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Abstract

Consideration is given to the numerical integration of unsteady two-dimensional flow
fields which involve finite rate chemistry and are expressed in terms of conservative form
Euler and species conservation equations. The coupled behavior between fluid flow and
finite rate chemistry can introduce appreciable stiffness into numerical schemes, which
then involve prohibitively long computation times. Such calculations become even more
expensive when globally fine grid resolution, in both space and time, is utilized to en-
sure the capture of local flow features. However, the retention of fine grid resolution
is generally needed only within small portions of the overall space/time domain. Typi-
cally, spatial resolution is desired in those regions that are characterized by steep local
changes, e.g., including a shock or a chemical adjustment. Similarly temporal resolution
is needed both when there are non-equilibrium source terms which produce large tem-
poral gradients, and in regions of spatially fine cells due to coupling of the time-steps
with cell volumes. The aim is to provide a description of a controlled grid resolution
approach in both space and time, and to demonstrate its effectiveness for a selected class
of problems. An efficient spatio-temporal adaptive algorithm which allows simultaneous
resolution of both temporal and spatial grids for conservation equations is presented. It
is demonstrated that the approach can yield orders of magnitude faster computations
at essentially the same accuracy as the globally fine grids. The algorithm uses quadri-
lateral cells and embedded meshes which track the moving flow features. It also allows
for spatially varying time-steps which are multiples of global minimum time-steps. The
adaptive technique refines the spatial and/or temporal grid whenever preselected differ-
ences exceed certain threshold levels. Results for internal flow problems are presented
to demonstrate the accuracy and computational efficiency of this algorithm. Examples
include blast waves and scramjet inlets. The chemistry models include a Lighthill gas
and a two reaction hydrogen combustion.

Thesis Supervisor: Dr. Judson R. Baron
Title: Professor of Aeronautics and Astronautics
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Jacobian determinant of transformation, Chapter [2,3]

diffusion flux of species s in the mixture, Chapter [2]

thermal conductivity coefficient for the mixture, Chapter (2]
forward, backward rate coefficient for reaction r, Chapter [2,4]
equilibrium constant for concentrations for reaction r, Chapter [2]
equilibrium constant for partial pressures for reaction r, Chapter [2]
left eigenvector of matrix Fyy, Chapter [7,A]

reference length scale, Chapter (2,8]

size of a time-stride or current maximum allowable temporal level of cells,
Chapter [6]

molecular mass of the mixture, Chapter [2,A]

molecular mass of species s, Chapter [2,4,7,8,A]

diagonal matrix of mean values for the refinement parameter, Chapter [6]
prescribed maximum temporal level of cells, Chapter [6]

shock Mach number, Chapter [7,8]

current temporal level of cells in a certain integration pass P, Chapter [6]
unit normal vector, Chapter [3,7]

number of moles of species s in the mixture, Chapter [2]

number of boundary points, Chapter [3]

number of cells, Chapter [3,5,7]

total number of equations to be solved, Chapter [5,7,A]

number of nodes, Chapter (3]

number of components in the spatial adaptation criterion variable, Chapter (5]
total number of layers of extension cells, Chapter [5]

hydrostatic pressure, Chapter (2,7,8,A]

a fixed reference pressure for chemistry, Chapter [2]

perimeter of cell C, Chapter (3]
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Ps partial pressure of species s, Chapter (2]

P - an integration pass, P € [1, Pr], Chapter [6]

Pr total number of integration passes, Chapter [6]

q parameter indicating inclusion or exclusion of second order source
terms, Chapter [3,4]

q, ¢ heat flux vector and its components, Chapter (2]

q,, Gr; radiation flux vector and its components, Chapter [2]

Q,q spatial adaptation criterion vector and its components, Chapter [5,8]

Q,q a characteristic variable, LU, and its components, Chapter [7]

r? refinement parameter for spatial adaptation, Chapter [5,8]

R total number of reactions, Chapter [2,3,4]

R “characteristic flux vector”, LG, Chapter [7]

Ry, Ry, Ry divide threshold limits for spatial adaptation, Chapter [5]

Ryin, Raz minimum and maximum refinement parameter values in the spatial
domain, Chapter [5]

R universal gas constant, Chapter [2,7,8]

s specific entropy, Chapter [2]

8 curvilinear coordinate, Chapter [3]

(s,n) natural coordinate system, along and normal to a streamline Chapter (7]

8ab covariance between components a and b of a vector, Chapter [5]

S total number of species, Chapter [2,3,4,A]

Ss, S, Sutherland constants, Chapter [2]

t time coordinate, Chapter [2,3,4,6,7,8]

T temperature of the mixture, Chapter [2,4,7,8]

To a fixed reference temperature, Chapter [2,A]

T effective temperature for molecular diffusion of species s, Chapter [2]

T;; effective temperature for the computation of binary diffusion coefficient
between species s and j, Chapter [2]

U, v, u; components of velocity vector,V, in the z; direction, { = 1,2,3,
Chapter [2,4,6,7,8,A]

U,U; state (conservative, dependent variable) vector, and its components,
Chapter {2,3,4,5,6,7,A]

u dependent variable for a scalar model equation, Chapter [4]

|4 volume, Chapter [3]

Vv,V mass average velocity vector and speed of the gas mixture,
Chapter [2,7,A]

V,, Vs, diffusion velocity vector for species s and its components, Chapter [2]
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w fluid velocity in a frame of reference attached to a moving shock,

- Chapter [7]

w source vector, Chapter [2,3,4,6,7]

W, molal production rate of species s by all reactions (mole/vol/time),
Chapter [2]

w, mass production rate of species s by all reactions (mass/vol/time),
Chapter [2]

z,Y,T; spatial coordinates, { = 1,2,3, Chapter [2,3,4,6,7,8]

z relaxation length, Chapter (7]

Y, mass fraction of species s, Chapter [2,4,5,6,7,8,A]

Z chemical symbol for Lightill dissociated atom, Chapter [2,4]

Z,z; “characteristic source vector”, LW, and its components, Chapter (7]

a angle which the solid wall makes with z-axis, Chapter [7]

Otgp stoichiometric coefficient for reactant species s in reaction r, Chapter [2,4]

Oy order coefficient for forward reaction r and species s, Chapter [2]

B bulk viscosity coefficient of the mixture, Chapter [2]

Bsr stoichiometric coefficient for product species s in reaction r, Chapter [2,4]

Bar order coefficient for backward reaction r and species s, Chapter [2]

1,97 ' ratio of specific heats, Chapter [2,6,7,8,A]

r CFL number, Chapter [4,6,8]

r the ratio (y — 1)/(v + 1), Chapter [7]

) a constant in the artificial viscosity formulation, Chapter [3]

8ij Kronecker delta, Chapter [2,7]

At time-step, time-stride, Chapter [3,4,6,8]

€ total internal energy per unit volume, Chapter [2,7,A]

€0, €1 small positive numbers used in evaluating temporal threshold of cell
changes, Chapter [6]

€5 pon-uniformity parameter for one spatial dimension at node 7,
Chapter [3]

Ner temperature exponent for equilibrium rate constant in reaction r,
Chapter (2]

Nfrs Mor temperature exponent for forward, backward rate coefficient in
reaction r, Chapter (2,4,7]

0 phase angle, Chapter [4]

0a characteristic dissociation temperature for Lighthill model,
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Chapter [2,4,7]

K¢ normalized scaling for artificial viscosity coefficient for cell C,
Chapter [3]

A second coefficient of mixture viscosity, Chapter [2]

Aj 7t® eigenvalue, Chapter [7,A]

Ar degree of reaction r, Chapter [2]

Amin a pre-selected non-dimensional negative number, Chapter [4]

A diagonal matrix with entries equal to the eigenvalues of a flux vector,
Chapter [7]

u (first) coefficient of shear viscosity or dynamic viscosity, Chapter [2]

Ha average of a component a for a vector over all nodes, Chapter [5,8]

v kinematic viscosity, Chapter [2]

& n,r computational coordinates, Chapter [2,3]

p mixture density, Chapter [2,3,4,5,6,7,8,A]

Pd characteristic dissociation density for Lighthill model, Chapter [2,4,7,8]

o5 artificial viscosity coefficient at node j, Chapter (3]

g, effective diameter for the molecule of species s (Angstrom units),
Chapter [2]

Osj effective collision diameter between molecules of species s and j
(Angstrom units), Chapter [2]

Omins Omaz minimum and maximum artificial viscosity coefficient in whole domain,
Chapter [3]

3,845 variance covariance matrix and its components, Chapter [5,8]

T chemical time-scale, Chapter [4]

T, Tij stress tensor and its components, Chapter (2]

¢ " equivalence ratio, Chapter [2,8]

¢ a scalar variable, Chapter [3,5,7]

or phase shift, Chapter [4]

¢,,-,q§,,- Wilke’s binary dimensionless ratios between species s and j for the
computation of viscosity and thermal conductivity of mixture, Chapter (2]

) reaction parameter for Lighthill model, Chapter [2,4,7,8]

¥ic artificial viscosity contribution at node j due to cell C, Chapter [3,4]

w wave number, Chapter [4]

w frequency of oscillations, Chapter [8]

ws(T) a term in specific Gibbs function for species s, Chapter [2]

0,90 region and boundary of integration, Chapter [3]

Qp dimensionless collision integral, Chapter [2]
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Qpr, Doy forward, backward progress rate of reaction r, Chapter [2,4]

Subscripts
oo free stream conditions
0 reference chemistry value or value at time O
e local equilibrium value
e exit conditions
f local frozen value
] a component of a vector (U, F,G,W) i=1,...,N,
) inlet conditions
1,7,k node locations
r chemical reaction index and reference condition
8 chemical species index
t tangential component
U Jacobian with respect to state vector
T,y along streamwise or transverse direction
é,n along £ or n direction

Superscripts

non-dimensional variable

transformed variable

] corrected value in predictor-corrector approach
time level

predicted value in predictor-corrector approach
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Chapter 1

Introduction

The field of Computational Fluid Dynamics (CFD) has evolved during the past two
decades to an extent that computational models are playing an increasingly important
role in the design of aerodynamic vehicles. This rapid evolution of CFD is prompted
by increasing costs associated with experimental design and decreasing costs of com-
puter hardware, as well as the detailed behavior that can be determined when the
relevant physics can be modelled. The design of hypersonic vehicles and their engines,
for example, demands some sort of modelling to account for real gas effects. However,
calculations involving non-equilibrium reacting flows can be an order of magnitude more
expensive than corresponding frozen flow solutions. The computational cost increases
as more realistic multi-component and multi-reaction systems are considered. The costs
increase even further if effects of vibrational and electronic non-equilibrium, radiation,
plasma dynamics, non-ideal equations of state, condensation and ablation, realistic mod-

els for diffusion coefficients for multi-component systems, etc., are considered.

This thesis is concerned with fluid dynamics involving the simultaneous occurrence
of chemical reactions and convection of mass, momentum and energy for both steady
and transient situations. Chemical kinetics pertaining to finite rate chemistry intro-
duces non-equilibrium features which interact with the classical fluid rate processes.
For the numerical examples described here the effects of viscosity, diffusion and heat
transfer (transport effects) are neglected and the flow description is based upon Euler
equations and species conservation equations in conservative form. Quasi 1-D and 2-D
flows are considered with multiple number of reactions. A number of examples in one
spatial dimension are used as vehicles to demonstrate certain important concepts and

to illustrate specific analytical and numerical techniques.

25



1.1 Motivation

The importance of understanding the interactions pertaining to chemically reacting
flows has recently become of paramount nature due to the renewed interest in hypersonic
flows and advanced aerospace propulsion systems. A concerted effort is now directed
towards the research and development of the National Aero-Space Plane or NASP.
The hydrogen fueled scramjet (supersonic combustion ramjet) is regarded as a strong
candidate for propelling such a hypersonic transatmospheric vehicle. The design of such
an engine demands understanding the fluid dynamics of hydrogen-air combustion and
flame-holders over a range of flow conditions. The high temperature non-equilibrium
effects of chemical reactions associated with the re-entry of Orbital Space Shuttle or
similar hypersonic vehicles is not fully understood. Accurate numerical modelling for
these situations can provide valuable insight into the nature of reacting flows. Other
areas of related real gas interest are rocket plumes, aircraft signatures, materials ablation
under lasing action, gaseous radiation effects, etc. The aerodynamic processes governing
such reacting flows are exceedingly complex and can involve strong interactions between

chemical and fluid dynamical effects.

Chemically reacting flows often require lengthy computations due to a larger num-
ber of descriptive conservation equations which correspond to multi-component species
in multiple non-equilibrium reactions. The calculations are particularly costly due to
the stiffness introduced by finite rate chemical kinetics with appreciably different time-
scales. These factors are the motivation for a search for more efficient and accurate
algorithms for reacting flows. For example, the concept of equation adaptation, i.e.,
introducing a simpler set of equations under special conditions, can be used when there
are sub-domains of frozen flow in an otherwise relaxing flow system. The expensive
calculation of source terms and their Jacobians may be avoided when the static tem-
perature remains below a pre-specified threshold temperature, since the contribution
from such terms is negligible compared to the convective terms. For these frozen flow
situations the chemical time-scales become large compared to the convection time-scale.

By-passing the chemical source term manipulations is almost as effective as solving a
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system with only four conservation equations, because the major costs associated with
the computa;tions of reacting flows are the calculations involving the chemical source

terms.

The accuracy of computer simulations depends in part upon the size of computa-
tional cells in space and time and also on the accuracy and stability of the numerical
algorithm. The limitations pertaining to computer resources for adequate spatial and
temporal resolution has led to the desire for performing adaptation in both space and
time. The resolution limiting restrictions are primarily imposed by cost considerations
and computer hardware constraints such as insufficient computer memory, insufficient
data storage facilities and slow processing speed [100]. The term spatial adaptation is
associated with the description of the numerical procedures that automatically assign
finer spatial cells in the regions of interest [15,33,55,130]. The regions of added reso-
lution delineate features which are detected by examining those cells characterized by
steep local changes [35] or high truncation errors [13]. Spatial adaptation generally re-
sults in smaller cell dimensions in regions where these features cluster and coarser cells

in relatively uniform flow regions.

The concept of spatial adaptation can be extended to temporal adaptation, with an
allowance for spatial variation of the cell time-steps so as to avoid the severe and costly
constraint of a globally minimum time-step. For the procedure presented here it auto-
matically increases the temporal resolution in the regions of large temporal gradients
of some pre-selected variables. Thus the concept is similar to its spatial counterpart in
the sense that smaller time-steps are taken in the regions of local rapid adjustments.
The utilization of variable time-steps for unsteady flows through temporal adaptation
will be demonstrated to be an efficient way of handling time-differencing. The temporal
procedure results in multiple integration passes for cells with smaller time-steps but
eventually all the cells arrive at the same time-value. The time difference between two
consecutive isotemporal surfaces is the maximum time-step allocated to any cell and is

referred to here as time-stride.
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1.2 Past Studies

It is relevant to take note of earlier work related to supersonic finite rate processes
from an analytic, design and computational point of view. The present work’s concern
with adaptation procedures for unsteady problems relates also to efforts dealing with
unsteady blast waves, stiffness and mesh enrichment. Typical sources for the basic

governing equations are Degroot and Manzur [40], Toong [131] and Williams [141].

The phenomenon of supersonic combustion has been observed and known for more
than a century. The concept of detonative combustion originated in the latter part of
the nineteenth century when French chemist Le Chatelier noted that some combustible
mixtures under certain conditions developed combustion waves which possessed ex-
traordinarily high velocities. About 1900 Chapman [28] and Jouguet [70] independently
proposed explanations for such phenomenon. They suggested that detonations can be
regarded as shock waves followed by combustion which is triggered by the high tem-
perature aft of the shock rather than the diffusion processes usually associated with

deflagrations [92].

Much more recently a number of studies have been applied to scramjets. These
scramjets are advocated to provide a viable propulsion option for flight speeds in excess
of Mach 5 [6,69,139]. For such vehicles the combustor is integrated into the airframe;
the vehicle itself provides the engine with hot compressed air through inlet shocks and
expansion through a streamlined exhaust while keeping the drag associated with the
engine to a minimal. Analysis predicts that the contribution of the vehicle forebody

and afterbody can be responsible for up to 70% of the net thrust [62].

The overall work has involved examination of engine design concepts, simple analytic
techniques for evaluating performance, experimental investigation to provide critical
design information and numerical solutions to provide detailed insight into the implied
reacting flows. Dugger et. al. [45] have examined the performance of a ramjet engine by
employing a constant pressure supersonic heat addition behind flame-induced oblique

shocks. Morrison [92,93] analyzed the oblique detonation wave ramjet’s performance
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for varying stoichiometric hydrogen-air equivalence ratios and a range of flight Mach
numbers from 6 to 16. In the oblique detonation wave ramjet the compression process is
moderate and carried out to relatively low pressures and temperatures; the detonative
process supplies additional compression and high temperatures for combustion in very
short length scales. In addition to ramjets characterized by standing detonation waves,
there are diffusive burning scramjetsin which the compression process in the inlet is car-
ried out to high pressure and temperature for reaction to occur in relatively larger spatial
domains. For these, the compression or diffusion process is commonly treated separately
from the combustion process for the purpose of analysis. Billig [16] provided guidelines
for the design of various inlet geometries for scramjets. Northam and Anderson [98] dis-
cuss the design philosophy of the NASA Langley’s fixed geometry airframe-integrated
modular scramjet; an extensive bibliography is provided ibidem. Other studies that
discuss the analytic and design aspects of the scramjet concept are [1,21,83,120]. Since
a design procedure generally involves repetitive computations, which vary the parame-
ters influencing design or evaluate new design concepts, an efficient algorithm for such

calculations would be very beneficial.

Past numerical studies on supersonic reacting flows have been quite limited. The
main reason had been the limitations in computer resources in providing a description
for reasonably detailed models. Although a number of strides have been made in com-
puter architectures in the recent past, it is still not possible, for example, to provide a
numerical solution of a complete engine which takes into account reactions, turbulence,
unsteadiness, etc. Therefore it is still desirable to study flow fields on a component
basis and at the same time utilize efficient and inexpensive algorithms. Drummond [41]
has examined transverse fuel injection through a 2-D slot in a scramjet engine using
mass diffusion terms but in the absence of chemical reactions, and utilized an algebraic
turbulence model. The results show a small separated region in the vicinity of the
injector and he speculated that ignition would commence in this region. Drummond
and Weidner [44] have considered the mixing of transverse and parallel streams of air
and fuel in a converging-diverging channel with embedded struts which eject the fuel. A
complete reaction model was used for the hydrogen fuel. The calculations again indicate

a small separated region near the injectors where significant reaction occurs. The pri-
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mary reasons for this are the subsonic conditions and the complete nature of the reaction
model. Griffin et. al. [59] have considered injection of parallel fuel-rich exhaust in an
axisymmetric geometry while utilizing a Parabolized Navier-Stokes (PNS) code with a
local, diffusion controlled, chemical equilibrium system. This paper also discusses some
inlet design aspects and ramjet combustion modelling. The radiation effect for gray and
non-gray models are studied for simple geometries in References [84,85], whereas direct
simulation Monte Carlo method coupled with a dissociating and ionizing gas model
with thermal radiation is considered in Reference [94]. Although the current research
does not address these issues, such references are cited here to indicate the diversity and
complexity of the hypersonic flows and to emphasize that if quantitatively accurate sim-
ulations are desired, then all the pertinent physics must be taken into account. However,
currently a comprehensive numerical analysis is not possible and hence research efforts
should be directed in designing more effective modules for specific physical aspects which
could eventually be integrated. Other references that have employed numerical simu-
lations in hypersonic reacting flows are [12,18,25,37,38,46,48,56,67,73,89,117,142,1486].
The bibliography provided here is by no means complete, it represents only a small
fraction of the studies that have been carried out. A detailed list can be found in the

survey papers of References [11,98,139).

Knowledge is limited as well with respect to the dynamics of unsteady (whether
reacting or frozen) flows. It is important to understand flow fields in response to tem-
porally varying conditions. There are relevant questions about such inflow conditions
and their influence on the rest of the flow field. Other questions pertain to the influence
of an oscillating fuel supply on flame stability. Kumar et. al. [75] have considered one
such case and examined an oscillating shock interaction with a scramjet combustor uti-
lizing a simplified combustion model. Another area where unsteady flows are involved
and need further study, pertains to the propagation of detonations in gases and their
interactions with stationary objects. Among many studies, blast wave interactions have

been considered by [3,126,127,135,137,144,145,147].

The phenomenon of numerical stiffness pertaining to chemical source terms has been

known since the early fifties. One of the first algorithms to cope with the difficulties of
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integrating stiff ordinary differential equations was suggested by Curtiss and Hirschfelder
[31] for chemical kinetics studies. Dahlquist [32] indicated numerical instability as the
cause of the difficulty and provided basic definitions and concepts that are useful in
classifying and evaluating algorithms from a stiffness perspective. A detailed account
of stiffness can be found in the text by Gear [54] and a number of survey papers have
recently appeared — typical examples being Bui et. al. [22], Enright and Hull [50] and
May and Noye [88]. Radhakrishnan [109] has compared a number of stiff and nonstiff
methods. Applications of the approach to systems of partial differential equations have
been carried out by Bussing [23,24], Drummond [42], Rivard [114] and Stalnaker et. al.
(122].

Recently a number of studies have been carried out on mesh enrichment to capture
local features via spatial adaptation and thus concentrate computing resources where
they are needed most. The techniques have been applied to elliptic [130], parabolic
[97] and hyperbolic [13] systems of equations with typical references as indicated in
these areas. There are studies in which the adaptive grid nodes are placed according
to variational, finite-element formulation [55,80,95,104]. Methods in which the overall
computational domain is subdivided into independent zones with non-overlapping or
patched grids have received attention in [63,110]. Other methods redistribute and/or
cluster grids in the vicinity of known features [7,19,47,49,58,66]. An alternate approach
is to do successive local embedding without moving the grids [15,35,99,128]. In this
approach rectangular fine grids are superimposed on an underlying coarse grid in those
regions where solution accuracy is inadequate. Berger [13,14] bases the refinement
decision on the estimates of local truncation errors by utilizing Richardson extrapolation.
Dannenhoffer and Baron [36,34,35] base the refinement on first differences of density
for transonic applications. This locally embedding approach is the basis of spatial
adaptation in this thesis and is discussed in detail in Chapter 5. Very few adaptive
procedures have been applied to reacting flows, References [106,121,125] have considered
adaptation in one spatial dimension and Reference [105] has applied the embedded mesh
approach to two spatial dimensions. An extensive list of papers concerned with spatially

adaptive grids can be found in the survey papers of [9,129].
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In addition to refinement in space, grids may be refined in time as well, so that
smaller time-steps are taken on spatially fine grids or where rapid changes occur. For
frozen flow applications this is generally done by keeping the CFL (Courant-Friedrichs-
Lewy) number nearly the same on coarse and fine grids [14], so that the same integrator
is stable on each grid. The smallest time-step does not have to applied on the entire
grid. Although a number of adaptive examples have been carried out for unsteady
flows [80,81,104,105,111,143], most of these applications have been performed by utiliz-
ing global minimum time-steps. Osher and Sanders [101] have discussed a conservative
temporal interface formulation that links together an arbitrary number of space regions
containing fine and coarse time increments in one spatial dimension. The interface dif-
ference equations are formulated in a predictor-corrector form and it seems that their
generalization to include additional topologies for two spatial dimensions would be com-
plicated. They have also proved that utilizing a variable step time-differencing leads to
correct physical solution for a scalar, monotone discretization in one spatial dimension.
Lohner et. al. [81,82] have proposed a domain splitting technique to advance the so-
lution with different time-steps on different portions of the mesh for multi-dimensional
problems. These references also propose an integration sequence for cells in regions of
time-steps that differ from global minimum values by integral multiples. The temporal
interfaces are handled by regarding two layers of cells to be a part of both temporally
fine and coarse regions and applying interface conditions at the boundary nodes of these
layers. The interface conditions depend upon advancement of the time-steps in regions
of temporally fine or coarse resolution. A similar integration sequence is proposed in
this thesis for cells characterized by different temporal levels and the interface condi-
tions are applied in the spirit of cell by cell integration and as such temporal interfaces
enter into the calculations only at the time of updating of the state vectors. The details

of temporal adaptation and interface manipulations are presented in Chapter 6.
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1.3 Present Work

The objectives of the present study are three-fold. Firstly, to examine predominantly
supersonic reacting flows in which the transport effects may be neglected. Secondly, to
perform spatial adaptation in regions of large spatial non-uniformities. This aspect
is applicable to both steady and unsteady flow situations. The third objective is to
perform temporal adaptation, for certain unsteady applications. Emphasis is placed
on understanding supersonic combustion of hydrogen in air and moving blast waves
in dissociating gases. The unique part of the work, relative to previous studies, is the
coupling of spatial and temporal adaptation procedures for chemically reacting systems.
A computer program entitled STAR (Spatio-Temporal Adaptive Reactive) Code has
been developed as a part of this effort that implements the concepts that have been

developed. The procedure is referred to as the spatio-temporal adaptive algorithm.

The following sub-sections provide some justification for using an Euler system of
equations for the problems considered here and why spatial and/or temporal adaptation
is important. This is followed by an overview of the spatio-temporal adaptive procedure

as applied in this thesis.

1.3.1 Why Use Euler Equations?

The immediate result of the cost factor appears as constraints on the software. It
is less expensive to carry out potential flow calculations compared to Euler equations
which in turn are relatively cheaper than a system involving the transport effects of
viscosity, heat transfer and species diffusion. The costs are not associated just with
complex models, but that the resolution requirements for both space and time increase
with the modelling of additional physics. For example it will be a waste of effort to
solve for Navier Stokes equations on the same sort of grid as one would typically use for
inviscid flows. For most examples presented in this thesis, using potential flow solver
would be inappropriate since the rotationality associated with strong shock structures

for supersonic and hypersonic flows would not be captured correctly. However, since the
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transport effects are usually limited to regions whose typical dimension (e.g., boundary
layer thickness) is generally small compared to the reference dimension (e.g., chord

length), the Euler equations can be easily used to understand salient features of these

flows.

One of the concerns in combustion applications is that streams of reactants may be
impinging or flowing parallel to one another and at the same time mix under the action of
differing momenta and molecular diffusion and hence reacting to form products. Thin
viscous shear layers are important in determining the location of separation and the
generation of vorticity in the flow. However, for the predominantly supersonic streams
in this thesis, the diffusion effects are still limited to small regions in the vicinity of
slip surfaces. Furthermore, as has been experimentally observed by Papamoschou and
Roshko [102] for supersonic mixing layers, the shear layer spreading is about one quarter
that of an incompressible layer at the same ratios of velocity and density. Hence Euler
equations can be used, without serious misgivings, for these flow situations. Although
the capability of solving the full 2-D Navier Stokes equations, on a cell by cell basis,
has been added to the STAR code, this capability is not tested on a wide variety of

problems and extension to include turbulence modelling has not been done.

1.3.2 Why Use Adaptive Grids?

It is well-known that greater accuracy is realized when finer grids are utilized in
both space and time. This is because the truncation error of the numerical schemes is
dependent upon fineness of the cells; with increasingly finer cells this error tends towards
zero. It is also well-established that an accurate description of small structures in a flow
can be realized generally by spanning the structure with an appropriate number of
computational cells. The uncertainty pertaining to the location of a particular feature
within a cell of course could be reduced by increasing spatial resolution. If the flow
structures are not adequately resolved, they become numerically diffused since a discrete
model inherently spreads flow discontinuities over several cells and thereby degrades

accuracy. Hence spatial resolution is essential near features like shocks, relaxation zones,
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vortices, slip lines, etc.

The classical way to provide adequate resolution for the capture of features is to use
globally fine grids. This usually results in a tremendous number of cells which places
extensive demands on the CPU memory. Furthermore, global refinement can result in
prohibitively time-consuming computations and hence is not a very attractive option.
The loss of efficiency can be countered by the use of adaptive gridding techniques. The
spatial adaptation approach utilized in this thesis locally divides the cells to yield ad-
ditional resolution near features characterized by large spatial non-uniformities. This
approach is discussed in detail in Chapter 5 and follows the procedure presented by
Dannenhoffer [33]. The extensions include utilization of multiple variables in deciding
on regions of added resolution and a procedure for adding multiple layers of buffer zones
to spatially embedded regions. The adaptive embedding algorithms have the advantage
that meshes are refined only where necessary and as the solution evolves, thereby pro-
viding accurate and relatively inexpensive solutions. Since the local embedding can
be carried out in a recursive manner, very fine grid spacing can be maintained in the
vicinity of the physical structures being captured. Furthermore, since the resolution is
enhanced only locally at the features, with coarser grids near successively uniform flow
regions, the computations with such grids consume significantly less computer resources

than global refinement. There are substantial savings in both CPU time and memory.

It is clear from the CFL constraint that the resolution requirements in space gen-
erally imply a corresponding imposition on resolution in time. For most frozen flows
this is the primary constraint. However, for reacting flows other temporal resolution
requirements may be even more stringent than those implied by the spatial resolution.
Similarly for moving blast waves the maximum eigenvalues across a shock can be an
order of magnitude different. Hence the resolution in time may be controlled only in
part by the resolution in space. For cases where strong coupling does exist between
the two, allocation of temporal resolution simply follows from that of spatial resolution.
For those cases, in two spatial dimensions, increasing the spatial resolution by a factor
of four imposes a corresponding factor of two in time-steps; hence there is an eight-fold

increase in computational work to advance to a given interval of time.
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In chemically reacting flows, the computations of chemical kinetic terms is often
more expensive than evaluations of convective and/or diffusive transport terms. The
cost increases with the number of species, the number of reactions connecting these
species, the number of spatial cells and the inverse of the time-step size. For flame and
detonation simulations the overall calculation may take two or more orders of magnitude
longer compared to frozen flow situations [100]. Calculations may also be costly due to
stiffness introduced into the equations by including finite rate chemical kinetics which

are necessary to describe the physical situation.

When the reactive equations are stiff in the sense that numerical stability rather
than accuracy dictates the time-steps, then an implicit scheme can be used to partially
alleviate the computational overheads. The implicit approach presented here utilizes the
concept of Newton-Raphson expansion of the source terms as proposed by Bussing [23]
for steady state applications. However, for unsteady flows the time-steps must be ap-
propriately small to resolve the features involving local rapid chemical adjustments.
These are generally changing patterns of resolution requirements as the rapid transients
form, gather strength, interact and deform other flow features and eventually decay in
different periods and positions. Hence there are conflicting requirements on unsteady
reacting flows in the sense that for efficiency the advancing time-steps may have to be
reduced in certain portions of the space-time domain where adjustments occur and a

utilization of longer time-steps be made where there are negligible temporal gradients.

Just as different spatial resolutions are allocated at different locations within a spa-
tial grid in order to achieve CPU time gains, it would be beneficial to take advantage of
the large spatial variations of time-steps for reacting flows. In fact gains due to utiliza-
tion of different time-steps also can be achieved for unsteady frozen flows if there exist
substantial variations in spatial cell volumes, which indeed may well be a result of spa-
tial adaptation. Similarly for moving blast waves the eigenvalues involved in the CFL
constraint may change substantially across the shock that may result in a corresponding
variation of time-steps across this shock even for spatially uniform grids. An efficient
time-differencing technique is developed in this thesis that makes possible advancement

of cells on a step-size which is a multiple of a global minimum time-step. Without this
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technique the severe and costly constraint associated with a globally minimum time-
step would be applicable for time accuracy and computational costs would be literally
immense. In this technique the cells with the same time-step are integrated and up-
dated together on different integration passes of the temporal adaptation cycle but the
majority of small time-step cells fall in only a small portion of the overall space/time
domain. Once all integration passes are completed for each time-stride unit, all nodes

in the domain arrive at the same time-station.

1.4 Overview of Adaptive Procedure

Before the application of numerical solution to a problem, it must be decided whether
interest is restricted to a steady state limit or that an unsteady approach is relevant.
Steady state problems may involve local time-stepping, multiple grids and other accel-
eration techniques, whereas for unsteady flows such techniques are clearly inapplicable.
It is suggested that temporal adaptation would be more appropriate for the unsteady
case. Spatial adaptation is beneficial for both approaches; however, for unsteady flows,
spatial adaptation procedure must be applied frequently because the features to be
resolved may be moving and the adaptive grid clearly must track these features at a
synchronous speed. For such unsteady flows the spatial adaptation procedure may have
to be applied after the completion of each and every time-stride. For the steady state
the stationary features require an adaptive procedure only occasionally and the number
of such operations generally equals the number of the spatially embedded levels desired
for the cells. In such cases the adaptive procedure is generally applied after the residuals

have subsided below a pre-determined level.

It is not imperative to do reverse embedding for steady state applications; however,
it does become necessary for unsteady flows to allow for a cell fusion capability since
otherwise grids may become uniformly fine after a while and the advantage of dynamic
embedding would be lost. Since the rate of change of flow features may be very large
for certain unsteady applications, it is necessary to extend the spatially resolved region

by a certain number of cells to ensure that the flow features will remain within this

37



resolved region during the next time-stride unit. There is no such need for steady state

flows due to the stationary nature of the flow features.

For steady state applications there clearly is no need to have adequate time-step
resolution and implicit schemes involving large time-steps which alter the transient
history may be used. This is obviously inappropriate for unsteady situations, although
implicit schemes which only limit the time-steps in the regions where dynamic changes

occur may be used.

The choice of initial grid conditions is especially important for an unsteady flow. If
large spatial gradients are present in the initial flow field and the spatial grid is coarse
in their vicinity, the initial integrated solution will be degraded and will propagate as
such to other spatial locations at later time levels. Of course, this is not as important
in cases which lead to dynamic unsteady periodicity for large times. The subdivision
of meshes necessitates assignment of state vector at the newly created nodes. A poly-
nomial interpolation of these initial values based upon the surrounding nodes may be
inconsistent with the initial condition. For example a shock tube problem suggests that
finer cells be inserted near the contact discontinuity surface; a linear interpolation for
nodes bordering this initial step function would degrade the step function. The pro-
cedure which involves care in assigning the initial values at the newly created nodes
is referred to as pre-embedding which is frequently performed prior to the execution of
the integration process. Pre-embedding is unimportant for steady state flows and any

interpolated values may be used at the newly created nodes.

The spatio-temporal adaptive algorithm discussed in this thesis is summarized in
this paragraph and it generally assumes that unsteady flow problems are under consid-
eration. The algorithm periodically examines the evolving numerical solution, applies
spatial adaptation to the existing grid, determines an appropriate time-stepping se-
quence for each cell in order to make up consistent time-stride units for the entire
domain, and finally integrates the equations. The spatial adaptation involves the de-
tection of regions of large spatial non-uniformities and subsequent subdivision of the

corresponding grids. Reverse embedding to a coarser mesh is allowed up to the initial
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coarsest level global grid. When the initial flow field on a coarse grid involves spa-
tial non-uniformities, consistent pre-embedding is applied without degrading this initial
field. In a similar manner the temporal gradients are monitored so as to maintain
sufficiently small time-steps for adequate local resolution and stability. The time-step
resolution takes into account the classical domain of dependence restriction and the
requirement imposed by large non-equilibrium source terms. The spatial and temporal
resolution requirements are generally coupled through the CFL restriction for frozen
flows. This coupling also exists for the criterion which takes into account the variations

of the source terms. The algorithm will now be described in somewhat more detail.

The procedure starts with the selection of a suitable global stationary grid in space
and a provision of initial conditions on this grid. Pre-embedding may be needed for
initial coarse grid in the regions involving large spatial non-uniformities. As noted
earlier, pre-embedding is the same as spatial embedding except that the assignment at
the newly created nodes is based upon the actual physical conditions at the initial time
rather than the interpolated values from the nearby nodes (See Chapter 7). Spatial
adaptation differs from pre-embedding in the sense that it is followed by subsequent
integration of equations and may involve fusion of cells, whereas the objective of pre-
embedding is to merely add enough resolution to the initial grid so that the gradients
are appropriately represented without being diffused. The process of pre-embedding is
generally repeated a number of times, until the desired spatial level of cells is achieved,

before the execution of normal adaptive procedure can proceed.

Once the integration procedure is started, the evolving solution is examined for re-
gions of relatively large gradients of some pre-selected criteria variables and the regions
where these gradients exceed a threshold level, the grids are locally divided. Quadrilat-
eral cells in two spatial dimensions are used for this purpose and the refinement of a cell
is accomplished by dividing the cell into four subcells. Alternatively, when associated
gradients diminish on a previously refined grid, and become less than another critical
limit, those contiguous grids may be collapsed while making certain that the cells to
be merged are those from the same parent cell. The initial (coarse) global grid is kept

fixed by insisting that the coarsest cells (spatial level zero) be never merged to a coarser
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state, no matter how smooth the evolving solution proves to be. In summary, the spatial
adaptation ;;rocedure comprises of the following sequential operations (1) local embed-
ding or cell division, (2) extension of spatially embedded regions, (3) coarsening or cell
fusion in other regions, and (4) removal of the knottiness in the grid by avoiding islands

and voids.

After the alterations are completed in the spatial grid structures, a sequence of time-
steps is determined for all the cells in the domain. The cells with the same time-step
are integrated and updated together on different integration passes of the temporal
adaptation cycle. Once all the integration passes are completed, all the nodes in the
domain arrive at the same time value (time-station) and a time-stride is completed.
Depending upon the rate of variations of the flow features, the spatial adaptation may
follow after this temporal adjustment or a number of time-strides may be carried out
prior to the next spatial adjustment of the grids. The number of time-strides between
two consecutive spatial adaptation procedures is user-controlled and is not dynamically
computed by the algorithm, since this is a complicated business and is highly problem
dependent. The user is generally aware of an expected rate of variations of feature
properties and s/he could simply ask for the spatial and temporal procedures to alternate
each other in a worst scenario. The integration of the equations continue until a desired

number of time-strides is completed or when the time-level exceeds some user-supplied

value.

1.5 Overview of the Thesis

This thesis describes the explicit and implicit numerical procedures and emphasizes

the development of spatio-temporal adaptive techniques.

The conservative differential equations that govern the dynamics of reacting flow
are outlined in Chapter 2. The equations are presented with the effects of viscosity,
heat transfer and species diffusion included. The constitutive relations for the mixture

properties are based on ideal mixture assumption. The mass action 'rate equations are
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described by generalized Arhenius kinetics. The inviscid equations are then specialized
for Cartesian and generalized coordinate systems and the normalization is discussed.
The determination of temperature from the state vector is explained for a linear tem-
perature model for constant pressure specific heats of individual species. The chapter

concludes with a description of chemistry reaction models used in the thesis.

The finite difference equations and the solution method of the undivided grids is
based on Ni scheme [96] and is described in Chapter 3. The difference equations for
both one and two spatial dimensions are derived and the artificial diffusion model is
explained. The treatment at the spatial interfaces, or the locations where the grid

changes abruptly, is explained for two different approaches.

The difficulties encountered in the numerical solution of stiff chemical systems are
presented in Chapter 4. The stiffness is examined for a linearized scalar source model
in one spatial dimension and stability analysis is carried out. Two possible remedies
to treat stiffness are presented; this may be accomplished by using first order implicit

schemes or by using explicit schemes with the source terms modified in a particular

. Imanner.

