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ABSTRACT

According to U.S. government surveys, 12% of Americans used taxi service in the

previous month' and spent about $3.7 billion a year for cab fare.2 Taxi service is one of the

major modes of public transportation. Despite providing services 24 hours a day, driving

relentlessly with an empty taxicab in search of passengers and answering dispatch calls

instantaneously, taxi service is ranked the most unsatisfactory mode of transportation by

the public. Charging higher fares than other major modes of transportation and averaging

10 to 12 hours work day, taxi drivers have a difficult time to earn a sustainable income.

Approximately half of all the taxi mileage is paid mileage; this means a significant

portion of a taxi's time and fuel is spent on non-revenue generating activities, i.e. without

passengers. Current taxi allocation is inefficient. The number of taxis and the

geographical service areas which they serve are heavily regulated in most cities. With

limited competition and strict regulations, taxi service suffers with customers having to

endure long wait times and inferior services. The current taxi systems in most U.S. cities

may be greatly improved from their current state.

This thesis investigates the factors of inefficiency in the current taxi system,

reviews previous taxi efficiency studies, and suggests possible solutions. After extensive

literature reviews and field research, a computer simulation model has been built in the

MATLAB environment. This computer model tests various attributes that affect logistic

optimizations for taxi services. In particular, the effect of taxi fleet size, the quantity of

hotspots, and the concentrations of customers at hotspots are analyzed in detail using the

' Bureau of Transportation Statistics. October, 2003.
http://www.bts.gov/programs/oinnibus surveys/household survey/2003/october/
2 Schechner, S., Cranky Consumer: Hiring a Taxi During Rush Hour, The Wall Street Journal, April 26,
2005.
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model. The metric of interest includes the customers' wait time, taxi revenue, and costs of

operations. Results from the computer simulation experiments, field research, and

literature review are analyzed and synthesized. Possible solutions are proposed as part of

this thesis.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems Division and Civil & Environmental Engineering
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Introduction and Thesis Overview

"[New York City taxis] take more than two hundred million passengers [and travel]

almost eight hundred million miles a year. They make more than one billion dollars in

revenue and drive passengerless for almost a million miles a night. They maintain twenty-

four-hour coverage of one of the biggest cities in the world, and they almost always get you

where you need to go."3

Approximately half of the taxi mileage is paid mileage; this means a significant

portion of the taxi's time and fuel are spent on non-revenue generating activities, i.e.

without passengers. Current taxi allocation is inefficient. The number of taxis and their

geographical service areas are heavily regulated in most cities. With limited competition

and strict regulations, taxi service suffers with customers having to endure long wait times

and inferior services. The current taxi systems in most U.S. cities have plenty of room for

improvement.

From an economic perspective, the supply of taxis (number of hours taxis are

available to transport passenger) is not equal to demand of taxis because taxis often drive

passengerless in search of customers. From the driver's perspective, the supply of taxis is

more than the demand because a significant amount of time (~50%) is spent while the

driver is driving an empty taxi looking for potential passengers. From a customer

perspective, the demand of taxi service is higher than the supply because customers often

have to wait a long time for taxi service. In a free market, the price or fare is determined

by the equilibrium of supply and demand. The price (fare) of the taxi is determined by the

government in most cities. The government regulates not only the fare structure but also

the number of taxi medallions and sometimes even the fee structure between the cab owner

and the driver.

3 Taxi Dreams. PBS Documentary. 2001. [http://www.pbs.org/wnet/taxidreams/index.html]
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This has created significant economic inefficiency as shown in the graph below.

Price
Actual SuppLy
of Taxi Supply of

Taxi

P* -Price set by
government

Actual Demand
of Taxi

Demand
of Taxi

Quantity

Figure 1: Taxi demand and supply is not at equilibrium. The price is set by local governments.

This thesis investigates the factors of inefficiency in the current taxi system,

reviews previous taxi efficiency studies, and suggests possible solutions. After extensive

literature reviews and field research, a computer simulation model has been built in the

MATLAB environment. This computer model tests various attributes that affect logistic

optimizations for taxi services. In particular, the effect of taxi fleet size, the quantity of

hotspots, and the concentrations of customers at hotspots are analyzed in detail using the

model. The metric of interest includes the customers' wait time, taxi revenue, and costs of

operations. Results from the computer simulation experiments, field research, and

literature review are analyzed and synthesized. Possible solutions are proposed as part of

this thesis.
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1. Industry Background

A. History

A taxi is a vehicle for hire that transports passengers to locations of

their choice. It is different significantly from other modes of public

transportation where the pick-up and drop-off locations are determined by

the service providers.

The history and concept of taxis can be traced back hundreds of

years. In the United Kingdom, the first hackney-carriages license, a horse

drawn carriage for hire, was issued in 1662. In both London and Paris,

royal proclamations dictated the number of carriages allowed.4 This

signifies the beginning of regulations. By the 1 9th century, the Hansom cab,

a horse-drawn carriage that is faster, lighter, and safer than the previous

hackney-carriages, became popular and replaced previous carriage designs.

In 1891, the taximeter was invented to calculate fare. The first gas-powered

and meter-equipped taxi began operation in 1897 in Germany. In the next

ten years, this model of taxi proliferated in Paris, London, New York and

finally around the world.

The next major invention after the taximeter was the two-way radio

in the 1940s. Two-way radio significantly increased the efficiency of

dispatching taxis to customers. By the 1980s, computer assisted dispatching

(CAD) was introduced to the taxi industry.5 With CAD, passenger

information was entered into the computer and the availability of taxi was

displayed for the dispatcher. This facilitated the processing of passenger

and taxi data. Today, only a very small minority of taxis is equipped with a

small computer, GPS, credit card processing equipment and other

technologies.

4 Wikipedia. 2006. http://cn.wikipedia.org/wiki/Taxicab.
5 Wikipedia. 2006. http://en.wikipedia.org/wiki/Taxicab.
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1 9 th Century. Hansom cabs
and low-slung.6

were light, fast Taxi today in New York City

Figure 2: Taxicabs in the 19th century and today

6 Wikipedia, 2006. http://en.wikipedia.org/wiki/Hansom cab.
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B. Regulation

Regulations of the taxi industry vary greatly depending on the location. In

Chicago, there is a "three-strike" rule for drivers who do not maintain a clean

taxi. In Los Angeles, there is a standard on punctuality and customer

complaints that cab companies must meet. In New York and Shanghai, there is

a rating system for taxi drivers. 7

Taxis usually are allowed to pick up passengers on the street, at taxi stands,

and other locations where they are allowed to operate. On the other hand, other

vehicles-for-hire such as livery cars can only pick-up passengers through

previous arrangements. Violating passenger pick-up rules can result in

revocation of taxi licenses and prosecution.

Regulations in major cities, such as London and New York, are extremely

strict. For example, in London, aspiring drivers must pass a grueling

geography test as part of licensing requirement. Taxi drivers are required to

purchase a medallion in order to own a taxi. The medallion allows the taxi to

operate within limited geographic areas. The drivers and/or owners also must

also submit to extensive background checks and training.8 The taxicab has to

pass certain inspections and cannot be more than a certain number of years on

the road. Finally, the fare structure for passengers, the financial structure

between taxi/medallion owner and drivers/lessee are also regulated.

C. Dispatching

Before the invention of the two-way radio, taxi drivers often go to call-

boxes at the taxi stand to contact the central dispatching office. With the

invention of two-way radio in the 1940s, taxi drivers can contact their central

dispatching office for passenger pick-up information while on the road. This

plays an important role in increasing the efficiency of the taxi industry. Today,

7 Schechner, S., Cranky Consumer: Hiring a Taxi During Rush Hour, The Wall Street Journal, April 26,
2005.
8 Wikipedia. 2006. http://en.wikipedia.org/wiki/Taxicab.
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the dispatching of taxis is even more efficient with computer assisted

dispatching and GPS. However, new technology is slow to be adopted by the

taxi industry.9

D. Fare

Taxi fares are usually measured by a taximeter which calculates the fare

based on the combination of distance traveled and waiting time. The fare

structure is usually regulated by the government. On a cost per mileage basis,

taxis are usually more expensive than other forms of public transportation such

as trains, subways, and buses. Depending on the locations/situations,

passengers pay a flat fare or while in other settings taxi will take the highest

paying passenger.' 0 For example, in New York City (NYC), trips originating at

JFK Airport have a flat rate range from $40-$50. While on the streets of NYC,

the initial fare is $2.50 for the first 1/5 of a mile, 40# for each additional 1/5 of

mile and waiting time is 40# per 2 minutes."

There are differences in regulation, dispatching and fare structure depending

on the country or even cities within the same country. For example, taxis in

Hong Kong are painted in three different colors (red, green, and blue)

designating which areas/districts they can pick up passengers. In contrast, taxis

in Washington D.C., there are no meters in the taxi. The city is divided into

zones and passengers pay according to which zone they enter and exit the taxi.

In general, taxis are concentrated in major cities, business districts, and more

affluent communities because of the higher probability of picking up more

passengers. This leaves some areas without taxi service. In the U.S.,

underserved areas are usually served by livery cars or illegal cabs.

9 Wikipedia. 2006. http://en.wikipedia.org/wiki/Taxicab.
10 Wikipedia. 2006 http://en.wikipedia.org/wiki/Taxicab.
" Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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E. Passengers

According to U.S. government surveys, 12% of Americans had used taxi

services in the previous month'2 and spent about $3.7 billion for cab fare.' 3

Thus taxis are a major mode of public transportation. There are 230,000

active taxi drivers according to the 2000 U.S. Census. However, the number

of taxis in each city varies greatly.

In New York City, with 12,779 medallion taxicabs,14 there were 241

million passengers who took a taxi in 2005 with over 470,000 taxi trips per

day which generated $1.82 billion in annual revenue. Taxis transport 25%

of passengers traveling within Manhattan. Revenue derives from taxi

transport accounts for 45% of the fare paid trips while taxi, bus, subway and

black car comprise the balance. The average fare was $10.34 when tips are

included.' 5 On the average, taxi passengers have stable discretional incomes.

Most of the trips are for work or personal errands. Depending on the

time of the day, the purposes of each trip differ. In the morning (7-9 a.m.),

61% of the trips are destined to work. The origins of these trips are primary

from the Upper East Side and Upper West Side in NYC, the more affluent

neighborhoods. After 8:00 p.m., 50% of the trips are bound for passengers'

homes, originating from work or places of entertainments. Overall, 66% of

all taxi trips in Manhattan are between work, home, and places of

entertainment.16

12 Bureau of Transportation Statistics. October, 2003.
http://www.bts.gov/programs/omnibus surveys/household survey/2003/october/
13 Schechner, S., Cranky Consumer: Hiring a Taxi During Rush Hour, The Wall Street Journal, April 26,
2005.
" New York City. New York City Taxi & Limousine Commission. New York City Taxi and Limousine
Commission's Annual Report 2005.
'" Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
16 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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Trip purposes
of taxi riders,
1993.
Source. TLC 1993b.

Other Other
26%

Home-Work
25%

Work-Oth
12%

Home-Other
37%

Figure 3: Purpose of taxi trips in New York City.' 7

As shown in the figure above, the majority of the taxi trips are either

home or work related.' 8

Trips to the airports also accounts for a small portion of total trips.

Approximately 30% of air passengers use taxis to get to airports while more

than 30% of air passengers use taxis to depart from airports.

As shown in the figure below, most of the taxi passengers are local

residents of Manhattan. 19

Place of
residence of
taxi riders,
1993.
SOuuce. TLC 1993b.

Foreign
Other U.S. 5%

9%

NY suburbs

5%
Outerboroughs

10% I

Manhattan
71%

Figure 4: Residence of taxi riders. New York City study.2 0

" Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
'* Schaller Consulting. The New York City Taxicab Fact Book. March 2006.

"9 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
20 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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The passenger attributes in New York City taxi riders can be easily

extrapolated to other major cities around the world.

F. Quality of Services

Despite being one of the major modes of transportation, the quality of

taxi services ranks much lower when compared to other modes of

transportation.

For instance, in New York City, there were 17,350 complaints filed with

New York's Taxi & Limousine Commission (TLC) in 2005. The level of

satisfaction (6.2 on a scale of 10) was below that of subways and buses.

While taxi passengers value the sense of security, comfort, and being in a

fast mode of transportation, Most complaints were related to the inability to

hail a cab when needed, value for the money, safety from accidents, driver

rudeness, and the driver's lack of street and geography knowledge. 2 1 These

fallacies may be improved with training and arming the driver with better

technology.

21 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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Customer Satisfaction Ratings, 2004.
Overall rating by all respondents; attribute ratings by respondents who had used cabs in past 3
months. Source: New York City Transit Transportation Panel Survey, July-Sept. 2004.

Rating (0-10 scale)
3 4 4 5 5 6 B 7 7 8 8

Taxi service overal 6.2

Personal security during the day 7.5
Personal security after 8 pm 7.2

Overall comfort of the trip 6.9
Cleanliness inside the vehicles 6,9

Being a fast mode of travel 6.8
Being charged the correct fare* 6.8

Predictability of travel time 6.6
Driver knoving how to get to destination* 6.3

The courtesy of the drivers* 6.1
The driver understanding directions'

Safety from accidents 6.

Being a good value for the money
Able to get taxi when you want one* 5.3

* Rating is from Oct.-Dec. 2000 (these attributes were not asked after early 2001).

Table 1: New York Customer Satisfaction Rating of Taxi Services. Taxi has the lowest rating among
all public transportations. Unable to get a taxi is the attribute with the lowest rating.

The graph above shows the attributes that passengers value. Attributes at the top of the

chart are factors that customers believe taxis are doing well while those at the bottom of the

chart are attributes that need improvement. The overall satisfaction rating (6.2) is below

that of subways (7.0) and buses (6.7).

The table on the next page compares the major attributes for taxis, subways, buses,

private cars, and car services. It clearly shows that taxi ranks almost last or second to last
23across all categories.

22 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
23 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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Customer satisfaction ratings, 2004.
Source: New York City Transit Transportation Panel Survey, July-Sept. 2004.

Being
fast

Over mode of
all travel

Predict-
ability of

travel
time

Overall
comfort
of trip

Safety
from
acci-
dents

Good
value for

the
money

Per-
sonal

security
during
the day

Per-
sonal

security
after 8
p.m.

Private cars 8.5 8.1 7.7 8.9 7.6 7.8 8.8 8.4
Subway 7.0 7.9 7.0 6.9 7.7 7.1 7.6 6.5
Car service 6.9 7.5 7.2 7.7 6.7 6.5 7.9 7.4
Local bus 6.7 6.4 6.4 7.2 7.6 7.1 8.1 7.4
Taxi 6.2 6.8 6.6 6.9 5.7 5.5 7.5 7.2

Table 2: Customer satisfaction rating of taxi in comparison to other modes of transportation.

The availability of taxis depends not only on the geographic locations of the

passengers and taxis but also on the time of day. As shown in the graph below, demand

and availability of taxis varies greatly during a (24) hour cycle.

14 -
Taxi
availability in
Midtown 10-

Manhattan, a-
Nov. 2001. 6-
Number of cabs
stopping per one-half 4-
hour of testing. 2-

Source: Schaller iConsulting 2002a. 0 I I I I*1.5E
7-10 10am- 5-7 7-11 7-10 10am- 5-7 7-11
am 5pm pm pm an 5pm pm pm

Figure 5: Availability of taxi is a function of time and location.

