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Abstract

Frame representations, which correspond to overcomplete generalizations to basis expansions, are
often used in signal processing to provide robustness to errors. In this thesis robustness is provided
through the use of projections to compensate for errors in the representation coefficients, with spe-
cific focus on quantization and erasure errors. The projections are implemented by modifying the
unaffected coefficients using an additive term, which is linear in the error. This low-complexity im-
plementation only assumes linear reconstruction using a pre-determined synthesis frame, and makes
no assumption on how the representation coefficients are generated.

In the context of quantization, the limits of scalar quantization of frame representations are first exam-
ined, assuming the analysis is using inner products with theframe vectors. Bounds on the error and
the bit-efficiency are derived, demonstrating that scalar quantization of the coefficients is suboptimal.
As an alternative to scalar quantization, a generalizationof Sigma-Delta noise shaping to arbitrary
frame representations is developed by reformulating noiseshaping as a sequence of compensations
for the quantization error using projections. The total error is quantified using both the additive noise
model of quantization, and a deterministic upper bound based on the triangle inequality. It is thus
shown that the average and the worst-case error is reduced compared to scalar quantization of the
coefficients.

The projection principle is also used to provide robustnessto erasures. Specifically, the case of a
transmitter that is aware of the erasure occurrence is considered, which compensates for the erasure
error by projecting it to the subsequent frame vectors. It isfurther demonstrated that the transmitter
can be split to a transmitter/receiver combination that performs the same compensation, but in which
only the receiver is aware of the erasure occurrence. Furthermore, an algorithm to puncture dense
representations in order to produce sparse approximate ones is introduced. In this algorithm the error
due to the puncturing is also projected to the span of the remaining coefficients. The algorithm can be
combined with quantization to produce quantized sparse representations approximating the original
dense representation.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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CHAPTER 1 Introduction

The use of redundancy as a robustness mechanism is very common in signal process-
ing and communications applications. For example, channelcodes provide robust-
ness to communication errors and oversampling is often usedto reduce distortion due
to quantization. This thesis uses the redundancy in frame representations in order to
provide robustness to quantization and erasures.

The use of frames to generate representations that are robust to errors has been con-
sidered in several contexts. For example, [27, 31, 7, 8, 14, 34] demonstrate the ro-
bustness of general frame expansions to erasures, while [28, 4, 5, 9, 17, 27] discuss
the case of quantization. These methods mostly assume that the frame is used to
analyze a signal using inner products with the frame vectors. Depending on the error
type, the synthesis method is appropriately modified to accommodate for the error.
In some cases ([34, 14, 43, 27], for example), the frame design problem is also con-
sidered. In these cases, an analysis method, a synthesis method, and an error type
are imposed by the problem. The issue is the selection of vectors in the frame most
appropriate for the specific problem.

This thesis approaches the problem assuming the synthesis method is predetermined.
In most of this work, a linear synthesis equation with a pre-specified frame is con-
sidered. To accommodate for errors, the representation coefficients are modified
instead of the synthesis method. Specifically, an error on any representation coeffi-
cient is compensated for by removing its projection from theremaining unaffected
coefficients. The details of this projection principle are examined in chapter3. The
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frame design problem is not considered; the frame is assumedalready designed or
pre-determined by the application.

The use of projections has several advantages, most due to the linearity of the pro-
jection operator. For example, in most of the applications considered, the system
implementing the projection, and its parameters are only determined once, at the de-
sign stage. To project the error, it is only necessary to scale the parameters according
to the error magnitude. Furthermore, linearity often allows the superposition of pro-
jections to compensate for errors on different coefficientsby compensating for the
error on each coefficient separately. Using these properties most of the algorithms
described can be implemented efficiently using linear systems.

Chapter2 provides an overview of frame representations, projections and quantiza-
tion. Its purpose is to establish the notation used through the thesis. It also serves as
a quick reference for the definitions and the properties usedin the remainder of the
thesis.

Chapter3 introduces the main tool used repeatedly in this thesis: error compensa-
tion using projections. Specifically, this chapter examines how the error introduced
in one coefficient can be compensated for using the unaffected coefficients. This
compensation performs, essentially, a frame analysis, thecomputation of which is
discussed. Using this method to compensate for errors makesan implicit choice of
computational simplicity over other properties. This choice is also discussed. The
tools developed in chapter3 are used in chapters5 through7.

Chapter4 discusses the quantization of frame representations. Simple analysis us-
ing inner products followed by scalar quantization of the coefficients is shown to be
suboptimal in terms of the bit use and the error decay as a function of the frame
redundancy. The result is independent of the frame, or the reconstruction method
used. The results in this chapter motivate the use of complexanalysis and quantiza-
tion methods, followed by linear reconstruction, instead of linear analysis using inner
products and scalar quantization followed by complex synthesis methods.

One method to improve the performance of scalar quantization is Sigma-Delta noise
shaping, discussed in chapters5 and6. Specifically, chapter5 develops first-order
Sigma-Delta noise shaping for arbitrary finite frames. Two methods to measure the
performance are discussed, and two noise shaping algorithmdesigns are presented.
The results are also generalized to higher order noise shaping. Chapter6 extends
these results to frame expansions in infinite dimensional spaces. The chapter also
includes a discussion on simplifications and extensions of classical Sigma-Delta con-
verters used in A/D and D/A conversion.

In chapter7 the use of projections to compensate for erasures is examined. It is
shown that projection of the erasure error is equivalent to projection of the data.
Thus, several properties of the compensation are derived. The projection algorithm
is used to causally compensate for erasure errors. The advantage of this method is
the simplicity and the causality of the resulting system. Furthermore, this approach
does not assume a signal analysis using inner products, onlythe synthesis using a
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linear frame synthesis operator. Two equivalent systems are presented, one assuming
that the transmitter is aware of the erasure occurrence, andone assuming that only
the receiver is. The use of the same principle to intentionally introduce erasures and
sparsify dense representations is also considered.
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CHAPTER 2 Background

This chapter provides a brief overview of the concepts and the definitions used through
the thesis, namely basis and frame expansions, projections, and quantization. The
primary emphasis is on the definitions and the properties that are used in the re-
mainder of the thesis, the aim being to establish the notation and serve as a quick
reference.

2.1 Linear Representations of Vectors

The signals we consider in this thesis are vectors, elementsof Hilbert spaces. Vectors
such asx are denoted using boldface, and the Hilbert spaces usingW or H. In most
of this thesis the conventionW ⊆ H is followed, unless otherwise noted. Subscripts
are used to denote multiple subspaces wherever necessary.

2.1.1 Bases and Basis Representations

A set of vectors{bk ∈ H} form a basis forH if they are linearly independent and
spanH. A Riesz basis further satisfies the following condition:

A||x|| ≤
∑

k

|〈x,bk〉| ≤ B||x||, (2.1)

for some boundsA > 0, andB < ∞, and for allx. The upper bound ensures that
the basis expansion converges, and the lower bound that the vectors span the space.
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Any vectorx ∈ H is uniquely expressed as a linear combination of the basis vectors
using the synthesis, or reconstruction, sum:

x =
∑

k

akbk. (2.2)

The analysis ofx to the representation coefficientsak is performed using inner prod-
ucts ofx with the dual basis:

ak = 〈x,bk〉, (2.3)

in which the dual basis{bk} is the unique set of biorthogonal vectors satisfying:

〈bk,bl〉 = δk,l. (2.4)

A basis is orthonormal if and only if it is self-dual. In this case, all the basis vectors
have unit magnitude and each vector is orthogonal to the others. An orthonormal
basis has Riesz boundsA = B = 1.

If the basis is orthonormal, Parseval’s theorem holds, stating that:

||x||2 =
∑

k

|〈x,bk〉|2 =
∑

k

|ak|2. (2.5)

More discussion on these properties and the applications ofbasis expansions can be
found in several linear algebra and signal processing texts[2, 36, 20].

2.1.2 Frames and Frame Representation

Frames are a generalization of bases, first introduced in [24]. A set of vectors{fk ∈
W} forms a frame if there exist constant frame bounds0 < A ≤ B < +∞, such
that for allx ∈ W:

A||x|| ≤
∑

k

|〈x, fk〉| ≤ B||x||. (2.6)

As with Riesz bases, the left side of the inequality guarantees the vectors span the
space, while the right side ensures the convergence of infinite frame expansions. A
Riesz basis is a frame, although a frame is not necessarily a Riesz basis—linear
independence is not required in the definition of frames.

A vectorx in the spaceW can be represented with the synthesis equation:

x =
∑

k

akfk (2.7)

In contrast to basis representations, the frame expansion coefficientsak are not nec-
essarily unique. Similar to basis expansions, however, they can be determined using
an analysis equation:

ak = 〈x, φk〉, (2.8)

in which the{φk} is an analysis frame corresponding to the synthesis frame{fk}.
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The analysis frame is not unique given a synthesis frame. Still, the dual frame,{fk},
is the unique frame that minimizes the energy of the representation,

∑

k |ak|2, com-
pared to all the possible analysis frames{φk}. The lower and upper frame bounds of
the dual frame are1/B and1/A, respectively.

A frame is tight if its dual frame is the frame itself scaled bya constant. A frame is
normalized tight if it is self-dual, i.e. this constant is 1.A normalized tight frame
behaves similarly to an orthonormal basis. Tight frames have equal frame bounds
A andB, which are equal to unity if the frame is normalized tight. Details on the
relationships of the analysis and synthesis vectors can be found in a variety of texts
such as [20, 36].

Frame expansions are usually overcomplete. The redundancyof the frame is denoted
by r. A finite frame has redundancyr = M/N whereM is the number of frame
vectors andN is the dimension of the space. Ifr = 1, the frame forms a basis. A
normalized tight frame with redundancyr = 1 is an orthonormal Riesz basis. In this
thesis we exploit the redundancy of frame expansions to compensate for degradation
of the expansion coefficients from quantization and erasures.

2.1.3 Frames as a Transformation of Orthonormal Bases

It is often convenient to view frames as a linear transformation of orthonormal bases.
Specifically, a spaceH, an invertible linear operatorF : W → H, and an orthonor-
mal basis{bk} onH can be directly mapped onto an analysis frame{fk} in W by
requiring that the expansion coefficients are the same:

ak = 〈Fx,bk〉 (2.9)

= 〈x, F ∗bk〉 (2.10)

⇒ fk = F ∗bk, (2.11)

in which F ∗ denotes the adjoint operator ofF . Alternatively, starting fromH and
{bk ∈ H}, we defineF using{fk}:

Fx =
∑

k

〈x, f k〉bk. (2.12)

Using the uniqueness of the adjoint operator it can be verified that the two definitions
are equivalent.

Although the choice ofH and{bk} can be arbitrary, the requirement thatF is invert-
ible has an implication about the dimensionality ofH, and the cardinality of{bk}:
they are both at least as large as the cardinality of the frameexpansion (which is
equal toM if the frame is finite). We callF the frame analysis operator.1 of the
frame{fk} The basis and the target spaceH is sometimes not of particular signif-
icance, and they are omitted. In this case, the implied spacefor H is R

M or l2,
depending on the cardinality of the frame, and the implied basis is the set of the unit

1 Sometimes it is also referred to just as the frame operator, aterminology not followed in this thesis.
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vectors along each coordinate direction,δk. Thus, the analysis frame operator maps
x to the vector corresponding to the coefficients of the frame expansion:

(Fx)k = 〈x, fk〉 = ak, (2.13)

⇒ Fx =
[

a1 . . . ak . . .
]T

. (2.14)

This convention is often followed in this thesis, unless otherwise specified.

The singular values ofF have particular significance in characterizing the frame. For
example, it can be shown [27] that the frame is tight if and only if all the non-zero
singular values are equal. Furthermore, the smallest and the largest singular values
are associated with the lower and upper boundsA andB of the frame definition in
equation (2.6). When all the singular values are non-zero, the frame is non-redundant
and becomes an oblique basis. If they are all non-zero and equal, the frame is an
orthonormal basis. Because of the significance of the singular values, the operators
FF ∗ or

√
FF ∗ are important for the frame. They are sometimes referred to as frame

operators in the literature ([14], for example). However, this is not a convention we
follow2.

Given a frame{f k}, it is straightforward to reconstructx from the coefficients of the
expansion using that frame. SinceF is invertible, it is possible to determineT , an
inverse ofF , such thatTF = I, whereI is the identity operator. Using (2.12):

Fx =
∑

k

akbk (2.15)

⇒ x = TFx =
∑

k

akTbk, (2.16)

making the set of vectors{Tbk} a synthesis set for{fk}. In general,T and the
corresponding synthesis set is not unique. However when theinversion uses the
unique left pseudoinverse of the frame operatorT = F †, then the corresponding set
is the unique dual frame{fk = F †bk}, of {fk}. Given a frame{fk}, the dual of
its dual is the frame itself. Dual frames have particularly nice properties (for some
examples, see [20, 27] and references within), and are often used in pairs for the
analysis and the synthesis set.

Given a pair of dual frame sets, either can be used in the analysis equation with the
other used in the synthesis equation. Therefore, naming oneof the two as the analysis
frame and the other as the synthesis frame implies a design choice has been made,
and we denote the sets using{fk} and{fk} respectively. Although it is often the case
in practice, explicit mention of an analysis and a synthesisset, and the corresponding
equations, does not necessarily imply that the sets are dualof each other, or, even,
that both sets form a frame. Unless otherwise noted, the remainder of this thesis does
not assume duality of the analysis and synthesis sets. Of course, if the frame is not

2 Referring toFF ∗ as the frame operator creates potential confusion with the frame analysis or syn-
thesis operators. Furthermore,F itself is often referred to as the frame operator (omitting the word
analysis), the potential for confusion is greater.
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redundant, it forms a basis, and the expansion is unique. In this case the analysis
frame is the dual of the synthesis frame.

2.1.4 Decoupling the Analysis from the Synthesis

In the same way that a frame analysis defines a linear operator, so does the synthesis
equation (2.7). We refer to this operator as the frame synthesis operator,denoted by
S, although this name is not common in the literature3.

S : H → W, s.t.Sy =
∑

k

〈y,bk〉fk. (2.17)

As with the frame operator, the spaceH is sometimes assumed to beR
M or l2,

with the corresponding basesbk = δk. The analysis and synthesis operators using
the same frame set are adjoints of each other:S = F ∗. Furthermore, if the frame
is normalized tight, the synthesis operator is the pseudoinverse of the analysis one:
S = F †.

If the synthesis frame forms a complete basis, the synthesisoperation is full rank.
When the analysis followed by synthesis is required to be theidentity, this completely
determines the corresponding analysis operator, and, therefore, the analysis frame.
However, in the case of the synthesis with a redundant frame,the domainH of S is
in general larger than the rangeW, which implies that the synthesis operator has a
non-zero nullspace null(S).

The existence of this nullspace in redundant frames decouples the analysis process
from the synthesis one. Given a specific synthesis equation,a set of frame expan-
sion coefficients can be modified in many ways. The synthesized vectorx remains
the same, as long as the modifications only affect the nullspace of the synthesis op-
eration. The analysis method itself can be modified to produce coefficients with
components in the nullspace of the synthesis. This essentially decouples the usual
analysis-synthesis linear operation pair associated withbasis expansions.

The flexibility of modifying the expansion coefficients allows for the pursuit of other
desirable properties in the expansion coefficients. For example, for processing and
transmission the coefficients need to be quantized. Sparsity is usually desired in
compression applications. Additive noise immunity and tolerance to erasures is also
desired in transmission applications. The rest of this thesis presents some examples
and applications that this flexibility enables.

Most of this work only assumes that a frame is used for the synthesis, using the syn-
thesis equation, making no assumptions about the analysis method. We should note
that this is not the only approach. Often the analysis is given by the application and

3 This name does occur, however [14], as it should. There is no particular reason why only the analysis
should be associated with an operator. Since in this work thefocus is on the synthesis operation, this
term is very useful. The terminology conventions over the frame operator (as well as other aspects
of frame representations) have not yet been stabilized and are often contradictory. Some discussion
exists in [14].
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the synthesis is designed to accommodate modifications on the coefficients during
processing (see [38, 28, 27, 7, 8] for some examples). We explore an important as-
pect of this choice when discussing quantization in chapter4. However, depending
on the application, either the synthesis or the analysis might be imposed from the
setup.

2.1.5 Frames Implied by Matrix Operations

Any matrixF ∈ R
M×N with rank{F} = N defines an analysis frame operator, with

the corresponding frame vectors being the rows ofF transposed. When the matrix
operates on a vectorx ∈ R

N , it computes its frame expansion:

Fx =







−fT
1 −
...

−fT
M−













x1
...

xN






=







〈f1,x〉
...

〈fM ,x〉






=







a1
...

aM






= a. (2.18)

Any left inverseT of F can be used to recoverx from the expansion coefficients,
since

Ta = TFx = x. (2.19)

The columns of any such left inverse form a synthesis frame corresponding to{fk}.
The unique dual frame{fk} is the one derived from the pseudoinverseT = F†:

Ta =





| |
f1 · · · fM
| |











a1
...

aM






=

M
∑

k=1

akfk = x. (2.20)

The singular values ofF determine the frame boundsA andB for equation (2.6).
Specifically,A = σmin andB = σmax are the largest lower frame bound and the
smallest upper frame bound respectively. If all the singular values ofF are equal—
i.e. FTF = σ2I—then the two bounds,A andB are also equal, and the frame is
tight. In this case the dual frame vectors are the frame vectors scaled by1/σ2:

FTF = σ2I ⇔
(

1

σ2
FT

)

F = I ⇔ fk =
1

σ2
fk. (2.21)

Therefore, a tight frame inRN corresponds to aM × N matrix whose transpose is
its pseudoinverse within a scalar.

2.1.6 Frames Implied by Discrete-time Filters

Any LTI discrete-time filter can be viewed as the synthesis operator for a frame rep-
resentation. In particular, filtering of a signala[n] ∈ l2 with an impulse response
h[n] produces the convolution sum:

x[n] =
∑

k

a[k]h[n − k] =
∑

k

a[k]fk, (2.22)
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in whicha[k] is the input to the filter andx[n] is the output, also inl2. This equation
has the same form as the synthesis equation (2.7) with the coefficientsa[k] taking
the place of the frame representation coefficientsak. In general, the representation
coefficients are not produced using inner products with an analysis frame. Still, they
represent the signal at the output of the filter.

The convolution sum can also be viewed as an analysis operator. Usingx[k] to denote
the input, anda[k] to denote the output of an LTI filterg[n]:

a[k] =
∑

n

x[n]g[k − n] = 〈x, f k〉. (2.23)

Thus, the vectorx is analyzed using the analysis framefk = g[k −n] and the output
a[k] corresponds to the analysis coefficientsak. In this case, the analysis frame
is translations of the impulse response time-reversed. Formost of this thesis, we
consider only synthesis from frame representations, and, therefore, this view is not
emphasized. However, it is an important aspect of the duality of frame expansions,
and an important consequence of the time invariance of LTI filters.

It can be shown that the adjoint operation of filtering using the impulse responseh[n]
is filtering using a time-reversed impulse response,h[−n]. It follows that the singular
values of the filtering operator are determined by the magnitude of the Fourier trans-
form, |H(ejω)|. As expected, since the space is infinite dimensional, the singular val-
ues are infinite in number, indexed by discrete-time or continuous-time frequency.4

The range of a filter is any signal in the space of linear combinations of complex
exponentials, chosen in the frequencies in which the Fourier transform of the filter
is not zero. This is also the span of the vector set formed by translationsh[n − k]
of the filter impulse response. The nullspace of the filter is the linear combination
of all complex exponentials for which its frequency response is zero. It should be
noted that if the frequency response has zero crossings in frequency (as opposed to
frequency intervals in which the frequency response is zero), then the signals that
produce0 output are infinite length complex exponentials. These are not in l2, the
assumed input space of the filter.

To form a Riesz basis from an impulse responseh[n] and its shifts, the filter with
the impulse response should have frequency response with finite magnitude, lower
bounded away zero form in all frequencies:

0 < A ≤ H(ejω) ≤ B < +∞, (2.24)

in which (assuming the Fourier transform is properly normalized) the constantsA

4 There is a subtlety involved in the cardinality of the integers, which index the filter taps in discrete-
time filters, versus the cardinality of(−π, π], which index the singular values in the discrete-time
frequency domain. This should be resolved using finite length signals and circular convolution, for
which the magnitude of the DFT provides the singular values.As we let the length of the signals
grow to infinity, the cardinality of the filter indices in time, and the DFT coefficient indices stays the
same, eliminating the issue. There is a further subtlety in defining the Fourier transform, so that the
singular vectors are unit-norm, but this is not important for the purposes of this discussion.
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andB correspond to the lower and upper bounds of the Riesz basis definition (2.1).
This simple rule, unfortunately does not extend to frames derived from filters.

When the input to a filter is restricted inl2, equation (2.22) defines a linear synthesis
operatorS : l2 → W, in which W is the range of the filter, as described in the
previous section. If the magnitude of the frequency response of the filter is finite and
positive for all frequencies, then the filter defines a Riesz basis, and, therefore, a non-
redundant frame. If the frequency response contains intervals in whichH(ejω) = 0
thenW is the space of signals with frequency content limited to thespan of the
frequency response. In order for the filter to form a frame, however, it should also
satisfy the boundsA andB of the definition (2.6). Thus, the filter frequency response
in the range of the filter should be greater than the lower bound and finite. Therefore,
the filter frequency response magnitude should satisfy:

0 < A ≤ |H(ejω)| ≤ B < +∞ for ω ∈ I (2.25)

and|H(ejω)| = 0 for ω ∈ Ic, (2.26)

in which I ∪ Ic = [−π, π), andI is the set of frequency intervals for which the
response is positive. Thus, a filter forms a frame if it eitherhas non-zero frequency
response in all frequencies, or discontinuities around itsnullspace. Otherwise, if the
filter frequency response is continuous and positive in the neighborhood of a null,
then the lower frame boundA becomes 0.

Given a synthesis filterH(ejω), a corresponding analysis filterG(ejω) should satisfy

G(ejω) = 1/H(ejω) if H(ejω) 6= 0. (2.27)

The dual frame, determined by the psudoinverseH†(ejω) further satisfies:

H†(ejω) =

{

1/H(ejω) if H(ejω) 6= 0
0 if H(ejω) = 0.

(2.28)

If the lower boundA is zero, anyG(ejω) is infinite around the null ofH(ejω), which
makes the analysis equation unstable.

In most of this thesis we only use filters as synthesis operators, thus this instability
is not an issue. The frames for which we need to determine the duals are usually
finite. In the cases in which the dual of a filter should be used,we assume the filter
forms a frame. In practice, for numerical stability of the computations the nullspace
of the filter is taken as the frequency interval in which the frequency response mag-
nitude is small. The filter corresponding to the dual frame should have frequency
response magnitude near zero in the same interval. This practical approach is similar
to allowing passband and stopband ripple when designing filters to approximate ideal
designs.
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-a1[n]
h1[n]↑P - -x1[n]

+

-a2[n]
h2[n]↑P - x2[n]

�

...
-aL[n]

hL[n]↑P - xL[n]

6

-x[n]

FIGURE 2-1: General Reconstruction filterbank

2.1.7 Frames Implied by Filterbanks

A similar synthesis equation exists for reconstruction filterbanks such as the one
shown in figure2-1:

x[n] =
∑

k,l

al[k]hl[n − kP ] =
∑

k,l

al[k]fl,k (2.29)

In this case the indexing is two dimensional, denoting time and filterbank channel.
In other words, the frame vectors are all translations of vectors in a generating set
{f0,l}. Furthermore, depending on the filterbank the vectors in thegenerating set
might be related. For example, all the filters of modulated filterbanks are modulated
versions of a fundamental filter.

The signalsal[n] on every channel are often produced using an analysis filterbank
such as the one in figure2-2. The corresponding analysis equation is:

al[n] =
∑

k,l

x[k]h̄l[nP − k] = 〈x, f l,k〉 (2.30)

in which h̄l[n] is the impulse response of thelth analysis filter.

The issues in treating filterbanks as frames are similar to the ones explored in sec-
tion 2.1.6, and we do not examine them in more detail here. In this thesiswe use
filterbanks mostly to synthesize vectors, not for analysis.Although we assume that
whenever a synthesis is performed through a filter bank, the filterbank forms a frame,
in practice the assumption can relaxed in ways similar to theones described for filters.
More details on frame expansions derived from analysis and synthesis filterbanks can
be found in a variety of references, such as [31, 19, 10].

