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Abstract

Consideration is given to the numerical integration of unsteady two-dimensional flow
fields which involve finite rate chemistry and are expressed in terms of conservative form

Euler and species conservation equations. The coupled behavior between fluid flow and

finite rate chemistry can introduce appreciable stiffness into numerical schemes, which
then involve prohibitively long computation times. Such calculations become even more

expensive when globally fine grid resolution, in both space and time, is utilized to en-

sure the capture of local flow features. However, the retention of fine grid resolution
is generally needed only within small portions of the overall space/time domain. Typi-
cally, spatial resolution is desired in those regions that are characterized by steep local
changes, e.g., including a shock or a chemical adjustment. Similarly temporal resolution

is needed both when there are non-equilibrium source terms which produce large tem-

poral gradients, and in regions of spatially fine cells due to coupling of the time-steps

with cell volumes. The aim is to provide a description of a controlled grid resolution

approach in both space and time, and to demonstrate its effectiveness for a selected class

of problems. An efficient spatio-temporal adaptive algorithm which allows simultaneous

resolution of both temporal and spatial grids for conservation equations is presented. It
is demonstrated that the approach can yield orders of magnitude faster computations
at essentially the same accuracy as the globally fine grids. The algorithm uses quadri-

lateral cells and embedded meshes which track the moving flow features. It also allows

for spatially varying time-steps which are multiples of global minimum time-steps. The
adaptive technique refines the spatial and/or temporal grid whenever preselected differ-

ences exceed certain threshold levels. Results for internal flow problems are presented

to demonstrate the accuracy and computational efficiency of this algorithm. Examples
include blast waves and scramjet inlets. The chemistry models include a Lighthill gas

and a two reaction hydrogen combustion.

Thesis Supervisor: Dr. Judson R. Baron
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The field of Computational Fluid Dynamics (CFD) has evolved during the past two

decades to an extent that computational models are playing an increasingly important

role in the design of aerodynamic vehicles. This rapid evolution of CFD is prompted

by increasing costs associated with experimental design and decreasing costs of com-

puter hardware, as well as the detailed behavior that can be determined when the

relevant physics can be modelled. The design of hypersonic vehicles and their engines,

for example, demands some sort of modelling to account for real gas effects. However,

calculations involving non-equilibrium reacting flows can be an order of magnitude more

expensive than corresponding frozen flow solutions. The computational cost increases

as more realistic multi-component and multi-reaction systems are considered. The costs

increase even further if effects of vibrational and electronic non-equilibrium, radiation,

plasma dynamics, non-ideal equations of state, condensation and ablation, realistic mod-

els for diffusion coefficients for multi-component systems, etc., are considered.

This thesis is concerned with fluid dynamics involving the simultaneous occurrence

of chemical reactions and convection of mass, momentum and energy for both steady

and transient situations. Chemical kinetics pertaining to finite rate chemistry intro-

duces non-equilibrium features which interact with the classical fluid rate processes.

For the numerical examples described here the effects of viscosity, diffusion and heat

transfer (transport effects) are neglected and the flow description is based upon Euler

equations and species conservation equations in conservative form. Quasi 1-D and 2-D

flows are considered with multiple number of reactions. A number of examples in one

spatial dimension are used as vehicles to demonstrate certain important concepts and

to illustrate specific analytical and numerical techniques.
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1.1 Motivation

The importance of understanding the interactions pertaining to chemically reacting

flows has recently become of paramount nature due to the renewed interest in hypersonic

flows and advanced aerospace propulsion systems. A concerted effort is now directed

towards the research and development of the National Aero-Space Plane or NASP.

The hydrogen fueled scramjet (supersonic combustion ramjet) is regarded as a strong

candidate for propelling such a hypersonic transatmospheric vehicle. The design of such

an engine demands understanding the fluid dynamics of hydrogen-air combustion and

flame-holders over a range of flow conditions. The high temperature non-equilibrium

effects of chemical reactions associated with the re-entry of Orbital Space Shuttle or

similar hypersonic vehicles is not fully understood. Accurate numerical modelling for

these situations can provide valuable insight into the nature of reacting flows. Other

areas of related real gas interest are rocket plumes, aircraft signatures, materials ablation

under lasing action, gaseous radiation effects, etc. The aerodynamic processes governing

such reacting flows are exceedingly complex and can involve strong interactions between

chemical and fluid dynamical effects.

Chemically reacting flows often require lengthy computations due to a larger num-

ber of descriptive conservation equations which correspond to multi-component species

in multiple non-equilibrium reactions. The calculations are particularly costly due to

the stiffness introduced by finite rate chemical kinetics with appreciably different time-

scales. These factors are the motivation for a search for more efficient and accurate

algorithms for reacting flows. For example, the concept of equation adaptation, i.e.,

introducing a simpler set of equations under special conditions, can be used when there

are sub-domains of frozen flow in an otherwise relaxing flow system. The expensive

calculation of source terms and their Jacobians may be avoided when the static tem-

perature remains below a pre-specified threshold temperature, since the contribution

from such terms is negligible compared to the convective terms. For these frozen flow

situations the chemical time-scales become large compared to the convection time-scale.

By-passing the chemical source term manipulations is almost as effective as solving a
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system with only four conservation equations, because the major costs associated with

the computations of reacting flows are the calculations involving the chemical source

terms.

The accuracy of computer simulations depends in part upon the size of computa-

tional cells in space and time and also on the accuracy and stability of the numerical

algorithm. The limitations pertaining to computer resources for adequate spatial and

temporal resolution has led to the desire for performing adaptation in both space and

time. The resolution limiting restrictions are primarily imposed by cost considerations

and computer hardware constraints such as insufficient computer memory, insufficient

data storage facilities and slow processing speed [100]. The term spatial adaptation is

associated with the description of the numerical procedures that automatically assign

finer spatial cells in the regions of interest [15,33,55,130]. The regions of added reso-

lution delineate features which are detected by examining those cells characterized by

steep local changes [35] or high truncation errors [13]. Spatial adaptation generally re-

sults in smaller cell dimensions in regions where these features cluster and coarser cells

in relatively uniform flow regions.

The concept of spatial adaptation can be extended to temporal adaptation, with an

allowance for spatial variation of the cell time-steps so as to avoid the severe and costly

constraint of a globally minimum time-step. For the procedure presented here it auto-

matically increases the temporal resolution in the regions of large temporal gradients

of some pre-selected variables. Thus the concept is similar to its spatial counterpart in

the sense that smaller time-steps are taken in the regions of local rapid adjustments.

The utilization of variable time-steps for unsteady flows through temporal adaptation

will be demonstrated to be an efficient way of handling time-differencing. The temporal

procedure results in multiple integration passes for cells with smaller time-steps but

eventually all the cells arrive at the same time-value. The time difference between two

consecutive isotemporal surfaces is the maximum time-step allocated to any cell and is

referred to here as time-stride.
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1.2 Past Studies

It is relevant to take note of earlier work related to supersonic finite rate processes

from an analytic, design and computational point of view. The present work's concern

with adaptation procedures for unsteady problems relates also to efforts dealing with

unsteady blast waves, stiffness and mesh enrichment. Typical sources for the basic

governing equations are Degroot and Manzur [40], Toong [131] and Williams [141].

The phenomenon of supersonic combustion has been observed and known for more

than a century. The concept of detonative combustion originated in the latter part of

the nineteenth century when French chemist Le Ch&telier noted that some combustible

mixtures under certain conditions developed combustion waves which possessed ex-

traordinarily high velocities. About 1900 Chapman [28] and Jouguet [70] independently

proposed explanations for such phenomenon. They suggested that detonations can be

regarded as shock waves followed by combustion which is triggered by the high tem-

perature aft of the shock rather than the diffusion processes usually associated with

deflagrations [92].

Much more recently a number of studies have been applied to scramjets. These

scramjets are advocated to provide a viable propulsion option for flight speeds in excess

of Mach 5 [6,69,139]. For such vehicles the combustor is integrated into the airframe;

the vehicle itself provides the engine with hot compressed air through inlet shocks and

expansion through a streamlined exhaust while keeping the drag associated with the

engine to a minimal. Analysis predicts that the contribution of the vehicle forebody

and afterbody can be responsible for up to 70% of the net thrust [62].

The overall work has involved examination of engine design concepts, simple analytic

techniques for evaluating performance, experimental investigation to provide critical

design information and numerical solutions to provide detailed insight into the implied

reacting flows. Dugger et. al. [45] have examined the performance of a ramjet engine by

employing a constant pressure supersonic heat addition behind flame-induced oblique

shocks. Morrison [92,93] analyzed the oblique detonation wave ramjet's performance
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for varying stoichiometric hydrogen-air equivalence ratios and a range of flight Mach

numbers from 6 to 16. In the oblique detonation wave ramjet the compression process is

moderate and carried out to relatively low pressures and temperatures; the detonative

process supplies additional compression and high temperatures for combustion in very

short length scales. In addition to ramjets characterized by standing detonation waves,

there are diffusive burning scramjets in which the compression process in the inlet is car-

ried out to high pressure and temperature for reaction to occur in relatively larger spatial

domains. For these, the compression or diffusion process is commonly treated separately

from the combustion process for the purpose of analysis. Billig [16] provided guidelines

for the design of various inlet geometries for scramjets. Northam and Anderson [98] dis-

cuss the design philosophy of the NASA Langley's fixed geometry airframe-integrated

modular scramjet; an extensive bibliography is provided ibidem. Other studies that

discuss the analytic and design aspects of the scramjet concept are [1,21,83,120]. Since

a design procedure generally involves repetitive computations, which vary the parame-

ters influencing design or evaluate new design concepts, an efficient algorithm for such

calculations would be very beneficial.

Past numerical studies on supersonic reacting flows have been quite limited. The

main reason had been the limitations in computer resources in providing a description

for reasonably detailed models. Although a number of strides have been made in com-

puter architectures in the recent past, it is still not possible, for example, to provide a

numerical solution of a complete engine which takes into account reactions, turbulence,

unsteadiness, etc. Therefore it is still desirable to study flow fields on a component

basis and at the same time utilize efficient and inexpensive algorithms. Drummond [41]

has examined transverse fuel injection through a 2-D slot in a scramjet engine using

mass diffusion terms but in the absence of chemical reactions, and utilized an algebraic

turbulence model. The results show a small separated region in the vicinity of the

injector and he speculated that ignition would commence in this region. Drummond

and Weidner [44] have considered the mixing of transverse and parallel streams of air

and fuel in a converging-diverging channel with embedded struts which eject the fuel. A

complete reaction model was used for the hydrogen fuel. The calculations again indicate

a small separated region near the injectors where significant reaction occurs. The pri-
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mary reasons for this are the subsonic conditions and the complete nature of the reaction

model. Griffin et. al. [59] have considered injection of parallel fuel-rich exhaust in an

axisymmetric geometry while utilizing a Parabolized Navier-Stokes (PNS) code with a

local, diffusion controlled, chemical equilibrium system. This paper also discusses some

inlet design aspects and ramjet combustion modelling. The radiation effect for gray and

non-gray models are studied for simple geometries in References [84,85], whereas direct

simulation Monte Carlo method coupled with a dissociating and ionizing gas model

with thermal radiation is considered in Reference [94]. Although the current research

does not address these issues, such references are cited here to indicate the diversity and

complexity of the hypersonic flows and to emphasize that if quantitatively accurate sim-

ulations are desired, then all the pertinent physics must be taken into account. However,

currently a comprehensive numerical analysis is not possible and hence research efforts

should be directed in designing more effective modules for specific physical aspects which

could eventually be integrated. Other references that have employed numerical simu-

lations in hypersonic reacting flows are [12,18,25,37,38,46,48,56,67,73,89,117,142,146].

The bibliography provided here is by no means complete, it represents only a small

fraction of the studies that have been carried out. A detailed list can be found in the

survey papers of References [11,98,139].

Knowledge is limited as well with respect to the dynamics of unsteady (whether

reacting or frozen) flows. It is important to understand flow fields in response to tem-

porally varying conditions. There are relevant questions about such inflow conditions

and their influence on the rest of the flow field. Other questions pertain to the influence

of an oscillating fuel supply on flame stability. Kumar et. al. [75] have considered one

such case and examined an oscillating shock interaction with a scramjet combustor uti-

lizing a simplified combustion model. Another area where unsteady flows are involved

and need further study, pertains to the propagation of detonations in gases and their

interactions with stationary objects. Among many studies, blast wave interactions have

been considered by [3,126,127,135,137,144,145,147].

The phenomenon of numerical stiffness pertaining to chemical source terms has been

known since the early fifties. One of the first algorithms to cope with the difficulties of
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integrating stiff ordinary differential equations was suggested by Curtiss and Hirschfelder

[31] for chemical kinetics studies. Dahlquist [32] indicated numerical instability as the

cause of the difficulty and provided basic definitions and concepts that are useful in

classifying and evaluating algorithms from a stiffness perspective. A detailed account

of stiffness can be found in the text by Gear [54] and a number of survey papers have

recently appeared - typical examples being Bui et. al. [22], Enright and Hull [50] and

May and Noye [88]. Radhakrishnan [109] has compared a number of stiff and nonstiff

methods. Applications of the approach to systems of partial differential equations have

been carried out by Bussing [23,24], Drummond [42], Rivard [114] and Stalnaker et. al.

[122].

Recently a number of studies have been carried out on mesh enrichment to capture

local features via spatial adaptation and thus concentrate computing resources where

they are needed most. The techniques have been applied to elliptic [130], parabolic

[97] and hyperbolic [13] systems of equations with typical references as indicated in

these areas. There are studies in which the adaptive grid nodes are placed according

to variational, finite-element formulation [55,80,95,104]. Methods in which the overall

computational domain is subdivided into independent zones with non-overlapping or

patched grids have received attention in [63,110]. Other methods redistribute and/or

cluster grids in the vicinity of known features [7,19,47,49,58,66]. An alternate approach

is to do successive local embedding without moving the grids [15,35,99,128]. In this

approach rectangular fine grids are superimposed on an underlying coarse grid in those

regions where solution accuracy is inadequate. Berger [13,14] bases the refinement

decision on the estimates of local truncation errors by utilizing Richardson extrapolation.

Dannenhoffer and Baron [36,34,35] base the refinement on first differences of density

for transonic applications. This locally embedding approach is the basis of spatial

adaptation in this thesis and is discussed in detail in Chapter 5. Very few adaptive

procedures have been applied to reacting flows, References [106,121,125] have considered

adaptation in one spatial dimension and Reference [105] has applied the embedded mesh

approach to two spatial dimensions. An extensive list of papers concerned with spatially

adaptive grids can be found in the survey papers of [9,129].
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In addition to refinement in space, grids may be refined in time as well, so that

smaller time-steps are taken on spatially fine grids or where rapid changes occur. For

frozen flow applications this is generally done by keeping the CFL (Courant-Friedrichs-

Lewy) number nearly the same on coarse and fine grids [14], so that the same integrator

is stable on each grid. The smallest time-step does not have to applied on the entire

grid. Although a number of adaptive examples have been carried out for unsteady

flows [80,81,104,105,111,143], most of these applications have been performed by utiliz-

ing global minimum time-steps. Osher and Sanders [101] have discussed a conservative

temporal interface formulation that links together an arbitrary number of space regions

containing fine and coarse time increments in one spatial dimension. The interface dif-

ference equations are formulated in a predictor-corrector form and it seems that their

generalization to include additional topologies for two spatial dimensions would be com-

plicated. They have also proved that utilizing a variable step time-differencing leads to

correct physical solution for a scalar, monotone discretization in one spatial dimension.

Lohner et. al. [81,82] have proposed a domain splitting technique to advance the so-

lution with different time-steps on different portions of the mesh for multi-dimensional

problems. These references also propose an integration sequence for cells in regions of

time-steps that differ from global minimum values by integral multiples. The temporal

interfaces are handled by regarding two layers of cells to be a part of both temporally

fine and coarse regions and applying interface conditions at the boundary nodes of these

layers. The interface conditions depend upon advancement of the time-steps in regions

of temporally fine or coarse resolution. A similar integration sequence is proposed in

this thesis for cells characterized by different temporal levels and the interface condi-

tions are applied in the spirit of cell by cell integration and as such temporal interfaces

enter into the calculations only at the time of updating of the state vectors. The details

of temporal adaptation and interface manipulations are presented in Chapter 6.
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1.3 Present Work

The objectives of the present study are three-fold. Firstly, to examine predominantly

supersonic reacting flows in which the transport effects may be neglected. Secondly, to

perform spatial adaptation in regions of large spatial non-uniformities. This aspect

is applicable to both steady and unsteady flow situations. The third objective is to

perform temporal adaptation, for certain unsteady applications. Emphasis is placed

on understanding supersonic combustion of hydrogen in air and moving blast waves

in dissociating gases. The unique part of the work, relative to previous studies, is the

coupling of spatial and temporal adaptation procedures for chemically reacting systems.

A computer program entitled STAR (Spatio-Temporal Adaptive Reactive) Code has

been developed as a part of this effort that implements the concepts that have been

developed. The procedure is referred to as the spatio-temporal adaptive algorithm.

The following sub-sections provide some justification for using an Euler system of

equations for the problems considered here and why spatial and/or temporal adaptation

is important. This is followed by an overview of the spatio-temporal adaptive procedure

as applied in this thesis.

1.3.1 Why Use Euler Equations?

The immediate result of the cost factor appears as constraints on the software. It

is less expensive to carry out potential flow calculations compared to Euler equations

which in turn are relatively cheaper than a system involving the transport effects of

viscosity, heat transfer and species diffusion. The costs are not associated just with

complex models, but that the resolution requirements for both space and time increase

with the modelling of additional physics. For example it will be a waste of effort to

solve for Navier Stokes equations on the same sort of grid as one would typically use for

inviscid flows. For most examples presented in this thesis, using potential flow solver

would be inappropriate since the rotationality associated with strong shock structures

for supersonic and hypersonic flows would not be captured correctly. However, since the
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transport effects are usually limited to regions whose typical dimension (e.g., boundary

layer thickness) is generally small compared to the reference dimension (e.g., chord

length), the Euler equations can be easily used to understand salient features of these

flows.

One of the concerns in combustion applications is that streams of reactants may be

impinging or flowing parallel to one another and at the same time mix under the action of

differing momenta and molecular diffusion and hence reacting to form products. Thin

viscous shear layers are important in determining the location of separation and the

generation of vorticity in the flow. However, for the predominantly supersonic streams

in this thesis, the diffusion effects are still limited to small regions in the vicinity of

slip surfaces. Furthermore, as has been experimentally observed by Papamoschou and

Roshko [102] for supersonic mixing layers, the shear layer spreading is about one quarter

that of an incompressible layer at the same ratios of velocity and density. Hence Euler

equations can be used, without serious misgivings, for these flow situations. Although

the capability of solving the full 2-D Navier Stokes equations, on a cell by cell basis,

has been added to the STAR code, this capability is not tested on a wide variety of

problems and extension to include turbulence modelling has not been done.

1.3.2 Why Use Adaptive Grids?

It is well-known that greater accuracy is realized when finer grids are utilized in

both space and time. This is because the truncation error of the numerical schemes is

dependent upon fineness of the cells; with increasingly finer cells this error tends towards

zero. It is also well-established that an accurate description of small structures in a flow

can be realized generally by spanning the structure with an appropriate number of

computational cells. The uncertainty pertaining to the location of a particular feature

within a cell of course could be reduced by increasing spatial resolution. If the flow

structures are not adequately resolved, they become numerically diffused since a discrete

model inherently spreads flow discontinuities over several cells and thereby degrades

accuracy. Hence spatial resolution is essential near features like shocks, relaxation zones,
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vortices, slip lines, etc.

The classical way to provide adequate resolution for the capture of features is to use

globally fine grids. This usually results in a tremendous number of cells which places

extensive demands on the CPU memory. Furthermore, global refinement can result in

prohibitively time-consuming computations and hence is not a very attractive option.

The loss of efficiency can be countered by the use of adaptive gridding techniques. The

spatial adaptation approach utilized in this thesis locally divides the cells to yield ad-

ditional resolution near features characterized by large spatial non-uniformities. This

approach is discussed in detail in Chapter 5 and follows the procedure presented by

Dannenhoffer [33]. The extensions include utilization of multiple variables in deciding

on regions of added resolution and a procedure for adding multiple layers of buffer zones

to spatially embedded regions. The adaptive embedding algorithms have the advantage

that meshes are refined only where necessary and as the solution evolves, thereby pro-

viding accurate and relatively inexpensive solutions. Since the local embedding can

be carried out in a recursive manner, very fine grid spacing can be maintained in the

vicinity of the physical structures being captured. Furthermore, since the resolution is

enhanced only locally at the features, with coarser grids near successively uniform flow

regions, the computations with such grids consume significantly less computer resources

than global refinement. There are substantial savings in both CPU time and memory.

It is clear from the CFL constraint that the resolution requirements in space gen-

erally imply a corresponding imposition on resolution in time. For most frozen flows

this is the primary constraint. However, for reacting flows other temporal resolution

requirements may be even more stringent than those implied by the spatial resolution.

Similarly for moving blast waves the maximum eigenvalues across a shock can be an

order of magnitude different. Hence the resolution in time may be controlled only in

part by the resolution in space. For cases where strong coupling does exist between

the two, allocation of temporal resolution simply follows from that of spatial resolution.

For those cases, in two spatial dimensions, increasing the spatial resolution by a factor

of four imposes a corresponding factor of two in time-steps; hence there is an eight-fold

increase in computational work to advance to a given interval of time.
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In chemically reacting flows, the computations of chemical kinetic terms is often

more expensive than evaluations of convective and/or diffusive transport terms. The

cost increases with the number of species, the number of reactions connecting these

species, the number of spatial cells and the inverse of the time-step size. For flame and

detonation simulations the overall calculation may take two or more orders of magnitude

longer compared to frozen flow situations [100]. Calculations may also be costly due to

stiffness introduced into the equations by including finite rate chemical kinetics which

are necessary to describe the physical situation.

When the reactive equations are stiff in the sense that numerical stability rather

than accuracy dictates the time-steps, then an implicit scheme can be used to partially

alleviate the computational overheads. The implicit approach presented here utilizes the

concept of Newton-Raphson expansion of the source terms as proposed by Bussing [23]

for steady state applications. However, for unsteady flows the time-steps must be ap-

propriately small to resolve the features involving local rapid chemical adjustments.

These are generally changing patterns of resolution requirements as the rapid transients

form, gather strength, interact and deform other flow features and eventually decay in

different periods and positions. Hence there are conflicting requirements on unsteady

reacting flows in the sense that for efficiency the advancing time-steps may have to be

reduced in certain portions of the space-time domain where adjustments occur and a

utilization of longer time-steps be made where there are negligible temporal gradients.

Just as different spatial resolutions are allocated at different locations within a spa-

tial grid in order to achieve CPU time gains, it would be beneficial to take advantage of

the large spatial variations of time-steps for reacting flows. In fact gains due to utiliza-

tion of different time-steps also can be achieved for unsteady frozen flows if there exist

substantial variations in spatial cell volumes, which indeed may well be a result of spa-

tial adaptation. Similarly for moving blast waves the eigenvalues involved in the CFL

constraint may change substantially across the shock that may result in a corresponding

variation of time-steps across this shock even for spatially uniform grids. An efficient

time-differencing technique is developed in this thesis that makes possible advancement

of cells on a step-size which is a multiple of a global minimum time-step. Without this
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technique the severe and costly constraint associated with a globally minimum time-

step would be applicable for time accuracy and computational costs would be literally

immense. In this technique the cells with the same time-step are integrated and up-

dated together on different integration passes of the temporal adaptation cycle but the

majority of small time-step cells fall in only a small portion of the overall space/time

domain. Once all integration passes are completed for each time-stride unit, all nodes

in the domain arrive at the same time-station.

1.4 Overview of Adaptive Procedure

Before the application of numerical solution to a problem, it must be decided whether

interest is restricted to a steady state limit or that an unsteady approach is relevant.

Steady state problems may involve local time-stepping, multiple grids and other accel-

eration techniques, whereas for unsteady flows such techniques are clearly inapplicable.

It is suggested that temporal adaptation would be more appropriate for the unsteady

case. Spatial adaptation is beneficial for both approaches; however, for unsteady flows,

spatial adaptation procedure must be applied frequently because the features to be

resolved may be moving and the adaptive grid clearly must track these features at a

synchronous speed. For such unsteady flows the spatial adaptation procedure may have

to be applied after the completion of each and every time-stride. For the steady state

the stationary features require an adaptive procedure only occasionally and the number

of such operations generally equals the number of the spatially embedded levels desired

for the cells. In such cases the adaptive procedure is generally applied after the residuals

have subsided below a pre-determined level.

It is not imperative to do reverse embedding for steady state applications; however,

it does become necessary for unsteady flows to allow for a cell fusion capability since

otherwise grids may become uniformly fine after a while and the advantage of dynamic

embedding would be lost. Since the rate of change of flow features may be very large

for certain unsteady applications, it is necessary to extend the spatially resolved region

by a certain number of cells to ensure that the flow features will remain within this
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resolved region during the next time-stride unit. There is no such need for steady state

flows due to the stationary nature of the flow features.

For steady state applications there clearly is no need to have adequate time-step

resolution and implicit schemes involving large time-steps which alter the transient

history may be used. This is obviously inappropriate for unsteady situations, although

implicit schemes which only limit the time-steps in the regions where dynamic changes

occur may be used.

The choice of initial grid conditions is especially important for an unsteady flow. If

large spatial gradients are present in the initial flow field and the spatial grid is coarse

in their vicinity, the initial integrated solution will be degraded and will propagate as

such to other spatial locations at later time levels. Of course, this is not as important

in cases which lead to dynamic unsteady periodicity for large times. The subdivision

of meshes necessitates assignment of state vector at the newly created nodes. A poly-

nomial interpolation of these initial values based upon the surrounding nodes may be

inconsistent with the initial condition. For example a shock tube problem suggests that

finer cells be inserted near the contact discontinuity surface; a linear interpolation for

nodes bordering this initial step function would degrade the step function. The pro-

cedure which involves care in assigning the initial values at the newly created nodes

is referred to as pre-embedding which is frequently performed prior to the execution of

the integration' process. Pre-embedding is unimportant for steady state flows and any

interpolated values may be used at the newly created nodes.

The spatio-temporal adaptive algorithm discussed in this thesis is summarized in

this paragraph and it generally assumes that unsteady flow problems are under consid-

eration. The algorithm periodically examines the evolving numerical solution, applies

spatial adaptation to the existing grid, determines an appropriate time-stepping se-

quence for each cell in order to make up consistent time-stride units for the entire

domain, and finally integrates the equations. The spatial adaptation involves the de-

tection of regions of large spatial non-uniformities and subsequent subdivision of the

corresponding grids. Reverse embedding to a coarser mesh is allowed up to the initial
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coarsest level global grid. When the initial flow field on a coarse grid involves spa-

tial non-uniformities, consistent pre-embedding is applied without degrading this initial

field. In a similar manner the temporal gradients are monitored so as to maintain

sufficiently small time-steps for adequate local resolution and stability. The time-step

resolution takes into account the classical domain of dependence restriction and the

requirement imposed by large non-equilibrium source terms. The spatial and temporal

resolution requirements are generally coupled through the CFL restriction for frozen

flows. This coupling also exists for the criterion which takes into account the variations

of the source terms. The algorithm will now be described in somewhat more detail.

The procedure starts with the selection of a suitable global stationary grid in space

and a provision of initial conditions on this grid. Pre-embedding may be needed for

initial coarse grid in the regions involving large spatial non-uniformities. As noted

earlier, pre-embedding is the same as spatial embedding except that the assignment at

the newly created nodes is based upon the actual physical conditions at the initial time

rather than the interpolated values from the nearby nodes (See Chapter 7). Spatial

adaptation differs from pre-embedding in the sense that it is followed by subsequent

integration of equations and may involve fusion of cells, whereas the objective of pre-

embedding is to merely add enough resolution to the initial grid so that the gradients

are appropriately represented without being diffused. The process of pre-embedding is

generally repeated a number of times, until the desired spatial level of cells is achieved,

before the execution of normal adaptive procedure can proceed.

Once the integration procedure is started, the evolving solution is examined for re-

gions of relatively large gradients of some pre-selected criteria variables and the regions

where these gradients exceed a threshold level, the grids are locally divided. Quadrilat-

eral cells in two spatial dimensions are used for this purpose and the refinement of a cell

is accomplished by dividing the cell into four subcells. Alternatively, when associated

gradients diminish on a previously refined grid, and become less than another critical

limit, those contiguous grids may be collapsed while making certain that the cells to

be merged are those from the same parent cell. The initial (coarse) global grid is kept

fixed by insisting that the coarsest cells (spatial level zero) be never merged to a coarser
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state, no matter how smooth the evolving solution proves to be. In summary, the spatial

adaptation procedure comprises of the following sequential operations (1) local embed-

ding or cell division, (2) extension of spatially embedded regions, (3) coarsening or cell

fusion in other regions, and (4) removal of the knottiness in the grid by avoiding islands

and voids.

After the alterations are completed in the spatial grid structures, a sequence of time-

steps is determined for all the cells in the domain. The cells with the same time-step

are integrated and updated together on different integration passes of the temporal

adaptation cycle. Once all the integration passes are completed, all the nodes in the

domain arrive at the same time value (time-station) and a time-stride is completed.

Depending upon the rate of variations of the flow features, the spatial adaptation may

follow after this temporal adjustment or a number of time-strides may be carried out

prior to the next spatial adjustment of the grids. The number of time-strides between

two consecutive spatial adaptation procedures is user-controlled and is not dynamically

computed by the algorithm, since this is a complicated business and is highly problem

dependent. The user is generally aware of an expected rate of variations of feature

properties and s/he could simply ask for the spatial and temporal procedures to alternate

each other in a worst scenario. The integration of the equations continue until a desired

number of time-strides is completed or when the time-level exceeds some user-supplied

value.

1.5 Overview of the Thesis

This thesis describes the explicit and implicit numerical procedures and emphasizes

the development of spatio-temporal adaptive techniques.

The conservative differential equations that govern the dynamics of reacting flow

are outlined in Chapter 2. The equations are presented with the effects of viscosity,

heat transfer and species diffusion included. The constitutive relations for the mixture

properties are based on ideal mixture assumption. The mass action-rate equations are
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described by generalized Arhenius kinetics. The inviscid equations are then specialized

for Cartesian and generalized coordinate systems and the normalization is discussed.

The determination of temperature from the state vector is explained for a linear tem-

perature model for constant pressure specific heats of individual species. The chapter

concludes with a description of chemistry reaction models used in the thesis.

The finite difference equations and the solution method of the undivided grids is

based on Ni scheme [96] and is described in Chapter 3. The difference equations for

both one and two spatial dimensions are derived and the artificial diffusion model is

explained. The treatment at the spatial interfaces, or the locations where the grid

changes abruptly, is explained for two different approaches.

The difficulties encountered in the numerical solution of stiff chemical systems are

presented in Chapter 4. The stiffness is examined for a linearized scalar source model

in one spatial dimension and stability analysis is carried out. Two possible remedies

to treat stiffness are presented; this may be accomplished by using first order implicit

schemes or by using explicit schemes with the source terms modified in a particular

manner.

Chapter 5 begins with an explanation of reasons why spatial adaptation is desired

for computational models. The utilized data structure is detailed which allows rapid and

efficient implementation of the spatial adaptation procedure. The methodology for the

detection of flow features is based upon first differences of multiple components of spatial

criterion vector. The scalar refinement parameter is based upon unbiased variabilities

of these components and removes the correlation between individual components. The

data structure details for grid division, grid fusion and the extension of spatially resolved

regions is presented. The chapter concludes with the discussion on the avoidance of grid

knottiness like islands and voids.

The concept of utilizing variable time-steps for solving time-accurate transient prob-

lems is developed in Chapter 6. It begins by examining the factors which limit the com-

putational costs and the ways in which these costs can be reduced. The issue of temporal

resolution is discussed in Section (6.2) for frozen and reacting situations. Illustrative
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examples are given in Sections (6.3) and (6.4) for one spatial dimension and time-stride

comprising of two time-steps. The temporal adaptation concept is generalized to include

larger time-stride units in the last section.

The initial and boundary conditions are discussed in Chapter 7. The implications of

both physical and numerical boundary conditions are described. The initial conditions

include those for a shock tube and a moving shock and for a frozen or dissociating gas.

An approximate characteristic analysis is presented for relaxing flows and is applied to

subsonic inflow/outflow boundary conditions.

Chapter 8 contains the computational results. Selected examples for one and two

spatial dimensions are presented for a perfect gas, Lighthill dissociating gas and Rogers

and Chinitz [115] combustion model for hydrogen and air. The flow types include shock

tubes, moving shocks, steady state and oscillating inflow.

Major conclusions are presented in the final Chapter 9. A discussion of possible

extensions to the developed spatio-temporal adaptive algorithm is also presented.

Four appendices complete the thesis. Appendix A describes the details of the eval-

uations of Jacobians, eigenvalues and eigenvectors for the flux vectors. Important con-

siderations which were taken into account while developing software are presented in

Appendix B. A description of the utilized data structure from a coding perspective

is given in Appendix C, this also includes a detailed description of the logic for cell

division, fusion and buffer zone addition. The last appendix appears as a separate vol-

ume, that includes sample input files for the code, synopsis of computer variables in

the common blocks and a listing of the code itself. Also included are graphics interface

routines for generating plots based upon the data structure of the pointer system that

was developed.
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Chapter 2

Governing Equations

In this chapter the conservation equations for a general three-dimensional flow of a

chemically reacting gaseous mixture are outlined. An ideal gas mixture is assumed, i.e.,

the components of the mixture are regarded as perfect gases and Dalton's law holds for

the mixture. Although effects pertaining to molecular transport phenomena have been

neglected in this research, the terms describing such effects are retained in Section (2.2)

for the sake of completeness and possible future extensions. The governing equations

are presented in both vector and indicial tensor forms. The tensor form is useful in

laying out the basic integration scheme whereas the vector form is important when

using generalized curvilinear coordinates. For a detailed derivation of the conservation

equations References [40,131,136,141] may be consulted.

The chapter starts with some introductory remarks and a description of full con-

servation equations in a 3D system. Section (2.3) summarizes the Euler equations for

quasi-one-dimensional flow, whereas Section (2.4) summarizes the corresponding two-

dimensional equations and discusses normalization. Section (2.5) discusses the Euler

equations in a generalized transformed coordinate system. Section (2.6) explains the

determination of temperature from the caloric equation of state. Section (2.7) discusses

a general procedure of determining the equilibrium constants and suggests generalized

Arrhenius form as a simple model. Finally Section (2.8) discusses the chemistry models

used in the current research.
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2.1 Introductory Remarks

Fluid motion is governed by the conservation of mass, momentum, energy, and

species, various state and constitutive equations, and proper initial and boundary con-

ditions. For a large class of situations, irreversible flows are described by linear functions

of thermodynamic forces, as expressed by the so-called phenomenological laws. For ex-

ample, Fourier's law of heat conduction expresses the heat flux as a linear function of

temperature gradient. Similarly, Fick's law establishes a linear relation between the

diffusion of mass and the concentration gradient. In a similar manner the phenomenon

of thermal diffusion or Soret effect describes the diffusion of mass caused by temperature

gradient. A reciprocal phenomenon, viz. the flow of heat resulting from concentration

gradients is referred to as Dufour effect [40]. The effects pertaining to heat conduction,

diffusion, etc. are often classified as direct whereas Dufour effect or thermal diffusion is

labeled as cross phenomenon [131].

It is often projected by the CFD community that the advent of more powerful com-

puters will allow routine solutions of the Navier-Stokes equations and therefore the need

for doing experimental research will diminish. Navier Stokes equations are the subset

of the actual fluid mechanic description that involve only direct linear modeling of some

irreversible phenomenon and would not delineate situations dominated by other real

effects. Although an attempt is made here to put forward equations describing the

physics and chemistry of fluids with domain of application somewhat wider compared

to the usual Navier Stokes equations, these equations are still limited in applications.

Situations where these equations may be dubious will be pointed out as the need arises.

The equations describing simulations have no bearing on nature itself, the limitations of

the computational models are irrelevant so far as the experimental research is concerned.

On the other hand there are restrictions on the experiments which may be non-existent

while performing computations. It is the contention of the current author that compu-

tations will never replace experiments in their entirety; however, as our computational

models will become more realistic these two approaches will be used in complementary

rather than adversary roles.
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2.2 Full Conservation Equations

For the equations of fluid motion the chemical mixture is assumed to be comprised

of S species involved in R chemical reactions of the form

S S

ZaarAa = psrA, r = 1,**,R (2.1)
s=l s=l

where cr,, and r,, are the dimensionless stoichiometric coefficients for the th species in

the rth reaction, and As is the sth participating molecule.

2.2.1 Continuity Equation

The global continuity equation in conservation form is

a + a(p ( uj) = 0 (2.2)

and the corresponding generalized vector form is

Op P + V (pV) = O (2.3)

where V = ( 1 , u 2 , U3 ) denotes the velocity vector and p is the global (mixture) density.

2.2.2 Momentum Equations

The momentum equations in conservative tensor form are

(pui) + (puiu - rii)+ - = pYf,, i = 1,2,3 (2.4)
ji aj I '9=1

where the stress tensor components, rij, for a Newtonian mixture is given by the fol-

lowing linear phenomenological law

=ij =(ui+ 8u a ±Si 3 auk (2.5)azr azi +ei azx
here
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.u = first coefficient of viscosity for the mixture

A = second coefficient of viscosity for the mixture

fai = ith component of the external force acting on the sth species

8ij = Kronecker delta

Y, = mass fraction of the sth species.

The first coefficient of viscosity is also known as the dynamic or shear viscosity

coefficient. Sometimes the bulk viscosity coefficient, 13, is introduced instead of the

second coefficient, A, which is given by

2= + (2.6)

Note that Stoke's hypothesis yields

3 ak 3

(2 + 3) E - = E = 0 (2.7)
k=l k i=1

which implies that for a compressible gaseous mixture

2
A = -/i or = 0. (2.8)

However, this generally only holds for m6no-atomic gaseous mixtures. Note that the

stress tensor r can be written in the following generalized form

= [VV + (VV)T] + (V.V) I (2.9)

where I is a unit tensor and the superscript T denotes the transposition operation.

The momentum equation in general tensor form is

sa S
t (pV) + V (p o V)+Vp = V r + FspY (2.10)

-=1

where the symbol o implies the dyadic tensor operation. The generalized vector mo-

mentum equation can be written as

p [ - V x (V x V) + VV] = F,pY, - Vp + V(AV . V) +
at 2 3=1

,,V(V. V) + (VI. V)V + V2V +

V(V. VP) - (V. V)Vz. (2.11)
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2.2.3 Species Equations

The rate of change of mass fraction Y, of the sth species in a system at any time

is equal to the sum of three terms: (1) the influx of species into the system due to

advection, (2) the net rate of production of the species due to chemical reactions, and

(3) the net diffusional influx of this species into the system. The species equations in

vector form are

a
a (PYs) + V (pYV) = S - V (pYV ) = 1,...,S (2.12)

where W, is the net mass rate of production of the sth species per unit volume due to

all of the chemical reactions and V, is its diffusional velocity. This equation, in indicial

form, becomes

dt (pY)+ 8 0a(pUY+,Y) = V ,, =,1, ...,S. (2.13)
j=1 

The mass production rate W8, is related to the molal production rate iws by

W = mnwi t (2.14)

where ?ns is the molecular mass of species s. Since mass is conserved in each separate

reaction we have

S-

2(isr - a8r)ins = 0 , r = 1,.. ,R. (2.15)

Note that Equations (2.13) are not mutually independent. That is the sum of all S

equations results in the continuity equation, since

2EY = 1 (2.16)
s=1

and
S S

E W = E rw = . (2.17)
s=1 8=1

The last equation expresses the fact that mass is neither created nor destroyed due to

chemical reactions if nuclear transformations are excluded. The fact that summation of
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the diffusional mass fluxes over all species, with respect to an observer moving at the

local mass aerage velocity or barycentric velocity, must be zero translates into

S S

EJ = Zyv. = 0. (2.18)

The diffusional velocity V, is given by the so-called Fick's law. For multicomponent

gaseous mixtures the diffusional law becomes very complex because the diffusion flux

J, of each species depends upon the concentration gradients of all components in the

mixture. There are additional effects due to pressure gradients (when mass fraction

differs from mole fraction), temperature gradients (Soret effect) and differences in body

forces on molecules of different species [141]. However an approximate expression which

neglects coupled effects and lumps the multicomponent contribution is generally used

as a constitutive relation [131]

J, = pYsVs, -pDVY, (2.19)

where the diffusion coefficient Ds of species s is

1-Y8D = s , s (2.20)
,i=l M7-D,

where n is the molecular mass of the mixture which is given by

-1 = E (2.21)
=1 m

Dj is the binary diffusion coefficient for species s and i. Substituting Equation (2.19)

into Equations (2.13) results in

at _ (py)+s puy p Y.Y =W] b s=1,...,S. (2.22)

The species production rate is given by the following non-linear phenomenological

chemical kinetic expression

E = (/3r - aer) [Kfrft (Yt - Kbr ("Ye)] (2.23)
r=l / =1 / =1 ml

where Kfr, Kbr are forward, backward rate coefficients for reaction r and the exponents

c0ir, APr specify the order of this reaction for species 1. For elementary reactions aclr = aIlr
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and A, = fi,. In an attempt to reduce the total number of reactions, a chemical

reaction system is sometimes replaced by a single, one step irreversible reaction. For

such complete reactions, the order of reaction is often different from the molecularity and

the second term on the right hand side of Equation (2.23) is disregarded in calculating

the contributions to species production rate. For ease of understanding one frequently

defines the progress rate of a reaction as

l = K I , Y ( (2.24)

where a = ar, 8, for I = fr, br. Then the mass production rate of species becomes

R

Ir = mn, (flr - ca,) (fr - ibr). (2.25)
r=1

The quantity C, = pY,/th, is frequently known as the concentration of species . The

rate constants are assumed to be of the generalized Arrhenius form

Kf = ArT't' exp(-Efr/RT) (2.26)

Kbr = Kfr/Ker (2.27)

where K,r is the equilibrium constant for reaction r. These expressions implicitly assume

that all internal degrees of freedom (rotation, vibration, electronic excitation) are in

equilibrium with the translational mode, i.e., a single temperature is assumed for all

internal degrees of freedom. For most species (except near cryogenic temperatures)

the rotational mode is in equilibrium with the translational one. At temperatures of

order 10s K the vibrational modes of most species are not in equilibrium with the

translational modes and the above single temperature model becomes unreliable. Park

[103] has recently advocated a two-temperature thermo-chemical model which recognizes

the dependence of rate processes on both translational and vibrational temperatures.

He also assumes that electron temperature and electronic excitation temperature are

close to the vibrational temperature, and that rate constants are dictated by a geometric

mean temperature between the translational and vibrational temperatures. This also

means that an additional partial differential equation has to be solved for the vibrational

temperature.
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To extract the dimensions of Kf, consider a unidirectional single reaction with ad-

vection terms dropped, then the species rate is governed by

d -(r sr) Kfr II _J.dt - c
1=1

Hence the dimensions of Kfr are (mole/volume)(1- zr) time - l where z = Esl c ,.

In a similar manner the dimensions of Kbr are (mole/volume)(1 - z ) time -1 where Zb =

S, 4r, and the dimensions of K,, are (mole/volume)" where z, = *,(fr- a,,r). The

procedure for the determination of equilibrium constants will be discussed later in this

chapter.

2.2.4 Energy Equation

The total specific internal energy, E, of the mixture is defined as the sum of specific

internal and specific kinetic energies of the mixture

E = h- P + V2 (2.28)
p 2

where h is the specific enthalpy of the mixture. The conservation of the total specific

internal energy is governed by

a (pE)+V(pEV) = -V q-V-(pV) + V.(Vr)
s s

+V E pYF. + EpYV F., (2.29)
-=1 -- 1

where V q represents the overall heat flux which has contributions from (1) external

heat conduction, (2) heat radiation flux, (3) energy flux due to species diffusion and (4)

thermal diffusion flux. The external heat conduction flux is given by the Fourier law. For

a multicomponent fluid of non-uniform composition there are additional contributions

from the energy flux due to diffusion of various species with different enthalpies and the

coupled effects between transfers of mass and energy i.e., Dufour effect [141]. Neglecting

the coupled effect, which is usually small compared to the direct effects, the following

phenomenological expression for the overall heat flux can be obtained

s
q = -kVT + p E hYV + q, (2.30)

8=1
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where k is the coefficient of thermal conductivity for the mixture, q, is the radiation

heat flux and h. is the specific enthalpy of the species s which is given by

h = H+ CpdT.
To2'

(2.31)

Here Hf. is the standard specific heat of formation for species at the reference tem-

perature To and Cp, is its constant pressure specific heat.

Defining e = pE to be the total internal energy per unit volume, the indicial tensor

form of the energy equation becomes

at+ + + i = P Y. (Ui + Va)fs, (2.32)

with the following two constitutive relations. First, using Equations (2.28) and (2.31),

the caloric equation of state becomes

= Hf.d +2 p (2.33)
P s=l y= 2 p

and second, using Equations (2.30), (2.31) and (2.19), the heat flux components can be

written as

aT PHfS + C DTay, 
qi = -H - p ,'+ Cp. dT D - + q,.,ri i= 1,...,3.

2.2.5 Thermal Equation of State and Constitutive Relations

The conservation equations are supplemented by one or more constitutive relations

which express the relationship between state properties and transport coefficients. The

relationship describing the variation of temperature, pressure and density is referred

to as thermal equation of state. Since each gas component is assumed to be a perfect

gas satisfying Dalton's law of partial pressures, the equation of state for the mixture

becomes

(2.35)P = s Y
P s8=1 nb

The other constitutive relations pertain to the models for coefficients governing the

diffusion of momentum, energy and species. The individual species dynamic viscosities
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can be determined from the Sutherland approximation which results from the kinetic

theory using an idealized inter-molecular force potential and is as follows:

(T ) 15 To+ S. (2.36)

/2,9 To T + S,

where t,o and To are reference values and S, is the Sutherland constant. These reference

values are tabulated for some species in References [124,138]. The mixture viscosity can

be determined from Wilke's formula, [140]

S

=A ., S Nn, y. (2.37)

where
1 ({.+ ,i0.5 (A)0.25}2

~b --[8(+ (2.38)

The individual species thermal conductivities can also be computed from the Suther-

land law

k8 ( T O + S, (2.39)

where k,o, To and S, are constants. These values are also tabulated in References

[124,138]. The mixture thermal conductivity can be determined from the following

formula, [43]

k = Es (2.40)

where baj is related to id by

I { 1.0650,i if 8 j (2.41)

(2.41)
1.0 otherwise.

Chapman and Cowling used kinetic theory of dilute gases to arrive at the following

expression for binary diffusion coefficient D,j between species and j, [138]

Dsi = 0.1858 x 10-6 T [(mh + /MI 1]0 5 m 2/8 (2.42)

where T is the mixture temperature in degree Kelvin, p is the mixture pressure in

atmospheres, the effective collision diameter a,i is in Angstrom units (A) and nID is the
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dimensionless collision integral which can be approximated by

- (T\0.145 ( 2T, 2
( T ) + 2T + Tj) (2.43)

The effective temperatures T¶j and diameters 0,j are averages computed from individual

molecular properties, viz.,

a = 0.5(a + ) (2.44)

T = (T: To) 5.
The values of the effective temperatures and diameters are tabulated in Reference [138]

for some gases. Once the binary diffusion coefficients for all species combinations are

known, the species diffusion coefficients D can be computed from the approximate

formula of Equation (2.20).

This completes the set of governing equations and the constitutive relations. This

is an extremely rich set of equations. Combined with appropriate initial and boundary

conditions, these equations describe such interesting phenomena as flames, detonations,

combustion noise and instabilities, smoldering fires, shock tubes flows, turbulence, etc.

They are, in fact, sufficiently difficult to solve that entire disciplines have been devoted

to solving only subsets of them for specific applications. The difficulties encountered in

solving these equations stem from physical, computational and mathematical problems.

The input parameters, such as rate or diffusion coefficients, are either not known or there

exist vast discrepancies in the experimentally observed values. The other issue which

pertains to the understanding of physics is the inadequate treatment of the turbulence

phenomenon. The computational problems involve inadequate numerical methods to

resolve physical phenomena, insufficient computer memory, and prohibitively long CPU

time. The mathematical problems relate to stiffness introduced due to widely disparate

time scales.

In subsequent sections the effects of viscosity, diffusion, heat transfer and external

forces will be neglected, and consideration will be limited to either one or two spatial

dimensions. The thrust of the present study is the development of an adaptive algorithm

for applications involving unsteady inviscid (Euler) flows.
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2.3 Quasi 1-D Inviscid Equations

The governing conservation equations for a one-dimensional streamtube can be writ-

ten in the compact form
aU 8F

u + aF W. (2.45)at ax
Here

pA pAu 0

pAu F = A(pu2 + p) W pdA/dx (2.46)

AJ Au(c + p) 0

pAY pAuY A)sws

where A is the stream-tube area. The fourth entry in these vectors corresponds to

s = 1,... , S - 1, where one of the species equations has been omitted in favor of the

global continuity equation. The source terms Wtb are given by Equation (2.23). The

normalization of the quasi-one-dimensional Euler equations is similar to that for the

two-dimensional equations to be discussed next.

2.4 2-D Inviscid Equations

The compact form of the two-dimensional Euler equations is

au aF aG
(2.47)t + + ay = W. (2.47)

Here

P pu pv

pu pu2 +p puv

U pv , F= puv , G= pv2+ p
e (e + P)u (' + P)v

PY8 puY, pVY, 

O

0

0
O

OW.

(2.48)

Again the fifth entry in these vectors corresponds to = 1, ... , S - 1.
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2.4.1 Normalization

Let the subscript r indicate some reference conditions and denote the non-dimensional

quantities by asterisks, i.e., define

Z = ZX*L

P = P*Pr

P = P*Pr

C = e* r

Y = *Lr

U = U*Ur

T = T*T,

Cp. = C,CP,

t = t*tr

V = V*Ur

w. = .:.

Hf. = HH,H

In order to keep the form of the

the continuity equation dictates

dimensional and normalized equations invariant,

tr = Lr/ur. (2.50)

The momentum equations yield

U, = Pr/prr (2.51)

whereas the energy equation yields

er = Pr = Pru 2 (2.52)

The species equations yield

Wr =' PrUrLr. (2.53)

The rate coefficients Kf,, Kb, in Equations (2.26) and (2.27) are usually given in di-

mensional units which vary from one reaction to another. For this reason the mass

production rates in the STAR code are first computed in dimensional form by using

Equation (2.25) and are subsequently normalized by the factor Wr = p,r/Lr,.

The form of the caloric equation of state (Eq. 2.33) is kept invariant by the choice

H, = Cp,T, = U,2 (2.54)

so the non-dimensional definition of specific total energy is (dropping asterisks)

- S {Hf [T U2 + I+ 2 p
P 8=l2 p

(2.55)
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The thermal equation of state yields

r
P*P, = p*p,TrT,* * . (2.56)

Thus the thermal equation of state in normalized form becomes

p= p*T* Y8 (2.57)
m

in which it is natural to choose
Pr]Tr

P= pr T (2.58)

Since the mass fraction is already a dimensionless quantity, it is the same in both

dimensional and non-dimensional equations. In all later computations mr was chosen

to be the molecular mass of the gaseous mixture at the reference state; this implies that

if the mass fraction of species s at reference state is denoted by Y,, then Equation (2.21)

yields

Mr = Es Y, (2.59)

Note that the thermal equation of state is the only one which is slightly modified in

non-dimensional form. Henceforth the non-dimensional equations will be written with

the asterisks omitted.

2.5 Inviscid Equations in Transformed Coordinates

The algorithm for a set of partial differential equations can be made appreciably more

robust by utilizing a well-constructed grid. It is well-known that an improper choice of

node point locations can lead to unsatisfactory results or instabilities in extreme cases.

However, the choice of grids in most cases is dictated by the boundaries of the physical

domain, or by the presence of large solution gradients in certain spatial locations. Thus

the cell volumes in physical coordinates often differ; in addition these cells may be

highly skewed or compressed in a single direction. One can remove such non-uniformity

by utilizing mappings to transform the physical domain into a uniform computational

domain. Thus the governing equations in physical coordinates, (t, z, y), in general,
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are transformed into an appropriate computational domain (r, C, 7) for solution. The

mapping need not be globally one-to-one but must be so locally.

