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Abstract

Since the voicing source is located between the lower and upper airways and has a
high impedance, the resonances of the lower airway appear as pole-zero pairs in vowel
spectra. These pole-zero pairs interact non-linearly with the vocal tract formants,
producing narrow frequency bands within which formant structure is unstable. The
broader frequency bands between lower airway resonances are thus potentially optimal
for the reliable production and accurate perception of specific formant patterns. This
possibility is explored from three directions. First, models of the lower airway are
built and analyzed, and their effects on vowel spectra are characterized. Second,
evidence for the non-linear interactions between formants and lower airway resonances
is presented from a speech production study, and the relations between these non-
linearities and certain distinctive feature contrasts are explored. Third, a speech
perception experiment is carried out in which the identification of a vowel (which
could be either [+back] or [-back]) is dependent upon the interaction of the second
lower airway resonance (represented as a zero without an accompanying nearby pole)
with the second formant. The results of these studies indicate that lower airway
resonances do play a role in speech production and perception, and that further
study is warranted. In addition, some potential applications to respiratory and vocal
medicine are suggested.
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Preface

“The field is an attractive one; but those who would work in it need to be

well equipped, both on the physical and on the phonetic side.”

–J. W. S. Lord Rayleigh, The Theory of Sound.

In the past two centuries linguistics has undergone a number of major transfor-

mation. Earlier linguists (philologists) were concerned with the written word and

the connections between and among ancient and modern written languages. More

recently, linguists have come to focus ever more attention on problems of how hu-

mans communicate by means of language in real time. It is no longer enough to

observe that /p/, /t/, and /k/ became /f/, /T/, and /x/ in Germanic (Grimm’s

Law), for that observation says nothing about how people produce and perceive the

sounds of language, neither today nor in the past. Distinctive feature theory devel-

oped at the cross-roads of two different kinds of linguistics. On the one hand, Roman

Jakobson [29] and Nikolai Trubetzkoi [54] first introduced distinctive features within

a structuralist framework, in order to systematically and concisely represent the col-

lections of sounds (phonemes) that various languages use. On the other hand, Noam

Chomsky and Morris Halle [9] discovered that distinctive feature theory had imme-

diate application to problems in generative grammar. The shift from structuralism

to generative grammar was only the latest step in the progression of linguistics from

a branch of history to a branch of biology (as Chomsky puts it [8]). I do not claim
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that linguistics has completed that progression.) Similarly, distinctive feature theory

became grounded in the physics of the speech production and perception processes

with Jakobson, Fant, and Halle’s [30] explorations at about the same time.

Within the field of linguistics, distinctive feature theory is enormously important

and successful. To a physiologist, this fact may carry little weight. The physiologist

wants to know: Can distinctive features be measured? Do they have mass or energy?

So far as I am aware, no linguist would answer these questions in the affirmative.

Linguistics as such is a very indirect science. But I would maintain that the theory

is important for physiologists. As we learn more about the physiology, physics, and

acoustics of human speech communication, it is vital to keep in mind that we are

studying a complicated system that has a definite structure. Distinctive feature theory

tells us a lot about that structure, which we might otherwise loose sight of if we paid

attention only to low-level measurable quantities with a definite mass or energy. The

speech physiologist who ignores linguistics is in danger of missing the forest for the

trees.

Nevertheless, the forest does contain trees, and the linguist must pay attention to

the physiology and the acoustics of speech production and perception. In the past two

centuries at least, linguistics has moved closer and closer to physiology. It is not yet a

physiological science, but it is moving in that direction, and I believe it will continue

in that direction. For the time being, I view distinctive feature theory as a powerful

approximation to what is going on physiologically. It is only an approximation, and

must be changed, refined, redefined, and made more concrete. The question remains

how to get there. I think this goal is still quite a ways off on the horizon, but it should

nevertheless be the goal.
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Chapter 1

Introduction

1.1 Overview

The questions addressed in this thesis pertain to the role that the lower airway (below

the glottis) plays in defining vowel contrasts in both speech production and speech

perception. Because the impedance of the glottis, Zg, is large, the influence of the

lower airway on voiced vowel spectra is minimal. For this reason it has generally

been assumed that the lower airway can be left out of models of vowel production

and analyses of vowel acoustics. Indeed, both the modeling and analysis of vowels

have generally been approached from the perspective that only the first few formants

are important. Without doubt, the first few formants carry the greatest part of the

burden in speech production and perception. However, the purpose of this thesis is to

demonstrate that the lower airway also plays a significant role in both the production

and perception of speech. The role of the lower airway is hypothesized to be of a

different kind than the role of the vocal tract itself. While the vocal tract geometry is

principally responsible for determining the frequencies of formants, the lower airway

defines a set of frequency bands over which the formants range. It will be argued that
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Figure 1-1: Frequency bands defined by the lower airway and vowel categories defined
by these bands. The thin lines indicate the frequencies of the lower airway resonances;
the thick lines indicate F1 and F2 frequencies.

these bands are important for defining vowel categories. For instance, a vowel of one

category may have a formant in one band, while a minimally contrasting vowel may

have the same formant in an adjacent band (cf. Figure 1-1).

The role of the lower airway in defining vowel contrasts is explored from three

directions. First, models of the lower airway and the vocal tract are implemented in

MATLAB. Details and results of the lower airway model are discussed in Chapter 2,

while details and results of the combined vocal tract plus lower airway models are

discussed in Chapter 3. The modeling work is intended to give a characterization of

the acoustic effects of the lower airway on vowel spectra. Second, acoustic analyses

18



of naturally produced vowels are presented in Chapter 4. The purpose of this work is

to show that the effects of the lower airway in speech production are frequently and

clearly observable. Third, data from speech perception experiments are discussed

in Chapter 5. The perceptual work is intended to demonstrate that the effects of

the lower airway in speech acoustics are perceptually salient. The broader import of

Chapters 2 through 5 is discussed in Chapter 6, and Chapter 7 summarizes the thesis

work and concludes.

1.2 Background: The theoretical acoustic frame-

work

A linear source-filter model of speech production will be assumed throughout this

thesis. Because the research focuses on vowels, in which pressure in the pharyngeal

and oral cavities is close to atmospheric, non-acoustic aerodynamic processes (such as

aspiration and frication noise generation) and source-filter interactions will generally

be assumed to be negligible.

The result of coupling the lower airway to the vocal tract in vowel production is,

among other things, the introduction of a set of poles and zeros. For this reason,

the standard all-pole model of vowel production does not hold. In an all-pole model,

formants are the only characteristics of the vowel spectrum that need be specified [13].

In the model that will be developed here, a more precise terminology is required.

Poles and zeros, strictly defined, are frequency-bandwidth ordered pairs in the

complex s-plane. The poles and zeros that will be discussed in this thesis all lie in

the left half-plane. Poles and zeros lying off the real axis are always paired with their

complex conjugates. The transfer function for a system with a complex conjugate

pair of poles (or zeros) is determined using the method described in Fant [13] (cf.
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Figure 1-2). At the risk of some ambiguity, each such spectrum will itself be referred

to as a pole (or zero) in this thesis. In an all-pole model, poles are the formants. In

the model developed here, the formants will be defined more restrictively (see below).

In an acoustic system, the poles are defined by the entire system. Certain parts

of the system, however, if they are weakly coupled to the rest of the system, may

contribute a greater or lesser degree of influence on particular poles. For example, if

a part of a larger system consists of a single uniform tube weakly coupled to the rest

of the system, a certain set of poles will be defined primarily by the simple tube (at

frequencies close to nc
2l

or (2n−1)c
4l

, where n is an integer, l is the length of the tube,

and c is the speed of sound), while other poles will be defined primarily by the other

20



parts of the system. Since in the speech production system the glottal impedance is

large, the vocal tract and the lower airway are weakly coupled, so that some of the

whole system’s poles are defined primarily by the vocal tract while others are defined

primarily by the lower airway. The poles defined primarily by the vocal tract are the

poles which we will refer to as formants.

Because the lower airway is below the location of the glottal phonation source, it

contributes both poles and zeros to the vowel spectrum, whereas the vocal tract itself

contributes only poles (assuming the absence of side branches such as the nasal and

sublingual cavities). The poles and zeros contributed by the lower airway are paired

together, and will be referred to as pole-zero pairs. In the extreme case that the glottal

impedance is infinite (hence vocal tract and lower airway coupling is infinitessimal),

the lower airway pole-zero pairs occupy the same locations in the s-plane and cancel

each other out. This is mathematically equivalent to a model of the vocal tract which

does not include the lower airway. As the glottal impedance is decreased (made finite),

the lower airway poles and zeros separate; the poles, influenced by the geometry of

the vocal tract above the glottis, shift in frequency and bandwidth while the zeros,

wholly defined by the lower airway, remain in place.

1.3 Background: The theoretical linguistic frame-

work

Generative linguistics and specifically generative phonology will be assumed through-

out the thesis. The phonological framework employed will make extensive use of

distinctive features, along the lines indicated in Bromberger and Halle [2]. The pho-

netic framework employed is based on the quantal theory [46, 47, 48]. The goal of

this thesis is to test to what extent lower airway resonances define quantal boundaries
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between vowels differing by a single distinctive feature.

1.4 Background for chapter 2: Models of the lower

airway

Studies of the lower airway acoustic system have come largely from two disciplines:

speech science and respiratory science. In the speech science literature there are four

noteworthy papers: by van den Berg [55], Fant et al. [14], Ishizaka et al. [26], and

Cranen and Boves [10]. Van den Berg [55] constructed an electrical analog model of

the subglottal system and compared its behavior to impedance measurements made

with human and canine cadavers. Van den Berg is well known for championing the

myoelastic-aerodynamic theory of voice production, and it was largely for the purpose

of developing this theory that the subglottal system attracted his attention, for the

presence of standing waves below the glottis will affect the vibration of the glottis

during phonation (cf. later work by Flanagan [16], and Fant [1]). The same issue

motivated the studies by Ishizaka et al. [26] and Cranen and Boves [10]. Ishizaka et

al. [26] developed their own electrical analog model and made impedance measure-

ments at the tracheostoma of laryngectomized Japanese patients. Cranen and Boves

[10] constructed a very simple model based on the results of Ishizaka et al. [26] and

analyzed pressure signals measured just below the glottis. Unlike van den Berg [55]

or Ishizaka et al. [26], Cranen and Boves [10] linked their findings directly to vocal

fold vibration, and showed that certain assumptions about the closed phase of glottal

vibration were unfounded. Fant et al. [14] were interested more in the spectral com-

ponents of speech signals filtered by the vocal tract, rather than in the nature of the

source spectrum itself. However, their study focused on the contribution of subglottal

resonances to the speech signal in aspirated sounds. During aspiration, the glottal
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area is larger than in voiced speech, and therefore the glottal impedance is reduced,

allowing for greater effects of the subglottal system on the speech signal. Although

they made reference to a possible effect of the subglottal system in voiced speech, they

did not publish any further research in this direction. The most recent studies of the

subglottal system by speech scientists [3, 5] analyzed data from accelerometers placed

on the skin of the neck just below the level of the glottis. Cheyne’s [3] study was

motivated by the possibility of detecting voice pathologies using subglottal acoustic

signals. Chi and Sonderegger [5], following Stevens’ [48, pp. 299-303] suggestion,

performed the first study in which the effect of subglottal resonances on the vocal

tract transfer function in voiced speech was explored.

In the respiratory science literature there are more studies of the subglottal acous-

tic system. Several of these studies are concerned with the input impedance of the

lower airway up to only several tens of cycles per second. Four papers of note con-

cerned with input impedances up to frequencies relevant for speech were published

by Fredberg and Hoenig [17], Hudde and Slatky [25], Habib et al. [19], and Harper

et al. [22]. These studies have invariably focused on the use of acoustic signatures of

the lower airway to aid in the detection and diagnosis of lung pathologies, although

no clinical applications have yet resulted from this work.

Most of the speech and respiratory studies presented above made use of similar

simplifying assumptions. Notably, most of them assumed that the bronchial tree

branches symmetrically at all levels, and most of them relied on statistical averages

of the dimensions of the trachea, bronchi, and lobuli as published in the respiratory

literature (chiefly from Rohrer [44], and Weibel [57]). There are some exceptions.

Fredberg and Hoenig [17] constructed a model with asymmetrical branching, but

constrained so that every bifurcation at a given level gave rise to the same pair of

(asymmetric) daughter branches, so that the overall model was symmetric about the

main tracheal axis. Hudde and Slatky [25] constructed a model of one half of the

23



lung with asymmetrical branching, in which the dimensions of the daughter branches

were largely statistically determined, within reasonable bounds. Ishizaka et al. [26]

uniformly scaled down the Western length dimensions given in Weibel [57] in order

to accommodate the relatively smaller size of Japanese speakers. Habib et al. [19]

uniformly scaled the length and diameter dimensions given by Horsfield et al. [24] to

fit their model to seven individuals whose subglottal impedance characteristics were

measured by means of an endotracheal tube.

A detailed model of the lower airway has never been constructed for use in deter-

mining the effects of the lower airway resonances in vowel production. The construc-

tion and study of such a model can lead to new ways of analyzing and interpreting

vowel spectra and spectrograms, voice quality, and lung health.

1.5 Background for chapter 3: Models of the vocal

tract

Although many researchers have constructed and studied models of he vocal tract,

few have studied vocal tract models coupled with a lower airway. When such studies

have been carried out, it has always been with a maximally simplified model of the

lower airway (usually a single tube ending in a large compliance) [45, 10, ?]. In this

thesis, the model of the lower airway described in Chapter 2 will be coupled with a

model of the vocal tract in order to study the acoustic effects of this coupling.

1.6 Background for chapter 4: Vowel acoustics

The phonetic study of vowels has undergone a steady progression and sophistication

since Willis’ [58] seminal study. One way to characterize the progression is as follows:
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First, vowels were characterized as a single ‘cavity tone’ excited by a ‘larynx tone’.

Later, it was found that two cavity tones were characteristic of vowels [6]. Finally,

with the development of more precise measurement and analysis methods, the acoustic

theory of speech production [13] was developed, in which a large number of formants

are recognized in each vowel, only the lowest two or three of which are primarily

responsible for defining the vowels. In this thesis, the need to consider a still more

detailed perspective on vowel acoustics will be demonstrated. Specifically, it will be

shown that in addition to formants there are pole-zero pairs arising from vocal tract-

lower airway coupling which play a significant role in defining vowels. The effects of

these pole-zero pairs (e.g. additional poles in vowel spectra, discontinuities in formant

tracks) are frequently and clearly observable, if one looks for them.
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Chapter 2

Modeling the Lower Airway

2.1 Implementation of the model

A model of the lower airway was implemented in MATLAB. Data for the dimensions

of the first 13 generations of the bronchial tree were taken from Horsfield et al. [24]

(as reported in Harper et al. [23]; cf. Table 1), where the trachea is 0th generation,

the two major bronchii are 1st generation, and so on. The length data in Figure 2-1

were scaled up by 10% in the model calculations in order to create a better match

between the calculated impedance structure and the resonances measured by other

investigators. This led to a modeled trachea 11 cm long, rather than 10 cm. This

was justified, however, given that both van den Berg [55] and Weibel [57] reported

tracheas with lengths greater than 12 cm.

The model is asymmetric, following human morphometric data, and it is assumed

that every branching is binary. Because of the asymmetry, calculation of the total

input impedance from the top of the trachea is complicated and requires a large

amount of computer memory. For this reason, only the first 13 generations were

included in the calculation. This is justified, however, because in the range 0 - 3000
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Hz the input impedance of the system converges quickly as the number of generations

is increased to 13 (see below).

