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Abstract

A series of experiments has been completed in which the ability of modified back
propagation neural networks to learn to regulate dynamic systems was systematically
evaluated. This research has led to the development of a new type of learning controller,
known as the neuromorphic controller (NMC). The NMC algorithm uses this modified
back propagation methodology to teach neural networks to construct mappings from the
current state of the plant to the control actions required in order to maintain the output of the
plant at a specified value. For this algorithm it is assumed that neither the network nor the
teacher have any a priori knowledge of the dynamics of the plant to be controlled. Thus,
unlike classical back propagation would require, the NMC is not explicitly shown a control
law to emulate, but rather forms its own control law based upon criticism of its behavior by
the teacher. The control laws developed by the NMC, and hence the closed loop response
of the dynamic system, can be shaped by adjusting the parameters with which the teacher
computes its criticism.

This algorithm has been simulated in software and tested on several second and
third order, linear and nonlinear dynamic systems using both linear and bang-bang
actuation. It has been observed that the control laws constructed by the NMC arise through
the tuning of the synaptic weights in response to the correlation of criticism issued by the
teacher with the evolution of the plant states during the network's training phases.
Through this synaptic tuning mechanism, the individual neurons become sensitized to
different states of the plant, effectively becoming adaptive feature detectors on the state
space; this controls how and when each neuron contributes to the control law. Often this
process results in control laws which are linear in a wide region of the state space; many
times, however, the network implements a nonlinear control logic which is quite effective
in, for example, suppressing noise and overcoming and exploiting plant and actuator
nonlinearities. It is further demonstrated that the resulting controller is robust to damage in
the network elements, and can discern which of a set of exogenous stimuli is relevant to
solving the control problem.

Thesis Supervisor: Professor David L. Akin
Title: Rockwell Assistant Professor of Aeronautics and Astronautics
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Chapter 1: Introduction

Adaptation. This quality, seemingly so effortless for biological systems, is

maddeningly difficult to instill in man-made machines. The two most promising

approaches, adaptive control theory and the theories of artificial intelligence, have

experienced serious difficulties implementing even small examples of useful learning

automata. Adaptive control theories can be proven stable for only a very small class of

possible dynamic systems, and even these can, under unfavorable circumstances, become

unstable (Rohrs et al., 1982). Artificial intelligence approaches have had great laboratory

success, but usually with computer environments so restrictive that they have limited

practical utility. Reliable learning automata thus remain a distant dream.

And yet machines which can learn from and adapt to their environments will be

crucial in helping mankind explore and exploit space. In 1982 the MIT Space Systems

Laboratory (SSL) conducted the ARAMIS (Automation, Robotics, And Machine

Intelligence Systems) study for NASA. This research concluded that a proper mixture of

machine intelligences and automata to augment human capabilities would significantly

reduce the cost and increase the productivity of certain space activities (Miller et al., 1983).

Two areas targeted particularly for future research by this study were teleoperation and

expert systems: teleoperation in order to better understand how to choreograph activities

between semi-autonomous machines and their remote human operators, and expert systems

because, in the words of the study, "as spacecraft complexity increases the prediction of all

[possible] failure modes and effects becomes combinatorially enormous...the expert system

may be the best method to deal with spacecraft failures" (Miller et al., 1983). Machines

which can recognize and respond to unforeseen circumstances (fault tolerance) and adapt to

new tasks and operating conditions will be necessary adjuncts to any human space

presence.

Recent research conducted by the SSL bears out these conclusions of the ARAMIS

report. Even limited amounts of machine autonomy yield large performance increases in

the tasks of structural assembly and satellite docking and retrieval conducted in a simulated

space environment (Anderson, 1988; Tarrant, 1987). Expert systems have also been

developed to assist with these and related tasks (Viggh, 1988; Kurtzman, 1987).

However, even these limited amounts of machine intelligence and autonomy require

extensive human supervision lest they go drastically astray. Anderson's TRIAD system for
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the SSL's Beam Assembly Teleoperator (BAT), for example, learns to mimic simple

structural assembly tasks by sampling and storing an exemplar operation performed by a

human operator. Unfortunately, this is essentially an open loop algorithm; over time, as

the machine calibration begins to drift, the performance of the teleoperator rapidly

degrades. Similarly, each expert system contains a static database of rules to apply in a

given situation; there is no way, short of direct reprogramming by a human, to identify and

incorporate into this database pertinent new information gained while on orbit. It is this

lack of robustness, these degradations in performance because of deviations from the ideal

operating conditions, which must be addressed before it will become feasible or desirable

to make such systems an integral part of the manned space program.

To incorporate true autonomy into machines, there are several very difficult

problems which must be solved; pattern recognition, associative recall, and the ability to

incorporate and generalize from new experiences are just a few tasks which would be

critical to any fully autonomous robot. Despite increases in the speed of the underlying

hardware and the proliferation of new algorithms, these problems remain fundamentally

unsolved. Paradoxically, these tasks are those which seem easiest for biological systems.

Consider even a simple biological system, such as a bumble bee. The bee is capable of

recognizing complex patterns (flowers in bloom), landing on an unknown and uneven

surface, gathering and loading pollen, adaptively varying its flight strategy on the journey

home to account for the new weight and drag distribution, and communicating its find to

other bees. The bee knows nothing about edge finding and pattern extraction, yet it

recognizes a flower; it knows nothing about aerodynamics, yet it flies; it knows nothing

about adaptive control, yet it can stay aloft in very different flight regimes; it knows nothing

about linguistics or information theory, yet it can communicate important abstract

information to others of its kind. All this, and much more (e.g. self defense, self repair,

and reproduction), in a package no bigger than a microprocessor chip! Since current

silicon chip technology is beginning to approach the limitations imposed by physics, it is

clear that the solutions to the problems in machine autonomy are not in faster, more

efficient computers; new insight into the problem is required.

So why, then, can biological systems accomplish these tasks so well? There is a

growing school of thought which believes the answer lies in the massive parallelism

inherent in the architecture of the neural pathways of living systems. Seen in this context,

abilities such as pattern recognition and learning are emergent properties of the

asynchronous interactions of millions of one bit "processors". Each "processor" makes

purely local decisions, based upon the behavior of neighboring processors, about whether

to turn on or off, and yet the ensemble of these decisions gives rise to complex forms of
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behavior. The whole, according to this theory, is much greater than the sum of its parts.

Given that neural time constants are on the order of milliseconds while computer speeds are

measured in nanoseconds, the observed architectural differences between biological and

man-made computing systems form a very plausible explanation for the above performance

discrepancies.

This idea has its roots in over a century of neurology and neural modeling. The

general approach has been to develop mathematical models of observed neurophysiological

phenomena, then analyze the resulting equations for their "computational" abilities.

McCullogh and Pitts (1943; also Landahl et al., 1943) were the first to demonstrate and

systematically analyze the computational abilities of networks of model neurons. This

analysis was augmented in 1948 by D. O. Hebb (1948) who proposed, based upon then

current neurophysiological research and the novel demonstrations of Pavlov (1928), a rule

whereby neurons could change the effect they exerted on adjacent neurons in the network,

thus laying the foundations for a model of learning. The synthesis of these two seminal

approaches was effected by Rosenblatt (1962) who, throughout the late fifties and sixties,

spurred research into the Perceptron, a neural model which could exhibit a wide range of

learning behavior. In particular he was able to prove the Perceptron Convergence Theorem

which states that Perceptrons can learn, in finite time, any linearly separable input-output

mapping. This research was advanced significantly in 1960 with the development by

Widrow and Hoff (1960) of the delta rule, a gradient descent method which would ensure

that the mapping achieved by the Perceptron was optimal in a least squares sense.

About the same time as the development of the Perceptron, but in an unrelated field,

the Russian mathematician Kolmogorov (Lorentz, 1976) proved the very important result

that any continuous function of n variables defined on the unit hypercube can be written as

the linear superposition of functions of a single variable defined on the unit interval. in

particular:

2n+1

f(xl, "-, x n) = q( p q(x )) (1.1)

q=l

where the (Dpq are continuous, monotonically increasing functions on the interval I = [0,1],

and the gq are continuous. This proof has been refined by several mathematicians

(Lorentz, 1962; Sprecher, 1964), with the result that equation (1.1) can be expressed more

simply as:
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2n+1

f(x ', xn)= g( p q(p)) (1.2)

q=l

where each p is a constant, and the I)q satisfy the conditions imposed on the O1 pq stated

above. The importance of this theorem to neural modelers will become plain in the next

chapter, but put briefly, this result establishes a theoretical justification for the claim that

networks of simple, neuron-like processors can compute arbitrarily complex functions of

their inputs.

Research into neural models in general, and the Perceptron in particular, was all but

completely quenched with the analysis of these models by Minsky and Papert (1969). The

two major points of Minsky and Papert's research were that: 1) despite Rosenblatt's

convergence theorem, there were certain 1/O mappings which could never be learned by the

Perceptron, notably XOR and parity; and 2.) the number of Perceptrons required to solve a

given problem rose faster than exponentially with the size of the problem. Despite this

analysis, several researchers pushed neural modeling through the seventies, mostly

concentrating on the abilities of untaught perceptron-like networks to "free associate" and

"compete" and thereby form their own internal representations of the environment to which

they were exposed. Grossberg and Kohonen (Grossberg, 1976a, 1976b, 1982, 1987;

Hestenes, 1983; Kohonen, 1984) among others, have published fascinating results on

these topics, although only Grossberg (1988; Grossberg and Kuperstein, 1986) has

demonstrated practical uses for such networks.

In the early eighties, Hopfield led a resurgence of interest in neural architectures by

developing and simulating networks of analog elements which could both act as associative

memory elements (Hopfield, 1982, 1984) and obtain good solutions to NP complete

optimization problems (Hopfield and Tank, 1985; Tank and Hopfield, 1986). However, it

was not until 1986 that an answer was found to the some of the criticisms posed by Minsky

and Papert. Rummelhart et al(1986b) succeeded in showing that perceptron-like neurons

arranged into multiple layers could escape at least the first of these criticisms. Their

development of the generalized delta rule, or back propagation algorithm, for deterministic,

multilayered networks has proven capable of learning precisely those mappings of stimuli

to responses that the Perceptron could not. At the same time, it was shown (Ackley et al.,

1985; Hinton and Sejnowski, 1986) that the flavor of Kirkpatrick's simulated annealing

algorithm (Kirkpatrick et al., 1983) could be used to design networks of stochastic
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neurons, called Boltzmann machines, which could also overcome the limitations of the

Perceptron. It is not yet known, however, if these new architectures will escape the

exponential growth problem.

These new algorithms have produced some spectacular results. The most profound

to date owe to Terrence Sejnowski who, using the back propagation algorithm, developed a

network simulation which could be taught to read aloud English text (Sejnowski and

Rosenberg, 1987). As a true test of the plasticity of these models, Sejnowski then used the

same network simulator and trained it to interpret sonar traces better than similarly trained

human subjects! (Gorman and Sejnowski, 1988) During these experiments, Sejnowski

demonstrated some of the properties of trained neural networks which are drawing interest

to the field:

· They can be made to learn arbitrary mappings of

inputs to outputs.

· They can generalize the mappings they learn and

produce the correct responses for inputs they have

never before encountered.

· They are robust to failures in internal network

components and can actually self-repair damage.

* They can adapt to changes in environmental stimuli.

· They can recognize previously learned input

patterns even in the presence of additive noise.

Currently these experiments are performed in software on ordinary computers. If

these networks could be implemented on silicon or gallium arsenide chips, it is easy to

imagine how they could be used to overcome some of the problems associated with

spaceborne hardware. Due to the intense radiation, space is a notoriously destructive

environment to electronic circuitry; computational elements which exhibit robustness to

internal component failure, and even self-repair capability, are certainly worthy of attention.

In fact, the Jet Propulsion Laboratory (JPL) has launched a research program into neural

networks for precisely these reasons. Further, the ability of these networks to learn, adapt,

and generalize would be quite useful in solving the above noted roadblocks to machine

intelligence, if these qualities can be practically extended to nontrivial problems in machine

autonomy. The specter of exponential explosion in network size is still a real possibility

which has yet to be convincingly addressed.
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Spurred by Sejnowski's demonstrations, researchers have started to examine these
issues. Grossberg (1988) and Kuperstein (1988; Grossberg and Kuperstein, 1986) have

begun to explore whether neural networks can be used to control robots. In late 1987, the

SSL decided to initiate a research program in the possible uses of neural networks in space

activities in general, and specifically in telerobotics. This thesis presents the initial results

of these investigations.

In the following is examined the possibility of using Rummelhart's back

propagation networks to control, or at least regulate, a variety of processes governed by

differential equations which are unknown a priori to the network. This is the type of low

level control problem which would have to be routinely solved by any robotic adaptation

scheme. The idea of neural networks which learn to control dynamic systems is not new--

it dates at least back to the heyday of the Perceptron (Widrow, 1964; Ku, 1964). In fact,

much of this early research established the foundations for some of the modern adaptive

control theories. More recently, Barto and Sutton (1982, 1983) have reexamined this idea,

with some success. All these earlier schemes suffer from the intrinsic limitations of the

Perceptron; however, as this thesis is being prepared, control algorithms using the new
neural network techniques are beginning to appear (Guez et al., 1988; Kawato et al.,

1987). To the best of the author's knowledge, no studies of learning control have yet been
done which utilize back propagation networks, although at least one other such study is in

preparation (Showalter, 1988).

Before continuing, it is necessary to draw a very important distinction between the

concepts of learning control and that of adaptive control. Such a distinction is not explicitly

drawn in the literature, so a definition is herein proposed, based primarily upon how

stability is achieved. Learning controllers develop an "intuition" about the process they

are to control by experimentation with the plant dynamics; since this experimentation can

(and perhaps should, to ensure that the learning is sufficiently rich) drive the process

unstable initially, a trainer or teacher is required to provide critical guidance (i.e. to say

when the control and plant response is "good" and when it is "bad"), and to shut down the

controller and reset the process to rest conditions when the plant becomes unstable. A

learning controller is said to be completely trained when it has developed a control strategy

which results in global asymptotic stability to the desired equilibrium (or trajectory) for the

plant, without further intervention of the trainer. An apt analogy to a learning controller
would be a child learning to walk; the child will fall many times, and be helped back to his

or her feet by an adult, before being able to walk unaided. Further, once this knowledge is

gained, barring catastrophe, there is no further need for the trainers (adults). Adaptive

controllers, in contrast, will be considered that set of controllers which contain adjustable
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coefficients in their (nonlinear) control laws, for which the parametric adjustment

mechanism is sufficient to ensure global asymptotic stability to the desired equilibrium (or

trajectory) for the plantfor all time. That is to say, adaptive controllers must never become

unstable as they adjust their control laws to accommodate the plant dynamics.

Chapter 2 presents a basic introduction to the mathematics of neural networks, and

develops the equations of the Neuromorphic Controller (NMC). Chapter 3 displays the

results of simulations in which the NMC learns to construct control laws which regulate the

output of a double integrator plant, as well as analyzing in depth the form of the control

strategy employed and the impact of each of the parameters in the algorithm on the control

laws developed by the network. Chapter 4 presents the results of similar experiments with

a much wider range of process dynamics, both linear and nonlinear, using both linear and

bang-bang actuators. Finally in Chapter 5, the findings of this thesis are summarized and

plans for future research in this area are suggested.
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Chapter 2: Theory and Setup

2.1 Neuroanatomical Background
(Stevens, 1966, 1979; Gray, 1977; Adrian, 1980; Kandel and Schwartz, 1985)

Figure 2.1.1 shows a typical neuron. These highly complex cells can be

functionally abstracted into their principle components: the cell body or soma, the axon,

the dendrites, and the synaptic bulbs. The axon and dendrites are the communication

channels through which neurons pass information. The Principle of Dynamic Polarization,

as first observed by Santiago Ramon y Cajal (1933), holds that information flow in

networks of neurons is consistent and unidirectional: the dendrites and soma receive inputs

from the axons of adjacent nerve cells, a decision is made by the neuron whether it should

"fire" or not, and the resulting output is passed out along the axon. Although nerve cells

typically have but one axon, it may branch many times with the result that each neuron to

which the axon connects receives exactly the same signal.

When a neuron "fires" it does so by generating a +lOOmV impulse, or action

potential, which propagates down its axon. Since the magnitude of this action potential is

fixed, neurons use frequency encoding to convey their relative degree of excitation; the

more stimulus a neuron receives, the more +100mV impulses it outputs per unit time. It

takes the axon anywhere from one to two milliseconds to recover from the passage of an

action potential (a period of time known as the refractory period), so the upper limit to the

frequency of this impulse train is about 500-1000 Hz. The frequency of impulses output

by a neuron is thus a continuous, monotonically increasing function of its total excitation,

which starts at zero and saturates at about 1000 Hz.

The axonic branches connect to the dendrites and soma of the adjacent neurons

through the synaptic bulbs. When an action potential arrives at the end of the axon,

neurotransmitters are released into the synaptic cleft (Figure 2.1.2) which separates the

axon half of the synapse (known as the presynaptic element) from the dendrite/soma half

(the postsynaptic elements). This neurotransmitter is then absorbed by the postsynaptic

elements where it causes a voltage change. Depending upon the type of neurotransmitter

released, the voltage change will either be positive (depolarization) or negative

(hyperpolarization) . The total postsynaptic voltage change is proportional to the rate at

which presynaptic action potentials arrive, and hence to the firing frequency of the adjacent

neuron. The voltage change at a synapse is thus a temporal summation of the impinging

impulse train. Synapses can vary in the efficiency by which they convert action potentials
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to neurotransmitter and in the type of neurotransmitter emitted; thus the magnitude and sign

of the postsynaptic voltage change in response to an impulse train of a given frequency will

vary from synapse to synapse.

To a first approximation the soma acts as a summing amplifier. This organelle

performs a spatial summation of the instantaneous magnitude of the voltage changes seen

over all the postsynaptic elements of the cell. If the net voltage change is above a certain

threshold, the soma induces an action potential in the root of the axon which is then

propagated as described above. If the voltage is below the threshold, the neuron remains

quiescent. The initiation of an action potential is thus an "all or nothing" proposition. It is

important to note that the response of the neuron is a nonlinear function of the stimulus

(total voltage change) applied to it. It is precisely this characteristic which makes it possible

for networks of neurons to make nontrivial computations.

2.2 Mathematical Neural Models

For biochemical reasons the neuron is limited to a single +lOOmV voltage spike

every 2 msec or so, and thus must employ frequency encoding to convey intensity

information. Mathematically, of course, there are no such limitations. The information

carried in the neural impulse trains can thus be abstracted by defining a constant variable,
oi, to represent the total neural output. The larger this constant, the larger the excitation of

the neuron, and the higher the frequency of the output voltage spikes; thus, physically oi

represents the time averaged frequency of the impulse train output by a neuron. With this

definition, the temporal summation performed at the synapse becomes a simple linear

weighting of this incoming constant signal, and the spatial summation performed by the

soma is then just a linear summation of all the weighted incoming signals. In this context,

networks of neurons can be viewed as analog electric circuits, with the dendrites and axons

the "wires" which carry analog voltage levels, and the soma a summing amplifier. This is

exactly the view which has inspired Hopfield in his research, with great success.

Figure 2.2.1 shows these ideas schematically. Let a network consist of n neurons,

labeled i = 1, ", n. Each neuron can receive input from either the environment or from

other neurons in the network, and each neuron can connect to any other neuron. 'For each

neuron the total neural input is defined as:

m

qi(t) = Wij(t)j ) (2.1)
j=O
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Figure 2.1.1: A typical abstracted neuron. From (Stevens, 1966).

D
(cut

Figure 2.1.2: A typical abstracted synapse. From (Stevens, 1966).
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where j varies over the m synapses neuron i makes with adjacent neurons or environmental
stimuli, cj(t) is the presynaptic magnitude of the j input, and Wij is the synaptic weighting

of the j input to neuron i.

Neuron i will itself emit a signal based upon its total input. Several different firing

models are possible including the binary model originally proposed by McCulloch and Pitts

(1948):

1 if qi-0 i > 0
°i(t) = fi(qi(t)) = if qi - 0i < ° (2.2)

a sigmoidal model:

1
Ti(t) = fi(qi(t)) = ex((qit)+) ) (2.3)

1+exp(k(-q(t)+Oi))

and a linear model:

ai(t) = fi(qi(t)) = qi(t) (2.4)

Notice that each neuron in the network may have a different firing law; this distinction will

be helpful in the derivation below. The constant term in the sigmoidal model controls the
steepness of the sigmoid function, as shown in Figure 2.2.2. The term Oi in the sigmoid

and binary models represents a bias signal, or threshold, internal to the neuron. This bias

level can be adjusted just as the synaptic weights. In practice however, it is usually

convenient to model the bias as an adjacent neuron which is always on; the process of

learning the bias then is the same as learning the synaptic weight to this neuron. While the

binary model has been useful in several of the modern algorithms (Grossberg, 1986;

(Hopfield, 1982), the differentiability of the linear and sigmoidal models make theoretical

analysis more tractable and will hence be used in the algorithm described below. Notice,

however, from Figure 2.2.2 that sufficiently large values of k in equation (2.3) will cause

the sigmoidal response to approach that of the binary model. All sigmoidal response

neurons used in this thesis had values of k = 1.0. Notice as well that the sigmoidal model

comes closest to capturing the actual (frequency) output by a neuron, monotonically

increasing as a function of increased excitation, possessing upper and lower saturation

levels.
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Neuron i

Figure 2.2.1: Mathematical abstraction of biological neural structure. Based on a similar

figure in Rummelhart et al. (1986a).

Sigmoidal Neural Responses:
Variation with k
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Figure 2.2.2: Sigmoid function variation with k.
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Neural Network Topologies and Learning Models

Figure 2.3.1 shows a typical network of interconnected neurons. There is, in

theory, no limit to the number and scope of the neural interconnections; below, however

some simplifying assumptions will be made. At any instant in time, information is

contained in the network in two distinct forms: the pattern of activity across the individual
neurons (the a(i(t)), and the values of the synaptic connection strengths, Wij(t). The ci(t)

typically vary tremendously with time, while the Wij(t) vary much more slowly. In

analogy with observed human psychophysiology these are sometimes respectively referred

to as the short term memory (STM) and long term memory (LTM) traces (Hestenes, 1983).

It have has already been shown how the former changes with time, in this section an

algorithm for updating the connection strengths is examined.

The most common model for modifying synaptic strengths arises from the work of

Hebb in 1949. Hebb's idea was that synaptic efficiency would change as a function of the

correlation of pre- and post-synaptic signal strengths. This hypothesis has been recently

substantiated in neurobiological experiments (e.g. Castellucci and Kandel, 1976), and

forms the core of most current neural network algorithms. Mathematically, this idea can be

expressed as:

AWij(t) = 'noi(t)oj(t) (2.5)

where i and j are adjacent neurons and al is the learning rate. In practice it is usually

desirable to add a "momentum" term to this equation (Sejnowski and Rosenberg, 1987):

AWij(t) = loi(t)j(t)+aAWij(t-dt) (2.6)

Consider now a subset of the above network topology, shown in Figure 2.3.2.

The network is arranged into several layers: an input layer which receives only signals from

the environment, an output layer which emits signals into the environment, and one or

more hidden layers which the network can use to encode environmental information and

develop sophisticated I/O mappings. In practice only one hidden layer is needed; it can be

shown that three layers (input, output, and hidden) of nonlinear neurons are sufficient to

allow the network to develop arbitrarily complex mappings from input to output spaces

(Lippman, 1987).
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Figure 2.3.1: An example of an artificial neural system (neural network)

Output Patterns

Internal

Representation

Units

Input Patterns

Figure 2.3.2: Back propagation network topology. From Rummelhart et al.(1986b)
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The type of network shown in Figure 2.3.2 is referred to in the literature as a

layered, feedforward network. Each layer communicates only with successive layers; there

is no feedback within the network either between layers or between individual neurons, nor

can neurons communicate with other neurons in the same layer. When a pattern of

environmental stimuli is "presented" to the neurons of the input layer by clamping the

output of these neurons to environmental determined values, the output is then computed

by calculating, synchronously by layer, the response of the neurons in each successive

layer. Neural activity thus proceeds in a wave from the environment, to the input layer,

through the hidden layers, to the output layer.

