
Molecular Dynamics Simulation of Mechanical
Behavior of Nanoporous Copper Foams

by

Charles Cantrell

Submitted to the Department of Material Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Material Science and Engineering

at the

Massachusetts Institute of Technology

May 2006

© 2006 Massachusetts Institute of Technology A CHV
All rights reserved.

Signature of Author: ................... ................... -. .... ....... .. ................
Department of Material Science and Engineering

May 26, 2006

Certified by: ................................................... .. -v M ·,- . ...d. yip
Professor of Nuclear Science and Engineering and Materials Science and Engineering

Thesis Supervisor

Accepted by: .................................................. W -. .. .............................
Caroline A. Ross

Professor of Materials Science and Engineering
Chair, Departmental Undergraduate Committee

I

MASSACHUSETTS INSTIUTE
OF TECHNOLOGY

JUN 1 5 2006

LIBRARIES



Molecular Dynamics Simulation of Mechanical
Behavior of Nanoporous Copper Foams

by

Charles Cantrell

Submitted to the Department of Material Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Material Science and Engineering

ABSTRACT

Metallic foams have a variety of unique mechanical properties that make them prime
candidates for many different applications. Recent developments in manufacturing have allowed
for the creation of nanoporous foams but still relatively little is known about foam behavior on
the nano-scale. To determine if macro-scale metallic foam theory scaled appropriately to
nanoporous foams, the mechanical behavior of nanoporous copper was simulated. Molecular
dynamics (MD) simulations were performed at room temperature using the Mishin potential on
tetrakaidecahedron foam structures. In closed-celled foams close agreement is observed between
simulated Young's moduli and constitutive theory. Nanoporous closed-celled foams also show
mechanical failure mechanisms similar to those seen on the macro-scale.
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LIST OF FIGURES

Figure 1 Micrograph of a closed-celled metallic foam. Notice the closed faces between pores.

Reproduced from [Gibson 2000]

Figure 2 Micrograph of an open-celled metallic foam. Notice the open faces between pores,

which allow for easy transfer of enclosed air. Reproduced from [Gibson 2000]

Figure 3 Schematic of 3 tetrakaidecahedron. Notice the lower two produce a translationally

space filling object. Reproduced from [Zhu 1996]

Figure 4 Atomistic representation of the tetrakaidecahron method. Two tetrakaidecahedra are

removed from an FCC crystal. This unit is space filling along the X, Y and Z axes.

Figure 5 Graph showing the Lennard-Jones potential versus experimental data. Graph taken

from http://en.wikipedia.org/wiki/Lennard-Jones_potential

Figure 6 Schematic of a typical stress v. strain curve for a metallic foam under uniaxial tension.

a.) elastic regime, b.) onset of plastic deformation, c.) nucleation of crack, d.) crack

propagation, e.) full fracture

Figure 7 Schematic of a typical stress v. strain curve for a metallic foam under uniaxial tension.

a.) elastic regime, b.) onset of plastic deformation, c.) collapse of pore, d.) collapse

propagation, e.) FCC compression regime

Figure 8 An atomistic representation of the tetrakaidecahron unit cell and its translation to form

initial configuration structures. a.) Closed-Cell b.) Open-Celled

Figure 9 Graph showing the time-averaged energy (in Joules) of the starting configuration,

varying the edge length of the containing box. The minimum energy state, here at a

0.02% increased edge length, is taken as the starting configuration.
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Figure 10 Schematic showing convergence between 2xlxl and 2x2x2 structures and non-

convergence between 2xlxl and 4xlxl structures. The non-convergence is an artifact of

how strain is applied to the system.

Figure 11 Series of figures representing the continuum properties of a metal foam. At point a.)

elastic regime, b.) onset of plastic deformation, c.) nucleation of crack, d.) crack

propagation, e.) full fracture.

Figure 12 Series of figures representing the atomistic properties of metal foams. Figures are

colored using coordination number and progress in time. The system begins in a relaxed

state and ends as a nearly fully fractured structure.

Figure 13 Plot of the stress-strain curves for a series of simulations varying only the number of

atoms (shown in the legend). All simulations have similar yield stresses and Young's

moduli but appear to have slightly different behavior following crack formation

Figure 14 Atomistic representations of the simulations shown in Figure 11 at a strain of 12%.

The only difference between the 2 simulations is the number of particles. In the smaller

simulation there is almost full fracture.

