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Abstract
This thesis describes a new algorithm for conformational search of macrocyclic mole-
cules. It scans a large number of candidate conformations and minimizes only the
promising ones. These candidates can be generated by two operators that con-
struct new conformations from known minima. The candidates have similar bonded-
interaction energy as the known minima and possibly lower non-bonded interaction
energy. This algorithm is 9 to 11 times faster than the existing methods when tested
on two large rings, cycloheptadecane and rifamycin SV.
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Chapter 1

Introduction

A conformation of a molecule describes its 3-dimensional shape. The conformation

gives the positions of all atoms in a molecule. Properties of organic molecules are

intimately related to the conformations they are able to attain. The shapes of or-

ganic molecules determine how they interact with proteins and other molecules. For

example, if a molecule can fit precisely into the active site of a protein, it may in-

activate this protein. The protein may participate in a disease such as the common

cold, cancer, or AIDS. Thus such a molecule could potentially be a cure for a dis-

ease. Rational drug design [BCM93, SSS+93] is an approach that finds molecules to

fit into the active sites of disease-causing proteins. In order to determine whether

a molecule fits into an active site, the molecule's reachable conformations must first

be found. Chemists and biologists are interested in the reachable conformations of

molecules because the biological activities and reactions of molecules depend on their

conformations.

These reachable conformations can be modeled by minimizing a potential energy

function. For each arrangement of atoms in a molecule, the energy function gives its

approximate energy value. The higher the energy, the less probable that this confor-

mation is to occur. The probability that a molecule would take on a conformation

with energy ei is given by the Boltzmann distribution

e-ei /kT
i e - ilkT
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in which k and T are the Boltzmann constant and absolute temperature respectively.

Suppose two conformations differ in energy by E. Let Ph and Pi be the probability of

a molecule having high and low energy conformation respectively. They are related

by the following equation.

Ph = e-E/kT
Pi

At 37°C, if two conformations' energies differ by 3 KCal/mol. PI,/PI = 0.0077. There-

fore, a conformation whose energy is more than 3 KCal/mol above the global minimum

has very little chance of occurring in nature.

Given the energy function and a molecule, the problem of conformational search

requires finding all possible conformations of a molecule that have energy close to the

global minimum (typically within 3 KCal/mol). Unfortunately. the space of possible

conformations has 3N - 6 dimensions where N is the number of atoms in a molecule.

There is an enormous number of local minima in this space for even a small mole-

cule with tens of atoms. Numerical minimization with gradient descent or conjugate

gradient would be trapped in a local minimum close to the starting conformation.

Other global optimization techniques like simulated annealing or genetic algorithms

could find the global minimum, but they are very inefficient [MJ93. GW92]. The

conformational search problem is generally believed to be NP-hard [UM93]. The best

systematic method has 6n complexity for tree-like molecules where n is the number

of single bonds. This method cannot guarantee finding the global minimum because

it scans only a few values for each torsional angle. The global minimum may not be

accessible from the scanned values.

The goal of this thesis is to develop better methods for conformational search of

macrocyclic molecules, which are ring-like molecules with 10 or more bonds in the

ring. Figure 1-1 shows a conformation of a macrocyclic molecule. There are many

macrocyclic molecules in nature, and they are usually biologically active. For example,

a class of macrocyclic molecules called macrolides are important antibiotics [Omu84,

BBNE93]. MAlusks are another class of macrocvclic molecules that have a musky

aroma. Natural and synthetic musks are widely used in perfumery.

9



Figure 1-1: A conformation of cycloheptadecane, a 17 carbon cycloalkane.

Cyclic molecules are very different from acyclic ones because they have the ring

closure constraint. Atoms in rings usually do not fall on any lattice. Energy in a cyclic

molecule distributes quite evenly in stretching, bending, torsion and van der Waals

energies. The van der Waals force is extremely repulsive at short distance. In rings, it

is very important to avoid repulsive interactions because atoms are generally close to

each other. All published algorithms take several days on typical workstations to find

all stable conformations of a medium sized molecule. New ring-specific algorithms

can perform much better than these general algorithms.
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Bond Stretch Bond-angle bend Dihedral angle torsion

Figure 1-2: Different types of energy resulting from bonded interactions.

1.1 Energy Function

In a typical energy function[Tes79], the potential energy (E) is the sum of energies

from bonded interactions (Eval) that depend on the specific bonds, and nonbonded

interactions (Eb) that depend only on the distances between atoms.

