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Abstract
Preliminary design is characterized by imprecision: the designer's uncertainty in
choosing among alternatives. For any computation to occur, these informal descrip-
tions must be translated into formal model representations, usually in the form of
constraints. Conventional constraint based CAD systems are used to manipulate in-
put and output variables, by allowing a user to adjust the variables' crisp values. The
different variable values are iteratively specified and relaxed until a final configuration
of variable values is accepted. ICPT, the Imprecise Constraint Propagation Tool, is
developed to propagate a set of possible values which satisfy a given constraint net-
work. In contrast to crisp constraint based CAD with which over-constrained systems
of relations must be relaxed by the user, ICPT allows calculations to be made by con-
verting crisp constraints into imprecise ones by imprecise slackening; it also finds a
complete set of values which simultaneously satisfy all of the constraints. This global
set-based approach of ICPT avoids running into infeasible space, and thus allows
much of the iterative user specifications and exploration of design space to be made
by the computing platform, reducing the iterative tasks of the user.

Thesis Supervisor: Kevin N. Otto
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Chapter 1

Introduction

Preliminary design is characterized by imprecision: the designer's uncertainty in

choosing among alternatives. The method of imprecision [34, 66] is a formal theory

that includes imprecision in design calculations. Recent application of it includes cost

calculation using the Engine Development Cost Estimator provided by General Elec-

tric Aircraft Engines [23], computer systems design [28] and image enhancement [3].

For any computation to occur, these informal descriptions must be translated

into formal model representations, usually in the form of constraints. Conventional

constraint-based CAD systems are used to manipulate input and output variables,

by allowing a user to adjust the variables' crisp values. The different variable values

are iteratively specified and relaxed until a final configuration of variable values is

accepted. This thesis develops an imprecisely constrained CAD tool to propagate

a set of possible values which satisfy a given constraint network. An imprecision

transformation is defined to induce imprecise specifications from specified variables

to unspecified variables, either of which can be of the independent input or depen-

dent output type. When the imprecise specifications are placed on the dependent

variables exclusively, the transformation reduces to composition. When the impre-

cise specifications are placed on the input variables exclusively, the transformation

reduces to Zadeh's extension principle used in fuzzy set mathematics. In the use of

crisp constraint-based CAD, over-constrained systems of relations must be relaxed

by the user. With an over-constrained system, however, it is shown that imprecise
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constraints allow calculations to be made: the values which simultaneously satisfy

all of the imprecise constraints can be calculated. Thus, using imprecise quantities

in constraint-based CAD systems allows much of the iterative user specifications to

be calculated instead by the computing platform, reducing the iterative tasks of the

user.

1.1 Goals and Motivation

The goal of this work is to provide a CAD environment for imprecise constraint propa-

gation, multi way. I consider an important class of problems defined by the constraints

being a set of explicit or implicit nonlinear equations or inequalities. When designing

with such systems, users often wish to adjust the values of some variables and to

observe the corresponding changes on the remaining variables, while simultaneously

keeping all of the constraints satisfied. Contrasted with conventional constraint-based

tools, this work utilizes a set-based approach, and it provides additional set structures

for choosing among alternatives.

One aim of this thesis is to extend the use of imprecisely constrained systems into

the domain of set-based concurrent engineering [58]. When using a crisp constraint-

based CAD tool, the system of relations and crisp variable values must be specified

by the user along the progression of the design process. This can typically force deci-

sions early in the process. Current industrial trends are away from this practice and

instead toward application of concurrent engineering, which brings downstream and

upstream decision-making to interact with each other. To implement this concept

into engineering calculations and tools, a set-based approach to refining possibilities

is needed. There are industrial justifications for this view. For example, Toyota's

successful product development approach has been attributed to a set-based method-

ology [58]. In set-based concurrent engineering, sets of possible designs are com-

municated and modified among members of a cross-functional product development

team. The preference functions are redefined and put into a common metric (such as

monetary cost) to enable trade-off decisions.
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1.2 Related Work

Design impression, first advocated by Wood and Antonsson [59, 62, 60, 61, 63, 64, 65],

was later developed by Otto [32, 33, 35, 37, 38, 39, 42, 44, 45] into into a framework

of formal design methodology [34]. For recent applications see [6, 7, 23, 43].

Some related work has been done by Diaz [10, 11] and Rao [49, 50], who consider

optimizing imprecise engineering systems. This work, instead, is about presenting

a user, not with a solution to an imprecise problem, but rather with the effects of

different imprecise constraints on other variables. Sakawa and Yano [51, 52, 53, 54]

discuss fuzzy multi-objective optimization. An appraisal of the use of fuzzy sets in

optimization in general is given by Luhandjula [25].

The main interest of this thesis is to develop an interactive computer tool based

on the method of imprecision, which has advantages over crisp constraint-based tools.

Work has been done developing the propagation of crisp values through engineering

models [1, 29, 55]. The use of such systems can be thought of as a network of vari-

ables. When enough variables are specified in a relation to leave a single variable

remaining unspecified, such systems calculate that remaining variable value. This

demonstrates what the unspecified value must be for the system to remain consis-

tent. A computational spreadsheet for this purpose has recently been developed and

presented by Ramaswamy and Ulrich [48].

I seek to develop the same constraint-propagation system, but to allow a user to

specify imprecisely the values in the model, rather than being forced to choose exact,

crisp values. The reason for doing so is that this will allow a user to observe the

propagation of entire ranges of values, rather than only single ones. This places more

of the computational burden on the computing platform, and less on the user, by

reducing the need to make many adjustments to the variable values to gain insight

into the proposed design solution. In this thesis, we will develop the extension princi-

ple for constraint systems, and demonstrate its usage and simplifications for various

problems.

14



1.3 Organization of Thesis

The thesis organization is outlined in this section. Chapter 2 reviews the method

of imprecision. A simple and efficient constrained interpolation scheme [7] for com-

puter representation of preference curves is presented in this chapter. Chapter 3

develops a method for propagating imprecise constraints in engineering design. To

enable interactivity, an Extension of Level Interval Algorithm is developed to handle

arbitrary nonlinear constraints. The conditions for propagation are also discussed.

Chapter 4 introduces features of the Imprecise Constraint Propagation Tool (ICPT),

an interactive computer tool that propagates imprecise constraints. Chapter 5 shows

two engineering design examples tested on ICPT. Design scenarios are depicted. In

Chapter 6 future development of this work is outlined and discussed. In Chapter

7 the thesis is outlined. This work can be adapted into computer aided concurrent

engineering and robust design, given its set-based approach and the additional set

structure to perform evaluations. A user interface reference section is provided in the

Appendix.
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Chapter 2

Design Imprecision

2.1 Introduction

Preliminary design is characterized by imprecision: the designer's uncertainty in

choosing among alternatives. The method of imprecision [34, 66], a formal theory

that includes imprecision in design calculations, is reviewed in this chapter. First, a

formal engineering model is constructed, then a suitable trade-off strategy is chosen to

maximize performance. To propagate imprecise understanding through engineering

tools, the preference must be constructed. In this chapter, a constrained interpola-

tion scheme is developed for fitting a preference function to a finite number of known

preference values.

2.2 Formal Models of Engineering Design

In a design process, a design is developed to satisfy the needs of a customer. In modern

design practice, the needs of customers are first transformed into engineering terms.

House of Quality [18] is a tool which helps product teams to realize customer needs

through engineering functions and forms. Unlike engineering terms, customer needs

are typically expressed using informal descriptions [2, 4, 24, 46] which can have many

interpretations. In the modern product development environment, intense competi-

tions and the opportunities offered by the rapid progress of information technology,

16
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computers are used extensively in the design process. However, for any computa-

tion to occur, customers' informal descriptions must be translated into formal model

representations. For example, design optimization methods require the translation

of informal requirements into formal objectives and constraints. Concepts satisfying

these objectives and constraints will be compared and improved through an itera-

tive process. With tools like Pugh's concept selection chart [47], designers compare

different aspects of a product with a "datum" and select the best concept. After a

concept is selected, it must be formalized into a domain over which an optimization

process can occur, and the formal constraints can be satisfied. This design paradigm

is depicted in Figure 2-1. After conceptual design, an engineering model is created,

with relations of engineering variables established. Imprecise and possible ranges on

variables are then specified and propagated in the constraint network. This allows the

designer to explore rapidly the design space and to come up with a set of solutions,

among which an "optimum" solution exists, given all the preferences and constraints.

These steps are covered in more detail in the next subsections.

2.2.1 Formal Structure

The assumptions underlying the construction of a formal model for a product are

thoroughly studied by Otto [34]. It is assumed that all relevant aspects of a product

can be quantified and related to customer requirements. Otto [34] defines the design

variable space or DVS as "the set of considered possible alternative configurations,

described using design variables, over which the designer has direct choice. Design

variables are denoted di, i = 1, ..., n. The whole set of design variables is an n vector,

d. The space of dis denoted X and the set of valid values for di is denoted as Xi."

The performance variable space or PVS is "the dependent set of evaluated per-

formances determined at each point in the DVS, described using performance vari-

ables. For each performance variable pj, j = 1, ..., q, there is a mapping fj such that

pj = fj(d). The set of performance variables is a q vector, = f(d). The subset of

valid performance variable values Y is mapped from X and the set of valid values for

pj is denoted Yj" [34].

18



Given this characterization of engineering design processes, the complete formal

model assumed can be defined as "an engineering model consists of a DVS, a PVS,

and a (possibly trivial) NVS (noise variable space)."

In this thesis a trivial NVS is assumed, except for Chapter 6, in which I consider

stochastic noises. A formal model is usually a set of equations relating performance

variables to design variables, but it could also be a computer program, a set of heuris-

tic rules relating these variables, etc.

2.2.2 Design Imprecision and Objective Preferences

Once a formal model is created, the designer then wants to choose a set of variables

that satisfy the constraints and in addition, to find the "best" if it is possible. The

problem is in the preliminary design stage; there are no well-defined optimization

goals, and even the feasibility of the model could be uncertain. The designer does

not know what design variable values should be used in the model. In this thesis, this

imprecision will be explicitly modeled by constructing a map from the variables into

[0, 1] C R indicating the satisfaction of the designer for values, and will be formally

called the designer preference for values.