The recent developments due to Rummelhart et al. (1986b) have shown that the

network illustrated in Figure 2.3.2 can be made to learn arbitrary I/O mappings. Define a
desired vector of outputs ti(t) which one requires the network to produce at the output layer

in response to an environmental stimulus vector, sj(t), applied to the input layer. Here the

subscript i ranges over the set of output neurons, i = 1, . -, m, while j ranges over the set
of input neurons, j = 1, '-- , n. Define the output error vector, 8i(t), to consist of the

current deviation of each neuron of the output layer from the output desired for that neuron,

weighted by the derivative of its neural activation function; that is,

8i(t) = fi'(qi(t))(ti(t)-oi(t)) (2.7)

where, again, i ranges over the output neurons. This error can now be back propagated

through the network to define an equivalent error at each neuron:

8i(t) = fi'(qi(t)) k(t)Wki(t) (2.8)
k

where fi'(q(t)) is the derivative of the activation function of neuron i, and k varies over the

set of neurons to which the axons of neuron i connect. This process effectively solves the

credit assignment problem: i.e., given that the output is currently incorrect, to what extent

does the activity of adjacent neurons contribute to the wrong decisions made at the output

neurons. The back propagated error gives a numerical evaluation of this criterion.

With this formula for the "generalized error", the weight change at each time step

which will cause the actual and desired output vectors to converge is then given by

(Rummelhart et al., 1986b):

AWij(t) = rloi(t)Sj(t)+atWij(t-dt) (2.9)
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The proof hinges on the creation of a metric, E, of the deviation of the network from the
ideal state; it can then be shown that the weight change formula (2.9) results in AE < 0,

and hence implements a gradient descent search for the ideal weights.

It is clear, now, how Kolmogorov's theorem (equation 1.2) lends credence to

these results. Each neuron in a back propagation network is computing a single,

monotonically increasing function of its total net input which, for sigmoidal neurons, is

restricted to the unit interval I = [0,1]. The outputs of the network are a function of linear

superpositions of each of these responses. The results of Kolmogorov's theorem thus

claim that such a network, properly arranged, should be able to compute any function of

the n input variables; back propagation is then just a technique for iteratively approximating

the weights required for each of the single valued functions in (1.2) which will cause the

network to reproduce the desired n dimensional function.

For most back propagation problems there are a fixed number of input-output

patterns which must be learned by the network, For these networks, t takes on discrete

values t = 1, --, kN where k is the number of patterns to which the network must learn to

respond (sometimes also called the training set), and N is the total number of presentations

of the training set which is made to the network as it is being taught. For example, in the
XOR problem there are 2 inputs, s(t) E 9t2, and one output, t(t) E 9, and there are a total

of four patterns in the training set. Rummelhart's initial experiment required 558

presentations of the XOR training set to his network until it had learned the mapping, so for
this experiment t varied as t = 1, ..- , 2232. The synaptic update formulae are thus finite

difference equations with unit delay.

It has been noted above that this weight updating rule essentially implements a

gradient descent in the solution of the mapping problem described above. As such it is

possible for the network to become stuck in local minima of the weight space and hence fail

to achieve a solution. Despite these possible limitations, networks employing this teaching

technique have been taught to perform such varied tasks as pronouncing English from

written text (Sejnowski and Rosenberg, 1987), mimicking logic operations (XOR, left and

right shift, parity checking, etc), performing mathematical operations, and sequencing

actions (Rummelhart et al., 1986b), and even interpreting sonar traces (Gorman and

Sejnowski, 1988). On very few occasions has the algorithm been observed to fail to

achieve the desired mapping by becoming stuck in a local minimum of the solution space.

The concise, mathematical nature of the above models may give the reader a false

sense of security regarding the extent to which the biological processes of thinking,

learning, and adaptation have been neatly encapsulated. It should be emphatically stated

that these abstractions are, most probably, not how living organisms actually process
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information, nor is there any claim to this effect attached to the above equations. Far too

much of known neurophysiology has been completely ignored, and far more still remains

unknown about how biological neural systems actually function. Neural time delays,

morphological network changes, synaptogenesis, and dendritic shunting, to name but a

few of the known features, have all been ignored in the model discussed. Taken on its

own merits, however, this neurally inspired model has shown itself to be worthy of

attention, as the recent results cited demonstrate.

Nor should the above network architecture or neural models be considered the only

candidates for serious study. Precisely because so much of known neurophysiology has

been neglected in this algorithm, and also because of the harsh restrictions back

propagation places on the allowable network topologies and neural timing, many different

models have flourished, several employing non-Hebbian learning schemes; many of these,

as briefly discussed in the Introduction, have had great successes in their own right. In the

following derivation, however, back propagation networks are used because they have

been proven to at least implement a gradient descent search for the solution to the mapping

problem posed, and further because they make use of a structured input-output format

which is ideal from a control theoretical standpoint.

2.4 The Neuromorphic Control Algorithm

Feedback control of arbitrary process dynamics is essentially a mapping procedure.

What, if any, weighted combination of the current states of the process should be fedback

as control signals to force the plant to an arbitrary final state, subject to certain performance

criteria? In the previous section an architecture using neural dynamic models was examined

which was capable of learning arbitrary mappings of input signals to output signals. In this

section, an architecture is described- which attempts to harness this property for the real time

generation of feedback control laws in the absence of a priori knowledge of the process

dynamics.
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Figure 2.4.1: Block diagram of the neuromorphic controller

Figure 2.4.1 shows the general structure of the neuromorphic controller (NMC).

The NMC is a feedforward, multilayered, artificial neural system of the type described in

Section 2.3. The input and output layer neurons each have linear activation functions,

equation (2.4), so they can more easily encode the full range of analog signals needed to

interact with the continuous dynamics G(s). The hidden layer neurons all have sigmoidal

activation functions, equation (2.3), and only the hidden and output neurons have biases.

The feedforward connections are complete, so that each neuron of one layer makes

connections with every neuron in each of the following following layers.

For generality the NMC notation is developed for multi-input, multi-output (MIMO)

systems, although this thesis will examine only single-input, single-output (SISO)

applications in detail. Work is currently in progress to demonstrate the feasibility of the

algorithm for MIMO systems. As shown in the figure, at each instant in time the current n

dimensional state vector, x(t), of the plant dynamics, G(s), is applied to the input layer of

the NMC system. G(s) is an n by m transfer function matrix which describes the impact of

the m controls on the n states. The input vector is propagated through the network layer by

layer as described above, and the NMC develops signals, u(t), at its output layer in

response; u(t) is then fed to the plant as the control input. In this thesis this structure is
considered only as a state regulator, with the desired regulator setpoint specified by xd.

Two crucial assumptions are now made. First it is assumed that the dynamics of

the individual neurons are very fast compared to the dynamics of the process to be
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controlled; the output of the network thus develops "instantly" in response to the applied

stimulus (the plant state vector). This is not an unreasonable assumption since, if the

currently proposed VLSI neural processors are used to implement the controller, these have

settling times on the order of nanoseconds (Jackel et al., 1986; Alspector and Allen,

1987), and if the neural equations are approximated in software, the update is limited only

by the speed of the hardware and software, typically as high as 100 Hz. Second, it

assumed that the actual process of updating the synaptic efficiencies is not a continuous

process but instead occurs at discrete intervals, although still with a frequency faster than

the (expected) process dynamics. While it is perfectly possible to develop continuous time

versions of the synaptic update equations (e.g., Cohen and Grossberg, 1986), leaving

these in the difference equation form developed above allows the NMC algorithm to be

implemented as a digital control system using conventional microprocessor hardware.

The task of the NMC is to construct a control signal, u(t), as a function of the
current plant state x(t) which will drive the dynamics to the desired final state xd. Note

several problems which instantly arise in trying to apply classical back propagation to this

problem. First, back propagation usually works with a finite training set, as described

above, but a dynamic system yields an infinity of points in state space which must be

mapped to stabilizing control signals. Fortunately, many linear and nonlinear plants can be

stabilized with a particularly simple control law, u(t) = -Kx(t), where K is a constant gain

matrix. Of course, not just any set of gains will stabilize the system, and it is not even clear

if back propagation will allow NMC to discover this underlying simplification of the

mapping problem.

The second problem in applying back propagation to the control problem is that

back propagation requires an "omniscient teacher" which can show the network exactly

what the required outputs are given the current inputs. For the neuromorphic controller this

is equivalent to specifying an "ideal" control signal u+(t) (presumably computed with exact

knowledge of the plant dynamics) which could be used to determine the error signal at the
output neurons, i.e. i(t) = ui+(t)-ui(t). In fact this is exactly the approach used at

Stanford in the early 1960's by Widrow and Smith (1964) where a perceptron-like neuron

(the MADALINE) was taught the phase plane switching logic for the optimal bang-bang
control of a harmonic oscillator. However, for the NMC algorithm implemented here it is

assumed that neither the network nor the teacher have any a priori knowledge of the plant

dynamics; thus, construction of an ideal, model control signal is impossible. At best the

teacher can observe the output of the plant and somehow communicate to the network when

its response is "good" and when it is "bad".
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Figure 2.4.2: Schematic of Barto and Suttons's environmental payoff idea. From (Barto,
Sutton, and Brouwer, 1981)

What has just been described is the concept of "learning with a critic" or bootstrap

adaptation first explored by Widrow, Gupta, and Maitra (1973) in the early 1970's.

Widrow et al. used this technique to successfully teach a perceptron-like network to play

blackjack with near optimal strategy. More recently, Barto and Sutton (1981a) have

applied a variant of this idea to several problems, including navigation in an "olfactory"

gradient field (1981b) and the bang-bang control of an inverted pendulum on a cart (1983),

using their perceptron-derived "associative search element". Barto and Sutton had some

success with this latter experiment, but their approach has three fundamental drawbacks:

first, they required a front end device to artificially partition the state space into 162 separate

"regions"; second, they were not concerned with the quality of the solution obtained by the

network, only that the pendulum remained within 12 degrees of the vertical for a certain

number of time steps; and third, their network did not always evolve a controller which

stabilized the system for all time.

The difference between learning with a teacher and learning with a critic lies in the

type of feedback which can be provided to the network. A teacher can give specific, exact

information as to how and where the output is incorrect; a critic can offer at best

qualitative, sometimes even incorrect, feedback. An extremely valuable approach to the

implementation of these bootstrap adaptation networks was developed in the earlier

research of Barto and Sutton, and is diagrammed in Figure 2.4.2. Their idea is to define a

"payoff" function which provides to the network some numerical evaluation of how

appropriate its outputs are at each step. A positive payoff signal indicates "reward" or

reinforcement, i.e. the synaptic strengths which led to the current decision are valuable and
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should be strengthened; similarly, a negative payoff signal indicates "punishment" or
inhibition, and indicates that the synaptic strengths involved in that decision should be

weakened.

The NMC algorithm used in this thesis essentially attempts a synthesis of these

three ideas: back propagation, bootstrap adaptation, and environmental payoff functions.

In place of the deviation of the network output from a hypothetical "ideal" control signal,

discussed above, the NMC uses a payoff function which is some measure of how far the

plant deviates from its desired final state. This payoff function is used as the error signal at

the output nodes of the network; the error is then back propagated through the network, as

discussed above, using equation (2.8), and the synaptic weights updated, using

equation (2.9). If the NMC is successful, the magnitude of the error (payoff) signal will

be driven to zero in finite time.

Two different forms of the payoff function have been investigated. The first takes

inspiration from Linear Quadratic Regulator (LQR) design. In this state weighted form of

the payoff, the error vector, 8(t), is defined as a weighted function of both the deviation

of the plant state vector from the desired state and the deviation of the control from some

desired control level:

6(t) = (Mx MU)(7~d*X (2.10)

Here M is the state and control weighting matrix, partitioned for clarity, and u* is a

normalized control signal. The back propagation formulae always adjust the synaptic

weights so as to attempt to drive the error seen at the output terminals to zero. Since many

applications require nonzero steady state control to be applied, and since the magnitude of

the applied control can fluctuate greatly, simply weighting the control signal in the

formulation of the teaching stimulus will drive the NMC unstable; it will be unable to solve

the problem as posed. The solution is to define a certain amount of allowable control, uult,

and generate a normalized error vector u* such that:

Ui nU*=-sgn(uj) ult (2.11)
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n is chosen so that the gradient of this contribution to the error is sufficiently steep for
values approaching uult; a value of n=4 was used for many of the simulations, although in

some of the tests conducted this was an experimental variable.

The second approach takes its inspiration from model-reference adaptive control

theory, and hence is referred to as the model reference form of the payoff. In this

formulation, a model trajectory for one or more of the states is defined, and the error signal
is computed from:

6(t) = (Mx Mu) d(tXt) (2.12)

The chief distinction here is that the desired plant state is now a continuous function of

time, instead of a constant value as was the case in equation (2.10). Notice that even in the

model reference approach a term proportional to the normalized control is included; the

reasons for this will be discussed below.

Notice particularly that in neither of these formulations does the NMC have any

intrinsic information about the dynamics contained in G(s); any control algorithm formed

by the controller will hence be devised using information acquired while on-line.

2.5 The NMC Simulator

A simulator was constructed to implement this algorithm. The simulator was

initially written and debugged on a Macintosh SE computer under the LightSpeed C

compiler, then subsequently ported to Microsoft C version 5.0 running on an IBM PC-AT

with 80287 math coprocessor support Construction of the simulator proceeded in two

separate phases to ensure the accuracy of the final results. The first phase involved the

construction and validation of a neural network simulator. Expecting that this simulation

would be used as the basis of future lab experimentation with neural networks, every effort

was made to keep the simulator as flexible as possible. Thus, an object oriented

programming style was adopted. This approach allows users to define different "flavors"

of neurons and networks, but still employ exactly the same high level syntax to manipulate
these elements. An explanation of the structures and functions used to implement these

features is given in Appendix A, along with the C source code. For the purposes of the
experiments described below, two classes of neurons were created, linear and sigmoidal,

and one network class, back propagation.
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To test the accuracy of the network simulator, the results of Rummelhart's XOR

experiment, using his minimal network representation, were first verified . The results

obtained after 750 presentations of the training set (kN = 3000), with 11 = 0.5 and

a = 0.8, are shown in Figure 2.5.1(a) compared with Rummelhart's results in 2.5.1(b).

The numbers inside each neuron represent the bias level, Oi, for that neuron. The structure

of the synaptic strengths in these two networks is clearly identical, although the absolute

magnitudes of the weights observed in this more recent experiment are greater because the

network was allowed to learn longer than in the original paper. The astute reader may note

that for neither of the networks shown in Figure 2.5.1 is the output ever exactly one or

zero in response to the inputs in the training set. Because the sigmoid only approaches

these values asymptotically, values of output greater than 0.9 are commonly considered to

be 1.0 or "on", while values less than 0.1 are considered to be 0.0 or "off".

Further tests of the simulation facility created for this thesis verified other results

cited in Rummelhart's paper, including a network which implemented a three bit shift

register and one which implemented binary addition. Several further experiments based

upon suggestions imbedded in Rummelhart's paper were conducted; these verified the

concept of using linear response neurons in the network formulation, so as to learn

continuous (as opposed to binary) mappings from the input to the output layers of the

network. This last experiment was the first indication that the NMC concept might be

viable.

Satisfied that the network simulator worked, it was then combined with a dynamic

system simulation package. A fourth order Runge-Kutta algorithm was chosen for this

simulator, and since the output would have to be in tabular form for later analysis, a fixed

stepsize version of this algorithm was implemented. Dynamic systems were specified to

the simulator in state space form through a user supplied subroutine, as discussed in

Appendix A. The two simulators were connected by passing the output from the neural

network at each time step to the dynamic system simulator as the control signal. The

response of the dynamic system (or plant in control theory terminology) as a result of its

current state and the applied control is then computed, and returned to the network

simulator as the network inputs, thus implementing the structure detailed in Figure 2.4.1.

In the following discussions, the teacher or trainer will be referred to as that part of

the network simulator which observes the output of the network and plant and issues

criticism using the payoff function. When the output of the plant or network begin to

exceed certain predetermined absolute bounds (discussed below), the trainer must also stop

the simulation by resetting the plant to its initial conditions, then restart the simulator.
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Figure 2.5.1(a): Structure of the observed network which implements XOR
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Figure 2.5.1(b): Structure of network reported in Rummelhart et al. (1986) implementing

XOR
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Implementation of the Algorithm

For the first tests of this algorithm, the NMC's ability to regulate the output of

second order, and a few third order, (SISO) systems was examined. With these

simplifications, the NMC structure of Figure 2.4.1 reduces to that shown in Figure 2.6.1.

The smaller circles represent bias neurons, and the larger circles are neurons whose firing

laws are indicated by the letters contained within: L represents linear response neurons

and S represents a sigmoidal response neuron; synapses are indicated by the directed

arrows. The extension of this topology for third order systems is quite straightforward, as

shown in Figure 2.6.2. Notice there are three neurons in the hidden layer for this

particular topology. It is not known how to predict the number of hidden neurons required

for a given system; as a general rule of thumb at least as many hidden neurons as the

dimension of the plant state vector were used.

The particular structure shown in Figure 2.6.1 for second order systems was

devised after giving consideration to the minimum size of the network which would be

required to implement a control law capable of stabilizing a linear second order plant about

a nonzero final state. This minimum network is diagrammed in Figure 2.6.3. If this
network could learn the weights W1 = -k1, W2 = -k2 , and W3 = klxd, with kl and k2

positive, the resulting control law would be:

u(t) = kl(xd-x) - k2! (2.13)

which will force the system to the final state xT = [xd 01, provided the gains kl and k2 are

chosen properly. In fact, experiments have shown that this structure is not capable of

learning the required weights using the NMC algorithm as described above. In a sense this

is not surprising, since the weight distribution discussed above is the only possible way to

stabilize the system: the network has no degrees of freedom. If the network does not find

the correct distribution of weights relatively quickly (before the teacher decides that the

network has "failed" and signals a restart), it will probably never find it. The solution to

this problem seems to lie in providing the network with at least one layer of hidden,

sigmoidal neurons. The sigmoidal properties of these neurons stabilize the learning

process itself in addition to providing the network with many additional degrees of freedom

to use in designing a controller. Simply adding, arbitrarily, more linear neurons or more

layers will not be sufficient, since it is easily shown that multiple layers of linear neurons

are equivalent to a single layer with appropriately selected weights. The success of the

algorithm seems to hinge upon the nonlinearity of these hidden neurons; indeed
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Figure 2.6.3: Minimal "network" structure needed to implement feedback control.

experiments have shown that if the sigmoidal neurons in Figure 2.6.1 are replaced with

linear neurons, the NMC algorithm goes rapidly unstable.

For a second order plant and the network topology shown in Figure 2.6.1, the

resulting set of neuromorphic controller equations, from (2.1), (2.3), (2.4), (2.8), (2.9),

and (2.10) are summarized in Figure 2.6.4 The numbering scheme used in Figure 2.6.1

is repeated in the equations; thus neurons one and two are the linear input neurons,

neurons three, four, and five are the hidden neurons, and neuron six is the linear output

neuron--neurons seven through ten are the bias neurons. Synapses one through four come

from the position input neuron, synapses five through eight come from the velocity input

neuron, and synapses nine through eleven come, respectively, from each of the hidden

neurons; synapses twelve through fifteen come from the bias neurons and hence represent

the threshold values of the hidden and control neurons.

The synaptic weightings were initially set to random values on the interval

[_0.3, 0.3] as suggested by Sejnowski and Rosenberg (1987). Each simulation run

consisted of two phases, each lasting 10-20 seconds of simulated time; at the beginning of
each of these phases the plant was reset to zero initial conditions, i.e. xOT = OT . In the first

phase the network was run with the teacher active; at certain intervals, I/f, chosen to be an

integral multiple of the simulation time step At, i.e. 1/f = kAt, the payoff was computed

and the synaptic weights were modified by the above procedures. The rate, f, at which the

synaptic weights were changed, and the parameters and Tn in equation (2.9) above were

experimental variables, although most of the simulation runs used a = 0.25 and 1r = 0.5,

and a synaptic update rate of f = 20 Hz. After a training run, the simulation was repeated

with the teacher off-line to determine how well the network was capable of controlling the
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process on its own. This two phase process was iterated, usually fifty times, subsequent

iterations beginning with the synaptic strengths learned in the previous iterations. Each
simulation was conducted with an integration time step of At = 0.005 seconds.

A failure by the network was signalled by the teacher if at any time during training

the response exceeded ten times the desired response, or if the control signals issued

exceeded five times the maximum allowable control. If a failure occurred, the plant was

reset to zero initial conditions, and the simulation begun anew with the previously learned

synaptic strengths. A network will be considered to have successfully "solved" the control

problem if, after a finite training period, it has developed a pattern of synaptic weights that

cause the plant to stabilize about the desired final state without further intervention by the

teacher.
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Second Order NMC Equations
At each time step (At seconds):

o Present input vector to network:

a 1=X 2 =x 

o Compute hidden neuron responses:

3 = sig(W1 + W5CY2 + W12)

4 = sig(W + W6r 2 + WI3)

a5 = sig(W 3CT1 + W7 a2 + W14)

· Compute ontrol:

u = 4W5 + 4I+ W8a 2 + W9 3 + W10 3 + 11 4

_ Int forward intime

x = g(x, u)

Every 1/(fAt) time steps:

* Compute avoff funon:

6= MxX d - x)+M - Musgn(u) u-t 
6 x d xd Msgn u)lt

* Back Propt payoff sina:

3 =a3(1.0 - )W(t)66

84 = as(1I0 -a4)WI(t)56

5 = er5(1.0 - a 5)Wl l(t)86

· Adjust synaptic weights:
1 1

AWl(t) = AW l(t - f) + a1 63 AW 5() = aAW 5 (t - + rla 263
1 1

AW2(t) = atAW2(t - + ita15 4 AW6(t) = aAW6(t- 1 + ria 264

AW3 (t) = aAW3 (t - f + rllS 5 AW7 (t) = aAW7(t - + lC265
1 1

AW 4 (t) = aAW 4 (t - + a166 AW (t) = xAW8 (t - + ra 2 66

AW9(t) = aAW9(t - 1t) + T356 AW12(t) = aAW12(t - ) + 163

AW10 (t) = aW 10 - + AW1 (t) = aW 13(t - ) + T16410 10 4 6 13 13 4
1 1

AW 1 4(t) = aAWO(t - + r 56 6 AW (t) = AW1 4 (t - + 1165

AW1 5(t) W 1 5 (t - ) + 6

Wn(t + ) = Wn(t) + AW (t)

Figure 2.6.4: Summary of NMC equations for second order network and plant
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Chapter 3: Experimental Results

For the first tests of the NMC algorithm, the plant transfer function G(s) = l/s 2 was

used. This was seen as the simplest nontrivial test case for the algorithm. For most of the
experiments conducted with this system, the initial state was xoT = [D 0] and the desired

final state was xdT = [1 0].

For the results described in this chapter, over seventy different experiments were

performed assessing the impact of changing parameter values and operating environments

on the behavior of the NMC algorithm. For each experiment, data was recorded about the

state of the network and plant at 0.05 second intervals for the first five training phases and

all fifty solo phases. This is an enormous amount of data, so clearly the following can

present only a representative sample of the results. Even with this amount of data

reduction, however, the reader may be somewhat overwhelmed by the proliferation of

figures, tables, and equations in the sections which follow, so this introduction will

conclude with a brief overview of the results to be presented.

Figure 3.0.1 shows the response of the system with an untaught network. It is

clearly unstable, reflecting the total lack of knowledge about the plant at the startup of the

algorithm. In the following, both the state weighting and model reference forms of the

payoff function are examined. The parameters of these payoff functions and of the training

algorithm itself are varied and the resulting variations in the control laws (if any)

successfully devised by the network are assessed. Based upon the results of this search of

the parameter space, a "canonical" form for the M matrix is determined and used as the

reference value for subsequent experiments.

Section 3.1 describes the stability criteria which will be applied to the algorithm;

these are somewhat more restrictive than just asymptotic stability of the plant, driven by a

trained network, to the desired equilibrium. Section 3.2 details the analysis methods

which will be employed and discusses some aspects of the operation of the algorithm.

Section 3.3 examines in detail the state weighted form of the payoff function. The

different parameters in the payoff function and the training algorithm itself are varied and

the resulting impact on the control law developed (if any) by the network are evaluated.

Section 3.4 performs a similar analysis for the model reference form of the payoff using

several typical model trajectories. Finally, in Section 3.5, the robustness of the algorithm

and trained network are tested in several different ways.
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Figure 3.0.1: Response of double integrator plant when controlled by an untrained network.
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Stability Conditions

In order to assess the performance of the network, there are four criteria which

must be applied:

* whether the system (controller plus plant) is stable while training;

* whether the closed loop algorithm implemented by a trained network is

asymptotically stable to the desired equilibrium point when the trainer is off-

line;

· whether the training algorithm forces the network to develop a control law

which is invariant as the number of training runs tends toward infinity; and,

* whether the responses seen while training and the responses obtained after

each training run converge, in some sense, as the number of training runs

increases.

