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Abstract

Human learning is by far effective than machine learning in many ways. Human
uses a curriculum, an organized set of materials to be learned in a particular sequence.
Inspired by this human learning, we have developed a new method of machine learning
by designing a series of input tasks, referred to as "curriculum," so that machine learn-
ing can be performed smoothly, quickly and stably without incurring fatal mistakes.
The new method termed "Progressive Learning" uses scheduled excitation inputs that
allow the system to learn quasi-static, slow modes in the beginning, followed by the
learning of faster modes. We first present a theory of progressive learning by formu-
lating a gradient based, model reference adaptive control problem. It is well known
that in a model reference adaptive control system an excitation at a high frequency
causes instability to the system when the relative order of the plant is high and the
SPR(strictly positive real) condition is not met. To derive a stability analysis for pro-
gressive learning, we apply a method of averaging analysis to describe the behavior of
the adaptive system in the frequency domain. Based on this analysis, we prove that
the stable convergence of control parameters is guaranteed if the system is excited
gradually through the reference input in accordance to the progress of the adapta-
tion. A numerical example is provided to verify the above analysis. The concept
of progressive learning is next applied to robotic assembly to explore the possibility
of progressive learning. A high speed insertion task is used as an example, where
an impedance control law is learned with the excitation scheduling method. In this
method, learning starts with a slow, quasi-static motion and goes to a fast, dynamic
motion. During the learning process, the stiffness terms of the impedance controller
are learned first, followed by the damping terms and finally by the inertial terms.
Consequently, this progressive learning method enables the learning of high-speed dy-
namic control laws without instability and fatal damage due to high speed collisions.
The mechanism of progressive learning is also discussed in detail and verified through
simulation experiments.

Thesis Supervisor: Haruhiko Asada
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

When people learn new tasks, they are slow and meticulous at the beginning but

speed up the operations as they gain experience and skills. We know that we had

better attempt simplified tasks at the beginning in order to become familiar with the

tasks and then, based on the knowledge and experience gained, execute the full-scale

tasks. Carrying out complex tasks in haste may incur costly failures and damage, or

lead to confusion in which case the learner can gain neither useful information nor

valuable experience. Such confusing results and failures have no pedagogical value for

learning the task. There is an old saying that, we learn more from failure than success,

but this is true only when the learner has enough competence to interpret the results

and correlate these with possible causes. Depending on the competence and amount

of knowledge the learner possesses at the beginning, judicious choices are required to

determine the level of task complexity appropriate for initial attempts.

In this thesis, we will explore a new approach to learning, inspired by this hu-

man learning behavior. The level of task complexity will be increased gradually as

the learner gains knowledge and improves task performance. To this end, we need

to organize the learning process by evaluating the learner and determining the level

of task complexity appropriate for the learner, so that the learner can attain useful

knowledge with a minimum of confusion and failure. Figure 1.1 shows a conceptual di-

agram of this learning system consisting of a learning organizer, called a "pedagogue",

and a learner. The learner, who has its own learning mechanism, is provided by the

9



Curriculum: ~Pogra.med ~ TasksEvaluation
Programmed Tasks

��1

Figure 1.1: Conceptual diagram of progressive learning system

pedagogue with a series of programmed tasks, called a "curriculum". Designing this

learning system is thus two-fold: the design of the learning rule for the learner and

the design of tasks, i.e. the curriculum.

This task design problem is relatively new to the learning/adaptive control com-

munity, but related issues have been addressed in different areas. In experimental psy-

chology, the idea of designing approximated tasks to facilitate learning, referred to as

"shaping", has been used for animal training for decades ([Honig and Staddon, 1977]

for example). In the animal training, however, the design of tasks has to rely on a

trainer's intuitive understanding of the way that the animal behavior is generated,

and no general formulation of shaping the tasks has been addressed in the psychol-

ogy literature. Recently, the concept of shaping has been applied to artificial neural

networks, in which successive presentations of sample data to a network have been

studied. [Allen, 1989], for example, trained recurrent networks by presenting short

sequences first, followed by longer sequences over time. [Gullapalli and Barto, 1990]

applied the concept of shaping to accelerate learning for a key-pressing task. In this

application, the key-pressing task is divided into a sequence of subtasks such as rais-

ing, positioning and pressing the fingertip, and the control action is evaluated and

10
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reinforced separately at each subtask.

In adaptive control, on the other hand, the design of reference signals has been

a central issue for the stable convergence of system parameters. In particular, it

has been revealed that stability conditions depend not only on dynamic properties

of the plant but also on the excitation level of the reference signal. For exam-

ple, [Riedle and Kokotovic, 1985] obtained a sharp local stability-instability bound-

ary in terms of the frequency content of the reference signals. They call this "sig-

nal dependent positivity condition." [Astr6m, 1984] examined the instability mecha-

nism of the well-known counter-example [Rohrs, et al., 1982] in the frequency domain.

[Sastry and Bodson, 1989] provided an extensive analysis for the relationship between

the frequency contents of the reference input and the convergence rate of adaptive sys-

tems. One interpretation of these stability analyses is that an adaptive system may

be able to avoid instability if the excitation level of the reference input is maintained

sufficiently low even in a case where instability would occur otherwise. However, the

system would fail to be fully excited for such a low level input and, as a result, the

system parameters cannot converge to their true values. Therefore, it is quite impor-

tant to develop a strategy that allows the system to be fully excited yet in a stable

manner.

1.2 Objectives

The objective of this thesis is to explore a novel learning method in which the

level of task complexity advances progressively in accordance with the learner's com-

petence and level of accomplishment. In the learning method, termed "Progressive

Learning," we design a series of tasks with different complexity levels appropriate for

the learner. The idea is to integrate the task assignment scheduling with the design of

the total control algorithm. It is expected that by integrating these we will be able to
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avoid instability and divergence of learning, expedite the learning process, and main-

tain a desired task performance level having a minimum chance of failure and damage

to the system. To prove the above arguments, the theory underpinning progressive

learning is derived by formulating a model reference adaptive control problem. A

thorough analysis of the behavior of progressive learning is presented.

1..3 Outline of the Thesis

This thesis is composed of two main parts: theory and application of progressive

learning, presented in Chapter 3 and Chapter 4 respectively. Although these parts

considerably share the same concept of progressive learning, the developments in each

of the chapters are fairly self-contained.

In Chapter 2, we first present the basic concept and the definition of progressive

learning.

In Chapter 3, we present a theory of progressive learning by formulating a gradient

based, model reference adaptive control problem. A stability analysis for progressive

learning is derived by applying a method of averaging analysis. In the analysis, the

behavior of the adaptive system is described in the frequency domain. Based on this

analysis, we prove that the stable convergence of control parameters is guaranteed

if the system is excited gradually through the reference input in accordance to the

progress of the adaptation. A numerical example is provided to verify the above

analysis.

In Chapter 4, the concept of progressive learning is applied to robotic assembly to

explore the possibility of progressive learning. A high speed insertion task is used as

an example, where an impedance control law is learned with the excitation scheduling

method. In this method, learning starts with a slow, quasi-static motion and goes

to a fast, dynamic motion. During the learning process, the stiffness terms of the

12



impedance controller are learned first, followed by the damping terms and finally by

the inertial terms. Consequently, this progressive learning method enables the learning

of high-speed dynamic control laws without instability and fatal damage due to high

speed collisions. The mechanism of progressive learning is also discussed in detail

and verified through simulation experiments. Different strategies for varying motion

speeds to expedite the learning process are also addressed at the end.

Conclusions are given in Chapter 5.

13



Chapter 2

The Basic Concept of Progressive Learning

To apply learning control to practical processes, stability must be guaranteed.

Learning algorithms that cannot be guaranteed to converge are not acceptable or

feasible for practical use. Moreover, in most applications, a certain minimum level

of task performance must be accomplished at all times, even at an early stage of

the learning process. Once the system is engaged in an actual task, it must not fail

in performing the task, nor yield poor outputs. For example, industrial robots in a

factory production line must always be able to perform a given task within a tolerance

error. Learning algorithms, although guaranteed to converge in theory, may not be

applicable to practical tasks if task performance during the learning process is not

satisfactory. Particularly difficult is the early stage of learning when the system does

not have enough data or exact knowledge about the task.

Humans perform unfamiliar tasks slowly and meticulously when their knowledge

is limited and stringent task specifications must be met. By reducing speed, for

example, they make the task tractable and executable despite limited knowledge and

skills. The required level of task performance is compared with their competence

to perform the task, and, if difficult to execute, the task complexity is lowered by

reducing execution speed, relaxing some conditions, or limiting the scope of the task.

As humans gain experience and become familiar with the new task, they increase the

task execution speed, or attempt to deal with tougher conditions and a broader range

of situations. People continue to learn the task by progressively increasing the level of

task complexity thereby improving the task performance ability. Judicious judgments

must be made in these steps, and an effective strategy must be set up to learn the

14



task while executing it satisfactorily.

Assigning an appropriate task level that matches the learner's competence is an

important feature in human learning. In the early stage of learning, we should first

lower the task complexity in order to avoid failure and unsatisfactory performance,

and then increase the complexity level in accordance with the progress in learning

and the improvement in task performance. If this strategy is successfully applied to

machine learning, we will be able to overcome the difficulties of traditional learning

methods as described earlier. In order to learn a task while executing the task by

satisfying minimum task requirements even in an early stage, learning and task execu-

tion must be coordinated. In the traditional framework of learning control, the major

research interest is focused on the development of learning rules and their convergence

conditions. In the proposed approach, we do not address a learning rule alone, but

we integrate it with the synthesis of learning schedule in which the task complexity

level is varied depending on the learning progress. This new learning method, which

we refer to as "Progressive Learning', is defined as follows:

Progressive Learning is a learning method in which the level of task com-

plexity is gradually increased in accordance with the progress of learning

so that minimum task performance requirements can be met throughout

the learning process and that the learning process may not diverge as the

level of task complexity increases.

Progressive learning is a dynamic process, since task assignments vary dynamically

during the learning process. As shown in Figure 2, the system consists of a learner,

a task process or a plant, a performance evaluator, and a learning scheduler. The

learning scheduler determines the task complexity level appropriate for the learner on

the basis of the task performance evaluation. In consequence, there are two feedback

15



Figure 2.1: Progressive learning system

loops involved in the progressive learning system: the task assignment loop and the

standard learning control loop. In designing this progressive learning system, we need

to elaborate both the schedule of the task assignments and the learning rule in an

integrated and cohesive manner. There is a significant synergism between the two

that improves stability and convergence speed along with practical aspects, as will be

explored later.
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Chapter 3

Theory of Progressive Learning

3.1 Introduction

Since its introduction to model reference adaptive control by [Parks, 1966], the

concept of SPR (Strictly Positive Real) has been playing the major role in devel-

oping various stable algorithms for adaptive systems, e.g. [Narendra, et al., 1980]

[Anderson, 1986]. The applicability of the SPR approach, however, has been lim-

ited to systems with relative degree less than two. For example, as often seen in

mechanical positioning systems, non-collocated sensor/actuator systems inherently

have a high relative order, and, therefore, it has been difficult to develop a stable

learning technique for the non-collocated systems. Although a variety of techniques

have been presented in order to overcome the limitation to low relative degree sys-

tems [Narendra and Annaswamy, 1989] [Kokotovi6, et al., 1992], it is still the major

obstacle for generalizing the SPR condition to a broader class of adaptive systems.