E = Eval + Enb

Bonded interactions depend mainly on the length of bonds (bond stretch, EB), angles

between two adjacent bonds (bond-angle bend, E.4), and torsional angles among 3

adjacent bonds (dihedral angle torsion, ET) (Figure 1-2).

E = EB + E + ET

Bond length is the most rigid local geometry. It deviates very little from the

equilibrium value because a great deal of energy is required to compress or stretch

a bond. For a single carbon-carbon (C-C) bond, EB 350(R-Re) 2 IKCal/mol/A2

where R and Re are the actual and equilibrium bond lengths respectively. A bond

deformation of 0.05 A thus requires about 1 KCal/mol.

Bond angles are not as stiff as bond lengths. In some large molecules. bond

angles could deviate up to 10 degrees from the optimal values. For a C-C-C angle,

EA - 0.01(0 _ e0,)2 KCal/mol/deg 2 where 0 and e0, are the actual and equilibrium

angles respectively. It can be seen that 1 KCal/mol can induce a 10° bending.

Dihedral angles are the most flexible bonded interactions. For single bonds, the

11
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Figure 1-3: Torsional energy of a C-C-C-C dihedral angle.

dihedral angle can change with very little energy penalty. For instance, the torsional

energy of C-C-C-C dihedral angle (Figure 1-3) has the form ET - 1 -cos(3( -

180°)) KCal/mol where y is the actual dihedral angle. There are three very different

torsional angles that have zero energy. The more single bonds a molecule has, the

more conformational energy minima it has.

Nonbonded interactions are affected by the distances between non-bonded atoms.

They consist of van der WNaals interactions (Edw), electrostatics (EQ), and hydrogen

bonds (Ehb).

Enb = Evd, + EQ + Ehb

Van der Waals force is attractive at medium distance and extremely repulsive at

short distance. The van der Waals energy between two carbon atoms is Ed -

0.0951((3R83)-12 - 2(3 R) - 6) KCal/mal where R is the actual distance between the

12



0.2

0.15

0.1

0

o
-0.05C.-00

-0.1

-A lF]
-v. i,~

3 3.5 4 4.5 5 5.5 6 6.5 7
Distance

Figure 1-4: Van der Waals energy between two carbon atoms.

atoms (Figure 1-4).

Electrostatic interactions are caused by the attraction and repulsion of charged

atoms. If an electron transfers from one atom to another, formal charges are added

to these atoms. A polar covalent bond is modeled by putting partial charges on

the atoms forming the bond because the shared electrons do not distribute evenly

between the atoms. Electrostatic energy has the form

EQ = 322.0637Q QR

where Qi and Qj are charges of the atoms in electron units. e is the dielectric constant

and R is the distance in A. Electrostatics has longer range than other nonbonded

interactions.

Hydrogen bond is a very important stabilizing interaction in macromolecules. It is

a complex interaction involving electrostatics, charge transfer. van der Waal's forces.

etc. A hydrogen atom serves as a bridge between two electronegative atoms such as

nitrogen, oxygen, or fluorine. The hydrogen atom holds one atom by a covalent bond

13



covalent bond hydrogen bond

RNO

Figure 1-5: A hydrogen bond formed by N-H and O.

and the other by nonbonded forces (Figure 1-5). The factors affecting the strength of a

hydrogen bond are interatomic distances, directionality, and linearity. For the hydro-

gen bond between N-H and 0, Ehb 4[5(2.9/RNo)'2-6(2.9/RNo)l°] cos4 0 KCal/mol

where RNO is the actual distance between the nitrogen and oxygen atom, and 0 is the

bond angle between N, H, and O. A collinear configuration of the three atoms would

have the lowest potential energy. However, due to the small energies involved, large

deviations from collinearity sometimes occur.

Energy functions are also called force fields because the force acting on a molecule

due to its conformation can be found by differentiating the energy function. (F =

-VE) There are several published energy functions with slightly different sets of

parameters. We shall use the Dreiding force field [MOI90] and MM2 force field [Al177].

MM2 is more widely used but also more complicated than Dreiding.

1.2 Chirality

All conformational search algorithms must preserve the chirality of molecules. A

molecule is chiral if it is not superimposable on its mirror image. A chiral molecule

(Figure 1-7) usually has at least one chiral center, which is a carbon atom bonded

to 4 different groups. A conformational search method should find conformations

with a fixed chirality because molecules normally change their conformations but not

chiralities.

