
REPRESENTATION AND ANALYSIS OF

REAL-TIME CONTROL STRUCTURES

by

Rowland Frank ,prcher, Jr.

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1978

@ Rowland Frank Archer, Jr. 1978

Signature of Author

Certified by

. .. -. ,..

Department of Electrical Eigineering and Computer Science,
August 18, 1978

····..· · 'e .. * *.- ·4·.* * .e 4 **..... * *

Thesis Supervisor

Accepted b . .. mentalCommite-eoGraduatwe.tudents..
Chairman, Departmental Committee on Graduate Students

Archives
C. f' 3Chr-19-LOGY

/--,u 1.7

L!BRARIES

, -a
\ of i k" C n , "

.) XI

1, 11 ts ,

I'sk

REPRESENTATION AND ANALYSIS OF REAL-TIME CONTROL STRUCTURES

by

Rowland Frank Archer, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 1978 in partial fulfillment of the requirements

for the Degree of Master of Science

ABSTRACT

A new notation is introduced for representing real-time scheduling at the task
and event level. These schedules are called control structures. The primary con-
structs Included which direct the flow of control are sequencing, iteration and
preemption. Additional notation allows the representation of interrupt masking, task
termination by external events, task restart as well as resumption from the point of
preemption and codestripping. Algorithms are given for finding the preemption struc-
ture of a given control structure n the notation.

The types of representable control structures are classified by the topology of
their Control Flow Graphs. It is shown that although branching is allowed in the
preemption structure, a tree-shaped preemption structure cannot be represented.
Both partial and total orderings of tasks and interrupt priorities are supported, how-
ever.

A terminology for describing real-time properties of control structures is
developed, and it is seen that without certain assumptions about task execution
times and event timings, conclusions cannot be drawn regarding real-time perfor-
mance of a control structure. A series of algorithms is presented which make use
of these assumptions, and find values for task execution times in the presence of
preemption. The algorithms can analyze control structures containing the principal
control features; suggestions are given for further development of algorithms
which can analyze any representable control structure.

THESIS SUPERVISOR: Stephen A. Ward
TITLE: Assistant Professor of Electrical Engineering and Computer Science

-3-

Acknowledgements

Primary thanks are due to Steve Ward for the germinal idea, and his guidance

in helping me to develop it. His resourcefulness was responsible time and again for

keeping this research in motion.

Tom Teixeira's work in this area was also invaluable, especially for his careful

and rigorous definitions of real-time properties of control structures.

The excellent systems programming support of the DSSR group has provided an

exceptionally hospitable environment in which to program and produce this docu-

ment.

My wife Lizbeth deserves mention for her encouragement and for doing more

than her share so that my attention could stay focused on this investigation.

-4-

TABLE OF CONTENTS

1: Introduction 8.

1.1: Related Research 9.
1.2: Objectives 11.
1.3: Outline of the Thesis 14.

2: A Notation for Real-time Control Structures 15.

2.1: Introduction 15.
2.2: The Basic Control Structure 15.
2.3: Flow of Control 17.
2.4: Closed Control Structures 18.
2.5: Iteration 19.
2.6: Preemption 1 9.

2.6.1: Preemptible Control Structures 19.
2.6.2: Multiple Priority Level Control Structures 21.
2.6.3: Occurrence of Events 25.
2.6.4: Substructure at a Single Priority Level 26.
2.6.5: Determining the Interrupt Structure 27.

2.7: Non-preemptible Tasks 31.
2.8: Stopping the Flow of Control 32.

2.8.1: Breaks in Event Coupled Lists 33.
2.9: External Termination of a Control Structure 34.
2.10: Return of Control to a Preempted Task 35.

2.10.1: Conditional Restart of a Control Structure 38.
2.11: Codestripping 39.

3: Representational Power of the Notation 41.

3.1: Introduction 41.
3.2: Control Flow Graphs 41.

3.2.1: Priority Levels 43.
3.3: Interrupt Driven Control Structures 43.

3.3.1: Globally Cyclic Control Structures 44.
3.3.2: Acyclic Control Structures 47.

3.3.2.1: Branched Control Structures 48.
3.3.3: Locally Cyclic Control Structures 50.

3.3.3.1: Dynamically Decreasing the Range of LC 50.
3.3.3.2: External Termination of Local Cycles 51.
3.3.3.3: Restrictions on Local Cycles 52.

3.4: CFGs at the Task Level 53.

4: Real-time Properties of Control Structures 55.

4.1: Introduction 55.
4.2: Weights of Task Identifiers 58.
4.3: Properties of Event Variables 59.

-5-

5: Algorithms

5.1: Introduction 62.
6.2: Latencies in the Absence of Preemption 63.
5.3: Latencies of Constraints in Cyclic Control Structures 67.
6.4: Latencies of Constraints in Preemptible Control Structures 70.

5.4.1: Definitions and General Approach 72.
6.4.2: Finding Infinite Latencies 74.
5.4.3: Delay Due to Preemption 78.
6.4.4: Applications of PTIME 81.
6.4.5: Adding Phase Relationships to PTIME 83.
5.4.6: Task Execution Time with Preemption at Priorities > 0 85.
5.4.7: Latencies for Constraints at Priorities > 0 88.

6.5: Special Cases and Extensions 97.
5.5.1: External Termination 98.
5.5.2: Restart Control Structures 99.
5.5.3: Codestripping 100.
6.5.4: Non-Preemptible Tasks 100.
6.5.5: Stopping the Flow of Control 101.
5.5.6: Constraints at More than One Priority Level 102.
5.5.7: Finite Event Queues 102.

6: Conclusions and Directions for Future Research 104.

Appendix A: Summary of BNF for Real-time Control Structures 108.

References 110.

-6-

62.

LIST OF FIGURES

2.1. Syntax for task identifiers. 16.
2.2. Syntax for closed control structures. 18.
2.3. Syntax for preemptible control structures. 20.
2.4. Computing the matrix 1. 23.
2.5. Initiating events for Example 2.1. 23.
2.6. The I matrix for Example 2.1. 24.
2.7. 1+ for Example 2.1. 24.
2.8. Preemption structure for Example 2.1. 25.
2.9. Syntax for event coupled preemptible control structures. 26.
2.10. Initiating events for Example 2.2. 28.
2.11. Computing I for cs's containing event coupled lists. 29.
2.12. Preemption structure for Example 2.2. 30.
2.13. Syntax for non-preemptible tasks. 31.
2.14. Examples of processor idling. 33.

3.1. CFG for (((A B)/el)C)X. 42.
3.2. CFG for Example 3.1. 45.
3.3. CFG for Example 3.2. 46.
3.4. CFG for the control structure ((A/el)(B C)D). 47.
3.5. CFG for the control structure (A/(el:(B/(e2:Cle3:D))je4:E)). 48.
3.6. A tree-shaped CFG, for (A/(el:BIe2:C)). 48.
3.7. A CFG which has no corresponding control structure. 49.
3.8. A representable tree-shaped CFG. 50.
3.9. CFG for Example 3.4. 51.
3.10. CFG with an illegal back arc. 52.

5.1. Breakdown of a finite task list into sublists. 64.
6.2. Preemption structure for (5.9). 76.
5.3. Partitioning the events of (5.9). 76.
6.4. Partial execution of a critical window am. 91.

5.5. Partial execution of 1' 94.

-7-

1: Introduction

In an article entitled "Toward a discipline of real-time programming" [Wirth

77b], Niklaus Wirth has divided programming into three categories based on the in-

creasing complexity of validating their programs:

1. Sequential programming

2. Multiprogramming

3. Real-time programming

In a real-time system, a program may be attempting to control or to react to

certain external processes which cannot be forced to cooperate with programmed

processes through use of a synchronization primitive such as a semaphore [Dijkstra

68] or a monitor [Hoare 74]. In order to coordinate itself with these external,

non-programmable processes, the real-time program must know something about its

own execution speed. Thus its correctness will be dependent on the speed of the

processor on which it is run; but this is not a property of the program itself; Wirth

identifies this as the essential distinguishing feature of real-time programming.

This thesis does not directly address the issue of validating real-time programs.

Instead, it deals with the representation of schedules for real-time programs called

control structures, and some aspects of measuring real-time properties of the

resulting control structures. In the sense that knowledge of these real-time proper-

ties may be a prerequisite for validation of a real-time program, the work presented

here does represent a contribution to one aspect of the validation problem.

-8-

Introduction

1.1: Related Research

Most of the previous studies in the field of real-time programming have been

centered on one of two major areas, the design of languages for real-time program-

ming, and scheduling to meet real-time deadlines.

The development of languages for real-time programming can be split between

two approaches; the extension of existing languages [Benson 67; Freiburghouse

77; Ormicki 77; Phillips 76; Wirth 77a], and the creation of entirely new languages

tailored to the requirements of real-time programs [Hennessy 75; Kieburtz 75;

Schoeffier 70]. The essence of these efforts has been to provide some interface

between the real-time program and the scheduling of itself and other programs, ei-

ther through access to the processor's interrupt system, clocks and/or timers, or

by influencing the processor's scheduling routines. Such features provide only a

low level capability for determining a process' real-time behavior; in some cases it

may be possible to think of all the timing interactions that could impact on the

correctness of a real-time system, but the burden of doing so has usually fallen

most heavily (and often totally) on the programmer. Decisions as basic as assign-

ing priorities to different tasks must typically be made by manual analysis, in the

hope that nothing has been overlooked. As the size of the system increases, the

complexity of the problem grows as well, until manual analysis becomes extremely

tedious and error-prone, if not impossible.

Ideally, a programmer could submit his real-time response requirements along

with his programs, and either have them scheduled appropriately, or be told that his

requirements cannot be met by that particular system. Some systems (such as the

CONSORT system of the Domain Specific Systems Research group at MIT) have

-9-

Section 1

Related Research

been developed which can do this for a limited class of programs, but to the

author's knowledge no one has yet created a system to do this in general. Howev-

er, considerable research has been done on scheduling tasks in the presence of

hard real-time deadlines.

Most of the significant results obtained have been based on restricting atten-

tion to limited classes of control structure types. For example, in a multiprocessor

environment where there is a partial ordering of tasks but no iteration outside of

tasks, [Manacher 67] gives an algorithm which will construct near-optimal task lists

(execution orderings) for almost any combination of task run times and deadlines.

If the schedule is full to capacity with tasks whose completion times are

guaranteed, his strategy allows the system to take on additional unguaranteed

tasks without affecting the guaranteed status of those tasks already scheduled.

His scheme does not consider the effects of preemption, however. Serlin [Serlin

72] and Liu and Layland [Liu 73] have independently studied the problem of

scheduling tasks which are iterated but have no relative orderings. Serlin gives

scheduling algorithms based on fixed priorities, time slicing, and relative urgency.

The last is a dynamic priority scheme, where the processor re-evaluates the priori-

ties of each task at every interrupt, and selects for execution the one with the

earliest deadline. This method is shown to produce a schedule which meets real-

time deadlines if any schedule will, but Serlin's analysis neglects the overhead of

context switching.

A different approach is taken by [Hennessy 75; Kieburtz 75] in their micropro-

cessor language TOMAL; instead of using an interrupt system, they have a com-

piler insert calls to a task control monitor (which is created along with the compila-

-10-

Section 1.1

Related Research

tion of a set of programs) at specific points in the compiled code. This provides

assurance that the task control monitor will get control within a finite and bounded

Interval, after each codestrip, as the code between monitor calls is named. This is

similar to a time slicing system which allocates execution time in fixed amounts to

each task, but the time slices are synchronized with program execution. The

length of the codestrip is determined by the response time requirements of the

task, and the compiler can determine whether the programmer supplied require-

ments are in conflict. The notation given in this thesis has the capability of

representing codestrips.

A work which is related to the present one and in fact complementary is that

of Teixeira [Teixeira 78]. Much of the terminology used here was developed

there, particularly that of Chapter 5, where algorithms for measuring real-time pro-

perties are developed. Teixeira also used the regular expression notation of

Chapter 2 to denote sequencing and iteration of tasks. His study centers, howev-

er, on finding schedules to meet real-time constraints; the orientation of the

present work is described in the following section.

1.2: Objectives

The principal goal of this research is twofold; to develop a convenient

representation for real-time control structures, and to demonstrate how such a

representation is useful as a basis for analyzing real-time properties for specific

control structures.

The representation as developed models control structures at the task and in-

- 11 -

Section 1.1

Section 1.2

terrupt level; the tasks are assumed to be self-contained program units whose ex-

ecution time is bounded, and interrupts are represented as occurrences of event

variables. The event variables could be used to represent any event however,

which might be synchronous or asynchronous with respect to the executing task.

The notation can represent total and partial orderings among its tasks, and iteration

of tasks at a single priority level or across several priority levels. As well as

representing conventional single and multi-level interrupt structures, the control

structures given here can represent several unconventional preemption structures,

including branched structures where each branch has an individual preemption

structure which may itself be branched.

As well as representing this basic framework, the capability is provided to

represent:

1. Codestripping as previously described.

2. External termination of a task or group of tasks by an event
occurrence (as opposed to temporarily preempting them).

3. Indication that a task or group of tasks is not preemptible by
a set of events.

4. The choice between restarting a preempted task or group of
tasks from the beginning vs. resuming execution from the point of
interruption.

Thus a rather general notation is given, which in addition represents all of this in-

formation rather compactly. The notation may be used in any application where it

is necessary to communicate something about a control structure of this sort, be it

human to human, human to machine, or machine to machine. In the second case,

the specific applications in mind are representation of a control structure for-12 -

Objectives

Section 1.2

analysis, and for describing to a real-time system what sort of control structure it

should establish for a set of tasks with real-time constraints. In this vein, the no-

tation is quite independent of machine architecture, and thus a subset of the

language can be chosen for a target machine which supports the control features

included therein.

This leads into the second goal of the investigation, which is to demonstrate

how algorithms can be developed which ascertain real-time properties for control

structures of the language. There are several time Intervals which are probably of

common interest to a large segment of users of real-time programs, such as:

1. The maximum delay between the occurrence of an event and
the initiation of its program.

2. The maximum time required to execute a set of tasks at a
given priority, with preemption.

3. The maximum time that may elapse without there being an ex-
ecution of a given set of tasks.

This is not intended to be an exhaustive survey of real-time properties, but rather

an introduction to the usage of the notation as the foundation for such analysis.

Indeed, it is likely that each real-time system has its own special requirements and

characteristics; it is hoped that an appropriate subset of the language can be

chosen to model those characteristics, and algorithms developed which are suited

to an application's special needs. In addition, many applications will have natural

restrictions which lead to simpler algorithms; it is with intent of illustrating this

point that several special case algorithms are developed.

- 13-

Objectives

Section 1.2

1.3: Outline of the Thesis

The next chapter presents a context free grammar for the control structure

language, as well as giving the semantics for each construct. Sequencing, iteration

and preemption are the principal features, with extensions added as described in

Section 1.2. Methods of determining the overall preemption structure of a control

structure are also presented.

Having introduced the notation, Chapter 3 presents the concept of a Control

Flow Graph (CFG) [Allen 76; Fosdick 76], which gives a graphic representation for

the paths of control flow dictated by a given control structure. A definition of ab-

solute priority levels is derived from a control structure's CFG representation. Then

a classification of control structure types representable by the notation is given,

based on the topology of their CFG's. In addition, some types of control structures

which are not representable are described.

A terminology for real-time properties of control structures is developed in

Chapter 4; the requirements for knowing certain things about event timings in ad-

vance is also discussed here.

This leads into Chapter 5, where a hierarchical series of algorithms is present-

ed which are designed to find the worst cases for some of the real-time properties

of increasingly complicated classes of control structures. The most general algo-

rithm given is applicable to the set of control structures which includes the basic

framework of sequencing, iteration and preemption. The types of modifications

which would be required to analyze any representable control structure are dis-

cussed, although detailed algorithms are not given.

- 14-

Objectives

2: A Notation for Real-time Control Structures

2.1: Introduction

In this chapter a notation for representing real-time control structures will be

developed. The intention is to provide a general analytical tool which will be suit-

able for representing most of the possible ways to share a processor among the

members of a set of tasks. This will include:

1. Sequencing: a total ordering of tasks to be executed.

2. Iteration: cyclic execution of some ordered set of tasks.

8. Preemption: a partial ordering of tasks where the occurrence
of an event forces termination of execution of the currently run-
ning task and starts execution of a new task.