It is assumed that every airway branches into two smaller airways: there is 1

member of the 0th generation of airways - the trachea; there are 2 members of the 1st

generation; there are 4 members of the 2nd generation; there are 8 members of the

3rd generation; and so on. The number of airways in the nth generation is therefore

2n.

In the model, each airway is considered to be a soft-walled cylindrical tube with

constant cross-sectional area. Ignoring the effect of the walls for the moment, the

input impedance at the top of an airway that branches into two airways is given by

Equation 2.1, which is derived from Morse’s [43] equation 24.17.

Z =
ρc

A

[
ZL + j ρc

A
tan(kl1)

ρc
A

+ jZL tan(kl1)

]
(2.1)

ZL is the parallel impedance of the two daughter airways, ρ is the density of air,

c is the speed of sound, A is the cross-sectional area of the parent airway, l1 is the

length of the parent airway, and k = ω/c is the wave number.

The input impedance at the top of an airway therefore depends upon the input

impedances of its two daughter airways. In order to determine the input impedance

at the top of the trachea, then, the number of generations to include in the calculation

must first be determined, as well as the load impedance that will be assumed for the

most peripheral branches. However, the peripheral load impedance can be neglected

when the number of generations is large (as illustrated in Figure 2-2; cf. [28]).

Because the number of airways in the nth generation is 2n, the total number of

airway impedances to be calculated is 2n+1 − 1. If n = 13, the total number of

airways is 213+1 − 1 = 16383. The impedance of each of the 8192 airways of the 13th

generation must be calculated, and then pairwise added in parallel. The resulting
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Table 2.1: Morphometric data used in the model, taken from [24].

Depth,
n

Tube
length,
l [cm]

Tube
radius,
r [cm]

Wall
thickness, h

Fraction of
cartilage,

cfrac

Recursion
Index,
Δ(n)

0 10.0 0.80 0.3724 0.76 1
1 5.0 0.6 0.1735 0.5000 2
2 2.2 0.55 0.1348 0.5000 3
3 1.1 0.40 0.0528 0.3300 3
4 1.05 0.365 0.0409 0.2500 3
5 1.13 0.295 0.0182 0.2000 3
6 1.13 0.295 0.0182 0.0922 3
7 0.97 0.270 0.0168 0.0848 3
8 1.08 0.215 0.0137 0.0669 3
9 0.950 0.175 0.0114 0.0525 3
10 0.860 0.175 0.0114 0.0525 3
11 0.990 0.155 0.0103 0.0449 3
12 0.800 0.145 0.0097 0.0409 3
13 0.920 0.140 0.0094 0.0389 3
14 0.820 0.135 0.0091 0.0369 3
15 0.810 0.125 0.0086 0.0329 3
16 0.770 0.120 0.0083 0.0308 3
17 0.640 0.109 0.0077 0.0262 3
18 0.630 0.100 0.0072 0.0224 3
19 0.517 0.090 0.0066 0.0000 3
20 0.480 0.080 0.0060 0.0000 3
21 0.420 0.070 0.0055 0.0000 3
22 0.360 0.055 0.0047 0.0000 2
23 0.310 0.048 0.0043 0.0000 2
24 0.250 0.038 0.0038 0.0000 1
25 0.110 0.032 0.0034 0.0000 0
26 0.131 0.027 0.0032 0.0000 0
27 0.105 0.024 0.0031 0.0000 0
28 0.075 0.022 0.0030 0.0000 0
29 0.059 0.040 0.0039 0.0000 0
30 0.048 0.040 0.0039 0.0000 0
31 0.048 0.040 0.0039 0.0000 0
32 0.048 0.040 0.0039 0.0000 0
33 0.048 0.040 0.0039 0.0000 0
34 0.048 0.040 0.0039 0.0000 0
35 0.048 0.040 0.0039 0.0000 0
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Figure 2-1: T-network (adapted from Harper et al. [23]). Lumped element values are
given in Tables 2.2 2.5.

set of 4096 impedances form the load impedance for each of the 4096 airways of the

12th generation. The cycle is repeated until the input impedance from the top of the

trachea is known.

Because the walls in the model are not rigid, the implementation of the model

is slightly more complicated and Equation 2.1 cannot be used. Instead, each airway

was modeled as a transmission line composed of a series of T-networks, as in Figure

2-1.

Each T-network represents 1.5 cm of length or less. Each airway is modeled,

therefore, as a series of 1.5 cm T-networks plus one or zero residual T-networks of

length smaller than 1.5 cm. A basic length of 1.5 cm ensures reasonable accuracy up

to greater than 3000 Hz.

Data for the wall properties were taken from Harper et al. [23] (cf. Table 2.1).

The model was built with an option to use rigid walls in order to compare the lower

airway input impedances with and without shunting elements due to wall properties.

Equations used to compute the values of the lumped elements of the transmission

line were also taken from Harper et al. [23] and are given in Tables 2.2 through 2.5.

(See Appendix A for the MATLAB implementation of the lower airway model.)

30



Table 2.2: Acoustic lumped elements.
Parameter Value Units

Resistance Ra = 2l
πr3

√
ωρ0η

2
dyne·s
cm5

Inertance La = ρ0l
A

dyne·s2

cm5

Compliance Ca = Al
ρ0c2

cm5

dyne

Conductance Ga = 2πrl ν−1
ρ0c2

√
κω

2cpρ0

cm5

dyne·s

Table 2.3: Properties of air.
Property Air

ρ0(g/cm3) 1.14 · 10−3 (moist air, 37oC)
η(dyne · s/cm2) 1.86 · 10−4 (200C, 1 atm)

ν = cp/cν 1.4
κ(cal/cm − s − 0C) 0.064 · 10−3 (370C)

cp(cal/g − 0C) 0.24 (00C, 1 atm)
c(cm/s) 3.54 · 104 (moist air, 370C)

Table 2.4: Non-rigid wall lumped elements.
Parameter Value Unites

Resistance Rwxt(ω) = ηwx(ω)h
2πr3l

dyne·s
cm5

Inertance Lwxt(ω) = ρwxh

2πrl
dyne·s2

cm5

Compliance Cwx(ω) = 2πr3l
Ewx(ω)h

cm5

dyne

Table 2.5: Properties of non-rigid walls.
Parameter Default Value

Soft Tissue Density (ρws) 1.06g/cm3

Soft Tissue Viscosity (ηws) 1.6 · 103dyne · s/cm2

Soft Tissue Elasticity (Ews) 0.392 · 106dyne/cm2

Cartilage Density (ρwc) 1.14g/cm3

Cartilage Viscosity (ηwc) 180.0 · 103dyne · s/cm2

Cartilage Elasticity (Ewc) 44.0 · 106dyne/cm2
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Once the input impedance of the lower airway has been calculated, it can be in-

corporated into a model of the vocal tract, and its influence on vowel spectra (transfer

functions from the glottis to the lips) can be studied. This will be discussed in the

next chapter.

2.2 Results

2.2.1 Comparison of asymmetric and symmetric models

Figure 2-2 shows the frequencies and amplitudes (in dB) of the poles and zeros of the

lower airway input impedances for the asymmetric model and a symmetric model as a

function of the number of branching generations included in the calculation. For each

case the load impedance at the periphery is ZL = 0. Thus, for the zero generation

only the trachea is modeled, with an open end at the periphery, yielding a lowest pole

with quarter-wavelength frequency P1 = c
4l

= 35400cm/s
4∗11cm

≈ 805Hz. As the number of

generations increases, the poles and zeros decrease in frequency. The amplitudes of

the poles decrease while the amplitudes of the zeros increase. Figure 2-3 illustrates

this for the asymmetric model with 2, 4, and 8 generations.

The fact that the frequencies and amplitudes of the input impedance poles and

zeros converge with increasing number of generations is an indication that the periph-

eral load impedance can take on any value without significantly altering the input

impedance. This was noted before by Jackson et al. [28] and Hudde and Slatky [25],

and results from the rapidly increasing total cross-sectional area as each new gener-

ation increases the number of peripheral airways by a factor of 2. Figure 2-4 gives a

rough estimate of this increase, as follows.

For each airway in the asymmetric model, one daughter branch is shorter than

the other. Calculating the total cross-sectional area for the asymmetric model is
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and zeros as the number of branching generations included in the model is increased.
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therefore difficult. We may, however, define its upper and lower limits by calculating

the total cross-sectional areas of two symmetric models. In one symmetric model, the

daughter branches are identical to the shorter branch of the asymmetric model; in

the other symmetric model, the daughter branches are identical to the longer branch

of the asymmetric model. Since the length and the radius of airways correlate with

each other, the total cross-sectional area of the longer symmetric model will become

large more quickly than the total cross-sectional area of the shorter symmetric model.

The total cross-sectional area of the asymmetric model lies somewhere in between.

In Figure 2-4, the solid lines show the total cross-sectional areas for the symmetrical

models, and the dashed line shows the data from Weibel [57, p. 139]. Weibel’s [57]

data lie close to the line marking the lower limit for the model calculations. It it

therefore likely that the total cross-sectional area of the asymmetric model will grow

more quickly than Weibel’s [57] data.

The upper limit on the total cross-sectional area corresponds to the symmetric

model whose input impedance poles and zeroes are plotted in Figure 2-2. Both the

symmetric and asymmetric models converge after 6 generations, and the frequencies

of their poles and zeros are similar. However, the poles and zeros are slightly more

evenly spread in the symmetric model than in the asymmetric model, and they are

more prominent in the symmetric model.

The input impedance of the asymmetric model calculated with 13 generations

is given in Figure 2-5. The solid line is the input impedance with peripheral load

impedance ZL = 0, and the dashed line is the input impedance with peripheral load

impedance ZL → ∞. The inset shows the difference between the zero and infinite

load impedance conditions, which is smaller than 1 dB for all frequencies.
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Figure 2-4: Total cross-sectional area of the lower airway as more generations are
added.

2.2.2 Evaluation of the asymmetric model

In Figure 2-6, previously reported lower airway impedance data are plotted versus

the predictions of the asymmetric model (see also Tables 2.7, 2.8, and 2.9). In the

left-hand column of the Figure (a, c, e, g), data were drawn from papers in which

the measurements of the lower airway input impedance poles and zeros were made

indirectly by analyzing the speech signal. In the right-hand column, data were drawn

from papers in which the measurements were made directly by various means (e.g.

intubation or via tracheostoma) (b, d, f), or in which symmetric models of the lower

airway (except van den Berg [55], who reported frequencies of the lower airway poles

and zeros significantly lower in frequency than others [26]; see Tables 2.10 and 2.11)

were used to calculate the poles and zeros directly (h). Data in (a), (b), and (e) were

from male subjects, and data in (c), (d), and (g) were from female subjects. Data

in (f) were group averages, mostly of male subjects. Poles are indicated by ‘x’ and

zeros by ‘o’. The x-coordinate of each point is the frequency of that pole or zero as

calculated by the asymmetric model described above. The y-coordinate of each point

is the frequency of that pole or zero as reported in the literature. The diagonal solid
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lines have slope m = 1, so that the more tightly the data cluster around this diagonal,

the better they are predicted by the model. The diagonal dashed lines are the linear

regression lines which best fit the data (in terms of least squared errors).

Since the model was based on male anatomical data, it is more likely to fit the

data measured directly from male subjects (b), or the group averages of the same

(f). That this is indeed the case is readily seen in the plots themselves (see Table

2.6 for some statistical measures of the regression fit for each of the plots). For the

data measured directly from female subjects (d), the values predicted by the model

are slightly too low, consistent with the use of larger airway dimensions. The data

measured indirectly for male and female subjects (a, c) are more difficult to interpret

in terms of the model predictions. This is due less to the larger spread of the data

than to the fact that poles of the input impedance appear as zeros in the speech signal,

and poles in the speech signal appear between adjacent poles and zeros in the input

impedance (the pole in the speech signal is always at a higher frequency than the zero

in the speech signal). Since the poles of the input impedance correspond more or less

exactly to the zeros in the speech signal, they are replotted as such in (e) and (g).

With the exception of a raised frequency of the first pole, these graphs are similar to

those in (b) and (d), as expected. Similar to what was found above, frequency data

from symmetric models (h) are similar to the predictions of the asymmetric model.

The Q values of the poles and zeros of the lower airway input impedance modeled

using a symmetric and an asymmetric lower airway are give in Table 2.12, along with

Q values reported in the literature (except for van den Berg [55], for which see Tables

2.10 and 2.11).
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Figure 2-6: Comparison of the modeled lower airway input impedance pole ‘x’ and
zero ‘o’ frequencies with those reported in the literature. In the first and third rows,
data are reported from male subjects; in the second row and in (g), data are reported
from female subjects; in (h), data are reported from models. In the right column,
data are reported in which direct (e.g. input impedance) measurements were made
(or modeled); in the left column, data are reported in which indirect speech spectral
measurements were made. The zeros in (a) and (c) are replotted as poles in (e)
and (g) because the poles of the input impedance are zeros in the speech signal (see
Chapter 3).
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Table 2.6: Statistics of the fit between the model and the reported input impedance
pole and zero frequencies. The root-mean-squared error and r2 values refer to the
regression line as the best fit for the data, for which the slope and y-intercept are
given.

Type y-intercept slope rms error (Hz) r2

male direct (b) 84.1 0.91 138 0.94
female direct (d) 216.7 0.91 153 0.89

averages (f) 17.2 1.01 104 0.98
models (h) 21.6 0.94 106 0.98

male indirect (a) -66.1 1.02 319 0.81
female indirect (c) 100.3 0.99 245 0.88

male indirect replotted (e) 661.4 0.63 167 0.87
female indirect replotted (g) 545.0 0.81 182 0.90

2.2.3 Applications to medicine

The possibility exists that a model such as the one described in this chapter could

be used to study the cavity affiliations of the input impedance poles and zeros. For

instance, the second lower airway pole is largely affiliated with the left bronchial tree,

as illustrated in Figure 2-7. If the right bronchial tree is removed and replaced with

an infinite impedance, the frequency and amplitude of the second pole of the modified

input impedance is similar to the frequency and amplitude of the second pole of the

whole input impedance. On the other hand, if the left bronchial tree is replaced with

an infinite impedance, the frequency and amplitude of the second pole of the modified

input impedance is quite different from the frequency and amplitude of the second

pole of the whole input impedance. Thus, if a patient presents with an abnormally

low or high second lower airway pole, a physician might conclude that this patient

might have lung disease localized in the left bronchial tree.

Of course, this example is rather crude, and a patient with lung disease advanced

enough to diagnose by means of such an acoustic test might have other more obvious

indications already. It is also possible that the complex geometry of the lower airway
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Table 2.7: Data reported in the literature in which direct (e.g. input impedance)
measurements were made.

Gender Source P1 P2 P3 P4 P5 Z1 Z2 Z3 Z4 Z5

male CH[3] 640 1400 1035 1975
640 1400 900 1975
500 1400 1035 1975
550 1400 900 1975
500 1400 1035 1975

HA[22] 606 1279 2256 2919
529 1092 1729 2343
743 1191 2024 2617
699 1318 2228 2748

HR[19] 590 1392 984 1662
508 1284 774 1550
602 1428 1120 1654
602 1430 956 1610
636 1584 935 1814
575 1440 1146
732 1670 955

MS[45] 1405
1384
1303
1454

XC[4] 577 1374
625 1280
615 1310

female CH[3] 670 1550 1130 2100
640 1400 1035 1975
620 1500 1140 1800
570 1400 1035 1975
640 1400 1035 1975

HR[19] 920 1458
926 1618

MS[45] 1568
1496
1383
1508

XC[4] 708 1620
625 1469
708 1447
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Table 2.8: Data reported in the literature in which indirect speech spectral measure-
ments were made.