14
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1.3 Previous Work

Conformational search methods have been studied for many years. Most methods

do not distinguish between cyclic and acyclic molecules. These techniques can be

separated into two categories: stochastic methods and systematic methods. The

simplest stochastic technique is Cartesian stochastic search [Sau87]. It represents a

conformation by the Cartesian coordinates of each atoms. The method operates by

taking a known conformation and applying limited, random translations ("kicks") to

every atom in the molecule. The resulting conformation becomes the new starting

geometry for energy minimization.

A similar method, internal coordinate Monte Carlo search [CGS89], represents a

conformation by its internal parameters. That is, instead of Cartesian coordinates, it

uses bond lengths, bond angles, and torsion angles. The torsion angles are less con-

strained than other parameters. In each step of the algorithm, several torsion angles

are randomly varied. The resulting conformation becomes the new starting point of

minimization. When applied to macrocyclic molecules, the random variation of tor-

sional angles often produces conformations that violate the ring-closure constraint.

Those structures cannot be used for minimization. The Monte Carlo step has to be

repeated until a suitable structure is found.

Molecular dynamics is a stochastic method that simulates the physical interactions

of molecules. During conformational search, it models the movement of atoms of a

molecule in a thermal bath. The molecule changes its conformation due to thermal

vibration. At certain time intervals, the algorithm collects the conformations of the

molecule being simulated and minimizes them.

The systematic version of internal coordinate Monte Carlo search is internal co-

ordinate tree search [LS88]. Each torsion angle of a single bond is searched through a

series of possible values (e.g. 0°, 60°, 120° , 180°, . .). Suppose there are N single bonds

in a molecule and each torsion angle is searched through d values, Nd conformations

will be generated and minimized. Its computational complexity is exponential in the

number of single bonds. Just as this method's stochastic counterpart, it would also

16



generate many ring structures that violates the closure constraint. Hence this method

is quite wasteful of resources for macrocyclic molecules.

The Distance geometry [WJW+83] method stores the ranges of distances between

atoms in matrices. Each element of a matrix represents the distance between two

atoms. A lower bound matrix and an upper bound matrix are used for the algo-

rithm. Each element is computed using constraints like bond length and bond angle.

Then one applies the triangle inequality and other higher order inequalities on the

elements to tighten the bounds. These inequalities are repeatedly applied until the

bounds cannot be tightened any further. Then, coordinates of conformations are gen-

erated systematically or stochastically satisfying the upper and lower bounds. These

conformations are then minimized.

Expert-system-like approaches [DLPS7. AW93] study the components of molecules

and deduce their conformation with a rule set. It is not clear whether their approaches

can scale to larger molecules.

Several people have developed ring-specific algorithms. They all tried to change

local geometry of a ring and then minimize. They use operations like corner flap-

ping [G089], edge flipping [G093], and torsion flexing [KG93]. The running time of

these methods are similar to other techniques. Chapter 4 compares their performance

to our new approach.

Biocad claims to have a conformational search algorithm superior to others, but

the algorithm has not been published.

17



Chapter 2

The Complementarity Approach

The main problem with the existing approaches to conformational search is their

inefficiency. For example, with the 51-atom molecule in figure 1-1, all methods

use more than 30 CPU days on a MicroVAX II to find most low-energy confor-

mations [SHW+90]. Most of the CPU cycles are spent on minimizing the energy

function. Starting from a random conformation, each minimization takes about a

minute on a SPARCstation 2 under BatchMin V3.5 [Dep90]. Cartesian stochastic

search, internal coordinate tree search and Monte Carlo search, and distance geome-

try all require about 10,000 minimizations each for the 51-atom molecule. Therefore,

these algorithms would take about 7 days on a SPARCstation 2. These methods do

not attempt to generate starting geometries close to a local minima. They spend less

than 5% of the time finding starting conformations and more than 95% of the time

minimizing the energy function on all starting conformations. No selection of the

starting conformations was attempted. Not surprisingly, only 2-3% of the minimized

conformations are useful. Most minimizations result in high energy or duplicated

conformations. The indiscriminate use of minimizations wastes a lot of time.