The generalized coordinate mapping in this study is time-invariant (i.e., the grid is

stationary while the integration is being performed) and hence is of the form

T = t, ( = (,y), = (:,). (2.60)

The notation of Jacobian Algebra" will be used here to derive the transformed equa-

tions. Note the Equations (2.47) can be written in the form

au + 8(F,) + G) W. (2.61)
at a (,y a(x, y)

The Jacobian of the transformation is

y = 0(C,7) = | | = =- qz(2_____J~~~~ - =bt -f7 Cy(2.62)
where for example (.), denotes differentiation with respect to z. In two spatial dimen-

sions, the Jacobian of the transformation controls the magnification of area elements

between the physical and computational domains. For the transformation to be locally

one-to-one the Jacobian of the transformation must be finite and not vanish.

With the help of the previous two equations the conservation law can be rewritten

as
a(x,y) au a(F,y) a(,G) a(,) w (2.63)

a(e,n) at a(,n) a(~,n) a(,7)
or

a [yqFe - yeF + xG, - zxGe = W. (2.64)

Noting that the sum of the following identities

(y7F - xzG) = yFe + Fye - G - G(2.65)
(2.65)

'a9(xjG - yEF) = zxeG, + Gxqe - Fy,e - yEah

is the square bracket in Equation (2.64), the conservation equations for two-dimensional

unsteady reacting flow in general curvilinear coordinates can now be written in compact

form as
dU dF + dG (2.66)
at aP an a;+a + a-"
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where the state vector j, flux vectors F, G and the source vector W in the curvilinear

coordinates can be related to the corresponding Cartesian vectors by

U = U/J

- ,F = IG (2.67)
G = rxG-yeF

w = W/J.

The quantities (e, x,i,yf,y,) are referred to as the transformation metrics which

can be computed once the physical grid is specified.

2.6 Primitive Variables

After obtaining the state variables (p, pu, pv, e, pY,) at a new time level, the primitive

variables (p, u, v, e, Y,, p, T) may have to be evaluated. From the definition of the state

vector U in Equation (2.48) it can be seen that some of the primitive variables can be

obtained by simply dividing the components of state vector by the density. However, the

decoding of temperature and pressure is non-trivial due to the complexity of the caloric

equation of state. Over a given range of temperatures it is reasonable to assume that

the constant pressure specific heat for each species is a linear function of temperature,

i.e.,

Cp.(T) = a+b.T , s=1,...,S (2.68)

where a, and b, are constants [44]. The following procedure for evaluation of temper-

ature pertains to this thermodynamic model. The caloric equation of state (Eq. 2.55)

can now be integrated and written in the following form

--E Y8Hf.- 2 (T-To) E Ya, + 2 (T'-To) Y T E - (2.69)
P s=l 2 s8=1 = l l r

or

A,mT2 + BmT = C (2.70)
2

58



where
-Am = Es= 1 Y, b

Bm = s Y, [a. me (2.71)

Cm = - ~ 2S=1Y.JHf. U2+V2 +To S2?l Yja. + AmTo?.

Note that A,, Bm, Cm involve only the primitive variables which are already decoded.

Solving the quadratic equation for T and selecting only the meaningful positive root

yields

T = 2Cm (2.72)
VB2 + 2AmCm + Bm

The situation Am = 0 occurs for calorically perfect mixture (constant Cp for each

species) in which case Bm = Y,C, and hence

p - Y,¢Hf,- 2'+,' + ToYCp,.
T 2= yeC (2.73)

Once the temperature is known the pressure can be obtained from the thermal equation

of state.

2.7 Equilibrium Rate Constants

Consider a closed system containing a mixture of reacting perfect gases with a fixed

temperature T and pressure p. The degree of reaction A, of a specific reaction r is given

by

dnalr = (r - ,sr)dAr (2.74)

where n, denotes the number of moles of species and dn, Ir denotes the change of this

number due to reaction r [1341. This equation states that the change in the number of

moles follows stoichiometric proportions. For example, for the reaction, H2+O2 = 20H

a depletion of 2 moles of H2 would mean a corresponding depletion of 2 moles of 02

and a formation of 4 moles of OH.

Since the entropy of an ideal gas is governed by

ds = Cp T - dp (2.75)T titp

59



the Gibbs free energy for a constituent is

g, = h, - Ts, = Hf. + Cp,dT - Tso - T Cp. T + P dP (2.76)

where so refers to the absolute entropy at the standard temperature To (usually 273 K)

and pressure po (usually 0.1 MPa). Also note that the pressure in Equation (2.75) is

replaced by the partial pressure of species s and the pressure integral is evaluated from

the pure state pressure po to the current partial pressure of the constituent [77]. The

specific species Gibbs function can be rewritten as

gs = ws(T) + T ln() (2.77)
where

where

w,(T) = Hf. - To + |CpdT- T Cp T

The total Gibbs free energy of the mixture is given by

(2.78)

S S

G = E ng = E nmng.
8=1 8=1

where , is the partial molal Gibbs function which for perfect gases is also

potential. Equilibrium is attained for the system if the Gibbs free energy

minimum [77]. Furthermore, constancy of temperature and pressure is a

for thermal and mechanical equilibria. These conditions imply

dGp,T = d E nsnsgs) = E ns (nsdgs + gsdn8) =
Fo=1 s=1

For simultaneously occurring multiple reactions

0.

R R
dn, = E dn,l,r = E(,,r - r,,)dAr.

r=l r=l

Furthermore since T is held constant, Equation (2.77) implies

RT dp,
mn ps

Substituting Equations (2.81) and (2.82) in Equation (2.80) yields

S Sdp s
E, n,RTdP+ En mg
s=l Ps 9=1

(2.79)

the chemical

G achieves a

precondition

(2.80)

(2.81)

(2.82)

R

E(8. - ,cr)dAr = 0.
r=1

(2.83)
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The first of these terms is zero since pressure is constant and pV = n,RT, hence

A dk S S S
nRdT- = Vdp. = V dp = Vd(jp.) = Vdp = O.

s=1 Pa s=1 s=1 s=1

Thus Equation (2.83) implies

E h,(Pa - a,) c[a (T) + Iln()] dA, = 0. (2.84)
r=l s=1 m PO

Since the reaction r can also occur separately, each of the dA, may be varied indepen-

dently and hence

U= exp(s -G ]( ) (s,-a,) (2.85)
RT ) = .1

where Kp, is known as the equilibrium constant for partial pressures and AG, is given

by
S

AG, = (r - a,,r)w(T). (2.86)
=l1

The equilibrium constant for concentrations is given by

K, p -) I ( P= (( - (2.87)
8=l1 =1 RT s.l

Substitution of Equation (2.85) in (2.87) results in

K7 = Kp,, I ft (T ( ) = K A, ( Po 2=l(r-a) (2.88)

Note that Kp, is a dimensionless quantity whereas K,, has the dimensions kmole/m 3

raised to the power E(89,-a.,). As has been shown here both the equilibrium constants

depend only on the temperature for a mixture of ideal gases.

For an accurate description of the reaction system, the equilibrium constants must

be determined by the above procedure (Eqs. 2.78, 2.85, 2.86, and 2.88) at all the spatial

locations and at each time-level. Consider that for a typical 100 x 50 grid with two

reactions and 1000 time-steps the above calculations must be repeated 107 times. A

simpler model for the equilibrium constants can lead to substantial savings. For engi-

neering purposes the equilibrium constant is usually approximated over a given range

of temperatures by the following expression [136]

K, = A,T7?' exp(-E,/,lT). (2.89)
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This is consistent with forward and backward rate coefficient forms in Equations (2.26)

and (2.27) being written in the generalized Arrhenius form. For the STAR code the con-

stants Aar, r7er, Ecr can either be user-supplied or can be calculated to match Kr at three

representative temperatures. The equilibrium constants are determined by the longer

procedure at temperatures T1,, T2,T3 and their values are denoted by KC,' KC2, K 8 re-

spectively. The following system of linear equations is then solved to determine the

unknown constants [132].

1 lnT - In A, In K,,

1 In T2 - IC nK . (2.90)

1 lnT3 - E In Kc,

Different choices of temperatures yields different values of constants, but the numer-

ical value of the rate constants differ only slightly. Frequently the range of tempera-

tures is known apriori and this knowledge can be used to choose appropriate values of

2.8 Chemistry Reaction Models

Two chemical models have been considered in this study. The first describes dissociation-

recombination in terms of a Lighthill ideal gas. This model was used to examine the

potential difficulties encountered in the spatio-temporal algorithm. The second model,

describes hydrogen-air combustion and was used to demonstrate the applicability of the

developed algorithm to multi-component, multi-reaction systems.

2.8.1 Lighthill Dissociation Model

In 1957 Lighthill [78] proposed a simplified model to describe a dissociating gas flow

in equilibrium and referred to it as an ideal dissociating gas. A year later Freeman

[52] used the model to describe non-equilibrium situations. Denoting the atom by the
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chemical symbol Z the dissociating reaction is

Z2 = 2Z. (2.91)

For the model to be applicable to real gases, the temperature range for the flow should

be such that dissociation occurs appreciably but ionization is negligible. For gases like

02 and N2 the approximate temperature range is 1000 to 7000 K. The Lighthill model

assumes vibrational modes to be excited to one half the maximum classical value. At

relatively high temperatures the actual molecular excitation may be more than the factor

of one half, but the molecules themselves are reduced in number due to dissociation

and in the process absorb energy thereby compensating for the underestimation of

vibrational levels. The frozen ratio of specific heats may be written as

'f = 4+ z. (2.92)
3

At low temperatures when Yz s 0, the ideal dissociating gas is a perfect gas with con-

stant specific heats and yrf = 4/3. The difference from 7/5 is a result of the assumption

that the vibrational degrees of freedom are one half excited even at low temperatures.

Hence for this model to be a realistic match to air the lower temperature limit is about

1000 K. Note that for 02 at 1000 K there is no appreciable dissociation and the ratio

of specific heats is 1.31.

The species for this model are numbered as

Y1 = Y Y2 = Y 2 = 1-Yz (2.93)

with the heats of formation given by

Hf = Hfz Hf2 = 0. (2.94)

Since each of the constituents is assumed to be a perfect gas with Y = 5/3 for Z and

= 4/3 for Z2, the constant volume specific heats are

= 3Rz2
C -= (z-l)thz = 2(2.95)

ctV2=__ lS 3R = C,
C=2 -Z-
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where Rz2 = R/hz2 is the gas constant for the molecule. The constant pressure specific

heats are given by

Cp = C+ = 5Rz,
(2.96)

CP2 = Cv + = 4R2.mz

The thermal equation of state is given by

p = pRT[ YZ + 1 ] = PRz2 T(1 +Y1). (2.97)

The caloric equation of state for ideal dissociating gas is [78,1361

e u 2 + 2

- = Rz2 (3T + YlOd) + (2.98)
p 2

where d is the characteristic temperature for dissociation (59,500 K for 02). The

corresponding multicomponent Equation (2.33) yields

= 3Rz2(T- To) + Y1Hf -RzTo(l + ) + (2.99)
p 2

Comparing the previous two equations yields the expected

Hf = Rz2 ad and To = 0. (2.100)

The nonequilibrium chemical source term, in dimensional form, is given by [52]

ll = -cf TT"p2 (1 _ Y1)e-ed/T Y (2.101)

where C is a constant which depends upon the collision cross-section between molecules

and those between atoms and molecules. The constant Pd is the characteristic density

for dissociation (1.5 x 105 kg/m s for 02)- Similarly Equation (2.25) yields the following

dimensional form

W1 = [Kf(1- Y) - 2Kb Y] (2.102)

Choosing

Kf = AfTe-Od/T and Kb = AbT" (2.103)

yields dimensional form

1 = pAfT'7 [(1 - Y)e ed/T ' Ay2 ] (2.104)
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Comparing Equations (2.101) and (2.104) yields

A = Cf P and Ab = MZAf (2.105)
Itz 2pd

The non-dimensional form of the source term (Eq. 2.101) with Equations (2.51) and

(2.53) is

W/ = PTqp2 [(1- Y1)e-d/T - ] (2.106)

where the non-dimensional reaction parameter is given by

- C;TpL, (2.107)

and Wi, p, T, Pd and ed are non-dimensional variables in Equation (2.106). The pre-

exponential factor A! in terms of · becomes

Ur
A = TPp Lr (2.108)

Here again p is the non-dimensional density. The rate parameter Q varies from zero for

frozen flow, to infinity for equilibrium flow.

2.8.2 Hydrogen-Air Combustion Model

For a scramjet combustor Rogers and Chinitz [115] used a 28 reaction H-0 mecha-

nism to propose a two reaction model for combustion of hydrogen in air. Nitrogen was

regarded as inert. The model is applicable for temperatures between 1000 to 2000 K

and for equivalence ratios between 0.2 and 2.0. The model consists of the following two

steps

H2 + 02 = 20H
(2.109)

H2 + 20H 2H20.

The first controls the reaction of the fuel and oxidizer species through the ignition delay

period, whereas the second step predominates during the combustion phase when the

major heat release and product formation occurs. The model adequately represents the

physics of hydrogen combustion in air but produces an extremely large disparity in the

time-scales associated with the two reactions. Hence this model can be used for testing

the robustness of a numerical scheme in overcoming the resulting stiffness.
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The forward rate coefficients for the reaction are determined to be functions of

temperature-and equivalence ratio with

AfA = (31.433/ +8.9170 -28.95 ) x 1044 m 3/(kmole.s)

AA2 = (1.333/5 -0.833 +2.00 ) x 1058 m6/(kmole 2 .s)
(2.110)

nrZl = -10 2 -13

EfA/R = 2448.4 K Ef2/~ = 18940.6 K

here the equivalence ratio 9 is defined as the fuel to air ratio divided by the stoichiometric

fuel to air ratio, thus for the following complete reaction

2H2 + (02 + 3.76N2) - 2H20 + 3.76N2 (2.111)

the fuel to air ratio becomes

f 2 H
a - + 3.76N = 0.02937. (2.112)

The mass fraction of hydrogen is then given by

YH2 = + 34.048 (2.113)

The backward rate coefficients are determined from the law of mass action with the

following equilibrium constants [421

Kc = 26.164e-8992/T

K,, = 2.682 x 10-9Te+6 9415 / T m3/kmol.

The chemical source terms are given by Equations (2.25). Since this chemistry model

is not valid below 1000 K an ignition temperature must be specified. This temperature

for hydrogen-air combustion is itself about 1000 K. For temperatures below the ignition

temperature the chemical source terms are set equal to zero.

For premixed flows 7 equations (4 fluid and 3 species) define the flow. This is because

YN2 is constant and Y, = 1. However, when the fuel is injected YN2 is only piecewise

constant and hence 8 equations need to be solved.

66



The constant pressure specific heat for each species has been computed from non-

linear thermrodynamic equations in Reference [134] and a least square regression is

performed for temperatures between 300 and 2500 K. These approximations are

Cp(02) = 30.559 + 3.4485 x 10- 3 T kJ/kmolK

Cp(OH) = 28.071 + 3.0943 x 10-3 T kJ/kmolK

Cp(H2 ) = 27.290 + 3.3530 x 10- S T kJ/kmolK (2.115)

Cp(H20) = 32.469 + 8.6358 x 10-3 T kJ/kmolK

Cp(N2 ) = 29.282 + 3.0233 x 10- 3 T kJ/kmolK.
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Figure 2.1: Variation of constant pressure specific heat with temperature.

Figure (2.1) shows the variation of constant pressure specific heat with temperature,

the symbols represent the data from Reference [134]. Also shown are the linear profiles

which fit the data reasonably well. The vertical scale corresponds to the oxygen curve

and the rest of the curves are displaced by the indicated offset.
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Chapter 3

Integration Scheme

The integration basis for the present algorithm is a generalization of the second

order Lax-Wendroff, finite volume, cell-vertex scheme originally published by Ni [961.

Another cell-vertex scheme which is very similar to the Ni scheme is due to Hall [60,61].

The generalization introduces chemical source terms and spatio-temporal adaptation.

The state variables U, the source terms W, etc. are stored at the nodes and each cell

is integrated independently based upon the nodal values of these vectors. Ni made use

of a multiple-grid accelerator for his steady state interest but that is inappropriate for

unsteady situations discussed in this thesis.

Section (3.1) deals with the integral form of the governing equations. The integration

procedures for both one and two-dimensional cases are developed in Sections (3.2) and

(3.4). A discussion of artificial viscosity modelling for one spatial dimension is contained

in Section (3.3) and this is extended to cover two spatial dimensions in Section (3.6).

The treatment of 2-D spatial interfaces is discussed in Section (3.5).

3.1 Integral Form of Governing Equations

To integrate the mathematical model numerically the governing equations must

be discretized in both space and time. Instead of immediately discretizing the Euler

equations the governing equations are often cast first into integral form and then the

flux is balanced across computational units which are known as the cells. This approach

is referred to as the finite volume or cell method. Time is divided into finite intervals

called time-steps. The approximate numerical scheme is advanced through each time-
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step for all computational cells. With smaller cell dimensions and shorter time-steps,

the numerical solution is believed to approach the exact solution of the original partial

differential equations for a given choice of boundary and initial conditions. A finite

volume calculation on the cells ensures conservation of global and species mass, momenta

and energy on the smallest computational units and thereby leads to conservation of

these quantities globally over both the space and time dimensions. The finite volume

approach also allows one to deal with complicated geometries without the complexity of

curvilinear coordinates [107]. Thus the basic cell units can be triangles, quadrilaterals

or a combination of other higher dimensional polygons. Only the coordinates of the

nodes of the cells are really necessary and non-orthogonal curvilinear coordinates can

be employed to define the set of volumes.

The governing equations (2.47) are well suited for finite volume discretization with

the integral form since they have been formulated in conservation law form. The integral

form of the governing equations can be expressed as

audaF va dVf|- dV + f (+ JWdV. (3.1)n t fn a fy
Here f2 is the region of validity of the equations and all is the boundary surface of

this fixed region. Using the divergence theorem, the integral of flux vectors can be

transformed into a surface integral along the cell boundaries

- UdV + (F, G) idA= WdV (3.2)

where h is a unit normal pointing outward from the surface a12. The superscript on the

surface integral accents the counter-clock-wise orientation. For the Cartesian frame of

reference in two spatial dimensions the unit normal vector can be decomposed as

a dyt dx. (3.3)
ds ds

thereby yielding
dUa i c c w

A dUn + C (Fdy - Gdx) = AWn . (3.4)
dt f.n

Here Un and Wn are taken to be cell averaged values; for example

Un = In UdA - UdA (3.5)
f dA An d
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Thus the changes occurring in time Atc for some cell C are given by

= dUt 4= WC + + | (Fdy - Gds). (3.6)Atc dtc cAn

The quantity AUc will be referred to as the first order cell change in time or simply as

cell change. The process of calculating cell change is usually termed as flux balancing

and is principally the summing of the quantities (FAy-GAx) over the cell faces and the

source terms over the cell volume. The corresponding equation for first order changes

in the computational coordinates (, ) is

AU0 WC + C 1 | (Pdr -Gd(). (3.7)

It will be proved later in Section (3.4) that the cell change is the same whether computed

from Equation (3.6), or (3.7) and then transformed back to physical coordinates. The

scheme developed in this chapter will be referred to as the Ni scheme, although the

original Ni algorithm [96] involves neither chemistry nor spatio-temporal adaptation.

The discretized version of the overall Ni scheme is obtained by coupling the cell changes

with the residuals at the nodes. This will now be discussed for both one and two

dimensional spatial systems.

3.2 Integration Scheme for One Spatial Dimension

The development of the integration scheme in one spatial dimension is important

in understanding the concept of time-strides and artificial viscosity and for the studies

pertaining to stability analysis. Consider the cells B and C adjacent to node j in

Figure (3.1) with a constant time-step At for both cells.

The temporal change in state at node j is

6Uj U+_UJ = aiAt + 1 a At2 + o(At3) (3.8)at 2 at-

or, using Equations (2.45),

~j F ) t At2 qWu (W( - FU6Uj = -- FAt + - -- - _ a -- W - aF (3.9)5 _x 2 -5 _ ax z/ l'
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Figure 3.1: Finite volumes adjacent to node j.

The subscript j and superscript n have been omitted for simplicity. The factor q appears

in this equation so that assigned values of 0 or 1 will exclude or include a second order

source term. The remaining second order flux terms are essential for stability of Euler

equations and hence are always retained. The significance will be clearer when the

stability analysis of a model problem is discussed in the next chapter. The first order

source term (Eq. 3.11) is always included (whether explicit or implicit) irrespective of

the inclusion of a second order source term. The Jacobians in the above equation are

defined, for example, as

WU= (u ). (3.10)

The flux balance for cell C, for example, yields the cell change

AU = WcAtc + (Fj - Fk) A'C (3.11)

in which W may be modelled as an average for the cell, i.e.,

We = (Wj + Wk)/2. (3.12)

Alternatively, for a more accurate contribution to node j use can be made of a AUjc

based on choosing the source term as Wj, in which case the cell change varies with the

nodal source terms, viz.,

AUjc = WjAtc + (Fj - Fk) ,,c (3.13)
AXlC'
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This represents an accurate contribution to node j because the source terms and Ja-

cobians in Equations (3.8) and (3.9) are based upon nodal values rather than the cell

values. Since accuracy is not imperative to a determination of cell time-steps, Equa-

tion (3.11) will be used as a basis for determination of temporal resolution At, whereas

Equation (3.13) will be actually used for determining the residuals at the nodes. The

criterion for temporal resolution is developed and explained in Chapter 5.

In terms of a non-uniformity grid parameter ej at node j

AXB - Axc
A XB+AXC (3.14)

a second order accurate Taylor series expression for the rate of change of a scalar variable

4 can be defined as

ai 2) + z (Ok - j) -i - _j) + (ZBAXC). (3.15)x j 2Axc 2AXB

Note that for uniform grids ei - 0 and for embedding involving uniform base grids ej

will be either when AXB = 2Axc or - when Axc = 2AXB at the extreme edges of

the embedded regions. Hence the spatial interfaces for one-dimensional spatial grids can

be defined to be those nodes which are at boundary of disparate cell sizes with ejl > 3 .

Using the above expression and Equation (3.13) the following terms in Equation (3.9)

can be evaluated; i.e., the first order node change is

w-aF At = tj At (Fi- Fj) + 2 A + AC (Fj Fk)

- lj UjB + j AUjC (3.16)
2 2

and the second order source change is

At2 / 9F At (l1__~lEi U2 2 Wu ( AUjB + euic)2 d j 2 2 2

At2(1 AWiB + 12 AWC). (3.17)

The definitions of AWjB and AWjc are similar to the forms in Equations (3.20) shown

below. The second order flux change is now

At2 a Fu(W - aF _ 2 jFu W- _a) - Fu- (W - F) j

2a ls 8x+ [- B (W- OF) ;+ -uF (W - aF) ] (3 18)
2XB az 2 axW --2 a[z t/ ia 
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In this expression ' denotes the mid-value in between the nodes j and k. After some

algebra this can be discretized to

At 2 a ( 8 F At [1 IAFB + AF] +
2 ax Fur W- = Ax [ 2,

At [ l+ F+ AFij (3.19)
Axe 2

Here the various Jacobian changes are defined as, for example,

AF = aF AUc , AFc a= ai c. (3.20)
au au1

When the three terms contributing to Uji (Eqs. 3.16,3.17,3.19) are added the resulting

overall change can be decomposed into distinct contributions from cells B and C, i.e.,

6U = UjB + UjC (3.21)

where

6UJB -i [AUjB + O (AFB + 2 A&FjB) + q A AWjB]

SUje = 'E [AUji -fatr (AFoC-ej 2, AF) + A 1thWi]2 &' A 1+ej 2

are the distribution formulae. For frozen flows on uniform grids ( = 0, W = 0) these

expressions reduce to those in Ni's paper [96]. Also note that the time-step At is now

replaced by AtB and Atc for cells B and C respectively. Hence the distribution formulae

can now be used to update the cells adjoining a common node with different time-steps.

A node adjoining cells with different time-steps will be referred to as nodit which is an

acronym for Node Of DIfferent Time-steps". It can also be noted that if the integration

is carried out on a cell by cell basis then the contributions to the nodes of a given cell

only involve information based on nodes of that cell, i.e., the contributions do not

involve information from the nodes of the neighboring cells. This property is extremely

beneficial when adaptive grid structures are considered. The distribution formulae in

the above form do not involve artificial viscosity and its inclusion is discussed next.

3.3 Artificial Viscosity in One Spatial Dimension

An explicit artificial viscosity is needed for the following reasons:

73



* to suppress odd-even decoupling modes associated with the integration scheme

* to stabilize captured shocks in transonic and supersonic regimes.

One must exercise care to ensure that the numerical smoothing does not contaminate

the solution above some acceptable level. This issue becomes even more important when

real viscous and diffusion terms are involved.

The explicit artificial viscosity for the original Ni scheme [96] for a uniform grid is

of the form

8U*= '4"AtAxz l. (3.23)

This viscous change is added in a discretized form to the distribution formulae (Eq. 3.22)

and implies the following modified differential equation

au aF c a2U
at + x = W + A U. (3.24)

The artificial viscosity coefficient a was regarded as constant in Ni's paper, who had

not considered high supersonic flows. For flows involving strong shocks a relatively large

value of a is needed in their vicinity. A constant value of a would result in excessive

errors due to artificial viscosity in smooth regions of the flow field. Hence it is desirable

to use formulations in which the artificial viscosity coefficient will be small enough

in smooth regions to suppress spurious oscillations and large enough in the vicinity of

strong shocks for adequate shock capturing. Another desirable property for the artificial

viscosity would be a non-convective conservative formulation. Hence the viscous change

should be of the form

6ua = AtA z*UU I* (3.25)

Since it is not yet clear which Ax to use for non-uniform grids at node j, the symbol

Ax* is used tentatively. A Taylor series expansion for a second derivative of a scalar

function j6 is similar to Equation (3.15) and has the form

a2 _ 21- + i-8Z' - x (ok- J)~ +-, (- - -j)+CJO(A B+AxC) +O(AzBAZC)) (3.26)
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Note that unlike Equation (3.15) this expression is first order accurate if ji 0 and be-

comes second order accurate for uniform grids. Using this equation with Equation (3.25)

gives

At (1 + ej)SU; =k Uj+ Ax* (oiUi - aiUi) (3.27)
4 x- 4 Ax2 l

A logical choice for Ax* would be

~AX = AXE and Ax = AXc (3.28)

which yields

= t (-cj) At (1+ej)U; = -t ( (j -kUk) + ( 4 ( -ajUj) . (3.29)
Ax AXc 4

Note that in this equation the term (1 + ej) appears with the quantities corresponding

to cell B unlike the rest of the terms in the derivation of 5Ui in Equation (3.22). Hence

in order to make the coefficients of the terms consistent the following choice is made

/Az = AxC and Az = AXB. (3.30)

Hence
t l+ej At 1-ej

U = AC 2 l C + A (3.31)
-'c 2 YX+ B 2

where, for example,
o'jU - OkUkIc (3.32)

2

For uniform meshes (ey = 0) with i = j - 1 and k = j + 1, the artificial viscosity

contribution at node j is

- At
8UJ' 4 A (J-1lUi l - 2 ojUj + oy+lU+l) . (3.33)

Hence the sum of all the viscous changes for all the interior nodes satisfies

At = 
$=2 j 4z (lU1 - 2U2 - J-1UJ-1 + JUJ) (3.34)

j=2 4Ax

but the contribution from the first cell at node 1 is - A4 (lUi - 2U2) whereas the

contribution from the last cell at node J is 4 (_lUUj - ajU) as given by Equa-

tion (3.31). Hence the artificial viscosity contribution is conservative and at the same
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time non-convective (i.e., there are no terms of the form a(oU)/8x in Eq. 3.31) on

uniform grids. The overall distribution formulae for cell C can now be written as

bUi = [+i [UiC- t (AFc - 2Ej AFic+ C) + qAIa Wjc]
(3.35)

6UkC = 2 [AUkc + (AFc + -!kAFkC + + q"2 AWkc] (.)

The second difference of pressure is commonly used to scale the artificial viscosity

coefficient [68]. This is because the second differences are considerably larger (order

unity) for regions in the vicinity of shocks compared to those in smooth regions (order

Ax2 for Ni scheme). Since pressure is constant across contact surfaces, density is used in

the present work for scaling artificial viscosity. Furthermore normalized first differences

are used in this study instead of second differences. Consider the second difference at

node j

a2p
a2P1 2A = I(pj-i - Pi) + (Pi+l - Pi)l < IPi-l - P3] + IPi+i - pil. (3.36)

Hence the sum of the two first differences for the cells adjoining the nodes j is even

greater than the magnitude of second difference at this node. The first differences will

be of order unity in the vicinity of strong shocks and would be of second order for the

current scheme in the smooth regions. This is not the first time that first differences

of density have been used for scaling the artificial viscosity coefficient; specifically Hall

and Salas [61] have used a different form of first differences. Defining the normalized

scaling for cell C as

cc = Pi -Pk (3.37)
Pj + Pk

the nodal artificial viscosity coefficient can be assigned as

Oj = amin + (CB + c). (3.38)

Here amin is the minimum amount of artificial viscosity which shall be deemed necessary

to suppress odd-even decoupling in the smooth regions and is a constant which is

chosen so that oa E [a,n, amaz] with amaz being the maximum user supplied viscosity.

The artificial viscosity can be kept within bounds by the following formula

6 = cma - Umin (3.39)
max{Jcc}
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where max{ec} is the maximum value of the normalized scaling for all the cells in the

domain. Typical values for a fall within 0.01 and 0.2 for most one dimensional results

shown in Chapter 8.

U

4.

3.

2.

1.

0.j-2j-1 j+lj+2 j-2j-1 j j+lj+2

Figure 3.2: Distribution before the application of artificial viscosity.

U

4.

3.

2.

1.

0.j-2j-1 j +1i+2 j-2j-1 j j+lj+2

Figure 3.3: Distribution after the application of artificial viscosity.

In order to understand how the artificial viscosity suppresses spurious oscillations

consider the two situations as shown in Figure (3.2) before the application of artificial

viscosity. These correspond to a spurious valley and peak for one of the components of

the state vector. Further suppose that the artificial viscosity coefficient is constant and
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the value of aAt/4Ax = 0.2. For simplicity the slopes of the distribution of U on the two

sides of node j are regarded as constants. As evident from Equation (3.33) the artificial

viscosity contribution at nodes j - 1 and j + 1 is identically zero. For the downward

pointing spike the artificial viscosity contribution at node j is +0.4, whereas that for

the upward pointing spike is -0.4. Hence the amplitude of the spikes decreases after

the application of artificial viscosity as indicated by Figure (3.3). Thus the numerical

diffusion has the same form and effect as physical diffusion and reduces the amplitudes

of the solution harmonics without altering their phases.

3.4 Integration Scheme for Two Spatial Dimensions

The changes in the state vector for the cell centers (Eq. 3.6) must also be related

to the temporal variation at the nodes for the 2-D case. Consider cells A through D in

the computational domain and adjacent to node i in Figure (3.4). Since the generalized

coordinate transformation = (z,y), = t7(z,y) is arbitrary, it can be used to map

each physical cell onto equi-dimensional rectangles for convenience while the physical

grid conforms to the boundary shapes. The computational grid is locally 1-1 and onto

for each cell and may not be so for the entire domain when the cells are subdivided

and spatial interfaces are created. Hence for a local uniform grid in the computational

coordinates (, i7) with constant AC and Anq for the cells A through D and with constant

time-steps, the temporal change in state at node i node is given by the Taylor series

expansion

E0d n at + _ , At2 + (at3). (3.40)

The variations in cell time-steps will be allowed once the distribution formulae

(Eq. 3.70) are derived [96]. Using Equation (2.47), the first order term or FOCIT

(First Order Change In Time) in Equation (3.40) can be written as

FOCIT = t At = *--G ) At (3.41)
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Figure 3.4: Computational grid for flux balance.

where the asterisk on W indicates that the source term can be treated either explicitly

or implicitly. The implicit source vector is useful when the chemical reactions would

otherwise impose a severe time-step restriction due to the stability considerations in-

volving chemical time scales, and would thereby make time-steps minuscule compared

to resolution requirements. However, it is essential to realize that such implicit mod-

elling is desirable only when the stability dictated time-step is small compared to the

resolution requirement. The latter will be discussed with considerations which arise

for temporal adaptation. Although implicit modelling may be advantageous in over-

coming the reaction stability limitations, this approach should not be applied to avoid

local rapid chemical adjustments. Of course when interest is limited to the steady state

the implicit advantage can be fully utilized in by-passing the resolution requirements

[24,42,114,122], but only if the real gas behavior is independent of transient history,

which is not always clear.

The use of only the first order term in the Taylor series expansion yields an uncon-

ditionally unstable scheme. However, the scheme can be stabilized by considering the

next term in the Taylor series expansion and this process is frequently termed as Lax-
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Wendroff time-stepping [76]. The inclusion of an additional term results in an inherent

upwind biasing which admits correct wave propagation phenomenon. The second or-

der change in time contribution or SOCIT in Equation (3.40) is again determined by

appropriately differentiating the original differential equations, i.e.,

1820 In _ 2/aSOCIT = 2-i &t2 a IW -a a)
(3.42)

q 2 2 a Ut 2 \·t

As pointed out earlier the factor q is assigned values 1 or 0 to include or exclude the

second order source term. The Jacobians are defined, for example, as

W = a CT )* (3.43)

These nodal Jacobians subsequently will be replaced by their cellular representation for

the system of two spatial dimensions.

The cells in a physical domain are depicted in Figure (3.5). Additional divided

cells bordering cell C are shown in this figure. It is reasserted that the transformation

with constant A{ and Arl is applied only for cells adjoining the usual nodes, and not

cells with a node at the mid-point of a spatial interface (such as nodes e and n in the

physical grid). These spatial interfaces are one or more faces of a given undivided cell if

one or more cells adjacent to it are divided. The treatment for the latter nodes will be

discussed separately. It will be proven first that the cell change can be obtained either

from a cell in the physical grid or from a corresponding cell in the computational grid

(with AUc- AUc/J), provided that the metrics are specified in a certain manner.

For the sake of this proof, average values of the corner node fluxes will be used for the

respective sides of a cell and the middle node values will not be accounted. For example,

the west and north face F-fluxes for this proof are

FW - F + Fi FN = F + Ft
2 2

The proof for other variations of fluxes involving the middle nodes of the faces can

be verified in a similar manner. For example, the north face F-flux for the cell C in

Figure (3.5) could be defined as

FN - Ft + 2F + Fk
4
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Figure 3.5: Physical grid for flux balance.

While for cell C the nodes e and n actually exist, the nodes w and s are irrelevant;

nevertheless for the sake of generalizing the above face fluxes for all cells one can define

the flux for middle edge nodes for those edges which are not spatial interfaces to be the

average of the corresponding corner nodes, for example,

_ Fi + Ft
2

in which case
F + 2Fw + F

Fw = 4

Although this may seem to be a trivial point, the above formulation significantly reduces

the number of if-then clauses in the actual coding of the solution scheme which involves

spatial adaptation.
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Statement: The cell change can be obtained either from a cell in the physical grid

or from a corresponding cell in the computational grid (with AUc = AUc/J), provided

that the metrics are given by Equations (.49) and (9.50).

Proof:

Let us first consider the cell C in the physical domain. The flux balance is obtained by

the trapezoidal integration of Equation (3.6) and is as follows

AoxAU = AcW + Fw(y -yi) - Gw( - i)

+ FN(Yk-a) - GN(Zk- Xl)

+ FE(yj-yk) - GE( - k)

+ Fs( - y) - Gs(xi - xi).

(3.44)

If the dependent variables at the middle edge nodes of spatial interfaces are regarded to

be the average values of the corresponding corner node values at all times, then the flux

balance based upon just the corner nodes is appropriate. However, if the changes in

dependent variables at the middle nodes of spatial interfaces are computed through some

other means, then the inclusion of the middle nodes in the flux balance would yield a

more accurate trapezoidal integration [33]. The flux balance using just the corner nodes

yields

A-AUc = AcW + 0.5 (Fi + Fl)(y - yi)

+ 0.5 (Fl + Fk)(yk - )

+ 0.5 (Fk + Fi)(yj- k)

+ 0.5 (F + F,)(yi-yj)

- 0.5 (Gi + G)(x - zi)

- 0.5 (GI + Gk)(Zk - XL)

- 0.5 (Gk + Gj)(xj - xk)

- 0.5 (Gj + Gi)(z i-zj).
(3.45)

This can be rearranged to

(F. - Fk)(yL - yj)

+ (F - Fj)(y - i)

- (Gi - Gi)(xl - xj)

- (Gl - G)(Sk - zi) }. (3.46)

The flux balance in the computational coordinates is given by Equation (3.7), i.e.,

Uc = + I{ i + -PI - Fk}-+ { + G -Gi- J}. (3.47)
At 2C A
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Substituting the values of F and G from Equation (2.67) yields

-ACT = ic + 2 { (ynF - G)i + (y,F - ,G),

-(ynF - znG)i - (F - x,7G)k }

+ j1 { (zeG - yEF)i + (zCG -yCF)j

-(xzG -yF)k - (zeG - yF)l }.

For yn at node i the forward difference will be used

Yn Y1 l -Yyii l-
tit - A

whereas for y, at node I the backward difference will be used

Yl - Yi Yl - Yi

7 t71 - ,li Al7

Thus all the o7-derivatives at the corner nodes of cell C are defined as

Yri = Y =- i' X -7 = i

Yk -Yj Xl
ynej =y =Xr = xZrtk = .Arl

Similarly all the -derivatives of the metrics can be defined as

zi- 2i i-y
x; = -ej = , y;= y =i = e
xfk - _t _ Yf - YAf '

Substituting Euis39ivk-vt

Substituting Equations (3.49) and (3.50) in Equation (3.48) results in

A TT 1

tAC C.= + (Fi - Fk)(y - yj) - (Gi - Gk)(X - Xj)Atc 2ACAii
+ (F - F)(yk - yi) - (GI - Gj)(zk - xi) .(3.51)

Using Equation (2.67), this can be reverted back to the physical grid coordinates

JAtc
AU = AtcW$ + 2ACA { (Fi - Fk)(y, - yi) - (Gi - Gk)(Xz - zj)

+ (Fi - Fi)(yk - i) - (G - Gi)(zk -xi) } (3.52)

This equation is the same as Equation( 3.46) if one can show that J = AAtr/Ac. The
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metrics for the cell C itself can be defined as

X~el r ( 2 -W zi+)- 2a (Xk + Zj-Xi-XI) - e

Substituting these values in the definition of the Jacobian J yields

1 1 AcC [zeyn - Ytlc 2[(k - zi)(yl - j) -(Z - X)k - -)] 
(3.54)

Note that the cell area is one half the cross product of the diagonal vectors of the

cell. The Jacobian J for cell C is related to the magnification of the area under the

transformation. Thus it has been established that in order for the flux balance to remain

valid in both the coordinate systems, the metrics must be defined by Equations (3.49)

and (3.50). Q.E.D.

In summary, the flux balance for the cells surrounding the node i is given by

AUA = WAAtA + {Fa +FhFbFi} + t{Gap+hb i}

UB = WBAtB + P{Fb + --Fi + {G + Gc-Gi-Gj

AUD = WD tD + -a -{Fh + m - Fi -Fr + D{Gh +Gi-GmL-} -
(3.55)

As asserted earlier the time-step in these cell changes is assumed to be constant.

The average of these cell changes can be denoted by AUi and it will be shown to be the

FOCIT at node i

a- (WA + + ' + D)+ + 2Fh + F + 2F + F |,

4 A 4 4

At Ga+ 2b + G G + 2 + G 356)
Aq 4 4 J

It is seen that the first curly bracket represents -2AC aW at node i with weighting factors

as indicated in Figure (3.6). Similarly the second curly bracket represents -2Av a- at

the common node.

84



1

2

1

D

i

A

C

B

1

2

1

Figure 3.6: Nodes used for the computation of aF/8a. The numerals are the weighting

factors for the nodes.

Defining the source term at node i as the average

Wi = (A + B + C + D) -i<= (3.57)

Equation (3.56) can be written as

+ a + a 
ae 8atl

= +AUB +AUC + AUD)

(3.58)

But this is recognized to be the first order change at node i. The second order source

term in SOCIT (Eq. 3.42) is given by the average

=q24L[at + WA + fwU a-
B at

here W'u is used as a simplified notation for ; since AUA = UtAAt etc., this givesa T U =Ut'

qAt
2 Ut

i2

where the source change is given by, for example,

- awv - 1 aw a
au C J au CL~~~~~~Wc~~~~
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The second order F-flux term in SOCIT is

At2 a At2 2 (F atA + Ua)atD 2 (Fuat B
+ FPU aatC 

Again using tAt as a value for AU implies

At2 ( )
28 (Ua),

At
4A= [PuAIA + FuA D

At .{ = -t s[AFA - AFB-AFC+AFD]

Similarly the second order G-flux term in SOCIT is

-2 a (iUt).

where the Jacobian changes are given by

AF = (Y,1 -Xt: )AU =

AG = (xt- -y) AU =

These values for cell C, using Equation (3.53), are

AFc

= -4t [AA + dB -AC -A- d]

= y,AF- x,AG
(3.63)

= zxAG- yAF.

AynAF - A,,AG

AG = A G - AyewAF (3.64)

where, AF = FUAU, etc.

Now adding the three terms contributing to SOCIT (i.e., substituting Eqs. 3.59,

3.61 and 3.62 in 3.42) yields

SOCIT = !2t At2
2 t 2 = q (AA + A + AWC + AWD)

+A (AFA- AFB -AFC + AFD)

At (AdA + AGB - AGC - AGD
4'A

The substitution of Equation (3.58) and the above equation in Equation (3.40) yields

the discretized version of the change at node i without artificial damping, viz.

48Ui (t UA+ A AFA+ &AGA + tAtAAWA) +

(ArB - AAFB + tAB+ +tBAWB) +

(A&c- t A AC- AGC + 3AtcAWc) +

(ATD + AFDD - AD+ AtDAD) 

(3.66)
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The overall change 6Ui in the previous equation may be thought of as contributions

from cells A-through D, i.e.,

8Ui = 80A + UiB + UiC + UiD. (3.67)

These values are given by

AU0A = [AA + + FA + " AW A]

6UB = 4 [AUB - A AGB + qA+ AW] (3.68)

OUic = [AUC-TA C- G + qAcAC]

UiD = I [A&D + gAD - !AGD + q"AWD] .

It is now possible to write down the contributions of any cell to its corner nodes. Specif-

ically for cell C the distribution relations in computational coordinates is given by

SUic + AO - AFc - AG + qA Ac O (Arc]

(3.69)

6UkC = 4[AUC + e A;c + t c + AtcV36]

oU0C = [Ac- C+ VNAG + q-aWc] .

Substituting Equations (2.67) and (3.64) in these distribution relations yields the cor-

responding relations in physical coordinates, viz.

6UiC = [AU - At (Ay,,,AF - Ax,,AG) - A (AZcu AG - AYewAF) + q tAW +i]

Ujc = [U + At (Ay,,AF - AxZn,.A) - At (AzeaAG - Ay,,ewAF) + q tAW + %Pi

ukc= [U + At (Ay,.AF - AzaAG) + At (AzeAG - AyejAF) + qgtAW + T]

6Uic = I [^ - A (Ay,,.AF - Ax,,.AG) + (AZxe.AG - Ay,,.AF) + q t AW + C
(3.70)

Here the term 'P incorporates the effect of artificial viscosity which will be described

separately in a later section. These distribution formulae allow for different time-steps

and cell volumes for cells adjoining a common node. Starting with zero changes at all

nodes, these distribution formulae allow one to integrate on a cell by cell basis and hence
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accumulate changes at the corner nodes by summing the current contributions to the

already existing values at the nodes due to the previous integrations on the neighboring

cells. Once all the cells are integrated the nodes can be updated and reset to zero change

values again. The terms Ax and Ay are as defined by Equation (3.53), i.e., for example

Ae, = (xk + x - xi - l) .

The strategy when treating the source term implicitly, i.e., choosing W* = Wn+ 1 for

a cell in Equation (3.44), requires discussion. Stability analysis of a linearized source

term model, to be discussed in the next chapter, shows that no substantial gain in

stability limits is acquired, over the explicit scheme, if the second order source term is

retained while treating the first order source term implicitly. However, if only first order

implicit source terms are retained (q = 0 in Eq. 3.70) the stability of the model equation

becomes independent of the magnitude of the source term and is constrained solely by

the familiar CFL condition. Therefore, for a system of equations it is reasonable to

use the q = 0 simplification with a source implicit scheme, and q = 1 with an explicit

scheme.

The implicit source term for a cell C can be approximated by Newton linearization

W+ = W + a AU. (3.71)auc

On substituting this in Equation (3.6) the following is obtained

AUc (I- aw At/c) [A^tCW + Wc f(Fdy- Gd)].* (3.72)

The corresponding discretized version is obtained by substituting Equation (3.44) into

the square bracket

AUcM = (I - c Atc) AUc. (3.73)

The superscripts emphasize the relationship between the implicit and explicit cell changes.

The matrix premultiplying the explicit cell change is often referred to as the precon-

ditioning matrix. This equation is used in conjunction with the distribution formulae

( Eq. 3.70 with q = 0 ) while looping over cells whenever a source implicit scheme is

used instead of Equation (3.44). The source implicit scheme reduces to the explicit
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scheme for the non-reacting case. An alternative way is to compute the cell changes

explicitly but use the preconditioning matrix on the distribution formulae. This ap-

proach is elaborated in the next chapter. It must be emphasized again that the implicit

source vector may be used to overcome the severe time-step restriction imposed by the

otherwise stiff chemical systems but not to by-pass the time resolution requirements

which may be necessary to capture the inherent physics of the reactions. A discussion

of the resolution time requirements appears in the Chapter 6 of temporal adaptation.

3.5 Spatial Interface Treatment

As mentioned earlier, the introduction of embedded regions into an otherwise coarse

mesh leads to the formation of spatial interfaces which must be treated so as to yield

stable and accurate results. Two alternative procedures have been considered for the

middle edge node of a spatial interface. In the first approach node e is handled in

the usual manner (Eq. 3.70) when integrating cells E and F in Figure (3.5). When

integrating C, a simple average is used for the change at e, i.e.,

6Uj + UkC
6UeC = U + C2

In this approach the contribution of cell C to the changes at the corner nodes involves

a flux balance which takes into account the hanging nodes; e.g., the east F-flux is

FE = (Fi + 2F, + Fk)/4. Hence, in the absence of temporal adaptation, the total change

accumulated at node e once all of the cells are integrated is

6U = UeC + U.eE + UF.-

This approach is tantamount to performing a special integration over the spatial inter-

face as demonstrated by Dannenhoffer [33]. It will be referred to as the average change

approach for spatial interface.

The second approach determines the value of the state vector at the middle edge node

by interpolating from the corresponding corner node values. Since by construction the

middle edge nodes form the midpoints of the corresponding corner nodes of the spatial
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interface, a second order interpolation implies that the state vector at this node is equal

to the average of the corner nodes at all times, thus for example,

U, Uj + Uk
2

In this non-conservative approach only corner nodes are involved in the flux balance for

any cell integration. Hence when cells E and F are integrated, the changes at node e

are accumulated in the usual manner, while the change from cell C at node e would not

be included. When updating of the nodes, node e will be recognized to be a middle edge

node and its state will be set according to the previous equation, thereby making the

accumulation of changes at node e due to cells E and F irrelevant. This approach will

be referred to as the average state vector approach for spatial interface. This approach

had been utilized by Usab [133].

The results for the two approaches yield identical graphical output for most cases.

The second approach is simpler, involves no if-then clauses for the flow solver except at

the time of updating, and hence can be easily vectorized. Furthermore this approach

can be extended easily to 3-D and would be suitable for new kinds of interfaces; e.g.,

those generated by directional embedding [71]. However, due to the non-conservative

nature of the approach, care must be exercized in moving the interfaces away from the

actual shock locations. This can be achieved by adding buffer zones to the spatially

resolved region. Due to the robustness of the second approach, it was decided to base

the solver on that approach in the latest version of STAR code.

3.6 Artificial Viscosity in Two Spatial Dimensions

The generalization of the 1-D modified differential equation (Eq. 3.24) to two spatial

dimensions is

8U aF aF G a 2 a2U_ 2\

a + + y = W+A x+ A (37)It dz dy A~hs dz 2 _ 3 AyIE( (3.74)

where As is some typical cell dimension which will be evaluated later. Considering a five

point stencil comprising of the cell centers about node i in Figure (3.5) the Laplacian
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type terms can be written as

a2U A2U +auA2 UC + U UA + UD UC + UD U + UA + UB \
z: + n-2 y = 2 - 2U + 2Ui +

o2 o y2 2 2 2 2
(3.75)

This can be rearranged to give

8zU 2 + ay2 Ay = (UA - U) + (UB -Ui) + (UC - Ui) + (UD - Ui). (3.76)

Thus the contribution of artificial viscosity from cell C to node i is

6 c = 4Atc (UC - Ui) (3.77)4as

and hence the 'T term in Equation (3.70) is

Cic (UC - Ui). (3.78)

If the artificial viscosity coefficient is allowed to vary with the nodes then a non-

convective, conservative formulation would imply

'Pic = A[(U)c - iUi] (3.79)Ast

where

(eU)c (= (uUi + aiUi + kUk + aUI) . (3.80)

Ni had taken the dimension As to be

1 1 1 1
-= + A * (3.81)As z Ay'

Thus As is proportional to the harmonic mean of the two linear dimensions of a rect-

angular cell. For a general quadrilateral cell these dimensions are ambiguous, therefore

the following measure is proposed

4A0As P= (3.82)
PC

where the denominator represents the perimeter of the cell. Note that this relation

implies As to be the harmonic mean of Ax and Ay and two times the value proposed by

Ni. If this factor of two is absorbed in the viscosity coefficient itself then the viscosity

here should be twice as large as Ni's viscosity coefficient to produce the same level
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of artificial diffusion. Also note that for very high aspect ratio cells the dimension

As will approximately scale as two times the minimum dimension and hence would

correspondingly imply a larger value of dissipation.

In line with the approach utilized for 1-D, normalized first differences of density are

used for evaluating the artificial viscosity, which then is stored at all nodes and has the

general form

a = amin + (CA + CB + CC + ID) (3.83)4

where, rcC, for example, is the normalized scaling which is a combination of density

differences along the two cell dimensions, i.e.,

CC = - P + Pn -P (3.84)
P + PW Pn + Ps

For cells A and D where the edge nodes do not appear, average values of the corre-

sponding corner nodes are used for evaluating the scalings. The constant 6 is chosen so

that 0 E [ain, ,,,m], typically between 0.05 and 0.5.

In the present algorithm artificial viscosity is introduced only at the corner nodes

whenever integrating a particular cell. This is true without qualifications when the

average state vector approach is used for handling spatial interfaces. For the average

change approach, it has been experimentally observed that for a node such as e a lower

viscosity coefficient is needed. Hence a natural way of accumulating artificial viscosity

at such a node is to use Equation (3.83) but only for cells whose corner is e, i.e.,

a = min + (rCE + F)).

A plausible reason that lesser artificial viscosity is needed at middle edge nodes is

that the changes at the corner nodes of the larger cell already account for artificial

viscosity at this node. In particular for cell C in Figure (3.5), the node e has the change

(6Ujc + 6Ukc)/2 and each of these corner changes have contributions from artificial

viscosity and its value from cell C is (ljc + &ikc)/2; hence additional artificial viscosity

from cell C is not needed. However, the artificial viscosity from cells E and F involves

a flux balance and hence requires explicit addition of smoothing.
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In order to avoid unnecessary if-then clauses, the above formula can also be used for

the average state vector approach at the middle edge nodes. Since the changes at these

nodes are irrelevant for this approach, the actual artificial viscosity coefficient at such

nodes is also of no consequence.

For ease of application in coding and vectorization considerations the following pro-

cedure is proposed for the determination of artificial viscosity coefficient at all the nodes:

1. March over all nodes i and set

ai := amin i=l..., Nn

where Nn is the total number of nodes. The notation := is used here to emphasize

computer assignment.

