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Abstract

The basic purpose of Decision Aids for Tunneling (DAT) is to deal with uncertain
conditions in planning a tunnel project and to give effective information on construction
cost and duration. Since the DAT have been developed for tunneling in hard rock, the
program can not consider ground movement in soft ground tunneling. In this thesis, a
program which allows one to predict ground movements in soft ground tunneling by
using the DAT, was developed.

The factors influencing ground movement are associated with the geological
conditions, tunnel dimensions, and construction methods. Among the many ground
movements, this thesis focuses on the settlement profile. The empirical equation proposed
by O’Reilly and New (1982) is used as a predictive model to relate the settlement profile
to factors of ground movement. This settlement model is developed by associating the
parameters of the equation, the volume of lost ground and the width of the settlement
trough, with the ground conditions and construction procedures. The settlement model
has been coded in the C programming language and incorporated in the existing DAT
program which was developed at MIT.

It is possible to illustrate a settlement profile in a transverse section and in a
longitudinal section on the graphic interface. Such predicted settlement profiles provide
significant information in the selection of the construction methods and procedures
affecting the cost and duration of tunnel projects.

Thesis Supervisor: Dr. Herbert H. Einstein
Title: Professor of Civil and Environmental Engineering
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Chapter 1
Introduction

One of the goals of tunnel designs is to plan a construction method by which the
required work can be carried out in a certain amount of time at minimum cost. A
decision strategy and cost estimating method are, thus, required in order to allow one
to evaluate a project during the planning or early design phase. The controlling factors
influencing the cost and duration of an underground project, such as geology,
geometry, construction, labor productivity and equipment availability, vary for each
job. Therefore, few general conclusions can be drawn regarding the "true" cost of a
project.

Tunneling is affected by a variety of uncertainties. For example, the geological
conditions at the tunnel level are largely unknown before construction; but even during
construction the parameters that affect excavation and support are known only to a
limited extent.

In the past decade, a wide variety of groups have been interested in developing an
applicable "decision support tool" to predict construction cost and duration by
considering the above-mentioned factors. Although a variety of modeling tools have
been applied to analyze several tunnel projects, they have limitations in that these
models need further processing of the construction data and the special knowledge of
an engineer. In order to overcome these limitations, the Decision Aids for Tunneling
(DAT) have been created at MIT to deal with the tunnel project with specified geologic
conditions, tunnel dimensions, resource allocation, and construction methods. The
DAT have been applied so far to various tunnel projects. However, the application of
the DAT has been limited to rock tunneling.

Soft ground tunneling, unlike hard rock tunneling, usually produces ground

movement. None of the existing modules of the DAT, so far, has considered the
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control of the ground movements despite the recently increasing number of tunnels in
urban areas, which are mostly located in soft ground. In soft ground tunneling,
forecasting the ground conditions and selecting construction procedures that will
permit control of ground movements are critical. These procedures also affect the
duration and the cost of the whole tunnel project. Therefore, there is a need for a
program that can reflect the effects of ground movement.

As mentioned above, soft ground tunneling is associated with ground movements
such as surface settlement and face stability. This study focuses on the surface
settlement. First, empirical equations that have been developed for the settlement
profile are examined. Among various empirical equations, the generalized equation
of O’Reilly and New (1982) is selected as a predictive equation to relate the settlement
profile to the controlling factors of ground movement. In this equation, there are two
parameters defining a transverse profile: the volume of settlement trough and width of
the settlement trough. Second, in order to incorporate the settlement model into the
DAT, these parameters are associated with the ground conditions and tunnel
configurations. The settlement model has been coded in the C programming language
and is run as a tunnel activity in the DAT.

The DAT is composed of two main programs (GEOLOGY and SIMSUPER) and a
user interface (NETWORK). The settlement model is run in one of the main
programs, the construction and resource simulation module called SIMSUPER.
SIMSUPER can consider the uncertainties in ground conditions and construction
procedures through a probabilistic analysis. The computational results are then
illustrated by using the graphic interface.

This thesis is organized as follows: Chapter 2 presents the literature review on the
empirical methods regarding settlement in soft ground tunneling. Chapter 3 describes
the chosen empirical equations in detail. Chapter 4 discusses the incorporation of the

settlement model into the existing DAT. Chapter 5 is the User’s manual and Chapter 6

12



presents applications of the settlement model. Conclusions and recommendations for
future studies are given in Chapter 7. Additionally, the program source code of the
developed model is listed in Appendix I.

13



Chapter 2
Literature Review

2.1 General

The basic aim of settlement prediction methods in soft ground tunneling is to
produce an accurate assessment of ground settlement induced by the tunnel advance
as well as to appraise the associated effects on surface structures and ground
conditions. In general, most of the studies developing such predictive methods have
relied on a large number of case studies and evaluated observations. One major
objective of predictive methods is to offer a reasonable estimate of the settlement. The
principal methods for predicting settlement can be grouped as follows: empirically
derived relationships, numerical models and theoretically developed models.

Empirically derived relationships are in the form of formulac which have been
established from observed surface settlement behavior: Peck and Schmidt (1969)
assumed a particular geometric form of the settlement profile, specifically that the
shape of the settlement trough above a tunnel is reasonably represented by an error
function curve (normal distribution curve). This concept is well established and
accepted as the basic form of the settlement profile by many researchers (Cording
(1972), Attewell (1978), and O’Reilly (1991) etal.). A more generalized form of the
error function curve, the three dimensional form which considers the direction of
tunnel advance, was derived by Attewell and Woodman (1982). Since Peck’s
research, many researchers have concentrated on evaluating the volume of ground loss
due to tunneling and the shape of the surface trough in different soil types.

Second, with the advent of powerful computing tools, numerical methods have
prevailed in recent years. The application of numerical methods to the problem of

ground settlement induced by tunneling is appropriate. Numerical methods are
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applied not only to the ground settlement prediction but also to the entire tunnel design
procedures, including simulation of the excavation sequence and placing of the lining,
soil - tunnel lining interaction, effects of nearby tunnels, seepage, and consolidation.
One of the more refined numerical methods is the Finite Element Method (FEM).
Clough and Leca (1989) reviewed recent work using the FEM as a means to analyze
soft ground tunnels. They pointed out that soil tunneling problems have proved
difficult for FEM modeling because they are complex, often involving many
parameters that are poorly estimated or indefinite if one does not properly model both
the soil and the construction procedure. There are also many cases in which the
available information about the soil properties is scarce and does not justify the use of
a complex constitutive model and a sophisticated numerical method. However, the
flexibility of FEM models can be exploited in performing back analyses of ground
movements, and can assist in understanding the ground movements at particular sites.

Finally, theoretical models exist which are based on the fundamental equations of
the elastic and continuum theories. Sagaseta (1987) presented closed form solutions
for obtaining the strain field in initially isotropic, homogeneous and incompressible
soil due to near-surface ground loss. He showed that the calculated movements agree
with the experimental observations and compare favorably with commonly used
numerical methods. Although the simplified theoretical model can predict the general
tendency of ground movement, it has yet to reach the stage where it can describe
more complicated soil behavior such as high shear strain and consolidation.

This chapter concentrates on empirically derived relationships of ground
settlement, since this is the method applied to the model used in the research presented

in my thesis.
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2.2 Empirical Methods

2.2.1 Research by Peck and Schmidt (1969, 1974)

Peck (1969) and Schmidt (1974) assumed that the permanent settlement profile can
be described in terms of a normal distribution function curve (error function curve).
They showed that this approach adequately models the shape of the settlement trough
caused by tunneling in soft ground on the basis of a statistical evaluation of field

observations.

(1) Basic Equations

The equation used by Peck and Schmidt to specify settlement profile is

S=S__exp(-x 12i), @1

where S is the vertical settlement of a point which is at a distance x from the vertical
plane containing the tunnel axis (see Figure 2.1), S___ is the settlement of the point

directly above the tunnel, and i is a parameter which defines the width of the

settlement trough.

4
=

sfﬂll

Figure 2.1 Surface settlement represented by the error curve (from Peck (1969))
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If settlement occurs with no change in the volume of the soil, then the volume of
the soil (V,) between the settlement trough and the original ground surface is obtained

by the integration of Equation (2.1), thatis,
V, = (2n)i S, (2.2)
where V, is the volume of the settlement trough per unit length of tunnel, iis a

parameter which defines the width of the settlement trough, and Sm is the settlement

of the point directly above the tunnel.

Peck also produced a dimensionless plot of the observed width of the settlement
profile where different types of soil are compared to the depth of the tunnel axis.(see

Figure 2.2). 2D

-{N

a
N
3
Range for
4l clays (after \
Peck, 1969) \
\
5} \

Figure 2.2 Relation between trough width and tunnel depth (from Peck (1969))

The relationship that can fit Peck’s plot (broken lines in Figure 2.2) was given by
Schmidt as follows:

(2i/D) = (Z/D) °&1° 2.3)

17



where D is the diameter of the tunnel, i is a parameter which defines the width of the

settlement trough, and Z is the depth of the tunnel (see Figure 2.1).

(2) Procedures for Computation

These relationships and observations can be used to estimate the settlement above a

real tunnel as follows:

(1) One estimates the volume of settlement trough (V,) on the basis of experience with

similar tunneling techniques in similar soils.

(2) The value of i is obtained by using Peck’s chart (Figure 2.2) or Eq. (2.3) or a

similar relationship.

(3) Once both the volume of the settlement trough (V,) and the trough width parameter
(i) are calculated, Eq.(2.2) is used tofind S_,.. Then Eq.(2.1) can predict the surface

settlement at any point (X).

2.2.2 Research of Cording and Hansmire (1972, 1975,
1989)

Cording and Hansmire (1972, 1975, 1989) at the University of Illinois are Peck’s
successors. They concentrated on estimating the volume of ground loss that causes
surface settlement. They have stated that the difference between the volume lost into
the tunnel and the volume of the surface settlement trough is largely due to
compression of the soil at the side of the tunnel and the volume increase of granular

materials over the crown.

They modified the trough width relation by using a vertical angle f, which is the

angle between the vertical line and the line drawn from springline to the edge of

surface trough (See Figure 2.4).
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(1) Basic Equations

As described in 2.2.1, the shape of the settlement trough at the ground surface
resembles the shape of a normal or error distribution curve. Cording and Hansmire
(1972, 1975, 1989) used the properties of the normal distribution curve (by Peck and
Schmidt (1969)) as an expedient method for describing the trough widths of tunnels:

S =S8, exp(-x*/2i%), (2.9

where S is the vertical settlement of a point which is at a distance x from the vertical
plane containing the tunnel axis, S__, is the settlement of the point directly above the
tunnel, and i is a parameter which defines the width of the settlement trough.

