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Abstract

The development of fault-tolerant plans in uncertain environments is the primary concern of this thesis.
Toward this goal, the thesis investigates the general planning problems in the context of graph mod-
els and suggests the use of genetic algorithms for their solution. The method of genetic algorithms is
compared to other classical search and optimization methods for a well-known deterministic path plan-
ning problem (TSP) and is found to exhibit reasonable performance. Applications of this method to
stochastic planning problems indicates that the method is still successful when the fitness of individual
solutions is sampled rather than evaluated exactly. Finally, the thesis introduces the concept of robust
plans that can be modified or reoptimized with minimum cost in the case of contingencies. The robust
planning examples are given in the context of path planning problems and the solutions are found with
the applications of genetic algorithms. While genetic algorithms are satisfactory for those problems that
are NP-hard, they are not directly applicable to those problems in which the evaluation of the fitness
values takes time exponential in problem size. These complex problems are solved more efficiently by
incorporating in the genetic algorithms problem-independent heuristics such as fitness sampling. The
results indicate that the further scrutiny of the problems having dynamic optimization criteria may
prove beneficial.
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Prologue

"The vast majority of the research in the fields of machine learning, artificial intelligence, self-improving
systems, self-organizing systems, and induction is concentrated on approaches that are correct, consis-
tent, justifiable, certain (i.e. deterministic), orderly, parsimonious, and decisive (i.e., have a well defined
termination).

These seven principles of correctness, consistency, justifiability, certainty, orderliness, parsimony, and
decisiveness have played such valuable roles in the successful solution of so many problems in science,
mathematics, and engineering that they are virtually integral to our training and thinking.

It is hard to imagine that these seven guiding principles should not be used in solving every problem.
Since computer science is founded on logic, it is especially difficult for practitioners of computer science
to imagine that these seven guiding principles should not be used in solving every problem. As a result,
it is easy to overlook the possibility that there may be an entirely different set of guiding principles
that are appropriate for a problem such as getting computers to solve problems without being explicitly
programmed."

J R Koza, Genetic Programming, MIT Press, 1992
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Chapter 1

Introduction

1.1 Problem Statement

Plans are sequences of actions that are coordinated in order to achieve prespecified objectives. In

regard to the complexity of their structures, they may range from a plain permutation of the activities

that must be completed to a detailed specification of what activities will be processed by whom at

what time using which resources. Planning process is directed at the determination of those plans that

achieve the objectives with the minimum amount of resources and the maximum likelihood of success.

Difficulties in planning arise mainly from the inadequacy of the computational methods in addressing

the real world problems. Such difficulties can be better appreciated within the context of an example.

Consider the planning of a refueling outage of a power plant. While it is desired to perform as many

maintenance tasks as possible during the refueling outage, the plant must be brought back to normal

productive operation as soon as possible for economical purposes. These conflicting goals render it nec-

essary to develop plans and schedules that would make the most efficient use of the resources (such as

tools, manpower and time) while remaining within the established safety margins. The outage planners

therefore must determine the best course of actions regarding at least a few thousand interdependent

activities to be performed under various financial, safety, time, personnel, hardware, physical and tech-

nical constraints. In addition to facing such a challenging optimization problem, the planners must also

consider that the plan is to be implemented in a working environment that is a dynamic and stochastic

one, as opposed to a static one. For instance, it is always possible to diagnose new problems during

maintenance that require immediate attention. As complex as it is, the outage management practice has

been generally restricted to manual preparation of the outage schedules. For example, a state-of-the-art

computer scheduling package, Finest Hour, has been deemed as inadequate [118] for use in outage plan-

ning. In general, the benefits of the conventional computerized techniques have been limited because of
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their limited modelling capability.

Another major concern of planning is the efficiency of the employed methodology. The most inter-

esting planning problems have proven to be computationally demanding. Finding an optimum solution

for these problems requires an inordinate amount of computing, necessitating a sacrifice from seeking

perfection. The concern for efficiency dictates that a near-optimal solution must be found with reason-

able computing resources. Any planning methodology, in order to be practical, must address this issue

of efficiency.

This thesis investigates the development of efficient plan generation both in determin-

istic and nondeterministic settings in the context of search in graph models. The objective

of the thesis is to provide computational planning methods by addressing such factors as

efficiency, uncertainty management and flexibility of a plan to tailor to possible contingen-

cies. Its primary concern is the development of fault-tolerant plans to be implemented in

uncertain environments; these plans anticipate failures and are devised to minimize their

adverse impacts on accomplishment of the objectives. Further, the thesis aims to produce

a methodology for generation of plans that strike a balance between the probability of

achieving the goals and the resources expended.

1.2 Motivations

1.2.1 Motivations for Nondeterministic Planning

In many planning problems, variables under consideration are usually subject to uncertainty. Yet,

plans are generally designed under the assumptions that i) the environment is static, ii) there is perfect

information about the world, and iii) the effects of the various actions in the world are fully predictable.

Nevertheless, the real world contains uncertainties and a dynamic, ever-changing environment that

often violates these assumptions. The following quotation by French [49] emphasizes the importance

of the consideration of uncertainty in scheduling: "It may be argued that all practical (scheduling)

problems are both dynamic and stochastic if for no other reason than that all quantities are subject to

some uncertainty. In fact in many problems the randomness is quite obvious. For instance, it may

be impossible to predict exactly when jobs will be available for processing, e.g., aircraft arriving at an

airport space; it may be impossible to predict processing times exactly, e.g. during routine maintenance

it will not be known which parts have to be replaced until they have been examined and that examination

is one of the operations of the maintenance process; it may be impossible to predict the availability of

machines, for some may have significant breakdown rates; and so on."

Addressing a nondeterministic problem with a deterministic model may cause problems that cannot
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be ignored. Early methods of mitigating these potential problems have been based on sensitivity analysis.

For example, a study summoned after the energy crisis of 1974 [104] urges businesses for incorporating

uncertainty into their business plans by using a crude form of sensitivity analysis. Such an analysis

follows a scheme described concisely in [148]: "Projections of likely paths of exogenous variables are made

and then the plan is formulated to fulfill some objectives given the assumed structure of the underlying

system and the projected paths of the exogenous variables. The plan is solved for a few alternative

scenarios and for a few combinations of high, medium, low forecasts of the most important exogenous

variables. The plan is then based on the medium variant and the information on how the results differ

under the alternative variants is used to educate the intuition to cope with different scenarios". Later

years have seen an increasing reliance on the use of simulation models that have also been increasingly

more sophisticated.

Yet, such simulations did not fully address the problem of planning under uncertainty from the

beginning. Given a structure or a plan, they could yield information about its performance; but find-

ing a good solution structure remained a computationally difficult problem which was often treated

independently from the simulation stage. As approximate solution techniques for computationally-hard

deterministic problems have been developed and put into common use, it became increasingly clear that

there was a need for systematically incorporating uncertainty in the construction of a plan.

1.2.2 Motivations for Flexible and Robust Plans

The need for developing efficient plans in a dynamic environment is an acute one that can be seen in

almost every aspect of the human life. Given a probabilistic and an incomplete model of the world that

is always subject to change, one wishes to obtain plans that guarantee the best possible performance.

Indeed, it can also be argued that the capability of developing plans under uncertainty is an important

attribute of intelligent behavior. It is difficult to see how intelligent behavior can be manifestated, unless

one is able to develop plans that can work under limited perturbations and deviations.

Plans, even those that are optimum for the conditions stated in the model, may fail expectations.

Plans are vulnerable to failure because the circumstances during the execution phase oftentimes diverge

from the pre-determined conditions. Divergence between reality and the model may lead to unantic-

ipated problems. For example, a project may be prolonged excessively or there may arise a need for

extra resources such as money or manpower, which might not be easily available. Even if these required

extra resources were available, their allocation in the plan would probably be inefficient from a global

point of view and hence might inflate the project costs. What is worse than a waste of resources, such

divergences might even make the achievement of the plan goals impossible because of the externally

imposed constraints. Ideally, a plan should anticipate such divergences and minimize their impact by

adapting to them in an efficient manner.
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Common complaints on conventional planning software indicate that a plan possibly undergoes

modifications which are often hard to accommodate with given deterministic models. A planner notes

that: "We fail miserably to integrate the 'unplanned' events into the existing schedule. All work activities

tend to slip with the critical path work [134]". For example, a 1981 study [62] observes that: "A

frequent comment heard in many scheduling shops is that there is no scheduling problem but rather a

rescheduling problem." Even when these modifications are performed, the results are often too wasteful

of resources and seriously undermine the optimality of the original plan. The following quote from a

World Bank report [148] explains why deterministic plans have not been found valuable by practitioners:

"It is known a priori that the exogenous variables and the behavioral representation of the economy will

deviate from their assumed values by some random magnitudes. But this information is not taken

into account systematically in the initial preparation of the plan. Therefore, during implementation a

plan is usually hastily adjusted to contingencies or even completely scrapped. (The plan has served its

political function and attention of policymakers has shifted from it).... The absence of good contingency

planning - namely, a planning that allows for subsequent adaptation to random events - is a major

reason why formal planning is perceived by the most policymakers and heads of the planning offices to be

an essentially irrelevant exercise, useful mostly for window dressing and political mobilization. Under

current planning practice, it is as if a flight engineer were taught how to fly an airplane only under ideal

wind and visibility conditions and given no training in how to adjust to turbulence."

The need for developing plans that are flexible enough to succeed in uncertain environments is by

no means unique to specific areas. Planning under nondeterministic conditions is a subject of study

for project, business, economy and finance planners. Almost all real world applications ranging from

daily human activities to sophisticated industrial activities are performed with incomplete, inexact

information of the world. Therefore, the development of planning methods that address the problem of

producing optimum or at least near-optimal solutions under a dynamic environment may prove useful

in many diverse areas.

1.3 An Example of a Robust Plan

Contingency planning concerns with plans that allow for subsequent adaptation to random events

that might arise during the execution of a plan. We call those plans that minimize the adverse impacts

of such dynamic, random events on plan goals as robust plans. This capability to accommodate con-

tingencies is usually provided by built-in options in a plan, such as the capability of backtracking or

choosing an alternative route. This is best clarified with an example:

Consider Figure 1-1 that shows two similar paths from a given start node s to a given terminal node

t both through two distinct nodes. Each edge in this example has an associated cost and probability

value. For simplicity, we assume that the probabilities of the initial and final edges are equal to unity
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Figure 1-1: Two different paths from s to t

but the probabilities for the middle edges are smaller than unity for both of these paths. We also assume

that a failure along the middle edges forces us to return to the starting point.

The first path a has a cost of Ca = cl + c2 + c 3 and a probability of Ra = P2 leading to an expected

cost Ea(c) = (cI + c2 + c3 )p2 . Note that this conventional definition of expected cost does not take the

possible subsequent modifications into consideration; it is only a static measure. Similar equations can

be written for the second path b: Eb(c) = (c4 + c5 + c6)p5. Suppose the cost and the probabilities for

both the middle edges is the same, i.e.: 2 = c5 and P2 = p5 = p; but the following holds for the other

edges:

cl >c4

cl + c3 < 4 + c6

Given these data, conventional methods suggest that we should choose the first path a over the second

path b as it has a smaller cost.

This result may change drastically when the dynamics of the plan execution is included in the

evaluation. Let us assume that upon failure along travel across the middle edge, one returns to the

starting node but, because of a commitment constraint, one has to traverse only the same path. Clearly,

if there is no factor that limits the number of repeated attempts, the overall probability R of reaching

to terminal node t, for both of these paths, reaches unity as

R = p+(1-p)R = R = 1
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Nevertheless, there is generally be an overall cost limit that limits the number of such attempts. Let

us denote the number of repeated attempts with ka and kb for these paths a and b. For a given cost

limit Cmax, this number ka for the first path a can be calculated from the following budget equation:

Cmax - kacl - ( 2 + c3) =0 (1.1)

as
ka = Cmax C2 - (1.2)

Cl

Given this limit, the overall probability Ra of reaching to the terminal node t is equal to the sum of

the probabilities for each attempt:

Ra p = p (+(1-p) + (1 _ p)2 +* + (1 _ p)k, - l ) (1.3)

It follows that

ka -1

Ra = pE(1- pri

1 - (1 -p)ka

- P l-(l-p)
1 - (1 _p) k' (1.4)

and the expected cost, now being dynamical, is equal to the sum of probability weighted costs of all

distinct realizations.

k

E.(c) = ZE Pr(i)C(i)
i=O

= pCa + p(1 p)(Ca + I)p(1 -p) 2(Ca + 2) + + p( p)ka-l (C + (ka - 1)cl)
ka-1 ka-1

= Z p(1 p)iCa + E ip(1l-p)icl
i=O i=O

ka -1

= CaRa + ciP Z i(l -p)i
i=O

= CaRa + cil- (1 -ka(1p)ka-I + (ka 1)(1 p)k) (1.5)
P

Same values for the second path b are obtained in a similar manner:

The number of attempts kb is:

kb = max c5 c6 (1.6)
C4
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The overall probability Rb is:

Rb = 1- (1- P5)kb = 1- (1 - p)kb (1.7)

and the dynamic expected cost is:

kb-I1

Eb (c) = CbRb + c4p E i(1 -p)i (1.8)
i=O

It is apparent that the second path has a lower cost for failure and therefore can be preferable over

the first path depending on the probability p of the middle edge. For a comparison, we can fix the overall

success probability to a certain value and then compare the required budget and/or the expected cost

for either of these paths. The results of this computation are shown in Figure 1-2 for the assumption

that an overall success probability of 95% is required. With this value, the required number of attempts

for a given probabilistic path can be computed from the above equation 1.4. Figure 1-2 shows the

expected cost and the required cost limit versus the probability p for both path a and path b for the

assumed values c1 = 100, c2 = 10, c 3 = 90, 4 = 50, c 5 = 10, and c6 = 290. As can be seen from the

figure, the second path b, which has 75% larger cost than the other path, has both a lower overall cost

limit and a lower expected cost for small values of p. Within the range 0.4 < p < 0.5, the path b has

a lower cost limit but slightly higher expected cost than the first path a. Only at higher probabilities,

the path a dominates the path b with respect to both measures.

The above example shows that the result of optimization depends on what criteria have been chosen

in the beginning. More importantly, it shows that taking dynamic evolution and adaptability of a plan

into account can produce results that may contradict those found with conventional methods.

1.4 Organization of the Thesis

We start in Chapter 2 with a review of the planning methods from different perspectives, especially

within the context of artificial intelligence studies. We also present the mathematical formulation of

certain planning and scheduling problems. Chapter 2 also gives the reasons why we selected the graph

search paradigm for handling general planning problems.

In Chapter 3, we examine the graph search problems in more detail. We review the complexity

theory as it pertains to the planning problems in graph models. We discuss both the exact and the

approximate methods for solving computationally hard problems encountered in graph models. Among

these search methods, we analyze the genetic algorithm in detail as we suggest it as a general heuristic

method for solving planning problems both in deterministic and nondeterministic settings. We develop

a model of genetic algorithms that allows us to compare them with the Monte-Carlo method.
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In Chapter 4, we analyze the performance of genetic algorithms on a basic deterministic path

planning problem, namely the traveling salesman problem. We observe the performance of genetic

algorithms on certain benchmark problems and later compare it to the performance of different search

methods.

In Chapter 5, we focus on stochastic planning problems. Stochastic problems involve models in

which data are represented by probability distributions. After the examination of the complexity results

and a review of the literature on these problems, we apply the genetic algorithms on a simple stochastic

path planning problem and observe their performance.

In Chapter 6 we review the literature on different areas that take the dynamics of a plan into

consideration. After summarizing the related concepts, we introduce the concept of robust plans. We

suggest different optimization criteria that can be used for measuring robustness and present a depth-

first algorithm that can be used for this purpose.

Chapter 7 examines the development of robust plans in the context of path planning problems. We

define certain problems, examine their complexity and apply the genetic algorithms. Later, we suggest

various methods to cut down the computational effort required to solve them.

Finally, Chapter 8 summarizes the results, reviews the problems encountered, and describe avenues

for future research.
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Chapter 2

Planning from Different
Perspectives

The purpose of this chapter is to present a review of the Artificial Intelligence (AI) based approaches

to planning. While planning techniques have generally been classified within the fields Operations

Research (OR) or Project Planning, a convergence can be observed between these fields and artificial

intelligence based studies. Planning in all these areas involve a discrete computation for determining the

best coordination of tasks in order to achieve some pre-specified objectives. In all these areas, increasing

the efficiency of solutions to computationally hard problems is a main concern. A review of different

paradigms of AI may bring benefits for efficient planning by indicating what problems could be solved

and what approaches are likely to be most fruitful.

This chapter starts with the examination of the goals of artificial intelligence and then reviews the

developments in different AI approaches with regard to planning (Section 1). These approaches are

logical formalism (Section 2), knowledge-based systems (Section 3), distributed computation

(Section 4) and search and optimization (Section 5). Among these areas, search and optimization

is examined in more detail, for our models will be developed on this area. We also present a review

of the extension of these approaches into nondeterministic models. Then, in Section 6, we summarize

the other AI-based approaches. The lessons drawn from these different approaches are summarized in

Section 7. Thus, this chapter presents the context for the selection and methodology used in the course

of this work.
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2.1 Planning in Artificial Intelligence

Artificial Intelligence is an interdisciplinary area that draws from computer science, mathematics,

logic, cognitive science and engineering. AI can be viewed as research for the realization of both of the

following goals:

1. The emulation of human capabilities that require intelligence in computers,

2. The extension of human problem solving capability by enriching our collection of problem solving

techniques.

AI cannot be defined more strictly because we cannot define intelligence. Minsky [98] notes that

defining intelligence is like defining "unexplored regions of Africa". As soon as they are explored, they do

not anymore fit into the given definition. Intelligence, similarly, consists of not-well-understood problem-

solving-techniques. As soon as we know how to solve a problem, it requires no more intelligence to us

(Although, a person without this knowledge would probably not think so). How this knowledge is

used in human problem solving constitutes the main concern of AI, because the basis of AI lies in the

following premise (often called physical-symbol-system hypothesis): Thinking is no more than a set of

computational procedures that process symbols.

The challenge of AI is therefore to convert obscure human problem-solving techniques to neat, well-

understood, systemized algorithms. Planning is one of the most important human capabilities that is

responsible for most of intelligence-requiring actions. Thus, a significant part of AI work has been on

constructing automated computer planners. The automated planning part of AI, whose first aim is

to add a planning capability to robots, constitutes the first branch of AI work that can help devising

more efficient ways of planning. Another possibility for employing artificial intelligence, and indeed

so far the only widely benefited AI spin-off, arises from a competing view. The knowledge-based

approach assumes that every problem requires specific knowledge and intelligence is no more than

learning and using the problem-specific knowledge. This approach has resulted in expert systems that

digest the domain-knowledge of an expert in the area and make it available to others. The distributed-

computation paradigm is a relatively new and promising branch of AI and has already achieved some

success in areas where logical formalism failed. The most productive results of AI studies stem from

the development of efficient search and optimization techniques for computationally hard problems that

arise so often in the field of planning and scheduling. In fact, a competing view of AI is that all difficult

problems that require intelligence are indeed hard computational procedures and they can only be solved

by efficient search. The need for search arises most often in the context of games such as chess and

othello, but it is also encountered in natural language understanding, pattern recognition (image, speech

recognition etc.) and expert systems.
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2.2 Automated Planning

In early days of AI, it was felt that there can be a single, generic reasoning mechanism for solving

problems in diverse fields. This belief combined with a drive for emulating the common-sense planning

has given birth to the automated planning field of AI. The researchers in automated planning rationalized

their approach with the following hypothesis: Planning under deterministic conditions can be considered

as a problem solving technique that involves determining a course of actions that takes a system from

an initial state to a desired (or a goal) state. Then computer planners may generate plans with methods

similar to those used for solving puzzles, i.e., they only need to find a path between a given pair of

initial and final states. In this way, a group of researchers have strived to develop planning systems to

capture the essence of this problem solving ability independent of the problem domain [2].

AI was mostly dominated by logical formalism approach in its initial stages. The main approach to

automated planning was to develop plans from given causality relations by using logical inference rules.

For example, in 1955, A. Newell and H. Simon, two pioneers of AI, observed that humans plan mostly by

backward chaining. For achieving a goal, we try to achieve first its subgoals and later we try to achieve

the subgoals of subgoals and so on. This observation has resulted in a planner with a fancy name (GPS)

General Problem Solver. It was later to be discovered that this so-called "means-ends analysis" was

limited and could easily fall into loops. However, the techniques dealing with such problems were not

late to be forthcoming. The lessons from the GPS were:

1) The world state could be described by a set of logical propositions,

2) The actions are propositions that add and delete some of these propositions,

3) A plan is a transformation from initial state to goal state as a result of application of a series of

actions,

4) The causality in plan could be captured by the use of logical inference rules.

2.2.1 Structure of Automated Planners

A domain-independent planner can be seen as a black-box that generates a plan which achieves the

given goals when supplied with an initial state description, a goal description, and a list of operators

available in the domain. Internally, the planner must have means to represent partial plans and inter-

mediate states. Thus, a domain-independent planner specifies in advance 1) the world representation

formalism, 2) operator representation formalisms, and 3) an internal representation of partial plans

[72]. Any representational formalism serves two functions: The formalism must be sufficiently rich to

describe the types of changes that can go on in a domain of interest. The formalism must also supply

the information needed for the planning algorithm to be efficient.
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World Representation

Classical AI planners use a set of ground terms to represent the state of the world. Every state is a

set of logical propositions about the world. The closed world assumption is used: the propositions that

are true are specifically stated; what is not listed is considered false.

Operator Representation

It would be impossible to state all the facts that are true after an operator is applied. For example,

it is true but quite trivial to state that after this page is read, it still is a black-and-white page! The

need for finding a concise and efficient way to summarize the changes to the state of the world after an

operator is executed has led to the development of the frame formalism. In automated planning, the

frame formalism was introduced by STRIPS planner. STRIPS uses a set of preconditions and a set of

add and a set of delete lists for application of each operator. For example, an operator MOVE may

have the following specifications:

MOVE(ObjectA, FromLocationX, ToLocationY):

Preconditions: HOLD(ObjectA), CLEAR(LocationY)

Add-List: AT(ObjectA, LocationY)

Delete-List: AT(ObjectA, LocationX)

Plan Representation

A STRIPS planner tries to achieve a goal not found in the current state by finding an operator whose

add list contains the goal and then recursively achieving the preconditions of that operator. When

achieving a conjunction of goals, STRIPS sequentially considers each goal. In this way, a STRIPS

planner needs to keep track of the steps executed, the current state of the world, and the goals yet

unachieved.

This simple internal representation of plans does not account for possible interactions between goal

achievements. For example, if we may want to achieve two goals, and the actions for the first goal

can make it impossible to achieve the first goal. The linear planning technique of STRIPS does not

allow interleaving of actions directed at achieving different goals. Therefore, nonlinear planning

technique has been developed for solving the conjunctive goal achievement. Note that in most cases,

the goal state can be reached through different paths. When the order of the actions is not strictly

critical to the solution, planners should produce only partially-ordered (as needed) plans instead of a

completely ordered list of actions. Such planners are called nonlinear planners and are generally more

efficient and useful than linear planners because of their ability to limit the search space by considering
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the possible interactions among the steps of a plan from the very beginning.

Another modern approach to planning involves the hierarchical organization of the problem. The

goals are decomposed into subgoals and these subgoals are grouped depending on the abstraction level.

The top level consists of the most abstractive and general group of tasks. Each successive layer includes

more detailed characterization of tasks. With this approach, it becomes possible to provide for increas-

ingly detailed plan production. The recent examples of nonlinear hierarchical planners are TWEAK,

NONLIN and DEVISER.

2.2.2 The Limitations of Automated Planners

Although many domain-independent planning systems have been developed, their power and utility

turns out to be limited because of the serious limitations of their formalisms. First, such planners start

with a static, closed world model: what is listed in the world model is true, what is not listed is false.

Second, they assume that a single reasoning method would be adequate for deriving plans and choose

the operator representation planning according to this assumption. For example, most planners based

on GPS use a means-ends analysis or difference-reduction scheme [72]. The following is a criticism of

GPS by Lauribre: [89]

"First, the problems that GPS has dealt with are not a very representative set; there is something

of a family resemblance among them all and none are really difficult. If GPS can solve them, it is to

some extent because it 'knows' that it can solve such problems and therefore 'knows' that it will be able

to reduce the search space to a very small number of elements.

Second, it seems that the method of differences is not appropriate when a global view of the task is

necessary for finding a solution. The method takes a short-range view, assuming a certain continuity

in the path to the solution, that no wide detour is needed and that the problem can be broken down

into a sequence of elementary steps, all of which are effectively equal in importance. But there is a

large class of problems for which this is far from the case, even among the formal problems and logical

brain-teasers similar to those put in GPS.

Third and last, it is not at all easy to state a problem in way that can be put to GPS. In fact,

the statement prejudges the solution: in every case the system has to be given an appropriate set

of differences, the connection table and other information. Further, considerable intellectual effort is

required in describing a situation in terms of a set of operators."

For applications in the real world, the automated planners face the following difficulties:

i) The facts often cannot be represented as logical predicates; they are fuzzy and uncertain.

ii) The world is far too complex to represent with simple data structures. A complex world model

cannot be typed in either; the planner has to have a learning capability.
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Even though these difficulties can be overcome or simply ignored, the following problems regarding

the efficiency of logical formalism in defining the intelligent behavior still remain to be addressed:

iii) The closed-world assumption brings significant limitations.

iv) Using a single reasoning method can never be good enough for solving diverse problems; a combi-

nation of different forms of thinking are necessary.

Indeed, the all types of logical reasoning run across the notorious frame problem. The frame

problem arises from the paradox on how to determine if a piece of knowledge is relevant or irrelevant to

the problem at hand, without going through a problem solving phase that would make use of this piece

of knowledge. It is said that logic does not tell us what to do; rather it tells us what not to do! The

further limitations of logic used by automated planners can be specified as follows [103]:

1. Decidability: For some problems, the truth value of a goal -whether it is true or false- is not

decidable, i.e., it does not follow from the axioms.

2. Intractability: It is sometimes too inefficient to use more expressive logic models having

powerful inference rules, even though the problem could be decidable.

3. Monotonicity: Time is not involved in the standard logic, so any fact, once proven is valid

forever.

4. Consistency: If one proves accidentally, both P and not(P), one can prove anything in logic.

Hence, no contradiction can be allowed in logic models.

5. Uncertainty: There is not a consensus on how to handle uncertainty efficiently by using logic

models.

2.2.3 The Lessons from Automated Planning

Even though these problems involve the core issues of AI, rigorous solutions have not been found

yet. Past research in automated planning has kept the models simple in order to get around of such

problems; their domains are limited and their formalisms are probably not yet sophisticated enough for

applications in real world. Furthermore, the use of more powerful and expressive logic models seems to

require a substantial computability tradeoff.

We should, however, be appreciative of the limited success of automated planning through logical

formalism. Automated planning systems were able to generate plans in limited domains by using the

built-in causality in a model. Moreover, nonlinear planners can produce plans with multi-branches that

are very similar to PERT graphs. In fact, one of the main researchers in automated-planning, Austin

Tate, who developed NONLIN, realized this and applied nonlinear planning techniques to produce PERT

type plans for some industrial operations [133].

An unintended but provably useful product of automated reasoning has come from the new methods

of programming. These methods that emerged from AI research have been designed from the start to

29



be more clear, easier to understand and more efficient than the classical programming techniques. The

most important of these is logic-programming. Another, object-oriented programming, make it

easier to handle complex models.

Logic programming aims to hide the complex control aspects of a problem solving method. In ide-

alized case, a program will consist of just the data-base and the logical formulas. The control will be

handled by a theorem-proving module. This approach results in programs that are more transparent

and easy to modify. For example, the following PROLOG program finds the critical path in a project

for house-building. (obtained by modifying an example given by Lee [90]):

THE DATABASE:

activity(start, event1, foundation, 5).

activity(eventl, event2, walls, 6).

activity(eventl, event3, plumbing, 4).

activity(event2, event3, ceiling, 5).

activity(event2, event3, electrical, 3).

activity(event3, end, painting, 2).

THE FORMULA:

critical-path(X,X, [] ,0).

critical-path(X, Z, Total-Time, Activity-List) :-

setof((T,Y,[A-L]), (T1,T2),-

(activity(X,Y,A,T1), critical-path(Y,Z,L,T2), T is T1+T2), SubStates),

maxof(SubStates,(Total-Time,_,Activity-List)).

Logic programming approach has also been useful in making it easier to handle simulation models

in complex environments [50]. Object-oriented programming, too, has proven benefits, especially for

simulation purposes. Fox [45] gives an example in his paper about improving the scheduling simulation.

Nevertheless, these programming methods are not exempt from the fundamental problems surround-

ing the automated planning techniques. The control mechanisms behind these methods have to address

the fundamental issues such as computational complexity, decidability and model capacity. It is prob-

ably safe to say the difficulties arising with regard to these fundamental issues are the reasons that lie

behind that that the automated reasoning and planning methods have not generally led to practical

uses. Yet, the emergence of such fundamental problems and the spin-off of new programming techniques

must be considered as quite useful products of automated planning.
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2.2.4 Extension to Nondeterministic Models

The logical formalism approach encounters problems even in a deterministic world model. Extending

the classical Boolean logic to include reasoning with a probabilistic world model turns out to be much

more problematic. In fact, there is not yet a universally accepted theory of how to handle uncertainty in

logic. One recently dominating approach is fuzzy logic. Fuzzy logic is based on a more comprehensive

set theory than normal logic; in this theory, membership measure is a real value between 0 and 1,

opposed to either 0 or 1 or classical logic. Through new definitions of or and and relations and new

inference rules, fuzzy logic employs a reasoning process that inherently accounts for uncertainty. Fuzzy

logic is commonly applied in control and production rule systems (as a result in expert systems) with

considerable success; but its applications in automated planning have been limited. A similar model is

multi-valued logic in which the degrees of truth are discrete values between 0 and 1. This logic has

interesting truth tables but its applications have been similarly limited.

Non-monotonic logic, is a way of logical reasoning, which is designed specifically to overcome

the limitations of the deductive logic when the conflicting propositions have to be made in a changing

environment. Non-monotonic logic is a domain-dependent tool; one has to specify the knowledge-base

beforehand. A more serious drawback of non-monotonic logic is that it does not accommodate utilities.

Langlotz [88] notes that even though non-monotonic logic might be a useful tool if the utilities of actions

are relatively unimportant, it cannot be used for optimization problems as one would not have a way

of comparing the consequences of various actions.

Perhaps the most sound technique for planning under uncertainty is to use decision analysis methods

coupled with Bayesian probability. There is only very primitive work in planning using probability

logic; hence no applications in real world examples. Attempts have been made to further unify the field

of probability logic; the Dempster-Shafer theory, which includes fuzzy logic as a subset [80] seems to

successfully integrate belief measures with probability measures. Nevertheless, the present state of art

in extending logic to nondeterministic models indicates that, before the new logic models can be applied

to real world nondeterministic planning problems, the fundamental problems (such as computational

tractability) have to be faced first.

2.3 Knowledge-Based Planning

According to some researchers, the core of intelligence is knowledge ("Knowledge is power"). It is,

hence, claimed that, in AI, the priority must be given to the problem of knowledge acquisition and

manipulation. This view has led to the development of knowledge-based systems. With the emergence

of expert systems, it has been possible to model the heuristics and knowledge of the human experts.

Unsurprisingly, most AI applications in literature are based on expert systems.
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The expert systems are indeed one of the ironic successes of AI research. They are found to be very

useful in duplicating of an expert's work and at sometimes enhancing and supporting a user's decision

by making the application of domain-specific rules transparent. With expert systems, it has been

possible to solve difficult calculus problems or other type of problems that require significant amount

of knowledge. The irony, however, is that the knowledge-based methods have been quite unsuccessful

in solving seemingly much simpler problems. Among these, common-sense reasoning comes first. The

stories that tell how an expert system gives non-sense answers are well-known. Also, computation-

intensive problems, such as language understanding, image recognition could not be handled by expert

systems. The use of expert systems have been limited to specific domains in which the knowledge can

be summarized by at most a few thousand rules and there does not exist a sound mathematical model

behind these rules.

Having said this, the benefits of expert systems for capturing the knowledge of an expert and making

it available to non-experts for support in their decision-making cannot be ignored. This potential, for

example, has been recognized by project management community and as a result there has been a

significant amount of work integrating the expert systems with project management. Frankel [47] and

Hosley [76] present a general view of expert systems in project management. It is noted that a project

planner can accumulate a large body of knowledge in his domain as result of previous work and this

knowledge is precious for other planners who do not have the expertise. The expert systems can also

help a planner by making transparent to him how a decision is arrived. The forward or backward

chaining in reasoning can be made clear by showing the rules and the order in which they are used.

An interesting expert system example is so-called cognitive planning in which the different reasoning

methods of an expert are tried to be emulated. Bernard et. al. [13] describes the use of a temporal

reasoning model for aircraft maintenance planning. Another more conventional example is PROJCON

in which the specific techniques for construction management planning is programmed [54]. Gudes et.

al. [68] describes an expert systems based methodology for solving resource allocation problems by using

expert heuristics. Thus, the best known applications of AI consist of using domain-specific knowledge

and techniques for each distinct problem through expert systems.

Further uses of knowledge-based approach are directed at making the data-base more suitable for

logical inference. For example, Elleby [39] develops a method, which he calls "Extended Relational

Analysis" for better scheduling by making it clear how the derived facts arise from the data-base.

Another paper by Kasahara et. al. [83] shows how interactions in complex systems and interference

among tasks and operators can be modelled with a knowledge-based approach for automated planning

and scheduling for maintenance work in a nuclear power plant.
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2.3.1 Extension to Nondeterministic Models

Since most experts had to reason under uncertainty, the probabilistic modeling was used very early

in the area of knowledge-based systems. Indeed, one of the pioneering expert systems, MYCIN, used a

certainty factor for each rule by which the confidence in the associated rule is specified. Then, MYCIN

was able to find out the most likely outcome by taking into account these belief measures. Kangari

and Boyer [80] note that accommodation of risk management to expert systems must be particularly

useful for project management purposes. Walmsley [142] gives examples of project planning problems

in the domain of construction management that can be solved by expert system methodologies. He

also notes that these techniques will be very useful when applied continuously as the project plan is

being performed. Another system developed by Shaw and Whinston [127] uses a dynamically changing

knowledge-base for flexible scheduling. One can also see many examples of knowledge-based project

planning systems that use certainty factors and probabilistic calculations for comparing different project

alternatives. It can be said that there is a considerable background in this area that may prove useful for

drawing conclusions on what approaches should be avoided in accounting and managing uncertainties

in planning. The best incorporation of probabilistic calculations to production rule systems seems to

be based on the Dempster-Shafer theory [80, 117].

2.4 Planning as Distributed Computation

Yet another different approach used in AI problems is the simulation of an organization which uses

different agents, hierarchy and negotiations for solving a problem. In fact, in view of the deficiencies

of logical formalism and knowledge-based systems, there is an increasingly more accepted view in the

AI community that intelligence is an emergent property that arises as a result of interactions of many

independent problem-solving agents. Minsky's Society of Mind theory is the primary example [98] of

this approach. According to this theory, brain consists of many agents, hierarchically organized like a

bureaucracy, and both cooperation and competition is allowed.

In the application of distributed computation to planning, the subproblems are solved by different

agents each of which can be considered as an expert in their limited area. The use of the experts can

be controlled through a centralized blackboard and executive or in a more distributed fashion through

pairwise execution [72]. A paper by Hadawi et. al. [69] specifies a distributed architecture, named

REDS (Requirement Driven Scheduling), for the factory-level job-shop scheduling. They note in this

paper that their system is superior to conventional systems because of its ability to look at a problem

from different perspectives as well as its flexibility. Another supporter of this approach is Findler [42],

who came to develop a computer-based theory of strategies as a result of his research experience in

the field of distributed-computation. In his book [42], Findler gives an example of distributed-planning
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system with considerable flexibility. Another example, which is due to Phinhobmongkol and Chang

[110], uses meta-knowledge on top of the knowledge of agents' planning knowledge. It is claimed that

this method is especially useful for conflict resolution.

To sum, distributed-computation is perhaps the most promising branch of AI. Such systems can very

easily be adapted to parallel computers and neural networks. They can work with less than idealized

input; for example neural networks have the property of "graceful degradation". They are also more

suitable for understanding of how human intelligence works as well as duplicating it exactly. The

property of similarity with human intelligence, however, could also be the limitation for distributed-

computation systems. These systems are difficult and less transparent to improve performance-wise

due to their complexity, compared to the centralized approach. As a result, the benefits that could be

obtained by using the distributed computation are not clear. However, it can be expected that this field

will mature and will be put into more extensive use.

2.4.1 Extension to Nondeterministic Models

We have noted that distributed-computation has the advantage of being inherently applicable to

nondeterministic conditions. For example, the neural networks used for character recognition can read

quite distinct handwritings. The planning models that use distributed-computation will be able to

produce results that are not optimal but still acceptable, even though some agents cannot get all the

information they want. This flexibility is always emphasized by the researchers in this area. Burke et.

al. [19] note that in their distributed-planning system, the external world is modelled as just another

agent, but one with whom negotiation is disallowed. So, the distributed-planning systems do not need

to make a clear-cut distinction between incomplete and complete knowledge. However, the limitations

of this technique are not yet clarified. Findler [42] points out that the applications in this area are few

and there is a need for a more general understanding of the method.

2.5 Search and Combinatorial Optimization in Planning

To sum, the use of symbolic reasoning from the first principles, has not been particularly useful for

AI purposes unless the context-dependent, domain knowledge is used. Often, the largest impediment

encountered in AI studies has been the lack of an efficient solution method for the problems being

considered. In such problems, the set of candidate solutions grows exponentially as the problem size

increases (this is also called combinatorial explosion); yet there does not exist a universal method that

can find the desired solution efficiently. Many planning problems can be considered in this category

because finding a best plan among a large set of candidates is often necessary in planning and schedul-

ing. Because the process of searching for the best solution can also be considered as an optimization
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process, search is closely intertwined with a field known as combinatorial optimization. Search and

combinatorial optimization problems are ubiquitous and hence have been scrutinized in many fields,

including operations research. In this section, we examine the applications of search techniques to the

problems of planning/scheduling.

2.5.1 Planning/Scheduling as a Mathematical Problem

It is possible to express the planning problem as a mathematical problem by limiting the attention

to the particular aspects of the problem. This formalism helps to understand the complexity of the

problem and the requirements for the existence of an efficient solution. Let us recall that we define a

project as a coordinated set of activities and tasks designed to achieve an objective by the development of

physical, service, or other capabilities, under conditions of defined schedules, budgets, and performance

criteria [47]. This definition is similar to that of the automated planners but it avoids the problem

of world modelling (the selection of the world and operator representation formalisms) by requiring a

work-breakdown structure be already given by the project manager.

We can then define the deterministic planning problem [7, 12, 49] by using the five-tuple system

(r, -<, [Dij], [Ri], wi), where:

1. r = T1 , T2, ..., Tn,: The set of tasks that can be executed.

2. < is an irreflexive partial order defined on r which specifies operational precedence constraints.

That is, Ti -< Tj signifies that Ti must be completed before Tj can begin.

3. [Dij] is an mxn matrix of execution times, where Dij > 0 is the time required to execute Tj,

< j < n, on processor, Pi, 1 < i < m.

4. Rj = [Ri (Tj),...,Rs (Tj)], 1 < j < n specifies the amount of resources required throughout the

execution of Tj. Note that processors are not usually included in resources.