A context-free grammar will be developed to define the syntax of the representa-

tion. It is summarized in Appendix A.

2.2: The Basic Control Structure

The real-time system to be represented is modelled as a set of procedures to

be run, called tasks, a control structure which specifies the order (or possible ord-

ers) in which the tasks may be run, and a processor which executes the tasks ac-

cording to the scheduling constraints specified by the control structure.

Thus the flow of data between tasks, if there is any, need not be a concern;

it is assumed that any execution ordering needed to preserve the intended seman-

-15-

The Basic Control Structure

tics of the computation (data flow) will be embodied in the control structure. For

example, if an output of task A is an input of task B, then the control structure as-

sociated with their execution should ensure that task A completes execution be-

fore task B begins.

Further, the detailed flow of information and control within a task, i.e. among

its internal variables and instructions respectively, need not be of concern either.

It is only necessary that an upper bound on the execution time of a task be esta-

blished; this is discussed further in Section 4.2.

A task will be represented by a task identifier ("(task id>"), which in most of

the examples will be a single capital letter (though it need not be). Figure 2.1

shows the grammar which defines task identifiers.

<task id> ::= (letter>)- <task id) (alphanumeric>

(letter> ::= A B C I... Z

(alphanumeric) ::= (letter) I <digit>

<digit> ::= 1 2 .. 9

Fig. 2.1. Syntax for task identifiers.

Next to a single task, the simplest thing to represent is the sequencing of two

or more tasks which are totally ordered. This is done in the natural way, by listing

the task dentifiers in the order of execution of their corresponding tasks, separat-

ed by blank spaces for parsing. A string of one or more tasks will be called a

basic control structure, or (basic cs>. Note that it is permissible to list a task id

more than once in a (basic cs>, to represent the situation where the corresponding

task is executed more than once with zero or more other task executions

- 16-

Section 2.2

The Basic Control Structure

sandwiched In between. 1 The syntax is:

(basic cs) ::= (task id> J (basic cs> 0 (task id>

where "10" represents the blank space terminal symbol.

The simplest control structure is just a basic control structure:

(control structure> ::= (basic s>

Thus the grammar given so far is sufficient to represent single task execution and

sequenced task execution control structures.

2.3: Flow of Control

It is useful to formalize the notion of control flow with respect to control struc-

ture execution. The processor follows the "instructions" supplied by a control

structure, doing both "applications-oriented" work (when it is actually executing the

statements of a task), and "systems-oriented" work (when it is determining which

task to execute next according to the constraints embedded in the control struc-

ture). In either case, the actual machine instructions being executed at any time

will be associated with a particular symbol in the control structure representation;

it will be said that at that time the locus of control (abbreviated LC) is at that

symbol. For example, n the following control structure:

1. Every occurrence of a task id In a control structure represents a separate in-
stantiation of that task, with its own private state. This is used to model reen-
trantly coded routines.

- 17-

Section 2.2

Flow of Control

AB

when instructions of task A are executing, LC is at A; when instructions of task B

are executing, LC is at B.

2,4= Closed Control Structures

It is desirable to introduce parenthesization for the grouping of task id's in the

natural way. In particular, this will be needed to indicate the scope of the various

special symbols which will be used for iteration, preemption, etc. It will also be

helpful in constraining the class of legal control structures to exclude nonsensical

ones, such as those in which some tasks can never execute, regardless of preemp-

tion timing considerations. Parenthesized (sub-)control structures will be called

closed control structures, and the class will be added to as necessary for addition-

al representational power. At the top level, closed control structures will be includ-

ed in the set of legal control structures. Figure 2.2 gives the syntax for closed

control structures; a syntax is also given for closed control structure lists, which

will be needed later to represent more complex control structures.

<control structure) ::= <basic cs> <closed cs>

<closed cs> ::= ((basic cs>) (<closed cs) (basic cs)) ((closed cs list>)

<closed cs list> ::= <closed cs> I <closed cs list> <closed cs>

Fig. 2.2. Syntax for closed control structures.

- 18-

Section 2.3

Closed Control Structures

2.5: Iteration

Most real-time process control applications require the periodic repetition of a

certain task or sequence of tasks. Borrowing from the notation of regular expres-

slons, the asterisk is used to indicate a endless repetition of a control structure.

Its BNF:

(iterative cs> ::= basic cs>X I <closed cs) X (basic cs) <(iterative cs)

The use of "x" is most easily explained by examples:

A By = A(B)" = A B B B B B ...

(A B)*- A B A A B ...

From a flow of control viewpoint, when LC reaches an asterisk following a right

parenthesis, It returns to the matching left parenthesis. If it reaches an asterisk

following a task id, it repeats that task.

The final expansion of the top-level definition of control structure is:

<control structure) ::= (basic cs) I (closed s> i iterative cs>

2.6: Preemption

2.6.1: Preemptible Control Structures

With the class of control structures defined so far, the only execution se-

quences possible are those in which the order of task execution is entirely

predetermined (static). In many situations, a processor will need to respond to

- 19-

Section 2.4

Preemptible Control Structures

asynchronous events such as interrupts, which may not occur at predictable times.

it may be desirable to have such events trigger the execution of a different part

of the control structure than was previously in control. Informally, this will be

modelled by placing sub-control structures into the overall control structure in order

of non-decreasing priority, Demarcation of the priority levels is achieved by indi-

cating that a control structure is preemptible. Figure 2.3 gives the syntax for

preemptible control structures. Preemption s initiated by occurrence of a particu-

lar event (which may be complex) 1 so an event variable is included which stands

for the event.

(preemptible cs> ::= (control structure) / (event var>

<event var) ::= e<integer)

(integer> ::= (digit> I (integer) <digit>

<closed cs> :: ((basic s>) ((closed cs> (basic cs>) I (<closed cs list>) 1

((preemptible cs>) ((closed cs> <preemptible s>)

Fig. 2.3. Syntax for preemptible control structures.

Consider the following simple example, which models a control structure with a

single level of interruption:

((Ax/el)B)

The interpretation of this control structure is that A runs repeatedly until event el

1. The event variable itself is not complex, but it may represent a complex event.

- 20 -

Section 2.6.1

Preemptible Control Structures

happens; this initiates B, which executes once; then LC returns to AX.

The next section will describe how more complex control structures are

represented (using the above syntax), such as those having multiple levels of

interruption.

2.8.2: Multiple Priority Level Control Structures

Informally, event variables lie at the interface between control structures of

different priority, the control structure to the left of the "/<event var)" construc-

tion having the lower priority. If LC is in the lower priority control structure when

the event happens, it will move to the control structure immediately to the right of

the event variable.

Thus a control structure with three priority levels might appear as:

(((((A B)X/el)C D)/e2)E)

The preemption structure (for each event, the tasks which it may preempt) is fairly

straightforward here; el preempts A or B, e2 preempts A, B, C or D. But the nota-

tion is capable of representing more complex control structures, and a method of

precisely determining the preemption structure is needed.

The "Interrupts" or "preempts" relation s transitive; if el interrupts A, initiat-

Ing C, and C is interruptible by e2, then A is interruptible by e2. Moreover, all

tasks of a single basic control structure will run at the same priority level, so basic

control structures can be considered as units, rather than examining the preemp-

1. Although a later section will introduce the capability of masking specific inter-

- 21 -

Section 2.6.1

Multiple Priority Level Control Structures

tion of individual tasks. 1

The "interrupts" relation will now be formalized, i.e. it will be established clear-

ly for each event in a control structure which basic control structures it may

preempt. The set of tasks which are interruptible by a certain event will be re-

ferred to as the scope of that event. The "interrupts" relation for a control struc-

ture will be represented by a Boolean matrix I with n rows and columns, where n is

the number of basic control structures in the control structure being analyzed. A

single basic cs is associated with each row i and column , for 1 i n. The

basic cs associated with row (and column) i will be referred to as "basic cs i."

The first event to the left of each basic cs will be called that basic cs's ini-

tiating event. If l[i,j] = 1, it means that basic cs i runs at a higher priority than

basic cs j; in particular, it means that basic cs i's initiating event can preempt

basic cs j. The matrix I is computed according to the algorithm given in Figure 2.4.

This matrix specifies which events cause preemptions across the border

between adjacent priority levels. Since the "interrupts" relation is transitive, the

transitive closure of this initial relation is the complete preemption structure; this

specifies, for each event in the control structure, exactly which basic cs's it can

preempt. Computing the transitive closure of the relation represented by I is

straightforward. Let + be the transitive closure of I. Then + = I + 12 + ... + In,

where + is normal matrix addition. Boolean matrix multiplication is performed like

regular matrix multiplication except 'AND' is substituted for 'TIMES' and OR' for

rupts while a particular task is executing.

- 22 -

Section 2.6.2

Multiple Priority Level Control Structures

Algorithm 2.1:

1. Let n be the number of basic cs's in the control structure. As-
sociate a unique integer from 1 to n with each basic cs.

2. Initialize I to be an nxn matrix of zeroes.

3. For each basic cs i, do steps 4 and 5.

4. If basic cs i has no initiating event, leave row i of I equal to
all zeroes.

5. If basic cs i has an initiating event e, find the control struc-
ture immediately preceding the construction "/e." Call this "con-
trol structure k." By the syntax of preemptible control structures,
control structure k will be either a basic, closed or iterative cs.
For each basic cs j in control structure k, set Ii,j] equal to 1.

Fig. 2.4. Computing the matrix i.

'PLUS'.

Consider an example of a control structure which contains preemptible control

structures, and which can be used to illustrate the construction of the "interrupts"

relation:

Example 2.1. (((((A B)/el)C)*/e2)((D/e3)E))`

Notice that this control structure contains four basic control structures, A B, C, D

and E. The Initiating events for these basic cs's are as specified in Figure 2.6.

Basic CS Initiating Event Row/Column of I
AB none 1
C el 2
D e2 3
E ea 4

Fig. 2.5. Initiating events for Example 2.1.

The matrix I is formed following Algorithm 2.1, and it appears in Figure 2.6.-23 -

Section 2.6.2

Multiple Priority Level Control Structures

1. A B has no initiating event, so row 1 = [0 0 0]

2. C's initiating event is el. The control structure preceding el
is (A B)", which contains the basic cs A B. Thus 1[2,1] := 1.

3. D's initiating event is e2. The control structure
Is ((A B)x/el)C)* which contains the basic cs's A B
1[3,1] := 1 and 1[3,2] := 1.

4. E's initiating event is e3. The control structure
is D. Thus 1[4,3] := 1.

preceding e2
and C. Thus

preceding e3

I AB C D E

AB 0 0 0 0
C 1 0 0 0
D 1 1 0 0

E 0 0 1 0

Fig. 2.6. The I matrix for Example 2.1.

Now, to get the overall preemption structure, compute +, the transitive closure

of , as shown in Figure 2.7.

I+ A B C D E

AB 0 0 0 0
C 1 0 0 0
D 1 1 0 0

E 1 1 1 0

Fig. 2.7. 1+ for Example 2.1.

The preemption relations of the control structure are summarized in Figure 2.8.

- 24-

Section 2.6.2

Multiple Priority Level Control Structures

LC at Preemptible by Initiates
A or B el C
A or B e2 D
A or B e3 E

C e2 D
C e3 E
D e3 E
E none none

Fig. 2.8. Preemption structure for Example 2.1.

2.6.3: Occurrence of Events

The notion of an event "happening" is purposefully left vague; each applica-

tion of the notation can attach its own meaning. For the purpose at hand it is

sufficient to assume that an event variable is like a flag? which gets set when its

associated event occurs. The processor checks all the event variables before be-

ginning execution of every instruction. The following informally describes what hap-

pens if any flag is found to be set:

1. In the case where LC is to the right of the event variable
which has been set, no immediate effect on execution of the
currently running task results. The currently running task is of a
higher priority than that which is requesting the interrupt.

2. The event variable remains set until such time as LC is to the
left of it and in a basic cs which is preemptible by it, at which
time t will cause a preemption.

3. If more than one event corresponding to event variables to
the right of LC has happened, then the rightmost one represents
the highest priority interrupt (request), and LC moves to the right

1. Generally, a queue of requests is associated with a given event variable, so
that additional occurrences of the event will be remembered if they occur before
the Initial occurrence is noted by the processor. By specifying a length for this
queue, a system which remembers an arbitrary number of event occurrences can
be modelled.

- 25-

Section 2.6.2

Occurrence of Events

of it (assuming, of course, that LC was within a basic cs preempti-
ble by the event).

4. Completion of the control structure at a given priority "resets"
the event variable which triggered its execution; note that this
must be done at completion rather than at initiation so that if the
control structure is preempted before it completes, then LC will
return to it when it is once again the highest priority control
structure requesting processor service.

2.6.4: Substructure at a Single Priority Level

A useful extension to the scheme is to provide for arbitrarily many control

structures1 to reside at the same priority level, but to be initiated by different

events. During execution of one of these control structures, occurrence of events

in the other(s) at the same priority level will have no (preemptive) effect. The

principle syntactic change is to allow replacement of an event variable by an event

coupled list, as shown in Figure 2.9.

(preemptible cs> ::= (control structure) / <event list>

(event list> ::= (event var> ((event coupled list))

((event coupled list))*

(event coupled list> ::= (event var>: (control structure>

(event coupled list> '1' (event var>: (control structure>

where '1' means the terminal symbol i.

Fig. 2.9. Syntax for event coupled preemptible control structures.

1. Of arbitrary complexity, e.g. there may be additional local priority structure.

- 26 -

Section 2.6.3

Substructure at a Single Priority Level

Consider an example:

(A/(el: B I e2: C))

Preemption rights are as follows:

Execution of B or C continues uninterrupted to termination. Termination of B or C

returns LC to A (unless el or e2 has happened again).

A slight modification in the position of the terminal ', leaves the interrupt struc-

ture the same but results in different behavior on termination of B or C:

(Ax/(el: B e2: C)")

The dea here is that once either B or C has been initiated (through occurrence of

el or e2, respectively), control is never again returned to A. Instead, B and C will

be executed every time el or e2 occurs.

2.6.5: Determining the Interrupt Structure

Since arbitrary control structures may reside in an event coupled list, it follows

that such structures may contain additional events (or event coupled lists) which

trigger even more deeply nested control structures.

This ability to nest control structures raises a new semantic issue; what

should be the scope of events which are not at the top level in the event coupled

list? The choice made here is to let any event in an event coupled list have the

- 27-

LC at Preemptible by Initiates
A el B
A e2 C

B or C none none

Section 2.6,4

Determining the Interrupt Structure

same scope external to the event coupled list that an event variable would have if

it were substituted for the event coupled list. Consider the following:

Example 2.2. (A/(el :((B/e2)C)le3:((D/e4)E)))X

The scope of el, e2, e3 and e4 external to the event coupled list

(el :((B/e2)C)le3:((D/e4)E)) is the same as that of e5 in:

(A/eS)

namely, the control structure to the left of the slash in the construction "/((event

coupled list>)".

The initiating events, as shown in Figure 2.10, are determined as before: the

first event variable to the left of each basic cs. The internal scope of the event

variables is somewhat different, though. Events n event coupled lists may not

preempt any task in the list which is separated from the event by a "". Thus in

the above example, e3 and e4 may not preempt B or C. Therefore Algorithm 2.1

must be modified to reflect this. Figure 2.11 shows the resulting algorithm.

Basic cs Initiating event
A none
B el
C e2
D e3
E e4

Fig. 2.10. Initiating events for Example 2.2.

- 28 -

Section 2.6.5

Determining the Interrupt Structure

Algorithm 2.2:

1. Let n be the number of basic cs's in the control structure
under examination. Associate a unique integer from 1 to n with
each basic cs.

2. initialize I to be an nxn matrix of zeroes.