2. March over cells c and sum up the contributions from individual cells over the

corner nodes
8

ai := ai + rc, i= l,...,Nc
4

where N, is the total number of cells and i in the above assignment is a corner

node of some cell c. Hence for cell C in Figure (3.5) this assignment will loop

over nodes i, j, k, 1. In this expression Ice is computed from Equation (3.84) and

6 has the value assigned from the previous invocation of this procedure. For

initialization purposes 6 can be set equal to zero and its value can be determined

by the following step; subsequently the procedure can be called again to have the

correct assignment of artificial viscosity at the nodes.

3. The march over cells also determines maz to be the maximum value of all re, i.e.,

nmGz := max {c } , c=l ... ,Nc

For the given values of minimum and maximum artificial viscosity coefficient, viz.,

ami, and ama, the value of the constant 6 can be determined as

6 :- amaz - min
Kmaz

This expression will approximately keep the artificial viscosity coefficient between

amin and amaZ.
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4. Finally the boundary nodes b are adjusted by using a reflective condition. This

can be-accomplished by marching over the boundary nodes and setting

Qa := 2'b - min, b = 1,..., Nb

where Nb is the total number of boundary nodes which border two cells. For

boundary nodes which border only one cell this assignment is changed to

O'b := 4ab - 3 rmin.

n

V

a

W

b c

Figure 3.7: Finite volumes adjacent to a boundary node b.

Note that step (3) of this procedure automatically satisfies Equation (3.83) at the

usual nodes and the corresponding equation (after Eq. 3.84) at the middle edge nodes.

The march over boundary nodes deserves special attention. Consider cells V and W

adjacent to a boundary a-b-c of the computational domain as shown in Figure (3.7).

The march over nodes and cells of the computational domain yields the following value

at node b
6

ab = amin+ 4(r + cW)

whereas for node n there are four cell contributions to a,, hence for a uniform flow it

will be observed that

On = min + 6KcW and
6

O'b = o'nin+ I-'W.2

These two expressions can be made consistent if the artificial viscosity at boundary

node b is assumed to be summed from cells V and W and their corresponding reflective
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cells which introduce the same contributions. In other words the wall cell contributions

ought to be multiplied by a factor of 2. Thus the corrected value for the boundary node

is

0a = amin + (rcv + rew) = min + 2 (b - omin) = 2b - Omin- (3.85)

A similar explanation holds for the four corner boundary nodes which border a single

cell in the computational domain.
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Chapter 4

Stiff Chemical Systems

An important step in the development of a new algorithm is the determination of

time-step restrictions through a stability analysis. Even for well-established schemes

a stability analysis can provide understanding of the physical domain of dependence.

This chapter starts with an introduction to the concept of stiffness followed by a result

pertaining to a linear frozen convective wave equation. Section (4.3) explores the ori-

gin of stiffness in a one-dimensional model and possible remedy for this phenomenon

by a Von-Neumann analysis. Section (4.4) compares the exact solution of a linear dif-

ferential equation of first order with those from numerical schemes of interest whereas

Section (4.5) discusses the implementation of the source implicit scheme for both one

and two dimensional situations. The source implicit algorithms are the ones which are

implicit only in the source terms and the rest of the terms are modelled explicitly. Fi-

nally Section (4.6) describes an alternate method for avoiding chemically stiff reaction

systems.

The usual approach for analyzing stability on structured grids makes use of Fourier

analysis, which considers a general solution to be a sum of Fourier modes which are

amenable to separate analysis. This is frequently referred to as Von Neumann stabil-

ity analysis. The numerical integration techniques to be considered here are the fully

explicit and source implicit methods for the present algorithm.
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4.1 Introduction

Stiffness is a numerical phenomenon which is exhibited in complex systems when

some components of their solutions respond promptly to system perturbations whereas

others respond relatively slowly. The degree of stiffness increases with the widening of

these individual responses. The concept of stiffness arises from both the numerics of

a given computational scheme and the physical model which it describes. A system

of equations describing a transient phenomenon associated with multiple reactions in

a closed volume (no convection!) is stiff if the eigenvalues of the Jacobian matrix of

the source vector has widely disparate negative real parts. In contrast to stiff problems

of this sort there are unstable systems which are characterized by positive eigenvalues

and oscillatory systems that have mostly complex eigenvalues. The stiffness pertaining

to chemical reactions can be traced back to widely different reaction rates, i.e., fast

reactions (large rate coefficients) imply smaller characteristic time scales and vice ver8a.

Such large source terms produce rapid temporal changes which can lead to constraints

for stable computations. When convective terms are also considered, the eigenvalues of

the Jacobians of flux vectors must also be taken into account. The convective eigenvalues

can be positive or negative and have no bearing on the stability of the physical model

so long as the eigenvalues of the source vector have negative real parts. However, the

corresponding computational model usually has stability restrictions based upon the

largest magnitude eigenvalue of the flux vector, in addition to the restrictions based

upon chemical time-scales.

In general, stiffness is characterized by an enormous difference in eigenvalue mag-

nitudes of the Jacobian matrices, and a measure of stiffness is the magnitude of the

ratio of the largest to the smallest eigenvalue. Thus, even when all the reactions in a

multi-reaction system proceed at comparable rates, the system of equations can still

be stiff if the fluid time-scale is widely disparate from a typical chemical characteristic

time-scale. In the description of phenomena like flames, combustion and detonations,

the pertinent time-scales can easily range over several orders of magnitude. The si-

multaneous representation of these diverse time-scales manifests itself as a limitation
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in temporal accuracy in the sense that the allowable time-step becomes smaller than

the smallest time-scale in the problem. The smallest time-scale of a certain process

may or may not be the most important one. For example, if a process relaxes in time

and approaches an asymptotic limit, the smallest time-scales are important only during

the relaxation phase. If the important time-scales can be resolved by a suitable (e.g.,

implicit) algorithm, then obtaining a desired temporal accuracy is not necessarily a lim-

itation. However, algorithms requiring advancement on the basis of smallest time-scale,

will necessitate computing for a large number of time-steps, thereby making the cost of

simulations prohibitive.

Explicit algorithms typically suffer from a stability restriction that requires the al-

lowable time-step to be related to the slowest characteristic time-scale in the problem.

Even after the decay of fast transients the solutions vary slowly and the explicit meth-

ods can require exceedingly small time-steps to maintain stability. One is either forced

to use implicit integration schemes or modify the explicit scheme for a different set of

source vectors. Both these techniques will be further explored in subsequent sections of

this chapter. These techniques, however, use much more computer resources for each

time-step than their explicit counterparts, but have better stability properties and can

therefore advance through much larger time-steps. Time-step selection can then be

based on accuracy considerations rather than the severe stability restriction.

If the chemical time-scale of a particular reaction is infinitely small compared to those

of other reactions everywhere in the spatial domain and at all times, then an equilibrium

chemistry model can be utilized for that reaction; however, other chemical reactions

must still be modelled by finite rate kinetics. This generally complicates the numerics

of the reaction systems because special procedures are required to handle this partial

equilibrium [5,20,112] where only a few reactions are in equilibrium at all times and at all

spatial locations. The primitive equations describing the partial equilibrium situations

are inconvenient to use because the progress rates frf,, fbr for the equilibrium reactions

are determined implicitly from the associated equilibrium constraint conditions. The

robustness of computer programs is generally sacrificed due to the addition of special

cases which only apply to specific reaction systems. Furthermore the occurrance of
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partial equilibrium is infrequent, since the chemical time-scales for a reaction rarely

remain infinitely small and constant, both globally (in space) and eternally (in time),

compared to those of the other reactions. For most reaction systems the time-scales can

vary significantly throughout the domain of interest. Since this variation is generally

not known apriori, an algorithm must be able to treat a wide range of time-scales.

As a final note to this section it is appropriate to mention recent references Aiken

[2], Kee and Dwyer [72] and Oran and Boris [1001, which include good discussions of

stiffness due to chemical reactions.

4.2 Stability of a 2-D convective wave equation

A Von Neumann stability analysis for a 2-D scalar wave equation of the form

Ut + uUz + vUv = 0 (4.1)

has been performed by Usab [1331 for the Ni scheme. In this equation the characteristic

speeds u and v were regarded as constants. The form of this wave equation is similar to

the decoupled Euler equations without source terms. Hence the stability limits for the

linearized Euler equations can be inferred directly from the analysis of the 2-D wave

equation. The time-step restriction so obtained is referred to as the CFL condition and

is of the form

AtCFL < min 1 1 (4.2)
rA0gn - VAxn8I + afs D Un, t/eVJ-AxTeu I + afPw. J

here a! is the local frozen speed of sound for some cell, r the CFL number, the cell

dimensions Ax and Ay are as defined in Chapter 3 and

D2 = Ax2 + A'y2. (4.3)

The CFL constraint states that the time-step is restricted by requiring the information

not to propagate beyond the domain of dependence for the two coordinate directions.

For the Ni scheme the CFL number must be kept less than unity.
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4.3 Stability of a 1-D Scalar Equation with Source Term

In order to study the effect of a source term on stability analysis for Ni scheme

consider a simple linear scalar equation of the form

au + u u, - U(44)
at aX 

where u is a characteristic convection speed, r is the characteristic time-scale for the non-

equilibrium process and U, is the corresponding equilibrium state which the process tries

to achieve. The right side of this equation represents a simplistic model for the source

term which retains the essential physics of reacting systems and is amenable to analytic

study. This equation represents the convection phenomenon and localized processes such

as mass source and sink terms, dissipation effects, equilibration in chemical reactions,

etc. The characteristic time-scale can vary from zero (equilibrium flows) to infinity

(frozen flows). Another interpretation, for the time-scale r, can be presented, if the

above equation is compared to individual conservation equations in a reacting system. If

U represents the density then this time-scale is infinite, however if it represents the degree

of dissociation Y1 of a relaxing gas then the time-scale will be finite for a non-equilibrium

process. For the Lighthill model presented in Chapter 2 this non-dimensional time-scale

can be written as

p= (Y 1. - Y1 ) .- 1 (4 5)
l" 1 A -4PT .sp [(1 - Y)e/T- PY2 ]

The local equilibrium degree of dissociation is given by

(1- YI,)e-/dlT- _P y2 = o (4.6)
Pd

The previous two equations can be combined to give

-= T'p [e-OdT + P(Y1 + Y.)] (4-7)
Tf='M'"p[.~'~/T Pd

Note that the above expression gives a non-zero value for the characteristic time-scale

when U - U. for finite values of the reaction parameter , whereas Equation (4.5)

yields an indeterminate value.
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For the purposes of stability analysis, the equilibrium state and the characteristic

velocity and-time-scales are regarded as constants and hence the transformation U ,

U - Ue can be used to simplify the scalar model equation to

aU aU U
au u=u -. (4.8)Ot +s r

The flux and source Jacobians of this model are also constants

aF aw 1
a = ' (4.9)au 

The fully implicit methods usually require the inversion of a block multi-diagonal system

of algebraic equations. This is more complicated than the source implicit scheme and

the realization of full advantage of vector processing machines for adaptive algorithms

becomes difficult. Hence only the source implicit and fully explicit algorithms will be

examined here. For the Ni scheme the spatial grid will be regarded as uniform (ei 0 for

all nodes) in the absence of spatial and temporal adaptation and artificial viscosity will

not be applied. The cell changes for a structured grid for cells B and C in Figure (3.1)

are as follows

AUB = (Fi-1-Fj) f t +W *At = r(uj 1-Ui)-DU (4.10)
(4.10)

AU*C = (Fi -Fj+ 1 ) t + W;At = r(uj - Uj+) - DU

where the terms without a superscript are evaluated explicitly or at a time-level (n),

whereas asterisks indicate terms which may be treated implicitly, i.e.,

(* Uin for explicit schemes
~U~}~~~ = U?+1 2 (4.11)

·- U3.+l for implicit schemes

and the CFL number r and grid Damkbhler number D ( Damkohler number is the ratio

of the convection time-scale t and the reaction chemical time-scale) are given by

At Atr = D At--. (4.12)

The stiffness of the scalar model increases with the magnitude of the grid DamkShler

number. The explicit flux changes and source changes are given by

AFjpu = Ujp , AWj A = U (4.13)
T*
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First Second Amplification Factor Bounding Curve

Order Order

E E 1 - D + 0.5D2 + r2 (cos - 1)

+0.5rlsinO(D - 2) r2 < 1 , D < 2

E Ii 1-D+r 2(cos e-1)+o.5rlsine(D-2) r 2 < 1 _ D D 2
1-0.5D2 - 2 4 D_ V-1

E N 1 - D+- r2(cos8 - 1) - rsine 2 <- D < 2

E 1+0.5D2+r 2(cose-1)+0.5rlsine(D-2) r2 1 + D+ D2 D < 2
1+D 2 4'

l+r 2(ose-1)+o.5rlsine(D-2) r 2 < 1 + D D D < 2
1+D-0.5D 2 2 4

I N 1l+r2 (Coe-1)-rsine r2 < 1+ D>1+D > 2

Table 4.1: Summary of stability regions for 1-D scalar equation, the letters E, I, N

respectively stand for explicit, implicit, nil.

102



where the subscript P denotes either cell B or C. Substituting these equations in

Equation (3.22) yield the change contributions at node j

bUjB = [u;B + ruj.B - 2qDU
(4.14)

W6(rc = - ra&ujc-q2AUvC].

Using Equations (4.10) to (4.14) the overall change at node j can now be written as

6SUj U+' -_ = (uj_l - j+) + (Uj_ - 2Uy + Uj+l)

-DUj - qD {r (U_1- ui+) - 2DU} . (4.15)

In this equation the first order source term is -DUJ and the second order source term

has the factor q. For the stability analysis, let us define the Fourier components

U(? = GneIwz

Uj+ = Gn+le'W (4.16)

where G is the amplification factor, w is the wave number and I represents square-root

of -1. This equation defines the following relations

Uj- : 2U + Uj+ = 2U(cos±1) (4.17)

Uji+ - Ujl = 2IUjsin6

where = wAz is the phase angle, Equation (4.15) yields the amplification factor

G = 1 + r2(cose - 1) - rlsinO + Drsine - DGO + qD2G# (4.18)
2 2

where

1 for explicit schemes
Co = (4.19)

G for implicit schemes.

A scheme is stable if the magnitude of the amplification factor remains less than

unity. Table (4.1) shows the various schemes which Equation (4.18) represents and the

corresponding bounding curves for the stable regions. The letters E, I and N stand for

explicit, implicit and nil respectively. These schemes are presented here to establish a

basis for the best possibilities, on which future developments will proceed.
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Figure 4.1: Stability curve for explicit first and second order source terms (EE).

The stability regions for various schemes in Equation (4.18) are determined on a

suitable grid in the r-D plane. For the figures shown here this grid spans the region

r E [0,2.51, D E [0,6] with 41 points along D-axis and 31 points along r-axis. The

phase angle was varied from 0 to ir radian in equal increments (/36 radian) and the

norm of the amplification factor was checked at each node of the r-D plane. The nodes

for which IGI < 1, for every discrete value of 8 E [0, 7r], were marked by a small circle to

indicate those that belong to the stable region of the scheme. Computations on a finer

grid yield essentially the same stability regions, i.e., the finer grid merely involves more

dots and yields the same bounding curves. This procedure has the disadvantage that

information about individual Fourier components is lost; however, the interest here was

solely to determine the stability regions.

The lower bounds for the region of stability in all cases are obviously D > 0 and

r > 0. The upper bounds for most of the cases are dictated by the 0 = r Fourier

component. Figure (4.1) shows the stability domain for the EE scheme when both

the first and second order source terms are explicit. The upper bound on the grid

DamkBhler number is 2, which can be a severe limitation when the chemical time-scale
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Figure 4.2: Stability curve for explicit first order and implicit second order source term

(EI).

is small.

Figure (4.2) shows the stability domain for the EI scheme, i.e., when the first order

source term is modelled explicitly and the second order source term implicitly. A doubly

connected stable region is apparent in this figure. A numerical experiment with cases

involving disjoint regions in which IGI 1 shows that the schemes are stable and

monotone only in the region which contains the origin r = D = 0 which is the limit

point for At -+ 0 with Axz fixed. Alternately, if the time-step is gradually increased in

a numerical experiment, the scheme will become unstable when D first becomes more

than V5- 1 and the experiment would be aborted before the time-step has the chance to

achieve D values greater than 2; thereby making the stability in this region immaterial.

The implication that the stable domain corresponds to the simply connected region

containing the arbitrarily small cell dimensions is possibly of a general type, although

a strict proof may be difficult. Thus, it is noted that instead of a gain in the stability,

compared to the EE scheme, the EIl scheme is much more restrictive.
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Figure 4.3: Stability curve when first order source term is explicit and second order

source term is excluded (EN).

Figure (4.3) shows the stability domain for the EN scheme in which the first order

source term is explicit and the second order source term is not retained. As expected

the stability region is more restricted compared to the EE scheme; however it is slightly

better compared to the El scheme.

The stable region for the IE scheme, in which the dominant source term is implicit

and the next order terms are explicit, is presented in Figure (4.4). The stability region

is enhanced compared to all other schemes in which the dominant source term was

explicit. However, the stability is still restricted by the D < 2 constraint. This is

a manifestation of the quadratic term in D; as the time-step increases the explicit

quadratic term becomes more dominant compared to the linear implicit term.

The fully implicit or II scheme stability curve is shown in Figure (4.5). Again the

amplitude limiting region is composed of two distinct regions; however the stable and

monotone region is the one which contains the origin. The stability region is somewhat
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Figure 4.4: Stability curve for implicit first order and explicit second order source term

(IE).

enhanced compared to the EE scheme although its performance is slightly worse com-

pared to the IE scheme. The stability is still restricted by the D < 2 constraint. A

numerical experiment with this scheme, when the convective term is set zero, indicates

that for D > 1 + V5, the sign of Us'+ ' becomes reverse of the sign of U7, although the

norm of the amplitude factor does not exceed unity; i.e., the value of the dependent

variable oscillates about zero with a slowly diminishing amplitude. Hence for problems

in which positivity (U7, U' +l1 > 0) is important, the stable region should not only limit

the norm of the amplitude function but also preserve the positivity condition. For all

the schemes involving disjoint regions of IGI < 1, the region containing the arbitrarily

small time-steps is the only one that preserves positivity.

As evident from Figure (4.6) for the IN scheme, in which only the first order source

term is retained implicitly, the stability becomes independent of grid Damk6hler number

and is only constrained by the CFL restriction r < iT + D/2. This is due to the fact

that the quadratic term in D has been excluded and the implicit first order source term
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Figure 4.5: Stability curve for implicit first and second order source terms (II).

provides a preconditioning (multiplication by 1/(D + 1)), the effect of which increases

with the increasing time-step. If the sign of the second order real source term (D 2G)

had been the same as the first order source term (DG) then the II scheme would have

had better stability characteristics than the IN scheme. This is consistent with the

findings of [23,24,42,122] who have used only the first order implicit source terms. For

all of the other schemes there is no substantial gain in stability over the fully explicit

scheme. The principal advantage of the IN scheme is that the numerical time-step

becomes independent of the chemical time-scales. The disadvantages include the fact

that the scheme is less accurate at small time-steps and it is computationally more

complicated compared to the EE scheme. It would be misleading to conclude that,

depending upon the value of grid Damkbhler number, CFL numbers greater than unity

can be selected. It is worthwhile to remember that the analysis only holds for a single

scalar equation and not for a system of equations. There are other scalar equations, e.g.

global continuity equation, where the source term is zero and the correct limit on CFL

number is then unity. In the following section the behavior of both the fully explicit

and IN schemes is examined on a model problem.
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Figure 4.6: Stability curve when first order source term is implicit and second order

source term is excluded (IN).

It is interesting to note that Equation (4.8) has an exact solution, for a single wave

number w, which describes the temporal decay of a periodic sinusoidal profile. This

solution can be determined by the separation of variables technique and has the form

U(z,t) = Ae- 't/eIw( -"u') (4.20)

where A is the initial amplitude of the periodic profile. The solution indicates that the

amplitude decreases monotonically with time and asymptotically approaches zero. The

phase of the harmonic associated with the profile shifts as function of time while the

frequency remains the same (the phase shifts by wut to the right after time t). The

amplitude function of the exact solution is

G = e-D [cos(ro) - Isin(rG)]. (4.21)

The norm of this amplitude function is always less than unity, since D > 0; hence the

physical situation always represents a stable system although the numerical schemes

may be subject to instabilities.
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The ratio 6r of the phase shift of the IN scheme in the exact solution is

1sin' (rsine \2)r +D) (4.22)

This ratio is 1/(1 + D) at 0 = 0 and 0 at = r radian.

The variations of both the amplitude and phase shift with the wave number show

that the IN scheme behaves reasonably well at high frequencies (small U) and is more

accurate than at low frequencies. However, the low frequency parts of the solution,

where numerical errors are worst, decay rapidly and the solution becomes smoother as

time progresses.

4.4 Exact Solution of a Localized 1-D Source Model

Consider integrating the simplest case, i.e., when the convective term is neglected

(r = 0)

u= -U. (4.23)a't r

This model has an analytic solution which can be compared to the numerical schemes

to assess the temporal order of accuracy. The exact solution is

Un = U e t/ ' (4.24)

where UO is the initial value of the dependent variable at time t = 0 and node j. The

solution decays exponentially from its initial value to zero (or Ue in terms of the original

variable), which is the equilibrium value for this case. The exact solution can be written

in the delta form as

6Ui = U° e(t+At)/' - U° e-t/r = Un (e-at/ - 1). (4.25)

The Taylor's series expansion, about zero, of this delta form is

At At2 At86Uj = Ujn (- -+ 2 2 6rs +" ) ' (4.26)

The numerical solution of Equation (4.23) is given by Equation (4.15) with r = o, i.e.,

U t + q At2
8uj = +-(-7- + .7, (4.27)
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Obviously the fully explicit EE algorithm matches the exact solution for At/r < 1 to

second order and hence it is second order accurate in time. The implicit scheme of

interest; iz. the IN scheme, yields the value

U+ = Un (4.28)
+7

or in delta form

U, = -Un -At 1 (4.29)

The Taylor's series expansion of this solution is

At At2 At 3

8i un(_--- + 1 72 73 +..) . (4.30)

The expansion does have a second order term but the solution is exact only to first

order; hence the scheme is temporally first order accurate for small time-steps. It can

be observed that a hybrid algorithm that sets q = 0 but regards U,* to be the average

of Uj? and U" +l would yield a second order accurate solution for small time-steps. This

scheme will be referred to as the CN (Crank-Nicolson) scheme. The delta form for this

hybrid scheme is

U =2(U" + U+ ) At (4.31)

which yields
At

Un+l 1 27 U (4.32)

and hence
= At 1 At At2 At3Ui = A U(--- + +)(4.33)sU unr l(r 2r2 4r3

This is second order accurate and yet has an implicit source term component. The

stability domain of this scheme is restricted by 0 < r < 1 and is independent of the

chemical time-scales. These properties are attractive; however, as will be shown later,

this scheme does not satisfy the positivity condition like the IN scheme. Positivity means

that quantities such as species mass fraction, cannot become negative during the course

of integration.

Figures (4.7) to (4.9) show the numerical solution for three choices of time-steps, i.e.,

At = r, 2r, 3r, along with the exact solution. The line-segments marked with symbols

correspond to fully explicit EE, source implicit IN and hybrid CN schemes and the
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Figure 4.7: Solutions for a localized scalar model with At = r.

exact solution is an unmarked curve. For the At = r case all of the numerical solutions

replicate the exact solution and are numerically stable. The same is true for other

schemes in Table (4.1); although these schemes are not shown in Figure (4.7). The EE

scheme is nearly indistinguishable from the IN scheme and their decay is relatively slow

compared to the true solution. The description of the CN solution is very close to the

exact solution and falls below it.

When the time-step is At = 2r, the changes computed by the EE scheme are zero,

the solution remains at the initial condition of U = 1 and does not exhibit the decaying

process. This situation marks the borderline of classical mathematical stability for the

explicit schemes. The CN scheme goes exactly to zero in one time-step and stays at
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At = 2r
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Figure 4.8: Solutions for a localized scalar model with At = 2r.

that equilibrium state thereafter. The asymptotic limit is achieved far too early. The

IN scheme exhibits the relaxation process qualitatively and can be regarded superior to

both EE and CN schemes for this value of the time-step.

For At = 3r the changes computed by the EE scheme successively increase and even-

tually the solution becomes unstable. The CN scheme exhibits lack of positivity when

the solution becomes negative after the first time-step. However, the solution recovers

and approaches the true asymptotic behavior. The IN scheme preserves the positivity

condition and tends to the correct equilibrium limit, although the decay process lags

behind the true solution for the first few time-steps. Care must be exercised in choosing

small time-steps at the initial stage of a relaxation process so that the transient is cap-
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Figure 4.9: Solutions for a localized scalar model with At = 3r.

tured correctly; however, once the initial transient is completed larger time-steps may

be selected.

It can be concluded that among all the schemes examined here the IN scheme is the

most cost-effective scheme for stiff reaction systems, although it is not as accurate as

the EE or CN schemes for small time-steps. It is also appropriate to point out that the

IN scheme discussed here does not modify the transient history if the preconditioning

matrix has the form as described here and the Jacobian terms are evaluated correctly.

The only restriction is for the temporal order of accuracy and hence smaller time-steps

should be selected in the regions where large temporal gradients are expected.
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4.5 Implementation of Source Implicit Scheme

An approach for treating the source terms implicitly has been discussed in Chapter 3,

which uses the preconditioning matrix on the cell changes. An alternate approach

which utilizes the preconditioning matrix on the distribution formulae is discussed here.

This approach is detailed for one spatial dimension and is then generalized for the 2-D

case. The implicit source term for node j in Figure (3.1) can be expanded by Newton

linearization

Wn+l = W- + aw (Un+l --U) = Wj + d (6UjB + 6Ujc)- (4.34)

Hence the implicit cell change for cell B is given by

FBF = aw (FUj) + WjUjc)tB (4.35)
or in terms of the explicit cell change

AU = AUEX + _|aw (6U B + SUjC)AtB. (4.36)

It is assumed here that Atg = Atc; a similar expression for cell C is

AUIM = AUC I (6U U (4.37)

These expressions are used in conjunction with the distribution formulae, Equations (3.22).

The source change contributions for these distributions are zero since here q = 0 and the

flux changes remain the same since the cell changes for these remain explicit. Substitut-

ing the implicit cell changes in the distribution formulae and summing the individual

contributions at node j yields

_ ___ U[,BX AtE B8UjB + UjC = 1 e [AUx + A AF

1+Ei UEX AtC aFc2 AC z F
awl (6UjB + Ujc)Atc.au 

Decomposing this back into contributions from cells B ar

(I OWIAt6) -UIM 6UEX - [EX 
(-yt i AtcB 8EU 2 +B

(I- 6Wt1 Atc)6 U~rM =6 l c, [&UEX

+ 1 iA FjBI +
1 _ E ) ]

2e AFj) +

Ld C yields

. " (AFB + __LjAFiB) ]

4Atza qAC1+6,iF;C )
(4.38)
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Now that the individual contributions are derived, different time-steps for cells B and C

can be allowed. The overall distribution formulae for cell C including artificial viscosity

are given by Equations (3.35) which generalize to

6Uic = [i -(1 - ) . Atc] [AUi - t (AF - j j + ) + q tAWJ]
6U 3cc 17'~ [~(1~q) IAtc [AU + t /(AF "k Aik + + qp wk] C.

6ukc = 1- I - (1 - q) awIj AtC] [ k+ + (iF + 2 W 
(4.39)

These now hold for both fully explicit (q = 1) and source implicit (q = 0) schemes. Note

that in these relations the source term Jacobians are evaluated at the nodes and the

cell changes, as given by Equation (3.13), also involve the source terms at the nodes.

For the 2-D case all Jacobians in the STAR code are evaluated at the cell centers in

the spirit of a finite volume approach. The generalization of the distribution formulae

of Equations (3.70) is now straight-forward; as an example the contribution to node i is

6Uic = - (1 - q) IAtC] (4.40)

AU - At (Ay,,AF - AxAG) - At (Az.AG - Ay.,,AF) + q-t AW + i

Note that when the integration is carried out on a cell by cell basis the preconditioning

matrix need be inverted only once per integration.

4.6 Modification of Source Vector

Consider the variation of species density in the absence of convective term, a first

order integration of the species equation gives

(p)"'+ = (py,), + AtW". (4.41)

The species whose density is in greatest danger of being driven negative is the one for

which (pY,)n is small and W, is a large negative number. Such a species will be referred

to as nenapec which is the acronym for Negatively ENdangered SPECies. Recall that

the overall source term for species 8 may have contributions from all reactions and hence
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there may be one nenspec for each reaction. A suitable criterion for justifying that the

species k in reaction r is nenspec is the following

Mlk(Bk r- ak,)(lfr - br)/PYk < Ami, < (4.42)

where Ami, is a pre-selected non-dimensional negative value. The expression on the left

side must be minimum for nenspec among all the species which take part in the reaction.

The requirement that the above expression be strictly negative debars the inert species

(,sr = cAr) from being a nenspec candidate. A given reaction may not have a nenspec

associated with it, in which case the possibility that the reaction causes any of the

species densities to go negative is remote. If all of the reactions are devoid of nenspec

then the time-step At may not have to be restricted beyond the CFL constraint. On

the other hand if any of the reactions has a nenspec then the time-step may have to be

reduced, often prohibitively, or implicit schemes may have to be used. In what follows

an alternative cure is proposed to counter this behavior.

It is obvious that (pY,)n+l can not be negative physically. For explicit schemes the

situation is controlled by taking extremely small time-steps, so that the product At Wn

is a small negative number and its sum with (pY)" yields either a smaller species density

or at most zero. For implicit schemes the source term is replaced by Wfl+1 and if this

scheme yields appropriate results, i.e., results in smaller final value of species density,

then its effect is

Iw2+1 l< IW21.

If this condition is not met, i.e., if the implicit source term is as large a negative number

as the explicit source term, the species density will be driven negative even for implicit

schemes and special reapportionment of species density will have to be carried out to

preserve positivity [5]. Thus it is reasonable to choke or reduce the value of Wn for

the reaction for which a nenspec exists and if explicit terms are desired. Consider the

numerator of the expression in Inequality (4.42) in expanded form

mik {(Pkrrflr + ckrlbr) - (kr~fbr + hk,rfr)} -

Note that the stoichiometric coefficients and the progress rates are all positive numbers

and hence the parenthetical quantities in the above expression are positive. In an
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extreme case when only the large negative terms of the k th species are important, the

contribution-of reaction r to the source term of species k is approximately

Wmin,r P -Tk(1kr2lb, + akrIfr ). (4.43)

The subscript r again emphasizes that there may be one such quantity for each reaction.

The contribution to (pY,),+l from this extreme reaction (when the contributions from

other reactions are small) is

(Pyhk)' (PYk)' +1 + Atmk(lkrIbr + akrflfr). (4.44)

The choking factor for this reaction must then be based on species k and a suitable form

for it is

CF= (pyk)n + ctI(kt r (4.45)

The constant c has values 1 or 0 depending upon whether the nenspec k for the reaction

r exists or not. The second factor in the denominator is zero when nenspec does not

exist and, depending upon the strength of the nenspec, it could be a very small positive

number. The time-step is set equal to that of a cell which is being integrated when the

solver is applied. The general form of the modified source term is then

W, = m*,(Br - a,,)(lfr - rlbr)CFr. (4.46)

For the case when At -- 0, the explicit and modified source terms are essentially the

same, whereas for the case At - oo, the modified source term approaches zero and

hence there is no danger of divergence of the mass fractions in the negative sense.

The choking factor in the previous analysis has been obtained in an ad-hoc manner.

In the following the exact form of this factor will be justified. Consider that Un = (py,)n

is a small positive number and W' is a large negative number which can be approximated

by Wmin,, of Equation (4.43) and that only one reaction is the dominant one. The partial

differential equation to be solved is

aU = wn+l = Wn + GU auAt. (4.47)at dU 57

For the sake of computing the source Jacobians assume that

Un+l --* O, Wn +1 - 0
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hence
aW Wn+1 - Wn k' U = U W- U _ k (,rfrbr + Cakrffr) ' (4.48)
-57u- Un+ - Un Un

Substituting this in Equation (4.47) yields

8U pYk
Wn. (4.49)at PYk + AtrNk(krb, + lkrnlfr)

The factor multiplying the explicit source term is the choking factor for one reaction

which has modified the source term and has the same form as Equation (4.45).

Another problem with chemical source terms occurs when (pY,)n is large (Y, ap-

proaches its maximum possible value Y,,az,,) and W, is a large positive number, then

the species mass fraction is in danger of increasing beyond its maximum possible value.

An analysis for this dangerous situation is unnecessary since for Yk > Y,-z,k there is a

species I for which Y1 < 0, and this case has already been discussed.

As noted earlier, the prescription described here is tantamount to making the part of

apY./8t that is due to reaction r linearly implicit in pYo which prevents the mass fraction

from being driven negative for large values of time-steps. Approaches similar to the one

described here are presented in References [5,114]. Unlike the IN scheme discussed in

the previous sections the inversion of a preconditioning matrix is not needed for this

approach. Another advantage is that the Jacobian matrices aW/aU are not really

involved in the solution algorithm for the first order schemes (q = 0), the computations

of these Jacobians can be very expensive especially when large number of reactions are

involved. The disadvantage of the approach is that nenspec has to be determined for

all reactions which may be computationally expensive for a large number of reactions.

For the model problem discussed in Section (4.4) consider the reaction A , B,

here the source term for species A can be written as

WA =-A [r PYA -k/PY_ ] (4.50)

Since the model problem deals with an irreversible reaction the backward rate coefficient

is zero; furthermore the forward rate coefficient can be regarded as

1
k!=-. (4.51)

T
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Substituting these values in Equation (4.45) yields the following value for the choking

factor
1

CF1 = (4.52)

and in the delta form this yields

LAt I
6U =-Un At 1- (4.53)

which is the same as the solution for the IN scheme. Hence for multiple reactions this

approach can be expected to yield consistent results. For most of the cases discussed in

this thesis the results obtained by this approach and the IN scheme are essentially the

same.
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Chapter 5

Spatial Adaptation

This chapter begins by introducing various spatial adaptation techniques and em-

phasizes embedded mesh concepts. This is followed by a brief introduction of the data-

structure utilized for the algorithm. A detailed description of data-structure appears

in Appendix C. A multi-variable approach is detailed for unbiased first differences of

criteria variables and their threshold values, which are useful in the detection of flow

features. Sections (5.4) and (5.5) discuss the grid division and fusion procedures. Sec-

tion (5.6) details the procedure for enlargement of the spatially resolved region. The

chapter concludes by remarking on the avoidance of grid knottiness and a discussion of

a block grid generator.

5.1 Motivation

It is well-known that greater accuracy is realized when finer grids are utilized in

both space and time. This is because the truncation error of the numerical schemes is

dependent upon fineness of the cells; with increasingly finer cells this error tends towards

zero. For those limiting conditions the solution of a consistent finite difference analog

approaches the exact solution, assuming of course that the round-off error remains

negligible, as the cells are refined. It is also well-established that an accurate description

of small structures in a flow can be realized generally by spanning the structure with a

minimum of three or four computational cells. More cells may be needed accomplish the

capture of the feature if steep gradients are involved. The uncertainty pertaining to the

location of a particular feature within a cell of course could be reduced by increasing

spatial resolution. If the flow structures are not adequately resolved, they become
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numerically diffused since a discrete model inherently spreads flow discontinuities over

several cells-and thereby degrades accuracy. Hence spatial resolution is essential near

features like shocks, relaxation zones, vortices, slip lines, etc.

It is clear from the CFL constraint that the resolution requirements in space gener-

ally imply a corresponding imposition on resolution in time. For most frozen flows this

is the primary constraint, but for reacting flows other temporal resolution requirements

may be even more stringent than those implied by the spatial resolution. Hence the

resolution in time may be controlled only in part by the resolution in space. For cases

where strong coupling does exist between the two, allocation of temporal resolution

simply follows from that of spatial resolution. For those cases, in one spatial dimension,

increasing the spatial resolution by a factor of two imposes a corresponding factor of two

in time-steps; hence there is a fourfold increase in computational work to advance to a

given interval of time. Similarly, doubling the spatial resolution in two-dimensional flows

generally causes the time-steps to reduce to half their previous values which implies an

eight-fold increase in computational effort.

The classical way to provide adequate resolution for the capture of features is to use

globally fine grids. This usually results in a colossal number of cells which places exten-

sive demands on the CPU memory. This may occasionally exceed the available CPU

memory size; although this is not a handicap for a virtual machine, frequent loading and

unloading of pages may seriously impair the efficiency of the calculations. Furthermore,

as implied earlier, global refinement can result in prohibitively long computational runs.

The advantage of a global approach is that the logic is not complicated by a need to

manipulate nodes, and a simple structured grid suffices. This also reduces the human

costs in the sense that changes in the code can be incorporated easily. However, due

to the tremendous costs associated with the execution of such programs, the global

approach is not a very attractive option. The loss of efficiency can be countered by the

use of adaptive techniques, such as moving mesh, zonal approach or local embedding.

In a zonal approach, an overall region is subdivided into zones, and grids within

each zone are generated independently according to the desired resolution. This makes
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the grid generation process for complicated topologies a simpler task. However, the

approach generally results in non-physical boundaries within the overall region due to

patched or overlaid grids. The zonal boundaries at the interfaces of various zones must

be treated in a special way to ensure conservation. Some typical citations for the zonal

techniques are References [8,14,17,63,64,110,113,123].

A second adaptive approach involves redistributing and/or clustering grids in the

vicinity of known features. This approach is frequently known as the moving mesh

technique. It is generally advocated that numerical methods based on this approach

maximize accuracy with a minimum number of grid points. Node movement functions"

are generally defined from the geometry, and propagate nodes into regions having sig-

nificant discretization errors. However, clustering of cells is very effective when the

location of the feature is known apriori, at least to some extent, and this clearly is not

always the case for unsteady situations. The technique can also introduce substantial

cell distortion and an undesirable phenomenon of node-entanglement. As an example

consider the resolution of a feature which revolves around a second feature, via quadri-

lateral cells, as time progresses. After one complete revolution the nodes should coincide

with their initial locations, but generally the distortions gradually increase and the cells

are unable to maintain quadrilateral topologies; cell centers may be displaced outside

of the cell boundaries, and grid lines may intersect. Such behavior can cause significant

errors in computed solutions even for less extreme examples. When grid clustering is

used with a global mesh to resolve certain features, clustering also takes place in far field

regions resulting in a large number of unnecessary cells there. However, the concept of

moderate grid motion coupled with local embedding does present an attractive option

for problems in which the domain boundaries are themselves moving. The popularity of

moving mesh techniques may be attributed to its relatively straight-forward logic and

the structured nature of the grids, although manipulations involving node movements

can be somewhat complicated. The technique can be retrofit into an existing structured

program with a modest effort. Some of the typical studies, among numerous grid point

redistribution schemes, are References [7,47,65,66,91,95,129,130].

Another adaptive approach is local mesh enrichment, in which cells are locally di-
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vided to yield additional resolution. Such adaptive embedding algorithms have the

advantage that meshes are refined only where necessary and as the solution evolves,

thereby providing accurate and relatively inexpensive solutions. Some typical studies

in this class are References [10,13,35,99,104,105,119,128]. Those which couple multiple-

grids [33,87,133] with locally embedded grids have some aspects in common with the

zonal approach. This is because the grids of different coarseness levels are not assembled

into a global grid but are stored independently, and different approaches are applied at

different levels. For these multiple-grid algorithms the fine grid boundaries overlap the

coarse grid boundaries; however unlike the zonal approach, the multiple-grid embedded

mesh approach can dynamically change the grid structure as the solution evolves. Since

the local embedding can be carried out in a recursive manner, very fine grid spacing can

be maintained in the vicinity of the physical structures being captured. Furthermore,

since the resolution is only enhanced locally at the features, with coarser grids near

successively uniform flow regions, the computations with such grids consume signifi-

cantly less computer resources than global refinement. There are substantial savings

in both CPU time and memory. The technique is also devoid of node-entanglement

phenomenon, since the nodes are not allowed to move and the topology of the base

grid is preserved in the finest meshes. Alternately, the skewness of the finest grid can

be no worse than that of the initial coarsest mesh. The disadvantage of the approach

is that the logic of an adaptation procedure is generally complicated and the resulting

unstructured data-base is prone to errors. Such an approach demands expertise on the

part of humans and sophistication on the part of the computers.

The spatial adaptation technique employed here belongs to the local embedding

class. A multiple-grid technique is not used, since it is inappropriate for unsteady

problems, and thus meshes at various coarseness levels are part of the same global grid.

Since the initial and subsequent grids at any moment can be unstructured, a block grid

technique is useful to generate initial grids for complicated geometries. The block grid

approach allows the patching together of simple algebraic grids that conform to local

boundaries in various regions, but unlike the zonal approach care must be taken to

match the nodes on common interfaces.
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Before proceeding with a description of division, collapse and other grid manipula-

tions, the managing data structure or pointer system that controls spatial grid alter-

ations will be briefly introduced. Familiarization with the data-structure facilitates the

understanding of spatial grid manipulations. Only the data-structure pertaining to two

spatial dimensions and for spatial adaptation will be discussed here. A more complete

detail for spatial data structure, temporal adaptation, and chemistry pointers appears

in Appendix C.

5.2 Spatial Data Structure

The familiar (i, j) indexing system used for structured grids cannot be used with local

embedding spatial adaptation, since such a procedure generally destroys the 'structure"

of an existing mesh. An unstructured pointer system lends itself to effective refinement

strategies. However, it suffers from inherent limitations, such as the need to store

connectivity arrays and the use of gather-scatter operations on vector machines. Fur-

thermore, the use of a number of algorithms, such as approximate factorization (Beam

and Warming) and splitting methods (ADI), which were originally developed for struc-

tured grids can not be implemented on unstructured grids [87]. The importance of an

efficient spatial pointer system for rapidly changing unstructured mesh in unsteady flow

cannot be overstated; the pointer system described in this thesis is geared towards such

efficiency. Once the grid structure is defined through a pointer system, a general solver

can be implemented in terms of these pointers and the integration can proceed on a cell

by cell basis and in any arbitrary order. This separation of grid structure from the flow

solver allows creation of an efficient and modular approach.

The assignment of pointer systems to define the connectivity of objects in an unstruc-

tured grid is not unique; it depends upon the type of grids (triangular, quadrilateral,

etc.), and the amount of detail desired (more flexibility implies more data storage)

[33,57,79,99,133]. The spatial pointer system used here is very similar to those of Usab

[133] and Dannenhoffer [33].
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Figure 5.1: Node pointers for a given cell C.

The cell-to-node connectivity array defines the linkage of a given cell to its nodes

and parent cell. For example, the nodes i,s,j,...,w, in Figure (5.1), are pointed to

by the cell-to-node array once the cell number C is known. The array in the present

algorithm has ten pointers for each cell in the domain. The filled circles denote corner

nodes which are always present while empty circles correspond to nodes which may or

may not exist. None of the center and middle edge nodes exist for a given cell if it is

undivided and does not border a divided cell. For unsteady flows, without a multiple

grid technique, the cell numbers and corresponding arrays for divided cells are no longer

needed and these assignments can be reallocated to the new cells that are created by the

division process. However, to maintain generality, the divided cell numbers are retained

even for unsteady calculations. This makes the book-keeping somewhat easier, since

division of each cell in a two-dimensional domain increases the total number of cells by

four, and the opposite holds for the fusion of cells. Hence the net difference of total

number of cell before and after the spatial adaptation cycle is a multiple of four. The

retention of divided cells means that for unsteady flows a linked list consisting of only

undivided cells need be maintained for an efficient integration procedure.

The cell-to-node array has its usefulness when integration proceeds on a cell by cell

basis and each cell increments to the changes that are accumulated at its respective
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nodes. In order to avoid an expensive search procedure a reverse array pointer, namely,

a node-to-cell array, is needed to specify the cells surrounding a given node. This array

has four pointers for each node and is constructed such that if all four pointers of a

given node are non-zero and unique, it is a common interior node; however, if the four

pointers are non-zero and non-unique then the node is an interior middle edge node of

a spatial interface.

In addition to the arrays that imply connectivity of nodes and cells, simple node-

arrays and cell-arrays are needed for other manipulations, since nodes and cells may be

numbered arbitrarily. The node-arrays contain geometry information, state vectors and

some other variables at all of the computational nodes. The cell-arrays hold information

pertaining to some or all of the cells in the computational domain. This may contain, for

example, the refinement parameter values for undivided cells, the spatial level pointers

of each cell etc.

Link-lists are needed to hold information pertaining to specific cells or nodes and

these may be assigned in any arbitrary order. For example link-lists are needed to hold

those cell numbers which must be divided (or fused) in the subsequent adaptive cycle.

Boundary-Arrays contain information pertaining to the nodes on the domain bound-

aries. This is needed to apply boundary conditions, perform interpolation functions and

facilitate grid adaptation near the boundaries.

5.3 Detection of Flow Features

One approach to detect flow features examines the first differences of a single pre-

selected criteria variable [34,99,106,119]. A typical choice for this involves density differ-

ences since density appears as a factor in each element of the state vector; furthermore,

density differences are present for most flow fields including shocks, contact disconti-

nuities, etc. It is clear that for a system of N, equations it would be expensive to

examine every state vector component U(k), k = 1, ... , N. to define the necessary spa-

tial and temporal resolution. However, use of a single variable might be insufficient when
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different regions are characterized by different physical gradients. For example a concen-

tration shock or contact surface may occur in one location with a small density gradient

concurrently with a classical shock elsewhere without mass fraction gradients. If only

one criteria variable is used some features may not be resolved adequately. Therefore a

multi-variable approach is suggested with a special form for the differences.

5.3.1 Type of Differences

The types of differences used to detect features in spatial adaptation procedures are

not unique. Kallinderis [71] has used divided and undivided first differences in viscous

and inviscid regions of flow. Dannenhoffer [35] has used undivided first and second dif-

ferences for this purpose. The undivided first differences can be interpreted as first order

derivatives in the computational domain for unit cell dimensions, a similar statement

can be made about the second order derivatives. Even when the type of difference is

decided its numerical form may differ depending upon whether the differences are node

based or evaluated on cells. Consider, for example, the first difference of density, Ap,

in one spatial dimension. From Figure (3.1), the value at node j is

2Ap = Pk-Pi

provided that the dimensions of cells surrounding the node j are comparable; however,

if cell C is twice as long as cell B, i.e., node j represents a spatial interface, then the

appropriate difference at this node is

2Ap = (Pj + ) - Pi.

Thus the difference at a node can be complicated by the introduction of spatial in-

terfaces. This situation becomes further complicated in two spatial dimensions where

different kinds of spatial interfaces can exist. Furthermore node based differences have

to be appropriately modified near physical boundaries. This also has the disadvantage

that once a node is flagged as having a value of refinement parameter more than some

threshold limit the cells surrounding this node must be scanned for possible division. It

is generally unclear which cell has contributed most to the difference for a given node.
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The density difference for cell C in the same figure is

APC = Pk - Pj

which is clearly irrespective of any spatial interface location and does not have to be

modified near physical boundaries. Since it is the cells that are divided or collapsed,

it is natural to evaluate differences based on cells. These differences not only avoid

complications due to grids but also can be evaluated at a lower computational cost and

are consistent with the philosophy of cell by cell integration for the adaptive procedures.

For these reasons the present algorithm utilizes undivided first differences on only cells

without centers which are stored in a link-list to be used for this purpose.

In two spatial dimensions the cell differences can be evaluated as changes along each

of the computational coordinates. For a scalar variable 6 these differences are Oe and 7;

and these particular forms may be useful if directional adaptation is desired. However,

if the directionality is unimportant or is undesired then differences based upon specific

directions must be modified to yield some other unbiased measure of property variation.

An example of such a non-discriminating overall difference is

A= 02

Another example is

As = I1+I 1+*

For accurate computation of Of and 0, middle edge nodes must be used whenever

such nodes exist; otherwise appropriate interpolated values have to be used. This is

computationally expensive since it involve IF-THEN clauses to find out if these nodes

exist. The exact detail and form of the first differences is generally unimportant; they

are seldom used in their original form and are often normalized to yield standardized

values. Furthermore, for most unsteady flows since it is necessary to adapt frequently

an efficient differencing scheme must be selected. For these reasons such differences are

not computed in the present code. The computational time can be minimized if only

corner vertices of a cell are considered when evaluating differences. This significantly

reduces computing time since corner nodes always exist and IF-THEN structures are
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not needed. Consider cell C in Fig. (3.5); the cell value for some scalar variable is

c = (i + j+ + l). (5.1)

Four cell differences are

Aem = C - m for m = i,j,k,l (5.2)

and maximum and minimum difference values for the cell are

aO.xz = max {abi,A, , hAfl}

Abmin = mn {A$i, Aqj, Sek A}. (5.3)

Note that these values are positive and negative respectively for locally non-uniform

flow regions. The cell difference Apc is then set according to

=( m IAPmal - IAPminI (5.4)
A Pmin otherwise.

For a large number of cells one is justified to assume that the average of all such changes

is approximately zero, since there is equal likelihood for a general cell C to acquire

positive or negative values. However, no such assumption is made here. Nevertheless,

it has been observed that the average value of such differences has always been six or

seven orders of magnitude smaller than the corresponding standard deviation in all cases

that have been examined. Note that if the maximum absolute value of these changes

is assigned as the cell change value then the number of computations can be slightly

reduced; however, the average of the differences will be non-negative and will definitely

have to be computed for the approach described below.

5.3.2 Multi-Variable Approach

Let QC denote the spatial criteria variable vector for a general cell c; the components

(ql q2, .)c of this vector form the first differences of selected variables as indicated in

the preceeding subsection. Thus if density is used as one criterion then ql = Ap and if

mass fraction Y of some species is used as a second criterion then q = AY, and so on.
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The mean value vector of Qc over all the cell values is denoted by (1, 2-," ) which

may be approximately zero. Once all the elements of the vector Q are determined for

each cell, the variance-covariance matrix E = {,8b) is computed, where

No 1

ab = -E (q-pa)(q -,A) (5.5)

and NC is the total number of undivided cells in the domain, and the indices a, b vary

between 1 and Nq which denotes the total number of components in the spatial adap-

tation criteria vector. The sample variance saa provides a measure of spread of data for

observations of component a, whereas the sample covariance sab, for a $ b, provides a

measure of linear association between the observations of the components a and b. The

correlation coefficient between these variables is

Cab ab (5.6)

If large and small observations of one variable occur respectively in conjunction with

large and small values of a second variable then the sample covariance will be positive

and the correlation between the two variables can be measured by the closeness of the

correlation coefficient to +1. If large values of one variable occur simultaneously with

small values of another variable and vice-versa, their sample correlation will be negative

and the two variables will be inversely correlated. If there is no particular association

between the values of the two variables, the correlation coefficient will be nearly zero.

To accelerate the adaptive process one can assume that ab = 0 when a : b for suitably

chosen variables; however no such assumption is made for the illustrative examples

shown here. Next a single scalar criteria variable is computed, which lumps the effects

of the multi-variable components of Q for each cell and has the form

=2 r2J = (Q _ M)TE-(Q-M) (5.7)

where E-l is the inverse of the variance-covariance matrix and M is a diagonal matrix

with entries equal to the mean values (x,,j p2, ' ). The superscript c is omitted here

for simplicity. This scalar variable will be referred to as the refinement parameter. The

above reduces to the familiar form r = (q - )/Vsi/ for a single variable situation.

The inverse of the variance-covariance matrix will not exist for spatially uniform flow
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fields and in these cases there is no need to perform adaptation. However, appropriate

measures must be taken in the software itself to avoid adaptation in such cases; in the

STAR code if this matrix is determined to be ill-conditioned the refinement parameters

of all the cells are simply set equal to zero. The contours of constant r values for

distributions in the space of Nq dimensions are hyperellipsoids defined by the Q values.

In particular for a two dimensional space, the equation of an ellipse in (ql, q2) coordinates

is

(ql - 11)2 s82 - 2(qj - -l)( - 2)812 + (q2 - 42)811 = r 2(811822- I2) (5.8)

On the standardized scales of q' = (q, - p)// this becomes

q2 - 2Cl2qlq + q' = r2(1 - C22) (5.9)

which represents the equations of an ellipse. This reduces to a circle if the variables are

uncorrelated.

