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ABSTRACT

In the wake of contemporary widespread fare simplification in many major airline markets, this
thesis is concerned with the possibilities and the potential for airline revenue management in
less-differentiated fare environments. Traditional revenue management has relied upon the
assumption that independent demands exist for different fare class products, and can be forecast
as such. However, in less-differentiated fare environments this assumption has been shown to
lead to "spiral-down" in revenues.

Hence, in this thesis, seat inventory control methods are simulated in less-differentiated fare
environments and their relative performances are compared. The methods tested are: EMSRb-
based Fare Class Yield Management (FCYM); Heuristic Bid Price (HBP); Displacement
Adjusted Virtual Nesting (DAVN); and Probabilistic Bid Price (ProBP). Each of the methods is
tested in conjunction with two different demand forecasting philosophies: the traditional pick-
up (or moving average) forecaster which is based on the assumption of independent demands;
and a hybrid forecasting method based on the notion that there is one demand for flexible prod-
ucts and another demand for the cheapest product. The methods are simulated in two different
competitive airline network environments: a symmetric network with simplified fares; and a
more complex non-symmetric network with mixed fare structures.

Simulation shows that the performance of all four revenue management methods suffers in less-
differentiated fare environments if they continue to use traditional forecasting. Methods that
forecast demand at the path level see inflated forecasts for more expensive products, leading
them to reject too much lower-class demand; methods that forecast demand at the leg level see
diminished forecasts for the more expensive products, leading them to accept too much lower-
class demand.

The efficacy of FCYM improves in less-differentiated fare environments, providing a gain of
about 19% over "First Come First Served" revenues (as compared to the 6% gains seen previ-
ously), nevertheless, fare product simplification still results in overall network revenue losses of
around 16%. Incremental gains from O-D control when using traditional forecasting range from
0.44% to 1.93% over FCYM.



In contrast, when the new hybrid forecaster is used, revenue management performance

improves significantly, and all methods provide larger revenue gains in all competitive network

environments. Revenues under FCYM are now 1.7-2.6% higher than when traditional forecast-
ing is used. When using hybrid forecasting, the incremental gains from O-D control now range

from 2.6% to 4% over FCYM.

Thesis Supervisor: Peter P. Belobaba

Title: Principal Research Scientist, Department of Aeronautics and Astronautics
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1 Introduction

The market for passenger air transportation services is quite unique, and is certainly

unlike the markets for most other goods and commodities.

The specific output that airlines produce are seats - or quantities of seat-miles. Each seat

takes off at a certain time from a certain airport in the service of a specific-and ephem-

eral-flight leg, and then travels some amount of miles and lands at a later time at another

airport. At landing, the leg is complete, and those seat-miles ceases to exist.

In contrast, the products that airlines actually sell to consumers are trips from origins to

destinations. They sell more than this too, of course - they sell an image, an experience,

a "journey" - but setting aside these intangibles, the item with a price attached to it is

travel from an 'Origin' to a 'Destination'. Even though clearly the trip is comprised of a

certain amount of seat-miles, and has various other attributes attached to it such as times

of departure and arrival or level of on board service, nevertheless the destination is key:

consumers are not primarily interested in a quantity of seat-miles, they are interested in

an outcome.

The challenge in airline marketing, therefore, is to maximize revenue while allocating

these specific perishable commodities-this individual seat on that distinct and transient

flight leg-amongst the many possible journeys which are available for purchase and

which could possibly include the seat in question. If the goal was simply to achieve 100%

load factors then there would be no problem selling every seat in the sky, given suffi-

ciently low prices. But if we are looking to maximize revenue, then we need a way to

decide: How much is each seat "worth"? How much revenue can each seat earn for the

airline? Which seats will be matched to which journeys? What combination of seats and

journeys can provide the best revenue for the airline?

Figure 1-1 : How much is that seat in the cabin?
(branr'1nternaw a!Aiwqay4, 1971, Magagne

Ad' t~sernnt, Sohr-ed n Ie bvy om)
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In this thesis I will test a series of quantitative methods for addressing this problem of

controlling seat inventory. I will compare the relative performance of four seat inventory

optimizers in conjunction with two different demand forecasting methodologies, and

across different competitive environments.

In the remainder of this chapter, I will describe some recent developments in airline pric-

ing and revenue performance, particularly the growing emergence of fare product simpli-

fication-i.e., lower fares and fewer restrictions. In Chapter 2 there will be a review of

the literature on revenue management, and in particular on revenue management for use

in fare environments that are seeing fare product simplification.

I will then, in Chapter 3, describe in detail the four seat inventory control methods and

the two forecasting methodologies that will be tested. In Chapter 4, two network simu-

lation environments will be developed and characterized. These will be designed to repre-
sent current airline competitive environments. I will also outline a series of assumptions

regarding current passenger choice behaviour.

Then in Chapter 5, using as a basis the passenger choice and revenue management tools

provided by the PODS simulator, I will test the efficacy of the series of inventory control

methodologies in these different environments. Finally, I will present some conclusions

regarding the most effective and appropriate methods to use in less-differentiated fare

environments, as well as some directions for future research. But first, I will present some

background material on pricing and revenue management in airlines.

1.1 Airline Revenue Management

Airline revenue management is a combination of pricing and seat inventory control. That

is to say, a combination of product differentiation and the ability to vary the numbers of

seats allocated to each product. Revenue management has been much studied over the

past 25 years and it has consistently been found that it benefits airline revenues in many

different competitive environments.

1.1.1 Airline Pricing

The modern fare environment is very complex, given contemporary conditions of open

14



competition (deregulation) and relatively full information (internet booking facilities).
Airline pricers try to estimate demand for travel and willinges s-to-pay for travel amongst
market segments, and then develop special fares to try to fill empty seats. Revenue
management analysts try to estimate how many bookings can be expected in each fare
class and then they need to decide which bookings to accept.

This routine assumes an operating environment in which differential pricing is extant.
Differential pricing is the practice of charging different prices for products with different
attributes, in an attempt to segment a market. Essentially, airlines sell the "same" thing -
a journey between a particular origin and destination at a given time of the day - but as so-
ciate different attributes with this thing to create distinct products with different prices.

'Table 1-1 Differentiated Products

Fare Class Advance Purchase Minimum Stay Change Fee Comments

$458 N 21 days Saturday Night Yes Travel on Tue /Wed/Sat

$707 M 21 days Saturday Night Yes Travel on Tue/Wed

$760 M 21 days Saturday Night Yes Travel Thu-Mon

$927 H 14 days Saturday Night Yes Travel on Tue/Wed

$1001 H 14 days Saturday Night Yes Travel Thu-Mon

$2083 B 3 days None No -

$2262 Y No None No

$2783 F No None No First Class

(Soure: Peteroeobaba
"PGCING AND RE VENUE MANAGEMENT RESE ARCD
PreIenta onv to MIT! ndus!y Adesory Board Meetin~g Noember 4, 200f)

At one level, airlines differentiate between on board classes by laying out different cabins
and associating very different levels of service with the First Class, Business Class and
Economy Class cabins. At another level, airlines create differentiated products within
these on board classes by associating different conditions and restrictions with different
ticket prices. These conditions can be restrictions on possible travel dates, restrictions on
allowable length of stay for return tickets, penalties for changes or cancellations, and
advance purchase restrictions. An example of this can be seen 'in Table 1-1. This is a fare
structure that was used by American Airlines in October of 2001. The first seven rows
are Economy Class products, and the last row is a First Class product.

Why do airlines practice product differentiation? As noted above, airlines would have no
problem selling all of the seats that they fly at the same price, if that price were low
enough. Obviously, however, this price would lead to very low total revenues. Differen-



tial pricing allows airlines to increase their revenues by more effectively exploiting
consumer surplus. In fact, there is an argument to be made that airlines wouldn't even be
able to cover their costs if they didn't charge different prices (see e.g. Williamson 1992;
Cusano 2003).

In order to break even, airlines need to charge at least a certain minimum critical fare per
seat (see Figure 1-2(a)). But then, given fluctuations in demand by time of day or day of
week, it is unlikely that flights will have constant loads, so the fare charged would need
to be slightly higher than this. However, it is then very possible - and quite likely - that
not enough passengers would be willing to pay this break-even fare, which would neces-
sitate raising the price further, with the result that even fewer passengers would be willing
to pay it. Hence this is an unstable strategy to pursue. However, if airlines can charge two
or more different prices, then the weighted average fare received from all passengers can
be higher than the minimum critical fare, and the amount of revenue earned can
approach total consumer willingness-to-pay (see Figure 1-2(b)).

Increased
Not enough demand T

at break even pnice Total
Reenue at P2

singleP pRievCetnuev

Revue atP
2

P2 .

P3 .

P4 .
Revenue FVN. vne . ................ venue Cost Curve

CostCurve p
P8

Demand Curve Revenue at P>9

(a) Single Price Strategy (b) Differential Price Strategy

Figure 1-2: Economics of Differential Pricing

This all depends on the airlines' ability to segment demand. In order for differential pric-
ing to work, airline customers must be seen to display heterogeneity in preferences, such
that different products are more or less attractive to different segments of the market.
Given this, airlines can impose increasing levels of restrictions on their cheaper products
in an attempt to prevent diversion - that is, to discourage customers from buying down
from the higher priced products to lower priced products. Otherwise, all customers
would purchase the cheapest available ticket.
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Differential pricing allows airlines to capture greater levels of consumer surplus by

making the cheapest products generally unattractive, and then providing higher priced

products for consumers with high willingness-to-pay for air travel; and it also stimulates

demand by making some very cheap products available to consumers with low willing-

ness-to-pay for air travel. It increases revenues for airlines, and it also increases total

consumer welfare. Thus, all participants benefit from differential pricing, and airlines

would likely not be able to stay in business without it. Nevertheless, it is a practice much

misunderstood by the public, and particularly resented by those customers who do end

up paying the higher fares.

1.1.2 Seat Inventory Control

In the hierarchy of airline decision-making processes, pricing and seat inventory control

are short-term strategic decisions. Prices, i.e. published fares, can be extremely complex,
and they can be changed weekly or even daily. Airlines employ pricing as an agent in

numerous strategic and competitive contexts. Nevertheless, prices are transparent and

publicly available, and the published fare between an origin and a destination is usually

consistent across day of the week, time of day, and path.

On the other hand, seat inventory control is less transparent and seat allocations for a

given departure will be different every single day, such that available prices will not seem

consistent across day of the week, time of day, or path. Seat inventory control is thus a

more dynamic and more tactical level of decision making, and can be used to respond to

competitive situations quickly without its implications being immediately obvious to

customers or to competitors.

Seat inventory control is the practice of trading off different booking requests for the

same inventory of seats in the pursuit of maximizing revenue. There are many ways of

carrying this out, ranging from manual adhoc methods to extremely intricate mathematical

programs. Particulars of various algorithms will be described in more detail in Chapter 3.

At this point, however, a brief discussion of some historical and practical considerations

will suffice.

In the early stages of commercial air transportation in the US, all seats were sold at one

price, and all on-board service was First Class. From the 1940s onwards, some cheaper

seats became available at a discount. As time went by, the size of the discount became

larger, and the numbers of "discount" seats sold increased to the extent that this lower
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"coach" fare had in essence become the standard fare, and the First Class fare had
become a premium product. During the 1970s, as airline competition intensified, this
process of product differentiation continued as airlines began to offer discounts on their
coach fares, in an effort to compete with charter airlines, sell empty marginal seats, and
boost revenues.

Since these seats were not in a different cabin from the full fare paying Economy Class
passengers, and since the on-board service on offer was also the same, the issue for airline
marketers was in deciding how many of these discounted seats to sell, and how many to

reserve for passengers who would pay the full fare. Some intuitive rules of thumb could
be used - for example, demand was known to vary by day of the week and by time of
day, this was even reflected in the pricing structures. But aside from this, there is still a
certain amount of demand stochasticity from day to day, week to week, and departure to
departure, and this variability is not so straightforward to predict.

Figure 1-3: Differential Pricing in Action
(Scandinaan Arlines System, 1964, Magazine

Advriemen, Soumd onAie feBay cvvni)

The earliest attempts to predict the amount of demand for the different products on offer
were based on observations of bookings, and histories recording which ticket products

were booked, purchased, and flown at particular times, and at what prices. The process
of deciding upon the limits for the cheaper fare products was largely manual. As the

power and magnitude of available computing increased, conditions became amenable to

the implementation of more systematic inventory control frameworks. At the late 1980s,
human experience and judgement were still the primary techniques used to set and adjust

booking limits, until the development of expected marginal seat revenue (EMSR) meth-

ods (Belobaba 1987).
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EMSR methods are based on two major principles. The first is the recognition of the fact

that full priced unrestricted products were no longer the "primary" product on offer to

consumers of air travel. Previously, low-fare seats were thought of as by-products - left-

over seats that resulted from the variability of demand for what was in fact a full fare

product. These surplus seats needed to be sold at a discount to earn some marginal reve-

nue. As such, only demand for the full-fare product was estimated.

By the late 1980s, however, it was clear that the lower priced, more restricted products

were also part of the airline's primary output. Hence it was now necessary to try to esti-

mate demand for each of these multiple fare products and then to allocate inventory in a

revenue maximizing way, trading off the relative revenue contributions that could be

expected from each product and the likelihood that the seats would go empty (Belobaba

1987: 30).

Consequently, the second principle that is critical to EMSR-and to all methods that are

based on it-is the assumption that there actually does exist separate and identifiable

demand for these different products. This is not, however, a straightforward supposition.

The notion that there is distinct demand for each class, and that this demand is independ-

ent of demands for other fare classes, might be accurate if differentiation between prod-

ucts is extremely sharp: that is to say, if the price differences between products are large

and if the conditions and restrictions imposed are sufficiently distinct and severe.

Notwithstanding this, if the assumption of distinct demands was ever or has ever been

true, recent developments in airline pricing - and their observed effects on airline finan-

cial performance - would suggest that it is certainly not the case at present. The problem

of effectively segmenting demand, or alternatively of modifying revenue management

systems so that they can work with unsegmented demand is an urgent challenge facing

airlines today.

1.2 Recent Developments

1.2.1 Revenue Crisis

As described above, airlines segment the demand for air travel by making cheaper prod-

ucts less and less attractive to consumers. They try to achieve this by creating levels of

disutility. Demand for travel service is directly derived from demand for the outcome that
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the trip will produce, and so travel itself can be thought of as a disutility. Air travel is an

inconvenience, and the market can be segmented according to consumers' willingness to

trade off between price levels and levels of inconvenience.

Examples of traditional fare restrictions include advance purchase requirements, penal-

ties for changes or cancellation, round-trip travel requirements with minimum stay condi-

tions, restrictions on routings and allowable day-of-week or time-of-day for travel. In the

past, restricted fare products would tend to include at least an advance purchase require-

ment and a change fee of some sort, next a minimum stay requirement, and then possibly

other types of restrictions on top of these. Leverage came from the ability to alter the

degrees of restriction- 1-, 3-, 7-, or 14- day minimum stay conditions, for example-

making the products less flexible with decreasing price.

However it can be argued that in recent years the very nature of the products on offer

has changed. The general structure of the differentiation is similar-the most expensive

product is still unrestricted, disutilities increase with decreasing price-but the mecha-

nisms of differentiation and the attributes being emphasized are now very different.

There has been a trend towards simplified fare products, meaning that round-trip and

minimum stay requirements have largely been abolished, and the range of prices charged

has been compressed. Why have the pricing structures changed? This can be read as a

symptom of the extensive revenue problems facing the industry.

Airline revenues and yields have been decreasing steadily over the past five or six years,
resulting from the combined effects of the global slow down in economic growth and the

growing supply of air transportation capacity. This increasing over-capacity has been

enabled by progressive airline deregulation and consequent increased competition-

particularly the proliferation of new airlines offering "low cost" travel at lower fares. The

larger older airlines have been undercut by and have lost market share to these newer

smaller airlines, which have lower operating costs and can offer cheap and frequent serv-

ice on popular routes. Their prices on average are lower and their fare products are far

less complex-but also far less differentiated-than those of the major airlines.

In addition, market power has been shifting to the side of consumer with the advent of

internet distribution, such that consumers almost have "full information" about which

products are on offer. Thus, the major airlines have lost their pricing power. Generally,
they have matched fares with the low-cost carriers (LCCs) in markets where they are in

direct competition. Initially, in an attempt to maintain revenues, they resisted this and

responded by offering lower fares for market segments with perceived elastic demand
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(such as holiday travellers) and raising the fares for segments with inelastic demand (such

as business travellers). But in markets where conditions are appropriate, the LCCs have

been able to capture high-willingness-to-pay passengers. For example, in short-haul

markets, time-sensitive passengers have demonstrated that they are not prepared to pay

premiums for "luxury" service and are more than happy to purchase budget travel,
provided that the capacity and frequency are available. In response, the older airlines have

reduced their levels of on-board service on short-haul routes.

In response to these developments, a few of the older airlines also began to change their

fare structures, making their array of products less complex and more like those offered

by the LCCs. In the United States, it was initially Alaska Airlines and America West

Airlines who simplified their products. These airlines' networks were highly exposed to

competition from Southwest Airlines - a LCC offering simpler fare products - but they

were both relatively small and concentrated to specific limited regions of the country, so
the impact of their actions was limited.

But the position of the established airlines worsened, and injanuary 2005 Delta Air Lines,
the third largest airline in the US, implemented a new pricing scheme called SimpliFares1.

SimpliFares was not really very simple, but it promised that there would be only six fare

levels in Economy Class, capped at $499, and only two fare levels in First Class, capped

at $599. There would also be only four levels of Advance Purchase restrictions (3, 7, 14,
and 21 days), no 'Saturday Night Stay' requirement, and a maximum change fee of $50

(see delta.com). SimpliFares was implemented throughout Delta's network and so natu-
rally the other major US airlines matched it.

The result of this was that the established airlines saw increased load factors, and they did
regain market share; however revenues fell as their yields continued to decrease through

2005 (Doganis 2005). The reasons for this are twofold: airline revenue management is a

combination of pricing and seat inventory control. If prices are lowered and product
differentiation is removed or reduced, then there is nothing to prevent diversion, and

consumers with high willingness-to-pay have no inducement not to buy the cheaper

products. Furthermore, if the pricing structures no longer function to segment demand,
then it is very difficult for seat inventory control algorithms to work. How can the

demands for different products be traded-off against each other if the different products
- and, indeed, the distinct demands - no longer exist?

1."Delta Cuts, Simplfies Ticket Prices L'SATodayJanuary 5, 2005
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1.2.2 How to Segment Demand?

As mentioned above, the fare products on offer today are still differentiated, but the

emphases are now different. Many tickets are now sold on a one-way basis, such that the

'Saturday Night Stay' (SNS) and most other minimum stay/round-trip conditions are

being phased out altogether. The 'Saturday Night Stay' (SNS) requirement was extremely
effective in preventing business and other time-sensitive travellers from purchasing

cheaper products, but was widely reviled by consumers. The various round-trip require-

ments were very good at segmenting demand, and their removal has greatly weakened the
segmentation power of pricing.

Advance purchase restrictions are also being curtailed by some airlines, especially low-
cost carriers. Advance purchase restrictions have the effect of reducing product options

as departure day approaches, that is, they remove the cheaper products from the choice
sets of time-sensitive customers. Of course, they also eliminate purchasing opportunities
for late-booking customers with lower willingess-to-pay. Removing or reducing advance

purchase restrictions now gives these late-booking lower willingess-to-pay customers the

opportunity to book, however it also enlarges the choice set for time-sensitive customers

and allows them to buy products that are cheaper than their maximum willingness-to-pay,
that is, it allows them to "buy down". Hence, adjusting advance purchase restriction is a

trade-off between these two revenue streams.

Table 1-2: Differentiated SimpliFares Products

Fare Class Advance Purchase Minimum Stay Change Fee Comments

$124 T 21 days None $50 Non-refundable

$139 U 14 days None $50 Non-refundable

$184 L 7 days None $50 Non-refundable

$209 K 3days None $50 Non-refundable

$354 B 3 days None $50 Non-refundable

$404 Y No None No Full Fare

$254 A No None No First Class

$499 F No None No First Class

(Sou : Be!obaba and Dar 200,)

On the other hand, change and cancellation fees do appear to be increasing, particularly

with the growing popularity of on-line instant purchases. However, these do tend to be
uniform across an airline's products. Hence, with reference to Table 1-2, we can see that

fare product differentiation is now reflected mainly in different price levels and different

22



advance purchase restrictions, and the presence or absence of ticket flexibility. In this
Delta Air Lines example from April of 2005, we can see that there is one no-advance
purchase, fully flexible Economy Class product, and five other Economy Class products
whose only differentiable features are price and advance purchase restriction.

We have seen that it is the practice of differential pricing that enables traditional airlines
to cover their costs. But with these barely differentiated products, segmentation power
has been all but removed from pricing structures. This means that the burden of segmen-
tation now rests with seat inventory control, i.e., the optimizers that decide how many
seats to sell at each fare level. So, how is seat inventory control affected by simplification?

The effectiveness of EMSR based methods is reduced by product simplification, since
these methods are based on the assumptions of distinct demands. Fare compression has
also been found to harm the performance of more sophisticated inventory control meth-
ods (Cusano 2003). The difficulty comes from the fact that without inducements to pay
for more expensive products, customers with high willingness-to-pay will buy cheaper
tickets, and so the potential full fare demand remains concealed. Therefore the expected
revenue contributions from the expensive products are under-predicted, and too much
preference is given to cheaper products by the seat allocation optimizer. As a result,
booking limits on lower classes are too high and there is a great deal of opportunity for
buy-down.

Previous Revenue

P,

Revenue from P 1

P2 *

Revenue from P uy-Down"
P3

Revenue from P, p
P2

P4 4.

(a) More Differentiated Fares (b) Less-Differentiated compressed Fares

igure 1-4 : Sacrificing Consumer Willingness- To-Pay
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And thus - the crux of the problem. In an environment without differentiated fares, and

using tools which depend on differentiation, how can airlines forecast demand for high

fare products and segment the market, hence maintaining revenues by exploiting

consumer willingness-to-pay. The key question here relates to the problem of forecasting

willingness-to-pay - or more precisely, the elasticities of demand for air transportation

services.

Traditionally, demand segments have been divided into categories such as "business" and

"leisure", with the assumption that these segments have very different demand elastici-

ties, and cross-elasticities of zero. When EMSR methods were developed starting in 1987,
it was considered that demand is a function of price and level-of-service and that these

were the strongest agents of segmentation (Belobaba 1987). The term "service" was used

to refer to on-board service as well as to the convenience associated with ticket flexibility

(e.g., minimum stay requirements, routing restrictions).