2.1.8 Useful Families of Frames

While any full-rank linear operator implicitly defines a frame, as described above,
there are two frame families that are particularly interesting in signal processing ap-
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- h̄1[n] ↓P- -a1[n]

- h̄2[n] ↓P- -a2[n]

...
- h̄L[n] ↓P- -aL[n]

x[n]

FIGURE 2-2: General Analysis filterbank

plications, especially in the context of this thesis. We present a brief overview in this
section.

The Sampling Frame

Oversampling in time of bandlimited signals is a well studied class of frame ex-
pansions, although not often described in the terminology of frames. Historically it
evolved outside the context of frame theory, and it has proved very useful in signal
processing systems, such as Sigma-Delta converters [13], and sampling rate convert-
ers.

A discrete time signalx[n] or a continuous time signalx(t) bandlimited toπ/T is
upsampled or oversampled to produce a sequenceak. In the terminology of frames,
the upsampling operation is a frame expansion in whichfk = rfk = sinc((n −
k)/r), with sinc(x) = sin(πx)/(πx). The sequenceak is the corresponding ordered
sequence of frame coefficients:

ak = 〈x, f k〉 =
∑

n

x[n]sinc((n − k)/r), (2.31)

x =
∑

k

akfk ⇒ x[n] =
∑

k

ak
1

r
sinc((n − k)/r). (2.32)

Similarly for oversampled continuous time signals:

ak = 〈x, f k〉 =

∫ +∞

−∞
x(t)sinc((t − krT )/r), (2.33)

x =
∑

k

akfk ⇒ x(t) =
∑

k

ak
1

rT
sinc((t − krT )/r), (2.34)

in which r ≥ 1 and2π/T is the Nyquist sampling rate forx(t). The case ofr = 1
corresponds to sampling at the Nyquist rate and the resulting frame expansion forms
a non-redundant orthogonal basis.
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x[n] −→ ↑ r −→
Ideal LPF

Cutoff: π/r
Gain: 1

−→ ak −→
Ideal LPF

Cutoff: π/r
Gain: r

−→ ↓ r → x[n]

x(t) −→
Ideal LPF

Cutoff: π/rT
Gain: 1

−→ Sampling,
Rate:T/r

−→ ak −→
Discrete-to-
Continuous
Rate:T/r

−→
Ideal LPF

Cutoff: π/rT
Gain: rT

−→ x(t)

FIGURE 2-3: Signal processing systems computing the upsampling (top) and the oversampling
(bottom) frame expansion coefficients.

A subtlety in representing oversampling as a frame expansion, especially in the
discrete-time case, involves the spacesW andH in which the vectorx lies. Specifi-
cally, if x is taken as a member ofl2, with x[n] its corresponding basis expansion on
the basisδ[n − k], then the upsampling operator is a linear mapF : l2 → l2. This
means that the target spaceH has the same cardinality as the original space and the
redundancy of the frame can only be inferred by the measure ofthe nullspace of the
synthesis frame operator, not by directly comparing the space measures (which are
equal).

To avoid that complication we considerx as a member of a subspace inl2 of functions
bandlimited toπ/r. The coefficientsx[k] are the basis expansion coefficients ofx

using a basis for that subspace:b[n−k] = sinc(n/r−k) ⇒ x =
∑

k x[k]b[n−k] ∈
l2. Thus, the analysis frame operatorF is a linear map from the spaceW of series
in l2 bandlimited toπ/r to the spaceH = l2. The map is the identity overW.
Combined with the requirement that the frame vectors shouldlie in W, the domain
is extended tol2 by makingW⊥ its nullspace. Therefore,F is a low-pass filter
with cutoff frequencyπ/r. The pseudoinverse of the analysis frame operatorF † is
also a low-pass filter with the same cutoff frequency, which implies that the frame is
tight. Tightness can also be shown by the magnitude of the Fourier transform. The
redundancyr is computed by taking the ratio of measures ofH andW.

In practice, the frame expansion coefficients can be computed using simple signal
processing systems, such as the ones in figure2-3.
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The Harmonic Frames

The harmonic frames [28] is a class of unit-norm tight frames inRN , for which the
frame vectors are:

If N is even: fk =

√

2

N

[

cos
2πk

M
, sin

2πk

M
, cos

2π2k

M
, sin

2π2k

M
, . . . ,

cos
2π Nk

2

M
, sin

2π Nk
2

M

]T

. (2.35)

If N is odd: fk =

√

2

N

[

1√
2
, cos

2πk

M
, sin

2πk

M
, cos

2π2k

M
, sin

2π2k

M
, . . . ,

cos
2π (N−1)k

2

M
, sin

2π (N−1)k
2

M

]T

. (2.36)

This class of frames are a proof that a unit-norm tight frame exists for any combina-
tion of N , andM , M ≥ N . One of their most useful property is that any subset of
N vectors from a harmonic frame still spans the space, as shownin [27], which also
proves that frames with this property exist for anyN , andM . Thus, we often refer to
the harmonic frames in this thesis as an example of a frame with this property. In [34]
this property is defined as maximal robustness to erasures, and a general construction
for frames with this property is described.

2.2 Orthogonal Projection of Vectors

Given an inner product spaceH, two vectorsv andu are orthogonal if their inner
product〈v,u〉 is equal to 0. For any subspaceW ⊂ H, the orthogonal complement
W⊥ of W in H is the set of all vectorsu that are orthogonal to all the vectorsv ∈ W:

W⊥ = {u ∈ H| ∀v ∈ W : 〈u,v〉 = 0}, (2.37)

⇒ (W⊥)⊥ = W. (2.38)

Any vectorx ∈ H is uniquely expressed as the sum:

x = u + v, u ∈ W andv ∈ W⊥. (2.39)

to form the direct sum decomposition ofH into W and its orthogonal complement
W⊥, denoted usingH = W ⊕W⊥.

The orthogonal projection5 of x ontoW is the operatorPW(·) that mapsx to the
correspondingu ∈ W, as uniquely defined in (2.39). Combined with (2.38):

x = PW(x) + PW⊥(x), PW(x) ∈ W andPW⊥(x) ∈ W⊥. (2.40)

5 Unless otherwise noted, for the rest of this thesis, the termprojection is used interchangeably with
the term orthogonal projection (as opposed to an oblique one).
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The projection is a linear operator, with several importantproperties, some of which
we state here. The proofs are discussed in a variety of linearalgebra texts such as
[2].

It can be shown thatPW computes the vectoru ∈ W that minimizes the distance
||x − u||:

||x − PW(x)|| ≤ ||x − u||, for all u ∈ W, (2.41)

with equality if and only ifu = PW(x).

If the vectorz projected ontoW already belongs toW, then the direct sum decom-
position isz = 0 ⊕ z. Thus the projection is the identity operator. From that it
follows thatPW(PW(x)) = PW(x) for any x ∈ H. An implication is that any
vectorz ∈ W is an eigenvector ofPW(·) with corresponding eigenvalueλ = 1.
Similarly, any vectory ∈ W⊥ is an eigenvector ofPW(·) with corresponding eigen-
valueλ = 0. The multiplicity ofλ = 1 andλ = 0 in the eigenvalue decomposition
of PW(·) is equal to the dimensionality of the corresponding spaces—dim(W), and
dim(W⊥) respectively. A projection operator has no other eigenvalues.

Using the eigenvalues it can be shown that the projection cannot increase the mag-
nitude of a vector. Indeed,||PW (x)|| ≤ ||x|| for all x ∈ H, with equality if and
only if x ∈ W. It can be similarly shown that a projection is a positive semidefinite
operator, i.e.〈PW(x),x〉 ≥ 0 for all x ∈ H, with equality if and only ifx ∈ W⊥.

Projections are extensively studied operators, both because of their important prop-
erties and their usefulness in several fields. This section by no means exhausts the
known properties of projections. Extensive discussion canbe found in linear algebra
textbooks such as [2].

2.2.1 Projections and Frame Expansions

The analysis of a vector using an analysis frame followed by synthesis using a cor-
responding synthesis frame projects the vector to the spaceW spanned by the two
frames. Using (2.39), the analysis of the vectorx ∈ H using the analysis frame is:

ak = 〈x, f k〉 (2.42)

= 〈PW (x), f k〉 + 〈PW⊥(x), f k〉 (2.43)

= 〈PW (x), f k〉 + 0. (2.44)

Therefore, the analysis ofx is equal to the analysis ofPW(x). Since analysis fol-
lowed by synthesis is the identity for all vectors inW, it follows that analysis of any
vectorx ∈ H, followed by synthesis is the projection of that vector ontoW:

∑

k

〈x, f k〉fk = PW(x) (2.45)

⇔ S · F (x) = PW(x), (2.46)
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in which the domain of the analysis frame operatorF is extended toH by setting
F (u) = 0 for all u ∈ W⊥.

Often it is also convenient to view the frame synthesis operator S : H → W as the
combination of two operators: a projectionPW : H → W, followed by a full rank
operatorSf : W → W. This implies thatW ⊆ H. The frame is tight if and only if
the full rank operatorSf is unitary. The projection operatorPW rejects the nullspace
of the frame operator, and, thus, is responsible for the redundancy of the frame.

2.3 Quantization

Quantization is a non-invertible process that maps a continuous space to a set of
discrete points in that space. Quantization introduces distortion in the signal. Optimal
quantizers should minimize distortion for a pre-determined number of output points
or use as few output point as possible to achieve a pre-determined average distortion.
Often, optimality is traded off for other features such as implementation simplicity.

2.3.1 Scalar Quantization

A scalar quantizer is a non-linear, non-invertible mapQ : R → P , in which P =
{p1, p2, . . . , pL ∈ R} is a discrete set ofL levels, withL usually finite. The quantiza-
tion function assigns each real number to one of these levels. It is completely defined
by a set of disjoint intervalsIi covering the reals, and the corresponding levelspi,
such that each scalar in an interval is assigned to the corresponding level.

{

(Ii, pi)
∣

∣

∣
∀ i 6= j : Ii ∩ Ij = ∅,⋃L

i=1 Ii = R

}

(2.47)

⇒ â = Q(a) = pi if a ∈ Ii (2.48)

Although any function with a discrete set of output levels can be used as a quantizer,
it is reasonable to impose that the function is monotonic.

In order to minimize the distortion given the set of levels, the quantizer should assign
each scalar to the closest level. In this case, the set of points P completely defines
the set of intervals{Ii}, and thus, the quantizer6:

a ∈ Ii ⇔ i = argmin||a − pi||, (2.49)

in which || · || is the distortion measure. In most practical applications the distortion
is monotonic in the magnitude| · | of the difference, and therefore can be replaced by
that magnitude.

A quantizer might also trade-off distortion for implementation simplicity. For ex-
ample a round-towards-zero quantizer quantizesa to the closest pointpi that has

6 We ignore the boundaries of the intervalsIi, which can be open or closed, as long as the union covers
the space. The boundaries are a set of measure 0, and the assignment of each boundary to either of
the adjacent intervals has no effect in the average distortion.
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FIGURE 2-4: Examples of scalar quantizers.

magnitude smaller thana:

a ∈ Ii ⇔ i = argmin|pi|<|a|||a − pi||. (2.50)

Such a quantizer can be implemented by removing, for example, the bits below a
certain accuracy level of the binary representation of coefficient.

For the remainder of this thesis, unless otherwise noted, weassume that scalar quan-
tization is performed using a uniform quantizer. A uniform quantizer has uniformly
spaced quantization levelspi = µ + i∆, in which i is an integer. Depending on the
application, the number of levelsL is finite or infinite. The corresponding intervals
Ii = (pi −∆/2, pi + ∆/2] are chosen using (2.49) to minimize the distortion due to
quantization. Thus, the maximum error of a uniform quantizer is |emax| = ∆/2.

A scalar quantizer can be represented graphically by marking the points and the cor-
responding intervals on a real line or by drawing the function â = Q(a), as shown
in figure 2-4. The figure shows a uniform quantizer and a round-towards-zero one.
These commonly used quantizers combine implementation efficiency with low dis-
tortion, depending on the distortion measure.

2.3.2 Vector Quantization

Vector quantizers generalize scalar quantizers to a multidimensional vector spaceW.
They are defined through a set of pointsP = {pi ∈ W} and a corresponding set of
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FIGURE 2-5: Examples of vector quantizers in two dimensions.

disjoint regions{Ri} that partitionW:

{(Ri,pi) |∀ i 6= j : Ri ∩ Rj = ∅,⋃i Ri = W} (2.51)

⇒ x̂ = Q(x) = pi if x ∈ Ri, (2.52)

in which Q : W → P is the non-linear, non-invertible quantization function.As
with a scalar quantizer, to achieve minimum distortion given the quantization points,
the regions should be such that any vector in the space is quantized to the nearest
quantization point7:

x ∈ Ri ⇔ i = argmin||x − pi||, (2.53)

in which || · || is the distance measure in the vector space.

Graphical representations of vector quantizers are possible in two dimensions, by
extending the real line of figure2-4 to the two dimensional plane and drawing the
corresponding region-point pairs as shown in figure2-5. The figure shows an arbi-
trary quantizer, a triangle lattice quantizer and a square lattice quantizer. For certain
quantizers with regular structures visualization is also possible in three dimensional
spaces, although the figures can be confusing.

The vector generalization of a uniform quantizer is a lattice quantizer. The quantiza-
tion points of a lattice quantizer are defined as the sum of integer multiples of a linear
independent vector set and a vector offset:

pi1,...,iM = µ +
∑

k

ikbk, (2.54)

in which eachik is an integer taking values in a finite or infinite range, depending on
the quantizer model. In a lattice quantizer all the regionsRi1,...,iM corresponding to
each point have the same shape and are all translations of a single fundamental cell

7 As with the scalar quantizer, the region boundaries are a setof measure 0, and they can be assigned
to any of the neighboring regionsRi.
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ak → Q(·) → âk = ak + ek

(a) Scalar Quantizer

xk → Q(·) → x̂k = xk + ek

(b) Vector Quantizer

FIGURE 2-6: Scalar and vector quantizer operating on a sequence of inputs

R, which is usually assumed to contain the origin. For this work we define

R ≡ Ri1,...,iM − pi1,...,iM , (2.55)

which is the same for any choice ofi1, . . . , iM .

In general, vector quantizers are designed to partition themultidimensional space
with less average distortion than scalar quantizers. Assuming a uniform source distri-
bution, the minimum distortion is achieved by making the quantization cell shape as
close to a hypersphere as possible (given the cell’s volume). A hypersphere achieves
the best worst-case and average error performance. Still, hyperspheres do not cover
the space without overlap, and, therefore, cannot be used asquantization cells. Lat-
tice vector quantizers attempt to create efficient, easy to use structures that have cells
close to hyperspheres. Scalar quantizers on basis and frameexpansions can also be
viewed in terms of lattice vector quantizers, a view explored in chapter4.

2.3.3 Additive Noise Models

The non-linearities of quantizers make them quite difficultto analyze, especially
in the context of linear systems [29, 13, 30]. To facilitate the analysis it is often
convenient to model the quantizer using an additive stochastic model, although the
quantizer itself is a deterministic function. The models, first introduced in [6] are
especially useful if the quantizer is used in a sequence of coefficients or vectors. We
present them here in such a setup, as shown in figure2-6.

In the case of a scalar quantizer we assume a linear quantizerwith quantization in-
terval∆, properly scaled not to overflow. The quantizer quantizes each inputak to
âk = Q(ak) = ak + ek, in whichek is the additive error due to the quantization. The
ek is modeled as a white process, uncorrelated with the inputak, with varianceσ2

e .
Often it is further modeled as uniform in the interval[−∆/2,∆/2], which implies
σ2

e = ∆2/12 [29, 13].

Similarly for a vector quantizer, as shown in figure2-6(b), the additive errorek can
be modeled as an uncorrelated sequence of vectors, independent of the dataxk, and
uniform in the quantization cellR, as defined in (2.55) [26, 42].
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These stochastic models aim to describe average behavior ofthe quantizer over many
signals. They provide no guarantees in individual realizations and their assumptions
can often be quite inaccurate. For fine quantization levels these models are well
motivated and provide a good description of the quantizer output. Their use in coarser
quantization grids is not as well justified, but they are commonly used in practice,
even in extreme quantization situations [29, 13, 28, 9]. In this work we complement
these models with deterministic bounds to guarantee the performance of the quantizer
in the worst case conditions.
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CHAPTER 3 Compensation Using Projections

The redundancy of a frame expansion can be exploited in a variety of ways. For
example, large frame dictionaries can lead to sparse representations useful in data
compression [28]. They are also useful in the cases of signal degradation dueto
additive noise, quantization, or erasures [27, 20]. In this thesis we exploit the re-
dundancy of frame expansions to linearly compensate for errors. Although the basic
principle is straightforward, it occurs in several different contexts. Specifically we
use this principle to analyze coefficient quantization and erasures. A recurring and
important theme in the remainder of this thesis is that of compensation using projec-
tions. This chapter briefly introduces projections in the context of frame expansions
and this thesis.

3.1 Error Compensation Using Representation Coefficients

Most of this thesis examines errors that corrupt one or more frame expansion coeffi-
cients. We compensate for these errors by modifying other coefficients in the frame
expansion. Specifically, we assume that some coefficientai is corrupted and replaced
by âi = ai + ei. The coefficients{ak|k ∈ Si} are to be modified to{a′k|k ∈ Si} to
compensate for the known errorei, in whichSi = {k1, . . . , kp} is the set of indices
of the coefficients to be used. Of course,i cannot be a member ofSi, otherwise the
error can be perfectly compensated for by modifyingâi back toai.

The reconstruction is performed using the synthesis equation (2.7) with the updated
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coefficients, to producêx:

x̂ = âifi +
∑

k∈Si

a′kfk +
∑

k/∈(Si∪{i})

akfk (3.1)

The coefficients{a′k|k ∈ Si} should be chosen to minimize the magnitude of the
synthesis error:

E = x − x̂ (3.2)

= −eifi +
∑

k∈Si

(ak − a′k)fk (3.3)

To minimize the norm of the error we letWi denote the space spanned by the set of
vectors{fk, k ∈ Si} and recognize that

∑

k∈Si
(a′k − ak)fk spans that space by ap-

propriate choice of thea′k. Thus, as discussed in the previous chapter, the magnitude
of the error||E|| = || − eifi +

∑

k∈Si
(ak − a′k)fk|| is minimized if and only if the

vector formed by the sum is the projection ofeifi ontoWi:

∑

k∈Si

(ak − a′k)fk = PWi
(eifi) (3.4)

⇔
∑

k∈Si

a′kfk =
∑

k∈Si

akfk − eiPWi
(fi) (3.5)

⇔
∑

k∈Si

a′kfk =
∑

k∈Si

(ak − eici,k,Si
)fk, (3.6)

in which
∑

k∈Si
eici,k,Si

fk is the frame expansion ofPWi
(eifi) onto Wi. By the

linearity of the projection operator, the coefficients{ci,k,Si
, k ∈ Si} are not a function

of the errorei or the dataak, and, therefore, can be determined using only the frame
vectors. Specifically we define these coefficients such that:

PWi
(eifi) =

∑

k∈Si

eici,k,Si
fk (3.7)

⇒ PWi
(fi) =

∑

i∈Si

ci,k,Si
fk, (3.8)

In other words,ci,k,Si
are the frame expansion coefficients of the projection offi onto

the spaceWi, defined by the span of the frame vectors{fk|k ∈ Si}. We refer to the
ci,k,Si

as the compensation coefficients. Using these, we update each of theak to:

a′k = ak − eici,k,Si
. (3.9)

This ensures that equation (3.4) is satisfied.

Although the projectionPWi
(fi) is unique, the corresponding compensation coeffi-

cients and the assignment (3.9) are not necessarily unique. Specifically, the coef-
ficients are unique if and only if the frame vectors{fk|k ∈ Si} are linearly inde-
pendent. Otherwise the frame formed forWi is redundant, and the expansion, as
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discussed in chapter2, is not unique.

If the vector fi on which the error occurs is linearly dependent with the vectors
{fk|k ∈ Si}, then the error can be perfectly compensated for. Otherwise, the re-
sulting error isei (fi − PW(fi)). We separate the magnitude from the direction of
the error by defining theerror coefficient̃ci,Si

, and theresidual directionvectorri,Si
:

c̃i,Si
= ||fi − PWi

(fi)|| (3.10)

ri,Si
=

fi − PWi
(fi)

||fi − PWi
(fi)||

, (3.11)

such that the error iseic̃i,Si
ri,Si

. These two quantities are particularly useful in the
performance analysis of the algorithms presented in chapters 5 through7.

The error coefficient is always positive since it is the magnitude of a vector. Also,
the residual direction is a vector that has, by definition, unit magnitude. Furthermore,
it should be emphasized that the error vector is orthogonal to the spaceWi, which
includes all the frame vectors{fk|k ∈ Si} used in the compensation.

In denoting the coefficients the setSi of indices used to compensateai is explicitly
mentioned. This choice was made to emphasize that modifyingthe set of indices
used also modifies the corresponding compensation and errorcoefficients, and the
residual error. The notation used in this chapter disambiguates potential confusion on
which coefficients should be used. However, this notation can become cumbersome
in simple situations in which the set of indices is clear. Therefore, in the remainder
of this thesis the setSi might or might not be included, depending on the context.
For the remainder of this chapter the notationci,k, ri, andc̃i is used, and the setSi is
implied.

In most of the applications considered in this thesis, the frame is known in advance.
Thus the compensation coefficients can be precomputed off-line, at the design stage
of the system, together with the error coefficients and the residual directions. Further-
more, the error can often be detected when it occurs, and, therefore the compensation
can be computed at run-time by appropriately scaling the compensation coefficients.
Even if the error cannot be explicitly obtained at run-time,it is sometimes possible to
pre-compensate for the error such that after the error occurs, the data can be restored
while the error is compensated for.

3.1.1 Computation of the Projection Coefficients

As described in equation (3.8) in the previous section, theci,k should be such that
∑

i∈Si
ci,kfk = PWi

(fi). Thus, the compensation coefficients are the frame expan-
sion coefficients ofPWi

(fi) using the frame{fk|k ∈ Si}. From the discussion in
chapter2, it follows that an analysis frame for{fk|k ∈ Si} exists and could be used
to determine the compensation coefficients. We use{φSi

k |k ∈ Si} to denote this set,
which is different than the subset of the analysis frame vectors from the original set
corresponding to the coefficients to be used for compensation.
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The projection coefficients can, in principle, be computed by first calculating the
{φSi

k }, and using these to compute the inner products:

ci,k = 〈PWi
(fi), φ

Si

k 〉. (3.12)

The vectorsφSi

k lie in Wi by construction. Therefore the projection operatorPWi
(·)

can be removed using:

〈fi, φSi

k 〉 = 〈PWi
(fi) + PW⊥

i
(fi), φ

Si

k 〉 (3.13)

= 〈PWi
(fi), φ

Si

k 〉 (3.14)

⇒ ci,k = 〈fi, φSi

k 〉. (3.15)

Calculating the dual set{φSi

k }, however, can be computationally expensive, and it
is not necessary in order to calculate the projection coefficients. Instead, using the
inner product of (3.8) with fl, for all l ∈ Wi, it follows that:

〈PWi
(fi), fl〉 =

∑

k∈Si

〈ci,kfk, fl〉 (3.16)

⇔







Ri,k1

...
Ri,kp






=







Rk1,k1
· · · Rk1,kp

...
.. .

...
Rkp,k1

· · · Rkp,kp













ci,k1

...
ci,kp






(3.17)

⇔ ρ = Rc, (3.18)

in which Rk,l = 〈fk, fl〉 is the frame autocorrelation. Satisfying this equation is
equivalent to computing the projection coefficients with ananalysis frame, as de-
scribed above. If the frame{fk|k ∈ Wi} is redundant, the matrixR of autocor-
relations is not full rank. Any left inverse can be used to compute the projection
coefficients. The use of the left pseudoinverse in the solution of (3.18) is equivalent
the use of the dual frame of{fk|k ∈ Si} in Wi as the{φSi

k |k ∈ Si} in (3.15).

Computation for Shift-invariant Frames

If the frame is shift invariant, the frame autocorrelation is a function only of the
difference of the indices of the frame vectors:

Ri,i+k = R0,k ≡ Rk. (3.19)

If, furthermore, the setSi consists of thep coefficients subsequent to the corrupted
one (i.e. Si = {i + 1, . . . , i + p}), then the projection coefficients are also shift-
invariant:

ci,i+k = c0,k ≡ ck. (3.20)
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In this case, equation (3.18) takes the special form of the autocorrelation normal
equations, or the Yule-Walker equations [41, 40]:

ρ =







R1
...

