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1. ABSTRACT 
It has always been assumed that using clinically measurable parameters is the most efficient way to 
characterize patient state.  By adding additional sensors, monitors, and derived statistics (e.g. mean 
arterial blood pressure from diastolic and systolic), it was hoped that more information could be 
garnered about patient state.   
 
This thesis challenges the assumption that providing the physician with a full set of clinically 
measurable parameters is the most efficient way to characterize patient state.  The thesis presents a 
novel way to consider patient state by utilizing reduced dimensionality and by estimating noise.  It 
then explores an application, namely prediction of tachycardia, which often occurs at the onset of 
induction of inhaled desflurane.  One unexpected initial finding was that all 46 patients exhibited 
tachycardia or hypertension within the first hour of the operation.   
 
Three models for predicting tachycardia episodes are proposed, including one model based on use 
of Blind Noise Adjusted Principal Component Analysis1  (using Iterative Order and Noise Estimate 
(ION)2 and Principal Component Analysis (PCA)3).  Without ION, PCA-based methods alone 
yielded only 2 useful degrees of freedom, with the rest being relegated to noise.  The ION PCA-
based method allows one to capture with 5 principal components the information contained in 31 
fundamental and derived patient variables, while at the same time reducing the effects of noise.  
Furthermore, the five discovered significant principal components representing patient state were 
characterized quantitatively and their physiologic correlates are hypothesized qualitatively.  
Examination of the 31 original patient parameters in the ION PCA model that predicts tachycardia 
revealed the relative importance of the original patient parameters to the tachycardia problem.  The 
receiver operating characteristic (ROC) curve for the ION PCA-based predictor suggested a 70% 
detection rate with 3% false alarms when predicting tachycardia two minutes and twenty seconds 
into the future.  While the patient state characterization method was used for tachycardia prediction, 
it is potentially useful in myriad medical domains involving multivariate analysis. 
 
Thesis Supervisor: Daniel H. Staelin 
Title: Professor of Electrical Engineering and Computer Science 
 
Thesis Supervisor: James H. Philip 
Title: Associate Professor, Harvard Medical School 
Associate Professor of Anesthesiology, Harvard/MIT Division of Health Science and Technology 
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2. CLINICAL BACKGROUND 

A number of anesthetic drugs have been found to affect the Central Nervous System and produce 

general anesthesia- comprised of sleep, hypnosis, analgesia, muscle relaxation, and loss of reflexes.  

A drug in this class, desflurane, is commonly used during surgery in the operating room. 

One protocol for administrating anesthetics such as desflurane, involves induction via inhalation of 

the agent as a gas.  In the case of desflurane, a specific protocol is described below4.  First, 

intravenous induction (i.e. administrating an initial anesthetic intravenously) and tracheal intubation 

(i.e. placing the breathing circuit in the patient’s throat) take place.  Next, the desflurane vaporizer 

(an instrument that transforms desflurane to gaseous phase) is set to 18%.  The rate of super-

oxygenated air (fresh gas flow) is set to 1 L/min.  As the patient breathes in the air with the 

anesthetic, the concentration of the drug in the inspired and expired air increases.  Finally, the 

vaporizer is set to 9% once inspired and expired concentrations reach 8% and 6% respectively. 

Desflurane is expensive to administer in an open circuit in which the patient breathes only fresh gas.  

However, closed circuit (in which the patient rebreathes his/her own air supplemented with oxygen 

and new anesthetic) desflurane administration is cost efficient, effective, and fast (due to it’s low 

blood/gas solubility).5 Yet, desflurane does present a few issues related to tachycardia6 which occur 

during the induction of the inhaled desflurane.  This initial period can be assumed to be less than 15 

minutes in duration.   

This thesis seeks to explore a method of characterizing patient state as well as its use in tachycardia 

prediction (defined as heart rate > 100 beats per minute (BPM) ) in advance, so that the clinician 

can be aware of the pending tachycardia as well as possibly correct it. 



 7

3. MATHEMATICS / ENGINEERING MODELS 

3.1. Developing a Model 

As more sensors are added in an increasingly technology-dependent operating room (OR) setting, 

doctors such as anesthesiologists must sift through an ever greater number of patient parameters 

(dozens every few seconds) in addition to carrying out their duties at the OR.  Yet, as this thesis 

proposes, it possible that many of these parameters are correlated and contain redundant 

information.  Looking at all of them at once may not be the optimal manner of assessing patient 

state or predicting future patient state, or a subset thereof such as tachycardia presence, to determine 

the course of action.  Especially in an operating room setting, where time is critical, the ability to 

consolidate information into an effective patient model and make quick decisions based on the most 

significant relevant data can directly impact the mortality rate in the OR.  Previous studies have 

examined various variables necessary for monitoring as well as optimization of the monitoring tools 

employed7, but this paper seeks to seek a model for examining noise estimation and data set 

dimension reduction for more efficient future patient state characterization. 

Modeling patient state temporally can be approached in many ways.  One method is to employ 

mathematical models to quantify the patient state at time t (i.e. s(t)) and use this information to 

predict patient state at time: t + ∆t.  In this case, recorded variables from sensors on the patient 

could be hypothesized to contain enough information about s(t) to accurately predict a subset of 

s(t+∆t), namely heart rate (HR).  Patient state need not necessarily contain simply heart rate or 

tachycardia information.  In fact, one can conceptually think of patient state as a vector s(t) where t 

is the current time or time sample (in discrete time) and the vector has N (the number of parameters) 

elements.  A parameter here is defined to include such patient recorded variables as heart rate or 
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level of inspired agent concentration (anesthetic level).  It can also include seemingly unrelated 

variables like expired CO2 (carbon dioxide) concentration and oxygen saturation in the blood.  

These other variables represent current patient state as well and may provide addition predictive 

power.  For instance, the sympathetic nervous system can affect blood pressure, heart rate, and 

respiration rate.  Therefore, these variables may yield additional information of the patient state via 

a principal component.  For example, given the above variables, an unobservable derived variable 

such as sympathetic nervous system state may be uncovered. 

 Since patient state is available at discrete times (i.e. sensor recorded information are sampled at 

finite intervals), a representation of the state vector as s(n) will be more suitable here.  The n 

represents the time sample when the patient vector was recorded.  This will become an issue later, 

in the "Approach" section, since different sensors sample at different intervals, effectively making it 

difficult to establish exact patient state s(n) for a given n=n1. 

Since tachycardia is a variable derived from heart rate, creating a predictor for HR and then setting 

a threshold for tachycardia (e.g. 100 BPM) allows for a wider dynamic range (as opposed to the  

two-value Boolean variable tachycardia).  It would allow for quantification of when tachycardia is 

being approached.  For example, while a heart rate of 101 BPM is technically tachycardia, a doctor 

would take very different action at such a prediction compared to a heart rate of 200 BPM.  Thus, in 

order to add finer granularity, two additional thresholds can be defined.  These will be referred to in 

this thesis as sub-tachycardia (above normal but below 100 BPM, e.g. 80 BPM) and super-

tachycardia (above 100 BPM, e.g. 120 BPM).  Clearly, if heart rate is approaching 100 BPM, it 

must first pass through the sub-tachycardia threshold.  Put together with other information, such as 

the derivative of heart rate (a high slope implies the tachycardia stage might be next), these 
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additional stages provide finer granularity for patient monitoring and an early warning system for 

actual tachycardia. 

One of the goals of this thesis is to present a framework for prediction of tachycardia in advance so 

that the clinician can take steps (e.g. turn down the vaporizer) in order to 1) reduce the period of 

impending tachycardia and/or 2) prevent its occurrence.  Let us assume that the time delay for the 

anesthetic to affect the patient when applied at time n1 is approximately 2 1/2 minutes (see 'Design, 

Implementation, and Testing Issues' section, Figure 9 for discussion).  It can then be hypothesized 

that if the clinician was aware that the patient would have tachycardia at n2 = n1+n0 where n0≥2.5 

minutes, then he/she could turn down the vaporizer setting or take other action in order to stem the 

tachycardia at time n1.  In fact, given that the proposed predictor will provide heart rate information 

rather than simply tachycardia predictions, it is conceivable that an artificial tachycardia threshold 

be developed to help the clinician prevent tachycardia.  For example, a threshold for sub-

tachycardia or super-tachycardia could be developed to give the clinician additional qualitative 

information as well as advance warning. 

What is currently being proposed is, at present, a black box.  It takes s(n≤n1) as input, where n1 is 

the current time sample, to estimate heart rate R(n>n1) as in Figure 1. 
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Figure 1 

 

 

 

 

 

 

 

 

There are a number of models that can be used in constructing this 'black box.'  For example, two 

such predictors include a "static heart rate" and "heart rate average-based" predictors.  The former 

involves setting: 

Equation 1 

R(n1+n0) = R(n1).   
 

where n1 is the present time sample and n0 is the number of time samples ahead that we are 

predicting heart rate. 

 
Predictor 
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The latter involves setting: 

Equation 2 

R(n1+n0) = [ ∑ i=[n-N+1,n]  R(i)  ] / N 
 
where  N = number of samples (including present sample) to take average over. 

n1 is the present time sample. 

n0 is the number of time samples ahead that we are predicting heart rate. 

An analogy for the former method is predicting tomorrow's weather to be the same as today's 

weather.  An analogy for the latter method is assuming tomorrow's weather will be about the same 

as it has been in the past week.  Both of these methods use some information from the patient state 

in prediction, but not all of the inputs are taken into account.  For example, a change in the gas 

vaporizer setting has little influence on these models.  Yet, it is precisely because desflurane is 

thought to induce tachycardia that a prediction scheme has been proposed.  On the other hand, these 

easily implementable models can serve as a starting point in tachycardia prediction and as a means 

of comparison with others. 

Other models for prediction include linear regression and neural networks.  These are discussed 

further in the 'Approach' section, once the use of principal components and ION is explored further 

within the context of the tachycardia problem.   
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3.2. Principal Component Analysis 

Regardless of the model employed, the degrees of freedom/parameters in the various models 

increase as the number elements in the patient state vector increase.  Thus, either way, if the number 

of parameters could somehow be reduced, it would help in producing faster predictions as well as 

give insight into which parameters yield more information about the dataset.  One way to reduce the 

number of parameters without losing information is to determine the principal components, PC's, 

via Principal Component Analysis (PCA).  Each principal component is a sum of weighted 

parameters.  The weights are contained in the eigenvectors, which provide virtually lossless 

reconstruction of the original data.  Essentially, Principal Component Analysis allows one to create 

a reduced number of uncorrelated channels from a larger initial set of correlated ones.  

The PC's are found as follows.  First, the covariance matrix (e.g. E) of the data matrix L is 

calculated.  Next, the eigenvalues and eigenvectors of E are found.  The eigenvectors are sorted (to 

form a matrix, Q) so that they are in descending order based on the eigenvalues.  Next, the first n 

eigenvectors in Q (with largest eigenvalues) are selected based on a scree plot3 to form matrix Z.  A 

scree plot involves plotting the log(eigenvalues) for each eigenvector and comparing the difference 

between them in order to select those above a noise baseline (low, constant slope prevalent at less 

significant components).  Multiplying the selected eigenvectors by the state vectors over time gives 

the principal components' values across time. 

3.3. Iterated Order and Noise Estimation, and Blind Adjusted Principal 
Component Analysis 

When data is collected experimentally, there are often many sources for noise, whether it be 60-Hz 

line noise from electrical outlet or a loose or improper attachment of a sensor to the patient.  In 
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many situations, such as this one, the noise is not known a priori.  However, if it were somehow 

possible to estimate the noise's variance for each parameter (across time) in a patient state dataset, 

then one could use this to normalize the parameters across time before computing the covariance 

matrix and principal components (as is done when noise is known a priori in Noise Adjusted 

Principal Component Analysis (NAPC) ).  This would allow for a more accurate model of patient 

state and hypothetically lead to more accurate predictions of future state.  A recently developed 

technique at the Professor D. H. Staelin's laboratory, namely Iterated Order and Noise Estimation 

(ION), can be used to produce such an estimate.  In doing so, one can then proceed to normalize the 

parameter data channels based on the noise variance estimate, a method known as Blind Adjusted 

Principal Component Analysis (BAPC).   

Briefly, the ION algorithm consists of the following.  First, the input matrix of m x n (m vectors 

with n dimensions) is normalized (unity variance and zero mean for each variable).  In fact, there is 

another way to visualize the dataset consistent with this.  The s(n) vectors, each of length m, can be 

put together across time samples into matrix L with dimensions m x n.  L can be defined as follows: 

Equation 3 

L = FP + G1/2ω 
 
In this way, L is the sum of linearly transformed stochastic signal P and an independent noise 

vector.  In the above equation, F is the unknown mixing matrix2
.  The ω vector refers to a Gaussian 

noise vector with µ=0 and covariance matrix being the identity matrix. 

Next, let G1 be defined as  the diagonal noise covariance matrix.   
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First, initialize G and F to the identity matrix.  Next, the estimated noise variance are normalized to 

unity:  

Equation 4 

Lk' = L Gk
-1/2 

 
The signal order, pk+1, is then estimated via scree plot of L'

k.  Next, Gk+1 and Fk+1 are estimated by 

using pk+1 and the Expectation-Maximization (EM) algorithm8.  Lastly, the algorithm iterates on k 

(looping back to the normalization of the estimated noise variance) until convergence. 

In the next section, the use of the mathematical toolbox delineated here will be explored for design 

of the heart rate predictor.  

4. APPROACH 

4.1. Strategy 

To develop of strategy for modeling the patient state, the actual feedback system involving the 

patient and anesthesiologist was examined at the site where data was collected (Brigham and 

Women’s Hospital (BWH), Harvard Medical School, Boston, MA).  As shown in a simplified view 

in Figure 2, the closed loop system involves the anesthesiologist making adjustments to the drug 

vaporizer setting (which changes the amount of drug delivered to the patient) based on feedback 

from the patient via the patient-connected sensors and a monitor. These sensors record the patient 

state through 25 parameters (see Figure 3) every 20 seconds. The monitor then saves each sampled 

parameter in a patient history file.  Such setups, including the patient sensors and monitoring 
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devices, are common in operating rooms in developed nations.  However, the number of parameters 

data sampling, and recording capabilities vary substantially among institutions.  

