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ABSTRACT

Recent research has shown that the roll bending process
can be automated by the addition of a closed-loop control
system that continuously measures the springback of the metal
workpiece. In the present work the components of a roll
bending system, controlled by such a closed-loop scheme, are
analyzed to determine important dynamic characteristics of
the roll bending process. Dynamic models are developed for
the individual components and for the roll bending process as
a whole. These models are verified using an experimental
roll bending apparatus. A linear control analysis and a
nonlinear simulation are performed, using the system model,
to determine the limits of the roll bending system response.
The analysis shows that very good system response is possible
using a simple proportional controller and proportional-plus-
derivative feedback. The analysis also indicates that the
derivative feedback, which for roll bending is the rate of
change of unloaded curvature, can be approximated by the rate
of change of the control variable, roll velocity. Experi-
ments were performed which verified the control analysis.
The experiments also show that workpiece vibration is a major
problem as the roll bending system bandwidth is increased
because the control system is unable to distinguish between
workpiece vibration and curvature disturbances. Because the
workpiece dynamics change as the workpiece moves through the
roll bending apparatus, the control system must be designed
for the worst case. Workpiece vibration is the major factor
which limits the roll bending system response. Nevertheless,
the proposed control scheme represents a major improvement in
the control of the roll bending system because of the
increased bandwidth and stability possible.

Thesis Supervisor: Dr. David E. Hardt
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

INTRODUCTION

Motivation

In an effort to increase productivity and remain

competitive in the world market, many companies are consid-

ering production process automation. In the metal forming

industry much interest has been generated by the introduction

of automation for traditionally manual operations such as

brakeforming and roll bending. The first generation of

automation for these processes was the addition of a simple

position servomechanism and controller. On a brakepress, for

example, a position servomechanism (servo) enabled the

operator to program a series of movements which could be

repeated very quickly and precisely. This did not signi-

ficantly improve productivity, however, because of the

extensive reworking needed to achieve the necessary shape

accuracy. Even though the brakepress position could be

controlled very closely, final part shape varied because of

material property variations. More recent work by Hardt [1],

Allison and Gossard [2], and Stelson [3] has shown that a

material adaptive control scheme can be developed for the

brakeforming process which will significantly improve

productivity by explicitly accounting for material properties

in-process.

A variation of the brakeforming process, the roll
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bending process, is used in many metal forming situations

that fit within the particular hardware restraints. The roll

bending process, where applicable, is much faster than the

brakeforming process because rather than forming the material

in discrete steps, as in brakeforming, the workpiece is

formed continuously as the material is rolled through the

machine. The advantages of the continuous forming provide

the motivation for the research presented in this thesis.

The roll bending operation has great potential as an effi-

cient and versatile metal forming process. The goal of this

research was to develop an automatic control scheme for the

roll bending process that would take advantage of the inher-

ent speed of the roll bender while incorporating a closed-

loop control scheme.

Previous Research

The three-roll pyramid roll bender shown in Figure 1 is

a typical configuration that consists of a pair of fixed

outer rolls and a movable center roll. One or more of the

rolls is driven, and friction between the rolls and the work-

piece permits the material to be rolled through the machine.

As the workpiece moves, the center roll is adjusted to pro-

duce a variable bend along the length of the workpiece. This

process is used to form long flat workpieces such as heavy

plate used in boilers and reactor vessels. Roll bending is

also used extensively to form long thin workpieces such as

11



Final
Shape

Workpiece

Movable
Center
Roller 4

Fixed
Outfeed
Roller

Fixed
RollnfeedRoller

Figure 1. Pyramid 3-Roll Bender Configuration

aluminum extrusions. In the aluminum industry roll bending

is also used for final straightening and contour correction

of extrusions. This operation is entirely manual and the

accuracy of the final product shape is dependent on the skill

of the operator.

In recent years some effort has been directed toward

automating the roll bending process. The major obstacle

confronting researchers has been material springback. In

roll bending, the metal workpiece is plastically deformed as

the workpiece moves through the machine. As the workpiece

exits the bending apparatus the elastic stresses in the metal

are relaxed and the metal "springs back". Thus the metal

12



does not obtain its final shape until the workpiece has

exited the machine. Some of the earliest attempts to deal

with the material springback problem (Sachs [4] and Shanley

[5]) used empirical data to characterize springback for

certain materials and workpiece shapes. Other researchers

([6] to [14]) used various analytical methods in an attempt

to predict stress and strain conditions as well as springback

for various materials. Later, Hansen and Jannerup [15]

developed a more complex model for elastic-plastic bending of

beams that could be used to obtain a more nearly accurate

estimate of the workpiece springback. Cook, Hansen, and

Trostmann, [16] 'ised the beam model in [15] to design an

open-loop controller for a roll bending machine and demon-

strated that good control of the final part shape is possible

if the material properties, including springback, are known

beforehand. The condition of prior knowledge of material

properties is very restrictive, though, and seriously limits

the usefulness of the controller. Foster [17] developed a

machine which measures the final part shape as the workpiece

exits the bending apparatus. This measurement can be

incorporated into a closed-loop curvature controller. The

advantage of this type of control scheme is that no prior

knowledge of material properties is required for controller

implementation. The curvature measurement, though, is taken

after the workpiece has exited from the bending apparatus.

At this point the workpiece already has been formed to its

13



final shape so the information cannot be used to correct the

current error, but only to maintain a relatively constant

final curvature. More recent research by Hardt, Roberts, and

Stelson [18], in the area of roll bending, and similar

research by Gossard and Stelson [19], in the area of brake-

forming, has shown that it is possible to measure the

important material properties, including springback, during

forming and thus design a closed-loop controller for these

processes. Hale and Hardt [20], and Lee and Stelson [21]

have extended the approach in [18] to include the roll

straightening process and have conducted experiments that

show that with a closed-loop controller, straightening is

nothing more than bending to zero curvature. Although the

control scheme presented in [18] works well in theory, the

productivity gains possible with this closed-loop curvature

controller are limited by the assumption that workpiece

feedrate will be very slow. This assumption was necessary to

avoid unwanted oscillation and instability. In [18] and [20]

the feedrates are kept below 0.7 in/sec. In [21] the work-

piece was actually stepped through the bending device and the

forming was performed while the workpiece was stationary.

This closed-loop control method enhances the versatility of

the roll bending process by making one-pass forming of arbi-

trary shapes possible, but it does not exploit the inherent

speed advantages of the roll bending process. Thus much of

the possible productivity gains are lost.

14



Thesis Overview

The work described in this thesis presents a new control

method that greatly improves the roll bending system

response. In Chapter 2, a complete static analysis of the

roll bending process is presented. In addition, three

bending cases that merit special attention: straightening,

forming unsymmetrical sections, and bidirectional bending,

are examined in some detail to determine how the control

approach presented in [18] must be modified to apply to these

cases. In Chapter 3 the roll bending system is broken down

into five primary components. Models of each of these five

components are developed to determine their individual

influence on system dynamics and response. These models are

verified using an experimental bending apparatus that is

described briefly in Chapter 3 and in more detail in Appendix

1 and [22]. In Chapter 4 the dynamic models are used to

develop a digital controller that satisfies specific control

objectives. The relative importance of the control objec-

tives listed in Chapter 4 varies according to the type of

bending, so the control analysis is presented first in gene-

ral terms and then examined using the experimental apparatus

for specific types of bending. This analysis indicates that

the roll bending system bandwidth can be greatly increased by

a simple modification to the control system presented in

[18]. Using a proportional-plus-integral controller with a

15



velocity servo results in a much simplified dynamic system

with good stability and improved bandwidth. The new control

method presented allows the same system response to be

maintained at much greater feedrates, resulting in large

productivity gains for very little cost. The experimental

procedures and results are presented in Chapter 5. The

results verify the models developed in Chapter 3 as well as

the new control method proposed in Chapter 4. Chapter 6

contains the conclusions and also some suggestions for future

research. The major conclusion is that there is a rather

severe limitation imposed on maximum system bandwidth because

of workpiece vibration. More research is needed to charac-

terize completely the effect of the workpiece vibration on

the final curvature of the workpiece. In addition, a more

detailed study of the mechanics of bending could yield some

insight into the problems and possibilities of one-pass

two-dimensional and three-dimensional bending. The appen-

dices contain more detailed information on the experimental

hardware and software as well as an error analysis and hard-

ware concerns and measurement alternatives.
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Chapter 2

STATIC ANALYSIS OF BENDING MECHANICS

The closed-loop curvature control scheme for both the

roll bending process and the brakeforming process is based on

real-time measurement of the material springback. The devel-

opment of this control scheme is repeated below.

Moment-Curvature Relationship

A work?iece in a three-roll bending machine can be

modeled as a beam under three-point loading as shown in

Figure 2. As the beam is loaded, the material is initially

stressed elastically. If the beam is loaded so that the

stress in the beam is always below the yield stress, then

when the beam is unloaded, the material will "spring back"

and regain its original shape. If, however, the beam is

loaded so that some of the fibers are loaded past the elastic

limit, then the beam is plastically deformed and will be

permanently deformed when unloaded. Figure 2 shows the

stress state in a beam that is loaded past the yield point.

The final workpiece shape depends on the initial shape, the

initial stress state, and the stress distribution, all as a

function of position along the workpiece. The relationship

between the stress state of a workpiece and the resulting

curvature can be seen in the moment-curvature relationship,

which can be derived from the stress-strain relationship.

17
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Figure 3 is a general moment-curvature diagram for an ini-

tially flat workpiece. This diagram is drawn for a single

point along the length of the workpiece. A similar diagram

is needed for every point on the workpiece to characterize

completely the workpiece curvature. The situation can be

greatly simplified by considering the geometry of the three-

roll bending process.

For a workpiece that is loaded in a roll bending appara-

tus, the exact moment distribution along the sheet is complex

but can be approximated as a linear function of arc length

assuming that no moment is generated between the drive rolls

and the workpiece (Figure 4). As indicated for three-point

bending, the bending moment applied to the workpiece increas-

es from zero at the input roll to a maximum at the center-

roll contact point and then decreases to zero at the output

roll. This loading sequence can be traced on the moment-

curvature diagram (Figure 3), the moment-position diagram

(Figure 4), and on a machine diagram (Figure 5). At the input

roll the workpiece has zero moment and, assuming an initially

flat workpiece, zero curvature (Point A). The moment and

curvature increase and the workpiece deforms elastically

until the yield point is reached (Point B). The slope of the

elastic loading line in Figure 3 is the effective bending

stiffness. As the moment increases from Point B to a maximum

at Point C the sheet deforms plastically. The moment and

curvature decrease linearly as the sheet moves from maximum

19
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loading (Point C) to the output roll (Point D) where the

moment is again zero but the curvature is not because the

workpiece has been plastically deformed. The slope of the

unloading line in Figure 3 is the same as the elastic loading

line. The workpiece springback as a function of distance, s,

along the workpiece is the difference between the maximum

loaded curvature and the final unloaded curvature and is

found from Figure 3 to be:

AK(s) = KL(s) - K (s) (1)
U

where KL is the maximum loaded curvature and K is the
L ~~~~~~~~u

unloaded curvature. The springback can also be expressed in

terms of the moment. As shown in Figure 3 the unloading path

is a linear function of the moment and so the springback can

be expressed:

AK(s) = M(s)/(dM/dK) (2)

where M(s) is the moment distribution along the sheet and

dM/dK is the slope of the elastic loading line. This

equation points out one of the major advantages that the roll

bending process has over the brakeforming process. For

brakeforming, where the workpiece is formed at discrete loca-

21



tions, it is necessary to obtain the full moment-curvature

distribution along the workpiece in the forming region to

predict accurately the distributed springback. For roll

forming, however, every point along the workpiece is loaded

to the maximum moment as it passes under the center roll, and

by controlling the maximum moment, each point along the

workpiece can be formed individually.

As shown in [22], if the loaded curvature and the

springback are known for a given point, then the unloaded

curvature is found by rearranging Equation 1:

K = KL - AK (3)
u L O 

This can be combined with Equation 2 to yield:

Ku = KL - Mmax/(dM/dK) (4)

where it is understood that these two equations apply to each

point along the workpiece. Equation 4 shows that it is

possible to calculate the unloaded curvature of the work-

piece while the workpiece is in the loaded condition if the

moment and curvature at the contact point under the center

roller are known together with the bending stiffness of the

workpiece. In other words it is possible to measure the

22



material springback in real time. Because the measurement is

made at the center roll where the forming occurs, there is no

measurement lag as there is with post-forming measurements as

presented in [17]. A closed-loop controller can be designed

using the unloaded curvature as the loop feedback. A general

block diagram of such a control scheme is presented in Figure

6. A control system based on the real-time measurement of

springback has many advantages over systems based on delayed

measurement or springback prediction, such as in [16]. The

primary advantage is that one-pass forming of arbitrary

shapes is possible because the controller can use the actual

system output, unloaded curvature, for feedback. Thus the

system shown in Figure 6 can be thought of as a closed-loop

curvature servo. Changes in material properties such as

yield point, which can differ from workpiece to workpiece and

even along the same workpiece, are reflected in the moment

and curvature measurements and compensated for automati-

cally. This was demonstrated for the static case by Hardt,

Roberts, and Stelson in [18] and Roberts in [22].

Straightening

Another significant advantage of real-time measurement

of unloaded curvature is evident in the straightening

application. Consider a workpiece that is initially curved.

The effect of the initial curvature on the moment-curvature

diagram is shown in Figure 7, which is drawn for a single

23
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point on the workpiece where the initial curvature is nega-

tive. The initial curvature simply shifts the origin of the

curve. In the unloaded state (zero applied bending moment)

the loaded curvature is no longer zero and the curve shifts

to reflect this initial condition. The actual shape of the

nonlinear portion of the curve depends on the initial stress

state in the workpiece. The slope of the loading and unload-

ing lines does not change though, so the control scheme is

unaffected by initial stresses. In the closed-loop control-

ler, initial curvature can be described as a system distur-

bance. A model of this disturbance is developed more fully

in Chapter 3. The closed-loop control scheme will sense the

disturbance and react to eliminate it. Because the distur-

bance is measured under the center roll, the control system

can react while the workpiece is still loaded. Thus, with

the closed-loop controller, straightening is no different

than bending to zero curvature and can be accomplished in a

one-pass operation without prior knowledge of the distur-

bance. This is clearly not possible using predictive methods

of calculating the springback unless the disturbances are

fully known beforehand. Prior knowledge of the disturbances

requires a separate operation and additional instrumentation,

and even then, multiple passes may be required because a

controller based on predicted springback is open-loop and

cannot compensate for material property variations.
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Unsymmetrical Sections

For a workpiece with a cross-sectional area that is

symmetric about a given axis and material properties that are

constant along the workpiece and symmetric about the axis, a

pure moment acting in the plane of symmetry will produce a

deflection only, in the plane of symmetry, These conditions

are very restrictive though, and apply only to a limited

number of industrially relevant cases. The general case of

three-dimensional bending is much more complex. For an

arbitrary cross-section with a bending moment applied in an

arbitrary direction, it is possible for the workpiece to

twist about the longitudinal axis and bend about two orthog-

onal transverse axes. In other words, the two-dimensional

bending and the twisting are all coupled and may all occur

from a one-dimensional loading.

Consider a triangular rod (Figure 8) that is loaded

about the two orthogonal transverse axes. The deflection in

the xy plane is related to the loading by Equation 5 (see

[23] and [24]):

a MzI +M T YZ (5)

as E(I I - I 2
yy zz yz

where is the local beam angle in the xy plane, s is the

distance along the beam, E is the modulus of elasticity, MM

26



Figure 8. Triangular Rod

and M are the moments applied about the z and y axes
y

respectively, I and I are the area moments of inertia for
zz yy

the z and y axes respectively, and I is the area product of
yz

inertia for the y and z axes. The deflection in the xz plane

is:

a -MzIY

As E(I Iyy zz

- M I
YY

- I 2)yz

where is the local beam angle in the xz plane. It is easy

to see that a moment applied only in the z (or y) direction

27
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will produce a deflection in two directions because of the

coupling from the product of inertia term, Iyz . This multi-
y z

dimensional bending is undesirable for the roll bending

process because three dimensions must be measured and

controlled in order to control the final shape for the

general case. Therefore it is important to analyze the

coupling effect to determine how it can be prevented or

reduced.

