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Abstract
Photosynthetic approaches to redesigning photovoltaics (PV) o�er an attractive route
towards achieving high-e�ciency, low-cost solar energy transduction. This thesis ex-
plores two routes toward this end: the direct integration of photosynthetic structures
into solid-state devices and the architectural redesign of organic solar cells to more
closely parallel photosynthesis.

The highly e�cient photosynthetic reaction center is the site of exciton dissocia-
tion in photosynthesis, analogous to the role of the donor-acceptor interface in organic
PV. This thesis describes the successful integration of reaction centers with organic
semiconductors into solid-state devices. Although functional, we �nd that these de-
vices su�er the same limitation as the more traditional organic PV: the ability to
absorb enough light.

Photosynthetic bacteria and plants compartmentalize the processes leading to
light energy conversion. This spatial separation of structures augments the evolu-
tionary design space: the processes of photon absorption and exciton dissociation
occur in two separate locations, allowing the independent functional optimization of
each. Applying a similar approach to PV would similarly remove the need for mul-
tifunctional materials, bypassing limiting tradeo�s and permitting the utilization of
new material systems. To this end, I propose a novel architecture and present initial
conclusions on theoretical performance e�ciency. Fabricated devices demonstrate the
system is viable and suggests that further improvements in device design will enable
highly e�cient photovoltaics.

Thesis Supervisor: Marc A. Baldo
Title: Esther and Harold Edgerton Assistant Professor of Electrical Engineering and
Computer Science
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Chapter 1

Why Photosynthesis?

Widespread adoption of solar cells remains limited by their high cost per Watt of gen-
erated power.[1] This is due in part to the expensive equipment and energy hungry
processes required in the manufacture of conventional semiconductor-based photo-
voltaic (PV) cells. On the other hand, PV cells made from organic semiconductors
such as �lms of molecules or polymers hold the promise of low cost production. For ex-
ample, one class of suitable molecular PV materials, the phthalocyanine pigments,[2]
are currently produced in quantities exceeding 80,000 t annually.[3] In addition, this
inexpensive feedstock is compatible with high throughput web processing. The print-
ing, paint, and packaging industries routinely spray-coat, stamp, and evaporate mole-
cular and polymeric materials onto �exible plastics and foils.[1] If similar web-based
processing is realized for organic PV cells, organic devices need only reach perfor-
mance levels commensurate to inorganic PV technologies to decrease the cost per
Watt of PV power.

Organic PV power e�ciencies have steadily improved, reaching approximately
5% in recent results [4, 5] still substantially below that of more mature conventional
technologies.[6] But conventional semiconductor solar cells are not necessarily the
most appropriate model for the development of organic PV. The physics of organic
PV cells is much closer to that other, much older and more sophisticated, example of
organic electronics: photosynthesis.

Photosynthesis e�ciently converts solar to electrical energy, which then drives a
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series of chemical reactions. This ubiquitous, time-tested energy transduction method
is the source of all current biomass and, over geologic timescales, all the fossil fuels
relied upon today and sustains life on Earth.[7] Photosynthetic plants and bacteria
utilize organic molecules similar to those used in organic PV to �x more than 100
Gt of carbon annually, equivalent to 100 TW, a feat accomplished without high
temperature processing or huge initial energetic expenditures. From a manufacturing
standpoint, the utilization of photosynthetic organism represents the ultimate in low
cost processing. A �eld of switchgrass, for example, can be grown at very low cost but
produces the raw material equivalent to several times its area in PV cells annually
(see section 2.2.4).

In Part II of this chapter, I will compare organic PV to photosynthesis. The
principal challenge in organic PV is to absorb su�cient light in the vicinity of charge
generation interfaces. I discuss the di�erent architectures employed in photosynthesis
and organic PV to address this problem. The direct integration of photosynthetic
protein structures into photoelectric devices constitutes one route towards achieving
e�cient and low cost organic PV. In Part III, I summarize work in hybrid solid state
photosynthetic devices. In Part IV, I discuss the implementation of photosynthetic
architectures with separate light absorption and charge generation structures in syn-
thetic organic PV cells. Finally, I discuss the prospects for photosynthetic materials
and architectures in organic PV.

12



Chapter 2

Organic PV and Photosynthesis
Compared

2.1 Organic PV

I begin by brie�y reviewing the processes and structures commonly used in organic
semiconductor heterostructure PV. For an in depth review of these devices, see Peu-
mans, 2003.[8] Similar to their inorganic counterparts, organic PV devices are com-
prised of donor and acceptor semiconducting regions sandwiched between conducting
electrodes. Usually, these materials are di�erent semiconductors, as reliable doping
to control majority carrier type is di�cult to achieve.

The sequence of processes yielding light to electrical energy transduction in organic
PV can be divided into four phases, as summarized in �gure 2-1. In the �rst, upon
optical excitation in one or both organic materials, localized Frenkel or charge transfer
excitons are generated.[9, 10] These tightly-bound, charge-neutral species di�use until
they recombine or dissociate. Excitons that reach an interface between the donor and
acceptor layers will dissociate if the energetic o�sets favor the process. For large
o�sets, dissociation occurs over time scales of a few hundred femtoseconds [11] and
results in free electrons in the lowest unoccupied molecular orbital of the electron
transport material and free holes in the highest occupied molecular orbital of the
hole transport material. These free carriers di�use out towards the contact and are
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Figure 2-1: Summary of processes in organic PV resulting in photocurrent
generation (a) Optical absorption in one or more active semiconducting layers cre-
ates an exciton, an electron-hole pair localized on a single molecule. (b) Excitons
di�use in the thickness of the �lm. (c) Those that reach the interface between the
donor and acceptor layers can dissociate. In this example, an excited molecule in the
donor hole transport material reduces an nearby acceptor molecule in the adjacent
electron transport material. (d) The separated free electrons and holes di�use out
towards the metal electrodes, completing the energy transduction process.

available to perform electrical work.

The useful thickness of an organic PV cell is restricted to the distance that exci-
tons can travel before recombining, typically on the order of 10 nm.[8] Within this
region the internal quantum e�ciency (the ratio of charge extracted to absorbed pho-
tons) can be 100%. But the quantum e�ciency drops dramatically in thicker devices
due to exciton recombination losses.[12] Thus, despite optical absorption coe�cients
exceeding 10−5 cm−1 averaged over the visible spectrum, organic PV is limited by
an inability to absorb enough light. Several classes of solar cells have emerged whose
device architectures address this concern, including dye-sensitized nanostructured ox-
ide cells, [13] bulk organic heterojunction cells, [5, 14] and organic-inorganic hybrid
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composites.[15, 16, 17] These approaches share the characteristic of increased surface
area of the exciton dissociation interface, increasing the useful thickness of the cell.
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Figure 2-2: Schematic diagram of photosynthetic membrane, showing the
spatial distribution of the light harvesting antenna and reaction center, the sites of
photon absorption and exciton dissociation, respectively. In photosynthesis the energy
transduction machinery are protein complexes that house optically active molecular
components embedded in a phospholipid membrane. After Purves, et al.[18]

2.2 Photosynthesis

Photosynthesis also maximizes its active surface area by embedding charge generation
components into a �exible membrane. But in contrast to organic PV, the architec-
ture of photosynthesis employs separate components for light absorption and charge
generation, allowing these two functions to be optimized independently. Overall, pho-
tosynthesis can be divided into three distinct phases: (1) light absorption and energy
transport by antenna systems, (2) energy collection and charge separation in reaction
centers, and (3) stabilization by secondary reactions for use in the synthesis of sugars.
The �rst two components are the biological equivalent of a PV cell, albeit with a very
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di�erent architecture; see �gure 2-2.