5. wi, 1 < i < n, specifies the weights which will be used in performance measures. They are

interpreted as cost rates and may be arbitrary functions of scheduling properties influencing Ti.

The problem can be solved in two basic steps:

i) Specification of the subsets r, -<, D, R and w.

ii)The development of a schedule for this given five-tuple system. We must note that for realization

of the project goal, an iterative process may be necessary, i.e. after having gone through step ii, one

might find that no schedule for the subset determined in step i satisfies the given goals and therefore it

may be necessary to select a different subset.

The first part of the above process is usually named planning process. In this process, a knowledge-
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base of world models and the methods of reasoning about the knowledge-base are required. It is also

important to specify a time-range for the problem. Short-term planning assumes that a general set of

activities, resources and policy constraints are given and thus it concentrates on the choice of specific

activities and resources for finding a good plan. Only after learning from short-term planning, one can

perform long-term planning, through which one may redefine goals or may change the context on which

plans are based. We will confine this discussion to short-term planning.

The second step is usually called the scheduling process. A schedule can be defined as a suitable

mapping that assigns a sequence of one or more disjoint execution intervals in [,oo) to each task such

that [12]:

1. Exactly one processor is assigned to each interval.

2. The sum of the intervals is precisely the execution time of the tasks, taking into account, different

processing rates of different processors.

3. No two execution intervals of different tasks assigned to the same processor overlap.

4. Precedence and additional resource usage constraints are observed.

5. There is no interval in [0, max{fi}) during which no processor is assigned to some task.

One can specify further constraints on the desired schedule. The two most common ones are:

1. Nonpreemptive scheduling: A task can not be interrupted once it has begun.

2. List scheduling: An ordered list of tasks in r is assumed or constructed beforehand. This list is

called priority list. Specifically, when a processor becomes free for assignment, the list is scanned until

the first unexecuted task in list is found and done.

Given this general model for scheduling, one can define some performance measures as follows:

* Makespan (Cmax) : The completion time of the schedule. Let S specify the schedule, and Ci

the finish time for task Ti.Then,

Makespan(S) = Cmax(S) = max1<inCi(S)

* Maximum Flow Time (Fmax): Flow time is defined as Fi = Ci -ri, whereas ri ready (or

start) time for task Ti.

* Maximum Lateness (Lmax): If for a task Ti due date is given as di, Lmax = maxi(Ci -di)

* Maximum Tardiness (Trmax) : Tardiness is defined as Tri = max(Li, 0).

Often, the mean values such as C, L, Tr, F, (they could be weighted) can also be of interest to a

planner. The cost of a particular schedule is given as:

Cost=Function (Performance-Measures)
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The type of the function will depend on the specific problem. For example, in a project with a given

due-date one would be interested in minimizing Cmax, Trmax; whereas in a project with expensive

processing costs one could be interested in minimizing both the mean weighted flow time and Cmax. In

general, the planning/scheduling of a project can be considered an optimization problem in the space

defined by desired performance measures subject to given constraints.

2.5.2 Mathematical Aspects of Scheduling Theory

The scheduling problem is not only a beautiful mathematical problem but also is one with numerous

applications. It has been attacked by many researchers and a substantial amount of literature exists on

its details. A quick and general survey of the field is as follows:

1- The scheduling problem can be classified into three major categories: the assembly-line balancing

problem, the job-shop scheduling problem, the project scheduling problem [12].

Assembly line balancing is interested in deciding the minimum number of workstations that are

assigned to work elements with some precedence relations, or minimizing the cycle time, that is the

maximum among total working time at each station, under the given number of workstations.

Job-shop scheduling problem is to determine the sequence of n jobs on each of m machines in order

to minimize a given objective function. A variant of this problem is flow-shop problem where each job

has identical ordering.

Project scheduling is also called coordination problem and is concerned with the planning which

consists of activities that must be processed by following the given precedence relations and resource

constraints.

The multiproject scheduling problem with resource constraints is the most general scheduling prob-

lem and a correspondence between this problem and other problems can be established [12].

Multiproject-scheduling Problem Job-Shop Scheduling Problem
Project Job
Activity Operation

Precedence Relation Ordering
Resource Machine

Resource availability Number of identical machines

Resource requirement by each activity Number of identical machines

that can process each operation

2- There have been some advancements in the classification of problem with respect to definitions

[49]:

Equivalence of Measures: Two performance measures are equivalent if a schedule which is optimal
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with respect to one is also optimal with respect to other and vice versa, e.g. C = F = L

Efficiency: A schedule is efficient with respect to measures II, A2,... l, if there does not exist a

schedule S such that j, j < yj

Regular measure: One that is non-decreasing in the completion times. That is R is a function of

C,, C2 ... Cn such that

(CX C2 . .. > C,) < R( if Ci < Ci

By these definitions, it has been possible to show the limits and scopes of scheduling algorithms regarding

different performance measures.

3- In very simple cases, it has been possible to give constructive algorithms, i.e. algorithms that will

give the unique answer in time polynomial with the problem size. For example, consider the sequencing

problem with n tasks, one machine, empty resources and empty precedence sets (R = q,-<= 0). For

optimization with respect to different measures different constructive algorithms must be employed.

Some of these are as follows: The tasks must be sequenced in an order of

i. non-decreasing processing-time (shortest-processing-time-first), for minimizing the mean flow

time,

ii. non-decreasing due dates, for minimizing Lmax, Trmax,

iii. non-decreasing slack times, for maximizing Lmin, Trmin.

Another example of a constructive algorithm is so-called Johnson's algorithm for minimizing Fmax with

2 processor machines [12, 49]. Unfortunately, the domain of constructive algorithms does not currently

extend to the problems with more than two different types of resources.

4- The general scheduling problem is found to be computationally intractable, i.e. the best solution

algorithm to the problem is super-polynomial in running time (with respect to the problem size). For

example, even when R = and -<= 0, a problem with n tasks and m machines requires a solution from

the combination set with (n!)m cardinality. Since a brute search process for finding the schedule with

minimum cost (the British Museum approach!) is intractable, algorithms that employ more efficient

search methods have been developed. Note that these search methods are not unique to the scheduling

problem, but, generally speaking, they are applicable to a whole class of problems, called NP-complete.

Owing to the complexity of the scheduling problem and unavailability of a universal solution proce-

dure for NP-complete problems, the general scheduling problem is solved in most cases by algorithms

that make use of special heuristics and give satisfactory solutions rather than the optimal answer.

2.5.3 OR-based Methods for Planning/Scheduling Problem

Because of the practical importance of the problem, OR methods have been developed for the

general problem of scheduling. It must be noted that the theory generally assumes that the set of tasks

and operations required for carrying out the plan are already determined. Then the general planning
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problem is reduced to that of finding an optimized schedule under given constraints. Generally, directed-

acyclic-graphs (DAGs) are used for representing such problems with clear visualization of the precedence

relations. The developed graph then can be analyzed by using the network analysis techniques. Well-

known applications of DAGs in the project planning involve the PERT (Project Evaluation and Review

Technique) and the CPM (Critical Path Method). The PERT solves the problem of finding the schedule

for a single project that minimizes the objective function such as the project completion time. This

technique is based on the calculation of early-start/early-finish times for specified tasks through a

forward propagation and late-start/late-finish times through a backward-propagation. In this way, the

slack times for each activity can be determined. Then, the paths from the start to the finish can be

sorted according to their durations. The path with longest duration is named the critical path. This

knowledge then can be used for focusing on the activities that are along the critical path. The CPM is a

similar technique that is developed for finding the schedule with the minimum cost with a pre-specified

project completion time in the case costs can be associated with each activity.

The PERT assumes that the resources are infinite and thus, all the tasks that can be performed

in parallel, as long as they obey the precedence constraints. If the resources are limited, however, a

path which otherwise would not be critical may turn out to be a critical path, provided that it employs

minimally available resources. Thus when there is a problem with the availability of resources, the

problem turns into a combinatorial resource allocation problem. For this reason, the project scheduling

problem has always been a subject of interest for combinatorial optimization. The problem has been

attacked by either one of the known techniques for solving combinatorial problems, such as general

integer programming, or specialized algorithms for different problems which, in fact, resort to different

versions of heuristics.

The classical algorithms employed for combinatorial optimization problems will generally fall into

one of the following classes:

1. Dynamic Programming: Based on the concept that the subpaths of an optimal path would have to be

optimal, this method enumerates options at each step of the scheduling and eliminates the non-optimal

ones.

2. Branch & Bound: Generates tree schedules and eliminates those with higher costs.

3. Integer Programming: Recasts the problem as an integer programming problem and solves it in this

domain.

4. Heuristic Approaches: In the process of scheduling, one has to make certain choices at each step.

Heuristic approaches make use of some rules for these choices even though the rules may not have a

mathematical basis. Some of the exemplary rules are Random, First-Come-First-Served, Most-

Work-Remaining, Least-Work-Remaining, Most Operations Remaining or even a random

choice from a set of such rules. Note that some of these rules are contradictory! However, these

approaches are often found to be satisfactory in practice [28].
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2.5.4 AI-based Methods for Planning/Scheduling

The development and analysis of heuristics for the scheduling problem is an area where both the OR

and the AI approaches intersect. One can find in literature related to the AI applications many research

papers that find particular heuristics to particular problems. For example, for job-shop scheduling,

Cartesian-filling heuristic is developed by Pierce [111]. As a result of such studies, new heuristics are

being continuously added to the repertoire of solution techniques for computationally hard problems.

Further benefits of the AI come from the classification of the search methods and the development of

problem independent search methods.

In addition to the classical search methods of OR, the past AI research in the search-related problems

have produced new ways of attacking these problems. Recently, new powerful methods, such as genetic

algorithms and simulated annealing have emerged. Applications of such techniques to the scheduling

problem already appear in literature (see Keler [84], for a review). Simulated annealing can be seen

a form of search that normally proceeds along the gradient of optimization, but at times take reverse

directions so as not to be confined in a local optimum. Genetic Algorithms are modelled after evolution

process. These techniques are examined in detail in Chapter 3.

Another new idea is the use of constraint propagation techniques for limiting the search un-

der given constraints. Whereas logic is not always an answer to symbolic reasoning problems, it

can help by reducing the search space. For example, given that x + y > 2 and xy < 0 for x and

y {-3,-2,-1,0,1,2,3} , we can deduce that either x = -1,y = 3 or x = 3,y = -1 and can select

either of these pairs according to other criteria. This computation is much more efficient than a brute

search process that tests each possible pair and eliminates infeasible solutions only after they have been

generated. The constraint-propagation procedure is based on the reduction of solution set by applying

the constraints and making inferences first. Perhaps, the most noteworthy recent development in AI-

based work is the adoption of logic programming to constraint propagation techniques. The paradigm

of constraint-based logic programming is claimed to be an efficient computation model as well as an

environment which allows more flexible and fluent programming environment. Van Hentenryck notes

that [139] whereas specialized programs for scheduling may take months to be developed, most complex

scheduling problems can be programmed in a few days and can be solved with almost the same efficiency

with the constraint-based logic programming. A further claim of this paradigm is its ability to handle

disjunctive constraints, so that precedence relations can be defined with more freedom. Constraint-

propagation can be expected to increase the efficiency of search process in scheduling problems because

such problems are generally subject to many constraints rather than being purely combinatorial. Fi-

nally, the method known as lifting can be promising for alleviating the search. In lifting, search is

postponed as far as possible by keeping the variables unbound and applying the symbolic reasoning to

the expressions containing these variables.
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2.5.5 Extension to Nondeterministic Models

Inclusion of uncertainty can be relatively straightforward in search problems. Nevertheless, such

inclusions generally increase the complexity of the problem being considered. Consider a case where we

have stochastic activity durations. That is, an activity duration d is specified by a probability density

function (pdf). Let us assume that the pdf of an activity can be approximated by a discretization

scheme: An activity duration d can take n different values, where deD given that D = {d1, d2 ... dn}

and each d is associated with a unique probability value. The calculation of pdf for project duration

can be accomplished by considering the realization of every alternative individual task duration value.

Unfortunately, this approach is intractable due to its exponential complexity. In a given path with m

activities, with each pdf being represented by n distinct duration values, nm calculations are needed.

Thus, the nondeterministic problem can still be examined as a search problem, however, at the

expense of increasing complexity. Therefore, it becomes more important to use powerful optimization

or search methods and to develop efficient heuristics. This area will be examined in more detail later.

2.6 Other AI based Approaches

Various AI techniques could be beneficial for simulation purposes. Although they generally do not

bring any new theoretical advantage to the Monte-Carlo simulation they can make the modelling and

programming task easier [50]. Further approaches to the nondeterministic planning combine different

methods. Levitt gives an example of how AI programming techniques plus expert systems can be

combined to automate scheduling [92]. Tan describes a neural network optimization approach in which

the data is obtained through Monte-Carlo simulations [132] for identifying a preventive maintenance

policy which minimizes cost. Lozano-Perez et. al. [93] use a robot path planning algorithm based on

compliant motion concept. An example of this type of motion, is to drag an object along the table

until it meets with the hole where it is supposed to be placed in contrast to picking the object up,

bringing it exactly on top of the hole and dropping it. This clever strategy is found to be very robust

in the face of uncertainty. However, it is difficult to see how compliant motions can be discovered in the

planning/scheduling problem by natural intelligence let alone artificial intelligence!

2.7 Summary and Conclusions

We observed that there exist different approaches to planning each of which has a different emphasis.

Automated planning systems aim to emulate the common-sense planning based on the frame axioms

and logical formalism. Knowledge based systems aim to make the most use of the particular rules

that are specialized for particular planning domains. Distributed computation approach propagates
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Table 2.1: The differences between AI approaches

the division of labor among specialized agents and suggestp that an overall planning capability may

inherently emerge from such cooperation. Graph search suggests that plans can be generated through

optimum path finding algorithms operating on the data that represent the states of the world. Despite

their differences, all these approaches face similar issues related to complexity.

A planning system can focus either on such complexity issues or on the other issues such as the

capacity for modelling. Some AI approaches are more focused on the capacity and the ease of modelling,

while some others allow more attention to be paid to the complexity issues. Table 2.1 indicates these

differences for different AI approaches. Distributed computation systems are based on an extensive

modelling of a system but the complexity problems that may emerge in these models have rarely

been paid attention. Knowledge-based systems use production rules that provide a high degree of

freedom for modelling purposes; yet they have a relatively low emphasis on the complexity issues.

Automated planning systems have limited their capacity to particular formalisms, for example, the

model for STRIPS planning is known as STRIPS logic. Graph search problems generally employ simple

data structures; yet the emphasis is on the complexity issues.

On the other hand, the complexity problems cannot be avoided if one wants to make sure that these

approaches will result in practical uses. For example, it is proven that automated planning under a very

general representation is an undecidable problem, see Chapman [21]. It is also proven that the STRIPS

planning corresponds to the complexity class PSPACE. This indicates that the STRIPS planning can be

solved with graph search through a free graph model in which the vertices are a collection of propositions

[97]. The equivalence of graph search and STRIPS logic indicates that the representation issues are often

a syntactic concern. While the logical formalism approach seems to be more rigorous than the other

approaches, it, too, is subject to similar constraints on complexity. It is proven that a complete set of

inference rules cannot be decided on polynomial time even in the simplest logic model (propositional

logic) [97]. The method commonly used for drawing inferences in propositional logic is known as Boolean

Constraint Propagation (BCP). BCP is linear time decidable; however it is not complete for it fails to

incorporate the case analysis rule (therefore one cannot derive Q given that P - Q and P -+ Q). Higher

order logics have larger representation capacities, but their determination may be computationally much

harder or intractable.

The trade-off between focusing on complexity or modelling capacity in a given approach to planning

indicates that one should choose a particular approach depending on what aspect of the problem will be
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emphasized. In this thesis, we are concerned with drawing general lessons for planning problems under

uncertainty and therefore have chosen the graph search approach. This also makes it possible to benefit

from the experience of OR studies on graph problems. While there is an extensive amount of work

on planning under uncertainty in different paradigms, especially in knowledge-based system approach,

these studies are generally ad hoc and have limited use. In contrast, the results of graph search may

prove beneficial for different planning paradigms. The next chapter therefore reviews the graph search

algorithms and the complexity issues in more detail.
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Chapter 3

Graph Search, Complexity and
Genetic Algorithms

In this chapter, we introduce the graph model paradigm for planning problems (Section 1), and we

discuss the complexity of the problems often encountered in this paradigm (Section 2). We eamine

both the exact (Section 3) and the approximate (Section 4) methods to solve the computationally

hard problems. Later, we review and compare the graph search and optimization techniques generally

employed in the solution of these particular problems (Section 5). We present a detailed analysis

of genetic algorithms (Section 6-9). Finally, we produce a probabilistic model of genetic algorithms

comparing them to a random search model (Section 10) and argue that (Section 11-12) the genetic

algorithm is a successful, general heuristic for solving the complex search and optimization problems.

3.1 The Capability of Graph Models in Expressing Planning
Problems

One of the first questions that should be addressed in any problem concerns the representation of the

problem. The choice of representation or modelling methodology defines the range of solvable problems

as well as the effectiveness of the solution techniques. The problem is especially acute in the planning

arena for there are various paradigms of planning as the need for making a priori multistage decisions

arises in various domains. For example, the paradigms of integer programming or linear programming

that are used for minimizing some objective function can be generalized to cover multistage problems.

If we are concerned with giving problem-solving capability to a robot, we prefer first-order logic for

modelling the robot's environment and in the development of the planning algorithms. In business, the

selection and the temporal ordering of business strategies in order to achieve preset goals constitutes an
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important problem which is often modelled within the framework of decision analysis or game theory.

In project management, the problem manifests itself as the assignments of the activities to individuals

and time-slots for the early completion of a project and is generally subjected to PERT type network

methods. In short, we observe that many types of planning problems can be found in widely differing

contexts, most of them being attacked with specialized methods. The selection of a methodology that

could cover the common grounds of these contexts constitute an important problem in itself.

Because we hope to draw lessons regarding planning under uncertainty that might be of value in

many areas, we have chosen the graph model for analyzing the planning problems. The representation

power of the graph models as well as their adaptability to problems that belong to different contexts

justifies our decision to some degree. For example, it has been shown that some logic models used in

the robot planning are only a syntactic variation of the graph model [97]. Graph models have long been

used in planning problems, especially in the context of project management. Furthermore, there is a

large background work on the graph theory, both scrutinizing the theoretical problems and applying

the theory to practical problems.1 Therefore, graph models are a natural choice for use in planning

problems.

Another potential of graph models arises from the opportunity to represent the basic types of plan-

ning problems with the classical problems of graph theory. For example, the most simple planning

problem involves the sequencing of a set of tasks. A prime example of this permutation problem is so-

called the Traveling Salesman Problem (TSP) of graph theory, in which one wants to obtain a particular

permutation of all the cities to be visited such that the total travel cost is minimized. Some planning

problems require in addition to ordering, the selection of tasks among a set of potential candidates. The

selection process, too, must take into account the possible constraints of the problem. The selection &

permutation problem has a natural counterpart in graph theory with the shortest path type of problems.

If there exists no total ordering constraints (such as one activity at a time), a nonlinear plan (the one

with parallel branches) can be represented with a set of partial paths minimally ordered. At the far end

lies problems that also deal with resources in addition to sequencing and task selection. It is customary

to call such type of problems as resource allocation problems. An example of resource allocation prob-

lems is the scheduling of projects subject to constraints on manpower and machine availability. The

visualization of such problems in graph models is relatively difficult, but they too can be effectively

dealt within that framework.

1 Graph models are often criticized for being unsuitable for representing continuous processes. Some techniques to work
around this problem have been suggested, but they are cumbersome to use [70]. However, similar critiques can be directed
at many other models as well.
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3.2 Complexity Theory on Planning Problems

Most planning problems can simply be expressed as a computational problem on graph models.

Complexity theory provides a framework for classifying the planning problems according to their dif-

ficulty. In this section we examine what complexity theory has to say about planning problems. But

first, we should clarify what is meant by the complexity of a problem.

3.2.1 Complexity of a Problem

Consider the problem of determining whether a given number n is prime. There are some general

methods for answering this question theoretically but they are completely unsuited for practical com-

putations. For example, a number n is prime if and only if nl[(n - 1)! + 1], i.e., n divides (n - 1)! + 1

without remainder [129]. This is an interesting property of primes but it is totally useless for verifying

that a 20-digit number like 435835313536579538727 is prime or is not prime. Twenty-five centuries

ago, the Chinese gave what they believed was an infallible rule for determining primality. Their rule

stated that n is prime if and only if nI(2 n - 2). This rule was believed to be true for twenty-three

centuries. Further, Fermat showed that the Chinese were correct when n is a prime. Yet the rule fails

for n = 341(= 11 * 31). Indeed, there is no known algorithm - let alone a formula - today that will

decide the primality of a number in running time bounded by a polynomial function depending on the

data size of the number n, formally defined as the number of digits required to express it in the binary

system [129].

If the maximum number of the elementary computational steps in an algorithm, (therefore the max-

imum time it takes to perform the algorithm) can be given as a polynomial function of the input data

size, this algorithm is said to have a polynomial (P) complexity. If a problem has a solution procedure

having P complexity, then we say that the problem belongs to class P. Since there is no known P

algorithm for the determination of primality, it is believed that the problem of the determination of

primality is not in P; although some suspect that a P algorithm for this problem, on whose difficulty

modern cryptography depends, might be found [129].

Most of the algorithms in common use today have polynomial complexity. Examples include sorting

(O(n log n)), finding an Eulerian cycle in a graph with m edges (O(m)), constructing the minimum-cost

spanning tree for a graph with m edges (O(m log m)), finding the shortest path between given vertices in

a graph with n vertices and m edges (O(mn)), finding the transitive closure (finding all vertices that are

directly or indirectly connected to a given vertex in graph with n vertices) (O(n2)), testing a graph for

planarity (O(n)), finding the maximum matching ((n 5/ 2)) and finding the maximum flow in a network

(O(n 3 )). Some problems, on the other hand, can be solved only with algorithms having exponential

complexity, i.e., they have E complexity. An obvious example is that of finding all subsets of a given
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set ((2')). Many problems, however, do not quite fit into either class P or E. An example of these

last class is the problem of scheduling about which Conway [28] observes that "Many proficient people

have considered this problem and all have come away essentially empty-handed. Since this frustration is

not reported in the literature the problem continues to attract investigators who just cannot believe that

a problem so simply structured can be so difficult until they have tried it!'".

3.2.2 Complexity Class NP

Now suppose that we somehow know that a particular number n is prime. Can we prove this in a

reasonable amount of time? The answer is yes thanks to an algorithm devised by V Pratt [113] based on a

theorem that every prime number must satisfy (which in turn follows from the small Fermat theorem).

The complexity of Pratt's algorithm is P. Nevertheless Pratt's algorithm only certifies (verifies) the

primality of n; it does not solve the aforementioned problem of the determination of primality. If the

solution of a problem can be verified in polynomial time if the answer is known beforehand, we classify

this problem as Nondeterministically Polynomial or NP in short.

An interesting feature of the problem of determination of primality is the fact that problem itself

also belongs to the class of coNP, which is the complementary class of NP, and consists, essentially, of

those problems for which it is simple to check the correctness of a negative solution [87]. In other words,

it is not difficult to prove that n is not a prime when we know that it is composite. A nice illustration

is given in [113]; in order to disprove the hypothesis of Mersenne, 200 years old, that 267 - 1 is prime,

F. Cole needed in his own words "3 years of Sundays". However, when he lectured on his result at the

meeting of American Mathematical Society in 1903, all he needed to do was to write down the following

equality: 267 - 1 = 193707721 * 761838257287.

For a rigorous definition of the class NP, we should first clarify what is meant by a nondeterministic

algorithm. A nondeterministic algorithm differs from a deterministic one by the feature that it is possible

to decide quite freely between several possible continuations of the computation. The computation is

thus not determined by the initial configuration and instead of a computation we should rather speak

about the system of all possible computations [87].

As an illustration, we describe a simple algorithm [87] for deciding whether there is an independent

set X (such that no edge has both endpoints in X) of at least k elements in a given graph G of vertices

Vl, V2, ... , Vn

1. [Initiation X := 0

2. [Nondeterministic construction of X] For i = 1, 2, ..., n perform the following instruction: put

either X := X U vi or X := X.

3. [Verify independence of X ] If there exist vertices vi and vj in X such that vi, vj is an edge then

reject.
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Table 3.1: The Time It takes to Solve a Problem (1 step = 1 s)

n
If(n) 10 l 20 30 40 50 60

n 1.10 - 5 s 2.10- 5 s 3.10- 5 s 4.10- 5 s 5.10- 5 s 6.10 - 5

n2 1.10-4 .10 - 10-4 s 9.10
- 4

s 16.10 - 4 s 25.10- 4 s 36.10- 4 s
n 5 0.1 s 3.2 s 24.3 s 1.7 min 5.2 min 13 min

no1 2.7 h 118.5 days 18.7 years 3.3 cent. 30.9 cent. 192 cent.
2' 0.001 s 1.0 s 17.9 min 12.7 days 35.7 years 366 cent.
3n 0.59 s 58 min 6.5 years 3855 cent. 2.108 cent. 1.1013 cent
n! 3.6 s 770 cent. 8.1016 cent. 2.1032 cent. 9.1049 cent. 3.1966 cent.

4. [Count the number of vertices If X has at least k elements, then YES, else NO.

This algorithm should reply YES or NO according to whether the required independent set exists

or not. The algorithm is naturally worthless when we actually have to find an independent set of the

required size because we would have to go through all, or a majority, of the possible continuations of

step 2, and since these possibilities correspond to all possible subsets of the vertex set of the graph

G, their number is 2. This algorithm, however, can be used, after we managed to find a solution, to

immediately prove the correctness of the solution.

Let us imagine a hypothetical random access machine that can unconditionally jump to one of

many possible continuations in the program, yet somehow could process all admissible computations

in parallel, i.e., without putting these continuations in order, process one by one. This machine either

accepts the answer or rejects it after exhausting all possible computations in polynomial-bounded time.

By NP, we denote the class of all problems J such that there exists a nondeterministic computing

model which works in polynomial-bounded time and answers the problem J. The practical importance

of these definitions arises from the fact that with the computers we have (sequential or parallel with

a fixed number of processors), the problems that belong to NP cannot be answered with polynomial

algorithms. As a result, we will have to use exponential algorithms for a complete determination of the

answer, which would be intractable for all practical purposes if the input data size is large.

For a better appreciation of the awful slowness of an exponential algorithm, we include Table 3.1 that

presents the time it takes to solve a problem depending on the complexity of the underlying solution

algorithm for a computer that processes 1 million instructions per second (1 MIPS). Table 3.2 shows

that, when dealing with algorithms having exponential complexity, switching to a 1000 times faster

computer would not be helpful since the problem size that could be handled stays almost constant.

The relation between classes P and NP is subtle yet not completely understood. Since a deterministic
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Table 3.2: Computational Gain in the Solvable Problem Size by a Faster Computer

The size of Data The size of Data

n ni 1000 n1

n 2 n2 31.62 n 2
n 5 n3 3.98 n 3

n _ _ n4 1.99 n4

2n n5 n 5 +10
3n n6 n6+6
n! n 7 n7+{1,2,3}

algorithm is a special case of a non-deterministic one, we have the following:

PcNP (3.1)

It is not yet known that whether P = NP or P NP. This question is often considered to be one

of the most important open problems of modern mathematics, and it has remained unsolvable despite

an immense effort by a great number of mathematicians.

3.2.3 NP-complete problems

Another subtle property of class NP is due to the fact that many problems in NP are reducible to

others, i.e., they can be answered by using the solutions of another problem. From the historical point

of view, the following result of S A Cook [52] had been of major importance: Cook showed that every

problem which is a member of the class NP can be reduced in polynomial-bounded time to the problem

of determination of satisfiability of logical formulae in conjunctive normal form. This last problem tries

to find whether there exists a model of Boolean variables xij yielding true for the formula

m

X=AVxij, m>3
i j

If every problem that is in NP can be reduced to a particular problem J in polynomial-bounded

time, the problem J is said to be NP-hard; further, if J too, is in NP, it is called an NP-complete

problem. For example, the satisfiability problem, of which every NP problem is reducible in polynomial-

bounded time, can be reduced to the aforementioned NP problem of finding an independent set via a

quick algorithm, therefore the problem of finding an independent set is NP-complete. In a sense, an

NP-complete problem serves to summarize the complexity of the entire class NP. At the present time,

several hundreds of NP-complete problems are known.
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Many such problems are found in the fields of number theory and set theory. Some examples are

quadratic diophantine equations (do there exist natural numbers x and y with ax2 + by - c2 where

a, b, and c are given natural numbers?), quadratic congruence (does there exist a natural number x < c

with xc = a mod b where a, b, and c are natural numbers?), knapsack problem (do there exist binary

variables xi that satisfy the equation Ai aixi = b, where a and b are integers?), binary partitioning (does

there exist a binary partition of set S of integers xi into two subsets Su and Sl such that EiEs, xi =

EiESu Xi?).

Also, a large number of problems in Artificial Intelligence involve NP-complete problems. They are

frequently encountered in the fields of diagnosis, image recognition, propositional calculus and language

understanding [11]. For example, the following question is NP-complete: Given a monocular picture,

what is the best three-dimensional description of the locations of the objects? Indeed, what are the

objects? In planning, computing the correctness of a logical formula in a nonlinear automated planner

using modal truth criteria has been shown to be NP-complete [146].

In addition, most of the problems of Operations Research, such as optimal factory location or optimal

vehicle scheduling can be stated in terms of classical NP-complete problems. Integer programming,

which expresses a large number of problems addressed in Operations Research, is NP-complete.

Furthermore, many NP-complete problems arise within the context of graph models and thus directly

related to planning and scheduling. Some examples are as follows:

For a given graph G(V, E) with n vertices and a given natural number K,

* 3-coloring: Can the graph be colored by three colors?

* Independent-set: Does the graph contain an independent set of vertices of a prescribed size?

* Hamiltonian-cycle: Does the graph have a Hamiltonian cycle (a cycle passing through all of the

vertices) ?

* Comparative TSP: Is there a TSP solution having a cost less than a preset threshold?

* Width of a graph: Does there exist a labelling F of the vertices by the natural numbers 1, ... ,n,

such that for each edge [u, v] we have F(u) - F(v)l < K?

* Optimum linearization of a graph: Does there exist a labelling F of the vertices, such that

E F(u) - F(v)l < K?

* Minimum cut of a graph: Does there exist a disjoint composition of V into two non-empty sets X

and Y such that the number of edges u, v E E with u E X and v E Y is smaller than or equal to

K?
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* Graph thickness: Do there exist sets E1 , ..., Ek such that E1 U, ..., UEk = E and the graph (V, Ei)

is planar for each i = 1, ..., k?

* The shortest path in a generally labelled graph: Is there a path from u to v with the sum of labels

of edges smaller than or or equal to K? (For non-negative labels the problem is easily solvable).

* The longest path: Is there a path from u to v with the sum of labels of edges larger than or or

equal to K?

* Partially determined path: Is there a directed simple path from u to v that passes through w in a

directed graph with specified distinct vertices u, v and w? [44]

* Strongly connected subgraph: Is there a subset of edges E' such that E' I < K and G' (V, E') is

strongly connected, i.e., for each pair of vertices u and v, there exists a directed path from u to v

and a directed path from v to u?

* Minimization of the fictitious PERT activities: Is the number of fictitious activities (M) used in

the procedure for representing a project with the PERT digraph less than a prescribed number,

i.e., M < K? [38]

* Existence of a path in a GERT network: Is there a network realization in which the activation of

the source implies the activation of the sink? [102]

* One-processor scheduling: Is it possible to use one processor for a given set of tasks and still

comply with the running time, earliest-start time and latest-finish time constraints for each task?

[53]

* Scheduling with precedence: Is it possible to process given tasks using the given processors and

respecting both precedence and the time of finalization for each task? [137]

Kucera [87] uses a vivid metaphor to explain the present state of the art in dealing with NP-complete

problems: "In the 1960's it still seemed that the above problems resembled heavy boulders which we would

have liked to move and for which there was hope that at least some of them would show a weak spot

making such a move possible. By the beginning of 1970s, however, it had turned out that those boulders

are interconnected in such a way that we are actually attempting to move a whole mountain. It is thus

hardly surprising that no one has yet managed to move it in either direction, i.e., neither do we know

a quick and precise algorithm for all of these problems (which would mean finding quick and precise

algorithm for any of those problems at once), nor we do know a proof that such algorithms do not exist

(which would show that none of the NP-complete problems can be coped with)."
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3.3 Solving NP-complete Problems

Today, it is believed that sufficiently fast algorithms for solving NP-complete problems, despite their

importance in many fields, are very unlikely to be found. Further, complexity theory points out that

some problems would be even more difficult to solve than NP-complete problems. For example, the

computation of the optimum strategy for a player in a game belongs to a class called PSPACE, which

stands for polynomial-bounded memory space, and it is known that PSPACE D NPtime for a finite yet

an exponential number of states can be expressed with even polynomially-bounded memory space.

These negative conclusions, however, should not mean that we are completely impotent to deal

with such problems. By setting less ambitious goals than finding an algorithm which would always

quickly find the exact answer of the problem at hand, more tractable algorithms can be obtained.

Especially in the context of planning studies, where NP-complete problems often appear only as a part

of the required optimization, we can be satisfied with an answer that is sufficiently close to the optimal

answer. Nevertheless, this method of approximating the answer may not be of much value when the

problem at hand is a decision problem rather than an optimization problem.

Even in this case, though, we can rely on probabilistic algorithms that might find an approximate or

perhaps the exact answer but do not have the guarantees of the deterministic programs. Indeed, there

exist some algorithms for the solution of some difficult problems which are not in P, although are not

shown to be NP-complete either, such that their probability of yielding an erroneous answer can be

exponentially reduced. For example, Rabin's algorithm [121] for the determination of the primality of

n checks Miller's assertion 2 that holds for any pair (ki, n), where ki is a natural number smaller than

the prime number n, for each of the m pairs containing the random and mutually independent natural

numbers k, k2 ,..., kmn. Thus it yields the answer with the probability of a mistake (taking a composite

number for prime) being at most 2-m . An application of this algorithm was able to find the largest

prime smaller than 2400 (2400 - 593) with a probability of error smaller than 0.1%.

Another front concerns the average performance of a suggested method by emphasizing that the

results of the complexity theory hold only for the worst-case. Some algorithms which have exponential

complexity may exhibit a performance having a polynomial complexity in the average case. A well-

known example involves the simplex method for the problem of linear programming. It has been shown

that linear programming belongs to class P and a solution to the problem with a polynomial complexity

has been submitted by Karmarkar [130]. Yet, in practice the simplex method has been preferred over

the Karmarkar's algorithm for its average-case complexity is less than that of the new method.

Yet another strategy applied in the solution of these problems is to rely on some rules of thumb that

2Miller's theorem states that the number n is a prime if, and only if. there does not exist a number k (1 < k < n), for
which the following assertion is valid: either k n - 1' 1 mod n or there exists i such that the number m -- is an
integer, and the greatest common divisor of the numbers k m - l and n is larger than 1 but smaller than n.
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produce satisfactory performance on the average. These rules of thumb or heuristics can be derived from

many different sources and can be employed at any level of complexity. A relatively simple heuristic

for TSP, the nearest insertion rule, which relies on the extension of a circuit through inclusion of a new

node to the nearest node in the circuit, yields answers at worst twice larger than the optimal [24].

A promising approach to computationally hard problems, applicable when these problems involve

some constraints, uses the method of propagating the constraints. In this approach the size of the search

space is reduced as the search continues by applying the constraints at each step and thus eliminating

the part of the search terrain where solutions can not be found. Constraint satisfaction methods have

proved to be useful in the solution of many practical problems [139]. Nevertheless, these techniques

are not of much value in purely combinatorial problems. Besides, they often involve a tradeoff between

computational efficiency and efficiency in finding a good solution, i.e., stronger forms of the constraint

satisfaction methods are computationally more expensive.

3.4 Approximating the NP-hard problems

The apparent computational intractability of optimization problems have pressed many researchers

to design and use methods that find approximately optimal solutions instead of the optimal one. These

studies culminated in various algorithms that can find solutions within a factor of the optimal solution.

Unfortunately, most NP-hard optimization problems resisted to attempts to obtain algorithms with

parametric error rates. Moreover, no explanations could be given, until recently, why finding good

approximation algorithms is difficult (or at least, why significant amounts of research failed to find such

algorithms). Recent studies yielded a simple explanation: many NP-hard problems are also NP-hard to

approximate [5].

Let A be an approximation algorithm and L(A) denote the value of the solution produces by this

algorithm. Also, let L* denote the value of the optimal solution for the corresponding optimization
LAproblem. It is customary to define the performance ratio as L( for maximization problems andL~~~~~~~~~~~~~~~~~*

as L for minimization problems. There exist algorithms for various NP-hard problems that find

solutions with a constant performance ratio. For example, polynomial time algorithms can produce

solutions, for TSP with triangle inequality, node cover, maximum cut, and maximum satisfiability, with

the performance ratios 3/2, 2, 1/2 and 3/4, respectively. However, it is often desirable to reduce such

bounds on the performance ratios. For example, we might want to design an algorithm A such that the

error in the nearness of the designated solution to the optimal one (e = L(A)L* ) could be reduced
L* )cudb eue

arbitrarily by increasing the number of the calls made to this algorithm. If the algorithm runs in

polynomial time, the result would be a polynomial time approximation scheme (PTAS) which produces

a solution with a performance ratio of 1 + e. Despite some positive results for special cases, such as

the bin packing problem (which has a PTAS [36]), the goal of obtaining PTASs has generally remained
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elusive. Williamson [147] presents a general 7-(k)-approximation algorithm (where 7-(n) = 1+2+- ½ *+ .

and k is the highest connectivity requirement), which is applicable to a large class of graph problems.

Garey and Johnson [52] proved that many NP-hard optimization problems do not yield to approxi-

mation schemes. For example, they prove that Po NP implies that we cannot obtain an approximation

scheme that produces solutions with a bounded error such that L(A) - L*I < K for any given K for

the knapsack and the maximum independent set problems. Similar results have been obtained for many

other NP-complete problems. For example, Arora [6] obtains that for some constant a > 0, there does

not exist any polynomial time algorithm which will approximate the maximum clique within a ratio

of ng unless P=NP. Karger and Motwani [82] show that, for any < 1, the problem of finding a

path of length n - n6 in an n-vertex Hamiltonian graph is NP-hard. They generalize this result to the

longest path problem, and thereby obtain that no polynomial time algorithm can find a constant factor

approximation to the longest path problem unless P=NP.

Recently, it was proven that the problem of approximation is NP-hard for a large subset of NP-hard

problems [5]. In specific, the results of Arora et. al. [5] establish that unless P=NP, there do not exist

polynomial time approximation schemes for optimization problems which are MAX SNP-hard. The

class SNP is a strict version of NP and was defined by Papadimitriou and Yannakakis [108] based on a

syntactic characterization of NP. They also provided a notion of approximation-preserving reductions

for problems in this class, and under this reduction, identified a large number of approximation problems

that are MAX SNP-hard, and are therefore unlikely to have any polynomial time approximation schemes.

These problems include such widely studied problems as 3-SAT, vertex cover, metric TSP, Steiner trees,

independent set, chromatic number [94], set cover, vertex cover, max-cut, decoding to the nearest

codeword, learning in the presence of errors and many others.

Further, Arora has proceeded to give a new definition of the class NP based on probabilistic checking

of proofs. At the heart of these new results is a new type of NP-completeness reduction which acts

globally (as opposed to the classical reductions, which used local transformations). A more interesting

way to view this reduction is as a new probabilistic definition of NP: NP is exactly the class of

languages for which membership proofs (i.e., certificates) can be checked in polynomial time by using

only O(log n) random bits and examining only 0(1) bits in them [5].