From Equations 5 and 6 it is obvious that the bending is

uncoupled when I = 0.0. This is the case if y and z are
yz

principal axes, such as the axes through the centroid and

parallel to the edges of a rectangular section. Thus bending

about a principal axis will result in an uncoupled deforma-

tion. For many sections however, this restrictive condition

cannot be met. Even if coupling is unavoidable, the effects

can be minimized. Because permanent changes in curvature

involve plastic deformation, if a moment in one direction

produces plastic deformation in one direction and elastic

deformation in all other directions, the bending is effec-

tively uncoupled. Although bending occurs in more than one

direction, plastic deformation, and therefore permanent

curvature changes, will occur in one direction only. The

following analysis demonstrates the effect of coupling for a

two-dimensional case.

Suppose that the workpiece shown in Figure 8 is ini-

tially flat and is loaded in a single direction (M = 0.0).
Y
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Rewriting Equation 6 gives:

-M I

as E(II -I 2)(7

Rewriting Equation 5 yields:

Da MzIzz

= " 2 (8)
as E(I Izz - IZ )

yy zz yz

Substituting Equation 8 into Equation 7 yields:

(as )(acz) '1(9)
as \ as

From this equation it is easy to see that the coupling is

governed by the ratio of the product of inertia to the moment

of inertia. A similar development cn be used to show that

the coupling that occurs when M = 0.0 is given by:

z

as Iz I (10)
as I yy

Now let K be the maximum elastic loaded curvature in the xz
xz

29



plane and K be the maximum elastic loaded curvature in the
xy

xy plane. Then the conditions that will ensure uncoupled

bending are given by:

QCz)() Kxz(las (11)
z/

for bending in the xy plane and

(I)( as) 2xy
Y Y

for bending in the xz plane. Consider, for example, the

triangular cross section shown in Figure 8 where h = 1.75 in,

b = 1.25 in, E = 10x106 psi and the proportional limit is

35x103 psi (Aluminum 6061-T6). If the maximum elastic loaded

curvature can be approximated by the loaded curvature of the

workpiece when the outermost fibers are stressed to the

proportional limit, then:

.4
I = 0.186 in
zz

.4
I = 0.095 in
Yy

.4
I = -0.066 in
yz

K = 0.004 in
xz

K = U.u03 in 
xy
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Thus the largest curvatures that can be formed in each

direction without affecting the unloaded curvature in the

other direction are:

S -- (0.004) = 0.011 in (13)
as

\ yz

--- (0.003) 0.0043 in 1 (14)
as

For straightening the triangular beam, it might be possible

to keep the curvature below the indicated values because

curvature magnitudes are very small. For bending, though,

coupling is sure to occur. But the coupling effect can be

minimized by careful application of the analysis shown

above. By bending first in the direction which is least

affected by bending in the opposite direction, the required

number of passes will be minimized if an iterative control

method is used. Better yet, it might be possible to

calculate, using Equations 9 and 10, the overbend or

underbend needed to compensate for the coupling. This

defeats the purpose of the closed-loop control scheme

however, because the coupling is estimated and not measured

explicitly. If the closed-loop curvature control scheme

could be applied to two or three dimensions then the coupling

effects would be measured and compensated for automatically,
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much like initial curvature disturbances are handled in

straightening. The work presented here will be restricted to

one-dimensional uncoupled bending to simplify the eperi-

mental apparatus.

Bidirectional Bending

To form arbitrary workpiece shapes in a single pass the

bending apparatus must be capable of forming both positive

and negative (bidirectional) curvatures. This means that

more complex hardware, such as opposing roll pairs, is needed

(see Appendix 1). The closed-loop control scheme can be

applied to bidirectional bending with no changes. The major

difference between unidirectional and bidirectional bending

is due to the effect of the elastic deadband region. Equa-

tion 4 together with Figure 3 show that there is no change in

the unloaded curvature while the workpiece is loaded elasti-

cally. Thus for a certain range of center-roll movement the

system output does not change. This range of movement is

called the deadband region. Figure 9 shows the relationship

between center-roll displacement and unloaded curvature for a

workpiece that is stationary in the bending apparatus. The

points noted in Figure 9 correspond to the loading conditions

shown in Figure 3 for the special case of a stationary work-

piece. Notice that a large portion of the loading path and

the complete unloading path shown in Figure 3 are in the

deadband region. For unidirectional bending with no over-
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shoot, the system passes through the deadband region only

once at the start of bending and the effect on the system

response is very small. For bidirectional bending, and

especially for straightening where curvature levels are very

small, most of the center-roll movement may be in the dead-

band region. Thus it is possible for the deadband region to

dominate the system response. This is of little importance

for static bending but becomes very important for the dynamic

case where the workpiece moves through the roll bending appa-

ratus. The deadband region has a large effect on system

stability and error, especially as the feedrate becomes

large. The effect of the deadband region on the system

dynamics will be explored in more detail in the next

chapter.
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Chapter 3

DYNAMIC ANALYSIS AND MODELING

The research presented in [18], [20], [21], and [22]

demonstrated that the closed-loop control scheme described in

Chapter 2 works very well for bending and straightening if

the workpiece is rolled through the apparatus very slowly.

The assumption of very low feedrate allowed the authors to

ignore any dynamics associated with the servo system or

workpiece. In this chapter a model of the roll bending

system that includes dynamic effects will be developed. This

model will be used to analyze the dynamic performance of the

roll bending operation and predict the performance limits.

Then the dynamic model will be used to develop a control

algorithm. The system dynamics for any roll bending appara-

tus will depend on the particular roll bending configuration

and hardware under consideration. A general roll bending

system must contain several key components to implement the

closed-loop controller. The dynamic models of these compo-

nents are presented in general terms later in this chapter.

These models are used to analyze a particular roll bending

configuration that was used to perform the experiments in

Chapter 5. The experimental roll bending apparatus is used

to examine the validity of the dynamic models and also to

develop and evaluate different controllers. A short descrip-
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tion of the experimental apparatus is given below. More

detailed information about the experimental hardware is

presented in Appendix 1 and [22].

Experimental Apparatus

The experimental bending apparatus (Figure 10) consists

of two outer roll-pairs and a center roll-pair mounted on a

Bridgeport milling machine. All of the roll-pairs have a

fixed roll and an adjustable opposing roll. Thus the appa-

ratus is capable of bidirectional bending of various sized

workpieces. The outer roll-pairs are fixed to the milling

machine bed which is driven by DC motors through a ball-

screw. The movement of the outer rolls with respect to the

center roll provides the forming action needed. The center

roll is mounted in and driven by the milling spindle. The

workpiece is clamped between the driven center roll and the

opposing center roll. Friction between the rolls and the

workpiece causes the workpiece to move through the appara-

tus. Feedrate can be varied by adjusting the spindle speed.

As shown in Equation 4, the loaded curvature and the maximum

moment must be measured to implement the closed-loop control

scheme. Loaded curvature is measured on the experimental

apparatus by two linear variable differential transformers

(LVDT's) which are mounted next to the center roll. The

distance between the LVDT's is adjustable. The maximum

moment is measured with a strain-gage force transducer.
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Figure 10. Experimental Roll Bending Apparatus
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Figure 11. Roll Bending System Block Diagram
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Notice that all the roll-pair housings are free to rotate so

that no moment is generated between the rolls and the work-

piece. The rotation of the roll housings changes the moment

arm used to calculate the maximum moment and therefore the

rotation must be measured. Rotation of the center-roll

housing is measured with a potentiometer. The outer-roll

rotations are negligible for the bending experiments reported

in Chapter 5 and are not measured. Appendix 3 contains a

complete error analysis which shows the effect of neglecting

various measurements. Appendix 2 presents some alternatives

to the moment and curvature measurements. Analog signals

from all transducers are amplified and filtered before being

sent to a computer where they are digitized. The computer

then uses this information to generate an error signal which

is sent to a General Electric servo-controller. The servo-

controller is connected to the DC motor that adjusts the roll

position and the loop is completed.

Analysis of the machine description and the bending

process reveals five system components that appear to

contribute significantly to the system dynamics. These five

components are the workpiece, the servo system, measurements

and filters, disturbances, and the system controller. A

block diagram of the roll bending system which includes all

these components is shown in Figure 11. A model for each of

these components is developed below and verified using the

experimental apparatus described.
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Workpiece Model

As shown in Chapter 2 it is not necessary to know

anything about the plastic deformation of the workpiece as it

is being loaded to measure the unloaded curvature. It is

only necessary to know the maximum moment and curvature at

each point along the workpiece and the slope of the unloading

path. For modeling purposes however, it is necessary to know

how the workpiece deforms, both elastically and plastically

as a function of the center-roll position. For the workpiece

model we will assume that the workpiece material is elastic-

perfectly-plastic, which means that the stress-strain rela-

tionship is as shown in Figure 12. In the elastic region the

0
I.

-
C')

Strain

Figure 12. Elastic-Perfectly-Plastic Stress-Strain
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moment and curvature are linearly related by the bending

stiffness. If we further assume that the workpiece has a

rectangular cross section that is constant along the length,

then the relationship between moment and curvature for the

entire loading path can be described as shown in [23] by:

M = K(dM/dK) K < K
Y

(15)

M = 1.5M (1 - (K /K)2/3) K K
y y y

where M and K are the moment and curvature at yield.
Y Y

The curvature of the workpiece can also be expressed as

a linear function of roll position using the deflection

equation of a beam under three-point loading,

K = 3z/(L ) (16)

where z is center-roll displacement and L is the distance

between the center and outer roll. This relationship is

based on linear beam theory, but is a very good approxima-

tion well beyond yield as shown in Figures 13 and 14. This

equation is not dependent on material properties such as

bending stiffness or yield point and is therefore very useful

for a general model.

Substituting Equations 15 and 16 into 4 yields the

39



following relationship between unloaded curvature and center-

roll displacement (assuming an initially flat workpiece):

K = 0.0 z < z
u =°° y

(17)

3z 9zz 3
K - - Y + a 

u L 2 2 L2z2 y

where zy is the center-roll position at the yield point of

the workpiece. Equation 17 is the desired workpiece model

that relates the input (center-roll position) to the output

(unloaded curvature). This equation applies to the point on

the workpiece that is in contact with the center roller

(Point C in Figure 5). As shown in Chapter 2, this point

corresponds to the maximum moment and curvature which means

that the final curvature of the workpiece is set at this

point. Applying Equation 17 to each point on the workpiece

as it is rolled through the apparatus provides a model of the

workpiece as a function of the distance along the workpiece.

Figures 13 and 14 are plots of measured moment scaled by

the bending stiffness, loaded curvature, and unloaded curva-

ture versus roll position for a 1/8" X 1" 2024 aluminum strip

and a 1/4" X 1" 2024 aluminum strip, respectively. Equations

15, 16, and 17 are also plotted using the bending stiffness

and yield point obtained by experimentation. These plots
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show that the workpiece model developed above is a reasonable

approximation of the actual workpiece.

There are three important features to note from the

workpiece model. First, there is a deadband region while the

workpiece is elastically loaded. The significance of the

deadband region depends on the type of bending and the bend-

ing stiffness of the workpiece. For very stiff workpieces

the elastic region, and therefore the deadband region, is

very small. Flexible workpieces have a much larger deadband

region. Forming circular shapes or bending workpieces with

curvatures in only one direction involves passing through the

deadband region only once. For bidirectional bending or for

straightening, the deadband region may dominate the operating

region for a particular workpiece.

The second important feature of the workpiece response

is that the response has two different forms depending on

whether the workpiece is stationary or moving through the

rolls. For a stationary or very slow moving workpiece, there

is hysteresis in the model as shown in Figure 15. This is

because the unloaded curvature does not change while the

workpiece is in the elastic loading state or during unload-

ing. If the workpiece is stationary, then the same portion

of the workpiece is formed during a forming cycle. For a

moving workpiece, each point along the workpiece is formed

only once since new material is continually fed into the

bending apparatus. Figure 15 shows that a moving workpiece
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does not have hysteresis but still has a deadband region.

Figure 16 shows the dramatic effects of the workpiece hyster-

esis. This figure shows the loaded and unloaded curvatures

and the scaled moment for a stationary 1/4" X 1" aluminum

workpiece such as the ne described in Figure 14 in response

-1
to a step curvature command of 0.01 in . The deadband

region is apparent in the first 0.25 sec, but then the

unloaded curvature responds quickly to move to the commanded

value. The system has a very small overshoot and the roll

position decreases in an attempt to eliminate the error. But

even though the moment and loaded curvature decrease, the

workpiece is unloading elastically as indicated in Figure 3

and the unloaded curvature does not decrease. When the

workpiece is loaded past the negative elastic limit the

unloaded curvature will decrease and the error will be

eliminated. This occurs at about 3.75 sec in Figure 16.

This response is exactly the response indicated by the

hysteresis shown in Figure 15. The results n Figure 16 can

be compared to the results of Test 10 shown in Chapter 5,

which is the same test with a moving workpiece.

The third important feature to note about the workpiece

model is that time is not a variable in the model. The

unloaded curvature is a function of center-roll position

only. This means that the workpiece can be thought of as a

nonlinear gain. This is, of course, an approximation because

the workpiece does actually have mass, compliance, and damp-
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ing, which will all affect the system dynamics. In the

workpiece model these effects are assumed to be negligible.

This assumption turns out to be a critical feature of the

model, which is valid only under certain conditions as shown

in Chapter 5.

Servo Model

The roll bending apparatus works by adjusting the

center-roll position to change the loading in the work-

piece. Closed-loop control of the roll bender requires auto-

matic control of the center-roll position by a servo system.

There are several different roll positioning alternatives

available on commercial roll bending machines. Actuation can

be achieved using a hydraulic servo system or a DC motor and

leadscrew, for example. At low frequencies the servo systems

can all be modeled as a standard position servo or velocity

servo. The equation for a position servo, expressed in

Laplace transform notation, is:

2
z wn

= 2 (18)
z s + 2w + w
C n n

where z is the position command, wn is the natural

frequency, and is the damping ratio. The equation for a

velocity servo is: -
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z K

T (19)
zc Ts + 1C

where z is the center-roll velocity, zc is the velocity

command, K is the servo gain constant, and T is the system

time constant.

The GE servo-control system on the experimental bending

apparatus can be configured as either a velocity servo or a

position servo. Figure 17 is a plot of the center-roll

velocity in response to a step input to the velocity servo.

Figure 18 is a Bode diagram which shows the frequency

response of the velocity servo. The forcing function used to

drivre the servo and determine frequency response was gener-

ated from the control computer. This was done to ensure that

all the electronics are included in the dynamic response.

The program used to determine the step and frequency response

is listed in Appendix 4. Figures 17 and 18 indicate that the

velocity servo is a first-order system with a time constant

of 0.042 sec. Thus the servo model given by Equation 19 is a

very good approximation to the actual system if T = 0.042.

The servo gain constant, K, is adjustable on the GE servo-

control system. For modeling purposes the servo gain con-

stant is assumed to be 1.0 so that all of the system gains

are represented by the controller gain. Figures 19 and 20
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are the step response and frequency response of the position

servo. These plots show that the position servo is a criti-

cally damped second-order system with a bandwidth of 3.7 Hz.

Thus the model for the position servo given by Equation 18 is

a very good approximation if = 1.0 and w = 23.2 rad/sec.

Measurement and 'Filter Model

The transducers needed to measure maximum moment and

loaded curvature will have a very large bandwidth compared to

the servo system, so the dynamics of the measurements can be

ignored. The signals must be filtered to eliminate high-

frequency noise from the transducer signals and reduce signal

aliasing. The amount of filtering necessary and the break

frequency of the filters will vary depending on the quality

of the transducers, the required accuracy, the type of

bending, and the sampling frequency In any case the filters

can be modeled as a combination of first- and second-order

differential equations. The filters used on all of the

experimental transducers are second-order Butterworth filters

with a break frequency of 130 Hz. Figure 21 shows the fre-

quency response of the filters. The response is second-

order and can be modeled using Equation 12 with C = 0.707 and

w = 820 rad/sec.