The correlation of (i) with tunnel radius, depth, and soil type is shown in Figure

2.3.
Ground
Surfate

I 2%iz=w

-2.5i=w -i

-—_—f

0.056max

Average Silope = -@'——

Point Of
Legend Inflection

+ Indicates (dmax /Z)> 0.5 %

Vs=25i Smox = wdmax

i€

2.5 5.0 7.5 100 12.5 15.0

175
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and Clay 2R/Z T / |Soft 10 '
\I / Stiff Con}
. 4 L \!\ %
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Figure 2.3 Width of settlement trough (modified by Peck (1969))
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(2) Definition of Lost Ground

As shown in Figure 2.4 (a), the volume of the settlement trough can be simply
defined by the width (w) and maximum displacement (d,,,). Thus the volume of the
settlement trough can be computed as a triangle with the base (2w) and a height

(dmax) as follows:

Vs-%2w-6m-w-6m, 2.5)

where V, is the volume of the settlement trough per unit length of tunnel, w is the half

width of the base of the triangular trough, and §__, is the maximum displacement of

the trough. When superposed on a normal distribution curve, the width (w) is equal

to 2.5 i. Moreover, Cording and Hansmire (1975) stated that the relation between
trough width and depth can be expressed as a vertical angle () drawn from the
springline of the tunnel to the defined width (w) of the settlement trough at the surface

(see Figure 2.4 (a) and (b)). Figure 2.4 (b) relates g to different ground types.

Figure 2.4 (a) Relation of f to trough width (from Cording and Hansmire (1975))

20
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Figure 2.4 (b) Relationship between trough width and tunnel depth (from Cording
and Hansmire (1975))

In addition, Cording and Hansmire (1975) stated that some settlement data, in

particular granular soil, might not fit the normal distribution curve. The settlement at

the edge of the trough did not continue to increase in proportion to the settlement at

the center of the trough, after settlement at the center became large. Rather, as dmax

increased, further settlement was concentrated just above the tunnel where the zone of
high shear strain exists. After that, the settlement trough no longer fits the normal
probability curve, and the calculated values of i decrease gradually. When applying
the normal distribution curve in predicting the surface settlement, one should know
the limitations, especially for cohesionless soil in which localized yield zones rapidly

propagate from the tunnel sidewalls to the surface.
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2.2.3 Research of Atkinson and Potts (1975, 1977)

Atkinson and Potts (1977) illustrated how the distribution of displacement
throughout the soil around a tunnel depends on the nature of the soil and the depth of
the tunnel. They demonstrated, in particular, how deformation occurring at the
periphery of the tunnel migrates through the soil and appears as surface settlement.
The magnitude and the shape of the trough of surface settlement can be related
empirically to the settlement of the tunnel crown, the depth of burial, and the
characteristics of both sand and clay. Through model tests, they proposed a relation
between trough width parameter(i), overburden depth from surface to the tunnel
crown (C), and tunnel diameter (D). Additionally, they derived the relationship

between maximum surface settlement (S, ) and the settlementof the crown (S;).

(1) Basic Equation
The shape of the surface settlement can again be represented with an error function
curve of the form introduced by Peck and Schmidt (1969) (see Figure 2.5):
S=S__exp(-x/2i), (2.6)

where S is the vertical settlement of a point which is a distance x from the vertical
plane containing the tunnel axis, S___ is the settlement of the point directly above the

tunnel, and i is a parameter which defines the width of the settlement trough.
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Figure 2.5 Geometry of tunnel and surface deformations observed for circular tunnel

(from Atkinson and Potts (1977))

(2) Estimation of Trough Width

In order to examine the relationship between the trough width parameter (i) and the

depth of the tunnel, model tests were conducted with and without surface surcharge.

For settlements above tunnels in medium sand without surface surcharge, i is

evaluated as follows:
1=025(C+D), 2.7)

where i is a parameter which defines the width of the settlement profile, C is the

depth of cover to the tunnel crown shown in Figure 2.5, and D is the tunnel diameter.

For settlements above tunnels in dense sand and in overconsolidated Kaolinite with

surcharge,
i =025(1.5C+D), (2.8)

where i is a parameter which defines the width of the settlement trough, C is the

depth of cover to the tunnel crown shown in Figure 2.5, and D is the tunnel diameter.

23



2}0
o) 1-0 2:0 30
L

T O, = Surface surcharge

T

O O.C.kaolin , Gg>0
8 dense sand: %>0
O loosesand , 9% =0
o densesond ; 9, =0

AN
AN
201 \
N\
\\ «qn.(2.8) \\
ewqn. (2.7)
oL \
1 \\ \ So"ltn;: stite

\ Sands gbove

\ the woter table
4ok

Figure 2.6 Variation of maximum surface settlement profile with depth for model

tunnels ( from Atkinson (1977))

(3) Volume of Ground Loss

Assuming the surface settlement trough may be approximated by an error function
curve, Atkinson and Potts (1977) defined the volume of the settlement trough (V,) for

per unit length of tunnel as

V, = J27iS,,, (2.9)

where V, is the volume of the settlement trough per unit length of tunnel, i is a
parameter which defines the width of the settlement trough, and S, is the settlement

of the point directly above the tunnel.

If it is then assumed that the tunnel deforms as indicated in Figure 2.5 and that the
magnitude of the crown settlement is relatively small compared to the tunnel diameter, .

the volume of ground lost in the tunnel per unit length is



(2.10)

where V., is the ground loss during excavation, D is the tunnel diameter, and S, is the

settlement of the tunnel crown.

Thus, the ratio of the volume of ground lost at the surface and in the tunnel is
Y 2.0 -
v, Vmx\24/| s, |- 2.11)

where V, is the volume of the settlement trough per unit length of tunnel, V; is the
ground loss during excavation, a is the half-width of the opening, i is a parameter
which defines the width of the settlement trough, S is the vertical settlement at the
crown of the tunnel, and S___ is the settlement of the surface point directly above the

tunnel.

(4) Relationship between Surface Settlement and Crown
Settlement

Atkinson and Potts (1977) assumed that the magnitude of S__ /S. for a tunnel
depends on the depth of burial, the presence of a surface surcharge, and any
compression and dilation in the soil around the tunnel. Figure 2.7 shows the variation
of maximum surface settlement with crown settlement for tunnels in both sand and
clay. In this Figure, the relationship between S, and S, can be represented by a
linear expression. Figure 2.8 also shows the variation S__ /S, with the depth of
tunnels in both sand and clay: (a) Dense sand; (b) Sands; (c) Overconsolidated
Kaolinite.
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Figure 2.7 Variation of maximum surface settlement with crown settlement for
tunnels in sand and clay (from Atkinson (1977))
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Figure 2.8 Variationof S /S, with depth of burial for model tunnels in sand
and clay (from Atkinson (1977))
The relationship between maximum surface settlement and crown settlement can be

described by the following equation;

S =1.0 —a(-g)
S nax D/ (2.12)

where S is the maximum settlement that occurs above the tunnel axis, S is the

crown settlement, C is the overburden depth from surface to tunnel crown, D is the
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diameter of opening, and a is the slope of the graph plotted S__ /S versus C/D (see

Figure 2.8).

Table 2.1 also defines the values of a used in Eq. (2.12).

Table 2.1 Value a for different soil types

Soil Value of o Relative rates of volume strain in
laboratory tests
Dense sand at Iow stresses 0.57 Largedilation
Loose sand and dense sand at 0.40 Small or moderate dilation
large stresses
Overconsolidated Kaolinite 0.13 Very small or zero dilation,
possibly small compression

2.2.4 Research of Attewell (1978, 1982)

Attewell (1978, 1982) was involved in the fundamental research on Peck’s basic
formulae. He applied Peck’s error function, not only to cohesive soil but also to
cohesionless soil (granular soil), by using information extracted from a case history.
Furthermore, Attewell and Woodman (1982) derived a three dimensional form of the

error function curve.

(1) Estimation of Trough Width

Attewell derived the trough width parameter by using the following equation (see

Figure 2.9) along with the relationship between the depth and tunnel opening size.
i=aK[z/2a], (2.13)

where i is the transverse horizontal distance between the points of maximum

settlement and of inflection, z is the depth from surface to tunnel center, and a is the

27



half-width of the opening. K, (ordinate intercept) and n (slope) can be determined
empirically by plotting log(i/a) against log(z/2a).
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Figure 2.9 Settlement trough width as a function depth and diameter

(from Attewell (1978))

(2) Deriving Three Dimensional Equations for Settlement

Attewell and Woodman (1982) derived a three dimensional equation for settlement,
lateral displacement, and strain that might be used for computation at any point at a

center distance from the tunnel face.

Eq. (2.14) expresses the three dimensional equation for settlement. In this

expression, the vertical displacement (w) in the Z axis is given as follows (see Figure

2.10);



\
<

Figure 2.10 Tunnel coordinate system (from Attewell and Woodman (1982))

Figure 2.10 shows the coordinate system to be adopted: x - parallel to the tunnel

center line; y - transverse to the tunnel center line; z - vertical axis through tunnel

center.
W_E_‘;_.ffexpf (x ;.32) +y ]dxo
e ! ] . (2.14)
__V =Y X=X\ L X-X\]
_‘Em'ze’(phzi’][c\ ) )]
where

oo ol L

, (2.15)

where V is the volume(m®) of settlement trough per unit face advance(m), i is a
parameter which defines the width of the settlement trough, subscript (0) denotes the

line of y=0, subscript (i) is used to denote ‘initial location of tunnel,” and subscript (f)

means ‘final location of tunnel.” G(a) is a cumulative normal distribution function.
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B is a variable to express the density function of normal distribution function.

Therefore, by calculating the term a in Eq.(2.15), tables provide values of G () (see

Table 2.2).

o)

o

Ll

X-x

-

i

Table 2.2 Numerical integration of the normal probability curve

x-x;
Table of G
i

(x-x;}/i 0 1 2 3 4 5 6 7 8 9
0.0 500 504 508 512 516 520 524 536
0.1 540 544 548 562 .556 .560 .564 567 571 575
0.2 579 587 591 .595 .599 .603 606 610 614
23 618 622 626 629 .633 .637 .641 644 648 652
0.4 655 659 663 666 .670 674 877 681 684
0.5 691 695 698 702 .706 .709 N2 76 ng 722
0.6 726 729 732 736 739 .742 745 7 752 755
0.7 758 761 764 767 770 a1 776 779
0.8 791 794 797 .800 .802 .805 808 811 813
0.9 816 819 821 824 .826 .829 .831 834 836 839
1.0 841 846 .851 .853 .855 858 862
1.1 864 867 869 871 an .875 877 879 881 883
1.2 885 BB7 889 891 .893 .894 .896 898 1
1.3 905 907 910 M 913 915 918 918
74 919 921 922 924 .926 926 928 929 931 932
1.5 933 934 936 937 .938 .939 941 942 943 944
16 947 948 .949 .951 952 953 954 964
1.7 955 956 957 958 959 .960 .961 962 962 963
1.8 965 966 .967 .968 .969 969 970 971
19 97 972 973 973 974 974 975 976 976 977
2.0 977 978 978 979 979 .980 .980 981 981 982
21 982 983 983 .984 .984 .986 985 985
22 987 987 .987 .988 .988
23 989 990 990 990 .990 .991 991 991 991 992
24 992 992 992 992 .993 .993 993 993 993 994
2.5 994 994 .994 .995 .995 995 995 995
26 996 996 .996 .996 996 996
2.7 997 997 997 897 .997 997 997 997 997 997
2.8 7 998 998 998 .998 .998 998 998 998
29 996 998 998 .998 998 999 999 999
30 999 999 999 999 999 999 999 999 999

2.2.5 Research of O’Reilly and New (1982, 1988, 1991)

O’Reilly and New (1982) presented more generalized empirical forms of the
settlement profile based on the Peck’s research. They developed the general equations

30



for both cohesive and cohesionless soil using effective width (i) and soil constant (K)

on the basis of the three dimensional equation proposed by Attewell (1978).