Each of these criteria is a measure of the stability of the network. The first two are

obvious measures of algorithmic stability, although note that the controller is permitted to

"fail" a few times, i.e. the response of the system can exceed certain predetermined bounds

as outlined in the previous chapter, before the first two stability measures are met. The

third point is more subtle: even though the training and trained responses are stable, the

network may be continually changing the control law it implements, for example

commanding progressively higher bandwidth closed loop systems, after each training run.

Such a network could not be claimed to be "stable" in any sense, since, even though after

each training iteration the network implements a stabilizing control law, this control law

never converges. This would require that the adaptation mechanism be arbitrarily "turned

off" at some point to prevent further evolution of the control law, which is clearly

undesirable since the algorithm would no longer be able to react to changes in the plant

dynamics. It is thus important that the algorithm converge to a single control law for a time

invariant plant; i.e. with everything else held constant, the network should eventually stop

learning without the need to explicitly turn the trainer off. As will be shown, this is

equivalent to requiring that the network synaptic weights converge to constant values after a

finite number of runs.

The fourth point also rather subtle: it is necessary to ensure that there is not

unfavorable interaction between the training algorithm and the control law being

implemented. This would manifest as a gross discrepancy between the responses seen

while training and the responses seen after training; for example, the closed loop response
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may be nicely overdamped when the trainer is off, but very oscillatory when the trainer is
turned on. This can be viewed as the network "fighting against the teacher", and is quite

undesirable. Ideally, when the network is fully trained the responses seen in the training

phase should be indistinguishable from those seen in the solo phase; this is really just

another way of saying that the network stops learning in the steady state. This final

measure of the network stability thus requires that the training and trained closed loop

responses and control laws converge as the number of training runs increase.

3.2 Analysis Techniques

To understand the control laws being implemented by the network, it is necessary

to analyze in some detail the topology of the synaptic connections. From inspection of

Figure 2.13, the control law can be written as:

u = fL(x) + fN(x)+ uo (3.1)

where fL(x) is the linear part of the control, fN(x) is the nonlinear part, and uo is a constant

bias. Since many of the problems to be examined will require zero steady state control to
be applied when the plant is at the desired equilibrium, clearly we must have -uo = fL(xd) +

fN(xd) in these cases. Referring again to Figure 2.13, it is obvious that, using the neuron

and synaptic weight numbering scheme developed in Section 2.6 for a second order plant:

Uo = W 15 (3.2a)

fL(x) = W 4x + W8 k (3.2b)

fN(x) = Wgsig(q 3 ) + W1 0 sig(q 4 ) + W 1 1 sig(q5) (3.2c)

where the qi are the total inputs received by the hidden neurons, and the sigmoid function,

sig(*), is given by equation (2.3). For the purposes of analysis only, we can approximate

this function as piecewise linear, with:

0 if q< -3

sig(q) 1(q + 3) if Iql < 3 (3.3)

1 if q > 3
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That this is is a reasonable approximation is seen from Figure 3.2.1; the largest deviation

from the true sigmoid is about 0.06 units. With this simplification, the output of each

neuron is essentially linear for weighted total inputs between -3 and 3; outside this region,

the neuron is either saturated off, in which case it contributes nothing to the control signal,
or saturated on, in which case it contributes Wn (n = 9, 10, or 11) to the control. Note that

a neuron which is turned on may contribute either positive or negative control depending
upon the sign of its associated Wn.

Recall that for each hidden neuron, the qi are defined by:

q3 = WlX + W5 +W12

q4 = W2 X + W6
+ W 13 (3.4)

q5
= W3 x + W7

+ W 14

Using equation (3.3), equation (3.4) can be re-arranged in terms of the plant state variables

to determine the values of the state at which each neuron will turn on and off:

ON: (Neuron 3):

(Neuron 4):

(Neuron 5):

OFF: (Neuron 3):

(Neuron 4):

(Neuron 5):

W 1

X=-W xx = -w x

W2
=-w x

6

W3
k=- -W x

7

W 1
W= A

5

W2
x =-W6 x

W3

x=-W7X

(3- W 12 )
+ W5

(3-W 13 )
+ W6

(3- W 14 )

+ W7

(3 + W 12 )

- W5

(3 + W 13 )
W6

(3 + W 14 )
W7
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Comparison of Sigmoidal Response and
Piecewise Linear Approximation
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Figure 3.2.1: Comparison of true sigmoid with approximation (3.3)
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Figure 3.2.2: Typical switching curves developed by a network

-44-

0CL
O.

10
zi2

Sigmoid

Approx.



The adaptive weights on each of the hidden neurons thus define switching lines on

the state space which govern the behavior of the nonlinear half of the control law

implemented by the network.

Figure 3.2.2 shows a typical example of this switching logic for a second order

plant. The dark black border with a number beside it indicates the line at which the

indicated neuron switches on; for all points in the state space to the left of this line the

neuron will be fully on. The thinner, dashed borders indicate the lines where each neuron

switches off; it is clear from equations (3.5) that each off switching line will always

parallel the corresponding on switching line. The area between corresponding on and off

switching lines indicates the region of state space where each neuron's output is roughly

linear, according to the above equation (3.3). By plotting the trajectory (the heavy, bold

line starting at the origin) of the simulated response through the state space and noting

where it intersects the switching lines for each neuron, it is possible to gain valuable insight

into both the inner workings of the network and the control law being employed.

From the above discussion, the control law being implemented by a trained network

can be seen as piecewise linear across the state space with discontinuities in slope occurring

at the switching lines. For two dimensional plants, it is possible to visualize the control

law by plotting, in three dimensions, the control versus the two state variables. For a

purely linear control law, this plot will be a smooth two dimensional plane with a

continuous slope, as shown in Figure 3.2.3; the steeper this slope, the larger the control

action and hence bandwidth of the closed loop system. The control law being implemented

by the neuromorphic controller, however, will resemble this linear controller only in

regions far from the switching lines. In the vicinity of these nonlinear boundaries the

surface will wrinkle, creating steep slopes and plateaus in the otherwise smoothly sloping

surface, as shown in Figure 3.2.4. Thus, when the system is operating in the saturation

region (either on or off) of all the hidden neurons, the plateaus will have the same slope as

the constant control surface which would result from just the linear half of the control law,

although offset in absolute terms. When the system operates in the linear regions of the

hidden neurons, however, the trajectories move along the "steep slopes" which connect the

plateaus and hence the system exhibits higher bandwidth behavior.

Due to the crudeness and lack of detail, these three dimensional figures are included

for illustration purposes only, and will not be used for numerical analysis in the following.

The switching line plots of Figure 3.2.2, however, will be used extensively.
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Figure 3.2.4: Control "surface" developed by a typical network, corresponding to the
switching lines shown in Figure 3.2.3.
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From this analysis one can see that each hidden neuron makes a contribution to the

nonlinear half of the network's control law. This contribution has four degrees of freedom

corresponding to the four adaptive weights associated with each. Two of these degrees of

freedom specify the orientation (slope and intercept) of the switching lines in the phase

space. A third degree of freedom specifies the width of the linear region between the on

and off switching lines. Finally, the fourth degree of freedom specifies the magnitude and

sign of the maximum contribution of each neuron. The control law implemented by this

network thus has a total of fifteen degrees of freedom (four each for the three hidden

neurons, and one each for the position, velocity, and control bias neurons) corresponding

to the fifteen synaptic weights. It is these degrees of freedom which are tuned by the

interaction of the network with the trainer and the plant dynamics.

It is possible for the NMC algorithm to use this freedom to design switching lines

such that, as the state evolves, the hidden neurons are always operating in their linear

region or in saturation. In this case, the controller implemented by the network will be

referred to as "linear", even though globally, of course, the controller is far from linear.

The control law will be referred to as "nonlinear" only in those cases when the states seen

in the simulations actually cross one or more of the switching lines. The individual

contributions of each neuron to the control law will still be referred to as "linear" or

"nonlinear" depending whether they come from the input (linear) neurons or the hidden

(sigmoidal) neurons.

It has already been noted that the back propagation algorithm defines a method of

changing synaptic weights such that the error signal at the output layer is minimized, ideally

driven to zero. If this result holds true for the NMC algorithm (which, recall, is not using

pure back propagation techniques), 8(t) will be driven to zero in finite time and the network

will thus stop learning. Hence, at least one of the above stability considerations cited above

can be met by ensuring that 6(t) is zero (or indistinguishably close thereto) for all time steps

in a perfectly trained network. Since 6(t) is computed anew at each point in time based

only upon the instantaneous current values of x, , and u, if the algorithm works as

anticipated the network will implement a mapping which forces 6(t) to zero pointwise in

time. The control law thus generated will arise not as a global optimization of some

performance metric, but rather as a minimization of the value of 6(t) at each time step. The

form of the payoff signal, at least for the state weighted payoff function, hence implicitly

defines an "ideal" tradeoff between the values of x, x, and u at each point in time.

In this sense, the algorithm has no sense of "temporal" optimality; it does not look

at the overall behavior of the system, only how far it is deviating from an implicit ideal at
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each time step. This potentially places a limitation on the kinds of systems which can be

controlled by the NMC. In fact, an argument can be made that the payoff signal implicitly

specifies a control law to the network, albeit in a quite roundabout fashion, since

6(t) 0.0 Vt is an implicit equation for u(t). (Of course, even were this argument

correct, it would still be a noteworthy result that the NMC architecture has successfully

untangled this implicit control law and devised a pattern of synaptic weights which

implements it!) Two observations, however, refute this: first, the algorithm develops

networks which implement stabilizing control laws even in the absence of a control

weighting term in the payoff, thus making the above rearrangement for u(t) impossible;

and second, in arriving at its steady state control law, the algorithm makes certain tradeoffs

and adjustments which would be impossible to predict based solely upon inspection of the

payoff function itself--these tradeoffs arise only through interaction with the plant dynamics

during training. Experimental evidence for each of these assertions will be presented

below.

It is thus useful to keep in mind while reading reading the following results that the

NMC is attempting to drive 6(t) to zero at each instant in time, subject to the (unknown)

relations between the state variables and controls as they appear in the payoff function. In

general, the actual control law implemented by the network will arise through a complicated

interaction of the payoff signal, plant dynamics, and range of plant states visited while

learning.

3.3 State Weighting Technique

Recall that the payoff function for a second order, single-input, single-output

system can be expressed as:

6(t) = Mx(xd (t)) + Mk(xd- k(t)) - Msgn(u) U (3.7)

In the following the (scalar) weighting parameters will be referred to as

mT = [Mx Me Mu]. ult was set to 16. This is somewhat arbitrary, but serves as a

reference, and is actually a physically meaningful parameter for the envisioned hardware

application of NMC, which will be explained in the final chapter.
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try to bring the payoff signal, 6, to zero, or a minimum, as quickly as possible. This is

similar to the LQ problem, where one attempts to find a control law which minimizes the

cost function:

00

J= {xTQx + uTRu} dt (3.8)
-00

or, for the single input and output case:

00

J= f{xTQx + pu} dt (3.9)
-00

Comparing these two equations it is possible to see a connection between Mx, M, and the

diagonal elements of the Q matrix, although in the NMC algorithm these constants weight

the states themselves instead of the squares of the states. There is actually a very important

reason for this difference, and this will be discussed at the end of the next chapter. It is

thus possible to draw on intuition gained from the multitude of research which has been

conducted on the LQ problem. One would expect to the NMC algorithm develop a control

law which yields an overdamped response for values of the ratio of Mx to Mk greater than

or approaching one, and an underdamped response for values of this ratio significantly less
M

than one. Similarly, the ratio u4 is analogous to the control weighting term p in
uult

equation (3.9), although control magnitudes are more severely penalized in NMC. One
would thus expect to see very large bandwidth controllers developed by NMC as Mu -0,

analogous to the "cheap" control LQ problem, and much lower bandwidth controllers as
Mu increases.

3.3.1 Position Weighting Only

Figure 3.3.1 shows the response of the system during its first training runs, and

Figure 3.3.2 shows the response with the trainer off for mT = [1.0 0.0 0.0], and

n = 4. Notice that the NMC has devised a stabilizing control signal during its first training
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Figure 3.3.1: Response of system during first training phases: mT = [1.0 0.0 0.0]

Solo Runs -- M = [1.0 0.0 0.0]

Z.u

1.5

o
1.0

co

0.5

0.0

Run 1

......... Run 10

Run 50

0 1 2 3 4

Time (sec)

Figure 3.3.2: Response of system during first solo phases: mT = [1.0 0.0 0.0]
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Peak Overshoot vs. Run Number
M = [1.0 0.0 0.0]
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Figure 3.3.3: Maximum overshoots of closed loop responses

run, notice further that the network never "failed"; i.e. its response while training stayed

within the allowable bounds. Recall that the XOR problem, for example, required about

500 iterations of the training set to converge on a set of network weights which solved this

problem. Since each training run of NMC involves (nominally) 400 weight update cycles,

it is reasonable to expect at least a partial solution to the control problem after only one

training run. It thus appears that despite the reservations expressed in the previous chapter

about infinite training sets, a stabilizing control signal has been constructed, for at least the

limited part of the state space the network does experience while training. The fact that the

network was started from the same point in state space at each iteration of the training

process means that the system has experienced only a small fraction of the total possible

state space. This observation represents an important limitation in the way these

experiments were performed, and will be addressed at greater length in Section 4.1.5 and

in the Conclusions.

For these initial payoff weightings there appears to be no correlation as to the

quality of the solutions obtained as a function of the number of training runs. In fact, the

solutions are not very good as they tend to overshoot quite a bit. Even though the amount

of overshoot tends to change after each training run, there is no obvious trend to these

changes, as Figure 3.3.3 shows. This is clearly a case where the control law does not

converge; as Figure 3.3.4 shows, the shape of the control law is similar from run to run,

but the maximum amount of control commanded (which occurs at t = 0) increases nearly
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linearly with the number of runs, as illustrated in Figure 3.3.5. Given an "infinite" number

of training runs training runs, the NMC would begin to command huge amounts of control

and hence create effectively infinite bandwidth closed loop controllers. For a physical

system, this is clearly undesirable since high frequency unmodelled effects (e.g. structural

modes, sensor and actuation delays, etc) would render the training model invalid. The
algorithm with mT = [1.0 0.0 0.0], or more generally mT = [M x 0.0 0.0], is

thus unstable from the definition given above.

Note, however, that this "instability" is not unexpected in light of the comparison

between LQ and NMC discussed above. For this payoff function, with no control

weighting, one would expect to see infinite bandwidth controllers develop; there is nothing

in the penalty function which prevents it.

3.3.2 Position and Velocity Weighting

Figure 3.3.6 shows the responses generated by the network on the fiftieth training

run for a payoff function with nonzero velocity deviation weightings. notice that for even

the smallest velocity weightings, the trained response is much more damped than with no

velocity weighting. For increasing values of M; the response becomes overdamped

instead of oscillatory. However, as Figure 3.3.7 shows, the amount of control

commanded by the network is still increasing linearly in time; NMC is again trying to

command an infinite bandwidth controller. The algorithm with mT = [Mx Mj 0.0] is

thus also unstable.

Once again, these results make sense in light of the comparison with the LQ

problem. Decreasing the ratio of position to velocity weightings leads to responses which

exhibit more and more damping, and, as above, the absence of any control weighting still

leads to controllers with unlimited bandwidth.
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Solo Controls M = [1.0 0.0 0.0]
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Figure 3.3.4: Control signals during solo phases: mT = [1.0 0.0 0.0
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Figure 3.3.5: Maximum control usage during solo phases: mT = [1.0 0.0 0.0]
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Figure 3.3.6: Plant responses during solo phases: mT = [1.0 M. 0.0]
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Figure 3.3.7: Maximum control usage during solo phases: mT = [1.0 0.5 0.0]
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Position, Velocity, and Control Weighting

Figure 3.3.8 shows the responses generated after the fiftieth training run when all

three elements of the weighting matrix are nonzero and Figure 3.3.9 shows the control

signals used to generate these responses. Again the responses are overdamped, but as

Figure 3.3.10 dramatically illustrates, the amount of maximum control used to generate the

responses is constrained; the NMC is now converging to a single control law for the plant.

To illustrate this, Figure 3.3.11 shows the solo responses generated by the network when

trained with the payoff function weights mT = [1.0 0.5 0.3] during several different

solo phases. Note that by the tenth run the closed loop response is almost identical to the

fiftieth response shown in the previous figure. This is yet another indication that the

algorithm is converging to a single control law. Finally, Figures 3.3.12 (a)-(c) compare

the behavior of the system during the training and solo phases of several different runs.

Notice that while initially the network does tend to "fight the teacher" on the first training

run, by the twenty-fifth run the training and solo responses are almost indistinguishable.

To ensure that this convergence is absolute, a simulation with
mT = [1.0 0.5 0.7] was extended to 1000 training runs; the maximum control used

after each run is plotted in Figure 3.3.13. Since it is (remotely) possible that the maximum

control could be bounded while the weights of the network grow unboundedly,

Figure 3.3.14 displays the values of the synaptic weightings of this network as a function

of the run number. Clearly these, too, converge to finite values. The network has, as

desired, essentially stopped, or at least greatly slowed, learning after only a few tens of

runs, and thus has converged to a steady state network configuration which implements its

control law. Notice that fifty runs was not quite enough for the synaptic weights and hence

controls to converge to their final values, in fact these values do not totally stabilize for
nearly 250 runs. However, the discrepancy between the values of umax on the fiftieth run

and those on the 250th is less than 8%, although the network synaptic weights vary

considerably more.

Thus, the state weighting payoff function with a full weighting vector satisfies, for

this plant, all of the conditions discussed in Section 3.1 for algorithmic stability. The

training and solo phases are asymptotically stable to the desired equilibrium and the

responses seen in each phase become indistinguishable after about twenty-five runs. The

control law developed is essentially invariant after only fifty runs, and remains so for at

least 1000 runs.
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Solo Responses Run #50
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Figure 3.3.8: Solo responses, run 50: mT = [1.0 0.5 M u]
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Max Control vs. Run Number
M = [1.0 0.5 Mu]
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Figure 3.3.10: Maximum control used with different control weightings
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Solo Responses M = [1.0 0.5 0.3]
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Figure 3.3.11: Comparison of different solo responses: mT = [1.0 0.5 0.3]
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Figure 3.3.12(a): Comparison of training and solo responses, run 1
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Figure 3.3.12(b): Comparison of training and solo responses, run 5
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Figure 3.3.12(c): Comparison of training and solo responses, run 25
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Long Term Maximum Control
M = [1.0 0.5 0.7]

- -1- - - -

I ' I_ _ ___w a
- -4-i -I- - -a- e-

0 200 400 600 800 1 000

Run Number

Figure 3.3.13: Maximum control used during solo phases: mT = [1.0 0.5 0.7]
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Figure 3.3.14: Synaptic weights after each run: mT = [1.0 0.5 0.7]
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-8.6

Figure 3.3.15: Network configuration after 50 iterations: mT = [1.0 0.5 0.3]

Based upon the above parametric analysis of the variables in the payoff function,

the weight vector mT = [1.0 0.5 0.31 was chosen as the "canonical" weighting, and

the responses generated with this weight vector (Figures 3.3.8 - 3.3.12) will be used as the

baseline against which other experimental results will be compared.

3.3.4 Solution Analysis for the Canonical Weighting

Having shown that the NMC algorithm using a state weighted payoff function is

stable, in all the senses discussed in Section 3.1, for intuitively reasonable values of the

weighting parameters, it is necessary to examine exactly how the network is implementing

its control law. Figure 3.3.15 shows the configuration of the network after the fiftieth

iteration of the algorithm for the canonical weighting examined above. From this diagram

and with reference to equation (3.2), the control law can be written as:

u = 4.4 - 8.6x - 6.8x + 5.202 + 5.9a3 + 7.5a4 (3.11)

where,

C2 = sig(3.8 -5.6x - 2.0k)

G3 = sig(4.5 -5.8x - 2.5k) (3.12)

o4 = sig(5.7 -6.5x - 3.3x)
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Since the equilibrium point is xdT = [1.0 0.0], and since, for this system, the steady

state control must be zero to maintain this equilibrium:

0 = -4.2 + 5.2sig(-1.8) + 5.9sig(-1.3) + 7.5sig(-0.8) (3.13)

which is indeed an equality (there is a slight roundoff error since the constants have been

recorded here to only one decimal place accuracy). Thus the entire network contributes to

the steady state control! This is dramatically different than the solution which would have

been expected using the hypothesized "simplest case" controller discussed in Section 2.6.

Figure 3.3.16 shows how the magnitude of the payoff function varies during the

first and twenty-fifth training runs. Notice that the absolute magnitude is lower at every

point in time in the later training sequence. These curves support the above analysis which

predicted the NMC algorithm would attempt to design synaptic weights so as to drive the

payoff function to zero for all time. Many more examples in support of this observation

will be given below.

Figure 3.3.17 shows the results of fitting a linear control law to the data obtained

from this experiment. The fit is very close, so that to a good approximation the control law

in equation (3.10) is given by:

u = 24.6(1.0 - x) - 13.4k (3.13)

When this control law is used on the plant, the response shown in Figure 3.3.18 results.

Note that this is very close to the actual response observed, which strengthens the assertion

that, despite the nonlinearities in the control law, the NMC algorithm has developed a linear

controller.

The phase space switching lines shown in Figure 3.3.19 confirm this analysis.

Except for values of the state relatively far from the equilibrium point, the hidden neurons

are all operating in their linear region. Recall from the discussion in Section 3.2 that,

when the hidden neurons operate linearly, the state is moving along the steep slopes in the

control surface which connect the saturation region "plateaus". Because of the overlap of

the switching lines for this system, there is only one such, very steep, "wrinkle" in the

control surface and the control generated by the trajectory of the system remains on this

wrinkle for the duration of the simulation. Figure 3.3.20 gives a very crude picture of this

situation.

-62-



Magnitude of Payoff Signal
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Figure 3.3.16: Magnitude of payoff signal during training phases: mT = [1.0 0.5 0.3]
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Actual and Linear Fit Control Laws
M= [1.0 0.5 0.3]
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Figure 3.3.17: Actual and linear fit control laws: mT = [1.0 0.5 0.3]
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Figure 3.3.18: Plant responses using actual and linear fit controllers
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Phase Plane Switching Logic
M = [1.0 0.5 0.3] Run #50

-2 -1 0 1

x

Figure 3.3.19: Phase space switching lines: mT = [1.0 0.5 0.3]

mI' = [1.0 0.5 0.3]
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These observation have two implications. First, the response of the system is

linear, but with a much higher effective bandwidth than would be expected from just the

linear term of the controller. Second, control authority is distributed throughout the

network: all of the neurons contribute to the control action during the simulation, and,

from the steady state control analysis above, the active involvement of all neurons is

required to maintain the plant at its equilibrium position. This distributed approach to the

solution of the problem is characteristic of of neural network designs and contributes to the

robustness and "graceful degradation" properties discussed earlier. One can see how these

properties might manifest in this network. Destroying any of the hidden neurons or their

biases would result in 1.) a controller with a slightly lower bandwidth, and 2.) a steady

state equilibrium point slightly offset from the desired point (since now
o0 fL(xd) + fN(Xd) because of the change which would result in fN()). The controller

would not fail catastrophically when damaged, but would instead become gradually

impaired. This will be demonstrated in greater detail in Section 3.5 below.

3.3.5 Increased Position to Velocity Weighting

In the previous examples the control laws developed by the NMC algorithm were

almost completely linear over the range of plant states experienced during the simulation.

Clearly, this will not always be the case and in this section results are presented which not

only demonstrate instances of nonlinear controllers, but show that these represent sensible

uses of the degrees of freedom in the network. Similar examples can also be found in

Section 3.5.

Increasing the ratio of Mx to Mi produces the anticipated results in the solo

responses seen after fifty runs. For higher ratios, the response becomes underdamped and

faster, and for lower ratios the response is more heavily damped and slower, as

Figure 3.3.21 demonstrates. This is not surprising, however the way in which these

responses are accomplished is quite interesting. Figure 3.3.22 shows the control used to
generate each of the responses shown in the previous figure. The Mx = 1.0 case is the

canonical run analyzed in the previous section. Notice that for higher values of position

weighting, the first derivative of the control becomes increasingly discontinuous at the cusp
of the curve. Given that the Mx = 1.0 run can be fit almost exactly by a linear control

law, one expects that, for example, the Mx = 3.0 run would not be well fit by a linear

approximation.
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Figure 3.3.23: Network configuration after 50 iterations: mT = [3.0 0.5 0.3]

Figure 3.3.22 shows the network which results after the fiftieth iteration with

mT = [3.0 0.5 0.3]. From this diagram, the control law can be written as

u = 20.1 - 30.3x - 7.3 + 11.0a2 + 10.5a3 + 11.4a4 (3.14)

where,

a2 = sig(19.3 - 16.7x - 3.7k)

03 = sig(-6.7 - 12.9x - 0.8k) (3.15)

o4 = sig(-4.8 - 17.5x + 4.0k)

Notice that the all the weights associated with the input neuron which encodes position are

substantially increased from the canonical weights, equation (3.10), while those of the

input neuron which encodes velocity are hardly affected.