Otto defines [34] preference as "a map k from a space Xk to [0, 1] c R,

Pk Xk -+ [0,1]

that preserves the designer's preferential order over Xk."

The rationale behind the preference could be other ambiguous constraints and con-

siderations such as the availability of certain sizes of beams and screws, ergonomics,

costs, supplier manufacturing capacities, etc. In the preliminary design stage, only

those dominant and stringent constraints are considered. Less strict constraints and

design intents are reflected in the designer preferences. The "best" design will emerge

if all the constraints are satisfied in the design model and the preferences are maxi-

mized.
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2.2.3 Propagating Preference in Design Model

To propagate preferences in design model one must deploy a trade-off strategy [37].

One must know if one configuration of design variables is better than another con-

figuration. In this thesis a non-compensating strategy is used. So to rank two con-

figurations, one looks at the worst preferences among all design variables and ranks

them according to that. Preferences are propagated to a variable by achieving maxi-

mum induced preference [44] on that variable. Details of propagating preferences are

discussed in Chapter 3.

2.3 Modeling Imprecision

2.3.1 Introduction

Imprecision in specification is a natural phenomenon which arises with any human

conceptualization activity. In our particular interest, imprecision is an intrinsic as-

pect of product development, the process of understanding a customer's need and,

based upon this, generating and embodying a product which can satisfy this need.

Of particular interest to us is imprecision as it occurs in engineering design, which

involves developing a product using engineering models and analysis.

Imprecision and vagueness are intrinsic aspects of engineering design. If (at the

start of a design process) a proposed solution were neither imprecise nor vague, its

description would be precise and it would therefore be a completed design. While

stochastic uncertainty typically remains in a completed design description (e.g., di-

mensional tolerances), the nominal desired dimensions are precise. However, much

of the early description of a design concept (physical dimensions, material proper-

ties, etc.) is vague and imprecise. At the early stages, a design team simply is not

sure what values to use. Engineering calculations become difficult, because values for

variables are unknown.

In this frame, imprecise mathematics becomes useful to represent the possibili-

ties. Zadeh's extension principle, for example, can be used to propagate imprecise
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understanding through relevant calculations and models. A comprehensive review of

modeling imprecision and uncertainty in engineering design is given in [42]. Further

work can be found in [36, 41, 44, 45, 62, 67].

For imprecision to be used during a design process, it must be represented. This

means that a designer's understanding of the usefulness of values in a model must

be represented, say, with fuzzy numbers. A well defined procedure for specifying the

fuzzy numbers must be given, however, for design engineers to manipulate their mod-

els in an imprecise manner. One approach is to ask the designers and customers their

preferences for various aspects of the design. They indicate their rank of preference

(on a scale from 0 to 1) for every value of each variable, describing the design and its

performance and constraints.

The preference information is usually (but not always) a convex fuzzy number.

One can use the mathematics of fuzzy sets to operate on these imprecise descriptions

of the design. For example, one can use preference data in conjunction with the

usual engineering computations encountered in design. One can expand the process

to map not just single values, but the entire imprecise set of variables specifying a

design, such as geometric lengths. Preferences can also be mapped through fuzzy

calculations to dependent variables such as material stresses, dynamic responses, or

costs. Further, dependent variable preferences can also be back-mapped onto the

variables specifying a design. This provides the designer an ability to manipulate

the imprecise aspects of a design in an understandable and rapid way. The reader is

referred to [42, 44, 45, 62, 67].

A two-fold problem arises. The first is to provide a well defined method for a

design engineer to specify the preference values. The second problem is manipulat-

ing variables with an uncountable number of points, such as a common real-valued

variable. A design engineer can only specify the preference for a finite subset of the

points, and the remaining must have their preference determined through some form

of interpolation. This thesis will present a method I have found useful for specifying

a complete preference function across real valued variables. Methods are developed

in this thesis to elicit preference values on a finite subset and to interpolate the re-
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maining.

The interpolation problem is not solvable by a simple least-squares or spline

method. Preference functions have constraints which common interpolation schemes

do not satisfy. In particular, a preference function is bounded in [0, 1]. A constrained

interpolation is required. I present a simple, efficient method to calculate a properly

constrained preference function to a finite set of specified preference values.

The next section will present a useful method to determine preference values at

a finite set of points. Section 3 presents the interpolation method and its proofs for

fitting a preference function to these points. Section 4 will then discuss the relevance

of this method for engineering calculations.

2.3.2 Measurement Theory

Measurement theory [21] provides a mathematically axiomatic method to construct

preference values as used in this work. A comprehensive presentation of using mea-

surement theory to construct evaluations in design is given in [32]. To construct a

preference function for a variable, a set of values of the variable (here R) must be

known, and a reason for making the preference specifications. If a design engineer

supplies a preference value of 1.0 to a variable value xl but a preference value of 0.0

to a different variable value x0, there must be a reason for the difference between

xl and x0. A design engineer must have a reason for making this distinction. This

informal reason behind the difference in formal preference I will denote by f, which

is not a function, but merely a label attached to the informal reason.

Once a design engineer has a set of values X and has determined a reason f for

specifying preference values, a preference function can be constructed over X using

measurement theory [21, 32]. In particular, an interval scale construction will allow

a designer to form a real valued scale IL which reflects the informal objective f. The

designer must first identify which points in X have the least and most amount of

the objective f, denoted Xworst and Xbest respectively. These are designated with the

amounts zero and one on the preference scale being constructed. Then for each other

element xi E X, the designer must answer:
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"On a scale of zero to one, what is your belief [t that you are indifferent

between:

1) receiving the objective performance provided by xi,

or

2) receiving the objective performance provided by Xbest with certainty l

and receiving the objective performance provided by xworst with certainty

(1 -) ?"

This constructs a real valued (measurable) preference function : X - [0, 1] which

directly preserves the partial ordering (based on f) of the elements of X, and also the

relative separation. A difference of 0.5 compared to 0.3 in A means a larger difference

in the informal reason f for constructing the preference function.

Historically this method has been associated with subjective probability. I main-

tain that for engineering design purposes, this method is suitable for construct-

ing preference functions for propagating imprecision through engineering systems.

In any case, for the interpolation algorithms presented below, how the finite sub-

set of preference values is determined is irrelevant. A resulting subset of pairs

{(X1, [l), ... , (x,, L,)} i all that is required.

This basic measurement approach just given obviously assumes finite sets. On

uncountable sets, further assumptions are required. The designer can only provide

answers on a finite subset, which must then be interpolated. The next section will

present the problem formulation and an efficient solution.

2.3.3 Interpolating Over Real Valued Variables

Preference functions have constraints which conventional least-squares and spline

methods do not satisfy. The first constraint is that preference functions are usually

monotonic and convex. A second constraint is that preference functions are bounded

in [0, 1. These constraints will be detailed.

A preference function is usually monotonic and convex, defined as a fuzzy number
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using the fuzzy-convex property:

[t(Axi + (1 - A)xj) > min{g(xi), /(xj)}

where A [0, 1] and xi, xi E R. Least squares and simple splines may not preserve

the monotonicity and convexity. For example, consider a set of elicited preference

values as shown in Table 2.1 for a set of material stress values. The data is fuzzy-

convex. However, as shown in Figure 2-2, when using least squares or cubic splines

to interpolate, the result is not fuzzy-convex.

Another constraint that any proposed interpolation scheme must address is to keep

the preference function bounded within [0, 1]. Again least squares and simple splines

do not guarantee this boundary condition. For example, if two known preference

values are closely spaced in the domain but widely separated in , then overshoots

tend to occur, which may force the interpolation below 0 or above 1. In Figure 2-2,

both interpolations exhibit preference-overshoot pathologies.

To preserve the local monotonicity and convexity, more advanced interpolation

schemes were investigated beyond sample least squares and splines. These schemes

center mainly on the notions of "splines under tension" [9]. Following a calculus

of variations approach, these techniques basically find splines that minimize tension

energy under different "tension parameters," similar to a stiff band under a param-

eterized amount of bending tension passing through knot points. A difficulty in

this approach is finding a meaningful interpretation of a "tension parameter" for a

decision-maker. How should a value be determined?

A second problem with splines under tension as a means of fitting a preference

function is that the resulting curve may still overshoot the required [0, 1] boundary.

Even when the slopes at the boundary are set equal to zero, the spline may still have an

overshoot problem because the overshoot may help minimize the tension energy (see

Figure 2-3). An interpolation scheme for fitting preference functions must eliminate

such overshoots.

I present axioms about human decision making that I choose to adopt for the
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Table 2.1: Elicited preference values for maximum stress.
Stress _

200 MPa 1.00
210 MPa 0.95
225 MPa 0.50
230 MPa 0.10
250 MPa 0.00

1.0

0.6

0.2

-0.2

-0.6

190.0 200.0 210.0 220.0 23

a (MPa)

0.0 240.0 250.0

Figure 2-2: Graph of preference function using common interpolation schemes.
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purposes of the developed interpolation scheme. These may be excessively restrictive

for all types of human decision-making, which is beyond our purposes. Instead, I

seek to lay out explicitly the axioms which must be adopted to use this interpola-

tion scheme (the strong continuity assumptions, for example). I then demonstrate

resulting properties of the derived preference functions.

Axiom 1 A preference function is a numerical scale bounded in [0, 1].

Axiom 2 Among the set of points considered by a designer, at least one will be a

utopian point with preference 1, and at least one more will be an unacceptable point

of preference 0.

These axioms are actually the foundation for using measurement theory to elicit

preference values. The worst and best cases are assigned preference value 0 and 1.

The rest are assigned preference values between 0 and 1.

To fit a preference function to a set of elicited preference values, the level of

continuity in the resulting function must be known. I choose to fit a smoothly varying

curve to the preference data. This implies that a designer's choice among values is

smoothly varying.

Axiom 3 The rate that a designer changes preference for values in a domain is

continuous.

This axiom implies that a preference function is first derivative continuous and thus

the function itself is differentiable. This implies that:

Proposition 1 If /a(x) is 0 or 1, then pi'(x) = O.

