

Temporal Characterization of Patient State with Applications to Prediction of Tachycardia in
Anesthesia via Induction of Inhaled Desflurane

by

Gil Alterovitz
B.S., Electrical and Computer Engineering (1998)

Carnegie Mellon University

Submitted to the Department of Electrical Engineering and Computer

Science in partial fulfillment of requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2001

© 2001 Gil Alterovitz. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part.

Signature of Author……………………………………………………………………………………
Department of Electrical Engineering and Computer Science

January 19, 2001

Certified by……………………………………………………………………………………………

David H. Staelin
Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by……………………………………………………………………………………………

James H. Philip
Associate Professor, Harvard Medical School

Associate Professor of Anesthesiology, Harvard/MIT Division of Health Science and Technology
Thesis Supervisor

Accepted by……………………………………………………………………………………………

Arthur C. Smith
Chairman, Committee on Graduate Students

Department of Electrical Engineering and Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4400245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

To curiosity,
and innocence…

 3

ACKNOWLEDGEMENTS
It goes without saying that my MIT advisor, Professor D. H. Staelin, really helped to shape me and
how I approach problems. Clearly, I learned much about engineering and mathematical methods.
But, I also learned about problem solving skills not just applicable to research, but to life in general.
For example, I can recall my first few research meetings with Prof. Staelin. I remember making
numerous mental notes of his method of approaching strategizing and approaching problems.
Throughout the Fall, I found myself using a few strategies myself in dealing with multiple
constraints. He was not just a pragmatic advisor and mentor, but also one that really cared about
my course at MIT. I recall my first meeting with Prof. Staelin he was my academic advisor and I
was a 'freshman' graduate student. Instead of just hearing what courses I had intended to take for
the semester, he started by asking questions and taking notes, thought it all seemed irrelevant at
first. Yet, I soon realized that he was taking the time to build a mental map of my past and future
direction so that he could give me better advice. Thank you, Prof. Staelin.

Without my co-advisor J. H. Philip, MD, MEE, Director of Bioengineering and head of the
Bioengineering Laboratory at Brigham and Women Hospital's Anesthesia Department, this project
would never have been conceived. Though MIT regulations did not permit Dr. Philip to be my
official supervisor, he was my co-advisor on the Harvard side of the equation. It was through
discussions with Dr. Philip that the initial clinical issues were brought to light. He was also a
mentor. Through our meetings, I learned about the clinician perspective, how it varied from that of
the engineer, and how to work at this interface between medicine and engineering. Thank you, Dr.
Philip.

I would like to thank the entire Remote Sensing Laboratory for creating a friendly and inspiring
atmosphere. Thank you, Mr. J. Barrett, Bill Blackwell, Fred Chen, Hua Fung, Jay Hancock, R.
Vincent Leslie, Dr. P. Rosenkranz, and Herb Viggh. Without them, it would have been hard to get
adjusted to the lab and start on the actual project as quickly as I did. Thanks especially to Bill, Jay,
and Vincent for their help and suggestions on my research. Thank you Seth for helping me with a
number of computer configuration issues related to the group's computer network infrastructure.

It certainly has been quite an adventure to complete my thesis. From a crash that led me to lose and
then rediscover my thesis in a cryptic temporary swap file… to power failures where I had to resort
to my Palm Vx via portable keyboard to complete my thesis on time, my family and friends were
there for me. Thanks especially to Dad, Mom, and my brother Ron (whose fascinating personal
tales of adventures to Pittsburgh provided much amusement during this time) for their continuing
encouragement and support.

This research has been generously funded by the Department of Defense during my tenure at MIT
by a National Defense Science and Engineering Graduate Fellowship. Thanks to the Department of
Defense and thank you to the American people for supporting such programs which can literally
change the lives of young scientists.

 4

TABLE OF CONTENTS

1. ABSTRACT .. 5

2. CLINICAL BACKGROUND.. 6

3. MATHEMATICS / ENGINEERING MODELS ... 7
3.1. DEVELOPING A MODEL..7
3.2. PRINCIPAL COMPONENT ANALYSIS ..12
3.3. ITERATED ORDER AND NOISE ESTIMATION, AND BLIND ADJUSTED PRINCIPAL COMPONENT ANALYSIS 12

4. APPROACH ... 14
4.1. STRATEGY ...14
4.2. REQUIRED EQUIPMENT...23

5. DESIGN, IMPLEMENTATION, AND TESTING ISSUES... 24

6. RESULTS.. 33

7. CONCLUSIONS AND DISCUSSION.. 59

8. REFERENCES ... 64

9. LIST OF PERTINENT ACRONYMS AND ABBREVIATIONS (CLINICAL & TECHNICAL) 66

10. APPENDIX: SOURCE CODE LISTING... 68
10.1. SELECTED FILES LISTINGS...68

 5

CHARACTERIZATION OF PATIENT STATE
WITH APPLICATIONS TO PREDICTION OF TACHYCARDIA IN ANESTHESIA VIA

INDUCTION OF INHALED DESFLURANE

by

GIL ALTEROVITZ

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2001 in partial fulfillment of the

requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

1. ABSTRACT
It has always been assumed that using clinically measurable parameters is the most efficient way to
characterize patient state. By adding additional sensors, monitors, and derived statistics (e.g. mean
arterial blood pressure from diastolic and systolic), it was hoped that more information could be
garnered about patient state.

This thesis challenges the assumption that providing the physician with a full set of clinically
measurable parameters is the most efficient way to characterize patient state. The thesis presents a
novel way to consider patient state by utilizing reduced dimensionality and by estimating noise. It
then explores an application, namely prediction of tachycardia, which often occurs at the onset of
induction of inhaled desflurane. One unexpected initial finding was that all 46 patients exhibited
tachycardia or hypertension within the first hour of the operation.

Three models for predicting tachycardia episodes are proposed, including one model based on use
of Blind Noise Adjusted Principal Component Analysis1 (using Iterative Order and Noise Estimate
(ION)2 and Principal Component Analysis (PCA)3). Without ION, PCA-based methods alone
yielded only 2 useful degrees of freedom, with the rest being relegated to noise. The ION PCA-
based method allows one to capture with 5 principal components the information contained in 31
fundamental and derived patient variables, while at the same time reducing the effects of noise.
Furthermore, the five discovered significant principal components representing patient state were
characterized quantitatively and their physiologic correlates are hypothesized qualitatively.
Examination of the 31 original patient parameters in the ION PCA model that predicts tachycardia
revealed the relative importance of the original patient parameters to the tachycardia problem. The
receiver operating characteristic (ROC) curve for the ION PCA-based predictor suggested a 70%
detection rate with 3% false alarms when predicting tachycardia two minutes and twenty seconds
into the future. While the patient state characterization method was used for tachycardia prediction,
it is potentially useful in myriad medical domains involving multivariate analysis.

Thesis Supervisor: Daniel H. Staelin
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: James H. Philip
Title: Associate Professor, Harvard Medical School
Associate Professor of Anesthesiology, Harvard/MIT Division of Health Science and Technology

 6

2. CLINICAL BACKGROUND

A number of anesthetic drugs have been found to affect the Central Nervous System and produce

general anesthesia- comprised of sleep, hypnosis, analgesia, muscle relaxation, and loss of reflexes.

A drug in this class, desflurane, is commonly used during surgery in the operating room.

One protocol for administrating anesthetics such as desflurane, involves induction via inhalation of

the agent as a gas. In the case of desflurane, a specific protocol is described below4. First,

intravenous induction (i.e. administrating an initial anesthetic intravenously) and tracheal intubation

(i.e. placing the breathing circuit in the patient’s throat) take place. Next, the desflurane vaporizer

(an instrument that transforms desflurane to gaseous phase) is set to 18%. The rate of super-

oxygenated air (fresh gas flow) is set to 1 L/min. As the patient breathes in the air with the

anesthetic, the concentration of the drug in the inspired and expired air increases. Finally, the

vaporizer is set to 9% once inspired and expired concentrations reach 8% and 6% respectively.

Desflurane is expensive to administer in an open circuit in which the patient breathes only fresh gas.

However, closed circuit (in which the patient rebreathes his/her own air supplemented with oxygen

and new anesthetic) desflurane administration is cost efficient, effective, and fast (due to it’s low

blood/gas solubility).5 Yet, desflurane does present a few issues related to tachycardia6 which occur

during the induction of the inhaled desflurane. This initial period can be assumed to be less than 15

minutes in duration.

This thesis seeks to explore a method of characterizing patient state as well as its use in tachycardia

prediction (defined as heart rate > 100 beats per minute (BPM)) in advance, so that the clinician

can be aware of the pending tachycardia as well as possibly correct it.

 7

3. MATHEMATICS / ENGINEERING MODELS

3.1. Developing a Model

As more sensors are added in an increasingly technology-dependent operating room (OR) setting,

doctors such as anesthesiologists must sift through an ever greater number of patient parameters

(dozens every few seconds) in addition to carrying out their duties at the OR. Yet, as this thesis

proposes, it possible that many of these parameters are correlated and contain redundant

information. Looking at all of them at once may not be the optimal manner of assessing patient

state or predicting future patient state, or a subset thereof such as tachycardia presence, to determine

the course of action. Especially in an operating room setting, where time is critical, the ability to

consolidate information into an effective patient model and make quick decisions based on the most

significant relevant data can directly impact the mortality rate in the OR. Previous studies have

examined various variables necessary for monitoring as well as optimization of the monitoring tools

employed7, but this paper seeks to seek a model for examining noise estimation and data set

dimension reduction for more efficient future patient state characterization.

Modeling patient state temporally can be approached in many ways. One method is to employ

mathematical models to quantify the patient state at time t (i.e. s(t)) and use this information to

predict patient state at time: t + ∆t. In this case, recorded variables from sensors on the patient

could be hypothesized to contain enough information about s(t) to accurately predict a subset of

s(t+∆t), namely heart rate (HR). Patient state need not necessarily contain simply heart rate or

tachycardia information. In fact, one can conceptually think of patient state as a vector s(t) where t

is the current time or time sample (in discrete time) and the vector has N (the number of parameters)

elements. A parameter here is defined to include such patient recorded variables as heart rate or

 8

level of inspired agent concentration (anesthetic level). It can also include seemingly unrelated

variables like expired CO2 (carbon dioxide) concentration and oxygen saturation in the blood.

These other variables represent current patient state as well and may provide addition predictive

power. For instance, the sympathetic nervous system can affect blood pressure, heart rate, and

respiration rate. Therefore, these variables may yield additional information of the patient state via

a principal component. For example, given the above variables, an unobservable derived variable

such as sympathetic nervous system state may be uncovered.

 Since patient state is available at discrete times (i.e. sensor recorded information are sampled at

finite intervals), a representation of the state vector as s(n) will be more suitable here. The n

represents the time sample when the patient vector was recorded. This will become an issue later,

in the "Approach" section, since different sensors sample at different intervals, effectively making it

difficult to establish exact patient state s(n) for a given n=n1.

Since tachycardia is a variable derived from heart rate, creating a predictor for HR and then setting

a threshold for tachycardia (e.g. 100 BPM) allows for a wider dynamic range (as opposed to the

two-value Boolean variable tachycardia). It would allow for quantification of when tachycardia is

being approached. For example, while a heart rate of 101 BPM is technically tachycardia, a doctor

would take very different action at such a prediction compared to a heart rate of 200 BPM. Thus, in

order to add finer granularity, two additional thresholds can be defined. These will be referred to in

this thesis as sub-tachycardia (above normal but below 100 BPM, e.g. 80 BPM) and super-

tachycardia (above 100 BPM, e.g. 120 BPM). Clearly, if heart rate is approaching 100 BPM, it

must first pass through the sub-tachycardia threshold. Put together with other information, such as

the derivative of heart rate (a high slope implies the tachycardia stage might be next), these

 9

additional stages provide finer granularity for patient monitoring and an early warning system for

actual tachycardia.

One of the goals of this thesis is to present a framework for prediction of tachycardia in advance so

that the clinician can take steps (e.g. turn down the vaporizer) in order to 1) reduce the period of

impending tachycardia and/or 2) prevent its occurrence. Let us assume that the time delay for the

anesthetic to affect the patient when applied at time n1 is approximately 2 1/2 minutes (see 'Design,

Implementation, and Testing Issues' section, Figure 9 for discussion). It can then be hypothesized

that if the clinician was aware that the patient would have tachycardia at n2 = n1+n0 where n0≥2.5

minutes, then he/she could turn down the vaporizer setting or take other action in order to stem the

tachycardia at time n1. In fact, given that the proposed predictor will provide heart rate information

rather than simply tachycardia predictions, it is conceivable that an artificial tachycardia threshold

be developed to help the clinician prevent tachycardia. For example, a threshold for sub-

tachycardia or super-tachycardia could be developed to give the clinician additional qualitative

information as well as advance warning.

What is currently being proposed is, at present, a black box. It takes s(n≤n1) as input, where n1 is

the current time sample, to estimate heart rate R(n>n1) as in Figure 1.

 10

Figure 1

There are a number of models that can be used in constructing this 'black box.' For example, two

such predictors include a "static heart rate" and "heart rate average-based" predictors. The former

involves setting:

Equation 1

R(n1+n0) = R(n1).

where n1 is the present time sample and n0 is the number of time samples ahead that we are

predicting heart rate.

Predictor

 High level abstraction of HR Predictor

Present Time sample = n1
Interval between Prediction
time and Present time = n0

Patient state(n≤n1) =
Parameters(1…M)
[Patient state includes R(n≤n1)]

HR(n1+n0)
Evaluate: R(n2)
> Threshold?

Tachycardia
Alarm

No Tachycardia
Alarm

Yes

No

 11

The latter involves setting:

Equation 2

R(n1+n0) = [∑ i=[n-N+1,n] R(i)] / N

where N = number of samples (including present sample) to take average over.

n1 is the present time sample.

n0 is the number of time samples ahead that we are predicting heart rate.

An analogy for the former method is predicting tomorrow's weather to be the same as today's

weather. An analogy for the latter method is assuming tomorrow's weather will be about the same

as it has been in the past week. Both of these methods use some information from the patient state

in prediction, but not all of the inputs are taken into account. For example, a change in the gas

vaporizer setting has little influence on these models. Yet, it is precisely because desflurane is

thought to induce tachycardia that a prediction scheme has been proposed. On the other hand, these

easily implementable models can serve as a starting point in tachycardia prediction and as a means

of comparison with others.

Other models for prediction include linear regression and neural networks. These are discussed

further in the 'Approach' section, once the use of principal components and ION is explored further

within the context of the tachycardia problem.

 12

3.2. Principal Component Analysis

Regardless of the model employed, the degrees of freedom/parameters in the various models

increase as the number elements in the patient state vector increase. Thus, either way, if the number

of parameters could somehow be reduced, it would help in producing faster predictions as well as

give insight into which parameters yield more information about the dataset. One way to reduce the

number of parameters without losing information is to determine the principal components, PC's,

via Principal Component Analysis (PCA). Each principal component is a sum of weighted

parameters. The weights are contained in the eigenvectors, which provide virtually lossless

reconstruction of the original data. Essentially, Principal Component Analysis allows one to create

a reduced number of uncorrelated channels from a larger initial set of correlated ones.