Figure 3.3.23 shows the results of trying to fit a linear control law to the

experimental data. The best approximation gives:

u = 24.6(1.0 - x) - 13.4k (3.16)
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Actual and Linear Fit Control Laws
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Figure 3.3.25: Comparison of linear fit and actual responses; mT = [3.0 0.5 0.3]
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which is clearly inadequate as can be seen from the figure. The agreement is very good at

the beginning and ending of the control profile. The major discrepancy seems to be the

large spike of negative control which occurs at t = 0.25 seconds; this occurs slightly later

and with much larger magnitude than would be predicted by the linear law. Plotting the

responses generated using the fitted and actual control laws (Figure 3.3.25) reveals that the

effect of this negative spike is to damp the overshoot of the response, from almost 10% for

the linear model, to under 2% for the actual control law.

The network thus uses some of its degrees of freedom to damp the overshoot of the

closed loop response in a nonlinear fashion. Exactly how this is done will be examined

shortly, first it is necessary to understand why the network has implemented a controller of

this form, especially given that a heavily damped response can be generated easily using

just linear feedback. From Figure 3.3.21, the settling time of the closed loop response

using the actual control law is about 0.5 seconds with an overshoot of about 2%; this is
characteristic of a set of closed loop poles at sl,2 = -5 + 4j. A linear controller which

created a closed loop system with these poles from the double integrator open loop plant

would require a maximum of +41 units of control (at t = 0) to take the system from rest to
Xd; the NMC network accomplishes the same response with a maximum of +31 units of

control, also at t = 0 seconds. It would thus appear the the observed control law has

arisen as a result of the tradeoff performed by the algorithm between maximum control

authority and speed of the closed loop response. In a sense, the additional position

weighting has told the NMC to speed up the response, faster than the canonical example;

since this could not be accomplished using the linear control scheme developed in the

canonical experiment because it would require too much control, the algorithm has begun to

make use of its other degrees of freedom. How much control is "too much" will be

quantified below.

Recall that the rise time for a second order system is, roughly, inversely

proportional to the damping ratio and directly proportional to the natural frequency. For

values of damping greater than about r = 0.707, the (5%) settling time is not much longer

than the rise time; for damping ratios less than this the settling time becomes appreciably

longer. Within certain bounds, it is possible to keep the rise time of the system the same

with a lower natural frequency if one also decreases the damping ratio. For a linear

feedback control scheme, this would reduce the amount of maximum control required, but

it would also increase the overshoot of the closed loop response, and probably lengthen the

settling time. However, the NMC is not linear! Thus, it can deliberately "target" a closed

loop system with approximately the same rise time, but with a lower damping ratio and

natural frequency than the response it emulates; it is this target trajectory which is shown in
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Figure 3.3.25. This allows it to use less control when the system starts from rest, and

then strategically introduce extra negative control in such a way as to "jam on the brakes"

and stop the overshoot which might otherwise develop, thus also reducing the settling time.

This is a very reasonable way to use the degrees of freedom in the controller.

Figure 3.3.26 shows the switching lines which implement the controller. Notice

how these differ from the canonical run, Figure 3.3.19. In particular, the on/off lines of

different neurons now have different slopes, and the linear regions are of different widths.

Neuron number four is clearly off for all values of the state encountered in this simulation.

A critical point seems to exist where the switching lines of neurons number three and five

intersect; indeed the fact that the trajectory of the system from rest to equilibrium passes

through this point also suggests its importance.

This figure, together with a plot of neural activity versus time, Figure 3.3.27,

provides a complete picture of what occurs inside the network as the plant state evolves
toward equilibrium. As the trajectory approaches the critical point, xcT = [0.25 3.25],

neuron number five turns on, briefly adding +11.4 (see Figure 3.3.23) units of control to

the plant. When the critical point is reached, neurons three and five both begin to rapidly

shut off, forcing the control more negative by approximately 20 units (neuron five turns off

removing its 11.4 units, and neuron three reduces to one quarter output, removing a further

8.6 units); this, combined with the linear contribution of the controller, accounts for the

large negative spike seen in the control. After the critical point, neurons three and four

remain off, and neuron five continues to function now in its linear region, coming almost

completely on by the time the plant has settled to equilibrium. The switching logic

implemented by the network has thus allowed it to design a nonlinear controller which

produces a rapidly responding, well damped, closed loop response with a limited amount

of maximum control authority.

Despite the fact that the NMC has been somewhat "clever" in designing these

switching lines to obtain a fast, heavily damped response which does not require much

control, this "ideal" solution will only be seen when the plant starts from rest. The critical

point seen in the switching line configuration would not, in general, be encountered by the

state trajectory if the plant were released from a nonzero initial condition. The response

seen in this case would tend more to emulate the more lightly damped "target" trajectory as

the plant settles. This certainly makes sense; the NMC is essentially learning by trial and

error, it has no reason to design the switching lines for state configurations it has never

encountered during its training phases. Again, this reveals one of the weaknesses in the

way these experiments were conducted, and will be discussed further in Section 4.1.5.
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Figure 3.3.26: Neuron switching logic; mT = [3.0 0.5 0.3]
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Figure 3.3.26: Hidden neural activity during simulation; mT = [3.0 0.5 0.3]
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Effect of the control weighting exponent

The effect of variations of Mu in the control contribution to the payoff function has

already been discussed in Section 3.3.3 above. In this section, the impact of varying the

exponent in this term is evaluated. Figure 3.3.28 shows that the shape of the closed loop

response generated on the 50th solo run is virtually identical for several different values of

n. However, as Figure 3.3.29 shows, the maximum control used after the learning has

stabilized is progressively lower with increasing n.

It has already been noted above that the ideal solution for the network is to devise a

control signal which makes 6(t) - 0.0 Vt; i.e. which makes the optimal tradeoff between

position and velocity deviations, and control usage. Judging from the preliminary results

analyzed for the canonical run (Figure 3.3.16), there is reason to believe that this is just

what the algorithm is doing. Accepting, for the moment, that this tradeoff can be make

exactly for the instant the plant starts from rest (before the dynamics of the plant begin to

assert themselves), and noting that the form of the controllers devised by the network so far

apply the maximum control at precisely this instant, t = 0.0, a good approximation can be

developed to predict the maximum control which the network will use after the training has

stabilized, for the second order plants under consideration:

Umax UultI(Xd - x())J (3.17)

For the canonical run of Section 3.3.3, this equation would yield umax _ 21.6,
which compares favorably with the values observed after fifty solo runs of umax = 22.7.

Figure 3.3.30 summarizes the predicted versus the observed Umax for a variety of Mx ,

Mu, and n. Note that the estimates tend to be low by from 2-20%. However, recall from

Figure 3.3.13 that fifty runs was not quite enough for the control law to converge to its

final value, in fact the maximum control used in that case fell by 8% from the fiftieth to the

250th run. When the predicted value for the runs plotted in Figure 3.3.13 (for which

mT = [1.0 0.5 0.7]), is instead compared with the value seen on the 250th run, the

error is less than 0.2% (17.5 vs 17.3). The errors in the other estimates would similarly be

expected to improve as a function of the number of training sequences the network has

undergone.
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Figure 3.3.28: Variation of responses with increasing n;
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Mx M u n Predicted un Actual uma

1.0 0.3 2 29.2 29.4

1.0 0.3 4 21.6 22.7

1.0 0.3 7 19.0 19.9

1.0 0.3 9 18.3 19.0

1.0 0.7 4 17.5 18.7

2.0 0.3 4 25.7 26.4

3.0 0.3 4 28.5 31.1

4.0 0.3 4 30.5 36.2

Figure 3.3.30: Predicted (equation 3.17) vs. observed ua x

3.3.7 Variation of Network Parameters

The parameters a, Yt, and f in the NMC algorithm (Figure 2.6.4) represent

properties of the network itself, as opposed to those of the payoff function examined

above. This section analyzes the effect of changes in these network parameters on the

ability of the NMC to converge to a stabilizing control law.

The algorithm is actually surprisingly insensitive to changes in most of these

parameters. From Figure 3.3.31 it is evident that changing the learning rate, nr, does not

significantly change the responses obtained by the network after fifty runs. Interestingly,

however, while T1 = 0.1 results in the most severe transients during the initial learning

phase, as indicated in Figure 3.3.32(a), it also results in the most rapid convergence to the

final form of the closed loop response, as Figure 3.3.32(b) and (c) show, although the

responses for the different n1 are indistinguishable by the fifth solo run.

Changing the decay rate, a, similarly does not alter the form of the solution devised

by the network, as shown in Figure 3.3.33. However, higher values of a cause the

training phase to become progressively more unstable, as shown in Figure 3.3.34. In

fact, for values of a higher than about 0.875, the entire training sequence becomes unstable

and the network can never develop a stabilizing controller. This is not surprising in light of

equation (2.9); the weight update equation is essentially a first order finite difference

equation with a "time constant" of a. While this parameter has an important damping effect

in the search of the weight space, for values of a close to 1.0 one would expect to see the
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Solo Responses Run #50
M = [1.0 0.5 0.3]
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Figure 3.3.31: Variation in responses with increasing A:

Teaching Responses
M = [1.0 0.5 0.3]

mT= [1.0 0.5 0.3]
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Figure 3.3.32(a): First training responses with increasing T1: mT = [1.0 0.5 0.3]
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Solo Responses Run #1
M = [1.0 0.5 0.3]
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i Figure 3.3.32(b): First solo responses with increasing Al: mT = [1.0 0.5 0.3]

Solo Responses Run #5
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Figure 3.3.32(c): Fifth solo responses with increasing TI: mT = [1.0 0.5 0.31
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Solo Responses Run #50
M = [1.0 0.5 0.3]
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Figure 3.3.33: Variation in responses with increasing : mT = [1.0 0.5 0.3]
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Training responses for increasing a: mT = [1.0 0.5 0.3]
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Solo Responses Run #50
M = [1.0 0.5 0.3]
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Figure 3.3.35: Variation of responses with increasing f: mT = [1.0 0.5 0.3]

network become increasingly "sluggish" and unable to respond quickly enough to changes

in the teaching stimuli, with the result that the plant would go unstable. Exactly why the

algorithm becomes unstable at this particular value of o is not known, but it is clear that

moderate values of oa (0.1 < a < 0.6) will yield the best results.

Changing the frequency of the teaching iterations also has minimal effect on the

solutions devised by the network on the 50th run, as Figure 3.3.35 demonstrates. This is

very encouraging from the standpoint of real time applications of the NMC algorithm where

teaching iterations, because they are so computationally intensive, may have to be limited.

The rate at which the network is taught does, however, have an effect on how

quickly the network arrives at its steady state control law, as shown in Figures 3.3.36(a)

and (b). Again, it appears that it is the slower teacher which converges most rapidly to the

final control law. This makes some intuitive sense: the slower the learning, the larger the

excursions from the desired equilibria which will occur during the training phase, as

demonstrated in Figure 3.3.36(c). This is the same phenomenon which was observed in
the experiments in which ir was lowest. It would appear that, since slower learning

networks experience more of the total state space and encounter payoff signals of higher

magnitude while they train, they converge in fewer iterations

On the basis of the above analysis of the parameter space, nominal values of

ax = 0.5, Tl = 0.25, and f = 20 Hz were selected for use in all of the following

experiments.
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Solo Responses Run #1
M = [1.0 0.5 0.3]
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Figure 3.3.36(a): Responses after one training phase, increasing f:
mT = [1.0 0.5 0.31

Solo Responses Run #5
M = [1.0 0.5 0.3]
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Figure 3.3.36(b): Responses after five training

mT= [1.0 0.5 0.3]

f = 20 Hz

f =5 Hz

f = 200 Hz

2.5 3.0

phases, increasing f:
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Training Responses Run #1
M = [1.0 0.5 0.3]
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Figure 3.3.36(c): First training responses, increasing f :
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The Model Reference Payoff Function

The next experiments sought to evaluate the effectiveness of the model reference

form of the payoff function. For a second order system, equation (2.X) becomes:

8(t) = MX(xd(t) - (t)) + Mk(xd(t) - k(t)) + Mu Uultn (3.18)

where here xd(t) and id(t) are the time varying model trajectories for the two states. Not

that the only difference between this form of the payoff and that examined above is the time

varying nature of the desired states. One of the side effects of this change is that the

magnitude of 6(t) is generally somewhat lower during the training runs. For this reason,

the weights chosen in equation (3.18) will be somewhat higher than those used for the

canonical run of Section 3.3.3. The actual values of gains used will again be identified by

T = [Mx Mi Mu]; values of n = 4, a = 0.5, r1 = 0.25, and f = 20 Hz were

used for all simulations.

Three different model trajectories were specified. The first two were first order
trajectories corresponding to a pole at sl = -0.5 and s = -1.0 respectively. Since these

are first order models, there is no model second state to specify; the velocity weight for
these experiments was thus set to M. = 0.0. The third trajectory was that of a second

order underdamped oscillator corresponding to poles at s 1,2 = -1+2j. For this third

experiment, both position and velocity model trajectories were specified.

The problem of following the model trajectories seemed to be much more difficult

than responding to the state weighted payoff function. To minimize 6(t) here the network

must find exactly that sequence of controls which produces the desired responses in the

state variables. This difference in difficulty with the previous experiments manifested

when each model reference experiment required exactly one "failure" signalled by the

trainer before stabilizing. This failure always occurred early in the first training phase.

3.4.1 First Order Model Trajectories

The first experiment had a model position trajectory specified by:

Xd(t) = 1 - exp(-t/2) (3.19)
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Actual and Model Responses Run #50
Model Trajectory #1
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Figure 3.4.1: Comparison of actual and model trajectories for experiment #1

and no velocity reference. Accordingly, a weight vector of mT = [2.0 0.0 0.3] was

used. Figure 3.4.1 shows the model trajectory and the actual trajectory generated during

the fiftieth solo run. Clearly the two responses are virtually identical.

Figure 3.4.2 shows the network which implements the control law and

Figure 3.4.3 shows the switching lines which result. Notice immediately from this last

figure that during the simulation all the hidden neurons are operating in saturation, meaning

that the response of the plant will be governed by the linear terms of the controller. From

inspection of Figure 3.4.2, this linear part is given by u = -18.2x - 36.6k. Further, since

neuron five operates in the on saturation region during the entire simulation while the other

two neurons are always off, and since this neuron together with the control bias neuron

contributes a total of +18.2 units of control, the complete control law, valid over the states

visited during the simulation, is given by u = 18.2(1 - x) - 36.6. This is a perfect linear

state feedback control law with its equilibrium at the desired final position for the plant! In
fact, with this control law the closed loop poles lie at s1 = -0.51 and s2 = -35.49 which

is exactly the response required (the pole corresponding to the evolution of the extra state

has been "pushed" far enough into the left hand plane that its effects are negligible over the

time scale of interest).
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Figure 3.4.2: Network after fifty iterations, model reference trajectory #1

Phase Plane Switching Logic
Model Trajectory #1
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Figure 3.4.3: Switching logic implemented by network of figure 3.4.2
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Actual and Model Responses Run #50
Model Trajectory #1
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Figure 3.4.4: Comparison of actual and model trajectories for experiment #2

This approximation of the control law as linear state feedback is valid only until the

state crosses one or more of the network's switching lines; for example, if neuron number

five shuts off due to a different (for example more negative) initial condition on plant

position, the above approximation will clearly no longer be valid. Fortunately, the network

has used its extra degrees of freedom for this problem to design switching lines which act

with the linear portion of the control law to bring the state back into the region where the

approximation analyzed above is valid. If the velocity or position grow too strongly

positive, neuron number three comes on, introducing -13.8 units of control into the

system, pulling it strongly back toward the shaded region. Similarly, if the velocity or

position become too strongly negative, neuron five will turn off and neuron four will turn

on, introducing a net of between +5 .0 and +10.2 units of control, again forcing the state to

the shaded region.

The second experiment had a model position trajectory specified by:

Xd(t) = 1 - exp(-t) (3.20)

and, as before, the weights mT = [2.0 0.0 0.3] were used in the payoff function.

Figure 3.4.4 shows the model trajectory and the actual trajectory generated by the network

during the fiftieth solo run. There are some slight discrepancies between the two

responses, but on the whole the network has done a good job of reproducing the desired

response.
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Figure 3.4.5 shows the network which implements the network's control law, and

Figure 3.4.6 shows the resulting switching lines. Unlike the previous experiment, this

control law depends upon neuron number four coming fully on as the network approaches

equilibrium, introducing -26.0 units of control and effectively braking the system to a halt.

Two features of the control law are especially striking. The first is the very effective

velocity limitation system the network has constructed; for velocities greater than about 0.8

(in the vicinity of equilibrium), both neurons three and five simultaneously switch on,

introducing a total of -40.7 units of control, strongly reducing the velocity. The trajectory

shown proceeds almost tangent to these switching lines but does not actually cross them,

suggesting that these neurons are not involved in the response. However, recall that in

general the network does experience those states, particularly during its first training runs.

Based upon those experiences, the network has "learned" that if the state even begins to

enter those regions, the plant is deviating substantially from the desired response, and

hence the network should slow the plant down.

The second point is that the linear half of the control law uses positive feedback! In

effect, the network is depending upon the braking action of hidden neuron four to bring the

system to a halt; the linear part of the controller could not do this by itself. This is the only

experiment conducted for this thesis during which this was observed to happen, and is

probably wholly attributable to the fact that the plant was always released from the origin of

the state space during the training and solo runs. This is again the specter of the "infinite

training set" discussed in Chapter 2; the control laws devised by the network are designed

based only on the parts of state space experienced while training. Recall that the previous

experiments avoided this pitfall because the negative feedback linear terms dominated for

points in state space far from the equilibrium. Here this limitation of the algorithm has not

only resulted in a control law which is, in some sense, nonoptimal for certain parts of state

space, but is in fact unstable for certain combinations of initial conditions. Clearly, for
initial position conditions greater than about xo = +2.2 or less than about xo = -13.2, the

positive position feedback term of the control law will dominate and drive the plant

unstable. Once again, a different set of plant initial conditions, enabling the network to

experience more of the state space while training, would probably result in a more globally

stabilizing controller.
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Figure 3.4.5: Network After Fifty Iterations, Model Reference Trajectory #2
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Figure 3.4.6: Switching Logic Implemented by Network of Figure 3.4.5
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Actual and Model Responses Run #75
M =[1.0 1.0 0.3]

4

Actual
----- Model

5

Figure 3.4.7: Comparison of actual and model trajectories for experiment #3

3.4.2 Second Order Trajectory

The last experiment with the model reference payoff function had a model position

trajectory specified by:

xd(t) = 1.0 - 1.12exp(-t)sin(2t + 1.17) (3.21)

and the model velocity trajectory by:

Xd = 1.12exp(-t)sin(2t + 1.17) - 2.24exp(-t)cos(2t + 1.17) (3.22)

The weight vector mT = [1.0 1.0 0.3] was used. Since the network was observed

to still be settling to a constant control law during the fiftieth training run, the simulation

was extended to seventy-five runs. Figure 3.4.7 show the model trajectory and the actual

trajectory seen in the seventy-fifth solo run. Here it is obvious that the network has not

quite devised an adequate solution; the response developed by the network has a more

damping and a higher natural frequency than the desired response (although note that the

rise times are identical--this is a perfect example of the tradeoff, discussed in the previous

section, between damping ratio, natural frequency, and rise time).
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Figure 3.4.8: Network after seventy-five iterations, model reference trajectory #3

Figure 3.4.8 shows the network which developed after the seventy-fifth run and

Figure 3.4.9 shows the resulting switching lines. Interestingly, notice that neurons three

and five turn off after the state passes through the 0.5 position point, but then turn back on

during the first undershoot, contributing negative control action. The network is thus

trying to pull the velocity more negative at that point, which does in fact reflect the

deviation of the velocity from the model at that point in time, as shown in Figure 3.4.10.

Unfortunately, this is too little too late.

The results of this last experiment with the model reference payoff would probably

be more satisfying if larger values for Mx and M; were used, or if the network were

allowed to learn for an even longer period of time. Time constraints, however, prohibited

further experimentation in this area.
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Figure 3.4.9: Switching logic implemented by network of Figure 3.4.8
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Figure 3.4.10: Comparison of actual and model velocities for experiment #3
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Robustness of the NMC

3.5.1 Changing Plant Dynamics

These experiments sought to determine further the adaptive properties of the NMC

algorithm by suddenly changing the properties of the unknown plant after a certain number

of training phases. The NMC was permitted to learn to control the double integrator plant

for 19 complete runs. Just after the training phase of the 20th run, the dynamics of the

plant were changed and this new set of plant dynamics was used for the rest of the

simulation. This was not a structural change in the dynamics--the order of the plant

remained the same--but rather a change to the location of the plant poles, or to the static

sensitivity of the plant. The state weighted payoff function was used for both of the

following experiments with mT = [1.0 0.5 0.3].

For the first experiment, the dynamics were replaced with:

1

G(s) = 10s2 (3.23)

which effectively reduces each of the (linear) feedback gains the network has learned by a

factor of 10. Figure 3.5.1 shows the solo responses generated just before and just after

the change. The change of plant dynamics has resulted in a closed loop response which is

now rather underdamped, with an overshoot of 32%, and which requires almost three

times longer to settle. This is just what one would expect if the equivalent linear controller

had each of its gains reduced by a factor of 10.

Figure 3.5.2 (a) shows the state of the network just before the plant change and (b)

shows the state of the network after thirty retraining phases. Interestingly, the network has

not done the "obvious" thing by increasing each of its linear state weights by a factor of ten;

in fact there is no clear pattern to the way the weights have been reorganized. The velocity

weighting has even been decreased! Figures 3.5.3 and 3.5.4 show the switching lines for

before and after the plant change and give a slightly better picture of what is happening. As

a result of the change, the network has reduced the width of the linear regions for the

hidden neurons and moved the on/off saturation boundaries further to the right of the

starting point of the plant. Each hidden neuron now also contributes about 50% more

positive control when on. The network has thus accounted for the increased "inertia" of the

plant by introducing more positive control when the plant starts from rest, and continuing

to apply it for a longer period of time than before the change. As the plant finally
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Solo Responses
Plant Change Expt #1: M = [1.0 0.5 0.3]
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Figure 3.5.1: Solo responses before and after plant change #1, and after retraining

approaches equilibrium, the neurons once again begin operating in their linear region. This

new configuration is quite effective in bringing the plant to the desired equilibrium; as can

be seen from Figure 3.5.1, the retrained response overshoots by only 2% and has a

settling time which is even faster than before the plant was changed.

The results are very similar for the second experiment, in which the double

integrator plant is replaced with:

3
G(s) = (s + 3)(s - 3) (3.24)

Notice from Figure 3.5.5 that this was not actually that dramatic a change, since the

feedback gains already learned were enough to ensure stability, but the plant now stabilizes

around an incorrect equilibrium position. Indeed, the fact that this was somehow a less

difficult problem can be seen by comparing the network configurations before and after the

change, Figures 3.5.6 and 3.5.7, and by examining the retrained switching lines shown

in Figure 3.5.8 . Except for the small adjustments required to produce equilibrium about

the correct position, and to ensure that the correct amount of steady state control (-3 units)

is generated, there have been no major changes to the network synaptic strengths. As

Figure 3.5.5 demonstrates, after the retraining period the closed loop response is

indistinguishable from that obtained before the change.
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Figure 3.5.2(b): Network after retraining, plant change experiment #1
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Phase Plane Switching Logic
Plant Change Expt #1, Before Change
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Figure 3.5.3: Switching logic implemented by network before plant change #1
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Figure 3.5.4: Switching logic implemented by network after retraining; plant change #1

-94-



Solo Responses Before and After
Plant Change #2
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Figure 3.5.5: Solo responses before and after plant change #2, and after retraining
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Figure 3.5.6: Network before second plant change
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Figure 3.5.7: Network after retraining, for second plant change

Phase Plane Switching Logic
Plant Change Expt #2, After Retraining
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Figure 3.5.8: Switching logic implemented by network after retraining, plant change #2
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Training Response Run #20
Plant Change Expt #1: M = [1.0 0.5 0.3]
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Figure 3.5.9: First retraining phase after plant change experiment #1

As a result of these experiments, one can conclude that not only can the NMC algorithm

devise a controller in the absence of a priori knowledge of the plant, it can completely

revise its controller to accommodate changes in the plant dynamics. As Figures 3.5.9

through 3.5.12 show, adapting to these changes creates transients in the training and solo

phases similar to those seen in the original training sequence when the network starts from

its initial state of small, random synaptic weights. Eventually, however, the network

settles to a steady state control law and the responses seen in each phase and each run

become indistinguishable.