Proof. Either points in the right- or left-hand neighborhood of x have the same value

of ,, or x is a local maximum or minimum for x. In the first case, /u'(x) must be zero

since , is differentiable and [t' is zero in the neighborhood of x. In the second case,

p'(x) is zero since x is a local maximum or minimum. U

This means that when fitting a preference function to some data points, I will assume

that the slope at the end-points of support of the preference function ramps up slowly.

I will also assume the preference is smooth about any peak points.
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Another important feature of approximate reasoning is in dealing with fuzzy num-

bers, when the decision-making involves grades of preference in sets. I choose not to

restrict to fuzzy numbers. However, if a designer elicits preference data which has the

fuzzy-convex property, I will insist on maintaining the fuzzy-convex property across

all of the domain.

These restrictions form a precise statement of what I seek from an interpolation

function. I seek to find

: R - [0, 1]

such that

1. (x) E [0, 1] V x,

2. al is differentiable,

3. !L(xi) = !.Li for a finite set of known pairs {(x1 , Ai),..., (Xn, /n)}.

4. If the set of known pairs {(x1, /1),.. , (xn, IL,)} is a fuzzy-convex set, then / is

fuzzy-convex.

McAllister and Roulier [26, 27] developed an algorithm which produces a mono-

tonicity and convexity preserving second-degree Bernstein polynomial. Further, it is

very fast and efficient to implement, and requires no user-judgment to adjust any

"tension parameter" values as do the spline under tension techniques.

The ability of this method to preserve the boundedness and monotonicity of a

preference function depends on the following property of Bernstein polynomials on

an interval.

Let di = (xi, i) and oi = (ti, ji) be arbitrary points. Let wi = (a,b) be an

arbitrary point with a = (xi + ti)/2. Let g be the piece-wise linear spline passing

through the points di, 5i and wi with a single discontinuity at a, as shown in Figure 2-

4. Let B2 [di, wi, oi] be the second-degree Bernstein polynomial of g on [xi, ti]. That
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Figure 2-3: Interpolation using a spline in tension. The different curves correspond
to different "tension levels."

Wi

Qi

Figure 2-4: A second-order Bernstein polynomial with middle knot that has abscissa
a = (xi + ti)/2.
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is,

B2[dii, ](x) = B2(g)(x)
g(xi)(ti - x)2 + 2b(x - xi)(ti - x) + g(ti)(x -ti 2

(t i-xi) 2

Proposition 2 The following properties hold:

1. B 2(g)(Xi) = g(xi) = Ai, B 2(g)(ti) = g(ti) = Hi;

2. BZ(g)(xi) = g'(xi), B(g)(ti) = g'(t);

3. if g is monotone on [xi,ti], then B 2(g) is monotone on [xi,ti];

4. if g is convex (concave) on [xi, ti], then B 2(g) is convex (concave) on [xi, ti].

Proof. Proofs for the above properties 1 and 2 are trivial. Properties 3 and 4 are shown

in [27], but are essentially derived from the "convex hull" property of any quadratic

functions. Hence B 2(g) "preserves the shape" of g, and B 2(g) has a continuous first

derivative on [xi, ti]. i

This proposition forms the basis for why the algorithm presented below preserves

the desired preference function properties. Given proper data points, a quadratic

Bernstein polynomial will preserve the local behaviour. A quadratic curves needs

3 coefficients to specify the curve. If one attempts to fit a quadratic curve directly

to the points (xi, 1ui), (xi+l,, u+), however, the prescription of the slope at xi would

prescribe the slope at xi+l, which in turn may force the interpolation not to behave

as a preference function.

The solution proposed is to augment the given set of points {(xl, Ai), ... , A.(x ,)}

with additional points (ti, hi) which are positioned to ensure the satisfaction of the

preference function properties. The problem then becomes to find proper positioning

of these additional points.

The complete proposed algorithm to fit a preference function to a set of preference

data {(xl, l), . .., (x., ,Lt)} is as follows:
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Figure 2-5: Construction of slope mi complying with the local convexity and mono-
tonicity.

1. First determine the slope mi at each known point (i, /i). To do this, first

define

= - i- (Xi-xi-)

The following properties of mi must be met:

(a) mi must be consistent with the monotonicity and convexity of the piece-

wise linear function determined by the data points (xi- 1 ,/i- 1 ), (xi,/ti),

(xi+1, i+l)-

(b) mi must vary continuously with respect to changes in si and si+l when the

signs of si and i+l agree (i.e., when (xi, i) is not a extremum with fixed

slope of zero).

(c) Only one knot should be required between two data points. This is to

minimize the complexity of the algorithm.

The construction of mi given below satisfies the above properties.

* If sisi+l < 0, then set mi = 0. This guarantees that local extremes of the
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data points are assigned slopes 0. This also segments the entire data into

monotonically non-increasing or non-decreasing subsets.

* If si > si+l > 0, then extend a line through di = (xi, Li) with slope

si until it intersects the horizontal line through di+1 = (xi+l, Ai+j) at the

point b = (bx, ti+l). Refer to Figure 2-5. Then define

bx + xi+,
Cx -- (2.1)

2

which is the abscissa of point c shown in Figure 2-5. Slope mi at (xi, i)

is defined as

mi= -i+l-i (2.2)
cx - Xi

Note that

c > +xi 1 (2.3)
2

* If on the other hand, 0 < Isi+11 < Isi+11, we then reverse the above proce-

dure by extending the line through (xi, pi) with slope mi+l until it inter-

sects the horizontal line through (xi_1, u_.i) at the point (b, /ii-). Then

we set c = (bx + xil)/2 and mi = (i - ,ui-1)/(xi - c). The end point

slopes m0 and mn are set to zero explicitly since this is required by Propo-

sition 1.

2. We now insert a knot point between each xi and xi+1 and fit a Bernstein poly-

nomial to the 2n - 1 data points.

Let Ri be the rectangle determined by the points (i, i) and (xi+, Ai+) and

let the midpoint segment of it be the line segment that bisects Ri vertically and

is bounded within each Ri. Refer to Figure 2-6. Let Li be the line that passes

through (xi, Ai) with slope mi.

Without loss of generality we assume nondecreasing data points; for non-increasing

data sets, the same algorithm can be applied without change; we use non-

decreasing data points for demonstration purposes. There are two distinct cases
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regarding the intersection of the neighboring slope lines Li and Li+l, depending

on whether the knots change the local convexity of the spline or not.

* Case 1. Li and Li+l intersect at a point = (ti,zy) in Ri. Refer to

Figure 2-6. Let
xi ti xi - ti

Vi = (xi i + Li 2 )(2.4)) ~~~(2.4)

i+1+ ti Xi+ ti
Wi = (xi+ 2 ) ti+1-Li+ 2 (2.5)

2)

as shown in Figure 2-7. Let L be the line joining vi and wi and define

i = L(ti). (2.6)

Now we will let X = (ti, i) be a knot for the spline. Refer to Figure 2-7.

Define IL on [xi, xi+l] as follows:

B2[di, Vi, i](x) on [i, ti],(2.7)

/B21[5*i, idi+l](x) on [ti, xi+l].

From Proposition 2 we immediately see that u(x) E Cl [xi, xi+l] and satis-

fies

I(xi) = gi,

(i+i) = i+1,

/,'(xi) = mi,

]Ul(Xi+l) -mi+l.

Moreover, if the first-degree spline defined by the points di, vi, wi, and di+,

is convex (concave) and/or monotone, then is convex (concave) and/or

monotone.

* Case 2. Li and Li+, do not intersect within Ri. As a consequence of

Proposition 3 (shown below), there are only two possible situations as

depicted in Figure 2-8. The knot Oi is determined similarly as in Case 1,

but with ti = (i + xi+1)/2. The definitions of v-i, i, fii, i, and remain
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as in (2.4), (2.5), (2.6), and (2.7), respectively. Refer to Figure 2-9. Then

tt E Cl [xi, xi+1] and IL preserves the shape of the data. Note here that the

knot oi becomes the point at which the convexity changes.

This algorithm discusses non-decreasing data points for demonstration with the fig-

ures; however, it remains equally valid for non-increasing data sets. Also, by slicing

the whole data set at the local maximums and minimums, the whole data set consists

of many independent segments, where each is non-increasing or non-decreasing.

We now prove the proposition that the slope assigned at di complies with the local

convexity and monotonicity.

Proposition 3 Consider data points which are non-decreasing. The line Li of slope

mi passing through di = (xi,/ Li) intersects the midpoint segments of both adjoining

rectangles Ri 1 and Ri+l.

Proof. For mi = 0, the assertion is trivial since the line of slope 0 through (xi, ,/i)

always forms a horizontal edge to each of the adjacent rectangles and thus intersects

the midpoint segment of each at the end point. Therefore we only need to consider

the cases where mi 0. Since the slope assignment in the above step is symmetrical,

we only need to consider the case of an interior point (xi, [i) with

mi > 0

and

0 < Si+1 < Si,

as depicted in Figure 2-5. From (2.1), (2.2), (2.3), We see that

xi+l > c > i + 1 (2.8)
2

With this and (2.2) we have

si+ < mi < 2si+1 (2.9)
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P

Figure 2-6: Li and Li+1 intersect within Ri.

and

0 < mi < si. (2.10)

Inequality (2.9) means that the line L through (xi,tui) of slope mi intersects the

midpoint segment of Ri. The second inequality (2.10) means that Li also intersects

the midpoint segment of Ri- 1. Refer to Figure 2-10. i

A feature of the inserted knot points { (ti, i)} which will be required subsequently

is their monotonicity with their neighbors.

Proposition 4 The points (ti, ii) determined in the algorithm are monotonic with

(xi, i) and (xi+1, i+1).

Proof. Without loss of generality, we consider a set of monotonically increasing data.

According to Proposition 3 the slopes assigned must all be non-negative.

In case 1, this proof is trivial since the intersection Ze of Li and Li+l is inside Ri.

Thus Vi E diz E Ri and wi e zdi+l1 E Ri. The knot i thus satisfies

i viwi E R.
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Figure 2-7: Determination of o-i for Case 1.

di+, di+,

Figure 2-8: Two possible cases when Li and Li+l do not intersect within Ri.
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Figure 2-9: Determination of - for Case 2.