24 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
25 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
26 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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"Being able to get a taxi when one needs it" is a major customer complaint. The reasons

contributing to being unable to get a taxi include:

" The demand is higher than the availability of taxis

o Better allocation of taxis can eliminate some non-live mileage (miles on the

road without passengers)
o Better use of other car services, such as livery or black car services, to meet

the demand

" Taxis are not at close approximation to the customers

o Better allocations of taxis will bring taxis closer to the customers

" Taxis are refusing to pick up passengers (service refusal is a major complaint)

o Financial motivation is one the major reasons customers believe for refusal

of service. Upon dropping off passengers, taxi drivers do not want to be

stuck in traffic or return with an empty cab

o Taxi drivers feel safer picking up passengers who called ahead for service

than picking up passengers from the street

The refusal of service is closely correlated with the live mileage (miles with passengers).

When passengers are plentiful, taxi drivers become more selective, as shown in the figure

below: 27

Refusal
complaints and
taxi live miles,
1987-2005.
SCurces. TLC fo!
com-ipiaintts. and
Schialler Consulting
fOr ve mues. 1988
live miles figure is
from trip sheet
sample.

6,000 -

5,000 -

4 00 .

3,000 -

2,000 -

1 000 -

- -- # Refusal complaints (left scale)
-4- % Lie miles (right scale)

T TrT1TT~~1

87 90 92 94 96 98 00 02

Figure 6: Comparison of taxi complaints and live mileages. 28

27 Schaller Consulting. The New York City Taxicab Fact Book March 2006.
28 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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In summary, taxis are a major mode of public transportation that many

people depend on it but there is much room for service improvement. This

detailed analysis of New York City's highly regulated taxi situation can be

applied to other major cities. It is very likely that behaviors needs of

passengers in NYC are very similar to other areas. It is clear that the

availability of taxi is one of the highest attributes that customers value.

Perhaps the level of customer service can be improved with an intelligent,

dynamic, centralized taxi allocation system.
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G. Taxi Drivers

The majority of taxi drivers are usually male and foreign-born,

especially in major cities. Overall foreign-born drivers represent slightly

less than half of all taxi and limousine drivers in the U.S. They usually

lease the taxi and pay the medallion owner a portion of the revenue.

Driving a taxi requires hard work and long hours. A majority of these

immigrant drivers view this as an opportunity to pursue the American dream.

A majority of the taxi drivers are concentrated in seven major U.S. cities

this accounts for 36% of all U.S. taxi and limousine drivers. Overall, the

growth of the number of drivers has been relatively stable in a tightly

regulated industry, as shown in the graph below.29

Number of taxi/limo drivers by metropolitan area, 1980-2000

50,000-

40,000 -

30,000 -

20,000 -

10,000 -

1%

o 1980 m 1990 s 2000

N.Y. Chicago LA. DC S.F.

Figure 7: Distributions of taxi drivers in the U.S.30
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29 Schaller Consulting. The Changing Faces of Taxi and Limousine Drivers. July 2004.

30 Schaller Consulting. The Changing Faces of Taxi and Limousine Drivers. July 2004
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In New York City, 91% of the drivers are immigrants. The most

common countries of origins are Pakistan (14.4%), Bangladesh (13.6%),

and India (10.2%).3' Lack of English skill is one of the major complaints of

passengers. New York City also has the highest ratios of taxi drivers to

population as shown in the graph below.32

Ratio of taxi/limo drivers to metro area population, 2000

Drivers per 1,000 population

0 1 2 3 4 5

N.Y. 4.6

Las Vegas 3.0

D.C. 1.6

Boston 1 4

S.F. 13

Chicago 1.2

LA 0.9

Other metro areas 0.6

Not in metro area 0.5

U.S. total 0.8

Figure 8: The ratio of taxi drivers to populations. 33

31 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
32 Schaller Consulting. The Changing Faces of Taxi and Limousine Drivers. July 2004
3 Schaller Consulting. The Changing Faces of Taxi and Limousine Drivers. July 2004
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Driving a taxi is a difficult job. Despite 4.6 drivers per 1,000 residents

in New York City, drivers only make $158 per shift after paying the lease

fee and gas. The average shift is based on 130 miles and 10 hours per day.

The drivers average 30 trips and serve 42 passengers each shift with an

average fare of $10.34. During the time on the road, only 61% of taxi

mileages are transporting passengers. Only 29% of taxis are owner-driven.

Thus 71% of the drivers lease their vehicles and pay a portion of the revenue

to the medallion owner. As shown in the graph below, drivers only pockets

about half of the revenue.3 4

Where the fare
dollar goes, 2005.
For cabs leased to drivers.

"Fare doflar- includes
surcharges and estimated
15% tips

Source: Schaller Consulting
Unpublished analysis

Vehicle and
gas
24%

Other
expenses

4%
Driver

earnings
57%

Ower net
income

15%

Figure 9: Taxi driver operation cost distribution."

Compounding the difficulty of making a living as a taxi driver is the

illegal competition from livery car services. By law, livery cars can only

pickup passengers from prearrangements. Nonetheless, attempts of livery

car trying to pick up passengers on the streets illegally and charge

passengers exorbitantly high fares are abundant throughout New York City.

1 Schaller Consulting. The New York City Taxicab Fact Book March 2006.

3 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
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H. Medallion Prices

Medallions are one of the major requirements for licensing that give the

owner the right to operate a taxi. The number of medallions is limited by

the local government and thus is a very sought after commodity.

In New York City, an individual medallion was auctioned off at

$339,000 in October 2005.36 In Boston, the average sales price in 2000 for

medallions at auctioned was $180,000.37 The price of medallions has risen

significantly over the years. This has become an obstacle for drivers to own

a taxi and earn a better living.

I. Accidents

Accidents are one of the major concerns passengers have when riding a

taxi. For example, in New York City, there were 4,270 accidents involving

taxicabs in 1999 according to the New York State Department of Motor

Vehicles. With better technology that decreases the non-live miles, the

number of accidents can be potentially lowered.

36 Schaller Consulting. The New York City Taxicab Fact Book. March 2006.
37 Flores-Guri, D., Local Exclusive Cruising Regulation and Efficiency in Taxicab Markets, Journal of
Transport Economics and Policy, (39) 2, May 2005
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2. Current Technologies

Taxis identify their potential customers by either picking up passengers on the street

or through prearranged agreements.

A. Street Hail

Hailing a taxi on the side of the street is the most well-known method of

hailing a taxi. This method poses several problems:

* Drivers are unable to predict accurately when and where the
next passenger will need a taxi.

" Taxi drivers will need to concentrate on both driving and
finding the next passenger. This poses danger to the driver,
passengers who have to stand onto the road, pedestrians, and
other drivers because of potential car accidents.

* Drivers "feel" unsafe because they do not know the
passenger. With prearranged fares, the driver will have at
least some customer information such as the customer's
phone number.

" Passengers have to stand outside exposed to the elements
during frigid cold temperature, hot humid day, and
sometimes onto the road with on coming traffic in order to
hail a cab.

" Taxi drivers cruise certain "passenger-rich" streets and
neighborhoods hoping to find passengers. They usually
cruise certain neighborhoods based on past experiences.
Apparently all other drivers also have similar past
experiences; this creates not only an uneven distribution of
taxis (supply) and potential passengers (demand) but also
generates traffic and potential accidents on the streets.

B. Taxi Stand

Taxi stands have been in existence for a long time. Taxi stands attempt to

have a dedicated place for taxis and passengers to meet. However, it still does not

address the critical element of time and the following:

0 Time: There is no prearranged time when the passengers and
taxis will be there. Based on past experiences and word of
mouth from other taxi drivers as which taxi stand will have
passengers, the taxis gather there. With a lack of information,
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both passengers and drivers will be wasting time waiting for each
other.
* Passenger will never know when or if a taxi will arrive at a
taxi stand.

C. Prearranged Booking

Passengers usually call a central dispatching office to arrange for pick-ups.

This allows the central dispatching office to relay passenger information to their

taxis by two-way radio or text messages to the drivers who subscribed to that

particular dispatching service. It is then up to the individual drivers to decide

whether to accept that passenger. Of the three most common methods of requesting

a taxi, this seems to be the most efficient.

For instance, in Singapore, Global Positioning Systems (GPS) based

Automatic Vehicle Location and Dispatch System (AVLDS) has been launched to

assist in the dispatching of taxis. Companies that employ AVLDS will be able to

use GPS to locate its own taxis that are within 10km of the customer. The driver

will have the opportunity to accept or ignore the job. Once the job is accepted, the

taxi number and expected arrival time is relayed to the passenger. 38

Prearranged pickups can be classified into two categories, advance and

current. Advance pickups are arranged in advance, such as at least 30 minutes in

prior or even several hours or days in advance. With advance pickups, drivers have

to "block-out" a certain period time prior to the pickup so they can travel to the

prearranged passenger. This system has the potential of forgoing passengers who

need a cab immediately prior to the prearranged passenger. This also prevents the

taxi from accepting other long-haul trips which are profitable but may run into the

prearranged passenger's appointment.

Current pickups are pickups that need to occur immediately. It is up to the

individual drivers to decide whether to accept the pickups or which driver is able to

38 Liao, Z. Real-Time Taxi Dispatching Using Global Positioning Systems. Communications of the ACM,
46.5 (2003): 81-83.
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accept the prearranged pickup first if there is more than one driver competing for

that passenger.

With these three most popular modes of requesting taxi services, there is no

central monitoring and planning, and a total lack of complete flow of information

between the passengers (demand) and taxi drivers (supply) and among the drivers

themselves (unable to see competitors' action). This creates significant inefficiency

in which almost half of the taxi drivers' time is wasted by cruising the street with an

empty taxi. This economic loss has a negative impact to our society. In order to

minimize this economic loss, we need to have free flow of complete information

between passengers and drivers, minimal regulations, and free competition.

However, this is unlikely to happen anytime soon because the industry is politically

entrenched and highly resistant to change. The next-best solution is to have central-

planning which this thesis proposes by using an efficient taxi allocation system.
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3. Literature Reviews

Most people view the taxi industry as a dinosaur full of bureaucracy,

regulations, and non-customer friendly. Even though taxi is a major mode of public

transportation, this industry only draws limited academic interest. It is also an

industry that has successfully resisted major changes and improvements that will

bring it to the 2 1 st century. For example, several New York City mayors had vowed

to improve the system over the course of several decades but the industry is

essentially the same as it was in the 1900s. Drivers' real earning today is

comparable as they were or sometimes even lower than those in the early 1900s and

New Yorkers gave taxis the lowest satisfaction rating among all public

transportations.

The following are studies that proposed various methodologies and policies

to improve taxi services.

A. Increased Taxi Service Areas Can Improve Overall Services

Increase the area where taxis can pickup passengers will benefit consumers without
hurting the producers.

In Daniel Flores-Guri's study, cruising regulations and the efficiency of the

taxi market are analyzed. The study examines the cruising regulations and taxi

efficiency of two Massachusetts cities, Boston and Cambridge, which are in close

proximity to each other. Both Boston and Cambridge have exclusive cruising

regulations; Boston does not allow non-Boston taxis to pickup passengers on the

streets of Boston. Similarly, Cambridge does not allow non-Cambridge taxis to

pickup passengers on its streets. This creates significant inefficiency especially for

two cities that are in close proximity and residents travel frequently between these

cities. For example, if a passenger originating from Boston wants to go to

Cambridge, he would take a Boston taxi. Upon dropping that passenger off in

Cambridge, the Boston taxi cannot pickup any Cambridge residents on the streets,

except through prearrangements or dispatch calls. The Boston taxi will have to
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travel back to Boston with an empty cab. This is very inefficient as the Boston taxi

not only has to travel back with an empty cab but also has to by pass Cambridge

residents who are trying to flag it down for service. Boston taxis are not allowed to

service Cambridge residents who are trying to hail cabs on its streets.

In the summer of 2002, Flores-Guri and his team monitored Boston's 1,775

taxis and Cambridge's 255 taxis at the eight bridges that connect Boston and

Cambridge. Their results indicate that approximately 90% of the taxis return to

their home city with an empty taxi. This is shown in the table on the next page.

Those that are returning with passengers most likely are either picking up

passengers in the foreign city through the dispatching system, originating from a

city other than Boston or Cambridge while en-route to another destination, illegally

picking up passengers on the streets of the foreign city, or using that city as a short-
39cut to some other destination.

39 Flores-Guri, D., Local Exclusive Cruising Regulation and Efficiency in Taxicab Markets, Journal of
Transport Economics and Policy, (39) 2, May 2005
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Occupied and Empiv Taxicabs

Taxis licensed in: Boston Boston

Entering: Boston Cambridge

Bridge Weight Etmpty Occupied Empty Occupied

Anderson 0.137 90.5% 9.5% 4.2% 95.8%
B.U. 0.098 75.9% 24.1% 19.0% 81.0%
C.R. Dam 0.113 85.0% 15.0% 6.5% 93.5%
Elliot 0.057 95.8% 4.2% 15.2% 84.8%
Gilmore 0.040 37.9% 62.1% 83.3% 16.7%
Longfellow 0.361 95.4% 4.6% 7.9% 92.1%
Mass. Ave. 0.129 87.4% 12.6% 9.4% 90.6%
Western + River 0.065 81.8% 18.2% 13.7% 86.3%

Weighted average 87.4% 12.6% 12.4% 87.6%

Taxis licensed in: Cambridge Cambridge

Entering: Boston Cambridge

Bridge Weight Empty Occupied Empty Occupied

Anderson 0.137 2.1% 97.9% 94.1% 5.9%
B.U. 0.098 3.9% 96.1% 95.5% 4.5%
C.R. Dam 0.113 5.5% 94.5% 93.3% 6.7%
Elliot 0.057 18.2% 81.8% 85.7% 14.3%
Gilmore 0.040 9.1% 90.9% 96.2% 3.8%
Longfellow 0.361 4.2% 95.8% 96.9% 3.1%
Mass. Ave. 0.129 5.1% 94.9% 96.6% 3.4%
Western + River 0.065 7.4% 92.6% 93.3% 6.7%

Weighted average 5.3% 94.7% 95.0% 5.0%

Table 3:40 Top: Approximately 80%-90% of Boston cabs are returning with an empty cab.
Bottom: Over 90% of the Cambridge cabs are returning with an empty cab.

With the fare structure and number of taxis in a city regulated and fixed, this

study proposes a model to study the impact of economic efficiency when the

cruising regulations are changed. In this model, the demand for taxi service is

defined as:

Q = Q (P+K/V)

40 Flores-Guri, D., Local Exclusive Cruising Regulation and Efficiency in Taxicab Markets, Journal of
Transport Economics and Policy, (39) 2, May 2005
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Where:
Q: the number of occupied taxis
V: the number of vacant taxis
P: price of the ride and cost of waiting time
K: a factor that depends on the cost of waiting time and the size of the area

that is serviced by the cab

The cost of operation for all of the taxis is:

C = c (Q+V)

To maximize the difference between the consumers' willingness to pay and the cost

of taxi operation, the model proposes the following equations:4 '

/ Q1 (Q 1 K\
max Q(Q- a&!-C(Q +V)
QV J V)

And the profit is:

Q-11(Q)K Q - c(Q + V) = ri

This study concludes that merging taxi markets of adjacent cities can increase

efficiency. Since price and number of taxis are regulated, the efficiency would be

shorter wait-times for passengers and higher revenues for the taxi drivers as they

could pickup more passengers in a larger geographic area.