However, given that on-board service has declined in recent years, and that differentia-

tion in terms of other convenience levels has almost been removed, it is hard to argue

that the products on offer to consumers of air travel are still truly complements with zero

cross-elasticities. Indeed, we might really only be able to distinguish two different Econ-

omy Class products-unrestricted fully flexible products at full price, and partially

restricted products at a range of decreasing prices-but even here the qualitative differ-

ences are slight, it's usually just a matter of price and the presence of some advance

purchase restriction.

The domain of seat inventory control is no longer merely concerned with selling marginal

seats or protecting seats for predicted high-yield demand. Circumstances have evolved

such that its function is to force market segmentation so that airlines can remain opera-

tional, even profitable. But the principal inputs required by inventory control systems are

demand forecasts. Thus, inventory control must forecast segmentation by estimating

willingness-to-pay.

One way to theorize willingness-to-pay is indeed to think of the demand for air transpor-

tation as one single demand, and to estimate its price-elasticity and hence potential

demand at higher prices (Gorin 2004; Cleaz-Savoyen 2005). Another way to think about

it is in terms of urgency. An individual's willingness-to-pay might be expected to increase

with their level of urgency, and this is exploited to a certain extent by the continuing

imposition of advance purchase requirements.
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Researchers are studying new ways to forecast demand, particularly in less differentiated

fare environments. It is a pressing and challenging topic of inquiry. This problem will be
returned to again, and the implications will become more apparent in later chapters. But

first, a short discussion of some possible consequences of this compressed, less differen-

tiated fare environment for fundamental passenger choice behaviour.

1.2.3 Non-ticket Revenues

A result of the recent changes to airline fare structures has been a great deal of diversion

away from expensive products. This could reasonably be expected when differentiation
is lessened, and even more so since fare levels have been lowered. We might also expect

a certain amount of low-fare stimulation, and this has certainly occurred in many previ-

ously un(der) served markets. Classical economic theory suggests that lowering prices will
stimulate new demand. However, load factors have been high for a number of years. So
it's not that people weren't flying and now they are. It's that everyone is paying less to fly,
because of overcapacity and competition. Has this opportunity to pay less for tickets

changed consumers' fundamental appraisal of their willingness-to-pay?

The market price leader - i.e., likely the airline with the lowest operating costs - sets the
prices. As the lower fares on offer have progressively become cheaper, it has been harder

for traditional airlines to maintain very large fare ratios, resulting in fare compression.
Variation in fares is less than it was, and fare ratios are as low as 4:1. This is problematic
for airline revenues, and for the functioning of airline revenue management systems.

Nevertheless, self-described "business" travellers have long been tired of what they
consider to be "irrational" pricing structures-"the traditional business model of busi-

ness travellers subsidizing cheap leisure travel" according to USAToday.com-and the

business and travel sections of major newspapers regularly carry features on pricing
matters of interest to this segment. Needless to say, they have been quite happy with the

recent evolutions in airline pricing.

As noted above, market power now lies with consumers, many of whom are increasingly

highly informed as to what products are on offer, and they are demanding more trans-

parency. They are not choosing their products based on level of "service", they are mainly

interested in price. The differentiation between products in different cabins-First Class,
Business Class, Economy Class-is physical and material and intuitive. However, the

difference between products within Economy Class is not, and consumers who pay high
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prices are offended by this. They are not interested in arguments about consumer welfare

or system optimality - they just don't want to feel like they're being gouged.

Reportedly, business travellers are adapting their patterns of choice behaviour. A survey

of carried out by Accenture (quoted in the New York Times of October 25, 2005) suggests

that "business" travellers are becoming more price sensitive, and are learning to behave

more like "leisure" travellers and are planning their travel further in advance. In another

New York Times article1 , airline economist Steven Morrison speculated that traditional

carriers have lost their market power over business travel, and declared that "it's a new

world" - at least in terms of sustained limits on high fares.

Airlines are clearly also doing PR aimed at the business segment, expressing their remorse

for the complex and "irrational" pricing heretofore. In the same article an executive vice

president from Delta Air Lines apologized for airline pricing and said that he hopes that

customers "feel better" about the new, more "rational" pricing structure. The meaning

of the word "rational" in these kinds of contexts is supposed to evoke notions of trans-

parency and correlation with perceived costs, rather than any economic market-based

definition of the word, which would refer to the interactions of supply and demand.

Many airlines also try to show consumers that their fares are transparent by laying out the

fare structure on their web sites-clearly outlining the attributes of the different fare

products, and showing their prices and availability. This gives customers the impression

that nothing nefarious is taking place, even though seat inventory control mechanisms

are still clearly being used to limit seat availability behind the scenes.

N evertheless, it has been very interesting to watch in recent months as airlines have been

trying to re-capture some consumer surplus through non-ticket products. With the

compression and conflation of fare products, airlines are moving towards a more "trans-

parent" style of pricing. In other words, if it is too difficult to estimate willingess-to-pay

and segment the market accordingly, instead help consumers to reveal their willingess-to-

pay explicitly by allowing them to pay for things that they value.

Business travellers don't want to feel as if they are being gouged by large fare differentials

that are ostensibly reflecting opaque differences in "service", but they are still interested

in convenience and on-board "service". This slippage provides an opportunity for

airlines to make back some revenue.

L"Businesses Are Getting Pfice Break On Fare&, New York Times, January 14, 201116

26



"It feels like the airlines are nickel and diming their best customers

by offering less and less for the cost of the ticket," says Joseph

Gordon, a 27-year-old consultant from Iowa who flies mostly on

American. "I'm just resigned to the fact that in economy class you

have to pay for almost everything now."

"Booze no longer free -- not even on international flights"

Today In The Sky, http://blogs.usatoday.com/sky/

In response to steep falls in revenues and yields, the older airlines drastically scaled back

their Economy Class short-haul and domestic on-board service: they cut out meals, news-

papers, blankets, pillows; they began to charge fees for the use of non-internet reserva-

tion channels. They have focussed on trying to better understand the needs of their

different market segments. It had become clear that customers with low willingness-to-

pay were happy to fly with no service amenities provided that the price was low enough.

At the same time, high willingness-to-pay customers resented having to pay high fares

with no obvious better on-board service. Hence, since fares were now lower, the airlines

re-introduced meals, but this time for a fee. Many airlines now charge for alcohol, some

even charge for water on very short routes. Some are experimenting with selling luxury

products, like business lounge access and legroom, on a fee-basis.

The quote above is in reference to United Airlines' charging for alcohol in international

Economy Class. The speaker complains, but he still pays for the drink. Indeed, many

other travellers are not even offended at being asked to pay for something that was once

free, especially given that the price is lower than the airport bar.

Figure 1-5 :Men in Suits Would Like to Pay for Legroom

Ad emen , Somr!, on:ne!qycvz)
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Another example where airlines are helping customers to pay for things that they value

is the recent trend toward charging for elite Economy privileges which were previously
reserved for customers with elite loyalty status. United Airlines is now selling pre-paid
packages which offer access to their airport lounges, and first preference for better seats
on board:

With the introduction of these Economy Plus AccesssM packages,
you can now reserve, at the time of booking, Economy Plus seats for
yourself and a guest traveling on the same reservation.

http://united.com/epaccess

According to United a spokesperson on USAToday.com, sign ups for the Economy Plus
Access program exceeded their expectations. United also allows passengers checking-in
for heavily booked flights the option of securing an Economy Plus seat, for a fee of $35.
Similarly, Northwest Airlines allows customers the option of paying $15 to be allocated
to an aisle seat or seat in an emergency exit row.

It is worth noting that not all services are amenable to this kind of development-airline
telephone has been available for many years and has never been popular, and wireless
internet service is now becoming widely available but has similarly not been popular.
These services are different from catering or comfort types of services: they are not
particularly critical in-flight, and the fees charged for them have tended to be excessive
when compared to rates available on the ground.

It will be interesting to observe this trend, and to see if airline pricing does in fact live in
a whole new a la carte world, of if the environment will once again resemble its previous
structures. This is after all a cyclical process. If we look at historical patterns in airline
pricing over a longer time frame, we can see that the current situation might not be
entirely unique. Twenty years ago, Belobaba (1987) reported that Business Class fares
were only 10% higher than those in Economy Class, such that full Economy 'Y' class was
being displaced by Business-in other words, the airlines were providing "services"
instead of just convenience and flexibility. The problem of distinguishing full 'Y' when
seating inventory is shared is not a new one, and there are airline executives who believe
that traditional airlines can always expect some level of revenue premium.

Another element to take note of is the fact that the most powerful LCCs are also having
revenue and yield problems and are now themselves trying to raise fares. It has been
reported that Southwest Airlines is adding $10 to each of its one-way fares, thus allowing
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the rest of the industry to do likewise 1 . In addition, that JetBlue Airways has been trying

to improve its yield and raise revenues by $5-$10 per ticket by focussing on less compet-

itive routes2 . JetBlue's CEO was also quoted in USAToday3 saying that he was going to

be spending a lot more time "upstairs" with their revenue management department. In

this context, we can see that continued research into appropriate applications of revenue

management seat inventory control algorithms and improved demand forecasting meth-

ods is still essential.

To this end, in this thesis I will be looking at the effects that the new simplified fare envi-

ronments have had on revenues and on the effectiveness of traditional revenue manage-

ment systems. The purpose of the thesis is to investigate some methods that can aid

revenue management systems in these environments. The data that this study is based on

will come from simulation tests performed using the Passenger Origin-Destination Simu-

lator (PODS). This application will be described in more detail in Chapters 2 and 4.

PODS is a computer simulation tool that originated at Boeing, and has subsequently been

developed by researchers at MIT in conjunction with Craig Hopperstad of Hopperstad

Consulting, and a consortium of major airlines from around the world. It is used to test

revenue management methods, by simulating a competitive airline network and by gener-

ating passengers who make decisions based on a sophisticated passenger choice model.

U sing this simulator I will test a number of revenue management methods (which will be

described in Chapter 3) in two different competitive network environments (which will

be described in Chapter 4), with the aim of evaluating the potential of these methods for

simplified fare environments. The results of these studies will be presented in Chapter 5.

But first, in the next chapter, I will outline the literature on airline pricing, airline revenue

management, airline revenue management in less-differentiated fare environments, and

simulation using PODS.

1."Southwest Raises Fares, Others Follon " Reuters, March 13, 2@'26

2."Jet B/ue Says New Routes WillBoost Prtuztability", Reuters, March 13, 2006

3."Loss shifts JetBlue'sfocas to c/iibing back into black", tSATod y, Fe bruary 21, 2X)6
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2 Literature Review

This thesis is concerned with the question of appropriate revenue management methods
for less-differentiated fare environments, and with modelling the performance of these
methods in different competitive environments.

In order to investigate revenue management in less-differentiated fare environments we
need to consider four underlying areas of inquiry: the airline industry and recent develop-
ments in it; the economics of pricing and passenger choice; the evolution of methods of
revenue management and forecasting; and simulation techniques.

In this thesis, I will build on the latter three of these areas. I will be considering changes
to passenger preferences, as manifested in the willingness-to-pay behaviour of business
and leisure travellers. I will be investigating the performance of several leading revenue
management optimizers and an emerging method for demand forecasting. Finally, I will

be testing these, utilizing some new capabilities in the Passenger Origin-Destination
Simulator (PODS) simulation package.

2.1 Airline Industry Background

To understand why it is necessary to reconsider revenue management methods for less-
differentiated fare environments, some background in recent trends in the airline industry
is helpful. Doganis (2005), for example, provides a wide-ranging review of issues in airline
management and the airline business, with an up-to-date introductory chapter on changes
in the industry between 2000-2005. Relevant aspects he identifies include the increase in
competition with progressive market deregulation and with the emergence of low-cost
airlines, and the subsequent global trend of falling yield.

The less differentiated fare environments that form the context of this work have become
dominant with the growth of the low-cost airline sector. Characterizing the low-cost
airline sector and its business models is beyond the scope of this thesis, and a general
introduction to the low-cost sector can be found in Lawton (2002). Focusing primarily
on Europe, it includes sections on costs, levels of service, and the impacts of low-cost
competition on the industry.
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Airline economics and marketing theory provide the theoretical bases of all research into

revenue management. A general background to these fields can be found in Holloway

(2003) and Shaw (2004). Shaw discusses concepts of marketing, market segmentation and

the "customer" for different air travel segments, and includes a basic introduction to
airline pricing and revenue management. Holloway contains a more thorough back-

ground to airline economics and strategy, with sections on air transportation demand

drivers, pricing and costs, capacity management, and revenue issues.

2.2 Differential Pricing and Passenger Choice

In the context of this industry background, the first important principle to understand is
the economics of differential pricing. An introduction to the practice of differential pric-

ing in airline markets can be found in Belobaba's PhD dissertation (1987). The relation-
ship between airline differential pricing and yield management is explained further and in

lucid detail by Belobaba's article in the Handbook of Airline Marketing (1998a), in which
he explains how revenue management is necessitated by having differentiated fare prod-

ucts. However, he also notes that the efficacy of traditional revenue management systems

depends on the successful market segmentation that these differentiated fare products

can achieve. Indeed, Mak (1992) has shown that having more different products on offer,
i.e., a greater number of fare classes, leads to higher revenues and greater revenue

management effectiveness.

Differential pricing of airline products in combination with seat allocation has been

shown to result in greater allocative efficiency than a first-come first-served situation.

This was demonstrated by Botimer (1994) who performed a review of contemporary

airline fare structures and an economic analysis of consumer welfare. Botimer also elab-

orates the classic price discrimination formulation by developing a generalized cost

model of airline differential pricing. In this model, differently priced products do not

simply have different prices: since differently priced products also have different restric-

tions associated with them, he proposes that they should be modelled with different

demand curves.

The next extensions of this work explored the effective or 'perceived' costs of air travel

inconvenience and restrictions. Lee (2000), for example, investigated the effects of

passenger disutilities in greater detail (i.e., advance purchase requirements, product

restrictions, path quality characteristics) and developed a sophisticated model of cost
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equivalents for travel disutilities, which was then used for passenger choice simulation.

Then, as the airline fare environment changed in the early 2000s, Carrier (2003) re-exam-
ined passenger choice modelling in the context of the resulting possible structural
changes in passenger behaviour. In this thesis, I will also be modelling structural changes
in passenger choice-in particular, the willingness-to-pay behaviour of business and
leisure travellers.

2.3 Evolution of Revenue Management and Forecasting
Methods

Current revenue management systems have evolved from the databases that airlines used
to keep track of their bookings, into automated tools for decision-making which make
use of past and current bookings to forecast future demand for seats on flight legs
(Williamson 1992).

Reviews of the current practices and future research prospects in revenue management
include Ratliff and Vinod (2005), Barnhart et al. (2003), and McGill and Van Ryzin
(1999). McGill and Van Ryzin in particular provide a very good review of the key compo-
nents of revenue management-overbooking, pricing, seat inventory control, and fore-
casting of demand. In this thesis, I will only be looking at these latter two for use in less-
differentiated fare environments, i.e., seat allocation algorithms and forecasting methods.

Since the basis of this thesis is the evaluation of different seat inventory control methods
in less-differentiated fare environments, I will first focus on some of the more pertinent
work that has been done in this area. The other key aspects of revenue management have
been subjected to more specific study elsewhere. For example, a review of the airline
overbooking problem can be found in Rothstein (1985). As for pricing, as described in
the previous chapter, in recent years we have seen increasing fare compression and fare
product simplification (Belobaba and Dar 2005). A review of US DOT ticket price statis-
tics over the past five years has shown that prices in the top one thousand markets in the
US have fallen by an average 16% (Geslin 2006).

The root of the seat inventory control problem lies in managing the fixed and shared
inventory of seats on a leg, such that a sufficient amount seats are saved at full price for
passengers who are willing to pay higher fares, while seats which are otherwise not
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expected to be sold can be made available at discounted prices to passengers with lower

willingness-to-pay. There are two basic types of approaches for addressing the seat inven-

tory control problem: methods that are fundamentally leg-based, and methods that utilize

full network optimization methods. Since all of the revenue management systems that I
am focusing on in this thesis have essentially developed out of leg-based Expected

Marginal Seat Revenue (EMSR) techniques, the history of these methods is particularly

relevant.

The first application of EMSR methods to the seat inventory control problem was at the

level of the single-leg two-fare class environment (Littlewood 1972; expanded upon by
Bhatia and Parekh 1973; Richter 1982). 'Ihis kind of approach was subsequently extended

to more complex environments, such as two-leg flights (Buhr 1982) and later even to

flights of up to four legs with six fare types (Wang 1983). A more generally applicable

solution framework based on EMSR methods was developed by Belobaba (1987), who

implemented and tested it in a real airline environment.

EMSR techniques involve weighing expected revenues - that is, the product of expected

demand multiplied by expected fares - for each fare class and trading them off. This tech-

nique has been shown to be optimal only in the simplest of environments (single-leg two-
fare class environment). An optimal solution, via convolution integrals, for environments

with more than two nested fare classes on a single flight leg was developed by Curry (1990

[as described in Williamson 1992]). However, this method is complicated to implement.

When EMSR methods are applied to multiple leg networks with many fare classes, some

simplification through heuristics is needed. These methods are easier to implement and

intuitive to understand, and are now widespread in industry.

Different heuristics regarding the precise modes of trading off the expected revenues can

be incorporated into Belobaba's EMSR framework (Belobaba 1992). For example the

methods known as EMSRa and EMSRb are described and investigated in Mak (1992);
Ratliff (2005) has also developed a variant. The version commonly in use is called

EMSRb. Early simulation testing (Wilson 1995; Belobaba & Wilson 1995) showed that
leg-based fare class yield management in a symmetric single market environment, and

utilizing EMSRb techniques, provided revenue benefits to the airlines which imple-

mented it and also to the industry as a whole.

The basic EMSR techniques are frameworks for solving the inventory control problem

for networks in which all itineraries have single legs. This is known as leg-based inventory

control. However, most airlines sell itineraries which consist of multiple leg journeys, and
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so inventory is shared not just between different fare classes, but also between "local"

(single-leg journey) passengers and "connecting" (multiple-leg journey) passengers. Thus

the problem of controlling inventory is complicated further, because the fixed and shared

inventory is now being shared along more axes. This step from control by fare class alone

to control by origin-destination and fare class concurrently is referred to as Origin-Desti-

nation Fare Class (ODF) control.

Although the ODF seat inventory control problem is obviously suited to formulation at

the network level, there are a number of difficulties - both practical and theoretical - in

solving the problem using network optimization methods. An early example of the use

of these network optimization methods can be found in the work of Glover et al. (1982

[as described in Williamson 1992]), who frame the problem as a large network flow prob-
lem. Williamson (1992) and McGill and Van Ryzin (1999) provide thorough reviews of

these approaches.

However, there are significant problems with applying these methods in real airline envi-

ronments. Firstly, the size and complexity of their formulations are problematic in terms

of data and computation requirements. A second, and more systemic problem relates to

nesting. Network optimization methods provide solutions for formulations that assume

distinct inventories rather than nested inventories. This means that higher-fare passen-

gers are not allowed access to the entire inventory of seats, but rather are restricted to the

seats that the solution specifically allocates to those fare classes. In contrast, in a nested

system higher-fare passengers are allowed access to any seats that might be allocated to

lower priced fare classes. That is, their access extends even to seats for which lower-fare

passengers are expected to have demand.

Hence, research emphasis has been on what might be termed leg-based approaches to

Origin-Destination control-that is, leg-based optimizers that do incorporate informa-

tion about network passenger flows and network revenues. Williamson (1988, 1992)
investigates this by first outlining some network linear programming techniques that

solve the problem "optimally", and then by developing more practical and implementable

leg-based ODF solutions, which perform comparably and which use leg-based optimiza-

tions and hence can incorporate nesting.

The issue here is accounting for displacement costs. This means finding a way to decide

which itinerary booking requests to accept on a given leg at the risk of displacing potential

passengers on connecting legs of other itineraries. Developing on work presented by
Smith and Penn (1988) and Wysong (1988), Williamson accounts for network flow



effects by calculating displacement costs for connecting itineraries, and then adjusting the

leg-based revenue associated with each ODF accordingly-hence communicating
network effects to the ENISR-based seat allocation optimizer. She suggested a variety of

ways to calculate these costs (1988, 1992). These displacement cost techniques were
further refined by Tan (1994), and further developments can be seen in Wei (1997) and

Lee (1998).

Today there are two major types of Origin-Destination control approaches in common
use: bid-price methods and virtual nesting methods. Bid-price methods were developed
and are described in Wei (1997) and Belobaba (1998b). The main bid-price method
discussed in this thesis - and simulated in PODS - is known as Heuristic Bid Price
(HBP). Another version of the bid-price method that is here examined is a network opti-

mization variant called Probabilistic Bid Price (ProBP), which was developed and tested
by Bratu (1998). The virtual nesting method that will be investigated is called Displace-
ment Adjusted Virtual Nesting (DAVN), as described in Belobaba (2002), and this will
be the third Origin-Destination control approach that I will be testing.

In this thesis I will look at these three approaches to Origin-Destination control (HBP,
ProBP, and DAVN), comparing their performances against each other and also with

respect to leg-based control (as exemplified by EISRb). The evolution and refinement
of these methods, and previous comparisons of their performances can be seen in studies
such as Wei (1997), Lee (1998), Zickus (1998), Bratu (1998), Gorin (2000), and Cusano
(2003). In these prior studies, testing and evaluation was performed under symmetric
head-to-head competitive environments. I will be extending the evaluation in two direc-
tions: firstly I will be considering the performance of these methods under less-differen-
tiated fare environments; secondly I will be comparing their effectiveness in a more
competitive and asymmetric network.

2.4 Advent of Less-Differentiated Fare Environments

'The successful (re-)emergence and growth of low-cost airlines in recent years has had a
significant impact on the world airline industry. We have seen the advent of less-differ-
entiated fare environments, with negative effects on average fares and total airline reve-
nues. Estimates claim that revenues network-wide revenues have fallen on the order of
15-20% and some interesting questions emerge for revenue management research (e.g.
Belobaba and Dar 2005; Cakulev et al. 2005; Fiig et al. 2005; Saranathan and Zhao 2005).
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Namely - is this revenue decrease evidence of substantively different passenger choice

behaviour that is evolving in the new environment? or is it merely a result of the new fare

environment's specific conditions? (e.g. see Franke 2004; Mason 2005)

The response of established airlines to Low-Cost Carrier competition has generally been

to match their fares (eg Windle and Dresner 1999; Forsyth 2003; Donnelly et al. 2004; cf.