Figure 2 

The Patient/Anesthesiologist Feedback System 

 
Sensors, Monitors 

+

Noise: Circuit Leaks, 
Surgical Intervention Noise: between patient & 

sensors 

+
 

Patient System 
Anesthesiologist’s 

Adjustments 
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Figure 3 

 
 
 
 

Number Parameter Units Description 
1 

SYS 
mmHg Systolic Blood 

Pressure 
2 

DIA 
mmHg Diastolic Blood 

Pressure 
3 

MAP 
mmHg Mean Arterial 

Blood Pressure
4 

HR 

BPM 
(beats per 

minute) 

Heart Rate 

5 PR BPM Pulse Rate 
6 

SpO2 
% Oxygen 

Saturation 
7 CO2 I mmHg Inspired CO2  
8 CO2 E mmHg Expired CO2 
9 

RR 
BPM Respiration 

Rate 
10 

VE 
L Ventilation 

expired 
11 VT mL Tidal Volume 
12 Pmax cmH2O Pressure Max.  
13 Pmin cmH2O Pressure Min.  
14 

PPlat 
cmH2O Pressure 

Plateau 
15 

I:E 
N/A Inspired: 

Expired Ratio 
16 O2 I % O2 inspired 
17 

N2O 
% N2O 

concentration 
18 Agt I % Agent Inspired 
19 Agt E % Agent Expired 
20 Agt N/A Agent Identity 
21 VT-sp N/A Tidal Vol. #2 
22 Vent-st N/A Ventilation 
23 iT-st N/A Miscellaneous 
24 NIBPint N/A Miscellaneous 
25 

Marker 
N/A Clinician 

marked event 
 
 
 

Patient Parameters Recorded via Sensors or Anesthesia Monitor 
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At Harvard Medical's Brigham and Women’s Hospital, Dr. J. H. Philip created a collection of 

patient history files from operations including those where the aforementioned desflurane protocol 

was utilized.   With a large number of samples, parameters, and patients, a method is needed to find 

the essential underlying information which can then be used in predicting heart rate.   

A number of data parameters are correlated.  For example, mean arterial blood pressure (MABP) is 

related to diastolic and systolic blood pressure: 

Equation 5 

Mean Arterial BP = 2/3*Diastolic BP + 1/3*Systolic BP 
 

It is expected that several of the respiratory and as well as other variables should be correlated.  

Thus, in this thesis, Principal Component Analysis (PCA) was used to reduce the dimensionality of 

the dataset for further analysis (as discussed in the 'Mathematical / Engineering Models' section).  

This method has been used effectively in similar multivariate estimation problems in manufacturing 

and remote sensing applications at Professor Staelin’s Laboratory9. 

There are myriad sources of noise in the patient/anesthesiologist feedback system as depicted in 

Figure 2.  For example, breathing circuit leaks can result in inaccurate sampling and recording of 

gases (including the drug agent).  Surgical intervention may result in a change in heart rate and 

blood pressure (e.g. due to the incision as well as gradual blood loss during the operation).  Random 

noise may also be introduced by various other mechanisms (e.g. if the patient is moved slightly).  

Lastly, each of the various sensors have certain limitations and must be connected properly to the 

patient to get an acceptable Signal to Noise Ratio (SNR) for recording. 
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Thus, it is hypothesized that the BWH-based data set may be a good candidate for testing the 

applicability of an ION algorithm recently developed in Professor Staelin's group.  By employing 

this algorithm, it may be possible to estimate and remove noise so that additional information can be 

recovered from the dataset above baseline noise.  This is done by normalizing the dataset using the 

noise variance vector from ION (see 'Mathematical / Engineering Models' section).  As outlined in 

Figure 4 below, the result will then be compared to the normal Principal Analysis method (via scree 

plot) in order determine whether or not there is an improvement with the ION algorithm over the 

traditional technique.  Thus, this thesis will serve as the first test of the ION algorithm's validity and 

applicability subsequent to the original ION work. 
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Figure 4 
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In doing the PCA analysis, a number of questions arise.  Should only the fundamental 25 

parameters be used- or can certain derived featured help capture information in the dataset better for 

prediction of future heart rates?  Examples include time shifted versions of certain parameters, 

integrals that preserve time history of drug administration, derivatives that capture rate of increase 

of drug agent or other parameter, and average drug delivery concentration over time.  Also, some of 

the 25 parameters could be removed since they were not connected to a sensor and/or contained no 

recorded information.  After several modifications, the fundamental and derived parameters that 

were analyzed in this thesis involved 32 parameters are depicted in Figure 5, with derived 

parameters starting at parameter number 23 continuing until parameter 32.  The 'derivative' and 

'integral' parameters are defined as follows.  The derivative involves finding the first difference of 

the current and previous sample.  Then, using the sampling rate (3 data points per minute), the first 

difference is multiplied by a coefficient to yield the change of parameter per minute (instead of per 

sample).  The same is done with the integral except that instead that the first difference is replaced 

by a summation of the parameter value from time 0 (when the induction process began) up to the 

present time sample. 
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Figure 5 

 
 
 
 
 
 
 

Number Parameter Units Description 
1 SYS mmHg Systolic Blood Pressure 
2 DIA mmHg Diastolic Blood Pressure 
3 MAP mmHg Mean Arterial Blood Pressure 
4 PR BPM Heart/Pulse Rate 
5 SpO2 % Oxygen Saturation 
6 CO2 I mmHg Inspired CO2  
7 CO2 E mmHg Expired CO2 
8 RR BPM Respiration Rate 
9 VE L Ventilation expired 
10 VT mL Tidal Volume 
11 Pmax cmH2O Pressure Max.  
12 Pmin cmH2O Pressure Min.  
13 PPlat cmH2O Pressure Plateau 
14 I:E N/A Inspired: Expired Ratio 
15 O2 I % O2 inspired 
16 N2O % N2O concentration 
17 Agt I % Agent Inspired 
18 Agt E % Agent Expired 
19 VT-sp N/A Tidal Vol. #2 
20 Vent-st N/A Ventilation 
21 iT-st N/A Miscellaneous 
22 NIBPint N/A Miscellaneous 
23 

PR_shift_7
BPM HR 7 samples (2 min. 20 sec.) in the 

future 
24 

DERIV_AGT
% / 

sample 
Derivative of Agent Expired 

25 
INT_AGT 

% * 
sample 

Integral of Agent Expired 

26 
AVG_AGT 

% Average of Agent Expired over time 
samples so far 

27 HI_HR N/A Tachycardia present 
28 HI_BP N/A Hypertension present 
29 

HI_HR_BP 
N/A Tachycardia or Hypertension 

present 
30 DERIV_SYS N/A Slope of Systolic BP 
31 DERIV_DIA N/A Slope of Diastolic BP 
32 DERIV_HR N/A Slope of HR 

 

 

 

Fundamental and Derived Patient Parameters 
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Once the dataset has been transformed from 25 parameters and additional derived variables to a 

reduced number of significant principal components (PC’s), this information can then be used to 

design a predictor of future heart rate.  It should be noted that while the predictor was abstracted 

away as a black box in Figure 1, linear regression (unlike neural networks) can be used to develop 

an insight into the prediction process itself (i.e. allow one to peer inside the black box).  By 

examining the predictor's weights for various state vector elements, the relevance of various 

parameters (from heart rate to blood pressure) to tachycardia prediction can be determined. This is 

more difficult in neural networks, where the hidden layer weights add additional complexity to the 

relationship between input and output.   

As shown in Figure 4, linear regression can be used to find constant coefficients for each of the 

principal components across time plus a constant based on the training set data.  Thus,  

Equation 6 

Y =  AX + B  
 

Where: Y = R(n+n0) of size 1 x n 

A = Coefficients determined by linear regression of size 1 x p 

X = Input matrix of p x n.  Represents the 'p' significant PC's over 'n' time samples. 

B = Constant term determined by linear regression of size 1 x n 

 

And:  n = present time sample 

  n0 = number of time samples between present and prediction 

  m = number of patient recorded parameters and derived features 

  p = number of principal components used in reconstruction 
 



 23

In this thesis, a static heart rate(see 'Mathematics / Engineering Models' section), heart rate average-

based (see 'Mathematics / Engineering Models' section), and linear regression-based predictors will 

be constructed and evaluated.  Additional design issues are discussed more in the ‘Design’ section. 

4.2. Required Equipment 

The type of equipment necessary for exploration of this problem depends on the dimension of the 

patient monitor history database (illustrated in Figure 6).   

Figure 6 
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For a rough calculation, one can assume 8 bytes of RAM per stored data value.  As in Equation 7, 

let ‘i’ be the number of parameters, ‘j’ the number of time samples, and ‘k’ the number of patients.  

Thus, the number of megabytes (not including overhead for Windows and Matlab) required to hold 

one copy of the database in RAM is:  

 

Equation 7 

Number of Megabytes of Memory =  
 
8 bytes * (j samples) * (i parameters) * (k patients) 
                 (1024*1024 bytes/Megabyte)  
 

In order to allow for a large database along with extra RAM for manipulating and transforming it, a 

machine of at least 64 Megabytes of RAM (required for Matlab for Windows) was used in this 

project.  Ultimately, a Dell Dimension 4100 series 800 MHz Pentium III-based machine with 128 

Megabytes RAM was used for this purpose.  In addition, network capability was needed for 

connectivity to the Internet as well as access to the patient database located remotely at the Brigham 

and Women’s Hospital.   

Microsoft Excel was used for reading, analyzing, and plotting individual patient files.  Matlab was 

then employed to actually create the algorithms to implement the design. 

5. DESIGN, IMPLEMENTATION, AND TESTING ISSUES 

A number of topics needed to be dealt with in the analysis and design of the predictor hypothesized 

in the ‘Approach’ section.  First, a subset of patients (from the hundreds of patient monitor history 
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files) needed to be selected to create the database of patients for analysis.  A number of files were 

corrupt, had bad data, missing data, or data from anesthesia administered by various other protocols 

(i.e. not the one outlined in the 'Clinical Background' 4). 

Also, the files are in a huge hierarchy of thousands of files and over 700 directories.  A total of 23 

patients were initially randomly selected from a pool of patients to test the model developed.  

Ultimately, this patient database was doubled to 46 patients randomly taken from the period of 

January 1998-July 2000. 

With such an exorbitant amount of data, a number of other issues arose.  For instance, an effective 

data structure had to be designed to allow for efficient access to data while conserving memory.  

When determining how to analyze data, it can also help to visualize it to facilitate discovery of 

patterns and intuition for further explorations.  Yet, with 25 parameters for just one patient and 

around 180 samples per hour, visualizing just one patient (with an operation duration of around 4 

hours) would involve over 18,000 points.  Looking across patients adds a 3rd dimension to create 3-

d matrix D(i,  j, k) in Figure 6.  It seemed that another visualization method besides plotting each 

parameter versus time is a prerequisite to making sense of the data. 

The method selected for visualization consists of an image mapping of D, a process which 

essentially involves converting D into a series of patients concatenated together to form the all-

inclusive L matrix representation of the dataset used as an input to ION (as discussed in 

'Mathematics / Engineering Models').  Basically, it consists of taking slices of D shown in Figure 6 

holding k constant.  Thus, the data for one patient appears first followed by the next patient.  As 

seen in Figure 7 based on Figure 6 from the previous section, the 'Parameters' y-axis is equivalent to 

'i' in D and 'j' is equivalent to the 'Time Samples' x-axis for 0 to J.  The next patient's data is 
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presented sequentially at J+1, right after the first one ends.  Due to the scaling of the image map, 

each data point is represented as a vertical bar colored according to the corresponding D data point 

value (or a normalized version of it).  For example, Figure 7 clearly shows three patients with 45 

time samples each (notice how the pattern repeats after time samples 45 and 90).  Here, data values 

are normalized so that variance is unity for each parameter.  The fact that this figure suggests a 

pattern in patient behavior during desflurane induction hinted information could be garnered for 

predicting future state of an unknown patient in real-time by using a predictor first trained on a 

historical patient database. 

 

Figure 7 
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Special routines need to be written to parse the data and concatenate patient monitor files (which 

contain only one hour of data per file).  Patient files contained patient information based on the 

patient's operation date and the order of the patient on that day's schedule for a given operating 

room (e.g. second patient to be operated in the given OR, etc.).  Patient names were not included in 

the files, although schedules with the patient name and doctor transcribed patient history could be 

ordered based on this information.  Additional identifiers to uniquely specify a patient (due to the 

fact that patients’ file names/numbers are not unique) need to be developed.  Ultimately, patients 

were assigned serial numbers based on the patient's operation date and initiation time of the 

operation. 

Since the patient monitor history files contain the patient data for all of the operation (not just the 

induction protocol), it was necessary to determine which time samples should be used for analysis.  

For example, the blood pressure, pulse rate, and oxygenation sensors are usually attached by the 

clinician separately after the monitoring device is recording values for other variables.  Also, certain 

parameters, such as blood pressure, are effectively asynchronous events which arrive from the blood 

pressure machine with 1/3 the sampling rate compared to the other parameters.  Figure 8 shows the 

aforementioned issues visually using the same image map notion delineated earlier for the first hour 

of the operation.  In this case, a data point is colored black if no data or invalid data was recorded at 

a given time and parameter.  White represents valid data.  One can see that the black extends to 

various different time samples for different parameters (and, in fact, stretches for all time for 

parameters 4 and 25).  This suggests that the sensors for each parameter were connected at different 

times. Parameter 4 allows for an additional optional method of measuring parameter 5 (pulse rate) 

which was not taken advantage of in this case.  Parameter 25 is initiated by clinician input to mark 

various events during the operation. Also, the top three rows (parameters 1 to 3 are blood pressure 
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measurements) can be seen to have valid data (white) every third sample as discussed previously.  

This all suggested that some pre-processing would be needed before a meaningful patient data 

subset could be used to train a predictor. 

Figure 8 
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consecutive points missing for a given parameter (other than parameters 4 and 25 which were not 

used), then the patient file was flagged.  The result of such pre-processing is shown visually in 

Figure 7 for three patients as discussed previously. 

In designing the predictor for tachycardia, some areas need to be examined closely.  For instance, 

how much ahead should such a prediction be made.  This depends on a number of factors including 

response times for: breathing circuit, inspired drug concentration to vessel rich group (VRG), VRG 

to brain, and brain to effector sites (where a change in heart rate is observed).  This is outlined in 

Figure 9.  It is thought that this time may be approximately 2 ½ minutes from inspired drug 

concentration (an observable variable) to a delta heart rate10. 
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Figure 9 
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Another issue is how a predictor like this can be evaluated.  Certain standards such as root mean 

square (RMS) error and residue plots can provide an objective measure, but what should the 

predictor be compared against?  One proposed idea is to compare the predictor’s results with 

‘dumb’ predictors as discussed in the 'Mathematical / Engineering Models' section.  Comparing the 

RMS errors and residue plots of such a predictor, one can determine if any knowledge about 

tachycardia can be derived from the dataset in predicting the condition in other patients.  An 

additional comparison can be done by looking at the ROC curves (probability of detection (Pd) vs. 

probability of false alarm (Pfa) ) for each predictor as the threshold for detection is systemically 

varied.  If a clinical assessment of the costs/risks associated with each was ascertained, then the 

usefulness of a given predictor could be surmised.  This approach is shown schematically in Figure 

10 below. 
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Figure 10 
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6. RESULTS 

Ultimately, the dataset examined included 46 patients, each with 45 data samples of induction by 

desflurane, and 32 parameters as outlined in Figure 5.  The derived parameters included actual 

target heart rate 7 samples (2 min. 20 sec.) in the future, derivatives (agent expired, HR, systolic BP, 

Diastolic BP), integral of agent expired, average of agent expired over time samples so far in given 

patient, and presence of certain conditions for current sample (e.g. tachycardia, hypertension). 