41 Flores-Guri, D., Local Exclusive Cruising Regulation and Efficiency in Taxicab Markets, Journal of
Transport Economics and Policy, (39) 2, May 2005
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B. Real-Time Demand and Traffic Information in the Taxi's Dispatching
Systems

Trip-Chaining of Taxi's Advance Bookings and Incorporating Real-Time Demand
and Current Traffic Conditions in Taxi's Dispatching Systems

There is a study by Der-Horng Lee of National University of Singapore in

which Lee proposes to improve the taxi system in Singapore by trip-chaining a

taxi's advance bookings 42 and improve a taxi's dispatching system by incorporating

real-time demand and current traffic conditions.43

In Lee's study of taxi's dispatching systems by incorporating real-time

demand and current traffic conditions, Lee studies the current booking systems in

Singapore in which Global Positioning Systems (GPS) is used to locate the shortest

and direct-line distance between the customer and the taxi. Lee argues that such a

system does not necessarily yield the shortest time because of traffic conditions and

rules. Lee proposes an alternative dispatching system in which real-traffic

conditions are incorporated into the dispatching decisions and the shortest-time

paths will be dispatched to the taxi. For instance, one-way streets and rush hour

traffic will be incorporated into the proposed dispatching system. Using computer

simulations, Lee's study and results showed a 50% reduction in passenger wait time

and average distance traveled for the taxi.44

C. Grouping of Taxi's Advance Bookings

Lee also proposes a system in which of taxi's advance bookings are trip-

chaining. In advance booking, customers place their taxi bookings more than 30

minutes in advance. Lee proposes to chain several advance bookings into a

reasonable span of time, in which each pick-up point is within close proximity of

42 Lee, D.H., H. Wang, and R.L. Cheu, Trip-Chaining for Taxi Advance Bookings: A Strategy to Reduce
Cost of Taxi Operations, Proceedings of the 8 3 'd Annual Meeting of the transportation Research Board, July
12, 2003.
43 Lee, D.H., H. Wang, R.L. Cheu and S.H. Teo, A Taxi Dispatch System Based on Current Demands and
Real-Time Traffic Conditions, Proceedings of the 8 2"d Annual Meeting of the Transportation Research Board,
in CD-ROM, Washington, D.C., U.S., Jan 12-16, 2003.
44 Lee, D.H., H. Wang, R.L. Cheu and S.H. Teo, A Taxi Dispatch System Based on Current Demands and
Real-Time Traffic Conditions, Proceedings of the 82"d Annual Meeting of the Transportation Research Board,
in CD-ROM, Washington, D.C., U.S., Jan 12-16, 2003.
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the previous drop-off point. Lee's simulation study shows a possible reduction of

the fleet size by 87.5% while serving the same level of demand in advance

bookings.

D. Multiperiod Dynamic Model of Taxi Services in Hong Kong

"A Multiperiod Dynamic Model of Taxi Services with Endogenous Service

Intensity'4 6

A study is conducted by a group of researchers in China in which they divide the

day into a series of subperiods. They believe there is a fluctuation of customer

demands during the day thus a dynamic model is needed to model changing

demand of customers and supply of taxis. Within each of the subperiods, the

supplies of taxis and demand of customers are assumed to be uniform. Using a

dynamic model, they model the demand and supply of taxis in Hong Kong. Using

this experiment, they concluded that this model more closely reflects the reality of

taxi services in Hong Kong.

45 Lee, D.H., H. Wang, and R.L. Cheu, Trip-Chaining for Taxi Advance Bookings: A Strategy to Reduce
Cost of Taxi Operations, Proceedings of the 8 3rd Annual Meeting of the transportation Research Board, July
12,2003.
46 Yang, H., Ye, M., Wong, S.C., A Multiperiod Dynamic Model of Taxi Services with Endogenous Service
Intensity, Operations Research, (53) 3, May-June 2005.
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E. Macroscopic Taxi Model (Passengers, Taxi Utilizations, Level of Services)

A macroscopic taxi model for passenger demand, taxi utilization and level of

services

In this study, the authors develop a model based on the premise of demand-

supply equilibrium of the taxi market. A range of exogenous and endogenous

variables are considered and a system of nonlinear simultaneous equations is

generated. A model that incorporates all of these factors is developed and used to

answer various questions such as the necessary number of taxi licenses, taxi fare

structure, range of service quality, and the feasibility of having market demand-

supply equilibrium under the constraints of regulations.

This study is conducted in Hong Kong, using Hong Kong data and policies.

Like any other major cities, taxi service in Hong Kong is one of the major and

important means of transportation that provides flexibility and convenience. They

are subject to prevalent regulations such as territorial restrictions, entry restrictions

of the quantity of taxis, fare structure control, etc.

The authors develop a model to characterize the demand and supply

equilibrium of taxi services in the context of regulations, origin-destination demand

patterns, and both vacant and occupied taxi movements on the road. Currently, the

"equilibrium quantity (total taxi-hours) of services supplied will be greater than the

equilibrium quantity (occupied taxi-hours) demand by a certain amount of slack

(vacant taxi-hours). It is this amount of slack that governs the average passenger

waiting time."48

Thus within a certain taxi market, it is almost always true that the supply

(total taxi-hours) is greater than the demand (occupied taxi-hours). Yet, the

passengers feel that their demand is not efficiently met, i.e. manifest in the form of

47 Yang, H., Lau. Y.W., Wong, S.C., Lo, H.K., A macroscopic taxi model for passenger demand, taxi
utilization and level of services, Transportation 27: 317-340, 2000
48 Yang, H., Lau. Y.W., Wong, S.C., Lo, H.K., A macroscopic taxi model for passenger demand, taxi
utilization and level of services, Transportation 27: 317-340, 2000
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long waiting times for a taxi. The length of the waiting time is one of the critical

factors that determine the level of customer satisfaction and whether the passenger

will take the taxi or not. Thus, the waiting time will have a direct impact on the

demand of taxi and affects the market equilibrium.

With price already set by the government, the supply of taxi (vacant taxi-

hours) will never be able to reach an equilibrium point where supply equals demand

because it takes time (vacant taxi-hours) to reach potential customers. Thus within

the taxi industry, the supply is always greater than the demand, yet customers feel

that the supply is less than the demand because of waiting time.

In establishing the model, a set of exogenous and endogenous variables are

considered: exogenous variables-number of licensed taxis, taxi fare, disposable

income, population, occupied taxi journey time; endogenous variables--daily

passenger taxi trips, passenger waiting time, taxi availability, taxi utilization, and

average taxi waiting time. The variables are incorporated into a set of nonlinear

simultaneous equations. The relationships among the variables are shown on the

following page:
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Endogenous Variable Exogenous Variable

Passenger Waiting Number of Licensed Taxi

Vacant Taxi Headway . Incremental Charge of
Taxi Fare

_ (+)Occupied Taxi
Taxi Occupancy Journev Time

Disposable income
- Tax Passenger Demand -

Consumer Price Index
T -o Taxi Waiting Time

Figure 10: Relations among the various attributes in this taxi study 4d

This is an adapted figure from the study 5 that postulated synchronous relationships

among the endogenous and exogenous variables in the simultaneous equation

model.

The model of simultaneous equations is developed using variable relationships.

These equations are further calibrated using survey data. The proposed model is

used to predict the impact of various policy changes, the utilization of taxi, and

level of services, etc. This study concludes that such a model will help in

examining the impact of changes in policy but the real consequence of intervening

the supply-demand of the taxi market is still unknown, and better models and

further study are needed.

49 Yang, H., Lau. Y.W., Wong, S.C., Lo, H.K., A macroscopic taxi model for passenger demand, taxi
utilization and level of services, Transportation 27: 317-340, 2000
50 Yang, H., Lau. Y.W., Wong, S.C., Lo, H.K., A macroscopic taxi model for passenger demand, taxi
utilization and level of services, Transportation 27: 317-340, 2000
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F. GPS-GIS Approach in Fleet Management

Fleet Management: A GPS-GIS integrated approach5'

In this study, the authors evaluated the usefulness of an integrated GPS

(Global Positioning System) and GIS (Geographic Information System). The

authors studied and concluded that a GPS-GIS system is extremely useful for fleet

management-remote vehicle tracking, monitoring use of resources, dynamic trip

planning, real-time customer demand, current traffic conditions, and driver

behaviors.

In a public transportation setting, an integrated GPS-GIS system can provide

information such as vehicle location, speed, distance traveled, and duration of trip.

All these data can be used to assess the performance of the fleet and the entire

network system. In a real-time setting, the data can be used to dynamically assign

vehicles that are closest to the customer demands. The GPS-GIS system is very

beneficial in logistics and supply chain planning. For example, given a driver's

schedule, one can plan trips that would give the driver time for break and trips that

would eventually bring him home at the end of his scheduled shift. In the World

Trade Center disaster on September 11, 2001, a GPS-GIS system was used to assist

trucks in removing 1.8 million tons of debris from the site. The system helped in

preventing long queuing of trucks and traffic bottle necks at the site. It also

established a geofencing which could send out alerts if the trucks deviated from

their assigned routes. The data stored in the GPS-GIS system also helped in billing

and resolving of various disputes relating to the operations.

The study concluded that a GPS-GIS system has many applications in many

different situations, such as fleet management. Having such a system in a taxi fleet

would significantly increase the current efficiency.

51 Prakash, S.S.S., Kulkarin, M.N., "Fleet Management: A GPS-GIS integrated approach", Map India
Conference 2003.
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G. Scheduling of Network Queues

Scheduling Networks of Queues: Heavy Traffic Analysis of a Multistation Closed
Network5 2

This study attempts to find an "optimal dynamic priority sequencing policy

to maximize the mean throughput rate in a multistation, multiclass closed queuing

network with general service time distribution and a general routing structure."5 3

This study and many other similar research show that managing the schedules of

the servers and customers in the queues can effectively increase the efficiency of a

system when compared to a first come, first serve system. For example, rather than

assigning the first customer to the first taxi in the queue, it is possible to

dynamically analyze the current idle time of the servers, the shortest expected

processing time of each customer and the location of the next potential customer;

this will increase the efficiency of the entire system. In the taxi system, it is very

unlikely that the demand of a significant number of customers is known in advance.

In the cases where the demand is heavy and known in advance, it may be

appropriate to apply such methodology.

H. Combinatorial Optimization and Vehicle Fleet Planning

Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and
Prospects5 4

Studying the complexity of fleet management, the author examines the

combinatorial intricacies of vehicle routing and scheduling. The author identifies

the complexity of these problems and draws conclusions to other combinatorial

optimization studies.

52 Chevalier, P.B., Wein, L.M., Scheduling Networks of Queues: Heavy Traffic Analysis of a Multistation
Closed Network, OR 219-90, July 1990.
13 Chevalier, P.B., Wein, L.M., Scheduling Networks of Queues: Heavy Traffic Analysis of a Multistation
Closed Network, OR 219-90, July 1990.
5 Magnanti, T.L., Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and Prospects,
Operations Research 106-81, 1981.
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There are two issues that are very common in today's fleet management: 1)

Vehicle routing problem-the routing of vehicles through a series of demands to

pickup and deliver goods. 2) Vehicle scheduling problem-the scheduling of

vehicles to meet the demands or to meet a set schedule. The author did a

comprehensive review of how these two issues are solved in various settings and

constraints using a range of different methodologies. A number of these

methodologies are derived or influenced by methodologies developed in studying

the traveling salesman problem. Various constraints are modified by different

studies. For example, in one of the methodologies, three modifications were made

to the vehicle routing problem: 1) vehicles are allowed to circulate at their service

point upon delivery of service, without returning to the depot; this allows the

vehicle to wait at the service point for the next assignment. 2) Allow the vehicle to

go to only the most profitable demand points. 3) Create a network that allows

combinatorial route selection. Using these modifications, the system became more

efficient. Dynamic programming is another approach that seems to be very useful

in operational decision making. For example, its algorithm is used to establish a

schedule for dial-n-ride situations. It is also used to establish schedules and train

station locations in order to maximize revenue while reducing lost sales by

minimizing passenger wait time. 55

The study suggests that there are certain situations where vehicle fleet

planning is well-suited for optimization while in other situations heuristic approach

is more appropriate. Situation where the network has a well-structured flow and

matching type combinatorial models seems to be best suited for optimization. On

the other hand, situations where finding an exact solution is more difficult, such as

those involved in vehicle routing, a heuristic approach may be more appropriate.

Heuristics approach are easier to understand and more accepted by management.

The author concludes that this is a rich field with many challenges and

deserves more studies.

5 Magnanti, T.L., Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and Prospects,
Operations Research 106-81, 1981.
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I. Hierarchical Dispatching: Top and Sub-Levels

Hierarchical dispatching control of urban traffic systems 5

This study divided the taxi dispatching into two levels, an upper layer that

monitors the overall resource optimization while the lower layer is concentrated in

local optimization, dispatching, and vehicle routing within their respective

subsystems. However, this system may be effective if most of the trips are

localized. If a significant number of trips are outside each of the subsystems, may

not be effective are the interface between the subsystems and the upper layer. If the

interfaces are not transparent, doubt if the entire system is efficient.

J. Dynamic Traveling Salesmen Problem

In some respects, optimizing the locations of the taxis to better serve

passengers is similar to the classic Traveling Salesman's Problem (TSP), a problem

that is well-studied but no effective solution is known for the general case. The

traveling salesman problem consists of a salesman finding the shortest route that

connects all of the locations that need to be visited. However, taxi allocation is a

dynamic traveling salesman's problem because the locations of the potential

passengers and taxis are neither fixed nor known with certainty in any given time.

K. The Dynamic Traveling Repairman Problem

There is a study by Dimitris Bertsimas and Garrett van Ryzin in which they

study The Dynamic Traveling Repairman Problem.57 In this study, they propose a

mathematical model for the dynamic vehicle routing problem. They want to

minimize customer wait time in a "stochastic and dynamically changing

environment." This is different from the traditional vehicle routing problem or

56 Gegov, A.E., Hierarchical dispatching control of urban traffic systems, European Journal of Operational
Research, (71) 2. p235-246, 12/10/1993.
" Bertsimas, D., Ryzin, G., (1989), "The Dynamic Traveling Repairman Problem", MIT Sloan School of
Management Working Paper No. 3036-89-MS.
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traveling salesman problem which seeks to minimize the vehicle travel time in a

static environment. In this dynamic traveling repairman problem (DTRP), it is

assumed that the demand for service arrives in a Poisson distribution within a

region. The demand is then randomly assigned to a location in the region. The

objective is to minimize the average wait time each customer spends in the queue.

The approach of the dynamic traveling repairman problem (DTRP) is more

realistic than the standard traveling salesman problem (TSP). In the taxi

optimization situation, the demands for taxis usually are not known in advance but

arrive randomly over time, the dispatching of taxis to meet those demand is a

continuous process. In this scenario, it is easier and more relevant to minimize the

wait time of the customers. Similarly, this is applicable to emergency vehicle

routing where demand for services is not known in advance and the objective is to

minimize wait/travel time rather than minimizing the distance travel or cost of the

vehicle. Thus the characteristics of the DTRP are:

" "The objective is to minimize waiting time not travel cost
* Information about future demand is stochastic
* The demands vary over time (i.e. they are dynamic)
* Policies have to be implemented in real time
* The problem involves queuing phenomena"5 8

Some of these characteristics have been studied by others. In one study, the

probabilistic traveling salesman problem (PTSP) and the probabilistic vehicle

routing problem (PVRP) have been analyzed. In this study, "there are n known

points, and on any given instance of the problem only a subset S consisting of ISI

k out of n points (O<k<n) must be visited. Supposed that the probability that

instance S occurs isp (S). [The objective is] to find a priori a tour through all n

points. On any given instance of the problem, the k points present will then be

visited in the same order as they appear in the prior tour. The problem of finding

such a priori which is of minimum length in the expected value sense is defined as

the PTSP. In cases the vehicle has capacity Q then the corresponding problem is

the probabilistic vehicle routing problem. It is clear that the policy followed is a

5 Bertsimas, D., Ryzin, G., (1989), "The Dynamic Traveling Repairman Problem", MIT Sloan School of
Management Working Paper No. 3036-89-MS.
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real-time policy, but the problem is inherently static, i.e. it is solved a priori using

only the probabilistic information." 59

This approach used prior probability information in predicting real-time

demand. In developing the DTRP model, the author developed a series of policies

and assumptions:

* "When customers are present, the server travels directly from one
customer location to the next following a [first come, first serve
(FCFS) policy]

* When no [future] customers are present at a service completion, the
server waits until the next customer arrives before moving."60

Once the base policy is established, the author modified them under

different conditions. For example, in light traffic conditions, it was found that the

stochastic queue median policy where the server has to travel back to a strategically

located depot after finishing its service call seems to be optimal. In heavy traffic

conditions, it was found that the nearest neighbor policy works the best where the

server is to serve the closest next customer after completion of a service call rather

than serving on a FCFS policy.

