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Abstract

Instruction prefetching is an important aspect of contemporary high
performance computer architectures. The C Machine, a pipelined
processor currently under design at Bell Laboratories Computing Sci-
ence Research Center, incorporates a microinstruction cache. This
cache permits a fully autonomous prefetch unit to incorporate a
variety of intelligent prefetch strategies. Measuring the performance
of real programs run on an an architectural simulator enables us to
evaluate the utility of branch prediction, intelligent prefetching, and
instruction caching. Several prefetch procedures were analyzed in an
attempt to quantify the efficacy of each method and identify the lim-
iting architectural parameters. Experimental results showed that
highly optimized prefetch strategies did not produce significant per-
formance improvements.
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§1 Introduction

Instruction prefetching is an important aspect of contemporary high performance

computer architectures. The C Machine, a pipelined processor currently under design at Bell

Laboratories Computing Science Research Center, incorporates a microinstruction cache.

This cache permits many possible prefetch strategies. Measuring the performance of real

programs run on an an architectural simulator enables us to evaluate the utility of branch

prediction, intelligent prefetching, and instruction caching. In this manuscript, several

prefetch procedures will be analyzed in an attempt to quantify the efficacy of each method

and identify the limiting architectural parameters.

The first two sections ar a presentation of background information. Section 1 contains

the definition of terms required to describe the problems associated with pipeline processor

design. A discussion of the effects of control transfer instructions follows and culminates with

a description of the tradeoffs which govern realizable pipeline performance. Section 2

presents the two major segments of a processor, the IFU and the EU, and discusses their

possible interconnection methods. The randomly addressable cache is introduced as a new

IFU-EU interconnection technique.

The architecture of the C Machine is then presented as a paradigm for examining

prefetch strategies. Section 4 describes the decisions surrounding the design of a streamlined

instruction set. Aspects of the C Machine instruction set are presented as well as the design

tradeoffs which affect its rapid decode. Section 5 describes the details of the C Machine IFU

and how instructions are decoded. Demand instruction fetching is contrasted with instruction

prefetching. Section 6 defines the two types of prefetch, blind prefetch and intelligent
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prefetch, and suggests possible intelligent prefetch strategies that might improve pipeline

performance.

To understand the problems associated with an architectural design, empirical

performance measurements are required. Section 7 describes the software tools written to

meter performance and justify the design decisions Section 8 contains statistical data

gathered from the C Machine simulator analyzing the advantages of several actual prefetch

strategies. The results of these measurements and their implications are then discussed.

Section 9 summarizes the findings and draws some conclusions on the design process of the C

Machine architecture.
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§1.1 Pipelining

Pipelined processors partition instruction execution into separate stages1 ,2 and the

parallel execution of multiple pipeline stages on sequential instructions achieves a high

execution rate. With pipelining, the performance is limited only by slowest stage's execution

delay and the time to complete any single instruction is the pipe latency, or the sum of the

delays for all the stages. As the computation is partitioned into smaller, simpler sections, the

portion of the execution performed at each stage decreases. These simpler operations are

performed faster and the maximum execution rate is increased.

Two constraints prevent the partitioning of a pipeline into ever finer stages. The first is

inter-instruction data dependencies or hazards. The second and more stringent restriction is

caused by the execution of control transfer instructions. Both introduce delays that interrupt

the smooth flow of instructions in the pipeline and reduce performance. As the number of

stages is increased, more instructions are concurrently executing in the pipeline and the

detrimental effects of hazards and control transfer instructions degrade pipeline performance

ever more severely.

In a synchronous pipeline, as shown in figure 1, instructions proceed uniformly from one

stage to the next each clock cycle. Instruction i is followed by instruction i+1, i+2, ... If the

data dependencies of instructions i+l, i+2, ..., require results which are not yet available from

instruction i, a hazard3 arises and the data dependent instructions are made to wait until the

hazard is resolved. The more stages there are in the pipeline, the longer the delay may be

before the hazard is resolved. This waiting prevents the pipeline from flowing at the

maximum execution rate.
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Three distinguishable points in a pipeline are relevant to control transfer instructions:

the head of the pipe, the transfer recognition point, and the control point. The relative position

of these three points determine how severely control transfer instructions affect pipeline

performance.

Hid CoMMIl Point

Tanier Rmpiloa Paint

Figure 1: Pipeline Overview

The head is the first and most crucial stage in the pipe. To maximize the execution rate,

the head must initiate a new instruction down the pipe every cycle. In a highly pipelined

processor, the instruction may not even be decoded at this early stage. Therefore, the true

successor instruction may be indeterminable. he best the head can do is assume the

succeeding instruction will reside in the next sequential word of memory.

The transfer recognition point is the stage in which control transfer instructions are

discovered. From the head to this stage in the pipe, the instruction stream is constrained to

be purely sequential. At the transfer recognition point, a control transfer instruction has been

sufficiently decoded to generate the target address of a non-sequential instruction. This is the

earliest point in the processor pipeline where non-sequential instruction fetching can be

specified.
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Thc cordol poin 4, 5 specifies the stage in the pipe beyond which instructions are

guaranteed to complete their execution, even in the event of an interrupt. Instructions in

prior stages of the pipeline prior can be aborted at any time without changing the processor's

state. The control pointt is also the stage where results of instructions which affect the

processor's condition code are first available.

Generally, contiguously stored instructions are executed sequentially; after executing the

instruction at location , the processor will execute the instruction at location I + 1. Control

transfer instructions potentially interrupt the sequential nature of instructions flowing through

the pipe by explicitly specifying the target address of the next instruction to be executed.

There are two classes of control transfer instructions: unconditional and conditional.

Unconditional control transfer instructions always interrupt sequential instruction execution;

conditional control transfer instructions may generate a nonsequential target address

depending on the state of the processor.

When an unconditional control transfer instruction is detected at the transfer

recognition point, the head is redirected to commence fetching instructions t the specified

target address. Instructions in the pipe's initial stages, from the head to the transfer

recognition point, arc aborted or flushed. Thc number of computation cycles lost may be

reduced by designing the transfer recognition point as close to the head of the pipeline as

possible.

However, conditional transfer instructions are a more complicated issue. When a

conditional transfer instruction reaches the transfer recognition point, the deciding condition

may be not yet be known. If it is known and matches the transfer condition, the conditional

control transfer will be followed exactly like an unconditional control transfer instruction. If

the deciding condition is known but does not match the transfer condition, the transfer is not

tHolptc's lae ontrol point.
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followed, preceding stages of the pipe continue to execute sequential instructions; zero pipe

stages arc flushed, and no cycles are lost. Only if the conditional transfer is followed will

there be any lost cycles. When a conditional transfer instruction depends on the results of a

preceding instruction which has not yet reached the control point, the deciding condition is

indeterminate (unknown). Unfortunately, there may be many stages between the transfer

recognition point and the control point. These intervening stages result in a guf of ignorance

between instructions entering the pipeline and those completing execution. This dependency

is similar to the hazards already mentioned. However in this case, the hazard is in the control

stream, rather than the data stream.