Naturally, one might try to increase the amount of time spent on generating and

selecting starting conformations and reduce the time spent on minimization. We

can quickly scan many conformations and minimize only the promising ones. Since

each minimization requires thousands of energy function evaluations, if we efficiently

scan 1000 conformations and minimize only one or two of them, the use of time is

18



more balanced. We will minimize only those conformations that have low energy and

close to a minimum. This will reduce the time for minimization and produce more

useful conformations. Some studies have shown that initial energy is not always a

good predictor of minimized energy. However, these studies are based on experiments

where initial energies are much higher than the global minimum. When the limit is

set to be a few KCal/mol above the global minimum, the initial energy becomes an

accurate predictor of minimized energy.

This chapter describes a different approach to conformational search of macro-

cyclic molecules. We call it the complementarity approach. Given some known con-

formational minima of a macrocyclic molecule, one can apply some operators on these

minima and generate many new candidate conformations. The quality of these candi-

dates can be found by a single evaluation of the energy function. If we only minimize

those candidates that have energy close to the current global minimum and are quite

different from known minima, we have a much higher chance of obtaining a useful

conformation. The time for minimization is also reduced because of the proximity of

the candidate's structure to its local minimum. The operators may not have complete

coverage of the conformational space, but we can use other techniques like Cartesian

stochastic search to ensure completeness.

The remaining problem is finding a set of operators that can produce many new,

low energy conformations given some known minima. For chain or tree-like mole-

cules, one can simply change the torsional angle of some single bonds because these

molecules do not have the closure constraint. Finding such operators for macrocyclic

molecules is much harder. Other researchers have used operators like corner flapping

or edge flipping [G093], but the candidates they generate have much higher energy

than the global minimum. This is because some local geometries (bond angles) are

deformed. Before presenting the operators we use, we make two observations about

the low-energy conformations.

1. Low-energy conformations have low-energy components.

2. Low-energy conformations share similar components.

19
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of cycloheptadecane.

We have found 256 conformations of cycloheptadecane within 3 KCal/mol of the

global minimum 1 using the MM2 force field. Figure 2-1 shows a histogram of the

MM2 energies of all 8-adjacent-bond components of these conformations. The mean

and standard deviation of the energies are 10.257 KCal/mol and 0.921 KCal/mol re-

spectively. Figure 2-1 shows that most of the components have similar energy. There

are very few components with high energy. This data supports the first observation.

Figure 2-2 shows a similar histogram for rifamycin SV where 42 low-energy confor-

mations are found. The mean and standard deviation of the energies are 15.42 and

1.002 KCal/mol respectively. It is generally not the case that a low-energy compo-

nent forms a low-energy conformer with a high energy component with the help of

non-bonded interactions.

'The global minimum of cyclohpetadecane's conformational energy is 19.23 KCal/mol.
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The second observation is less obvious than the previous one. We want to show

that components are "reused" in different conformers. We randomly take 300 8-

adjacent-bond components from the low-energy conformers of cycloheptadecane. Then

we compare the 6 dihedral angles against the dihedral angles of the other components.

On average, there are 20.05 other pieces that have angles all within 20 degree of a

selected piece.2 This is much higher than what would be the result of a uniform dis-

tribution of angles. Suppose each dihedral angle can randomly take on one of 3 values

(e.g. 60 °, 180°, 300°). The probability that two pieces would have the same angles

(within 20° ) is 1/36 = 0.00137, whereas the probability for two components of differ-

ent low-energy conformers to have similar dihedral angles is about 20.156 = 0.0046.17x256

This shows that the distribution of dihedral angles is far from random. One can gen-

eralize this observation to conformations of different molecules. We postulate that if

two different molecules have a large connected component in common,-the low-energy

conformations of this shared component in one molecule will very likely appear in the

conformations of the other.

Given the above observations, we can use two operators, combine and mirror, to

generate starting conformations with low energy.

2.1 The Combine Operator

The combine operator recombines components from conformational minima. This is

similar to the crossover operator in genetic algorithms. We have observed that low-

energy conformations have low-energy components. New conformations can be found

by recombining these components. Given a set of conformational minima, we can

compute all relative positions of every pair of bonds that are several bonds apart. If

two pairs of end bonds in two different components have the same relative positions

and orientations, then the components can substitute each other (Figure 2-3). The

bond lengths and bond angles are preserved but van der Waals interactions can raise

2 The median and standard deviation are 15 and 17.8 respectively. This distribution has a long
tail.
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Figure 2-3: The combine operator that mixes components from two conformations.

or lower the total energy. If the given conformations have a fixed chirality, the new

candidates are guaranteed to have the same chirality. Given '1. conformations of a

cyclic molecule of size n O(m2n) candidates will be examined. If the molecule is

symmetric (all components have the same chemical formula), there will be O(m 2 n 2 )

candidates to examine.