3.5 Graph Search Methods

3.5.1 Plain Methods

The preferred choice of the solution method for NP-hard problems historically has been a systematic

search that followed a generally simple rule for converting the inherent nondeterministic step in a solution
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algorithm to a deterministic one. This plain search method has proved to be useful not only because it

is problem independent - in contrast to most heuristic methods - but also it is valued as a benchmark

useful in comparing different search methods. Moreover many other methods can be understood as the

extensions of the plain search.

Let us call the naive search method algorithm zero. Algorithm zero uses a data structure called

FRINGE which contains a set of pairs (n, P) where n is a node and P is a plan that leads from the

given initial node s to the node n. For finding a plan that leads from s to g:

1. [Initiate ] FRINGE:= ((s, 0))

2. [Select ] Select a pair (n, P) from FRINGE

3. [Check goal ] If n = g, then terminate and return P

4. [Extend ] For each neighbor j of n, add the pair (j, P D j) to FRINGE

5. [Continue] Go to step 2

If the step 2 always selects the most recently added pair (in which case FRINGE behaves as a stack),

the algorithm zero executes a depth-first search. If the step 2 always selects the earliest added pair (in

which case the FRINGE behaves as a queue), the algorithm zero executes a breadth-first search [97].

Note that the algorithm zero can be improved by using a marking scheme to recognize the previously

visited nodes in order to prevent falling into cycles.

With the marking scheme, both methods systematically search whole solution space. In the worst-

case, this would require going through all possibilities, i.e., both algorithms have exponential complexity.

For example, the breadth-first search may take order md time to find a plan of length d in a graph with m

outgoing edges per node. Their actual performance however depends on the structure of the particular

search problem in question. Let N(d) be the number of distinct nodes in the graph that can be reached

by a plan of length d. The marking version of the breadth-first search takes order O(N(d)) time. N(d)

grows slowly in the graphs with sparse edges, yet it still follows an exponential law. If the solution is

likely to be long, i.e. if d is large, the depth-first search may be a better choice than breadth-first, for it

requires less memory resources. In general, depth-first strategy will need to store only log2 n states to

search a n-node tree, while breadth-first search needs to store n/2 states [103].

Both depth-first and breadth-first searches are blind in the sense that the selection they make in step

2 depends totally on the problem specification and is not grounded on the knowledge of the problem

or the partial solution. In fact, by making this selection random, we obtain the pure Monte-Carlo

method which relies on hitting the desired solution by luck. Thus, these searches do not use any

knowledge obtained from the search process. These plain strategies constitute a benchmark that other

solution methods must be judged against.

We can classify search methods according to the paths they take in the search space, under three

different headings; Monte-Carlo, gradient-descent and probabilistic methods. While the Monte-Carlo
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method obviously follows a random path, the others include a systematic bias in the paths they take.

3.5.2 Gradient-descent Methods

Gradient-descent based methods use the local information obtained in search for choosing the

next step to be taken. Newton's method for finding the roots of a function is a nice illustration of this

technique. In symbolical processing this technique often appears as hill-climbing strategy; its variation

that additionally incorporates the accumulated cost of a partial solution is known as best-first search.

Best-first search sorts the FRINGE data structure appearing in step 2 of the algorithm zero with respect

to the accumulated cost and then selects the best one to explore further. In most problems that aim

to find a solution having the minimum cost, the consideration of the accumulated cost turns out to be

quite useful as it bounds the the search space. As soon as a solution with cost Co is found, any partial

plan having an accumulated cost Cp such that Cp > Co, can be discarded if the further exploration

would only add to Cp (Branch &4 Bound). Further, in a minimization problem with a monotonically

increasing cost function, the sorting in the selector step 2 of algorithm zero can be replaced by the

instruction "select the pair with minimal cost", that results in a polynomial complexity.

In the shortest-path problem in a graph with edges having non-negative labels, this variant of

the best-first strategy (Dynamic Programming) produces an algorithm with order O(mn). In general,

however, the best-first search can finish processing plans of cost c in order O(N(c) log N(c)). For N(c)

usually growing exponentially in c, the best-first search might take an exponential amount of time.

If one uses heuristic knowledge in the selection of the next step for the nondeterministic part, one

obtains the famous A * search. In finding a plan with minimal solution, A* search estimates the distance

of a partial plan to the goal by using an underestimating heuristic function h(n). Adding this estimate

and the accumulated cost C(p) of a partial plan, one obtains the directly projected cost of a partial plan

to completion. A* search replaces the sorting measure of the best-first search by the directly projected

cost. If the heuristic function is monotone and an underestimating one, i.e. h(n) < h*(n) where h*(n)

is the cost of the minimal cost plan that leads from n to the goal node, A* is guaranteed to find a

minimal cost solution. Even with heuristic functions that do not meet the monotonicity condition, A*

search can find the solution if the directly projected cost is replaced by the projected cost, which is the

maximum over all of the directly projected costs of the prefix plans [973. Let N(c) denote the number

of nodes in a plan with cost no larger than c and N* (c) denote the number of those with projected cost

no larger than c. A* search terminates in time proportional to (N* (c) log N*(c)) where c is the cost of

the minimal cost solution plan. If the values of h are large relative to accumulated costs, N* (c) would

be smaller than N(c) resulting in some gain in efficiency compared to best-first search.

Many variations of these classical search techniques can be found in the literature. The iterative

versions of these have been especially successful in some problems arising in areas where time or memory
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resources are critical. Iterative deepening, for instance, starts with a certain depth limit and tries to find

a solution within that limit; if it can not find a solution, it backtracks to the start, extend the depth

limit, and resumes search, repeating this process until the time resource is exhausted. Iterative widening

applies the same idea to the cardinality of the queue in the breadth-first search. These iterative methods

have to walk back over the previously explored search spaces following a jump back to the start node.

Yet, their complexity is only marginally larger than that of the corresponding plain search with built-in

limits since the sum of a geometric series is dominated by its last term.

3.5.3 Probabilistic Methods

Probabilistic methods are those that try to draw the useful aspects of the both the Monte-Carlo

method and the gradient-descent method by combining them in harmony. One can count simulated

annealing, genetic algorithms and tabu search as the prime examples of this class. (Another often cited

example evolutionary strategy relies only on mutation and can be considered as a variant of the random

search). All these instances differ in the ways and in degrees they combine randomness and biased

selection. For example tabu search adapts the mutation scheme of simulated annealing but also tries to

make use of the information a local search provides through continuously updated memory structures.

Another promising technique that has been suggested [105] changes the measure of desirability for a

given state. It uses probabilities and a range of values as opposed to single value representation of the

classical state search techniques.

Simulated annealing can be considered as both a variant of the Monte-Carlo method and a variant

of the greedy search. It starts with a random solution and tentatively modifies it by using a user-specified

mutation algorithm. When a mutant improves on the current solution, it replaces the original. So as not

to be confined into a local optimum, though, the algorithm sometimes accepts a solution that is worse

than the current solution at a given time. When that happens is decided by comparing a random-number

with a threshold probability value which is continuously reduced according to an arbitrary annealing

schedule (hence the name simulated annealing). In other words, if a proposed local change does not

bring an improvement, it will not be taken - unless a random number (p) satisfies the condition

p < e-E/T

where 6E is the change in energy that maps into the objective function and T is the current annealing

temperature. By moving from high temperatures to low temperatures, a global optimum can be obtained

[85]. With simulated annealing, it has been possible to obtain satisfactory answers to combinatorial

problems having a cardinality as large as 300!.

Genetic algorithms are modelled after the evolution process and thus apply genetic operators,

most important of them being crossover, on a number of solutions in order to obtain the next set of
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solutions. Crossover creates a new solution by swapping the part of a solution with the part of another

solution. The fitness-based selection effectively eliminates the low-fitness solutions whereas those with

high-fitness solutions are either duplicated or cross-breeeded with the others. Thus, the next generation

of the solutions are expected to be better on the average from the previous ones. Genetic algorithms are

particularly amenable for implementation in parallel computers that could process and evolve a group

of individuals in a single step.

Tabu Search is essentially a meta-heuristics that can be superimposed on other procedures to

prevent them from becoming trapped at locally optimal solutions. Tabu search is founded on three

primary themes [57]: 1) the use of a flexible attribute based memory structure designed to permit

evaluation criteria and historical search information to be exploited more thoroughly than by rigid

memory structures (as in branch-and-bound and A* search) or memoryless systems (as in simulated

annealing and pure random search) 2) an associated mechanism of control - for employing the memory

structures - based on the interplay between conditions that constrain and free the search process; and

3) the incorporation of memory functions of different time spans, from short term to long term, to

implement strategies for intensifying and diversifying search.

The core of tabu search is embedded in its short-term memory process, which evaluates a candidate

list of mutations to current solution and then chooses the best among them. In the probabilistic variant,

tabu search generates probabilities for selecting mutations and, like the deterministic form, establishes

priorities based both on move evaluations and the tabu search memory structures. The selection of

the best candidate also checks for the solutions' admissibility. Admissibility is based on the tabu

restrictions and aspiration criteria. These checklists are updated at every iteration of and thus serve as

long-term memory. Further memory structures are incorporated by establishing a historical standard

for differentiating the quality of alternative mutations [57]. This learning capability helps in intensifying

and diversifying the search by reinforcing attributes historically found good and driving the search into

new regions.

Tabu search has been found to be highly effective in the solution of many problems [57]. Further,

it has been successfully integrated to other solution methods such as neural networks and branch-and-

bound.

3.5.4 Comparison of Different Methods

Which technique is most suitable for planning problems? We can now reduce this question to the

specific questions about the cardinality of the solution set, the complexity of the search space, the

possibility of heuristic methods and so on.

Prior experience shows that the problem-customized heuristic methods should be embraced whenever
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possible, for the problem-independent search methods cannot compete with them in efficiency. In

addition, search strategies making use of heuristic information or at least incorporating it as much as

possible should have an advantage over others. The difficulty lies, however, in finding the necessary

heuristics. For as it will be shown later, the problems we consider are inherently nonlinear, i.e., they

do not generally accept monotonically increasing cost functions, and thus it is not easy to find and

implement heuristics that would be general enough to be useful in different types of problems. However,

we will perform experiments that can be used for inferring such heuristics.

Any comparison of the search methods must also take into account the structure of the problems

that are being considered. If the problem lies in a very irregular search space such that there is no

correlation between any pair of different solutions, the Monte-Carlo technique is perhaps the best we

can hope for. The expected time it takes to hit a particular solution in this case is linearly proportional

to the size of the solution set. If the search space is regular and smooth, the gradient-descent based

methods that use local information would be quite effective. Nevertheless, if the search space contains

local optima, these techniques may suffer from falling into local optima unless a way out of this problem

has not been specifically incorporated to the method. Furthermore, all of these methods can suffer from

the computational complexity of the problem. When the solutions proliferate, as it happens with the

NP-complete problems, either memory or time resources might be depleted before a solution can be

found.

If the search terrain lies between being smooth and wildly irregular, it is believed that the best search

methods one can apply are the probabilistic methods. These methods can make use of local information

while being able to explore the larger sections of search space. Davidor [33] notes that GAs are good for

moderately complex, nonlinear spaces. He adds "In fact, it is only worthwhile to apply GAs to spaces

that are complex and nonlinear enough so that the use of targeted algorithms is unsatisfactory".

Even though GAs and other stochastic methods cannot guarantee to find the best solution, the

solutions they find, for most cases, can be quite close to the best solution. Many engineering design and

optimization problems are modelled using approximations and fuzzy data. Hence, from an engineering

point of view, little meaning can be attached to best. Hopfield [75] notes that

"Often, what is truly desired is a very good solution, which will be uniquely best only for simple tasks.

In many situations, a very good answer computed in a time scale short enough so that the solution can

be used in the choice of appropriate action is more important than a nominally-better best solution."

From this point of view, the classic graph search methods, such as A*, or best-first search, which

guarantee to find the best solution, may be more powerful and time consuming than necessary. The

class of problems that can be solved with these particular search methods corresponds to the complexity

class PSPACE. Because they are contained in PSPACE, NP-complete problems can be solved with these

methods as well as some other problems that are even harder. Yet, it appears that the wide-applicability
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of classic search methods results in a relative inefficiency in solving such problems as these methods

do not exploit particular characteristics of NP-complete problems, in contrast to constraint satisfaction

techniques. Further, these techniques construct a solution piece by piece and thus are unsuited for

applying heuristics and cost functions that require a complete solution to evaluate.

Because of these disadvantages associated with A* type search techniques and limited benefits of

exclusively relying on heuristics for the problem of most interest here, we have chosen genetic algorithms

for further analysis.

3.6 Genetic Algorithms and Evolution

In nature, the struggle for existence among living beings results in, over the generations, a gradual

accumulation of the features that increase the chances for successful next generations and a gradual

elimination of those that reduce it. Making this observation, Darwin concluded that the species evolve

to adapt to their environment under the pressure of natural selection. Today, the biological structures

that determine the features of the living beings are called genes and evolution is viewed as the way

genes live and die [34], rather than the way species change. The genes, while competing with different

genes for the same natural resources, direct the bodies in which they are embodied for achieving their

goal of reproducing. In other words, bodies are temporary vessels for those genes they carry within.

The process of evolution can be viewed as a procedure for finding better solutions to some externally

imposed problem of fitness. What this fitness measures in natural evolution has been a topic of dis-

cussion, yet the most convincing explanation emphasizes success in reproduction (number of offsprings,

each weighted by the probability that it will reproduce) [140]. When a group of individuals and their

descendants have been subject to a continuous - stationary or changing - pressure forcing adaptation,

it is observed that the population will generally evolve toward "greater fitness" determined by a partic-

ular set of genotypes. These genotypes are distinct from others that have not survived merely by the

property of having better coped with the selection pressure. In this sense, fitness of an individual is a

measure of the survival probability for her genes in a given environment.

The idea of modelling this phenomenon for generating better solutions to optimization problems has

led to the birth of Genetic Algorithms (GAs). Today, GAs refer to a family of computational models

inspired by evolution which are applied in a broad range of problems, such as program induction and

cellular automata as well as function optimization. The first application of the GA appeared as early

as in 1962 in a structural design study [17]. Later, various versions of simulations of evolution were

evolved. As of today, though, most of these simulations still embody only a very simplified model of

biological evolution.

In its most general form, a GA can be classified as a stochastic, inductive learning mechanism. A
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- Generate a set of solutions for the seed generation
2 - Evaluate the fitness of each individual in the current generation
3 - Apply genetic operators to each individual

In specific, decide on the basis of fitness and a probabilistic test, to apply either:
a- Duplication
b- Crossover
c- Mutation

4 - Replace the population with new individuals
5 - Go to step2

Figure 3-1: A Canonical Genetic Algorithm

GA can also be compared to a special type of iterative Monte-Carlo algorithm which tries to improve its

solutions by preserving the better solutions while replacing the worse ones. Whereas the Monte-Carlo

approach generates new solutions randomly, a GA recombines the previously obtained solutions in order

to construct new solutions.

GAs can be best characterized as recursive search procedures modelled after natural evolution; they

start with some initial solutions and proceed by recycling and refining them. Figure 3.6 presents a

canonical representation of a Genetic Algorithm. The recycling process uses a biased selection and

recombination of the solutions in which preferences are given to those that show more promise for

satisfying the predetermined objectives of the simulation. This performance-oriented selection process

is not deterministic, but it uses a probabilistic mechanism that makes decisions by comparing a random

number to a scaled fitness value that measures the desirability of a solution.

Only the most obvious aspects of biological evolution have been modelled in GAs. The recombination

of old solutions to produce new ones can be considered as a cursory simulation of sexual reproduction.

More importantly, GA is considered to be simulating natural selection, for it involves a mechanism in

which the fitness of an individual strongly influences its fate in the recycling process.

In GAs, the building blocks of a solution take the place of the genes and solutions become the entities

to which the selection pressure is applied via genetic operators. The most important of these genetic

operators is the simulation of sexual reproduction, which is often called crossover. A crossover operation

usually produces two new individuals from two old ones by exchanging randomly selected subsets of

their genes. Although it is employed in nature mostly by primitive life-forms, asexual reproduction is

sometimes modelled in GAs through duplication operation. It has been found useful in most optimization

problems for it transfers the better solutions to next generations without any degradation. Another

basic genetic operator, mutation, is secondary in importance to both crossover and duplication, for it is

effective in much longer time scales both in natural and artificial evolution. Practical implementations

of GAs can also contain operations without equivalents in natural evolution.
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The natural selection in the GA is fitness-driven. In contrast to ambiguity on what fitness measures

in nature, the goal-oriented optimization studies employing the GA can apply a plain fitness measure:

the value of the objective function that maps a solution to a real number. Because the fitness of a

solution is used only to make comparisons, most implementations use a fitness function that is slightly

different than the objective function. In such cases, the fitness function may rescale and shift the

objective function or may even represent it in a coarse manner. Evaluation of the fitness function is

often the most computationally expensive part of the GA. Sometimes, a limited form of fitness evaluation

can be used through sampling or simulation or even a partial evaluation of the solution in the given

environment. This use of GAs is especially common in artificial-life research.

The similarities between GAs and evolution provide some justification for the success of the algorithm

in the optimization and adaptation studies. Yet, one needs a theoretical explanation of the algorithm's

behavior for a better understanding. In the next section, we review the first developed theory of GAs,

called the schema theorem.

3.7 Schema Theorem

When a particular individual in nature leaves many descendants and thus perhaps decreases the

probability of extinction of its genes, we usually cannot pinpoint which features or which combination

of features were responsible for this achievement. Similarly, when one solution to a fitness problem

appears to be better than others in a trial method, it is often hard to know which specific features were

responsible for its better fitness.

Yet, keeping track of the historical record of this individual and its descendants could yield many

clues on the question of which features count in success. Both in natural and simulated evolution this

question is posed implicitly due to the selection pressure and the answer is produced again implicitly,

thanks to repeated applications of selection, reproduction and recombination over a set of individuals.

An explanation of how the process of evolution can achieve this feat is first given in Holland's book

Adaptation in Natural and Artificial Systems [74]. Holland proved that GAs produce near-optimal

strategies for multi-armed bandit problems 3 through a credit allocation mechanism. In a two-armed

bandit problem, a rule suggesting that "stay on the winner, switch on the loser" yields better results,

on average, than the 50-50 per cent random selection rule. However, more qualified information can be

extracted from a record of the results of different strategies.

3 A classic example of a two-armed bandit example is as follows:
Suppose two treatments are available for a certain disease. Patients arrive at a clinic one at a time and one of the

treatments must be used on each. Information as to the effectiveness of the treatments accrues as they are used; no prior
information exists. The overall objective is to treat as many patients as effectively possible. This problem of allocating
treatments to patients over time is surprisingly difficult, even when the responses are dichotomous, either success or failure.
[14]
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For an effective solution algorithm involving sampling from a search space, one needs to find a delicate

balance between further exploration of the search space (which can be considered as an oversimplified

version of "switch on the loser" rule) and making best use of the current data ("stay on the winner").

In this search, one is always faced with a trade-off contrasting further exploration that could potentially

bring gains against the cost of the search. More importantly, one must decide on how to proceed in

the sampling process by choosing the areas to be further explored. Confining new search regions to the

immediate vicinity of those that proved valuable in former trials can quickly lead to an overexploitation of

statistical data. GAs are successful because they can exploit accumulating information about an initially

unknown search space and bias subsequent search in order to determine the new search subspaces where

the above-average payoffs are likely, all based on the database of tentative solutions. This learning

capability enables the GA to search without being either too greedy or too conservative.

Genetic algorithms induce the features of the target answer from a set of trials by giving almost

optimally each possible answer an opportunity to contribute to the next set of trials. The allocation

proceeds by making sure that each explanation on what constitutes the best answer is accounted for

approximately in balance with its average fitness. It gives credit to solutions but not explicitly to genes,

because most of the time, due to nonlinearities, a particular combination of individual genes would be

responsible for high-fitness.

The learning capability of GAs is often analyzed in terms of induction of concepts, called schemata

in the parlance of GAs, that successfully explain why some solutions have higher fitness in a set of trials.

A concept is a hypothesis or a rule that can differentiate between a set of instances in regard to certain

features. Given an alphabet with K different symbols and a maximum object size of 1 symbols, we can

list K 1 instances of objects and (K + 1)' different concepts for these instances. The concept space is

larger than the object space because a concept can specify more than a single object simply by using

an or relationship for certain features. Concepts are often expressed with the help of an extra symbol

*, meaning "don't care".

A GA converges to target concepts gradually by decreasing the probability of emergence of those

with low-fitness and increasing the corresponding probability for those with high-fitness. Consider a

binary alphabet with word length 3. In this alphabet, (2 + 1)3 = 27 concepts exist. Tentative solutions

such as 010, 011, 001, or 110 are members of many schemata. For example, the word 010 belongs to

all of these schemata: 010, 01*, 0*0, *10, 0**, *1*, **, ***. Therefore, even if 010 emerges as a very

high-fitness solution, it should not necessarily qualify as the desired answer. On the other hand, the

schemata *10, *1*, *** also contain the word 110. If 110 were a low fitness example, while 010 had high

fitness, we should eliminate those schemata as the possible explanations for fitness. It is thus possible

to discharge the impossible explanations and come up with plausible ones through a learning algorithm,

although to narrow down the possible explanations to a single one usually requires an extremely large

amount of samples.
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The GA is not unique in its induction capability; there is a large family of algorithms that enable in-

ductions. GAs, however, are not limited to a passive learning. Thanks to a fitness-driven sampling, they

also actively seek those samples that can eliminate alternative explanations. Therefore, GAs can account

for the conflicts appearing between different schemata which can result from the inherent nonlinearities

in a problem, from errors introduced by statistical sampling, from the noise in the environment, or even

from changes in the environment [86] that can be expressed with a non-stationary fitness function. GAs

are particularly useful when applied to those problems that contain nonlinear relationships between var-

ious decision parameters. Such relationships are raised by often subtle linkage between various genes,

such as the suppression of the effect of a gene by a totally different gene and they are called epistasis in

the field of genetics.

GAs achieve all of this by giving weight to each schema in proportion to its average fitness. Al-

though GAs do not calculate the average fitness of schemata nor even perform any explicit operation

on those, the fitness-proportionate reproduction makes sure that the number of individuals belonging

to a particular schema changes on average proportionally to the ratio of average fitness of the schema

to that of the average fitness.

This fact is contained in the so-called Schema Theorem, due to Holland [74]. For the purpose of

stating the theorem, let f(H, t) be the average fitness of a schema H. That is,

f(H, t) = E H f (Xi t) (3.2)m(H, t)

where m(H, t) is the number of occurrences of schema H in generation t. This average fitness has an

associated variance that depends on the number of items being summed to compute the answer.

Note that because GAs sample from a very small portion of the search space, all the averages they

use are estimates and thus involve statistical noise. Conversion of the deterministic credit allocation

mechanism to a stochastic one helps to minimize the errors due to statistical noise.

The schema theorem states that, for a genetic algorithm using Darwinian operation of fitness-

proportionate reproduction and the genetic operations of crossover and mutation, the expected number

of occurrences of every schema H in the next generation is approximately

m(H, t + 1) > m(H, t) f ( t ) (1 - ec)( -e m) (3.3)
f-t)

where f(t) is the average fitness of the population at generation t, ec is the probability of disruption

of the schema H due to crossover and em is the probability of disruption of the schema H due to

mutation.

The schema theorem implies, to the extent that ec and m is small, that the change rate in the
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occurrence of a particular schema is proportional to its fitness ratio f (Ht) . If a schema has fitness ratiof t)
higher that 1, its occurrence should grow exponentially.

The allocation of trials is most nearly optimal when both e and em are small. Further modelling

of these operators indicates that this would be the case for e when the defining length (the distance

between the outermost specific, non-* symbols) is short, and for em when the number of non-* symbols

is small.

In summary, the GA superficially seems to be concerned with the individuals to whom it applies

the genetic operators but it actually process a large amount of useful information contained in unseen

schemata (which is often referred to as intrinsic or implicit parallelism). Further, this computation

is accomplished without any explicit memory beyond the population itself and without any explicit

computation beyond the simple genetic operations acting on the individuals of the population [86]. The

only memory involved in the genetic algorithm is the state of the system itself. Schaffer notes that [125]

the possibility of processing a large number of explanations with only a few individuals represents the

only known example of combinatorial explosion working to advantage rather than to disadvantage!

3.8 Schema Theorem Extended

The schema theorem implies that, in the generation of a new group of individuals, each schema

would appear proportionally to its fitness. From this assumption, Goldberg [60] obtains an equation

that gives the proportion Pk (t) of a structure k in terms of its former proportion. The proportion Pk (t)

of a special schema k would be approximately equal to its former proportion in the preceding generation

weighted by the fitness values as the GA tries to allocate new slots in the next generation proportional to

the current fitness values. Following Goldberg's line of analysis [60] and modifying it for multi-structure

cases, we obtain for a population size of n:

fk(t - 1)Pk(t -1)
Pk(t) W En_ f ( t 1) P (t 1) (3.4)

where f is defined as a weighted average over the fitnesses of all individuals excluding the desired

solution:
j=l,jAk f3 PJf= _ (3.5)

Pj=jk i

Because the sum of proportions must be equal to 1, i.e.

n

E P +Pk=1
j= 1, j9k
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we can make the following manipulation to the numerator of Equation 3.4 using Equation 3.5

n n

EfjPj = fkPk + E fjPi
j=l j=i,jOk

= fkPk + f (1 -Pk) (3.6)

Defining rk as the ratio of the fitness of the solution k to the others' average fitness

fkk= (3.7)

we finally obtain:

Pk(t) fkPk(t- -1) + f'(1--Pk(t-1)) (3.8)
rkPk(t -1)

rkPk(t- 1) + (1 - Pk(t- 1))

Pk(t) can also be expressed in terms of the initial values:

Pk(o) rl-Ut rkl (3.9)Pk W:--11(3) .9
(1 - Pk(O)) + Pk(O) lt= rkl

This formula indicates that the proportions of the high-fitness schemata with r > would increase

exponentially while the proportions of the low-fitness schemata would decay exponentially. Note that

GA will always find at least one schema in each generation with a fitness ratio rk greater than 1.

As different schemata are cross-bred with each other, a pure genetic algorithm without any side effects

should converge eventually to a single schema. Competing schemata can cause the genetic algorithm

to deviate from converging to an optimal structure, but, on the average, we can expect that a single

good schema would cover an exponentially increasing fraction of the newly produced individuals. Thus,

through the feedback of the fitness values as a selection pressure and cross-breeding, GA eventually

can find the desired solutions, even though the initial probabilities of high-fitness solutions could be

extremely miniscule.

3.9 Discussion of Theoretical Models of Genetic Algorithms

While the schema theorem can explain how GAs can converge to good solutions, it does not tell

much about the specific concerns such as the complexity of the algorithm, the convergence rate, the

best ways of implementing genetic operators, the best choice of parameters and so on. There are many

sophisticated models of GAs that try to answer such questions by going into details in the modelling
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stage and in the assumptions they make. Unfortunately, most of these theories are often not realistic

enough and their results may not be consolidated well with empirical data reported in literature. For

example, Markov models of GAs have been gaining popularity recently [144, 141], yet they are found

to be inadequate in resolving the issues regarding the optimal parameters for a GA. As a result, many

problems that arise in the use of GAs, such as "what is the best parameter for the population size?",

are still debated in the literature.

Furthermore, a substantial part of the later studies on theoretical explanation of GAs have been

based on a special implementation. In this classic implementation, a gene consists of a binary number

and a solution is an ordered list of such genes. Crossover selects two random points on each gene and

exchanges the bits between them. Mutation consists of the inversion of a random bit. The goal is

generally the optimization of a function that can be usefully expressed with such a representation.

While the classic implementation has been the preferred method of employing GAs, there is no

requirement of using it; the algorithm in Figure 3.6 does not specify any details. The classic implemen-

tation is often criticized for being too tight in order to freely apply general optimization problems. For

example, Goldberg claims that [59] "messy" GAs that use changing word lengths, in contrast to the

"tidy" implementations, perform better in most problems. Koza diverges significantly from the clas-

sic paradigm [86] by replacing the binary words with programs in a user-defined functional language.

Besides, it is often observed that using specialized versions of crossover or mutation often yields more

efficient solution algorithms.

Diverging from the classical implementation has brought out two problems that are still unresolved.

The first concerns what the best representation would be for a given problem. The second problem asks

what the best implementation of the genetic operators should be.

Whether binary encoding is the most effective representation for GAs is currently a discussion

topic in the literature [64, 61, 35]. While DeJong emphasizes that [35] there is nothing sacred about

about traditional string-oriented genetic operators, others believe that [122] binary encoding can process

schemata more effectively than other representations due to its compactness. As DeJong [35] points

out, GAs work work best when the internal representation encourages the emergence of useful blocks

that can subsequently be combined with each other to improve performance.

Along with the representation problem, problems in regard to implementation of genetic operators

surface when one diverges from the classical implementation. Further, the classical method of imple-

mentation does not produce valid offspring in many constrained problems, prompting some researchers

to implement new operators that overcome this difficulty and some others to use penalties in the selec-

tion process for constraint violations. The implementation of different crossover operators for particular

problems is a favored study topic in GA community.
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Also, questions concerning the mutation operator have been posed but not convincingly and com-

pletely answered yet. What is the best implementation for performing mutation? What should be the

optimum frequency of mutation? Can GAs perform adequately enough without mutation? The debate

continues on whether the most important feature of GAs is natural selection and hence mutation should

be sufficient in simulating evolution or whether the important feature is the effective schemata sampling

achieved naturally by crossover and therefore good performance can be obtained only when crossover

is used. See [145] for a summary of this discussion or [100] for a defense of the first view that basically

assess the GA as a hillclimber.

Another closely-related discussion topic considers whether GAs optimize often prematurely due

to strong fitness-proportionate selection and whether this could be avoided. The effect of premature

optimization could be minimized by incorporating mutation and performing multiple independent runs

at the expense of increased computation.

Another question concerns the method of selecting and matching individual solutions for cross-

breeding. Different algorithms for performing this task, such as tournament-based selection, rank-based

selection or elitist selection, are suggested as being superior to others in the literature.

Also, some other questions arise on the mapping between the normalized fitness and the objective

function. For example, shifting the fitness function by adding a constant to it would change the ratios of

the fitnesses for different schemata. Even though the objective function is only superficially changed, the

allocations of trials to schemata change, making the interpretation of the schema theorem problematical

[66].

Despite the fact that complexity of the GA has important practical implications, there are only

a limited number of results from this perspective. DeJong has examined GAs capability for solving

NP-complete problems and found that some NP-complete problems were handled better than some

others, Boolean satisfiability being a good performance example. DeJong also finds that the relationship

between the logarithm of the number of evaluations required and the logarithm of the search space is

sub-linear for such problems.

Finally, a very important question on simulating evolution asks the best ways of improving the

simple model of simulation. One might suspect that more realistic modelling of biological evolution

can help improve the performance of classic GAs. A study by Hillis [73], for example, demonstrates

that the addition of co-evolving parasites is helpful in preventing the system from sticking at local

maxima. Different niches interact with each other in nature. A simulation of this phenomena could be

accomplished by running multi GAs in parallel with different niches linked via periodical emigration and

immigration. Goldberg states the idea, based also on distributed computation, with a lively metaphor

[58]:
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The communities consist of a set of homes connected to the centralized, interconnected

towns. Parents give birth to offsprings in their homes and performs ... evaluations there.

The children are sent to centralized singles bars in town, where they meet up with prospective

mates. After mating, the couples go to the town's real estate broker to find a home. Homes

are auctioned off to competing couples. If the town is currently crowded, the couples may

also consult the broker about homes in other communities...

Discussions abound on these questions regarding the details of GAs. Further, in implementations

of genetic algorithms, different routes are taken frequently. For example, while some use meta-GAs to

obtain the optimum parameters, some others claim that their effect is not really significant anyway and

go ahead with arbitrarily selected parameters.

For all these reasons, as well as for the reason that the software we developed is substantially different

than the classical implementation, we do not attempt to replicate the results found for the classical

implementation. Rather we develop a simple probabilistic model comparing GAs and the Monte-Carlo

approach that will be useful for answering those questions on the convergence rate, the complexity of a

generic GA and the optimum population size.

3.10 A Probabilistic Model Comparing GAs and Random
Search

Given the unresolved issues surrounding GAs, it should not be surprising that the following ques-

tion is posed: "Do genetic algorithms really perform well?". This has been a topic of discussion in

optimization and computation community due to the method's wide popularity. Upon listening to the

sides of this discussion holding extreme views, one searcher for truth might believe that GAs are a sort

of elixir while another might think that whole thing is nothing more than hype. The question is espe-

cially justified when we consider that a similar phenomenon has been experienced on neural networks:

Artificial neural networks too, have been modelled after nature, have not gained popularity for a long

time their emergence, and have been praised for their success in solving many types of computationally

difficult problems (as GA's). Yet, there have been many applications of neural networks in areas in

which they do not perform as well as some of the well-known techniques, an obvious example being

curve fitting through regression. Finally, one might suspect that GAs as well as simulated annealing

have been named after their counterpart processes occurring in nature perhaps in an effort to rationalize

their performance. Certainly, there is a lack of rigorous theoretical models to explain the reasons for

these methods' success. In the following, we give a simple probabilistic model of the gentic algorithm

that allows us to compare it with the Monte-Carlo approach and resolve some issues surrounding the

GAs.
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3.10.1 Definitions

The following definitions will be useful in analyzing evolution of the probabilities of finding the

desired solutions, in both the GAs and pure random search (called Monte-Carlo from now on):

Let ai(t) stand for the probability that an individual i of generation t meets the success criterion.

The success criterion is easy to determine once the optimal solution is known; it can be checked whether

a solution within close proximity of the optimal solution is obtained. Suppose that the distance of a

given solution to the optimal solution can be quantitatively measured as the ratio of the corresponding

values of the objective function. Then success can be measured in terms of obtaining a solution with a

convergence ratio less than a prescribed value. In other words,

ai(t) = Pr(yt) < y*) (3.10)

where y* is the required convergence ratio and yt) is the convergence ratio attained by the individual

i of the generation t.

Let (t) be the probability of finding at least one individual among a generation t of n individuals

meeting the success criterion:

,(t) = Pr ((y(t) _< *) V (y() < *) V ... V ((t) < y*)) (3.11)

Applying the laws of probability and invoking the assumption of independence between individual

solutions, we obtain

/I(t) = 1-[Pr(y(t) > y*)Pr(y(t) > y*)... Pr(y®t) > y*)] (3.12)

-- 1 - [(1- Pr(y(t) < y*))([ - Pr(yt) < y*))... (1 - Pr(yt) < y))]
n

= 1- a(1-ai(t))

i=1

Now, let rM define the probability of at least an individual meeting the success criterion after M -1

generations, at Mth generation.

FM = (1 -,3(1))(1 - (2)) ... (1 - (M - 1))/3(M) (3.13)
M-1 n ) n

II J(1 - ai(t) 1 - I( - i(M))
t=1 i=1 i=1
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We also define a cumulative probability QM as the probability of at least an individual meeting the

success criterion within M generations. Then,

(3.14)RM = (1) V (2) V...V (M-1) V (M)

= 1 - [(1 - ,13(1))(1 - ,3(2))... (1 -(M))]
M n

= 1 - II (1 - i(t))
t=l i=1

It follows from Equation 3.13 and Equation 3.14:

FM = PM - M-1 (3.15)

Finally we define a complementary probability to Q as

= - (3.16)

Note that these equations yield only the probabilities corresponding to the criterion of finding at

least one acceptable solution. More information in regard to the different criteria can be obtained by

using the corresponding probability distribution which a set of trials obey.

Now, we can make either of the following assumptions leading to an expression for the cumulative

probabilites for either pure random (Monte-Carlo) search or the GA.

* The trials in each generation are independent.

* The trials in each generation depend on the preceding generations.

Below we examine each case separately.

3.10.2 The Random Search Model

A simple method for finding a solution would be to generate an independent set of solutions and to

repeat this process when these trials do not satisfy the desired criteria. The independence assumption

leads to a constant probability a of finding an acceptable solution throughout a set of trials.

a (t) = ao (3.17)
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Given a0 a constant, we obtain:

(t) = o = 1 - (1 - o)" (3.18)

r(t) = (1 - o)n(t-1) (1- (1- o) n) (3.19)

And, for the cumulative probabilities, we obtain:

Q(t) = 1- (1- ao)t, t = 1,2, 3,... (3.20)

O(t) = (1 - ao) ' t e- ' ° " t (3.21)

This last equation 3.21 indicates that the nonconvergence probability 0 decays exponentially with

the number of independent experiments performed (nt) wherein a0 corresponds to the decay constant.

Despite this exponential behavior, the Monte-Carlo method may not be valuable when so is an extremely

small number. For example, if there is a set of permutations for possible solutions but there is only one

acceptable solution sa0 = and hence the decay rate for the nonconvergence probability may never be

fast enough.

3.10.3 The GA Model

For the GA, neither we can invoke the independence assumption nor we can determine the evolution

of the individual probabilities ai(t) from Equation 3.9 or from the schema theorem. Despite such

shortfalls, the following argument makes it possible to develop an expression for the nonconvergence

probability 0 for GA. Based on the extension of the schema theorem, we can expect that the probability

/ of finding at least one individual among the members of a population meeting the particular success

criterion should grow in accordance with the growing proportion of high-fitness schema.

Thus, using Equation 3.9 that expresses the proportion of good schema in terms of the fitness ratio

r of the best schema to the average fitness of the other schema:

/3 W r3(t- 1) (3.22)(1 -f(t - 1)) + r(t - 1) (3.22)
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It is plausible to express the evolution of the probability p3(t) in terms of the initial values:

00Iitl 'ri
(t) ~, i=1

The complementary probability to w ould be: jr
The complementary probability to 03 would be :

1 - (t) t 1-,~1 - 3o

( -)°) + 3 rl 'r
(3.23)

(3.24)

The above equation can be substituted into Equation 3.14 to obtain an expression for the noncon-

vergence probability = 1 - (t):

o(t) (3.25)

(1 - /o), 1-
(1 doo + o rl= r) - 0 + I[j=l rj) ... (1 -,6o + 0 rIjt-l rj)

We can further simplify this equation by noting that the first term on the right hand side expresses

the corresponding probability OMC of the Monte-Carlo approach obtained with the independence as-

sumption. Also by defining a function F as

1(1~~~~~~ -~ + ~o 112=1 rj)( .. ~o_ +/3 20 rl-1 
(~~~~~~~~~~'jlr). 1 - o -/9o ) =i~~~~~~~~~~~~~1I: r

F(flo,r,t) = (3.26)

and by defining function G such that

F(cxo, n, r, t) = exp (-G(ao, r, t, n)nt) (3.27)

the nonconvergence probability for the genetic algorithm is obtained as:

OGA(t) = OMC(t)e- G(onr t)nt (3.28)

This equation allows us to compare the performance of the genetic algorithm to that of the Monte-

Carlo approach.

The function F(t), which is strongly determined by the factors r, depends also on the initial success

probability, which, in turn, is determined by the population size, the required convergence ratio and the

problem size. F decreases sharply after a certain threshold value of the generation number.
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When the fitness function maps directly from the objective function, r(t) should not be taken as a

constant because it should decrease as the solutions converge to good schemata. Even with exponentially

decreasing values of r, the cumulative success probability of a GA still increases much faster than

corresponding probability for the Monte-Carlo approach.

These results indicate that the probability of not finding an answer in GA is an exponentially

decreasing fraction of that of the Monte-Carlo approach.