Disturbance Model

Disturbances in the system such as initial curvatures in

the workpiece can be modeled as a shift of the moment-
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curvature curve, as shown in Figure 7. This shift is incor-

porated into the workpiece model by changing the yield point

as shown in Figure 22. The disturbance curvature causes a

change in the unloaded curvature which is exactly equal to

the disturbance curvature. This is shown as a direct addi-

tion in Figure 22. The shift in the yield point is deter-

mined by applying Equation 16. This is modeled as an addi-

tive term in Figure 22 which affects the input to the work-

piece model. Equation 28 is the combined model for the

workpiece and curvature disturbance. This is the method used

in the simulation program listed in Appendix 4. Figure 23 is

a plot of scaled moment, loaded curvature, and unloaded
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curvature as a workpiece which has an initial bend is

straightened by the experimental bending apparatus. This

figure shows how the initial curvature disturbance is

detected by the closed-loop control scheme. Detection of the

disturbance indicates that the disturbance is within the

control loop, which means that the disturbance can possibly

be eliminated with an appropriate controller. Notice that

there is an apparent shift between the moment and the loaded

curvature in Figure 23. From Figure 3 it would seem that

such a shift is impossible because any change in the moment

requires a corresponding change in the curvature. But this

is true only if the workpiece has a constant initial curva-

ture, which means that the origin of the moment-curvature

relationship is stationary. If the initial curvature

changes, then the moment-curvature curve shifts as in Figure

7. This shift can be described as a change in curvature

(from zero to some initial curvature) without a change in

moment (unloaded in both cases), thus the apparent shift.

Figure 23 indicates a change in moment without a change in

curvature. This is because of the geometry of the roll

bending apparatus which causes the apparatus to sense the

disturbance in the moment measurement rather than the curva-

ture measurement. As stated earlier, the curvature is a very

strong function of center-roll position. In fact the loaded

curvature measurement in Figure 23 is actually proportional

to center roll position as given in Equation 16. When a flat
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workpiece which contains a kink is rolled through the bending

apparatus, the following is observed. As the kink reaches

the input roll and begins to enter the system, the workpiece

tends to straighten because the rolls are initially

stationary, and the curvature of the workpiece tends to

remain constant. The moment however, changes to reflect the

occurrence of the disturbance. This situation corresponds to

Point A in Figure 7 and to the first 0.1 sec in Figure 23.

As the moment increases more than the curvature, the system

responds to eliminate the disturbance. This corresponds to

the response shown in Figure 23 up to 0.6 sec, where the

system has nearly reached steady state. This example demon-

strates that the closed-loop roll bending system will always

detect curvature disturbances with the moment measurement.

Controller Model

A specific controller model will be developed in the

next chapter, but the general form of the controller is given

here. One important feature of the controller that must be

taken into account if the controller is to be implemented by

a digital computer, is the discrete nature of the control

signal. Even though the mechanical system is a continuous

system, the control signal from the computer will change only

at discrete intervals. This discretization can be modeled by

a zero-order hold equivalence. This model assumes that the

control signal is held constant over each interval until
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updated at the next sampling time as shown in Figure 24.

Using Laplace transform notation the zero-order hold (ZOH)

can be described by:

-TS
e

ZOH =
5

(20)

where T is the time in seconds of the interval between

control signals and s is a complex variable defined in the

Laplace operator. For the computer and controllers used with

the experimental apparatus, T varied from 0.009 to 0.012

depending on the amount of computation required by the

controller.

-

O0.
-0
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O
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Time

Figure 24. Discretized Control Output
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Chapter 4

CONTROL

The models developed in Chapter 3 indicate that the roll

bending system is very much like a standard servo system.

The servo is the major component of the system and contains

most of the significant dynamics. If the non-zero portion of

Equation 17 is a perfect description of the relationship

between servo movement and unloaded curvature, and if all the

parameters are known exactly, then the roll bending control

design nearly reduces to a standard servo controller. But

the details of the servo/workpiece interaction introduce

unique dynamic effects which require more detailed analysis

than the standard servo control problem. In particular, the

deadband region represented by the zero portion of Equation

17 and the presence of disturbances in the form of initial

curvature are unique properties of the roll bending system.

Although the workpiece model is nonlinear, there is some

insight to be gained from a linear control analysis. If the

workpiece can be described as a variable gain, then a linear

analysis should indicate the general form of the system

response to a specific controller. For this reason the roll

bending system will first be analyzed using linear control

techniques. These techniques are well known and will be used

without derivation (see for instance [25] or [26]). The

control schemes suggested by this analysis will then be eval-
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uated by using a computer simulation of the roll bending

system which includes the nonlinear workpiece model and the

discrete controller. This nonlinear control analysis should

produce a more realistic simulation of the actual system

response.

Control Objecti'es

The feasibility of closed-loop control of the roll

bending operation has been demonstrated using rudimentary

control in [18], [20], and [21]. The purpose of the control

analysis in this chapter and the experiments described in

Chapter 5 is to determine, if possible, the ultimate limits

of the roll bending system response and the practical factors

unique to the roll bending process that limit the response.

The control objective is to determine what control scheme or

schemes can be used to attain this ultimate response. The

problem is defining "ultimate response", because on a practi-

cal level the required system response will vary depending on

the type of bending, part shape, feedrate, and error toler-

ance. The control objective can be stated in general terms,

however, with individual objectives taking on more or less

importance for a specific application. To compare the vari-

ous control schemes the following control criteria will be

used to evaluate system response.

1) Stable system

Obviously any controller should be designed so that the
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roll bending system is always stable. There are several

areas of particular concern. First, the nonlinearities cause

stability problems. Because the workpiece is a variable gain

dependent on bending stiffness and servo position, a control

scheme that is stable for a particular workpiece and bending

condition might not be stable for different workpieces and

conditions. Second, unmodeled dynamics can cause instability

if the system bandwidth is large enough. There are unmodeled

dynamics in all components, but particularly in the servo

system and workpiece. The servo system has unmodeled dynam-

ics associated with friction, backlash, and compliance in the

coupling between the DC motor and the ballscrew. The work-

piece is modeled as a variable gain, but actually contains

mass, compliance, and damping. These unmodeled workpiece

dynamics are especially troublesome as shown in Chapter 5.

2) Zero steady-state error

This objective is very important for straightening

applications or for other types of bending where a high

degree of accuracy is required. Steady-state error is

generally associated with a particular input. The steady-

state error properties of the control schemes developed in

this chapter will be evaluated in response to a step input.

Linear control theory shows that a free integrator in the

open-loop transfer function (Type I system) is enough to

guarantee zero steady-state error to a step input. Note that
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a free integrator does not necessarily guarantee zero steady-

state error in response to system disturbances, depending on

where the disturbances enter the system in relation to the

integrator. This becomes important for the straightening

operation, since initial curvature is a disturbance to the

closed-loop roll bending system.

3) High bandwidth

The high bandwidth criterion is really a measure of how

well the system can follow a command. The required bandwidth

of the system is determined largely by the frequency content

of the input command and the disturbances. For the roll

bending system the input command and the disturbances are in

the form of curvature as a function of the distance along the

workpiece. In other words the input commands and distur-

bances have a constant spatial frequency, but the time fre-

quency is variable depending on the feedrate. For example,

consider a workpiece that contains an initial curvature that

is a sine wave of unit amplitude and 1.0 cycle/ft of length

frequency along the workpiece. If the workpiece is rolled

through the bending apparatus using a feedrate of 1.0 ft/sec,

then the controller will measure a disturbance which has a

frequency of 1.0 cycle/sec. If the same workpiece is rolled

through the apparatus using a feedrate of 2.0 ft/sec, then

the disturbance seen by the controller is at a frequency of

2.0 cycle/sec. This shows that the feedrate actually deter-
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mines the temporal frequency content of the input or distur-

bance. The frequency response of the roll bending system is

purely time based which means that it is independent of the

feedrate. The system will respond to a command in the same

manner regardless of the feedrate. Consider the implications

of the spatial/time relationship. Any increase in system

bandwidth will allow a proportional increase in feedrate.

Reverse the example above. A system with a 1.0 cycle/sec

bandwidth is capable of forming a unit magnitude, 1.0 cycle/

ft frequency curvature with maximum feedrate of 1.0 ft/sec.

If the feedrate is increased for this system, the output

curvature will have less than unity magnitude. If the system

bandwidth is increased to 2.0 cycle/sec, then the system can

form a unit magnitude, 1.0 cycle/ft frequency curvature using

a feedrate of up to 2.0 ft/sec. Conversely, a high spatial

frequency curvature can be formed by a small bandwidth system

if the feedrate is small enough. The control systems devel-

oped in this chapter will be analyzed on the basis of time

frequency only, with the intention of increasing productivity

of the roll bending system by increasing feedrate.

4) Disturbance rejection

Initial curvature, friction, and external forces all

enter the roll bending system as disturbances which cause the

unloaded curvature to deviate from the commanded curvature.

The closed-loop control scheme must be able to reject these
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disturbances. This objective is most important in straight-

ening applications where the only requirement of the control-

ler is to eliminate disturbances. But some other applica-

tions such as bending an initially curved workpiece, also

require good disturbance rejection.

Linear Control Analysis

The transducer filters have been designed so that the

break frequency of the filters is very large compared with

break frequency of the position or velocity servo. This

means that the filter dynamics should be negligible compared

with the servo dynamics. The filter poles can then be

ignored in the control analysis. All of the following

control analysis and design is done under the assumption of

negligible filter dynamics. The validity of this assumption

will be examined in the next chapter.

The only nonlinearity in the component models derived in

Chapter 3 is in the workpiece model. All other components

are well represented by linear models. For the linear

analysis it is necessary to linearize the workpiece model.

Because the nonlinearity is going to be included explicitly

in the computer simulation, it is sufficient to obtain only a

rough approximation of the nonlinear model. Because the

unloaded curvature is a nonlinear function of roll position

only, the simplest linearized model is a constant gain

operating on the roll position.
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Consider the difference between a roll bending system

based on position servo and one based on a velocity servo.

If the center roll is controlled by a position servo, then a

change in servo position will result, through interaction

with the workpiece, in a change in curvature if the system is

past the deadband region. This correlates well with the

workpiece model of a pure gain. If, however, the center roll

is controlled by a velocity servo and the workpiece is a pure

gain, then a step change in servo velocity should result in a

change in the rate of change of unloaded curvature. In fact

this does occur, but the controller is still measuring un-

loaded curvature and not rate of change of unloaded curva-

ture. This means that an integration has occurred somewhere

in the velocity servo interaction with the workpiece. In

other words, because the unloaded curvature is a function of

roll position only and not roll velocity, the workpiece

operation on the servo velocity is actually a gain and an

integration. Therefore the workpiece model must be modified

to include a free integrator as well as a gain for a roll

bending system based on a velocity servo. The location of

the integrator is important because the location has implica-

tions for the steady-state error in response to a distur-

bance. Consider the general second-order system shown in

Figure 25. The disturbance D1 occurs before the integrator.

This disturbance might correspond to a torque disturbance on

the velocity servo of the experimental roll bending apparatus
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D(s) D2(s) D3()s)

Figure 25. Disturbance Block Diagram

caused by friction or to the load applied to the servo y the

workpiece. Disturbances D2 and D3 might correspond to an

initial curvature disturbance in the roll bending system.

The transfer functions from each of the disturbances to the

output are given below in Equations 21 to 23.

Y(s) 1

-2~~ ~~(21)
Dl(s) Ts + s + K

Y(s) Ts + 1

-2~~~ ~(22)
D2(s) Ts + s + K
2
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Y(s)

D3 (s)

Ts2+ 
Ts2 + s + K

(23)

From these equations the steady-state (s = O) response of the

system to each of the disturbances can be determined:

Y(s)

Dl(S)ss

D2(s)s

D3()ss

1

K

1

K

(24)

(25)

(26)= 0.0

As indicated above, if the disturbance enters before the

integrator, the output has a finite error. Disturbances

which enter the system after the integrator are rejected

completely and do not cause any steady-state error. It is

not obvious where an initial curvature disturbance enters the

velocity-based roll bending system in relation to the work-

piece integrator. The disturbance model in Figure 22 shows

that the curvature disturbance operates on center-roll posi-

tion indicating that an integration must occur before the
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disturbance. This assumption will be explored in more detail

in the experiments of Chapter 5.

Figures 26 and 27 are block diagrams of the roll bending

system based on a position servo and a velocity servo,

respectively. The position servo block in Figure 26 is drawn

to emphasize the fact that the servo integrator is within the

servo loop and is not a free integrator, which is necessary

for zero steady-state error. The workpiece model in Figure

26 is operating directly on position and cannot contain an

integrator. The workpiece model in Figure 27 does contain a

free integrator which means that the system based on a

velocity servo has the required zero steady-state error. A

free integrator could be included in the controller of the

position-servo based system, but this degrades system

response and decreases the relative stability of the system.

This can be seen more easily on the root-locus diagrams shown

in Figures 28 and 29. The root-locus plots are drawn with

the same scale in the S-plane. The numbers used are from the

experimental apparatus models in Chapter 3. The controller

is actually discrete, as discussed earlier, but these contin-

uous root-locus diagrams are sufficient to point out the

differences between the position- and velocity-servo based

systems. Figure 28 is the root locus of the position-servo

based system with an integral controller. Figure 29 is the

root locus of the velocity-servo based system with only a

proportional controller. Notice that the addition of the
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Ku de

Position-Servo Based Block Diagram

Workpiece Model

Ku di

Figure 27. Velocity-Servo Based Block Diagram
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integrator in Figure 28 increases the order of the system.

Notice also that the higher-order system becomes unstable as

the gain is increased. The system in Figure 29 is only

second order and will never go unstable. Remember that the

stability of both systems is overstated in this simplified

linear analysis. Nevertheless, the roll bending system based

on a velocity servo appears to have many advantages over the

position-servo based system. It has good inherent steady-

state error and stability properties. For these reasons, the

roll bending system based on a position servo will be

discarded at this point and the control analysis will be

continued for the velocity-servo based system only.

As indicated above the continuous controller assumption

overstates the actual system stability. This can be shown by

using discrete-time control analysis. For the discrete

analysis the continuous physical system must be converted to

an equivalent discrete system and described using Z trans-

forms. There are many different methods used to convert

continuous systems to discrete form (see [25]). The easiest

method is a mapping technique whereby the poles and zeros in

the continuous S-plane are mapped to the discrete Z-plane

sT
according to the rule z = e where z and s are the location

of the pole or zero in the Z-plane and S-plane respectively

and T is the cycle time for the discrete controller. There

is also a scale factor applied to the Z transform to match

final values of the discrete and continuous models, but that
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will be ignored here. Figure 30 shows the map of the

continuous system shown in Figure 29 in the Z-plane using a

sample time of T = 0.01 sec. The shape of the root locus is

the same but the interpretation is different. The stability

limit in the Z-plane is the unit circle. As seen in Figure

30, the system becomes unstable at higher gains. This

instability is caused by the discrete nature of the sampling

and control. The control signal and the transducer readings

are only updated at discrete intervals. As the system

bandwidth approaches the sampling frequency, the controller

receives and sends outdated information. The effect is

similar to a phase lag in continuous systems and the result

is instability.

If the velocity servo bandwidth is high enough, it might

be possible to achieve an acceptable roll bending system

bandwidth using a simple proportional controller at very low

gains. Better system response could be attained by adding a

zero to the system and drawing the poles to a position of

higher bandwidth and greater stability as shown in Figure

31. A zero can be added to the system either by including it

in the controller or-by feeding back the rate of change of

output as well as the output. In a discrete controller, how-

ever, there can never be more zeros than poles because this

would require information from future time steps that the

computer does not have. This problem can be solved by

including a very fast pole, but this increases the order of
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Figure 30. Velocity-Servo Based Z-Plane Root Locus
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the system and introduces greater complication. In addition,

since a zero implies that the controller is taking the deri-

vative of the input signal, any noise in the system can cause

large fluctuations in the controller output.

Measuring the rate of change of the output is a more

attractive method of adding a zero to the system because it

is less affected by noise and also because the transient

response has less overshoot for similar systems. For the

roll bending system the output is unloaded curvature, which

is measured as detailed in Appendix 1. The rate of change of

unloaded curvature is much more difficult to measure. It is

possible, however, to obtain a reasonably good approximation

of the rate of change of unloaded curvature by either of two

methods. One method is to divide the difference between two

subsequent unloaded curvature measurements by the time inter-

val between the measurements as shown in Equation 27:

0

K (nT) = [Ku(nT) - K ((n-1)T)]/T (27)

where K (nT) is the unloaded curvature at time nT and K (nT)
U U

is the rate of change of the unloaded curvature at time nT.