Chapter 5 begins with an explanation of reasons why spatial adaptation is desired
for computational models. The utilized data structure is detailed which allows rapid and
efficient implementation of the spatial adaptation procedure. The methodology for the
detection of flow features is based upon first differences of multiple components of spatial
criterion vector. The scalar refinement parameter is based upon unbiased variabilities
of these components and removes the correlation between individual components. The
data structure details for grid division, grid fusion and the extension of spatially resolved
regions is presented. The chapter concludes with the discussion on the a.void‘;nce of grid

knottiness like islands and voids.

The concept of utilizing variable time-steps for solving time-accurate transient prob-
lems is developed in Chapter 6. It begins by examining the factors which limit the com-
putational costs and the ways in which these costs can be reduced. The issue of temporal

resolution is discussed in Section (6.2) for frozen and reacting situations. Mlustrative
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examples are given in Sections (6.3) and (6.4) for one spatial dimension and time-stride
comprising of two time-steps. The temporal adaptation concept is generalized to include

larger time-stride units in the last section.

The initial and boundary conditions are discussed in Chapter 7. The implications of
both physical and numerical boundary conditions are described. The initial conditions
include those for a shock tube and a moving shock and for a frozen or dissociating gas.
An approximate characteristic analysis is presented for relaxing flows and is applied to

subsonic inflow/outflow boundary conditions.

Chapter 8 contains the computational results. Selected examples for one and two
spatial dimensions are presented for a perfect gas, Lighthill dissociating gas and Rogers
and Chinitz [115] combustion model for hydrogen and air. The flow types include shock

tubes, moving shocks, steady state and oscillating inflow.

Major conclusions are presented in the final Chapter 9. A discussion of possible

extensions to the developed spatio-temporal adaptive algorithm is also presented.

Four appendices complete the thesis. Appendix A describes the details of the eval-
uations of Jacobians, eigenvalues and eigenvectors for the flux vectors. Important con-
siderations which were taken into account while developing software are presented in
Appendix B. A description of the utilized data structure from a coding perspective
is given in Appendix C, this also includes a detailed description of the logic for cell
division, fusion and buffer zone addition. The last appendix appears as a separate vol-
ume, that includes sample input files for the code, synopsis of computer variables in
the common blocks and a listing of the code itself. Also included are graphics interface
routines for generating plots based upon the data structure of the pointer system that

was developed.
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Chapter 2

Governing Equations

In this chapter the conservation equations for a general three-dimensional flow of a
chemically reacting gaseous mixture are outlined. An ideal gas mixture is assumed, i.e.,
the components of the mixture are regarded as perfect gases and Dalton’s law holds for
the mixture. Although effects pertaining to molecular transport phenomena have been
neglected in this research, the terms describing such effects are retained in Section (2.2)
for the sake of completeness and possible future extensions. The governing equations
are presented in both vector and indicial tensor forms. The tensor form is useful in
laying out the basic integration scheme whereas the vector form is important when
using generalized curvilinear coordinates. For a detailed derivation of the conservation

equations References [40,131,136,141] may be consulted.

The chapter starts with some introductory remarks and a description of full con-
servation equations in a 3D system. Section (2.3) summarizes the Euler equations for
quasi-one-dimensional flow, whereas Section (2.4) summarizes the corresponding two-
dimensional equations and discusses normalization. Section (2.5) discusses the Euler
equations in a generalized transformed coordinate system. Section (2.6) explains the
determination of temperature from the caloric equation of state. Section (2.7) discusses
a general procedure of determining the equilibrium constants and suggests generalized
Arrhenius form as a simple model. Finally Section (2.8) discusses the chemistry models

used in the current research.
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2.1 Introductory Remarks

Fluid motion is governed by the conservation of mass, momentum, energy, and
species, various state and constitutive equations, and proper initial and boundary con-
ditions. For a large class of situations, irreversible flows are described by linear functions
of thermodynamic forces, as expressed by the so-called phenomenological laws. For ex-
ample, Fourier’s law of heat conduction expresses the heat flux as a linear function of
temperature gradient. Similarly, Fick’s law establishes a linear relation between the
diffusion of mass and the concentration gradient. In a similar manner the phenomenon
of thermal diffusion or Soret effect describes the diffusion of mass caused by temperature
gradient. A reciprocal phenomenon, viz. the flow of heat resulting from concentration
gradients is referred to as Dufour effect [40]. The effects pertaining to heat conduction,
diffusion, etc. are often classified as direct whereas Dufour effect or thermal diffusion is

labeled as cross phenomenon [131].

It is often projected by the CFD community that the advent of more powerful com-
puters will allow routine solutions of the Navier-Stokes equations and therefore the need
for doing experimental research will diminish. Navier Stokes equations are the subset
of the actual fluid mechanic description that involve only direct linear modeling of some
irreversible phenomenon and would not delineate situations dominated by other real
effects. Although an attempt is made here to put forward equations describing the
physics and chémistry of fluids with domain of application somewhat wider compared
to the usual Navier Stokes equations, these equations are still limited in applications.
Situations where these equations may be dubious will be pointed out as the need arises.
The equations describing simulations have no bearing on nature itself, the limitations of
the computational models are irrelevant so far as the experimental research is concerned.
On the other hand there are restrictions on the experiments which may be non-existent
while performing computations. It is the contention of the current author that compu-
tations will never replace experiments in their entirety; however, as our computational
models will become more realistic these two approaches will be used in complementary

rather than adversary roles.
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2.2 Full Conservation Equations

For the equations of fluid motion the chemical mixture is assumed to be comprised

of S species involved in R chemical reactions of the form
s s
ZasrA‘ = ZﬂsrA, r= 1,' "’R (2.1)
8=1 =1

where a,, and f,, are the dimensionless stoichiometric coefficients for the st* species in

the rtP reaction, and A, is the s*# participating molecule.

2.2.1 Continuity Equation

The global continuity equation in conservation form is

dp S\ 9 _
LAY o (pu) = 0 (2.2)

i=19%7
and the corresponding generalized vector form is

9
ZHV-(pV) = 0 (2:3)

where V = (uy, uz, uz) denotes the velocity vector and p is the global (mixture) density.

2.2.2 Momentum Equations

The momentum equations in conservative tensor form are

o] 3.9 dp s 3
3 (pus) + ,_2.:; 3z; (puiuj — 7)) + 3z Szzzle,f,.. 1=1,2,3 (2.4)

where the stress tensor components, 7;;, for a Newtonian mixture is given by the fol-

lowing linear phenomenological law

_ Ju; au,- 3 Jug
Ty = KB (az + 5";:’) +5¢1A,§1 axk (2'5)

J

here
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p = first coefficient of viscosity for the mixture

A = second coefficient of viscosity for the mixture

fs; = 4* component of the external force acting on the s** species
8;; = Kronecker delta

Y, = nmass fraction of the s** species.

The first coefficient of viscosity is also known as the dynamic or shear viscosity
coefficient. Sometimes the bulk viscosity coefficient, 8, is introduced instead of the

second coefficient, A, which is given by

2
B = A+ EM. (2.6)
Note that Stoke’s hypothesis yields
3. du 3
(@u+32) Y. ——=>m =0 (2.7)
=9 o
which implies that for a compressible gaseous mixture
2
A= —gk or B = o. (2.8)

However, this generally only holds for méno-atomic gaseous mixtures. Note that the

stress tensor 7 can be written in the follov'ving generalized form
F=a[VVH (V] + AV V)T (2.9)
where ? is a unit tensor and the superscript T denotes the transposition operation.
The momentum equation in general tensor form is
5} .
5 (V) +V (pVoV)+Vp = V-7 + > FypY, (2.10)
s=1

where the symbol o implies the dyadic tensor operation. The generalized vector mo-

mentum equation can be written as

S
P [%}’- -Vx(VxV)+ —;—VVz] = > FpY, - Vp+V(AV-V)+
s=1
uV(V-V)+ (Vu- V)V 4+ uViV +
V(V:Vu)—-(V:-V)Vu. (2.11)
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2.2.3 Species Equations

The rate of change of mass fraction Y, of the s** species in a system at any time
is equal to the sum of three terms: (1) the influx of species into the system due to
advection, (2) the net rate of production of the species due to chemical reactions, and

(3) the net diffusional influz of this species into the system. The species equations in

vector form are
d .
3 (pYs) + V- (pY, V) = W, = V- (pY,V,) s=1,...,8 (2.12)

where W, is the net mass rate of production of the st* species per unit volume due to
all of the chemical reactions and V, is its diffusional velocity. This equation, in indicial

form, becomes
3 2.9 .
57 (PY) + 30— (pui¥s+pV,Ys) = W, , s=1,...,85. (2.13)
§=19%]

The mass production rate W, is related to the molal production rate w, by
W, = i, (2.14)

where 7, is the molecular mass of species s. Since mass is conserved in each separate

reaction we have

S
S (Bor — @or)hty = 0, r=1,...,R. (2.15)

s=1
Note that Equations (2.13) are not mutually independent. That is the sum of all S

equations results in the continuity equation, since

Y, =1 (2.16)
and
S . S
DWW, = > it = 0. (2.17)
s=1 s=1
The last equation expresses the fact that mass is neither created nor destroyed due to

chemical reactions if nuclear transformations are excluded. The fact that summation of
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the diffusional mass fluxes over all species, with respect to an observer moving at the
local mass average velocity or barycentric velocity, must be zero translates into

S

>3, ZY V., = 0. (2.18)

s=1 s=1
The diffusional velocity V, is given by the so-called Fick’s law. For multicomponent
gaseous mixtures the diffusional law becomes very complex because the diffusion flux
J, of each species depends upon the concentration gradients of all components in the
mixture. There are additional effects due to pressure gradients (when mass fraction
differs from mole fraction), temperature gradients (Soret effect) and differences in body
forces on molecules of different species [141]. However an approximate expression which
neglects coupled effects and lumps the multicomponent contribution is generally used

as a constitutive relation [131]
J, = pY,V, ~ —pD,VY, (2.19)

where the diffusion coefficient D, of species s is

1-Y,

D_g = -——-—S——-——-;‘-—F- (2.20)
i=1 M ;D,s
FET I
where 1 is the molecular mass of the mixture which is given by
S5
Y,
_— = - 2.21
n = S (221)

s=1
D,; is the binary diffusion coefficient for species s and ¢. Substituting Equation (2.19)
into Equations (2.13) results in

3 N dY, :
-a—t'(pys)‘f‘g—a—g[(puj—pl),-é—z—j) Ys] = W, , 8——-1,...,8. (2.22)

The species production rate is given by the following non-linear phenomenological

chemical kinetic expression

Z(ﬂer Qr) [Kfr II (’::') - Kb,ilj[l (%) ﬁ‘"] (2.23)

=1 t
where Ky,, K), are forward, backward rate coefficients for reaction r and the exponents

oy, Bir specify the order of this reaction for species l. For elementary reactions of, = oy,
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and ﬂ;,. = fBir. In an attempt to reduce the total number of reactions, a chemical
reaction system is sometimes replaced by a single, one step irreversible reaction. For
such complete reactions, the order of reaction is often different from the molecularity and
the second term on the right hand side of Equation (2.23) is disregarded in calculating
the contributions to species production rate. For ease of understanding one frequently

defines the progress rate of a reaction as

o= K] (’L’f-)" (2.24)

=1 8
where o = o, B for | = fr,br. Then the mass production rate of species s becomes
. R
W’ = ﬁl, Z(ﬁar - agr) (nfr - Qbr) . (2.25)
r=1
The quantity C, = pY,/rh, is frequently known as the concentration of species s. The

rate constants are assumed to be of the generalized Arrhenius form

where K., is the equilibrium constant for reaction r. These expressions implicitly assume
that all internal degrees of freedom (rotation, vibration, electronic excitation) are in
equilibrium with the translational mode, i.e., a single temperature is assumed for all
internal degrees of freedom. For most species (except near cryogenic temperatures)
the rotational .mode is in equilibrium with the translational one. At temperatures of
order 10 K the vibrational modes of most species are not in equilibrium with the
translational modes and the above single temperature model becomes unreliable. Park
[103] has recently advocated a two-temperature thermo-chemical model which recognizes
the dependence of rate processes on both translational and vibrational temperatures.
He also assumes that electron temperature and electronic excitation temperature are
close to the vibrational temperature, and that rate constants are dictated by a geometric
mean temperature between the translational and vibrational temperatures. This also
means that an additional partial differential equation has to be solved for the vibrational

temperature.
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To extract the dimensions of K, consider a unidirectional single reaction with ad-

vection terms dropped, then the species rate is governed by

dC -
dta = (ﬁar - aar)Kfr H c;rr.

=1

Hence the dimensions of K, are (mole/volume)*~*/) time™! where z; = ¥5_, af,.
In a similar manner the dimensions of K}, are (mole/ volume)(l_“) time™! where z, =
IR Bor, and the dimensions of K., are (mole/volume)® where z. = Y,(Bsr — asr). The
procedure for the determination of equilibrium constants will be discussed later in this

chapter.

2.2.4 Energy Equation

The total specific internal energy, E, of the mixture is defined as the sum of specific

internal and specific kinetic energies of the mixture

p 1,
E=h-54_ .
h- s+ 3V (2.28)

where h is the specific enthalpy of the mixture. The conservation of the total specific

internal energy is governed by
a =
5; PE)+ V- (pEV) = -V.q-V (pV)+V (V:T7)

) S
+V M ZpYaF‘ + Z p‘YgV’ . Fs (2-29)

=1 =1

where V . q represents the overall heat flux which has contributions from (1) external
heat conduction, (2) heat radiation flux, (3) energy flux due to species diffusion and (4)
thermal diffusion flux. The external heat conduction flux is given by the Fourier law. For
a multicomponent fluid of non-uniform composition there are additional contributions
from the energy flux due to diffusion of various species with different enthalpies and the
coupled effects between transfers of mass and energy i.e., Dufour effect [141]. Neglecting
the coupled effect, which is usually small compared to the direct effects, the following
phenomenological expression for the overall heat flux can be obtained

S
q = —-kVT +p E haYava + qQ, (2‘30)

=1
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where k is the coefficient of thermal conductivity for the mixture, q, is the radiation

heat flux and h, is the specific enthalpy of the species s which is given by
T
hy = Hy + f C,.dT. (2.31)
To

Here Hjy, is the standard specific heat of formation for species s at the reference tem-

perature Ty and C,, is its constant pressure specific heat.

Defining € = pE to be the total internal energy per unit volume, the indicial tensor

form of the energy equation becomes
i=1 =1 =1

e =~ 9 > S 2
F R b [(f +p)ui = 3 usm; + q‘] = p2 YD (wit+Vedfu  (232)
t=1 s

with the following two constitutive relations. First, using Equations (2.28) and (2.31),

the caloric equation of state becomes

¢ s T Sul p
- = )Y, H,+/ CopdT ¢+ ) —=—= 2.33
RPICATAT Do S G
and second, using Equations (2.30), (2.31) and (2.19), the heat flux components can be
written as
aT & T 3y,
i = —k—— H D,— ; =1,...,3. .
% kaz,- pa=1{ f.+-/;‘o C,,dT} ¥ + ¢r, i=1,...,3. (2.34)

2.2.5 Thermal Equation of State and Constitutive Relations

The conservation equations are supplemented by one or more constitutive relations
which express the relationship between state properties and transport coefficients. The
relationship describing the variation of temperature, pressure and density is referred
to as thermal equation of state. Since each gas component is assumed to be a perfect
gas satisfying Dalton’s law of partial pressures, the equation of state for the mixture

becomes

p g Y,
;= RT ) == (2.35)

=1 "8

The other constitutive relations pertain to the models for coefficients governing the

diffusion of momentum, energy and species. The individual species dynamic viscosities
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can be determined from the Sutherland approximation which results from the kinetic
theory using an idealized inter-molecular force potential and is as follows:

1.5
= (%) s @30
where p,, and T are reference values and S, is the Sutherland constant. These reference
values are tabulated for some species in References [124,138]. The mixture viscosity can
be determined from Wilke’s formula, [140]

s

Y,u,
po= Y e (2.37)
g 2?:1 %;Yﬁbaj

{1+ (ﬁ%f)o.s (%)0.25}2

[8(1+ )05

where

¢sj =

(2.38)

The individual species thermal conductivities can also be computed from the Suther-

land law
ke (T)1'5T0+:§s
—_— = | = —_— 2.39
kS() TO T + S’ ( )

where k,,, Tp and S’, are constants. These values are also tabulated in References
[124,138]. The mixture thermal conductivity can be determined from the following
formula, [43]

S
Y.k,
k=Y —2t (2.40)
Z F=1 B2Yibe

where 45,,- is related to ¢,; by
, 1.065¢,; if s#7

bei = _ (2.41)
1.0 otherwise.

Chapman and Cowling used kinetic theory of dilute gases to arrive at the following
expression for binary diffusion coefficient D,; between species s and 7, [138]
T1E [(riny + ;) /vt

D,; = 0.1858 x 10~¢
o sznD

m?/s (2.42)

where T is the mixture temperature in degree Kelvin, p is the mixture pressure in

atmospheres, the effective collision diameter o,; is in Angstrom units (A) and Qp is the
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dimensionless collision integral which can be approximated by

) e\ 0145 o, \?
Qp = |2 —— ] 2.43
? ( T ) ¥ (2T+ T (243

The effective temperatures T:j and diameters o,; are averages computed from individual

molecular properties, viz.,
aaj = 0.5(0’3 + Uj)
0.5 (2.44)
Ty = (TeT)) .
The values of the effective temperatures and diameters are tabulated in Reference [138]
for some gases. Once the binary diffusion coefficients for all species combinations are

known, the species diffusion coefficients D, can be computed from the approximate

formula of Equation (2.20).

This completes the set of governing equations and the constitutive relations. This .
is an extremely rich set of equations. Combined with appropriate initial and boundary
conditions, these equations describe such interesting phenomena as flames, detonations,
combustion noise and instabilities, smoldering fires, shock tubes flows, turbulence, etc.
They are, in fact, sufficiently difficult to solve that entire disciplines have been devoted
to solving only subsets of them for specific applications. The difficulties encountered in
solving these equations stem from physical, computational and mathematical problems.
The input parameters, such as rate or diffusion coefficients, are either not known or there
exist vast discrepancies in the experimentally observed values. The other issue which
pertains to the understanding of physics is the inadequate treatment of the turbulence
phenomenon. The computational problems involve inadequate numerical methods to
resolve physical phenomena, insufficient computer memory, and prohibitively long CPU
time. The mathematical problems relate to stiffness introduced due to widely disparate

time scales.

In subsequent sections the effects of viscosity, diffusion, heat transfer and external
forces will be neglected, and consideration will be limited to either one or two spatial
dimensions. The thrust of the present study is the development of an adaptive algorithm

for applications involving unsteady inviscid (Euler) flows.
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2.3 Quasi 1-D Inviscid Equations

The governing conservation equations for a one-dimensional streamtube can be writ-

ten in the compact form

oU 4dF
Here
PA pAu 0
Au Apu? + dA/dz
v| * ’ P (pu? + p) ’ wel? / (2.46)
Ae Au(e+p) 0
pAY, pAuY, A,

where A is the stream-tube area. The fourth entry in these vectors corresponds to
s =1,-+-,8 — 1, where one of the species equations has been omitted in favor of the
global continuity equation. The source terms w, are given by Equation (2.23). The
normalization of the quasi-one-dimensional Euler equations is similar to that for the

two-dimensional equations to be discussed next.

2.4 2-D Inviscid Equations

The compact form of the two-dimensional Euler equations is

oU  OF 3G

Tty =W (2.47)
Here
( P \ ( pu ) ( pY \ ( 0 \
pu pul+p puv 0
U=] pv |, F= puv y G=1| p+p |, W=| 0 |. (248)
¢ (c+p)u (c+p)v 0
\ #Ys ) \ oo \ %) .y

Again the fifth entry in these vectors corresponds tos =1,.-.,5 — 1.

54



2.4.1 Normalization

Let the subscript r indicate some reference conditions and denote the non-dimensional

quantities by asterisks, 1.e., define

z = z*L, y = y'L, t = t%,

P = pPpr u = u'u, v = v'u,

p = p'pr T = T'T, W, = WW, (2.49)
€ = €"¢ Cp, = C;,Cp, Y, =Y

H;, = H}H, e = thlm,.

In order to keep the form of the dimensional and normalized equations invariant,

the continuity equation dictates

t, = L,/u,. ' (2.50)
The momentum equations yield
ul = p/or (2.51)
whereas the energy equation yields
& = pr = prui. (2.52)
The species equations yield
W, = prty/L,. (2.53)

The rate coefficients Ky,, Kj, in Equations (2.26) and (2.27) are usually given in di-
mensional units which vary from one reaction to another. For this reason the mass
production rates in the STAR code are first computed in dimensional form by using

Equation (2.25) and are subsequently normalized by the factor W, = pru, /L.

The form of the caloric equation of state (Eq. 2.33) is kept invariant by the choice
H, = CpT, = u? (2.54)

so the non-dimensional definition of specific total energy is (dropping asterisks)

S T 2 2
€ u’+v P
- = E Y, H,+/ Cp,dT ¢ + - = 2.55
P et 0{ b T P } 2 p ( )

55



The thermal equation of state yields

- S
* * ] Y
p'or = p'0RT,T* ) o= ~ (2.56)
s=1"""8

Thus the thermal equation of state in normalized form becomes

= p*T* Z L (2.57)

3—1

in which it is natural to choose

g, = PRI (2.58)

My
Since the mass fraction is already a dimensionless quantity, it is the same in both
dimensional and non-dimensional equations. In all later computations 71, was chosen
to be the molecular mass of the gaseous mixture at the reference state; this implies that

if the mass fraction of species s at reference state is denoted by Y,,, then Equation (2.21)

yields

. 1
iy LT (2.59)

Es"‘l
Note that the thermal equation of state is the only one which is slightly modified in
non-dimensional form. Henceforth the non-dimensional equations will be written with

the asterisks omitted.

2.6 Inviscid Equations in Transformed Coordinates

The algorithm for a set of partial differential equations can be made appreciably more
robust by utilizing a well-constructed grid. It is well-known that an improper choice of
node point locations can lead to unsatisfactory results or instabilities in extreme cases.
However, the choice of grids in most cases is dictated by the boundaries of the physical
domain, or by the presence of large solution gradients in certain spatial locations. Thus
the cell volumes in physical coordinates often differ; in addition these cells may be
highly skewed or compressed in a single direction. One can remove such non-uniformity
by utilizing mappings to transform the physical domain into a uniform computational

domain. Thus the governing equations in physical coordinates, (t,z,y), in general,
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are transformed into an appropriate computational domain (1, §,7) for solution. The

mapping need not be globally one-to-one but must be so locally.

The generalized coordinate mapping in this study is time-invariant (¢.e., the grid is

stationary while the integration is being performed) and hence is of the form

r =t £ = &(z,v), n = n(z,v). (2.60)

The notation of “Jacobian Algebra” will be used here to derive the transformed equa-
tions. Note the Equations (2.47) can be written in the form

aUu  d(F,y) , 9(z,G) _

@y Ty (261
The Jacobian of the transformation is
—_ a(f: 'I) _ E"‘ eﬂ _
= a(z, y) = = fz’?y - ﬂzfy (2-62)

Nz Ny
where for example (.), denotes differentiation with respect to z. In two spatial dimen-
sions, the Jacobian of the transformation controls the magnification of area elements
between the physical and computational domains. For the transformation to be locally

one-to-one the Jacobian of the transformation must be finite and not vanish.

With the help of the previous two equations the conservation law can be rewritten

as

a(&n) ot~ d(&n)  a(&n)  a(&n)
or

19U 1

T ot + [ynFe — yeFp + 726Gy — 24G¢] = jW- (2.64)
Noting that the sum of the following identities

2:(ygF — 2,G) = ynFe + Fyne — Gzpe — 2,G

Y z Ynt'¢ Yn¢
aE\In n n n né nIé€ (2.65)

’aai(“’éc —YeF) = z¢Gpn+Gzng — Fyne — ye Iy
is the square bracket in Equation (2.64), the conservation equations for two-dimensional

unsteady reacting flow in general curvilinear coordinates can now be written in compact

form as . . .
U OF 0G -
e D = .66
at a¢  Idn w (2.66)
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where the state vector U, flux vectors ',G and the source vector W in the curvilinear

coordinates can be related to the corresponding Cartesian vectors by

b = u/J
G = z(G-yF
W o= w/J.

The quantities (z¢, Z,, y¢, yn) are referred to as the transformation metrics which

can be computed once the physical grid is specified.

2.6 Primitive Variables

After obtaining the state variables (p, pu, pv, €, pY,) at a new time level, the primitive
variables (p,u,v,¢,Y,,p,T) may have to be evaluated. From the definition of the state
vector U in Equation (2.48) it can be seen that some of the primitive variables can be
obtained by simply dividing the components of state vector by the density. However, the
decoding of temperature and pressure is non-trivial due to the complexity of the caloric
equation of state. Over a given range of temperatures it is reasonable to assume that
the constant pressure specific heat for each species is a linear function of temperature,
t.e.,

Cp.(T) = a;+5T , s=1,...,8 (2.68)
where a, and b, are constants [44]. The following procedure for evaluation of temper-

ature pertains to this thermodynamic model. The caloric equation of state (Eq. 2.55)

can now be integrated and written in the following form

€ & u? +v? 5 1 5 3\ Y,
;—ZY,H,,— = (T-To)ZY,a,+§(T2—-T02)ZY,b.—RTEg— (2.69)

=1 s=1 =1 s=1"""%

or

%A,,.Tz + BnT = Cp (2'70)
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where
- Am = as.—.:], cha

Bp = T2, [0 - £&] (2.11)

2
Cm = £- X5 V,Hy -2+ T, T5, Vea, + AmTE.
Note that A,,, By, Cp involve only the primitive variables which are already decoded.
Solving the quadratic equation for T' and selecting only the meaningful positive root

yields
P 2Cp
VBL +2AnCrm + B
The situation A, = O occurs for calorically perfect mixture (constant C, for each

(2.72)

species) in which case B,, = }_Y,C,, and hence

% - ZYaHf, - .ﬂ_ng? + TO EYacp.
2 Y,C,, |

Once the temperature is known the pressure can be obtained from the thermal equation

T =

(2.73)

of state.

2.7 Equilibrium Rate Constants

Consider a closed system containing a mixture of reacting perfect gases with a fixed
temperature T' and pressure p. The degree of reaction A, of a specific reaction r is given
by ‘

dnslr = (Bor — Qg )dAy (2'74)

where n, denotes the number of moles of species s and dn,|, denotes the change of this
number due to reaction r [134]. This equation states that the change in the number of
moles follows stoichiometric proportions. For example, for the reaction, Hy+03 = 20H
a depletion of 2 moles of H; would mean a corresponding depletion of 2 moles of O3

and a formation of 4 moles of OH.

Since the entropy of an ideal gas is governed by
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the Gibbs free energy for a constituent is

T Pe d
T po DPe

where 8¢ refers to the absolute entropy at the standard temperature Ty (usually 273 K)
and pressure pp (usually 0.1 MPa). Also note that the pressure in Equation (2.75) is
replaced by the partial pressure of species s and the pressure integral is evaluated from
the pure state pressure pg to the current partial pressure of the constituent [77]. The

specific species Gibbs function can be rewritten as

_ RT . Ds
9s = ws(T)+ e ln(po) (2.77)
where
T T dar
wo(T) = Hy, - Tso + / C,,dT - T [ c, = (2.78)
T, To T

The total Gibbs free energy of the mixture is given by

S S
G = ) ng. = Y n,mug, (2.79)
s=1 s=1

where §, is the partial molal Gibbs function which for perfect gases is also the chemical
potential. Equilibrium is attained for the system if the Gibbs free energy G achieves a
minimum [77]. Furthermore, constancy of temperature and pressure is a precondition

for thermal and mechanical equilibria. These conditions imply

) S
dGpr = d(Znsﬁ'zsgs) = Zr%,(n3dgs+gsdns) = 0. (2.80)

s=1 s=1

For simultaneously occurring multiple reactions

R R
dn, = Zdnslr = Z(ﬂar — Qg )dAr. (2'81)
r=1 r=1

Furthermore since T is held constant, Equation (2.77) implies

RT dp,

M Ps

dg, =

(2.82)

Substituting Equations (2.81) and (2.82) in Equation (2.80) yields

Z nsR T 4 Z Mg Z(ﬁ" — g )dA, = 0. (2.83)

=1 r=1
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The first of these terms is zero since pressure is constant and p,V = n,RT, hence

S S s
z;n.m“”* S Vdp, = VY dp, = Vd(Yps) = Vdp =

=1 s=1 =1 s=1

Thus Equation (2.83) implies

Ezm,(ﬁ" Qgr) [w,(T) + -—1 (”’)} d\, = 0. (2.84)

r=1s=1
Since the reaction r can also occur separately, each of the d)\, may be varied indepen-

dently and hence

"'AG,- 8 s (pcr"‘aar)
Kp, = exp(—=) = [[ (2 (2:85)
RT Po

a=1

where K, is known as the equilibrium constant for partial pressures and AG, is given

by
s
= ;(ﬂ" el a,,.)w,(T). (2'86)

The equilibrium constant for concentrations is given by

S (Bor—cter) S (ﬁ"—aor)
— pY, _ Ds
Kcr - H (ﬁls ) - 3=H1 (RT) . (2087)

=1

Substitution of Equation (2.85) in (2.87) results in

S (ﬁn"an) 2._1(45:7 0")
K. = K, (ﬂ) = K,, (—"i‘L) . (2.88)
P El RT Pr\RT

Note that K, is a dimensionless quantity whereas K., has the dimensions kmole/m®
raised to the power 3 (8, —tr). As has been shown here both the equilibrium constants

depend only on the temperature for a mixture of ideal gases.

For an accurate description of the reaction system, the equilibrium constants must
be determined by the above procedure (Egs. 2.78, 2.85, 2.86, and 2.88) at all the spatial
locations and at each time-level. Consider that for a typical 100 x 50 grid with two
reactions and 1000 time-steps the above calculations must be repeated 107 times. A
simpler model for the equilibrium constants can lead to substantial savings. For engi-
neering purposes the equilibrium constant is usually approximated over a given range

of temperatures by the following expression [136]

Kcr = Achnc' eXp(—Ecr/RT). (2-89)
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This is consistent with forward and backward rate coefficient forms in Equations (2.26)
and (2.27) béing written in the generalized Arrhenius form. For the STAR code the con-
stants Ay, ¢y, E¢y can either be user-supplied or can be calculated to match K, at three
representative temperatures. The equilibrium constants are determined by the longer
procedure at temperatures T, T2, T3 and their values are denoted by K.,, K, K., re-
spectively. The following system of linear equations is then solved to determine the

unknown constants [132].

1 InTy —‘k'lT'{ InA, In K.,
1 nT; -z e = | nK, |- (2.90)
1 InTs -z E, InK,,

Different choices of temperatures yields different values of constants, but the numer-
ical value of the rate constants differ only slightly. Frequently the range of tempera-

tures is known aprior: and this knowledge can be used to choose appropriate values of

Ty,T2,Ts.

2.8 Chemistry Reaction Models

Two chemical models have been considered in this study. The first describes dissociation-
recombination in terms of a Lighthill ideal gas. This model was used to examine the
potential difficulties encountered in the spatio-temporal algorithm. The second model,
describes hydrogen-air combustion and was used to demonstrate the applicability of the

developed algorithm to multi-component, multi-reaction systems.

2.8.1 Lighthill Dissociation Model
In 1957 Lighthill [78] proposed a simplified model to describe a dissociating gas flow

in equilibrium and referred to it as an ideal dissociating gas. A year later Freeman

[52] used the model to describe non-equilibrium situations. Denoting the atom by the
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chemical symbol Z the dissociating reaction is

-

Zy=22. (2.91)

For the model to be applicable to real gases, the temperature range for the flow should
be such that dissociation occurs appreciably but ionization is negligible. For gases like
O3 and N, the approximate temperature range is 1000 to 7000 K. The Lighthill model
assumes vibrational modes to be excited to one half the maximum classical value. At
relatively high temperatures the actual molecular excitation may be more than the factor
of one half, but the molecules themselves are reduced in number due to dissociation
and in the process absorb energy thereby compensating for the underestimation of

vibrational levels. The frozen ratio of specific heats may be written as

4+Yz

= . 2.92
o7 3 (2.92)

At low temperatures when Yz = 0, the ideal dissociating gas is a perfect gas with con-
stant specific heats and 4y = 4/3. The difference from 7/5 is a result of the assumption
that the vibrational degrees of freedom are one half excited even at low temperatures.
Hence for this model to be a realistic match to air the lower temperature limit is about
1000 K. Note that for Oz at 1000 K there is no appreciable dissociation and the ratio
of speciﬁc~ heats is 1.31.

The species for this model are numbered as
Y1 =Yz Yo =Yz, = 1-Y3 (2.93)
with the heats of formation given by
H; = Hy, Hy = 0. (2.94)

Since each of the constituents is assumed to be a perfect gas with 4 = 5/3 for Z and

~ = 4/3 for Z,, the constant volume specific heats are

_ R — 3R _
Cv, = (hz-1)hgz — 2mg — 3Rz, (2 95)
R _ 3R )

Cy, = iz, Nz, — Tz, = 3Rz, = C,,
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where Rz, = R/ z, is the gas constant for the molecule. The constant pressure specific

heats are giv-en by
Cp, = Co,+Z& = 5Ry,

(2.96)
Cp, = Cyy + ,-,g; = 4Rgz,.
The thermal equation of state is given by
Y1 1- Yl]
= T = . 2.97
p = oRT [Z1+ 2] = pRAT(1+ YY) (297)
The caloric equation of state for ideal dissociating gas is [78,136]
€ 24
£ = By (5T +Yi0a) + ks (2.98)

where 0 is the characteristic temperature for dissociation (59,500 K for Oz). The

corresponding multicomponent Equation (2.33) yields

€ u? + o?
; = 3Rz, (T - To) + Y1Hy, — Rz, To(1 + Y1) + . (2.99)
Comparing the previous two equations yields the expected
Hf = Rgz,04 and To = 0. (2.100)

The nonequilibrium chemical source term, in dimensional form, is given by [52]
. C
Wy = L7702 (1 - vy)e /T - £—Y12] (2.101)
mz Pd

where C7 is a constant which depends upon the collision cross-section between molecules
and those between atoms and molecules. The constant pg is the characteristic density
for dissociation (1.5 X 10% kg/m?® for O;). Similarly Equation (2.25) yields the following

dimensional form

. pY12
Wi = »p Kf(l -Y) - 2Ky—|. (2.102)
mz
Choosing
Ky = AgTne%/T and Ky = AT" (2.103)
yields dimensional form
. 20 A
= n (1 - Y e /T - 2P by
W1 pAfT [(1 Y1)8 ﬁ’lz Afyl] . (2.104)
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Comparing Equations (2.101) and (2.104) yields

cy fazAy '
= e = . 2.105
Ag o and Ap %0s ( )

The non-dimensional form of the source term (Eq. 2.101) with Equations (2.51) and
(2.53) is
Wy = ®T"p* [(1 —Yy)e %lT _ pin] (2.106)
d

where the non-dimensional reaction parameter is given by

CrI7 pr Ly

Mz Pr; Pr

and Wy, p, T, pa and 04 are non-dimensional variables in Equation (2.106). The pre-

® = (2.107)

exponential factor A; in terms of ® becomes

Uy

v Ly

Ay = ®p 2.108) .
!

Here again p is the non-dimensional density. The rate parameter ® varies from zero for

frozen flow, to infinity for equilibrium flow.

2.8.2 Hydrogen-Air Combustion Model

For a scramjet combustor Rogers and Chinitz [115] used a 28 reaction H-O mecha-
nism to propose a two reaction model for .combustion of hydrogen in air. Nitrogen was
regarded as inert. The model is applicable for temperatures between 1000 to 2000 K
and for equivalence ratios between 0.2 and 2.0. The model consists of the following two
steps

Hy, + O = 20H (2.109)
H, + 20H = 2H,0.
The first controls the reaction of the fuel and oxidizer species through the ignition delay
period, whereas the second step predominates during the combustion phase when the
major heat release and product formation occurs. The model adequately represents the
physics of hydrogen combustion in air but produces an extremely large disparity in the

time-scales associated with the two reactions. Hence this model can be used for testing

the robustness of a numerical scheme in overcoming the resulting stiffness.
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The forward rate coefficients for the reaction are determined to be functions of

temperature-and equivalence ratio ¢ with

A = (31.433/¢ +8917¢ -—28.95 )x 10* m3/(kmole.s)
A;, = (1.333/¢ -—0.833¢ +2.00 )x 10% m®/(kmole.s)
(2.110)
= —10 N = -13
Ef /R = 24484 K Ef,/R = 18940.6 K

here the equivalence ratio ¢ is defined as the fuel to air ratio divided by the stoichiometric

fuel to air ratio, thus for the following complete reaction

2H, + (02 + 3.76N2) — 2H,0 + 3.T6 N, (2.111)

the fuel to air ratio becomes

[ _ 2thy _
= AT teme? = 0029374, (2.112)

The mass fraction of hydrogen is then given by

¢

Yo, = —o.
2 = 41734.048

(2.113)

The backward rate coefficients are determined from the law of mass action with the

following equilibrium constants [42]

K., = 26.164¢7899%/T

(2.114)
K., = 2.682x 1079Tet6%415/T ;3 /kmol.

The chemical source terms are given by Equations (2.25). Since this chemistry model
is not valid below 1000 K an ignition temperature must be specified. This temperature
for hydrogen-air combustion is itself about 1000 K. For temperatures below the ignition

temperature the chemical source terms are set equal to zero.

For premixed flows 7 equations (4 fluid and 3 species) define the flow. This is because
YN, is constant and )Y, = 1. However, when the fuel is injected Yy, is only piecewise

constant and hence 8 equations need to be solved.
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The constant pressure specific heat for each species has been computed from non-
linear thermiodynamic equations in Reference [134] and a least square regression is

performed for temperatures between 300 and 2500 K. These approximations are

Cp(0O2) = 30559 + 3.4485 x 1073 T kJ/kmol K
Cp,(OH) = 28.071 + 3.0943 x 1073 T kJ/kmol K
Cp(Hs) = 27290 + 3.3530 x 10°% T kJ/kmolK (2.115)
Cp(H,0) = 32469 + 86358 x 107 T kJ/kmolK
Cp(N2) = 29282 + 30233 x 1073 T kJ/kmolK.
100 1
Offset = 10 kJ/kmol K - H0
Cp 80
kJ/kmol K N,
o reese ove OH
40 Gaa _ begeartcl ) 02
W
20 T v T T T
0 500 1000 1500 2000 2500

TK

Figure 2.1: Variation of constant pressure specific heat with temperature.