2.2.1 Photosynthetic Antenna Complexes

All photosynthetic organisms contain light-gathering antenna systems, as such, they
are remarkably diverse. Antenna types can be divided into several categories: (1) light
harvesting complexes of purple bacteria, (2) light harvesting complexes of plants and
algae, (3) phycobilisomes of cyanobacteria and red algae, (4) peridinin-chlorophyll
proteins of dino�agellate algae, and (5) chlorosomes of green bacteria. We refrain
from an extensive discussion of all antenna types, as excellent reviews can be found
elsewhere.[19]

Antennas contain high concentrations of pigment molecules, including chloro-
phylls, bilins, carotenoids, and their derivatives. Photons captured by these pigments
generate excitons, as in organic PV. But unlike the semiconducting �lms in organic
PV which rely on di�usion, many antenna complexes are designed to guide excitons
to reaction centers. For example, phycobilisomes possess pigments at the periphery
of the complex that absorb at higher energies than those at the core. Excitons at the
periphery travel via Förster energy toward the core where they are coupled to the
reaction center.

Most antenna systems are comprised of pigment-protein complexes where the pho-
toactive pigment cofactors are positioned by a protein matrix, altering their optical
properties and controlling energy transfer. Chlorosomes are an exception: as per-
haps the only example of solid-state semiconductors in nature, they are of particular
interest to organic PV. They are unique in that they are largely composed of pig-
ments (> 50% by dry weight [19]) and constitute the most e�cient light harvesting
complexes found in nature.[20] The green photosynthetic bacteria that possess chloro-
somes are frequently found in volcanic hot springs where the ambient temperature
reaches 47◦C.[21] Such extreme conditions may have contributed to the unique struc-
ture of chlorosomes, but they also appear especially well adapted to conditions of
extremely low light �ux. Compared to other photosynthetic antennas, they have very
high absorption cross sections.
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While several models have been proposed for the pigment organization in chloro-
somes, a common characteristic is the existence of aggregates of bacteriochlorophyll
c, either rods of 5-10 nm in diameter and 100-200 nm in length [22, 23, 24, 25, 26]
or semicrystalline lamellar sheets.[20] The regular structure of Bchl c van der Waals
bonded aggregates leads to strong exciton coupling and a red-shift in absorption.
Crystallinity over 100 nm length scales and exciton delocalization make the Bchl c
aggregates highly desirable for use as organic semiconductors in organic PV; mate-
rials with these characteristics are currently under development for use in organic
electronic devices.[27, 28, 29, 30]

2.2.2 Photosynthetic Reaction Centers

In photosynthesis, the role of the donor-acceptor interface is performed by the reaction
center. The dissociation of excitonic energy states and formation of separated charges
occurs at the reaction center via a series of electron transfer reactions. The reaction
center is a membrane-bound, multisubunit, pigment-protein complex which incorpo-
rates chlorophyll derivatives and other electron transfer cofactors such as quinones.
The pigments and cofactors are held together by van der Waals interactions with
the protein matrix; their positioning and orientations are important in facilitating
electron transfer.

The ultimate collection point for excitons from neighboring antenna complexes
is a chlorophyll dimer in the reaction center known as the special pair. This is the
lowest energy site in the photosynthetic optical circuit. It is also the primary electron
donor for the subsequent electron transfer cascade that carries the electron across
the membrane while the hole remains at the special pair, thereby separating the
exciton into isolated charges; see �gure 2-3. Recombination, or the back transfer of
the electron to the special pair, is prevented by the electron transfer cascade which
occurs in a series of very fast (1-100 ps) electron transfer reactions, rapidly separating
the charges to ∼ 3 nm and strongly decreasing the rate of recombination. Exciton
dissociation in reaction centers thus proceeds with high e�ciency; the quantum yield
of products to photons is nearly unity.[31] The potential of the separated charges
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Figure 2-3: Structure of the reaction center complex of Rhodobacter
spaeroides (a) Entire complex, including the L, M, and H subunits and cofactors.
(b) Cofactors only. The special pair is the primary electron donor of the electron
transfer cascade, illustrated by the arrow. Figure produced from the Protein Data
Bank �le 1AIJ using Visual Molecular Dynamics.[33]

varies from approximately 0.5 V in primitive purple bacteria, to approximately 1.1
V in more advanced systems [32]. The secondary reactions that follow stabilize the
oxidized and reduced species, yielding a chemical potential across the photosynthetic
membrane that can then be used to drive cellular metabolism. The rapid, multi-step
spatial separation achieved in reaction centers may reduce their recombination losses
relative to less sophisticated donor-acceptor interfaces in organic PV.

Unlike antenna complexes, reaction center complexes are remarkably well pre-
served across plants and photosynthetic bacteria. All reaction centers follow the above
described general structure of electron transfer cofactors embedded in a protein ma-
trix. In plants and cyanobacteria, two special reaction centers called photosystems I
and II operate in tandem to split water and create molecular oxygen, a highly ener-
getic reaction since water is an extremely poor electron donor. Oxygen produced by
photosynthesis is the source of oxygen in the atmosphere and fundamentally a�ected
the development of life on Earth.
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2.2.3 E�ciency of Photosynthesis

The e�ciency of energy transduction of photosynthesis varies depending on which
subset of the complete cycle is considered. The quantum e�ciency (photon to sepa-
rated charge) at low to moderate intensities is nearly 100%, as nearly every photon
absorbed drives photochemistry. If the e�ciency is de�ned as the fraction of en-
ergy absorbed by the organism operating under ideal conditions that is converted to
carbohydrates and oxygen, the e�ciency of energy storage is 27%.[31] Under more
practical lighting and conditions, this e�ciency decreases to 5%.[34] When cellular
metabolic processes are included, the proportion of energy converted to biomass is
about 0.2%.[35]

In solar photovoltaics, extracted energy is stored in the form of separated charges
that possess a di�erence in chemical potential energy. When there are no free charges,
as in a chemical solar cell, extracted energy exists in the form of binding energy of
the molecular products of the cell.[36] The processes of photosynthesis are a form of
chemical solar cell and as such, the photosynthetic equivalent is energy stored in the
chemical bonds of carbohydrates and oxygen.

At 5%, the e�ciency of photosynthetic energy conversion and state of the art
organic PV are similar, despite their dramatic structural di�erences. However, since
the products of an electrical solar cell are more useful in the modern economy than
those of a chemical solar cell, additional energy transduction steps would need to be
included to make a direct comparison; the most direct conversion mechanism entails
the operation of an electrochemical cell.