(1) Basic Equations

The shape of the surface settlement may again be represented by an error function

curve of the form proposed by Peck and Schmidt (1969) (see Figure 2.11).
2.2
S= Sm exp(-x /2i ), (2.16)

where S is the vertical settlement of a point which is at a distance x from the vertical
plane containing the tunnel axis, S_,_ is the settlement of the point directly above the

tunnel, andi is a parameter which defines the width of the settlement trough.

Figure 2.11 Surface settlement by the error function curve (from Peck (1969))

(2) Estimation of Trough Width Parameter (i) and
Soil Constant (K)

O’Reilly and New (1982) assumed the radial flow of soil displacement (see Figure
2.12) in defining the trough width parameter (i). The adoption of radial flow means

31



that the width of the zone of deformed ground decreases linearly with depth below the
ground surface. Therefore, the trough width parameter is simply derived as Eq.
(2.17).

i=KZ, (2.17)
where i is a parameter which defines the width of the settlement trough, K can be

defined from the slope by plotting i against Z by using field data, and Z is the depth of

tunnel center.
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Figure 2.12 Soil displacement around model tunnel in clay (from Mair (1979))

Furthermore, O’Reilly and New (1982) proposed the relationship between
horizontal and vertical components of displacement. Similarly, Glossop’s (1977)
stochastic analysis of surface movement around tunnels gives results which are
identical to the equation below, as do Martos’ (1958) results for horizontal surface
displacements above tabular openings. The general equation can be expressed as

follows:

Yy .
Iiy-:) = ;S(y,z) ’ (2.18)
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where H(y, z), and S(y, z) are, respectively, the horizontal and vertical components at

a transverse distance( y ) and at a vertical distance( z ) from the tunnel axis.

Settlement=S

.2 Horizontal
Horizontal displacement=H ,, displacement
Horizontal Settiement

displacements

Settlements VS

Figure 2.13 Patterns of horizontal displacement (from Sagaseta (1989))

The width of the settlement trough is defined using the distance from the tunnel
center to the point of the inflection (y= i ). Multiple linear regression analyses were
performed on field data (21 cohesive soils, 16 cohesionless soils) to build the
relationship between the trough parameter and depth for both cohesive and
cohesionless soils. Figure 2.14 shows the trough width parameter plotted against
tunnel axis depth for both ground types. Finally, Eq. (2.19) defines the trough width
parameter for both soil types.

i =043Z+1.1 (m) for cohesive soil,

i =0.28Z-0.12 (m) for cohesionless sail, (2.19)

where i is the trough width parameter, and Z is the depth to the tunnel axis.
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Figure 2.14 Relation of trough width parameter to tunnel depth ( from O’Reilly
(1982))

In the case of two strata, Eq. (2.19) can be combined as follows:

i =043Z,+0.28Z,+ 1.1 (m) foratunnel in clay overlain by sand,

i =028Z +043Z, -0.12 (m) foratunnel in sand overlain by clay, (2.20)

where i is a parameter which defines the width of the settlement trough, Z_ is the depth

of the tunnel axis beneath the interface, and Z, is the thickness of the surface layer.
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Zb Surface layer

Za Second layer

Figure 2.15 Schematic of layered strata

Moreover, in the case of multilayered strata (N layers), trough width(i) is given as

iy = KZ+KZ+KZ+................ +KZ. (2.21)

Field data analysis indicates K varies from about 0.4 for stiff clays to about 0.7 for
soft and silty clays. For cohesionless materials above the water table, K ranges

from 0.2 t00.3.

(3) Generalized Equations
(i) Single Tunnel
The two dimensional equations for single tunnel are,

for vertical settlement, (see Figure 2.16)
S S 2 o2 ‘/S 2 / 2
00> = Smanyn SXP(=Y [28%) = mexp(—y 2(KZ)")

and for horizontal displacement,

Y Yoy =_Vsy__ -v? 2
Hy,,, = ZS(max.y,z) exp(-y / 2i%) [Cn) KZ exp(-y’[2(KZ) ), 2.22)
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where S, , and H , are the vertical and horizontal components of displacement at a

G.2 . 2

transverse distance y and a vertical distance z, i is a parameter which defines
settlement trough width, V, is the volume of the settlement trough per unit length of

tunnel, and K can be determined as the slope in the graph plotting i against Z.

1 di from

3i 25i JSIi i '}

[ T T o
Settiement = 0.044 S | H
’ max Settiement volume {per unit advance) 02 §

Maximum curvature "hogging’ Vv, \
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Figure 2.16 Settlement semi-profile with error function form (from O’Reilly (1988))
(if) Twin Tunnels

The two dimensional equations for twin tunnels are:

for vertical settlement (see Figure 2.17),

V.
Sono = W{exp(—y’ [2KZ)") + exp(-(y - ) [2(K2)") |
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and for horizontal settlement,

\ 4
H,,, = W[yexp(—yilz(m’) +(y-dyexp(~(y - d)* [2(KZ)")] -

where S, , and H, , are the vertical and horizontal components of displacement,
respectively, at a transverse distance y and a vertical distance z from the tunnel axis, i
is a parameter which defines settlement trough width, V, is the volume of the
settlement trough per unit length of tunnel , and K can be determined as the slope in

the graph plotting i against Z, and d is the axial separation of the tunnels.
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Figure 2.17 Surface settlement profile for twin tunnels (from O’Reilly (1988))

The vertical and horizontal displacements for any point with coordinates X, Y, Z
follow the assumption of a normal probability form for the transverse profile, while
the longitudinal profile (x direction) should take a cumulative probability form; this

has been reasonably validated by examining field study reports (Attewell and
Woodman, 1982).
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Figure 2.18 Coordinate system in three dimensions

The vertical and horizontal displacements for any points are given by

F{X X) F(X_Xf\]

So = J_ oakz S yzlz(KZ)z)[ \"kz /|
Yy
I{(y,z) = 7S(y,z), (224)

V 2
By = | 8P (X X' =y 2(K2) - expl=(X- X, - ) [uKZ)'|

where S , and H_  are the vertical and horizontal components of displacement,
respectively, at a transverse distance y and a vertical distance z from the tunnel axis, i
is a parameter which defines settlement trough width, V, is the volume of the
settlement trough per unit length of tunnel , K is an empirical constant which depends
on ground conditions, X, and X, are respectively the starting and final locations of the
tunnel face. The function F( ) represents a cumulative distribution function of a

standardized normal random variable, thatis,

L
2 dt

.
(a) :!: ,(2.7[)
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X-X,,
) VA

a= (2.25)

In this equation, t is a variable expressing the density function of the normal
distribution function. Therefore, by calculating the term a, tables (see table 2.2) yield

values of F (). In particular, F(0) gives 0.5, and F(1) provides 1.0.
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Chapter 3
Definition of the Ground Settlement

3.1 General

A satisfactory tunnel should be designed in such a way that its construction will
cause as little damage as possible to overlying or adjacent structures and services.
With soft ground tunneling, settlement is often a problem in built-up areas, where
significant structures can be put at risk. To minimize overall project costs and the risk
of damage or accidents, the engineer who designs a tunnel must be able to predict the
extent and amount of settlement that is likely to arise from tunneling in a variety of
conditions. Although various prediction methods ranging from simplified equations
to complex analytical formulae have been presented, the chosen method should be
simple enough to allow one to easily determine the next appropriate steps. Because of
this, there is a need for generalized empirical equations.

Given reliable forecasts of ground deformations, one would be in a position to
choose between a number of options that, depending on the particular location, might
include (1) relocation of the tunnel far away from sensitive structures or services, (2)
an alternative tunnel in better ground, (3) adoption of the appropriate method for
ground control on a more direct route, and (4) the underpinning of existing buildings
and the relocation of water and gas lines. Such considerations, in addition to the
growing emphasis on environmental problems, have led to a considerable amount of
research regarding settlements and ground deformations caused by tunneling in soft
ground.

In this chapter, the mechanism of soft ground tunneling and the evaluation of

empirically derived equations are discussed.



3.2 Definition of Soft Ground Tunneling

Due to the relatively low strength and high deformability of soils, tunneling
through soft ground is very difficult. These adverse mechanical characteristics have a
direct influence on the excavation method; the stability of the roof, the face, and walls
of the tunnel; the effect of the tunnel construction on its environment; and the design
of the tunnel lining. These problems must be investigated during the early design
stage.

Considering the geotechnical aspects in tunnels, excavation leads to the
redistribution of the pore pressures, which could be negative or positive depending on
the stress distribution around the tunnel opening. With low permeability cohesive
soils, the unconfined compression strength (q, = 2S;) is one of the adequate
measures of the shear strength of the soils(S,), as pore pressures will change slowly.
As long as the soil around the tunnels maintains its shear strength, the ground at the
face as well as the tunnel periphery can remain stable. The overload factor is a useful
index for assessing tunnel stability. It is the ratio of the overburden stress at the
tunnel crown to the inherent shear strength (S);

N % 3.1
- 5 ]

where N is the overload factor, o, is overburden stress (unit weight multiplied by

depth), and S;; is the undrained shear strength at the tunnel crown.
From many field data, Broms and Bennermark (1967) stated that values of N
below 6 indicate that the tunnel opening can remain stable.
For coarse cohesionless soils, the permeability of the soil increases and the pore
pressure tends to reduce to the atmospheric condition. The strength of these soils is

governed only by frictional properties, and with the removal of stress on the side of
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the tunnel opening, there can be relatively rapid reduction in ground strength and an
increase in deformation.
Wong and Kaiser (1987) showed different types of yield zone propagation and

stress redistribution for cohesive soils and cohesionless soils (see Figure 3.1).

Mode I = cohesionless soils

NT N7
Mode II = cohesive soils
S = Surface settlement
S = Crown settlement
MODE |
R = Radius of continuous yield zone (a)
G A/ o

MODE 1t
(b)

Figure 3.1 Schematic of subsurface settlement profiles
(from Wong and Kaiser (1987))

For a shallow tunnel in cohesionless soils, a localized yield zone starts to form at
the tunnel circumference, and the yield zone propagates towards the ground surface
from both sidewalls. The soil above the roof still does not yield and moves
downward as a rigid block. In contrast, for a shallow tunnel in cohesive soils, a
continuous yield zone surrounds the tunnel opening and no localized yield takes place.
The yield zone occurring around the opening expands gradually. As a result, the
magnitude of settlement in cohesionless soils is larger than that of cohesive soils, and
the settlement trough width for cohesionless soils tends to be smaller than that in

cohesive soils.
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3.3 Evaluation of the Equations for the Ground
Settiement

As described in Chapter 2, most of the empirical settlement profiles can be
represented by an error function curve presented by Peck (1969).

Eq. (3.2) shows the vertical and horizontal components of O’Reilly and New’s
settlement profile (1982). Both the vertical and horizontal displacement can be

expressed by employing the same parameters.