The PC's are found as follows. First, the covariance matrix (e.g. E) of the data matrix L is

calculated. Next, the eigenvalues and eigenvectors of E are found. The eigenvectors are sorted (to

form a matrix, Q) so that they are in descending order based on the eigenvalues. Next, the first n

eigenvectors in Q (with largest eigenvalues) are selected based on a scree plot3 to form matrix Z. A

scree plot involves plotting the log(eigenvalues) for each eigenvector and comparing the difference

between them in order to select those above a noise baseline (low, constant slope prevalent at less

significant components). Multiplying the selected eigenvectors by the state vectors over time gives

the principal components' values across time.

3.3. Iterated Order and Noise Estimation, and Blind Adjusted Principal
Component Analysis

When data is collected experimentally, there are often many sources for noise, whether it be 60-Hz

line noise from electrical outlet or a loose or improper attachment of a sensor to the patient. In

 13

many situations, such as this one, the noise is not known a priori. However, if it were somehow

possible to estimate the noise's variance for each parameter (across time) in a patient state dataset,

then one could use this to normalize the parameters across time before computing the covariance

matrix and principal components (as is done when noise is known a priori in Noise Adjusted

Principal Component Analysis (NAPC)). This would allow for a more accurate model of patient

state and hypothetically lead to more accurate predictions of future state. A recently developed

technique at the Professor D. H. Staelin's laboratory, namely Iterated Order and Noise Estimation

(ION), can be used to produce such an estimate. In doing so, one can then proceed to normalize the

parameter data channels based on the noise variance estimate, a method known as Blind Adjusted

Principal Component Analysis (BAPC).

Briefly, the ION algorithm consists of the following. First, the input matrix of m x n (m vectors

with n dimensions) is normalized (unity variance and zero mean for each variable). In fact, there is

another way to visualize the dataset consistent with this. The s(n) vectors, each of length m, can be

put together across time samples into matrix L with dimensions m x n. L can be defined as follows:

Equation 3

L = FP + G1/2ω

In this way, L is the sum of linearly transformed stochastic signal P and an independent noise

vector. In the above equation, F is the unknown mixing matrix2
. The ω vector refers to a Gaussian

noise vector with µ=0 and covariance matrix being the identity matrix.

Next, let G1 be defined as the diagonal noise covariance matrix.

 14

First, initialize G and F to the identity matrix. Next, the estimated noise variance are normalized to

unity:

Equation 4

Lk' = L Gk
-1/2

The signal order, pk+1, is then estimated via scree plot of L'

k. Next, Gk+1 and Fk+1 are estimated by

using pk+1 and the Expectation-Maximization (EM) algorithm8. Lastly, the algorithm iterates on k

(looping back to the normalization of the estimated noise variance) until convergence.

In the next section, the use of the mathematical toolbox delineated here will be explored for design

of the heart rate predictor.

4. APPROACH

4.1. Strategy

To develop of strategy for modeling the patient state, the actual feedback system involving the

patient and anesthesiologist was examined at the site where data was collected (Brigham and

Women’s Hospital (BWH), Harvard Medical School, Boston, MA). As shown in a simplified view

in Figure 2, the closed loop system involves the anesthesiologist making adjustments to the drug

vaporizer setting (which changes the amount of drug delivered to the patient) based on feedback

from the patient via the patient-connected sensors and a monitor. These sensors record the patient

state through 25 parameters (see Figure 3) every 20 seconds. The monitor then saves each sampled

parameter in a patient history file. Such setups, including the patient sensors and monitoring

 15

devices, are common in operating rooms in developed nations. However, the number of parameters

data sampling, and recording capabilities vary substantially among institutions.

Figure 2

The Patient/Anesthesiologist Feedback System

Sensors, Monitors

+

Noise: Circuit Leaks,
Surgical Intervention Noise: between patient &

sensors

+

Patient System
Anesthesiologist’s

Adjustments

 16

Figure 3

Number Parameter Units Description
1

SYS
mmHg Systolic Blood

Pressure
2

DIA
mmHg Diastolic Blood

Pressure
3

MAP
mmHg Mean Arterial

Blood Pressure
4

HR

BPM
(beats per

minute)

Heart Rate

5 PR BPM Pulse Rate
6

SpO2
% Oxygen

Saturation
7 CO2 I mmHg Inspired CO2
8 CO2 E mmHg Expired CO2
9

RR
BPM Respiration

Rate
10

VE
L Ventilation

expired
11 VT mL Tidal Volume
12 Pmax cmH2O Pressure Max.
13 Pmin cmH2O Pressure Min.
14

PPlat
cmH2O Pressure

Plateau
15

I:E
N/A Inspired:

Expired Ratio
16 O2 I % O2 inspired
17

N2O
% N2O

concentration
18 Agt I % Agent Inspired
19 Agt E % Agent Expired
20 Agt N/A Agent Identity
21 VT-sp N/A Tidal Vol. #2
22 Vent-st N/A Ventilation
23 iT-st N/A Miscellaneous
24 NIBPint N/A Miscellaneous
25

Marker
N/A Clinician

marked event

Patient Parameters Recorded via Sensors or Anesthesia Monitor

 17

At Harvard Medical's Brigham and Women’s Hospital, Dr. J. H. Philip created a collection of

patient history files from operations including those where the aforementioned desflurane protocol

was utilized. With a large number of samples, parameters, and patients, a method is needed to find

the essential underlying information which can then be used in predicting heart rate.

A number of data parameters are correlated. For example, mean arterial blood pressure (MABP) is

related to diastolic and systolic blood pressure:

Equation 5

Mean Arterial BP = 2/3*Diastolic BP + 1/3*Systolic BP

It is expected that several of the respiratory and as well as other variables should be correlated.

Thus, in this thesis, Principal Component Analysis (PCA) was used to reduce the dimensionality of

the dataset for further analysis (as discussed in the 'Mathematical / Engineering Models' section).

This method has been used effectively in similar multivariate estimation problems in manufacturing

and remote sensing applications at Professor Staelin’s Laboratory9.

There are myriad sources of noise in the patient/anesthesiologist feedback system as depicted in

Figure 2. For example, breathing circuit leaks can result in inaccurate sampling and recording of

gases (including the drug agent). Surgical intervention may result in a change in heart rate and

blood pressure (e.g. due to the incision as well as gradual blood loss during the operation). Random

noise may also be introduced by various other mechanisms (e.g. if the patient is moved slightly).

Lastly, each of the various sensors have certain limitations and must be connected properly to the

patient to get an acceptable Signal to Noise Ratio (SNR) for recording.

 18

Thus, it is hypothesized that the BWH-based data set may be a good candidate for testing the

applicability of an ION algorithm recently developed in Professor Staelin's group. By employing

this algorithm, it may be possible to estimate and remove noise so that additional information can be

recovered from the dataset above baseline noise. This is done by normalizing the dataset using the

noise variance vector from ION (see 'Mathematical / Engineering Models' section). As outlined in

Figure 4 below, the result will then be compared to the normal Principal Analysis method (via scree

plot) in order determine whether or not there is an improvement with the ION algorithm over the

traditional technique. Thus, this thesis will serve as the first test of the ION algorithm's validity and

applicability subsequent to the original ION work.

 19

Figure 4

 Tachycardia Predictor Design 1

Database of ‘K’
Desflurane

Patients

Patient Monitor History
Database

Dept. of Anesthesia,
Brigham and Women’s

Hospital

1 ….………………….
2
++++++++++++++++
3 ---------------------------
4 ===============
5 ---------------------------
6…….…………………
7++++++++++++++++

1
 .
 .
 .
 .
 .
 .
 .
 .
I

‘I’ params.

1 ‘J’
‘J’ time samples

 ‘K’
 .
 .
1

‘K’ patients

Training Set

Testing Set

ION
Algorithm

Noise Variance
Vector

Blind Noise
Adjusted PCA

Significant PC’s
(Compare PCA vs.

ION + PCA)

+

Linear
Regression

Predictor
Coefficients

Select ‘K’
Desflurane

patients

PCA

 20

In doing the PCA analysis, a number of questions arise. Should only the fundamental 25

parameters be used- or can certain derived featured help capture information in the dataset better for

prediction of future heart rates? Examples include time shifted versions of certain parameters,

integrals that preserve time history of drug administration, derivatives that capture rate of increase

of drug agent or other parameter, and average drug delivery concentration over time. Also, some of

the 25 parameters could be removed since they were not connected to a sensor and/or contained no

recorded information. After several modifications, the fundamental and derived parameters that

were analyzed in this thesis involved 32 parameters are depicted in Figure 5, with derived

parameters starting at parameter number 23 continuing until parameter 32. The 'derivative' and

'integral' parameters are defined as follows. The derivative involves finding the first difference of

the current and previous sample. Then, using the sampling rate (3 data points per minute), the first

difference is multiplied by a coefficient to yield the change of parameter per minute (instead of per

sample). The same is done with the integral except that instead that the first difference is replaced

by a summation of the parameter value from time 0 (when the induction process began) up to the

present time sample.

 21

Figure 5

Number Parameter Units Description
1 SYS mmHg Systolic Blood Pressure
2 DIA mmHg Diastolic Blood Pressure
3 MAP mmHg Mean Arterial Blood Pressure
4 PR BPM Heart/Pulse Rate
5 SpO2 % Oxygen Saturation
6 CO2 I mmHg Inspired CO2
7 CO2 E mmHg Expired CO2
8 RR BPM Respiration Rate
9 VE L Ventilation expired
10 VT mL Tidal Volume
11 Pmax cmH2O Pressure Max.
12 Pmin cmH2O Pressure Min.
13 PPlat cmH2O Pressure Plateau
14 I:E N/A Inspired: Expired Ratio
15 O2 I % O2 inspired
16 N2O % N2O concentration
17 Agt I % Agent Inspired
18 Agt E % Agent Expired
19 VT-sp N/A Tidal Vol. #2
20 Vent-st N/A Ventilation
21 iT-st N/A Miscellaneous
22 NIBPint N/A Miscellaneous
23

PR_shift_7
BPM HR 7 samples (2 min. 20 sec.) in the

future
24

DERIV_AGT
% /

sample
Derivative of Agent Expired

25
INT_AGT

% *
sample

Integral of Agent Expired

26
AVG_AGT

% Average of Agent Expired over time
samples so far

27 HI_HR N/A Tachycardia present
28 HI_BP N/A Hypertension present
29

HI_HR_BP
N/A Tachycardia or Hypertension

present
30 DERIV_SYS N/A Slope of Systolic BP
31 DERIV_DIA N/A Slope of Diastolic BP
32 DERIV_HR N/A Slope of HR

Fundamental and Derived Patient Parameters

 22

Once the dataset has been transformed from 25 parameters and additional derived variables to a

reduced number of significant principal components (PC’s), this information can then be used to

design a predictor of future heart rate. It should be noted that while the predictor was abstracted

away as a black box in Figure 1, linear regression (unlike neural networks) can be used to develop

an insight into the prediction process itself (i.e. allow one to peer inside the black box). By

examining the predictor's weights for various state vector elements, the relevance of various

parameters (from heart rate to blood pressure) to tachycardia prediction can be determined. This is

more difficult in neural networks, where the hidden layer weights add additional complexity to the

relationship between input and output.

As shown in Figure 4, linear regression can be used to find constant coefficients for each of the

principal components across time plus a constant based on the training set data. Thus,

Equation 6

Y = AX + B

Where: Y = R(n+n0) of size 1 x n

A = Coefficients determined by linear regression of size 1 x p

X = Input matrix of p x n. Represents the 'p' significant PC's over 'n' time samples.

B = Constant term determined by linear regression of size 1 x n

And: n = present time sample

 n0 = number of time samples between present and prediction

 m = number of patient recorded parameters and derived features

 p = number of principal components used in reconstruction

 23

In this thesis, a static heart rate(see 'Mathematics / Engineering Models' section), heart rate average-

based (see 'Mathematics / Engineering Models' section), and linear regression-based predictors will

be constructed and evaluated. Additional design issues are discussed more in the ‘Design’ section.

4.2. Required Equipment

The type of equipment necessary for exploration of this problem depends on the dimension of the

patient monitor history database (illustrated in Figure 6).

Figure 6

1
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 ‘I’

Patient Monitor History Matrix D(i, j, k)

1 …….…………………………….
2 ++++++++++++++++++++++++
3 --
4 ========================
5 ||
6 …….………………………….....
7 ++++++++++++++++++++++++
8 --
9 …….…………………………….
10 +++++++++++++++++++++++
11 ---------------------------------------
12 =======================

‘I’ parameters

‘J’ time samples

 ‘K’
 .
 .
1

‘K’ patients

 24

For a rough calculation, one can assume 8 bytes of RAM per stored data value. As in Equation 7,

let ‘i’ be the number of parameters, ‘j’ the number of time samples, and ‘k’ the number of patients.

Thus, the number of megabytes (not including overhead for Windows and Matlab) required to hold

one copy of the database in RAM is:

Equation 7

Number of Megabytes of Memory =

8 bytes * (j samples) * (i parameters) * (k patients)
 (1024*1024 bytes/Megabyte)

In order to allow for a large database along with extra RAM for manipulating and transforming it, a

machine of at least 64 Megabytes of RAM (required for Matlab for Windows) was used in this

project. Ultimately, a Dell Dimension 4100 series 800 MHz Pentium III-based machine with 128

Megabytes RAM was used for this purpose. In addition, network capability was needed for

connectivity to the Internet as well as access to the patient database located remotely at the Brigham

and Women’s Hospital.

Microsoft Excel was used for reading, analyzing, and plotting individual patient files. Matlab was

then employed to actually create the algorithms to implement the design.

5. DESIGN, IMPLEMENTATION, AND TESTING ISSUES

A number of topics needed to be dealt with in the analysis and design of the predictor hypothesized

in the ‘Approach’ section. First, a subset of patients (from the hundreds of patient monitor history

 25

files) needed to be selected to create the database of patients for analysis. A number of files were

corrupt, had bad data, missing data, or data from anesthesia administered by various other protocols

(i.e. not the one outlined in the 'Clinical Background' 4).

Also, the files are in a huge hierarchy of thousands of files and over 700 directories. A total of 23

patients were initially randomly selected from a pool of patients to test the model developed.

Ultimately, this patient database was doubled to 46 patients randomly taken from the period of

January 1998-July 2000.

With such an exorbitant amount of data, a number of other issues arose. For instance, an effective

data structure had to be designed to allow for efficient access to data while conserving memory.

When determining how to analyze data, it can also help to visualize it to facilitate discovery of

patterns and intuition for further explorations. Yet, with 25 parameters for just one patient and

around 180 samples per hour, visualizing just one patient (with an operation duration of around 4

hours) would involve over 18,000 points. Looking across patients adds a 3rd dimension to create 3-

d matrix D(i, j, k) in Figure 6. It seemed that another visualization method besides plotting each

parameter versus time is a prerequisite to making sense of the data.

The method selected for visualization consists of an image mapping of D, a process which

essentially involves converting D into a series of patients concatenated together to form the all-

inclusive L matrix representation of the dataset used as an input to ION (as discussed in

'Mathematics / Engineering Models'). Basically, it consists of taking slices of D shown in Figure 6

holding k constant. Thus, the data for one patient appears first followed by the next patient. As

seen in Figure 7 based on Figure 6 from the previous section, the 'Parameters' y-axis is equivalent to

'i' in D and 'j' is equivalent to the 'Time Samples' x-axis for 0 to J. The next patient's data is

 26

presented sequentially at J+1, right after the first one ends. Due to the scaling of the image map,

each data point is represented as a vertical bar colored according to the corresponding D data point

value (or a normalized version of it). For example, Figure 7 clearly shows three patients with 45

time samples each (notice how the pattern repeats after time samples 45 and 90). Here, data values

are normalized so that variance is unity for each parameter. The fact that this figure suggests a

pattern in patient behavior during desflurane induction hinted information could be garnered for

predicting future state of an unknown patient in real-time by using a predictor first trained on a

historical patient database.