3. For each basic cs i, do steps 4 and 5.

4. If basic cs has no initiating event, leave row i of I equal to
all zeroes.

5. If basic cs i has an initiating event e, then this event appears
in either a "/e" construction or a "e" construction.

a. If e appears in a "/e" construction, call the
control structure immediately preceding "/e"
"control structure k." For each basic cs j in con-
trol structure k, set I[i,j] equal to 1.

b. If e appears in a "e" construction, then e
cannot preempt any other basic cs's in the
event coupled list of which it is a member. Its
scope starts at the control structure to the left
of the "/" n the construction "/(<event coupled
list))". This will be the control structure
preceding the first unmatched left parenthesis
to the left of e. Call this "control structure k."
For each basic cs j in control structure k, set
IEi,j] equal to 1.

Fig. 2.11. Computing I for cs's containing event coupled lists.

The control structure of Example 2.2 has the following preemption relation-
ships:

LC at Preemptible by
A el, e2, e3, e4
B e2
C none
D e4
E none

- 29 -

Section 2.6.5

Determining the Interrupt Structure

Since two or more tasks may reside at the same priority level, such as B and C

above, a natural question arises; what happens if both el and e3 occur "simultane-

ously," at least within the resolution of the interrupt system. 1 Most systems adopt

some arbitrary metric to resolve such situations. A typical one is the distance of

the interrupting device from the CPU. A similar approach is taken here. If more

than one event is found to have occurred at the same priority level, then control is

arbitrarily given to the first (leftmost) one in the event coupled list.

However, with the addition of event coupled lists, "forks" are introduced into

the preemption structure, as shown in Figure 2.12. A diagram such as this is called

a Control Flow Graph, and will be defined formally and used extensively in the next

chapter. For now it is sufficient to note that this diagram "unravels" the preemp-

tion structure so that the relative priority levels of each task are displayed. If two

or more events happen together, priority is given to the event which initiates the

task having higher priority, as was done before. In the above example, if el and

e4 happen simultaneously control is given first to E (which e4 initiates).

A

/1\
el/ i \e3

B D

I /\ i
e21 e2 e4 e4

I/ \
C E

Fig. 2.12. Preemption structure for Example 2.2.

1. Typically the presence of interrupt requests will be checked for once per in-
struction cycle, so any interrupts happening between two such checks will be indis-
tinguishable as to their ordering in time.

- 30-

Section 2.6.5

Determining the Interrupt Structure

2.7: Non-preemptible Tasks

It is occasionally necessary to perform all or some subset of a control structure's

tasks in a non-preemptible mode, even though in the latter case other tasks at that

priority level may be preemptible. Simply indicating that a task is non-preemptible

is equivalent to saying that the interrupt system is "turned off" while that task is

in execution. For generality, the notation allows as an alternative the specification

of exactly those events which are not allowed to interrupt the task. Both capabili-

ties are provided with the augmented syntax, shown in Figure 2.13. The scope of

the symbol for non-preemptibility extends to closed control structures in the natural

way, i.e. every task in the closed cs is non-preemptible.

(basic cs>) := <task>) (basic cs) 6 <task>

(task> ::= (task id> (<non-preemptible tid)

(non-preemptible tid) :-= 'task) '((ev ist))(task)

<ev list) ::= (event var> (<ev ist>,<event var>

(non-preemptible closed cs> ::= '(closed cs> I ((ev list>)<closed cs>

<closed cs) ::= ...(same as before plus:)... (non-preemptibie closed cs>

Fig. 2.13. Syntax for non-preemptible tasks.

Prefixing a task Id (or a closed cs) with an apostrophe (e.g. 'A) indicates that that

task is not preemptible by any event. If there is an event list after the apostrophe

(e.g. '(el)A), then that task is not preemptible by any event in the event list.

Furthermore, it s not preemptible by any event which could lead to preemption by

an event in the event list. For example:

- 31 -

Section 2.6.5

Non-preemptible Tasks

(((((A`/e l)'(e3)B C)/e2)D/e3)E)*

Here if LC is at B, it is not preemptible by e3 or e2, since e2 initiates D which is

preemptible by e3.

Algorithm 2.2 can still be used to determine the nominal preemption structure

for the control structure's set of basic cs's. However, the output of Algorithm 2.2

must then be modified by removing preemptibility relations as specified.

2.8: Stopping the Flow of Control

Although the emphasis has been on how LC moves within a control structure,

there may well be times when there is simply no work to be done for the moment.

It is worth pointing out how the existing notation indicates this with some exam-

ples.

Basically LC will halt when it either:

1. Reaches the "end" of a control structure, and finds no ', or

2. Reaches a slash (') beyond which no events (which are ca-
pable of interrupting the control structure to the left of the slash)
have occurred.

Several examples are given in Figure 2.14 to clarify this concept; for conciseness,

a typical (but not unique) task string which may be generated by each control

structure is given. Additional notation should be self-explanatory.

- 32-

Section 2.7

Stopping the Flow of Control

((A*/e1)B) * > A A A el B A A A el B ...

((A/el)B) x --- A (wait) el B A (wait) el B ...

((AX/el)B) --- > A A A el B (halt)

(((Ax/el)B)/e2) x --- > A A A el B (wait) e2 A A A ...

Fig. 2.14. Examples of processor idling.

2.8.1: Breaks in Event Coupled Lists

In light of the interpretation given to constructs which result in stopping the

flow of control, it will be noted that there is no way to apply iteration to a portion

of the control structure which includes all of a lower priority control structure and

part of an event coupled list. What is needed is the concept of a break, which is

essentially a restricted "go to" statement; it directs LC to jump over the rest of

the event coupled list to the right parenthesis matching the initial left parenthesis

of the event coupled list. Thus it enables the iteration at the end of the event

coupled list to be applied to any intermediate part of the list as needed. The syn-

tax for a break is the up-arrow (t) at the point where the break is desired; it al-

ways follows a basic control structure, so It can be incorporated into that BNF:

<basic cs> ::= (task> J (basic cs> 16 (task> (basic cs> t

As an example, consider the control structure of Example 2.2 modified to include

two breaks:

(A/(el :((B?/e2)C)le3((Dt/e4)E)))*

- 33-

Section 2.8

Breaks in Event Coupled Lists

Now, when LC reaches the end of B or D, it returns to A instead of waiting for e2

or e4, respectively.

2.9: External Termination of a Control Structure

Consider the control structure:

Example 2.3. ((((A*/el)B*)/e2)C)X

Since B is non-terminating and runs at a higher priority than A*, A will never be ex-

ecuted again once el occurs. 1 There is nothing wrong with this per se, but with

the given notation it is not possible to represent the case where occurrence of e2

aborts the repetition of B, and returns control to A after executing C rather than

to 1B.

To do this, the notation must be able to indicate that occurrence of an event

terminates execution of a particular control structure, and thus LC does not return

to that control structure until its initiating event occurs again. The modified syn-

tax:

<task> ::= (task id) J (non-preemptible tid> I (abort tid)

<abort tid> ::= @(task> I @(<ev list>)<task>

(abort cs> ::= @(closed cs> I @((ev list>)<closed cs>

(closed cs) ::= ...(same as before plus:)... <abort cs)

Thus it can be specified that any event aborts a task (e.g. @B) or set of tasks

1. Recall that an event "flag," in this case el, is not turned off until the end of
the control structure which its occurrence initiates. B has no end.

- 34-

Section 2.8.1

External Termination of a Control Structure

(e.g. @(A B C)) or that any set of events causes termination (e.g. @(e2)B). The

event which aborts the task(s) need not be the same as the one which causes

preemption in a particular case; execution is terminated as long as the aborting

event occurs sometime after preemption and before LC returns to the task.

If the control structure of Example 2.3 is changed to make B an <abort tid>,

the desired behavior is obtained:

((((Ax/eI)@(e2)B*)/e2)C)X

Now the string 'A A A el B B B e2 C A A A ... ' can be generated, where repetition

of A and B is for an arbitrary number of times.

2.10: Return of Control to a Preempted Task

There are two distinct choices of what to do when LC returns to a task which

was interrupted during its execution: either resume execution from where it left

off, or start over again from the beginning of the task. These two strategies will

be referred to as resumption and restarting respectively. Each strategy has its

advantages and may be the best choice in different situations. A task which is in-

terrupted often enough may never complete if it is always restarted from the begin-

ning. On the other hand, in a process control situation the inputs to an interrupted

task may have changed radically since it was preempted, and resuming the compu-

tation started with the old inputs may lead to anachronistic outputs which are not

relevant to the current control situation. Therefore, it is desirable to incorporate

means of representing both strategies in the notation. For complete generality, it

must be capable of handling a situation where two different tasks in the same con-

- 35 -

Section 2.9

Return of Control to a Preempted Task

trol structure may follow the two different strategies. Furthermore, it is necessary

to remember the point of interruption in the case of resumption, so the processor

will know where to resume execution.

When the problem of restarting a control structure is examined carefully, it is

seen that there are really two sub-cases which are of interest. First it must be

recognized that the actual unit which is restarted is the task. At the next higher

level, a task appears in a control structure as part of a basic control structure.

Thus the problem is really how to restart a (basic cs>. If there is only one task in

the (basic cs>, the problem Is easily solved--simply restart that task. If there is

more than one task in the (basic cs>, then the entire <basic cs) could be restart-

ed from the beginning of its first task, or it could be restarted from the beginning

of the task which was partially finished when the preemption occurred. For exam-

ple, consider the following control structure:

(((A B)x/el)C D)*

If event el occurs, and C D executes, (A B)X must be restarted (or resumed).

Here are the possibilities:

1. Resume from the point of interruption, in either A or B.

2. Restart from the beginning of A.

3. Restart at the beginning of A if LC was at A when el oc-
curred; restart at the beginning of B if LC was at B when el oc-
curred.

The first case will be the default case, and !s assumed for all basic control struc-

tures as they have been so far defined. The second case will be called global

- 36 -

Section 2.10

Return of Control to a Preempted Task

restart; the third case local restart. If a syntax is defined for the concept of glo-

bal restart, it can be used to synthesize local restart as a special case. Thus a

syntax will be given called "restart cs", and it will have semantics of "global res-

tart", the second case above.

<restart cs> ::= > (basic cs>

To control the scope of the restart symbol, restart control structures are intro-

duced into other control structures strictly through their appearance in closed con-

trol structures:

<closed s> ::= (<basic cs>) (preemptible cs)) >

(<closed cs> <preemptible cs)) I (<closed cs> (basic cs>)

' <closed cs list)) (<restart cs>)

Here is an example of a control structure containing restarts:

((((>A B)(C D)((>E)(>F)))/e 1)G)*

Execution of this control structure proceeds identically to that of the basic control

structure (A B C D E F) until event el happens. This causes execution of G; after

G completes:

1. If LC was at A or B when el happened, LC returns to the be-
ginning of A (global restart of (>A B)).

2. If LC was at C or D when el happened, LC resumes from the
point of interruption in either C or D.

3. If LC was at E or F when el happened, LC returns to the be-
ginning of E or F respectively (note that local restart of (E F) is
equivalent to ((>E)(>F))).

- 37-

Section 2.10

Return of Control to a Preempted Task

2.10.1: Conditional Restart of a Control Structure

There is another possibility which should be represented. In some instances, a

task should be restarted if it was preempted by one event (or one of a set of

events), but resumed if it was preempted by another. This is handled by explicitly

listing the events which would cause restart of a task. Thus a restart cs without

an event list is unconditionally restarted, while one with an event list is only res-

tarted if an event in its event list occurred since it was last run.1

<restart cs> ::= > (basic cs> > ((ev list>) (basic cs>

Example:

(((((>(e2)A)*/el)()B))*/e2)C)X

Here A is restarted if either

1. A is preempted by e2 or

2. A is preempted by el, which starts B. B is then preempted by
e2 before completion.

B is unconditionally restarted, and A is resumed if e2 does not occur between the

time of A's preemption by el and the resumption of A.

1. Note that this means that the restart causing event need not be the one which
caused the task's preemption; there may have been a chain of preemptions which
Included the restart causing event, and this is deemed sufficient cause for restart.

- 38-

Section 2.10

Conditional Restart of a Control Structure Section 2.10.1

2.11: Codestripping

A time-sliced allocation of processor time can be represented with the existing

notation by letting the event variables stand for timer-generated interrupts. One

additional form of preemption which will be explicitly represented here is codestrip-

ping, as outlined in Section 1.1.

In codestripping, calls to the operating system are inserted into a task by the

compiler at calculated intervals, resulting in preemption of the task when they are

executed. The syntax is as follows:

(codestripped cs> ::= (basic cs> / integer>

<preemptible cs> ::= (control structure) / (event list> (codestripped s>

Thus codestripped control structures are introduced into other control structures

under the same syntax as preemptible control structures. An example of a codes-

tripped control structure:

((A B/5)C)*

The meaning here is that the basic control structure A B is executed 1/5 at a time,

based on its total (estimated) execution time; it is then preempted and C is exe-

cuted. When C finishes, LC returns to the point of preemption, and executes

another 1/5 of the way through A B (whether this is actually in A or in B depends

of course on their relative lengths). Thus C will be executed five times for every

single execution of A B.

Notice that control structures such as (>A B/ 10) are syntactically illegal; the

notion of globally restarting (or locally restarting, for that matter) A B is incompati-

- 39-

Codestripping

ble with the semantics of codestripping. Furthermore, codestripping of closed con-

trol structures could lead to highly ambiguous or meaningless structures and is

disallowed. This prevents such structures as ((A B/5)/10) and (((A B/el)C)/5).

Structures which execute until they either finish a codestrip or are interrupted by

an event are allowed, as they should be, e.g. (((A B/5)/el)C)* which executes C

for every 1/5 of A B executed and whenever el happens.

- 40 -

Section 2.11

3: Representational Power of the Notation

3.1: Introduction

This chapter presents a catalog of control structure types which the notation

of the preceding chapter is capable of representing. It is not claimed that every

conceivable type of representable control structure is included, but the list at-

tempts to be comprehensive as to general forms. Some examples are also given of

types of control structures which are not representable.

3.2: Control Flow Graphs

Control structures can be conveniently categorized by the topology of their

Control Flow Graphs, or CFG's. A CFG is a directed graph; more precisely, it is a

set of nodes and directed arcs, where a node represents a basic cs and an arc

represents the movement of LC between two nodes. The nodes bear the names of

the basic cs's which they represent.

Consider an arc A which originates at basic cs o and has as a destination

basic cs d. if o occurs to the left of d in the control structure, then arc A is a

forward arc; otherwise, it is a backward or back arc. Either type of arc may bear

labels:

1. An arc which represents the uninterrupted flow of control due
to termination of a basic cs is a forward arc, and is unlabelled.
Note that this includes breaks as detailed in Section 2.8.1.

2. An arc which represents the flow of control due to preemption

- 41 -

Control Flow Graphs

by an event occurring is a forward arc (an event arc) and is la-
belled with the corresponding event variable.

3. An arc which represents the flow of control due to iteration is
a back arc and is labelled with an "*x

It may seem that tasks rather than basic cs's should be at the nodes of CFG's,

and in fact the algorithms used for determining real-time latencies must sometimes

deal with control flow at the task level. However, this additional detail adds noth-

ing to the breadth of representable control structure types, and in fact detracts

from the readability of the CFG's.1

Figure 3.1 gives an example of the CFG for a simple control structure.

A B .el ;C

Fig. 3.1. CFG for ((A B)/el)C).

A string naming the tasks and (optionally) the events encountered in a path taken

by LC through a CFG is called an execution of the corresponding control structure.

A B el C A B and A el C A el C are both executions of the above cs.

1. If, for example, a basic cs is preemptible by event e, then every task in the
basic cs would have a forward arc labelled ei.

- 42 -

Section 3.2

Control Flow Graphs

3.2.1: Priority Levels

As an extra benefit, the CFG notation provides a convenient mechanism for for-

malizing the concept of priority level, which has been used somewhat intuitively

thus far. To find the priority level of basic cs i, do the following:

1. Let the leftmost basic cs in the control structure have priority
0 by definition.

2. Find the acyclic path from the priority 0 basic cs to basic cs i
having the largest number of event arcs.

3. The priority of basic cs i is equal to the number of event arcs
in this path.

3.3: Interrupt Driven Control Structures

The CFG's for control structures using only sequencing and iteration are fairly

straightforward and do not expand the catalog of representable control structures

by much. The sequence of tasks within a basic cs is implicitly represented, and

forward control flow from one basic cs to another simply translates to an unlabelled

arc in the CFG.