For vertical displacement,
Sy = exp(-y’ [2i* - L exp(- *[2(KZ)*)
0.2 = Smax,y, XPL=Y l)_J(ZT)Ier( y
and for horizontal displacement,

y 2 = Viy —y? 2
Heyzy = =7 Smany.0 XP(-Y /2% [ox)KZ? xp(-y'/2KZ) ), (3.2)

where S, , and H, , are the vertical and horizontal components of displacement at a
transverse distance y and a vertical distance z, i is a parameter which defines
settlement trough width, V, is the volume of the settlement trough per unit length of
tunnel, and K can be determined as the slope in the graph plotting i against Z (see
Figure 2.14).

When computing the maximum surface settlement, which often becomes the
significant parameter regarding structural damages, Eq. (3.3) is obtained by
substituting y = 0 in Eq.(3.2).

<

Yo = AT G
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where S, is the maximum settlement in the tunnel axis, 1 is a parameter which
defines the width of the settlement trough, and V, is the volume of the settlement

trough per unit length of tunnel.

In Eq.(3.3), the values of the trough width parameteri (= KZ), and the volume of
the settlement trough V,, are the two critical constants that define the maximum surface
settlement. Therefore, there is a need to provide the appropriate values for i and V,
so that the settlement profile can be uniquely defined.

O’Reilly and New (1991) clearly defined one of the primary constants, trough
width parameteri, in the form of a linear equation (see Eq.(3.7)). The other critical
constant Vg was expressed in the form of a percentage of the volume of excavation
based on the field data. For this reason, O’Reilly and New’s settlement profile is

adopted as a basic equation for developing a model to predict settlement.

3.3.1 Settlement Trough Width

The transverse distance from the tunnel center line to the point of inflection (y = i)
is used to describe the width of the settlement trough and should be related to both the
depth from the ground surface and, to a lesser extent, the diameter of the tunnel.
O’Reilly and New (1982) performed multiple linear regression analyses on field data.
In their analyses, they found no significant correlation between the trough width
parameter i, and the tunnel diameter D, although the expected strong correlation of i
and tunnel depth Z, was found. This finding is also indicated by Glossop (1988),
who carried out an analysis based on stochastic and numerical modeling techniques.

As explained in 2.2.5, a two-variable regression analysis was carried out. It
provided the following relationships:

1=0.43Z + 1.1 (m) for cohesive soil,



1=0.28Z - 0.12 (m) for cohesionless soil, (3.4
where i is the trough width parameter, and Z is the depth of the tunnel center.

Figure 2.14 shows the trough width parameter plotted against the tunnel axis depth
for both cohesive and cohesionless ground. Data for cohesionless soils are more
scattered and reflect the unpredictable consequences of tunneling in such ground.
The data suggests that a linear relationship between i and Z can appropriate for both
ground conditions.

Similarly, in the case of two strata, the equations for each soil in Eq. (3.4) can be

combined as follows;
i =043Z,+028Z, + 1.1 (m) for a tunnel in clay overlain by sand,
i =028Z,+043Z,-0.12 (m) fora tunnel in sand overlain by clay, (3.5)

where i is a parameter which defines the width of the settlement trough, Z_ is the depth

of the tunnel axis beneath the interface, and Z, is the thickness of the surface layer.

Zb Surface layer

-

Za Second layer
L- o @

Figure 3.2 Schematic of layered strata

Moreover, in the case of multilayered strata (N layers), trough width(i) is given as

iy = KIZI+KZZZ+K323+ ................ +ann- (3.6)
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where iy is the trough width parameter for multilayered strata, K, is the soil constant
in determining the trough width parameter of each layer, and Z is the thickness of

each layer.

The linear regression lines may, for most practical purposes, be simplified to the
form
i=KZ, 3.7
where 1 is a parameter which defines the settlement trough width, Z is the tunnel depth
to the tunnel center, and K is the soil constant which is determined from the slope of
the ploti as a function of Z.
O’Reilly and New (1982) suggested the value K for both cohesive and
cohesionless soils based on field data. Table 3.1 provides the value K in cohesive
soils for different ground conditions and for different ground support methods as

follows;

Table 3.1 Values K for cohesive soils (from O’Reilly and New(1982))

'Ground conditions Ground support method in Trough width parameter,
tunnels constant, K

'Stff fissured clay ~ Shield or none 0.4-0.5

Glacial deposits Shield in free air 0.5-0.6

Glacial deposits Shield in compressed air 0.5-0.6

Recent silty clay deposits Shield in free air 0.6-0.7
(C,=10- 40 KN/m?)

Recent silty clay deposits | Shield in compressed air 0.6 -0.7
(C,=10- 40 KN/m?)

Although it is difficult to provide a reliable K value for cohesionless soils because
of insufficient field data, O’Reilly and New (1982) indicate that, for cohesionless

materials above the water-table, K ranges between 0.2 and 0.3.




As an average value, K = 0.5 for cohesive and K = 0.25 for cohesionless soils are

adopted.

3.3.2 Volume of Lost Ground

As already discussed, both the ground conditions and the construction method
determine the ground losses induced by tunneling. Consequently, defining the volume
of the settlement trough at the surface in relation to ground conditions, as well as
construction method, is complex.

One effective method for determining the relationship is to use the field data
obtained from the various sites. The volume of the settlement trough at the surface
should be related to the tunnel size or the tunnel volume excavated. To normalize the
volume of lost ground with respect to tunnel size, the volume of the settiement trough
at the surface V,, is expressed as a percentage of the excavated tunnel volume V__.

Given the diameter of the tunnel, the excavated tunnel volume is calculated by a

simple mathematical expression (V__= xD/4).

exc

Table 3.2 shows the relation between the volume of the settlement trough at the
surface and the excavated tunnel volume for cohesive soils. Estimates of ground loss
in cohesionless soils are difficult to predict with certainty because poor tunneling
techniques can result in large and almost immediate ground settlements. Table 3.3,
compiled from the literature review regarding ground loss, provides the value of the

ratio of ground loss for cohesionless soils.
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Table 3.2 Ground loss for cohesive soils (from O’Reilly and New (1982))

™ Ground conditions Ground support method Ground loss "Remarks
in tunnels V.V, (%)
" Sulf fissured clay Shield or none 0.5-3.0 considerable data
available; loses
nomally 1-2 %
Glacial deposits Shield in free air 20-25
Glacial deposits Shield in compressed air 1.0-1.5 compressed air used
to control ground
movements
Recent silty clay Shield in free air 30.0 - 450 failure or near
deposits failure conditions
(C,=10-40
KN/m?)
Recent silty clay Shield in compressed air 5.0-20.0 some partial face
deposits value included
(C,=10-40
KN/m?)
Table 3.3 Ground loss for cohesionless soils
" Ground conditions ‘Ground loss "Remarks
ViV o (%)
~ Dense sand 0.5-1.0 Tn the case of dilating soils, 1% of the tunnel
volume excavated
Medium sand 1.0-2.5 1% to 2% for well-constructed tunnels in
cohesionless soils
Loose sand 3.0-50 loosely-compacted soil gives upper limit of
5%




3.3.3 Prediction of Ground Displacements

Considering the uncertainty affecting tunnel designs, computations for design
purposes should include probabilistic estimates of ground displacement. To provide a
useful starting point in any assessment, estimates of the best and worst cases should
be performed to bracket the extent and amount of ground deformation. It is also
important to realize that such a predictive model can only give a general indication of
the form and magnitude of the potential settlement. In practice, unexpected ground
conditions on site, construction difficulties, poor tunneling techniques, or a
combination of all three, could lead to significantly different ground displacements.

In general, settlement starts to appear before the passing of the tunnel face and the
maximum settlement takes place after the passing of the tunnel face. A preliminary
analysis is performed with a two-dimensional model, and although this may be
satisfactory for the prediction of conditions subsequent to tunnel construction, other
significant ground deformations of a three-dimensional character may occur during the
passing of the tunnel face. However, the settlement model given in this research
focuses on the maximum settlement in a transverse section, which occurs long after
the passing of the tunnel face, rather than the progress of settlement in a longitudinal
section with the tunnel advancing.

Considerable monitoring of ground and building settlement is now routinely
carried out in most tunneling projects in urban areas. Where the extent and
magnitude of the predicted settlement are important, consideration should be given to
the construction program so that alternative methods are determined as early as
possible. The framework given here makes it possible to review a tunnel project
taking the problematic aspects of ground settlement into consideration. Finally, this
framework should be employed to minimize the overall project cost and the risk of

damage.
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Chapter 4
Incorporation into the DAT

4.1 General

The model for ground settlement has been incorporated into the DAT (Decision Aids
for Tunneling) which were developed as “decision making tools” to address uncertain
conditions involved in tunnel construction. The existing DAT have features to evaluate
overall project cost, duration, and resources distribution as a function of specified
geologic conditions, tunnel dimensions, and construction methods.

The DAT are basically composed of two main program modules (GEOLOGY,
SIMSUPER) in addition to the user interface (NETWORK) (Halabe (1995)).
GEOLOGY produces probabilistic geologic/geotechnical profiles. The profiles, which
reflect the probabilities of geologic conditions occurring at a particular tunnel location, are
obtained by considering the uncertainty of given geologic data. SIMSUPER simulates the
construction process through the profiles. The construction process involves relating
geologic conditions (ground classes) to construction classes. Construction classes define
tunnel cross sections, initial and final support, as well as excavation methods which are
best suited for particular ground classes. Most importantly, construction is modeled by a
number of activities which, in turn, are described by equations relating ground dependent
or ground independent parameters to activity, duration, and cost. Parameters can be
determined probabilistically in the form of different types of distributions.

The settlement model is run as a part of SIMSUPER. In SIMSUPER, the settlement
model is established as a tunnel activity and the settlement equations are set up in a
subroutine in the tunnel activity files. The data on ground conditions and tunnel

configurations are assigned as variable files to the settlement subroutine. Both
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deterministic and probabilistic analyses can be implemented in the program by giving the

ground condition data of either a specific value or a distribution of values.

4.2 Creation of Subroutines

4.2.1 Settlement Equation

As described in Chapter 3, the empirical equations by O’Reilly and New (1982) are
used for creating the settlement model. These equations produce transverse
settlement/horizontal displacement profiles from parameters on tunnel configurations,
ground conditions, and construction quality. In these equations (see Eq.3.2), there are
three parameters; two of the three parameters are the volume of settlement trough (V)
and soil constant for trough width (K) which are affected by both ground conditions and
construction characteristics. The third parameter is the depth of the tunnel (Z) which is
part of the data on tunnel configuration. Since the volume of the settlement trough (V) is
defined by the ratio of the volume of settlement trough (V) to the excavated tunnel

volume (V__), tunnel diameter (D) is required to calculate the excavated tunnel volume.

These calculations of the volume are performed per unit length of tunnel. In order to
consider both cases of a single tunnel and twin tunnels, the distance between tunnels (d)
is also defined. Therefore, the required data to calculate the settlement model are as

follows:
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Table 4.1 Required data for the settlement equation

[~ Factor dependency Variables Description
Dependent of ground K Soil Constant to determine trough width (i = KZJ
conditions and (refer to Eq.(3.7))

construction quality | Vs/Vexc(%) |The ratio of the volume of the settlement trough

to the excavated tunnel volume

Independent of ground Z (m) Depth from surface to the tunnel center
conditions and
construction quality D (m) Diameter of the tunnel

d (m) The distance between two tunnels

4.2.2 Data Description for Settlement Subroutine

Since SIMSUPER simulates the construction process through the ground class, two
ground dependent parameters, V¢/V, . and K (as shown Table 4.1) must be categorized
by associating them with ground classes (conditions) and construction classes (qualities).
Table 3.1 lists the Values of K for cohesive soil based on field data (O’Reilly and New
(1982)). Table3.2 and Table 3.3 list the relations between the volume of the settlement
trough (V) at the surface and the excavated tunnel volume (V_, ) for both cohesive and
cohesionless soils.