Gender Source P1 P2 P3 P4 P5 Z1 Z2 Z3 Z4 Z5

male CH[3] 1100
950
900
975
1050

HH[21] 528 2115
461 1376 2112

KK[37] 1500 2000 1300 1750 2400
1500 3400 1800 3200
1400 1700 3250 2100 3050
1650 2550 3300 1800 2050 3000
1600 2200 1800 2050
1600 2800 1400 1900 2400

female CH[3] 1100
1150
1150
1200
1300

HH[21] 607 1534 2139
671 1515 2086

KK[37] 750 1800 2650 3150 900 1550 2100 2900
700 1650 2500 850 1800 2100 3200

1700 2600 900 1850 2200
750 1600 3100 850 1800 2300

1650 2350 900 1950 2400
700 1650 2400 3250 850 1800 2200 3050
750 900

1800 2600 1550 2500 3200
800 1650 2300 2600 950 1750 2700

1700 2400 900 2200 3100
1600 2800 3200 1400 1900 2400
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Table 2.9: Data reported in the literature in which direct measurements (group av-
eraged from male subjects) or models were made.

Type Source P1 P2 P3 P4 P5 Z1 Z2 Z3 Z4 Z5
averages CB[10] 510 1355 2290

FF[14] 640 1400 2150 2850
IMK[26] 640 1400 2100 1035 1975

models FF[14] 600 1400 2050 2800 3450 850 1620 2350 3050 3700
HA[22] 569 1360 1980 2500
IMK[26] 615 1355 2110 2879

Table 2.10: Frequencies and Q values for the modeled lower airway input impedance
poles and zeros reported by van den Berg [55].

P1 P2 P3 P4 P5 P6

f 314 890 1390 1860 2415 2950
Q 7.1 15.9 12.6 16.9 25.4 28.1

Z1 Z2 Z3 Z4 Z5 Z6

f 33.3 615 1175 1630 2140 2715
Q 2.4 11.6 13.1 14.8 26.8 33.9

Table 2.11: Frequencies and Q values for the lower airway input impedance poles and
zeros (of a large dog) reported by van den Berg [55].

P1 P2 P3 P4 P5 P6

f 302 870 1425 1700 2500 3050
Q 2.5 5.8 3.8 12.5 12.2

Z1 Z2 Z3 Z4 Z5 Z6

f 40 740 1100 1500 2200 2750
Q 1.1 4.2 3.7 7.3 13.8
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Figure 2-7: Lower airway input impedance dependence on gross lung structure. If
the right bronchial tree is removed, the effect on the input impedance below 2500 Hz
is minimal; if the left bronchial tree is removed, the effect on the input impedance
above 1500 Hz is significant.
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Table 2.12: Frequencies and Q values for the modeled lower airway input impedance
poles and zeros, and Q values reported in the literature (except [55], for which see
Tables 2.10 and 2.11). Cheyne [3] reported bandwidths for his 10 subjects individually,
though they have been averaged here.

P1 P2 P3 P4 Z1 Z2 Z3

asymmetric model 537 1470 2095 2855 1028 1821 2431
symmetric model 536 1372 2094 2807 979 1740 2438

QP1 QP2 QP3 QP4 QZ1 QZ2 QZ3

asymmetric model 2.7 5.4 5.8 9.3 4.5 5.4 7.2
symmetric model 3.8 8.9 11.1 9.8 7.0 10.2 12.5

IMK[26] (modeled) 2.5 8.7 15.0 16.9
CB[10] (measured) 4.9 8.8 6.4
CH[3] (measured) 2.6 3.9 5.7 7.5

will render more sensitive acoustic tests uninterpretable, for instance if the second

pole of the input impedance is not strongly affiliated with any one region of the left

bronchial tree. Nonetheless, the possibility that acoustic tests of lung health could be

developed represents a strong warrant for continued research in this direction. If the

acoustic input impedance structure can be correlated with lung structure in a rather

straight-forward way, and if the relation between this input impedance structure and

the pole-zero structure of speech signals is better understood, it may be possible

to develop non-invasive, inexpensive, and quick and easy methods for detecting and

diagnosing lung diseases. Further applications to medicine might be made from more

detailed study of the effects of lower airway wall properties, which can have large

effects on output speech spectra.

The relation between the lower airway input impedance structure and the pole-

zero structure of speech signals will be investigated in the next chapter.
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2.2.4 Major conclusions of Chapter 2

An asymmetric model of the lower airway was constructed based on human lung

morphometric data reported by Horsfield et al. [24]. A symmetric model was also

constructed and compared with the asymmetric model. For the frequency range 0

- 3000 Hz, it is sufficient to model a small number of generations of the branching

bronchial tree (less than 8). The pole and zero frequencies of the lower airway input

impedance obtained from the model fit well with measured data reported in the

literature. On account of this fit, and because lung volume changes over the course

of an utterance do not appear to affect the first few lower airway resonances [3], it

appears justified to use this model in Chapters 3 and 4.
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Chapter 3

Modeling the Effects of the Lower

Airway on Vowel Spectra

3.1 Implementation of the model

In order to calculate the spectra of vowels with varying degrees of glottal coupling

to the lower airway, the basic model of the vocal tract as shown in Figure 3-1 was

used. In this model, Zsg and Zvt are transmission line networks, as in Figure 2-1. The

asymmetric model of the lower airway is used to calculate Zsg, unless otherwise noted.

This model of the coupling between upper and lower airways was first proposed by

Stevens [48].

3.1.1 The glottis

The glottal impedance Zg was calculated using Equation 3.1 [56, 48], where μ =

coefficient of viscosity, d = width of the glottal slit, lg = length of the glottal opening,

h = thickness of the glottis, Ug = volume flow through the glottis, and K = a constant

close to unity. The values of these variables used in the model are given in Table 3.1,
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Figure 3-1: Circuit of the vocal tract, including subglottal impedance Zsg, vocal tract
impedance Zvt, and two opposite-polarity volume velocity sources Us straddling the
glottal impedance Zg.
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Table 3.1: Parameters for calculating the glottal impedance Zg

Parameter Value

μ 1.8 · 10−1

h 4mm
lg 18mm
d variable
K 0.875

and are based on values found in the literature [56, 16, 48].

The model is limited by the assumption that speech production is accomplished by

a linear source-filter system. DC flow is assumed to be zero at all times, the formation

of vortices and/or sheet flow in the vocal tract is assumed not to occur, and source

excitation of the filter is calculated independently of vocal fold vibration. The source

spectrum was modeled at unity for all frequencies. The calculated vowel spectra are

therefore in effect simply the impulse responses of the system for given configurations

of the supraglottal vocal tract and larynx, with impulses occurring simultaneously on

each side of the glottal impedance and with opposite polarity (see Appendix A for

the MATLAB code implementation).

Zg =

[
12μh

(lgd3)
+ K

ρUg

(lgd)2

]
+ jω

ρh

lgd
(3.1)

3.1.2 The vocal tract

The vocal tract transmission line was modeled so that each T-network represented

a uniform tube with rigid walls and length no greater than 1.5 cm. Acoustic losses

due to air friction were incorporated in the same way that they were in the subglottal

model (cf. Figure 2-1). Vocal tract area functions were taken from Story [51], speaker

SM1.
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3.1.3 Properties of the model

The model in Figure 3-1 has several properties which should be noted. First, in the

case when the glottal impedance is infinite (Zg → ∞), the result is a volume velocity

circulation in the vocal tract and a separate volume velocity circulation in the lower

airway. The two volume velocity waveforms have identical shape and magnitude but

opposite polarity. This result is a direct effect of implementing two sources straddling

the glottal impedance rather than just one source to the right of it. Physiologically,

this arrangement conforms to our expectations, at low frequencies, since the buildup

of pressure below the glottis occurs in phase with the release of pressure above the

glottis in real speech, and vice versa.

Second, for finite glottal impedances and for frequencies at which the lower airway

impedance is infinite (at a pole), the left side of the circuit is open. Writing the node

equation for the node just below the right-hand source yields US + −US + −Uvt = 0,

in which the positive US refers to the right-hand source, the negative US refers to the

left-hand source, and the Uvt refers to the volume velocity through the vocal tract.

Since the three volume velocities must add to zero, the volume velocity through the

vocal tract, Uvt, must also be zero. Likewise, for frequencies at which the lower airway

impedance is zero (at a zero), the left side of the circuit is shorted and Uvt = US.

Since losses are built into the model, however, the lower airway impedance ranges not

between infinitely large and infinitely small, but between very large and very small.

At frequencies near the poles of the lower airway impedance, the effect of the lower

airway on the vowel spectrum is maximum (decreasing the amplitude of the vowel

spectrum at those frequencies). At frequencies near the zeros of the lower airway

impedance, the effect of the lower airway on the vowel spectrum is minimum.

The poles of the lower airway impedance therefore appear as zeros in the vowel

spectrum. The converse is not true, however, since the poles of the vowel spectrum
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are determined by the whole system (lower airway plus vocal tract) and not by the

lower airway alone.

3.2 Results

3.2.1 General results

Figures 3-2 through 3-5 show the effects on vowel spectra from gradually decreasing

the glottal impedance by manipulating the glottal width parameter d. Figure 3-6

shows the F1∼F2 chart for the eleven English vowels for which Story [51] provides

area function data. Table 3.2 gives the data in numerical form.

For the case Zg → ∞, the spectra of the vowels and their formant frequencies

are roughly what we expect. As Zg decreases, the formants generally increase in

frequency while their amplitudes decrease. The decrease in amplitude cannot be

attributed entirely to the introduction of zeros into the spectrum, however. The

vocal tract walls were modeled as being rigid. Increased coupling to the non-rigid

lower airway model should therefore be expected to result in a global decrease of

amplitude because of the larger resistive component. The frequencies of the formants

will also be affected by this property of the model. Figure 3-7 shows the spectra of

the vowels [i], [a], and [u] in the case of the lower airway model with rigid walls, and

Table 3.3 gives the frequencies and amplitudes of the formants.

As noted in Chapter 2, the symmetric model of the lower airway results in an

input impedance with more prominent poles and zeros than the asymmetric model.

The results are similar in the vowel spectra. Figure 3-8 shows the spectra for the

vowels [i], [a], and [u] when the lower airway is symmetric.
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Figure 3-2: Three spectra of [i] as the glottal impedance Zg decreases. Spectra with
lower amplitudes indicate a smaller Zg and hence more coupling between the lower
airway and the vocal tract. The three Zg conditions correspond to glottal widths of
d = 0.6mm, 1.2mm, and 1.8mm.
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Figure 3-3: Three spectra of [a] as the glottal impedance Zg decreases. The three Zg

conditions correspond to glottal widths of d = 0.6mm, 1.2mm, and 1.8mm.
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Figure 3-4: Three spectra of [u] as the glottal impedance Zg decreases. The three Zg

conditions correspond to glottal widths of d = 0.6mm, 1.2mm, and 1.8mm.
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Figure 3-5: Three spectra of the vowels [I], [e], [E], [æ], [2], [O], and [U] as the glottal
impedance Zg decreases. The three Zg conditions correspond to glottal widths of
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move to frequencies indicated by the dots. (There are 2 dots per vowel, except for [a]
and [O]; numerical data is given in Table 3.2.)
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Table 3.2: Frequencies and amplitudes of the first three formants for all eleven vowels
and three values of the glottal width d.

F1 F2 F3 A1 A2 A3

[i] 270 2198 2593 25.1084 24.9658 25.1162
[I] 380 1916 2485 27.6502 27.4016 24.4612
[e] 448 1780 2420 29.0812 29.0590 23.9180
[E] 488 1724 2461 30.4521 29.8406 23.5002
[æ] 638 1794 2611 31.4887 32.1031 28.9394

d = 0.6mm [2] 554 1399 2665 31.3566 25.6713 21.0515
[a] 717 1250 2687 31.2174 30.6535 23.8308
[O] 668 1032 2684 33.2823 30.4936 22.9303
[o] 437 1068 2534 28.8017 22.1757 15.9468
[U] 362 1234 2401 24.9650 18.3023 10.5012
[u] 261 976 2265 21.3236 12.0106 4.8097
[i] 270 2202 2599 16.4258 20.1085 15.5698
[I] 382 1921 2500 17.0738 20.9886 11.7205
[e] 451 1789 2451 17.8588 21.4271 10.7947
[E] 491 1731 2482 19.0239 21.6282 9.7720
[æ] 639 1807 2633 18.8200 21.2757 17.2286

d = 1.2mm [2] 556 1411 2698 19.5682 13.7149 9.9927
[a] 733 1243 2695 17.3580 19.1022 16.4976
[O] 684 1006 2691 19.9402 18.8057 16.0684
[o] 441 1067 2549 18.6717 10.9705 6.5687
[U] 364 1238 2412 15.4046 8.6891 -0.7110
[u] 261 976 2269 14.0660 9.2947 -2.3130
[i] 276 2216 2636 7.8114 14.4417 7.4843
[I] 397 1942 2612 8.0834 14.8644 3.2786
[e] 465 1814 2583 8.7746 15.3521 3.7487
[E] 499 1760 2651 9.6991 14.6702 1.4616
[æ] 640 1867 2710 9.0569 13.9925 9.7630

d = 1.8mm [2] 565 1453 2755 10.1085 5.0394 3.9431
[a] 2722 10.0095
[O] 2713 9.6187
[o] 457 1044 2603 9.9912 1.6118 -0.0335
[U] 383 1263 2495 6.7115 0.0059 -9.1455
[u] 268 978 2292 6.0218 4.5742 -9.5138

57



0 1000 2000 3000
−40

−20

0

20

40

A
m

pl
itu

de
 (

dB
)

0 1000 2000 3000
−40

−20

0

20

40

0 1000 2000 3000
−40

−20

0

20

40

Frequency (Hz)

[i] [u]

[a]

Figure 3-7: Three spectra for the vowels [i], [u], and [a], in the case that the lower
airway is modeled with rigid walls. Table 3.3 gives the numerical values for the
frequencies and amplitudes of the first three formants.
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Table 3.3: Frequencies and amplitudes of the first three formants for the vowels [i],
[u], [a] and three values of the glottal width d. For these data, the lower airway was
modeled with rigid walls.

F1 F2 F3 A1 A2 A3

[i] 270 2198 2593 25.1256 24.9913 25.1150
d = 0.6mm [u] 261 976 2265 21.3409 12.0319 4.8276

[a] 717 1250 2687 31.2499 30.6486 23.8513
[i] 271 2202 2598 16.4830 20.2341 15.5425

d = 1.2mm [u] 262 977 2270 14.1283 9.4039 -2.2324
[a] 738 1232 2695 17.4925 19.3664 16.5602
[i] 286 2218 2638 8.1014 14.8393 7.2808

d = 1.8mm [u] 279 981 2295 6.2756 4.8408 -9.1324
[a] 972 1210 2725 12.5155 11.2218 10.2023
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Figure 3-8: Three spectra for the vowels [i], [u], and [a], in the case that the lower
airway is symmetric.

59



3.2.2 Relation of formants to lower airway resonances

Comparison of Tables 2.12 and 3.2 shows the relative distribution of vowel formants

with respect to the lower airway resonances. F1 for the [+low] vowels [æ], [a], [2], and

[O] lies between the first and second lower airway resonances, while for [-low] vowels

it lies below the first lower airway resonance. F2 for [-back] vowels lies between the

second and third lower airway resonances, and for [+back] vowels F2 lies between the

first and second lower airway resonances. F2 for [i] lies above the third lower airway

resonance.