2.2 The Mirror Operator

The mirror operator substitutes a component by its mirror image. Given a confor-

mation, its mirror image (enantiomeric conformation) has exactly the same energy

because all distances among atoms are unchanged. e have observed that a low-

energy conformation must be composed of low-energy components. Hence the mirror

images of the components must have low energy. Given a ring conformation, we can

partition the molecule into two components. If we retain the conformation of one

component and "glue" on the mirror image of the other component, the result would

be a very different conformation (Figure 2-4). The local geometry of each individual

component is unchanged. The components would have the same energy as before.

Additional energy can only arise from bonded interactions at the junctions between

23



the components and new van der Waals interactions between the components. We

can minimize the change in bonded interactions at the junctions if we retain their

local geometries. In other words, we want the bonds at the junctions to have the same

bond lengths and angles as the given conformation. This is true if the end bonds of

the retained component are coplanar and we use the plane of these end bonds as the

plane of reflection of the other component. To prove this, consider a conformation

consisting of components X and Y where A and B are the end bonds of X.

x Y

Suppose A and B are coplanar. Let R be the operator that reflects a component

about the AB plane. We use "+" to denote the joining of two components and "="

to denote the equivalence between two structures. Clearly R is distributive over +.

Because A and B must be on the AB plane, R(A) = A and R(B) = B. Therefore

R(Y + A + B) = R(Y) + R(A) + R(B) = R(Y) + A + B. This says that reflecting Y

produces the structure as reflecting Y and A and B. Therefore the bond lengths and

angles at the junction are unchanged after replacing Y by the mirror image of Y. The

torsional angles at A and B may be different but they introduce very little energy.

There would be new van der Waals interactions which can increase or decrease the

total energy.

Notice that a component would have the opposite chirality of its mirror image.

To preserve the chirality of new conformations, the reflected component cannot have

any chiral center.

The mirror operator is a specialized form of the combine operator. It is equivalent

to applying combine to a conformation and its mirror image. Given a conformation,

the mirror operator looks at every pair of bonds. If they are approximately coplanar,

one side of the ring is reflected about the plane. If the resulting conformation has

low energy and is different from known minima, it will be minimized. The scanning

process has O(mn 2) complexity where m is the number of conformations given and

24



Original component

Mirror image

Given conformation New conformation

Figure 2-4: The mirror operator that replaces a component of a conformation by
the component's mirror image.

n is the number of bonds forming the ring. Goto's operators are special cases of

this operator. Corner flapping [GOS9] reflects two bonds while edge flipping [GO93]

reflects three bonds. By looking at all pairs of bonds and computing their planarity,

we explore more conformational space more efficiently. There is also a bigger chance

of lowering total energy because more bonds are changed. Section 4.1 compares the

complementarity approach with Goto's algorithm.

Can the operators be applied to components of any size? With a few approxima-

tions, we can find the limitation to the sizes of components. We assume that all bond

lengths and bond angles are fixed, but the dihedral angles are free to change. Go and

Scheraga [GS70] have shown that two fixed end bonds would generate six nonlinear

equations on the dihedral angles. Therefore at least six dihedral angles are needed

to satisfy the equations. To apply the operators, the smallest component would have

six bonds (Figure 2-5). As a consequence. the smallest ring on which we can apply

the operators has two minimal size components and 6 + 6 - 2 = 10 bonds.
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Figure 2-5: A minimal size component
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Chapter 3

The Algorithm in Detail

Before presenting the algorithm, we first look at the underlying data structures. There

are two data structures used: a priority queue and a database of components. The

priority queue (heap) stores the starting conformations prioritized by their energy

values. The lowest-energy starting conformation can be removed and new ones can

be added very efficiently. This data structure allows us to find and minimize the best

starting conformation first.

The other data structure, a database, stores components of conformational min-

ima. It is indexed by the type of components (their atoms and bonds), and the relative

orientation of end bonds. In the current implementation, the relative orientation is

encoded with the distances among atoms forming the end bonds' (Figure 3-1). The

database is implemented as a hash table. The hash function applies to the types of

components and a discretization of the distances. Given a component of a conformer,

we can find all its complementary components from the database efficiently. A com-

ponent's complement is another component with the complementary bonds in the

ring, and whose end bonds have the same relative orientation (Figure 3-2). To find

the complements of a component, we simply look up the complementary bonds and

apply the hash function.