The more interesting CFG's are those which are derived from control structures

having event variables. It is readily apparent that the notation has considerably

more flexibility than that which is needed for representing traditional priority inter-

rupt schemes. This flexibility is derived principally through the placement of the

"I" iteration character and by use of the branching introduced by event coupled

lists. The latter has been mentioned briefly; the former bears clarification.

A back arc can be originated from any basic cs by following it with an "l,.

- 43 -

Section 3.2

Interrupt Driven Control Structures

However, there is a degree of freedom in specifying the destination of the back

arc; this will be exercised in enlarging the catalog of control structures. Funda-

mentally, the back arc may return to the same priority level, a lower one, or the

lowest one. if it does not return to the lowest level, a certain "shrinkage" in the

future range of LC is experienced. This will be elaborated on shortly. Additional

variations on the fundamental types are achieved through use of the interrupt mask

(non-preemptible tid), external abort and restart/resume capabilities.

3.3.1: Globally Cyclic Control Structures

Under this category is included all control structures with CFG's such that

every back arc, regardless of its originating priority level, goes to the first task of

the lowest priority level. Informally, this means that upon completion of the tasks

at a given priority level, the processor will scan all the event variables in the con-

trol structure from the lowest level to the highest, and begin execution of the

highest level task pending. This is as opposed to control structures with local cy-

cles, where the lower priority events are not necessarily considered in each such

situation.

The traditional interrupt systems available on most processors fall into this

category; such systems are further subdivided into two types, which are called

here the weak priority system and the strong priority system. In the weak priority

system, although arbitration between interrupts from two or more events is provid-

ed, there is actually only a single true level of interruption. There is a "user" or

"main" program which runs at the lower priority, and any number of events may

- 44 -

Section 3.3

Globally Cyclic Control Structures

each preempt it; however, no event may interrupt any task which gained control it-

self via an interrupt. This type of control structure is represented using event

coupled lists, as in Example 3.1.

Example 3.1. (MAIN/(el: Ale2: Ble3: C))X

The CFG (Figure 3.2) has an interrupt branch from "main" for every interrupting

event, to the basic cs it initiates. Completion of A, B or C forces LC to return to

MAIN, so there is a back arc from each of them. For the sake of keeping the CFG's

readable, multiple back arcs with the same destinations will be combined, as is

done in Figure 3.2. It is worth keeping in mind, however, that this does not imply

that another type of node (junction) has been added.

NA-iN-e2\e. B.

e3 C

Fig. 3.2. CFG for Example 3.1.

A strong priority system supports a processor priority; the currently running

task has a priority n associated with it, and any events interrupting with priority m

> n may preempt it. With the exception of the ability provided for masking inter-

rupts, the processor runs the highest priority task waiting for service at any time.

This type of multiple priority level interrupt system is represented by strict nesting

- 45-

Section 3.3.1

Globally Cyclic Control Structures

of preemptible (and iterative) control structures, as shown in Example 3.2.

Example 3.2. ((((A/e1)B)X/e2)C)

The general form can be recursively constructed; each "layer" looks like:

(((lterative cs>/(event var>)(basic cs>)*

which is itself an iterative cs. The (basic cs> runs at the next higher priority than

the rightmost basic cs in the (preemptible cs).

A CFG for Example 3.2 is given in Figure 3.;3; it can be seen that the proper-

ties of nested interrupt systems have natural analogues in the graph:

1. Let a and be basic cs's in the CFG. If there is an acyclic
path from a to whose last arc is labelled ei, then there is an
arc from a to labelled ei. This property stems from the transi-
tivity of interruption in a nested, multiple priority system.

2. There is a back arc from the last basic cs at each priority lev-
el to the beginning of the lowest priority basic cs. After comple-
tion of the control structure at a given priority level, LC returns to
the highest level with a pending request.

/%e2,

'C
/

Fig. 3.3. CFG for Example 3.2.

- 46 -

Section 3.3.1

Globally Cyclic Control Structures

3.3.2: Acyclic Control Structures

At the other end of the spectrum are found control structures with no back

arcs; these represent completely non-iterative systems where the flow of control

terminates when it reaches the end of any path. Such control structures are furth-

er subdivided into two types:

1. Linear control structures - control flow is straight-line and thus
entirely predetermined, as in the example of Figure 3.4.

2. Branched control structures - real-time decisions based on
event occurrences determine the actual flow of control; see Fig-
ure 3.6., which provides an example.

The subject of linear control structures does not leave much room for discussion

and is included mainly for completeness. However, there are some interesting ob-

servations that can be made about branched control structures representable with

the notation, and which apply independently of whether there are cycles present;

these will be considered in the following section.

A -e 1 B---- C - D

Fig. 3.4. CFG for the control structure ((A/el)(B C)D).

- 47 -

Section 3.3.1

Acyclic Control Structures

/ e e2 >C
e3 D

e4 E--

Fig. 3,5. CFG for the control structure (A/(el:(B/(e2:C]e3:D))le4:E)).

3.3.2.1: Branched Control Structures

It s interesting to note that while tree-shaped CFG's such as the one in Figure

3.6 can be represented, allowing arbitrary tree-shaped interrupt structures is not

compatible with the transitivity of interruption. In fact, the notation cannot

represent any tree of depth greater than one where the forward arcs are all event

arcs. Thus a CFG such as the one in Figure 3.7 has no corresponding control struc-

ture.

e2- TC

Fig. 3.6. A tree-shaped CFG, for (A/(e1 :Ble2:C)).

For example, consider an attempt to derive a control structure for the CFG in

Figure 3.7, a tree with a depth of 2. By Algorithm 2.2, it is found that since C in-

terrupts B and B interrupts A, C must also interrupt A. Thus an arc labelled e2

- 48 -

Section 3.3.2

Branched Control Structures

must be added from A to C, and the tree structure is lost. Event e2 (and e3) can

be masked from interrupting A; but then el is also masked, since it initiates B

which is interruptible by e2. This same line of reasoning applies to any other at-

tempt to produce a tree-shaped control structure of depth greater than 1.

A el eC

e3 .. D

Fig. 3.7. A CFG which has no corresponding control structure.

Essentially, this restriction says that there cannot be control structures which

have completely local preemption structures, and yet at the same time be initiated

by some event. To incorporate this type of structure would require a notion of "lo-

cal" and "global" events, with suitable restrictions on their scope. The additional

complexity this would introduce may be incompatible with the attempt to keep the

notation concise, but this may be a logical extension of the language for some ap-

plications.

Although it does not represent a preemption structure, Figure 3.8 shows a CFG

which is similar to that of Figure 3.7, but which is representable, and by the follow-

ing control structure:

CA B/(el:C e2: D))

The arc from A to B represents control flow on termination of A, but A cannot be in-

terrupted.

- 49 -

Section 3.3.2.1

Branched Control Structures

e2----C

Fig. 3.8. A representable tree-shaped CFG.

3.3.3: Locally Cyclic Control Structures

Included in this class are all those control structures having back arcs which

do not return LC to the lowest priority level task. This group is further subdivided

into structures which never return control to the lowest priority task, and those

which may or may not make the return at some point. While the emphasis here is

on returning to the lowest priority level, the same sort of distinctions can be made

about any priority level and its superiors. Examples of each case will be given.

8.3.3.1: Dynamically Decreasing the Range of LC

Consider the following general form of control structure:

Example 3.3. (... (preemptible cs)<closed cs>)/(event var> ...)x

This has a non-terminating "<closed cs>)" construction, which corresponds to a

back arc In the CFG from the end to the beginning of the closed cs. Although the

rightmost "X forces LC to return to the beginning of the control structure (if the

"I" is reached), the <preemptible cs> will not be resumed since the following

- 50 -

Section 3.3.2.1

Dynamically Decreasing the Range of LC

<closed cs) runs at a higher priority, and is non-terminating.

Figure 3.9 gives the CFG for the control structure:

Example 3.4. (((A/el)(B C)/e2)D)X

which has the above general form. It can be seen that once a non-terminating loop

is entered, although it may be preempted by higher priority tasks (either momentari-

ly or permanently), control will not return to any task to its left. Thus the control

structure has effectively "shrunk", in that certain tasks are no longer executable.

This shrinking may occur in stages, if there are several events which initiate itera-

tive control structures, and which occur in succession; or it may occur all at once,

if the rightmost such event occurs first.

A el- ...B C e2- b

Fig. 3.9. CFG for Example 3.4.

.3.3.2: External Termination of Local Cycles

A local cycle need not always indicate a decreasing control structure. If the

"(abort cs>" construction is used, then control may reside for an arbitrarily long

time in a given sub-structure (local cycle), and finally return to lower priority levels

- 51 -

Section 3.3.3.1

External Termination of Local Cycles

when the aborting event occurs. The control structure of Example 3.4 can be

modified by the addition of a single "@" symbol:

Example 3.5. (((A/el)@(B C)I/e2)D) *

Now when e2 occurs, it "shuts off" el as well as initiating D. This is a dynamic

behavior and as such Is not well suited to representation by a CFG; however the

real-time latency algorithms must certainly take account of it.

3,.3.3.3: Restrictions on Local Cycles

A back arc can be formed from the end to the beginning of any closed control

structure, and hence there is little restriction on its range of possible destinations.

One notable exception occurs in the presence of event coupled lists. Figure 3.10

gives a CFG which does not have a corresponding control structure; its illegality is

the presence of a back arc which cuts across the "" syntactic boundary in an

event coupled list.

el F

* i .e2 1 C w ileD

Fig. 3.10. CFG with an illegal back arc.

-52 -

Section 3.3.3.2

Restrictions on Local Cycles

Essentially, this says that the forking caused by event coupled lists forms two

or more independent sub-control structures, and LC cannot move freely from one to

the other. However, it is possible that an event external to all the branches may

preempt any of them; thus a CFG identical to that of Figure 3.10, except that it

has no back arc, corresponds to the legal control structure:

(((A/(el: Bje2: C))/e3)D)

3.4: CFGs at the Task Level

There are several variations on the general classifications presented here

which arise principally when control flow at the inter-task level is considered. As

previously mentioned, the complexity of the resulting CFG's limits their usefulness.

Thus these variations are more suitably discussed in the context of latency algo-

rithms; furthermore, they do not introduce new general classes of control structure

types as far as the topology of their CFGs is concerned, but instead result in per-

turbations of those already considered.

However, it is reasonable to examine the changes which would be induced on a

CFG which has single tasks at its nodes, rather than basic cs's. Use of the "(non-

preemptible closed s)" or "<non-preemptible tid>" constructions results in the re-

moval of the appropriate event arcs. In addition, If the task immediately prior to

the "/(event var)" construction is masked, an unlabelled forward arc is added to

show the flow of control which occurs on termination of the masked task.

The default mode of control return to a preempted task is resumption, as dis-

- 53 -

Section 3.3.3.3

CFGs at the Task Level

cussed in Chapter 2. Thus any arc (backward or forward) to a preemptible cs of

this type must be dynamically relocated to point to the task which was in execu-

tion when preemption occurred. Again, this is not easily representable with a static

CFG, and in fact corresponds to the need to store some "state" information while a

task is dormant.

If a task is to be restarted, this problem does not arise; in fact, if an entire

closed cs s of restart type, there will be no arcs pointing to tasks Internal to the

closed cs which originate outside of it. The only entry point from the external

world's point of view is the beginning of the Initial task.

- 54 -

Section 3.4

4: Real-time Properties of Control Structures

4.1: Introduction

A primary motivation behind developing the language presented in Chapter 2 is

to provide a representation of control structures suitable for use as an analytical

tool. Specifically, it provides a convenient format for conveying preemption and

control flow information to an algorithm which then determines real-time properties

of the given control structure.

The algorithms to be given here are not intended to provide an exhaustive

analysis of a control structure, but rather to be representative of the types of

analysis which may be performed. The real-time properties measured here are of

common interest; however, it will probably be the case that, depending on the

needs of the particular user, different real-time properties may be of special in-

terest. In many cases, the given algorithms can be adapted for measuring different

intervals with minimal changes. In other cases totally new algorithms may be need-

ed, but parts of those given will still be useful.

Much of the terminology used here was developed in [Teixeira 78] and the

reader is referred there for a complete discussion.

A principal goal here will be to develop algorithms for determining the worst

case latency of a list of tasks in a given control structure. Informally, the worst

case latency of a list of tasks a (written (a)) is the longest time that can elapse

without there being a complete execution of each task In the list in the order

- 55 -

Introduction

given. The list of tasks whose latency is being measured will be referred to as a

constraint. The latency of a constraint is measured with respect to an execution

of a given control structure, where an execution is a list of tasks in the order in

which they are executed by the CPU in a particular invocation of that control

structure. Each element (task id) of the execution has a weight associated with

it, written as I(task id>l. The weight represents an upper bound on that task's

execution time on a particular processor.

Note that depending on event timings, a number of different executions (of

finite or infinite length) may be generated by a single control structure. Consider

the control structure:

(((A B)*/e 1)C) x (. 1)

Possible executions include:

ABABAB...

ABCABC...

ABABCABABC ...

among many others. Also note that In the case of preemption a task may be

suspended and restarted, and thus partial weighting (or its effective equivalent)

must be accounted for.

The weight of a list of tasks is the sum of their individual weights. The worst

case latency of a constraint a with respect to an execution , is the sublist of

with greatest weight which does not contain a. The term "contains" as used here

means that the elements of a occur in order and with their full weights; there may

- 56 -

Section 4.1

Introduction

be arbitrarily many other tasks interleaved. For example, (A B C D) contains (A C)

as well as (A B), but it does not contain (C B).

The provision that the tasks be included with their full weights is emphasized

for the following reason. In many real-time process control applications, the inputs

to a task may change at any time, but the scheduling of task initiation may not be

synchronized with the arrival of new inputs. Thus it is entirely possible that new

Inputs may arrive immediately after the initiation of a task, i.e., after it has already

read the outdated inputs. Given this possibility, it may be that nearly two complete

occurrences of the constraint may be executed in an interval which still does not

contain (in the strict sense defined above) a single occurrence of the list. For ex-

ample, given the control structure (A B C) x, consider the execution A B C A B C. If

an input to A arrives immediately after A reads its old input, then it is only after

the second occurrence of C has completed its execution that all the tasks in the

constraint will have been executed in order (the constraint is satisfied by such an

execution). Thus a way Is needed to represent an execution whose end-tasks are

weighted just less than their nominal values; the notation chosen is bracketing

such a task on its "short side"; [A means "begin just after the start of A", and C]

means "stop just before the finish of C". The weight of such a task is its nominal

weight minus , where is arbitrarily small. Thus the worst case latency of (A C) in

(A B C)* is [A B C A B C] 1.

The list (A B C A B C) is an example of a critical window for (A C), where a

1. Unless it is known that the timings of such data arrivals can be synchronized
with task initiation, it must be assumed that this could occur at any time after A is
Initiated.

- 57 -

Section 4.1

Introduction

critical window is defined as a list a such that a contains two occurrences of a

constraint C but [a] contains no occurrences of C. In many cases the worst case

latency of a constraint will turn out to be the weight of a critical window (the most

critical window). The worst case latency of a constraint with respect to a control

structure (as opposed to an execution) s taken over all the possible executions

that may be generated by the control structure -- no matter what the event timings

(within specified limits), there can be no longer interval which does not contain the

list. Thus part of the problem faced is to classify the types of executions which

may be generated by a control structure and narrow the choice among them for

finding the worst case, since otherwise the combinational explosion in the number

of possible executions would make the problem intractable.

4.2: Weights of Task Identifiers

It was mentioned briefly above that a weight is associated with every task

identifier, representing an upper bound on its execution time. Naturally this must

be with respect to a particular processor, but even with this restriction there are

some difficulties in determining a meaningful upper bound on execution time. Aside

from input dependent computation times, there are processor dependent variables

such as memory access time in a virtual storage system. The worst case time

would occur when all memory references were to the slowest storage device, but

the probability of such a case actually occurring may be nearly zero. On the other

hand, there may be an uncomfortably large variance associated with the mean ac-

cess time when critically time-dependent processes are involved. It seems then

- 58 -

Section 4.1

Weights of Task Identifiers

that in such a case one must either arrive at a statistically reasonable upper bound

on memory access time or change the storage allocation parameters of time depen-

dent tasks to ensure their residence at a particular level or above (in access

speed) of the storage hierarchy.