There are two strategies to follow upon encountering an indeterminate conditional

transfer instruction. The simplest strategy would have the control transfer instruction wait

until the instruction which specifies the deciding condition arrives at the control point and the

deciding condition is determined. As the conditional control transfer is held at the transfer

recognition point, a gap of inactive stages will develop in the pipeline. The maximum length

of this processing gap is the number of stages between the transfer recognition point and the

control point, or the gulf of ignorance. These stages are lost cycles.

A second, more productive strategy is to guess the outcome of the indeterminate

condition. The predicted path is fetched and processing continues. The conditional transfer

instruction propagates through the pipe with enough information to correct the transfer

should the prediction be inaccurate. Once the condition is determined, if the condition was

incorrectly predicted, subsequent instructions are aborted.

In summary, control transfer instructions degrade execution performance by introducing

gaps in the flow of instructions reaching the control point. Unconditional control transfer

instructions impose a known fixed gap of execution; the number of instruction cycles lost is

equal to the number of stages between the head of the pipe and the transfer recognition

point. But, the performance degradation caused by conditional transfer instructions is
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variable. If the control transfer is not followed, performance degradation is nearly zero - the

only cost is the single stage occupied by the control transfer instruction itself. The subsequent

sequential instructions are not flushed and no cycles are lost. However, the worst case

degradation caused by a conditional control transfer instruction can be quite severe. This

worst case arises when a conditional control transfer instruction must reach the control point

before the deciding condition is determined. If the predicted path was incorrect, the

complete length of the pipeline from the head to the control point must be flushed.

Conditional transfer instructions are often a limiting factor in the execution rate of

pipeline processors. In architectures where most instructions are executed in one clock cycle,

pipe flushing caused by control transfer instructions is the major expense. Long pipes tend to

be damaged more by conditional control transfers; the longer the gulf of ignorance, the more

stages lost to pipe flushing. The pipe stages lost to handling control transfer instructions

reduce the effective execution rate. As the number of stages in the pipeline increases,

performance is degraded by the percentage of incorrectly predicted conditional transfers.

Pipeline considerations in a SISD6 (Single Instruction Single Data) architecture introduce

two conflicting goals. First, for maximum speed, the pipeline should have many stages. Each

stage executes a simple segment of an instruction's complete computation. The execution

delay of these individual steps is minimal and the peak execution rate of the architecture is

maximized. Second, to minimize the performance degradation due to both data hazards and

control transfer instructions, the pipeline should be kept as short as possible. These

conflicting desires force an engineering tradeoff. Performance measurements indicate that a

reasonable pipeline length is three or four stages. The performance potential of longer

pipelines is more readily obtainable in SIM 6 (Single Instruction Multiple Data) processors,

which will not be discussed in this paper.
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§1.2 IFU -- EU Interconnection

Most contemporary high performance architectures achieve parallelism by overlapping

instruction fetch with instruction execution. While the processor is executing instruction i,

instruction i + is fetched and possibly even decoded. The CPU hardware associated with

retrieving instructions from main memory is the instruction fetch it, (IFU) and the

remainder is the execution unit (EU). Since the operations performed in each of these units

are distinct and separable, it is convenient to split the processor into two such sections. The

overlapped processing of these two units is a form of pipelining. Often, both the IFU and the

EU are internally pipelined. Such an architecture can be described m a hierarchical pipeline.

MASTOR

Figure 2: Processor Organization: IFU-EU Connected By Register

The organizational advantage of separating the processor functions is not without its

associated penalties. Reconnecting these two units is not necessarily easy and the technique

used affects the overall processor performance. The IFU and EU can be connected in several

ways2,7 ,8,9 , 10 The simplest method rigidly connects the two units with a single registers

FU

EU

L NSM"t
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However, if the EU is busy executing the instruction held in this register, the IFU activity

must eventually come to a stop. Parallel activity is achieved only when both units are

processing.

Figure 3: IFU-EU Connected By FIFO

A more commonly used interconnection replaces the single register with a first-in-first-

out (FIFO) queuc2, 13 The FIFO decouples the two units and allows each to proceed at a

more or less independent rate. The instruction queue also smoothes out the extremes in

processing times - EU time for an add versus a multiply, or IFU delay due to control

transfers - so each unit is more fully utilized. The main problem with the FIFO

interconnection is the linear nature of its contents. Since the IFU can only guess the correct

path beyond execution-dependent control transfer instructions, the queue's contents are the

IFU's prediction of the correct sequential instruction stream. If the EU specifies a different

path, the queue is flushed and the IFU is redirected to follow the corrected instruction

sequence.

A recently proposed interconnection method is a randomly addressable cache14 One

advantage of a cache over a queue is the ability to capture program loops. Ad hoc
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mechanisms for minimizing control transfer overhead, such as target instruction buffers 15 ,16

jump traces17 and loop buffers16, 18 are eliminated. The cache interconnection provides these

capabilities with improved performance. The IFU doesn't have to refill the instruction queue

repeatedly and system memory traffic due to instruction fetch is reduced.

Figure 4: IFU-EU Connected By Cache

In comparison with registers and FIFOs, the cache is a more general IFU - EU

interconnection technique, and more effectively decouples the IFU and EU. Since they are

less tightly connected, each unit processes instructions unhindered by the hazards and pipeline

flushing of the other. Hence the cache interconnection splits a long pipeline into two

independent shorter segments.
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2 C Machine Architecture

The current C Machine design effort is a continuation of previous work at Bell

Laboratories Computing Science Research Center. In 1975, A. G. Fraser and D. M. Ritchie 19

suggested a C Machine instruction set oriented for a microprogrammed implementation on the

HP21-MX. Fraser later (1978) constructed a prototype 16-bit C Machine that unfortunately

was never made fully operational. Interest in 32-bit architectures grew as many C programs

began feeling the limits of a 16-bit address space. S. C. Johnson initiated a design cycle of

generating an instruction set and encoding format, writing a compiler for that machine, and

then using performance measurements of newly compiled programs, to propose a new

instruction set. This process yielded a 32-bit CPU instruction set with smaller static code size

than the PDP-11's20 In 1980, D. R. Ditze121 investigated an relatively simple machine

architecture and implemented the register set and ALU in NMOS VLSI. S. R. Bourne

designed a 32-bit C Machine to be implemented in TTL, but this machine was never

constructed.