On the other hand, the stability analysis using the averaging techniques has re-

vealed that the stability conditions depend not only on the positive realness of the

system but also on the frequency contents of the system's internal signals. For exam-

ple, [Riedle and Kokotovic, 1985] obtained a sharp local stability-instability boundary

in the frequency domain by linearizing the system. They call this "signal dependent

positivity condition." [Astr6m, 1984] applied the averaging theory to examine the

instability mechanism of the well-known counter-example by [Rohrs, et al., 1982] in

the frequency domain. [Sastry and Bodson, 1989] provided an extensive analysis for

the relationship between the frequency contents of the reference input and the conver-
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gence rate of adaptive systems. One interpretation of these stability analyses in the

frequency domain is that an adaptive system can avoid instability even with relative

order more than one if the frequencies of the reference input are maintained sufficiently

low. However, the absence of high frequency contents in the reference input fails to

satisfy the persistent excitation conditions and, as a result, the system parameters

cannot converge to their true values. Therefore, it is quite important to provide the

reference input that meets both the signal dependent positivity condition and the

persistent excitation condition so that stable, efficient convergence can be guaranteed

even for a system with a high relative order.

In this chapter, we present a new input design method for stable adaptive control of

complex systems with high relative orders based on the concept of progressive learning.

The key idea is to gradually excite the system by providing a particular sequence of

reference inputs that consists of all low frequency contents in the beginning and that

consists of full frequency contents at the end. The progressive learning method allows

the system to learn parameters recursively and progressively, starting with the ones

associated with low frequencies and moving up to the ones with a full spectrum.

For each step of learning, the frequency contents of the reference input are carefully

selected from a limited range of frequency so that the signal dependent positivity

condition is met in order to avoid instability. Since the persistent excitation conditions

are not met, the system parameters may converge to certain values different from the

true ones. However, the stability analysis in the frequency domain to be provided

in this paper will show that the partial convergence of the parameters broadens the

frequency range in which stability is guaranteed. As a result, the system can be excited

at higher frequencies than that of the previous learning phase. After repeating this

procedure of designing the reference input, the frequency range for the positivity

18



condition reaches the whole frequency range and, as a result, the last reference input

in the sequence excites the system persistently for the parameter convergence to the

true values while avoiding the instability.

In this chapter, we present this progressive learning approach in the context of

model reference adaptive control. We first obtain stability conditions that relate fre-

quency contents of the reference input to the stability property of the system. Based

on this stability analysis, we prove the main theorem: the existence of a sequence of

reference inputs that achieve the progressive convergence of the control parameters for

the adaptive control system. A system with relative degree of 3 is used as an exemplary

case study and all the arguments and analyses are verified through simulation.

3.2 Statement of the Problem

In this section, we consider a model reference adaptive control(MRAC) scheme

of the type treated in standard textbooks (e.g., [Narendra and Annaswamy, 1989]).

The plant to be controlled is linear and time-invariant with input u E R and output

yp IR which are related by

Yp = Wp(s)u (3.1)

where Wp(s) = kp(Zp(s)/Rp(s)) is the transfer function of the plant. The reference

model to be followed is linear and time-invariant with input r E R and output Ym IR

which are related by

ym = Wm(S)r (3.2)

where Win(s) = km(Zm(S)/Rm(s)) is the transfer function of the reference model. The

objective of control is to find a differentiator-free control law u(t) such that the output

error

el = yp- Ym (3.3)
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converges to zero asymptotically for arbitrary initial conditions and arbitrary piece-

wise continuous, uniformly bounded reference signals r(t).

To meet the control objective, we make the following standard assumptions con-

cerning the plant Wp(s) and the reference model Win(s):

(Al) Rp(s) is a monic polynomial of known degree n,

(A2) Zp(s) is a monic Hurwitz polynomial of known degree m < n,

(A3) The sign of kp is known,

(A4) Zm(S) and Rm(s) are monic Hurwitz polynomials of degree m and n

respectively.

We also add an assumption on the reference input r as

(A5) r has an autocovariance.

In what follows, s denotes either the Laplace variable or the differential operator.

A. Control Structure

The control scheme proposed by [Narendra and Annaswamy, 1989] is shown in Fig-

ure 3.1. The controller is described completely by the following differential equations

and definitions:

wl = AWl + u (3.4)

Tb2 = Aw2 + lyp (3.5)

def T TIW- Ir, wl , Yp w] T (3.6)

0 e- [k, 01, 0o, ] (37)

u = OTW (3.8)

20



Ym

ei

Yp

Figure 3.1: Model Reference Adaptive Controller

where 01, 02, W1, w2 E Rn - l , k, Oo E IR, and (A, ) is an asymptotically stable system

ill controllable canonical form with

A(s) def det(sI- A) = Ao (s)Zm(s) (3.9)

for some monic Hurwitz polynomial A0 of degree n- m - 1.

Assuming that the control parameters are constant, the transfer functions of the

feedforward and the feedback controllers can be expressed respectively

A(s) and D(s)
A(s)-C(s) A(s)

where

C(s) = OT(sI-A)-11, (3.10)
A(s)

D(s) = 0o + OT(sI-A)- 11, (3.11)

and the overall transfer function of the plant together with the controller can be
and the overall transfer function of the plant together with the controller can be
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expressed as

WO (S) = k kpZp (s) A (s) (-2
(A(s) - C(s))Rp(s) - kpZp(s)D(s) (3.12)

From this transfer function, the closed-loop characteristic function can be given as

· 0(s) = (A(s) - C(s))Rp(s) - kpZp(s)D(s). (3.13)

The transfer function from the reference input r to the regressor vector w with a

constant parameter vector 0 is also derived as

Hwr(S,O ) (sI- A)-llWp 1Wo (3.14)
wo

(sI- A)-IlWo

B. Nominal Representation of Reference Model

It is well known that under the above assumptions and control structure there

exists a unique constant vector * such that the closed-loop transfer function Wo. (s)

matches Wmi(s) exactly. Namely, we can express the reference model as the plant

W4 (s) with the same controller at 0 = 0*. In this representation, the regressor vector

wrn is given by

Wm = [, WT 1 , Y, wT 2] T. (3.15)

Let im(s) be the model characteristic function, that is, the closed-loop characteristic

function when = *, and it can be derived that

(IŽm(8) = Zp(s)Ao(s)Rm(s). (3.16)

Important to note is that for a given constant parameter vector 0 the closed-loop

transfer function is expressed as follows:

W(s) = kkpZpAoZm )mZm k Inm(S)W (s) (3.17)
kkp'De = o-Rm k* 4 7e(s) Wm
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where k* = km/kp, the nominal value of k. Also note that wm is the output of a stable

linear time invariant system driven by r(t) and its transfer function is

1

Hwmr = Hwr(S, 0*) (sI - A)-'lW 'Wm (3.18)
Wm

(sI- A)-llWm

C. Output Error Dynamics

Let us define the parameter error vector as

'def 0 _ 0* (3.19)

From the above equations, the dynamics of the output error e can be easily derived

as
1

el= Wm(s)0Tw. (3.20)

D. Adaptation Rule

The objective of adaptation is to make the parameter error as well as the output

error asymptotically converge to zero. For the above formulation, a so-called SPR rule

such as

0(t) = 0(t) = -ei(t)w(t) (3.21)

guarantees the overall stability of the adaptive system with persistently exciting sig-

nals, provided that Wm(s) is strictly positive real(SPR) (e.g., [Narendra and Annaswamy, 1989]).

However, this adaptation rule cannot guarantee the stability for plants with high rel-

ative degree. It is known that instability may occur with a SPR rule if the regressor

vector w(t) is excited at a high frequency (e.g., [Kokotovic, et al., 1985]).

In this paper, we use the gradient descent rule, often referred to as the MIT rule,

for adaptation. The idea of MIT rule is to reduce e by adjusting 0 along the direction
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of steepest descent. Namely, the MIT rule can be expressed as

(t) = _ e2T aelT (3.22)q$(~ = - ce =2 9q$ 'oq

where (Oel/O)T is the sensitivity vector denoted by (t), and can be derived as

ael T+(t) - eT (3.23)

-= Wo(s)w (3.24)

where Wo = Wo/k, that is,

Wo~s) =(A~s - k, Z, (s) A (s) (.5
() (() -s)C(s))Rp(s) - kZp(s)D(s) (3.25)

The derivation of the above equation is provided in Appendix A.

It has been empirically and analytically shown that the closed-loop stability of the

MIT rule depends on the adaptation gain and the magnitude of the reference signal.

It has also been shown that the MIT rule cause instability depending on the initial

values of the control parameters. In other words, the MIT rule may cause instability

even for a simple plant for which the stability can be guaranteed with the SPR rule,

although a complete stability analysis has not been available yet. The objective of this

paper is to show that the adaptive system can be stabilized even with the MIT rule if

the system is excited progressively by changing the frequency content of the reference

input according to the progress of the adaptation. In the following sections, we first

derive a stability condition in the frequency domain for the MIT rule and prove that

the stability of the adaptive system depends on the frequency content of the reference

signal as well as the values of the control parameters. Based on the stability analysis,

we prove that there always exists a sequence of reference inputs that guarantee the

stability for a plant with a high relative order.
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3.3 Stability Analysis using Averaging

Averaging is a asymptotic method that allows the analysis of dynamic behavior

of a nonautonomrnous (time varying) system through an autonomous (time invariant)

system obtained by time-averaging of the original system. The averaging method was

originally proposed by [Bogoliuboff and Mitropolskii, 1961], and further developed by

[Sethna, 1973] and [Hale, 1980], to name a few. Averaging methods were then suc-

cessfully developed for the stability analysis of adaptive systems by [Astr6m, 1984],

[Riedle and Kokotovic, 1985] and [Anderson, 1986]. An extensive review and use-

fuil averaging theorems for adaptive systems are found in [Sastry and Bodson, 1989].

In [Sastry and Bodson, 1989], the characterization of the asymptotic stability of the

adaptive systems was addressed through averaging analysis for systems with two time

scales.

The objective of this section is to examine the convergence of control parameters

for the adaptation rule proposed in the previous section. In this section, we first

apply the two-time scale averaging analysis given in [Sastry and Bodson, 1989] to the

proposed adaptive system and next derive a stability condition in terms of frequencies

of the reference input.

The dynamics equation of the control parameters is given from eqs.(3.20), (3.22)

and (3.24) as follows:

0(t) = -iWmO WOW. (3.26)

To apply the averaging method, we need to treat the above equation as a slow adap-

tation process. For the purpose, we introduce an additional assumption:

(A6) the adaptation gain is sufficiently small, that is, the variations of

X are slow compared with those of e.
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With this assumption, we can separate the slow time scale of the control parameters

from the fast time scale of the other signals. By applying the averaging method given

in [Sastry and Bodson, 1989], we can approximate the original system in eq.(3.26) by

using an averaged system as

av = -_ [lim to+T 1WmVowWowdt (3.27)

k* [T-÷oo T t0 ]a(.28a 1 fto+TT

e w e, an k* e -boo T 
Deefining _ Wmw and w __ Ww, and assuming the cross correlation between

these two exists, we obtain

a, Fir 1 o+T
¢bav = -- [ lim 1 I wf w'dt] Cav

= -k* w+ooT 0 vIa=- - Rwf we (0)qav,

(3.29)

(3.30)

The averaging theorem in [Sastry and Bodson, 1989] proved that assuming the cross

correlation matrix Rwfw (0) exists and a is sufficiently small the original system is

exponentially stable if the averaged system is exponentially stable. Therefore, in

order to derive a stability condition for the original system, we need only to derive a

stability condition of the averaged system given in eq.(3.30).