Morrell 2005). This on its own could be expected to result in revenue decreases. But

moreover, the deleterious relationship between fare simplification, revenue management

and revenue degradation has led to a phenomenon termed "spiral-down": that is, as there

is less inducement to buy high-priced products, fewer of these products are bought; as

fewer of these products are bought, airlines' booking histories contain fewer records of

these products being bought; as airlines' booking histories contain fewer records of these

products being bought, revenue management system demand forecasters forecast less

demand for these products; and finally, as revenue management system demand forecast-

ers forecast less demand for these products, fewer seats are protected for high-priced

products and hence there is even less inducement to buy high-priced products. In other

words, forecasting inadequacies are at the root of underestimation of passenger willing-

ness-to-pay for air transportation and this leads to a systematic decrease in protection

levels for high fare classes and hence sales and revenues (Cooper et al. 2004).

Spiral-down can be restated as a problem with the forecasting methodologies of tradi-

tional revenue management systems. Therefore, the next component of revenue manage-

ment that I will be investigating relates to the problems of forecasting demand. EMSR-

based systems depend on the assumption that demand for the different fare products is

independent (Belobaba 1987) which is no longer a very sustainable assumption, and is

seen as a key factor in spiral-down. Hence, the question is how to adapt revenue manage-

ment systems so that they don't depend on this assumption. Some ideas about how to do

this follow below, but first a brief introduction to traditional forecasting.

Forecasting is about predicting future demand based on previous demand and on

assumed passenger sell-up characteristics. Some forecasters types are outlined in Wick-

ham (1995), who described time-series forecasting, forecasting based on regression

models, and a hybrid of these termed "pick-up" forecasting. He found that pick-up fore-

casting - a function of the bookings already on hand and projected bookings to come -

provided the best revenue outcomes. Since these forecasters depend on historical data,
they need to be aided by a detruncation process for the cases where the historical data

becomes constrained for one reason or another. Detruncation methods are described and

tested in Skwarek (1997). Finally, these methods were also surveyed by Zickus (1998)
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who performed simulation tests in PODS.

The other factor to consider is the potential for passenger sell-up (Bohutinsky 1990;
Gorin 2000), which is the probability that a passenger will purchase a higher priced ticket.

Bohutisky (1990) performed some early empirical investigations of sell-up behaviour, in
which she found that sell-up could only be observed on specific flights, which supports
the practice of predicting future passenger behaviour from observed behaviour. She also
found that passengers' willingness to "sell-up" was related to their fare class, implying
that price elasticity decreased with increased willingness-to-pay. This is consistent with
the idea that people who purchase cheaper products largely make their decisions on the
basis of price, whereas people who purchase more expensive products may be privileging
other attributes.

So, returning to the problem of spiral-down-why is the assumption of distinct demands
so problematic? As outlined above, compressing fare ratios and removing restrictions
allows passengers to buy lower-priced products and prevents a history of demand for
higher priced products from being established. Therefore, it may be necessary to develop
forecasting methods that do not rely so heavily on histories of observed bookings.

In anticipation of increased fare simplification in the industry, Cusano (2003) looked at
the performance of traditional EMSRb-based revenue management systems (EMSRb,
DAVN, HBP, ProBP) doing some initial experiments with fare reductions and fare prod-
uct simplification. He noted at the time of writing that fare structures had become signif-
icantly different, with less product differentiation. Cusano found that these new fare
structures resulted in lower industry revenues, but showed that simple leg-based revenue
management was still better than not using revenue management at all, and that ODF
control was still better than leg-based revenue management. In my work, I will be looking
at revenue management performance in the wake of much more widespread fare simpli-
fication and endemic spiral-down.

The next step was to look at the influence of explicit Low-Cost Carrier (LCC) competi-
tion. Gorin (2004) describes the changes in the US airline industry in detail. He docu-
ments the recent history and influence of low-cost competition, and noting that low-fare
market share had increased from 5% to 25% between 1990 and 2003, he investigated the
revenue management implications when low-fare airlines enter a small subset of a large
hub network. He analysed empirical data from two real-world case studies and also
performed simulation testing. He found, unsurprisingly, that incumbents see decreased
revenues and traffic, although total industry revenue and traffic does increases. At the
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network level, he saw that revenue management allows the incumbent airlines to focus

on connecting traffic. He also found that the performance of the revenue management

methods was robust across different network environments. I will also be modelling the

effects of a LCC competitor, but I will be extending the analysis to a LCC with its own

connecting hub.

Having demonstrated the effects of using traditional forecasting in less-restricted envi-

ronments, the next innovation was to try to alter the forecasting process. Cl6az-Savoyen

(2005; also Fiig et al. 2005) used the same network, with a LCC entering a small part of a

larger hub network, and tested two new techniques. The first is called fare adjustment,
and its aim is to handle competitive market situations where "traditional" differentiated

products and less-differentiated products are being sold on the same flight legs. Its scope

is to adjust local fares in order to account for potential sell-up. The second is a new fore-

casting method which no longer assumes independent demands for fare products. Q-
Forecasting, developed by Belobaba and Hopperstad (2004) tries to fracture or segment

the observed demand-which is unsegmented-and then estimate willingness-to-pay or

price elasticity of demand in order to produce demand forecasts that can be used with a

traditional EMSRb-based optimizer. Q-forecasting tests were also carried out by

Vanhaverbeke (2006) in a dynamic programming framework.

An extension of Q-forecasting that will be tested in this thesis (see also Reyes 2006) is

based on the notions of price/product demand, also known as priceable and yieldable

demand (Boyd and Kallesen 2004). This is the theory alluded to above that there is on

the one hand demand for specific products, and on the other hand also demand for the

"cheapest" product, and that forecasts for these demands can be made separately and

then combined. These ideas will be explained in more detail in the next chapter.

2.5 Revenue Management System Simulation-PODS

Finally, it is worth noting that it is very hard to determine the effects of particular revenue

management techniques or forecasters explicitly in real airline environments. Those envi-

ronments are far too complex with far too many variables. Competitive environments

change very quickly along multiple axes, making it hard to discern the effects of any

particular action. This is why simulation studies, in which it is possible to change one vari-

able at a time and hold all others constant, are useful for research in this field. Hence the

utility of the Passenger Origin-Destination Simulator (PODS).
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Early simulation of revenue management algorithms was done using monte carlo simu-

lation, or spreadsheet applications. For example, Williamson (1992) developed an elabo-

rate Monte Carlo based booking process/seat inventory control optimization simulation:

Bratu (1998) also used this model. In contrast, Wickham (1995) performed his forecast-

ing simulations with the help of Matlab.

The Passenger Origin-Destination Simulator is much more sophisticated than these

earlier applications, and its architecture is well described in great detail by Wilson (1995)

and Cl6az-Savoyen (2005). It contains independent simulations of seat optimization

processes and the customer booking process, based on a highly elaborate passenger

choice model (described in Carrier 2003). It is subtle and robust, and well suited to

performing all-else-equal sensitivity tests of different scenarios.

PODS was developed at Boeing by Hopperstad, Berge and Filipowski, and it is used as a

tool by a research consortium consisting of MIT researchers and a group of large airlines.

It has been extended and enriched over the years as the functionalities of more and more

revenue management techniques and forecasters are added to it.

The first academic testing was by performed in Wilson (1995). Wilson built a single-

market environment, with two airlines competing head-to-head in a single non-stop

market. He tested basic leg-based EMSR methods in this environment. Subsequently,
Skwarek (1997) and Zickus (1998) used PODS to test various permutations of forecast-

ing models.

The testing environment was enlarged by Lee (1998) and Zickus (1998) who created

small hub network environments in order to evaluate the performance of leg-based OD
methods. These networks had two airlines competing in one of three networks:

- N etwork 1 had one hub and four spokes - the two airlines shared the hub

and hence competed for the same local traffic

- Network 2 had two hubs and four spokes - the two airlines were based

in different hubs and only competed for connecting traffic

- Network 3 had two hubs and now six spokes

Gorin (2000) used this last network (Network 3) to look at the performance of estimation

techniques - different forecasters, sell-up estimators, and detruncation methods.

Passenger choice and disutilities were investigated thoroughly by Lee (2000). She used a

much larger network-"N etwork D"- consisting of two airlines of equal size, two hubs,
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and forty spoke cities, and incorporated the effective costs of disutilities into the passen-
ger choice model. She tested both leg-based and O-D control methods and found that
this more realistic modelling of passenger choice behaviour lead to higher gains from OD
control. Carrier (2003) also looked at passenger choice models in Network D and also in
another network ("Network E") which simulated trans-atlantic alliance traffic.

As noted above, in anticipation of fare simplification Cusano (2003) used PODS to
model the effects of lower fares and fewer restrictions. He did this in Network D and
changed some of the default fares and restriction settings. Building on this, a new-entrant
LCC was added to Network D to compete directly with one of the airlines in ten of its
non-stop markets. Gorin (2004) used this network and the single market case to model
various scenarios of low-fare entrant competition. He found that the main determinants
of the resulting observed revenues and loads were the LCC's capacity levels, whether the
incumbent matched the LCCs prices and fare structures, and the different revenue
management optimizers used.

Ck6az-Savoyen (2005) continued to look at Network D with an LCC in ten non-stop
markets. His focus was on helping revenue management methods to deal with spiral
down in two ways, using fare adjustment and Q-forecasting. The fare adjustment meth-
odology was designed to deal with mixed network situations such as this, i.e., where there
is more than one different fare structure on some of the legs, and Q-forecasting was
developed for forecasting in less-restricted environments.

I will build on this work in two ways. Firstly, I adjust the symmetric environment --
Network D - so that all of its markets have simplified fare products. Then I also look at
a a more complex competitive environment - Network R - which is a mixed network:
there are two "traditional" airlines which are similar geographically and in scope, one
"traditional" airline which is dissimilar geographically and smaller in scope; and an
enlarged Low-Cost Carrier that has a connecting hub and competes with all of the "tradi-
tional" airlines. The characteristics of these networks will be described in Chapter 4.

The PODS simulator has also been utilized in research into such other topics as the
competitive and revenue management issues surrounding alliances and code-sharing
(Darot 2001); the implications of changes to airline distribution channels (Dorinson
2004); and the traffic and revenue impacts of LCCs offering hub bypass competition in
traditional networks (Zerbib 2006).
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3 Revenue Management Methods and
Forecasters

Traditional leg-based revenue management systems collect historical booking data by
flight leg and by fare class and use these to forecast future demand by departure date and

fare class. Based on these demand forecasts, they calculate booking limits on low-value

fare classes in order to protect high-fare class seats, hence maximizing revenues. The goal

is to save enough seats for high-fare customers by limiting bookings and protecting seats,
but also to not overprotect by leaving too many seats empty. Forecasting and optimiza-

tion are intertwined in revenue management, and forecasts and booking limits are revised

and re-optimized periodically in response to materializing bookings.

In the first section of this chapter 1 will provide some details about the mechanics of the

four revenue management systems that will be studied in this thesis. The decisions that

each system makes will be described; as well, reference will be made to each system's rela-

tive benefits and disadvantages, the kind of data that each requires, and some previously

reported performance results. Finally some notes regarding the implications of less-

differentiated fare environments on their operation and effectiveness will be included. In

the second section of this chapter, I will describe the two kinds of forecasting approaches

that will be tested with these revenue management systems.

A number of types of revenue management systems have been developed over the years:

these different systems are based on different methodologies and can have different

mechanisms and decision rules, and they each are constrained by various specific practi-

cal considerations. Thus, the system that any one airline chooses to employ depends on
its particular needs and the conditions in which it operates.

Perhaps the most important categorization to be made currently is between those inven-

tory control systems that focus on maximizing leg revenues, and those that focus on

maximizing network revenues. This distinction has implications for what each system can

be expected to achieve, which methodological tools it employs, and the amount, quality,
precision and complexity of the data and data management systems that are required to

support it. Put simply, leg-based inventory control systems attempt to maximize revenue

by optimizing seat allocations on each flight leg, whereas network-based inventory

control systems attempt to maximize revenue by optimizing seat allocations over the
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entire network. M/aximising revenue on each leg is not the same as maximising revenue

over the network, and, needless to say, the latter is a far more complex task, however it

is also preferred as a goal.

It is easy to appreciate that on any individual flight leg that starts or ends at a network

hub, while there will certainly be passengers on single-leg journeys, there will also be

passengers who have purchased travel on any one of hundreds of possible Origin-Desti-

nation Itineraries (ODIs). On top of this, each of the possible ODIs served by this leg

can also be booked in any one of 5 or 10 or 30 different booking classes. Comparing the

relative revenue contributions of these itineraries to this specific flight leg is no trivial

matter.

In implementing a leg-based system, traffic on each leg is forecast by fare class, and then

protection levels and booking limits are optimized based on expected revenue for each

fare class. The disadvantages of using a system based on this type of methodology mainly

stem from the fact that many of the passengers on any given leg are not travelling on

single-leg itineraries. First, there is the problem of deciding how to allocate connecting

revenues to the leg in the first place - is the entire fare used? or is it prorated somehow?

- and then there is the issue of the wide range of prices that can be assigned the same

fare class designation. This makes forecasting loads and revenues on each leg by fare class

an imprecise process. Finally, leg-based methods can't "see" connecting traffic, and so it

is not possible for them to perform any trade-offs between connecting itineraries and

local itineraries.

However, the advantages of this class of methods is that they are computationally rela-

tively simple to implement and to operate. They are intuitive to interpret and to monitor.

The data which they use are richly and easily available. By contrast, in implementing a

network-based system, network traffic is forecast by ODI and by fare class (ODIF), and

then protection levels and booking limits are optimized as before based on expected reve-

nue for each ODIF. This obviates the need to allocate revenues to each leg because the

question of the value of each leg becomes irrelevant: the network solution implicitly

determines the revenue contribution of each leg to the network. In addition, this type of

system can "see" connecting traffic, and can judge whether to accept or reject connecting

itineraries.

However, a significant drawback with network-based methods is that they can be very

difficult to implement. The mathematical programs involved can be extremely large and

can take a long time to run, and while this is not an insurmountable problem these days,
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it can still be very expensive. A more serious problem is that these systems require high
quality and high precision booking histories as data inputs. There can be hundreds of
thousands of possible ODIFs, many of which will have very limited booking histories.
Furthermore, demand forecasting is based upon observed booking means and variances.
These rarely-purchased ODIFs will tend to have low means and relatively large variances
which will result in overestimation of future demand, and thus poor quality forecasts.

Another refinement that can be made to this categorization between leg-based and
network-based systems is to further divide them according to whether the forecasting
process is performed on a leg basis or on a path (network) basis; and whether the seat
allocation optimizer is leg or network based. In the following sections the specific char-
acteristics of some revenue management system methodologies and some forecasting
approaches will be described, with consideration given to the issues raised above.

3.1 Seat Allocation Optimizers

The four systems to be considered in this thesis are summarized in Table 3-1 and below:

Table 3-1: Summary of Revenue Management System Elements

Level of Level of Mechanism for
System Forecasting Optimization Level of Control Control

Leg EMSRb Leg Forecasts Leg Optimization Leg-based Control Booking Limits

DAVN Path Forecasts Network and Leg Leg-based Control Booking Limits

HBP Leg Forecasts Leg Optimization Path Based Control Bid Prices

ProBP Path Forecasts Network Optimization Path Based Control Bid Prices

Leg-based EMSRb keeps data and hence makes forecasts at the level of the leg and fare
class. It controls inventory using leg/fare class limits, and it finds these limits using a
leg/fare class EMSR optimization.

- EMSR Heuristic Bid Price (HBP) keeps data and hence makes forecasts at the level of
the leg and value bucket. It controls local (single-leg) inventory using leg/fare class
limits, and it controls connecting inventory using a heuristic bid price rule based on
these leg fare class limits. It also finds the leg limits using a leg EMSR optimization.

- Displacement Adjusted Virtual Nesting (DAVN) keeps data and makes forecasts at the
level of the Origin-Destination itinerary and the fare class (ODIF); optimization also

45



takes place at the ODIF level, making use of a deterministic or probabilistic network
LP. DAVN then controls inventory using leg and value bucket limits which it finds
using a leg/bucket EMSR optimization.

Probabilistic Bid Price (ProBP) keeps data and makes forecasts at the level of the
Origin-Destination itinerary and the fare class (ODIF). It controls all inventory using
a bid price rule based found via a probabilistic network convergence.

3.1.1 EMSRb-Expected Marginal Seat Revenue

As noted previously, EMSR methods were introduced to airline seat inventory control by
Littlewood (1972) and then more widely applied by Belobaba: a version known as

EMSRa was introduced in Belobaba (1987), and was further developed into the version

known as EMSRb (Belobaba 1992). The differences between these methods lie in heuris-

tics used in their precise formulations, and more details can be found in Mak (1992) and

Belobaba (1992). EM4SRb is now a very widely used leg-based seat inventory control

methodology.

EMISRb is a decision rule for choosing how many seats on each flight leg will be protected

for a given fare class against the lower-valued fare class/es below it; or conversely, choos-

ing the limit on the number of seats on each leg that can be sold in a fare class, such that

enough seats are saved for the higher-valued fare class/es above it.

EMSRb does not provide a "distinct" inventory solution- i.e., it does not allocate a certain

number of seats to each fare class separately: it is instead a 'nested' inventory solution. It

defines a combined protection level for a fare class by determining a booking limit on all
of the less-valued fare classes below it. In a nested system, there is no discrete limit on

the higher fare class seats, for example a full fare request can never be turned down if
there is any availability at all. More seats than originally predicted are allowed to be sold
in higher fare classes if there is demand for them (see Figure 3-1).

Non-nested algorithm formulations are used when using network optimizations to find
"optimal" inventory solutions, an approach which is appropriate for a constrained

resource allocation problem. However, as noted previously, it is not practical for seat

inventory control because flight leg inventories (i.e., physical seats) can be shared

between different marketed "products." Another factor to note is that nested systems

provide better revenue performance than non-nested systems, with non-nested systems

overprotecting seats for higher fare classes (Williamson 1988: 116).
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FC5 & FC1-4 against FC6 Fare Class 6

Figure 3-1: Nested In ventory

EMSRb booking limits are determined by trading off the expected revenues from differ-

ent fare classes. In a nested inventory, it is necessary to limit the access that lower fare

classes have to seats, and so it is necessary to calculate protection levels for higher classes.

Seats are protected for a fare class as long as the seats' expected revenue is greater than

the fare in the next lower fare class. The protection level for a class is set at seat n, the

seat where the expected revenue (i.e., {average revenue from the fare class} x {probabil-

ity of selling seat n in that fare class}) is still greater than or equal to the fare in the next

lower fare class.

For example, this means that the first n seats will be protected for the highest fare class.

It doesn't prevent more than n seats being sold in the highest fare class, it just prevents

those n seats from being sold in lower fare classes. The booking limit on the next lower

class is set at the point where its fare is just less than the expected revenue of the higher

fare class - i.e. remaining capacity minus the protection level n (see Figure 3-2(b)).

For seat n+ 1, the seat where the expected revenue ({average revenue from the fare class}

x {probability of selling seat n+1 in that fare class}) is no longer greater than the fare in

the next lower fare class, there is no longer any advantage to protecting that seat for the

highest fare class.. This is a consequence of nesting: the first n seats are being protected

explicitly for the higher fare class, but more seats are still available to it if demand mate-

rializes. However since the probability of this is sufficiently low, the next seats are also

made available to the next lower fare class.
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Since the inventory is nested, a protection level is not found for the second highest value
fare class on its own. Rather, a joint protection level is calculated for the two fare classes
together. And so (see Figure 3-2(d)):

- The protection level for the highest fare class determines the booking limit on the
second fare class;

- The combined protection level for the two highest fare classes is a booking limit on
the third fare class;

- and so on in a similar vein; until:

- The booking limit for the lowest fare class is simply the aircraft capacity minus the joint
protection for higher fare classes.

The size of the booking limit on the lowest value fare class is a function of the lowest
fare, but is not related to demand for the lowest fare class, i.e., there could be unlimited
demand for the lowest fare class. This is the object of EMSRb - to protect the right
number of higher value seats from the large amount of demand for the cheapest prod-
ucts. Hence, the leg-based fare class management system will accept a request for a seat
in a particular fare class if the booking limit for the fare class has not yet been reached.

From the above it is clear that leg-based fare class control using EMSRb requires infor-
mation about the probability of selling a seat on a leg in a given fare class. These proba-
bilities come from the booking forecasts, which essentially involves projecting leg/fare-
class demand based on historical bookings (the forecasting process will be described in
more detail below). When implemented, EMSRb is used at the start of the booking proc-
ess to establish initial limits based only on historical demand. Then, as the date of the
flight approaches, the booking limits are revised periodically taking into account informa-
tion about the bookings that have actually been received.

Under leg EMSRb fare class control, forecasting and optimization and inventory control
are all carried out on each individual leg. Since it is a leg/fare-class optimization, it relies
upon leg/fare-class forecasts, and thus a database of bookings and sales by leg and by fare
class needs to be maintained. Given most airline reservation systems, this information is
easily available, making EMSRb relatively simple to implement. Another practical advan-
tage of EMSRb is that its optimization outputs are individual flight leg fare class booking
limits. From an implementation point of view, these are intuitive to analysts and can be
easily interpreted (and also adjusted if necessary).

However, a disadvantage of leg EMSRb is the broader problem of forecasting demand
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by fare-class. In its traditional formulation, leg-based fare class control using EMSRb
relies upon the assumption of independent demand for different fare classes. We have
seen that this is not a trivial assumption in general, and in recent years has been closely
related to the problem of spiral-down in revenues.

The next practical problem with leg-based fare class control is that the inventory on the
leg is not just shared between fare-classes, it is also shared between different itineraries.
Hence, calculating expected revenue based on average fares in a designated fare class is
imprecise when the fares in a fare class can be very different for different itineraries.
Furthermore, this also leads to the problem of network effects, which will be addressed
below.

Nevertheless, leg-based fare class revenue management is widely used. Many studies have
showed its benefits over not using any automated revenue management at all. Simulations
performed in Belobaba and Wilson (1997) show revenue gains of 4-8% in a single market
2-airline competitive scenario. Network simulations in Cusano (2003) show benefits of
6-8% in a 2-airline competitive scenario. Estimates of its efficacy in real airline environ-
ments indicate that revenues increase by about 2-5% (Belobaba 1998b). Belobaba and
Wilson (1997) also show that implementing fare class revenue management provides a
competitive advantage for an airline, helping it to improve its fare mix by protecting a
sufficient amount of seats for high-fare passengers, and that the industry as a whole sees
increased revenues when other airlines also implement EMSRb, meaning that the extra
revenue is coming out of the consumer surplus rather than being captured from compet-
ing airlines (1997:9).