On the basis of O’Reilly and New’s research, both K values and the ratioof V,/V__ are
associated with two major soil types (CLAY and SAND) and three construction qualities.
Here construction quality is roughly grouped into three classes: poor, average, and good.
A value of the ratio of V,/V_,_is associated with each construction quality. In addition,
each major soil type is subdivided into three subcategories. Hence, the K values and the
ratioof V /V___are defined by six soil types and three construction qualities, thatis, a total

of 18 conditions as shown in Table 4.2.
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Although some field data by O’Reilly and New indicate large values of V /V an

€xc ?

upper limit of 5% may be used for the purpose of estimation, recognizing that this will

usually be a very conservative figure (Attewell, 1978).
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4.3 Incorporation into the DAT
4.3.1 Description of the DAT

As described in 4.1, the DAT are composed of two major program modules
(GEOLOGY, SIMSUPER), and the user interface (NETWORK). In general, the user
performs the following procedures to run the programs:

1) The user creates all the necessary input data by using NETWORK 2) The program
GEOLOGY runs based on the file input through NETWORK 3) By using the output of
GEOLOGY, SIMSUPER runs construction and resource simulations.

GEOLOGY can perform either deterministic or probabilistic analyses depending on the
uncertainty of the given data by applying a Markov process approach, and it can create a
ground class profile as an output. Using the output file from GEOLOGY, SIMSUPER
can perform the construction process and resource distribution simulations.

In the computation of settlement, Table 4.2 is used instead of running GEOLOGY.
Therefore, the user dose not have to run GEOLOGY to create the ground class profiles
for SIMSUPER. With regard to data input, the user can select the user interface
(NETWORK) or input data directly into the files. NETWORK guides the user step by

step through the input process and facilitates the organization of the complex data.

4.3.2 Description of Settlement Model

The settlement model runs as a part of SIMSUPER. Figure 4.1 shows a schematic of
settlement computations. As shown in Figure 4.1, the controlling factors influencing
settlement are ground conditions, construction quality, and tunnel configuration. These
factors are associated with the parameters in the settlement equations. Both parameters,

the ratio of the settlement trough to the excavated tunnel volume (V¢/V,, ) and the soil
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constant for the trough width parameter (K), are related to ground conditions and
construction quality. Additional tunnel configuration parameters, which are tunnel depth
(Z), tunnel diameter (D), and the distance between two tunnels (d) are taken directly from
the tunnel geometry. After these parameters are determined, the calculation of settlement
is performed in the settlement subroutines. The computational results produce the
maximum surface settlement and horizontal displacement in a transverse section.
Moreover, by choosing each maximum value in a transverse section, the longitudinal

settlement profile can be obtained.
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Considering the uncertainty of ground conditions and construction procedures through
probabilistic analyses can be automatically implemented in SIMSUPER depending on the
input data: If the user defines one specified value as a variable, the computation is
performed as a deterministic analysis. On the other hand, if the user inputs three values
which correspond to the pessimistic, average, and optimistic values, the calculation is
performed probabilistically based on a triangular probability distribution function.

Figure 4.2 illustrates the data allocation for both deterministic and probabilistic
analyses. In general, the data regarding ground conditions, tunnel configuration, and
construction quality are considered by segment which is a unit of tunnel length. A
segment is defined by having unique information on the ground class and construction
classes. For each calculation, the simulator (SIMSUPER) selects the settlement activity
for each ground class and construction class. The computation is performed segment by
segment using corresponding input data (see Figure 4.2(a)). If the user provides a
distribution of data, the settlement simulation automatically enters into the probabilistic
analysis and then proceeds round by round in each segment being assigned a value from
the parameter distribution (see Figure 4.2(b)). The procedure is then repeated by

simulating the next segment.



1
1 2 3
G.C.1 G.C.2 G.C3
T.C.1 T.C.2 T.C.3
1 2 3

(a) Deterministic analysis

G.C.1 G.C.2 G.C.3

T.C.3

(b) Probabilistic Analysis

Figure 4.2 Concept of data allocation in the Settlement model
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From this, the settlement model derives the settlement/horizontal displacement
profiles in a transverse section as well as along the tunnel length.

Figure 4.3 shows a schematic flow chart of SIMSUPER. In SIMSUPER, the
settlement model is established as one of the tunnel activities and the settlement equations
are set up as a subroutine in the tunnel activity files (see Figure 4.3). Similarly, the
equations regarding cost, time, and resource are set up in the activity files. Furthermore,
these activity files are associated with the construction procedures and construction
methods.

Since SIMSUPER was originally created to simulate construction processes and
resource distribution, the user must provide information on the connections between all
tunnel activities. For the computation of settlement, however, the user does not have to
define the connections for all tunnel activities because the settlement activity is the only
tunnel activity referred to in the settlement model.

Figure 4.4 is an overview of the relationships among all the input files in
SIMSUPER. As shown in this figure, the required data files to perform SIMSUPER are
roughly composed of five parts: general, time, cost, resource, and tunnel data, since
SIMSUPER was originally made to perform time and cost simulations by considering
construction process and resource management. For the settlement simulation, although
data files regarding time, cost, and resource are assigned to operate SIMSUPER, these
data are ignored as dummy data and do not affect the computation results.

For detailed descriptions of the data files, the user should refer to the Programmer’s

Manual and User’s Manual (Vijaya Halabe(1995)).
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Figure 4.3 Schematic of SIMSUPER (from Halabe (1995))
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Figure 4.4 Relationship of input file in SIMSUPER (from Halabe (1995))
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Chapter 5

User’s Manual

5.1 General

This chapter describes all the information necessary to run the settlement program
in the DAT. The information given here includes how to install the programs, create
input data, start the programs, and obtain the computational results. The input data
can be handled through the special program, NETWORK, which is the interface
module facilitating access to SIMSUPER (Construction and Resource simulation

program).

5.2 Installing the Programs

To run the settlement model in SIMSUPER, the following related data files are
installed: SIMSUPER, GEOLOGY, and NETWORK. These procedures are also
described in detail in the User’s Manual (Halabe (1995)).

5.2.1 Installing the Data Files of SIMSUPER

The following commands are necessary to install the data files of SIMSUPER.
Step Prompt Commands Explanation

1. athena% add simsuper

Adds the locker simsuper to a workstation so that

all the files in the locker become accessible when the
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correct pathname of the file is given. The path of
locker then will be ‘/mit/simsuper/’.

2. athena% /mit/simsuper/SIM_COPY

1) Creates the directory ~/simsuper at the top level.
2) Creates three sub directories
~/simsuper/sim.dir.
~/simsuper/geology.dir.
~/simsuper/network.dir.
3) Copies data files necessary for the SIMSUPER
program from the locker into the subdirectory
~/simsuper/sim.dir
Afterinstalling the SIMSUPER data files as described above, the user should then
install NETWORK data files.

5.2.2 Installing the Data Files of NETWORK

The following commands are necessary to install the data files of NETWORK.
Step Prompt Commands Explanation
1. athena% /mit/simsuper/NETWORK_COPY

1) Copies data files necessary for the NETWORK

program from the locker into the subdirectory

~/simsuper/network.dir



5.2.3 Installing the Data Files of GEOLOGY

The following commands are necessary to install the data files of GEOLOGY.
Step Prompt Commands Explanation
1. athena% /mit/simsuper/GEO_COPY

1) Copies data files necessary for the GEOLOGY
program from the locker into the subdirectory
~/simsuper/geology.dir

These procedures create three directories under simsuper and copy data files

necessary to run the settlement model as a part of SIMSUPER.

5.3 Starting the Settiement Program

The following commands should be typed in a workstation at MIT to start the

settlement program.
athena% cd /mit/simsuper/sim.dir
(change directories to SIMSUPER)
athena% attach X11r5 (for allocating the window system)
athena% /mit/simsuper/sim.dir/SIMSUPER (starts the program)

These commands will start the settlement program in SIMSUPER. After the
program starts and reads the related files, the message below asks the user if the
graphic interface is necessary for output data.

Graphic mode (y/n) ?
If the user needs to obtain the computational results by using the graphic interface,

type y. The graphic window shown in Figure 5.1 will appear on the screen.
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Otherwise, the computational results will be automatically dumped into the assigned

output files.

Screen Parameters Simulation

I[Tine oy

600.0

570.0

Figure 5.1 Main window for graphic interface

5.4 Input Data Files

Since the simulator files hold information used to perform time and cost
simulations, the simulator includes the activities that comprise the construction
methods used to build the tunnels, the cost and the time needed to perform the
activities, and the geology of the tunnels. As shown in Figure 4.4, these input files
are composed of general input files, variable files, cost and time files, activity and

section files, tunnel defining files, and output files for SIMSUPER.
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Although SIMSUPER contains data files regarding time, cost, and resources, the
information is not needed for the settlement simulation. Therefore, the data files
regarding cost, time, and resource are defined as dummy data.

In the following, only the data files which the user must modify to run the
settlement model are explained. Since the rest of the data files are copied from the
original files when the programs are installed, the user does not have to revise these
data files. For detailed descriptions of the input data files, the user should refer to

both the Programmer’s Manual and User’s Manual (Halabe(1995)).

5.4.1 General Input File

The monitor.dat file is the main input file. It defines the names of input and output
data files and holds general information about the tunnels. These files in Figure 5.3
are required to operate SIMSUPER even though all of the files are not needed for the
settlement simulation. The structure of a monitor.dat file appears in Figure 5.2 and a

sample file appears in Figure 5.3.
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tunnel
system name

number of
simulations

number of
tunnels

time distance

level resources
file
monitor
tunnel
level info. file
statistics tunnel
level

location file
cost level

interface
delays file
seed
flag seed
file
number of

res. centersmp

zone location

file
connections
log record
. file
activities
descr. file bug
file
gr. vars. .
; cyclewise
output file
gr. indgp. segmentwuse
output file
equations
files

time progress
record file

simulation
output file

Figure 5.2 Structure of monitor.dat (from Halabe (1995))



Settlement Model Sample Program

OCROCORORKE

constr_tunnel.def
activities.def

ground

construction

equations.dat

resources.dat

multinfo.dat

. ./network.dir/tunlocation_new.dat
interface_delay.dat
../geology.dir/seed
../geology.dir/zonelengths.res
log_file

test.b

/tmp/siml.rep

/tmp/siml.stat

/tmp/settle

tun.out

Ne Ne Ne So Ne Ne Ns Mo e Ne Mg Ne Ne Se S5 No Ne Ne W Ne Ne we Se S wo o

Name of the simulation
#simulations

#tunnels

time-distance level

monitor level (1, 2, or 3)
statistics level (0 or 1)

cost level (0 or 1)

seed flag

number of resource centers
activity connections input file
activity description input file
ground dependent variable input files
ground independent variable files
equation input file

resources input file

tunnel description file

tunnel location file

interface delay file

seed file )

zone location data file

real time output file

bug output file

roundwise output file
segmentwise output file
settlement output file

tunnel information output file

Figure 5.3 A sample data of monitor.dat

Here, the level of output files shown in Figure 5.3 is described briefly.