3.10.4 Comparison of the Convergence Time

The above formulas, which give us the probabilities of finding an answer in terms of the initial

probabilities of the Monte-Carlo approach can also be useful in giving information about the convergence

time of the algorithm.

A Single Run

The expected convergence time for a single run as a function of the failure probability , can be

obtained from the following equality:

T(6) = H(n)t(6) (3.29)

where H(n) is the time required to process a single generation of n individuals. t(6) denotes the

expected number of generations for a given failure probability such that O(t) = and is generally a

small number.

From Equation 3.28, one can find the expected number of generations to obtain a solution with a

confidence probability 1 - 6

t(6) = E-'(6) (3.30)

It follows that for the Monte-Carlo approach:

1 1
t(J)MC -log (3.31)

For the GA:

t(6)GA = O1(6) (3.32)

Assuming that the dependence of the function G(ao,r,t,n) defined in Equation 3.27 to variable t is

weak:

t(6)GA ( G) log (3.33)n(ao 4G) 

Both Goldberg [60] and Ankenbrandt [4] find similar results by making sole use of Equation 3.4.

Manipulating Equation 3.9 yields
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t = log (1-Po _P tp) (3.34)

Assuming that the solution exists initially at a proportion Po = y and that one lets the run proceed

until a final proportion Pt = (1 - ), the following result is obtained:

2 1-y
t = log (3.35)

logr l

If the proportion ?y is assumed to be a constant independent of the population size, this equation tells

us that the number of generations to convergence is of order O(1) [60]. If the population is permitted

to converge to bitter end, we can assume that that we start with one better individual and end with all

but one of the slots in the population filled by the better individuals. In this case, y = 1/n and

t = - log - 1 (3.36)
log r

In other words, these equations also tell that for a particular convergence ratio, the number of

generations to convergence would be a logarithmic function of the population size n.

Multiple Runs

A more informative picture is obtained from the following analysis that enable us to compare the

GA approach with the Monte-Carlo approach by looking at the number of required runs in order to

have a certain confidence in obtaining the solution.

The benefits of multiple runs arise from minimizing the effects of various random events and initial

conditions and especially of premature optimization. Koza notes that GAs are prone to premature

optimization [86], which also manifests itself in nature as the so-called niche preemption principle.

According to this principle, a biological niche in nature tends to be dominated by a single species.

Nature carries out its genetic experiments in parallel in numerous niches. The species that ultimately

dominates any given niche may be decided by unique initial conditions of that niche and the subsequent

unique history of probabilistic events in that niche [86]. Hence, performing multiple independent runs

bring advantages over a single run with a larger population size or a longer generation time for better

optimization.

Now, let us assume that we fix the probability of succeeding at least once in R runs in M generations

as z. Because the runs are independent,
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Number of Runs versus Cumulative Probability of Success for fixed Con fidence
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Figure 3-2: Number of Independent Runs versus Cumulative Probability of Success for Different Con-
fidence Probabilities

z = 1- (1-Q)R (3.37)

What is the required number of runs in order to have a certain confidence value? From the above

equation, we obtain that
log(1 - ) log(1 - z)
log(1 - ) log e) (3.38)

The following figure, Figure 3-2, shows the behavior of the number of the independent runs R(z)

required to yield a success with probability z = 0.9999, z = 0.99, z = 0.9, and z = 0.5 versus the

cumulative probability of success . One can compare the required amount of computation for a

certain confidence ratio by using previously developed expressions for the convergence probabilities.

When the independence assumption holds:

log(1 -z)
RMC = log OMC (3.39)

log 6

ntlog(1 - ao)

The required computation time is therefore

= log(1- z)
TMC(z) = ntR~c = log(1 - o) (3.40)
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For the GA model

RGA log(-) (3.41)

log(1 - z)
log 6OMC + log F(ao, n, r, t)

log(1 - z)
nt log(1 - ao) - ntG(ao, r, t, n)

It follows that

TGA(Z) = ntRGA (3.42)
log(1-z)

log(1 - a0 ) - G(ao, r, t, n)
TMC

1+ cq-
ao

We observe that GA can perform much better than a pure Monte-Carlo approach because the fraction

G is always positive. The degree of improvement obviously is determined by the function G(ao, n, r, t)
cio

which strongly depends on the fitness ratios r.

3.11 Advantages of GA

GAs are very efficient in finding suboptimal solutions, yet these can also be obtained via heuristic

techniques with often significantly less computation. The efficient utilization area of GAs may be limited

to those cases requiring solutions quite nearly optimal such that they cannot be provided by heuristic

methods. Besides, it is possible to find other algorithms that can outperform GAs in any given problem;

for the TSP, simulated annealing is one of them. These results indicate that GAs fall short of completely

solving computationally hard problems and should be used when the other methods may not perform

as effectively as them in the particular problem being examined. Despite these shortcomings, GAs have

some special advantages that can be useful in some problems.

First of all these is the possibility of using GAs in hybrid algorithms. Heuristic techniques can easily

be incorporated into GAs method of building solutions. As DeJong points out [35] if one has a strong

domain theory to guide the process of structural change, one would be foolish not to use it. The most

obvious way of taking advantage of an heuristic rule which suggests some complete solutions consists

of using these suggested solutions in the seed generation of the GA and to observe whether the GA

can improve on them. On the other hand, some heuristics do not produce complete solutions but only

help construct a solution by advising on the steps to be taken while extending a partial solution. These
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type of heuristics can be incorporated in the implementation of genetic operators. Both Grefenstette

[65] and Jog et.al. [79], who used this method for TSP, obtained encouraging results indicating a fast

convergence to high-quality solutions. Further, one can introduce a bias in the selection scheme of the

GA by incorporating heuristics in the stage of fitness-proportionate selection. Tidor and de la Maza

[136] suggest an example wherein the fitness-oriented selection is combined with weighting factors that

are gradually reduced according to the Boltzmann equation, in a quite similar fashion to the simulated

annealing algorithm.

Second, GAs are robust algorithms. Koza expresses this with the term ruggedness and notes that

[86]

In nature, evolution proceeds in the presence of noise and incomplete information in a

changing environment in which the population may occasionally be subjected to catastrophic

damage. Similarly, noise, incomplete information, unannounced changes in the rules of the

game, and malfunctioning machinery are features of many real-world problems.

From the early days of computing, von Neumann recognized the importance of synthesizing

reliable organisms from unreliable components. Since complex computations require large

numbers of computing devices wherein each device is unreliable to some degree, complex

calculations inherently raise the issue of probabilistic logic. Genetic methods offer a way of

to overcome the unreliability inherent in complex calculations.

Koza gives five examples of adaptation occurring in the presence of these interfering factors. His

first example is an experiment where evolution proceeds using only inaccurate information (i.e., there is

noise in the enviornment). In the second example evolution proceeds using only incomplete information

about the environment (i.e. there is sampling). The evaluation of the individual solutions must be

approximate and noisy if a complete evolution requires examination of an exponentially large number of

possible states. A further example in which the state space must be sampled in a limited fashion is given

by Fitzpatrick and Grefenstette [43] for a control application where the GA searches for an optimum

control strategy. These examples are especially important for our purposes becase they indicate that a

considerable amount of computer time can be saved by sampling the fitness or using partially correct

fitness values. With these methods, the convergence rate may not be as fast as one would expect if the

complete information were to be used.

Koza's other examples pinpoint the fault-tolerance of the GA (that was demonstrated by convergence

despite the fact that a part of the population was killed in random intervals), adaptation to a changing

environment (that was demonstrated by convergence in spite of the fact that the objective function to

be learned was repeatedly modified), adaptation to a even more extremely changing environment in

which the problem was changed halfway through computation. In all these examples, the GA achieves

to converge to optimal or slightly suboptimal solutions.
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As these examples show, the GA has an extra characteristic that can be useful in optimization.

By keeping a set of diverse solutions and relying to fitness values probabilistically, GA is able to cope

with inexact information and a changing environment. This property constitutes one of the unique and

strong features of GAs in contrast to those other optimization methods which keep track of only a single

solution and therefore become vulnerable to problems raised by such imperfections.

3.12 Summary and Conclusions

This chapter started with justifying the selection of the graph search approach for analysis of planning

problems. Then, we presented a brief review of the complexity theory which indicates that certain classes

of problems are intractable with conventional computers 4. Among these problems lie many that are

related to planning and graph models. We presented a list of these examples and summarized the

approaches suggested for solving them. We especially concentrated on the recent results that indicate

that the most NP-hard problems are also NP-hard to approximate and therefore there can be given no

guarantees or bounds by an approximation scheme.

In the second part of this chapter, we classified and reviewed the methods that are used for graph

search problems. The first class includes the enumerative techniques that search systematically. The

second class consists of the gradient-descent based methods. The third class contains the newly popular

probabilistic search mechanisms. We argued that this last class of search methods is most suitable to

those problem spaces that are nonlinear and complex.

In the last part of this chapter, we presented a detailed analysis of genetic algorithms. We have

produced, based on the schema theorem, a theoretical model that yields the evolution of probabilities

for obtaining satisfactory solutions. This model was useful for comparing the GA with the Monte-Carlo

approach. We argued that the GA is a general heuristic that is best suitable for finding suboptimal

solutions.

Finally, we argued that GAs have extra advantages that make them superior to other methods. In

addition to their ability to handle imperfections and incorporation of other heuristics, they can accept

incomplete information and process those solutions that are only probably good, yet eventually converge

to a desired solution by gradually refining them.

4 Preliminary results on the theory of quantum computers indicate that some problems intractable with present com-
puters (such as factoring) may be solved in linear time with these theoretical computers [128]
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Chapter 4

Deterministic Planning Problems
and Genetic Algorithms

In this chapter, we describe two simple, well-known, deterministic path planning problems and examine

their complexity (Section 1). Then, we examine the performance of genetic algorithms on a selected

test problem (namely the Traveling Salesman Problem) (Section 2). The empirical results obtained are

used to characterize the results of genetic algorithms. The results on benchmark problems also validate

our genetic algorithms-based software. The performance of genetic algorithms is compared to those of

other methods (Section 3).

4.1 Deterministic Path Planning Problems

4.1.1 The Shortest Path Problem

Most common planning problems can be better understood by comparing them to the the shortest

path problem (SPP) in a deterministic model. The SPP is a basic problem of combinatorial optimization,

with many applications. The SPP can be defined as follows: We are given a digraph G(V, E) where

each edge eij connecting a node i with a node j has an associated cost dij. Further a pair of nodes

(s, t) are specified as source and sink nodes. We are asked to find a path from to t with the minimum

cumulative cost.

Among many solution algorithms that can solve this problem, Dijkstra's algorithm is the most

prominent one, even though it is neither the most universal nor the most efficient one. Dijsktra's

algorithm can be used when there are no cycles and when dij 0 for all edges. This algorithm can

be classified within the category of best-first search method which was described in Chapter 3. The
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complexity of Dijkstra's algorithm is O(n 2 ) or O(m log n), whichever is smaller (We assume that IVI = n

and El = m). If the negative edge costs are allowed, the Bellman-Ford algorithm can be substituted

for Dijsktra's algorithm. A recent algorithm suggested by Fredman and Tarjan [48] improves the worst

case complexity to the largest of O(n log n) or O(m).

4.1.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known and well-defined problem of combinatorial

optimization. It is easy to state but difficult to solve. Informally, it asks for the shortest tour for a list

of cities to be visited. More formally, it asks for the specific permutation v, of n vertices such that the

sum

i=1(i d(V7r(i ) 1r(i+1) )+ d(VUr(n) v7r(1)) (4.1)

of the labels in an edge-labelled graph is minimum in the space of all possible permutations.

TSP is very often investigated under the following restriction: the nodes are points on the plane,

and the distance of the points u and v of coordinates ul, u2, and vI, v2 , respectively, is determined in

one of the following ways:

Maximum Metric: d[u,v] = max (u1 - vii, iu2 - v2i)
Manhattan Metric: d[u,v] = ul - vII + u2 -v21

Euclidean metric: d[u, v] = (Ul -v 1 )2 + ( 2 -V2) 2

It has been proved that if the coordinates are integers, and if we ask whether there exists a Hamil-

tonian circuit which is not longer than a given integer K, the problem is NP-complete under either

maximum or manhattan metric.

For the euclidean metric it has only been proved that the problem is NP-hard. It is, in fact, not

clear [87] whether the euclidean variant belongs to the class NP because it is not known whether it is

possible to decide in polynomial-bounded time whether the following inequality:

as+ Age+ v . + -A < K

is satisfied for given natural numbers m1,. . , m,, and K (in the case the time bound is related to the

number of digits needed to write down the input data).

A person looking at a TSP problem in a planar drawing with relatively limited number of cities can

quickly find a very good path, and one might therefore feel that it is an easy problem. Our ability to

do so is based on the fact that all the relevant relationships can be seen in a two-dimensional drawing

[75]. For example, one can easily use the heuristic that if nodes A and B are as far apart as possible,
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they will tend to occur near opposite sites. Nevertheless, when the problem does not correspond to a

two-dimensional drawing, our ability to solve the problem visually disappears.

Despite such reliefs, obtaining a good solution to TSP still requires powerful optimization methods.

Enumeration of possible solutions is an hopeless attempt for there are (n- 1)! solutions, where n is the

number of nodes in the problem ((n - 1)!/2 solutions in a nondirected graph).

It is important to recognize that TSP, being essentially a permutation problem, corresponds to many

practical planning problems, and thus is encountered in seemingly unrelated subjects. For example, in

engineering design, the question "Given a circuit board, what is the best wiring layout?" is

an easily recognizable form of TSP. TSP also appears in job-shop scheduling and in transportation

planning. Besides these direct applications, many NP-hard problems can also be solved easily once TSP

is solved. That is, many combinatoric problems can be mapped onto TSP relatively easily.

Because of its widespread occurrence, TSP has been attacked vigorously with many different types of

procedures. These studies culminated in a very large database of solution methods, excellent heuristics

as well as many benchmark problems. These studies also prove useful in comparing different optimization

procedures. Since TSP is both an important planning problem and an important benchmark, it was

chosen for the subsequent testing of our GA software.

4.1.3 Dynamic Programming Applications

The SPP can be efficiently solved because it has the property of optimal substructure. The ex-

ploitation of this property by solution procedures is best observed within the framework of dynamic

programming. For the shortest path problem, assuming that we are given a graph with the set of nodes

1, 2, ... , N, the dynamic programming equation reduces to:

Jk(i)= min (dij+Jk+l(j)), iESk, k=0,1,...,N-1 (4.2)
jESk+l

with

JN(i) = din (4.3)

This equation can be intuitively interpreted as:

Optimal cost to go from i to t = minj (cij + Optimal cost to go from j to t).

Bellman [12] expresses the principle of optimality as follows: "An optimal policy has the property that

whatever the initial state and initial decisions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision." For the shortest path problem the

optimal substructure property corresponds to the fact that the subpaths of the shortest paths become

the shortest paths. This is easily proven by the contrary argument that if a shortest path were to have
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an suboptimal substructure, it would be possible to construct a different path that would be shorter

only by replacing the suboptimal subpath with the optimal one.

Dynamic programming can also be applied to the TSP. However, in this case the number of states

that are needed to be examined grows exponentially and therefore dynamic programming does not lead

to a polynomial time algorithm. When applied to the TSP, the amount of computation required by the

dynamic programming algorithm is in the order of O(n 22n ) [107]. Despite the fact that the problem

space is smaller for the TSP compared to the shortest path problem 1 , dynamic programming does

not lead to a polynomial time algorithm because even a partial path specification implicates a global

constraint in the TSP.

4.1.4 Closed Semirings

The dynamic programming algorithm for the SPP produces a polynomial time algorithm because

the operators used satisfy certain properties. These properties are formalized by Ullman and Hopcroft

[137] who showed that a general algorithm can solve the path finding problems in certain structures.

Their general path finding algorithm works for any closed semiring. A closed semiring is a system

(S, E, ®, 0,1) where S is a set of elements, (the summary operator), and 0 (the extension operator)

are binary operations on S, and 0, 1 are elements of S. For the shortest path, we use the closed semiring

(R > ° U oo, min, +, oo, 0).

The properties of the closed semirings can be found in [137]. Some important properties of closed

semirings are:

1) Both binary operations 0 and 0 are associative and commutative,

2) The extension operator 0 distributes over the summary operator e, i.e.

a ) (b c) = (a ) c) (D (a G) c) (4.4)

For the above described closed semiring for the shortest path problem this is easy to observe:

a + min(b, c) = min(a + b, a + c), a, b, c > O (4.5)

Note that this result can be generalized over the monotonically increasing cost functions (and monoton-

ically decreasing cost functions in maximization problems). These properties lead to optimal substruc-

1The number of Hamiltonian paths in a graph with n variable node is equal to the the space of all permutations, i.e. it
is n!. The number of all paths in a graph having n nodes (assuming that any node can be reached from any other node)
is equal to the following sum:

n ) n n n
n n! n! 1

-,k! k = - = n! L k i en!
k= O k=--- k=O k=O
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ture.

On the other hand, the property of optimal substructure does not hold for a different problem in

which we want to maximize the cost (the longest path problem, LPP) because the addition operator

does not distribute over the operator max, i.e.:

a + max(b, c) max(a, b) + max(a, c), a, b, c > 

Because we cannot partition the state space, the LPP turns out to be an NP-complete problem. (This

can be deduced from its conversion to Hamiltonian path problem). Finally, the problem of finding a path

with the maximum utility U such that U(P) = f(C(P)) can be solved with the dynamic programming

in polynomial time only when the utility function is monotonically decreasing with greater cost, such

as f(C) = -C, f(C) = e- c or f(C) = 1/C.

4.2 Genetic Algorithms and TSP

Genetic algorithms constitute an important solution technique for search and optimization problems.

The quickly growing literature on GAs indicate a strong performance in many areas, if not all. Davidor

[33] comes to this conclusion after he tried many problems of robotics with GAs. Goldberg [58] gives

many examples where GAs were useful in various search and optimization problems. Koza [86] extends

the classical genetic algorithms with the paradigm of genetic programming. In this paradigm the prob-

lems are represented by a set of instructions and solutions consist of functional programs. The paradigm

has been applied to a wide and diversified set of problems quite successfully [86]. GAs are successfully

applied in image registration, machine learning, scheduling and in many other computationally-hard

problems [59]. Interesting applications include music composition, finding the face of a criminal sus-

pect with the help of a witness, producing random-number generators, and finding good structures for

artificial neural networks.

Because of their special advantages, we suggested the genetic algorithms as a general method that

can solve both deterministic and nondeterministic planning problems. Hence, we developed an object-

oriented software based on genetic algorithms and tested it through the applications on the Traveling

Salesman Problem (TSP), which is the central problem of discrete optimization. Indeed, it is frequently

cited that while GAs perform well on an average problem, TSP is one of the rare examples where

they can fail expectations [64]. These observations are generally explained as due to the difficulty of

representing a TSP tour with classic binary encoding. Successful applications of genetic algorithms to

TSP has recently started to appear in literature, see [18] for an example.

The benchmark problems we have examined have been obtained from the TSP Library developed

at the University of Augsburg [123] We have selected five problems containing 51, 76, 96, 105 and 202
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nodes (in the files eil51, ei176, gr96, lin105, gr202), which will be denoted as P51, P76, P96, P105

and P202 respectively. The optimal solutions of these problems are also provided by the library. An

example problem is shown in Figure 4-1 for P96. The distances in all these examples are calculated by

using the standard Euclidean 2-D metric.

4.2.1 Implementation of Genetic Operators for TSP

Koza's examples [86] as well as further recent work [35] demonstrate that binary encoding is only

one among many other possible representation schemes which can produce satisfactory performance for

genetic algorithms. It must be emphasized that the efficiency of a representation can be defined only

over a class of problems. Our implementation, therefore, uses a natural object type encoding and relies

on specific implementations of GA operators for each distinct class of objects.

The solution to TSP is a cyclic ordering of the vertices. This particular structure prevents the

use of well-known implementations of genetic operators and make it necessary to use particular imple-

mentations of genetic operators such that the solutions generated by these operators are feasible. Our

object-oriented software uses specific methods for the genetic operators being applied to TSP. Mutation

is performed by choosing at random two vertices along a path and by reversing the order of the vertices

along these paths. This implementation is originally suggested for application of simulated annealing to

TSP [85]. Implementation of crossover is slightly more complicated. First, it is selected, at random, a

break point along each parent path, yielding four subsequences. After determining the common subsets,

these subsequences are modified by trying to protect as much as possible the longest common subsets

without any repetition of the vertices. The children paths are then generated by interchanging the

modified subsequences. This implementation differs from the methods suggested in literature (those

are mostly either locus-based or order-based encodings); see [61], [64] for a review of these different

approaches and see [18] for a particular implementation of crossover with a superimposed heuristic.

4.2.2 GA Run Results

Running the GA software repeatedly and using each time a different seed for the Park-Miller

randomizer, 2 we obtained the data on the evolution of the GA solutions for each version of the problem.

Figure 4-2 shows the performance of four different GA runs for P51. The y-axis denotes the ratio of

the best solution cost found by GA to that of the best given in the library and thus signifies the quality

of the solution. All the examples in this suite are run for 500 individuals through at least 300 gener-

2Park-Miller randomizer uses the recursion x, = 75x1i- mod (231 - 1). It is found to be superior to other random
number generators in many measures; for example its results have lower informational entropy than those of most well-
known methods, although GAs have succeeded in producing random number generators with lower informational entropy
[86].
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Figure 4-1: TSP Problem P96 and Its Optimum Tour

ations. Further examples show that a result that is at most 3% larger than the optimum is obtained

for the specific problem P51 with 500 individuals and 300 generations, approximately in one out of six

independent runs.

Similar performance curves are obtained for other problems P76, P96, P105 and P202 as well (each

with 500 individuals per generation) and shown, respectively, in Figure 4-3, Figure 4-4, Figure 4-5, and

Figure 4-6. One can observe from these figures that as the size of the problem increases, the convergence

to a particular ratio requires a larger number of generations. For instance, convergence to a solution

with a cost that is only 50% larger than that of the optimal solution is reached within 50 generation in

the case for P51, whereas it takes about 400 generations in the case for P202.

A comparison of the selected runs for each of the problems P51, P76, P96, P105 and P202 is presented

in Figure 4-7. The figure suggests that problems having larger sizes might have a smaller convergence

rate. In addition, we observe that the initial values of the runs are different for each problem. Can this

last factor explain the lag in the performance that appears as the problem size is increased? We could

perhaps get a better picture for comparison by normalizing the results with respect to the initial values.

We postpone the discussion of this question and turn our attention into developing a model which can

be useful in answering this question as well as some other questions that one might pose.

4.2.3 Modelling of Performance Data

For drawing practical conclusions from these data, we first simplify the results by developing an

empirical model of the observed performance curves. Let us denote with o the cost of the minimal-
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GA Runs for P202
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Table 4.1: The Parameters of the Performance Model of GA for Benchmark Problems (500 indi-
viduals)

Problem Size 11 a I yo I Average Correlation

51 0.209 3.22 0.984
76 0.171 4.00 0.994
96 0.148 5.70 0.994
105 0.155 7.32 0.993
202 0.101 5.24 0.996

cost solution in the first generation of a GA run. Clearly, y depends on the population size and the

problem structure. Further, let us denote with y(t) the expected value for the cost of the minimal-cost

solution in the t-th generation of a given GA run. (Previous figures can be interpreted as showing the

evolution of y(t)/yo with each new generation). Since GAs are stochastic algorithms the observations

of y(t)/yo fluctuate around a mean value. Nonetheless, we can approximate their average behavior with

an empirical formula. In fact, a quite good fit is obtained for these problems with an empirical function

in the following form:

y(t) = 1 + (o - 1) exp(-avt/) (4.6)

Note that both y and yo are the expected values of the corresponding random variable; thus Equa-

tion 4.6 must be interpreted as the maximum likelihood estimate of the instantiations of the random

variable for y(t). Table 4.1 presents, for all the problems, the Yo and a values that appear in Equa-

tion 4.6, found by a linear regression, as well as the average correlation coefficients of the regression.

The results of the empirical formulas diverge from the data with at most 9% error. In addition, the large

values of the correlation coefficients point to a good fit between the data and the empirical formula. It

should be noted that the empirical formula is arbitrary in the sense that the exponent of the generation

parameter t has been chosen (.5) before the regression analysis.

Analyzing the limit cases, we observe that:

y(t = ) =O

and,

lim (t) 1
t-4oo

Further, we have the following for the convergence rate

d (y 1) = ( 1) (4.7)2/ (4.7
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Dependence of the Coefficient in Equation 3.1 to Problem Size

.

Problem Size

Figure 4-8: - 1 versus Problem Size for P51, P76, P96, P105 and P202 for 500 individuals

To answer the question on the effect of the problem size on GA performance, we first use the

predictions of the empirical models. Figure 4-8 presents how a - 1 values depend on the problem size

(S). We find a first-order polynomial relation between these parameters. In other words,

-1 =/3* S+y* + (4.8)

where f/* = 0.033 and 7y* = 3.24.

Equation 4.8 is tested by plotting the fraction

ygt - 1 (a ~*Y~~~t)v ) (4.9)y - 1 - ex t'+7'

versus the problem size S and comparing the prediction to the empirical data as presented in Figure 4-9.

Although discrepancies between the data of the new test-suit and the predictions of the extended model

now appear larger, the results and the empirical model are still relatively congruent.

4.2.4 Effects of the Population Size

Another important parameter affecting the performance of a GA run is the size of the population

that undergoes the genetic operations. Generosity in the choice of this parameter usually leads to

a faster convergence rate per generation. But, this advantage is obtained at the expense of a larger

processing time for each generation. Thus, one suspects that an optimum choice of the generation size

exists. Beside determining the convergence rate, the population size also affects the initial value (o) in

a given run, which is a minimum over all individuals in the seed generation.
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We can make a further extension to the empirical model by analyzing the effect of changing popula-

tion size. Performances of several runs with different population sizes (20,50,100 and 250) are shown in

Figure 4-10 for P51. Figure 4-11 shows the same comparison for the problem P202. In addition to the

aforementioned manifestation (that is, the performance of GA suffers as the population size is reduced)

we also observe that this effect is more dominant in the problems having larger sizes.

Employing both Equation 4.6 and Equation 4.8 and regressing on the results, we obtain a values

versus problem size for each of the problems P51, P96 and P202. Upon examination of the results, we

propose a logarithmic relation as a likely candidate:

1 logna(S, n) = (, S + *) log 500 (4.10)

Indeed, the plot of this function and the observed values show good agreement (Figure 4-12).

We can simplify the formula appearing in Equation 4.9 by defining ,3 = ]* log 500 and -y = y* log 500.

Then,

y(t)-1 = exp -' 1a logn
Yo - 1 _ S xp + - logn)

yOt)- n 9; (4.11)
Y0 - 1

4.2.5 Effects of the Initial Values

One can also ask how the initial values affect the results of the GA runs. First let us recall that

the initial best convergence ratio yo depends on the population size and the probability distribution

function that a random set of solutions follow. Note that yo is a minimum over all n individuals in the

seed generation:

yo =min{y( ) , y( ) ,...,y(O)} (4.12)

The distribution that y(O) follows is determined by the method used for the generation of the indi-

viduals for the seed generation. The usual method practiced draws these individuals randomly from the

problem space, although one is free to introduce any systematic bias in the construction stage.

For a randomly-created generation y(O) follows a probability distribution, which can be approximated

quite well with a normal distribution JK(9, ). Figure 4-13 compares the observed instantiations of y(O)

to a normal distribution. Table 4.2 presents the expected values (means) and standard deviations for

the problems being examined.

Once the probability density function for a set of random variables y(O) is known, the corresponding
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Normalized GA Runs for Various Problems

)0

Figure 4-9: Normalized Comparisons of GA Runs for P51, P76, P96, P105 and P202

Comparison of GA Runs with Different Population Sizes for P51

;0

Figure 4-10: Comparison of GA Performance for Runs with Different Population Sizes for P51
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Comparison of GA Runs with Different Population Sizes for P202

Figure 4-11: Comparison of GA Performance for Runs with Different Population Sizes for P202

Relation of Alpha to Population Size

102
Population Size

103

Figure 4-12: Alpha values versus Population Sizes

Table 4.2: Parameters for the Distribution of GA Initial Values

Problem Size || Mean () Standard-Dev. ()
51 3.851 0.2039
76 4.552 0.2025
96 J 6.586 0.2923
105 8.607 0.4137
202 5.707 0.1518

94

0)

DI

a)

0.

0.25

0.2

CU
a.0.1 5
-C-

0.1

0.05

P202

...- -"

.. a- P96
.. .

... - - 39

e - -- -- P51
_ - _ _

10

, 1 3

K J I I I J I J I I I I I I I I I I I
.. I' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

v



Cost Distribution of a Random Population for P202

C=a,
Q
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Figure 4-13: Distribution of Initial Solutions for P202

cumulative probability distribution function for the minimum y(0) for the given set of random variables

can be found easily from the laws of probability. (See [91] for the asymptotic values of the extreme-

value distributions). From this p.d.f., the mean value of the minimum-value distribution can easily be

evaluated. These evaluations indicate that the corresponding probability density function has a lower

mean value and a higher standard deviation than the initial distribution.

We do not delve into details of these evaluations for the results of the GA are not very sensitive

to how the initial population was constructed. This has been observed by performing an experiment

wherein the initial population is selectively constructed. For P51, the GA search has been performed

with 100 individuals throughout 250 generations with biased initial populations for several times. Fig-

ure 4-14 shows that the range of the results are quite similar even though the initial populations were

different. In this figure, GO indicates a randomly selected set of 100 individuals. G, G2, G3 G4 and

G5 indicate the corresponding rank of a 100 individual group among 500 randomly-created individuals

sorted according to their fitness. The initial best convergence ratio differs approximately 3% among

these groups. Repeating this experiment for other problems P76, P96, P105 and P202 has produced

similar results.

On the other hand, reducing diversity by using structurally very close or replicated solutions have

generally adverse effects on convergence. Researchers have observed that introducing good solutions are

helpful, but not too much and if overcarried might even be harmful for it could limit diversity and lead

to premature localized optimization [145, 35].
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Convergence Ratios Obtained with Biased Initial Population
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Figure 4-14: Effect of Initial Populations for P51

4.2.6 Optimum Population Sizing

A frequent question in the use of GAs is what values should be used for the population size for

minimizing runtime. While increasing the population size enables a faster convergence rate, the amount

of computation per generation is also increased. In a serial computer that process each individual

separately this trade-off results in an optimum population size. In this section we examine what the

empirical results indicate on the optimal value of population size.

Rearranging Equation 4.11, we obtain the expected number of generations t* for attaining a certain

convergence ratio y* as
log vo-1

(/3S±~ ~~Y- (4.13)t*1/ 2 = (S + ) og n (4.13)

To find the required time Texp for a given number of generations, we assume that the time it

takes to process a population of n individuals will be linearly proportional to the population size n for

computation on a serial computer. Then

Te*xp log2 1 (4.14)

If we neglect the logarithmic term that includes both y* and yo (n), Texp n/log 2 n and we obtain

the optimum population size that minimizes the expected runtime, by using the property

d
-Texpln=nin = 0dn

96

GO G1 G2 G3 G4 G5
I

I I I



as nmin = e2 = 7.34.

The effect of the logarithmic term containing Yo (n) is beneficial in reducing the expected runtime for

the initial convergence ratio is more likely to be smaller with increasing population size. Nevertheless,

as we have seen before this effect is quite small, and can easily be ignored. Thus, the empirical results

indicate an optimum population size between 7 and 8.

This results can be compared to other results in the literature. Goldberg [60], who examines the

same question by using the probabilistic models of classic GA, arrives at these conclusions:

1) Assuming a logarithmic convergence with population size n, the optimum population size is

nmin = 3, regardless of the string length used in the representation of problem.

2) Assuming a constant convergence time, optimum population size grows exponentially with in-

creasing string length.

Our results indicate a square-logarithmic convergence, which is different yet comparable to the

result of Goldberg's first assumption. Other studies [35, 64] also suggest relatively small population

sizes for computations with serial computers. Also note that both Goldberg's and our results indicate

a population size as large as possible for a perfectly parallel machine.

Nevertheless, we should note, caution should be exercised in the interpretation of our results. The

empirical results are obtained with a minimum population size of 50 and perhaps should not be extrap-

olated to smaller population sizes. With a smaller number of individuals,

* Reduced diversity leads to a greedy optimization that converges quickly to a local optimum.

* The probability of convergence to target solutions decreases sharply.

The second point is especially worth emphasizing. In both probabilistic algorithms, GAs and Monte-

Carlo methods, having a larger number of individuals in a given experiment increases the probability of

finding an acceptable solution.

Suppose that one requires a certain confidence probability for attaining an acceptable solution.

Because reducing the population size will decrease the confidence ratio, when using a smaller number

of individuals, one will have to increase the number of experiments performed in order to keep the

confidence ratio constant. In the case of Monte-Carlo runs with independent trials, these counter-effects

balance each other and therefore the expected completion time becomes independent of the population

size. It was found that (Equation 3.40) the runtime would be proportional to the ratio log 1-z where zlog 1-ao

was the required confidence ratio and a0 was the probability of finding a random individual satisfying

the success criterion.

In the case of GAs, the optimum population size can be found once we know the corresponding

probability distribution of the runtime as a function of the population size. Nonetheless, if we fix the
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confidence ratio in obtaining an acceptable answer, we observe that we will have to repeat the number

of experiments (GA runs) to find a solution. Because one can restart the GA with small population

size many times in the time it takes completing a GA with a larger population, there exists a trade-off

between increased number of experiments and the decreased number of individuals. The optimum value

for population size for a fixed confidence ratio can be explicitly found from Equation 3.43, that gives

the runtime as a function of the ratio of the nonconvergence probability of GA to that of Monte-Carlo

method, which includes the population size as a parameter.

These concerns with the empirical results indicate that the best use of GAs in a serial computer is

achieved by a small population size and by running the algorithm repeatedly until a nominal convergence.

Further, as Goldberg suggests [60], one can introduce diversity by transferring the best individuals of the

converged population to the new population and then generating the remaining individuals randomly.

4.2.7 Completion Time

Finally, we examine the question regarding the observed runtimes and their scaling with problem

size. Let '0 stand for the processing time required for a single generation of n individuals for problem

size S. These individuals first are evaluated with a fitness function that maps their fitness to a real

number. The fitness evaluation takes time proportional to the problem size S for it simply sums up

the costs of edges appearing in a tour. In addition, each of these individuals is processed separately by

genetic operators (duplication, crossover, and mutation). The time taken by these operators depends on

the particular implementation but it is almost universally a polynomial function of the problem size. If

one requires an algorithm having an exponential complexity for these operations, one is probably using

a wrong representation.

Ignoring the time taken by sorting and other overhead costs between generations, for computation

time on a serial computer, we have

ro = cn h(S) (4.15)

where c is a constant that depends on the processor speed and h(S) is a polynomial measuring the

computation time per generation per individual for a problem with data size S. h(S) includes both the

time taken by fitness evaluation and the time taken by genetic operations; in other words

h(S) = f(S) + gdup(S) + g9cros(S) + gmut(S)

In our implementation, the overall time taken by genetic operators is approximately linearly pro-

portional with the problem size. This results from the following facts: 1) problems are represented

with ordered list of nodes, 2) some of the steps in genetic operations, such as the instructions copy

and reverse, take time proportional to the length of the list they operate on, and 3) these instructions
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dominate over the rest timewise. Because the fitness evaluation f(S) is also linearly proportional with

the problem size, we have h(S) - S. In fact, for the TSP problems being examined, using c = 0.00145 s

and r0 = cn S yields a very good approximation for the observed runtimes for a SunSPARC-4 workstation

running LUCID-Lisp 4.1 with -80% of CPU time.

Once again by ignoring the overhead costs, we can easily use the generation parameter t to obtain

the runtime T

T = ro t = cn h(S) t (4.16)

Substituting this into Equation 4.11, we obtain

y(T,n,S) = 1 + (yo(n) - 1)n - - S+y (4.17)

The expected value of the of the runtime (Texp) for achieving a particular convergence ratio (y*) for

a problem of size S, with a population size n:

Texp(y*, n,S) cnh(S)(S + y)2 log2 Yo 
log 2 n 

S2+m log 2 Y - 1 (4.18)*-1

where m is the degree of polynomial h(S).

Note that the required time is proportional to the square of the logarithm of the inverse of the error

term e* y* - 1. In other words, the completion time increases exponentially with ever-decreasing

error ratio. More importantly, the time required is only a polynomial function of the problem size.

(Texp - S 3 ). This proves that the GA method is easily scaleable. Note that this formula gives only the

expected complexity as a function of the problem size for asymptotical convergence.

Sometimes it is important to find the best solution to a problem. GAs can also be employed for this

purpose. Because a GA most often converges to a suboptimal solution, one must perform a number

of independent, time-limited runs in order to evade the suboptimal solutions. If there were no limit in

the number of experiments to be performed and in the computation resources, the optimum solution

will eventually be found in one of these test runs. Runtime for obtaining the optimal solution obeys a

probability distribution. Therefore, one can talk about the expected runtime or a runtime with a pre-set

confidence probability.

In order to determine the behavior of runtime for obtaining the perfect answer versus problem size,

we performed a series of new experiments involving the TSP problems having a number of nodes between

6 and 14. These experiments were performed by running the GA with 20 individuals and for a maximum
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Figure 4-15: Runtime versus problem size for obtaining the optimal solution with GA

of 25 generations until the target answer is attained. If the optimum solution was not found with a single

computation, the process was repeated again by transferring the best 3 solutions to the seed generation

of the next run. Since experiments run until the target solution would be diagnosed, one must resort to

different methods for finding the optimum solution. Although the problems chosen have small sizes their

sizes were still large enough to make it impractical to apply enumerative techniques. We circumvented

this problem by designing a particular TSP such that the optimal answer is known beforehand. In these

experiments, all nodes have been located along a circle; therefore the optimal answer was a polygon.

The results of the experiments, which were performed in a SunSPARC-1 workstation, is presented in

in the next figure 4-15. As can be seen from the figure, expected runtime increases exponentially with

larger problem size. In fact, the following empirical equation yields the values for the expected runtime,

with an almost perfect correlation:

Texp = 0.075e06 7S sec (4.19)

where S is the number of nodes in a given problem.

For runtime has a probability distribution, GA will obtain the target answer in a much shorter

time than what the equation suggests at times and at some other times this will take much longer.

Nevertheless, the expected runtime has an exponential complexity and we observe that GAs become

intractable algorithms for combinatorial problems once the perfect answer is required of them.

In view of these results, we can view a GA as a heuristic method that can yield good results easily but

as a method that will take exponentially increasing time as the criterion for suboptimality is stricktened.
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4.3 Comparison of Experimental Results

In this section, we compare the GA method using TSP as the benchmark problem, with Monte-

Carlo, simulated annealing, best-first and A * search methods, both with respect to observed runtime

and accuracy in obtaining a good solution.

4.3.1 Comparison to Random Search

The first evaluation of GAs perhaps must be made in comparison to Monte-Carlo method, which

is their forefather in a sense. The experimental results of GA can be compared to what should be

expected from a set of Monte-Carlo runs by expressing the results in terms of the standard deviations.

For obtaining the expected values for the Monte-Carlo approach without resorting to determination of

the corresponding extreme-value distribution, we can use the property that the cumulative probability

must be equal to 0.5 for the mean value. For the probability of not obtaining a single solution within t

generation with n trials in each, we have

OMC (1 - ao)t = 0.5 (4.20)

It follows that

a0 = 1 -0.5± (4.21)

As the number of experiments (nt) increases, the value of ao asymptotically reaches 0. This indicates

that one can obtain a solution with the Monte-Carlo method with 50% probability even for those

correspondingly small ao values as the sample size increases. As a first-order approximation, we can use

the fact that the solutions approximately follow a normal distribution and from this fact we can find

the corresponding convergence ratio or the standard deviation from the mean value for a given number

of experiments.

