to satisfy these properties. As shown in Chapter

4, though, an arbitrary real obstacle may be expressed in discretized configuration

space as an assembly of square pixel contributions. Thus, the aligned, rectangular

obstacle in configuration space is a fundamental building block for assembling

arbitrarily complex configuration space obstacles.

The simplest case of potential function suppression occurs when the manip-

ulator is receding from a rectangular obstacle, j, along some axis i. Then, the

potential function contribution U,,j should be suppressed, since collision avoidance

for obstacle j does not require repulsion along axis i.

The preceding observation may be expanded. If a manipulator is receding

from the ith face of a rectangular obstacle, then it is not necessary to exert any

of the repulsive fields due to that obstacle. All potential functions of the obstacle

may be suppressed. For a manipulator at position with velocity w, potentials
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for an obstacle j may be suppressed along all axes i E N, according to the rule:

if i E N such that sgn[(O, - eOb)wil, = 0
then suppress Ui,jVi E N

In the above, o,' is the i coordinate of the obstacle face which has a surface

normal parallel to axis i pointing towards the manipulator. Since the present

discussion is restricted to rectangular obstacles aligned with joint-space axes, the

specified face and its ith coordinate are unambiguous. Equation V.10 states that

all potential functions of an obstacle may be suppressed if the distance between

the manipulator and any face of the obstacle is increasing.

An even stronger observation may be made by generalizing the notion of a

minimally influential obstacle potential. If the potential function of obstacle j

along axis i, U,,ij, is not binding, then all potential function contributions from

obstacle j may be suppressed. That is, if S,ij < 0, then it is still possible to

prevent a collision between the manipulator and obstacle j by exerting the field

of Uj along the i axis. Obstacle avoidance fields for obstacle j may be suppressed

until action is absolutely required.

Obstacle avoidance fields are not absolutely necessary as long as there is at

least one axis for which the obstacle's potential function is submerged. When an

obstacle's potential functions are all exposed, then it is no longer safe to suppress

the repulsive fields. It is not necessary, though, to activate all of the fields; one

is sufficient. If a single potential field is activated to prevent collision, that field

must not have a positive surplus energy, or it will be incapable of halting the

manipulator before collision. At the moment when repulsive fields must first

be imposed, one (or more) of the obstacle's potential functions will have zero

surplus energy. This (or one of these) function(s) should be chosen as the binding

function. All other repulsive fields of the obstacle may remain suppressed.

The above rle for field suppression of minimally influential obstacle potentials

may be summarized in terms of the surplus energy of each axis i E N. For any
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obstacle j:

V E N if SI,j(e) < 
then suppress Uij Vi E N (V11)
else suppress Ui,j Vi E N, i $ k

where k: Vi E N, Sk,j(Ok) < Si,,(0,)

Normally, all potential functions of an obstacle are suppressed. At most, a re-

pulsive field along one axis, k, will be required, where the function chosen to be

activated has the minimum surplus energy of all of the obstacle's functions.

Use of equation V.11 is illustrated in two dimensions in figure 3. The ma-

nipulator is represented as a point in configuration space starting from rest at

position "a". Attractive and braking potentials which describe the obstacle-free

time-optimal goal acquisition solution act on the manipulator. In addition, po-

tentials [L and U2 protect a rectangular obstacle. The obstacle functions are

binding only within the regions bounded by the dashed lines which extend from

the respective switch points on the 1 and 02 energy plots. At point 'a', neither

U1 nor U2 are exposed, so their influence is suppressed. The goal attraction field

is binding at this point, which causes the manipulator to accelerate toward the

goal. At point "b", the manipulator enters the region where U1 becomes exposed.

However, since U2 is still submerged at this point, equation V.11 suppresses any

influence from U1; the goal attractor continues to accelerate the manipulator. A

consequence of suppressing U1 at this point is that the surplus energy S1 will be-

come positive, and it will no longer be possible to prevent the manipulator from

entering the strip which outlines the borders of the obstacle along the 01 axis.

At point c", the manipulator is entering the region corresponding to the

projection of a 02 face on the 01 axis. While in this region, the manipulator must

be prevented from entering the corresponding region along the 02 axis, since the

intersection of the two projections comprises the interior of the obstacle. At

point "c", though, U2 is still not binding, so no evasive action is taken yet. At

point d", U2 just becomes exposed. Since all other potential functions of the

obstacle are also exposed (i.e. U1 in this case), the function with lowest surplus
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energy, U2, becomes binding. All other obstacle fields (U1) remain suppressed.

Braking in the 02 direction continues on to point "e", where all of the 02-axis

kinetic energy has been absorbed just as the manipulator reaches the face of

the obstacle. Motion along the 01 axis continues under the influence of the goal

potential fields alone. Finally, at point f", the manipulator clears the obstacle

in the 01 direction. At this point, U1 is suppressed in accordance with equation

V.10, and U2 is consequently suppressed by application of equation V.11. The

robot is then free to head toward the goal unconstrained. Since the manipulator

is headed away from the obstacle boundary from this point, all obstacle fields are

suppressed for the remainder of the move.

The present analysis extends potential function control to higher dimensions

while preserving the concept of a minimally influential obstacle field. To do so,

obstacles considered were restricted to rectangular regions in configuration space

with edges normals (face normals) parallel to the axes. If an arbitrarily shaped

configuration space obstacle is represented as a collection of small rectangular

obstacles, then the arguments presented here apply to each of the component

rectangles. The creation of many individual obstacles, however, would make the

evaluation of equations V.10 and V.11 inefficient. To make the approach practical,

the concepts of an arrest point, a limited lookahead window and reflex subgoals

will be extended to higher dimensions.

§6. Reflex Control in Higher Dimensions

In section 4, the evaluation of multiple obstacle fields in 1-D was made more

efficient through the use of a limited lookahead window. This technique is all the

more important in higher dimensions, where the number of fields to be considered

quickly becomes unmanageable.

An arrest point in higher dimensions is a natural extension of the definition

in 1-D. For a dynamically decoupled system, there is a unique point in joint
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space which corresponds to the minimum distance at which the system can be

brought to a halt. This point, the arrest point, is a single-valued vector function

of the system state. The vector from a robot's current position to the arrest

point is comprised of components equal to the braking distance along each of the

respective axes.

The arrest point and the current manipulator position define opposite vertices

of a rectangle (rectangular prism) in joint space. The area (volume, hypervolume)

within this rectangle (prism) is the generalized arrest region. As long as configu-

ration space obstacles do not intersect the arrest region, collision avoidance can

be guaranteed. The objective of reflex control in higher dimensions, then, is to

prevent such intersections.

Under perfect potential function control in one dimension, only the arrest

point needs to be examined to determine the presence of obstacle braking fields.

In higher dimensions, only the borders (surfaces) of the arrest region would need-

to be examined. Obstacles which do not intersect the arrest region (including

the border) and are not contained within the arrest region do not exert active

potential fields on the system. This statement can be verified by considering the

following: 1) the system can always be brought to rest within the arrest region

(including the border); 2) a minimally influential obstacle potential function ex-

erts its field only when braking is essential to prevent collision. Since the system

can be contained within the arrest region, it is always possible to avoid collisions

with obstacles which lie outside the arrest region. Thus, all obstacles outside the

arrest region (and not on the border) do not require immediate evasive action.

By (2), any such obstacle may have its repulsive fields suppressed until one of its

boundaries approaches the arrest region. Thus, it is only necessary to continu-

ously inspect a neighborhood about the boundaries of the arrest region to detect

if obstacle evasion fields should be activated.

As in the one-dimensional analysis, the critical neighborhood to be examined

depends on the rate at which the arrest point can move. During the cycle time
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Figure 4: Limited Lookahead Window in 2-D

required to examine a neighborhood about the boundaries of the arrest region,

the arrest point may move. To keep up with the motion of the robot, the neigh-

borhood to be examined should contain all possible trajectories of the arrest point

during the examination cycle time. The velocity of the arrest point is a vector

in joint space with components described individually by equation V.6. To con-

sider all possible trajectories of the arrest point from time t to time t + dt it is

sufficient to examine the area (volume,hypervolume) between the surfaces of the

arrest regions at times t and t + dt.

An illustration of the critical neighborhood for examination in two dimensions

is shown in figure 4. At the start of an examination cycle, the robot is at position

x(t). The examination cycle is assumed to take time dt, during which the robot

may move as ar as position x(t + dt). The robot position at time t and the

corresponding arrest point, Xarrest(t), define opposite vertices of a rectangular

arrest region. A worst-case rectangular arrest region for time t + dt is also defined,

based on the x(t + dt) and the worst-case (most distant possible) xarreut(t + dt).

X 2
A L

I
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The area in the arrest region at t + dt which is not within the arrest region at

t corresponds to the maximum area which can be swept or t by the edges of the

arrest region as the arrest region evolves from time t to time t+dt. This swept area

is the critical neighborhood, or limited lookahead window, to be examined by the

reflex controller. During the examination cycle, the arrest point is guaranteed to

be constrained to lie within the limited lookahead window. Any (static) obstacles

which lie outside this window at time t will not have binding potential functions

on the robot between time t and time t + dt.

Application of equation V.10 is implicit in the definition of the limited looka-

head window. Points vhich lie within the lookahead window are contained within

the regions swept by .. se edges (faces) of the arrest region which have normals

in the direction of motion. Thus, the limited lookahead window does not consider

faces which point away from the direction of motion. Obstacles near these faces

will not be recognized, and thus their potentials will not be activated. Ignoring-

such obstacles has the desired effect of suppressing an obstacle's fields when the

robot is receding from the obstacle.

If an obstacle is detected within the lookahead window, all of that obstacle's

fields must be exposed. Immediate braking will bring the robot to a halt before

the robot contacts the obstacle. It is not necessary, however, for the robot to

brake simultaneously along all axes to avoid collision with any one rectangular

(prismatic) obstacle; braking along at most one axis is required. The axis along

which to brake is specified by equation V.11. In terms of the arrest region, the

face along which the obstacle is first observed determines the braking axis. As

braking is applied, the arrest region will shrink along the braking axis, though

it may continue to grow along the remaining axes. Ideally, the face of the arrest

region which first encountered the sensed obstacle will remain adjacent to the

obstacle as the braking distance along this axis decreases. If the robot does not

clear the obstacle in one of the other dimensions, its elocity along the braking

axis will fall to zero as the robot approaches the boundary of the obstacle.
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For a single obstacle, at most one axis of the robot will require braking to

prevent a collision. When more than one obstacle is present, however, multiple

obstacles can approach the arrest region simultaneously from different directions,

in which case braking along multiple axes would be required.

As in the 1-D case, braking may be accomplished by suddenly assigning a new

se:point to the robot which is adjacent to the face of the sensed obstacle. For

braking along the i axis only, only the i component of the goal setpoint must be

affected; motion along the remaining axes may continue unaffected. In section 4,

it was shown that incremental subgoals can achieve the same effect more robustly.

Reflex subgoals also apply to higher dimensions. Any subgoal on or beyond a face

of the worst-case arrest region predicted for time t + dt will result in maximum

acceleration towards that face throughout the time interval t to t + dt. A subgoal

on a face of the arrest region at time t will induce maximum braking along the

axis normal to that face. Braking only occurs as a subgoal enters the lookahead

window. Subgoals are normally selected such that braking does not occur, i.e.,

by placing the subgoal at or beyond Oarret(t + dt). Braking along any one axis

occurs only when an obstacle has entered the corresponding face of the lookahead

window, or when the respective link nears its goal position.