Figure 15 Graph of the theoretical Young's Modulus to relative density vs. data collected from

simulations varying. Simulated results match very closely to constitutive theory.

Figure 16 Graph of the theoretical Yield Stress to relative density vs. data collected from

simulations. Simulated results are approximately 1 order of magnitude above constitutive

theory.

Figure 17 Graph of the theoretical Yield Stress to relative density vs. data collected from

simulations using the yield stress for a perfect FCC crystal. Simulated results are

approximately 1 order of magnitude below constitutive theory.
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Figure 18 Series of figures representing the continuum properties of a metal foam under tension.

At point a.) elastic regime, b.) localization of strain, c.) breaking of strut, d.) full fracture

of strut, e.) and f.) fusion of two struts.

Figure 19 Series of figures representing the continuum properties of a metal foam under

compression. At point a.) elastic regime, b.) onset of plastic deformation, c.) collapse of

pore, d.) propagation of collapsing pore, e.) approaching full compression.
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Chapter 1

Introduction

Until recently, metallic foams were characterized by high costs and relatively poor

qualities (non-uniform cellular structure, large voids, etc.). In the past few years, however, new

processing methods have increased the quality and production rates of these foams, and

consequently, interest in them has skyrocketed [Gibson 2000, Gioux 2000]. More importantly to

this paper, recent production techniques, such as electrochemically dealloying or electrolytic

dissolution, have allowed for the creation of nanoporous metallic foams [Biener 2005a, Biener

2005b].

Macro-scale metallic foams have numerous beneficial properties that allow for many

possible applications. First, because of their high strength to weight ratio, metallic foams have

been used as in-body implants to promote bone growth [Zhu 1997]. Metallic foams also have

unique thermal insulation properties, which is why NASA is currently investigating the use of

metallic foams as heat shields for their space shuttle re-entry [Palmer 1997]. In addition,

metallic foams have mechanical properties which allow them to be used in energy absorbing

devices [Gioux 2000]. Nanoporous foams, specifically, have attracted interest due to their

potential sensor and actuator applications [Biener 2005].
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There are two types of metallic foams, which have drastically different mechanical

properties: open and closed celled. Because of their different mechanical behavior they are used

in different applications. Closed-celled foams are able undergo large strains (up to about 60-

70%) at almost constant stress making them great candidates for energy dissipation applications

[Gibson 2000]. Open-celled foams have high thermal conductivity and the interconnectivity of

voids, which allows gas to pass from one pore to another easily, making them useful in heat

dissipation applications [Gibson 2000].

Significant experimental and theoretical work has been performed to characterize the

mechanical behavior of macro-scale metallic foams [Gibson 2000, Andrews 2002, Andrews

1999, Gioux 2000, Han 2004, Onck 2005]. However, because of their recent development, far

less research has been performed to determine the mechanical behavior of nano-scale foams

[Biener 2005a, Biener 2005b], and consequently, no well developed theory exists. Furthermore,

since constitutive macro-scale theory often breaks down at small scales, i.e. Hall-Petch, the well-

defined macro-scale theories must be tested at the nano-scale before they can be applied.

This paper examines the mechanical behavior of nanoporous copper foams. Because of

well-defined constitutive theory, we study the yield stress and Young's modulus of our foams.

We will show that these foams behave according to current macro-scale theory. We discuss the

effects of porosity and configuration (open vs. closed) on the mechanical behavior and compare

it to current constitutive theory. Several important discrepancies between theory and simulated

data exist and are discussed at length.

8



Chapter 2

Background

2.1) Types and Mechanical Properties of Foams

Foams are typically described as either open- or closed-celled. The difference between

the two has to do with the interconnectivity of the pores. An open-celled foam, shown in Figure

1, is characterized by the interconnectivity of pores and is formed by the connection of struts

where the faces between pores are "open" allowing air to pass from one pore to the next.

Closed-celled foams, shown in Figure 2, do not have interconnected pores and are characterized

by the faces or plates that separate the pores. The plates effectively "close" the pores preventing

the air from passing easily from one pore to another. When deformed the dynamics of the air

play an important role in the over-all mechanical behavior of these foams. If the air is not

allowed to move freely it acts against the stress and provides additional mechanical support

[Gibson 2000].

The single most important structural feature that affects the mechanical properties of

foams is its relative density. The relative density is the ratio of the density of the foam to that of

the solid. For foams, the relative density generally falls between 0.003 and 0.3 [Gibson 2000].