Rp






=







R0 · · · Rp−1
...

. . .
...

Rp−1 · · · R0













c1
...
cp






= Rc. (3.21)

Although the solution to these equations can be determined using a general matrix
inversion algorithm, it is more efficient to use the Levinson-Durbin recursion [32,
25].

In addition to the computational efficiency, the Levinson recursion algorithm, being
recursive in the equation order, provides the solution to the equations for all interme-
diate orders1, . . . , p. In certain applications the intermediate solutions are useful for
the compensation of subsequent errors. Section5.8 provides an example in which
the intermediate solutions are used in the compensation system. In that case, the use
of the Levinson recursion reduces the computation fromO(M4) to O(M2).

If the frame is redundant, the system (3.21) might be underdetermined, and the so-
lution is not unique. The Levinson recursion determines onepossible solution to the
problem. This solution is not the one corresponding to the left pseudoinverse of the
problem, which is not necessarily an issue. However, it is a property of the recursion
to be aware of during system design.

3.1.2 Projections and Re-expansion of the Error

As noted in the previous section, depending on the frame and the setSi used for
the projection, the compensation coefficients might or might not be unique. If the
former is the case, then the solution to equation (3.18) is uniquely determined by
inverting the matrixR. However, if the solution is not unique, it can be determined
using a variety of algorithms. Although all solutions are optimal in terms of the
compensation error, each algorithm might have significant advantages over others
depending on the application.

It is important to further recognize that equation (3.18) is derived assuming equations
(3.8) and (3.9). These are sufficient but not necessary to minimize the error magni-
tude. The correction should only satisfy (3.4). The necessary and sufficient condition
for (3.4) is that the sum

∑

k∈Si
(ak −a′k)fk is the frame expansion ofPWi

(eifi) using
{fk|k ∈ Wi} as the synthesis frame. Equations (3.8) and (3.9) are derived from (3.4)
only with computational simplicity and linearity in mind.

As discussed in chapter2, this expansion can be computed using a variety of meth-
ods, adaptive or not, such as inner products with an analysisframe or the use of the
matching pursuit [33, 28]. The choice implied by (3.9) is equivalent to using inner
products with an analysis frame. Furthermore, invertingR using the pseudoinverse
implies that the analysis frame is the dual frame. This, however might not be the best
choice for the application considered. For example, a sparse solution reduces the
computation in updating the coefficients using (3.9). Alternatively, minimizing the
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maximum magnitude of the projection coefficients (i.e. thel∞ norm ofc) reduces
the effect of the coefficient updates to each of the updated coefficients.

The optimal method might also be data dependent. If we recognize that:

∑

k∈Si

a′kfk =
∑

k∈Si

akfk − eiPWi
(fi) (3.22)

satisfies (3.4), then the{a′k|k ∈ Si} are the frame expansion of
∑

k∈Si
akfk −

eiPWi
(fi) using the{fk|k ∈ Wi} as the synthesis frame. The{a′k|k ∈ Si} can

be determined using any analysis algorithm, and used to replace the correspond-
ing {ak}. This is not necessarily the same as expanding only the errorvectoreifi
and adding the expansion to the existing{ak}. For example, to maintain coefficient
quantization, taking into account coefficientsak before computing the update can be
beneficial. Still, in this thesis, we only consider the linear, data independent case. It
should be emphasized however, that all the solutions are optimal if the error magni-
tude is the metric.

Even in the case for which the solution in (3.18) is unique, it might be more im-
portant for an application to tolerate more error in order toimprove other aspects of
the design. For example, in chapters5 and6 it is demonstrated that in the case of
Sigma-Delta noise shaping the projection coefficients are modified from the optimal
choice in order to eliminate products and reduce the computational complexity in
the feedback loop. Section7.2.3shows that a suboptimal solution can improve the
stability of the resulting systems.

Projections can be extended to compensate for errors that affect sets of coefficients
at once, such as block erasures or vector quantization, using a set of coefficients that
is not affected by the error. In this case the whole error vector should be projected to
the space used for the compensation, using the same principle. We do not explicitly
develop the formulation of this problem in the applicationspresented here, but the
setup and solution is straightforward as long as care is taken in the bookkeeping of
the indices. For example, the compensation coefficient vector c should become a
matrix, and so shouldρ in equation (3.18).

3.2 Pre-compensation Followed by Post-correction

Implementation of equation (3.9) is straightforward if the error is known during com-
pensation. A more surprising result, however, is that in some cases compensation
using projections can be performed even if the error is not known at the point of
compensation. In certain cases it is possible to pre-compensate for the error before
it occurs, and undo the compensation after the error occurrence. For the remainder
of this section we assume that the application allows two systems to be inserted one
before and one after the error occurs, before the signal synthesis. The systems are
not allowed to share information directly, but are allowed to modify the coefficients
on which the error occurs. We also assume the error occurs only on one coefficient,
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ak → Pre-compensation→ ãk → Error → Post-correction → Synthesis → x̂

FIGURE 3-1: Architecture of the system implementing pre-compensationfollowed by post-
correction of a single coefficient error.

ai, and is not dependent1 on the coefficients used for the compensation. Sequential
application of the principle to multiple coefficients is also possible. The details of
sequential application vary depending on the application.Thus, they are discussed in
the corresponding chapters.

The pre-compensation algorithm can be implemented using the system in figure
3-1. In the figure the system implementing the pre-projection modifies coefficients
{ak|k ∈ Si} to:

ãk =

{

ak + aici,k, if k ∈ Si

ak, otherwise.
(3.23)

The modified coefficients are used instead of the original ones, thus representing the
sum ofx and the projection ofaifi ontoWi: x̃ = x+ aiPWi

(fi). The error modifies
coefficientãi = ai to:

âi = ãi + ei = ai + ei, (3.24)

which are subsequently input to the post-correction systemto modify{ãk|k ∈ Si} to
a′k:

a′k = ãk − âici,k (3.25)

= ak − eici,k. (3.26)

Thea′k are used for the reconstruction̂x of x. The error is equal to:

E = eifi − ei

∑

k∈Si

ci,kfk (3.27)

= ei(fi − PWi
(fi)) (3.28)

= eic̃iri, (3.29)

which is the same as if the error was known before the compensation.

1 In this statement, “not dependent” can be interpreted in twodifferent ways: a) if the error is random,
then it should be statistically independent to the coefficients{ak, k ∈ Si} used for compensation, or
b) if the error is a deterministic but unknown function of thedata, then it should not be a function of
the coefficients{ak, k ∈ Si}.
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CHAPTER 4 Quantization of Frame
Representations

This chapter examines scalar quantization on frame representations, and derives bounds
on the performance of the quantizer. The performance is evaluated by considering
how many of the available quantization points are used by thequantizer, not by con-
sidering the shape of the corresponding quantization regions. Thus a lower bound
on the error and the bit waste as a function of the redundancy and the number of
quantization levels is derived.

A similar bound has been previously demonstrated in [39] for the oversampling frame
of periodic functions. In that work the quantization is shown to partition the signal
space in a particular structure called hyperplane wave structure. An upper bound on
the cell density is derived, which is subsequently used to derive a lower bound on the
error decay of the quantization as a function of the redundancy. The analysis assumes
an infinite level uniform quantizer, although it is shown that a finite level quantizer
can only perform worse.

Although the analysis in [39] can be applied to any finite frame, this chapter takes
a different view of the problem. Specifically, we consider the map of the frame
analysis operator from the signal spaceW to a higher dimensional spaceH. Scalar
quantization of the analysis coefficients is equivalent to scalar quantization of a basis
expansion inH. By considering the hyper-cube quantization lattice generated by the
scalar quantizer on the basis expansion, it is shown that theimage ofW under the
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frame operator does not reach all the quantization cells, and therefore cannot use all
the quantization points.

The analysis in this chapter explicitly assumes a fixed number of quantization levels
and provides a slightly different bound than [39]. Specifically, the bound we provide
is a function of the quantization levels and does not depend on the quantizer being
uniform. Asymptotically, both bounds demonstrate the samegrowth rates. However,
the analysis in this chapter allows us to quantify the error decay and the bit waste of
any scalar quantizer both as a function of the redundancy andthe number of quantiza-
tion levels of the quantizer. In principle, the same result can be derived by extending
the approach in [39], but the proof in this chapter provides a more straightforward
generalization.

4.1 Quantization of Orthonormal Basis Expansions

In this section we assume an orthonormal basis{bk} in a spaceH. The basis expan-
sion coefficients can each take any ofL quantization levels, uniformly spaced with
interval∆:

pi = µ + i∆, i = 1, . . . , L. (4.1)

Thus, theLM points inH that can be represented using the quantized expansion are:

pi1,...,iM =
M
∑

k=1

pikbk (4.2)

= µ
∑

k

bk + ∆

M
∑

k=1

ikbk, ik ∈ {1, . . . , L}, k = 1, . . . ,M, (4.3)

in which k denotes the dimension, andik the corresponding quantization level in
each dimension.

The quantization cells in this lattice, denoted byRi, are hypercubes of size∆M

centered at each of theLM quantization points. A scalar quantizer quantizes any
vectorx in a cell to the corresponding quantization point at the center of the cell.
For a basis expansion, this is an optimal coefficient quantization strategy. Figure
4-1 demonstrates (a) a scalar quantizer and (b) the two-dimensional square lattice
generated if the scalar quantizer operates on a two dimensional basis expansion. In
the figure, vectorx is quantized to the nearest pointpx.

The assumption of a uniform quantizer is not necessary for the development in this
chapter, except where explicitly noted. Any finite level scalar quantizer withL levels
can be used instead. The effect is that the lattice ceases to be uniform and the cells
are not translations of a fundamental hypercube. Instead the cells become arbitrary
hypercuboids—generalizations of rectangles in higher dimensions. For the purposes
of clarity, the assumption of a uniform quantizer is maintained, although it is not
necessary, unless the quantizer parameter∆ is explicitly used.
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FIGURE 4-1: Example of a scalar quantizer, and the square lattice generated by the scalar quantizer
operating on a two dimensional basis expansion.

4.2 Quantization Grids and Frame Representations

Quantization of frame representations can also be analyzedusing lattices and lattice
points. Both frame analysis and synthesis can be related to quantization points on
orthogonal lattices using the analysis and synthesis operators, respectively, as de-
scribed in chapter2. However, the decoupling of the analysis from the synthesis
operation implies that quantizing the analysis coefficients should be approached sep-
arately from the synthesis from quantized coefficients. Thenext section explores the
synthesis from quantized coefficients, while section4.2.2examines the quantization
of analysis coefficients.

4.2.1 Linear Reconstruction from the Quantized Coefficients

To understand the synthesis from quantized samples, we consider the synthesis oper-
atorS, as defined in equation (2.17)

S : H → W, s.t.Sy =
∑

k

〈y,bk〉fk, (2.17)

in which y is any vector inH, andbk is the basis set assumed by the synthesis
operator. In synthesizing quantized frame representations, y is one of the quantiza-
tion points,pi, and the inner products〈pi,bk〉 take one of the discrete values of the
scalar quantizer. All the quantization points lie on a square lattice inH defined by
the interval spacing∆ of the quantizer and the basis{bk}.

The frame operator reconstructs these pointspi to Spi in the low dimensional space
W, in which the frame lies. An expansion method that assumes a predetermined
linear synthesis should quantize a vectorx ∈ W to the pointi that minimizes the
distance||x − Spi|| in W. This is not necessarily the same point that minimizes the
distance||Fx − pi||, in which F is the analysis operator of the dual frame or any
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other analysis frame.

In principle the desired point can be determined using exhaustive search, although
in practice this is usually not possible, especially in the case of infinite frames. The
quantized matching pursuit [28] or Sigma-Delta noise shaping on frames, described
in the next section, are examples of efficient expansion methods that assume a fixed
synthesis frame and aim to find the quantized representationclosest to the original
vector. Neither method claims the optimality of exhaustivesearch, but they are far
simpler and practical, even for infinite frame expansions.

4.2.2 Analysis Followed by Scalar Quantization

If, instead, a linear analysis using inner products followed by scalar quantization is
assumed, the signal spaceW is mapped to the higher dimensional spaceH through
the analysis operatorF :

Fx =
∑

k

〈x, f k〉bk. (2.12)

Scalar quantization of the coefficients corresponds to scalar quantization of the basis
expansion ofFx. Thus, the synthesis operation should reconstruct each quantization
pointpi to the vector̂x that minimizes the average distance from all the vectors that
were quantized topi. Linear reconstruction from the quantized samples, which cor-
responds to settinĝx = Spi using the dual frame forS, is known to be suboptimal.
Instead consistent reconstruction methods [38, 28] have been shown to improve the
quantization performance.

To design the reconstruction and analyze the quantizer performance, we need to ex-
amine the map ofW ontoH through the analysis operatorF . SinceF is invertible,
it has rankN , same as the dimensionality ofW. Thus, the image ofW underF is
anN dimensional subspace inH, which we denote usingF (W). Scalar coefficient
quantization of the frame expansion is equivalent to vectorquantization of that sub-
spaceF (W) using the lattice defined by the scalar quantizer and the basis{bk ∈ H}
implied by the frame operatorF .

Figure4-2 illustrates an example for an arbitrary two-vector frame operating on a
one-dimensional signal spaceW. Any vectorx ∈ W is quantized to the pointpi

closest to its mapFx. This implies that all the vectors in the intersection ofF (W)
with the square cellRi are quantized to the pointpi. Consistent reconstruction pro-
duces the vector̂x that minimizes the error from all the points in the inverse image
of the intersectionF †(F (W) ∩ Ri) [38, 28].

In the figure it is also obvious thatF (W) only intersects a small number of the
available quantization cells. The next section uses an upper bound on the number of
cells intersected to derive a bounds on the quantization error and the bit use of the
quantizer.
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FIGURE 4-2: A scalar quantization example of a two-vector frame operating on a one-dimensional
space.

4.3 Limits of Scalar Quantization of the Analysis Coefficients

Analysis using inner products followed by scalar quantization quantizes a vectorx to
the quantization pointpi ∈ H if and only if the image of the pointFx ∈ H lies in the
quantization cellRi. Therefore, scalar quantization of the coefficients can only pro-
duce one of the quantization points in the cells intersectedby F (W). This is only a
fraction of theLM possible quantization points that can be represented byL possible
quantization levels for each of theM coefficients. Assuming no subsequent entropy
coding, this representation uses at leastlog2(L) bits per coefficient, i.e.M log2(L)
bits in total to represent the coefficients.

An L-level uniform scalar quantizer operating on anM -dimensional basis expansion
forms anM -dimensional hypercube lattice. The hypercube has width∆L on each
dimension for a total volume of(∆L)M , in which ∆ is the interval spacing of the
quantizer. The lattice consistsLM cells, each of which is a smallerM -dimensional
hypercube of size∆M . It is also not necessarily centered at zero; its position inthe
space depends on the constantµ of the scalar quantizer in equation (4.1). The lattice
is intersected byF (W), which is anN -dimensional subspace inH.

We useI(M,N,L) to denote the maximum number of cells that any hyperplane
of dimensionN intersects in a hypercube lattice of dimensionM , with L cells per
dimension. In section4.4 it is shown that:

I(M,N,L) ≤ (2L)N
(

M

N

)

. (4.4)
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Thus, independent of the frame used for the expansion, at most I(M,N,L) out of
the possibleLM points are used. The binomial coefficient is upper bounded by:

(

M

N

)

≤
(

Me

N

)N

(4.5)

⇒ I(M,N,L) ≤
(

2LMe

N

)N

(4.6)

= (2Lre)N , (4.7)

in which r = M/N is the frame redundancy rate.

4.3.1 Representation Bits Use

The representation of the coefficients, assuming no subsequent entropy coding, uses
at leastlog2

(

LM
)

= M log2(L) = rN log2(L) bits. However, onlyI(M,N,L)
cells are ever reached, i.eI(M,N,L) points are ever used. To uniquely represent
each of these points approximatelylog2 (I(M,N,L)) are necessary. Thus the ratio
of necessary bits to the number of used bits is:

log2 (I(M,N,L))

log2(L
M )

=
N log2(2Lre)

rN log2(L)
(4.8)

=
log2(2Lre)

r log2(L)
. (4.9)

As the quantization becomes finer (i.e.L → ∞) the redundancy is not as helpful
in reducing the quantization error in the signal. Therefore, as expected, the ratio of
necessary to used bits tends to1/r, which implies that all the redundant coefficients
can be removed without loss in the reconstruction. Similarly, for a constantL, as
the redundancyr increases, the fraction grows asO (log2(r)/r), and the ratio of
necessary to used bits decreases.

The analysis above also provides a target bit rate for subsequent entropy coder.
Specifically, independent of the distribution of the sourcex in W, subsequent en-
tropy coding of the representation should use at mostlog2(I(M,N,L)) bits, i.e. at
most a fraction oflog2(2Lre)

r log2(L) of the input bits.

4.3.2 Lower Bound on the Quantization Error

Equation (4.4) can also be used to bound the error of a uniform quantizer. Without
loss of generality we assume that the analysis frame vectorsare normalized such that
they have magnitude||fk|| ≤ 1, and examine two different cases. In the first case,
the vectors represented by the frame have bounded length||x|| ≤ R. To ensure
the quantizer does not overflow, the quantization interval is set to∆ = 2R/L. In the
second case, the quantization interval∆ is constant. For the quantizer not to overflow,
the vectors to be represented should have magnitude boundedby ||x|| ≤ L∆/2.
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In the first case, the bound on the vector magnitude,

||x|| ≤ R, (4.10)

implies that the vectors occupy a volume:

V =
2πN/2RN

NΓ(N/2)
, (4.11)

in whichΓ(·) is the Gamma function, andN is the dimensionality of the low dimen-
sional signal spaceW. This volume is divided among all the attainable quantization
pointsI(M,N,L). Thus, there is some quantization pointp that has corresponding
volume at leastV/I(M,N,L). The maximum distanceǫ = ||x − p|| of a vectorx
in that volume from the quantization pointp follows:

2πN/2ǫN

NΓ(N/2)
≥ V

I(M,N,L)
=

2πN/2RN

NΓ(N/2)I(M,N,L)
(4.12)

⇒ ǫ ≥ R · I(M,N,L)−N (4.13)

⇒ ǫ ≥ R(2Lre)−1, (4.14)

which implies that the worst case error magnitude decreasesasΩ(1/(Lr)) as the
redundancyr or the number quantization levelsL increases.

Similarly, in the second case, the vectors are bounded by

||x|| ≤ L∆/2, (4.15)

and occupy a volume:

V =
2πN/2(L∆/2)N

NΓ(N/2)
. (4.16)

Using the same analysis as above:

2πN/2ǫN

NΓ(N/2)
≥ V

I(M,N,L)
=

2πN/2(L∆/2)N

NΓ(N/2)I(M,N,L)
(4.17)

⇒ ǫ ≥
(

L∆

2I(M,N,L)

)N

(4.18)

⇒ ǫ ≥ R∆(4re)−1. (4.19)

Therefore, the worst case error magnitude is proportional to the quantization interval
∆. The error decreases asΩ(∆/r).

We can also use Zador’s formula [30] and an analysis similar to the one in [39] to de-
termine a lower bound in the mean-squared error of quantization that decreases sim-
ilarly to the worst case squared error, asΩ

(

(Lr)−2
)

in the first case andΩ
(

(∆/r)2
)

in the second. We do not present this here since the solution does not provide further
intuition to the problem.
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4.3.3 Discussion

The analysis above demonstrates that direct scalar quantization of the frame expan-
sion coefficients is inefficient. Equation (4.9) quantifies the number of bits wasted
using such an approach to quantization, or equivalently, what we should expect the
minimum gain to be from subsequent entropy coding of the quantizer output. The
worst-case or mean squared error decay ofΩ (1/(Lr)) shows that doubling the re-
dundancy rater or doubling the number of quantization levelsL of the quantizer
reduces the quantization error at the same rate. However, doubling the redundancy
rater doubles the bits used by the representation while doubling the number of lev-
elsL only uses one more bit per coefficient, i.e.M more bits in total. Similarly for
theΩ

(

(∆/r)2
)

case. Therefore, decreasing the error by refining the quantizer is the
more rate-efficient approach to decrease the error.

The bound in (4.4) is on the number of cells of the hypercube that any hyperplane can
intersect. Therefore, any affine data-independent operation on the frame expansion
coefficients has no effect on the result as long as it does not change the redundancy
of the coefficients. This is necessary to accommodate arbitrary offsets in the linear
quantizers, but it also implies that any data-independent translation of the coefficients
before the quantization (such as data-independent deterministic or random dither)
does not improve the asymptotic performance of the scalar quantizer. Furthermore,
the derivation of the bound does not assume uniform quantization intervals. There-
fore, any monotonic scalar transformation of the representation coefficients cannot
improve the bit-use efficiency of the quantizer, or the errordecay rate—although the
constants might be affected.

The synthesis method is not considered in the analysis above. The results provide
the lower bound on the error for any synthesis method. However, the use of the
synthesis sum in equation (2.7) with the dual frame does not necessarily reach that
bound. In fact, it has been shown that the method that achieves the lower bound (at
least asymptotically) is consistent reconstruction [28].

A significant conclusion of this chapter is that analysis using inner products followed
by individual scalar coefficient quantization is not efficient. If, instead, the expan-
sion method is able to reach all theLM = LrN quantization points available, then,
in principle, the error squared can decay exponentially asO (L−r). This implies that
rate-efficient quantized representations employ non-linear expansion methods such
as the quantized matching-pursuit [33, 28] or the generalization to Sigma-Delta noise
shaping described in the next chapter. These assume the frame synthesis is predeter-
mined and the determination of the quantized coefficients isa non-linear process
taking the synthesis frame vectors into account. Both methods try to determine a
quantized representation that has a reconstruction closerto the original signal than
simple scalar quantization of the frame expansion coefficients. It has been shown, for
example, that usingpth order Sigma-Delta noise shaping on the oversampling frame
the error decays asΩ(r−(p−1)) [37].

We should also note, that all the results above are best-caseresults, based only on the
number of quantization cells reached by the frame analysis.The advantage is that
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this method is independent to the frame used. Frames that reach fewer quantization
cells exist and have worse performance. There is also no discussion on how the frame
partitions the volume of the vector space to the the corresponding cells. The proof
provides only some intuition on how a rate-efficient frame should be designed, but
not necessary or sufficient conditions to reach the bound.

4.4 Intersection of a Hyperplane with a Hypercube Lattice

In this section we prove the result we asserted in equation (4.4) using a proof recur-
sive inN andM . The problem, as defined in the previous section, is countingthe
maximum number of hypercube cells in anM -dimensional space that can be inter-
sected by anN -dimensional hyperspace. We denote the number of these cells using
I(M,N,L). Assuming a uniform quantizer, and without loss of generality, we scale,
rotate and translate the problem such that the hypercubes are aligned with the inte-
gers, and have sides at integer coordinates. Then the subspace becomes an arbitrary
N -blade, i.e. anN -dimensional hyperplane in theM -dimensional plane.

The lattice boundaries of the hypercubes become(M − 1)-blades satisfyingxk =
〈x,bk〉 = i, in whichk ∈ {1, . . . ,M} is the coordinate index andi ∈ {0, . . . , L} is
the boundary index along that direction, for a total ofM(L + 1) lattice boundaries.
We call the boundaries atik = 1, . . . , L− 1 internal, and the boundaries atik = 0, L
external, for a total ofM(L−1) internal lattice boundaries and2M external ones. We
assign a direction to the boundaries in each dimension withik = 0 to be the leftmost
andik = L the rightmost. As an example, figure4-3 demonstrates the elements of
the problem forN = 1 andM = 2.

After defining the necessary terms for the proof, in the next section, the proof pro-
ceeds as follows:

1. Section4.4.2proves that anN -blade intersecting a cell intersects at leastN
internal cell sides.

2. It is then shown that anN -blade intersecting one side of a lattice boundary
intersects at mostI(M − 1, N − 1, L) cell sides.

3. By counting the number of boundary sidess(M,L) in the lattice, an upper
bound ofs(M,L)I(M − 1, N − 1, L) to the number of cell sides intersected
follows.

4. Dividing this upper bound by the minimum number of cell sides needed to
be intersected for a cell to be intersected—shown to beN in section4.4.2—a
recursive expression for the upper bound ofI(M,N,L) follows. Expanding
that expression provides the upper bound in (4.4).