Thus it seems that the best policy model will be dependant on the current

traffic conditions.

L. Optimal Adaptive Routing and Traffic Assignment

Optimal Adaptive Routing and Traffic Assignment in Stochastic Time-
Dependent Networks6 '

In this thesis study, the author established a stochastic time dependent

(STD) network, a routing policy, and a formal framework for optimal routing policy

within STD. Also, variants to traffic networks, travel time, travel schedule changes

were incorporated into the model. In the model, a general framework is established

'9 Bertsimas, D., Ryzin, G., (1989), "The Dynamic Traveling Repairman Problem", MIT Sloan School of
Management Working Paper No. 3036-89-MS.
60 Bertsimas, D., Ryzin, G., (1989), "The Dynamic Traveling Repairman Problem", MIT Sloan School of
Management Working Paper No. 3036-89-MS.
61 Gao, S. , Optimal Adaptive Routing and Traffic Assignment in Stochastic Time-Dependent Networks, MIT
Thesis 10/24/2004
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with three major components: "the optimal routing policy generation module, the

routing policy choice model, and the policy-based dynamic network loader." The

study found that the adaptation of the different models lead to various levels of time

savings.

M. The Day Activity Schedule Approach to Travel Demand Analysis6

This thesis study is developed on the basis that a person's activity schedule

can be used to predict travel demand. Travel demand is a mean to meet the needs

of various activities on a person's schedule and it is also a major factor in decision

making. The study further analyzes the travel demands of different segments of the

population by income, work levels, households, and various activity commitments.

This study confirms the significance of interactions between daily activity and each

person's schedule or daily activity which suggests that travel demand is predictable.

N. Transportation on Demand

Transportation on Demand6 3

An in-depth study was conducted on "Transportation on Demand" (TOD).

Transportation on demand is usually concerned with transportation of passengers or

goods between the origins and destinations upon at the request of users. The pickup

and delivery locations are specified by the users. TOD is usually classified as

statistic or dynamic. For static TOD, the requests by the passengers are known in

advance, while for dynamic TOD, customer request are in real-time and vehicle

routing must be adjusted in real-time to meet demand or re-optimize based on

current vehicle locations and customer demands.

62 Bowman, J.L., The Day Activity Schedule Approach to Travel Demand Analysis, MIT Thesis, May 1998.
63 Cordeau, J.F., Laporte, G., Potvin, J.Y., Savelsbergh, M.W.P., Transportation on Demand, 10/14/2004.
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TOD problems usually involve finding solutions to three conflicting

objectives: "maximizing the number of request served, minimizing operating cost,

and minimizing user inconvenience. A balance between these objectives is

sometime obtained by first maximizing the number of requests that can be accepted

given the available capacity and then minimizing the operating costs while

imposing service quality constraints. "64 In order to address these three objectives:

vehicle scheduling, vehicle routing, and request clustering need to be considered.

Vehicle scheduling specifies the time that the vehicle should be at a certain location.

Vehicle routing specifies the order of pickups and deliveries that the vehicle should

follow. Request clustering bundles a group of requests to be served by the same

vehicle.

The author developed a model based on the Vehicle Routing Problem with

Pickup and Delivery (VRPPD). The application of the model is examined in the

context of "dial-a-ride problem, the urban courier service problem, the dial-a-flight

problem, and the emergency vehicle dispatch problem."65 Similar to other studies,

various constraints need to be established and relaxed depending on the situation in

order to optimize the objective function.

0. A Modeling Study of a Taxi Service Operation66

In this study, a model is proposed to efficiently allocate taxis for a centrally

owned taxi fleet. It is assumed that one has full control of the fleet and central

planning is possible. The entire service area is divided into several zones and

characteristics of each zone are then determined. For example, there can be

residential, business districts, airports and hotels zones, etc. For each of these zones,

the typical taxi demand pattern for the entire (24) hours is analyzed. For example,

the demand for taxi is high in the morning when people are leaving for work and

6 Cordeau, J.F., Laporte, G., Potvin, J.Y., Savelsbergh, M.W.P., Transportation on Demand, 10/14/2004
65 Cordeau, J.F., Laporte, G., Potvin, J.Y., Savelsbergh, M.W.P., Transportation on Demand, 10/14/2004
66 Deng, C.C., Ong, B.W., Goh, T.N., A Modelling Study of a Taxi Service Operation, International Journal
of Operations & Production Management, (12) 2, 1992.

Page 44 of 103



during the evenings when people are going home. For business districts, taxi

activities are relatively high throughout the entire work day (8:30 a.m. to 5:00 p.m.)

After customer demand profiles are determined for each of the zones, the

number of taxis required for each zone is determined by modeling the demand

pattern as a queuing model. An integer linear program is formulated to construct an

optimal schedule for the drivers in each zone. The linear model incorporates the

shifts and meal times for the drivers. However, under this model, the drivers are

required to return to their original assigned zone upon dropping off the passengers.

The authors hope that this model can be applied not only to the taxi industry but

also to other situations where fleet management is used.67

This model is relatively useful and applicable in many different kinds of

situations. However, the idea of having each driver to return to his original

assigned zone or location upon dropping off passengers may not be efficient. Even

though the drivers are allowed to pick up passengers on the street while en-route to

their original assigned locations, there is a very high likelihood that the drivers will

drive an empty taxi back to their original assigned locations. Rather than have the

driver travel back to his original assigned locations, it may be more efficient if the

drivers travel to the nearest location with the highest probability of passenger

demands.

67 Deng, C.C., Ong, B.W., Goh, T.N., A Modelling Study of a Taxi Service Operation, International Journal
of Operations & Production Management, (12) 2, 1992.
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4. Experiments, Modeling, Results

To develop the simulation models, the following approach is applied:

1. Set of attributes that can improve taxi efficiency is outlined.

2. A Model Structure that consists of a set of assumptions that is used to

build the computer model is established. This includes the size of the

city, the attributes of interested, and the definitions of the variables.

3. Three strategies (Strategy 0 = Base Model, Strategy 1 = Impact of

returning to hotspots, Strategy 2 = Hotspot with different demand

probability) are defined.

4. Each of these strategies is tested in two different experiments.

Experiment 1 examines the effect of taxi fleet size under the three

strategies. Experiment 2 investigates the effect of quantity of hotspots

and concentrations of customers at the hotspots under the three

strategies.

The computer simulation is developed in the MATLAB environment.

Vehicle routing and planning have been extensively studied in the past.

Depending on the situation, there are a number of factors that can have different

impacts on the performance of the system. However, the results of these studies

and methodologies have not been widely applied to the taxi industry. In order to

analyze the reasons for the inefficiencies and determine the various attributes that

can optimize a taxi's location and efficiency within a city, a base model is

developed with a set of common taxi attributes. Subsequent models are built based

on modifications of these common attributes and the efficiency of the taxi systems

is compared.
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The attributes, policies and assumptions that are considered in establishing

the model include:

* A time-dependent routing policy is established that specifies which
node (location) that a taxi should go, based on current node
availability and probability of current passenger demand during that
specified time period.

* Customer demand is generated based on a time-dependent Poisson
probability distribution. It is the same for all three strategies.

" The speed of the taxi in reaching potential customers or assigned
locations, and the duration of transporting passengers are calibrated
for each simulation.

* All real-time demand, except those customers booked more than an
hour in advance for later service, are on the first come, first serve
policy.

* Upon drop-off or completion of service, the taxi will be assigned to
the closest location with the highest probability of demand.

" Trips that originate from residential neighborhood usually require a
home-bound trip at a later time. The model will consider the
probability of another home-bound trip at a later time.

* A sample hourly historical demand and travel patterns are inputted
into the model to predict future demand and vehicle routing criteria.

" The model network is time-dependent--customer demand and
supply of taxi will vary throughout the entire (24) hour period.

* Every node is considered to be a decision point. A node is defined
as a point where customer can request service and a point where the
taxi can drop off the passenger.

The objective of the model is to:
* Minimize the waiting time of the passenger;
* Minimize the idle time of the taxi;
* Minimize the non-live mileage (mileage that the taxi travels without

passengers);
* Minimize the travel time of the passenger.

However, it is difficult to maximize and/or minimize several objective

functions simultaneously. Thus certain criteria, limits, or bounds are placed

on certain objectives while maximization/minimization is performed on one

of the objective functions.
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A. Model Structure

The model is developed in the MATLAB environment. The codes for each

model are in the Appendix.

Since passenger waiting time is the highest complaint, this will be one of the

major objective functions to minimize in all of the models.

The model is developed with the following attributes:

" Customer locations: customers are requesting service from either
1) hotspots = (airports, hotels, bus and train terminals,

etc.)
2) non-hotspots = (street, restaurants, homes, office.)

" Customers are classified into two types
1) Generic customers: these are customers who request

service from non-hotspot locations.
2) Hotspot customers: these are customers who request

service from hotspots.
* Customer Service Demand: The time and location of customer

requesting taxi services are randomly generated.
* The initial taxi locations are randomly generated.

* City Size: the shape of the city is a square area with an initial value
of 100 units

* Simulation Durations: it is the number of iterations.
* Taxi Speed: it is the speed that the taxi travel in the city, number of

unit distance per iteration
* Lambda (Customer Rate): it is the number of customers per unit

time or iteration. For example, if lambda =2, there are 2 customers
demand taxi services per unit time or iteration. The lambda is
further classified into

1) General Customer Lambda: the number of non-
hotspot customers per unit time (streets, offices,
homes, etc.)

2) Hotspot Lambda: the number of hotspot customers
per unit time (airports, hotels, train and bus stations).
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Figure 11: A sample illustration of a city with taxis, customers, and hotspots

The output of the model will consist of the following information:

Customer Related Information:
* Total Customer Wait Time: The total combined wait time of all of

the customers during the entire simulation durations/iterations. The
total customer wait time is the sum of the following two
components:

1) Generic Customer Total Wait Time: Waiting time of non-
hotspot customers.

2) Hotspot Customer Total Wait Time: Waiting time of
hotspot customers. (Waiting time at airports, hotels, bus and
train stations, etc.)

* Total Number of Generic Customers
* Total Number of Hotspot Customers

Taxi Related Information:
* Taxi Idling Time: it is the time that the taxi spends idling, waiting

for customers. Since it is not traveling, the fuel consumption should
be less than when the taxi is driving, i.e. traveling around in search
of customers.

* Taxing Time: it is the time that the taxi spends traveling/searching
for customers.

* Taxi Pickup Time: it is the traveling time when the taxi receives
instruction to pickup a customer to the time it actually reaches the
potential customer.
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* Taxi Courier (Transportation) Time: it is the time that the taxi
spends driving the customer from the original location to his
destination.
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B. Model 1: Base Model and Strategy 0

The base model and Strategy 0 is developed to closely represent the reality
where no optimization attributes or policies are implemented.

Strategy 0: The taxi will stay at the location where it drop-off the
passenger until it is assigned to the next customer.

The following assumptions and attributes are made in the base model:
* The objective is to minimize customer wait time.
* Initial taxis locations are randomly generated. Because taxis are

staying at the location where it dropped-off its previous passengers
until the next customer is available, the subsequent taxi locations
will be at the passenger's drop-off location.

* Customers' demands (both origination and destination) are randomly
generated.

* City Size = 100 units (The city is 100 units by 100 units)
* Taxi Speed = 10 per units (Thus it will take the taxi 10 time units

(seconds, minutes, etc.) to travel across the city)
* Hotspot = 10. There are ten concentrated hotspots (airports, hotels,

train stations, etc. within this city)
* Customer Rate (Lambda) = 26. There are 26 new customer demands

for taxi service per unit time. Some of these will be from hotspots
(Hotspot lambda) while others will be from non-hotspots (generic
lambda)

o Hotspot Lambda = 24 (24 of the 26 customers are demanding

0

S

service from hotspots). The lambda for each hotspot is
different. Two of the hotspots will have a lambda =10 while
the rest will have a lambda of 0.5. In reality, the probability
of customers appearing at each hotspot is different and this
model tried to emulate that. For example, taxi services
demand at airport taxi stands will have higher lambda than
service demand at a small hotel.

o Generic Lambda = 2 (2 of the 26 customers are from non-
hotspots, these 2 customers per unit time are evenly
distributed across the city at non-hotspots)

Total Number of Taxis = 200
Simulation Durations/Iterations = 200 time units
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C. Model 2: Impact of Returning to Hotspots (Strategy 1)

All of the attributes and assumptions are the same as the base model except

the following:

For Model 2 (Strategy 1), it is designed to test the impact of customer wait

time, taxi driver revenue, cost and profit when the taxi is directed to drive

back to the closest hot spot upon dropping off the passengers. All hotspots

are assumed to have equal probability (lambda) of passenger demand.

Expected Results

Customer Waiting Time:

Comparing to the base model, it is expected that this strategy will

decrease the waiting time of the potential customers. Because taxis

are traveling back to the closest hotspots upon dropping off their

passengers, there is a high likelihood that taxi will be able to reach

potential customers who are at the hotspots much quickly.

Taxi Revenue:

If there are more customers than taxis, it is expected that this

strategy is able to serve more customers than the base model,

Strategy 0, in the same time period. Thus the revenue is expected to

be higher than that of the base model.

Taxi Cost:

With better allocations, it is expected that the total cost [sum of non-

revenue time = (Taxi Idling Time + Taxing Time + Taxi Pickup

Time)] taxi will be lower than the base case, Strategy 0.
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Taxi Profit:

By transporting more passengers at lower cost, it is expected that this

strategy will produce higher profit than the base model, Strategy 0.
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D. Model 3: Hotspot with Different Demand Probability (Strategy 2)

This model was developed to test the impact of customer wait time, taxi

driver revenue, cost and profit when the taxi is directed to drive back to the

best possible hotspot. Upon dropping off the passenger, the distance from

taxi to all hotspots are calculated. The distance to each hotspot is divided by

the lambda of the respective hotspots.

All hotspots are subject to the following formula:

Hotspot = Taxi Distance/Lambda

The hotspot with the smallest result will be the best possible hotspot. This

hotspot has the combined factor of close-distance and has the high

probability of customers:

Smallest Result from Hotspot = Taxi Distance/Lambda

This will be the next location where the taxi should wait for potential

customers.

Each hotspot is assumed to have different probabilities of passenger demand.

For example, taxi service demands at airport taxi stands are more likely to

have higher demand than those at small hotels. This will more closely

reflect reality. The taxi should go to the hotspot that has the lowest value

(best possible hotspot) of Taxi Distance divided by Lambda defines as

Distance to each hotspot/Lambda of each hotspot.
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Expected Results

Customer Waiting Time:

It is expected that this strategy will have decreased the waiting time

of potential customers more than when compared to the base model

(Strategy 1). Because taxis are traveling back to the hotspots that are

close, they have high probability of having the next potential

customers, there is a high likelihood that the taxi will be able to

reach a potential customer more quickly at that particular hotspot.

