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ABSTRACT

This work builds on the initial design of a polymer microchip for controlled-release drug delivery.
Currently, the microchip employs a nonbiodegradable sealant layer, and the new design aims to
fabricate it only of biodegradable parts. Experiments were conducted to evaluate two potential
designs that are fabricated via lamination, and a final design was proposed based on the results.

Design 1 sought to replace the sealant directly with a PLA backing layer, but the laminated
backing layer was found to leak in 14C-dextran release experiments. Design 2 used a laminated
film instead of the original injected membrane. The laminated film was optimized to a 200-, m
thick poly(D,L-lactic-co-glycolic acid) 2A membrane, and the film-laminated microchip was
shown to release 14C-dextran within a 40-day period. The final proposed design was based on
Design 2, which demonstrated more potential as a future means of drug delivery.

Thesis Supervisor: Michael J. Cima
Title: Professor of Materials Science & Engineering
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1 Introduction
The method of drug delivery is a key component of effective therapy for patients.

Currently, implantable, controlled-release devices are a major area of study because they

would insure drug adherence and efficacy. Controlled release is a more favorable

mechanism than traditional drug delivery because it supplies a constant, effective

concentration of drug to the body. With traditional drug delivery, the body only

experiences an effective drug dosage for a short span of time.

Controlled release comes in two variations: sustained and pulsatile. Sustained

release means the drug is supplied at a constant rate and concentration; it is mostly

achieved via diffusion through or degradation of a polymer. Pulsatile release, in which

drug is released periodically, is more favorable because it mimics the body's natural

pattern of distributing chemicals. Devices sometimes use an external stimulus to trigger

periodic release. Biodegradable polymer microchips have been developed as one method

of achieving pulsatile release without the need for a stimulus.

The current polymer microchip design, from previous research, is mostly

biodegradable. However, it uses a nonbiodegradable sealant layer that would complicate

its use in the future, raising questions of biocompatibility and convenience. This work

evaluates two designs and proposes a final design to fabricate the microchip from only

biodegradable parts.

Proposed Design 1 seeks to replace the sealant directly with a PLA backing layer.

Design 2 replaces the original membrane with a laminated film, which could help

eliminate the need for a sealant layer altogether in the fabrication process. After

evaluation of both designs, a final design based on the Design 2 is proposed. A fully
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biodegradable polymer microchip would be a promising technology advance in drug

delivery and patient treatment.

2 Background
Controlled release involves regulating the release time or rate of a chemical. The

method of delivery for a drug affects its efficacy, and exceeding the optimal range of

drug concentration can be toxic to the body. With conventional drug system like tablets

or injections, the drug concentration profile in the body initially peaks then decreases

rapidly. Hence, the time experienced in the therapeutic concentration range is short.

Controlled release, which is either sustained or pulsatile, offers a more effective mode of

drug delivery.

2.1 Sustained Release
Sustained release delivers drug at a constant, continuous rate over a period of

time. Thus far, researchers have achieved sustained release mostly via polymers that

release drug at a constant rate via diffusion through the polymer or degradation of the

polymer. These systems come in several micro- and macroscopic forms: polymer

implants, microspheres, and oral tablets (Santini et al. 2000).

One example of a marketed sustained release product is Gliadel, used in treatment

of malignant brain tumors. Basically, it is a polyanhydride wafer, implanted at the time

of surgery, which delivers carmustine (BCNU) as the polymer degrades over time.

BCNU is incorporated in the polymer matrix composed of 1,3-bis(p-

carboxyphenoxy)propane (CPP) and sebacic acid (SA) in a 20:80 molar ratio (Dang et

al.).
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2.2 Pulsatile Release
Pulsatile release, the second type of controlled drug delivery, provides a pulsed

pattern of drug delivery at specific time intervals. This system is more preferred as it

mimics how the human body naturally produces certain substances like insulin and

gonadotropin. Pulsatile release can be designed as an externally regulated or self-

regulated system. An externally regulated system responds to application of an outside

stimulus, such as light (Mathiowitz et al. 1989), ultrasound (Kost et al. 1989), and

enzymes (Fischel-Ghodsian et al. 1988). For example, transdermal delivery systems can

be induced to produce pulsatile release in the presence of ultrasound or voltage pulses.