Figure 7

-4

-2

0

2

4

6

8

10

Image Map of 3 Patients After Pre-Processing/Interpolation. Paramters vs. Time

Time

P
ar

am
te

rs

20 40 60 80 100 120

5

10

15

20

25

30

Patient #1:
Time samples 1-45

Patient #2:
Time samples 46-90

Patient #3:
Time samples 91-135

Across this
boxed row is
parameter #4
(heart rate).

 27

Special routines need to be written to parse the data and concatenate patient monitor files (which

contain only one hour of data per file). Patient files contained patient information based on the

patient's operation date and the order of the patient on that day's schedule for a given operating

room (e.g. second patient to be operated in the given OR, etc.). Patient names were not included in

the files, although schedules with the patient name and doctor transcribed patient history could be

ordered based on this information. Additional identifiers to uniquely specify a patient (due to the

fact that patients’ file names/numbers are not unique) need to be developed. Ultimately, patients

were assigned serial numbers based on the patient's operation date and initiation time of the

operation.

Since the patient monitor history files contain the patient data for all of the operation (not just the

induction protocol), it was necessary to determine which time samples should be used for analysis.

For example, the blood pressure, pulse rate, and oxygenation sensors are usually attached by the

clinician separately after the monitoring device is recording values for other variables. Also, certain

parameters, such as blood pressure, are effectively asynchronous events which arrive from the blood

pressure machine with 1/3 the sampling rate compared to the other parameters. Figure 8 shows the

aforementioned issues visually using the same image map notion delineated earlier for the first hour

of the operation. In this case, a data point is colored black if no data or invalid data was recorded at

a given time and parameter. White represents valid data. One can see that the black extends to

various different time samples for different parameters (and, in fact, stretches for all time for

parameters 4 and 25). This suggests that the sensors for each parameter were connected at different

times. Parameter 4 allows for an additional optional method of measuring parameter 5 (pulse rate)

which was not taken advantage of in this case. Parameter 25 is initiated by clinician input to mark

various events during the operation. Also, the top three rows (parameters 1 to 3 are blood pressure

 28

measurements) can be seen to have valid data (white) every third sample as discussed previously.

This all suggested that some pre-processing would be needed before a meaningful patient data

subset could be used to train a predictor.

Figure 8

In order to facilitate automated pre-processing, a program was written to look for the first time

sample when all of the sensors were connected and functioning. Once this starting point has been

found, the time of initiation of induction by inhaled desflurane is located and time samples are taken

for the next 15 minutes (45 samples at 3 samples/minutes). This starting point is determined based

on when the inspired agent concentration increases above the 0%. In addition, to correct for

missing data and less frequently sampled data, linear interpolation is used. If there are too many

Image Map of a Patient: Black = No Data, White = Data Present. Parameters vs. Time

Time

P
ar

am
et

er
s

20 40 60 80 100 120 140 160 180

5

10

15

20

25

 29

consecutive points missing for a given parameter (other than parameters 4 and 25 which were not

used), then the patient file was flagged. The result of such pre-processing is shown visually in

Figure 7 for three patients as discussed previously.

In designing the predictor for tachycardia, some areas need to be examined closely. For instance,

how much ahead should such a prediction be made. This depends on a number of factors including

response times for: breathing circuit, inspired drug concentration to vessel rich group (VRG), VRG

to brain, and brain to effector sites (where a change in heart rate is observed). This is outlined in

Figure 9. It is thought that this time may be approximately 2 ½ minutes from inspired drug

concentration (an observable variable) to a delta heart rate10.

 30

Figure 9

Patient System

Patient System

Breathing
Circuit

Inspired Conc.
To Vessel Rich

Group

Vessel Rich
Group to Brain

Brain to ∆HR

Vaporizer Setting

New Heart Rate

 31

Another issue is how a predictor like this can be evaluated. Certain standards such as root mean

square (RMS) error and residue plots can provide an objective measure, but what should the

predictor be compared against? One proposed idea is to compare the predictor’s results with

‘dumb’ predictors as discussed in the 'Mathematical / Engineering Models' section. Comparing the

RMS errors and residue plots of such a predictor, one can determine if any knowledge about

tachycardia can be derived from the dataset in predicting the condition in other patients. An

additional comparison can be done by looking at the ROC curves (probability of detection (Pd) vs.

probability of false alarm (Pfa)) for each predictor as the threshold for detection is systemically

varied. If a clinical assessment of the costs/risks associated with each was ascertained, then the

usefulness of a given predictor could be surmised. This approach is shown schematically in Figure

10 below.

 32

Figure 10

Tachycardia Predictor Design 2

Predictor

Predictor
Coefficients

Heart Rate
Prediction

Actual Values +

1 …….………………….
2 +++++++++++++++++
3 -----------------------------
4 =================
5 -----------------------------
6 …….………………….
7 +++++++++++++++++
8 -----------------------------

1
 .
 .
 .
 .
 .
 .
 .

‘I’

‘I’ parameters

1 ‘J’

‘J’ time samples

 ‘K’
 .
 .
1

‘K’ patients

Training Set

Testing Set

Competitor
Prediction Schemes

Compare
Predictors

 33

6. RESULTS

Ultimately, the dataset examined included 46 patients, each with 45 data samples of induction by

desflurane, and 32 parameters as outlined in Figure 5. The derived parameters included actual

target heart rate 7 samples (2 min. 20 sec.) in the future, derivatives (agent expired, HR, systolic BP,

Diastolic BP), integral of agent expired, average of agent expired over time samples so far in given

patient, and presence of certain conditions for current sample (e.g. tachycardia, hypertension).

Using this dataset, the approach outlined in the 'Strategy' and 'Design' sections was implemented.

After Blind Adjusted Principal Component Analysis, a scree plot suggested 5 PC's were significant.

Shown in Figure 11 are the scree plots for PC's derived using Blind Adjusted Principal Component

Analysis (i.e. with ION) and PCA without ION. Figure 12 shows a zoomed in view focusing on the

PC's corresponding to the top 5 eigenvalues. While only approximately 3 PC's are significant for

PCA without ION, the ION method allows for additional components to be exposed above the

noise. The ION-based PCA values are also several orders of magnitude above those yielded

without ION as shown in Figure 12.

 34

Figure 11

0 5 10 15 20 25 30 35
-6

-4

-2

0

2

4

6
Scree Plot for 46 Patient Dataset With and Without ION. Sorted by Log(Eigenvalue)

Index

Lo
g(

E
ig

V
al

ue
)

Without ION
With ION

 35

Figure 12

In order to examine the effect of the underlying parameters on each principal component, the top

five weighted parameter coefficients of each PC were calculated. The weights were then

renormalized to effectively yield unity variance for each parameter in order to facilitate comparison.

Looking at the PC's revealed some interesting information regarding the dataset. As shown in

Figure 13, the first and second PC's weigh various blood pressure measurements heavily along with

the agent concentration. It is expected that these be grouped together since they are related as

shown in Equation 5 previously. It is interesting the expired agent concentration is also grouped

here, exhibiting a correspondence between blood pressure and agent as suggested in the literature11.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6
Scree Plot Subset for 46 Patient Dataset With and Without ION. Sorted by Log(Eigenvalue)

Index

Lo
g(

E
ig

V
al

ue
)

Without ION
With ION

 36

The third PC is basically the heart rate and blood pressure dimension along with agent interaction.

PC #4 categorizes the interaction of the agent with the derivative of blood pressure and ventilation

variables (VT, the tidal volume and Pmax, the maximum pressure in lungs during breathing). The

fifth component contains similar variables, with different signs and less evenly distributed weights.

Looking one PC beyond the 5 significant ones, the sixth principal component relates to the agent

past and present concentration in combination with BP (specifically systolic). It includes the

following agent components: the integral of expired agent (intuitively proportional to the amount of

drug given so far), the agent inspired concentration (approximately proportional to current drug

concentration being administered), and the current average of expired agent (recently administered

dosage).

 37

Figure 13

PC #1 BP / Agent
Interaction I PC #2 BP / Agent

Interaction II
Number Name Value Number Name Value

3 MAP 15.20736 18 Agt E -9.509
18 Agt E -2.73056 3 MAP -4.231

2 DIA 0.966681 17 Agt I -0.717
1 SYS 0.539533 2 DIA -0.241
4 PR 0.250657 15 O2 I 0.216

PC #3 Agent Interaction:
HR and BP PC #4 Agent Interaction:

BP and Ventilation
I

Number Name Value Number Name Value
4 PR 2.478 18 Agt E -1.803
3 MAP -1.965 31 DIA slope 1.081

18 Agt E -0.750 30 SYS slope 1.065
27 Tachy 0.594 10 VT 0.699

29
Tachy or
Hypertension 0.382 11 Pmax 0.609

PC #5 Agent Interaction:
BP and Ventilation
II

PC #6 Agent Monitors /
BP

Number Name Value Number Name Value
18 Agt E -1.430 17 Agt I 1.148

31 DIA slope -0.891 25
Integral of Agent
Expired -0.701

30 SYS slope -0.843 1 SYS -0.643

10 VT 0.801 26

Avg of Agent
Expired over time
so far -0.582

11 Pmax 0.723 29
Tachy or
Hypertension -0.385

 38

The 5 significant PC's were plotted against time in Figure 14 below and compared to the heart rate

variable to examine if tachycardia events (HR > 100 BPM in the graph) could be traced to a

preceding fluctuation in one or more of the PC's by inspection. Even visually, it can be seen that

tachycardia periods and peaks correspond to PC #3 at several time samples including 200 and 370

(among others). As is later confirmed, it would make sense that such a principal component would

be weighted heavily in a ION PCA-based prediction scheme.

Figure 14

0 100 200 300 400 500 600 700
-50

0
50

PC1 vs. Time

0 100 200 300 400 500 600 700
-50

0
50

PC2 vs. Time

0 100 200 300 400 500 600 700
-10

0
10

PC3 vs. Time

0 100 200 300 400 500 600 700
-20

0
20

PC4 vs. Time

0 100 200 300 400 500 600 700
-20

0
20

PC5 vs. Time

0 100 200 300 400 500 600 700
50

100
150

Heart Rate vs. Time

 39

The relationships between PC's was also explored. Figure 15, Figure 16, and Figure 17 are scatter

plots of all 2 dimensional graph permutations of PC3, PC2, and PC1. In PC1 vs. PC2, one can see

two clusters. One shows a linear relation between PC1 and PC2 with a slope of approximately -4

and the other is more scattered. Two scattered clusters are also apparent in PC1 vs. PC3. PC2 vs.

PC3 has several closely clustered groups.

Figure 15

 40

Figure 16

 41

Figure 17

A better division of the clusters can be seen in Figure 18, a 3-D plot of the three most significant

PC's. From most perspectives, the 3-D plot looks like a single amorphous cluster. However, when

rotated to the perspective as in Figure 18 (and Figure 19), it is clear that a plane bisects two

hemispheres that represent two distinctive clusters. In order to explore this further, the Figure 19

was colored by time from the start of the induction of inhaled gas protocol (as opposed to coloring

by patient as was done in Figure 15 - Figure 18). This time colored figure suggests that the two

clusters are not according to different relative times from the start of the induction of desflurane.

Thus, a closer look was taken at the coloring by patients. Three random patients were colored

 42

differently (aqua, blue, and green) from the mass of others (colored red). As evident in Figure 20,

patients can extend across the boundary of clusters. Thus, the clusters don't separate patients either.

When thinking about the notable pattern evident in the figure (e.g. plane separating two clusters), it

can be helpful to think of an analogy of the shape of the scatter plot to that of a 'p' electron orbital

from quantum theory. In 'p' orbital, there are two clusters separated by a node. At the node, there is

zero probability of an electron existing due to physical constraints. Thus, the electron can be either

on one side or the other, but is with probability approaching zero at the node. It is possible that the

patient state scatter plot can be similar in nature, but with the constraint being physiological rather

than physical. Instead having a node, the two clusters are separated by a plane. Patient state can

pass from one state (cluster #1) to another (cluster #2) while not going through the bisecting plane,

or transition area.

To examine this further, the PC's involved in the gap were examined. It appears that the grouping

involves an interaction between HR, BP, and agent concentration. This interaction suggests that as

HR is increased, the combination of BP and agent in PC1 and PC2 are constrained so that permit

patient state values are restricted to a certain distance from the bisecting plane.

Interestingly, as shown in the figure, the patients form sub-cluster within each cluster and have few,

if any, points between these sub-clusters. The blue and aqua patients' pairs of sub-clusters are

clearly evident. The green patient also has a couple of points on the upper cluster (just under the

blue patient) besides the sub-cluster on the lower cluster. The position of these sub-clusters within

the two larger clusters might yield valuable information as well. Additional, quantitative

exploration of these constraints and sub-clusters is left open for further work in this area.

 43

Figure 18

 44

Figure 19

 45

Figure 20

From these figures, it is evident that one can trace a trajectory which tracks patient state temporally

across these PC's (see the vertical appearing line of points extending from PC1=-1 to PC1=-3 along

PC2=50, PC3=0). In a five dimensional space, such a trajectory would encompass essentially the

complete specification of patient state. A zoomed in view in shown in Figure 21 and Figure 22,

again color coded by patient and time respectively. Figure 22 confirms that direction of trajectory

of the aqua colored patient seen in Figure 21 starts from lower right and moves upward varying

along PC1 (vertical axis) and PC3 (diagonal axis nearly orthogonal to plane of paper). A number

 46

of other patients exhibited similar trajectory patterns, a discovery whose ramifications will be

discussed in further detail in the 'Conclusions' section.

Figure 21

Figure 22

Scatter Plot of PC1, PC2, and PC3 (Colored by Time)

 47

Next, the number of cases of tachycardia and hypertension were explored. While it was expected

that some patients would exhibit one or the other of these conditions based on work by Muzi12, it

was surprising to find that all of the patients exhibited tachycardia, hypertension, or both at some

point during the first hour of the operation. In fact, more than 3/4 of patients had at least one

episode of tachycardia. See Figure 23 below for details. Thus, there were plenty of example cases

for training and testing a predictor model.

Figure 23

82.61% 73.91%

100.00%

52.17%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Tachycardia Hypertension Tachycardia or
Hypertension

Both

Percent

Tachycardia and Hypertension in 46 Patients

 48

In the 'Mathematics / Engineering Models' section, three types of predictors were discussed: ION

PCA-based predictor, static heart rate predictor, and heart rate average-based predictor. These three

predictors each trained on the first 2/3 of the 46 patient history database and then tested on the

remaining 1/3 (which they had not seen before). For the static heart rate predictor, the heart rate in

the patient database is shifted 7 samples forward in time (2 min, 20 sec) to yield the predicted value.