This is actually not a measurement of the rate of change of

output but a backward difference. Therefore it is more like

a zero in the controller and is subject to the same noise

problems. In addition it is always delayed by half a time
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step because it uses unloaded curvature information from the

current and the previous time steps. More elaborate differ-

entiation schemes are available, but they require consider-

ably more computation. A better measurement method is to use

roll velocity as an approximate measure of rate-of-change of

unloaded curvature similar to the way that roll position can

be used to estimate unloaded curvature. The relationship

between roll position, z, and unloaded curvature, Ku, is

given by Equation 17. If the effect of disturbances is

included, the equation becomes:

K = K d z < (d + z )

(28)

3 9z 3z 3

K -(z - z ) -- Y + + K z (z + z )
u = (z - zd)d 2L2 2L 2 (z Zd) d y

d~~~~~~~~~~~

where Kd is the curvature disturbance and zd is given by:

zd = KL 2/3 (29)

Taking the derivative of Equation 28 gives: d

Taking the derivative of Equation 28 gives:
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u =d Z < (Zd + y )

(30)

3. 
· 3 3z (z - Zd) K ;- + K z (z + z)

u L2 d L Z 2 d d yU L ~L2(z _ Zd)3

The rate of change of unloaded curvature depends on four

variables: the roll position, z; roll velocity, z; the

curvature disturbance, Kd; and rate-of-change of curvature

disturbance, Kd. Notice that in the second term the z and Zd

terms are cubed in the denominator which indicates that the

relative magnitude of the second term will quickly become

much smaller than the first term. The rate of change of

curvature is determined by the feedrate as well as the

distribution of curvature along the workpiece. But for most

bending applications Kd will be small compared with z.

Therefore it is likely that roll velocity can be used to

estimate rate of change of unloaded curvature using only the

linear terms.

· . 2
Ku = 3/(L ) (31)

Notice that a controller using Equation 31 as an estimate of

Ku should provide slightly more damping and greater stability

in the deadband region than if the true K were used. This
U
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is because although K is zero in the deadband region (if Kd

is zero), Equation 31 indicates a rate of change in unloaded

curvature proportional to the roll velocity.

If Equation 31 is an accurate model of K and if the
u

workpiece does actually perform an integrating function on

the center-roll velocity, then a control scheme which uses a

proportional controller and K plus K feedback should result
U U

in a roll bending system which has a root locus as shown in

Figure 31. Figure 31 indicates that the system bandwidth can

be increased to the Nyquist frequency, but practical

considerations such as transducer noise, servo saturation and

unmodeled dynamics will limit the maximum bandwidth to

considerably less than the maximum theoretical limit. Never-

theless the control scheme as described is quite attractive

because, with proper placement of the zero, the system will

have very good stability robustness, zero steady-state error,

high bandwidth, and good disturbance rejection. Also, a wide

range of second-order system responses is possible by manipu-

lation of the gain and the zero location. The linear control

analysis indicates that this control scheme will give very

good system response. The next step is to perform a non-

linear analysis to determine the effect of the nonlinearities

on system response.

Nonlinear Control Analysis

A computer program has been developed to simulate the
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roll bending system and to include the nonlinear workpiece

model and the discrete controller. The program, detailed in

Appendix 4, uses a fourth-order Runge-Kutta integration

technique to model the continuous system. The discrete

controller is modeled using difference equations exactly as

they would appear in the actual controller. The control

signal is updated only at the Runge-Kutta time steps cor-

responding to the sampling interval of the controller.

The nonlinear workpiece model used in the simulation

program is given by Equation 28. Notice that this equation

models the loading deadband region, but does not include any

hysteresis. This means that the program can simulate a

moving workpiece assuming that each point on the workpiece is

formed only once, but cannot model a stationary or slow

moving workpiece. A more complex workpiece model could be

used to model stationary workpieces but because the objective

of this research is to increase the productivity of the roll

bending process by increasing the maximum feedrate, the

moving-workpiece model is adequate. Equation 28 must be

calibrated for a specific workpiece since the bending stiff-

ness and the yield point are different for different materi-

als and workpiece shapes. For the simulations shown below

the workpiece modeled is a 1/4" X 1" aluminum strip. The

calibration factors used are taken from the experiment shown

in Figure 14. The form of the discrete controller which

would implement the control scheme described above is given
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by:

U = G[K desired - K - (G2)(K)] (32)
UUU

where U is the controller output, G is the controller gain,

G2 is used to determine the location of the zero, and K is
u

given by Equation 31. The discrete controller time step is

assumed to be T = 0.01 sec in the simulation.

Figure 32 is a simulation of the roll bending system

-1
response to a step command input curvature of 0.01 in 1. The

factors G and G2 in the simulated controller are as listed

on the figure. For this simulation the zero is located

between the two poles so the response should always be

overdamped. The response shown in Figure 32 is as expected.

The initial response is zero because of the deadband as the

workpiece moves through the linear elastic region. Once past

the deadband region, the system moves quickly to the

commanded curvature. The error at steady-state is zero, as

predicted. The speed of response increases with increasing

gain, but the system can limit cycle or even become unstable

at very high gains. The fastest response in Figure 32 in on

the verge of a limit cycle. A small increase of G will

result in a limit cycle around the commanded curvature. A

large increase of G will cause the system to become

unstable. Figure 33 shows even faster system response,
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although the deadband region has not been eliminated. The

zero location for this simulation is as shown in Figure 31.

This system shows a faster response because the zero does not

trap the slow pole, but draws both poles to a faster loca-

tion. There is a possibility of overshoot with this zero

location and in fact the response for G = 350 shows an

overshoot of about 1% even though it is difficult to see on

the plot. The system remains stable for larger gains with

the zero location as shown in Figure 31. Again, higher gains

result in faster response and also in smaller steady-state

errors to some disturbances. The computer simulation has no

provisions for modeling saturation effects, so very fast

responses are possible if very large gains are used. But the

control power needed to achieve this faster response is very

large which means that the velocity servo system would have

very large power requirements. In other words there are no

theoretical limits to system response using this control

scheme if the models used are accurate and if the servo

system has infinite power. Figure 34 shows the system

response to an initial curvature step disturbance of -0.005

-1in . The curvature command is zero. The zero location is

the same as for Figure 32. The system again shows good

response and zero steady-state error.

The nonlinear control analysis does not reveal any

stability problems with the control scheme developed in the

linear control section. The analysis also does not predict
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any limits to system response. But as mentioned above the

analysis assumes perfect conditions. The roll bending

experiments detailed in the next chapter provide more insight

into the practical limits of the roll bending system

response.
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Chapter 5

EXPERIMENTATION

Experimental Objectives

There are several key assumptions in the control

analysis developed in Chapter 4 which need to be examined

experimentally. , First, the assumption that the workpiece

performs an integrating function is crucial for zero error at

steady-state. The position of the integrator in the control

loop is also important for the analysis of steady-state error

to disturbances. Furthermore, the integrating workpiece

assumption is the basis for choosing a velocity- rather than

position-servo based system. If the workpiece model is

incorrect then the control analysis is invalid. Second, the

control scheme developed uses a measurement of rate-of-change

of unloaded curvature in the feedback signal. As mentioned

earlier, K cannot be measured directly, but is assumed to be
u

proportional to center-roll velocity. Since the K feedback
u

is used to increase system damping and stability as well as

increase the system bandwidth, if the assumption is incorrect

there might be stability problems. One objective of the

experiments detailed below is to determine if these

assumptions are valid and if so, under what conditions.

If the assumptions listed above are valid, then the

simplified control analysis in Chapter 4 implies that the

upper limits on system performance will be determined by
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model accuracy. A second experimental objective will be to

determine the practical upper limits of the roll bending

system response. There are many practical factors which

limit system performance. For the roll bending system,

possible limitations are imposed by transducer bandwidth and

noise, servo bandwidth and power, and controller design. In

many real systems these factors define the limits of system

performance, because the cost of high quality transducers and

servos often does not justify the performance gain. But

because the objective is to explore the performance limits of

the roll bending process, the experiments are designed to

eliminate, as far as possible, limitations imposed by the

hardware. The results provide some insight into the process

limitations or the maximum system performance that can be

attained given optimal conditions. If the conditions are

indeed nearly optimal, then the experiments should also

reveal the robustness of the control scheme to the unmodeled

dynamics. The implementation details given below show some

of the compromises made to reduce hardware limitations.

The velocity servo actuation system, described in

Chapter 3 and Appendix 1, is oversized in relation to the

workpieces formed in the experiments. This means that the

problem of servo power saturation is greatly reduced and will

not be a limiting factor in the experiments. The major

hardware limitations are the computer speed and transducer

noise. The computer speed is a problem because the discrete
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controller update frequency and the sampling frequency should

be at least twice, and preferably several times as large as

the roll bending system bandwidth. Any reduction in the

computation needed will increase the controller frequency,

but simplifying the computations reduces system accuracy (see

Appendix 2). For these experiments the accuracy is not a

major concern. The objective is to determine the limits of

the control scheme assuming optimal conditions, so for the

purpose of these experiments the simplified calculations can

be assumed valid. The results using the simplified calcu-

lations should provide some information about when the

simplifying assumptions are acceptable. The transducer noise

problem is more difficult to deal with because the noise

contains significant energy across a large frequency range

(see Appendix 1). The transducers can be filtered, but heavy

filtering places limits on system bandwidth. Of all the

possibilities the measurement method with the least noise

will be preferable even if some accuracy is lost.

There are several ways to measure loaded curvature, each

with specific advantages and disadvantages (see Appendix 2).

In some of the experiments described below, loaded curvature

is measured using the center-roll displacement according to

Equation 16. The remaining experiments are based on an LVDT

loaded curvature measurement calculated as shown in Equation

39. The center-roll displacement is measured by a rotary

encoder mounted on the DC motor shaft. Loaded curvature
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determined by this measurement is not as precise as by some

other methods, but has no noise since it is a digital

measurement. In addition, the loaded curvature measurement

based on center-roll position requires much less computation

in the discrete controller than does the LVDT curvature

measurement method. Therefore this method for loaded

curvature measurement is ideal for the purposes of these

experiments. But the experiments show that in some cases,

the inaccuracy of the center roll position loaded curvature

measurement has very large effects on system response. In

these cases the LVDT curvature measurement results in more

predictable system response even though this measurement is

noisy.

The moment measurement is scaled by the bending

stiffness in order to determine the unloaded curvature as

shown in Equation 4. Since the force transducer noise is

nearly constant for all workpieces, the signal to noise ratio

increases dramatically for stiffer workpieces. For this

reason, the bending experiments use the stiffest workpieces

possible with the experimental hardware. The force trans-

ducer signals are also filtered to eliminate high frequency

noise. The low pass filters have a break frequency of about

130 Hz. This frequency is much too high to eliminate alias-

ing according to the sampling theorem, but the input to the

transducers is limited to a much lower frequency so the

aliasing errors will be small. Again, the objective is to
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achieve maximum system bandwidth, not ultimate accuracy.

Placing the filters at such a high frequency will ensure that

they do not affect system dynamics. The complete equation

used to compute the maximum moment is given by Equation 34.

The sine and cosine terms are included to reflect the change

in the moment ams due to rotation of the roll pairs. For

stiff workpieces formed to low curvatures, these terms are

negligible. Ignoring these terms increases the computation

speed considerably. The moment equation employed in the

experiments retains the sine term for D because the command

curvatures are relatively large. In the computer program the

sine term is not calculated using the trigonometric function,

but a first-order, small-angle approximation is used

instead. This compromise works well because the inclusion of

the sine approximation increases the precision, but does not

slow the computation down noticeably.

Experiments

The experimental procedure consisted of bending and

straightening workpieces using the apparatus described in

Appendix 1 and the control program described in Appendix 4.

A short description of the experimental procedure is given

below. The procedure is presented in more detail in Appendix

4 along with complete discussion of the control program

logic. The tests were performed using 2024-T6 aluminum

workpieces with a rectangular cross-section 1.0 in wide and
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0.25 in thick. The workpiece length varied from 3 to 6 ft.

The experimental procedure for forming a workpiece is:

- Load the workpiece in the bending apparatus and start
the computer program.

- Enter the control gains and other necessary input from
the computer keyboard.

- Measure the bending stiffness of the workpiece (see
Appendix '2).

- Turn on the center-roll drive motor to feed the
workpiece through the bending apparatus.

- Begin real-time control of the unloaded curvature
using the control algorithm developed in Chapter 4 and
shown in the program listing in Appendix 4.

- At the end of the workpiece, turn off the drive motor
and return the apparatus to the zero position.

- Store the experimental data for future evaluation.

Step Tests

Figures 35 to 38 show the system response for the first

test where the input command is a step curvature change of

0.01 in . The workpiece is initially flat. In this test

the loaded curvature is measured using the center roll posi-

tion according to Equation 16. The feedrate is 3.3 in/sec.

The results of all the experiments shown in this chapter are

plotted using every other data point. The controller gains

for this test are shown on Figure 35 and correspond to the

gains for the simulation in Figure 32. With these gains the

zero is located between the open loop poles at z = 0.84. The

simulated response from Figure 32 is plotted in Figures 35,
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37 and 38 for comparison. Although the simulated response

has essentially the same form as the actual response, there

are three areas where the two responses differ

significantly. First the measured initial unloaded curvature

is not zero as predicted. This is caused by two factors.

The first factor is the initializing procedure for the

transducers. For this test the transducers were initialized

while the sheet was stationary. When the drive motor is

started, a small moment is developed between the center drive

roll and the workpiece. This small moment results in an

increase in measured moment from the "zero" position which

results in a small negative unloaded curvature measurement.

This error was eliminated in subsequent tests by initializing

the transducers after the drive motor was started.

A second factor which results in errors in the deadband

region is the error due to simplifying assumptions in the

moment and loaded curvature measurements. Figure 36 shows

the loaded and unloaded curvature and the scaled moment for

this test. According to bending theory, the loaded curvature

and the scaled moment should be exactly the same through the

elastic region. Figure 36 shows that the loaded curvature

and scaled moment are indeed nearly the same until about 0.6

sec. But notice that where there are differences between the

two measurements in the elastic region, the unloaded curva-

ture reflects the error. And because of the steep slope, a

small error between the two measurements results in a large
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error in the unloaded curvature. The magnitude of the

unloaded curvature error will increase as the speed of

response increases because the slope of the loaded curvature

and scaled moment will increase. This error is due to the

simplifying approximations made for the measurement calcula-

tions and can oly be eliminated by increasing the precision

of the measurements. The effect of the error on system

response is small, although the damping is reduced somewhat

because the initial change of the unloaded curvature is

negative while the command is positive. For the purposes of

these experiments, the error in the deadband region is not

significant and will be acknowledged and ignored.

A second area where the actual response does not conform

exactly to the simulated response is the steady-state error.

The actual response shows a steady-state error of about

0.0005 in 1 or 5%. This could be caused by a disturbance

entering the roll bending system before the workpiece

integrator as shown in Chapter 4 or possibly the assumption

of a workpiece integrator is inaccurate. The velocity servo

model in Chapter 3 was developed under the assumption that

the internal friction and external load applied by the

workpiece are very small compared to the inertia of the

servo. This is essentially true, but the small disturbances

caused by the friction and external load will result in a

small steady-state error even though there is a free inte-

grator in the open-loop transfer function. If this is the
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case, then there will be a finite steady-state command to the

servo which results in a torque which exactly offsets the

torque applied by the disturbances. Figure 38 shows that

there is indeed a finite steady-state command to the velocity

servo, but as seen in Figure 35 the system do not move.

This means that there is a disturbance torque acting on the

system. The steady-state velocity command in Figure 38 is

about 0.075 in/sec. Experiments with the velocity servo show

that in the unloaded state, a command velocity of about 0.12

in/sec is required to overcome friction. Thus in Test 1 the

system is measuring an error at steady-state, but because of

the low gain, the command input is not large enough to

overcome friction and the system remains stationary.

There are several steps which can be taken to reduce the

error due to the disturbances although the only way to

eliminate the error is to move the free integrator so that it

appears before the disturbances in the system as shown in

Chapter 4. Including an integrator in the controller would

eliminate the steady-state error due to the torque distur-

bances, but this would create two free integrators in the

velocity-servo based roll bending system which would degrade

system response and nullify many of the advantages of the

velocity-servo based system over the position-servo based

system. Other options are more attractive. Equation 24

shows that the error is inversely proportional to the open-

loop gain. Increasing the controller gain will decrease the
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steady-state error. Figure 39 shows the results of Test 2

which was conducted using the same conditions as Test 1

except that the controller gain was increased from 100 to

335. Also the loaded curvature is measured using the LVDT

measurement method according to Equation 39. The reasons for

this are explained later. The results show that the steady-

state error is much reduced, if not zero. There is some

noise in the loaded curvature measurement so the unloaded

curvature appears to oscillate, but the oscillation is around

the commanded value and it is easy to see that increasing the

gain does reduce the steady-state error due to the distur-

bances. But the increased gain does have side effects which

might be undesirable, such as the large overshoot observed in
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Figure 39.