More recently, Ditzel and I have designed a high performance pipelined version of the C

Machine. This SISD processor was intended to exhibit a significantly better cost/performance

ratio than existing computers. Its design was heavily influenced by extensive performance

measurements of C programs that guided hardware/software tradcoffs between compiler

technology, common architectural techniques, and circuit technology limitations.
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2.1 Instruction Set

It is often assumed that a good instruction set minimizes the semartic agqp22 between the

concepts in high-level languages and their realization in computer architecturc. Recent

instruction set designs have attempted to reduce this gap by introducing complex functions

and addressing modes. This trend is based on the belief that processing power increases as the

operations performed by a computer's instruction set approach the semantics defined by the

high-level language23 24,25 There is current debatc 26 27 on the validity of such an approach.

There are several reasons why a simpler instruction set28,29,° can produce a higher

performance architecture. Two examples are discussed below.

Complex, high-function instructions often execute significantly faster when implemented

with dedicated hardware than when programmed as a sequence of primitive instructions.

However, additional hardware is likely to spread existing logic further apart, increasing both

propagation delays31 and the basic machine cycle time. Since primitive instructions account

for the majority of instructions executed, the performance improvement of complex

instructions must be weighed against the reduction in speed of the primitive instructions. This

comparison must also take into account the relative frequency with which proposed complex

instructions are executed. Because a simpler instruction set reduces the basic machine cycle

time, any improvements' must justify themselves by decreasing the aggregate timing of actual

computations.

Compilers may have a difficult time producing code for complex instruction sets if they

attempt to match the operations specified in the high level language program to the functions

provided by the machine's instruction set. Finding a good match with complex instruction sets
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may be an arduous task - in the DEC VAX11/780, which has a very rich set of instructions

and addressing modes, there approximately two dozen ways to perform an addition. Since

there are so many possible mappings, often the one selected is suboptimal and generates

additional, gratuitous processing.

An instruction set's power is determined by the amount of work performed by each

instruction as well as the instruction execution rate. It is not the time required to complete

an individual instruction, but rather the total time to complete a computation that is

important. An architecture which performs many impotent instructions in a short time is no

more powerful than a machine which executes a single high level solve-it instruction in a

very long time. Since instruction potency and execution rate typically don't have an exact

inverse relationship, a reasonable balance between aggregate computational power and

execution delay is an important aspect of a good instruction set.

The C Machine achieves a balanced instruction set by designing the simple, primitive

capabilities of the hardware to match the frequently required operations of the high level

language. For example, the C Machine has a full 32-bit architecture: Byte addresses are 32-

bits long, arithmetic is 32-bit two's complement, and logic functions are 32-bit operations. The

C Machine is a two address, memory to memory architecture, so registers are noticeably

absent. Instead, several varieties of caches32 are used to speed data access. The instruction

set supports only a two-address form of dyadic operations since the extra power of three-

address instructions was insufficient when compared to the increased hardware complexity

required to support them. Each binary operation contains two full 32-bit operand specifiecrs.

The signed and unsigned C data types, char, short, and long, are fully supported.
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As closely as possible, the addressing modes reflect the high level language storage class

referencing methods. The C Machine supports a minimal set26 of four addressing modes:

* Immediate constant

* Absolute address

* Stack pointer relative

* Stack pointer relative indirect

The absolute addressing mode is used to reach static or global variables whose address is

known at compile time. Stack pointer relative mode is used to access local variables in the

stack frame. Complex addressing modes were intentionally avoided to smooth the flow of

pipelined instructions as this reduced set of addressing modes simplifies the hardware

associated with effective address generation.

The incidence of inter-instruction data hazards can be minimized by proper instruction

set design. For example, push and pop operations, which modify the stack pointer by side

effect, create hazards for subsequent instructions with stack-pointer-relative operands. With a

modification of the calling sequence and stack frame conventions32 these operations can be

converted to fairly innocuous move instructions. The stack pointer (SP) is only modified when

necessary to allocate or deallocate storage on procedure entry and return. A relatively

constant SP smoothes the flow of pipclined instructions.

Another important consideration in a pipelined instruction set is how to deal with

condition codes, which provide an implicit communication mechanism between two otherwise

disjoint instructions. Two problems associated with their use are aggravated by pipelined

architecture: First, not all instructions update the condition codes and this irregular33 use

complicates the condition code controlling hardware. Second, since condition codes may be

updated by side-effect, predicting their value in a pipelined system is extremely difficult.

Typically, conditional control transfer instructions modify the direction of the instruction

stream depending on the condition code's value.
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Several pipelined architecturesu ,34,35S 36 have eliminated condition codes completely by

use of an atomic 'compare and branch' instruction. Initial evaluation of such an instruction

would indicate little difficulty - two apparently orthogonal, frequently paired operations have

been combined into a single instruction. However, since the branch part is executed at the

transfer recognition point, and the compare part of the instruction is executed possibly many

stages later at the control point, the fulld gulf of ignorance must pass before the validity of the

branch prediction is determined.

The use of separate instructions for conditional control transfer and condition code

setting7, 38 allows the interposition of other instructions which do not affect the condition

code's state. If enough of these intervening instructions are present, the condition code

setting instruction will reach the control point before the conditional control transfer

instruction arrives at the transfer recognition point. Then the condition codes will already be

set, the conditional control transfer is immediately determinable, and there is no extra pipe

flushing penalty associated with the gulf of ignorance. All of the advantages and none of the

drawbacks of combined 'compare and branch' instructions are available via branch folding.

The C Machine instruction set defines a single True/False condition code flag, thereby

reducing the difficulties encountered in a pipelined environment. In addition, only a single

instruction, compare, may modify the condition flag. Restricting the condition code operations

to a few instructions minimizes the control hardware and permits the smooth flow of pipelined

instructions.

Once the pipeline considerations of the instruction set semantics have been settled, the

issues of instruction encoding arise. Instruction encodings can be either fixed or variable in

length. In a fixed size instruction set, all instructions are encoded in the same number of bits.

A variable length instruction set defines operations in several instruction sizes. A particular

instruction's size depends on how many bits are required to specify its operations and how

frequently that instruction appears. Uncommon instructions need not be densely encoded,
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since the code space penalty associated with their larger size is mitigated by their infrequent

occurrence.

A fixed size instruction set is better suited for a pipelined architecture, since it facilitates

, the early decode of control transfer instructions. The transfer recognition point may be closer

to the head of the pipe and therefore the number of pipestages flushed due to followed

control transfer instructions is reduced. A fixed size instruction set simplifies decoding and

generally allows a more continuous flow of pipelined instructions. On the other hand, variable

length instruction sets permit a more compact encoding. A program can be described in fewer

bits, and the instruction fetching bandwidth required to support the execution of such an

instruction set is reduced. However, unlike the smooth flow of a fixed size instruction set, the

bandwidth requirements of a variable length instruction encoding is sporadic and execution

gaps may form in the pipe.