Let the random variable X denote the number of standard deviations from the mean value of all

solutions. In other words X = ' where Y corresponds to a random variable for the convergence ratio
'

y. For y follows a normal distribution, the probability ao follows a cumulative normal distribution:

a0 = Pr(y < y*) = I(X*) (4.22)

where X* is found from the required convergence ratio as

X* = Y (4.23)
(Y
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Table 4.3: The Convergence Ratios Expected from Monte-Carlo versus GA results

Problem Size MC(500,0) MC(500,250) GA(500,250)
with z=0.5 with z=0.5 Obtained

51 3.24 2.95 1.08
76 3.95 3.66 1.19
96 5.71 5.30 1.29
105 7.37 6.79 1.41
202 5.25 5.04 2.28

It follows that

X* = -1(ao)

= 4,, (1 - 0 .5 1/nt)) (4.24)

and

Yo = y+ X*

= y + a-1(1 - 0.51/nt) (4.25)

The above equation can be used for both evaluating the Monte-Carlo method and comparing the

results of a randomly-created seed generation to later generations in GA. These equations indicate that

if one is looking at a population of 500 independent trials, one can expect, with 50% probability, to find

a solution that is 2.99a away from the mean. Similarly, repeating this experiment 250 times with 500

trials in each, increases the expected deviation to 4.4a. Table 4.3 presents the expected convergence

values for the Monte-Carlo search and compares them to the results of the GA run with 500 individuals

and for 250 generations. Note that the evaluated expected values of the best convergence ratios for

the seed generation are congruent with the experimental observations presented in Table 4.1. As can

be seen from Table 4.3, the GA runs attained results with much larger deviations than those values

expected from random search. These results prove that GA results cannot be attributed to chance.

4.3.2 Comparison with Simulated Annnealing

Because Simulated Annealing (SA) was successfully applied first to TSP [85], it should be interesting

to compare the results of SAs with those of GAs. For this comparison, we used the same mutation

scheme which was used before for the GA runs. By tuning algorithm one can get quite impressive

results with this method. For example, the optimum solution for P202 was found in 1 hour 20 minutes

in one run. The temporal evolution of the minimum energy (cost) is shown in Figure 4-16 for 3
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Simulated Annealing: Evolution of Convergence for P51, P96 and P202
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Figure 4-16: Simulated Annealing Runs for P51, P96 and P202

Table 4.4: The Results of Simulated Annealing Runs for Test Problems

Problem Size SimAnneal Convergence 

51 1.01
76 1.05
96 1.11
105 1.12
202 1.00

problems P51, P96 and P202. The local maxima indicate the times when an adversary mutation was

accepted according to the result of a random-number comparison experiment. Because the temperature

is decreased exponentially according to Boltzmann equation, the probability of accepting an adversary

mutation decreases quickly. Excursions that prevent being trapped in local optima gradually die out

and the system generally converges to very good local solutions. The following table (table 4.4) presents

the best results obtained with simulated annealing algorithm, by tuning algorithm separately for each

case.

Despite these encouraging results, simulated annealing might turn out to be computationally ex-

pensive once strict convergence criteria are applied, because in this case one has to tune the algorithm

by changing the parameters or the mutation scheme such that the most effective annealing schedule is

obtained. For there is no known clues as to what constitutes the best annealing schedule, the tuning

may require performing many experiments separately for each problem. On the other hand, one could

be content with suboptimal solutions and may prefer not to tune the algorithm for each version of a

given problem but tune it only for a single version and use the same annealing schedule for the rest. The
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Results of Simulated Annealing Runs versus Problem Size
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Figure 4-17: Results of Simulated Annealing Runs versus Problem Size. Annealing Schedule is the
same in all these runs.

following figure shows the results when we use the algorithm with the same parameters and therefore

the same annealing schedule. For this parameters, we have chosen the annealing schedule that worked

best for P96, which proved to be the hardest to improve. As can be seen from the figure, we now can

obtain results that are slightly worse those presented in Table 4.4, but they may still be good enough

for most purposes.

In effect, simulated annealing was able to find solutions quite close to optimal and within a much

shorter time period compared to GAs. Runtimes of Simulated Annealing results were found to be

linearly proportional to problem size. On the other hand simulated annealing is claimed not to do

well on most other problems. In fact, if mutation is computationally expensive, simulated annealing

algorithm may not be a good choice.

4.3.3 Comparison to Artificial Neural Networks

Another method that is often used in optimization problems involves artificial neural networks. A

study by Hopfield [75] demonstrates that good solutions to TSP can be obtained with appropriately

designed neural networks. Hopfield uses n 2 neurons for a problem with n nodes and expresses the tour

distance as the energy to be minimized. Nevertheless, the solutions found by Hopfield are not of high

quality as those found by GA and simulated annealing algorithms. Hopfield indicates a solution for a

TSP problem involving 30 cities is obtained easily with his network; and the cost of this solution is only

%40 larger than that of the best solution. On the other hand, our experiments with GA applied to the

same problem obtained a convergence ratio of 1.02 within a reasonable computation time of around 50
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Expected Runtime of Different Search Methods for TSP
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Figure 4-18: Comparison of Runtimes for Different Search Procedures

minutes in a SunSPARC-1 workstation. A further disadvantage associated with neural network method

lies in the fact that one should build a new architecture for each new problem.

4.3.4 Comparison to Classical Search Methods

We also tested the classic search methods in TSP problems by implementing the best-first and A*

state search running them for a set of randomly-created problems. We observed that as the problem size

increases these classic search methods suffer from computational complexity. In fact, before one runs

out of patience, the programs based on these methods exhaust any reasonable dynamic memory limit

and collapse. These programs are required to keep track of a large queue which grows exponentially as

the problem size increases. Thus, a significant portion of the runtime in these problems are wasted in

rearranging the memory. This inefficiency arises because we use a a simple heuristic that does not help

much in branching and bounding of new solutions. Nonetheless, unless a limit on the queue size is set,

the queue will grow quickly with increasing problem size and exhaust the physical memory, making the

search methods unsuitable to handle larger problems even if the time resource were not a factor.

Figure 4-18 shows how these search procedures compare to each other with respect to runtime over

a set of random problems. We assumed the perfect answer is required for both GAs and Monte-Carlo

as well as for other methods.

Overall, Figure 4-18 suggests that GAs compare favorably with other methods. Whereas in practice

all of these methods have exponential complexity for obtaining the optimum value, the growth coefficient

of the exponent is less for GAs unless the problem size is extremely small.
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4.4 Summary and Conclusions

In this chapter, we examined the complexity of two well-known deterministic path planning problems,

namely the shortest path problem and the TSP. Then, we applied the GAs to the TSP. Our results

demonstrate that GAs are quite successful for optimization problems, especially when finding the perfect

solution is not required of them. In solving the TSP without relying on problem-specific information,

GAs were outperformed in our experiments only by the simulated annealing algorithm. The results in

the literature [75] indicate that another paradigm modelled after nature, neural networks, can produce

good solutions to TSP, but not as efficiently as GAs. While we found that the classical search methods

are quite inefficient in handling the TSP, all of these methods suffer from combinatorial explosion once

the optimal solution is required. Even in this case, however, GAs can find the solution faster, and

therefore they should be preferred over other methods excluding simulated annealing.

We have also shown that the GAs can also be used as a reliable approximation scheme. Although

there can be given no guarantees, the expected value of the time to converge to a desired solution is poly-

nomial with the problem size for polynomial-time fitness evaluation. Further, this time is proportional

with the logarithmic error term: log c.

It follows that GAs are very efficient in finding suboptimal solutions, yet these can also be obtained

via heuristic techniques with often significantly less computation. The efficient utilization area of GAs

may be limited to those cases requiring solutions so nearly optimal that they cannot be provided by

heuristic methods. Besides, it is often possible to find other algorithms that can outperform GAs in any

given problem; for the TSP, simulated annealing is one of them. Indeed, excellent heuristics exist for

various versions of the TSP. Yet, these results should not discourage the users of GAs. Applying GAs

in a special problem requires only the coding of the special methods for the genetic operators. In many

cases, heuristic information can be directly sumperimposed onto these operators or to the selection

mechanism. Thus, it is often possible to improve the performance of a GA by utilizing the context-

dependent information. Finally, GAs have some special advantages that can be useful in problems

with incomplete, inaccurate information. Because GAs are probabilistic algorithms, they can achieve

convergence even under stochastic data. Note that this reasoning is also valid for the simulated annealing

method (SA). GAs, however, may prove more robust than the SA for they keep track of a set of solutions

in contrast to a single one by simulated annealing. GAs may also be less expensive than the SA because

they normally converge to an acceptable solution with 3000-4000 fitness evaluations, whereas the SA

requires around 100,000 evaluations. For the TSP, the SA was significantly faster than the GA, but this

can be attributed to a cheap (linear time) fitness evaluation and and a significant overhead in GA. In

problems with expensive fitness evaluation, the GA may outperform the SA.

Finally, we note that the GA optimization technique can be easily extended to other planning

problems that may be quite distinct from TSP. Well-optimized plans can be developed easily once
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an easy-to-compute objective function is described and special methods for the genetic operators are

implemented. If the goal of finding the optimum plan is computationally intractable, we may have

to settle for an approximate answer. When a planning model involves many decision variables, the

problem becomes harder since the process may now require the consideration of possible trade-offs

between distinct variables. Yet, this problem too can be solved in a manner similar to the single-variable

optimization problem by employing an objective function that contains all the decision variables with

properly chosen weights. If one cannot decide on what values are appropriate for these weights, one

can alternatively opt for a solution well-optimized with respect to a single measure, yet satisficing with

respect to others. In these problems, the set of acceptable-solutions are said to be Pareto-optimal,

meaning that they do not perform any worse than other unacceptable solutions while performing better

than those according to at least a single measure.

In sum, these results indicate that GAs converge to near-optimal solutions fast, but fall short of

being a complete or the most efficent solution method. At times, the other methods may outperform

the GAs. Despite these shortcomings, GAs produce satisfactory performance for the TSP, even though

this is cited as one of the most difficult problems for GAs. Most importantly, because GAs do not require

heuristics and can converge to a desired solution under inexact information, satisfactory performance

can be expected for their applications in problems with uncertain data.
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Chapter 5

Stochastic Planning Problems

Most practical plan problems can be addressed only through incorporation of nondeterministic models.

Although there is a formidable amount of literature on deterministic planning problems, relatively little

attention has been devoted to their nondeterministic versions. Further, the existing studies on these

probabilistic problems usually disagree on the assumptions and the models they use, as they generally

emphasize a different nondeterministic aspect of the given problem.

In this chapter, we examine the complexity of the probabilistic planning problems under various

optimization criteria and under various assumptions (Section and 2). We indicate the reasons why the

complexity results may change drastically as soon the objective functions do not satisfy certain criteria.

Then, we concentrate on the stochastic path planning problems where the edge costs are described by

probability distributions (Section 3). We examine different solution methods for the stochastic longest

and shortest path problems under safety-oriented optimization criteria (Section 4 and 5). We present in

Section 6 the results of applying the GAs for a special version of the stochastic shortest path problem

where we are concerned only with Hamiltonian paths.

5.1 Probabilistic Models with Additive Objective Function

The theory of dynamic programming can easily be extended to nondeterministic models. Further,

when an additive objective (cost) function is used, the principle of optimality is still valid. Recall from

the previous chapter that a path planning problem is efficiently solved if it is a closed semiring.

Stochastic Dynamic Programming

The basic problem of dynamic programming is stated as follows [15]
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Given a dynamic system of the form

Xk+1 = fk(Xk,Uk,Wk), k = 0,1,...,N-1 (5.1)

where

k indexes discrete time

Xk is the state of the system and summarizes past information relevant for future optimization

Uk is the decision variable to be selected at time k with knowledge of the state Xk

Wk is a random parameter (also called disturbance or noise)

N is the horizon or number of times decision is made

and given an additive cost function 9k (xk, Uk, Wk) such that the total cost along any system sample

trajectory is
N-1

gN(XN) + Z gk(xk,uk,wk) (5.2)
k=O

and given an initial state xo, find an admissible policy 7r = /o1, Uli, ... ,N- 1 that minimizes the cost

functional

Jr(xo) = Ek {9N(XN) + E k(Xk, k(Xk),Wk) (5.3)
k=O

It is found that under these conditions the solution (the optimal policy J* is given as:

JN(XN) = N(XN), (5.4)

Jk(xk) = min E{gk(Xk,uk,Wk) + J+l1 [fk(k,Uk,Wk)]} (5.5)
Uk EUk (xk )wk

where k = 0,1,...,N-1.

Dynamic programming is particularly efficient when the cost function is monotonically increasing

and additive. For example, in some applications the cost of reaching a state is only a function of that

state. Then, the cost function we want to optimize can be expressed as

Ek = Ek-1 +POPlP2...PkDk (5.6)

where Dk is the reward (or penalty) attained at state k. In some applications it may be more natural

to model the cost of a transition from state i to state j as a scalar dij that also depends on j. Bertsekas

suggests that [16] Dk can be viewed as an expected cost of arriving that state, given by Dk = E l pijdij.

A particular version of the application of dynamic programming with scalar state cost values is known

as policy iteration. The policy iteration algorithm is guaranteed to converge in a number of iterations

polynomial in the cardinality of state space. Dean and Kaelbling et. al. [37] take advantage of this

formulation in developing a robot planner for a stochastic domain.

109



Further, with this model, the problem becomes very easy to solve for its TSP-like constrained

version. In this case, the optimal solution is arrived through by comprising a path from the nodes

ordered according to decreasing fraction p . The optimality of this solution is shown through a

simple interchange argument [15]:

Let i and j be two adjacent nodes in an optimally ordered solution

L = (i0 ,il,... ik-)ij, ik+2 ... ,iN). Consider the solution L' = (i0, ik - 1,ji, ik+2,... iN) ob-
tained from L by interchanging the order of the kth and (k + 1)th nodes i and j. We compare the

expected rewards of L and L'. We have

E(reward of L)=E(reward of io....ik-1) +pio...Pil (piDi + pipjDj) pi...piklpipjE(reward of

ik+2... iN)

E(reward of L')=E(reward of i....ik-1) +Pio ...Pi._ (pjDj + pjpiDi) + pio...piklpjpiE(reward of

ik+2...iN)

The difference is

E(L) - E(L') = Pio...-Pik_ (piDi + pipjDj - pjDj - pjpiDi) (5.7)

Because of the condition that PD;) > pD the difference term is always positive, i.e.,(i-p0) -(-p)

(piDi + pipjDj - pjDj - pjpiDi) > 0 (5.8)

It follows that the expected reward of L is always greater than an alternative solution L' obtained by

an interchange. Hence L is an optimal solution.

5.2 Probabilistic Models with Unreliable Edge Travel

In general, however, stochastic planning problems may be computationally expensive. Consider a

simple modelling of the nondeterministic problems that is developed by ascribing a unique cost and

probability value to each edge in a given graph. The probability of an edge can be considered as

its reliability, i.e. the probability of the event of having successfully traversed the given edge. The

complementary probability value therefore implies that the given edge cannot be traversed: it might

be blocked, non-existent or failed in some another way. This model is especially useful in describing

contingent events. It is also relatively simpler then another commonly used nondeterministic model

assigning a probability distribution to the cost of each edge (stochastic edge costs). Further, we note

that the above mentioned model with stochastic edge costs can be converted into this model easily.

Assume that we are given an edge eij connecting the node i with the node j having a cost distribution

which is characterized by the vector D = {dij,, dij2,..., , dij } with the corresponding probability values
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P = {Pijl, Pij 2 , ... Pij, }. By replacing the given edge eij with r new edges eijk each having an associated

cost value dijk and a probability value Pijk, we obtain a new graph wherein edges have a certain cost

and a probability value of being successfully traversed. Under the condition that a path uses only one

of the of r edges with the same arrival and departure nodes, this model will be equivalent to the above

described model with stochastic edge costs.

A variety of optimization measures can be associated with paths within the context of this model. For

example, we may want to optimize the path probability or expected cost beside the usual optimization

measures cost or utility. We might also want to optimize on both probability and cost at the same time

or we might try to optimize on one measure while ensuring a bound on another one.

Let us start by examining the complexity of maximizing the probability of a path. Maximizing

the probability of a path can be solved with transformation through the equivalent problem

minimize E -log pi

with the same techniques that find the minimum cost path. This scheme is used in the Viterbi decoder

for convolutionally coded data and in speech recognition. It also follows from the same argument that

minimizing the probability is NP-hard.

In another type of optimization, we might want to minimize cost and maximize probability.

Unfortunately, the problem now turns out be NP-hard for general cost and probability values (if all

edges have uniform cost or uniform probability, it would be easy to solve). The recognition version of

this problem is proven to be NP-complete [52]:

Given a pair of source and sink nodes in a graph G(V, E) where each edge has an associated cost

value dij and an associated weight wij, is there a path with total cost less than Cmax and a total weight

less than Wmax?

We might also want to minimize the expected cost or to maximize the expected utility.

The expected utility is the expected value of the utility of a given path: EU(P) = Pr(P) * U(P) =

(Flpij)f(C(P)). The expected cost is the expected value of the cost of a given path: EC(P) =

Pr(P) * C(P). (In shortest path problems, a more sensible alternative could be to minimize the average

expected cost defined as the ratio of the expected cost to the number of edges that comprise the given

path).

Under these criteria, the objective functions are neither additive nor monotonically increasing. The

recurrence relation for the expected utility, for example, becomes

EUk = kEUk-1 + PoPlP2...PkU(dk-l,k) (5.9)
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It follows from this equation that

EU(L1 O L 2 ) # EU(LI) + EU(L 2)

Therefore the principle of suboptimality is not valid, and the dynamic programming or branch & bound

search methods cannot narrow down the search space efficiently. Under special conditions, these prob-

lems can be solved with polynomial time algorithms. For example, if the utility function is of the

exponential form, the objective function becomes separable under multiplication and we can find the

optimal solution with the standard dynamic programming. Also, under uniform edge costs or uniform

edge probabilities, these problems can be solved in polynomial time. In short, when the path concate-

nation operator 0 distributes over the summary operator (in this case the expected cost), we can use

dynamic programming principle which exploits this fact to eliminate from the consideration any path

segment that cannot be a part of the optimum path. Thus, Dijkstra's algorithm can be adopted for

the linear or exponential utility function, under independence assumption, but not for a general utility

function. Nevertheless, under general conditions, these problems are NP-hard.

5.3 Stochastic Path Planning Models with Stochastic Edge
Costs

Among many different variations on probabilistic path planning problems, the ones that has attracted

most attention are the stochastic shortest path problem (SSPP) and stochastic longest path problem

(SLPP) in a graph wherein the edge costs are specified as stochastic random variables. In these models,

each edge eij has an associated cost distribution function f(d). Because the individual edge costs are

stochastic, the cumulative cost of a path becomes a random variable. Note that even if the edge costs

are independent random variables, the path costs are, in general, dependent owing to shared edges.

These problems are often studied with the following objective function: From the set of all paths

II, find the path P* II having an expected cost E(L*) less (or larger) than the expected costs of all

other paths. Objective functions of more general nature can also be defined. For example, we can ask

for a path P* such that the probability of its cost L* exceeding a threshold Lmax is less than a specified

probability value ao, i.e.:

Pr(L* > Lmnax) < a0o (5.10)

A similarly encompassing objective function was considered by Frank [46]. He considered the determi-

nation of the cumulative probability distribution function PDF of the cost of the shortest path P* from

s to t

PDF(1) = Pr(L* < ) (5.11)
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which can be found from the probability density function pdf(xl,... , xq) (where q = Il) as

PDF(1) = 1 - ... p(x,...,xq)dxl ... dxq (5.12)

The pdf can be expressed as a vector and can be discretized given discrete cost values and their associated

probabilities. The evaluation of this multiple integral, however, is an extremely arduous task, as it covers

the whole state space.

In general, safety-oriented optimization criteria can be described by considering the reliabilities.

Evaluating the reliability of a plan involves the computation of the probability for achieving a specified

success predicate. Three distinct criteria can be associated with this probability for reliability-based

optimization:

* Safety-first: Find the solution with the maximum success probability.

* Strict Safety-first: Find a solution with a success probability larger than a prescribed value.

* Safety-fixed: Find the solution with the maximum utility and a success probability larger than a

prescribed value.

Note that, in analyzing stochastic problems, it is usual to ask for those solutions with maximal expected

utility which is calculated normally as the probability of a given solution multiplied by its associated

utility. This criteria, derived from the assumption of rationality, is well-suited for most problems of

stochastic optimization. Yet, when there is a particular concern about risk, it could be more appropriate

to employ criteria which treat risk in a more obvious way by concentrating on probabilities. These

criteria are especially of interest when the problem being examined can lead to dire consequences for in

this case one prefers plans whose failure probability is minimal or bounded.

5.4 Methods for the Stochastic Longest Path Problem

The stochastic longest path problem is of particular interest to project planners. The overall goal of

a project planner is to minimize the cost of a project by allocating the resources efficiently. Often, the

most restrictive resource is time and therefore one wants to minimize the project duration by limiting

the longest path. This goal requires first the determination of the longest path in a project.

5.4.1 Discretization technique

Let us assume that the pdf of an activity is approximated by a discretization scheme: An activity

duration d can take n different values, where d E D given D = {d,, d2 ... dn} and each value is associated
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by a unique probability. The calculation of pdf for project duration can be accomplished by considering

the realization of every alternative individual task duration value. This approach unfortunately has an

exponential complexity. In a given path with m activities, with each pdf being represented by n distinct

duration values, we would need nm calculations.

5.4.2 Analytical technique

Assume the activity durations are independent of each other. Then, we can use the approach

suggested by Martin [119]: The project network is first reduced to a series-parallel form. The distribution

function of parallel activities is derived by multiplication of the individual activity distribution functions.

For activities in series, convolution of the functions is employed. By proceeding systematically in

this way, the network is eventually reduced to a single arc, whose distribution function is that of the

project. To employ the method, the distribution functions of the activities have to be approximated by

polynomials. It is noted that the amount of computation can be reduced if, instead of trying to derive

the project distribution function, one merely attempts to put bounds on it. One ambiguity with this

approach is its handling of N type subgraphs which can not be reduced to either parallel or series form.

5.4.3 Stochastic PERT

The most well-known method of determining the longest path in a stochastic models is incorporation

of the probabilistic task durations to the PERT paradigm. The stochastic PERT makes the following

assumptions:

* The activity durations are modelled via certain probability distributions. The most preferred dis-

tribution is the beta distribution with the parameters being computed from the most-pessimistic,

most-optimistic and most likely times.

* The activity durations of independent of each other and one can use the central limit theorem for

finding the pdf of a path. The result is a Gaussian distribution with a mean value equal to the

sum of the mean values of individual activity duration mean values and with a variance equal to

the sum of the variances of of the tasks along the path. Note that the use of central limit theorem

relies on the assumption that there is a sufficiently large number of activities in each path.

* After finding the probabilistic distributions for each path, PERT assumes that the path with

the longest completion time will always be the critical path. Then, the probability of a given

completion time for a network is given as

Pr(L <• Lm) =1 N(t)Ldt (5.13).
Pt(L* <_ Lmax) = v/ N~(t)dt (5.13)
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where N is the normal distribution of the critical path r.

Although most PERT programs make use of this final assumption, it is easy to see that the assump-

tion is quite misleading as pointed out by several researchers [63, 7]. A path with smaller mean value

than that of the critical path but with a larger variance can turn out to be more limiting in determining

the probability of project completion time. Therefore, it is meaningless to talk about a single critical

path and one should take into account the inherent uncertainty in all paths.

It is also easy to show that the PERT method is optimistic: The true project duration is given as

E[maxp(Lp)], the PERT gives as maxp(E[Lp]) = E[L,] (where 7r is the critical path). Since maxp(Lp)>

L,, it follows that true mean is always larger than the PERT mean.

5.4.4 Other Methods

Although the PERT method have been applied for most applications, it is simply incorrect to assume

that the statistics of the project would be influenced only by the critical path. For correct calculation

of overall pdf of the project completion time, there have been several suggestions besides the one that

is based on the calculation of joint probability of all paths, which is computationally expensive. One

is to consider only a few near-critical paths besides the critical path. Another is to use the Monte-

Carlo techniques to sample the pdf of the project completion time. A criticality index for activities

based on their probability of being on a critical path can also be used as guidance [63]. For a complete

examination of a probabilistic network with many paths, a multi-variate statistical examination that

would specify the correlation among different paths is also suggested.

Another method, developed by Elmagrahby [119], is similar to dynamic programming. The method

involves calculating, node by node, the expected value of the maximum path length to each node. Let

this be fj, for node j, where fi = 0. Then fj is defined recursively as follows:

fj = E[maxi(fi + d )] (5.14)

where nodes i are the immediate predecessor nodes of j, ED denotes the expected value and ) denotes

the kth combination of duration values for the activity i - j. The value of f,, for the final node n is the

estimate of expected project duration. This value can be shown to be optimistically biased but it is a

big improvement on the PERT estimates. This method in contrast to the discretization technique does

not become more complicated as the network size increases, and this is its greatest virtue [119].
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5.5 Methods for the Stochastic Shortest Path Problem

The methods for determining the stochastic shortest path is, in general, parallel to those methods

used for determination of the longest path. Frank discusses [46] various methods of determination of the

joint probability distribution function integral (appearing in Equation 5.12), among them Monte-Carlo

methods, nonparametric and parametric analysis. Through examples, he shows that the cumulative

PDF can be approximated well with the normal distribution function. Alternative methods for the

stochastic shortest path problem have also been suggested by various researchers. Martin [96] presents

a technique for computing the distribution function of the length of the shortest (s, t) path that can be

readily adapted for the shortest path, in a directed, acyclic network, whose arc lengths are independent

and have a finite range. Hayhurst and Schier [71] use a factoring approach for evaluating the multiple

integral appearing above. Mirchandani and Soroush [99] proposed a method of solution that completely

avoids the use of multiple integrals. They assume that the edge costs are independent and that com-

parison between different paths is performed according to some utility function. Their method relies on

eliminating from consideration any path segment that is dominated (i.e. at least another path segment

exists which is permanently preferred to it). They give efficient solution algorithms for the case of linear

and exponential utility functions. These functions are respectively additive and multiplicative separa-

ble under their statistical independence assumption. They also present an algorithm for the quadratic

utility case, for which in efficient algorithm cannot be established. They claim that even though the

worst case complexity of this algorithm is exponential in problem size, its running time is reasonable in

practice.

The SSPP has also been presented within the context of different models, such as stochastic linear

programming, stochastic dynamic programming, and general Markov chains. Corea and Kulkarni [29]

convert the problem to a discrete time Markov chain (DTMC) with a finite state space and a single

absorbing state and an associated cost of zero or one with every transition. The states of this DTMC

can be ordered such that its transition probability matrix is strictly upper triangular. This structure

of the transition probability matrix enables them to develop simple recursive algorithms for the exact

computation of the distribution function and moments of the total costs incurred until absorption.

Unfortunately, the size of the DTMC grows exponentially with the size of the graph and the size of the

support of the random variables. Bertsekas and Tsitsiklis [16] study a most general stochastic shortest

path model. In their model, it is asked to select a probability distribution over the set of successor

nodes so as to reach a certain destination node with minimum expected cost. Their model too can be

viewed as a general Markov decision problem. Owing to the difficulties encountered in the general case,

some researchers have focused attention on Monte-Carlo methods for this problem (see [46] or [10]).

Most studies on the SSPP concentrate on finding a solution with the minimum expected cost. When

the solutions have large variance or when there is a particular concern about risk, it is generally more
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appropriate to use safety oriented criteria. For example, we might be concerned with guaranteeing that

extremely costly paths are avoided as often as possible. Therefore, instead of asking for the path with

the minimum expected cost, we would like to find a path with the minimum probability of exceeding

the cost limit, i.e., we would like to minimize Pr(L* > Lmax). A mirror (equivalent) version of this

condition is to maximize the probability of not exceeding the cost limit, i.e., we would like to maximize

Pr(L* < L,ax). Below, we examine various approaches suggested for this purpose:

5.5.1 Approximation

Under certain conditions, the following approximation can be used: Assume that the edge costs

are mutually independent. Under certain conditions, sums of the random variables are approximately

normally distributed. Then, we can approximate the distribution of the cost of a path Pi with a normal

distribution function 4( (, a). Because I(p, a) is a monotonically increasing function, we only need to

perform the following test
Lmax -i < Lniax - j (5.15)

0i a-i

for choosing between two distinct candidate paths Pi and Pj.

Note that this approach is closely related to the PERT approach.

5.5.2 Dynamic Programming

It is easy to observe that we can use the dynamic programming whenever the edge costs are indepen-

dent and the path costs can be approximated with a monotonically increasing function. The techniques

of dynamic programming have been extended to the general cases by Kao et. al. [81]. Their preference

order dynamic programming is stated as follows: For an optimal path yielding the maximum probability

that r or less cost will be expended fk(i, Sk), let the distribution function of the corresponding total

cost be denoted by Gk (i, Sk). Note that

fk (i, Sk) = [Gk(i, Sk) (T)] Vi, k E S (5.16)

By the principle of optimality

Gk(i, Sk) =±jES, {Fij G(j, Sk - j)} i = 1,2,...,n (5.17)

with Go(i, ) = Fo,i = {1, 2,...,n} and k E {1,2,...,n-1} and G(O S,) =1 jEs. {Fo O G(j, S - j)}

and 0, the compositor operator [81]. The preference order operator is a mapping which chooses

the i*th order distribution function f£i* from the set of distribution functions {Q1 , Q2 ,. .., Q} via the
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criterion

[Qi- Z](r) > [i O Z](r) Vie {1, 2,..., l} (5.18)

with fQi, Z E T -the set of all distribution functions.

5.5.3 Monte-Carlo Approach

Frank suggests [46] the use of a statistical test for the selection of a path with the associated

probability of satisfying the success criteria larger than a preset threshold. Notice that in any statistical

test, two types of mistakes can be made. First, one can accept the hypothesis even if it were wrong due

to the misleading sample (this is a type II error) or one can reject the hypothesis even if it were correct

(this is a type I error). The probability of making a wrong decision can be minimized by a special test

based on Neyman-Pearson theory [135]. The test described below uniformly most powerful; in other

words, it is optimum in the sense that the probability of making a type I error is less than a fixed size

,3 and the probability of making a type II error is minimum. Nevertheless, the test does not give a

bound on the magnitude of the probability of making type II error. (If we want to minimize the type

II error, we can formulate the dual test, however, in that case we cannot bound the type I error; there

is a tradeoff between these two types of errors). The test is as follows:

Let H1 stand for the hypothesis that the probability a is equal to or larger than a given threshold

value a0 . Let H2 stand for the alternative (null) hypothesis that a < a. Then, if k and -y are

predetermined constants, we perform the following [46]

Reject hypothesis H1 if m > k

Reject hypothesis HI with probability y if m = k

Accept hypothesis HI if m < k

The constants k and -y are determined from

n
• n( (1 - ao)ia - i + Y k ank

where is the probability of Type I error. Note that in this equation the left hand side is the probability

Pr(X > k) + -y Pr(X = k), where X is a binomial random variable with parameters 1 - a0 and k.
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5.6 Application of GAs on the Stochastic Shortest Hamilto-
nian Path Problem

The SSP also provides a suitable context for applying the GAs. We apply the GA to a particular

case of the SPP in which all paths have be Hamiltonian in order to be feasible. We assume that the

individual edge costs are specified with certain probability distribution functions. We also assume that

these edge costs are discretized with a sampling process before the GA is started. Let k denote the size

of sample data for each edge. For a path with m edges, therefore, we have km different combinations for

the total cost value of the path. Let n be the number of these combinations exceeding the preset cost

limit. Then, the probability of the path exceeding the total cost limit is simply given by the fraction:

aki = Pr(Li > Lmax) km (5.20)

As the discretization becomes finer, this probability value will approach to the theoretical value which

can be determined by evaluating the integral. The problem, however, is not how fine the discretization

is but rather how large the number of combinations is. Even with a moderate number of discrete data

and a moderate number of edges, we will have a large number of possible combinations (for example

k = 4, m = 10 leads to 410 combinations). Therefore, the only feasible alternative is to use a sampling

process that draws randomly a value for the cost of each edge and uses this in evaluating the total cost

value of the path. As the sampling size n is increased, the estimate of the probability must approach

the actual probability value:

lim ck (n) = ak (5.21)
r&-+ k m

It must be emphasized that the simulation approach does not yield a lower or upper bound on the

magnitude of the probability a. In other words, & = a + e.

Nevertheless, it is possible to obtain the near-optimal solutions through GAs even under noise.

Indeed, the GA can be considered as a feature extractor that uses statistical tests to classify probabilistic

patterns. The question on whether the GA would converge to the vicinity of the optimal solutions or if

it would diverge because of the statistical errors introduced through the sampling of the fitness function

can be answered through theory or tests.

5.6.1 Theory

Recall from Chapter 4 that the expected convergence ratio in a GA run can be given by

y- 1 = (o - 1)e - ta (5.22)
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where a and a are constants, t is the generation number and y is the convergence ratio of the designated

best solution in generation t. Then, the expected convergence rate is given as:

d Y = (o - 1)aata-le - 't = aata-l(y 1) (5.23)

We can add a noise term for the cases in which the fitness function is being sampled and therefore

contains some statistical noise. Given that the observed value of the convergence ratio for a solution i

is

y(i) = y(i)(1 + ei(y(i))) (5.24)

and noting that in an unbiased sampling the error term has zero mean, we obtain the following differential

equation for the expected convergence rate z under noise:

dz _ _
d- = aata-l (z - 1) + d (z) (5.25)dt dt

The expected convergence ratio under noise can be found from Equation 5.25 once the error term e(z)

is specified as a function of the convergence rate. If we assume that the error term is independent of the

expected convergence rate and therefore time, we obtain that the expected result is the same as that of

the GA without noise, i.e.

z- 1 = (zo - 1)e - ta (5.26)

Our computational experiments with randomness introduced to the fitness function of the TSP (such

that f(P) = g(r)C(P) where g(r) is the white noise with a mean equal to 1) indicate that the GA

performance could even be improved by rescaling the white noise! This is not surprising since the white

noise can be considered as an additional parameter helping to optimize the GA. Recall that the GA

chooses the genetic operators and selects the individuals to whom these operators to be applied in a

probabilistic manner. Since the GA already incorporates statistical tests in the fitness based selection,

the introduction of white noise does not affect the GA performance in a major way.

Another plausible assumption is that the magnitude of the error term is inversely proportional to the

expected convergence ratio, that is, the error term increases with better convergence. This could be the

case when there is no Bayesian updating of the probabilities and a fixed number of measurements are

used per sampling. For this case, it is increasingly likely that the GA may be confused as the solutions

get closer to each other and therefore the magnitude of the error term ratio increases. (Imagine that

we are required to classify a fixed number of measurements obtained from a sampling process into two

distinct probability distributions. If the distributions are quite far apart, the probability of error (an

incorrect classification) is low. If the solutions are quite close, the probability must be correspondingly

high. In a GA run, the solutions are initially distinct but increasingly resemble each other as the GA

finds the optimal substructures; hence the error probability increases).
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Assuming that e(z) = eoz- b where b is a constant larger than zero (b > 0), leads to the following

result:

dz = aata- 1(z - 1)dt - beoz-bdt (5.27)

The expected convergence ratio z(t) can be obtained by solving the above differential equation. It is,

however, obvious from the above argument that the expected convergence ratio for this specific case

will grow slower (recall that b > 0) than the case without noise. Further if the error term is sufficiently

large (such that the second term is larger than the first term in the RHS of equation 5.27, convergence

cannot be achieved at all.

The above arguments demonstrate that convergence of the GAs are particularly robust to errors

introduced through sampling. More rigorous models of the performance of GAs under noise may be

developed with a Markov process with random drift. The optimal parameters for the population size,

the size of sampling etc. can be inferred from the developed model.

5.6.2 Tests with Normal Distribution

Figure 5-1 shows the results of four different GA runs for a specific stochastic problem. In this

problem, the graph has 20 nodes all located along a circle and the distances between the nodes (edge

costs) are given with a normal distribution with its mean equal to the Euclidean distance and its standard

deviation equal to 40% of the mean. Then these edge costs are discretized to 100 different values with

corresponding probabilities. (Thus an edge has associated values: (dl,pl), (d2 ,p2 ),.. , (dloo,Plo00 )}).

The maximum cost limit Cmax for a path is chosen as the 1.5 times of the cost of the most likely

shortest path (a circle). The GA is run for the following purpose: Find a Hamiltonian path with

maximum probability of visiting all nodes under the given fixed budget.

Fitness function samples 100 times the cost of a path by randomly selecting an edge cost value

among given sets. The results - shown in Figure 5-1 - indicate that there is a wide deviation between

different GA runs because of the noise inherent in the sampling process. In all ten cases the GA found

increasingly improved on solutions but in only one case it was able to find the optimum solution.

Noise term inherent in sampling can be reduced by increasing the number of sampling data. However,

there is a tradeoff between the error and the computation time. Figure 5-2 shows the GA runs for the

same problem with the number of sampling being increased twice to 200. As can be seen from Figure 5-2,

the GA run results are more smooth and have lower deviations.

Figure 5-3 shows the GA runs when the sample size increased to 400 and

Figure 5-4 shows the GA runs when the sample size increased to 800.

It can be seen from these figures that the expected convergence rate does not significantly improve
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GA Runs for the Safest Path (PopSize=80)
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with the increasing number of measurements in the sampling process. While the average runtime

increases linearly proportional with the increasing sample size, the expected convergence rate increases

only marginally, changes generally remaining within the standard deviation of different runs.

In summary, we observed that the GAs can converge to the optimal solutions in polynomial time,

however 1) there are no guarantees in convergence time (we only know that the expected convergence

time is of the form et " ) and 2) using simulation for fitness cannot guarantee a lower or an upper

bound and 3) a low number of measurements is usually enough to propel the GA toward the vicinity

of optimum solution.

Increasing Efficiency of Fitness Simulation

Note that significant savings from runtime can be achieved by using more efficient methods of

sampling. A very obvious method is to save the data from each sampling process and to use Bayesian

updating of a priori values. Thus we can sample only those individual edge costs that have a high

standard deviation in relative to those other edges. Because the effective sampling size is much larger,

the GA results will have lower standard deviations in this case. Another possibility is that in each

generation a single value can be assigned to the edges that are common in all solutions. These edge cost

values need not be sampled because they appear as additive terms in all cost expressions.

Further, more elaborate methods of sampling can be adopted. For example, if the number of mea-

surements per sample is variable, one can apply the sequential probability ratio test [135] in order to

classify the patterns with minimum number of observation under specified error probabilities. Since our

goal is to calculate through Monte-Carlo methods a multiple convolution integral, one can also adopt

the advanced Monte-Carlo integration techniques (such as importance sampling or stratified sampling

or VEGAS algorithm (see [114]) for efficient evaluation of integrals).

5.6.3 Tests with Beta Distribution

The above SSHP problem is similar to the well studied problem of project planning, namely finding

the longest path in a graph with stochastic edge costs. The differences are: 1) we restrict out attention

to the set of Hamiltonian paths, and 2) we look for the shortest path in contrast to the longest path.

Nevertheless, the parallels between these problems indicate that the method of using the GA can be

substituted for the PERT approach which is commonly used for finding the longest path.