Thus, the present heart rate was predicted based on the HR value seen 7 samples ago. The heart rate

average-based predictor takes the average of the current and last two samples (0, 20, and 40 s) of

heart rate to make a prediction (i.e. N=3 in Equation 2). For the ION PCA-based predictor, the A

and B constants are determined by linear regression. In addition to using the 5 significant PC's,

shifted versions of these were also used in constructing the X described in the Equation 6. That is,

not only was the present sample of each PC presented as input to the predictor, but so were some

historical value of each PC (i.e. a value of a principal component U time units ago). Five values of

each PC from 4 time samples back in time to the present sample were used here (U=0 to 4). Thus,

the total number of variables (p in Equation 6) examined are: number of significant PC's * number

of time shifts = 5 *5 = 25. Thus, there will be 25 constant coefficients (i.e. A will be 25 elements

in length). Also, a constant B is determined by linear regression as well (89.30 is this case). The A

coefficients give more weight to those principal components that are more useful in reducing the

square error between predicted and actual future heart rate. Thus, insight can be gained on the

importance of the various PC components. Figure 24 below shows the relative importance of each

PC (inclusive of all 5 time shift variants) in ION PCA-based model. As expected, the heart rate and

tachycardia-relevant information component, i.e. PC #3, was the most heavily weighted PC. The

 49

second most heavily weighted PC was PC #1, which includes mostly blood pressure and agent

concentration information.

Figure 24

PC Coefficients in ION PCA-Based Predictor

0.6106

-0.0254

4.6411

-0.2458 -0.2918

-1

0

1

2

3

4

5

PC1 PC2 PC3 PC4 PC5

 50

By looking at the parameters that comprise each PC, it is possible to gauge the relative weights of

each of the 31 utilized fundamental and derived parameters in the principal component ION PCA-

based model. Thirty-one parameters, rather than 32 were used since the future heart rate parameter

information, PR_shift_7, was explicitly weighted at zero so that the predictor would not be able to

see the actual future heart rate. The relative importance of the patient state parameters in the model

are shown in Figure 25. It shows the value of the weight of each parameter sorted by the value's

magnitude. Clearly, pulse rate (i.e. heart rate) is high on the list as is the presence of present

tachycardia and hypertension. This suggests a possible link between hypertension and tachycardia.

Figure 25

-5

0

5

10

15

20

Predictor Coefficient- Sorted by Value
Tachy or Hypertension

PR

Tachy

PPlat

DIA

iT-st

Agt E

SYS

O2 I

VT-sp

Pmin

RR

CO2 E

Hypertension

NIBPint

HR slope

Avg of Agent Expired over time so far

Agt I

VE

Pmax

Deriv of Agent Expired

I:E

VT

DIA slope

CO2 I

SpO2

SYS slope

Vent-st

MAP

Integral of Agent Expired

N2O

HR_shift_2min_20sec

 51

Below (Figure 26) is a graph outlining the ION PCA-based predictor best fit based on the training

data. The X's mark the prediction made by the model for the heart rate in the future. The circles

denote the actual future heart rate values at the aforementioned points. In this case heart rate in

BPM against time samples for all patients. Thus patient #1 goes from time samples 1-45 and

patient #2 data is from samples 46-90, etc. Figure 27 shows the resulting residue plot.

Figure 26

 52

Figure 27

The models were then tested on the last third of the data (never seen previously) and asked to

predict heart rate. The results are shown below, Figure 29 and Figure 30 show the plots for the ION

PCA-based, static heart rate, and heart rate average-based predictors respectively. The residue plot

for the ION PCA-based predictor is shown in Figure 31. The largest residues occur when the heart

rate is changing quickly (i.e. magnitude of derivative of heart rate is large).

0 200 400 600 800 1000 1200
-50

-40

-30

-20

-10

0

10

20

30

40
Residues: ION PCA-Based Predictor Training. Heart Rate vs. Time

 53

Figure 28

Figure 29

0 100 200 300 400 500 600
50

60

70

80

90

100

110

120

130

140
ION PCA-based Predictor Test. Heart Rate vs. Time

Prediction
Actual Dataset

0 100 200 300 400 500 600
50

60

70

80

90

100

110

120

130

140
Static Heart Rate Predictor Test. Heart Rate vs. Time

Prediction
Actual Dataset

 54

Figure 30

Figure 31

0 100 200 300 400 500 600
50

60

70

80

90

100

110

120

130

140
Heart Rate Average-Based Predictor Test. Heart Rate vs. Time

Prediction
Actual Dataset

0 100 200 300 400 500 600
-50

-40

-30

-20

-10

0

10

20

30
Residues: ION PCA-based Predictor Test. Heart Rate vs. Time

 55

The accuracy of prediction was explored next. The RMS error for each of the three predictors

outlined in this thesis is shown in Figure 32. The ION PCA-based predictor had the lowest error.

However, it is important to note that the other predictors were quite successful in making

predictions as well (see 'Conclusions' for further discussion).

Figure 32

Predictor Type Absolute
Values RMS
Error

Residue
Values RMS
Error

ION PCA-Based Predictor 10.44 BPM 10.44 BPM
Static Heart Rate Predictor 15.76 BPM 15.67 BPM
Heart Rate Average-Based
Predictor

16.06 BPM 15.96 BPM

It is difficult to evaluate the clinical usefulness of tachycardia predictions from residues and RMS

errors. What is needed is a method to determine how often tachycardia itself is predicted correctly.

In addition, incorrect predictions of tachycardia must also be taken into account. Otherwise, a the

trivial predictor below would always be the best performer:

Equation 8

Tachycardia (n=n1+n0) = True for n time samples.

To do this evaluation, Receiver Operating Characteristic (ROC) curves (probability of detection

(Pd) vs. probability of false alarm (Pfa)) were derived for each of the three predictor types. As seen

in Figure 33, the ION PCA-based predictor performed best while the static heart rate model was

slightly better than heart rate average-based predictors for most Pd, Pfa possibilities.

 56

Figure 33

The sensitivity of the predictors to a change in the tachycardia threshold was examined. Figure 34

and Figure 35 show new tachycardia thresholds set at 65 and 120 BPM arbitrarily. Since the upper

left corner represents the most desired location (low false alarms, high detection), the 65 BPM is

slightly better than the 100 BPM threshold while raising it to 120 BPM results in a larger in Pfa to

achieve similar detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(Detection) vs.P(False Alarm). Tachycardia Threshold:100 BPM

P(False Alarm)

P
(D

et
ec

tio
n)

ION PCA-Based Predictor
Static Predictor
Average-Based Predictor

 57

Figure 34

Figure 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(Detection) vs.P(False Alarm). Tachycardia Threshold:120 BPM

P(False Alarm)

P
(D

et
ec

tio
n)

ION PCA-Based Predictor
Static Predictor
Average-Based Predictor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(Detection) vs.P(False Alarm). Tachycardia Threshold:65 BPM

P(False Alarm)

P
(D

et
ec

tio
n)

ION PCA-Based Predictor
Static Predictor
Average-Based Predictor

 58

Lastly, to provide finer granularity, the threshold was varied from 70 to 130 BPM in steps (See

Figure 36). Based on this figure, one could theorize a sub-tachycardia threshold of 90 BPM, for

example, along with a super-tachycardia threshold of 110 BPM and expect to get similar ROC

curves. The detection and false alarm probabilities depend on the training and testing data set

ranges. Also, at lower thresholds, there are few points below the threshold and at higher thresholds,

there are few points above it. So, predicting 65 BPM is easy since almost all predictions are above

this point. Simply alerting tachycardia every time will yield a high detection and low false alarm

rate. Thus, the training of the predictor depends on the input training dataset range that it sees and

as well as its patterns. In addition, the limited-size testing dataset's range of values can affect the

ROC curves. Yet, even given these constraints, it is still evident that the predictor remains within

specific detection and false alarm ranges in the figure below (except for the 130 BPM pathological

case, which had only one value above its threshold in the testing portion of the dataset).

 59

Figure 36

7. CONCLUSIONS AND DISCUSSION

This thesis sought to find an effective way to quantify temporal patient state by encapsulating

relevant variables processed by blind noise adjustment into the data set's significant principal

components. In doing so, the validity and applicability of ION PCA-based methods was put to the

test. The application of tachycardia prediction was selected due to the multivariate nature of the

patient data, its ease of collection via anesthesia monitors and sensors in the OR, and the availability

of the pre-existing patient data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(Detection) vs.P(False Alarm) of ION PCA-Based Predictor for Various Thresholds

P(False Alarm)

P
(D

et
ec

tio
n)

Threshold: 70 BPM
Threshold: 90 BPM
Threshold: 100 BPM
Threshold: 110 BPM
Threshold: 130 BPM

 60

It was discovered that an ION PCA-based method could be used to find new information previously

considered to be at the noise threshold. It was also found to delineate patient state in a simpler,

more efficient manner. Since the ION processed Principal Components actually encode more

information than the 32 fundamental and derived patient variables after estimated noise is removed,

having to only monitor a reduced set of five more accurate variables could make patient monitoring

more efficient, both for medical analysis and patient care. It also helps to provide information of

the relevance and importance of the numerous statistics presented by patient monitors. While the

basic meaning, physiologic significance, and clinical correlates of these principal components have

been defined here (namely: PC #1 & #2: blood pressure/agent, PC#3: agent interaction: HR and BP,

PC #4 & #5: agent interaction: BP and ventilation), further exploration into the relations and

intuition behind these could be beneficial for clinicians in characterizing patients under anesthetic

care.

With regard to the clinical application, it was discovered that desflurane led to ubiquitous

tachycardia or hypertension (in all 46 patients) and both conditions in more than half of them.

Thus, an interesting scientific question was: what action of the drug causes these short tachycardia

and hypertension episodes during induction via the inhaled anesthetic. Was it simply related to the

present or last few agent concentration values? Was it the slope of the agent concentration (how

fast is was increased/decreased)? Could it be proportional to the total anesthetic given so far

(represented via integral of agent expired)? As Figure 25 illustrated, the most significant of these

variables in HR prediction were the present agent concentration and the average agent expired over

time so far. Yet, in examining the data, it was found that most of the aforementioned fundamental

and derived agent variables were in the noise (as in Figure 13) even after use of ION. Thus, a

 61

definitive statement about the trait of agent linked to tachycardia can not be made conclusively at

this time.

As discussed previously, several models for heart rate prediction were tested and compared via

RMS error and ROC curves. Based on clinician discussions, one might consider Pfa = 1-Pd as an

optimal operation point. The in case of the ION PCA-based predictor, the best of the three, this

point would involve correct tachycardia detection approximately 82% of the time and a false alarm

18% of the time (see Figure 33).

Eventually, such a system could be put into clinical practice by integrating the 'Smart Alarm' ideas

espoused by Philip, et. al.13 by providing future derivatives in heart rate that could allow the alarms

to provide early warning.

Several methods could be used to explore raising Pd and lowering Pfa. The monitors used had a

sampling rate of 3 per minute. Though this was based on the best available commercial monitors

with a recording feature, this rate could be improved slightly by manual transcription of parameter

variables or by constructing a proprietary analog to digital converter to record the signals. In

addition, exploration of scaling the patient database up might lead to an improved the model based

on a larger training set. If a larger dataset is used, it would be expected that ION execution time as

well as training time would increase.

Other models that take nonlinearity into account, such as neural networks, could also be used with

the derived principal components as its input. The training of the weights of the nodes and biases

would then correspond to the predictor model as A and B were for the linear regression model (See

 62

Equation 6). It could open up avenues for future work into a number of clinical issues as well as

serve as an additional tool for answering scientific questions.

Since heart rate plays such a major role in tachycardia prediction, it was expected that even the non-

ION PCA predictors should do well in tachycardia prediction application since they capture the

principal parameter of the most weighted PC. Perhaps testing this method on another patient

monitoring application, which involves more observable variables relevant to the condition, would

provide an additional means of separating between the different model strategies as well as a test of

its validity and applicability in other domains.

With growing trend toward Internet appliances, it is conceivable that patients could be monitored

remotely in the future. With such an influx of data from hundreds of out-patients, a given doctor

would have a much larger time load per patient than today. Yet, if an intermediate middle-man

involving a monitoring system that sorted out the significant patient state characteristics and paged

the doctor when certain emergency or care necessitating combinations could potential occur, then

dynamic out-patient monitoring could become a reality. While at first glance it might seem that

such monitoring devices will not be available to consumers until a distant future, the first generation

of such devices are already available. These include Casio's JP200W-1V Watch that can monitor

heart rate or Boston start-up Fitsense's wearable FS-1, which can monitor everything from time,

speed, distance, calories burn, and heart rate through several devices attached to the body. The FS-

1 also includes a wireless network link to transmit the recorded information remotely (e.g. to

person's home or even a doctor's office). Both of these are currently priced under $200 (i.e. within

consumer market range) and may pave the way for future developments which might be more

useful for clinical monitoring.

 63

In the 'Introduction,' methods ranging from linear regression to neural network were proposed as

possibilities for predicting heart rate, and hence, tachycardia. Another idea for further work would

be to chain one predictor to another. Also, those mentioned in the 'Clinical Background' were

completely deterministic in nature. Tachycardia might be completely predictable if every variable

were known, but then again, so would a coin toss if all air flow patterns and models of the coin were

perfectly modeled. Therefore, probability might be useful here. It could also be used to provide the

clinician with a gauge of the perceived certainty/confidence level of the prediction.

One option that incorporates these ideas is the combination of a neural network front end for

nonlinear prediction with a Markov Chain. The neural network could be used to calculate the

probabilities of entering a different state in the Markov chain. The Markov chain need not be

limited to two nodes (Tachycardia and No Tachycardia). In fact, by adding additional nodes, a

history of patient state (like the time-shifted ones used in the linear regression model) can be used to

capture tachycardia information between 'Tachycardia' and 'No Tachycardia.'

Another area for future exploration involves designing a framework for dynamic, time varying

principal components and noise estimation as well as PC's and noise estimators with specific patient

or patient cluster dependence. Thus, the resultant ION PCA-based principal components could be

altered for different phases of an operation (just as an example) to account for the differences

between IV induction, induction by inhaled gas, wake-up, post-operative care, etc. In fact, one

could use the aforementioned methods to cluster patient populations based on principal components

consisting of various relatively static patient variable such as sex, weight, height, medical history,

etc. Hopefully, the future work will be able to answer some of these questions as well and open up

further avenues exploration.

 64

8. REFERENCES

[1] Lee, Junehee. Blind Noise Estimation and Compensation for Improved Characterization of
Multivariate Processes, (PhD Thesis), Massachusetts Institute of Technology, 2000.

[2] Lee, Junehee and D H Staelin. Iterative Signal-Order and Noise Estimation for Multivariate
Data, IEE Letters, (Accepted for publication, 2001).

[3] Joliffe, I. Principal Component Analysis. New York, Springer-Verlag, 1986.

[4] Hargasser S, Hipp R, Breinbauer B, Mielke L, Entholzner E, Rust M. A lower solubility
recommends the use of desflurane more than isoflurane, halothane, and enflurane under low-
flow conditions. J Clin Anesth (1995 Feb) 7(1):49-53.

[5] Philip B K, Lombard L L, Road E R, Drager L R, Calalang I, Philip J H. Comparison of Vital
Capacity Induction with Sevoflurane to Intravenous Induction with Propofol for Adult
Ambulatory Anesthesia. Anes Analg 1999; 89:623-627.

[6] Philip, James H. How to make Desflurane work for you - Use its low solubility, (Technical
Paper), Brigham and Women's Hospital, 2000.

[7] Philip, J. H. and Raemer, D. B. Selecting the Optimal Anesthesia Monitoring Array. Medical
Instrumentation, Vol 19, No. 3, pp. 122-126, 1985.

[8] Weinstein, E., Oppenheim, A., Feder, M., and Buck, R. "Iterative and Sequential Algorithms for
Multi-sensor Signal Enhancement," IEEE Transactions On Signal Processing, Vol. 42, no. 4.,
pp. 846-859, 1994.

[9] Rawizza, Mark A. Time-Series Analysis of Multivariate Manufacturing Data Sets, S.M. Thesis,
Massachusetts Institute of Technology, 1996.