4'~~~~

Figure 5: C Machine Block Diagram

By means of the microinstruction cache, the C Machine supports both a fixed and a

variable length instruction set. The microinstruction cache stores fully expanded, decoded
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instructions, permitting the performance advantages of a fixed length instruction set on the

EU side of the microinstruction cache. In fact, the microinstruction cache can be viewed as a

most recently used set of horizontal microinstructions. But the length of these cwamical

instructions is prohibitive for describing entire programs. Hence, it is the IFU's function to

translate the space-saving variable length encoded macro instruction format to the wide,

readily executable canonical microinstruction cache entries.

Given a variable length instruction set, code sizc is partially a function of the minimum

granule size. In the C machine design process, 8-bit and 16-bit resolution encoding formats

were investigated, and the 16-bit granularity was found superior. For example, PC-relative

offsets need not specify a byte boundary, hence in control transfer instructions a 16-bit

granularity allowed a fixed-size bit field to specify a wider range of targets. Also, 16-bit

resolution required fewer instruction formats, reducing the overhead associated with format

disambiguation and improving code density. And with simpler formats, the amount of IFU

decode hardware is decreased.

79447 1IS 2 1 0

I Y I XY I op u11
47 161 i 2 0

I Z op 01

47 q331 I S 21 0

I x I Y I op 011

IS 65 0

Z oI p I

15 13 65 I o0

y x op Pi

Figure 6. C Machine Instruction Formats.
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The C Machine instruction set is composed of 16-bit parcels. Instructions are defined in

either one-, three-, or five-parcel formats. Each instruction is translated by the IFU into

canonical microinstructions. At the maximum instruction size, a five-parcel instruction

encoding is necessary to specify fully the two operands of a binary operation. The operation

and operand addressing modes are defined by the first parcel. The next two parcels provide 32

bits to specify the source operand and the final two parcels provide 32 bits to specify the

destination operand.

Five-parcel instructions are needed to specify the most general form of a two address

binary operation. However, it is often the case that both operand specifiers can be encoded in

fewer than 32 bits. So all five-parcel dyadic instructions have threc-parcel analogues, wherein

each operand must be expressible in 16 bits. In fact, a final optimization has been made to

compress the encoding yet further; statically measured instruction counts werc analyzed to

determine the most frequently used operation/operand combinations. The 32 most common

pairs whose dyadic operands could be specified in only 5 bits or whose monadic operand could

be specified in 10 bits were redundantly defined in the compact one-parcel form.

One of the major difficulties with a variable length instruction set is determining the

address of the next contiguous instruction. Also, to facilitate rapid parallel decoding of a

variable length instruction set, the format and length information must be readily discernible.

Some architccturcs 39 compound the problem by allowing not only instructions to be of

variable size, but also each operand. The C machine instruction set provides all this

information in the first parcel of each instruction. With the format information in a single,

fixed place, the contiguous successor instruction is fetched immediately, and the IU can fetch

and decode a new instruction every clock cycle.

The C Machine instruction set design was guided by mcasurements4° of dynamic

instruction frequencies. The high percentage of control transfer instructions was the most

disturbing. They account for approximately one quarter of all instructions xczecuted To
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minimize the extent to which these instructions slow down execution, a static prediction bit is

included in the encoding of conditional control transfer instructions to mist the IFU in

guessing the correct instruction path. This bit is a static measure, generated at compile time,

predicting which path should be taken following a conditional control transfer instruction.

Use of the static prediction bit as a prefetch heuristic will be discussed in a subsequent

section.

In summary, the performance limiting effects of intcr-instruction data hazards and

control transfer instructions can be reduced by careful design of the pipclined proccssor's

instruction set. Use of complex addressing modes, especially those with side-effects, should be

discouraged. Instructions arc required to flow through the pipeline with minimal hindrance

since maximum performance can be obtained only when there arc no interruptions of the

smooth flow of completed instructions exiting the processor pipeline. The combination of

variable length macroinstructions with fixed length microinstructions permits high code

density and rapid decode in performing the computations required by high level languages.
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§2.2 Instruction Fetch Unit

The C Machine IFU fetches and decodes macroinstructions from the instruction cache,

effectively translating the densely encoded macroinstructions into very wide horizontal

microinstructions. After each macroinstruction has passed through the IFU's three stages, it

has been expanded to the canonical microinstruction format. These microinstructions are

placed in the microinstruction cache. There is a one to one correspondence between

macroinstructions and microinstructions. Whereas the macroinstructions are compactly

encoded, the microinstructions are readily executed by the EU.

The ability to decode instructions in rapid succession, one per clock cycle, is an

important design goal of the C Machine IFU. The IFU's processing bandwidth must match

the EU instruction bandwidth for optimal results. During peak demand, the EU is capable of

executing one instruction per clock cycle. Peak performance is attained by an equivalent IFU

processing rate.

The IFU's efforts arc directed towards reducing microinstruction cache misses. Such

cache misses can produce considerable delays while the errant instruction is fetched and

decoded. With proper prefetch strategies, the IFU can maintain the appropriate working set

of instructions in the microinstruction cache.
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Figure 7: Three Stages of the C Machine IFU

Instruction fetching begins at the IFU's first stage, or head of the pipe. At this early

stage, the instructions are nothing more than an uninterpreted bit stream. The head stage

program counter, or PC, addresses a 64-bit quad parcel in the instruction cache. Since it is too

early to determine instruction boundaries, during each clock cycle the head stage merely

transfers as many of the four parcels as possible to the instruction decode register, the IFU's

second stage. When the last parcel is transferred, the head's PC is incremented and the next

sequential quad parcel is retrieved from the instruction cache.

The instruction decode register (IDR) can be considered as an 8 parcel shift register. As

instructions are decoded, parcel are shifted from locations H to A (figure 7). Several

operations are performed on the IDR every clock cycle. At the end of each cycle an

instruction, which is either one, three or five parcels long, is decoded in parallel and removed

:HEAD

:IDt

:P
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from the IDR. The remaining valid unused IDR parcels are shifted into position and any free

slots (up to four) are filled from the next quad parcel delivered by the head of the pipe. The

IDR PC is incremented by the amount appropriate to reflect the next contiguous instruction's

address.

Since the instruction length controls the number of parcel locations the IDR contents

are shifted, it must be easily decoded Additionally, when fetching sequential instructions, the

next IDR PC is determined by adding the instruction length to the current value. Distributing

the length information throughout the instruction, or requiring serial decode of each operand

by poor instruction set design 39 can complicate the decode hardware and introduce

unacceptable delays. In the C Machine the first parcel of every instruction contains all the

information required to control subsequent decode operations. Signals derived from the IDR's

parcel A determine the formation of each canonical instruction.