Implications for use in simplified fare environments

One of the negative consequences of operating in less-differentiated fare environments
for EMSRb is the effect caused by fare compression - i.e., the reduction of the fare ratios
of the products on offer. Fare compression can result in the reduction of protection
levels for higher-priced fare products.

As the fare levels get closer together, the expected revenue of a fare class reaches the level
of the fare for the next lower fare class sooner, i.e. the next cheaper product becomes
more "valuable" with respect to the higher priced product. As the relative value of the
cheaper product increases, the protection level for fare classes above it gets smaller since
the optimizer is now less willing to protect for the higher classes, and so - all else being
equal - the booking limits for lower fare classes increase.
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For example, consider the case described in Table 3-2. Assuming the same mean demand
and demand variability for six fare products, the effect of lowering and compressing fares
can be seen by comparing the original protection levels and the new protection levels. In
the original case, the fare ratio between the highest and lowest fares is 6.67, and in the
compressed case the fare ratio is 4. It can be seen that fewer seats are being protected for
the higher fare classes as the fare structure is compressed. This is also illustrated in Figure

3-3.

Table 3-2: Fare Compression and EMSRb Protection Levels

Fare Mean Standard Original Fare Poection Compressed Fare ret

Class Demand Deviation Fares Ratios Levels Fares Ratios Levels

FC1 18 10 $1000 6.67 13 $600 4 6

FC2 20 9 700 4.67 35 525 3.5 27

FC3 31 8 500 3.33 69 450 3 66

FC4 37 10 350 2.33 111 300 2 105

FC5 41 12 225 1.5 158 225 1.5 153

FC6 53 15 150 1 200 150 1 200

In addition, we have already seen that the assumption of distinct and independent
demands for different fare products is a problem in general, and it becomes more so in

less-differentiated fare environments. As restrictions are removed and there is less

inducement to buy high-priced products, fewer instances of these purchases are seen in
booking histories, leading the optimizer to protect fewer seats for high fare classes. This

means that EMSRb in its traditional formulation has difficulty operating in less-differen-

tiated fare environments. Some approaches addressing this problem will be described in

the forecasting section below.
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3.1.2 HBP-EMSR Heuristic Bid Price

The objective of leg-based seat inventory control is to maximize the revenues on each

flight leg: the question of maximising revenues system-wide is not addressed. Standard

leg-based EMSRb cannot distinguish between the relative values of local and connecting

passengers, and this is especially significant in cases where the fares have the same fare

class designation but are very differently priced. Sometimes it can be preferable to reject

a booking request for a high fare class local fare and to accept a request for a low fare

class connecting fare - if the low fare class connecting fare is more expensive than the

high priced local fare and will thus provide more revenue to the network. Hence the

importance of Origin-Destination control. In this thesis I am investigating three revenue

management methods that can be applied for O-D control. They are methods that incor-

porate information about network passenger flows and network revenues in order to
consider the different network revenue contributions of different O-D requests. The

parameter that these three methods try to ascertain is a fare's "network revenue value".

Bucketing

The first conceptual tool that is necessary if network value is to be taken into account is

the practice of bucketing. "Value buckets" are virtual booking classes that are based on

the value of the fares (Smith and Penn 1988). Within them they contain fares from the

traditional booking classes, but now ranked by each itinerary's value rather than by its fare

class designation (see Table 3-2). This allows better comparison between local and

connecting itineraries, where for example a local Fare Class 1 fare might be cheaper than

a connecting Fare Class 3 fare.

Table 3-3: Example "Greedy" Value Buckets

Value Equivalent Booking Class

Bucket Fare Range (examples)

1 > $1500..

2 1250 - 1500

3 1000 - 1250 Connecting FC3 fare

4 700 - 1000

5 500 - 700 Local FCI fare

6 320-500

200 - 320 Local FC2 fare

8 < 200
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Now that the fares are bucketed by value, the inventory is no longer nested according to

fare class but rather according to these "value buckets". As such, the processes involved

in seat allocation are carried out neither at the level of fare class nor in terms of official

fare class designation. Instead, virtual fare classes defined by these value ranges are used

for nesting and for trading off requests for inventory. This is now referred to as "Virtual"

nesting.

Nesting fares according to value buckets, and then performing EMSRb on the buckets

rather than on fare classes is a rudimentary form of Origin-Destination control. However

using this value bucket method always gives preference to the most expensive fares,
which will tend to be the long-haul itineraries. This can be undesirable because individual

itineraries are only being weighed against one another - i.e., a long-haul connecting itin-

erary is being compared with a single local itinerary, and hence this method can't consider

the fact that the connecting itinerary might displace passengers on both of its constituent

local legs. The request for a connecting itinerary will be accepted unless its price is less

than the EMSR value of both of the local legs. But the sum of the fares on these two local

legs may in fact be higher than the fare for the connecting itinerary. Therefore, in consid-

ering which booking requests to accept, it would be more advantageous if a penalty of

some kind could be applied to the connecting fare, based on the probability that the

passenger purchasing it would be displacing (higher revenue) local passengers.

Displacement Valuation

The value bucket method uses the full amount of the fare to measure a connecting itin-

erary's value to the network: this is a "greedy" method, in that it gives priority to the high-

est revenue itineraries and yet can be blind to potentially greater network revenue

opportunities. In comparison, bid-price control penalises the connecting itinerary by

valuing it with only a proportion of the full fare-if there is a high probability that two

local passengers will be displaced. It is thus a less "greedy" way of weighing up a connect-

ing request's value to the network, and results in higher revenues. In bid-price control,
the network value of the connecting itinerary is adjusted in relation to "bid prices" for

each of its legs. Bid prices are here calculated heuristically using EMSRb to find the

expected value of the last currently available seat on the flight-leg: the value off this last

seat is called the "leg bid price". The leg bid price represents the displacement cost of a

connecting passenger on the leg in the connecting itinerary.

Under the Heuristic Bid Price method, the decision rule for accepting or rejecting the

connecting itinerary involves comparing the itinerary's fare with a "total bid price" for the
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total itinerary. This total bid price is a function of the two leg bid prices and of the prob-

ability of displacing a local passenger on each of the legs. If the fare is greater than the

bid price then the connecting request can be accepted. If the fare is less than the bid price

then the connecting request can be rejected in the expectation that carrying two local

passengers instead will provide result in higher revenue for the network.

An early version of HBP is described and derived in detail in Belobaba (1998b). This

version was tested in a network simulation in Cusano (2003) who found that it provided

consistent revenue gains over using EMSRb. In that early formulation, a connecting itin-

erary request is accepted if:

Fare > ItineraryBidPrice

Fare > max [Ieg1EMSR.Ieg2EMSR] + displacementFactor x min [Ieg1EMSRIeg2EMSR]

where the displacement factor is defined as probability of displacing a local passenger on

both legs. For example if historical booking records show that the proportion of local

passengers on each leg is 50%, then the displacement factor will be 0.25.

The formulation of HBP has since been updated. The version used in this thesis is now

a function of the expected revenue penalty of displacing a local passenger on leg 1, the

expected revenue penalty of displacing a local passenger on leg 2, and the expected reve-

nue if no locals are displaced. In the latest version of HBP, a connecting itinerary request

is accepted if:

Fare > Itinerary Bid Price

Fare > propLocallxlegEMSR + propLocal2xleg2EMSR
+ (1 -propLocall) x (1 - propLocal2) x max [Ieg1EMSRIeg2EMSR]

where propLocal is defined as the observed historical local booking fraction plus an

increment to this observed local booking fraction. This increment is an estimate of the

unconstrained local proportion of demand.

In the older formulation, the itinerary bid price consisted of the maximum leg bid price

plus a proportion of the minimum leg bid price. The new formulation is more elaborate,
consisting of proportions of both leg bid prices and the likelihood that local passengers

will not be displaced on both legs.
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Under HBP, forecasting is performed at the leg level. For local itineraries, optimization

and inventory control are carried out at the leg level via EMSRb, and for connecting itin-

eraries at the path level via the total itinerary bid prices. But since all forecasting is still

done at the leg level, HBP like EMSRb only requires records of bookings and sales by leg

and by fare class. Once again, this makes HBP relatively simple to implement from this

perspective. Further, the optimization outputs are individual flight leg fare class booking

limits, or bid prices that are based on these leg booking limits, which again makes this

method intuitive to use.

Of course,- HBP is hindered by the same problem that burdens leg-based EMSRb - the

difficulty of forecasting distinct fare-class demands in a less-differentiated fare environ-

ment. Nevertheless,- HBP is an elegant method that allows a certain amount of O-D

control without the need for path based forecasting and multiple itinerary/fare class

booking limits, but rather uses a single bid-price value for each request and a simple

accept/deny decision rule. It is an improvement over leg-based control in that it can

protect seats for high revenue connecting passengers but is not so greedy that it accepts

connecting requests when it is expected that local passengers will be displaced on both

legs in a connecting itinerary, and it is easier and cheaper to implement than a network

optimization based technique.

3.1.3 DA VN-Displacement Adjusted Virtual Nesting

In contrast to HBP, DAVN is an O-D method that does make use of network optimiza-

tion. DAVN also weighs requests for connecting itineraries by adjusting their fares using

a displacement cost, but in this case the displacement cost is not calculated via EMSRb

but rather is found from a network optimization.

Under DAVN, a deterministic LP is solved in order to determine which legs in the

network are constrained, based on demand forecasts for each path and fare class. The

shadow prices on these legs become the displacement cost of accepting a connecting itin-

erary request which makes use of that leg. When the legs are not constrained, i.e. when

the displacement costs are low, the higher priced connecting requests can be accepted.

But when one or both of the legs is constrained, i.e. when the displacement costs are high,
preference can be given to the local itinerary request.

Once the shadow prices have been calculated, the "leg" fares are nested. In this case they

are not nested by fare class designation or by total fare value, but rather they are nested
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by buckets according to their displacement adjusted fares (see Table 3-3). Hence this

method is called Displacement Adjusted Virtual Nesting.

Table 3-4: Example Displacement Adjusted Value Buckets

Value Equivalent Booking Class

Bucket Fare Range (examples)

I > $1500

2 1250 - 1500

3 1000 - 1250

4 700 - 1000

5 500 - 700 Local FC1 fare

6 320 - 500 Connecting FC3 fare - displacement
cost

7 200 - 320 Local FC2 fare

8 < 200 .

Displacement Adjusted Leg Fare Ilocal itinerary = Local Fare

Displacement Adjusted Leg Farellegi of a connecting itinerary = Connecting Fare - Shadow Price|Legi

Displacement Adjusted Leg Farelleg2 of a connecting itinerary = Connecting Fare - Shadow Price ILeg2

The protection levels and booking limits are then calculated on a leg basis using EN'SRb

on these displacement adjusted value buckets, and the decision to accept a booking is

similarly based on whether or not the booking limit for that value bucket has yet been

reached. The workings of DAVN are outlined in Belobaba (2002), and detailed deriva-
tions and simulation studies can be found in Lee (1998).

Under DAVN, seat allocation optimization and inventory control are performed at the

leg level via EISRb for all itineraries. But forecasting is carried out at the path level, with

an optimization being performed at the network level in order to find the leg shadow

prices. This means that a database of bookings and sales by OD itinerary and by fare class

needs to be maintained, which can make DAVN more difficult to implement. A real

airline can have many thousands of possible paths on offer, and most of these paths will

be rarely traversed and thus their booking histories will show mean demands of close to

zero: on top of this, looking at these tiny demands by fare product makes the expected

demands even smaller. Using very small demand inputs such as these leads to precision

problems with the forecasting and optimization routines. Further, the optimization
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outputs from DAVN are LP shadow prices, which are not particularly intuitive to inter-

pret, and so the implementation of DAVN requires more informed and highly skilled and

analysts.

These drawbacks are exacerbated in the less-differentiated fare environment. Demand

forecasting in DAVN is done at the level of path/fare class, and if spiral down is a prob-

lem for leg/fare class forecasting, it can be more pronounced in path forecasting where

there are already so few bookings being recorded in high fare classes for many itineraries.

3.1.4 ProBP-Probabilstic Bid Price

The final O-D control method that will be looked at briefly is the Probabilistic Bid Price

method. ProBP uses a "probabilistic network convergence" algorithm to perform its

network optimization which estimates the marginal value of the last available seat on each

leg in the network. This is known as the "critical" EMSR value, and the network value of

the connecting itinerary fare is adjusted by prorating it in relation to this critical EMSR

value. The decision to accept or to reject the connecting fare is again based on comparing

the fare with a bid price, but now the bid price is calculated based on a proration of the

path fare, rather than a combination of the leg bid prices as in HBP. This method was

formulated and tested in Bratu (1997), and further testing was carried out in Cusano

(2003).

ProBP is a complex method and is difficult to implement: like DAVN it requires fore-

casts by path and fare class. This would be a problem in any competitive environment,
given the difficulties of forecasting independent fare class demand for thousands of

possible O-D markets. It becomes more of a problem in a less-differentiated fare envi-

ronment, where the difficulties of forecasting fare class demand in general are increased.

3.2 Forecasting Demand

The utility of revenue management is concentrated around high demand flight legs - if

demand is low and capacity is not limited then protecting inventory for higher priced

products becomes moot. Thus it is important to be able to estimate demand. In this

thesis, two approaches to forecasting will be tested: "pick-up" forecasting, and "hybrid"

forecasting.
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All forecasting is based on booking histories, i.e., a historical sample which consists of
bookings and boardings for previously departed flights and current bookings for upcom-
ing flights. In many cases, however, the observed demand can be less than the true

demand. If a flight leg or fare class is sold out, and demand is rejected for want of supply,
no records capture this. The "true" demand for the flight leg remains unobserved, and so
the historical data often needs to be detruncated before it can be used for forecasting.

Detruncation is the process of deducing actual demand from the observed demand.
There are occasions when the true total demand cannot be accommodated on a flight leg
and as such the booking limit might be reached for one or more of the fare classes on

offer. In these cases, the true demand cannot be observed, and thus needs to be esti-
mated. Detailed analyses of different detruncation methods can be found in Wickham
(1995) and Skwarek (1997). In this study, the method known as "booking curve detrun-
cation" will be used. This method assumes that booking patterns over time are similar for
all flights. It estimates the true total demand for flights where at least one of the fare

classes was booked to capacity by extrapolating patterns observed on flights where that
fare class was not closed. Once the booking histories have been unconstrained, they can
be used to estimate future demand.

3.2.1 Pick-up Forecasting

Pick-up forecasting is an elaborate form of time series forecasting. It uses averaged values
of previous unconstrained bookings, and also uses the change in bookings over time-
i.e., the number of passengers that are "picked up" from time period to time period. The

demand forecast for a time period is then a function of the actual bookings plus the aver-
age demand that is expected to materialize based on the previous pick-up rates. Flights
that are used in calculating these averages can be flights from the same day of the week,
same time of day, same season, or whatever the appropriate analogous time period is
judged to be. For details see Zickus (1998) and Gorin (2000).

3.2.2 Hybrid Forecasting

Hybrid forecasting is based on two concepts: the first is the "Q-forecasting" process
developed by Belobaba and Hopperstad (2004), and the second is the notion of "yield-
able and priceable demands" (Boyd and Kallesen 2004). The philosophical underpinning
of this approach is the notion that there are two types of demand for air transportation:
demand for a specific product with specific restrictions (or better perhaps to say demand
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for a specific product lacking specific restrictions); and demand for the cheapest available
product regardless of restrictions. Hybrid forecasting attempts to forecast these two
demands separately and then combine them to derive total forecasts.

Boyd and Kallesen (2004: 172) define two models of demand. The first model, called
"yieldable demand", assumes that customers are interested in a specific product and will
purchase that product even if cheaper products are on offer. The second model is
referred to as "priceable demand", and this assumes that customers only purchase the
lowest priced product that is available. In PODS and in this thesis, "yieldable demand"
is referred to as "product oriented demand", and "priceable demand" is referred to as
"price oriented demand". Boyd and Kallesen point out that this way of modelling
demand offers a solution to the problem of assuming distinct and independent demand
for different fare products.

Under the traditional demand assumptions, a "full-fare" customer was thought to be
someone who wanted to purchase the full-fare product. Hence, demand forecasts for
full-fare products were based on previous full-fare bookings. In this formulation, we are
now able to reconceptualize demand such that a "full-fare" customer can be someone
who is willing to pay for the full-fare product, but will buy a cheaper product if it is avail-
able. Therefore, previously observed full-fare bookings are no longer sufficient to esti-
mate full-fare demand. What is required is a model that will estimate the probability that
a passenger would buy a higher priced product - the probability of sell-up.

Q-forecasting attempts to solve this problem by first forecasting a single total demand
for travel at the lowest price ("Q" class), and then estimating the probabilities that
passengers will sell-up to higher fare classes (sell-up probabilities). Together these can be
used to forecast the potential demand for the entire set of fare products. Hence - criti-
cally - this method does not rely on the assumption of independent product demand. A
full description of the definitions, formulas and derivations involved can be found in
Belobaba and Hopperstad (2004), and in Cl6az-Savoyen (2005) who also performed
extensive simulation tests using this forecasting method.

Briefly, probabilities of sell-up and observed historical bookings are converted into "Q-
equivalent" bookings (demand for the lowest priced product). This demand is summed
and detruncated where necessary. Pick-up forecasting methods are applied to this total
base demand. Finally, the probabilities of sell-up are used to re-partitioned the total
demand into demand for the various higher priced products. And so, for example, if total
demand for a leg is estimated to be 130 passengers, and if the probability of a passenger
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selling-up from the lowest fare-class to the highest fare class is estimated to be 8.5%, then
the estimated demand for Fare Class 1 will be 11 passengers.

Naturally, the challenge here is to estimate the sell-up probabilities. There are various

methodologies for estimating passenger willingness-to-pay and probabilities of buying

higher priced fare products (Cl6az-Savoyen 2005). The methodology used in this thesis

is called the Inverse Cumulative method. It estimates sell-up rates by time-frame, assum-

ing that the probability of sell-up increases as the departure of the flight draws closer. It
performs a regression to find the sell-up probabilities for each fare class, based on

observed "pseudo-bookings" and observed instances of sell-up. The number of "pseudo-

bookings" for a class is the sum of bookings observed in all higher classes. More detailed

explanations of the Q-forecasting mechanisms can be found in Cl6az-Savoyen (2005:
50ff.).

N ow combining these two concepts, we can use regular pick-up forecasting to estimate

the "product oriented demand", and then use Q-forecasting to estimate the "price

oriented demand". This is known as "hybrid" forecasting. In the simulations performed

in this thesis, passengers are considered to be "price oriented" if they are observed

purchasing the cheapest available option - i.e., the next lower class is closed for some
reason, making the next lower priced unavailable. Conversely, if they purchase a product
while the next lower class is not closed - if there was a cheaper option available - then

they are considered to be "product oriented".

There are two points to clarify: for "product oriented" passengers, we need to define

what is meant by "availability"; and for "price oriented" passengers we need to be careful
to check whether or not the next lower fare classes were closed due to advance purchase

restrictions.

There are three ways to decide whether or not the next cheaper option was "available":

- Path Rule the next lower class is available on that path

- Airline Rule the next lower class is available on any path provided by that
airline

- Market Rule the next lower class is available on any path at all in the market

For "price oriented" passengers, if a booking is observed in the lowest available class, and
if the next lower class had been closed due to AP, then that passenger may not necessarily
be "price oriented". Even if the lower class had still been available, they may have
purchased the more expensive product regardless. So there are also three ways to think

61



about these cases. We can designate passengers who buy the cheapest available products

as:

- always "price oriented"

- always "product oriented"

- "product oriented" only if the available class and the next lower class are differentiated

And so, with three different availability rules and three different AP classifications, we

have a total of nine different options for dividing passengers into "price" and "product"

oriented demand. It is also worth noting that the forecasters are aware of the advance

purchase rules such that demand is never forecast for classes that have already been

closed due to AP.

3.3 Summary

With this understanding of the four revenue management systems and the two forecast-

ing approaches, 1 am now going to test these methods in simulation. We have seen that

fare simplification and fare compression have adverse effects on the functioning of

EMSRb-and hence on the revenue management methods that employ it in their opti-

mizations. I am going to investigate the relative efficacies of the four methods in less-

differentiated and mixed-fare environments in order to discern which are better suited to

cope with simplification. I will also test them in combination with the different forecast-

ers to see if and how the new forecasting methodology can help the traditional methods

to work better. Two network structures will be used for these simulation tests, and will

be described in the next chapter.

62



4 Simulation Environment

In this chapter I will describe some specifics of the PODS simulation environment used

for the experiments in this thesis. First I will define some important parameters that are

used in modelling airline passengers and are relevant to this thesis; then I will describe the

network and fare environments that were used, including a description of their develop-
ments. Two simulation environments were used in this thesis-a 2-hub network with

two very evenly-matched competitors; and a 4-hub network with four less evenly-

matched competitors. I will also include here discussion of some adjustments that were

made to the passenger choice model's assumptions with respect to willingness-to-pay and

sell-up. But first, some general background to PODS.

4.1 PODS

The Passenger Origin-Destination Simulator (PODS) is used to test and evaluate revenue
management systems. It can be used to elucidate the interrelationships between different

effects (such as observed passenger booking behaviour, forecasting, and inventory

control methodologies) in an all-else-equal simulation environment. It simulates the
airline booking process in two parts: on one side there is a passenger decision model,
which generates passengers who want to buy journeys; on the other side there is a reve-

nue management system simulator, consisting of a database of historical bookings, a fore-

caster, and a seat allocation optimizer. The revenue management portion controls the

availability of products, and the generated passengers choose amongst these products

based upon their preferences and constrained by what is made available by the revenue
management system.

The network environment used for simulation is defined by creating Origin-Destination
markets, and assigning to them market distances; paths, travel times, and itineraries; aver-

age daily market demand; and market fares in a range of fare classes. Some previous

network environments have been described in Chapter 2 (e.g. Wilson 1995; Lee 1998;
Gorin 2004). In the subsequent sections of this chapter I will be deriving two new
network environments, which will be called Network D6 and Network R.