Velocity feedback could also be used to reduce

steady-state error by closing the loop around the velocity

servo. This is a standard item on most commercial servo

systems, but is not included on the velocity servo used for

these experiments because of noise problems. It is possible,

instead of using velocity feedback, to make an open-loop

compensation for the friction effects in software. This is

accomplished by adding an amount which represents the

frictional effects to the velocity command. Figure 40 shows

the results of Test 3 which was conducted using the same

conditions as Test 1 except that loaded curvature is measured

using the LVDT method and an open-loop software compensation

was used to eliminate the effects of friction on the steady-

state error. The results show that steady-state error is

reduced even though the controller gain is the same. Again

there is some oscillation due to noise in the loaded curva-

ture measurement but the oscillation is around the commanded

value. This open-loop compensation does not affect the error

due to the disturbance from the external load applied by the

workpiece. Figure 41 shows the effect of using a higher gain

and the open-loop compensation for frictional effects. The

controller gain is the same as for Test 2: all other para-

meters are unchanged. Figure 41 shows nearly zero steady-

state error to a step input even in the presence of friction

and external load disturbances. The open-loop friction
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compensation is used in all the subsequent experiments.

Tests 2, 3, and 4 show that the workpiece does perform an

integrating function as predicted and the control scheme

suggested in Chapter 4 will satisfy the steady-state error

requirement if the effect of the disturbances can be suffi-

ciently reduced. There is still some question whether the

initial curvature disturbances will enter the system before

or after the workpiece integrator. This question is explored

in more detail later.

The third significant variation of the actual response

from the predicted response shown in Figure 35 is that the

actual response has some overshoot. Even though the over-

shoot is small, it is significant because the gain and zero

location were picked specifically so that the system would be

overdamped. As discussed in Chapter 4, if the zero is

located between the poles then the system should always be

overdamped and the response should never overshoot. There

are several factors which could be causing the overshoot.

One is that the actual gain and zero location are not as

predicted although this is unlikely because the actual

response so closely resembles the simulated response and the

parameters for the test are taken from the simulation. It is

also possible that the unloaded curvature error in the dead-

band region is contributing to the overshoot. As mentioned

earlier the negative unloaded curvature in the deadband

region causes the control command to be larger than it would
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be otherwise. Another possibility is that the assumption

that center-roll velocity can be used to estimate K is

invalid. The K feedback is used to increase the damping,
u

but if the Ku measurement is wrong then the damping will be

affected. Figures 36 and 37 suggest another cause for the

overshoot. The underlying assumption used for the simulated

system response is that the workpiece is moving through the

bending apparatus fast enough so that each point along the

workpiece is unaffected by any previous forming. Essentially

this means that if the workpiece is initially flat, then the

scaled moment and loaded curvature are always related as

shown in Figure 3 and these two measurements cannot change

independently. But Figure 36 indicates that the moment and

curvature do change independently. The system responds as

predicted until the scaled moment and loaded curvature level

off at about 1.0 sec. At this point in the simulation shown

in Figure 37 the moment and curvature remain constant and the

system reaches steady-state. The actual response in Figure

36 shows that the scaled moment, rather than leveling off,

decreases after reaching a peak at 1.0 sec but the curvature

does not change. The decrease in the scaled moment without a

corresponding decrease in the loaded curvature results in an

increase in the unloaded curvature which accounts for the

observed overshoot. The problem is determining why the

moment and curvature move independently.

The most likely reason for the independent movement is
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that the moment and curvature measurements are in error and

do not reflect the true state of the loaded workpiece.

Figure 42 shows the results of a test which was conducted

using exactly the same parameters as Test 1 except the

workpiece is stationary. The results are nearly exactly as

predicted in Figure 37. Obviously the measurement inac-

curacy noted in Figure 36 which causes the overshoot only

occurs when the workpiece is moving. Thus it is likely that

the moving workpiece assumption made for the system simula-

tion is not valid for these forming conditions.

Another possibility is that the step command actually

causes a kink to be formed in the workpiece. This kink could

affect the forming of the following workpiece until the kink

exits from the bending apparatus. With a feedrate a 3.3

in/sec and a roll spacing of 6 in, a point on the workpiece

would take nearly 2 sec to move from the center roll to the

outer roll. The curious behavior of the moment and curvature

in Figure 35 occurs between 1.0 and 2.5 sec which is the same

time frame necessary to move a point from the center to the

outer roll. If a kink is being formed, this should be

reflected in both the moment and loaded curvature measure-

ments. In Test the loaded curvature is assumed to be

proportional to center roll position, but it is possible for

a kink to exist in the forming region which would be unde-

tected by the center roll loaded curvature measurement. The

LVDT loaded curvature measurement should be able to detect
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the kink since the LVDT's measure the curvature closer to the

point of interest, which is the contact point on the center

roll.

Test 6 was conducted using the same parameters as Test 1

except that the LVDT curvature measurement method was used.

The key result of Test 6 is shown in Figure 43. Again, the

scaled moment decreases after reaching a maximum at 1.0 sec,

but the loaded curvature also decreases. Thus the moment and

curvature do not actually move independently as suggested in

Test 1, but only appear to do so because of error in the

loaded curvature measuremeit method based on center-roll

position. Notice that the system response in Figure 43 does

not have any overshoot. Notice also that the two curvature

measurement methods converge once the kink has passed through

the system. This suggests that it might be possible to

reduce the effects of the kink if the feedrate is increased

so that the kink is past the outer roll before the unloaded

curvature reaches the commanded value.

For Test 7 and all subsequent tests the feedrate is

increased to 13 in/sec. Figure 44 shows the results of Test

7 which used the same parameters as Test 1 except for the

faster feedrate and the LVDT curvature measurement. Figure

45 shows the results for a similar test except the controller

gain is increased to 335. Both tests show that the effect of

the kink is nearly eliminated with the higher feedrate and

neither test shows any overshoot. In other words the actual
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system response is very nearly the same as the simulation

predicts when the simulation assumptions are valid. The

parameters of Tests 7 and 8 are used in Tests 9 and 10

respectively except that the center roll position curvature

measurement is used in the later two tests. The results of

Test 9 shown in Figures 46 and 47 correspond very well with

the simulated response shown in Figure 37 and also in Figure

47. The response is well damped and there are no visible

effects due to the kink since the kink takes less than 0.5

sec to pass through the system. Figure 46 shows that the

unloaded curvature takes about 0.8 sec (from 0.6 to 1.4 sec)

to settle which means that the kink is out of the system
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before the system settles. As the gain is increased in Test

10 the speed of response increases. If the rise time is

smaller than the time it takes for the kink to move through

the system, then the effect of the kink will be visible. The

response in Figure 48 is fast enough so that some small

effects of the kink are visible in the decrease of the scaled

moment even with the very fast feedrate. The overshoot is

very much reduced from that of Test 2 shown in Figure 39

which used the same parameters as Test 10 except for a slower

feedrate.

The conclusion from these experiments is that the

overshoot observed in Test 1 is caused by measurement errors

in the loaded curvature measurement. Tests 5, 7, 8, and 9

indicate that the K approximation is not at fault, but works
u

exactly as predicted in the simulations. The center roll

approximation contains significant error during the transient

response when the rise time of the system is less than the

time found by dividing roll spacing by feedrate. The error

shown in the tests is the worst case because the large step

command causes a kink to be formed in the workpiece. The

presence of the kink causes some interaction in the forming

region between the point being formed currently and previ-

ously formed points still in the forming region. The analy-

sis cf the kink effects is quite complex, but it is of little

practical interest since the step command is a rather extreme

command and the kink affects the transient response only.
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The following tests were all conducted using the center roll

position curvature measurement and the fast feedrate. This

curvature measurement is more desirable because the lower

noise allows a better reading of steady-state error and the

faster feedrate reduces the overshoot due to the approxima-

tion error.

Although Test 10 shows excellent system response, Figure

33 suggests that even better system response is possible

using a zero location as shown in Figure 31. In addition

this zero location allows larger controller gains without

stability problems which will decrease the steady-state error

due to disturbances. Figure 49 shows the system step

response using the same controller gain as in Test 10, but

the zero location is moved to z = 0.77. The deadband and

rise time have both decreased in this test as predicted.

There is some overshoot, but this is expected with the center

roll position curvature measurement and ignored. The system

quickly settles with essentially zero steady-state error.

Increasing the controller gain to 670 should increase the

speed of response even more as shown in the simulation for

Test 12 in Figure 50. The results do show a faster response

very close to the predicted response, but the system does not

settle. After the transient response the unloaded curvature

oscillates around the commanded curvature. Moreover the

oscillation appears to be at two different frequencies. A

higher frequency oscillation occurs between 0.6 and 1.0 sec
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and a lower frequency oscillation occurs from 1.2 to 1.8

sec. This oscillation is caused by unmodeled dynamics,

vibration of the workpiece. The vibration of the workpiece

that is on the outfeed side of the bending apparatus causes

false readings on the force transducer that are interpreted

through the moment measurement as fluctuations in the

unloaded curvature. The actual workpiece shows no sign of

the indicated curvature fluctuation but, because it is

indicated in the measurements, the controller responds to the

apparent disturbances. The fluctuation in the moment and

loaded curvature measurements is obvious in Figure 51.

Remember that the curvature measurement is proportional to
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center-roll position so the response of the system is also

visible in this measurement. Notice that the system band-

width is fast enough so that the system responds to eliminate

the lower frequency "disturbance" but the high frequency

oscillation passes through the system unchanged. This

experiment shows that the workpiece dynamics, which are not

considered in the system model, become significant as the

system bandwidth is increased. A simple dynamic model of the

workpiece can be used to explain the high and low frequency

vibration shown in Test 12.

The dynamics of the portion of the workpiece on the

outfeed side of the bending apparatus can be modeled very

simply as the vibration of a cantilever beam. Because the

workpiece is a continuous beam, there will be an infinite

number of vibration modes and frequencies. The fundamental

mode and natural frequency will be sufficient to explain the

experimental results shown in Figure 50. The natural

frequency of the fundamental mode for a cantilever beam,

using the Euler beam model and assuming a uniform rectangular

beam, is given by: 

{EI 1\
w= 3.52 (33)

where w is the natural frequency, EI is the bending stiff-

ness, p is the material density, and L is the length of the

105



beam. The workpiece dynamics can be modeled by a pair of

lightly damped poles with a natural frequency given by Equa-

tion 33. Notice that the natural frequency is a function of

beam length. This means that the natural frequency of the

section of the workpiece on the outfeed side of the apparatus

changes as the workpiece is fed through the machine. This

explains why the oscillation frequency changes partway

through the experiment. At the beginning of the experiment

the overhanging workpiece is very short and has a very high

natural frequency. The dynamics of the workpiece are at a

frequency much higher than the system bandwidth and therefore

the oscillation of the moment measurement caused by the

workpiece vibration is sufficiently attenuated so that the

vibration has very little effect on the system. As the

workpiece moves through the apparatus, the natural frequency

of the overhanging portion decreases and at some point the

lower frequency vibration becomes significant and interferes

with the dynamics of the bending apparatus and controller.

The zero location in Tests 13, 14, and 15 is shifted to

z = 0.67. The controller gain in Test 13 is the same as in

Test 11. From the results shown in Figure 52 it is obvious

that moving the zero in this manner results in faster system

response just as predicted by the simulation, also shown in

Figure 52. In Test 14 the controller gain is increased to

match that in Test 12. Again an increase in the speed of

response is shown in Figure 53 but vibration is not nearly as
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large as in Test 12. As the controller gain is increased to

1000 in Test 15, vibration increases. Figures 54 and 55 show

that even though the vibration may be a small percentage of

the total moment measurement, the effects of the vibration

can easily dominate the unloaded curvature measurement.

Tests 11 through 15 all respond to changes in the

discrete control algorithm just as predicted by the control

theory and simulation in Chapter 4. This means that the roll

bending system model is accurate and contains all the

significant dynamics except for the workpiece dynamics. As

shown above, the workpiece dynamics become important as the

length of the overhanging workpiece increases and as the roll

bending system bandwidth increases. The one unanswered

question is how the closed-loop control system will respond

to initial curvature disturbances.

Disturbance Tests

Tests 16, 17, and 18 show the disturbance response of

the roll bending system. The workpieces used for these

disturbance tests are the same workpieces that were formed in

Tests 11, 12 and 14 respectively. Thus for these disturbance

tests the workpieces have an initial curvature. The distri-

bution of the initial curvature for each workpiece is shown

in the results of the corresponding step tests. After the

forming tests, the workpieces were reinserted into the bend-

ing apparatus and the disturbance experiments were run using
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a zero command for unloaded curvature. The controller para-

meters used were the same as in the corresponding tests.

Figures 56 and 57 show the results of Test 16. Notice

that the scaled moment and loaded curvature do move indepen-

dently as predicted by the disturbance model in Chapter 3.

Figure 57 shows that the disturbance increases initially even

though the system is moving to reject the disturbance because

the system still must move through the deadband region. The

workpiece reaches the yield point at about 04 sec and the

system settles to zero steady-state error in 1.0 sec. Notice

that this response appears much cleaner than the response

shown in Test 11. This is because the disturbance is much

smoother than the step command in Test 11. It is reasonable

that the system should respond much better to the disturbance

since the disturbance is really the step command "filtered"

by the system dynamics. Test 17 shows faster response in

Figures 58 and 59 because of the increased gain. Although it

might appear that the oscillation in Test 17 occurs because

the system is rejecting disturbances formed into the

workpiece in Test 12, this is not actually true. The

oscillation shown in Test 12 is the result of measurement

error and does not reflect any physical curvature changes.

The oscillation in Test 17 is also caused by measurement

error due to vibration of the workpiece. The zero location

in Test 18 is shifted to match that in Test 14 and the

results in Figures 60 and 61 show that the vibration is

110



reduced just as in Test 14. The disturbance response is

again smoother than the corresponding step response because

the input has been filtered by the system dynamics.

The disturbance tests demonstrate excellent disturbance

response characteristics with good transient response and

zero steady-state error. These tests also show that the

actual system response is much closer to the predicted

response if the system is not hampered by the "kink effects"

caused by the step command. The major conclusions from all

the experiments are summarized in the next chapter.
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Chapter 6

CONCLUSIONS

The experiments in Chapter 5 demonstrate that the roll

bending system models developed in Chapter 3 are an accurate

representation of the low order dynamics of the roll bending

process. The overall experimental system response corre-

sponds very well with the simulated response, although there

are small differences. This is to be expected however,

because the simulation is based on fixed workpiece material

properties while the actual workpiece properties vary. The

material property variance is, in fact, a primary motivation

for this research, because if the material properties are

constant and well defined, an open-loop control system would

work just as well and be much simpler to implement than the

closed-loop controller presented in this research. There-

fore, the control analysis in Chapter 4 and the computer

simulation in Appendix 4 are valuable for determining trends

and comparing controllers, but not for final tuning of the

controller to a particular bending process or workpiece.

Nevertheless, the control scheme developed in Chapter 4

worked essentially as predicted in the simulations. The

primary assumptions used to develop this control scheme are

that the workpiece performs an integrating function when the

roll bending system is based on a velocity servo and that the

center-roll velocity is a good approximation of the rate of

115



change of unloaded curvature. The experiments show that the

steady-state error in response to a step input goes to zero

if the disturbances are small which indicates a free inte-

grator in the open oop transfer function and verifies the

workpiece model. Disturbances which enter the system before

the free integrator will always cause a finite error at

steady-state which is inversely proportional to the open-

loop gain. The experiments show that the error due to

disturbances is insignificant.
S

The use of center-roll velocity feedback to simulate K
u

feedback was also very successful as demonstrated by the

experiments. The system responded to the velocity feedback

in exactly the same manner as would be expected with true K
u

feedback, increasing the bandwidth and stability with a

judicious choice of controller parameters. This approxima-

tion is somewhat less successful at higher gains or as the

system performance is pushed to the limit because the error

inherent in the approximation becomes more significant, as do

all errors at higher gains. The small overshoot seen in the

step tests is due in part to the errors from the velocity

feedback although the majority of the overshoot is due to

errors in the measurements.