In most project planning problems, the activity durations are represented by beta distribution.

Therefore, we perform a new set of runs where the edge costs have beta distribution. In contrast to

normal distribution, beta distribution is bounded in both ends. See Appendix A for a description of the

beta distribution. In our calculations, we assume that the lower (upper) bound on an activity duration

is 80% lower (larger) than the most likely value (which is taken as the Euclidean distance). Further,
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Figure 5-5: Beta distribution function for three different parameter pairs

we select three different beta distributions for activity durations limited between these lower and upper

bounds; these distributions are shown in Figure 5-5.

Obviously, employing a symmetric beta distribution function for all edge cost values will produce

results similar to those found by using Gaussian (normal) distribution. Therefore, we make the following

assumption: Let tm (i) be the most likely value for the cost of edge i. Let TL be a specified lower limit

for the cost value and Tu be a specified upper limit. Assign the distribution for the cost value of edge i as

- 3(5,3) if tm(i) < TL

- (3,3) if Tu > tm(i) > TL

- 1(1.5, 4) if t (i) > Tu

This assumption is pessimistic for edge costs whose most likely values are lower than TL and is

optimistic for those whose most likely values are higher than Tu.

The results of four GA runs are shown in Figure 5-6 for a graph with 20 nodes. It is observed that

the GA can converge realatively quickly to the optimal solutions compared to those runs performed for

cost values with normal distribution. This arises because a large number of solutions can now satisfy

the optimization criteria. The size of the solution set can be reduced by hardening the optimization

criteria (either by lowering Lmax the maximum expendable cost or by changing the distributions). In

any case, the best solution for the case with beta distribution on edge cost values is not necessarily same

with the case with normal distribution on edge cost values.

Sensitivity Analysis
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The assumptions on probability distributions of edge cost values are often updated during plan

execution. Since this information is not a priori, it cannot be incorporated directly into the initial

model. Yet, it may prove useful to learn about the sensitivity of optimal solutions obtained to the

assumptions made in the planning model. This problem is examined in detail in next chapters where

we develop the concept of robust plans explicitly for this purpose. Nevertheless, we can point out that

possible future changes in plan execution can be incorporated into the GA model by changing the the

fitness function halfway during a GA run. The GA can often recover from the impacts of such changes

and converge to the vicinity of the new optimum in the remaining time because it keeps track of a set

of diverse solutions, some of which are probably close to the new optimum. Obviously, the changes can

be accommodated easier if the GA run is in an early stage such that the probability of being trapped

in a valley of the problem space would be low.

5.7 Summary and Conclusions

In this chapter, we examined specific examples of path planning problems under uncertainty. We

observed the reasons why the introduction of uncertainty often increases the complexity of the problem

under examination. We applied the GAs for a specific version of stochastic shortest path problem in

which feasible paths are Hamiltonian and the criteria for optimization is minimizing the probability that

the path cost exceeds an upper bound. The theoretical and experimental results have shown that GAs

can be applied satisfactorily to this problem through evaluation of fitness by simulation. A practical

use of this method is its application in the problem of finding the critical path in a stochastic project

126



planning model, creating an alternative for the PERT.
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Chapter 6

Robust Planning

Many formal structures, such as the layout of a microchip, cannot be changed after their design has

solidified. As opposed to these, a plan is a structure that can be changed or dynamically modified

as found necessary during the execution stage, provided that circumstances allow these modifications.

In the execution of a plan, upon encountering failures or other contingencies, one either repeats one's

attempts or resorts to alternative courses of action in order to adapt the plan to new circumstances.

Efficient plans minimize the probability that a dynamic event will adversely affect the accomplishment

of the plan goals. In other words, efficient plans should achieve maximum adaptability and respon-

siveness to possible circumstances that could occur during plan execution. Therefore, plan evaluations

should involve the consideration of provided options and alternatives to be used when contingencies

are encountered in the original intended plan. Integrating the adaptability to contingencies with the

conventional plan evaluation measures leads us to the notion of robust plans. Robust plans minimize

the cost of adapting to random events whose outcome become clear only after embarking on the plan.

This chapter introduces and examines the concept of robust plans. We review the related literature

in Section 6.1 and and especially concentrate on dynamic path planning problems in Section 6.2. We

present a general view of the complexity of the planning problems with dynamic optimization criteria

(Section 6.3). Later we focus on the reliability problem which is a good starting point for rigorously

analyzing the plan performance in nondeterministic models (Section 6.4). Then, we introduce certain

robustness measures and examine the algorithms for their determination (Section 6.5). We present a

depth-first based algorithm in Section 6.6 for evaluating the robustness measures and methods to make

this algorithm tractable.
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6.1 Background Work

Strong incentives existed for incorporating uncertainty into planning activities in many fields, such

as economics, operations research and artificial intelligence. All these fields developed their own ways

of addressing the problem in various ways. Nevertheless, there did not appear a systematic study

that could benefit all of these fields by drawing on the strength of each particular approach. Besides,

there was little or no emphasis on contingency or robust planning. For example, the need to control

uncertaintied has led to the use of stochastic programming in the fields of economics and control; but

these domains have paid attention mostly to rigorously formulated problems of their own disciplines

and hence were too limited to be of practical value in most planning problems.

Yet, some of the recent developments, especially in the field of financial analysis have been inspiring

for emphasizing the robustness and the flexibility of plans. For example, it is now commonplace to

value financial investments by considering the worth of the real options built-in in the investment in

conjunction with the classical evaluation. Real options are those alternatives that can be selected during

the course of a project as found necessary. These options could be a choice on the timing of production

or a choice on the production capacity or even a possibility to modify the end product. Option valuation

methods sum up the net worth of these alternatives in order to reach a total project value.

In the field of Operations Research, Dantzig has started a program to generalize the field of linear

programming to solve multi-stage decision problems subject to uncertainty [32]. Whereas linear pro-

gramming finds values for a set of decision variables X that would minimize a linear objective function

Z = cX subject to constraints b = Ax, the generalized linear programming solves a multi-stage decision

problem in which some constraints are dependent on earlier decisions. In this model, a planner wants

to make a decision X1; let random events happen; make a decision in period t = 2; let random events

happen and so forth. The problem still consists of minimization of a given linear objective function Z

of decision variables:

min Z = clX 1 + 2X2 + 3X3 + " + CtXT

But now the constraints follow a successive waterfall structure wherein the decision variables determine

in part the constraints of the following stages:

bl = A1X1

b2 = -BIX 1 + A 2X 2

bT = ............- BT-1XT-1 + ATXT

It is assumed that c, b, A are known a priori, but other values are contingent upon the choices
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made and probability distributions being followed. For example, consider a two-stage problem where

the variables of the second stage can take 3 discrete values with the corresponding probabilities p2(1),

P2(2 ) and P2( 3 ). The problem is then converted to

minZ = c1X 1 +p2 (1)c2 (1)X2(1) +p 2(2)c2(2)X2(2) +p 3(3)c3(3)X3 (3)

subject to constraints

bi = A 1X 1

b2(1) = -B (l)X1 + A2(1)X2 (1)

b2(2) = -B 1 (2)X 1 +A 2 (2)X 2 (2)

b2(2) = -B (3)X1 + A2(3)X2 (3)

To solve these equations, Dantzig adopts Bender's decomposition technique, which is a frequently

used method for solving integer programming problems and suggests the use of parallel computing.

Nevertheless, the integer programming itself is an NP-hard problem and this model too suffers from the

ubiquitous complexity problem.

In the field of AI, the problem of planning under uncertainty has also attracted attention relatively

recently. The problem was defined formally in 1985 [88]: We are interested in a particular set of

planning problems distinguished by the following characteristics: (1) the current situation is not known

with certainty (2) the consequences of action are not known with certainty (3 the goals of the planning

process are conflicting, and therefore, are not completely satisfiable. These types of problems are referred

as planning under uncertainty." Langlotz and Shortliffe [88] compared the use of different methodologies

in these problems and concluded that a purely deductive approach is difficult to consider because

these planning tasks entail uncertainty and tradeoffs. They point that both decision-theory and non-

monotonic logic have similar worst-case complexity, O(2 n) for n states; yet the use of decision theory is

preferable over the use of non-monotonic logic which does not include utilities and is domain dependent.

As researchers in AI have been increasingly more busy with implementation of plans by robots, they

needed to address the question of what to do when things do not go as expected. While an early study

by Fikes [41], the author of STRIPS, made use of a method called triangle tables to produce plans that

could cope with any order of a specific set of situations in contrast to more specific ordering requirements

of the previous planners, the question was not particularly answered except the development of nonlinear

planning which could be seen as a general heuristic for developing flexible plans. Nonlinear planning

emphasized that plans should make minimal commitments such as specifying only absolutely necessary

precedence relations among some actions. Nevertheless, acting on incomplete plans was unsatisfactory
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for some researchers and the urgency for addressing the question remained. From this point on, generally

speaking, research on planning in AI has branched out to two different directions. The first direction

is based on monitoring the plan progress for "failures"; when failures are found, the agent generates a

new plan in reaction. This strategy of ad hoc plan generation is often called reactive planning. The

following quote from Georgeff [55] describes the motivations for reactive planning: In many domains

much of the information about how best to achieve a given goal is acquired during plan execution.

For example, in planning to get home from airport, the particular sequence of actions to be performed

depends on information acquired on the way -such as which turnoff to take, which lane to get into, when

to slow down or speed up, and so on.... Decisions are deferred until they have to be made. The reason

for deferring decisions is that an agent can acquire more information as time passes; thus, the quality

of its decisions can be expected only to improve. Of course, because of the need to coordinate some

activities in advance and because of practical restrictions on the amount of decision-making that can be

accommodated during task execution, there are limitations on the degree to which such decisions may be

deferred. Later, Schoppers continued this tradition by developing universal planning based on a priori

consideration of all possible scenarios. Schoppers [126], defining planning as the goal directed selection

of reactions to possible situations, gives a method that prescribes a reaction for every possible situation

that could take place during plan execution; these plans are robust and fast to execute, but can be very

large and expensive. Nevertheless, Ginsberg [56] in "Universal Planning An (Almost) Universally Bad

Idea" points out that this sort of planning would be too time consuming to generate. He points out

that for n sensors and for a primitive actions, there exist (2 a)2n distinct universal plans as there are 2n

set of situations and 2 a possible combinations of actions to be taken. For another example, consider the

interaction of 100 decision variables leading to 2100 distinct events. Even when a recipe with 290 items

is given by the universal planner, it covers only one-thousandth of possible situations. The tradition

of reactive planning has been continued especially in Stanford University. A recent example in [23]

interleaves local reaction within the general framework of global plans. Finally, some researchers has

carried the idea of reactive planning to extreme by dropping the planning stage altogether and produced

systems that can only react. Two proponents of this camp, Chapman and Agre [22] defend their system

PENGI as "PENGI is not a planner; Pengi is designed to lead a life. Pengi's world, like ours, is not

a problem to be be solved but an ongoing web of recurring opportunities to engage in sorts of activity.

Planners, being designed to solve problems, are not good at leading lives."

It is arguable that these last approaches do not capture the essence of planning but rather they

are based on avoidance of planning activity. Therefore, they may suffer from the syndrome of painting

oneself into a corner, which is why plans are needed at first. The second direction continued the classical

planning tradition by developing the models with some classes of failures included. Yet, as Kaelbling

points out [37] "There is an inherent contradiction in all of these approaches. The world is assumed

to be deterministic for the purpose of planning, but its nondeterminism is accounted for by performing

execution monitoring or by generating reactions for world states not on the nominal planned trajectory."
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Kaelbling et. al. produce a planner for a nondeterministic model by making use of Markov decision

models and dynamic programming techniques. They alleviate the complexity problem by focusing on a

narrow section of the state space instead of a global analysis [37].

6.2 Dynamic Path Planning Problems

Some dynamic planning problems have recently been formulated in the context of path planning.

These problems consider the adaptation of a path to events that may arise while the path is being

travelled. An elementary understanding of the effect of new information on plans can be gained through

these simple planning problems. "It is a common experience while driving to come upon a road interrup-

tion and have to make a detour [3]". Upon encountering such contingencies, a path must be adjusted

or substitute paths must be used. Therefore, a priori solution to a path planning problem is not a static

path but rather has the character of a policy. Asking for the optimal policies that not only indicate a

path to follow but also how that path is to be modified in the event of new information naturally follows

from the paradigm of robust planning. Models that include this dynamic response have recently been

forthcoming in the literature. Dynamic models for path planning problems have been constructed for

both deterministic and probabilistic environments.

6.2.1 Dynamic Deterministic Models

Most work concerning dynamic environments (subject to change) has been focused on on-line algo-

rithms that solve deterministic problems. An example of an on-line algorithm is the best-fit heuristic for

the bin-packing problem. This algorithm takes an item at a time out of a given list and sort this within

the already decided packing scheme. Further interesting problems are considered by Papadimitriou and

Yannakakis [109].

Consider the problem of navigation in which the map is dynamically revealed to the vehicle as it

moves along without a priori knowledge about the planning environment. Papadimitriou and Yannakakis

[109] consider policies that minimize the worst-case ratio of the maximum distance traveled under these

policies to the true shortest distance if the graph were known ahead of time. They first consider the

problem of finding an optimal policy (minimum worst-case ratio) for layered graphs. A layered graph

is a graph whose nodes are partitioned in layers L1 , L2 ,..., Ln and all edges are between nodes in

adjacent layers. They assume that when the vehicle arrives at a node layer Li, it learns the nodes of

layer Li+, and the costs of the edges leading to these nodes. They furthermore assume that the vehicle

does not know when the terminal node will appear. They prove that if the width of the layered graph

is 2, an optimal policy is to start by following the edge with the minimum cost, and continue on that

path until the total distance on that path is greater than twice the distance on the alternate path; when
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this occurs the vehicle should go to the node on the alternate path [112]. They prove that this simple

policy achieves a worst-case ratio of 9, which is the best possible. They generalize this result to layered

graphs with width w.

In the same paper, they also introduce the Canadian Traveller Problem (CTP), in which the graph

with associated costs are known a priori, however some of the edges might be unsuitable for travel at

certain times, and such blockage is revealed only upon reaching an adjacent node. This problem can

be viewed as a two-person game, between a searcher and a malicious adversary, who sets the weather

conditions so as to maximize the ratio. They show that the problem of finding an optimal policy is

PSPACE-complete. The same problem with a different objective function has been analyzed by Bar-Noy

and Schieber [9]. They consider the minimization of the worst-case cost and provide algorithms for its

solution. They also define the Recoverable Canadian Traveller Problem (RCTP) in which blocked roads

may be reopened after a certain period of time.

6.2.2 Dynamic Probabilistic Models

Both of the above papers suggest generalizing their problems to stochastic models. Papadimitriou

and Yannakis [109] mention that the CTP is #P-hard when each edge cost has a discrete probability

distribution. Bar-Noy and Schieber [9] define the stochastic RCTP, in which every edge eij is blocked

with some a priori probability pij. The traveler finds out whether an edge eij is blocked when he visits

node i. They solve this problem with a label-setting algorithm. Probabilistic models are often more

natural and useful than deterministic models.

One of the earliest papers that considered dynamical response to events by a navigator in a nonde-

terministic model is due to Croucher [31]. Croucher assigns a probability value to the event of finding a

given edge active. He assumes that if an edge is found inactive, one chooses randomly another node to

follow among its adjacent nodes. This model can also be considered as accounting for the uncertainties

in control; one might accidentally (with probability Pij) implement a wrong action that would take him

to an unintended state. Croucher applies the dynamic programming algorithm to this problem. He

expresses the shortest expected distance from node i (with ni successor nodes) to the node N as

1 P n,
g(i) = pij Dij + E Dik if ni > 

k,k:Aj

g(i)= D if ni = 1

where Dij is the shortest distance when the edge eij is actually traversed and given as:

Di = dij + g(j).

133



Thus, from node i a succeeding node j can be found with the following expression which minimizes g(i)

over all possible j:

If ni > 1: g(i) = min pij[dij + g(j)] +(g-J ~~~ni -- I k,k~j

If n- 1: g(i) = dij + g(j)

While Croucher assumes a random selection among adjacent nodes is made upon encountering an

inactive node, Andreatta and Romeo [3] employ an optimal selection for the new instance. They

also redefine this problem as the stochastic shortest path with recourse. Polychronopoulos notes that

[112] their problem is effectively the stochastic CTP with the distinct objective of minimizing the

expected cost. This model, too, assumes that the edge costs are deterministic but there is some discrete

conditional probability that a given edge would be active. In particular, they assume that there could

be r realizations of the edge set E such that E1 , E2 , ..., Er and their disjoint probabilities are specified

a priori. By first defining the expected length of a recourse path from a node j to the destination node,

they give an expression of the expected cost of a given path. Further, they give the following results for

this problem:

1. The expected cost of a deterministic shortest path can be arbitrarily worse than that of a

stochastic shortest path (SSP).

2. A SSP may contain a cycle, even if the distance function is nonnegative.

3. The expected cost of a SSP may be shorter than that of one of its subpaths, even if the distance

function d is nonnegative.

4. A subpath of a SSP is not necessarily a SSP for the corresponding subproblem. That is, the

Bellmann's principle of optimality does not hold here and, therefore, the SSP cannot be found by

standard dynamic programming [3].

Furthermore, they give a recurrence relation for the expected length of the optimal SSP, in the form

of

L*(i) =min {PrO [dij + L*(j)] + (1 - PrO)L'*(i)}

They note that this equation is a version of the so called stochastic dynamic programming recurrence

relation and therefore can be solved by applying any stochastic dynamic programming algorithm. They

also note that, as is typical in stochastic dynamic programming, the number of states that need to be

considered may grow exponentially with the number of stochastic edges in the graph. They also note

that the problem of finding a SSP can be formulated as an optimal decision Markov process with a finite

horizon.
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Andreatta and Romeo's model has been extended to graphs with stochastic edge costs by Poly-

chronopoulos and Tsitsiklis [112]. They claim that assigning distributions to edge costs help their

model encompass the Andreatte model as a special case (one can assign a very large cost to an edge

with a certain probability such that it will not be used on the optimal policy). They too define this

problem as the stochastic shortest path problem with recourse (SSPPR). Further they assume that the

realization of the costs of the uncertain edges are learned once these edges have been traversed. Ac-

cording to the observed cost realizations, the information of the decision maker is updated dynamically.

They also make a distinction between two special cases: They call the version with dependent, general

edge costs as R-SSPPR (from the R possible realizations of the graph) and the version with mutually

independent edge costs as i-SSPPR. Note that if each edge can take k possible values and there exists

m edges, the total number of realizations can be very large, namely R = k. They give a dynamic

programming recursion for the solution of R-SSPPR, in the form of

V(i, I) = min {dij + E(V(j, h(j, I)))}
3

where V(i, I) is the optimal cost-to-go starting from state (i, I) at node i with information I and where

h(j, I) is the information set of the vehicle when it gets to node j given that it already has the information

described by I. They provide a label-setting algorithm as a subroutine in the determination of the term

E(V(j, h(j, I))). Their algorithm solves the R-SSPPR in 0( 2 R(Rn + m + n log n)) time. They also give

a similar yet simpler algorithm for i - SSPPR that runs in O(kmax (kmnaxn + n log n + mn)) time. Further

they prove the following: 1) The recognition version of the R-SSPPR is NP-complete and 2) The

problem i-SSPPR is #P-hard and i-SSPPR E PSPACE [112].

Finally, another model that considers the dynamics of plan execution has been developed by Jaillet

and Odoni [77]. They modelled the problem of minimizing the expected cost of a TSP-tour in which the

set of nodes to be visited is given with a priori probability vector P. Later, Jaillet extended this work to

the shortest path problem and defined the probabilistic shortest path problem (PSPP). Jaillet gives the

following motivations for these problems [78]: "Our main concern is to define and analyze probabilistic

versions of well-known combinatorial optimization problems while keeping their original combinatorial

flavor. There are several motivations behind this work. ... The first one is the desire to formulate

and analyze models that are more appropriate for real-world problems where randomness is present.

The second motivation is an attempt to analyze the robustness of optimal solutions for deterministic

problems when the network for which the problem has been solved is modified." He gives a polynomial

expression for the length of the path and proves that the PSPP is NP-hard by reducing it to Hamiltonian

path problem.
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6.3 Complexity of Dynamic Planning Problems

Robust planning problems consider the effects of possible contingencies to a given plan and aim

to find those that are most resistant to adverse impacts. These problems are clearly parallel to the

problems of game theory where decisions are to be made while facing an adversary. Consider the game

of chess where a move's value depends on the opponent's moves. Good chess moves generally apply

the min-max strategy: minimize the maximum gain of the opponent. In robust plannning problems,

nature can be considered as the adversary and we aim to minimize the maximum gain of the nature (by

definition our maximum loss). Since the general game theoretic problems belong to the complexity class

PSPACE, it can be claimed that the general planning problems under dynamic optimization criteria

too lie in PSPACE. Problems in this class are usually characterized by a discrete-time random process,

the parameters of which can be influenced by dynamic decisions. Decisions are based on the current

state, and the next state is a random variable with a distribution that depends on the current decision

and state. The goal is to minimize the expectation, of some cost functional of the history of states and

decisions.

Specific instances of decision making problems under uncertainty have been defined by Papadimitriou

[106]. Papadimitriou has defined the following problems: stochastic satisfiability, stochastic scheduling,

dynamic graph reliability, general Markov decision processes and optimal control. These problems are

parallel to the classic NP-complete problems. In stochastic satisfiability (RSAT), we are given a

Boolean formula F involving variables xl, x2, ... , xn. We are asked whether there is a choice of Boolean

variables for Xi, X 3 , X5 ,...,Xn-1 for a random choice of the truth value for variables x 2 , X4,. . ., xn such

that the probability that F comes out true under these choices is more than a given value po:

Pr(BxlOx2Bx3 Ox4 . . 3xn-l1 xnF(xl, x2,..., Xn)) > Po

In stochastic scheduling, we are given a tree of precedence constraints amony tasks with execution

times that are random variables with identical exponential distributions (Also known as Poisson tree

scheduling). The problem is to find a strategy for scheduling these tasks on m processors so as to

minimize the makespan.

These examples characterize both the dynamic nature and the stochastic nature of planning problems

when uncertainty prevails. Papadimitriou has shown that for the general cases, these problems belong to

the complexity class PSPACE; moreover they are PSPACE-complete (i.e; the other PSPACE problems

are reducible to these in polynomial time). Their belonging to the class PSPACE implies that these

problems are intractable -even harder than those problems that are NP-hard-.
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6.4 Reliability

The concept of reliability is a good reference point for analyzing the concept of robustness. Reliability

of a given system is the probability that the system will perform its intended function under stated

conditions in a stated time interval. In the planning arena, the reliability of a plan can be interpreted

as its overall success probability. Although this definition may sound straightforward, it does not clarify

what is meant by failure because a plan has often many goals to be achieved. For instance, a research

project can succeed in its goal of solving a new problem yet fail in its goal of completion on time.

A practical way of dealing with this problem is to distinguish one goal and define failure and success

according to whether this goal is attained or not. Other optimization measures must also be considered

in addition to a plan's reliability with respect to this goal. One may evaluate then for each alternative

plan the behavior of its reliability versus other measures (e.g. the value of the required resources) and

thus may determine the plan that achieves the optimum configuration. In general, planners need to

trade off the potential of falling short from their objectives against the extra costs required to increase

the plan reliability.

Because we use graphs for modelling of plans, we now examine the reliability problem in the context

of graph models, which have been extensively studied. Many parameters have been used as measures of

reliability; these roughly divide into two: deterministic measures such as edge and vertex connectivity

and nondeterministic measures such as probabilistic connectedness. Although the deterministic mea-

sures can be computed more easily relative to those that are nondeterministic, they provide only poor

estimates of reliability. Three types of problems that deal with both deterministic and nondeterministic

versions of reliability are overviewed below:

6.4.1 Survival Network Design Problem

A typical example concerning reliability arises in the design of telecommunication networks. Telecom-

munication networks are vulnerable to failure; they can be disrupted by accidents and other natural

causes destroying the cables or the transmission nodes. Talluri notes that [131] the problem has taken on

even more importance as copper cables are replaced by fiber-optic cables that can carry much more traf-

fic; as a result, failures in transmission links can have catastrophic consequences. In order to maintain

communication despite failures, one should design a network with alternate routes for communication

that are to be used when some equipment fails. Such redundancy in the system reduces the chances of

failure, but at greater overall network cost. Thus, we are led to the problem of designing a minimum-cost

network that meets certain connectivity requirements.

The survival network design problem is as follows: Given a graph and a survivability require-

ment ri for each node i, find the minimum-cost subnetwork that has rij edge-disjoint paths
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between every pair of nodes i and j. (A set of paths are edge-disjoint when no edge appears more

than once.) Typically in practice ri is one of (0,1, 2). When ri = 1 for all nodes, the problem becomes

the minimum-cost spanning tree problem, which is a member of P. When ri = 1 for some nodes and

ri = 0 for others the problem becomes the network Steiner-tree problem, which is NP-hard.

6.4.2 Most Vital Links Problem

Another problem that is relevant to reliability and robustness in planning is the most vital links

problem. The n most vital links in a network are those n links whose removal from the network results

in the greatest increase in the shortest distance between two specified nodes s and t. The solution of

the most vital links problem thus gives information on the sensitivity of the connection between the

specified nodes s and t to removal or elimination of certain links of the given graph. A similar problem

can be posed by considering the most vital nodes instead of links. A solution algorithm for this problem

is given by Carley in [20]. For a summary of the problem, see [95]. Ball et. al. [8], who examined the

problem with a removal cost c(e) for each edge and a budget constraint prove that this version of the

problem is NP-hard.

6.4.3 Network Reliability Problem

In contrast to examples that employ deterministic models, the network reliability problem is con-

cerned with the probability that a given network is able to carry out some desired operation. While the

survivable network design problem is concerned with building a network from scratch, the reliability

problem analyzes an existing network to determine its reliability. In this problem, it is assumed that

each edge of the network fails with a certain probability. Moreover, it is often assumed that all of the

probabilities specified are statistically independent. The following list describes some common reliability

measures:

1) For two specified nodes s and t, the two-terminal reliability denoted by Rel 2(G) is the probability

that the network G contains a [s, t] path.

2) The all-terminal reliability RelA(G) is the probability that for every pair of nodes v1, v2, the

network contains a path from v to v2; equivalently, the all- terminal reliability is the probability that

the graph contains at least one spanning tree.

3) The final network operation generalizes both of the previous two and involves pairwise commu-

nication of k specified nodes, 2 < k < n. The k-terminal reliability Relk(G) is the probability that for

k-specified target nodes, the graph contains a path between each pair of the k-nodes. This is equivalent

to asking for the probability that the graph contains a Steiner tree.
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In addition to these three measures, one might define a number of other reasonable reliability mea-

sures. For general graphs, almost all of these measures are too difficult to calculate exactly.

6.4.4 Computing Reliability

The problem of combinatorial explosion is often encountered in reasoning with uncertainty. Because

there are 2 combinations for n discrete events, there are 2n joint probability measures often needed in

calculations involving interaction of these discrete events. Unfortunately, most of the general techniques

for evaluating the reliability of complex systems suffer from combinatorial explosion and therefore are not

suitable for automation. Colbourn [26] notes that calculation of most of the interesting reliabilities has

been proven to be #P-hard, a complexity result roughly equivalent to being NP-hard for enumeration

problems. Typical members of the class of #P-complete problems are those problems that ask for the

number of solutions to an NP-complete problem [138]. Nevertheless, some counting problems that have

no relation to NP-complete problems also fall into this class; reliability problem is an example of those.

Counting number of trees in a directed graph constitutes another example.

Despite these negative results, evaluating reliability is not computationally hard for some restricted

versions of the problem. An important class of such problems involves serial-parallel networks and a

given pair of nodes with source s and destination t. These networks do not contain complicated links;

the paths from source to destination include either a series of successive links or a set of parallel links

or involve a combination of these. It is not difficult to express the reliability for these networks:

For a serial system

Pr(S) = Pr(x1 n x2 n..-Nxn) (6.1)

= Pr(xl) * Pr(x2lxl) * ... * Pr(xnilxl nx 2 n ... n x~_i)

When the individual units are mutually independent of each other:

Pr(S) = Pr(x1) * Pr(x2) * * Pr(xn)

= f Pr(xi) (6.2)
i

For a parallel system

Pr(S) = Pr(x1 UX2 U ..x2 U Xn) (6.3)

= 1-Pr(Yln2n ... n)
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When the individual units are independent of each other

Pr(S) = 1 - (1 - Pr(xl)) * (1 - Pr(x2)) * *..* (1 - Pr(xn))

= 1-11(1 - Pr(xi)) (6.4)
i

Many models composed of serial and parallel links can be analyzed with the above equations by

using the appropriate reduction techniques. Unfortunately, the problem is computationally hard for

its general version. Thus, much of the research in this area is geared towards obtaining good, quickly

computable bounds for the measures. The following is an example of an upper bound for Rel 2(C).

Suppose edge e of the graph fails with a probability Pe and is operational with a probability 1 - Pe.

G is operational if there exists at least one path from node s to node t. G is operational only if every

(s, t)-cut in G has at least one operational edge (A cut is a set of arcs that disconnects the graph).

Therefore, the probability that C contains an (s, t) path is bounded above by

k

1(1 - 11 Pe)
i= l eEC,

where C1 , C2 , ., C Ck are edge-disjoint (s, t) cuts in G. This bound is very easy to compute once the (s, t)

cuts have been determined and has been found to be competitive with more sophisticated bounds [27].

The technique described in the above example falls under the category of minimal-cut set methods

which is one of the frequently used method for evaluating reliability. A minimal cut set in a system

is defined as those units that have to fail all at once for the system to fail. Recall from Chapter 3

that the evaluation of the minimal-cut in a graph itself is an NP-complete problem. Another frequently

used method for evaluating reliability is based on fault trees. As with other methods, this method too

becomes quickly unwieldy as the problem size grows, forcing to apply approximation techniques. Some

work in assessing reliability has concentrated on using problem-specific information and model-based

reasoning; a recent study that demonstrates their use in limited domains [67] can be accessed via Mosaic.

Unfortunately, there are no general, tractable algorithms for evaluating reliability unless the system can

be decomposed into serial-parallel chunks.

To sum, reliability has an important role in the evaluation of performance of nondeterministic formal

structures. Its determination is computationally hard but satisfactory approximations are often avail-

able. Improving reliability of a plan generally involves a trade-off with other resources which should

be taken into account by the plan developer. Diversity and redundancy used for improving reliability

may also prove to be important concepts that could provide important information for heuristic rules

for generating flexible plans. Finally, reliability, as traditionally defined, does not capture some of the

ideas that are based on measuring the values of the options that a plan may have. This leads us to

define robustness.
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6.5 Robustness

6.5.1 Description of Robustness

What the above measures of reliability lacks is recognizing that plans are often modified as they are

being executed. In a nondeterministic world, one is almost always confronted with new possibilities.

The exercise of a single action, the occurrence of a new event can correspond to closing off of certain

possibilities and opening up of some new possibilities. In order to address contingencies that may emerge

during plan execution, plans should carry options for adaptation to events whose outcomes are critical

to plan success. This notion of adaptability can easily be integrated in evaluation of the reliability.

Because the new resultant concept encompasses the concept of reliability, it is suitable to give it a new

name; we have chosen the name robustness for this concept.

A convenient measure of robustness can be developed directly from the two-terminal reliability, which

is the success probability of a plan given a pair of source and destination nodes. Because plans are often

modified, the success probability of a given plan will be a disjunction of all possible modifications. That

is, for a plan p that satisfies certain objectives:

R(p) = Pr(p U p' Up Up" Up" U .. ) (6.5)

I It

where p, p , ... show the possible modifications that still satisfy the same objectives. Since the modifica-

tions are not subsequent but performed dynamically upon failure as the plan progresses, this probability

is not equal to:

R(p) $ Pr(p) + Pr(p' p fails) + Pr(p" p and p' fail) +-

Rather, to express this probability, we resort to a recursive equation. Recursive evaluation provides

a convenient way of incorporating the fact that one is always confronted with new possibilities during

plan execution. An example of the recursive evaluation of the probability R is given below for a binary

case where an action can either fail or succeed. For a shorthand, let us denote with x the probability

that a state transition is made from the state a to the state b by exercising the corresponding action of

the plan p.

x = Pr(State a -+ State b p(a)) (6.6)

The success probability then can be written as:

R(p) = x R(p*(b)) + (1 - x) R(p' (a*)) (6.7)

When the exercise of an action results as expected, we are taken to state b, whereafter the rest of the

plan p*(b) can be applied. If the result turns out to be different (with the probability 1 - x), we are

taken to the state a*, which could be different than state a due to depletion of the resources because of
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the exercised action. If the exercised action had no side effects then the new state a* is equivalent to the

original state a: a* _ a. There are two general options open to us at state a*: We can either modify

the plan by applying a strategy F(p) such that a new plan p' is obtained or try again the same action

that had previously failed. This second option can also be considered as a null modification such that

p = YN(p) - P

It is often the case, however, that one will select a strategy different than the obvious null modification.

Ideally this modification strategy should be such that the probability R(p) is maximized. Because the

contribution of the second term to the overall probability is always positive, this last criteria corresponds

to determination of a new plan which is optimum for the present circumstances. We call this strategy

as replanning. Because replanning may be quite expensive, one may prefer to use strategies that are

limited and use simple modifications such as heuristic repair rules.

The above equation 6.7 can also be used for modelling the effects of new information. Consider an

event that imposes new circumstances during plan execution and therefore may take us from the state

a to a* even though there were no actions exercised by the planner. The effects of such environmental

impacts on the success probability R(p) can be taken into account via the second term of the equation 6.7.

Further, the same ideas can still be applied to generalize from the binary case to those cases in which

the results of an action or an event are not dichotomous, (i.e. more than two distinct states can be

accessed from a starting state with corresponding transition probabilities). For example, with three

different state transitions having probabilities xl, 2 and x3

R(p) = xl R(pi ) + X2 R(p2) + X3 R(p3)

where Pl, P2 and p3 signify the corresponding versions of the plan for these new states. Note that

x1 + X2 + x 3 = 1. It is also possible to treat failures in nodes within this framework simply by duplicating

the failing node and creating a synthetic probabilistic link between the original node and its duplicate.

Another possible measure of robustness can be derived from the concept of expected utility. In

contrast to conventional methods, the expected utility for each specified plan must be calculated dy-

namically by considering all possible discourses for a given plan. The dynamic expected utility E*(p)

for a given plan p is equal to the sum of probability weighted utilities for all possible variations:

E*(p) = E Pr(p(i))U(p(i)) (6.8)
iEV,

where the set Vp consists of all distinct variations for a given plan p and U(p(k)) signifies the utility

of kth version of the plan p. The dynamic expected probability reduces to the conventional (static)

expected utility only if no changes can be made after embarking on the plan.
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Figure 6-1: A Simple Graph

6.5.2 Recursive Evaluation

The recursive equation 6.7 that gives the success probability R can be used either with a forward

induction or a backward induction. In either case, one must compute a new modified plan for each step

that could go wrong. Assume that this computation is performed through a heuristic rule that takes a

negligible amount of computational effort. Even for this given simplified case, the induction algorithm

is computationally intractable as one encounters bifurcations at every level of a given plan. Consider an

extreme case: There are no resources, no constraints and no limit on the precision of the probability R.

Since there are no bounds, it is inevitable that almost all of the state space will have to be considered.

If there are no resources and constraints, the success probability can be simply calculated as the

probability of reaching to the terminal node (or nodes). In other words, R = Pr(State= t). The following

is an example of evaluation of the probability R for a plan p that normally follows a path starting from

the node s and reaching to the node t through nodes q and r. The graph is depicted in Figure 6-1. Let

the probabilities for each edge (or action) to be denoted as x, 2 , X3, 4 and x5. If the first action

fails (with probability 1 - xl), the alternate route from s to t is taken. If the second action fails, the

alternate route from q to t is taken. There is no alternative to be used if the third action fails. Then,

by using the recursive equation

Rst = xiRqt + (1 - Xl)Rs t

Rqt = X2Rrt + (1 - X2)Rq't

Rrt = x3Rtt

Rs t = xs5Rtt

Rq't = x4Rtt

and by noting that Rt = and making the substitutions, we obtain

Rst = xlx 2x3 + xI(1 - x2)x4 + (1 - xl)X5
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In most cases, however, evaluation of the probability would be much more complex than this exam-

ple. In general, for m edges we have to consider 2 m different events, causing the algorithm to run in

exponential time. The recursive equation can be adapted to take into account the constraints to which

a given problem may be subjected. For example, resources may be depleted by exercised actions and

there may be limits on those resources. Alternative paths may have to be eliminated from consideration

due to such constraints. Using advance lookup and constraint-propagation techniques, one can truncate

the search space; yet these will not eliminate anxiety over the worst-case exponential running time.

6.5.3 Markov Model

Given these problems with computational complexity, an obvious question to be asked is whether

there exists an alternative evaluation method which is less demanding for evaluating the success prob-

ability R. A candidate is the Markov chain that is often used in modelling stochastic processes. The

Markov chain uses a state transition probabilities matrix P whose (i, j)th element is the probability of

making a transition from state si to state sj. These transitions are achieved by the application of an

action from the action set A4. Thus,

Pij = Pr(si, aij, sj)

where aij is the action that takes the system from state si to state s. These transition probabilities

are used to update the current probability density vector r whose jth element expresses the probability

of being in state sj:

g7(k + 1) = r(k) x P (6.9)

In a similar manner to our recursive equation that tracks the evolution of state transitions, repeated

applications of this equation 6.9 will yield the eventual probability density vector. For the asymptotic

value,

7r(oo) = r(O) x (6.10)

Another way of calculating the asymptotic probability density vector is due to the fact that the

system eventually reaches a stable equilibrium:

7r(oo) = 7r(oo) x P (6.11)

It is clear that the asymptotic probability of reaching any state can be found easily with this model

unless the size of the state transition probabilities matrix is very large. Nevertheless, problems arise

when the model is to be adopted for evaluating the robustness of plans.

First, the determination of the matrix elements corresponding to transition probabilities requires

taking into account the priorities and orders prescribed by the plan as well as the modification strategy.
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This is in contrast to most classical studies in which the state transition probabilities are constant and

given a priori by the model. For example, plan normally leading from s to t through q may have to

resort an alternative path through node r. Since the alternative is exercised after the original path has

failed, the transition probability from state s to state r must be computed by multiplying the initial

probability of this trial by the probability of this alternative path found from the corresponding edge

probability in the model.

Second, problems arise due to resources and constraints. If the success probability is not simply

the probability of reaching to the destination node but it also involves reaching to it under certain

constraints, the Markov model's update of the probability density vector has to be applied step by step

by taking note of these constraints, by applying the modification strategy in each step and by determining

the current state transition probabilities. This is because the probabilities may change at each step in

contrast to classical Markov models where they are static. This forced dynamic evaluation results in

losing the advantages of Markov model; indeed, it differs from the recursive evaluation model mostly

in evaluation of the probabilities of reaching to all other states beside the terminal state. Introduction

of resources in this problem requires a memory preservation structure which contrasts with the spirit

of Markov models. Also note that the introduction resources precludes the direct use of dynamic

programming techniques.