First, let us express the cross correlation matrix R wf We (0) in terms of the frequency

content of the reference input. Defining S7 (dw) be the spectral measure of the reference

input, we can express Rwfwo(0) as

RwfWe(0) = f J (jw (jo) 1 21W m(j)l2 [ ((jw)[I+GT]s (dw)27rk* ]I( )(jIw) (j (jw) WM 0
(3.31)

where

FT/k* ] R2nx2n (3.32)

26

Go = 0
0



and

01 - 0 1
0 (3.33)
02 O2

Obk = k-k*. (3.34)

See Appendix A for the derivation of the above expression.

For simplicity of expression, we assume the following concerning the reference

input:

(A7) The reference input r is a summation of sinusoidal signals with N

distinct frequencies such as

N
r = Ri sin(wit), RP > 0 for all i. (3.35)

i~1

RfwO(0) then can be expressed as

1N (i)m"(jWi)
RU)fW (0) ER m(jaJi)[I Go]Hw,r(iji)H.R)r(jwi)[I + G ]

(3.36)

The following lemma can be easily proved.

Lemma 3.1 The averaged system in eq.(3.30) is exponentially stable if the real parts

of all the eigenvalues of Rwfw (0) are positive.

Proof A natural Lyapunov function is given as

V(Oav) = Iav I2 (3.37)

and, from eq.(3.30),

-V(qav) = C.OTv[Rwfw () + Rwfw (O)T]Oav. (3.38)
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If the real parts of all the eigenvalues of Rwf (0) are positive, the matrix in the

parentheses above is symmetric positive definite. Therefore, letting Amin be the small-

est eigenvalues of Rwfw(0) within the stability range of qbav, we get

-V(av) _> aAminV(Oav). (3.39)

Namely, the parameter error converges exponentially to zero with the rate of O/Amin.

Eo

Since bTG0 = 0 for all 0b, the derivative of the Lyapunov function given in eq.(3.38)

can be rewritten as

V(0av) =-aav [Ro + R T]qav (3.40)

where

1NI (I~ j) ]22(~(jWi),.T
R- EZR wmr(wi)Hwmr(Jwi) (3.41)

Assume that the matrices Hwmr(jwi)H ,r(jwi) are linearly independent for given

wi, i = 1,2, .. ,N. Since R2 i1)m(jwi) 121W(jW,)12 is strictly positive given any

O., bounded, the above lemma and the averaging theorem automatically prove the

following stability condition:

Theorem 3.1 (Stability Conditions) Suppose all the assumptions from (Al) to

(A8) are satisfied. Then, the original system given in eq.(3.26) is exponentially stable,

if

Re (j ) > 0 for all wi, (3.42)

or

arg{m(jw)}- arg{4o(jw)} I < 2 for all wi, (3.43)
2
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Note that this condition is only a sufficient condition and is very conservative. How-

ever, since our objective in this chapter is to prove that there exist a sequence of

reference inputs that guarantee the stable convergence of the control parameters, we

consider that the derivation of the necessary condition is not needed.

3.4 Input Design in Frequency Domain

In the previous section, we proved that an adaptive system is stable if the system

is excited within a particular frequency range that satisfies the stability condition given

in Theorem 3.1. Since the model characteristic function qm(S) is given, the frequency

range for the conservative stability depends only on the control parameter vector. In

other words, the frequency stability range becomes wider as the control parameter

vector 0 approaches the optimal parameter vector 0*, and once the parameter vector

reaches the neighbor of the optimal one the stability range covers the whole frequency

range. This argument agrees with our intuitive argument of progressive learning.

Namely, learning is difficult and may cause instability in the beginning, but if learning

starts at a low task complexity level (low frequency excitation in this case) and the

complexity level is gradually increased according to the progress of learning, the learner

can find the optimal solution progressively. The objective of this section is to formulate

and prove the above argument based on the stability condition derived in the previous

section. A numerical example to verify the analysis follows at the end.

3.4.1 Frequency Range for Stability

We first define the frequency range for stability based on Theorem 3.1 as follows.

For a given parameter vector 0, let E0 be the frequency range for stability such that

7 r
I arg{'1Žm(jw)} - arg{eI1o(jw)}I < for all w E o (3.44)

2
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With this definition, we can state that the overall stability is guaranteed if we design

the reference input as follows:

N
r = Ri sin(wit), wi sO, i= 1,-, N (3.45)

i=1

Let us assume

(Bl) the initial parameter set (O) is always given so that the phase angle

of 50(s) at low frequencies are almost zero as shown in Figure 3.2.

Since a reference model is always stable and it becomes a DC at low frequencies, the

phase angle difference between the reference model and the initial closed-loop system

is small at the low frequencies. Namely, there exists a frequency w(O) such that

QO(o) de {w < w < w ( ) } e 0(o) (3.46)

where Q9 (o) is the largest continuous subset of e06 o) that includes zero.

If the plant VVp = Zp/Rp does not have an integrator, the zero initialization (0) =

0. no feedback loop) gives

qoo(s) = A(s)Rp(s) (3.47)

and, therefore, suffices to hold the assumption. Even if the plant has an integrator,

it is easy to show that small values for 0 and the resultant feedback loop satisfies

the above assumption. Note that the stability condition given in eq.(3.43) is also

satisfied at high frequencies. For example, if both the characteristic functions are

Hurwitz, the phase angles of the both functions reach 90 x (2n- 1) degrees with a

high frequency. However, those frequencies are beyond the bandwidth of the reference

model and there are virtually no information acquired by exciting the system at these

frequencies. Therefore, we do not include the high frequency range in the definition

of the frequency range for stability.
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Figure 3.2: Frequency range of stability for a given 0

3.4.2 Transfer Function Matching in Frequency Domain

In this section, an important concept of "transfer function matching in fre-

quency domain" is introduced to explain the behavior of an adaptive control system.

Suppose that the reference input consists of summation of sinusoidal signals with N

distinct frequencies such as following:

N
r = E Ri sin(wit) (3.48)

i=

Assuming that the output error tends to zero with a stability-proven adaptive law,

[Boyd and Sastry. 1986] proved that the control parameters 0 converge to a point

where

Wo(W,) = W= jW*)WOHiWO = W(-i() i = 1, 2,... N. (3.49)Wo(-jw2) = Wm(jwi)

31

I



Or, since

Wo(S) = , (S) Wm(s), (3.50)

the above equations can be rewritten using the characteristic equations as:

4)(jWi) = '1'n(jWi)
)0 (-jWi) = 4m(-jWij) i = 1,2,... N. (3.51)

In other words, the control parameters converge to a solution of the above simultaneous

equations in terms of . Important to note is that the solution is not necessarily the

same as the optimal control parameter vector 0*. For example, if the number of the

distinct frequencies of the input signals, N, is not larger than (2n-1)/2, where 2n-1 is

the number of the control parameters, then the above simultaneous equations become

underdetermined and the control parameters converge to one of the infinite number

of solutions. The persistent excitation condition is thus translated to the number of

the distinct frequencies in the reference input.

And more importantly, even if the number of distinct frequencies is sufficiently

large, the control parameters 0 may fail to converge to the desired values 0* if the

frequency range of the reference input does not cover the whole frequency range

(bandwidth) of the reference model. Namely, if the reference input excites only the

slow, quasi-static modes of the reference model, the closed-loop characteristic function

q)0(jw) converges to match the model characteristic function only in the slow modes,

and the lack in matching occurs over the frequency range of the faster modes as shown

in Figure 3.3.

3.4.3 Progressive Excitation

The idea of progressive learning is that the system is excited in low frequencies

in the beginning to avoid the instability and the stable excitation level is increased
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Figure 3.3: Frequency domain matching with partially exciting reference input

gradually according to the progress of learning. In this section, we formulate and

prove the following statement:

For given plant, reference model, adaptation rule, and initial parameter values, there

always exist a sequence of excitation frequencies such that the system is maintained

stable and the control parameters converge to the optimal ones and the output error

converges to zero.

The following proposition is important to prove the above statement.

Proposition 3.1 Suppose 0 is given such that

m
· () = h II(82 +

i=1

k

2(iwis + 2) II ( + )
j=l

33

(3.52)

I

I



and

0 < < for i= 1,2,..,m, (3.53)

wO 7 0 for i=1,2,..,m, (3.54)

w 0 O for j=1,2,.. , k. (3.55)

Then, there exists M > 0 such that

Id arg{j)o(jw)}I < M all w > (3.56)

Proof From eq.(3.52), the phase angle of 'o(jw) for w > 0 is expressed as

hrr m 2(fww ) k (357arg(0 (jw) = -2 + tan-1 ( w2 2) + tan-1 (- ) (357)
i-1 j - 1 i

and its derivative in terms of w for w > 0 is expressed as

darg bo(iw)= E _______ -2C)w ( + 2ii)2 + Z '2 +2* (3.58)do: arg (I)0(jw) =1 (W/ - W2 )2 + (2(iwiw)2 +,2·i=l j~ w'

For i = 1,... , m, let us define fi(jw) as

2¢iwi(w_ + W 2 )

f i (jw) -(W - 2 )2 + (2(iwiw) 2 (3.59)

It is easy to derive that Ifi(jw)l becomes the largest at w = Iwil-1 + 21- if

(i < V/2, or at w - 0 otherwise. Namely,

¢ ~ if 0 < < ---~

sup Ifi(jw) = 2iafil/0(1-<y/t) 2 (3.60)
wA 2(i/wi otherwise

Since the first supremum in the above equation becomes much larger than the second

one as (i goes to small, we assume that all (is are smaller than v/3/2 for the calculation

of the upperbound of fi(jw)l without losing generality.
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Let Wmin be the minimum value of wi/ and (min be the minimum value of (i for

i = 1,... , m. Then, the upperbound of the first summation of eq.(3.58) is given by

2(iwi(w2 + 2 ) MCmin

IE (C2 -W2)2 + (2(iiW)2- 2W min min(l -1 - in)i=1 P?-W-2~nF ri( f-mn
The upperbound of the second summation of eq.(3.58) is easily derived as:

k cok

j1 2 ± 2 ii,j=Wj + 2 comin

where Wmin is the smallest value of wj. Letting M be

M jmmin +
2 Wmin 1 - min(1 - 1 - (min) Wmin

we can obtain

(3.61)

(3.62)

(3.63)

dd- arg )o (jw)I < M
dw

for all w >O (3.64)

[]

With the above proposition, we next prove the following lemma.

Lemma 3.2 Suppose that assumptions (Al) to (A5) are satisfied. For a given w > 0

and 0, assume that

4)o(ijl) = m(j Wj). (3.65)

Then, there exists > 0 such that

I arg{lbm(jjw)} - arg{ e (jw)} < 
2

for all cw{wl w-wil-<E}

Proof Similarly to the proof of Proposition 3.1, we first express o(s) as

m k
1o(S) = h ( + 2wis + W2) II ( + 'j)

i=1 j=l

where

< i < 1

wi#OWi =,A °

! 0 0%~-0

for i= 1,2,. ,m,

for i = 1,2, ... ,m,

for j = 1,2,...,k
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We also define

dfFor(jw) df arg{(Im(jw)}- arg{(o(jw)}.