R,

Figure 2-10: Line Li intersects the midpoint segments of R, and Ri+,.
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Figure 2-11: Li must intersect with GH and L,+1 must intersect with IJ.

For case 2, as shown in Figure 2-11, L has to intersect midpoint segment EF and

hence it also has to intersect the line segment GH. We have i Ri. By the same

argument Li+l has to intersect line IJ. Thus

v E GH R,

i E IJ c R,

and so

0 c Vwi c Ri.

.

2.3.4 Fuzzy-Convex Preference Functions

Of particular interest is the situation when the elicited data satisfies the fuzzy-convex

property.

Proposition 5 Given a fuzzy-convex set of elicited-preference data, the interpolated

preference function determined usng the algorithm of Section 2.3.3 will be fuzzy-
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convex.

Proof. By assumption, the elicited preference data is monotonically increasing on

{x0 ,...,xk } and monotonically decreasing on {xk,...,xn}. Using the construction

of the algorithm in Section 2.3.3, we insert a point o-i = (ti, ii) monotonic with

(xi, i), (xi+,, i+l), by Proposition 4. Then using the algorithm in Section 2.3.3, a

monotonic g (as in Proposition 2) is defined on [xi, t] and on [ti, xi+1], consisting of

Li and Li+1 respectively. Given this, then by Definition (2.7) and Proposition 2, t

is monotonic between [xi, ti] and [ti, xi+l], which with the monotonic ti implies , is

monotonic on [xi, xi+,]. But together with the monotonic data points, this implies t

is monotonically increasing on [x1, Xk] and monotonically decreasing on [k, xn]. U

Thus, the interpolation scheme is very suitable for imprecise calculations and decision-

making in a fuzzy environment.

2.3.5 Convergence Properties of the Algorithm

Another concern which arises is the behaviour of the interpolation when additional

elicited points {xi, i} are added for interpolation. The preference function should

become more accurate as any arbitrary point xi, i} is added. This is in contrast

with some simple interpolation schemes, which can become worse, for example, if the

points then become unevenly spaced. The algorithm of Section 2.3.3 exhibits no such

properties, and will converge to the actual preference function.

Denote by pt(x) an interpolated preference function derived using the algorithm

of Section 2.3.3, with n elicited data points. Denote by [a(x) the theoretical elicited-

preference function if the interval scale question were asked on all points x e R.
Proposition 6

lim tt(x) = a(X)

Proof. Let B[a, b] be the space of bounded continuous functions on [a, b] and J be

the interval [x0, xn1] and Ji be the interval [xi-l,xi]. By Axiom 1 and 3, /,a(X) 
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B[xo, xn,-]. By Proposition 4, all the points {ti, i} are contained inside the rectangles

{R/} and thus Ita(x) B[xo, xn_]. The metric between and Hta is

d(inXia) = max un(x)-a(x)

= max(max ja,(x)- tt(x)|)
i xEJi

< maxHi
i

= H*.

Here Hi is the height of Ri and H* is the largest of Hi. When n oc, intervals

Ji 0 and

lim H* = 0n-oo

since /a(x) is continuous. Thus

lim d(tn, ) = 0
n---}o

and

lim [n(x) = /t(X).
n--q o

Thus, one can start with a few sample points of elicited preference, do engineering

calculations, and interpolate to fit the results. One can then add points as necessary

to increase the accuracy of the calculations. But most importantly, the points can

be added at any additional x E R, and the accuracy will not decrease. The points

need not be evenly spaced, for example. This is important for engineering calcula-

tions, since this allows one to focus on critical regions by eliciting preference from

points there, with the confidence that the interpolated preference will not become

skewed. Again, the interpolation scheme is very suitable for imprecise calculations

and decision-making in a fuzzy environment.

As an example, consider a fuzzy number whose preference function is given exactly
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Figure 2-12: Convergence to a differentiable preference function.

by

(cos(x) + 1) x E [-r, r]

{ otherwise

but this expression remains unknown to the decision maker. The interval scale con-

struction can be used to find a finite number of points to approximate La. This is

shown in Figure 2-12 for different numbers of points.

As a non-differentiable example, consider a preference function given exactly by

I x<O
(X) X3 + X2 1X + 1 X [0,3]

0 x>3

but again this expression remains unknown to the decision maker. The interval scale

construction can be used to find a finite number of points to approximate /La. This

is shown in Figure 2-13 for different numbers of points.
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Figure 2-13: Convergence to a non-differentiable preference function.

Finally, notice that the method satisfies our requirement for a simple and efficient

implementation. Quadratic interpolation is minimal to satisfy the differentiability

requirement across the entire curve. Thus, the method satisfies all of the stated

needs of fuzzy mathematics, but also does so in an efficient manner.
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Chapter 3

Propagating Preference through

Systems of Constraints

3.1 Introduction

After a formal model has been constructed, a designer has only imprecise specifica-

tions on the variables in the model. He/she may want to partially specify the model

and observe the restrictions on other unspecified variables. A designer may specify

particular values on some of the variables, simply to observe the effects of the partial

specification.

For example, a designer may wish to conjecture values for design variables, and

observe the restrictions on performance variables. In the design of a car front-wheel

suspension, selecting particular ranges of values for the design geometry will result

in a range of possible caster angles. Performing this kind of calculation will allow

a designer to interpret the performances achievable and sensitivity to each design

variable. The designer explores the design space, especially the portion in which the

final design is most likely to emerge. This could be viewed as a sufficiency test and

exploration.

On the other hand, a designer may wish to lock values of design performance, and

observe the restrictions over the design configurations that can be used to achieve

it. In the design of a car front-wheel suspension, locking the caster angle within an
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acceptable small range will restrict the design geometry. Performing such calculations

will allow a designer to find out what design configurations should be pursued if

the performances are to be achieved. This can be viewed as a necessity test and

exploration.

3.2 Constraint Systems

constraint-based CAD systems are used in mechanical engineering to design engi-

neered products 1, 29, 55]. However, these systems are crisp constraint systems,

in that the constraints are strictly reinforced. System response to a point in solu-

tion space is either "on" (the point satisfies the constraints) or "off" (the point does

not satisfy the constraints). It is proposed to build imprecise constraint systems,

in which constraints are imprecisely maintained. With increased dimensionality of

solution space, a valid solution is more likely to emerge. A set approach can be

employed.

3.2.1 Crisp Constraint Systems

In crisp constraint systems, engineering models are represented as variables in a

system of relations:

fl(X1,..., Xn) = yl

f2(Xl, .. .X) _y= 2
(3.1)

fm(Xl... ,Xn) = ym

Typically, xi are known as the independent or input variables, and yj are known as

the dependent or output variables. The map f relating the two sets of variables x

and y could be an equation, a computer program, an expert system, or any means of

evaluating performance y given a design configuration .

Given a configuration, a designer typically performs calculations to rate different

values of the configuration variables. For example, the maximum bending stress in a

structure might be calculated, since the designer must ensure that the bending stress
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is not excessive.

Thus, in constraint-based CAD systems, the system relations are typically formu-

lated as input/output relations as in (3.1), but the system of relations is not used as

an input/output system. In many engineering applications, the input variables are

not selected and the output variables values observed. Rather, many times the de-

pendent variables must be fixed, and the input variables adjusted to the fixed output

variable values. On the other hand, the exact values of the output variables are usu-

ally not known, but rather imprecise boundaries are. Typically, users iterate between

desired input variable selections and allowed output variable values.

This paradigm is depicted in Figure 3-11. A user may select a subset of the

variables in xly,... x n , y..., ym to fix, and propagate these specifications onto the

remaining variables, to observe their effect on the model.

Consider now a relation which has all of its values fixed by a user inconsistently,

i.e., all of the variable values in one relation are simultaneously specified by the user,

but the relation does not hold with these values. The typical action taken by crisp

constraint propagation systems in this condition is to flag a warning to the user that

a variable must be relaxed [55].

3.2.2 Imprecise Slackening of Crisp Constraints

When dealing with over-constrained systems one often wishes to relax some of the

constraints. The way imprecise slackening works is very much like adding slack vari-

ables in linear optimization problems. Suppose there is a constraint

X2 + y2 = 4.

The imprecise-constraint approach is to add another variable, say,

z x2 + y2z=x +y.

1This figure is from "Propagating Imprecise Engineering Design Constraints" by K. N. Otto
and E. K. Antonsson, Prepared for Proceedings of the Fourth International Conference on Fuzzy
Systems, 1995, Yokohama, Japan.
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Then a preference function is defined on z, with maximum preference peaking at

z = 4 and ranging from z = 3.8 to z = 4.2. The crisp constraint is thus slackened;

now it has a fuzzy boundary. The constraint value x2 + y2 can be anywhere on [3.8,

4.2], but values around 4 are preferred. Original crisp constraint can be thought of

as a 6 function in this context. Crisp constraints become imprecise if the 6 function

is relaxed. The degree of relaxation depends on the willingness of the designer to

violate the crisp constraints and the trade-off among all conflicting constraints.

3.2.3 Imprecise Constraint Systems

Here it is proposed to use the system of relations as described above in conjunction

with the propagation of not just single values, but entire sets of values using imprecise

preference. Graphically, the proposed computational model is depicted in Figure 3-1.

The user makes estimates of values for any of the input and output variables desired,

represented with preference. The preference specifications are then induced onto the

remaining variables, to observe the a priori restrictions on the remaining variables.

After having made the induced preference calculations, the user can observe the

imprecise performance achievable and proceed to judge the model. Thus, use of

imprecise quantities within constraint systems offers the ability to shift much of the

iterative searching a user must do onto the computational platform, by computing

many sets of values simultaneously.

A further benefit is gained from using imprecise quantities. When propagating sin-

gle values through constraint systems, if a relation has all of its variable values simul-

taneously specified and the values are such that the relation does not hold, the system

is over-constrained. This condition can be overcome by imprecise mathematics. The

imprecisely specified variables cause the system to be imprecisely over-constrained,

rather than totally over-constrained. If a relation has all variables specified, the im-

precise mathematics can be used to restrict the preference functions beyond what

was originally specified by the user. This is analogous to constraint systems warning

users of inconsistent crisp values.