2.2.4 Agricultural Production of Solar Cell Raw Materials

The attractiveness in using agriculture as a low cost manufacturing method has mo-
tivated researchers in the �elds of energy and medicine for decades. Agricultural
production for solar cells is similarly impelling. An estimate for the amount of raw
materials which could be used to produce PV is heavily dependent on the method of
estimation and the attendant assumptions. I estimate here that a �eld of crops would
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provide the raw materials for �ve times its area in PV.
The details of this calculation are as follows. Photovoltaics made from organic

semiconductors commonly consist of thin, amorphous �lms of semiconductors. I
assume that photosynthetic pigment molecules, mainly chlorophyll, would take on
this role in photosynthetic PV in an identical role. The total number of chlorophyll
molecules can be calculated by assuming a molecular density in the thin �lm and
a �lm thickness. The molecular density of bacteriochlorophyll c in the chlorosomes
of green photosynthetic bacteria is 2 × 1021 cm−3.[37] This is nearly identical to the
molecular density of copper phthalocyanine molecules in thin �lms, justifying the
validity of this assumption.[38] Assuming an active �lm thickness of 1 µm, ∼ 2×1017

chlorophyll molecules are needed per square cm of PV cells.
To determine chlorophyll production rates, switchgrass (Panacum virgatum L.)

was chosen as the model organism. Switchgrass grows quickly as is currently being
investigated as a biofuel energy crop for co�ring fuel in coal plants.[39] The dry matter
yield of switchgrass is assumed to be 15×106 g per hectare per year.[39] I then assume
that 80% of this weight originates from grass leaves. The speci�c leaf weight (dry
matter weight per surface area of exposed leaf) of switchgrass is roughly 40 g/ m2.[40]
As an estimate for the number of chlorophyll molecules per unit of exposed leaf surface
area, I use 3× 1016 per cm2.[41]

Assuming a �eld encompasses roughly 8 hectares, these growth rates result in
3×105 m2 of PV raw material per �eld annually. Stated as the ratio of land necessary
for production, agricultural methods could produce enough raw material to make
�ve times its area annually in solar cells. However, as with more mature silicon
technologies, the cost of raw material may not be the main determinant of end energy
cost.
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Chapter 3

Integration of Photosynthetic
Complexes in Organic Photovoltaics

Much of the initial work on organic PV utilized thin �lms of molecules structurally
similar to the chlorophyll pigments of photosynthesis.[42] Such devices, however, have
not approached the e�ciency of photosynthesis. Equating the potential developed
across a photosynthetic reaction center to the open circuit voltage of a solid-state
solar cell yields a photosynthetic power conversion e�ciency exceeding 20% and
potentially competitive with the best silicon devices. This high performance is a
consequence of the unique molecular scale engineering of photosynthetic complexes.
Thus, the prospect of using photosynthetic complexes directly is tempting, as agricul-
ture constitutes a far less expensive manufacturing route compared to semiconductor
foundries.

3.1 Self Assembly of Photosynthetic Complexes

The �rst step in the construction of a device containing photosynthetic complexes is
the assembly of the biological structures on a substrate. The self-assembled structure
may then be employed as an electrode in an electrochemical cell, or integrated in
a solid-state PV cell. The goals for this self-assembly are: (1) to uniformly orient
complexes to minimize recombination losses, and (2) form an optically dense �lm to
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increase absorption.

Self-assembly technology for photosynthetic complexes was pioneered in wet elec-
trochemical cells.[43] This section is not intended as a comprehensive description
of the history of photosynthetic materials in electrochemical cells, but the work of
Katz on the self assembly of bacterial reaction centers (RCs) is especially notable
[43]. Using cysteine binding to reaction center complexes Katz demonstrated wet
electrochemical cells with internal quantum e�ciencies as high as 60%. Following
the work of Katz, Lebedev et al. [44] investigated the self-assembly of oriented �lms
of photosynthetic complexes on transparent and conductive indium-tin oxide (ITO)
surfaces using Ni2+−NTA binding to His6 tags on genetically engineered RCs from
the Rhodobacter sphaeroides strain SMpHis, [45] shown schematically in �gure 3-1.
Lebedev et al. found that binding to His6 tags increased the photocurrent despite
a theoretical increase in the length of the linker molecule connecting the RC to the
substrate.[46] A typical tapping mode atomic force microscopy (TM-AFM) image of a
His6-RC self-assembled monolayer on atomically �at Au-on-mica substrates is shown
in �gure 3-1c. Although there is signi�cant disorder in the �lm, it is relatively closely
packed.

The self-assembly technology of photosystem 1 (PSI) is less developed. Green-
baum et al. have demonstrated preferential orientation of PSI by engineering the
surface chemistry of gold.[47] By controlling the surface charge and hydrophobicity,
they demonstrated several possible orientations of PSI on modi�ed gold. An alterna-
tive technique allows a single His6 tag to be introduced to native PSI complexes in a
three-step process; see �gure 3-2a. Minai et al. [48] have demonstrated that the na-
tive psaD subunit of PSI may be exchanged and replaced by a genetically engineered
psaD with His6 tagged onto the C-terminus.

To investigate the orientation of PSI bound by psaD exchange we performed TM-
AFM phase imaging [49] in the intermittent contact mode and varied the potential
between the AFM tip and the ITO/Au substrate.[50] The phase angle of the driven
vibration of the cantilever in TM-AFM is related to the energy dissipated in the
tip-sample interaction.[49] Thus, phase images of biological materials provide a map
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Figure 3-1: Method for oriented assembly of reaction centers on Au (a) The
substrate is treated with 3,3´-Dithiobis[sulfosuccinimidylpropionate] (DTSSP) and
nickel 2+ nitrilotriacetic acid (Ni-NTA). (b) A polyhistidine (6) tag on the reaction
center expressed from R. sphaeroides chelates the charged Ni ion of the Ni-NTA,
immobilizing and orienting the complex on the substrate. (c) Atomic force microscopy
image of assembled reaction centers on gold.

of the dissipative part of their mechanical response. When a potential is applied to
the AFM tip, we can alter its mechanical interactions with polar or charged samples
by, for example, aligning polar molecules in the electric �eld.[51] Voltage-dependent
phase scans of a likely PSI particle is shown in �gure 3-2b-d. Phase scans taken
at +1V and 0V show little di�erence, but phase scans taken at -1V exhibit the
appearance of localized regions of increased phase. The increase in phase in the -
1V scan corresponds to an increase in the attractive forces between the tip and the
sample [49] and indicates the presence of a positive charge trapped on the surface of
PSI, mostly likely at P700. Thus, the voltage dependence of TM-AFM phase imaging
is consistent with the expected rectifying characteristics [47] of PSI in the orientation
prescribed by the self-assembly technique of �gure 3-2a. The packing density of PSI
is, however, far less than optimal, most likely due to incomplete exchange of psaD.
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Figure 3-2: Method for oriented assembly of PSI onto Au (a). As with reaction
centers, the substrate is treated with DTSSP and Ni-NTA. A polyhistidine tag is
introduced to PSI by assembly of an engineered psaD subunit then exposing the
surface to native PSI such that the subunit is substituted.[48] TM-AFM phase images
of assembled PSI on Au at (b) -1 V, (c) 0 V, and +1 V. The image di�erence (d)
shows localized regions of increased phase, signifying a change in dissipative energy
corresponding to tip interactions with a positively charged PSI complexes.