Steps 2-4 of the proof are presented in section4.4.3. It should be noted that the
counting in steps 1-3 of the proof does not depend on the boundaries of the hypercube
lattice having integer coordinates, or even being equally spaced. Therefore, the proof
does not rely on the quantizer being uniform—only on havingL levels. Still, a
uniform quantizer is assumed for clarity of exposition, andto simplify notation.
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FIGURE 4-3: An example of the hypercube (square) lattice, lattice boundaries, cells, and arbitrary
N -blade (line) formed in theM = 2, N = 1 case of the intersection problem.

4.4.1 Definitions

Each of the lattice boundaries has a left and a right side, defined respectively as the
subsets withi − ǫ < xk ≤ i and i ≤ xk < i + ǫ, for some smallǫ, in which the
coordinate indexk and the boundary indexi determine the boundary in between the
two sides. In counting the sides we are not interested in the sides that face outside
the hypercube lattice, which is left side of the leftmost lattice boundary, and the right
side of the rightmost lattice boundary. Thus, the total number of internal boundary
sidess in the hypercube grid are:

s(M,L) = 2M + 2M(L − 1) = 2ML, (4.20)

which counts one side for each of the2M external lattice boundaries and two sides
for each of theM(L − 1) internal ones.

Each cell is identified from the coordinates of its rightmostboundaries in each di-
mension(i1, . . . , iM ), ik ∈ {1, . . . , L}. The cell boundaries along thelth dimension
are defined, as the setsLBl(i1, . . . , iM ) andRBl(i1, . . . , iM ) for the left and the
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right boundary, respectively:

LBk(i1, . . . , iM ) =

{

(x1, . . . , xM )

∣

∣

∣

∣

xk = ik − 1, if k = l
ik − 1 < xk < ik, if k 6= l

}

, (4.21)

RBk(i1, . . . , iM ) =

{

(x1, . . . , xM )

∣

∣

∣

∣

xk = ik, if k = l
ik − 1 < xk < ik, if k 6= l

}

. (4.22)

The inside facing sides of the cell along thelth dimension are defined as the right
facing side of the left cell boundary and the left facing sideof the right cell bound-
ary, restricted by the remaining cell boundaries. These arecalled the left internal
cell side and the right internal cell side, and are denoted using LSk(·) andRSk(·),
respectively:

LSk(i1, . . . , iM ) =

{

(x1, . . . , xM )

∣

∣

∣

∣

ik ≤ xk + 1 < ik + ǫ, if k = l
ik − 1 < xk < ik, if k 6= l

}

, (4.23)

RSk(i1, . . . , iM ) =

{

(x1, . . . , xM )

∣

∣

∣

∣

ik − ǫ < xk ≤ ik, if k = l
ik − 1 < xk < ik, if k 6= l

}

, (4.24)

for some smallǫ > 0. Any cell in M dimensions has2M internal sides. The
interior of the cellC(i1, . . . , iM ) is defined as the open set of points inside the cell
boundaries, without the boundaries:

C(i1, . . . , iM ) = {(x1, . . . , xM )|ik − 1 < xk < ik, for all k}. (4.25)

The set of cell boundaries for all cells adjacent to a latticeboundaryik form a hyper-
cube lattice of dimensionM − 1 on that lattice boundary, which also has dimension
M − 1. Thus, each of the lattice boundaries has an(M − 1)-dimensional structure,
similar to theM -dimensional one defined here. The proof exploits this recursive
structure of the hypercube lattice.

4.4.2 Intersection of a Single Cell with a Hyperplane

To prove the desired statement we first prove that a cell intersected by anN -blade
has at leastN of its internal cell sides and the corresponding boundariesintersected
by the blade.1 An N -blade intersects a cell if its intersection with the interior of the
cell is non-zero.

Starting from a pointp on theN -blade, interior to the cell, we determine a vector
parallel to the blade and follow it along the blade until it intersects one of the cell
boundaries. This implies that the blade intersects the corresponding internal side of
the cell. In the same manner, we determine a second vector parallel to the blade and
the boundary intersected by the previous step. Following this vector along the blade,
starting from the same pointp, we intersect another boundary. This boundary is
different from the boundary intersected before, since the vector followed is parallel to

1 With a little more care, it can be demonstrated that at leastN +1 internal sides and the corresponding
boundaries are intersected, butN of them are enough for the purposes of the bound we present.
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the first boundary, and the pointp is interior to the cell. We repeat the process making
sure that the vector determined in each iteration is parallel both to the blade and
all the previously intersected boundaries. This ensures that every vector intersects
a boundary and the corresponding internal cell side that hasnot been intersected
before.

This is possible for at leastN iterations because the intersection of anN -blade with
the cell boundary forms an(N − 1)-blade that is an affine subspace parallel both to
the originalN -blade and the boundary. Therefore, after the first iteration there are at
leastN − 1 linearly independent vectors that are parallel to the intersected boundary
and to the original blade. Using that argument recursively,it follows that after the
kth iteration there areN − k linearly independent vectors to pick from, that are all
parallel to the original blade and the boundaries that have already been intersected.

4.4.3 Intersection of Cells in the Hypercube Lattice

We denote usingI(M,N,L) the upper bound on the number of hypercube cells of
anLM sized hypercube lattice inM dimensions that an arbitraryN -blade intersects.
The degenerate case in which a blade is a subset of one of the lattice boundaries
is equivalent to the problemI(M − 1, N,L), and can be ignored. The intersection
of any other arbitraryN -blade with a lattice boundary creates at most an(N − 1)-
blade within that boundary, which is also a sub-blade of the original N -blade. The
cell boundaries form an(M − 1)-dimensional lattice inside each lattice boundary.
Therefore, theN -blade intersects at mostI(M −1, N −1, L) cell boundaries within
each lattice boundary, and the corresponding left and rightsides. The only exception
is the leftmost and rightmost external lattice boundaries,which only have one side
facing the inside of the lattice. In total there ares(M,L)·I(M−1, N−1, L) internal
cell sides that are being intersected, in whichs(M,L) is the total number of sides, as
defined in (4.20).

For each cell being intersected, there should be at leastN unique internal cell sides
intersected. A recursive upper bound follows:

I(M,N,L) ≤ s(M,L) · I(M − 1, N − 1, L)

N
(4.26)

=
(2ML)I(M − 1, N − 1, L)

N
(4.27)

≤ (2L)NM(M − 1) · · · (M − N + 1)I(M − N, 0, L)

N !
(4.28)

=
(2L)NM !I(M − N, 0, L)

N !(M − N)!
(4.29)

= (2L)N
(

M

N

)

I(M − N, 0, L). (4.30)

But I(M −N, 0, L) ≤ 1 since a 0-blade is a single point, which can only be interior
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to (i.e. intersect) at most one cell. Thus, (4.4) follows:

I(M,N,L) ≤ (2L)N
(

M

N

)

. (4.4)

This bound is loose, and is often larger thanLM ,the number of total cells in the
lattice. However, it is good enough for the purposes of this paper and the asymptotic
bounds we proved in this chapter.

The bound can be made tighter using the fact that anN -blade intersects at leastN +1
internal cell sides of any cell it intersects. Furthermore,it can be shown that:

I(M, 1, L) ≤ M(L − 1) + 1, (4.31)

which can be used to terminate the recursion instead ofI(M, 0, L)—using the recur-
sion onI(M, 1, L) results toI(M, 1, L) ≤ 2ML. Thus the upper bound becomes:

I(M,N,L) ≤ 2NLN−1(ML − M + 1)

N(N + 1)

(

M

N − 1

)

. (4.32)

Still, the tighter bound does not change the rates determined in section4.3.

4.5 Efficiency of Frame Representations

Frame representations are not necessarily inefficient in terms of quantization. Indeed,
there are examples that achieve theO(L−r) reduction of error magnitude expected
if the redundancy in the representation is used efficiently in terms of minimizing
the quantization error [18]. Similarly, the next chapter, discusses how Sigma-Delta
noise shaping can be generalized to arbitrary frame expansions to reduce the total
quantization error.

The proof in the previous sections, demonstrates the limitsof direct scalar quantiza-
tion of frame expansions, not the limits of any other method of computing the quan-
tized frame coefficients. The difference in the methods thatachieve further efficiency
is the assumption that the synthesis instead of the analysisis predetermined. Under
this assumption the analysis is modified to a non-linear method that determines a
better set of quantized expansion coefficients, such that the signal reconstruction has
an improved error performance.

A side issue in that discussion is the measurement of quantization efficiency. In a
classical Sigma-Delta A/D or D/A configuration the signal is64 or 128 times over-
sampled using the classical oversampling frame and quantized with a Sigma-Delta
converter to a 1-bit per sample representation. Compared toa critically sampled 16-
bit signal, for example, the 1-bit, oversample representation uses 4 or 8 times more
bits. It is, however, a very efficient representation if the cost of the representation is
in the D/A or the A/D converter, not in the storage or transmission cost. Indeed, a
64 times oversampled 1-bit D/A converter is much cheaper than a critically sampled
16-bit D/A because the 1-bit converter can be implemented inhardware using a sim-
ple switch, whereas a 16-bit one requires a careful manufacturing process to ensure
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linearity and other properties, even though it is running ata slower rate. This demon-
strates that implementation cost is an important aspect when comparing quantization
strategies. The next two chapters present a low-complexityapproach to improve
the error performance of direct coefficient quantization bygeneralizing Sigma-Delta
quantization to arbitrary frame expansions.
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CHAPTER 5 Quantization Noise Shaping on
Finite Frame Representations

This chapter presents how quantization noise shaping can beviewed as a sequence of
compensations using projections in the framework of chapter 3. The generalization
of noise shaping to arbitrary finite frame expansions follows naturally. Different
quantization algorithms are described, together with measures to evaluate them. The
generalization to higher order quantization is also considered.

5.1 Introduction

Quantization methods for frame expansions have received considerable attention in
the last few years. Simple scalar quantization applied independently on each frame
expansion coefficient, followed by linear reconstruction is well known to be subop-
timal [20, 17]. Several algorithms have been proposed that improve performance
although with significant complexity either at the quantizer [28] or in the recon-
struction method [28, 38]. The previous chapter proves that scalar quantization of
the frame representation has fundamental performance limits, independent of the re-
construction method. To improve performance an improved quantization method is,
therefore, necessary.

One such method, oversampled noise shaping, has been well studied and established
for the oversampling frame [29, 13]. In [1] it is shown that noise shaping can be
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considered as a causal example of error diffusion, a method often encountered in im-
age halftoning in which error due to quantization of oversampled representations is
diffused among multiple coefficients. More recently, framequantization methods in-
spired by uniform oversampled noise shaping (referred to generically as Sigma-Delta
noise shaping) have been proposed for finite uniform frames [4, 5] and for frames
generated by oversampled filterbanks [9]. In [4, 5] the error due to the quantization
of each expansion coefficient is subtracted from the next coefficient. The method
is algorithmically similar to classical first order noise shaping and uses a quantity
called frame variation to determine the optimal ordering offrame vectors such that
the quantization error is reduced. In [9] higher order noise shaping is extended to
oversampled filterbanks using a predictive approach. That solution performs higher
order noise shaping, in which the error is filtered and subtracted from the subsequent
frame coefficients.

This chapter formulates noise shaping as compensation of the error resulting from
quantizing each frame expansion coefficient through a projection onto the space de-
fined by another synthesis frame vector. This requires only knowledge of the synthe-
sis frame set and a pre-specified ordering and pairing for theframe vectors. Instead of
attempting a purely algorithmic generalization, we incorporate the use of projections
and explore the issue of frame vector ordering. This method improves the average
quantization error even if the frame vector ordering is not optimal. However, the ben-
efits from determining the optimal ordering are also demonstrated. The theoretical
framework presented provides a design method for noise shaping quantizers under
the cost functions presented. This generalization of Sigma-Delta noise shaping im-
proves the error in reconstruction due to quantization evenfor non-redundant frame
expansions (i.e. a basis set) as long as the frame vectors arenon-orthogonal. The
results in this chapter have also appeared in [11, 12].

Section5.2describes classical first-order Sigma-Delta quantizers inthe terminology
of frames. Section5.3offers two generalizations, which we refer to as the sequential
quantizer and the tree quantizer, both assuming a known ordering of the frame vec-
tors. Section5.4explores two different cost models for evaluating the quantizer struc-
tures and determining the frame vector ordering. The first isbased on a stochastic
representation of the error and the second on deterministicupper bounds. In section
5.5 the optimal ordering of coefficients is considered, assuming the cost measures
in section5.4. It is shown that for finite frames the determination of framevector
ordering can be formulated in terms of known problems in graph theory and that for
Sigma-Delta noise shaping the natural (time-sequential) ordering is optimal. Section
5.6 considers cases where the projection is restricted and how these cases relate to
the work in [4, 5]. Furthermore, the natural extension to higher order quantization is
examined. Section5.7 presents experimental results on finite frames that verify and
validate the theoretical ones. In section5.8 the special case of quantization followed
by complete compensation of the error is further analyzed.
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5.2 Concepts and Background

This section establishes the notation and reformulates Sigma-Delta noise shaping
using the terminology of frames and projections.

5.2.1 Frame Representation and Quantization

As described in chapter2, we assume a vectorx in a spaceW of finite dimensionN
represented using a predetermined finite frame:

x =
M
∑

k=1

akfk, (5.1)

in which {fk, k = 1, . . . ,M} is the synthesis frame. The redundancy of the frame is
r = M/N . A frame is uniform if all the frame vectors have the same magnitude, i.e.
||fk|| = ||f l|| for all k andl.

The coefficientsak above are scalar, continuous quantities to be quantized. The
simplest quantization strategy, which we call direct scalar quantization, is to quantize
each one individually tôak = Q(ak) = ak +ek, whereQ(·) denotes the quantization
function andek the quantization error for each coefficient. The total additive error
vector from this strategy is equal to

E =
M
∑

k=1

ekfk. (5.2)

Section4.1 demonstrates that if the frame forms an orthonormal basis, then direct
scalar quantization is optimal in terms of minimizing the error magnitude. However,
as discussed in [4, 5, 9, 13, 17, 20, 28, 38] and shown in section4.3 this is not the
case for all other frame expansions. Noise shaping is one of the possible strategies to
reduce the error magnitude. In order to generalize noise shaping to arbitrary frame
expansions, we first present traditional oversampling and noise shaping formulated
in the context of projections.

5.2.2 Sigma-Delta Noise Shaping

Oversampling in time of bandlimited signals is a well studied class of frame expan-
sions, presented in section2.1.8. A signalx[n] or x(t) is upsampled or oversampled
to produce a sequenceak. In the terminology of frames, the upsampling opera-
tion is a frame expansion in whichfk = rfk = sinc((n − k)/r), with sinc(x) =
sin(πx)/(πx). The sequenceak is the corresponding ordered sequence of frame
coefficients:

ak = 〈x, f k〉 =
∑

n

x[n]sinc((n − k)/r) (5.3)

x =
∑

k

akfk[n] =
∑

k

ak
1

r
sinc((n − k)/r). (5.4)
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FIGURE 5-1: Traditional first order noise shaping quantizer

Similarly for oversampled continuous time signals:

ak = 〈x, fk〉 =

∫ +∞

−∞
x(t)

r

T
sinc(

rt

T
− k) (5.5)

x =
∑

k

akfk =
∑

k

aksinc(
rt

T
− k), (5.6)

whereT is the Nyquist sampling period forx(t).

Sigma-Delta quantizers can be represented in a number of equivalent forms [13]. The
representation shown in figure5-1 most directly represents the view that we extend
to general frame expansions. Performance of Sigma-Delta quantizers is sometimes
analyzed using the additive white noise model for the quantization error presented in
section2.3.3[13]. Based on this model it can be shown that the quantization noise
power at the reconstruction is minimized when the scaling coefficient c is chosen to
bec = sinc(1/r).1

The process in figure5-1 can be viewed as an iterative process of coefficient quan-
tization followed by error projection. The quantizer in thefigure quantizesa′l to
âl = a′l + el. Considerxl[n], such that the coefficients up toal−1 have been quan-
tized andel−1 has already been scaled byc and subtracted fromal to producea′l:

xl[n] =
l−1
∑

k=−∞

âkfk[n] + a′lfl[n] +
+∞
∑

k=l+1

akfk[n] (5.7)

= xl+1[n] + el(fl[n] − c · fl+1[n]). (5.8)

The incremental errorel(fl[n] − c · fl+1[n]) at thelth iteration of (5.8) is minimized
if we pick c such thatc · fl+1[n] is the projection offl[n] ontofl+1[n]:

c = 〈fl[n], fl+1[n]〉/||fl+1[n]||2 = sinc(1/r). (5.9)

This choice ofc projects tofl+1[n] the error due to quantizingal and compensates for
this error by modifyingal+1. Note that the optimal choice ofc in (5.9) is the same

1 With typical oversampling ratios, this coefficient is closeto unity and is often chosen as unity for
computational convenience.
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as the optimal choice ofc under the additive white noise model for quantization. It is
also the solution of equation (3.18) in page42 for the first order case (i.e.p = 1).

Minimizing the incremental error is not necessarily optimal in terms of minimizing
the overall quantization error. It is, however, optimal in terms of the two cost func-
tions described in section5.4. Before we examine these cost functions we generalize
first order noise shaping to general frame expansions.

5.3 Noise shaping on Frames

This section considers two generalizations of the discussion of section5.2.2 to ar-
bitrary finite frame representations of lengthM . Throughout the discussion in this
section we assume the ordering of the synthesis frame vectors (f1, . . . , fM ), and cor-
respondingly the ordering of the synthesis coefficients(a1, . . . , aM ) has already been
determined.

The ordering of the frame vectors is addressed in section5.5. However, it should be
emphasized that the execution of the algorithm and the ordering of the frame vectors
are distinct issues. The optimal ordering can be determinedonce, off-line, in the
design phase. The ordering only depends on the properties ofthe synthesis frame,
not the data or the analysis frame.

5.3.1 Single Coefficient Quantization

To illustrate our approach, we consider quantizing the firstcoefficienta1 to â1 = a1+
e1, with e1 denoting the additive quantization error. Equation (5.1) then becomes:

x = â1f1 +

M
∑

k=2

akfk − e1f1 (5.10)

= â1f1 + a2f2 +

M
∑

k=3

akfk − e1c1,2f2 − e1(f1 − c1,2f2). (5.11)

As in (3.4) and (5.8), the norm ofe1(f1−c1,2f2) is minimized ifc1,2f2 is the projection
of f1 ontof2:

c1,2f2 = 〈f1,u2〉u2 (5.12)

= 〈f1,
f2

||f2||
〉 f2

||f2||
(5.13)

⇒ c1,2 =
〈f1,u2〉
||f2||

=
〈f1, f2〉
||f2||2

, (5.14)

whereuk = fk/||fk|| are unit vectors in the direction of the synthesis vectors. Finally,
we incorporate the term−e1c1,2f2 in the expansion by updatinga2 as in (3.9):

a′2 = a2 − e1c1,2. (5.15)

5.3 Noise shaping on Frames 65



This is the same development as presented in chapter3, assuming first order (p = 1)
compensation. The only difference is in the notation, in which the setSi and the
spaceWi are ignored here, since they are implied by first order compensation.

After the projection, the residual error is equal toe1(f1 − c1,2f2). Consistent with
chapter3we simplify this expression and definer1,2 to be the direction of the residual
error, ande1c̃1,2 to be the error amplitude:

r1,2 = (f1 − c1,2f2)/||f1 − c1,2f2|| (5.16)

c̃1,2 = ||f1 − c1,2f2|| = 〈f1, r1,2〉. (5.17)

Thus, the residual error ise1〈f1, r1,2〉r1,2 = e1c̃1,2r1,2, in which c̃1,2 is the error
coefficient for this pair of vectors.

Substituting the above, equation (5.11) becomes

x = â1f1 + a′2f2 +

M
∑

k=3

akfk − e1c̃1,2r1,2. (5.18)

Equation (5.18) can be viewed as decomposinge1f1 into the direct sum(e1c1,2f2)⊕
(e1c̃1,2r1,2) and compensating only for the first term of this sum. The component
e1c̃1,2r1,2 is the final quantization error after one step is completed.

Note that for any pair of frame vectors the corresponding error coefficient c̃k,l is
always positive. Also, if the synthesis frame is uniform, there is a symmetry in the
terms we defined:ck,l = cl,k andc̃k,l = c̃l,k, for any pairk 6= l.

5.3.2 Sequential Noise Shaping Quantizer

A sequential first order noise shaping quantizer iterates the process in section5.3.1
by quantizing the next (updated) coefficient until all the coefficients have been quan-
tized. Specifically, the algorithm continues as follows:

1. Quantize coefficientk by settingâk = Q(a′k).

2. Compute the errorek = âk − a′k.

3. Update the next coefficientak+1 to a′k+1 = ak+1 − ekck,k+1, where

ck,l =
〈fk, fl〉
||fl||2

. (5.19)

4. Increasek and iterate from step 1 until all the coefficients have been quantized.
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Every iteration of the sequential quantization contributes ek c̃k,k+1rk,k+1 to the total
quantization error, where

rk,l =
fk − ck,lfl

||fk − ck,lfl||
, and (5.20)

c̃k,l = ||fk − ck,lfl||. (5.21)

Since the frame expansion is finite, the algorithm cannot compensate for the quanti-
zation error of the last stepeM fM . Thus, the total error vector is

E =
M−1
∑

k=1

ek c̃k,k+1rk,k+1 + eM fM . (5.22)

Note that the definition ofck,l in (5.19) is consistent with the solution of equation
(3.18) for the case ofp = 1. Also, c̃k,lrk,l is the residual from the projection offk
ontofl, and has magnitude less than or equal tofk. Specifically, for allk andl:

c̃k,l ≤ ||fk||, (5.23)

with equality holding if and only iffk is orthogonal tofl. Furthermore note that̃ck,l,
being the magnitude of a vector, is always nonnegative.

5.3.3 Tree Noise Shaping Quantizer

The sequential quantizer can be generalized by relaxing thesequence of error assign-
ments: Again, we assume that the coefficients have been pre-ordered and that the
ordering defines the sequence in which coefficients are quantized. In this generaliza-
tion, we associate with each ordered frame vectorfk another, possibly not adjacent,
frame vectorflk further in the sequence (and, therefore, for which the corresponding
coefficient has not yet been quantized) to which the error is projected using equa-
tion (5.15). With this more general approach some frame vectors can be used to
compensate for more than one quantized coefficient.

A tree noise shaping quantizer uses the algorithm presentedin section5.3.2, with
step 3 modified to:

3. Updatealk to a′lk = alk − ekck,lk , whereck,l = 〈fk,fl〉
||fl||2

, andlk > k.

The constraintlk > k ensures thatalk is further in the sequence thanak. For fi-
nite frames, this defines a tree, in which every node is a framevector or associated
coefficient. If a coefficientak uses coefficientalk to compensate for the error, then
ak is a direct child ofalk in that tree. The root of the tree is the last coefficient to
be quantized,aM . The sequential quantizer is a special case of the tree quantizer in
which lk = k + 1.
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The resulting expression forx is given by:

x =
M
∑

k=1

âkfk −
M−1
∑

k=1

ek c̃k,lkrk,lk − eM fM (5.24)

= x̂−
M−1
∑

k=1

ek c̃k,lkrk,lk − eM ||fM ||uM , (5.25)

wherex̂ is the quantized version ofx after noise shaping, and theek are the quanti-
zation errors in the coefficients after the corrections fromthe previous iterations have
been applied toak. Thus, the total error of the process is:

E =
M−1
∑

k=1

ek c̃k,lkrk,lk + eM fM . (5.26)

5.4 Error Models and Analysis

In order to compare and design quantizers, we need to be able to compare the mag-
nitude of the error in each. However, the error termsek in equations (5.2), (5.22),
and (5.26) are data dependent in a very non-linear way. Furthermore, due to the error
projection and propagation performed in noise shaping, thecoefficients being quan-
tized at every step are different for the different quantization strategies. Therefore,
for eachk, ek is different among the equations (5.2), (5.22), and (5.26), making the
precise analysis and comparison even harder. In order to compare quantizer designs
we need to evaluate them using cost functions that are independent of the data.

To simplify the problem further, we focus on cost measures for which the incremental
cost at each step is independent of the whole path and the data. We call these incre-
mental cost functions. In this section we examine two such models, one stochastic
and one deterministic. The first cost function is based on thewhite noise model for
quantization, while the second provides a guaranteed upperbound for the error. Note
that for the rest of this development we assume uniform quantization, with∆ denot-
ing the interval spacing of the uniform quantizer. We also assume that the quantizer
is properly scaled not to overflow.