6.6 An Algorithm For Evaluating Robustness

6.6.1 Implementation

Evaluation of the robustness measure is based on the generation of the possible variants of a given

plan. We call these variants as realizations. A realization models the trajectory of a plan as it is being

implemented -complete with the modifications performed on it. The following gives a PROLOG version

of the algorithm for the realization model that has been used for measuring robustness:

Realization(Realization?, Plan, Constraints) :-

Choose(ActionExercised?, Plan),

Either ;Action Succeeds

Update(ModifiedPlan?, Plan, ActionExercised?, Success),

WhenViolates(ModifiedPlan?, Constraints) (Fail),

Realization([Realization? ActionExercised?], ModifiedPlan?, Constraints);

Or ;Action Fails

Update(ModifiedPlan?, Plan, ActionExercised?, Failure),

WhenViolates(ModifiedPlan?, Constraints) (Fail),

FindOption(Option?, ModifiedPlan?, ActionExercised?, Constraints),
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RestorePlan(AlternativePlan ?, Option?,ModifiedPlan?),

Realization(Realization?, AlternativePlan?, Constraints).

Given a plan, this algorithm produces all possible realizations of a given plan as allowed by the

constraints. These realizations can be used to evaluate either the overall success probability or the

dynamic expected utility for the given plan. In other words, either of the following robustness measures

can be calculated recursively by the above algorithm:

R(p) = Pr(p U p(l) U p(2) U .... . (i)U ... U p(N)) (6.12)

N

E* (p) = Pr(p(i))C(p(i)) (6.13)
i-1

where p(i) signifies the present version of the plan p for the ith version of the state space and

C(p(i)) stands for the cost of the corresponding plan version. For a problem with n stochastic and

binary variables, the state space contains 2n possible instances, resulting in a maximum number of plan

versions or realizations N equal to 2 .

6.6.2 Strategies for Modification

For each of these instances, the algorithm requires a new version of the plan as the current specifica-

tion of how to continue within the present state of affairs to attain the desired goals. This evaluation is

performed within the subroutine FindOption through the application of a certain modification strategy

T, which will output the new plan version p(i) given the current state space and the current plan speci-

fication. There are various candidates for these modification strategies. An obvious strategy consists of

simply ignoring the problem and insisting on using the original plan specification. This strategy has been

called the null strategy and is denoted with Fn. Another strategy can be based on the determination

of a new optimum plan continuation for the current conditions, based on a reoptimization study. This

strategy has been called the replannning strategy and is denoted with Fr. Replanning produces the

maximally obtainable robustness measures but it could be computationally expensive. Between these

two extremes lie a variety of other candidates which demand less computational resources and therefore

can be more suitable for the above algorithm. For instance, the commitment strategy is based on the

continuation of the original plan specification with a simple adaptation to the present state. Ideally,

such strategies should produce results that are close to those of the replanning yet should be easy to

compute especially in real time during plan implementation. The selection of these strategies ultimately

depends on the computational demands of the problem under consideration.
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6.6.3 Runtime for the Algorithm

The time it takes to complete the evaluation of a plan through the above algorithm can be calculated

recursively as follows: Let t(n) denote the time required for evaluation of a given plan with n actions.

Let a(n) denote the time it takes to carry out all the calculations of the first part of the above algorithm

and b(n) denote the corresponding time for the second part which includes the determination of the

new version of the plan after encountering a failure. Because of recursion,

t(n) = (a(n) + b(n))t(n - 1). (6.14)

It follows that,

t(n) = I(a(i) + b(i)). (6.15)
i=l

If both a(n) and b(n) are constants such that a(n) + b(n) = To then t(n) = To. In some problems,

however, the time b(n) to complete the evaluation of the second part may not be a constant. For this

case, assuming that a(n) = ao < < b(n), we obtain that t(n) li b(i) i. The function b(n) depends on

the selection of the modification strategy for the subroutine FindOption. Nevertheless, it is apparent

that even with a polynomial-time modification strategy, the algorithm produces an exponential number

of realizations and therefore takes exponential time with increasing plan size in the absence of any

constraints. Incorporation of constraints helps to restrain the exponential number of possible realizations

which will otherwise make the algorithm intractable. The algorithm is therefore implemented both with

a built-in constraint propagation scheme and cutoff schemes for those realizations whose values exceed

certain pre-set thresholds. Below, we examine various versions of such cutoffs.

6.6.4 Cost Cutoff

First of these constraints is a limit on the total cost which simply measures the amount of expendable

resources. It is assumed that any action that has been exercised, regardless of the result being success

or failure will deplete a certain amount of cost associated with it. It is also assumed that costs are

additive. For example, for the concatenation of edges el and e2 with the corresponding individual

costs c(el) and c(e2 ), the total cost will be c(el e e2) = c(el) + c(e2). A larger limit on the total cost

(expendable resources) provides a larger margin for recovering from errors. Therefore, the robustnessss

measures vary monotonically with increased cost limit. Figure 6-2 shows an example of this for the

success probability of a typical path. Note that as the cost limit is increased the success probability

approaches an asymptotic value.
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Figure 6-2: Success probability versus cost limit for a typical path

6.6.5 Probability Cutoff

Another natural constraint that is used to reduce the computational effort involves a probability

cutoff. Because the main goal of the algorithm is to produce an overall probability value or an overall

expected utility, it is not desired to examine those realizations with a small marginal utility. Indeed, it

is quite impractical to evaluate the success probability or the expected utility to a very fine precision.

Generally, when one reaches a few levels down in the event tree, initial probabilities of the alternative

paths become very small and contribute very little to the overall success probability of the original

plan. Ignoring those alternatives having small initial probability helps reduce the computational effort.

Figure 6-3 shows an example of how the overall success probability varies with varying cutoff probability.

Both cost and probability cutoffs result in an underestimation of the desired probability value but

they also significantly reduce the amount of computation required. Figure 6-4 shows how the runtime

for measuring robustness through the above algorithm increases exponentially with increasing cutoff

values in a typical problem.

6.6.6 Depth Cutoff

Beside those constraints such as an upper limit on the total expendable cost and a lower limit

on the initial probability of an alternative path, we impose another constraint on the depth of the

algorithm as a concession to complexity. Obviously, both cost and probability cutoff methods work

similarly to depth cutoff but in a more natural way, for they allow us to probe interesting or important

alternatives deeper. Nevertheless, the computational time increases exponentially with increasing depth
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and therefore a depth limit may be necessary for guaranteeing a bound on the computation time. The

following figure 6-5 shows how a depth cutoff affects the overall probability value for various paths in

a random problem. It should be noted while a very limited depth value significantly helps in reducing

computation time it may severely underestimate the required probability value. On the other hand a

large depth cutoff value may not be useful at all because the marginal utilities of modifications carried

out in deep levels of a plan (attempting to correct failures attempted for correcting previous failures...)

is ignorable whereas the amount of computation for these modifications is tremendous. Note that a

depth cutoff limit equal to k implies that there are at most k failures that are to be accounted in the

evaluation of the robustness of a given plan.

6.7 Summary and Conclusions

We introduced the concept of robust plans by emphasizing the dynamic nature of planning. We

reviewed previous work on diverse areas that could be useful for the development of robust plans. We

especially concentrated on dynamic path planning problems. We reviewed the results that show that

such problems of dynamic nature generally belong to the complexity class PSPACE. Then, we introduced

the robustness measures based on the reliability and the expected cost of a plan; the difference between

these measures and conventional ones are due to consideration of adaptation to dynamic events in

the robust plans. Later, we showed that these measures can be determined exactly with a depth-first

algorithm. Further, this evaluation can be made less computationally demanding by using various cutoff

schemes.
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Chapter 7

Robust Planning Examples

This chapter examines the generation of robust plans within the context of general path finding prob-

lems. We describe in Section 7.1 four versions of robust path finding problems subject to dynamic

optimization criteria. The complexity and the solution methods for these problems are examined in

Section 7.2 and Section 7.3. In Section 7.4, we compare the robust plans to the solutions optimal under

conventional static optimization criteria. GAs, with their property of being particularly efficient for

search in moderately complex and moderately nonlinear problem spaces, provide a relatively attractive

method for the solution of robust planning problems. We present the results of genetic algorithms in

finding solutions to some examples of robust planning problems in path planning. Section 7.5 examines

an NP-hard problem instance while Section 7.6 examines the application of genetic algorithms to a

PSPACE-hard problem instance. Section 7.7 presents the heuristics that are developed to increase the

efficiency of this solution process.

7.1 Problems Considered

Robust planning problems involve the determination of plans optimal with respect to metrics such

as the success probability or the expected cost, evaluated over possible realizations of the given plan in

a ever-changing environment. Because robustness measures are inherently probabilistic, these problems

are posed naturally within the context of probabilistic graph models. Conceptually simple versions

of robust planning problems can be derived directly from the most studied deterministic path finding

problems, namely the shortest path problem and the traveling salesman problem.

We will refer to the probabilistic version of the shortest path problem that asks for the most robust

path in a given graph as the Probabilistic Shortest Path Problem and we will denote it with PSPP. This

problem can often be made more interesting and more difficult by requiring that some fixed fraction of
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all the nodes must be visited for a path to be feasible. By requiring that any path specification must

include all the nodes of the given graph, we obtain the probabilistic version of the familiar TSP. This

problem has been first referred as the Probabilistic Traveling Salesman Problem (PTSP) by Jaillet who

analyzed it exhaustively in his PhD thesis 77], suggested adaptation of branch & bound scheme for its

solution and provided several bounds for the cost of the optimal solution in the case where the nodes

are located randomly on a Euclidean plane. Jaillet also [78] describes the Probabilistic Shortest Path

Problem (PSPP) as follows: "Consider the problem of finding a shortest path between a node source

s and a node sink t in a complete network having a length associated with each arc. On any given

instance of the problem, only a subset among intermediate nodes can be used to go from s to t, the

subset being chosen according to a given probability law. We wish to construct an a priori path such

that, on any given instance of the problem, the sequence of nodes defining the path is preserved but only

the permissible nodes are traversed, the others being skipped. The problem of finding a priori path of

minimum expected length is defined as a PSPP. "

The problems we consider are similar to those originally suggested by Jaillet. Our models differ

from Jaillet's model in that we ascribe probabilities to the edges of the given graph instead of its nodes.

These probabilities signify the probability of reaching from a source node to a given destination node

while the edges of graph may be failing. Furthermore, we also allow that a failing edge in a path may

still add to the cumulative cost of the path. We also assume that a pair of source and destination nodes

are always specified as well as a limit on the maximum expendable cost (i.e. there is a fixed budget).

We are interested in finding optimal solutions with respect to both the expected cost and the success

probability (of reaching to destination node starting from the source) criteria. Further, we also make a

distinction between the strategies to be applied when contingencies arise. A strategy dictates how to

modify a plan that deviated from its original course.

Adaptation to contingencies generally require a modification strategy that can be quickly imple-

mented. A particularly fast modification strategy is the commitment modification strategy originally

suggested by Jaillet. The commitment modification strategy dictates to follow, as long as possible, the

order, the original course of the plan. This strategy can be implemented for both problems (SP and

TSP) in polynomial time (O(n)). A particularly desirable modification strategy is reoptimization for

the each possible instance of the problem environment.

In the light of this information, we define the following distinct robust path finding problems:

1. PSPP-E: Given a probabilistic graph G(V, E) and commitment modification strategy, find the

shortest path having the minimum dynamically calculated expected cost. The corresponding recognition

problem asks whether there exists a path with the expected cost less than a preset limit.

2. PSPP-R: Given a probabilistic graph G(V, E), the commitment modification strategy and a

cost (budget) limit Cnax find the path with the maximal probability of succeeding to reach from the
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Figure 7-1: Commitment modification strategy is applied after a failure in a simpel path

source node to the destination node under the given cost limit under all instantianations. In other

words,

maxPr(A Vi Ci < Cmax) (7.1)

where A denotes the event of reaching to the destination node and Ci denotes the budget spent under

the instantianation i. The corresponding recognition problem asks whether there exists a path with the

success probability R larger than a preset limit.

3. PTSP-E: This asks the same questions as the above problem PSSP-E; the only difference is

that we restrict our attention to Hamiltonian paths.

4. PTSP-R: The same question as the above problem PSPP-R, but again we require that a path

must visit all the nodes of the given graph.

Changing the modification strategy from commitment strategy to reoptimization, we obtain a new set

of problems. These would be called the Reoptimized Shortest Path and Reoptimized Traveling Salesman

Problems: RSPP-E, RSPP-R, RTSP-E and RTSP-R.

7.2 Problems Under Commitment Modification Strategy

Both the PSPP and the PTSP employ the same commitment modification strategy for recovering

from failures. This strategy consists of skipping to the next node after an action fails to take the agent

to the intended node and leaves her back in the starting node (possibly with irreversible effects on the

resources). Commitment modification strategy allows a quick adaptation to failures and simplifies the

evaluation of the robustness measures. Figure 7-1 gives an example of the application of the commitment

modification strategy for a simple path. In the following, we develop formulas for efficient evaluation of

the robustness measures under this strategy.
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Table 7.1: Paths of Figure 6.1 classified

7.2.1 Realizations

Consider the graph in Figure 7.2.1. We assume that the nodes A and E have been specified as the

start and the finish nodes. The appearance order of the nodes B, C, and D distinguishes a path from

the others. For the PTSP, all of these nodes have to be visited and therefore there exists 3!=6 distinct

Hamiltonian paths. For the PSPP, there exists 16 distinct paths; these are shown in Table 7.1 classified

with respect to the number of nodes that they visit.

Applying the enumeration technique for finding the most robust path requires evaluation of the

robustness measure for each candidate path. This evaluation, when performed through the recursive

algorithm, is itself computationally expensive for it explicitly considers all possible realizations of a given

path. Consider the path Lo AB - BC - CD - DE of the graph in Figure 7.2.1. For the Hamiltonian

path L0 there are 16 distinct realizations corresponding to combinations of 4 different edges each with

two different outcomes (success or failure). Half of these combinations are infeasible as they contain a

failure in their last link. The other 8 different realizations can be classified according to the number of

failing links that they contain. These realizations are shown in Table 7.2.
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AE ABE ABCE ABCDE
ACE ABDE ABDCE
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ACDE ACDBE
ADBE ADBCE
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Table 7.2: For Tour AB-BC-CD-DE: Realized Tours

0 Failure 1 Failure 2 Failures 3 Failures

AB-BC-CD-DE AB-BC-(CDC)-CE AB-(BCB)-(BDB)-BE (ABA)-(ACA)-
AB-BC-(CBD)-DE (ABA)-AC-(CDC)-CE -(ADA)-AE
(ABA)-AC-CD-DE (ABA)-(ACA)-AD-DE

Suppose that we consider a graph having n + 2 nodes (wherein two nodes are fixed as start and

terminal points and n nodes are variable). For such a graph, there exists n + 1 edges and 2
n + 1 distinct

edge combinations. Half of these combinations comprises infeasible paths as they contain a failure in

their last link that arrives at the terminal node. Thus there are 2n distinct realizations that must be

taken into consideration. The number of realizations for a given number k of link failures is equal

to ( n ) where n is the number of variable nodes in the given path. For example, in the above

problem there are ( 2 ) =3 distinct realizations with double failures. In general, these realizations are

distributed binomially such that

2n n + n + n +.+ n + n
0 1 2 n(- n

This binomial expansion can be useful in evaluating the expected cost or the success probability of a

given path.

7.2.2 Success Probability

The success probability for a given path is equal to the sum of the path probabilities for its disjoint

realizations. For a path L, the probability R is:

R(L) = Pr(L(i)) (7.2)

where L (i) represents a possible realization of the path L. These realizations can be obtained through

the above described scheme of binomial expansion.

For example, let us assume that all the edges have a uniform edge probability p. The overall success

probability R of a path L with n + 2 nodes, can be written by summing up each element of the binomial

expansion:

R(L) = n )pni( p)i (7.3)
i=o i
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This expression can be simplified by noting that:

R(L) = p ) pn+ (n )Pn-(1-P +... ( )p1(1I P)n-1+ n (1 -P)n)0 ~ ~ ~1- Pl'+ n -- 1 n
= p(p+ (1-_p))n

= p

For example, the success probability R(Lo) for the path L0 for the above graph of Figure 7.2.1 can be

written as the sum:

R(Lo) = p4 + 3p3(1 _ -p) + 3p2(1 _ p)2 + p(l -p)3 =p.

This reduction is achieved because all the possible realizations (except those half that never reach

the terminal node) are feasible in the absence of constraints. Intuitvely, if the budget limit is infinite

(Cmax = 0), any path can be adjusted so that it eventually arrives at the terminal node. Hence, the

overall success probability of a path equals the probability of its last link, which has to be successfully

traversed in order to arrive at the terminal node. It turns out that, in this case, there is no need to

distinguish among different paths since the probabilities of the edges arriving at the terminal node are

equal. For example, for the above example graph, all 6 possible tours have the same probability R = p.

An alternative method for obtaining the success probability R(L) relies on the recursive evaluation

scheme. The probability Ri,j,l of arriving at the node j starting from the node i through a path that

skips the nodes i + 1, i + 2,...i + Il-1 and visits in order the nodes i + l + 1, i + + 2,.... j-1, j is equal to

the sum of the following terms: the probability that the first edge is successfully traversed, multiplied

by the probability of the remaining path and the probability that the first edge fails, multiplied by the

probability of the alternative path. Because of the commitment strategy, the alternative path follows

the original path only by skipping over the arrival nodes of the formerly failed edges. Then,

Ri,j,l = Pi,i+l+l Ri+l+I,j,o + (1 - i,i+l )Rijl+l (7.4)

with the following boundary conditions:

Ri,jj=Pi,j lj=i -1 (7.5)

for I such that all the nodes between the node i and the node j are to be skipped. As the special cases

of this boundary condition,

Ri,i+,O = Pi,i+l (7.6)

and

RXio= 1. (7.7)
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The success probability Ro,n+1 = Ron+l,o can be easily evaluated with this scheme; however the

evaluation takes exponential time. In the course of this evaluation, all the probability values Ri,j for

j > i are determined. Although there are only En i = n(,+l) of these terms, the evaluation of all these2

terms and therefore the determination of Ro,n+l takes time in order 2 .

The expression for the succes probability is considerably simplified if the edge probability values

satisfy the following Bayesian property:

Pij = P(ivj) = PjliPi (7.8)

In other words, an edge probability is given by the probability of Pjji reaching to the arrival node j from

node i, multiplied by the prior probability Pi of being at node i. It can be shown that, in this case, the

success probability of any path between a node i and a node j is simply equal to the multiplication of

the probability values Pi and pj:

Rij = piPj (7.9)

regardless of the nodes that lie between the node i and the node j. This simply follows from the fact

that all the realizations are taken into account in the evaluation of Rij.

If the problem includes constraints on resources or is there exists a limit on the total expendable cost

(a fixed budget), the expressions for the success probability cannot be simplified. The above described

construction schemes, both the binomial expansion method and the recursive evaluation, however, can

be modified for efficient evaluation of the success probability. For example, in the evaluation of the

binomial expansion, the contributions by the individual realizations can be summed up only after those

combinations having a cost over the limit have been eliminated. Some amount of computation may be

saved by discarding those paths with additional failures if they already include a certain combination

of k edge failures that will result in exceeding the cost constraint. Thus, we obtain

R= C ( n )pn -i( p)i (7.10)
C<C... ii

where Uc<cm is an operator that sums after eliminating those variations exceeding the cost limit.

Also, for the case in which the edge probabilities are different:

R = U Pr(L(')) (7.11)
C<Cm-xi

Further, the above construction indicates that the static path probability always constitutes a lower

bound on the overall success probability if the resources spent on failed edges are irrecoverable:

R > Pr(Lo) (7.12)
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7.2.3 Expected Cost

The expected cost of a plan is evaluated by summing up the probability weighted costs of each

possible realization. For a plan L, the expected cost E(L) is therefore equal to

E(L) = E Pr(L(i))C(L(i)) (7.13)

where L(i ) is the ith realization of the given plan.

An easily comprehensible expression of the expected cost follows from the binomial expansion. For

the following, we assume that there are no constraints on the expendable cost and all the edges have

the same probability value p. Then, the expected cost for a path L is equal to

E(L) = ( . )pn i(l -p)iC(L(i)) (7.14)
i

where C(L(i)) is the sum of the individual edge values for the path version with i link failures. For

example, for the above graph, the following values are obtained with the assumption that all the edges

have the same cost d and there is no cost penalty for the edges that failed: C(L(O)) = 4d, C(L(1)) = 3d,

C(L(2)) = 2d, C(L(3)) = d. Then, the expected cost for the path L0 is equal to:

E(Lo) = p 4(4d) + 3p3(1 -p)(3d) + 3p2(1 -p)2 (3d) + p(l -p)3 (ld)

The same equations are obtained by rearranging these terms in groups of the individual edges. For a

general graph with n + 2 nodes, the expected cost can be calculated as the sum of the cost of each edge

multiplied by its appearance probability. The appearance probability of an edge between the node i

and the node j is equal to the multiplication of the following terms:

* The probability that the node i is reached by starting from the start node (the node 0). This

probability is equal to Ro,i(L).

* The probability that the node j is reached by starting from the node i. This probability is equal
[j--1to Pi,j k-i+l (1 - Pi,k) as the nodes between the node i and the node j will have to be skipped.

* The probability that the terminal node (the node n+ 1) is reached from the node j. This probability

is equal to Rj,n+l (L).

Therefore the expected cost is obtained as:

n n+l j-1
E(L) = E dijRoi(L)pij (1 - i,k)Rj,n+l(L) (7.15)

i=O j=i+i k=i+l

158



These equations do not take into account the possibility of constraints on resources, such as a fixed

budget. But they allow us to evaluate the expression for the expected cost in polynomial time in order

O(n 3 ) once the dynamic reliability values are determined.

We also develop a recursive equation which can be used for evaluating the expected cost of a partial

path. For a path that visits, in order, the nodes 0, 1, 2, ..., k-1, the expected costs at each step are:

E(Lo)

E(L1 )

E(L2)

= 0

= (E(Lo) + Ro,odo,i)po,

= (E(L1)

(E(Lo)

+ Ro,ldl, 2 )pl, 2 +

+ Ro,odo, 2)(1 - Po,1)Po,2

E(L 3) = (E(L2)

(E(L1 )

(E(Lo)

+ Ro,2 d2,3)p2,3 +

+ Ro,ldl, 3)(1 - Pl,2)Pl,3 +

+ Ro,odo,3)(1 - poJ)(l - P,2)Po,3

E(Lk) = (E(Lk-1) + Ro,k-ldk-1,k)Pk-l,k +

(E(Lk-2) + R,k-2dk-2,k)(1 -Pk-2,k-1)Pk-2,k +

(E(Lk-3) + Ro,k-3dk-3,k)(1 - Pk-3,k-2)(1 - Pk-3,k-1)Pk-3,k +

. . .

(E(Lo) + Ro,odo,k)(1 -poi)(l -Po,2) .. (1 -Po,k-l)Po,k

It follows that for a partial path, the expected cost at the node k is equal to:

k k-1

E(Lk) = E (E(Lk-i) + Ro,k-idk-i,k) 1 (1 -Pk-i,j)Pk-i,k
i=1 j=k-i

(7.16)

This recursive equation indicates that the expected cost is not a monotonic function, therefore a

dynamic programming formulation is not useful for this problem.

7.2.4 Complexity of the PSPP and the PTSP

The complexity of the problems PSPP and PTSP under commitment modification strategy can now

be examined in the light of above-developed equations.
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First, we assume that there are no constraints on the expendable total cost or on other resources.

The elimination of such constraints simplifies the problems for it allows that all the realizations of a

given plan are feasible. Hence, the success probability of any plan is determined by its initial conditions.

In particular, the success probability of a path is determined by the probability of its terminal nodes, as

shown in Equation 7.9, when there are no global constraints. If the edge probabilities are not uniform,

the problems PSPP-R and PTSP-R are not trivial either.

The problem is more interesting when we use the other metric, expected cost, for optimization. The

expected cost of a path can be found either from Equation 7.15 or recursively from Equation 7.16. Given

that the probability values Rij can be evaluated in constant time, both of these equations take running

time in order O(n 3), as the total sum of the elemnientary operations performed is equal to:

n-1 71 j-1
f l -i I = (n n). (7.17)
i=O j=i+l k=i+l

These equations are useful in evaluating the complexity of the problems PSPP-E and PTSP-E. By

rewriting Equation 7.16 as

k^~~ ~~k-1
E(Lk) - E(Lk-)Pk-lk + Ro,k-ldk-l,k + E (E(Lk-i) + Ro,k-idk-i,k) 1 (1- Pk-ij)Pk-i,k

i=2 j=k-i

= E(Lk-1)Pk-l,k + RO,k-ldk-l,k + -y7(k)

we observe that the expected cost can be stated in terms of the expected cost of the immediatiely

preceding state. Note that this equation will reduce to the normal (static) expected cost evaluation

when y(k) = 0. Therefore, complexity of the PSPP-E is the same as the complexity of the shortest path

problem under statically calculated expected cost optimization measure. This last problem, which can

be solved with stochastic dynamic programming, is an NP-hard problem under the given model with

non-additive objective function as shown in the previous chapter. It follows that the PSPP-E without

constraints is NP-hard for the general case.

Because of the global constraint (all nodes must be visited) on TSP type problems, neither the

greedy search, nor the dynamic programming algorithm will always yield the globally optimal solution,

despite the the O(n 3 ) recursive equation 7.16. Therefore the PTSP-E is an NP-complete problem as

shown below:

Lemma 7.1: PTSP-E is an NP problem.

Proof: We assume that the problem is posed as a query, e.g., Does a given solution instance L

satisfy the condition that E(L) < E,na ? The answer can be given in polynomial time by virtue of the

equations that evaluate the expected cost in running time O(n 3 ). Because the solutions can be verified

in polynomial time, the PTSP-E is an NP problein.
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Lemma 7.2: The TSP is reducible from the PTSP-E.

Proof:

A solution algorithm to the PTSP-E can be used to solve the TSP. In order to obtain the solution

to the TSP from the PTSP-E solution algorithm, we only need to assign unity to the edge probability

values. Rewriting Equation 7.15 as

n n+1 j-1

E(L) = 1j E djRoi(L)pi~j fi (1 -Pi,k)Rj.n+l(L)
i=O j=i+l k=i+l

n n+l

= E dija(L, i,j)
i=O j=i+1

n n n+1

= di,i+l a(L,i,i + 1) + E E di,ja(L,i,j) (7.18)
i=0 ,=O j=i+2

we can observe that the TSP is a special instance of the PTSP-E in which all the probabilities are equal

to 1. In this case, a(L,i,i + 1) = 1 and a(L,ivj) = 0 for j > i + 1 and therefore,

n

E(L) =E di,+ (7.19)
i=O

which is the cost metric of the TSP.

It follows from Lemma 7.1 and Lemma 7.2 that

Theorem 7.1:

The PTSP-E is an NP-complete problem.

Complexity of constrained problems

Finally, we examine the complexity of these problems under constraints on the total expendable

cost and non-uniform edge probabilities. Under such constraints, the probability values Rj, hence the

expected cost values, take exponential time to evaluate because all the possible realizations will have

to be examined (in the worst case). As the number of these realizations is equal to 2, determining

which alternatives are feasible and which ones are not is an intractable task. Because the robustness

measures cannot be evaluated in polynomial time. these problems do not belong to NP. Papadimitriou

[106] shows that the recognition versions of many dynamic optimization problems can be reduced to

RSAT (stochastic satisfiability) in polynomial time and therefore they belong to the complexity class

PSPACE. The problems in PSPACE are distinguished by their requirements of time exponential yet

memory (space) polynomial in problem size. Following Papadimitriou's conclusions, it can be shown that

these dynamic optimization problems are as hard as RSAT. In these problems, there is an exponential

number of realization for any given path, yet any alternative can be discarded from the physical memory
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after its contribution is taken into account in the sum operator (for an overall probability or expected

cost value). Because the evaluation of fitness function takes exponential time and polynomial space in

computer resources, the general dynamic optimization problems are PSPACE-hard.

7.3 Problems Under Reoptimization Strategy

While the commitment strategy expects loyalty to be shown to the original plan as much as possible,

the reoptimization strategy assumes that an optimum continuation should be determined after each

failure. The equivalent problems to the PSPP and the PTSP under the reoptimization strategy have

been called the RSPP and the RTSP. An example for this problem is an instance of TSP in which the

points are located along the corners of a convex polygon on a Euclidean plane and a uniform probability

is associated with all the edges. With this model, the conevex polygon is the optimum solution for

the TSP, the PTSP-E and the RTSP-E. The convex polygon is an optimum solution to the RTSP-E

because all the instances in which some nodes are dropped out are still optimal for the corresponding

subproblem.

The RSPP has the same complexity with the PSPP (both are NP-hard), because one can find the

reoptimized path after each failure in polynomial time simply by using Dijkstra's algorithm. On the

other hand, the RTSP is a significantly harder problem than the PTSP. The evaluation of the fitness

values for each solution instance takes exponential time because a new optimum TSP tour has to be

evaluated for each realization. Although, it is intractable to prove that a solution is optimum for the

RTSP, it is easy to diagnose (verify) that a solution to the RTSP does not satisfy the optimality criteria.

This would require only finding a counterexample that has a smaller cost for a possible realization of

the plan. Therefore, the recognition version of the RTSP belongs to the complexity class co-NP which

consists of problems in which the negation of an hypothesis is verifiable in polynomial time. Because

of the doubly exponential time required to evaluate the fitness of a solution, the RTSP is an infeasible

problem.

Fortunately, good solutions to the RSPP and the RTSP can be obtained by solving the PSPP and

the PTSP. It is clear from the definitions of the RTSP and the RSPP that the optimal solutions for these

problems also constitute the optimal solutions for the corresponding problems under the commitment

modification strategy. Evaluating the sub-optimal solutions under the commitment strategy results in

an underestimation of the values that would be found under the reoptimization strategy. However, the

amount of underestimation decreases as these solutions "get closer" to the optimum solution. Therefore,

the reasonably good solutions to general reoptimization problems can be found by solving those problems

under the commitment strategy.

In order to observe the convergence between the commitment and the reoptimization strategies, we
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Figure 7-3: Fitness probability versus number of links

solved the RSPP and the PSPP for the same graphs. The use of randomly constructed graphs, however,

created some unanticipated problems. In these examples, the best solutions were very easily obtainable

because of the following special characteristics of the examined problems: (1) In these graphs, the best

paths are generally those with a minimum number of edges. (2) The generation of a set of paths is

highly biased towards those paths with a minimum number of edges. Figure 7-3 shows the distribution

of the best fitness for paths classified according to the number of edges they contain. As can be seen

from the figure, for a depth limit larger than three, shorther paths have higher fitness values. Figure 7-4

shows the density distribution of all paths versus the number of edges a given path contains. If a set

of paths were to be generated in accordance with this distribution it would be unlikely to obtain those

paths with a small number of edges and a high fitness. Fortunately, the construction of a path through

depth search is biased toward those paths with a minimum number of edges (minimum depth). It is

also shown in Figure 7-4 that Monte-Carlo construction methods produce a set of paths following a

distribution that favors paths with shorter edges. Thus, it becomes quite likely that the best path

will be among a set of randomly constructed individuals. Because of this condition, the Monte-Carlo

method could find the best paths without much difficulty. Thus, we concluded that the unconstrained

path finding problems for the above type of graphs are not well-suited for optimization purposes.

On the other hand, the above results cannot be generalized as there exist many types of graphs for

which the Monte-Carlo method may not be efficient because the robust paths are not relatively simple

and therefore have a low probability of being drawn out of the set of all paths. For example, for a

randomly constructed graph having 15 nodes and 11061 paths, the most robust path contains 12 links

and is not found easily with random generation.
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The above comparisons lead us to the following conclusions: (1) The GA may be over-powerful for

some type of problems for which the robust paths have a relatively simple structure and therefore can

be found more efficiently with the Monte-Carlo method. (2) It could be more appropriate to employ

the GA for those versions of the path finding problems structured such that simple paths are eliminated

from consideration. These problems could be those that include a constraint on the number of nodes

visited. A typical example is the TSP problem in which all the nodes have to be visited.

In order to continue with our comparison of the PSPP and the RSPP, we restricted our attention to

those problem instances in which at least half of the nodes must appear in a path. The experiments were

performed for 3 distinct, randomly-constructed graphs with 10, 16 and 20 nodes with a uniform edge

probability value. The GA was run for each of these graphs 10 times under the commitment strategy

and 10 times under the reoptimization strategy. For the graph with 10 nodes, a unique solution instance

has been converged in all cases whether under the reoptimization or the commitment strategy. For the

graph with 16 nodes, the best solution obtained under the reoptimization strategy has also been obtained

under the commitment strategy 8 times. The other two solutions were near-optimal. However, for the

graph with 20 nodes, the optimum solution has been obtained only 3 times under the commitment

strategy. These experiments show that, as a graph gets more complex, the divergence between the

solutions of the PSPP-constrained and the RSPP-constrained may increase.

164



Figure 7-5: Optimal solution to a random TSP with 30 nodes. Note that the tour may cross itself.

7.4 Robust paths versus statically optimal paths

Optimization over robustness criteria may result in solutions that could be distinctly marked from

those found under conventional optimization criteria (such as static expected cost or static reliability).

Figure 7-5 shows the optimal solution to a TSP problem with 30 nodes located randomly on a plane.

By assigning a value p to the probability of each edge, a PTSP-E problem can be posed. The optimal

solution to the PTSP-E is shown in Figure 7-6 for p = 0.01. Contrasting these solutions indicates that

the PTSP-E solution could be quite different than that of the TSP.

The difference between the TSP and the PTSP-E may be observed better through a well-structured

problem. An example is shown shown in Figure 7-7 with the optimal TSP solution for a concentric

graph with 30 nodes. Let us denote the dynamic expected cost of this solution E(1). Another possible

tour (which is neither the optimal solution for the TSP nor for the PTSP-E) is shown in Figure 7-8.

Let us denote the dynamic expected cost of this solution E(2). The ratio of the expected costs depend

on the probability values of the edges of the graph. We assume that all edges have the same uniform

probability value. The ratio is plotted on Figure 7-9 for varying edge probability and graph size. As

can be seen from Figure 7-9 the optimal TSP solution (1) performs quite well for the PTSP-E problem

if the edge probability values are large. However at lower probability values the expected cost of the

solution 1 is larger than the expected cost of solution 2. The difference is not large (less than 10%) and

decreases again when the probability values get smaller; however it is striking in the sense that a bad

TSP solution may yield good solutions for the PTSP-E.

It is important to distinguish those cases when the optimal solution to a statical problem constitute a
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good solution for the corresponding dynamic problem. Because optimization under conventional static

criteria may be computationally less demanding than the dynamic optimization, it could be useful

whether we can rely on optimal solutions of a static problem. If the solutions found under such criteria

may be satisfactorily robust, there would be no need for a a detailed dynamic evalaution for robustness.

By rewriting the robustness criteria as

2n -1

R(L) = E Pr(L('))
i=o

= Pr(L()) + E Pr(L(i)) (7.20)

2" -- 1 *I=
E(L) = E Pr(L(i))C(L(i))

i=O

2"' -1

=- Pr(L(°))C(L(°)) + E Pr(L(i))C(L(i)) (7.21)
i=1

we observe that the first term of the sum in the RHS of these equations are the terms used for de-

termination of the value of a solution in a static calculation. The other terms take into account the

contribution of the realizations having failures. When the first term dominates over the rest, we may

expect that the static optimization criteria can produce solutions that are satisfactorily robust. This

condition is satisfied when the probability of the divergent realizations are small or the cost of these

realizations are ignorable compared to the cost of the original plan.

On the other hand, solutions found under static optimization criteria could be arbitrarily bad under

robustness criteria. Consider a case in which a backtracking from a failed edge eij has a cost equal to

dji = M. It is obvious that the expected cost of any path (even if it is optimal under static optimization

criteria) that includes such a failing edge may be arbitrarily increased by choosing for M a large value.

A comparison between the dynamic and static optimization criteria can be easily observed by viewing

the whole problem space. We perform this comparison for both the success probability and the expected

cost criteria for purposely constructed (regular) graphs and a set of random graphs.

7.4.1 Comparison of Solutions for Success Probability

It was found out that under distinct edge probabilities and the resource constraints, the success

probability must be found by summing up all the probability terms belonging to the possible realizations

of a given plan. The number of these realizations grows exponentially with the problem size. On the

other hand, the contribution by the realizations that include a large number of failures are usually

ignorable. Using a depth limit in the recursive algorithm can result in a significant reduction in the

number of realizations that are accounted for. In particular, for the depth limit k, we account for
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n!k = (n-k)!k! distinct realizations in the calculation of the robustness measure for a given plan.) =(n-k)!k!

This depth limit also corresponds to the number of failures and backtrackings that are allowed. A

depth 0 calculation yields the static probability of a given plan. Figure 7-10 shows the behavior of the

success probability versus depth limit for all paths in a small graph. These paths are sorted according to

their static probability. The following observations can be made about the success probability:0 1) The

success probability increases with increasing depth limit. Further it converges to an asymptotical value,

2) This increase is not proportional with the probability values found with lower depth threshold. As

a result, the shape of the solution space may change considerably. Some paths that previously ranked

well perform worse and some others that previously did not rank well perform better when more failures

are accounted for. And, 3) The differences between the values of the success probability of distinct

solutions become less marked at the converged values. We can expect this in most graphs with normally

distributed data, but we must note that it is always possible to assign special values such that significant

deviations can be observed.

7.4.2 Comparison of Solutions for Expected Cost

We compare the dynamic and static expected cost values of a set of Hamiltonian paths for a regular

graph. The graph used is depicted in Figure 7-11 for 12 nodes. These graphs have their nodes located

along a circle and are called circular graphs. They have the special property that the optimum path

under static optimization criteria also constitutes the most robust path. This property allows us to

test the correctness of the the GA algorithm. Even though the optimum path is the same for both

dynamic and static cases, there is a wide difference between these two as can be seen from Figure 7-12.

Figure 7-12 presents the expected cost (utility) values of all paths sorted in decreasing order with respect

to their static expected costs. Note that deviations for the dynamic case are relatively smaller, as can

be expected because of recovery from failures.

7.5 GA Runs for the PTSP-E

In the PTSP-E, the aim is to find a Hamiltonian tour or path with the minimum dynamic expected

cost. This objective function can be evaluated in polynomial time through Equation 7.15, once the

reliability values between the node pairs (s, v) and (v, t) (where v is any node in the graph and s and t

denote the source and sink nodes) are known. In the following, we present the results of GA runs for

the PTSP-E for a set of special problems with 15, 20, 25, 30 and 40 nodes. In all these examples, the

graph is circular (i.e. the nodes are located uniformly along a circle) (see Figure 7-11) and the edge

probability values are equal to 0.5. Because the edge probability values are uniform and no constraint

is specified, we can simplify the reliability values between any given pair of nodes. These values are
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Table 7.3: The Parameters of the Performance Model of the GA for PTSP-E Problems (50 indi-
viduals)

Problem Size a I y(0) I Average Correlation
15 0.2560 1.79 0.956
20 0.1630 2.26 0.989
25 0.1314 2.48 0.979
30 0.0933 3.23 0.996
40 0.0660 4.23 0.995

determined at the outset of GA run and saved in a table for further reference. The expected cost of a

path is found through Equation 7.15. Because of the special structure of the graph, the optimal solution

to the PTSP-E is identical to the TSP, it is a circle. Thus, the GA results can be denoted by the

convergence ratio (the ratio of the present expected cost to that of the optimal solution).

Figure 7-13 shows the GA results for the problem where the circular graph has 15 nodes,

Figure 7-14 shows the GA results for 20 nodes,

Figure 7-15 shows the GA results for 25 nodes,

Figure 7-16 shows the GA results for 30 nodes,

Figure 7-17 shows the GA results for 40 nodes.