(1) time-distance level; The number entered here specifies whether or not the time

distance output files will record output in a file named log_file. If the number is zero,

no time-distance output will be recorded. The user specifies the number (how many

tunnel-distance output wants to record) and the tunnel geometry number (which tunnel

he wants to record).

(2) monitor level; This specifies the frequency at which output is presented to the

‘time-output file.” If 1 is entered, output appears once per simulation. If 2 is entered,

output appears once per round. If 3 is entered, output appears once per activity.

(3) statistics level; The number entered here specifies whether or not the roundwise

and segmentwise output files will record output in a file named sim1.rep and sim1.stat
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respectively. If O is entered, output will not be recorded. If 1 is entered, output will
be recorded.
(4) Cost level; The number entered here specifies whether or not the cost output will

be recorded. The number can be either O or 1 as explained in the statistics level.

5.4.2 Variable Input Files

The variable files representing ground conditions and construction quality contain
the ground dependent and ground independent variables used in the settlement model.
These files are composed of groundX.var and constructionX.var. The “X” denotes
the tunnel geometry type. For example, when the user defines only one geometry, the
user must set up groundl.var and constructionl.var.

Both groundX.var file and constructionX.var files can be defined in terms of seven

types of tunnel geometry.

(1) The groundX.var files

The groundX.var files describe all ground dependent variables for each ground
class in a single geometry. The groundX.var file is organized into groups, each of
which contains all the ground dependent variables for one ground class. The structure

of a groundX.var is shown in Figure 5.4.
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.o ground class | construction
0 method

first # variables
variable
group

first
variable

second
variable
group

E second
K variable

last
variable
group

last
variable

Figure 5.4 groundX.var structure (from Halabe (1995))

The typical structures are shown in Figure 5.5. There are a few types of variable
input that determine whether deterministic or probabilistic analysis will be used. The
first type of variable input in Figure 5.5 has only one value. That input means the
computation is performed as a deterministic analysis by specifying a value. The
second type of variable input has two values which are maximum and minimum
values and the value for a particular cycle of the simulation is computed from the
uniform distribution. The third type of variable input has three values which are
pessimistic, average, and optimistic values and the value for a particular cycle of the
simulation is computed from the triangular distribution. The groundX.var file is

shown for the settlement model in Figure 5.6.
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~§
variable e
..‘
variable variable
_______ name value
e,
variable
variable maximum minimum
.L_name value value
"‘-.
variable variable pessimistic average optimistic
name value value value
.
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variable E a . . 1 5.
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;; If one specifies a single value, then the variable will be of the first type. If one specifies three values, then

the variable will be of the third type. If one specifies six values, then the variable will be of the fourth type.

1 1

2

k_constant
ratio_volume
1 2

2

k_constant
ratio_volume
1 3

2

k_constant
ratio_volume
1 4

2

k_constant
ratio_volume
1 5

2

k_constant
ratio_volume

Figure 5.5 Typical variable structures (from Halabe (1995))

0.40

0.50

0.50 0.55 O.
1.00 1.75 2.
0.60 0.70
3.00 5.00
0.20 0.25 O.
0.50 0.75 1.
0.20

1.00

;Ground Class/Construction Class
;# variables

;variables

;variables

;Ground C./Construction C.

Ground C./Construction C.

C./Construction

Ground

Ground C./Construction C.

Ne e Ne N4 we Ne Mo Mo N5 Se Ne Se N S we

Figure 5.6 groundX.var file

72



(2) The constructionX.var files
The constructionX.var files hold the variables and values for ground independent
variables. Like the groundX.var files, there is a constructionX.var file for each

geometry. The structure of a constructionX.var file appears in Figure 5.7.

first
variable

second
variable

last

variable

Figure 5.7 The constructionX.var file structure (from Halabe (1995))
The user defines variable name and variable value. Similar to the groundX.var
file, the user can determine deterministic and probabilistic analyses by using a few

types of variable input (see Figure 5.5). A constructionX.var file shows in Figure

5.8.

diameter 10 ;variables
height 50 ;
width 100 ;
dist 50 ;
round_length 5 ;

Figure 5.8 constructionX.var file



5.4.3 Equations Files

1)
2)
3)
4)
5)

Five types of equations exist as follows:

Partial equations.

Length of the cycle equations.

Transportation and time equations.

Resource amount equations for labor, material and equipment.

Resource cost equations for labor, material, equipment and idle cost including

block and fixed costs.

Each of the above equations is defined for a simulation cycle. As shown in Figure

5.9, these equations have two parts. The left hand side of an equation is the value or

activity name to be computed and the right hand side is the expression and variables to

be used for the computation. The equations are defined in terms of the variables listed

in groundX.var and constructionX.var. In the equations dat. files, the user may also

define a function (subroutine) instead of an equation.

activity # equation

first
activity

second
activity

last
activity

Figure 5.9 equations dat. File structure (from Halabe (1995))
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Since SIMSUPER refers to all equatiohs related to activities in running the
simulation, the user should define the settlement activity in one of the files regarding
cost and time. The rest of the files should be defined as zero so that these data files
have no connection with the settlement calculation. Figure 5.10 shows how the
settlement activity is assigned to time_equations dat. Figure 5.11 shows a sample data

to be defined for the rest of data files.

1 Settlement = ;activity number, name

settlement (dist,k_constant,ratio_volume, ;function (arguments)
height,diameter,width) ;

0; ;end

Figure 5.10 Time_equations.dat for settlement model

1 Settlement = 0; ;activity number, name, equation
0; ;end

Figure 5.11 A sample data for the rest of equation data.file

5.4.4 Activities and Section Files

(1) The base.act file

The base.act file defines and assigns numbers to each activity in the tunnel. The

structure and a sample file appear in Figure 5.12 and Figure 5.13.
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o’ activity activity
4 number name

first S
activity ’

second
activity

last
activity

Figure 5.12 base act. File Structure (from Halabe (1995))

1 Probe

2 Drill

3 Load

4 Blast

S Muck

6 Mapping

7 Geotechnical_observation
12 Steel_sets

8 RockBolts

9 Shotcrete

10 Refill_invert

11 Delays

Figure 5.13 A sample data of base act. file (from Halabe 1995))
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(2) The activities.def file

The activities.def file defines tunnel segment activities for the program. This file

contains information concerning all activities that appear in the construction method

used for tunnels. The structure of this file appears in Figure 5.14.

‘._. "‘_.
. t o - -
R .
'n; 1) A>J' g - 'g =} — o A>J'
t grou - Esl 5 ¢ | | 29 £ %
g p first @ - i) © [ o Qo o
activity Ll g' > LU gul A
gol © [ vol oo N
A0 ®© ] - ol o o
. Seel activity
.
. second Sejname |
‘ activity
H
.

layer # -> Certain activities can
have two layers or three layers. For
example, the activity ‘Shotcrete I’
last

will have a layer # as 1, whereas the
activity ’'Shotcrete II' will have a
layer # of 2.
activity

Figure 5.14 activities.def file structure (from Halabe (1995))
The equation number refers to the equation in the base.act file for each activity.
The detailed section column indicates the specific subdivisions of the tunnel face for

which the activity applies. Figure 5.15 shows a sample activities.def file for the

settlementfile. For the settlement activity, the only data the user must specify is the
equation number used by the settlementactivity.

1 1 1 0o 1 o0
Settlement N
0

0

;refer to file structure (in Fig.5.14)
;activity name
;end

Figure 5.15 A sample data of activities.def file



5.4.5 Tunnel Input Files

The two tunnel input files, constr_tunnel.def and multiinfo.dat, define the tunnels
for the simulation. The constr_tunnel.def file defines information of segments and the
tunnel activities used for each segment. The multiinfo.dat file defines tunnel types and
the relationship between tunnels. The following section describes constr_tunnel.def

file.

(1) The constr_tunnel.def file

This file contains information on segments for tunnels and the connections between
activities. The connections determine the order of the activities; one specifies which
activities precede and follow others. However, in the settlement model, since there is
only one activity, the settlement activity, the user does not have to create the data

regarding connections. The general structure of the file appears in Figure 5.16.



1 group for
first
construction
. 1 and m method
P groups
first
tunnel

m group for
first

n groups

construction

method
second

tunnel

.

1 group for

second
: 4

construction
t group method

last
tunnel

m group for
second

construction
method

:

1 group for
last

[}
[}
.
[}
[}
[}
[}
[}
[}
[}
K
H 8 group
[}
[
[}
[}
[}
[y
[}
[}
.
[}
[}
[}
[}
[}
[

construction
method
* t group appears only for

the first tunnel in the
tunnel system.

1
I
.
.
.
L]
.
.
.
.
i)
1]
.
.
.
'
s
v
.
.
'
.
L]
.
.
.
'
.
.
L]
.
.
.
.
.
.
.
L)
1]
L]
1]
L)
]
.
1]
.
.
.
.
.
L]
L]
.
L)
'} m group for
t] last
] construction
4 method

Figure 5.16 constr_tunnel.def file Structure (from Halabe (1995))
The data for each tunnel can be divided into several groups. The £ group lists the
activities in a construction method. The m group defines the connection for the
activitiesin the £ groups. The s group defines the segment of a tunnel. The e flag

indicates the end of a tunnel’s data. The following four subsections detail each of the
above groups.

(i) The ¢ group

The ¢ group is a list of activities that are used in one construction method. The
structure of the group appears in Figure 5.17.
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construction
method #

1 group

activity in
method

activity in
method

Figure 5.17 £ group structure (from Halabe (1995))

(i) The m group

.
-®
-
-
-®
-

activity in
method

0

The m group defines the connection between activities for a construction method.

The structure for m group appears in Figure 5.18.

*
o construction
o method #
m group preceding following
activity activity
preceding following
activity activity
“ $ i
‘\
.
‘l
. preceding following
K activity activity
.
‘l
l. 0
.
)

Figure 5.18 m group structure (from Halabe (1995))

Figure 5.20 shows sample dataof ¢ and m groups for the settlement model.

(iif) The s group

The s group contains information that defines the segments of the tunnel. It is

structured according to Figure S. 19.
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Figure 5.19 s group structure (from Halabe (1995))

The third column, the construction method, indicates the number of the
construction method as it is defined in the tunlocation.dat file and the groundX.var
files. The relative location column indicates length measured from the beginning of

the tunnel. The internal construction method is the number of the construction activity

as defined in the £ and m groups of this file. A sample s group appears in Figure
5.20.
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o

o

CORPRRERRRPRERRE

1 ;1 group construction method

;activity number
;end
1 ;m group construction method
;end (no preceding and following activity)
;S group
1 3 1 0 20 O ;refer to s group structure (in Fig. 5.19)
1 2 1 0 400 O ;
1 4 1 O 900 O H
1 5 1 0 1200 O ;
1 3 1 0 1400 O H
1 1 1 0 1800 o ;
1 6 1 0 2200 O ;
1 5 1 0 2500 0O ;
1 2 1 0 3000 O ;
;end
;end

;e flag for end

Figure 5.20 A sample data of ¢, m, and s group

(iv) The e group
The e flag appears after the s group and marks the end of the data for a tunnel. The

1 group of the next tunnel should follow the e flag.