Figure (2.1) shows the variation of constant pressure specific heat with temperature,
the symbols represent the data from Reference [134]. Also shown are the linear profiles
which fit the data reasonably well. The vertical scale corresponds to the oxygen curve

and the rest of the curves are displaced by the indicated offset.
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Chapter 3

Integration Scheme

The integration basis for the present algorithm is a generalization of the second
order Lax-Wendroff, finite volume, cell-vertex scheme originally published by Ni [96].
Another cell-vertex scheme which is very similar to the Ni scheme is due to Hall [60,61].
The generalization introduces chemical source terms and spatio-temporal adaptation.
The state variables U, the source terms W, etec. are stored at the nodes and each cell
is integrated independently based upon the nodal values of these vectors. Ni made use
of a multiple-grid accelerator for his steady state interest but that is inappropriate for

unsteady situations discussed in this thesis.

Section (3.1) deals with the integral form of the governing equations. The integration
procedures for both one and two-dimensional cases are developed in Sections (3.2) and
(3.4). A discussion of artificial viscosity modelling for one spatial dimension is contained
in Section (3.3) and this is extended to cover two spatial dimensions in Section (3.6).

The treatment of 2-D spatial interfaces is discussed in Section (3.5).

3.1 Integral Form of Governing Equations

To integrate the mathematical model numerically the governing equations must
be discretized in both space and time. Instead of immediately discretizing the Euler
equations the governing equations are often cast first into integral form and then the
flux is balanced across computational units which are known as the cells. This approach
is referred to as the finite volume or cell method. Time is divided into finite intervals

called time-steps. The approximate numerical scheme is advanced through each time-
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step for all computational cells. With smaller cell dimensions and shorter time-steps,
the numeric;,l solution is believed to approach the exact solution of the original partial
differential equations for a given choice of boundary and initial conditions. A finite
volume calculation on the cells ensures conservation of global and species mass, momenta
and energy on the smallest computational units and thereby leads to conservation of
these quantities globally over both the space and time dimensions. The finite volume
approach also allows one to deal with complicated geometries without the complexity of
curvilinear coordinates [107]. Thus the basic cell units can be triangles, quadrilaterals
or a combination of other higher dimensional polygons. Only the coordinates of the
nodes of the cells are really necessary and non-orthogonal curvilinear coordinates can

be employed to define the set of volumes.

The governing equations (2.47) are well suited for finite volume discretization with
the integral form since they have been formulated in conservation law form. The integral

form of the governing equations can be expressed as

U dF 9G
QFEW+/ ($+—8—;>JV = /{;de (3.1)

Here (2 is the region of validity of the equations and (1 is the boundary surface of
this fixed region. Using the divergence theorem, the integral of flux vectors can be

transformed into a surface integral along the cell boundaries
3 ccw
—/ UdV+f (F,G) ndA = /WdV (3.2)
ot Ja a0 0

where 7 is a unit normal pointing outward from the surface 3{2. The superscript on the
surface integral accents the counter-clock-wise orientation. For the Cartesian frame of

reference in two spatial dimensions the unit normal vector can be decomposed as
= ——t— —J (3.3)
thereby yielding

Ao

Here Ug and Wq are taken to be cell averaged values; for example

Wa f (Pdy — Gdz) = AaWa. (3.4)

[qUdA 1 /
Ug = = — [ vda 3.5
a [ dA Aq Ja (3.5)
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Thus the changes occurring in time At¢ for some cell C are given by

%%C = g-t%c - WC+X15LZW(de—de). (3.6)
The quantity AUg will be referred to as the first order cell change tn time or simply as
cell change. The process of calculating cell change is usually termed as flux balancing
and is principally the summing of the quantities (F Ay—GAxz) over the cell faces and the

source terms over the cell volume. The corresponding equation for first order changes

in the computational coordinates (&,1n) is

Aﬁc ~ 1 cw ~ ~
= -~ GdE) . 3.7
il = Vot sanm /a _ (Fdn-Gae) (3.7)

It will be proved later in Section (3.4) that the cell change is the same whether computed
from Equation (3.6), or (3.7) and then transformed back to physical coordinates. The
scheme developed in this chapter will be referred to as the Ni scheme, although the
original Ni algorithm [96] involves neither chemistry nor spatio-temporal adaptation.
The discretized version of the overall Ni scheme is obtained by coupling the cell changes
with the residuals at the nodes. This will now be discussed for both one and two

dimensional spatial systems.

3.2 Integration Scheme for One Spatial Dimension

The development of the integration scheme in one spatial dimension is important
in understanding the concept of time-strides and artificial viscosity and for the studies

pertaining to stability analysis. Consider the cells B and C adjacent to node j in

Figure (3.1) with a constant time-step At for both cells.

The temporal change in state at node j is

n 2rr (™
§U; = UPt —Up = ou At + -;-%g At +o(Atd) (3.8)

I a8t

J

3

or, using Equations (2.45),

oF At? oF a aF
oU; = (W—-é-;) At+—§-—[qWU (W——a;)“"é—x‘{FU (W""gz)}} (3.9)
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Figure 3.1: Finite volumes adjacent to node j.

The subscript 7 and superscript n have been omitted for simplicity. The factor ¢ appears
in this equation so that assigned values of O or 1 will exclude or include a second order
source term. The remaining second order flux terms are essential for stability of Euler
equations and hence are always retained. The significance will be clearer when the
stability analysis of a model problem is discussed in the next chapter. The first order
source term (Eq. 3.11) is always included (whether explicit or implicit) irrespective of

the inclusion of a second order source term. The Jacobians in the above equation are

aw\"
Wy = (E—U—.)J (3.10)

The flux balance for cell C, for example, yields the cell change

defined, for example, as

Ato

= F; — F 3.11
AUg WeAte + (Fj k) Azo ( )
in which Wo may be modelled as an average for the cell, z.e.,
We = (W; +Wy)/2. (3.12)

Alternatively, for a more accurate contribution to node j use can be made of a AUj¢
based on choosing the source term as W, in which case the cell change varies with the

nodal source terms, viz.,

Atg
Azg’

AUjc = WjAtc + (FJ' - Fy) (3.13)
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This represents an accurate contribution to node j because the source terms and Ja-
cobians in Equations (3.8) and (3.9) are based upon nodal values rather than the cell
values. Since accuracy is not imperative to a determination of cell time-steps, Equa-
tion (3.11) will be used as a basis for determination of temporal resolution At, whereas
Equation (3.13) will be actually used for determining the residuals at the nodes. The

criterion for temporal resolution is developed and explained in Chapter 5.

In terms of a non-uniformity grid parameter ¢; at node

_ Azp— Azc

4= Azp + Azc (3.14)

a second order accurate Taylor series expression for the rate of change of a scalar variable
¢ can be defined as

% _ 1+e¢

_1-—-€j
Oz |; T 2Azc

2Azp

(o — 93)

(¢i — ¢;) + O (AzpAzc). (3.15)

Note that for uniform grids ¢; = 0 and for embedding involving uniform base grids ¢;
will be either % when Azp = 2Az¢ or ~§ when Azc = 2Azp at the extreme edges of
the embedded regions. Hence the spatial interfaces for one-dimensional spatial grids can
be defined to be those nodes which are at boundary of disparate cell sizes with |¢;| > }.
Using the above expression and Equation (3.13) the following terms in Equation (3.9)

can be evaluated; t.e., the first order node change is

OF\™ 1—c¢; At
W-—1 At = J [W~At _— F-—F-]
62:)_,,- 2 1 +Aa:g( ' 0|+
1__ .
= 2€JAUJ‘B+

1+¢; . At L ]
: [W,AH o (B~ )

1+¢5

AUje (3.16)

and the second order source change is

At? AF\" At 1—¢; 1+¢;
2wy (W - ...__) = —Wy, ( & AU;p + ;e’ AUjC>

2 oz /; 2 2
At (1 —¢; 1+¢€;
= '2—( 2 JAWjB + > JAng) . (3.17)

The definitions of AW;p and AWj¢ are similar to the forms in Equations (3.20) shown

below. The second order flux change is now

“Tar (W)} = (s (e (V- ) - R (V- 8B),

__%"z_‘;l {FUB (W—%%)#—FU;' (W—%I;—‘)j
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In this expression -7—';£ denotes the mid-value in between the nodes j and k. After some

algebra this can be discretized to

At? 9 dF\1 _ At [1-¢ ]
Tl (W-%)} = ng[T3Par skt

At 1+¢; ) ) ]

ch[ "G ARo+eAFc|.  (3.19)

Here the various Jacobian changes are defined as, for example,

oF oF
AFg = EFCAUC y AFjc = ¥Tid

When the three terms contributing to §U; (Egs. 3.16,3.17,3.19) are added the resulting

AUjc. (3.20)

i

overall change can be decomposed into distinct contributions from cells B and C, .e.,
5Uj = 6U;p + 6Ujc (3.21)
where

Azpg

6Ujp = 5% [AU;p + 422 (AFp + £LAF;p) + ¢252AW5 022

6Ujc = S5 [AUsc — 4t (AFo - FLAFc) + 420 AWjc]
are the distribution formulae. For frozen flows on uniform grids (¢; = 0, W = 0) these
expressions reduce to those in Ni’s paper [96]. Also note that the time-step At is now
replaced by Atp and Atc for cells B and C respectively. Hence the distribution formulae
can now be used to update the cells adjoining a common node with different time-steps.
A node adjoining cells with different time-steps will be referred to as nodit which is an
acronym for “Node Of DIfferent Time-steps”. It can also be noted that if the integration
is carried out on a cell by cell basis then the contributions to the nodes of a given cell
only involve information based on nodes of that cell, i.e., the contributions do not
involve information from the nodes of the neighboring cells. This property is extremely

beneficial when adaptive grid structures are considered. The distribution formulae in

the above form do not involve artificial viscosity and its inclusion is discussed next.

3.3 Artificial Viscosity in One Spatial Dimension

An explicit artificial viscosity is needed for the following reasons:
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e to suppress odd-even decoupling modes associated with the integration scheme

e to stabilize captured shocks in transonic and supersonic regimes.

One must exercise care to ensure that the numerical smoothing does not contaminate
the solution above some acceptable level. This issue becomes even more important when

real viscous and diffusion terms are involved.

The explicit artificial viscosity for the original Ni scheme [96] for a uniform grid is

of the form

aru "
U = AtA:cE;:—z— : (3.23)
J

This viscous change is added in a discretized form to the distribution formulae (Eq. 3.22)

and implies the following modified differential equation

L =W+ 4A332U (3.24)

The artificial viscosity coefficient o was regarded as constant in Ni’s paper, who had
not considered high supersonic flows. For flows involving strong shocks a relatively large
value of o is needed in their vicinity. A constant value of ¢ would result in excessive
errors due to artificial viscosity in smooth regions of the flow field. Hence it is desirable
to use formulations in which the artificial viscosity coefficient will be small enough
in smooth regions to suppress spurious oscillations and large enough in the vicinity of
strong shocks for adequate shock capturing. Another desirable property for the artificial

viscosity would be a non-convective conservative formulation. Hence the viscous change

should be of the form
3% (Az*eU
U = At— | ——— . .
; - ( - ),- (3.25)
Since it is not yet clear which Az to use for non-uniform grids at node 7, the symbol
Az* is used tentatively. A Taylor series expansion for a second derivative of a scalar

function ¢ is similar to Equation (3.15) and has the form

2
3_,;% = 1 e, (e - ¢J)+ - +€J (¢i — ¢;)+¢€;0(Azp+Azc)+O0(AzpAzc). (3.26)
j
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Note that unlike Equation (3.15) this expression is first order accurate if ¢; # 0 and be-

comes second order accurate for uniform grids. Using this equation with Equation (3.25) -

gives
sup = 5 “A %) Azt (04U — o U+ 5 (IA*'?) Azl (@l - o;U;) . (3.27)
A logical choice for Az* would be
Azp = Azp and Az = Aze (3.28)
whid yields
§U; = AA;(, e (0;U; — ok Uk) + AtB (1“’)( Ui — oU;). (3.29)

Note that in this equation the term (1 + ¢;) appears with the quantities corresponding
to cell B unlike the rest of the terms in the derivation of §U; in Equation (3.22). Hence

in order to make the coefficients of the terms consistent the following choice is made

Azp = Azc and Az = Azp. (3.30)
Hence
. _ At 1+¢; At 1-¢;
5Uj = TAze 2 ‘I’C+Az‘3 ) ¥p (3.31)
where, for example,
Vo = Z&;_“_kq_lg. (3.32)

For uniform meshes (¢; = 0) with ¢ = § — 1 and k = 5 + 1, the artificial viscosity

contribution at node j is

At
8Uj = 2= (0j-1Uj-1 - 20;U; +0j41Uj41) (3.33)

Hence the sum of all the viscous changes for all the interior nodes satisfies
. At
Z 6U; = ——(owlU1 —0Us —051Us-1+0;5U;) (3.34)
= 1Az
but the contribution from the first cell at node 1 is —-m (01Uy — o3U32) whereas the

contribution from the last cell at node J is 4 (O'J 1Us-1 —05U;) as given by Equa-

tion (3.31). Hence the artificial viscosity contribution is conservative and at the same
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time non-convective (i.e., there are no terms of the form d(oU)/dz in Eq. 3.31) on
uniform grids. The overall distribution formulae for cell C can now be written as
SUjc = i [AUc - Ao (AFc - FEAFc +%0) + qAle AW ;o]

(3.35)
SUic = 15 [Alkc + 82 (AFo + EEAFic + ¥o) + 242 AWic ).

Azg —€g
The second difference of pressure is commonly used to scale the artificial viscosity
coefficient [68]. This is because the second differences are considerably larger (order
unity) for regions in the vicinity of shocks compared to those in smooth regions (order
Az? for Ni scheme). Since pressure is constant across contact surfaces, density is used in
the present work for scaling artificial viscosity. Furthermore normalized first differences

are used in this study instead of second differences. Consider the second difference at
node j

32
a9 Ax?

EP) = |(pj-1 = p5) + (pj+1— Pi)| < |pj-1— pj| + |pi+1 — pil - (3.36)

Hence the sum of the two first differences for the cells adjoining the nodes j is even
greater than the magnitude of second difference at this node. The first differences will
be of order unity in the vicinity of strong shocks and would be of second order for the
current scheme in the smooth regions. This is not the first time that first differences
of density have been used for scaling the artificial viscosity coefficient; specifically Hall
and Salas [61] have used a different form of first differences. Defining the normalized

scaling for cell C as

Pi — Pk
kg = |HL——= 3.37
Pi + Pk (3:37)
the nodal artificial viscosity coefficient can be assigned as
§
0; = Omin+ E(ng + K¢). (3.38)

Here 0 min is the minimum amount of artificial viscosity which shall be deemed necessary
to suppress odd-even decoupling in the smooth regions and § is a constant which is
chosen so that o; € [0min,Omaz] With 0maz being the maximum user supplied viscosity.
The artificial viscosity can be kept within bounds by the following formula

5 = Omaz — Tmin

rer oy (3.39)
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where max{x¢} is the maximum value of the normalized scaling for all the cells in the
domain. Tyiaical values for o fall within 0.01 and 0.2 for most one dimensional results

shown in Chapter 8.

/4 /4
4. 4
3. 3
2 2.
1 1.
0. 0.
i=24i-1 § j+1j+2 i=2j-1 j j+1j+2

Figure 3.2: Distribution before the application of artificial viscosity.

U U
4 4
3 3
2 2.
1. 1
0. 0.
J=23-1 §F Jj+1ji+2 i-27-1 j§ j+15+2

Figure 3.3: Distribution after the application of artificial viscosity.

In order to understand how the artificial viscosity suppresses spurious oscillations
consider the two situations as shown in Figure (3.2) before the application of artificial
viscosity. These correspond to a spurious valley and peak for one of the components of

the state vector. Further suppose that the artificial viscosity coefficient is constant and
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the value of s At/4Az = 0.2. For simplicity the slopes of the distribution of U on the two
sides of node j are regarded as constants. As evident from Equation (3.33) the artificial
viscosity contribution at nodes j — 1 and j + 1 is identically zero. For the downward
pointing spike the artificial viscosity contribution at node 7 is +0.4, whereas that for
the upward pointing spike is —0.4. Hence the amplitude of the spikes decreases after
the application of artificial viscosity as indicated by Figure (3.3). Thus the numerical
diffusion has the same form and effect as physical diffusion and reduces the amplitudes

of the solution harmonics without altering their phases.

3.4 Integration Scheme for Two Spatial Dimensions

The changes in the state vector for the cell centers (Eq. 3.6) must also be related
to the temporal variation at the nodes for the 2-D case. Consider cells A through D in
the computational domain and adjacent to node ¢ in Figure (3.4). Since the generalized
coordinate transformation § = £(z,y), n = n(z,y) is arbitrary, it can be used to map
each physical cell onto equi-dimensional rectangles for convenience while the physical
grid confqrms to the boundary shapes. The computational grid is locally 1-1 and onto
for each cell and may not be so for the entire domain when the cells are subdivided
and spatial interfaces are created. Hence for a local uniform grid in the computational
coordinates (£, n) with constant A€ and A7 for the cells A through D and with constant
time-steps, the temporal change in state at node i node is given by the Taylor series

expansion

n n

1820, ., 3
At + T At + O(At°). (3.40)

" . -~ if
§U; = UpH 0P = %?

] 1

The variations in cell time-steps will be allowed once the distribution formulae

(Eq. 3.70) are derived [96]. Using Equation (2.47), the first order term or FOCIT
(First Order Change In Time) in Equation (3.40) can be written as

FOCIT = v
at

n

At = (W* - F-G,) At (3.41)

L1
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Figure 3.4: Computational grid for flux balance.

where the asterisk on W indicates that the source term can be treated either explicitly
or implicitly. The implicit source vector is useful when the chemical reactions would
otherwise impose a severe time-step restriction due to the stability considerations in-
volving chemical time scales, and would thereby make time-steps minuscule compared
to resolution requirements. However, it is essential to realize that such implicit mod-
elling is desirable only when the stability dictated time-step is small compared to the
resolution requirement. The latter will be discussed with considerations which arise
for temporal adaptation. Although implicit modelling may be advantageous in over-
coming the reaction stability limitations, this approach should not be applied to avoid
local rapid chemical adjustments. Of course when interest is limited to the steady state
the implicit advantage can be fully utilized in by-passing the resolution requirements
[24,42,114,122], but only if the real gas behavior is independent of transient history,

which is not always clear.

The use of only the first order term in the Taylor series expansion yields an uncon-
ditionally unstable scheme. However, the scheme can be stabilized by considering the

next term in the Taylor series expansion and this process is frequently termed as Lax-
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Wendroff time-stepping [76]. The inclusion of an additional term results in an inherent
upwind biasing which admits correct wave propagation phenomenon. The second or-
der change in time contribution or SOCIT in Equation (3.40) is again determined by

appropriately differentiating the original differential equations, i.e.,

- %)

= (AWl - A2 & (Rolh) - AL (Gulh).

As pointed out earlier the factor ¢ is assigned values 1 or O to include or exclude the

SoCIT = }54|"ar = S22 (W -3

X’I'm
§’|m.

(3.42)

second order source term. The Jacobians are defined, for example, as
- aw\"
Wy = | —=] . 3.43
Y (BU ) i ()
These nodal Jacobians subsequently will be replaced by their cellular representation for

the system of two spatial dimensions.

The cells in a physical domain are depicted in Figure (3.5). Additional divided
cells bordering cell C are shown in this figure. It is reasserted that the transformation
with constant A and An is applied only for cells adjoining the usual nodes, and not
cells with a node at the mid-point of a spatial interface (such as nodes e and n in the
physical grid). These spatial interfaces are one or more faces of a given undivided cell if
one or more cells adjacent to it are divided. The treatment for the latter nodes will be
discussed separately. It will be proven first that the cell change can be obtained either
from a cell in the physical grid or from a corresponding cell in the computational grid
(with AUz = AUg/J), provided that the metrics are specified in a certain manner.
For the sake of this proof, average values of the corner node fluxes will be used for the
respective sides of a cell and the middle node values will not be accounted. For example,
the west and north face F-fluxes for this proof are

Fy + F; o = Fy+ F
2 N T

The proof for other variations of fluxes involving the middle nodes of the faces can

Fy =

be verified in a similar manner. For example, the north face F-flux for the cell C in
Figure (3.5) could be defined as

Fy = )
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Figure 3.5: Physical grid for flux balance.

While for cell C the nodes e and n actually exist, the nodes w and s are irrelevant;
nevertheless for the sake of generalizing the above face fluxes for all cells one can define
the flux for middle edge nodes for those edges which are not spatial interfaces to be the
average of the corresponding corner nodes, for example,

F; + F,

Fy = 2

in which case
F;+2Fy + B
—

Although this may seem to be a trivial point, the above formulation significantly reduces

Fy =

the number of if-then clauses in the actual coding of the solution scheme which involves

spatial adaptation.
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Statement: The cell change can be obtained either from a cell in the physical grid
or from a corresponding cell in the computational grid (with AUc = AUg/J ), provided .
that the metrics are given by Equations (3.49) and ($.50).

Proof:
Let us first consider the cell C in the physical domain. The flux balance is obtained by

the trapezoidal integration of Equation (3.6) and is as follows

AZAUc = AW + Fw(m—-w) — CGw(ni—=)

+ Fn(ye—w) Gn(zx — =)

+ Fe(yi—y) — Ge(zj— i)

(3.44)

+ Fs(yi—vy;) — Gs(z:i—z5).
If the dependent variables at the middle edge nodes of spatial interfaces are regarded to
be the average values of the corresponding corner node values at all times, then the flux
balance based upon just the corner nodes is appropriate. However, if the changes in \
dependent variables at the middle nodes of spatial interfaces are computed through some
other means, then the inclusion of the middle nodes in the flux balance would yield a
more accurate trapezoidal integration [33]. The flux balance using just the corner nodes

yields
a—‘%AUa = AcWg& + 05 (Fi+F)y—-w) - 05(Gi+Gi)(zi— =)
+ 05 (F+Fe)lyk—wm) - 05(Gi+Ge)(zk — zz)
+ 05 (Fr+ Fj)(yj —y) — 05(Gr+ G;)(zj — =)

+ 05 (Fj+ F)(yi—-y)) - 05(G;j+Gi)(zi— z;).
(3.45)

This can be rearranged to

. At
AU = AteWs + =={  (Fi- F)(w— ;) - (Gi—Gi)(m - z))

2Ac
+ (B —Fj)(yx — %) — (Gi—Gj)(zx — ;) }.(3.46)

The flux balance in the computational coordinates is given by Equation (3.7), i.e.,

Aﬁc _ ¥ % 1 ~ ~ ~ ~ 1 ~ ~ ~ ~
Kt;'— —Wc+5‘&—é{F“+Fl—Fj—Fk}"m{Gk""G!—G,‘—G;}. (347)
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Substituting the values of F* and G from Equation (2.67) yields
-Aﬁc -

—— *

1
A S e t EKE{ (Yo F — 24G)i + (yo F — G )i
—(y,,F - z,G); — (yoF - “"nG)k }
1
+ gan U (@G~ yeF)i+ (26G — yeF);
—(a:gG - ygF)k - (zeG - ygF); } . (3.48)

For y, at node ¢ the forward difference will be used

w—% - Y — Y

Yne =
g m—ni An

whereas for y, at node / the backward difference will be used

_w-% _u-%
T M- An

Thus all the n-derivatives at the corner nodes of cell C are defined as

= — — z—%;
Yni = Yy = ﬂ&'f": Tng = Tm = "“A—y,_t (3.49)
Yn;j = Yme = v_k'A—y';!i" In; = T = EA__:L
Similarly all the §-derivatives of the metrics can be defined as
TE;, = Ty = 'z";'s:eﬂ: Ye; = Y& = !jA__evi
(3.50)
ze, = zg = A, ve, = ye = U

Substituting Equations (3.49) and (3.50) in Equation (3.48) results in
AUg e 1
Atc - WC + 2AEA7’ { (F’ Fk)(yl yJ) (G‘ Gk)(xl z.'l)

+ (B = Fj)(we — vi) — (Gi — Gj)(=ze — =) } . (3.51)
Using Equation (2.67), this can be reverted back to the physical grid coordinates

J
AUp = AtoWj + oS

2A8An (F" - Fk)(yl - yj) - (G,’ - Gk)(zl - zj)

+ (Fi— Fi)(ye — %) — (Gi—Gj)(ze — 2i) }{(3.52)

This equation is the same as Equation( 3.46) if one can show that J = A§An/Ac. The
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metrics for the cell C itself can be defined as

1 (Zetzi  zitm
zegle = Ké( 2 2

I

me(zetzi—zi—m) = Sfe

+y; . Aye
wlo = de("54-194) = aelwtu-w-w = Y
oo = A (B -EH) = L(mta-zn-z) = S
itys —_— ne
wme = & (- = L(utn-w-y) = e
Substituting these values in the definition of the Jacobian J yields
1 _ 1 _ _4c
75- - [ziyn - yizn]c - 2A5Aﬂ [(itk Z.)(y[ yJ) (32[ x.‘l)(yk y%)] - AEA’].
(3.54)

Note that the cell area is one half the cross product of the diagonal vectors of the
cell. The Jacobian J for cell C is related to the magnification of the area under the
transformation. Thus it has been established that in order for the flux balance to remain
valid in both the coordinate systems, the metrics must be defined by Equations (3.49)
and (3.50). Q.E.D.

In summary, the flux balance for the cells surrounding the node ¢ is given by
AU4 = VT’AAtA + %‘%{f‘a-l-ﬁ'h—ﬁ'b-ﬁ';} + %‘}’-{éaﬁ-éb—éh—é;
AUg = WBAtB 4 Atp

+ e + 52
Ale = WoAte + -fte { B+ By - Fy - ~k} + o {@¢+C~r',' -G - ék}
AlUp = WpAtp + { + { +

As asserted earlier the time-step in these cell changes is assumed to be constant.

The average of these cell changes can be denoted by AU; and it will be shown to be the
FOCIT at node ¢

. At~ . . .
AU; = —4——(WA+WB+W0+WD)+

2AE 4 4
At G¢+2G5+Gc_Gm+2G1+Gk .(3.56)
2An 4 4

It is seen that the first curly bracket represents —2A ¢ %% at node ¢ with weighting factors

as indicated in Figure (3.6). Similarly the second curly bracket represents —-ZAn%ﬁl at

the common node.
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Figure 3.6: Nodes used for the computation of dF/9¢. The numerals are the weighting

factors for the nodes.

Defining the source term at node ¢ as the average

~ 1 /7~ ~ ~ ~
W= g (Wa+Ws+Wo +Wp). (3.57)
Equation (3.56) can be written as
FOCIT; = AU; = At (W.- + ‘;’: + gc_:) (AUA +AUg + AUg + AUD)
' (3.58)

But this is recognized to be the first order change at node 5. The second order source

|

since AU, A= U, JAt ete., this gives

term in SOCIT (Eq. 3.42) is given by the average

au
ot |,

b

F:Yi
+ Wy — 3t |,

+ Wy =— 3t

A

+ Wy —

here Wy is used as a simplified notation for ‘?L‘;,
At? o

At -~ ~ -~ ~
q—2—WUU¢ 5 [AWa + AW + AW + AW (3.59)

where the source change is given by, for example,

AW, w

c = —| AlUg = 1 an AUg. (3.60)

c
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The second order F-flux term in SOCIT is

~ ~

A2 3 (- At [1( - a0 il 1 (- o0 il
22 = -2 2B Eo| + B2 ) -2 B + o] )]
2 ae(F"U‘)s 2A§[2(U3tA+ Ut D) 2(U6tB T c)]
.Again using U;At as a value for AT implies
At2 3 (5 = At [« ol w o ml = o= s
-5 % (Fol), = Y [Foal|, + Foal| - Foal|, - Fyad| |
At ~ - ~ -
= A [AFs- AFp - AFo + AFp]. (3.61)
Similarly the second order G-flux term in SOCIT is
A2 3 [ « At 1~ ~ x x
- S5 (Gut), = ~ian [a64+aG5 - AGc - AGD] (3.62)
where the Jacobian changes are given by
AF = (w3F-=38) AU = yAF - 2,AG (5:55)
3.63
AG = (23§ - vedf) AU = 2AG - yAF.
These values for cell C, using Equation (3.53), are
An
Aé = A“"‘"AageAy“"AF (3.64)

where, AF = Fy AU, etc.

Now adding the three terms contributing to SOCIT (i.e., substituting Eqs. 3.59,
3.61 and 3.62 in 3.42) yields

n

2 7 L ~ ~ -~
SOCIT = %%g- At? = q%f (AWA +AWp + AWc + AWp)
H
At ~ ~ ~ ~
+1aE (AF4 - AFp - Afo + AFD)
At [« . . .
+ a7 (a4 +A6s - AGc - AGp). (3.65)

The substitution of Equation (3.58) and the above equation in Equation (3.40) yields

the discretized version of the change at node { without artificial damping, viz.

460; = (AD4+ 55AF,+ S5LAG A+ §AtAAW,) +

(3.66)



The overall change 8U; in the previous equation may be thought of as contributions
from cells A-through D, i.e.,

Gﬁ; = 5[}“ + 68U +6U;c + 5ﬁ,‘p. (3.67)

These values are given by

50 = }[AT4+ S8AF + SAG A+ 2 AW 4]

60ip = }[A05 - AlpAFs + 524G +¢242AWs] 55
50ic = }[Alo ~ AipAFs - S2AGe + ¢A42 AW |
s0ip = }[alp+ YpAFp - 524G + ¢2RAWD) .

It is now possible to write down the contributions of any cell to its corner nodes. Specif-

ically for cell C the distribution relations in computational coordinates is given by

60ic = }[alc - Slgafc - StanGe +g442 AW,
s0ic = }[alc + Ygafs - 2abc + ¢4 aWo|

(3.69)

§0rc = [AUC + 8t Afy + B2 AGe + Al AW

LN

§0ic = 1 [Aﬁc - Yo AFo + S2AGe + qé{,—‘f‘-AWg] .
Substituting Equations (2.67) and (3.64) in these distribution relations yields the cor-

responding relations in physical coordinates, viz.

6Uic = } [AU — 4 (AynsAF — Azn,AG) — 8 (A2ew AG — AyewAF) + g5EAW + ;]
6Ujo = 3 [AU + 4 (AynsAF — Az, AG) ~ 4 (AzeuAG — Ayew AF) + d4LAW + ;]
§Usc = } [AU + 48 (AynsAF - A2, AG) + 8 (AZewAG — AyewAF) + g5HAW + \Ir,,]
6Uic = } [AU - & (AynsAF — Azn,AG) + 4t (A2wAG — Ay AF) + ¢5EAW + )|

(3.70)

Here the term ¥ incorporates the effect of artificial viscosity which will be described
separately in a later section. These distribution formulae allow for different time-steps
and cell volumes for cells adjoining a common node. Starting with zero changes at all

nodes, these distribution formulae allow one to integrate on a cell by cell basis and hence
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accumulate changes at the corner nodes by summing the current contributions to the
already existing values at the nodes due to the previous integrations on the neighboring
cells. Once all the cells are integrated the nodes can be updated and reset to zero change

values again. The terms Az and Ay are as defined by Equation (3.53), i.e., for example

1
Az, = §(azk+z,-—-a:.~—zg).

The strategy when treating the source term implicitly, 4.e., choosing W* = Wn+1 for
a cell in Equation (3.44), requires discussion. Stability analysis of a linearized source
term model, to be discussed in the next chapter, shows that no substantial gain in
stability limits is acquired, over the explicit scheme, if the second order source term is
retained while treating the first order source term implicitly. However, if only first order
implicit source terms are retained (¢ = 0 in Eq. 3.70) the stability of the model equation
becomes independent of the magnitude of the source term and is constrained solely by
the familiar CFL condition. Therefore, for a system of equations it is reasonable to
use the ¢ = O simplification with a source implicit scheme, and ¢ = 1 with an explicit

scheme.

The implicit source term for a cell C can be approximated by Newton linearization
w
witt = Wi+ a—-l AUg. (3.711)
al |¢

On substituting this in Equation (3.6) the following is obtained

_ oW -1 n , Otc f ]
AUG = (z- i CAta) [AtCWC+ 50 § (kay- Gaz). (3.72)

The corresponding discretized version is obtained by substituting Equation (3.44) into

the square bracket

oUu

The superscripts emphasize the relationship between the implicit and explicit cell changes.

-1
AUM = (I— w Atc) AUEX. (3.73)
C

The matrix premultiplying the explicit cell change is often referred to as the precon-
ditioning matriz. This equation is used in conjunction with the distribution formulae
( Eq. 3.70 with ¢ = 0 ) while looping over cells whenever a source implicit scheme is

used instead of Equation (3.44). The source implicit scheme reduces to the explicit

88



scheme for the non-reacting case. An alternative way is to compute the cell changes
explicitly but use the preconditioning matrix on the distribution formulae. This ap-
proach is elaborated in the next chapter. It must be emphasized again that the implicit
source vector may be used to overcome the severe time-step restriction imposed by the
otherwise stiff chemical systems but not to by-pass the time resolution requirements
which may be necessary to capture the inherent physics of the reactions. A discussion

of the resolution time requirements appears in the Chapter 6 of temporal adaptation.

3.5 Spatial Interface Treatment

As mentioned earlier, the introduction of embedded regions into an otherwise coarse
mesh leads to the formation of spatial interfaces which must be treated so as to yield
stable and accurate results. Two alternative procedures have been considered for the
middle edge node of a spatial interface. In the first approach node e is handled in
the usual manner (Eq. 3.70) when integrating cells £ and F in Figure (3.5). When

integrating C, a simple average is used for the change at e, i.e.,

U, = 6Ujc + 6Uxc .

2
In this approach the contribution of cell C to the changes at the corner nodes involves
a flux balance which takes into account the hanging nodes; e.g., the east F-flux is
Fg = (F;+2F,.+ F;)/4. Hence, in the absence of temporal adaptation, the total change

accumulated at node e once all of the cells are integrated is
U, = 6U.c +6U.g + 6U,p.

This approach is tantamount to performing a special integration over the spatial inter-
face as demonstrated by Dannenhoffer [33]. It will be referred to as the average change

approach for spatial interface.

The second approach determines the value of the state vector at the middle edge node
by interpolating from the corresponding corner node values. Since by construction the

middle edge nodes form the midpoints of the corresponding corner nodes of the spatial
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interface, a second order interpolation implies that the state vector at this node is equal
to the average of the corner nodes at all times, thus for example,

In this non-conservative approach only corner nodes are involved in the flux balance for
any cell integration. Hence when cells E and F are integrated, the changes at node e
are accumulated in the usual manner, while the change from cell C at node e would not
be included. When updating of the nodes, node e will be recognized to be a middle edge
node and its state will be set according to the previous equation, thereby making the

accumulation of changes at node e due to cells E and F irrelevant. This approach will

be referred to as the average state vector approach for spatial interface. This approach

had been utilized by Usab [133].

The results for the two approaches yield identical graphical output for most cases.
The second approach is simpler, involves no if-then clauses for the flow solver except at
the time of updating, and hence can be easily vectorized. Furthermore this approach
can be extended easily to 3-D and would be suitable for new kinds of interfaces; e.g.,
those generated by directional embedding [71]. However, due to the non-conservative
nature of the approach, care must be exercized in moving the interfaces away from the
actual shock locations. This can be achieved by adding buffer zones to the spatially
resolved region. Due to the robustness of the second approach, it was decided to base

the solver on that approach in the latest version of STAR code.

3.6 Artificial Viscosity in Two Spatial Dimensions

The generalization of the 1-D modified differential equation (Eq. 3.24) to two spatial

dimensions is

——— — 2 ———
T i W+ o | amas’ + (3.74)

oU OF 408G o 9%U au 2
dy?

where As is some typical cell dimension which will be evaluated later. Considering a five

point stencil comprising of the cell centers about node ¢ in Figure (3.5) the Laplacian
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type terms can be written as

U, , I Uc+Us
PP +82A —(

Us+ U, U
Us_yy, UatU) (Vetlo

 UatUs )
2 2U; + 2 .
(3.75)

This can be rearranged to give

ng +%£Ay = (Ua=Ui)+(Us -U)+(Us - U)+Up-Us). (3.76)

Thus the contribution of artificial viscosity from cell C to node ¢ is

aAtc
Ui =

S (Uc-Ui) (3.77)

and hence the ¥ term in Equation (3.70) is

a‘At
Yic = <

< (U~ U). (3.78)

If the artificial viscosity coefficient is allowed to vary with the nodes then a non-

convective, conservative formulation would imply

At

o = —2 Asg (U)o — o] (3.79)
where
1

(@U)c = ;(olUi+0;Uj+ ol + aly). (3.80)

Ni had taken the dimension As to be

1 1 1

As —A_a:+ -A—§ (3.81)

Thus As is proportional to the harmonic mean of the two linear dimensions of a rect-

angular cell. For a general quadrilateral cell these dimensions are ambiguous, therefore

the following measure is proposed

_ o
As = 2 (3.82)

where the denominator represents the perimeter of the cell. Note that this relation
implies As to be the harmonic mean of Az and Ay and two times the value proposed by
Ni. If this factor of two is absorbed in the viscosity coefficient itself then the viscosity

here should be twice as large as Ni’s viscosity coefficient to produce the same level
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of artificial diffusion. Also note that for very high aspect ratio cells the dimension
As will approximately scale as two times the minimum dimension and hence would

correspondingly imply a larger value of dissipation.

In line with the approach utilized for 1-D, normalized first differences of density are
used for evaluating the artificial viscosity, which then is stored at all nodes and has the

general form
)
9i = Omin+ (k4 + KB + KO + KD) (3.83)

where, k¢, for example, is the normalized scaling which is a combination of density

differences along the two cell dimensions, 1.e.,

Pe — Pw
Pet+ Pu

Prn — Ps
Pnt ps

Ko = . (3.84)

For cells A and D where the edge nodes do not appear, average values of the corre-
sponding corner nodes are used for evaluating the scalings. The constant § is chosen so

that o € [Omin,Fmaz], typically between 0.05 and 0.5.

In the present algorithm artificial viscosity is introduced only at the corner nodes
whenever integrating a particular cell. This is true without qualifications when the
average state vector approach is used for handling spatial interfaces. For the average
change approach, it has been experimentally observed that for a node such as e a lower
viscosity coefficient is needed. Hence a natural way of accumulating artificial viscosity

at such a node is to use Equation (3.83) but only for cells whose corner is e, i.e.,
)
Oc = Omin -+ Z('CE + KF).

A plausible reason that lesser artificial viscosity is needed at middle edge nodes is
that the changes at the corner nodes of the larger cell already account for artificial
viscosity at this node. In particular for cell C in Figure (3.5), the node e has the change
(6Ujc + 6Urc)/2 and each of these corner changes have contributions from artificial
viscosity and its value from cell C is (¥;c + Yic)/2; hence additional artificial viscosity
from cell C is not needed. However, the artificial viscosity from cells £ and F involves

a flux balance and hence requires explicit addition of smoothing.
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In order to avoid unnecessary if-then clauses, the above formula can also be used for
the average state vector approach at the middle edge nodes. Since the changes at these
nodes are irrelevant for this approach, the actual artificial viscosity coefficient at such

nodes is also of no consequence.

For ease of application in coding and vectorization considerations the following pro-

cedure is proposed for the determination of artificial viscosity coefficient at all the nodes:

1. March over all nodes ¢ and set
Oi = Omin ,» t=1,...,N,

where N, is the total number of nodes. The notation := is used here to emphasize

computer assignment.