We consider the following two cases:

Case 1. (i > 0 for all i = 1,2,.. ,m.

(3.71)

From the above proposition, there exists

Al > 0 such that

I d arg Io(jw) < M for all w > 0

From the assumption (A4), bm(s) is strictly Hurwitz and, therefore, its derivative is

also bounded by a finite positive value Mm as

Id arg m(jw)l < Mm for all w>O (3.73)

From the above inequalities and eq.(3.71), we obtain

d-ro(jw)j < M + Mm for all w > 0

Since ro(jwl) = 0 from eq.(3.65), we get

Therefore, by choosing

we proved that

Iro(ijw) < 2

for all w > 

7r/2
M+ Mm'

forall w{wIIW-wI { <I}

Case 2. (i = 0 for some is. We first express Do(s) as

p q k

0l(S) = S f(S2 + 2 ) II(S + 2(iwis + Wi) (S + ;)
t=1 i=1 j=l
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where

0<(<l for i=1,2,- ,m, (3.79)

wi 0 for i = 1,2,... ,q, (3.80)

'I = /0 for j=1,2,...,k (3.81)

wt 0 for t = 1,2,. , p (3.82)

Since 4b(s) has imaginary roots, its derivative in terms of w cannot be bounded any

more. In what follows, we consider only in the neighbor of w and prove that the

derivative can be bounded in the small range.

From eq.(3.78), we get

h~- q 2uiw k 
argbo(jw) = + tan- ( tan-' +argw W2 for w > 0

i=1 Wij= ' t=1
(3.83)

The derivative of all the terms in the above equation are bounded except the last

terms arg{wt 2 _ W2}. And also, we get

d 0 if <w
arg{1t -w2 } 0 t (3.84)d) 100 if - t

Therefore, to prove the above lemma, it is sufficient to consider a case in which wc
I!,I

coincides with wt or wl is located in the neighbor of Wt .

Without losing generality, we assume that ¢bo(s) has a repeated imaginary roots

at; w1 + eo and o(s) in eq.(3.78) can be rewritten as

p-d q k

(Do(S) = 8h ( 8 2 + (I + 60)2)d (s 2 + w' 2) J(s2 + 2(iwis + w2) II(s + j) (3.85)
t=l i=1 j=1

where

0< 0o < lw-a wil for t = 1,2, -- ,p-d. (3.86)

From the above equation, we get

jio(jwI)j = [e2 + 2eowl{dap (3.87)
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where

p--d
def h h 

t=l = IIIt=l

From eq.(3.86), we get

From eq.(3.65), we also get

q ~~~~k
- + I /( -W)2 + (2(ij)2 II / + j

i=l j=l

up > 0

I-o(jwI)lI = I4m(jJI)l. (3.90)

Since the reference model is strictly stable, '1m(s) is strictly Hurwitz and there exists

r,, > 0 such that

KIrm(jWt)I > aUm for all w. (3.91)

From eqs.(3.87) and (3.91), we get

| o2+ 2Wl d > m
0 U~p

(3.92)

Let us Define 1el and 2 as

/2 ( 1
E = WI- I d

U£

62 = -WI + w~ ()d

(3.93)

(3.94)

where 1e > 0 and 2 > 0 since d is bounded such as 0 < 2d < 2n- 1. Then, the above

inequality in eq.(3.92) implies

6o < -l or 2 < -o (3.95)

Namely, Do(s) cannot have imaginary roots in T d {wiw - 61 < W < WI + 62}. In

other words, according to the proposition, the derivative of )o(jw) is bounded in the
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neighbor of wl. Let M be the supremum of the derivative of q)0 (jw) in T and Mm, be

the supremum of the derivative of m(jw). Then,

Idro (jw) < M + Mm for all E T

Since Fo(jwl) = 0 from the assumption, we get

Jo(jw)l < (M' +Mm)lw -WI for all wE T

Let E3 be

7r/2

63 = M +Mm

Then, by choosing = min{el, 2, 3}, we guarantee

Iro(jw)l < 2 for all w E {w I Iw- } < s}

Therefore, the lemma was proved. l

With the above lemma, we can prove the existence of a sequence of excitations for

progressive learning. Let us first introduce the following assumptions.

(B2) For a given 0(h - l), there exists w(h) such that

Q0 o(h-) = {woO < < (h)} (3.100)

(B3) The reference signal r is designed as

N
r = E Ri sin(wit)

i=1
(3.101)

where all Ri > 0, N is sufficiently large, and wis include w(h) and are

uniformly distributed in Q0o(h-l).

Following is the main theoretical result that supports the above argument

illustrated by Figure 3.4.
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Figure 3.4: Progressive expansion of the stability range

Theorem 3.2 (Progressive Excitation Theorem) Assume all the assumptions from

(A,41) to (A8) and from (B2) to (B3) are satisfied. Also suppose that the parameter

vector converges from 0 (h- l ) to 0(h) by a stable adaptation law with the above reference

input. Then, there always exists E > 0 such that

w(h+l) = W(h) + e, and (3.102)

71'
I arg{m(jw)} - arg{(Oth) (jw)} < - for all w E {w 0 < < Wo(h)} (3.103)

2

Proof First, from the frequency domain matching theorem by [Boyd and Sastry, 1986]

and the condition (B3), it is obvious that

arg{ (jw)}-arg{0 ()(jw)} < for all w { 0 <w <W(h)} (3.104)I arg{ -D.(jw)} - argj'Do(h) (jw;)}I < for all E 0 < < (h) (3.104)
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In other words, by exciting the system with a large number of frequencies within the

previous frequency range of stability Qo(h-1), the stability range is at least maintained

even after the change of the control parameters due to adaptation.

Next, from (B3), the system is excited at w(h) and the frequency domain matching

occurs at the frequency as

q0 (h-l)(jW(h)) = , (jW(h)). (3.105)

Then, from Lemma 4.1, there exists eo > 0 such that

[arg{'I'm(jc)} - arg{' 9 (h-w)(jw)} [ < for all w ({ w- w(h)I Eo} (3.106)
2

From eqs.(3.104) and (3.106), by choosing = o, we proved the theorem. [

From Theorem 3.2 and the assumption (B1), we can automatically prove the exis-

tence of a sequence of excitation frequencies for stable convergence.

3.5 Simulation

In this section, the arguments about stability presented in the previous sections

is shown to be valid by simulation. A plant with relative degree 3 is used as an example

and it is demonstrated that the stable parameter convergence can be achieved by

a sequence of progressively exciting reference signals even with a gradient descent

adaptation.

A. Plant and Controller

The transfer function of the plant and the reference model are chosen to be

Wp(s) = (3.107)Rp(s) - (s+ 1)(s2 + 0.4s + 1.04) (3.107)

W Zm(S = ( + 2)(2 + 6 + 45) (3.108)Win(S) Rm.,(s) (s + 2)(s2 + 6s + 45)(318
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respectively. The fixed control parameters are

-2 -15]' I=[1 ] or A(s)=s2 +1.5s+ 2 (3.109)

The nominal characteristic polynomial is given by

m(S) = R()A(S) = s + 9.5S4 + 70s3 + 183.552 + 192s + 90 (3.110)

Six control parameters k, 01 = [011, 0 1 2 ]T, 00, and 02 = [021, 0 2 2 ]T are adjusted using

the gradient descent method. In this simulation, we assume that the plant parameters

are known for the calculation of the gradient. The true values of the control parameters

are

k* = 1

0 = [-56.22, - 6. 6]T

00 = -90.688,

0 = [60.1968, 3 4 .8 52 8 ]T.

B. Initialization and Instability Mechanism

The feedforward gain k was initialized by 0.001 and the other control parameters

were initialized by zeros. As a result, the initial closed-loop characteristic polynomial

is

I)0o(o)(s) = Rp(s)A(s) = s5 + 2.9s84 + 4.54s3 + 4.6s2 + 3s + 1.04 (3.111)

Figure 3.5 shows the phase angle curves of both nominal and initial characteristic

polynomials. As seen in the figure, the difference of phase angles between the two

exceeds 90 degrees with frequencies higher than 1 rad/sec.

According to the stability analysis presented in Section 3, if the closed-loop system

is excited at those high frequencies, it may cause instability. To verify the argument,
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Figure 3.5: Initial phase shifts of o(s) and 4m(s)

we first designed a reference signal as

r(t) = 200 sin(0.2t) + 400 sin(1.7t) + 500 sin(2.5t) + 1050 sin(3.2t), (3.112)

and used the gradient descent rule given in Eq.(MITrule) to adjust the control param-

eters for 500 seconds. The results obtained are shown in Figures 3.6 (a)-(e), which

show the response of the output error yp(t) -ym(t) as well as the adaptation curves

of the control parameters. As shown in Figures 3.6-(b), (d) and (e), the control pa-

rameters k, o00 and 021 moved in the direction which is opposite to the desired. As

a result, the closed loop system became unstable around 400th second as shown in

Figures 3.6-(a). This simulation results demonstrate that, if the frequency content of

a reference input includes high frequencies for which a large difference in phase shift

between the reference model and the closed-loop plant is generated, the adaptation
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Figure 3.6: Results of the non-progressive excitation

causes instability.

C. Progressive Excitations

The results of this subsection demonstrate that the instability can be avoided by

progressively raising the frequencies of the sinusoidal reference input. In the light of

Theorem 3.1, the stable parameter convergence is guaranteed if all the frequencies of
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the reference input are chosen to be within the frequency range of stability, for which

the phase angle differences between the reference model and the closed-loop plant are

less than 90 degrees. In Figure 3.5, it is seen that the phase angle difference exceeds 90

degree at frequency around 0.9 rad/sec. Therefore we chose the sinusoidal reference

input for the first excitation as

r(t) = 200 sin(0.06t) + 400 sin(0.15t) + 300 sin(0.5t) + 250 sin(0.8t), (3.113)

and continued the adaptation for 300 seconds. Figure 3.7 shows the result of the first

excitation. As seen in the figure, the control parameters changed slightly due to the

adaptation. However, the output error decreased significantly as shown in Figure 3.7-

(a). This result implies that the feedback controller with the very small gains suffices

to track a trajectory with the low frequencies such as in eq.(3.113). Furthermore, the

slight changes of the control parameters generated the significant shift of the phase

angle curve of the closed-loop characteristic polynomial to (DO(1) as shown in Figure 3.8,

and as a result, the frequency range of stability was largely increased. This results

complied with the analysis of progressive excitation given in the previous section.

Secondly, we raised the frequencies of the sinusoidal reference input as

r(t) = 200 sin(0.06t) + 400 sin(0.35t) + 300 sin(0.6t) + 250 sin(0.95t), (3.114)

based on the new frequency range of stability obtained by the first excitation, and

continued the adaptation for the next 300 seconds. The results of the second excitation

are shown in Figures 3.7 and 3.8. Similarly to the first excitation, the second excitation

did not generate significant changes in the control parameters and, therefore, the those

values still remained very small. However, the output error decreased to a small value

and the phase angle curve of the closed-loop polynomial shifted significantly to O((2)-

This simulation results show that only the low frequency modes of the system were
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Figure 3.7: Output error and parameter curves with progressive excitation

excited by the sinusoidal reference input with the low frequencies given in eq.(3.114).