Taxi Revenue:

If there are more customers than taxis, it is expected that this

strategy will enable taxis to serve more customers than the base

model, Strategy 0, or the model in Strategy 1. Thus the revenue is

expected to be higher than that both Strategy 0 and Strategy 1.

Taxi Cost:

With better allocation, it is expected that the total cost [sum of non-

revenue time = (Taxi Idling Time + Taxing Time + Taxi Pickup

Time)] of the taxi will be lower than the base case, Strategy 0 and

Strategy 1.

Taxi Profit:

With lower cost and transporting more passengers, it is expected that

this strategy will produce higher profits than the base model,

Strategy 0 and Strategy 1.
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E. Experiment 1: The Effect of Taxi Fleet Size

The objective of this experiment is to analyze the effect of taxi fleet size on the

various attributes of taxi optimization. The number of taxis is increased from an

initial fleet of 200 to 350 taxicabs in increments of 50 taxicabs. Each of the three

strategies (Strategy 0, Strategy 1, and Strategy 2) is tested in this environment.

Please refer to the codes in the Appendix for detailed experiment set up. The

summary results are shown in the table at the end of this section.

Results

Customer Waiting Time:

As the number of taxis increases from 200 to 350, the waiting

time of customers for taxi service decreases significantly as

shown in the graph below.
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Figure 12: As the number of taxis increases, the customer waiting time decreases.



Since long waiting time is the top complaint by customers, it

is important to address long waiting times because it is the

primary complaint of customers. The results of this

experiment indicate that by increasing the number of taxis

and assigning them to the best possible hotspot, as indicated

by Strategy 2, customer wait times will be decreased.

Taxi Revenue:

Because this experiment is designed to test the impact of the

taxi fleet size on the attributes of optimization, it is more

meaningful to analyze the average revenue per taxi rather

than the total revenue of the industry, especially as the

number of taxis increases. However, if there are more taxis

than passengers, the average will decrease. In order to test

Strategies 0, 1, and 2, it is only meaningful if there are more

passengers than taxis if the factor of interest is average

revenue.
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Figure 13: Average revenue per taxi will increase as long as there are more customers than the
availability of taxis. Strategy 2 shows the highest average revenue per taxi because taxis are able to
spend more time transporting passengers.

The figure above shows that both Strategy I and Strategy 2

will increase the live-mileage (time transporting passengers)

or average revenue for each taxi even as the total number of

taxis increase. This will hold true until there are more taxis

than passengers (no more passengers at the queue); at that

point, average revenue decreases for all strategies. This steep

decrease is irrelevant for this experiment because there are

more taxis than passengers. The calculation of average

revenue for these three strategies becomes less meaningful as

the number taxis is exceed customer demand.

Taxi Cost:

For this experiment, the taxi cost is defined as time spent not

serving passengers. This is the combined time of (Idle Time,

Taxing Time, and Pickup Time).
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Figure 14: Non-live mileage (non-revenue generating time) is the lowest with Strategy 2.

As the graph above shows, Strategy 1 resulted in lower

average operating cost per taxi than Strategy 0. Strategy 2

resulted even lower cost than Strategy 1. Thus these

strategies will help taxis reduce overall cost.

Taxi Profit:

Average Taxi Profit is defined as the average revenue for

each taxi minus the average cost. The significance of these

number is only valid when the number of customers is more

than or equal to the number of taxis. It is obvious that the

average profit for each taxi will drop no matter which

strategy is in place if there are significantly more taxis than

passengers.

Average Taxi Profit = Average Revenue - Average Cost
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This experiment shows that the Average Profit will be

highest with Strategy 2 which directs taxis to go to the next

best possible hotspots.

Conclusions:

The results of this experiment conclude that with Strategy 1

and Strategy 2, the customer wait time will be shorter than

Strategy 0, the base case, where the taxi stays at the

passenger drop-off location until the next available customer

arrives. With Strategy 1 and Strategy 2, the taxi is directed to

the closest hotspots or best possible hotspot respectively, the

passenger wait time is the least with Strategy 2. Strategy 1

produces a shorter wait time than Strategy 0. These

strategies will decrease passenger wait-time and lead to

higher customer satisfactions.

The results also demonstrate that both Strategy 1 and

Strategy 2 will increase the average revenue of each taxi as

long the number of taxis is greater than the number of

customers. Similarly, both of these strategies will decrease

the non-live mileage (non-revenue generating time) of each

taxi.

Strategy 2 will result in the highest profit among all three

strategies. Strategy 1 will outperform Strategy 0. By

implementing Strategy 2, taxi allocation can be optimized.
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Summarized Data:

The following is a summary of the results from this

experiment:

Taxi Fleet Size Experiment . ........ .
oel Attributes. U.......

Simulation Iterations 200-___________________________-_________

CitySize I _o!

10'Numbrof Hotspot 1- -
Number ofTaxi t ...

Initial nunber of Taxi 20

Incremental Number of
Tax Increase for EachPor f ,

Final Numnber uf Taxi3!
TaxiSped b

Hottpot~ Lambd..a.... ............. .Lamda - Laba ___lGeneric Lambda 2i

___ Htupot 1 0 Hottpot6 __ _ 05
Hotspot 2. 10. Hots.ot 7. 0.5 ... .. ..
Htsp--3 -. H s . -. -
Hotopot 0 Ho6pot 9 5
Hotspot 5 0.5 Hotspot 101 05 .

Passenger Attributes

Total Customer Generic Customer -Total Number of p ustmer Number of Tot al m ot Number of
Wait Time Total Wait lime I Generic Customers Total Wait Time pHotsot Customers of Customers Still 1Customer Still

Tis I __ jWaltlrtjo Service q l~for Service
2111~~~ -------------------- -. -------200 120 Ta xis

Base Model: St4aeg 1 6 438 407 94.19 4609 | 25.57 157
Back to Hotsp t:Strategy J 9957 7,271 407 92,300 46,09 25,411 1,153
Hotspot with Probability: Strategy 2 94,510 6,883 407 87,627 4.9 24,108 1,123

250 250 Taxis ____
Base Model: Strategy 0 24.21 2457 397 37761 4823 611 170
Back to Hotspot: Straeay j 3,226 12271 397 35,955 L4,23 1L52 _ 157
Hotspot with Probability. Strategy 2 35,334 2,220 397 33,114 4,823 475 150

300 300 Taxis
Base Model: StrategyO 21559 78S 393 20774 4290

Back to Hotspot- Strategy 1-16,571 1_128 393 154 4,629 - 0
Hotspot with Probability Strategy 2 9.723 1,680 393 8,043 4,629 0 0

350 '350 Taxis
Base Model: Strategy 21,873 793 . 392 26 4677 20 0
Back to HtspotStrategy 2 16097 1 64 392 14483 4877 01

_ Hotspot with Probability: Strategy 2 13,36 1,933 392 11,373 4,877 o 0

Table 4: Taxi Fleet Size experiment: Passenger related results.
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axis
200 200 Taxis

Base Model Strategy 0-
Back to Hotspot: Strategy 1
Hotspot with Probability: Strategy 2

250 250 Taxis
-Base Model: Stratey 0

ack to Hotspot: Strategy 1
Hotspot with Probability: Strategy 2

300 300 Taxis

Total Idle Time rTotal Taxing Time Total Pickup Time Total Transporting Total Non-Revenue
of All the Taxis [of All the Taxis of All the Taxis Time of All the Tax Time of All Taxis

.... .... .... .... ....--...............--......i-.- ... ........

803 0 16,685 23,496 17,488
282 611 16,587 23,523 17,480
102 835 16,311 23,683 17,248

245
518
177

11574
1843i

20,402 21647
19,942 29,717 21617
19,493 29.752 21,513

Base Model: Strategy 9,346 0 2 30,669 30,708 1
Back to Hotspot Strateg1 3588 10,304 16,571 30,669 30,463_
Hotspot with Probability: Strategy 2 1,651 18.586 9,723 30,669 29,960

350 350 Taxis
Base Model: Strategy 0
Back to Hotspot: Strateqy 1
Hot spot with Probability: Stratgy 2

18,818
10,443
6,074

0 21,873 3J,5b3 40,691
14,011 16,097 30,563 40,551
21,110 13,306 30,563 40,490

Table 5: Taxi Fleet Size experiment: Taxicab related results.
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F. Experiment 2: The Effect of Quantity of Hotspots and Concentration of
Customers at Hotspots

This experiment is designed to test the effect of quantity of hotspots and

concentrations of customers at hotspots on the various attributes of taxi

optimization. The number of hotspot will increase from 6 to 18 in increments

of 2 while the concentration of customers at hotspots will change from 90% to

10% at increments of 10%. The total number of customers will remain constant

throughout the entire experiment, only the distributions of customers between

hotspots and non-hotspots will be different. For example, if there were 70%

customer concentration at hotspots that mean 30% of the customers are located

at non-hotspots. Of the 70% customers at hotspots, their distribution will be

according to the lambda associated with that hotspot and the total number of

hotspots. The impact of these changes will be analyzed under the three

strategies (Strategy 0, 1, and 2). All other model attributes, such as number of

taxicabs, are constant.

For Strategy 2, there are two hotspots that have twice the lambda value as

the rest of the hotspots. Two of the hotspots have twice the lambda in order to

illustrate some of the hotspots such as airports will have more customers

demanding services than those at hotels. For example, with total lambda value

of 25 (at any unit of time, there will be 25 customers requesting taxi services. If

there are 6 hotspots and 90% of the customers are at hotspots, two of the

hotspots will have 5.625 customers each while the other 4 hotspots will 2.8125

customers each.

[90% * 25 = 22.5];
[22.5/(6+2) = 2.8125];

The attributes analyzed include customer wait time, taxi driver revenue, profit,

and cost under the three strategies within the design of the experiment. Please

refer to the codes in the Appendix for detailed experiment set up. The summary

results are also shown in the table at the end of this section.
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Results

Customer Waiting Time:

Strategy 0:

Under Strategy 0, where the taxi driver stays at the drop-off

location until arrival of the next customer, the minimum wait time is

2.315 time units when there are 8 hotspots and 10% of the customers

are at hotspots. As shown in the graph below, the minimum wait

times are generally distributed at the concentration in the 10% range

with 8 to 18 hotspots. The results are consistent with Strategy 0

because the taxis are distributed all over the city. When the

customers are not concentrated at hotspots (10%), it is easier for taxi

to pick up passengers because both customers and taxicabs are

widely distributed. Please see the graph below for detailed analysis.

Average Customer Wait Time (Strategy 0)

4.000

3.500

3.000-

2.500-

2.000 14 Number of
6 Hotspots

0~ 0

Percentage of
Customers at Hotspots

* 2.000-2.500 M 2.500-3.000 M 3.000-3.500 0 3.500-4.000

Figure 15: Average customer wait time under Strategy 0. Wait times are minimal when 10% of

customers are at hotspots.
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Strategy 1:

Under this strategy, the minimum customer wait time is

2.438 time units when the number of hotspots is 6 and 90% of the

customers are concentrated at hotspots. The maximum customer

concentration and minimum number of hotspots is the best policy

with this strategy. Since all of the taxicabs are returning to the

closest hotspots, with a fixed number of taxicabs, when customers

are concentrated and the number of hotspots is at minimum, this will

result in the shortest wait time. The results are shown in the graph

below.

Average Customer Wait Time (Strategy 1)

3.4

3.2

3.0-

2.8

2.4 -
00t 18

Concentrations of Customers at Hotsp N -

2.200-2.400 0 2.400-2.600 0 2.600-2.800 E 2.800-3.000 U 3.000-3.200 U 3.200-3.400

Figure 16: Average customer wait time under Strategy 1.
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Strategy 2:

With Strategy 2, where the taxicab must return to the hotspot

with the best possibility of potential customers, the minimum wait

time 2.498 time units. This is achieved when the number of hotspots

is 6 and 80% of the customers are concentrated at hotspots. In

general, the minimum wait time is where the concentration of

customers at hotspots is high and the number of hotspots is minimal

as shown in the graph below.

Average Customer Wait Time (Strategy 2)

18

Number of Hotspots

U-) C:) 0 0C:
CfN

Percentage of Customers at Hotspots,

R 2.200-2.400 0 2.400-2.600 0 2.600-2.800 R 2.800-3.000 M 3.000-3.200 M 3.200-3.400 U 3.400-3.600J

Figure 17: Average customer wait time under Strategy 2.
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In order to minimize customer wait time, the results of this

experimental simulation run indicate that:

1. If taxis remain at where they drop-off passengers (Strategy

0), it is best that customers do not concentrated at hotspots

but instead disperse themselves across the city.

2. In general, if taxis are returning to hotspots, it is preferable if

the customers are concentrated at hotspots and that the

numbers of hotspots are minimal.
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Taxi Revenue:

The revenue for taxis will be depended on the number of

customers that the taxis are able to serve. In the analysis

below, the results for both the generic customers (non-

hotspot customers) and hotspot customers are shown. The

results are the same for all three strategies because all

customers were served and there were no customers waiting

in the queue.

The graph below indicated that more customers are being served when they are less

concentrated. The results are very similar across the range of the number of the hotspots.

Total Number of Generic Customers Served

2500

2000

Number of 1500
Customers

Served 1000

5003%
30 Percentage of

0 60% Hotspot
6 8 10 12 90% Customers

Number of Hotspots

0 0-500 0 500-1000 0 1000-1500 U 1500-2000 0 2000-2500

Figure 18: The total number of generic customers (non-hotspot customers) served. The graphs are the

same for all three strategies because there are no customers in the queue.
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The graph below shows the total number of hotspot customers being served. Since the

customers are at hotspots, most of the customers that are being served are at the hotspots.

Since no customers are in the queue at the end of the simulation runs, because all

customers are being served.

Total Number of Hotspot Customers Served

Number of
Customers Served

2,500 2

2,000 -

1,500

1,000

0 - -500
U 1,500 - 2,000

0

0
CO

0

0:

0 500-1,000
* 2,000 - 2,500

18

12
Number of Hotspots

6

1 1000 -1,500

Figure 19: The total number of hotspot customers served. The graphs are the same for all three

strategies because there are no customers in the queue.
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Taxi Cost:
The cost of taxi operation consists of several components:

Taxi Operation Cost = [Idle Time Cost + Taxing Time +

Pickup Time]

(Transporting Time has been excluded for this calculation

because this is also revenue generating time and would

complicated the calculation)

As shown in the graph below

concentrations of customers.

with Strategy 0, idle time is the least when there are high

Average Idle Time (Strategy 0)

38.000
36.000
34.000
32.000

w 30.000
'28.000

26.000
24.000 10%

50% %of Customers at
20.000- Hotspots

6 8 10 12 14'16 18 90%
Number of Hotspots

a 20.000-22.000 0 22.000-24. 000 0 24.000-26. 000 0 26.000-28.000 0 28.000-30 000 M 30.000-32.000

m 32.000-34.000 0 34.000-36.000 m 36.000-38.000

Figure 20: Average Idle Time is one of the cost components. The taxicab idles while waiting for

passengers.
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For both Strategies 1 and 2, the idle time results are very similar. Please see the table at the

end of this section for details. The graphical result for Strategy I is represented below.

The idle time for the taxi driver is less when the customers are concentrated at hotspots and

the numbers of hotspots are minimal.