Each component of a subgoal is selected such that: 1) the subgoal does not

penetrate any obstacle; 2) each subgoal lies inside or on the boundary of the

lookahead window; and 3) each component is as close as possible to the respective

goal component, subject to the restrictions of 1) and 2). As a link of the robot

approaches its goal location, the corresponding component of the subgoal will

approach its respective goal component. At this point, the subgoal will lie within

the lookahead window, and maximum braking will be exerted along the respective

axis to bring the respective link to rest at its goal position. The face of the arrest

region normal to this axis will remain stationary as the robot advances, and the

respective dimension of the arrest region will shrink. As all of the links approach

their respective goals, the arrest region will shrink to a point coincident with

the goal. By selecting subgoals in this manner, time-optimal motion to a goal
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position may be preserved, provided obstacle avoidance is not required. When

it is absolutely necessary to commence braking to avoid a collision with some

obstacle, then braking is enforced by neglecting to advance the subgoal setpoint

in the direction of danger. Neglecting to advance a safe subgoal when permitted

may occur if the reflex controller fails, or if it is incapable of keeping up with

the robot dynamics. Failure in this mode is tolerable, since the worst that can

happen is that the robot will come to a safe halt.

The alternative approach, suddenly establishing a new safe setpoint at the

moment an active obstacle field is detected, is more risky. Failure to keep up

with the robot, or complete failure of the reflex controller will leave the robot

unprotected.

In the present discussion, the generation of safe reflex subgoals has been de-

scribed with respect to stationary obstacles. For static obstacles, a safe reflex

setpoint remains safe for all time, and a new obstacle field may present itself for-

consideration only when a moving arrest region sweeps over the respective obsta-

cle border. When obstacles move, however, a reflex setpoint is not guaranteed

to remain safe for all time. If the robot remains at rest at a position which is

initially safe, an obstacle may approach the robot, in which case the setpoint be-

comes dangerous and the rob ,t must move away from the obstacle. Alternatively,

the robot may be decelerating towards a feasible arrest point near the edge of

an obstacle. If the obstacle then moves toward the decelerating robot, the arrest

point to which the robot is headed will become unsafe. In both of these instances,

an obstacle potential enters consideration by advancing towards the robot rather

than via the lookahead window frontier advancing toward the obstacle.

In this thesis, rigorous generalization to moving obstacles has not been at-

tempted. Consideration of quasi-static obstacles (those for which the configu-

ration space obstacle borders move at speeds small compared to the robot) has

been incorporated by augmenting the lookahead window. A myopic' search of

the configuration space map in the vicinity of the robot is performed to detect
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if obstacles are encroaching on the robot. Obstacle potentials detected within

this extra search region are included in the determination of a reflex setpoint.

With this addition, the robot is repelled by approaching obstacles (at least for

low-speed obstacles). Further, the limited lookahead window is broadened some-

what by displacing the border at time t backwards to include obstacle potentials

which may have penetrated the arrest region. For static obstacles, no obstacle

borders should be able to penetrate the arrest region, though penetration may

occur for moving obstacles. As discussed in chapter III, near-optimal control is

implemented using an underestimate of the true actuator saturation, leaving a

reserve effort for corrections. For obstacles which marginally penetrate the ar-

rest region, the actuator effort reserve permits halting the robot at a safe reflex

setpoint inside the arrest region.

Limited lookahead windows and reflex subgoals as described here have been

implemented in two dimension for the planar robot described in Chapter 2. Im-

plementation results are presented next.

§7. Implementation of Reflex Control in Two Dimensions

Reflex control was implemented for the 2-link dynamically decoupled planar

robot described in Chapter 2 using the controller of Chapter 3 and the discretized

configuration space representation described in Chapter 4. A limited lookahead

window was used to compute reflex subgoals such that each subgoal was guaran-

teed safe, yet (typically) did not inhibit time-optimal control in free environments.

In discretized configuration space, examining a lookahead window consists of

checking the state (on or off) of each pixel within the window. Using reflex sub-

goals, the examination window may be arbitrarily small; the robot may be servoed

to incremental guaranteed safe subgoals as they become available. In order for

the reflex controller to permit time-optimal motion, though, reflex subgoals must

advance faster than the arrest region boundaries.
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The size of the appropriate examination window depends on the velocity of

the robot, the acceleration limits of the robot, and the cycle time of the reflex

controller. For the robot described in Chapter 2, the maximum accelerations of

links 1 and 2 are 275 rad/sec2 and 960 rad/sec 2, respectively. The angular ve-

locities of the links are limited by the back EMF of the motors and the available

voltage of the PWM amplifiers. The velocity limits of the motors are approxi-

mately 3000 rpm, which corresponds to 78 rad/sec for linki and 314 rad/sec for

link2. At maximum acceleration, these velocity limits could be reached after 1.8

revolutions of link 1 and 8.2 revolutions of link 2. A move requiring multiple

revolutions of the robot would be highly unusual. More realistic upper bounds

on the link velocities can be estimated by considering the peak velocity achieved

under bang-bang control during a move of one-half revolution. For link 1, the

maximum velocity reached for a move of one-half revolution is 29 rad/sec. The

corresponding peak velocity of link 2 is 55 rad/sec.

At the maximum expected velocity of the robot, equation V.6 for the max-

imum velocity of the arrest point evaluates to 58 rad/sec along axis 1 and 110

rad/sec along axis 2. In the chosen discretization of configuration space (0.05

radians per pixel along each axis), the worst-case velocity of the arrest point is

1180 pixels/sec along axis 1 and 2240 pixels/sec along axis 2. At these veloci-

ties, maximum braking would bring the links to rest in a braking distance of 7r/2

radians. Thus, the arrest region has dimensions r/2 by r/2, or 32 pixels by 32

pixels. Only two edges of the the arrest region must be scanned: those edges with

outward normals in the direction of motion. A border scan 1 pixel deep would

require a test of 65 pixels. Link 2, the higher velocity link, advances its arrest

point component by 1 pixel in 446 microseconds at maximum velocity. For the

reflex controller to scan forward faster than the velocity of the arrest point, the

test of all 65 pixels must be complete within 446 microseconds, which corresponds

to a pixel test rate of nearly 146 kHz. The reflex controller as implemented on the

MC68020-based single board computer tests pixels at 48 kHz. Thus, the reflex

controller does not permit the robot to move as quickly as possible. For long
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moves, the reflex subgoals are updated more slowly than the velocity prescribed

for optimal control.

In the reflex control implementation, the lookahead window has been defined

to include a search of pixels along the two leading arrest region borders with a

search depth of 6 pixels in the 1 direction and 8 pixels in the 2 direction. In

addition to searching the borders which propagate outwards, an additional 24

pixels are searched about the arrest point in the backwards direction, to test

for any obstacles which may have penetrated the arrest region. This additional

search handles cases of (low speed) moving obstacles which approach the robot

(as discussed in section 6), as well as nonidealities in the controller which can

permit slight penetration of the nominal arrest region by static obstacles. Further,

a search of all pixels surrounding the current robot location is performed to

determine whether moving obstacles are approaching the robot.

At high velocities, the lookahead window grows to an area which can not be-

fully inspected in the time required for transparent reflex control. The robot is

always constrained to move only within known safe regions, but the rate at which

regions are known to be safe may be discovered too slowly to accommodate the

full velocity capacity of the robot. An example is illustrated in figure 5. In

this figure, the arrest region shown corresponds to that which would result from

maximum acceleration of both links for 42 ms. The velocities after such an

impulse would be 11.5 and 40.3 radians per second for links 1 and 2, respectively.

The corresponding dimensions of the arrest region are 5 pixel widths and 17 pixel

widths, respectively. A search along the borders 6 pixels deep in 1 and 8 pixels

deep in 2 consists of 214 pixels (including the 24 tests for invading obstacles),

which can be performed in 4.4ms with the current realization.

Figure 5 indicates the order for testing pixels. First, a vertical scan of all

pixels adjacent to the arrest region border at 80 " 'rt is performed. This set of

pixels is denoted by an arrow labeled "1' for the first row scan. Each pixel in

this range is tested for the presence of an obstacle face with a surface normal
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Figure 5: Window Inspection Implementation in 2-D

pointing along the negative 81 axis. ff any such face is found, the 01 component

of the next subgoal is not permitted to advance beyond the respective component

of the current arrest point. If an obstacle were discovered during this scan, no

further vertical pixel scans would be performed in this cycle. Further tests for

permitted motion along the 82 axis may, however, continue. A horizontal scan is

performed next for pixels along the horizontal border of the arrest region. This

next row scan is labeled "2". Each pixel in the row is tested for the presence of

an obstacle face with a surface normal pointing along the negative 82 axis. If any

such obstacle is found, the 82 component of the next subgoal is restricted to the

respective component of the arrest point.
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Alternate vertical anid horizontal row scans are performed until: 1) the entire

window has been inspected (less regions blocked by known obstacles), or 2) ob-

stacles are encountered along both axes, or 3) the goal position is reached within

one of the inspected pixels. For each axis, the search is not continued beyond an

obstacle wall or beyond the goal position of that axis. After a complete search, a

subgoal is chosen which lies within the inspected region as close to the ultimate

goal as possible. In figure 5, i no obstacles appear within the lookahead window,

the subgoal will advance to 6 pixels beyond the 01 arrest point component and 8

pixels beyond the 2 arrest point component.

A complete search of the lookahead window of figure 5 would require inspection

of 214 pixels (including 24 pixel tests for obstacles within the arrest region). In the

current implementation, the region could be inspected in 4.4ms. During a cycle of

4.4ms, under continued maximum acceleration the robot would advance the arrest

point 2 pixels along 01 and 7 pixeis along 02. Since the subgoals are selected to lie-

beyond the maximum motion of the arrest point during the examination cycle,

the robot will continue to accelerate towards the subgoals. Thus, in this case

the use of a subgoal does not limit the time-optimality of a move to the ultimate

goal. Beyond 42 nms of acceleration, though, the time required to examine the

correspondingly larger lookahead window will result in subgoals being delivered

less frequently, and the robot will automatically limit its velocity as it begins to

converge on each subgoal. The velocity of link 2 will be limited to approximately

40 rad/sec. Subgoal setpoints for link 1 will continue to be placed in advance of

the arrest point along this axis until link 1 reaches a velocity of 15 rd/sec.

The speed of the reflex controller limits the velocities of the links. If only one

link is accelerated at a time, then the arrest region will be longer and narrower,

resulting in a lookahead window which encompasses fewer pixels than the previous

example. As a result, the reflex controller permits higher link velocities when the

links move individually than when they move move simultaneously at high speed.

Moving obstacles have not been treated rigorously here. Quasi-static obsta-
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cles are accommodated through the extensions of the lookahead window discussed

above. A quasi-static obstacle may be defined in terms of the control bandwidth

of the arm and the width of a safe "buffer" region which expands the defined

configuration space outline of a moving obstacle. In the present implementation,

low-speed repulsion from obstacles falls within the near-linear region of the con-

troller described in chapter III, which employed critical damping and a closed-loop

bandwidth of 10Hz. In the discretization of configuration space, as described in

chapter IV, the chosen resolution was 128 pixels per link revolution. Obstacle

outlines were computed with a safety region one pixel deep. Thus, for the imple-

mented controller and obstacle representation, a setpoint which advanced at 1.5

rad/sec (31 pixels per second) would result in a position error of one pixel. In

the current implementation, obstacle outlines are recomputed in the worst case

at 30 cycles per second, which is appropriate for obstacle advances of 30 pixels

per second.

Obstacles for which the configuration space border moves at 30 pixels per

second or less may be considered quasi-static in the current implementation. For

obstacles near the elbow (joint 2) of the robot, 30 pixels per second corresponds to

a tangential motion of about 18 cm/sec. However, for obstacles which approach

the robot's elbow in the radial direction, discontinuities in the configuration space

transformation result in the sudden appearance of new forbidden regions. Such

obstacle motions can not be considered quasi-static. A more rigorous treatment

of moving obstacles would include an anticipation of obstacle motions in task

space, and corresponding swept representation of configuration space transforms,

as mentioned in Chapter IV, section 7. This extension has not been investigated

here.