Very thorough descriptions and explanations of the operations of the PODS program
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can be found in Wilson (1995), Lee (1998), and Carrier (2003). They outline the functions

of the various components, the passenger choice assumptions that are made, and the

inputs required to run the simulation. These include such details as O-D market

demands; the number of airlines and their leg capacities; passenger market segments and

arrival patterns. A diagram of the simulation flow is provided in Figure 4-1, after Cl6az-

Savoyen (2005). It illustrates the booking request process, from the arrival of a potential

Demand & Arrival Curves

Generate Passenger at time frame TFj

Generate Willingess-To-Pay
for this passenger

Generate a Time Window
for this passenger

Generate Disutility costs
for this passenger

Generate a Choice Set for the given
ODIF/passenger type based on

generalized costs

Delete from Choice Set all alternatives
where generalized cost > WTP

H 11
Delete from Choice Set all

alternatives whose AP req. > TIj

Delete from Choice Set all
alternatives not available due to RM

Controls

Compute the generalized cost
among remaining alternatives and
select the alternative with lowest

generalized cost

Figure 4-1: PODS Simulation Flow

passenger, to the eventual decision made by the revenue management system.The reader

is referred to the previous studies for more information about the entire process.

However, for the purposes of this study, a few features of the passenger choice model

and passenger willingness-to-pay will be described in some detail. These are the charac-

terization of passenger price elasticities, and the effects of restrictions on generalized

costs.
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4.1.1 Willingness-To-Pay Considerations

In PODS, hypothetical passengers are generated at random during the booking process.

They are either designated to be "business" or "leisure" passengers. They are randomly

assigned a maximum willingness-to-pay for their itinerary, which is specified by two

parameters: the Basefare and the emult (elasticity multiplier).

The Basefare is a characteristic of each market. It is provided to PODS as an input. It is

defined as the fare at which all potential travellers will be willing to book. Each generated

passenger in the market is then given a maximum willingness-to-pay. This willingness-to-

pay is modelled in PODS as the probability that a random passenger will pay a particular

given fare. The mean willingness-to-pay is defined by a negative exponential which is a

function of fare ratio (the ratio between the highest fare and the lowest fare in the market)

and passenger price elasticity:

Probability(pay at least fare) = min[1,t

Passenger Willingness-To-
Pay Definitions

* The probability that any randomly gen-
erated passenger will pay a given fare
is calculated using the equation above

" It is defined with respect to the market
fares, as well as an input passenger
choice parameter called the emult
(elasticity multiplier)

" By definition, all passengers will pay the
Basefare (fare ratio=1)

" The emult is the elasticity multiplier of
the Basefare which defines the fare
that 50 of travellers are willing-to-
pay

.a
-02
I.

1.20-

1.00

0.80-

0.60

0.40-

0.20
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1

-0.6931 ) X (fare-Basefare)
emut- 1 Basefare

0 Business Segment A Leisure Segment

L~ ~-- - - - -- - - - - -

2
AU' A' ~&*54

3 4 5
Fare Ratio

6 7 8

* In this example, assumed emult values are 1.2 for Leisure passengers, and 3
for Business passengers

Figure 4-2: Willingness-To-Pay

In the example shown in Figure 4-2, all hypothetical business passengers are all willing to

buy when the fare ratio is 2.5 or less, and 50% of them are willing to buy when the fare

ratio is 5. Hypothetical leisure passengers are all willing to buy when the fare ratio is 1,
and half of them are willing to buy when the fare ratio is 1.5. Very few leisure passengers

are willing to buy when the fare ratio is 2. Some further implications of these elasticity

quantities will be discussed in Section 4.2.4 below.
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The other feature to note is PODS' modelling of fare product restrictions. N ow that each

passenger's willingness-to-pay has been defined, the passengers choose amongst the

available products that are not more expensive than their maximum willingness-to-pay.

The products are compared according to their generalized costs-that is, the sum of the

product's nominal fare plus each passenger's valuation of the restrictions attached to the

product.

When the network environment is defined, the set of fare products available in each

market is also defined. This includes designating: the fare level (i.e., the nominal or

"published" fare); the last time frame that the fare is available for sale (i.e., the Advance

Purchase restriction); and which, if any, fare restrictions are associated with the product.

Table 4-1: Example PODS Fare Structure

Published Advance Strong Restriction 2 Restriction 3Fare Product Fare Purchase Restriction AppliedP Applied&
Period Applied? Applied? Appied?

Y $400 0 days 0 0 0

B $300 7 days Yes 0 0

M $200 14 days Yes Yes 0

Q $100 21 days Yes Yes Yes

The current standard in PODS simulation is to apply up to three possible restrictions to
the fare products. The first restriction is a strong restriction, and referred to as the Satur-
day Night Stay restriction. The other two restrictions are weaker, meaning that their
perceived cost to passengers is less. The parameters at present in PODS assume that a
Saturday Night Stay has a mean equivalent cost to "business" passengers of 2.7 times the
Basefare, and 1.75 times the Basefare to "leisure" passengers. The other restrictions are
each valued on average at 0.9 times the Basefare and 0.25 times the Basefare to "busi-

T able 4-2: Example Generalized Costs

Fare Published Perceived Cost to "Business" Perceived Cost to "Leisure"
Product Fare Passengers Passengers

Y $400 $400 = $400 $400= $400

B $300 $300 + 2.7x$100 = $470 $300 + 1.75x$100 = $375

M $200 $200 + 2.7x$100 + 0.9x$100 = $510 $200 + 1.75x$100 + 0.25x$100 = $350

Q $100 $100 + 2.7x$100+0.9x$100+0.9x$100=$550 $100 + 1.75x$100+0.25x$100+0.25x$100=$325
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ness" and "leisure" passengers respectively. Hence, as we can see in Table 4-2 and Figure

4-3, the attractiveness of a product depends on its level of is restriction. In line with the

theory of product differentiation and market segmentation, the products with nominally

lower fares become less attractive to business passengers when the valuation of restric-

tions is taken into account.

600 600-

% 500_1 11 _-.- - 500-- -... ..... .

4V -1 -300- 
- -- --
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200 300

Y B M a Y B M Q
Fare Class Fare Class

N Nominal Fare 0 Strong Restriction ORestriction 2 GRestriction 3 ENominal Fare 1 Strong Restriction 1Restriction 2 MRestriction 3

(a) Generalized Costs for the Average "Business" (b) Generalized Costs for the Average "Leisure" Pas-

Passenger senger

Figure 4-3: Example PODS Generalized Costs

More details about the precise derivations and formulations of the PODS disutility

models can be found in Wilson (1995) and Lee (2000: 45ff.). This brief outline is relevant

to the present study because the aim is to investigate the performance of revenue

management in less-differentiated fare environments - that is, with fewer restrictions on

the fare products, and hence with a changed relationship between the generalized costs

and the nominal fares. The issue of restrictions and generalized costs will be returned to

in the next sections. Next, however, I will be describing the simulated network environ-

ments.
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4.2 Network D

4.2.1 Characterizing Network D

The standard PODS simulation environment thus far has been known as Network D. I

will characterize this environment in this section. Network D was developed originally in

Lee's study of passenger disutility costs (Lee 2000: 42f.). It was a simplified representation

of the US domestic environment, with two centrally located hubs and twenty spoke cities

on either side, as shown in Figure 4-4. Its aim was to provide a wide variety of path choice

options in order to calibrate the parameters of the disutility models. As such, it included

Direction of Travel
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S 3019 *20

P~ 032 06'

23 0 44 29  31
28 *24 21

*34 0s

25

e Airline 1 is based at Hub 1

* Airline 2 is based at Hub 2

* West Cities are located at posi-
tions 1-20

* East Cities are located at posi-
tions 21-40

Figure 4-4: NetworkD Layout

three daily west-to-east connecting banks through each hub, as well as inter-hub flights

by each carrier. The simulated passengers connecting between spoke cities could choose

from three paths per day provided by each airline for a total of six possible paths per day.

Connecting passengers had choice in terms of departure and arrival times, total trip time,
and favourite airline. Passengers travelling in each airline's hub local markets also had

access to other options by travelling on alternative connecting paths via the other airline's

hub (see Figure 4.7(b)).

The two airlines each serve 482 Origin-Destination markets in each bank. With three

banks and two airlines this gives 2892 total paths in the network. Of the 482 markets,
each airline serves 42 local markets and 440 connecting markets (see Figures 4-5-4-7):
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Direction of Travel

(a) Network D Route Map - Airline 1 connecting bank via Hub 1; Airline 2
connecting bank via Hub 2; inter-Hub flight

Figure 4-5 : Connecting Paths

(b) Airline 1 Connecting Paths
(c) Airline 2 Connecting Paths

Direction of Travel Direction of Travel

(a) Airline 1 Local Markets - West Cities into Hub 1; (b) Airline 1 Local Markets - Hub 1 to East Cities;
Hub 2 into Hub 1 Hub 1 to Hub 2

Figure 4-6 : Airline 1 LocalMarkets/Paths
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* 40 local markets connecting the spoke cities and its hub;

* 2 local markets between the two hubs;

* 400 connecting markets between the twenty east and twenty west spoke cities;

* each airline also competes for the other airline's local traffic by providing an

alternative path between spoke cities and the other hub connecting via its own

hub.

Table 4-3: Network D Legs and Paths

Paths
Legs (Origin-Destination Itineraries)

42 legs in each route network 482 total O-D markets

3 banks - 126 legs flown per airline per day 3 banks - 1446 paths provided by each airline per day

252 legs flown in Network D per day 2892 paths provided in Network D per day

Network D is a symmetric network - Airline 1 and Airline 2 operate very similar sched-

ules and offer identical fares. In its original formulation, it modelled the US fare environ-

ment with a four fare-class structure. The four fare classes were designated Y, B, M, and

Q-in order of decreasing price and increasing restriction-as outlined in'Table 4-4.

Note the "triangular" pattern of the increasing restrictions:

Table 4-4: Fare Structure-Classic Network D

Fare Class Advance Strong Restriction 2 Restriction 3
Purchase Period Restriction

Y O days 0 0 0

B 7 days Yes 0 0

M 14 days Yes Yes 0

Q 21 days Yes Yes Yes

The fares for each Origin-Destination market were calculated as a function of the O-D
market distances, with input from some of the PODS Consortium airlines (Lee 2000:

45f.). Over the next few years the fares saw a certain amount of adjustment and modifi-

cation during various other simulation studies. Studies that were undertaken involved

changing the market fare ratios, inverting some of the fares, and reducing and simplifying

the fares in selected markets (e.g. see Cusano 2003, Gorin 2004). By the time work began
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on the present study, the fare levels could be characterized as follows:

Table 4-5: Fare Levels-Classic Network D

AIRLINE 1 HUB AIRLINE 2 HUB CONNECTING
ALL MARKETS LOCAL MARKETS LOCAL MARKETS MARKETS

Fare Class Average Fare Average Fare Average Fare Average Fare

(Standard Detiation) (S.D.) (S.D.) (S.D.)

$357.70 $433.68 $341.88 $351.53
($116.01) ($116.07) ($115.68) ($113.47)

B 183.90 236.06 163.24 180.67
(57.07) (96.58) (51.51) (48.91)

M 133.38 134.15 119.54 134.72

(35.18) (37.16) (38.45) (34.41)

97.96 82.71 86.46 100.70
Q_ (24.64) (18.08) (20.14) (24.77)

Fare Ratio 3.74 5.32 4.06 3.54

(SD) (1.14) (1.22) (1.34) (0.96)

Note the unusually high fare and fare ratio values seen in Airline 1's local markets in
comparison to Airline 2's local markets and the industry as a whole. This phenomenon
can likely be attributed to historical biases in the fare data which was based on input
provided by members of the PODS Consortium.

For these fares, correlation with market distance was quite weak. The relationship
between market distance and the Y fare (highest fare) and the Q fare (lowest fare) is
graphed in Figure 4-8. The R2 value of Q with respect to distance is 0.1898, and the R 2

value of Y with respect to distance is 0.0667. While a direct linear relationship between
fares and distance is neither desirable nor realistic, nevertheless there is still some associ-
ation between these quantities. However, these very low R2 values indicate that the vari-
ation in fare levels is barely-if at all-related to variation in market distance:
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Figure 4-8: Market Fares by Market Distance-Classic Network D
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This simulation network as it has been described here thus far will be referred to as "Clas-

sic Network D". PODS simulation was performed in this environment. Each airline used

a revenue management system that consisted of: fare class yield management based on

EMSRb; pick-up forecasting; and booking curve detruncation. The relative performance

of each airline is:

Table 4-6(a) : Performnance Metrics--Classic Network D

Revenue Share ASM Share RPM Share
Network

Network -Airline 1 Airline 2 Airline 1 Airline 2 Airline 1 Airline 2

NetworkD 50.4% 49.6% 49.2% 50.8% 49.1% 50.9%

Table 4-6(b) : Revenue Perform ance-Classic Network D

Benefit of FCYM over FCFS
Network

Airline 1 Airline 2 Industry

Classic Network D 8.6% 5.7% 7.2%

Note that although Airline 2 provides a greater share of the capacity and carries more

than half of the traffic, Airline 1 still earns a larger share of the revenue, with 1.8% more

revenue than Airline 2. This is a reflection of its market and fare advantage as referred to

above. In Table 4-6(b), the benefit of using fare-class yield management (FCYM) over

not using any revenue management (First Come First Served-FCFS) can be seen for

both airlines and for the industry as a whole.

The further benefits to Airline 1 of using O-D control in this environment have been

described in Cusano (2003: 62) as follows: further revenue gains of 1.55% when imple-

menting DAVN or ProBP; and 0.86% when implementing HBP. Figure 4-9 shows the
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0.50%-
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@ -0.50%

-1.00%
Airline 1 implements DAVN Both Airlines Implement DAVN

Airline 1 0 Airline 2 E] Industry

Figure 4-9: Benefits of DA VN-Classic Network D
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1.55% gain to Airline 1 with respect to EMSRb when implementing DAVN. Airline 2

sees a revenue drop of 0.76%, however the industry as a whole benefits by 0.4% when

Airline 1 moves to DAVN. If both airlines implement DAVN, then they see even reve-

nue gains - 0.77% and 0.69% gains with respect to both using EISRb. In this case the

industry as a whole benefits more, with a total gain of 0.73%.

Finally, looking at the network fare class mix in Figure 4-10, we can see a "boat-shaped"

distribution of passengers over the four fare classes. That is, the lowest fare class sees the

largest average load, the highest fare class sees the second highest load, and the two inter-

mediate fare classes see lower loads. This result is characteristic of load distributions in

differentiated fare environments.
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Figure 4-10: Fare Class Mix-Classic Network D-ALF=84

So much for Classic Network D. In the wake of the widespread industry fare structure

simplification, fare compression, and revenue spiral down that has been described in the

previous chapters, it seemed timely to review this modelling environment. In studying the

potential for revenue management methods in less-differentiated fare environments, it is

necessary to develop a modelling environment in which airline performance more closely

resembles the revenue and load results that airlines in current less-differentiated environ-

ments are seeing. Traditional US airlines have estimated that fare simplification has cost

them around a sixth of their revenues. Feedback from PODS Consortium airlines and

falling industry yields indicate that the "boat-shaped" distribution is no longer an accurate

representation of contemporary purchasing behaviour. More seats are being sold in lower

fare classes, and far fewer high-fare class products are being sold. And so in light of these

issues, the development of a network model that is more appropriate to contemporary

market conditions will now be described.
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4.2.2 Developing a Simplified Network Environment

The first step 1 took to develop a model that is more appropriate to contemporary condi-
tions was to alter the fare structure. The fare structure that was outlined above in Table
4-4 is a four fare-class fully differentiated structure, meaning that each product is differ-
entiated in terms of restrictions and advance purchase requirement, and the "triangular"
restriction structure assures that cheaper products get progressively more restricted. In
consultation with industry partners in the PODS Research Consortium, the basis of a six
fare class fare structure was developed. In this structure there is no "Saturday Night Stay"
requirement, the level of differentiation is lessened, and the fare ratio is reduced as shown
in Table 4-7.

Table 4-7: Fare Structure-Network D6 Flat

Fare Class Fare Ratio Purchae Period Strong Restriction Restriction 2 Restriction 3

FC1 3.4 0 days 0 0 0

FC2 2.48 0 days 0 Yes 0

FC3 1.6 7 days 0 Yes Yes

FC4 1.4 14 days 0 Yes Yes

FC5 1.2 14 days 0 Yes Yes

FC6 1 21 days 0 Yes Yes

In this fare structure, there is one fully unrestricted product (Fare Class 1), and one prod-
uct with only a single light restriction (Fare Class 2). The remaining products are not
differentiated from each other in terms of restrictions. They have increasing levels of
advance purchase restriction, but even so Fare Class 4 and Fare Class 5 are only differ-
entiated from each other in terms of price.

For this new formulation of Network D, the existing Y/B/M/Q fares were modified to
create six fare levels. The market Basefares were held constant, and the new lowest fare
for each market (Fare Class 6) was set at $10 below the Basefare. N ext, each O-D market
was assigned a fare ratio of 3.4 between Fare Class 1 and Fare Class 6. The intermediate
fares were related to Fare Class 6 as defined in Table 4-5. That is, if the Fare Class 6 fare
was $125, then the other fares would be $150, $175, $200, $310 and $425. Because of the
six fare levels and the constant fare ratio across every single market, this version of the
network will be referred to as "Network D6 Flat". Table 4-8 shows the new average fares
in this network, and compares them to the fares in Classic Network D. The figures
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T able 4-8: Fare Levels-Network D6 Flat

Classic ALL MARKETS NetworkD6 ALL MARKETS

Network D Average Fare Flat Fare Average Fare

Fare Class (Standard Deviation) Class (Standard Deviation)

$357.70 FC1 $299.07
($116.01) ($83.77)

FC2 218.14

B 183.90 (61.10)
(57.07) FC3 140.74

(39.42)

M 133.38 FC4 123.14

(35.18) (34.49)

FC5 105.55
97.96 (29.57)

(24.64) FC6 87.96

(24.64)

Fare Ratio 3.74 Fare Ratio 3.40

(SD) (1.14) (SD) (0.00)

(Figure 4-11 and 4-12) show some of the consequences of fare simplification on passen-

ger choice. In Classic Network D, the lower fare-class products are less attractive to busi-

ness passengers because of the perceived costs of the restrictions that are associated with

them. However, now that the fares have been lowered and the Saturday Night Stay
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restriction has been removed, we can see that the three most expensive products have

more or less the same perceived total value for business passengers: the restrictions on
Fare Class 2 and Fare Class 3 are not sufficiently severe as to make those products unat-
tractive. In Classic Network D, any business passenger who is willing to pay for Y Class
would buy it, because it is effectively "cheaper" than B Class. Now in Network D6 Flat,
any business passenger who is willing to pay for Fare Class 1 will still buy it, but only if
Fare Classes 2 & 3 are not available. Now they will certainly buy down if they can, and

the main differentiating factor between the top three products becomes the advance

purchase restriction. And so, we can see that removing restrictions and compressing fares

can have the effect of increasing consumer surplus to the detriment of airlines.

Performing PODS simulation as before with both airlines using EMSRb, the following

results were obtained:

Table 4-9(a) : Performance Metrics-Network D6 Flat

Revenue Share ASM Share RPM Share
Network

Airline 1 Airline 2 Airline 1 Airline 2 Airline 1 Airline 2

Classic 50.4o 49.6%, 49.2% 50.8% 49.1% 50.9%
Network D

Flat 499% 5O.1% 49.1% 50.9% 49.1% 50.9%

Table 4-9(b) : Revenue Performance-Network D6 Flat

Benefit of FCYM over FCFS Revenue Loss wrt Classic Network D
Network

Airline 1 Airline 2 Industry Airline 1 Airline 2 Industry

Classic8.%".2 
//

Netwrk D 8.6%/ 5.7%/ 7.2% -

Network D
NetworkD6 32.3% 30.31% 31.3% -21.4% -19.7% -20.5%

Flat II

With the new fares, the market imbalance between the airlines is less. Airline 2 carries
slightly more traffic than it did in Classic Network D, but it now also has a greater share
of the revenue, with 0.44% more revenue than Airline 1. In the less-differentiated envi-
ronment, note also the benefit of using fare-class revenue management. Table 4-9(b)
shows that having removed much of the segmentation power from the fare structure, the
benefit of using EMSRb to control leg traffic has increased to 31%. Note that this is in
marked contrast to conventional wisdom, which holds that the benefit of fare-class yield
management is about 4-6% over FCFS. Nevertheless, reducing fares and removing
restrictions has an obvious and expected negative effect on overall revenues, and there is
a revenue degradation on the order of 2 0 %/o with respect to Classic Network D.
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The next step in the modelling process was to change fare ratios so that they were not

constant across all markets. The fare ratios were perturbed at random about their mean
of 3.4 so that they ranged between 2.5 and 4.3. Average fares were almost unchanged,
and the average fare ratio was naturally still 3.4. In this network, called "Network D6
Perturbed" PODS simulation showed that revenue and traffic shares were not very

different from those observed in Network D6 Hat; the values in Table 4-9(a) apply

equally to both networks. However, note from Table4-10 that the revenue loss in

Network D6 Perturbed with respect to Classic Network D is not as great as for Network

D6 Flat. In other words, perturbing the fare ratios leads to revenues that are about 1.1%
higher than were seen in Network D6 Flat.

Table 4-10: Revenue Performance-Network D6 Perturbed

Benefit of FCYM over FCFS Revenue Loss wrt Classic Network D
Network

Airline 1 Airline 2 Industry Airline 1 Airline 2 Industry

NeClassD 8.6% 5.7% 7.2% - - -

Network D6 32.3% 30.3% 31.3% -21.4/6 -19.7% -20.5%
Flat

NetworkD6 30.6% 28.4% 29.5% -20.6% -18.8% -19.7%
Perturbed

At this stage, it was thought to be a good idea to revise the fares in a more unified manner.

Thus far the fare structure had been changed into a less-differentiated six product struc-

ture, and revenues had fallen in accordance with expectations and reflecting industry

events. However, the revenue drop was at the high end of industry estimates of the

consequences of fare simplification. The fares were still poorly correlated with distance,
and some of them were unreasonably low, which may have been contributing to this. In

addition, the fare class mix was no longer boat-shaped, but the distribution was not

particularly intuitive either: now the load in Fare Class 5 was higher than in the cheaper

Fare Class 6, and high loads were still being seen in the two most expensive fare classes,
contradicting industry observations.
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Figure 4-13: Fare Class Mix-Network D6 Perturbed-ALF=90.8

77



4.2.3 Re-building Network D-"Network D6"

The goal thus far has been to make the simulation environment more reflective of what

has been observed in the marketplace with respect to revenue changes and fare class mix.

We would expect to see a more modest loss in revenue than is seen in Network D6

Perturbed, and a fare class mix that shows fewer high priced products and more low

priced products being sold.

The fares that were arrived at for Network D6 Perturbed were still not well correlated

with market distance. R2 values were 0.1898 for the Basefares and 0.1414 for the highest

fare (see Figure 4-14). The Basefares ranged between $28 and $175: the lowest base fares

were found in Airline 2's local markets and were unrealistically low. Therefore, the base

fares were transformed so that they ranged between $60 and $170, and the fares were

arbitrarily re-allocated among the O-D markets so that their relationship to market

distance was stronger. Then the market fare ratios were once again generated at random,

700- * Base Fareo Full Fare

600 .