If an upper bound on the execution time for a task does not exist, this would

imply potentially infinite worst case latencies and there would be no purpose to ap-

plying the algorithms given here. If there is any question of the value of an upper

bound, then it must be chosen carefully in light of the particular application of the

latency information. The weight of each task will be an input to the latency algo-

rithms along with the control structure, and it will be assumed that a function (table

look-up) exists which returns this weight in response to the notation j(task id>l.

4.3: Properties of Event Variables

In order to arrive at worst case latency times for a control structure containing

event variables it is necessary to know something more about the timing of the

events represented. To illustrate, consider the control structure:

(((A B)*/el)C D)X (5.2)

If el never occurs, the only possible execution of this control structure is (A B A B

A B ...). The latency I(A B) in this case is 2(]Ai+IBI) - , since the longest sublist

which does not contain A B would be [A B A B]. On the other hand, if el occurs at

leas-t once every C[+iDI seconds, then (A B) is infinite, since the only execution

generated is (C D C D C D ...) (ignoring possible initial executions of A and B). If

- 59-

Section 4.2

Properties of Event Variables

the control structure contains more event variables it may become difficult to deter-

mine the worst case latency (the largest I(A)) by inspection, and the need for

additional information about the event variables is clear.

In particular, what is needed is the following:

1. min(ei): the minimum period of event e; It is guaranteed
that e will not occur more than once in any interval of rmin(ei)

seconds.

2. rmx(ei): the maximum period of event e; It is guaranteed
that there will be at least one occurrence of ei in any interval of

Wmx(e) seconds.

It is entirely plausible and indeed likely that in some situations wmin(e) will be

the same as rmax(ei). This is the case for all regularly occurring cyclic events,

such as data sampling, processor time slicing, etc.

In general, it is impossible to distinguish a rmin(ei) which is less than the pro-

cessor instruction cycle time from an infinitesimal one since the processor could not

possibly respond to an event which occurred at that rate in any meaningful way.

In fact, for a reasonable system, one would have to pick a r min (e i) considerably

larger than the instruction cycle time, but the actual value will be application

dependent. For most events of interest it will be possible to determine a reason-

ably tight rmin(e); e.g., if the event represents an /0 service request, it cannot

occur more often than some time interval dependent on the I/0 device's maximum

character transmission rate.

Unfortunately, finding a good value for max(ei) is more difficult in many cases.

- 60 -

Section 4.3

Properties of Event Variables

An event often represents an exceptional condition, which may never arise in par-

ticular executions, Fortunately, most control structures will not put time critical

tasks in such a position that their initiation depends on r max(ei), but rather it is

more likely that the completion of a constraint may be influenced by time lost after

such an event occurs; and the time lost will be a function of Crmin (ei), not

Wmax(ei). If a good value of max(ei) is not available for a particular event, then

it is more likely that the interval of interest would be the maximum time from the

occurrence of ei to the initiation and/or completion of its associated control struc-

ture, rather than the longest time between such executions (a latency value).

- 61 -

Section 4.3

5: Algorithms

5.1: Introduction

A series of hierarchically related algorithms will be presented in this chapter,

which will be directed at the problem of finding the worst case latency of a con-

straint with respect to a given control structure. Each algorithm in the hierarchy is

applicable to a larger subset of the set of all representable control structures, and

may call upon the algorithms designed for solution of the problem on a lesser sub-

set as subroutines.

The overhead due to context switching is not explicitly taken into considera-

tion here. t may be accounted for by a fractional reduction of the effective pro-

cessing power of the CPU, when computing the worst case task weights. If this is

not satisfactory, then the algorithms could be adjusted so that each event oc-

currence and corresponding initiation is counted, and the overhead due to each

could be added to the delays attributed to interruption.

As the worst case latency algorithms are developed, it will be seen that the

determination of algorithms to measure several other real-time properties, interest-

Ing in their own right, is required. Finally, special cases may result in substantial'

simplification to the algorithms, and examples of this effect are included.

- 62 -

Introduction

5.2: Latencies in the Absence of Preemption

The first step taken here toward the general solution of the worst case laten-

cy problem is the development of algorithms to determine the latencies when no

preemption is present, i.e. when there are no event variables or codestrips in the

control structure. This leaves control structures which generate finite and infinite

lists of tasks, in which all tasks execute to completion once initiated.

Since only non-terminating iteration is represented (in the absence of preemp-

tion), all finite lists must contain no iterative components. Furthermore, any finite

list L of tasks which contains at least one occurrence of a constraint C1 may be

broken down into a series of possibly overlapping sublists:

(1. a1 , 2, · 'a',an, 2) (5.1)

with respect to a constraint C where:

1. 1 and A¢2 each contain one instance of C, but 1] and [2

contain no instances of C.

2. The a,'S are critical windows for C.

The sublist 1 is the head of the list L having minimum weight and which also

contains one instance of C; 2 is the tail with least weight which contains one in-

stance of C. The list a1 is the critical window which starts at the first instance in

L of the first task in C; a is the critical window which starts at the ith instance

in L of the first task in C. If L contains no critical window, there will be no ais;

1. If L does not contain C, then the latency of C in L is infinite.

- 63 -

Section 5.1

Latencies In the Absence of Preemption

similarly, if L begins or ends with a critical window then 01 or 82 respectively may

also be empty.

Figure 5.1 gives an example of the breakdown for the list (A B C D B C B C E)

and the constraint (B C). Note the overlapping of the sublists, and that in this

case 11 1la2 1.

I"' 81-- 1 i =2 '1I
A B C D B C B C E

- I ' 8---- 2 i

Fig. 5.1. Breakdown of a finite task list into sublists.

Theorem 5.1. The latency of a constraint C with respect to a finite list L which
contains at least one occurrence of C is the maximum weighted sublist in
the set of sublists :B1, '' an' 2} where the i's and ji's are as
defined above.

Proof. The proof will be given in two parts; first, by showing that any list which
contains at least one occurrence of C can be broken down in the above manner to
obtain such a set of sublists which includes all the tasks in the original list; and
second, by showing that no other sublist not in the set can have a greater latency
for C.

. The proof of the first part is given by showing a method of constructing the
set {B1' 1 ' 2 ' ... ' n , P2 given such a list L and a constraint C.

Find each sublist of L which exactly contains one instance of C (i.e., a sublist
y such that y contains C but ![: and y] do not contain C); label each such sublist
r, for i = 1 to n, where n is the number of instances of C in L. The list L can
thereby be considered as a series of sublists:

01' 1' 2' 2 ' ' n-l' n-l n (5.2)

- 64-

Section 5.2

Latencies in the Absence of Preemption

where the Oi's do not contain C and may be empty. If 'r overlaps -ri+ 1, then #i+1

will be empty. This set of sublists includes every task in L, and with no permuta-
tion of the original ordering. Then:

1. 81 is 1 appended to yl.

2. a is the list starting at yL and continuing to the end of i+1'

Including i+1 Note that since i and i+1 may overlap, a is

not their concatenation.

3. 2 is ,n-1 appended to n'

Now for the proof that the worst case latency of C in L is the maximum of
(101 1=a 1,21, 'Ian I%1821}

Since the ai's are all the critical windows in L, they represent all the lists

such that [a] cannot be expanded in either direction without the resulting interval
containing C. Similarly, 81] and [a 2 cannot be expanded on their bracketed sides

without introducing C to the interval. Since the concatenation of
(81, a, a2, . -,an, 82) contains L, and none of these sublists can be expanded
without the resulting sublist containing C, the only possibility for the existence of a
sublist with greater latency is that there is such a list which includes parts of two
of the above sublists. That such a sublist with greater latency does not exist is
demonstrated by case analysis.

Again, consider the list L reorganized as In equation (5.2). Now, suppose that
there exists a sublist * which includes part of 1 and part of al, and that 1 >

811I and 11J > 1a11. The sublist * cannot begin in 1, or it could not contain any-
thing past 1 (without containing C) and hence 10 (1 l . But if starts at the

beginning of 1. it could include no more than a., and therefore 1 ; ja1 1. If . be-

gins past the beginning of 1, it cannot contain anything past r 2 , and hence 1*1 (

la 1. Thus such a sublist does not exist.

The same line of reasoning will show that a sublist with greater weight than
any of 1' a1' ... 'n' 2 } cannot being constructed from parts of adjacent ai's,
or an and 2. Thus the worst case latency of C in L will be the maximum of (18 ,

1 I, ' I an I 1 2 1). 3

Algorithm 5.1, FLATENCY, summarizes the procedure to be followed in finding the

65 -

Section 5.2

Latencies in the Absence of Preemption

worst case latency of a constraint C with respect to a finite list L.

Algorithm 5.1. FLATENCY(L, C)

Inputs: L, a list of task identifiers (a basic control structure); L[i] is the ith task
in L.

C, the constraint (also a list of task identifiers); C[i] is the ith task in C.

Outputs: (I(C), startindex, finishindex);

I(C) is the worst case latency of C in L.

start-index is the index of the first task of the sublist of L which displays
the worst latency for C.

finishindex is the index of the last task of the sublist of L which displays
the worst latency for C.

Method:
1. Scan L to find:

1', the head of L with least weight which contains C.

ai , I = 1 to n where n is the number of occurrences of C in L

minus 1.

02' the tail of L with least weight which contains C.

This is accomplished as follows. All scans start from the mark point, initial-
ly L[1].

a. Reset the mark point to be the first occurrence of C[1] found
during each scan. If no occurrence of C[1 is found, the mark
point is set to the task past the end of the current scan.

b. 1 is found by scanning until a complete occurrence of C has

been found.

c. The a,'s are the lists which exactly contain two occurrences

of C; they are found by scanning from the mark point for one oc-
currence of C, and then scanning from the new mark point for the
second occurrence of C.

d. P2 is the result of the final scan if no tail of L is a critical win--66 -

Section 5.2

Latencies in the Absence of Preemption

dow.

e. If no occurrence of C is found in L, return (, -1, -1).

2. The weights of each sublist are accumulated during each scan, as well
as the startindex and finishindex for that scan. At the end of each
scan the weight is compared to the largest found so far, and saved as the
new maximum (C) if it is greater (in which case startindex and
finishindex are updated to the values for the just scanned list).

3. Return the final values (MAXIMUM(IO1 J, 11 ', 1, 1 21)'

startindex, finishindex).

5.3: Latencies of Constraints in Cyclic Control Structures

In the specified language an infinite list of tasks is generated by the iteration

construct; iteration is either applied to an entire control structure or to the last

closed control structure in a <closed cs list). Thus infinite lists are either entirely

cyclic (the entire structure is repeated):

(A B C D E) (5.3)

or have a start-up period followed by a steady state cycling:

(A B C)(D E) (5.4)

It would be indeed unfortunate if the entire infinite list had to be examined to find

the worst case latency, but due to the restrictions on its cyclic nature only a rea-

sonably small number of cycles (to be determined) have to be examined to find the

worst case. Thus the intention here is to reduce the case of an infinite list to a

finite list which contains the worst case, and use Algorithm 5.1, FLATENCY, on the

result.

The principle question Is thus to determine how many cycles of the iterative

- 67-

Section 5.2

Latencies of Constraints in Cyclic Control Structures

portion of the list need be appended to the non-iterative portion (if there is one) in

order to generate a list containing the worst case latency of a specified constraint.

First, though, it must be determined whether or not the latency is infinite (assuming

no task id has infinite weight).

Lemma 5.1. Given a control structure ()(*)x and a constraint C, the worst case
latency of C in ()(fi)X is infinite iff C contains a task A which is not con-
tained in .

Proof. If does not contain a task A which is in C, then () is an infinitely long
list (and hence of infinite weight) which does not contain C, and thus in which C
has infinite latency.

If does contain every task n C, then if C contains n tasks at least every n
repetitions of contains C and hence the latency of C in (~)(') could not be
infinite.

Once it has been established that the latency is not infinite, the following theorem

can be applied to find the sublist which contains the sublist with the worst case la-

tency.

Theorem .2. Given an iterative control structure L = (4)(~)c and a constraint C
containing n task identifiers, then if the latency of C in L is not infinite,
the list formed by appending n + 1 copies of to contains the sublist
with the worst case latency for C in L.

Proof. Theorem 5.1 established that the worst case latency of a constraint in a
list of tasks was either a critical window ai or a head or tail of the list 1 or 82.

By Lemma 5.1, if the latency is not infinite then ~ contains every task in C. There-
fore

, C 4, o"n (5.5)

where An means n copies of appended to each other. This is true since n copies
of must contain C, since each contains each task identifier in C. Note that /1

might be wholly contained in , nonetheless.

- 68-

Section 5.3

Latencies of Constraints in Cyclic Control Structures

By similar reasoning:

O, ,n+1 (5.6)

contains the most critical window of (~)(')*; if the most critical window is con-
tained in , then equation (5.6) must contain it. Otherwise, it is contained in
(+)(*). If the most critical window starts in but ends in ()*, then it cannot go

any further than n since the first n copies of must contain C; thus equation
(5.6) contains the most critical window if this is the case also.

Finally, suppose that () contains the most critical window. Consider the list 8
formed by starting at the first occurrence of C[1] in the first copy of AP, and ending
at the last occurrence of C[n] in the n + 1st copy of ik. The list must contain
two occurrences of C, since P1 through An contain C, and '2 through An+l contain

C. If [] contains no occurrences of C, then is a critical window. If is a critical
window, then no critical window can exist which is larger than since it would have
to be constructed out of more than n + 1 copies of & and thus would contain .
Thus if is a critical window, it is the most critical window in (4)~. But if is not a
critical window, then it must contain a critical window, and by the same logic this
critical window must be the most critical window in ()X.

Algorithm 5.2, ILATENCY, shows how to use Theorem 5.2 coupled with the algo-

rithm FLATENCY to determine the worst case latency of a constraint with respect

to any control structure which does not contain preemption.

Algorithm 5.2. ILATENCY(L, C)

Inputs: L, a control structure which does not contain preemption.

C, a constraint (list of task identifiers).

Outputs: (I(C), startindex, numtasks)

I(C), the worst case latency of C in L.

startindex, the index in L of the first task of the list whose weight is
I(C).

numtasks, the number of tasks in the list whose weight is I(C).

Method:
1. If L is not iterative, let (I(C), startindex, finishindex) = FLATENCY(L,
C); return(l(C), startindex, finishindex - startindex + 1).

- 69-

Section 5.3

Latencies of Constraints in Cyclic Control Structures

2. If L is iterative, then divide L into ts iterative and non-iterative (if
any) parts: L = ()(*)*.

a. If * does not contain every task in C (not necessarily in ord-
er), return(oo, -1, -1).

b. Let K = , n where n is the number of tasks in C. Let
((C), startindex, finishindex) = FLATENCY(K, C); return(l(C),
startindex, flnishindex - startindex + 1).

5.4: Latencies of Constraints in Preemptible Control Structures

The next complication to be dealt with is the presence of event variables and

multiple priority levels, implying the possibility of preemption before completion of a

constraint, and thus additional weight for the worst case latency. In fact, at this

point the possibility of infinite latencies arises due to lockout by higher priority

tasks, even though the constraint may be contained in an iterative portion of the

control structure.

The general case of preemptible control structures contains many additional

complexities, if one includes external termination of control structures, non-

preemptible tasks, codestripping, restarting, and idle time due to stopping the flow

of control. Thus, in keeping with the theme of building a hierarchy of algorithms

which handle increasing complexity with each new layer, the applicability of the

next algorithm is restricted to include all the control structures allowable as inputs

to ILATENCY, plus those containing (event list>'s ((event var)'s and event cou-

pled list)'s). Specifically there are the following restrictions:

1. No external termination (<abort tid> or abort cs>).

2. No restarting of control structures ((restart cs>).

- 70 -

Section 5.3

Latencies of Constraints in Preemptible Control Structures

3. No codestripping ((codestripped os>).

4. No non-preemptible tasks ((non-preemptible tid> or (non-
preemptible closed cs>).

6. No stopping of LC. The highest priority ready task must al-
ways be Initiated without delay. Thus a control structure such
as:

((((A*/e)B)/e2)C)x (5.7)

is illegal but

((((A/e)B)X/e2)C)* (6.8)

Is not. Event coupled lists must contain breaks (cf. Section
2.8.1) to ensure that waiting for higher priority events in the
event coupled list does not occur.