9
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Figure 1 Micrograph of an open-celled metallic foam. The open faces between pores
allow for easy transfer of enclosed air. Reproduced from Gibson, 2000

1 cm

Figure 2 Micrograph of a closed-celled metallic foam. The closed faces between the
pores characterizes closed-celled foams. Reproduced from Gibson, 2000
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2.1.1) Mechanical properties of open-celled foams

Current theory for open-celled metallic foams states the yield stress can be estimated

using

0Jy,foarm C lpS (1)

ay,solid

where yfoam is the yield stress for the foam, ay,solid is the yield stress for the solid, Prel is relative

density and empirical data from many different foams suggests C1 - 0.3 [Gibson 2000].

The Young's modulus relation behaves similarly,

Efoam 2
= C2 Prel (2)

solid

where Efoam is the Young's modulus for the foam, Esolid is the Young's modulus for the solid and

C 2 - 1.

2.1.2) Mechanical properties of closed-celled foams

Closed-celled mechanical properties are very similar to those of open-celled foams. The

slight difference is caused by the entrapment of the air in the pores and the bending of the faces

between the pores. These differences results in an extra term in the yield stress and Young's

modulus equations. Current theory for closed-celled metallic foams states the yield stress can be

estimated using,

,foam (C3Prel + C4Prel) (3)
ay,solid

11



where empirical data suggests C 3 - .33 and C4 .44 [Gibson 2000]. Unlike the open-celled

foam, at relatively low densities the second term dominates and the above equation becomes

quasi-linear.

Similar behavior occurs for the Young's modulus

Efoam = (CsPrel 2 + C 6 Prel) (4)
Esolid

where analysis suggests C5 - C6 -.32.

2.2) Tetrakaidecahedron

A tetrakaidecahedron is a 14-sided figure composed of 8 regular hexagons and 6 squares

and is created by truncating a regular octahedron [Zhu 1997]. A tetrakaidecahedron is formed

when six square pyramids are removed from the comers of a regular octahedron. Figure 3,

taken from Zhu [ 1996], shows tetrakaidecahedra filling space. Our recreation a

tetrakaidecahedron on the molecular scale is shown in Figure 4.

Figure 3 Schematic of 3 tetrakaidecahedron. Notice the lower two produce a
translationally space filling object. Reproduced from [Zhu 1996].
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Figure 4 Atomistic representation of the tetrakaidecahedron foam. Two tetrakaidecahedra
are removed from an FCC crystal. The above unit is space filling along the X, Y and Z

Because the tetrakaidecahedron is created by removing 6 square pyramids from a regular

octahedron, the volume of the tetrakaidecahedron is given by the volume of the octahedron

minus six times the volume of the square pyramids, therefore the volume is

V = 8J2a 3 (5)

From a similar process

The distances from the

given by

we see the surface area of a tetrakaidecahedron is given by

S = (6 +12i/)a2 (6)

middle of the solid to the centers of the hexagonal and square faces are

r6 = a
2

r4 = 2a

(7)

(8)
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respectively, where a is the length of the edges. The volume and surface area of the

tetrakaidecahedron are important when determining the density and porosity of resulting foams

and the distances from the centroid of the solid to the centers of the surfaces are used in the

creation of the foams, described in the methods section.

2.3) Potentials

The potential energy, V, between any pair of atoms and is a function of the distance

between them, r. The force on the atom can be calculated using the following relation

f (r) = -grad[V (r)] (9)

where f(r) is the force. Knowing the force allows us to determine the future positions and

velocities of the atoms.

2.3.1) Lennard-Jones Potential

The Lennard-Jones potential is a mathematical representation of the potential energy

between two hard-sphere atoms. Any pair of atoms are subject to 2 distinct forces attracting and

repelling them. At large distances, the two atoms are attracted by Van der Waals forces and

when close together the two atoms repel one another due to electron cloud interactions. The

Lennard-Jones potential takes into account these two distinct forces. The resulting potential is

shown below
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V(r) =4ED[( (-]r r
(10)

where is the well depth and a is the hard sphere diameter. These two constants are distinct to

the type of material being modeled, and thus V is a function of only r.

The positive term (and the 12th power) represents the repulsive potential and the negative

term represents the attractive force. The competition between the opposing forces results in a

minimum energy state and a static equilibrium atomic spacing. When fit using the proper

constants the Lennard-Jones potential fits fairly well to empirical data, shown in Figure 5.