Based on the results given above, we increased the frequencies of the reference

input again as

r(t) = 200 sin(0.06t) + 400 sin(0.45t) + 300 sin(0.7t) + 250 sin(1.lt), (3.115)

and continued the adaptation for the next 150 seconds. Unlike the previous excitations,
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Figure 3.8: Progressive changes of phase angle curves

this reference input excited the more dynamic modes of the system and, as a result,

abrupt changes in the control parameters occurred as shown in Figures 3.7 (b)-(e).

Important to remark is that the excitation at the more dynamic modes drove the

closed-loop system to match with the reference model in a wider frequency range and,

as a result, the phase angle difference between rm and the resultant characteristic

polynomial 0O(3) became less than 90 degrees for all the frequency range as shown in

Figure 3.8.

Finally, we excited the system in the full range by choosing the same reference

input as given by eq.(3.112), that is,

r(t) = 200sin(0.2t) + 400sin(1.7t) + 500sin(2.5t) + 1050sin(3.2t). (3.116)

As shown in Figures 3.7 and 3.8, the control parameters finally converged to the desired
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values and the matching in the frequency domain occurred in all the frequency range.

3.6 Conclusions

In this chapter, we developed a new input design method for stable adaptive

systems based on the concept of progressive learning. The main idea of the new method

is to excite the system gradually in accordance with the progress of the adaptation. By

applying a averaging technique, we developed stability conditions of the progressive

learning system in terms of the frequency contents of the reference input, and based

on the analysis, we proved the existence of a sequence of reference inputs that achieve

the progressive convergence of the control parameters for the adaptive control system.

A system with relative degree of 3 was used as an example and all the arguments and

analyses were verified through simulation.
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Chapter 4

Progressive Learning for Robotic Assembly:
Application to a Nonlinear Process

4.1 Introduction

In this chapter, the progressive learning method will be explored in the context of

high-speed robotic assembly, and a specific learning algorithm will be developed for

robot impedance control. High speed assembly is an important issue in industry as

well as a challenging problem for academia. As motion speed increases, the assembly

process becomes more dynamic and intricate. Unlike quasi-static assembly, which is

performed using compliance or stiffness control, high-speed assembly needs dynamic

control laws, e.g. full impedance control including damping and inertia terms. Such

dynamic control laws contain a number of parameters to be tuned to a specific task

process, which is often not exactly known. It is a difficult job to find the optimal

values in a large parameter space where task process conditions are not exactly known.

Learning control is a rational choice for coping with process uncertainties, but it must

be feasible and effective for dealing with a large control parameter space. It should

also be noticed that a failure in high speed assembly may incur serious damage to

the robot and the environment. Even for the purpose of learning, fatal mistakes and

failures must be avoided at all times.

Our solution to this problem is to use the progressive learning method. The idea is

to increase motion speed gradually as learning proceeds. We start with a slow speed

to learn a quasi-static compliance law, that is the stiffness term in the impedance

control law. After the quasi-static law has been learned, motion speed is increased
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slightly. Then the learning procedure is repeated for different motion speeds and the

control law is relearned or re-tuned to the higher speed so that the robot can perform

the task effectively at these higher speeds. At higher speeds, the inertial terms as well

as some damping terms become more prominent than the stiffness terms. Therefore,

these dynamic terms must be learned for higher speeds. Since we increase the speed

gradually, the robot does not have to learn all the control parameters at the same time,

but simply needs to refine the control law within a limited range of the large parameter

space. Since the stiffness terms and some of the dynamic terms have been learned well

for slower speeds, only the inertia and some damping terms need to be learned for the

higher motion speed. Namely, the learning parameter space is "gradually excited" as

the motion speed increases. This simplifies the learning problem significantly. Also

important to note is that, since the robot has been trained successfully for a slower

speed, the robot will not make fatal mistakes or fail totally, which could lead to serious

damage. This makes the learning operations feasible.

In what follows, we will develop an effective progressive learning algorithm for

a high-speed insertion task, and demonstrate the feasibility and effectiveness for the

simple assembly problem. Particularly interesting is the problem of obtaining a sched-

ule for varying motion speeds so that the learning of a dynamic control law can be

performed quickly and safely.

4.2 High Speed Insertion Task

4.2.1 Formulation of the Problem

In this section, the concept of progressive learning is reduced to a concrete

algorithm for high-speed robotic assembly. As shown in Figure 4.1-(a), the task is

simply to insert a ball into a chamfered hole in an x - y plane. The controller is
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given a nominal trajectory Xd(t) = (Xd(t),yd(t))T. However, due to the uncertainty

inherent in the assembly process, the hole is not precisely aligned with the trajectory

and the ball often collides with a chamfer surface. Compliance control is necessary to

cope with the geometric uncertainty of the assembly process, but is not sufficient for

high speed insertion. For example, when the ball approaches a chamfer at high speed

and collides with the surface, the quasi-static controller may not be able to prevent

the ball from bouncing on the chamfer surface. When bouncing, the ball cannot be

guided along the chamfer surface correctly and this insertion operation may result in

failure, as addressed by [Asada and Kakumoto, 1990]. To avoid bouncing as well as to

guide the ball correctly despite high speed, we need a dynamic control law such as full

impedance control including damping and inertial terms along with the compliance

or stiffness term. Such dynamic control laws contain a number of parameters to be

tuned to a specific task process. It is a difficult job to find the optimal values in a

large parameter space, particularly when all the parameters must be learned on-line in

real time. It should be noted that a failure in high speed assembly may incur serious

damage to the robot as well as to the parts and the environment. Even for the purpose

of learning, fatal mistakes must be avoided at all times. Therefore, we intend to apply

progressive learning to cope with these difficulties.

As shown in Figure 4.1-(b), a ball is held with an appropriate impedance. We

begin by formulating the impedance control law in accordance with [Hogan, 1985].

The motion of the ball of mass m0 is governed by the equation of motion given by

f + p = mn (4.1)

where x = (x, y)T is the position of the ball with an inertial reference, p = (p, py)T

is the contact force acting on the ball, and f = (fi, fy)T is the actuator's force to

be controlled. The objective of impedance control is to emulate a desired mechanical
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Figure 4.1: Schematic diagram of impedance control

impedance by controlling actuator force f. The desired dynamics of the system shown

ill Figure 4.1-(b) is given by

p = M + D( -:d) + K(x-Xd) (4.2)

where Xd = (Xd, yd) T is the nominal trajectory, and M, D and K are the desired

inertia, damping and stiffness matrices respectively. The external force p is measured

by a force sensor attached to the end effector. From eqs.(4.1) and (4.2), we can derive

the impedance control law given by

f = 7noM-1D(d - i) + moM-'K(Xd - x) + (moM1- I)p (4.3)

To formulate a learning algorithm, we need a means for evaluating control per-

formance. In accordance with [Yang and Asada, 1995], we will define a performance

index function, referred to as a reinforcement function. In robotic assembly, the ob-

jective of control is to mate a part with an uncertain fixture while minimizing the

interference and conflict between the part and the fixture. In the ball insertion task,
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the robot is required to insert a ball into a hole with a minimum reaction force from

the walls. At the same time, the controller must follow the nominal trajectory at least

until the ball makes contact with a chamfer or a wall since the nominal hole position

is the best initially available conjecture for the real position. Namely, the controller is

required to follow the nominal trajectory closely while producing the smallest possible

reaction force. Based on these considerations, we define the reinforcement function r,

a performance index for the controller, as follows.

r = -[plXd X-2 + P21I d- ~12 + PIP 2] (4.4)

where P1, P2 and p3 are weighting factors of the individual terms. The problem is to

learn the impedance parameters, K, D and M, in eq.(4.3) so that the above reinforce-

ment can be maximized. Our approach to this learning problem is to increase the

reference motion speed, d, progressively and repeat a learning procedure for different

nmotion speeds so that the impedance matrices can be learned in sequence.

4.2.2 The Progressive Learning Approach: Accommodating the Task Com-

plexity Level by Motion Speed Scheduling

The objective of motion speed scheduling is twofold: one is to prevent the

learning process from diverging and the other is to maintain minimum task perfor-

mance and avoid fatal mistakes and damage. As will be shown later, when a robot

attempts to learn all the parameters simultaneously, the process tends to diverge or,

even if it converges, searching for the optimal parameters can be a lengthy process.

Furthermore, unless appropriate initial parameters are assigned, the control system

may become unstable and even dangerous at high speed operations, and this may

result in serious damage to the system. Therefore, learning must be initiated at low

speed and the motion speed must be increased gradually as the robot gains control
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knowledge.

A. Slow Speed Motion

In progressive learning, we start with a slow speed mainly to excite the quasi-static

terms in the impedance control law given in eq.(4.3). A gradient-following learning

algorithm is applied to the reinforcement function given in eq.(4.4) to learn the control

parameters. In this slow speed learning, only stiffness or compliance terms can gain

the most information from the learning process. Since the damping and inertia terms

are not fully excited at this slow speed, meaningful values cannot be acquired for those

terms.

To execute this learning, initial values for impedance parameters K, D and M

must be provided. These, however, need not to be accurate; one can use some positive

matrices so that the robot can track the nominal trajectory Xd stably to perform a task

at low speed. As learning proceeds, the stiffness parameter K will be updated toward

the optimal stiffness, which maximizes the reinforcement function while changes in D

and M remain small.

B. Medium Speed Motion

After the learning curve of stiffness K has reached a plateau or the reinforcement

function has reached a certain threshold level, we increase the motion speed d to

a medium speed. As a result, the assembly process becomes more dynamic and the

damping term D in eq.(4.3) now becomes highly excited. We can use the same learning

algorithm as in low speed learning to learn the new parameters. The optimal stiffness

that was learned at the slow speed learning must be used as the initial values for

K in this phase of learning. The damping and inertial terms in the previous phase

are also used as the initial values for D and M. In the beginning of learning, the

increased speed temporarily deteriorates the performance of the controller, but the
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controller adapts itself to the higher speed operation by quickly learning the damping

matrix D. Important to note here is that we can make a smooth transition from the

slow motion operation to the medium speed operation by succeeding the previously

learned parameters as the initial values for the next learning procedure. In other

words, if we were to choose initial values randomly, the controller's performance would

be extremely poor at the beginning and, as a result, would cause some damage to the

task environment. With progressive increase of motion speed, we can avoid these

problems and find the optimal controller faster and more effectively.

C. High Speed Motion

After learning the optimal damping has been completed, we further increase the

motion speed to the highest. This increase of motion speed excites the system in a

broader range, and makes the dynamic characteristics more prominent. The inertia

term becomes dominant in this phase. As at the medium speed, the impedance ma-

trices acquired in the previous phase are used for the initial impedance matrices. By

doing so, we can avoid the instability and damage to the system that could otherwise

be caused. After temporary deterioration of performance caused by the increase of

the motion speed, the controller will smoothly reach the optimal impedance matrices

for the high speed motion.