6. Constraints must be contained wholly in a subcontrol structure,
defined as a series of basic cs's, an iterative cs, or closed cs
lists at a single priority level. In CFG terms, a subcontrol struc-
ture is an acyclic path through the control structure's CFG which
contains no event arcs, back arcs or breaks. This allows all pro-
cessor time spent at any other level to be treated as an addition
to worst case latency, and lets the details of exactly which
tasks are contributing to the increase be ignored. Additionally,
the tasks of the constraint must not be contained in more than
one subcontrol structure. If they are, then the worst case laten-
cy in the entire control structure would be ; the minimum of the
worst case latencies in each subcontrol structure which contains
the constraint; thus the present algorithms still give an upper
bound. The problem here is that if the constraint can be satisfied
by an execution which spans two or more priority levels, then the
tasks being executed during preemption must be identified, and
can no longer be lumped together and treated as time lost to in-
terrupts.

7. Infinite event queues. An infinite number (or some suitably
high number representing the maximum possible number of pending
events) of occurrences of each event are remembered. This
means that if an event happens before the previous occurrence
has been cleared (by completion of the initiated control struc-
ture), the new occurrence will be held in a queue and not ignored.

- 71 -

Section 5.4

Latencies of Constraints in Preemptible Control Structures

5.4.1: Definitions and General Approach

The addition of preemption to a control structure introduces several interesting

timing questions. For example:

1. The worst case latency of a constraint as previously defined,
i.e. the longest time that can pass without their being a complete
execution of each task in the constraint in order. This may now
be prolonged by initiation delay as well as preemption delay. Ini-
tiation delay is time lost due to the initiating event not yet having
occurred.

2. The worst case latency of an event, defined as the longest
time that can elapse between the occurrence of an event and
the start of the subcontrol structure which it initiates. What ex-
actly constitutes the initiation of a subcontrol structure will be im-
plementation dependent.

3. Related to (2), it may be desired to know the worst case exe-
cution time of a list of tasks at a given priority level; this is their
execution time in the absence of preemption plus the most possi-
ble time lost to preemption. This may be more useful than (1) in
cases where occurrence of an event signals the arrival of new
data, rather than assuming that task initiation is unsynchronized
with data arrival times.

In all these cases it will be necessary to make some assumptions which could

lead to an upper bound which is somewhat greater than the actual worst case (in

addition to the uncertainty in the estimate of worst case task execution time). In

particular, Teixeira has shown [Teixeira 78] that the worst case occurs when all

interrupting events happen at the beginning of an interval and continue happening

at their maximum rate. It may be that the phase relationships of the events cou-

pled with the execution times of their subcontrol structures is such that the

events could never all happen together; if this is known in a particular case then

its worst case may be different, and the Initial phases of the events could be ad-

justed accordingly. The algorithms do allow specification of event phases, as will

- 72-

Section 5.4

Definitions and General Approach

be seen. In any case the algorithms do give an upper bound to the problem.

The worst case latency of a constraint which executes at priority 0 (the

lowest priority) can be determined in terms of nominal time in the absence of

preemption plus time lost to interrupts; the initiation delay need not be considered.

The fundamental difference between tasks at priority 0 and priorities greater than

O is that if the worst case latency of a constraint involves more than one execu-

tion of tasks at a priority level greater than , there may be delay due to initiation

of that priority level (which must be figured according to rmax of the initiating

event in the worst case) for the additional task executions. The lowest priority

level is assumed to be always running or ready, and thus has no such delay.

In general there will be some thought required to pinpoint the worst case for

any time Interval of interest; once determined, the algorithm to measure such a

time interval can be constructed using the following basic technique.

1. Determine the relative priorities of every basic cs in the
overall control structure, and associate with each event variable
the subcontrol structure which it initiates (cf. Section 2.6.5). The
priority of a subcontrol structure and its initiating event are the
same. It is assumed that rrnmin and r ax are known for each

event (cf. Section 4.3).

2. Determine whether the time interval (latency or otherwise) is
Infinite. This may be done in two steps:

a. If the time interval is infinite in the absence of
preemption (determined as previously shown), then it is
Infinite in the presence of preemption.

b. Otherwise, find out whether higher priority tasks can
sufficiently load down the processor so that the interval
of interest is never completed. One method for doing
this will be shown.

3. If it is not infinite, determine the interval in the absence of-73 -

Section 5.4.1

Definitions and General Approach

preemption and other delays.

4. Factor in the loss of time due to preemption and other delays;
lifting any of the restrictions given in Section .4 will usually be
seen as perturbations of this factor.

6.4.2: Finding Infinite Latencies

The control structures represented here provide no a priori method of guaran-

teeing fairness if preemption is present; i.e., it is entirely possible that in the

worst case some tasks in the control structure may never be executed due to

preemption by higher priority tasks.

Fortunately it is possible to determine whether this is the case in advance and

at low computational cost, and this must be done before continuing with the

analysis. If the latency at a given priority level is infinite then the iterative solu-

tions to be used for solving for loss of time due to preemption do not converge.

The method used is to determine a load factor for each subcontrol structure that

can preempt a given one, and if the load is > 1 then the given control structure's

tasks will never execute.

In order to find the load factor due to a subcontrol structure ' with initiating

event e, it is necessary to partition the set of events in the overall control struc-

ture as follows:

1. E ways; the set of events which can always preempt , but

can never be preempted by e. These are the events of higher

absolute priority than e, as found by Algorithm 2.2.

2. E win-tie; This is the set of events which cannot preempt 1

- 74-

Section 5.4.1

Finding Infinite Latencies

and cannot be preempted by e, but are chosen over e if e,

and one of them are both pending at the same time. This set is
the union of the following sets:

a. Events which have the same absolute priority as e,

but occur to its left in the same event coupled list.

b. Events which have the same absolute priority as e,

but occur in a different event coupled list which is entire-
ly to the left of the event coupled list containing- .

c. Events which have higher absolute priority than e~

but occur in an event coupled list which does not contain

el#.

3. Elose tie; This is the set of events which cannot preempt *
and cannot be preempted by e, but e is chosen over one of

them if both are pending at the same time. This set of events is
the union of the following sets:

a. Events which have the same absolute priority as e*,

but occur to its right in the same event coupled list.

b. Events which have the same absolute priority as e,

but are in a different event coupled list which is entirely
to the right of the event coupled list containing i'.

c. Events which have a lower absolute priority than e,

but occur in an event coupled list which does not contain

4. Enever; This is the set of events which can never preempt

e,*, and initiate subcontrol structures which can always be
preempted by e. These are the events of lower absolute priori-

ty than e*.

As an example, consider the control structure:

(A/(el :B/(e2:Cle3:D)e4:E/(e5:Fe:G)))* (5.9)

- 75-

Section 5.4.2

Finding Infinite Latencies

its preemption structure appears in Figure 5.2, and the partitioning of its events in

Figure 5.3.

el A e4

2 \3 e5 e6

Fig. 5.2. Preemption structure for (5.9).

Initiating Event E E E
/Task always wintie losetie never

none/A el, e2, e3, e4, e, e6 none none none
el/B e2, e3 e5, e6 e4 none
e2/C none none e3, e4, eS, e6 el
e3/D none e2 e4, e5, e6 el
e4/E eS, e6 el, e2, e3 none none
e5/F none e2, e3 el, e6 e4
e6/G none e2, e3, e5 el e4

Fig. 5.3. Partitioning the events of (5.9).

To decide whether a task A at a given priority level in a control structure may

never execute, partition the events of the control structure relative to A as just

described. Each event initiates a subcontrol structure (at a single priority level);

let ei initiate subcontrol structure i. The worst case load of a given subcontrol-76 -

Section 5.4.2

Finding Infinite Latencies

structure on the processor occurs when its initiating event happens at its maximum

frequency:

Worst case oad(i,) = (ei) (5.10)
min

The total load factor is the sum of the worst case load factor for each event which

might participate in the blockout of A; this is the set Epreempts =

{Eelways U Ewintie} since these are exactly those events which consistently get

control over e A no matter how long eA may have been waiting in queue. Of course,

if A is in the lowest priority control structure, there is no e A and the set Ewin-ti e

Is empty; but the analysis of possible blockout due to preemption is unchanged.

Let the events in Epreempts be {ei, ,ej}; then the total load factor is:

Total load factor(A) = j m Ji) (5.11)
k =i min(e)

if the total load factor is 1.0, then the task A (and any other task in the same

basic cs as A) never gets executed; its worst case latency is infinite. All the fol-

lowing algorithms assume that this check has been made before they are called, so

that a finite solution is known to exist.

- 77-

Section 5.4.2

Finding Infinite Latencies

5.4.8: Delay Due to Preemption

The problem of determining the time taken up by preemption lends itself natur-

ally to an iterative solution. In the worst case it must be assumed that every in-

terrupting event happens at its maximum frequency (once every "min seconds).

As the tasks initiated by one nterruption are being executed, there may be addi-

tional event occurrences, causing further delay, etc. By equation (5.11), if the

load factor is < 1 It is guaranteed that at some point the task in question (the one

being preempted) will execute; but it Is not clear when and for how long before it

is preempted again.

The problem is then to solve for the total time taken to execute some set of

tasks V of total weight W, in the presence of a set of interrupting events

(ei, , ej) which all happen at time zero and then again every rmin(ei)

seconds, each initiating subcontrol structures with weights {Wi , ... , Wj). The

total time, T,, is:

k=i Imin(ek) W

The ceiling function is chosen since the quotient

Tj*1 n(eO] (5.13)
gives the number of occurrences for emin the interval [; but since all eventsk

gives the number of occurrences for ek in the interval [T,; but since all events

- 78 -

Section .4.2

Delay Due to Preemption

happen at the beginning of the interval (in the worst case) one additional oc-

currence must be added

T
1 + (5.14)

but if the event occurs at the exact end of the interval T this occurrence must

not be counted since y will already be completed - thus the choice of

[~ T~4Pe 1(5.15)
'min(ek)

A quick iterative solution to (5.12) is had by noticing that an excellent lower bound

is the solution to

>w k=JTWk(5.1 _)_
TJ W# k=i ' min(e) (5.1

which is

W
T 2 kr W (5.17)

ki wmin(ek)

Notice that the denominator is exactly 1 - Equation (5.11), the total load factor,

which has already been computed. Equation 5.17 implies that running with inter-

rupts is like running 4/ on a processor whose strength has been diminished by the

- 79-

Section 5.4.3

Delay Due to Preemption

load factor of the interrupting tasks.

Thus equation (5.12) is solved iteratively by letting

W

rT it= (5.18)

Ok&J Wk .
k =i minek)

and then solving for Tn:

T Im+in/(ek Wk

and stopping when T T _1 The right-hand side is monotonically increasing

with T, and this process converges very rapidly since the initial guess is so near

the final value.

Given a computation which takes a known time t in the absence of interruption,

Algorithm 5.3, PTIME, computes the total time taken to do the computation in the

presence of interrupts. It is assumed that there is no initiation delay involved, i.e.

PTIME finds the worst case interval which contains t seconds of time in which

preempting tasks are not executing.

Algorithm 5.3. PTIME(t, E preempts)

Inputs: t, a time which represents computation time in the absence of preemption.

Epreempts a set of events which can preempt the computation which
takes t seconds.

- 80 -

Section 5.4.3

Delay Due to Preemption

Output: tp, the time taken in the worst case with interrupts to perform a computa-
tion which takes t seconds without interrupts (i.e., PTIME assumes all the
events in Epreempts happen as soon as the computation starts, and con-

tinue at their maximum rate)

Method:

1. Let W = t. Let {e, ''., ej) be the events in Epreempts. Let
{W, *.., W } be the weights of the subcontrol structures initiated by
the corresponding events. Then solve equation (5.18) for an initial value
of T; solve equation (5.19) repeatedly for T using the value of T

n n-1
ending when T T Return(T).

T n n-1 n

5.4,4: Applications of PTIME

Using the algorithm PTIME one can determine several real-time properties of in-

terest for control structures which meet the restrictions of Section 5.4. It must be

kept in mind that there is a distinction between the following two sets of events:

a. The set of events which can preempt a task after it has been
initiated, as well as take priority over its initiating event while it
is pending.

b. The set of events which get priority over an event if it is
pending but has not yet been recognized by the processor (no
tasks have been initiated due to its occurrence), but cannot
preempt any tasks n the subcontrol structure which that event
initiates.

The worst case latency of any constraint which is in the subcontrol structure

at priority 0 can also be directly determined. The distinction between this applica-

tion and the one just mentioned is that the constraint need not be contained in a

single copy of the subcontrol structure. Since the priority 0 subcontrol structure

has no initiating event and hence no initiation delay, the worst case latency of a

- 81 -

Section 5.4.3

Applications of PTIME

constraint C can be determined in two steps:

Algorithm 5.4. PRIOLATENCY(4, C)

Inputs: , a subcontrol structure which runs at priority O.

C, a constraint.

Output: I(C), the worst case latency of C in .

Method:
1. Find ((C), startindex, numtasks) = ILATENCY(o, C), the worst case la-
tency of C in the absence of preemption.

2. Let Epreempts be the set of all events in the entire control structure.

The worst case latency of C is PTIME((C), E preempts)

Another application is to determine the latency of an event e i , that is, how

long is it in the worst case between the occurrence of an event and the initiation

of the corresponding subcontrol structure. This can be found as follows:

Algorithm 5.5. ELATENCY(E, ei)

Inputs: , the least amount of time that can elapse before a task can be con-
sidered initiated.

e, the event whose latency is being determined.

Output: te , the longest time that can elapse after e occurs before its subcontrol

structure gets initiated.

Method:

1. Let the set preempts = {Ealways U Eintie relative to the event
e.

2. t = PTIME(., Epeempts)

- 82 -

Section 5.4.4

Applications of PTIME

5.4.5: Adding Phase Relationships to PTIME

For a more general formulation, it is useful to have available the means of

determining execution time in the presence of interruptions when the interrupting

events may have started happening at any individually determined time rather than

all starting at time zero. For this purpose, the phase of an event is here defined as

the time since its last occurrence. Thus for a set of events (e, , e } there

may be associated a set of phases j = i, ' *, }. If the events are occurring

at their maximum rates, then no more than rmin(e i) -i seconds can elapse before

the next occurrence of e.

In addition, there may be one or more pending occurrence of any of the events

on the event queue, so a set of initially pending occurrences a = ti, ·· , j)

may be determined. These two factors alter the time due to preemption equation

(6.12) as follows:

Y I T0 (min(k) - Ik) kJ
T IN ki (in (ek) k Wk (5.20)

A good lower bound to this is its solution without the ceiling function:

* = 1 - (min.(e k)

Tk W e (5.21)

kAt irmin(ek)

- 83 -

Section 5.4.4

Adding Phase Relationships to PTIME

The solution is again found by solving (5.21) for the initial value T and then
0

solving (5.20) for Ti using the previous value T Sn until they are equal. A sum-

mary is given below as Algorithm 5.6, PHTIME. Note that if Ok = min (ek) and k = 0

for all k, PHTIME computes the same value as PTIME.

Algorithm 5.6. PHTIME(t, Epreempts, I, Q)

Inputs: t, a time which represents computation time in the absence of preemption.

Epreempts, a set of events which can preempt the computation taking t

seconds.

*, a set of phases, one for each event in Epreempts'

fl, a set of initially pending occurrences, one for each event in Epreempts

Output: tph, the time taken in the worst case to perform a computation which

takes t seconds to perform with no interrupts. The worst case involves
preemption by all the events in E preempt s as often as possible, subject to

the constraints of #, , and rmin for each event.

Method:
1. Let W= t. Let {(e, . ej} be the events in Epreempts. Let

(Wi, ... , Wj) be the weights of the subcontrol structures initiated by

the corresponding events. Then solve equation (5.21) for an initial value

T4O; solve equation (5.20) repeatedly for T using the previous value

of Tn , terminating when they are equal. T is the value to be re-

turned as tph.