5.4.1 Additive Noise Model

The first cost function assumes the additive uniform white noise model for quanti-
zation error, to determine the expected energy of the errorE{||E||2}. All the error
coefficientsek are assumed white and identically distributed, with variance ∆2/12,
where∆ is the interval spacing of the quantizer. They are also assumed to be un-
correlated with the quantized coefficients. Thus, all errorcomponents contribute

68 5 Quantization Noise Shaping on Finite Frame Representations



additively to the error power, resulting in:

E{||E||2} =
∆2

12

(

M
∑

k=1

||fk||2
)

, (5.27)

E{||E||2} =
∆2

12

(

M−1
∑

k=1

c̃2
k,k+1 + ||fM ||2

)

, and (5.28)

E{||E||2} =
∆2

12

(

M−1
∑

k=1

c̃2
k,lk

+ ||fM ||2
)

, (5.29)

for the direct, the sequential and the tree quantizer respectively.

This model, further described in section2.3.3is a generalization of the additive noise
model sometimes used to characterize noise shaping on the oversampling frame. The
model has been applied to other frame expansions [9, 28], although its assumptions
are often inaccurate. This model only attempts to describe average behavior and
provides no guarantees on performance for individual realizations. It is possible that
quantizing a particular signal using noise shaping generates more error than using
direct coefficient quantization.

5.4.2 Error Magnitude Upper Bound

As an alternative cost function, we can also consider an upper bound for the error
magnitude. For any set of vectorsui, ||

∑

k uk|| ≤
∑

k ||uk||, with equality only
if all vectors are collinear, in the same direction. This leads to the following upper
bound on the error:

||E|| ≤ ∆

2

(

M
∑

k=1

||fk||
)

, (5.30)

||E|| ≤ ∆

2

(

M−1
∑

k=1

c̃k,k+1 + ||fM ||
)

, and (5.31)

||E|| ≤ ∆

2

(

M−1
∑

k=1

c̃k,lk + ||fM ||
)

, (5.32)

for direct, sequential and tree quantization, respectively.

The vectorrM−1,lM−1
is by construction orthogonal tofM and therk,lk are never

collinear, making the bound very loose. Thus, a noise shaping quantizer can be
expected in general to perform better than what the bound suggests. Still, for the
purposes of this discussion we treat this upper bound as a cost function and we design
the quantizer such that this cost function is minimized.
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5.4.3 Analysis of the Error Models

To compare the average performance of direct coefficient quantization to the pro-
posed noise shaping schemes we only need to compare magnitude of the right hand
side of equations (5.27) through (5.29), and (5.30) through (5.32) above. The cost of
direct coefficient quantization computed using equations (5.27) and (5.30) does not
change even if the order of quantization is different. Therefore, we can assume the
ordering of the synthesis frame vectors and the associated coefficients is given, and
compare the three strategies. In this section we prove that for any frame vector order-
ing, the proposed noise shaping strategies reduce both the average error power, and
the worst case error magnitude, as described using the proposed functions, compared
to direct scalar quantization.

When comparing the cost functions, the multiplicative terms ∆2

12 and ∆
2 are elim-

inated because they are the same in all equations. Furthermore, the final additive
term ||fM ||2 and ||fM || does not affect the comparison since it exists in all equa-
tions. Therefore, it can also be eliminated. To summarize, we need to compare the
following quantities:

M−1
∑

k=1

||fk||2,
M−1
∑

k=1

c̃2
k,k+1, and

M−1
∑

k=1

c̃2
k,lk

, (5.33)

in terms of the average error power, and

M−1
∑

k=1

||fk||,
M−1
∑

k=1

c̃k,k+1, and
M−1
∑

k=1

c̃k,lk , (5.34)

in terms of the guaranteed worst case performance. These correspond to direct coef-
ficient quantization, sequential noise shaping, and tree noise shaping respectively.

Using (5.23) it follows that both noise shaping methods have lower cost than direct
coefficient quantization for any frame vector ordering. Furthermore, we can always
pick lk = k + 1, and, therefore, the tree noise shaping quantizer can always achieve
the cost of the sequential quantizer. Therefore, we can always find lk such that the
comparison above becomes:

M−1
∑

k=1

||fk||2 ≥
M−1
∑

k=1

c̃2
k,k+1 ≥

M−1
∑

k=1

c̃2
k,lk

, and (5.35)

M−1
∑

k=1

||fk|| ≥
M−1
∑

k=1

c̃k,k+1 ≥
M−1
∑

k=1

c̃k,lk . (5.36)

The relationships above hold with equality if and only if allthe pairs(fk, fk+1) and
(fk, flk) are orthogonal. Otherwise the comparison with direct coefficient quantiza-
tion results in a strict inequality. In other words, noise shaping improves the quan-
tization cost compared to direct coefficient quantization even if the frame is not re-
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dundant, as long as the frame is not an orthogonal basis.2 Note that the coefficients
ck,l are 0 if the frame is an orthogonal basis. Therefore, the feedback termsekck,lk

in step 3 of the algorithms described in section5.3 are equal to 0. In this case, the
strategies in section5.3reduce to direct coefficient quantization, which can be shown
to be the optimal scalar quantization strategy for orthogonal basis expansions.

We can also determine a lower bound for the cost, independentof the frame vector
ordering, by pickingjk = argminlk 6=k c̃k,lk . This does not necessarily satisfy the
constrainjk > k of section5.3.3, therefore the lower bound cannot always be met.
However, if a quantizer can meet the lower bound, it is the minimum cost first or-
der noise shaping quantizer, independent of the frame vector ordering, for both cost
functions.

The inequalities presented in this section are summarized below.

For given frame ordering,jk = argminlk 6=k c̃k,lk and some{lk > k} :

M
∑

k=1

c̃k,jk
≤

M−1
∑

k=1

c̃k,lk + ||fM || ≤
M−1
∑

k=1

c̃k,k+1 + ||fM || ≤
M
∑

k=1

||fk||, (5.37)

and

M
∑

k=1

c̃2
k,jk

≤
M−1
∑

k=1

c̃2
k,lk

+ ||fM ||2 ≤
M−1
∑

k=1

c̃2
k,k+1 + ||fM ||2 ≤

M
∑

k=1

||fk||2, (5.38)

where the lower and upper bounds are independent of the framevector ordering.

In the development above we proved that the proposed noise shaping reduces the
average and the upper bound of the quantization error for allframe expansions. The
strategies above degenerate to direct coefficient quantization if the frame is an or-
thogonal basis. These results hold without any assumptionson the frame, or the
ordering of the frame vectors and the corresponding coefficients. Finally, we derived
a lower bound for the cost of a first order noise shaping quantizer. In the next section
we examine how to determine the optimal ordering and pairingof the frame vectors.

5.5 First Order Quantizer Design

As indicated earlier, an essential issue in first order quantizer design based on the
strategies outlined in this chapter is determining the ordering of the frame vectors.
The optimal ordering depends on the specific set of synthesisframe vectors, but not
on the specific signal. Consequently, the quantizer design (i.e. the frame vector

2 An oblique basis can reduce the quantization error comparedto an orthogonal one if noise shaping is
used, assuming the quantizer uses the same∆. However, more quantization levels might be necessary
to ensure that the quantizer does not overflow if an oblique basis is used.
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ordering) is carried out off-line and the quantizer implementation is a sequence of
projections based on the ordering chosen for either the sequential or tree quantizer.

5.5.1 Simple Design Strategies

An obvious design strategy is to determine an ordering and pairing of the coeffi-
cients such that the quantization of every coefficientak is compensated as much
as possible by the coefficientalk . This can be achieved by settinglk = jk, with
jk = argminlk 6=k c̃k,lk , as defined for the lower bounds of equations (5.37) and (5.38).
When this strategy is possible to implement, i.e.jk > k, it results in the optimal
ordering and pairing under both cost models we discussed, simply because it meets
the lower bound for the quantization cost.

This is exactly how a traditional Sigma-Delta quantizer works. When an expansion
coefficient is quantized, the coefficients that can compensate for most of the error are
the ones right before or right after it. This implies that thetime sequential ordering
of the oversampling frame vectors is the optimal ordering for first order noise shap-
ing (another optimal ordering is the time-reversed, i.e. the anticausal version). We
examine this further in section6.1.1.

Unfortunately, for certain frames, this optimal pairing might not be feasible. Still,
it suggests a heuristic for a good coefficient pairing: at every stepk, the error from
quantizing coefficientak is compensated using the coefficientalk that can compen-
sate for most of the error, picking from all the frame vectorswhose corresponding co-
efficients have not yet been quantized. This is achieved by setting lk = argminl>kc̃k,l.
This, in general is not an optimal strategy, but an easily implementable heuristic. Op-
timal designs are discussed next.

5.5.2 Quantization Graphs and Optimal Quantizers

From section5.3.3 it is clear that a tree quantizer can be represented as a graph—
specifically, a tree—in which all the nodes of the graph are coefficients to be quan-
tized. Similarly for a sequential quantizer, which is a special case of the tree quan-
tizer, the graph is a linear path passing through all the nodes ak in the correct se-
quence. In both cases, the graphs have edges(k, lk), pairing coefficientak to co-
efficientalk if and only if the quantization of coefficientak assigns the error to the
coefficientalk .

Figure5-2shows four examples of graph representations of first order noise shaping
quantizers on a frame with five frame vectors. The top two figures, (a) and (b),
demonstrate two sequential quantizers ordering the frame vectors in their natural and
their reverse order respectively. In addition, parts (c) and (d) of the figure demonstrate
two general tree quantizers for the same frame.

In the figure a weight is assigned to each edge. The cost of eachquantizer is pro-
portional to the total weight of the graph with the addition of the cost of the final
term. For a uniform frame the magnitude of the final term is thesame, independent
of which coefficient is quantized last. Therefore it is eliminated when comparing the
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FIGURE 5-2: Examples of graph representations of first order noise shaping quantizers on a frame
with five frame vectors. Note that the weights shown represent the upper bound of
the quantization error. To represent the average error power the weights should be
squared.

cost of quantizer designs on the same frame. Thus, designingthe optimal quantizer
corresponds to determining the graph with the minimum weight.

We define the quantization error assignment graph which has the frame vectors as
nodesV = {f1, . . . , fM} and edges with weightw(k, l) = c̃2

k,l or w(k, l) = c̃k,l

if we want to minimize the expected error power or the upper bound of the error
magnitude respectively. On this graph, any acyclical path that visits all the nodes—a
hamiltonian path—defines a first order sequential quantizer. Similarly, any tree that
visits all the nodes—a spanning tree—defines a tree quantizer.

The minimum cost hamiltonian path defines the optimal sequential quantizer. This
can be determined by solving the traveling salesman problem(TSP). The TSP is NP-
complete in general, but has been extensively studied in theliterature [15]. Similarly,
the optimal tree quantizer is defined by the solution of the minimum spanning tree
problem. This is also a well studied problem, solvable in polynomial time [15]. Since
any path is also a tree, if the minimum spanning tree is a hamiltonian path, then it is
also the solution to the traveling salesman problem. These results can be extended to
non-uniform frames.

We should note that in general the optimal ordering and pairing depend on which
of the two cost functions we choose to optimize for. Furthermore, we should reem-
phasize that this optimization is performed once, off-line, at the design stage of the
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quantizer. Therefore, the computational cost of solving these problems does not af-
fect the complexity of the quantizer.

5.6 Further Generalizations

In this section we consider two further generalizations. Insection5.6.1we examine
the case for which the product term is restricted. In section5.6.2we consider the
case of noise shaping using more than one vector for compensation. Although a
combination of the two is possible, we do not consider it here.

5.6.1 Projection Restrictions

The development in the previous sections uses the productekck,lk to compensate for
the error in quantizing coefficientak using coefficientalk . Implementation restric-
tions often do not allow for this product to be computed to a satisfactory precision.
For example, typical Sigma-Delta converters eliminate this product altogether by set-
ting c = 1. In such cases, the error compensation is not using a projection. Still, the
intuition and approach remains applicable.

The restriction we consider is one on the product: the coefficientsck,lk are restricted
to be in a discrete setA = {α1, ..., αK}. Requiring the coefficient to be an integer
power of 2 or to be only±1 are examples of such constraints. In this case we use
again the algorithms of section5.3, with ck,l now chosen to be the coefficient inA
closest to achieving a projection, i.e. withck,l specified as:

ck,l = argminc∈A||fk − cfl|| (5.39)

As in the unrestricted case, the residual error isek(fk − ck,lfl) = ek c̃k,lrk,l with rk,l

andc̃k,l defined as in equations (5.20) and (5.21), respectively.

To apply either of the error models in section5.4 we use the new̃cl,lk , as computed
above. However, in this case, certain coefficient orderingsand pairings might in-
crease the overall error. A pairing offk with flk improves the cost if and only if

||fk − ck,lkflk || ≤ ||fk|| ⇔ c̃k,lk ≤ ||fk||, (5.40)

which is no longer guaranteed to hold. Thus, the strategies described in section5.5.1
need one minor modification: we only allow the compensation to take place if the
inequality (5.40) holds. Similarly, in terms of the graphical model of section 5.5.2,
we only allow an edge in the graph if the inequality (5.40) holds. Still, the optimal
sequential quantizer is the solution to the TSP, and the optimal tree quantizer is the
solution to the minimum spanning tree problem on that graph—which might now
have missing edges.

The main implication of missing edges is that, depending on the frame we operate
on, the graph might have disconnected components. In this case we should solve
the traveling salesman problem or the minimum spanning treeon every component.
Also, it is possible that, although we are operating on an oversampled frame, noise
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shaping is not beneficial due to the constraints. The simplest way to correct for this
is to always allow the choiceck,lk = 0 in the setA. This ensures that (5.40) is
always met, and therefore the graph stays connected. Thus, whenever noise shaping
is not beneficial, the algorithms will pickck,lk = 0 as the compensation coefficient,
which is equivalent to no noise shaping. We should note that the choice of the setA
matters. The denser the set is, the better the approximationof the projection. Thus,
the resulting cost is smaller.

An interesting special case is to setA = {1}, so that no multiplications are required.
As mentioned previously, this is a common design choice in traditional Sigma-Delta
converters. Furthermore, it is the case examined in [4, 5], where the issue of the
optimal permutation is addressed in terms of the frame variation. The frame variation
is defined in [4] motivated by the triangle inequality, as is the upper boundmodel of
section5.4.2. In that work it is also shown that incorrect frame vector ordering might
increase the overall error, compared to direct coefficient quantization.

In the caseA = {1} the compensation is improving the cost if and only if||fk −
flk || < ||fk||. The rest of the development remains the same: determining the op-
timal frame vector ordering requires solving the travelingsalesman problem or the
minimum spanning tree problem on a possibly disconnected graph. In the exam-
ple we present in section5.7, the natural frame ordering becomes optimal using our
cost models, yielding the same results as the frame variation criterion suggested in
[4, 5]. In section6.1.1we show that when applied to classical first order noise shap-
ing this restriction does not affect the optimal frame ordering and does not impact
significantly the error power.

5.6.2 Higher Order Quantization

Classical Sigma-Delta noise shaping is commonly done in multiple stages to achieve
higher-order noise shaping. Similarly noise shaping on arbitrary frame expansions
can be generalized to higher order. Unfortunately, in this case determining the op-
timal ordering is not as straightforward, and we do not attempt this development.
However, we develop the quantization strategy and the errormodeling for a given
ordering of the coefficients.

The goal of higher order noise shaping is to compensate for quantization of each
coefficient using more than one coefficients. There are several possible implemen-
tations of a traditional higher order Sigma-Delta quantizers. All have a common
property; the quantization error is in effect modified by apth order filter, typically
with a transfer function of the form:

He(z) = (1 − z−1)p (5.41)

and equivalently an impulse response:

he[n] = δ[n] −
p
∑

i=1

ciδ[n − i], (5.42)
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for someci. Thus, every error coefficientek additively contributes a term of the form
ek(fk −∑p

i=1 cifk+i) to the output error. In order to minimize the magnitude of this
contribution we need to choose theci such that

∑p
i=1 cifk+i is the projection offk to

the space spanned by{fk+1, . . . , fk+p}. Using (5.41) as the system function is often
preferred for implementation simplicity but it is not the optimal choice. This design
choice is similar to eliminating the product in figure5-1. As with first order noise
shaping, it is straightforward to generalize this to arbitrary frames.

Given a frame vector ordering, we consider the quantizationof coefficientak to âk =
ak + ek. This error is to be compensated using coefficientsal1 to alp , with all the
li > k. Thus, we desire to project the vector−ekfk to the spaceWk, defined by the
vectorsfl1, . . . , flp , as described in chapter3. We use the analysis in that chapter to
determine a set of coefficients that multiply the errorek in order to project it to the
appropriate space.

To perform the projection we view the set{fl|l ∈ Sk} as the reconstruction frame for
Wk, whereSk = {l1, . . . , lp} is the set of the indices of all the vectors that we use
for compensation of coefficientak. Ensuring that for allj ≥ k, k /∈ Sj guarantees
that once a coefficient is quantized, it is not modified again.

We useck,l to denote the coefficients that perform the projection—the correspond-
ing setSk and the spaceWk are implied and not included in the notation. These
coefficients perform a projection if they satisfy equation (3.18), which becomes:











〈fl1 , fl1〉 〈fl1 , fl2〉 · · · 〈fl1 , flp〉
〈fl2 , fl1〉 〈fl2 , flp〉 · · · 〈fl1 , flp〉

...
. ..

...
〈flp , fl1〉 〈flp , fl2〉 · · · 〈flp , flp〉





















ck,l1

ck,l2
...

ck,lp











=











〈fl1 , fk〉
〈fl2 , fk〉

...
〈flp , fk〉











. (5.43)

If the frame{fl|l ∈ Sk} is redundant, the coefficients are not unique, but any solution
is appropriate. The projection is equal to:

PWk
(−ekfk) = −ek

∑

l∈Sk

ck,lfl. (5.44)

Consistent with section5.3, we change step 3 of the algorithm to:

3. Update{al|l ∈ Sk} to a′l = al − ekck,l, whereck,l satisfy (5.43).

Similarly, the residual is−ek c̃krk, where

c̃k = ||fk −
∑

l∈Sk

ck,lfl||, and (5.45)

rk =
fk −∑l∈Sk

ck,lfl

||fk −∑l∈Sk
ck,lfl||

, (5.46)

consistent with (3.10) and (3.11) in page41 respectively. In other words, we express
ekfk as the direct sum of the vectorsek c̃krk⊕ek

∑

l∈Sk
ck,l,Sfl, and compensate only
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for the second part of this sum. Note thatc̃k andrk are the same independent on what
method is used to solve equation (5.43).

The modification to the equations for the total error and the corresponding cost func-
tions are straightforward:

E =
M
∑

k=1

ek c̃krk (5.47)

E{||E||2} =
∆2

12

M
∑

k=1

c̃2
k, and (5.48)

||E|| ≤ ∆

2

M
∑

k=1

c̃k. (5.49)

WhenSk = {lk} for k < M , this collapses to a tree quantizer. Similarly, when
Sk = {k + 1}, the structure becomes a sequential quantizer. Since the tree quantizer
is a special case of the higher order quantizer, it is easy to show that for a given
frame vector ordering a higher order quantizer can always achieve the cost of a tree
quantizer. Note thatSM is always empty, and thereforẽcM = ||fM ||, which is
consistent with the cost analysis for the first order quantizers.

For appropriately ordered finite frames inN dimensions, the firstM − N error co-
efficients c̃k can be forced to zero with anN th or higher order quantizer. In this
case, the error coefficients determining the cost of the quantizer are the remaining
N ones—the error becomes

∑M
k=M−N+1 ek c̃krk, with the corresponding cost func-

tions modified accordingly. One way to achieve that functionis to use all the un-
quantized coefficients to compensate for the quantization of coefficientak by setting
Sk = {(k + 1), . . . ,M} and ordering the vectors such that the lastN frame vectors
span the space. This is not the only option; another example is discussed in the next
section.

Unfortunately, the design space for higher order quantizers is quite large. The optimal
frame vector ordering andSk selection is still an open question and we do not attempt
it in this work.

5.7 Experimental Results

To validate the theoretical results we presented above, in this section we consider the
same example as was included in [4, 5]. We use the tight frame consisting of the
7th roots of unity to expand randomly selected vectors inR

2, uniformly distributed
inside the unit circle. We quantize the frame expansion using ∆ = 1/4, and recon-
struct the vectors using the corresponding synthesis frame. The frame vectors and
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FIGURE 5-3: Histogram of the reconstruction error under (a) direct coefficient quantization, (b)
natural ordering and error propagation without projections, (c) skip-two-vectors or-
dering and error propagation without projections. In the second row, natural ordering
using projections, with (d) first, (e) second, and (f) third order error propagation. In
the third row, skip-two-vectors ordering using projections, with (g) first and (h) sec-
ond order error propagation (the third order results are similar to the second order
ones but are not displayed for clarity of the legend).

the coefficients relevant to quantization are given by:

fn = (cos(2πn/7), sin(2πn/7)), (5.50)

fn = ((2/7) cos(2πn/7), (2/7) sin(2πn/7)), (5.51)

ck,l = cos (2π(k − l)/7) , (5.52)

c̃k,l = (2/7)| sin (2π(k − l)/7) |. (5.53)

For this frame the natural ordering is suboptimal given the criteria we propose. An
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optimal ordering of the frame vectors is(f1, f4, f7, f3, f6, f2, f5), and we refer to it as
the skip-two-vectors ordering for the remainder of this section. A sequential quan-
tizer with this optimal ordering meets the lower bound for the cost under both cost
functions we propose. Thus, it is an optimal first order noiseshaping quantizer for
both cost functions. We compare this strategy to the one proposed in [4, 5] and also
explored as a special case of section5.6.1. Under that strategy, there is no projec-
tion performed, just error propagation. Therefore, based on the frame variation as
described in [4, 5], the natural frame ordering is the best ordering to implement that
strategy.

The simulations also examine the performance of higher order quantization, as de-
scribed in section5.6.2. Since the frame is two dimensional, a second order quantizer
can perfectly compensate for the quantization of all but thelast two expansion coef-
ficients. Therefore, all the error coefficients of equation (5.47) are 0, except for the
last two. A third order or higher quantizer will not improve the quantization cost.
However, the ordering of frame vectors is still important, since the angle between the
last two frame vectors to be quantized affects the total error, and should be as small
as possible.

To visualize the results we plot the distribution of the reconstruction error magni-
tude. In figure5-3(a) we consider the case of direct coefficient quantization.Figures
5-3(b) and (c) correspond to noise shaping using the natural andthe skip-two-vectors
ordering respectively, and the method proposed in [4, 5], i.e. without projecting the
error. Figures5-3(d), (e), and (f) use the projection method using the naturalframe
ordering, and first, second and third order projections, respectively. Finally, figures
5-3(g) and (h) demonstrate first and second noise shaping results, respectively, using
projections on the skip-two-vectors ordering. For clarityof the legend we do not plot
the third order results, although they are almost identicalto the second order case. On
all the plots dotted and dash-dotted lines indicate the average and maximum recon-
struction error respectively. Dashed and solid lines are used to indicate the average
and maximum error, as determined using the cost functions ofsection5.4.3

The results show that the projection method results in smaller error, even when using
the natural frame ordering. As expected, the results using the optimal frame vector
ordering are the best among the simulations we performed. The simulations also
confirm that inR

2, noise shaping provides no benefit beyond second order and that
the frame vector ordering affects the error even in higher order noise shaping, as pre-
dicted by the analysis. It is evident that the upper bound model is loose, as expected.
The residual error vectorsri,j are not collinear, and therefore the triangle inequal-
ity, on which the upper bound model is based, provides a very conservative bound.
The error average, on the other hand, is surprisingly close to the simulation mean,
although it usually overestimates it.

The results were similar for a variety of frame expansions ondifferent dimensions, re-

3 In some parts of the figure, the lines are out of the axis bounds. For completeness, we list the
results here: (a) Estimated Max=0.25, (b) Estimated Max=0.22, (c) Estimated Max=0.45, Simulation
Max=0.27, (d) Estimated Max=0.20.
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dundancy values, vector orderings, and noise shaping orders, including non-orthogonal
bases, validating the theory developed in the previous sections.