Examples of the reflex control implementation are shown in figures 6 through

10. In each case, the robot is standing still, so the arrest point coincides with

the robot's current position. A window size of 6 by 8 pixels is inspected in the

direction of the goal, plus additional tests in the vicinity of the robot to check

for approaching obstacles. A single obstacle (in this case, a 2 circle at = y
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= 22.3 cm) is present in the robot's workspace, the edges of which transform to

two closed regions in configuration space. In discretized configuration space, the

single physical obstacle is represented as a collection of many individual square

obstacles.

In figure 6, the goal lies within the inspection window, so the subgoal is chosen

coincident with the ultimate goal. In figure 7, the goal lies outside the window. No

obstacles lie within the window, so a subgoal is chosen at the lookahead window

boundary, the closest known safe approach toward the goal. In figure 8, the goal

is blocked by the obstacle in the 81 direction, but not in the 82 direction. A safe

subgoal is assigned which allows progress along the 82 axis, but limits motion in

the 81 direction to the position of the closest obstacle wall encountered. In figure

9, both axes are blocked; motion is permitted only up to the border of a known

safe rectangular region. In figure 10, the obstacle has moved into the robot (or

control imperfections have permitted the robot to enter the obstacle area). A.

safe subgoal is assigned outside the obstacle region.

The implementation described here prevents the robot from entering obstacle

regions, even when the robot is moving at very high speeds. Reflex control is

nearly transparent, except at such high velocities that the reflex controller is not

capable of inspecting the correspondingly large lookahead window within the time

that the robot's arrest point is capable of escaping the window. In that event,

the velocity of the robot is automatically limited by failing to update subgoals

at a fast enough rate. Thus, the reflex controller limits the speed of the robot to

levels for which the reflexes are fully competent.

Reflex control may be implemented on parallel processors, though that was

not done in the present implementation. A single processor was adequate for

impressively high speeds. The worst-case performance of the reflex controller

(slowest inspection rate) occurs when no obstacles are present. In very cluttered

environments, the reflex controller completes its window inspection in less time

than in obstacle-free environments. Thus, reflex control is well-suited for complex
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Figure 10: Escape from Obstacle Interior

systems. In higher dimensions, high speed competence would require faster com-

putation or the use of parallel processing. In two dimensions, a single processor

was deemed adequate.

§8. Summary and Conclusions

In this Chapter, reflex control was presented as a means for reconciling high-

speed motion and guaranteed obstacle avoidance for robots in cluttered envi-

ronments. Combining the techniques of sliding-mode time-optimal control, a

discretized configuration space representation of obstacles, and variations on po-

tential function control resulted in the derivation of reflex control. Reflex control

utilizes the concepts of an arrest point and arrest region to define a limited looka-

head window: a subset of configuration space which contains all information

necessary to determine if continued high-speed motion is guaranteed safe. Ob-
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stacles are defined in terms of potential fields which are minimally influential;

the potential fields have no effect on the robot dynamics unless absolutely nec-

essary to prevent a collision. Actuator saturation is explicitly considered in the

construction of the potential functions, so that collision avoidance is guaranteed

theoretically, as well as guaranteed to be realizable, at least for static obstacles.

Reflex control is defined generally in arbitrary-dimensional spaces. Implemen-

tation was performed in 2-D. In the present implementation on a single processor,

reflex control did limit the maximum speed capability of the robot, albeit only at

very high velocities. In higher dimensions, parallel computation of reflex control

may be necessary (depending on the speed capabilities of the robot).

In the present development, only static and quasi-static obstacles were treated.

Slowly moving obstacles were considered by including a local search of configura-

tion space about the position of the robot. As obstacle fields advance toward the

robot (at low speeds) the robot was repelled away from the approaching obstacle.

Rigorous generalization of moving obstacle avoidance for higher-speed obstacles

remains a topic of future research.

Although reflex control permits high-speed motion and guarantees static ob-

stacle avoidance, it is relatively unsophisticated in its analysis. No planning is

performed, and only obstacles within the lookahead window are considered. Since

reflex control is based on potential function control, it suffers from the same in-

herent limitations: paths are not globally optimized, and local energy minima

can result in bringing the robot to a full stop, although a valid path to the goal

may exist. In this sense, reflex control is analogous to reflexes. The reflexes are

normally transparent (do not affect planned motions). They act on sensory data

with only crude analysis, but do so very rapidly. Although the reflexes are less

sophisticated in their analysis than higher levels of abstract reasoning, they have

the capacity to override commands from higher levels and assume direct control

over motor activities.

Reflex control is (intentionally) not competent to handle tasks requiring com-
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plex reasoning (e.g., maze solving). Thus, reflex control is not sufficient in itself to

direct an effective autonomous machine. Integration with higher levels of control

is necessary. In the next chapter, an example of integration with path planning

is detailed.



CHAPTER VI

INTEGRATION OF REFLEXES WITH PLANNING

§1. Introduction

Developments to this point in the text have led up to a control structure which

satisfies many of the features necessary for a competent autonomous system.

The choice of joint space as a common reference frame for both control and

representation of obstacles permitted the realization of both high-speed motion

and guaranteed obstacle avoidance through the use of reflex control. Nearly

time-optimal motion is achieved in unobstructed environments. In environments

in which obstacles invalidate the default (obstacle free) control policy, the reflex

level of control automatically prevents collisions, and, for simple obstructions,

deflects the path of the robot into one which successfully reaches the goal. In

complex environments, however, reflex control alone is not adequate to steer

the robot to its goal. A more sophisticated strategy is required than simple

repulsion from obstacles. The realization of strategies for effective motion in

complex environments falls within the domain of path planning.

It should be realized that planning collision-free motions for an articulated ma-

nipulator is considerably more difficult than planning motions of an end-effector

alone. For example, planning motions for a sphere among a field of obstacles seems

simple and intuitive. However, planning motions for the same sphere attached to

a kinematic chain is much more difficult when the links must avoid collisions as

well. Path options for the kinematic chain are dramatically restricted with respect

to the valid options of the sphere alone. The comparison is graphically apparent

155
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in configuration space, in which each point of a task space obstacle corresponds

to a sprawling forbidden region (or regions) in configuration space. Having per-

formed the transformation into configuration space, however, the complexity is

incorporated in the shapes of the forbidden regions; the planning problem in con-

figuration space may be treated identical to the problem of navigating a point

automaton in Carteian space.

In this chapter, a brief analysis of path-planning techniques is presented in

which the advantages and limitations of local and global path planning are dis-

cussed, particularly with respect to sensory-interactive real-time execution. Gen-

eralizations from lower levels of control are drawn to deduce properties expected

of additional levels of control. As a result, it is proposed that local planning

and global planning be executed simultaneously, with local planning acting as

an intermediate layer between reflexes and global planning. One particular local

planning technique is selected and modified for use in dynamic environments.-

Implementation results and coordination details are presented for an integrated

control system which was realized for the 2-D planar robot of Chapter II.

§2. Path Planning Techniques

In the area of path planning, a wide variety of assumptions and techniques

have been explored. Techniques employed are generally algorithmic or heuristic.

Algorithmic solutions involve a sequence of operations which can be formulated to

guarantee the discovery of a path solution (guaranteed convergence) whenever a

solution exists. Guaranteed convergence, however, translates into the equivalent

of an exhaustive search in sufficiently complex cases. For an exhaustive search to

be feasible, the set of candidate paths is restricted, e.g. by discretizing the search

space [40], or by constraining the path to a sequence of line segments which join

a finite selected set of points in space [25].

An alternative to algorithmic planning is a heuristic search, in which a general
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(though not infallible) rule is used for making decisions about which paths to

explore based on some evaluation of the apparent merit of the various options

[e.g., 15]. A heuristic technique may involve assumptions about the problem,

and choose options which often result in faster discovery of a solution than an

algorithmic approach. However, heuristic approaches do not generally guarantee

optimality, or even convergence to a solution.

A second major categorization of path-planning literature involves the set of

assumptions employed. Path-planning is most commonly approached with the

assumption that all obstacle boundaries are known a priori, e.g. in the "piano

mover's problem" [43,44]. This category of planning will be referred to as global

planning", since complete knowledge of the world is used. Another class of prob-

lems has been investigated in which only limited knowledge of the environment is

assumed [e.g., 28,29,30], such as in the case of a rat running an unfamiliar maze.

For this category of problems, obstacle information is available only within a lim-

ited range about the current position; planning in this category will be referred

to as "local planning."

Local planners can not guarantee optimality in the sense of minimum path

length. Paths resulting from planning algorithms using only limited knowledge

of the environment can be extremely inefficient in comparison to paths optimized

with respect to full knowledge of the environment. However, path planners which

utilize full information are typically slow in obtaining solutions [14,15,40], requir-

ing from minutes to hours of computation time, even for simple problems. In

[15], a heuristic planner in seven dimensions computed non-optimized paths in 7

hours on a MicroVax.

In addition to being slow, global path planners are also sensitive to changes in

the environment. If the goal location changes, or if the placement of any obstacle

which affected the computed path changes, then any path computed prior to the

displacement is invalidated. If the goal state is moving continuously and/or if

obstacles are moving about, then virtually all current path planning approaches
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are not applicable. An exception to this generalization is [17], in which it is as-

sumed that the motion of obstacles is known a priori; path planning is performed

in configuration space augmented by the dimension of time. Assumptions about

complete knowledge are even stronger in this approach, however, since complete

knowledge of the future (of obstacle boundary locations) is required. Further, the

extra dimension of time increases the computational burden of an already com-

plex problem. Solutions obtained are only valid if initiated at a precise moment

in time when the environment conforms to the assumed initial conditions. Such

an approach is not consistent with sensory interactive control, since solutions

obtained would not be valid at the moment they were needed.

A limitation of both local and global path planning is that they do not take

robot dynamics into consideration. Optimization of a path is typically defined as

minimization of the path length, even though a path of minimum length is not

typically a path which can be followed quickly. For example, the minimum-length-

path to a goal which is obstructed by polygonal obstacles consists of a sequence of

line segments with endpoints at obstacle vertices and/or the start and goal points

[25]. Although such a path truly minimizes distance, the requirement of turning

a sharp corner at each line segment endpoint results in a severe time penalty,

since the system must come to a complete halt at each corner.

Trajectory planning, a generalization of path planning, considers both the

path of the robot and the time history of positions along the path. Trajectory

optimization is considerably more difficult than path optimization, since the tra-

jectory search space is at least twice the dimension of the path search space. Even

in obstacle-free environments, trajectory optimization is formidable. Solution at-

tempts generally assume simplified robot dynamics [34], simplified constraints

[45], or a coarsely discretized search space [40]. A more restrictive assumption

still is that the full path is given a priori, and minimum-time motion along the

path is computed [8]. In [14], an iterative technique for finding approximate time-

optimal trajectories is described in which maximum speed along specified paths

is computed, and successive trial paths are varied parametrically. In general, the
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consideration of dynamics in the computation of optimal paths is so computa-

tionally intensive that its application in sensory interactive systems is far from

practical.

A viable autonomous system must be capable of responding instantly to a

changing environment, should exhibit effective use of its full dynamic capabili-

ties, and should utilize global information in deducing efficient motion strategies.

These requirements are not consistent with any of the methods described so far.

Global path planners are capable of deducing intelligent paths, but are too slow

and too sensitive to changes in the environment. A system which depended on

a global path planner would be stalled until a path solution was available. In

dynamic environments, any computed path solution would be invalidated before

it could be executed, resulting in total paralysis of the system. Since a local plan-

ner uses only limited information, it has the potential to respond rapidly to local

changes in the environment. Decisions using only local information, though, can-

not exhibit much intelligence. Further, neither local planners nor global planners

are competent in considering robot dynamics. However, a system which coordi-

nates concurrent processes of global planning, local planning and reflex control

has the potential to combine the desirable features of each technique.