5.4.6 GEOLOGY output files

(1) Tunlocation.dat file

Tunlocation.dat file is the link between the geology output and the SIMSUPER
input file. SIMSUPER relates ground classes to the relative location in the tunnel.
Each tunnel is defined in tunlocation.dat file as a portion of one area. This file also
contains data that assign a construction method to each ground class. The construction
method number corresponds to the method number defined in the groundX.var file.

The structure of the file appears in Figure 5.21. A sample file appears in Figure 5.22.
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Internal Mehod#
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Figure 5.21 tunlocation.dat file structure (from Halabe (1995))

End Point HBDist
X y z X Yy z
0 0 O 10000 0 O
Method#

0
Method Type

[=NeoleNoNal

Figure 5.22 A sample data of tunlocation.dat file (from Halabe (1995))

GeomType

1

method type




5.5 Outputs

5.5.1 File Outputs

The outputs of the settlement simulation contain the results of maximum settlement
and horizontal displacement in the longitudinal section as well as the settlement and
horizontal displacement in the transverse section. There are two output files:
Settle_seg.out and Settle.X_X.out. Settle_seg.out file shows the summary results of
the segments such as Maximum, Minimum, and Average settlement/horizontal

describes  the

displacement. transverse

Settle. X_X.out file profiles of

settlement/horizontal displacement in a segment.

(1) Settle_seg.out file
The Settle_seg.out file is the segmentwise output file. The file provides the

computation results of each segment of each tunnel geometry. For each segment of

each tunnel, the file includes the following information (see Figure 5.23). Figure
8 gu
5.24 shows parts of Settle_seg.out file.
o7 “| Tide
_.-=-=""| First
First Tunnel | Segment | End of
segment
tunnel Second 4 No. No. Segment
Second | Settlement Max. | Horizontal Disp
segment \
tunnel ' -lacement Max.
r . l \ | SettlementMin. | Horizontal Disp
\ \
\ Last '\' -lacement Min.
Third Y \ | Settlement Ave. | Horizontal Disp
\| Segment '
tunnel \ -lacement Ave.

Figure 5.23 Settle_seg.out file structure




COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 1 End Location (m)= 20.00
seg_settlement_vmax (m)= 0.060 seg_settlement_hmax (m)= 0.020
seg_settlement_vmin (m)= 0.047 seg_settlement_hmin (m)= 0.015
seg_settlement_vave (m)= 0.052 seg_settlement_have (m)= 0.017
COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 2 End Location (m)= 400.00
seg_settlement_vmax (m)= 0.035 seg_settlement_hmax (m)= 0.010
seg_settlement_vmin (m)= 0.015 seg_settlement_hmin (m)= 0.004
seg_settlement_vave (m)= 0.026 seg_settlement_have (m)= 0.007
COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 3 End Location (m)= 900.00
seg_settlement_vmax (m)= 0.028 seg_settlement_hmax (m)= 0.004
seg_settlement_vmin (m)= 0.012 seg_settlement_hmin (m)= 0.002
seg_settlement_vave (m)= 0.019 seg_settlement_have (m)= 0.003
COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 4 End Location (m)= 1200.00
seg_settlement_vmax (m)= 0.065 seg_settlement_hmax (m)= 0.009
seg_settlement_vmin (m)= 0.031 seg_settlement_hmin (m)= 0.005
seg_settlement_vave (m)= 0.046 seg_settlement_have (m)= 0.007
COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 5 End Location (m)= 1400.00
seg_settlement_vmax (m)= 0.066 seg_settlement_hmax (m)= 0.022
seg_settlement_vmin (m)= 0.045 seg_settlement_hmin (m)= 0.015
seg_settlement_vave (m)= 0.057 seg_settlement_have (m)= 0.018
COMPUTATIONAL RESULTS for SEGMENTS

Tunnel No.= 1 Segment No= 6 End Location (m)= 1800.00
seg_settlement_vmax (m)= 0.046 seg_settlement_hmax (m)= 0.012
seg_settlement_vmin (m)= 0.012 seg_settlement_hmin (m)= 0.003
seg_settlement_vave (m)= 0.027 seg_settlement_have (m)= 0.007

Figure 5.24 parts of Settle_seg.out

(2) Settie.X_X.out

The Settle.X_X.out file is the roundwise output file in a segment. The file
provides the transverse profiles of settlement/horizontal displacement. The first X in
this file name denotes the tunnel geometry number and the second X denotes the
segment number. The structure of the file appears in Figure 5.25. A sample result is

shown in Figure 5.26.



Tunnel X

Segment X

. Title
,-~ | First round
-’ Input data
Second round
| Input echo
Il
\
1
1
N A
“\ 'y \ Input echo
A Last round \
A \ | output data
> ;
]
v | Transverse |Resultof [Result of
]
]
' location Settlement {Horizontal
]
\ Disp.
\
1
1
\
1
]
\
' | Transverse | Result of |Result of
\
\| location Settlement |Horizontal
\
1
Disp.

Figure 5.25 Settle.X_X.out file structure
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CALCULATION of TRANSVERSE PROFILE ;Transverse Profile (Probabilistic)

INPUT_DATA ; Input data echo
k_constant = 0.69 ;S0il constant K
Ratio_volume (%) = 4.33 ;Ratio of Vs/Vexc
Depth(m) = 50.00 ;Tunnel depth
Diameter (m) = 10.00 ;Tunnel diameter
Distance(m) = 50.00 ;Distance between tunnels (Twin)
Range for Calculation(m) = 100.0 ; Transverse range for calculation
Location(m) = 5.00 ;End location of 1 round
OUTPUT ;Output
Trans Loc. (m) Settlement (m) H.Displacement (m) ;Title
-100.00 0.00057 -0.00115 ;results
-99.00 0.00062 -0.00124 ;
-98.00 0.00068 -0.00133 ;
-97.00 0.00074 -0.00143 ;
-96.00 0.00080 -0.00154 ;
-95.00 0.00087 -0.00165 ;
-94.00 0.00094 -0.00177 :
-93.00 0.00102 -0.00190 ;

Figure 5.26 Parts of Settle.X_X.out file

5.5.2 Graphic Outputs

In order to obtain the computational results in the form of plots, the user must use
the graphic interface as described in 5.3. These plots are displayed in color on the
screen of the workstation. The following is the procedure to obtain the graphic
output.

After the main window in Figure 5.1 appears, the user clicks Screen from the top
menu bar in the main window to define the parameters of the plots. The Screen pane
shows up (see Figure 5.27). In that pane, the user selects Parameter and the sub-
pane appears for defining either the dynamic or static option (see Figure 5.27).
Dynamic option means items contained in the pane (Figure 5.27) can be freely
modified at any time during the simulation. To start the settlement calculation, the

user clicks Dynamic option.



Figure 5.27 Contents of screen pane
Soon after clicking Dynamic, the next pane to define the scale of the plots appears

as follows (see Figure 5.28):

%ﬁ Screen Parameters Simulation

Time (days)

| Min Tine

| Max Tine  Settlement

500 |
T

Transverse Length

Figure 5.28 pane for defining scale of plot



In this pane, there are three buttons which the user must move to change the range
with each calculation; Max Distance, Settlement, and Transverse length. Max
Distance denotes the maximum length of the tunnel profile to be displayed in the plot.
Settlement represents the expected maximum settlement or horizontal displacement on
the plot. Transverse length expresses the length in the transverse profile plot. These
values can be modified by either dragging the mouse cursor or pressing the up/down
arrow key on the keyboard. After establishing the scale of the plot, the OK button is
clicked to complete the procedure.

For the next procedure, the user returns to the top menu bar in the main window
and clicks the Parameters button (see Figure 5.29). This pane shows the items
which the user expects to obtain from the computation. In this pane, Settle
(settlement) is selected to obtain the result of the settlement model. Soon after
selecting the Settle, both the longitudinal and transverse profile plots appear next to
the main window (see Figure 5.30).

Parameters

Figure 5.29 Contents of Parameter pane



Displacenen?or Settlement {(cm)

-100

Figure 530 window of the settlement plot
The computation will start by clicking Start in Simulation from the top menu
bar in the main window.

Simulation

Figure 5.31 Contents of Simulation pane
Finally, the computational results will appear on the settlement plot. Once the
calculation starts, the user should expand the longitudinal profile plot by dragging the

corner of the pane to display the entire plot (see Figure 5.32).



'Dlwlm or Settlement (cm) i

190
W Rowd V.Disy. ¥ Rowd H.Disy.
1m0

e

10

150

V" Max. Seg. V. Disp. ¥ Max. Seg. H.Disp.

10 ¥ Min. Seg. V.Disy. ¥ Min. Seg. H. Disp.

W Ave.Seg.V.Disy. ¥ Ave.Seg.H.Disy.

Figure 532 A sample plot of a longitudinal profilc

Figure 5.32 shows maximum surface settlement and horizontal displacement
versus tunnel length. Additionally, the maximum, average, and minimum values in a
segment are indicated by horizontal lines. If the user chooses to erase an item of
these results, the toggle button in front of each item should be clicked.

Furthermore, when considering a transverse profile at some locations in the tunnel,
the user is required to click on the corresponding location on the longitudinal profile
screen. The transverse profile corresponding to the point is automatically selected and
appears on the transverse profile plot (see Figure 5.33). This transverse plot is
capable of displaying both settlement and horizontal displacement at up to five
locations. If the user chooses to erase one of these results, the toggle button in front

of particular result should be clicked.
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I Horlantel (0.0 m)

[7 Verticel (9.00m)

Figure 5.33 A sample plot of a transverse profile




Chapter 6

Case Studies

6.1 General

6.1.1 General

The intent of this chapter is to discuss the possibility to realistically simulate

ground settlement by means of the settlement model.

In the process of tunnel

planning, preliminary settlement computations are performed to predict the potential

extent and amount of ground displacement. Such predicted settlement profiles can

then be used to determine the next appropriate procedures in a tunnel project.

As case studies, the calculations for two geometries, a single tunnel and twin

tunnels with the same diameter, are chosen.

Before starting an estimation of

settlement, the user should select either the deterministic or the probabilistic analysis

depending on the uncertainty of the given geologic and construction information.

In this chapter, the following cases shown in Table 6.1 are considered.

Table 6.1 Case studies

Case | Tunnel type Analysis The distance | Tunnel Range of
type betweentwo | diameter tunnel
tunnels (m) (m) depth
(m)
1 Single tunnel | Deterministc - 5 10 - 30 |
2 Single tunnel | Probabilistic _ 5 10 - 30
3 Twin tunnels | Probabilistic 50 10 50
4~ | Twin tunnels | Probabilistic 20 10 50 |




6.1.2 Procedures for Computation

In general, the user performs the following procedures to compute the amount of
settlement. 1) Before starting the calculation, the information regarding
geologic/geographic conditions, tunnel layout, and construction procedures is
collected. 2) After considering geologic conditions and tunnel configurations, ground
conditions and tunnel configurations are set up along a planned tunnel as shown in
Figure 6.1. 3) The user defines the input data by reflecting the uncertainty of ground
conditions. The input data on ground conditions are given by referring to Table 4.2

(Values for K and the ratio of V,/V__) while the data for the tunnel configurations are

€XcC

taken directly from the geometry. Provided that the construction quality of the
planned tunnel is still uncertain, the user should employ the probabilistic analysis

using a distribution of data.