3.2 The Stability of Photosynthetic Complexes in
Solid State

The rinsing and drying steps required during fabrication of solid-state photosynthetic
devices are particularly prone to damage the photosynthetic complexes. The integrity
of these large complexes can be increased with the use of surfactant stabilizers.[52] To
quantify the e�ect of stabilization, the low temperature �uorescent spectrum is mea-
sured. After excitation by a pump laser at λ = 408 nm with intensity 0.5 mW/ cm2,
protein degradation is recognized by wavelength shifts in �uorescence. The chloro-
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phyll molecules associated with the PSI complex provide an intrinsic steady-state
�uorescence spectrum at T = 20 K between 650 < λ < 800 nm that re�ects the orga-
nization of the pigment-protein interactions. Thick, vacuum-dried �lms of PSI pre-
pared directly on glass substrates prior to functionalization exhibit a large blue shift
of the �uorescence maxima from λ = 735 nm to λ = 685 nm, indicating a disruption
in light harvesting subunit organization. Polyelectrolytes such as polyethylene glycol,
that have been used to preserve dried biological materials,[53] were not found to im-
prove the stability of PSI. In contrast, incubating PSI with the peptide surfactants
A6K/V6D [54, 55, 56, 57] was found to almost entirely preserve its low temperature
�uorescent spectrum;[52] see �gure 3-3. The λ = 735 nm �uorescent peak of peptide-
stabilized �lms stored in an ambient environment exhibited a gradual blue shift over
several weeks, indicative of gradual structural changes in the light harvesting anten-
nae of PSI.[58] The low-temperature �uorescent data demonstrates that PSI can be
successfully integrated in a solid-state environment.

3.3 Solid State Integration of Bacterial Reaction Cen-
ters

To date, wet electrochemical implementations of photosynthetic PV cells have not
succeeded in realizing e�cient devices. In many photovoltaic applications, wet cells
require additional packaging and are hampered by stability concerns.[59] Furthermore,
di�usion-limited charge transport in the electrolyte increases the series resistance,
lowering the �ll factor. Consequently, it is desirable to demonstrate technology for
integrating biological protein-molecular complexes with solid-state electronics.

The simplest model of a solid-state photosynthetic device consists of uniformly
oriented photosynthetic protein-molecular complexes deposited between two metallic
contacts. After absorption of a photon and rapid charge separation within a complex,
a potential of up to 1.1V can be developed across the metal contacts.[32, 60] However,
this model of a solid-state photosynthetic device must overcome several practical
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Figure 3-3: Fluorescence measurements of assembled PSI on Au Comparison
between the low temperature (T = 10 K) �uorescence spectrum of PSI solution as
extracted from spinach, with washed and dried �lms of PSI, demonstrates that PSI
may be protected against degradation after washing and drying steps by stabilizing
the complex with surfactant peptides A6K and V6D. The excitation source was a
pump laser at λ = 408 nm with intensity 0.5 mW/ cm2. The 50 nm blue shift of as-
sembled PSI without peptide surfactants shows the disruption of PSI light harvesting
unit organization. The stabilizing action of A6K/V6D is preserved for several weeks
for dried �lms left in ambient conditions.

obstacles. First, the optical cross section of a single layer of photosynthetic complexes
is fairly low; second, deposition of the top metallic contact may cause damage to
biological materials; and �nally, defects in the layer of photosynthetic complexes
may permit electrical shorts between the metallic contacts. The two latter problems
are circumvented by depositing a thin (< 100 nm) layer of an amorphous organic
semiconductor between the photosynthetic complexes and the top metal contact. The
semiconductor transports the photogenerated electrons to the cathode of the cell.

The energy level structure of an RC-based photovoltaic cell is shown in �gure
3-4a. RCs are oriented using a His6 tag with the electron-accepting special pair
facing the substrate. Fabrication of solid state cells begins with self-assembly of the
A6K/V6D stabilized photosynthetic complexes as in electrochemical cells. But after
the complexes are self-assembled on a functionalized electrode, they must be washed
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with deionized water to remove unbound material and excess salt and detergent from
the bu�er. Since solid-state devices are much thinner than electrochemical cells, they
are less tolerant of debris on the substrate. The RC-based photovoltaic cell employs
a 60 nm-thick protective layer of the fullerene C60. C60 was chosen because of its
relatively deep lowest unoccupied molecular orbital (LUMO) energy of 4.7 eV [61]
that should enhance electron transfer from the electron acceptor in the RC. It is
observed that C60 transports electrons in its LUMO far more readily than holes in its
highest unoccupied molecular orbital (HOMO). Consequently, C60 is employed as an
electron transport layer (ETL). After C60, a 12 nm-thick layer of a second ETL 2,9-
dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, or BCP)[62] is deposited
and �nally, an 80 nm-thick layer of Ag is deposited through a 1 mm-diameter shadow
mask. Thermally-evaporated �lms of C60, BCP, and Ag were deposited at a rate of
∼ 0.3 nm/ s in a vacuum of < 10−6 Torr. The Ag deposition likely damages the thin
BCP layer, facilitating electron extraction.[63] But even in a damaged layer, the deep
HOMO of BCP e�ectively prevents the injection of holes into the device, markedly
improving the device's reverse bias characteristics [50].

The current-voltage characteristics of the RC-based photovoltaic cell are shown in
�gure 3-4b. Under illumination at λ = 808 nm, where C60 and BCP are transparent,[8]
the device exhibits photocurrent in reverse bias, i.e. the ITO is negative relative
to the top Ag contact. Most notably, the device exhibits photovoltaic behavior,
albeit weak, with an open circuit voltage that varies slightly between devices but
is typically 0.10 V and a short circuit current density of 0.12 mA/ cm2 under an
excitation intensity of 0.6 W/ cm2 at λ = 808 nm. Assuming a perfectly formed
RC monolayer of density 8 × 10−12 mol/ cm2, and given an extinction coe�cient of
2.9×105M−1 cm−1, [64] we calculate the optimum photocurrent as 2 mA/ cm2, where
we have ignored possible interference e�ects due to re�ections from the ITO/Au
electrode, and assumed 100% re�ection of the optical pump by the Ag cathode. Thus,
at a bias of -1V, a conservative estimate of the internal quantum e�ciency of the
device is 6%. The solid-state quantum e�ciency of 0.03% at an excitation intensity of
0.6 W/ cm2 at λ = 808 nm is similar to an photoelectrochemical cell with an external
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Figure 3-4: Energy level diagram and current voltage characteristics of an
RC solar cell (a) Device energy levels for the reaction center solar cell. After pho-
toexcitation, electrons localized on the QA anion reduce nearby C60 molecules and
electrons conduct out the cathode. The energy levels of C60 and BCP are from ref-
erences [61, 62]. (b) The current-voltage characteristics show that under 0.6 W/ cm2

illumination, the device has an open circuit voltage of 2 mV and short circuit current
density of 1.2 mA/ cm2. The �ll factor is approximately 25%.

quantum e�ciency of 0.016% under an excitation intensity of 6 mW/ cm2 at λ =

800 nm.[44]
In �gure 3-5, veri�cation of the activity of RCs is con�rmed by spectrally resolving

the short circuit current using a Ti-Sapphire CW laser tunable between λ = 790 nm

and λ = 890 nm. The photocurrent spectrum is compared with both the solution
absorption spectrum of the RC complexes, and a photocurrent spectrum of identical
RC complexes in a photoelectrochemical cell reproduced from reference [44]. With
the exception of a region near λ = 860 nm the spectra overlap closely.