[10] Miller R D, Lichtor J L. Atlas of Anesthesia. Preoperative Preparation and Intraoperative
Monitoring. Philadelphia, Churchill Livingstone, Vol III, 1997, Ch.

[11] Muzi M Ebert TJ A comparison of baroreflex sensitivity during isoflurane and desflurane
anesthesia in humans. Anesthesiology, 82:919-25, 1995.

 65

[12] Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy
volunteers. A comparison with isoflurane. Anesthesiology, 79, 444-53.

[13] Philip J. H, Scott, D., Topulos G.P., Calalang I, Raemer D.B. Development of a Monitoring-
for-Change Algorithm for a New Anesthesia Machine. ASA, Las Vegas, NV, Oct. 1990.

 66

9. LIST OF PERTINENT ACRONYMS AND ABBREVIATIONS
(CLINICAL & TECHNICAL)

Figure 37

Clinical Term Acronym/Definition

OR Operating Room
Tachycardia Heart Rate > 100 beats per minute
VRG Vessel Rich Group, comprised of tissue well

perfused with blood, as opposed to muscle
(intermediate) and fat (low).

Hypertension Systolic Blood Pressure > 140, Diastolic Pressure >
90

Solubility, Blood How easily a substance dissolves in blood
Desflurane Used as an anesthetic in its vapor form
IV Intravenously
CNS Central Nervous System- Brain and Spinal cord, as

opposed to PNS: Peripheral Nervous System
BPM Beats per minute
Breathing Circuit An apparatus that connects the patient to the agent as

well as the mechanical ventilator.
MABP Mean Arterial Blood
Pressure

Defined as: 1/3*Systolic BP + 2/3*Diastolic BP

Induction Intravenously

Administration of a drug intravenously to induce an
unconscious and/or anesthetized patient state.

Induction of Inhaled Gas

Administration of a drug intravenously to induce an
unconscious and/or anesthetized patient state.

Intubation

Placing the breathing circuit in the airway (throat).

 67

Figure 38

Mathematical/Engineering Acronym/Definition
ION Iterative Order and Noise Estimate
SNR Signal to Noise Ratio
RAM Random Access Memory
NAPC Noise Adjusted Principal Component Analysis
BAPC Blind Adjusted Principal Component Analysis
PC Principal Component
PCA Principal Component Analysis
EM Expectation-Maximization

 68

10. APPENDIX: SOURCE CODE LISTING

10.1. Selected Files Listings

FILE 1: PCA_DATA.M. .69
This is the main program file. This program loads the preprocessed patient records. It
calculates the derived parameters. It then sequentially assembles the patients across time.
Next, it does PCA and ION. Lastly, the coefficients of the linear predictor are calculated.

FILE 2: PCA_FUNCT.M . 101
This function performs the mechanics of PCA.

FILE 3: PRE_PROCESSING.M. 102
This file does the preprocessing of the raw patient data files. It locates the start of valid
data, does linear interpolation, and determines the starting point for the induction of inhaled
desflurane.

File 1: Pca_data.m

function pca_data(num_pat_id)
%% need to re-load ION values if number of parameters, etc. changes...

% all_data.sel_npdata(:, :) = 25xnum_time_col*num_real_pat = 1 patient's
'imagemap'
% all_data.pdata = arr_all_pat.pdata (truncated)

PARAM_BP1 = 1
PARAM_BP2 = 2
PARAM_BPM = 3
PARAM_HR = 5 % - by pat file col.
PARAM_AGTE = 19 % - by pat file col.
PARAM_HR_SHIFT_m240 = 31; % 'PR_shift_m8 (BPM)' at 34 - by pat file col.
PARAM_HR_SHIFT_m240_mod = 23;
PARAM_DERIV_HR = 55

PARAM_HR_MOD = 4; % 'PR' at 5

%10/25- changed to have only 180's in data set (plus adjusted all array
values->num_order found = 2 by ION -> much better!

%rerun using this program- added cols 6->7
% ion->norm by noise & graph
% add pca func
% do linear model
% fix up func. make it exp. based parameter meta-func (like Jay's prog.)
% ana pca eig value strengths, compare to hr.
% ana pca pc1 vs pc2 grpahs, etc. write down patterns.

% compare two vectors to see if any elements are dif.:
% find((all_data.pdata(:,:)-all_data.npdata(:,:)) == 0)

 addpath 'c:\users\gil\matlab\new'

addpath 'c:\Users\gil\matlab\jhlee\IonDistribution'
addpath 'c:\Users\gil\matlab\jhlee\IonDistribution'

ID_DIR=7;

if (computer == 'PCWIN')

 70

%if (exist('c:\users\gil') == ID_DIR)
% computer_subtype='WIN98_JANSKY'
% str_drive ='f'
%else
% computer_subtype='WIN95_JANSKY'
% str_drive ='e'
%end

% assume on 'c'

str_drive = 'c'

% \CD Data 07%2F06%2F00 OR 19
 %%%%%%%%%%%%%%%%
 % PCWIN
 % 1 = PCWIN, 2 = UNIX
 OS.TYPE = 1
 OS.SEP = '\'
 root_path = strcat(str_drive,':\users\gil')
 rel_path = 'bwh_data\CD Data 07%2F00'
 rel_path = 'bwh_data\CD Data 1999-1'
 rel_path = 'examples'
 rel_path = 'test'

 % rel_path = 'bwh_data'
 log_path = strcat(str_drive,':\users\gil\matlab\new\log')

 %%%%%%%%%%%%%%%%
else
 %%%%%%%%%%%%%%%%
 % PCWIN
 % 1 = PCWIN, 2 = UNIX
 OS.TYPE = 2
 OS.SEP = '/'
 root_path = '/usr/users/gil/matlab/'
 rel_path = 'bwh_data'
 % rel_path = 'bwh_data'
 log_path = '/usr/users/gil/matlab/log'
 %%%%%%%%%%%%%%%%

end

global PARAM_LINE_START
global PARAM_LINE_STOP
more off

PARAM_MAX_LINE = 1;
PARAM_OS_TYPE = 2;
PARAM_SERIAL = 3;

 71

PARAM_GOOD_PAT = 4;
PARAM_LINE_START = 5;
PARAM_LINE_STOP = 6;
PARAM_AGTI_START = 7;
SAMP_PER_MIN = 3;

MAX_NUM_PARAM = 25;
% fil_load =
strcat('c:\users\gil\matlab\new\log\patient_post_',num2str(num_pat_id))
 fil_load =
strcat('c:\users\gil\matlab\new\log\patient_post_',num2str(num_pat_id))

load (fil_load,'arr_all_pat')

NUM_PAT_COL = 180;
%{
idx_idx_pat = find(arr_all_pat.misc(:, PARAM_MAX_LINE) < NUM_PAT_COL*1.1);

arr_tmp1 = arr_all_pat.pdata(idx_idx_pat,:,:);
arr_tmp2 = arr_all_pat.misc(idx_idx_pat,:);
arr_tmp3 = arr_all_pat.pname(idx_idx_pat);

arr_all_pat.pdata = arr_tmp1;
arr_all_pat.misc = arr_tmp2;
arr_all_pat.pname = arr_tmp3;

%}

% num_shift = SAMP_PER_MIN * 2; 3 per min * 3 min. to shift

% Make next 7*3 = 21 parameters be shifts (param 26 -> 21+25=46).
% before modification- so use orginal values for paramters' columns!!!

real_num_pat = size(arr_all_pat.pdata,1);
idx_pat=[1:real_num_pat];

num_time_col = size(arr_all_pat.pdata,3); % not all are valid- since
table makes it for largest patient's time points. also, need to take
start/stop into account for which time points are valid for a given patient.

for (num_shift=SAMP_PER_MIN * 2:1:SAMP_PER_MIN * 4)

 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, 1:num_time_col -num_shift)
= arr_all_pat.pdata(idx_pat, PARAM_BP1, num_shift+1:num_time_col);

 72

% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, num_shift+1:num_time_col) =
arr_all_pat.pdata(idx_pat, PARAM_BP1, num_time_col -num_shift) *
ones(1,num_time_col-num_shift);

 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+2, 1:num_time_col -num_shift)
= arr_all_pat.pdata(idx_pat, PARAM_BP2, num_shift+1:num_time_col);
% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+2, num_shift+1:num_time_col) =
arr_all_pat.pdata(idx_pat, PARAM_BP2, num_time_col -num_shift) *
ones(1,num_time_col-num_shift);

 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+3, 1:num_time_col -num_shift)
= arr_all_pat.pdata(idx_pat, PARAM_HR, num_shift+1:num_time_col);
% arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+3, num_shift+1:num_time_col) =
arr_all_pat.pdata(idx_pat, PARAM_HR, num_time_col -num_shift) *
ones(1,num_time_col-num_shift);

MAX_NUM_PARAM = MAX_NUM_PARAM+3;

end

% Make next parameter 47 be agt expired slope = [diff(agte) / (1/3 = sampling
time)] = diff*3;
for(idx_pat=1:real_num_pat)

arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)),3)) =
diff(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)) * SAMP_PER_MIN;

% make all transitions from one to another be 0 (i.e. diff for
[NUMP_SAMP*n+1] -> 0)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff];

arr_diff=''
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Make next parameter 48 be agt expired integral = [sum(agte (1:cur_time)) /
(3 = sampling time)] = units: [Agt E %*min.];
for(idx_pat=1:real_num_pat)

for(idx_data=1:length(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)))

arr_sum = arr_all_pat.pdata(idx_pat, PARAM_AGTE, 1:idx_data);

arr_sum(find(isnan(arr_sum))) = 0;

 73

 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) = sum(arr_sum)/3;

end

end
MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 49 be agt expired avg = [sum(agte (1:cur_time)) /
(number samples)] = units: [Agt E %];
for(idx_pat=1:real_num_pat)

for(idx_data=1:length(arr_all_pat.pdata(idx_pat, PARAM_AGTE, :)))

arr_sum = arr_all_pat.pdata(idx_pat, PARAM_AGTE, 1:idx_data);

arr_sum(find(isnan(arr_sum))) = 0;

 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =
sum(arr_sum)/length(arr_sum);

end

end
MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 50 be high hr 'alert signal'

%keyboard

for(idx_pat=1:real_num_pat)
 for(idx_data=1:num_time_col)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =
arr_all_pat.pdata(idx_pat, PARAM_HR, idx_data) > 100;
 end
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 51 be high bp 'alert signal'

%keyboard

for(idx_pat=1:real_num_pat)
 for(idx_data=1:num_time_col)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =
arr_all_pat.pdata(idx_pat, PARAM_BP1, idx_data) > 140 |
arr_all_pat.pdata(idx_pat, PARAM_BP2, idx_data) > 90;

 74

 end
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 52 be high hr/bp 'alert signal'

%keyboard

for(idx_pat=1:real_num_pat)
 for(idx_data=1:num_time_col)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, idx_data) =
arr_all_pat.pdata(idx_pat, PARAM_HR, idx_data) > 100 |
arr_all_pat.pdata(idx_pat, PARAM_BP1, idx_data) > 140 |
arr_all_pat.pdata(idx_pat, PARAM_BP2, idx_data) > 90;
 end
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 53 be diff sys slope = [diff(sys) / (1/3 = sampling
time)] = diff*3;
for(idx_pat=1:real_num_pat)

arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_BP1, :)),3)) =
diff(arr_all_pat.pdata(idx_pat, PARAM_BP1, :)) * SAMP_PER_MIN;

% make all transitions from one to another be 0 (i.e. diff for
[NUMP_SAMP*n+1] -> 0)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff];

arr_diff=''
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

% Make next parameter 54 be diff dia slope = [diff(sys) / (1/3 = sampling
time)] = diff*3;
for(idx_pat=1:real_num_pat)

arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_BP2, :)),3)) =
diff(arr_all_pat.pdata(idx_pat, PARAM_BP2, :)) * SAMP_PER_MIN;

% make all transitions from one to another be 0 (i.e. diff for
[NUMP_SAMP*n+1] -> 0)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff];

arr_diff=''
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

 75

% Make next parameter 55 be diff hr slope = [diff(sys) / (1/3 = sampling
time)] = diff*3;
for(idx_pat=1:real_num_pat)

arr_diff(1:size(diff(arr_all_pat.pdata(idx_pat, PARAM_HR, :)),3)) =
diff(arr_all_pat.pdata(idx_pat, PARAM_HR, :)) * SAMP_PER_MIN;

% make all transitions from one to another be 0 (i.e. diff for
[NUMP_SAMP*n+1] -> 0)
 arr_all_pat.pdata(idx_pat, MAX_NUM_PARAM+1, :) = [0,arr_diff];

arr_diff=''
end

MAX_NUM_PARAM = MAX_NUM_PARAM+1;

%keyboard
num_pat = size(arr_all_pat.pdata, 1);

% arr_all_pat.pdata(1:size(arr_all_pat.pdata, 1), 1:size(arr_all_pat.pdata,
2), size(arr_all_pat.pdata, 3))=0;

idx_length = 0
for idx_pat=1:num_pat
% keyboard
% line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START);
 line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START);
NUM_SAMP = SAMP_PER_MIN * 15; % = 3/min * 15 min.
 line_stop = min(arr_all_pat.misc(idx_pat, PARAM_LINE_STOP),
arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP - 1);

 idx_length = idx_length + (line_stop - line_start + 1)
 idx_length_pat(idx_pat) = (line_stop - line_start + 1);

 76

end

%all_data.pdata(1:MAX_NUM_PARAM, 1:idx_length) = NaN;
idx_length

%%%%%%%%%%%%%%%%%%%%%%%%%%

NUM_COL = 256

max_len = -1
cur_spot = 1
for idx_pat=1:num_pat

 len_start_stop = line_stop - line_start + 1;

for (i=1:len_start_stop)
 hsv_col_map_tim(cur_spot + i-1,:) = (([(i*NUM_COL/len_start_stop),
(NUM_COL*.9), (NUM_COL*2/3)]/NUM_COL)' * ones(1, 1))';
end

if (max_len < (line_stop-line_start + 1))
 max_len = (line_stop-line_start + 1);

 hsv_col_map_tim_bar(1:max_len, :) = hsv_col_map_tim(cur_spot:(cur_spot+
max_len-1),:);

end

 cur_spot = cur_spot + line_stop-line_start+1;

end

for idx_param=1:MAX_NUM_PARAM
idx_spot = 1;
arr_spot(idx_spot) = 1;

 idx_pat=1;

 77

% line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START);
 line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START);

 line_stop = min(arr_all_pat.misc(idx_pat, PARAM_LINE_STOP),
arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP -1);

 all_data.pdata(idx_param, 1:line_stop-line_start+1) =
arr_all_pat.pdata(1,idx_param,line_start:line_stop);

 arr_spot(idx_spot+1) = arr_spot(idx_spot) + line_stop-line_start+1;
idx_spot = idx_spot+1;