Using this dataset, the approach outlined in the 'Strategy' and 'Design' sections was implemented.  

After Blind Adjusted Principal Component Analysis, a scree plot suggested 5 PC's were significant.  

Shown in Figure 11 are the scree plots for PC's derived using Blind Adjusted Principal Component 

Analysis (i.e. with ION) and PCA without ION.  Figure 12 shows a zoomed in view focusing on the 

PC's corresponding to the top 5 eigenvalues.  While only approximately 3 PC's are significant for 

PCA without ION, the ION method allows for additional components to be exposed above the 

noise.  The ION-based PCA values are also several orders of magnitude above those yielded 

without ION as shown in Figure 12. 
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Figure 12 
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The third PC is basically the heart rate and blood pressure dimension along with agent interaction.  

PC #4 categorizes the interaction of the agent with the derivative of blood pressure and ventilation 

variables (VT, the tidal volume and Pmax, the maximum pressure in lungs during breathing).  The 

fifth component contains similar variables, with different signs and less evenly distributed weights.  

Looking one PC beyond the 5 significant ones, the sixth principal component relates to the agent 

past and present concentration in combination with BP (specifically systolic).  It includes the 

following agent components: the integral of expired agent (intuitively proportional to the amount of 

drug given so far), the agent inspired concentration (approximately proportional to current drug 

concentration being administered), and the current average of expired agent (recently administered 

dosage). 
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Figure 13 
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The 5 significant PC's were plotted against time in Figure 14 below and compared to the heart rate 

variable to examine if tachycardia events (HR > 100 BPM in the graph) could be traced to a 

preceding fluctuation in one or more of the PC's by inspection.  Even visually, it can be seen that 

tachycardia periods and peaks correspond to PC #3 at several time samples including 200 and 370 

(among others).  As is later confirmed, it would make sense that such a principal component would 

be weighted heavily in a ION PCA-based prediction scheme. 

Figure 14 
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The relationships between PC's was also explored.  Figure 15, Figure 16, and Figure 17 are scatter 

plots of all 2 dimensional graph permutations of PC3, PC2, and PC1.  In PC1 vs. PC2, one can see 

two clusters.  One shows a linear relation between PC1 and PC2 with a slope of approximately -4 

and the other is more scattered.  Two scattered clusters are also apparent in PC1 vs. PC3.  PC2 vs. 

PC3 has several closely clustered groups.   

Figure 15 
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Figure 16 
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Figure 17 

 

 

A better division of the clusters can be seen in Figure 18, a 3-D plot of the three most significant 

PC's.  From most perspectives, the 3-D plot looks like a single amorphous cluster.  However, when 

rotated to the perspective as in Figure 18 (and Figure 19), it is clear that a plane bisects two 

hemispheres that represent two distinctive clusters.  In order to explore this further, the Figure 19 

was colored by time from the start of the induction of inhaled gas protocol (as opposed to coloring 

by patient as was done in Figure 15 - Figure 18).  This time colored figure suggests that the two 

clusters are not according to different relative times from the start of the induction of desflurane. 

Thus, a closer look was taken at the coloring by patients.  Three random patients were colored 
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differently (aqua, blue, and green) from the mass of others (colored red).  As evident in Figure 20, 

patients can extend across the boundary of clusters.  Thus, the clusters don't separate patients either.   

When thinking about the notable pattern evident in the figure (e.g. plane separating two clusters), it 

can be helpful to think of an analogy of the shape of the scatter plot to that of a 'p' electron orbital 

from quantum theory.  In 'p' orbital, there are two clusters separated by a node.  At the node, there is 

zero probability of an electron existing due to physical constraints.  Thus, the electron can be either 

on one side or the other, but is with probability approaching zero at the node.  It is possible that the 

patient state scatter plot can be similar in nature, but with the constraint being physiological rather 

than physical.  Instead having a node, the two clusters are separated by a plane.  Patient state can 

pass from one state (cluster #1) to another (cluster #2) while not going through the bisecting plane, 

or transition area. 

To examine this further, the PC's involved in the gap were examined.  It appears that the grouping 

involves an interaction between HR, BP, and agent concentration.  This interaction suggests that as 

HR is increased, the combination of BP and agent in PC1 and PC2 are constrained so that permit 

patient state values are restricted to a certain distance from the bisecting plane.  

Interestingly, as shown in the figure, the patients form sub-cluster within each cluster and have few, 

if any, points between these sub-clusters.  The blue and aqua patients' pairs of sub-clusters are 

clearly evident.  The green patient also has a couple of points on the upper cluster (just under the 

blue patient) besides the sub-cluster on the lower cluster.  The position of these sub-clusters within 

the two larger clusters might yield valuable information as well.  Additional, quantitative 

exploration of these constraints and sub-clusters is left open for further work in this area. 
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Figure 18 
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Figure 19 
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Figure 20 

 

 

 

 

 

 

 

 

 

From these figures, it is evident that one can trace a trajectory which tracks patient state temporally 

across these PC's (see the vertical appearing line of points extending from PC1=-1 to PC1=-3 along 

PC2=50, PC3=0).  In a five dimensional space, such a trajectory would encompass essentially the 

complete specification of patient state.  A zoomed in view in shown in Figure 21 and Figure 22, 

again color coded by patient and time respectively.  Figure 22 confirms that direction of trajectory 

of the aqua colored patient seen in Figure 21 starts from lower right and moves upward varying 

along PC1 (vertical axis) and PC3 (diagonal axis nearly orthogonal to plane of paper).   A number 
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of other patients exhibited similar trajectory patterns, a discovery whose ramifications will be 

discussed in further detail in the 'Conclusions' section.  

 

Figure 21 

 

 

 

 

 

Figure 22 
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Next, the number of cases of tachycardia and hypertension were explored.  While it was expected 

that some patients would exhibit one or the other of these conditions based on work by Muzi12, it 

was surprising to find that all of the patients exhibited tachycardia, hypertension, or both at some 

point during the first hour of the operation.  In fact, more than 3/4 of patients had at least one 

episode of tachycardia.  See Figure 23 below for details.  Thus, there were plenty of example cases 

for training and testing a predictor model. 

 

Figure 23 
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In the 'Mathematics / Engineering Models' section, three types of predictors were discussed: ION 

PCA-based predictor, static heart rate predictor, and heart rate average-based predictor.  These three 

predictors each trained on the first 2/3 of the 46 patient history database and then tested on the 

remaining 1/3 (which they had not seen before).  For the static heart rate predictor, the heart rate in 

the patient database is shifted 7 samples forward in time (2 min, 20 sec) to yield the predicted value.  

Thus, the present heart rate was predicted based on the HR value seen 7 samples ago.  The heart rate 

average-based predictor takes the average of the current and last two samples (0, 20, and 40 s) of 

heart rate to make a prediction (i.e. N=3 in Equation 2).  For the ION PCA-based predictor, the A 

and B constants are determined by linear regression.  In addition to using the 5 significant PC's, 

shifted versions of these were also used in constructing the X described in the Equation 6.  That is, 

not only was the present sample of each PC presented as input to the predictor, but so were some 

historical value of each PC (i.e. a value of a principal component U time units ago).  Five values of 

each PC from 4 time samples back in time to the present sample were used here (U=0 to 4).  Thus, 

the total number of variables (p in Equation 6) examined are: number of significant PC's * number 

of time shifts  = 5 *5 = 25.  Thus, there will be 25 constant coefficients (i.e. A will be 25 elements 

in length).   Also, a constant B is determined by linear regression as well (89.30 is this case).  The A 

coefficients give more weight to those principal components that are more useful in reducing the 

square error between predicted and actual future heart rate.  Thus, insight can be gained on the 

importance of the various PC components.  Figure 24 below shows the relative importance of each 

PC (inclusive of all 5 time shift variants) in ION PCA-based model.  As expected, the heart rate and 

tachycardia-relevant information component, i.e. PC #3, was the most heavily weighted PC.  The 
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second most heavily weighted PC was PC #1, which includes mostly blood pressure and agent 

concentration information.  

 

Figure 24 

 

PC Coefficients in ION PCA-Based Predictor

0.6106

-0.0254

4.6411

-0.2458 -0.2918

-1

0

1

2

3

4

5

PC1 PC2 PC3 PC4 PC5



 50

By looking at the parameters that comprise each PC, it is possible to gauge the relative weights of 

each of the 31 utilized fundamental and derived parameters in the principal component ION PCA-

based model.  Thirty-one parameters, rather than 32 were used since the future heart rate parameter 

information, PR_shift_7, was explicitly weighted at zero so that the predictor would not be able to 

see the actual future heart rate.  The relative importance of the patient state parameters in the model 

are shown in Figure 25.  It shows the value of the weight of each parameter sorted by the value's 

magnitude.  Clearly, pulse rate (i.e. heart rate) is high on the list as is the presence of present 

tachycardia and hypertension.  This suggests a possible link between hypertension and tachycardia. 

Figure 25 
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Below (Figure 26) is a graph outlining the ION PCA-based predictor best fit based on the training 

data.  The X's mark the prediction made by the model for the heart rate in the future.  The circles 

denote the actual future heart rate values at the aforementioned points.  In this case heart rate in 

BPM against time samples for all patients.  Thus patient #1 goes from time samples 1-45 and 

patient #2 data is from samples 46-90, etc.  Figure 27 shows the resulting residue plot. 

 

Figure 26 

 
 
 

 
 
 
 
 
 
 
 



 52

 
 
 
 

Figure 27 

 

 

 

 

 

 

 

 

The models were then tested on the last third of the data (never seen previously) and asked to 

predict heart rate.  The results are shown below, Figure 29 and Figure 30 show the plots for the ION 

PCA-based, static heart rate, and heart rate average-based predictors respectively.  The residue plot 

for the ION PCA-based predictor is shown in Figure 31.  The largest residues occur when the heart 

rate is changing quickly (i.e. magnitude of derivative of heart rate is large).   

0 200 400 600 800 1000 1200
-50

-40

-30

-20

-10

0

10

20

30

40
Residues: ION PCA-Based Predictor Training.  Heart Rate vs. Time



 53

Figure 28 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 
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Figure 30 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 
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The accuracy of prediction was explored next.  The RMS error for each of the three predictors 

outlined in this thesis is shown in Figure 32. The ION PCA-based predictor had the lowest error.  

However, it is important to note that the other predictors were quite successful in making 

predictions as well (see 'Conclusions' for further discussion).   

Figure 32 

Predictor Type Absolute 
Values RMS 
Error 

Residue 
Values RMS 
Error 

ION PCA-Based Predictor 10.44 BPM 10.44 BPM 
Static Heart Rate Predictor 15.76 BPM 15.67 BPM 
Heart Rate Average-Based 
Predictor 

16.06 BPM 15.96 BPM 

 

It is difficult to evaluate the clinical usefulness of tachycardia predictions from residues and RMS 

errors.  What is needed is a method to determine how often tachycardia itself is predicted correctly.  

In addition, incorrect predictions of tachycardia must also be taken into account.  Otherwise, a the 

trivial predictor below would always be the best performer: 

Equation 8 

Tachycardia (n=n1+n0) = True for n time samples. 
 

To do this evaluation, Receiver Operating Characteristic (ROC) curves (probability of detection 

(Pd) vs. probability of false alarm (Pfa) ) were derived for each of the three predictor types.  As seen 

in Figure 33, the ION PCA-based predictor performed best while the static heart rate model was 

slightly better than heart rate average-based predictors for most Pd, Pfa possibilities. 
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Figure 33 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sensitivity of the predictors to a change in the tachycardia threshold was examined.  Figure 34 

and Figure 35 show new tachycardia thresholds set at 65 and 120 BPM arbitrarily.  Since the upper 

left corner represents the most desired location (low false alarms, high detection), the 65 BPM is 

slightly better than the 100 BPM threshold while raising it to 120 BPM results in a larger in Pfa to 

achieve similar detection 
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Figure 34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 35 
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Lastly, to provide finer granularity, the threshold was varied from 70 to 130 BPM in steps (See 

Figure 36).  Based on this figure, one could theorize a sub-tachycardia threshold of 90 BPM, for 

example, along with a super-tachycardia threshold of 110 BPM and expect to get similar ROC 

curves.  The detection and false alarm probabilities depend on the training and testing data set 

ranges.  Also, at lower thresholds, there are few points below the threshold and at higher thresholds, 

there are few points above it.  So, predicting 65 BPM is easy since almost all predictions are above 

this point.  Simply alerting tachycardia every time will yield a high detection and low false alarm 

rate.  Thus, the training of the predictor depends on the input training dataset range that it sees and 

as well as its patterns.  In addition, the limited-size testing dataset's range of values can affect the 

ROC curves.  Yet, even given these constraints, it is still evident that the predictor remains within 

specific detection and false alarm ranges in the figure below (except for the 130 BPM pathological 

case, which had only one value above its threshold in the testing portion of the dataset).  
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Figure 36 
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This thesis sought to find an effective way to quantify temporal patient state by encapsulating 

relevant variables processed by blind noise adjustment into the data set's significant principal 

components.  In doing so, the validity and applicability of ION PCA-based methods was put to the 

test.  The application of tachycardia prediction was selected due to the multivariate nature of the 

patient data, its ease of collection via anesthesia monitors and sensors in the OR, and the availability 

of the pre-existing patient data. 
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It was discovered that an ION PCA-based method could be used to find new information previously 

considered to be at the noise threshold.  It was also found to delineate patient state in a simpler, 

more efficient manner.  Since the ION processed Principal Components actually encode more 

information than the 32 fundamental and derived patient variables after estimated noise is removed, 

having to only monitor a reduced set of five more accurate variables could make patient monitoring 

more efficient, both for medical analysis and patient care.  It also helps to provide information of 

the relevance and importance of the numerous statistics presented by patient monitors.  While the 

basic meaning, physiologic significance, and clinical correlates of these principal components have 

been defined here (namely: PC #1 & #2: blood pressure/agent, PC#3: agent interaction: HR and BP, 

PC #4 & #5: agent interaction: BP and ventilation), further exploration into the relations and 

intuition behind these could be beneficial for clinicians in characterizing patients under anesthetic 

care. 