Equation (5.7) provides a meaningful distance norm for data Qc from its mean

value in the case when the variabilities in different components are different and when

some or all of these components are correlated. This measure removes the effect of

inter-correlations between individual components instead of merely summing up the

individual contributions. The standardized variables allow for an unbiased spread of

data. This has the advantage that spatial domains characterized by different kinds of

scales can be adapted by using a single refinement parameter that takes into account

the variability of all components and multiple components of refinement parameters are

then eliminated. Thus the same approach may be used to adapt, for example, in viscous

and inviscid regions.

5.3.3 Threshold Values

A divide threshold limit Rd is a value of the refinement parameter such that any cell

with r2 > Rd will be considered for possible division. Two kinds of divide threshold

limits, Rdl and Rd2, are considered here; the first is assumed apriori whereas the second

is computed based upon the current distribution of refinement parameter values for each
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cell. The limit Rdl is user supplied and allows evasion of the cell division procedure

when the flow field is globally uniform or when the gradients are reasonably mild. The

second threshold limit is selected from histogram records as the value corresponding

to a specific fraction Cfd (usually 20%) of cells for which the refinement parameter is

more than this limit. An inverse procedure (i.e., finding Rd2 from Cfd) is needed for the

determination of this value. For this purpose the minimum and maximum refinement

parameter values are first determined over all the cells

/Rma = max{r2j ,c=1,2,...,Nc}

Rmin = min{T2C , c= 1,2,N. -, (5.10)

Next the refinement parameter values are segmented into intervals of constant length

and the number of cells (frequency) within each interval is counted. Thus if the total

number of segments is n, the interval size of the segment is AR = (Rma - Rmin/n) and

the ith segment or bin is given by

[R]i = [Rmin + (i - 1)AR, Rin + iR] for i E [1, n]. (5.11)

The fraction fi of cells with the refinement parameter values in the ith bin is found from

the number of cells with r2 values in this segment. The distribution of frequency fi

versus the refinement parameter is generally similar to a normal distribution curve for

a large number of cells. The cumulative frequency Cf; is determined to be the overall

fraction of all cells with a refinement parameter value exceeding that of the ith bin and

is given by
n-i+l n

Cfi = Z fn-j+l = Zfjh (5.12)
j=1 i=i

Now that a one-to-one correspondence between the cumulative frequency Cfj and the

mean value Ri of the ith bin is established, the value Rd2 can be obtained as the value

corresponding to a pre-defined fraction Cfd through linear interpolation between the

appropriate bins. A single threshold value,

Rd = max(Rdl,Rd2) (5.13)

is then used as the decision basis for cell division.
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In the case when Rd2 > Rdl, it is unnecessary that the total fraction of the divided

cells will be exactly Cf , since some cells which had been marked for resolution may not

actually be divided. The cells are not divided if the spatial level of the subcells pertaining

to a marked cell would exceed some user supplied maximum level. Furthermore the cells

are not divided if the difference between any two contiguous cell levels would exceed

unity.

The decision basis for cell merger, Re, is set to be between 20 to 40 percent value

of the divide threshold value. When the associated refinement parameter diminishes

on a previously refined grid, and becomes less than the merger critical limit, those

contiguous grids may be collapsed while making certain that the cells to be merged are

from the same parent cell. Cells also are not merged if the difference of levels between

the parent cells and its neighbors would exceed unity. The initial (coarse) global grid

is kept stagnant by insisting that the coarsest cells (spatial level zero) be never merged

to a coarser state, no matter how smooth the evolving solution proves to be.

5.4 Grid Division

Once refinement parameter values r2 are computed for all individual cells and thresh-

old values Rd and RC are determined, all cells with r2 > Rd are flagged for possible

division whereas those for which r2 < R are flagged for possible fusion. Before the ac-

tual cell division procedure is invoked for the cells to be divided, the link-list containing

the cells to be divided is extended to include cells in the regions neighboring the one

which is marked for further resolution. The logic for the determination of extended cell

regions is deferred until a later section.

Before a particular cell can be divided a number of other conflict rules governing

subdivision are examined. The simplest rule examines the remaining space in the data

base for availability so as to place additional pointers which the newly created cells

would demand. If the data base is not saturated further evaluations are allowed. This

rule does allow redistribution of grid points once the data base is saturated. Next the
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spatial level of the cell to be divided is examined and verified to be less than a user-

supplied value. Without this rule the cells would be divided indefinitely near regions

which propagate slowly. Note that for steady state situations, this rule may not be

needed since the grid may be adapted only a few number of times.

C

S

(a) (b) (c)

Ls -L = 0 Ls - L = +1 Ls - Lc = -1

Figure 5.2: Three possible situations for spatial level differences.

Another rule examines the difference between spatial levels for the cell to be divided

and any of the neighboring cells, and aborts the division process if this difference is such

that further division will cause the cell volumes to differ by factors of more than four.

Consider the three possible permutations, shown in Figure (5.2); the level Lc of the cell

C to be divided and the level Ls of a southern neighbor S are examined. The division is

allowed to occur only in cases (a) and (b). This rule is designed to avoid the substantial

stiffness that the spatial grid would otherwise introduce due to the disparity in the cell

volumes. Such stiffness will subsequently be referred to as spatial level stiffness.

After all preliminary tests are completed, a node is created at the centroid of the

cell, and dependent variables are set equal to the average values of the corner nodes. If

the nodes at the face midpoints do not already exist, they are created, and new nodal

values for the node-arrays are interpolated from nearby face nodes. Similarly four new

fine cells are created with cell numbers exceeding the previous value of the total number
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of cells. All pertinent arrays are adjusted appropriately to account for additional nodes

and cells. The reader is referred to Appendix C for additional details.

New cells are tagged to indicate that these cannot be collapsed for three more spatial

adaptation cycles. This rule is designed to create a lag between the most recently divided

and subsequently fused cells. It is possible that a cell to be divided lies within a buffer

zone and is awaiting the arrival of a feature, but the feature might be delayed due to

stringent time-step restraints elsewhere in the domain and might not reach the divided

cell until after two or three time-strides. Thus, in this situation, if the cells are allowed

to fuse in the second cycle, they may have to be redivided in the third cycle, and this

rule simply defers this kind of situation.

The boundary pointers also are examined to see if special interpolation functions

are needed to define the geometry at the middle edge node that conforms to a special

solid boundary surface. For example, a quadratic form may be used for a circular arc

bump and a cubic spline for other surfaces.

5.5 Grid Collapse

The reverse procedure that removes subcells is slightly more complicated than the

cell division process. For a given cell number contained in the link-list of the cells to be

merged there must appear exactly three other cells with the same non-zero supercells

that have been flagged for fusion; otherwise the fusion process will not commence. Once

located, the four subcells are arranged according to the relative cell number order in

which they were created, so that reverse manipulations can be started.

In order to avoid spatial level stiffness, the level pointers of cells that neighbor

supercell of the subcells to be fused are examined. If the difference of levels between

these would exceed unity due to the application of the fusion process, the process is

aborted.

There are situations for which it is known apriori that spatial resolution may be
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permanently needed in certain locations. For example, in the vicinity of external or

internal fuel-injection, one may want to maintain fine grid resolution even when the

prevailing gradients of the resolution parameter become small momentarily for a certain

span of time. This can be accomplished by tagging the cells in such regions to be

"permanent residents" and therefore not allowed to collapse. If such a tagged cell is

detected during the collapse procedure, the process is aborted.

After all preliminary tests are completed, the center node of the supercell is flagged

for removal. Those side nodes which are not needed by the neighboring cells are also

flagged for removal. To avoid gaps which would otherwise be created by removing the

fine cells, such cells are replaced by the last four cell numbers in the domain. The

situation becomes complicated if one or more of the last four cells is to be locally

divided. Hence care must be exercised in performing the realignment of all the pointers

between these two sets of cells. The reader is referred to Appendix C for details of this

procedure from a coding perspective.

5.6 Extension of Spatially Resolved Region

For some unsteady flow situations, it is necessary to extend the spatially resolved

region by a certain number of cells in the direction of propagation of flow features.

This ensures that features remain within the spatially resolved region during a subse-

quent time-stride unit. For example, if a moving shock is being tracked and temporal

adaptation is being used to allow advancement of cells with varying time-steps, it is

possible to foresee that the shock may emerge from the edge of the resolved region by

the time all cells in the time-stride sequence are integrated. It would be efficient to

take into account the direction of motion of a feature when allocating a buffer zone of

resolution, but such techniques would involve very complicated logic. For that reason

the present code simply includes buffer zones applied in all directions to the existing

spatially resolved regions.

Although the cells to be divided may exist at various spatial locations in the domain
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and may be part of a number of distinct clusters, the set of these cells are referred to

as the detected cluster to distinguish them from cells in the buffer zone. The total

number of cells that extend across a detected cluster on each side or the width of the

buffer zone is denoted by N.. For the purpose of extension the cells in the detected

cluster are examined to locate boundary cells of the cluster, and their edges or corners

are painted appropriately to indicate extension through them. The buffer zone is added

in distinct layers, and the total number of these is N.

If a cell in the detected cluster has a neighbor at a higher spatial level (or alternately

is divided) then it is unnecessary to extend through a corresponding edge or corner.

For example, if a southern node exists (so that there are two southern cells), then

the extension through the southern edge is not needed. Similarly, if the north-west

neighbor cell is at a higher level, then the extension through the north-western corner is

not needed. After this examination, the neighboring cells which are possible candidates

for the buffer zone are checked in the detected cluster. The cells which are located in

this cluster cannot form the buffer zone and the corresponding edge or corner of the cell

under consideration is painted for no extension. At this point a list of eligible candidates

for the buffer zone can be formed, and attention can be focused on the next cell in the

detected cluster. Subsequent candidates for the buffer zone would have to be checked

in both the detected list and the current list of candidates.

The candidate cells collected so far form an outer boundary to the detected cluster

or the first layer of the buffer zone. Subsequently only the cell in the first layer must

be examined for further extension if Nz exceeds unity. Furthermore only those edges or

corners of these cells should be examined which had not been painted in the previous

pass.

If N, is greater than unity, the cells in the first buffer layer are examined for possible

extension and the whole process is repeated to form the next layer of the buffer zone.

This procedure is continued until the desired number of layers is formed.

Once all extensions are completed, the cells marked for possible fusion are examined

and any cell that appears in the overall buffer zone is removed from the fusion list.
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This provides a more biased and conservative approach towards the fusion of cells. The

reader is referred to Appendix C for coding details.

5.7 Islands and Voids

An island is defined as a single divided cell which is bordered by undivided cells at

the same spatial levels. A void cell is one which has any of the following properties

* at least three divided edges

* at least two divided edges and is on a physical boundary

* two divided edges and is contiguous to a similar cell.

It is generally helpful to remove the abrupt changes that are caused by islands and

voids. Although such a procedure is not essential for the spatio-temporal algorithm, such

grid features are detected and removed for aesthetic purposes. Their occurrence in the

overall grid is simply distracting. Examples of these features are shown in Figure (5.3).

Note that an overall row of cells embedded in an otherwise coarse region is tolerated,

but a row of void cells is removed by carrying out multiple passes of the void detection

procedure as described in detail in the subroutine A2VOID.

5.8 Block Grid Generator

The generation of initial grids for complex flow geometries can be a difficult task.

The grid generation even for simple flow fields with multiple embedded solid objects can

be troublesome. For an initial grid generation an interactive multiple-block generator

has been developed as part of an effort involving the current research.

A block grid method subdivides the flow field domain into regions known simply as

blocks. The topology of one block has no bearing on the rest of the blocks, excepting

139



V V

V I I

V V

B B V

Figure 5.3: Portion of a grid with islands marked by I and voids marked by V; cells

marked by B are those which become void cells in a second pass.
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that there must be a node-to-node matching across the interfaces of contiguous blocks.

The block grid approach is similar to a zonal approach, but since the nodes of the

contiguous blocks coincide at the block interface, the need to perform complicated flux

balances at the interfaces is eliminated. The advantage of the approach is that a clever

choice of block boundaries can reduce complex flow field regimes into smaller numbers

of less complicated regions and hence the overall grid generation becomes a simpler task.

The block grid approach ties in neatly with the finite volume implementation. Since the

integration is carried out on the basis of flux balances through the differential volumes,

the size, shape and skewness of the grids is of less consequence compared to the usual

finite difference approaches.

Literature on the subject-matter has not revealed any reliable automatic procedures

for subdividing an arbitrary domain into simpler blocks. It is complicated in the sense

that it involves inherent knowledge of the physical domain, and that subdivision into

simpler computational domains is not unique. The logic is further complicated by

additional zoning constraints for specific applications. However, once the total number

of blocks is decided and their physical locations into a final assembled grid is determined,

it becomes a simple matter to fill in the internal mesh for each block and align nodes

on the contiguous block surfaces.

For the block grid generator developed here, the total number of blocks, the geometry

of each face of the block in terms of cubic polynomials and the number of boundary

points on two adjacent faces must be specified. The interior mesh for each interior

point is then generated by an algebraic grid and the connectivity arrays for each cell

in each block are determined. This means that additional nodes will exist at the time

of assembly of the overall grid when the points on the contiguous boundaries coincide.

These multiply defined nodes are marked for deletion and the connectivity arrays of

the boundary nodes are examined and adjusted for consistency in the data structure.

The user is able to view this assembly interactively at various stages and could request

the program for certain changes. For example, the user may move nodes in certain

regions, subdivide meshes or fuse four adjacent cells, etc. A listing of the interactive

grid generator, GNBLOC, is provided in Appendix D.

141



Chapter 6

Temporal Adaptation

The concept of utilizing variable time-steps for solving time-accurate transient prob-

lems is developed here. The chapter begins by examining the factors which limit the

computational costs and the ways in which these costs can be reduced. The classical

integration scheme for which a global minimum time-step applies will be referred to as

one-step explicit or simply Ni scheme. The scheme permitting variable time-steps will

be referred to as multi-step explicit or simply adaptive scheme. The issue of temporal

resolution is discussed in Section (6.2) for frozen and reacting situations in both one

and two spatial dimensions. The concept of temporal adaptation is developed for one

dimensional systems in Section (6.3) followed by an illustrative example in Section (6.4).

The temporal adaptation concept is generalized to include larger time-stride units in

the last section.

6.1 Motivation

In chemically reacting flows, the computations of chemical kinetic terms is often

more expensive than evaluations of convective and/or diffusive transport terms. The

cost increases with the number of species, the number of reactions connecting these

species, the number of spatial cells and the inverse of the time-step size. For flame

and detonation simulations the overall calculation may take two or more orders of

magnitude longer compared to frozen flow situations. Calculations may also be costly

due to stiffness introduced into the equations by the finite rate chemical kinetics which

is necessary to describe the physical situation. These factors form a basis for a need to

generate more efficient and accurate algorithms for solving reacting flows.
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The calculations involving diffusive transport terms are generally not expensive, for

a single cell, -compared to the overall manipulations of source terms for typical chemical

reaction systems. However, the transport phenomenon demands additional resolution

near boundaries, interface of two streams, etc., and the overall computational costs

increase drastically with the added number of cells. The computational overhead can

be somewhat reduced by considering Euler equations on relatively coarser grids and

neglecting these fine features whenever it is reasonable to do so. The computational costs

can be reduced further by avoiding the expensive evaluations of source terms and their

Jacobians in the regions of embedded frozen flows in an otherwise reacting simulation,

since in these regions the source terms are negligible compared to the corresponding

terms in the relaxing regions of the domain. Generally chemical reactions proceed at

a negligible pace if the temperature is below a threshold" value. For example, the

combustion of hydrogen in air is negligible below about 1000 Kelvin. Hence, whenever

static temperature is below the threshold limit the change due to chemical species

equations need not be evaluated and corresponding state values may have to be updated

so as to reflect only a change in global density while leaving the mass fraction values

unchanged.

When the reactive equations are stiff in the sense that numerical stability rather

than accuracy dictates the time-steps, then an implicit scheme can be used to partially

alleviate the computational overheads. However, for unsteady flows, if there are local

rapid chemical adjustments, the time-steps must be appropriately small to resolve the

features. These are generally changing patterns of resolution requirements as the rapid

transients form, gather strength, interact and deform other flow features and eventually

decay in different periods and positions. Hence there are conflicting requirements on

unsteady reacting flows in the sense that for efficient advancing time-steps may have to

'be reduced in certain portions of the space-time domain where adjustments occur and a

utilization of longer time-steps be made where there are negligible temporal gradients.

Just as different spatial resolutions are allocated at different locations of a spatial

grid to achieve CPU time gains, it would be beneficial to take advantage of the large

spatial variations of time-steps for reacting flows. In fact gains due to utilization of
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different time-steps can even be achieved for unsteady frozen flows if there exist sub-

stantial variations in spatial cell volumes, which indeed may well be a result of spatial

adaptation. An efficient time-differencing technique is developed in this chapter that

makes possible advancement of cells on a step-size which is a multiple of a global mini-

mum time-step. Without this technique the severe and costly constraint associated with

a globally minimum time-step would be applicable and computational costs would be

literally immense. In this technique the cells with the same time-step are integrated and

updated together on different integration passes of the temporal adaptation cycle but

the majority of small time-step cells fall in only a small portion of the overall space/time

domain. Once all integration passes are completed for each time-stride unit, all nodes

in the domain arrive at the same time-station.

6.2 Temporal Resolution

6.2.1 One Spatial Dimension

For unsteady flows temporal changes must be monitored so as to maintain sufficiently

small time-steps for adequate local resolution and stability. To develop a criterion for

temporal resolution first consider the governing Equations (2.45) in one spatial dimen-

sion and for simplicity restrict attention to a single species equation. If the magnitude

of the source term W is relatively small, or alternatively if the chemical time-scale r is

large compared to the convective time-scale, then the temporal resolution At, at which

the equations are advanced, is dictated by the CFL restriction for explicit schemes, viz.

Stc, L< l + a (6.1)

where r < 1 is the CFL number and a is the local frozen speed of sound. This

constraint indicates coupling of the time-steps with the spatial resolution. For such

problems dU/at is essentially the order of aF/ax and W is small compared to the

other terms, i.e.,
au aF aFw < ax(6.2)at "' az '
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Table 6.1: Balance of terms for

term is relatively large.

one-dimensional, one-component system when the source

For large values of the source term there are three possibilities as indicated in Ta-

ble (6.1). The first case is analogous to a steady state problem; large spatial gradients

are present but the variation in time is negligible. The need to maintain adequate spa-

tial resolution is obvious. However, there is no need to resolve the flow features within

a time-scale less than that dictated by the CFL restriction, and hence a source implicit

scheme is justified.

For the second case flow features must be resolved in time and a time-step smaller

than that dictated by the CFL restraint may be required. In such cases the temporal

gradient aU/at must be modelled carefully; the magnitude of aU/at At may need to be

restricted so that only small changes occur for each time-step. This will yield a smooth

variation of the state vector with time.

For the third case both spatial and temporal rates of change are comparable; and

resolution is needed in both space and time. For this case the time-steps may not have

to be as small as in the previous case since the large source term may be partially

balanced by a spatial flux gradient. The third and second cases are similar so far as

temporal resolution is concerned and as indicated in the subsequent the same criterion
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can be applied. Consider the cell C in Figure (3.1) and limit the cell change according

to the following criterion

AUc a Atre, < AUmna (6.3)

here the time-step indicates the resolution requirement and AUma. is the maximum

allowable change for the species equation (in fact this could be applied to other equations

also). A threshold criterion for this maximum allowable change will be discussed later.

The change for cell C is given by Equation (3.11) and can be written as the product of

a driving force, D, and cell time-step, i.e.,

AU = DAtc = (Wc F+ C) Atc. (6.4)

Note that the species density will increase if the driving force is positive and vice versa.

Comparing the last two equations yields the restraint for time-step resolution

_Aa_ AUm,,,zAzC

t8. - D S WcAzc + (F - Fk) (6.5)

This again indicates a coupling of spatial and temporal resolutions. The resolution

requirement, Atr,., may or may not exceed the stability requirement, Atfl, and the

actual time-step is

At = min{Atr,,, Atcl}. (6.6)

Note that in the familiar limit of non-reacting uniform flow At,,, - oo and the

stability requirement is governing. On the other hand, large Wc for uniform flows

implies Atr, < Atcf and the expected problem of stiffness. For this case, if the uniform

flow conditions persist, the flow will start approaching the equilibrium limit and larger

time-steps could be taken subsequently since the overall change in the species density

will diminish and the source term will itself become smaller. In addition to the drive

towards equilibrium the flux gradients may emerge which may provide a balance with

the source term and hence temporal gradients will diminish which will allow larger time-

steps. As an example consider Figure (6.1) where a relaxation process start far away

from equilibrium. Initially, the drive towards equilibrium is fast and it slows down at a

later time. The relaxation may never approach identical equilibrium if substantial flux

gradients exist. If the time resolution is held to a constant change in the species density
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Figure 6.1: Allocation basis for resolution time-step.

as indicated by the circles on the relaxation curve (and the marks on the vertical axis),

then it is clear from the ticks on the time axis that the time-steps would gradually

increase as the slope tapers off to an increasingly smaller value. As the curve flattens

out the time-step becomes infinitely large for this constant change model. It is possible

that initially the CFL constraint might be less stringent compared to the resolution

time-steps but it would eventually become more stringent as time increases. Note that

during the initial transient Equation (6.5) may be as stringent as the stability restriction

that would be dictated by an explicit scheme due to the chemical time-scales since the

source term appears in the denominator. However, as time elapses the driving force

decreases and larger time-steps can be taken. This is the essential modification to the

implicit source approach [231 that allows unsteady computations. As asserted here,

for time accurate descriptions a criterion such as Equation (6.5) is desirable for both

explicit and implicit integration schemes, although for frozen flow this restriction may

be of lesser consequence.
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For the first case in Table (6.1), the balance between flux derivative and source term,

i.e.,

Fi- Fk + AxZWc 0

implies that for finite, non-zero values of the threshold limit, the resolution time-step

restriction approaches infinity and the CFL restriction governs, i.e., Atr,, >> Atll, as

is typical for steady flow situations. For the second case the flux gradient is nearly zero

and the resolution requirement simplifies to

At7 .< AUm.i (6.7)

Thus very large values of the chemical source term imply very small values for the

resolution time-step, which is then the most restrictive, i.e., Atrc, < Atefl. For the

third case the two time-steps may be of the same order of magnitude. It is possible that

all three types of balances may exist at different spatial locations and at different times

in a given simulation.

A threshold criterion for the maximum allowable change in the species equation will

now be suggested. For a non-vanishing species state variable, the maximum allowable

change may be defined as a small fraction of the state variable itself. This is because

the mass fraction variations for a non-inert species with high concentration may be

proportionally larger (generally higher concentrations species react more). However,

allowance must be made for near zero levels, for which infinitesimal time-steps are

irrelevant. A suitable form for the threshold is then

IAUcJ < AUma = eiUc+eo (6.8)

where the ci are small positive numbers. Effectively, the change is limited to a fraction

of the state value excepting for vanishingly small levels. The threshold form utilized in

Figure (6.1) corresponds to 1l = 0.

Gear [54] has suggested restrictions on the growth of truncation error, in limiting the

time-step for adequate resolution in the numerical solution to be below some set level

for the integration of stiff ordinary differential equations. That approach becomes very

complicated for partial differential equations and is not used here. Gear's approach for
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temporal resolution is analogous to the approach taken by Berger [13] who uses trun-

cation for reapportionment of spatial grids. Since for spatial adaptation Dannenhoffer

[34,35] has shown that first differences of certain flow variables may be used instead of

the truncation error, the same approach can be extended for temporal grids where the

temporal gradients are kept small as indicated by Equation (6.3). Drummond et. al.

[42] have used a simpler form in which e1 = 0 in connection with Equation (6.7) and

their representation corresponds to the second of the balancing situations in Table (6.1).

If the driving force D is positive and U = pY is small, the restriction imposed by

Equation (6.8) may be unnecessarily severe. In such a case even when AUc - Uc a

reasonable resolution can result so long as the updated mass fraction is small compared

to the maximum possible mass fraction Y,,a. For that situation a reasonable maximum

allowable change can be modelled as

AUCm.. = elp(Ymo, - Y) + eo = el(Uz. - U) + eo for D > 0. (6.9)

When the driving force D is negative Equation (6.8) is appropriate. When the driving

force vanishes, as in first case in Table (6.1), there is no need to restrict time resolution

based on the species equation.

A pertinent question after the development of a temporal resolution basis for the one

species equation relates to multiple-component reaction systems. Just as there is no need

for spatial embedding to resolve every component of the state vector since they prove

to be coupled, temporal resolution needs also may be based on only a few of the species

that are present. Since the fluid mechanic time-scales are already resolved by the CFL

restriction, a single dominant species that provides the resolution for a minimum time-

scale associated with the chemistry may suffice. Another possibility would be to examine

the current maximum change among all species and limit its change by restricting the

time-step. However, that would involve the computation of driving forces for all species

and would be computationally expensive. Hence the former approach was utilized here

for its simplicity. Unlike the choice of spatial criterion variables for resolution (e.g.,

density and any of the species mass fractions) that for temporal resolution is not obvious

apriori. It should, however, correspond to a species which is expected to change most
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rapidly and frequently. This species typically takes part in a large number of reactions

and these reactions have large rate coefficients. The fact that exchange reactions are

generally faster than dissociation reactions can be important in making this choice.

6.2.2 Two Spatial Dimensions

For two spatial dimensions the cell change AUc for a cell C, as indicated in Fig-

ure (3.5), is given by Equation (3.46) in terms of the corner nodes. This can be used to

define the driving force as

D=Wc+ Ac (Fd-Gdx) (6.10)

where the discretized flux balance in Equation (3.46) has been replaced by its contin-

uous representation for simplicity. The resolution time step restriction, analogous to

Equation (6.5), becomes

AU,,=AcAt,,,< I AUrnz (6.11)t - D IAcW + c(Fdy- Gd (6.11)l
for a pre-selected criterion variable. The maximum allowable change for the criterion

variable is limited as (see Eqs. 6.8 and 6.9)

elUc + o D < 0

El(Um. - U) + o D > 0 (6.12)

oo D = 0.

The CFL restriction is given by Equation (4.2) and the current time-step allocated to

a cell is the minimum of the resolution and CFL constraints.

6.3 Discussion of Temporal Adaptation

To motivate the development of variable time-steps for solving unsteady problems

consider the following simple form of Euler equations in one spatial dimension

aU _ F (6.13)at - (6.13)x
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Once the concept is developed, it will be extended to include source terms for both

one and two-dimensional situations. For the sake of demonstration, assume that the

non-uniformity parameter e, from Chapter 3, is identically zero for all nodes at which

the scheme is applied and for which no artificial viscosity is needed.

Consider cells B and C surrounding the node j in Figure (3.1) for the explicit

Ni scheme. As given by Equation (3.21), the overall change at node j is the sum of

contributions from cells B and C, i.e.,

Un+l = U + Unn + 6UnI" + O(Ats) (6.14)

where the superscripts on the change contributions indicate an evaluation on the basis

of flux values at time-level (n). Specifically, the superscript (n, n) indicates that both

nodes i and j of cell B use values at time-level (n). These change contributions for the

above simplified model are

U;Bk = 2 (I + AZ--B UB) AU (6.15)

rUn, = (I- n _ Atna) AUg

in which
-Lnn = (n _ Fn) At (6.16)

(6.16)
US~n = (n F) 

For the case involving both source terms and grid non-uniformities Equation (3.35)

may be used for change contributions. This is shown graphically in Figure (6.2) where

the change contributions from both cells B and C are based on the same time-level (n)

as indicated by the upper circle at node j. The states for nodes i and k are not shown

explicitly, but also are evaluated at the same time-level. The figure also shows the

variation of a component of the state vector for node j as a function of time, although

only discrete values indicated by the circles are available. The value predicted by the

one step explicit scheme at node j after a time At, is indicated by the lower circle which

is the state variable at time-level (n + 1). At another time-level (n + c) for the change

contributions in Equation (6.14), the order of accuracy remains the same; i.e.,

U +1 = U + 6U-n+cn+c + n+cn+ + O(At3) (6.17)t t~~wB -jo
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Figure 6.2: Graphical representation of the explicit Ni scheme.

where (n + c) represents some time-level intermediate between (n) and (n + 1). In fact

the change contributions from B and C can be evaluated at different time-levels, i.e.,

one may consider different non-zero values c for these cells. If one integrates cell B based

upon values (n, n) for nodes i and j and updates both nodes before actually integrating

cell C, then an intermediate time-level (*) is attained at node j, i.e.,

U; = U" + Un;n (6.18)

where the change due to cell B is given by Equation (6.15). Based upon state variables

at that time-level (*), the flux vector F* is available, and the evaluation for the change

contribution at node j due to cell C can be obtained out from

U*J = (I -A F) AU'"n (6.19)
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where

- U," = (F; - F) c (6.20)

This is shown graphically in Figure (6.3). The upper circle on the curve shows the

rr.vj

T7n

T
U 'n

Un+lJ

n * n+l
t

Figure 6.3: Graphical representation of single step predictor-corrector scheme.

change for cell B to be based on level (n), and the square shows that the change for cell

C is based on level (*). The overall change is due to their sum, i.e.,

u;'+' = U + un;, + U*,n.I I C (6.21)

Note that the time level (*) is not necessarily midway between (n) and (n + 1) and that

its exact value for node j is of lesser concern for the current discussion, since primary

interest is in the intermediate value of the state vector and not the time itself. Hence one

can use Equations (3.22) for 5Un"n and 6Ui* if one only stores the values of state vector

at various nodes and updates them as soon as the change contributions are computed.
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The latter approach can be regarded as an explicit predictor-corrector scheme in

contrast to the Ni scheme which is a single step explicit scheme. The two approaches do

not yield identical results but differ only within the order of the scheme itself. Note that

the latter approach would be computationally more expensive since updating has to be

performed prior to the change determination for cell C; however, the updating process

itself is very inexpensive since it involves only the addition operation and hence the

overall increase in CPU time would be marginal. Let us now examine the conservation

property of the predictor corrector scheme. The explicit scheme is conservative in the

sense that the flux contribution from cell B to node j [i.e., Fj(B) = -Fi?] is the same

as the flux contribution of cell C at node j [i.e., F(C) = +Fn], hence

Fj(B) + Fj(C) = 0.

For the predictor corrector scheme, this is no longer the case since the flux contribution

from cell B is -Fin and that from cell C is +F. However, since the fluxes differ by

second order in time, the conservation property has been compromised in favor of the

beneficial temporal adaptation. Since the predictor corrector approach will be applied

only at nodits, which form only a fraction of the nodes in the overall domain, the

conservation property is still valid away from these nodes.

Suppose now that the cell C properties can be advanced at a time-step twice that of

cell B as indicated in Figure (6.4). It is assumed that the time-step of cell B and those

to its left is AtB, and for cell C and those to its right is 2tB. Hence node j in this

figure is at a temporal interface or nodit. Nodes which are not nodits will be referred to

as common nodes. In the previous two single step approaches node j was regarded as

a common node. An integration and subsequent updating of all cells to the left of cell

B would advance the time level to (n + 1) for all the nodes to the left of node j; and a

similar process for cells to the right of cell C would advance the time level to (n + 2) for

all nodes to the right of node j. The time level for the node j itself would be somewhere

in between (n + 1) and (n + 2). Clearly to arrive at the same time level (n + 2) would

require integrating cell B and those to its left twice as often compared to all the other

cells.
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Figure 6.4: Finite volumes adjacent to nodit j.

In the spirit of the predictor corrector scheme, three separate integration passes are

proposed in order to advance to time level (n+2). Reference can be made to Figure (6.5)

which shows the situation graphically for node j. On the first pass all cells to the left of

node j are integrated using time-step AtB and change contributions based on level (n)

are determined for each cell. After all nodes are updated, those to the left of node j

advance to time level (n + 1) whereas node j advances to a time level (*), as given

by Equation (6.18) with At replaced by AtE. Obviously data stored in each change

contribution variable must be set equal to zero after each updating. The state (n + 1)

at node i, after updating, is defined in the usual manner by

un+1 = U + 6U?' + U"n'. (6.22)

On the second pass all cells to the right of node j are integrated using a time-step

Atc = 2AtB and change contributions for each cell (except C) are determined based

upon level (n). The subsequent updating advances all nodes to the right of node j to

time level (n + 2), whereas node j advances to level (t) given by

Ut = U + Up,. (6.23)

Here the change for cell C is based upon level (*) for node j and level (n) for node k.
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Figure 6.5: Graphical representation for temporal embedding.

The state at node k, after updating, is given by

v, + 2 = U' + 6U;g + Uni' (6.24)

where D is the cell to the right of node k in Figure (6.4). On the final integration pass

all cells to the left of node j are integrated again using the time-step AtE and change

contributions are determined based upon level (n + 1), except for cell B which is based

upon level (n+ 1) for node i and level (t) for node j. The subsequent updating advances

all nodes in the computational domain to time level (n + 2) with the state at node j

given by

Uin+2 = Uj + 8 Uln+lt (6.25)

The exact conservation property at node j for this multi-step approach dictates

F (B1) + F (B2) + 2Fi(C) = 0. (6.26)
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This is satisfied only to O(AtB) since

F,(B,) = -F? , Fj(C)= +F , F(B 2) = -Ft.

Exact conservation can be maintained if the nodit j is recognized to be a temporal

interface and the fluxes are frozen as

Fi(BI) = Fi(B2) = -2F(C) = -F.. (6.27)

However, this is not done in the developed code, since the implied logic to handle tem-

poral interfaces would undoubtedly be very complex. It is also observed that with this

treatment exact conservation property is maintained at nodes j and k and the problem

is brushed aside to approximate conservation at node i. Furthermore the generalization

of the frozen flux concept for larger time-stride units becomes more complicated, even

in one spatial dimension, and the utilization of frozen flux values may hinder the proper:

propagation of information when the feature within the resolved regions move and in-

fluence the nearby regions. The exact conservation property was compromised in favor

of simplicity in updating and using the latest available information for the nodes.

For the example discussed here the time-stride consists of two time-steps for cells

to the left of node j and one time-step for the cells to the right. Since each node of a

cell is updated after each integration pass, and the flux, etc., are recomputed, the state

at a nodit during a time-stride at intermediate time-levels is not available; however, on

completion of a time-stride the state for all the nodes arrives at the same time level.

The use of latest available information means that all the data corresponding to states

during a time-stride need not be saved or stored. This also means that that the concept

of time-stride can be extended to include larger number of time-steps as will be shown

in the latter part of this chapter.

As a final note to this section it is appropriate to point out that it would be mis-

leading to conclude that for all computations of frozen flows involving a uniform spatial

grid a global minimum time-step is the appropriate one. For example, for a shock

moving in a 1-D stream-tube at a Mach number of 6, the allowable cell time-steps can

vary by about a factor of 8 on either side of the shock for a constant CFL number.
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Hence temporal adaptation could be useful even when uniform spatial grids are used

for non-reacting flows. The utility of temporal adaptation increases further when grids

are spatially adapted for transient frozen situations and it is especially attractive for

processes involving disparate time-scales which may be coupled with spatial resolution.

6.4 Illustrative Example

As an illustrative example for temporal embedding, consider the following scalar

model for U(x,t) with x E [0,1] and t > 0

au+ = 0 (6.28)
at ax

with the initial condition

U(x,0) = e2 (6.29)

and the boundary conditions

U(0,t) = e-2t

U(1,t) = e -2 '. (6.30)

The exact solution of this model is

U(x,t) = e2(z - t). (6.31)

Let us consider two cells B and C with three nodes at xl = 0, 2 = -, zs = 1

and suppose that the differential equation is integrated numerically to t = 0.1. The

distribution formulae for this model are

6U2B = 2(1 + -)(U - U2) = (1 + 2tB) (U1 - U2 ) AtB
(6.32)

6U2C 2 (1- a) (U2 - Us) At = (1 - 2Atc) (U2 - U3 ) AtC.

The states at nodes zl = 0 and z3 = 1 are determined by the boundary conditions.

Suppose also that the minimum time-step is At = 0.05. The computations for the

single step integration scheme would require determination of 6U2B and U2c for two

times to update to t = 0.10 as shown in Table (6.2). For clarity the changes are shown

158



Time U1 6U2B U2 6U2c U3

Start t = 0.00 1.00000 2.71828 7.38906

Changes At = 0.05 -0.09451 -0.21018

Update t = 0.05 0.90484 2.41359 6.68589

Changes At = 0.05 -0.08298 -0.19225

Update t = 0.10 0.81873 2.13836 6.04965

Exact t = 0.10 0.81873 2.22554 6.04965

Table 6.2: Single step integration based upon At = 0.05.

on separate rows to indicate that they have been based on the states as listed in the

previous rows.

Since I6U2cI/6U2B[ X 2 the cell time-step for cell B can be increased by a factor

of two to make the change contributions at the middle node comparable to the two

adjacent cells. This means that we can choose Atc = 0.05 and AtE = 0.10. The

computations for this multi-step integration scheme are shown in Table (6.3). As in

the previous case two integration steps are needed for cell C but only for cell B. The

changes are again shown on separate rows indicating their evaluations based upon the

states in the previous rows. The single step scheme involves four change evaluations,

two update operations for middle nodes, and four boundary condition calculations,

compared to three operations of each type for the multi-step scheme. The latter loses

only on the count of update operations for the middle node. However, that operation is
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itself very inexpensive, and the multi-step scheme is definitely superior with respect to

computational efforts involved in the single step approach. Assuming that the CPU time

for the boundary condition evaluation is comparable to that for change computations,

the multi-step scheme consumes only 75% as much CPU time compared to the single-

step scheme to update the solution to the same time-level.

Time U1 6U2B U2 5U2C Us

Start t = 0.00 1.00000 2.71828 7.38906

Change Atc = 0.05 -0.21018

Update 2.50810 6.68589

Change At = 0.10 -0.18097

Update 0.81873 2.32713

Change Atc = 0.05 -0.19614

Update t = 0.10 0.81873 2.13099 6.04965

Table 6.3: Multi-Step integration based upon Atc = 0.05 and AtB = 0.10.

As is evident from the two tables, the final result is not identical for the two schemes,

but the difference is less than 1%. Both underpredict the value at the middle node by

about 4% compared to the exact solution. Decreasing the time-steps does very little to

improve the comparison with exact solution. For example if the time-steps are reduced

by an order of magnitude the solution at the middle node at t = 0.10 is found to be

2.1391 and 2.1383 for the single and multi-step schemes respectively, which represents a
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difference of less than 0.1%. This is due to the fact that temporal accuracy is inherently

related to the spatial accuracy, and more accurate results only can be obtained by

considering finer resolution in both space and time simultaneously.

The results of this illustrative example appear to justify the usefulness of the multi-

step scheme in limiting computational resources and efforts while maintaining reason-

able temporal accuracy. If time-strides comprised of more than two time-steps can be

achieved, further savings in computational efforts can be realized. In fact simultane-

ous adaptation in both space and time would then yield orders of magnitude faster

computations.

6.5 Generalization for Larger Time-strides

6.5.1 One Spatial Dimension

Consider Figure (6.6a) which shows an example of the assignment of cell time-steps

as the minimum of both resolution and CFL restrictions before any readjustments. The

cell time-steps can be reassigned as multiples (of power of 2) of a global minimum time-

step, Atmi,, as shown in Figure (6.6b), so that an integral number of integration passes

can be completed for cells with the same time-steps. For this example the size of the

time-stride is m = 2. A general procedure for the assignment of the individual steps in

a time-stride can be evaluated by the following simple approach.

Based upon cell time-steps given by Equation (6.6) evaluate global minimum and

maximum At over the entire domain; the size m of the time-stride may then be assigned

such that

2' < min{ Atma 2M} < 2m + ' (6.33)
Atmin

Note that m is the current mazimum allowable temporal level for domain cells and

is constrained to be less than or equal to a prescribed maximum level, M. Such a

constraint on temporal levels is necessary in order to avoid very long time-stride units

which may cause spillage of the feature being resolved from the spatially embedded
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region [1061. This phenomenon will be referred to as temporal level stiffness. A flow

feature generally implies an associated characteristic speed, e.g. that for a shock or

reaction, and the spatially embedded region must be sufficiently large to ensure that the

feature will remain within the embedded region during the subsequent time-stride. The

size of a time-stride depends upon the value of M. If a large value for the maximum

allowable temporal level m is used then the spatially embedded portion of the grids

must be enlarged to avoid departure of the feature from this region. Though temporal

adaptation involving long time-strides helps to reduce CPU time, the calculation on

increased number of extension nodes can be expensive and a balance between the two

competing effects is necessary. To avoid such temporal level stiffness one must not use

an extremely large sized time-stride; the current maximum that has been used in this

study is M = 10.

Actual time-steps for a given cell C are re-assigned according to

At new = 2nAtmin (6.34)

where the level n < m is given by

2n < min{ 2m }< 2n+1 (6.35)
Atin

The total number of time-strides for level n cells is 2m-" .

Another facet of temporal level stiffness is that the time-steps can vary appreciably

for contiguous cells. This is improbable for frozen flows because a division into four

sub-cells reduces the time-step by a factor of 2 and hence this facet of temporal level

stiffness can be avoided by controlling the difference of spatial level embedding between

contiguous cells. For reacting cases the source terms can vary appreciably between

contiguous cells and hence can cause a corresponding variance of time-steps. To avoid

such occurrances the cell time-step is restricted to be at most 4 times the minimum

time-step of the surrounding cells.

On completing all readjustments, cells with the same temporal levels are grouped

together for subsequent integration. Thus cells with time-steps Atmin are in group level
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0, those with 2 At,in are in group level 1, and so on. The total number of time-steps

needed for cells in level n to advance to the next time-stride is 2 -n.

The order in which the integration takes place over the cells is of special importance

[81,106]. Successive integrations over the same cell in passing from one iso-temporal

surface to the next will produce a degraded solution since information from neighboring

cells is not allowed to propagate. For example, if the level 0 cells labelled A, in Fig-

ure (6.6b) are integrated four times consecutively use is made only of information based

on the two nodes d and e. This is correct for Al, but for A4 additional account must

somehow be taken of the nearby nodes. If for seven integration passes, we integrate level

0 cells on pass 1, level 1 cells on pass 2, level 0 cells on pass 3, level 2 cells on pass 4 and

so on as indicated by the numbers in Figure (6.6b) by the time A4 will be integrated

the nodes d and e will have accumulated effects from nodes a through g, provided that

after each integration pass the cells at a particular level have been updated and the flux,

source terms and Jacobians recomputed. This represents yet another facet of temporal

level stiffness. In general, a cycle of PT integration passes completes a time-stride unit,

the total number being

PT = 2m+l - 1. (6.36)

On pass P E [1, PT] cells with temporal level n are integrated if

P- 2n
P -2n = integer. (6.37)
2n+l

6.5.2 Two Spatial Dimensions

The ideas developed for one spatial dimension hold for multi-dimensions as well.

As an example consider the time-stride in Figure (6.7) with M = 2 as the prescribed

maximum time-level of cells. Also suppose that the time-step variation is such that the

current maximum allowable temporal level of m = 2 is possible, and therefore PT = 7.

For clarity of view a slice has been removed from the figure. The dots on the top

surfaces of each cell indicate the time-step as a multiple of the global minimum time-

step. Hence, cells with one, two, four dots are at temporal levels n = 0,1, 2, etc. The
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Figure 6.7: Time-stride with m = 2.
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correspondence between the integration passes and temporal cell levels still follows from

Equation (6.37):

n 0 1 2 O 1 

The chemical source terms may alter the time-step distributions in such a way as to

create cells with spatial resolution in the absence of temporal resolution (cells with 4 dots

and shaded top surfaces) and temporal resolution in the absence of spatial resolution

(cells with 2 dots and shaded top surfaces). Such complications do not exist for frozen

flow computations. The makeup of the time-stride changes with the movement of the

flow features being resolved, and a different number of levels may exist for consecutive

time-strides. The generation of fresh time-strides depends upon the velocity of the

features; hence for fast moving features time-strides should be renewed after each spatial

adaptation operation and vice versa.

6.5.3 Summary

Temporal and spatial adaptation procedures are inherently different and are applied

separately. When the spatial adaptation process is carried out it is at a current time

level, at all spatial locations, and done infrequently relative to the number of temporal

adaptations. Nevertheless, the frequency of spatial adaptations does depend upon the

time rate of change of the flow feature being resolved. On the other hand, temporal

adaptation is repeated after each time-stride at all spatial locations and must anticipate

subsequent changes in the the flow field as the features move. The four steps needed

for completing a temporal grid adjustment are:

1. a determination of an allowable At for each cell,

2. reassignment of At to be multiples (of power of 2) of global minimum time-step,

Atmin ,
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3. further reassignment of At distributions such that adjacent cells vary at most by

a factor of 2 in 1-D and a factor of 4 in 2-D, and

4. determination of a proper integration sequence over the cell domain.

Nodes at the boundary of cells with different time-steps, nodits , are not necessar-

ily the same as middle nodes for spatial interfaces. No special formulation is needed

at nodits and in order to render the actual spatial location of any temporal level cell

irrelevant, a data base must be constructed so as to store cells at same temporal level

together. There is no such restriction for spatial adaptation pointers. The choice of

such a data base allows the calculations for each pass to be performed in parallel; the

data dependencies occur only at nodits between various passes for a given integration

sequence. However, the integration order does not strictly have to follow the afore-

mentioned sequence (Eq. 6.37) at nodits, and such data dependencies will cause only

slight variations between parallel and non-parallel calculations. Since all nodes of a cell

are updated after each integration pass, and the state vector, etc., are recomputed, the

state at a nodit during a time-stride is not correct at intermediate time levels; however,

on completion of a time-stride the state does correspond to a correct time.
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Chapter 7

Initial and Boundary Conditions

The solution of a reactive system is determined by the initial condition, the set

of conservation and constitutive relations and the boundary conditions. The initial

condition is a spatial distribution of the state vectors when the computation is initiated,

usually at zero" time. Boundary conditions describe the exchange of mass, momenta,

energy and species between the system and the external universe through its boundaries.

These conditions can have both physical and numerical implications, and each can

influence the numerical solution in a different manner. This chapter describes the initial

and boundary conditions, both from a numerical and physical point of view. The

boundary conditions are discussed only for two spatial dimensions. Following some

introductory remarks the initial conditions are discussed in Sections (7.2) and (7.3). A

characteristic analysis for the purpose of applying numerical boundary conditions at

inflow and outflow is discussed in Section (7.4). The boundary conditions for solid wall,

inflow/outflow are discussed in Section (7.5).

7.1 Introduction

To begin the solution of the finite volume equations in time, it is necessary to specify

a set of initial conditions for each node in the computational domain. These include

specification of geometry (independent variables) and state vectors (dependent vari-

ables) at initial time. Values are also required for thermophysical data and other input

parameters. The thermophysical data includes information like number of species and

reactions, stoichiometric coefficients, constants in rate coefficient expressions, specific

heats, heats of formation, molecular masses, and threshold temperature for by-passing
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source term computations. Other input data pertains to adaptation parameters such as

spatial and temporal adaptation criteria variables, number of cells to be extended after

each adaptation cycle, predefined threshold values, etc. Quantities such as flux vectors,

source vector, etc. can be initialized by direct computations involving the state vectors

and the thermophysical data.

The specification of initial conditions and input parameters is generally regarded

to be easier than imposing boundary conditions because these are input just at the

beginning of the calculation for a fresh start rather than executed as constraints after

each time-stride. However, for reacting flows, the initialization of a whole slew of ther-

mophysical data and consistencies in the values of state vectors which depend upon the

reaction system can be some-what time-consuming and prone to errors.

Uniform initial conditions are specified for some cases in this thesis through the

input data at the upstream boundary. This is quite straight-forward and nothing more

need be stated about its implementation. Two other kinds of initial conditions have

been considered for either a perfect or Lighthill gas. These are

* conditions across a diaphragm in a shock tube

* conditions across a moving shock.

These will be discussed in Sections (7.2) and (7.3) respectively.

Boundary conditions frequently involve special constructions which are applied at

the boundaries of a computational domain. The term physical boundary condition is

used here to describe assumed flow conditions along the boundaries of a domain. In

addition there are numerical boundary conditions which impose additional restraints to

close the system of discrete equations. Special numerical formulations are needed at the

boundaries because some of the cells adjacent to the boundary nodes are non-existent,

and hence integration procedures cannot be applied at these nodes in the same manner

as at interior nodes. In particular, the construction of boundary conditions should be

simple, mathematically tractable and physically meaningful. Several different types of
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boundary conditions such as those for inflow, outflow, free surfaces, fluid interfaces and

rigid walls are required for computing solutions and each of these requires a different

mathematical and numerical treatment. The types of boundary conditions considered

in this chapter are

* free slip rigid walls

* prescribed input (supersonic inlet)

* continuitive output (supersonic exit)

* subsonic inlet

* subsonic exit

The inlet/exit boundary conditions may be applied through a characteristic analysis as

discussed in Section (7.4).

7.2 Initial Conditions for Shock Tubes

i

a b

p

e

c d f

Figure 7.1: Initial distribution of density across a shock tube diaphragm.
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Shock tube property distributions constitute step functions in terms of the state

values at t = 0 as shown in Figure (7.1) for a typical density distribution. Location

c denotes the contact surface and stations i, e indicate inlet, exit of the computational

domain which are respectively the high, low pressure sides. Hence when the diaphragm

is shattered, the contact surface and shock discontinuity move from left to right. The

assignment of state values at location c may be regarded as that of inlet, exit or simply

the mean value, but for the sake of discussion here this mesh point is regarded to be

a part of the inlet condition. Clearly it is helpful to generate grids which align with

the contact surface at the initial time. The symbols in the figure indicate nodes of a

computational domain; solid circles indicate the high pressure side and the empty circles

indicate the low pressure side.

Initial ratios for temperature, Te/Ti and density, pl/pi are used as parameter values

for this case and the reference values are those at the inlet for the sake of normalization

(i.e., Ti = i = pi = 1 in non-dimensional units). These values are convenient because

then the degree of dissociation can be directly computed for either frozen or equilibrium

flows. The pressure ratio is computed from

PC P. T, 1 + YPe _PeT1+Ye(7.1)

Pi PiTi l+ Yi

where Y indicates the degree of dissociation or the mass fraction of dissociated atoms

for the assumed Lighthill model. For frozen flow Ye = Yi and the ratio reduces to that

for ideal gases when the characteristic temperature ad is regarded as zero. Note that the

non-dimensional thermal equation of state for both perfect gases and frozen Lighthill

model (irrespective of 8d) is

p = pT

whereas the caloric equation of state for perfect gases is

e = 1 
-- + V 2

P -lp 2

and it has the same form as the Lighthill model when ad = 0 and -= (4 + Y)/3 (See

Section 2.7). For frozen flows the reaction parameter 4' is zero and any constant value

for the degree of dissociation can be used; for comparison with perfect gases this value

can be chosen so as to correspond to a given value of ratio of specific heats. For non-zero
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values of the reaction parameter, initial values of the degree of dissociation across the

contact surface can be specified independently. However it is reasonable to assume that

if the fluid had been present in the two sections for a sufficiently long time period then

equilibrium values of degree of dissociation do exist. These values are given by

Y 1+ 4 ed/Tk Pk/Pd - 1

2 ee/Tt Pkl/Pd (7.2)

The velocity components across the contact surface are initially chosen to be zero and

the energy term is given by the caloric equation of state (Eq. 2.33 or 2.98).

For a frozen flow, the shock speed M, is given by the following implicit relation [77]

327i
PC , e+1 a, ____ -i
Pi 2'7.M2 - (. - 1) [1-a M (7.3)

where the shock Mach number M, is defined to be the shock speed divided by the

frozen speed of sound in the downstream section e. Thus if a shock of a given strength

is desired, this relation can be used to determine the overall pressure ratio and other

values can be evaluated therefrom.

S
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Figure 7.2: Cell division after a single adaptive pass.