Canonical instructions are prepared in the prefetch instruction register (PIR.) The

operand specifiers, as indicated by the instruction format, are expanded to a full 32 bits and

inserted in the PIR source and destination fields. The PIR next program cosunter (NPC)

indicates the address of the next contiguous instruction. The PIR target program counter

(TPC) is used if the decoded instruction is a control transfer instruction. It is generated by

adding the selected PC-relative offset to the IDR's PC.

Both the instruction and the microinstruction caches arc direct map caches of the

instruction virtual address space. The microinstruction cache stores one instruction per entry,

whereas the instruction cache stores one quad parcel per entry. The fixed sized

microinstruction cache entries are designed to facilitate instruction retrieval in the EU. Each

canonical microinstruction the IFU produces is written in the microinstruction cache entry

selected by the PIR PC. Because of this addressing scheme, and the variable length nature of

the instruction set, the microinstruction cache is sparsely filled. Conversely, the instruction

cache is densely filled.
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Figure 8: Microinstruction Cache Schematic

The TPC and NPC in the canonical instruction are full 32-bit addresses. Therefore, the

EU can follow control transfers without the penalty of lost stages or branch delay. When the

EU executes an instruction, the following instruction is specified as soon as possible.

Depending whether the next instruction will be sequential or the (nonsequential) target of a

control transfer instruction, either the NPC or TPC entry of the current instruction is used to

index into the microinstruction cache. There is no extra delay for altering the sequential

instruction flow, since the mechanism is the same. Sequential instruction execution in the EU

is not impeded by control transfer instructions while the targets are resident in the

microinstruction cache.

There are two possible consequences when the EU requests a non-resident instruction

from the microinstruction cache. If the missing instruction is already proceeding through the

IFU, the EU idles until it is completely decoded. Otherwise, if the instruction is not in the

IFU pipeline, the IFU is directed to fetch and decode the offending instruction. This is

known as demand fetching.
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Demand fetching is the main communication link between the EU and IFU. During a

demand fetch the IDR is cleared of all parcels in preparation for receiving the new quad

parcel from the head stage. The head PC is initialized to the instruction address of the

microinstruction cache miss. It then used to retrieve the 64-bit quad parcel which contains

the missing instruction's initial parcel. During the following clock cycle, the appropriate parts

of this quad parcel are aligned and placed in the IDR. The low order two bits of the head PC

determine the alignment of the quad parcel in the IDR. As the parcels are loaded, the head

PC's contents are copied to the IDR PC. The IDR now holds the address and at least the

initial parcel of the desired instruction. The remaining decode operations are performed and

the instruction is sent on to the EU.

The EU will have to wait a variable number of cycles for the repair of a microinstruction

cache miss. It waits from one to three cycles if the instruction is already in the IFU pipeline.

Otherwise, if the instruction cache contains the necessary quad parcel, the EU waits either

four or five cycles depending on whether the instruction crosses a quad parcel boundary.

Finally, the worst case delay following a microinstruction cache miss occurs when the

instruction cache misses too. If the instruction does not reside in the instruction cache, it

must be fetched from main store, whose access latency may be many cycles. In order to avoid

these delays, it is important to maintain a high microinstruction cache hit rate. Processing

performance is severely degraded by a poor hit rate.

The IFU's transfer recognition point resides in the IDR. At this stage, control transfer

instructions are sufficiently decoded to affect the fetching of subsequent instructions.

Unconditional control transfer instructions leaving the IDR may redirect the sequence of

instructions entering the head of the pipe - a followed control transfer instruction is handled

like a demand fetch. The remaining IDR parcels arc flushed, the TPC is passed to the head,

and the new instruction stream is fetched. The specific choice of instruction path following a

conditional control transfer instruction depends on the details of the prefetch strategy.
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§2.3 Branch Folding

Branch folding was serendipitously discovered while designing the IFU and results in

considerable performance improvement in the EU. With branch folding, the machine cycle

spent executing a control transfer instruction in the EU is eliminated entirely. While not al

control transfer instructions are foldable, the majority may be combined with previous

execution class instructions and processed as a single step in the EU.

Execution class instructions are those which do not use the branch control fields of the

canonical microinstructions. Examples are add, sbtract, multiply, and compare. After

executing any of these instructions, the next instruction executed is, by default, the next

contiguous one. The microinstruction NPC field contains the address of the next sequential

instruction, and since the IFU is a three stage pipeline, it may contain several instructions in

various stages of decode. Often an execution class instruction is held in the last stage of the

IFU, (the PIR), while a control transfer instruction is in the DR. Before the PIR's contents

are written into the microinstruction cache, the branch control fields are modified to produce

the effects of the logically subsequent control transfer. In this way, the two macroinstructions

are combined in a single microinstruction entry. Branch folding provides up to a 30%

performance improvement by eliminating separate control transfer instructions in the EU.
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§3 Prefetch Strategies

Instruction prefetch contributes considerably to overall processor performance. An

effective execution rate depends on the IFU being able to supply the EU an uninterrupted

stream of instructions. When not servicing a demand instruction fetch, the EFU is prefetcing.

The prefetching IFU attempts to process instructions without an explicit EU request. While

prefetching, the IFU generates the instruction stream by autonomously predicting which

instruction will be executed next. Ideally, the FU would provide the EU decoded

instructions coincident with their need. Unfortunately, since the IFU cannot infallibly predict

the EU's instruction requirements, an optimal prefetching strategy is non-causal. All

realizable prefetch strategies are engineering approximations of this unimplementable ideal.

There are two instruction prefetch strategies of interest. The first and simpler one is

blind prefetch where there is no interpretation of the items to be cached. Blind prefetch has

long been used to enhance cach 41 ,42,43,44,45 performance. When cache line is referenced,

cache line + is also retrieved. Instruction cache preftching 46 is particularly effective

because of the highly sequential nature of instruction access patterns. The simple multiword

fetch of the PDP11/70 cache47 is an example of blind instruction prefetch. The C Machine

instruction cache hardware implements blind prefetch to reduce the number of misses and

thereby the effective main memory latency sen by the IFU requests.

Blind prefetch also describes instruction fetching in the early stages of the C Machine

IFU. The sequential flow of instructions in the IFU from the head stage to the IDR is

constrained to b contiguous parcels. Control information which would modify the

instruction stream is not available until the parcels have reached the IDR, or transfer
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recognition point. Since instructions in the head stage are uninterpreted, blind prefetch or

sequential fetching from contiguous locations is the only possible option.

The C Machine microinstruction cache effectively separates the IFU from the EU and

provides the possibility of a more informed prefetch. While the EU is processing a loop

resident in the microinstruction cache, the IFU is free to prefetch instructions beyond the

iteration. Most architectures are only capable of blind prefetch, but the C machine, with the

aid of the the microinstruction cache, permits intelligent prefetch as well as blind prefetch.