3.5.2 Network Synaptic Damage

Above it was noted that damage to the network should result in a graceful

degradation of controller performance. To evaluate this explicitly, a network was trained

for 19 runs using the state weighted payoff function with mT = [1.0 0.5 0.3].

Before the 19th solo phase, each of the network synaptic weights was then corrupted by a

random constant between +10.0 units. The random numbers were generated using the

Microsoft C pseudo random number generator whose statistical properties will be examined

in the next section. After the network was thus corrupted, the solo response was

generated, then the network was allowed to relearn for five more iterations.
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Training Response Run #20
Plant Change Expt #2
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Figure 3.5.10: First retraining phase after plant change experiment #2
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Solo Responses After Retraining
Plant Change Expt #2: M = [1.0 0.5 0.3]
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Figure 3.5.12: Comparison of responses after the 5th and 30th retraining phases for plant
change experiment #2

Figure 3.5.13 shows the state of the network before (a) and after (b) the weights
were scrambled. Note that since the changes did not force either W4 or W8 positive, the

linear part of the controller is still stabilizing. As Figure 3.5.14 demonstrates, the response

is indeed still stable, but around a different equilibrium position. After only five training
runs, the response of the retrained network is almost the same as before the damage
occurred; the only reason the amount of "recovery" observed in this experiment is not as

great as those of the previous section is that this network was allowed only five retraining

phases, while those above had thirty.

Figure 3.5.15 demonstrates that, as expected, the initial relearning phase is a bit

underdamped, just as though the network were starting again from scratch. However, as

Figure 3.5.15 shows, the network has actually had to adjust very little to regain the

required equilibrium position, although, as Figures 3.5.16 and 3.5.17 demonstrate, the

switching line configuration is very different before and after the damage.

This observation reinforces the conjecture that the switching logic developed by the

network is not unique. In fact, this must be the case, since from the symmetry of the

equations (see Figure 2.10) the hidden neurons are indistinguishable; it is only the initial

symmetry breaking randomization of the synaptic weights at startup which allows the

development of independent switching lines at all. Hence, switching lines will, in general,

be functions not only of the states visited, but also of the initial conditions on the network.

In a sense, the control problem being posed to the network is underdetermined; it has
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Figure 3.5.13(a): Network configuration before the weights are scrambled

Figure 3.5.13(b): Network configuration after the weights are scrambled
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Figure 3.5.14: Responses before and after network damage, and after retraining
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Figure 3.5.15: First retraining phase after network damage
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Figure 3.5.16: Retrained network after damage

already been demonstrated that many of the closed loop responses generated using the

neuromorphic controller could equally well be generated by a simple linear weighting on

the position and velocity neurons plus an additive bias (q.v. Section 2.6). This degree of

redundancy suggests that there are many combinations of synaptic weights which will

capture the "shape" of the closed loop response implicitly coded in the payoff function.

When learning is initiated the network settles to the solution which is closest to the current

state of the network weights. More experiments would have to be performed, however, to

conclusively illustrate these assertions.
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Phase Plane Switching Logic
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Figure 3.5.17(a): Switching logic before network damage
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Figure 3.5.17(b): Retrained switching logic after network damage
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Figure 3.5.18: Network setup for sensor noise experiments

3.5.3 Response to Sensor Noise

The next experiment sought to determine the robustness of the network to additive

noise entering at each network input. Figure 3.5.18 shows the block diagram for this

experiment. Note that the noise corrupts the values of the state seen by the network, but

not the values of the state used in computing the payoff function. The network thus never

"knows" exactly where the plant is in the state space, but the teacher does. The noise is

assumed to be present during both the training and solo phases, and to have constant

statistical properties. The important factors to assess in this experiment are: 1.) whether

the NMC algorithm can still function in the presence of sensor noise; and 2.) if the

algorithm can function, is there any improvement in the solo responses generated in the

presence of noise when compared to a network which trained in a noise free environment;

i.e., can the network adjust to somehow minimize the impact of the noise in the response?

To answer this second question, the solo responses generated by a network which trained

in the presence of noise will be compared to those generated by a second network, equal to

the first in every way except that it did not train with noise, but which then has noise added

during the solo phase. The state weighted payoff function is used for all experiments, with

mT = [1.0 0.5 0.3], and the noise free network used for comparison is the network

analyzed in Section 3.3.3.

The noise was implemented by issuing two calls to the Microsoft C (version 5.0)

random number generator at each time step, scaling the returned values to the desired
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range, and adding the resulting numbers to the current plant state before showing these

values to the network. The C pseudo-random number generator returns values which are

theoretically uniformly distributed. If this were so, the anticipated statistical properties of

the noise would have zero mean and a variance of 0.083 for values in the interval [-.5, .5],

and a variance of 0.003 for values in the interval [-. 1, .1]. Testing of the actual statistical

properties of the function revealed that, for the interval [-.5, .5] the mean is approximately

-0.06 with a variance of 0.111, and for the interval [-.1, .1] the mean is about -0.013 with

variance 0.004. These statistics were compiled based on five runs of 100,000 trials each

for both of the indicated ranges. The computed variances and means varied negligibly

during each of the runs, so it is a fairly safe conclusion that the statistical properties of the

random number generator are stationary. Notice, thus, that the noise added to the

network's input neurons has a nonzero bias in addition to its other statistical properties.

Figure 3.5.19 shows the results of this experiment for a noise level of [-.1, .1].

The top curve is the solo response on the 50th run of a network which did not train with

noise, but then had the noise added; the influence of the sensor biases are clearly shown in

this response. The bottom curve shows the 50th response of the network which did train

with the noise; notice the bias has been eliminated in the response. Figure 3.5.20 shows

the same results even more dramatically for a noise level of [-.5, .5]. The steady state

statistical properties of these responses confirm what the figures reveal qualitatively. The

top curve of Figure 3.5.19 has a steady state mean of 1.026 and a standard deviation of

0.008; the bottom curve has mean of 0.995 and standard deviation of 0.004. The top

curve of Figure 3.5.20 has a steady state mean of 1.242 and a standard deviation of 0.023;

the bottom curve has mean of 0.993 and standard deviation of 0.019. It would appear that

not only does the NMC algorithm for this system function in the presence of noise, it

produces networks which exhibit better noise rejection properties than those which train in

noise free environments.

What is interesting to investigate is exactly how the network has accomplished this

improvement. The task of learning the bias is not difficult, since the bias could easily be

considered a property of the (unknown) plant itself, and it has already been shown that the

network is quite capable of adjusting to these properties. The real issue is how the network

has used its ability to design nonlinear switching lines. Compare Figure 3.5.17, the

switching lines of the network which did not train in the presence of noise, with Figures

3.5.21 and 3.5.22 which show the switching lines developed by the networks which did

train with noise. The gray squares underlying the region around the equilibrium point

indicate the uncertainty in the network's knowledge of the state; due to the noise, when the

plant is (actually) at the desired equilibrium, it will look to the network as though it is
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scattered throughout the gray area. Notice that the effect of the noise has been to push the

"off' saturation boundaries for all the hidden neurons to the left, away from the equilibrium

point; the "on" saturation boundaries have been similarly shifted, but not by as much. The

equilibrium point now lies in the off saturation region of (almost) all the hidden neurons,

while the noise free switching lines have the equilibrium point almost in the middle of the

linear region of the hidden neurons.

Is this a solution which makes sense? Recall from Section 3.2 that when neurons

are operating in their linear region, the response of the system is the same as a linear

feedback system with a higher bandwidth than would be expected from just the direct linear

connections of the network (weights four and eight). If such a network were subjected to

noise, it would response very strongly since both the linear and nonlinear parts of the

controller would contribute. A good solution for the network in the presence of noise

would be to design the switching lines in such a way that the nonlinear elements operate

most of the time in saturation; completely on for values of the state far away from the

equilibrium position, and completely off for state values close to equilibrium. In this way,

the only part of the controller responding to noise when the plant is near the desired

equilibrium would be the relatively low bandwidth linear term. The controller could thus

implement a response which settles to equilibrium like a high bandwidth system, but which

responds to sensor noise with much lower effective feedback gains.

To accomplish this the network would need to move the on and off saturation lines

closer together to reduce the size of the linear region, and also move the off saturation lines

far enough to the left of the equilibrium point that, when the state is near equilibrium, the

hidden neurons will not come on in response to the noisy sensor readings. This last

requirement is equivalent to ensuring that the off saturation boundaries of each hidden

neuron lie outside of the gray boxes.

Looking at Figures 3.5.21 through 3.5.24, it appears that this is just what the

network has tried to do. In Figure 3.5.21, while the widths of the linear regions are

approximately the same as in Figure 3.3.17 (one is even a bit larger!), the equilibrium

point is clearly to the left of the off saturation boundaries of two of the hidden neurons, and

these switching lines are just at the lower left edge of the uncertainty region. Although the

equilibrium state is still in the linear region of hidden neuron number three, note that this is

the neuron which contributes the least to the nonlinear term of the control law, almost by a

factor of two compared to the other hidden neurons (+3.6 when on, versus +7.7 for

neuron four, and +6.7 for neuron five). The effect is even more pronounced in Figure

3.5.22. The widths of the linear regions are certainly reduced, and all three of the off

saturation boundaries lie in the lower left-hand corner of the uncertainty region.
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Figure 3.5.21: Switching lines for low noise network
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Figure 3.5.22: Switching lines for high noise network

The solutions devised by NMC to the noise problem do thus indeed make intuitive

sense. The algorithm has used its degrees of freedom to create nonlinear switching

boundaries which bring the plant to equilibrium with a bandwidth higher than that which

characterizes its response to sensor noise. There is not necessarily anything "optimal"

about this solution, but it is encouraging that the algorithm can not only tolerate noise, but

in fact react to the noise in an intuitively correct manner.
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Figure 3.5.23: Network which implements the switching lines of Figure 3.5.21
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Figure 3.5.24: Network which implements the switching lines of Figure 3.5.22
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n(t)

Figure 3.5.25: Structure of extra input network experiment

3.5.4 Response to Irrelevant Inputs

As a final test of the robustness of the NMC algorithm, an experiment was designed

to evaluate the effects of a change in the input structure of the network. Figure 3.5.25

shows the structure of the new network; an extra linear response neuron was added to the

input layer of the network and given axonic connections to every neuron in both the hidden

and output layers, as shown in the figure. This neuron was then driven by the [-.5, .51

noise used in the previous section. The output of this neuron was thus stochastic with a

mean of -0.06 and a standard deviation of 0.111 units.

Since this neuron carries no information which would be "useful" to the network,

in the sense of helping it minimize the magnitude of the payoff function, the optimal

solution would be for the network to assign zero weights to all the synaptic connections

made by this neuron. In fact, this is almost what occurs. Figure 3.5.26 shows the

network which develops after fifty solo runs. The weights from this neuron to each of the

neurons in the hidden layer are almost zero; the extra input thus has no ability to turn on or

off the hidden neurons. However, there is a small weight on the direct connection to the

output neuron. Even though this weight is small in comparison to the position and velocity

direct connection weights (+1.6 vs. -8.5 and -7.1 respectively), it is large enough that

some influence of the noise will be seen in the output. Further, since the bias on the noise

will produce about -0.1 units of control, the rest of the network has clearly had to adjust

and account for this term so as to maintain the correct amount of steady state control.
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Figure 3.5.26: Network for extra sensor network after 50 runs

Figure 3.5.27 shows the response of the plant on the 50th solo run. The effect of

the noise is indeed present, but barely noticeable. The response has a steady state mean of

1.002 and a standard deviation of 0.001. The switching laws which were developed are

shown in Figure 3.5.28 and are not appreciably different from those developed during the

canonical run. The simulation proceeds, as before, in the linear region of the hidden

neurons.

Thus, except for the direct connection weight, the NMC algorithm has effectively

cut the "useless" neuron off from the rest of the network. The direct connect weight has

been kept small enough that the variance of the noisy sensor is virtually invisible in the

output of the plant, and the bias has been offset by the actions of the other neurons. It

would seem, based upon this experiment, than the NMC is capable of distinguishing

between "relevant" and "irrelevant" inputs, and adjusting its weights accordingly.

Interestingly, however, the control law that the NMC has developed now actually depends

upon the presence of the extra neuron. If this neuron were to be removed from the

network, or equivalently if its input were clamped to zero, the plant would stabilize around

a slightly different equilibrium point, since the rest of the network is configured to offset

the bias contributed by the extra neuron.
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Figure 3.5.27: Solo response after fifty runs: extra sensor experiment
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Figure 3.5.28: Switching lines implemented by network of Figure 3.5.27
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Chapter 4: Further NMC Results

In this chapter several further results, obtained using simulations of the NMC

algorithm on different SISO plants, are presented and analyzed. Again, unless otherwise

explicitly noted, the state weighted form of the payoff function (equation 3.7) was used
with the weighting vector mT = [1.0 0.5 0.3], n = 4, and uult = 16.0. These

analyses will necessarily be somewhat more abbreviated than those of the previous chapter;

clearly different choices of the algorithmic parameters will result in different types of

solutions (or lack thereof.) to the control problem. The results in this chapter serve only to

demonstrate that the NMC algorithm can successfully function with a wide variety of plant

dynamics.

Section 4.1 examines different linear plants, while Section 4.2 examines systems

with either nonlinear (bang-bang) actuators, or else with nonlinear plant dynamics.

Finally, Section 4.3 summarizes the observed cases where the NMC algorithm was found

not to converge, and analyzes, in each case, why this might have been and how the

algorithm could be modified to accommodate these cases.

4.1 Linear System Results

4.1.1 OutputRegulation

This experiment sought to determine how the NMC algorithm would function when

the variable to be regulated was not one of the states of the plant, but in fact a linear

combination of plant states, in this case the velocity plus twice the position. Thus the plant

transfer function:

G(s) = 2 _ u(s) (4.1)

was used. The structure of the algorithm is not modified except that the measured variable,

y, replaces the position state in all previous equations; this change is diagrammed in

Figure 4.1.1. The desired state vector specifies the desired steady state output, as well as

the desired final velocity, hence now xdT = [y ], and the first entry of m weights

deviations of the output from the desired equilibrium. The payoff function is similarly now

a function of the output instead of the position state. Notice that, despite the fact that the

-113-



Yd

Y

Figure 4.1.1: Structure of output regulation experiment

payoff function is now a function of y instead of x, the network is still shown the actual

states of the plant; the NMC algorithm described in this thesis is thus a full state feedback

algorithm.

The response after the fiftieth solo run is illustrated in Figure 4.1.2, and the

network configuration and resulting switching lines are shown in Figures 4.1.3 and 4.1.4

respectively. Notice that the network has not only correctly determined that the correct final

position state should be 0.5 (note that the position state does not explicitly appear in the

payoff function for this experiment), it has also produced an overdamped response for the

output, y(t). The control law, as is evident from Figure 4.1.4, is almost completely linear

(recall that the control law is nonlinear only if the state trajectory crosses a switching line

during the simulation), and is well approximated by u(t) = 40.9(0.5 - x) - 32.1j, which
results in closed loop poles at sl = -30.8 and s2 = -1.3. Since the network has not

succeeded in canceling the plant zero at s = -2.0, in order to maintain an overdamped

response it has developed a control law which produces a closed loop exponential mode

with a rather slow time constant. The combination of the closed loop zero and slow closed

loop pole account for the rapid initial rise, then slower exponential settling of the observed

response.
Clearly, different values of My or Mi will, as noted in Chapter 3, result in

different control laws and different closed loop responses. In particular, the fact that

velocity deviations are, in a sense, penalized twice in the payoff function--once through

y = + 2x, and once through the direct velocity weighting--is probably the cause of the

(perhaps excessively) overdamped solution obtained by the network for this experiment.
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Figure 4.1.2: Solo response, run #50 for the output regulation experiment
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Figure 4.1.3: Network configuration after 50 iterations for outDut regulation experiment
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Figure 4.1.4: Switching logic implemented by network of Figure 4.1.3
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Open Loop Unstable Plants

For this experiment, the unstable plant:

3
G(s) = (s + 3)(s - 3) (4.2)

was used in the simulations. In fact, the network has already solved the control problem

posed by this plant in Section 3.5.1, but in that experiment the network had already

developed a negative feedback control scheme at the time it was exposed to the unstable

plant. Here the objective is to evaluate whether the algorithm can develop the correct

controller starting with a "blank" network.

Figure 4.1.5 shows the closed loop response which is obtained after fifty iterations.

Clearly a stabilizing controller has been constructed and, as is obvious from

Figure 4.1.6 - 4.1.8, the control law is essentially linear over the states experienced in the

simulation. Even more interesting is the fact that the network has determined the amount of

control required to maintain the plant at the desired equilibrium position, in this case -3.0

units. This is significant because there is nothing in the payoff function which explicitly

tells the network the amount of steady state control required; the network has ascertained

this information solely on the basis of its interactions with the plant dynamics.

The fact that a finite amount of steady state control is required means that the
algorithm will not be able to both drive the payoff function exactly to zero and maintain the

desired position equilibrium. This suggests that problems may arise as the amount of
control required to maintain the equilibrium position approaches uult; for such cases the

contribution of the control term to the magnitude of the payoff function will become quite

significant. As the next two sections will demonstrate, the algorithm can be quite ingenious

in dealing with this problem. However, for open loop unstable plants the problem is more

severe, and can lead to instabilities in the training process. Section 4.3 presents a more

complete discussion of this, and other, instabilities.
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Figure 4.1.5: Solo response after 50 iterations for open loop unstable plant
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Figure 4.1.6: Controls commanded by the network, 50th iteration: open loop unstable plant
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Figure 4.1.8: Switching logic implemented by network of Figure 4.1.7
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A Simple Harmonic Oscillator

For this next experiment, the open loop plant was chosen to be the undamped

oscillator:

1

G(s)= (s 2 +12) (4.3)

This plant was deliberately chosen to explore what, if any, tradeoff the NMC algorithm

could make when the required steady state control makes a nontrivial contribution to the

payoff function. Figures 4.1.9 through 4.1.12 summarize the closed loop response,

control signals, network configuration, and switching logic which developed after fifty

iterations. Notice that the network does not successfully stabilize the plant about the
xdT = [1.0 0.0] equilibrium state. In fact the observed equilibrium is

xT = [0.93 0.0]. Despite this, the control law is again almost completely linear (except

just as the plant begins to move from the rest position), producing the overdamped

response observed in Figure 4.1.9

But why has the algorithm stabilized about this equilibrium point in particular?

From examination of equation (3.7) and the above discussions, it has been determined that

the algorithm operates by attempting to drive 6(t) to zero at each instant in time. However,

the form of the state weighted payoff function is such that, if the desired equilibrium were

maintained for this system, a value of:

ss = -M(uss/ult )n = 0.3(12.0/16.0)4 = -0.092 (44)

would obtain. At the observed equilibrium, however, where the observed uss = 11.15,

one obtains:

5Ss = MX(1.0 - x,) - MU(uss/Uult)n

= 1.0(1.0 - 0.93) - 0.3(11.15/16.0) 4 (4.5)
=-0.0007 - 0

The algorithm has thus performed a tradeoff between steady state accuracy and steady state

control authority. Since the contribution of each term to the magnitude of the payoff

function is indistinguishable to the network, there is no special significance is given to

-120-

4.1.3



maintaining the desired steady state equilibrium; the final state achieved by the controller
implemented by the network is treated as a variable in the minimization of 8(t).

In fact, in this example at least, it is easy to show that this tradeoff is optimal with
respect to minimization of 8ss The steady state equilibrium which will result can thus be

determined as the solution of:

xs1 = min l[ss(t) (4.6)

= min Mx(xd - x) + sgn(u)M USs (4.7)
x Uu{t

or, assuming the canonical weighting parameters and a second order system:

= min (Xd - s 2 16 

where X is the inverse of the DC gain of the plant (note that if the DC gain is infinite, i.e.

the plant has one or more integrators, the control term will drop out of (4.8) just as
desired). Given the dynamics of the system, 8 can assume a minimum only if s, = 0.0,

although of course the algorithm does not know this a priori; the fact that this feature of the

relations between the plant states has been determined is itself interesting and will be

explored in more detail in the next section. A plot of (4.8) for this particular plant, with

= 12.0 and iss = 0.0, versus x is shown in Figure 4.1.13. The minimum is at

x = 0.93, exactly the observed steady state value.

These results imply that, based upon its interaction with the unknown dynamic

system, not only can the network correctly determine the required amount of steady state
control, but as this control begins to approach uult the network can also make an optimal

tradeoff between tracking error and required control authority, with the condition of
optimality being minimization of §ss'
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Figure 4.1.9: Solo response after 50 iterations: simple oscillator experiment
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Figure 4.1.10: Controls commanded by the network for simple oscillator experiment
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Figure 4.1.11: Network after 50 iterations: simple oscillator experiment
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Figure 4.1.12: Switching logic implemented by network of Figure 4.1.11
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Variation of Steady State Payoff Signal
with Steady State Position
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Figure 4.1.13: Plot of equation (4.8) for the plant of equation (4.3). Notice the minimum

is at the observed steady state position shown in Figure 4.1.9

4.1.4 Velocity Regulation

To test the generality of the algorithm with respect to different desired plant states,
an experiment was performed with the double integrator plant for which xd = [X 1.0]

where X indicates this value of the desired state is meaningless. The algorithm is thus

being requested to construct a velocity regulator instead of the position regulator examined

in most of the above experiments. To this end, the weighting matrix mT = [0.0 1.0 0.3]

was used along with the state weighted payoff function (3.7). As Figures 4.1.14

through 4.1.16 demonstrate, the algorithm has had no trouble developing the desired

controller. However, two items deserve special note. First, in order for a velocity

regulator to work for arbitrary position deviations from rest, there should be no weight on

the direct linear position synapse in the network and zero weights on the position state
neuron's connections to the hidden neurons, i.e. W 1 through W4 should be identically

zero. As Figure 4.1.15 shows, this is almost, but not quite, the case; each of these

weights is very small, but not exactly zero. The influence position deviations exert on the

control will hence be quite small only for values of x less than approximately 10.0; values

larger than this and the position deviations will begin to interfere with the velocity

regulator. The fact that these weights are not identically zero is another manifestation of the

limited training set the network experiences while it learns. Since each training phase lasted

only from ten to twenty simulated seconds, during which the position deviations never
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Solo Response Run #50
Velocity Regulation M = [0.0 1.0 0.3]
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Figure 4.1.14: Solo response after 50 iterations: velocity regulation experiment

grew larger than about 20.0, the weights from the position neuron were small enough that

they did not cause problems for the values of state experienced while training.

The second observation is the shape of the switching lines. These are quite

different than those observed in the previous simulations, not only in orientation, but also

in the huge width of the linear regions. The corresponding off switching boundaries for

the on switching lines shown in Figure 4.1.16 parallel the shown lines, but intercept the

velocity axis between -8.0 and -11.0, far off the bottom of the region shown in the

diagram. Each of the lines is (almost) parallel to the position axis, reflecting the above

observation that the position states have little or no impact on the hidden neurons.

An interesting question which arises in conjunction with the velocity regulator is

what would happen if the algorithm were given conflicting instructions, for example, if it

were told to maintain a specified position equilibrium and a nonzero velociy equilibrium.
Such an experiment was conducted with mT = [1.0 0.5 0.3] and xd = [0.0 1.0].

Clearly, with this combination of desired state and state weightings, the network will have

to sacrifice either the position or the velocity regulation tasks. Further, this "decision" will

have to be made in conjunction with the system dynamics, since the network does not

know, a priori, that nonzero velocity deviations will produce an infinitely increasing

position deviation and hence, given the weighting vector, an infinitely increasing 6(t). As

might be expected from the results of the last section, the algorithm arrives at a final state
which ensures that ss is minimized, in this case xssT = [0.5 0.0], which, it can be

easily verified, results in iss = 0. Thus, even though the "problem" given to the

algorithm was ill posed, the algorithm was capable of designing a network which optimally

satisfied the constraints.
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Figure 4.1.15: Network after 50 iterations: velocity regulation experiment
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Figure 4.1.16: Switching logic implemented by the network of Figure 4.1.15. See text
for a detailed explanation
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Random Initial Plant Conditions

A significant question which has been raised by the results of the preceding sections

is to what extent the control laws developed by the network depend upon the states

experienced while training. While it is impossible (and probably undesirable) to have the

network experience the infinitude of possible plant states, it is possible to modify the

training process so the system at least encounters a wider variety of initial states. To this

end, the canonical run using the double integrator plant of Section 3.3.3 was repeated, but

starting from different initial conditions during each training phase. The initial conditions

for each phase were randomly determined using the pseudorandom number generator

discussed in Section 3.5.3; the initial positions were thus uniformly distributed on the

interval [0.0 2.0], and the initial velocities were uniformly distributed on the interval

[_1.0 1.0]. To allow for these widely different initial conditions, the algorithm was

allowed to run for 100 iterations.