Another result of the experiments which has practical

applications is the effect of the approximations in the

loaded curvature measurements. The loaded curvature measure-

ment based on center-roll position works very well for most
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applications but this measurement method contains significant

error during the transient response if the input command

changes rapidly. The LVDT curvature measurement method is

more accurate during fast transients but is much noisier and

more difficult to implement.

The experiments also show that the unmodeled higher-

order dynamics, such as workpiece vibration, are significant

except at relatively low gains. The vibration problem

appears to be a rather severe process-related limitation on

the maximum system response. As noted earlier, there are

many hardware-related limitations which can generally be

overcome by the use of more powerful (and more expensive)

hardware. Higher-order dynamics are physical limitations of

the particular process. In most control system designs,

these higher-order effects can safely be ignored because they

occur above a certain high frequency. The controller can be

designed so that the system bandwidth is always safely below

this critical frequency. As explained in Chapter 5 the

higher-order effects due to workpiece vibration do not occur

at a constant frequency, because the natural frequencies of

the workpiece are a function of beam length. This means that

the dynamic behavior of the workpiece changes during the

bending operation. To safely ignore the vibration effects,

the system bandwidth must be kept well below the lowest

natural frequency of the overhanging workpiece. Therefore

the controller must be designed for the worst case. This
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imposes severe restrictions on maximum system performance

which cannot be removed by the use of better hardware.

Discovery of this limitation of the roll bending system

response accomplishes the major objective of the control

analysis, which was to determine the upper limits of system

response.

The particular control scheme used in the experiments

was able to meet the four specific control objectives listed

in Chapter 4. The linear control analysis suggested that a

simple proportional controller in a velocity-servo based roll

bending system would give the required performance if center-

roll velocity feedback is an accurate approximation to true

K feedback. The nonlinear simulation showed that the
u

velocity is indeed a valid approximation to K . The simula-
u

tions also showed that the system has good stability with

this control scheme, even with the nonlinear workpiece

model. The experiments proved that the control scheme does

produce the expected response. This control scheme results

in very good system response, with the roll bending system

bandwidth limited ultimately only by the workpiece dynamics.

Future Research

The system response possible using the controller

designed in Chapter 4 is a vast improvement over the respon-

ses reported in [18], [20], and [21]. The maximum roll

bending system response seems to be limited ultimately by
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vibration of the workpiece, at least with the simple control

scheme used in the experiments. As noted above, this means

that system bandwidth can never be greater than the lowest

natural frequency of the overhanging beam. It might be

possible, however, to improve system response somewhat by

using a model .reference adaptive controller (MRAC) or a

self-tuning regulator. The MRAC allows the controller gains

to be changed depending on changes in the physical system.

Rather than being designed for the worst case, the controller

can be designed to give the best system response throughout

the whole bending process. It is also obvious from the work-

piece model in Chapter 3 and the simulations in Chapter 4

that the system gains, and therefore the controller gains,

are a function of the bending stiffness. Thus the controller

gains must be changed for different workpieces. An MRAC or

some other adaptive controller might be able to adapt the

controller to different workpieces so that the best system

response can be attained for each workpiece. An adaptive

controller might also give better response for bidirectional

bending if the deadband region is large. The controller

could increase the gains in the deadband region to move the

system quickly through the region and then reduce the gains

outside the region. A possible variation of the MRAC is the

use of scheduled gains, which can be used to detune the con-

troller as the overhanging workpiece natural frequency lowers

and becomes significant. This would have the same effect as
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the MRAC but might be simpler to implement.

Another control technique which could be explored in

future research is disturbance preview. The experiments show

that the disturbance response of the system using the pro-

posed controller is good. But the disturbance response

characteristics are most important for the straightening pro-

cess, which also generally requires the greatest precision of

all the roll bending processes. Therefore, to increase the

system response for straightening and still retain the preci-

sion, it is necessary to have the best disturbance response

possible. A control system that includes disturbance preview

holds promise for improving disturbance response for those

applications which require the best disturbance rejection

possible.

In addition to control system improvements, there are

some other areas which can be explored to improve system

response. As explained earlier, one objective of the

experiments was to determine limitations on maximum system

response. To do that certain tradeoffs were made in the

hardware and measurement methods. One of the major tradeoffs

is the measurement of loaded curvature. The loaded curvature

is assumed to be a linear function of center-roll position

for both elastic and plastic bending. Errors in this

approximation result in errors of the same magnitude in the

unloaded curvature, so a better approximation or a better

measurement of loaded curvature will result in a more precise
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final product. Thus there is a need for more detailed study

of the bending process from an engineering mechanics perspec-

tive. In particular, a simple or computationally efficient

relationship between loaded curvature and center-roll dis-

placement for the full loading range would be ideal. This

would require a more detailed study of the mechanics of

bending in both the plastic and elastic regions. In addi-

tion, a complete study of the mechanics of bending should

include a more detailed look at the effects of coupling in

the bending of unsymmetrical workpieces. This is a necessary

step in order to expand the research presented to include

control of two- and three-dimensional bending, which is a

natural continuation of this research. Closed-loop control

of three-dimensional roll bending would make one-pass forming

of arbitrary workpiece shapes possible. This would not only

increase the productivity of the current roll bending

process, but would also greatly increase the versatility of

the process.
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Appendix 

EXPERIMENTAL BENDING APPARATUS

The experimental three-roll bending apparatus shown in

Figure 10 consists of three roll-pairs mounted on a Bridge-

port milling machine. The roll-pairs contain instrumentation

needed to implement the closed-loop control scheme outlined

in Chapter 2. The instruments and the milling machine are

connected to a digital computer that is used for data acqui-

sition and servo control. Descriptions of the hardware and

implementation details are given below. The equations for

calculating moment and curvature are also developed.

The Bridgeport milling machine is used as a drive mecha-

nism to feed the workpiece through the rolls and also as the

forming mechanism. The feed is achieved by mounting the

center roll in the milling spindle, which is driven by the

milling machine spindle motor. The forming action in any

three-roll pyramid bending machine is achieved by moving the

center roll relative to the outer rolls. In this particular

case, the center roll is fixed and the outer rolls move. The

result is identical in either case. The outer-roll position

is changed by moving the milling bed to which the outer rolls

are attached. The milling bed is driven by a DC motor

through a 5 to 1 ballscrew. The DC motor is fitted with a

brushless resolver which is used to measure the position of

the milling bed. The position measurement system has a
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resolution of 0.00032 in. The DC motor is controlled by a

General Electric servo-controller which in turn receives

commands from a DEC LSI-11 computer. The DEC computer,

equipped with A/D and D/A converters, reads and stores

measurements from all transducers. These measurements are

used to generate a control signal according to some algorithm

(see Chapter 4). The control signal is passed to the GE

controller which directs the DC motor to move the milling

bed. This movement causes a change in unloaded curvature of

the workpiece. Figure 62 shows the hardware relationships in

the roll bending apparatus.

The three roll-pairs all consist of one fixed and one

adjustable "pinch" roller. The pinch rollers are adjustable

by means of bolts which clamp the rolls together. This pinch

roll scheme allows bidirectional (positive and negative

curvature) forming. The three roll-pairs are all free to

swivel about the centerline of the fixed roll (Figure 63).

This allows the roll pairs to seek a "neutral" position so

that no moment is applied to the workpiece due to the work-

piece cocking in the rolls. The rotation of the center roll

pair is also used to find the location of the maximum moment

and maximum curvature along the workpiece as shown in Figure

71.

The center-roll housing, shown in Figure 64, contains

instrumentation for measuring the curvature of the workpiece

and the rotation of the roll-pair. The shaft of the fixed
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center roll is mounted in the milling spindle. The spindle

drive system is used to drive the center roll and feed the

workpiece through the apparatus. The curvature is measured

by two linear variable differential transformers (LVDT), each

with a measurement range of ±O.1 in. The LVDT measurement

resolution is infinite since LVDT's are analog transducers.

Digitizing the signal in the computer introduces a finite

resolution. For this particular application the LVDT's have

a resolution of about 0.00005 in. On the experimental

apparatus, one LVDT is placed on either side of the center

roll. Appendix 2 contains a discussion of the merits of

various LVDT positioning schemes. The position of the LVDT's

is adjustable from 0.5 to 1.75 in from the centerline of the

center roll. This allows the full measurement range of the

transducers to be used with workpieces of different bendin S

stiffnesses. The LVDT's do not measure curvature directly,

but measure the linear displacement of the workpiece. The

linear displacement can be used to estimate the curvature by

any one of several methods. Specific curvature equations are

derived below. The LVDT shafts are spring loaded to bear

against the workpiece as shown in Figure 65. Rotation of the

roll pair is measured with a potentiometer, shown in Figure

68. The LVDT and potentiometer signals are amplified and

filtered before being sent to the computer. Figures 66 and

67 are plots of the static noise characteristics of the LVDT

and potentiometer signals, respectively.
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The infeed roll-pair, which has no instrumentation, is

mounted directly on the milling bed. The outfeed roll-pair

is attached to a strain-gage force transducer (Figure 68)

which has a measurement range of 250 lb on each axis. The

force transducer is model SRMC3-2-250 manufactured by

Advanced Mechanical Technology Inc. The resolution of the

digitized force measurement is 0.087 lb in the x direction

and 0.028 lb in the y direction. The force transducer is

bolted to an L-bracket which is clamped to the milling bed.

The force transducer measures the two orthogonal forces

acting on the outfeed roll-pair. The relationship between

the forces acting on the roll-pair and the maximum moment is

developed below. The signals from the force transducer are

amplified and filtered before being sent to the computer.

Figures 69 and 70 are plots of the static noise character-

istics of the force transducer.

Figure 71 is a schematic view of the experimental

bending apparatus. The equations needed to calculate moment

and curvature are developed below using the notation of

Figures 71 and 72. Note that many of the terms in the moment

equation are very small and can be neglected for certain

bending conditions (see Appendix 2). The moment equation

shown below assumes that the distance from the center roll

contact point to the neutral axis of the workpiece is very

small compared to radius of the rolls. If this is not true

then an adjustment can be made to r1 and r2 to reflect this.
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The equation for calculating the maximum moment is:

where

M = F D + F D
max x y y x

Dy = z - r1 (1 - cose1 ) - r2(1 - sine2)

D = d + r sine - r2cose 2x 2 1 1 2 2

(34)

There are several possible schemes for calculating

loaded curvature, KL. One option is to assume that the

workpiece curvature in the region of the the maximum moment

is constant. A curvature can then be calculated as follows

(see Figure 72):

s2 + (R - L 2) = 2

Rearranging this equation yields:

2 2K = 1/R = 2L2 /(s 2 + L 2 )
L 2 2. (35)

Equation 35 can be applied to each LVDT measurement and the

results averaged as discussed in Appendix 2. An alternate

method of calculating curvature can be found from linear beam
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theory. Consider the cantilever beam shown in Figure 72

which represents the portion of the workpiece between the

center and outer rolls. The relationship between the

deflection of the beam at any point x along the beam and the

maximum loaded curvature, assuming small deflections, is

developed below.

2ay F(d2 - x)
-=K 2 ~~~~~~~~(36)

a2 KL - EL (36)ax EI

where EI is the bending stiffness of the workpiece. The

maximum curvature occurs at x = 0 which means that:

KL = Fd 2 /EI (37)

Integrating Equation 36 twice with

ay
-(0) = O and y(O) = 0
ax

yields:

F d x2 x3
Yx =_ (38)

EI 2 6 

where Yx is the deflection of the workpiece at any point x
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along the

37 gives

curvature

workpiece. Substituting Equation 38 into Equation

the relationship between the maximum loaded

and the deflection of the beam.

KL (39)

This equation shows that the loaded is a linear function of

the displacement of the workpiece at any point x. In the

limiting case, for x = d2, the displacement of the workpiece

is just the displacement of the center roll. The loaded

curvature is then:

KL = 3z/(d2 ) (40)

where z is the center-roll displacement.
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Appendix 2

MEASUREMENT ALTERNATIVES

The closed-loop control of a roll bending process as

developed in Chapter 2 depends entirely on the ability to

measure the unloaded curvature, Ku, while the workpiece is

still in the loaded state. As shown in Equation 4, K is
u

actually a combination of three separate measurements. These

are loaded curvature, KL; moment, M; and bending stiffness,

dM/dK. The bending stiffness is considered constant for a

given workpiece and can be calculated rather than measured if

enough information is known about the workpiece. In practice

there are advantages to measuring the bending stiffness, so

it will be considered a measurement for the general case.

The details of several measurement methods for K and M
L

are given in Appendix 1. These are not the only available

methods. This appendix contains a discussion of all the

measurement methods used on the experimental roll bending

apparatus. Because the choice of measurement method will

depend on the type of bending to be performed and the

required performance, an attempt is made to point out the

advantages and disadvantages of each of the methods in regard

to accuracy and type of bending.

It is important to notice that absolute measurements of

loaded curvature and moment are not required. As shown in

the control program listing in Appendix 4, the analog instru-
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ments on the experimental apparatus must be initialized for

each workpiece. But, even though the instruments must be

initialized using a flat section of the workpiece, it is not

necessary to initialize them at absolute zero moment and

curvature. To se this consider Figure 73. The unloaded

curvature measurement will be the same regardless of whether

Point A or Point B is considered zero moment and loaded curv-

ature. In fact any point along the linear elastic loading

line may be considered the origin. Practically, this means

that extreme care in setting up the roll bending apparatus

for each workpiece is unnecessary. This is a nice feature of

the unloaded curvature measurement scheme since less setup

time results in higher productivity. Also high precision is

sometimes difficult to obtain on a factory floor.

Loaded Curvature Measurement

According to the bending control algorithm developed in

Chapter 2, it is necessary to know, or measure, the curvature

at a specific point, namely the point of contact with the

center roll. But measuring a point curvature is extremely

difficult, if not impossible. The assumption behind the fol-

.lowing measurement methods, then, is that the curvature is

nearly constant in the region of interest and can be calcu-

lated by finding, or estimating, the shape of the workpiece

in this region.

Figure 74 shows two of the methods used to measure
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loaded curvature. These methods employ a roller that

contacts the sheet. A linear displacement transducer is used

to measure the displacement of the workpiece as it deflects

during the bending process. Contacting methods of curvature

measurement are generally much simpler to implement than

non-contacting methods such as optical measurements, but

noise is more of a problem because of surface irregulari-

ties. In both methods shown, only two displacement measure-

ments were used. Additional measurements might provide

greater precision, but at the cost of greater complexity and

decreased performance due to increased computation in the

discrete controller. In the first method, both measurements

are made on the unloading side of the center roll. This is

because the relationship between moment and curvature is

linear in the unloading region as is seen in Figure 3.

Because the moment is nearly a linear function of sheet

position (Figure 4), it is easy to see that the curvature

should vary linearly with distance along the workpiece on the

unloading side. Thus the loaded curvature is a much better

behaved function on the unloading side than on the loading

side, which includes the nonlinear plastic region. The two

measurements of each method can be combined in many ways to

estimate curvature. The three known points are enough to

define a unique circle through the points. If the workpiece

shape is actually circular, then the curvature can be esti-

mated by the inverse of the radius of curvature for this
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circle. Or if the curvature, and therefore displacements,

are assumed to be symmetric about point 1, then the five

known points can be used to define two circles. A weighted

average of the curvatures found from these two circles can

then be used as an estimate for the loaded curvature. This

approach is the basis for Equation 35, which is the equation

for a circle defined by one of the displacements. Another

option is to use the two displacement measurements to define

a curvature and a rate of change of curvature along the

workpiece. With this information it is possible to extrapo-

late the curvature backward from the location of the first

transducer to the point of maximum curvature. A variation on

all the above options is to assume that the relationship

between curvature and displacement is as defined for an

elastic cantilever beam (see Equation 39) rather than assum-

ing a circular shape. One problem with all these measurement

options is that many of the assumptions made are only valid

near the point of interest. Greater error is expected as the

displacement measurements are made farther from the point of

maximum curvature under the center roll.