2. March over cells ¢ and sum up the contributions from individual cells over the

corner nodes

o; = a,-+zx.c, i=1,...,N,

where N, is the total number of cells and ¢ in the above assignment is a corner
node of some cell ¢. Hence for cell C in Figure (3.5) this assignment will loop
over nodes 1, 5,k,l. In this expression k¢ is computed from Equation (3.84) and
6 has the value assigned from the previous invocation of this procedure. For
initialization purposes § can be set equal to zero and its value can be determined
by the following step; subsequently the procedure can be called again to have the

correct assignment of artificial viscosity at the nodes.
3. The march over cells also determines x4, to be the maximum value of all x., i.e.,
Kmaz = max{k.} , c=1,...,N,.
For the given values of minimum and maximum artificial viscosity coefficient, viz.,

Omin and Opmgz, the value of the constant § can be determined as

5 = Omaz — OTmin
Kmaz

This expression will approximately keep the artificial viscosity coefficient between

Omin and Opmaz.

93



4. Finally the boundary nodes b are adjusted by using a reflective condition. This

can beaccomplished by marching over the boundary nodes and setting
oy = 20h — Omin » b=1,...,Ny

where N, is the total number of boundary nodes which border two cells. For

boundary nodes which border only one cell this assignment is changed to

oy = 40p — 30min.

Figure 3.7: Finite volumes adjacent to a boundary node b.

Note that step (3) of this procedure automatically satisfies Equation (3.83) at the
usual nodes and the corresponding equation (after Eq. 3.84) at the middle edge nodes.
The march over boundary nodes deserves special attention. Consider cells V and W
adjacent to a boundary a-b-c of the computational domain as shown in Figure (3.7).
The march over nodes and cells of the computational domain yields the following value
at node b

0y = Omin+ %(';:V + £w)
whereas for node n there are four cell contributions to o,, hence for a uniform flow it

will be observed that

§
On = Omin+ 0kw and Oy = Opmin+ EKW'

These two expressions can be made consistent if the artificial viscosity at boundary

node b is assumed to be summed from cells V and W and their corresponding reflective
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cells which introduce the same contributions. In other words the wall cell contributions
ought to be multiplied by a factor of 2. Thus the corrected value for the boundary node
is

O = Omin+ g—(nv + kW) = Omin+ 2(0b — Omin) = 20b — Omin- (3.85)
A similar explanation holds for the four corner boundary nodes which border a single

cell in the computational domain.
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Chapter 4

Stiff Chemical Systems

An important step in the development of a new algorithm is the determination of
time-step restrictions through a stability analysis. Even for well-established schemes
a stability analysis can provide understanding of the physical domain of dependence.
This chapter starts with an introduction to the concept of stiffness followed by a result
pertaining to a linear frozen convective wave equation. Section (4.3) explores the ori-
gin of stiffness in a one-dimensional model and possible remedy for this phenomenon
by a Von-Neumann analysis. Section (4.4) compares the exact solution of a linear dif-
ferential equation of first order with those from numerical schemes of interest whereas
Section (4.5) discusses the implementation of the source implicit scheme for both one
and two dimensional situations. The source implicit algorithms are the ones which are
implicit only in the source terms and the rest of the terms are modelled explicitly. Fi-
nally Section (4.6) describes an alternate method for avoiding chemically stiff reaction

systems.

The usual approach for analyzing stability on structured grids makes use of Fourier
analysis, which considers a general solution to be a sum of Fourier modes which are
amenable to separate analysis. This is frequently referred to as Von Neumann stabil-
ity analysis. The numerical integration techniques to be considered here are the fully

explicit and source implicit methods for the present algorithm.
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4.1 Introduction

Stiffness is a numerical phenomenon which is exhibited in complex systems when
some components of their solutions respond promptly to system perturbations whereas
others respond relatively slowly. The degree of stiffness increases with the widening of
these individual responses. The concept of stiffness arises from both the numerics of
a given computational scheme and the physical model which it describes. A system
of equations describing a transient phenomenon associated with multiple reactions in
a closed volume (no convection!) is stiff if the eigenvalues of the Jacobian matrix of
the source vector has widely disparate negative real parts. In contrast to stiff problems
of this sort there are unstable systems which are characterized by positive eigenvalues
and oscillatory systems that have mostly complex eigenvalues. The stiffness pertaining
to chemical reactions can be traced back to widely different reaction rates, i.e., fast
reactions (large rate coefficients) imply smaller characteristic time scales and vice versa.
Such large source terms produce rapid temporal changes which can lead to constraints
for stable computations. When convective terms are also considered, the eigenvalues of
the Jacobians of flux vectors must also be taken into account. The convective eigenvalues
can be positive or negative and have no bearing on the stability of the physical model
so long as the eigenvalues of the source vector have negative real parts. However, the
corresponding computational model usually has stability restrictions based upon the
largest magnitude eigenvalue of the flux vector, in addition to the restrictions based

upon chemical time-scales.

In general, stiffness is characterized by an enormous difference in eigenvalue mag-
nitudes of the Jacobian matrices, and a measure of stiffness is the magnitude of the
ratio of the largest to the smallest eigenvalue. Thus, even when all the reactions in a
multi-reaction system proceed at comparable rates, the system of equations can still
be stiff if the fluid time-scale is widely disparate from a typical chemical characteristic
time-scale. In the description of phenomena like flames, combustion and detonations,
the pertinent time-scales can easily range over several orders of magnitude. The si-

multaneous representation of these diverse time-scales manifests itself as a limitation
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in temporal accuracy in the sense that the allowable time-step becomes smaller than
the smallest time-scale in the problem. The smallest time-scale of a certain process
may or may not be the most important one. For example, if a process relaxes in time
and approaches an asymptotic limit, the smallest time-scales are important only during
the relaxation phase. If the important time-scales can be resolved by a suitable (e.g.,
implicit) algorithm, then obtaining a desired temporal accuracy is not necessarily a lim-
itation. However, algorithms requiring advancement on the basis of smallest time-scale,
will necessitate computing for a large number of time-steps, thereby making the cost of

simulations prohibitive.

Explicit algorithms typically suffer from a stability restriction that requires the al-
lowable time-step to be related to the slowest characteristic time-scale in the problem.
Even after the decay of fast transients the solutions vary slowly and the explicit meth-
ods can require exceedingly small time-steps to maintain stability. One is either forced
to use implicit integration schemes or modify the explicit scheme for a different set of
source vectors. Both these techniques will be further explored in subsequent sections of
this chapter. These techniques, however, use much more computer resources for each
time-step than their explicit counterparts, but have better stability properties and can
therefore advance through much larger time-steps. Time-step selection can then be

based on accuracy considerations rather than the severe stability restriction.

If the chemical time-scale of a particular reaction is infinitely small compared to those
of other reactions everywhere in the spatial domain and at all times, then an equilibrium
chemistry model can be utilized for that reaction; however, other chemical reactions
must still be modelled by finite rate kinetics. This generally complicates the numerics
of the reaction systems because special procedures are required to handle this partial
equilibrium [5,20,112] where only a few reactions are in equilibrium at all times and at all
spatial locations. The primitive equations describing the partial equilibrium situations
are inconvenient to use because the progress rates Qy,, (s, for the equilibrium reactions
are determined implicitly from the associated equilibrium constraint conditions. The
robustness of computer programs is generally sacrificed due to the addition of special

cases which only apply to specific reaction systems. Furthermore the occurrance of
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partial equilibrium is infrequent, since the chemical time-scales for a reaction rarely
remain infinitely small and constant, both globally (in space) and eternally (in time),
compared to those of the other reactions. For most reaction systems the time-scales can
vary significantly throughout the domain of interest. Since this variation is generally

not known apriori, an algorithm must be able to treat a wide range of time-scales.

As a final note to this section it is appropriate to mention recent references Aiken
[2], Kee and Dwyer [72] and Oran and Boris [100], which include good discussions of

stiffness due to chemical reactions.

4.2 Stability of a 2-D convective wave equation

A Von Neumann stability analysis for a 2-D scalar wave equation of the form

has been performed by Usab [133] for the Ni scheme. In this equation the characteristic
speeds u and v were regarded as constants. The form of this wave equation is similar to
the decoupled Euler equations without source terms. Hence the stability limits for the
linearized Euler equations can be inferred directly from the analysis of the 2-D wave

equation. The time-step restriction so obtained is referred to as the CFL condition and

is of the form

AtcrL < min - 1 (4.2)
PAC - |uAyn’ - vAxngl + afD,” ’ luAyew - vAzewI + afpew )
here ay is the local frozen speed of sound for some cell, I' the CFL number, the cell

dimensions Az and Ay are as defined in Chapter 3 and
D? = Az’ + Ay?. (4.3)

The CFL constraint states that the time-step is restricted by requiring the information
not to propagate beyond the domain of dependence for the two coordinate directions.

For the Ni scheme the CFL number must be kept less than unity.
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4.3 Stability of a 1-D Scalar Equation with Source Term

In order to study the effect of a source term on stability analysis for Ni scheme

consider a simple linear scalar equation of the form

—— Y— =
ot

dz 1 (4.4)
where u is a characteristic convection speed, 7 is the characteristic time-scale for the non-
equilibrium process and U, is the corresponding equilibrium state which the process tries
to achieve. The right side of this equation represents a simplistic model for the source
term which retains the essential physics of reacting systems and is amenable to analytic
study. This equation represents the convection phenomenon and localized processes such
as mass source and sink terms, dissipation effects, equilibration in chemical reactions,
etc. The characteristic time-scale can vary from zero (equilibrium flows) to infinity
(frozen flows). Another interpretation, for the time-scale 7, can be presented, if the
above equation is compared to individual conservation equations in a reacting system. If
U represents the density then this time-scale is infinite, however if it represents the degree
of dissociation Y; of a relaxing gas then the time-scale will be finite for a non-equilibrium
process. For the Lighthill model presented in Chapter 2 this non-dimensional time-scale

can be written as

T= . = T (4.5)
Wi ®T7p [(1- Yy)e /T — £Y2]
The local equilibrium degree of dissociation is given by
(1-1,)e /T - Ly2 =9 (4.6)
Pd
The previous two equations can be combined to give
; =®T"p [e“’dl" + pi(Y1 + Yl,)] . (4.7)
d

Note that the above expression gives a non-zero value for the characteristic time-scale
when Y — U, for finite values of the reaction parameter ®, whereas Equation (4.5)

yields an indeterminate value.
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For the purposes of stability analysis, the equilibrium state and the characteristic
velocity and-time-scales are regarded as constants and hence the transformation U —

U — U, can be used to simplify the scalar model equation to
U  aU U

FIR Pl (48)
The flux and source Jacobians of this model are also constants
oF ow 1
W=t W r (49)

The fully implicit methods usually require the inversion of a block multi-diagonal system
of algebraic equations. This is more complicated than the source implicit scheme and
the realization of full advantage of vector processing machines for adaptive algorithms
becomes difficult. Hence only the source implicit and fully explicit algorithms will be
examined here. For the Nischeme the spatial grid will be regarded as uniform (¢; = 0 for
all nodes) in the absence of spatial and temporal adaptation and artificial viscosity will
not be applied. The cell changes for a structured grid for cells B and C in Figure (3.1)

are as follows

AUjp = (Fj1- Fj)§£+W}iAt = T (Uj1 - U;) - DU}

(4.10)
AUy = (Fj- Fip) g+ WAt = T (Uj - Ujpa) - DU}
where the terms without a superscript are evaluated explicitly or at a time-level (n),

whereas asterisks indicate terms which may be treated implicitly, <.e.,

v for explicit schemes

Uj= (4.11)
U}‘*‘l for implicit schemes
and the CFL number I' and grid Damkohler number D ( Damkdhler number is the ratio

of the convection time-scale ¢, and the reaction chemical time-scale) are given by

At At
—y— - — 4.12
I'=u - D p ( 12)

The stiffness of the scalar model increases with the magnitude of the grid Damkdohler

number. The explicit flux changes and source changes are given by

AF;p=ulUjp , A ;p = - (4.13)
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First | Second Amplification Factor Bounding Curve
Order | Order
E E 1- D+0.5D% +T?%(cosf ~ 1)
+0.5TIsin§(D ~ 2) rr<i1-24+2 p<2
1-D+I? 6—1)+0.5T'I'sin6(D -2 D D2
E I (cosl—o).sm iad(D-) MP<i-3-7, D<V5-1
E N |1-D+TI%cosf#—1)-TIsing |T?<1-2 D<2
I E 1+O.5D2+I"‘(cosl?l—;ll))+0.51‘hinG(D—-zl rr<i+ % + _1_)41 . D<2
I 1 1+I‘7(c0301;%-+-—_%.551}§:in0(D—2) 2 <1+ g_ _ 1_11 . D<2
I N 14+I'3(cos§~1)~I'Isin 6 rM2<i+2 D>0
1+D T3 =

Table 4.1: Summary of stability regions for 1-D scalar equation, the letters E, I, N

respectively stand for explicit, implicit, nil.

102




where the subscript P denotes either cell B or C. Substituting these equations in

Equation (3.22) yield the change contributions at node j

6Ujp = }[AUfp +TAU;p - ¢3AU| e1e
14
Ujc = }[AUL -TAUc - RAUL].
Using Equations (4.10) to (4.14) the overall change at node j can now be written as

r r?
§U; =UFY - U} = 2 (Ujm1 = Usa) + 5 (Uj-1 = 205 + Ujsa)
D .
-0U; - L {0 (Ujr1 - V) - 2007} (415)

In this equation the first order source term is — DU and the second order source term

has the factor q. For the stability analysis, let us define the Fourier components

U;t = Gnelwz

U;}+1 = Gn+leIwz (4.16)

where G is the amplification factor, w is the wave number and I represents square-root
of -1. This equation defines the following relations
Uj-1£2U; 4+ Ujyy = 2Uj(cosf 1)

(4.17)
Uit1 - Uj1 = 2IU;sind

where § = wAz is the phase angle, Equation (4.15) yields the amplification factor
G =1+T%(cosf — 1) - [ sin0 + -;—DI‘Isina - DGP + %D’Gﬁ (4.18)

where

1 for explicit schemes
GP = (4.19)
G for implicit schemes.

A scheme is stable if the magnitude of the amplification factor remains less than
unity. Table (4.1) shows the various schemes which Equation (4.18) represents and the
corresponding bounding curves for the stable regions. The letters E, I and N stand for
explicit, implicit and nil respectively. These schemes are presented here to establish a

basis for the best possibilities, on which future developments will proceed.
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Figure 4.1: Stability curve for explicit first and second order source terms (EE).

The stability regions for various schemes in Equation (4.18) are determined on a
suitable grid in the I'-D plane. For the figures shown here this grid spans the region
I' € [0,2.5], D € [0,6] with 41 points along D-axis and 31 points along I'-axis. The
phase angle § was varied from O to 7 radian in equal increments (/36 radian) and the
norm of the amplification factor was checked at each node of the I'-D plane. The nodes
for which |G| < 1, for every discrete value of € [0, 7], were marked by a small circle to
indicate those that belong to the stable region of the scheme. Computations on a finer
grid yield essentially the same stability regions, i.e., the finer grid merely involves more
dots and yields the same bounding curves. This procedure has the disadvantage that
information about individual Fourier components is lost; however, the interest here was

solely to determine the stability regions.

The lower bounds for the region of stability in all cases are obviously D > 0 and
I' > 0. The upper bounds for most of the cases are dictated by the § = x Fourier
component. Figure (4.1) shows the stability domain for the EE scheme when both
the first and second order source terms are explicit. The upper bound on the grid

Damkahler number is 2, which can be a severe limitation when the chemical time-scale
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Figure 4.2: Stability curve for explicit first order and implicit second order source term
(EI).

is small.

Figure (4.2) shows the stability domain for the EI scheme, i.e., when the first order
source term is modelled explicitly and the second order source term implicitly. A doubly
connected stable region is apparent in this figure. A numerical experiment with cases
involving disjoint regions in which |G| < 1 shows that the schemes are stable and
monotone only in the region which contains the origin I' = D = 0 which is the limit
point for At — 0 with Az fixed. Alternately, if the time-step is gradually increased in
a numerical experiment, the scheme will become unstable when D first becomes more
than v/5—1 and the experiment would be aborted before the time-step has the chance to
achieve D values greater than 2; thereby making the stability in this region immaterial.
The implication that the stable domain corresponds to the simply connected region
containing the arbitrarily small cell dimensions is possibly of a general type, although
a strict proof may be difficult. Thus, it is noted that instead of a gain in the stability,

compared to the EE scheme, the EI scheme is much more restrictive.
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Figure 4.3: Stability curve when first order source term is explicit and second order

source term is excluded (EN).

Figure (4.3) shows the stability domain for the EN scheme in which the first order
source term is explicit and the second order source term is not retained. As expected
the stability region is more restricted compared to the EE scheme; however it is slightly

better compared to the EI scheme.

The stable region for the IE scheme, in which the dominant source term is implicit
and the next order terms are explicit, is presented in Figure (4.4). The stability region
is enhanced compared to all other schemes in which the dominant source term was
explicit. However, the stability is still restricted by the D < 2 constraint. This is
a manifestation of the quadratic term in D; as the time-step increases the explicit

quadratic term becomes more dominant compared to the linear implicit term.

The fully implicit or II scheme stability curve is shown in Figure (4.5). Again the
amplitude limiting region is composed of two distinct regions; however the stable and

monotone region is the one which contains the origin. The stability region is somewhat
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Figure 4.4: Stability curve for implicit first order and explicit second order source term

(IE).

enhanced compared to the EE scheme although its performance is slightly worse com-
pared to the IE scheme. The stability is still restricted by the D < 2 constraint. A
numerical experiment with this scheme, when the convective term is set zero, indicates
that for D > 1+ /5, the sign of U}""l becomes reverse of the sign of U7, although the
norm of the amplitude factor does not exceed unity; s.e., the value of the dependent
variable oscillates about zero with a slowly diminishing amplitude. Hence for problems
in which positivity (UT, U;‘“ > 0) is important, the stable region should not only limit
the norm of the amplitude function but also preserve the positivity condition. For all
the schemes involving disjoint regions of |G| < 1, the region containing the arbitrarily

small time-steps is the only one that preserves positivity.

As evident from Figure (4.6) for the IN scheme, in which only the first order source
term is retained implicitly, the stability becomes independent of grid Damkdéhler number
and is only constrained by the CFL restriction I' < /1 + D/2. This is due to the fact

that the quadratic term in D has been excluded and the implicit first order source term
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Figure 4.5: Stability curve for implicit first and second order source terms (II).

provides a preconditioning (multiplication by 1/(D + 1)), the effect of which increases
with the increasing time-step. If the sign of the second order real source term (1 D?G)
had been the same as the first order source term (DG) then the II scheme would have
had better stability characteristics than the IN scheme. This is consistent with the
findings of [23,24,42,122] who have used only the first order implicit source terms. For
all of the other schemes there is no substantial gain in stability over the fully explicit
scheme. The principal advantage of the IN scheme is that the numerical time-step
becomes independent of the chemical time-scales. The disadvantages include the fact
that the scheme is less accurate at small time-steps and it is computationally more
complicated compared to the EE scheme. It would be misleading to conclude that,
depending upon the value of grid Damkoéhler number, CFL numbers greater than unity
can be selected. It is worthwhile to remember that the analysis only holds for a single
scalar equation and not for a system of equations. There are other scalar equations, e.g.
global continuity equation, where the source term is zero and the correct limit on CFL
number is then unity. In the following section the behavior of both the fully explicit

and IN schemes is examined on a model problem.
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Figure 4.6: Stability curve when first order source term is implicit and second order

source term is excluded (IN).

It is interesting to note that Equation (4.8) has an exact solution, for a single wave
number w, which describes the temporal decay of a periodic sinusoidal profile. This

solution can be determined by the separation of variables technique and has the form
U(z,t) = Ae~t/7eluw(z—u) (4.20)

where A is the initial amplitude of the periodic profile. The solution indicates that the
amplitude decreases monotonically with time and asymptotically approaches zero. The
phase of the harmonic associated with the profile shifts as function of time while the
frequency remains the same (the phase shifts by wut to the right after time t). The

amplitude function of the exact solution is
G = e P [cos(T'8) — Isin(T'9)]. (4.21)

The norm of this amplitude function is always less than unity, since D > 0; hence the
physical situation always represents a stable system although the numerical schemes

may be subject to instabilities.
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The ratio ¢, of the phase shift of the IN scheme in the exact solution is

- - _ 1 . _;(Tsind
¢,—rosm (1+D)' (4.22)

This ratio is 1/(1 4+ D) at § =0 and 0 at § = = radian.

The variations of both the amplitude and phase shift with the wave number show
that the IN scheme behaves reasonably well at high frequencies (small §) and is more
accurate than at low frequencies. However, the low frequency parts of the solution,

where numerical errors are worst, decay rapidly and the solution becomes smoother as

time progresses.

4.4 Exact Solution of a Localized 1-D Source Model

Consider integrating the simplest case, t.e., when the convective term is neglected -

(T=0)

aUu U
3{ — ""?'- (4.23)

This model has an analytic solution which can be compared to the numerical schemes

to assess the temporal order of accuracy. The exact solution is
Ur=uj et (4.24)

where U;? is the initial value of the dependent variable at time ¢t = 0 and node 5. The
solution decays exponentially from its initial value to zero (or U, in terms of the original
variable), which is the equilibrium value for this case. The exact solution can be written

in the delta form as
§U; = UY e~ +a0/r _ 9 o~t/7 = yp (7247 — 1), (4.25)

The Taylor’s series expansion, about zero, of this delta form is

At A2 A8
5Uj=U?(—T+'§13—€1'_§'

+ ). (4.26)
The numerical solution of Equation (4.23) is given by Equation (4.15) with I’ =0, t.e.,

., At
6U; = Uj (-—+5—5). (4.27)
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Obviously the fully explicit EE algorithm matches the exact solution for At/r < 1 to
second order and hence it is second order accurate in time. The implicit scheme of

interest; viz. the IN scheme, yields the value

yrtl = 4 (4.28)
F) 1+ %
or in delta form
At 1
6U; = —U?—r—1 n % (4.29)
The Taylor’s series expansion of this solution is
At A2 A3
6UJ‘=U}‘(——T"+T—2—‘T—3+"'). (4.30)

The expansion does have a second order term but the solution is exact only to first
order; hence the scheme is temporally first order accurate for small time-steps. It can
be observed that a hybrid algorithm that sets ¢ = O but regards U} to be the average -
of U} and U ;_;+1 would yield a second order accurate solution for small time-steps. This
scheme will be referred to as the CN (Crank-Nicolson) scheme. The delta form for this
hybrid scheme is

§U; = —%(U;‘ + U,'.‘“)ér—t (4.31)
which yields
yrtt 2 1% g (4.32)
2 1+ %;t_ 2 *
and hence A
5U,=—U;§@=U;(—§+%- =t (4.33)

This is second order accurate and yet has an implicit source term component. The
stability domain of this scheme is restricted by 0 < I' < 1 and is independent of the
chemical time-scales. These properties are attractive; however, as will be shown later,
this scheme does not satisfy the positivity condition like the IN scheme. Positivity means
that quantities such as species mass fraction, cannot become negative during the course

of integration.

Figures (4.7) to (4.9) show the numerical solution for three choices of time-steps, i.e.,
At = 1,27, 37, along with the exact solution. The line-segments marked with symbols

correspond to fully explicit EE, source implicit IN and hybrid CN schemes and the
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Figure 4.7: Solutions for a localized scalar model with At = r.

exact solution is an unmarked curve. For the At = 7 case all of the numerical solutions
replicate the exact solution and are numerically stable. The same is true for other
schemes in Table (4.1); although these schemes are not shown in Figure (4.7). The EE
scheme is nearly indistinguishable from the IN scheme and their decay is relatively slow
compared to the true solution. The description of the CN solution is very close to the

exact solution and falls below it.

When the time-step is At = 27, the changes computed by the EE scheme are zero,
the solution remains at the initial condition of U = 1 and does not exhibit the decaying
process. This situation marks the borderline of classical mathematical stability for the

explicit schemes. The CN scheme goes exactly to zero in one time-step and stays at
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Figure 4.8: Solutions for a localized scalar model with At = 27.

that equilibrium state thereafter. The asymptotic limit is achieved far too early. The
IN scheme exhibits the relaxation process qualitatively and can be regarded superior to

both EE and CN schemes for this value of the time-step.

For At = 37 the changes computed by the EE scheme successively increase and even-
tually the solution becomes unstable. The CN scheme exhibits lack of positivity when
the solution becomes negative after the first time-step. However, the solution recovers
and approaches the true asymptotic behavior. The IN scheme preserves the positivity
condition and tends to the correct equilibrium limit, although the decay process lags
behind the true solution for the first few time-steps. Care must be exercised in choosing

small time-steps at the initial stage of a relaxation process so that the transient is cap-
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Figure 4.9: Solutions for a localized scalar model with At = 3r.

tured correctly; however, once the initial transient is completed larger time-steps may

be selected.

It can be concluded that among all the schemes examined here the IN scheme is the
most cost-effective scheme for stiff reaction systems, although it is not as accurate as
the EE or CN schemes for small time-steps. It is also appropriate to point out that the
IN scheme discussed here does not modify the transient history if the preconditioning
matrix has the form as described here and the Jacobian terms are evaluated correctly.
The only restriction is for the temporal order of accuracy and hence smaller time-steps

should be selected in the regions where large temporal gradients are expected.
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4.5 Implementation of Source Implicit Scheme

An approach for treating the source terms implicitly has been discussed in Chapter 3,
which uses the preconditioning matrix on the cell changes. An alternate approach
which utilizes the preconditioning matrix on the distribution formulae is discussed here.
This approach is detailed for one spatial dimension and is then generalized for the 2-D
case. The implicit source term for node s in Figure (3.1) can be expanded by Newton

linearization

8W ow
W;_l+1 — W;" + (Un+1 U;') = WJ" + Wl . (6U;B + 6Ujc). (4.34)
7

Hence the implicit cell change for cell B is given by

At oW
AU = Aa:z (Fi— F;) + W} Atp + E?TI (%Usp +6Ujc)Ats  (4.35)
7

or in terms of the explicit cell change
ow

AUIM = AUES + = 37|, (6U;B + 8Ujc)Atp. (4.36)
It is assumed here that Atp = Atg; a similar expression for cell C is
aw
AU = AUEX + el (8U;p + 8Ujc)Atc. (4.37)

These expressions are used in conjunction with the distribution formulae, Equations (3.22).
The source change contributions for these distributions are zero since here ¢ = 0 and the
flux changes remain the same since the cell changes for these remain explicit. Substitut-
ing the implicit cell changes in the distribution formulae and summing the individual

contributions at node j yields

1- At
§Ujp +8Ujc = -——2 [AU B+ Azp 2 (AF :B)] +
1+¢ EX _ Atc 26,' )
2 [AU A AF¢ ite AFc || +
aW

Decomposing this back into contnbutmns from cells B and C yields
(I— %, Atg) SUIM = SUEX
(I - 5, Atc) SUIM = SUEX

134 [AUES + 2 (AFs + ﬁ:-AFjB)]

Mo [aURX - Ao (AFc - £LAFG)].
(4.38)
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Now that the individual contributions are derived, different time-steps for cells B and C
can be allowed. The overall distribution formulae for cell C including artificial viscosity

are given by Equations (3.35) which generalize to

6U,c—1—+&[1 (1-9)3% ]Atc] [av; - 4t (AF - ZLAF;+9) +o4taw;]

§Ukc = 15 [I (1-9q)2 | Atc] [AUL+ &L (AF + ZLAF + ¥) + ¢4 AW
(4.39)
These now hold for both fully explicit (¢ = 1) and source implicit (g = 0) schemes. Note

that in these relations the source term Jacobians are evaluated at the nodes and the

cell changes, as given by Equation (3.13), also involve the source terms at the nodes.

For the 2-D case all Jacobians in the STAR code are evaluated at the cell centers in
the spirit of a finite volume approach. The generalization of the distribution formulae

of Equations (3.70) is now straight-forward; as an example the contribution to node 1 is
1 oW -1
Ui = =|I-(1-q) ==| At :
ic y [I (1-9) 37 IC A c] (4.40)
At At At
c

Note that when the integration is carried out on a cell by cell basis the preconditioning

matrix need be inverted only once per integration.

4.6 Modification of Source Vector

Consider the variation of species density in the absence of convective term, a first

order integration of the species equation gives
(pY:)" 1! = (pY,)" + AW, (4.41)

The species whose density is in greatest danger of being driven negative is the one for
which (pY,)" is small and W' is a large negative number. Such a species will be referred
to as nenspec which is the acronym for Negatively ENdangered SPECies. Recall that

the overall source term for species s may have contributions from all reactions and hence
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there may be one nenspec for each reaction. A suitable criterion for justifying that the

species k in reaction r is nenspec is the following

r‘i‘lc(ﬂkr - akr)(nfr - Qbr)/l’yl? < Amin <0 (4-42)

where Ay,in is a pre-selected non-dimensional negative value. The expression on the left
side must be minimum for nenspec among all the species which take part in the reaction.
The requirement that the above expression be strictly negative debars the inert species
(Bsr = agy) from being a nenspec candidate. A given reaction may not have a nenspec
associated with it, in which case the possibility that the reaction causes any of the
species densities to go negative is remote. If all of the reactions are devoid of nenspec
then the time-step At may not have to be restricted beyond the CFL constraint. On
the other hand if any of the reactions has a nenspec then the time-step may have to be
reduced, often prohibitively, or implicit schemes may have to be used. In what follows

an alternative cure is proposed to counter this behavior.

It is obvious that (pY,)"*! can not be negative physically. For explicit schemes the
situation is controlled by taking extremely small time-steps, so that the product At W7
is a small negative number and its sum with (pY,)"® yields either a smaller species density
or at most zero. For implicit schemes the source term is replaced by W»*! and if this
scheme yields appropriate results, 1.e., results in smaller final value of species density,
then its effect is

Wt < .

If this condition is not met, ¢.e., if the implicit source term is as large a negative number
as the explicit source term, the species density will be driven negative even for implicit
schemes and special reapportionment of species density will have to be carried out to
preserve positivity [5]. Thus it is reasonable to choke or reduce the value of W} for
the reaction for which a nenspec exists and if explicit terms are desired. Consider the

numerator of the expression in Inequality (4.42) in expanded form

Mg {(ﬂkrnfr + akrﬂbr) - (ﬂkrnbr + akrﬂfr)} .

Note that the stoichiometric coefficients and the progress rates are all positive numbers

and hence the parenthetical quantities in the above expression are positive. In an

117



extreme case when only the large negative terms of the kt? species are important, the

contribution-of reaction r to the source term of species k is approximately

Wmin,r ~ "'ﬁ’k(ﬂkrﬂbr + o) fr)- (4.43)

The subscript r again emphasizes that there may be one such quantity for each reaction.

The contribution to (pY,)"+! from this extreme reaction (when the contributions from

other reactions are small) is

(pYR)™ = (pYi)™*! + Atrig (Birlyr + areQyy). (4.44)

The choking factor for this reaction must then be based on species k and a suitable form
for it is

CF, = (Y2)"
"7 (oY) + cAtring(Bir ey + akeQyy)

The constant ¢ has values 1 or 0 depending upon whether the nenspec k for the reaction

(4.45)

r exists or not. The second factor in the denominator is zero when nenspec does not
exist and, depending upon the strength of the nenspec, it could be a very small positive
number. The time-step is set equal to that of a cell which is being integrated when the

solver is applied. The general form of the modified source term is then
W, = 1715(Bor — ter)(Qgr — My )CF,. (4.46)

For the case when At — 0, the explicit and modified source terms are essentially the
same, whereas for the case At — oo, the modified source term approaches zero and

hence there is no danger of divergence of the mass fractions in the negative sense.

The choking factor in the previous analysis has been obtained in an ad-hoc manner.
In the following the exact form of this factor will be justified. Consider that U™ = (pY,)"
is a small positive number and W} is a large negative number which can be approximated
by Wpin,r of Equation (4.43) and that only one reaction is the dominant one. The partial
differential equation to be solved is

%g- =wrtl =wn %‘g-%g-z.\.t. (4.47)

For the sake of computing the source Jacobians assume that

Un+1__’0, Wn+1—)0
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hence
ow Wn+1 —-Wn r'h;,
aUu = Untl - Un ~ _'U'_n'(ﬂkrnbr + akrn)’r)- (4.48)

Substituting this in Equation (4.47) yields

v _ ot
at Yy + Aty (ﬂkrnbr + akrnf r)

w*. (4.49)

The factor multiplying the explicit source term is the choking factor for one reaction

which has modified the source term and has the same form as Equation (4.45).

Another problem with chemical source terms occurs when (pY,)" is large (Y, ap-
proaches its maximum possible value Y,z,,) and W, is a large positive number, then
the species mass fraction is in danger of increasing beyond its maximum possible value.
An analysis for this dangerous situation is unnecessary since for Y; > Ynazx there is a

species [ for which ¥; < 0, and this case has already been discussed.

As noted earlier, the prescription described here is tantamount to making the part of
dpY,/dt that is due to reaction r linearly implicit in pY, which prevents the mass fraction
from being driven negative for large values of time-steps. Approaches similar to the one
described here are presented in References [5,114]. Unlike the IN scheme discussed in
the previous sections the inversion of a preconditioning matrix is not needed for this
approach. Another advantage is that the Jacobian matrices W /AU are not really
involved in the solution algorithm for the first order schemes (¢ = 0), the computations
of these Jacobians can be very expensive especially when large number of reactions are
involved. The disadvantage of the approach is that nenspec has to be determined for

all reactions which may be computationally expensive for a large number of reactions.

For the model problem discussed in Section (4.4) consider the reaction A — B,

here the source term for species A can be written as

(4.50)

Since the model problem deals with an irreversible reaction the backward rate coefficient

is zero; furthermore the forward rate coefficient can be regarded as

k= —. (4.51)
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Substituting these values in Equation (4.45) yields the following value for the choking

factor -
1

CHF = 4.52
and in the delta form this yields
At 1

which is the same as the solution for the IN scheme. Hence for multiple reactions this
approach can be expected to yield consistent results. For most of the cases discussed in
this thesis the results obtained by this approach and the IN scheme are essentially the

same.
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Chapter 5

Spatial Adaptation

This chapter begins by introducing various spatial adaptation techniques and em-
phasizes embedded mesh concepts. This is followed by a brief introduction of the data-
structure utilized for the algorithm. A detailed description of data-structure appears
in Appendix C. A multi-variable approach is detailed for unbiased first differences of
criteria variables and their threshold values, which are useful in the detection of flow
features. Sections (5.4) and (5.5) discuss the grid division and fusion procedures. Sec-
tion (5.6) details the procedure for enlargement of the spatially resolved region. The
chapter concludes by remarking on the avoidance of grid knottiness and a discussion of

a block grid generator.

5.1 Motivation

It is well-known that greater accuracy is realized when finer grids are utilized in
both space and time. This is because the truncation error of the numerical schemes is
dependent upon fineness of the cells; with increasingly finer cells this error tends towards
zero. For those limiting conditions the solution of a consistent finite difference analog
approaches the exact solution, assuming of course that the round-off error remains
negligible, as the cells are refined. It is also well-established that an accurate description
of small structures in a flow can be realized generally by spanning the structure with a
minimum of three or four computational cells. More cells may be needed accomplish the
capture of the feature if steep gradients are involved. The uncertainty pertaining to the
location of a particular feature within a cell of course could be reduced by increasing

spatial resolution. If the flow structures are not adequately resolved, they become
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numerically diffused since a discrete model inherently spreads flow discontinuities over
several cells-and thereby degrades accuracy. Hence spatial resolution is essential near

features like shocks, relaxation zones, vortices, slip lines, etc.

It is clear from the CFL constraint that the resolution requirements in space gener-
ally imply a corresponding imposition on resolution in time. For most frozen flows this
is the primary constraint, but for reacting flows other temporal resolution requirements
may be even more stringent than those implied by the spatial resolution. Hence the
resolution in time may be controlled only in part by the resolution in space. For cases
whére strong coupling does exist between the two, allocation of temporal resolution
simply follows from that of spatial resolution. For those cases, in one spatial dimension,
increasing the spatial resolution by a factor of two imposes a corresponding factor of two
in time-steps; hence there is a fourfold increase in computational work to advance to a
given interval of time. Similarly, doubling the spatial resolution in two-dimensional flows
generally causes the time-steps to reduce to half their previous values which implies an

eight-fold increase in computational effort.

The classical way to provide adequate resolution for the capture of features is to use
globally fine grids. This usually results in a colossal number of cells which places exten-
sive demands on the CPU memory. This may occasionally exceed the available CPU
memory size; although this is not a handicap for a virtual machine, frequent loading and
unloading of pages may seriously impair the efficiency of the calculations. Furthermore,
as implied earlier, global refinement can result in prohibitively long computational runs.
The advantage of a global approach is that the logic is not complicated by a need to
manipulate nodes, and a simple structured grid suffices. This also reduces the human
costs in the sense that changes in the code can be incorporated easily. However, due
to the tremendous costs associated with the execution of such programs, the global
approach is not a very attractive option. The loss of efficiency can be countered by the

use of adaptive techniques, such as moving mesh, zonal approach or local embedding.

In a zonal approach, an overall region is subdivided into zones, and grids within

each zone are generated independently according to the desired resolution. This makes
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the grid generation process for complicated topologies a simpler task. However, the
approach gemerally results in non-physical boundaries within the overall region due to
patched or overlaid grids. The zonal boundaries at the interfaces of various zones must
be treated in a special way to ensure conservation. Some typical citations for the zonal

techniques are References [8,14,17,63,64,110,113,123].

A second adaptive approach involves redistributing and/or clustering grids in the
vicinity of known features. This approach is frequently known as the moving mesh
technique. It is generally advocated that numerical methods based on this approach
maximize accuracy with a minimum number of grid points. Node movement “functions”
are generally defined from the geometry, and propagate nodes into regions having sig-
nificant discretization errors. However, clustering of cells is very effective when the
location of the feature is known apriori, at least to some extent, and this clearly is not
always the case for unsteady situations. The technique can also introduce substantial
cell distortion and an undesirable phenomenon of node-entanglement. As an example
consider the resolution of a feature which revolves around a second feature, via quadri-
lateral cells, as time progresses. After one complete revolution the nodes should coincide
with their initial locations, but generally the distortions gradually increase and the cells
are unable to maintain quadrilateral topologies; cell centers may be displaced outside
of the cell boundaries, and grid lines may intersect. Such behavior can cause significant
errors in computed solutions even for less extreme examples. When grid clustering is
used with a global mesh to resolve certain features, clustering also takes place in far field
regions resulting in a large number of unnecessary cells there. However, the concept of
moderate grid motion coupled with local embedding does present an attractive option
for problems in which the domain boundaries are themselves moving. The popularity of
moving mesh techniques may be attributed to its relatively straight-forward logic and
the structured nature of the grids, although manipulations involving node movements
can be somewhat complicated. The technique can be retrofit into an existing structured
program with a modest effort. Some of the typical studies, among numerous grid point

redistribution schemes, are References (7,47,65,66,91,95,129,130].