100

E

a)
C
c)
C0

tI.

50

0

-50

-100

3.0 4.0 5.0 6.0 7.0 8.0

R (A)

Figure 5 Graph showing the Lennard-Jones potential versus experimental data. Graph
taken from http://en.wikipedia.org/wiki/Lennard-Jones_potential
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2.2.2) Mishin Potential

The Mishin potential is a specific potential based on the Embedded Atom Method

(EAM), which assumes metals to be embedded in a cloud of electrons. Standard EAM potentials

have the form

E= eGipjr V( (11)

where the first term accounts for pair-wise atomic interaction and the second term accounts for

the local electron density. G is the embedding function, pj is the electron density as a function of

the neighboring atoms, and V(rij) is the potential between a pair of atoms. The Mishin potential

fits both terms to a database generated by Density Functional Theory (DFT) calculations. For

Copper, the Mishin potential has been shown to be more accurate than the Lennard-Jones

potential [Boyer 2004].

2.4.) Molecular Dynamics

Molecular dynamics (MD) simulations begin with a starting configuration containing the

initial positions and velocities of all N atoms. To find the trajectories, Newton's equation of

motion

F = ma, (12)

where F is the force acting on the particle, m is the mass, and a is the acceleration, must be

solved for each atom. The force is determined using the specified potential, and since the mass

of the atom is known, we are able to determine each atom's acceleration. With the acceleration

and current velocity and position, it is straight forward to determine the position of the atom at
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time t + At. This process is continued for a specified number of time steps, outputting

information about the system at appropriate intervals [Yip 2002].

This procedure can be summed into the following algorithm:

1. The initial positions and velocities of each atom are specified in a starting configuration.

2. Using the potential, forces on each atom are calculated.

3. Using the calculated force and the current position and velocity, the atomic positions and
velocities at time t + At are calculated

4. Move atoms forward in time by time step At

5. Steps 2 through 4 are repeated for a specified number of time steps.

MD simulations are bounded by two important parameters: the time step and the

temperature. Choosing the appropriate time step is vital to the simulations, since each step costs

computational time. A time step that is too short requires a longer simulation, and if the time

step is too long, important information about atomic vibrations is lost, invalidating the

simulation. The temperature of an MD simulation is important as well. MD simulations do not

generically hold temperature constant. In order to hold temperature constant a thermostat must

be used. A common thermostat method is velocity rescaling. Since temperature is directly

related to the kinetic energy of the system, if the average velocity changes so does the

temperature. Therefore, to hold the temperature constant, the velocities need to be rescaled to

maintain the same average velocity.

17



2.4) Stress-Strain Curves

When performing mechanical deformation of any kind, the stress-strain curve is an

important piece of information that can be gathered. From the stress-strain curve a variety of

properties can be determined, including the Young's modulus and the yield stress. The

theoretical stress-strain curves for metallic foams under uniaxial stress in both tension and

compression are shown. The two stress-strain curves are slightly different but both have several

important features that require discussion.

2.5.1) Tension

Under uniaxial tension the typical stress-strain curve for a metallic foam has five points of

interest shown in the schematic in Figure 6 [Gibson 2000]. At point (a.) the structure is still

undergoing elastic deformation, where the strain is evenly distributed throughout the structure.

Point (b.) represents the onset of plastic deformation which usually occurs as a result of the

movement of dislocations. At (c.) a crack has nucleated reducing stress. Though the nucleation

of a crack creates surfaces it relieves much of the stress in the system by allowing atomic

relaxation. The plateau region, shown as point (d.), is caused as the crack propagates through the

structure. Finally point (e.) occurs when the crack has fully propagated through the structure and

sample is fully fractured. The fully fractured material will be in a zero stress state.

18
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Figure 6 Schematic of a typical stress v. strain curve for a metallic foam under uniaxial
tension. a.) elastic regime, b.) onset of plastic deformation, c.) nucleation of crack, d.) crack
propagation, e.) full fracture

2.5.2.) Compression

Under uniaxial compression the typical stress-strain curve for a metallic foam looks like

the schematic Figure 7 [Gibson 2000]. As before, there are five points of interest shown in the

compression stress-strain graph. The first four are essentially the same except that (c.) and (d.)

represent the onset and propagation of collapsing pores instead of a crack. And finally point (e.)