The next section will develop the requisite mathematics for these calculations.
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3.3 Propagating Preference within Constraint Sys-

tems

In this section we seek to develop proper representation for constrained systems and

develop algorithms for propagating constraints.

3.3.1 Modeling Constrained Systems

For engineering design problems, products can be represented with models represented

as variables in a system of relations, such as in Equation 3.1, which can be rewritten

as

y= f(). (3.2)

To develop the mathematics for propagating through constraint systems in the

most general sense, we generalize the performance map (3.2) to a constraint system

relating variables among an input space X and an output space Y:

F = 0. (3.3)

The total imprecise space is thus Z = X x Y E Rn x Rm = RN. F is a set of equality

constraints relating the variables in Z space.

During an iterative design process, usually some variables are imprecisely spec-

ified while the remaining variables remain unspecified. This means that Z can be

partitioned into a set of specified variables S and a set of unspecified variables U.

Thus, (3.3) can be written as

F(g, ) = 0, (3.4)

where gs and u are elements in sets S and U, respectively. Define the pre-image in S

of each E U using F,

r(i) = { E I (s, ) = 6}. (3.5)

Thus F(Ui) is the set of all solution points s' in S which simultaneously satisfy all
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equations in the constraint network F(s, us) = 6 for an unspecified value u in U. The

dimension of r(u) could be 0, finite, or infinite, depending on the solvability of (3.5).

Given this, the imprecise constraints in the form of preference functions placed

on S can be induced onto U. This will show the induced restrictions on the unspecified

space U. To do this, we define an induced preference on U,

v(U) = supI (/(s Se r()}. (3.6)

This is nothing more than Zadeh's extension principle generalized from explicit map-

pings to implicit constraint equations. We denote it to distinguish it from the

independent imprecise specifications /t, since both [l and co-exist on any variable

in the constraint system.

3.3.2 Degree of Freedom for Propagation in Constraint Sys-

tems

Constraint propagation through systems of equations is not a simple exercise in search.

Systems of equations can be defined that may have no solutions. To explore this,

rewrite (3.4) as

Fi(s,... ,s, Ul, · · ·) = O

F2(Sl, . . ., , . O . . , s) = (3.7)

F,.(sl .... s, u,. , up) = 0.

Here y is the dimension of S and is the dimension of U. Preference on S can be

propagated onto U, as discussed above. However, restrictions must be placed on 

for the the constraint propagation to have meaning. Suppose there is a point s S,

for which the combined preference is defined as

/~(§*) = min[/u(sl), ..., (s )]. (3.8)
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To find the restrictions of specified variables on unspecified variables, one must know

all sets of u- which satisfy (3.7). Thus one needs to solve the equations

Fl (s*, .. ., 1, ..., Up)=0

F2(s , . . , a, '1, . . ., up) = 0
(3.9)

Fm(s ... ,sl, ... ,u) =0

which is a set of m equations with 3 unknowns. We define degree of freedom for

propagation as - m. This is slightly different from normal notions of system degrees

of freedom, in that we consider m, the number of unspecified variables, not n + m,

the total number of variables.

From an analogy with linear systems, the following observations are made, assum-

ing all equations are independent.

* If m < , the system is under-constrained for propagation. Typically, infi-

nite means of propagating constraints exist. There are fewer constraints than

variables, and so there are multiple means to propagate the constraints. For

example, consider a simple constraint

s 1 + 1 + 2 = 0. (3.10)

The degree of freedom is 1 since = 2 (two unknowns) and m = 1 (one

equation). There are infinite means to propagate a value from s1. If an imprecise

specification is made on s by defining a preference (s1 ), then the induced

preference on ul and U2 is (U1 ) = V(U2 ) = 1 V u1 and u 2 . For any ul, a U2 can

always be found that satisfies (3.10) together with the peak preference value of

S1.

* If m = /, the system is critically-constrained for propagation. There are a finite

number of means of propagation. The degree of freedom is 0. For example,

49



consider the following equation,

sI + al = 0. (3.11)

With a value on s specified, there is only one solution of u1 that satisfies (3.11).

* If > 3, the system is over-constrained for propagation, with a negative degree

of freedom. Typically there is no means to propagate constraints. For example,

consider the following equations,

Si + 'U1 = 0 (3.12)
(3.12)

S1 - U1 - 0.

For any value of s, (except 0) there is no solution of ul. The induced preference

on ul is 0 everywhere (except at 0).

3.3.3 Propagation Preference in Critically Constrained Sys-

tems

It is desired to develop a system for interacting with a system of critically constrained

imprecise constraints. That is, a user should specify the design problem sufficiently

to allow an algorithm to proceed, but also should not specify constraints which are

inherently not solvable. For example, in a constrained system of N variables and 1

equality constraint, we seek to propagate the preference specified on N - 1 of the

variables onto the remaining variable. Such a calculation could be repeated across

all of the variables, as shown in Figure 3-2, thereby allowing a design engineer to

interactively observe the specifications and the effects of other specifications at an

early stage.

Previous work has found fast algorithms for single, explicit-form constraints [67].

We have developed a fast algorithm for propagating preference on arbitrary variables

within a set of monotonic constraints. This will be discussed in more detail in the

next section.
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Chapter 4

ICPT Framework

4.1 Introduction

Chapter 3 has discussed the theory of propagating constraints. In this chapter the

computer implementation in ICPT is presented. As an imprecise constraint tool,

ICPT allows a user to manage over-constrained systems, without committing to a

crisp value of a design variable in the early design stage; instead, it allows the user

to specify imprecisely the values in the model.

For general cases, the propagation is done through constrained optimization. To

facilitate real-time or near real-time propagation, an extension of the Level Inter-

val Algorithm [67] has been developed and implemented. Input variables and output

variables are treated anonymously by invoking nonlinear equation solvers; thus, prop-

agation is made on any variables within the constraint system. This will be discussed

in Sections 3 and 4. The features of the CAD tool are highlighted in Section 2.

The Imprecise Constraint Propagation Tool (ICPT) is an interactive computer

tool based on the methodology in Chapter 3. It consists of a graphical user inter-

face and an optimization core. Run in the Matlab® environment [13, 14], it invokes

the Matlab Handle Graphics® [15] for its graphical applications and the Matlab

Optimization Toolbox® [17] for its optimization and propagation. Matlab also sup-

ports MEX-files, which can link to outside routines [16]. As shown in Figure 4-1, the

graphical interface consists of mycmdwin.m, sproblem.m, detail.m, preference.m, con-
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Figure 4-1: ICPT architecture.
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straint. m. Each of these is a Matlab function that launches different user-interface

windows. The user progressively defines the problem and inputs information that

defines the problem. The optimization core consists of slowpropagate.m and fastprop-

agate. m. Functions inpref. m, fun.m, gconstr. m and prealpha. m manage the constraint

and o-cut. Two Matlab intrinsic functions fsolve and minimax are also invoked. The

main negotiation window Concurrent Engineering Window is launched by mywin-

link. m. The final optimal points are determined by invoking optimal. m.

4.2 Graphical Interface

The graphical user-interface of the system consists of a hierarchy of pop-up text win-

dows for defining the problem: i.e., inputting the constraints and elicited preference

points. After the problem is defined, the user works within a graphics window to

fine-tune the preference functions, either by dragging the preference values or by

selecting different interpolation schemes (linear or quadratic) to construct the pref-

erence functions [7]. The propagation of v onto a variable is made by clicking the

corresponding button in that variable's graphics window. If the constraint on the

variable is not satisfied (there is no overlapping point that has u and v of 1), the user

can change the preference on other variables and back-propagate the newly specified

preference onto the variable of concern. Thus, the influence of changing the prefer-

ence on one variable can be seen by propagating onto the other variables. Through

this negotiation process, less stringent preference functions are relaxed and shifted to

accommodate the more stringent preferences. After the negotiation is done, the user

can click the "Done" button to locate the optimal solution set, its numerical values

and overall preferences will be shown in the two text windows of each axis. For a

detailed description of graphical interface, see Appendix A.
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4.3 Constrained Optimization

The induced preference of any feasible P* in U is calculated through an optimization

problem formulated as follows:

minimize t(l
(4.1)

subject to F(s, P) =O

Here the minimization is in S. The evaluation of u(s) on S is typically defined as

in (3.8). A function in the Matlab Optimization Toolbox® called minimax, which

invokes a sequential quadratic programming (SQP) solution, can be used to optimize

the above function, or more robust algorithms can be developed in its replacement.

minimize max(F(X))
(4.2)

subject to G(X) <0

Here G(X) can be equality or inequality constraints.

4.4 Extension of Level Interval Algorithm (ELIA)

For systems with monotonic equality constraints, an extension of Level Interval Al-

gorithm (LIA) 66], is implemented to facilitate rapid propagations. ELIA computes

with multiple constraints rather than with only a single constraint as in LIA. It also

propagates preference functions to both dependent and independent variables. Thus

it solves a wider range of realistic problems, since engineering systems generally in-

volve multiple constraints and multiple optimization goals. Instead of evaluating the

dependent value directly as in LIA, ELIA solves for nonlinear equations defined by

the constraints with the specified variables fixed at a set of values A. Given a

constrained system in the form of (3.3),

F(Z) = 0, (4.3)
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let the preference function on any y number of these variables be specified, and 

variables remain unspecified (thus y+/ = N). Then the overall space Z is partitioned

into S and U, as described in the previous section. The constrained system becomes

F(1, .. ., I S U * * , U) = 0

F2($l, . . Sy U1, . . . , Up) = 0

F.(s .... ) ()U1, ...,u) = .
Fm($1,. . . , $?,U, .. . , u3) =0.

The following steps lead to the induced preference on the remaining

V1 , ... , VI-

1. For each s, i = 1,...,-y, discretize the preference function JL(si)

ber of a-cut values a, n 1, ..., M, where M is the number of

discretization.

/ variables,

into a num-

steps in the

2. Determine the intervals for each variable si at each a-cut a,, n = 1, ..., M.

3. Using one end-point from each of the y intervals for each an, combine the end-

points into an -ary array such that 2 distinct permutations exist for the array.

4. For each of the 2T permutations, k, k = 1, ... , 21, solve for u in the following

equation.