In the following, it will be shown how local planning may be used as a bridge

between reflex control and global planning in the construction of a control system

which exploits advantages of each level. In this thesis, investigations in control

integration stop at the local planning level. Ultimately, global planning as well as

higher levels of control should be integrated with the present levels of high-speed

servo control, reflexes and local planning, but no higher levels are considered here.

§3. Integration of Logical Processes in Real-Time Control

Any digital control system may be thought of as a decision-making process,

the result of which influences the behavior of the controlled system. At the
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motor control level, the problem domain may be described formally (e.g., with

Z-transforms) and control decisions may be expressed compactly in terms of a

functional evaluation (the digital control law). Decisions must be made very

rapidly at this level for the controller to be successful, where the decision rate

(sampling rate) should be significantly faster than the characteristic time scale

of the system to be controlled. These features of digital control system design

are well formalized and well understood. The application of more general logical

operations in real-time control, however, is not formalized. Current use of deduc-

tions, expectations, inferences, searches, heuristics and various A.I. techniques in

control is ad hoc at best. Some observations from control theory will be made and

inferences drawn to postulate properties which should be present in controllers

which utilize non-traditional control laws.

The lowest level at which logic has been introduced in the experimental robot

control system described here is quite mundane. The pulse-width-modulated-

amplifiers themselves utilize hardware logic to control the currents in the motors.

The use of logic is especially primitive, but correspondingly fast: positive voltage

duty cycle is increased if the current is too low, and decreased if the current is too

high, subject to pre-defined current saturation limits. The objective of the PWM

controller can be expressed simply: regulate the current. Control decisions are

made at a rate of 5 kHz. Higher switching frequencies are possible, but would not

result in noticeably better performance. Slower switching speeds, however, can

be a problem. Lower switching speeds would result in poorer regulation of the

motor currents and, at lower rates still, instability. Minimum decision rates are

dictated by the time constants of the electrical dynamics. The PWM controller

will fail only due to amplifier or motor component failures.

Somewhat more sophisticated logic is employed in the implementation of

sliding-mode optimal control. At this level, anticipation is incorporated with

a functional description, and amplifier commands are modulated based on an

evaluation of that function. Further, a trivial form of drawing inferences by a

combination of sensory input and deductions from a world model is present in
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the implementation of velocity observers. Still, the objective of the controller

can be stated simply: regulate the function = 0. Control decisions are made

at over 750 Hz (roughly 1.5kHz/link, both links controlled by the same CPU).

A more rapid response would not degrade performance but would not improve

performance either, since the PWM amplifiers would not be able to respond to

higher frequency commands. The decision rate may not be much slower, though,

or regulation of = 0 will be poor, and at low enough rates the controller will

be unstable. The minimum decision rate is set by the time constants of the

mechanical system, which are longer than those of the electrical system.

This servo-level of control would be invalidated by any failure of the lower

level, PWM current regulation. Failure of the sliding-mode controller, however,

would not affect the proper operation of the PWM controllers. Currents would

continue to be regulated, and would be restricted to lie within the specified cur-

rent saturation bounds, although the commands to the amplifiers may cease to

make sense. The consequence of failure of the sliding-mode controller is possible

mechanical damage to the robot.

At the reflex level, more formal logic is introduced in order to anticipate and

respond to impending danger. The logic employed, though, is simple enough to

be expressed in terms of primitive set operations on potential functions. The

task description is more abstract than the previous two levels, but can still be

described in simple logical terms: establish subgoals which are as close to the

requested goal as possible within a restricted window and external to all obstacles

within that window. In the current implementation, subgoals are generated at

rates between 200 and 600 Hz. A faster rate of subgoal generation would not

hurt system performance, but as long as the reflexes are capable of leading the

arrest point of the mechanical system, faster subgoal generation rates would do

nothing to improve system performance. A lower rate of reflex subgoal generation

would result in degraded performance, though. If subgoals are not generated fast

enough to lead the system arrest point, then the maximum velocity of the system

will be limited. At still lower rates of subgoal generation, jerky motion would
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result, since the sliding-mode controller would bring the robot to a halt at each

successive sugoal location. Further, if obstacles are moving, then the capacity

for reflex subgoal propagation must be faster than the rate of advancing obstacle

frontiers, or the reflex controller will not competently cope with the changing

environment.

Of course, any failure of the lower levels (PWM amp control and sliding-mode

control) will invalidate the reflex controller. Failure of the reflexes, though, is

not physically disastrous (barring attacks by moving obstacles). If the reflex

controller suddenly halts, the robot will come to rest at the last computed safe

subgoal. Such a filure is logical rather than physical: the robot fails to make

progress.

An important feature of reflex control is that, when properly implemented, it

does not interfere with execution of time-optimal control unless necessary. High-

speed dynamics fails within the regime of competence of the sliding-mode con--

troller. n simple environments, i.e., if obstacles do not block the default time-

optimal trajectory, the eflex controller permits the liding-mode controller to

perform the task which it does well. Only when the complexity of the envi-

ronment is beyond the reasoning of the sliding-mode controller, i.e., an obstacle

blocking the default path, is the presence of the reflex controller apparent.

Generalizing from the above progression, the next level of control should be

somewhat more abstract, but not monumentally so. The problem domain and

solution approach should be restricted to a level in which decisions can be made

within an appropriate time scale. Decision rates which are faster than reflex

subgoal generation rates are permitted, though the reflex controller would not

make use of the faster decisions. The excess computation capacity could be put

to better use by absorbing more complexity in the higher level task. Slower

decisions are permissible, since the reflexes would continue to keep the robot safe.

However, below some time scale defined by the problem domain, too slow of a

decision rate will result in poor performance or failure of the controller.
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Failure at this level is more abstract than the obvious consequences of failure

to control current, failure to control mechanical dynamics, or failure to prevent

collisions. A planning-level failure manifests itself as a failure to progress towards

a goal. In dynamic environments, this type of failure would be common if a

global planner were used directly in conjunction with reflexes. The relatively

slow rate of solution updates (typically orders of magnitude slower than reflex

subgoal updates) would result in computed paths which were invalid before they

could be executed. At least one intermediate level of planning is required to

bridge the gap between global planning and reflexes.

Generalizing further from the preceding, it is desirable that the next level

of control above reflexes should not interfere with reflex control or with sliding-

mode control when either of these levels is competent in handling the complex-

ity of the environment. Higher levels should be transparent when no obstacles

are present, thus permitting the sliding-mode controller to execute time-optinmal-

motion. Further, in environments containing simple obstructions, reflex control

should be permitted to exert its influence without interference from higher levels.

If a minor deflection from default optimal control is all that is required, then reflex

control is more effective than a path planner, which is incompetent at considering

dynamics. In this regime, reflex control is expert; neither higher nor lower levels

could accomplish the coordination of high-speed motion and obstacle avoidance

as effectively. However, more complex environments, e.g. mazes, are beyond the

capability of the reflexes, (even for trivial mazes).

Finally, it would be desirable for higher levels of control to satisfy the fail-safe

property exhibited by the lower level controllers. That is, failures at higher levels

should not incapacitate the lower levels.

From the preceding observations, four basic properties of an integrated control

scheme are conjectured:

1. successive layers of control should be competent in incrementally more ab-

stract problem domains;
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2. successive layers of control are permitted successively longer cycle execu-

tion times; a minimum time for competence within the respective problem

domain is determined by the dynamics of the problem at the respective

level.

3. higher levels of control should fail safely; failure of any one level should not

impair the competence of lower levels.

4. each layer of control has a regime of competence in which it is expert;

no other layers of control should interfere with the expert level when the

problem complexity falls within the expert's domain.

Of the above, the first point, organizing layers by levels of abstraction, is tradi-

tional. The important message of 1) is that the levels should be incrementally

more complex. Attempts to tie high-level reasoning directly to low-level servo

control would be ineffective. Intermediate levels of increasing abstraction should-

be included. Combination of incremental levels of abstraction has been explored

and recommended by researchers at the National Bureau of Standards [7]. In

the NBS system, many layers of control are combined, where each layer is con-

strained by a design guideline to consider no more than seven events. Separate

processors at each level are implemented as finite state machines, all of which are

synchronized. Control by synchronous state machines guarantees that the speed

of response at each level is sufficiently fast. In fact, the response of higher levels is

unnecessarily fast, since 2) suggests that higher levels are permitted longer time

constants. The harsh restrictions on complexity (seven items) and implementa-

tion (decision tables) artificially excludes the use of algorithms, functions, and

deductive logic. Further, the NBS approach violates propositions 3) and 4). The

structure is dogmatically authoritarian, and does not delegate responsibility to

levels of appropriate expertise. All commands and corrections come from above,

and lower levels are not competent in the absence of higher levels.

Reflex control would not be consistent with the NBS architecture. Reflexes, as

presented here, are capable of competent goal acquisition in simple environments,
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without the existence of separate levels of joint coordination and trajectory plan-

ning. More importantly, reflexes have the capacity to override orders from above.

The NBS approach is orderly, but sacrifices efficiency and robustness by failing

to accommodate points 2) through 4).

A layered control structure approach which is more similar to the present

proposal is described by Brooks in [10,111. Brooks defines control layers which

are subsumed' by additional layers with increasing levels of competence. In this

work, a mobile robot control system is described in which 3 levels of control have

been defined: level 0, in which the robot stops before obstacles or backs off from

approaching obstacles: level 1, in which "wandering" is introduced in conjunction

with obstacle avoidance; and level 2, which imposes an "exploratory" behavior

on the wandering.

Brooks' layered approach, called a subsumption architecture", roughly con-

forms with the suggested guidelines 1) through 4). Successive layers have increas--

ing levels of competence, longer time cycles are exhibited by successively higher

layers, and lower levels do not depend on higher levels for proper execution. In

contrast, though, subsumption architecture as implemented has assumed very

coarse steps in levels of abstraction and in cycle times. Even at level 1, new

headings are only generated every 10 seconds. More importantly, the subsump-

tion architecture does not recognize levels of expertise; it is always assumed that

the highest active layer is the most capable control level. Only higher levels are

permitted to suppress lower levels, not vice versa. No high-speed controller has

been implemented, but were one to exist, it would be defeated by the presence

of a higher-level planner. The subsumption architecture is intended to allow easy

interface with higher levels. However, the addition of higher levels does not nec-

essarily preserve the contribution of lower levels. In the instantiation, level 2 is

implemented by suppressing level 1. The wander" layer has a level of compe-

tence when it is not subsumed, but it does not seem to contribute to the system

performance after the addition of level 2.
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Hardware implementation of the system described here is closer to the NBS

realization than Brooks's realization. The controller presented here uses multiple

processors on a common bus with communication via shared memory, as in the

NBS system. The subsumption architecture uses no common bus and no shared

memory. On the other hand, the NBS system synchronizes all processes, whereas

the present controller runs completely asynchronous programs (except for hip-

level bus arbitration), as does subsumption.

In conforming to the suggested control integration guidelines, a control level

above reflex control is sought which is incrementally more competent, may have

somewhat slower cycle times, and should preserve the desirable features of the

lower levels. Since local planning utilizes only local information, it is closely

related to reflexes, and is thus a prime candidate for the next level of control.

Local planning may augment reflexes by specifying goals to the reflexes. The

reflexes in turn would break down the input goals into reflex subgoals. Whenever-

a goal specification is within the reflexes' lookahead window and is not occluded

by an obstacle, then the reflex subgoal would be identical to the local planner's

goal. Thus, sequential subgoals delivered by a local planner can lead the robot, via

the reflexes, through a path which is not restricted to a simple potential function

description. On the other hand, if the planning-level goal which is delivered to the

reflex controller coincides with the ultimate target location, then the local planner

will be transparent. Incremental goals generated by the local planner may only be

introduced when it has been determined that the problem complexity is beyond

the regime of competence of the lower levels. This is the approach which has been

implemented. In the next section, the particular local planning technique used is

described.
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§4. Variations on Local Planning

In this section, variations on a local planning technique will be detailed which

adapt the method for integration with reflex control and global planning in dy-

namic environments. It is not suggested that the chosen technique is optimal or

general; it serves primarily to illustrate integration concepts. The crucial aspect

of the selected algorithm is that it utilizes only local information. Alternative

local planning techniques may be employed in the manner presented here.