Another adaptive approach is local mesh enrichment, in which cells are locally di-
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vided to yield additional resolution. Such adaptive embedding algorithms have the
advantage that meshes are refined only where necessary and as the solution evolves,
thereby providing accurate and relatively inexpensive solutions. Some typical studies
in this class are References [10,13,35,99,104,105,119,128]. Those which couple multiple-
grids [33,87,133] with locally embedded grids have some aspects in common with the
zonal approach. This is because the grids of different coarseness levels are not assembled
into a global grid but are stored independently, and different approaches are applied at
different levels. For these multiple-grid algorithms the fine grid boundaries overlap the
coarse grid boundaries; however unlike the zonal approach, the multiple-grid embedded
mesh approach can dynamically change the grid structure as the solution evolves. Since
the local embedding can be carried out in a recursive manner, very fine grid spacing can
be maintained in the vicinity of the physical structures being captured. Furthermore,
since the resolution is only enhanced locally at the features, with coarser grids near
successively uniform flow regions, the computations with such grids consume signifi-
cantly less computer resources than global refinement. There are substantial savings
in both CPU time and memory. The technique is also devoid of node-entanglement
phenomenon, since the nodes are not allowed to move and the topology of the base
grid is preserved in the finest meshes. Alternately, the skewness of the finest grid can
be no worse than that of the initial coarsest mesh. The disadvantage of the approach
is that the logic of an adaptation procedure is generally complicated and the resulting
unstructured data-base is prone to errors. Such an approach demands expertise on the

part of humans and sophistication on the part of the computers.

The spatial adaptation technique employed here belongs to the local embedding
class. A multiple-grid technique is not used, since it is inappropriate for unsteady
problems, and thus meshes at various coarseness levels are part of the same global grid.
Since the initial and subsequent grids at any moment can be unstructured, a block grid
technique is useful to generate initial grids for complicated geometries. The block grid
approach allows the patching together of simple algebraic grids that conform to local
boundaries in various regions, but unlike the zonal approach care must be taken to

match the nodes on common interfaces.
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Before proceeding with a description of division, collapse and other grid manipula-
tions, the managing data structure or pointer system that controls spatial grid alter-
ations will be briefly introduced. Familiarization with the data-structure facilitates the
understanding of spatial grid manipulations. Only the data-structure pertaining to two
spatial dimensions and for spatial adaptation will be discussed here. A more complete

detail for spatial data structure, temporal adaptation, and chemistry pointers appears

in Appendix C.

5.2 Spatial Data Structure

The familiar (1, 5) indexing system used for structured grids cannot be used with local
embedding spatial adaptation, since such a procedure generally destroys the “structure”
of an existing mesh. An unstructured pointer system lends itself to effective refinement
strategies. However, it suffers from inherent limitations, such as the need to store
connectivity arrays and the use of gather-scatter operations on vector machines. Fur-
thermore, the use of a number of algorithms, such as approximate factorization (Beam
and Warming) and splitting methods (ADI), which were originally developed for struc-
tured grids can not be implemented on unstructured grids [87]. The importance of an
efficient spatial pointer system for rapidly changing unstructured mesh in unsteady flow
cannot be overstated; the pointer system described in this thesis is geared towards such
efficiency. Once the grid structure is defined through a pointer system, a general solver
can be implemented in terms of these pointers and the integration can proceed on a cell
by cell basis and in any arbitrary order. This separation of grid structure from the flow

solver allows creation of an efficient and modular approach.

The assignment of pointer systems to define the connectivity of objects in an unstruc-
tured grid is not unique; it depends upon the type of grids (triangular, quadrilateral,
etc.), and the amount of detail desired (more flexibility implies more data storage)
[33,57,79,99,133]. The spatial pointer system used here is very similar to those of Usab
[133] and Dannenhoffer [33].
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Figure 5.1: Node pointers for a given cell C.

The cell-to-node connectivity array defines the linkage of a given cell to its nodes
and parent cell. For example, the nodes 1,s, J,...,w, in Figure (5.1), are pointed to
by the cell-to-node array once the cell number C is known. The array in the present
algorithm has ten pointers for each cell in the domain. The filled circles denote corner
nodes which are always present while empty circles correspond to nodes which may or
may not exist. None of the center and middle edge nodes exist for a given cell if it is
undivided and does not border a divided cell. For unsteady flows, without a multiple
grid technique, the cell numbers and corresponding arrays for divided cells are no longer
needed and these assignments can be reallocated to the new cells that are created by the
division process. However, to maintain generality, the divided cell numbers are retained
even for unsteady calculations. This makes the book-keeping somewhat easier, since
division of each cell in a two-dimensional domain increases the total number of cells by
four, and the opposite holds for the fusion of cells. Hence the net difference of total
number of cell before and after the spatial adaptation cycle is a multiple of four. The
retention of divided cells means that for unsteady flows a linked list consisting of only

undivided cells need be maintained for an efficient integration procedure.

The cell-to-node array has its usefulness when integration proceeds on a cell by cell

basis and each cell increments to the changes that are accumulated at its respective
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nodes. In order to avoid an expensive search procedure a reverse array pointer, namely,
a node-to-ceH array, is needed to specify the cells surrounding a given node. This array
has four pointers for each node and is constructed such that if all four pointers of a
given node are non-zero and unique, it is a common interior node; however, if the four

pointers are non-zero and non-unique then the node is an interior middle edge node of

a spatial interface.

In addition to the arrays that imply connectivity of nodes and cells, simple node-
arrays and cell-arrays are needed for other manipulations, since nodes and cells may be
numbered arbitrarily. The node-arrays contain geometry information, state vectors and
some other variables at all of the computational nodes. The cell-arrays hold information
pertaining to some or all of the cells in the computational domain. This may contain, for

example, the refinement parameter values for undivided cells, the spatial level pointers

of each cell ete.

Link-lists are needed to hold information pertaining to specific cells or nodes and
these may be assigned in any arbitrary order. For example link-lists are needed to hold
those cell numbers which must be divided (or fused) in the subsequent adaptive cycle.
Boundary-Arrays contain information pertaining to the nodes on the domain bound-
aries. This is needed to apply boundary conditions, perform interpolation functions and

facilitate grid adaptation near the boundaries.

5.3 Detection of Flow Features

One approach to detect flow features examines the first differences of a single pre-
selected criteria variable [34,99,106,119]. A typical choice for this involves density differ-
ences since density appears as a factor in each element of the state vector; furthermore,
density differences are present for most flow fields including shocks, contact disconti-
nuities, etc. It is clear that for a system of N, equations it would be expensive to
examine every state vector component U(k),k =1,:--, N, to define the necessary spa-

tial and temporal resolution. However, use of a single variable might be insufficient when
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different regions are characterized by different physical gradients. For example a concen-
tration shock or contact surface may occur in one location with a small density gradient
concurrently with a classical shock elsewhere without mass fraction gradients. If only
one criteria variable is used some features may not be resolved adequately. Therefore a

multi-variable approach is suggested with a special form for the differences.

5.3.1 Type of Differences

The types of differences used to detect features in spatial adaptation procedures are
not unique. Kallinderis [71] has used divided and undivided first differences in viscous
and inviscid regions of flow. Dannenhoffer [35] has used undivided first and second dif-
ferences for this purpose. The undivided first differences can be interpreted as first order
derivatives in the computational domain for unit cell dimensions, a similar statement
can be made about the second order derivatives. Even when the type of difference is
decided its numerical form may differ depending upon whether the differences are node
based or evaluated on cells. Consider, for example, the first difference of density, Ap,

in one spatial dimension. From Figure (3.1), the value at node j is

28p; = pe—pi

provided that the dimensions of cells surrounding the node j are comparable; however,
if cell C is twice as long as cell B, i.e., node j represents a spatial interface, then the

appropriate difference at this node is

1
28p; = (pj+pk) ~ pi.

Thus the difference at a node can be complicated by the introduction of spatial in-
terfaces. This situation becomes further complicated in two spatial dimensions where
different kinds of spatial interfaces can exist. Furthermore node based differences have
to be appropriately modified near physical boundaries. This also has the disadvantage
that once a node is flagged as having a value of refinement parameter more than some
threshold limit the cells surrounding this node must be scanned for possible division. It

is generally unclear which cell has contributed most to the difference for a given node.
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The density difference for cell C in the same figure is

) Apc = px—pj
which is clearly irrespective of any spatial interface location and does not have to be
modified near physical boundaries. Since it is the cells that are divided or collapsed,
it is natural to evaluate differences based on cells. These differences not only avoid
complications due to grids but also can be evaluated at a lower computational cost and
are consistent with the philosophy of cell by cell integration for the adaptive procedures.
For these reasons the present algorithm utilizes undivided first differences on only cells

without centers which are stored in a link-list to be used for this purpose.

In two spatial dimensions the cell differences can be evaluated as changes along each
of the computational coordinates. For a scalar variable ¢ these differences are ¢¢ and ¢,;
and these particular forms may be useful if directional adaptation is desired. However,
if the directionality is unimportant or is undesired then differences based upon specific
directions must be modified to yield some other unbiased measure of property variation.

An example of such a non-discriminating overall difference is

Ap = /ot + 43
Another example is
Ag = l¢€|+‘¢n|-

For accurate computation of ¢; and ¢, middle edge nodes must be used whenever
such nodes exist; otherwise appropriate interpolated values have to be used. This is
computationally expensive since it involve IF-THEN clauses to find out if these nodes
exist. The exact detail and form of the first differences is generally unimportant; they
are seldom used in their original form and are often normalized to yield standardized
values. Furthermore, for most unsteady flows since it is necessary to adapt frequently
an efficient differencing scheme must be selected. For these reasons such differences are
not computed in the present code. The computational time can be minimized if only
corner vertices of a cell are considered when evaluating differences. This significantly

reduces computing time since corner nodes always exist and IF-THEN structures are
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not needed. Consider cell C in Fig. (3.5); the cell value for some scalar variable ¢ is

$c = %(45.' + ¢; + éx + ). (5.1)

Four cell differences are

Adym = ¢c — Om for m=1t,7,k,l (5.2)

and maximum and minimum difference values for the cell are

Admaz = max{Ad;,Ad;, Ady, Adi}
A¢miu = min {A¢i'1 A¢J’; A¢k) A¢l} . (53)

Note that these values are positive and negative respectively for locally non-uniform
flow regions. The cell difference Apc is then set according to

Apc = Dpmaz |APmaz| 2 lAPmin| (5. 4)

Apmin otherwise.

For a large number of cells one is justified to assume that the average of all such changes
is approximately zero, since there is equal likelihood for a general cell C to acquire
positive or negative values. However, no such assumption is made here. Nevertheless,
it has been observed that the average value of such differences has always been six or
seven orders of magnitude smaller than the corresponding standard deviation in all cases
that have been examined. Note that if the maximum absolute value of these changes
is assigned as the cell change value then the number of computations can be slightly
reduced; however, the average of the differences will be non-negative and will definitely

have to be computed for the approach described below.

5.3.2 Multi-Variable Approach

Let Q¢ denote the spatial criteria variable vector for a general cell ¢; the components
(g1,92,° )¢ of this vector form the first differences of selected variables as indicated in
the preceeding subsection. Thus if density is used as one criterion then ¢§f = Ap. and if

mass fraction Y of some species is used as a second criterion then ¢§ = AY; and so on.
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The mean value vector of Q¢ over all the cell values is denoted by (p1,42,--) which
may be approximately zero. Once all the elements of the vector @ are determined for
each cell, the variance-covariance matrix & = {84} is computed, where

N.
s = Y (05 = o) — ) (55)

e=1
and N, is the total number of undivided cells in the domain, and the indices a,b vary
between 1 and N, which denotes the total number of components in the spatial adap-
tation criteria vector. The sample variance s, provides a measure of spread of data for
observations of component a, whereas the sample covariance 843, for a # b, provides a
measure of linear association between the observations of the components a and b. The

correlation coefficient between these variables is

Sab
Cup = @ . 5.6
B 7 Joaatns (56)

If large and small observations of one variable occur respectively in conjunction with .
large and small values of a second variable then the sample covariance will be positive
and the correlation between the two variables can be measured by the closeness of the
correlation coefficient to +1. If large values of one variable occur simultaneously with
small values of another variable and vice-versa, their sample correlation will be negative
and the two variables will be inversely correlated. If there is no particular association
between the values of the two variables, the correlation coefficient will be nearly zero.
To accelerate the adaptive process one can assume that 8,5 = 0 when a # b for suitably
chosen variables; however no such assumption is made for the illustrative examples
shown here. Next a single scalar criteria variable is computed, which lumps the effects

of the multi-variable components of Q for each cell and has the form

1'2:'-1'2

‘= (@-MT=Q-M) (5.7)

where £1 is the inverse of the variance-covariance matrix and M is a diagonal matrix
with entries equal to the mean values (uj,p2,-+:). The superscript ¢ is omitted here
for simplicity. This scalar variable will be referred to as the refinement parameter. The
above reduces to the familiar form r = (¢ — u)/\/311 for a single variable situation.

The inverse of the variance-covariance matrix will not exist for spatially uniform flow
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fields and in these cases there is no need to perform adaptation. However, appropriate
measures must be taken in the software itself to avoid adaptation in such cases; in the '
STAR code if this matrix is determined to be ill-conditioned the refinement parameters
of all the cells are simply set equal to zero. The contours of constant r? values for
distributions in the space of N, dimensions are hyperellipsoids defined by the @ values.
In particular for a two dimensional space, the equation of an ellipse in (g1, g2) coordinates

is
(91— p1)%s22 — 2(q1 — 1) (92 — p2)ss2 + (2 — p2)s11 = r*(sursza — 83y).  (5.8)
On .t.he standardized scales of ¢; = (gs — 14}/ /5aa this becomes
of - 2C2qiqs + 47 = r’(1-Ch) (5.9)

which represents the equations of an ellipse. This reduces to a circle if the variables are

uncorrelated.

Equation (5.7) provides a meaningful distance norm for data Q° from its mean
value in the case when the variabilities in different components are different and when
some or all of these components are correlated. This measure removes the effect of
inter-correlations between individual components instead of merely summing up the
individual contributions. The standardized variables allow for an unbiased spread of
data. This has the advantage that spatial domains characterized by different kinds of
scales can be adapted by using a single refinement parameter that takes into account
the variability of all components and multiple components of refinement parameters are
then eliminated. Thus the same approach may be used to adapt, for example, in viscous

and inviscid regions.

5.3.3 Threshold Values

A divide threshold limit R is a value of the refinement parameter such that any cell
with 2 > Ry will be considered for possible division. Two kinds of divide threshold
limits, R4 and R4z, are considered here; the first is assumed apriors whereas the second

is computed based upon the current distribution of refinement parameter values for each
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cell. The limit Rq; is user supplied and allows evasion of the cell division procedure
when the flow field is globally uniform or when the gradients are reasonably mild. The
second threshold limit is selected from histogram records as the value corresponding
to a specific fraction Cy, (usually 20%) of cells for which the refinement parameter is
more than this limit. An inverse procedure (i.e., finding R4z from Cy,) is needed for the
determination of this value. For this purpose the minimum and maximum refinement

parameter values are first determined over all the cells

Bpaz = ma.x{rzr,c=1,2,---,Nc}
Bmin min{r2|° e= 1,2,---,Nc} . (5.10)

Next the refinement parameter values are segmented into intervals of constant length
and the number of cells (frequency) within each interval is counted. Thus if the total
number of segments is n, the interval size of the segment is AR = (Rpmaz — Bmin/n) and

the i*# segment or bin is given by
[Bl; = [Rmin + (i = 1)AR, Rmin +{AR] for  iell,n]. (5.11)

The fraction f; of cells with the refinement parameter values in the *? bin is found from
the number of cells with r? values in this segment. The distribution of frequency f;
versus the refinement parameter is generally similar to a normal distribution curve for
a large number of cells. The cumulative frequency Cy, is determined to be the overall

fraction of all cells with a refinement parameter value exceeding that of the *# bin and

is given by 1
n—s n
Cr, = 3 fmjtr = 2 fi. (5.12)
i=1 i=i

Now that a one-to-one correspondence between the cumulative frequency Cy, and the
mean value R; of the #*# bin is established, the value Ry3 can be obtained as the value
corresponding to a pre-defined fraction Cy, through linear interpolation between the

appropriate bins. A single threshold value,

Ry = max(Rq1, Raz) (5.13)

is then used as the decision basis for cell division.
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In the case when Rj; > Ry, it is unnecessary that the total fraction of the divided
cells will be exactly Cy,, since some cells which had been marked for resolution may not
actually be divided. The cells are not divided if the spatial level of the subcells pertaining
to a marked cell would exceed some user supplied maximum level. Furthermore the cells
are not divided if the difference between any two contiguous cell levels would exceed

unity.

The decision basis for cell merger, R., is set to be between 20 to 40 percent value
of the divide threshold value. When the associated refinement parameter diminishes
on a previously refined grid, and becomes less than the merger critical limit, those
contiguous grids may be collapsed while making certain that the cells to be merged are
from the same parent cell. Cells also are not merged if the difference of levels between
the parent cells and its neighbors would exceed unity. The initial (coarse) global grid
is kept stagnant by insisting that the coarsest cells (spatial level zero) be never merged

to a coarser state, no matter how smooth the evolving solution proves to be.

5.4 Grid Division

Once refinement parameter values r? are computed for all individual cells and thresh-
old values R; and R, are determined, all cells with r2 > Ry are flagged for possible
division whereas those for which r? < R, are flagged for possible fusion. Before the ac-
tual cell division procedure is invoked for the cells to be divided, the link-list containing
the cells to be divided is extended to include cells in the regions neighboring the one
which is marked for further resolution. The logic for the determination of extended cell

regions is deferred until a later section.

Before a particular cell can be divided a number of other conflict rules governing
subdivision are examined. The simplest rule examines the remaining space in the data
base for availability so as to place additional pointers which the newly created cells
would demand. If the data base is not saturated further evaluations are allowed. This

rule does allow redistribution of grid points once the data base is saturated. Next the
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spatial level of the cell to be divided is examined and verified to be less than a user-
supplied value. Without this rule the cells would be divided indefinitely near regions
which propagate slowly. Note that for steady state situations, this rule may not be

needed since the grid may be adapted only a few number of times.

c o
o
S
s s
(a) (b) (©)

Lg—Lc=0 Ls— Lo =+1 Lg—Lgc=-1

Figure 5.2: Three possible situations for spatial level differences.

Another rule examines the difference between spatial levels for the cell to be divided
and any of the neighboring cells, and aborts the division process if this difference is such
that further division will cause the cell volumes to differ by factors of more than four.
Consider the three possible permutations, shown in Figure (5.2); the level L¢ of the cell
C to be divided and the level Lg of a southern neighbor S are examined. The division is
allowed to occur only in cases (a) and (b). This rule is designed to avoid the substantial
stiffness that the spatial grid would otherwise introduce due to the disparity in the cell

volumes. Such stiffness will subsequently be referred to as spatial level stiffness.

After all preliminary tests are completed, a node is created at the centroid of the
cell, and dependent variables are set equal to the average values of the corner nodes. If
the nodes at the face midpoints do not already exist, they are created, and new nodal
values for the node-arrays are interpolated from nearby face nodes. Similarly four new

fine cells are created with cell numbers exceeding the previous value of the total number
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of cells. All pertinent arrays are adjusted appropriately to account for additional nodes

and cells. The reader is referred to Appendix C for additional details.

New cells are tagged to indicate that these cannot be collapsed for three more spatial
adaptation cycles. This rule is designed to create a lag between the most recently divided
and subsequently fused cells. It is possible that a cell to be divided lies within a buffer
zone and is awaiting the arrival of a feature, but the feature might be delayed due to
stringent time-step restraints elsewhere in the domain and might not reach the divided
cell until after two or three time-strides. Thus, in this situation, if the cells are allowed
to fuse in the second cycle, they may have to be redivided in the third cycle, and this

rule simply defers this kind of situation.

The boundary pointers also are examined to see if special interpolation functions
are needed to define the geometry at the middle edge node that conforms to a special
solid boundary surface. For example, a quadratic form may be used for a circular arc

bump and a cubic spline for other surfaces.

5.5 Grid Collapse

The reverse procedure that removes subcells is slightly more complicated than the
cell division process. For a given cell number contained in the link-list of the cells to be
merged there must appear exactly three other cells with the same non-zero supercells
that have been flagged for fusion; otherwise the fusion process will not commence. Once
located, the four subcells are arranged according to the relative cell number order in

which they were created, so that reverse manipulations can be started.

In order to avoid spatial level stiffness, the level pointers of cells that neighbor
supercell of the subcells to be fused are examined. If the difference of levels between
these would exceed unity due to the application of the fusion process, the process is

aborted.

There are situations for which it is known apriors that spatial resolution may be
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permanently needed in certain locations. For example, in the vicinity of external or
internal fuel-injection, one may want to maintain fine grid resolution even when the
prevailing gradients of the resolution parameter become small momentarily for a certain
span of time. This can be accomplished by tagging the cells in such regions to be
“permanent residents” and therefore not allowed to collapse. If such a tagged cell is

detected during the collapse procedure, the process is aborted.

After all preliminary tests are completed, the center node of the supercell is flagged
for removal. Those side nodes which are not needed by the neighboring cells are also
flagged for removal. To avoid gaps which would otherwise be created by removing the
fine cells, such cells are replaced by the last four cell numbers in the domain. The
situation becomes complicated if one or more of the last four cells is to be locally
divided. Hence care must be exercised in performing the realignment of all the pointers
between these two sets of cells. The reader is referred to Appendix C for details of this

procedure from a coding perspective.

5.6 Extension of Spatially Resolved Region

For some unsteady flow situations, it is necessary to extend the spatially resolved
region by a certain number of cells in the direction of propagation of flow features.
This ensures that features remain within the spatially resolved region during a subse-
quent time-stride unit. For example, if a moving shock is being tracked and temporal
adaptation is being used to allow advancement of cells with varying time-steps, it is
possible to foresee that the shock may emerge from the edge of the resolved region by
the time all cells in the time-stride sequence are integrated. It would be efficient to
take into account the direction of motion of a feature when allocating a buffer zone of
resolution, but such techniques would involve very complicated logic. For that reason
the present code simply includes buffer zones applied in all directions to the existing

spatially resolved regions.

Although the cells to be divided may exist at various spatial locations in the domain

137



and may be part of a number of distinct clusters, the set of these cells are referred to
as the detected cluster to distinguish them from cells in the buffer zone. The total
number of cells that extend across a detected cluster on each side or the width of the
buffer zone is denoted by N,. For the purpose of extension the cells in the detected
cluster are examined to locate boundary cells of the cluster, and their edges or corners
are painted appropriately to indicate extension through them. The buffer zone is added

in distinct layers, and the total number of these is N,.

If a cell in the detected cluster has a neighbor at a higher spatial level (or alternately
is divided) then it is unnecessary to extend through a corresponding edge or corner.
For example, if a southern node exists (so that there are two southern cells), then
the extension through the southern edge is not needed. Similarly, if the north-west
neighbor cell is at a higher level, then the extension through the north-western corner is
not needed. After this examination, the neighboring cells which are possible candidates
for the buffer zone are checked in the detected cluster. The cells which are located in
this cluster cannot form the buffer zone and the corresponding edge or corner of the cell
under consideration is painted for no extension. At this point a list of eligible candidates
for the buffer zone can be formed, and attention can be focused on the next cell in the
detected cluster. Subsequent candidates for the buffer zone would have to be checked

in both the detected list and the current list of candidates.

The candidate cells collected so far form an outer boundary to the detected cluster
or the first layer of the buffer zone. Subsequently only the cell in the first layer must
be examined for further extension if N, exceeds unity. Furthermore only those edges or
corners of these cells should be examined which had not been painted in the previous

pass.

If N, is greater than unity, the cells in the first buffer layer are examined for possible
extension and the whole process is repeated to form the next layer of the buffer zone.

This procedure is continued until the desired number of layers is formed.

Once all extensions are completed, the cells marked for possible fusion are examined

and any cell that appears in the overall buffer zone is removed from the fusion list.
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This provides a more biased and conservative approach towards the fusion of cells. The

reader is referred to Appendix C for coding details.

5.7 Islands and Voids

An 1sland is defined as a single divided cell which is bordered by undivided cells at

the same spatial levels. A void cell is one which has any of the following properties

o at least three divided edges
e at least two divided edges and is on a physical boundary

e two divided edges and is contiguous to a similar cell.

It is generally helpful to remove the abrupt changes that are caused by islands and
voids. Although such a procedure is not essential for the spatio-temporal algorithm, such
grid features are detected and removed for aesthetic purposes. Their occurrance in the
overall grid is simply distracting. Examples of these features are shown in Figure (5.3).
Note that an overall row of cells embedded in an otherwise coarse region is tolerated,
but a row of void cells is removed by carrying out multiple passes of the void detection

procedure as described in detail in the subroutine A2VOID.

5.8 Block Grid Generator

The generation of initial grids for complex flow geometries can be a difficult task.
The grid generation even for simple flow fields with multiple embedded solid objects can
be troublesome. For an initial grid generation an interactive multiple-block generator

has been developed as part of an effort involving the current research.

A block grid method subdivides the flow field domain into regions known simply as

blocks. The topology of one block has no bearing on the rest of the blocks, excepting
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Figure 5.3: Portion of a grid with islands marked by I and voids marked by V; cells

marked by B are those which become void cells in a second pass.
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that there must be a node-to-node matching across the interfaces of contiguous blocks.
The block grid approach is similar to a zonal approach, but since the nodes of the
contiguous blocks coincide at the block interface, the need to perform complicated flux
balances at the interfaces is eliminated. The advantage of the approach is that a clever
choice of block boundaries can reduce complex flow field regimes into smaller numbers
of less complicated regions and hence the overall grid generation becomes a simpler task.
The block grid approach ties in neatly with the finite volume implementation. Since the
integration is carried out on the basis of flux balances through the differential volumes,
the size, shape and skewness of the grids is of less consequence compared to the usual

finite difference approaches.

Literature on the subject-matter has not revealed any reliable automatic procedures
for subdividing an arbitrary domain into simpler blocks. It is complicated in the sense
that it involves inherent knowledge of the physical domain, and that subdivision into
simpler computational domains is not unique. The logic is further complicated by
additional zoning constraints for specific applications. However, once the total number
of blocks is decided and their physical locations into a final assembled grid is determined,
it becomes a simple matter to fill in the internal mesh for each block and align nodes

on the contiguous block surfaces.

For the block grid generator developed here, the total number of blocks, the geometry
of each face of the block in terms of cubic polynomials and the number of boundary
points on two adjacent faces must be specified. The interior mesh for each interior
point is then generated by an algebraic grid and the connectivity arrays for each cell
in each block are determined. This means that additional nodes will exist at the time
of assembly of the overall grid when the points on the contiguous boundaries coincide.
These multiply defined nodes are marked for deletion and the connectivity arrays of
the boundary nodes are examined and adjusted for consistency in the data structure.
The user is able to view this assembly interactively at various stages and could request
the program for certain changes. For example, the user may move nodes in certain
regions, subdivide meshes or fuse four adjacent cells, etc. A listing of the interactive

grid generator, GNBLOC, is provided in Appendix D.
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Chapter 6

Temporal Adaptation

The concept of utilizing variable time-steps for solving time-accurate transient prob-
lems is developed here. The chapter begins by examining the factors which limit the
computational costs and the ways in which these costs can be reduced. The classical
integration scheme for which a global minimum time-step applies will be referred to as
one-step ezplicit or simply Ni scheme. The scheme permitting variable time-steps will
be referred to as multi-step explicit or simply adaptive scheme. The issue of temporal
resolution is discussed in Section (6.2) for frozen and reacting situations in both one
and two spatial dimensions. The concept of temporal adaptation is developed for one
dimensional systems in Section (6.3) followed by an illustrative example in Section (6.4).

The temporal adaptation concept is generalized to include larger time-stride units in

the last section.

6.1 Motivation

In chemically reacting flows, the computations of chemical kinetic terms is often
more expensive than evaluations of convective and/or diffusive transport terms. The
cost increases with the number of species, the number of reactions connecting these
species, the number of spatial cells and the inverse of the time-step size. For flame
and detonation simulations the overall calculation may take two or more orders of
magnitude longer compared to frozen flow situations. Calculations may also be costly
due to stiffness introduced into the equations by the finite rate chemical kinetics which
is necessary to describe the physical situation. These factors form a basis for a need to

generate more efficient and accurate algorithms for solving reacting-flows.
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The calculations involving diffusive transport terms are generdly not expensive, for
a single cell, compared to the overall manipulations of source terms for typical chemical
reaction systems. However, the transport phenomenon demands additional resolution
near boundaries, interface of two streams, ete., and the overall computational costs
increase drastically with the added number of cells. The computational overhead can
be somewhat reduced by considering Euler equations on relatively coarser grids and
neglecting these fine features whenever it is reasonable to do so. The computational costs
can be reduced further by avoiding the expensive evaluations of source terms and their
Jacobians in the regions of embedded frozen flows in an otherwise reacting simulation,
since in these regions the source terms are negligible compared to the corresponding
terms in the relaxing regions of the domain. Generally chemical reactions proceed at
a negligible pace if the temperature is below a “threshold” value. For example, the
combustion of hydrogen in air is negligible below about 1000 Kelvin. Hence, whenever
static temperature is below the threshold limit the change due to chemical species
equations need not be evaluated and corresponding state values may have to be updated
so as to reflect only a change in global density while leaving the mass fraction values

unchanged.

When the reactive equations are stiff in the sense that numerical stability rather
than accuracy dictates the time-steps, then an implicit scheme can be used to partially
alleviate the computational overheads. However, for unsteady flows, if there are local
rapid chemical adjustments, the time-steps must be appropriately small to resolve the
features. These are generally changing patterns of resolution requirements as the rapid
transients form, gather strength, interact and deform other flow features and eventually
decay in different periods and positions. Hence there are conflicting requirements on
unsteady reacting flows in the sense that for efficient advancing time-steps may have to
‘be reduced in certain portions of the space-time domain where adjustments occur and a

utilization of longer time-steps be made where there are negligible temporal gradients.

Just as different spatial resolutions are allocated at different locations of a spatial
grid to achieve CPU time gains, it would be beneficial to take advantage of the large

spatial variations of time-steps for reacting flows. In fact gains due to utilization of

143



different time-steps can even be achieved for unsteady frozen flows if there exist sub-
stantial variations in spatial cell volumes, which indeed may well be a result of spatial
adaptation. An efficient time-differencing technique is developed in this chapter that
makes possible advancement of cells on a step-size which is a multiple of a global mini-
mum time-step. Without this technique the severe and costly constraint associated with
a globally minimum time-step would be applicable and computational costs would be
literally immense. In this technique the cells with the same time-step are integrated and
updated together on different integration passes of the temporal adaptation cycle but
the majority of small time-step cells fall in only a small portion of the overall space/time
domain. Once all integration passes are completed for each time-stride unit, all nodes

in the domain arrive at the same time-station.

6.2 Temporal Resolution

6.2.1 One Spatial Dimension

For unsteady flows temporal changes must be monitored so as to maintain sufficiently
small time-steps for adequate local resolution and stability. To develop a criterion for
temporal resolution first consider the governing Equations (2.45) in one spatial dimen-
sion and for simplicity restrict attention to a single species equation. If the magnitude
of the source term W is relatively small, or alternatively if the chemical time-scale 7 is
large compared to the convective time-scale, then the temporal resolution At, at which
the equations are advanced, is dictated by the CFL restriction for explicit schemes, viz.

T'Az

Aty < —2F
St = Tu[+ay

(6.1)

where I' < 1 is the CFL number and ay is the local frozen speed of sound. This
constraint indicates coupling of the time-steps with the spatial resolution. For such
problems AU/dt is essentially the order of dF/3z and W is small compared to the
other terms, i.e.,

aUu OF aF

U oF oF 6.
"9z’ V<% (6.2)
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Case Terms

aF 144 aFr
1 5z ~W and Sy < %55
14 aF au
2 T~ W and 5 <5
:144 aF
3 T~ 3z~ W

Table 6.1: Balance of terms for one-dimensional, one-component system when the source

term is relatively large.

For large values of the source term there are three possibilities as indicated in Ta-
ble (6.1). The first case is analogous to a steady state problem; large spatial gradients
are present but the variation in time is negligible. The need to maintain adequate spa-
tial resolution is obvious. However, there is no need to resolve the flow features within
a time-scale less than that dictated by the CFL restriction, and hence a source implicit

scheme is justified.

For the second case flow features must be resolved in time and a time-step smaller
than that dictated by the CFL restraint may be required. In such cases the temporal
gradient U /3t must be modelled carefully; the magnitude of 9U/3t At may need to be
restricted so that only small changes occur for each time-step. This will yield a smooth

variation of the state vector with time.

For the third case both spatial and temporal rates of change are comparable; and
resolution is needed in both space and time. For this case the time-steps may not have
to be as small as in the previous case since the large source term may be partially
balanced by a spatial flux gradient. The third and second cases are similar so far as

temporal resolution is concerned and as indicated in the subsequent the same criterion
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can be applied. Consider the cell C in Figure (3.1) and limit the cell change according
to the following criterion

au

AUGN Et_c

Atyey < AUpgz (6.3)

here the time-step indicates the resolution requirement and AUp,, is the maximum
allowable change for the species equation (in fact this could be applied to other equations
also). A threshold criterion for this maximum allowable change will be discussed later.
The change for cell C is given by Equation (3.11) and can be written as the product of
a driving force, D, and cell time-step, t.e.,

F,' — F
Amc

AUg = DAty = (Wc+ )Atc. (6.4)

Note that the species density will increase if the driving force is positive and vice versa.

Comparing the last two equations yields the restraint for time-step resolution

IAU,Mz AUmpgzAzc
D

At <
ree WeoAzc + (Fj - FJ,)

. (6.5)

This again indicates a coupling of spatial and temporal resolutions. The resolution
requirement, At,.,, may or may not exceed the stability requirement, At.s;, and the

actual time-step is

At = min{Atrga 3 Atcfl } . (6.6)

Note that in the familiar limit of non-reacting uniform flow At,.,, —* oo and the
stability requirement is governing. On the other hand, large W¢ for uniform flows
implies At,., < Aty and the expected problem of stiffness. For this case, if the uniform
flow conditions persist, the flow will start approaching the equilibrium limit and larger
time-steps could be taken subsequently since the overall change in the species density
will diminish and the source term will itself become smaller. In addition to the drive
towards equilibrium the flux gradients may emerge which may provide a balance with
the source term and hence temporal gradients will diminish which will allow larger time-
steps. As an example consider Figure (6.1) where a relaxation process start far away
from equilibrium. Initially, the drive towards equilibrium is fast and it slows down at a
later time. The relaxation may never approach identical equilibrium if substantial flux

gradients exist. If the time resolution is held to a constant change in the species density
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Figure 6.1: Allocation basis for resolution time-step.

as indicated by the circles on the relaxation curve (and the marks on the vertical axis),
then it is clear from the ticks on the time axis that the time-steps would gradually
increase as the slope tapers off to an increasingly smaller value. As the curve flattens
out the time-step becomes infinitely large for this constant change model. It is possible
that initially the CFL constraint might be less stringent compared to the resolution
time-steps but it would eventually become more stringent as time increases. Note that
during the initial transient Equation {6.5) may be as stringent as the stability restriction
that would be dictated by an explicit scheme due to the chemical time-scales since the
source term appears in the denominator. However, as time elapses the driving force
decreases and larger time-steps can be taken. This is the essential modification to the
implicit source approach [23] that allows unsteady computations. As asserted here,
for time accurate descriptions a criterion such as Equation (6.5) is desirable for both
explicit and implicit integration schemes, although for frozen flow this restriction may

be of lesser consequence.
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For the first case in Table (6.1), the balance between flux derivative and source term,
t.e., -

Fj = Fr+ AzcWe =~ 0

implies that for finite, non-zero values of the threshold limit, the resolution time-step
restriction approaches infinity and the CFL restriction governs, i.e., Atye, > Al.g, as
is typical for steady flow situations. For the second case the flux gradient is nearly zero

and the resolution requirement simplifies to

AU,
Atyey < 7’;—

(6.7)
Thus very large values of the chemical source term imply very small values for the
resolution time-step, which is then the most restrictive, t.e., Aty < At.g. For the
third case the two time-steps may be of the same order of magnitude. It is possible that
all three types of balances may exist at different spatial locations and at different times -

in a given simulation.

A threshold criterion for the maximum allowable change in the species equation will
now be suggested. For a non-vanishing species state variable, the maximum allowable
change may be defined as a small fraction of the state variable itself. This is because
the mass fraction variations for a non-inert species with high concentration may be
proportionally larger (generally higher concentrations species react more). However,
allowance must be made for near zero levels, for which infinitesimal time-steps are

irrelevant. A suitable form for the threshold is then
lAUG| < AUmaz = elUG + €p (6.8)

where the ¢; are small positive numbers. Effectively, the change is limited to a fraction
of the state value excepting for vanishingly small levels. The threshold form utilized in

Figure (6.1) corresponds to €; = 0.

Gear [54] has suggested restrictions on the growth of truncation error, in limiting the
time-step for adequate resolution in the numerical solution to be below some set level
for the integration of stiff ordinary differential equations. That approach becomes very

complicated for partial differential equations and is not used here. Gear’s approach for
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temporal resolution is analogous to the approach taken by Berger [13] who uses trun-
cation for reapportionment of spatial grids. Since for spatial adaptation Dannenhoffer
[34,35] has shown that first differences of certain flow variables may be used instead of
the truncation error, the same approach can be extended for temporal grids where the
temporal gradients are kept small as indicated by Equation (6.3). Drummond et. al.
[42] have used a simpler form in which ¢; = 0 in connection with Equation (6.7) and

their representation corresponds to the second of the balancing situations in Table (6.1).

If the driving force D is positive and Ug = pY is small, the restriction imposed by
Equation (6.8) may be unnecessarily severe. In such a case even when AUg ~ Uc a
reasonable resolution can result so long as the updated mass fraction is small compared
to the maximum possible mass fraction Y;,,z. For that situation a reasonable maximum

allowable change can be modelled as
AUc,us = €10(Ymaz — Y) + €0 = €1(Umaz — Uc) + €0 for D>0. (6.9)

When the driving force D is negative Equation (6.8) is appropriate. When the driving
force vanishes, as in first case in Table (6.1), there is no need to restrict time resolution

based on the species equation.

A pertinent question after the development of a temporal resolution basis for the one
species equation relates to multiple-component reaction systems. Just as there is no need
for spatial embedding to resolve every component of the state vector since they prove
to be coupled, temporal resolution needs also may be based on only a few of the species
that are present. Since the fluid mechanic time-scales are already resolved by the CFL
restriction, a single dominant species that provides the resolution for a minimum time-
scale associated with the chemistry may suffice. Another possibility would be to examine
the current maximum change among all species and limit its change by restricting the
time-step. However, that would involve the computation of driving forces for all species
and would be computationally expensive. Hence the former approach was utilized here
for its simplicity. Unlike the choice of spatial criterion variables for resolution (e.g.,
density and any of the species mass fractions) that for temporal resolution is not obvious

apriori. It should, however, correspond to a species which is expected to change most
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rapidly and frequently. This species typically takes part in a large number of reactions
and these reactions have large rate coefficients. The fact that exchange reactions are

generally faster than dissociation reactions can be important in making this choice.