Average Idle Time (Strategy 1)

20.00

18.00

16.00

14.00

12.00

10%
10.00 30%

50% Percentage
8.00 0% Customers at

8 10 12 14 16 18 90% Hotspot

Number of Hotspots

0 8.000-10.000 E 10.000-12.000 0 12.000-14.000 0 14.000-16.000 0 16.000-18.000 0 18.000-20.000

Figure 21: Average idle time under Strategy 1. Idle time is less when customers are concentrated at
hotspots and the numbers of hotspots are minimal.
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Another cost factor to consider is taxing time; which is the time that the taxi drives

passengerless in search of potential customers. This cost variable is not applicable to

Strategy 0 because the taxi stays at the location where it dropped-off its previous

passengers. The analysis for Strategies 1 and 2 shows that the taxing time is less when the

concentration of customers is low and the number of hotspot is high. If the concentration

of customer is at the minimal, the implication is that one should employ Strategy 1 or 2 to

decrease taxing time. This is shown in the graph below.

Average Taxing Time (Passengerless) Strategy 2

28

26

24

22 I

20 C>
18 5
16

14

12

10

Number of 0 M
Hotspots 0 o Customer Concentration

o ~ at Hotspots

1 10.000-12.000 0 12.000-14.000 M 14.000-16.000 U 16.000-18.000 0 18.000-20.000

U 20.000-22.000 M 22.000-24.000 U 24.000-26.000 M 26.000-28.000

Figure 22: Average taxing time under Strategy 2. It is the time driving passengerless in search of the

next potential customer.
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Pickup time is the final component of the cost function to be considered in this

experiment. With Strategy 0, the minimum pickup times occur when the customers are less

concentrated irrespective the number of hotspots because taxis are already located at the

previous customer's drop-off location.

Average Pickup Time (Straegy 0)

34

32

30

28

26 Pickup Time

24

22

20

18

Customer ,...

Concentration at 0 Number of
Hotspots OWHotspots

o 18.000-20.000 0 20.000-22.000 m 22.000-24.000 m 24.000-26.000 0 26.000-28.000

* 28.000-30.000 M 30.000-32.000 0 32.000-34.000

Figure 23: Average pickup time under Strategy 0. It is the time to reach the next customer upon

receiving the request for services.
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Under Strategy 2, the results of the experiment indicate that the pickup time will be

minimal when customers are concentrated at hotspots. The results for Strategy 1 are very

similar to that of Strategy 2. Please see the summarized results at the end of the section.

Average Pickup Time (Strategy 2)

0

E-

0.

0.

6 8 1 -
10 12

Number of Hotspots

- 10%

30%

F-50% Concentration of
- Customers at
70% Hotspots

14 16 18

* 20.000-21.000 0 21.000-22.000

* 25.000-26.000 M 26.000-27.000
" 22.000-23.000 E 23.000-24.000

* 27.000-28.000 0 28.000-29.000
o 24.000-25.000
* 29.000-30.000

Figure 24: Average pickup time under Strategy 2. It is the time needed to reach the potential

customers upon request of service.
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Taxi Profit:

Taxi profit is defined as revenue minus cost. In this

experiment, the taxi profit is significant when the number of

customers is more than or equal to the number of taxis.

Otherwise, under any of these strategies, the revenue would

be the same because taxis would be able to transport all of

their customers before the end of the simulations. This was

the case in this experiment. Thus, if the revenue is the same,

in order to analyze profit, one needs to compare the cost of

operations. The costs among the three strategies are different

under the various circumstances, thus the profit will differ.

Conclusions:

The results of this experiment show that there are significant cost

differences among the three strategies, the number of hotspots, and

the concentrations of customers at hotspots. Depending on the

circumstances, one strategy is preferably better than the others. For

example, during the morning rush hours, it is likely that there are

lower concentrations of customers as people leave their individual

homes and depart for work. However, in the early evening hours

when people are leaving work from concentrated business districts,

the origin of customers are more concentrated than during the

morning. In this instance, one strategy may have an advantage over

the others.
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Summary of Experiment Results:

Model Attributes:
Simulation Iterations
City Size

Initial Number of Hotspots
Hotspot Incremental
Final Number of Hotspots

Number of Taxi
TaxiSpeed

Units

Total Lambda
Two of the hotspot will have

twice the lambda value

Strategy 0 Average Customer Total
Wait Time (Served)

Strategy 1 Average Customer Total
Wait Time (Served)

Strategy 2 Average Customer Total
Wait Time (Served)

Wait Time (Served)

Strategy 1 Average Generic Customer
Wait Time (Served)

Strategy 2 Average Generic Customer
Wait Time (Served)

Customers served

Strategy I Total Number of Generic
Customers served

Strategy 2 Total Number of Generic
Customers served

Percentage of Customers at Hotspot
90% 80% 70% 60% 50% 40% 30% 20% 10%

3.869 3.617 3.423 3.187 3.008 2.785 2.703 2.496 2.427
3.745 3.555 3.361 3.149 2.947 2.794 2.626 2.427 2.315
3.683 3.517 3.309 3.146 2.966 2.858 2.557 2.459 2.346
3.590 3.432 3.204 3.127 2.899 2.771 2.673 2.403 2.393
3.561 3.308 3.140 2.963 2.807 2.602 2.619 2.451 2.385
3.320 3.150 3.061 2.918 2.756 2.697 2.551 2.457 2.378
3.358 3.194 2.987 2.917 2.780 2.678 2.493 2.448 2,321
2.438 2.582 2.721 2.785 2.967 2.963 3.217 3.235 3.369
3.007 3.114 3.120 3.129 3.248 3.324 3.314 3.358 3.341
2.540 2.712 2.793 2.914 3.063 3.061 3.300 3.230 3.387
2.994 2.892 3.028 3.102 3.078 3.227 3.270 3.132 3.307
2.931 3.021 3.164 3.152 3.142 3.311 3.290 3.316 3.286
2.875 2.960 2.911 3.093 3.114 3.133 3.094 3.235 3.254
3.136 3.200 3.172 3.240 3.261 3.225 3.156 3.304 3.295
2.521 2.498 2.695 2.871 2.992 2.991 3.276 3.290 3.523
2.622 2.757 3.013 2.971 3.081 3.204 3.295 3.396 3.461
2.590 2.755 2.738 3.018 3.081 3.161 3.304 3.255 3.392
2.977 2.983 3.031 3.138 3.182 3.255 3.359 3.285 3.368
3.139 3.132 3.144 3.205 3.271 3.317 3.255 3.330 3.345
2.941 3.090 3.001 3.190 3.100 3.267 3.171 3.305 3.337
3.074 3.160 3.139 3.213 3.304 3.213 3.232 3.257 3.400
1.983 1.831 1.903 1.953 2.083 2.101 2.242 2.231 2.310
1.838 1.878 1.983 1.953 1.934 2.067 2.210 2.192 2.237
2.180 2.172 2.039 2.154 2.179 2.239 2.159 2.227 2.243
1.780 1.957 1.776 2.062 2.050 2.131 2.247 2.172 2.310
2.062 2.202 2.004 2.074 2.121 2.029 2.276 2.264 2.312
1.931 2.045 1.980 2.100 2.206 2.185 2.200 2.265 2.291
1,956 2.026 1.878 2.192 2.182 2.174 2.114 2.268 2.252
4.252 4.307 4.183 4.078 4.093 3.905 3.948 3.716 3.624
4.231 4.195 4.089 4.110 4.102 3.986 3.905 3.780 3.562
4.597 4.509 4.264 4.325 4.196 4.016 3.984 3.647 3.634
4.029 4.085 4.186 4.062 3.968 3.965 3.808 3.533 3.511
4.128 3.986 4.072 4.075 3.959 3.963 3.811 3.648 3.523
4.000 3.868 3.910 3.941 4.063 3.837 3.605 3.642 3.462
3.992 4.208 3.951 4.013 3.927 3.818 3.652 3.712 3.524
4.718 4.637 4.481 4.296 4.288 4.131 4.105 3.849 3.811
3.953 4.195 4.183 3.962 4.018 4.017 3.880 3.809 3.720
4.403 4.338 4.120 4.132 4.224 4.058 3.905 3.673 3.634
3.959 4.016 4.181 4.078 4.058 4.026 3.869 3.658 3.559
4.103 3.947 3.931 3.903 3.864 3.872 3.677 3.649 3.571
4.098 4.020 4.096 4.019 3.987 3.893 3.728 3.714 3.557
4.124 4.061 3.981 4.098 4.087 3.851 3.741 3.697 3.652

238 485 732 979 1220 1468 1716 1970 2212
234 477 723 966 1208 1454 1702 1955 2195
233 477 723 965 1206 1453 1701 1953 2194
245 494 742 988 1233 1482 1732 1987 2229
243 489 735 978 1224 1471 1718 1973 2215
245 491 736 978 1224 1472 1720 1974 2216
249 495 739 982 1231 1479 1726 1981 2224
238 485 732 979 1220 1468 1716 1970 2212
234 477 723 966 1208 1454 1702 1955 2195
233 477 723 965 1206 1453 1701 1953 2194
245 494 742 988 1233 1482 1732 1987 2229
243 489 735 978 1224 1471 1718 1973 2215
245 491 736 978 1224 1472 1720 1974 2216
249 495 739 982 1231 1479 1726 1981 2224
238 485 732 979 1220 1468 1716 1970 2212
234 477 723 966 1208 1454 1702 1955 2195

Figure 25: Summary of Experiment 2 results. Both concentrations of customer at hotspots and
numbers of hotspots are tested.
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5. Solutions and Recommendations

Many attributes that were studied in these taxi optimization simulations are

applicable to general vehicle fleet management. Thus applications of this study can

be applied to school bus routing, garbage truck pickups, courier services, mail

delivery, emergency vehicle planning, public transportation management, etc.

Taxi optimization involves many factors, some of which can be easily

quantified while others cannot. To achieve optimization, an approach that

combines mathematical optimization and heuristic methodologies seem to be the

best solution-an approach that integrates the elements of optimization-based

heuristics, continuous approximation, and probabilistic analysis.

To have efficient taxi services that benefit passengers, drivers, and other

intermediaries, the following elements are critical:

1. Establish a time-dependent routing policy based on the probability of

hourly demand of potential customers, the availability of

hotspots/nodes, and current traffic conditions.

2. Incorporate real-time demand and current traffic conditions in the

taxi's dispatching system. These include rush hour traffic, one-way

streets, construction zones, etc.

3. Trip-chaining of taxi's advance bookings

4. Increase geographical areas where taxis are allowed to pickup

passengers.

5. Analyze the customer demand profiles for each location within each

time period of the day. (Taxi demand at business districts, at 5:00

p.m.) Incorporate this information to predict future demand and

vehicle routing criteria.

6. Assign drivers based on current taxi location and the highest

probability of where the next closest passenger will be located. This
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will be a dynamic model that will change throughout the day and

depends on the locations of empty taxis.

7. Adapt a GPS-GIS system to taxi fleet management. Such as a

system will significantly increase taxi efficiency by providing real-

time information on current taxi locations. This system will also

reduce manual data entry required by the drivers to keep track of the

passengers. It will also provide dynamic scheduling of taxi fleets,

and location/driving information for the drivers, in the form of maps

and directions.

8. Many taxi trips are round-trips with returns, especially those

originating from residential areas where a home-bound trip is very

likely to occur in the near future. It is wise to book such trip and

incorporate it in the planning.
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6. Conclusions

Taxi logistics optimization encompasses a range of factors;

some of these can be quantified while others are regulatory in nature.

In this study, a number of experiments were conducted using

computer simulations. The results indicate that the best strategy

largely depends on the objective or attributes that one wants to

optimize and the circumstances or nature of the environment.

The results of the experiments indicate that as the number of

taxis increases, the customer wait time will decrease. This is

applicable across all three strategies with Strategy 2 providing the

least wait time. For example, in Experiment 1 when there are 300

taxis, Strategy 2 will decrease customer wait time by 55% when

compared to Strategy 0. As the number of taxis increases, the

average revenue of each taxi will also increase; this will be true as

long as customer demand is greater than or equal to the supply of

taxis. Strategy 2 provides the best average revenue and the lowest

operating cost.

With regard to the quantity of hotspots and concentration of

customers, Strategy 2, the best strategy will depend on the objectives

and circumstances of the environment. For example, if the objective

is to minimize customer wait time and the customers are highly

concentrated at a limited numbers of hotspots, then Strategy 2 will

be the best strategy. An example of this would be traveling from

hotels to the airport. On the other hand, if the objective is to

minimize the average customer pickup time, and the customers are

widely distributed, then Strategy 0 is the best strategy. This is

illustrated by the demand for taxis for trips that originated from

home to the office during weekday mornings.
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Another critical aspect of optimization are policies involving

institutional changes, such as incorporation of real-time demand and

current traffic conditions into taxi's dispatching system as well as

adoption of a GPS-GIS system to taxi fleet management. These will

significantly improve overall efficiency.

The computer simulation that was developed in this study

along with the policies outlined above may be applied to real

situations to achieve optimal solutions. The more information

regarding customers, drivers and current driving conditions that are

available will be greatly beneficial to the accuracy of taxi allocation

optimizations.
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7. Appendix

A. Model Codes

The followings are the actual codes written in MATLAB environment to build the

models and experiments. The codes are structured into two parts: 1) RunSim, this

is the main program. For each of the experiments, the variables that are being

tested, the changes are made in this main program. 2) TaxiSim, this is the

subprogram and also the core of the program. This subprogram stays the same

during all the experimental simulations.

B. Taxi Simulation Codes: TaxiSim (Codes)

These are the codes for the taxi simulation programs. These codes stay the same for each
of the experiments.

function [uStat, taxiStat] = taxiSim(param,hotspotLambda,strategy,seed)
% TAXISIM randomly generates a city, hotspots, taxis, and
% customers (customers by Poisson distribution) and
% simulates the taxi services for a period of time
% based on a decided on strategy

% The general form of taxiSim is
% [uStat, taxiStat]= taxiSim(param,hlambda,strategy,seed)

% INPUT parameters are formatted as follows
% Param= [P1 P2 P3 P4 P5 P6]
% P1 = simulationDuration P2= citySize P3 = numberO
% P4 = numberOfTaxis P5= taxiSpeed P6 = generalC
% HotspotLambda = [RI R2 R3 ... RM ... RN] where N = number o
% in the city and RM is the lambda for hotspot #M, a positiv
% Strategy = choice of strategy to test out.
% 0: taxi waits after dropping off customer. (base case)
% 1: taxi travels towards nearest hotspot
% (distance factor NOT scaled by hlambda) but picks up c
% 2: taxi travels towards nearest hotspot
% (distance factor scaled by hlambda) but picks up calls
% Seed = randomNumberSeed

% OUTPUT parameters are formatted as follows
% UStat = [Ul U2 U3 U4 U5 U6 U71, a matrix of 7 unitary statistic

fHotspots
ustomerLambda

f Hotspots
e real number

ills
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% U 1 = totalCustomerWaitTime U2 = genericCustomerTotalWaitTime
% U3 = totalNumberOfGenericCustomers U4 = hotspotCustomerTotalWaitTime
% U5 = totalNumberOfHotspotCustomers
% U6 = totalWaitTimeOfCustomersStillWaiting
% U7 = numberOfCustomerStillOnQueue
% U8 = numberOfGenericCustomersServed
% U9 = numberOfHotspotCustomersServed
% TaxiStat = [taxiTimeSpentOnIdling; taxiTimeSpentOnTaxing;
% taxiTimeSpentOnPickup; taxiTimeSpentOnCouriering]
% where each is a [1 numberOffaxis] matrix.
% Idling is wasted time waiting around but minimal fuel is expended
% Taxing is wasted time moving around to a new location, fuel is expended
% Pickup is time spend traveling to get to the customer
% Courier is actual productive and profitable time driving customerS around

% GLOBAL CONSTANTS AND SETUP
%display(' *** RUN OF taxiSim.M ');

rand('state',seed);

simDur = param(1); % num iterations of simulation
citySize = param(2); % citySize > 1; number of nodes in the city.
numHotspot = param(3); % hotspots are places like hotels, airports, &c. Where there
are high likelihood of a customer
numTaxi = param(4); % number of taxis serving the city
taxiSpeed = param(5);% speed of the taxis. number of unit space traversed per unit time
lambda = param(6); % mean num of general city customer per iteration (lambda in
poisson distribution)
% mean num of customer at each hotspots per iteration (lambda in poisson distribution)
hlambda = hotspotLambda; % NOTE: ONE ENTRY PER HOTSPOT
% strategy:
% 0: do nothing during taxi idling
% 1: move to nearest HS location
% 2: move to nearest HS location, including lambda

% DIMENSION VARIABLES
cusQc = 6; % number of columns in cusQ; [timeWaiting origX origY destX destY
hotSpot(=1)?]