The microinstruction cache permits the complete power of the IFU to be directed to

intclligent instruction prefetching. When instructions reach the transfer recognition point in

the IFU, they can affect the future instruction stream. If a control transfer instruction is

decoded, the IFU pipeline can be redirected to fetch the target path.

But the IFU cannot follow all control transfer instructions. The ability to specify a

dynamically calculated target is provided by indirect control transfer instructions of which the

most frequently occurring example is the subroutine return instruction. Indirect control

transfer instructions specify the memory location where the address of the next instruction is

stored. Because the microinstruction cache decouples the FU and EU, resolving the data

hazard on this location is impossible. Hence, indirect control transfer instructions are

processed by the EU. Prefetching ceases when an indirect control transfer instruction is

decoded. The IFU must wait for the EU to execute it and provide the address of the next

instruction. This is unfortunate because statistically, approximately 25% of all instructions

executed are returns.

Upon decoding, the prefetching IFU immediately follows unconditional control transfer

instructions. The difficulty arises in the inherent delay of pipeline flushing associated with

specifying a new instruction stream. Because of this penalty, some designs4,49 5 51 have

ignored entirely prefetching the targets of conditional control transfer instructions.
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Branch prediction techniques 2 can aid the IFU in dealing with conditional control

transfers. The static prediction bit represents the most expeditious path to follow. It must be

kept in mind that the real purpose of this prediction is to speed the flow of instructions in the

EU and a dynamic copy is maintained in the microinstruction cache. This bit is initialized to

the value of the static prediction bit each time the associated control transfer instruction is

decoded and loaded into the microinstruction cache. Subsequent execution will update the

dynamic bit with the sense of the path just taken, maintaining a record of the most recent

choice.

To offset the penalty of following branches, the IFU can temper its choice by checking

the transfer distance. If the target is only a few instructions beyond the current one, it may be

more profitable for the IFU to ignore the control transfer and continue decoding sequential

instructions. The cycles that would have been lost in following the conditional control

transfer are used to decode the intervening instructions. Otherwise, if the target is only a few

instructions previous to the current one, it can be reasonably assumed that the IFU has already

decoded them. If the specified target is within a threshold distance from the current

instruction, the IFU may disregard the branch prediction.

Rapid instruction decode is only one aspect of the IFU's prefetching heuristic. The IFU

also attempts to maintain a high microinstruction cache hit rate for the EU. Since the

microinstruction cache is direct mapped, new instructions issued by the IFU will write over

older ones. As in all cache designs, a pathological accessing pattern can ruin any performance

improvements. Uncontrolled prefetching might actually hinder overall performance.

To minimize microinstruction cache conflicts, the IFU's headlong prefetching activity

should be controlled. After a demand fetch, the IFU can be limited to prefetch a fixed

number of instructions, then enter an idle state. IU activity is reinstated only after the EU

again demands an instruction fetch. This technique also limits the increased main store traffic

that prefetching causes, even though most of the this traffic is masked by the instruction
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cache.

The problems associated with prefetching straight-line code are different than those

encountered in prefetching iteration code. As long as the new instructions do not conflict

with older ones in the microinstruction cache, straight-line, sequential instructions are

processed as rapidly as the IFU can decode them. More control is required, however, in

handling iteration code.

For example, consider the two possible meta-assembly language templates for the for

statement, a C iteration construct. In the following figures, the time sequence indicates the

order in which the meta-assembly language lines will be prefetched. Each time the IFU

pipeline is broken, the number is incremented. Each template breaks the IFU pipe twice.

Both code segments are entered from the top.

Time -

< initialization code > 0
LI: < test termination condition > 0 1

< conditional branch to L2 > 0 2
< body of loop > 0
< unconditional branch to L1 > 1

L2: 2

Figure 9a: Loop Template Optimized For Prefetch

< initialization code > 0
< unconditional branch to L2> 1

LI: <body of loop > 2
L2: < test termination condition > 1 2

< conditional branch to L1 > 2 2
2

Figure 9b. Loop Template Optimized for Execution
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In each case, if the prefetch heuristic follows the conditional control transfer

instruction's branch prediction, the IFU will continuously decode the loop cycle. To prevent

this, the microinstruction cache can be interrogated each time a instruction is loaded to se if

it is already resident. When a duplicate instruction is found, the IFU will enter an idle state

and wait for an EU demand fetch. This avoids unnecessary main store requests.

Higher performance is possible if the IFU can continue beyond the iteration code.

While the EU is executing the loop, the IFU can prefetch the subsequent instructions. As

each conditional control transfer instruction is decoded, the appropriate microinstruction

cache entry is checked. In contrast with the previous strategy, when the instruction is already

resident, the IFU follows the path opposite that suggested by the static branch prediction bit.

Hence on first encounter with a conditional control transfer instruction, the most likely path

is followed. On subsequent decodings, recognized by their residency in the microinstruction

cache, the alternate path is followed. If this strategy is adhered to, the bodies of both

templates are decoded only once.

The first template is more suitable for prefetching instructions. Since the IFU pipeline is

broken only after the instructions in the bulk of the loop are decoded and placed in the

microinstruction cache, the EU can be looping while the the IFU is following the control

transfers. The second template is more suitable for execution in the EU. The unconditional

control transfer is executed only once, whereas in the first template, it is executed each time

through the loop. Therefore, the second template may conceivably execute fewer instructions.

Also, the second template lends itself more readily to code motion. If the <body f loop >

contains instructions which do not affect the determination of the loop exit condition, they

can be interposed between the <test termination condition > and the <conditional branch to

LI >. This separation provides for a determinate deciding condition when the conditional

control transfer instruction is issued in the EU. Such code motion is not possible in the first

template.
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§4 Architectural Design Tools

Over the past two years, several computer programs have been developed to guide design

of the C Machine's architecture. These software tools were written in C and run on

VAXl1750's under the Unixt operating system. Iterative performance measurements of the

interactions between the C compiler, instruction set, and processor directed the architectural

design. Trade-offs were made in each of these domains in order to produce a higher

performance system architecture.

The Portable C Compiler53 54 was modified to produce C Machine assembly language.

There are several interesting aspects of the architecture which affect the compiler First, the

C machine has a memory-to-memory architecture and thereby obviates the difficulties of

register allocation. Second, since iteration constructs were expected to loop, the compiler

itself could generate the static branch prediction bit for some conditional control transfer

instructions. Finally, a novel calling convention and statically sized stackframe32 were used to

reduce pipeline hazards.

Usually an assembler produces object code for the target machine. Since the object

code's format changed as different instructions and addressing modes were tested and various

encoding formats analyzed, the C Machine assembler generated a relatively constant

intermediate instruction format. Each instruction in the intermediate format was represented

as a fixed size, 16 byte horizontal C structure. Although these structures are large, they do

not require decoding and are readily manipulated by programs.