represents the regime where the structure is fully dense and resumes loading in compression, and

as a result, the stress increases exponentially.
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Figure 7 Schematic of a typical stress v. strain curve for a metallic foam under uniaxial
tension. a.) elastic regime, b.) onset of plastic deformation, c.) collapse of pore, d.) collapse
propagation, e.) FCC compression regime

20



Chapter 3

Methods

The compressive and tensile mechanical behavior of nano-porous copper foams was

tested using MD simulation. Tests were performed on open and closed celled foams created

from a Face Centered Cubic (FCC) perfect crystal. Foams were produced using a

tetrakaidecahedron structure and then allowed to relax to reduce their energy. The resulting

foam configurations were deformed at a constant strain rate of 109. Energy, deformation, and

temperature information were output at every time step and the location of each individual atom

was output every 2000 time steps. Foams were deformed for approximately 200,000 time steps

representing 2 pico-seconds. All simulations were performed at a constant temperature of 300°

K using velocity rescaling and the Mishin potential.

Different foams were tested to determine the effects of relative density, convergence and

configuration (open vs. closed) on the mechanical behavior of nano-porous copper foams. To

test the effects of relative density, 5 different closed-celled foams and 5 different open-celled

foams were tested ranging the relative densities from 0.14 to 0.37.

Our foams were produced from an FCC perfect crystal so we first needed to create an

FCC lattice. In order to do this, we created an FCC unit cell (which consists of 4 atoms) and

repeated it along the X, Y, and Z axes to create a crystalline structure with the FCC cell as its

basic building block. From this structure we remove unwanted cells to create our

tetrakaidecahedron unit cell. We then repeat this unit cell along the X, Y, and Z axes to create
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our desired tetrakaidecahedron foam. The tetrakaidecahedron unit cell, pictured in Figure 4, is a

set of two tetrakaidecahedra that are space filling when repeated along X, Y and Z axes. We

translate the tetrakaidecahedron unit cell along the X, Y, and Z axes and we get our structure.

This is shown in Figure 5.

_...q-..
a.)

U,/

PI

Figure 8 An atomistic representation of the tetrakaidecahron unit cell and its translation to
form initial configuration structures. a.) Closed-Cell b.) Open-Celled
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To produce the tetrakaidecahedron unit cell, we start by placing the center of a

tetrakaidecahedron at the origin of the FCC cell. We loop over all particles checking if they are

located inside the tetrakaidecahedron. The atoms whose centers fell within this volume are

"flagged" and later taken out of the structure. Next we translate the center of the

tetrakaidecahedron through a hexagonal face by 2r6 + t where t is the thickness of the strut and

r6, given by Equation 7, is the distance from the middle of the solid to the center of the hexagon.

The same process is done using the new center of the tetrakaidecahedron. The result is a set of

two tetrakaidecahedra that itself can fill space by translation along X, Y and Z axes.

To determine if a specific atom is located inside the tetrakaidecahedron, we first

determine its directed distance from the center of the solid. This can be done easily because we

know the position of both the center of the solid and the atom. There are seven directed

distances that we are interested in. Four correspond to the 4 squares, and the other 3 correspond

to the hexagons. We need only check 3 hexagons because they are coupled with one another, in

that they are parallel to each other and on opposite sides of the center of the tetrakaidecahedron.

If each of the directed distances are less than their corresponding radius (either r4 or r6), then the

atom is located inside the tetrakaidecahedron and it is flagged. For the open-celled

configurations, the faces between the pores were removed in a similar manner.

Before testing, each configuration was allowed to relax to take its lowest energy shape.

We relaxed the structure within 5% of its original size on our first attempt and if needed we

extend this region. To relax the structure the size of its containing box was adjusted and let to

equilibrate for 500 time steps. The configuration with the lowest average energy was assumed to

be the relaxed state. Figure 9 shows the energies of several configurations.
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Figure 9 Graph showing the time-averaged energy (in Joules) of the starting configuration,
varying the edge length of the containing box. The minimum energy state, here at a 0.02%
increased edge length, is taken as the starting configuration.

There were two types of simulations performed on the nano-porous copper foams. The

first type was a time-averaged run at a given temperature, number of atoms, and volume, to

determine the thermodynamic equilibrium, used to determine the starting configuration. The

second type allowed for real-time deformation. In order to simulate real-time deformation we

updated the cubic side length at every time step. The change in side length was determined by

the strain rate:

A

1*At
(13)

Therefore,

(14)Al = c'*At * 
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where e' is the strain rate, At is the time step, 1 is the cube length, and Al is the cube length

increment. For each run E' was held constant at 109.