6.2.2 Two Spatial Dimensions

For two spatial dimensions the cell change AU for a cell C, as indicated in Fig-
ure (3.5), is given by Equation (3.46) in terms of the corner nodes. This can be used to

define the driving force as

1
D=W¢+ Z—Cf;(de - Gdz) (6.10)

where the discretized flux balance in Equation (3.46) has been replaced by its contin-
uous representation for simplicity. The resolution time step restriction, analogous to

Equation (6.5), becomes

Aty < !A%‘“ = AUmaz Ao (6.11)

" |AcWe + §o(Fdy — Gdz)|

for a pre-selected criterion variable. The maximum allowable change for the criterion

variable is limited as (see Eqgs. 6.8 and 6.9)

aUc + ¢ D < 0O
AUpaz =4 ¢ (Umaz — Uc) + €0 D > (6.12)
o0 D = 0.

The CFL restriction is given by Equation (4.2) and the current time-step allocated to

a cell is the minimum of the resolution and CFL constraints.

6.3 Discussion of Temporal Adaptation

To motivate the development of variable time-steps for solving unsteady problems

consider the following simple form of Euler equations in one spatial dimension

U _ OF

=5 (6.13)
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Once the concept is developed, it will be extended to include source terms for both
one and two~dimensional situations. For the sake of demonstration, assume that the
non-uniformity parameter ¢, from Chapter 3, is identically zero for all nodes at which

the scheme is applied and for which no artificial viscosity is needed.

Consider cells B and C surrounding the node j in Figure (3.1) for the explicit
Ni scheme. As given by Equation (3.21), the overall change at node j is the sum of

contributions from cells B and C, i.e.,
UMt = U? + 8U5" + 68U + O(At®) (6.14)

where the superscripts on the change contributions indicate an evaluation on the basis
of flux values at time-level (n). Specifically, the superscript (n,n) indicates that both
nodes ¢ and j of cell B use values at time-level (n). These change contributions for the

above simplified model are

sUny =} (1+ ALFg,) AUR" 619
sUR =} (1- ALFp ) AUg™
in which
AUR™ = (Fp - FP) AL
(7 - £7) s (6.16)

AUZ" = (Fp- Fp) AL.

For the case involving both source terms and grid non-uniformities Equation (3.35)
may be used for change contributions. This is shown graphically in Figure (6.2) where
the change contributions from both cells B and C are based on the same time-level (n)
as indicated by the upper circle at node j. The states for nodes ¢ and k are not shown
explicitly, but also are evaluated at the same time-level. The figure also shows the
variation of a component of the state vector for node j as a function of time, although
only discrete values indicated by the circles are available. The value predicted by the
one step explicit scheme at node j after a time At, is indicated by the lower circle which
is the state variable at time-level (n + 1). At another time-level (n + ¢) for the change

contributions in Equation (6.14), the order of accuracy remains the same; t.e.,

UMt = UP + 68U " + 68U ™" + O(Ar%) (6.17)
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n+1
U;

n n+1

Figure 6.2: Graphical representation of the explicit Ni scheme.

where (n + c) represents some time-level intermediate between (n) and (n+ 1). In fact
the change contributions from B and C can be evaluated at different time-levels, i.e.,
one may consider different non-zero values ¢ for these cells. If one integrates cell B based
upon values (n,n) for nodes ¢ and j and updates both nodes before actually integrating

cell C, then an intermediate time-level (*) is attained at node j, i.e.,
U} = UL+ 6UN (6.18)

where the change due to cell B is given by Equation (6.15). Based upon state variables
at that time-level (*), the flux vector F* is available, and the evaluation for the change

contribution at node j due to cell C can be obtained out from

sUL = % (I - AAT‘CF,;;G) AUL" (6.19)
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where

* * At
- AUy = (F; - FP) yoo (6.20)

This is shown graphically in Figure (6.3). The upper circle on the curve shows the

U;

Uy

sU”
uptt
Uiy J

n » n+t1

Figure 6.3: Graphical representation of single step predictor-corrector scheme.

change for cell B to be based on level (n), and the square shows that the change for cell

C is based on level (*). The overall change is due to their sum, i.e.,
1 __ ¥ *,
UM =U} + 68U + 86U S (6.21)

Note that the time level (*) is not necessarily midway between (n) and (n+ 1) and that
its exact value for node j is of lesser concern for the current discussion, since primary
interest is in the intermediate value of the state vector and not the time itself. Hence one
can use Equations (3.22) for §U" and 6U ;c’," if one only stores the values of state vector

at various nodes and updates them as soon as the change contributions are computed.
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The latter approach can be regarded as an explicit predictor-corrector scheme in
contrast to the Ni scheme which is a single step explicit scheme. The two approaches do
not yield identical results but differ only within the order of the scheme itself. Note that
the latter approach would be computationally more expensive since updating has to be
performed prior to the change determination for cell C; however, the updating process
itself is very inexpensive since it involves only the addition operation and hence the
overall increase in CPU time would be marginal. Let us now examine the conservation
property of the predictor corrector scheme. The explicit scheme is conservative in the
sense that the flux contribution from cell B to node j [.e., F;(B) = —F}] is the same

as the flux contribution of cell C at node j [i.e., F;(C) = +F}'], hence
F;(B) + F;(C) =0.

For the predictor corrector scheme, this is no longer the case since the flux contribution
from cell B is —F and that from cell C is +F;. However, since the fluxes differ by
second order in time, the conservation property has been compromised in favor of the
beneficial temporal adaptation. Since the predictor corrector approach will be applied
only at nodits, which form only a fraction of the nodes in the overall domain, the

conservation property is still valid away from these nodes.

Suppose now that the cell C properties can be advanced at a time-step twice that of
cell B as indicated in Figure (6.4). It is assumed that the time-step of cell B and those
to its left is Atp, and for cell C and those to its right is 2Atg. Hence node 7 in this
figure is at a temporal interface or nodit. Nodes which are not nodits will be referred to
as common nodes. In the previous two single step approaches node j was regarded as
a common node. An integration and subsequent updating of all cells to the left of cell
B would advance the time level to (n + 1) for all the nodes to the left of node j; and a
similar process for cells to the right of cell C would advance the time level to (n+ 2) for
all nodes to the right of node 5. The time level for the node j itself would be somewhere
in between (n + 1) and (n + 2). Clearly to arrive at the same time level (n + 2) would
require integrating cell B and those to its left twice as often compared to all the other

cells.
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Figure 6.4: Finite volumes adjacent to nodit j.

In the spirit of the predictor corrector scheme, three separate integration passes are
proposed in order to advance to time level (n+2). Reference can be made to Figure (6.5)
which shows the situation graphically for node 5. On the first pass all cells to the left of
node j are integrated using time-step Atp and change contributions based on level (n)
are determined for each cell. After all nodes are updated, those to the left of node j
advance to time level (n + 1) whereas node j advances to a time level (%), as given
by Equation (6.18) with At replaced by Atp. Obviously data stored in each change
contribution variable must be set equal to zero after each updating. The state (n + 1)

at node ¢, after updating, is defined in the usual manner by
UMt = Up + UL + 8U (6.22)

On the second pass all cells to the right of node ;7 are integrated using a time-step
Atc = 2Atp and change contributions for each cell (except C) are determined based
upon level (n). The subsequent updating advances all nodes to the right of node j to

time level (n + 2), whereas node j advances to level (1) given by
Ul =u; + 68Uy (6.23)

Here the change for cell C is based upon level (*) for node j and level (n) for node k.
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Figure 6.5: Graphical representation for temporal embedding.
The state at node k, after updating, is given by
Upt? = Up + 8US + sULY (6.24)

where D is the. cell to the right of node k in Figure (6.4). On the final integration pass
all cells to the left of node j are integrated again using the time-step Atp and change
contributions are determined based upon level (n + 1), except for cell B which is based
upon level (n+1) for node 1 and level (1) for node j. The subsequent updating advances
all nodes in the computational domain to time level (n + 2) with the state at node j
given by

Urt? =ul+susght, (6.25)

The ezact conservation property at node j for this multi-step approach dictates

Fj(B1) + F;(Bz) + 2F;(C) = 0. (6.26)

156



This is satisfied only to O(Atg) since
Fi(By)=-F} ,  F(C)=+F ,  Fi(B))=-F}.

Exact conservation can be maintained if the nodit j is recognized to be a temporal

interface and the fluxes are frozen as
Fj(B:) = Fj(B;) = -2F;(C) = —F}. (8.27)

However, this is not done in the developed code, since the implied logic to handle tem-
poral interfaces would undoubtedly be very complex. It is also observed that with this
treatment exact conservation property is maintained at nodes 5 and k and the problem
is brushed aside to approximate conservation at node ¢. Furthermore the generalization
of the frozen flux concept for larger time-stride units becomes more complicated, even
in one spatial dimension, and the utilization of frozen flux values may hinder the proper :
propagation of information when the feature within the resolved regions move and in-
fluence the nearby regions. The ezact conservation property was compromised in favor

of simplicity in updating and using the latest available information for the nodes.

For the example discussed here the time-stride consists of two time-steps for cells
to the left of node 5 and one time-step for the cells to the right. Since each node of a
cell is updated after each integration pass, and the flux, etc., are recomputed, the state
at a nodit during a time-stride at intermediate time-levels is not available; however, on
completion of a time-stride the state for all the nodes arrives at the same time level.
The use of latest available information means that all the data corresponding to states
during a time-stride need not be saved or stored. This also means that that the concept
of time-stride can be extended to include larger number of time-steps as will be shown

in the latter part of this chapter.

As a final note to this section it is appropriate to point out that it would be mis-
leading to conclude that for all computations of frozen flows involving a uniform spatial
grid a global minimum time-step is the appropriate one. For example, for a shock
moving in a 1-D stream-tube at a Mach number of 6, the allowable cell time-steps can

vary by about a factor of 8 on either side of the shock for a constant CFL number.
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Hence temporal adaptation could be useful even when uniform spatial grids are used
for non-reacting flows. The utility of temporal adaptation increases further when grids
are spatially adapted for transient frozen situations and it is especially attractive for

processes involving disparate time-scales which may be coupled with spatial resolution.

6.4 Illustrative Example

As an illustrative example for temporal embedding, consider the following scalar

model for U(z,t) withz€ [0,1] and t > 0

oU avu
with the initial condition
U(z,0) = ?* (6.29)
and the boundary conditions
U(o,t) = e
U(L,t) = &%, (8.30)
The exact solution of this model is
U(z,t) = e, (6.31)

Let us consider two cells B and C with three nodes at z; = 0, z2 = %, z3 = 1
and suppose that the differential equation is integrated numerically to ¢t = 0.1. The

distribution formulae for this model are

§Uszs 11+ 482) (- Up) 42 (1+ 2Atg) (Uy — Us) Atg

U = $(1-42)(1a-Us) A2 = (1-24tc) (Vs - Us) Ato.

AZG Azc

(6.32)

The states at nodes z; = 0 and z3 = 1 are determined by the boundary conditions.
Suppose also that the minimum time-step is At = 0.05. The computations for the
single step integration scheme would require determination of §Uzp and 8§Uac for two

times to update to ¢ = 0.10 as shown in Table (6.2). For clarity the changes are shown
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Time U1 5U23 Uz 5U2(J U3
Start t = 0.00 | 1.00000 2.71828 7.38906
[
" Changes | At = 0.05 -0.09451 -0.21018
Update t = 0.05 | 0.90484 2.41359 6.68589
Changes | At = 0.05 -0.08298 -0.19225
Update t=0.10 | 0.81873 2.13836 6.04965
Exact t=0.10 | 0.81873 2.22554 6.04965

Table 6.2: Single step integration based upon At = 0.05.

on separate rows to indicate that they have been based on the states as listed in the

previous rows.

Since |6Uzc|/|6U2B| = 2 the cell time-step for cell B can be increased by a factor
of two to make the change contributions at the middle node comparable to the two
adjacent cells. This means that we can choose Atc = 0.05 and Atg = 0.10. The
computations for this multi-step integration scheme are shown in Table (6.3). As in
the previous case two integration steps are needed for cell C but only for cell B. The
changes are again shown on separate rows indicating their evaluations based upon the
states in the previous rows. The single step scheme involves four change evaluations,
two update operations for middle nodes, and four boundary condition calculations,
compared to three operations of each type for the multi-step scheme. The latter loses

only on the count of update operations for the middle node. However, that operation is
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itself very inexpensive, and the multi-step scheme is definitely superior with respect to
computational efforts involved in the single step approach. Assuming that the CPU time
for the boundary condition evaluation is comparable to that for change computations,
the multi-step scheme consumes only 75% as much CPU time compared to the single-

step scheme to update the solution to the same time-level.

Time U §Uszp U,y §Uzc Us
Start t = 0.00 | 1.00000 2.71828 7.38906
Change | Atc = 0.05 -0.21018
Update 2.50810 6.68589
Change | Atg = 0.10 -0.18097
Update 0.81873 2.32713
Change | Atc = 0.05 -0.19614
Update t =0.10 | 0.81873 2.13099 6.04965

Table 6.3: Multi-Step integration based upon Aty = 0.05 and Atp = 0.10.

As is evident from the two tables, the final result is not identical for the two schemes,
but the difference is less than 1%. Both underpredict the value at the middle node by
about 4% compared to the exact solution. Decreasing the time-steps does very little to
improve the comparison with exact solution. For example if the time-steps are reduced
by an order of magnitude the solution at the middle node at ¢ = 0.10 is found to be

2.1391 and 2.1383 for the single and multi-step schemes respectively, which represents a
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difference of less than 0.1%. This is due to the fact that temporal accuracy is inherently
related to the spatial accuracy, and more accurate results only can be obtained by

considering finer resolution in both space and time simultaneously.

The results of this illustrative example appear to justify the usefulness of the multi-
step scheme in limiting computational resources and efforts while maintaining reason-
able temporal accuracy. If time-strides comprised of more than two time-steps can be
achieved, further savings in computational efforts can be realized. In fact simultane-
ous adaptation in both space and time would then yield orders of magnitude faster

computations.

6.5 Generalization for Larger Time-strides

6.5.1 One Spatial Dimension

Consider Figure (6.6a) which shows an example of the assignment of cell time-steps
as the minimum of both resolution and CFL restrictions before any readjustments. The
cell time-steps can be reassigned as multiples (of power of 2) of a global minimum time-
step, Atmin, as shown in Figure (6.6b), so that an integral number of integration passes
can be completed for cells with the same time-steps. For this example the size of the
time-stride is m = 2. A general procedure for the assignment of the individual steps in

a time-stride can be evaluated by the following simple approach.

Based upon cell time-steps given by Equation (6.6) evaluate global minimum and
maximum At over the entire domain; the size m of the time-stride may then be assigned

such that
JAY e
Atmin

Note that m is the current mazimum allowable temporal level for domain cells and

2™ < min{ ,2M} < omt1, (6.33)

is constrained to be less than or equal to a prescribed maximum level, M. Such a
constraint on temporal levels is necessary in order to avoid very long time-stride units

which may cause spillage of the feature being resolved from the spatially embedded
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Figure 6.6: Cell time-steps: (a) initial assignment; (b) assignment for temporal adapta-

tion.
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region [106]. This phenomenon will be referred to as temporal level stiffness. A flow
feature generally implies an associated characteristic speed, e.g. that for a shock or
reaction, and the spatially embedded region must be sufficiently large to ensure that the
feature will remain within the embedded region during the subsequent time-stride. The
size of a time-stride depends upon the value of M. If a large value for the maximum
allowable temporal level m is used then the spatially embedded portion of the grids
must be enlarged to avoid departure of the feature from this region. Though temporal
adaptation involving long time-strides helps to reduce CPU time, the calculation on
increased number of extension nodes can be expensive and a balance between the two
competing effects is necessary. To avoid such temporal level stiffness one must not use
an extremely large sized time-stride; the current maximum that has been used in this

study is M = 10.

Actual time-steps for a given cell C are re-assigned according to

AtFY = 2" Atpmin (6.34)
where the level n < m is given by
. ¢ Ot
2" < min{—2%-, 2™} < 21, (6.35)
Atmz’n

The total number of time-strides for level n cells is 2™~",

Another facet of temporal level stiffness is that the time-steps can vary appreciably
for contiguous cells. This is improbable for frozen flows because a division into four
sub-cells reduces the time-step by a factor of 2 and hence this facet of temporal level
stiffness can be avoided by controlling the difference of spatial level embedding between
contiguous cells. For reacting cases the source terms can vary appreciably between
contiguous cells and hence can cause a corresponding variance of time-steps. To avoid
such occurrances the cell time-step is restricted to be at most 4 times the minimum

time-step of the surrounding cells.

On completing all readjustments, cells with the same temporal levels are grouped

together for subsequent integration. Thus cells with time-steps Ay, are in group level
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0, those with 2At,,;, are in group level 1, and so on. The total number of time-steps

needed for cells in level n to advance to the next time-stride is 2™~%.

The order in which the integration takes place over the cells is of special importance
[81,106]. Successive integrations over the same cell in passing from one iso-temporal
surface to the next will produce a degraded solution since information from neighboring
cells is not allowed to propagate. For example, if the level O cells labelled A; in Fig-
ure (6.6b) are integrated four times consecutively use is made only of information based
on the two nodes d and e. This is correct for A;, but for A, additional account must
somehow be taken of the nearby nodes. If for seven integration passes, we integrate level
0 cells on pass 1, level 1 cells on pass 2, level 0 cells on pass 3, level 2 cells on pass 4 and
so on as indicated by the numbers in Figure (6.6b) by the time A4 will be integrated
the nodes d and e will have accumulated effects from nodes a through g, provided that
after each integration pass the cells at a particular level have been updated and the flux,
source terms and Jacobians recomputed. This represents yet another facet of temporal
level stiffness. In general, a cycle of Pr integration passes completes a time-stride unit,
the total number being

Pp=2m+1_1, (6.36)

On pass P € [1, Pr] cells with temporal level n are integrated if

p-2"

T integer. (6.37)

6.5.2 Two Spatial Dimensions

The ideas developed for one spatial dimension hold for multi-dimensions as well.
As an example consider the time-stride in Figure (6.7) with M = 2 as the prescribed
maximum time-level of cells. Also suppose that the time-step variation is such that the
current maximum allowable temporal level of m = 2 is possible, and therefore Pr = 7.
For clarity of view a slice has been removed from the figure. The dots on the top
surfaces of each cell indicate the time-step as a multiple of the global minimum time-

step. Hence, cells with one, two, four dots are at temporal levels n = 0,1,2, etc. The
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correspondence between the integration passes and temporal cell levels still follows from

Equation (6.37):

The chemical source terms may alter the time-step distributions in such a way as to
create cells with spatial resolution in the absence of temporal resolution {cells with 4 dots
and shaded top surfaces) and temporal resolution in the absence of spatial resolution
(cells with 2 dots and shaded top surfaces). Such complications do not exist for frozen
flow computations. The makeup of the time-stride changes with the movement of the
flow features being resolved, and a different number of levels may exist for consecutive
time-strides. The generation of fresh time-strides depends upon the velocity of the
features; hence for fast moving features time-strides should be renewed after each spatial

adaptation operation and vice versa.

6.5.3 Summary

Temporal and spatial adaptation procedures are inherently different and are applied
separately. When the spatial adaptation process is carried out it is at a current time
level, at all spatial locations, and done infrequently relative to the number of temporal
adaptations. Nevertheless, the frequency of spatial adaptations does depend upon the
time rate of change of the flow feature being resolved. On the other hand, temporal
adaptation is repeated after each time-stride at all spatial locations and must anticipate
subsequent changes in the the flow field as the features move. The four steps needed

for completing a temporal grid adjustment are :

1. a determination of an allowable At for each cell,

2. reassignment of At to be multiples (of power of 2) of global minimum time-step,

Atrm'n ’
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3. further reassignment of At distributions such that adjacent cells vary at most by

a factor of 2 in 1-D and a factor of 4 in 2-D, and

4. determination of a proper integration sequence over the cell domain.

Nodes at the boundary of cells with different time-steps, nodits , are not necessar-
ily the same as middle nodes for spatial interfaces. No special formulation is needed
at nodits and in order to render the actual spatial location of any temporal level cell
irrelevant, a data base must be constructed so as to store cells at same temporal level
together. There is no such restriction for spatial adaptation pointers. The choice of
such a data base allows the calculations for each pass to be performed in parallel; the
data dependencies occur only at nodits between various passes for a given integration
sequence. However, the integration order does not strictly have to follow the afore-
mentioned sequence (Eq. 6.37) at nodits, and such data dependencies will cause only
slight variations between parallel and non-parallel calculations. Since all nodes of a cell
are updated after each integration pass, and the state vector, etc., are recomputed, the
state at a nodit during a time-stride is not correct at intermediate time levels; however,

on completion of a time-stride the state does correspond to a correct time.
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Chapter 7

Initial and Boundary Conditions

The solution of a reactive system is determined by the initial condition, the set
of conservation and constitutive relations and the boundary conditions. The initial
condition is a spatial distribution of the state vectors when the computation is initiated,
usually at “zero” time. Boundary conditions describe the exchange of mass, momenta,
energy and species between the system and the external universe through its boundaries.
These conditions can have both physical and numerical implications, and each can
influence the numerical solution in a different manner. This chapter describes the initial
and boundary conditions, both from a numerical and physical point of view. The
boundary conditions are discussed only for two spatial dimensions. Following some
introductory remarks the initial conditions are discussed in Sections (7.2) and (7.3). A
characteristic analysis for the purpose of applying numerical boundary conditions at
inflow and outflow is discussed in Section (7.4). The boundary conditions for solid wall,

inflow/outflow are discussed in Section (7.5).

7.1 Introduction

To begin the solution of the finite volume equations in time, it is necessary to specify
a set of initial conditions for each node in the computational domain. These include
specification of geometry (independent variables) and state vectors (dependent vari-
ables) at initial time. Values are also required for thermophysical data and other input
parameters. The thermophysical data includes information like number of species and
reactions, stoichiometric coefficients, constants in rate coefficient expressions, specific

heats, heats of formation, molecular masses, and threshold temperature for by-passing
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source term computations. Other input data pertains to adaptation parameters such as
spatial and temporal adaptation criteria variables, number of cells to be extended after
each adaptation cycle, predefined threshold values, etc. Quantities such as flux vectors,
source vector, etc. can be initialized by direct computations involving the state vectors

and the thermophysical data.

The specification of initial conditions and input parameters is generally regarded
to be easier than imposing boundary conditions because these are input just at the
beginning of the calculation for a fresh start rather than executed as constraints after
each time-stride. However, for reacting flows, the initialization of a whole slew of ther-
mophysical data and consistencies in the values of state vectors which depend upon the

reaction system can be some-what time-consuming and prone to errors.

Uniform initial conditions are specified for some cases in this thesis through the
input data at the upstream boundary. This is quite straight-forward and nothing more
need be stated about its implementation. Two other kinds of initial conditions have

been considered for either a perfect or Lighthill gas. These are

e conditions across a diaphragm in a shock tube

e conditions across a moving shock.

These will be discussed in Sections (7.2) and (7.3) respectively.

Boundary conditions frequently involve special constructions which are applied at
the boundaries of a computational domain. The term physical boundary condition is
used here to describe assumed flow conditions along the boundaries of a domain. In
addition there are numerical boundary conditions which impose additional restraints to
close the system of discrete equations. Special numerical formulations are needed at the
boundaries because some of the cells adjacent to the boundary nodes are non-existent,
and hence integration procedures cannot be applied at these nodes in the same manner
as at interior nodes. In particular, the construction of boundary conditions should be

simple, mathematically tractable and physically meaningful. Several different types of
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boundary conditions such as those for inflow, outflow, free surfaces, fluid interfaces and
rigid walls are required for computing solutions and each of these requires a different
mathematical and numerical treatment. The types of boundary conditions considered

in this chapter are

o free slip rigid walls

prescribed input (supersonic inlet)

continuitive output (supersonic exit)

subsonic inlet

subsonic exit

The inlet/exit boundary conditions may be applied through a characteristic analysis as

discussed in Section (7.4).

7.2 Initial Conditions for Shock Tubes

¢
¢

>

Figure 7.1: Initial distribution of density across a shock tube diaphragm.
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Shock tube property distributions constitute step functions in terms of the state
values at ¢ = O as shown in Figure (7.1) for a typical density distribution. Location
¢ denotes the contact surface and stations ¢, e indicate inlet, exit of the computational
domain which are respectively the high, low pressure sides. Hence when the diaphragm
is shattered, the contact surface and shock discontinuity move from left to right. The
assignment of state values at location ¢ may be regarded as that of inlet, exit or simply
the mean value, but for the sake of discussion here this mesh point is regarded to be
a part of the inlet condition. Clearly it is helpful to generate grids which align with
the contact surface at the initial time. The symbols in the figure indicate nodes of a

computational domain; solid circles indicate the high pressure side and the empty circles

indicate the low pressure side.

Initial ratios for temperature, T, /T; and density, p./p; are used as parameter values
for this case and the reference values are those at the inlet for the sake of normalization
(i.e., Ti = pi = p; = 1 in non-dimensional units). These values are convenient because
then the degree of dissociation can be directly computed for either frozen or equilibrium

flows. The pressure ratio is computed from

De peTe1+Y,
—_ = == 7.1
pi rTi1+Y; (7.1)

where Y indicates the degree of dissociation or the mass fraction of dissociated atoms
for the assumed Lighthill model. For frozen flow Y, = Y; and the ratio reduces to that
for ideal gases when the characteristic temperature 6, is regarded as zero. Note that the
non-dimensional thermal equation of state for both perfect gases and frozen Lighthill

model (irrespective of 8) is
p =0T
whereas the caloric equation of state for perfect gases is

€ 1

= vatie
and it has the same form as the Lighthill model when 8; = 0 and v = (4 +Y)/3 (See
Section 2.7). For frozen flows the reaction parameter @ is zero and any constant value
for the degree of dissociation can be used; for comparison with perfect gases this value

can be chosen so as to correspond to a given value of ratio of specific heats. For non-zero
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values of the reaction parameter, initial values of the degree of dissociation across the
contact surface can be specified independently. However it is reasonable to assume that
if the fluid had been present in the two sections for a sufficiently long time period then

equilibrium values of degree of dissociation do exist. These values are given by '

V1+4e%/Te pfpg — 1
- 2 e%4/Te py [ py '

The velocity components across the contact surface are initially chosen to be zero and

Yi (1.2)

the energy term is given by the caloric equation of state (Eq. 2.33 or 2.98).

For a frozen flow, the shock speed M, is given by the following implicit relation [77]

33
o bt e D o
D 2q.M; "('7e"1) a; \v.+1 M,

where the shock Mach number M, is defined to be the shock speed divided by the

frozen speed of sound in the downstream section e. Thus if a shock of a given strength

is desired, this relation can be used to determine the overall pressure ratio and other

values can be evaluated therefrom.

[ |
nw n ne
C, Cs
L w : e R
o C,
l sw s se r

Figure 7.2: Cell division after a single adaptive pass.

The initial condition is generally specified on a coarse grid, and a direct integration
of the system of equations from this grid would degrade the subsequent solution. This is

because the newly created nodes between the nodes ¢ and d in Figure (7.1) would then
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have values assigned to them as given by linear interpolation. Hence the grid should
be pre-embedded prior to an execution of the integration procedure. The number of -
calls to the pre-embedding procedure would equal the maximum spatial level of the
cells desired. The pre-embedding procedure is explained here for a 2-D grid when a step
function input is involved. The pertinent spatial grid after one adaptive pass is shown
in Figure (7.2). For simplicity the left L and right R cells are shown as undivided,
but this is not a necessity. The adaptive procedure assigns values at the newly created
nodes ¢, s,e,n,w based upon the interpolated values from the nearby nodes and this
may not be consistent with the initial step function. The pre-embedding cycle follows
this, examines the newly created nodes and reassigns the values at these nodes. Since
the initial condition is assumed to be 1-D in nature, same conditions are applied for

nodes lying on a vertical grid line. The procedure is accomplished as follows:

1. Save the total number of cells N, prior to a spatial adaptive cycle.

2. Invoke the usual spatial adaptation procedure while not allowing grid fusion. This

increments the total number of cells to N,.

3. Examine all cell numbers between N, and N, in steps of 4 (since four cells form

a bigger unit). Suppose the cell under consideration in Figure (7.2) is Cy; then

(a) Find Supercell S of this cell by cell-to-node array.

(b) Locate all the nodes of cell S by the cell-to-node array, and locate the cells
R, L by the node-to-cell array and their nodes in a similar manner.

(c) If the state at nodes sw and se nodes is identical, then set states at all newly
created nodes of cell S equal to that of node sw;

otherwise, if the state at se node is identical to that of node r, then set the
states at nodes ¢, s, ¢,n equal to that of node r and the state of node w equal

to that of sw;

otherwise, if the state at sw node is identical to that of node /, then set the
states at nodes ¢, s,n, w equal to that of node [ and the state of node e equal

to that of se.

(d) Proceed to examine the next cell in the list (go to 3a).
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4. If the desired level of spatial resolution is not yet achieved, repeat the entire

process again (go to 1).

7.3 Initial Conditions for Moving Shocks

7.3.1 Frozen Flow

Consider a single shock propagating initially along a straight channel as shown in
the schematic diagram of Fig. (7.3). For a frozen flow the relaxation distance behind
the normal shock becomes infinitely large and station f can be regarded to be at the
same state as that of station s. The conditions across the moving shock with shock

Mach number M and ratio of specific heats « are given by [77]

_ 2y .
pi/pe = 7+1Mf r
_ P+Pi/?e
pifpe = 1+ Tp;/p.
ue = 0 (7.4)
2
u; = 7+1a,(Mf—-1/Mf)

where I' = (y — 1)/(y+ 1) and a? = vp./p..

Note that unlike the previous type of initial condition, there is a non-zero mass
influx at the inlet boundary which is responsible for the forward motion of the shock.
However, the two flow conditions should yield similar results if the shock Mach number
is the same and the region of interest is far away from the starting position of the contact

surface, t.e., the location of unruptured diaphragm.

Since for frozen flow the initial condition is a step function, the same pre-embedding

technique can be used as in the shock tube case.

174



a

Figure 7.3: Initial density variation for a relaxation behind a shock.

7.3.2 Lighthill Gas

In contrast to the frozen case, the initial conditions for a partially dispersed shock
involves a jump (station e to f), followed by a relaxation tail (station f to ¢) which
is characterized by a gradual adjustment to equilibrium. The overall change between

stations e and ¢ is given by the equilibrium shock relations [136] and after some algebra

piT; (1+Y;) 2(4+Y.,)( pe)
— ] = 14+ M 1-—
pele \1+Y, My 3 pi

can be written as

A+ Y)Ti+Yi0s = (4+Y)T.+ Y04+
4+Y, H
M} (=5 ‘)(1+m[ —%] (7.5)
pi
(1-Yp)e™ %/ = ﬁ—:Yf, k=i,e.

Here Y}, represents the mass fraction of dissociated atoms at station k and My represents

the frozen shock Mach number which is given by

u? 4+Y,
M2 = —L__ with = L. 7.6
4 'hpe/ Pe e 3 ( )
The O.D.E. for the mass fraction in the relaxation zone is
Y p -8 p ]
= ne — d/T - 2 A
L = el [(1 Y)e Ly (7.7)
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where w is the fluid velocity in a frame of reference attached to the frontal shock. The

integration is started from the initial frontal shock location (z = z; at t = 0) with

Y =Y; =Y,. The other quantities at station f are given by the frozen shock relations

between stations f and e, that is,

wf - M}’Y:Pe
Pe

+1
pr/pe = Je

24+ (ve - I)M}

-1
Ty/T, = 1+%2 M}(l—pﬁ/p?).

(7.8)

The usual integral conservation relations connecting state f and current value at any

place inside the relaxation zone are

pw = prwy = PeWe =

pwi+p = ppwi4ps pew?+p. =

(e+p)/p = (es+p1)/ps = (etpe)/pe =
These relations would imply the following for the relaxation zone
P = Cc/ w
p = Ch—-Cww

with the velocity in the stationary frame given by

B - VBT —4AD
w= 24

where
A = T4Y

B 2(4+Y)Cn/C.
D = 2(1+4Y) (Ce -Y04/2mz).

I

C.

Cm

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

Note that the second term in the last parenthesis is normalized by the reference heat of

formation u? and the corresponding dimensional term is Y R84/2riz. Hence all other

variables in Equation (7.7) can now be written in terms of Y and as such the equation

can be integrated. Once velocities w in the stationary shock frame are known, the

velocities u in the moving shock frame follow from

U = w,—w.
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A relaxation length, z;, is defined as the distance between the shock discontinuity at
f and where dissociation reaches 99% of the equilibrium value (i.e., 0.99Y;). Hence z;
can be used as a convenient measure of non-equilibrium between its zero (equilibrium)

and infinite (frozen) limits.

A different pre-embedding approach is needed in this case. When Equation (7.7)
is integrated to yield property variations a separate file is written for all state vector
components as function of distance z at all the step-sizes which are assumed to be
reasonably fine. When pre-embedding is desired for this case and allocation of state
vector at a node like s (Fig. 7.2) is under consideration, this file is scanned to locate
the appropriate z-locations within which this node lies. These locations are denoted by
5, Zi+1 in Figure (7.4). A linear interpolation is then used between these two locations

for determination of state vector at node s.

sw 4 8 Ti+1 8e

Figure 7.4: Allocation of state vector at s, based upon linear interpolation between z;

and z;4; of a previous integration procedure for an O.D.E..

7.4 Characteristic Analysis

The inviscid governing equations possess a set of real eigenvalues and a set of linearly
independent eigenvectors can be determined corresponding to each of these, as detailed
in Appendix A. The eigenvalues describe the characteristic directions along which the
variations of characteristic variables is known. These variables remain constant for

frozen flows and are termed as Riemann invariants.
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The sign of each eigenvalue determines the direction of propagation of characteris-
tic variables and has implications that pertain to physical boundary conditions. The
literature involving characteristic propagation for frozen flows is very rich; some of the
readily available sources of information on the subject are Courant and Friedrichs [30],
Friedrichs [53], Ferri [51], Meyer [90}, and Shapiro [118]. The application of the theory
to yield well-posed numerical boundary conditions is discussed by Chakravarthy [27].
Aspects of the general theory that apply to reacting flows are discused by Vincenti and
Kruger [136] and Sedney [116]. A literature search on relaxing flows did not reveal any
a source reference that treats the well-posedness of numerical boundary conditions in a

consistent manner so far as the propagation along characteristics is concerned.

A feature of non-equilibrium flows, that had stirred controversy in earlier studies
during the fifties, pertains to the proper choice of sound speed, especially in the limiting
case of nearly equilibrium flows. A proper choice of characteristic directions is crucial to
a successful numerical calculation. The theory of characteristics shows that the proper
directions correspond to a frozen speed of sound and the flow velocity. In fact there
is no apparent reason for not using the local frozen characteristics in a calculation of
equilibrium flow [116]. Another aspect pertains to the multiplicity of the characteris-
tic eigenvalues, due to the similar nature of species equations and hence a number of

characteristic directions, each with a different behavior, must be treated.

Since the governing equations are quasi-linear, they can be written as

ou ou aUu
—5t—+FU§;+GU3y— = W. (7.15)

Note that this linearization does not represent an approximation if the state vectors are
written in terms of primitive variables and this system is equivalent to Equations (2.48).
Denoting the left eigenvector matrix of the first flux Jacobian by L, the governing

equations can be further written as

au aUu au
L—aT + ALE; + LGU—é; = LW (7.16)

where A is a diagonal matrix with entries equal to the eigenvalues of Fyy. By definition,

a left eigenvector satisfies the following identity

A = LFyL7L. ' (7.17)
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The diagonal entries of this matrix, as shown in Appendix A, are given by

) diagA = [u—ay,u+ay,u, -, (7.18)
The order of the eigenvalues need not be in the above form, but it is consistent with the
derivation presented in Appendix A. Note that no approximation has been introduced
into Equations (7.16) and as such the system represents coupled equations even when
variations along the y-direction are negligible. However, if the left eigenvector is assumed
to be locally frozen (constant in both space and time), the system becomes an uncoupled
set
aQ 3Q 48R

5t TA% T oy

if the variations along y-direction can be neglected. Here the new variables are given by

=z (7.19)

Q = LU, R = LGyU = LG, Z = LW. (7.20)

Although L changes with U, the changes in L have been regarded as of a higher order
compared to those in the state vector. This is analogous to curve fitting in which linear
segments are used and local slope of individual segments are regarded constant while

the intercept is allowed to vary.

Consider a coordinate system (s,n) along and normal to the streamlines. This
coordinate system is generally known as the natural coordinate system [77,90]. Also
assume that the streamlines are locally straight (i.e., the infinite local radius of curva-
ture). The velocity components in this system are (V,0) and Equation (7.19) under the

special assumptions becomes

9g; dg; dp _ .
at +A‘as+6¢san = 2, ’—1,...,N¢. (7.21)

Here lower case letters are used to denote the components of the corresponding vectors.
Note that the entry in the third row and column of L is Lz = 1 by construction (see
Appendix A) and that with the exception of the third row all the other equations have
been decoupled. However, in the absence of curvature effects, the normal momentum

equation simply reduces to !
a
l frrecd o.
an
1See, for example, the third row of Eq. 2.48 in which v is replaced by 0 when writting in a locally

rotated natural coordinate system.

(7.22)
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The vanishing of normal pressure gradient does not constitute an additional assumption,
but is a consequence of locally straight streamlines. Hence the decoupled set of equations

is now a system of first order quasi-linear partial differential equations, i.e.,

dgi 9¢i _ .
5 +’\'83 = z, i=1,...,N.. (7.23)

This has a characteristic solution, which is given by [26]

dt _ ds _ dg

b vt i=1,...,N.. (7.24)
Note that for frozen flow (z; = 0) the characteristic variables ¢; are constants along
the characteristic directions ds = Adt. Although the characteristic variables ¢; for
the relaxing flows in the simplified model of Equations (7.23) are not constants, their
behavior along characteristic directions is known from Equation (7.24). As can be
noted from this equations, these directions are along particle paths. Consider an exit
boundary location P, as depicted in Figure (7.5), adjacent to two computational cells.
The characteristic direction in this figure is regarded as positive, A; = u; in which case
the information propagates along a straight line through point P and in the indicated
direction. Also shown in the figure is the space-time grid. All values are assumed known
at time tp and it remains to determine the values after a time-step At at node N. Using
the eigenvalue, the slope of the path for the corresponding characteristic variable can

be determined. The distance As is given by Equation (7.24) as
As = \NAL (7.25)

which determines an interior location I and hence interpolated values at this point can
be determined. The characteristic variable ¢; at node N is then the interpolated value

at location I plus the variation as determined by Equation (7.24), vis-d-vis
gN = qr+ z1At. (7.26)

The previous two results become more accurate as the step-sizes become smaller. The
point I lies within one of the two cells adjacent to node P if the CFL constraint for
time-steps is satisfied. A similar procedure applies for all other characteristic variables.