These RC solar cell devices su�er from both low internal quantum e�ciency and
low absorption. The latter is more detrimental, as a monolayer of photoactive ele-
ment make absorption di�cult. This limitation is identical to that restricting high
performance in organic semiconductor PV devices.
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Figure 3-5: Quantum e�ciency spectrum of RC solar cell The external
quantum e�ciency (¥) calculated from the short circuit photocurrent qualitatively
matches both the absorption spectrum of RCs in solution (◦) and electrochemical RC
photoelectrochemical cell (¤) from reference [44].
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Chapter 4

Synthetic Implementations of
Photosynthetic Architectures

As noted in Part II, the organizational architecture of the initial phases of photosyn-
thesis is di�erent from that of organic PV in at least one major respect. In photo-
synthesis, light absorption and exciton dissociation occur in the spatially separated
components of the antenna and reaction center complexes. In contrast, absorption,
exciton dissociation and charge extraction all occur in the organic semiconductors
that comprise the active donor and acceptor layers in organic PV. This characteris-
tic frustrates materials selection for organic PV, as the organic semiconductors must
simultaneously satisfy several constraints: (1) strong broadband optical absorption
with an extinction coe�cient of at least 105 cm−1 across the visible spectrum, (2)
e�cient long range exciton transport, (3) optimal energy level alignment for rapid
exciton dissociation e�ciency, and (4) high electron and hole mobilities and continu-
ous charge pathways to the two electrodes to minimize recombination losses.

Akin to photosynthesis, organic PV may bene�t from separating the functions
of light absorption and exciton dissociation into two spatially distinct structures,
allowing individual optimization of each. We demonstrate separation of optical and
electrical functions by utilizing guided wave mediated energy transfer across thin
metal �lms. In such a device, energy transduction proceeds by photon absorption
in an 'arti�cial antenna'. Excited molecular dipoles in the antenna either radiate
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into waveguide modes or non-radiatively couple to surface plasmon polariton (SPP)
modes in the multilayer structure.

A major advantage of coupling into guided modes is that these modes are ab-
sorbed even in very thin organic PV cells, optimized for maximum internal quantum
e�ciency. Guided modes propagate in the plane of the device, parallel to the charge
generation interface. The dimensions of the cell in this plane are on the order of
10−2 m, rather than ∼ 10−7 m perpendicular to the interface. The maximum distance
of interaction between a reaction center and a guided mode is thus the distance that
these modes travel at visible frequencies. For both SPPs and waveguide modes, they
can be several orders of magnitude greater than the thickness of the reaction center,
increasing the likelihood they will be absorbed; see �gure 4-1.

Figure 4-1: Device excitation routes: perpendicular versus parallel Excitation
of solar cells under normal (perpendicular) (a) and parallel surface mode excitation
(b). The interaction distance of the electromagnetic �elds and the absorbing arti�cial
reaction center ratio between the two is several orders of magnitude. For very thin
PV, high absorption and no transmission is preferred.

Energy which propagates in these guided modes is absorbed in the 'arti�cial re-
action center' of the PV, after which the processes of exciton di�usion, dissociation,
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and charge collection occur as before.

4.1 Energy Transfer via Guided Modes

The oscillating electric �eld of the radiative dipole at an excited molecule in the
antenna layer can be damped by several mechanisms, resulting in energy transfer.
These mechanisms are: (1) non radiative decay into phonons, (2) radiation of pho-
tons into free space modes not guided within the PV, (3) radiation into dielectric
waveguide modes in the antenna/PV stack, and (4) non-radiative energy transfer
into surface plasmon polariton modes at the adjacent metal interface. Photons in
waveguide modes interact with the absorbing active layers in the arti�cial reaction
center identically to normal light illumination.

Non-radiative decay is minimized in e�cient antenna dye molecules. Thus, radi-
ation into free space modes is the dominant process for an isolated oscillating dipole
on an e�cient dye molecule. But within a multilayer stack composed of metals and
dielectrics, radiation into free space modes is suppressed. This occurs because the
rate of photon emission is described by Fermi's golden rule and depends on the pho-
tonic mode density. For example, near a metal �lm, the photonic mode density drops
dramatically as visible light is strongly absorbed by the free charges of the metal.

Within a multilayer stack energy transfer to guided electromagnetic modes is
preferred. The most important guided modes are surface plasmons polaritons and
waveguide modes. The stack acts as a waveguide since its refractive index, n ∼ 2,
higher than air or the glass substrate. Plasmons are quasiparticles comprised of the
collective oscillation of the conduction electrons in metals. Surface plasmon polaritons
(SPPs) are a unique class associated with interfaces between metals and dielectrics.
SPPs propagate along the interface with electromagnetic �elds, energy, and charges
highly localized within the interface area. Their properties depend strongly on char-
acteristics of both the metal (complex dielectric function, corrugations, roughness)
and the dielectric (refractive index). In the absence of the adjacent arti�cial reaction
center, SPPs are internally damped by joule heating in the metal �lm. Recent ad-
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vancements in the ability to control the structure of metals on the nanometer scale
have spurred great interest in SPPs in the last decade. Their unique properties are
of wide interest in many �elds and are being explored for their potential in optics,
magneto-optic data storage, microscopy, and sensors.

The existence of SPPs can be straightforwardly derived from Maxwell's equations
and the application of appropriate boundary conditions. They are transverse mag-
netic in character and the existence of surface charge requires an electric �eld normal
to the surface. Since these surface waves propagate along the interface, there is also
an electric �eld in the propagation direction; see �gure 4-2. The high density of
charges at the interfaces leads to a �eld enhancement at the interface which decays
exponentially with distance from it. This �eld is referred to as evanescent, re�ect-
ing the bound, non-radiative nature of SPPs which restricts power from propagating
away from the interface.

z

Dielectric

E

Hy

+ + ++ + + - - - x

Metal

Figure 4-2: Surface plasmon polariton �eld orientations SPPs exhibit magnetic
�elds that are transverse in character, and the generation of surface charge requires
an electric �eld normal to the surface (after Barnes, et al. [65])

To summarize, there are several advantages to the biomimetic approach of sepa-
rating light absorption and exciton dissociation in organic PV:

1. By decoupling the optical and electrical components of the solar cell, the ar-
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ti�cial reaction center can be made thinner than the exciton di�usion length,
ensuring that all excitons are generated close to the location of exciton dissoci-
ation. The e�ciency of this process should approach unity, resulting in internal
quantum e�ciencies approaching unity as well, as the e�ciency of charge trans-
fer and charge collection is known to be highly e�cient.[14, 66]

2. Molecular excitonic states exhibit highly structured absorption spectra. Thus,
to increase the photocurrent in organic PV, one must choose a combination of
active materials that absorb evenly across the visible spectrum. In contrast,
separating the optical and electrical functions allows the reaction center to be
optimized at a single peak wavelength corresponding to the emission of the
antenna.

3. Since the light absorbing antenna layer no longer needs to transport charge,
new classes of solar cell materials can be used. The ideal antenna layer should
be highly absorptive and have a high e�ciency for photoluminescence (PL)
such that reemission is strong. Candidate materials include those which ab-
sorb strongly like J-aggregates, nanometallic particles, quantum dots, and pho-
tosynthetic complexes that possess high quantum photoluminescent e�ciency
such as phycobilisomes from cyanobacteria and red algae. While quantum dots
and nanometallic particles have been embedded as active layer of solar cells
previously,[67, 68] their poor charge transport characteristics have decreased
overall device performance.