Self-regulated delivery does not require an outside stimulus to activate pulsatile drug

delivery.

Biodegradable polymeric microchips are a promising approach for a self-

regulated, controlled-release biodegradable drug delivery system (Figure 1, 2). The

devices consist of a poly(L-lactic acid) (PLA) body and poly(D,L-lactic-co-glycolic acid)

(PLGA) membranes. The type of membrane, which degrades at different rates depending

on molecular mass and thickness, in each reservoir determines when the drug will be

released.

Grayson et al. have demonstrated that pulsatile chemical release is possible with

the microchip device (2003). In a single microchip device, four different reservoirs were

injected with a different PLGA copolymer membrane. Drug was released in a pulsatile

pattern as the reservoir membranes opened. Water uptake and swelling of the membrane

has been proposed as a mechanism to cause rupture and subsequent drug release.

Polymers with greater molecular mass have higher mechanical strength retention, which
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leads to later membrane rupture (Grayson et al. 2003). This polymeric device allows for

self-regulated drug delivery and biocompatibility.

Degradable polymeric
substrate Degradable reservoir

ip ohrL,,rr n

Iembrane

chemical to
be released

(Grayson et al. 2003)
Figure 1. Schematic for a biodegradable polymeric microchip. An injected membrane
covers the smaller opening of each reservoir. Once the appropriate chemical is placed in
the membrane-filled reservoirs, the entire device is sealed with a non-biodegradable
sealant.
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Figure 2. Simplified schematic for the original biodegradable polymeric microchip,
shown in Figure 1. The chemical used in these microchip experiments is 14C-dextran,
whose release will be measured with a scintillation analyzer.

However, in these studies, the microchip devices were sealed with a tape that is

not resorbable by the body, which brings about various concerns. If this device were to

be implanted during surgery, a second surgery would be required to remove the

nonbiodegradable sealant. A fully biodegradable microchip would eliminate the need for

a second surgery after implanting the drug delivery device. Questions of the sealant's

biocompatibility also arise. A fully biodegradable device would be completely

biocompatible. This work evaluates two potential ways of fabricating a microchip device

composed only of biodegradable, laminated parts. A final design is proposed based on

the results described here.
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3 Procedures

3.1 Film casting
Poly(D,L-lactic-co-glycolic acid) 2A (PLGA-2A, relative molecular mass 12,000,

density = 1.303 g/mL) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP,

Aldrich), dichloromethane (DCM), or chloroform (CF, Sigma) to achieve 5, 10, and 15%

v/v solutions with each solvent. The solutions were injected in 177-jtl volumes into

silicone gaskets, backed by a glass slide, that each contained two 15 mm-wide, 2 mm-

thick cylindrical holes. Each hole was covered with Teflon-coated aluminum foil to

prevent the membrane from adhering to the slide. Total amount of injected solution

depended on the desired thickness of the dried film (Table 1). Each 177-jl injection was

followed by a ten-minute incubation.

Table 1. PLGA-2A Injection volumes ( l) depending on film thickness.
5% PLGA-2A 10% PLGA-2A 15% PLGA-2A

Film thickness (pm)
50 176.71 88.36 58.90
100 353.43 176.71 117.81
150 530.14 265.07 176.71

3.2 Microchip fabrication
Poly(L-lactic acid) (PLA, relative molecular mass 194,000 (Mt 194K), Tm=1760C,

Medisorb 100 L; Alkermes) microchips were produced via a two-step system on a Carver

Lab Press, model C. First, finely chopped PLA powder was compressed with 10,000

pounds at room temperature in a die to form a cylindrical chip. The preform was melted

and remolded at 1800C, with and without the conical protrusions that create reservoirs in
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the final microchip. The PLA microchip was polished to expose both ends of the conical

reservoirs for a final thickness between 480 to 560 }pm.

Polished PLA microchips with reservoirs were suspended on glass slides, and

each reservoir was injected with 200 nl of PLGA/HFIP for a predicted membrane

thickness of 150 }Jm. The devices were dried in a vacuum oven at 800C for 48 hours.