With regard to the clinical application, it was discovered that desflurane led to ubiquitous 

tachycardia or hypertension (in all 46 patients) and both conditions in more than half of them.  

Thus, an interesting scientific question was: what action of the drug causes these short tachycardia 

and hypertension episodes during induction via the inhaled anesthetic.  Was it simply related to the 

present or last few agent concentration values?  Was it the slope of the agent concentration (how 

fast is was increased/decreased)?  Could it be proportional to the total anesthetic given so far 

(represented via integral of agent expired)?  As Figure 25 illustrated, the most significant of these 

variables in HR prediction were the present agent concentration and the average agent expired over 

time so far.  Yet, in examining the data, it was found that most of the aforementioned fundamental 

and derived agent variables were in the noise (as in Figure 13) even after use of ION.  Thus, a 
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definitive statement about the trait of agent linked to tachycardia can not be made conclusively at 

this time. 

As discussed previously, several models for heart rate prediction were tested and compared via 

RMS error and ROC curves.  Based on clinician discussions, one might consider Pfa = 1-Pd as an 

optimal operation point.  The in case of the ION PCA-based predictor, the best of the three, this 

point would involve correct tachycardia detection approximately 82% of the time and a false alarm 

18% of the time (see Figure 33). 

Eventually, such a system could be put into clinical practice by integrating the 'Smart Alarm' ideas 

espoused by Philip, et. al.13 by providing future derivatives in heart rate that could allow the alarms 

to provide early warning. 

Several methods could be used to explore raising Pd and lowering Pfa.  The monitors used had a 

sampling rate of 3 per minute.  Though this was based on the best available commercial monitors 

with a recording feature, this rate could be improved slightly by manual transcription of parameter 

variables or by constructing a proprietary analog to digital converter to record the signals.  In 

addition, exploration of scaling the patient database up might lead to an improved the model based 

on a larger training set.  If a larger dataset is used, it would be expected that ION execution time as 

well as training time would increase. 

Other models that take nonlinearity into account, such as neural networks, could also be used with 

the derived principal components as its input.  The training of the weights of the nodes and biases 

would then correspond to the predictor model as A and B were for the linear regression model (See 
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Equation 6).  It could open up avenues for future work into a number of clinical issues as well as 

serve as an additional tool for answering scientific questions. 

Since heart rate plays such a major role in tachycardia prediction, it was expected that even the non-

ION PCA predictors should do well in tachycardia prediction application since they capture the 

principal parameter of the most weighted PC.  Perhaps testing this method on another patient 

monitoring application, which involves more observable variables relevant to the condition, would 

provide an additional means of separating between the different model strategies as well as a test of 

its validity and applicability in other domains.  

With growing trend toward Internet appliances, it is conceivable that patients could be monitored 

remotely in the future.  With such an influx of data from hundreds of out-patients, a given doctor 

would have a much larger time load per patient than today.  Yet, if an intermediate middle-man 

involving a monitoring system that sorted out the significant patient state characteristics and paged 

the doctor when certain emergency or care necessitating combinations could potential occur, then 

dynamic out-patient monitoring could become a reality.  While at first glance it might seem that 

such monitoring devices will not be available to consumers until a distant future, the first generation 

of such devices are already available.  These include Casio's JP200W-1V Watch that can monitor 

heart rate or Boston start-up Fitsense's wearable FS-1, which can monitor everything from time, 

speed, distance, calories burn, and heart rate through several devices attached to the body.  The FS-

1 also includes a wireless network link to transmit the recorded information remotely (e.g. to 

person's home or even a doctor's office).  Both of these are currently priced under $200 (i.e. within 

consumer market range) and may pave the way for future developments which might be more 

useful for clinical monitoring. 
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In the 'Introduction,' methods ranging from linear regression to neural network were proposed as 

possibilities for predicting heart rate, and hence, tachycardia. Another idea for further work would 

be to chain one predictor to another.  Also, those mentioned in the 'Clinical Background' were 

completely deterministic in nature.  Tachycardia might be completely predictable if every variable 

were known, but then again, so would a coin toss if all air flow patterns and models of the coin were 

perfectly modeled.  Therefore, probability might be useful here.  It could also be used to provide the 

clinician with a gauge of the perceived certainty/confidence level of the prediction. 

One option that incorporates these ideas is the combination of a neural network front end for 

nonlinear prediction with a Markov Chain.  The neural network could be used to calculate the 

probabilities of entering a different state in the Markov chain.  The Markov chain need not be 

limited to two nodes (Tachycardia and No Tachycardia).  In fact, by adding additional nodes, a 

history of patient state (like the time-shifted ones used in the linear regression model) can be used to 

capture tachycardia information between 'Tachycardia' and 'No Tachycardia.' 

Another area for future exploration involves designing a framework for dynamic, time varying 

principal components and noise estimation as well as PC's and noise estimators with specific patient 

or patient cluster dependence.  Thus, the resultant ION PCA-based principal components could be 

altered for different phases of an operation (just as an example) to account for the differences 

between IV induction, induction by inhaled gas, wake-up, post-operative care, etc.  In fact, one 

could use the aforementioned methods to cluster patient populations based on principal components 

consisting of various relatively static patient variable such as sex, weight, height, medical history, 

etc. Hopefully, the future work will be able to answer some of these questions as well and open up 

further avenues exploration. 
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9. LIST OF PERTINENT ACRONYMS AND ABBREVIATIONS 
(CLINICAL & TECHNICAL) 

Figure 37 

Clinical Term Acronym/Definition 

OR Operating Room 
Tachycardia Heart Rate > 100 beats per minute 
VRG Vessel Rich Group, comprised of tissue well 

perfused with blood, as opposed to muscle 
(intermediate) and fat (low). 

Hypertension Systolic Blood Pressure > 140, Diastolic Pressure > 
90 

Solubility, Blood How easily a substance dissolves in blood 
Desflurane Used as an anesthetic in its vapor form 
IV Intravenously 
CNS Central Nervous System- Brain and Spinal cord, as 

opposed to PNS: Peripheral Nervous System 
BPM Beats per minute 
Breathing Circuit An apparatus that connects the patient to the agent as 

well as the mechanical ventilator. 
MABP Mean Arterial Blood 
Pressure 

Defined as: 1/3*Systolic BP + 2/3*Diastolic BP 

Induction Intravenously 
 

Administration of a drug intravenously to induce an 
unconscious and/or anesthetized patient state. 

Induction of Inhaled Gas 
 

Administration of a drug intravenously to induce an 
unconscious and/or anesthetized patient state. 

Intubation 
 

Placing the breathing circuit in the airway (throat). 
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Figure 38 

Mathematical/Engineering Acronym/Definition 
ION Iterative Order and Noise Estimate 
SNR Signal to Noise Ratio 
RAM Random Access Memory 
NAPC Noise Adjusted Principal Component Analysis 
BAPC Blind Adjusted Principal Component Analysis 
PC Principal Component 
PCA Principal Component Analysis 
EM Expectation-Maximization 
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10. APPENDIX: SOURCE CODE LISTING 

10.1. Selected Files Listings 

 

FILE 1: PCA_DATA.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 
This is the main program file.  This program loads the preprocessed patient records.  It 
calculates the derived parameters.  It then sequentially assembles the patients across time.  
Next, it does PCA and ION.  Lastly, the coefficients of the linear predictor are calculated. 
 

FILE 2: PCA_FUNCT.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
This function performs the mechanics of PCA. 
 

FILE 3: PRE_PROCESSING.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 
This file does the preprocessing of the raw patient data files.  It locates the start of valid 
data, does linear interpolation, and determines the starting point for the induction of inhaled 
desflurane.



 
 
 
 
 

File 1: Pca_data.m 

function pca_data(num_pat_id) 
%% need to re-load ION values if number of parameters, etc. changes... 
 
 
 
 
%  all_data.sel_npdata(:, :) = 25xnum_time_col*num_real_pat = 1 patient's 
'imagemap' 
% all_data.pdata = arr_all_pat.pdata (truncated) 
 
 
PARAM_BP1 = 1 
PARAM_BP2 = 2 
PARAM_BPM = 3 
PARAM_HR = 5 % - by pat file col. 
PARAM_AGTE = 19  % - by pat file col. 
PARAM_HR_SHIFT_m240 = 31;   % 'PR_shift_m8 (BPM)' at 34 - by pat file col. 
PARAM_HR_SHIFT_m240_mod = 23; 
PARAM_DERIV_HR = 55 
 
PARAM_HR_MOD = 4;   % 'PR' at 5 
 
%10/25- changed to have only 180's in data set (plus adjusted all array 
values->num_order found = 2 by ION -> much better! 
 
 
%rerun using this program- added cols 6->7 
% ion->norm by noise & graph 
% add pca func 
% do linear model 
% fix up func. make it exp. based parameter meta-func (like Jay's prog.) 
% ana pca eig value strengths, compare to hr. 
% ana pca pc1 vs pc2 grpahs, etc.  write down patterns. 
 
 
 
% compare two vectors to see if any elements are dif.: 
% find((all_data.pdata(:,:)-all_data.npdata(:,:)) == 0) 
 
 
 addpath 'c:\users\gil\matlab\new' 
 
 
addpath 'c:\Users\gil\matlab\jhlee\IonDistribution' 
addpath 'c:\Users\gil\matlab\jhlee\IonDistribution' 
 
ID_DIR=7; 
 
 
if (computer == 'PCWIN') 
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%if (exist('c:\users\gil') == ID_DIR) 
% computer_subtype='WIN98_JANSKY' 
% str_drive ='f' 
%else  
% computer_subtype='WIN95_JANSKY' 
% str_drive ='e' 
%end 
 
% assume on 'c' 
 
str_drive = 'c' 
 
% \CD Data 07%2F06%2F00 OR 19 
 %%%%%%%%%%%%%%%% 
 % PCWIN 
 % 1 = PCWIN, 2 = UNIX 
 OS.TYPE = 1  
 OS.SEP = '\' 
 root_path = strcat(str_drive,':\users\gil') 
 rel_path = 'bwh_data\CD Data 07%2F00' 
 rel_path = 'bwh_data\CD Data 1999-1' 
 rel_path = 'examples' 
 rel_path = 'test' 
 
 % rel_path = 'bwh_data' 
 log_path = strcat(str_drive,':\users\gil\matlab\new\log') 
 
 %%%%%%%%%%%%%%%% 
else 
 %%%%%%%%%%%%%%%% 
 % PCWIN  
 % 1 = PCWIN, 2 = UNIX 
 OS.TYPE = 2  
 OS.SEP = '/' 
 root_path = '/usr/users/gil/matlab/' 
 rel_path = 'bwh_data' 
 % rel_path = 'bwh_data' 
 log_path = '/usr/users/gil/matlab/log' 
 %%%%%%%%%%%%%%%% 
  
end 
 
 
 
 
 
 
 
 
global PARAM_LINE_START 
global PARAM_LINE_STOP 
more off 
 
PARAM_MAX_LINE = 1; 
PARAM_OS_TYPE = 2; 
PARAM_SERIAL = 3; 
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PARAM_GOOD_PAT = 4; 
PARAM_LINE_START = 5; 
PARAM_LINE_STOP = 6; 
PARAM_AGTI_START = 7; 
SAMP_PER_MIN = 3; 
 
 
MAX_NUM_PARAM = 25; 
% fil_load = 
strcat('c:\users\gil\matlab\new\log\patient_post_',num2str(num_pat_id)) 
 fil_load = 
strcat('c:\users\gil\matlab\new\log\patient_post_',num2str(num_pat_id)) 
 
load (fil_load,'arr_all_pat') 
 
 
 
 
 
NUM_PAT_COL = 180; 
%{ 
idx_idx_pat = find(arr_all_pat.misc(:, PARAM_MAX_LINE) < NUM_PAT_COL*1.1); 
 
 
arr_tmp1 = arr_all_pat.pdata(idx_idx_pat,:,:); 
arr_tmp2 = arr_all_pat.misc(idx_idx_pat,:); 
arr_tmp3 = arr_all_pat.pname(idx_idx_pat); 
 
 
arr_all_pat.pdata = arr_tmp1; 
arr_all_pat.misc = arr_tmp2; 
arr_all_pat.pname = arr_tmp3; 
 
%} 
 
 
% num_shift = SAMP_PER_MIN * 2; 3 per min * 3 min. to shift 
 
% Make next 7*3 = 21 parameters be shifts (param 26 -> 21+25=46). 
% before modification- so use orginal values for paramters' columns!!! 
 
 
real_num_pat =  size(arr_all_pat.pdata,1); 
idx_pat=[1:real_num_pat]; 
 
 
num_time_col = size(arr_all_pat.pdata,3);  % not all are valid- since 
table makes it for largest patient's time points.  also, need to take 
start/stop into account for which time points are valid for a given patient. 
 
for (num_shift=SAMP_PER_MIN * 2:1:SAMP_PER_MIN * 4) 
 
 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, 1:num_time_col -num_shift) 
= arr_all_pat.pdata(idx_pat, PARAM_BP1, num_shift+1:num_time_col ); 
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% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, num_shift+1:num_time_col) = 
arr_all_pat.pdata(idx_pat, PARAM_BP1, num_time_col -num_shift ) * 
ones(1,num_time_col-num_shift); 
 
 
 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+2, 1:num_time_col -num_shift) 
= arr_all_pat.pdata(idx_pat, PARAM_BP2, num_shift+1:num_time_col ); 
% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+2, num_shift+1:num_time_col) = 
arr_all_pat.pdata(idx_pat, PARAM_BP2, num_time_col -num_shift ) * 
ones(1,num_time_col-num_shift); 
 
 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+3, 1:num_time_col -num_shift) 
= arr_all_pat.pdata(idx_pat, PARAM_HR, num_shift+1:num_time_col ); 
% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+3, num_shift+1:num_time_col) = 
arr_all_pat.pdata(idx_pat, PARAM_HR, num_time_col -num_shift ) * 
ones(1,num_time_col-num_shift); 
 
 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+3; 
 
end 
 
 
 
 
% Make next parameter 47 be agt expired slope = [diff(agte) / (1/3 = sampling 
time)] = diff*3; 
for(idx_pat=1:real_num_pat) 
 
 
arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)),3) ) = 
diff(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)) * SAMP_PER_MIN; 
 