A more practical consideration eliminated all of these

options as useful measurement methods, at least for the

experimental apparatus used. The center-roll apparatus,

shown in Figure 64, has a tendency to vibrate as the work-

piece is rolled through the rollers. In addition, because

the center roll is the drive roll, a moment is generated
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between the center roll and the workpiece which causes the

center-roll apparatus to rotate slightly when the drive motor

is turned on. Because the linear displacement transducers

are attached to the center-roll apparatus, any rotation of

the apparatus results in a false reading on the displacement

transducers. The rotation of the center-roll apparatus

causes an offset in the curvature reading while the vibration

causes large amplitude noise at about the natural frequency

of the center-roll apparatus. Another source of error is due

to runout-of the center roll. If the center roll has any

runout, the workpiece will translate perpendicular to the

longitudinal axis of the workpiece. This translation is

detected by the displacement transducers and interpreted as a

change in curvature.

To eliminate the errors due to center roll rotation, one

of the displacement transducers was moved to the loading side

of the center roll. As noted above, the curvature-displace-

ment relationship is not as well behaved on the input side,

so this method would not appear to be as accurate as the

first method. However, the new configuration greatly reduces

the errors mentioned above. Any rotation of the center roll

will cause one of the transducer displacement measurements to

increase, but at the same time the measurement on the oppo-

site side will decrease. If the transducers are both located

the same distance from the contact point, then the displace-

ments will be the same magnitude. Otherwise, the displace-
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ments will only be proportional, with the proportion depend-

ing on the relative distance from the contact point for each

measurement. Taking the average of the curvature based on

these displacements should eliminate the errors due to rota-

tion. Figure 75 shows the curvature measurements for each

transducer and the average curvature measured for a distur-

bance test with the transducers mounted on opposite sides of

the center roll. Notice that the errors due to rotation can

easily be several times as large as the actual curvature.

This indicates that measuring the displacement on both the

loading and unloading sides is necessary despite the short-

comings mentioned above. The errors due to runout of the

center roll are not eliminated with this method, but careful
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machining of the center roll reduced runout to 0.001 in.

This reduced error due to runout in the curvature measurement

to below noise levels. This measurement method was used

quite successfully in many of the bending experiments. This

method was most successful for bending large curvatures,

because the large curvatures result in large displacements.

For straightening applications, the signal-to-noise ratio was

low and good readings were difficult to obtain.

A final method of measuring curvature, which was also

used successfully, is a specialized case of the method

discussed above. For some bending operations, such as

straightening, the curvature magnitudes are very small. This

means that the displacements measured, if the transducers are

very near the center roll, will be very small. To achieve

the necessary resolution, the transducers can be moved

farther from

be greater.

moved outward

this limiting

measuring the

outer rolls.

mated using

displacement.

measurements

the center roll so that the displacements will

In the limiting case the transducers can be

as far as the outer rolls. Measurements from

case result in exactly the same displacement as

displacement of the center roll relative to the

The loaded curvature, therefore, can be esti-

only a single measurement of the center-roll

The advantage of this method is that fewer

and calculations are needed, which means

increased speed in the discrete controller.

this measurement is very easy to make. Most

In addition,

servo systems
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incorporate the position measurement in the servo controller,

so little additional hardware is needed. Another advantage

is that this measurement is a non-contacting measurement in a

sense and therefore does not have the noise problems associ-

ated with the contacting methods described above. The major

disadvantage is that there is no simple, precise relationship

between center-roll displacement and curvature. A linear

approximation is given by Equation 40. But the errors due to

the estimates and assumptions outlined above increase as the

measurements are made farther from the point of maximum

curvature and as the speed of response increases. Thus this

method is less accurate than some other methods, but for

certain bending applications, such as straightening stiff

workpieces, the advantages might outweigh the disadvantages.

Moment Measurement

Figure 71 shows the measurements which are necessary to

calculate the moment in the workpiece at the point of maximum

curvature. In the most general case, it might also be neces-

sary to include an applied moment at the outfeed roll, Mb,

particularly if the outfeed roll-pair does not rotate. For

this most general one-dimensional bending case there are two

force measurements, each with a respective moment arm, and

one moment measurement. Thus it is necessary to know five

quantities to calculate the maximum moment. The relationship

between each of these quantities and the maximum moment is
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given by:

M = F D + M (41)
max x y y x b

where

Dy= z - r (1 - cosOl) - r2(1 - sinG 2 )

D d + r sine - r cosO 2Dx 2 1 1 2 2

Careful study of this equation along with intuition should

indicate that some of the quantities will be much more

important than others, depending on the type of bending

process under consideration. For instance, the angle 81

shown in Figure 71 is used to make adjustments to the moment

arm D . The error that would be incurred by eliminating the
x

adjustment and assuming D to be constant will be negligible
x

for straightening very stiff workpieces, since E1 will be

very small for this particular workpiece. For bending large

curvatures 91 can be substantial, even for fairly stiff

workpieces. Note, however, that if d2 is very large compared

to r, then even if 91 is very large, the effect on D will
x

be small. This example indicates that it is not possible to

design one moment measurement scheme that will be

satisfactory for all bending machines and for all of the

various bending processes. The following observations can be
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used as general guidelines. More specific information can be

obtained only if typical values of all variables in Equation

41 are available.

The moment Mb is almost always negligible if the outer

roll-pair is free to rotate or if there is only a single

outer roll, as there might be in unidirectional bending. It

might also be negligible for the straightening process, even

if the outer roll-pair is not free to rotate because the

levels of curvature are low. If a small error can be

tolerated, neglecting Mb certainly simplifies the hardware.

For bending, where the levels of curvature are much higher,

it is necessary to allow the outer roll-pair to rotate to

eliminate the applied moment or to measure the applied

moment.

The force F is generally the largest force and when
Y

combined with D , which is generally the largest moment arm,

it is easy to see that F is the most dominant measurement in
Y

the calculation of the maximum moment. F cannot be ignored
Y

in any of the bending processes. F X, however, will be small

for most straightening operations. And since D is also very
Y

small for straightening, the combined effect of F and D is
x y

negligible for straightening. The component of the maximum

moment due to F might also be negligible for many bending
x

operations if high precision is not a concern.

The moment in the experiments described in Chapter 5 was

measured using both the F and F measurements, but with no
y x
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adjustment to the moment arm D . A first-order approximation
Y

to the sine term in D was retained. The result of this
x

moment measurement approximation was less precision but

improved dynamic response because the decreased computation

resulted in a much faster discrete controller. Nevertheless,

the precision of this approximation was very good for the

experiments in Chapter 5 because the geometry of the roll

bending apparatus and the stiffness of the workpieces

resulted in a very high signal-to-noise ratio from the force

transducer.

Bending Stiffness Measurement

As mentioned earlier, the bending stiffness can usually

be considered constant for a given workpiece. If this

constant value is known for each workpiece that will be

formed, then the value can simply be entered into the control

program. Measuring the bending stiffness, though, is a more

general procedure which allows workpieces with unknown

properties to be formed. The procedure employed for measur-

ing the bending stiffness with the experimental apparatus is

as follows. The workpiece is first loaded in the bending

apparatus and the instruments are initialized. Then the

workpiece is loaded throughout the linear elastic range. At

specific intervals in this loading cycle the computer calcu-

lates loaded curvature and maximum moment. After the loading

cycle is completed, a least squares curve fitting routine is
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used to fit a straight line to the moment-curvature data.

This straight line is, by definition, the elastic loading

line shown in Figure 3. The slope of this line is the

bending stiffness. The loading line shown in Figure 3 is

just the positive half of the elastic loading line which

continues into the negative loading region. The full elastic

region, both negative and positive, is used to measure the

bending stiffness.

Measuring the bending stiffness in this manner increases

the roll bending system flexibility because no prior knowl-

edge of the workpiece properties is needed. But there is an

even more compelling reason for measuring the bending stiff-

ness of each workpiece. The curvature and moment measure-

ments are both calibrated separately, but if there is an

error in either calibration then the calibrated bending

stiffness measurement will tend to reduce the errors in the

unloaded curvature calculation. This is because the bending

stiffness calibration uses the measured curvature and the

measured moment to establish the relationship between the

elastic moment and curvature. For instance, suppose the

calibration for the loaded curvature is off by a factor of

two. In other words, suppose the actual loaded curvature is

half the measured value. Then the measured bending stiffness

(slope of the elastic loading line) will also be half the

actual value. The unloaded curvature based on the incorrect

loaded curvature measurement, the correct moment measurement,
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and the calibrated bending stiffness will be exactly correct

in the linear elastic region, and more nearly correct in the

plastic region than a measurement based on precalculated

bending stiffness. In fact the error with the calibrated

bending stiffness will, for this example, be equal to the

actual unloaded curvature, while the error with a precalcu-

lated bending stiffness would be equal to the actual loaded

curvature. The reduction in error is equal to the difference

between the loaded and unloaded curvatures. For bending

operations, this reduction may not be significant because for

large curvatures and stiff workpieces, the difference between

the loaded and unloaded curvatures will be small. For

straightening operations, where the unloaded curvature is

zero, measuring the bending stiffness can result in a sub-

stantial reduction of error. In this particular bending

operation the bending stiffness measurement is essentially a

"system" calibration which encompasses the complete roll

bending system.
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Appendix 3

ERROR ANALYSIS

The experiments described in Chapter 5 were performed

strictly to evaluate the new control scheme proposed in

Chapter 4. Because the purpose was to attain the fastest

system response possible, the system precision was compro-

mised to increase speed. For this reason, system precision

was ignored and no attempt was made to measure the precision

of the final workpiece shape. The assumption is that if the

closed-loop control system has the required response, then

the system precision is only limited by the measurement pre-

cision. It is instructive, though, to examine the unloaded

curvature equation to see the effect of errors in the indivi-

dual measurements on the final workpiece shape. The follow-

ing analysis presents some typical values which illustrate

the precision required for a straightening operation, which

generally has the most stringent requirements of all the

bending processes. The analysis can be generalized for other

bending operations to determine what instrumentation and

measurement methods are most appropriate.

The equation used to calculate unloaded curvature is:

Ku = KL -M/S (42)

where K is unloaded curvature, KL is maximum loaded
curvature, M is maximum moment and S is the slope of the

curvature, M is maximum moment and S is the slope of the
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elastic loading line shown in Figure 3. If there is any

error in the three measurements, KL, M or S, then the

unloaded curvature can be expressed by:

M + dM
K + dK = K + dKL (43)u u KL~dLd

S + dS

where dK , dKL, dM, and dS are the error for the respective

terms. Equation 43 can be combined with Equation 36 and

rearranged to obtain the following error equation.

M dS dM
dK = dKL + 2(44)

u S2 + SdS S + dS

Figure 76 shows how each of the measurement errors affects

the unloaded curvature of the workpiece. If dK (max) is the
u

maximum acceptable error for the unloaded curvature, then

examination of Equation 44 and Figure 76 reveals:

1. If M and S are known exactly (dM = dS = ) then the

maximum acceptable error for the loaded curvature

measurement, dKL(max), is exactly dK (max).

2. If KL and S are known exactly (dK = S = ) then

dM(max) = -dK (max)S.
U

3. If KL and M are known exactly (dKL = dM = ) then

dS(max) = dK (max)S2/(M-dK (max)S).
U U
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This analysis can be used to find the minimum required

precision of a given measurement. Consider two specific

examples:

1) 1/8" X 1" Aluminum Strip

S = 1880 lb-in 2

M = 180 in-lb

K = 0.1 in 1

L

2) 1/4" X 1!' Aluminum Strip

.2
S = 29000 lb-in

M = 1400 in-lb

K = 0.05 in
L

For the straightening operation, specifications for maximum

acceptable curvature error are generally provided in terms of

deviation from a flat surface. A typical maximum acceptable
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deviation for the the two cases above is 0.0125 in/ft.

Assuming a constant curvature over a 5 ft span, the straight-

ness specification can be changed to curvature by applying

Equation 35. The maximum acceptable unloaded curvature error

is found to be 0.0007 in 1 . Using these numbers it is

possible to establish typical values for the maximum accep-

table error for each of the measurements.

Case 1:

dKL(max) = 0.0007 in- 1 or 0.7%
L

dM(max) = 1.3 in-lb or ± 0.7%

dS(max) = + 14 lb-in2 or ± 0.7%

Case 2:

dKL(max) = 0.0007 in- 1 or ± 1.4%
L

dM(max) = + 20 in-lb or ± 1.4%

dS(max) = 420 lb-in2 or 1.4%

These numbers show that required precision drops rapidly for

the moment and bending stiffness measurements as the bending

stiffness of the workpiece increases. The required loaded

curvature measurement precision is independent of any of the

workpiece properties. Of course the maximum allowable errors

given above only define the minimum required precision since

the errors may all occur at once. The errors can combine to

increase the total error or to cancel one another.
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Appendix 4

COMPUTER PROGRAMS

This appendix contains a listing of all the programs

used in modeling, analysis, and control of the experimental

bending apparatus. Many variations of these programs are

used, depending on the instrumentation and control algorithm

being employed for a particular experiment, but the various

programs all contain the same structure and differ only in

minor areas not important to the essential logic.

Bending Control Program

The program BEND is used to control the experimental

bending apparatus during the closed-loop forming operation.

A flow chart of the program is presented in Figure 77 and the

program listing is given on the following pages. A descrip-

tion of the program and its operation is provided below along

with a definition of the major variables and subroutines.

Variables:

K1 - Reading from the x direction of the force
transducer.

K2 - Reading from the y direction of the force
transducer.

K3 - Reading from the center-roll rotation
potentiometer.

K4 - Reading from the servo tachometer.

K5 - Reading from the servo resolver.
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C1 - Calibration factor to convert K1 to an equivalent
curvature.

C2 - Calibration factor to convert K2 to an equivalent
curvature.

C3 - Calibration factor to convert K3 to an equivalent
curvature.

C4 - Calibration factor to convert K4 into center-roll
velocity.

C5 - Calibration factor to convert K5 into center-roll
position.

SLOPE - Bending stiffness of the workpiece.

GAIN1,GAIN2 - Controller gains.

RKD - Desired curvature.

RKU - Measured unloaded curvature.

ICOM - Controller command to the velocity servo.

Subroutines:

OUTPOS - sends a position command to the servo.

INPOS - reads the servo position.

OUTVEL - sends a velocity command to the servo.

SCAL - measures the workpiece bending stiffness.

SZERO - returns the initial value of all analog
transducers.

ATOD - reads the analog transducers into the computer.

Lines 1-10 of the program initialize all variables. The

calibration factors C-C5 are all fixed for a given machine

geometry, but they are scaled by the bending stiffness which

varies with the particular workpiece. The subroutine SCAL

(lines 36-91) is used to measure the bending stiffness (see
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Appendix 2 for a discussion of various ways to find the bend-

ing stiffness). SCAL calculates the bending stiffness by

loading the workpiece and taking measurements of loaded

curvature and moment at various points in the elastic loading

region. These measurements are then used to calculate a

slope by means f a simple linear regression. The slope is,

by definition, the bending stiffness. The variables M, N,

and J, defined for several different workpieces in lines

44-62, are scale factors which are used to ensure that the

workpiece i

provides th

particular

require som

fixed for

once. The

entered in

curvature a

array if th

S loaded throughout the full elastic region. This

e best estimate of the bending stiffness for each

workpiece. Notice that this technique does

e knowledge of the workpiece, but M, N, and J are

a particular workpiece and must be found only

controller gains and the desired curvature are

lines 11-19. The listing shows the desired

s a constant, but it could easily be read in as an

e desired curvature is variable. When the work-

piece is set, the subroutine SZERO (lines 92-120) is called

to read the initial values of the analog transducers. SZERO

takes the average of 20 measurements for each transducer as

the initial value. This minimizes any variance due to

noise. The subroutine as written actually averages four sets

of five average measurements. This is to eliminate the

possibility of overflow because the computer has limited

capacity in representing integer numbers.
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The real-time bending control algorithm is contained in

lines 21-27. The algorithm is placed within a DO-loop

because the computer has limited memory to store the experi-

mental data. For production runs, where data acquisition is

ignored, the algorithm could be placed in an infinite loop

with a statement to check for the end of the workpiece. In

lines 22 and 23 the computer reads all measurements. The

subroutine ATOD is a machine language procedure which reads

the analog transducers and takes the difference between the

measurements and the initial values. The result is returned

in the variables K-K4. INPOS returns the servo position,

which is in digital form for this particular servo. Next,

the unloaded curvature is calculated using the transducer

measurements (line 24). The equation is of the form:

Ku =KL - (FxD + F D )/SLOPE

This is easily verified by making the appropriate substitu-

tions from the variable definitions given above. The

equation in line 24 uses scaled center-roll position as the

loaded curvature measurement (see Appendix 1). This

increases computation speed at the expense of precision.