Three reservoirs with well-formed membranes in each device were selected and loaded

with chemicals. After drying solutions for 10-15 minutes at room temperature and

pressure, the large-end side of the device was sealed with Ideal 9144 Masking Tape

(American Biltrite; Lowell, Massachusetts).

Two sizes of microchip devices were fabricated in the lab. Both were

approximately 12 mm in diameter. The large-capacity microchip is about 1 mm thick,

while the small-capacity microchip is 500 gm thick.

3.3 Microchip lamination
Lamination was used in two cases: in "mock laminating" a thinner, solid PLA

chip to a PLA microchip or in attaching a PLGA-2A film to microchip. In the first

scenario, PLA microchips were overlayed with a PLGA-2A film, and the combination

was pressed with a force of approximately 2000 pounds for 5 to 20 minutes with the

membrane facing upwards, in contact with a Teflon block. In "mock lamination", a

secondary PLA chip without reservoirs was pressed against a microchip with injected

membranes, but the two pieces were not actually attached. In lamination, the microchip

is pressed between two plates, in which the upper one is heated to approximately 40°C
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and the lower is maintained at room temperature. All laminations were performed on a

Model C Lab Press (Carver).

'4C-dextran release. The 14C-dextran was dissolved in deionized water, and injected into

three reservoirs in each microchip. The microchips were placed in phosphate buffer

saline (PBS) and maintained at 37°C to mimic the body's internal environment. At each

timepoint, the PBS and microchip were swirled in each vial, and 500 pl PBS was

removed to be analyzed in the TriCarb Liquid Scintillation Analyzer (Perkin-Elmer).

The amount removed was replaced with fresh PBS to maintain a constant volume in the

vial.

4 Design Proposal

4.1 Design 1 Proposal
The first proposed design replaces the nonbiodegradable sealant layer with a

biodegradable PLA backing layer (Figure 3). This new layer would be thinner than the

microchip and adhere to the microchip via lamination with a PLA film.

This design has its advantages and concerns. Since the drug is still released

through a membrane individually injected into each reservoir, it would be easier to vary

the type of membrane loaded in each of the microchip's 36 reservoirs. This would enable

the device to behave with a pulsatile mechanism as the drug diffuses at different rates,

depending on the membrane polymer (Grayson 2003). However, a major concern is

whether the backing layer would serve as an adequate seal and prevent unwanted leakage

from the device. And during fabrication, the injected membranes may also rupture
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inadvertently due to the high force they experience during the lamination of the backing

layer.

PLA backing layer

PLA chip PLA film t

Injected poly(D,L-lactic-
co-glycolic acid) membranes

(PLGA)
'4C-dextran

Figure 3. Simplified schematic for Design 1.

4.2 Design 2 Proposal
The second design replaces the injected membrane of the original microchip

(Figure 4). Drug will diffuse from the device via a PLGA-2A film laminated over the

reservoirs. If this design were successful, the microchip fabrication process would be

altered so the device only has one open side, and the other side is closed.

Since individual membrane injection is eliminated in this design, the fabrication

process would be faster. However, since even the smallest polymer film will cover

multiple reservoirs, each one could not hold a different membrane, which is possible with

12
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injected membranes. This limits the customizability and pulsatile behavior of the

polymer microchip.

PLA Tape

Laminated PLGA film

14C-dextran

Figure 4. Simplified schematic of Design 2.

5 Results

5.1 Design 1 Results
PLA film cast in HFIP provides greater adhesion between PLA chips than one cast in

CF. 50-gm thick films were cast with 5% PLA/HFIP or 5% PLA/CF and dried for 48

hours at room temperature. One of each type of membrane was used to join two solid

PLA chips.

After approximately 24 hours of incubation, the chips glued with PLA/CF film

could be pried apart easily with tweezers. The PLA/HFIP film provided a better adhesive
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between the two chips as they could not be tweezed apart. After an additional 24 hours,

the PLA/HFIP-glued chips were easily forced open with a razor, most likely due to

greater evaporation of the solvent as the film dried.