Once all of the components of Q are determined at node N, the state vector value can
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Figure 7.5: Characteristic propagation at an exit boundary along a streamline.

be evaluated by the inverse relation

U= L. (7.27)

In what follows this characteristic formulation is applied at inlet and exit boundaries of

the computational domain.

7.5 Boundary Conditions

7.5.1 Free Slip Rigid Walls

For inviscid flow the appropriate physical condition on a solid surface is that there

be no flow normal to the surface, or equivalently that the flow direction be tangential
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to the wall. In mathematical form this condition becomes

V:da=0 (7.28)

where fi is a unit normal vector pointing outward from the surface. At locations where
slope discontinuities exist, such as the location along which two flat surfaces intersect,
a unique normal direction does not exist and hence this condition cannot be applied

rigorously. Consider four such nodes a,b,¢,d in Figure (7.6) with the surrounding cells

Figure 7.6: Configuration with slope discontinuities.

for nodes a and d. For numerical purposes an average slope may be assumed at nodes a
and ¢ whereas nodes b and d may be treated as “interior” nodes since there are four cells
surrounding these nodes for small intersecting angles. The latter of these treatments
may be questionable if there is not enough resolution surrounding the nodes or if the
intersection angle is too large. However, in the current algorithm spatial resolution is
expected by virtue of the adaptive technique; hence this treatment may be reasonable

for small intersecting angles. Note that free slip rigid wall conditions on the nodes just
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upstream of the trailing edge are still applied and hence tangency conditions hold just
upstream of the trailing edge. Similarly these conditions are satisfied just downstream

of the leading edge.

The application of characteristic theory at a solid wall becomes complicated since
the solid wall itself is along a characteristic direction, i.e., a streamline. Therefore
an alternative approach is presented here. This treatment is similar to the predictor-

corrector approach described by Hall and Salas [61] which involves an image principle.

Consider a node ¢, Figure (7.7), on a solid wall which makes an angle o with the

z-axis. The application of the integration scheme to cells A and/or B yields the change

Figure 7.7: Images of cells adjacent to a wall.

at this node in a certain integration pass as
6U; = 6U;a + 8U;pB. (7.29)

In fact there are four possibilities for the change at node 1, when the integration involves
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temporal adaptation. After a certain integration pass (among a total of Pr as discussed
in Chapter 6) which involves the integration over cells with a given temporal level, one

of the following cases may exist:

both cells A and B belong to the same temporal level and 6U; = §U;4 + 6U;p

neither cell A nor cell B exists at the same temporal level and 6U; =0

only cell A belongs to the temporal level and §U; = 6U;4

only cell B belongs to the temporal level and §U; = 6U;p .

If the boundary conditions are updated at all boundary points after each integration
pass, there is no need to discriminate between these individual cases. The boundary
conditions are applied at all boundary nodes belonging to cells on a given temporal
level, even for nodes which fall in the second category as listed above. This is done
in favor of retaining simplistic logic and is not computational expensive since the total
number of boundary points is much smaller compared to the total number of nodes in the
domain. Further note that if the boundary conditions are applied after each time-stride
* (instead of after each integration pass) the logic would become very complicated and
such treatment may in fact introduce errors which hinders the proper flow of information
during intermediate passes. The predicted change at node 1 is taken to be that from cells
A, B and their corresponding mirror images A’, B’ which contribute the same values,
i.e.,

SUP = 28U;. (7.30)

If these values are not corrected, then the wall surface would be a line of symmetry for
all variables, including of course the normal component of the velocity. The tangential

component of velocity is given by
Vi = ucosa+vsina (7.31)

and only this is used to reassign new velocity components along the coordinate direc-
tions, t.e.,

u = Vicosa, v = Visina. (7.32)
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Thus the corrected values for the changes are

-

§(pu)i = (pVi)’cosa —(pu)] component 2
§(pv); = (pVi)’sina—(pv)] component 3 (7.33)
6U¢ = §U? otherwise
where
(pV2)' = [(pu)] + 6 (pu)f] cosa + [(pv)} + & (pv)f] sina. (7.34)

Dannenhoffer [33] has demonstrated that the doubling of corrections predicted by the
standard distribution formulae and a subsequent correction by setting the normal mo-
mentum equal to zero yields a correct propagation of changes when the solid wall is
aligned with z-axis. Usab [133] has conjectured that this form follows from the fact
that the Ni scheme implies a mathematical signal propagation phenomenon from the

interior grid points that is analogous to the theory of characteristics.

Several observations are in order here. First note that no extrapolation is involved
in the application of solid wall boundary condition. The free slip boundary happens to
act as if it was non-catalytic, i.e., 3Y/dn = 0, where n is a normal direction to the solid
wall. The normal gradients of all dependent variable components, except for velocity
vector, are zero, because the predicted and corrected values are the same and these
assume that the wall is a symmetry line. The temperature condition at the surface
similarly behaves as if it was adiabatic or non-conducting i.e., the condition d¢/dn =0

implies that the caloric equation of state becomes

PCpg% = g—g
for a mixture makeup of components with constant specific heats. Furthermore the
thermal equation of state implies that
dp

oT
3 = PG~ Gl

These conditions together imply dp/dn = 8T /3n = 0. In fact these conditions hold

even when the specific heats are general functions of temperature.
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7.5.2 Inflow Boundaries

For supersonic flow all eigenvalues are positive and all the characteristics propagate
from the free-stream into the interior of the domain. Thus all characteristic variables
¢; can be specified as function of time and distance along the boundary. Alternatively
the components of the state vector can be assigned arbitrarily, since U = L~1Q, as

functions of distance along the boundary and time.

For subsonic inflow case, the first diagonal element of A is negative. This means that
all except one characteristic can be specified. Thus for a given choice of state variables
U = U(s,t), where s is the distance along the boundary, a left eigenvector matrix L can
be constructed. The specified characteristics are ¢s,¢s,...,qn, as explained below. As
indicated in Figure (7.8) the variable ¢I¥ is interpolated from the interior domain based
upon L at the inlet. The characteristic direction implies that the position I from where

information at the inlet node N be gathered is given by
- As = (V —ay)At. (7.35)

This position lies along a streamline and at a distance As from the boundary node B.
Note that again if the CFL constraint is satisfied the position I would lie within one of
the two cells adjacent to node B. Further note that the characteristic direction is not
along the segment I-N (except for frozen flow) but that the variation of characteristic
¢1 is known along this segment. Thus the characteristic variable corresponding to an
updated node N is

q' = qf +2]At (7.36)

where interpolated values at location I are computed from the corner node values of
the cell in which this location is determined, i.e., with known values of U at previous

time-level the following values can be calculated

Ne Ne
q = > LU, 4 =y L§w]. (7.37)
i=1 i=1

Note that the locally frozen (constant) values of the eigenvector are based upon the
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As

Figure 7.8: Characteristic subsonic inflow boundary condition.

values at node B. The other characteristic variables are given by

N,
s = Y LEUE, i=2,...,N.. (7.38)
j=1
Now that the vector Q¥ = (¢VV,¢s,...,qn,) is determined the state vector UV can be

calculated from the inverse relation

U¥ = (L7YH)BQN. (7.39)
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7.5.3 Outflow Boundaries

For supersonic outflow all eigenvalues are positive which implies that all information
must propagate from the interior to the exit plane and the conditions outside the exit
plane have no influence on the interior flow. This means that, unlike the solid wall
boundary condition, there is no need to consider “ghost” cells from the exterior domain;
their contribution is zero and the change at the interface need not be multiplied by a
factor of two. The characteristic for some node B (at time ¢ and node N at time t+ At)
is

QY = LB(UB +6UB) (7.40)
where 6UPB is the contribution at node B for all cells adjacent to it as predicted by
the Ni scheme. Premultiplication by the inverse eigenvector matrix yields the correct
change at node B as the value predicted by the Ni scheme. Hence no special treatment

is needed for supersonic exit boundary.

For subsonic outflow the eigenvalue (V — ay) is negative and all others are positive.
Hence only one physical parameter can be prescribed at this boundary. A typical choice
for this parameter is the back pressure p;(s,t) that controls the flow at exit. Therefore a
consistent physical condition can be formulated if the first characteristic is based upon
the back pressure and the current state values (minus one) at the exit node and the
rest of the characteristics from the interior. Thus the energy term component €2 of the
state vector (and temperature) can be recomputed by using the back pressure p, and

other known values at the exit node B. The first characteristic is computed as

N,
a= Y LBUP+ L. (7.41)
1
it4

The other characteristics originate from the interior domain and, corresponding to up-

dated node N, are given by
N = ¢/ +2At, i=2,...,N, (7.42)
where the location I is given by the distance

As = —(V +ay)At ' (7.43)
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along the streamline passing through node B for = 2 and by the distance

As = ~VAt (7.44)

along that streamline for i = 3,..., N,. The expressions for ¢/ and z] are given by
Equations (7.37) with appropriately interpolated values for location I. Once the vector
QN = (ql,qiv yoos ,qﬁ.) is determined the state vector UM can be calculated from the

inverse relation as given by Equation (7.38).
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Chapter 8

Results

The results in this chapter are divided into three sections. The first section contains
one-dimensional results for relaxing shock tubes and steady state streamtube flows.
The blast waves for two-dimensional flows are included in the second section. The
considered geometries were a circular arc on the lower wall of a cascade configuration
and a 90 degree bend duct. The medium is either a perfect gas or a Lighthill dissociating
gas and a single shock propagates along the channel. The third section pertains to
scramjet inlets. Examples include flow of a perfect gas through a two-strut inlet and a
premixed hydrogen combustion model for the same geometry. Another simpler geometry
is considered in which the inflow mass flow rate is varied sinusoidally and its influence

_ is examined on the flow variables.

8.1 One Spatial Dimension

Three examples have been considered to illustrate the unsteady adaptive technique.

These are

1. a converging-diverging streamtube with a single dissociating gas,
2. a shock-tube with a single dissociating gas,

3. a diverging channel with multiple reactions.

For all the examples the artificial viscosity coefficient is restricted to the interval

o € [0.01,0.2] and the reacting flow cases have been carried out by the source implicit
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(¢ = 0) scheme. The CFL number for all steady state examples is 0.9 whereas that
for the shock-tube cases is 0.7. The constants used to define the temporal resolution
are €g = 0.01 and €; = 0.05 in the shock tube cases. Except for the diverging channel
case all calculations were performed in single precision. For steady state applications
the convergence criterion was based upon the root mean square (rms) error of the
momentum term (except for the last case) and convergence was assumed when this

error became less than 10~°.

8.1.1 Converging-Diverging Streamtube

Consider first a Lighthill ideal dissociating gas, Z3 = 2Z, which is assumed to be

flowing through a converging-diverging streamtube with an area distribution of the form
A=1+0.52 (8.1)

here z is a non-dimensional measure of distance from the throat in units of the throat

height and the area A is normalized by the throat area.

An initial verification of the code consisted of shock free low examples and compar-
ison of the results with Bray [20] for several values of the reaction parameter, ®, with a
wide range of values between zero for frozen flow, to infinity for equilibrium flow. The

results are for z € [-2, 5] and the dimensionless temperature and pressure of

T: pitz -6
= =0. —_— =25 0", 8.
52 0.1, Rpala x1 (8.2)

The subscript ¢ indicates the inlet which is very nearly the reservoir condition. The
inlet values for temperature and pressure correspond to 5950 K, 115 atm for oxygen
and 11300 K, 215 atm for nitrogen. The accompanying degree of dissociation Y; and

dimensionless density for equilibrium at inlet are
Y: =0.69 , ff- = 2.9561 x 1075, (8.3)
d

Compared to the definition of reaction parameter, @, as utilized here, Bray defined his

reaction parameter, @, in a slightly different manner. The conversion between the two
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Figure 8.1: Degree of dissociation versus area ratio for several values of rate
parameter ®, symbols represent Bray’s calculations, Reference [20].
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Figure 8.2: Temperature versus area ratio for several values of rate parameter ®, symbols

represent Bray’s calculations, Reference [20].

192



reaction parameters is as follows:

® _pa [Ti(1+Y5)
— D — — st D) . 8.
- p.-‘/ = o (8.4)

Figures (8.1) and (8.2) show steady-state results obtained with local time-stepping
with a CFL number of 0.9 and a uniform grid. Specifically the degree of dissociation
and temperatt;re distributions appear on a plot folded about the minimum area section
such that the upper curves correspond to the subsonic upstream region. The symbols
in these Figures indicate Bray’s calculations whereas the solid curves are the result
of the present scheme. The criterion for temporal resolution, Equation (6.5), was not
used in this case. Except for the frozen case, all curves fall rapidly in the vicinity
of the throat. In the equilibrium solution (& — o0), the mass fraction continues to
drop in the supersonic flow and vanishes as the area ratio approaches infinity. It is.
also observed from Figure (8.1) that the solutions with finite dissociation rates are
initially indistinguishable from the equilibrium curve, in the upstream part of the nozzle.
The deviations begin near the minimum section and once these deviations from the
local equilibrium conditions become appreciable the degree of dissociation approaches
a constant value. In the corresponding equilibrium case the temperature continues to
fall due to the divergence of the streamtube which triggers recombination of atoms into
molecules. However, recombination becomes essentially frozen in the supersonic regions
for intermediate ® values. The temperature profiles indicate that freezing causes a very
large reduction in temperature compared to the equilibrium solution. This is because
the chemical energy associated with dissociation is not available for intermediate ®
values due to the higher degree of dissociation. The departure from equilibrium also

reduces the flow velocity and for propulsive nozzles the freezing phenomenon results in
a loss of thrust.

Figure (8.3) shows another steady flow through the same parabolic nozzle but for a
curtailed domain z € [~2,2]. The reaction parameter is & = 10* and a back pressure
ratio py/p; = 0.92 is specified, so that a normal shock would be stationed at z = 0.5 for
a frozen flow situation. Two levels of spatial embedding and local time-stepping were

used for the adapted case. Temporal resolution was only based upon the CFL restric-
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Figure 8.3: Density variation of flow through a converging-diverging streamtube with
& = 10* for coarse, adapted and fine grids.
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Figure 8.4: Degree of dissociation versus z-location for converging-diverging streamtube
with ® = 10 for coarse and adapted grid and the spatial grid variation.
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Figure 8.5: Density variation through a converging-diverging streamtube for fine and
adapted grids, ® = 10%.
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Figure 8.6: Variation of degree of dissociation through a converging-diverging stream-
tube for fine and adapted grids, ® = 10%.
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tion. Spatial resolution was based upon first differences of density with the first divide
threshold value of R4; = 1.2 and the second threshold value Ry was calculated to be the
limit for which atmost 20% (Cq = 0.2) of the cells would be divided, (see Section 5.3.3
for more details). The results are shown corresponding to coarse, embedded and fine
grids, with relative computing times 10.1 (fine/coarse) and 1.4 (adapted/coarse). The
vertical scale corresponds to the coarse grid and the other two curves are displaced by
the indicated offset. Each symbol in the figure corresponds to a computational node
in the domain and the placement of these symbols indicates the type of grid utilized.
For comparative purposes the density distribution for the corresponding frozen flow is
shown as a curve without symbols along with the fine grid relaxing solution. Shown
in Figure (8.4) is the final grid and degree of dissociation for both adapted and coarse
grid cases, and indicates that the coarse grid solution predicts an appreciably different

degree of dissociation aft of the normal shock.

The embedded and fine grid solutions agree very well, as is evident in Figures (8.5)
and (8.6), whereas the shock location is displaced and spread out for the coarse grid.
These figures also indicate that the normal shock occurs before the freezing phenomenon
has been completed; however the flow also is not in equilibrium ahead of the shock,
as can be read from Figure (8.1). The normal shock increases the temperature and
decreases the velocity which allows further dissociation. Unlike the freezing phenomenon
in the supersonic region, the flow after the shock gradually approaches the corresponding
equilibrium state as can be seen from the relaxation behind the shock. Due to the
divergence of area the velocity continues to decrease and the final equilibrium state
becomes very nearly equal to that at the inlet. In principle, the two equilibrium values
need not be the same due to the stagnation pressure loss across the normal shock.
However, in this particular case the shock is very close to the minimum section and
the stagnation pressure loss is small. Hence the corresponding equilibrium degree of
dissociation at the exit is slightly less compared to the value at inlet ax;d the flow in the

trailing part of the nozzle is essentially in equilibrium.
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Figure 8.7: Non-equilibrium shock tube flow for ® = 10* on coarse, adapted and fine
grids at t = 0.6, symbols show computational nodes.
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Figure 8.8: Overlay of fine and adapted grid solutions at t = 0.6 for ® = 10%, solid
curve is fine solution and symbols indicate computational nodes for adapted case.

197



1.1 ADAPTED GRID SOLUTION

0.9 1

p 0.7

EXACT SOLUTION

0.5 1
FINE GRID SOLUTION
0.3 1
0.1 v v T T T -
-2.0 -1.5 -1.0 -0.5 0.0 0.6 1.0 15 2.0

Figure 8.9: Frozen shock tube solution for adapted and fine grids alongwith the exact
solution at ¢ = 0.6.

=0 104 108

Coarse 1.00 1.21 1.89
Adapted 6.54 8.77 14.40
Fine 49.95 65.38 110.81

Table 8.1: Comparison of CPU time for shock tube calculations.

198 <



Il

MR
M

-08 00

Figure 8.10: Evolution of spatial grid for frozen shock tube flow.
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Figure 8.11: Evolving temporal grid for frozen shock tube near ¢ = 0 and ¢ = 0.2:
(a) tsase = 0, At = 2.9075 x 1073, (b) t}4,¢ = 0.2079, At = 2.8787 x 10-3.
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8.1.2 Constant Area Shock Tube

A second example was carried out for unsteady shock tube flow for both frozen
and reacting cases, (® = 0,10%). The initial conditions across the contact surface were
pe/pi = 0.2, T,/T; = 1.0 where stations ,e indicate inlet, exit of the computational
domain which are respectively the high, low pressure sides. For the frozen case the
temporal resolution was only based upon the CFL constraint (I' = 0.7) whereas this
constraint and resolution based upon mass fraction of dissociated atoms was used for the
reacting case. Three levels of both spatial and temporal adaptations were introduced
and the final results shown correspond to ¢t = 0.6. Figure (8.7) indicates the density
variations for ® = 10* at the final time for coarse, adapted and fine grids and the curves
are offseted for clarity. The symbols on these figures indicate the computational nodes
in the domain. We again note that the coarse grid solutions are poorer than either the
fine or adapted grid solutions. The non-uniform distribution between the frontal shock
and the contact surface as well as that between the contact surface and the trailing edge
of the expansion fan indicate relaxing regions within which dissociation is taking place.
The overlay of the adapted and fine grid solutions at t = 0.6 for ® = 10* is shown in
‘Figure (8.8). The comparison is reasonably good except that the shock speed for the
adapted case is overpredicted by about 3%. A similar overlay at ¢ = 0.6 for the frozen
case is shown in Figure (8.9) where the adapted grid overpredicts the shock speed by
about 2% compared to the exact solution. Since the shock speed predicted by the two-
dimensional spatio-temporal algorithm does not exhibit this behavior, it is conjectured
that the error in shock speed in the current one-dimensional algorithm is due to the
non-uniformity parameter €; pre-multiplying the flux change A F;c in Equation (3.35).
Note that, although the inclusion of these terms yields higher order accuracy, they may
in fact adversely affect the solution near strong shocks due to their non-conservative

nature.

Figure (8.10) shows the progression of grids as time increases for the frozen case,
whereas Figure (8.11) shows the evolving temporal grid near time levels, ¢ = 0 and
t = 0.2 for this case. The spatial grid clearly tracks the expansion fan, contact surface

and the shock wave. The time-grid shows eight smallest time-steps in each time-stride
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and that the separation between consecutive isotemporal surfaces in fact is not constant.
The temporal grid also indicates cell locations with finer temporal resolution which
correspond to relatively coarser spatial resolution and vice versa. Although the concept
is straight-forward, the time-grids become very complicated for two spatial dimensions

and will not be shown henceforth.

Figure (8.12) indicates the evolution of density on the adapted grid for the frozen
flow and the exact solution. The evolution of density and atom mass fraction for the
dissociating case is shown in Figures (8.13) and (8.14). Although the results corre-
sponding to ® = 10% are not shown here, the CPU time comparisons for & = 0,104, 10°
are indicated in Table (8.1) to show the effectiveness of the procedure compared to the
global approach. The advantage of the current spatio-temporal algorithm is clearly seen

to increase as the stiffness level increases.

For the dissociating gas the initial (¢ = 0) degree of dissociation is regarded as
constant. The corresponding equilibrium degree of dissociation for x > 0 at t = 0
is Y = 0.90. As the contact surface is allowed to move the flow ahead of the shock
stays quiescent and hence the dissociation level is not changed. However, the flow just
after the shock finds itself to be deviated from the corresponding equilibrium conditions
and starts relaxing behind it. As the residence time behind the shock increases, the
relaxation region grows in between the shock and the contact surface and the degree of
dissociation is seen to increase gradually behind the shock. At ¢ = 0.6 the maximum
degree of dissociation is observed to be about Y = 0.8; there is no reason for the atom
mass fraction to reach the value Y = 0.9, since the conditions just after the shock
for t > O have changed. The dissociation level through the expansion fan gradually
decreases from the leading edge to the trailing edge and continues decreasing at the
same rate in between the trailing edge and contact surface. Hence the trailing edge of
the expansion fan cannot be easily identified by examining the degree of dissociation

plots. The largest change in the degree of dissociation is experienced across the contact

surface.
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Figure 8.12: Evolution of density for frozen shock tube flow on adapted grids, solid
curves indicate exact solution.
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Figure 8.13: Evolution of density for reacting shock tube flow on adaptéd grids, ® = 104,
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Figure 8.14: Evolution of degree of dissociation for shock tube flow on adapted
grids, ® = 104,
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Figure 8.15: Temperature profile for diverging channel, both solid lines indicate current
calculations and triangles indicate computational nodes in the current scheme, circles
represent computations from Reference [42].
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8.1.3 Diverging Streamtube
As a final example for flow in one spatial dimension, the Rogers and Chinitz model

(Section 2.7) for the streamtube with area distribution
2
A= [1 + sin(’—'f)] (8.5)

was considered. The area is again nornmalized by the throat (inlet) area. The reference

or inlet conditions were
T, =1900K, p,=81000Pa, M=14, L., =1m, ¢=03 (8.6)

where ¢ is the equivalence ratio. A schematic of the rapid expansion diffuser is shown in
Figure (8.15). The same case was calculated by Drummond, Rogers and Hussaini [42].
The inlet conditions to this streamtube imply high concentration gradients near the in-
flow boundary and hence provide a formidable test for the algorithm. The total number
of global nodes was chosen to be 51 with two levels of spatial and ten levels of temporal
embedding and the calculations were carried out to steady state. The convergence cri-
terion was based upon an rms error of mass fraction of hydrogen and the calculations
were continued until the error was reduced by eight orders of magnitude. Temporal res-
olution was based upon limiting the changes in the mass fraction of hydroxyl, according
to Equation (6.5). This species was chosen because it is involved in both the reactions
and its production rate due to the first reaction can be very high. The calculations took
4259 seconds on a MicroVAX-IL Reference [42] used a source implicit scheme with 101
grid points and the calculations took 2524 seconds to converge on a CYBER-175. Note
that the comparative fine grid solution of the current case had 201 grid points and was
estimated to take three orders of magnitude longer on the MicroVAX-II. Assuming a
conservative estimate of 20 for the speed ratio between the CYBER and MicroVAX,
the present results are obtained about 50 times faster for the same spatial grid reso-
lution when compared to that of Reference [42]. Figure (8.15) shows the temperature
distribution as solid lines for the current algorithm. The circles indicate the calcula-
tions of Drummond et. al. and the triangles indicate the computational grid utilized
by the current approach. Other final results in terms of distributions of mass fractions

of hydrogen, hydroxyl and steam (H30) are shown in Figures (8.16) and (8.17). The
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symbols in these figures indicate the calculations of Reference [42] whereas the solid
curves indicate the present calculations. These results are in fair agreement with those

of Reference [42] and the differences are less than 3%.

8.2 Blast Waves in Two Spatial Dimensions

Numerical experiments were carried out for two channel geometries: (1) a circular
arc convex surface on the lower surface of a cascade configuration, and (2) a 90 degree
bend duct. In each case a single shock propagates along the channel. The medium was

either a perfect gas or a non-equilibrium Lighthill gas.

For all the examples the artificial viscosity coefficient is restricted to the interval
o € [0.05,0.5] and the dissociating flow cases have been carried out by the source

implicit (¢ = 0) scheme. The CFL number for all examples is 0.7. The constants used

to define the temporal resolution are ¢g = 0.01 and ¢; = 0.05.

-8.2.1 Frozen Bump Case

The first example is for a frozen medium (y = 1.4) and a shock moving at My = 2
past a 15% circular arc bump as shown in Figures (8.18-8.24) corresponding to the
time periods of t = 0,0.2,0.4,0.8,1.0,1.2 respectively. The channel dimensions are
normalized by the chord length and is spanned by z € [~1,2], y € [0,0.8] as shown
in Figure (8.24). The shock is initially (¢ = 0) at z = —0.5. The figures show both
density contours and the corresponding spatial grids at the indicated time intervals. It
is clear that the evolving spatial grid tracks the salient features. Three levels of spatial
embedding beyond the base grid, and four levels of temporal strides were used. Note

that the maximum eigenvalue (u + @) varies significantly across a moving shock, t.e.,

(u+a)e _ VPiPe/PePi

(u+a); T M;+1
This value for M, = 2 is 0.3923 and hence it is appropriate to use one additional level

(8.7)

for temporal adaptation compared to that for the spatial adaptation for this frozen flow
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Figure 8.16: Hydrogen mass fraction profile for diverging channel, symbols represent
computations from Reference [42].

0.075 1

0.060 -

Y 0.045 1

0.018

0.000 + v ' T T T . -
0.00 0.28 0.50 0.75 1.00 1.28 1.50 1.78 2.00

Figure 8.17: Hydroxyl and steam mass fraction profiles for diverging channel, symbola
represent computations from Reference [42).
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Figure 8.24: Grid and density contours at ¢t = 1.2 for frozen flow over 15 % circular
arc bump, My = 2.
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Figure 8.25: Pressure contours at t = 0.65 for frozen flow over 15 % circular arc bump,
M, = 2, (a) current calculation, (b) Yang et.al. [144].
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Figure 8.26: Comparison of pressure distribution on lower channel wall for frozen flow
over 15 % circular arc, symbols represent Yang’s calculations, Reference [144].
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Figure 8.27: Comparison of pressure distribution at y = 0.5 for frozen flow over 15 %
circular arc, symbols represent Yang’s calculations, Reference [144].
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example. The base grid consisted of 16 X 60 cells; hence the corresponding globally fine
spatial grid would have 4% as many cells. Four levels of temporal strides implies that
there are 24 smallest time-steps in each time-stride. Hence the globally fine grid in both
space and time is expected to consume 512 times more CPU time than the globally

coarse grid if temporal adaptation is not used in either case.

The grid is uniformly pre-embedded by six cells at ¢ = 0 on both sides of the shock
as shown in Figure (8.18). The unnecessarily fine region generated by pre-embedding
to the left of the initial shock reverts back to the coarse grid as soon as the usual spatial
adaptation process is turned on, as is evident in Figure (8.19) by the grid pattern at
t = 0.2. Density was used as the refinement criterion with R4 = 1.2 and Cy, = 0.2
(see Section 5.3.3). Spatial adaptation was performed after each time-stride unit and
the spatially adapted grid was indiscriminately extended by two additional cells on each

side.

At about t = 0.2 the shock reaches the leading edge of the bump and soon after a
compression wave ensues from the bump which propagates upstream. The compression
region strengthens and develops into a shock wave which propagates against the flow
stream. The Mach number in the inlet region following the initial shock is M; = 0.96
or in terms of velocity u; = 1.48. The velocity of the lower leg of the shock moving
against the stream is (from the density contours) u = —0.36, or M = 1.20 in a frame of

reference attached to the lower leg and the inlet sound speed.

At t = 0.4, Figure (8.20), the frontal shock has traversed about 50% of the bump.
The shock wave ensuing from the bump itself has interacted with the frontal shock to
form a lambda shock structure. The slip line emanating from the triple point is apparent
both from the density contours and the embedded grids. It is also observed that the

triple point moves vertically upwards as the frontal shock moves downstream.

As shown in Figure (8.20), at ¢ = 0.6 the lower leg of the frontal shock is about
to leave the bump. The triple point continues to move upward primarily due to the
transverse motion of the upstream facing shock. The slip line does weaken due to the

interaction with the expansion emanating from the rearward face of the cascade, which
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also has the effect of distorting the triple point itself. At a still later time the reverse
moving shock reaches the top wall and its reflection further degrades the triple point.
Eventually the slip line decays due to the expansion from the lower wall and the influence

of the reflected shock.

Corresponding to t = 0.8, Figure (8.22) shows the frontal shock downstream of
the bump surface, and the rearward facing shock developing a strong reflection. Still
another strong shock has developed at the trailing edge of the bump which interacts

with the lower part of the frontal shock.

Figure (8.23) shows the situation at ¢ = 1.0. The frontal shock has divorced itself
from the wall interactions of the channel. The reflected shock from the upper surface

continues to get stronger. The shock at the trailing edge has also begun to move

upstream.

Figure (8.24) shows the situation at ¢ = 1.2 after the frontal shock has left the
computational domain. Non-reflective boundary condition has been applied at the exit.
The reflected bow shock of the upstream facing front and the shock which originated

from the trailing edge are now strengthening and moving upstream.

A similar frozen case has been studied by Yang et. al. [144]. Figure (8.25) compares
their pressure contours for a globally fine grid at a time when the lower leg of the frontal
shock is just at the bump trailing edge. This corresponds to ¢ = 0.65 for the present
case. Figures (8.26) and (8.27) indicate comparisons on the lower channel wall and at
y = 0.5, the symbols represent Yang’s calculations and the data has been interpolated

from Figure (8.25). The agreement between the two solutions is quite reasonable.

Figure (8.28) shows the density distributions along the lower channel wall at various
time-stations. The vertical scale corresponds to the initial condition ¢ = 0 and all other
curves are displaced by a vertical offset of 0.8. These curves are also indicative of the

chronicle which has already been explained.
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Figure 8.28: Density profiles at the lower channel wall for frozen flow over 15 % circular
arc, M, = 2.

12.5 4

10.0 1

5.0 1

2.5 1

0.0 v v v '

Figure 8.29: Density profiles at the lower channel wall for dissociating flow over 15 %
circular arc, M, = 2.
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8.2.2 Reacting Bump Case
A aecé‘nd example uses a Lighthill dissociating gas flowing over the same 15% circular

arc bump. The constants for the Lighthill model for oxygen are
n=0, 6p=>59500K, pp=150x 10%kg/m>. (8.8)

Temperature and density at the inlet have been chosen so as to yield 40% dissociated
oxygen atoms under equilibrium conditions. The conditions at inlet and exit are shown
in Table (8.2). This corresponds to a shock moving through the channel at M; = 2.
The exit conditions are also the reference values for both the frozen and reacting cases.
Note that the degree of dissociation at the exit corresponds to 4 = 1.417 and hence
a comparison with the previous frozen case can be made. Although the shock Mach
number is the same in the two cases, the temperature, density and pressure ratios are
very different. These ratios are also shown in Table (8.2). A choice of reaction parameter |

® = 10* implies the relaxation length to be z; = 0.273 times chord length.

The initial distributions of density and atom mass-fraction is apparent in Fig-
- ures (8.29) and (8.30) which correspond to t = O curves. The relaxation following
the leading shock is clearly evident in the initial field. As shown in Figure (8.31) the
pre-embedded grid at t = O spans a larger domain due to the gradients in the relaxation
zone trailing the frontal shock. The base grid is again composed of 16 x 60 cells with
allowance for three spatial refinements and advancement by five temporal stages. Tem-
poral resolution was based upon mass fraction of dissociated atoms. Spatial adaptation
was performed after each time-stride unit and the spatially adapted grid was extended
by two cells on each side. The refinement parameter was based on density and mass

fraction of atoms with R4y = 1.2 and Cy, = 0.2.

Figure (8.32) shows the density contours and the associated spatial grid at ¢t = 0.6
[compare with Fig. 8.21 for frozen case]. The embedded grid is again seen to be capturing
the salient features of the flow field. The motivation for showing spatial grids along
with line contours has been to demonstrate the grid tracking capability for all necessary

features without the introduction of spurious oscillations. Since this objective has been
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Figure 8.30: Atom mass fraction distributions at the lower channel wall for 15 % circular
arc, M, = 2.

| T,K pkg/m® Y
5000 3.820 0.400
4125 1.004 0.247

inlet, ();
exit, ().

gas |Ti/Tc pi/Pe  Pi/Pe
1.212 3.803 5.174
1.688 2.667 4.500

reacting

frozen

Table 8.2: Initial values for circular arc bump case.
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Figure 8.31: Grid and density contours at ¢t = 0 for dissociating flow over 15 % circular
arc bump, My = 2.
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Figure 8.32: Grid and density contours at ¢ = 0.6 for dissociating flow over 15 % circular

arc bump, My = 2.
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achieved to some extent, most spatial grids are omitted in the remaining part of the
chapter. If only density is used as a refinement parameter, the spatial adaptation fails
to resolve the relaxation tail. However, a combination of density and atom mass fraction
yields satisfactory resolution of both frontal shock and the relaxation zone. Figure (8.33)
shows the distribution of the spatial variations (Eq. 5.4) of density and atom mass
fraction for the spatial grid at ¢t = 0.6 on standardized scales which allow for unbiased
spread of data. The numerical values of the averages u; were about seven orders of
magnitude smaller than the (diagonal) standard deviations. Each square on the figure -
represents a single cell in the domain which number to N = 8508 at that time. The cells
with large variations correspond to the data outside the divide threshold ellipse and are
the cells marked for possible division. The fact that the ellipse has small eccentricity
implies that the correlation in between the two variations, Figure (8.33), is relatively
small. The threshold ellipse corresponds to Ry = R4z = 1.8 and is the locus of the points
satisfying Equation (5.7) with #2 = R;. The cells falling within the collapse threshold
ellipse are marked for possible merger. About 70% of the cells lying in between the two
ellipses remain unaffected. Figure (8.34) shows the corresponding cumulative frequency
versus refinement parameter (the two variations are lumped together by Eq. 5.7); the
threshold Ry = 1.8 is clearly seen to correspond to 20% cells falling above this limit.
It is appropriate to emphasize that the histogram records for each cell are updated
whenever spatial adaptation is desired, and this procedure is done automatically as the

solution evolves.

The contours of density and mass fraction of atoms are shown in Figures (8.35) and
(8.36) at various time stations. The time history of this case can also be examined by
observing the distributions of density and atom mass fraction along the lower channel
wall as shown in Figures (8.29) and (8.30). The offset for Figure (8.29) is 0.8; for
Figure (8.30) it is 0.05.

At t = 0.2, the frontal shock reaches the leading edge of the bump and the relaxation
tail still remains unaffected. At t = 0.4 the lower leg of the frontal shock has traversed
about 50% of the bump. The shock wave ensuing from the bump interacts with the

frontal shock and the relaxation tail and forms a complex triple point. The tail becomes
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Figure 8.35: Density contours for dissociating flow over 15 % circular arc, My = 2.
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Figure 8.36: Atom mass fraction contours for dissociating flow over 15 % circular arc,

My

2.
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highly distorted and small underneath the triple point. This is so since sufficient time
has not elapsed after the initial interaction for a new relaxation region to emerge. The
relaxation of the interaction region seems to be trapped between the slip line and the
lower leg of the frontal shock. The reverse moving shock is much stronger compared to
the frozen flow case which moves at a speed of u = ~0.1 or a local frozen Mach number
of 1.31 based upon the undisturbed inlet sound speed and a frame of reference attached
to it. The Mach number of the inlet stream itself is M; = 1.24, which is supersonic
compared to the previous frozen case. At t = 0.6 the triple point is at about y = 0.6,
the relaxation region is seen to be gradually increasing below the triple point, due to the
longer residence time for the fluid near the bump surface. The expansion between the
frontal shock and the reverse moving shock is also stronger compared to the frozen case.
At t = 0.8, the reverse moving shock has reached the top surface and a reflection wave
is developing. The relaxation region trailing the frontal shock continues to strengthen.
The frontal shock has cleared the bump and the trailing edge shock is developing. At
latter times the trailing edge shock remains at the same location unlike the previous

frozen flow case.

8.2.3 CPU Time Comparison

In order to assess the effectiveness of the spatio-temporal adaptive algorithm, calcu-
lations have been carried out on coarse, adapted and fine grids between the time stations
t = 0 and 0.3 for the frozen flow. In order to curtail the overhead for the globally fine
grid the spatial domain was reduced to span z € [—0.6,0.4] and y € [0,0.6]. The omit-
ted spatial domain corresponds to regions that are either undisturbed or in the vicinity
of the normal shock for ¢t € [0,0.3]. The base grid resolution is kept the same as the
previous two cases, i.e., an average cell dimension of 0.05. The coarse grid corresponds
to the base grid of the adapted case. Three spatial levels of embedding and four tem-
poral stages were again allowed for the adapted case. The fine grid corresponds to the
finest spatial level of the adapted case, i.e., an average cell dimension of 0.00625. Both
fine and coarse grid solutions were carried out with a global minimum time-step. The

density contours at t = 0.3 for coarse, adapted and fine grids are shown in Figure (8.37).
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Also shown is the adapted spatial grid at that time.

-

The calculation on the coarse grid took a total of 51.0 seconds on a Micro-Vax II
machine out of which 31.5 seconds were spent on integration. It is observed that for this
coarse grid calculation initialization and output dump consume a significant fraction of
the overall time. The corresponding fractions for initialization and output dump for the
adapted (about 1%) and fine (about 0.2%) grid are very small. The fine grid solution
took a factor of 571.3 times longer to compute compared to the coarse grid integration
time (or 352.5 time for total time). The corresponding factor for the adapted grid
was only 26.32 based upon integration time and a factor of 16.7 based upon the total
time of the coarse grid. This spatio-temporal solution was attained 2.53 times faster
compared to the one with only spatial adaptation (i.e., restricted to only temporal level
0). Hence the spatio-temporal algorithm provides about an order of magnitude faster
computation compared to the globally fine approach for this example. Higher adaptive
levels in both space and time, especially for fast reactions, can yield up to two or three
orders of magnitude faster calculations compared to the globally fine solutions. Since
the fraction of the adapted grid in the previous uncurtailed domains is generally small,

the savings would be larger in those cases.

It is evident that a coarse grid solution is incapable of delineating the features such
as a triple point or a slip line. Furthermore the solution for the adapted grid is very close
to that obtained by the globally fine grid and appears to predict the salient features at

a fraction of the cost for the fine grid.