0 500 1000 1500 2000 2500 3000

Distance

Figure 4-14 : Market Pares by Market Distance-Network D6 Perturbed

800 AFull Fare

700 U Base Fare

600

S500-

400

300-

200-

100-

0 500 1000 1500 2000 2500 3000
Distance

Figure 4-15: Market Fares by Market Distance-Network D6
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this time ranging between 3.2 and 5.0 with an average network fare ratio of 4.1. In each

market, Fare Class 6 was defined to be 90% of the Basefare, and the other fare levels were

calculated in accordance with the fare ratio for that market. Now the R2 values were

0.7847 for the Basefares and 0.4775 for the highest fare (see Figure 4-15).

The figures show that the new fares are now much better correlated with market distance.

The new average fares in each fare class are now higher, and it can be seen in 'table 4-11

that the bias towards Airline 1's local markets has been removed, and the average fare
levels and fare ratios in each airline's local markets are now more even.

Table 4-11: Fare Levels-Network D6

Network D6 ALL ALL AIRLINE 1 AIRLINE 2

Network D6 HUB LOCAL HUB LOCAL

las FeFare Class MARKETS MARKETS
Class Average Fare Average Fare Average Fare Average Fare

FC1 $299.07 FC1 $412.86 $350.84 $359.62
($83.77) ($83.41)

FC2 218.14 FC2 293.34 248.69 254.42
(61.10) (56.56)

FC3 140.74 FC3 179.01 150.98 153.79
(39.42) (31.59)

FC4 123.14 FC4 153.03 128.77 130.92
(34.49) (26.23)

FC5 105-55 FC5 127.05 106.56 108.04
(29.57) (21.17)

FC6 87.96 FC6 101.06 84.36 85.17
(24.64) (16.71)

Fare Ratio 3.40 Fare Ratio 4.09 4.17 4.22
(SD) (0.00) (SD) (0.51)

Simulating this Network in PODS, we find the following performance as outlined in
Tables 4-12. Traffic shares are now similar to traffic shares in Classic Network D, but
now the revenue shares are more even. Airline 1 now has a smaller advantage:

Table 4-12(a) : Performance Metrics-Network D6

Revenue Share ASM Share RPM Share
Network

Airline 1 Airline 2 Airline 1 Airline 2 Airline 1 Airline 2

Classic 50.4% 49.6% 49.2% 50.8% 49.1% 50.9%
Network D

Network D6

Flat&Perturbed 49.9% 50.1% 49.1% 50.9% 49.1% 50.9%

Network D6 50.1% 49.9% 49.1% 50.9% 49.1% 50.9%
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The benefit of using fare class revenue management to control leg traffic is now around

23%. The new fares have reduced somewhat the effects of fare simplification, and the

revenue degradation with respect to Classic Network D is now only around 13% - which

is now at the lower end of industry estimates.

'1' able 4-12(b): Revenue Performance-Network D6

Benefit of FCYM over FCFS Revenue Loss wrt Classic Network D
Network

Airline 1 Airline 2 Industry Airline 1 Airline 2 Industry

NeClass D 8.6% 5.7/ 7.2% --

Network D6 32.3% 30.3% 31.3% -21.4% -19.7% -20.5%
Flat

Network D6 30.6% 28.4% 29.5% -20.6% -18.8% -19.7%
Perturbed

NetworkD6 24.0% 22.5% 23.2% -13.4% -12.4% -12.9%

Looking at the fare class mix, however, we still do not see hoped for results. There are

far fewer seats being sold in Fare Class 1, but there is a spike in the distribution at Fare

Class 2, and more seats are sold in Fare Class 3 than in Fare Class 4. Neither of these

254-

0 20-

-J15-

10-

5-

0-
2

I
3 5 6
Fare Class

Figure 4-16: Fare Class Mix-Network D6 Perturbed-ALF=88

aspects of the distribution are consistent with industry observations. We expect to see

more seats being sold in each progressively cheaper fare class. Hence, the next step was

to look at the passenger willingness-to-pay and sell-up behaviour that has been assumed

in this modelling environment, to see if they are reasonable in light of current conditions.
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4.2.4 Price Elasticity Multipliers

Passenger price elasticity behaviour is defined in PODS via two parameters: emuli and

bJbmult.'The bjbmult parameter defines the relationship between the price elasticities of the

two market segments (business and leisure). As described above, the emultparameter

defines the price elasticities within each of the market segments.

The bjbmul parameter is the Basefare business multiplier. If the Basefare is the fare that all

potential travellers would be willing to pay, then (bjbmul) x (Basefare) defines the fare

all potential "business" travellers would be willing to pay.

The emult parameter is the elasticity multiplier of the Basefare. If the Basefare is the fare
that all potential travellers would be willing to pay, then (emul) x (Basefare) defines the
fare that 50% of all potential travellers would be willing to pay.

There are different emults and for business and for leisure passengers: we multiply the

Basefare by the leisure emult, and we multiply the "business" Basefare by the business

emult. That is:
- (Basefare) x (leisure emul) gives the fare at which 50% of all potential "business"

travellers would book;

- (bjbmul) x (Basefare) x (business em/ul) gives the fare at which 50% of all poten-

tial "business" travellers would book.

The values of these parameters govern the relationship between the fares on offer and

the willingness-to-pay of the simulated passengers. This relationship is defined in terms
of fare ratios. The values used in Classic Network D were bJbmul = 2.5; business emult

3; leisure emult = 1.2. This meant that:
- all leisure passengers were willing to pay a fare that is equal to the Basefare;

- all business passengers were willing to pay a fare that is 2.5 times the Basefare;

- on average, 50% of business passengers were willing to pay a fare that is 7.5
times the Basefare; and

- on average, 50% of leisure passengers were willing to pay a fare that is 1.2 times

the Basefare.

However, since the fare ratios in Network D6 are different to those in Classic Network
D, it is necessary to revisit these parameters.
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In Network D6, the average value of the fare ratio between Fare Class 1 and Fare Class

6 is 4.1, and it ranges between 3.2 and 5.0. This means that the average value of the fare

ratio between Fare Class 1 and the Basefare is 90% of this, i.e., it ranges between 2.88 and

4.5. Given the current elasticity multipliers, this means that 50% of business passengers

are willing to pay a fare that is well in excess of the highest fare available in the network.

The relationship between emult, fare ratio, and business passenger willingness-to-pay is

show in Figure 4-17. It shows that as the business emult is reduced from 3 to 2 to 1.5, the

fare that 50% of business passengers are willing to pay is reduced accordingly from 7.5

times the Basefare to 3.75 times the Basefare .This relationship is superimposed over the
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Figure 4-17 : Business emult and Network D6 Fare Ratios

range of Fare Class 1 fares that are used in Network D6. We can see that this network's

price elasticity assumptions are not appropriate given these new fare levels. Therefore, it

is necessary to adjust these model parameters. A bus iness emult of 3 is too high - it implies

that 50% of business passengers are willing to pay a fare that is on the order of double

the highest network fare. On the other hand, a business emull of 1.5 seems too low - it

implies that 50% of business passengers are not willing to pay for a good deal of the Fare

Class 1 products on offer. Hence, a business emull of 2 was selected. With this value, on

average 50% of business passengers are willing to buy all of the Fare Class 1 products on

offer in this network.

Similarly, looking at the value of the current leisure emul parameter in Figure 4-18, we can

see that 50% of leisure passengers are only willing to pay for Fare Class 5 under a leisure
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Figure 4-18: Leisure emuk and Network D6 Fare Ratios

emult of 1.2. If the leisure emult is assumed to be 1.5 or 1.8 then we would see that 50%

of leisure passengers would be willing to buy Fare Class 4 and Fare Class 3 respectively.

It seems too optimistic to expect that half of all passengers would be willing to pay for

the third most expensive product (Fare Class 3), so the leisure emult of 1.8 is too high.

Conversely we could expect that half of all passengers would be willing to buy higher than

merely the second cheapest product (Fare Class 5), and so the leisure emult of 1.2 seems

too low. Hence, a leisure emult of 1.5 was selected. With this value, 50% of leisure passen-

gers are willing to buy up to Fare Class 4. This means that if the cheaper products are not

available for whatever reason, on average 50% of all passengers will be willing to sell-up

into Fare Class 4.

Having changed the emult and bJbmult parameters, we are almost ready to return to

consider the network. But first, one more parameter needs reconsidering. Under the new

fares in Network D6 the average load factor (ALF) for each airline over the entire

network is about 88. This is very high, and not seen in the US environment. Thus, the

total network demand in Network D6 needs to be scaled back somewhat. In PODS,
demands are defined individually for each O-D market, but there is also a multiplier that

can be used to scale demand over the entire network. This parameter was thus lowered

from a factor of 1.0 to a factor of 0.9.

Simulating in PODS, we find that revenue and market shares are almost unchanged.

Looking at revenue management and overall revenue performances (Table 4-13) we can
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see that the benefit of fare class revenue management is around 19%. Revenue degrada-

tion with respect to Classic Network D is around 16%, which is about the level expected.

Table 4-13 : Revenue Performance-Network D6 (new elasticiy parameters)

Benefit of FCYM over FCFS Revenue Loss wrt Classic Network D
Network

Airline 1 Airline 2 Industry Airline 1 Airline 2 Industry

Network D 8.6% 5.7% 7.2% - -

Network D6 32.3% 30.3% 31.3% -21.4% -19.7% -20.5%
Flat

Network D6 30.6% 28.4% 29.5% -20.6% -18.8% -19.7%
Perturbed

Network D6 24.0% 22.5% 23.2% -13.4% -12.4% -12.9%

NetworkD6 19.2% 17.9% 18.6% -16.7% -15.6% -16.2%
(new mults.) I

Looking at the average fare class mix in the network - the relative distribution in Fare

Classes 3 & 4 is improved; however the Fare Class 2 spike is still in evidence. And so, the

final adjustment to the new network environment will be to make the Fare Class 2 prod-

uct less attractive to passengers. In the current network formulation, the differentiation

between Fare Classes 1 & 2 relies on the price difference, and a single weak restriction.
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Figure 4-19: Fare Class Mix-Network D6 (new mults.)-ALF=84.5

Looking at the generalized costs now with the new fares and the new business Basefare

multiplier (Figure 4-20), we can see that the perceived costs of the fare products to busi-

ness passengers are such that the products with higher nominal prices are never more

attractive than the cheaper products. In other words, these low levels of restriction do

not provide significant disincentives to business passengers. From the graph, it is easy to
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see that the average passenger would not choose Fare Class 1 if Fare Class 2 were avail-
able. Fare Class 2 is nominally cheaper and cheaper in terms of perceived cost, and since
there is no advance purchase restriction on Fare Class 2, it is likely to be available most
of the time. Thus, a small advance purchase restriction of 3 days was added to Fare Class
2 in an attempt to force some sell-up into Fare Class 1.

Table 4-14: Fare Structure-New Network D6

Advance
Fare Class Fare Ratio Period Strong Restriction Restriction 2 Restriction 3

FC1 3.4 0 days 0 0 0

FC2 2.48 3 days 0 Yes 0

FC3 1.6 7 days 0 Yes Yes

FC4 1.4 14 days 0 Yes Yes

FC5 1.2 14 days 0 Yes Yes

FC6 1 21 days 0 Yes Yes

Finally, the new network, called "Network D6" is ready. Simulating in PODS and looking
at the average fare class mix (Figure 4-21), we can see that the load in Fare Class 1 has
increased at the expense of the load in Fare Class 2. Now there is a more realistic distri-
bution, with the loads carried in each fare class decreasing with increasing price, and the
highest load being carried in Fare Class 6.

Looking at the airlines' revenue performance (Fable 4-15), we can see that the total reve-
nue degradation is around 16%, and the benefit of using fare class revenue management
is still around 19%.
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Table 4-15: Revenue Performance-New Network D6

Benefit of FCYM over FCFS Revenue Loss wrt Classic Network D
Network

Airline 1 Airline 2 Industry Airline 1 Airline 2 Industry

Neass D 8.6% 5.7% 7.2% - -

Network D6 32.3% 30.3% 31.3% -21.4% -19.7% -20.5%
Flat

Network D6 30.6% 28.4% 29.5% -20.6% -18.8% -19.7%
Perturbed

Network D6 19.2% 17.9% 18.6% -16.7% -15.6% -16.2%
(new mults.)

NetworkD6 19.5% 1 8.2% 18.8% -16.5% -15.4% -16.0%

4.2.5 Summary-Network D6

In summary, the new PODS modelling environment is called "Network D6". It has 6 fare

classes, consisting of two differentiated high fare class products and four less differenti-

ated lower fare class products. Market fare ratios range between 3.2 and 5.0. Passenger

elasticity behaviour is assumed to be such that the relationship between the price elastic-

ities of the business and leisure market segments (bJbmul/) is a factor of 2.5; and the price

elasticities within each of the market segments (emults) are such that 50% of all passengers

are willing to pay a fare that is 1.5 times the Basefare, and 50% of all business passengers

are willing to pay a fare that is 5 times the Basefare. In this environment, the benefit of
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using fare-class revenue management over not using any revenue management at all is
around 19% for both airlines and for the industry as a whole.

Table 4-16: Fare Levels & Structure-New Network D6

Network D6 Average Average Advance Strong Restriction Restriction

Fare Class Fares Fare Ratio Period Restriction 2 3

FC1 $412.86 3.4 0 days 0 0 0
($83.41)

FC2 293.34 2.48 3 days 0 Yes 0
(56.56)

FC3 179.01 1.6 7 days 0 Yes Yes
(31.59)

FC4 1.4 14 days 0 Yes Yes
(26.23)

FC5 127.05 1.2 14 days 0 Yes Yes
(21.17)

FC6 101.06 1 21 days 0 Yes Yes
(16.71)

This new network appears to be a better representation of current market conditions.

With its two very similar airlines, it is suitable for use in simulating symmetric environ-

ments, and to test the effects of changes in revenue management methods when all is
held equal and when the competitors are evenly matched. However, there is also value in

having a non-symmetric modelling environment. In the next section, such an environ-

ment will be developed.
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4.3 Network R

Network D6 has now been fully characterized and adapted for use in less-differentiated

fare environments. We can appreciate the particular advantages of its symmetric struc-

ture, in particular its utility in performing "all else equal" simulation experiments.

However, Network D6 is missing two important aspects of the current competitive land-

scape: namely, asymmetry, and mixed fare structures. Asymmetry is important because

the largest airline marketplaces do not tend to see much symmetric head-to-head compe-

tition in all of their markets. In order to investigate the usefuleness of revenue manage-

ment in more complex and uneven environments, it will be helpful to build an

asymmetric modelling environment. Similarly with mixed fare structures: nowhere in the

world has there been complete fare simplification uniformly across all markets, but rather

there exists a mixture of traditional and less-differentiated fare structures in many

networks. So while network D is valuable for abstract all else equal studies, a new network

is needed that might be a better representation of competitive realities in deregulated

markets such as the US or the EU. Hence, I will now briefly characterize this network,
which will be called "Network R."

Network R is a 4-hub network. It is not symmetric like Network D6, but rather contains

four airlines with different sizes and scopes. Three of airlines (Airlines 1, 2, and 4) are

"traditional," and the other airline is a "low-cost carrier." The main airline, Airline 1 based

in MSP, serves every O-D market in the network. It has a close competitor, Airline 2

based in ORD, which shares most of its O-D markets. Airline 2 is geographically situated

near to Airline 1, and so its paths and travel times are quite similar. Third, there is a low-

cost competitor, Airline 3 based in MCI, which competes in about half of Airline l's 0-

D markets. Finally, there is a smaller "traditional" airline, Airline 4 based in DFW. It is

intermediate in size between Airline 3 and the large traditional airlines, and is removed

geographically from all of them. Table 4-17 summarizes each Airline's constituent legs

and O-D markets.

Table 4-17: Network R Legs and Paths

Airline I MSP 572 O-D Markets; 1457 Total Paths

* 24 Origin Cities (20 west spokes; the 4 hubs) and 24 Destination Cities (20 east spokes;
the 4 hubs)

* 46 local markets

* 460 spoke-originating connecting markets; 66 other-hub originating connecting markets

* 525 O-D markets in Bank 1; 357 O-D markets in Bank 2; 572 O-D markets in Bank 3; 3
hub-bypass legs
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Table 4-17: Network R Legs and Paths

Airline 2 ORD 548 O-D Markets; 1458 Total Paths

* 24 Origin Cities (20 west spokes; the 4 hubs) and 23 Destination Cities (19 east spokes;
the 4 hubs)

& 45 local markets

* 440 spoke-originating connecting markets; 63 other-hub originating connecting markets

* 548 O-D markets in Bank 1; 356 O-D markets in Bank 2; 548 O-D markets in Bank 3; 6
hub-bypass legs

Airline 3 MCI 296 O-D Markets; 907 Total Paths

a 15 Origin Cities (11 west spokes; the 4 hubs) and 20 Destination Cities (16 east spokes;
the 4 hubs)

* 33 local markets

* 209 spoke-originating connecting markets; 54 other-hub originating connecting markets

* 296 O-D markets in each bank 1; 19 hub-bypass legs

Airline 4 DFW 428 O-D Markets; 1044 Total Paths

* 18 Origin Cities (14 west spokes; the 4 hubs) and 24 Destination Cities (20 east spokes;
the 4 hubs)

* 40 local markets

* 322 spoke-originating connecting markets; 66 other-hub originating connecting markets

* 364 O-D markets in Bank 1; 248 O-D markets in Bank 2; 428 O-D markets in Bank 3; 4
hub-bypass legs

All of the airlines provide connecting services through their hubs, and they also offer
non-stop hub bypass flights. In addition, the low-cost competitor also offers some head-
to-head competition in four of Airline 1's local markets. The airline route networks are
illustrated in Figures 4-22-4-25.
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Airline 3 competes in 296 of the network's 572 O-D markets. It uses a less-restricted fare

structure with compressed fares, and all of the "traditional" airlines match it in the

markets in which it competes with them. In the remaining markets, the traditional airlines

use a restricted six class fare structure-hence the traditional airlines can be said to be

operating "mixed-fare" networks, meaning that they have both differentiated fare prod-

ucts and less-differentiated fare products on offer on many of their legs.

Table 4-18(a) : Fare Levels-Network R Non-LCC M arkets

Network R Advance
Average Average Strong Restriction Restriction

Non-LCC Purchase
Non-LCC Fares Fare Ratio Prhs Restriction 2 3
Markets Period

FC1 $812.93 5 0 days 0 0 0
($148.08)

FC2 562.91 3.47 3 days 0 Yes 0
(97.78)

FC3 323.76 2 7/ days Yes Yes 0
(50.47)

FC4 269.41 1.67 14 days Yes Yes 0
(40.73)

FC5 215.06 1.33 14 days Yes Yes Yes
(30.28,)

FC6 160. 1 21 days Yes Yes Yes
(57.39)

T able 4-18(b): Fare Levels-Network R LCC Markets

Network R Average Average Advance Strong Restriction Restriction
LCC Purchase

Markets Fares Fare Ratio Period Restriction 2 3

FC1 $429.24 4.1 0 days 0 0 0
($91.34)

FC2 304.78 2.91 3 days 0 Yes 0
(61.83)

FC3 185.73 1.78 7 days 0 Yes Yes
(34.44)

FC4 158.67 1.52 14 days 0 Yes Yes
(28.57)

FC5 131.62 1.26 14 days 0 Yes Yes
(23.06)

FC6 104.56 1 21 days 0 Yes Yes
(18.23)

In Tables 4-18, we can see the differences between the two fare structures. The average

91



fare ratio in the N on-LCC markets is higher than for the LCC markets. In the Non-LCC

markets it ranges between 4 and 6; in the LCC markets it ranges between 3.2 and 5 (as in

Network D6). The level of restriction is also different: in the Non-LCC markets each of

the fare products is differentiated either in terms of restriction or advance purchase

requirement, or both; in the LCC markets, the same set of restrictions is used as for

Network D6.

Looking at the generalized cost charts for the Non-LCC markets (Figure 4-26), we can

see that the Fare Class 2 product generally has a lower perceived cost than the Fare Class

3 product both for the business and leisure segments. Fare Class 2 is still more attractive

than Fare Class 1, meaning that Fare Class 1 would only ever be purchased if Fare Class

2 was not available. In the less-differentiated LCC markets (Figure 4-27), we can see that

perceived cost decreases as price decreases in all cases, so that the more expensive prod-

ucts are never more attractive to consumers, which is the same as for Network D6.
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Finally, the Network R environment is simulated in PODS, with each airline using an

EMRSb leg-based revenue management system. Looking at the relative revenue and traf-

fic performance of each airline (fable 4-19(a)), we can see that as expected Airlines 1 &

2 carry the largest shares of the traffic and earn the largest shares of the revenue (-30%).

Airline 3 is smaller, and Airline 4 is intermediate. Fare class yield management benefits all

airlines (Table 4-19(b)). It seems to benefit the low-cost carrier the most, since the fare

structure in all of its markets is not very differentiated, and hence it relies on revenue

management to segment its demand. Revenue management is again seen to benefit the

industry as a whole.

Table 4-19(a) : Performance Metrics-Network R

Network Revenue Share

Network R Airline 1 [Airline 2 1 Airline 3 Airline 4
I I

31.6% 32.2% 15.8% 20.4%
ASM Share RPM Share

Airline 1 Airline 2 Airline 3 Airline 4 Airline 1 Airline 2 Airline 3 Airline 4

29.7% 31.9% 16.9% 21.6% 29.8% 31.9% 16.9% 21.5%

Table 4-19(b): Revenue Performance-Network R

Network Benefit of FCYM over FCFS

Network R Airline 1 Airline 2 Airline 3 Airline 4 Industry

10.3% 9.6% 19.3% 12.5% 11.8%

4.4 Conclusion

In this chapter, I have presented two new PODS simulation environments-Network

D6 and N etwork R. Their aim is to model contemporary conditions in the world airline

industry. By using both Network D6 and Network R, we can now start to understand the

insights that both have to offer. On the one hand, Network D6 can be used to isolate the

effects of different revenue management methods and forecasters in a head-to-head "all

else equal" environment. On the other hand, Network R can be used to investigate

competitive effects of revenue management in a more complex network.