4. The energetic funneling that biological antennas like cholorosomes employ can
be utilized in mixed antenna layers. In mixed layers, light can be absorbed
in a host material and energy is funneled to a less absorptive, highly lumines-
cent material for reemission into the bound modes. By employing energetic
funneling, broadband absorption can be achieved by judicious antenna design.
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4.2 Absorption of SPP Excitation in Arti�cial Reac-
tion Centers

The direct sensing of surface plasmon resonance via the transduction of the surface
wave electric �eld enhancement in solar cells whose upper electrode composes of the
active sensing element is a direct demonstration of the utility of SPP in the excitation
of photovoltaic devices. Photocurrent enhancement in organic photodiodes under
SPP excitation have been previously demonstrated [69, 70, 71, 72, 73, 74], but typical
external quantum e�ciencies peak at 0.05%.[70] In this case, a single layer copper
phthalocyanine (CuPc)-Al Schottky diode exhibits a factor eight current enhancement
at resonance attributed to increased absorption. In this work, a thin �lm organic
photodiode is illuminated with λ = 532 nm excitation in the Kretschmann geometry
under attenuated total re�ection (ATR); see �gure 4-3. We observe a doubling in
external quantum e�ciency at SPP resonance over the normal illumination case.
This represents a factor of 240 improvement in quantum e�ciency over the previous
cell. We achieved this improvement by utilizing a double heterojunction previously
demonstrated to function well as a solar cell [63] with the materials CuPc, C60, and
bathocuproine (BCP), modi�ed to consist of two Ag electrodes.

Double heterostructure organic photodiodes were fabricated on cleaned glass sub-
strates. We puri�ed the commercially available organic layers by thermal gradient
sublimation prior to growth. Films were deposited at room temperature at high vac-
uum (∼ 2× 10−6 Torr) in the following order: 15 nm silver, 14 nm of the donor-like
material CuPc and 29 nm of the acceptor-like material C60. Next, a 8 nm thick
layer of BCP was grown; BCP has been previously shown to function as an exciton
blocking, electron transport layer in both organic light emitting diodes [75] and solar
cells [63]. This layer was followed by a 180Å thick layer of silver shadowmasked to
de�ne cathodes of 1.4× 10−2 cm2. Light is coupled to the diode via a hemicylindrical
prism attached to the glass substrate with index matching �uid. The prism and pho-
todiode were mounted on a computer controlled rotating stage and illuminated with
polarized light of wavelength λ = 532 nm with an incident power intensity near 50
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Figure 4-3: Kretschmann experimental con�guration Monochromatic p-
polarized laser light of wavelength 532 nm was illuminated onto a prism coupled
to the glass substrate through index matching �uid. The device structure was glass/
Ag (23 nm)/ CuPc(14)/ C60(34)/ BCP(8)/Ag (24).

µW. As the angle of incidence, θi, increases past the angle of total internal re�ection,
incident photons in the more optically dense glass substrate will resonantly excite
surface plasmons on the Ag cathode-air interface. The intensity of the re�ected beam
is monitored with a Si photodetector. The measured photocurrent at zero bias is
measured with a Keithley 2400 sourcemeter.

Re�ection and net absorption of the electromagnetic wave were modeled using
the transfer matrix method. Since the active material layers employed in our device
structures have strong absorption peaks in the range of wavelengths we are consid-
ering, Stokes reversibility relations were not used in the calculation of the individual
matrix elements. Indices of refraction and extinction coe�cients for Ag [76, 77] and
CuPc [8] were obtained from literature, while those for C60 and BCP were measured
by spectroscopic ellipsometry. We used standard plane wave analysis to analyze the
electric and magnetic �elds in the multilayer structure.[78] The electric �eld in any
layer j, is given for TM polarization by:

Ej =
(
A1je

ikz,jz (1, 0, kx/kz,j) + A2je
ikz,jz (1, 0,−kx/kz,j)

)
ei(kxx−ωt) (4.1)

where kx is the wavevector in the plane of the interfaces of the structure, calculated
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from the incident beam. Imposition of boundary conditions at each interface leads to a
set of equations for the coe�cients Aj that are solved using transfer matrix methods.
The magnetic �elds in the structure can be calculated using the usual relation for
electromagnetic waves. This enables the calculation of the Poynting vector in each
layer of the structure.

In �gure 4-4a we compare proportional re�ected light intensity (re�ectivity) versus
θi for both s- and p-polarized incident light. The mixed transversal and longitudinal
electromagnetic �eld carried by SPPs can only be excited by p-polarized light and as
such, only the p-polarized re�ectivity exhibits a sudden decrease corresponding to SPP
excitation.[79] As θi increases, the onset of attenuated total re�ection at 44◦ excites
an evanescent surface wave which couples to SPPs on the Ag cathode-air interface.
Photonic excitation of SPs via prism coupling also allows radiative re-emission of light
back into the glass hemicylinder. This back scattered light is 180◦ out of phase with
the incident light; at resonance this backscattered light can destructively interfere
with the incoming wave resulting in the sharp drop in re�ectivity observed surface
plasmon resonance (SPR).

The modeled re�ectivity spectra is a strong function of the thickness and complex
permittivity of the two layers whose interface support the surface wave. We modeled
surface roughness applying the method of Hornauer [77] as a perturbation of the
permittivity of a 'smooth' silver �lm. We have measured rms roughness parameters
by atomic force microscopy for the scattering silver �lms to be ∼ 1.5 nm and adjust
the index of refraction n and extinction coe�cient k in accordance with Hornauer,
yielding n = 0.14 and k = 2.56, signi�cantly broadening the re�ectivity dip and
shifting the resonance to higher momentum.

Besides the back-radiation damping of SPPs at the Ag-air interface, the surface
wave vector of the SPP can linearly combine with the vectors which compose the
Fourier spectrum of the rough surface. These scattering events allow the non-radiative
SPPs to forward scatter photons in the dielectric (air) at the interface of �eld enhance-
ment. The correlation between surface roughness and directional light emission has
been measured by several authors. [80, 81, 82] According to Tajima et al.,[82] the
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Figure 4-4: Re�ectivity and quantum e�ciency of SPP excited photodiode
(a) Maximum coupling of light to SPPs occurs where the re�ected optical intensity
(¥) is a minimum and the photodiode external quantum e�ciency (N) is a maximum
at ∼ 53◦, where the external quantum e�ciency is 12%. (b) Internal QE as a function
of incident angle (•), where the A = 1−R. The spectra was normalized at θi = 35◦.

e�ciency of light emission from �lms of 1.5 nm rms roughness is ∼ 10%.

The electromagnetic �eld of the SPPs excite electron-hole pairs at the Fermi level
of the silver; the following de-excitation produces phonons and thus heating. The
internal damping of SPPs by joule heating is least of the noble metals for Ag; δAg

SP

at 532 nm is ∼ 30µm. The increase in interaction distance of photodiodes excited
parallel to the device interface instead of perpendicular is a factor of 600. This rep-
resents a substantial increase, greatly increasing light absorption and thus improving
quantum e�ciency.