The initial condition is generally specified on a coarse grid, and a direct integration

of the system of equations from this grid would degrade the subsequent solution. This is

because the newly created nodes between the nodes c and d in Figure (7.1) would then
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have values assigned to them as given by linear interpolation. Hence the grid should

be pre-embedded prior to an execution of the integration procedure. The number of

calls to the pre-embedding procedure would equal the maximum spatial level of the

cells desired. The pre-embedding procedure is explained here for a 2-D grid when a step

function input is involved. The pertinent spatial grid after one adaptive pass is shown

in Figure (7.2). For simplicity the left L and right R cells are shown as undivided,

but this is not a necessity. The adaptive procedure assigns values at the newly created

nodes c, 8, e, n, w based upon the interpolated values from the nearby nodes and this

may not be consistent with the initial step function. The pre-embedding cycle follows

this, examines the newly created nodes and reassigns the values at these nodes. Since

the initial condition is assumed to be 1-D in nature, same conditions are applied for

nodes lying on a vertical grid line. The procedure is accomplished as follows:

1. Save the total number of cells Np prior to a spatial adaptive cycle.

2. Invoke the usual spatial adaptation procedure while not allowing grid fusion. This

increments the total number of cells to N.

3. Examine all cell numbers between Np and N, in steps of 4 (since four cells form

a bigger unit). Suppose the cell under consideration in Figure (7.2) is C1; then

(a) Find Supercell S of this cell by cell-to-node array.

(b) Locate all the nodes of cell S by the cell-to-node array, and locate the cells

R, L by the node-to-cell array and their nodes in a similar manner.

(c) If the state at nodes sw and 8e nodes is identical, then set states at all newly

created nodes of cell S equal to that of node w;

otherwise, if the state at se node is identical to that of node r, then set the

states at nodes c, a, e, n equal to that of node r and the state of node w equal

to that of sw;

otherwise, if the state at 8W node is identical to that of node 1, then set the

states at nodes c, a, n, w equal to that of node I and the state of node e equal

to that of 8e.

(d) Proceed to examine the next cell in the list (go to 3a).
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4. If the desired level of spatial resolution is not yet achieved, repeat the entire

procesi again (go to 1).

7.3 Initial Conditions for Moving Shocks

7.3.1 Frozen Flow

Consider a single shock propagating initially along a straight channel as shown in

the schematic diagram of Fig. (7.3). For a frozen flow the relaxation distance behind

the normal shock becomes infinitely large and station f can be regarded to be at the

same state as that of station i. The conditions across the moving shock with shock

Mach number Mf and ratio of specific heats y are given by [77]

Pil/P = '+ 1M f-r

Pi/P. = r + pilp,

u = 0 (7.4)
2u = ae(Mf - 1/M)

where r = (y - 1)/(y + 1) and a. = yp/p.

Note that unlike the previous type of initial condition, there is a non-zero mass

influx at the inlet boundary which is responsible for the forward motion of the shock.

However, the two flow conditions should yield similar results if the shock Mach number

is the same and the region of interest is far away from the starting position of the contact

surface, i.e., the location of unruptured diaphragm.

Since for frozen flow the initial condition is a step function, the same pre-embedding

technique can be used as in the shock tube case.

174



f

e

Figure 7.3: Initial density variation for a relaxation behind a shock.

7.3.2 Lighthill Gas

In contrast to the frozen case, the initial conditions for a partially dispersed shock

involves a jump (station e to f), followed by a relaxation tail (station f to i) which

is characterized by a gradual adjustment to equilibrium. The overall change between

stations e and i is given by the equilibrium shock relations [136] and after some algebra

can be written as

PiTi 1 + i

(4 + Y)Ti + Yd

(1- Yk)e- e/T '

1+M2(4 + Ye (1_P)

= (4 + Y)T + Yd +
(+Y) [1-P21

= Pky2, k=i,e.
Pd

Here Yk represents the mass fraction of dissociated atoms at station k and M! represents

the frozen shock Mach number which is given by

U2 4 + ,M2 = / f with 7, = (7.6)
f Pce/Pe 3

The O.D.E. for the mass fraction in the relaxation zone is

dY = T'7 (1_y)ed/T _P y2] (7.7)
dz w Pd 
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where w is the fluid velocity in a frame of reference attached to the frontal shock. The

integration Is started from the initial frontal shock location (x = xf at t = 0) with

Y = Y = Ye. The other quantities at station f are given by the frozen shock relations

between stations f and e, that is,

W2 = M Pc
Pe

%c + 1
Pf/Pe = ' e +

2 + (, - 1)M/

Tf/Te = 1 + -M (1- 2/) 2 (7.8)

The usual integral conservation relations connecting state f and current value at any

place inside the relaxation zone are

pW = Pf Wf = PeW = Cc

w2 + p = pfw} + pf = Pe + Pe = Cm (7.9)

( + p)/p - += (E +pf)lp ( + Pe)/P, = Ce.
These relations would imply the following for the relaxation zone

p = C/w (7.10)

p = Cm- Cw (7.11)

with the velocity in the stationary frame given by

B - VB2 - 4AD (7.12)
w= (7.12)2A

where

A = 7+Y

B = 2(4+Y)C,/Cc (7.13)

D = 2(1+Y)(Ce - Yd/2mfZ).
Note that the second term in the last parenthesis is normalized by the reference heat of

formation u2 and the corresponding dimensional term is YRtd/2rhz. Hence all other

variables in Equation (7.7) can now be written in terms of Y and as such the equation

can be integrated. Once velocities w in the stationary shock frame are known, the

velocities u in the moving shock frame follow from

= e -w. (7.14)
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A relaxation length, Zt, is defined as the distance between the shock discontinuity at

f and wheredissociation reaches 99% of the equilibrium value (i.e., 0.99Y). Hence xt

can be used as a convenient measure of non-equilibrium between its zero (equilibrium)

and infinite (frozen) limits.

A different pre-embedding approach is needed in this case. When Equation (7.7)

is integrated to yield property variations a separate file is written for all state vector

components as function of distance at all the step-sizes which are assumed to be

reasonably fine. When pre-embedding is desired for this case and allocation of state

vector at a node like (Fig. 7.2) is under consideration, this file is scanned to locate

the appropriate z-locations within which this node lies. These locations are denoted by

zi, zi+l in Figure (7.4). A linear interpolation is then used between these two locations

for determination of state vector at node a.

8W zi 8 i+1 se

Figure 7.4: Allocation of state vector at , based upon linear interpolation between zi

and zi+l of a previous integration procedure for an O.D.E..

7.4 Characteristic Analysis

The inviscid governing equations possess a set of real eigenvalues and a set of linearly

independent eigenvectors can be determined corresponding to each of these, as detailed

in Appendix A. The eigenvalues describe the characteristic directions along which the

variations of characteristic variables is known. These variables remain constant for

frozen flows and are termed as Riemann invariants.
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The sign of each eigenvalue determines the direction of propagation of characteris-

tic variables and has implications that pertain to physical boundary conditions. The

literature involving characteristic propagation for frozen flows is very rich; some of the

readily available sources of information on the subject are Courant and Friedrichs [30],

Friedrichs [53], Ferri [51], Meyer [90], and Shapiro [118]. The application of the theory

to yield well-posed numerical boundary conditions is discussed by Chakravarthy [27].

Aspects of the general theory that apply to reacting flows are discused by Vincenti and

Kruger [136] and Sedney [116]. A literature search on relaxing flows did not reveal any

a source reference that treats the well-posedness of numerical boundary conditions in a

consistent manner so far as the propagation along characteristics is concerned.

A feature of non-equilibrium flows, that had stirred controversy in earlier studies

during the fifties, pertains to the proper choice of sound speed, especially in the limiting

case of nearly equilibrium flows. A proper choice of characteristic directions is crucial to

a successful numerical calculation. The theory of characteristics shows that the proper

directions correspond to a frozen speed of sound and the flow velocity. In fact there

is no apparent reason for not using the local frozen characteristics in a calculation of

equilibrium flow [116]. Another aspect pertains to the multiplicity of the characteris-

tic eigenvalues, due to the similar nature of species equations and hence a number of

characteristic directions, each with a different behavior, must be treated.

Since the governing equations are quasi-linear, they can be written as

aU aU aU
Fu + GU -- = W. (7.15)at + 9 ay

Note that this linearization does not represent an approximation if the state vectors are

written in terms of primitive variables and this system is equivalent to Equations (2.48).

Denoting the left eigenvector matrix of the first flux Jacobian by L, the governing

equations can be further written as

au au aU
L t + AL + LGU a = LW (7.16)

where A is a diagonal matrix with entries equal to the eigenvalues of Fu. By definition,

a left eigenvector satisfies the following identity

A = LFUL-1. (7.17)
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The diagonal entries of this matrix, as shown in Appendix A, are given by

diagA = [u-af, u +af, u,...,u] (7.18)

The order of the eigenvalues need not be in the above form, but it is consistent with the

derivation presented in Appendix A. Note that no approximation has been introduced

into Equations (7.16) and as such the system represents coupled equations even when

variations along the y-direction are negligible. However, if the left eigenvector is assumed

to be locally frozen (constant in both space and time), the system becomes an uncoupled

set
aQ Q aR

+ zAQ + dR = Z (7.19)at ax +y
if the variations along y-direction can be neglected. Here the new variables are given by

Q = LU, R = LGUU = LG, Z = LW. (7.20)

Although L changes with U, the changes in L have been regarded as of a higher order

compared to those in the state vector. This is analogous to curve fitting in which linear

segments are used and local slope of individual segments are regarded constant while

the intercept is allowed to vary.

Consider a coordinate system (8,n) along and normal to the streamlines. This

coordinate system is generally known as the natural coordinate system [77,90]. Also

assume that the streamlines are locally straight (i.e., the infinite local radius of curva-

ture). The velocity components in this system are (V,O) and Equation (7.19) under the

special assumptions becomes

at + A i +6iSd n = zi, i=1,...,No. (7.21)

Here lower case letters are used to denote the components of the corresponding vectors.

Note that the entry in the third row and column of L is L33 = 1 by construction (see

Appendix A) and that with the exception of the third row all the other equations have

been decoupled. However, in the absence of curvature effects, the normal momentum

equation simply reduces to 1
ap = O. (7.22)an

lSee, for example, the third row of Eq. 2.48 in which v is replaced by 0 when writting in a locally

rotated natural coordinate system.
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The vanishing of normal pressure gradient does not constitute an additional assumption,

but is a consequence of locally straight streamlines. Hence the decoupled set of equations

is now a system of first order quasi-linear partial differential equations, i.e.,

$at 'ai = zi, ,...,N. (7.23)at + 9s

This has a characteristic solution, which is given by [261

dt ds dqidt ds dq i = 1,..., N,. (7.24)

Note that for frozen flow (z, = 0) the characteristic variables qi are constants along

the characteristic directions ds = Aidt. Although the characteristic variables qi for

the relaxing flows in the simplified model of Equations (7.23) are not constants, their

behavior along characteristic directions is known from Equation (7.24). As can be

noted from this equations, these directions are along particle paths. Consider an exit

boundary location P, as depicted in Figure (7.5), adjacent to two computational cells.

The characteristic direction in this figure is regarded as positive, \i = u; in which case

the information propagates along a straight line through point P and in the indicated

direction. Also shown in the figure is the space-time grid. All values are assumed known

at time to and it remains to determine the values after a time-step At at node N. Using

the eigenvalue, the slope of the path for the corresponding characteristic variable can

be determined. The distance As is given by Equation (7.24) as

As = iAt (7.25)

which determines an interior location I and hence interpolated values at this point can

be determined. The characteristic variable qi at node N is then the interpolated value

at location I plus the variation as determined by Equation (7.24), vis-a-vis

qN = q + z A t. (7.26)

The previous two results become more accurate as the step-sizes become smaller. The

point I lies within one of the two cells adjacent to node P if the CFL constraint for

time-steps is satisfied. A similar procedure applies for all other characteristic variables.

Once all of the components of Q are determined at node N, the state vector value can

180



y

At

P u

x

Figure 7.5: Characteristic propagation at an exit boundary along a streamline.

be evaluated by the inverse relation

U = L-1Q. (7.27)

In what follows this characteristic formulation is applied at inlet and exit boundaries of

the computational domain.

7.5 Boundary Conditions

7.5.1 Free Slip Rigid Walls

For inviscid flow the appropriate physical condition on a solid surface is that there

be no flow normal to the surface, or equivalently that the flow direction be tangential
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to the wall. In mathematical form this condition becomes

V. a = 0 (7.28)

where ni is a unit normal vector pointing outward from the surface. At locations where

slope discontinuities exist, such as the location along which two flat surfaces intersect,

a unique normal direction does not exist and hence this condition cannot be applied

rigorously. Consider four such nodes a, b, c, d in Figure (7.6) with the surrounding cells

C

b 

Figure 7.6: Configuration with slope discontinuities.

for nodes a and d. For numerical purposes an average slope may be assumed at nodes a

and c whereas nodes b and d may be treated as interior" nodes since there are four cells

surrounding these nodes for small intersecting angles. The latter of these treatments

may be questionable if there is not enough resolution surrounding the nodes or if the

intersection angle is too large. However, in the current algorithm spatial resolution is

expected by virtue of the adaptive technique; hence this treatment may be reasonable

for small intersecting angles. Note that free slip rigid wall conditions on the nodes just
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upstream of the trailing edge are still applied and hence tangency conditions hold just

upstream of the trailing edge. Similarly these conditions are satisfied just downstream

of the leading edge.

The application of characteristic theory at a solid wall becomes complicated since

the solid wall itself is along a characteristic direction, i.e., a streamline. Therefore

an alternative approach is presented here. This treatment is similar to the predictor-

corrector approach described by Hall and Salas [61] which involves an image principle.

Consider a node i, Figure (7.7), on a solid wall which makes an angle with the

z-axis. The application of the integration scheme to cells A and/or B yields the change

Figure 7.7: Images of cells adjacent to a wall.

at this node in a certain integration pass as

bUi = UiA + UiB. (7.29)

In fact there are four possibilities for the change at node i, when the integration involves
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temporal adaptation. After a certain integration pass (among a total of PT as discussed

in Chapter 6) which involves the integration over cells with a given temporal level, one

of the following cases may exist:

* both cells A and B belong to the same temporal level and 5Ui = 5UiA + bUiB

* neither cell A nor cell B exists at the same temporal level and 6U = 0

* only cell A belongs to the temporal level and 6Ui = UiA

* only cell B belongs to the temporal level and 8Ui = Ui .

If the boundary conditions are updated at all boundary points after each integration

pass, there is no need to discriminate between these individual cases. The boundary

conditions are applied at all boundary nodes belonging to cells on a given temporal

level, even for nodes which fall in the second category as listed above. This is done

in favor of retaining simplistic logic and is not computational expensive since the total

number of boundary points is much smaller compared to the total number of nodes in the

domain. Further note that if the boundary conditions are applied after each time-stride

(instead of after each integration pass) the logic would become very complicated and

such treatment may in fact introduce errors which hinders the proper flow of information

during intermediate passes. The predicted change at node i is taken to be that from cells

A, B and their corresponding mirror images A', B' which contribute the same values,

i.e.,

sUiP = 26Ui. (7.30)

If these values are not corrected, then the wall surface would be a line of symmetry for

all variables, including of course the normal component of the velocity. The tangential

component of velocity is given by

Vt = ucosc +vsina (7.31)

and only this is used to reassign new velocity components along the coordinate direc-

tions, i.c.,

= V cos , v = Vt sin . (7.32)
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Thus the corrected values for the changes are

6 (pu), = (pVt)* cos a - (pu) component 2

6 (pv)l = (pVt)*sin a - (pv) component 3 (7.33)

6U. = 6UP otherwise

where

(pVt) = [(pu)' + 6 (pu)'] cos + [(pv), + 6 (pv)f] sin a. (7.34)

Dannenhoffer [33] has demonstrated that the doubling of corrections predicted by the

standard distribution formulae and a subsequent correction by setting the normal mo-

mentum equal to zero yields a correct propagation of changes when the solid wall is

aligned with -axis. Usab [133] has conjectured that this form follows from the fact

that the Ni scheme implies a mathematical signal propagation phenomenon from the

interior grid points that is analogous to the theory of characteristics.

Several observations are in order here. First note that no extrapolation is involved

in the application of solid wall boundary condition. The free slip boundary happens to

act as if it was non-catalytic, i.e., aY/an = 0, where n is a normal direction to the solid

wall. The normal gradients of all dependent variable components, except for velocity

vector, are zero, because the predicted and corrected values are the same and these

assume that the wall is a symmetry line. The temperature condition at the surface

similarly behaves as if it was adiabatic or non-conducting i.e., the condition ae/an = 0

implies that the caloric equation of state becomes

dT _ p
pCp a = an

for a mixture makeup of components with constant specific heats. Furthermore the

thermal equation of state implies that

ap 8T
a, = P(c-c)a'

These conditions together imply ap/lan = aT/an = 0. In fact these conditions hold

even when the specific heats are general functions of temperature.
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7.5.2 Inflow Boundaries

For supersonic flow all eigenvalues are positive and all the characteristics propagate

from the free-stream into the interior of the domain. Thus all characteristic variables

qi can be specified as function of time and distance along the boundary. Alternatively

the components of the state vector can be assigned arbitrarily, since U = L-1Q, as

functions of distance along the boundary and time.

For subsonic inflow case, the first diagonal element of A is negative. This means that

all except one characteristic can be specified. Thus for a given choice of state variables

U = U(s,t), where 8 is the distance along the boundary, a left eigenvector matrix L can

be constructed. The specified characteristics are q2, q3,.. ., qN, as explained below. As

indicated in Figure (7.8) the variable qlN is interpolated from the interior domain based

upon L at the inlet. The characteristic direction implies that the position I from where

information at the inlet node N be gathered is given by

- A8 = (V - af)At. (7.35)

This position lies along a streamline and at a distance As from the boundary node B.

Note that again if the CFL constraint is satisfied the position I would lie within one of

the two cells adjacent to node B. Further note that the characteristic direction is not

along the segment I-N (except for frozen flow) but that the variation of characteristic

ql is known along this segment. Thus the characteristic variable corresponding to an

updated node N is

qf = ql + zs t (7.36)

where interpolated values at location I are computed from the corner node values of

the cell in which this location is determined, i.e., with known values of UI at previous

time-level the following values can be calculated

No No

QI = LfUi, Z = ELBW . (7.37)
j=1 j=1

Note that the locally frozen (constant) values of the eigenvector are based upon the
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Figure 7.8: Characteristic subsonic inflow boundary condition.

values at node B. The other characteristic variables are given by

N,

i = LUB , i = 2,...,N.. (7.38)
/=l

Now that the vector QN = (qNq2,... , qN.) is determined the state vector UN can be

calculated from the inverse relation

UN = (L-1)BQN. (7.39)
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7.5.3 Outflow Boundaries

For supersonic outflow all eigenvalues are positive which implies that all information

must propagate from the interior to the exit plane and the conditions outside the exit

plane have no influence on the interior flow. This means that, unlike the solid wall

boundary condition, there is no need to consider ghost" cells from the exterior domain;

their contribution is zero and the change at the interface need not be multiplied by a

factor of two. The characteristic for some node B (at time t and node N at time t + At)

is

QN = LB(UB + UB ) (7.40)

where 6UB is the contribution at node B for all cells adjacent to it as predicted by

the Ni scheme. Premultiplication by the inverse eigenvector matrix yields the correct

change at node B as the value predicted by the Ni scheme. Hence no special treatment

is needed for supersonic exit boundary.

For subsonic outflow the eigenvalue (V - a;) is negative and all others are positive.

Hence only one physical parameter can be prescribed at this boundary. A typical choice

for this parameter is the back pressure pb(s, t) that controls the flow at exit. Therefore a

consistent physical condition can be formulated if the first characteristic is based upon

the back pressure and the current state values (minus one) at the exit node and the

rest of the characteristics from the interior. Thus the energy term component of the

state vector (and temperature) can be recomputed by using the back pressure Pb and

other known values at the exit node B. The first characteristic is computed as
No

q = E LBU, + L 14C. (7.41)

j=l
j$4

The other characteristics originate from the interior domain and, corresponding to up-

dated node N, are given by

qN = qi[ + zAt , i = 2,..., N, (7.42)

where the location I is given by the distance

As = -(V + ar)At (7.43)
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along the streamline passing through node B for i = 2 and by the distance

As = -VAt (7.44)

along that streamline for i = 3,..., N,. The expressions for qf and zi are given by

Equations (7.37) with appropriately interpolated values for location I. Once the vector

QN = (ql, q2,... , q ) is determined the state vector UN can be calculated from the

inverse relation as given by Equation (7.38).
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Chapter 8

Results

The results in this chapter are divided into three sections. The first section contains

one-dimensional results for relaxing shock tubes and steady state streamtube flows.

The blast waves for two-dimensional flows are included in the second section. The

considered geometries were a circular arc on the lower wall of a cascade configuration

and a 90 degree bend duct. The medium is either a perfect gas or a Lighthill dissociating

gas and a single shock propagates along the channel. The third section pertains to

scramjet inlets. Examples include flow of a perfect gas through a two-strut inlet and a

premixed hydrogen combustion model for the same geometry. Another simpler geometry

is considered in which the inflow mass flow rate is varied sinusoidally and its influence

is examined on the flow variables.

8.1 One Spatial Dimension

Three examples have been considered to illustrate the unsteady adaptive technique.

These are

1. a converging-diverging streamtube with a single dissociating gas,

2. a shock-tube with a single dissociating gas,

3. a diverging channel with multiple reactions.

For all the examples the artificial viscosity coefficient is restricted to the interval

a E [0.01,0.2] and the reacting flow cases have been carried out by the source implicit
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(q = 0) scheme. The CFL number for all steady state examples is 0.9 whereas that

for the shock-tube cases is 0.7. The constants used to define the temporal resolution

are co = 0.01 and = 0.05 in the shock tube cases. Except for the diverging channel

case all calculations were performed in single precision. For steady state applications

the convergence criterion was based upon the root mean square (rms) error of the

momentum term (except for the last case) and convergence was assumed when this

error became less than 10- 6.

8.1.1 Converging-Diverging Streamtube

Consider first a Lighthill ideal dissociating gas, Z2 = 2Z, which is assumed to be

flowing through a converging-diverging streamtube with an area distribution of the form

A= I+ 0.5z2 (8.1)

here z is a non-dimensional measure of distance from the throat in units of the throat

height and the area A is normalized by the throat area.

An initial verification of the code consisted of shock free flow examples and compar-

ison of the results with Bray [201 for several values of the reaction parameter, 4, with a

wide range of values between zero for frozen flow, to infinity for equilibrium flow. The

results are for x E [-2,5] and the dimensionless temperature and pressure of

Ti= 0.1 d R = 2.5x10 . (8.2)

The subscript i indicates the inlet which is very nearly the reservoir condition. The

inlet values for temperature and pressure correspond to 5950 K, 115 atm for oxygen

and 11300 K, 215 atm for nitrogen. The accompanying degree of dissociation Yi and

dimensionless density for equilibrium at inlet are

Yi = 0.69, Pi = 2.9561 x 10,. (8.3)
Pd

Compared to the definition of reaction parameter, 0, as utilized here, Bray defined his

reaction parameter, bs, in a slightly different manner. The conversion between the two
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Figure 8.1: Degree of dissociation versus area ratio for several values of rate
parameter 4, symbols represent Bray's calculations, Reference [20].
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Figure 8.2: Temperature versus area ratio for several values of rate parameter 'P, symbols
represent Bray's calculations, Reference [20].
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reaction parameters is as follows:

fb Pd T (1+ = 4917. (8.4)

Figures (8.1) and (8.2) show steady-state results obtained with local time-stepping

with a CFL number of 0.9 and a uniform grid. Specifically the degree of dissociation

and temperature distributions appear on a plot folded about the minimum area section

such that the upper curves correspond to the subsonic upstream region. The symbols

in these Figures indicate Bray's calculations whereas the solid curves are the result

of the present scheme. The criterion for temporal resolution, Equation (6.5), was not

used in this case. Except for the frozen case, all curves fall rapidly in the vicinity

of the throat. In the equilibrium solution ( - oo), the mass fraction continues to

drop in the supersonic flow and vanishes as the area ratio approaches infinity. It is

also observed from Figure (8.1) that the solutions with finite dissociation rates are

initially indistinguishable from the equilibrium curve, in the upstream part of the nozzle.

The deviations begin near the minimum section and once these deviations from the

local equilibrium conditions become appreciable the degree of dissociation approaches

a constant value. In the corresponding equilibrium case the temperature continues to

fall due to the divergence of the streamtube which triggers recombination of atoms into

molecules. However, recombination becomes essentially frozen in the supersonic regions

for intermediate 4' values. The temperature profiles indicate that freezing causes a very

large reduction in temperature compared to the equilibrium solution. This is because

the chemical energy associated with dissociation is not available for intermediate P

values due to the higher degree of dissociation. The departure from equilibrium also

reduces the flow velocity and for propulsive nozzles the freezing phenomenon results in

a loss of thrust.

Figure (8.3) shows another steady flow through the same parabolic nozzle but for a

curtailed domain E ([-2,2]. The reaction parameter is c4 = 104 and a back pressure

ratio pl/pi = 0.92 is specified, so that a normal shock would be stationed at z = 0.5 for

a frozen flow situation. Two levels of spatial embedding and local time-stepping were

used for the adapted case. Temporal resolution was only based upon the CFL restric-
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Figure 8.3: Density variation of flow through a
4 = 104 for coarse, adapted and fine grids.
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Figure 8.4: Degree of dissociation versus z-location for converging-diverging streamtube

with (i = 104 for coarse and adapted grid and the spatial grid variation.
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Figure 8.5: Density variation through a converging-diverging streamtube for fine and

adapted grids, D = 104 .
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Figure 8.6: Variation of degree of dissociation through a converging-diverging stream-

tube for fine and adapted grids, = 104.
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tion. Spatial resolution was based upon first differences of density with the first divide

threshold value of Rl = 1.2 and the second threshold value Rd2 was calculated to be the

limit for which atmost 20% (Cfd = 0.2) of the cells would be divided, (see Section 5.3.3

for more details). The results are shown corresponding to coarse, embedded and fine

grids, with relative computing times 10.1 (fine/coarse) and 1.4 (adapted/coarse). The

vertical scale corresponds to the coarse grid and the other two curves are displaced by

the indicated offset. Each symbol in the figure corresponds to a computational node

in the domain and the placement of these symbols indicates the type of grid utilized.

For comparative purposes the density distribution for the corresponding frozen flow is

shown as a curve without symbols along with the fine grid relaxing solution. Shown

in Figure (8.4) is the final grid and degree of dissociation for both adapted and coarse

grid cases, and indicates that the coarse grid solution predicts an appreciably different

degree of dissociation aft of the normal shock.

The embedded and fine grid solutions agree very well, as is evident in Figures (8.5)

and (8.6), whereas the shock location is displaced and spread out for the coarse grid.

These figures also indicate that the normal shock occurs before the freezing phenomenon

has been completed; however the flow also is not in equilibrium ahead of the shock,

as can be read from Figure (8.1). The normal shock increases the temperature and

decreases the velocity which allows further dissociation. Unlike the freezing phenomenon

in the supersonic region, the flow after the shock gradually approaches the corresponding

equilibrium state as can be seen from the relaxation behind the shock. Due to the

divergence of area the velocity continues to decrease and the final equilibrium state

becomes very nearly equal to that at the inlet. In principle, the two equilibrium values

need not be the same due to the stagnation pressure loss across the normal shock.

However, in this particular case the shock is very close to the minimum section and

the stagnation pressure loss is small. Hence the corresponding equilibrium degree of

dissociation at the exit is slightly less compared to the value at inlet and the flow in the

trailing part of the nozzle is essentially in equilibrium.
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curve is fine solution and symbols indicate computational nodes for adapted case.
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Frozen shock tube solution for adapted and fine grids alongwith the exact
t = 0.6.

Table 8.1: Comparison of CPU time for shock tube calculations.
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Figure 8.11: Evolving temporal grid for frozen shock
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8.1.2 Constant Area Shock Tube

A second example was carried out for unsteady shock tube flow for both frozen

and reacting cases, ( = 0, 104). The initial conditions across the contact surface were

Pe/pi = 0.2, T/Ti = 1.0 where stations i, e indicate inlet, exit of the computational

domain which are respectively the high, low pressure sides. For the frozen case the

temporal resolution was only based upon the CFL constraint (r = 0.7) whereas this

constraint and resolution based upon mass fraction of dissociated atoms was used for the

reacting case. Three levels of both spatial and temporal adaptations were introduced

and the final results shown correspond to t = 0.6. Figure (8.7) indicates the density

variations for = 104 at the final time for coarse, adapted and fine grids and the curves

are offseted for clarity. The symbols on these figures indicate the computational nodes

in the domain. We again note that the coarse grid solutions are poorer than either the

fine or adapted grid solutions. The non-uniform distribution between the frontal shock

and the contact surface as well as that between the contact surface and the trailing edge

of the expansion fan indicate relaxing regions within which dissociation is taking place.

The overlay of the adapted and fine grid solutions at t = 0.6 for = 104 is shown in

Figure (8.8). The comparison is reasonably good except that the shock speed for the

adapted case is overpredicted by about 3%. A similar overlay at t = 0.6 for the frozen

case is shown in Figure (8.9) where the adapted grid overpredicts the shock speed by

about 2% compared to the exact solution. Since the shock speed predicted by the two-

dimensional spatio-temporal algorithm does not exhibit this behavior, it is conjectured

that the error in shock speed in the current one-dimensional algorithm is due to the

non-uniformity parameter ej pre-multiplying the flux change AFyc in Equation (3.35).

Note that, although the inclusion of these terms yields higher order accuracy, they may

in fact adversely affect the solution near strong shocks due to their non-conservative

nature.

Figure (8.10) shows the progression of grids as time increases for the frozen case,

whereas Figure (8.11) shows the evolving temporal grid near time levels, t = 0 and

t = 0.2 for this case. The spatial grid clearly tracks the expansion fan, contact surface

and the shock wave. The time-grid shows eight smallest time-steps in each time-stride
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and that the separation between consecutive isotemporal surfaces in fact is not constant.

The temporal grid also indicates cell locations with finer temporal resolution which

correspond to relatively coarser spatial resolution and vice versa. Although the concept

is straight-forward, the time-grids become very complicated for two spatial dimensions

and will not be shown henceforth.

Figure (8.12) indicates the evolution of density on the adapted grid for the frozen

flow and the exact solution. The evolution of density and atom mass fraction for the

dissociating case is shown in Figures (8.13) and (8.14). Although the results corre-

sponding to T = 106 are not shown here, the CPU time comparisons for D = 0,10 4, 105

are indicated in Table (8.1) to show the effectiveness of the procedure compared to the

global approach. The advantage of the current spatio-temporal algorithm is clearly seen

to increase as the stiffness level increases.

For the dissociating gas the initial (t = 0) degree of dissociation is regarded as

constant. The corresponding equilibrium degree of dissociation for z > 0 at t = 0

is Y = 0.90. As the contact surface is allowed to move the flow ahead of the shock

stays quiescent and hence the dissociation level is not changed. However, the flow just

after the shock finds itself to be deviated from the corresponding equilibrium conditions

and starts relaxing behind it. As the residence time behind the shock increases, the

relaxation region grows in between the shock and the contact surface and the degree of

dissociation is seen to increase gradually behind the shock. At t = 0.6 the maximum

degree of dissociation is observed to be about Y = 0.8; there is no reason for the atom

mass fraction to reach the value Y = 0.9, since the conditions just after the shock

for t > 0 have changed. The dissociation level through the expansion fan gradually

decreases from the leading edge to the trailing edge and continues decreasing at the

same rate in between the trailing edge and contact surface. Hence the trailing edge of

the expansion fan cannot be easily identified by examining the degree of dissociation

plots. The largest change in the degree of dissociation is experienced across the contact

surface.
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Figure 8.12: Evolution of density for frozen shock tube flow on adapted grids, solid

curves indicate exact solution.

P

Figure 8.13: Evolution of density for reacting shock tube flow on adapted grids, 4 = 104.
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Figure 8.14: Evolution of degree of dissociation for shock tube flow on adapted
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Figure 8.15: Temperature profile for diverging channel, both solid lines indicate current

calculations and triangles indicate computational nodes in the current scheme, circles
represent computations from Reference [42].
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8.1.3 Diverging Streamtube

As a final example for flow in one spatial dimension, the Rogers and Chinitz model

(Section 2.7) for the streamtube with area distribution

A= 1 +sin( 4 )] (8.5)

was considered. The area is again nornmalized by the throat (inlet) area. The reference

or inlet conditions were

T, = 1900K, p, = 81000Pa, M = 1.4, L, = m, 4 = 0.3 (8.6)

where is the equivalence ratio. A schematic of the rapid expansion diffuser is shown in

Figure (8.15). The same case was calculated by Drummond, Rogers and Hussaini [42].

The inlet conditions to this streamtube imply high concentration gradients near the in-

flow boundary and hence provide a formidable test for the algorithm. The total number

of global nodes was chosen to be 51 with two levels of spatial and ten levels of temporal

embedding and the calculations were carried out to steady state. The convergence cri-

terion was based upon an rms error of mass fraction of hydrogen and the calculations

were continued until the error was reduced by eight orders of magnitude. Temporal res-

olution was based upon limiting the changes in the mass fraction of hydroxyl, according

to Equation (6.5). This species was chosen because it is involved in both the reactions

and its production rate due to the first reaction can be very high. The calculations took

4259 seconds on a MicroVAX-II. Reference [42] used a source implicit scheme with 101

grid points and the calculations took 2524 seconds to converge on a CYBER-175. Note

that the comparative fine grid solution of the current case had 201 grid points and was

estimated to take three orders of magnitude longer on the MicroVAX-II. Assuming a

conservative estimate of 20 for the speed ratio between the CYBER and MicroVAX,

the present results are obtained about 50 times faster for the same spatial grid reso-

lution when compared to that of Reference [42]. Figure (8.15) shows the temperature

distribution as solid lines for the current algorithm. The circles indicate the calcula-

tions of Drummond t. al. and the triangles indicate the computational grid utilized

by the current approach. Other final results in terms of distributions of mass fractions

of hydrogen, hydroxyl and steam (H20) are shown in Figures (8.16) and (8.17). The
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symbols in these figures indicate the calculations of Reference [42] whereas the solid

curves indicate the present calculations. These results are in fair agreement with those

of Reference [42] and the differences are less than 3%.

8.2 Blast Waves in Two Spatial Dimensions

Numerical experiments were carried out for two channel geometries: (1) a circular

arc convex surface on the lower surface of a cascade configuration, and (2) a 90 degree

bend duct. In each case a single shock propagates along the channel. The medium was

either a perfect gas or a non-equilibrium Lighthill gas.

For all the examples the artificial viscosity coefficient is restricted to the interval

a E [0.05,0.5] and the dissociating flow cases have been carried out by the source

implicit (q = 0) scheme. The CFL number for all examples is 0.7. The constants used

to define the temporal resolution are Eo = 0.01 and El = 0.05.

8.2.1 Frozen Bump Case

The first example is for a frozen medium (y = 1.4) and a shock moving at M! = 2

past a 15% circular arc bump as shown in Figures (8.18-8.24) corresponding to the

time periods of t = 0,0.2,0.4,0.8,1.0,1.2 respectively. The channel dimensions are

normalized by the chord length and is spanned by z E [-1,2], y E [0,0.8] as shown

in Figure (8.24). The shock is initially (t = 0) at z = -0.5. The figures show both

density contours and the corresponding spatial grids at the indicated time intervals. It

is clear that the evolving spatial grid tracks the salient features. Three levels of spatial

embedding beyond the base grid, and four levels of temporal strides were used. Note

that the maximum eigenvalue (u + a) varies significantly across a moving shock, i.e.,

(U+ a), = PiPpPP. (8.7)
(u + a)i Mi + 1

This value for M, = 2 is 0.3923 and hence it is appropriate to use one additional level

for temporal adaptation compared to that for the spatial adaptation for this frozen flow
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Figure 8.18: Grid and density contours at t = 0 for frozen flow over 15 % circular
arc bump, M! = 2.
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Figure 8.20: Grid and density contours at t = 0.4 for frozen flow over 15 % circular

arc bump, M! = 2.

-1.0 -0.8 -0.6 -0.4 -0.2 u.u u. v.,

Figure 8.21: Grid and density contours at t = 0.6 for frozen flow over 15 % circular

arc bump, MI = 2.
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Figure 8.22: Grid and density contours at t = 0.8 for frozen flow over 15 % circular
arc bump, M -= 2.
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Figure 8.23: Grid and density contours at t = 1.0 for frozen flow over 15 % circular
arc bump, Mf = 2.
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M, = 2, (a) current calculation, (b) Yang et.al. [144].
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example. The base grid consisted of 16 x 60 cells; hence the corresponding globally fine

spatial grid would have 43 as many cells. Four levels of temporal strides implies that

there are 24 smallest time-steps in each time-stride. Hence the globally fine grid in both

space and time is expected to consume 512 times more CPU time than the globally

coarse grid if temporal adaptation is not used in either case.

The grid is uniformly pre-embedded by six cells at t = 0 on both sides of the shock

as shown in Figure (8.18). The unnecessarily fine region generated by pre-embedding

to the left of the initial shock reverts back to the coarse grid as soon as the usual spatial

adaptation process is turned on, as is evident in Figure (8.19) by the grid pattern at

t = 0.2. Density was used as the refinement criterion with Rdl = 1.2 and C1f = 0.2

(see Section 5.3.3). Spatial adaptation was performed after each time-stride unit and

the spatially adapted grid was indiscriminately extended by two additional cells on each

side.

At about t = 0.2 the shock reaches the leading edge of the bump and soon after a

compression wave ensues from the bump which propagates upstream. The compression

region strengthens and develops into a shock wave which propagates against the flow

stream. The Mach number in the inlet region following the initial shock is Mi = 0.96

or in terms of velocity ui = 1.48. The velocity of the lower leg of the shock moving

against the stream is (from the density contours) u = -0.36, or M = 1.20 in a frame of

reference attached to the lower leg and the inlet sound speed.

At t = 0.4, Figure (8.20), the frontal shock has traversed about 50% of the bump.

The shock wave ensuing from the bump itself has interacted with the frontal shock to

form a lambda shock structure. The slip line emanating from the triple point is apparent

both from the density contours and the embedded grids. It is also observed that the

triple point moves vertically upwards as the frontal shock moves downstream.

As shown in Figure (8.20), at t = 0.6 the lower leg of the frontal shock is about

to leave the bump. The triple point continues to move upward primarily due to the

transverse motion of the upstream facing shock. The slip line does weaken due to the

interaction with the expansion emanating from the rearward face of the cascade, which
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also has the effect of distorting the triple point itself. At a still later time the reverse

moving shock reaches the top wall and its reflection further degrades the triple point.

Eventually the slip line decays due to the expansion from the lower wall and the influence

of the reflected shock.

Corresponding to t = 0.8, Figure (8.22) shows the frontal shock downstream of

the bump surface, and the rearward facing shock developing a strong reflection. Still

another strong shock has developed at the trailing edge of the bump which interacts

with the lower part of the frontal shock.

Figure (8.23) shows the situation at t = 1.0. The frontal shock has divorced itself

from the wall interactions of the channel. The reflected shock from the upper surface

continues to get stronger. The shock at the trailing edge has also begun to move

upstream.

Figure (8.24) shows the situation at t = 1.2 after the frontal shock has left the

computational domain. Non-reflective boundary condition has been applied at the exit.

The reflected bow shock of the upstream facing front and the shock which originated

from the trailing edge are now strengthening and moving upstream.

A similar frozen case has been studied by Yang et. al. [144]. Figure (8.25) compares

their pressure contours for a globally fine grid at a time when the lower leg of the frontal

shock is just at the bump trailing edge. This corresponds to t = 0.65 for the present

case. Figures (8.26) and (8.27) indicate comparisons on the lower channel wall and at

y = 0.5, the symbols represent Yang's calculations and the data has been interpolated

from Figure (8.25). The agreement between the two solutions is quite reasonable.

Figure (8.28) shows the density distributions along the lower channel wall at various

time-stations. The vertical scale corresponds to the initial condition t = 0 and all other

curves are displaced by a vertical offset of 0.8. These curves are also indicative of the

chronicle which has already been explained.
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Figure 8.28: Density profiles at the lower channel wall for frozen flow over 15 % circular

arc, M, = 2.
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8.2.2 Reacting Bump Case

A second example uses a Lighthill dissociating gas flowing over the same 15% circular

arc bump. The constants for the Lighthill model for oxygen are

r1 = 0, OD = 59500K, PD = 150 x 10s kg/m s . (8.8)

Temperature and density at the inlet have been chosen so as to yield 40% dissociated

oxygen atoms under equilibrium conditions. The conditions at inlet and exit are shown

in Table (8.2). This corresponds to a shock moving through the channel at M = 2.

The exit conditions are also the reference values for both the frozen and reacting cases.

Note that the degree of dissociation at the exit corresponds to - = 1.417 and hence

a comparison with the previous frozen case can be made. Although the shock Mach

number is the same in the two cases, the temperature, density and pressure ratios are

very different. These ratios are also shown in Table (8.2). A choice of reaction parameter

t = 104 implies the relaxation length to be Xt = 0.273 times chord length.

The initial distributions of density and atom mass-fraction is apparent in Fig-

ures (8.29) and (8.30) which correspond to t = 0 curves. The relaxation following

the leading shock is clearly evident in the initial field. As shown in Figure (8.31) the

pre-embedded grid at t = 0 spans a larger domain due to the gradients in the relaxation

zone trailing the frontal shock. The base grid is again composed of 16 x 60 cells with

allowance for three spatial refinements and advancement by five temporal stages. Tem-

poral resolution was based upon mass fraction of dissociated atoms. Spatial adaptation

was performed after each time-stride unit and the spatially adapted grid was extended

by two cells on each side. The refinement parameter was based on density and mass

fraction of atoms with Rdl = 1.2 and Cfl = 0.2.

Figure (8.32) shows the density contours and the associated spatial grid at t = 0.6

[compare with Fig. 8.21 for frozen case]. The embedded grid is again seen to be capturing

the salient features of the flow field. The motivation for showing spatial grids along

with line contours has been to demonstrate the grid tracking capability for all necessary

features without the introduction of spurious oscillations. Since this objective has been
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Figure 8.30: Atom mass fraction distributions at the lower channel wall for 15 % circular

arc, M: = 2.

T, K p, kg/m s3
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y
0.400

0.247

Ti/Te Pi/p, Pil/P

1.212

1.688

3.803

2.667

5.174

4.500

Table 8.2: Initial values for circular arc bump case.
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Figure 8.31: Grid and density contours at t = 0 for dissociating flow over 15 % circular
arc bump, Mf = 2.
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Figure 8.32: Grid and density contours at t = 0.6 for dissociating flow over 15 % circular
arc bump, M! = 2.
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achieved to some extent, most spatial grids are omitted in the remaining part of the

chapter. If only density is used as a refinement parameter, the spatial adaptation fails

to resolve the relaxation tail. However, a combination of density and atom mass fraction

yields satisfactory resolution of both frontal shock and the relaxation zone. Figure (8.33)

shows the distribution of the spatial variations (Eq. 5.4) of density and atom mass

fraction for the spatial grid at t = 0.6 on standardized scales which allow for unbiased

spread of data. The numerical values of the averages iy were about seven orders of

magnitude smaller than the (diagonal) standard deviations. Each square on the figure

represents a single cell in the domain which number to N = 8508 at that time. The cells

with large variations correspond to the data outside the divide threshold ellipse and are

the cells marked for possible division. The fact that the ellipse has small eccentricity

implies that the correlation in between the two variations, Figure (8.33), is relatively

small. The threshold ellipse corresponds to Rd = Rd2 = 1.8 and is the locus of the points

satisfying Equation (5.7) with r2 = Rd. The cells falling within the collapse threshold

ellipse are marked for possible merger. About 70% of the cells lying in between the two

ellipses remain unaffected. Figure (8.34) shows the corresponding cumulative frequency

versus refinement parameter (the two variations are lumped together by Eq. 5.7); the

threshold Rd2 = 1.8 is clearly seen to correspond to 20% cells falling above this limit.

It is appropriate to emphasize that the histogram records for each cell are updated

whenever spatial adaptation is desired, and this procedure is done automatically as the

solution evolves.

The contours of density and mass fraction of atoms are shown in Figures (8.35) and

(8.36) at various time stations. The time history of this case can also be examined by

observing the distributions of density and atom mass fraction along the lower channel

wall as shown in Figures (8.29) and (8.30). The offset for Figure (8.29) is 0.8; for

Figure (8.30) it is 0.05.

At t = 0.2, the frontal shock reaches the leading edge of the bump and the relaxation

tail still remains unaffected. At t = 0.4 the lower leg of the frontal shock has traversed

about 50% of the bump. The shock wave ensuing from the bump interacts with the

frontal shock and the relaxation tail and forms a complex triple point. The tail becomes

218



q = Ape
q2 = Ayc

U· m a n a

a_ . *, 
sa ' a a

a Pe

ivide Threshold E

collapse Threshold Ellipse

Illipse

1. 6. 8. 10.

Figure 8.33: Distribution

circular arc, Mf = 2.
of variations for spatial adaptation at t = 0.6 over a 15 %

R, = 0.3
r2 = Refinement parameter

f = Cumulative frequency

R, = 1.8

1. 2. 3. 4. 5. 6.

r 2

Figure 8.34: Threshold limits for

M/ = 2.

spatial adaptation at t = 0.6 over a 15 % circular arc,

219

4. 

2.

-2. 

-4.

.6.

Sa U

*.a

aU,

.6. -4. -2. 0. 2. A
(q; -

f

o.

r

6. 



I AU U D0

= 1.2

:= 1.0

: 0.8

: 0.6

t=0.4

t =0.2

Figure 8.35: Density contours for dissociating flow over 15 % circular arc, M/ = 2.
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Figure 8.36: Atom mass fraction contours for dissociating flow over 15 % circular arc,
M = 2.
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highly distorted and small underneath the triple point. This is so since sufficient time

has not elapsed after the initial interaction for a new relaxation region to emerge. The

relaxation of the interaction region seems to be trapped between the slip line and the

lower leg of the frontal shock. The reverse moving shock is much stronger compared to

the frozen flow case which moves at a speed of u = -0.1 or a local frozen Mach number

of 1.31 based upon the undisturbed inlet sound speed and a frame of reference attached

to it. The Mach number of the inlet stream itself is Mi = 1.24, which is supersonic

compared to the previous frozen case. At t = 0.6 the triple point is at about y = 0.6,

the relaxation region is seen to be gradually increasing below the triple point, due to the

longer residence time for the fluid near the bump surface. The expansion between the

frontal shock and the reverse moving shock is also stronger compared to the frozen case.

At t = 0.8, the reverse moving shock has reached the top surface and a reflection wave

is developing. The relaxation region trailing the frontal shock continues to strengthen.

The frontal shock has cleared the bump and the trailing edge shock is developing. At

latter times the trailing edge shock remains at the same location unlike the previous

frozen flow case.

8.2.3 CPU Time Comparison

In order to assess the effectiveness of the spatio-temporal adaptive algorithm, calcu-

lations have been carried out on coarse, adapted and fine grids between the time stations

t = 0 and 0.3 for the frozen flow. In order to curtail the overhead for the globally fine

grid the spatial domain was reduced to span z E [-0.6,0.4] and y E [0, 0.6]. The omit-

ted spatial domain corresponds to regions that are either undisturbed or in the vicinity

of the normal shock for t E [0,0.3]. The base grid resolution is kept the same as the

previous two cases, i.e., an average cell dimension of 0.05. The coarse grid corresponds

to the base grid of the adapted case. Three spatial levels of embedding and four tem-

poral stages were again allowed for the adapted case. The fine grid corresponds to the

finest spatial level of the adapted case, i.e., an average cell dimension of 0.00625. Both

fine and coarse grid solutions were carried out with a global minimum time-step. The

density contours at t = 0.3 for coarse, adapted and fine grids are shown in Figure (8.37).
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Also shown is the adapted spatial grid at that time.

The calculation on the coarse grid took a total of 51.0 seconds on a Micro-Vax II

machine out of which 31.5 seconds were spent on integration. It is observed that for this

coarse grid calculation initialization and output dump consume a significant fraction of

the overall time. The corresponding fractions for initialization and output dump for the

adapted (about 1%) and fine (about 0.2%) grid are very small. The fine grid solution

took a factor of 571.3 times longer to compute compared to the coarse grid integration

time (or 352.5 time for total time). The corresponding factor for the adapted grid

was only 26.32 based upon integration time and a factor of 16.7 based upon the total

time of the coarse grid. This spatio-temporal solution was attained 2.53 times faster

compared to the one with only spatial adaptation (i.e., restricted to only temporal level

0). Hence the spatio-temporal algorithm provides about an order of magnitude faster

computation compared to the globally fine approach for this example. Higher adaptive

levels in both space and time, especially for fast reactions, can yield up to two or three

orders of magnitude faster calculations compared to the globally fine solutions. Since

the fraction of the adapted grid in the previous uncurtailed domains is generally small,

the savings would be larger in those cases.

It is evident that a coarse grid solution is incapable of delineating the features such

as a triple point or a slip line. Furthermore the solution for the adapted grid is very close

to that obtained by the globally fine grid and appears to predict the salient features at

a fraction of the cost for the fine grid.

The effectiveness of the spatio-temporal adaptive algorithm increases even more

when temporal resolution becomes essential in providing a prognosis for local rapid

chemical adjustment. Adapted grid solutions for the dissociating case take about 7 times

longer than corresponding frozen flow cases. Such reactive examples involve longer CPU

time because

1. additional (species) equations are solved

2. two variables are used as detection refinement parameters in the determination of

spatially resolved regions
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3. temporal resolution requirements are more stringent

4. implicit-integration scheme is slightly more expensive.

Since the dissociating case on a globally fine grid in space and time, even for a curtailed

domain, would require prohibitively long computation, such comparisons for a reacting

were not completed.

8.2.4 Frozen Duct Flow

The next example is for a frozen medium ( = 1.4) and a shock moving at Mf = 2.2

through a two-dimensional 90 degree bend duct. The channel dimensions are normalized

by the mean duct radius and is spanned by z [-0.8,1.21, y E [-0.5,1.2]. The inner

and outer radii are r,i, = 0.8 and r,,z = 1.2 and their center is taken to be the

origin of coordinates. This computation was originally carried out by Aki [3] and was

subsequently repeated by Yee [145]. An experimental investigation by Takayama et. al.

has been cited by both references. The shock is initially at x = -0.5. Three levels of

spatial embedding beyond the base grid, and four levels of temporal strides were used

here. The base grid consisted of 8 cells along the radial direction and 32 cells along the

circumference of the duct, with a total of 480 cells in the domain. Spatial adaptation

was performed after each time-stride and the spatially adapted grid was extended by

two cells.

The density distributions along the lower and upper channel walls are shown in

Figures (8.38) and (8.39). Note that the abscissa is the curvilinear distance along the

respective walls starting from the inlet of the computational domain. The vertical

scale again corresponds to the initial condition t = 0 and other curves are displaced

by a vertical offset of 0.8. The density contours at various time-stations are shown in

Figure (8.40).

At about t = 0.2 the shock reaches the bend. Soon after an expansion ensues from

the lower surface and a compression initiates from the upper surface. At t = 0.4 the

compression has strengthened and it has started interacting with the frontal shock and
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Figure 8.39: Density distributions along upper duct wall for frozen flow.
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Figure 8.40: Density contours for frozen flow in bent duct, Mf = 2.2.

227

ray

-

�----

- - - ----

L--------------
--- ----------

L-----^·-----·l---·--·--



a lambda shock is about to form. At t = 0.5 the slip line is clearly evident, the triple

point is shifting from the upper wall towards the lower wall. The compression wave has

started interacting with the expansion fan and as a result the expansion is restricted to

a small region hugging the lower wall. At t = 0.6 the same trends continue. At t = 0.7

a distinct lambda shock is formed, the compression has reached the lower wall and the

expansion is constrained to the inlet region near the lower wall. At t = 0.8 the triple

point has reached the lower surface, the domain of expansion is further limited, the

compression at the lower wall has begun to strengthen further and latter develops into

a shock. The compression at the upper inlet wall region has gradually strengthened. At

t = 1.0 the frontal shock has managed to recover its planer structure and has divorced

itself from the interactions appearing from the two curved surfaces, leaving behind a

shock wave in its wake at the lower wall.