%%keyboard

 if (num_pat>1)
 for idx_pat=2:num_pat
% line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START);
 line_start = arr_all_pat.misc(idx_pat, PARAM_AGTI_START);

 line_stop = min(arr_all_pat.misc(idx_pat,
PARAM_LINE_STOP), arr_all_pat.misc(idx_pat, PARAM_AGTI_START) + NUM_SAMP -1);

 aa= all_data.pdata(idx_param,:);
 bb(1:line_stop-line_start+1) =
arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop);

length([aa,bb]);
%%keyboard
size(bb);
 (line_stop-line_start)+1 + arr_spot(idx_spot);

 all_data.pdata(idx_param,
arr_spot(idx_spot):(arr_spot(idx_spot) + length(bb)-1)) = bb ;
%keyboard
bb=0;
 arr_spot(idx_spot+1) = arr_spot(idx_spot) + line_stop-line_start+1;
idx_spot = idx_spot+1;
 end

 end
end

 78

display('stop here!')
%%%%keyboard

for idx_param=1:MAX_NUM_PARAM

num_min = min(min(all_data.pdata(idx_param, :)))
if isnan(num_min)
 num_min = -1;

end

% get one parameter's whole vector across files:
b(1:length(all_data.pdata(idx_param, :)))=all_data.pdata(idx_param, :);

b(find(isnan(b))) = num_min;
 all_data.pdata(idx_param, :) = b;

num_std = std(all_data.pdata(idx_param, :));
all_data.npdata(idx_param, :) = norm_funct(all_data.pdata(idx_param, :),
num_std)

end

%^^
^

% [npdata, pmean, pstd] = prestd(all_data.pdata(idx_param,:));

%%keyboard
%all_data.pmean(idx_param) = pmean;

%all_data.pstd(idx_param) = pstd;

% isnan(all_data.npdata(:,:))
% change nan's!!!

all_data.npdata (find(isnan(all_data.npdata(:,:)))) = 0

 79

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 file_save = strcat(log_path, OS.SEP, 'patient_pca_',num2str(num_pat))

% load(file_save, 'arr_all_pat') ;
save (file_save, 'all_data', 'arr_all_pat') ;
%%
%keyboard
% save file_save arr_all_pat.pdata(:,:,:) -ASCII ;

cd (log_path)

%&&&

PARAM_HR_HI = 50 % by pat col no.
PARAM_BP_HI = 51 % by pat col no.
PARAM_HR_BP_HI = 52 % by pat col no.

idx_pat=1
%%for (idx_pat=1:real_num_pat)

%if (any(arr_all_pat.pdata(idx_pat,48,:)>0))
%display('Yes')
%else
%display('Nope')
%end

 fid = fopen(strcat('exp', num2str(idx_pat),'.txt'),'w');
for(idx_param=1:MAX_NUM_PARAM)
 fprintf(fid,'Param #%d',idx_param);
 for(idx_data=1:num_time_col)
 fprintf(fid,'%6.2f ', arr_all_pat.pdata(idx_pat, idx_param,
idx_data), arr_all_pat.pdata(1, idx_param, idx_data));
 end
 fprintf(fid,'\n\n');
end
 fclose(fid);
%%end

%%%%keyboard

 str_title = strcat('Number of Patients: ', num2str(num_pat), ' ')
 str_x = 'Samples';
 str_y = strcat(' Param 1-6, Patient #', num2str(idx_pat));

 figure

 80

 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

 for(idx_param=[1,2,3,4,5,6])
 subplot(7, 1, idx_param), plot(1:idx_length_pat(1) ,
all_data.pdata(idx_param,1:idx_length_pat(1)))
 end
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

% figure
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

 for(idx_param=[1,2,3,4,5,6])
 subplot(7, 1, idx_param), plot(1:idx_length_pat(2) ,
all_data.pdata(idx_param,idx_length_pat(1)+1:idx_length_pat(1) +
idx_length_pat(2)))
 end
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

% figure
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

 for(idx_param=[1,2,3,4,5,6])
 subplot(7, 1, idx_param), plot(1:idx_length_pat(3) ,
all_data.pdata(idx_param,idx_length_pat(1) +
idx_length_pat(2)+1:idx_length_pat(1) + idx_length_pat(2) + idx_length_pat(3)
))
 end
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

% figure
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

 for(idx_param=[1,2,3,4,5,6])

 81

 subplot(7, 1, idx_param), plot(1:idx_length_pat(4) ,
all_data.pdata(idx_param,idx_length_pat(1) + idx_length_pat(2) +
idx_length_pat(3)+1:idx_length_pat(1) + idx_length_pat(2) + idx_length_pat(3)
+ idx_length_pat(4)))
 end
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

% figure
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

 for(idx_param=[1,2,3,4,5,6])
 subplot(7, 1, idx_param), plot(1:idx_length_pat(5) ,
all_data.pdata(idx_param,idx_length_pat(1) + idx_length_pat(2) +
idx_length_pat(3)+idx_length_pat(4)+1:idx_length_pat(1) + idx_length_pat(2) +
idx_length_pat(3) + idx_length_pat(4) + idx_length_pat(5)))
 end
 Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ',
str_y, ' vs. ', str_x))

%^^
^

%%%
%%%
%%b = [all_data.npdata(1:3,:) ; all_data.npdata(5,:) ;
all_data.npdata(8:19,:) ; all_data.npdata(21:24,:)];
keyboard

%b = [all_data.npdata(1:3,:); all_data.npdata(5:19,:) ;
all_data.npdata(21:24,:); all_data.npdata(26:MAX_NUM_PARAM,:)];
b = [all_data.npdata(1:3,:); all_data.npdata(5:19,:) ;
all_data.npdata(21:24,:); all_data.npdata(PARAM_HR_SHIFT_m240,:);
all_data.npdata(47:MAX_NUM_PARAM,:)];
bp=[all_data.pdata(1:3,:); all_data.pdata(5:19,:) ; all_data.pdata(21:24,:);
all_data.pdata(PARAM_HR_SHIFT_m240,:); all_data.pdata(47:MAX_NUM_PARAM,:)];

% removed shifted versions above...

all_data.sel_npdata(:,:) = b(:,:);
all_data.sel_pdata(:, :) = bp(:,:);
num_sel_param = size(all_data.sel_npdata(:,:), 1);

 figure
% imagesc(all_data.npdata(:,:))

 82

 imagesc(all_data.sel_npdata(:,:))
Title(strcat('Image Map of Dataset: ',num2str(idx_pat),' Patients. Paramters
vs. Time'))
xlabel('Time')
ylabel('Paramters')
 colorbar

 imagesc(all_data.sel_npdata(:,1:135))
Title(strcat('Image Map of 3 Patients After Pre-Processing/Interpolation.
Paramters vs. Time'))
xlabel('Time')
ylabel('Paramters')
 colorbar

%%keyboard

arr_del=PARAM_HR_SHIFT_m240_mod;
[num_evec_1, x, num_scr_plot] = pca_funct(all_data.sel_npdata, arr_del);

x_pca = x;

display('22')

%%%%keyboard
for (i=1:7)
[num_evec_1_srt, num_evec_1_idx] = sort(abs(num_evec_1(:,i)));
num_evec_1_srt_des = flipud(num_evec_1_srt);
num_evec_1_idx_des = flipud(num_evec_1_idx);

str_msg = sprintf('Eig_vec: #%d, max idx: %d %d %d %d %d, max. values: %f %f
%f %f %f\n', i, num_evec_1_idx_des(1), num_evec_1_idx_des(2),
num_evec_1_idx_des(3), num_evec_1_idx_des(4), num_evec_1_idx_des(5),
num_evec_1_srt_des(1), num_evec_1_srt_des(2), num_evec_1_srt_des(3),
num_evec_1_srt_des(4), num_evec_1_srt_des(5))

 arr_param_name=make_arr_param_name;

 % NOTE: strcat = trick to get cells to be converted to strings!!

 for (i=1:5)

 83

 display(arr_param_name_mod(num_evec_1_idx_des(i),
arr_param_name))

 end

end

%keyboard
%for idx_param=1:3
% num_std = std(x(:, idx_param));
% nx(:, idx_param) = norm_funct(x(:, idx_param), num_std);
%end

%[num_evec_pca, pca_x, num_scr_plot_pca] = pca_funct(nx', arr_del); % note
the '

% cov should make all approx 1 if pca done before already-> checks ok!

%str_title = strcat(datestr(now,2), ', ', datestr(now,14),': # Patients:
',num2str(num_pat),', Log(EigValue) vs. Index ');
%eig_graph(num_scr_plot_pca, '', length(num_scr_plot_pca), str_title)

%str_title = strcat('Number of Patients: ', num2str(num_pat), ' ')
%str_x = 'Samples';
%str_y = ' PC1, PCA of PC1: PC PC1, PC PC2, PC PC3 and HR';

%figure
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))

%num_pc=1
%subplot(7, 1, 1), plot(1:length(x(:, num_pc)) , x(:, num_pc))

%for(num_pc=1:3)
%subplot(7, 1, num_pc+1), plot(1:length(pca_x(:, num_pc)) , pca_x(:,
num_pc))
%end

%% Param. #5 = PR = [Beats per min.]

%subplot(7, 1, 5+2), plot(1:length(all_data.npdata(5,:)),
all_data.npdata(5,:))

 84

%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))

%^^
^

keyboard
%[num_s, num_noise, num_order] = ion(all_data.sel_npdata(:,:)', 10); %%

cd (log_path)
%save('ION_data', 'num_s', 'num_noise', 'num_order') %%
num_s='';num_noise=''; num_order=''; load('ION_data', 'num_s', 'num_noise',
'num_order') %
display('ion done...')

%%%%keyboard

for idx_param=1:num_sel_param
all_data.ionpdata(idx_param, :) = all_data.sel_npdata(idx_param, :)./
sqrt(num_s(idx_param)) ; % num_s = ion norm
end

arr_del = PARAM_HR_SHIFT_m240_mod;
[num_evec_ion, x_ion, num_scr_plot_ion] = pca_funct(all_data.ionpdata,
arr_del);
x='';
x=x_ion;

display('22')

% sorting within a eigenvector for parameter weight value...

display('params');
for (i=1:7)
 [num_evec_1_srt, num_evec_1_idx] = sort(abs(num_evec_ion(:,i)));
num_evec_ion(num_evec_1_idx_des(1),i)

 num_evec_1_srt_des = flipud(num_evec_1_srt);
 num_evec_1_idx_des = flipud(num_evec_1_idx);

 arr_param_name=make_arr_param_name;

 % NOTE: strcat = trick to get cells to be converted to strings!!

 85

 str_msg = sprintf('Eig_vec: #%d, max idx: %d %d %d %d %d, max. values:
%f %f %f %f %f\n', i, num_evec_1_idx_des(1), num_evec_1_idx_des(2),
num_evec_1_idx_des(3), num_evec_1_idx_des(4), num_evec_1_idx_des(5),
num_evec_1_srt_des(1), num_evec_1_srt_des(2), num_evec_1_srt_des(3),
num_evec_1_srt_des(4), num_evec_1_srt_des(5))
 for (i=1:5)
 display(arr_param_name_mod(num_evec_1_idx_des(i),
arr_param_name))

 end

end

% REMOVE the predicted HR value so no answer given to predictor!!!
num_evec_ion(arr_del,:)=0;

display('final lin. estimator');
keyboard

%^^
^

%_SHIFT_m240

%x_ion=x_pca;

%,24:32

%x_ion=all_data.sel_pdata([1:22,24:32],:)';
%x_ion='';
%x_ion=all_data.sel_pdata([1:5],:)';

num_samp_pred = 7;
num_samp_shift = 5;
%num_ion=31;

num_ion=5;
num_time_col_cat_new = length(x_ion(:,1)) - num_samp_pred*num_pat -
num_samp_shift*num_pat; % NOTE: num_samp_pred (since deleted upon shifting)

%x_ion(1:num_train, 2)' x_ion(1:num_train, 3)' x_ion(1:num_train, 4)'
x_ion(1:num_train, 5)' x_ion(1:num_train, 6)'

size(x_ion(:, 1)');

num_train = fix((num_time_col_cat_new)*(2/3)); % 3/4

% note the '

 86

y = all_data.pdata(PARAM_HR, :)';

%y = all_data.pdata(PARAM_BPM, :)';

Y_comp = y;
%% shift y by shift_pred = 8 (=2 min, 40 sec)
shift_pred = num_samp_pred;

if (~isempty(find(isnan(y))))
 error('NaN found in data!')
end

shift_pred = num_samp_pred;
for (cur_spot = arr_spot(1:length(arr_spot)-1))

 for (cur_loc = 1:num_samp_pred + num_samp_shift)

 y(cur_spot + cur_loc - 1)=NaN;

 end

end
 y=y (find(~isnan(y))); % must delete only after all are found-
else alignment markers get off...

shift_pred = num_samp_pred;

for (cur_spot = arr_spot(2:length(arr_spot)-1)) %

 for (cur_loc = 1:num_samp_shift) %num_samp_shift %% 2
num_samp_pred num_samp_shift

 Y_comp(cur_spot + cur_loc - 1)=NaN;

 end

end

% delete trailing shift_pred from Y_comp
for (cur_spot = arr_spot(2:length(arr_spot))) %%

 for (cur_loc = 1:num_samp_pred) %%

 Y_comp(cur_spot - cur_loc)=NaN; %%

 end %%

end %%
% Y_comp_old = Y_comp;
 Y_comp = Y_comp (find(~isnan(Y_comp))); % must delete only after
all are found- else arr_spot alignment markers get off...

 87

for(idx_ion=1:num_ion)
 if (~isempty(find(isnan(x_ion(:, idx_ion)))))
 error('NaN found in data!')
 end
%x_pred(:,idx_ion) = x_ion(:,idx_ion);
end

for(idx_shift=1:num_samp_shift)
 x_hr(1:size(all_data.pdata, 2), idx_shift) =
all_data.pdata(PARAM_DERIV_HR, :)'; %%%%^^^^ % _SHIFT_m240
 x_pred(1:size(x_ion, 1),1:num_ion, idx_shift) = x_ion(1:size(x_ion,
1),1:num_ion);
end

if (~isempty(find(isnan(x_hr))))
 error('NaN found in data!')
end

if (~isempty(find(isnan(x_pred))))
 error('NaN found in data!')
end

%

 for (cur_spot = arr_spot(1:length(arr_spot)-1))

 for (shift_pred=0:1:num_samp_shift-1)
 for (cur_loc = 1:num_samp_shift - shift_pred)
 % remove leading edge
 for (idx_ion=1:num_ion)
 x_pred(cur_spot + cur_loc - 1, idx_ion,
shift_pred+1) = NaN;
 end

 x_hr(cur_spot + cur_loc - 1, shift_pred+1) =
NaN;

 end

 end
 end

 for (cur_spot = arr_spot(2:length(arr_spot)))

 for (shift_pred=0:1:num_samp_shift-1)
 for (cur_loc = 1:num_samp_pred + shift_pred)

 88

 % remove leading edge
 for (idx_ion=1:num_ion)
 x_pred(cur_spot - cur_loc, idx_ion,
shift_pred+1) = NaN;

 end
 x_hr(cur_spot - cur_loc, shift_pred+1) = NaN;

 end

 end
 end

x_pred_new='';
x_pred_new(size(x_pred, 1) ,num_ion,num_samp_shift)=0;

for (i=1:num_ion)
 for (idx_shift=1:num_samp_shift)
 x_pred_new(1:length(find(~isnan(x_pred(:, i, idx_shift)))), i,
idx_shift)=x_pred (find(~isnan(x_pred(:, i, idx_shift))), i, idx_shift); %
must delete only after all are found- else alignment markers get off...
end
end

x_hr_new(size(x_pred, 1) ,num_samp_shift)=0;
 for (idx_shift=1:num_samp_shift)
 x_hr_new(1:length(find(~isnan(x_hr(:, idx_shift)))), idx_shift)
= x_hr (find(~isnan(x_hr(:, idx_shift))), idx_shift); % must delete only
after all are found- else alignment markers get off...
 end