It should be noted that these data can be suggestive only, not conclusive. The

lower airway model was based on an anatomical study of adult male lungs by Hors-

field et al [24], and the vocal tract model was based on an MRI study of a single adult

male by Story [51]. Each of these parts of the total model has its own advantages

and disadvantages, and the combination of the two parts likewise has advantages and

disadvantages. In Horsfield’s [24] study, data were collected from dead lungs which

may have undergone morphological changes between the time of death and the time

of examination. Indeed, this has been suggested as a reason for the discrepancies be-

tween van den Berg’s [55] and Ishizaka’s [26] data (van den Berg [55] used cadavers,

whereas Ishizaka et al [26] used living tracheotemized patients). Story’s [51] data on

the vocal tract are limited by the low time resolution of MRI. In his study, subjects

produced prolonged utterances of each of the vowels so that the the recorded images

would not blur too significantly as the tongue and other articulators move. Further

complicating the matter is the fact that in English [e], [o], and [u] are heavily diph-

thongized. When these vowels are prolonged, it is not known how the nucleus and the

offglide of the diphthongs are merged, or whether one simply drops out. In addition,

subjects lie down when inside the magnet, and must therefore speak in an unusual

posture. It is not clear exactly how vowel production under these conditions differs
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from normal vowel production. Finally, there is no way of knowing how closely the

lower airway of Story’s subject matches the model of the lower airway employed here.

It will be necessary, therefore, to take these results as suggestive only.

3.3 Further remarks

The sensitivity of F1 and F2 to lower airway coupling in the back low vowels [a]

and [O] requires some explanation. In these vowels, the pharyngeal cavity is highly

constricted, so that the impedance of the pharynx is closer to the impedance of the

glottis. The pharynx and the lower airway are therefore acoustically more tightly

coupled in these vowels than in other vowels. Because the pharynx opens gradually

into the oral cavity, the coupling between the lower airway and the whole vocal tract

is enhanced. It is for this reason that the same glottal width d leads to greater effects

on the spectra of the low back vowels [a] and [O] than it does on the spectra of the

other vowels. This raises several questions. First, it may be that [-ATR] (or [+RTR])

vowels show a greater degree of coupling to the lower airway than [+ATR] (or [-RTR])

vowels do, leading to more prominent pole-zero pairs. Second, it may be that different

voice qualities also exhibit varying degrees of lower airway coupling. For instance,

in pharyngealized or creaky voice, the pharynx and larynx are constricted to form a

relatively narrow tube above the glottis [12], which may affect the coupling to the

lower airway in addition to source-filter interactions. In whispered speech, formants

are generally seen to rise, especially F1 and especially in the low back vowels [31, 32].

This could be due to the increase in coupling as the glottal width d increases.

Finally, the region near F1 and F2 in the vowel [a] may be of use to voice pathol-

ogists seeking to evaluate voice function in patients, since this region appears to be

the most sensitive to changes in glottal impedance. A set of parameters could be

devised which might correlate either with the parameters H1-H2 and A1-A3 [50] or
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with physiological measures of vocal disfunction in pathologies that interfere with

glottal closure.

3.3.1 Major conclusions of Chapter 3

The frequencies of the vowel formants tend to increase as the glottis is abducted.

This mirrors the formant data from whispered vowels [31, 32], which are produced

with a more abducted glottis. Furthermore, the region around F1 and F2 in low

back vowels is very sensitive to changes in glottal abduction, and can be dominated

by the pole of the first lower airway resonance. This sensitivity could potentially be

used to evaluate voice pathologies that interfere with glottal closure during vocal fold

vibration.

Front and back vowels seem to be separated in the F2 plane by the second lower

airway resonance. Low and non-low vowels seem similarly to be separated in the

F1 plane by the first lower airway resonance. The interaction of the first and third

lower airway resonances with the second formant in [+ATR] and [-ATR] vowels is less

clear. In Chapter 4, the relation between F2 and the second and third lower airway

resonances in in vowels and consonants will be explored in an acoustic study.
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Chapter 4

Measurements on Consonant and

Vowel Spectra

4.1 Method

Speech from one adult male speaker was analyzed. The speech samples were obtained

as part of a free database collected at the Language Technologies Institute at Carnegie

Mellon University (the ARCTIC database [38]), which includes over 1000 sentences

of read speech.

405 CV transitions were measured. In all cases the vowel of the CV was a full

vowel, usually in a stressed syllable, and the following segment was a non-sonorant

consonant. (There were some CVs which were followed by [h] or a vowel, but only if

there was a clear steady-state portion of the V. In some cases where a steady-state

portion of the vowel could not be determined due to excessive coarticulation, the CV

was left out of the analysis.) No CVs were measured which were followed by a liquid

or nasal consonant, so that the additional poles and zeros from those consonants

would not be present. The tokens from the ARCTIC database that were analyzed
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Table 4.1: Summary of the number and type of CV tokens analyzed from the ARCTIC
database. All six stops were analyzed in the context of 9 following vowels.

C/V [i] [I] [E] [æ] [2] [a] [o] [U] [u] Total
[b] 32 21 7 20 26 4 7 3 0 120
[p] 7 6 2 8 3 2 2 3 0 33
[d] 7 40 11 2 5 13 0 0 9 87
[t] 6 0 2 8 1 8 0 8 27 60
[g] 1 9 5 2 0 10 0 13 2 42
[k] 5 1 0 22 3 10 2 20 0 63

are given in Appendix B, and a summary of the number of tokens per CV type is

given in Table 4.1.

Spectral measurements were made at two locations in the CVs: 1) F2onset, at the

earliest time in which F2 could be measured, using a 256 ms Hamming window, and

2) F2vowel, in the steady state or middle part of the vowel, using a 1024 ms Hamming

window. The sampling rate was 32000 Hz. Determination of the steady state or

middle part of the vowel depended on the consonantal context both preceding and

following the vowel, but was generally straight-forward. Measurements of the formant

track discontinuity were also made during the F2 transitions of a subset of the tokens.

These measurements include 1) F2high, the F2 on the high frequency side of the

discontinuity, and 2) F2low, the F2 on the low frequency side of the discontinuity.

4.2 The relationship between lower airway reso-

nances and vowel spectra

A histogram of the F2vowel measurements is plotted in Figure 4-1. There is a small

number of F2vowel measurements falling in the regions near the lower airway res-

onances, whereas many F2vowel measurements fall between the lower airway reso-

nances. [-back] vowels have F2vowel higher than the second lower airway resonance,
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while [+back] vowels have F2vowel lower than the second lower airway resonance. Fur-

thermore, F2vowel for the [+ATR] front vowels is higher than the third lower airway

resonance, while it is lower than the third lower airway resonance for [-ATR] front

vowels. The [+ATR] and [-ATR] back vowels are not so easily distinguished on the

basis of lower airway resonances. For both classes of back vowels, F2vowel falls be-

tween the first and second lower airway resonances. It is worth noting, however, that

the F2vowel in [+ATR] back vowels falls closer to (or lower than) a pole that appears

near 1000 Hz. It is still unclear what gives rise to this pole, but it is at about the

same frequency as the first lower airway pole in vowels such as [a] and [O], as was

shown in Chapter 3. If this pole is a result of the coupling between the upper and

lower airways, it may be possible to define [±ATR] in back vowels according to the

location of F2vowel with respect to this pole.

The frequencies of F2high and F2low during CV transitions are given in Table 4.2.

The second lower airway resonance of this speaker can be estimated by the frequency

midway between the mean F2high and F2low measurements. This estimated frequency

(1632Hz−1341Hz
2

= 1486Hz) is only 16 Hz higher than the frequency calculated in

Chapter 2, and therefore the modeled frequencies of the second and third lower airway

resonances will be used for comparisons with the speaker’s second formant.

Figure 4-2 gives some examples of the kinds of discontinuity that are represented

in Table 4.2.

4.3 The relationship between lower airway reso-

nances and consonant-vowel transitions

Figure 4-3 plots F2onset vs. F2vowel for the speaker. Such plots are used to determine

locus equations for consonant places of articulation [11, 39, 52, 18]. Locus equations
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Table 4.2: Frequencies of F2high and F2low for a handful of tokens in which a discon-
tinuity in F2 was very clear. Examples of such discontinuities are given in Figure 4-2.
Such clear discontinuities occur most frequently in transitions from a [d] or [t] to a
back vowel. The token label indicates the name of the file in the ARCTIC database
where the measurements were made.

F2high F2low Label
[d2] 1620 1377 a0072

1498 1377 a0261
1498 1377 a0524

[da] 1498 1255 a0197
1620 1255 b0239
1539 1377 b0466

[du] 1498 1296 a0368
1944 1255 b0462
1863 1377 b0226

[tU] 1579 1255 a0494
1620 1377 a0497
1498 1377 b0476

[bi] 1651 1395 a0280
1924 1417 a0508

Mean 1632 1341
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Figure 4-2: Examples of clear discontinuities as F2 cross the second lower airway
resonance. Top panel: F2 rises abruptly at the beginning of the vowel in the word
‘be’. Middle panel: F2 falls abruptly at the beginning of the vowel in the word
‘double’. Bottom panel: F2 falls abruptly during the vowel in the word ‘took’.
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Table 4.3: Slopes and y-intercepts for the locus equations describing the scatter plots
in Figure 4-3. Locus equations were calculated for each phoneme both independent of
vowel context, and dependent on whether the following vowel was [-back] or [+back].

Phoneme slope y-intercept (Hz)
[b] 0.49 595
[p] 0.43 885
[d] 0.30 1395
[t] 0.20 1665
[g] 1.02 288
[k] 0.95 454

[b] before a front vowel 0.30 1071
[b] before a back vowel 0.38 674
[p] before a front vowel 0.00 1823
[p] before a back vowel -1.70 3093
[d] before a front vowel 0.40 1301
[d] before a back vowel 0.10 1614
[t] before a front vowel 0.30 1445
[t] before a back vowel 0.00 1872
[g] before a front vowel 0.20 1885
[g] before a back vowel 0.30 1101
[k] before a front vowel 0.40 1690
[k] before a back vowel 0.66 689

are linear regression equations for the F2onset ∼F2vowel scatter plots by consonant

place of articulation, and are characterized by the y-intercepts and slopes of these

lines. In general, the alveolar stops [d,t] have the shallowest slope, while the velars

[g,k] and labials [b,p] have steeper slopes. The velars and the labials are distinguished

from each other by the y-intercept, which is higher for the labials than for the velars.

The same overall pattern is seen in Figure 4-3. (See Table 4.3 for the slopes and

y-intercepts for the speaker.) There is, however, some further structure to the scatter

plots, some of which has been described by other researchers and some of which has

not.

The structure of the scatter plot for velars is more complicated, as is well known.
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Figure 4-3: Scatter plots of F2onset vs. F2vowel and regression lines (locus equations).
Solid lines are the regression lines for the voiced stops (squares), dashed lines are the
regression lines for the voiceless stops (diamonds). Top panel: Labial stops in all
vowel contexts. Middle panel: Alveolar stops in all vowel contexts. Bottom panel:
Velar stops in all vowel contexts.

70



Before front vowels the velars are fronted, while they are backed before back vowels.

This gives rise to a bimodal distribution of burst and formant transition properties.

Sussman et al. [52] takes account of this and analyzes the locus equations for fronted

velars and backed velars separately.

The slope of the locus equation for velars in a back vowel context is small, and it

is even smaller for velars in a front vowel context. In back vowel contexts, F2onset for

velars is generally between the second and third lower airway resonance, while in front

vowel contexts it is above the third lower airway resonance. Similarly, F2onset for alve-

olars is generally between the second and third lower airway resonances. F2onset for

labials generally lies below the second lower airway resonance in back vowel contexts,

and between the second and third lower airway resonances in front vowel contexts.

4.3.1 Boundaries between consonant places of articulation

Figures 4-4 and 4-5 plot the results of a simple statistical analysis of the scatter plots

for front and back vowel contexts. For each hypothesized F2onset boundary frequency

(ranging from 0 to 3000 Hz in 1 Hz increments), the number of [αPlace] data points

falling below that boundary plus the number of [βPlace] data points falling above

that boundary is taken to be a measure of the goodness of the boundary. Peaks in

the curve therefore represent optimal frequencies for the boundary.

For instance, if labials are expected to have lower F2onset than alveolars, then for

a hypothesized boundary frequency f the goodness of this boundary is calculated

as the number of labials with F2onset less than f plus the number of alveolars with

F2onset greater than f . For the comparison of labials and velars, labials are again

assumed to have a lower F2onset than velars. Alveolars are assumed to have a lower

F2onset than velars.

The boundaries picked out by this simple statistical analysis coincide with the
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lower airway resonances. Specifically, the boundary between labials and alveolars is

around the second lower airway resonance for back vowel contexts. For front vowel

contexts the boundary between labials and alveolars is shifted upward. The boundary

between alveolars and velars is around the second lower airway resonance for back

vowel contexts, and the third lower airway resonance for front vowel contexts. The

boundary between labials and velars is around the second lower airway resonance in

back vowel contexts, and the third lower airway resonance in front vowel contexts.

Figure 4-4 (facing page): As the frequency of a boundary between two consonant
categories (e.g. [b] and [d]) varies from 0 to 3000 Hz, the number of consonants
from the first category (e.g. [b]) with F2onset below the boundary plus the number
of consonants from the second category (e.g. [d]) with F2onset above the boundary
is plotted along the y-axis as a measure of the goodness of the boundary between
the two consonant categories. Top panel: Labials [b] and [p] vs. alveolars [d] and
[t] in a front vowel context. The labials were assumed to have F2onset below the
boundary and the alveolars were assumed to have F2onset above the boundary. The
peak indicates the boundary which produces the best separation between labials and
alveolars in a front vowel context. Middle panel: Alveolars [d] and [t] vs. velars [g]
and [k] in a front vowel context. The alveolars were assumed to have F2onset below the
boundary and the velars were assumed to have F2onset above the boundary. Bottom
panel: Velars [g] and [k] vs. labials [b] and [p] in a front vowel context. The labials
were assumed to have F2onset below the boundary and the velars were assumed to
have F2onset above the boundary. The peaks in the middle and bottom panels occur
near the third lower airway resonance. The peak in the top panel occurs between
the second and third lower airway resonances, and could reflect either the second
lower airway pole, or errors in the measurements of F2onset in labials and alveolars, or
the lack of a lower airway resonance-defined boundary between labials and alveolars
in front vowel contexts. The boundary would otherwise be expected to fall in the
vicinity of the second lower airway resonance.
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Figure 4-5: Same as in Figure 4-4, except the boundaries are for stop consonants in
a back vowel context. The peaks in the top and bottom panels occur near the second
lower airway resonance. In the middle panel there is a valley near the second lower
airway resonance. There is no peak in the middle panel because the assumption about
the relative frequencies of F2onset for alveolars and velars must be reversed. That is,
in back vowel contexts F2onset in velars is below the boundary and F2onset in alveolars
is above the boundary.
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4.3.2 A functional perspective on consonant-vowel transi-

tions

Not only do F2vowel and F2onset measures have a strong tendency to fall between the

lower airway resonances (see Figures 4-1, and 4-6 through 4-8), but corresponding

pairs of F2vowel and F2onset generally lie either well within a frequency band defined by

consecutive lower airway resonances, or on opposite sides of a lower airway resonance.

Figures 4-9 through 4-11 plot F2onset measures as ‘x’ and F2vowel measures as ‘o’.

Corresponding F2onset and F2vowel measures occur at the same height along the y-

axis.

For velars before a front vowel (Figure 4-11, left column), F2onset is above the third

lower airway resonance. F2vowel is below this resonance unless the vowel is [+ATR].