5.8 Noise Shaping with Complete Compensation

As described in section5.6.2, when quantizing a finite frame, it is possible to force
the error coefficients̃ck to zero for the firstM − N coefficients to be quantized.
This can be done, for example, by ordering the frame vectors such that the lastN
vectors form a linearly independent set, and compensating for the error from quan-
tizing coefficientak using all the subsequent coefficients{ak+1, . . . , aM}. Even in
this case, the ordering of the frame vectors affects the quantization error. The lastN
coefficients to be quantized correspond to linearly independent vectors, which can
be chosen and ordered such that they are as aligned as much as possible and the
corresponding error coefficients become as small as possible.

In this case it is possible to exploit the orthogonality properties of the residual vec-
tors ri in order to obtain a tighter expression on the upper bound on the residual
error due to the use of projections. Using Gram-Schmidt orthogonalization it is
also possible and computationally efficient to compute these vectors. In the subse-
quent development we assume that the lastN coefficients are quantized in sequence
aM−N+k, k = 1, . . . , N and the error due to the quantization ofaM−N+k is compen-
sated using all the remaining unquantized coefficients{aM−N+k+1, . . . , aM}. The
error due to the quantization of coefficients{a1, . . . , aM−N} is zero since the quanti-
zation of these coefficient can be perfectly compensated for. In denoting the relevant
vectors and coefficients, we eliminateSM−N+k = {M − N + k + 1, . . . ,M} and
WM−N+k = span{fl, l ∈ SM−N+k} from the subscripts since they are not ambigu-
ous and they make the notation cumbersome.

5.8.1 Error Upper Bound

As noted in section3.1, the residual vector,rk is orthogonal to all the synthesis
vectors{fl|l ∈ Sk} used for the compensation of the error. Combined with the
compensation ordering described above, this implies that:

〈rk, fl〉 = 0, for all l > k > M − N. (5.54)

But rl is a linear combination of all the synthesis vectorsfi for l ≤ i ≤ M :

rl =
fl −

∑

l<i≤M cl,ifi

||fl −
∑

l<i≤M cl,ifi||
, for all l > M − N. (5.55)
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Therefore, the lastN residual vectors are orthogonal to each other:

〈rk, rl〉 = 〈rk,
fl −

∑

l<i≤M cl,ifi

||fl −
∑

l<i≤M cl,ifi||
〉 (5.56)

=
〈rk, fl〉 −

∑

l<i≤M 〈rk, cl,ifi〉
||fl −

∑

l<i≤M cl,ifi||
(5.57)

= 0, for all l > k > M − N. (5.58)

The corresponding error becomes:

E =

M
∑

k=M−N+1

ek c̃krk, (5.59)

in which therk vectors are orthonormal and form a basis. Thus, the error energy
follows from Parseval’s equality:

||E||2 =

M
∑

k=M−N+1

e2
k c̃

2
k (5.60)

≤ ∆2

4

M
∑

k=M−N+1

c̃2
k. (5.61)

This is a tighter upper bound than the one described in section 5.4.2. It also pro-
portional (with a proportionality constant1/3, independent of the frame) with the
expected error power, as derived by the additive noise modelin section5.4.2. This
provides further justification in the use of the additive noise model for the design
of this system, not because it validates the noise model assumptions but because it
provides the same results.

5.8.2 Determination of the Residual Vectors

In the case of complete compensation the residual vectors for the lastN quantizations
and the corresponding error coefficients can be efficiently computed using the Gram-
Schmidt orthogonalization procedure [2] on the sequence{fM , . . . , fM−N+1} of the
lastN frame vectors reversed.

Starting from a set{y1, . . . ,yN}, Gram-Schmidt orthogonalization produces a se-
quence of orthonormal vectors{u1, . . . ,uN} using:

uk =
yk −∑k−1

j=1〈yk,uj〉uj
∣

∣

∣

∣

∣

∣yk −∑k−1
j=1〈yk,uj〉uj

∣

∣

∣

∣

∣

∣

. (5.62)

The algorithm guarantees that for anyk ≤ N the vectors{u1, . . . ,uk} are orthonor-
mal and have the same span as the vectors{y1, . . . ,yk}. Therefore, at stepk, the sum
∑k−1

j=1〈yk,uj〉uj is the projection ofyk onto the space spanned by{y1, . . . ,yk−1}.

5.8 Noise Shaping with Complete Compensation 81



By settingyk = fM−k+1, andWM−k+1 = span{y1, . . . ,yk}, it follows that the
orthogonal vectorsuk produced by Gram-Schmidt satisfy (3.11) with the indices
appropriately modified:

uk =
fM−k+1 − PWM−k+1

(fM−k+1)

||fM−k+1 − PWM−k+1
(fM−k+1)||

(5.63)

= rM−k+1, (5.64)

with the error, coefficients̃cM−k+1 being the inverses of the normalization factors:

c̃M−k+1 = ||fM−k+1 − PWM−k+1
(fM−k+1)|| (5.65)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yk −
k−1
∑

j=1

〈yk,uj〉uj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.66)

Thus, Gram-Schmidt orthogonalization on the set{fM , . . . , fM−N+1} generates an
orthonormal basis which is equal to the lastN residual vectors,{rM , . . . , rM−N+1},
of the compensation. The corresponding error coefficients are produced as a byprod-
uct of the algorithm.

5.8.3 Noise Shaping on Finite Shift Invariant Frames

For a shift invariant frame, the equation to determine the compensation coefficients
is simplified to (3.21). In this case, the solution can be efficiently computed using the
Levinson-Durbin recursion [32, 25]. Compared to a general-purpose matrix inversion
algorithm the use of the Levinson recursion has two advantages:

(a) The Levinson recursion has computational complexityO(p2) compared to the
O(p3) complexity of general-purpose matrix inversion.

(b) The Levinson recursion is recursive in the matrix order.Therefore, it provides
the solution to all intermediate problems without the need to perform sepa-
rate matrix inversions. These intermediate solutions are needed to implement
the projection of the error onto the remaining coefficients as the number of
coefficient remaining unquantized decreases.

Specifically, the projection coefficients necessary to project the error due to
quantizing thekth coefficient onto the remainingM −k frame vectors, are de-
termined by solving the system of equation (3.21), with p = M − k. In order
to project the error of each coefficient to all the remaining ones, in sequence, it
is, therefore, necessary to solve equation (3.21) for p = (M − 1), . . . , 1. The
Levinson recursion starts from the simple case ofp = 1 and produces the com-
pensation coefficients necessary to implement all the intermediate projections
up top = M with overall computational complexityO(M2).

It should be noted that for certain shift invariant frames such as the harmonic frames
[28, 43, 27] any subset ofN coefficients spanW. Therefore, complete compensation
for each quantization is possible using only theN coefficients subsequent to the
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quantized coefficient. In this case, the solution to thep = N problem can be used to
fully compensate for the error due to the quantization of thefirst M −N coefficients.
Thus the overall complexity in this case is further reduced to O(N2).

For comparison, a general matrix inversion algorithm, applied independently to each
of thep = 1, . . . ,M problems requiresO(13 + 23 + . . . + (M − 1)3) = O(M4)
computation. Although this computation is performed once at the design stage of the
quantizer, the gains are significant, especially for large problems.

5.8 Noise Shaping with Complete Compensation 83



84 5 Quantization Noise Shaping on Finite Frame Representations



CHAPTER 6 Noise Shaping for Infinite Frame
Representations

This chapter discusses the extension of Sigma-Delta noise shaping to arbitrary infi-
nite frame expansions. Further emphasis is given on frames generated by LTI filters
and filterbanks. In addition, two modifications to classicalSigma-Delta noise shap-
ing are considered. In the first, the complexity of digital toanalog conversion is
reduced by eliminating the interpolation filter. In the second, the converter is tun-
able, depending on the needs of the particular application.

6.1 Extensions to Infinite Frames

When extending the results of chapter5 to frames with countably infinite number
of synthesis frame vectors, we letM → ∞ and modify equations (5.22), (5.28),
and (5.31) to reflect an error rate corresponding to average error per frame vector, or
equivalently per expansion coefficient. AsM → ∞ the effect of the last term on
the error rate tends to zero. Consequently, in considering the error rate, we replace

85



equations (5.22), (5.28), and (5.31) by

E = lim
M→∞

1

M

M−1
∑

k=0

ek c̃k,k+1rk,k+1, (6.1)

E {||E||2} = lim
M→∞

1

M

∆2

12

(

M−1
∑

k=0

c̃2
k,k+1

)

, and (6.2)

||E|| ≤ lim
M→∞

1

M

∆

2

(

M−1
∑

k=0

c̃k,k+1

)

, (6.3)

respectively, where(·) denotes rate, and the frame vectors are indexed inN. Similar
modifications are straightforward for the cases of tree1 and higher order quantizers,
and for any countably infinite indexing of the frame vectors.At the design stage, the
choice of frame should be such as to ensure convergence of thecost functions. In
the remainder of this section we expand further on shift invariant frames, for which
convergence of the cost functions is straightforward to demonstrate.

6.1.1 Infinite Shift Invariant Frames

As described in chapter2, infinite shift-invariant reconstruction frames are infinite
framesfk for which the frame autocorrelationRk,l = 〈fk, fl〉 is a function only of
the index differencem = k − l: Rm = 〈fk, fk+m〉. Shift invariance implies that the
reconstruction frame is uniform, with||fk||2 = 〈fk, fk〉 = R0.

An example of such a frame is an LTI system: consider a signalx[n] that is quantized
to x̂[n] and filtered to producêy[n] =

∑

k x̂[k]h[n− k]. We consider the coefficients
x[k] to be the coefficients in a frame representation ofy[n], in whichh[n− k] are the
reconstruction frame vectorsfk. We rewrite the convolution equation as:

y[n] =
∑

k

x[k]h[n − k] =
∑

k

x[k]fk, (6.4)

wherefk = h[n− k]. Equivalently, we may considerx[n] to be quantized, converted
to continuous time impulses, and then filtered to produceŷ(t) =

∑

k x̂[k]h(t −
kT ). We desire to minimize the quantization error after filtering, compared to the
signalsy[n] =

∑

k x[k]h[n − k] andy(t) =
∑

k x[k]h(t − kT ), assuming the cost
functions described. A filter forms a frame under the conditions discussed in detail
in section2.1.6.

For the remainder of this section we only discuss the discrete-time version of the
problem since the continuous time development is identical. The corresponding
frame autocorrelation functions areRm = Rhh[m] =

∑

m h[n]h[n − m] in the
discrete-time case andRm = Rhh(mT ) =

∫

h(t)h(t − mT )dt in the continuous-
time case. A special case is the oversampling frame, in whichh(t) or h[n] is the

1 This is a slight abuse of the term, since the resulting infinite graph might have no root.
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ideal lowpass filter used for the reconstruction, andRm = sinc(m/r), wherer is the
oversampling ratio.

6.1.2 First Order Noise Shaping

Given a shift invariant frame, it is straightforward to determine the coefficientsck,l

andc̃k,l that are important for the design of a first order quantizer. These coefficients
are also shift invariant, so we denote them usingcm = ck,k+m and c̃m = c̃k,k+m.
Combining equations (5.19) and (5.21) from section5.3 and the definition ofRm

above, we compute the relevant coefficients:

cm = c−m =
Rm

R0
(6.5)

c̃m = c̃−m =
√

R0(1 − c2
m) (6.6)

For every coefficientak of the frame expansion and corresponding frame vectorfk,
the vector that minimizes the projection error is the vectorfk±mo

, in whichmo > 0
minimizes c̃m, or, equivalently, maximizes|cm|, i.e. |Rm|. By symmetry, for any
suchmo, −mo is also a minimum. Due to the shift invariance of the frame,mo is
the same for all frame vectors. Projecting tofk+mo

or fk−mo
generates a path with

no loops, and therefore the optimal tree quantizer path, as long as the direction is
consistent for all the coefficients. Whenmo = 1, the optimal tree quantizer is also
an optimal sequential quantizer. The optimality holds under both the additive noise
model and the error upper bound model.

In the case of filtering, the noise shaping implementation isshown in figure6-1,
with Hf (z) = cmoz

−mo . For the special case of the oversampling frame,cm =
sinc(m/r), andmo = 1. Thus, the time sequential ordering of the frame vectors is
optimal for the given frame.

6.1.3 Higher Order Noise Shaping

As we discuss in section5.6.2, determining the optimal ordering for higher order
quantization is not straightforward. Therefore, in this section we consider higher or-
der noise shaping for the natural frame ordering, assuming that whenak is quantized,
the nextp coefficients,ak+1, . . . , ak+p, are used for compensation by updating them
to

a′k+l = ak+l − ekcl, l = 1, . . . , p. (6.7)

The coefficientscl project fk onto the spaceSk defined by{fk+1, . . . , fk+p}. Be-
cause of the shift invariance property, these coefficients are independent ofk. Shift
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FIGURE 6-1: Noise shaping quantizer, followed by filtering

Noise Shaping Oversampling Ratio
order r = 2 r = 4 r = 8 r = 16 r = 32 r = 64

p = 1 0.9 0.2 0.1 0.0 0.0 0.0
p = 2 4.5 3.8 3.6 3.5 3.5 3.5
p = 3 9.1 8.2 8.0 8.0 8.0 8.0
p = 4 14.0 13.1 12.9 12.8 12.8 12.8

TABLE 6.1: Gain in dB in in-band noise power comparingpth order classical noise shaping with
pth order noise shaping using projections, for different oversampling ratiosr.

invariance also simplifies equation (5.43) to equation (3.21):
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, (3.21)

with Rm being the frame autocorrelation function.

The implementation for higher order noise shaping before filtering is shown in fig-
ure 6-1, with Hf (z) =

∑p
l=1 clz

−l, where thecl solve (3.21). The feedback filter
implements the projection and the coefficient update described in equation (6.7).

For the special case of the oversampling frame, table6.1demonstrates the benefit of
adjusting the feedback loop to perform a projection. The table reports the approxi-
mate dB gain in reconstruction error energy using the solution to (3.21) compared to
the classical feedback loop implied by (5.41). For example, for oversampling ratios
greater than 8 and third order noise shaping, there is an 8dB gain in implementing
the projections. The gain figures in the table are calculatedusing the additive noise
model of quantization.

The applications in this section can be extended for frames generated by oversampled
filterbanks, a case extensively studied in [9]. In that work, the problem is posed in
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x[n] −→ ↑ r → LPFH0(z)
xu[n] = an−−−−−−−−−→ Σ∆

ân−−−→ D/C → LPFHs(s) −→ x(t)

FIGURE 6-2: Classical Sigma-Delta DAC architecture

terms of prediction and quantization of the prediction error. Motivated by that work,
we determined the solution to the filterbank problem using the projective approach.
Setting up and solving for the compensation coefficients using equation (5.43) in
section5.6.2corresponds exactly to solving equation (21) in [9], the solution to that
setup under the white noise assumption.

It is comforting that the approach presented in this section, although different from
[9] generates the same solution. Conveniently, the experimental results from that
work apply in our case as well. Our theoretical results complement [9] by provid-
ing a projective viewpoint to the problem, developing a deterministic cost function
and showing that even in the case of critically sampled biorthogonal filterbanks noise
shaping can provide improvements compared to scalar coefficient quantization. On
the other hand, it is not straightforward to use our approachto analyze and compen-
sate for colored additive noise, as described in [9].

6.2 Multistage D/A Converters

The use of projections for error compensation only assumes apredetermined synthe-
sis method using the frame synthesis equation. The method used to determine the
representation coefficients has no effect on the methods andalgorithms developed.
Specifically in the case of noise shaping, this allows for more efficient implementa-
tion of classical Sigma-Delta noise shaping structures forthe oversampling frame.

Figure6-2 presents the typical structure of a classical Sigma-Delta digital to analog
converter (DAC). The signalx[n], to be converted to the signalx(t) is being upsam-
pled by an integer factorr to the intermediate representationxu[n], using the lowpass
filter H0(z). The coefficientsxu[n] are the frame representation coefficients of the
signal using ther-times oversampling frame. This representation is subsequently
quantized to the desired precision2 using a Sigma-Delta quantizer of orderp. The
quantized representation is then used to reconstruct the signal using a low precision,

2 We should use the term re-quantized to be precise, since thispart of the system is implemented digi-
tally, and the coefficients ofx[n] andxu[n] are digitally processed. Therefore they have already been
quantized to a high precision. The Sigma-Delta quantizer re-quantizes them to a lower precision. For
the purposes of this discussion, we can consider the original coefficients to be of infinite precision
compared to the precision of the quantizer output.
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x[n] −→ ↑ r −→ Gainr
xu[n] = an−−−−−−−−−→ Σ∆

ân−−−→ D/C −→ LPFHs(s) −→ x(t)

FIGURE 6-3: Simplified Sigma-Delta DAC architecture with the low-pass filter H0(z) replaced by
a gainr. This architecture has the same performance as the one in figure 6-2.

oversampled DAC, followed by the low pass filterHs(s) to reject the out-of-band
quantization noise. The combination of the DAC with the filter implements the syn-
thesis equation for the frame. The quantizer should therefore be designed based on
that filter, not on the analysis method.

6.2.1 Elimination of the Discrete-time Filter

As we discuss in chapter2, the use of a frame decouples the analysis from the synthe-
sis. In figure6-2, the analysis is performed by the digital low-pass filterH0(z). The
frame implied by this filter, assuming it is ideal, is the dualof the synthesis frame im-
plied by the output filterHs(s). In principle,H0(z) can be replaced by a gain factor
r, which implies a different analysis frame forx[n]. The resulting coefficientsak are
different, but represent the same signal, assuming the reconstruction is not modified.
Thus, the implementation and the performance of the Sigma-Delta quantizer should
not be affected by the change. For any particular input to themodified system, the
outputâk is also different, but it represents the same signal, with the same error after
reconstruction on average. The resulting system is simplified significantly, as shown
in figure6-3.

The elimination of the filterH0 from the signal path has both advantages and disad-
vantages. IfH0 is designed to equalizeHs, its elimination poses tighter constraints
on the design ofHs. On the other hand, if the output filterHs is ideal or matches
the system specifications, the elimination ofH0 removes a potential source of signal
degradation.

One important role of the discrete time filterH0 is the implementation of a sharp
cutoff to eliminate the high-frequency components presentin the signal due to the
expansion operation. IfH0 is eliminated, even in the absence of quantization, the
filter Hs at the output should reject all components above the bandwidth of the signal.
In the classical implementation of figure6-2 these components are rejected byH0 in
the digital domain. Thus, in the classical implementation,if the analog filter at the
outputHs is not as sharp, the only side-effect is that some out-of-band quantization
noise will pass through in the signal reconstruction.
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x[n] −→ ↑ r1 −→ LPFH1(s) −→ ↑ r2 −→ Gainr2 −→ xu[n] = an

an −→ Σ∆
ân−−−→ D/C −→ LPFHs(s) −→ x(t)

FIGURE 6-4: Two-stage simplified Sigma-Delta DAC architecture with thesame performance as
the one in figure6-2.

6.2.2 Multistage Implementation

The design and manufacture of sharp continuous-time filtersis not easy, and affects
the total system cost. Thus, the elimination of the discrete-time filter has the potential
of increasing the cost of the system since it transfers a sharp cutoff from the discrete-
time domain to the continuous-time one. Furthermore the presence of the gain factor
r after the expansion increases the likelihood that the quantizer will overflow if it has
a finite number of levels. Alternatively, the gain can be placed after the D/C conver-
sion stage which is equivalent to increasing the interval ofthe quantizer from∆ to
r∆. In this case the resulting error magnitude will increase, although the quantizer
is less likely to overflow.

It is also possible to implement a practical intermediate system structure that uses
a continuous-time low-pass filter with loose specifications, and a discrete-time one
with looser specifications compared to the classical case. The gain factor is also
reduced, thus decreasing the probability of overflow. This two-stage expansion is
demonstrated in figure6-4, in whichr1r2 = r so that the output rate to the DAC is the
same as the previous systems. The discrete time filterH1 can also be used to equalize
the output filterHs if this is necessary. Furthermore, the gain can be placed after the
D/C conversion stage, as shown in figure6-5. This increases the error compared to
the system in figure6-4, since the scaling of the quantizer is effectively changed but
further reduces the probability of overflow.

The use of multiple stages to implement interpolation systems has been extensively
studied in [16]. In that work it is demonstrated that the implementation ofan inter-
polation system using multiple interpolation stages can decrease the computational
complexity of the resulting system. This section further recognizes that in Sigma-
Delta digital to analog conversion the functionality of theinterpolation filter is repli-
cated by the synthesis filter at the output of the quantizer.
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x[n] −→ ↑ r1 −→ LPFH1(s) −→ ↑ r2 −→ xu[n] = an

an −→ Σ∆
ân−−−→ D/C −→ Gainr2 −→ LPFHs(s) −→ x(t)

FIGURE 6-5: Two-stage simplified Sigma-Delta DAC architecture with thegainr2 placed after the
D/C converter. Moving the gain effectively modifies the quantization interval∆ of
the quantizer, thus affecting the quantization performance.

6.2.3 Conversion Performance

The systems in figures6-3, 6-4, and6-5can all be analyzed in the frequency domain
using the classical noise model and be compared to the quantization performance of
a direct quantization system. In the absence of the quantizer the system behaves as
an ideal digital to analog converter. Using the additive white noise model and the
Sigma-Delta modulator, the analysis follows the standard approach described in a
variety of references [13, 3].

However, white noise is not a good model for quantization in these systems, es-
pecially in the case of direct scalar quantization. Specifically, the expansion byr
without subsequent interpolation produces a sparse signalin which every non-zero
coefficient is followed by(r − 1) zeros. Quantizing this signal produces a signal
in which (r − 1) out of everyr coefficients are the same and have the same error.3

Therefore, depending on the error due the quantization of zero values, if noise shap-
ing is not used, performance might deteriorate significantly.

The presence of the Sigma-Delta loop significantly improvesthe performance, and
makes the white noise model more plausible. In addition, theupper bound introduced
in section6.1 provides an alternative cost measure that demonstrates that the worst
case performance with or without the interpolation filter isthe same. The use of pro-
jections minimizes the incremental error of quantization by taking the reconstruction
into account. Thus, the error rejection of the system is determined by the shape and
the nullspace of the output low-pass filter. The redundancy is introduced by the ex-
pansion operation and the existence of more coefficients to represent the signal, not
by the interpolation that follows the expansion. Furthermore, the zeros introduced
after the expansion provide a practical advantage. The quantizer is less likely to
overflow on these coefficients since the error feedback from the Sigma-Delta modi-
fies a zero coefficient, and not a coefficient that might be already near the overflow

3 The error might in fact be zero for these coefficients, depending on whether zero is one of the quan-
tization levels of the quantizer.
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FIGURE 6-6: Performance of two-stage Sigma-Delta quantizers, with an interpolation filter used
only after the first stage. In (a) the filter of the second stageis replaced by a gain
factor r2. In (b) the gain factor is placed in the system output. Note that the y-axis
scale is different in the two plots.

boundary.

Figures6-6(a) and (b) demonstrate simulation results for the systems presented in
figures6-4 and6-5 respectively. The figures explore the simulation performance for
r = 64 andr1 = 1, 2, 4, 8, 16, 32, and64. The output filter is simulated in discrete-
time using a 4097 point Hamming-window low-pass filter with cutoff at π/64. The
interpolation filterH1 is implemented using a 4097 point Hamming-window low-
pass filter with cutoff frequencyπ/r1. The cases ofr1 = 64 andr1 = 1 correspond
to the classical Sigma-Delta system in figure6-2 and the system in figure6-3, re-
spectively. The figures plot the quantization performance of Sigma Delta quantizers
designed optimally using (3.21) with the autocorrelation of the output filterH0. In the
simulations∆ = 1 and the input signal tested is white noise uniformly distributed
in ±0.5. The solid line without markers represents the performanceof the system
without quantization, i.e. displays the distortion only due to the filters. It should be
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FIGURE 6-7: Tunable digital to analog converter.

noted that the y-axis scale is different in plots (a) and (b),to demonstrate the details
of the plots.

In figure6-6(a) it is evident that beyond2nd order quantization(p ≥ 2), the distortion
due to the filters lower bounds the distortion due to the Sigma-Delta converter if
the gainr2 is placed before the quantizer. Therefore, as expected, theperformance
is improved by eliminating the filter using the systems in figures6-3 and6-4. On
the other hand, a gain of 64, for example, requires a quantizer with a much higher
overflow range, making this result impractical.

Figure6-6(b) demonstrates that placing the gain after the DAC, using the system in
figure6-5, can still improve the error or reduce the complexity if the ratiosr1 andr2

are chosen correctly. Specifically, forr1 ≤ 8, the effective increase of the quantiza-
tion interval due to the gain increases the error significantly. On the other hand, for
r1 ≥ 16 andp ≥ 2 the performance is comparable to the system in figure6-2.