X_train = [ones(num_train,1)] ;

for (i=1:num_ion)
 for (idx_shift=1:num_samp_shift)
 X_train=[X_train, x_pred_new(1:num_train , i, idx_shift)];
 end
end
%%
% for (idx_shift=1:num_samp_shift)
% X_train=[X_train, x_hr_new(1:num_train , idx_shift)];
% end
%%

 89

arr_test_set = (num_train+1:(num_time_col_cat_new));

X_test = [ones((num_time_col_cat_new-num_train),1)];

for i=1:num_ion
 for (idx_shift=1:num_samp_shift)
 X_test=[X_test, x_pred_new(arr_test_set , i, idx_shift)];
 end
end

%%
% for (idx_shift=1:num_samp_shift)
% X_test=[X_test, x_hr_new(arr_test_set , idx_shift)];
% end
%%

%^^
^
%
%

%h=X_train;
%X_train=X_test;
%X_test = h;

%X_train = [ones((num_train),1) , rand(num_train,num_samp_shift*num_ion)];
%X_test = [ones((num_time_col_cat_new-num_train),1),
rand(num_time_col_cat_new - num_train,num_samp_shift*num_ion)];

%%%%keyboard
a = X_train\(y(1:num_train));

% NOTE: 1:num_train = UNDEFINED for Y_test!!
Y_test=''
Y_test(num_train+1:num_time_col_cat_new) = X_test*a
Y_test=Y_test';

Y_train = X_train*a;

display('stop here')
%%%%keyboard
res_test = Y_test(num_train+1:num_time_col_cat_new) -
y(num_train+1:num_time_col_cat_new); % = predicted - actual

res_train = Y_train - y(1:num_train); % = predicted - actual

 90

% note the '
% Y_comp = all_data.pdata(PARAM_HR, :)';
% Y_comp defined earlier!

res1 = Y_comp(num_train+1:num_time_col_cat_new) -
y(num_train+1:num_time_col_cat_new); % = predicted - actual

Y_avg=''
for(i=num_train+1:num_time_col_cat_new)
 Y_avg(i) = mean(Y_comp(i-2:i));
end

Y_avg = Y_avg';

res2 = Y_avg(num_train+1:num_time_col_cat_new) -
y(num_train+1:num_time_col_cat_new); % = predicted - actual

MaxErr_YTestTrain = max_error(Y_train(1:num_train),y(1:num_train))
SumSq_YTestTrain = rms_error(Y_train(1:num_train),y(1:num_train))

MaxErr_YLinTest = max_error(Y_test(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
SumSq_YLinTest = rms_error(Y_test(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
mean(res_test)
RMS_YLinTestRes = rms_error(res_test , mean(res_test))

% ---
MaxErr_YCompTrain = max_error(Y_comp(1:num_train),y(1:num_train))
SumSq_YCompTrain = rms_error(Y_comp(1:num_train),y(1:num_train))

MaxErr_YCompTest = max_error(Y_comp(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
SumSq_YCompTest = rms_error(Y_comp(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
mean(res1)
RMS_YCompTestRes = rms_error(res1 , mean(res1))

% ---
MaxErr_YAvgTrain = max_error(Y_avg(1:num_train),y(1:num_train))
SumSq_YAvgTrain = rms_error(Y_avg(1:num_train),y(1:num_train))

MaxErr_YAvgTest = max_error(Y_avg(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
SumSq_YAvgTest = rms_error(Y_avg(num_train+1:num_time_col_cat_new),
y(num_train+1:num_time_col_cat_new))
mean(res2)
RMS_YAvgTestRes = rms_error(res2 , mean(res2))

 91

%10.44
%15.67
%15.96

%____________________________________

figure, plot(1:num_train, res_train, '+')
Title('Residues: ION PCA-Based Predictor Training. Heart Rate vs. Time')

figure, plot(1:num_train, Y_train(1:num_train), 'rx', 1:num_train,
y(1:num_train), 'bo')
Title('ION PCA-Based Predictor Training. Heart Rate vs. Time')
legend('Prediction','Actual Dataset');

figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)),
res_test, '+')
Title('Residues: ION PCA-based Predictor Test. Heart Rate vs. Time')

figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)),
Y_test(num_train+1:num_time_col_cat_new), 'rx', 1:length(
x_ion((num_train+1:num_time_col_cat_new), 1)),
y(num_train+1:num_time_col_cat_new), 'bo')
Title('ION PCA-based Predictor Test. Heart Rate vs. Time')
legend('Prediction','Actual Dataset');

figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)), res1,
'+')
Title('Residues: Static Heart Rate Predictor Test. Heart Rate vs. Time')
figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)),
Y_comp(num_train+1:num_time_col_cat_new), 'rx', 1:length(
x_ion((num_train+1:num_time_col_cat_new), 1)),
y(num_train+1:num_time_col_cat_new), 'bo')
Title('Static Heart Rate Predictor Test. Heart Rate vs. Time')
legend('Prediction','Actual Dataset');

figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)), res2,
'+')
Title('Residues: Heart Rate Average-Based Predictor Test. Heart Rate vs.
Time')

figure, plot(1:length(x_ion((num_train+1:num_time_col_cat_new), 1)),
Y_avg(num_train+1:num_time_col_cat_new), 'rx', 1:length(
x_ion((num_train+1:num_time_col_cat_new), 1)),
y(num_train+1:num_time_col_cat_new), 'bo')
Title('Heart Rate Average-Based Predictor Test. Heart Rate vs. Time')
legend('Prediction','Actual Dataset');

%____________________________________

 92

%str_title = strcat(datestr(now,2), ', ', datestr(now,14),': # Patients:
',num2str(num_pat),', Log(EigValue) vs. Index ');
str_title = strcat('Scree Plot Subset for 46 Patient Dataset With and Without
ION. Sorted by Log(Eigenvalue)');

eig_graph(num_scr_plot, num_scr_plot_ion, 6, str_title)
legend('Without ION', 'With ION');
str_title = strcat('Scree Plot for 46 Patient Dataset With and Without ION.
Sorted by Log(Eigenvalue)');
%eig_graph(num_scr_plot, num_scr_plot_ion, 16, str_title)
eig_graph(num_scr_plot, num_scr_plot_ion, length(num_scr_plot), str_title)
legend('Without ION', 'With ION');

display('Delta(1-2)')
(log(num_scr_plot_ion(1)) - log(num_scr_plot_ion(2))) - (log(num_scr_plot(1))
- log(num_scr_plot(2)))
display('Delta(2-3)')
(log(num_scr_plot_ion(2)) - log(num_scr_plot_ion(3))) - (log(num_scr_plot(2))
- log(num_scr_plot(3)))
display('Delta(3-4)')
 (log(num_scr_plot_ion(3)) - log(num_scr_plot_ion(4))) -
(log(num_scr_plot(3)) - log(num_scr_plot(4)))
display('Delta(4-5)')
 (log(num_scr_plot_ion(4)) - log(num_scr_plot_ion(5))) -
(log(num_scr_plot(4)) - log(num_scr_plot(5)))

keyboard
display('really stop here!')

for (idx_param=1:size(num_evec_ion, 1))
 for (idx_shift=1:num_samp_shift)

 num_data(idx_param,idx_shift) = 0;
 for (idx_ion=1:num_ion)

 num_data(idx_param,idx_shift)=num_data(idx_param,idx_shift)+a(idx_ion+(
idx_shift-1)* num_ion +1)*num_evec_ion(idx_param, idx_shift);
 end

 idx_param
 if (idx_param==4)
 display('here')
 num_data(idx_param,:)
 display('done')
 end

 end
 num_data_row(idx_param)=sum(num_data(idx_param,:));

end
num_data_row
num_data
num_evec_ion(:,:)

 93

keyboard

%^^
^

num_thr = 100
%%num_thr = 106
%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection / False Alarm

for (hr_real_thresh = [65,num_thr,120])

hr_min_thresh=30
%hr_real_thresh=100
hr_max_thresh=180
hr_step_thresh=1

for (j=1:3)

switch (j)

case 1
y_act = Y_test(num_train+1:num_time_col_cat_new);
case 2
y_act = Y_comp(num_train+1:num_time_col_cat_new);
case 3
y_act = Y_avg(num_train+1:num_time_col_cat_new);
end

y_detect = y_act;

y_dreal = y(num_train+1:num_time_col_cat_new);

 idx_detect = find(y_dreal <= hr_real_thresh);
y_dreal(idx_detect)= 0 ;

 idx_detect = find(y_dreal > 0);
y_dreal(idx_detect)= 1 ;

i=0;
for (num_thresh= hr_min_thresh:hr_step_thresh:hr_max_thresh)

 idx_detect = find(y_act <= num_thresh);
y_detect(idx_detect)= 0 ;

 idx_detect = find(y_act > num_thresh);
y_detect(idx_detect)= 1 ;

 94

%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection
i=i+1;

%%% sum of all that should be detected -

% sum of num of no detection when there should have been = num. rightly
detected
% num_right/sum of all that should be detected = prob. detection.

num_right = sum(y_detect(find(y_dreal>0)));

num_tachy = sum(y_dreal(find(y_dreal>0))); % sum of all

if (num_tachy==0)
num_tachy = 1e-10;
end

arr_pdetect(j, i) = num_right / num_tachy;

%%%%%%%%%%%%%%%%%%%%%%%%% False Alarm
% sum of all that should NOT be detected -
sum of num of YES detections when there should NOT have been = num. false
alarms

% sum of num of YES detections when there should NOT have been/ sum of all
that should NOT be detected = prob. fa
num_no = length(find(y_dreal==0)); % sum of all (can't sum zeroes- would get
zero- so we take the length of the 'find')

if (num_no==0)
num_no = 1e-10;
end

arr_pfa(j,i) = sum(y_detect(find(y_dreal==0))) / num_no;

end

end

 95

figure
plot(arr_pfa(1,:), arr_pdetect(1, :) , 'rx', arr_pfa(2,:), arr_pdetect(2, :),
'bo', arr_pfa(3,:), arr_pdetect(3, :),'k+')
legend('ION PCA-Based Predictor', 'Static Predictor', 'Average-Based
Predictor')
str_title = strcat('Number of Patients: ', num2str(num_pat), ' ')
str_x = 'P(False Alarm)'
str_y = 'P(Detection)'
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))
Title(strcat(str_y, ' vs. ', str_x,'. Tachycardia Threshold:
',num2str(hr_real_thresh), ' BPM'))
%%Title(strcat(str_y, ' vs. ', str_x,'. Threshold:
',num2str(hr_real_thresh), ' mmHg'))

xlabel(str_x)
ylabel(str_y)

end

%^^
^

hr_min_thresh=30
%hr_real_thresh=100
hr_max_thresh=180
hr_step_thresh=1

for (j=1:5)

switch (j)

case 1
y_act = Y_test(num_train+1:num_time_col_cat_new);
hr_real_thresh=60
case 2
hr_real_thresh=80
case 3
hr_real_thresh=100
case 4
hr_real_thresh=120
case 5
hr_real_thresh=140
end

y_detect = y_act;

y_dreal = y(num_train+1:num_time_col_cat_new);

 idx_detect = find(y_dreal <= hr_real_thresh);

 96

y_dreal(idx_detect)= 0 ;

 idx_detect = find(y_dreal > 0);
y_dreal(idx_detect)= 1 ;

i=0;
for (num_thresh= hr_min_thresh:hr_step_thresh:hr_max_thresh)

 idx_detect = find(y_act <= num_thresh);
y_detect(idx_detect)= 0 ;

 idx_detect = find(y_act > num_thresh);
y_detect(idx_detect)= 1 ;

%%%%%%%%%%%%%%%%%%%%%%%%% Prob Detection
i=i+1;

%%% sum of all that should be detected -

% sum of num of no detection when there should have been = num. rightly
detected
% num_right/sum of all that should be detected = prob. detection.

num_right = sum(y_detect(find(y_dreal>0)));

num_tachy = sum(y_dreal(find(y_dreal>0))); % sum of all

if (num_tachy==0)
num_tachy = 1e-10;
end

arr_pdetect(j, i) = num_right / num_tachy;

%%%%%%%%%%%%%%%%%%%%%%%%% False Alarm
% sum of all that should NOT be detected -
sum of num of YES detections when there should NOT have been = num. false
alarms

% sum of num of YES detections when there should NOT have been/ sum of all
that should NOT be detected = prob. fa
num_no = length(find(y_dreal==0)); % sum of all (can't sum zeroes- would get
zero- so we take the length of the 'find')

if (num_no==0)

 97

num_no = 1e-10;
end

arr_pfa(j,i) = sum(y_detect(find(y_dreal==0))) / num_no;

end

end

figure
plot(arr_pfa(1,:), arr_pdetect(1, :) , 'rx', arr_pfa(2,:), arr_pdetect(2, :),
'bo', arr_pfa(3,:), arr_pdetect(3, :),'k+',arr_pfa(4,:), arr_pdetect(4, :) ,
'gv', arr_pfa(5,:), arr_pdetect(5, :) , 'm*')
legend('Threshold: 70 BPM', 'Threshold: 90 BPM', 'Threshold: 100 BPM',
'Threshold: 110 BPM', 'Threshold: 130 BPM')
%%legend('Threshold: 70 mmHg', 'Threshold: 90 mmHg', 'Threshold: 106 mmHg',
'Threshold: 110 mmHg', 'Threshold: 130 mmHg')

%str_title = strcat('Number of Patients: ', num2str(num_pat), ' ')
str_x = 'P(False Alarm)'
str_y = 'P(Detection)'
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))
Title(strcat(str_y, ' vs. ', str_x,' of ION PCA-Based Predictor for Various
Thresholds'))

xlabel(str_x)
ylabel(str_y)

%^^
^

keyboard

x=x_ion;

% Plot PC1 vs. n (not necessarily evenly spaced)

% plot_graph(1:length(x(:,1)), x(:,1), strcat('Number of Patients: ',
num2str(num_pat), ' '), 'Samples', 'PC1')

str_title = strcat('Number of Patients: ', num2str(num_pat), ' ')

 98

str_x = 'Samples';
str_y = ' PC1, PC2, PC3 and HR';

figure
Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))

for(num_pc=1:5)
subplot(11, 1, 2*num_pc-1), plot(1:length(x(:, num_pc))/3 ,
x(1:length(x(:, num_pc))/3, num_pc))

Title(strcat('PC', num2str(num_pc), ' vs. Time'))
end

% Param. #5 = PR = [Beats per min.]

subplot(11, 1, 11), plot(1:length(all_data.npdata(PARAM_HR,:))/3,
all_data.pdata(PARAM_HR,1:length(all_data.npdata(PARAM_HR,:))/3))
Title(strcat('Heart Rate vs. Time'))
%Title(strcat(datestr(now,2), ', ', datestr(now,14),str_title, '- ', str_y, '
vs. ', str_x))

cur_spot = 1;

for i=1:num_pat
% [Hue, Saturation, Value] /Normalize to 1

%%keyboard
%length((([(i*NUM_COL/num_pat), (NUM_COL*.5), (NUM_COL*1/3)]/NUM_COL)' *
ones(1, idx_length_pat(i)))')
%cur_spot:cur_spot+idx_length_pat(i)-1;