For alveolars and labials before a front vowel, both F2onset and F2vowel are between

the second and third lower airway resonances. F2vowel is either above the third lower

airway resonance (for [i]) or in the vicinity of the F2onset.

For velars and alveolars before a back vowel F2onset is above the second lower

airway resonance while F2vowel is below it. For labials before a back vowel both

F2onset and F2vowel lie near each other and remain below the second lower airway

resonance.

The following generalizations can be made, and may be of use in automatic speech

recognition:

• 1) If F2 remains below the second lower airway resonance in a CV transition,

the consonant must be labial and the vowel must be [+back].

• 2) If F2 crosses from above the second lower airway resonance to below it, the

consonant must be either alveolar or velar, and the vowel must be [+back]. The

distinction between alveolar and velar place may be made by reference to F3
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Figure 4-6: Histograms of F2onset for labials in each vowel context, and in all vowel
contexts together (bottom left panel). Front vowels are given in the left column and
back vowels are given in the right column.
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Figure 4-7: Same as in Figure 4-6 except for alveolars.
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Figure 4-8: Same as in Figures 4-6 and 4-7 except for velars.

78



1000 2000 3000

10

20

30

40

1000 2000 3000

5

10

15

20

25

1000 2000 3000

2

4

6

8

10

1000 2000 3000

5

10

15

20

25

1000 2000 3000

5

10

15
20

25
30

1000 2000 3000

2

4

6

Frequency (Hz)

1000 2000 3000

2

4

6

8

10

1000 2000 3000

2

4

6

[i]

[I]

[E]

[æ]

[U]

[o]

[2]

[a]

Figure 4-9: Scatter plot of F2onset (‘x’) and F2vowel (‘o’) for labials in all vowel con-
texts. ‘x’s and ‘o’s at the same level (y-axis) correspond to the F2onset and F2vowel

measurements from the same CV transition. Most ‘x’-‘o’ pairs either are located close
together between lower airway resonances, or far enough apart to be on opposite sides
of a lower airway resonance. In the back vowel contexts, all ‘x’-‘o’ pairs are below the
second lower airway resonance. In the front vowel contexts, ‘x’-‘o’ pairs lie between
the second and third lower airway resonances.
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Figure 4-10: Same as in Figure 4-9 except for alveolars. In back vowel contexts
the ‘x’-‘o’ pairs lie on opposite sides of the second lower airway resonance. In front
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Figure 4-11: Same as in Figures 4-9 and 4-10 except for velars. In back vowel contexts
the ‘x’-‘o’ pairs tend to lie on opposite sides of the second lower airway resonance. in
front vowel contexts the ‘x’-‘o’ pairs either lie across the third lower airway resonance
(e.g. [I], [E], [æ]) or above the third lower airway resonance (e.g. [i]).
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and other formants.

• 3) If F2 remains between the second and third lower airway resonances, the

consonant must be either an alveolar or a labial, and the vowel must be [-back].

The distinction between alveolar and labial place may be made by reference to

F3 and other formants.

• 4) If F2 crosses from above the third lower airway resonance to below it, the

consonant must be velar and the vowel must be [-back].

These generalizations may also be useful in speech perception. If a speaker’s lower

airway resonances can be detected, then generalizations like these may be used directly

by a listener to decode the phonological/phonetic signal produced by the speaker.

Speaker normalization might then be recast as a resonance detection problem rather

than a mapping problem. Although this issue of speaker normalization will not be

treated further, the question of whether the lower airway resonances play a role in

speech perception is explored in chapter 5.

4.3.3 Major conclusions of Chapter 4

In an acoustic study of one speaker’s speech, vowel F2 data fell into a bimodal distri-

bution divided by the second lower airway resonance. Front vowels had a higher F2

frequency and back vowels had a lower F2 frequency. An estimate of the speaker’s

second lower airway resonance was within 20 Hz of the value calculated from the

model in Chapter 3, and therefore the modeled frequencies of the second and third

lower airway resonances were used for further comparisons with the speaker’s second

formant.

Transitions from a stop consonant to a vowel indicated that F2 onsets and end-

points in the transitions fell away from the lower airway resonances, while the transi-
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tion often crossed one of the lower airway resonances. Furthermore, consonant places

of articulation were partially determined by the relationship between F2 and the lower

airway resonances.

In Chapter 5, the effects of the second lower airway resonance on the perception

of a vowel-consonant F2 transition are explored.
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Chapter 5

Lower Airway Resonances in the

Perception of Vowels

This chapter contains data and selections from a paper submitted to the

Journal of the Acoustical Society of America, in collaboration with Asaf

Bachrach and Nicolas Malyska.

5.1 Method

5.1.1 The stimuli: An overview

A vowel [æ] was copy-synthesized from a natural recording made by an adult male,

and simplified slightly in order to manipulate a single parameter (the frequency of

the second lower airway resonance) systematically. Two versions of the synthetic

vowel were made, in which the second subglottal resonance was either 1300 Hz or

1500 Hz. Two naturally produced utterances (‘up there’ and ‘apter’) were recorded

(‘apter’ is the comparative form of ‘apt’). The initial vowel in each was deleted and

the synthetic vowel inserted in its place. There were thus 4 basic utterances. The
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Figure 5-1: Spectrogram of the naturally produced vowel [æ] in the word ‘apter’. The
arrow indicates the interaction of the formant with the lower airway zero, and the
oval marks the region of interaction between the formant and the lower airway pole.

utterances were then gated eight times (within the initial synthetic vowel) to form

32 stimuli, such that each stimulus contained some portion of the synthetic vowel

followed by the naturally produced speech.

Natural utterances of the words ‘upter’ and ‘up there’ were used to create fillers.

Each filler word was gated four times, yielding 8 fillers. The filler words began with the

back vowel [2] so that some words with long gates would be clearly perceived as back

vowels, preventing subjects from relying on gate durations when making judgments.

5.1.2 The synthetic vowel

We copy-synthesized the initial vowel in ‘apter’ while making some reasonable sim-

plifications. In the natural vowel, F2 began near 1800 Hz and fell to near 1200 Hz

before the labial closure. In the synthetic vowel, F2 fell linearly from 1800 to 1200 Hz

in 145 ms. In both the natural and synthetic vowels, F1 rose slightly over 110 ms and

then fell toward the labial closure. F3 fell slightly over the duration of the natural

vowel, and in the synthetic vowel it fell linearly from 2420 to 2400 Hz. Spectrograms

of the copied and synthetic vowels are given in Figures 5-1 and 5-3, respectively.
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In the natural vowel, the effects of the second lower airway resonance on F2 were

apparent (cf. Figure 5-1). In the synthetic vowel, we simplified the pole-zero pair

and replaced it with a zero. The elimination of the lower airway pole allowed us to

control the stimuli and interpret the results with greater precision.

Since the synthesizer we used required pole-zero pairs ([37]), our zero was synthe-

sized by a zero and a pole at the same frequency. The pole had a bandwidth of 500

Hz, and the zero had a bandwidth of 100 Hz. Our synthetic F2 had a bandwidth

of 80 Hz, and F1 had a bandwidth of 40 Hz. Figure 5-2 shows the spectrum of the

effective zero in relation to its component pole-zero parts, and in relation to F2 at

the same frequency.

We synthesized the zero at two different frequencies, creating the two conditions

for our experiment. In one condition the zero was synthesized at 1300 Hz, and in the

other condition it was synthesized at 1500 Hz. Because F2 fell linearly from 1800 to

1200 Hz, it crossed the zero relatively late in the vowel in the 1300 Hz condition, and

relatively early in the 1500 Hz condition. We hypothesized that the stimuli with a

1300 Hz zero would be perceived as containing an initial front vowel more often than

the corresponding stimuli with a 1500 Hz zero.

5.1.3 Gating

The stimuli were gated 8 times in the synthetic vowel. Consecutive gates were sepa-

rated by a single pitch period, and located at the waveform zero-crossing just before

the initial rise at the beginning of the pitch period. The first gate was located at

the beginning of the 7th pitch period from the end of the vowel; the eighth gate was

located at the beginning of the 14th pitch period from the end of the vowel. There

were 20 pitch periods in the whole vowel. The range of pitch periods that were gated

were chosen so that they encompassed the region of the transition from perception of
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Figure 5-3: The structure of the stimuli (for the non-word ‘ap there’). The initial
vowel was synthetic, but the rest of the stimulus was naturally produced speech. The
circle indicates the location of the visible effect of the zero on F2. The arrows indicate
the locations of the first and eighth gates.

a front vowel to perception of a back vowel as less and less of the vowel was presented.

The filler words were gated 4 times in the same way as the stimuli, except there

were two pitch periods between each consecutive gate. The first gate was located at

the beginning of the 7th pitch period from the end of the vowel, and the fourth gate

was located at the beginning of the 13th pitch period from the end of the vowel.

The fundamental frequency during the synthetic vowel was not constant, and

hence individual pitch periods did not have the same duration. In the range of pitch

periods that were gated, periods averaged 8 ms, and varied by less than 1 ms.

Figure 5-3 illustrates the structure of our gated stimuli. The longest gates (those

with the earliest onsets) contain parts of the vowel in which the second formant

crosses the effective zero; the shortest gates (those with the latest onsets) contain

only those parts of the vowel in which the second formant does not cross the effective

zero. Stimuli with the longest gates were expected to be perceived as containing an

initial front vowel, and stimuli with the shortest gates were expected to be perceived

as containing an initial back vowel. The number of the gates (1-8) is in order from

the shortest gate to the longest gate.
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5.1.4 Procedure

In an initial training phase of the experiment, the 32 stimuli and 8 fillers were pre-

sented to the subjects in random order with no feedback. Following a 30 second

pause, the 32 stimuli and 8 fillers were presented 15 times each, in random order.

Thus, there were 40 training stimuli and 560 experimental stimuli, yielding a total

of 600 stimuli. After half of the 560 experimental stimuli were presented, there was

another 30 second pause before continuing with the second half.

In each trial, the stimulus was presented twice with a 750 ms interval between the

onset of each presentation. Subjects performed a two alternative forced choice lexical

identification task in each trial. Of the two alternative choices, one was the real word

or phrase ‘apter’ or ‘up there’, and the other was ‘not “apter”’ or ‘not “up there”’.

Responses were not timed, and subjects were informed at the beginning that they

could pace themselves. Most subjects completed the experiment in about 30 minutes.

Subjects listened to the stimuli in a sound treated booth, wearing a pair of Cy-

ber Acoustics HE-200 headphones. The volume was fixed by the experimenter at a

moderately low level.

5.1.5 Subjects

Ten subjects participated in the experiment. All ten were native speakers of Ameri-

can English, and graduate students at MIT. They were naive to the purpose of the

experiment. There were five males and five females.

5.2 Results

Figure 5-4 shows the results of the experiment averaged across all ten subjects, and

across the two sets of stimuli (‘apter’ and ‘up there’). The results for the ‘apter’
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Figure 5-4: Identification curves with standard error for the 1300 and 1500 Hz con-
ditions, averaged across subjects.

stimuli were similar to those for the ‘up there’ stimuli, indicating that any lexical

bias effect on the vowel perception was insignificant. Results for male and female

subjects were also similar. Plotted along the abscissa are the different gates, with

longer gates toward the left and shorter gates toward the right. The percentage of

stimuli reported to contain a back vowel are plotted along the ordinate. Thus, for

the longest gates, few stimuli were reported to contain a back vowel, whereas most

stimuli were reported to contain a back vowel for the shortest gates.

For the intermediate gates (gates 4-6), there is a significant difference (paired t-

test, p < 0.01 for gate 5, p < 0.02 for gate 4, p < 0.1 for gate 6, p > 0.1 for all others)
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between the 1300 and 1500 Hz conditions. In the 1500 Hz condition more stimuli were

reported to contain a back vowel than in the 1300 Hz condition. Standard error bars

are shown in order to illustrate the variation across subjects. Despite this variation,

all subjects showed similar response patterns (Figure 5-5). For intermediate gates,

each subject reported more words to contain a back vowel in the 1500 Hz condition

than in the 1300 Hz condition. A point-biserial correlation coefficient of r = 0.5 was

obtained for the 5th gate, in which the difference between the two conditions was

greatest. For the 3rd and 7th gates, the point-biserial correlation coefficient was less

than 0.25.

5.3 Discussion

The results indicate that the perception of vowel backness in the context of a spoken

utterance can be altered as a result of manipulating the frequency of an effective

acoustic zero in the vowel spectrum. Thus far we have followed [48] and [5] in sug-

gesting that the boundary between front and back vowels is defined by the location of

the second subglottal resonance. The results are consistent with this view. However,

the presence of the effective acoustic zero in the vowel causes several changes to the

overall spectrum of the vowel, including the apparent frequency and amplitude of the

second formant, and the ratio of these parameters to those of the third formant. Thus,

it is possible that the cause of the altered percept of vowel backness may be due to

one of these other, secondary factors, rather than to the frequency of the acoustic zero

per se. In this section, we will briefly review three alternative explanations for our

results. Ultimately, none of these alternative explanations appears to be plausible.
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Figure 5-5: Individual subjects’ responses to three pairs of stimuli (thick lines are
averages). In gates 3 and 7 subject responses in the 1300 Hz and 1500 Hz conditions
were similar; in gate 5 the responses differed, with more back vowels being reported
in the 1500 Hz condition.
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5.3.1 Alternative #1: F3-F2 Bark difference

Several studies have found that front and back vowels may be distinguished from each

other by referring to the frequency difference between the second and third formants

([7, 53]). Specifically, if F2 and F3 are separated by less than roughly 3.5 Bark, the

vowel may be classified as a front vowel; if F2 and F3 are separated by more than 3.5

Bark, the vowel may be classified as a back vowel. Since our stimuli had a descending

F2 during the vowel, the difference between F2 and F3 began less than 3.5 Bark and

ended greater than 3.5 Bark. It is interesting to note that the region in which the

results of the 1300 Hz and 1500 Hz conditions differed was when F2 and F3 were

roughly 3.5 Bark separated. This was also the region forming the boundary between

front and back vowel percepts more generally. Thus, it may be the case that the 3.5

Bark separation between F2 and F3 forms at least a crude boundary between front

and back vowels, which may be further defined with respect to the second subglottal

resonance. Alternatively, it is also possible that the 3.5 Bark separation between F2

and F3 functions as a boundary between front and back vowels precisely because

3.5 Bark lower than F3 is roughly the location of the second subglottal resonance in

natural speech.

Regardless of the fact that the transition region in the identification curves in

Figure 5-4 coincides with a 3.5 Bark separation between F2 and F3, it is important

to note that the percept of vowel backness was manipulated within this region. It is

possible that this effect could be accounted for in terms of the separation between

F2 and F3, since the actual frequency of the output peak amplitude near F2 is not

identical to the input F2 value (cf. Figure 5-6). However, the differences between the

1300 and 1500 Hz conditions are very small (on the order of 1% or smaller), whereas

the 3.5 Bark boundary hypothesis has never been demonstrated to this degree of

precision. Therefore the 3.5 Bark boundary hypothesis would not predict the results
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reported here.

5.3.2 Alternative #2: Center of gravity (F2’)

Closely related to the 3.5 Bark boundary hypothesis is the finding that closely spaced

formants may be analyzed as a single excitation distribution by the auditory system,

with a frequency-domain center of gravity dependant not only on the frequencies of

the formants but also on their relative amplitudes ([7]). Center of gravity effects

occur only when the formants in question are within about 3.5 Bark of each other,
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close enough together that they may be integrated into a single distribution. Thus,

if the lower formant has a relatively high amplitude, the center of gravity will be

biased toward low frequencies; if the lower formant has a relatively low amplitude,

the center of gravity will be biased toward high frequencies. If F2 and F3 are the

two formants being integrated into a single center of gravity measure (F2’), vowels

with a high F2 amplitude will be more likely to be perceived as back vowels, since

the center of gravity is lower; vowels with a low F2 amplitude will be more likely to

be perceived as front vowels, since the center of gravity is higher.