Figure 4.1.17 displays the solo response after the 100th iteration. The initial

conditions for this run were xoT = [1.52 0.90]. Note that, after the initial velocity has

been overcome, the response settles exponentially to rest with approximately the same time

constant as the canonical run. As a more explicit comparison, Figure 4.1.18 shows the
response obtained with the same network but initial conditions of xoT = [0.0 0.0]

plotted against the canonical response obtained in Section 3.3.3; the two responses are

almost identical, as expected. The network which implements the controller and the

resulting switching lines are shown in Figures 4.1.19 and 4.1.20 respectively. Notice

that the linear part of the control law is similar to the canonical run except for the position

feedback gain which is substantially larger (-14.6 vs. -8.6 for the canonical run).

Comparing the switching lines with those of Figure 3.3.18 reveals a few significant

differences. The switching lines of neurons three and five have been pushed further to the

right; the switching line for neuron four has been rotated 90 degrees clockwise making it

perpendicular to those of neurons three and five, and its linear region has been expanded by

almost a factor of two.

At first glance some of these switching lines may appear counterintuitive. For

example, why should neuron four switch on, introducing +3.5 units of control, for large

positive velocity deviations, and why should neurons three and five switch off for very

large positive position and velocity deviations; it seems the correct responses in these cases

would be exactly the opposite. The answer to this lies in the tradeoff in 6(t) being

accomplished by the algorithm; the network has been arranged to both maintain the desired

equilibrium and keep the control within the established guidelines. The linear half of the
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control law is sufficient to stabilize the plant about the desired equilibrium, but for large
deviations the linear terms may cause the control to approach or exceed uult. To offset this,

the network can use its switching lines to actually oppose the linear terms, in regions far

from equilibrium, and hence reduce the amount of control used in those regions.

The results of this experiment are encouraging in the sense that many of the features

of the original switching logic have been retained despite the radically different training

environment. The equilibrium point still lies near the center of the linear regions of all the

hidden neurons, for example, and the orientation and position of two of the three switching

lines have remained essentially unchanged. Even still, the fact that the switching lines have

changed at all as a result of the increased training set raises an issue which is common in

adaptive control or systems identification theory: the concept of persistency of excitation or

sufficient richness. Put simply, in order for any adaptive architecture to function properly,

the plant must be so excited as to reveal all of the salient characteristics of its dynamics. If

the plant moves through its state space in a "boring" manner, i.e. one which is not truly

characteristic of its inherent dynamics, an adaptive algorithm may develop a control strategy

which would result in very poor performance, perhaps even instability, when more

"stimulating" trajectories are commanded.

Here this sufficient richness condition manifests in the recurring question as to

whether the range of states, and hence the range of plant characteristics, experienced is

adequate to allow the network to develop a control law which would be valid even for

states not encountered during the training periods. In most of the cases examined so far,

the answer to this question is affirmative. The important features of the control laws

developed in those experiments were the negative linear feedback terms; these terms will

dominate in states far from the equilibrium, since the linear input neurons have unlimited

dynamic range, whereas the hidden sigmoidal neurons are limited to the interval [0, 1]. In

two cases, however, in the exp(-t) model trajectory, and in the state weighted velocity

regulator experiments, control laws were constructed by the network which were valid only

for the range of states experienced in the simulation. While randomizing the plant initial

conditions used during training would clearly help this situation, and without adverse

effects on the resulting closed loop response as this section has shown, it is always

possible that the plant, or the control law, would exhibit unexpected behavior in regions of

state space not visited during training. The key issue in determining this will be the extent

to which the training set is sufficiently rich for both the plant and the network, i.e. if the

training set is truly representative of all possible situations the controller must handle.
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Solo Response Run #100
Random ICs M = [1.0 0.5 0.3]
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Figure 4.1.17: Solo response after 100 iterations; random initial conditions experiment
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Figure 4.1.18: Comparison of responses from zero initial conditions obtained using
canonical network configuration (q.v. Section 3.3.3) and a network trained with random

initial plant conditions
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Figure 4.1.19: Network after 100 iterations: random initial conditions experiment
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Figure 4.1.20: Switching logic implemented by the network of Figure 4.1.19.
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Triple Integrator

The last experiment with linear systems was performed to evaluate the behavior of

the algorithm with a higher dimensional plant, in this case a triple integrator. In keeping

with the above acknowledgement that the NMC algorithm is essentially a full state feedback

methodology, the network is shown all plant states; the third order NMC network shown

in Figure 2.6.2 was thus used for this experiment with the desired equilibrium

xdT = [1.0 0.0 0.0]. The weighting vector was chosen to be

mT = [1.2 0.8 0.4]; this was somewhat arbitrary, but was guided by the parameter

tradeoff conducted in Chapter 3.

The solo responses shown after the fiftieth iteration are shown in Figure 4.1.21.

The response is somewhat underdamped, overshooting the desired equilibrium position by

about 9% before settling, even though the ratio of velocity to position state deviation

weighting is greater in this case than in the double integrator problem. It would appear that

in general the shape of the closed loop response will vary not only as a function of the

weighting matrix used, but also as a function of the plant dimension; generalizations

established for second order plants may not be transferable to third order dynamics.

Nonetheless, the network is still implementing an effective, stabilizing position regulator.

Figure 4.1.22 shows the network which implements the control law. It is not

possible to adequately display the switching logic (in this experiment they ,would be planes

cutting through the three dimensional state space) for this system. However, analysis of

the data reveals that the control signal shown in Figure 4.1.23 is well approximated by the

linear state feedback u =- [27.3 21.8 10.3]x, which yields closed loop poles at

sl,2 = -1.15+1.45j and s3 =-8.0. This pole structure produces a step response which

agrees exactly with that shown in Figure 4.1.21. Thus, even for this third order plant, the

NMC algorithm has produced a network which implements a feedback law which is

essentially linear, at least for the range of states experienced in the simulations.

These further results with linear plants confirm the observations of the previous

chapter. The NMC algorithm constructs networks which implement control laws capable

of stabilizing the (unknown) plant about the desired equilibrium. Further, quite often these

control laws are completely linear over the range of states experienced in the simulation.

As before, the observed control laws arise from the concerted actions of all the neurons in

the network, especially in the instances where the control law is linear and the effective

feedback gains are significantly greater than those which would be expected by looking at

the direct linear terms.
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Solo Response Run #50
Triple Integrator M = [1.2 0.8 0.4 0.3]
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Figure 4.1.21: Solo response after 50 iterations: triple integrator experiment.
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Figure 4.1.22: Network after 50 iterations: triple integrator experiment.
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Solo Controls Run #50
Triple Integrator M = [1.2 0.8 0.4 0.3]
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Figure 4.1.23: Control signals commanded by the network: triple integrator experiment.
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4.2 Nonlinear System Results

Having shown that the NMC algorithm produces sensible controllers for second

(and one third) order linear systems, it is necessary to evaluate the performance of the

algorithm for nonlinear plants and actuators. The eventual application of this learning

control algorithm in the SSL will be in the attitude and position control of the laboratory's

underwater teleoperated devices. Such devices experience at least three kinds of

nonlinearities in their dynamics: viscous water drag, actuators which saturate and which

can provide forces only in quantized levels, and finally the "pendulum" effects resulting

from non-collocation of the centers of gravity and buoyancy in the vehicle. The next three

sections examine the ability of the algorithm to construct controllers in the face of each of

these nonlinearities, concluding with a full nonlinear simulation of the pitch attitude

dynamics of one of these teleoperated vehicles.

4.2.1 Viscous Drag

Viscous drag is the "softest" of the nonlinear problems to be considered, since its

effects are relatively small at low velocities and thus can be easily overcome by slightly

higher thrust levels. The plant equations of motion for the experiments of this section are:

= -bk Ikl + u (4.9)

where b is the drag coefficient, and u is the applied control. Note that for low values of b,

or simulations where the velocities remain low, the first term on the right hand side of (4.9)

will contribute very little. One would thus expect the controller implemented by the

network to be very similar to the canonical controller of Section 3.3.3 under these

conditions.

Figure 4.2.1 shows the solo responses after the fiftieth iteration for two different

values of the drag coefficient: b = 0.5 and b = 5.0. Although the water drag is ten times

more significant in the latter case, the closed loop responses obtained by the network are

virtually identical! This suggests that very different control strategies are employed, and in

fact Figure 4.2.2 confirms this. The network has "learned" about the higher drag levels in

the b = 5.0 experiment and provides more positive thrust over a longer period of time than
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in the b = 0.5 experiment; in fact, while in the latter experiment the network must use

negative thrust to brake to a stop at equilibrium, in the former experiment the network uses

the higher drag levels to essentially coast to a stop. Again it must be emphasized that

nothing in the payoff function explicitly tells the network about the larger drag levels, nor
how to adjust to them; these different control laws have been constructed based upon the

mutual interactions of the network, plant, and payoff function during the training phases.

Figures 4.2.3 and 4.2.4 show the network and resulting switching logic after the

fiftieth iteration for b = 0.5, and Figures 4.2.5 and 4.2.6 show these diagrams for

b = 0.5. Not only are the linear halves of the respective control laws different, the hidden

neuron switching logic for the two drag levels is different as well. Although the magnitude

of the contribution of each hidden neuron to the control is almost identical in the two
experiments, the portion of the state space to which each responds is quite different for the

two drag levels. The switching lines of the b = 0.5 experiment are very similar to those of

the canonical run, which, as noted above, might have been expected given the relatively

small contribution of the drag term in this case to the equation of motion. The switching

lines of the b = 5.0 experiment are similar in their positioning and in the width of their

linear regions to those of the lower drag experiment, but they are rotated somewhat from

the b = 0.5 lines. In fact, it is this reorientation of the switching lines which creates the

observed differences in the control profiles. As the state evolves from rest in the b = 5.0

experiment, only the output of neuron three begins to fall. The outputs of neurons four and

five remain constant and even rise a bit as the velocity increases; in contrast, the output of

all three hidden neurons in the b = 0.5 experiment begin to fall off rapidly as the plant

velocity increases. By the time the velocity has reached its peak, the hidden neurons of the

b = 0.5 network are almost half off, while those of the b = 5.0 network are still on as
much as they were at the beginning of the simulation. Thus, while the control output by

the b = 0.5 network drops rapidly as the state evolves, that output by the b = 5.0

network falls off much more slowly.
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Figure 4.2.1: Solo responses after 50 iterations for high and low drag experiments
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Figure 4.2.2: Control signals from network for high and low drag experiments
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Figure 4.2.3: Network configuration after 50 iterations for low drag experiment
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Figure 4.2.4: Switching logic implemented by the network of Figure 4.2.3
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Figure 4.2.5: Network configuration after 50 iterations for high drag experiment
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Figure 4.2.6: Switching logic implemented by the network of Figure 4.2.5
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Actuator Filter for Bang-Bang Experiments
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Figure 4.2.7: Actuation filter for the bang-bang controller experiments

4.2.2 Bang-Bang Actuation

For this experiment the NMC algorithm was again applied to the double integrator

plant, but here the controls commanded by the network were first sent through the filter

shown in Figure 4.2.7; the output of this filter is then applied to the plant as the control.

Thus, commands from the network between -1.0 and 1.0 have no effect on the plant,

commands larger than 1.0 cause +20.0 units of control to be applied, and commands

smaller than -1.0 cause -20.0 units of control to be applied.

Note that this is actually quite a difficult problem for the network. In addition to

developing a stabilizing switching logic, it must "learn" where the trigger levels of the

actuator are. In initial experiments with the canonical weightings mT = [1.0 0.5 0.3]

it was found that the network would bring the plant to halt slightly short of or slightly

beyond the desired equilibrium position. To prevent this, the position deviation weighting

was increased to 2.5. Further, although limiting the magnitude of the control signal is not

as critical in this experiment from a physical standpoint, a slight control weighting was

used to keep the actual magnitude of the signals output by the network bounded. Thus, the

weighting vector mT = [2.5 0.5 0.02] was used for this section.

Figure 4.2.8 shows that the algorithm has again successfully devised a network

which brings the plant to rest at exactly the desired equilibrium position. Note that the

response is more "s"-shaped than the linear responses, and settles much more quickly than

in the previous experiments. The controls applied to the plant, shown in Figure 4.2.9,

tend to chatter quite a bit as the plant approaches equilibrium, but significantly there is no
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Figure 4.2.8: Solo responses after 50 iterations for the bang-bang experiment

limit cycling in the final position. Figure 4.2.10 shows the actual signals output by the

network. Note that these also chatter, but this arises more from the impulsive changes in

the velocity than any specific nonlinear action of the network itself. What is more

interesting is that the chatter is about the -1 line; this is exactly where it must be in order to

continue to trigger the actuator. This is a rather revealing example of the amount of

learning done during the training periods; the network could not know about the actuator

trigger levels except by experimentation with the dynamics during training.

Figure 4.2.11 shows the network which implements the controller. Showing the

individual switching lines of the hidden neurons would not be of interest given the nature

of these actuators; what is interesting is the actual switching logic which develops taking

into account both the network and the actuation filter shown in Figure 4.2.7. There are
two switching lines of interest here, the +Umax/off boundary and the -Umax/off boundary.

These can be found by (numerically) solving:

1.0 = UL(X) + UN(X) (4.10)

-1.0 = UL(X) + UN(X)

where uL(x) and uN(x) are the linear and nonlinear halves of the network control law,

given by equations (3.2). The resulting switching lines together with the plant trajectory

are shown in Figure 4.2.12. Notice that the equilibrium point lies, as it must to avoid limit

cycling, exactly between the two boundary lines, and hence in that narrow region of state

space where the actuators are off. These switching lines have a constant slope of about
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Figure 4.2.9: Control applied to the plant by the bang-bang actuators on the 50th iteration
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Figure 4.2.10: Actual commands issued by the network during the 50th iteration for the
bang-bang actuation experiment.

-141-

LjU

20

10

0
0
I._t-
O

.......... . ....... ............'.......... i; 1 111
.---I-- !~~~~~~~~~~~~~~~~~~~~~~~~~~---------

1

c-

o
O

0

-1

-2
0.0

L



1

Figure 4.2.11: Network configuration after 50 iterations for the bang-bang experiment
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Figure 4.2.12- Switching logic taking into account the network dynamics of
Figure 4.2.11 and the actuation filter of Figure 4.2.7
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-6.25 and intercept the x axis so as to bracket tightly the x = 1.0 equilibrium point. The

chatter is clearly seen in Figure 4.2.12; once the state has intercepted the switching lines,

the plant is effectively guided along them to the desired final state, chattering down the
-Umax switching boundary.

4.2.3 MPOD Simulation

The final experiment with the NMC was conducted to demonstrate the feasibility of

this algorithm for a system of "practical" complexity, and hence lay the foundations for a

real time hardware implementation of this learning controller. The plant chosen for this

experiment was a model of the pitch attitude dynamics of the SSL's Multimode Proximity

Operations Device or MPOD, a teleoperator used to simulate satellite docking and servicing

tasks in a neutral buoyancy environment.

The equations and physical parameters of MPOD have been exhaustively examined

in several SSL theses and hence the derivations will not be detailed here. For the purposes

of testing the NMC algorithm, the dynamic model is given by (Vyhnalek, 1985):

I0 = - bll 0 - MB, maxSin(O) + t (4.11)

where 0 is the pitch angle, I is the rotational moment of inertia about the pitch axis, b is
the drag coefficient, MB,max is the maximum moment resulting from the offset of the

center of buoyancy with respect to the center of gravity of the vehicle, and X is the applied

torque. Experimentally (Parrish, 1987) these values have been found to be approximately,
b/I = 2.5, MB ,max/I = 0.4 rad/sec2 , and I = 300 kg-m2 . The control torque is delivered in

32 discrete levels, from -288 to +288 N-m. The actual torque delivered to MPOD as a

function of the received commands, u, can be approximately modeled as a staircase

function, given by:

288 if u > 16
t(u) = int(u)*18 if lul < 16 (4.12)

-288 if u < -16

Two different regulator setpoints were simulated so as to explore the effects of the
sin(O) nonlinearity at different pitch attitudes. The first setpoint was xdT = [1.0 0.0],
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where the pitch angular position is measured in radians; for this setpoint the sin(O) term

will be monotonically increasing as the plant evolves from rest to the equilibrium point.
The second setpoint was chosen as xdT = [2.0 0.0], which ensures that the sin(O) term

is first increasing, then decreasing in its impact on the dynamics as the plant approaches

equilibrium from rest.

Figure 4.2.13 shows the result after fifty iterations for the first setpoint. The

response is very slightly underdamped, overshooting by 1.3%, and settles in about 2.6

seconds. Figure 4.2.14 shows the torques actually applied to MPOD (i.e. the result of

sending the network's output through the staircase function of equation (4.12)); notice

again the small amount of chatter required to maintain the setpoint. To offset the buoyancy

moment at this first equilibrium point requires about 101 N-m of torque, which lies exactly

between the +90 and +108 N-m torque levels which MPOD's actuators can provide; thus

the network is switching the torque rapidly between these two levels to approximate the

required intermediate level of thrust.

Figure 4.2.15 shows the results after fifty iterations for the larger angular

maneuver. Here there is no initial overshoot, but again, as Figure 4.2.16 shows, the

commanded torque tends to chatter in the steady state. Not shown in Figure 4.2.15 is a

very slow overshoot of about 2% which accumulates after about 10 seconds; the controller

has eliminated this by the 15 second mark. This slow overshoot, however, helps explain

why the control chattering, between the +90 and +108 N-m levels as seen from

Figure 4.2.16, is actually slightly below the +109 N-m required to maintain MPOD at the

2.0 radian pitch orientation; the controller is using the buoyancy moment to help slow the

vehicle and counteract the building overshoot. In the steady state, after about 15 seconds,

the chatter is reduced and the control is (mostly) constant at the +108 N-m level.

Figures 4.2.17 and 4.2.18 show the network and switching logic which have

developed after fifty iterations for the first setpoint, while Figures 4.2.19 and 4.2.20

show these diagrams for the second setpoint. Notice that, for the first setpoint, the

switching lines again resemble those of the canonical run or of the b = 0.5 drag

experiment of Section 4.2.1, although the hidden neurons remain saturated on for

significantly longer. In fact, the hidden neurons operate in the on saturation region until the

vehicle is approximately 1/3 of the way to its equilibrium position, contributing +33 units

and hence ensuring that the actuators are operating at maximum output. As the state

approaches equilibrium, these gradually begin to reduce to about 50% output each in the

steady state, providing the commands necessary to counteract the resulting buoyancy

moment.
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Solo Response Run #50
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Figure 4.2.13: Solo response after 50 iterations for 1 rad MPOD pitch maneuver
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Figure 4.2.14: Controls applied by MPOD's thrusters during 1 rad pitch
manuever on the 50th iteration
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Figure 4.2.15: Solo response after 50 iterations for 2 rad MPOD pitch maneuver
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Figure 4.2.16: Controls applied by MPOD's thrusters during 2 rad pitch
manuever on the 50th iteration
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Figure 4.2.17: Network developed after 50 iterations for 1 rad MPOD pitch maneuver

Phase Plane Switching Logic
MPOD Set Point 1 M = [1.0 0.5 0.3]

2

1

0

-1

-2
-2 -1 0 1 2

x

Figure 4.2.18: Switching logic implemented by network of Figure 4.2.17
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Figure 4.2.19: Network developed after 50 iterations for 2 rad MPOD pitch maneuver
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Figure 4.2.20: Switching logic implemented by network of Figure 4.2.19
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The switching curves for the second setpoint are more revealing. These curves are

still arranged so that the hidden neurons begin the simulation in the on saturation region,

again ensuring the actuators are saturated at +288 N m. The controller implemented by the

network brings MPOD to a velocity of 0.5 rad/sec and essentially coasts at that velocity

until about half the desired pitch angle is obtained. At this point the trajectory intersects the

critical point formed by the intersection of hidden neuron three's switching line with those
of hidden neurons four and five at xcT = [0.95 0.5]. As the state crosses this point,

each hidden neuron begins to shut off: neuron three eventually comes fully off, while

neurons four and five remain on 50% in the steady state. This drop in hidden neuron

output, coupled with the linear feedback terms, accounts for the large, smooth drop in the

control from the +288 N m level to the +90 N m level seen in Figure 4.2.15.

Significantly, this drop is occurring as the contribution of the sin(O) term is reaching its

maximum and beginning to decrease, i.e. when the pitch angle approaches and exceeds

1.57 rad.

Thus the MPOD simulations, like those involving bang-bang actuators, viscous

drag, and noisy sensors, has led to the development of control laws which are nonlinear

over the range of states experienced in the simulations. This is in marked contrast to the

linear systems experiments above, where most of the control laws developed were

completely linear during the simulation. It is important to note that all of these control

schemes have been implemented on the same network and further that, regardless of the

character of the control law, every neuron participates in its formulation. While the

algorithm seems to "prefer" linear controllers, probably arising from the fact that the

teaching stimulus is linear in the states, it will use its nonlinear degrees of freedom when it

must to account for the plant dynamics or operating conditions.

4.3 NMC Failure Modes

Several cases have been observed in which the neuromorphic control algorithm fails

to converge. These failures all occurred during the training period; there have been no

observed cases where the algorithm stabilized during the training phase and yet was

unstable during the solo runs. Each training failure became manifest when the response of

the system continually exceeded the absolute bounds on performance imposed by the
trainer (i.e. x(t) > 10xd, or u(t) > 5uult. A particularly common form of failure occurred

when the network weights grew so rapidly during training that the maximum control bound
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imposed by the trainer was exceeded for any value (including zero) of the plant states. The

simulator would thus become locked into a cycle in which a reset was signalled at every

time step; this would continue until manually interrupted. This section presents a summary

and brief analysis of each of the situations which evoked this behavior.

The first class of observed failures points out one of the fundamental limitations of

the NMC algorithm: at each point in time that a synaptic weight change is initiated, the sign

of the payoff function must correctly reflect the required change in the magnitude of the

control signal; e.g. if 8 is positive, this indicates that a more strongly positive control is

required to force the plant state to the desired equilibrium, and vice-versa. It is this

requirement which prevents a (weighted) sum squared error metric from being used as the

payoff function.

Notice that this limitation forces the designer to know the sign of the impact of the

control on the states of the plant. If this sign is inverted (for example, if the control gain in

the double integrator plant examined in Chapter 3 were negative), the algorithm will

become unstable; in this case the "criticism" provided by the trainer is essentially telling the

network to adjust the control in exactly the wrong direction. A more subtle manifestation

of the same problem occurs when the plant is nonminimum phase; i.e. when the output one

wishes to regulate contains the negative of one or more of the plant states. In this situation,

the transients of the output tend to first move further from their desired equilibrium

positions before settling. This behavior clearly confuses the algorithm which occasionally

becomes unstable with these plants. Interestingly, there were several times when the

network did converge to a stabilizing controller for a nonminimum phase plant, but since

these results were not repeatable with different initial conditions, the algorithm was judged

unstable in this case, and hence the results are not included in this thesis.

No solution is known for the problem posed to the NMC by nonminimum phase

plants; indeed this type of plant can cause problems for many conventional adaptive control

schemes. A possible solution to the sensitivity of the algorithm to the sign of the plant

control gain would be to make the payoff function itself adaptive; that is, allow certain

changes to occur to the structure of the critical signal provided by the trainer based upon

observations of the correlation of the criticism and some metric of controller performance

improvement. This "metacritical" level is almost, but not quite, a method of introducing

into the NMC algorithm a more conventional on-line determination of the sensitivity

derivatives of the plant and controller. "Almost" so, because this metacriticism can be

theoretically quite crude, containing only sign information, in order to address the problems

noted above.
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The second form of observed failures occurred when the magnitude of the payoff

signal grew "too large". In the original derivation of the back propagation algorithm, the

magnitude of the output layer error signal never grew larger than +1.0. In the NMC

algorithm, depending upon the values of the coefficients in equation (3.7) or the magnitude

of the desired final states, the payoff signal can grow substantially larger than 1.0. In fact,

the state weighted payoff function algorithm was observed to be unstable for values of
mT = [7.0 0.5 0.3], with xdT = [1.0 0.0], and also for mT = [1.0 0.5 0.3],

with xdT = [5.0 0.0]. The resulting large 6(t) produces large weight changes at each

synaptic update step, which seems to incite unstable oscillations in the network weights.
Tight bounds must be thus maintained on 8 if the algorithm is to converge.

Clearly this particular failure mode places a limitation on the utility of the algorithm.