With these data structures, we define a procedure Generate-startingconfor-

'This encoding does not distinguish between a component and its enantiomer. We make use of
this fact so as not to store the enantiomers.
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Figure 3-1: Four distances (indicated by dotted lines) are used to encode the relative
configuration of the end bonds.

end bonds

Figure 3-2: Two components that are complements of each other.
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mations that finds starting conformations from a newly discovered minimum. Ba-

sically, it systematically applies the operators described in Chapter 2 to the new

conformation.

Generate-startingconformations(conformation)

For all connected components C with 6 or more single bonds in the conformation

do the following:

1. If C is already in the component database, stop.

2. Otherwise, add C to the database.

3. Find all complementary components of C from the database.

4. Find transformations of the complementary components such that C and the

components would form new starting conformations and the ring closure con-

straint is satisfied.

5. Compute the energies of the starting conformations.

6. Add the starting conformations that have energy within AE of the global mini-

mum to the priority queue. AE must be bigger than the ultimate energy window

and depends on the complexity of the molecule. If the molecule is small and

symmetric, 5 KCal/mol is sufficient. If the molecule is large and asymmetric,

AE can be as high as 15 KCal/mol. One can overestimate AE because this

only enlarges the priority queue.

Every step of the procedure is straightforward except Step 4. In the current

implementation, the conformations are represented by the Cartesian coordinates of

the atoms. The end bonds of C and its complementary components have the same

relative configurations, but their Cartesian coordinates do not necessarily match. To

form a new starting conformation, a rigid transformation is needed to transform the

end bonds and other atoms of the complementary component. This is achieved by the

algorithm in [FH77]. A 4x4 transformation matrix can be computed to best match

(in the least squared distance sense) the coordinates of the atoms on the end bonds

of C and the complementary component.
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It may seem like only the combine operator that recombines components from

conformational minima is used in this procedure, but there is another twist to Step

4. A component can be transformed to its mirror image by a transformation matrix

whose determinant is -1. This matrix is also computed and returned if it can produce a

close match of the end bonds. Thus the mirror image of a complementary component

is used to generate a starting conformation. Because the two halves of a conformer

are always complement of each other, the mirror operator is also applied at this step.

With the procedure that generates starting conformations, we can describe the

top-level algorithm.

1. A few conformational minima (typically below 100) are found by a randomized

method such as Cartesian stochastic search or internal coordinate Monte Carlo

search. These minima should have the correct chirality and be dispersed in the

conformational space. If internal coordinate Monte Carlo search is used, 6 or

more torsional angles should be changed at once.

2. Generatestartingconformations is called with these minima as arguments.

The main purpose of this step is to fill the component database with some

entries.

3. The starting conformation with the lowest energy before minimization is re-

moved from the priority queue. If the queue is empty, a Monte Carlo operation

is performed instead.

4. If the starting conformation is sufficiently different from the known minima, it is

minimized. This check is necessary because many similar starting conformations

are found by the algorithm.

5. If the new minimum has not been found before, Generatestartingconfor-

mations is called with it as the argument.

6. Go to 3.

This algorithm has been implemented in Common Lisp. Dreiding or the MM2
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force field can be used for minimization and energy evaluation. The next chapter will

evaluate the performance of the algorithm.
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Chapter 4

Performance Evaluation

To compare the new algorithm with the existing methods, the best measure is the

ratio of CPU time to number of "useful" conformational minima found. Chemists

want to find the naturally occurring conformational minima of molecules in the short-

est possible time. The "useful" minima are conformations that have energy within a

few KCal/mol of the global minimum. Any conformation with higher energy would

have little probability of occurring under normal temperature. However, CPU time

varies with computer hardware and programming languages. Therefore, we would

replace CPU time with the number of energy function evaluations. For existing algo-

rithms, most of the resources are used for minimization. The time for minimization is

directly proportional to the number of function evaluations. For the complementar-

ity approach, function evaluations are also used for selecting starting conformations.

This measure takes into account the overhead for the complementarity algorithm.

Sometimes the number of function evaluations is not available because the minimiz-

ing program does not return this information. The number of minimizations would

be used in those cases to measure performance.