% INITIALIZE STATISTICS STORAGE VARIABLES
taxildle = zeros(1,numTaxi); % taxi time idling for customer
taxiTaxing = zeros(1,numTaxi); % taxi time driving around taxing and looking
for customers
taxiPickup = zeros(1,numTaxi); % taxi time going to pickup customer
taxiCour = zeros(1,numTaxi); % taxi time driving customer around
cusWaitTime = 0; % total customer waiting time
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genWaitTime 0; genCus 0; % total number of general customers
hotWaitTime 0; hotCus = 0; % total number of general customers
genCusServed = 0; hotCusServed = 0; % total number of X customers served
sQWaiting = 0; % which customer still waiting for taxi

% GENERATE CITY [simpliest city, distance as crow flies]
% nothing to do because no need to create an actual "city" under this circumstance

% GENERATE CUSTOMERS
% create hotspots
hotspot = ceil(citySize*rand(numHotspot,2)); % hs data struct: r = index, c = [x y]
coord

% GENERATE HOTSTANDBY LOCATIONS
% create a list of good places for taxi's to go during standby

% GENERATE TAXI
% place taxi in initial locations
taxi = [zeros(numTaxi,1) , ceil(citySize*rand(numTaxi,2))];
% taxi data struct: r = index, c = [outOfServiceTime x-coord y-coord]; oOSTime = time
before avail again, 0 if avail

% GENERATE CUSTOMER QUEUE
genQ = rot90(poisr(lambda,simDur));
for m = 1:numHotspot, hotQ(m,:)= rot90(poisr(hlambda(m),simDur)); end; % for
m
hotCus = sum(sum(hotQ)); genCus = sum(genQ); % calculate number of customers
totalQ = sum([genQ; hotQ]); % number of customers along timeline (e.g. [0 3 0 0 0 2])

cusQ = [];
for m= 1:simDur,

% generate genQ for time M
tempGenQ = [zeros(genQ(m), 1) ceil(citySize*rand([genQ(m) 4])) zeros(genQ(m), 1)];

% tempGenQ finished being created
% generate hotQ for time M by iterating thru each hotQ % note lasts 0 is

hotspot? boolean
tempHotQ = [];
for n = 1:numHotspot,

o = hotQ(n,m); % num hotQ customers at hotspot location N at time M
for p = 1:o, % make a tempQ only if something's there, otherwise creates a

corrupted data struct
tempHotQ = [tempHotQ ; 0 hotspot(n,:) ceil(citySize*rand([1 2])) 1]; %

NOTE: LAST 1 MEANS IS HOTSPOT*****
end% for p

end % for n% tempHotQ finished being created
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cusQ = [cusQ ; tempHotQ ; tempGenQ]; % HotQ before GenQ for comparison model
tempHotQ = []; tempGenQ = []; % clear temp variables

end % for m % cusQ finished being created, how have a list of all customers and
destinations

% START
SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

presentQ = []; % customers currently waiting to be served; starts off empty

for m= 1:simDur,

% reinitialize certain temporaray matrix that should be empty at start of time M
taxi2cus = []; serviceQ = []; a = []; ai = []; b = []; bi = [];

% append new customers onto presentQ and shorten cusQ (the remaining customers)
if totalQ(m) > 0 % there are new customers on this round of time M

presentQ = [presentQ ; cusQ(l:totalQ(m),:)]; % [timeWaiting origX origY
destX destY hotSpot(=1)?]

[cQr cQc] = size(cusQ);
cusQ = cusQ((totalQ(m)+1):cQr, :); % chop of front of cusQ; now cusQ

only has future customers
end % if totalQ(m)

% do we have available taxi to serve customers?
numAvailableTaxi= 0;
for n = 1:numTaxi,

if taxi(n,1) == 0
numAvailableTaxi = numAvailableTaxi+ 1;

end% if taxi(n,l)
end %for n

% decide the number of customers to serve; serviceQ is the portion of presentQ we're
going to serve

[pQr pQc] = size(presentQ);
serviceQ = presentQ(1:(min([numAvailableTaxi pQr])), :);
presentQ = presentQ((min([numAvailableTaxi pQr])+ 1):pQr, :);
% serviceQ and presentQ are ready for use

% is there something to do or can be done this round? if so, do it.
[sQr sQc] = size(serviceQ);

if sQr > 0 % there is a number of servicable customers and taxis to serve them
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% calculate distance from each taxi to each custorr
for n = 1:numTaxi, % taxi index

if taxi(n, 1) == 0 % taxi available (outOS
for o = 1:sQr, % customer index

a = abs(taxi(n,2) - serviceQ(o,2)); % x-vect
hotspot 0

b = abs(taxi(n,3) - serviceQ(o,3)); % y-vect
hotspot 0

taxi2cus(n,o) = sqrt(a^2 + bA2); %
end % for o

else %
consideration via Inf.

for o = 1:sQr, taxi2cus(n,o) = Inf; end; % for o
end % if taxi

end% for n

ers in serviceQ

Fime == 0)

or distance between taxi N and

or distance between taxi N and

c = sqrt(aA2 + bA2)

taxi not available so take it out from

a = []; b = []; % re-initialize variables
% finds nearest customer for each taxi
[a ai]= sort(taxi2cus,2); % determine distances; sorting by column, cus #ai
[b bi]= sortrows(a); % determine taxi assignment, taxi #bi

% assign taxi to pickup a customer
sQWaiting = ones(1,sQr); % initalize all customers as still waiting
for n = 1:numTaxi, % for each taxi (which is >= servicable customer)...

if taxi(bi(n),1) == 0 % nth closest taxi available (OOSTime == 0), pick up
customer; do nothing if not avail

% for nth closest taxi, look at oth closest customer. if customer served, look at next
customer...

for o = 1:sQr, % for each customer 0 ... find one waiting, serve, then break
out of loop

if sQWaiting( ai(bi(n),o) ) = 1 % customer AI(O) still unserved...
% serve this customer with taxi BI(N)
sQWaiting( ai(bi(n),o) )= 0; % customer is served; take

future consideration
% calculate total out of service time and update stats
a = abs(serviceQ(ai(bi(n),o),2) - serviceQ(ai(bi(n),o),4)); % x-

distance

distance
b = abs(serviceQ(ai(bi(n),o),3) - serviceQ(ai(bi(n),o),5));

pickupTime = ceil( (taxi2cus(bi(n),ai(bi(n),o)) / taxiSpeed));
courierTime = ceil( (sqrt(aA2 + b^2)) / taxiSpeed );

n out of

vector

% y-vector
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outOfServiceTime = pickupTime + courierTime;
% total taxi out of service time

% taxi taken out of service; no longer available; and new location = cus
destination

taxi(bi(n),:) = [outOfServiceTime serviceQ(ai(bi(n),o),4)
serviceQ(ai(bi(n),o),5)];

numAvailableTaxi = numAvailableTaxi-1; % taxi taken out of
service because serving customer

taxiPickup(bi(n))= taxiPickup(bi(n)) + pickupTime; % inc pickup stat for
that taxi

taxiCour(bi(n)) = taxiCour(bi(n)) + courierTime; % inc courier
stat for that taxi

% cusWaitTime is a little redundant but that's ok. doesn't add too much
overhead.

cusWaitTime = cusWaitTime + serviceQ(ai(bi(n),o),1) + pickupTime; % inc
cusWaitTime stat var

if serviceQ(ai(bi(n),o),6) == 1 % hotspot customer
hotWaitTime = hotWaitTime + serviceQ(ai(bi(n),o), 1) + pickupTime;

% inc hotWaitTime stat var
hotCusServed = hotCusServed+l;

else
genWaitTime = genWaitTime + serviceQ(ai(bi(n),o), 1) + pickupTime;

% inc genWaitTime stat var
genCusServed = genCusServed+1;

end% if serviceQ
% break out of for o loop
break;

end % if sQWaiting
end % for o

end % if taxi(bi(n), 1) == 0
end% for n

end %if sQr>0

if numAvailableTaxi > 0 % we have idle taxis and no one to serve
switch strategy % any strategy what to do with idle taxis?
case 0

% do nothing, leave the taxis where they stopped
for n = 1:numTaxi,

if taxi(n, 1) == 0 % taxi is idling
taxildle(n) = taxildle(n) + 1; % increment idling time

end % if taxi(n,1) == 0
end % for n
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case 1 % move to nearest hotspot regardless of lambda
% calculate distance from each taxi to reach hotspot
for n = :numTaxi, % taxi index

if taxi(n,1) 0 % taxi available (outOSTime == 0) and therefore, idle,
move it

taxiN2hs = []; % init taxiN2hs
% calculate distance to each hotspot
for o = 1:numHotspot, % hotspot index;

a = abs(taxi(n,2) - hotspot(o,1)); % x-vector distance between taxi N and
hotspot 0

b = abs(taxi(n,3) - hotspot(o,2)); % y-vector distance between taxi N and
hotspot 0

taxiN2hs(o)= sqrt(aA2 + b^2); % c = sqrt(a^2 + bA2)
end % for o

a = []; ai = []; nearestHS []; % re-initialize variables
% finds nearest hotspot for each taxi
[a ai] = sort(taxiN2hs); % determine distances; sorting by column, cus #ai
dist2hs = taxiN2hs(ai(1)); % ai(1) is the closest distance
nearestHS hotspot(ai(1),:); % ai(1) is the index of the nearest hotspot

fracMove = ceil(dist2hs/taxiSpeed); % ceiling on how many time units it
takes to move there

if fracMove > 0 % if there's any place to actually go..
moveX = (taxi(n,2) - nearestHS(l)) / fracMove; % number of units to move in

X dim
moveY = (taxi(n,3) - nearestHS(2)) / fracMove; % number of units to move in

X dim
if moveX > 0, moveX = ceil(moveX); else moveX = floor(moveX); end

% if moveX
taxi(n,2) = taxi(n,2) - moveX; % move it
if moveY > 0, moveY = ceil(moveY); else moveY = floor(moveY); end

% if moveY
taxi(n,3) = taxi(n,3) - moveY; % move it
% increment time taken for taxi to taxi around to new location
taxiTaxing(n) = taxiTaxing(n)+1;

else taxildle(n)= taxildle(n) + 1; % increment idling time
end % if fracMove

end % if taxi(n,1) == 0

end % for n

case 2 % move to nearest hotspot scaled by lambda
% calculate distance from each taxi to reach hotspot
for n = 1:numTaxi, % taxi index
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% taxi available (outOSTime == 0) and therefore, idle,
move it

taxiN2hs []; taxiN2hsScaled []; % init taxiN2hs, taxiN2hsScaled
% calculate distance to each hotspot
for o = 1:numHotspot, % hotspot index;

a = abs(taxi(n,2) - hotspot(o, 1)); % x-vector distance between taxi N and
hotspot 0

b = abs(taxi(n,3) - hotspot(o,2)); % y-vector distance between taxi N and
hotspot 0

taxiN2hs(o) = sqrt(aA2 + bA2); % c = sqrt(a^2 + bA2)
taxiN2hsScaled(o) = taxiN2hs(o)/hlambda(o); % create scaled

distances
end %for o

a = []; ai = []; nearestHS []; % re-initialize variables
% finds nearest hotspot for each taxi
[a ai] = sort(taxiN2hsScaled); % determine distances; sorting by column, cus

#ai
dist2hs = taxiN2hs(ai(l)); % ai(1) is the closest distance
nearestHS = hotspot(ai(1),:); % ai(1) is the index of the nearest hotspot

%taxi(n,:)
% move taxi towards that destination
fracMove = ceil(dist2hs/taxiSpeed); % ceiling on how many time units it

takes to move there
if fracMove > 0 % if there's any place to actually go..

moveX = (taxi(n,2) - nearestHS(1)) / fracMove; % number of units to move in
X dirn

moveY = (taxi(n,3) - nearestHS(2)) / fracMove; % number of units to move in
X dirn

if moveX > 0, moveX = ceil(moveX); else moveX = floor(moveX); end
% if moveX

taxi(n,2) = taxi(n,2) - moveX; % move it
if moveY > 0, moveY = ceil(moveY); else moveY = floor(moveY); end

% if moveY
taxi(n,3) = taxi(n,3) - moveY; % move it
% increment time taken for taxi to taxi around to new location
taxiTaxing(n)= taxiTaxing(n)+1;

else taxildle(n)= taxildle(n) + 1; % increment idling time
end % if fracMove

end % if taxi(n,1) == 0

end % for n
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otherwise disp('Something wrong with Strategy switch statement');
end% switch strategy

end % if numAvailableTaxi > 0

% STATS UPDATES now that we've dealt with the customers, time for statistics
updates.

% update customer time waiting for being assigned a taxi
[pQr pQc]= size(presentQ);
if pQr > 0 % if there is any one still unserved...

presentQ(1:pQr, 1) = presentQ(1:pQr, 1) + ones(pQr, 1); % increment unserved
customer wait times

end % if pQr

for n = 1:numTaxi, % upate taxi stats
if taxi(n, 1) > 0 % taxi is not available

taxi(n, 1)= taxi(n, 1) - 1; % decrement taxi unavailable time by one
end% if taxi(n,1)
% NOTE: if taxi is available, the taxi Taxing or Idling time is taken care of in switch

statement
end %for n

end % for m % next time cycle.