- 84-

Section 5.4.5

Adding Phase Relationships to PTIME

5,4.6: Task Execution Time with Preemption at Priorities > 0

Algorithm 5.5 gives a method for determining the maximum time that can elapse

between the occurrence of an event ei and initiation of its subcontrol structure.

This is fairly simply done since while ei is pending the set of events that can

preempt it is static. Once its subcontrol structure has been initiated, however,

only events in E ways can interrupt; however, if any of these events does occur,

any event in E wintie will take priority over resumption of ei's subcontrol struc-

ture.

This complicates the determination of worst case execution time (and laten-

cies, as will be seen in the next section) for a task subset 8 of the subcontrol

structure. Note, however, that if the set Ewinti e is empty (and therefore the set

of interrupting events is static), that PHTIME can be used to get the correct result.

In general though, the result must be found in stages, determining when can

be executed. The next algorithm determines the worst case time to execute a set

of tasks 8, contained in a single subcontrol structure, given the sets of events

E always and Ewinti e for 8 and their initial values of and . It assumes that 8

has been just initiated and then finds the time tp from initiation to completion of .

This is done by first finding how long it will be before all the pending interrupts, if

any (based on and Q), are processed and can be resumed. Then the earliest

occurrence of an event in Eways marks the next preemption of S. At that point

any accumulated occurrences of events in Ewin-ti e will cause executions of their

subcontrol structures to be completed before 8 can be resumed. This partitioning

- 85 -

Section 5.4.5

Task Execution Time with Preemption at Priorities > 0

of the total time taken to execute 8 is repeated until all of is completed. Note

that the method does not require determination of an exact schedule for all the

tasks in the control structure, although the exact times when 8 will be executed

are found. Algorithm 5.7, SCSTIME (for "subcontrol structure execution time") de-

tails the procedure. Note that this algorithm does not address the problem of

determining execution time for a set of tasks which may require more than one in-

vocation of a subcontrol structure.

Algorithm 5.7. SCSTIME(8, E/lways, Ewin-tie ,)

Inputs: 8, a sublist of the tasks in a subcontrol structure.

Ealways, relative to e, 's initiating event.

Ewin-tie relative to ea.

, phases for events in Elway s and Ewin-ti e

t, initially pending occurrences for events in Ealw and Ewin-ti e

Output: tp, the longest possible time to execute with interruptions.

win-tie' the final phases for all the events in Ewintie

awintie' the final number of pending occurrences for all the events in

Ewintie '

Method:
1. Set acum = 0, the cumulative execution time for 8. Set t1 = O.

2. Find how long 8 can execute before it is preempted by an event from
Ealways This is:

t2= MINIMUM (min(e k) - k) for all ek Ealways (5.22)

- 8 -

Section 5.4.6

Task Execution Time with Preemption at Priorities > 0

Go to step (4).

3. Find how long can be executed before an event from Ealways
preempts it; this occurs at time:

t2 - (least multiple of rmin(ek) > t 1 for all ek e Ealways) (5.23)

4. If 8cum + t 2 - t1 > 181, 8 will complete in this interval; compute tp = t 1

+ 18 - cum; compute T4 win-tie using equation (5.25) and substituting tp
for t 2; compute nwin tie using equation (5.24) and substituting tp for t 2.

Return (tp wintie I win tie). Otherwise set cum = cum + t 2 - t 1

5. Set t3 = 1 for the event from Ealways which caused the preemption.

Some events in Ewintie may also be pending:

t k
2 1

k [wmeintej) [j Emin(eA) for all ek s Ewin tie (5.24)

6. Update phases for all events:

t2
#A t2 - m() t2min (ek) for all e k e {Ealways U Ewin-tie} (5.25)

7. Find new value of t1 , the next resumption time of 8:

t I = t 2 + PHTIME(E, Ealways U Ewin_tie' ,) (5.26)

8. Repeat steps (3) through (7) until termination of 8 is detected in step
(4).

- 87-

Section 5.4.6

Task Execution Time with Preemption at Priorities > 0

5.4.7: Latencies for Constraints at Priorities > 0

The worst case latency may be desired for a constraint which is satisfied by

an execution of a subcontrol structure at a priority greater than 0. If the execu-

tion which represents the greatest latency involves two or more invocations of that

subcontrol structure, the possibility of initiation delay must be considered as well

as interruption delay. Each of these delays may Involve a different set of preempt-

ing events.

There are thus several complexities to be dealt with in the general case, even

with control structures meeting the restrictions of Section 5.4; however there are

also several special cases with simpler solutions. An example is when the sets

Ewin-ti e and Elose tie are empty; it will be shown how to make use of this

simplification in a later section.

Recall the notation of Section 5.2, where a subcontrol structure ip was broken

down into components (1, al', ... an', 2) relative to a constraint C, where the

ai's were critical windows and the 's each contained one occurrence of C.

The worst case latency of C in a control structure containing 4' at a priority

level greater than zero s found as follows. Let e be the nitiating event for 4'.

There are two candidate time intervals which may be the worst case latency for C.

The first, tl, is the maximum delay between occurrences of e plus the maximum

delay to complete 1 with preemption. The second, t , is the maximum time taken

to complete am, the most critical window of , also with preemption. Either one

may involve more than one invocation of A, and hence initiation delay. To show

- 88 -

Section 5.4.6

Latencies for Constraints at Priorities > 0

that either t or t could be the worst case latency for C, consider a simple ex-

ample:

Example 5.1. ((A'/el)B C D C)x

where

lrax(el) = 10 sec.

IAI = 1 sec.

IB = 2 sec.

IC = 1 sec.

IDi = 3 sec.

The most critical window for the constraint (C) is (C D C), with a weight of 5

seconds. However, the longest time that elapses without an occurrence of C is 13

seconds, which is t , or max(el) + le * IJCJ. If D! were changed to be 15

seconds, though, (C D C) would still be the most critical window for (C), but now

t is 17 seconds, which is greater than t .

Thus the two candidate times must be computed and their maximum returned

as I(C). Note that since the entire control structure is repeated, the task list

starting at 2 and wrapping around through 1 is a critical window, call it (a, and

must have weight greater than 2; therefore 2 cannot take longer than it to exe-

cute, and need not be considered as a candidate for (C). Furthermore, it might be

thought that the weight of a, plus the delay due to initiation of its second part, 2,

may in total be greater than the weight of an otherwise most critical window which

- 89 -

Section 5.4.7

Latencies for Constraints at Priorities > 0

Is contained in * and hence has no Initiation delay associated with it. To show this

is untrue, it Is only necessary to show that the weight of a with initiation delay

must be less than t and tp, since the addition of delays due to interruptions is

a monotonically increasing function of the time taken without interruptions.

Thus assume that an Is not the most critical window of * for C (if it is, It will

be considered by the algorithms and thus there is no need to justify its exclusion).

But if this is the case, then there is a critical window am in with greater weight

than a; thus the time to execute a is less than or equal to

&P + (Wma(e) - laml) (5.22)

In the absence of interruptions. But since lag is lam I, equation (5.22) Is ;

Wma (e). This in turn is less than t, which includes wrmx(e+) as one of its sum-

mands. Thus it is sufficient to find the maximum of tl and t.

Consider the computation of t. First the most critical window must be found

for C in using the algorithm for iterative control structures, ILATENCY. Note that

in this case since the entire subcontrol structure gets repeated, the head (1) of

()x containing C cannot represent the worst latency for C by itself (without initia-

tion delay); there must be a critical window of greater weight which includes

as its second occurrence bf C.

Therefore ILATENCY will return I(C), the weight of the most critical window am

- 90 -

Section 5.4.7

Latencies for Constraints at Priorities > 0

in (). ILATENCY also returns startindex, the index in of the first task of am

and numtasks, the number of tasks in am. Knowing this, it can be determined how

many times e, the initiating event for 4', must occur during amr'S execution (i.e., by

knowing how many copies of are included in arm). Partition am into the sublists

(am 1 am 2 , am }, where each ami is a portion of am which is contained in (a

single copy of) . Since t is the longest possible time to execute am, it must
m

be assumed that all the Interrupts happen immediately after initiation of am and

continue at their maximum rates, while the initiating event e happens at its

slowest rate.

Figure 5.4 shows the time line for part of a sample execution of a critical win-

dow am which is not contained by a single copy of 4.

I1----1 ---- ----2----1----3---- --..--4---- ---- ----1 6.... i
e 4, a a e a

starts m m 4' m
occurs 1 1 occurs 2

starts ends second starts
time

Fig. 5.4. Partial execution of a critical window a m.

In the worst case, the initiation delay of interval (4) will be the maximum possi-

ble, with the constraint that interval (3) must be at its maximum too (greatest

amount of time lost to interrupts). Therefore the intervals (1) and (2) must be

- 91 -

Section 5.4.7

Latencies for Constraints at Priorities > 0

computed at their minimum, i.e. no preemption. Thus interval (1) is assumed to be

zero, and interval (2) is IS - am 11. This may give an inflated upper bound by

lengthening interval (4); if it is known in a particular case that preemption must

occur during intervals (1) and (2), an adjustment can be made in the phases of the

Interrupting events at the beginning of interval (3).

As was previously stated, it is assumed that the worst case is when all events

occur right after am starts, so the length of interval (3), t(3) , is found from

SCSTIME(am , Ewy Ewntie ') where Elways and Ewin_i are deter

mined relative to e (, = (.. . , 0) and = (1, ... , 1) for all the events.

Once the interval times t(1), t(2), and t(3) are determined, t(4) is found by:

t(4) - MAXIMUM [O, max(e) - t(1) + t(2) + t(3)] (5.27)

If t(4))> O, there is an initiation delay which must be factored into the solution.

At this point another decision must be made which affects the tightness of the

upper bound determined by the algorithm. During interval (4), any of the events in

the control structure other than e may get control, and there may be arbitrarily

complex blocking out among the different sets of events due to the exact order of

occurrences; i.e., to get the true picture, the sets Elways Ewin-ti e and

Elose te relative to every event must be considered, since the reference point

provided by knowledge that e was pending has been lost. This makes finding an

analytic solution for the values of and at the end of interval (4) quite compli-

- 92-

Section 5.4.7

Latencies for Constraints at Priorities > 0

cated, and two alternatives are provided here instead. Note that the relative im-

portance of this is dependent on the relative size of interval (4); in the extreme

case, if it is zero, then there is no problem at all.

The simpler method (and the one used here) is to assume that all events in

Ealways and Ewintie get blocked out during interval (4), and thus their 4's and O's

get updated accordingly. This will provide an upper bound which is high by the

amount of execution of preempting tasks which could have taken place during inter-

val (4) and will now instead be added to the preemption delays of the next inter-

val.

Unfortunately, this is not the only complication. In the worst case, an event

from Eose tie might get control just before the end of interval (4), and initiate a

subcontrol structure which could not be preempted by e. The event e in

Eosetie which initiates a subcontrol structure that runs for the longest time

without being preempted by an event in Ealways or Ein-ti e (given their 's and

t's at the end of interval (4)) is chosen, since once it gets preempted it has less

priority than e by definition. Let the length of this time be t, and then the time

until am starts is given by PHTIME(t, {Ealways U Ewintie} , 0t). The 's and
2

O's are updated and the process is repeated as from the start of am, terminating

when the end of a is reached.

The alternative method is to determine an exact schedule for interval (4).

Then it will be known whether or not an event from Eose tie can get control and

- 93-

Section 5.4.7

Latencies for Constraints at Priorities > 0

keep it past the end of interval (4), and the exact #'s and nt's for all the events

can be determined. This is the method of choice if the initiation delay is known to

be significant.

The interval tl is measured on a slightly different time line:

---- 1 1i --- 2--- ---- 3---- - 4 - l
e B e e ,B

t* 1 1 9 1

occurs 1 1 occurs 2
starts ends second starts

time

Fig. 5.5. Partial execution of 1

To find t, the execution of /1 is broken down into parts which are contained in a

single copy of , just as was done for am. Here the worst case is when all inter-

rupts happen at the beginning of interval (1) and continue at their maximum rate,

since the length of interval (0) s fixed at rmax(ep); this gives the greatest delay

during interval (1). Interval (1) is thus the maximum initiation delay for with

preemption, including the possibility of an event from Eosetie getting control just

before e happens and causing further delay as previously discussed. The times

of the remaining intervals are found as was done for the am 's, computing the initial

*'s and W's appropriately.

This procedure is detailed in Algorithm 5.8, LATENCY.

- 94 -

Section 5.4.7

Latencies for Constraints at Priorities > 0

Algorithm 6.8: LATENCY(C, ')

Inputs: C, a constraint

*, a subcontrol structure containing all the tasks in C, in a control struc-
ture meeting the restrictions of Section 5.4, and where the worst case la-
tency of C is known not to be infinite by equation (5.11).

Output: I(C), the worst case latency of C in the control structure containing 4.

Method:
1. Find (C), startindex, and numtasks by executing ILATENCY((), C).
Let am be the critical window starting at startindex and continuing for
numtasks.

2. Find the sublists of am: (am1 am .. , am) where each am is
2 n

the completely contained in a single copy of 4. If the number of tasks in
* Is , then am = #[start_index] through [k], am through am = n-

and am = 4[1] through 4[numtasks - k(n - 2) - (k - startindex + 1)].
n

3. Since the worst case involves maximum initiation delay for , assume
Intervals (1) and (2) (see Figure 5.4) elapse without preemption. Thus
t(1) 0 and t(2) = 11 - lam 11, and =t(1)+ t(2) , at the start of interval

(3).

4. Find the sets Eaiways and relative to e Set O and =
1 for all events in these sets. Find the set Eiose tie relative to e Set

tIm = 0. Initialize the counter i = O,. Repeat steps (5) through (7) until
m

the end of a is reached in step (5).
n

5. Set i = i + 1. Find t(3) = tp, which is returned by

SCSTIME(am Ea/way EElway Einti e I I). Set t +t(3). Set and Q

for the events in Ein-ti e to the values winti e and wintie returned
by SCSTIME. If i = n, go to step (8) where t is computed.

1

. At the aend of t(3), since am was in control, none of the events in

Ealways was pending. Thus set t = and:

- 95-

Section 5.4.7

Latencies for Constraints at Priorities > 0

k 'am t - min(e) in(e) for each event ek (Elways } (5.28)

7. Let t(4) = max() t(3) - o. If t(4) >) O0, there is an initiation delay
and the following must be done:

a. Update ¢ and 0 for each event ek in {Eelways U Ewin_tie):

t(4) + k
M i (5.29)

tk t(4) + k - k min(ek) (6.30)

b. Find the event e Elosetie which initiates a subcontrol
structure that can run the longest before (or without) being
preempted by an event in {Ealways U Ewintie); this can be done
by considering each event in Elose tie in turn. Let te be the

time which elapses past the end of interval (4) due to e.

c. Find the initiation delay of am
i+ 1

tdelay = PHTIME(tel, {Ealways U Ewintje} (5.31)

d. Set tm = tm + t(4) + tdelay'

e. Set itk = 0, and:

ta
10k tam - mfcek) tmjn(ek) (5.32)

for all events ek in {Elway s UEwintie).

e. Set , tdelay'

If t(4) is zero, set ## =¢# + t(3) - max(e).-96 -

Section 5.4.7

Latencies for Constraints at Priorities > 0

8. Find to ; find 81 of () by scanning until the first occurrence of C

has been scanned. Divide 81 into sublists as was done for am in step (2),

getting as a result (1 , 1 , 1), where this n may be different
1 12 n

from the n obtained for a

9. Refer to Figure 5.5. The time of interval (0), t(0), is Tma (e). As-

sume all events in (Ealways U Ewintie) occur at the end of this interval,
and continue at their maximum respective rates. Thus set tZ = 1 and = 0
for all these events. Let T8 =t(0); let i = O. Starting at step (7b), ex-

ecute just as for am l substituting t for t , and 81 for am.

10. Return MAXIMUM(t8l, tam).

5.5: Special Cases and Extensions

There are many special cases which result in much simpler algorithms. Each al-

gorithm presented in the previous section is directed towards a subset of control

structure types which contains the previous subset and some additional control

structure types; it is seen that in general, as the number of different types in the

subset increases, so does the complexity of the resulting algorithms.