The average expected cost of a generation in these runs agrees well with an exponential decay. The

following equation yields satisfactory correlation values for the observed data:

9(t) - 1 = et2/3 (7.22)

where t is the generation number, 9(t) is the average convergence ratio expected for generation t and a

is a parameter that depends on the problem size and the population size.

Figure 7-18 shows comparisons of the expected convergence ratio to the best-fit exponential decay

curve. The numbers in paranthesis denote the correlation coefficient between the data and the curve.

The correlation coefficients as well as the a and (0) values are also shown in Table 7.3:

The parameter a appearing in the exponential decay curves depends on the problem size. Figure 7-19

suggests that it is inversely linearly proportional with the problem size, i.e.,

1 _- = cn + c (7.23)a

where n is the problem size (the number of nodes in the graph).

The parameter a also depends on the population size. A new set of experiments that were performed
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with a twice larger population (PopSize=100) indicate that a depends on the population size S as

log S
a($) = c~(So) log S (7.24)

We spare the reader from a new set of figures of GA runs performed with a population size of 100, since

these run results are quite similar to the previous set of figures (7-13, 7-14, 7-15, 7-16, 7-17) calculated

for a popluation size of 50. The same performance model (Equation 7.22) still yields a good fit to

the observed data (although an exponent equal to 0.5 for the generation number t will yield better

correlation values in larger problem sizes). The ratio of the new set of a values (a(100, n)) to the

previous set of a values (a(50, n)) are plotted in Figure 7-20 and compared to the log 100. The figurelog 50

suggests that
a(100) log 100
a(50) log 50

and thus confirms that Equation 7.24 is reasonable.

Combining these results, we can rewrite the performance model for the PTSP-E as:

Y(t) - 1 t____
.9(0) - = cI,,+c2 (7.25)

where S is the population size used, n is the problem size and t is the number of generations. This

result can be compared to the performance model developed for GAs for the benchmark TSP problems

(Equation 4.11). (Note that in that model S denoted the problem size and n denoted the population

size: opposite of the present model !). The differences between these two models are small: 1) For the

benchmark TSP problems, the exponent of generation number t was 0.5, while in the present model

for the PTSP-E problems it equals to 0.66. 2) On the other hand, that model (Equation 4.11) yields

the expected value of the convergence ratio for the designated best individual while this model (Equa-

tion 7.25) yields the expected value averaged over the population at generation t. Futher experiments

show that the best designated individual can also be modelled in the same way. This value, while at the

first few generation of a GA run could have large deviations from the average expected value, eventually

settles at a convergence ratio 40%-50% lower than that of the average.

Finally, we examine the time required for evaluationg the fitness of an individual solution in these

GA runs. Figure 7-21 indicates that a perfect correlation is obtained when a polynomial of the third

degree O(n 3 ) is used for the runtime of the fitness function (where n is the problem size). This result

is consistent with the previously developed formula (Equation 7.17).

In summary, the PTSP-E with the uniform edge probability values can be solved with the GA in a

similar fashion to the process used for solving the TSP. Both of these problems are NP-hard and the

differences arise basically because of the time required evaluating the fitness of an individual. Whereas

a solution can be evaluated in O(n) time in the TSP, it takes O(n 3 ) time in the above instance of
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PTSP-E. Thus, the expected time to reach a certain convergence ratio through the GA is O(n2 ) longer

for the case of the PTSP-E in relative to the TSP case.

7.6 GA Runs for PTSP-R

This section presents the use of GAs for the PTSP-R in which evaluating the objective function

takes time exponential to the problem size. While this evaluation can be performed in polynomial time

for special cases, such as when all edge probabilities are the same, we concentrate on the general case

for which the success probability values are calculated through the depth-first algorithm of Chapter 6.

This allows us to examine the performance of GAs for problems that are even harder than NP-hard

problems.

We examine four PTSP-R problems in circular graphs with stochastic edges where the edge prob-

abilities are set randomly. These problems are denoted with PTSP-R-9, PTSP-R-10, PTSP-R-11 and

PTSP-R-12, the digits representing the number of nodes contained in the respective problem. Since

both the start-node and the finish-node are specifed, the number of tours in any of the above problems

with n nodes is equal to (n - 2)!. Relatively low numbers of nodes in these problems have been cho-

sen to reduce the computational time and also to find the most robust solution through enumeration.

The goal in these problems is to find a path with maximum success probability under a fixed budget.

The convergence ratios for these problems have been calculated by finding the best solution through

exhaustive enumeration (hence the small problem sizes). The results of the GA runs performed with a

population size of 70 are shown in the following figures:

Figure 7-22 for PTSP-R-9,

Figure 7-23 for PTSP-R-10,

Figure 7-24 for PTSP-R-11,

Figure 7-25 for PTSP-R-12.

These figures indicate 1) the GA results exponentially converge to toward the best solutions and

2) and their performance superior to the Monte-Carlo technique which was performed by removing the

crossover operation of the GA.

Figure 7-26 shows the distribution of the fitness probability for these problems as they change with

the increasing generation number.
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Figure 7-6: Optimal solution to a random PTSP-E with 30 nodes
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Figure 7-7: Optimal solution to a concentric TSP with 30 nodes (Solution 1)
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Figure 7-8: A tour for the concentric graph with 30 nodes (Solution 2) that is a good solution to PTSP
but a bad one for TSP.

The expected cost ratio versus edge probability and graph size

Edge Probability

Figure 7-9: The ratio of the dynamic expected cost of solutions 1 and 2 for the concentric graph.
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Figure 7-11: A circular graph used in robust path problems
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Figure 7-12: Comparison of normalized expected utility values for dynamic and static cases

Convergence for PTSP-E-15

0
Generation No

Figure 7-13: GA runs (PopSize=50) for finding a Hamiltonian path with minimum dynamic expected
cost in a circular graph with 15 nodes (PTSP-E-15)
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Convergence for PTSP-E-20
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Figure 7-14: GA runs (PopSize=50) for finding a Hamiltonian path
cost in a circular graph with 20 nodes (PTSP-E-20)

40 45 50

with minimum dynamic expected

Convergence for PTSP-E-25

0

13:

8
{)

0)
01

Generation No

Figure 7-15: GA runs (PopSize=50) for finding a Hamiltonian path with
cost in a circular graph with 25 nodes (PTSP-E-25)
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Convergence for PTSP-E-30

Generation No
0

Figure 7-16: GA runs (PopSize=50) for finding a Hamiltonian path with minimum dynamic expected
cost in a circular graph with 30 nodes (PTSP-E-30)

Convergence for PTSP-E-40

4 
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Generation No
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Figure 7-17: GA runs (PopSize=50) for finding a Hamiltonian path with minimum dynamic expected
cost in a circular graph with 40 nodes (PTSP-E-40)
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Convergence for PTSP-E
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Figure 7-18: Comparison of expected convergence rate (average of a generation) to the best fit curves
for different problem sizes
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Figure 7-19: Dependence of the parameter a to the problem size in GA
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Figure 7-20: The ratio of a(100) in GA runs for PTSP-Ea(50)
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Figure 7-21: Runtime for the fitness function for PTSP-E
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Average Fitness / Best Fitness for PTSP-R-9

Generation No

Figure 7-22: The GA convergence compared to Monte-Carlo for maximizing the success probability in
regular graphs with 9 nodes and probabilistic edges

Average Fitness / Best Fitness for PTSP-R-10

Generation No
0

Figure 7-23: The GA convergence compared to Monte-Carlo for maximizing the success probability in
regular graphs with 10 nodes and probabilistic edges
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Figure 7-24: The GA convergence compared to Monte-Carlo for maximizing the success probability in
regular graphs with 11 nodes and probabilistic edges

As was shown in Chapter 4, the GA performance can be improved by using a smaller population

size and by performing successive runs in which the best solutions are transferred to the next run. By

using a population size of 30 and by transferring the best 3 individuals to a next generation for a total

of seven runs, we obtain the GA results that perform better than the above runs. Figure 7-27 shows

the results for the multiple successive GA runs for the PTSP-R-11. The best designated solution of the

GA exponentially converges to the optimum solution, as indicated in the figure which also indicates the

exponential fitting curve (dotted line).

These results indicate that for the successive GA runs the following performance model is reasonable:

___- =St (7.26)Y0 - 1
where y is the convergence ratio of the best solution at generation t, S is the population size and oa is a

constant. The only inconsistency between this model and the previously developed models arise because

of exponent of the generation number t. While we used ta with a < 1 in the RHS of the performance

model, in this model we assume that a = 1. Although we found out that at times an exponent coefficient

a > 1 may give a better fit in this set of problems, we assume that a = 1 to be on the conservative side.

Runtime For Evaluating Fitness

The results mentioned above are obtained through a fitness function that takes time exponentially

proportional to the problem size. Figure 7-28 shows the time required for evaluating the fitness of an

individual for two different cost ratios. Cost ratio is the ratio of the maximum cost limit to the cost

of the shortest Hamiltonian path (circle). This figure suggests that the time T required evaluating the
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Figure 7-25: The GA convergence compared to Monte-Carlo for maximizing the success probability in
regular graphs with 12 nodes and probabilistc edges

fitness of individual has the following form:

T en

Figure 7-29 shows the time required evaluating the fitness of an individual versus cost ratio for different

graph sizes. The figure suggest that
C

r (1 -c-)

The total time spent on evaluating the fitness values in a GA run in t generations with the population

size S is simply the sum:

T = Str

Assume that we fix a certain converge ratio y* to terminate the GA run. Assuming that yo(S) yo

and denoting that

y - 1

we obtain from the performance model (Equation 7.26) the value of the number of generations to

convergence as
t* I log Q

a log S

Combining these results, we obtain that the time spent on fitness evaluation is roughly equal to

T* S eg (-e- Co) (7.27)
1-S

calogS$
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GA Runs for PTSP-R-1 1
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Convergence for the successive GA runs for maximizing the success probability for PTSP-

Fitness Evaluation Time versus Graph Size for PTSP-R

Number of Nodes
0

Figure 7-28: The time required evaluating the fitness of an individual solution in PTSP-R versus the
graph size
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Figure 7-29: The time required evaluating the fitness of an individual solution in PTSP-R versus the
cost ratio

While this time is logarithmic with the required convergence ratio, it is exponential with the problem

size. These results indicate that a plain application of the GA for problems belonging to the complexity

class PSPACE is intractable, even when an approximation would be acceptable. However, it must be

noted that the GAs can converge exponentially to good solutions with increasing number of generations;

therefore it is much superior to the plain random search.

7.7 Heuristics

Although no guarantees could be given on the error bounds, the performance of approximation

methods for NP-hard problems is often more than satisfactory. Unfortunately, most interesting dynamic

optimization problems belong to the complexity class PSPACE which contains problems even harder

than those lying in NP. Because evaluation of a single solution takes time exponential with the problem

size in PSPACE-hard problems, it is necessary for solving them to develop methods that are more efficient

than the GA with the exact fitness evaluation. These methods (heuristics) demand less computation

by sacrificing from accuracy.

Our goal for the efficient solution of the robust path planning problems is to develop heuristic

methods 1) that are problem-independent to a large extent and 2) can be incorporated directly into the

GA. These preconditions allow us to apply the same GA procedure for those planning problems that may

be distinct yet belong to the PSPACE complexity class through only minor modifications. Although

specialized heuristics can easily be developed for each problem type, we are not concerned with such
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heuristics because their results will not generally be extendable to distinct planning problems.

We suggest the following heuristics for the probabilistic planning problems under dynamic optimiza-

tion criteria. These heuristics are designed to reduce the complexity of the objective function evaluation

without relying on problem-specific information.

1. Simulation of Fitness

2. Terminating Constraints

3. Plan Repair

4. Memorization

5. Edge Vitality

Like any algorithm, there are two issues that must be addressed with any heuristic approach. The

first is the accuracy of the solution method and the second is its runtime characteristics. Below, we

adress these concerns separately for each suggested method.

7.7.1 Simulation of Fitness

When the evaluation of dynamic reliability values takes exponential time, it is natural to substitute

this intractable exact evaluation with an approximation method. A well-known approximation technique

is the Monte-Carlo or simulation method which samples only random branches of a given event tree.

In other words, only those realizations that are drawn randomly out of the set of all possible realizations

for a plan will be accounted in the evaluation of fitness.

The gain in runtime efficiency, however, is traded off with the decreased probability of convergence.

Nevertheless, this tradeoff should not affect the expected results significantly because GAs already in-

corporate statistical tests. The theoretical results obtained (see 5.6) show that the expected convergence

time increases under noisy fitness data but only under certain assumptions. The previous experimental

results indicated that slightly noisy data may even result in a faster convergence rate.

GA runs with sampled fitness measurements are shown in Figure 7-30 for PTSP-E-16. Note that

the evolution of the convergence ratio is not as smooth as the other runs with deterministic evaluation.

Table 7.4 compares the quality of these solutions to the deterministic case for two particular cases

distinguished by the number of measurements (sample size) made. These results have been obtained by

averaging the results of a set of 10 different GA runs. As can be seen from the table, the results are of

comparable quality as the differences remain within the standard deviations.
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Convergence Ratios for PTSP-E-16 with simulated fitness
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Figure 7-30: Convergence ratios in GA runs for PTSP-E-16 with simulated fitness (# of measure-
ments: 500)

Table 7.4: Comparison of the convergence ratios for with exact fitness evaluation versus sampled fitness
for PTSP-E-16

Cony. Ratio (Exact) Cony. Ratio (Avg.-S.D.) Cony. Ratio (Avg.-S.D.)
Gen No Determined Simulation (k=500) Simulation (k=1000)

1 1.59 1.61 (0.09) 1.56 (0.07)

10 1.22 1.29 (0.08) 1.22 (0.07)

20 1.09 1.16 (0.06) 1.07 (0.06)
30 1.05 1.09 (0.05) 1.05 (0.05)
40 1.03 1.05 (0.04) 1.04 (0.04)
50 1.03 1.04 (0.04) 1.03 (0.03)
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Figure 7-31: The time required per unit fitness evaluation with simulation for PTSP-E versus problem
size

While the simulation runs yield results of comparable quality to the deterministic exact algorithm,

they require considerably less computation. The average time required for evaluating the expected cost

of an individual through simulation is in order O(kn3 ), as shown in Figure 7-31 (where k denotes the

number of measurements k made and is generally a constant). Through sampling of fitness values, the

runtime is reduced from exponential time to polynomial time on average. In short, evaluating the fitness

of a solution through simulation requires an expected runtime which is polynomial in problem size and

therefore simulation is a reasonable alternative to the exact fitness evaluation.

7.7.2 Terminating Constraints

Another approach, similar in spirit to simulation, relies on inexact evaluation of the fitness values.

Evaluation of fitness through the exact algorithm can be made more efficient by adjusting the terminating

constraints, such as those limits on the maximum cost, the minimum probability or the maximum depth

a solution instance is allowed to reach.

Let us denote these limits as MDL for the maximum depth, MCL for the maximum cost and

MPL for the minimum probability. Evaluating a dynamic reliability value by using MDL = 0 is

equivalent to a static evaluation in which no failures are taken into account. At the other extreme, the

exact evaluation of robustness measures for a path with n edges requires that MDL = n since up to

n failures may coexist. Using values between 0 and n will underestimate fitness values (because the

reliability values may only increase when further alternatives are considered). Because the evaluation

of these measures takes time in order 0(2 A1DL), what is lost in accuracy will have been gained from an
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Table 7.5: Results of 10 GA runs for a random PTSP-R-12 under various depth limits

exponentially reduced runtime. This method can also be implemented by varying the maximum cost

limit or the minimum probability limit. We call this method of using those cutoff values that result in

early termination of the fitness evaluation process as low cutoff heuristic.

We observed that for most randomly constructed examples, using consistently low cutoff limits

produces often results optimal even under high cutoff limits. This is not surprising because a solution

optimum for the case with at most k failures is likely to be optimal (or only slightly suboptimal) when a

larger number of failures (k' > k) are allowed. Table 7.5 indicates the distribution of the best designated

solutions of final population in 10 different GA runs for a random PTSP-R-12 problem (in which the

edge probability values are set randomly). As can be seen from the table, the GA runs with lower

MDLs have been able to obtain the near optimal solutions. The table also shows the average runtime

per unit fitness evaluation for these runs. Even though the runtime savings are not exponential with the

depth limit, (because these have been performed with the constraint MPL = 10- 9 , most realizations

with low probabilities will have already been eliminated before the depth limit is reached), they are

significant in comparison to the marginally increased risk of obtaining bad solutions.

The major concern with the low cutoff heuristic is the fact that using underestimated values might

cause convergence to incorrect solutions. A solution optimal under certain limits is not necessarily

optimal and might even be considerably suboptimal when these limits are increased. Adjusted cutofff

heuristic tries to alleviate this problem by starting with smaller limits and increasing them gradually.

A particular implementation of this method is as follows: The exact fitnes evaluation algorithm is

implemented with a constraint on the initial probability of any given branch. If the initial probability of

a branch is lower than the minimum probability limit MPL, it is not further expanded. The GA starts

evaluating and ranking the fitnesses of solutions under a relatively large limit on MPL. With each new

generation, this limit is gradually reduced (Its final value is set according to the required precision).

This method might be compared to the gradual temperature reduction in simulated annealing. The GA

starts with a relatively coarse fitness evaluation but uses an increasingly more accurate fitness evaluation

with each next generation. In this method, the initial coarse evaluations direct the algorithm toward

the good schemes that are likely to be common in solutions optimal under either low and high cutoff
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Solutions MDL = 12 MDL = 7 MDL = 5 MDL = 3
Besti (F = 0.776) 5 2 0 0
Best2 (F = 0.755) 3 5 7 4
Best3 (F = 0.745) 2 2 3 4
Best4 (F = 0.723) 0 1 0 2

Time per fitness [ 
evaluation (sec) 6.41 2.78 2.33 1.02



Table 7.6: Results of 10 GA runs for a random PTSP-R-13 under adjusted cutoff heuristic

values. Later more sensitive evaluations help clear the good solutions optimal under high cutoff values.

In most randomly constructed examples, this heuristic produces results that are almost indistin-

guishable from those of the GA with the exact fitness evaluation. A particular example is described

below: The GA is run 10 times with 50 individuals for 50 generations for the solution of the PTSP-R

with 13 nodes. In case 1, the GA uses the exact fitness evaluation algorithm with MPL = 10 - 7 . In case

2, the GA uses this algorithm with the MPL being initially equal to 10- 3 and decreasing toward 10 - 7

through the adjustment schedule MPL(t) = 1 0 -3-0 8 t . Table 7.6 compares the final distribution of the

best convergence ratios for both of these cases. As can be seen from this table, the results are almost

the same. Yet, the time saved in these runs is about 50% for the problems considered, as indicated in

Figure 7-32. For a large problem size, we expect the speedup to reach the following asymptotic ratio:

50 2lo3+ . to s 4
Et=O 2 5 (7.28)

50 2107 50
Et=0

Note that the adjusted cutoff heuristic does not result in an exponential speedup.

The above algorithm can be further optimized by fine tuning the adjustment schedule of the cutoff

limits as well as by adjusting the selection probability distribution (one can use an initially less sensitive

selection). More sophisticated versions of the adjusted cutoff heuristic can be easily developed. (An

example is to vary the MPL with each generation and to employ a best fit function for the estimation

of fitness values for higher threshold values).

7.7.3 Plan Repair

A plan may recover from failures as long as it can be converted into another plan with relatively little

cost. The fitness of a plan under dynamic optimization criteria therefore depends on its relative distance

to other plans. In plan repair heuristic, one simply tries to repair a plan or a path that has a failure by

finding a link to its closest alternative. This link may simply be an edge or a subpath connecting from

the last failed node to a neighbor path. It is necessary to have a database of many plans to be searched

for links as most of them can be eliminated from consideration due to the constraints imposed at the
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Solutions MPL - o10- 7 MPL = 10-3-° 08 °t
Bestl (F = 0.846) 4 4
Best2 (F = 0.838) 2 3
Best3 (F = 0.835) 4 3 
Time per fitness 
evaluation (sec) 6.95 2.90



Runtime savings with adjusted cutoff heuristic
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Figure 7-32: Runtime savings with adjusted cutoff heuristic (MPL is varied)

Table 7.7: The time required for GA runs with 50 generations with repair heuristics

time of failure.

The following measure fits naturally within the framework of the exact evaluation algorithm: Let

us assume that the optimization criteria used is the success probability. Then, the fitness of a path is

evaluated by adding up the following terms: 1) the static path probability and 2) the path probability

for those realizations with failures. The second term can be calculated by generating path variations

with the following scheme: a) assign a failure for each edge, b) find the alternative path that starts

from the departure node of the failed edge, omit its arrival node and continue along the given path.

In this form, this heuristic produces the same results with low-cutoff heuristic with MDL = n where

n is the the number of edges that can fail at a time. Yet, it can also be easily modified to cover more

complex cases by allowing to use transition paths that can connect any two paths in the database.

The results of the GA runs with the plan repair heuristics are shown in the following figures: Figure 7-

33, Figure 7-34, Figure 7-35 and Figure 7-36. Table 7.7 shows the time required for these runs.
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Problem Size Time (see)
12 6460
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for the regular graph with 12 nodes

GA run with path repair heuristic for minimizing the expected cost

GA Convergence for P14

2

0
(ii.or

a)

ai)

C.0 1.5

5 10 15 20
Generation No

25 30 35

Figure 7-34: Convergence for the GA run with path repair heuristic for minimizing the expected cost
for the regular graph with 14 nodes
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Figure 7-35: Convergence for the GA run with path repair heuristic for minimizing the expected cost
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Table 7.8: Comparison of the convergence ratios for table methods for PTSP-E

Convergence Ratio Achieved after 50 generations
Problem Size Table-1 ble-2 No Table

12 1.11 1.06 1.03
15 1.26 1.23 1.05
20 1.95 1.38 1.13
25 2.34 1.66 1.28

7.7.4 Memorization

The exact evaluation algorithm for the problems under reoptimization strategy determines a new

option after each failure and then restores the original plan with this new option. Each of these restora-

tions is distinct because they start with different constraints. A significant amount of computation can

be saved by producing a database of these alternatives and by employing the plan restoration algo-

rithm only when there can be found no information on this table. The benefits of memorization are

proportional with the table size. Larger tables contain more options that can be employed but are more

expensive to produce. The most simple table will contain a single path, preferably optimal, for any

given pair of nodes. For a graph with n nodes, this requires 0(n 2 ) paths to be generated. Nevertheless,

these paths are often useless as they may not satisfy most constraints (e.g. they may not fit within the

constraints of a fixed budget). On the other extreme, we can generate all the possible paths between

any given pair of nodes and pick among only those that can satisfy the specified constraints. Unfortu-

nately, this is an intractable task for most graphs as the tables would require an exponentially increasing

number of entries.

We have applied the table generation method to two particular cases distinguished by the size of the

tables. In the first case, we set up a hashtable with m paths for any given pair of nodes by excluding

each edge individually (where m is the number of edges). In the second case, we produce a hashtable

by generating mM! me(m-1) paths between any given pair of nodes by excluding pair of edges(m--2)!2! - 2

individually. While the first table can accommodate a particular constraint on any given edge, the

second table can accommodate constraints on any given pair of edges. The GA has been run with 50

individuals for 50 generations for both of these cases for the PTSP-E with a circular graph for problem

instances with 12, 15, 20 and 25 nodes. The GA has also been run for a reference case without table

generation. Table 7.8 compares the convergence ratios achieved after 50 generations for these 3 cases

with different problem instances. Table 7.9 compares the time used by each of these methods. These

information indicate that there should be an optimum value for the table size after which the savings

from computation are offset with the required computation for generating such tables.

The idea of table generation can be further refined by memorizing the entries as they are calculated.
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Table 7.9: Comparison of the time required for table methods for PTSP-E

Total Time after 50 Generations (sec)
Problem Size Table-1 Table-2 No Table

12 1525 2755 7708
15 2872 4811 17693
20 6240 1 9603 55957
25 _ 116629 26055 163900

Memorization allows us to save the data produced during the runtime for later use. This, with mem-

orization, it may be unnecessary to fill out a large table at the very beginning of the computation for

individual entries can be inserted into the table after they have been required and computed during a

run. In other words, when a particular information is neeed, the algorithm first looks at the table and

uses its entry if there exists one. If there is no information, it is generated ad hoc and is subsequently

entered into the table for later use.

7.7.5 Edge Vitality

This heuristic is based on the idea that edges (actions) that are frequently encountered in most plans

for a given graph problem should be important or vital. Recall that a rigorous version of the problem

of finding the most vital edges or nodes has been defined for deterministic problems. The most vital

edges in a path are those that their elimination from the path changes the overall fitness measure of the

path in a most drastic way. The most vital edges in a graph are those that their elimination from the

graph changes the overall fitness measure for the optimum path in a most drastic way. These concepts

can be generalized to nondeterministic problems as well.

A particular implementation method we developed is based on the idea of weighting each edge by its

relative importance in the paths or plans that it takes place. This relative importance can be calculated

for each edge from the fraction of the path cost that is incurred by that edge. Given these information,

a synthetic cost value can be attributed to each edge. This synthetic cost value is substituted for the

normal cost values in calculating the overall cost of plans. This heuristic is implemented in the following

fashion:

1. Construct randomly a large set P of paths with modelled failures. In particular, determine the

appearence frequency of edge failures (modelled with cycles) in proportion with the success probability

values. (If it is equal to Pij, a returning edge (and therefore a cycle) is constructed with the probability

1 - ij). The set P constitutes a sample of possible realizations.

2. Determine for every edge ej the fraction of the cost of the edge to the total cost for each path in
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Table 7.10: Edge Vitality: GA results after 50 generations

Problem Size Convergence Ratio Time (sec)
12 1.28 5163
15 1 1.85 6976
20 2.49 7678
25 4.37 11121

the set P. Let this set be f. (For instance, fi = {.123,0,.534,.643,.435,.384})

3. Update the edge costs such that

d, < d ( + 1 - A))

where fij is the average cost of the edge ej between the node i and the node j.

4. Determine the fitness of any path statically from new syntactic edge costs.

Note that in this scheme an edge that frequently fails is likely to appear in cycles. An edge with

relatively little cost is easier to recover from and therefore the contribution of a resultant cycle to an

average path is also likely to be smaller. Edge costs are weighted down as long as the edges are likely

to contribute to the cycles and in proportion to the contribution of these cycles to the total path cost.

Thus, this scheme captures the fact that failures and backtracks can increase the cost of a path. The

results of the GA runs with 50 generations and 50 people per generation for the PTSP-E are shown in

Table 7.10. (The size of the set of paths P were fixed at 10000). Although the results are not of high

quality, the runtime characteristics are excellent. (After the initial processing, one needs only to sum

up the syntatic edge costs in order to arrive at a fitness measure, therefore the fitness is determined in

time in order 0(n).) Note that this heuristic is likelier to give more accurate results if the set of paths

P were larger.

7.7.6 Comparisons of Heuristics

Figure 7-37 compares the time required for these heuristics. It is observed that the exact evaluation

method takes exponential time and quickly becomes infeasible as the problem size increases. The

simulation method has a time behavior as O(kn 3) where n is the number of nodes in the graph. Although

this method was even more expensive than the exact fitness evaluation for small problem sizes, its

advantages show up as the problem size increases. Further note that its cost can easily be reduced by

reducing the number of sampling measurements. The time behavior of the plan repair heuristic can be

given with an exponential function but the growth rate of this function is slower compared to that of

the exact evaluation method. The table-generation based methods have even smaller growth coefficient
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Figure 7-37: Computation time for various heuristics used for solving a PSPACE-hard PTSP by GA
with 50 generations and 50 people

for their exponential behavior. We further observed that the time required for the edge vitality heuristic

increases almost linearly with the problem size, making this method a particularly affordable one.

On the other hand, we observed that the edge vitality heuristic does not generally yield results of

good quality. In contrast, the simulation results can be quite accurate; the large number of sample size

we used has helped in obtaining solutions quite comparable to those of the exact evaluation method.

The other heuristics (memorization and plan repair) had results in between those of the simulation and

the edge vitality heuristics. These results indicate that one can obtain results with heuristics in shorter

time compared to the exact method; however, the tradeoff is the decreased quality of the converged

solutions. Simulation seems to yield the best tradeoff characteristics among the suggested heuristics.

7.8 Summary and Conclusions

In this chapter, we defined some path planning problems that are distinguished by their dynamic

optimization criteria. We examined the complexity of these problems and showed that unless simplifying

assumptions are made, these problems are computationally intractable. We showed that the objective

(fitness) function used for determining robustness in the PTSP-E and the PSPP-E can be evaluated
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under special conditions in polynomial time. This property allows us to solve these problems with the

NP-hard problem solution methods that arrive at a near-optimal answer by evaluating the complete

solution instances. In particular, we showed that the genetic algorithms can solve these NP-hard dynamic

optimization problems in polynomial time with the problem size. On the other hand, the evaluation of

the fitness function for these robust planning problems under general conditions takes exponential time

and polynomial space in computer resources. These problems, being PSPACE-hard, are not suitable

for a direct application of GAs. We applied the GAs to these problems with the results found on the

GA convergence similar to other problems. Unfortunately, the fact that the determination of fitness

evaluation has exponential behavior makes the direct application of GAs intractable for large problem

sizes. In order to resolve this issue, we developed some heuristics that are not more efficient than the GA

with the exact fitness evaluation. These heuristics achieve efficiency by sacrificing from accuracy, i.e.

they use fitness information that could be incomplete or inaccurate. We showed that such methods can

help find good solutions in reasonable computer time. The suggested heuristics, such as Monte-Carlo

simulation or plan repair, are independent of the problem properties and can be implemented for other

problems of similar complexity without difficulty in adapting.
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Chapter 8

Summary and Final Remarks

8.1 Summary

In this thesis, we were concerned with establishing a methodology for solving those planning problems

that are in nature stochastic and dynamic. The examination of various planning paradigms has urged

us to approach the problem as a problem of optimization presented in the context of graph models.

Because the deterministic models constitute the backbone of the probabilistic models, we first ad-

dressed the problem of optimal plan generation in deterministic settings. The review of literature,

presented in Chapter 2, has shown that a large yet important set of planning problems belongs to the

complexity class NP (Nondeterministic Polynomial). The practical versions of these problems are NP-

hard, meaning that they cannot be solved in time polynomial with the problem size. NP-hard problems

have been attacked with both problem-specific heuristics and problem-independent search and optimiza-

tion methods (Chapter 3). Among these methods, recently developed semi-probabilistic optimization

methods have shown more promise. These methods (such as simulated annealing or genetic algorithms)

draw on the strengths of both random and systematic search techniques and have proven more efficient

for search in moderately complex and moderately nonlinear problem spaces. We suggested the genetic

algorithms as a general heuristic for the solution of distinct planning problems. Being adaptable to

distinct problems, the genetic algorithm is a particularly attractive weak search method that simulates

evolution. It starts with an initial set of solutions and proceeds by evolving these solutions through

recombination, mutation and fitness (a surrogate for optimization measure) based selection process.

We developed an object-oriented software based on the technique of genetic algorithms that can

generate near-optimal solutions to various path planning problems in polynomial time with the given

problem size. In Chapter 4, we demonstrated the effectiveness of this solution technique by testing

it on some benchmark instances of a well-known NP-complete problem, namely the traveling salesman
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problem. The application of this software on the TSP benchmarks has provided us with a confidence

in the accuracy of our software as well as a semi-empirical model of the convergence characteristics of

genetic algorithms.

We showed that the GAs are expected to converge to the vicinity of optimal solutions in time

exponential with the desired accuracy, yet polynomial with the problem size for NP-hard problems. In

particular, we found that the expected value of the runtime (Texp) of the genetic algorithm for achieving

a particular convergence ratio (y*) for a problem of size S can be given by:

Texp(y*,n,S) =-- cnh(S) S ogn logY -l/[ ogr n y-1

where yo is the convergence ratio of the initial population, n is the population size and a, c, and are

problem-specific constants. h(S) is the time required for the determination of the fitness a individual

solution. If this function is a polynomial, a fixed convergence ratio can be achieved in polynomial time,

yielding an efficient solution method. These results are in line with the GA model we developed based

on an extension of Schema Theorem, which states that the proportion of good concepts among the

solution set increases exponentially with each new generation. \WVe also found that the time it takes for

a genetic algorithm (GA) to find the globally optimal solution is exponential with the problem size.

Because the most NP-hard problems are also NP-hard to approximate, we concluded that these results

are the best that can be hoped for.

We compared the technique of genetic algorithms to other search methods, such as A*-search, Monte-

Carlo or simulated annealing, and found that only simulated annealing had a better performance than

the GAs in the solution of the deterministic TSP. This comparison shows that near-optimal solutions

can be obtained more efficiently with the semi-probabilistic search methods in relative to the systematic

search techniques.

In the second part of the thesis, we extended the GA method to the probabilistic domains (Chapter

5). We showed that GAs can converge to near-optimal solutions by sampling the fitness of each solution

instance as opposed to a deterministic evaluation. The statistical selection rules employed by the GA is

expected to compensate for the noise inherent in sampling. Our experiments indicated that these GA

models with noisy fitness information might even converge faster to the optimal solutions than the GA

with the deterministic fitness evaluation. For optimally tuned GAs, however, noisy fitness data may

cause a delay in the convergence time.

In the last part of the thesis, we focused on the responsiveness of plans to possible contingencies

(Chapter 6). We stressed the importance of minimizing the cost of adapting to random events whose

outcome become clear only after embarking on the plan and the importance of modelling the control

actions of the plan executor. We stressed that the best laid plans are those that provide one with options

and can be modified with relatively little cost. Although similar approaches exist in various paradigms,
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we felt a need to formalize the concept of robust plans. We developed a specific set of measures in order

to measure the "robustness" of a given solution to changes that could take place during plan execution.

These robustness measures, such as the dynamic reliability or the dynamic expected cost, expand on

the classical objective functions by taking into evaluation the contributions of the options inherent in a

given solution. These options consist of the alternative plan subsequences or modifications that can be

resorted to when discrepancies arise between the plan and the actual work accomplished.

The examples of robust plans were examined in Chapter 7 through path planning problems un-

der dynamic optimization criteria. These problems can be characterized by unreliable edges and the

possibility of backtracking and an increase in the plan cost upon failures. We developed formulas for

the reliability and the expected cost of paths under dynamic optimization criteria. After finding some

complexity results,we examined the reasons why the robust solutions could be different that the so-

lutions that would be optimum under the conventional optimization criteria. We applied the genetic

algorithms on selected instances of these problems. For those problem instances that are NP-hard, GAs

converged to the solutions that were known to be optimum with convergence characteristics similar to

those of deterministic NP-hard problems. For general dynamic optimization problems, the evaluation

of the robustness measures takes exponential time and therefore a direct application of GAs to these

problems is intractable.

In order to reduce the computation time, we developed problem independent heuristics that replaced

the exact fitness evaluation. The superimposition of such heuristics in the general scheme of GAs

proved successful as they helped produce acceptable solutions in reasonable times. In particular, we

implemented a set of bounding techniques that terminate the fitness evaluation process after having

reached to pre-set thresholds. These techniques save time by only slightly underestimating the exact

robustness measures. We proved that the solutions found by GAs under these cut-off methods are still

near-optimal for most problems. We also developed heuristic methods with polynomial computation

time and showed that these heuristics as well can find near-optimal solutions. These techniques include

the simulation of plan execution, giving high priority to certain plan tasks that are easy to recover from

and the repair of failures in a plan with alternatives selected from a pool of solutions. Comparison of these

techniques with the GA with the exact fitness evaluation verified their efficiency. These experiments

showed that GAs are a good general heuristic for complex planning problems and can perform well for

even harder problems in PSPACE by combining with other heuristics.

8.2 Open Problems

Many open problems and further research avenues exist. One of the most important issues concern

the modelling of the GAs. The model we developed in section 5.3 explains the reasons for the GA's

success in finding the optimal results. Further, the empirical equations we found express the convergence
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ratio expected to be achieved by the GA in terms of the generation number and the population size. Yet,

there is a need for those expressions that yield the probability distributions of the convergence ratios

in terms of other parameters, such as the generation number and population size. These probabilistic

expressions will serve many purposes such as finding out when in a GA run a good solution is expected

to appear with a specified probability.

Further improvements in the performance of genetic algorithms are possible. For example, for all the

problems considered, the experimentation with different recombination procedures may help in achieving

a more efficient process. Genetic algorithms can also be implemented in parallel computers taking

advantage of the simultaneous evolution of a set of individuals. Genetic algorithms, being a general,

weak heuristic allows to superimpose distinct heuristics. Using co-evolving parasites, an interesting

heuristic suggested by some researchers, might prove useful. A related idea may be the co-evolution of

the fitness methods at the same time with the evolution of solution instances. The use of increasingly

selective objective functions might help achieve a faster convergence rate. Finally, the method of genetic

programming, which extends the genetic algorithms to automatic programming, might prove more

efficient in solving complex models as they might alleviate the need for finding efficient recombination

procedures.

Further ideas on the problem independent heuristics can be developed. For example, Graph Topol-

ogy is a rich source of heuristics. An idea that is closely related to the edge vitality heuristic utilize

the articulation nodes (those that disconnect a given graph) of a given model. For nondeterministic

problems, it may be possible to produce a probability value for the disconnection of a given graph. Such

information can be used for attaching an importance (or an avoidance coefficient) to each node to be

used during plan generation. Further, these probability values can be employed as additional constraints

in the plan restoration. Another idea consists of solving a problem that is opposite to the problem of

finding good structures. An opposite problem will ask for a specific set of edges or nodes that can make

the maximum adverse impact on a plan. If the solutions to these problems are established beforehand,

it might be easier to solve the problem of finding the most robust plans.

Further points that are not examined in this thesis but warrant close attention are the establishment

of bounds for the robustness measures and the effect of different modification strategies.

Further, the genetic algorithms method must be compared to different solution methods, such as

simulated annealing, in order to observe their relative performance. The application of search methods

that incrementally construct a solution is especially interesting as these methods may have advantages in

regard to computational resources. Even though such solution methods could be pathological (because

a piece that is not yet considered might turn out to have a significant global impact on the solution),

they may prove satisfactory for general purposes.

A insight obtained from this work is that the employment of the dynamic optimization criteria
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changes the flavor of the problem from one of the straightforward optimization to one of a game with

nature. As a result, one might find the applications of game theory techniques particularly useful for

those problems in which dynamic failures should be avoided.
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Appendix A

Beta distribution
The beta distribution is a two parameter distribution and is defined for a random variable, x, in the

range [0, 1], where the p.d.f. fm,n(x) is given by [119]:

xm-l (1 - x'-
f m I-(m, Xn) (8.1)

,3(m, n)

where (m, n) is
13(m,n) = zM-1(1 - z)'-ldz (8.2)

The function /3(m, n) can also be expressed in terms of gamma function () [114] as:

3(m,n) = rF(m)r(n) (8.3)
r(m +n)

Given an optimistic duration value to, a pessimistic duration value tp and a most likely duration value

tm (such that to < tm < tp) for an activity, the random variable duration T is equal to:

T = to + (tp - to)x (8.4)

where x is a random variable whose p.d.f. is given by Equation 8.1. In order to make the most likely

value equal to tm m is given in terms of n as

- tm - to 85
m + n - 2 tp - to (8.5)

(This can be confirmed by differentiation). It follows from the above equation

(n - 2)(tm - to) + (tp-to) (8.6)
tp - tm

Equation 8.5 does not describe a unique distribution for an infinite number of (m, n) pairs satisfy it.

To fix the distribution, a further assumption is made in PERT, namely that the standard error is th

of the range (tp - to). Since the variance of beta distribution is given as [143]

2 m(m + 1)2= rn(r±1) (8.7)
n(m +n+ 1)

m and n values are fixed through Equation 8.6 and Equation 8.7.
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