F (s'",.. U1, p. . =., ) 0--
/*,k *,k =0F2 (s,.. ., Uk, U1,.. , U·) = 0 (4.5)

Fm(S, k ) .$.. s,k, .7, Up) = 0

For monotonic constraints, there are a finite number of solutions. Denote the

number of solutions Lk and each solution Y*,k,l, 1 = 1, ..., L k .
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5. For each component uj, j = 1,...,/3, the resultant interval for the a-cut, n,

n = 1, ...,M, is then given by

In [ (ukI), max (u*k,)]

I=1....,Lk ll,...,L k

This formulation enables propagation to any number of/3 variables. The prefer-

ences on these /3 variables are simultaneously determined, reflecting that they are

constrained by multiple equations.

If m = 1, (4.5) is reduced to

f(x) = F(zl,...,zn-1,x, Zn+l ,...,ZN) = 0. (4.6)

Induced preference can be computed on Zn once the preference of the other N- 1

variables are known. This is shown in Figure 3-2.

4.5 Discussion

A new methodology of constraint-based CAD using imprecise quantities was demon-

strated through the development of an imprecise constraint propagation tool. After

the specified preference functions are defined, the relations can be catalogued into

three possible classes: under-constrained, critically-constrained, or over-constrained

for propagation. This determination is based upon the number of independent rela-

tions and the number of imprecisely unspecified variables.

With a set of equations critically constrained for propagation, an algorithm is

given which can accommodate multiple implicit equations. This is an extension from

previous algorithms in the literature, which accommodate single explicit relations.

Further, the algorithm can propagate preference onto any arbitrary variables within

a constraint, rather than only to dependent ones.
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Chapter 5

ICPT Examples

5.1 Introduction

This chapter presents two examples from mechanical engineering design. The constraints-

negotiation process is highlighted and demonstrated in window scenarios taken from

design sessions. Two possible techniques, namely sensitivity analysis and dimensional

analysis, are proposed to speed up the computations and to simplify the problem by

reducing independent design variables.

5.2 Truss Design

As an illustration of ICPT, consider the design of a frame truss, as shown in Figure 5-

1. The truss is intended to support a weight W at a distance from a wall. The width

and thickness of the beam are w and t respectively. W is the applied load, and E is the

elastic modulus of the material. Given a configuration, a designer typically performs

calculations to rate different values of the configuration variables. For example, the

maximum bending stress in the horizontal bar might be calculated, since the designer

must ensure that the bending stress is not excessive. A performance relation relating

the configuration values to the applied stress is given by:
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Figure 5-1: Structural Truss.

Table 5.1: Specified design variable preferences.

Variable Low end Optimal High end Unites
w 0.015 0.03 0.05 m
t 0.04 0.06 0.07 m
cr 0.25 .5 GPa

W 1.5 2.0 2.5 10kN
I 2 4 5 m

a : 4 R

(W. t, W. 1) 21(W+Pg-t ) (5.1)
(W, t, , ) F- t 

The preferences on these variables are shown in Table 5.1. There are two constants,

shown in Table 5.2.

A designer may select initial preference values for W, E, p, w, and t. Then,

one variable at a time, the induced preference from the remaining variables can be

propagated onto the variable in question through 4.6. In Figure 5-2, the specified

preference curves /z are in solid lines. The user may then want to see the induced
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Table 5.2: Structure Truss: Constant Values.
variable Value

g 9.8 |

p 7830kg

I

0.8

0.6

0.4

0.2

a

1.4 1.6 1.8 2 2.2 2.4 2.6

CIsel

Figure 5-2: ICPT initial variable specifications. This is the graphical representation
of Table 5.1. Note that crisp constraint Equation 5.1 is transferred into an imprecise
constraint by allowing a to be taken a range of values below 0.5 GPa, with indifferent
full satisfaction for values below 0.25 GPa. The user input the preferences information
through a user interface window (see Appendix) and can modify the curves in this
graphics window by dragging the control points around.
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preference v on t, given the preference functions on a, w, W and 1. This is shown

in Figure 5-3. The designer may realize that among all the variables, the preference

ranges of W and are actually very narrow, given the design intents that the truss

is designed to hold a certain fixed weight and the length is pretty much fixed. Thus

he/she then narrows the ranges on these variables around the most likely operational

values, as shown in Figure 5-4.

It may be discovered that the specified preferences /z on t and w don't overlap with

induced preferences v. This is shown in Figure 5-5. To reach a satisfactory design,

the designer must relax some less stringent design intents, i.e., the preferences on w

and t. The designer may decide to freeze the values of W and so that he/she can

concentrate on the negotiation among w, t and T.

A new negotiation window is then opened, shown in Figure 5-6. The designer

may drag the preference curve a toward the induced preference curve v on t directly,

or move the preference curves /t on a and w, and observe the resulting change. The

negotiation scenarios are explained in the captions of Figure 5-6 through Figure 5-16.

At any point in this process we can provide the user with feedback as to the crisp

optimal solution point(s) Z. That is, the user will naturally want to find points

z E Z which maximize the combined preferences. In Figure 5-16, these points would

be w = 0.106 (m), t = 0.0727 (m), and oa, = 0.291 (GPa). If the user is satisfied with

these values, the iterative design process stops, and the user can proceed to fabrication

using these values. At any point in the iterative process of refining the imprecision,

the optimal solution can be calculated and an accept/reject determination made over

these points of maximum preference.

In fact, the points z, E Z returned are exactly related to an imprecise non-linear

programming problem. If all of the variables have imprecise preference functions, then

a search across X for the points x, which maximize the overall combined preference

(including those on Y) is the same as the points determined in the above, iterative

approach. This was shown in [44].
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Figure 5-3: ICPT initial propagation. Above the right side of each graphics axis, there
is a button on which there is a symbol representing the design variable. Pressing the
button will propagate the preference of all other variables onto the variable being
pressed. The dashed lines are induced preferences. Here, the user begins with very
wide ranges on each variable.
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Figure 5-4: Narrowing down design variable ranges based on design intents. The
designer intentionally sets wide ranges for the initial configurations to explore design
space. The next step is to narrow down ranges on some of the design variables,
according to design intents. Suppose the truss is to hold a certain fixed weight at a
certain span, the preferences on W and should then be narrowed, as shown here.
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Figure 5-5: Propagation of the modified preferences. The resulting propagation yields
no feasible solution: There is no overlapping interval between preference and induced
preference on each design variable. Design ranges on w, t and c have to be modified.
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0 0 Done I L near - t I

Figure 5-6: Scenario 1: New negotiation window with new set of design variables.
Since W and are almost fixed, the designer opens new design windows for the
variables less constrained.
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Figure 5-7: Scenario 2: Propagation of the preferences.
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Figure 5-8: Scenario 3: Shifting preference curve on w toward induced preference
curve. Realizing that using larger values of is an acceptable design option, the
designer then shifts the preference curve toward induced preference.
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Figure 5-9: Scenario 4: The induced preferences on t and u.
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Figure 5-10: Scenario 5: The designer drags
the region of high induced preference.

the preference curve on t further toward
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Figure 5-11: Scenario 6: The resulting propagation of the changed preference.
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Figure 5-12: Scenario 7: The designer then moves the preference curve on w toward
the high induced preference range.
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Figure 5-13: Scenario 8: This change is propagated to a and t .
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Figure 5-14: Scenario 9: At this point, the capacity to change w and t is almost
exhausted. The designer then moves the preference curve on toward a smaller
range of values. The relaxed constraint is re-tightened.
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Figure 5-15: Scenario 10: The re-tightened constraint is back-propagated onto w and
t.
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Figure 5-16: Scenario 11: The designer is satisfied with the results. The numerical
value of the solution is shown in the two text areas above the left side of each graphical
axis.
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Figure 5-17: Accelerometer design.

5.3 Accelerometer Design

Consider the design of a uni-directional accelerometer which indicates accelerations

above a threshold with a switch closure, as first introduced in [40]. In the accelerom-

eter design shown in Figure 5-171, there is a mass M attached to a spring k attached

to the ground. The ground is accelerated. With sufficient acceleration, the mass

must displace a specified distance to make contact with a switch. There is also a

backstop placed against the mass, so that the spring k pulls against pre-load P under

no acceleration.

Under specified accelerations, the accelerometer mass must contact a switch within

specified time durations. However, suppose the spring is a piece of sheet stock formed

by a stamping procedure. The inaccuracies introduced by the stamping, attachment

and assembly manifest themselves as random errors on k, the spring constant. This

uncertainty occurs randomly. Hence, due to the manufacturing process, it is difficult
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to set precise actuation times (time for the mass to touch the actuation switch). We

would like to see in what specification ranges would the design variables be to ensure

the performance requirement.

There are two goals in this design: to maintain a specified pre-load P, and to

close the switch in time r under a specified acceleration. The variable r reflects the

desired actuation time, and the pre-load P reflects the desired insensitivity to weak

accelerations. As a part of these goals, the designer needs to determine whether the

design can be made sufficiently tolerant to variational noise to satisfy the customer.

There are two design variables, mass M and spring constant K. There is, however,

uncertainty in the manufacture of the spring: a random variation on K, denoted k.

Finally, to assist in maintaining the targets on the goals, the manufacturing procedure

can position the backstop based on measurements made of the total spring constant

(k = K + 6k) of each accelerometer. This backstop distance is denoted x0, and is

a tuning parameter. The switch distance is denoted x. The position of the mass

at any given time is denoted x. The mass is to make contact with the switch when

subjected to acceleration a.

To determine the time to actuate the switch, the differential equation of motion

of the mass must be solved. It is:

d2xM -t + a) x H(x-Xo) + kx = P x H(o- (5.2)

where H is a step function, x(0) = x0 , and x(O) = 0. This can be solved for the time

to actuation:
M {Ma-k(xo-xc) 

r x arccos Ma (5.3)k ~Ma

This solution assumes, of course, a is sufficiently large to move the mass (i.e., the

arccos is defined). The other goal is the pre-load P, whose equation is also determined

from the above differential equation:

P = kxo (5.4)
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Table 5.3: Specified design variable preferences for accelerometer.
Variable Low end Optimal High end Unites

Xo 0.005 0.007 0.009 m
M 0.0125 0.015 0.0175 Kg
k 1.625 2.0 2.375 N/m
T 0.0085 0.0095 0.0105 s

Table 5.4: Accelerometer: Constant values.
Variable Value

a 200 

Xc 0 m

Maintaining a specific pre-load helps eliminate spurious switch closures.