'Unix is a trademark of Bell Laboratories
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An interpreter was written to execute these intermediate instructions. Its chief goal was

to provide statistics for an objective basis on which to judge the various proposed instruction

sets. With the intermediate instruction format, the interpreter could execute approximately

1500 instructions per second. This rapid interpretation rate allowed statistics from a

substantial body of programs to be gathered and analyzed. Several iterations of the

instruction set, compiler, interpreter design cycle produced a fairly powerful instruction set

well matched with current compiler capabilities.

While the interpreter cannot provide a measure of the internal interactions of the

architecture, it is very useful for producing branch statistics. These statistics can be used to

generate the static prediction bit in conditional control transfer instructions. This method is

equivalent to the best the compiler could do to describe statically the most probable

instruction stream.

The final object code is generated by the the instruction formatter, which produces the

optimized one- and three-parcel macroinstructions for those intermediate instructions which

meet the proper constraints. This program translates the intermediate format to the final

encoding interpreted by the C Machine simulator. 

An architectural simulator for the C Machine has been written to measure the

effectiveness of various engineering design tradeoffs. This simulator has allowed the

architecture to be tested long before any hardware is built. With a system simulator, the

design process is much more objective. Performance variations introduced by architectural

modifications can be empirically measured by simulating the execution of benchmark

programs, and analysis of these collected statistics provide concrete justification for

architectural decisions. Ts design process has promoted a simpler architecture. Creeping

featurism* has been avoided since all additional hardware had to be justified by a measurable

improvement in system performance.
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The simulator emulates the pipeline architecture down to the stage level. It is an

interactive program which graphically displays the state of each pipeline stage. The simulator

may be stepped on a cycle by cycle basis, o the detailed flow of pipeline instructions is

dynamically analyzable. Each pipeline register may be examined and its contents modified.

Breakpoints are provided to let the simulated program be halted and studied after a particular

instruction is fetched. The simulator consists of approximately 5000 lines of C code and can

execute about 200 basic machine clock cycles per second.

Although the detailed workings of the IFU and EU will not be described in this report,

their internal pipeline delays (caused by inter-stage data dependencies, hazards, and

bypassing) have all been carefully simulated. The aggregate effect of these pipeline

irregularities during the execution of typical sequences of compiled C code, is sufficient

information for evaluating different prefetch strategies.

An architectural simulator is useful in studying the efficacy of possible prefetch

strategies. To describe such strategies, only a high level description of instruction flow is

necessary. As shown previously in the top-level view of the architecture (figure 5), the EU

retrieves and processes instructions from the microinstruction cache. If a miss occurs, the EU

directs the IFU to fetch the missing instruction. The IFU typically requests the appropriate

memory words from the instruction cache, decodes them and places the required instruction

in the microinstruction cache. Since the IFU is a three stage pipeline, this process takes three

cycles.

Instruction and data caches are standard architectural constructs used to reduce the

memory access latency. Due to the sequential nature of instruction requests, the instruction

cache need be no more than one-way set associative. As a rudimentary form of blind

prefetch, four entries are retrieved from the main store each time the instruction cache

misses. In the simulator, the main store is modeled as providing a fixed latency of six cycles

after a request is made. With the measured hit rates, the instruction cache serves well to
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reduce the apparent main store latency.

A benchmark is needed that is representative s of typical C programs. The benchmark

should be fairly flattened and not inner loop bound so that repeated executions of a small piece

of code do not dominate the runtime statistics. The extensive use of caches in the C

Machine's architecture requires the benchmark to be a fairly large program, otherwise the

working sets of repeated loops and short programs might be entirely cache resident. Then,

the statistics would no longer be representative of the complete system, but merely reflect the

raw speed of the cache memories. Also the effectiveness of various prefetch strategies can only

be measured with a large benchmark program.

The Portable C Compiler (PCC) is a good benchmark program because it is a large

program representative of many existing C programs. Besides that, it has been widely

distributed and extensively profiled. Also, it produces a tangible and testable output. Another

one of its benefits is the small number of system calls required: the system interface requires

only the fopes, getc, putc, and fprintf system calls. Since the simulator only measures the

cffccts of user level programs, system functions must be handled by explicit simulator code.

The final measure of performance is the total number of cycles required to execute the

benchmark. Another important statistic, signifying the power of the instruction set, is the

total number of instructions executed. The ratio of these two measures, or cycles per

instruction, indicates how smoothly the instructions flow through the pipeline. One

instruction per cycle would be ideal. Any larger ratio indicates pipeline limitations, such as

hazards, cache misses, and the effects of control-transfer-instigated pipe flushing.

Other statistics provide useful insight in recognizing performance limitations. An

example is the microinstruction cache hit rate. Many cycles can be wasted waiting for a cache

miss repair. The distribution of such idle cycles also conveys significant information. The

prefetch algorithm's effectiveness can be diagnosed by analyzing the microinstruction cache's
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miss-repair idle cycle distribution.

Since the data cache competes with the IFU for access to the main store, uncontrolled

instruction prefetch may also increase main store data requests to the detriment of processor

performance. While the main store is processing IFU requests it can not service requests

emanating from the data cache, and while the data cache is waiting for main store, the EU

will be idle. This idle time increases the number of cycles per instruction and reduces overall

performance. Because of this competition for main store, prefetch strategies can be ranked by

the memory traffic they generate. Strategies which consume less of the main store's

bandwidth are preferred.
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§5 Measurements

In order to evaluate the comparative impacts of these various prefetch strategies,

empirical measurements were gathered.

Seven different prefetch strategies were defined and implemented in the C Machine

architectural simulator program. The other details of the simulation, such as cache sizes,

memory latencies, and the benchmark program were held constant. For purposes of analyzing
t

prefetch strategies, the instruction cache was set at 256 quad parcel entries, and the

microinstruction cache size was also set to 256 entries. These cache sizes were specifically

chosen to exaggerate the differences among the prefetch strategies' performance statistics. As

mentioned previously, the benchmark used was PCC compiling a typical 100 line C program.

This program running on the C Machine simulator produces approximately S000 bytes of

assembly code in about three hours. To verify the accuracy of this simulation, the output was

compared with the assembly language produced by PCC running directly on the VAX11/750.

The prefetch strategies tested were: 

TEST 1, No microinstruction cache: In order to judge the efficacy of instruction

prefetching, base measurement needed to be established. This control was made by removing

the microinstruction cache and combining the PIR, or final stage in the IFU, with the head of

the EU. The PIR acted as the IFU-EU connecting register. The total pipeline became one

stage shorter, but the advantages of the microinstruction cache were lost. Without the

microinstruction cache, intelligent instruction prefetching was no longer possible. All other

tested strategies included the microinstruction cache.
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TEST 2, Conditionals ignored: The IFU was directed to ignore conditional control

transfer instructions and continue fetching sequentially. In this strategy, the IFU ignored the

branch prediction bit, while the EU continued to use it. Since only unconditional control

transfer instructions were followed, pipe flushing in the IFU was reduced. This particular

prefetch strategy did not perform well with the previously described meta-assembly language

iteration templates. The results of this test were compared with other strategies to show the

utility of following conditional control transfers.