These results demonstrate the potential to simplify practical DAC systems. However,
the benefit depends on the design of the filter in the output of the converter, which
forms the synthesis frame. In practical system design, further simulation and analysis
is necessary to determine the exact tradeoff, if any.

6.3 Tunable Sigma-Delta Conversion

In an oversampled Sigma-Delta digital to analog converter the coarsely quantized
output is low-pass filtered by a fixed low-pass filter. Similarly, the coarsely quan-
tized output of an oversampled analog to digital Sigma-Delta converter is low-pass
filtered and then decimated to produce a finely quantized signal at a lower rate. How-
ever, other filters can be applied at the output of the Sigma-Delta stage to perform
reconstruction. In this case, the feedback loop is modified to implement the projec-
tion according to equation (3.21).

Band-pass Sigma-Delta converters sampling signals in a band of frequencies centered
away from zero have been used in a variety of applications (for examples see [3] and
references within). Tunable analog to digital converters have been introduced in [23],
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FIGURE 6-8: Tunable analog to digital converter. The gainsci are tunable components. Their
value is determined by inserting the autocorrelation of thetunable filterh[n] in equa-
tion (3.21).

while tunable digital to analog converters have been mentioned in [35] but not further
explored. This section presents these systems in the context of frames generated by
arbitrary filters. Thus, the parameters in the feedback loopare determined using only
the autocorrelation of the synthesis filter evaluated at thelags necessary to compute
(3.21).

One application of such systems are tunable software radiosin which signals of pre-
determined bandwidth should be acquired or generated at different center frequen-
cies. For example a cellular phone operating in different countries or in different
frequencies only needs to have one such converter. However,the flexibility of the
systems allows the conversion of signals at varying bandwidths with varying fidelity
in the representation. A wide-band or a multi-band signal can be acquired or gener-
ated with low precision at the output, while a narrow-band signal can be converted
with higher precision.

It should be noted that the methods discussed in this sectionare not adaptive in real
time. The converters presented are tuned before they start operating, according to the
application. To modify their tuning their state should be reset, or some transient time
period should be tolerated to reach steady state. In principle, it is possible to use the
results of this chapter to design converters tunable in real-time without transients. In
this case, the autocorrelation of the frame generated by thetime-varying tunable (or
adaptive) filter should be used in (3.21) to compute the time-varying parameters of
the feedback loop at each time point. However, this is not an aspect explored in this
section.

6.3.1 Tunable Digital to Analog Conversion

A tunable digital to analog converter is shown in figure6-7, in which the filterh(t)
is tuned to the application requirements. Depending on the impulse responseh(t),
the discrete-time filterHf (z) in the feedback loop should be adjusted to perform the
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FIGURE 6-9: Tradeoff between error due to quantization and (a) filter bandwidth fw or (b) filter
redundancyr, assuming an ideal lowpass synthesis filter and optimal compensation
of orderp.

noise shaping projection as determined using (3.21). The impulse responseh(t) can
in principle take any shape. In practice it is determined by afew variable components
in the analog filter implementation.

The digital to analog conversion component converts the frame representation coeffi-
cients to continuous-time pulses at a high ratefs = 1/T . The pulses are modeled as
continuous time impulses. An arbitrary pulse shape can be incorporated intoh(t) by
convolving the pulse shapep(t) with the impulse response of the output filter. The
DAC component has finite quantization precision, which cannot be adjusted.

6.3.2 Tunable Analog to Digital Conversion

A tunable analog to digital converter can be implemented using the system in fig-
ure 6-8. The feedback loop is implemented using switched capacitordelays and
tunable gains. The system implements the feedback loop of figure6-1 for an analog
to digital converter system. The output is filtered by an impulse responseh[n] to
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produce the acquired signal. All the components of the system operate at a high rate
fs = 1/T . Depending on the application, the system output can be subsequently
converted to a lower rate. As with the digital to analog system, the analog to digital
conversion component is implemented as a combination of sampling and quantiza-
tion with finite precision, which is not adjustable.

6.3.3 Optimal Tuning and Quantization Precision

The application using the tunable systems has control over the tunable filters and the
parameters of the feedback loop. To achieve optimal performance, according to the
metrics presented in section6.1, the application should set the feedback parameters
to match the output filter using (3.21). In tuning these filters, however, there is a
tradeoff between the output error and the range of frequencies in the pass band of the
filter.

Specifically, in both systems, the digital to analog and the analog to digital com-
ponents have finite quantization precision. The effect of quantization at the output
of the two systems depends on the noise shaping loop and the reconstruction filters
h[n] andh(t). In general, the larger the nullspace of the filters, the smaller the error
due to quantization at the output. The tradeoff is difficult to quantify without further
assumptions on the filters.

For example, figure6-9 demonstrates the tradeoff between bandwidth and average
or worst-case error assuming the tunable filter is an ideal lowpass filter with tunable
bandwidthfw. The error is normalized such that it is 0dB when the filter is all-pass.
In the figure, (a) plots the error in dB as a function of the cutoff frequencyfw of the
filter, normalized by half the sampling rate. Plot (b) shows the error as a function of
the redundancyr = fs/2fw of the filter. In the figure,p is the order of the system
used to determine the optimal coefficients in (3.21).
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CHAPTER 7 Compensation for Erasures

As discussed in chapter2, the redundancy of frame representations decouples the
analysis using inner products from the synthesis using the synthesis sum. The coeffi-
cientsak that represent a vectorx using a pre-specified synthesis frame{fk} and the
synthesis equation (2.7) can be determined in a variety of ways (for some examples,
see [33, 27] and references within).

Similarly, the coefficientsak of a vector analyzed using the analysis frame and equa-
tion (2.8) can be used in a variety of ways to synthesize the vector. Forexample, it
is not necessary to use all the coefficients to reconstruct the signal. A subset of the
coefficients is sufficient to represent the signal as long as the corresponding frame
vectors still span the space. In this case, perfect reconstruction is possible, making
the representation robust to erasures during transmission.

Consequently, most of the existing work on erasures on framerepresentations as-
sumes thatx is analyzed using inner products with an analysis frame. Under this
assumption, the synthesis is modified to reconstruct the original signal. For example,
linear reconstruction can be performed using a recomputed synthesis frame and equa-
tion (2.7) [27, 31]. Alternatively the erased coefficients can be re-computedusing the
non-erased ones, and used to fill in the coefficient stream. The vector is linearly syn-
thesized using the recovered stream and the original synthesis frame [8, 7]. However,
neither approach is possible without assuming an expansionusing equation (2.8).

In this chapter, rather than assuming that the vector is analyzed using the analysis
equation (2.8), we make no assumptions on how the representation coefficients ak
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are generated. We only assume that the synthesis is performed using a pre-specified
synthesis frame and the synthesis sum of equation (2.7). The representation coef-
ficients may be generated in a variety of ways, including the analysis equation, the
use of the matching pursuit [33], or just coefficients to be used with the synthesis
sum. Under this assumption, it is not possible to fill in the missing coefficients or
appropriately modify the synthesis frame at the receiver.

We consider two cases. In the first case the transmitter is aware of the erasure events
and uses the remaining coefficients in order to ensure that the synthesis using the
pre-specified synthesis frame minimizes the reconstruction error. The receiver in this
case only needs to perform the synthesis. In the second case the transmitter is not
aware of the erasure event. Instead, the transmitter encodes the coefficients such that
the receiver is able to recover the signal with as small erroras possible if the erasure
occurs.

In principle, it is possible to synthesizex at the transmitter using the synthesis frame
and the synthesis sum of equation (2.7). Subsequently, a frame representation can
be recomputed using an appropriate analysis frame. If the transmitter is aware of
the erasures pattern, for example, it can expand the synthesized vectorx using the
dual of the remaining synthesis frame, taking that erasurespattern into consideration.
Similarly, if the transmitter is not aware of the erasures, it can analyzex using any
frame{φk} with the same redundancy and transmit these coefficients instead. The
receiver receives some of the re-computed coefficients and synthesizesx using the
dual of{φk} given the erasures pattern, as discussed in [27, 31, 8, 7]. This approach,
however, requires significant computation and knowledge ofmost of the erasures
pattern either at the transmitter or the receiver, which cangenerate significant delays
in the reconstruction of the signal.

The algorithms described in this chapter, instead, modify the representation coeffi-
cients using orthogonal projections at the transmitter to properly compensate for an
erasure. This assumes that the transmitter is aware that an erasure occurs, which is
the first case considered. Even in the second case, in which only the receiver is aware
that an erasure occurs, we demonstrate that a simple transmitter/receiver combination
can implement the same compensation method. The transmitter modifies the frame
representation assuming the erasures will occur, and the receiver undoes the changes
if the erasures do not occur. The input-output behavior of the transmitter/receiver
pair is identical to the input-output behavior of a transmitter which is aware of the
erasure occurrence.

One advantage of using this approach is that the complete erasures pattern does not
need to be known in advance. Furthermore, the representation coefficients may be
generated in a variety of ways and it is not necessary to synthesize and re-analyze
the signalx at the transmitter or the receiver. The drawback is that the causality
constraints imposed in part of this development often allowonly for partial com-
pensation of the error. The approach described here is more appropriate for large
or infinite frame setups, and streaming conditions, in whichdelay is important. For
applications using small finite frames, in which delay is notan issue, this method is
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not well suited.

The use of projections to compensate for erasures is similarto their use in chapter5
to extend quantization noise shaping to arbitrary frame expansions. However, in that
case, the quantization error is known at the transmitter—not necessarily the case
with erasure errors. The use of redundancy to compensate forerasures assuming a
fixed reconstruction method has also been considered in a different context in [21,
22]. In that work the error is again known at the transmitter andonly the case of
LTI reconstruction filters is considered. The problem is formulated and solved as a
constrained optimization.

Projections can similarly be used at the transmitter to intentionally introduce erasures
for the purpose of puncturing a dense representation. Erasures compensated for with
projections can be the basis for algorithms that produce sparse representations from
dense ones, a process we refer to as sparsification. They can also be combined with
quantization, in which the combined error is projected to the remaining coefficients,
as described in chapter5, although not necessarily in a data-independent ordering.
In that context, erasures can also be viewed as an extreme form of quantization, and
can be compensated for accordingly.

The usefulness of redundant dictionaries of vectors as a synthesis set for approxi-
mate sparse representations has been shown for example in [28, 33], although the
algorithms used to determine the sparse representation aredifferent compared to our
approach. In these papers the matching pursuit principle isused to produce a sparse
representation starting from no representation at all. Theset of coefficients and corre-
sponding dictionary elements is augmented until the signalof interest is sufficiently
approximated. In contrast, section7.3describes an algorithm that starts from a dense
exact representation and removes dictionary elements and the corresponding coef-
ficients until the signal is sparse enough or the maximum tolerable approximation
error is reached.

The next section states the problem and establishes the notation. It is shown that
the optimal solution is the orthogonal projection of the erasure error to the span of
the remaining synthesis vectors, and some properties of sequential compensations are
proven. A causal implementation is proposed in section7.2.1, assuming the transmit-
ter is aware of the erasure. Section7.2.2presents a transmitter that pre-compensates
for the erasure and a receiver that undoes the compensation if the erasure does not
occur. The use of projections to sparsify dense representations is explored in sec-
tion 7.3.

7.1 Erasure Compensation Using Projections

After stating the problem and establishing notation, this section examines the com-
pensation of a single erasure in the context of chapter3. In section7.1.3the results
are extended to the compensation of multiple erasures, and properties of sequential
compensations are considered.
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7.1.1 Problem Statement

We consider the synthesis of a vectorx using (2.7):

x =
∑

k

akfk, (2.7)

in which we make no assumptions on how the representation coefficients{ak} orig-
inate. The{ak} might even be data to be processed using the synthesis sum (2.7),
such as a discrete-time signal to be filtered, not originating from the analysis ofx.

The coefficients{ak} are used to synthesize the signal using the pre-specified syn-
thesis frame{fk}, subject to erasures known at the transmitter or the receiver. We
model erasures as replacement of the correspondingak with 0, i.e. removal of the
corresponding termakfk from the summation in (2.7). Since the analysis method is
not known, the goal is to compensate for the erasure as much aspossible using the
remaining non-erased coefficients.

Thru section7.2.1we assume that the transmitter anticipates an erasure and knows
the value of the erased coefficient. Assuming coefficientai is erased, the transmitter
is only allowed to replace the coefficients{ak|k ∈ Si} with {âk|k ∈ Si} in order
to compensate for the erasure, whereSi = {k1, . . . , kp} denotes the set of coeffi-
cient indices used for the compensation ofai. The reconstruction is performed using
equation (2.7) with the updated coefficients:

x̂ =
∑

k∈Si

âkfk +
∑

k/∈Si,k 6=i

akfk, (7.1)

such that̂x minimizes the magnitude of the errorE = x− x̂.

7.1.2 Compensation of a Single Erasure

The error due to the erasure of a single coefficientai and its subsequent compensation
using the coefficients{ak|k ∈ Si} can be rewritten using the synthesis sum:

E = aifi +
∑

k∈Si

(ak − âk)fk (7.2)

The vectors{fk|k ∈ Si} span a spaceWi. Therefore, the error magnitude is mini-
mized if the sum

∑

k∈Si
(ak − âk)fk is the orthogonal projection of−aifi ontoWi.

As described in chapter3, we use the projection coefficientsci,k, which satisfy:

PWi
(fi) =

∑

k∈Si

ci,kfk, (7.3)

in whichPWi
(fi) is the projection offi ontoWi. The projection coefficients are used
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to optimally compensate for the erasureai by updating each of theak to:

âk = ak + aici,k, for all k ∈ Si (7.4)

⇒ E = aifi − ai

∑

k∈Si

ci,kfk (7.5)

= ai(fi − PWi
(fi)) (7.6)

= aic̃iri, (7.7)

in which c̃i andri are the error coefficient and the residual direction, as defined in
(3.10) and (3.11) respectively.

As described in chapter3, the projection coefficientsci,k satisfy equation (3.18):







Rk1,k1
· · · Rk1,kp
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. . .

...
Rkp,k1

· · · Rkp,kp













ci,k1

...
ci,kp






=







Ri,k1

...
Ri,kp







⇔ Rc = ρ, (3.18)

in whichRk,l = 〈fk, fl〉 is the frame autocorrelation function.

Satisfying (3.18) is equivalent to computing the frame expansion offi using{fk|k ∈
Si} as a synthesis frame. If the frame vectors{fk|k ∈ Si} are linearly dependent,
the solution to (3.18) is not unique. All the possible solutions are optimal in terms of
minimizing the error magnitude, given the constraint that only coefficients{ak|k ∈
Si} can be modified. If the vectoraifi being compensated is in the span of the
vectors{fk|k ∈ Si} used for the compensation (i.e.fi ∈ Wi), then the erasure
is fully compensated for. In this case the error is 0, and we call the compensation
complete. In the development above we assume only one erasure, i.e. that none of
the{ak|k ∈ Si} are erased during the transmission.

7.1.3 Compensation of Multiple Coefficients

Projection-based compensation can be generalized to the sequential erasure of mul-
tiple expansion coefficients, allowing a subset of the remaining coefficients for each
compensation. The setsSi of coefficients used to compensate each of the erasures
are part of the system design constraints. We assume that once a coefficient has been
erased and compensated for, it is not used to compensate for subsequent erasures.
Under these assumptions four properties of the compensation are derived. In formu-
lating these, the term optimal is used if the compensation minimizes the error given
the constraints and the term complete is used if the error after the compensation is
exactly 0. These properties are:

(a) Compensation of the error is equivalent to projection ofthe data. Consider the
vectory that can be synthesized from the erased coefficientai and the coeffi-
cients to be modified{ak|k ∈ Si}. Projectingy to the spaceWi, spanned by
the frame vectors corresponding to the coefficients to be modified is equivalent
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to compensating for the erasure. Specifically,

y = aifi +
∑

k∈Si

akfk

PWi
(y) = PWi

(aifi +
∑

k∈Si

akfk) (7.8)

= PWi
(aifi) + PWi

(
∑

k∈Si

akfk) (7.9)

= PWi
(aifi) +

∑

k∈Si

akfk (7.10)

=
∑

k∈Si

âkfk. (7.11)

This also implies that the error after the compensation is orthogonal to all the
frame vectors used for compensation.

(b) Superposition. Using the linearity of projections it follows that:

PWi
(aifi + ajfj) = PWi

(aifi) + PWi
(ajfj). (7.12)

Furthermore, ifSi = Sj thenWi = Wj . Thus, if the set of coefficients
Si = Sj is used to separately compensate for the erasure of two different
coefficientsai andaj , then the superposition of the individual compensations
produces the same error as the erasure of a single vectoraifi + ajfj followed
by compensation using the same set of coefficientsSi.

(c) Sequential superposition. IfWj ⊆ Wi then

PWj
(PWi

(y)) = PWj
(y). (7.13)

Furthermore, ifSj ⊆ Si thenWj ⊆ Wi. Consider the case in which one of the
updated coefficientŝaj, j ∈ Si, used in the compensation ofai, is subsequently
erased and optimally compensated for using the remaining coefficients inSi.
Using (a) and (b) this becomes equivalent to the following projection sequence
of the data:

PWj
(PWi

(aifi +
∑

k∈Si

akfk)) = PWj
(PWi

(aifi + ajfj +
∑

k∈Sj

akfk)) (7.14)

= PWj
(aifi + ajfj +

∑

k∈Sj

akfk) (7.15)

=
∑

k∈Sj

âkfk, (7.16)

in which Sj = {k 6= j|k ∈ Si} contains all the elements ofSi except forj,
and{âk|k ∈ Sj} is the set of the updated coefficients after both erasures ofai
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and of âj have been compensated. Therefore, this is equivalent to optimally
compensating bothai andaj using the coefficients inSj.

(d) Sequential complete compensation. If anaj , j ∈ Si used in the compensation
of ai is subsequently erased but completely compensated using the setSj, the
compensation ofai is still optimal since the incremental error of the second
compensation is zero.

If the compensation ofai was complete, the total error after both compensa-
tions is zero. In this case:

aifi + ajfj +
∑

k∈Si,j

akfk =
∑

k∈Si,j

âkfk (7.17)

= PWi,j





∑

k∈Si,j

âkfk



 (7.18)

= PWi,j



aifi + ajfj +
∑

k∈Si,j

akfk



 , (7.19)

in which Si,j = {k 6= j|k ∈ (Si ∪ Sj)} is the combined set of indices used
to compensate for the erasure ofai andaj . Wi,j is the space spanned by the
corresponding frame vectors. Therefore, using (a), the sequential complete
compensation in this case is equivalent to optimally and completely compen-
sating the erasure of bothai andaj using the setSi,j.

7.2 Causal Compensation

In this section we examine the causal compensation of coefficient erasures using a
transmitter aware of the erasure occurrence. We also develop a transmitter/receiver
pair, which implements the same causal compensation method, yet only the receiver
is aware of the erasure occurrence.

7.2.1 Transmitter-aware Compensation

For the remainder of this section we assume the coefficients are transmitted in se-
quence, indexed byk in (2.7). We focus on causal compensation in which only a
finite number of coefficients subsequent to the erasure are used for compensation.
The projections are straightforward to implement if the transmitter is aware of the
erasure occurrence.

For clarity of the exposition we first develop the algorithm for a shift invariant frame.
Such a frame has autocorrelation that is a function only of the index difference, i.e.
satisfiesRi,j = Ri−j,0 ≡ R|i−j|. Thus,ci,i+k = c0,k ≡ ck, and a transmitter aware of
the erasure occurrence can be implemented using the system in figure7-1, in which
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the feedback systemH is linear and time-invariant with impulse response:

hn =

p
∑

k=1

ckδn−k. (7.20)

In the figure,ek denotes a sequence of 1 and 0, which multiplicatively implements
the erasures. The resemblance of the system to Sigma-Delta noise shaping systems is
not accidental; projection-based compensation of errors is introduced in [11, 12] and
used in chapters5 and6, to extend Sigma-Delta noise shaping to arbitrary frames.

The compensation is optimal if the erasures are rare such that there is only one era-
sure withinp coefficients, or ifp is such that the erasure compensation is complete.
Otherwise it is only a locally optimal strategy which minimizes the incremental error
after an erasure has occurred, subject to the design constraints.

For arbitrary, shift varying frames, the feedback systemH is time varying with coef-
ficients that satisfy (3.18) at the corresponding time point. Specifically, the outputyi

of H should be:

yi =

p
∑

k=1

ci−k,ixi−k, (7.21)

in whichxi = ai(1 − ei) is the input.

The input and the output of the transmitter satisfy:

ãi =

p
∑

k=1

(1 − ei−k)ci−k,iãi−k + ai (7.22)

âi = ãiei (7.23)

⇒ ai = âi + (1 − ei)ãi −
p
∑

k=1

(1 − ei−k)ci−k,iãi−k (7.24)

This is a recursive algorithm. Although an erasure ofai is compensated using only
the nextp coefficients, another coefficientaj , j ≤ i + p might be erased withinp
coefficients from the first one. In this case, the compensation of the second erasure
attempts to compensate for the erasure of the modified coefficient âj , i.e. for the
erasure of the original data,aj, of the second erased coefficient and for the additive
part due to the compensation ofai. Thus, the feedback loop is potentially unstable.
We explore some stability conditions in section7.2.3.

7.2.2 Pre-compensation with Correction

In many systems, particularly in streaming applications, the transmitter is not aware
of the erasure occurrence. In such situations it is possibleto pre-project the error at
the transmitter side, assuming an erasure will occur. If theerasure does not occur,
the receiver undoes the compensation. It should be emphasized that the algorithm
described in this section has identical input output behavior to the one described in
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FIGURE 7-1: Erasure-aware transmitter projecting erasure errors.
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FIGURE 7-2: Transmitter and receiver structure projecting erasure errors. Only the receiver is
aware of the erasure.

section7.2.1. Therefore all the analysis for that algorithm applies to this one as well.

To pre-compensate for the erasure, the transmitter at stepi updates the subsequent
coefficientsai+1, . . . , ai+p to:

a′i+k = ai+k + ci,i+ka
′
i, (7.25)

where theci,i+k satisfy (3.18). Thea′i used for the update is the coefficient as up-
dated from all the previous iterations of the algorithm, notthe original coefficient of
the expansion, making the transmitter a recursive system. Depending on the frame,
the transmitter might be unstable. This issue is separate from the stability of the
compensation algorithm, raised in the previous section. Stability of this transmitter
is also discussed in section7.2.3.

If an erasure does not occur the receiver at time stepi receives coefficienta′i and sets
a′′i = ai. Otherwise it sets:

a′′i = ǎi, (7.26)

with ǎi =

p
∑

k=1

ci−k,ia
′′
i−k, (7.27)

which is the part ofa′i from equation (7.25) that is due to the projection of the non-
erased coefficients. An erasure also erases the components of a′i due to the projection
of the previously received coefficients. The variablesǎi in (7.27) ensure that these
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components can be removed from the subsequently received coefficients even when
a′i has not been received.

The receiver outputŝai, conditional on whether an erasure has occurred or not:

âi = (a′i − ǎi)ei =

{

0, if ei = 0
a′i − ǎi, otherwise.

(7.28)

This removes the projection of the previously received coefficients froma′i.

To show that this system implements the same compensation method as the system
in figure7-1 we examine the evolution of the coefficients:

ai = a′i −
p
∑

k=1

ci−k,ia
′
i−k (7.29)

= a′i −
p
∑

k=1

ci−k,ia
′
i−kei−k −

p
∑

k=1

ci−k,ia
′
i−k(1 − ei−k), (7.30)

ǎi =

p
∑

k=1

ci−k,ia
′′
i−k (7.31)

=

p
∑

k=1

ci−k,ia
′
i−kei−k +

p
∑

k=1

ci−k,iǎi−k(1 − ei−k). (7.32)

Rearranging (7.30) and substituting into (7.32):

ǎi = a′i −
p
∑

k=1

ci−k,ia
′
i−k(1 − ei−k) − ai +

p
∑

k=1

ci−k,iǎi−k(1 − ei−k)

(7.33)

⇒ ai = a′i − ǎi −
p
∑

k=1

ci−k,i(a
′
i−k − ǎi−k)(1 − ei−k) (7.34)

⇔ a′i − ǎi =

p
∑

k=1

ci−k,i(a
′
i−k − ǎi−k)(1 − ei−k) + ai (7.35)

which holds for any inputai and any signalei, not restricted to be an erasure pattern
of zeros and ones. Comparing with (7.22), it follows that:

ãi = a′i − ǎi, for all i. (7.36)

Using (7.28) in (7.36), the output̂ai is equal to:

âi = a′iei − ǎiei = ãiei, (7.37)

which is the same as (7.23). Thus, the two systems are input-output equivalent.