4.3 Mechanisms of Progressive Learning

In this section, we manifest the mechanisms of progressive learning in detail and

address the issues of why this learning method works for impedance learning and why

stable and smooth convergence can be obtained without fatal mistakes and damage to

the system. We analyze the behavior of the progressive learning process for a class of

learning algorithms appropriate for the progressive learning of impedance parameters.
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4.3.1 Gradient Following

In the previous section, the learning problem was formulated as the reinforce-

ment learning of impedance parameters. Most reinforcement learning algorithms are

based on a gradient-following method, where the parameters to be learned are up-

dated based on the gradient of a given performance index (reinforcement). In this

subsection, we focus on the basic properties of the gradient following learning, and

discuss how these properties mesh with the concept of progressive learning, that is,

gradual excitation using the scheduled motion speed. Based on this section's analysis,

we will develop a specific reinforcement algorithm in the following section.

Figure 4.2 shows the schematic diagram of a gradient following approach to learning

a feedback control law. Let w = (l, ., wn)T be a set of controller's parameters, u

be control inputs and r be a performance index (reinforcement) and x be feedback

signals. Then, the general rule of gradient following can be expressed as:

Aw a r )T = a N T(Or )T(4.5)

where a is a learning rate.

In general, the effect of control actions on the task process is not exactly known

and, therefore, the derivative (&r/Ou)T in the above expression is not available. To

overcome this problem, various reinforcement algorithms for estimating the derivative

have been developed. In this subsection, however, we simply assume that the derivative

is known to the system, and the estimation problem of the derivative is rendered to

the succeeding subsection. Therefore, the control parameters are updated exactly in

the direction given in eq.(4.5).

In order to apply the above gradient following rule to our impedance control prob-

lem and derive a learning algorithm for learning impedance, we rewrite the impedance

56



Figure 4.2: Schematic diagram of Gradient Following Approaches

control law given in eq.(4.3) by replacing the inverse of inertia matrix M - 1 by M.

f = moMK(Xd - X) + moMD(xd- - + (moM - I)p (4.6)

= moMKAx + m0MDAv + (moM - I)p (4.7)

where Ax and Av are errors of position and velocity, respectively. In this paper, we

assume that the impedance matrices are diagonal:

= 0 k ]D= [0 d ] M=K m (4.8)

By applying the gradient following rule in eq.(4.5), we obtain the following learning

rules for the impedance parameters:

Aky u Ak akmoM 0 Or Ax (4.9)
a- 0AdL M 0 a f]

Ad 1= dM [ Or v (4.10)
[ Ady [O a ]I ~0
A Fx [ u r 0

= amm~oafxOr (KAx + DA + p) (4.11)
N'lny = ln 77 0 0 f
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where r is the reinforcement defined in eq.(4.4), and Oak, Od and Oalm are learning rates.

As shown in these equations, changes in the impedance parameters are propor-

tional to the magnitudes of the errors and the reaction force: Ax, Av and p. Namely,

the correction of each impedance parameter depends on the magnitude of the corre-

sponding error or reaction force. By combining this algorithm with the motion speed

scheduling, we can make the following arguments:

i) The parameter space can be excited selectively by varying the motion speed.

The learning rules given by eqs.(4.9)-(4.11) manifest how the scheduled motion

speed selectively excites the individual impedance parameters. When the ball ap-

proaches the chamfer as shown in Figure 4.1-(a), the ball's velocity x is almost the

same as its command value -Cd, as long as the system is stable and the ball's motion

has reached a steady state. When the motion command is large, a large impact is

created by collision with the chamfer. And this large impact creates a large reac-

tion force p and deviates the ball's trajectory from the nominal one. The ball may

even bounce on the chamfer surface if the impact is very large. The magnitude of

the impact is proportional to the ball's approach velocity, which is almost the same

as Xd. Therefore, the impact becomes negligibly small as Xd becomes small. The

low speed motion, however, entails positional deviation Ax due to the geometric con-

straint formed by the chamfer. As the ball moves along the chamfer, it deviates from

the nominal trajectory. Therefore, even at a low speed where the impact is negligible,

Ax may vary in a broad range and thereby stiffness parameters, kx and ky in eq.(4.9),

are excited. On the other hand, the reaction force and velocity deviation generated

by impact are small as low speed, hence the damping and inertia parameters are not

fully excited. Note that, according to eq.(4.11), the inertia term may be excited since

it depends not only on p but also Ax. However, the excitation is still limited in
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magnitude compared with the case where a large impact is generated by collision at

high speed. As the motion speed increases, Av and p become large, hence changes in

the damping parameters D and the inertia parameters M become larger, and these

parameters are fully excited. Therefore, a specific region in the parameter space can

be excited selectively by varying the motion speed.

ii) Excessive parameter changes can be suppressed.

It is well known that in the gradient following method the learning process may

diverge when incremental parameter changes Aw are too large (see [Acton, 1970] or

[Widrow and Stearms, 1985], for example). In our impedance learning problem, if we

increase the motion speed abruptly, the impedance controller that has been trained

for low speeds may yield large errors and a large reaction force, which may incur

divergence due to excessive parameter changes. On the other hand, if the motion

speed increases gradually, positional errors and the reaction force can be kept within

a small range. Furthermore, the errors and reaction force will decrease as learning

proceeds. Therefore, changes in the impedance parameters can be confined to small

magnitudes so that the learning process may remain stable. This will help the learning

process stay within stable states. Thus, gradually increasing the motion speed may

contribute to stabilizing the learning process.

These arguments will be verified through simulation experiments described in Sec-

tion 4.4.

4.3.2 Local, Progressive Learning of Internal Model

To apply the gradient following rule given by eq.(4.5), the gradient of rein-

forcement, (r/c1u)T, must be provided. In learning control, however, the process

or the plant is not exactly known. Therefore, to fill this void, there must be an
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additional mechanism that correlates reinforcement values with control inputs to ob-

tain the gradient information or its equivalent. One approach is to obtain the infor-

mation equivalent to the gradient in a stochastic manner. For example, the linear

random-search algorithm in [Widrow and McCool, 1976] generates a random direc-

tion and evaluates the direction at each iteration. The genetic optimizer algorithm

in [Etter and Masukawa, 1981] selects a series of random locations in the parame-

ter space to examine the performance surface. These random-search methods have

also been applied to reinforcement learning problems. In Stochastic Reinforcement

Learning, for example, reinforcement values are stochastically correlated with con-

trol parameters by randomly perturbing the control inputs using adaptive probability

density functions [Barto, et al., 1983] [Gullapalli, 1990] [Williams, 1992]. These types

of learning algorithms, although simple and useful for a class of problems, exhibit

extremely slow convergence and erratic behavior due to their trial-and-error natures.

These algorithms are not applicable to on-line learning where erratic behavior or total

failures are inadmissible, as in the case of robot impedance learning. On the other

hand, Model Based Reinforcement Learning uses an internal model network in order

to learn the relationship between control inputs and the resultant reinforcement based

on available data. As shown in Figure 4.3, in this learning algorithm, the gradient

of reinforcement is estimated by feeding back the reinforcement value through the

internal model. This learning approach was first suggested by Werbos [Werbos, 1988]

and developed independently by Widrow [Widrow, 1986] and Jordan and Rumelhart

[Jordan and Rumelhart, 1992]. We summarize the features of this learning approach

as well as its drawbacks, and discuss how the drawbacks can be overcome or mitigated

by progressive learning.

As shown in Figure 4.3, Model Based Reinforcement Learning uses an additional
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Figure 4.3: Model Based Reinforcement Learning

differentiable network to predict the reinforcement (performance index) function. This

model is adaptively identified from input-output observations. Once this model has

been identified, the gradient following rule is then applicable to the process. By

differentiating the internal model output in terms of control u and replacing the

derivative Or/Ou in eq.(4.5) by O?/Ou, we obtain

A, = (aOu)T(a )T (4.12)

While the stochastic reinforcement algorithms can accomplish the gradient following

only in the stochastic sense, the model based approach accomplishes this determinis-

tically, hence it yields much faster convergence. However, identification of the internal

model requires a large number of sample data and is extremely difficult especially for

a class of tasks where the input dimension of the model is large.

When the internal model is inaccurate, the estimated gradient Or/Ou has a signifi-

cant error. As a result, the weight changes Aiw may be made in a wrong direction. To

evaluate the internal model, let us analyze the influence of the model accuracy upon the
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performance index, i.e. the reinforcement. In accordance with [Yang and Asada, 1995],

consider the following quantity X termed "improvement in performance" to be made

when control parameters are changed from w to w + Afv:

((x) def r(x, u(x, w + Aw)) - r(x, u(x, w)) (4.13)

This quantity manifests whether the parameters have been updated in the right direc-

tion for a given x. When the progressive learning method is applied, the parameter

changes A\w can be kept small, as discussed in the previous section. For small Aw,

taking the first order Taylor expansion of 0 and substituting eq.(4.12) yield

Or au A a ar au ( au)T(a)T (4.14)

The physical meaning of 0 is the inner product of the estimated gradient, ( -)T =

(-)T(,)Tv , and the true gradient, (or )T = (aU) T (,9) T. In order to maintain the

improvement 0 always positive, the derivative of the internal model must be accurate

enough to make this inner product positive at all times. Namely, the internal model

must be accurate not only in terms of its outputs, but also in terms of the derivative

of the output with respect to control u. This condition is difficult to satisfy unless a

large number of sample data collected from the whole input space are available and

the model is fully trained to generate a smooth function. This requirement is not

achievable or feasible in practice especially when the dimension of the input space is

large.

In progressive learning, we solve this problem by gradually and intensively exciting

a specific local region of the space. To this end, we construct the model using a locally

tunable network such as a radial basis function network [Poggio and Girosi, 1989]. A

radial basis function network consists of a linear combination of radial basis functions

distributed over the input space. When new samples are presented to the network,
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the network is modified only in the vicinity of the sample points, leaving the network

weights in the other regions unchanged. By incorporating this feature of locally tun-

able networks into the excitation scheduling technique of progressive learning, we can

obtain the following significant advantages:

i) High sample density

In progressive learning, the parameter space can be excited locally and selectively,

as addressed in the previous subsection. Likewise, the internal model can be trained

locally with many samples only within a local region. Therefore, the density of sample

points may be high enough to generate an accurate model.

ii) Small input range

As learning proceeds, errors in x and v as well as the magnitude of force p decrease.

Also, since the motion speed increases gradually, Ax,Av and p remain small as men-

tioned before. Therefore, the internal model does not have to cover distal points from

the origin; the dynamic ranges of Ax, Av and p are not large. The internal model

must be accurately trained merely in the vicinity of the origin. Thus, the training

may progress quickly.

Because of these features attributed to progressive learning and locally tunable

networks, the learning of internal model can be performed accurately and quickly so

that the performance improvement quantity b may be kept positive. As long as the

motion speed is increased gradually, the internal model can be trained in real-time in

the gradually-expanded space.

4.4 Implementation and Simulation

In this section, we implement the above progressive learning of impedance pa-

rameters and conduct simulation experiments to demonstrate the effectiveness of the
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proposed method. Various simulation results are then provided to verify the arguments

given above.

4.4.1 Implementation

In this thesis, we implement the progressive learning method by using the Adap-

tive Reinforcement Learning Algorithm(ARL) [Yang and Asada, 1995]. The ARL al-

gorithm applies a perturbation/correlation technique to learning an internal model.