A simple local planning algorithm (and extensions) is described by V. Lumel-

sky in [28,29,301. Lumelsky refers to the algorithm and its variations as "Bug"

algorithms, since the problem statement resembles that of a small automaton

moving on the surface of a 2-dimensional environment with obstacles. The bug"

is aware of its current position and the position of its goal, but it does not know

the terrain between itself and the goal. Obstacles are perceived only locally, e.g._

by feeling' contact with an obstacle boundary. The algorithm invokes the use of

a "line of preferred motion" referred to as the M-line", which is a default path

connecting the start location, S, and the target location, T. When the automa-

ton, while moving along the M-line, encounters an obstacle boundary, it defines

the contact location as a hit point", labeled Hi . At the obstacle boundary, the

automaton follows the contour of the obstacle (either clockwise or counterclock-

wise) until it once again resumes motion along the M-line. Upon leaving the edge

of an obstacle to follow the M-line, a leave point", Li, is defined. The algorithm

consists of two steps:

1. From point L- 1, move along the M-line until: a) the target is reached, or

b) an obstacle is encountered, and a hit point Mj is defined. Go to step 2.

2. Follow the obstacle boundary until: a) the target is reached; or b) the M-

line is met at a distance d < d(Hj, T), then define leave point Li, increment

j and go to 1; or c) the automaton returns to Hi without ever meeting the

M-line. This indicates that the algorithm is not converging on the goal.
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The algorithm is illustrated in figure 1. The bug" starts at the point labeled

US" and initially follows the M-line, a straight line from "S" to "T", the target

point. At point H" an obstacle wall is encountered and a hit point is defined. The

wall is followed (counter- clockwise in this case) until the M-line is encountered

at point "L", which is closer to the target point than the last hit point, "H". A

leave point is then defined at L", and the bug continues by following the M-line

to the target point.

In a plane, case 2c) can only occur when there is no feasible path to the goal.

If a solution exists, then the algorithm is guaranteed to converge on a solution.

If the two-dimensional environment is the surface of a torus, then case 2c) may

occur although a valid solution exists. However, a new M-line must be chosen to

find the solution. The difference between the two environments is that on a plane,

there is a unique straight-line vector from S to T, whereas on a torus there are

four distinct paths from S to T which are linear in the space variables and which-

monotonically approach the target (approach from plus or minus 1 and plus or

minus 02 ). It can be shown that it is only necessary to repeat the algorithm for

at most two of the four M-lines to either find a solution or determine conclusively

that none exists [30].

The preceding algorithm was proposed as a solution technique for two di-

mensional static mazes where extremely little information is known about the

environment. It has the advantages that it does not depend on complete infor-

mation, and it is guaranteed to converge on a solution whenever a solution exists.

It has the disadvantage that the resulting solution is typically much less efficient

than a globally optimized path. The solution process may require an exhaustive

search of all obstacle boundaries, and the search process frequently involves re-

tracing former path segments. Such properties, however, are inherent in local

techniques. Without global information, optimal paths can not be deduced, and

without the default of an exhaustive search, convergence (when a solution exists)

can not be guaranteed.
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A more serious limitation of the algorithm is that it is not generalizable to

higher dimensions. In two dimensions, the algorithm works by effectively restrict-

ing the search space to a subset of candidate paths which are known to lie in the

set of possible solutions. The candidate paths are those which consist of obsta-

cle borders and segments of the M-line. The start, target, hit and leave points

are equivalent to nodes in a graph of all candidate paths, where the nodes are

connected by edges of obstacles or by segments of the M-line. For problems in 2-

dimensions, the graph has a countable number of nodes and branches. Although

the local planner does not have a priori knowledge of the graph structure, its al-

gorithm is equivalent to an exhaustive search of the graph. In higher dimensions,

the obstacle borders are not simple line segments, but are surfaces or hypersur-

faces. Thus, the options for choosing a direction of motion along the obstacle wall

are not limited to right" or left"; an infinite selection of directions is possible

along the surface. Thus, the graph of path options is not finite, and it can not

be searched exhaustively.

As an illustration of the difficulty of local planning in higher dimensions,

consider the following scenario. A point automaton in 3-dimensional space is

separated from its goal by an obstacle which corresponds to a spherical shell

which encloses the goal. If the spherical shell is punctured at a single point,

then feasible paths to the goal exist, where all feasible paths must pass through

the puncture. Without knowledge of the existence and location of the puncture,

any local technique which guarantees convergence will degenerate to an attempt

to exhaustively search the surface of the punctured sphere. Thus, restriction of

the local planning problem to the paucity of information proposed in [28,29,30]

would result in intolerably inefficient algorithms in higher dimensions. Some

additional information about the environment is required in order to construct

useful planning algorithms, although full use of complete information should not

be necessary.

For the two-dimensional planar manipulator described in Chapter II, the

"bug" algorithm exhibits the type of properties desired in a level of planning
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which is intermediate between reflexes and global planning. In the present use

of local planning, the motivation is not that of incomplete information: obstacles

are introduced only at globally sensed or programmed locations. Complete in-

formation of obstacle contours is represented in discretized configuration space.

Instead, local planning is employed because, by virtue of using only local infor-

mation, extremely fast decisions can be made, albeit not as sophisticated as a

global planner. The introduction of a control layer which is incrementally more

sophisticated in its use of logic is consistent with the prior arguments.

Noticeable improvement in the efficiency of the Bug" algorithms can be ob-

tained by relaxing the assumed restrictions somewhat, while preserving the mo-

tivation of the approach. The premise of limited information is modified here

include a "tunnel vision" capability. That is, it is assumed that the automa-

ton is capable of examining a line of sight in the direction of the goal. If the

goal is seen" unobstructed from any location, then the automaton is permitted

to abort the planning algorithm and head straight for the goal. Although this

assumption utilizes more than strictly local information, the extra information

employed is quite restricted, and its use does not increase the level of complexity

substantially. Inspection of a straight-line path in configuration space involves a

relatively small number of pixel examinations. Further, the line-of-sight search

is no more complex in higher dimensions; the number of pixels involved is only a

function of the distance between the robot and its goal.

The utility of this variation is illustrated in figure 1. In this example, a single

non-convex obstacle blocks the robot's path from the start position (S) to the

target (T). In the bug algorithm, an M-line is constructed from S to T, which

defines a hit point, H, and a leave point, L. Following the bug algorithm, the

automaton would proceed from S aong the M-line to H, then circulate about

the obstacle in the chosen direction (in this case, counterclockwise, or a positive

circulation). Boundary following would continue until the point L is reached, then

motion along the M-line would be resumed. Although the algorithm is successful,

the resultant solution is highly inefficient. A seemingly natural improvement is to
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Figure 1: Bug Algorithm and Variations

permit unconstrained motion toward the goal as soon as forward progress is not

blocked by an obstacle. The failing of such an approach is also illustrated in figure

1. Initially, the automaton would follow the same path as the bug algorithm, but

when it reached point A it would break away from the wall in an attempt to reach

the goal directly. However, at point B it would encounter another barrier, and

resort back to wall following. Continued wall following would bring the automaton

back to point H, after which the cycle would repeat in an infinite loop.

With the proposed line-of-sight inspection variation, the automaton would

follow the bug algorithm up to point C, at which time a clear line-of-sight path

to the goal is observed. The automaton would then break away from the wall

and successfully travel straight to the goal. The resultant path is, in the present

example, substantially shorter than that of the original bug algorithm. Conver-

gence guarantees of the bug algorithm are preserved. The line-of-sight variation

can improve on the bug algorithm, but will never result in a less efficient solution.

S
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An additional variation on the line of sight and M-line constructions adapts the

bug algorithm for effective integration with lower control levels. That is, motion

along the M-line or along the goal line-of-sight is not constrained to follow a

straight line, but is instead permitted to execute time-optimal control toward the

goal. In proving convergence of the bug algorithm, it was not necessary to restrict

the M-line to straight lines. Any non-looping path which connects the start and

goal would satisfy the requirements. A particularly convenient choice for the

main-path is the path which would result from executing time-optimal control

towards the goal. In fact, it is not even necessary to define a static M-path; the

purpose of the M-path is to define a valid leave-point for an obstacle boundary

once wall-following has commenced, so that infinite loops will be prevented. A

more general process for constructing the M-path is as follows: define the M-path

as a sequence of path segments consisting of: 1) a path from the start location to

the first point of an obstacle wall (or to the goal, if no obstacle is encountered) at

which time-optimal control towards the goal, in combination with reflex control,

would result in stalled motion. This point is unique in any static environment,

and the resulting path approaches the goal monotonically. It will be referred to as

a stall point. This path connects with: 2) a straight line-segment from the stall

point towards the goal, terminating in a leave-point, as in the bug algorithm.

To complete the path, repeat definitions 1) and 2) until the goal is reached.

The prescribed path converges monotonically on the goal, and thus satisfies the

requirements for a generalized M-line.

Computation of the preceding M-path may seem burdensome. In fact, com-

putation of the M-path is not necessary; it is merely necessary to postulate the

existence of such a path, and to conform to it when not following obstacle con-

tours. For the prescribed M-path, conforming to the path corresponds to execut-

ing reflex and optimal control. These levels define the M-path, and thus perfectly

execute motion along the M-path. It is unnecessary to anticipate exactly what

that path will be, since following it is all that is required.

With this variation, the new algorithm is executed as follows:
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1. from the start point, and from each leave point, Ll, assign the target

position as the next goal to the reflex controller. If the reflexes result in

stalled motion at an obstacle boundary, define a hit point, Hj. Go to 2.

2. Define the next segment of the M-path as a subset of the line segment

from Hj to T. Assign a local planning level goal to the reflex controller

which is the next pixel in configuration space which corresponds to positive

rotation about the obstacle boundary (i.e., turn right). Continue assigning

local-planning subgoals until a)the goal is reached, or b) the line segment

connecting Hi and point T is encountered; define a leave point Li and go

to 1; or c) the automaton returns to point Hi without finding a leave point;

select a new approach to the goal (i.e., reverse the angular direction of

approach for both links) and start over.

In the preceding algorithm, the spirit and convergence properties of the bug al-

gorithm are preserved, but use is made of the levels of expertise of the reflexes

and optimal controller. Further efficiency improvements can be made by incorpo-

rating the line-of-sight search. However, proper implementation of this addition

requires some variation. If a line of sight to the goal determines that wall-following

may be aborted, then the line-of-sight path to the goal must be followed. Simply

reverting to reflex and optimal control would not guarantee convergence. This is

illustrated in figure 2. In this example, it is assumed that controlled motion is

faster in the 02 direction than in the 01 direction (which is the case for the ex-

perimental planar robot). From point S, the robot heads toward the goal under

optimal control. Near point H, however, the reflexes bring the robot to a halt.

Further progress toward the goal is not possible under reflex control alone; the

H point is equivalent to a local energy minimum. The local planning algorithm

then steps in to initiate boundary following in a counterclockwise circulation. At

point L, a clear line of sight exists to the goal. If the robot is permitted to break

away from the wall at this point by assigning the target point as the next local

planning subgoal, then optimal control will take over, driving the robot towards
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Figure 2: Line-of-Sight Looping

point T. However, optimal control does not happen to coincide with the line of

sight path from L to T, and the robot ends up returning to point H, after which

it will loop forever.