To determine what configuration to use for our simulations we tested for convergence

using 2x lx, 4x lx, 2x2x1, and 2x2x2 configurations. To clarify, the AxBxC convention

represents the number of unit tetrakaidecahedra (shown in Figure 2) along each of the X, Y, and

Z axes respectively. Thus a 2xlxl configuration is composed of 2 tetrakaidecahedra along the x-

axis and 1 in each of the other directions.

What we mean when we refer to convergence, is the relation that our smaller simulations

have to larger ones. Ideally we could represent the tetrakaidecahedron foam as the one unit cell

shown in Figure 2. This would reduce the number of particles in the simulation and therefore

reduce the computational time. Unfortunately, if we only look at one unit cell, we do not collect

data on the interaction between these cells. So how small of a configuration can we use and still

see the proper sequence of events? To determine which starting configuration we using we look

at the relation of the different configurations to one another. Figure 10 shows this relation, under

uniaxial tension along the X-axis (to the right and left).
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Figure 10 Schematic showing convergence between 2xlxl and 2x2x2 structures and non-
convergence between 2xlxl and 4xlxl structures. The non-convergence is an artifact of
how strain is applied to the system.

We notice that in the 2x lx configuration, we see the propagation of 1 crack. The crack

runs through the center of one of the unit tetrakaidecahedron. We suspect that if we increase the

simulation from 2xlxl to 4xlxl we would still only have 1 crack. Unfortunately, the 4xlxl has

the propagation of 2 cracks.

The creation of the second crack is an artifact of how we deform the structure. It is

important to note, we do not apply stress to the structure. Instead, we apply a constant strain.

The strain is applied by increasing the appropriate edge length. This immediately affects the

distances between all the atoms, which usually equilibrates during the time step, and under most

circumstances acts as if we had applied stress directly to the system. It is possible, however, the

strain is distributed between 2 cracks, causing both to propagate, seen in Figure 10.
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It appears, from Figure 10, the 2xlxl foam shows convergence and therefore we could

have used this structure or any larger translation of it for our testing. To understand more about

the system it is optimal to have the greatest possible area for the plane perpendicular to the strain

axis, and for this reason, simulations were run using the 2x2x2 structure.
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Chapter 4

Results and Discussion

Because we performed MD simulations and thus have information about every atom, we

use AtomEye [Li, 2003] to help us visualize our simulations. With AtomEye we can see what

macro-scale failure mechanisms occur, Figure 11, and atomistic mechanism, Figure 12.

Figure 11 is colored based on atom displacement. The coloring scheme is changing

throughout the pictures so that red represents atoms with the largest displacement and dark blue

represents the atoms with the least displacement. By examining Figure 11, we can see that our

foam undergoes all the proper stages of metallic foam deformation. At point (a.), we are in the

elastic regime with the strain being evenly distributed throughout the structure. We see this

because the patches of light blue appear to be even throughout the structure. By point (b.), we

notice that there is a localization of the strain located in the upper right part of the picture. This

suggests a type of plastic deformation has occurred. At (c.), the structure has begun to fracture.

The strain localizes around the crack and larger displacements occur in that region. This results

in the strip of red along the right side. At (d.), the strain localization has caused the crack to

propagate until finally we have full fracture at (e.).
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Figure 11 Series of figures representing the continuum properties of a metal foam. At point
a.) elastic regime, b.) onset of plastic deformation, c.) nucleation of crack, d.) crack
propagation, e.) full fracture.

This behavior fits very well with what is seen in macro-scale metallic foams.

Furthermore, it is interesting to note here is that in (b.) there appears to be two locations where

the strain is localized. It appears that the strain on the right "wins" and thus the fracture is

formed there. We see also that after the crack is nucleated and begins to propagate through (d.),

the left side of the structure appears to return to a low stress state. This would be expected

because cracks are stress concentrators and the creation of a crack relieves the global stress.

29
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By examining the same simulation with a different color scheme, we can examine what

occurs before, during and after the fracture at the atomistic level. Figure 12 is colored by

oordination number. Coordination number is an atom's number of nearest neighbors. In an FCC

crystalline structure the coordination number of all atoms would be 12, which is the tan color in

Figure 12. The purple and gray colors represent FCC surfaces, in the <111> and <100> planes

respectively.