Hence, in Chapter 5 1 will investigate the performance of some revenue management
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systems in these two netvork environments. I will test the optimization and forecasting

methods that were described in Chapter 3 in these two different environments that have

been outlined above. By considering the revenue management systems and the modelling

environments together, we can get a broader picture of the strengths and weaknesses of

the different methods in different competitive situations.
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5 Results

Having developed the two simulation environments in the previous chapter, we can now

use them to investigate the benefits of the revenue management systems and forecasting

methodologies that were described in Chapter 3. In this chapter, the implementation of

each of the four methods-EMSRb, DAVN, HBP, and ProBP-will be simulated in
Network D6 and in Network R. In the first two sections of this chapter, each of the

methods will be tested in combination with pick-up forecasting; in the subsequent two

sections they will be tested in combination with hybrid forecasting.

5.1 Network D6-Pick-up Forecasting

In this section, we take a systematic look at the performance of the three Origin-Desti-

nation inventory control methods in Network D6, with respect to leg-based revenue

management. The baseline environment has both of the competitors using Fare Class

Yield Management-FCYM. This is leg-based EMSRb optimization with pick-up fore-

casting, as introduced Chapter 4: recall that leg-based revenue management provided

each airline with benefits of about 19% over First Come First Served (Table 4-15). We

will use this environment to look at the incremental benefits of different O-D control

methods in a context in which fares are compressed and fare products have less differ-

entiation.

The FCYM/FCYM case is used as a baseline because leg-based revenue management is

very widely employed in industry, making FCYM a good benchmark for comparison.

This baseline is also useful because it allows us to look at the "pure" benefits of imple-

menting O-D control. Since the network is symmetric-the airlines offer very similar

service in terms of schedule-we can construct a situation in which the predominant

distinction between the airlines is their revenue management system. This allows us to

look into the possibilities for revenue management to aid airlines that are seeing revenue

degradation in less-differentiated environments, for example by making adjustments to

their forecasting methods, or by implementing O-D control.
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Recall from Section 4.2.1 the incremental benefits of O-D control methods in Classic

Network D (Figure 5-1). In this section, we will look how the efficacy of these methods

changes in a less-differentiated fare environment.

08% 

-

0 .6%

0.4%
0.2%

d)

cc 040%

DAVN ProBP HBP

Figure 5-1: Incremental Benefits of O-D Control-Classic Network D

5.1.1 DAVN

In Classic Network D, it was found that implementing DAVN helps the airline that

makes that move, and while it also increases total industry revenues, it does cause the

other airline to see some revenue loss. Referring to Step 1 in Figure 5-2, when Airline 1

implements DAVN, it sees a revenue gain of 1.55% and Airline 2 a loss of 0.76%. Then

in Step 2, when Airline 2 implements DAVN, it sees a revenue gain of 1.46% and Airline

1 sees a loss of 0.77%. In total, when both airlines use DAvN, their cumulative revenues

are 0.77% and 0.69% higher than when they both used FCYM. At both steps in the proc-

ess, the industry captures additional revenue from the consumer surplus for a total indus-

try gain of 0.73%.

Now looking at the implementation of DAMN in the new less-differentiated environ-

ment, we see a quite different pattern. In Step 1, when Airline 1 implements DAVN, it

sees a revenue gain of 0.74%, but now Airline 2 also sees a gain of 1.15% (Figure 5-3).

Note that the revenue gain to the passive airline is larger than the gain to the airline that

makes the move. In this environment, the percentage gain to each airline is less than for

Classic Network D, but the gain to the industry overall is greater (0.94%). Then, in Step

2, when Airline 2 implements DAVN, it actually sees a loss compared to the case where

only Airline 1 was using DAVN, seeing a 0.82% drop in revenues. Airline 1 is able to

capture some additional revenue, but total industry revenues are higher when only one

airline uses DAVN.
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over EMSRb/EMSRb over DAVN/EMSRb
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DAVN/DAVN
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Figurc 5-2: Incremental Benefits of DA VN-Classic NetworkD
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DAVN/EMSRb DAVN/DAVN
over EMSRb/EMSRb over DAVN/EMSRb o

M Airline 1 M Airline 2 E] Industry

Cumulative

DAVN/DAVN
ver EMSRb/EMSRb

Figure 5-3: Incremental Benefits ofDA VN-Network D6

Bear in mind that when both airlines use DAVN, their revenue is still higher than for the

case in which they both used FCYM: the cumulative benefits are 1.01 % for Airline 1 and

0.31% for Airline 2, and the industry gains 0.67%. Counterintuitively however, Airline 2

and the total industry revenues are better off in the situation in which only Airline 1

implements DAVN. Airline 1 also benefits in this case, but its best scenario occurs when

Airline 2 implements DAVN as well.

Table 5-1: DAVN Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

DAVN +0.74% 82.8 0.1022 FCYM +1.15% 83.1 0.0980

DAVN +1.01% 82.2 0.1031 FCYM +0.31% 81.2 0.0994
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Looking at performance measures, we can see in Table 5-2 that revenues and yields

increase in Network D6 with respect to the FCYM baseline case, for both airlines over

both steps. We can also see that the network average load factors (ALF) are lower, since

the DAVN revenue management system is choosing a better mix of higher yield traffic.

Counterintuitive Effects of DAVN

Why has the pattern of revenue gains and losses changed in the new fare environment?

The answer lies in the passive airline's revenue sources. Each airline's revenue can be said

to come from a combination of three sources:

- "First Choice" revenue, which is earned when the product purchased is the

passenger's first choice;

- "Sell-up" revenue, which is earned when the passenger's first choice of product

is not available, and they agree to buy a more expensive product provided by the

same airline; and

- "Spill-in" revenue, which is earned when the passenger's first choice of product

is not available, and they then purchase a product offered by a different airline,
i.e., they are "spilled" to the other airline.

When Airline 1 introduces O-D control, Airline 2 loses "First Choice" revenue, and it

gains "Sell-up" revenue and "Spill-in" revenue. In Network D6, it gains much more spill-

in revenue than it did in Classic Network D. In Classic Network D, the contribution of

Spill-in revenue to Airline 2's total revenue rose from 4% in the baseline case to 5% in

the case where Airline 1 implemented DAVN. In Network D6, the contribution of Spill-

in revenue to Airline 2's total revenue rose from 7% in the baseline case to 13% in the

case where Airline 1 implemented DAVN.

Why is the Spill-in now more lucrative to the passive airline? When Airline 1 introduces

DAVN, the average fares paid to the passive airline tend to fall, as Airline 1 is able to

better choose which booking requests to accept. In Network D6 we find that the value

of the passengers being carried in Airline 2's intermediate fare classes is higher than it was

for Classic Network D. Fares paid for Fare Classes 4 & 5 after Airline 1 implements

DAVN are on average $1 higher, and fares paid for Fare Class 3 are on average $5 higher.

This implies that passengers who are being rejected from Airline 1 by DAVN are finding

availability on Airline 2, since Airline 2's leg-based revenue management system does not

have the same power to choose amongst the passengers in terms of origin-destination
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paths. Moreover, since the fares in this network are lower and have smaller differentials

and very slight differentiation, passengers are now more willing to buy up into a higher

fare class, and therefore the "spilled" passengers are more lucrative than they were in

Classic Network D.

Since the revenues of both airlines are higher with respect to the FCYMVI baseline case

when both airlines have implemented DAVN, we can see that DAVN is still functioning

as expected. It is still rejecting passengers that are of lower network value in favour of

higher value passengers. We would expect that Airline 2 would see a drop in yield, and

hence in revenue, when Airline 1 introduces DAVN, since Airline 1 is able to reject low

yield connecting passengers whereas Airline 2 using FCYMvl is not. However, from the

above we can see that in this new fare environment, the losses that Airline 2 experiences

in step 1 when Airline 1 introduces DAVN are actually outweighed by the revenue gains

it sees from spilled passengers who are selling-up. Hence, it sees a gain in yield, and its

average network load factor remains steady (see Table 5-2).

In step 2, when Airline 2 also introduces DAVN, we can see similar results, with Airline

2 now actually losing revenue. This indicates that the benefits to Airline 2 of using DAVN

are actually less than the benefits of spill-in from Airline 1's implementation of DAVN.

We can surmise that although DAVN is still doing its job, the feedback effects in this

symmetrical 2-airline environment can overwhelm its incremental benefits.

Beyond the feedback and spill-in, another factor to note is the amount of buy-down over-

all in this fare environment. DAVN's assumption of independent class demand is prob-

lematic here because the distinctions between the fare products are so weak, and it is

evident that passengers are more willing to buy up or buy down, irrespective of official

fare class designation. 'Iherefore, the disjunction between the forecasting philosophy and

the realities of passenger purchasing behaviour are harming DAVN's performance.

5.1.2 ProBP

As was the case for DAVN, implementing ProBP in Classic Network D boosts the reve-

nues of the airline that makes the move (+1.550%o), and causes the other airline to see

some revenue loss (-0.81%). But, as was the case for DAVN, in Network D6 this tradi-

tional pattern of gains and losses is not seen (Figure 5-4).

Looking at ProBP in the new less-differentiated environment, when Airline 1 implements
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ProBP it sees a benefit of 0.43%, but now Airline 2 sees a much larger benefit-in fact

Airline 2's revenue gain of 1.05% is now almost 2.5 times larger than Airline 1's revenue

gain.

( 2.0s ----------------------- ----- .----

.9s

Classic Network D Network D6

U Airline 1 U Airline 2

J6;gure 5-4; :Incremental Benefits of ProBP-Classic D & Network D6

In Table 5-3, we can see that revenues and yields increase with respect to the FCYM base-
line case for both airlines, and that the average load factors are reduced. Similar to the
DAVN case, ProBP is clearly still doing its job and is choosing a higher revenue mix of
traffic. But it is suffering from the same feedback effects that were evident in the

performance of DAVN.

T able 5-2: ProBP Changes wrt Baseline--Network D6

Airline 1 Revenue ALE YieldAiie2 Reee ALYed

Change Cag

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967
ProBP +0.43% 82.5 0.1022 FCYM +1.05% 83.1 0.0978

Decline in ProBP Performance

Another point to note is that in Classic Network D the gain to Airline 1 when implement-

ing ProBP was 1.55%, which was the same as the gain to Airline 1 when implementing
DAVN. However in Network D6, the gain to Airline 1 when implementing DAVN is

0.74%, whereas the gain to Airline 1 when implementing ProBP is only 0.43%. Why has

ProBP's performance suffered so much in comparison to DAVN?

To answer this question, a test was carried out comparing the performance of these two

methods across Network D6 and in a slightly modified version of Network D6 called
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Network D6 "Restricted." In this version of Network D6, more restrictions are added to

some fare products, to create more product differentiation (see Table 5-4). Fare Classes

1 & 2 are the same, but the four lower fare classes are now each differentiated from each

other, either in terms of restrictions or advance purchase period or both. In all other

respects - i.e., fares and fare ratios - Network D6 and Network D6 "Restricted" are the

same.

Table 5-3: Fare Structure-Network D6/Network D6 "Restricted"

Fare Advance Network D6 Network D6 "Restricted"

Class Purchase Strong Restriction Restriction Strong Restriction Restriction
Period Restriction 2 3 Restriction 2 3

FC1 0 days 0 0 0 0 0 0

FC2 3 days 0 Yes 0 0 Yes 0

FC3 7 days 0 Yes Yes Yes Yes 0

FC4 14 days 0 Yes Yes Yes Yes 0

FCS 14 days 0 Yes Yes Yes Yes Yes

FC6 21 days 0 Yes Yes Yes Yes Yes

The results of this test are shown in Figure 5-5, and we can see that when more restric-

tions are added to the fare products, the performances of DAVN and ProBP are once

again comparable, providing revenue gains of +0.63% and +0.59% respectively. Hence

we can conclude that ProBP is more adversely affected by the removal of restrictions.

With some level of differentiation it performs as well as DAVN, but when differentiation

is removed it has difficulty with spiral down. As noted in Chapter 3, ProBP is a sensitive

revenue management method. It controls inventory at the path level, depending on path-

class forecasts and controlling exclusively with leg-specific bid-prices. Perhaps it is this

reliance on such fine resolution forecasting that makes it particularly vulnerable to spiral

down in less-differentiated fare environments, in which it is very difficult to forecast the

distinct demands for undifferentiated fare products by path and by fare class.

D 0.8% -- - - - - - - - - - - - - - - - - - -

0.6%

04%

CJ)
= 0.2%-.. . ..

d1)
> 0.1%. . . .

00%

NetworkD6 NetworkD6"R"

1 DAVN * ProBP

Figure 5-5: DA VN and ProBP Performance
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5.1.3 HBP

We turn now to look at the performance of the new formulation of HBP in the less-

differentiated environment. It is important to note that this HBP is not strictly compara-

ble to the version tested in previous studies (e.g. Cusano 2003). It has been reformulated

since those tests were done, and now includes an increment to its local demand forecast

which estimates unconstrained local demand (as described in Chapter 3). Nevertheless,

Figure 5-6 illustrates the performance of the older 113P in Classic Network D, and the

performance of the new HBP in Network D6.
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Figure 5-6 : Incremental Benefits of HBP-Classic D & Network D6

For the HBP case, the pattern of revenue gains and losses is now the same in both envi-

ronments. Indeed, the gain to Airline 1 from implementing the new HBP in Network D6

is greater than was the gain to Airline 1 from implementing the older HBP in Classic

Network D. Looking at yields and load factors for the HBP case, Airline 1's loads now

increase and its yields decrease; whereas Airline 2's loads decrease while its yield

increases. HBP is accepting more traffic in this environment and is not producing as

much spill - i.e., HBP is not giving as much traffic away to its competitors. This is related

to HBP's use of leg forecasting. The resolution of its forecasts is larger, making it less

liable to inflate its forecasts. Thus it doesn't over-forecast for higher fare classes, and it

allows more lower fare class traffic, increasing total revenues.

Table 5-4: HBP Changes wrt Baseine-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM -83.2 0.0967,

HBP 1+1.93% 87.8 0.097 4 FCYM -0.63% 80.9 0.0989
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5.1.4 Summary

Considering the performance of all three methods with respect to the FCYM baseline
(Figure 5-7), we can see that the new HBP is clearly the best performer in this less differ-

entiated environment. This is likely a result of its not using path-based forecasting or opti-

mization. Forecasting by fare class is difficult in the less differentiated environment even

at a leg level, and leads to spiral down. These results indicate that it is even more of a

problem at the path level, because of the much smaller mean observed demands for a

large proportion of the many path/fare class combinations, and the resulting tendency

for the forecasts to overestimate demand. This seems to a serious factor hindering the
performance of ProBP in particular.
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Figure 5-7: Incremental Benefits of O-D Control-NetworkD6

HBP is also the only method to display the traditional pattern of revenue gains and losses

when implemented by Airline 1, despite the high feedback in this high demand symmetric

environment. It is able to accept more traffic and is not allowing its competitor to capture
a larger share of the revenue. In contrast, feedback effects appear to dominate the

performance of DAVN and ProBP in this environment, in which passengers are willing

to buy up or buy down rather than reliably buying particular fare products in particular
fare classes, as forecast by the path/class forecaster.

Table 5-5 : O-D Control Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

DAvN +0.740/% 82.8 0.1022 FCYM +1.15% 83.1 0.0980

ProBP +0.43% 82.5 0.1022 FCYM +1.05% 83.1 0.0978

HBP +1.93% 87.8 0.0974 FCYM -0.63% 80.9 0.0989
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Consequently, we now turn to look at the performance of these methods in Network R.

Network R has many more paths and offers more capacity than Network D6; the route

networks offered by the airlines are somewhat different from each other; and its "tradi-

tional" airlines offer a mixed fare structure. Hence, the feedback effects that were seen in

Network D6 may be alleviated in the more complex environment of Network R.

5.2 Network R-Pick-up Forecasting

After looking at the performance of these revenue management systems in Network D6

with respect to a symmetric FCYM base case, we now turn to a more complex network.

In this section we will look at the effects of implementing O-D control in the more elab-

orate non-symmetric competitive environment. To this end, the base case will not call for

all of the airlines to use FCYM, but will also be more elaborate. The focus airline will once

again be Airline 1, and it will be used to look at the incremental benefits of DAVN,
ProBP, and HBP. Its baseline method will be FCYM. The "traditional" competitors (i.e.,
Airlines 2 & 4) will use DAVN, and the low-cost carrier (Airline 3) will use a threshold

revenue management method called AT80. In this way Airline 1 faces close competition

in most of its connecting markets from a large competitor with an advanced revenue

management system (Airline 2); and it also sees discount competition in just over half of

its connecting markets and direct competition in some of its local markets from a smaller

competitor with a relatively sniplistic revenue management system (Airline 3). Airline 4

then functions to provide more capacity in the market so as to avoid feedback problems.

The performance of this baseline case (EIMSRb/DAVN/A''80/DAVN) with respect to

no airlines using any revenue management at all is shown in Table 5-7. As might be

expected, these benefits are greater than those listed mi Table 4-19(b), which compared

all airlines using leg-based revenue management with First Come First Served. This is

because the Network R baseline offers a more sophisticated revenue management envi-

ronment than one in which all of the airlines use FCYM.

Table 5-6: Benefits of Revenue Management-Network R

Network Benefit of Baseline Case over FCFS

Netvork R Airline 1 Airline 2 Airline 3 Airline 4 Industry

10.9% 12.9% 20.4% 14.8% 13.6%

1. AT80 is a dynamic threshold revenue management method that progressively closes dowin fare classes on a leg as they

reach target load thresholds. Its total target leg load factor is 80. See Cliaz-Savoyen (201)15: 31; 101f.) for more details
regarding threshold revenue management methods and AT80.
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We now turn to the performance of the three methods in Network R.

5.2.1 DAVN

In Classic Network D, recall that implementing DAVN helped the airline that made the

move with a revenue gain of 1.55%, and led to a revenue loss for the other airline. Now,
when Airline 1 implements DAVN in Network R, it also sees a revenue gain of 1.510%.
Airline 2 sees a loss of 1.55%, and the other two airlines also see revenue losses of 1.17%
and 0.9% (Figure 5-8). These smaller losses are reflective of their diminished exposure to
Airline 1's network.
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Pgure 5-8: IncrementalBenefit ofDA VN-NetworkR

Looking at performance measures, we can see in Table 5-8 that Airline 1's load increases
with its revenue, and that its yield decreases somewhat. This indicates that it is carrying

more traffic, but it is carrying more connections-which by definition tend to be lower
yield traffic. Revenues, loads and yields all decrease for Airline 2 & Airline 3, indicating
that Airline 1 is improving at their expense. Airline 4 sees lower a load but a slightly higher
yield, implying that it is losing some of its cheaper connecting traffic to the other airlines.

T able 5-7: DAVN Changes wrt Baseline-Network R

Baseline Revenue ALF Yield DANN / Revenue ALF Yield
Change D/A/D Change

FCYM - 83.2 0.1319 DAVN +1.51% 84.9 0.1311

DAVTN - 86.4 0.1240 DAVN -1.55% 85.3 0.1237

AT80 - 78.6 0.1236 AT80 -1.17% 78.0 0.1230

DAVN - 85.9 0.1161 DAVN -0.90% 85.0 0.1164
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From these results, we can see that DAVN's efficacy is greater in Network R. This is a

result of the increased capacity and more diverse competition, and also the higher level

of fare product differentiation afforded by the mixed-fare network.

5.2.2 ProBP

In contrast with the situation in Network D6, when Airline 1 implements ProBP in

Network R it now sees a revenue gain of 0.65%. The other airlines see losses of 1.12%,

0.91%, and 0.41% (Figure 5-9), reflecting again their relative exposures to Airline 1's

network.
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Figure 5-9: Incremental Benefit of ProBP-Ntwork R

Looking at the performance measures, we can see in Table 5-9 that Airline 1's load now

decreases as revenue increases, and its yield increases somewhat. This indicates that it is

carrying a better mix of traffic, and that ProBP is functioning well. Revenues, loads and

yields all decrease for Airline 2 & Airline 3 again, indicating that Airline 1 is managing to

improve its traffic at their expense. Airline 4 sees a small drop in revenue and load.

Table 5-8: ProBP Changes wrt Baseline-Network R

Baseline Revenue ALF Yield ProBP/ Revenue ALF Yield
Baseline Change ALF Yield D/A/D Change ALF Yield

FCYM - 83.2 0.1319 ProBP +0.65% 82.3 0.1340

DAVN - 86.4 0.1240 DAVN -1.12% 86.2 0.1230

AT80 - 78.6 0.1236 AT80 -0.91% 78.3 0.1229

DAVN - 85.9 0.1161 DAVN -0.41% 85.6 0.1161

However, from these results, we see that ProBP's performance in Network R is still not

comparable to that of DAVN. It appears that ProBP's reliance on path forecasts and path

control are still resulting in over-forecasting, making it vulnerable to fare simplification

even in a mixed network such as Network R.
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5.2.3 HBP

Returning to the new formulation of HBP, we find that when Airline 1 implements HBP

in Network R it sees a revenue gain of 0.44%. Airline 2 & Airline 4 see losses of 0.77%

and 0.33% respectively, but now the low-cost carrier Airline 3 sees a revenue gain of

1.75% (Figure 5-10).
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Figure 5-10: IncrementalBenefit of HBP-Network R

Looking at performance measures, we can see in Table 5-10 that Airline 1's load now

increases significantly with its revenue increase. The average load across its network rises

by 4.5 points and its yield decreases by over half a cent. The low-cost airline sees an

accompanying small decrease in load and a small increase in yield. This would imply that

Airline 1 is being less parsimonious in deciding which booking requests to accept, and is

allowing more traffic, but not necessarily traffic in higher classes. This gives Airline 3 the

opportunity to capture a higher-yield traffic mix-traffic that was denied to it when

Airline 1 implemented DAVN or ProBP. The other "traditional" airlines see their loads

decrease and their yields increase, indicating that they are carrying a better mix of traffic;

nevertheless, their loss in traffic is still sufficient to result in revenue losses.

Table 5-9: HBP Changes wrt Baseline-Network R

Baseline Revenue ALF Yield HBP Revenue ALF Yield
Change /D/A/D Change

FCYM - 83.2 0.1319 HBP +0.44% 87.8 0.1254

DAVN - 86.4 0.1240 DAVN -0.77% 85.1 0.1250

AT80 - 78.6 0.1236 AT80 +1.75% 78.3 0.1262

DAVN - 85.9 0.1161 DAVN +0.33% 85.2 0.1168
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From these results, we can see that HBP's performance in Network R is satisfactory, but

not as impressive as its performance in Network D6. It is the weakest of the three meth-

ods in Network R. Its strength in Network D6 is here preventing it from being as effec-

tive, in that it is perhaps under-protecting for the higher fare classes and accepting too

much low yield traffic.