In �gure 4-4a the measured external quantum e�ciency (QE) is plotted versus θi,
showing a tripling of quantum e�ciency from normal incidence (approximated here
by θi = 35◦) from 4.3% to 12%, due to an increase in ηABS under SPP excitation. The
external QE, ηEQE, is related to internal QE, ηIQE, by ηEQE = ηABS · ηIQE. The total
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absorption in the multilayer stack is A ≈ 1−R− T . We approximate A ≈ 1−R by
letting T = 0 which is exact only under the condition of total internal re�ection where
the angle of incidence is greater than the angle of SP resonance, θi > θSPR. Below
θSPR, transmission is small but nonzero. Under this approximation, the normalized
angular dependence of ηIQE is plotted in �gure 4-4b. Despite the doubling of ηEQE

under SPP excitation, ηIQE is nearly �at both below and above θi = 44◦ where the
transition between excitation via photons and SPPs occurs. The maximum reduction
is ∼ 25% at θ = 50◦, attributable to increased absorption in the silver cathode that
supports the plasmon and outscattering of light, processes exacerbated by surface
roughness at the electrode-air interface.[79] Since the normalized ηIQE is nearly �at
coupling between SPPs and the organic layers is e�cient.

Disparities between ηEQE and ηABS as a function of θi is attributable to two phe-
nomena associated with SPP propagation on metal surfaces. First, as the angle of
incidence is increased, more light energy is guided into SPP modes. At plasmon reso-
nance, energy dissipation reaches a maximum, resulting in a decrease in internal QE.
Second, light emission associated with propagating SPPs results in the outcoupling
of useful energy. Both phenomena compete with light absorption in the arti�cial
reaction center and constitute loss.

If we assume that the modeled ηABS provides an accurate prediction of absorption
versus θi, ηIQE is estimated to be ∼ 20%. This value is low but has been shown to
be highly dependent on exposure to air and attributable to device degradation.[83]
However, in absorption limited devices, the thickness of the active absorbing layers
can be made thinner, which has previously been shown to signi�cantly increase ηIQE

by increasing the probability of exciton dissociation at the active interface [82]. Active
semiconductor layers with thicknesses greater than the exciton di�usion length lowers
dissociation e�ciency. We expect that the demonstrated photodiode can achieve
higher QEs under device structure optimization.

The modeled total electric �eld intensity throughout the thickness dimension is
shown in �gure 4-5 for θi at 30◦ and 47◦. The �eld enhancement at the Ag-air
interface is consistent with the SPP propagation and is the only possible mode ex-
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citable through the prism coupled Kretschmann geometry. For incident radiation
with λ = 532 nm, absorption is primarily in the CuPc layer. Total absorption is cal-
culable by integrating the divergence of the Poynting vector −→S across the thickness of
interest. At SPR, over 80% of absorbed light is absorbed in the CuPc layer. However,
the CuPc layer is 40 nm from the Ag-air interface. A stronger �eld enhancement is
possible with decreasing distance from the SP supporting interface and will result in
greater absorption.
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Figure 4-5: Magnitude of the electric �eld in SPP excited photodiode A
pronounced enhancement at the silver-air interface indicates plasmon resonance. The
�elds in the absorbing arti�cial reaction center are also enhanced, leading to an in-
crease in external quantum e�ciency.

Photon launched surface plasmon excitation of organic photodiodes demonstrates
that the e�ciency of arti�cial reaction centers is enhanced when the incident radi-
ation is coupled into a guided SPP mode. The enhancement of e�ciency is most
pronounced for thin reaction centers, with low exciton di�usion losses and low op-
tical absorption, but very high internal quantum e�ciency. SPP excitation in the
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Kretschmann con�guration resulting in internal QEs that are independent of excita-
tion method suggests SPP excitation of arti�cial reaction centers can proceed with
high e�ciency.

4.3 Energy Transfer from Synthetic Antennas to Syn-
thetic Reaction Centers

4.3.1 Simulation of Energy Transfer from Antenna Excitons

Energetic transfer from excited molecules to SPP modes can occur with high e�-
ciency to metallic slabs [84, 85] and thin �lms.[86] The theoretical basis for dipole
coupling to modes in a multilayer stack is well understood [87] and agrees well with
experiments.[88] To examine dipole coupling to thin silver �lms comprising the cath-
ode of an organic PV, we use the method of Chance et al. [87] to simulate classical
damping of an oscillating charge distribution near a multilayer stack to investigate
energy transfer to our arti�cial reaction center. Energy transfer is calculated directly
from the Poynting vector.[89]

In �gure 4-6, we show the dispersion relation for guided SPP modes, propagating
parallel to the electrode plane in a typical photovoltaic cell with external antenna.
Three guided modes are identi�ed in this structure and the mode intensity pro�le of
each is shown in the insets. Each of the guided modes has signi�cant overlap with the
charge generation layers sandwiched between the metal electrodes. The mode labeled
(a), the SPP centered on the silver/reaction center interface, has by far the highest
intensity in the antenna.

We calculate the dipole energy dissipation to the multilayer stack in a technologi-
cally relevant device geometry as a function of normalized wavevector, u, and distance
to the antenna-silver layer interface in �gure 4-7. The normalization factor for the
wavevector is its free space value; normalized wavevectors with u < 1, correspond to
radiative modes; u > 1 correspond to non-radiative energy transfer. Since the energy
coupling is dependent on the transition dipole orientation with respect to the plane
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Figure 4-6: Surface plasmon polariton mode dispersion and �eld pro�le in
an organic solar cell (a) Calculated dispersion relation of modes in the multilayer
stack. The curves correspond to SPP modes shifted to the right of the photon dis-
persion light lines in the dielectrics that partially support the SPP. The electric �eld
pro�le in the thickness direction for E = 2.1 eV shows the �eld localization at the
interfaces that support the SPP modes. Mode (a) is strongest in the reaction center
semiconductor. Mode (b) is strongest in the antenna, and Mode (c) is strongest in
the glass substrate. Because it has the highest intensity in the antenna, mode (b)
dominates energy transfer from the antenna to the RC. The structure of the simulated
device is: glass/ Ag(20 nm)/ CuPc(45)/ PTCBI(25)/ BCP(13)/ Ag(30)/ air.

43



0 1 2 3 4 5

10

20

30

40

50

60

70

80

90

D
is

ta
n

c
e

 f
ro

m
 A

lq
3
-A

g
 i
n

te
rf

a
c
e

 [
n

m
]

Normalized wavevector, u

-1.5

-2.1

-2
.1

-2.6

-2.6

-3.2

-3.2

-4.3

-4.9

-5.4

-6.0

-7.1

Logarithm of perpendicular dipole energy dissipation fraction
(a)

Logarithm of perpendicular dipole energy dissipation fraction
(a)

(10a)

(10b)

0 1 2 3 4 5

10

20

30

40

50

60

70

80

90

Logarithm of parallel dipole energy dissipation fraction

D
is

ta
n

c
e

 f
ro

m
 A

lq
3
-A

g
 i
n

te
rf

a
c
e

 [
n

m
]

Normalized wavevector, u

-1.8

-2
.3

-2.3

-2
.7

-2.7

-3.2

-3.2

-3.6

-3.6

-4.1

-4.5

-5.0

-5.9

-6.8

-7.6

(b)

(10a)

(10b)

-1.8

Figure 4-7: Logarithmic contour plot of dipole energy dissipation in an
arti�cial antenna dipole for (a) perpendicular and (b) parallel orientation. The
peaks labeled (10a) and (10b) correspond to the guided modes in �gure 4-2. Dipole
energy dissipation is greatest for perpendicularly oriented dipoles into modes with u >
1, corresponding to SPPs. Also, note that coupling to waveguide modes is strongest
for dipoles oriented parallel to the Ag-antenna interface. The structure modeled here
is air/ Alq3(210 nm)/ Ag(15)/ BCP(10)/ PTCBI(20)/ CuPc(30)/ Ag(45)/ glass. The
photoluminescent wavelength, λ, and free space quantum e�ciency, q, of the dipole
are 650 nm and 70%, respectively. Energy dissipation is plotted as a logarithm to
facilitate visual interpretation.
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of the interface, we consider the cases of perpendicular (�gure 4-7a) and parallel (�g-
ure 4-7b) orientation separately. At a given dipole distance, integration of the energy
dissipation yields unity. If the molecules are randomly oriented, the transition dipoles
will be 1/3 perpendicular and 2/3 parallel.