The reconstruction in equation (7.28) undoes the recursive effects of (7.25) and en-
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sures that the projection only affects thep coefficients subsequent to the erasure. The
system looks like the one in figure7-2, in which ei, the sequence of ones and zeros
denoting the erasures, is the same in all three locations in the figure. The systemsH
are the same as in figure7-1.

In several applications, such as packetized transmissions, frame expansions are used
for transmission of blocks of coefficients. In such cases thesystems described can
be modified using property (b) in section7.1.3 to accommodate block erasures by
projecting the whole vector represented by the transmittedblock to the subsequent
coefficients.

7.2.3 Compensation Stability

Depending on the frame and the erasure pattern, the system infigure7-1can become
unstable. This section examines some aspects of the instability and provides a neces-
sary condition and a sufficient condition for the systems to be stable. The conditions
are presented assuming a shift-invariant frame. In this discussion, stability refers to
bounded-input-bounded-output (BIBO) stability.

The evolution of the system variables is determined by equation (7.22). For a shift
invariant frame this becomes:

ãi =

p
∑

k=1

(1 − ei−k)ckãi−k + ai. (7.38)

Consequently,̃µi, the expected value of̃ai is:

µ̃i =

p
∑

k=1

qckµ̃i−k + µi, (7.39)

in whichµi = E{ai}, µ̃i = E{ãi}, andq = P (ei = 0) is the probability of erasures.
Therefore, the compensation algorithm is stable in the meanif and only if the system
H(z) = 1/(1−∑p

k=1 qckz
−k) is stable. Stability in the mean is a necessary but not

sufficient condition for system stability.

The triangle inequality implies that the magnitude of the state has upper bound:

|ãi| ≤
p
∑

k=1

|ck| · |ãi−k| + |ai|. (7.40)

Therefore, assuming a bounded input|ai|, the stability of the algorithm is guaranteed
for all q if the systemH(z) = 1/(1 − ∑p

k=1 |ck|z−k) is stable. This is only a
sufficient condition for stability. If it holds, this implies that the system is stable for
any q, which also implies that the system described by (7.39) is also stable for all
q. First order systems always have|c1| ≤ 1, which implies that first order optimal
compensation algorithms for shift invariant frames are always stable.

The analysis above considers the stability of the compensation algorithm. The stabil-
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ity of the transmitter in figure7-2(a) is a separate issue. However, the outputa′i of the
the transmitter in figure7-2(a) follows the same dynamics as the expected value of the
state in equation (7.39) with q = 1. Therefore the transmitter is a stable system if and
only if the compensation algorithm is stable in the mean forq = 1. Otherwise it is
not possible to implement the compensation algorithm usingthe transmitter/receiver
combination described in section7.2.2. Furthermore, BIBO stability of the compen-
sation algorithm forq = 1 guarantees stability in the mean forq = 1, which implies
that a separate transmitter and receiver system is also stable.

If both the transmitter and the compensation algorithm are stable for some probability
of erasuresq, then the receiver is also stable for the sameq. The evolution of the
receiver variables in (7.35) has the same dynamics asãi in (7.22). If the variable
ãi and the transmitter outputa′i are bounded, then the stability of the receiver state
variableǎi follows from (7.36). Furthermore, for anyq < 1, the feedback loop in
the receiver is reset to zero with probability 1 in a finite number of time steps after
any erasure occurs. Therefore, the system does not exhibit any hidden instabilities,
such as pole-zero cancellations, even in the case of parameter mismatch with the
transmitter.

The solution to (3.18) might not provide coefficients that produce stable systems.
In these cases, the equation can be modified to provide approximate solutions that
balance the optimality of the projection with the stabilityof the system. Although we
do not explore this issue, we should note that diagonal loading of the autocorrelation
matrixR often leads to stable systems:

(R + αI)c = ρ, (7.41)

in which α is a small value. This is a simple method to implement, but it does not
necessarily provide the best approximation tradeoff.

7.2.4 Simulation Results

In figure 7-3 simulation results are shown that demonstrate the performance of the
algorithms in the case of i.i.d. erasures. The inputai to the system is a white Gaussian
process with unit variance and zero mean. The oversampling frame is approximated
using a 4096th order, Hamming window FIR filter with cutoffπ/r. The feedback
coefficients are calculated using the filter autocorrelation. To compute the error, the
output is compared to the unerased signal, as synthesized using the low-pass filter.

Four different cases are simulated. The systems in the top plots perform the optimal
compensation of the erasures. The ones in the bottom plots use a diagonal loading
factorα = 0.01 in (3.18) to improve the stability at the expense of optimality. The
oversampling rates arer = 4 andr = 8 for the left and the right plots, respectively.
The plots display the mean squared error in dB against the probability of erasureq
for various compensation ordersp = 0 (i.e. no compensation) up top = 3.

The figures demonstrate that increasing the compensation order improves the perfor-
mance of the systems. They also show the tradeoff between stability and compen-
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FIGURE 7-3: Performance of erasure compensation using projections forthe uniform oversam-
pling frame, with oversampling ratiosr = 4 (left) andr = 8 (right). The top plots
demonstrate the optimal (unstable) systems. In the bottom plots optimality is traded
for stability. In the legend,p denotes the compensation order, andq the probability
of erasure.

sation performance. It is evident in the top two plots that the second and third order
systems become unstable at low probability of erasures—notthe case in the bottom
plots. On the other hand, especially forr = 8, there is an evident performance de-
crease to ensure stability. The plots also confirm that thep = 0 andp = 1 systems
are stable.

7.3 Puncturing of Dense Representations

Coefficient erasures can also be introduced intentionally at the transmitter to sparsify
dense representations. Sparse representations, in which most of the coefficients are
zero, are useful in signal processing applications, such ascompression, model order
reduction, and feature selection. This section introducesan iterative sparsification
algorithm based on the compensation using projections of intentional erasures.
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The iterative algorithm is presented in7.3.1. Section7.3.2uses the orthogonality
of the projections to show that the incremental error at eachiteration is orthogo-
nal to the total error until that iteration, and, therefore,the total error magnitude is
straightforward to compute on-line. Section7.3.3presents different approaches in
determining the sequence of sparsifications to reach the desired sparsity. In section
7.3.4the algorithm is extended to combine sparsification with quantization.

7.3.1 Puncturing Algorithm

In sparsifying a dense representation of a vectorx we make no assumption on the
origin of the representation{ak}. The error introduced is measured against the syn-
thesis of the dense representation. Specifically, if

x =
M
∑

k=1

akfk, (7.42)

and the synthesis from the sparse representation is:

x̂ =
∑

k∈S

âkfk, (7.43)

in whichS denotes the indices of the coefficients remaining after the puncturing algo-
rithm, andâk denotes the updated remaining coefficients, then the errorE introduced
by the process is:

E = x− x̂. (7.44)

At each iterationi of the iterative puncturing algorithm a number of coefficients are
erased. The erasures are compensated using projections, asdescribed in section7.1,
using all the remaining coefficients. Consistent with section 7.1, Si denotes the set
of indices of all the coefficients remaining in the representation after iterationi. Sim-
ilarly, Wi denotes the vector space spanned by the corresponding framevectors. The
setS0 = {1, . . . ,M} contains the indices of all the frame vectors before the era-
sures are introduced. We refer to the sequence ofSi as the sparsification or erasures
schedule.

The analysis of this algorithm does not assume that the schedule of erasures is prede-
termined. Specifically, the sequence of setsSi may be adaptively determined during
each iterationi using arbitrary rules. The number of coefficients erased at each itera-
tion is also arbitrary, and depends on the rules specifying the sparsification schedule.
The setsSi satisfy:

Si ⊆ Si−1 ⇒ Wi ⊆ Wi−1. (7.45)

We useSc
i = {k ∈ Si−1|k /∈ Si} to denote the complement ofSi in Si−1, i.e. the set

of all the coefficients to be erased at iterationi.

The algorithm stops according to some stopping rule afterI iterations. The stopping
condition is evaluated at the end of each iteration, and, therefore, I is in general
data-dependent. For example the algorithm might stop once the desired sparsity or a
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maximum tolerable error magnitude is reached.

In summary, the algorithm proceeds as follows:

1. InitializeS0 = {1, . . . ,M}, a0
k = ak, k ∈ S0.

2. At iterationi determineSc
i ⊆ Si−1, the indices of coefficients to be erased, and

the correspondingSi, the set of coefficients to remain in the representation.

3. Updateai
k, k ∈ Si using (7.4) for each coefficientai−1

k , k ∈ Sc
i being erased.

4. If the stopping condition is met, stop and outputS = Si, âk = ai
k, k ∈ Si, and

I = i. Otherwise increasei to i + 1 and iterate from step 2.

In this algorithm we useai
k, k ∈ Si to denote the remaining non-erased coefficients

as they have been modified after iterationi.

7.3.2 Error Evaluation

This section uses the orthogonality property of the projections to demonstrate that
the incremental error introduced at each iteration of the algorithm is orthogonal to
the error contributed from the other iterations. Therefore, the total error energy is
straightforward to characterize as a sum of the incrementalerror energy.

We usexi to denote the vector represented by the coefficients remaining after itera-
tion i. Using (7.11) and (7.45):

xi =
∑

k∈Si

ai
kfk (7.46)

= PWi
(xi−1) (7.47)

= PWi
(x). (7.48)

The errorEi contributed at each iteration is:

Ei = xi−1 − xi (7.49)

= ||Ei||ri, (7.50)

in which ri = Ei/||Ei|| is the direction of the error vector at iterationi. The error
Ei, and thereforeri, is orthogonal to all the vectors inWi, which includesxi and the
remaining frame vectorsfk, k ∈ Si. Furthermore,Ei ∈ Wi−1. Using induction the
orthogonality of theEi follows:

Ei ∈ Wj , for all j < i (7.51)

⇒ Ei ⊥ Ej , for all i 6= j (7.52)

⇔ 〈ri, rj〉 = δi,j (7.53)
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The total error afterk iterations is the sum ofEi, i = 1, . . . , k, which satisfies:

k
∑

i=1

Ei = x− xk (7.54)

= x− PWk
(x). (7.55)

Using the orthogonality ofri, the magnitude of the error afterk iterations can be
determined from||Ei||, the magnitude of the error at each iteration:

k
∑

i=1

Ei =
k
∑

i=1

||Ei||ri (7.56)

⇒
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1

Ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

k
∑

i=1

||Ei||2 (7.57)

⇒ ||E||2 =

I
∑

i=1

||Ei||2. (7.58)

Thus the magnitude square of the total error is additive in the magnitude square of
the incremental error at each iteration.

The additivity of the error is a particularly useful featureof this algorithm. It provides
a simple performance measure at run time, which can guide thedetermination of the
Si at each iteration, before the sparsification is performed. It can also be useful in the
evaluation of the stopping rule.

Since the frame is redundant, up toM−N coefficient erasures can be tolerated with-
out any error. In principle, these erasures can all be performed in the initial iterations
of the algorithm, but this choice depends in general on the sparsification schedule
and the rules used to determine it. Using certain frames, such as the harmonic frames
[43, 27], any subset ofN frame vectors spans the space, and the firstM−N erasures
can be tolerated without error, independent of the sparsification schedule.

While the sparsification schedule and the stopping rule can be arbitrary, the frame
vectors{fk|k ∈ S} remaining at the conclusion of the algorithm should be linearly
independent, and we assume this is the case. Otherwise, the representation can be
further sparsified without increasing the error. Under thisassumption, the expansion:

x̂ =
∑

k∈S

âkfk = PW(x), (7.59)

is unique givenx andS, independent of the intermediate steps taken. In this ex-
pressionW = span{fk, k ∈ S} is the span of the frame vectors remaining after the
sparsification.

The uniqueness of (7.59) implies that if two different sparsification schedules con-
clude with the sameS at the output, then the resulting{âk} are going to be equal.
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This holds independent of which method is used to compute theleft inverse of equa-
tion (3.18) at each iteration. However, the choice of left inverse to beused can influ-
ence the schedule determination algorithm, and therefore influence the final outputS
and the corresponding error.

7.3.3 Sparsification Schedule

In general, the determination of the sparsification schedule depends on the applica-
tion. In this section we indicate certain heuristics that can be used at each iteration to
determine the sparsification schedule. These heuristics, based on a greedy approach,
select the coefficients that reduce the incremental error ineach iteration, while taking
into consideration the complexity of evaluating the error and the effect of the erasure
to the remaining coefficients. We assume a frame in which any set ofM−N erasures
can be tolerated without error, such as the harmonic frame [43, 27].

We consider two separate stages in the evolution of the algorithm. During the first
stage more thanN coefficients remain in the representation and any erasure can be
completely compensated for. In this stage the incremental error Ei is always zero,
and other criteria are used to determine the coefficients to be erased at each iteration.
In the second stage less thanN coefficients remain for compensation, and, therefore,
each erasure cannot be fully compensated for. In this stage,we use the magnitude
square of the incremental error to erase the coefficients with the smallest contribution
to the total error.

For the first stage, we identify three different rules, presented from the most to the
least complex to implement. Although the incremental errorin the representation
is zero at this stage, each rule affects the remaining coefficients, and therefore the
scheduling algorithm, in a different way.

(a) Each iteration erases the coefficient whose compensation least affects the re-
maining coefficients in a mean square sense. Any coefficient erasure can be
fully compensated using equation (7.4). The coefficient selected is theai for
which the correspondinga2

i

∑

k∈Si
c2
i,k is as small as possible. An implication

of using this rule is that the Moore-Penrose pseudoinverse should be used to
determine theci,k in equation (3.18). Thus, implementation of this heuristic
can be computationally expensive.

(b) Each iteration erases the coefficient with the smallest magnitude. This heuristic
is simpler to implement since it avoids the computation of the Moore-Penrose
pseudoinverse for each of the coefficients considered. However, it might lead
to an iteration that significantly affects the remaining coefficients, thus confus-
ing the subsequent iterations of the algorithm.

(c) Erase theM − N smallest coefficients in one iteration. This approach is the
simplest and most greedy one. It has the advantage that it is the least expensive
computationally. On the other hand, it has the potential to erase in one step a
large number of small coefficients that together are significant for the signal
representation and thus affect subsequent performance of the algorithm.
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For the second stage, the incremental error is non-zero and can be used to guide the
heuristics determining the schedule. In this stage we also identify three heuristics in
decreasing order of complexity:

(a) Each iteration erases the coefficient that least contributes to the magnitude of
the error, as computed in equation (7.57). As with heuristic (a) in the first
stage, this is the least greedy and the most computationallyexpensive method.

(b) Each iteration erases the smallest coefficient from the ones remaining. This
approach uses the magnitude of each coefficient as a proxy forthe error due to
their erasure. While it is computationally simpler than (a), it has the potential
to erase a coefficient that contributes more to the incremental error than (a).

(c) In one iteration erase all the coefficients necessary to achieve the desired spar-
sity. The coefficients erased are the ones with the smallest magnitude. This is
the simplest approach of the three, but the most greedy one. It has the further
disadvantage that there is no control on the erasure error, only on the sparsity
of the representation. Thus, it is not possible to use this approach to sparsify a
representation up to a maximum tolerable error.

Heuristics (c) in both stages can also be combined to erase inone single step all the
coefficients necessary to achieve the desired sparsity. Thecoefficients selected to be
erased are the smallest in magnitude.

7.3.4 Quantization Combined with Sparsity

The sparsification algorithm can be combined with quantization to produce a sparse
quantized representation. In addition to the coefficients to be erased, at each iteration
i the algorithm determines which coefficients should be quantized, and how severe
the quantization of each coefficient should be. Erasures canalso be considered an
extreme form of quantization to a single level,p = 0.

All the coefficients that have not been quantized or erased yet are used for the com-
pensation of the total error. Consistent with the previous sections, we useSi to
denote the set of indices of these coefficients, andWi to denote the space spanned
by the corresponding frame vectors. The nesting described in equation (7.45) still
holds, which implies that the error evaluation results of section 7.3.2also hold. The
only exception is the independence of the representation (7.59) from the erasure and
quantization schedule. Due to the quantization of intermediate iterations, the final
representation might be differently quantized for different schedules, even if the final
setS is the same.

One difference in this case is that there is no stopping rule.The algorithm continues
until all the coefficients have been quantized or erased andSI = ∅. The algorithm
keeps all the coefficientŝak. The setS of the non-erased coefficients can be deter-
mined from the nonzero coefficients usingS = {k|âk 6= 0}.

In summary, the algorithm is modified as follows:

1. InitializeS0 = {1, . . . ,M}, a0
k = ak, k ∈ S0.
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2. At iterationi determineSc
i ⊆ Si−1, the indices of coefficients to be erased or

quantized, and the correspondingSi, the set of coefficients to remain and be
used for compensation

3. Set̂ak = Q(ai−1
k ), k ∈ Sc

i , according to the quantization and erasure schedule
determined in step 2.

4. Updateai
k, k ∈ Si using (7.4) to compensate for each coefficientai−1

k , k ∈ Sc
i ,

being quantized or erased.

5. If all the coefficient have been quantized or erased, stop and outputS =
{k|âk 6= 0}, âk, k ∈ S, andI = i. Otherwise increasei to i + 1 and it-
erate from step 2.

In this algorithmQk(·) denotes the quantization or erasure function for thekth coef-
ficient, as determined in step 2.
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CHAPTER 8 Conclusions and Future Work

This section summarizes the most important contributions of this thesis and suggests
possible research directions indicated by the results.

8.1 Error Compensation Using Projections

The main tool used through this thesis is the compensation oferrors by modifying
frame coefficients. The modifications are such that the erroris projected to the space
spanned by the selected frame vector and subtracted from thecorresponding coeffi-
cients. The use of projections assumes a pre-specified synthesis frame, but makes no
assumptions on the analysis method.

In comparison, most of the existing work on frame representations assumes a pre-
specified analysis method, using inner products [28, 38, 39, 7, 8, 34]. This assump-
tion is used to determine the synthesis method depending on the error type. The
redundancy of the analysis frame creates dependencies in the values of the represen-
tation coefficients. The synthesis algorithms exploit these dependencies to reduce the
synthesis error. In contrast, assuming only a pre-specifiedsynthesis frame provides
no information on the values of the frame coefficients. Instead, the use of projections
to compensate for errors exploits the existence of a nullspace and the spectral shape
of the singular values of the synthesis operator.

One significant exception is the use of the matching pursuit principle to determine
sparse and quantized sparse representations [33, 28]. Similar to the compensation
using projections, the matching pursuit principle assumesa pre-specified synthesis
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frame. However, the implicit assumption is that there no prior representation, i.e.
that the matching pursuit principle is used as an analysis method. Thus it cannot
be used to compensate for errors such as erasures or to quantize existing representa-
tions. Instead, the matching pursuit is useful in determining a representation, which
includes the compensation coefficients used to project the error.

8.2 Quantization Limits

Although the inefficiency of scalar quantization was known [20, 39], in chapter4 this
inefficiency is quantified deterministically, independentof the frame used, for any
finite level quantizer. Specifically, a lower bound is derived on both the bit waste and
the quantization error reduction as a function of the frame redundancy. Consistent
reconstruction methods [38, 28] are known to achieve that lower bound. The lower
bound on the error growth is also derived in the context of theoversampling frame in
[39], assuming a uniform infinite-level quantizer. In principle it is applicable to any
finite frame. However, the general result in chapter4 also quantifies the bit use, and
assumes an arbitrary finite-level quantizer. The implications are important:

• The optimality of consistent reconstruction methods is demonstrated in terms
of the reconstruction error decay as a function of the redundancy.

• A target rate for subsequent entropy coding is provided, independent of the
scalar quantizer used. An optimal entropy coder subsequentto a scalar quan-
tizer should represent the signal at a rate lower or equal to what the bound
suggests.

• Smarter quantization on the encoder side is motivated. Since it is known how
to achieve optimal error decay using consistent reconstruction, increasing the
complexity of the synthesis method provides no benefit in that sense. The alter-
native, increasing the complexity of the analysis method, keeping the synthesis
simple is more promising since the optimal error magnitude decay in this case
can exponential instead of linear in the redundancy. Sigma-Delta noise shap-
ing and the quantized matching pursuit are examples of such analysis methods,
although they still do not achieve exponential decay.

• A benchmark is provided for frame design. Although the lowerbound is
proven for any frame, ill-designed frames might achieve much worse perfor-
mance. A well-designed frame should achieve that lower bound. The over-
sampling frame and the harmonic frame do so [38, 39, 28].

8.3 Generalization of Sigma Delta Noise Shaping

Extensions of classical noise shaping to bandpass filter andreconstruction filterbanks
have been explored in the literature [9, 3, 35, 23]. Recent work also considers ex-
tending Sigma-Delta noise shaping to finite frame expansions by subtracting the error
from subsequent coefficients [5, 4].
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Chapters5 and6 contribute a novel view of Sigma-Delta noise shaping as a projec-
tion of the error to the subsequent frame vectors. Furthermore, two cost functions
are identified, one based on the additive white noise model, and one based on a de-
terministic upper bound. These contributions are important for several reasons:

• Extension of Sigma-Delta noise shaping to arbitrary framesis possible, with
improvements in average and worst case error performance, independent of the
frame vector ordering. The work in [5, 4], instead, requires the proper frame
vector ordering to improve the quantization error.

• Alternative noise shaping algorithms are introduced, suchas the tree quantizer.
These allow for more flexibility in the quantizer design, further reducing the
average error.

• The cost functions provide an algorithmic method to determine the ordering of
frame vectors. The design of an optimal sequential quantizer is shown to be
equivalent to solving the traveling salesman problem, while the design of an
optimal tree quantizer is equivalent to the minimum spanning tree problem.

8.4 Compensation for Erasures

Error compensation using projections is also considered inthe case of erasure errors.
The main advantage, compared to existing work on erasures inframe representations,
is that this compensation method does not make any assumptions on the origin of the
frame expansion coefficients. The contributions of chapter7 are significant:

• Projection of the erasure error to the remaining coefficients is shown to be
equivalent to projection of the data.

• A transmitter that causally projects the erasure error to the subsequent coeffi-
cients is developed, assuming the transmitter is aware of the erasure events.

• It is demonstrated that the transmitter can be separated into two stable systems:
a linear transmitter that encodes the data by pre-projecting the error assuming
an erasure occurs, and a received that undoes the compensation depending on
whether the error occurs. The input-output behavior of the separated systems
is equivalent to the behavior of the transmitter that projects the erasure error
only when an erasure occurs.

• A puncturing algorithm is derived that generates approximate sparse represen-
tations starting from dense exact ones.

8.5 Suggested Research Directions

This section identifies possible research directions, related to the topics discussed
this thesis. This is only a biased sample of the possible research problems that exist
in the field.

• Although error compensation using projections is examinedfor the case of
quantization and erasures, the space of errors has not been exhausted. For
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example, they can be used to compensate for additive random noise, white or
colored.

• Chapter3 develops the computation of the compensation coefficients to a cer-
tain extent. When the equation is underdetermined, however, several solutions
exist, all of them optimal. However, each of the solution hasfurther properties
that can affect other aspects of the system performance, an aspect not examined
in the thesis.

• Chapter4 demonstrates the limits of the frame analysis using inner products,
followed by scalar quantization. It is also shown that more involved analysis
methods followed by linear synthesis can improve the error decay as a function
of oversampling. However, there is no known general algorithm that achieves
exponential error decay using linear reconstruction. It isalso not known if such
error decay is feasible, even with arbitrary complexity.

• Chapter5 discusses the optimal ordering of frame vectors for first order noise
shaping. The optimal ordering and grouping for higher orderquantization is a
difficult problem that is not addressed.

• The asymptotic performance of Sigma-Delta noise shaping using projections
as a function of the frame redundancy has not been analyzed for arbitrary
frames.

• Chapter7 discusses the compensation of erasures, and the tradeoff between
system stability and compensation performance. This tradeoff has not been
explored in this thesis.

• The algorithms in chapters5 through 7 can be generalized to vector quantizers
and erasures of vectors.

• The determination of the schedule for the puncturing algorithm in chapter7
is based on heuristics that have not been explored neither theoretically nor
experimentally.

• The complexity of some of the heuristics in the puncturing schedule can be
reduced by exploiting the structure of the problem. This is not something we
analyze in this thesis.

Of course, this is only the tip of the research iceberg in thisrich topic.
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