6.2 Single Tunnel

6.2.1 Case Study | (Deterministic Analysis)
(1) Layout of Tunnel

As Case study I, the following tunnel layout is considered.



Depth
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1} =S5m
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110 ! 20 1 30 1 1 1 1 1 1
1 ] ] 1 1 1 ] 1 ] 1 ] 1
\‘\I\!\I I ' I ! /
] ! ] 1 1 ] ] ] 1]
1V L 1 i 1 1 1 1 1
' : v ] 1 ] - ] ] 1 : '
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] ] ] v ! ! ! 1 ] ]
: : 1 1 [] [] 1 : :
] ] ] ] ] ] ] 1 ]
] ] ] 1 i ] ] 1 1
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i StiffiClay i N.C.Clay , Loose, Dende Sand 'Medium| Loose ;
! : : ! Sand ! ! ISand ! Sand !
] ] ] ] ] 1 1 ] ]
1 1 ] 1 t 1 ] ]

Figure 6.1 Layout of planned tunnel (Case StudyI) (unit: m)

(2) Input Data

Table 6.2 summarizes the ground conditions, tunnel configuration, and
construction quality of the planned tunnel based on Figure 6.1. Table 6.3 shows the
input data for the settlement model based on Table 6.2. Since the input for K and the
ratio of Vy/V___ are specified as single values, SIMSUPER automatically performs the

deterministic analysis.
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(3) Computational Results

Figure 6.2 shows the longitudinal profile of maximum surface settlement and
horizontal displacement along the planned tunnel. In this figure, the horizontal axis
indicates the tunnel length and the vertical axis displays the amount of settlement and
horizontal displacement. Since the input data are assigned by segment, the
computational results are also provided by segment. In this analysis, as the analysis is
deterministic, the maximum, minimum, and average segment values are all the same.

Figure 6.3 also represents the transverse profiles of surface settlement and
horizontal displacement in all segments. In this figure, the horizontal axis indicates
the transverse distance and the vertical axis displays the amount of settlement and
horizontal displacement. This figure can display information on up to five locations.
Each transverse profile is distinguished by the clicked location, which is shown in the

parentheses after each toggle button, as well as by the colored lines.
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6.2.2 Case Study Il (Probabilistic Analysis)
(1) Layout of Tunnel

As Case study II, the same tunnel layout as in Case study I is considered.

Depth
4300 o 300 4 300 4100, 200 4 200 ¢ 300, 300 ,
1 1 1 1 1 ] 1
Surface ; i | i i :
A 777N T : ZZZANNN
1 10 + 20 30 | 1 |
1 1 i [} 1 | [} [}
1 I I 1 ! 1
\ | : ! :
I 1 ' '
\'-\' I Planned tunnel |
' M il i
| i
L] ]
} |
! i
1 ]

SHiff!CI
Y Sand iSand ! Sand

]
]
I
|
Loose, Dense Sand \Medium, Loose
]
i
]

Figure 6.4 Layout of planned tunnel (Case Study II) (unit: m)

(2) Input Data

In Case II, the ground conditions and tunnel configurations are the same as in
Casel. Assuming that the construction procedures (quality) are uncertain, the ratio
of V(/V_. can not be specified with certainty. Hence, both parameters, K and
V/V,,. » are provided as a range of data. Table 6.4 summarizes the ground conditions

and tunnel configuration in the planned tunnel based on Figure 6.4. Table 6.5

describes the input data for the settlement model based on Table 6.4. Since K and

100



Vi/V,,. are defined by a range of data, SIMSUPER automatically performs the
probabilistic analysis. In order to input the triangular distribution for the probabilistic
analysis, the maximum, mean, and minimum values of K and Vy/V_, are used (see

Table 6.5).
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(3) Computational Results

Figure 6.5 shows the longitudinal profile of maximum surface settlement and
horizontal displacement along the planned tunnel. In this figure, the horizontal axis
indicates the tunnel length and the vertical axis displays the amount of settlement and
horizontal displacement. Since the input data is in form of a range of data, the
computational results fluctuate per the round length based on the given random values.
The maximum, average, and minimum values in each segment are indicated by the
horizontal lines. Compared with Case Study I, the probabilistic analysis produces a
wide range of potential settlement, especially at shallow depth.

Figure 6.6 shows the transverse profiles of surface settlement and horizontal
displacement in all segments. In this figure, the horizontal axis indicates the
transverse distance and the vertical axis displays the amount of settlement and
horizontal displacement. Each transverse profile is distinguished by the clicked
location which is shown in the parentheses after each toggle button as well as by the

colored lines.
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6.3 Twin tunnel

6.3.1 Case Study Ill (Probabilistic analysis)
(1) Layout of Tunnel

As case study 111, the following tunnel layout is considered.

Depth
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Figure 6.7 Layout of planned tunnel (Case Study III) (unit: m)

(2) Input Data

Assuming that the construction procedures (quality) are uncertain, the ratio of
V/V ... can not be specified with certainty. Hence, both parameters, K and V{/V___
are provided as a range of data. Table 6.6 summarizes the ground condition and
tunnel configuration in the planned tunnel based on Figure 6.7. Table 6.7 shows the

input data for the settlement model based on Table 6.6. Since the input data, K and
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V¢/V,,. are defined by a range of data, SIMSUPER automatically performs the
probabilistic analysis. In order to input the triangular distribution for the probabilistic
analysis, the maximum, mean, and minimum values of K and V/V,  are used (see

Table 6.7).
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(3) Computation Resuits

Figure 6.8 shows the longitudinal profile of maximum surface settlement and
horizontal displacement along the planned tunnel. In this figure, the horizontal axis
indicates the tunnel length and the vertical axis displays the amount of settlement and
horizontal displacement. Since the input data is in form of a range of data, the
computational results fluctuate per round length based on the given random values.
The maximum, average, and minimum values in each segment are indicated by the
horizontal lines.

Figure 6.9 also shows the transverse profiles of surface settlement and horizontal
displacement in all segments. In this figure, the horizontal axis indicates the
transverse distance and the vertical axis displays the amount of settlement and
horizontal displacement. Each transverse profile is distinguished by the clicked
location which is shown in the parentheses after each toggle button as well as by the
colored lines. Since this computation is performed for twin tunnels, the transverse

profiles display two depressions.
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6.3.2 Case Study IV (Probabilistic Analysis)

(1) Layout of Tunnel

As Case study IV, the following tunnel layout is considered.

Dep
. 300 300 300 0Q 200 , 300 300 300 300
ML Lo iy o IS LU SR Lo
Surface ; : ! : : : ; !
. 77\ 5 i i R\ '\
' i i P i i l i '
! 1 1 ! 1 1 1 ! b
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i 1 1 | | 1 1
' 1 1 ro 1 1 1 i '
I : a M : D : X !
! 1 1 ! 1 1 1 1 !
— - — 4 — - — - —% Planned tyme] - — - — - = - — (- — -
' i ' ! i i ' ] '
5 i E o E b
iSilty Clay! N.C.Clay Dense gled Silty ! Stff ! Loose ! Medium} N.C. |
' ' | Sand San Clay: Clay | Sand :Sand | Clay |
1

Figure 6.10 Layout of planned tunnel (Case Study IV) (unit: m)
(2) Input Data

The input data in Case study IV are the same as in Case study III except for the
distance between two tunnels. In order to consider the effect of distance, the distance
between two tunnels is input as 20m instead of 50m as in Case III. The rest of the

data is the same as in Case III. Assuming that the construction procedures (quality )
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are uncertain, the ratio of V¢/V . can not be specified with certainty. Hence, both

parameters, K and V/V,_, are provided as a range of data. Table 6.8 summarizes the

ground condition and tunnel configuration in the planned tunnel based on Figure 6. 10.
Table 6.9 shows the input data for the settlement model based on Table 6.8. Since K
and Vi/V__ are defined by a range of data, SIMSUPER automatically performs the
probabilistic analysis. In order to input the triangular distribution for the probabilistic

analysis, the maximum, mean, and minimum values of K and Vy/V__ are used (see

Table 6.9).
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(3) Computational Resuits

Figure 6.10 shows the longitudinal profile of maximum surface settlement and
horizontal displacement along the planned tunnel. In this figure, the horizontal axis
indicates the tunnel length and the vertical axis displays the amount of settlement and
horizontal displacement.  Since the input data is in form of a range of data, the
computational results fluctuate per the round length based on the given random values.
The maximum, average, and minimum values in each segment are indicated by the
horizontal lines.

Figure 6.11 also shows the transverse profiles of surface settlement and horizontal
displacement in all segments. In this figure, the horizontal axis indicates the
transverse distance and the vertical axis displays the amount of settlement and
horizontal displacement. Each transverse profile is distinguished by the clicked
location which is shown in the parentheses after each toggle button as well as by the
colored lines. Compared with Case study III, the transverse profiles look similar to
those of single tunnel and the amount of maximum settlement tends to be larger than

that of Case III because two tunnels are constructed to the close distance.
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Chapter 7
Conclusions and Recommendations

7.1 Conclusions

In order to evaluate the influence of ground movements in soft ground tunneling, a
settlement model was incorporated in the DAT (Decision Aids for Tunneling). After
reviewing predictive methods for obtaining settlement profiles, the empirical equations
by O’Reilly and New (1982) were used as the settlement model.

The computer program described in this thesis has the following principal features:
(1) When a tunnel is planned at a certain location, the program can be employed as a
predictive method to evaluate potential settlement along the planned tunnel. Once the
user defines the basic input data, the program can be easily used to perform parametric
studies.

(2) If the given information regarding ground conditions and tunnel configurations is
uncertain, the user can input a range of data and the program can perform a
probabilistic analysis. As a result, the user can obtain possible ranges of settlement
and horizontal displacements. These results will provide the necessary information to
determine the next appropriate steps in tunnel design and construction.

(3) The user can observe the computational results through the graphic output which
provides the longitudinal profiles along a planned tunnel. Furthermore, by clicking a
specified point on the longitudinal profile, the plotter automatically gives a transverse
settlement/horizontal displacement profile. Examining the transverse profile is an
effective way to evaluate the influence of settlement on an existing structure when a

tunnel is constructed.
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7.2 Recommendations for Future Development

Future revisions of the settlement program will make it practically more applicable.
Currently, this program is capable of evaluating only the ground conditions for a
single homogeneous layer. In general, ground is composed of multilayered strata,
and also at the early design stage, various types of tunnel geometries need to be
considered. Therefore, there is a necessity to develop a program which can evaluate
the multilayered ground strata and various types of tunnel geometries. Right now, the
settlement equations are defined by two parameters, the trough width parameter and
the volume of settlement trough related to the ground conditions and tunnel
configuration. Hence, the next developments should concentrate on associating the

parameters with multilayered ground conditions and different tunnel geometries.
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Appendix |

Program sources of the settiement model

(1) Settle.h
(2) Settle.c
(3) Action_list.h
(4) Action_list.c
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