5.2.4 Summary

Considering the performance of all three methods with respect to the E/D/A/D base-

line (Figure 5-11 and Table 5-11), we can see that DAVN is clearly the best performer.

DAVN's performance here is comparable to its performance in Classic Network D, and

it is not experiencing the same feedback problems as was seen in the Network D6 envi-

ronment. On the other hand, given standard forecasting methods, ProBP's performance

clearly still suffers in this less differentiated mixed-fare environment. Lastly, the new

HBP is not as effective in Network R as it was in Network D6. This may be because HBP

is not as systematic as DAVN in terms of judging the network value of the different

booking requests. HBP doesn't over-protect for higher fare classes, and so it allows more

overall traffic than DAVN, thus filtering out feedback. However, it is not as effective

when there are more path options and more room for subtle trade-offs, for these same

reasons-it under-protects for higher fare classes and allows too much traffic in the

lower fare classes. And so, to reiterate: HBP under-protects for the higher fare classes

given standard pick-up forecasting, just as DAVN and ProBP over-protect for them.

Hence, we turn to a different forecasting method.

T'able 5-10: O-D Control Changcs wrt Baselinc-Network R

Baseline Revenue ALF Yield DAVN/ Revenue ALF Yield
Change D/A/D Change

FCYM - 83.2 0.1319 DAVN +1.51% 84.9 0.1311

DAVN - 86.4 0.1240 DAVN -1.55% 85.3 0.1237

AT80 - 78.6 0.1236 AT80 -1.17%, 78.0 0.1230

DAVN - 85.9 0.1161 DAVN -0.90% 85.0 0.1164

ProBP Revenue ALF Yield HBP Revenue ALF Yield
/D/A/D Change /D/A/D Change

ProBP +0.65% 82.3 0.1340 IBP +0.44% 87.8 0.1254

DAVN -1.12% 86.2 0.1230 DAVN -0.77% 85.1 0.1250

AT80 -0.9% 78.3 0.1229 AT80 +1.75% 78.3 0.1262

DAVN -0.41% 85.6 0.1161 DAVN +0.33% 85.2 0.1168
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In Sections 5.1 and 5.2, we have seen that fare simplification has implications for the
effectiveness of these three O-D revenue management methods. We have seen the prob-
lems of spill-in and feedback when fare levels are lowered and compressed, but this was
not seen to be a problem in all network situations - it was only a problem in intense
symmetric competitive situations. More significantly, we have seen the difficulties faced
by methods that rely on path and fare class forecasting in environments with less differ-
entiated fare products. Therefore, in the next two sections, the revenue management
methods will be tested in conjunction with Hybrid Forecasting (HF), in an attempt to
overcome the assumption of independent path and fare class demands.
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Figure 5-11: Incremental Benefits of O-D Control-Network R

5.3 Network D6-Hybrid Forecasting

In the previous sections, we compared the performance of the different revenue manage-
ment methods in the two competitive environments. In each case, the forecasting
component of the revenue management system was pick-up forecasting, and we saw the
effect on revenue management performance that results from reduced fare product
differentiation. The problems associated with all the methods' assumptions of distinct
and independent demands for different path-class products have been emphasized previ-
ously. To this end, in this and in the following section, we will investigate the effects of
using Hybrid Forecasting (HF) in combination with EMSRb, DAVN, ProBP, and HBP.

As described in Chapter 3, hybrid forecasting is a method of forecasting the demand for
fare products based on the assumption that there are two demands: "product oriented
demand" and "price oriented demand". A number of different ways of defining these
demands was outlined in Chapter 3. For the purposes of these tests, passengers will be
classified as "product oriented" if they purchase a ticket when seats were available in the
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next lower class on that same path ("Path Rule"). Passengers will always be defined as

"price oriented" if they are observed purchasing the cheapest available option, regardless

of whether the next lower class was closed due to advance purchase restriction or do to

revenue management system intervention. These options have consistently been found

to be the most effective. See Reyes (2006) for more detailed analyses of hybrid forecasting

in Network D6.

This section contains a brief examination of the added benefits of hybrid forecasting in

Network D6. The FCYM and DAVN results presented in this section are based on

results from Reyes (2006). The Network D6 results don't use estimates of sell-up rates,
but rather, for simplicity, they use input sell-up rates (FRAT5 of "C"). For more details

on the mechanics of input FRAT5s see Cl6az-Savoyen (2005).

5.3.1 FCYM

As a first comparison, we look at the effect that hybrid forecasting has on leg-based

FCYM. In adding HF to the implementation of FCYM, a revenue gain of 2.63% is

observed over EMSRb with pick-up forecasting. This gain is larger than any of the incre-

mental gains realized from implementing O-D control using pick-up forecasting.

The hybrid forecaster has the effect of raising Airline 1's load and its yield, and has a large

beneficial effect on the performance of FCYM, helping it to overcome the problems

associated with forecasting distinct demands for fare products.

Table 5-11: FCYM+HF Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

FCYM+ +2.63% 84.3 0.1022 FCYM -0.41% 82.8 0.0968
HF

5.3.2 DAVN

When Airline 1 implements DAVN with HF it sees further significant gains in revenue

above those seen when it implemented DAVN with pick-up forecasting; in this case

Airline 2 sees revenue losses. The feedback problem seems to have been averted, and the
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"traditional" pattern of revenue gains and losses has been restored. Airline 1 is accepting

more traffic, and its load rises by 4.5 points and its yield decreases (Table 5-13). The

hybrid forecasting methodology is much better suited to forecasting in this environ-

ments. It is not over-protecting for high fare classes, and is more lenient in terms of clos-

ing down lower classes. Thus it is more effective at increasing revenues.

The gain to Airline 1 is 4.01% over the FCYM baseline case; an incremental gain of 3.3%
over the DAVN/FCYM case is provided by hybrid forecasting.

Table 5-12: DAVN+HF Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

DAVN +0.74% 82.8 0.1022 FCYM +1.15% 83 1 0.0980

DAVN+ +4.01% 88.1 0.0991 FCYM -1.08% 80.9 0.0984
HF

5.3.3 ProBP

When Airline 1 implements ProBP with HF, the "traditional" pattern of revenue gains

and losses is restored as it was for DAVN+HF. Similar to the DAVN+HF case, Airline

1's average load rises by about 4.5 points and its yield decreases (Table 5-14). Although

its performance trends are similar to those of DANN, it is still not as effective in boosting

revenues.

The gain to Airline 1 is 3.31% over the FCYM baseline case; an incremental gain of 2.9%
over the ProBP/FCYM case is provided by hybrid forecasting.

Table 5-13: ProBP+HF Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

ProBP +0.43% 82.5 0. 1022 FCYM +1.05% 83.1 0.0978

ProBP+ +3.31% 87.1 0.0995 FCYM -1.02% 80.7 0.0987
HF
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5.3.4 HBP

Finally, when Airline 1 implements HBP with HF, the "traditional" pattern of competi-

tive revenue gains and losses is seen once more. The benefit to Airline 1 of using

HBP+HF is almost twice that of using HBP with pick-up forecasting. In addition, adding

hybrid forecasting lowers Airline 1's load factor and raises its yield with respect to the

HBP/FCYM case (Table 5-15). This shows that HBP's strengths in terms of using leg-

based forecasting and optimization, and the forecasting advantages provided by HF,

combine to produce an effective revenue management combination in the less differen-

tiated fare environment.

The gain to Airline 1 is now 3.71% over the FCYM baseline case; an incremental gain of

1.7% over the HBP/FCYM case is provided by hybrid forecasting.

Table 5-14: HBP+HF Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change _____Change __________

FCYM - 83.6 0.1004 FCYM - 83.2 0.0967

HBP +1.93% 87.8 0.0974 FCYM -0.63% 80.9 0.0989

HBP+ +3.71% 85.4 0.1019 FCYM -0.67% 82.4 0.0970
HF

5.3.5 Summary

Considering the benefit of hybrid forecasting to all four revenue management methods

with respect to the FCYM baseline (Figure 5-13 and Table 5-16), we can see that DAVN

with hybrid forecasting is the best performer in the less differentiated environment. The

4.5%
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ca 3.5%

3.0%

0 2.5%

CO 2.0%
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0.0%

EMSRb DAVN ProBP HBP
* Pick-up Forecasting U Hybrid Forecasting

Pigure 5-12: Incremental Benefits of Hybrid Forecasting-Network D6
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performance of HBP with hybrid forecasting is also very good, showing that HBP is well

suited to the less differentiated symmetric network environment in general, with pick-up

forecasting or with hybrid forecasting. The performance of ProBP is certainly aided

greatly by hybrid forecasting, but it is still not as effective as DAVN or HBP, both of

which are easier methods to implement and to operate. The difficulties related to revenue

management systems that depend exclusively on path-based processes are still in

evidence here.

Table 5-15 Hybrid Forecasting Changes wrt Baseline-Network D6

Airline 1 Revenue ALF Yield Airline 2 Revenue ALF Yield
Change Change

FCYM 83.6 0.1004 FCYM - 83.2 0.0967

FCYM+ +2.63% 84.3 0.1022 FCYM -0.41% 82.8 0.0968
HF

DAVN+ +4.01% 88.1 0.0991 FCYM -1.08% 80.9 0.0984
HF

ProBP+ +3.31% 87.1 0.0995 FCYM -1.02% 80.7 0.0987
HF

HBP+H +3.71% 85.4 0.1019 FCYM -0.67% 82.4 0.0970
F

5.4 Network R-Hybrid Forecasting

We now turn to examine the benefits of hybrid forecasting in Network R. The definitions

of price and product oriented demand will be the same as were used when looking at

Network D6. In this section however, the hybrid forecaster will make use of PODS'

"Inverse Cumulative" method for estimating passenger sell-up rates. This is obviously a

more realistic approach than using input sell-up rates. No airline would make use of arbi-

trarily assigned, assumed rates of sell-up when trying to estimate demand and determine

booking limits. Clearly the only realistic solution is to use a a method that can estimate

passenger price elasticity based on previously seen bookings. Hence the sell-up estimator

will be used in N etwork R. At this stage, we are also discontinuing testing of ProBP, due

to its weaker performance with less-differentiated fare environments. Thus, in this

section, we will investigate the effects of using hybrid forecasting (HF) in Network R in

combination with FCYM, DAVN, and HBP.
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5.4.1 FCYM

Once again, as a first comparison we look at the assistance that hybrid forecasting can

provide to leg-based revenue management in Network R. In adding HF to the implemen-

tation of EMSRb, an additional revenue gain of 1.71% is observed over EMSRb with

pick-up forecasting. This gain is once again larger than the incremental benefit realized

when implementing DAVN with pick-up forecasting (+1.51/6).
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Figure 5-13: Incremental Beneft ofFCYM+HF-NtworkR

Adding the hybrid forecaster now has the effect of lowering Airline 1's load and raising

its yield, meaning that it is doing a better job of forecasting demand and protecting seats.

It also results in revenue drops for each of the competing airlines.

Table 5-16: FCYM+HF Changes wrt Baseline-Network R

Baseline Revenue ALF Yield FCYM+HF/ Revenue ALF Yield
Change D/A/D Change

FCYM - 83.2 0.1319 FCYM+HF +1.71% 81.8 0.1363

DAVN - 86.4 0.1240 DAVN -0.14% 86.9 0.1231

AT80 - 78.6 0.1236 AT80 -1.02% 78.5 0.1224

DAVN - 85.9 0.1161 DAVN +0.10% 86.4 0.1154

5.4.2 DAVN

When Airline 1 implements DAVN +HF in Network R it again sees significant gains in

revenue in comparison to the case where Airline 1 implemented DAVN with pick-up
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forecasting. In contrast to the FCYM+HF case, the addition of hybrid forecasting now

has the effect of raising Airline 1's load and lowering its yield with respect to the case

where DAVN was used with pick-up forecasting (Table 5-18). With hybrid forecasting in

use, Airline 1 is not over-protecting for the higher fare classes, allowing it to carry more

traffic, thus raising its revenues.

Table 5-17: DAVN+HF Changes wrt Baseline-Network R

Baseline Revenue ALF Yield DAVN Revenue ALF Yield
Change /D/A/D Change

FCYM - 83.2 0.1319 DAVN +1.51% 84.9 0.1311

DAVN - 86.4 0.1240 DAVN -1.55% 85.3 0.1237

AT80 78.6 0.1236 AT80 -1.17% 78.0 0.1230

DAVN - 85.9 0.1161 DAVN -0.90% 85.0 0.1164

DAVN +HF/
D/A/D

Revenue

Change
ALF Yield

DAVN+HF +3.45% 86.8 0.1308

DAVN -1.74% 85.4 0.1233

AT80 -1.05% 78.0 0.1232

DAVN -1.14% 85.4 0.1155

The gain to Airline 1 is 3.45% over the FCYM/D/A/D baseline case; an incremental

gain of 1.91% over the DAVN/D/A/D case is provided by hybrid forecasting.
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Figure 5-14 :Increm ental Benefit of DA VN+HF-Network R
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5.4.3 HIP

Finally, when Airline 1 implements HBP+HF in Network R it too sees a significant boost

to its revenue. The revenue gain is associated with a drop in load and a large increase in

yield. Recall that when Airline 1 implemented HBP with pick-up forecasting, it saw a 4.5

point load increase, and a 6.5-cent yield decrease. Now, when it implements HBP with

hybrid forecasting, the load increase is reversed, but its yield increases by a cent (see Table

5-19). That is, Airline 1's load is the same as for the FCYM with pick-up forecasting case,
but its yield is almost half a cent higher. This indicates that it is now forecasting demand

much more effectively than it did when using pick-up forecasting, allowing it to improve

its revenue by improving its yield. As for the Network D6 case, this result implies that

the combination of HBP with hybrid forecasting is also an effective revenue management

combination in the mixed fare environment.

Table 5-18: HBP+HF Changes wrt Baseline-Network R

Baseline ALF Yield HBP/D/A/D Revenue Change ALF Yield

FCYM 83.2 0.1319 HBP +0.44% 87.8 0.1254

DAVN 86.4 0.1240 DAVN -0.77% 85.1 0.1250

AT80 78.6 0.1236 AT80 +1.75% 78.3 0.1262

DAVN 85.9 0.1161 DAVN +0.33% 85.2 0.1168

The gain to Airline
gain of 2.53% over

HBP+HF/D/A/D Revenue Change ALF Yield

HBP+HF +2.98% 83.2 0.1357

DAVN -1.46% 86.3 0.1223

AT80 -0.59% 78.2 0.1234

DAVN -0.44% 86.7 0.1146

1 is 2.98% over the FCYM/D/A/D baseline case; an incremental

the HBP/D/A/D case is provided by hybrid forecasting.
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Figure 5-15: Incremental Benefit of HBP+HF-Network R
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5.4.4 Summary

Considering the benefit of hybrid forecasting to these three revenue management meth-

ods with respect to the FCYMN'L baseline (Figure 5-17), we can see that DAVN with hybrid

forecasting is still the best performer in this mixed-fare environment. The performance

of HBP with hybrid forecasting is once again also very good, confirming the previous

observations that HBP is well suited to less-differentiated environments.

EMSRb DAVN

F Pick-up Forecasting

HBP
a Hybrid Forecasting

Fgure 5-16: IncrementalBenefits of Hybrid Forecasting-Network R

5.5 Summary of Results

In this chapter, I have presented the results obtained from testing four revenue manage-

ment methods in the two new PODS simulation environments. The methods were tested

in conjunction with either pick-up forecasting or hybrid forecasting.

In the sections on pick-up forecasting, we observed some of the problems associated

with revenue management in less-differentiated fare environments. Performing forecast-

ing under the assumption of distinct demands for fare class products leads to poor reve-

nue management system performance, and can produce counterintuitive results. We saw

that compression and the removal of restrictions affected the methods which rely on path

forecasts in particular, with ProBP suffering the most from the removal of restrictions

and the consequent spiral down. ProBP's performance was not good in either network

environment.
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Another consequence of fare compression and the removal of restrictions was seen in

Network D6, where passengers who were rejected from one airline were seen to be will-

ing to buy higher fare class products. However, the pick-up forecasting philosophy is not

well suited to deal with the sell-up phenomenon, and the gains realized from DAVN and

ProBP were overshadowed by the effects of passengers shifting between fare classes.

However, although the performance of DAVN was hurt in an environment in which

there is uniform fare simplification across all markets, it was able to recover its effective-

ness in the higher capacity mixed network. ProBP, however, saw its performance dimin-

ished in both situations.

HBP was seen to be particularly well suited to high demand, highly symmetrical environ-

ments, and less effective in the larger mixed network. It does not over-forecast for the

higher fare classes, and therefore allows more traffic and earns higher revenues.

This was an advantage to it in the high demand environment of Network D6 where the

other methods were over-protecting and closing lower fare classes; but it was less of an

advantage in the larger Network R, where it accepted too much traffic and did not protect

enough for the high fare classes.
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Figure 5-17: Incremental Benefits of O-D Control

In the sections dealing with hybrid forecasting, we found that the hybrid forecasting

philosophy is much better suited to these less-restricted fare environments. It doesn't

inflate the demand forecasts for the expensive fare products, and as such it doesn't close

down the lower fare classes as aggressively, allowing more traffic to be carried.

DAVN's performance was once again best overall, but that HBP's performance was also

aided greatly by the hybrid forecasting methodology. When Airline 1 used DAVN with
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pick-up forecasting, its loads were too low, and hybrid forecasting was seen to raise its

loads and lower its yields by allowing more bookings. Conversely, when Airline 1 used

HBP with pick-up forecasting, its loads were too high, and hybrid forecasting was seen

to lower its loads and raise its yields by to be more selective about the traffic it carries, as

a result of its better forecasts.
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Figure 5-18: Incremental Benefits of O-D Control-Hybrid Forecasting

From these results, we could conclude that HBP is a method of great interest, and qual-

ifies for further investigation. Its use of leg-based forecasts makes it suitable for use in

less differentiated environments, where the difficulties of path forecasting are exacer-

bated by fare simplification. Its performance is broadly comparable to that of DAVN and

it has the significant advantage of being cheaper and simpler to implement. The combi-

nation of HBP and hybrid forecasting appears to have the potential to be a very effective

and practical revenue management system for use in less-differentiated and mixed fare

environments.
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6 Conclusion

This thesis has been concerned with the possibilities and potential for airline revenue

management in contemporary less-differentiated fare environments. I have described

briefly the revenue situation facing the airline industry today. In the current environment

we have seen falling yields as a consequence of compressed fares and the removal of

restrictions on many fare products. I have also outlined some of the previous work on

revenue management in general, and in particular the growing field concerned with reve-

nue management in less-restricted environments.

After describing some seat allocation optimization and demand forecasting methodolo-

gies, I developed two new simulation environments for use in the Passenger Origin-

Destination Simulator (PODS). These environments have been designed particularly for

use in investigating the possibilities for revenue management in less-differentiated envi-

ronments. They include widespread fare compression and fare product simplification on

the one hand (Network D6); and incorporating a traditional fare structure with a less-

differentiated fare structure on the other hand (Network R). Network D6 is appropriate

for use in modelling intense symmetric competitive environments, whereas Network R

is more elaborate and can be used to model more complex competitive environments.

Four revenue management methods and two forecasting methodologies were tested in

these two environments. These are FCYM, DAVN, ProBP, and HBP; and Pick-up and

Hybrid Forecasting. From these results we saw the difficulties of using traditional reve-

nue management in less-differentiated or mixed fare environments. The assumption of

independent and distinct demand for path/fare-class products is not consistent with

passenger behaviour in the current environment. Passengers are not purchasing fare

products, but rather they are purchasing journeys, and without compelling differentiation

between fare products they are flexible in terms of which fare class designation they will

purchase. Methods which forecast future demand based on previously observed sales in

particular fare classes do not and can not perform well in the new environments. They

need to be modified in order to account for passenger flexibility before they will be able

to function well in the changed fare structures.

This inconsistency between behaviour and revenue management systems' assumptions

has consequences for their ability to set protection levels effectively. On the one hand,
spiral down leads to low fare class forecasts that are too large; at the same time, the
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observed histories for many path/fare class combinations can be very small but highly

variable, and this results in forecasts that are too large. Therefore, a forecasting method-

ology that is not based on historically observed demand in particular fare classes is partic-

ularly necessary in the new fare environment.

If we consider that there are only two different demands for air travel-demand for flex-

ibility and demand for the lowest price-we come to the hybrid forecasting methodology

which forecasts demand for "product oriented" and "price oriented" travel. Results from

testing this methodology were very encouraging in both the less-differentiated environ-

ment and the mixed-fare environment.

We saw that pick-up forecasting created problems by either over- or under-forecasting

demand. In some situations this resulted in airlines accepting too much low yield traffic,
or conversely rejecting too much traffic overall. These problems were largely alleviated

when the hybrid forecaster was employed. We saw that DAVN was less aggressive in

closing down fare classes and could thus carry more traffic and earn higher revenues. We

also saw that HBP was able to reject more low-yield traffic and earn higher revenues by

improving its load. In all cases, the hybrid forecaster produced better forecasts and result-

ing in improved revenue for the airlines that implemented it.

Future Research

Following on from the results found in this thesis, some further research directions can

be seen. Firstly, there is much further work to be done with the hybrid forecasting meth-

odology. Since the hybrid forecaster produces separate estimates for "price" and "prod-

uct" oriented demand, it would be instructive to look more closely at these forecasts and

to see how they vary in different markets.

For example, we could look in more detail at Network R to see how the forecasts vary

across different types of markets. The network can be divided into markets where Airline

1 is in competition with Airline 2 only and they both offer a traditional fare structure; and

markets where Airline 1 is in direct competition with Airline 3 and they both offer simpli-

fied fare structures. It would be interesting to compare the performance of hybrid fore-

casting in these different types of markets.

Methods of estimating passenger willingness-to-pay and estimating the probabilities of

passenger sell-up are also critically important avenues of research. The work in this thesis

has been based either on the assumption of independent demand for different fare prod-
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ucts, or on the assumption that there is one demand for the most flexible product and
another demand for cheapest product. Further investigation of passenger choice behav-
iour and the changing price elasticity of demand in the new less-differentiated fare envi-
ronments will be fundamental to the development of more sophisticated ways of
determining passenger willingness-to-pay.

Another direction could be to investigate the feedback phenomenon observed in
Network D6-namely, under what circumstances do the feedback effects dominate the
benefits of O-D revenue management. The relationship between demand and capacity
might be a factor in this phenomenon.

Finally, the relative benefits of DAVN and the new HBP are also of interest. The new
HBP has shown itself to be a good performer across a wide variety of situations. It is still
dominated by DAVN, but its simplicity makes it a very attractive method for further
research.
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