The efficiency of the line-of-sight variation may be recovered by at least two

means. First, a breakaway initiated by a clear line-of-sight condition may impose

the constraint of path following along the line of sight, as opposed to unrestrained

high-speed servoing to the goal. A second, more efficient approach is to inspect

for the goal not along a straight line of sight, but along the anticipated trajectory

of postulated optimal control to the goal. Such a search corresponds to a simu-

lation of the robot motion under optimal control. If the simulation indicates no

collisions, then the robot may be released to execute high-speed motion to the

goal. Since the algorithm described is particularly simple, the processor execut-

ing it would be unnecessarily fast. By guideline 2) of the preceding section, more

problem complexity may be incorporated at this level in order to take advantage

of the longer cycle time permitted. Thus, it would be consistent to incorporate

the proposed trajectory simulation within the local planning level.

With the above variations, the bug algorithm is compatible with reflex control
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and optimal control. Optimal control is used for rapid transitions along the

M-path segments, and reflex control continues to prevent obstacle collisions (at

least for static obstacles). The reflexes are also still active during wall-following.

Normally, local planning subgoals would coincide with reflex subgoals, and the

reflex controller would be transparent to the local planner. However, if an obstacle

moves between local planner subgoals, or if the local planner fails completely,

the reflex controller will continue to assign safe subgoals to the robot. Moving

obstacles, however, present additional complications for the local planner.

As discussed in Chapter V, it is impossible to guarantee prevention of colli-

sions in dynamic environments, even if the obstacles are moving arbitrarily slowly.

Analogously, in dynamic environments, it is impossible for any planning technique

to guarantee successful guidance of an automaton to a goal, although a solution

may exist. At any crucial juncture in the algorithm, malicious obstacles may

surround the automaton and force it back to its startiag point. Alternatively,-

a moving goal may choose to hide itself from the automaton by remaining in

the shadow" of an obstacle. As the automaton moves, the goal may also move

to keep an obstacle between them (e.g., as though the automaton were "chas-

ing" the goal around a circular table). The consequence of this statement is

that it is fruitless to search for general proofs of convergence for planning in dy-

namic environments. This does not mean, however, that all planners are equally

(in-)effective in dynamic environments. The bug algorithm can be made to be

reasonably adaptive to changing conditions.

Since reflex control runs in parallel with local planning, unexpected motion of

an obstacle boundary during wall-following can be safely accommodated. Sud-

den obstacle motion is actually more realistic than it might seem, since sensor

noise results in an apparent motion of the obstacles. The perceived motion is

indistinguishable from actual motion. Thus, procedures for accommodating un-

expected obstacle motion (whether real or perceived) is required in any practical

system. If an obstacle wall moves into the robot, the reflexes will force the robot

to back away. On the other hand, if the wall suddenly recedes from the automa-
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ton, then the rule for circulating counter-clockwise about the obstacle will be

invalidated. Simply reverting to reflex control at this point can result in losing

the progress obtained by earlier wall-following. Sensor noise could have the effect

of repeatedly dislodging the automaton from footholds while it attempts to scale

a potential energy incline. Rather than reverting to reflex control when a wall

is lost, the modified local planner begins to head in the direction in which the

wall was last felt. If the wall is found, contour following is resumed. If the wall

is not rediscovered after a brief search, then the target point is assigned as the

next local-planning subgoal, and control thus reverts to the reflexes.

Another difficulty with moving obstacle boundaries is that the current hit

point, which is used to detect cycling, may no longer lie adjacent to the obstacle

wall if the wall moves. When the obstacle wall moves, the hit point may lie in

free space or lie in the interior of the obstacle. In either event, under continued

wall following the automaton will fail to revisit the hit point, and the test for-

cycling will never be satisfied. Since sensor noise will cause the apparent obstacle

boundaries to fluctuate, in practice the hit point will rarely be revisited. A minor

variation will reduce this sensitivity: on each cycle of the local planning loop, the

hit point may be reassigned to lie adjacent to the nearest obstacle wall along the

M-line. The effect is to make the hit point track the wall, as though glued to it.

Only a search along a line is required, which may be limited to several pixels, so

this variation does not consume appreciable computing time.

Tests for the leave point are already robust with respect to moving obsta-

cle boundaries, since it is only necessary to determine whether the system has

crossed the M-line while wall-following to detect a candidate leave point. This

test remains valid, although the would-be leave point may vary as the obstacle

moves. An additional requirement of a leave point is that the distance from a

candidate leave point to the goal must be shorter than the distance from the last

hit point to the goal. If the hit point is made to track the obstacle wall, then

the distance test will remain valid (the test may be invalid otherwise). These

variations will make the bug algorithm practical in the presence of sensor noise.
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Of course, the resulting algorithm is not foolproof; no algorithm is guaranteed

effective in the presence of moving obstacles. In the present case, the hit point

may be surrounded by obstacles which move in after the automaton has left. Al-

though the hit point remains on the surface of the original obstacle, that surface

may no longer be reachable by the robot, in which case the test for cycling will

never be satisfied.

Further complications are introduced by moving goals. Although convergence

can not be proven in general when the goal is moving, a desirable characteristic of

an algorithm is that it should degenerate to a guaranteed convergence algorithm

if the goal stops moving. For the present algorithm, if the robot is not wall-

following (i.e., it is on the effective M-path), then it will operate under optimal

control servoing to the moving target. In effect, the M-line would be tracking the

target, which invalidates the convergence proof. If, however, the obstacle should

stop moving before the automaton has encountered a hit point, then continued-

application of the modified bug algorithm will guarantee convergence to a solution

(if a solution exists). If the goal moves during wall-following, the same claim can

not be made. It may be necessary to revisit the original hit point in order to

achieve a valid solution. If the solution process is restarted when the target

stops moving, then the problem degenerates to the original case of guaranteed

convergence in static environments.

Since it would be necessary to restart the solution if the goal moves during

wall following, it is tempting to continuously redefine the M-path as a straight

line from the current position to the goal location. Such an approach is not robust

to minor perturbations, though, e.g. from sensor noise. If the goal is apparently

continuously moving by a small amount, then continuous redefinition of the M-line

can result in cycling, as illustrated in figure 1. On the other hand, the original

M-line may be frozen, despite a moving goal, until a leave point is picked up.

Such an approach is not at all responsive, though, to large motions of the goal.

A proposed variation is to define a moving M-line between the hit point (which

is glued" to the obstacle wall) and the moving target. For small perturbations,
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this construction of the M-line converges on the static algorithm, but for large

changes in the target position, the M-line responds by placing the leave point at

a potentially more effective location. The proposed variation is more responsive

to moving goals without being unnecessarily sensitive to noise. Still, any motion

of the target during wall following invalidates former convergence proofs. Since

a feasible solution may require revisiting the last hit point, the algorithm does

not have a conclusive test for nonexistence of a solution whenever the target (or

obstacles) moves. Consequently, the algorithm should continue to search for the

goal, regardless of apparent cycling, until instructed to do otherwise by some

higher level.

Most of the preceding modifications of the "bug" local planning algorithm have

been implemented in an experimental robot control system. Moving goals and

moving obstacles are accommodated by integrating sliding-mode time-optimal

control, reflex control, and interactive local planning. The local planner follows-

obstacle boundaries by defining sequential goals for the reflex controller. Wall-

following continues until: 1) a leave point is encountered, as defined by a moving

M-line which pivots about the most recent hit point; 2) the obstacle wall is lost

and cannot be rediscovered within a local search; or 3) an unobstructed line-of-

sight path exists to the target. When any of these conditions occur, the local

planner assigns the actual target position (which may be moving) to the reflex

controller as a goal. The reflex controller then permits optimal control motion

to the goal, or safely brings the robot to rest at a new hit point, upon which

wall-following is reinitiated.

Improvements which have not been implemented to this point include updat-

ing the hit point to track moving obstacle walls, and simulating the trajectory of

the robot in performing repeated tests for an unobstructed path to the goal. As

a result, the system does exhibit cycling in situations where the hit point is lost,

and in situations like that of figure 2.

A complete description of the experimental implementation of integrated local
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planning, reflexes and optimal control is given in the next section.

§5. Implementation of Integrated Control

An experimental realization of the proposed integrated, layered control sys-

tem was implemented on a multiprocessor system. The computing environment,

described in more detail in Chapter II, consisted of five MC68020-based single-

board computers running on a common VME bus backplane. A separate memory

board with 8 Mbyte of random access memory was installed in the backplane, and

was available to all five processors as shared memory. Except for chip-level bus

arbitration, the processors and their respective programs ran completely asyn-

chronously. Communications among processors was via shared memory. Each

processor board executed a single task, as described individually in Chapters II

through VI.

The first processor was dedicated to acquiring sensory data regarding the

positions of various obstacles, as well as a (possibly moving) goal location. As

described in Chapter II, this board sequentially flashed infrared LED's which

marked the locations of the obstacles as well as the goal. Analog optical position

data was converted to digital form and digitally filtered. Resulting positions

were continuously updated in a table in global memory at a rate of 500Hz per

obstacle. Eight separate sets of LED's were sensed and recorded. A lookup table

for interpretation of the position table values was also stored in global memory.

A second processor was responsible for executing the algorithms described

in Chapter IV for fast configuration space transforms. This processor continu-

ously cycled through the positions of each of the obstacles, as indicated by the

most recent values in the sensor position table, and computed the corresponding

forbidden joint angles in configuration space. A 128x128 discretization of 2-D

configuration space was continuously updated in shared memory by the trans-

form processor. Gray scale values of edge pixels were used to account for over-
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lapping obstacles; edge normal information was also stored. Computed or hand

taught static obstacles were also overlayed on the dynamically computed obsta-

cle borders. Configuration space transforms were executed at (nominally) 50Hz.

A means for efficient and robust parallelization of configuration space transform

computations was described in Chapter IV, although this was not implemented in

the experimental system. A single processor for map updates was found adequate

in 2-D.

The next processor performed sliding-mode optimal control of the 2-D pla-

nar robot, as described in Chapter III. Both axes were controlled by the same

processor, as well as both observers for velocity estimates. Custom electron-

ics for sensing the robot link positions and for digital to analog conversion of

PWM amplifier current commands were interfaced to this processor via a pri-

vate bus. No VME bus accesses were required for robot communications. The

sliding-mode controllers and the observers executed at 750 Hz. On each cycle, the-

controllers sampled locations in shared memory which contained goals specified

for the sliding-mode controller. Actually, the goal position for the servo level

consisted of a sequence of subgoal positions, as approved by the reflex controller.

The servo board also returned information to global memory: the current robot

position (joint angles); the current angular velocities (as estimated by the ob-

servers); and the current arrest point (the closest point at which the robot could

be brought to a complete halt upon immediate maximum braking).

The fourth processor supported the execution of reflex control, as described in

Chapter V. The local planner continuously polled the robot position and arrest

point, and continuously examined a local region (limited lookahead window) in

the configuration space map to determine whether obstacle evasion was necessary.

The reflexes xamined locations in shared memory in which the local planner

specified request" points. The request points were considered by the reflexes

and, if it was determined that a request point was contained within the lookahead

window in configuration space and was guaranteed safe, then the request point

was approved as a set point and delivered to the sliding-mode controller as a goal.
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Alternatively, unsafe requests or requests outside the lookahead window resulted

in reflex subgoals which, with respect to the requested position, corresponded to

the closest safe position within the lookahead window. The reflex controller also

monitored the robot position with respect to configuration space to determine

if obstacles were approaching. Escape from an approaching obstacle was given

a higher subgoal priority than advancement toward a requested position. The

reflex subgoal generation rate varied from about 600 Hz to about 200 Hz, (where

the fastest execution occurred in the most cluttered environments).