Energy transfer to the stack con�rms that of the four decay mechanisms listed
above, guided electromagnetic modes are dominant. For perpendicularly oriented
dipoles (�gure 4-6a), prevailing energy transfer is to the non-radiative SPP modes
with normalized propagation constant u = 1.2. This corresponds to mode (a) in
�gure 4-5. Mode (b) is also visible but much weaker. The non-radiative character
(u > 1) of these modes describes their interfacial localization. Coupling to SPPs is
especially strong near the interface, as expected. For dipoles parallel to the interface,
both waveguide and SPPs modes are signi�cant. The waveguided photon modes
exist in the antenna layer, where the nodes are set by the re�ection conditions at
the adjacent silver layer and the neighboring air interface for the condition of total
internal re�ection. For the structure modeled here, only the primary mode exists,
however the number of modes increases as the luminescence wavelength of the dipole
decreases and/or the antenna thickness increases.

The e�ciency of energy transfer from the antenna to the active layers within the
reaction center is shown in �gure 4-8 for various dipole orientations. The e�ciency was
calculated directly from the Poynting vector. The structure is glass / Ag(25 nm) /
RC (50, modeled by copper phthalocyanine, CuPc) / Ag(25)/ antenna (200, n = 1.7)/
air. We also assume an antenna with a free space photoluminescent e�ciency of 70%
and emission at λ = 620 nm. For antennas comprised of molecules with isotropic
transition dipole moments, the e�ciency of energy transfer to the RC is typically
greater than 50%.1

1Note that molecules with transition dipoles oriented perpendicularly absorb the least incident
radiation. The ideal antenna should transfer energy from parallel dipoles, which have the highest
absorption, to perpendicular dipoles.
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Figure 4-8: E�ciency of energy transfer from excitons in the antenna to
the RC as a function of the exciton position and orientation in the an-
tenna The structure modeled here is glass/Ag(25 nm)/ RC(50, modeled by copper
phthalocyanine, CuPc)/ Ag(25)/ antenna(200, n = 1.7)/ air. The photoluminescent
wavelength, λ , and free space quantum e�ciency, q, of the dipole are 620 nm and
70%, respectively.

4.3.2 Experimental Veri�cation of Energy Transfer from An-
tenna Excitons to Surface Modes

Finally, we experimentally demonstrate energy transfer from the antenna in �gure 4-
9. In this experiment we fabricated devices with two di�erent arti�cial antennas. The
�rst employed a 200 nm-thick co-deposited �lm of tris(8-hydroxyquinoline) aluminum
(Alq3) and 1% DCM2. In the second antenna, the Alq3 was instead doped with 1%
CuPc. In both antennas, light is absorbed in the blue and near UV by Alq3 molecules,
which then transfer that energy to the dopant guest molecules. Photoluminescence
(PL) into surface modes then occurs from the dopants. However, the PL e�ciency for
DCM2 is approximately 70%, whereas for CuPc it is nearly 0%, prohibiting energy
transfer to the arti�cial reaction center. By comparing the quantum e�ciency spectra
of these two devices, we can attribute positive deviations to energy transfer.
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Figure 4-9: Quantum e�ciency spectra of arti�cial antenna solar cells The
photocurrent spectra of PV cells with external Alq3-based antennas show enhanced
photocurrent at wavelengths where Alq3 absorbs. An increase in quantum e�ciency
for the Alq3:DCM2 antenna coincides with the absorption maximum of Alq3, demon-
strating energy coupling from the arti�cial antenna to arti�cial reaction center. The
device structure is Ag(20 nm)/ CuPc(40)/ PTCBI(20)/ BCP(10)/ Ag(30)/ An-
tenna(200).

The complete structure of the solar cell here is Ag(20 nm)/ CuPc(40)/ PTCBI(20)/
BCP(10)/ Ag(30)/ Antenna(200). For wavelengths above λ = 450 nm, the quantum
e�ciency spectra are nearly identical, showing that the antenna doesn't perturb the
diode performance at frequencies where the antenna is inactive. However, the ef-
�ciency exhibits a modest increase around λ = 390 nm, corresponding to the Alq3

absorption peak. The correlation between an increased photoluminescence quantum
e�ciency and increased external quantum e�ciency, localized to the narrow absorp-
tion peak of the antenna, demonstrates that energy coupling from the antenna layer
has occurred. The quantum e�ciency is low overall since the antenna-less solar cell
su�ers from a low internal quantum e�ciency. Higher e�ciencies are possible by
improving the e�ciency of the reaction center.
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Chapter 5

Conclusion

Photosynthetic structures are attractive for implementation in organic PV due to their
highly e�cient functioning while in their native environments. Device performance
of the �rst demonstrations of solid state solar cells with integrated photosynthetic
proteins are limited, as are traditional organic solar cells, by an inability to absorb
enough incident light. This problem is endemic to thin �lms of even strongly absorb-
ing materials and constitutes a limitation that must be addressed with alternative
techniques.

The local environment of the solid state is drastically di�erent to the aqueous
solution where proteins usually preside. Since the structural stability and hence
functionality of proteins hinges on local environment, it is necessary to inquire whether
the harsh environment of solid matter is too destructive for proteins to withstand.
We �nd that solid state integration necessitates stabilization by surfactants and have
demonstrated retained functionality over the timescale of weeks. To be useful in
practical devices, signi�cant work in increasing stability is needed. The stability
of photosynthetic reaction centers are compromised even in their native thylakoid
membranes; the half-life of PSII can be as short as 30 minutes.[90] Plants survive this
damage through an energetically costly and complicated repair process of degrading,
resynthesis, and replacement.

Separation of the functions of light absorption and exciton dissociation constitutes
a signi�cant photosynthetic redesign, unaccompanied by the limitations of traditional
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organic PV. Initial device performances are modest yet promising. The separation
of optical and electrical functionalities discussed here represents a completely syn-
thetic implementation where the active materials of the arti�cial antenna and reac-
tion center are amorphous �lms of pigment semiconductors. However, it is possible to
construct devices where one or both components are biological in origin. The excel-
lent absorption characteristics of chlorosomes and charge separation characteristics
of reaction centers make them tempting candidates for photovoltaic materials, the
tradeo� between performance and stability may dictate which type of devices yield
high performance and reliability.
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