% make all transitions from one to another be 0 (i.e. diff for 
[NUMP_SAMP*n+1] -> 0) 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff]; 
 
arr_diff='' 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Make next parameter 48 be agt expired integral = [sum(agte (1:cur_time)) / 
(3 = sampling time)] = units: [Agt E %*min.]; 
for(idx_pat=1:real_num_pat) 
 
for(idx_data=1:length(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)) ) 
 
 
arr_sum = arr_all_pat.pdata(idx_pat, PARAM_AGTE, 1:idx_data); 
 
arr_sum(  find(isnan(arr_sum))  ) = 0; 
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 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) = sum(arr_sum)/3; 
 
end 
 
end 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
 
% Make next parameter 49 be agt expired avg = [sum(agte (1:cur_time)) / 
(number samples)] = units: [Agt E %]; 
for(idx_pat=1:real_num_pat) 
 
for(idx_data=1:length(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)) ) 
 
 
arr_sum = arr_all_pat.pdata(idx_pat, PARAM_AGTE, 1:idx_data); 
 
arr_sum(  find(isnan(arr_sum))  ) = 0; 
 
 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) = 
sum(arr_sum)/length(arr_sum); 
 
end 
 
end 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
 
 
 
% Make next parameter 50 be high hr 'alert signal' 
 
 
%keyboard 
 
for(idx_pat=1:real_num_pat) 
 for(idx_data=1:num_time_col) 
  arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =  
arr_all_pat.pdata(idx_pat, PARAM_HR, idx_data) > 100; 
 end 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
% Make next parameter 51 be high bp 'alert signal' 
 
 
%keyboard 
 
for(idx_pat=1:real_num_pat) 
 for(idx_data=1:num_time_col) 
  arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =  
arr_all_pat.pdata(idx_pat, PARAM_BP1, idx_data) > 140 | 
arr_all_pat.pdata(idx_pat, PARAM_BP2, idx_data) > 90; 
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 end 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
% Make next parameter 52 be high hr/bp 'alert signal' 
 
 
%keyboard 
 
for(idx_pat=1:real_num_pat) 
 for(idx_data=1:num_time_col) 
  arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =  
arr_all_pat.pdata(idx_pat, PARAM_HR, idx_data) > 100 | 
arr_all_pat.pdata(idx_pat, PARAM_BP1, idx_data) > 140 | 
arr_all_pat.pdata(idx_pat, PARAM_BP2, idx_data) > 90; 
 end 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
 
 
 
% Make next parameter 53 be diff sys  slope = [diff(sys) / (1/3 = sampling 
time)] = diff*3; 
for(idx_pat=1:real_num_pat) 
 
 
arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_BP1, :)),3) ) = 
diff(arr_all_pat.pdata(idx_pat, PARAM_BP1, :)) * SAMP_PER_MIN; 
 
% make all transitions from one to another be 0 (i.e. diff for 
[NUMP_SAMP*n+1] -> 0) 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff]; 
 
arr_diff='' 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
% Make next parameter 54 be diff dia  slope = [diff(sys) / (1/3 = sampling 
time)] = diff*3; 
for(idx_pat=1:real_num_pat) 
 
 
arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_BP2, :)),3) ) = 
diff(arr_all_pat.pdata(idx_pat, PARAM_BP2, :)) * SAMP_PER_MIN; 
 
% make all transitions from one to another be 0 (i.e. diff for 
[NUMP_SAMP*n+1] -> 0) 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff]; 
 
arr_diff='' 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
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% Make next parameter 55 be diff hr  slope = [diff(sys) / (1/3 = sampling 
time)] = diff*3; 
for(idx_pat=1:real_num_pat) 
 
 
arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_HR, :)),3) ) = 
diff(arr_all_pat.pdata(idx_pat, PARAM_HR, :)) * SAMP_PER_MIN; 
 
% make all transitions from one to another be 0 (i.e. diff for 
[NUMP_SAMP*n+1] -> 0) 
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff]; 
 
arr_diff='' 
end 
 
MAX_NUM_PARAM = MAX_NUM_PARAM+1; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%keyboard 
num_pat = size(arr_all_pat.pdata, 1); 
 
% arr_all_pat.pdata( 1:size(arr_all_pat.pdata, 1), 1:size(arr_all_pat.pdata, 
2), size(arr_all_pat.pdata, 3) )=0; 
 
 
 
 
 
 
idx_length = 0 
for idx_pat=1:num_pat 
% keyboard 
% line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START); 
 line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START); 
NUM_SAMP = SAMP_PER_MIN * 15; % = 3/min * 15 min. 
 line_stop = min( arr_all_pat.misc(idx_pat, PARAM_LINE_STOP), 
arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP - 1); 
 
 
 idx_length = idx_length + (line_stop - line_start + 1) 
 idx_length_pat(idx_pat) = (line_stop - line_start + 1); 
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end 
 
%all_data.pdata(1:MAX_NUM_PARAM, 1:idx_length) = NaN; 
idx_length 
 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
NUM_COL = 256 
 
max_len = -1 
cur_spot = 1 
for idx_pat=1:num_pat 
  
 
 
 len_start_stop = line_stop - line_start + 1; 
 
for (i=1:len_start_stop) 
 hsv_col_map_tim(cur_spot + i-1,:) = (([(i*NUM_COL/len_start_stop), 
(NUM_COL*.9), (NUM_COL*2/3)]/NUM_COL)' * ones(1, 1 ))';  
end 
 
 
 
 
if (max_len < (line_stop-line_start + 1) ) 
 max_len = (line_stop-line_start + 1); 
 
 hsv_col_map_tim_bar(1:max_len, :) = hsv_col_map_tim(cur_spot:(cur_spot+ 
max_len-1),:); 
 
end 
 
 cur_spot = cur_spot + line_stop-line_start+1; 
 
end 
 
 
 
 
 
 
 
for idx_param=1:MAX_NUM_PARAM 
idx_spot = 1; 
arr_spot(idx_spot) = 1; 
 
 idx_pat=1; 
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% line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START); 
 line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START); 
 
 line_stop = min( arr_all_pat.misc(idx_pat, PARAM_LINE_STOP), 
arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP -1); 
 
 
 
 
 
 all_data.pdata(idx_param, 1:line_stop-line_start+1) = 
arr_all_pat.pdata(1,idx_param,line_start:line_stop); 
 
 arr_spot(idx_spot+1) = arr_spot(idx_spot) + line_stop-line_start+1; 
idx_spot = idx_spot+1; 
 
%%keyboard 
 
 
 
 if (num_pat>1) 
  for idx_pat=2:num_pat 
%   line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START); 
   line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START); 
 
   line_stop = min( arr_all_pat.misc(idx_pat, 
PARAM_LINE_STOP), arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP -1); 
 
 
 
 
 
   aa= all_data.pdata(idx_param,:); 
   bb(1:line_stop-line_start+1) = 
arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop); 
 
 
 
length([aa,bb ]); 
%%keyboard 
size(bb); 
 (line_stop-line_start)+1 + arr_spot(idx_spot); 
 
 
 
 
   all_data.pdata(idx_param, 
arr_spot(idx_spot):(arr_spot(idx_spot) + length(bb)-1)  ) = bb ; 
%keyboard 
bb=0; 
 arr_spot(idx_spot+1) = arr_spot(idx_spot) + line_stop-line_start+1; 
idx_spot = idx_spot+1; 
  end 
 
 end 
end 
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display('stop here!') 
%%%%keyboard 
 
 
 
 
 
 
 
 
 
for idx_param=1:MAX_NUM_PARAM 
 
 
 
num_min = min(min(all_data.pdata(idx_param, :) )) 
if isnan(num_min) 
 num_min  = -1; 
 
end 
 
 
% get one parameter's whole vector across files: 
b(1:length(all_data.pdata(idx_param, :)) )=all_data.pdata(idx_param, :); 
 
b(find(isnan(  b  ))) = num_min; 
 all_data.pdata(idx_param, :) = b; 
 
 
num_std = std(all_data.pdata(idx_param, :) ); 
all_data.npdata(idx_param, :) = norm_funct(all_data.pdata(idx_param, :), 
num_std ) 
 
 
end 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
% [npdata, pmean, pstd] = prestd(all_data.pdata(idx_param,:) ); 
 
%%keyboard 
%all_data.pmean(idx_param) = pmean; 
 
%all_data.pstd(idx_param) = pstd; 
 
 
 
% isnan(all_data.npdata(:,:)) 
% change nan's!!! 
 
all_data.npdata (find(isnan(all_data.npdata(:,:)))) = 0 
 
 
 



 79

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 file_save = strcat(log_path, OS.SEP, 'patient_pca_',num2str(num_pat)) 
 
 
 
% load(file_save, 'arr_all_pat') ;                 
save (file_save, 'all_data', 'arr_all_pat') ;                 
%% 
%keyboard 
% save file_save arr_all_pat.pdata(:,:,:) -ASCII ; 
 
cd (log_path) 
 
 
 
 
 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
 
PARAM_HR_HI = 50 % by pat col no. 
PARAM_BP_HI = 51 % by pat col no. 
PARAM_HR_BP_HI = 52 % by pat col no. 
 
idx_pat=1 
%%for (idx_pat=1:real_num_pat) 
 
%if (any(arr_all_pat.pdata(idx_pat,48,:)>0)) 
%display('Yes') 
%else 
%display('Nope') 
%end 
 
 
 
        fid = fopen(strcat('exp', num2str(idx_pat),'.txt'),'w'); 
for(idx_param=1:MAX_NUM_PARAM) 
 fprintf(fid,'Param #%d',idx_param); 
 for(idx_data=1:num_time_col) 
         fprintf(fid,'%6.2f  ', arr_all_pat.pdata(idx_pat, idx_param, 
idx_data),  arr_all_pat.pdata(1, idx_param, idx_data)); 
 end 
 fprintf(fid,'\n\n'); 
end 
        fclose(fid); 
%%end 
 
%%%%keyboard 
 
 
 
 str_title = strcat('Number of Patients: ', num2str(num_pat), '  ') 
 str_x = 'Samples'; 
 str_y = strcat(' Param 1-6, Patient #', num2str(idx_pat) ); 
 
 figure 
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 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 for(idx_param=[1,2,3,4,5,6]) 
  subplot(7, 1, idx_param), plot(  1:idx_length_pat(1)   , 
all_data.pdata(idx_param,1:idx_length_pat(1) ) ) 
 end 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
% figure 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 for(idx_param=[1,2,3,4,5,6]) 
  subplot(7, 1, idx_param), plot(  1:idx_length_pat(2)  , 
all_data.pdata(idx_param,idx_length_pat(1)+1:idx_length_pat(1) + 
idx_length_pat(2) ) ) 
 end 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
% figure 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 for(idx_param=[1,2,3,4,5,6]) 
  subplot(7, 1, idx_param), plot(  1:idx_length_pat(3)  , 
all_data.pdata(idx_param,idx_length_pat(1) + 
idx_length_pat(2)+1:idx_length_pat(1) + idx_length_pat(2) + idx_length_pat(3) 
) ) 
 end 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 
 
 
 
 
 
 
 
 
 
% figure 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 for(idx_param=[1,2,3,4,5,6]) 
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  subplot(7, 1, idx_param), plot(  1:idx_length_pat(4)  , 
all_data.pdata(idx_param,idx_length_pat(1) + idx_length_pat(2) + 
idx_length_pat(3)+1:idx_length_pat(1) + idx_length_pat(2) + idx_length_pat(3) 
+ idx_length_pat(4) ) ) 
 end 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 
 
% figure 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
 for(idx_param=[1,2,3,4,5,6]) 
  subplot(7, 1, idx_param), plot(  1:idx_length_pat(5)  , 
all_data.pdata(idx_param,idx_length_pat(1) + idx_length_pat(2) + 
idx_length_pat(3)+idx_length_pat(4)+1:idx_length_pat(1) + idx_length_pat(2) + 
idx_length_pat(3) + idx_length_pat(4) + idx_length_pat(5)) ) 
 end 
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', 
str_y, ' vs. ', str_x )) 
 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%b = [all_data.npdata(1:3,:) ; all_data.npdata(5,:) ; 
all_data.npdata(8:19,:) ; all_data.npdata(21:24,:) ]; 
keyboard 
 
 
%b = [all_data.npdata(1:3,:); all_data.npdata(5:19,:) ; 
all_data.npdata(21:24,:); all_data.npdata(26:MAX_NUM_PARAM,:)]; 
b = [all_data.npdata(1:3,:); all_data.npdata(5:19,:) ; 
all_data.npdata(21:24,:); all_data.npdata(PARAM_HR_SHIFT_m240,:); 
all_data.npdata(47:MAX_NUM_PARAM,:)]; 
bp=[all_data.pdata(1:3,:); all_data.pdata(5:19,:) ; all_data.pdata(21:24,:); 
all_data.pdata(PARAM_HR_SHIFT_m240,:); all_data.pdata(47:MAX_NUM_PARAM,:)]; 
 
 
 
 
% removed shifted versions above... 
 
all_data.sel_npdata(:,:) = b(:,:); 
all_data.sel_pdata(:, :) = bp(:,:); 
num_sel_param = size(all_data.sel_npdata(:,:), 1); 
 
 
 
 figure 
% imagesc(all_data.npdata(:,:)) 
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 imagesc(all_data.sel_npdata(:,:)) 
Title(strcat('Image Map of Dataset: ',num2str(idx_pat),' Patients.  Paramters 
vs. Time')) 
xlabel('Time') 
ylabel('Paramters') 
 colorbar 
 
 
 
 imagesc(all_data.sel_npdata(:,1:135)) 
Title(strcat('Image Map of 3 Patients After Pre-Processing/Interpolation. 
Paramters vs. Time')) 
xlabel('Time') 
ylabel('Paramters') 
 colorbar 
 
%%keyboard 
 
 
 
arr_del=PARAM_HR_SHIFT_m240_mod; 
[num_evec_1, x, num_scr_plot] = pca_funct(all_data.sel_npdata, arr_del); 
 
 
x_pca = x; 
 
 
 
 
 
display('22') 
 
%%%%keyboard 
for (i=1:7) 
[num_evec_1_srt, num_evec_1_idx] = sort(abs(num_evec_1(:,i))); 
num_evec_1_srt_des = flipud(num_evec_1_srt); 
num_evec_1_idx_des = flipud(num_evec_1_idx); 
 
str_msg = sprintf('Eig_vec: #%d, max idx: %d %d %d %d %d, max. values: %f %f 
%f %f %f\n', i, num_evec_1_idx_des(1), num_evec_1_idx_des(2), 
num_evec_1_idx_des(3), num_evec_1_idx_des(4), num_evec_1_idx_des(5),        
num_evec_1_srt_des(1), num_evec_1_srt_des(2), num_evec_1_srt_des(3), 
num_evec_1_srt_des(4), num_evec_1_srt_des(5)) 
 
 
 
 arr_param_name=make_arr_param_name; 
 
 
 
 
 
 % NOTE: strcat = trick to get cells to be converted to strings!! 
 
 
 for (i=1:5) 
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  display(arr_param_name_mod(num_evec_1_idx_des(i), 
arr_param_name)) 
 
 end 
 
 
end 
 
 
%keyboard 
%for idx_param=1:3 
% num_std = std(x(:, idx_param) ); 
% nx(:, idx_param) = norm_funct(x(:, idx_param), num_std ); 
%end 
 
 
 
%[num_evec_pca, pca_x, num_scr_plot_pca] = pca_funct(nx', arr_del); % note 
the ' 
 
 
 
 
% cov should make all approx 1 if pca done before already-> checks ok! 
 