The estimated gradient and parameter changes based on the internal model are less

erratic and more robust against uncertainties and noise compared with the general

model-based learning algorithms. The details of the ARL algorithm are provided in

[Yang and Asada, 1995] and its application to learning static compliance for a sim-

ple assembly task is found in [Yang and Asada, 1993-(b)]. In the ARL algorithm, a

radial-basis function network is used to represent an internal model. As discussed in

the previous section, locally tunable networks "synergize" progressive learning, since

the system is excited locally and gradually. Even if the accuracy of the model net-

work is limited at the beginning, the accuracy can be quickly improved during on-line

learning due to scheduled excitation.

Figure 4.4 shows the configuration of the task environment for simulation. As

shown in the figure, we use a spring-damper model to simulate the chamfer surface

and compute the impact of collision between the ball and the chamfer surface. With

this model, we can calculate the contact force or impact force pn in the direction normal

to the chamfer surfaces. Friction Pt on the chamfer surfaces is given by pt = Ppn, where

/u is a friction coefficient.

In each learning iteration, the controller is given a nominal trajectory d. The

trajectory is parallel to but deviated randomly from the center line of the hole so
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Figure 4.4: Task environment of the ball insertion

that the ball always collides with the chamfer surface. The impedance parameters

involved in the controller are tuned in real time using the Adaptive Reinforcement

Learning Algorithm. In this simulation experiment, we conducted 300 iterations of

learning divided into three phases: the first 100 iterations in a slow speed, the second

100 iterations in a medium speed and the last 100 iterations in a high speed.

4.4.2 Simulation Results

Figure 4.5 shows the transitions of the impedance parameters as well as the

reinforcement over the whole learning iterations. Note that for each iteration we

averaged the reinforcement over the time period of the iteration. Note also that the

erratic behavior of the learning curves is caused by the randomness involved in each

iteration as well as in the Adaptive Reinforcement Learning Algorithm. The details

of the learning procedure follow.

As described in the previous section, learning started with a slow motion speed to
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excite only the quasi-static terms of the system. The velocity command Xd was set to

(0, -0.3 m/s)T. The initial stiffness matrix was given by:

K 0 = [ 100 N/m
0

(4.15)0 ]
100 N/m

These stiffness parameters, or position gains, are large enough to follow the desired

trajectory. The damping matrix D was initialized with small positive values and the
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inertia matrix was initialized as the plant inertia matrix moI. Figure 4.6-(a) shows

the performance of the initial stiffness controller. At a glance, it may be seen that the

robot can successfully insert the ball into the hole. However, as seen in the plots of

Px and py, the reaction forces in both the x and y directions are large. Furthermore,

since we have only position gains, the ball cannot track the desired trajectory smoothly,

resulting in the zigzag motion. Learning is necessary to improve the performance of

the controller.

One hundred iterations of learning were performed in this phase. As shown in

Figure 4.5, the stiffness in the x direction decreased remarkably to 47.41N/m while

that in the y direction decreased just slightly to 96.3N/m during the 100 iterations.

This shows that the robot has to hold the ball compliantly in the x direction to comply

to the chamfer surface and stiffly in the y direction to follow the nominal trajectory

toward the bottom of the hole. This result is compatible with the argument that was

derived by [Witney, 1977] and other researchers. On the other hand, the damping and

inertia parameters are almost unchanged, showing that these terms are not excited

during this slow speed operation. From this observation, we can draw the conclusion

that in the slow speed operation the damping and inertia parameters cannot gain useful

information. The average of the reinforcement values converged to -0.5. Figure 4.6-

(b) shows the performance of the controller at the 100th iteration. As shown in the

figure, the reaction forces are sufficiently suppressed and the motion of the ball is quite

smooth compared with the initial trajectory.

Secondly, we increased the motion speed to Xd = (0, -1.5 m/s)T to excite the

system more dynamically, and conducted another 100 learning iterations. As shown

in Figure 4.5, in the beginning of this learning phase, the reinforcement value decreased

discontinuously from -0.5 to -2.6 due to the increase of speed. Namely, the controller
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trained in the slow speed operation could not perform satisfactorily in this faster

motion. However, as learning proceeded, the performance was quickly improved and

the reinforcement again started to increase. In this phase, the damping parameters

increased steadily and significantly while the stiffness parameters remained almost

constant over the iterations. It appears that the stiffness parameters had already

been learned in the first learning phase and the controller did not gain any additional

information at the faster motion speed. The inertia matrix M was again almost

unchanged in this learning phase.

Finally, we increased the motion speed to the maximum d = (0, -3.0 m/s)T.

When the task was first performed at maximum speed, the control parameters were

succeeded from the previous ones obtained for the medium speed. As shown in Fig-

ure 4.7-(a), however, there is a large amount of bouncing on the chamfer surface

resulting in huge impact forces. In order to reduce the bouncing and the impact

forces, the inertia term must be significantly modified. As shown in Figure 4.5, at this

motion speed, the inertia terms were very vigorously excited and the corresponding

parameters moved most significantly and converged to the final values. The damping

parameters also varied in this learning phase while the stiffness parameters again re-

mained unchanged. Note that after the learning the inertia in the x direction became

much smaller than that in the y direction, which is also compatible with the theoreti-

cal conclusion derived in [Asada and Kakumoto, 1990]. Figure 4.7-(b) shows that the

learned impedance controller allows for successful insertion at high speed without a

large impact and bouncing on the chamfer.

As shown above, by increasing the motion speed progressively, the controller can

learn a better impedance smoothly and stably while maintaining a minimum perfor-

mance level. To compare the progressive learning method with its traditional coun-
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Figure 4.6: Task performances before learning (a) and after 100 learning trials (b)

terpart, we conducted another set of learning simulations. In the traditional non-

progressive learning method, a constant motion speed, 3.0 m/s, was used throughout

the learning operations. Figure 4.8 shows the learning curves of the two methods. As

shown in the figure, the control performance i.e. the reinforcement value, is erratic
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Figure 4.8: Comparison between progressive and non-progressive learning methods

and significantly lower than that of the progressive learning method. Important to

note is that the progressive learning method allows the controller to maintain a certain

performance level throughout all the learning iterations while non-progressive learning

sometimes exhibits intolerable, poor performance, which may incur significant damage

to the system.

4.4.3 Verifying the Features of Progressive Learning

In the previous section, we addressed the salient features and advantages of pro-

gressive learning. The progressive learning method based on motion speed scheduling

mitigates the difficulties of gradient following learning and overcomes the critical prob-

lem of model-based reinforcement learning. Overall, the progressive learning method

and the model-based, gradient following method work synergistically and accomplish

stable learning without fatal damage and poor performance throughout the learning

process. We will now verify, through simulation experiments, every argument in favor

of progressive learning addressed in the previous section.
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,4. Gradual excitation of the parameter space

We first consider the fact that in progressive learning the parameter space is grad-

ually excited as the motion speed increases. This argument is clearly supported by

the simulation result shown in Figure 4.5. This figure shows that, at the initial low

speed, changes in D and M are insignificant compared with those in K. As the mo-

tion speed increases, D and M become more excited and vary significantly, while K

remains unchanged.

B. Suppression of excessive parameter changes

We have addressed the fact that by keeping errors Ax and Av as well as reac-

tion force p small, stable learning can be accomplished. To verify this argument, the

magnitudes of the errors and reaction force generated during the previous simulation

experiment are shown in Figure 4.9. To aggregate the data, the average y axis errors

over a complete insertion process are plotted against the number of iterations. As

shown in this figure, in progressive learning, the errors and reaction force are consis-

tently smaller than those in non-progressive learning. Since we increased the motion

speed progressively, these errors and the reaction force were confined to small mag-

nitudes. This contributed to stabilizing the learning process. On the other hand,

in non-progressive learning, the magnitudes of the errors and reaction force remained

large throughout the process. Consequently, changes in the corresponding parameters,

Aw, became large and the learning process did not converge, as previously shown in

Figure 4.8.

C. Accurate internal model to assure positive performance improvement

In the simulation experiment, we also evaluated the accuracy of the internal model

by calculating the average improvement in performance X and compared the result
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with the one based on non-progressive learning. As discussed in Section 4, the im-

provement in performance is highly dependent on the accuracy of the model. As shown

in Figure 4.10-(b), progressive learning allows effective learning of the internal model

so that the value of 0 is always positive. Namely, performance was improved every

time the learning process was repeated. In contrast, the value of X often became neg-

ative for non-progressive learning as shown in Figure 4.10-(b). Namely, the internal

model cannot be learned effectively using the traditional learning method.

D. High sample density for training the internal model in a gradually-expanded region

We have considered the fact that progressive learning allows the internal model to
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be trained locally and efficiently with a high sample density in a limited region. To

verify this argument, we plotted sample points on a Ax- Avx plane obtained from a

learning process. Figure 4.11-(a) shows distributions of samples (circles in the figure)

acquired from three insertion trials during the slow speed learning phase. As seen in

the figure, the samples are confined to a small region, especially concentrated on the

Avx axis. This high sample density allows the internal model to be trained accurately

and quickly in this limited region. When the motion speed was increased to medium

speed, the sample distribution was expanded as illustrated by circles in Figure 4.11-

(b). Note that the sample distribution would be expanded more abruptly to a larger

region were the motion speed not increased gradually. With progressive learning, the

valid region, that is, the accurately trained region, can be smoothly expanded to a

broader area. As learning proceeded, the errors and the reaction force became small

and the sample distribution became more concentrated as shown by x, in the figure.

At the end of the medium speed phase, the samples were distributed only within a

small region as shown by the dots and, as a result, the accuracy of the model in that

region was further improved. Consequently, by progressively increasing the motion

speed, the internal model does not have to cover distal regions from the origin and,

therefore, can maintain high accuracy.

4.5 Strategies for Increasing the Motion Speed

The main feature of progressive learning is to increase motion speed gradually.

In the simulation experiments, our strategy for increasing motion speed was to use a

predetermined schedule of motion speeds. In the strategy, the insertion speed is in-

creased after every 100 learning iterations up to the maximum speed. As shown in the

previous simulation results, the change of insertion speed caused an abrupt deteriora-

tion in performance, though the performance was quickly improved. In this section,
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Figure 4.10: Comparison of b between progressive learning (a) and non-progressive
learning (b)

to suppress abrupt deterioration, we present a different strategy where the motion

speed increases more often with a smaller increment of motion speed. Figure 4.12

shows the results of the learning simulation using the new motion speed scheduling.

In the simulation, learning started with the lowest speed (0.3 m/s) as in the previous

simulation. However, after every 30 iterations, the motion speed was increased by a

small increment and reached the highest speed(3.0 m/s) after 10 increases. As shown

in the figure, compared with the original motion scheduling (broken lines), the new

motion speed scheduling allows for steadier and smoother learning, especially at high

speeds. Namely, the performance deterioration caused by the increase of motion speed
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is successfully suppressed in this new strategy. Note that the changes in the stiffness

parameters are much less than the previous results, since the motion speed increases

quickly and, therefore, the excitation of the stiffness term fades out in the early stage

of this learning process compared with the previous one.