As an example of another important special case, consider finding any of the

real-time properties for a subcontrol structure whose sets Eose tie and Ewin-ti e

are empty, e.g., as would be the case in a control structure containing no event

coupled lists. Now all of the complications due to having the set of preempting

event variables change dynamically drop out -- the statically determined set

Ealways is the only set that may preempt, and by definition it can always preempt.always

- 97-

Section 5.4.7

Special Cases and Extensions

The simplifications this introduces are substantial; take the most complex of the

algorithms of the previous section, Algorithm 5.8, LATENCY, for example. In step

(6), SCSTIME can be replaced by the simpler PHTIME. There may still be an nitia-

tion delay t(4), but there is no longer the possibility of an event from Elose tie

getting control and prolonging the initiation time.

As far as extensions to the algorithms go, there are two principal areas to con-

sider: one is the determination of algorithms for real-time properties not discussed

here and which are germane to a specific application, and the other is the lifting of

the restrictions of Section 5.4 to allow any representable control structure to be

analyzed. Since the first area requires an application relative to which suitable al-

gorithms can be developed, only the second area will be covered here.

The difficulty involved in lifting the restrictions of Section 5.4 varies consider-

ably from one restriction to the next, and hence they are discussed here one at

time. The following discussions are not intended to be the final word on the topic,

nor are all the details supplied for a particular method of lifting each restriction.

Instead, the intention is to point out the difficulties involved in each case and to

make suggestions as to how they might be overcome.

65.1: External Termination

Recall that there are two types of iteration, in effect, that can be applied to a

subcontrol structure; local and global. If a subcontrol structure is locally cyclic, it

means that that particular subcontrol structure executes indefinitely, without requir-

Ing reinitiation by its initiating event. This is equivalent, then, to having an event

- 98 -

Section 5.5

External Termination

which initiates a subcontrol structure with infinite weight. If, instead, it is part of a

globally cyclic control structure, then it too will be repeated indefinitely, but only

one time per initiating event occurrence. Both of these types are allowed under

the restrictions of Section 5.4, because the weights of the initiated subcontrol

structures are fixed, even though they may be infinite in the locally cyclic case.

However, there is the potential for a subcontrol structure which has infinite (and

thus fixed) weight with no external termination to have varying weight in the pres-

ence of external termination. Thus the delays encountered in the execution of

lower priority control structures due to Interrupts which initiated abort cs>'s

(those which may be externally terminated) will vary according to how long the

<abort cs) executes before t gets preempted. An upper bound on this time can

be found if a good value is known for max of the terminating event; if there is

more than one such event, the minimum of their maximum periods may be used.

Note that this also complicates the determination of load factor (equation

(6.11)), since that depends as well on having a known upper bound for the weight

of each subcontrol structure.

5.5.2: Restart Control Structures

This is another case which may lead to variable subcontrol structure execution

times. Every time a (restart cs> gets preempted, the time of its current execution

is extended by its nominal weight in the absence of preemption; it is essentially

the opposite of external termination. Thus a (restart cs> needs a non-preempted

Interval equal to its nominal weight in which to execute. To find whether such an

- 99 -

Section 5.5.1

Restart Control Structures

interval exists, one must see whether the phases of all the events in the sets

Eaiways and E winti e relative to the (restart cs> can be adjusted so that it gets

preempted at least once every I(restart cs>l - seconds. This can be either very

simple, as in the case where there is only one event that can preempt the (restart

cs>, or very complex, if there are many events and their interrelationships must be

considered.

6.5.3: Codestripping

This is somewhat simpler to handle. If one of the interrupting events initiates

a codestripped s>, then the delay it causes is simply its nominal weight divided

by the number of codestrips, e.g. the weight of (A/5) is just A/5. If the tasks

whose execution time is being measured are codestripped, though, it is as if they

were preempted by an event with variable min -- to get this effect, a dummy

event can be substituted for the integer which tells how many codestrips there

are, and its phase can be adjusted every time the <codestripped cs> is resumed

so that t will cause preemption at the time when a single codestrip would have

finished.

6.5.4: Non-Preemptible Tasks

Let A meas be a subcontrol structure whose real-time properties are being

measured. Then if a subcontrol structure of higher priority than 4 rmeas includes

non-preemptible tasks, the effect on meas is unnoticeable -- these tasks wouldMeas

- 100-

Section 5.5.2

Non-Preemptible Tasks

have been executed to completion anyway before meas was resumed. If all of

Omeas is non-preemptible, then its computation time need not include the effects of

those interrupts which cannot preempt it, and the sets Eway s and Ewinti e can

be adjusted accordingly. If only a part of f/eas is non-preemptible, then the I's

and 's of interrupting events must be updated when the non-preemptible part has

been executed. If a subcontrol structure of lower priority than meas is non-

preemptible, then if the interval /meas includes an initiation delay, it must be in-

creased by the maximum amount possible due to execution of tasks which e can-

not preempt. This can be handled similarly to the case where an event from

Elose tie gets control just before e occurs.

5.6.5: Stopping the Flow of Control

This is another case which may result in effectively varying the weights of

subcontrol structures and hence the delay due to preemptions which include their

execution. It has some similarities to external termination; consider the example

given in equation (5.7), repeated here:

((((At/e 1)B)/e2)C)x

The problem is that the effect of the delay in executing A due to el's occurrence

is dependent on the period of e2 - hence the similarity to external termination.

The difference is that the minimum effective weight of B is still IBI, since an oc-

currence of e2 before the end of B preempts B, but leaves the remainder of B to

- 101 -

Section 5.5.4

Stopping the Flow of Control

be resumed once C is done.

Thus the techniques for external termination can be applied here, with the con-

straint that the minimum weight of a subcontrol structure is still its nominal weight.

6.5.6: Constraints at More than One Priority Level

To be able to consider the worst case latencies of constraints whose member

tasks are found at different priority levels and thus in different subcontrol struc-

tures s a difficult problem. To determine this, the executions of tasks at lower and

higher priority levels can no longer be lumped together and treated as a delay,

since at the very least it must be known when every task which occurs in the con-

straint s executed, regardless of what its priority may be. Thus algorithms of a

very different sort from those in the previous sections are probably required, and

the possibility of simulation to determine an exact schedule may provide a starting

point.

5.5.7: Finite Event Queues

If only a finite number of event occurrences can be remembered, and this

number is small enough so that some event occurrences are ignored, then from

*meas s point of view, the delays due to preemption computed previously may be

too high but cannot be too low. The equations which determine the time lost to

preemption must be adjusted to include a maximum value of D.

When computing initiation delay, it must now be seen whether, in the worst

case, the initiation delay may be prolonged due the Initiating event's occurrence

- 102-

Section 5.5.5

Finite Event Queues

being ignored.

- 103-

Section 5.5,7

6: Conclusions and Directions for Future Research

A new notation has been given which represents real-time control structures at

a high (task and event) and implementation-free level, including sequencing, itera-

tion and preemption as primary constructs. The notation can represent convention-

al single and multiple level Interrupt structures as well as non-traditional ones

where branching of the preemption structure is generalized. A total priority order-

ing may be described, or arbitrarily many events and subcontrol structures may re-

side at the same priority level. An algorithm is given for determining the preemption

relationship for any event, task) couple in the control structure, as well as a com-

pletely deterministic method of selecting a task for service if several events with

arbitrary priorities are pending (possibly equal). It may be interesting to consider

the modifications necessary to the algorithms if it is assumed that the processor

chooses at random from among all the pending events of the highest priority.

Additionally, notation is given for representing task termination by external

event occurrences (as opposed to temporary preemption), describing whether a

control structure should be restarted from its first task or resumed from the point

of preemption, codestripping, and masking of a set of interrupts while any given

task is executing. It is shown that due to the assumed transitivity of the

"preempts" relation, the sets of events chosen for these special cases might

necessarily include other events not explicitly mentioned.

The notation is compact, and provides a convenient format for conveying a lot

of information about the control flow relationships among the members of a set of

tasks. A complete BNF specification is provided, and a parser can be (and has

- 104-

Conclusions and Directions for Future Research

been) constructed using any of a number of extant compiler-compilers which accept

BNF specifications.

Classes of representable control structures are given, typed by the topology

of their control flow graphs. It is shown that partial as well as total orderings of

tasks and events can be achieved through the use of the event coupled list, which

Introduces forks into the control flow graph. A method for recursively constructing

a multiple priority level control structure of the traditional type is given. The dis-

tinction is made between a control structure which supports a processor priority

and one which actually has only a single level of interrupts, even though there may

be a set of several interrupting events which are ordered among themselves. it is

shown that while in general the need for this type of control structure is perceived

to be strongest in situations where representation of periodic events and task exe-

cutions prevails, aperiodic control structures are representable. However, a true

tree-shaped interrupt structure cannot be achieved due to the transitivity of the

"preempts" relation. In addition, while iteration can be applied to any closed or

basic control structure, a back arc cannot originate from the middle of one event

coupled list and terminate in the middle of another. This is not felt to be a serious

restriction, however, since it is likely that groups of tasks in a subcontrol structure

are related and expected to be executed as a block.

The second half of the thesis concentrates on describing the sorts of real-time

properties which may be of interest to a user of any real-time system, and demon-

strating how they can be measured for control structures representable using the

notation presented here. The worst case latency of a constraint is found to be a

property whose determination involves computation of several other properties as

- 105-

Section 6

Conclusions and Directions for Future Research

subroutines. The difficulty of finding an upper bound on task execution time is dis-

cussed, although without this knowledge It is doubtful that much further analysis of

value could be performed. Additionally, bounds on the maximum and minimum period

for each event are needed. The algorithms reflect reality in that if these periods

are not known, it will be difficult to forecast real-time performance for the control

structure.

Next several algorithms for measuring latencies are developed, each handling a

larger set of control structure types, up to a level which includes the entire basic

framework of sequencing, iteration and preemption. Along the way, it is shown how

to determine if a response time might be infinite, and it is assumed that this is done

before attempting to' use any of the algorithms for measuring the various time inter-

vals. An algorithm is given which determines the loss of time due to preemption if

the set of preempting events is static, and by using it it is shown how to determine

the latency of a constraint contained in a priority 0 subcontrol structure, and the

worst case initiation delay for an event at a given priority level. The worst case

assumed here is the occurrence at the beginning of an interval of all interrupts,

and their reoccurrence at their individual maximum rates. However, an algorithm is

also given which determines preemption time if the phase of each event is known

at the beginning of the interval being measured.

The effects on these algorithms of adding control structures containing each of

the restricted items of Section 6.4 is considered; further investigation is needed

here to uncover the details of the problems which are pointed out. Another useful

thing would be to develop analyses based on a probabilistic model rather than on

the worst case; e.g., what is the probability that a given constraint will have a la-

- 106 -

Section 6

Conclusions and Directions for Future Research

tency of no more than n seconds? Finally, an important result would be the

development of a general algorithm which could determine the latency for any of

the representable control structures. The difficulty of such a task should not be

underestimated; indeed, in the words of Niklaus Wirth:

It does not appear feasible at this time to postulate any generally
valid and at the same time practically useful rules for the determi-
nation of execution time bounds for systems using processor shar-
Ing. [Wirth 77b]

-107 -

Section 6

Appendix A: Summary of BNF for Real-time Control Structures

<control structure> ::= (basic cs) I <closed cs> i <iterative cs>

<task Id> ::= (letter) i (task id> (alphanumeric>

<letter> ::= AI B C ... 1 Z

<alphanumeric> ::= <letter> I digit>

<digit> ::= 0 1 1 2 i ... I 9

<basic cs> ::= <task>) (basic cs> (task>) I (basic cs> t

(task> ::= (task id> I (non-preemptible tid) i <abort tid)

<closed cs> ::= ((basic cs>) ((preemptible cs>) (<closed cs list>)

(<closed cs> (preemptible cs>)) I (<closed cs> (basic cs))

(<restart cs>) I (non-preemptible closed cs> (abort cs>

<closed cs list) ::- (closed cs) I closed cs list) <closed cs>

<(iterative cs> ::= (basic cs> (<closed cs>* I (basic cs> (iterative cs>

<preemptible cs>) := control structure) / <event list) I (codestripped cs>

<event var> ::= e<lnteger>

<Integer> ::= (digit> I <integer> (digit>

- 108-

<event list> ::= (event var> ((event coupled list>) I

((event coupled list>)-

<event coupled list> ::= (event var>: (control structure> !

(event coupled list> 'l' (event var>: (control structure>

<non-preemptible tid> ::= '(task> ((<ev list>)(task>

<non-preemptible closed cs> ::= '(closed cs> I '((ev list>)(closed cs>

(ev list> ::= (event var>) (ev list>,(event var>

<abort tid> ::= @<task> I @(<ev list>)(task>

<abort cs> ::= @(closed cs> @((ev list>)(closed cs>

(restart cs> ::= > <basic cs> > (ev list>) (basic cs>

<codestripped cs> ::= (basic cs> / (integer>

- 109-

REFERENCES

[Benson 87] Benson, D., R.J. Cunningham, I.F. Currie, M.R. Griffith, R. Kingslake, R.J.
Long, and A.J. Southgate, "A language for real-time systems," The Computer
Bulletin 11,3 (Dec. 1967), 202-212.

[Dijkstra 68] Dijkstra, E.W., "Cooperating sequential processes," in Programming
Languages (F. Genuys ed.), Academic Press, NY, 1968, 43-112.

[Dijkstra 72] Dijkstra, E.W., "A class of allocation strategies inducing bounded de-
lays only," AFIPS Conf. Proc. 40 (1972 SJCC), 933-936.

[Fosdick 76] Fosdick, L.D., and L.J. Osterweil, "Data flow analysis in software relia-
bility," Computing Surveys 8,3 (Sept. 1976), 305-330.

[Freiburghouse 77] Freiburghouse, R.A., "Proposed extensions to PL/I for real-time
applications," SIGPLAN Notices 12,7 (July 1977), 26-42.

[Gonzalez 773 Gonzalez, M.J. Jr., "Deterministic processor scheduling," Computing
Surveys 9,3 (Sept. 1977), 173-204.

[Hennessy 75] Hennessy, J.L., R.B. Kieburtz, and D.R. Smith, "TOMAL: A task-
oriented microprocessor applications language," IEEE Transactions Ind.
Elect. Cont. nst. IECI-22,3 (Aug. 1975), 283-289.

[Hoare 74] Hoare, C.A.R., "Monitors: An operating system structuring concept,"
Comm. ACM 17,10 (Oct. 1974), 549-557.

[Kieburtz 75] Kieburtz, R.B., and J.L. Hennessy, "TOMAL - A high level programming
language for microprocessor process control applications," Proc. ACM
SIGMINI/SIGPLAN Interface Meeting on Prog. Systs. in a Small Processor
Environment, also SIGPLAN Notices 11,4 (April 1976), 127-133.

[Liu 73] Liu, C.L., and J.W. Layland, "Scheduling algorithms for multiprogramming in
a hard-real-time environment," J. ACM 20,1 (Jan. 1 973), 46-861.

[Ormicki 77] Ormicki, A., "Real-time BASIC for laboratory use," Software Prac. &
Exp. 7,4 (July-Aug. 1977), 435-444.

[Phillips 76] Phillips, J.V., and T.H. Bredt, "Design and verification of real-time sys-
tems," Proc. IEEE 2nd Int. Conf. on Soft. Eng. (Oct. 1976), 124-131.

[Schoeffier 70] Schoeffier, J.D., and R.H. Temple, "A real-time language for process
control," Proc. of IEEE 58,1 (Jan. 1970), 98-110.

- 110-

[Serlin 72] Serlin, 0., "Scheduling of time critical processes," AFIPS Conf. Proc. 40
(1972 SJCC), 925-932.

[Teixeira 78] Teixeira, T.J., Real-time control structures for block diagram schema-
ta, S.M. Thesis, Department of Electrical Engineering and Computer Sci-
ence, M.I.T., January 1978.

[Wirth 77a] Wirth, N., "Modula: A language for modular multiprogramming," Software
Prac. & Exp. 7,1 (Jan.-Feb. 1977), 3-35.

[Wirth 77b] Wlrth, N., "Toward a discipline of real-time programming," Comm. ACM
20,8 (Aug. 1977), 577-583.

111 -