% 0.9 luminosity, ones() for columns!
if (i==32 | i==10 | i==24)
idx_pat=i;
else idx_pat=1;
end

hsv_col_map_pat(cur_spot:cur_spot+idx_length_pat(i)-1,:) =
(([(idx_pat*NUM_COL/num_pat), (NUM_COL*.9), (NUM_COL*2/3)]/NUM_COL)' *
ones(1,idx_length_pat(i)))';

hsv_col_map_bar(i,:) = hsv_col_map_pat(cur_spot,:);

cur_spot = cur_spot+idx_length_pat(i)-1;

end

rgb_col_map_pat = hsv2rgb(hsv_col_map_pat);
rgb_col_map_bar = hsv2rgb(hsv_col_map_bar);

 99

num_min = min(size(x,1), length(rgb_col_map_pat))

% plot_graph(x(:,2), x(:,1), strcat('Number of Patients: ', num2str(num_pat),
' '), 'PC2', 'PC1')

arr_x = x(1:num_min,2); arr_y = x(1:num_min,1);
scatter_graph(arr_x, arr_y, strcat('Number of Patients: ', num2str(num_pat),
' '), 'PC2', 'PC1',[10]*ones(num_min,1)','','')

arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3);
scatter3_graph(arr_x, arr_y, arr_z, strcat('Number of Patients: ',
num2str(num_pat), ' '), 'PC3', 'PC2', 'PC1', [10]*ones(num_min,1)','','')

%surface(1:num_pat,ones(1,num_pat),ones(1,num_pat),rgb_col_map_bar)

size(rgb_col_map_pat)
%size(arr_x)
figure
bar(ones(2,num_pat),'stacked'), colormap(rgb_col_map_bar)

arr_x = x(1:num_min,2);arr_y = x(1:num_min,1);
%keyboard
%scatter_graph(arr_x, arr_y, strcat('Number of Patients: ', num2str(num_pat),
' '), 'PC2', 'PC1', [5]*ones(length(arr_x),1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)
scatter_graph(arr_x, arr_y, strcat('Scatter Plot of: PC1 vs. PC2 (Colored by
Patient)'), 'PC2', 'PC1', [5]*ones(length(arr_x),1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)

%% scatter(1:30,ones(1, num_pat), [200]*ones(num_pat,1)', rgb_col_map_bar,
'filled')
%keyboard

arr_x = x(1:num_min,3);arr_y = x(1:num_min,1);

scatter_graph(arr_x, arr_y, strcat('Scatter Plot of PC1 vs. PC3 (Colored by
Patient)'), 'PC3', 'PC1', [5]*ones(length(arr_x),1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)

arr_x = x(1:num_min,3);arr_y = x(1:num_min,2);

 100

scatter_graph(arr_x, arr_y, strcat('Scatter Plot of PC2 vs. PC3 (Colored by
Patient)'), 'PC3', 'PC2', [5]*ones(length(arr_x),1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)

arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3);
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and
PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3', [10]*ones(num_min,1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)
% line([-40,40],[10,10],[8,0])
patch([-75,-75,75,75],[-10,10,10,-10],[10,12,-6,-8],'b')

arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3);
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and
PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3', [10]*ones(num_min,1)',
rgb_col_map_pat(1:num_min,1:3), rgb_col_map_bar)
% line([-40,40],[10,10],[8,0])
patch([-75,-75,75,75],[-10,10,10,-10],[9,9,-6,-6],'g')
line([-30,30],[10,10],[-6,6])

scatter3_graph(arr_x(1:88,1), arr_y(1:88,1), arr_z(1:88,1), strcat('3-D
Scatter Plot of PC1, PC2, and PC3 (Colored by Patient)'), 'PC1', 'PC2', 'PC3',
[10]*ones(88,1)', rgb_col_map_pat(1:88,1:3), rgb_col_map_bar([1,2],:))

%keyboard

%%%
%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%%%%%%%%%%%%%%%%%
display('3d time graphs')

keyboard

 101

rgb_col_map_tim = hsv2rgb(hsv_col_map_tim);
rgb_col_map_tim_bar = hsv2rgb(hsv_col_map_tim_bar);

arr_x = x(1:num_min,1); arr_y = x(1:num_min,2); arr_z = x(1:num_min,3);
scatter3_graph(arr_x, arr_y, arr_z, strcat('3-D Scatter Plot of PC1, PC2, and
PC3 (Colored by Time From Induction of Inhaled Gas)'), 'PC1', 'PC2', 'PC3',
[10]*ones(num_min,1)', rgb_col_map_tim(1:num_min,1:3), rgb_col_map_tim_bar)

% dedicated to the sweet girl whose name I have yet to discover...
%figure

%bar(1:4, log(num_scr_plot(1:4)), 1)
%Title(strcat(datestr(now,2), ', ', datestr(now,14),': # Patients:
',num2str(num_pat),', Log(EigValue) vs. Index '))
%xlabel('Index')
%ylabel('Log(EigValue)')

%%str_title = strcat(datestr(now,2), ', ', datestr(now,14),': #
Patients: ',num2str(num_pat),', Log(EigValue) vs. Index ');

%%eig_graph(num_scr_plot, '', 4, str_title)
%eig_graph(num_scr_plot, '', 16, str_title)
%%eig_graph(num_scr_plot, '', length(num_scr_plot), str_title)

%keyboard

%str_title = strcat(datestr(now,2), ', ', datestr(now,14),': Patient
#',num2str(idx_pat),', Paramters vs. Time');
%image_graph(all_data.sel_npdata(:,:), str_title)

File 2: Pca_funct.m

function [num_evec_ret, x, num_scr_plot] = pca_funct(mat_data, arr_del)

num_cov = cov(mat_data(:,:)'); % so each column= paramter and each row =
observation

% eval = eigenvalue
[num_evec, num_eval] = eig(num_cov);

 102

(diag(num_eval));
% keyboard

[num_eval_sort, num_idx_sort] = sort(diag(num_eval));

% sort so largest is first.
num_eval_sort_descend = flipud(num_eval_sort);
num_idx_sort_descend = flipud(num_idx_sort);

% x = sorted in order descending

% length(num_idx_sort_descend)

num_evec_trunc = num_evec(:, num_idx_sort_descend(1:10));
num_evec_trunc(arr_del,:)=0;

num_evec_ret = num_evec(:, num_idx_sort_descend(1:10));

arr_pc = num_evec_trunc' * mat_data(:,:);
x=arr_pc';

num_scr_plot = flipud(sort(diag(diag(num_eval_sort_descend))));

if (~isempty(find(num_scr_plot <= 0)))
 display('Some eigenvalues <=0')
end

num_scr_plot(find(num_scr_plot<=0)) = 1e-10;

File 3: Pre_processing.m

function arr_all_pat = pre_processing(arr_all_pat, log_path, OS)
global PARAM_MAX_LINE
global MAX_NUM_PARAM
global PARAM_GOOD_PAT
global PARAM_LINE_START
global PARAM_LINE_STOP
global PARAM_AGTI_START

global FALSE
global TRUE

global idx_pat

 103

MAX_NUM_NAN_ROWS = 10;

% clip off start
% take max line of parameters 1 or 5
max_pat=size(arr_all_pat.pdata, 1);

% put NaN's in remaining spots... before looking at NaN's!!!
 arr_all_pat.pdata(idx_pat,:,arr_all_pat.misc(idx_pat, PARAM_LINE_STOP)+1
:size(arr_all_pat.pdata, 3)) = NaN;
%%% Strategy: replace all zeros in data to arbitrary number: -5555
%% then replace all -5555's with zeros after first replacing zeros with NaN's
in pre_processing

for idx_pat=1:max_pat

arr_all_pat.misc(idx_pat, PARAM_GOOD_PAT) = TRUE; % default = true

 for idx_param=1:MAX_NUM_PARAM

 idx_nans = find(arr_all_pat.pdata(idx_pat, idx_param,:) == 0);
 arr_all_pat.pdata(idx_pat, idx_param,idx_nans) = NaN;

% order important!!
 idx_zeros = find(arr_all_pat.pdata(idx_pat, idx_param,:) == -
5555);
 arr_all_pat.pdata(idx_pat, idx_param,idx_zeros) = 0;

 end
end

for idx_pat=1:max_pat

% [pat. #, param, line]

idx_pat;
max_pat;
arr_all_pat.pdata(idx_pat, 1, :);
arr_all_pat.pdata(idx_pat, 5, :);

min_param_1_line = min(find(~isnan(arr_all_pat.pdata(idx_pat, 1,
1:mac_max_line))));

 104

min_param_5_line = min(find(~isnan(arr_all_pat.pdata(idx_pat, 5,
1:mac_max_line))));

arr_all_pat.misc(idx_pat, PARAM_LINE_START) = max(min_param_1_line,
min_param_5_line);

max_param_1_line = max(find(~isnan(arr_all_pat.pdata(idx_pat, 1,
1:mac_max_line))));

max_param_5_line = max(find(~isnan(arr_all_pat.pdata(idx_pat, 5,
1:mac_max_line))));

arr_all_pat.misc(idx_pat, PARAM_LINE_STOP) = min(max_param_1_line,
max_param_5_line);

% adjust max_length counter
% arr_all_pat.misc(idx_pat,PARAM_MAX_LINE) = mac_max_line - start_line +
1;

% arr_all_pat.misc(idx_pat,PARAM_LINE_STOP) = size(arr_all_pat.pdata, 3);

end

 line_start = arr_all_pat.misc(1, PARAM_LINE_START);
 line_stop = arr_all_pat.misc(1, PARAM_LINE_STOP);
 arr_all_pat.pdata(1,1,:);
% input('2')

%pre-interpolation- start/end setting

for idx_pat=1:max_pat
 for idx_param=1:MAX_NUM_PARAM
 % ******* set start line to first non-NaN value- for interpolation

 105

 line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START);
 line_stop = arr_all_pat.misc(idx_pat, PARAM_LINE_STOP);

 if (isnan(arr_all_pat.pdata(idx_pat, idx_param, line_start)))

% determine value at line_stop- should be value at min. index

 arr_tmp = min(find(~isnan(arr_all_pat.pdata(idx_pat,
idx_param, line_start:line_stop))));
 if (~isempty(arr_tmp))
 arr_all_pat.pdata(idx_pat, idx_param, line_start) =
arr_all_pat.pdata(idx_pat, idx_param, line_start+arr_tmp-1);
 end
 end

%display(arr_all_pat.pdata(idx_pat, idx_param, line_stop))
% input('arr at line_stop')

 % *** set max line to last non-NaN value- for interpolation
 if (isnan(arr_all_pat.pdata(idx_pat, idx_param, line_stop)))
% keyboard
 % input('isnan');
 h = max(find(~isnan(arr_all_pat.pdata(idx_pat, idx_param,
line_start:line_stop))));
 if ~isempty(h) % else it means all is NaN

% keyboard
 arr_all_pat.pdata(idx_pat, idx_param, line_stop) =
arr_all_pat.pdata(idx_pat, idx_param, line_start+h-1);
% input('9')

 % need to check later again if all is empty!!
 end

 end

 end
end

% set start_line to have first non-NaN value

 106

% interpolation = deleting NaN's

try

for idx_pat=1:max_pat
 for idx_param=1:MAX_NUM_PARAM
 line_start = arr_all_pat.misc(idx_pat, PARAM_LINE_START);
 line_stop = arr_all_pat.misc(idx_pat, PARAM_LINE_STOP);

 % find first NaN starting from the patient's start line

% rem to add line_start-1 offset!!!!!!!!!!!!
 idx_NaN =
find(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop)));
 if (
all(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop))))
 idx_NaN = []; %don't search if all paramter is NaN!!!
 end

 if ~isempty(idx_NaN)
 for k=(idx_NaN+line_start-1)
% idx_pat
% idx_param
%line_start
%line_stop
%k
 num_search = k-1;
%input('1');
 while (isnan(arr_all_pat.pdata(idx_pat, idx_param,
num_search)) & num_search > line_start)
 num_search=num_search-1;
 end

 num_beg = num_search;

 num_search = k+1;
 while (isnan(arr_all_pat.pdata(idx_pat, idx_param,
num_search)) & num_search < line_stop)
 num_search=num_search+1;
 end
 num_end = num_search;

 num_nan_rows = (num_end - num_beg + 1);
%if (idx_param>17)
%keyboard
%end
 if (num_nan_rows > MAX_NUM_NAN_ROWS &
~isempty(find(~isnan(arr_all_pat.pdata(idx_pat, idx_param,
line_start:line_stop))))) & (num_end > line_start)

 arr_all_pat.pdata(idx_pat, idx_param,
line_start) = arr_all_pat.pdata(idx_pat, idx_param, num_end+1);

 107

 if (num_end > min(find
(~isnan(arr_all_pat.pdata(idx_pat, idx_param, 2:line_stop)))))
 % we are beyond the min. number that is
not nan in the column => we do have string of nan's after the start => bad
 arr_all_pat.misc(idx_pat, PARAM_GOOD_PAT)
= FALSE;
arr_all_pat.pdata(idx_pat, idx_param, num_beg:num_end)

 display(strcat('Bad patient parameter
found: ',num2str(num_nan_rows), ' NaN rows for patient #',num2str(idx_pat), '
in parameter #', num2str(idx_param), ', row #', num2str(k), ' num_end: ',
num2str(num_end), ' line_start: ', num2str(line_start) , ' min:',
num2str(min(find (~isnan(arr_all_pat.pdata(idx_pat, idx_param, 1:line_stop)))
))))
 % keyboard

 fid = fopen(strcat(log_path,
OS.SEP,'logfile.txt') ,'a');
 fprintf(fid, 'Bad patient parameter found:
%d NaN rows for patient #%d in parameter #%d, row #%d\n',num_nan_rows,
idx_pat, idx_param, k);
 fclose(fid);
 else
 % we just have string of nan's at start-
BUT they are after the original line_start. So, we init line_start value to
first non-nan vlue of column

 % we do this for both cases now% %arr_all_pat.pdata(idx_pat, idx_param,
line_start) = arr_all_pat.pdata(idx_pat, idx_param, num_end+1);

 end
 end

 num_slope = (arr_all_pat.pdata(idx_pat, idx_param,
num_end) - arr_all_pat.pdata(idx_pat, idx_param, num_beg)) / (num_nan_rows -
1); % (Differnece in patient data array values) / (number of NaN's total in
space - 1)
 for j=(num_beg+1):(num_end-1)
 arr_all_pat.pdata(idx_pat, idx_param, j) =
arr_all_pat.pdata(idx_pat, idx_param, num_beg) + num_slope;

 end
 end
 end
%interp1(arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line), idx_NaN,
'*linear')
%input('1');
% arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line) =
interp1(arr_all_pat.pdata(idx_pat,idx_param,1:mac_max_line), idx_NaN,
'*linear')

 end

 108

PARAM_AGTI = 18;
PARAM_AGTI_START=7;

arr_all_pat.misc(idx_pat, PARAM_AGTI_START) = min(find(
arr_all_pat.pdata(idx_pat, PARAM_AGTI, line_start:line_stop)>0)) +
line_start-1; % NOT DONE: - 4; % - 4 = 1 20 sec minute of samples added to
beginning

end

%for idx_pat=1:max_pat
% for idx_param=1:MAX_NUM_PARAM
% idx_NaN = find(isnan(arr_all_pat.pdata(idx_pat,idx_param,:)));

% if (
all(isnan(arr_all_pat.pdata(idx_pat,idx_param,line_start:line_stop))))
% end
%end

catch
display(strcat('idx_pat: ', num2str(idx_pat), '- idx_param: ',
num2str(idx_param), '- num_search: ', num2str(num_search), '- k: ',
num2str(k), '- line_start: ', num2str(line_start), '-error:', lasterr))
keyboard
end

 109