The effective acoustic zero introduced in the synthesis of our vowel stimuli affected

the amplitudes of F2 and F3 (cf. Figure 5-7). The differences in F2 amplitude

between the 1300 and 1500 Hz conditions approach 20 dB, whereas the difference

in F3 amplitude is negligible. In the early part of the vowel (< 100 ms), the F2

amplitudes in the two conditions would actually predict the opposite of the results

we obtained, if the center of gravity effect were the cause. Here, the F2 amplitude is

smaller in the 1500 Hz condition than in the 1300 Hz condition, which should lead to

a higher center of gravity (F2’) in the 1500 Hz condition, resulting in more front vowel

reports. We found that there were more back vowel reports in the 1500 Hz condition

than in the 1300 Hz condition. In the later part of the vowel (> 100 ms), the formants

are far enough apart that they should not be analyzed as a single distribution. The

center of gravity hypothesis is therefore ruled out.

5.3.3 Alternative #3: Spectral tilt

Recent studies have explored the possibility that spectral tilt plays a role in dis-

tinguishing front from back vowels. Specifically, front vowels should have a smaller

spectral tilt than back vowels, because a high second formant will boost the ampli-

tudes of all higher formants. However, this effect has been demonstrated only in
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steady-state vowels ([27]), and was not found for time-varying vowels ([36]). Since

our synthetic vowel stimuli were time-varying, it is therefore unlikely that the spectral

tilt hypothesis can account for the results.1

5.3.4 Depth of the zero

The effective zero used in the synthesis of our stimuli had a depth of roughly 14 dB.

This depth is rather large. It should be noted, however, that zeros with depths as

little as 2 dB have been reported to be perceptually salient [42] (cf. also [41, 15]).

Furthermore, as illustrated in Figure ??, the change in amplitude between a pole and

a zero can be as much as 10 dB, even when their bandwidths are reasonably large.

Therefore, although more work remains to be done, the depth of our effective zero is

not likely a confound.

5.4 Some further remarks

Additional less formal experiments have been carried out to further investigate the

role of the second lower airway resonance in the perception of vowel backness, as well

as of stop place of articulation. These will be described briefly and qualitatively in

this section. Further work in this area should systematize these or similar experiments

and report quantitative data.

In the experiment described above, the zero was either 1300 Hz or 1500 Hz. Ex-

periments have also been carried out in which the frequency of the zero was varied

in steps of 50 Hz between 1200 Hz and 1700 Hz. When zero rises from 1200 to

about 1500 or 1550 Hz, the boundary between front and back vowel percepts shifts

as in Figure 5-4. As zero continues to rise to 1700 Hz, the boundary begins to shift

1I thank Terrance Nearey (p.c.) for pointing out this alternative, as well as suggesting the
response adopted here.
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back toward the condition with a low frequency zero. Presumably this is due to the

physiological implausibility of such a high frequency zero.

The frequency above which zeros are considered to be physiologically implausible

should, however, be dependent upon the frequency of F3 and other factors that cue

the overall size of the speaker’s vocal tract (and lower airway). In a separate experi-

ment, it was found that by raising the frequency of F3, the frequency of the zero for

which the perceptual boundary begins to shift back toward the condition with low

zero is shifted upward. This experiment, however, was performed with a very small

number of subjects and the resulting data were noisier than in the main experiment

described above. This could be due to a difference in methodology in which several

conditions of zero and F3 frequency were tested simultaneously, rather than only two

zero conditions.

Finally, some very informal experimentation with copy-synthetic utterances in-

dicated that the interaction of F2 with the second lower airway resonance helped

to cue place of articulation in a following stop. A natural utterance of [pEp] was

copy-synthesized, but the result sounded like [pEt]. In this utterance, F2 was rather

steady throughout the vowel, though it did fall a little at the end. A zero at 1450 Hz

was introduced so that the F2 crossed it just before the closure of the following stop.

The result was not a completely disambiguated [pEp], but several listeners could hear

a difference, with the 1450 Hz zero condition sounding more like [pEp] and the null

condition sounding more like [pEt].

5.4.1 Major conclusions of Chapter 5

Manipulation of the second lower airway resonance (represented as an effective zero)

caused a shift in the perception of a front vs. back vowel in the context of a real word

or phrase. This result could not be attributed to other factors, such as the effect of
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the lower airway resonance on the Bark difference between F2 and F3, or the center

of gravity of F2 and F3, or the tilt of the vowel spectrum. The perceptual effect

of the second lower airway resonance, together with the acoustic effects and their

relation to vowel categories (discussed in Chapters 3 and 4, and in Stevens [48] and

Chi and Sonderegger [5]) is consistent with the view that the distinctive features are

defined by non-linear, quantal relations between articulatory configurations (of the

vocal tract) and acoustics (of the whole speech system, including the lower airway).

Some implications for the quantal theory are discussed in Chapter 6.
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Chapter 6

General Discussion

In the previous four chapters, a model of the lower airway was described and its basic

properties characterized; the main effects of the lower airway acoustic properties on

vowel spectra were characterized, including the observation that vowels contrasting

in one (±[back]) feature might have a particular formant (F2) on opposite sides of

a lower airway resonance; an acoustic study was carried out which indicated that

discontinuities in F2 due to lower airway resonances are common and they may be

used to characterize consonant place of articulation and vowel category in consonant-

vowel transitions; and a perceptual study was carried out in which manipulations of

a zero representing the second lower airway affected listeners’ percepts of a vowel-

consonant transition, specifically whether the vowel was front or back. These results

are consistent with a view of distinctive feature theory and quantal theory which will

be discussed in this chapter.
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6.1 Quantal theory, landmark theory, and enhance-

ment theory

Quantal theory [46, 47, 48] has largely been discussed in terms of spectral snapshots of

a speech signal in time. The theory has been developing in recent years in conjunction

with landmark theory [49] and enhancement theory [34, 35], which involve the time

domain of a speech signal more explicitly. Briefly, this constellation of theories work

together as follows: Landmarks are regions of the speech signal which cause the

auditory system to respond robustly. Landmarks can be abrupt change in the speech

signal, such as the sudden onset of frication or a stop release burst. The auditory

system is sensitive to abrupt changes, and therefore the region around these landmarks

contain some of the most salient information in the speech signal (information carried

elsewhere in the speech signal will simply not cause the auditory system to respond

so strongly). Alternatively, landmarks can be vowel nuclei, where the speech signal

is loudest and therefore solicits a robust auditory response.

Regions near these landmarks are where the quantal cues to distinctive features

are thought to be most salient. Enhancing acoustic cues (due to enhancing gestures)

are thought to occur further away from the landmarks and occupy a longer stretch

of the speech signal than the quantal cues do. In running speech, the quantal cues

can disappear because of gestural overlap between adjacent segments, whereas the

enhancing gestures are, perhaps, superimposed on the main articulatory gestures in

such a way that they never disappear.

In general the quantal theory has been presented as a theory in the spectral do-

main. In fact, the precursor to the current Lexical Access from Features (LAFF)

project was called Lexical Access from Spectra (LAFS), and both of these projects

have been dependent upon quantal theory as a primary guide for developing speech
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synthesis and recognition technologies. The familiar graphs that are used in pre-

sentations of quantal theory, or the quantal nature of individual features, are usually

spectral - that is, for a specific articulatory configuration, a certain spectral F-pattern

(to use Fant’s terminology [13]) is obtained. Time does not play an explicit role in

any presentation of quantal theory, and in fact it is generally recognized that quantal

theory has little or nothing to say (currently) about temporal contrasts in phonology,

such as between long and short vowels or singleton and geminate consonants.

In the next section, a different perspective on quantal theory will be outlined,

incorporating the data presented in the previous chapters.

6.2 A new perspective on quantal theory

Just as every signal can be represented in either the time or the frequency domain (the

two domains are related via, e.g. a Fourier transform), so too the quantal articulatory-

acoustic characterization of speech sounds and distinctive features can be represented

spectrally or temporally. In this section, the spectral and the temporal domains will

be combined (similar to the familiar spectrographic domain).

For instance, consider two segments adjacent in time, S1S2, which contrast only

in one feature [±F]. Let S1 be [+F] and S2 be [-F]. If [±F] is quantally defined, it will

normally be represented in an articulatory-acoustic space in which one articulatory

parameter varies along the x-axis and the acoustic properties (usually the F-pattern)

of the resulting articulatory configurations are represented along the y-axis. As the

defining articulator (e.g. the tongue tip) moves from a position in the [+F] part of the

quantal curve toward the [-F] part of the quantal curve, assuming that the movement

is continuous and smooth, a sudden change in the acoustics will occur as the quantal

boundary is crossed. This sudden change is analogous to the landmarks discussed

above.
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In fact, the kinds of landmarks discussed above which result from consonant onsets

and offsets can always be thought of as a result of the spectrographic change from

one value of a feature to its opposite. The sudden onset of frication in a sequence

such as [æS], for instance, is a sudden change in the excitation of the vocal tract (from

periodic excitation to noisy excitation), that is, a change in the feature [±son]. The

concomitant sudden change in the spectral energy at low frequencies is a result of

the change in the location of the excitation source, to the alveo-palatal region of the

mouth, such that zeros are introduced that reduce the energy in the lower frequency

band. This is equivalent to a change in the feature [±cons]. Similarly, a change in

the place of articulation occurs, and is reflected in a change in the F-pattern (F2 rises

quickly into the [S], and F3 also rises somewhat). The sudden change in the acoustics

as the place of articulation is altered - that is, the landmark - is in this case the

discontinuity in F2 as it passes through the third lower airway resonance.

This view of landmarks is somewhat different from the view presented in Stevens

[49]. In that exposition, for instance, a discontinuity in a formant track would not

be considered a landmark. Conversely, under the present exposition the consonan-

tal landmarks of Stevens [49] are merely one class of landmarks. Different classes of

landmarks can be distinguished in several ways. One could speak of landmarks result-

ing from changes in source excitation type or location; or landmarks resulting from

changes in place of articulation or the sudden opening of side branches (such as the

nasal or sublingual cavities). Alternatively, landmarks can be classified according to

the width of the frequency band over which they occur. Stop bursts, for instance, are

wide band landmarks, whereas discontinuities in F2 due to lower airway resonances

are narrow band landmarks.

In the presentation of such narrow band landmarks in chapters 4 and 5, an empha-

sis was placed on the role of these landmarks in the marking of place of articulation

changes. Both the occurrence of the landmark and its directionality (e.g. from F2
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higher than the second lower airway resonance to F2 below it, or vice versa) were

important. This view of the role of landmarks - which is rooted in quantal theory

- leads to a somewhat different way of viewing the speech signal and how it relates

to phonological units (features, segments, etc). For instance, it is compatible with a

window model of speech along the lines of Keating [33]. F2 need not reach a particu-

lar frequency in order to signal a particular place of articulation; it need only cross an

appropriate lower airway resonance such that a discontinuity in the F2 track appears.

Furthermore, a landmark resulting from a change in one feature need not occur

simultaneously with a landmark resulting from a change in another feature. For in-

stance, in the sequence [da], F2 begins above the second lower airway resonance and

falls to below it. The landmark resulting from this interaction of F2 and the lower

airway resonance usually occurs some time after the composite landmark caused by

the change in the features [cont], [cons], and [son]. On the other hand, some land-

marks, such as the composite landmark just mentioned, always occur simultaneously.

The composite landmark in [da] consists of three separate landmarks: the change in

excitation source, the change in source location, and the change in radiation type

([cont] and [nasal] might be thought of as radiation features, since they determine

whether sound is radiated through the mouth, the nose, both, or neither). If the tem-

poral alignment of different features belonging to a single segment is not restricted

to be simultaneous, this raises several possibilities for the integration of quantal the-

ory with articulatory phonology. For instance, the relative synchrony or asynchrony

of landmarks for different features might relate to the relative phase differences be-

tween gestures in an articulatory score. Furthermore, the asynchrony of landmarks

has already been discussed in the context of automatic speech recognition technology

[40], and a further systematic study of these asynchronies could be of use in devel-

oping more robust front-ends for ASR systems, removing some of the burden which

higher-level language models currently carry.
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6.3 Different ways to classify distinctive features

In feature geometry distinctive features are organized in a hierarchy that encodes

the relations between different features. For example, the features [anterior] and

[distributed] are cosubordinate to the coronal place node, according to Halle [20],

indicating that they both are affected by assimilation rules involving the place nodes.

Feature geometry can take several forms, however, depending on how one decides to

classify the relations between features. For instance, one can define feature relations

on the basis of purely phonological patterns, or on the basis of purely phonetic charac-

teristics, or both. Halle [20] makes use of the phonetic distinction ‘articulator-bound’

vs. ‘articulator-free’ to justify a geometry that also has phonological significance.

The International Phonetic Association relies on a similar distinction between ‘place’

and ‘manner’ features. Halle’s articulator-bound features are equivalent to the IPA’s

place features, and Halle’s articulator-free features are equivalent to the IPA’s manner

features.

Another way to classify features phonetically is by referring to them as source

features or filter features, as Jakobson, Fant, and Halle [30] did. A fourth possibility

is to distinguish features according to how wide-band the landmarks associated with

them are. In general, manner, source, or articulator-free features will be associated

with wider-band landmarks than place, filter, or articulator-bound features. It would

be interesting to explore this classification scheme further, but it is beyond the scope

of this thesis to do so here.

6.4 Direct and indirect cues to features

The articulator-bound, or place, features are associated with landmarks caused by

discontinuities in the formants due to the interaction of the formants with lower

106



airway resonances. Since the lower airway resonances are always present and relatively

constant, whether near a formant or not, listeners may be able to keep track of their

frequencies for a given speaker, after they have been determined from a brief or lengthy

sample of that speaker’s speech. If a formant moves in the direction of a lower airway

resonance but does not form a landmark (for instance, if the formant disappears

because of a change in [cons] before it crosses the lower airway resonance), the listener

could extrapolate the movement of the formant and determine that it would have

crossed a lower airway resonance (shortly after its disappearance). Although the

landmark is not present, there are cues in the signal (such as the movement of the

formant and the fixed location of the lower airway resonance) that a listener can use

to infer the features and feature changes involved. A landmark is merely a relatively

direct cue vs. the movement of a formant toward a lower airway resonance (and the

landmark is potentially more salient).

This characterization of more and less direct cues (and landmarks specifically as

more direct cues) presents a slightly different perspective on the relationship between

defining (i.e. quantal) and enhancing gestures and acoustics. Stop bursts as in [ta], for

instance, are generally considered to be defining acoustics for place of articulation of

a stop, whereas the specific properties of formant transitions are due to enhancement

(e.g. whether they are short and quick, long and drawn out, or whether they are

noisy as in the case of an aspirated stop release). Under the perspective presented

here, stop bursts are landmarks associated not with place of articulation but with

manner of articulation (or source excitation type, or radiation type); they are direct

cues to the change in the features [cons], [cont], and/or [son]; the nearly simultaneous

landmark as a formant crosses a lower airway resonance is similarly a direct cue to

the change in place of articulation.