%str_title = strcat(datestr(now,2), ', ', datestr(now,14),':      # Patients: 
',num2str(num_pat),', Log(EigValue) vs. Index '); 
%eig_graph(num_scr_plot_pca, '', length(num_scr_plot_pca), str_title) 
 
 
 
 
 
 
 
%str_title = strcat('Number of Patients: ', num2str(num_pat), '  ') 
%str_x = 'Samples'; 
%str_y = ' PC1, PCA of PC1: PC PC1, PC PC2, PC PC3 and HR'; 
 
 
%figure 
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
 
%num_pc=1 
%subplot(7, 1, 1), plot(  1:length(x(:, num_pc) )  , x(:, num_pc) ) 
 
%for(num_pc=1:3) 
%subplot(7, 1, num_pc+1), plot(  1:length(pca_x(:, num_pc) )  , pca_x(:, 
num_pc) ) 
%end 
 
%% Param. #5 = PR = [Beats per min.] 
 
%subplot(7, 1, 5+2), plot(  1:length(all_data.npdata(5,:) ), 
all_data.npdata(5,:) ) 
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%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
 
keyboard 
%[num_s, num_noise, num_order] = ion(all_data.sel_npdata(:,:)', 10); %% 
 
cd (log_path) 
%save('ION_data', 'num_s', 'num_noise', 'num_order')   %% 
num_s='';num_noise=''; num_order=''; load('ION_data', 'num_s', 'num_noise', 
'num_order')   % 
display('ion done...') 
 
 
 
%%%%keyboard 
 
 
 
for idx_param=1:num_sel_param 
all_data.ionpdata(idx_param, :) = all_data.sel_npdata(idx_param, :)./ 
sqrt(num_s(idx_param)) ; % num_s = ion norm 
end 
 
 
 
arr_del = PARAM_HR_SHIFT_m240_mod; 
[num_evec_ion, x_ion, num_scr_plot_ion] = pca_funct(all_data.ionpdata, 
arr_del); 
x=''; 
x=x_ion; 
 
display('22') 
 
 
% sorting within a eigenvector for parameter weight value... 
 
display('params'); 
for (i=1:7) 
 [num_evec_1_srt, num_evec_1_idx] = sort(abs(num_evec_ion(:,i))); 
num_evec_ion(num_evec_1_idx_des(1),i) 
 
 num_evec_1_srt_des = flipud(num_evec_1_srt); 
 num_evec_1_idx_des = flipud(num_evec_1_idx); 
 
 arr_param_name=make_arr_param_name; 
 
 
 
 
 
 % NOTE: strcat = trick to get cells to be converted to strings!! 
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 str_msg = sprintf('Eig_vec: #%d, max idx: %d %d %d %d %d, max. values: 
%f %f %f %f %f\n', i, num_evec_1_idx_des(1), num_evec_1_idx_des(2), 
num_evec_1_idx_des(3), num_evec_1_idx_des(4), num_evec_1_idx_des(5),        
num_evec_1_srt_des(1), num_evec_1_srt_des(2), num_evec_1_srt_des(3), 
num_evec_1_srt_des(4), num_evec_1_srt_des(5)) 
 for (i=1:5) 
  display(arr_param_name_mod(num_evec_1_idx_des(i), 
arr_param_name)) 
 
 end 
 
end 
 
% REMOVE the predicted HR value so no answer given to predictor!!! 
num_evec_ion(arr_del,:)=0; 
 
display('final lin. estimator'); 
keyboard 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
%_SHIFT_m240 
 
 
%x_ion=x_pca; 
 
%,24:32 
 
 
%x_ion=all_data.sel_pdata([1:22,24:32],:)'; 
%x_ion=''; 
%x_ion=all_data.sel_pdata([1:5],:)'; 
 
 
 
num_samp_pred = 7; 
num_samp_shift = 5; 
%num_ion=31; 
 
num_ion=5; 
num_time_col_cat_new = length(x_ion(:,1)) - num_samp_pred*num_pat - 
num_samp_shift*num_pat;   % NOTE: num_samp_pred (since deleted upon shifting) 
 
  
 
 
%x_ion(1:num_train, 2)' x_ion(1:num_train, 3)' x_ion(1:num_train, 4)' 
x_ion(1:num_train, 5)' x_ion(1:num_train, 6)' 
 
 
 
size( x_ion(:, 1)'); 
 
num_train = fix( (num_time_col_cat_new)*(2/3) ); % 3/4 
 
% note the ' 
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y = all_data.pdata(PARAM_HR, :)';  
 
%y = all_data.pdata(PARAM_BPM, :)'; 
 
Y_comp = y; 
%% shift y by shift_pred = 8 (=2 min, 40 sec) 
shift_pred = num_samp_pred; 
 
if (~isempty(find(isnan(y)))) 
 error('NaN found in data!') 
end 
 
shift_pred = num_samp_pred; 
for (cur_spot = arr_spot(1:length(arr_spot)-1) ) 
 
 for (cur_loc = 1:num_samp_pred + num_samp_shift) 
 
 y(cur_spot + cur_loc - 1)=NaN; 
 
 end 
 
end 
 y=y (find(~isnan(y)));       % must delete only after all are found- 
else alignment markers get off... 
 
 
shift_pred = num_samp_pred; 
 
for (cur_spot = arr_spot(2:length(arr_spot)-1) ) %  
 
 for (cur_loc = 1:num_samp_shift)  %num_samp_shift %% 2 
num_samp_pred  num_samp_shift 
 
 Y_comp(cur_spot + cur_loc - 1)=NaN;   
 
 end 
 
end 
 
 
 
 
% delete trailing shift_pred from Y_comp 
for (cur_spot = arr_spot(2:length(arr_spot)) )  %% 
 
 for (cur_loc = 1:num_samp_pred)   %% 
 
 Y_comp(cur_spot - cur_loc )=NaN;  %% 
 
 end      %% 
 
end       %% 
% Y_comp_old = Y_comp;    
 Y_comp = Y_comp (find(~isnan(Y_comp)));       % must delete only after 
all are found- else arr_spot alignment markers get off... 
 
 



 87

 
 
 
 
 
for(idx_ion=1:num_ion) 
 if (~isempty(find(isnan(x_ion(:, idx_ion))))) 
  error('NaN found in data!') 
 end 
%x_pred(:,idx_ion) = x_ion(:,idx_ion); 
end 
 
for(idx_shift=1:num_samp_shift) 
 x_hr(1:size(all_data.pdata, 2), idx_shift) = 
all_data.pdata(PARAM_DERIV_HR, : )'; %%%%^^^^  % _SHIFT_m240 
 x_pred(1:size(x_ion, 1),1:num_ion, idx_shift) = x_ion(1:size(x_ion, 
1),1:num_ion); 
end 
 
 
if (~isempty(find(isnan(x_hr)))) 
 error('NaN found in data!') 
end 
 
if (~isempty(find(isnan(x_pred)))) 
 error('NaN found in data!') 
end 
 
 
%  
 
 for (cur_spot = arr_spot(1:length(arr_spot)-1) ) 
 
  for (shift_pred=0:1:num_samp_shift-1) 
   for (cur_loc = 1:num_samp_shift - shift_pred) 
    % remove leading edge 
    for (idx_ion=1:num_ion) 
     x_pred(cur_spot + cur_loc - 1, idx_ion, 
shift_pred+1) = NaN; 
    end 
 
     x_hr(cur_spot + cur_loc - 1, shift_pred+1) = 
NaN; 
 
   end 
 
    
  end 
 end 
 
 
 
 
 for (cur_spot = arr_spot(2:length(arr_spot)) ) 
 
  for (shift_pred=0:1:num_samp_shift-1) 
   for (cur_loc = 1:num_samp_pred + shift_pred) 
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    % remove leading edge 
    for (idx_ion=1:num_ion) 
     x_pred(cur_spot - cur_loc, idx_ion, 
shift_pred+1) = NaN; 
     
    end 
     x_hr(cur_spot - cur_loc, shift_pred+1) = NaN; 
 
   end 
 
 
  end 
 end 
 
x_pred_new=''; 
x_pred_new(size(x_pred, 1) ,num_ion,num_samp_shift)=0; 
 
 
 
 
 
 
 
 
for (i=1:num_ion) 
 for (idx_shift=1:num_samp_shift) 
  x_pred_new(1:length(find(~isnan(x_pred(:, i, idx_shift))) ),  i, 
idx_shift )=x_pred (find(~isnan(x_pred(:, i, idx_shift))),  i, idx_shift ); % 
must delete only after all are found- else alignment markers get off... 
end 
end 
 
x_hr_new(size(x_pred, 1) ,num_samp_shift)=0; 
 for (idx_shift=1:num_samp_shift) 
  x_hr_new(1:length(find(~isnan(x_hr(:, idx_shift))) ), idx_shift ) 
= x_hr (find(~isnan(x_hr(:, idx_shift))), idx_shift); % must delete only 
after all are found- else alignment markers get off... 
 end 
 
 
 
 
 
X_train = [ones(num_train,1 )  ]  ; 
 
for (i=1:num_ion) 
 for (idx_shift=1:num_samp_shift) 
  X_train=[X_train, x_pred_new( 1:num_train , i, idx_shift) ]; 
 end  
end 
%% 
% for (idx_shift=1:num_samp_shift) 
%  X_train=[X_train, x_hr_new( 1:num_train , idx_shift) ]; 
% end  
%% 
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arr_test_set = (num_train+1:(num_time_col_cat_new)); 
 
 
 
 
 
X_test = [ones((num_time_col_cat_new-num_train),1 )   ]; 
 
 
for i=1:num_ion 
 for (idx_shift=1:num_samp_shift) 
  X_test=[X_test, x_pred_new( arr_test_set , i, idx_shift) ]; 
 end  
end 
 
%% 
% for (idx_shift=1:num_samp_shift) 
%  X_test=[X_test, x_hr_new( arr_test_set , idx_shift) ]; 
% end  
%% 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
%   
%  
 
%h=X_train; 
%X_train=X_test; 
%X_test = h; 
 
 
%X_train = [ones((num_train),1 ) , rand(num_train,num_samp_shift*num_ion)]; 
%X_test = [ones((num_time_col_cat_new-num_train),1 ), 
rand(num_time_col_cat_new - num_train,num_samp_shift*num_ion)]; 
 
%%%%keyboard 
a = X_train\(y(1:num_train) ); 
 
% NOTE: 1:num_train = UNDEFINED for Y_test!! 
Y_test='' 
Y_test(num_train+1:num_time_col_cat_new) = X_test*a  
Y_test=Y_test'; 
 
Y_train = X_train*a;  
 
 
display('stop here') 
%%%%keyboard 
res_test = Y_test(num_train+1:num_time_col_cat_new) - 
y(num_train+1:num_time_col_cat_new); % = predicted - actual 
 
res_train = Y_train - y(1:num_train); % = predicted - actual 
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% note the ' 
% Y_comp = all_data.pdata(PARAM_HR, :)';   
% Y_comp defined earlier! 
 
res1 = Y_comp(num_train+1:num_time_col_cat_new) - 
y(num_train+1:num_time_col_cat_new); % = predicted - actual 
 
 
Y_avg='' 
for(i=num_train+1:num_time_col_cat_new) 
 Y_avg(i) = mean(Y_comp(i-2:i)); 
end 
 
Y_avg = Y_avg'; 
 
res2 = Y_avg(num_train+1:num_time_col_cat_new) - 
y(num_train+1:num_time_col_cat_new); % = predicted - actual 
 
 
 
MaxErr_YTestTrain = max_error(Y_train(1:num_train),y(1:num_train) ) 
SumSq_YTestTrain = rms_error(Y_train(1:num_train),y(1:num_train) ) 
 
 
MaxErr_YLinTest = max_error(Y_test(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new)  ) 
SumSq_YLinTest = rms_error(Y_test(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new) ) 
mean(res_test) 
RMS_YLinTestRes = rms_error(res_test , mean(res_test) ) 
 
% ------------------------------------------------------------- 
MaxErr_YCompTrain = max_error(Y_comp(1:num_train),y(1:num_train) ) 
SumSq_YCompTrain = rms_error(Y_comp(1:num_train),y(1:num_train) ) 
 
 
MaxErr_YCompTest = max_error(Y_comp(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new)) 
SumSq_YCompTest = rms_error(Y_comp(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new) ) 
mean(res1) 
RMS_YCompTestRes = rms_error(res1 , mean(res1) ) 
 
% ------------------------------------------------------------- 
MaxErr_YAvgTrain = max_error(Y_avg(1:num_train),y(1:num_train) ) 
SumSq_YAvgTrain = rms_error(Y_avg(1:num_train),y(1:num_train) ) 
 
 
MaxErr_YAvgTest = max_error(Y_avg(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new)) 
SumSq_YAvgTest = rms_error(Y_avg(num_train+1:num_time_col_cat_new), 
y(num_train+1:num_time_col_cat_new) ) 
mean(res2) 
RMS_YAvgTestRes = rms_error(res2 , mean(res2) ) 
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%10.44 
%15.67 
%15.96 
 
 
%____________________________________ 
 
figure, plot(1:num_train, res_train, '+') 
Title('Residues: ION PCA-Based Predictor Training.  Heart Rate vs. Time') 
 
figure, plot(1:num_train, Y_train(1:num_train), 'rx', 1:num_train, 
y(1:num_train), 'bo') 
Title('ION PCA-Based Predictor Training.  Heart Rate vs. Time') 
legend('Prediction','Actual Dataset'); 
 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), 
res_test, '+') 
Title('Residues: ION PCA-based Predictor Test.  Heart Rate vs. Time') 
 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), 
Y_test(num_train+1:num_time_col_cat_new), 'rx', 1:length( 
x_ion((num_train+1:num_time_col_cat_new), 1)), 
y(num_train+1:num_time_col_cat_new), 'bo') 
Title('ION PCA-based Predictor Test.  Heart Rate vs. Time') 
legend('Prediction','Actual Dataset'); 
 