The last processor employed executed the local planning algorithm described

in this chapter, including the variations for control integration and dynamic envi-

ronments. The local planner switched between two operating modes: free mode

and wall-following mode. In free mode, the target position was read from the

position table in global memory (as computed by the sensory processing board),

and redeposited in shared memory at the drop point for request positions consid-

ered by the reflexes. In free mode, the local planner thus delegated full control

authority to the reflexes and sliding mode controllers. While in free mode, the

reflex controller continuously tested for a stall condition, which indicated that

the problem domain was too difficult for reflex control alone. Stall conditions

occurred when both links were blocked from further progress, or when one of

the links reached its goal, but the other was blocked. Upon observing a stall

condition, the local planner switched to wall-follow mode. In this mode, succes-

sive points along the boundary of the current blocking obstacle were delivered to

the reflex controller as requested positions. Since the reflexes and ocal planner

used the same configuration space map, all local planning wall-following requests

were generally approved by the reflexes, and passed to the sliding mode servos.

In addition to providing incremental wall-following requests, the local planner

also continuously scanned for a clear line-of-site path to the goal in configuration

space. Wall-following mode continued until: 1) a leave point was detected; or

2) a clear path to the goal was discovered, or 3) the current obstacle wall was

lost. Upon leaving wall-following mode the local planner resumed free mode, and



182

CONFIGURATION SPACE

-P1

N

0-

op

- P I JOINT 1 P I

Figure 3: Robot Transient; No Reflex. or Planning Influence

delivered actual target positions as request points. The local planner executed

its cycles at a rate of between 500 Hz and 1kHz, which is unnecessarily fast.

Examples of the three controllers running in coordination are shown in fig-

ures 3, 4 and 5. The figures are actual recordings of the robot's motion in a

cluttered environment, not simulation. In the first case, figure 3, the goal is not

blocked by an obstacle. The reflexes and local planner do not interfere with the

sliding mode controller, and high-speed target acquisition is ccomplished. In

the next example, figure 4, optimal control alone is not adequate to achieve safe

goal acquisition. The reflexes step in to divert the robot's motion away from an

impending collision. The resulting diversion is adequate in itself to achieve a valid

path to the goal; no interference from the local planner is necessary, and none is

introduced. As the robot clears the obstacle, optimal control is resumed.

In the third example, the robot is unsuccessful in reaching its goal under

potential iunction (reflex) control alone. Help from the local planner is required.
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Figure 4: Robot Transient With Reflexes; No Planning Influence

Wall-following is introduced when the reflexes fail to make progress. As the

perimeter of the obstacle is followed, the local planner eventually observes a

line-of-sight clear path to the goal. At this point, it relinquishes control to the

reflexes by assigning the actual target location as the next subgoal. The reflexes

in turn permit the optimal controller to drive the robot, which is accomplished

by delivering a rapid sequence of reflex subgoals at the edge of successive reflex

lookahead windows.

The implementation exhibits the desired combination of capabilities: high-

speed motion, obstacle avoidance, and (primitive) intelligence are all demon-

strated without compromising system performance.
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Figure 5: Robot Transient With Reflexes and Local Planning

§6. Summary and Conclusions

Effective integration of optimal control, obstacle avoidance and low-level plan-

ning has been achieved through a layered control approach. Design integration

is characterized by several properties: each layer is incrementally more abstract;

each layer is permitted incrementally longer cycle times; each layer builds on

lower levels, and does not affect the performance of deeper levels; each level has

a regime in which it is expert, and in which it may assume responsibility.

The control organization is distinct from alternative approaches particularly

in the recognition of levels of expertise. Lower levels of control are not merely

subservient to higher levels; each level covers a regime in which it is better able

to perform a task than any other level. Thus, it is important that higher levels

recognize their own limitations, and grant full responsibility to the most compe-

tent module at any instant. In this manner, system performance is not impaired

r
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by the existence of additional layers of control.

In extending the control system into the planning regime, it was determined

that an intermediate level was required between reflexes and a global path plan-

ner. A local planning algorithm was selected and implemented. The local planner

executed its cycles at a loop rate which is much faster than would be possible

with any global planner, which permits the robot to react immediately rather

than stall when confronted with a confusing environment.

The local planner implementation resulted in an execution rate between 500

Hz and 1kHz. Such a high rate of execution is unnecessary, though not harmful.

The implication is that the restrictions on the amount of information considered

may be further relaxed. Perhaps some form of "myopic" rather than strictly

blind or tunnel-vision assumption should be employed to broaden the problem

domain. Further, some limited lookahead in a planning (strategic) sense could be

employed, analogous to the limited lookahead used by the reflexes for dynamics.

According to the suggested design guidelines, though, the context of local plan-

ning should be broadened to utilize the time permitted for this level. A jump to

complete global planning, though, would be too extreme.

At the time of writing, no higher levels of control have been implemented.

The next natural layer is some form of more sophisticated planning, which may

be a complete globally optimizing planner, if the jump in abstraction and exe-

cution time is not too large. Following the philosophy of the preceding layers,

the next layer should interpret an ultimate goal location in terms of subgoals,

which in turn get passed to the local planner. The local planner may be gen-

eralized slightly to hunt for efficient paths between globally planned subgoals.

Such an approach would permit the global planner to plan its solutions faster,

since a coarser description of configuration space may be used. Effective execu-

tion of a crudely planned path could be performed by the local planner, reflexes,

and optimal controller. Presumably, the inferences drawn for design guidelines

of effective integrated control systems extends to higher levels still, though the
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demonstration of such a claim would require further investigation.



C H A P T E R VII

CONCLUSION

This thesis has presented a broad, but by no means exhaustive overview of

issues in high-performance robotics. A ground-up approach was taken, start-

ing from fundamental issues in design and extending through investigations in

planning in dynamic environments. Five major areas were involved: design of

a high-speed robot arm; robust time-optimal control; fast computations of mov-

ing obstacles in configuration space; potential-function based obstacle avoidance;

and primitive path planning. In each case, the problem domain was restricted by

simplifying assumptions, though issues of generality were considered throughout.

Further, the simplifications were realistic in the sense that results of the work are

at least in part immediately applicable in practical industrial systems.

All developments were considered theoretically and tested in hardware. Ef-

fective performance in each of the areas treated was measured not only by the

efficiency and competence of each respective module, but also by the ability of

the modules to work in cooperation. Factors influencing the limits to robot per-

formance were identified in each of the five a.eas, as well as in the structure of

their integration.

In the area of design, limitations to speed are relatively clear: actuator effort

and velocity limit3, actuator electrical dynamics and link and actuator inertias

impose physical limitations on the ultimate speed of a given machine. The use of

lightweight link construction and overpowered, high bandwidth, remote actuators

permitted very high accelerations of the experimental arm. Somewhat less obvi-

ous performance implications of design include the introduction of nonidealities

187



188

which make the system difficult to control. Transmission friction and backlash,

and system resonances limit the performance of the robot under feedback control

to speeds well below the open-loop physical limits. In the design described here,

traction drives (pretensioned steel bands) were used to obtain zero backlash, very

low friction power transmission. In this manner, the virtues of direct-drive design

were realized without the penalty of drastically mismatching load and actuator

inertias. The concept of direct-drive actuation in the strict sense was rejected; di-

rectly connecting loads to actuator armatures is generally grossly suboptimal, and

does not permit remote actuation. In spirit, though, the direct-drive philosophy

was followed, in that a virtually ideal transmission was used.

One final critical design feature was the implementation of counterbalancing

for dynamic decoupling. Decoupling provided such a dramatic simplification of

the system equations that sophisticated controls, virtually impossible to realize on

nonlinear coupled systems, became almost trivial to implement on the decoupled-

arm. At the same time, however, this simplification places some limits on the

generality of the techniques and results presented here. Dynaric decoupling

remains valid as long as the robot does not handle payloads which significantly

alter the arm inertia tensor. Ideally, robots of the future would handle payloads

substantially heavier than the arm itself. The influence and compensation of

heavy payloads with respect to dynamic decoupling is an area of research which

has not been treated here.

With careful attention to design, an arm with the physical capacity for high-

speed controlled motion can be built. Conventional linear control techniques,

however, are not adequate for utilizing the full capacity of a system. Linear

control analysis presumes a linear system,which implies that actuator effort sat-

uration must be avoided. In contrast, the theoretically best (fastest) possible

control requires full actuator saturation at all times. Optimal control, however,

is impractical since it is extremely sensitive to modeling errors and disturbances

in open-loop form, and is generally unstable in closed-loop form. A robust form of

nearly time-optimal nonlinear control was derived here theoretically and demon-
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strated on the high-speed arm. The approach invoked sliding mode control with

smoothing, a technique with its roots in time-optimal control. Here, sliding-

mode control has been re-united with time-optimal control to achieve robustness.

Roughly, a factor of four in speed improvement was obtained over linear control.

An ability to perform fast, controlled motion of an arm is not sufficient in

itself to achieve competent robot behavior. In fact, higher arm speeds accentuate

the penalty for colliding with an obstacle. In the present approach, no path con-

straints were specified for the (near) time-optimal controller. Indeed, no path at

all was specified for the controller, and thus no consideration of obstacle avoid-

ance was involved. Instead, a second layer of control was built to enforce obstacle

avoidance during high-speed motion. This level of control was labeled reflex

control", as its behavior was suggestive of reflexes. Within the reflex controller,

rudimentary processing of local sensory data was performed and immediate ac-

tion was taken if emergency conditions existed. Otherwise, the reflex controller-

was "transparent"; its influence was not exerted unless absolutely necessary. In

this manner, default high-speed servoing was performed as though no obstacles

were present. As long as the resulting trajectory (not a pre-computed trajectory)

was safe from collisions, maximum speed was not inhibited. In the event of im-

pending collision, though, the reflex controller exerted its influence to deflect the

robot away from obstacles.

Reflex control was derived from variations on potential function based control.

A new feature introduced was explicit consideration of actuator saturation in

constructing obstacle repulsion fields for guaranteed feasible obstacle avoidance.

Prior techniques guaranteed obstacle avoidance only mathematically, with the

unrealistic assumption of infinite actuator capacity. A further addition was the

definition of minimally influential protective potential fields. Such fields preserve

feasibility and safety requirements while exerting repulsion over a minimum range.

Finally efficiency of the control computations was dramatically improved through

the definition of a minimum inspection window which contained the minimum set

of all crucial obstacle avoidance data at any instant as a function of the state of
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the robot. All of these features were made possible through a simple departure

from prior work in potential function control. Specifically, potential functions

were combined using a logical operation (supremum operation) as opposed to an

arithmetic operation (addition of functions).

In order to execute both reflex control and high-speed servoing efficiently, a

common representation was required which was suitable for both control layers.

In terms of time-optimal control, the choice of reference frame was clear: only the

space spanned by absolute joint angles was suitable for high-speed control. Time-

optimal control in any other frame would have been totally impractical. Similarly,

explicit consideration of actuator saturation in obstacle avoidance also demanded

a reference frame in which actuator effects were decoupled. In order to describe

obstacles in terms of the preferred reference frame, it was necessary to compute

transformations of task-space obstacles into configuration-space obstacles. In or-

der to accomplish such transformations in real time, the transformation process-

was studied mathematically, and efficient algorithms were derived. A method for

constructive geometry of configuration-space obstacles was proposed and imple-

mented using primitives which are invariant with respect to rotations (points,

circles, spheres). In two dimensions, simple moving obstacles were transformed

to configuration space at video rates. A multiprocessing algorithm was proposed

for implementation of fast configuration-space transforms in higher dimensions.

The levels of time-optimal control and reflex control were combined through

the common representation of configuration space. Competence in high-speed

motion was provided by servo-level control, and limited awareness and reaction

to a sensed environment was included with reflex control. The resulting control

system, though, was not sufficient to obtain effective autonomous behavior. In

simple (relatively uncluttered) environments, nearly time-optimal motion was

achieved. In more complex environments, though the potential-function based

obstacle avoidance controller often resulted in stagnation at local energy minima.

To achieve a higher level of competence, a third layer of control was added: local

planning. An algorithm which only used local information (locations of nearby
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obstacle boundaries) was chosen as an intermediate level between fast reflexes

and relatively slow globally optimizing planners. In all cases, configuration space

provided a highly efficient common representation.