Having formulated the problem, we can now solve it with the ICPT tool (shown

in Figure 5-19 to 5-22). The starting design specification is as in Table 5.3 and shown

in Figure 5-18.
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Figure 5-19: Accelerometer: The preference is propagated onto xo0 .
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Figure 5-20: Accelerometer: The preference is propagated onto T. The tool fails to
converge on the propagations onto M and k; this is due to the insensitivity of T to
M and k. The derivative matrix is almost singular. See section in Chapter 6 about
dimensional analysis.
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Figure 5-21: Accelerometer: The preference curve on xO is modified.
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Figure 5-22: Accelerometer: Propagation to T.
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Chapter 6

Future Development

6.1 Introduction

This work has two main directions for future development: one in concurrent engi-

neering and the other in robust design.

The design of most complex artifacts requires combining the expertise of special-

ists in several discrete areas. The various kinds of expertise involved in generating

the design of a complex artifact can be employed in either a "sequential" or a "con-

current" mode. In sequential design, the design task is broken down into a sequence

of design subtasks for which the output of one designer's decision process serves as

input to another. In concurrent design, distributed problem-solving by specialists

from different disciplines (i.e., process, structural, mechanical, electrical) or functions

(planners, designers and manufacturers) occurs simultaneously, and design decisions

must be either coordinated in real time or reviewed for consistency and modified as

needed during periodic reviews. Routine or semi-custom design can often be done

sequentially, because experience has produced a feasible sequence of design decisions

that can be executed serially and without much backtracking. The design of complex

or substantially innovative artifacts typically requires a significant degree of concur-

rent decision-making by its designers. I propose to develop computer tools to assist

concurrent engineering decisions. The design task can first be decomposed into sub-

tasks [22] based on the "strength" of interactions of constraints. Strongly coupled
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constraints are grouped within a single design group. The interactions among each

design group are through shared variables [8]: i.e., by putting preference specifications

on them. A negotiation strategy will be developed to reconcile conflicting specifica-

tions by different groups. When no satisfying solutions are found, we also want the

system to tell us what design parameters or constraints are causing most of the trou-

bles and suggest subsequent development of new concepts.

In preliminary design, dominant uncertainties such as inexactness, ill-definedness

and vagueness, are invariably non-stochastic. Examples of such imprecision are ex-

actness of concepts, correctness of statements and judgements, which have little to do

with the occurrence of events. However, for design problems in which tolerance spec-

ifications are important to both performance and cost, the consideration of stochastic

imprecision becomes equally important. Another stochastic uncertainty is the tuning

parameter [33], which is essentially manufacturing adjustment used to reduce product

variations. To model tuning parameters and tolerances one must deploy probabilistic

theories. One can achieve product robustness through choosing the right tolerance

and tuning adjustment, but in the mean time one also wish to maximize the overall

preference of the whole design, under non-stochastic uncertainties. Thus, a research

direction could be incorporating both stochastic and non-stochastic uncertainties into

preliminary design, and implementing it into a computer tool.

6.2 Tool for Concurrent Engineering

The implementation of concurrent engineering in the U.S. has been through orga-

nizational design, creating highly structured design processes and multi-functional

teams [30]. However, at Toyota Motor Company, the most successful of the Japanese

automotive companies, the key element of concurrent engineering is set-based de-

sign [58]. When using a set-based approach, designers explicitly communicate and

reason about sets of design alternatives. These sets are gradually narrowed down

through the elimination of inferior alternatives until only the final solution remains.

This approach contrasts with the common practice of iteration (i.e., making several
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modifications or improvements in a series) on one alternative until a satisfactory solu-

tion emerges. The fuzzy-set approach was originally developed for preliminary design

decision-making. It can also be applied to computer-aided set-based concurrent engi-

neering since it manipulates and propagates sets of design parameters and constraints.

Furthermore, preferences are specified on the set, thus providing the extra structure

to enable additional operations on the set. This feature is especially valuable when

making trade-off decisions, in which ranking of different design alternatives is essential

for comparisons.

I propose the following subtask and major steps in a computer-aided concurrent

engineering design environment.

6.2.1 Establish Functional Blocks and Sub-Systems

Pahl and Beitz's design theory [46] suggests that one of the foremost steps in con-

ceptual design is establishing functional structures of the product. Design teams are

then assigned to realize each function. For example, modern automobile engineering

divisions consist of climate control, electrical & fuel handling, engine operations &

powertrain, plastics & trim products, transmission & chassisline, etc. These relatively

independent sub-systems perform functions that comprise the engineering body of a

car. Typically, groups of specialized engineers are assigned to work in these differ-

ent areas. Working on separate functional structures not only brings out the best of

the expertise of the design engineers, but also reduces the complexity of the design

problem and facilitates team effort. Yet there need to be interactions between these

divisions. For example, engine should be compatible with power train; engine size

and thrust should be reflected on the locations and strength of the engine mount on

the chassis. The problem is how to communicate effectively.

6.2.2 Identify Local Variables and Shared Variables within

Each Sub-System

The underlying criteria for establishing boundaries among functional blocks and
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Figure 6-1: Local variables and shared variables among three sub-systems.
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design teams is the intensity of the interactions among variable components of the

product. Strongly coupled components are grouped together and modeled using local

variables [8] within a sub-system, with a net of constraints to be satisfied simulta-

neously or at least satisfactorily. This modeling scheme will enable constraint-based

design without much consideration of other loosely coupled constraints. A small but

strongly-coupled set of constraints defines a workable design space; on the other hand,

it ignores the constraints and design intents that other design teams might impose on

the sub-system. Quantitatively, we can model the interactions of sub-systems through

shared variables, which are variables shared by at least two sub-systems. Consider

the design of a front-wheel suspension system. Suppose the design team decides to

use a spatial four-bar linkage; then local variables such as the control-arm profile and

dimensions, bushing specifications and coil spring constant, etc., can all be specified

within the team. For the control-arm to be installed on the chassis, the span of the

control arm joint must be communicated to the chassis manufacturer so that a proper

set of holes are drilled to house the control arm. Thus, this dimension is shared by

both sub-systems.

6.2.3 Setting Feasible Ranges on Local and Shared Vari-

ables

Once the sub-system boundaries, local parameters and shared parameters are iden-

tified (that means the conceptual design becomes firm), each design team is respon-

sible to achieve their local optimum solutions, subjected to local objectives. How-

ever, other loosely-coupled constraints such as manufacturing constraints, cost and

interface problems, have to be considered by setting feasible regions on the local pa-

rameters, and more importantly, on the shared parameters. For example, at Toyota,

the manufacturing constraints are communicated through "lessons learned" books.

A lessons learned book for the design of a fender is about "10 to 12 pages long, and

contains approximately 60-72 different key ranges of specifications that would ensure

the manufacturability of fender design (e.g., intervals of acceptable radii of curvature
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for key bends)" [58]. Setting feasible ranges on shared parameters will refine the de-

sign space as a whole; in the meantime it insures that sub-system designs agree with

each other to an acceptable degree, by defining what can and cannot be done from

the point of view of each functional area.

6.2.4 Representing Quality Loss

Taguchi defines "quality loss" as "the loss a product causes to society after being

shipped, other than any losses caused by its intrinsic function." He believes that the

desirability of a product is determined by the societal loss it generates from the time

it is shipped to the customer; the smaller the loss, the higher the desirability. Here we

extend the idea to the multi-team environment; each team represents a small society,

with their own optimal designs, which have 0 quality loss to them. Any deviations

imposed on these locally optimal designs will result in a quality loss. Suppose a

team is responsible for designing the tooling for a machine part. If the goal of the

design is within the manufacture capacity of the firm, the tooling can always be done

by modifying the existing machinery: i.e., setting new fixtures and loading different

modular parts. But if the design intent is too far from existing technologies, the

quality loss of the team is great: they have to work long hours and find innovative

solutions; new equipment must be ordered, etc. Defining quality loss is analogous to

setting feasible ranges, except that it quantifies the relative desirability on a common

metric: the cost related to changes from each group's locally optimum designs.

6.2.5 Trade-Off Strategies

Research has been done on conflict management among cooperating agents [19].

Trade-off strategies [37] have been proposed to allow designers to explicitly rate and

trade-off the design alternatives, using a fuzzy set approach. Although this approach

reflects the relative preference among same aspect of a design, it lacks the comparison

metric to gauge other aspects of the design. Furthermore, operations like addition

lack physical foundation on fuzzy sets.
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Figure 6-2: Quality loss functions imposed by teams have a common region.

The definition of quality loss attempts to solve the above-mentioned problem and

to facilitate the trade-off process. In order for the final product to work, all shared

variables have to meet certain degrees of agreement, among every design team who

specifies the shared variables. By setting a feasible region for the shared variables, sub-

designs agree with each other to an acceptable degree. Some shared variables have

to be exactly matched, to ensure constraints like mating conditions for assembly.

Some only need to be agreeable in the operational range. To achieve a common

value on these variables, design teams must change their designs; thus, deviation

occurs. Exactly how much each team should change intuitively depends on the relative

difficulty for making such changes. The quality loss of each team will provide a

quantitative measure for such difficulty. The optimal trade-off, for example, could be

the one that results in minimum total quality losses.

Trade-off works only for shared variables with fairly agreeable specifications by

the design teams who share them: i.e., the quality-loss functions imposed by teams

have a common region. This is shown in Figure 6-2.

However, sometimes there is no common region to begin with. An example is the
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'95 Nissan Maxima. The overall goal of its management team was to keep the price

below $20,000, yet maintain its reputation as a powerful and slick car. The engine

group's original design was not acceptable under this overall goal. To keep the cost

low and yet maintain the performance of the engine, they came up with the brand-

new, aluminum-alloy V6 engine. It is 23% lighter, and yet delivers 15 additional lb-ft

of torque. It is one of the best in its class [20, 31].