TEST 3, Static prediction: The IFU followed conditional as well as unconditional,

control transfer instructions. The prefetch path following a conditional control transfer

instruction was selected based on the value of the static branch prediction bit.

TEST 4, Branch threshold: This test was the same as test 3 except that conditional

control transfer instructions closer than a minimum threshold distance were ignored. Pipe

flushing in the FU was reduced and closer targets entered the microinstruction cache in other

ways. The measured thresholds were 16, 32, and 64 bytes. These thresholds translate to

roughly 4, 8, and 16 instructions since on the average, instructions arc encountered every four

bytes.

TEST 5, Limited prcfetch: This test was also the same as test 3 except that the IFU was

forced to enter an idle state after decoding a specified number of instructions. These limits

were imposed in order to measure the effects of uncontrolled instruction prefetching. The

limits measured were 1, 2, and 4 instructions.

TEST 6, Idle on duplicate instructions: This test was similar to test 3 except that the IFU

will entered an idle state when the instruction it was decoding was a duplicate of one already

resident in the microinstruction cache. While not necessarily a good prefetch strategy, this

illustrated the degree of excess main store accessing in other strategies.



-43-

TEST 7, Alternate path selection: This test was the same as test 3 except that when a

conditional control transfer instruction was encountered, the IFU checked whether it was

already resident in the microinstruction cache. If so, the path opposite that indicated by the

static prediction bit was followed. Unlike the strategies in test 2 and 3, this heuristic had no

difficulty in continuing to prefetch beyond loop constructs.

Test Clocks Clks/Inst Mreads IC%hit IFU%idle ulCmiss uIC%hit

1 2,937,430 2.611 214,947 943 9.52 NA NA

2 2,691,714 2392 225,175 92.1 7.04 182,057 84.025

3 2,541,609 2.259 210,993 92.7 25) 180,749 84.192

416 2,571,122 2285 211,632 923 7.62 177,847 84.422

42 2,613,794 2323 216,937 92.4 7.42 179,195 84292

464 2,647,727 2353 217,632 92.4 7.20 181,414 84.074

51 2,541,671 2.29 210,985 92.7 2.50 180,761 84.191

52 2,541,754 2259 211,012 92.7 2.72 180,778 84.190

54 2,541,754 2.259 211,012 92.7 2.72 180,778 84.190

6 2,773,869 2.465 206,362 91.1 27.84 209,938 81.596

7 2,575,594 2.289 215,027 91.1 12.00 181,137 84.117

Figure 10: Prefetch Strategy Performance Measurements

*Clocks: The total number of basic machine cycles required to execute the
benchmark program.

Clkslinst: The ratio of basic machine cycles to the number of instructions
executed. (This particular benchmark executed 1,125,115 instructions.)

*Mreads: Main store requests. CUfAt: Instruction cache hit rate - the percent of
instruction requests which were already cache resident.

*IFU%idle: Percent of the time the IFU was idle, either because it could not
prefetch beyond an indirect control transfer, or because the prefetch strategy
specified it.

*olCmuss: Number of microinstruction misses produced by EU requests.



e*adC%hit: Microinstruction hit rate - the percent of microinstruction requests
which were already cache resident.

These statistics provide a measure of the various prefetch strategies' relative merits. The

close similarity in the total number of executed clock cycles for each of the intelligent

prefetch strategies, tests 2 through 7, indicates that one heuristic is not significantly better

than another. The largest variation in clock cycles, between tests 3 and 6, is only 9%. These

statistics indicate that significant performance improvements are not provided by the

individual prcfetch strategies. Performance improvemcnts must outweigh the additional

hardware costs engendered in supporting these prefetch strategies.

For an architecture whose design goals included streamlined execution of an instruction

each clock cycle, the Clks/inst statistics were not very encouraging. These numbers, however,

were taken from a simulation run with only 256 microinstruction cache entries. The

microinstruction cache size had been deliberately reduced to accentuate statistical differences

among the prefetch strategies. With a more realistic cache size, the average number of clocks

per instruction would be expected to decrease.

Figure 11 depicts the distribution of idle cycles that the EU waited for an instruction

following a microinstruction cache miss. Whereas the overall pattern reflects attributes of the

architecture, the local variations are a function of the measured prefetch strategies. Ignoring

data cache contention, the maximum wait for each instruction cache miss is the sum of main

store and IFU latencies. The simulated main store latency is six cycles, which arc counted

from the time the IFU detects an instruction cache miss until the first word from main store

becomes available to the IFU. Since the IFU itself is a three stage pipeline, the earliest an

instruction is available for loading into the instruction cache is three cycles after the word

arrives from main store. However, since the instruction set has variable length instructions it

is possible for the instruction to reside in two contiguous quad parcels. Such instructions

accrue an additional cycle of latency. Therefore the microinstruction cache service latency

will be either nine or ten cycles.
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Figure 11: EU'S Ide Cycle D istributions For Microinstruction Cache Mi 

Figure 11: U's Idle Cycle Distributions For Microinstruction Cache Ms
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§6 Conclusions

It is easy to lose perspective in dealing with all of the complex issues and trade-offs in

engineering a computer architecture. In the C Machine's initial design phase there was much

excitement surrounding the possible prefetch strategies. Their relative unimportance was only

realized after actual performance statistics were derived by simulation. The performance

advantage was only a third that of simple branch folding.

The microinstruction cache of the C Machine is far more significant architectural feature

and provides many performance improvements. For example, the simulator executes F.

Baskctt's puzzle benchmarks56 in about 16 million cycles with only 136 docks per instruction.

The design methodology revealed that the performance advantage of one architectural

feature was significantly less than initially anticipated. This same evaluation process can be

applied to justify other design decisions. Empirical measurements identify which features can

be synergistically combined to create a successful high performance system and which are not

worth implementing. Most significantly, the described design process allows an architecture to

be evaluated as a complete system rather than individual, isolated pieces.

Several other questions concerning prefetch strategies remain to be studied. For

example, should the IFU follow procedure calls? The different domain of instruction

addresscs thus prefetched may conflict with instructions already resident in the

microinstruction cache. Another area, is the interaction of prefetch strategies and cache sizes.

Since a large microinstruction cache may contain a program's entire working set, once the

instruction is resident, the IFU's prefetching activity is useless. Conversely, the high number

of EU demand fetches caused by a small microistruction cache's reduced hit rate interferes
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with the IFU by preventing prefetching activity.
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