Figure (8.41) shows the density contours for this frozen case as calculated by Aki [4]

by a total variation diminishing (TVD) scheme. The approximate time-levels shown

here were interpolated from the location of the frontal shock. Aki had used a 176 x 360

grid for the curved channel which would be one level finer compared to the finest spatial

level in the current calculation. It is observed that there are subtle differences in the

two results. The slip line is not as sharp in the present calculation and weak reflections

are not observed. These differences are also apparent in Figure (8.42) that compares the

density variation of the two computations at t = 0.6 at the upper and lower channel walls

of the bend duct. Figure (8.43) shows the infinite fringe interferogram from Reference [3]

which approximately correspond to the times t = 0.5 and 0.7 for the current case. The

calculations compare reasonably with the experiment.

8.2.5 Reacting Duct Case

The same bend duct was also considered using a Lighthill dissociating gas. The base

grid was identical to the previous frozen flow case and the inlet conditions the same

as the reacting bump case. However, the exit conditions for Mf = 2.2 are different as

indicated in Table (8.3). The choice 4 = 104 implies zt = 0.223. The contours of density
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Figure 8.41: Density contours for frozen flow, Mf = 2.2, Aki's calculations, Refer-

ence [4].
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Figure 8.42: Density variations at t = 0.6 at upper and lower channel walls for frozen

flow, M! = 2.2, symbols indicate Aki's calculations, Reference [4].

Figure 8.43: Infinite fringe interferogram for frozen flow in bend duct, Reference [4].
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inlet, ()i

exit, ()e

gas

reacting

frozen

T, K p, kg/m3 Y

5000 3.820 0.400

4011 0.874 0.220

Ti/Te Pi/Pe Pi/P,

1.247 4.369 6.250

1.857 2.951 5.480

Table 8.3: Initial values for bend case.

and atom mass fraction are shown in Figures (8.44) and (8.45). The distributions of

density and atom mass fraction along the lower and upper channel walls are shown in

Figures (8.46) to (8.49).

At t = 0.4 a complex triple point is forming, the compression and expansion fans

ensuing from the upper and lower channel walls have started interacting with the relax-

ation tail and the frontal shock. At t = 0.5 the lambda shock is clearly apparent, and

at t = 0.6 the compression from the top surface has strengthened to form a shock wave

which is about to reach the lower wall. Such a strong shock at the inlet was not observed

for the frozen flow. At t = 0.7 the trailing leg of the lambda shock is about to reach

the lower surface. The shock appearing at the inlet has reached the lower surface and

a reflection wave is forming. At t = 0.8 this reflected shock has further strengthened.

The lambda shock has begun to collapse as it enters the straight portion of the duct.

The slip line emerging from the triple point is affected by the relaxation tail from the

beginning of its formation. It is interesting to note that the atom mass fraction remains

nearly unaffected through the expansion behind the frontal shock and near the lower

wall, very much like freezing out. The compression region near the upper wall does not

show this behavior.
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Figure 8.44: Density contours for dissociating flow in bend duct, Mf = 2.2.
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Figure 8.45: Atom mass fraction contours for dissociating flow in bend duct, My = 2.2.
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Figure 8.46: Density distributions along lower duct wall for dissociating flow.
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Figure 8.47: Density distributions along upper duct wall for dissociating flow.
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Figure 8.48: Distributions of atom mass fraction along lower duct wall for dissociating

flow.
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Figure 8.49: Distributions of atom mass fraction along upper duct wall for dissociating
flow.

235



8.3 Scramjet Inlets

8.3.1 Perfect Gas Example for Two Strut Model

For the three-dimensional scramjet concept under consideration at NASA Langley,

Kumar [74] has suggested a two-dimensional model that can be used to analyze the

scramjet inlets. He had performed computations for a one and two strut inlet configu-

ration using a perfect gas for flows over a range of free stream Mach numbers between

3 and 7. The calculations were performed for both inviscid and viscous models and the

results indicated that Euler equations describe all the salient features of the flow field.

The reference suggested the following inlet conditions for a free stream Mach number

of 7.0

Mi = 5.03, pi = 3550Pa, Ti = 335K (8.9)

for a two-strut geometry shown in Figures (8.50) to (8.52). The first of these figures

establishes the labels for the scramjet inlet whereas Figure (8.51) shows the base grid,

comprising of 368 cells, that was generated by the block-grid generator mentioned in

Chapter 5. The external wall angles are a = 6.668 degrees with respect to z-axis

whereas the initial (leading) angles of the struts are B = 11.873 degrees as quoted by

Kumar. The inner trailing wall angles of the struts are y = 7.141 degrees whereas the

external trailing angles are 6 = 8.146 degrees. The domain is spanned by z E [-0.2,2.31,

y E [-0.5, 0.5]. The leading edges of the struts are located at (0.6, 0.2). The suggested

reference length, for the initial channel height, is 0.15m.

The calculation was performed by utilizing spatial adaptation while using local time-

stepping by the current algorithm. Figure (8.52) shows the final adapted grid with three

levels of spatial embedding beyond the base grid. Note that the third level of adaptation,

near the external walls, does not extend all the way to the outer surface of the embedded

struts for the choice Rdl = 1.2 and Cad = 0.2 for spatial refinement parameter involving

density differences. This example shows that the choice of threshold limits for refinement

parameter is problem dependent and one has to careful in selecting the appropriate

values. Lower spatial resoltion in these regions results in gradual thickening of the
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Figure 8.50: Nomenclature for two-strut scramjet inlet configuration.
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Figure 8.51: Base grid for two-strut scramjet inlet configuration.
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Figure 8.52: Final grid for two-strut

gas flow.
scramjet inlet configuration, Mi = 5.03, perfect
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shocks emanating from the corner points j. Figure (8.53) and (8.54) show the contours

of density and pressure that are generally in good agreement with the results of [74,119].

These perfect gas calculations reveal that the maximum temperature is about 2

(normalized by the inlet temperature of 335 K) and occurs between the two wedges

approximately where the transverse dimension is a minimum. Since the combustion

of hydrogen below about 1000 K is negligible, it does not appear that the present

configuration would support significant amount of combustion on a continual basis. In

order to sustain combustion with a fixed geometry the inlet temperature and pressure

can be raised by increasing the inlet Mach number, or alternatively, by increasing the

wedge angles while keeping the inflow conditions fixed. It has also been suggested by

Martinez-Sanchez [86 that pressures in excess of nearly one atmosphere are needed for

significant combustion of hydrogen in air.

8.3.2 Premixed Flow Example for Two Strut Model

Consider a flight Mach number of Moo = 10 at an altitude of 20 miles where the

representative atmospheric conditions are

po = 1000Pa , Too = 200K (8.10)

Assuming two 7 degree wedges that turn the flow in the same direction and a 14 degree

return produced by a cowl plate as shown in Figure (8.55); the conditions just after the

third shock for a perfect gas ( = 1.4) yield the following conditions

Ti =4.64 (927K) Pi = 81.18 (81180Pa) , Mi = 4.20 (8.11)
Too Poo

Taking the variations of the changes in ratio of specific heats at high temperature for

air into account such inlet conditions are approximately

Pi = 80000Pa , Ti = 880K , Mi = 4.30 (8.12)

Similarly for a flight Mach number of 20 at an altitude of about 30 miles the represen-

tative conditions are

po = 350Pa , To = 300K (8.13)
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Figure 8.53: Density contours for two-strut scramjet inlet, Mi = 5.03, frozen flow.
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Figure 8.54: Pressure contours for two-strut scra03, frozen flow.

Figure 8.54: Pressure contours for two-strut scramjet inlet, Mi = 5.03, rozen flow.
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Figure 8.55: Sketch of a model scramjet configuration.
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Figure 8.56: Distribution of density, pressure and

scramjet inlet, premixed frozen flow.
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For this case if the angle c in Figure (8.55) is 5 degrees, then the conditions following

the third shock are

pi = 80000Pa , Ti = 2300K , Mi = 6.6 (8.14)

For this case some cooling of the incoming air may be needed if the fuel is injected

ahead of the scramjet inlet. These simple calculations indicate that the mechanism of

raising the pressure and/or temperature of the incoming air by inlet shocks is a viable

one and it is generally possible to raise the pressures to about an atmosphere (or more)

inside the region where combustion is to take place.

For the purposes of computations, the previous geometry, Figure (8.51), is assumed

to follow after the third shock in between the cowl plate and the inner surface of the

scramjet and the effect of the expansion fan is neglected, that is, the above flow con-

ditions are assumed to be as uniform at inflow to the geometry. The fuel is assumed

to be injected somewhere after the second leading shock in Figure (8.55) and the flow

is assumed to be thoroughly mixed before it enters the computational domain. Hydro-

gen is assumed to have an equivalence ratio of unity and Rogers and Chinitz model of

hydrogen combustion is used.

Two separate runs were carried out for this premixed fuel addition example for

comparitive purposes. In the first case hydrogen was present but was not allowed to

react and the finite rate chemistry was turned on in the second case. These cases

were done by using the same base grid as in the previous frozen case with a total of

three spatial embedding levels. The Mach number of the incoming air is 6.6 with a

temperature of 800 K and pressure of 0.8 atmosphere.

Figure (8.56) shows the variation of the density, pressure and the z-component of

velocity at the exit plane, z = 2.3, for the premixed frozen flow case. The corresponding

contours of density and pressure are shown in Figures (8.57) and (8.58).

Figure (8.59) shows the variation of the density, pressure and velocity at the exit

plane for the reacting gas. It was noted that the average pressure at the exit plane

had increased from a frozen flow value of 4.1 to 7.2 (normalized by inlet pressure) in
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Figure 8.57: Density contours for two-strut scramjet inlet, premixed frozen flow.
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Figure 8.58: Pressure contours for two-strut scramjet inlet, premixed frozen flow.
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Figure 8.60: Distribution of steam mass fraction in the
inlet, premixed reacting flow.
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Figure 8.61: Distribution of mass fraction of oxygen in the exit plane

scramjet inlet, premixed reacting flow.
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OH

Local Equilibrium

H2Local Equilibrium

0.1 0.2 0.3 0.4

V

0.5

Figure 8.62: Distribution of mass fractions of hydroxyl and hydrogen in the exit plane

for two-strut scramjet inlet, premixed reacting flow.
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Figure 8.63: Density contours for two-strut scramjet inlet, premixed reacting flow.
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Figure 8.64: Pressure contours for two-strut scramjet inlet, premixed reacting flow.
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Figure 8.67: Hydrogen mass fraction contours for two-strut scramjet inlet, premixed
reacting flow.
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8.68: Steam mass fraction contours for two-strut scramjet inlet, premixed react-
W.
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the reacting case whereas the velocity and density were only slightly different. This

additional pressure is due to the combustion process itself and it would be responsible

in providing thrust to the vehicle. The variations of species mass fractions at the

plane are shown in Figure (8.60) through (8.62). Also shown are the corresponding

local equilibrium conditions. The contours of density, pressure and mass fractions are

shown in Figure (8.63) through (8.68). The density and pressure contours indicate that

the shocks are stronger for the reacting case. For example, for frozen flow the shock

cross-over in between the two struts takes place at about z = 1.2 whereas that for the

reacting case occurs near = 1.1. The slip lines emanating from the trailing edges of

the struts bend more towards the centerline than those in the frozen case. These figures

also indicate that the reactions are much more pronounced immediately after the flow

passes through the frontal shocks. However, the reactions do not go to completion in the

computational domain. The average mass fraction of steam at the exit plane is about

0.135 compared to the maximum possible value of 0.205 for stoichiometric combustion

and an equilibrium value of 0.143.

It is expected that additional combustion and expansion would take place in the

"nozzle" part of the scramjet and would provide additional thrust. Although there

is less than 0.3% hydrogen leaving the computational domain, there is some hydroxyl

(average value 3%) and ample oxygen that can react to form steam in the nozzle part.

Since the formation of steam is accompanied by heat release, additional thrust due to

heat release could be expected.

8.3.3 Oscillating Inflow Example

In order to demonstrate the effectiveness of the spatio-temporal algorithm for mul-

tiple reactions, inflow conditions for a computational domain were varied sinusoidally.

For this purpose a simpler geometry, as shown in Figure (8.69), was chosen and it rep-

resents a geometry similar to the central portion of the previous domain. The geometry

is spanned by z E [-0.2,1.41 and y E [0,0.18] and the angle of the wedge is 14 degrees.

Before allowing the inflow to vary temporally, a steady state flow was established for
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which the inflow Mach number was assumed to be 4.308 with a temperature of 880 K

and a pressure of 0.8 atmosphere. The reference length (distance between leading and

trailing edges) was taken to be one meter. A total of three spatial levels were used for

this case alongwith local time-stepping. Figure (8.69) shows the final grid for this case.

Density and mass fraction of OH were used as the refinement parameters for spatial

adaptation. The contours of density, pressure, temperature, -component of velocity,

local frozen Mach number, and the mass fractions of oxygen, hydroxyl, hydrogen, steam

for the steady case are shown in Figure (8.70). The reactions start occurring after the

first shock and relaxation regions can be seen clearly following this shock and its re-

flection from the symmetry axis. The production of steam is much pronounced after

the second shock and its concentration remains relatively constant thereafter. It is ob-

served that the species mass fractions remain nearly constant through the trailing edge

expansion fan.

A periodic fluctuation was imposed on the mass flow at the inlet

pu = (pu)o [1 + A, sin(22rwt)] (8.15)

where w is the frequency and Am is the amplitude of the oscillations; the subscript 0

indicates the value at time t = 0. Density, vertical velocity component and the energy

term were fixed at the previous steady state values. For the numerical example these

values were chosen to be as follows:

Am = 0.1, w= 10 (8.16)

Since one cycle corresponds to wt = 1, the time-period of the oscillations is 0.1. The

solution was carried out until t = 0.3. Figure (8.71) shows the velocity variations

on the upper channel wall at the end of each period whereas Figure (8.72) shows the

variations of the mass fraction of steam on this wall. Computations were not carried

out beyond z = 1.0 to save CPU time. It is observed that the oscillations have increased

the combustion level to some extent (by about 3%). For these computations five levels

of temporal embedding were used. These figures indicate that a quasi-steady state or

a periodic solution has not yet evolved; however, the flow till about z = 0.4 seems to

exhibit periodic behavior. Further note that as the velocity of the flow field reduces, the
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Figure 8.70: Contours for flow variables through an inlet for steady state solution,

Mi = 4.308, premixed reacting flow.
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Figure 8.71: Velocity variations at upper channel wall for oscillating flow.
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Figure 8.72: Steam mass fraction variations at upper channel wall for oscillating flow.
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Figure 8.73: Velocity variations at upper channel wall for oscillating flow, for t = 0.2,0.3.
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Figure 8.74: Density variations at upper channel wall for oscillating flow, for t = 0.2,0.3.
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Figure 8.75: Contours for density for oscillating flow between t = 0.2 and 0.3.
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Figure 8.76: Contours for pressure for oscillating flow between t = 0.2 and 0.3.
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Figure 8.77: Contours for mass fraction of steam for oscillating flow between t = 0.2

and 0.3. 256
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temperature increases and combustion starts occurring before the flow passes through

the first shock. The velocity and density variations on the upper channel wall for the

second cycle are shown in Figures (8.73) and (8.74). The contours of density, pressure

and mass fraction of steam are shown in Figures (8.75) through (8.77). These contours

indicate that the initially straight shock, emanating from the leading edge, changes as

the disturbance passes across it. It is observed that the disturbance at the base of the

corner affects the shock location at the symmetry axis and hence the reflected shocks

are changed somewhat. Although the overall local frozen Mach number at the inlet

plane varies from about 2.5 to 6.0, the flow-field exihits small changes with respect to

the mean flow. This is due to the fact that the frequency of oscillations is high and the

mean flow aft of the initial shock remains fairly stable. The contours of mass fractions

of steam clearly indicate substantial changes through the reflected shocks at various

positions and locations with small changes in density and pressure.
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Chapter 9

Concluding Remarks

9.1 Summary

This thesis has examined predominantly supersonic reacting flows in which the trans-

port effects have been neglected. A strategy has been developed for automatic spatial

and temporal grid embedding for a reacting flow in both quasi-one-dimensional and

two-dimensional situations. The unique part of the work, relative to previous studies,

is the development of the temporal adaptation procedure and its coupling with spatial

adaptation for unsteady chemically reacting or frozen flow systems. A new procedure

for utilizing the first differences of more than one variable, to determine the allocation

of spatial resolution, is also presented. Furthermore, a procedure for the selection of

time-steps for source implicit schemes is detailed that switches the time-steps from small

values when rapid temporal changes occur to large values when the temporal gradients

diminish. Emphasis is placed on understanding supersonic combustion of hydrogen in

air and moving blast waves in perfect or dissociating gases.

The algorithm periodically examines the evolving numerical solution, applies spatial

adaptation to the existing grid, determines an appropriate time-stepping sequence for

each cell in order to make up consistent time-stride units for the entire domain, and

finally integrates the equations.

The spatial adaptation procedure consists of the following sequential operations:

1. local embedding or grid division,

2. extension of spatially embedded regions,
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3. fusion of cells in other regions, and

4. removal of the knottiness in the grid by avoiding islands and voids.

Local embedding is carried out by detecting the regions of large spatial non-uniformities

and subsequent subdivision of the corresponding grids. This spatial resolution is added

over the entire domain prior to the execution of each temporal cycle, and is based

upon first differences of the density and/or mass fractions of appropriate species. The

procedure limits the cell volumes to four to one ratios for any set of contiguous cells.

When the initial flow field on a coarse grid involves spatial non-uniformities, consistent

pre-embedding is applied so as not to degrade this initial field.

Since the movement of flow features may be very large for certain unsteady appli-

cations, it is necessary to extend the spatially resolved region by a certain number of

cells to ensure that the flow features will remain within this resolved region during the

next time-stride unit. In general the larger the disparity of overall cell time-steps the

more should be the number of layers of extension cells. The addition of buffer layers is

accomplished by first determining the current set of the divided cells and then refining

those coarse cells which are outside and adjacent to be identical in spatial resolution to

those just inside the boundary, and repeating this process a specified number of times.

The procedure allows for both grid refinement and a return to the coarser mesh,

within some specified coarsest global spatial grid. It is important for unsteady flows

to allow for a cell fusion capability since otherwise grids might become uniformly fine

after a while and the advantages of dynamic embedding would be lost. The coarsening

of cells is also accomplished by examining the first differences of density and/or mass

fractions. When these differences diminish on a previously refined grid, and become less

than a critical limit, those contiguous grids which had been previously generated from

the same parent cells may be fused.

After the alterations are completed in the spatial grid structures, a sequence of time-

steps is determined for all the cells in the domain. The cells with the same time-step

are integrated and updated together on different integration passes of the temporal
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adaptation cycle. Once all the integration passes are completed, all the nodes in the

domain arrive at the same time value and a time-stride is completed.

As part of the determination of the cell time-steps, the temporal gradients are mon-

itored so as to maintain sufficiently small time-steps for adequate local resolution and

stability. The time-step resolution takes into account the classical CFL restriction and

the requirement implied by constraining the anticipated cell change to a small value.

The temporal adaptation procedure allows for a maximum factor of four in local time-

steps between contiguous cells. The overall disparity of the cell time-steps could be

much higher.

To maintain time accuracy the total number of integrations for cells with smaller

time-steps is carried out more often compared to those with larger time-steps. The

cells are divided into subsets as characterized by their time-steps. The cells within each

subset are integrated and updated together and a sequence of integration for cells in

these subsets avoids integrating the same cells consecutively.

When the reactive equations are stiff in the sense that numerical stability rather

than accuracy dictates the time-steps, then an implicit scheme can be used to partially

alleviate the computational overheads. The time resolution criterion as proposed in

this thesis limits the time-steps to small values during the earlier periods of a relaxation

process when the temporal changes are large. The initial cell changes may be large due

to the fact that the departure from local equilibrium conditions is large for some fast

reactions and that the flux terms are not in balance with the source terms. However, as

time elapses, the temporal gradients degrade, due to a new balance between the source

and flux terms, although the departure from equilibrium could still be significant. For

these relaxing cases larger time-steps, compared to those dictated by an explicit stability

criterion based upon chemical source terms, can be used to advance the solution by

utilizing an implicit scheme. The same implicit scheme can also be used when the

time-steps have to be reduced to capture rapid relaxation phenomenon.

Depending upon the rate of variations of the flow features, the spatial adaptation

may follow after the temporal adjustment or a number of time-strides may be carried
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out prior to the next spatial adjustment of the grids. The number of time-strides

between two consecutive spatial adaptation procedures is user-controlled rather than

being dynamically computed by the algorithm, since it is highly problem dependent.

The user is generally aware of an expected rate of variations of feature properties and

s/he could request the spatial and temporal procedures to alternate each other in a

limiting scenario. The integration of the equations continue until a desired number of

time-strides is completed or when the time-level exceeds some user-supplied value.

9.2 Conclusions and Discussion

Adaptive embedding algorithms have the advantage that meshes are refined only

where necessary and as the solution evolves, thereby providing accurate and relatively

inexpensive solutions. Since the local embedding can be carried out in a recursive man-

ner, very fine grid spacing can be maintained in the vicinity of the physical structures

being captured. Furthermore, since the resolution is enhanced only locally at the fea-

tures, with coarser grids near successively uniform flow regions, the computations with

such grids consume significantly less computer resources than does global refinement.

There are substantial savings in both CPU time and memory.

Just as different spatial resolutions are allocated at different locations of a spatial

grid to achieve CPU time gains, it is beneficial to take advantage of the large spatial

variations of time-steps for frozen or reacting flows. In fact gains due to utilization

of different time-steps can even be achieved for unsteady frozen flows if there exist

substantial variations in spatial cell volumes, which indeed may well be a result of spatial

adaptation. It is clear from the CFL constraint that the resolution requirements in space

generally imply a corresponding imposition on resolution in time. For most frozen

flows this is the primary constraint, but for reacting flows other temporal resolution

requirements may be even more stringent than those implied by the spatial resolution.

Similarly for strong blast waves the maximum eigenvalues can change by an order of

magnitude across a shock and for these cases the temporal adaptation could be beneficial

even for frozen flows on uniform grids. In general, the larger the global disparity of
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the cell time-steps the more effective is the temporal adaptation, as is true for spatial

adaptation. 

In chemically reacting flows, the computations of chemical kinetic terms is often

more expensive than evaluations of convective and/or diffusive transport terms. The

cost increases with the number of species, the number of reactions connecting these

species, the number of spatial cells and the inverse of the time-step size. For flame

and detonation simulations the overall calculation may take two or more orders of

magnitude longer compared to frozen flow situations. Calculations may also be costly

due to stiffness introduced into the equations by the finite rate chemical kinetics which

may be necessary to describe the physical situation. The utilization adaptive grids in

both space and time for such flows can lead to orders of magnitude savings in the CPU

time.

Separate pointer systems for both spatial and temporal adaptation procedures and

chemistry manipulations are utilized for the current algorithm. The spatial data base

tallies the spatial level, supercell, and the surrounding nodes of each cell in the domain.

Similarly, information about cells adjacent to each node must be known and boundary

points must carry details like boundary condition type, adjacent node and cells, etc.

The temporal data base tracks the number of cells and the sequence of integration dur-

ing each time-stride. This pointer system must be updated after each time-stride for

assignments of time-steps, determination of the temporal level of cells and their allo-

cation into clusters classified by these levels, determination of nodits, and constraining

of time-steps among contiguous cells to four to one ratios. Some of this represents an

overhead but when compared to the gain achieved in efficiency proves to be well worth

doing. The chemistry data structure holds information for each species in the model,

for example, specific heat, heat of formation, etc. and information pertaining to each

reaction, for example, constants in Arhenius rate model, total number of species, etc.

The data structure also keeps track of the table of species involved in specific reactions

and all the stoichiometric coefficients.

Depending upon the problem, the spatial data base updating may not be required as
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frequently as that for the temporal data base. For steady state problems the number of

changes in the spatial pointer system generally equals the number of spatially embedded

levels desired and the adaptation can be performed at either specified iteration intervals

or residual levels. Similarly, for unsteady problems in which the characteristic feature

speeds are relatively small the adjustments to the spatial pointer system are infrequent.

However, when high feature speeds arise, either the time-stride size must be kept small

or the spatially embedded clusters enlarged, so that the features do not move out of

their respective clusters during a given time-stride. The process of enlarging spatially

embedded clusters can become computationally expensive; a balance is required between

these competing effects. For unsteady flows, spatial adaptation procedure must be

applied frequently because the features to be resolved may be moving and the adaptive

grid clearly must track these features at a synchronous speed.

For all of the sample cases the numerical solutions based on an adaptation pro-

cedure were comparable in accuracy to globally fine grid solutions, and were in good

agreement with previous works. Computed examples also indicate that the numerical

solution obtained by utilizing spatio-temporal algorithm can yield orders of magnitude

faster computations compared to those of globally fine grids. The CPU time savings

increase with the increase in the number of spatial and/or temporal levels of embed-

ding. For unsteady flow exmaples the adaptive grid clearly tracks the salient features at

a synchronous speed and is capable of resolving features like shocks, relaxation zones,

slip lines, etc.

9.3 Future Extensions

Since the savings in CPU time increase substantially from quasi-one-dimensional

to two-dimensional studies, it does appear promising to introduce temporal adapta-

tion concurrently with spatial adaptation for three-dimensional, unsteady reacting flow

fields. There appears to be little theoretical difficulty in extending the present adaptive

grid algorithm to a third spatial dimension. However, this might only be practical for

moderate sized problems to run on a machine in the supercomputer class.
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While the present work is concerned with the solution of Euler equations, Chima

and Johnsoir [29] and Davis [39] have demonstrated that Ni's scheme is extendible to

the Reynold's averaged transport equations. Furthermore, Kallinderis and Baron [71]

have developed Ni scheme to include transport effects and an adaptive procedure when

interest is limited to steady state problems. The spatio-temporal algorithm developed

here should prove to be an attractive option for calculations involving embedded viscous

regions.
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Appendix A

Jacobians, Eigenvalues, Eigenvectors

A.1 Analytic Jacobians of Flux Vectors

The Jacobian matrices FU,GU,Wu are required for the integration of the partial

differential equations. For the purpose of evaluating the flux Jacobians, a calorically

perfect gas mixture will be assumed, i.e., the specific heat of each species in the mixture

will be regarded constant. Once the Jacobian terms are derived, local frozen values can

be substituted in place of constant values. The Jacobian evaluations will be shown here

only for the two-dimensional case.

The notation used in this section is as follows. The components of the vectors U, F,

G, W are indicated by numbered subscripts. For example, U1 = p, F2 = pu2 + p, etc.

Double subscripts indicate the Jacobian elements, e.g., F21 = . The pressure term

Pi stands for 5. The total number of equations to be solved is denoted by N6, so the

species equations correspond to the components k = 4+s where 1 < < N -4 < S -1.

In what follows the elements of the flux vectors will be written in terms of both primitive

variables and components of the state vector.

F1 = pu = U2

F 1 j = 2 (A.1)
0 otherwise
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U2F2= pu +p + p
2 + rl j = 1 (A.2)

F2 = 2u + p2 j = 2

pj otherwise

The partial derivatives of pressure will be determined latter.

Fs= puv =u 

-uv j=1
F~j v j=2 (A.3)

Fs =
u j=3

0 otherwise

F4= (p+ )= 1+ =i-r
I

u(F2l+U2 e) j = 1

uF22 - 2u2 + P+ j= 2 (A.4)

U (F24 + 1) j=4

uF2j otherwise

Fk= F4+,=puY, = Uu k=5,...,N,

-uY, j = 1
= j= 2 (A.5)

Fk~=
u j=k=4+s
0 otherwise

Note that the assumption of constant specific heats is not utilized until now; however,

the assumption simplifies the partial derivatives of pressure, and the caloric equation of

state (Eq. 2.55) then becomes

= lpY.Hf + (U2 + V2) +pT YCp, - pToZYCp. -p (A.6)
J=1 821 8=1
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On substituting the thermal equation of state for temperature this yields

-p S
p = pYH + IPp(u2Y+v2)+ P Y.Cp.

8=1 , R >, Y./m. =1

Since the specific heats are related by

CV. = C. -

the pressure equation simplies to

S

- pTo Y8Cp,
8=1

S

= - YHf.- P(U2 + v2)
8=1

S

+ pTo E YCp.
s=l

or in terms of the components of state vector

E, UkCV. S
R E UkItM, U4 - >IUkHf,-8=1

UT + s 
3 + To C UkCp. ,

2U1 8=1.=l
k = 4+s (A.10)

For derivatives with respect to U1 , U2, U3, U4 all terms involving Uk are constants;

hence the following mixture values can be defined

C = E Y.CP. 

m - 1Y=I
Hence the pressure equation becomes

R
P= =C

CV = .8 Y.CV.
(A.11)

Hf = . Y.Hf.

{ 4 2UI +Kv _2u~_ (A.12)

where K is a constant insofar as the first four derivatives are concerned and is given by

K = {pToCp - pHf } (A.13)

Using the ratio of specific heats for a mixture, i.e., y, = E Y.C./ E YC,,., it follows

that
'

iiz =

Cp - - 1Cu
(A.14)

The first four partial derivatives of pressure then become

Pi

t(i7- 1)

u( - )

(- - 1)

j = I

j=2
(A.15)

j=3
j=4
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P R , YJ/mJ~
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Thus the first four Jacobians of F2 now become

-- 3 U2 + I-1V2
2 2

(3 - )u

(1 - )

j=l

(A.16)

Similarly the first four Jacobians of F4 become

=

Iu(27V2- _P+)

(1 - -)u 2 + +
(1- )uv

U')'

For derivative of p with respect to U, with I = 4 + q E [5, Ne], the quantities

K,Cp, Cv are not constants. Thus from Equation (A.10)

Pl

'7-1
+ P
-t~) {E m(RUkins /

Cv, - E (UkC,)
a

= -Hfq + ToCpq (A.18)

which can be simplified to

Replacing q by s gives the following

F2(4+8) = (- 1)(ToCp, - Hf .) P ;iz \ r - 1 

This completes the expressions for the Jacobians of the flux vector F. In summary the
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F2j

j=4

F4j

j=1
j=2

(A.17)
j=3
j=4

Pi = (7 - 1)(ToCpq - Hfq) +
Pr q Yaq -1

(A.19)

(A.20)



matrix Fu can be

0

,-1V2 _ U2
2

-uY 1

-UY 3-uY3

written as

1

(3 - y)u

V

P+-E + (1 - 7)U2

y1

Y2

Y3

.. .

0

(1 - )v

uv(1 - )

0

0

0

0

7 -1

0

u'

0

0

0O
O

0

F2 5

0

uF25

U

0

0
u

0

F2 6

0

uF2 6

0

0
O

0

F2 7

0

uF 27

0

0

u

The evaluation of the Jacobians of flux vector G will now be described.

G1 = pv=Us

j=3Gzj = { I
0 O otherwise

G2= F3 = puv= 

G2; = F3,G2 = Fsj =i,.,

G3= pv2+p= F2 + -

F21 -v 2 + U2 = 2 V2 + U2

F22 - 2u = (1 - 7)u

G3j = F2 s + 2v = (3 - Y)v

F2 4 = - 1

F2j

j=1
j=2
j-=3

j-=4

otherwise
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G4= (+)v= 1+ -_
v(F2 + u2- P+) = v V2 - )j = 1

v(F22 - 2u) = (1- )uv j = 2

vF2s + P+ = (1 - )V2 + + j = 3
P P

v(F24 + 1) = vy j= 4

vF2i otherwise
(A.25)

Gk = G4+. = pvY. = U k = 5,..., N

-VYJ j= 1

Gkj = Y jv j=k=4+s
0 otherwise

(A.26)

The Jacobians of the source vector W change from one reaction system to another.

For the sake of generality the source vector Jacobians are evaluated numerically from

the discrete form

awi = Wi(Ux,..., U + AUji,..., UN.) - Wi(U,.., Uj AUj, ,. UN ) (A.27)
au 2AUi

where

AUj o0.001ool , Uj 0

0.001 , otherwise

A.2 Eigenvalues of Jacobian Matrices

The eigenvalues of Fu and Gu are needed to determine the maximum allowable

time-step and to apply the characteristic boundary conditions. The eigenvalues of Fu

for the non-reacting case are u + a, u - a, u, u where a is the frozen speed of sound.

The two u eigenvalues are due to the continuity and y-momentum equations. Since
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the species equations are essentially continuity equations, the total number of multiple

roots for the-reacting system is S + 1 (1 for continuity, 1 for y-momentum and S - 1 for

species equations). Intuitively, the other two roots are expected to be u±af, where a is

the local frozen speed of sound. One can expand and solve for the polynomial function

corresponding to the eigenvalues of Equation (A.21), but it is simpler to evaluate the

determinant of the matrix Fu as a product of the eigenvalues, i.e.,

IFUl = (u2 - c2)uS+ l (A.28)

where c is a speed which will be shown to be the local frozen speed of sound. To justify

the assertion that the eigenvalues of FUr are really uS+1, u ± c, consider the trace of Fu,

i.e., the sum of the eigenvalues

S-1
(S + l)u+(u+c)+(u-c) F22+F3 + F4 4 + E u (A.29)

a-1

This implies that

F22 + F33 + F44 - 4u (A.30)

Substitution of Fii values into this equation confirms the assertion.

The determinant of the Equation (A.21) can be shown to be

IFul = us + (1 - y) + + - v2 E, yF2(4+) (A.31)
P 2 2

From Equation (A.7) one can show that

p+E = P U2 + _ T
- 2 + Y H - To Y.Cp (A.32)~~~P r-l~p a a

Substituting Equation (A.20) and (A.32) into (A.31) yields

IFu = us+ {u2 _ i±YPP (P-)} (A.33)

It can be verified that for an ideal mixture the last term inside the curly bracket vanishes.

Note that

8m= -7" _ 7- M C( -1 ) CY
YC,, _ 1 'y- 1 Cp - C,

- o ,) E - c(. - C = - i
m R m - m R

1 1 (A.34)
- r =0
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Hence

Fuj = US+ (U2 _ 2Y) (A.35)

But a2 = ,yp/p is the square of the local frozen speed of sound. In a similar manner it

can be verified that the eigenvalues of GU are vS+1, v ± af, i.e.,

IGul = v+l (v2 - ) (A.36)

A.3 Eigenvectors of Jacobian Matrices

The eigenvectors of the Jacobian matrix Fu are needed for the computations in-

volving characteristic boundary conditions. Only left eigenvectors will be considered

here. The eigenvectors Li are numbered according to the eigenvalues Ai = u - a, u +

af, u,... , u. The equations in this section will be given for both a general case and an

ideal mixture (constant specific heats). The left eigenvector L1 for A1 = u - a is given

by

L 1 (Fu-A LAl = 0 (A.37)

where the notation A, = F - i I is used for simplicity. The product with the fourth

column of A 1 implies

L12F24 + L14(F44 + a! - ) = 0

Since the eigenvectors of a distinct eigenvalue are unique up to a multiplicative constant

the choice 14 = 1 is made. Hence

12 = - f(u+ ) =- -u+ 1) (A.38)

The product with the third column of Al implies

L12F23 + L 13af + L14uF2 3 = 0

or

LTh clm '-ea (A.39)F2 4

The column of A1 pertaining to species s implies

L12F2k + uL14F2k + af lk = 0 , k = 4 +s
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or
F2k =n To% - +

Llk = F2k TOCp - Hf + p - (A.40)

It can be verified that the first and second columns of A1 yield redundant values of L11.

The result for second column is

Ne

l + L 2(F22 + af - u) + Ll3v + L14F42+ E YLlk = 0 , s = k-4
k=5

This can be simplified to

L = 2 + -f (af + u) -- YLlk s=k-4 (A.41)
'Y-1 ~ P k=5

This can be further simplified by substituting the values of c/p and Llk and hence

= u 2 Uaf + - (A.42)2 'Y- 

The left eigenvector L2 for A1 = u + af is given by

L2 (FU - A2 = L2A 2 = 0

The product with the fourth column of A2 implies

L22F24 + L24(F44 - af - u) = 0

Choosing again L24 = 1 yields

F44 - u - af af af
L22 = -= F -= -u

F24 F24 7- 1

The product with the third column of A2 implies

L22F23 - L23af + uF23L24 = 0

or
F2 3L23 = F2 - = L13
r24

The column of A 2 pertaining to species implies

L22F2k + uL24F2k - afL2k = 0 ,

(A.43)

(A.44)

(A.45)

k=4+s

or

L2k = Llk
F2 4

(A.46)
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The result for multiplication with second column of A 2 is
N.

L21+ L22(F2 2-af -u) + L2 v+L24F4 2+ YL2k = 0 ,k-4
k=5

This can be simplified to

L21 = V2 + (a - u) _ YLlk , = k-4 (A.47)'Y I P k=5
This can be further simplified to

L21= u - af + 2 (A.48)
2 -1 2

The left eigenvector Li for Aj = u where j = 3,..., N, deserves special attention due

to the multiplicity of the root. It will be shown here that it is possible to choose S + 1

linearly independent eigenvectors. The full product matrix equation for the eigenvectors

L is

[Ljl L 2 ... Li6]

-u 1 0 0 0 0

F21 F22 - u (1- )v '-1 F25 F26

-uV v 0 0 0 0

F41 F42 uv(1-A ) u(y - 1) uF2 uF26

- uY Y1 0 0 0 0

-uY 2 Y2 0 0 0 0

For simplicity only a 6 x 6 system is shown here. The product corresponding to the

fourth column gives

Lj2F24 + Lj4(F44 - ) = 0

or

Lj2 = -uLj4 (A.50)

It can be shown that the product of the matrices corresponding to the y-momentum

equation (column 3) and for any of the species equations (column k = 4 + a) yields the

same result as the above equation. This is obviously a manifestation of the multiplicity

of the eigenvalues. The second column of the product implies

N.
Ljl + Lj2(F22 -u) + Lj3v + L 4F42 + Y.Lk = 0 , = k-4 (A.51)

k=6
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or

Ne

Lj + Ljv+ L 4(F2-uF 22 +u2) + YLjk=O , s=k-4 (A.52)
k=6

Similarly the first column gives

N.
-uLi - uvLj + L4(F4 - uF21) -u YaLik = , k = 4 + (A.53)

k=5

Multiplying Equation (A.52) by u and adding in the previous equation yields

Lj4 (uF4 2 -u 2F22 + 3 + F41 - F2 ) = 0 (A.54)

It can be shown that the coefficient multiplying the Lj4 term is zero (even when the

specific heats are not constants ) and hence L4 can be chosen arbitrarily. Another

way of stating this is that Equations (A.52) and (A.53) are redundant. Thus the eigen-

vectors corresponding to the multiple roots have to satisfy only two restraints, viz.

Equations (A.50) and (A.52), and hence the values of Ljk for j > 3 can be chosen

arbitrarily.

Associating the continuity equation with j = 4 and choosing L4s = O, L44 = 1 and

L4k = 0 for k > 5, the other remaining items are given by

L42 = -u , L41 = uF22 - F42 - u2 = u2 - P + (A.55)
P

Associating the y-momentum equation with j = 3 and choosing Lss = 1, L4 = 0 and

L3k = 0 for k > 5, the other remaining items are given by

L31 = -v , L32 = 0 (A.56)

Associating the th species equation with j = 4 + s = k and choosing Lk3 = 0,

Lk4 = 0 and Lk = jk yields the other elements as

Lk= = - Yk-4 , Lk2 = 0 (A.57)
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In summary the left eigenvector matrix L for the eigenvalues of Fu is given by

u 2

- 2 af) + 2

u2 _ p+P
P

-U - '_l -v I7-1 '7-1

-U + Eal -v 1 2-l

0 1 0 0

Fa2
y-1

0-1

O

-u 0 1 0 0

-Y 1 0 0 0 1 0 ...

-Y2 0 0 0 0 1 ...

... ... ...

(A.58)

It can be easily verified that the inner product of any two eigenvalues is non-zero

and hence the eigenvectors are non-orthogonal; however, the eigenvectors are linearly

independent. One can use the Gram-Schmidt orthonormalization procedure, to make

the elements of the set mutually orthogonal.
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Appendix B

Considerations for the Computer Code

Since a major fraction of the efforts associated with the current research is algorithm

and code development, it is appropriate to point out the important considerations which

one must take into account prior to undertaking such a task.

In order to keep the integration procedure independent of the geometry of the

individual problems and the specific initial distribution of state vectors, the STAR

code requires the allocation of grid points and initial conditions through separate pro-

grams. Thus the grid generator and initial-condition generator are kept separate from

the spatio-temporal code and these must generate output (file INPUTG.DAT for grid

and INPUTD.DAT for initial conditions) in formats consistent with what STAR code

demands. In a similar manner the chemistry models are not implemented as separate

modules in the code and all the pertinent chemistry data must be supplied in a separate

file (INPUTC.DAT for chemistry deck). This increases the robustness of the code in

the sense that an arbitrary number of grid topologies, initial conditions and chemical

reaction systems may be handled by this code. However, this has the disadvantage that

different grid and initial condition generators will be needed for each new kind of geom-

etry and flow conditions, and the maintenance of these small but numerous programs

may be confusing.

A numerical code typically produces a large amount of output data. It would be

inefficient to store the output after each time-stride, since the overall size of this data

will approach gargantuan proportions. For this reason simulations are usually carried

out in segments composed of a few hundred time-steps after which the output is dumped

out. For the current approach the output can be produced when a selected number of
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time-strides have been completed or when the time exceeds a user specified value. The

user also specifies the maximum size of the time-strides to be used through parametric

input. For problems in which interest is limited to the steady state, local time-stepping

can be selected in which case the size of the time-strides is irrelevant.

The usage of data pertaining to a selected number of time-stations implies that

the temporal states after each time-stride need not be saved even for unsteady flow

problems. This means that the storage of state vectors should only provide spatial

variations and that only current values in time need be remembered at each spatial

node. This has the advantage of curtailing the demands on the CPU memory while in

the execution mode. The disadvantage is that a continuous motion picture, which may

provide insights in the dynamics of fluid motion, cannot be produced . However, the

output from various simulations, pertaining to different time-stations, can be organized

in a sequential manner and a discontinuous motion picture is realizable and can provide

valuable information. The storage of output pertaining to various time-stations could

itself be very large and in fact exceed the limits of disk storage. For this reason, the

long-term storage of these simulations should always be restricted to personal devices

such as magnetic tapes or mountable disks.

A software facility should also have a restart capability which utilizes the output

dump of a previous calculation. One important consideration for restart cases is that

certain parameters be allowed to change in the newer simulation. For example, one

may decide to freeze the collapsing of grids in one run and only allow grid sub-division,

whereas in a later case both of these procedures might be applied.

Another consideration in building a robust computer software is the modularization

of individual physical processes which are segmented as individual sub-routines or pro-

cedures. Models must be built so that each of these processes is calculated accurately

and calibrated separately before the final assembly. For example, in the STAR code, the

procedures for grid division and merger constitute two separate sub-routines. Similarly

the integration calculations, boundary condition evaluations and the process of updat-

ing are done in separate routines. In addition to providing a reasonable organization
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for solving the overall problem, the modular approach allows the use of best numerical

techniques for each aspect of the problems. This approach is extended further in the

STAR code in the form of making available a number of alternative subroutines. For

example, two kinds of integration routines are provided and the choice depends upon

whether one wishes to perform inviscid or viscous calculations. The calling names and

arguments of the two routines are identical, though stored in files with different names,

and these can be discriminated at link time. Although a single subroutine could have

been written to accomplish both the objectives through logical statements, this was not

done in favor of keeping the routines simpler and efficient. Other procedures which per-

form slightly different calculations are stored and organized in a similar manner. The

direct consequence of this approach is that the overall size of the software becomes very

large, but only a selected number of routines are linked together to yield a particular

simulation. The availability of a large number of alternative routines also has some dis-

advantages. When a change is made in one of the subroutines to account for something

in an efficient manner, this change is typically needed in other similar routines. The

situation also demands that the operator of the software be familiar with the function,

advantages and disadvantages, and applicability of individual routines in differing sit-

uations. However, this is not a serious disadvantage, since it is usually a mistake to

consider the software operator an irrelevant intermediary who feeds the computer. The

operator should really be an expert who understands the overall organization of the

software and should be bold and competent enough to make necessary changes if the

need arises. Another aspect of structured programming [1081 is that helpful comments

be provided for each procedure for those who use the software. About 50% of the STAR

code consists of comment lines.

One very crucial consideration in the programming of unstructured grid codes (not to

be confused with structured programming) is the ability to detect the incursion of errors

in the pointer system or data-structure manipulations. These errors typically occur after

the application of procedures which divide or fuse the cells. It would be inefficient to

globally check the assignment of pointers after each change in data-structure of the

grids. However, this might be often needed during the earlier stages of the development

of the software. With this aspect in sight special debug routines have been written for
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the STAR code which examine the data-structure on a global basis for possible errors.

These routines pin-point the positions (cells, nodes, boundary points, etc.,) where there

are inconsistencies in the pointer system and provide an output dump of the pointer

system while highlighting the regions of inconsistencies. Once the software is thoroughly

tested and debugged these routines can be removed from the calling sequences. Since,

to err is human, a possibility of errors under special pathological cases always exists

and such routines should never be completely discarded, irrespective of the confidence

in the software. Such routines should be added into the software at appropriate places

if something unexpected happens during a program execution. In the final version of

the STAR code the debug routines only scan the initial data for each start or restart

case and do not allow further execution of the program if inconsistencies are discovered.

The portability of the computer software should always be taken into account. The

STAR code is completely written in FORTRAN, since this language is appropriate for

number crunching and it is widely accepted by the scientific community. In order to

increase the portability of the software only generic names are used for functions and

special capabilities of certain computers in optimizing codes is sacrificed in favor of

portability considerations. The STAR code runs on three machines with minor changes

(VAX/VMS, ALLIANT and CYBER 205). Fortunately the vectorization directives

appear only as comments for the scalar machines and hence the same code can be used

on each. The sections of code which are absolutely essential and different for the several

computers are added in utility routines and are seldom changed. For ease of recognizing

the pertinent statements, all lines for other computers also appear as comments in the

utility routines. Hence it would be necessary only to uncommented" a few lines to

apply the routines to other systems. The utility routines make system calls (e.g., CPU

time evaluations for a given procedure) and do special mathematical operations (e.g.,

inverting a matrix). Other routines which must be changed on different computers are

those which include the INCLUDE instruction. Most software has been debugged and

tested on the micro-VAX-II, and changes are made and tested only on that machine.

Whenever a new change has been made for a code segment (among about a 100 files)

which constituted a given simulation, all the pertinent subroutines have been added to

a single file through an editor via a command procedure. This procedure could be run
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either in interactive or batch (background) mode, without the user having to manually

do the overall assembly. The INCLUDE statements in the single big file are then changed

through another command procedure for use on a different computer. Once all changes

are made, the single file is transferred to the other computer. The advantage of this

relatively complicated approach is that it allows nearly the same version of the code on

different operating systems for a given simulation.
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Appendix C

Data Structure

This appendix is devoted to data structure and necessarily involves a considerable

amount of computer mnemonic. The importance of data structure stems from a grid

adaptation concept and understanding its logic is essential in implementing an improved

and efficient algorithm. The pointer system itself can be subdivided to handle spatial,

temporal and chemistry parts of the coding. The procedures of grid division, fusion and

extension are detailed in terms of this pointer system.

C.1 Spatial Data Structure

The spatial data structure utilized in this section follows the pointer system as

proposed by Dannenhoffer [33].

C.I.1 Cell-to-node Array

Connectivity arrays define the objects to be gridded. The cell-to-node array is

defined by ICELG2(1:10,1:MCELG2) and indicates the linkage of a given cell to its

nodes and parent cell. The colon notation indicates the bounds of validity of this array.

Here MCELG2 denotes the maximum allowable number of cells. In MCELG2, the first letter

M stands for maximum, the letters CEL for cells and G2 to indicate 2-D grid. The current

total number of cells is denoted by NCELG2. The notation of other arrays is defined

along similar patterns. The first nine entries of this array, for a given cell IC between 1

and NCELG2, point to the nodes of this cell as indicated by the numbering scheme shown
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6 c = ICELG2(1, IC)

i = ICELG2(2,IC)
8 = ICELG2(3,IC)
j = ICELG2(4,IC)
e = ICELG2(5,IC)
k = ICELG2(6,IC)
n = ICELG2(7,IC)
I= ICELG2(8,IC)
w = ICELG2(9,IC)

4

Figure C.1: Node pointers for a given cell IC.

in Figure (C.1). The filled circles denote corner nodes which are always present while

empty circles correspond to nodes which may or may not exist. Any node which does

not exist is entered as zero pointer. For example the assignment of nodes for cells C

and E in Figure (3.5) is

ICELG2(2,C)

ICELG2(3,C)

ICELG2(4,C)

ICELG2 (q,E)

ICELG2(8,C)

= i >
8 --

= e >

= 0

= e

0

0

0

q= 1, 3, 5,7,9

0

Note that a cell with a non-zero center node is always a divided cell, and therefore is a

parent or supercell of four unique children cells. The center node pointer is irrelevant for

unsteady flow calculations since a divided cell is not involved in the integration calcu-

lations; however, for steady-state situations, in which a multiple-grid may be used, this

node-pointer becomes important. In the STAR code the center node pointer is retained

to maintain generality and to allow a simple discrimination basis between divided and

undivided cells. Note that the cell number IC of a particular cell after sub-division still

represents the old cell and its corner pointers do not have to be readjusted. For un-
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steady flows, without a multiple grid technique, this means a retention of unnecessary

cell numbers, and hence a linked list of only undivided cells must be maintained for an

efficient integration procedure. A division of a single cell in the domain always increases

the total number of cells by four and the opposite holds for the fusion of cells. Hence

after the completion of a spatial adaptation cycle the total number of cells differ by

factors of four compared to those at the beginning of the cycle.

The tenth element of the cell-to-node array pointer for a given cell IC, namely,

ICELG2(10, IC) indicates the supercell or parent of that cell. For the base grid cells

(spatial level 0) these pointers are assigned zero values whereas for any finer level (cells

embedded once are at level 1 and so on) cells these point positive cell values. Thus if

the supercell of cells E and F in Figure (3.5) is denoted by G then

ICELG2(10,E) = ICELG2(10,F) = G

If this pointer exists for a given cell then there should be exactly three more cells with

the same supercell pointer. The supercell pointers are used to avoid expansive search

procedure when collapsing of cells is desired.

The importance of consistency checks to data-base structure was pointed out in the

previous appendix. The following consistencies should exist for the cell-to-node array

and some or all of them should be periodically checked to avoid incurrence of errors:

* ICELG2(J,IC), j-,9 should be integers between 0 and NNODG2, where NNODG2

denotes the total number of nodes in the domain. Furthermore for a given cell all

of the non-zero pointers should be unique.

* ICELG2 (, IC), j -2,4,6,8 should always be strictly positive integers.

* If a cell has non-zero pointers for ICELG2(j ,IC) ,j-3,5,7,9, then it should be a

divided cell.

* ICELG2 (10, IC) should be an integer between 0 and NCELG2; if non-zero, the cell

IC should be at a finer level than the base grid.

* Each divided cell should be a supercell of exactly four cells.
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* The north-east node of a given cell should be a south-west node of a neighboring

cell -except near boundaries. Similar permutations apply for other nodes.

3+(J-1) JI-2

1+(J-1)I

1+(J-2)I

1+(J-3)I

1+(J-4)I

1+31

1+2I

1+I

I-3 I-2 I-1 I

JI j=J

(J-1)I j=J-1

(J-2)I j=J-2

(J-3)I j=J-3

4I j=4

31 j=3

2I j=2

j=1

Figure C.2: Initialization of grid pointers for an initial structured grid.

The initial coarsest grid in the STAR code can be generated by considering either

the computational domain to be a logical rectangle (structured initial grid) for simple

geometries or by an interactive block grid generator for solid bodies embedded in the

computational domain.