Features do not change at the rate of segments, however, and therefore between

one segment and the next at least one feature is likely to remain unchanged. In
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this case, no landmark associated with that feature will occur. Thus, there are three

possibilities with regard to the presence of a landmark: 1) absence of the landmark

because its associated feature has not changed value, 2) presence of the landmark with

the transition from the ‘+’ value to the ‘-’ value of the feature, and 3) presence of the

landmark with the transition from the ‘-’ value to the ‘+’ value of the feature. (The

second and third possibilities arise from the fact that landmarks are directional. For

instance, a change from a [-cont] to a [+cont] consonant involves an acoustic change

from silence to noise, whereas the reverse transition involves the reverse acoustic

change.) Moreover, there are two possible conditions in which a landmark may be

absent: a) when the feature is ‘+’ valued, and b) when the feature is ‘-’ valued.

It might be hypothesized that segment transitions which involve landmarks due

to feature value changes are diachronically more stable since the presence of the

landmark is presumably more salient than its absence. Investigation of this hypothesis

is, however, beyond the scope of this thesis.

6.5 Speaker normalization

The role of lower airway resonances in speech production and perception may also

have implications for speaker normalization. Generally formant frequencies (and the

fundamental frequency) are normalized with respect to each other in order to produce

some acoustic space in which normalized formants for all speakers lie close together.

It is necessary for some sort of normalization to occur, since the absolute formant

frequencies of an adult male, for instance, are much different from those of a child or

an adult female. However, if lower airway resonances can be automatically detected,

they may be useful in speaker normalization, since they are relatively fixed for any

individual and the formant frequencies relative to these resonances play an important

role in defining place of articulation features for vowels and consonants. It is possible
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that the formants need be normalized relative to each other, but only relative to the

lower airway resonances. If true, the lower airway resonances would provide a simpler

and more natural means of normalization than current normalization paradigms.
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Chapter 7

Summary, Conclusions, and Future

Directions

7.1 Chapter by chapter summary

In the preceding chapters, the following have been accomplished:

In the second chapter, a model of the lower airway was constructed and analyzed.

It was used to analyze measurements that have been made on humans both directly

(e.g. via tracheostoma) or indirectly (e.g. via spectrographic analysis). The effects

of varying the symmetry, the wall properties, the peripheral load impedance, and

the number of generations of the lower airway were explored. Finally, the second

and third lower airway resonances were found to be affiliated primarily with the left

bronchial tree, and the potential utility in medicine of characterizing cavity-resonance

affiliations more fully was broached.

In the third chapter, a model of the vocal tract coupled with the lower airway by

means of a variable glottal impedance was constructed, and the effects of lower airway

coupling on vowel spectra were characterized. The low back vowels were found to be
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the most sensitive to changes in glottal impedance, due to their constricted pharyngeal

cavity and the resulting closer match between the pharyngeal and glottal impedances.

It has been suggested by Stevens [48] that the first lower airway resonance divides

[+low] from [-low] vowels, and that hypothesis appears to hold under these modeling

conditions. It was also suggested that the second lower airway resonance divides

[+back] from [-back] vowels, and that the third lower airway resonance divides [+ATR]

from [-ATR] front vowels. Finally, it was also suggested that the interaction of F2 with

the first lower airway resonance may also divide [+ATR] from [-ATR] back vowels (F2

for [+ATR] back vowels is near 1000 Hz, which is the frequency that appears to be

boosted in [a] and [O] when the glottal impedance is small). The potential applications

of these findings toward better understanding whispered speech and other non-modal

voice qualities and pathologies was also suggested.

In the fourth chapter, speech from one speaker from a database collected by Black

and colleagues [38] was analyzed. CV transitions showed that the onset F2 imme-

diately after the release of a stop consonant appears to occur in specific frequency

bands between lower airway resonances, depending on the stop place of articulation.

Similarly, F2 measured in the steady-state portion of the vowel showed a pattern

similar to that predicted in chapter 3 from the model. Five patterns of F2 transitions

in a CV utterance were identified and characterized in terms of consonant place of

articulation and vowel backness, and the potential utility of these characterizations

in speech technologies and theories of speech perception was pointed out.

In the fifth chapter, a speech perception experiment was carried out (in collabora-

tion with Asaf Bachrach and Nicolas Malyska) in which the effect on vowel perception

of varying the frequency of the second lower airway resonance was studied. Given

an otherwise identical vowel stimulus, listeners identified the vowel as [+back] more

often when the second lower airway resonance was at a relatively high frequency than

when it was at a relatively low frequency. The F3-F2 Bark hypothesis, the center of
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gravity (F2’) hypothesis, and the spectral tilt hypothesis could not account for the

results, indicating that the effect was due directly to the frequency of the resonance.

In the sixth chapter, some implications of the results of the previous four chapters

were discussed and related to issues in quantal theory, landmark theory, distinctive

features, and speaker normalization. Specifically, a new perspective on quantal theory

which incorporates the temporal domain was presented, with some implications for

speaker normalization and for phonology.

7.2 Conclusions

This thesis presents theoretical evidence from models and experimental evidence from

speech production and speech perception that lower airway resonances play a role in

defining vowel feature contrasts, and perhaps more. The lower airway resonances ap-

pear to be actively used by listeners to aid in the perception of speech. Whether they

are actively manipulated - or rather, whether the formants are actively manipulated

relative to the lower airway resonances - by speakers is unknown. The possibility

that the lower airway resonances play an important role in speech production and

perception raises a large number of questions.

7.3 Future directions

The nature and extent of the role of lower airway resonances in speech production and

perception, and in defining vowel and consonant feature contrasts, must be clarified

more precisely. Future studies should explore more systematically the perceptual

effects of representing the second lower airway resonance as a zero unpaired with a

pole; of varying the bandwidth of the zero; of representing the resonance as a pole-zero

pair and varying their bandwidths; of varying the frequencies of the pole and zero,
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and the nonlinear interaction of the second formant with the pole. Similar studies

with respect to the first and third lower airway resonances should be carried out.

The sensitivity of F1 and F2 in [a] and [O] to glottal impedance variations should be

clarified, and the possibility of relating this sensitivity to measures of vocal quality

and (dis)function should be explored.

Of further interest would be a fuller understanding of the resonance-cavity affili-

ations of the lower airway, such that lung health could be assessed noninvasively on

the basis of a patient’s speech. Finally, further studies in the biology and physiology

of speech production should be carried out. Perhaps the distribution of pulmonary

stretch receptors is more dense near the nodes or antinodes of the lower airway res-

onances, leading to a kind of sensorineural feedback mechanism for the control of

speech. Or perhaps the interaction of vocal tract resonances (formants) with lower

airway resonances is of broader interest in animal communication. Many kinds of

animal calls consist of rising or falling chirps - perhaps the endpoints of some of these

chirps are at frequencies near the animals’ lower airway or tracheal resonances.
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Appendix A

MATLAB code for the lower and

upper airway models

function varargout = SGModel5_orig(varargin);

%

%

% by Steven M. Lulich

% lulich@speech.mit.edu

if ~nargin,

action = ‘new’;

else,

action = varargin{1};

end;

switch action,
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case ‘getTvt’, % Transfer function from glottis to lips

f = varargin{2};

w = 2*pi*f;

dims = varargin{3};

glottalDims = varargin{4};

Zsg = varargin{5};

Ug = 1;

Us = 1;

Zg = SGModel5_orig(‘getZg’,w,glottalDims,Ug);

Tvt = SGModel5_orig(‘Cramer’,w,dims,Us,Zsg,Zg);

varargout = {Tvt};

case ‘Cramer’,

w = varargin{2};

dims = varargin{3};

Us = varargin{4};

Zsg = varargin{5};

Zg = varargin{6};

constants = SGModel5_orig(‘getConstants’);

TsPerSection = [];

TsCumSections = [];

sectionDims = [];

for j = 1:length(dims(1,:)),

TsPerSection = [TsPerSection ceil(dims(1,j)/...

constants.threshold)];

TsCumSections = [TsCumSections sum(TsPerSection)];

for k = 1:floor(dims(1,j)/constants.threshold),
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sectionDims = [[sectionDims] ...

[constants.threshold;dims(2,j)]];

end;

if (dims(1,j)-constants.threshold*floor(dims(1,j)/...

constants.threshold)) > 0,

sectionDims = [[sectionDims] [dims(1,j)-...

constants.threshold*floor(dims(1,j)/...

constants.threshold);dims(2,j)]];

end;

end;

%numberOfTSections = sum(TsPerSection);

numberOfTSections = length(sectionDims(1,:));

for f = 1:length(w),

% Initialize the matrix

for j = 1:2*numberOfTSections+3, % i.e., # of variables

for k = 1:2*numberOfTSections+3,

M(j,k) = 0;

end;

A(j) = 0;

end;

% Fill in the matrix for the normal node equations

for j = 1:numberOfTSections, % i.e., # of nodes

M(j,j) = 1;

M(j,j+1) = -1;

M(j,j+numberOfTSections+3) = 1;

end;
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% Fill in the matrix for the extra 2 node equations

j = numberOfTSections+1;

M(j,j) = 1;

M(j,j+1) = -1;

A(j) = Us;

j = numberOfTSections+2;

M(j,j) = 1;

M(j,j+1) = -1;

A(j) = -Us;

% Fill in the matrix from the normal loop equations

% First loop (at the lips)

j = 1;

[Sj SjMinus1 Hj HjMinus1] = SGModel5_orig(‘getZ2’,j,...

sectionDims,f);

M(numberOfTSections+j+3-1,j) = Sj + SjMinus1;

M(numberOfTSections+j+3-1,numberOfTSections+j+3) = -Hj;

% Other loops besides the one circling the subglottal

% and glottal impedances

for j = 2:numberOfTSections, % i.e., # of loops except the one

% at the lips

[Sj SjMinus1 Hj HjMinus1] = SGModel5_orig(‘getZ2’,j,...

sectionDims,f); % two shunts plus two series impedances

M(numberOfTSections+j+3-1,j) = Sj + SjMinus1;

M(numberOfTSections+j+3-1,numberOfTSections+j+3-1) = HjMinus1;

M(numberOfTSections+j+3-1,numberOfTSections+j+3) = -Hj;

end;
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% The extra loop circling the subglottal and glottal impedances

j = numberOfTSections+1;

[Sj SjMinus1 Hj HjMinus1] = SGModel5_orig(‘getZ2’,j,sectionDims,f);

M(numberOfTSections+j+3-1,j) = SjMinus1;

M(numberOfTSections+j+3-1,numberOfTSections+j+3-1) = HjMinus1;

M(numberOfTSections+j+3-1,j+1) = Zg(f);

M(numberOfTSections+j+3-1,j+2) = Zsg(f);

N = M;

N(:,1) = A’;

T(f) = det(N)/det(M);

end;

varargout = {T};

case ‘getZ2’,

w = 2*pi*varargin{4};

sectionDims = varargin{3};

j = varargin{2};

constants = SGModel5_orig(‘getConstants’);

if j<=length(sectionDims(1,:)),

if j>1,

R1 = sqrt(sectionDims(2,j-1)/pi);

elements1 = SGModel5_orig(‘getElements’,w,constants,...

sectionDims(1,j-1),R1,0.5,0);

R2 = sqrt(sectionDims(2,j)/pi);

elements2 = SGModel5_orig(‘getElements’,w,constants,...
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sectionDims(1,j),R2,0.5,0);

HjMinus1 = 1./(elements1.Ga + i*w*elements1.Ca);

Hj = 1./(elements2.Ga + i*w*elements2.Ca);

SjMinus1 = (i*w*elements1.La + elements1.Ra)/2;

Sj = (i*w*elements2.La + elements2.Ra)/2;

else,

R2 = sqrt(sectionDims(2,j)/pi);

elements2 = SGModel5_orig(‘getElements’,w,constants,...

sectionDims(1,j),R2,0.5,0); % back cavity except last segment

Hj = 1./(elements2.Ga + i*w*elements2.Ca);

Sj = (i*w*elements2.La + elements2.Ra)/2;

Zr = 0;

SjMinus1 = Zr;

HjMinus1 = 0;

end;

else,

R1 = sqrt(sectionDims(2,j-1)/pi);

elements1 = SGModel5_orig(‘getElements’,w,constants,...

sectionDims(1,j-1),R1,0.5,0);

HjMinus1 = 1./(elements1.Ga + i*w*elements1.Ca);

SjMinus1 = (i*w*elements1.La + elements1.Ra)/2;

Hj = 0;

Sj = 0;

end;

varargout = {Sj,SjMinus1,Hj,HjMinus1};
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case ‘getZsg’,

w = 2*pi*varargin{2};

networktype = varargin{3};

generations = varargin{4};

parameters = SGModel5_orig(‘getSGParams’);

% load(‘WodickaParams.mat’);

% parameters = p;

[L, R, T, C] = SGModel5_orig(‘asymmtrach’,parameters,generations);

%main loop

for j=generations:-1:1,

for m=1:2^(j-1),

if j==generations,

ZL = SGModel5_orig(‘getDistalLoadImpedance’);

else,

Z1 = Z{j+1,2*m-1};

Z2 = Z{j+1,2*m};

ZL = Z1.*Z2./(Z1+Z2); % equivalent to Z1/2 or Z2/2 if

% the bronchial tree is symmetrical

end;

Z{j,m} = SGModel5_orig(‘recursiveTube’,w,networktype,ZL,...

1.1*L(j,m),R(j,m),T(j,m),C(j,m));

end;

end;

varargout = {Z{1,1}};

case ‘getZvt’,

w = 2*pi*varargin{2};

dims = varargin{3};
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networktype = 1;

Zr = 0;

Z = Zr;

for j = 1:length(dims(1,:)),

L = dims(1,j);

A = dims(2,j);

Z = SGModel5_orig(‘recursiveTube’,w,networktype,Z,L,...

sqrt(A/pi),0.5,0);

end;

varargout = {Z};

case ‘getUvt’,

f = varargin{2};

w = 2*pi*f;

dims = varargin{3};

d = varargin{4};

Zsg = varargin{5};

Us = 1;

Zvt = SGModel5_orig(‘getZvt’,f,dims);

Zg = SGModel5_orig(‘getZg’,w,d,Us);

Uvt = (Zg+eps)./(Zg + Zsg + Zvt)*Us;

varargout = {Uvt};

case ‘recursiveTube’,

w = varargin{2};

networktype = varargin{3};

ZL = varargin{4};

L = varargin{5};

R = varargin{6};
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T = varargin{7};

C = varargin{8};

constants = SGModel5_orig(‘getConstants’);

Z = eval([’SGModel5_orig(‘’network’ num2str(networktype) ’’’,...

w,ZL,constants,L,R,T,C);’]);

varargout = {Z};

case ‘asymmtrach’,

parameters = varargin{2};

generations = varargin{3};

depths = parameters(:,1);

lengths = parameters(:,2);

radii = parameters(:,3);

thickness = parameters(:,4);

cfrac = parameters(:,5);

dn = parameters(:,6);

for j=1:generations

for k=1:2:2^(j-1),

if j==1,

structure(j,:)=0;

n = structure(j,k) + 1;

newl(j,k) = lengths(n);

newr(j,k) = radii(n);

newh(j,k) = thickness(n);

newcfrac(j,k) = cfrac(n);

else

structure(j,k)=structure(j-1,(k+1)/2)+1;

n = structure(j,k) + 1;
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newl(j,k) = lengths(n);

newr(j,k) = radii(n);

newh(j,k) = thickness(n);

newcfrac(j,k) = cfrac(n);

structure(j,k+1)=structure(j,k)+dn(structure(j,k));

n = structure(j,k+1) + 1;

newl(j,k+1) = lengths(n);

newr(j,k+1) = radii(n);

newh(j,k+1) = thickness(n);

newcfrac(j,k+1) = cfrac(n);

end;

end;

end;

varargout = {newl,newr,newh,newcfrac}; % = {L,R,T,C};

case ‘network1’, % T-network with rigid walls

w = varargin{2};

ZL = varargin{3};

constants = varargin{4};

L = varargin{5};

R = varargin{6};

T = varargin{7};

C = varargin{8};

q = ceil(L/constants.threshold);

elements = SGModel5_orig(‘getElements’,w,constants,...

constants.threshold,R,T,C);

Zshunt = 1./(elements.Ga + i*w*elements.Ca);
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Zseries = (i*w*elements.La + elements.Ra)/2;

for v = 1:q,

if v == q,

Lmod = L-(q-1)*constants.threshold;

elements = SGModel5_orig(‘getElements’,w,constants,Lmod,R,T,C);

Zshunt = 1./(elements.Ga + i*w*elements.Ca);

Zseries = (i*w*elements.La + elements.Ra)/2;

end;

ZL = Zseries + 1./(1./Zshunt + 1./(Zseries + ZL));

end;

varargout = {ZL};

case ‘network2’, % T-network with yielding walls in parallel

w = varargin{2};

ZL = varargin{3};

constants = varargin{4};

L = varargin{5};

R = varargin{6};

T = varargin{7};

C = varargin{8};

q = ceil(L/constants.threshold);

elements = SGModel5_orig(‘getElements’,w,constants,...

constants.threshold,R,T,C);

Zshunt = 1./(elements.Ga + i*w*elements.Ca + ...