4.1 Cycloalkane

The cycloalkanes have a regular ring structure of (CH2)n (Figure 4-1). Chemists have

extensively studied their conformations. They are good benchmarks for evaluating
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Figure 4-1: Chemical formula of cycloalkane.

conformational search algorithms. Ccloalkanes have neither electrostatic interactions

nor hydrogen bonds. Therefore, non-bonded interactions are limited to-van der Waal's

forces. Additionally, their structures are completely symmetric. All components with

the same number of bonds are of the same type in the database. More starting

conformations could be generated because our algorithm exploits this symmetry. No

other method can make explicit use of this symmetry. Because of these features of

cycloalkanes, the complementarity algorithm vastly outperforms existing methods.

For the following results on cycloalkane, only 30 minima are found using the

randomized method in Step 1 of the top level procedure.

Our program is first run on cyclopropadecane (Figure 4-2), the 13-carbon cy-

cloalkane, to validate its completeness. \WVe use BatchMin \73.5 [Dep90] and its MM2

force field for minimization. AE is set to 6 KCal/mol. Figure 4-3 shows the results

of the new algorithm and Cartesian stochastic search running on the molecule. After

2000 Monte Carlo steps, 15 conformers are found to be within 3 KCal/mol of the

global minimum. We believe that these are all the conformers because every mini-

mum has been found several times. Cartesian stochastic search finds all useful con-

formations with 341 minimizations against 98 minimizations for the complementarity

algorithm. The complementarity method is 3.48 times faster. More importantly, the

result suggests that the algorithm completely explores the low-energy conformational
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Figure 4-2: The lowest-energy conformer of cyclopropadecane with 20.415 KCal/mol.

space.

The second cycloalkane used as a benchmark is cycloheptadecane, the 17-carbon

cycloalkane. Saunders [SHW+90] applied seven methods to search for its conforma-

tions. He found that the methods have similar performance. First, we try several

techniques using the Dreiding force field. Figure 4-4 compares their performance on

this molecule. Our algorithm finds the most useful conformations in the shortest

time. As a basis of comparison, we examine the resource each algorithm needs to find

the 70th useful conformation in Table 4.1. Clearly the complementarity algorithm

performs better than existing ones.

To evaluate the performance more precisely, we try the algorithm using BatchMin
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100 150 200 250 300 350
Energy Minimizations

artesian stochastic search and the complementarity

Algorithm Number of Approximate Slow down factor
function CPU time on against
evaluations Sparcstation ELC the new algorithm

Cartesian Stochastic search 8672057 6.1 days 35.6
Goto and Osawa's algorithm 1514372 25.5 hours 6.2
Complementarity 243539 4.1 hours

Table 4.1: Resources needed to find the 70th low-energy conformation of cyclohep-
tadecane (Dreiding force field).
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Figure 4-5: Performance of the new algorithm on cycloheptadecane with the MM2
force field.

V3.5 and the MM2 force field. These are the exact program and energy function

used in Saunders' paper. We can directly compare our data with those in his paper.

Figure 4-5 shows the performance of the algorithm using MIM2. All minima are tested

by BatchMin's normal mode analysis. Table 4.2 is a comparison of the best method

in his paper, usage-directed torsional Monte Carlo search, against our algorithm1.

We can compare the number of minimizations each algorithm needs to find the 203rd

conformation in the 3 KCal/mol bracket. where about 80% of the useful conformers

are found. Our algorithm is 9.4 times faster than usage-directed torsional onte

Carlo Search. The complementarity algorithm is 12.2 and 14.7 times faster in finding

the 232nd and 249th useful conformation.

Figure 4-5 also shows that conformers within 1 and 2 Cal/mol of the global

minimum are found very rapidly in the beginning of the search. In addition, at the

early stage of the run, nearly every minimization produces a useful conformation.

Table 4.3 is a comparison of the rate of conformational search during the early stage.

The initial rate of conformation discovery is much higher using the complementar-

1 Data on usage-directed torsional Monte Carlo search is from SHW+90].
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359 847 1045
Energy Minimizations

3388 5647 8471
Still/Chang/Guida Usage-Directed Torsional Monte Carlo Search

10 10 11 11

44 61 66 69
110 203 232 249~~~~~~~~~~~~~~ .-

(Uomplementarity
11

65
203

11 11

66 66

254 256

Table 4.2: Unique Conformers Found versus Energy Minimizations during Confor-
mational Searches of Cycloheptadecane.