In the above strategies of predetermined motion speed scheduling, the motion speed

was increased periodically regardless of the progress in learning. These strategies are

often inefficient since, although learning at low speeds was much quicker than that

at high speeds, the same number of iterations was performed. It is also difficult to

predict the number of iterations needed for each motion speed. To avoid unnecessary

repetitions and accelerate the convergence of the whole learning process, we need to

monitor the progress of learning and increase the motion speed accordingly, as shown

by the second feedback loop in Figure 2. In the following simulation, we implemented

the new strategy of changing the motion speed according to the progress in learning.

In this simulation, reinforcement values are examined after every 10 iterations and
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the motion speed is incremented by 0.45 m/s if the increase in the average of the

reinforcement values over the last 5 iterations from that of the first 5 iterations is

less than 5 %. Figure 4.13 shows the simulation results. As shown in the figure, an

important result of this strategy is that low speed learning requires much less learning

iterations than the higher speed learning phases. Namely, by reducing the number
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of iterations significantly at slower motion speeds and increasing the ones at higher

motion speeds, we can achieve much faster convergence of the whole learning process

while maintaining a certain performance level.
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4.6 Conclusion

In this chapter, we have applied the concept of progressive learning to a high-

speed assembly task and proposed a scheduled excitation method by varying a mo-

tion speed command. Based on the progressive learning method, we developed an

impedance learning algorithm for high speed insertion. We also manifested the mecha-

nisms of progressive learning and examined why the progressive learning method works

successfully for impedance learning. The progressive impedance learning method was

implemented by using the adaptive reinforcement learning algorithm, and simula-

tion experiments were conducted to show the effectiveness of the progressive learning

method. Different strategies for motion speed scheduling were considered at the end.
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Chapter 5

Conclusions

5.1 Thesis Summary

This thesis has presented a novel approach to stable learning control, termed "Pro-

gressive Learning." The basic concept of progressive learning stemmed from studies on

human learning behavior. Humans perform unfamiliar tasks slowly and meticulously

when their knowledge is limited and stringent task specifications must be met. The

required level of task performance is compared with their competence to perform the

task, and, if difficult to execute, the task complexity is lowered by reducing execution

speed, relaxing some conditions, or limiting the scope of the task. As humans gain

experience and become familiar with the new task, they increase the task execution

speed, or attempt to deal with tougher conditions and a broader range of situations.

People continue to learn the task by progressively increasing the level of task complex-

ity and thereby improving the task performance ability. The underlying objective of

the thesis is to make machine learning as effective as the human learning. Progressive

learning uses scheduled excitation inputs that allow to learn quasi-static, slow modes

in the beginning, followed by the learning of faster modes. With the progressive learn-

ing method, machine learning can be performed smoothly, quickly and stably without

incurring fatal mistakes.

Progressive learning was first defined to be a learning system in which the level

of task complexity is gradually increased in accordance with the progress of learning

so that minimum task performance requirements can be met throughout the learning

process and that the learning process may not diverge as the level of task complexity
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increases.

To prove stability and convergence of the progressive learning system, a theory of

progressive learning was developed by formulating a gradient based, model reference

adaptive control problem. It is well known that in a model reference adaptive control

system an excitation at a high frequency causes instability to the system when the

relative order of the plant is high and the SPR(strictly positive real) condition is not

met. To derive a stability analysis for progressive learning, we applied a method of

averaging analysis to describe the behavior of the adaptive system in the frequency

domain. Based on this analysis, we proved that the stable convergence of control

parameters is guaranteed if the system is excited gradually through the reference input

in accordance to the progress of the adaptation. A numerical example was provided

to verify the above analysis.

Finally, the concept of progressive learning was applied to robotic assembly to

explore the possibility of progressive learning. We used a high speed insertion task as

an example, where an impedance control law is learned with the excitation scheduling

method. In this method, learning starts with a slow, quasi-static motion and goes

to a fast, dynamic motion. During the learning process, the stiffness terms of the

impedance controller are learned first, followed by the damping terms and finally by

the inertial terms. Consequently, this progressive learning method enables the learning

of high-speed dynamic control laws without instability and fatal damage due to high

speed collisions. The mechanism of progressive learning was also discussed in detail

and verified through simulation experiments.
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5.2 Contributions

5.2.1 Theory of Progressive Learning

A stability analysis of progressive learning was developed by formulating gradient-

based, high-relative order model reference adaptive control problem. In the analysis,

we proved that an adaptive control system is stable if the system is excited through

a reference input within a particular frequency range in which the difference between

the phase shifts of the referenced model and the closed-loop system is less than 90

degree. Namely. it was shown that the adaptive system can avoid instability even

when the SPR conditions are not met, if the reference input is designed so that its fre-

quency contents are within the particular frequency range. We defined the frequency

range as the frequency range for stability. Since the phase shift of the closed-loop sys-

tem varies depending on the control parameters, another important implication of the

above stability analysis is that the frequency range for stability depends only on the

control parameters. In other words, the frequency stability range becomes wider as the

control parameters approach the optimal parameters, and once the parameters reach

the neighbor of the optimal ones the stability range covers the whole frequency range.

We finally proved that for given plant, reference model, adaptation rule, and initial

parameter values, there always exist a sequence of excitation frequencies such that the

system is maintained stable and the control parameters converge to the optimal ones

and the output error converges to zero.

5.2.2 Application to Robotic Assembly

The concept of progressive learning was applied to a non-linear, more complex

problem such as robotic assembly and a new approach to learning control using an

excitation scheduling technique was developed. Similarly to the theory of progres-
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sive learning, the learning problem was first formulated as a model-based, gradient

following reinforcement learning. It was shown that the progressive learning method

allows the suppression of excessive parameter changes by increasing the motion speed

gradually based on the progress of the learning, and thereby stabilizes the learning pro-

cess using gradient following. Moreover, it was revealed that the progressive learning

method allows the learning of an accurate internal model correlating the reinforcement

to control inputs and plant outputs. By gradually increasing the motion speed com-

mnand, the internal model as well as the control parameters can be learned effectively

within a focused, local area in the large parameter space, which is then gradually

expanded as the motion speed increases. This mechanism of progressive learning was

verified through simulation experiments. Several different strategies for motion speed

scheduling were addressed and it was found that we can achieve much faster conver-

gence of the whole learning process while maintaining a certain performance level by

reducing the number of iterations significantly at slower motion speeds and increasing

the ones at higher motion speeds.
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Appendix A

Derivation of the Sensitivity Vector

In this appendix, we derive the expression of the sensitivity vector given in eq.(3.24).

All the notations and definitions are given in the section. In section 2, the sensitivity

vector /(t) is defined as
TelT

(A.1)

Since e = yp - Ym and X = 0 - * and ym is independent of 0, the sensitivity vector

can be rewritten as
_ aYpT

1(t = aoy ' (A.2)

From eq.(3.12), yp can be expressed as

yp = Wo (s)r

Also, we can express u as

U =

kkpZp(s)A(s) r.
(A(s) - C(s))Rp(s) - kZ(s)D(s)

Wplyp = Wp-lWor

kRp(s)A(s)

(A.4)

(A.5)

(A.6)
(A(s) - C(s))Rp(s) - kpZp(s)D(s)

Let X be a vector of differential operators such as

X ef [1, s, 2, .. n-2T (A.7)

Then, the polynomials C(s) and D(s) given in eqs.(3.10) and (3.11) can be rewritten

as

C(S) = xT01

D(s)

(A.8)

= OoA(s) + xT 02 (A.9)
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w l (t) and w2(t) in the regressor vector w(t) also can be rewritten as

x
w = A(s)u

xW2 = ( yp
W2= A up

(A.10)

(A.11)

Using the above equatioins, we obtain the partial derivative of yp in terms of each

control parameter of 0 as follows:

kpZpA

(A - C)Rp - kpZpD' -
kkpZfpARpf

--- -r

((A - C)Rp - kZD)2
kkpZpAkpZpA

-- ' ~~~~r((A - C)Rp - kZD)2
kkpZpAkpZpf

((A - C)Rp - kpZpD)2 '

Wor (A.12)

kpZpx
(A -C)Rp -kpZpD

7 

= Wow1 (A.13)

(A - C)Rp - kpZpDyp = WoYP

( - C)RkpZp yP = Ww2.

Finally, from the above equations, the sensitivity vector 0(t) is given by

0(t) = Wo(s)w.

(A.14)

(A.15)

(A.16)
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Appendix B

Derivation of the Covariance Matrix

The covariance matrix RWfwo (0) can be expressed using the cross spectral measure

$SwfW(dw) as

R,,f W (0) = Swf e (dW) (B.1)

Namely, the objective of this appendix is to derive an expression of SfW (dw) in terms

of the spectral measure of reference Sr(dw) by using the General Harminic Analysis

[Sastry and Bodson, 1989].

First, since uw = Hwr(s, 0)r, we get the spectral measure of w as

S. (dw) = H,r(jw, 0)HT,(jw, O)S,(dw). (B.2)

Also, since w = WmW,

Swf(dw) = W (jw)WT(jw)S.(dw). (B.3)

Since we = W uf, the cross spectral measure SWfW, (dw) is given by
W.

SWf w9 (dw) = (W )*Swf (dw)

= W*Wm Sw(dw)

Hr(jawj o)H((jw, o)w; WmSr(dw). (B.6)

Next, we need to express Hr(jw, 9) in terms of Hwmr(jw). First, let us define the

following variables:

¢ = I1-01 , 00, 02-0 2 

-k de -k*

(B.7)

(B.8)
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- def T T T
W = W yp, W2

def T T T
Wm = WmlI Ym, Wm2

Hwr(St ) - [
HWmr(S) = [

(sI- A)-lW-lWo 
Wo

(sI- A)- 11Wo 

(sI- A)-llWplWm 
Wm

(sI- A)-llWm

From eq.(3.17), we have

k w m().H., (s, 0) = -e -1 Hm (s) -- k* ~0

By multiplying r from the right for both sides of the above equation, we get

k km_= ( kWm

= ~~±1 Wm
= )m _

Wm= -Wm
()k m _+ -- oWm.
k* ~o

From the output error equation given in eq.(3.20), we have

el = 1WmTwel = WM bW
k*

(B.17)= kWm(kr + eTa)

W"e also have

el = yp- Ym = Wor- Wmr

k mWmr -Wmr.
k* Do

Therefore, we get

k )m Wmr - Wmr
k* (o

= 1 Wmkr +Wm~bkr +
-k*

1Wm T.
k* MOW

Since 1 + - k
k* k*'

k =km W mr Wm- TW'k* k* 

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.18)

(B.19)

(B.20)
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By eliminating the differential operator Win, we obtain

mr = 4)or _ 1 7VT (B.22)

= ,,,r- k-- 4¢>Win. TM(B.23)
or k* -(Io

Finally, from eqs.(B.16) and (B.23), we get the following expression:

W= w = (I [ Vwm -O 0k (B.24)

Therefore, defining

Gd [ O ¢kTk*I pjnn (B.25)
= 0 ~k/k*I 

we get

= DM [I + Go]wm. (B.26)

Since w = Hwrr and wm Hwmrr, Hwr can be rewritten as

Hwr(jw, 0) = g1 [I + Go]Hm (jw) (B.27)

Consequently, by substituting the above expression and eq.(3.17) into eq.(B.6), we get

I (I~~~ (jW)(w[ 12 Tco[I S] *, 'd TSWfWO(dw) = k- (j) 1 jw H)HJ[I+Go]Hwmr(jw)HwTmr(jw)[I+G]Sr(dW).

(B.28)
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