In a concurrent engineering environment, innovations are frequently brought into

consideration to resolve a conflict of goals. One would like to know what is the most

likely place for such innovation to occur. In the Maxima example, the engine is an

obvious choice since it is the single most costly part of a car. Trade-off decisions

made on a quality-loss basis will likely be able to pinpoint conflicting constraints

which manifest in the non-overlapping quality-loss functions. Efforts can be directed

to improve the most needed aspects of overall design.

6.3 Design with Noises and Tuning Adjustments

Unlike imprecision, other parameter forms remain uncertain throughout a design pro-

cess. Once identified, the variables that behave probabilistically are not under the

control of the designer. A designer can observe the range of a probabilistic variable,

decide if it is excessive, and change the process by which the probabilistic uncertainty

arose so that the variation is more controlled. For example, a manufacturing process

may be altered to allow for tighter fabrication tolerances. Whether tolerance alloca-

tion should be considered in the preliminary design stage depends on the importance

of tolerance to the performance of the product and the cost associated with it. For

design variables with no geometric significance to assembly and function, tolerance

is generally not important. An example is the weight of a pendulum for a mechan-

ical clock, since it has nothing to do with its primary function: setting a time unit.

The period of the pendulum has nothing to do with the weight of it. However, the

tolerances of the gear sets inside it have a large effect on the accuracy and the cost;

thus, it must be considered in the early stages of the design. A method has been
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developed to model probabilistic noises along with imprecision [34]. Work still needs

to be done to implement it into an interactive environment. ICPT has already sup-

ported an interactive graphical interface and a constraint maintenance architecture.

The difference lies in different operations performed on the imprecise parameters and

probabilistic parameters. As shown below, the best performance under imprecision

is elicited via an optimization process:

d* : /A(d*) = sup {A(d), d E DVS}

where

Aid)= .P(.l, , N)

is the overall preference calculated at a point d E DVS.

For probabilistic parameters, the preferential performance of a point d E DVS is

defined by

(d) = NV/(d, n) dPrLNS

where g(d, n) = P(/l,... , /1 N ).

Here the operation is simply integrations. Evaluation of integrals is usually faster

than optimization, and is guaranteed to converge. This poses two major advantages

when developing a computer-aided tolerancing tool. Industry has substantial interest

in such a tool.

Tuning parameters have been thoroughly studied by Otto [40, 33]. Previously

called "slack variables," tuning parameters are factory manufacturing adjustments

commonly used to correct variational noise errors in a product. Some examples are

voltage-supply adjustments, adjustable links and screws, or shims. As an example of a

tuning variable, consider the accelerometer example. This product can be modeled as

a simple mass-spring system, as shown in Figure 5-17. Under specified accelerations,

the accelerometer mass must contact a switch within specified time durations. How-

ever, suppose the spring is a piece of sheet stock formed by a stamping procedure. The

inaccuracies introduced by the stamping, attachment and assembly manifest them-
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selves as random errors on k, the spring constant. This uncertainty occurs randomly.

Hence, due to the manufacturing process, it is difficult to set precise actuation times

(time for the mass to touch the actuation switch).

A common response to this problem would be to improve the manufacturing pro-

cess relevant to k, forcing the process to adjust until it exhibits the specified target. If

the spring is causing quality problems, then fix the spring. This product has different,

cheaper alternatives, however. Specifically, the backstop position might be adjusted

to compensate for performance variations caused by the spring. During manufactur-

ing, the spring constant k of every accelerometer could be measured, and the backstop

of each accelerometer positioned accordingly to meet the specified actuation times. A

potentially equally valid method is to adjust the mass by removing material from it.

These are examples of manufacturing adjustments represented by tuning variables.

In addition to this example, tuning variables are also observed in other engineering

problems such as automotive carburetor idle positioning, radio or television signal-

tuning circuit adjustments, car-seat positioning links, etc. They are characterized by

the tuning variable's ability to increase quality and robustness by compensating for

noise.

The effect of tuning adjustment can be evaluated using probabilistic methods.

Combining tuning parameters and tolerancing will explore opportunities of reduced

manufacturing cost by shifting the cost from tight tolerancing to less strict tolerancing

but with tuning adjustment. Like most tolerancing methods, this approach minimizes

cost while achieving quality goals. Research will be done to construct tuning cost

models and tolerancing schemes.

The final goal is to implement robust design methodology into a computer tool.

One can envision such a tool which extracts geometric and functional information from

a CAD model and interactively changes and shifts probability curves associated with

the tolerance specifications, just as we did with the preference curves. The core of the

tool will evaluate the expected values of all major performance criteria. The bulk of

the research will be on the management of large sets of tolerance chains and functional

requirements and on how to interface with a CAD tool such as Pro Engineer. A recent
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trend in CAD/CAM software is variational modeling [12], which allows designers to

make simultaneous changes to variables, instead of making sequential changes in

parametric CAD tool like Pro Engineer. More studies need to be done to find the

appropriate CAD/CAM software for this project.

6.4 Some Mathematical Techniques for Design Re-

search

6.4.1 Dimensional Analysis

Dimensional analysis is a method used in the design and analysis of experiments in the

physical and engineering sciences. Refer to [5, 56, 57]. When a functional relation

between variables is hypothesized, dimensional analysis can be used to check the

completeness of the relation and to reduce the number of experimental variables. In

modeling problems with known functional relations, functional analysis will provide

the most succinct form, give insight about the problems, and save time for robust

experimental design.

Taking the accelerometer design again as an example, we want to reduce the

dimension of the problem and thus reduce the computation time. With x = 0,

Equation 5.3 becomes

ccos(MkxO)
r = x arccos M (6.1)

k Ma

From Equation 6.1 we conclude that

T = f(M, k, a, xo) (6.2)

We choose M, k, a as independent variables. Then r, xo can be written as:

* 0 kxo = Xo Ma
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T* =-'

The dimensionless form of Equation 5.3 should be:

T* f(xO),

or

T* = arccos (1-x x). (6.3)

Applying dimensional analysis here not only reduces the design variables from 3

to 1, but also demonstrates possible redundant design variables. From the definition

of x0 and -r* one can see clearly that M and k appear only in the form of M/k.

This indicates that one of M, k is redundant, only the ratio of them is truly inde-

pendent. However, such observations are hard to make without dimensional analysis.

In experiment design, reducing the number of independent variables means time and

experiments saved in many folds. Obtaining a set of truly independent variables is

also important for optimization. Since redundant variables tend to waste machine

time on trivial circumscriptions; the optimum found is not unique either. Another

advantage of performing dimensional analysis is to find a better understanding of

functional relations. In the accelerometer example, one may find that r is relatively

insensitive to k and M, but very sensitive to x0 . Once may notice that with the given

ranges of values, x0 < 1. Thus, the usual approximation cos(x) = 1 - x 2/2 applies.

Equation 6.3 becomes

T* 2x0.

Thus
T

M/k Ma/k

or

r 2xo/a.
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This explains the insensitivity of r to M and k, and the difficulties in Figure 5-20.

6.4.2 Sensitivity Analysis

Although the LIA algorithm is applicable in a range of engineering problems, its

inherent disadvantage is that the number of calculations grows exponentially with

the increase in the number of independent variables being solved.

Using dimensional analysis may reduce the calculations by many times, but it is

still unacceptable for large systems with many independent variables. This adversely

affects the interactivity of ICPT. Sensitivity analysis has the potential to greatly

reduce the number of function evaluations. Once the sensitivity of a performance

variable respective to an independent variable is known, that independent variable

can be taken out of experimental-design space. The assumption made here is merely

monotonicity, the same used in LIA and ELIA. Although this puts restrictions on

applications, it is applicable in the usual cases of engineering design problems where

the intervals of design variables are small (which is generally true when the design is

approaching completion).
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Chapter 7

Conclusion

A constraint-based system is one in which preliminary parametric design has been de-

signed and implemented. For over-constrained systems, imprecise slackening relaxes

the constraint values and allows the system to be imprecisely constrained. However,

a user also has the option to re-tighten the constraints. The set of values that satisfies

the constraints are found by intersecting the preference and induced preference curves.

Thus, design space is thoroughly and automatically explored. For systems with multi-

ple constraints, designer can explore the design space beyond the crisp boundary and

find better possible designs by trading-off two constraints, thus avoiding committing

to constraint values too early in the design stage.

There are limitations in the system. Some lie in the limited capabilities of the

nonlinear equation-solver. Both ELlA and the optimization approach may fail to

converge, due to the fact that the solver is sensitive to the initial values. Various

numerical techniques such as scaling can partially correct these problems. The solver

only returns one solution, even though the system could have multiple solutions. This

may create problems for periodical functions (such as in the accelerometer example)

and polynomial equations (such as a quadratic equation in the truss example). The

system has no intelligence about what roots to use, and sometimes fails to find the

physical correct solution, such as finding a negative length. Better constraint man-

agement and user-interface could be used. However, these are not the focal points of

this thesis.
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This thesis makes contributions to software tools in design. It allows interactive

modification and evaluation of design specifications. Over-constrained systems are re-

laxed and can be re-tightened once the design space is thoroughly explored. Trade-off

of conflicting constraints can be done. The interactive user-interface can be adopted

into other design tools, such as tolerance design. The same methodology can be ex-

tended to collaborative design and concurrent engineering, provided suitable trade-off

metrics can be found.
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Appendix A

User Interface Reference

The purpose of this Appendix is to present documentation on the details of the user

interface of ICPT. Screen displays will be mostly self-explanatory.
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Figure A-1i ICPT command window.

Figure A-2: ICPT command window information.
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Figure A-3: ICPT main problem definition window.

Figure A-4: ICPT main problem definition window information.
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I his window is creaTea rom tne into you gave n tne main
command window. Push X(i)" and "... constraints" buttons to
put in further info.

Figure A-5: ICPT problem detail definition window.

Figure A-6: ICPT problem detail definition window information.
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Close

Put in preference values and locations for each variable.

Figure A-7: ICPT preference definition window.
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Info

Close

Figure A-8: ICPT crisp constraints definition window.
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Figure A-9: ICPT constraint propagation window.
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Figure A-10: Preference curves can be modified by dragging the control points around.
The text area shows the current position of the modified point.
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Figure A-11: The modified preference can then be propagated onto other variables
by pressing the control button above the right side of each graphical axis.
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