The effectiveness of the spatio-temporal adaptive algorithm increases even more
when temporal resolution becomes essential in providing a prognosis for local rapid
chemical adjustment. Adapted grid solutions for the dissociating case take about 7 times
longer than corresponding frozen flow cases. Such reactive examples involve longer CPU

time because

1. additional (species) equations are solved

2. two variables are used as detection refinement parameters in the determination of

spatially resolved regions
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3. temporal resolution requirements are more stringent

4. implicit“integration scheme is slightly more expensive.

Since the dissociating case on a globally fine grid in space and time, even for a curtailed

domain, would require prohibitively long computation, such comparisons for a reacting

were not completed.

8.2.4 Frozen Duct Flow

The next example is for a frozen medium (v = 1.4) and a shock moving at My = 2.2
through a two-dimensional 90 degree bend duct. The channel dimensions are normalized
by the mean duct radius and is spanned by z € [~0.8,1.2], y € [-0.5,1.2]. The inner
and outer radii are rpin = 0.8 and rpmgz = 1.2 and their center is taken to be the
origin of coordinates. This computation was originally carried out by Aki [3] and was
subsequently repeated by Yee [145]. An experimental investigation by Takayama et. al.
has been cited by both references. The shock is initially at z = —0.5. Three levels of
spatial embedding beyond the base grid, and four levels of temporal strides were used
here. The base grid consisted of 8 cells along the radial direction and 32 cells along the
circumference of the duct, with a total of 480 cells in the domain. Spatial adaptation
was performed after each time-stride and the spatially adapted grid was extended by

two cells.

The density distributions along the lower and upper channel walls are shown in
Figures (8.38) and (8.39). Note that the abscissa is the curvilinear distance along the
respective walls starting from the inlet of the computational domain. The vertical
scale again corresponds to the initial condition ¢ = 0 and other curves are displaced
by a vertical offset of 0.8. The density contours at various time-stations are shown in

Figure (8.40).

At about ¢ = 0.2 the shock reaches the bend. Soon after an expansion ensues from
the lower surface and a compression initiates from the upper surface. At t = 0.4 the

compression has strengthened and it has started interacting with the frontal shock and
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Figure 8.38: Density distributions along lower duct wall for frozen flow.
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Figure 8.39: Density distributions along upper duct wall for frozen flow.
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a lambda shock is about to form. At ¢t = 0.5 the slip line is clearly evident, the triple
point is shifting from the upper wall towards the lower wall. The compression wave has
started interacting with the expansion fan and as a result the expansion is restricted to
a small region hugging the lower wall. At ¢ = 0.6 the same trends continue. At ¢t = 0.7
a distinct lambda shock is formed, the compression has reached the lower wall and the
expansion is constrained to the inlet region near the lower wall. At ¢t = 0.8 the triple
point has reached the lower surface, the domain of expansion is further limited, the
compression at the lower wall has begun to strengthen further and latter develops into
a shock. The compression at the upper inlet wall region has gradually strengthened. At

= 1.0 the frontal shock has managed to recover its planer structure and has divorced
itself from the interactions appearing from the two curved surfaces, leaving behind a

shock wave in its wake at the lower wall.

Figure (8.41) shows the density contours for this frozen case as calculated by Aki [4]
by a total variation diminishing (TVD) scheme. The approximate time-levels shown
here were interpolated from the location of the frontal shock. Aki had used a 176 x 360
grid for the curved channel which would be one level finer compared to the finest spatial
level in the current calculation. It is observed that there are subtle differences in the
two results. The slip line is not as sharp in the present calculation and weak reflections
are not observed. These differences are also apparent in Figure (8.42) that compares the
density variation of the two computations at ¢ = 0.6 at the upper and lower channel walls
of the bend duct. Figure (8.43) shows the infinite fringe interferogram from Reference [3]
which approximately correspond to the times ¢t = 0.5 and 0.7 for the current case. The

calculations compare reasonably with the experiment.

8.2.5 Reacting Duct Case

The same bend duct was also considered using a Lighthill dissociating gas. The base
grid was identical to the previous frozen flow case and the inlet conditions the same
as the reacting bump case. However, the exit conditions for My = 2.2 are different as

indicated in Table (8.3). The choice ® = 10* implies z; = 0.223. The contours of density
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Figure 8.41: Density contours for frozen flow, My = 2.2, Aki’s calculations, Refer-

ence [4].
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Figure 8.42: Density variations at ¢ = 0.6 at upper and lower channel walls for frozen

flow, My = 2.2, symbols indicate Aki’s calculations, Reference [4].

Figure 8.43: Infinite fringe interferogram for frozen flow in bend duct, Reference [4].
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. l T,K pkg/m® Y
inlet, ()i | 5000  3.820  0.400
exit, (). | 4011  0.874  0.220

gas { Ti/T. _pi/pe _pi/pe
_reacting | 1.247 4.369 6.250
frozen | 1.857 2.951 5.480

Table 8.3: Initial values for bend case.

and atom mass fraction are shown in Figures (8.44) and (8.45). The distributions of

density and atom mass fraction along the lower and upper channel walls are shown in

Figures (8.46) to (8.49).

At t = 0.4 a complex triple point is forming, the compression and expansion fans
ensuing from the upper and lower channel walls have started interacting with the relax-
ation tail and the frontal shock. At ¢t = 0.5 the lambda shock is clearly apparent, and
at t = 0.6 the compression from the top surface has strengthened to form a shock wave
which is about to reach the lower wall. Such a strong shock at the inlet was not observed
for the frozen flow. At t = 0.7 the trailing leg of the lambda shock is about to reach
the lower surface. The shock appearing at the inlet has reached the lower surface and
a reflection wave is forming. At t = 0.8 this reflected shock has further strengthened.
The lambda shock has begun to collapse as it enters the straight portion of the duct.
The slip line emerging from the triple point is affected by the relaxation tail from the
beginning of its formation. It is interesting to note that the atom mass fraction remains
nearly unaffected through the expansion behind the frontal shock and near the lower
wall, very much like freezing out. The compression region near the upper wall does not

show this behavior.
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Figure 8.44: Density contours for dissociating flow in bend duct, My = 2.2.
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t= 0.2

Figure 8.45: Atom mass fraction contours for dissociating flow in bend duct, My = 2.2.
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Figure 8.46: Density distributions along lower duct wall for dissociating flow.
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Figure 8.47: Density distributions along upper duct wall for dissociating flow.
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Figure 8.48: Distributions of atom mass fraction along lower duct wall for dissociating

flow.
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Figure 8.49: Distributions of atom mass fraction along upper duct wall for dissociating
flow.
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8.3 Scramjet Inlets

8.3.1 Perfect Gas Example for Two Strut Model

For the three-dimensional scramjet concept under consideration at NASA Langley,
Kumar [74] has suggested a two-dimensional model that can be used to analyze the
scramjet inlets. He had performed computations for a one and two strut inlet configu-
ration using a perfect gas for flows over a range of free stream Mach numbers between
3 and 7. The calculations were performed for both inviscid and viscous models and the
results indicated that Euler equations describe all the salient features of the flow field.
The reference suggested the following inlet conditions for a free stream Mach number

of 7.0
M; =5.03 , pi = 3550Pa , T; = 335K (8.9)

for a two-strut geometry shown in Figures (8.50) to (8.52). The first of these figures
establishes the labels for the scramjet inlet whereas Figure (8.51) shows the base grid,
comprising of 368 cells, that was generated by the block-grid generator mentioned in
Chapter 5. The external wall angles are a = 6.668 degrees with respect to z-axis
whereas the initial (leading) angles of the struts are 3 = 11.873 degrees as quoted by
Kumar. The inner trailing wall angles of the struts are 4y = 7.141 degrees whereas the
external trailing angles are § = 8.146 degrees. The domain is spanned by z € [-0.2,2.3],
y € [-0.5,0.5]. The leading edges of the struts are located at (0.6,10.2). The suggested
reference length, for the initial channel height, is 0.15m.

The calculation was performed by utilizing spatial adaptation while using local time-
stepping by the current algorithm. Figure (8.52) shows the final adapted grid with three
levels of spatial embedding beyond the base grid. Note that the third level of adaptation,
near the external walls, does not extend all the way to the outer surface of the embedded
struts for the choice R4y = 1.2 and Cy4 = 0.2 for spatial refinement parameter involving
density differences. This example shows that the choice of threshold limits for refinement
parameter is problem dependent and one has to careful in selecting the appropriate

values. Lower spatial resoltion in these regions results in gradual thickening of the
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Figure 8.52: Final grid for two-strut scramjet inlet configuration, M; = 5.03, perfect
gas flow.
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shocks emanating from the corner points j. Figure (8.53) and (8.54) show the contours

of density and pressure that are generally in good agreement with the results of [74,119].

These perfect gas calculations reveal that the maximum temperature is about 2
(normalized by the inlet temperature of 335 K) and occurs between the two wedges
approximately where the transverse dimension is a minimum. Since the combustion
of hydrogen below about 1000 K is negligible, it does not appear that the present
configuration would support significant amount of combustion on a continual basis. In
order to sustain combustion with a fixed geometry the inlet temperature and pressure
can be raised by increasing the inlet Mach number, or alternatively, by increasing the
wedge angles while keeping the inflow conditions fixed. It has also been suggested by
Martinez-Sanchez [86] that pressures in excess of nearly one atmosphere are needed for

significant combustion of hydrogen in air.

8.3.2 Premixed Flow Example for Two Strut Model

Consider a flight Mach number of M, = 10 at an altitude of 20 miles where the

representative atmospheric conditions are
Poo = 1000Pa , Too = 200K (8.10)

Assuming two 7 degree wedges that turn the flow in the same direction and a 14 degree
return produce& by a cowl plate as shown in Figure (8.55); the conditions just after the

third shock for a perfect gas (y = 1.4) yield the following conditions
Ti _ 464 (027K) , P - 81.18 (81180Pa) , M;=420  (8.11)
T Poo

Taking the variations of the changes in ratio of specific heats at high temperature for

air into account such inlet conditions are approximately
p; = 80000Pa , T; = 880K , M; =430 (8.12)

Similarly for a flight Mach number of 20 at an altitude of about 30 miles the represen-
tative conditions are

DPoo = 350Pa ’ Too = 300K (8.13)
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Figure 8.53: Density contours for two-strut scramjet inlet, M; = 5.03, frozen flow.

Figure 8.54: Pressure contours for two-strut scramjet inlet,
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Figure 8.55: Sketch of a model scramjet configuration.
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Figure 8.56: Distribution of density, pressure and velocity in the exit plane for two-strut
scramjet inlet, premixed frozen flow.
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For this case if the angle o in Figure (8.55) is 5 degrees, then the conditions following

the third shock are
p; = 80000Pa , T; = 2300K , M; =6.6 (8.14)

For this case some cooling of the incoming air may be needed if the fuel is injected
ahead of the scramjet inlet. These simple calculations indicate that the mechanism of
raising the pressure and/or temperature of the incoming air by inlet shocks is a viable
one and it is generally possible to raise the pressures to about an atmosphere (or more)

inside the region where combustion is to take place.

For the purposes of computations, the previous geometry, Figure (8.51), is assumed
to follow after the third shock in between the cowl plate and the inner surface of the
scramjet and the effect of the expansion fan is neglected, that is, the above flow con-
ditions are assumed to be as uniform at inflow to the geometry. The fuel is assumed
to be injected somewhere after the second leading shock in Figure (8.55) and the flow
is assumed to be thoroughly mixed before it enters the computational domain. Hydro-

gen is assumed to have an equivalence ratio of unity and Rogers and Chinitz model of

hydrogen combustion is used.

Two separate runs were carried out for this premixed fuel addition example for
comparitive purposes. In the first case hydrogen was present but was not allowed to
react and the finite rate chemistry was turned on in the second case. These cases
were done by using the same base grid as in the previous frozen case with a total of
three spatial embedding levels. The Mach number of the incoming air is 6.6 with a

temperature of 800 K and pressure of 0.8 atmosphere.

Figure (8.56) shows the variation of the density, pressure and the z-component of
velocity at the exit plane, z = 2.3, for the premixed frozen flow case. The corresponding

contours of density and pressure are shown in Figures (8.57) and (8.58).

Figure (8.59) shows the variation of the density, pressure and velocity at the exit
plane for the reacting gas. It was noted that the average pressure at the exit plane

had increased from a frozen flow value of 4.1 to 7.2 (normalized by inlet pressure) in
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Figure 8.57: Density contours for two-strut scramjet inlet, premixed frozen flow.
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Figure 8.58: Pressure contours for two-strut scramjet inlet, premixed frozen flow.
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Figure 8.59: Distribution of density, pressure and velocity in the exit plane for two-strut
scramjet inlet, premixed reacting flow.
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Figure 8.60: Distribution of steam mass fraction in the exit plane for two-strut scramjet
inlet, premixed reacting flow.
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Figure 8.61: Distribution of mass fraction of oxygen in the exit plane for two-strut
scramjet inlet, premixed reacting flow.
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Figure 8.62: Distribution of mass fractions of hydroxyl and hydrogen in the exit plane
for two-strut scramjet inlet, premixed reacting flow.

244



0.9 4

0.4+
o)
-0.1- s
—o.e ¥ L] 13 L] L
-0.5 0.0 0.5 1.0 1.5 20 28

Figure 8.63: Density contours for two-strut scramjet inlet, premixed reacting flow.
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Figure 8.64: Pressure contours for two-strut scramjet inlet, premixed reacting flow.
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Figure 8.67: Hydrogen mass fraction contours for two-strut scramjet inlet, premixed
reacting flow.
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Figure 8.68: Steam mass fraction contours for two-strut scramjet inlet, premixed react-
ing flow.
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the reacting case whereas the velocity and density were only slightly different. This
additional pressure is due to the combustion process itself and it would be responsible
in providing thrust to the vehicle. The variations of species mass fractions at the
plane are shown in Figure (8.60) through (8.62). Also shown are the corresponding
local equilibrium conditions. The contours of density, pressure and mass fractions are
shown in Figure (8.63) through (8.68). The density and pressure contours indicate that
the shocks are stronger for the reacting case. For example, for frozen flow the shock
cross-over in between the two struts takes place at about z = 1.2 whereas that for the
reacting case occurs near z = 1.1. The slip lines emanating from the trailing edges of
the struts bend more towards the centerline than those in the frozen case. These figures
also indicate that the reactions are much more pronounced immediately after the flow
passes through the frontal shocks. However, the reactions do not go to completion in the
computational domain. The average mass fraction of steam at the exit plane is about
0.135 compared to the maximum possible value of 0.205 for stoichiometric combustion

and an equilibrium value of 0.143.

It is expected that additional combustion and expansion would take place in the
“nozzle” part of the scramjet and would provide additional thrust. Although there
is less than 0.3% hydrogen leaving the computational domain, there is some hydroxyl
(average value 3%) and ample oxygen that can react to form steam in the nozzle part.
Since the formation of steam is accompanied by heat release, additional thrust due to

heat release could be expected.

8.3.3 Oscillating Inflow Example

In order to demonstrate the effectiveness of the spatio-temporal algorithm for mul-
tiple reactions, inflow conditions for a computational domain were varied sinusoidally.
For this purpose a simpler geometry, as shown in Figure (8.69), was chosen and it rep-
resents a geometry similar to the central portion of the previous domain. The geometry
is spanned by z € [-0.2,1.4] and y € [0,0.18] and the angle of the wedge is 14 degrees.

Before allowing the inflow to vary temporally, a steady state flow was established for
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which the inflow Mach number was assumed to be 4.308 with a temperature of 880 K
and a pressure of 0.8 atmosphere. The reference length (distance between leading and
trailing edges) was taken to be one meter. A total of three spatial levels were used for
this case alongwith local time-stepping. Figure (8.69) shows the final grid for this case.
Density and mass fraction of O H were used as the refinement parameters for spatial
adaptation. The contours of density, pressure, temperature, z-component of velocity,
local frozen Mach number, and the mass fractions of oxygen, hydroxyl, hydrogen, steam
for the steady case are shown in Figure (8.70). The reactions start occurring after the
first shock and relaxation regions can be seen clearly following this shock and its re-
flection from the symmetry axis. The production of steam is much pronounced after
the second shock and its concentration remains relatively constant thereafter. It is ob-
served that the species mass fractions remain nearly constant through the trailing edge

expansion fan.

A periodic fluctuation was imposed on the mass flow at the inlet

pu = (pu)o [1 + Amsin(27wt)] (8.15)

where w is the frequency and A,, is the amplitude of the oscillations; the subscript 0
indicates the value at time ¢ = 0. Density, vertical velocity component and the energy

term were fixed at the previous steady state values. For the numerical example these

values were chosen to be as follows:
An=0.1, w =10 (8.16)

Since one cycle corresponds to wt = 1, the time-period of the oscillations is 0.1. The
solution was carried out until ¢ = 0.3. Figure (8.71) shows the velocity variations
on the upper channel wall at the end of each period whereas Figure (8.72) shows the
variations of the mass fraction of steam on this wall. Computations were not carried
out beyond z = 1.0 to save CPU time. It is observed that the oscillations have increased
the combustion level to some extent (by about 3%). For these computations five levels
of temporal embedding were used. These figures indicate that a quast-steady state or
a periodic solution has not yet evolved; however, the flow till about z = 0.4 seems to

exhibit periodic behavior. Further note that as the velocity of the flow field reduces, the
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Figure 8.69: Final grid for steady state solution in an inlet, M; = 4.308, premixed

reacting flow.
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Figure 8.70: Contours for flow variables through an inlet for steady state solution,

M; = 4.308, premixed reacting flow.
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Figure 8.71: Velocity variations at upper channel wall for oscillating flow.
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Figure 8.72: Steam mass fraction variations at upper channel wall for oscillating flow.
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Figure 8.73: Velocity variations at upper channel wall for oscillating flow, for t = 0.2,0.3.
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Figure 8.74: Density variations at upper channel wall for oscillating flow, for ¢ = 0.2,0.3.
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254



| g

o

] <
,A “\\\\*x;\;\;w&\,,)é\\g“ﬂ

‘ -

R \\\\\\\LRH
- .“H“)\S \\ N =
WY Yr—ff;\\% \“\\'\\ﬁ

A — N T g "'>\!\\;M%
N "/,.\\\'ﬁs“\m‘\\\\ ([T —
“,_q N s T, S
G (7 =

o } RN
§ 7 A-\\\‘\\\\\\\i\\\\\\“ rrrr_«)\)&._ _ :"\Q

t=031

L.nmff.\\\\\ﬁrf—r&g%m\\

Figure 8.76: Contours for pressure for oscillating flow between ¢ = 0.2 and 0.3.
255



i
1‘;ii | Pe
RSN
t=0.28
\ N -
{] \ N\ S SINEC
AN N
1‘ “ NS t=0.27
| | N S
e Rt 3
P
“-/
i

TR

\\
”& QJ\“&JJ)»W*”

=




temperature increases and combustion starts occurring before the flow passes through
the first shock. The velocity and density variations on the upper channel wall for the
second cycle are shown in Figures (8.73) and (8.74). The contours of density, pressure
and mass fraction of steam are shown in Figures (8.75) through (8.77). These contours
indicate that the initially straight shock, emanating from the leading edge, changes as
the disturbance passes across it. It is observed that the disturbance at the base of the
corner affects the shock location at the symmetry axis and hence the reflected shocks
are changed somewhat. Although the overall local frozen Mach number at the inlet
plane varies from about 2.5 to 6.0, the flow-field exihits small changes with respect to
the mean flow. This is due to the fact that the frequency of oscillations is high and the
mean flow aft of the initial shock remains fairly stable. The contours of mass fractions
of steam clearly indicate substantial changes through the reflected shocks at various

positions and locations with small changes in density and pressure.
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Chapter 9

Concluding Remarks

9.1 Summary

This thesis has examined predominantly supersonic reacting flows in which the trans-
port effects have been neglected. A strategy has been developed for automatic spatial
and temporal grid embedding for a reacting flow in both quasi-one-dimensional and
two-dimensional situations. The unique part of the work, relative to previous studies,
is the development of the temporal adaptation procedure and its coupling with spatial
adaptation for unsteady chemically reacting or frozen flow systems. A new procedure
for utilizing the first differences of more than one variable, to determine the allocation
of spatial resolution, is also presented. Furthermore, a procedure for the selection of
time-steps for source implicit schemes is detailed that switches the time-steps from small
values when rapid temporal changes occur to large values when the temporal gradients
diminish. Emphasis is placed on understanding supersonic combustion of hydrogen in

air and moving blast waves in perfect or dissociating gases.

The algorithm periodically examines the evolving numerical solution, applies spatial
adaptation to the existing grid, determines an appropriate time-stepping sequence for
each cell in order to make up consistent time-stride units for the entire domain, and

finally integrates the equations.

The spatial adaptation procedure consists of the following sequential operations:

1. local embedding or grid division,

2. extension of spatially embedded regions,
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3. fusion of cells in other regions, and

4. remov;l of the knottiness in the grid by avoiding islands and voids.

Local embedding is carried out by detecting the regions of large spatial non-uniformities
and subsequent subdivision of the corresponding grids. This spatial resolution is added
over the entire domain prior to the execution of each temporal cycle, and is based
upon first differences of the density and/or mass fractions of appropriate species. The
procedure limits the cell volumes to four to one ratios for any set of contiguous cells.
When the initial flow field on a coarse grid involves spatial non-uniformities, consistent

pre-embedding is applied so as not to degrade this initial field.

Since the movement of flow features may be very large for certain unsteady appli-
cations, it is necessary to extend the spatially resolved region by a certain number of
cells to ensure that the flow features will remain within this resolved region during the
next time-stride unit. In general the larger the disparity of overall cell time-steps the
more should be the number of layers of extension cells. The addition of buffer layers is
accomplished by first determining the current set of the divided cells and then refining
those coarse cells which are outside and adjacent to be identical in spatial resolution to

those just inside the boundary, and repeating this process a specified number of times.

The procedure allows for both grid refinement and a return to the coarser mesh,
within some specified coarsest global spatial grid. It is important for unsteady flows
to allow for a cell fusion capability since otherwise grids might become uniformly fine
after a while and the advantages of dynamic embedding would be lost. The coarsening
of cells is also accomplished by examining the first differences of density and/or mass
fractions. When these differences diminish on a previously refined grid, and become less
than a critical limit, those contiguous grids which had been previously generated from

the same parent cells may be fused.

After the alterations are completed in the spatial grid structures, a sequence of time-
steps is determined for all the cells in the domain. The cells with the same time-step

are integrated and updated together on different integration passes of the temporal
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adaptation cycle. Once all the integration passes are completed, all the nodes in the

domain arrive at the same time value and a time-stride is completed.

As part of the determination of the cell time-steps, the temporal gradients are mon-
itored so as to maintain sufficiently small time-steps for adequate local resolution and
stability. The time-step resolution takes into account the classical CFL restriction and
the requirement implied by constraining the anticipated cell change to a small value.
The temporal adaptation procedure allows for a maximum factor of four in local time-
steps between contiguous cells. The overall disparity of the cell time-steps could be

much higher.

To maintain time accuracy the total number of integrations for cells with smaller
time-steps is carried out more often compared to those with larger time-steps. The
cells are divided into subsets as characterized by their time-steps. The cells within each
subset are integrated and updated together and a sequence of integration for cells in

these subsets avoids integrating the same cells consecutively.

When the reactive equations are stiff in the sense that numerical stability rather
than accuracy dictates the time-steps, then an implicit scheme can be used to partially
alleviate the computational overheads. The time resolution criterion as proposed in
this thesis limits the time-steps to small values during the earlier periods of a relaxation
process when the temporal changes are large. The initial cell changes may be large due
to the fact that the departure from local equilibrium conditions is large for some fast
reactions and that the flux terms are not in balance with the source terms. However, as
time elapses, the temporal gradients degrade, due to a new balance between the source
and flux terms, although the departure from equilibrium could still be significant. For
these relaxing cases larger time-steps, compared to those dictated by an explicit stability
criterion based upon chemical source terms, can be used to advance the solution by
utilizing an implicit scheme. The same implicit scheme can also be used when the

time-steps have to be reduced to capture rapid relaxation phenomenon.

Depending upon the rate of variations of the flow features, the spatial adaptation

may follow after the temporal adjustment or a number of time-strides may be carried
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out prior to the next spatial adjustment of the grids. The number of time-strides
between two consecutive spatial adaptation procedures is user-controlled rather than
being dynamically computed by the algorithm, since it is highly problem dependent.
The user is generally aware of an expected rate of variations of feature properties and
s/he could request the spatial and temporal procedures to alternate each other in a
limiting scenario. The integration of the equations continue until a desired number of

time-strides is completed or when the time-level exceeds some user-supplied value.

9.2 Conclusions and Discussion

Adaptive embedding algorithms have the advantage that meshes are refined only
where necessary and as the solution evolves, thereby providing accurate and relatively
inexpensive solutions. Since the local embedding can be carried out in a recursive man-
ner, very fine grid spacing can be maintained in the vicinity of the physical structures
being captured. Furthermore, since the resolution is enhanced only locally at the fea-
tures, with coarser grids near successively uniform flow regions, the computations with
such grids consume significantly less computer resources than does global refinement.

There are substantial savings in both CPU time and memory.

Just as different spatial resolutions are allocated at different locations of a spatial
grid to achieve CPU time gains, it is beneficial to take advantage of the large spatial
variations of time-steps for frozen or reacting flows. In fact gains due to utilization
of different time-steps can even be achieved for unsteady frozen flows if there exist
substantial variations in spatial cell volumes, which indeed may well be a result of spatial
adaptation. It is clear from the CFL constraint that the resolution requirements in space
generally imply a corresponding imposition on resolution in time. For most frozen
flows this is the primary constraint, but for reacting flows other temporal resolution
requirements may be even more stringent than those implied by the spatial resolution.
Similarly for strong blast waves the maximum eigenvalues can change by an order of
magnitude across a shock and for these cases the temporal adaptation could be beneficial

even for frozen flows on uniform grids. In general, the larger the global disparity of
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the cell time-steps the more effective is the temporal adaptation, as is true for spatial

adaptation. ~

In chemically reacting flows, the computations of chemical kinetic terms is often
more expensive than evaluations of convective and/or diffusive transport terms. The
cost increases with the number of species, the number of reactions connecting these
species, the number of spatial cells and the inverse of the time-step size. For flame
and detonation simulations the overall calculation may take two or more orders of
magnitude longer compared to frozen flow situations. Calculations may also be costly
due to stiffness introduced into the equations by the finite rate chemical kinetics which
may be necessary to describe the physical situation. The utilization adaptive grids in
both space and time for such flows can lead to orders of magnitude savings in the CPU

time.

Separate pointer systems for both spatial and temporal adaptation procedures and
chemistry manipulations are utilized for the current algorithm. The spatial data base
tallies the spatial level, supercell, and the surrounding nodes of each cell in the domain.
Similarly, information about cells adjacent to each node must be known and boundary
points must carry details like boundary condition type, adjacent node and cells, ete.
The temporal data base tracks the number of cells and the sequence of integration dur-
ing each time-stride. This pointer system must be updated after each time-stride for
assignments of time-steps, determination of the temporal level of cells and their allo-
cation into clusters classified by these levels, determination of nodits, and constraining
of time-steps among contiguous cells to four to one ratios. Some of this represents an
overhead but when compared to the gain achieved in efficiency proves to be well worth
doing. The chemistry data structure holds information for each species in the model,
for example, specific heat, heat of formation, etc. and information pertaining to each
reaction, for example, constants in Arhenius rate model, total number of species, etc.
The data structure also keeps track of the table of species involved in specific reactions

and all the stoichiometric coefficients.

Depending upon the problem, the spatial data base updating may not be required as
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frequently as that for the temporal data base. For steady state problems the number of
changes in the spatial pointer system generally equals the number of spatially embedded
levels desired and the adaptation can be performed at either specified iteration intervals
or residual levels. Similarly, for unsteady problems in which the characteristic feature
speeds are relatively small the adjustments to the spatial pointer system are infrequent.
However, when high feature speeds arise, either the time-stride size must be kept small
or the spatially embedded clusters enlarged, so that the features do not move out of
their respective clusters during a given time-stride. The process of enlarging spatially
embedded clusters can become computationally expensive; a balance is required between
these competing effects. For unsteady flows, spatial adaptation procedure must be
applied frequently because the features to be resolved may be moving and the adaptive

grid clearly must track these features at a synchronous speed.

For all of the sample cases the numerical solutions based on an adaptation pro-
cedure were comparable in accuracy to globally fine grid solutions, and were in good
agreement with previous works. Computed examples also indicate that the numerical
solution obtained by utilizing spatio-temporal algorithm can yield orders of magnitude
faster computations compared to those of globally fine grids. The CPU time savings
increase with the increase in the number of spatial and/or temporal levels of embed-
ding. For unsteady flow exmaples the adaptive grid clearly tracks the salient features at
a synchronous speed and is capable of resolving features like shocks, relaxation zones,

slip lines, etec.

9.3 Future Extensions

Since the savings in CPU time increase substantially from quasi-one-dimensional
to two-dimensional studies, it does appear promising to introduce temporal adapta-
tion concurrently with spatial adaptation for three-dimensional, unsteady reacting flow
fields. There appears to be little theoretical difficulty in extending the present adaptive
grid algorithm to a third spatial dimension. However, this might only be practical for

moderate sized problems to run on a machine in the supercomputer class.
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While the present work is concerned with the solution of Euler equations, Chima
and Johnsorr [29] and Davis [39] have demonstrated that Ni’s scheme is extendible to
the Reynold’s averaged transport equations. Furthermore, Kallinderis and Baron [71]
have developed Ni scheme to include transport effects and an adaptive procedure when
interest is limited to steady state problems. The spatio-temporal algorithm developed
here should prove to be an attractive option for calculations involving embedded viscous

regions.
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Appendix A

Jacobians, Eigenvalues, Eigenvectors

A.1 Analytic Jacobians of Flux Vectors

The Jacobian matrices Fyy,Gy,Wy are required for the integration of the partial
differential equations. For the purpose of evaluating the flux Jacobians, a calorically
perfect gas mixture will be assumed, ¢.e., the specific heat of each species in the mixture
will be regarded constant. Once the Jacobian terms are derived, local frozen values can
be substituted in place of constant values. The Jacobian evaluations will be shown here

only for the two-dimensional case.

The notation used in this section is as follows. The components of the vectors U, F,
G, W are indicated by numbered subscripts. For example, Uy = p, F; = pu® + p, etc.
Double subscripts indicate the Jacobian elements, e.g., Fy; = g—gf. The pressure term
p; stands for 5‘9&. The total number of equations to be solved is denoted by N,, so the
species equations correspond to the components k = 4+s where1 < s< N,—4< S-1.
In what follows the elements of the flux vectors will be written in terms of both primitive

variables and components of the state vector.

F1= pu=U3

1 i=2 (A1)

0 otherwise

Fy; =
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~tp  j=1
Fy; = 2u+ps 1=2
pi otherwise

The partial derivatives of pressure will be determined latter.

—uv j=1
v i=2
F3; = 9
u j=3
| 0 otherwise

( + .
] (le +u ZP_G) 1=1
uF22—2u2+2-:'—‘ j=2
Fyy =
u(Foq+1) j=4
| uFy; otherwise

Y, =2

ij = < g J
u j=k=4+s
LO otherwise

(A.2)

(A.3)

(A4)

(A.5)

Note that the assumption of constant specific heats is not utilized until now; however,

the assumption simplifies the partial derivatives of pressure, and the caloric equation of

state (Eq. 2.55) then becomes

s S S
e=Y oY, Hy, + ’zi(u2 +3) +pT 3 Y,Cp, — pT0 Y YaCp, — p

=1 8=1 8=1
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On substituting the thermal equation of state for temperature this yields

S S S
P2 2 p
p= E pYsH;y, + -2-(u +v ) + W E Y,C,, — pT0 E Y,Cp, — ¢ (A7)

s=1 8 =1 s=1

Since the specific heats are related by

R
Cu. = Cp. - —r’i—z: (A.S)
the pressure equation simplies to
2. YsCy J Py 2 2 J
=] Rk ed. | S - £ A9
S SRAL Y ;PYst. 5w +v )+pTo§KCp. (A.9)

or in terms of the components of state vector

¥, UiCo 5 U2+ U? 5
= Uy - UgHf, — ——>+ T, UxCp, k=4+s (A.10

For derivatives with respect to Uy,Us,Us,Uy all terms involving Uy are constants;

hence the following mixture values can be defined

G = Es Y,Cy, C, = Ea Y,C,,
(A.11)
hmoo= Z—,}Tﬁ.— ; Hy = },Y.Hy,
Hence the pressure equation becomes
_ R U} + U2
p= C, {U4 BT +K (A.12)

where K is a constant insofar as the first four derivatives are concerned and is given by
-2 {pToCp — pHy} (A.13)

Using the ratio of specific heats for a mixture, s.e., v = 1 Y,Cp,/ X Y,C,,, it follows
that

R Cp - Co
= =y - A.14
mey, G, 71 (A.14)
The first four partial derivatives of pressure then become
[ 2y-1) i=1
u(l —7) j=2
pi = 9 (A.15)
v(l—-17) j=3
(v-1) i=4
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Thus the first four Jacobians of F; now become

§
pae e
(3—7)u j=2

Fy; = o (A.IG)
(1=7)v j=3
y—-1 j=4

\

Similarly the first four Jacobians of Fy become

( —1v,2 _ pt .
w(Fvi-g) =t
(1 - )t + ¢ =2
F4j = A (A17)
(1-7)uv j=3
uy Jj=4

\

For derivative of p with respect to U, with | = 4 + ¢ € [5, N,.], the quantities
K,C,,C, are not constants. Thus from Equation (A.10)

P P EH&) - Rl__
por i = %&)2{2( ) Coe z’:(UkC‘,,,) mq}_ Hy, + ToCp, (A.18)

which can be simplified to

pi (-7
= (- - p 19
o= (7= 1)(ToCy, — Hy,) + ey (% — 1) (A.19)

Replacing ¢ by s gives the following

7’7“ _
Faare) = (v = 1)(ToCyp, — Hy,) + 5-5: <z~a—:§’-) (A.20)

This completes the expressions for the Jacobians of the flux vector F. In summary the
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matrix Fiy can be written as

0 1 0 0 0 0 0
LAY2 — 2 (3-7)u (1-9)v

—uv v u 0 0 0 0

v—1 Fy5 Foe Fyr

u (3%1_‘,2 - ’ii) E?‘ +(1-7)u? w(l-9) uy uFy ufy uly

-uY; Y1 0 0 u 0 0]
—uYs Y, 0 0 0 u 0
- uY3 Y3 0 0 0 0 u

The evaluation of the Jacobians of flux vector G will now be described.

Gi= pv="Us

0 otherwise

U,
G2; = Fs;j j=1...,N,
Gs = pvz+p=F2+i;"’--77€-
(Fn—vz—{-uz:l—;—%vz—{—j;—luz Jj=1
Fya —2u=(1-7v)u 71=2
Gsj = | Fis+2v=(3-7)v 7j=3
Fag=7v-1 j=4
Wit otherwise
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Uviu
Go= (p+ev ="ty + B - T

[ o(Fa+u? - 22) = o (25172 — 25 i=1
v(Fa2 — 2u) = (L — y)uv 1=2
Gy = o vF23+E’;—"—=(1—7)v2+p—"’;—‘- 7j=3
v(Faq+ 1) = vy ji=4
| vFy; otherwise
(A.25)
—_ — UslUy —
Gr= Gups=pvY, = i k=5,...,N,
Y, =3
ij — s J
v j=k=4+s
L O otherwise
(A.26)

The Jacobians of the source vector W change from one reaction system to another.
For the sake of generality the source vector Jacobians are evaluated numerically from
the discrete form

ow; — Wi(Uy,...,U; + AU;,...,UN,) - Wi(Uy,...,U; — AU;, ..., Un,)
oU; 2AT;

(A.27)

where
0.001U; U; #0

0.001 , otherwise

AU; =

A.2 Eigenvalues of Jacobian Matrices

The eigenvalues of Fy and Gy are needed to determine the maximum allowable
time-step and to apply the characteristic boundary conditions. The eigenvalues of Fy
for the non-reacting case are u + a,u — @, u,u where a is the frozen speed of sound.

The two u eigenvalues are due to the continuity and y-momentum equations. Since

270



the species equations are essentially continuity equations, the total number of multiple
roots for the'reacting system is S +1 (1 for continuity, 1 for y-momentum and S — 1 for
species equations). Intuitively, the other two roots are expected to be utay, where ay is
the local frozen speed of sound. One can expand and solve for the polynomial function
corresponding to the eigenvalues of Equation (A.21), but it is simpler to evaluate the

determinant of the matrix Fy as a product of the eigenvalues, i.e.,
|Fy| = (u? - c})uSt? (A.28)

where ¢ is a speed which will be shown to be the local frozen speed of sound. To justify
the assertion that the eigenvalues of Fy are really uS+!, u = ¢, consider the trace of Fy,

i.e., the sum of the eigenvalues

S~1
(S+1u+(utc)+(u—c)E Foa+ Fos+ Fuu+ 3 u (A.29)
=1
This implies that
Fyy + Fsg+ Fyg = 4u (A.30)

Substitution of F;; values into this equation confirms the assertion.

The determinant of the Equation (A.21) can be shown to be

+ € +1 1
|Fy| = uS+! {(1 —4)E St ALY PR el WL ZY F2(4+a)} (A.31)

2 2
From Equation (A.7) one can show that
p+ E__1p u? + v?

+ + Y Y, Hy, - T Y V.G, A.32
P 1-1p Z e OZ (4.32)
Substituting Equation (A.20) and (A.32) into (A.31) yields
s
|Fy| = uS+1 {uz _I Py Y ('7_._._8 7) (A.33)
PP e \ a1

It can be verified that for an ideal mixture the last term inside the curly bracket vanishes.

Note that

BEGE) - - TEE-

1 Y, C,,
= Yo —1 m my, \v,— 1 m pithe l)z m, Cp, — Cy,
- 1 Y’Cu' — 1 '7_'1 . 1 CP—C"
= RN = a - G=g -y
1 1
= FTm= (A.34)

271



Hence

- |Fy| = uS+1 (u’ - ZPE) (A.35)

But a} = qp/p is the square of the local frozen speed of sound. In a similar manner it
can be verified that the eigenvalues of Gy are v5*t1,v +ay, i.e.,

IGy| = v5+1 (vz - '—;l’-) (A.36)

A.3 Eigenvectors of Jacobian Matrices

The eigenvectors of the Jacobian matrix Fy are needed for the computations in-
volving characteristic boundary conditions. Only left eigenvectors will be considered
here. The eigenvectors L; are numbered according to the eigenvalues A\; = u — af,u +
af,4,...,u. The equations in this section will be given for both a general case and an
ideal mixture (constant specific heats). The left eigenvector L; for A; = u — a; is given
by

Ly (Fy =M 1) =LA =0 (A.37)

where the notation A; = Fy — ); ? is used for simplicity. The product with the fourth
column of Ay implies

LyaFos+ Lyg(Faa+ag—u) =0
Since the eigenvectors of a distinct eigenvalue are unique up to a multiplicative constant

the choice L4 = 1 is made. Hence

=t (i) = (r5h)
Ly = Foa u+ Fos u -+ y=1 (A.38)

The product with the third column of A; implies
Ly3F23 + Lizay + LisuFa3 =