Method
Usage-directed torsional

Monte Carlo Search
Complementarity

percentage of total minima
found/100 starting geometries

1 kcal/mol 2 kcal/mol 3 kcal/mol
9.1 6.4 4.4

90.9 59.4 26.3

Table 4.3: Rate of conformational search of cycloheptadecane.
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Figure 4-6: MM2 energies of cycloheptadecane conformers after minimizations.

ity algorithm. This is because the operators are able to generate low energy starting

conformations and the use of the priority queue. The operators are very effective in

finding candidates that minimize to very low energy. The priority queue allows us to

minimize the starting conformations in order of their energy. Thus the energies of the

minima are roughly in increasing order. Figure 4-6 illustrates this point. The sharp

peaks in the graph are caused by the Monte Carlo steps of the algorithm. The rest

of the minima have a slow upward trend in energy. This trend shows that the best

minima are likely to be found early in the search.

4.2 Rifamycin SV

Our algorithm performs very well on cycloalkanes. To evaluate our method more

completely, we try it on a radically different molecule, rifamycin SV. It is a well known

representative of the ansamycin family [AroS3] (Figure 4-7). Kolossvary [KG93] has

also worked on the conformations of this molecule. He said that it is an extremely

difficult conformational search problem for the current technology. The molecule

is completely asymmetric. There are strong electrostatic interactions and several
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Figure 4-7: Chemical formula of rifamycin SV.

intramolecular hydrogen bonds. Our algorithm cannot exploit any symmetry as in

cycloalkane, but the method still outperforms others.

We use the MM2 force field and Batchmin V3.5 for the search. The dielectric

constant was attenuated by a factor of 10. These are the same parameters used by

Kolossvary. We do not use any united atoms for the computation. 100 minima are

found using the randomized method in step 1 of the top level procedure. AE is

set to 15 KCal/mol. We can only use the combine operator because all components

have at least one chiral center. The lowest energy conformer found by our algorithm

has an energy of 50.006 KCal/mol, which is lower than the 55.69 KCal/mol found

by Kolossvary. Figure 4-9 shows the result of running our algorithm for 892 energy

minimizations. Table 4.4 is a comparison of methods for conformational search of

rifamycin SV2. Complementarity has vastly outperformed the other methods. It found

the 42nd conformer within 3 KCal/mol of the global minimum after 849 minimizations

versus 10000 for FLEX, the best of the other algorithms. It is 11.8 times faster than

FLEX.

2 Data on SUMM and FLEX are from [KG93]
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Figure 4-8: The lowest-energy conformation of rifamycin SV with 50.006 KCal/mol.
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Figure 4-9: Performance of the complementarity algorithm on rifamycin SV.
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Table 4.4: Unique Conformers Found versus Energy Minimizations during Confor-
mational Searches of Rifamycin SV.
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Chapter 5

Conclusion

This thesis has described a new algorithm, complementarity, for conformational search

of macrocyclic molecules. It scans a large number of candidate conformations and

minimizes only the promising ones. These candidates can be generated by two opera-

tors that construct new conformations from known minima. The candidates have sim-

ilar bonded-interaction energy as the known minima and possibly lower non-bonded

interaction energy. The components of conformers are accessed efficiently from a

database. The starting conformations are ordered by energy in a priority queue. On

the examples tested, this algorithm is 9 to 11 times faster than the existing methods

for large symmetric and asymmetric rings.

There are several reasons for the efficiency of the algorithm.

1. The most important reason is that the operators are able to generate good

conformations close to the local minimum. Thus we can use initial energy of

the conformations for selection. Low-energy starting conformations increases

the chance of finding useful minima and reduces the time of minimization.

2. The database allows the systematic retrieval of the complements of any com-

ponent. The operators can be applied systematically to generate good starting

conformations. There is no redundancy in generation.

3. The priority queue allows us to minimize the starting conformations in order

of their energy. Thus lowest energy minima are likely to be found early in the
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search.

To further improve the efficiency of conformational search of macrocyclic mole-

cules, we envision the construction of a massive component database. If all common

types of components are present in the database, the best starting conformations can

be generated and minimized very quickly. This may be the next step of research.

In addition, we have shown that initial energy is a good predictor of minimized

energy if the starting conformations of macrocyclic molecules satisfy the bond length

and angle constraints. This may also apply to acyclic molecules. We believe that if

the starting conformations of acyclic molecules are generated carefully and selectively

minimized based on their initial energy, their low-energy conformations can also be

found efficiently.
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