% DISPLAY/ASSIGN STATISTICS VARIABLES
%cusQ
[pQr pQc] = size(presentQ);
stillWaiting = sum(presentQ(:,1));
taxiStat = [taxildle; taxiTaxing; taxiPickup; taxiCour];
uStat = [cusWaitTime genWaitTime genCus hotWaitTime hotCus stillWaiting pQr
genCusServed hotCusServed];
%sQWaiting % which customer still waiting for taxi
%display(' *** FINISHED taxiSim.M *** ');
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C. Experiment 1 - The Effect of Taxi Fleet Size: (Codes)

The following are codes written for simulations to analyze the effect of taxi

fleet size on the various attributes of taxi optimization. This program (RunSim)

calls the TaxiSim program for various calculations.

cdc;
format;
%display(' *** RUN OF runSim.M *
clear;
diary('strategy.txt');
diary on;

% The general form of taxiSim is
% [uStat, taxiStat] = taxiSim(param,hlambda,strategy,seed)

% INPUT parameters are formated as follows
% Param= [Pl P2 P3 P4 P5 P6]
% P1 = simulationDuration P2= citySize P3 = numberOftlotspots
% P4 =numberOfTaxis . P5 taxiSpeed P6 = generalCustomerLambda
% HotspotLambda = [RI R2 R3 ... RM ... RN] where N = number of Hotspots
% in the city and RM is the lambda for hotspot #M, a positive real
% number
% Strategy = choice of strategy to test out.
% 0: taxi waits at the drop-off location after dropping off customer.
% (base case)
% 1: taxi travels towards nearest hotspot
% (distance factor NOT scaled by hlambda) but picks up calls
% 2: taxi travels towards nearest best possible hotspot
% (distance factor scaled by hlambda) but picks up calls
% Seed = randomNumberSeed

% OUTPUT parameters are formated as follows
% UStat = [Ul U2 U3 U4 U5 U6 U7], a matrix of 7 unitary statistics
% U 1 = totalCustomerWaitTime
% U2 = genericCustomerTotalWaitTime
% U3 = totalNumberOfGenericCustomers
% U4 = hotspotCustomerTotalWaitTime
% U5 = totalNumberOfHotspotCustomers
% U6 = totalWaitTimeOfCustomersStillWaiting
% U7 = numberOfCustomerStillOnQueue
% TaxiStat = [taxiTimeSpentOnIdling; taxiTimeSpentOnTaxing;
% taxiTimeSpentOnPickup; taxiTimeSpentOnCouriering]
% where each is a [1 numberOfTaxis] matrix.
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% Idling is wasted time where the taxi is waiting around but minimal
% fuel is consumed since it is not moving
% Taxing is wasted time moving around to a new location with an
% empty taxicab, fuel is consumed
% Pickup is time spend traveling to get to the customer
% Courier is actual productive and profitable time driving customerS
% around

% PARAMETER RANGE (low, step, high)
% Param
simDurL = 200
simDurS = 10; simDurH = simDurL; % simulation duration
citySizeL = 100
citySizeS = 20; citySizeH citySizeL; % citySize
numHSL = 10
numHSS = 2; numHSH = numHSL; % number of hotspots
numTaxiL = 200
numTaxiS = 50
numTaxiH = 350 % number of taxis
taxiSpeedL 10
taxiSpeedS 5; taxiSpeedH = taxiSpeedL; % taxi traveling speed
genLambL 2
genLambS = 0.1; genLambH = genLambL; %
lambda of generic customer
% HotspotLambda
for s = 1:numHSL, hlamb(s) = 5/numHSL; end % for m
hlamb(1) = 10;
hlamb(2) = 10;
hlamb % for displaying in output
% Strategy
%strg = 1;
% Seed
rSeed = 0;

%****** **** **** **** **** **** **** **** **** **** **** **** ****

%display(' *** RUN OF STRATEGY 0 ***

ti= 0; ui= 0; vi= 0; wi= 0; xi= 0; yi= 0;
for t = simDurL:simDurS:simDurH,

ti = ti+1;
for u = citySizeL:citySizeS:citySizeH,

ui = ui+ 1;
for v = numHSL:numHSS:numHSH,

vi = vi+1;
for w = numTaxiL:numTaxiS:numTaxiH,

wi = wi+1;
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for x = taxiSpeedL:taxiSpeedS:taxiSpeedH,
xi = xi+1;

for y = genLambL:genLambS:genLambH,

% Strategy
disp('*****************STRATEGY O*******************');
strg = 0

yi = yi+1;
param = [t u v w x y];
[uSt, tSt]= taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:) = uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:)= tSt;

uSt
%tSt
sum(tSt,2)

% Strategy
disp('**********STRATEGY j***************');
strg = 1

yi = yi+1;
param = [t u v w x y];
[uSt, tSt]= taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:) = uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:) = tSt;

uSt
%tSt
sum(tSt,2)

% Strategy
disp('****STRATEGY 2************************');
strg = 2

yi = yi+1;
param = [t u v w x y];
[uSt, tSt] = taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:)= uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:)= tSt;

uSt
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%tSt
sum(tSt,2)

end %y
yi=0;

end % x
xi = 0;

end % w
wi = 0;

end % v
vi=0;

end % u
ui = 0;

end% t
ti = 0;

display(' * FINISH runSim.M *
display(' FINISH runSim.M *

diary off;
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D. Experiment 2: The Effect of Quantity of Hotspots and Concentration of
Customers at Hotspots (Codes)

The following are codes written to analyze the effect of quantity of hotspots and

the concentrations of customers on the various attributes of taxi optimization.

This program (RunSim) calls the TaxiSim program for various calculations.

cdc;
%format short e;
format;
%display(' *** RUN OF runSim.M *
clear;
diary('numberHSPercentageHSDIARY.txt');
diary on;

% The general form of taxiSim is
% [uStat, taxiStat]= taxiSim(param,hlambda,strategy,seed)

% INPUT parameters are formated as follows
% Param= [P1 P2 P3 P4 P5 P6]
% P1 = simulationDuration P2= citySize P3 = numberOfHotspots
% P4 = numberOfTaxis P5 = taxiSpeed P6 = generalCustomerLambda
% HotspotLambda = [RI R2 R3 ... RM ... RN] where N = number of Hotspots
% in the city and RM is the lambda for hotspot #M, a positive real number
% Strategy = choice of strategy to test out.
% 0: taxi waits after dropping off customer. (base case)
% 1: taxi travels towards nearest hotspot
% (distance factor NOT scaled by hlambda) but picks up calls
% 2: taxi travels towards nearest hotspot
% (distance factor scaled by hlambda) but picks up calls
% Seed = randomNumberSeed

% OUTPUT parameters are formated as follows
% UStat = [Ul U2 U3 U4 U5 U6 U7], a matrix of 7 unitary statistics
% U 1 = totalCustomerWaitTime
% U2 = genericCustomerTotalWaitTime
% U3 = totalNumberOfGenericCustomers
% U4 = hotspotCustomerTotalWaitTime
% U5 = totalNumberOfflotspotCustomers
% U6 = totalWaitTimeOfCustomersStillWaiting
% U7 = numberOfCustomerStillOnQueue
% U8 = numberOfGenericCustomersServed
% U9 = numberOfHotspotCustomersServed
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TaxiStat = [taxiTimeSpentOnIdling; taxiTimeSpentOnTaxing;
taxiTimeSpentOnPickup; taxiTimeSpentOnCouriering]
where each is a [1 numberOfTaxis] matrix.
Idling is wasted time waiting around but minimal fuel is expended
Taxing is wasted time moving around to a new location, fuel is
consumed.

Pickup is time spend traveling to get to the customer
Courier is actual productive and profitable time driving customers
around

% PARAMETER RANGE (low, step, high)
% Param
simDurL = 100;
simDurS = 10; simDurH = simDurL; % simulation duration

citySizeL = 100
citySizeS = 20; citySizeH = citySizeL;

numHSL = 6
numHSS = 2
numHSH = 18;
disp('7 hotspot range to test--ROW');

% number of hotspots

numTaxiL = 300
numTaxiS = 50;

taxiSpeedL = 10
taxiSpeedS = 5;

totalLambda = 25;

numTaxiH = numTaxiL;

taxiSpeedH = taxiSpeedL;

% number of taxis

% taxi driving speed

% total lambda for all customers

genLambL = 0.1
genLambS = 0.1
genLambH = 0.9 % percentage of lambda is generic customer
disp('9 hotspot lambda percentage to test--COLUMN');

% Seed
rSeed = 0;

%**** **** **** **** **** **** **** **** **** **** **** **** **** ****

**** **** **** **** **** **** **** **** ****

%display(' *** RUN OF STRATEGY 0 *

ti=0;ui=0;vi=0;wi= 0;xi=0;yi=0;uStO=[];uStl=[];uSt2=[];
% setup saving vars
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avgTotalWaitO = []; avgTotalWaitl =[]; avgTotalWait2
% average wait time for served customers

avgGenWaitO = []; avgGenWaitl = []; avgGenWait2
% average wait time for served gen customers

totalGenServedO = []; totalGenServedi = []; totalGenServed2
% total number of gen customers served

avgHSWaitO = []; avgHSWaitl = []; avgHSWait2 =

% average wait time for served HS customers

totalHSServedO = []; totalHSServedl = []; totalHSServed2
% total number of HS customers served

avgQWaitO = []; avgQWaitl = []; avgQWait2
% average wait time for customers still on Q

totalQWaitO = []; totalQWaitl = []; totalQWait2 = [];
% total number of HS customers still on Q

avgldleO = []; avgldlel = []; avgldle2=
% average time idle for a taxi

avgTaxingO = []; avgTaxingl = []; avgTaxing2
% average time taxing for a taxi

avgPickupO = []; avgPickupI = []; avgPickup2=
% average time picking up customer for a taxi

avgCourierO = []; avgCourierl = []; avgCourier2 = [];
% average time transporting customer for a taxi

for t = simDurL:simDurS:simDurH,
ti = ti+1;
for u = citySizeL:citySizeS:citySizeH,

ui = ui+ 1;
for v = numHSL:numHSS:numHSH,

vi = vi+1;
AXIS <<<<<<<<<<<<<<<<<<<<

for w = numTaxiL:numTaxiS:numTaxiH,
wi = wi+ 1;
for x = taxiSpeedL:taxiSpeedS:taxiSpeedH,

xi= xi+1;
for y = genLambL:genLambS:genLambH,

% number of hotstpos--X-
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yi = yi+1; % percentage generic lambda--Y-AXIS

% Clear variables just in case...
uStO = []; uStl = []; uSt2

% HotspotLambda
hlamb = [];
% first two hotspots takes up 25% each, leaving 50% to be divided

among rest
hsfrac = (totalLambda*(1-y))/(v+2);
hlamb = hsfrac*ones(1,v);
hlamb(1)= hlamb(1)+hsfrac;
hlamb(2) = hlamb(2)+hsfrac;
hlamb

param = [t u v w x totalLambda*y]

% Strategy
disp('******STRATEGY 0******************************);
strg = 0;
[uStO, tStO]= taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:) = uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:) = tSt;
% variable display for DEBUGGING

uStO
%tSt
totalTaxiStatO = sum(tStO,2)

% Strategy
disp('**********STRATEGY

strg = 1;
[uSti, tStl] = taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:) = uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:) = tSt;

uStl
%tSt
totalTaxiStatl = sum(tStl,2)

% Strategy
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disp('**********STRATEGY

strg =2;
[uSt2, tSt2] = taxiSim(param,hlamb,strg,rSeed);
%uStat(ti,ui,vi,wi,xi,yi,:)= uSt;
%tStat(ti,ui,vi,wi,xi,yi,:,:)= tSt;
uSt2
%tSt
totalTaxiStat2 = sum(tSt2,2)

% Store data in a variable to be saved for analysis
avgTotalWaitO(vi,yi)= uSt0(1)/(uSt0(8)+uSt0(9));

% avg wait time for a customer (served)

avgTotalWait 1 (vi,yi)= uSt I(1)/(uSt 1 (8)+uSt 1(9));
avgTotalWait2(vi,yi)= uSt2(1)/(uSt2(8)+uSt2(9));

avgGenWaitO(vi,yi)= uStO(2)/uStO(8);
% avg wait time for a gen customer (served)

avgGenWaitl (vi,yi) = uSt I(2)/uSt1 (8);
avgGenWait2(vi,yi) = uSt2(2)/uSt2(8);

totalGenServedO(vi,yi)= uStO(8);
% total number of gen customers served

totalGenServedI(vi,yi) = uSt1(8);
totalGenServed2(vi,yi) = uSt2(8);

avgHSWaitO(vi,yi) = uStO(4)/uStO(9);
% average wait time for served HS customers (served)

avgHSWaitl (vi,yi)= uStl (4)/uSt1 (9);
avgHSWait2(vi,yi) = uSt2(4)/uSt2(9);

totalHSServedO(vi,yi) = uStO(9);
% total number of HS customers served

totalHSServed I(vi,yi) = uSt1 (9);
totalHSServed2(vi,yi) = uSt2(9);

if uStO(7) -0 % to avoid a DIV/0 error
avgQWaitO(vi,yi) = uStO(6)/uStO(7);

% average wait time for customers still on Q (NOT served)

totalQWaitO(vi,yi) = uStO(7);
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% total number of HS customers still on Q (NOT served)
else

avgQWaitO(vi,yi) = -1;
totalQWaitO(vi,yi)= -1;

end% if uStO(7)

if uSt1(7)~= 0
avgQWaitl(vi,yi)= uSti(6)/uSti(7);

% average wait time for customers still on Q (NOT served)

totalQWaitl(vi,yi)= uStl(7);
% total number of HS customers still on Q (NOT served)

else
avgQWait 1 (vi,yi)= -1;
totalQWaitl (vi,yi) -1;

end% if uStO(7)

if uSt2(7)~= 0
avgQWait2(vi,yi)= uSt2(6)/uSt2(7);

% average wait time for customers still on Q (NOT served)

totalQWait2(vi,yi) = uSt2(7);
% total number of HS customers still on Q (NOT served)

else
avgQWait2(vi,yi) = -1;
totalQWait2(vi,yi)= -1;

end% if uStO(7)

avgldleO(vi,yi) = totalTaxiStat0(1)/w;
% average time idle for a taxi

avgIdlel (vi,yi) = totalTaxiStat I(1)/w;
avgldle2(vi,yi) = totalTaxiStat2(1)/w;

avgTaxingO(vi,yi)= totalTaxiStatO(2)/w;
% average time taxing for a taxi

avgTaxing 1 (vi,yi) = totalTaxiStatl (2)/w;
avgTaxing2(vi,yi) = totalTaxiStat2(2)/w;

avgPickupO(vi,yi) = totalTaxiStat0(3)/w;
% average time picking up customer for a taxi

avgPickup 1 (vi,yi) = totalTaxiStat1 (3)/w;
avgPickup2(vi,yi) = totalTaxiStat2(3)/w;
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avgCourierO(vi,yi) = totalTaxiStatO(4)/w;
% average time transporting customer for a taxi

avgCourierl (vi,yi)= totalTaxiStat I(4)/w;
avgCourier2(vi,yi)= totalTaxiStat2(4)/w;

end % y
yi= 0;

end % x
xi = 0;

end % w
wi = 0;

end% v
vi = 0;

end % u
ui = 0;

end % t
ti = 0;

avgTotalWaitO
avgTotalWaitl
avgTotalWait2

avgGenWaitO
avgGenWaitl
avgGenWait2

totalGenServedO
totalGenServedi
totalGenServed2

avgHSWaitO
avgHSWaitl
avgHSWait2

totalHSServedO
totalHSServedl
totalHSServed2

avgQWaitO
avgQWaitl
avgQWait2

totalQWaitO
totalQWaitl
totalQWait2
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avgldleO
avgldlel
avgldle2

avgTaxingO
avgTaxingl
avgTaxing2

avgPickupO
avgPickupl
avgPickup2

avgCourierO
avgCourierl
avgCourier2

display(' *********************************************
display(' ************** FINISH runSim.M *
display(' *********************************************

save 'numberHSPercentageHS.txt' avgTotalWaitO avgTotalWaitl avgTotalWait2
avgGenWaitO avgGenWaitl avgGenWait2 totalGenServedO totalGenServedi
totalGenServed2 avgHSWaitO avgHSWaitl avgHSWait2 totalHSServedO
totalHSServedl totalHSServed2 avgQWaitO avgQWaitl avgQWait2 totalQWaitO
totalQWaitl totalQWait2 avgIdleO avgldlel avgldle2 avgTaxingO avgTaxing1
avgTaxing2 avgPickupO avgPickupl avgPickup2 avgCourierO avgCourierl
avgCourier2 -ASCII;
save 'numberHSPercentageHS.mat' avgTotalWaitO avgTotalWaitl avgTotalWait2
avgGenWaitO avgGenWaitl avgGenWait2 totalGenServedO totalGenServedl
totalGenServed2 avgHSWaitO avgHSWaitl avgHSWait2 totalHSServedO
totalHSServedl totalHSServed2 avgQWaitO avgQWaitl avgQWait2 totalQWaitO
totalQWaitl totalQWait2 avgldleO avgldlel avgldle2 avgTaxingO avgTaxingl
avgTaxing2 avgPickupO avgPickupl avgPickup2 avgCourierO avgCourierl
avgCourier2;
diary off;
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