The initialization of the connectivity arrays can be better explained by the simple

grid generator, instead of block grid generator. The interested reader can examine the

listing GNBLOC of the block grid generator to see how this initialization is done. For
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the logical grid the code first reads the geometry at the boundary nodes and creates

an algebraic'grid for the interior nodes. Consider Figure (C.2) in which the number of

nodes along z-axis is I and that along the y-axis is J. The node numbers along the

southern edge are numbered 1, 2, 2, .. , I and the numbering continues in the same fashion

for all the rows of the grid. Hence the western face nodes of the logical rectangle are

given by 1 + (j - 1)I whereas the eastern face nodes are given by jI for j E [1, J]. The

cell numbers are traversed in the same manner, thus the cells adjacent to the western

face are numbered as 1 + (j - 1)(I - 1) for j E [1, J - 1] and the total number of cells is

(I- 1)(J - 1). Consider the initialization of the cell marked by circles (i.e., cell number

I + 1) with the pointers

ICELG2(2,I+I) = 1+2

ICELG2(4,I+I) I+3

ICELG2(6,I+I) 2I+3

ICELG2(8,I+I) 2I+2

ICELG2(q,I+I) 0 , q=1,3,5,7,9,10

On an overall basis, the non-zero pointers of all the cells can be assigned by the following

sample code:

NCELG2 0

DO JP = 1, J

DO IP 1, I

NCELG2 = NCELG2 + 1

ICELG2(2,NCELG2) = IP + (J-1)*I

ICELG2(4,NCELG2) = IP + 1 + (J-1)*I

ICELG2(,NCELG2) = IP + 1 + J*I

ICELG2(8,NCELG2) = IP + J*I

ENDDO

ENDDO

Although the STAR code conforms to ANSI standards for FORTRAN, the extension
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of VAX-11 FORTRAN are used here to avoid tame-labels [108] associated with the

CONTINUE statements for the examples in this thesis. The FORTRAN rule of assignment

to a real or integer variables can be assumed to be valid for most examples and the

exceptions are pointed out if such a need arises. Note that once the adaptive procedure

is invoked, the initial structured grid loses its structure.

C.1.2 Node-to-cell Array

This type of array specifies the cells surrounding a given node. The form of this

array is NEIBG2(1:4,1:MNODG2), where MNODG2 is the maximum allowable number of

nodes. For a given node IN in between 1 and NCELG2, the values NEIBG2(q, IN) point

to the south-west, south-east, north-east and north-west cells respectively for q=1,2,3

and 4. Hence for node i in Figure (3.5) the assignments are

NEIBG2(qi) = A,B,C,D for q= 1,2,3,4

This array can be used to identify various kinds of spatial interfaces where a grid

abruptly changes; for example, consider the interface j-e-k of Figure (3.5) - the node-

to-cell array of the middle edge node is

NEIBG2(qe) = C, E, F,C for q= 1,2,3,4

that is,

NEIBG2(1,e) = NEIBG2(4,e)

For nodes on a physical boundary some pointers will be zero; for example, for nodes IN

on a southern boundary

NEIBG2(1,IN) = NEIBG2(2,IN) = 0

Thus if all four pointers of a given node are non-zero and unique, it is a common interior

node; however, if the four pointers are non-zero and non-unique then the node is an

interior middle edge node of a spatial interface. For the present code the distinction

between various types of spatial interfaces is not needed, but this information is available
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as a by-product if the node-to-cell array assignments are carried out in a manner as

prescribed above.

A number of consistency checks can be made for this array, the most important of

which is that NEIBG2 be the inverse of ICELG2. For example for all the interior nodes

IN the following relation should exist

IN = ICELG2(2,NEIBG2(3,IN))

or inversely for any given cell IC

IC = NEIBG2(3,ICELG2(2, IC))

Both the arrays ICELG2 and NEIBG2 make the process of cell division and fusion ex-

tremely efficient since no search involving the neighboring objects is then needed.

The initialization of the node-to cell array can be accomplished for the structured

grid of Figure (C.2) after the initialization of the cell-to-node array by the following

sample code:

DO IC 1, NCELG2

NEIBG2(1,ICELG2(6,IC)) = IC

NEIBG2(2,ICELG2(8,IC)) IC

NEIBG2(3,ICELG2(2,IC)) IC

NEIBG2(4,ICELG2(4,IC)) IC

ENDDO

C.1.3 Node-Arrays

The node-arrays contain the geometry information, state vectors and some other

variables at all of the computational nodes. The geometry of the physical domain is

specified by the array GEOMG2(1:2,1:MNODG2). For a given node IN between 1 and

NNODG2 the z and y-coordinates of the node are given by

GEOMG2(q, IN) = x or y-coordinate of IN for q - 1 or 2
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The state vector array is defined by DPENG2 (1: MEQNFL, 1: MNODG2), where MEQNFL

is the maxirhum allowable number of equations to be solved. The current number of

dependent variables is denoted by NEQNFL and is a constant for a given case. As an

example, the fifth dependent variable, which is the product of local global density and

mass fraction of the first species, is specified by DPENG2 (5, IN).

Other node arrays include the pressure PRESG2(IN), temperature TEMPG2(IN), arti-

ficial viscosity coefficient SIGGG2 (IN) and residual change values CHNGE2 (1 :MEQNFL, IN)

at a node IN between 1 and NNODG2.

C.1.4 Cell-Arrays

The cell-arrays hold information pertaining to some or all of the cells in the com-

putational domain. The list of all undivided cells is defined by ICELA2(1:MCELG2).

In consistency with the previous notation NCELA2 denotes the current total number of

undivided cells. This list is useful for integration purposes and for division and collapse

routines, since only the undivided cells are integrated for unsteady flows and only these

cells can be further divided or fused to yield an earlier supercell. As mentioned earlier,

the detection of undivided cells is accomplished by examining the center node of each

cell in the domain. The following sample code can be used to accomplish this:

NCELA2 0 O

DO IC a 1, NCELG2

IF (ICELG2(1,IC) .NE. O) THEN

NCELA2 - NCELA2 + 1

ICELA2(NCELA2) IC

ENDIF

ENDDO
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Note that for those cases for which spatial adaptation procedure is frozen at all times,

this list degenerates to

ICELA2(1:NCELG2) = 1:NCELG2 (NCELA2 = NCELG2)

This array must be updated after each spatial adaptation cycle which involves a

division and fusion of cells, removal of islands and voids, and extension of the region

containing the spatially adapted cells.

The arrays MRKCA2(1: MCELG2) and MRKDA2(1 :MCELG2) hold the cell numbers which

are marked for possible fusion and division respectively. The current total number of

such cells is denoted by NCELC and NCELD respectively. Since only a fraction of cells

need be fused or divided for a given spatial adaptation cycle, a more frugal maximum

dimension of these arrays could have been selected; but since these arrays are also used

beyond spatial adaptation procedure the maximum dimension MCELG2 is retained.

The array CHNGA2(1:3,1: MCELG2) holds the information pertaining to spatial dif-

ferences of three or less criteria variables which are used for local embedding or fusion.

These differences are computed for all undivided cells between 1 and NCELA2. The pro-

cedure of computations of these differences is discussed in Section (5.3). Although this

procedure is applicable for more than three criteria variables, it becomes expensive and

inefficient to carry more than two variables.

The cell-arrays MRKCA2, MRKDA2 and CHNGE2 do not need to be initialized for the

logical structured grid of Figure (C.2), since these arrays are evaluated anew for each

spatial adaptation cycle.

C.1.5 Boundary-Array

This array contains information pertaining to the nodes on the domain boundaries.

This is needed to apply boundary conditions, perform interpolation functions and facil-

itate grid adaptation near the boundaries. The connectivity array for boundary nodes

is denoted by IBNDG2 (1:5,1: MBNDG2), where MBNDG2 indicates the maximum allowable
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number of boundary points and NBNDG2 is the current total number of these points.

For a given boundary point IB, the first entry of the array indicates the actual node

on the boundary. Similarly the second and third entries indicate the two finest level

cells adjacent to the boundary node. The fourth entry indicates the orientation of the

boundary; it is 3, 5, 7, 9 if the boundary is south, east, north, west surface respectively.

This denotation is consistent with the pointers of the cell-to-node array ICELG2; similar

numbers are assigned for the four corner nodes of the logical domain. The fifth entry

denotes the type of boundary condition to be applied at the node in question. The types

of boundary conditions were discussed in Chapter 7 and more details can be found in

the subroutine E2BCNO.

X'0000000C

8

X'00000004'

7

X'00000006'

6

X'00000008' 9

IBNDG2 (1, IB)

)0000002'

IBNDG2(4, IB)

2

X '00000009'

3

X' 00000001'

4

X'00000003'

Figure C.3: Initialization of boundary pointers for an initial structured grid.

For the initial grid generator of the logical rectangle in Figure (C.2) the bound-
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ary points start at the south-west corner of the domain and traverse the computa-

tional domain in the counter clockwise direction. For the southern surface boundary

(IB-2,... ,I-1)

IBNDG2(1,IB) - IB

IBNDG2(2,IB) lIB-1

IBNDG2(3,IB) IlB

IBNDG2(4,IB) 3

Similarly the eastern face of the logical rectangle is given by (IB=I+j -1 for j 2,3,3 ... , J- 1)

IBNDG2(1,IB) j*I

IBNDG2(2,IB) - (j-1)*(I-l)

IBNDG2(3,IB) j*(I-1)

IBNDG2(4,IB) = 5

Similar assignments of these pointers is indicated in Figure (C.3). The numbers within

the boxes indicate the cells adjacent to the boundary node whereas the numerals outside

the computational domain indicate the orientation of the boundary. Note that there is

only one cell adjacent to the corner boundary points, i.e., IBNDG2(3,IB)=0 for these

locations.

A number of consistency checks can be made for these pointers; however, the im-

portant checks must evaluate the consistency of IBNDG2 with ICELG2 and NEIBG2 at the

boundary locations.

C.1.6 Auxiliary Pointers

The boundary array discussed earlier provides a connectivity of boundary points to

the boundary nodes and cells. An inverse relation is needed for cells near the boundaries

for spatial adaptation procedure. Alternatively if a cell can be recognized as a boundary
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cell at the time of sub-division or fusion, the boundary-array can be scanned to locate

the boundary points which correspond to the cell in question. The second approach

is used here since the size of the boundary-array is generally much smaller compared

to the total number of nodes or cells and only a small fraction of cells are adjacent

to a boundary and hence scanning the array is not expansive. The auxiliary array

KAUXG2(1 :MCELG2) is used for this purpose. To save on further storage this array is

used to hold other information besides the boundary cell details. It has the following

hexadecimal form for each byte:

KAUXG2(IC) = h8h7 h6hsh4h3 h2h1

The first byte or hi is used to indicate that the cell IC is a boundary cell and points

out its orientation. If the cell is not adjacent to a boundary this byte is set equal

to zero. Figure (C.3) shows the assignment of this byte as hexadecimal values for

each orientation. As an example, consider a cell IC on southern boundary. During

initialization or when the cell is created from a supercell on the same boundary due to

local embedding, this byte can be set by the following statement:

KAUXG2(IC) = OR (KAUXG2(IC),X'00000001')

Note that this statement only modifies the last byte of the auxiliary array. Also note

that the hexadecimal form for a corner cell is obtained by logical addition of the bytes

pertaining to the two corresponding boundary surfaces. For example, the north-west

corner has the hexadecimal form

X'OOOOOOOC' = OR (X' 00000004',X '00000008')

Thus, during the process of cell division or fusion a cell IC can be identified to be a

boundary cell if the number

KB = AND (KAUXG2(IC),X'OOOOOOOF')

is non-zero and the type of boundary can be deciphered from the non-zero value of KB.

The second byte or h2 indicates that the cell was recently divided and hence must

not be collapsed. Thus if a cell is marked for possible fusion and h2 is found to be
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non-zero, the process of fusion is delayed. This means that the cells divided in the past

few spatial adaptive cycles will not be fused until a specific number of adaptive cycles

has elapsed. The details of this pointer will be explained later.

The third byte hs indicates the type of boundary interpolation functions to be used

for the geometry of the middle edge nodes when a cell on a boundary is locally divided.

Depending on this value linear, circular and cubic spline surfaces are considered for

interpolation.

The fourth byte indicates the special cells which are never allowed to collapse to

form larger cells. This is useful for locations where special features are known to be

stationed at all times.

The fifth byte is used to indicate the spatial level of the cells. As pointed out earlier

the initial coarse cells are at level 0, the children cells of these cells are at level 1, and so

on. Note that the maximum possible level of any cell for this approach can be atmost

15; however this never occurs since the maximum allowable spatial level of the cells,

MALVG2, is assigned a value of 6 through a PARAMETER statement. The current maximum

level of cells for a particular run is often less than MALVG2 and is denoted by NALVG2. If

a given cell LC is sub-divided into four cells with cell numbers IC, IC+l. IC+2, IC+3

then the level pointer can be determined and a possible check for avoiding division can

be evaluated by the following sample code:

K5LC AND ( KAUXG2(LC), X'OOOFOOOO' ) 5th byte of LC

LEVLC ISHFT ( K5LC, -16) 1 Level of LC

LEVIC LEVLC + 1 I Level of IC

IF (LEVIC .GT. NALVG2) RETURN i Abort division process

K5IC = KSLC + 2**16 1 5th byte of IC

DO J O 3

KAUXG2(IC+J) OR ( KAUXG2(IC+J), K5IC )

ENDDO

The level pointer calculation will be simply represented by the function call LEVEL (IC)
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for cell IC in the subsequent. The level pointer is also used in enforcing other rules for

both grid division and fusion and will be discussed further as the need arises. The

remaining three bytes are currently not utilized in the STAR code. The description

of spatial adaptation procedure can now be explained in terms of the spatial data-

structure.

C.2 Temporal Data Structure

The cell-array CELLTI(1:MCELG2) defines the time-step for each undivided cell in

the domain. Thus for a cell index IC, between 1 and NCELA2, the cell-time-step for

cell number ICELA2(IC) is CELLTI(ICELA2(IC)). A separate array for cell-time-steps

is needed to avoid repeating this calculation during various steps within a time-stride.

Note that for steady state applications this array may not be required, since the time-

step for each cell can be computed at the same time when it is being integrated and the

local value (rather than global minimum) may be used.

Since the cells with the same time-step are integrated together a link-list defining the

cells with iso-temporal level is needed. The maximum allowable temporal level, defined

by a PARAMETER statement, is denoted by MMAXTI, whereas the user-supplied maximum

level for a specific run is denoted by NGIVTI. The actual maximum level, NMAXTI, may

be less than or equal to the given value and may change its value from one time-stride to

next. As an example consider that a programmer has set the value MMAXTI=6 for all the

program declarations and a user wants to only use four levels of temporal embedding to

avoid temporal level stiffness for a nearly frozen flow calculation, so he sets NGIVTI=3

in the input data file. If during the start of the computations he does not want to use

pre-embedding and the cells have nearly the same volumes then the difference between

At,,, and At,,, will be very small and he would get the result NMAXTI=O. However, at

a later time when he does just one level of spatial adaptation he would get NMAXTI=1.

The link-list for cells with iso-temporal level is defined by the one-dimensional array

ICELTI (1 :MCELG2). The cells with same temporal levels form contiguous indices of this
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array. Thus the first cell at level 0 is given by ICELTI(1), the second cell at level 0 is

given by ICELTI(2), and so on. The last cell index at level 0 is indicated by an array

value ILVLTI (2,0) and so the last cell at level 0 is given by ICELTI (ILVLTI (2, 0)). The

index for first cell at level 1 ILVLTI (1,1) is one more than of the last cell at level O0. The

general form of the level index pointer is ILVLTI(1:2,0: MMAXTI). Thus the indices for

first and last cells at temporal level LNT are respectively given by ILVLTI(1,LNT) and

ILVLTI (2 ,LNT). The assignment of the temporal levels and the creation of the link-list

array is detailed in subroutine E2TIMU. The cells within a certain group of levels can be

stored in any manner.

As an example consider one integration pass of cells at temporal level LNT as in the

following sample code:

DO JCELL ILVLTI(1,LNT), ILVLTI(2,LNT)

C Find the cell to be integrated

ICELL = ICELTI(JCELL)

C Set up node pointers for this cell

KSW = ICELG2( 2,ICELL)

C Perform flux balance for this cell

ENDDO

The integration procedure for the code is listed in routine E2SOLU and the determination

of the integration sequences can be found in the routine TWODOU.
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C.3 Chemistry Data Structure

The data structure for chemistry holds information pertaining to the number of

species (NSPECH/MSPECH) and the number of reactions (NREACH/MREACH). Reaction-

arrays like PREFCH(1:MREACH), EXPFCH(1:MREACH), ENEFCH(1:MREACH) contain pre-

exponential factor, exponent of temperature and the energy term, respectively, for each

forward direction of a reaction. The reaction-array NSRKCH(1:MREACH) contains total

number of species in any reaction, this is helpful in avoiding the species with zero sto-

ichiometric coefficients in certain manipulations (see the example below). The species-

arrays hold the following typical information:

ATWTCH(I:MSPECH)

FMHTCH(1:MSPECH)

SPCPCH(I:MSPECH)

SPBSCH(I:MSPECH)

YSPECH(I:MSPECH)

YMAXCH(1:MSPECH)

: molecular mass of each species

: heat of formation of a species

: first constant a, in constant pressure specific heat

: second constant b in constant pressure specific heat

: free stream or reference mass fractions

: maximum possible mass fractions

In addition to these, there are arrays interconnecting various species among reac-

tions; specific examples being:

IALPCH(IS,IR)

IBETCH(IS,IR)

IALOCH(IS,IR)

IBETCH(IS,IR)

ITABCH(ISP,IR)

: stoichiometric coefficients of species IS on the left side of reaction IR

: stoichiometric coefficients of species IS on the right side of reaction

IR

: exponent of species IS concentration in the forward rate of reaction

IR

: exponent of species IS concentration in the backward rate of reaction

IR

: table of species numbers, between 1 and NSRKCH(IR), involved in

reaction IR

The allocation of the table od species numbers deserves attention. Consider the

297



example of Rogers and Chinitz model, the reactions are numbered as

H2 + 02

H2 + 20H

20H

2H20

IR= 1

IR= 2

There are five species and these are numbered as 02,OH, H2, H20, N2 for IS between

1 and 5 respectively. Thus we note that

NSRKCH(I) NSRKCH(2) = 3

ITABCH(1,IR) 3

and for the first reaction ITABCH(2,IR) 1

ITABCH(3,IR) 2
the second reaction. This avoids the usage of

Thus the source term for a species IS at a node

following sample code:

for H2

for 02 Similar allocation holds for

for OH
IF-THEN clauses for the inert species.

INODE can be easily determined by the

DETERMINE TEMPERATURE AT THE GIVEN NODE

T TEMPG2(INODE)

C

COMPUTE THE CONTRIBUTION WREACT TO THE SOURCE TERMS FROM ALL

THE REACTIONS

DO IR = 1, NREACH

AKFR EXP ( PREFCH(IR) + EXPFCH(IR)*LOG(T) - ENEFCH(IR)/T )

AKBR EXP ( PREBCH(IR) + EXPBCH(IR)*LOG(T) - ENEBCH(IR)/T )

PRODF 1.0

PRODB - 1.0

DO IS - 1, NSRKCH(IR)

ISP - ITABCH(IS ,IR)

PRODF = PRODF*DPENG2(4+ISP,INODE)/AMWTCH(ISP)**IALOCH(ISP,IR)
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PRODB = PRODB*DPENG2(4+ISP,INODE)/AMWTCH(ISP)**IBTOCH(ISP,IR)

'ENDDO

WREACT(IR) AKFR*PRODF - AKBR*PRODB

ENDDO

C

C COMPUTE THE SOURCE TERMS FOR ALL RELEVANT SPECIES

C

DO JS - 5, NEQNFL

IS - JS - 4

SUMWT - 0.

DO IR - 1, NREACH

SUMWT - SUMWT + (IALPCH(IS,IR)-IBETCH(IS,IR))*WREACT(IR)

ENDDO

SOURCE(JS) AMWTCH(IS)*SUMWT

ENDDO

C.4 Grid Division

The cells to be divided are stored in the link-lists MRKDA2. Before a particular cell

LC can be divided a number of other conflict rules are examined, and if any hold the

division procedure for this particular cell is not carried out. The simplest of these rules

examine if there is room in the data base for additional pointers which the newly created

cells would demand. This involves

* Check for overflow in node-arrays (NNODG2+5. LE. MNODG2)

* Check for overflow in cell-arrays (NCELG2+4. LE. MCELG2)

* Check for overflow in boundary pointers (NBNDG2+2. LE. MBNDG2)

Next the spatial level of the cell LC to be divided is examined by
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Figure C.4: Nodes and cells bordering cell LC.

LEVLC LEVEL (LC)

and if this level is greater than or equal to a user-specified maximum level, the division

process is not carried out. The nodes corresponding to the cell LC are determined by the

cell-to-node array and once known the node-to-cell array is used to determine the cells

neighboring LC. The situation is depicted in Figure (C.4); the node and cell numbers

are signified to begin with the letters K and L respectively, and the assignments indicate

compass point directions. The nodes marked by open circles may not exist, in which

case the corresponding neighboring cells in the dashed boxes do not exist, and the cell

numbers then correspond to the coarser level. The levels of cells LCSW, LHSW, LCSE,

LVSE, LCNE, LHNE, LCNW, LVNW are evaluated and division process is aborted if the

difference of any spatial level and that of LC is less than 0 or greater than 1. For the

level pointer rule consider the three possibilities for cells LHSW and LC as indicated in

Figure (C.5). The division is not allowed to occur in the last case. The integer LEVDIF

indicates the difference between the two cell levels, i.e.,
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LEVDIF - LEVEL(LHSW) - LEVEL(LC)

LC

LHSW

(a)

LEVDIF 0

KS O

(b)

LEVDIF +1

KS > O

(c)

LEVDIF =-1

KS = 0

Figure C.5: Three possible situations for spatial level differences.

After all preliminary tests are performed, the cell LC is ready to be divided. First

a node is created at its centroid with dependent variables equal to the average values

at corner nodes. Next the nodes KS, KE, KN, KW at the face midpoints are created if

such nodes do not already exist and new nodal values for the node-arrays are assigned

as the average values of the corresponding corner nodes. The node-to-cell arrays are

adjusted appropriately to account for additional nodes. As an example consider the

following sample code that assigns values at the southern node:

C

C Does southern node already exist; if not create it

C

IF (KS .EQ. O) THEN

C

C Increase total number of nodes by 1

NNODG2 - NNODG2 + 
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Assign last node to southern node

-KS - NNODG2

Adjust node-arrays

GEOMG2(1,KS) 0.5*(GEOMG2(1,KSW)+GEOMG2(1,KSE))

See if the southern edge is a boundary

IF (LHSW .NE. 0

NEIBG2(1 ,KS)

NEIBG2(2,KS)

.AND. LHSE .NE. O) THEN

= LHSW

= LHSE

ELSE

NEIBG2(1 ,KS)

NEIBG2(2,KS)

ENDIF

= 0

o

C

ENDIF

Only one example of a node-array has been shown here; the conditional IF-THEN struc-

ture is needed for southern external boundary and internal boundaries due to embedded

solid objects. Next the cell-to-node array pointers are created for new nodes, i.e.,

ICELG2(J,LC) - KC, KS, KE, KN, KW for j = 1,3,5,7,9

Four new fine cells are created as

LFSW

LFSE

LFNE

LFNW

NCELG2

= NCELG2

a LFSW

= LFSE

a LFNE

= NCELG2

+1

+1

+ 1

+1

+4
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The cell numbers for the subcells of a given cell are always related in the same manner,

i.e., the south-west cell has the least cell number, south-east cell number is one more

than this, and so on. These relative differences remain the same even when the actual

cell numbers change after other grid alterations. Next the cell-to-node pointers are

initialized for the new subcells. For example, the non-zero pointers for LFSW are

ICELG2(j,LFSW) KSW, KS, KC, KW, LC for j = 2.4,6,8,10

The auxiliary pointer for this cell is initialized as

KAUXG2(LFSW) K5LFSW + 48

where K5LFSW is the fifth byte of the cell LC with a unit value incremented to it, i.e.,

K5LFSW AND (KAUXG2(LC), X'OOOFOOOO) + 16**4

to indicate that the spatial level of the new cells is one more than that of the parent cell.

The integer 48 increments the second byte of the auxiliary pointer by 3 indicating that

the newly created cells can not be collapsed for three more spatial adaptation cycles.

Each new spatial adaptation cycle after the current one will reduce the number in the

second byte by unit (decimal number 16) until this byte becomes zero. The cell-to-node

pointers of the neighboring cells are adjusted to account for newly created nodes; for

example for the southern node

IF (LHSW.NE.O .AND. LHSW.EQ.LHSE) ICELG2 (7,LHSW) = KS

The node-to-cell pointers of all the remaining newly created nodes are then adjusted.

For example for center and south nodes

NEIBG2(j,KC) a LFSW, LFSE, LFNE, LFNW for j 1,2,3,4

NEIBG2(3,KSW) LFSW
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NEIBG2(J,KS ) LFSE, LFSW

NEIBG2(4,KSE) LFSE

for j 3,4

If LC is along a boundary then the boundary pointers must be adjusted. The cell is

aligned with a boundary surface if the pointer

KB - AND (KAUXG2(LC),X'OOOOOOOF')

is non-zero. For example if KB is 1 then the cell is aligned with a southern boundary.

Next the boundary pointers IB1 and IB2, corresponding to the corner boundary nodes

of LC, are determined by scanning the whole boundary pointer array for which the

following statements hold

IBNDG2(3,IB1) - LC

IBNDG2(2,IB2) LC

An additional corner boundary point IB3 is required if the cell LC is aligned with two

boundary surfaces simultaneously. If the parent cell is deciphered to be on a single

southern boundary, for example, the boundary pointers are adjusted as

C

C DIVIDED CELL WAS ALONG SOUTHERN EDGE (KB 1)

C

C

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

IBNDG2(2,IB2)

- NBNDG2 + 1

= KS

= LFSW

- LFSE

=3

- IBNDG2(5,IB1)

= LFSE

! Increase boundary pointers by 1

i Node for new boundary pointer

I First cell for this pointer

I Second cell for this pointer

i Surface orientation

I B.C. type

I First cell adjacent to IB2
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! Second cell adjacent to IB1

C

C Correct first byte of boundary pointers for appropriate fine cells

C

KAUXG2(LFSW) = OR (KAUXG2(LFSW),X'OOOOOOO1')

KAUXG2(LFSE) = OR (KAUXG2(LFSE),X'000000O1')

The boundary pointers also are examined to see if special interpolation functions are

needed to define the geometry at the middle edge node that conforms to a special solid

boundary surface. For example, a quadratic form may be used for a circular arc bump

and a cubic spline for other surfaces. Further details on the division process may be

found in the subroutine G2DIVO that appears in Appendix D.

C.5 Grid Collapse

The cells to be fused are stored in the link-lists MRKCA2. For a given cell number

which is pointed to by this link-list, other cells in the list are examined to see if three

additional cells with the same non-zero supercells have been flagged for fusion. The

merger occurs only when all four subcells of a previously divided cell are so tagged to

be fused. Once located, the cells are arranged according to increasing cell numbers so

that LFSW, LFSE, LFNE, LFNW can be determined. Figure (C.4) contains the notation

of cells and nodes. The fine cells in the MRKCA2 list are contiguous in the sense that

LFNE = LFSE + 1, etc., and that the supercell LC is given by

LC = ICELG2(10,LFSW)

In order to avoid spatial level stiffness, the levels of those cells neighboring LC are

examined, and if the difference between neighboring cell levels and that for LC is either

less than 0 or greater than 1, the fusion process is aborted. Actually only corner cells

LCSW, LCSE, LCNE, LCNW need be evaluated in this way, edge neighbor cells can be
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examined to see if middle fine cells are divided. For example, the southern edge cells

satisfy the spatial level restriction if the following conditions are not met

IF (ICELG2(3,LFSW)

IF (ICELG2(3,LFSE)

.NE. O) RETURN

.NE. O) RETURN

If the supercell LC is permanently marked to reside in a pre-determined region of spatial

resolution, then the collapse process is aborted. This is accomplished by

IF ( AND(KAUXG2(LC), X'OOOOFOOO') .NE. 0 ) RETURN

After all preliminary tests are performed, the cells are ready to be fused. First the

center node of the cell LC is flagged for removal. In the collapse procedure only the cell

numbers are altered, while the node numbers (even those to be deleted) are retained

unaltered. The flagged nodes are removed simultaneously once the fusion process for all

cells in the link-list is completed. The side nodes of LC are flagged in a similar manner

if these are no longer needed by the neighboring cells. As an example consider the

possibility of flagging node KS

C

C Mark southern node for deletion if need be

C

IF (LHSW .EQ. LHSE) THEN

C

C First examine "interior" node

C

DPENG2(1 ,KS)

KSS

KS

LS

- -99.

KS

= 0

= LHSW

i Flag this node

I Save node value

I Delete node locally in routine

I Southern cell is a single cell

C
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ELSE IF (LHSW .EQ. 0 .OR. LHSE .EQ. O) THEN

C

Now examine node on internal or external boundary

DPENG2(1,KS) = -99.

KSS

KS

LS

! Flag this node

= KS ! Save node value

= 0 ! Delete node locally in routine

= 0 ! Southern cell non-existent

ELSE

C

Southern cells are different and so node KS is needed

C

LS = ICELG2(10,LHSW) Southern larger cell

C

ENDIF

JN

JW1

JW

JW2

JSW JS1 JS JS2

JNE

JE2

JE

JE1

JSE

Figure C.6: Pointers associated with the last four cells in the domain.
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Since the cell fusion procedure would otherwise create gaps in cell numbers for the

fine cells in the cell-arrays, such cells are replaced by the last four cell numbers in the

domain. These cells are given by

NL4 NCELG2 ! Interchange LFNW with NL4

NL3 NL4 - 1 ! Interchange LFNE with NL3

NL2 = NL3 - 1 1 Interchange LFSE with NL2

NL1 NL2 - 1 1 Interchange LFSW with NL1

The pointers of these four cells are indicated in Figure (C.6); the situation is complicated

because one or more of the last four cells may be locally divided. The nodes are marked

by the labels with first letter J whereas the cells are indicated by the letter N. The nodes

marked by solid circles always exist, whereas the nodes marked by diamonds or boxes

may or may not exist. Note that in particular if NL1 is undivided then N1SW, NSE,

N1NE, N1NW have the same cell number as NL1; but the corresponding edge nodes of

this cell may still exist since there is a possibility of division of a neighboring cell. The

cell-to-node pointers of the interchanged cells are adjusted according to the following

sample code:

DO JP 0, 3

DO IP 1, 10 ! Update nodes & supercell

ICELG2(IP,LFSW+JP) = ICELG2(IP,NLI+JP)

ENDDO

KAUXG2(LFSW+JP) KAUXG2(NLI+JP) Update aux. pointers

ENDDO

Other cell-arrays are adjusted similarly. If any of the last four cells is divided, some JM

nodes marked by diamonds will be non-zero and their pointers will require adjustment.

For example consider the case when NL1 may be divided

JM1 O I Initialize middle edge nodes
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JM4 - 0

IF'(ICELG2(1,NL1) .NE. O) THEN

JM4 ICELG2(7,NL1)

JM1 ICELG2(5,NL1)

ENDIF

IF (JM1 .NE. O) THEN

IF (NEIBG2(1,JM1) .EQ. NL1) NEIBG2(i,JM1) = LFSW

IF (NEIBG2(4,JM1) .EQ. NL1) NEIBG2(4,JM1) = LFSW

IF (NEIBG2(2,JM1) .EQ. NL2) NEIBG2(2,JM1) LFSE

IF (NEIBG2(3,JM1) .EQ. NL2) NEIBG2(3,JM1) = LFSE

ENDIF

The node-to-cell pointers of the interchanged cells are adjusted as

IF (NEIBG2(3,JSW) .EQ. NL1) NEIBG2(3,JSW) = LFSW

IF (NEIBG2(4,JS ) .EQ. NL1) NEIBG2(4,JS ) = LFSW

IF (NEIBG2(1,JC ) .EQ. NL1) NEIBG2(1,JC ) = LFSW

IF (NEIBG2(2,JW ) .EQ. NL1) NEIBG2(2,JW ) LFSW

C

C Update the other non-zero middle edges

C

IF (JS1 .NE. O) THEN

IF (NEIBG2(3,JS1) .EQ. NL1) NEIBG2(3,JS1) = LFSW

IF (NEIBG2(4,JSI) .EQ. NL1) NEIBG2(4,JS1) = LFSW

ENDIF
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If any of the last four cells is divided, then it is the supercell of some other cells NSONJ

and its supercell will have to be updated. This can be accomplished by

IF (ICELG2(1,NL1) .NE. 0 .OR. ICELG2(1,NL2) .NE. 0 .OR.

1 ICELG2(1,NL3) .NE. 0 .OR. ICELG2(1,NL4) .NE. O) THEN

DO NSONJ = 1, NCELG2

ISUP - ICELG2(10,NSONJ)

IF (ISUP .GE. NL1) THEN

IF (ISUP .EQ. NL1) ICELG2(10,NSONJ) LFSW

IF (ISUP .EQ. NL2) ICELG2(10,NSONJ) = LFSE

IF (ISUP .EQ. NL3) ICELG2(10,NSONJ) LFNE

IF (ISUP .EQ. NL4) ICELG2(10,NSONJ) LFNW

ENDIF

ENDDO

ENDIF

The boundary pointers which point to the interchanged cells have to be adjusted, for

example

IF (AND(KAUXG2(NL1),X'O000000F') .NE. 0 .OR.

1 AND(KAUXG2(NL2),X'OOOOOOOF') .NE. 0 .OR.

2 AND(KAUXG2(NL3),X'OOOOOOOF') .NE. 0 .OR.

3 AND(KAUXG2(NL4),X'OOOOOOOF') .NE. 0 ) THEN

DO IP - 2, 3

DO IB 1, NBNDG2

IF (IBNDG2(IP,IB) .GE. NL1)

1 IBNDG2(IP,IB) LFSW + IBNDG2(IP,IB) - NL1

ENDDO

ENDDO

ENDIF

The node-to-cell pointers of the supercell nodes are adjusted as
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NEIBG2(J,KC) 0

NEIBG2(3.KSW) LCELL

NEIBG2(4,KSE) LCELL

for j = 1,2,3,4

NEIBG2(1,KNE) LCELL

NEIBG2(2,KNW) = LCELL

C

IF (KS .NE. O) THEN

NEIBG2(3,KS) - LCELL

NEIBG2(4.KS) = LCELL

ELSE

NEIBG2(j,KSS) 0 for j = 1,2,3,4

ENDIF

The supercell pointers must be adjusted and the node pointers of the larger neighbor

cells must be adjusted

NCELG2 NCELG2 - 4 i Adjust total number of cells

ICELG2(j,LCELL) - O, KS, KE, KN, KW for j = 1,3,5,7,9

C

Reset edge node pointers of all neighboring cells

IF (LS .NE. O) ICELG2(7,LS) = KS

IF (LE .NE. O) ICELG2(9,LE) = KE

IF (LN .NE. O) ICELG2(3,LN) = KN

IF (LW .NE. O) ICELG2(5,LW) = KW

If LC happens to be on a boundary then the boundary pointers IB1, IB2, IB3

corresponding to the surface nodes are determined and the pointers are adjusted appro-

priately. For example if LC is aligned with the southern boundary then these boundary

pointers are determined and adjusted as

IB1 - 0 ! Initialization
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IB2 - 0

IB3 0

DO IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ. KSW) IB1 IB

IF (IBNDG2(1.IB) .EQ. KSS) IB2 IB

IF (IBNDG2(1,IB) .EQ. KSE) IB3 IB

ENDDO

IBNDG2(1,IB2) -9 1 Mark for delete

IBNDG2(3.IB1) = LCELL Reassign pointers

IBNDG2(2,IB3) LCELL

This completes the grid fusion or collapse process. Reference can be made to subroutine

G2CLPO in Appendix D for additional details. Flagged nodes are simply removed from

the node-array tables and the pointers are realigned by generating new link-lists after

each spatial adaptation cycle. This procedure is carried out in subroutine G2NODE. All

of the pertinent details were shown here for both the division and collapse of cells to in

order show the complexity of the logic for such procedures.

C.6 Extension of Spatially Resolved Region

As mentioned earlier the cells to be divided are stored in the array MRKDA2(IC),

where IC varies from 1 to NCELD which indicates the total number of cells to be divided

in a particular adaptation cycle. The width of the buffer zone is denoted by NXTDA2.

Suppose a typical cell, as shown in Figure (C.7), in the detected cluster is denoted by

LC, which is pointed by IC; the neighbor cells are evaluated by the node-to-cell function

for the nodes of LC. If any edge of LC is divided then the corresponding edge cell LS, LE,

LN, or LW is already divided, and its subcells are at a higher spatial level than LC. Hence

in this case it is not necessary to extend through that edge. For notational purposes these

edge cells are shown to be at the same spatial level as the cell LC. Consider, for example,

that the southern node exists (KS > O) then we set the extension pointer KEP(5) of
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NORTH

I

Figure C.7: Extension pointers associated with a given cell in MRKDA2 list.

this cell as zero indicating no extension through the southern edge. Otherwise, if the

southern node does not exist KS = O, then this extension pointer is set as

KEP(5) - LS NEIBG2(2,KSW)

Note that the non-zero extension pointers are set equal to corresponding cells values.

Similarly, the levels of the corner cells are examined and if the level of any of the corner

cells is higher than that of LC then that corner extension pointer is set equal to zero.

For example, for the south-west corner, the extension pointer is adjusted according as

IF ( LEVEL(LSW) .GT. LEVEL(LC) ) THEN

KEP(1) 0

ELSE

KEP(1) LSW = NEIBG2(1,KSW)

ENDIF

If at this point all the eight extension pointers are zeros, then there is no need to

perform an extension for this particular cell and attention can be focused to examine
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the next member of the detected cluster. However, if any pointer is non-zero then the

corresponding cell must be checked for its presence in the MRKDA2 list, and if so, its

pointer is set equal to zero. For example, if in the previous calculation it is observed

that

KEP(6) - LE > 0

then examine all of the detected cluster 1

MRKDA2(JC), JC 1, NCELD

and if for some JC

MRKDA2(JC) LE =-=> KEP(6) = 0

If by now all the extension cell pointers are zero then proceed to examine the next cell

in the detected cluster; otherwise collect all the non-zero extension pointers and store

them in

MRKDA2(NCELD+IEXT) for IEXT = 1, NEXTD

where NEXTD indicates the total number of cells in the current layer of the buffer zone.

The extended cells collected so far form the first layer of the buffer zone and sub-

sequently only the cells in this layer must be examined for further extension if NXTDA2

exceeds unity. Furthermore the edges or corners of such cells should be appropriately

painted to indicate that previous calculations of the extension procedure has already

checked these edges and corners. For example, if KEP (5) LS>O in the current evaluation

then the northeast and northwest corners as well as the northern edge must be painted

'Actually the search must take into account the newly added cells from the buffer zone in the MRKDA2

array, i.e., use JC1 , NCELD+NEXTD for the search operation.
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Table C.1: Painting scheme for extension pointers.

since the calculation on LC has already examined its southern edge. The painting scheme

for corner cells is shown by the first four rows in Table (C.1). The edge cell pointers are

obtained by binary addition of the corresponding corner paints. The integer painting

indicators PIND(1 :MCELG2) are stored along with the boundary cells in the first layer at

the interface of buffer and detected clusters. Note that for non-zero values of KEP(K),

the painting indicators are given by

PIND (KEP(K)) = 2**(K-1)

PIND (KEP(K)) 3*2**(K-1)

PIND (KEP(K)) 9

for

for

for

K=1,2,3,4

K=5,6,7

K=8

If NXTDA2 is greater than unity, the cells in the first buffer layer are examined for
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Cell Indicator Binary Form Comment

LSW 1 0001 North-east corner painted

LSE 2 0010 North-west corner painted

LNE 4 0100 South-west corner painted

LNW 8 1000 South-east corner painted

LS 3 0011 Northern edge painted

LE 6 0110 Western edge painted

LN 12 1100 Southern edge painted

LW 9 1001 Eastern edge painted



possible extension. Consider a typical cell LC, pointed by MRKDA2(IC) for IC between

NCELD+1 and NCELD+NEXTD. The neighbor cells of LC are again examined and the exten-

sion pointers of these cells are set according as

1. If the edge node (KS, KE, KN, or KW) exists, set the corresponding KEP pointer

equal to zero.

2. If the level of the corner cell (LSW, LSE, LNE, or LNW) is more than that of LC,

set the corresponding KEP pointer equal to zero.

3. If the non-zero extension pointers exist in the MRKDA2 list then set them equal to

zero. If all extension pointers are zero proceed to examine next cell in list.

4. If an edge or corner of LC is painted then set the KEP pointer of the corresponding

cell equal to zero. This is explained further in the following. If all extension

pointers are zero proceed to examine next cell in list.

5. Add all the non-zero extension pointers to the MRKDA2 list in positions

NCELD+NEXTD+JX where JX varies from 1 to JEXTD.

6. Paint the appropriate edges and corners of the non-zero extension pointers in the

current layer of buffer cells.

7. Proceed to examine the next IC in the loop.

The paints of the edges and corners of the cell under consideration is taken into

account by the following sample code:

LC = MRKDA2(IC) ! Find the actual cell in the loop

IPAINT - PIND(IC) i Find paint indicator

IF (IAND(IPAINT,X'00000001') .NE. O) THEN i Northeast

KEP(6) = 0 i No extension through east

KEP(3) - 0 i No extension through northeast

KEP(7) 0 ! No extension through north

ENDIF
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IF (IAND(IPAINT,X'00000002') .NE. 0) THEN ! Northwest

KEP(7) 0 1 No extension through north

KEP(4) = 0 1 No extension through northwest

KEP(8) - 0 i No extension through west

ENDIF

After all cells are examined in the current layer of the buffer zone, the total number of

cells in the clusters is adjusted as

NCELLD - NCELLD + NEXTD Total number of cells to be divided

NEXTD = JEXTD i Number of cells in previous layer

JEXTD = 0 i Number of cells in next layer

In this way, cells in the previous buffer layer are regarded as cells in a resolved cluster,

and the current number of extended cells form the the next layer of the buffer zone

whose neighbor cells will be next examined.

Once all of the extensions are completed, the cells in the MRKCA2 list are examined

and if any cell also appears in the overall buffer zone then it is removed from the fusion

list. Subroutine A2EXTD in Appendix D contains additional details.
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Appendix D

Program Listing

This appendix contains a listing of the STAR code that is based upon the spatio-

temporal adaptive algorithm presented in this thesis. It also contains the listing of

the block grid generator GNBLOC, some initial condition specification routines and

GRAFIC interface routines. In addition, the appendix includes sample input files,

synopsis of computer names, etc. The whole appendix appears in a separate volume

that may be obtained by writing to:

Professor Judson R. Baron

Department of Aeronautics and Astronautics

Room 33-217, M.I.T.

Cambridge, Massachusetts 02139
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Appendix D

Computer Code

This appendix is the source of information for executing the STAR code that is

based upon the spatio-temporal adaptive algorithm presented in the first volume. It

also contains the listing of the block grid generator GNBLOC, some initial condition

and initial coarse grid generators and GRAFIC interface routines. Only the listings of

the programs for two spatial dimensions are provided here. The subroutines from the

graphics package GRAFIC are also not included. In addition sample input files and

synopsis of computer names for each module is provided.

The initial coarse grid and initial conditions on this grid are generated by run-

ning separate programs. These programs generate the files INPUTG.DAT for grid and

INPUTD.DAT for initial dependent variables at each computational node. The chemistry

deck INPUTC. DAT includes information such as stoichiometric coefficients, specific heats,

etc. If special procedures are needed in addition to the normal integration process then

the deck INPUTS.DAT is needed that includes a lists of commands to be executed. An

example of special procedures is pre-embedding of an initial coarse grid. For a complete

list of special procedures the reader is referred to subroutine E2SCHO in Section D.3.

The file INPUTI. DAT contains a list of parameters for the current run of the STAR code.

Once all the input is read and all special procedures are performed the program

starts integrating on a cell by cell basis. The integration continues until a specified time-

station or for a fixed number of time-strides. For steady state calculations the integration

proceeds to a desired level of convergence. The program then writes the dump output

on the file JPNTWR.DAT that includes information on the whole data structure and most

common block variables. With this file the graphical output can be examined and
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plots generated. This file can also be used to restart the calculations at a later time

with a possibility of a different set of parameters in the subsequent simulation. These

parameters are also read from a new file INPUTI .DAT for the restart case. Figure (D.1)

shows the organisation of the overall computer program.

The appendix is divided into six sections. The first section lists the programs that

generate the coarse structured grids and initial conditions for simple geometries. These

include the programs to generate data for the moving shock over a circular arc bump

and inside a bent duct. The initial condition generators include programs for shock tube

and moving shock waves. The second section contains the listing for an interactive block

grid generator that can be used to generate meshes for more complicated geometries.

The third section pertains to the STAR code, whereas the next two sections list the

utility and GRAFIC interface routines. The last section contains two sample input files

for the STAR code.

D.1 Initial coarse grid and initial conditions

In order to keep the integration procedure independent of the geometry of the in-

dividual problems and the specific initial distribution of state vectors, the STAR code

requires the allocation of grid points and initial conditions through separate programs.

These programs generate the files INPUTG.DAT for grid and INPUTD.DAT for initial de-

pendent variables at each computational node in formats that STAR code understands.

The programs that generate these files can be a part of the same routine or could be

generated separately. For some problems initial condition generator is not needed ex-

plicitly since uniform inflow conditions are specified as a starting condition. The file

INPUTG .DAT writes the z and y coordinates at each computational node and the bound-

ary arrays at the boundary points. The file INPUTD .DAT writes all dependent variables

at the same computational nodes.

334



Figure D.1: Organization of the computer program.
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D.1.1 Initial conditions

The programs for three initial condition types are listed here. These are for condi-

tions across a contact surface of a shock tube, a moving shock wave involving a step

function for frozen or equilibrium flows, and a non-equilibrium moving shock.

Shock tube

The program MOCONC calculates the initial conditions across the contact surface for a

shock tube. The gas in the two sections is assumed to be a perfect gas or a Lighthill

gas. For the Lighthill gas the degree of dissociation in the two sections can be specified

arbitrarily for frozen flow, whereas for equilibrium flow these are calculated from an

algebraic expression.

PROGRAM MOCONC

C************* *************************** ***** ******** ****
C
C THIS PROGRAM GENERATES THE FROZEN OR EQUILIBRIUM CONDITIONS FOR
C A SHOCK TUBE WITH A CONTACT SURFACE. CONDITIONS AT THE INLET

C AND EXIT ARE ASSUMED TO BE KNOWN AND READ FROM FILE MOCONC.DAT.

C

C SUBROUTINES CALLED: EQUCAL UTILITY ROUTINE

C

INCONC - 61

JPRINT - 6
IOSHOC - 8

IOPIPE = 9
C
C OPEN THE APPROPRAITE UNITS
C

OPEN (UNIT - INCONC, FILE 'MOCONC.DAT',. STATUS = 'OLD')

OPEN (UNIT - IOSHOC, FILE MOCONC.OUT', STATUS = 'NEW')
OPEN (UNIT - IOPIPE, FILE 'MOCONC.IOT', STATUS = 'NEW')

C

C INPUT THE FOLLOWING QUANTITIES FROM FILE MOCONC.DAT

C
C ALPHAI INITIAL ALPHA AT INLET

C ALPHAE INITIAL ALPHA AT EXIT

C RHOI DENSITY AT INLET IN kg/m**3
C TEMPI TEMPERATURE AT INLET IN Kelvins

C RHOE DENSITY AT OUTLET IN kg/m**3
C TEMPE TEMPERATURE AT OUTLET IN Kelvins

C SHKMAC MACH NUMBER OF THE SHOCK
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C PHI REACTION PARAMETER (<o MEANS EQUILIBRIUM)

C IALP INLET/EXIT SELECTOR FOR REFERENCE QUANTITIES

C EXIT:O, INLET:1

C
READ (INCONC,*) ALPHAI

READ (INCONC.*) ALPHAE

READ (INCONC,*) RHOI

READ (INCONC,*) TEMPI

READ (INCONC,*) RHOE

READ (INCONC,*) TEMPE

READ (INCONC,*) SHKMAC

READ (INCONC,*) PHI

READ (INCONC,*) IALP
C
C WRITE DOWN THESE VALUES IN MOCONC.OUT FOR THE PURPOSE OF KEEPING

C A RECORD

C

WRITE(IOSHOC, 10) ALPHAI,ALPHAE,RHOI,TEMPI.RHOE,TEMPE,SHKMAC,PHI

10 FORMAT (' INITIAL ALPHA AT INLET =',G14.5/

1 ' INITIAL ALPHA AT EXIT =' G14.6/

1 ' RHO INLET =',G14.5/

1 ' TEMPERAURE INLET -',G14.5/

1 ' RHO OUTLET -',G14.5/

1 ' TEMPERAURE OUTLET '.,G14.5/

1 ' SHOCK MACH NUMBER -',G14.6/

1 ' PHI -- REACTION PARAMETER =',G14.5/)
C
C NOW COMPUTE THE DEPENDENT VARIABLES, VALUES FOR OXYGEN ARE ASSUMED

C HERE FOR THE LIGHTHILL MODEL

C
THETAD 59500.

RHOD - 150.E03

UGASFL - 8314.3

AMWTA - 16.0
RGAS O0.6*UGASFL/AMWTA

C
IF (PHI .GE. O.) GOTO 100

C COMPUTE THE EQUILIBRIUM VALUES AT THE INLET AND EXIT

CALL EQUCAL(TEMPI, THETAD,RHOI,RHOD,ETRAT, RHORAT,ALPHAI)

CALL EQUCAL(TEMPE,THETAD,RHOE,RHOD,ETRAT, RHORAT,ALPHAE)

100 PRESSI - RHOI*(1.+ALPHAI)*RGAS*TEMPI

PRESSE - RHOE*(1.+ALPHAE)*RGAS*TEMPE

IF (IALP .NE. O) THEN
C USE TEMPI AND RHOI AS INLET VALUES FOR REFERENCE CONDITIONS

RHORFL 3 RHOI
PRESFL PRESSI
ALPHAR ALPHAI

ELSE
C USE TEMPE AND RHOE AS EXIT VALUES FOR REFERENCE CONDITIONS

RHORFL - RHOE
PRESFL - PRESSE

ALPHAR - ALPHAE
ENDIF
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C
C COMPUTE THE NORMALIZED QUANTITIES

ONEPA = 1. + ALPHAR
C ONEPAl IS 1 + ALPHAR
C COMPUTE REFERENCE TEMPERATURE

TREFFL = PRESFL/(ONEPA1*RHORFL*RGAS)

C COMPUTE REFERENCE VELOCITY

UREFFL = SQRT(PRESFL/RHORFL)

RHOINL = RHOI
TINLET = TEMPI

PINLET = PRESSI
RHOEXT = RHOE
PEXIT = PRESSE

TEXIT = TEMPE

C

C NORMALIZE ALL VALUES
C

RHOI = RHOI/RHORFL

PRESSI = PRESSI/PRESFL

TEMPI = TEMPI/TREFFL

RHOE = RHOE/RHORFL

PRESSE = PRESSE/PRESFL

TEMPE = TEMPE/TREFFL
THETAD = THETAD/TREFFL

RHOD = RHOD/RHORFL
C
C WRITE DOWN THE NORMALIZED VALUES IN MOCONC.OUT FOR RECORD.

C

WRITE(IOSHOC,210) RHOE,PRESSE,TEMPE, RHOI.PRESSI,TEMPI,

1 RHORFL,PRESFL,TREFFL, RHOINL,PINLET,TINLET,

1 RHOEXT,PEXIT,TEXIT,ALPHAI,ALPHAE,RHOD,THETAD,

1 UREFFL,RGAS

210 FORMAT(' RHOE =',G14.5,5X,'PRESSE=',G14.5,5X,'TEMPE =',G14.5/

1 ' RHOI =',G14.5,5X,'PRESSI=',G14.5,5X,'TEMPI =',G14.5/

2 ' RHORFL=',G14.5,SX,'PRESFL=',G14.5,SX,'TREFFL=',G14.5/

3 ' RHOINL=',G14.5,SX,'PINLET=',G14.5,SX,'TEMPI =',G14.5/

3 ' RHOEXT=',G14.5,SX,'PEXIT =',G14.5,6X,'TEXIT =',G14.5/

4 ' ALPHAIALPHAI=',G4.5,5X,ALPHAE=',GI4.5,5X,'RHOD =',G14.5/

5 ' THETAD=',G14.5,SX,'UREFFL=',G14.5,SX,'RGAS =',G14.5/)
C
C WRITE DOWN THE VALUES IN MOCONC.IOT SO THAT THESE CAN BE READ LATER

C BY A GRID GENERATOR PROGRAM LIKE BEPIPE.FOR

WRITE(IOPIPEC220) ALPHAI

WRITE(IOPIPE,220) ALPHAE

WRITE(IOPIPE,220) ALPHAR

WRITE(IOPIPE, 220) RHOI

WRITE(IOPIPE,220) RHOE

WRITE(IOPIPE.220) PRESSI

WRITE(IOPIPE,220) PRESSE
WRITE(IOPIPE,220) TEMPI

WRITE(IOPIPE,220) TEMPE

WRITE(IOPIPE,220) TREFFL

WRITE(IOPIPE,220) RHORFL

WRITE(IOPIPE,220) SHKMAC

220 FORMAT (G14.5)
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EXAMPLE FILE

0.20
0.20
8.75939
3343.2
0.25983

3343.2
2.
0.01
0

: MOCONC.DAT
ALPHAI

ALPHAE

RHOI

TINLET

RHOE
TOUTLET

SHKMAC

PHI

IALP

END

Moving shock for frozen or equilibrium flow

The program MOSHOC calculates the initial conditions across a moving shock. The gas

in the two sections is assumed to be a perfect gas or a Lighthill gas. For the Lighthill

gas the degree of dissociation in the two sections can be specified arbitrarily for frozen

flow, whereas for equilibrium flow these are calculated from an algebraic expression.