In Figure 12 at (a.), we see the elastic regime. Most of the atoms are in their correct

coordination number and those that are not are evenly distributed throughout the structure. By

(b.), there exists some plastic deformation. A partial dislocation appears to have moved along

the <111> plane just to the right of the left strut. There also appear to be several dislocations in

all of the FCC faces. By (c.), a crack has formed and at (d.) the crack propagates through the

faces. As the crack propagates, partial dislocations seem to disperse out from it. At the same

time, the partial dislocations appear to be leaving the right side of the structure. By (e.) the crack

has almost fully propagated. As it does so, a slew of edge dislocations form to the left of the

strut. By (f.) the fracture is almost complete, and the remainder of the system begins to return to

its minimal energy state.
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Figure 12 Series of figures representing the atomistic properties of metal foams. Figures
are colored using coordination number and progress in time. The system begins in a relaxed
state and ends as a nearly fully fractured structure.
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Stress-strain curves for structures of the same density are shown in Figure 13. The three

curves vary only in pore size, from 60,000 to 200,000 atoms maintaining a constant pore to strut

ratio.

x 10
9

L

1

Cu
a-
u,

n

0 0.05 0.1 0.15 0.2
Strain

Figure 13 Plot of the stress-strain curves for a series of simulations varying only the size of
the simulation (shown in the legend). All simulations have similar yield stresses and
Young's moduli but appear to have slightly different behavior following crack formation

These stress-strain curves have many of the same characteristics that a theoretical macro-scale

metallic foam would have. They have the elastic regime, the onset of plastic deformation, crack

nucleation and full fracture. These stress-strain curves lack an important regime, however. They

do not appear to have the elongated crack propagation section (described by (d.) in Figure 5).

Interestingly, the three simulations have roughly the same yield stresses and the same

Young's moduli. However, the three appear to have slightly different behavior following initial

fracture. The largest simulation dislplays a hump in the curve following the initial fracture. It
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appears that this would be the beginning of the fracture propagation regime in the theoretical

stress-strain curve. Figure 14 shows visualizations of the above simulations at a strain of

approximately 12%. In the smaller simulation, the crack almost immediately fully propagates

through the structure. Though it is difficult to see in the picture the crack has propagated through

in a jagged manner, and only 2 small struts hold the sides together. In the larger simulation, the

crack has only begun to propagate through the structure at 12% strain. This would suggest that

as we further increase the number of particles, the propagation step should elongate, eventually

looking like the theoretical stress-strain curve.

There are two possible explanations for the absence of the propagation region. First, we

simulated a small structure that has only 2 pores along the y-axis (the axis along which the crack

propagates). This means the crack can only propagate for a short period of time before it fully

fractures the structure. We would expect that as the number of pores along the y-axis increases,

a zippering effect would exist and thus the propagation regime would elongate. Secondly, as the

number of particles increases the energy required for the crack to propagate should increase;

thus, the propagation regime should elongate which explains the hump we see in Figure 13.
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NP = 60,000 NP = 200,000

Figure 14 Atomistic representations of the simulations shown in Figure 11 at a strain of
12%. The only difference between the 2 simulations is the number of particles. In the
smaller simulation there is almost full fracture.

From the stress-strain curves the Young's moduli and yield stresses can be determined

for our simulations. We compare our simulated data to the quasi-linear constitutive theory in for

the relative Young's modulus in Figure 15 and for the relative yield stress in Figure 16.

The simulated Young's moduli appear to correlate very well with current theory. This

correlation intuitively makes sense because the Young's modulus of a structure relates strongly

with the potential used. Since the simulations were run with the very accurate Mishin potential,

the Young's moduli should match well with theory.
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Figure 15 Graph of the theoretical Young's Modulus to relative density vs. data collected
from simulations varying. Simulated results match very closely to constitutive theory.
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Relative Density

0.35 0.4 0.45

Figure 16 Graph of the theoretical Yield Stress to relative density vs. data collected from
simulations. Simulated results are approximately 1 order of magnitude above constitutive
theory.
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There is, however, a drastically different relation between the simulated yield stresses and

the theoretical yield stresses, approximately an order of magnitude difference. There are several

explanations for this discrepancy. First, to determine the relative yield stress the experimental

yield stress of solid copper, 130 MPa [Gibson 2000], was used. The experimental yield stress

was determined using a strain rate on the order of 10-3, so it is hard to compare the two yield

stresses. Furthermore, the simulation was performed with a very large strain rate of 109. Large

strain-rates are known to stress systems past their theoretical maximum yield stresses by not

allowing structures to adequately relax.