In integrating the three layers of control, a prime objective was the preser-

vation of high speed performance as additional levels of complexity were incor-

porated. Certainly, arbitrarily complex behavior could be realized if arbitrarily

long computation times are allowed, and if arbitrarily slowly evolving environ-

mcats are considered. However, in such cases it would not be clear whether the

approach would ever be compatible with high-performance systems. Instead, the

chosen approach was to build up complexity incrementally without sacrificing

speed at any level. In the process, attributes of efficient layered control systems

were recognized, and control system design principles were inferred. They are: 1)

successive layers of control should be competent in incrementally more abstract

problem domains; 2) successive control layers are permitted successively longer-

cycle execution times, as constrained by the dynamics within each problem do-

main; 3) higher levels of control should not impair the operation of lower levels

of control, even upon total failure of the higher level; 4) each layer of control has

a regime of competence in which it is expert, and in which no other layer should

interfere.

A notable distinction of the above from traditional hierarchical control schemes

is the recognition of regimes of expertise. A regime of expertise is not the same

as a level of competence. Increasing levels of competence imply increasing levels

of authority and capability. With distinct regimes of expertise, however, each

layer of control assumes full authority when the problem description falls within

its capabilities. No other layer of control, i.e. no higher" level, should interfere

with the operation of the defined expert in any particular situation. In the system

described here, the servo level of control is given complete authority unless it is

judged incompetent. The existence of a path planner does not imply the use of

planning, or the decomposition of the goal acquisition problem into a sequence of

simpler tasks. In many cases, servo control alone is adequate, indeed superior, in
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performing the task. Planning, which inevitably consumes time, should only be

invoked when it is needed. Higher levels must recognize when their talents are

required, and when to delegate authority. Conversely, lower levels may assume

authority over higher levels, e.g. in reflexive response to sensed danger which

overrides any logical plan prescribed by higher levels.

In the investigations described here, the proposed control system philosophy

worked well. Broad generalizations to arbitrary systems are tempting, though

this thesis does not pretend to prove or justify the control system guidelines in

any rigorous sense. In part, the lure of broad generalization has been resisted by

the author in recognition of the merits of specialization. While design and con-

trol techniques should be general, their proper use requires application-specific

knowledge. In the present system, the implementation of high-speed control re-

quired a good dynamic model of the system. The reflex layer of control required

knowledge of the performance of the servo controller in order to guarantee feasi-

ble obstacle avoidance. The planner required knowledge of the limitations of the

reflex controller in order to evaluate when planning was necessary. The configu-

ration space transforms required very specific knowledge of the robot's geometry

and kinematics. In each case, high performance implementation required use of

system-specific information.

The demonstrated effectiveness of fixed automation is convincing proof of the

merits to design and control specialization. While the ultimate robot would be

a highly adaptable machine, this does not imply that it would use a generic

controller. An effective robot controller would, as in the present case, utilize a

great deal of knowledge about the robot's own body and its own control system.

In each of the areas treated here, interesting unanswered questions and prob-

lems arose, which remain areas of future research. In the area of design, dynamic

decoupling presented tremendous simplifications for time-optimal and reflex con-

trol. The reliance on dynamic decoupling immediately presents several crucial

questions. How sensitive are the methods here to coupling through imbalance
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(e.g., by picking of a load of significant mass)? Can decoupling by design be ex-

tended to higher dimensions? (Certainly, a z-axis could be added for a decoupled

SCARA-like design, but the wrist degrees of freedom would not be decoupled, and

it has not been shown whether wrist dynamics have a negligible influence on the

arm dynamics). How applicable are the methods to existing robot designs? Can

dynamic decoupling be effectively imitated through the use of an inner feedback

loop? Would such an approach compare favorably with feedback loops which

make the robot imitate Cartesian dynamics?

The use of remote drive rather than direct drive emphasized the importance of

transmissions in robot design. A nearly perfect transmission was implemented in

the present case through the use of steel bands, and the virtues of direct drive were

realized without the inertia penalties. The approach suggests the investigation

of other types of traction drives in robot design. Further, transmission behavior

might be improved through the use of force/torque sensing with local feedback

around the transmission.

In the use of sliding-mode control for high-speed servoing, several avenues for

additional research became apparent. In the implementation of near time-optimal

control, a torque chatter was observed during deceleration. The controller was

stable, as predicted by the Lyapunov proofs, but the chatter was unexpected. Use

of saturation functions for torque smoothing should have eliminated the chatter.

The source of chatter has not been rigorously identified. In addition to refining

the current controller, extensions to higher-order systems should be possible.

Robust time-optimal control of more complex systems, including some degree of

dynamic coupling between links, should be investigated. More fundamentally, the

adaptation of sliding-mode control for high-speed motion is just one example of

applying sliding-mode theory for the realization of some specified set of dynamics.

Dynamics other than that of optimal control could be specified, e.g. the dynamics

specified to realize impedance control. A key point presented here is that sliding-

mode theory has been used to control a system to realize a set of dynamics, not

just a specified state or specified path.
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In the area of fast configuration-space transformations, two basic ideas were

presented, but not implemented. First, an approach for generating configuration

space forbidden regions by means of a constructive geometry was described, but

not implemented. Points, spheres and swept points and spheres were suggested

as basic model elements and operations. Additional basic elements and opera-

tions may suggest themselves in future research. Implementation in 3-D would

be a crucial test of the practicality of the techniques. A second major point

which was not pursued is the suggestion of using swept or blurred obstacles in

configuration space to account for anticipated obstacle motion or for uncertainty

regarding possible obstacle motion. AvoJ.lance of moving obstacles which may

not be considered quasi-static will depend on incorporating anticipation of motion

in configuration space.

In the implementation of fast configuration space transforms, a chief bottle-

neck in computation was the discretization of line segments into pixels. The

application of specialized machine vision hardware may be useful in speeding

up the algorithm. Speed improvements will be particularly important in higher

dimensions.

A particularly important generalization of reflex control will be the avoidance

of moving obstacles, especially other robots. In part, this work will require an-

ticipation of obstacle motions in configuration space. A more difficult problem

still is the coordination of multiple interacting machines. If multiple machines

react to each other by trying to anticipate each other's path, then it is not clear

whether they will interact stably. Explicit synchronization of multiple machines is

undesirable, since it would require extensive programming, and would not be flex-

ible or robust with respect to individual machine malfunctions. Ideally, multiple

machines would interact effectively with a minimum amount of communication

among them. How this might be implemented remains an open area of research.

The area of planning was treated here only superficially, in the context of

layered control integration. For the local planner chosen, cycle execution rates
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were higher than necessary, suggesting that additional complexity should be in-

corporated at this level. The control integration guidelines suggest that at least

one layer of planning should be implemented between reflex control and global

planning, but the optimal choice of an intermediate layer is not specified. An

important consideration in the design of a local planner is that it should inte-

grate effectively with the next layer of control, presumably a global planner. A

desirable attribute would be the ability to perform global planning in a space

which is discretized more coarsely than the space used by the local planner, such

that refinements are performed locally while global planning is performed more

rapidly through the use of coarser approximations. To coordinate with the global

planner, the local planner should introduce only perturbations on the global plan

(whenever the global plan is valid), rather than attempt a significantly different

approach.

The control integration design guidelines suggested here were implied by the

results obtained. No rigorous proofs, deductions or rigorous generalizations have

been offered. Of particular importance is the issue of stability in integration. Lay-

ers which are stable by themselves are not guaranteed to be stable in combination

with additional layers of control. The suggested guidelines may have bearing on

general conclusions about layered control system stability. In addition, the use

of logical decision making in feedback control was required, but rigorous theory

does not exist to suggest design rules or predict performance. Digital control

theory does not apply to general decision making in control. Also, in the lay-

ered control system constructed, parallel processing was used. The approach was

successful, but did not benefit from the guidance of any rigorous theory or de-

sign procedures for invoking parallel processing in control. These aspects, layered

control theory, decision-making in control, and parallelism in control, should be

rigorously formalized.

This thesis has presented some of the current limitations to high-performance

robots, proposed some solutions, and demonstrated their implementation in a

simple system. With proper design and control, robots are capable of dramatically
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better performance. Perhaps future robots will appear less human-like, but they

may be expected to be more employable.



APPENDIX A

OBSERVER IMPLEMENTATION

In the design of the experimental apparatus, tachometers were included for

velocity measurements. However, the tachometers were found to be too noisy at

the low rpm's which resulted from controlled robot motion. Implementation of the

sliding-mode time-optimal controller relied heavily on the actual link velocities.

To obtain velocity estimates for feedback, observers were employed.

For each link, the system model may be described by the block diagram of

figure 1. In figure 1, the state x is given by:

X= w

Ignoring friction, (which was known to be low) the system matrices are given by:

A=[ 0

B = 1 o

C 1 O]

For link 1, the value of I (link inertia) was 0.037 Kg-m2 and for link 2, the inertia

was 0.0035 Kg-m2. Observers were constructed in software as illustrated in figure

2. In figure 2, the observer consists of a model of the plant with estimated values

for the system matrices B and A, B and A respectively. If the plant model used

197
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in the observer were perfect, and if the initial conditions were known perfectly,

then the estimated state, i, would equal the actual state, x, for all time. For even

minor errors in the estimates of the system matrices, however, the simulated state

will eventually drift away from the actual system state. The observer is made to

keep tracking the actual system by feeding back an error signal derived from the

difference between the known (measured) components of the actual system and

the corresponding estimated state variables. In the present case, the actual link

positions were measured via optical encoders and compared with the estimated

link positions. Assuming A A and B B, the dynamics of the state estimate

error, e = - x, may be expressed as:

e= Ae-LCe

The error dynamics has the characteristic equation given by:

s2 + Kls + K2 =0

where K1 and K2 are defined by the observer feedback matrix, L:

L= K ]

Since the sliding-mode controller was not designed to accommodate observer

dynamics, the observer dynamics were made fast with respect to the controlled

system dynamics. The value of K2 was set to 400,000 (rad/sec) 2 to obtain error

dynamics with a natural frequency of about 100 Hz. A damping factor of ; Z 0.7

was selected by setting K1 to 900 rad/sec. Identical observer dynamics were

chosen for both links.

Two factors limited the bandwidth of the observer error dynamics. First, the

computation cycle time of 1.3 ms (760 Hz rate for both sliding mode controllers

and both observers on a single cpu) limited the bandwidth of the observers by

stability considerations of the numerical time integration of the observed plant

simulation. Another limitation was due to the discretized measurement of link
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angles. With discretization, a smooth position ramp (i.e., a constant angular ve-

locity) is perceived as a "staircase" position waveform. As a consequence, when

the rate of measured position increments is below the observer's natural fre-

quency, the observer behaves poorly. Between steps of the position measurement

staircase function, the observer responds to an apparent sudden halt of the link

position (no information is available between position increments). At the next

position increment, the observer reacts to an apparent sudden change in veloc-

ity. The staircase position function can result in ringing of the velocity estimate,

especially at encoder increment rates near the natural frequency of the observer

error dynamics. When position increments occur rapidly with respect to observer

error dynamics, then a smooth velocity estimate is obtained.

In the present application, accurate velocity estimates were required to evalu-

ate the function s, which includes a term in w2. The w2 term is especially sensitive

to estimate errors when w is large. Thus, with regard to sliding-mode optimal-

control implementation, ringing of the velocity estimates is more problematic at

high frequencies than at low frequencies.

Discretized position measurements and resulting velocity estimate ringing are

suspected as the source of torque chatter in figure III.5, the measured torque his-

tory for a sliding-mode optimal-control transient move. The observer parameters

of w, = 100 Hz and = 0.7 were chosen as a compromise between high-speed

error dynamics, desired for the linear-regime control, and the sensitivity of the

sliding-mode controller to high-frequency velocity estimate ringing.
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1

Figure 1: System Block Diagram

r

Figure 2: System plus Observer Block Diagram
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