It is easy to restrict the payoff function weights, m, but one would like to be able to
command arbitrary setpoints, xd, and still be guaranteed a stable learning process. One

could, of course, train the network on a smaller setpoint, such as xdT = [1.0 0.0], then

introduce a bias into the sensors (with the trainer off!), but this could cause serious

problems for nonlinear plants, which may exhibit greatly different dynamics as the

magnitude of their states grow. One possible way to rectify this problem in the NMC

algorithm might be to scale each contribution of the state deviations in the payoff signal to

their desired final values. A more general formulation for the payoff signal, then, might be:

8(t) = M x Xd x M
x xd 

-Musgn(u)i u I (4.13)

If any of the desired states is zero (for example xd in a position regulator), the denominator

of that term's contribution to the payoff should be replaced with unity. In fact, a
preliminary evaluation of this new payoff function was performed for xd = [7.5 0.0],

and the algorithm successfully converged to a stabilizing controller.

The final form of instability witnessed is related to the above problem of restricting

the absolute magnitude of the payoff signal. This last problem arises whenever the control
signals commanded during the training phase begin to exceed substantially uult. Such an

event can occur in two situations: when using (for the double integrator plant, at least) a

state weighted payoff function in which the velocity weighting is zero, i.e.
mT = [Mx 0.0 Mu]; and when the amount of control required to even stabilize an

unstable plant is approximately the same, or larger than, uult, such as with the plant:
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1

G(s) = (s+5)(s-5) (4.14)

when uult = 16.0. In both these cases, during its first training run the network finds itself

in a configuration where the plant has drifted very far from the desired equilibrium; in

order to regain the equilibrium configuration, the algorithm tries to increase the synaptic
weights and hence command larger controls. If these controls begin to exceed uult (as they

must just to stabilize the plant in (4.14)) their impact on the payoff function becomes quite

large and the unstable oscillations in the network weights discussed above occur.
In all cases observed, increasing uult or decreasing Mu removed this instability; this

is in agreement with the results of Sections 3.3.1 and 3.3.2 where it was shown that the

algorithm produced stabilizing controllers even in the absence of explicit control

weightings. In general, however, this change in the payoff function will lead to (perhaps

undesirable) changes in the shape of the closed loop response; this is an excessive price to

pay to avoid a source of instability which will arise only during the first training iteration.

It has already been demonstrated that the network tends to arrive at the "form" of the

control law it implements after only one or two iterations, then slowly begins to tune this
control law, lowering umax to the optimal level, in the sense of minimizing 8(t). This

suggests that an "annealing" approach to the contribution of the control to the payoff

function might be successful; i.e. start the algorithm with little or no control weighting in

the payoff function, then slowly increase this weighting to the desired level as the number
of training phases increases. Equivalently, one could do the inverse with uult.
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Chapter 5: Conclusions

5.1 Observations and Caveats

This thesis has demonstrated the feasibility of using one of the new neural network

architectures as the basis for controllers which learn to regulate dynamic systems. This is

not to suggest that what has been presented constitutes a fully developed adaptive control

algorithm. The distinction between adaptive and learning controllers, as noted in the

Introduction, is subtle but important; the fundamental differences in these concepts alone

would rule out any immediate practical applications of the above results. One could hardly

allow an airplane to crash a few times before the neural controller invented a stabilizing

control scheme. But then, one would not expect a novice human pilot to perform much

better without training! A possible method for learning controllers in general, and the

NMC in particular, to be used as viable control strategies for complex systems would be to

allow the network to perform its first training runs in a simulated environment, as is done

with human pilots for air- and spacecraft. The resulting trained network could then be

brought on-line into the real-time control situation. The control law it has developed based

upon its interactions with the simulator should be sufficient to at least ensure stability, if not

superb performance, provided the training model has been sufficiently accurate. The NMC

could then fine tune its control law, and hence increase its performance, as a result of the

real-time interactions with the physical process.

As adaptive schemes go, the NMC algorithm is rather slow, requiring usually

between twenty and one hundred seconds of (simulated) training time until it converges to

the final form of its control law. Compare this with, for example, an adaptive sliding mode

controller or similar parameter estimating adaptive algorithm, in which the controller

parameters can be ascertained (given a sufficiently rich trajectory) in only a few tenths of a

second; although, to be fair to the NMC, parameter estimating adaptive architectures are

heavily dependant upon the assumed structure of the plant and the form of a stabilizing

control law, while the neural controller must essentially learn anew the principles of

feedback control each time it is run. The observed rate of convergence is probably wholly

attributable to the (somewhat arbitrary) topology and training parameters chosen for

analysis: no attempt was made to increase the performance in this respect, and there is
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evidence, even among the training parameters chosen for analysis, that faster learning is

possible without jeopardizing stability.

In fact, the NMC has accomplished a great deal given its extremely simple

architecture. Other experiments with back propagation networks have involved thousands

of neurons, and tens to hundreds of thousands of synaptic connections; the NMC

examined here is implemented with (for second order plants) just ten neurons and fifteen

synapses, and yet learns very complicated (and very useful!) mappings. Sejnowski and

Rosenberg's (1987) simulation which learned to read English text aloud took almost one

week on a DEC VAX 11/780 to train; by contrast, the NMC algorithm completes a set of

fifty iterations in about two hours on an IBM PC/AT (depending upon the complexity of

the plant equations of motion).

Further, there is nothing special in the topology of the network or in the structure of

the training algorithm to make the networks examined especially suitable for control

purposes; the NMC algorithm and network topology examined above might equally well

be trained to implement XOR, or any other desired mapping. This lack of structure, or

perhaps the ability to create their own structure, is one of the most exciting aspects of

neural network designs in general. Coupled with the observed ability of the network to

determine which of a set of input stimuli were pertinent for controlling the plant

(q.v. Section 3.5.4), this opens the possibility for more advanced adaptive control

architectures.

However, nothing has been mathematically proven regarding the performance of

the NMC algorithm. Any justification lies solely in analogy to the back propagation

proofs, supported by about one hundred experiments which only demonstrate the stability

of the algorithm for a few plants, about still fewer operating points, and in a simulated

environment. Moreover, it has been shown that certain choices of the algorithmic

parameters will result in instability and, even though many of these can be addressed as

discussed in Section 4.3, there are probably many other, yet undiscovered, combinations

of plants and algorithmic parameters which will also result in unstable operation. To have

complete confidence that the results presented above are not special cases of a

fundamentally unstable algorithm, rigorous proofs would need to be developed which can

provide justification for, and predict limitations on, the stability of the learning process.

Given the highly nonlinear nature of the network dynamics as a whole, such proofs are

likely to be difficult at best.

Finally, the results detailed above only demonstrate the ability of a neural network

to regulate a dynamic system, and that only after it has traversed essentially the same path

through state space several times. It is a more difficult problem to design a similar
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algorithm in which a neural network learns to behave as a true controller, capable of

guiding the plant along an arbitrary desired trajectory; a trajectory which it may or may not

have previously experienced during its training phases. The goal of this thesis has been to

demonstrate the feasibility of using neural networks for control applications; the results

reported are considered encouraging enough to begin intensive research into these more

sophisticated neuromorphic controllers, and some preliminary ideas along these lines are

presented in the next section.

5.2 Recommendations for Future Research

Most of these recommendations on the subject of neural controllers center around

resolving the above noted problems which have emerged in the course of this preliminary

analysis of this topic. Clearly the first priority should be the construction of correct proofs

which demonstrate when and why such an algorithm will successfully converge to

stabilizing control laws. A good initial step in this direction would be to devise such a

proof for just the double integrator plant and second order network configuration described

in Chapter 2 and 3, and demonstrate the observed instabilities mathematically. Such a

proof might help establish a theoretical framework in which the relation between the form

of the payoff function, the actual plant dynamics, and the range of plant initial conditions

used in training could be reliably quantified and used to predict the final configuration of

the synaptic weightings and the resulting neural switching logic.
The next priority should be to use the results of this thesis to construct a true

neuromorphic control network, instead of one which functions solely as a state regulator.

As with the neuromorphic regulator, a fully trained neuromorphic controller should be able

to, in the presence of a time invariant plant, follow any desired trajectory without any

further intervention of the trainer: the trained network should thus implement a perfect

closed loop tracking system. Construction of such a network would require some changes

in the topology and training system developed above, but these extensions should be

straightforward. As a first cut, for example, one could add two input layer neurons which

specify the desired final state for the network; this would probably also require more

hidden layer neurons. In the same vein, it would be interesting to explore the concept of a
neural identifier, in which the network is presented with a (discrete) time varying input, uk,

and required to produce a set of n outputs, x, which satisfy the relation:

Xk+1 = g(xk' Uk) (5.X)
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Here the error signal at each of the n output nodes would be the deviation of that state from

the value it should have given the dynamic relations, g(o), and the control time history.

It has already been noted that the back propagation algorithm upon which the NMC

is based is only one of a plethora of neurally inspired algorithms. Given the serious

limitations inherent in the back propagation information processing paradigm, there is

adequate motivation to consider some of these other algorithms, or at least attempt to

incorporate their features into the structure of back propagation. In particular, it is

extremely difficult to have a back propagation network "understand" time as an external

variable. Since these networks employ neurons whose outputs develop "instantaneously"

as functions solely of their current net input, there is no dependence in the network on the

previous neural states; the back propagation nets examined in this thesis can hence be

realistically used only for static pattern matching. This presents a serious drawback from a

control standpoint. One possible way to introduce a temporal aspect into the operation of

back propagation, and hence into the NMC algorithm, would be to allow feedback

connections in the network, both between layers and between individual neurons within a

layer. In this way, every time the net is "pulsed" in response to a new set of inputs, the

values which develop at the output layer neurons will be functions not only of the current

inputs, but also of the past network state. Rummelhart and Hinton have already made

some preliminary investigations into this extension to back propagation, and in fact have

demonstrated that such recurrent nets demonstrate the same convergence properties as the

previously detailed networks.

Many of the sections in Chapters 3 and 4 leave one wondering "what if...?";

which is precisely the same question which inspired the results cited in those chapters. The

NMC algorithm detailed above is hence itself worthy of further study without any

modifications. What is the optimal number of hidden layer neurons; how will the algorithm

function for even higher order linear and nonlinear plants; to what extent does the range of

states encountered in the training sequence determine the control laws developed by the

network; can this methodology be extended to multiple input and output plants; these are

but some of the questions which arose in the preparation of this thesis. Clearly, time

constraints prevented these from being analyzed in further detail.

Finally, despite the warnings issued in the previous section, a hardware

implementation of the NMC should be effected as soon as possible on one of the SSL's

underwater teleoperators. It is necessary to ensure that the observed simulation results,

encouraging though they are, can in fact be reproduced in a physical system. It is no

-156-



accident that the pitch attitude dynamics of MPOD was chosen for analysis at the end of

Chapter 4; at this stage, MPOD is the vehicle in the laboratory most suited for an

experimental control algorithm of this type.

In fact, the necessary software has been written, debugged, and installed on

MPOD's control station RECS, the Reconfigurable Experimental Control Station. Only a

serious hardware failure in MPOD's pressure distribution system midway through the

Spring 1988 academic term prevented the results of this implementation from being cited

herein. Complete repairs to the vehicle have been almost completed as this thesis is being

prepared, and it is expected that the NMC will have its first hardware test sometime during

June 1988. Important factors to assess in these hardware tests will be the ability of the

algorithm to design networks even in the face of substantial time delays in the downlink

path, and sensor noise corrupting not only the network inputs, but also the training signal

itself. Once the algorithm has proven itself effective in real time, it would be valuable to

compare the performance of a "pretrained" network, i.e. a network which has first been

trained on the MPOD simulator used in this thesis and then installed in the actual vehicle,

with a network which acquires all of its training while on-line.

The ultimate aim of the future research described in this section would be to address

the criticism, posed in Section 5.1, of the suitability of these architectures for actual

implementation; the use of neural networks as elements of robust, unstructured adaptive

controllers is a very tantalizing goal, but much work yet needs to be done to establish the

feasibility of this idea.

5.3 Summary and Conclusions

This thesis has proposed and evaluated several extensions to the classical back

propagation methodology for training neural networks. These extensions consist of three

fundamental modifications. First, the paradigm of an omniscient teacher imposing a strict

functional relationship between the input and output layers has been relaxed and replaced

by a critic. This critic, observes the interaction of the network with its surrounding

environment and generates a signal which represents a qualitative evaluation of how well

the network is producing the desired effects in this environment. The criticism, or payoff,

signal is applied at the output terminals of the network and back propagated through each

layer in the conventional manner, providing the training stimulus for each synaptic update

phase. The second change is the use of linear response neurons in both the input and

output layers so as to encode the fullest possible dynamic range of impinging
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environmental stimuli and the signals exported by the network in response. Finally, the
training set for the network is not specified through a pretabulated mapping table, but rather

arises as the result of the real time interaction of the network with a dynamic system, whose

states evolve in time driven by the outputs of the network.

The motivation behind these modifications has been to evaluate the ability of back

propagation networks to learn to regulate dynamic systems about a specific desired plant

state. For this purpose it is assumed that neither the network, nor the critic, have any a

priori knowledge of the plant nor of the form of a stabilizing control law. In this context,

the above ideas have been incorporated into the neuromorphic controller, a methodology

for the learning control of dynamic systems. The distinction drawn between learning

controllers and conventional adaptive controller is primarily based upon how stability is

achieved. While training, learning controllers may experiment with the plant dynamics,

perhaps driving the system unstable, and require outside intervention (a trainer) to "catch"

the plant, reset the system, and restart the training. The measure of stability for a learning

controller is whether, after a finite period of training, it has developed a control law which

is asymptotically stable to the desired equilibrium state, without any further intervention of

the trainer. Adaptive controllers, by contrast, while they may tune in real time the

parameters of their control law, must never allow the plant to become unstable. Learning

control is hence a less restrictive methodology than adaptive control.

The neuromorphic control algorithm has been demonstrated to produce networks

which implement control laws which bring the plant exponentially to the desired

equilibrium for a range of second order, and one third order, linear and nonlinear plants,

driven by both linear and nonlinear actuators. For the second order plants and the network

topology most extensively studied, the control law implemented by the network has fifteen

tuneable parameters, corresponding to the fifteen synaptic weights. Depending upon the

exact values of these parameters, the resulting controller can be either completely linear, or

composed of as combination of linear and nonlinear terms; although even in this latter case

the linear terms will tend to dominate when the plant is far from equilibrium. The precise

values of the synaptic weights determine the regions of state space to which the nonlinear

network elements, e.g. the hidden layer neurons, respond most strongly. The hidden

neurons can thus be considered as adaptive "feature detectors" on the state space, which

strategically introduce control signals when the plant approaches certain configurations, in

such a way as to improve some metric of system performance.

Analysis has shown that this metric is minimization of the magnitude of the payoff

signal, pointwise in time. The "optimal" solution for the controller would thus be to adjust
its weights so that 6(t) = 0.0 for all time. This minimization requires the network and its
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trainer to perform real time tradeoffs among the parameters of the payoff function.

Moreover, this tradeoff must be conducted in conjunction with the evolution of the plant

dynamics during the training periods, since the interrelations of the plant state variables

which appear in the payoff function are unknown a priori. One could not predict the final

form of the control law based solely on inspection of the payoff function; at least

rudimentary aspects of the plant dynamics must be "discovered" by the network. Hence,

guided by the criticism provided in the payoff function, and based upon its experiences

with the plant dynamics during the training periods, the neuromorphic controller develops

its own unique control strategy. This is very different than a conventional back

propagation result in which the network can learn only those mappings presented by the

trainer; with the NMC, the pupil can actually surpass its teacher.

However, precisely because the control strategy is generated in association with the

evolution of the plant dynamics, the actual control laws developed depend upon exactly

how much of the state space has been experienced by the network while training. This

suggests that the algorithm presented is rather sensitive to the range of plant initial

conditions used during the training period, and raises questions about the degree to which

the training set has been "sufficiently rich" in order that the resulting control law be valid on

the entire state space, not merely on those states visited while training. Further, some

dependence of the control law upon the initial conditions of the network has also been

noted. For a given payoff function, plant, and set of initial plant conditions used during

training, the control laws generated in different trials of the algorithm will be virtually

identical when the network starts with small, random synaptic weights; under the same

training conditions, when the network starts with large, grossly dissimilar initial synaptic

weights, the algorithm will converge to a different control law. However, in each of these

cases certain features of the "shape" of the closed loop plant response which results remain

very similar, suggesting that the control problem as posed to the network is

underconstrained.

Quite often, the network was observed to implement a control law which was

completely linear over the range of states experienced moving the plant from its initial

condition to the desired equilibrium. In these networks, characteristic of neural network

solutions in general, control authority was distributed throughout all the neurons of the

network. However, when required in order to accomplish the desired minimization of the

payoff signal, the network can introduce nonlinear action into the control law in such a way

as to, for example, reduce overshoots, overcome plant nonlinearities, make effective use of

bang-bang actuation, and suppress sensor noise. In many of these cases it can be argued

that the network has developed a primitive, crude plant model based upon its experiences
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during the training phase, and thus feedsforward a certain, predetermined, amount of

control, in addition to the linear feedback terms, so as to force the plant more swiftly to

equilibrium. This was evident, for instance, in the high inertia and high drag plants where

the hidden layer neurons were saturated on, contributing large amount of positive control,

when the plant started from rest, but which shut rapidly off as the plant approached

equilibrium. Further, there is evidence to suggest that the network can distinguish between

relevant and irrelevant environmental stimuli by detecting correlations between activity in

the input layer and the evolution of the payoff signal. The network actually attempts to

remove irrelevant stimuli from the network, and hence reduce or eliminate their impact on

the control law.

The very essence of neurocomputing, as evidenced by the preliminary research

emerging from this nascent field, seems to underscore the nonalgorithmic nature of the

decision logic implemented by neural networks. In fact, for sufficiently complex

networks, it may prove impossible to "unscramble" the decision scheme embedded in the

synaptic weights, one could only verify that the network performs as desired. This feature

may the price one must pay for the plasticity these networks; the same plasticity which

would, for example, allow the network topology most heavily analyzed in this thesis to

equally well be trained to implement an XOR gate, or any other two to one mapping.

Fortunately, for the particularly simple network topologies analyzed in this thesis, it was

possible to analyze and verify the logic employed by the network, however, this would

not, in general, hold true for more complicated neural controllers. This may be somewhat

aggravating to the scientist, who is left without a precise model with which to predict the

behavior of the system, but it is intuitively correct in light of our own experiences with

biological neurocomputers, e.g. our own brains. One could hardly explain, either

mathematically or verbally, how one coordinates the actions of myriads of muscles and

tendons with the sensory feedback required to, for example, hit a baseball. The fact that

we cannot explain exactly how we do it, however, does not negate the fact that we have hit

the ball.

It is this fundamental intuition which lies at the heart of this thesis. Biological

systems are phenomenal examples of robust, adaptive MIMO controllers, yet it is not likely

that any of these systems contain explicit, structured models of the dynamics which govern

their movement. Although it can be (correctly) argued that many of the traits exhibited by

living creatures are "hardwired" into their physical structure, there is ample evidence for

learned sensory motor behavior, such as walking in humans. A child learns to walk,

probably not by least squares tuning of regulator gains, but by qualitatively associating

certain kinds of sensory feedback with unpleasant events, such as falling, and other kinds
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of feedback with pleasant events, such as walking to his or her mother. By trial and error,

typically falling quite often in the process, the child makes the correct mappings of

"sensors" to "actuation" which results in consistently stable perambulation. Learning

control using neuromorphic controllers is intended to be a crude analog of this process, and

the model analyzed above presents just a hint of what this concept, coupled with the new

neural architectures, might allow in the way of providing machines with the same

functionality. It is hoped that the results of this thesis, and the recent advances in

neurocomputing in general, are considered encouraging enough to spur further research

into this fascinating topic.
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Appendix A: The NMC Software
In the interest of providing support for future research at the SSL into neural

networks, the simulator package was constructed to support as many different neural

models and training algorithms as possible. The logical choice for such an implementation

was an object oriented programming style, which allows the software developer to

concentrate on more or less abstract manipulations of high level data types (objects) without

concern for how each object accomplishes the requested actions.

For the NMC simulation, two object classes exist called net and neuron. Nets can

be given three instructions: they can be told to update themselves (which is tantamount to

ensuring that each neuron which comprises the net is updated), to submit to a teaching

iteration, to display their current state in graphical form, and finally, they can be told to
dump their state to an (already open) data file. Neurons can similarly be commanded to

update their current state, and to make an axonic connection to another neuron.

Listing A. 1 shows the C header file which creates the templates for each object.

The structure Network consists of a list of neurons, a vector representing the values of the
current output layer neurons, and pointers to three functions: a Teaching function, a

Displaying function, and a Debugging function. For this thesis, the Displaying function

was never written--space for it is reserved in the net template, however, to allow for the
time when "real time" (hopefully color) displays of the evolution of the network become

viable. The structure Neuron consists of: pointers to a neural activation function, the

derivative of this activation function, and an output function; storage locations which

indicate the current values of the input, output, and error signal, as well as a fourth unused

location for future expansion; a tag which identifies the type of neuron (input layer, output

layer, hidden layer, or bias); and finally, pointers to the heads of two lists of structures

called Synapses, one for the axonic connections and one for the dendritic.

The pattern of interconnections made by each neuron is summarized in lists of

Synapses which are "daisy chained" together. A null pointer for the head of either the
axonic or dendritic list indicates that the neuron has none of the specified connections.

Otherwise, the pointer in the structure Neuron holds the address of the first synapse in the

respective list. Each synaptic structure consists of two storage locations, one specifying

the current synaptic strength and one provided for future expansion, as well as a pointer the

the neuron at the other end of the synapse. The final element of the structure is a pointer to

the next synapse in the list; this will be null if the current synapse is at the end of the list.

Notice that, taken together, the axon-dendrite lists for all neurons in the network will be

redundant, since the axons of one neuron are the dendrites of another. It is, however,
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conceptually and computationally easier to deal with this redundancy than to implement a

more compact model.

Different "flavors" of objects can be created by filling the (initially empty) function

pointers in the object templates. The numeric storage locations are used during

computation and do not generally need to be filled by the user. Each of the functions

associated with an object should conform to the function protocol for that object. These

will be detailed below.

One flavor of network object was created. The protocol for all the functions

associated with network objects is to take a single argument which is a pointer to the

network. The backprop flavored network has the subroutine BackProp as its teaching

function, and the subroutine Dump as its debugging function. BackProp(network)

implements the back propagation algorithm detailed in Chapter 2.0. Dump(network)

simply copies the current state of each neuron in the network to a formatted data file. The

source code for both of these subroutines is listed in Listing A.2.

Several flavors of neurons were created. The protocol for the functions associated

with neuron objects is that each should take a single floating point argument: the activation

and derivative functions take the total neural input net , while the output function takes the

current neuron activation value output as its argument. The linear input flavor has the

activation function Forced(net), the derivative function DerivLinear(net), and the output

function Identity(output). Forced(net) sets the current state of the ith input neuron equal to

the value contained in the ith position of the external array inputvector. The hidden

flavored neuron has Sigmoidal(net) as its activation function, DerivSigmoidal(net) as its

derivative function, and Identity(output) as its output function. The bias flavored neurons

have the activation function AlwaysOn(net), the derivative function DerivSigmoidal(net)

(although the derivative function is never needed for bias neurons in backprop flavored

networks), and again Identity(output) is the output function. Finally, linear output flavored

neurons have the activation function Linear(net), the derivative function DerivLinear(net),

and the (as usual) Identity(output) is the output function. The C source code for all these

activation functions is listed in Listing A.3.

New neuron flavors are created using the subroutine MakeNeuron. This subroutine

takes as arguments the type of neuron being defined (input, output, bias, or hidden), as

well as pointers to the activation function, derivative function, and output functions.

MakeNeuron creates a new neuron object, fills the template with the specified information,

initializes the storage locations and synaptic lists, then returns to the caller the address of

the new object. If there is not enough memory to create a new neuron, MakeNeuron

signals an error and returns a null pointer. Neurons can be connected together using the
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subroutine ConnectNeuron which takes pointers to two (not necessarily different) neurons

as its arguments. This subroutine forms a synaptic connection from the first neuron, to the

second neuron, thus creating a new axon for the first neuron, and a new dendrite for the

second neuron. The appropriate synaptic lists for each neuron are accordingly updated.

Listing A.4 gives the source code for MakeNeuron and ConnectNeuron.

New network flavors are specified by directly loading the list of neurons and

required function pointers into an empty net template. No subroutine currently exists to

assemble new networks as MakeNeuron does for neurons.