 
 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), res1, 
'+') 
Title('Residues: Static Heart Rate Predictor Test.  Heart Rate vs. Time') 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), 
Y_comp(num_train+1:num_time_col_cat_new), 'rx', 1:length( 
x_ion((num_train+1:num_time_col_cat_new), 1)), 
y(num_train+1:num_time_col_cat_new), 'bo') 
Title('Static Heart Rate Predictor Test.  Heart Rate vs. Time') 
legend('Prediction','Actual Dataset'); 
 
 
 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), res2, 
'+') 
Title('Residues: Heart Rate Average-Based Predictor Test.  Heart Rate vs. 
Time') 
 
figure, plot(1:length( x_ion((num_train+1:num_time_col_cat_new), 1)), 
Y_avg(num_train+1:num_time_col_cat_new), 'rx', 1:length( 
x_ion((num_train+1:num_time_col_cat_new), 1)), 
y(num_train+1:num_time_col_cat_new), 'bo') 
Title('Heart Rate Average-Based Predictor Test.  Heart Rate vs. Time') 
legend('Prediction','Actual Dataset'); 
 
%____________________________________ 
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%str_title = strcat(datestr(now,2), ', ', datestr(now,14),':      # Patients: 
',num2str(num_pat),', Log(EigValue) vs. Index '); 
str_title = strcat('Scree Plot Subset for 46 Patient Dataset With and Without 
ION. Sorted by Log(Eigenvalue)'); 
 
eig_graph(num_scr_plot, num_scr_plot_ion, 6, str_title) 
legend('Without ION', 'With ION'); 
str_title = strcat('Scree Plot for 46 Patient Dataset With and Without ION. 
Sorted by Log(Eigenvalue)'); 
%eig_graph(num_scr_plot, num_scr_plot_ion, 16, str_title) 
eig_graph(num_scr_plot, num_scr_plot_ion, length(num_scr_plot), str_title) 
legend('Without ION', 'With ION'); 
 
display('Delta(1-2)') 
(log(num_scr_plot_ion(1)) - log(num_scr_plot_ion(2))) - (log(num_scr_plot(1)) 
- log(num_scr_plot(2))) 
display('Delta(2-3)') 
(log(num_scr_plot_ion(2)) - log(num_scr_plot_ion(3))) - (log(num_scr_plot(2)) 
- log(num_scr_plot(3))) 
display('Delta(3-4)') 
 (log(num_scr_plot_ion(3)) - log(num_scr_plot_ion(4))) - 
(log(num_scr_plot(3)) - log(num_scr_plot(4))) 
display('Delta(4-5)') 
 (log(num_scr_plot_ion(4)) - log(num_scr_plot_ion(5))) - 
(log(num_scr_plot(4)) - log(num_scr_plot(5))) 
 
 
keyboard 
display('really stop here!') 
 
 
 
 
for (idx_param=1:size(num_evec_ion, 1)) 
 for (idx_shift=1:num_samp_shift) 
 
  num_data(idx_param,idx_shift) = 0; 
  for (idx_ion=1:num_ion) 
  
 num_data(idx_param,idx_shift)=num_data(idx_param,idx_shift)+a(idx_ion+(
idx_shift-1)*  num_ion  +1)*num_evec_ion(idx_param, idx_shift); 
  end 
 
  idx_param 
  if (idx_param==4)  
   display('here') 
   num_data(idx_param,:) 
   display('done') 
  end 
 
 end 
 num_data_row(idx_param)=sum(num_data(idx_param,:)); 
 
end 
num_data_row 
num_data 
num_evec_ion(:,:) 
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keyboard 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
num_thr = 100 
%%num_thr = 106 
%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection / False Alarm 
 
for (hr_real_thresh = [65,num_thr,120]) 
 
hr_min_thresh=30 
%hr_real_thresh=100 
hr_max_thresh=180 
hr_step_thresh=1 
 
 
 
for (j=1:3) 
 
 
switch (j) 
 
case 1 
y_act = Y_test(num_train+1:num_time_col_cat_new); 
case 2 
y_act = Y_comp(num_train+1:num_time_col_cat_new); 
case 3 
y_act = Y_avg(num_train+1:num_time_col_cat_new); 
end 
 
 
 
y_detect = y_act; 
 
y_dreal = y(num_train+1:num_time_col_cat_new); 
 
 
 idx_detect = find(y_dreal <= hr_real_thresh); 
y_dreal(idx_detect)= 0 ; 
 
 idx_detect = find(y_dreal > 0); 
y_dreal(idx_detect)= 1 ; 
 
 
 
 
 
i=0; 
for (num_thresh= hr_min_thresh:hr_step_thresh:hr_max_thresh) 
 
 idx_detect = find(y_act <= num_thresh); 
y_detect(idx_detect)= 0 ; 
 
 idx_detect = find(y_act > num_thresh); 
y_detect(idx_detect)= 1 ; 
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%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection 
i=i+1; 
 
%%%    sum of all that should be detected - 
 
 
%  sum of num of no detection when there should have been = num. rightly 
detected 
% num_right/sum of all that should be detected  = prob. detection. 
 
num_right = sum(y_detect(find(y_dreal>0))); 
 
num_tachy = sum(y_dreal(find(y_dreal>0))); % sum of all 
 
 
if (num_tachy==0)  
num_tachy = 1e-10; 
end 
 
arr_pdetect(j, i) = num_right / num_tachy; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%  False Alarm 
%       sum of all that should NOT be detected - 
sum of num of YES detections when there should NOT have been = num. false 
alarms 
 
 
 
 
 
% sum of num of YES detections when there should NOT have been/ sum of all 
that should NOT be detected  = prob. fa 
num_no = length(find(y_dreal==0)); % sum of all (can't sum zeroes- would get 
zero- so we take the length of the 'find') 
 
 
 
if (num_no==0)  
num_no = 1e-10; 
end 
 
arr_pfa(j,i) = sum(y_detect(find(y_dreal==0))) / num_no; 
 
 
 
 
end 
 
 
 
 
 
 
 
end 
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figure 
plot(arr_pfa(1,:), arr_pdetect(1, :) , 'rx', arr_pfa(2,:), arr_pdetect(2, :), 
'bo', arr_pfa(3,:), arr_pdetect(3, :),'k+') 
legend('ION PCA-Based Predictor', 'Static Predictor', 'Average-Based 
Predictor') 
str_title = strcat('Number of Patients: ', num2str(num_pat), '  ') 
str_x = 'P(False Alarm)' 
str_y = 'P(Detection)' 
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
Title(strcat(str_y, ' vs. ', str_x,'.  Tachycardia Threshold: 
',num2str(hr_real_thresh), ' BPM' )) 
%%Title(strcat(str_y, ' vs. ', str_x,'.  Threshold: 
',num2str(hr_real_thresh), ' mmHg' )) 
 
xlabel(str_x) 
ylabel(str_y) 
 
end 
 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
hr_min_thresh=30 
%hr_real_thresh=100 
hr_max_thresh=180 
hr_step_thresh=1 
 
 
 
for (j=1:5) 
 
 
switch (j) 
 
case 1 
y_act = Y_test(num_train+1:num_time_col_cat_new); 
hr_real_thresh=60 
case 2 
hr_real_thresh=80 
case 3 
hr_real_thresh=100 
case 4 
hr_real_thresh=120 
case 5 
hr_real_thresh=140 
end 
 
 
 
y_detect = y_act; 
 
y_dreal = y(num_train+1:num_time_col_cat_new); 
 
 
 idx_detect = find(y_dreal <= hr_real_thresh); 
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y_dreal(idx_detect)= 0 ; 
 
 idx_detect = find(y_dreal > 0); 
y_dreal(idx_detect)= 1 ; 
 
 
 
 
 
i=0; 
for (num_thresh= hr_min_thresh:hr_step_thresh:hr_max_thresh) 
 
 idx_detect = find(y_act <= num_thresh); 
y_detect(idx_detect)= 0 ; 
 
 idx_detect = find(y_act > num_thresh); 
y_detect(idx_detect)= 1 ; 
 
%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection 
i=i+1; 
 
%%%    sum of all that should be detected - 
 
 
%  sum of num of no detection when there should have been = num. rightly 
detected 
% num_right/sum of all that should be detected  = prob. detection. 
 
num_right = sum(y_detect(find(y_dreal>0))); 
 
num_tachy = sum(y_dreal(find(y_dreal>0))); % sum of all 
 
 
if (num_tachy==0)  
num_tachy = 1e-10; 
end 
 
arr_pdetect(j, i) = num_right / num_tachy; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%  False Alarm 
%       sum of all that should NOT be detected - 
sum of num of YES detections when there should NOT have been = num. false 
alarms 
 
 
 
 
 
% sum of num of YES detections when there should NOT have been/ sum of all 
that should NOT be detected  = prob. fa 
num_no = length(find(y_dreal==0)); % sum of all (can't sum zeroes- would get 
zero- so we take the length of the 'find') 
 
 
 
if (num_no==0)  
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num_no = 1e-10; 
end 
 
arr_pfa(j,i) = sum(y_detect(find(y_dreal==0))) / num_no; 
 
 
 
 
end 
 
 
 
 
 
 
end 
 
 
figure 
plot(arr_pfa(1,:), arr_pdetect(1, :) , 'rx', arr_pfa(2,:), arr_pdetect(2, :), 
'bo', arr_pfa(3,:), arr_pdetect(3, :),'k+',arr_pfa(4,:), arr_pdetect(4, :) , 
'gv', arr_pfa(5,:), arr_pdetect(5, :) , 'm*') 
legend('Threshold: 70 BPM', 'Threshold: 90 BPM', 'Threshold: 100 BPM', 
'Threshold: 110 BPM', 'Threshold: 130 BPM') 
%%legend('Threshold: 70 mmHg', 'Threshold: 90 mmHg', 'Threshold: 106 mmHg', 
'Threshold: 110 mmHg', 'Threshold: 130 mmHg') 
 
%str_title = strcat('Number of Patients: ', num2str(num_pat), '  ') 
str_x = 'P(False Alarm)' 
str_y = 'P(Detection)' 
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
Title(strcat(str_y, ' vs. ', str_x,' of ION PCA-Based Predictor for Various 
Thresholds')) 
 
xlabel(str_x) 
ylabel(str_y) 
 
 
 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^ 
 
 
keyboard 
 
 
x=x_ion; 
 
% Plot PC1 vs. n (not necessarily evenly spaced) 
 
% plot_graph(1:length(x(:,1)), x(:,1), strcat('Number of Patients: ', 
num2str(num_pat), '  '), 'Samples', 'PC1') 
 
 
 
str_title = strcat('Number of Patients: ', num2str(num_pat), '  ') 
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str_x = 'Samples'; 
str_y = ' PC1, PC2, PC3 and HR'; 
 
 
figure 
Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
 
for(num_pc=1:5) 
subplot(11, 1, 2*num_pc-1), plot(  1:length(x(:, num_pc) )/3  , 
x(1:length(x(:, num_pc) )/3, num_pc) ) 
 
Title(strcat('PC', num2str(num_pc), ' vs. Time')) 
end 
 
% Param. #5 = PR = [Beats per min.] 
 
subplot(11, 1, 11), plot(  1:length(all_data.npdata(PARAM_HR,:) )/3, 
all_data.pdata(PARAM_HR,1:length(all_data.npdata(PARAM_HR,:) )/3) ) 
Title(strcat('Heart Rate vs. Time')) 
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, ' 
vs. ', str_x )) 
 
 
 
 
cur_spot = 1; 
 
for i=1:num_pat 
%   [Hue,   Saturation, Value] /Normalize to 1 
  
%%keyboard 
%length(  (([(i*NUM_COL/num_pat), (NUM_COL*.5), (NUM_COL*1/3)]/NUM_COL)' * 
ones(1, idx_length_pat(i)) )') 
%cur_spot:cur_spot+idx_length_pat(i)-1; 
 
% 0.9 luminosity, ones() for columns! 
if (i==32 | i==10 | i==24) 
idx_pat=i; 
else idx_pat=1; 
end 
 
 
hsv_col_map_pat(cur_spot:cur_spot+idx_length_pat(i)-1,:) = 
(([(idx_pat*NUM_COL/num_pat), (NUM_COL*.9), (NUM_COL*2/3)]/NUM_COL)' * 
ones(1,idx_length_pat(i) ))';  
 
hsv_col_map_bar(i,:) = hsv_col_map_pat(cur_spot,:); 
 
cur_spot = cur_spot+idx_length_pat(i)-1; 
 
end 
 
rgb_col_map_pat = hsv2rgb(hsv_col_map_pat); 
rgb_col_map_bar = hsv2rgb(hsv_col_map_bar); 
 
 



 99

 
 
 
num_min = min(size(x,1), length(rgb_col_map_pat) ) 
 
% plot_graph(x(:,2), x(:,1), strcat('Number of Patients: ', num2str(num_pat), 
'  '), 'PC2', 'PC1') 
 
arr_x = x(1:num_min,2); arr_y = x(1:num_min,1); 
scatter_graph(arr_x, arr_y, strcat('Number of Patients: ', num2str(num_pat), 
'  '), 'PC2', 'PC1',[10]*ones(num_min,1)','','') 
 
arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3); 
scatter3_graph(arr_x, arr_y, arr_z, strcat('Number of Patients: ', 
num2str(num_pat), '  '), 'PC3', 'PC2', 'PC1', [10]*ones(num_min,1)','','') 
 
 
 
 
 
 
 
 
 
%surface(1:num_pat,ones(1,num_pat),ones(1,num_pat),rgb_col_map_bar) 
 
size(rgb_col_map_pat) 
%size(arr_x) 
figure 
bar(ones(2,num_pat),'stacked'), colormap(rgb_col_map_bar) 
 
arr_x = x(1:num_min,2);arr_y = x(1:num_min,1); 
%keyboard 
%scatter_graph(arr_x, arr_y, strcat('Number of Patients: ', num2str(num_pat), 
'  '), 'PC2', 'PC1', [5]*ones(length(arr_x),1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
scatter_graph(arr_x, arr_y, strcat('Scatter Plot of: PC1 vs. PC2 (Colored by 
Patient)'), 'PC2', 'PC1', [5]*ones(length(arr_x),1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
 