Lamination does not affect injected PLGA-2A membrane behavior. Two microchips with

injected PLGA-2A membranes were covered with a solid, thin PLA piece of the same

radius and mock-laminated with 0.75 metric tons for twenty minutes. This experiment

mimicked the process of applying a PLA backing layer onto the microchip without

actually laminating them together. Three reservoirs on each microchip were loaded with

'4C-methylated dextran via injection, and the device was sealed on the open side. Once

the device was placed in PBS solution, 14C would leak from the device if the injected

membranes had been ruptured in the lamination process.

The amount of 14C that leaked from the microchip into PBS solution is measured

in disintegrations per minute and recorded as a fraction of the total amount of 14C injected

in each microchip. Hence, a ratio of 1 means that all 14C has exited the device. Both the

unlaminated (control) and mock-laminated microchip membranes ruptured after 4.8 days

in solution, indicating that the lamination process did not affect the membrane behavior

in solution (Figure 5).
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Figure 5. The PLGA-2A injected membranes, laminated or not, ruptured and released
virtually 100% of the 14C-dextran after 4.8 days. The DPM ratio signifies the fraction of
14C that has exited the device, relative to the amount that was loaded.

Laminated PLA backing layer does not provide a satisfactory seal. Two large-capacity,

nine-well microchips were sealed with a thinner secondary PLA chip of a smaller radius

but still covered all the reservoirs. '4C-dextran was injected into the reservoirs. The

devices were laminated at 0.75 metric tons for 5 or 20 minutes with the upper plate

heated to 105°F. The open side of the microchip was then sealed with tape. By isolating

the backing layer, this experiment determined the rate of radioactive leakage via the

backing layer alone.

Whether the PLA backing layer was laminated in 5 or 20 minutes, both leaked 40

to 80% of the total 14C loaded into the microchip over forty days (Figure 6). An ideal

seal would have shown negligible 14C release. The PLA backing layer was not a

successful method of sealing the device, and its performance did not significantly depend

on how long the backing layer was laminated.
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Figure 6. An ideally sealed microchip device would have leaked virtually none of the
loaded 14C. However, whether the PLA backing layer was laminated in 5 or 20 minutes,
both leaked 40-80% of the 14C over forty days. The '4C-dextran release ratio indicates
the fraction of 14C that has leaked from the device, relative to the amount that was
initially injected. This result suggests that the PLA backing layer is not a sufficient seal
for the microchip device.

5.2 Design 2 Results

5.2.1 Design 2: Film Optimization
A 200 pm-thick PLGA-2A film cast in dichloromethane and dried at room temperature

for 48 hours was the most favorable candidate for lamination. Before any film

production, a scoring system to fairly evaluate each type of membrane was developed

(Table 2). Scores ranged from I to 5 in 0.5 increments. The score indicated the level of

film deformation after drying and detaching it from the glass. It did not consider the film

performance in the lamination process. A film with a score of 3 would be considered a

highly favorable specimen for future testing.

16
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Table 2. Film Scoring System
Score Description
1 Film flows if not held flat.
2 Film stretched when tweezed and remains attached to glass.
3 Film detaches from slide with minimal deformation.
4 Film breaks with tweezed, remains attached to glass.
5 Film is cracked, already detached from slide.

100 and 200-glm thick films were cast from 5% and 10% PLGA-2A in HFIP,

DCM, and CF. After 24 hours, all films were too viscous to use as a film. A 48-hour

incubation produced better dried films that ranked closer to the ideal score of 3 (Table 3).

300-glm and 450-Gm thick films cast in 15% PLGA-2A in DCM and CF were also

dried in vacuum at room temperature after an initial 24-hour room temperature

incubation. They became brittle and possessed large bubbles. Bubble formation was

observed within 5 minutes of starting vacuum, and they grew to excessive sizes within 30

minutes.

Table 3. Film Scores for Incubation Time Optimization
Solvent % v/v Film Thickness () Score after 24 hours Score after 48 hours
HFIP 5 100 1.5 2

200 1.5 2
10 100 1.5 2

200 1.5 2
DCM 5 100 2 4

200 2 2.5
10 100 2 4

200 2 2.5
CF 5 100 2 2.5

200 2 2.5
10 100 2 2.5

200 2 2.5

Film production was optimized by casting films on Teflon-coated aluminum foil.