The network as a whole is manipulated by the subroutines PulseNet(network), and

by directly calling the teaching and debugging subroutines embedded in the network

definition. PulseNet(network) updates the values of all neurons in the network by calling

the subroutine FireNeuron(neuron), which instructs each neuron to update itself using its

activation function and its current net input, for each neuron. The code for both of these

functions is listed in Listing A.5.

The dynamic simulation section of the program is a straightforward implementation

of a fourth order, fixed stepsize Runge-Kutta algorithm, coded in the subroutine

RKInt(old_ vectornewvectordelta_t.). This subroutine takes as inputs the current state of

the plant, old_vector, and the time step, delta_t., and returns the results of integrating the

plant dynamics over the specified interval in the vector newvector. The plant dynamics

are specified in the subroutine UserFunction(in_vector, outvector), where the relation:

outvector = f(invector, control)

holds between the two arguments, with f(.) the relation between the derivatives of the states

(on the left hand side of the above equation), and the current states and control. Listing

A.6 lists the C source code for these two functions; there are actually several sets of

dynamics in the listed version of UserFunction, however all but one of these is commented

out during any particular run of the program.

Finally, Listing A.7 shows the core of the NMC simulation. This program uses the

structures and subroutines discussed above to implement the NMC algorithm as detailed in

Chapter 2.0. The parameters which control the simulation, (a, rl, f, Mx, MK, xd, Mu, n,

and parameters specifying how much data should be recorded for each solo run and how

many iterations of the algorithm should be performed, are contained in a formatted data file

called NetPars and are read in at the start of the simulation by the subroutine GetPars. An

example data file, and the source for GetPars is shown in Listing A.8.
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Listin A.: Object and Structure Temlates for Network Simulation Facility

MAXNET
FANLIM

INPUT
HIDDEN
OUTPUT
BIAS

99
(MAXNET- 1)

1

2
4
8

struct Network {
struct Neuron *neurons[MAXET]; ;
int outputvector[l] [5];
void (*Teacher)();
void (*Displayer)();
void (*Debugger)();

struct Neuron {
float (*ActFunction)();
float (*DerivActFunction);
float (*OutFunction)();
int neuron_class;
struct Synapse *dendrites;
struct Synapse *axons;
float net;
float output;
float error;
float storage;

struct Synapse {
float strength;
float storage;
struct Neuron *neighbor;
struct Synapse *next_synapse;

};
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Listing A.2: Back Propagation and Network Debugging Subroutines

#include <stdio.h>
#include "NetDefs.h"
#include <math.h>

void BackProp(net)
struct Network net;

exter int NETSIZE, PATTERNS;
extern float LEARN_RATE, DECAY_RATE;
register i = NETSIZE-2, j = 0;
float new_error, temp_delta;
struct Neuron *nextcell, *findcell;
struct Synapse *axon, *axon tree, *dendritic_tree, *endrite;
static int passes = 0;
extern float DerivActFunction(;

/* First thing: make PATTERNS back passes through the net, adding up the
total errors from each step. When all the patterns have been presented
and the total error from these computed for each neuron, divide by the
total number of patterns to find the average amount of error for each
pass, then adjust the connection strengths using the average error */

/* Process all the output neurons first!! */

while (i >= 0) {
next_cell = net.neurons[i--];
if (next_cell->neuron_class == OUTPUT) {

new_error = 0.0;
new_error += next_cell->storage;

/* new_error += (net.output_vector[passes][j++] - next_cell->output);
*/

new_error *= (*next_cell->DerivActFunction)(next_cell->output);
next_cell->error = new_error;

i = NETSIZE-2;

/* Compute the errors for all the other neurons */

while (i >= 0) {
next_cell = net.neurons[i--];
if (next_cell->neuron_class != OUTPUT) {

axon_tree = next_cell->axons;
if (axon_tree != NULL) {

axon = axon_tree;
new_error = 0;
do 
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Listing A.2 Continued...

new_error += (axon->neighbor->error)*(axon->strength);
} while ((axon = axon->next_synapse) != NULL);
new_error *= (*next_cell->DerivActFunction)(nextcell->output);

next_cell->error = new_error;

/* Compute the weight changes required for each step and add them all up */

i =0;
while ((next_cell = net.neurons[i]) != NULL) {

dendritic_tree = next_cell->dendrites;
if (dendritic_tree != NULL) 

dendrite = dendritictree;
do 

temp_delta = (next_cell->error)*(dendrite->neighbor->output);

temp_delta *= LEARN_RATE;
temp_delta += DECAY_RATE*dendrite->storage;
dendrite->strength += temp_delta;
dendrite->storage = temp_delta;

/* This unfortunate piece of code is necessary to keep the axon-dendrite
information symmetric

*/

j =0;
while ((findcell = net.neurons[j++]) != NULL) 

if (dendrite->neighbor == find_cell) {
axon = find_cell->axons;
do {

if (axon->neighbor = next_cell) {
axon->strength = dendrite->strength;

} while ((axon = axon->next_synapse) != NULL);

/* That's the end of that nonsense... */

} while ((dendrite = dendrite->next_synapse) != NULL);

i++;

if (++passes == PATTERNS) passes = 0;
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Listing A.2 Continued...

#include <stdio.h>
#include "NetDefs.h"
#include <math.h>

void Dump(net)
struct Network net;

extern FILE *outfile;
register i = 0, j = 0;
struct Neuron *next_cell;
struct Synapse *axon, *dendrite;

while ((next_cell = net.neurons[i]) != NULL) {
fprintf(outfile,'\n \n

fprintf(outfile,'\n Stats for Neuron %d: \n", i);
fprintf(outfile," Output: %f\t Error: %f\t Net Input: %f",

next_cell->output,next_cell->error, next_cell->net);

axon = next_cell->axons;
if (axon != NULL) {

j =0;
do 

fprintf(outfile,'\n Axon %d has strength: %f",j, axon->strength);

j++;
} while ((axon = axon->nextsynapse) != NULL);

dendrite = next_cell->dendrites;
if (dendrite != NULL) {

j =0;
do {

fprintf(outfile,'\n Dendrite %d has strength: %f", j,
dendrite->strength);

j++;
} while ((dendrite = dendrite->next_synapse) != NULL);

}
i++;
fprintf(outfile,'"\n
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Listing A.3: Activation Function Subroutines

#include <stdio.h>
#include <math.h>
float Sigmoidal(net)

float net;
I

return /(l+exp(-1.0*net));
}

float Identity(net)
float net;

return net;

I

float DerivSigmoidal(net)
float net;

I
return net*(1.0-net);

I

float AlwaysOn(net)
float net;

I
return 1.0;

float AlwaysOff(net)
float net;

I
return 0.0;

float Forced(net)
float net;

extem float input_vector[];
extem int NUMINPUTS;
static int i = 0;
if (i = NUMNPUTS) i = 0;
return input_vector[i++];

}

float Linear(net)
float net;

return net;

float DerivLinear(net)
float net;

return 1.0;

}
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. . . .Listing A.4: Neuron Manipulation Subroutines

#include <stdio.h>
#include <malloc.h>
#include "NetDefs.h"

struct Neuron *MakeNeuron(NeuronClass,ActFunc,DActFunc,OutFunc)
int NeuronClass;
float (*ActFunc)(, (*DActFunc)(), (*OutFunc)();

struct Neuron *temp_neuron;
extern FILE *outfile;

printf("Defining new neuron...");
temp_neuron = (struct Neuron *) malloc(sizeof(struct Neuron));
if (temp_neuron != NULL) {

temp_neuron->ActFunction = ActFunc;
temp_neuron->DerivActFunction = DActFunc;
temp_neuron->OutFunction = OutFunc;
temp_neuron->neuron_class = NeuronClass;

temp_neuron->error = 0.0;
temp_neuron->output = 0.5;
temp_neuron->storage = 0.0;
temp_neuron->net = 0.0;

temp_neuron->dendrites = NULL;
temp_neuron->axons = NULL;
printf("done.\n");

return temp_neuron;

else {

prinf('\n **No more memory to create neurons!!*n");
exit(l);

void ConnectNeuron(neuron_ l,neuron_2)
struct Neuron *neuron_l,*neuron_2;

{
struct Synapse *new_axon, *new_dendrite, *axon, *dendrite;
extern float nrand();
extern FILE *outfile;

printf("Connecting neurons...");
new_axon = (struct Synapse *) malloc(sizeof(struct Synapse));
new_dendrite = (struct Synapse *) malloc(sizeof(struct Synapse));
if ((new_axon != NULL) && (new_dendrite != NULL)) (
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Listing A.4 Continued...

new_axon->storage = new_dendrite->storage = 0.0;
new_axon->nextsynapse = new_dendrite->nextsynapse = NULL;
new_axon->strength = new_dendrite->strength = nrand(.3);
new_axon->neighbor = neuron_2;
new_dendrite->neighbor = neuron_l;

/* If the "from" neuron doesn't have any axons yet (axon list is NULL),
then make this synapse the head of the axon list */

if (neuron_l->axons == NULL) {
neuron_l->axons = new_axon;

}

/* ...otherwise, look for the end of the "from" neurons axon list and
add the new synapse. */

else {

int i =0;

axon = neuron_l->axons;
while (axon->nextsynapse != NULL) {

axon = axon->nextsynapse;

axon->nextsynapse = new_axon;

/* Now do the same thing for the "to" neuron's dendritic tree */

if (neuron_2->dendrites == NULL) {
neuron_2->dendrites = new_dendrite;

}
else {

int i = 0;

dendrite = neuron_2->dendrites;
while (dendrite->next_synapse != NULL) {

dendrite = dendrite->next_synapse;
}
dendrite->next_synapse = new_dendrite;

printf("done.\n");

/* Abort if out of memory */
else {

printf('\n **No memory availible to create a new synapse!!**'n");
exit(l);

}
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Listing A.5: Network Manipulation Subroutines

#include "NetDefs.h"
#include <stdio.h>

void PulseNet (net_type)
struct Network net_type;

{
register i = -1;
struct Neuron *next_cell;
extern void FireNeuron();

while ((next_cell = net_type.neurons[++i]) != NULL) {
FireNeuron(next cell);
next_cell->output = next_cell->storage;

}

void FireNeuron(neuron_type)
struct Neuron *neuron type;

struct Synapse *synaptic_tree, *synapse;
register i = -1;
float sum = 0.0, activation = 0.0;

synaptic_tree = neuron type->dendrites;
if (synaptic_tree != NULL) {

synapse = synaptic_tree;
do {

sum += synapse->strength*(synapse->neighbor->output);
} while ((synapse = synapse->next_synapse) != NULL);

}
neuron_type->net = sum;
activation = (*neuron_type->ActFunction)(sum);
neuron_type->storage = (*neuron_type->OutFunction)(activation);

}
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Listing A.6: Dynamic System Simulator Subroutines

#include "NetDefs.h"
#include <stdio.h>
#include <math.h>
#define MAXDIM 20

void RKInt(old_vector,new_vector,deltat)
float old_vector[], newvector[], deltat;

{
extern int DIMENSION;
float kO[MAXDIM], kl[MAXDIM], k2[MAXDIM], k3[MAXDIM];
float temp_vector[MAXDIM], temp;
register i = 0;

extern void UserFunction();

/* ---------------------------Begin Main Code----------------------------- */

UserFunction(old_vector,kO);
for (i = O0; i <= DIMENSION-1; i++)

temp_vector[i] = old_vector[i]+0.5*delta_t*kO[i];

UserFunction(temp_vector,kl);
for (i = O0; i <= DIMENSION-1; i++)

tempvector[i] = old_vector[i]+0.5*delta_t*k 1 [i];

UserFunction(temp_vector, k2);
for (i = O0; i <= DIMENSION-1; i++)

temp_vector[i] = old_vector[i]+delta_t*k2[i];

UserFunction(temp_vector,k3);
for (i = O0; i <= DIMENSION-1; i++) {

temp = 0.1 66666667*delta_t*(kO[i]+2*kl [i]+2*k2[i]+k3 [i);
new_vector[i] = old_vector[i]+temp;

void UserFunction(in_vector, outvector)
float in_vectorl, outvector[];

{
extern int NOW, sgn();
extern float StairCase();
static float cl = 0.0, c2 = 0.0, c3 = 1.0, foo = 0.0;
extern float control;
extern FILE *outfile;

/* Bang-Bang actuation filter */

if (control>1.0) foo = 20.0;
else if (control< -1.0) foo = -20.0;
else foo = 0.0; */
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Arbitrary second order linear dynamics */

out vector[O] = invector[ 1];
out_vector[ 1] = c*invector[]] +c2*in_vector[ 1]+c3*control;

MPOD dynamics */

/* out vector[l]

}

= -2.5*in_vector[ 1] *fabs(in vector[ 1 ])
- 0.4*sin(in_vector[01) + c3*StairCase(control); */

float StairCase(cons)
float cons;

static float mag = 18.0;

if (cons > 16.0) return mag*16.0;
else if (cons < -16.0) return -mag* 16.0;
else return ((int) cons) * mag;

I

int sgn(x)
float x;

if (x < 0) return -1;
else if (x > 0) return 1;
else return 0;

I
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Listing A.5: Main Simulator Program

#include <stdio.h>
#include "NetDefs.h"
#include <math.h>

float inputvector[5];
float control = 0.0;
int NOW = 0;
FILE *outfile, *outfile2;

int NETSIZE, PATTERNS, NUMINPUTS, NUMOUTPUTS, DIMENSION, MAXPASSES;
int SAMPLE_RATE, OUTPUT_RATE;

float LEARN_RATE, DECAY_RATE, TMAX, XD[5], M[5], MU, MAXCON, NEXP;
float DELTA_T;

main 0( {

struct Neuron *neuron[25];
struct Network neta;

extern float Sigmoidal(), Identity(), AlwaysOno, AlwaysOff();
extern float Forced(), DerivSigmoidal(), Linear(), DerivLinear();
extern float DesiredResponse(), nrand(), AlwaysOn5(), StairCase();
extem void BackProp(), Dump(), RKInt();
extern struct Neuron *MakeNeuron();
extern void ConnectNeuron();
extern float input_vector[];
exter int NOW;
int i,j,k,l, bomb=0;

float pattern[l1[5], response = 0.0, foo = 0.0, goo = 0.0;
float state[2], new_state[2], delta_t,time,error,ic[2];
float con_stack[20];
extern float control;
extern FILE *outflle, *outfile2;

extern int MAXPASSES, PATTERNS, NETSIZE, SAMPLE_RATE, OUTPUT_RATE;
extern int NUMINPUTS, DIMENSION;
extern float DELTA_T, TMAX, NEXP;

/* Start the simulation */

outfile = fopen("DebugOutput", "w");
outfile2 = fopen("NetOutput","w");
printf("Beginning simulation: \n \n");
getpars();

/* Specify the network interconnections */
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Create the individual neurons */

neuron[O] = MakeNeuron(INPUT, Forced, DerivLinear, Identity);
neuron[l] = MakeNeuron(INPUT, Forced, DerivLinear, Identity);
neuron[2] = MakeNeuron(HIDDEN, Sigmoidal, DerivSigmoidal, Identity);
neuron[3] = MakeNeuron(HIDDEN, Sigmoidal, DerivSigmoidal, Identity);
neuron[4] = MakeNeuron(HIDDEN, Sigmoidal, DerivSigmoidal, Identity);
neuron[5] = MakeNeuron(BIAS, AlwaysOn, DerivSigmoidal, Identity);
neuron[6] = MakeNeuron(BIAS, AlwaysOn, DerivSigmoidal, Identity);
neuron[7] = MakeNeuron(BIAS, AlwaysOn, DerivSigmoidal, Identity);
neuron[8] = MakeNeuron(OUTPUT, Linear, DerivLinear, Identity);
neuron[9] = MakeNeuron(BIAS, AlwaysOn, DerivSigmoidal, Identity);

/* neuron[l0] = MakeNeuron(INPUT, Forced, DerivLinear, Identity); */

Stick the neurons into the network definition */

for (i = 0; i <= NETSIZE-2; i++) net_a.neurons[i] = neuron[i];
net_a.neurons[NETSIZE-1] = NULL;

/* Hook the neurons together */

for (i = 0; i <= 1; i++) {
for (j=2; j<=4; j++) ConnectNeuron(neta.neurons[i], net_a.neurons[j]);
ConnectNeuron(neta.neurons[i],neta.neurons[8]);

for (i = 2 i< 4; i++) ConnectNeuron(net_a.neurons[i],neta.neurons[8]);
for (i = 5; i<=7; i++) ConnectNeuron(neta.neurons[i],neta.neurons[i-3]);
ConnectNeuron(net_a.neurons[9],neta.neurons[8]);

for (i=2; i<=4; i++)
ConnectNeuron(neta.neurons[ 10], neta.neurons[i]);

ConnectNeuron(neta.neurons[10], net_a.neurons[8]); */

/* Establish the rest of the network parameters */

neta.Teacher = BackProp;
neta.Debugger = Dump;

Show the state of the network before training */

(*neta.Debugger)(neta);
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/* -------- New Adaptive Control algorithm starts here-----------*/

delta_t = DELTA_T;

/* Loop through all the requested iterations */

for (j = 1; j <= MAXPASSES; j++) {

/* Zero out state and set plant to initial conditions */

ic[0O] = 0.0;
ic[l] = 0.0;
for (k = 1; k <= DIMENSION; k++) state[k-1] = ic[k-1];
error = 1.0;
response = 0.0;
time = 0.0;

/* Loop until the requested time passes */

for (i = 0; time <= TMAX; i++) {

time = i*delta_t;

/* Present input vector to the net and determine the net outputs */

inputvector[0] = state[0];
input_vector[l1 = state[1];
PulseNet(neta);

/* Uncomment this next section to put a delay in the control loop */

/* control = con_stack[0];
for (k = 0; k <= 18; k++) con_stack[k] = con_stack[k+1];
con_stack[19] = net_a.neurons[8]->output; */

control = net_a.neurons[8]->output;

/* Integrate the plant forward in time */

RKInt(state, new_state, delta_t);
for (k = 1; k <= DIMENSION; k++) state[k-l] = new_state[k-l];
response = state[];
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/* Compute the payoff function */

foo = 0.0;
for (k = 0; k <= DIMENSION-1; k++) {

/* if (XD[k] == 0.0) goo = 1.0;
else goo = XD[k]; */

goo = 1.0;
foo += M[k]*((XD[k]-state[k])/goo);

}
foo += -sgn(control)*MU*pow( (double) (control/MAXCON),

(double) NEXP);
net_a.neurons[8]->storage = foo;

/* Check if any bounds are exceeded

if( (fabs(state[0]) >= 10.0)
II (fabs(control) > 5*MAXCON) )

I

/* YES!! So shut down the plant and network and restart the simulation.
If catastrophic, stop the program */

printf('\n\n ERROR! !...\n");
if (error==0.0) (

printf("\n \n Error has occurred...\n");
/* net_a.neurons[81->storage = -1.0*sgn(state[0])*50.0;

(*net_a.Teacher)(neta); */
exit(l);

for (k=l;k<=DIMENSION;k++) state[k-1] = ic[k-1];
response = 0.0;
error = 0.0;

else {

/* NO. So check if this is an update step, and if so call the teacher */

if ((i%SAMPLE_RATE) =- 0) 
(*net_a.Teacher)(net_a);
error++;

}

printf("%3d...",j);
/* if (j != MAXPASSES) continue; */
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Listing A.7 Continued...

/* Now set up to run solo */

fprintf(outfile,'\n \n %d Running without teacher...\n",j);

for (k = 1; k <= DIMENSION; k++) state[k-l] = ic[k-l];
response = 0.0;
time = 0.0;
fprintf(outfile,"Time\tControl\t Output\t Velocity\n");

for (i = 0; time <= TMAX; i++) {
time = i*delta_t;
inputvector[0] = state[0];
input_vector[l] = state[l];
PulseNet(net a);

control = net_a.neurons[8]->output;

/* Uncomment this to put a delay in the control loop */

/* control = con_stack[0];
for (k = 0; k <= 18; k++) con_stack[k] = con_stack[k+l];
con_stack[19] = net_a.neurons[8]->output; */

/* Print out as often as requested

if ((i%OUTPUT_RATE) == 0) {
fprintf(outfile, "%f\t%f t%f\t%f\n",

time, control, response, state[ 1]);
}

/* Integrate the plant forward in time */

RKInt(state, new_state, delta_t);
for (k = 1; k <= DIMENSION; k++) state[k-ll] = new_state[k-l];
response = state[0];

Show the network at the end of all the iterations

(*net_a.Debugger) (net_a);
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Listing A.8: Simulation Parameter Subroutines
I I I 

#include <stdio.h>

FILE *infile;

void getpars() {
extern int NETSIZE, PATERNS, NUMINPUTS, NUMOUTPUTS,

DIMENSION;
extern int MAXPASSES, SAMPLE_RATE, OUTPUT_RATE;

extern float LEARN_RATE, DECAY_RATE, XD[], M[], MAXCON, MU;
extern float DELTA_T, TMAX, NEXP;

extern FILE *infile;
extern void gotopar();

register i;

Load in the simulation parameters */

infile = fopen("Netpars","r");

gotopar(;
fscanf(infile,"%d \n", &NETSIZE);
gotopar();
fscanf(infile,"%d\n", &PAITERNS);

gotopar();
fscanf(infile, "%d \n", &NUMINPUTS);
gotopar();
fscanf(infile, "%d\n", &NUMOUTPUTS);
gotopar();
fscanf(infile, "%d\n", &DIMENSION);

gotopar();
fscanf(infile,
gotopar();
fscanf(infile,
gotopar();
fscanf(infile,
gotopar();
fscanf(infile,

gotopar(;
fscanf(infile,
gotopar();
fscanf(infile,
gotopar();
fscanf(infile,

"%f\n", &TMAX);

"%f\n", &DELTA_T);

"%d \n", &MAXPASSES);

"%d \n", &OUTPUT_RATE);

"%f\n", &LEARN_RATE);

"%f\n", &DECAY_RATE);

"%d\n", &SAMPLE_RATE);
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Listing A.7 Continued...

for (i = 0; i <= DIMENSION-1; i++) {
gotopar(;
fscanf(infile, "%f\n", &XD[i]);

for (i = 0; i <= DIMENSION-1; i++) {
gotopar(;
fscanf(infile, "%f\n", &M[i]);

}
gotopar();
fscanf(infile, "%f\n", &MAXCON);
gotopar();
fscanf(infile, "%f\n", &MU);
gotopar(;
fscanf(infile, "%f\n", &NEXP);

printf("Simulation Parameters: \n \n");
printf("NETSIZE = %d, PATTERNS = %d\n", NETSIZE, PATTERNS);
printf("NUMINPUTS = %d, NUMOUTPUTS = %d \n", NUMINPUTS,

NUMOUTPUTS);
printf("DIMENSION = %d, MAXPASSES = %d \n", DIMENSION,

MAXPASSES);
printf("TMAX = %f, DELTA_T = %f\n", TMAX, DELTA_T);
for (i = 0; i <= DIMENSION-I; i++) printf("XD[%d] = %f\t", i, XD[i]);
printf('\n");
for (i = 0; i <= DIMENSION-1; i++) printf("M[%d] = %f\t", i, M[i]);
printf('\n");
printf("MAXCON = %f MU = %f NEXP = %f\n", MAXCON, MU, NEXP);
printf("LEARN_RATE = %f, DECAY_RATE = %f \", LEARN_RATE,

DECAY_RATE);
printf("SAMPLE_RATE = %d, OUTPUT_RATE = %d\n", SAMPLE_RATE,

OUTPUT_RATE);

void gotopar() {

extern FILE *infile;
char c;

while ((c = fgetc(infile)) != ':') {
if (feof(infile)) {

printf("Input file abnormally terminated. Exiting. \n");
exit(l);

fgetc(infile);
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Listing A.7 Continued...

VARIABLE

(NETSIZE)
(PATERNS)

(NUMINPUTS)
(NUMOUTPUTS)
(DIMENSION)

(TMAX)
(DELTAT)
(MAXPASSES)
(OUTPUT_RATE)

(LEARN_RATE)
(DECAY_RATE)
(SAMPLE_RATE)

(XD)

(M)

(MAXCON)
(MU)
(NEXP)

DEFINITION

Number of neurons in the network
Total patterns for the net to learn

Number of signals input to the net
Number of signals output by the net
Dimension of the simulated plant

Length of each simulated run
Time step size for integration
Number of simulation runs
How often data should be recorded

Rate at which connections are changed:
Momentum term for weight changes
How often to teach the net

Desired final state vector

Weightings for state deviations

Maximum allowable control force
Weighting for excessive control usage:
Exponent for normalizing control
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VALUE

:11
: 1

: 2
: 1
: 2

: 20.0

: 0.005
: 50
:10

: 0.25
: 0.50
:10

: 1.00

: 0.00
: 1.00
: 0.50
: 16.0
: 0.3
:4