 
%% scatter(1:30,ones(1, num_pat), [200]*ones(num_pat,1)', rgb_col_map_bar, 
'filled') 
%keyboard 
 
 
arr_x = x(1:num_min,3);arr_y = x(1:num_min,1); 
 
scatter_graph(arr_x, arr_y, strcat('Scatter Plot of PC1 vs. PC3 (Colored by 
Patient)'), 'PC3', 'PC1', [5]*ones(length(arr_x),1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
 
 
arr_x = x(1:num_min,3);arr_y = x(1:num_min,2); 
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scatter_graph(arr_x, arr_y, strcat('Scatter Plot of PC2 vs. PC3 (Colored by 
Patient)'), 'PC3', 'PC2', [5]*ones(length(arr_x),1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
 
 
arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3); 
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and 
PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3', [10]*ones(num_min,1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
% line([-40,40],[10,10],[8,0]) 
patch([-75,-75,75,75],[-10,10,10,-10],[10,12,-6,-8],'b') 
 
 
 
arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3); 
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and 
PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3', [10]*ones(num_min,1)', 
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar ) 
% line([-40,40],[10,10],[8,0]) 
patch([-75,-75,75,75],[-10,10,10,-10],[9,9,-6,-6],'g') 
line([-30,30],[10,10],[-6,6]) 
 
scatter3_graph(arr_x(1:88,1), arr_y(1:88,1), arr_z(1:88,1), strcat('3-D 
Scatter Plot of PC1, PC2, and PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3', 
[10]*ones(88,1)', rgb_col_map_pat(1:88,1:3), rgb_col_map_bar([1,2],:)  ) 
 
 
 
%keyboard 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
display('3d time graphs') 
 
keyboard 
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rgb_col_map_tim = hsv2rgb(hsv_col_map_tim); 
rgb_col_map_tim_bar = hsv2rgb(hsv_col_map_tim_bar); 
 
arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3); 
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and 
PC3 (Colored by Time From Induction of Inhaled Gas)'), 'PC1', 'PC2', 'PC3', 
[10]*ones(num_min,1)', rgb_col_map_tim(1:num_min,1:3), rgb_col_map_tim_bar ) 
 
 
 
 
 
 
 
 
 
% dedicated to the sweet girl whose name I have yet to discover... 
%figure 
 
%bar(1:4, log(num_scr_plot(1:4) ), 1) 
%Title(strcat(datestr(now,2), ', ', datestr(now,14),':      # Patients: 
',num2str(num_pat),', Log(EigValue) vs. Index ')) 
%xlabel('Index') 
%ylabel('Log(EigValue)') 
 
 
%%str_title = strcat(datestr(now,2), ', ', datestr(now,14),':      # 
Patients: ',num2str(num_pat),', Log(EigValue) vs. Index '); 
 
%%eig_graph(num_scr_plot, '', 4, str_title) 
%eig_graph(num_scr_plot, '', 16, str_title) 
%%eig_graph(num_scr_plot, '', length(num_scr_plot), str_title) 
 
 
%keyboard 
 
 
 
 
%str_title = strcat(datestr(now,2), ', ', datestr(now,14),':      Patient 
#',num2str(idx_pat),', Paramters vs. Time'); 
%image_graph(all_data.sel_npdata(:,:), str_title) 
 
 
 
 

File 2: Pca_funct.m 

function [num_evec_ret, x, num_scr_plot] = pca_funct(mat_data, arr_del) 
 
 
 
num_cov = cov(mat_data(:,:)' ); % so each column= paramter and each row = 
observation 
 
% eval = eigenvalue 
[num_evec, num_eval] = eig(num_cov); 
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(diag(num_eval)); 
% keyboard 
 
[num_eval_sort, num_idx_sort] = sort(diag(num_eval)); 
 
% sort so largest is first. 
num_eval_sort_descend = flipud(num_eval_sort); 
num_idx_sort_descend = flipud(num_idx_sort); 
 
% x = sorted in order descending 
 
 
% length(num_idx_sort_descend) 
 
 
num_evec_trunc = num_evec(:, num_idx_sort_descend(1:10)  ); 
num_evec_trunc(arr_del,:)=0; 
 
 
num_evec_ret = num_evec(:, num_idx_sort_descend(1:10)  ); 
 
 
 
arr_pc = num_evec_trunc' * mat_data(:,:); 
x=arr_pc'; 
 
 
 
 
 
num_scr_plot = flipud(sort(diag(diag(num_eval_sort_descend)))); 
 
if (~isempty(find(num_scr_plot <= 0) ) ) 
 display('Some eigenvalues <=0') 
end 
 
num_scr_plot(find(num_scr_plot<=0)) = 1e-10; 
 
 
 
 

File 3: Pre_processing.m 

function arr_all_pat = pre_processing(arr_all_pat, log_path, OS) 
global PARAM_MAX_LINE 
global MAX_NUM_PARAM 
global PARAM_GOOD_PAT 
global PARAM_LINE_START 
global PARAM_LINE_STOP 
global PARAM_AGTI_START 
 
global FALSE 
global TRUE 
 
 
 
global idx_pat 
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MAX_NUM_NAN_ROWS = 10; 
 
% clip off start 
% take max line of parameters 1 or 5 
max_pat=size(arr_all_pat.pdata, 1); 
 
 
 
% put NaN's in remaining spots... before looking at NaN's!!! 
 arr_all_pat.pdata(idx_pat,:,arr_all_pat.misc(idx_pat, PARAM_LINE_STOP)+1 
:size(arr_all_pat.pdata, 3) ) = NaN; 
%%% Strategy: replace all zeros in data to arbitrary number: -5555 
%% then replace all -5555's with zeros after first replacing zeros with NaN's 
in pre_processing 
 
for idx_pat=1:max_pat 
 
arr_all_pat.misc(idx_pat, PARAM_GOOD_PAT) = TRUE; % default = true 
 
 for idx_param=1:MAX_NUM_PARAM 
 
  idx_nans = find(arr_all_pat.pdata(idx_pat, idx_param,:) == 0); 
  arr_all_pat.pdata(idx_pat, idx_param,idx_nans) = NaN; 
 
% order important!! 
  idx_zeros = find(arr_all_pat.pdata(idx_pat, idx_param,:) == -
5555); 
  arr_all_pat.pdata(idx_pat, idx_param,idx_zeros) = 0; 
 
 end 
end 
 
 
 
 
for idx_pat=1:max_pat 
 
% [pat. #, param, line] 
 
idx_pat; 
max_pat; 
arr_all_pat.pdata(idx_pat, 1, :); 
arr_all_pat.pdata(idx_pat, 5, :); 
 
min_param_1_line = min(find(~isnan( arr_all_pat.pdata(idx_pat, 1, 
1:mac_max_line) ))); 
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min_param_5_line = min(find(~isnan( arr_all_pat.pdata(idx_pat, 5, 
1:mac_max_line) ))); 
 
arr_all_pat.misc(idx_pat, PARAM_LINE_START) = max(min_param_1_line, 
min_param_5_line); 
 
 
max_param_1_line = max(find(~isnan( arr_all_pat.pdata(idx_pat, 1, 
1:mac_max_line) ))); 
 
max_param_5_line = max(find(~isnan( arr_all_pat.pdata(idx_pat, 5, 
1:mac_max_line) ))); 
 
arr_all_pat.misc(idx_pat, PARAM_LINE_STOP) = min(max_param_1_line, 
max_param_5_line); 
 
 
 
 
 
 
 
% adjust max_length counter 
% arr_all_pat.misc(idx_pat,PARAM_MAX_LINE) = mac_max_line - start_line + 
1; 
 
 
% arr_all_pat.misc(idx_pat,PARAM_LINE_STOP) = size(arr_all_pat.pdata, 3); 
 
 
 
 
 
 
 
 
 
 
end 
 
 
 
  line_start = arr_all_pat.misc(1, PARAM_LINE_START); 
  line_stop = arr_all_pat.misc(1, PARAM_LINE_STOP); 
  arr_all_pat.pdata(1,1,:); 
%  input('2') 
 
 
 
 
 
%pre-interpolation- start/end setting 
 
for idx_pat=1:max_pat 
 for idx_param=1:MAX_NUM_PARAM 
  % ******* set start line to first non-NaN value- for interpolation 
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  line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START); 
  line_stop = arr_all_pat.misc(idx_pat, PARAM_LINE_STOP); 
 
  if (isnan(arr_all_pat.pdata(idx_pat, idx_param, line_start) )) 
 
 
% determine value at line_stop- should be value at min. index  
 
 
 
   arr_tmp = min(find(~isnan(arr_all_pat.pdata(idx_pat, 
idx_param, line_start:line_stop) ))); 
   if (~isempty(arr_tmp)) 
    arr_all_pat.pdata(idx_pat, idx_param, line_start) = 
arr_all_pat.pdata(idx_pat, idx_param, line_start+arr_tmp-1); 
   end 
  end 
 
 
 
 
%display( arr_all_pat.pdata(idx_pat, idx_param, line_stop)  ) 
% input('arr at line_stop') 
 
  % *** set max line to last non-NaN value- for interpolation 
  if (isnan(arr_all_pat.pdata(idx_pat, idx_param, line_stop) )) 
% keyboard 
   % input('isnan'); 
   h = max(find(~isnan(arr_all_pat.pdata(idx_pat, idx_param, 
line_start:line_stop) ))); 
   if ~isempty(h)  % else it means all is NaN 
 
 
% keyboard 
    arr_all_pat.pdata(idx_pat, idx_param, line_stop) = 
arr_all_pat.pdata(idx_pat, idx_param, line_start+h-1); 
% input('9') 
 
   % need to check later again if all is empty!! 
   end 
 
  end 
 
 
 end 
end 
 
% set start_line to have first non-NaN value 
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% interpolation = deleting NaN's 
 
try 
 
for idx_pat=1:max_pat 
 for idx_param=1:MAX_NUM_PARAM 
  line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START); 
  line_stop = arr_all_pat.misc(idx_pat, PARAM_LINE_STOP); 
 
   
  % find first NaN starting from the patient's start line 
 
% rem to add line_start-1 offset!!!!!!!!!!!! 
  idx_NaN = 
find(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop) )); 
  if ( 
all(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop) ))) 
   idx_NaN = []; %don't search if all paramter is NaN!!! 
  end 
 
  if ~isempty(idx_NaN) 
   for k=(idx_NaN+line_start-1) 
%    idx_pat 
%    idx_param 
%line_start 
%line_stop 
%k 
    num_search = k-1; 
%input('1'); 
    while (isnan(arr_all_pat.pdata(idx_pat, idx_param, 
num_search)) & num_search > line_start) 
     num_search=num_search-1; 
    end 
 
    num_beg = num_search; 
 
 
 
    num_search = k+1; 
    while (isnan(arr_all_pat.pdata(idx_pat, idx_param, 
num_search)) & num_search < line_stop) 
     num_search=num_search+1; 
    end 
     num_end = num_search; 
 
    num_nan_rows = (num_end - num_beg + 1); 
%if (idx_param>17 ) 
%keyboard  
%end 
    if (num_nan_rows > MAX_NUM_NAN_ROWS & 
~isempty(find(~isnan(arr_all_pat.pdata(idx_pat, idx_param, 
line_start:line_stop))))) & (num_end > line_start) 
 
     arr_all_pat.pdata(idx_pat, idx_param, 
line_start) = arr_all_pat.pdata(idx_pat, idx_param, num_end+1); 
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     if ( num_end > min(find 
(~isnan(arr_all_pat.pdata(idx_pat, idx_param, 2:line_stop)) ))) 
      % we are beyond the min. number that is 
not nan in the column => we do have string of nan's after the start => bad 
      arr_all_pat.misc(idx_pat, PARAM_GOOD_PAT) 
= FALSE; 
arr_all_pat.pdata(idx_pat, idx_param, num_beg:num_end) 
 
      display(strcat('Bad patient parameter 
found: ',num2str(num_nan_rows), ' NaN rows for patient #',num2str(idx_pat), ' 
in parameter #', num2str(idx_param), ', row #', num2str(k), ' num_end: ', 
num2str(num_end), ' line_start: ', num2str(line_start) , ' min:', 
num2str(min(find (~isnan(arr_all_pat.pdata(idx_pat, idx_param, 1:line_stop))) 
))  ) ) 
      % keyboard 
 
      fid = fopen( strcat(log_path, 
OS.SEP,'logfile.txt') ,'a'); 
      fprintf(fid, 'Bad patient parameter found: 
%d NaN rows for patient #%d in parameter #%d, row #%d\n',num_nan_rows, 
idx_pat, idx_param, k); 
      fclose(fid); 
     else 
      % we just have string of nan's at start- 
BUT they are after the original line_start.  So, we init line_start value to 
first non-nan vlue of column 
  
 % we do this for both cases now% %arr_all_pat.pdata(idx_pat, idx_param, 
line_start) = arr_all_pat.pdata(idx_pat, idx_param, num_end+1); 
 
     end 
    end 
 
 
 
 
    num_slope = (arr_all_pat.pdata(idx_pat, idx_param, 
num_end) - arr_all_pat.pdata(idx_pat, idx_param, num_beg)) / (num_nan_rows - 
1);  % (Differnece in patient data array values)  / (number of NaN's total in 
space - 1) 
    for j=(num_beg+1):(num_end-1) 
     arr_all_pat.pdata(idx_pat, idx_param, j) = 
arr_all_pat.pdata(idx_pat, idx_param, num_beg) + num_slope; 
      
    end 
   end 
  end   
%interp1(arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line), idx_NaN, 
'*linear') 
%input('1'); 
%  arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line) = 
interp1(arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line), idx_NaN, 
'*linear') 
 
 end 
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PARAM_AGTI = 18; 
PARAM_AGTI_START=7; 
 
arr_all_pat.misc(idx_pat, PARAM_AGTI_START) = min(find( 
arr_all_pat.pdata(idx_pat, PARAM_AGTI, line_start:line_stop)>0 )) + 
line_start-1; % NOT DONE: - 4; % - 4 = 1 20 sec minute of samples added to 
beginning 
 
end 
 
 
 
 
 
 
 
 
%for idx_pat=1:max_pat 
% for idx_param=1:MAX_NUM_PARAM 
%  idx_NaN = find(isnan(arr_all_pat.pdata(idx_pat,idx_param,:) )); 
 
   
%  if ( 
all(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop) ))) 
% end 
%end 
 
 
 
 
 
        
 
catch 
display(strcat('idx_pat: ', num2str(idx_pat), '- idx_param: ', 
num2str(idx_param), '- num_search: ', num2str(num_search), '- k: ', 
num2str(k), '- line_start: ', num2str(line_start), '-error:', lasterr   )) 
keyboard 
end 
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