Initially, all films were cast on plain glass slides, but they were found to strongly adhere
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to the surface. To minimize interaction between the slide and film, two different

approaches were tested. First, the glass was silanized (Sigmacote, Aldrich) and dried for

several minutes. 10% PLGA-2A/DCM membranes were cast on the silanized glass and

incubated at room temperature for 48 hours. They detached more easily and with less

deformation than from non-silanized glass.

Second, the 10% PLGA-2A/DCM films were cast on glass covered with Teflon-

coated aluminum foil and also dried for 48 hours at room temperature. This method

proved the most effective, as it allowed for the films to be tweezed away from the gasket

with less deformation than either normal glass or silanized glass.

5.2.2 Design 2: Film Lamination
A PLGA-2A film is a potential substitute for injected membrane. A 200-pm PLGA-2A

film cast in dichloromethane was laminated over a 36-well small microchip. Carbon 14-

dextran was injected into the reservoirs, and the microchip was sealed on the open side.

This experiment determined the behavior of a PLGA-2A film, as opposed to an injected

membrane version.

The PLGA-2A film demonstrated different release behavior than the PLGA-2A

injected membrane. Within a 40-day span, the PLGA-2A film released nearly 100% of

14C, but it did not completely rupture as the membranes did after 5 days (Figure 7).

However, the exact behavior of the injected membrane is unknown because the release

experiment lacked data points between 10 and 40 days. This initial result shows that in

the future, the PLGA-2A film may be a useful component for controlled release from the

microchip.
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Figure 7. Within a 40-day span, the PLGA-2A film released nearly 100% of 4C. The
PLGA-2A film may be a useful component for controlled release from the microchip.
This behavior is different from that of the injected PLGA-2A membrane, but its exact
nature is still uncertain as time points between 10 and 40 day are lacking.

6 Discussion
Results show that a PLA backing layer is an insufficient seal for the device, but a

PLGA-2A film is a potentially useful substitute for the injected membrane. A new

design and fabrication process for a fully biodegradable polymer microchip design is

proposed, based on Design 2 (Figure 8).

The polymeric microchip would only be open on one side, which contains larger

reservoir openings, instead of both as it is in the original device. The openings would be

sealed with a polymer film that allows for drug diffusion.

To fabricate a new design prototype, the microchip would no longer be polished

so far as to truncate both ends of the conical reservoirs, which is the current standard.
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Instead, the pointed end would remain sealed with the PLA chip. The target drug is

loaded into the reservoirs, and the PLGA-2A film is laminated over the well openings.

This new design will also have concerns that must be addressed. Unlike the

original device, drug now would diffuse through the larger end of each reservoir. The

rate of drug diffusion for the new design may be significantly different from that of the

original.

PLA

I

Laminated PLGA film

14 C-dextran

Figure 8. Simplified schematic for final, proposed biodegradable microchip design. To
fabricate this new design, the microchip would no longer be polished to expose both ends
of the reservoirs, and their conical shape would be preserved. A laminated PLGA film
would cover the open ends of the reservoirs, allowing chemical to diffuse.

7 Future Work
Future studies should involve additional trials to further evaluate the two initial

design proposals and later, the final design prototype. These will lend confidence to the

conclusions drawn in this work.
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In experiments for Design 1, solid PLA chips of a smaller radius were laminated

as backing layers for large-capacity microchips. This difference in size between the

backing layer and actual microchip could have attributed to increased leaking. In future

trials, microchips should be laminated with backing layers of equivalent size.

For Design 2, further trials should be conducted to affirm the results obtained for

a microchip with laminated film. Additional trials will also provide better information

about the behavior of the film and how it allows chemical to diffuse, in comparison to the

injected membranes. Especially, another 14 C-dextran release should be conducted and

monitored more closely with frequent analyses for the laminated microchip.

If the new design demonstrates potential after supplementary trials for Design 2,

the film lamination procedure should be optimized. This work used 0.25 metric tons to

laminate the film, but a range of forces should be tested to determine the amount that will

effectively impede leakage from the film while not tearing it.

Finally, for the newly proposed design, its release behavior may be different from

the original device because the drug is now loaded and diffused from the larger end of

each reservoir. The film itself also may cause release in a manner very different from the

injected membrane. The chemical release behavior of the newly proposed design should

be studied since it is the major element of any microchip device.
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