1./(i*w*elements.Lwc + elements.Rwc + ...

1./(i*w*elements.Cwc+eps)) + ...

1./(i*w*elements.Lws + elements.Rws + ...

1./(i*w*elements.Cws+eps)+eps)+eps); % why the extra eps’s?
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Zseries = (i*w*elements.La + elements.Ra)/2;

for v = 1:q,

if v == q,

Lmod = L-(q-1)*constants.threshold;

elements = SGModel5_orig(‘getElements’,w,...

constants,Lmod,R,T,C);

Zshunt = 1./(elements.Ga + i*w*elements.Ca + ...

1./(i*w*elements.Lwc + elements.Rwc + ...

1./(i*w*elements.Cwc+eps)) + ...

1./(i*w*elements.Lws + elements.Rws + ...

1./(i*w*elements.Cws+eps)+eps)+eps); % the extra eps’s?

Zseries = (i*w*elements.La + elements.Ra)/2;

end;

ZL = Zseries + 1./(1./Zshunt + 1./(Zseries + ZL));

end;

varargout = {ZL};

case ‘getConstants’,

constants.rho = 1.14*10^-3;

constants.eta = 1.86*10^-4;

constants.nu = 1.4;

constants.kappa = 0.064*10^-3;

constants.cp = 0.24;

constants.c = 3.54*10^4;

constants.threshold = 1.0;

constants.rhows = 1.06;

constants.etaws = 1.6*10^3;

constants.Ews = 0.392*10^6;
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constants.rhowc = 1.14;

constants.etawc = 180.0*10^3;

constants.Ewc = 44.0*10^6;

varargout = {constants};

case ‘getElements’,

w = varargin{2};

constants = varargin{3};

L = varargin{4};

R = varargin{5};

T = varargin{6};

C = varargin{7};

A = pi*R^2;

elements.Ra = 2*L/(pi*R^3)*sqrt(w*constants.rho*constants.eta/2);

elements.La = constants.rho*L/A;

elements.Ca = A*L/(constants.rho*constants.c^2);

elements.Ga = (2*pi*R*L*(constants.nu-1)/...

(constants.rho*constants.c^2)*sqrt(constants.kappa*w/(2*...

constants.cp*constants.rho)));

Rwct = constants.etawc*T/(2*pi*R^3*L);

Rwst = constants.etaws*T/(2*pi*R^3*L);

Lwct = constants.rhowc*T/(2*pi*R*L);

Lwst = constants.rhows*T/(2*pi*R*L);

%elements.Cwc = 2*pi*R^3*L/(constants.Ewc*T); % There is a potential

% typo in Table III, which

% should perhaps read Cwst

% rather than Cws

%elements.Cws = 2*pi*R^3*L/(constants.Ews*T);
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Cwct = 2*pi*R^3*L/(constants.Ewc*T);

Cwst = 2*pi*R^3*L/(constants.Ews*T);

elements.Rwc = Rwct/(C+eps);

elements.Rws = Rwst/(1-C);

elements.Lwc = Lwct/(C+eps);

elements.Lws = Lwst/(1-C);

elements.Cwc = Cwct*C;

elements.Cws = Cwst*(1-C);

elements.Rw = 6500/(2*pi*R*L);

elements.Lw = 0.4/(2*pi*R*L);

varargout = {elements};

case ‘getDistalLoadImpedance’,

ZL = 0;

varargout = {ZL};

case ‘getZg’,

w = varargin{2};

glottalDims = varargin{3};

d = glottalDims{1}; % = 0.01 to 0.2 cm (van den Berg, 1957)

h = glottalDims{2}; % = 0.32 cm (van den Berg, 1957)

lg = glottalDims{3}; % = 1.8 cm (van den Berg, 1957)

Ug = varargin{4};

mu = 1.8*10^-1;

K = 0.875;

rho = 1.14*10^-3;

R_turbulence_factor = 1;

Zvf = (12*mu*h/(lg*d^3)+K*R_turbulence_factor*rho*Ug/...

(2*(lg*d)^2)) + i*w*rho*h/(lg*d); % from Stevens (1998) p. 165.
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%Zpc = w/eps; % temporary

%Zg = (Zvf.*Zpc)./(Zvf + Zpc); % impedance along the vocal folds

% (vf) in parallel with the posterior

% glottal chink (pc).

varargout = {Zvf};

case ‘getSGParams’,

p = [

0 10.0000 0.8000 0.3724 0.6700 1.0000

1.0000 5.0000 0.6000 0.1735 0.5000 2.0000

2.0000 2.2000 0.5500 0.1348 0.5000 3.0000

3.0000 1.1000 0.4000 0.0528 0.3300 3.0000

4.0000 1.0500 0.3650 0.0409 0.2500 3.0000

5.0000 1.1300 0.2950 0.0182 0.2000 3.0000

6.0000 1.1300 0.2950 0.0182 0.0922 3.0000

7.0000 0.9700 0.2700 0.0168 0.0848 3.0000

8.0000 1.0800 0.2150 0.0137 0.0669 3.0000

9.0000 0.9500 0.1750 0.0114 0.0525 3.0000

10.0000 0.8600 0.1750 0.0114 0.0525 3.0000

11.0000 0.9900 0.1550 0.0103 0.0449 3.0000

12.0000 0.8000 0.1450 0.0097 0.0409 3.0000

13.0000 0.9200 0.1400 0.0094 0.0389 3.0000

14.0000 0.8200 0.1350 0.0091 0.0369 3.0000

15.0000 0.8100 0.1250 0.0086 0.0329 3.0000

16.0000 0.7700 0.1200 0.0083 0.0308 3.0000

17.0000 0.6400 0.1090 0.0077 0.0262 3.0000

18.0000 0.6300 0.1000 0.0072 0.0224 3.0000

19.0000 0.5170 0.0900 0.0066 0 3.0000
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20.0000 0.4800 0.0800 0.0060 0 3.0000

21.0000 0.4200 0.0700 0.0055 0 3.0000

22.0000 0.3600 0.0550 0.0047 0 2.0000

23.0000 0.3100 0.0480 0.0043 0 2.0000

24.0000 0.2500 0.0380 0.0038 0 1.0000

25.0000 0.1100 0.0320 0.0034 0 0

26.0000 0.1310 0.0270 0.0032 0 0

27.0000 0.1050 0.0240 0.0031 0 0

28.0000 0.0750 0.0220 0.0030 0 0

29.0000 0.0590 0.0400 0.0039 0 0

30.0000 0.0480 0.0400 0.0039 0 0

31.0000 0.0480 0.0400 0.0039 0 0

32.0000 0.0480 0.0400 0.0039 0 0

33.0000 0.0480 0.0400 0.0039 0 0

34.0000 0.0480 0.0400 0.0039 0 0

35.0000 0.0480 0.0400 0.0039 0 0

];

varargout = {p};

case ‘symmtrach’,

parameters = varargin{2};

generations = varargin{3};

depths = parameters(:,1);

lengths = parameters(:,2);

radii = parameters(:,3);

thickness = parameters(:,4);

cfrac = parameters(:,5);

dn = parameters(:,6);
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for j=1:generations

for k=1:2:2^(j-1),

if j==1,

structure(j,:)=0;

n = structure(j,k) + 1;

newl(j,k) = lengths(n);

newr(j,k) = radii(n);

newh(j,k) = thickness(n);

newcfrac(j,k) = cfrac(n);

else

structure(j,k)=structure(j-1,(k+1)/2)+1;

n = structure(j,k) + 1;

newl(j,k) = lengths(n);

newr(j,k) = radii(n);

newh(j,k) = thickness(n);

newcfrac(j,k) = cfrac(n);

structure(j,k+1)=structure(j-1,(k+1)/2)+1;

n = structure(j,k+1) + 1;

newl(j,k+1) = lengths(n);

newr(j,k+1) = radii(n);

newh(j,k+1) = thickness(n);

newcfrac(j,k+1) = cfrac(n);

end;

end;

end;

varargout = {newl,newr,newh,newcfrac}; % = {L,R,T,C};
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end;
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Appendix B

ARCTIC database files which were

analyzed in Chapter 4

Table B.1:

CV type word file name word file name word file name

[bi] be a0020 be a0026 be a0039

be a0145 be a0161 be a0233

be a0255 be a0262 be a0270

be a0280 be a0305 be a0424

be a0466 be a0500 be a0508

be a0524 be a0559 be b0009

be b0022 be b0043 be b0080

be b0102 be b0339 be b0348

be b0362 be b0443 beach a0213

beach a0554 beach b0416 beady a0503

beating a0340 beating b0141

[bI] big a0095 big a0218 big a0262

big a0273 big a0297 big a0576

Continued on next page
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Table B.1:

CV type word file name word file name word file name

big a0581 big b0145 big b0156

big b0241 big b0318 big b0530

big a0189 big a0337 bit a0431

bit b0082 bit b0434 business a0250

business a0370 business a0574 business a0014

[bE] bed b0417 bed a0180 beg b0180

best b0538 better b0017 better b0191

better b0219

[bæ] babbling b0430 back a0012 back a0137

back a0171 back a0208 back a0251

back a0335 back a0387 back a0508

back b0021 back b0098 back b0158

back b0267 back b0492 back b0165

back b0329 back a0411 bad a0270

bassett a0296 bath a0270

[b2] buggy b0344 bustle b0440 but a0004

but a0072 but a0103 but a0127

but a0144 but a0195 but a0228

but a0285 but a0301 but a0303

but a0358 but a0360 but a0361

but a0374 but a0380 but a0391

but a0413 but a0436 but a0456

but a0462 but a0466 but a0515

but a0522 but a0534

[ba] Bob a0387 Bob a0392 Boston b0452

box a0404

[bo] beau b0156 beau a0206 both a0092

both a0266 both a0490 both a0591

Continued on next page
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Table B.1:

CV type word file name word file name word file name

both b0112

[bU] book b0281 book b0351 book b0532

[pi] peace a0559 peace b0455 people a0024

people b0469 people a0302 people a0328

Peterborough a0569

[pI] picked a0113 picture a0138 picture b0035

picture b0232 pitched a0546 pits b0141

[pE] peasant b0480 pebbles b0149

[pæ] Packard’s b0193 paddling a0088 pass a0247

pass a0345 pass a0387 pass b0162

pass b0217 pass a0064

[p2] public a0022 puff a0073 puzzled a0219

[pa] popular b0057 possible b0353

[po] poked b0148 postpone a0578

[pU] put a0425 put b0266 put b0271

[di] deed a0330 deep a0293 deep b0169

deep a0076 deep a0096 defect b0137

depot b0269

[dI] Dick b0468 did a0081 did a0182

did a0192 did a0237 did a0361

did a0377 did a0526 did a0555

did a0576 did b0041 did b0045

did b0129 did b0137 did b0183

did b0261 did b0263 did b0275

did b0317 did b0324 did b0335

did b0405 did b0406 did b0435

did b0443 did b0444 did b0507

did b0508 did b0536 did a0583

Continued on next page
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Table B.1:

CV type word file name word file name word file name

did a0385 did a0534 difficulty b0284

dig a0346 dig b0312 disaffection b0123

disappointment a0429 disconcerting b0482 disillusionment a0510

disinclined b0223

[dE] dead a0087 dead a0148 dead a0220

deaf b0097 death a0086 death a0211

death b0212 death a0528 death a0544

death b0383 debutante a0120

[dæ] daddy a0379 dashed b0233

[d2] double a0072 double a0318 double a0261

dozen a0524 ducks b0323

[da] doctor b0310 doctrine a0535 document a0566

dog a0197 dog b0239 dog b0466

dog a0585 dog b0152 dog b0466

dog a0196 dog a0341 dog a0405

dog b0007

[du] do a0025 do a0368 do b0001

do b0069 do b0231 do b0343

do b0462 duplicity b0226 duty b0509

[ti] tea b0252 teach b0367 teach b0369

tee a0388 teeth b0159 teeth a0279

[tE] test a0509 test a0408

[tæ] taboo b0210 taboo a0433 taboo b0510

tacit a0298 tap a0465 tap a0153

tap a0529 task b0481

[t2] touchy b0209

[ta] talk b0122 talk b0214 talk b0518

talk b0539 talk a0043 taught a0531

Continued on next page
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Table B.1:

CV type word file name word file name word file name

taught b0366 taut a0498

[tU] took a0494 took a0497 took b0011

took b0039 took b0046 took b0143

took b0476 took b0490

[tu] too a0472 too a0472 too b0504

too b0036 too a0467 tooth a0285

Tudor b0222 Tudor b0255 Tudor b0257

Tuesday b0391 two a0111 two a0121

two a0122 two a0166 two a0188

two a0210 two a0371 two a0415

two b0115 two b0124 two b0164

two b0236 two b0277 two a0184

two b0048 two b0060 two b0365

[gi] geese b0323

[gI] give a0181 give a0271 give a0278

give a0286 give a0513 give b0056

give b0247 give a0347 give b0379

[gE] get a0346 get b0038 get b0382

guess b0462 guess b0210

[gæ] gad a0008 gad b0001

[ga] god a0006 god a0141 god b0185

gosh b0339 got a0264 got a0321

got b0065 got b0195 got b0231

got b0296

[gU] good a0230 good a0569 good a0574

good a0593 good b0207 good b0215

good b0276 good b0390 good b0517

good b0312 good a0158 good a0150

Continued on next page
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Table B.1:

CV type word file name word file name word file name

good a0556

[gu] goose a0547 goose b0502

[ki] keep a0101 keep a0287 keep a0394

keep b0060 key b0028

[kI] kiddies a0275

[kæ] cabin a0448 cabin b0051 cabin a0167

cabin a0049 cabin a0277 cabin b0050

capital a0023 capital a0364 captain a0264

captain a0466 captain b0374 captain b0526

captain b0528 captured a0290 cascades a0464

cash a0374 cash a0593 castor b0173

casual b0271 casualty a0292 catch a0055

catch a0356

[k2] couple b0046 cut a0269 cutters a0375

[ka] caught a0200 caught b0032 caught b0155

caused b0480 caution b0075 cautiously a0194

Cocky a0582 cod a0234 copper b0425

cottonwoods b0204

[ko] coat a0494 code b0500

[kU] cook b0374 cooking b0433 could a0107

could a0295 could a0409 could a0424

could a0457 could a0521 could a0523

could b0069 could b0075 could b0076

could b0123 could b0242 could b0270

could b0375 could b0400 could b0464

could b0485 could a0534
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