Appendix 2 contains a complete discussion of the effect of

such compromises. Line 25 is the implementation of the

digital controller design (see Chapter 4). In this particu-
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lar case the controller is just a gain operating on the

difference between the desired curvature and the feedback

measurement. The feedback measurement is a weighted sum of

the unloaded curvature and the center-roll velocity, which is

related to the rate of change of unloaded curvature as shown

in Chapter 4. Thus the velocity command to the servo shown

in line 25 is of the form:

COMMAND = GAINI(K desired - (K measured + GAIN2(K )))
U U U

The velocity command is then sent to the servo through the

subroutine OUTVEL. This completes one control cycle. The

computer then reads a new set of measurements and begins a

new control cycle. At the completion of the control DO-loop,

the program writes all data to disk storage.
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Figure 77. Bending Program Flow Chart
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C

C BEND
C
C BENDING CONTROL PROGRAM
C 4/04/85
C

C
0001 DIMENSION Kl(1000l),K2(1000),K3(1000),K4(1000),K5(1000)
0002 COMMON C1,C2,C3,C4,C5
0003 DATA K,K2,K3,K4,K5,/1000*0,1000*O,1000*O,1000*0

& 1000*0/
C 

C MOVE THE SERVO TO ALLOW WORKPIECE INSERTION
C
0004 CALL OUTPOS(O)
C

C MEASURE THE BENDING STIFFNESS
C

0005 CALL SCAL(SLOPE)
C

C INITIALIZE ALL CONSTANTS
C
0006 C1 = 0.00032/(35.86*SLOPE)
0007 C2 = 6.0/(11.5*SLOPE)
0008 C3 = (0.875/2.O*0.000126)/(11.5*SLOPE)
0009 C4 = 0.00272
0010 C5 = 3.0*0.000032/36.
C

C ENTER THE NECESSARY CONTROL VARIABLES AND INPUTS
C

0011 WRITE(5,10)
0012 10 FORMAT(/2X,' ENTER CONTROL GAINS (GAIN1,GAIN2):')
0013 READ(5,20) GAIN1,GAIN2
0014 20 FORMAT(2F13.0)
0015 WRITE(5,30)
0016 30 FORMAT(/2X,' ENTER THE DESIRED CURVATURE: ')
0017 READ(5,40) RKD
0018 40 FORMAT(F10.O)
C

C INITIALIZE ALL TRANSDUCERS
C

0019 CALL SZERO(I1,I2,I3,I4)
0020 PAUSE ' PRESS RETURN TO BEGIN'
C

C ******* REAL TIME CONTROL BEGINS HERE *******
C

C K1 - FX K2 - FY K3 - ROTATION
C

C K4 - VELOCITY K5 - POSITION
C *******************************************
C
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0021 DO 50 J=l,1000
C

C READ ALL TRANSDUCERS
C

0022 CALL ATOD(I1,Kl(J),I2,K2(J),I3,K3(J),I4,K4(J))
0023 CALL INPOS(K5(J))
C

C CALCULATE THE UNLOADED CURVATURE
C

0024 RKU = C5*K5(J)-Kl(J)*Cl*K5(J)-K2(J)*(C2+C3*K3(J))
C
C CALCULATE THE CONTROLLER COMMAND
C
0025 ICOM = INT(GAIN1*(RKD-RKU-K4(J)*C4*GAIN2))
C
C SEND COMMAND TO THE SERVO
C

0026 CALL OUTVEL(ICOM)
C

C REPEAT THE CONTROL LOOP
C

0027 50 CONTINUE
C

C

C
C

C

C
C WRITE DATA TO DISK
C

0028 CALL NAMEIN(NAME1)
0029 OPEN (UNIT=i,NAME=NAME1,FORM='UNFORMATTED')
0030 WRITE(1) SLOPE,C1,C2,C3,C4,C5,RKD
0031 DO 60 J = 1,1000
0032 WRITE(1) K(J),K2(J),K3(J),K4(J),K5(J)
0033 60 CONTINUE
0034 CLOSE (UNIT=1)
0035 END
C

C

C
C

C

0036 SUBROUTINE SCAL(SLOPE)
0037 DIMENSION RK(lOO),RM(100)
0038 COMMON C,C2,C3,C4,C5
C
C SET SCALE FACTORS ACCORDING TO THE DESIRED WORKPIECE
C

0039 WRITE(5,10)
0040 10 FORMAT(/2X,' ENTER OPTION '/' 1) 1/8 X 1 ALUMINUM '/

& ' 2) 1/4 X 1 ALUMINUM '/' 3) 1/8 X 1 STAINLESS ' /
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0041
0042 20
0043
C 1/8 X

0044 30
0045
0046
0047
C 1/4 X

0048 40
0049
0050
0051
C 1/8 X
0052 50
0053
0054
0055
C 1/4 X
0056 60
0057
0058
0059
C 1/2 X
0060 70
0061
0062
0063 80
0064
0065
0066
0067
C

& ' 4) 1/4 X 1 STAINLESS'/' 5) 1/2 X 3/4 TEE '/)
READ(5,20) IMAT
FORMAT(I3)
GOTO(30,40,50,60,70),IMAT

1 ALUMINUM

M = 2000
N = 100

J = 40

GO TO 80
1 ALUMINUM

M = 600
N = 100
J = 10
GO TO 80

1 STAINLESS

M = 200
N = 100

J = 4

GO TO 80
1 STAINLESS

M = 100
N = 100

J = 2
GO TO 80

3/4 TEE
M = 100
N = 100
J = 2

CALL OUTPOS(0)
CALL SZERO(I1,I2,I3,I4)
CALL INPOS(I5)
CALL OUTPOS(M+10)
PAUSE 'PRESS RETURN TO CALIBRATE'

C LOAD THE WORKPIECE THROUGHOUT THE ELASTIC REGION
C

CALL OUTPOS(M)
DO 90 I=I,N
CALL OUTPOS(M-J*I)
CALL INPOS(N5)
CALL ATOD(I1,Nl,I2,N2,I3,N3,I4,N4)
N5 = N5-I5

C CALCULATE MOMENT AND CURVATURE AT VARIOUS POINTS
C

RK(I) = C5*N5
RM(I) = Nl*Cl*N5+N2*(C2+C3*N3)
CONTINUE
CALL OUTPOS(0)

C PERFORM LINEAR REGRESSION TO CALCULATE THE BENDING
C STIFFNESS
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C
0078 A1 = O.
0079 A2 = O.
0080 A3 = O.
0081 A4 = O.
0082 DO 100 I=1,N
0083 A1 = A+RK(I)/FLOAT(N)
0084 A2 = A2+RM(I)
0085 A3 = A3+RK(I)*RK(I)
0086 A4 = A4+RK(I)*RM(I)
0087 100 CONTINUE
0088 SLOPE = (A4-Al*A2)/(A3-Al*Al*N)
0089 ROFF = A2/N-SLOPE*A1
0090 RETURN
0091 END
C

C

C

C

C

0092 SUBROUTINE SZERO(I1,I2,I3,I4)
0093 PAUSE 'PRESS RETURN TO ZERO TRANSDUCERS'
C

C SEQUENCING START, ZERO ALL INPUTS
C

0094 I1 = 0

0095 I2 = 0
0096 I3 = 0
0097 I4 = 0
0098 DO 20 J=1,4
0099 N1 = 0
0100 N2 = 0
0101 N3 = 0
0102 N4 = 0
0103 DO 10 I=1,5
0104 CALL ATOD2(0,LI,O,L2,0,L3,0,L4)
0105 N1 = N1 + L1
0106 N2 = N2 + L2
0107 N3 = N3 + L3
0108 N4 = N4 + L4
0109 10 CONTINUE
0110 I = I + N1/5
0111 I2 = I2 + N2/5
0112 I3 = I3 + N3/5
0113 I4 = I4 + N4/5
0114 20 CONTINUE
0115 I = I1/4
0116 I2 = I2/4
0117 I3 = I3/4
0118 I4 = I4/4
0119 RETURN
0120 END
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Modeling Program

The roll bending system modeling program, MODEL,

consists of a main program and two subroutines. The sub-

routine RK4 is a general fourth-order Runge-Kutta integration

routine. The subroutine SYSTEM is used to define the

continuous system in standard state variable form. The

modeling program is used to model the nonlinear effects of

the workpiece and also to implement the discrete controller.

A listing of the program is given on the following pages. A

brief description of program logic is presented below.

All variables are initialized in lines 1-12. The system

definition is stored in a file which is read into the program

in line 7. The error and command equations in lines 10, 11,

34, and 35 are used to simulate the digital controller

derived in Chapter 4 and implemented in the control program

in line 25. Line 12 is a calculation of the shift in the

moment-curvature relationship due to a disturbance. The loop

starting at line 13 is completed once per time step. First

the differential equations representing the continuous system

are defined in the subroutine SYSTEM. The equations are

integrated at the current time step in the subroutine RK4

using a standard Runge-Kutta integration routine. Lines 20-

24 represent a velocity saturation nonlinearity. Lines 25-

31 are used to model the nonlinear workpiece (see Chapter

3). The equations shown represent a unidirectional bending,

moving workpiece model. The equations can be expanded to
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include bidirectional bending and a stationary workpiece, but

this introduces considerable complexity without a compensat-

ing increase in information. The equations in lines 32-35

are the implementation of the discrete controller. Notice

that the controller command is not computed every time step,

but at time steps which correspond to the discrete controller

cycle time. The remainder of the program stores the data on

disk.
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C

C
C ROLL BENDING MODELING PROGRAM
C

C
0001 DIMENSION X(7,750)
0002 COMMON /XYDATA/F(4),Y(4),SAVEY(4),PHI(4),M,RKU,COM,DT

& /CONST/C1,C2,C3,C4,C5,C6,C7
0003 DATA COM,ICOUNT,RKU,YO/O.,O,O.,O./
0004 DATA Y,X/4*O.0,5250*O.0/
0005 CALL NAMEIN(NAME1)
0006 OPEN(UNIT=1,NAME=NAME1,TYPE='OLD')
0007 READ(I1,*) RKIN,DT,NT,ITC,YB,VMAX,SLOPE,RL,GAIN,

& C1,C2,C3,C4,C5,C6,C7,RKD
0008 CLOSE (UNIT=1)
C

C INITIALIZE THE DISCRETE CONTROLLER
C

0009 ERROR = RKIN-RKU-C7*Y(2)
0010 COM = ERROR*GAIN
0011 YO = (RKD*(RL**2))/3.0
C

C CALCULATE THE SYSTEM PARAMETERS FOR EACH TIME STEP
C

0012 DO 110 IT=1,NT
0013 ICOUNT = ICOUNT + 1
0014 K = 1

0015 N = 2

C
C DEFINE SYSTEM
C
0016 DO 10 M=1,4
0017 CALL SYSTEM
C

C INTEGRATE SYSTEM EQUATIONS
C

0018 CALL RK4(N,K)
0019 10 CONTINUE
C

C CHECK FOR VELOCITY SATURATION
C

0020 20 IF(Y(2).LT.VMAX) GO TO 30
0021 Y(2) = VMAX
0022 Y(1) = X(1,IT-1)+VMAX*DT
0023 30 IF(Y(2).GT.(-VMAX)) GO TO 40
0024 Y(2) = -VMAX
0025 Y(1) = X(1,IT-1)-VMAX*DT
C
C WORKPIECE MODEL
C
0026 40 RKL = 3.0*Y(1)/(RL**2)
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0027 IF((Y(1)-YO).GT.YB) GO TO 60
0028 50 RM = 3.0*(Y(1)-YO)*SLOPE/(RL**2)
0029 GO TO 70
0030 60 RM = ((9.0*YB*SLOPE)/(2.0*(RL**2)))*

& (1-(((YB/(Y(1)-YO))**2)/3.0))
0031 70 RKU = RKL-(RM/SLOPE)
C

C CALCULATE DISCRETE CONTROLLER OUTPUT
C
0032 IF(ICOUNT.NE.ITC) GO TO 90
0033 ICOUNT = 0
0034 ERROR = RKIN-RKU-C7*Y(2)
0035 COM = ERROR*GAIN
C

C STORE DATA
C

90

100

110

120

DO 100 I=1,N
X(I,IT)=Y(I)
CONTINUE
X(N+1,IT) = RKU
X(N+2,IT) = RM
X(N+3,IT) = ERROR
X(N+4,IT) = COM
CONTINUE
CALL NAMEIN(NAME1)
OPEN(UNIT=1,NAME=NAME1,TYPE='NEW'
WRITE(1) RKIN,DT,NT,ITC,YB,VMAX,S
& C1,C2,C3,C4,C5,C6,C7
DO 120 I=1,NT
WRITE(1) X(1,I),X(2,I)
CONTINUE
CLOSE(UNIT=1)
END

,FORM='UNFORMATTED')
LOPE,RL,GAIN,

,X(3,I),X(4,I) ,X(5,I),X(6,I)

SUBROUTINE SYSTEM
COMMON /XYDATA/F(4),Y(4),SAVEY(4),PHI(4),M,RKU,COM,DT
& /CONST/C1,C2,C3,C4,C5,C6,C7
F(1) = Y(2)
F(2) = C*Y(2)+C2*Y(1
RETURN
END

)+C3*COM

SUBROUTINE RK4(N,K)
COMMON /XYDATA/F(4),Y(4),SAVEY(4),PHI(4),M,RKU,COM,DT
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0060 GO TO (10,30,50,70),M
0061 10 DO 20 J=K,N
0062 SAVEY(J) = Y(J)
0063 PHI(J) = F(J)
0064 Y(J) = SAVEY(J)+0.5*DT*F(J)
0065 20 CONTINUE
0066 GO TO 90
0067 30 DO 40 J=K,N
0681 PHI(J) = PHI(J)+2.0*F(J)
0069 Y(J) = SAVEY(J)+0.5*DT*F(J)
0070 40 CONTINUE
0071 GO TO 90
0072 50 DO 60'J=K,N
0073 PHI(J) = PHI(J)+2.0*F(J)
0074 Y(J) = SAVEY(J)+DT*F(J)
0075 60 CONTINUE
0076 GO TO 90
0077 70 DO 80 J=K,N
0078 Y(J) = SAVEY(J)+(PHI(J)+F(J))*DT/6.0
0079 80 CONTINUE
0080 90 RETURN
0081 END
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Step and Frequency Response Program

Program STEP is used to generate a step or frequency

input to the servo system and store the output. The program

shown is for a velocity servo, but can be used for a position

servo by changing lines 12 and 13 as shown in the listing. A

step input is generated by specifying zero frequency. The

remainder of the program is self-explanatory.
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C
C

C STEP AND FREQUENCY RESPONSE PROGRAM
C
C

0001 DIMENSION K(3000),N(3000)
0002 CALL OUTPOS(O)
C
C INITIALIZE SERVO INPUT
C

0003 WRITE(5,10)
0004 10 FORMAT(/2X,' ENTER MAG. AND FREQ. ')
0005 READ(5,20) A,W
0006 20 FORMAT(2F10.O)
0007 DO 30 I=1,3000
0008 N(I) = INT(A*COS(W*I))
0009 30 CONTINUE
0010 PAUSE 'PRESS RETURN WHEN READY'
0011 DO 40 I=1,3000
C

C SEND VELOCITY COMMAND
C

0012 CALL OUTVEL(N(I))
C

C READ SERVO VELOCITY
C

0013 CALL ATOD(O,Il,O,I2,0,I3,0,K(I))
0014 40 CONTINUE
C ************************************************C
C THE PROGRAM CAN BE USED FOR A POSITION SERVO
C BY CHANGING EQUATIONS 12 AND 13 TO
C

C CALL OUTPOS(N(I))
C CALL INPOS(K(I))
C ************************************************
C

C STORE DATA
C

0015 CALL OUTPOS(O)
0016 CALL NAMEIN(NAME1)
0017 OPEN (UNIT=1,NAME=NAME1,FORM='UNFORMATTED')
0018 DO 50 I=1,3000
0019 WRITE(1) K(I),N(I)
0020 50 CONTINUE
0021 CLOSE (UNIT=i)
0022 END
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