To examine this situation further we determined the yield stress of a perfect FCC

crystalline copper structure using a strain rate of 109. The resulting yield stress, 11 GPa, is

approximately 2 orders of magnitude higher than experimental results. Using the resulting yield

stress as the yield stress of solid copper, the relative yield stress dropped dramatically, shown in

Figure 17.
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Figure 17 Graph of the theoretical Yield Stress to relative density vs. data collected from
simulations using the yield stress for a perfect FCC crystal. Simulated results are
approximately 1 order of magnitude below constitutive theory.
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In each case, the simulated relative yield stresses are off by approximately 1 order of

magnitude. This is most likely due the high strain rate. The constitutive theory describes a

regime under a much slower strain rate. The data suggest the increased strain rate affects the

foam to a greater extent than the solid, which is why the data do not match properly in the Figure

17.
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Chapter 5

Further Results

As additional work we attempted to validate the constitutive theory of open-celled foams

at the nano-scale. To do this, we ran simulations varying porosity from 0.14 to 0.37 on our open-

celled foams. Unfortunately, the data was not intuitively correct. As a result, we were unable to

draw any concrete conclusions from the open-cell simulations.

The open-celled foams displayed almost fluid-like under tension and compression.

Figure 18 shows the open-celled foam under tensile strain and Figure 19 shows the foam under

compression. Both figures are colored according to atomic displacement, using a variable

colorbar.

Under tension, typical metallic foams should under go elastic deformation and eventually

plastic deformation will occur. The open-cell foam simulations did in fact display these regimes,

however, beyond the initial fracture the foam like properties disappeared. In Figure 18, at point

(a.) the foam appears to be in the elastic regime and at (b.) the strain has localized in the upper

right strut. Eventually, by (d.) the strut breaks and as before there is an initial fracture. After the

initial fracture, the broken struts should remain solid, however, in the simulation (Figure 18 (e.)

and f)) the struts coalesce with one another to form a larger strut. This phenomenon is not

solid-like but rather more fluid-like. Further in the simulation, not shown in Figure 18, more
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coalescence occurs. Because of the combining of struts, the simulations do not represent

metallic foams and thus can not be compared to constitutive theory.

Interestingly, the open-celled foam acted "fluid-like" under compressive strain as well.

Figure 19 shows a series of pictures of the foam in compression. Under compression, the pores

in typical metallic foams would collapse abruptly. The simulated foams, rather, mush together

with no abrupt collapsing of the pores. From figure (a.) to figure (e.) little happens plastically.

The pores simply get smaller at a nearly constant rate. This behavior is more "fluid-like"

because the foam is simply molding to fit inside the confining box.

There are several possible explanations as to why the open-cell foam behaves in a "fluid-

like" manner. First, it is possible the struts are simply too small (roughly 4 atoms in diameter),

to act in a solid manner. Secondly and more likely, the open-cell foam is semi-stable. As an

artifact of how the foam was created, the cross-sections of the struts are not square or circular but

rather pentagonal. This is physically unlikely and causes the foam to want to reshape its struts.

The resulting semi-stable configuration is more likely to reduce energy through coalescing with

itself.
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a.)

c.) d.)

e.) f)

Figure 18 Series of figures representing the continuum properties of a metal foam under
tension. At point a.) elastic regime, b.) localization of strain, c.) breaking of strut, d.) full
fracture of strut, e.) and f.) fusion of two struts.
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Figure 19 Series of figures representing the continuum properties of a metal foam under
compression. At point a.) elastic regime, b.) onset of plastic deformation, c.) removal of
pore, d.) fewer pores, e.) approaching full compression.
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Chapter 6

Conclusions

To determine if macro-scale metallic foam theory scaled appropriately to nanoporous

foams, the mechanical behavior of nanoporous copper was simulated using molecular dynamics.

Foams were created using a tetrakaidecahedron foam structure and deformed at a constant strain

rate of 109. Simulations were run at a constant temperature of 300° K using velocity rescaling

and results were visualized using AtomEye.

The results presented suggest the constitutive theory scales well to closed-celled

nanoporous foams. Our foams showed proper failure mechanisms. They progressed from the

elastic regime into the onset of plastic deformation and following crack nucleation there was the

beginning of crack propagation and finally full fracture. The stress vs. strain curves appeared to

be approaching those of macro-scale foams and the Young's moduli fit current foam theory.
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