PROGRAM MOSHOC

C

C THIS PROGRAM GENERATES THE FROZEN OR EUILIBRIUM CONDITIONS FOR

c A MOVING SHOCK. CONDITIONS AT THE INLET (BEHIND SHOCK) ARE

C ASSUMED TO BE KNOWN AND READ FROM FILE MOSHOC.DAT.

C
C SUBROUTINES CALLED: EQUCAL

C

UTILITY ROUTINE

INSHOC = 61

JPRINT = 6

IOSHOC = 8

IOPIPE 9
C
C VALUES FOR OXYGEN ARE ASSUMED HERE FOR THE LIGHTHILL MODEL

C

THETAD - 59500.
RHOD = 150.E03

UGASFL - 8314.3

AMWTA - 16.0

RGAS O0.6*UGASFL/AMWTA
C
C OPEN THE APPROPRAITE UNITS

C
OPEN (UNIT INSHOC, FILE = 'MOSHOC.DAT', STATUS = 'OLD')

OPEN (UNIT = IOSHOC, FILE = 'MOSHOC.OUT', STATUS = 'NEW')

339

C
C
C
C

C
C
C
C
C
C



OPEN (UNIT IOPIPE, FILE = 'MOSHOC.IOT', STATUS = 'NEW')

INPUT THE FOLLOWING QUANTITIES FROM FILE MOSHOC.DAT

INITIAL ALPHA AT INLET

INITIAL ALPHA AT EXIT

DENSITY AT INLET IN kg/m**3

TEMPERATURE AT INLET IN Kelvins

MACH NUMBER OF THE SHOCK

DENSITY RATIO (GUESS)

TEMPERATURE RATIO (GUESS)

REACTION PARAMETER (<0O MEANS EQUILIBRIUM)
WEIGHT FACTOR FOR EQUILIBRIUM ALPHA, NORMAL VALUE=O

AVERAGE VALUE=1, FOR VERY SLOW CONVERGENCE VALUE=10

OR INLET/EXIT SELECTOR FOR REFERENCE QUANTITIES FOR

THE FROZEN FLOW; EXIT:O, INLET:1

PARAMETER INDICATING THE TYPE OF GAS USED

0: LIGHTHILL 1: PERFECT

READ

READ

READ

READ
READ

READ

READ

READ
READ

READ

(INSHOC,*)

(INSHOC,*)

(INSHOC.*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

ALPHAI

ALPHAE

RHOI

TEMPI

SHKIAC

REBRI

TEBTI

PHI

IALP

IGAS
C
C WRITE DOWN THESE VALUES

C A RECORD

C

IN MOSHOC.OUT FOR THE PURPOSE OF KEEPING

WRITE(IOSHOC, 10) ALPHAI,ALPHAE,RHOI,TEMPI

10 FORMAT (' INITIAL ALPHA AT INLET
1 ' INITIAL ALPHA AT EXIT

1 ' RHO INLET

1 TEMPERAURE INLET
1 ' SHOCK MACH NUMBER

1 ' INITIAL RE/RI

1 ' INITIAL TE/TI
1 ' PHI -- REACTION PARAMETER

C
C NOW COMPUTE THE DEPENDENT VARIABLES
C

SHKMC2 SHKMAC**a
C

IF (IGAS .EQ. 1) THEN

C USE PERFECT GAS MODEL,
READ (INSHOC,*) AMWTA
READ (INSHOC,*) GAMMAI

RGAS = UGASFL/AMWTA
ALPHAI = 0.
ALPHAE = 0.
GOTO 105

ENDIF

,SHKMAC,REBRI.TEBTI,PHI

3= ,G4.5/

=',G14.5/

=',G14.6/

=',G14.5/

=',G14.5/
=',G14.5/

=',G14.5/

=',G14.5/)

CONCTANT GAMMA ON BOTH SIDES

340

ALPHAI

ALPHAE

RHOI

TEMPI

SHKMAC

REBRI

TEBTI

PHI

IALP

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

IGAS



C

IF (PHI .GE. 0.) GOTO 100

C COMPUTE THE EQUILIBRIUM VALUES ACROSS THE MOVING SHOCK

C EQUILIBRIUM VALUES AT INLET
CALL EQUCAL(TEMPITHETAD,RHO I,RHOD,ETRAT,RHORAT,ALPHAI)

PRESSI RHOI*(1.+ALPHAI)*RGAS*TEMPI
ALPIP4 - ALPHAI + 4.
ALPIP1 - ALPHAI + 1.

C COMPUTE THE DIMENSIONAL DENSITY AND TEMPERATURE AT EXIT

C ITERATIONS MAY BE NEEDED FOR THIS CASE

20 ALPEP4 - ALPHAE + 4.
ALPEPi - ALPHAE + 1.

DENOT - 1. + SHKMC2*ALPEP1*(1.-REBRI**2)/6.
ANUET - ALPIP4 + THETAD/TEMPI*(ALPHAI-ALPHAE)
TEBTI = ANUET/(ALPEP4*DENOT)
TEMPE - TEMPI*TEBTI

ANUER = ALPIPi/ALPEPI/TEBTI

DENOR - 1. + SHKMC2*ALPEP4*(1.-REBRI)/3.
REBRI = (ANUER/DENOR)
RHOE - RHOI*REBRI
ALPHAP - ALPHAE

C COMPUTE THE EQUILIBRIUM VALUES AT EXIT

CALL EQUCAL(TEMPE, THETAD,RHOE.RHOD, ETRAT,RHORAT, ALPHAE)

COMPA ABS(ALPHAE - ALPHAP)
ALPHAE (ALPHAE+lO.*ALPHAP)/11.
ALPHAE - (ALPHAE+IALP*ALPHAP)/(1.+IALP)

WRITE(6.*) ' ALPHAE ',.ALPHAE
WRITE(6,*) ' COMPA =',COMPA
WRITE(6,*) ' TEMPE =',TEMPE
WRITE(6,*) ' RHOE =',RHOE

READ(S,*) IG
IF (IG .EQ. 1) GOTO 20

C IF (COMPA .GT. 1.E-5) GOTO 20

PRESSE = RHOE*(1.+ALPHAE)*RGAS*TEMPE
GAMMAE = ALPEP4/3.

GAMMAI - ALPIP4/3.
SOUNDE = GAMMAE*PRESSE/RHOE
SOUNDE - SQRT (SOUNDE)

US = SHKMAC*SOUNDE
WI - REBRI*US
UCOMPI = US - WI

UE 0.

SOUNDI - GAMMAI*PRESSI/RHOI
SOUNDI - SQRT (SOUNDI)

GOTO 200
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100 GAMMAI (4. +ALPHAI)/3.

ALPHAE - ALPHAI

105 GM1 - GAMMAI - 1.

GP1 - GAMMAI + 1.

BIGGAM - GP1/GMl

PIBPE = (2.*GAMMAI*SHKMC2 - GM1)/GPl

RIBRE = (BIGGAM*PIBPE+1.)/(BIGGAM+PIBPE)

IF (IALP .NE. O) THEN

C USE TEMPI AND RHOI AS INLET VALUES FOR REFERENCE CONDITIONS

PRESSI - RHOI*(1.+ALPHAI)*RGAS*TEMPI

PRESSE = PRESSI/PIBPE
RHOE = RHOI/RIBRE

TEMPE = PRESSE/((1.+ALPHAI)*RHOE*RGAS)
ELSE

C USE TEMPE AND RHOE AS EXIT VALUES FOR REFERENCE CONDITIONS

TEMPE = TEMPI
RHOE = RHOI

RHOI = RHOE*RIBRE

PRESSE RHOE*(1.+ALPHAE)*RGAS*TEMPE

PRESSI = PRESSE*PIBPE

TEMPI = PRESSI/((1.+ALPHAI)*RHOI*RGAS)

ENDIF

C MACH NUMBER BEFORE THE SHOCK

AMBEFO = SQRT(TEMPE/TEMPI)*2.*(SHKMC2-1.)/(SHKMAC*GP1)

SOUNDI = GAMMAI*PRESSI/RHOI
SOUNDI = SQRT (SOUNDI)

UCOMPI = AMBEFO*SOUNDI

UE = 0.

C

C COMPUTE THE NORMALIZED QUANTITIES

200 CONTINUE

C BASE REFERENCE VALUES ON EXIT

RHORFL = RHOE
PRESFL = PRESSE

ALPHAR = ALPHAE

ONEPA = 1. + ALPHAR

C ONEPAl IS + ALPHAR
C COMPUTE THE REFERENCE TEMPERATURE

TREFFL - PRESFL/(ONEPA1*RHORFL*RGAS)
C COMPUTE THE REFERENCE VELOCITY

UREFFL SqRT(PRESFL/RHORFL)

RHOINL = RHOI
TINLET = TEMPI

PINLET = PRESSI
RHOEXT = RHOE
PEXIT = PRESSE

TEXIT = TEMPE
SOUNDI - GAMMAI*PRESSI/RHOI

SOUNDI = SQRT (SOUNDI)
C
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C NORMALIZE ALL VALUES

C 

RHOI - RHOI/RHORFL

PRESSI = PRESSI/PRESFL

TEMPI - TEMPI/TREFFL

RHOE = RHOE/RHORFL
PRESSE - PRESSE/PRESFL

TEMPE = TEMPE/TREFFL

THETAD - THETAD/TREFFL

RHOD = RHOD/RHORFL

UBEFOR - UCOMPI/UREFFL
AMBEFO = UCOMPI/SOUNDI

C

C WRITE DOWN THE NORMALIZED VALUES IN MOSHOC.OUT FOR RECORD.
C

WRITE(IOSHOC,210) RHOE,PRESSE,TEMPE, RHOI,PRESSI,TEMPI,

1 RHORFL,PRESFL,TREFFL, RHOINL,PINLET,TINLET,

1 RHOEXT,PEXIT,TEXIT,

2 GAMMAI,ALPHAI,UBEFOR,AMBEFO,RHOD,THETAD

210 FORMAT (' RHOE =',G14.5,X,'PRESSE=',G14.5,5X,'TEMPE =',G14.5/
I ' RHOI =',G14.6,6X,'PRESSI=',G14.5,6X,'TEMPI =',G14.5/

2 ' RHORFL=',G14.56,X,'PRESFL=',G14.5,5X,'TREFFL=',G14.5/
3 ' RHOINL-',G14.6,6X,'PINLET=',G14.5,6X,'TEMPI=',G14.5/
3 ' RHOEXT' ,G14.6,5X,'PEXIT =',G14.5,5X,'TEXIT=',G14.5/

4 ' GAMMAI=',G14.5,X,'ALPHAI=',G14.5,GX,'UBEFOR=',G14.5/
5 ' MBEFOR-',G14.5,6X,'RHOD =',G14.55,X,'THETAD=',G14.5/)

C

C WRITE DOWN THE VALUES IN MOSHOC.IOT SO THAT THESE CAN BE READ LATER

C BY A GRID GENERATOR PROGRAM LIKE BEPIPE.FOR
C

AGAS - IGAS

WRITE(IOPIPE,220) ALPHAI

WRITE(IOPIPE,220) ALPHAE

WRITE(IOPIPE,220) ALPHAR

WRITE(IOPIPE,220) RHOI

WRITE(IOPIPE,220) RHOE

WRITE(IOPIPE,220) UBEFOR

WRITE(IOPIPE.220) UE

WRITE(IOPIPE,220) PRESSI

WRITE(IOPIPE,220) PRESSE

WRITE(IOPIPE,220) TEMPI

WRITE(IOPIPE,220) TEMPE

WRITE(IOPIPE,220) TREFFL

WRITE(IOPIPE,220) RHORFL

WRITE(IOPIPE,220) SHKMAC

WRITE(IOPIPE, 220) AGAS

WRITE(IOPIPE,220) RGAS
WRITE(IOPIPE,220) GAMMAI

220 FORMAT (E15.8)

C EXAMPLE FILE : MOSHOC.DAT

C 0.20 ALPHAI

C 0.00 ALPHAE

C 4.8 RHOI

C 4600.0 TINLET

C 6. SHKMAC
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C 0.19
C 0.125
C 0.01

REBRI

TEBTI

PHI

END

Non-equilibrium moving shock

The program LHSHOC calculates the initial conditions across a moving Lighthill non-

equilibrium shock. The conditions in the quiescent gas are assumed known and the

conditions behind the shock are obtained by solving an O.D.E. for the degree of disso-

ciation (see Section 7.3.2).

PROGRAM LHSHOC

PARAMETER (MPOINT - 1000)

DIMENSION A$(MPOINT), P$(MPOINT), R$(MPOINT), T$(MPOINT),
1 U$(MPOINT), X$(MPOINT), IOPT$(1) , N(1)

2 ElTAX(6)
CHARACTER MTITLE*80 PLTITL*80 , E1TAX*12 , YESNO*1

DATA ETAX/ 'ALPHA ''., 'PRESSURE -', 'DENSITY ',

1 'TEMPERATURE-', 'VELOCITY -', '

C

C THIS PROGRAM GENERATES THE NON-EQUILIBRIUM CONDITIONS FOR A

C MOVING SHOCK. CONDITIONS AT THE INLET (BEHIND SHOCK) ARE
C ASSUMED TO BE KNOWN AND READ FROM FILE LHSHOC.DAT. THE VELOCITIES

C WI AND WE DENOTE THE VALUES FOR STANDING NORMAL SHOCK, WHEREAS UI
C AND UE DENOTE THE CORRESPONDING VALUES FOR A MOVING SHOCK.

C

C SUBROUTINES CALLED: EQUCAL

C GR_INIT

C GRLINE
C

UTILITY

GRAFIC

GRAFIC

ROUTINE

ROUTINE

ROUTINE

C

C INITIALIZATION
C

INSHOC - 51
JPRINT 6
IOSHOC = 8
MOSHOC 9

C
C VALUES FOR OXYGEN ARE ASSUMED HERE FOR THE LIGHTHILL MODEL

C

THETAD

RHOD

UGASFL

= 59600.
= 150.E03
= 8314.3
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AMWTA - 16.0
RGAS- = O.5*U(

HTFORM = RGAS*l

ETA = 0.
COMPM = 1.E-6
NLINE = 1

IOPT$(1) = 2
MTITLE = 'NON-I

INDGR = 21
AGAS - 2.

GASFL/AMWTA

THETAD

EQUILIBRIUM MOVING SHOCK'

OPEN THE APPROPRAITE UNITS

OPEN (UNIT

OPEN (UNIT

OPEN (UNIT

= INSHOC,

= IOSHOC,

= MOSHOC,

FILE =

FILE =

FILE =

'LHSHOC.DAT', STATUS = 'OLD')

'LHSHOC.OUT', STATUS = 'NEW')

'MOSHOC.IOT', STATUS = 'NEW')

C

C INPUT THE FOLLOWING QUANTITIES FROM FILE LHSHOC.DAT
C

ALPHAI

ALPHAE

RHOI

TEMPI

SHKMAC

REBRI

TEBTI

PHI

IALP

INITIAL ALPHA AT INLET

INITIAL ALPHA AT EXIT

DENSITY AT INLET IN kg/m**3

TEMPERATURE AT INLET IN Kelvins

MACH NUMBER OF THE SHOCK (BASED UPON STATION E)

DENSITY RATIO (GUESS)

TEMPERATURE RATIO (GUESS)

REACTION PARAMETER (<O MEANS EQUILIBRIUM)
WEIGHT FACTOR FOR EUILIBRIUM ALPHA, NORMAL VALUE=O

AVERAGE VALUE=1, FOR VERY SLOW CONVERGENCE VALUE=10
DISTANCE MEASURE FOR SHOCK LOCATION

MAXIMUM DISTANCE

MINIMUM DISTANCE

NUMBER OF POINTS ON THE EXIT SIDE (NONE IS NEEDED !)
NUMBER OF POINTS ON THE INLET SIDE

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC.*)

(INSHOC.*)

(INSHOC.*)

(INSHOC,*)

(INSHOC,*)
(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

(INSHOC,*)

ALPHAI

ALPHAE

RHOI

TEMPI

SHKMAC

REBRI

TEBTI

PHI

IALP

XSHOC
XMAX

XMIN

NPOS
NNEG

C COMPUTE THE STEP SIZES ON EITHER SIDES OF THE SHOCK LOCATION

XDPOS = (XMAX - XSHOC)/(NPOS - 1)

XDNEG = (XMIN - XSHOC)/(NNEG - 1)

NOW COMPUTE THE SQUARE OF MACH NUMBER
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C
C
C

C
C
C
C
C
C
C

C
C

C

C

C
C

C
C

XSHOC

XMAX

XMIN

NPOS

NNEG

READ

READ

READ

READ

READ

READ

READ

READ

READ
READ

READ

READ

READ

READ

C
C



SHKMC2 - SHKMAC**2

C 

C COMPUTE THE EQUILIBRIUM VALUES AT INLET

CALL EQUCAL(TEMPI ,THETAD ,RHOI,RHOD,ETRAT,RHORAT, ALPHAI)

PRESSI - RHOI*(1.+ALPHAI)*RGAS*TEMPI

ALPIP4 ALPHAI + 4.

ALPIPI = ALPHAI + 1.

C COMPUTE THE DIMENSIONAL DENSITY AND TEMPERATURE AT EXIT

C ITERATIONS MAY BE NEEDED FOR THIS CASE

10 ALPEP4 - ALPHAE + 4.
ALPEPI - ALPHAE + 1.

DENOT = 1. + SHKMC2*ALPEPI*(I.-REBRI**2)/6.

ANUET = ALPIP4 + THETAD/TEMPI*(ALPHAI-ALPHAE)
TEBTI - ANUET/(ALPEP4*DENOT)
TEMPE = TEMPI*TEBTI
ANUER - ALPIPi/ALPEPI/TEBTI

DENOR - 1. + SHKMC2*ALPEP4*(1.-REBRI)/3.

REBRI - (ANUER/DENOR)

RHOE = RHOI*REBRI

ALPHAP = ALPHAE

C COMPUTE THE EQUILIBRIUM VALUES AT EXIT

CALL EQUCAL(TEMPE,THETAD ,RHOE,RHOD,ETRAT, RHORAT,ALPHAE)

COMPA - ABS(ALPHAE - ALPHAP)

ALPHAE - (ALPHAE+10.*ALPHAP)/11.
ALPHAE - (ALPHAE+IALP*ALPHAP)/(1.+IALP)

IF (COMPA .GT. COMPM) GOTO 10

WRITE(6,*) ' ALPHAE -',ALPHAE

WRITE(6,*) ' COMPA ',COMPA

WRITE(6,*) ' TEMPE ='.TEMPE

WRITE(6,*) ' RHOE =',RHOE

READ(6,*) IG
IF (IG .EQ. 1) GOTO 10

PRESSE - RHOE*(I.+ALPHAE)*RGAS*TEMPE

GAMMAE - ALPEP4/3.

GAMMAI ALPIP4/3.
SOUNDE - GAMMAE*PRESSE/RHOE
SOUNDE SQRT (SOUNDE)

US = SHKMAC*SOUNDE
WI = REBRI*US
WE = US
UCOMPI - US - WI

UE = 0.
SOUNDI - GAMMAI*PRESSI/RHOI
SOUNDI - SQRT (SOUNDI)

C BASE THE REFERENCE VALUES ON EXIT STATION

C ONEPAl IS 1 + ALPHAR
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RHORFL = RHOE
PRESEL - PRESSE
ALPHAR - ALPHAE
ONEPAl - 1. + ALPHAR

C COMPUTE THE REFERENCE TEMPERATURE

TREFFL = PRESFL/(ONEPA1*RHORFL*RGAS)
C COMPUTE THE REFERENCE VELOCITY

UREFFL = SQRT(PRESFL/RHORFL)

C SAVE THE DIMENSIONAL VALUES

RHOINL = RHOI
TINLET = TEMPI
PINLET = PRESSI
RHOEXT - RHOE

PEXIT = PRESSE
TEXIT = TEMPE

SOUNDI = GAMMAI*PRESSI/RHOI

SOUNDI = SQRT (SOUNDI)

C

C COMPUTE THE NORMALIZED QUANTITIES
C

RHOI = RHOI/RHORFL

PRESSI = PRESSI/PRESFL

TEMPI = TEMPI/TREFFL

RHOE = RHOE/RHORFL

PRESSE = PRESSE/PRESFL
TEMPE = TEMPE/TREFFL
WI = WI/UREFFL

WE = WE/UREFFL
THETAD = THETAD/TREFFL
RHOD = RHOD/RHORFL

UBEFOR = UCOMPI/UREFFL
C MACH NUMBER BEFORE THE SHOCK

AMBEFO = UCOMPI/SOUNDI
HTFORM = HTFORM/(UREFFL*UREFFL)

C FOR EQUILIBRIUM FLOW NOTHING ELSE IS NEEDED

IF (PHI .LT. 0.) GOTO 50
C

C COMPUTE CONSTANTS OF SHOCK MOTION FOR MASS, MOMENTUM AND ENERGY

C
CONCON - RHOE*WE

CONMOM - CONCON*WE + PRESSE

CONENG - (4.+ALPHAE)/(1.+ALPHAE)*PRESSE/RHOE + ALPHAE*HTFORM +
I O.6*WE*WE

C COMPUTE THE CONDITIONS AT STATION S (JUST AFTER THE FRONTAL SHOCK)
ALPHAS = ALPHAE

GAMMAS = (4. +ALPHAS)/3.
GM1 = GAMMAS - 1.
GP1 = GAMMAS + 1.

BIGGAM = GP1/GMI
PSBPE (2.*GAMMAS*SHKMC2 - GM1)/GP1
RSBRE (BIGGAM*PSBPE+1.)/(BIGGAM+PSBPE)

TSBTE - PSBPE/RSBRE
PRESSS - PSBPE*PRESSE

347



RHOS

TEMPS

WS

= RSBRE*RHOE
- TSBTE*TEMPE

= CONCON/RHOS
C

C COLLECT CONSTANT DATA FOR THE QUIESCENT SIDE OF THE SHOCK
C

NPOINT = 0

DO 20 IPOS = NPOS, 1, -1
NPOINT = NPOINT + 1
X$(NPOINT) = XSHOC + (IPOS-1)*XDPOS

A$(NPOINT) = ALPHAE

P$(NPOINT) = PRESSE
R$(NPOINT) = RHOE
T$(NPOINT) = TEMPE
U$(NPOINT) = WE - WE

20 CONTINUE

C X$(NPOINT)

C A$(NPOINT)

C P$(NPOINT)

C R$(NPOINT)

C T$(NPOINT)

C U$(NPOINT)
C

= XSHOC

= ALPHAS

= PRESSS

= RHOS

= TEMPS

= WE - WS

NUMERICALLY INTEGRATE THE ODE FOR MASS FRACTION OF ATOMS AND

COLLECT DATA IN THE NON-LINEAR SIDE BEHIND THE SHOCK

ALPHA = ALPHAS

RHO = RHOS

PRESS = PRESSS
TEMP = TEMPS
WVELO - WS

DO 30 INEG = 1, NNEG-1

NPOINT = NPOINT + 1

X$(NPOINT) = XSHOC + INEG*XDNEG
TETA = TEMP**ETA

TRAT = -THETAD/TEMP
RRAT = RHO/RHOD
SBRAC = (1.-ALPHA)*EXP(TRAT) - RRAT*ALPHA*ALPHA

FACTOR = PHI*TETA*RHO/WVELO
SOURCE = FACTOR*SBRAC
ALPHAN = ALPHA - SOURCE*XDNEG
BIGA 7. + ALPHAN

BIGB 2.*(4.+ALPHAN)*CONMOM/CONCON

BIGC 2.*(1.+ALPHAN)*(CONENG-ALPHAN*HTFORM)

DISCRI - SQRT(BIGB**2-4.*BIGA*BIGC)
DENO = 2.*BIGA

ROOTI = (BIGB-DISCRI)/DENO

C ROOT2 = (BIGB+DISCRI)/DENO

WVELO = ROOTI
RHO = CONCON/WVELO

PRESS = CONMOM - CONCON*WVELO

PRAT - PRESS/PRESSS

RRAT = RHO/RHOS
ARAT = (1.+ALPHAN)/(1.+ALPHAS)
TEMP = PRAT*TEMPS/(ARAT*RRAT)
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ALPHA - ALPHAN

A$(NPOINT) - ALPHA

P$(NPOINT) PRESS

R$(NPOINT) - RHO

T$(NPOINT) - TEMP

U$(NPOINT) = WE - WVELO

30 CONTINUE

C

C COMPUTE DISSOCIATION THICKNESS BASED UPON 99 X VALUE
C

ALPCOM - 0.99*ALPHAI

XDISSO - -999.

DO 40 IP - 1, NPOINT-1

IF (ALPCOM .GE. A(IP) .AND. ALPCOM .LE. A$(IP+I)) THEN

ARAT = (ALPCOM - A$(IP))/(A$(IP+I) - A$(IP))

DELX - X$(IP+I) - X$(IP)

XDISSO - X(IP) + DELX*ARAT
XDISSO = ABS(XDISSO - XSHOC)

GOTO 50

ENDIF

40 CONTINUE

C

C WRITE DOWN THESE VALUES IN LHSHOC.OUT FOR THE PURPOSE OF KEEPING

C A RECORD

C
60 WRITE(IOSHOC,60) ALPHAI, ALPHAE, RHOINL, TINLET, SHKMAC,

1 REBRI , TEBTI , PHI , XDISSO

60 FORMAT (' INITIAL ALPHA AT INLET =',G14.5/

1 ' INITIAL ALPHA AT EXIT =',G14.5/

2 ' RHO INLET =',G14.6/

3 ' TEMPERAURE INLET =',G14.5/

4 ' SHOCK MACH NUMBER ='.G14.6/

6 ' INITIAL RE/RI =',G14.5/

6 ' INITIAL TE/TI =',G14.5/

7 ' PHI -- REACTION PARAMETER =',G14.5/

7 ' DISSOCIATION THICKNESS =',G14.5/)
C

C

WRITE(IOSHOC,70) RHOE,PRESSE,TEMPE, RHOI,PRESSI,TEMPI,

1 RHORFL,PRESFL,TREFFL, RHOINL,PINLET,TINLET,

2 RHOEXT,PEXIT,TEXIT,

3 GAMMAI,ALPHAI,UBEFOR,AMBEFO,RHOD,THETAD

70 FORMAT (' RHOE ',G14.5.6X,'PRESSE',G14.5,SX'TEMPE ='G14.5/
I ' RHOI =',G14.5,5X,'PRESSI=',G14.5,6X,'TEMPI =',G14.5/

2 ' RHORFL=',G14.5,5X,'PRESFL=',G14.5,SX,'TREFFL=',G14.5/

3 ' RHOINLG',G14.5,6X,'PINLET=',G14.5,5X,'TEMPI-',G14.5/

3 ' RHOEXT=',G14.6,5X,'PEXIT =',G14.5,5X.'TEXIT-',G14.5/

4 ' GAMMAI=',G14.5,SX,'ALPHAI=',G14.5.SX,'UBEFOR=',G14.5/
5 ' MBEFOR-',G14.5.X,'RHOD =',G14.56,6X,'THETAD='.G14.5/)

C
C WRITE DOWN THE VALUES IN MOSHOC.IOT SO THAT THESE CAN BE READ LATER
C BY A GRID GENERATOR PROGRAM LIKE BEPIPE.FOR

C

WRITE(MOSHOC,80) ALPHAI
WRITE(MOSHOC,80) ALPHAE

WRITE(MOSHOC,80) ALPHAR

WRITE(MOSHOC,80) RHOI
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WRITE(MOSHOC,80) RHOE

WRITE(MOSHOC,80) UBEFOR

WRITE(MOSHOC,80) UE

WRITE(MOSHOC,80) PRESSI

WRITE(MOSHOC,80) PRESSE

WRITE(MOSHOC,80) TEMPI

WRITE(MOSHOC,80) TEMPE

WRITE(MOSHOC,80) TREFFL

WRITE(MOSHOC,80) RHORFL

WRITE(MOSHOC,80) SHKMAC

WRITE(MOSHOC,80) AGAS

80 FORMAT (E15.8)
C

C WRITE DOWN THE VALUES AT ALL X-LOCATIONS IN MOSHOC.IOT SO THAT

C THESE CAN BE READ LATER BY A PRE-EMBEDDING ROUTINE OF THE STAR

C CODE

C

WRITE(MOSHOC,*) NPOINT

DO 90 IP = 1, NPOINT

WRITE(MOSHOC,100) X$(IP), A$(IP), P$(IP), R$(IP), T$(IP), U$(IP)

90 CONTINUE

100 FORMAT(6E15.7)

C OPTION TO PLOT THE DATA

WRITE(6,*) ' WANT TO PLOT DATA'

READ (5,110) YESNO

110 FORMAT(A1)

IF (YESNO .NE. 'Y' .AND. YESNO .NE. 'y') STOP ' THE END'

CALL GRINIT(6,6,MTITLE)

N$(1) = NPOINT

PLTITL(1:9) 'DISTANCE-'

120 WRITE(6,130)

130 FORMAT(1X.'THE FOLLOWING VARIABLES CAN BE PLOTTED VERSUS X'/

1 5X,'1. DEGREE OF DISSOCIATION'/

2 5X.'2. PRESSURE '/

3 6X.'3. DENSITY '/

4 5X.'4. TEMPERATURE '/
5 5X,'5. VELOCITY '/

e 5X.'6. EXIT '/ ' ===> ',$)

READ (5,*) IPLOT

PLTITL(10:22) = ElTAX(IPLOT)

IF (IPLOT .Eq. 1) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,A$,N$)
ELSE IF (IPLOT .EQ. 2) THEN

CALL GRLINE(IOPT$,NLINEPLTITL,INDGR,X$,P$,N$)

ELSE IF (IPLOT .EQ. 3) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,R$,N$)
ELSE IF (IPLOT .EQ. 4) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,T$,N$)
ELSE IF (IPLOT .EQ. 5) THEN

CALL GRLINE(IOPT$,NLINE,PLTITLINDGR,X$,U$,N$)

ENDIF
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WRITE (6,*) ' WANT TO PLOT MORE'
READ (56,110) YESNO

IF (YESNO .Eq. 'Y' .OR. YESNO .EQ. 'y') GOTO 120

C EXAMPLE FILE
C 0.40
C 0.2
C 3.82
C 5000.0

C 2.35
C 0.263
C 0.825
C 1.E4
CO
C-0.5
C 1.
C-1.
C10
C100

: LHSHOC.DAT
ALPHAI

ALPHAE

RHOI

TINLET

SHKMAC
REBRI

TEBTI

PHI

IALP

XSHOC
XMAX
XMIN
NPOS

NNEG

STOP ' THE END'

END

D.1.2 Initial grid generators

The grid generators for the circular arc bump case (Section 8.2.1 to 8.2.3) and a

bend duct (Section 8.2.4 to 8.2.5) are presented here.

Circular arc cascade

The program NISHOC generates the initial grid for a circular arc cascade on a lower

channel wall. The initial conditions are read from the output of a previous initial

condition generator program.

PROGRAM NISHOC

PARAMETER (MXX = 500 , MYY = 500, MNODG2 = 16000)

1
2
3

DIMENSION XSOUTH(MXX), XEAST(MYY), XNORTH(MXX), XWEST(MYY),

YSOUTH(MXX), YEAST(MYY), YNORTH(MXX), YWEST(MYY),

DISTW(MXX), DISTE(MXX), GEOMG2(2,MNODG2),
IBNDG2(5,500) , DPENG2(5)
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DIMENSION A$(MXX), P$(MXX), R$(MXX), T$(MXX), U$(MXX),

1 X$(MXX), IOPT$(1), N$(1) , E1TAX(6)
CHARACTER MTITLE*80 , PLTITL*80 , ETAX*12 , YESNO*1

DATA ETAX/ 'ALPHA ', 'PRESSURE -', 'DENSITY

1 'TEMPERATURE-', 'VELOCITY -' '

C***********************************
C
C THIS PROGRAM GENERATES THE BOUNDARIES OF THE COMPUTATION DOMAIN

C FOR THE NI BUMP PROBLEM INVOLVING A MOVING SHOCK. IT ALSO READS

C THE INITIAL CONDITIONS FOR THIS CASE FROM FILE MOSHOC.IOT FOR A

C PERFECT OR A LIGHT-HILL GAS. THIS FILE MAY HAVE BEEN GENERATED

C BY EITHER MOSHOC.FOR OR LHSHOC.FOR. THE VARIABLES FOR THE CURRENT

C GEOMETRY ARE READ FROM THE FILE NISHOC.DAT THAT CONTAINS THE

C LOCATION OF INLET, EXIT, BOTTOM, AND TOP WALLS. THE BUMP IS

C ASSUMED BETWEEN X=O AND X=1 ON LOWER WALL. OTHER PARAMETERS IN

C NISHOC.DAT INCLUDE THE SIZE (PERCENTAGE POINT) OF THE BUMP AND THE

C POSITION OF THE SHOCK AT TIME T=O. OTHER INFORMATION INCLUDES THE

C NUMBER OF DATA POINTS ALONG X AND Y DIRECTIONS.

C THE GRID IS GENERATED BY AN ALGEBRAIC CONSTRUCTION. FINALLY THE

C PROGRAM INITIALIZES THE DEPENDENT VARIABLES OVER ALL THE NODES.

C THE OUTPUT FILE INPUTG.DAT CONTAINS GRID INFORMATION SUCH AS X

C AND Y COORDINATES AT EACH NODE WHEREAS THE OUTPUT FILE INPUTD.DAT

C CONTAINS DEPENDENT VARIABLE INFORMATION SUCH AT THESE NODES.

C
C SUBROUTINES CALLED: ERRORM UTILITY ROUTINE

C GR_INIT GRAFIC ROUTINE

C GRLINE GRAFIC ROUTINE

C
C************************************************************************
C
C INITIALIZATION
C

INTUBE = 51
INPUTG = 52

INPUTD = 54

JPRINT = 6
IOSHOC = 8

MOSHOC - 9

MTITLE = 'NON-EQUILIBRIUM MOVING SHOCK'
C

C OPEN THE APPROPRAITE UNITS

C

OPEN (UNIT - MOSHOC, FILE = 'MOSHOC.IOT', STATUS = 'OLD')

OPEN (UNIT INTUBE, FILE = 'NISHOC.DAT', STATUS - 'OLD')

OPEN (UNIT INPUTG, FILE = 'INPUTG.DAT', STATUS = 'NEW')

OPEN (UNIT INPUTD, FILE = 'INPUTD.DAT'. STATUS 'NEW')

OPEN (UNIT = IOSHOC, FILE 'NISHOC.OUT', STATUS = 'NEW')

C

C INPUT THE FOLLOWING QUANTITIES FROM FILE NISHOC.DAT
C
C XMIN X-DISTANCE MEASURE AT THE INLET

C XMAX X-DISTANCE MEASURE AT THE EXIT

C YMAX Y-DISTANCE MEASURE AT THE TOP WALL

C XCONTA X-DISTANCE FOR THE CONTACT SURFACE

C NXRECT NUMBER OF NODES ALONG X-DIRECTION
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C NYRECT NUMBER OF NODES ALONG Y-DIRECTION

C PERCEN PERCENTAGE POINT OF THE BUMP

C
READ (INTUBE,*) XMIN

READ (INTUBE.*) XMAX

READ (INTUBE,*) YMAX

READ (INTUBE,*) XCONTA

READ (INTUBE,*) NXRECT

READ (INTUBE.*) NYRECT

READ (INTUBE,*) PERCEN

C
C READ THE FOLLOWING VALUES FROM MOSHOC.IOT

C
C ALPHAI INITIAL ALPHA AT INLET

C ALPHAE INITIAL ALPHA AT EXIT

C ALPHAR REFERENCE ALPHA

C RHOI INLET NON-DIMENSIONAL DENSITY

C RHOE EXIT NON-DIMENSIONAL DENSITY

C UCOMPI INLET NON-DIMENSIONAL VELOCITY

C UCOMPE EXIT NON-DIMENSIONAL VELOCITY

C PRESSI INLET NON-DIMENSIONAL PRESSURE

C PRESSE EXIT NON-DIMENSIONAL PRESSURE

C TEMPI INLET NON-DIMENSIONAL TEMPERATURE

C TEMPE EXIT NON-DIMENSIONAL TEMPERATURE

C TREFFL REFERENCE TEMPERATURE
C SHKMAC MACH NUMBER OF THE SHOCK
C AGAS IGAS PARAMETER INDICATING TYPE OF GAS
C 1: PERFECT O: LIGHTHILL

C 2: LIGHTHILL GAS FOR NON-EQUILIBRIUM

READ (MOSHOC.O0) ALPHAI

READ (MOSHOC,10) ALPHAE

READ (MOSHOC,10) ALPHAR
READ (MOSHOC,10) RHOI

READ (MOSHOC.10) RHOE

READ (MOSHOC.10) UBEFOR

READ (MOSHOC,10) UE

READ (MOSHOC,10) PRESSI

READ (MOSHOC.10) PRESSE

READ (MOSHOC,10) TEMPI
READ (MOSHOC.10) TEMPE
READ (MOSHOC,10) TREFFL

READ (MOSHOC,10) RHORFL

READ (MOSHOC,10) SHKMAC

READ (MOSHOC.10) AGAS

10 FORMAT (E15.8)

C

IGAS - NINT(AGAS)
NTOTAL 56
TFACTR = 3.

IF (IGAS .EQ. 1) THEN
C USE PERFECT GAS MODEL FOR THE SHOCK

C READ SOME MORE VALUES FROM MOSHOC.IOT

READ (MOSHOC,10) RGAS
READ (MOSHOC,10) GAMMAI

NTOTAL 4
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ALPHAI = 0.
AhPHAE 0.
ALPHAR - 0.

TFACTR 1./(GAMMAI-1.)

ENDIF

C
IF (IGAS .EQ. 2) THEN

C USE LIGHTHILL GAS MODEL FOR THE NON-EQUILIBRIUM SHOCK
C READ DEPENDENT VARIABLE VALUES FROM MOSHOC.IOT

READ(MOSHOC,*) NPOINT

DO 20 IP = 1, NPOINT
READ(MOSHOC,30) X$(IP),A$(IP),P$(IP),R$(IP),T$(IP),U$(IP)

20 CONTINUE

ENDIF

30 FORMAT(6E15.7)
C
C WRITE DOWN THESE VALUES IN NISHOC.OUT FOR THE PURPOSE OF KEEPING

C A RECORD

C
WRITE(IOSHOC,40) ALPHAI, ALPHAE, ALPHAR, RHOI, RHOE, TEMPI,

1 TEMPE, PRESSI, PRESSE, TREFFL, RHORFL, XMIN, XMAX, YMAX,
2 XCONTA, PERCEN, NXRECT, NYRECT, SHKMAC

40 FORMAT (' INITIAL ALPHA AT INLET =',G14.5/
1 ' INITIAL ALPHA AT EXIT = ,G14.5/
1 ' REFERENCE ALPHA =',G14.5/
1 ' RHOI =',G14.5/

1 ' RHOE =',G14.5/
1 ' TEMPI =',G14.5/
1 ' TEMPE =',G14.5/
1 ' PRESSI =',G14.5/
1 ' PRESSE =',G14.5/
1 ' TREFFL =',G14.5/
1 ' RHORFL =',G14.5/
1 ' X-DISTANCE MEASURE AT THE INLET =',G14.5/

1 ' X-DISTANCE MEASURE AT THE EXIT =',G14.5/
1 ' Y-DISTANCE MEASURE AT THE TOP WALL =',G14.5/
I ' X-DISTANCE FOR THE CONTACT SURFACE =',G14.5/

1 ' PERCENTAGE POINT OF THE BUMP =' ,G14.5/
1 ' NUMBER OF NODES ALONG X-DIRECTION =',I65/
I ' NUMBER OF NODES ALONG Y-DIRECTION =',I5/

1 ' SHOCK MACK NUMBER =',G14.5/)

C CHECK FOR OVERFLOW IN BOUNDARY NODE ARRAYS

IF (NXREXT .GT. MXX) THEN
ERR1 = NXRECT

ERR2 MXX

CALL ERRORM (4,'G2RECT','NXRECT',ERRI,'MXX ',ERR2,JPRINT,
1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

ENDIF

IF (NYREXT .GT. MYY) THEN
ERR1 - NYRECT

ERR2 - MYY

CALL ERRORM (4,'G2RECT','NYRECT',ERR1,'MYY ',ERR2,JPRINT,
1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

ENDIF
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C
C
C

COMPUTE THE STEP SIZES ON EACH SIDE

YMIN - 0.
DELX = (XMAX-XMIN)/(NXRECT-1)

DELY = (YMAX-YMIN)/(NYRECT-1)

C
C COMPUTE (X,Y) COORDINATES FOR INFLOW/OUTFLOW BOUNDARIES

C
DO 50 IY = 1, NYRECT

XWEST(IY) = XMIN

XEAST(IY) = XMAX
YWEST(IY) YMIN + (IY-1.)*DELY
YEAST(IY) = YWEST(IY)

50 CONTINUE

C
C
C

COMPUTE (X,Y) COORDINATES FOR TOP/BOTTOM BOUNDARIES

DO 60 IX = 1,

XSOUTH(IX)

XNORTH(IX)

YSOUTH(IX)

YNORTH(IX)

CONTINUE

NXRECT

= XMIN + (IX-1)*DELX
= XSOUTH(IX)
= YMIN

= YMAX

COMPUTE THE RADIUS OF THE CIRCULAR ARC BUMP

IF (PERCEN .NE. 0.) THEN

RADIUS - (4.*PERCEN*PERCEN + 1.)/(8.*PERCEN)
ELSE

RADIUS - 0.

ENDIF

R2 = RADIUS*RADIUS

CORRECT THE Y-COORDINATES FOR THE LOWER CHANNEL WALL WHERE THE

BUMP IS PLACED

DO 70 IX = 1, NXRECT

XX = XSOUTH(IX)
C

IF (XX .GT. O. .AND. XX .LT. 1.) THEN

XX =XX - 0.5
YSOUTH(IX) - PERCEN - RADIUS + SQRT(R2 - XX*XX)

ENDIF

70 CONTINUE

C

C CORRECT THE Y-COORDINATES FOR THE OUTFLOW WALL IF A CURTAILED

C DOMAIN IS USED

C

IF (XSOUTH(NXRECT) .LT. 1.) THEN

YMINH = YSOUTH(NXRECT)
DELYH = (YMAX-YMINH)/ (NYRECT-1)

DO 75 IY = 1, NYRECT

YEAST(IY) = YMINH + (IY-1.)*DELYH
75 CONTINUE

ENDIF

C
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C READ THE BOUNDARY CONDITION INDICATORS FROM NISHOC.DAT
C DIRECHLET : 2 REFLECTION : WALL : 3

C
READ

READ

READ

READ

READ

READ

READ

READ

C
C
C
C
C

(INTUBE,*)

(INTUBE,*)

(INTUBE,*)

(INTUBE,*)
(INTUBE,*)

(INTUBE, *)

(INTUBE,*)
(INTUBE,*)

IBCSW

IBCS

IBCSE

IBCE

IBCNE

IBCN

IBCNW

IBCW

NOMENCLATURE

C NUMBER THE COMPUTATIONAL

C DIAGRAM

C

NODES AS SHOWN IN THE FOLLOWING

L L L
+ + + . . .

1 2 3
1+(NY-1)*NX +--+--------+--+--+

+ NORTH

E+

NX=NXRECT

NY=NYRECT

L =NBEFNO

NY*NX

(NY-1)*NX = L

INDJE

1+2*NX + T

1+NX + SOUTH

_ ...
T + 3*NX

+ 2*NX

+--+ NX+--+----+--+-1-+--

2 3 ... NX-1

C

C COMPUTE THE NODE BEFORE THE FIRST NORTH

C AND THE MAXIMUM NUMBER OF NODES
ONE (L IN FIG.)

NBEFNO = NXRECT*(NYRECT-1)

NNODG2 = NXRECT* NYRECT

C

C SET SOUTH AND NORTH NODE INFORMATION AS SHOWN ABOVE
C

DO 80 IX 1, NXRECT
NOS = IX

NON = IX + NBEFNO

GEOMG2(1,NOS) = XSOUTH(IX)

GEOMG2(2,NOS) = YSOUTH(IX)

GEOMG2(1,NON) = XNORTH(IX)

GEOMG2(2,NON) = YNORTH(IX)
80 CONTINUE

C

C SET WEST AND EAST NODE INFORMATION AS SHOWN ABOVE
C

DO 90 IY = 1, NYRECT
NOW = 1 + (IY-1)*NXRECT
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NOE

GEOMG2(1.NOW)

GEOMG2(2,NOW)

GEOMG2(1.NOE)

GEOMG2(2,NOE)

90 CONTINUE
C

- IY*NXRECT

= XWEST (IY)

- YWEST (IY)

- XEAST (IY)

- YEAST (IY)

C INITIALIZE THE FRACTIONAL DISTANCES ON WEST AND EAST EDGES, SO
C THAT GEOMETRY AT INTERIOR POINTS CAN BE CALCULATED

C

DISTW(1) O.

DISTE(1) - 0.
C
C CALCULATE THE TOTAL DISTANCES ON WEST AND EAST EDGES

C

DO 100 J 2, NYRECT
JM1 = J - 1

C

INDJW

INDJMW

INDJE

INDJME

= 1 + (J -1)*NXRECT

- 1 + (JMI-1)*NXRECT
= J *NXRECT

= JM1*NXRECT
C

DXW

DYW

DXE

DYE

= GEOMG2(1,INDJW)
- GEOMG2(2,INDJW)

= GEOMG2(1,INDJE)
- GEOMG2(2,INDJE)

- GEOMG2(1,INDJMW)

- GEOMG2(2,INDJMW)

- GEOMG2C(1,INDJME)

- GEOMG2(2,INDJME)
C

DISTW(J) - DISTW(JM1) + SQRT(DXW*DXW + DYW*DYW)
DISTE(J) = DISTE(JM1) + SRT(DXE*DXE + DYE*DYE)

C

100 CONTINUE

C CALCULATE THE

C FOR EACH NODE

DO 110 J = 2,
DISTW(J) =
DISTE(J) =

110 CONTINUE

C

FRACTIONAL DISTANCES ON WEST AND EAST EDGES

NYRECT

DISTW(J)/DISTW(NYRECT)

DISTE(J)/DISTE(NYRECT)

C STEP THROUGH EACH INTERIOR LINE AND SET GEOMETRY POINTS
C

C
C

C

DO 130 I - 2, NXRECT-1

FRACI - FLOAT(I-1)/FLOAT(NXRECT-1)

CALCULATE FRACTIONAL DISTANCES FOR EACH INTERIOR POINT

DO 120 J 2.NYRECT-1

FRACJ - (1.-FRACI)*DISTW(J) + FRACI*DISTE(J)
C

IND

INDN

INDS
C
C

C

I + ( J-1)*NXRECT

I + (NYRECT-1)*NXRECT
= I

COMPUTE THE DISTANCE FROM NORTH EDGE TO SOUTH EDGE
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DELXNS

_ DELYNS

- GEOMG2(1,INDN) - GEOMG2(1,INDS)

= GEOMG2(2,INDN) - GEOMG2(2,INDS)

COMPUTE LOCATION OF INTERIOR POINT

GEOMG2(1.IND) GEOMG2(1,INDS) + FRACJ*DELXNS
GEOMG2(2,IND) GEOMG2(2,INDS) + FRACJ*DELYNS

CONTINUE

CONTINUE

INITIALIZE THE SPECIFIC BOUNDARY CONDITION POINTERS

THIS SECTION CAN BE MODIFIED LATER FOR EDGES WITH

MULTIPLE BOUNDARY CONDITION TYPES

NBNDG2 0

SOUTHWESTERN CORNER

NBNDG2 = NBNDG2 + 

IBNDG2(5,NBNDG2) = IBCSW

SOUTHERN EDGE

DO 140 IBOUND = 2.

NBNDG2

IBNDG2(5,NBNDG2)
CONTINUE

NXRECT-1

- NBNDG2 + 1

- IBCS

SOUTHEASTERN CORNER

NBNDG2 = NBNDG2 + 

IBNDG2(5,NBNDG2) IBCSE

EASTERN EDGE

DO 150 IBOUND - a,
NBNDG2

IBNDG2(6,NBNDG2)
CONTINUE

NYRECT-1

- NBNDG2 + 1

- IBCE

NORTHEASTERN CORNER

NBNDG2 - NBNDG2 +
IBNDG2(5,NBNDG2) = IBCNE

1

NORTHERN EDGE

DO 160 IBOUND - NXRECT-1, 2, -1
NBNDG2 - NBNDG2 + 1

IBNDG2(5,NBNDG2) IBCN
CONTINUE

NORTHWESTERN CORNER

NBNDG2 = NBNDG2 + 1

IBNDG2(5.NBNDG2) = IBCNW
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C
C WESTERN EDGE

C

DO 170 IBOUND - NYRECT-1, 2, -1

NBNDG2 - NBNDG2 + 1

IBNDG2(5,NBNDG2) - IBCW
170 CONTINUE

C WRITE ALL THE GEOMETRY INFORMATION ON INPUTG.DAT SO THAT IT

C CAN BE READ BY G2INIT LATER ON

WRITE (INPUTG,180) NXRECT, NYRECT, NBNDG2, NNODG2
WRITE (INPUTG,180) (IBNDG2(5,IB), IB=1,NBNDG2)

WRITE (INPUTG,190) (GEOMG2(1,IN),GEOMG2(2,IN), IN=I,NNODG2)

180 FORMAT(12IS)

190 FORMAT(4G16.7)

C
C NOW COMPUTE THE DEPENDENT VARIABLES
C INITIALIZE VALUES FOR OXYGEN FOR LIGHTHILL DISSOCIATING GAS

C
THETAD 59600.

RHOD = 150.E03

UGASFL 8314.3
AMWTA - 18.0
THETAD - THETAD/TREFFL

RHOD - RHOD/RHORFL

C
ONEPAl I 1. + ALPHAR

C ONEPAl IS 1 + ALPHAR

C COMPUTE THE GRID AND OTHER QUANTITIES

DO 220 I 1, NNODG2

XI = GEOMG2(1,I)
VCOMP 0.

C

C INLET STATION

C

IF (XI .LE. XCONTA) THEN
P = PRESSI

T = TEMPI

RHO - RHOI

ALPHA ALPHAI

UCOMP - UBEFOR

IF (I .EQ. 1) GOTO 210
C DO LINEAR INTERPOLATION FOR NON-EQUILIBRIUM LH-SHOCK,

C IF NEED BE, OTHERWISE USE STEP FUNCTION INFORMATION

IF (IGAS .EQ. 2) THEN

DO 200 IP 1, NPOINT-1

IF (XI .GE. X$(IP+I) .AND. XI .LE. X$(IP)) THEN

XRAT (XI-X$(IP))/(X$(IP+i)-X$(IP))
DELTAA A$(IP+I) - A$(IP)

DELTAP P$(IP+1) - P$(IP)
DELTAR R*(IP+1) - R$(IP)
DELTAT - T$(IP+I) - T$(IP)
DELTAU U*(IP+I) - U$(IP)
ALPHA = A$(IP) + DELTAA*XRAT
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P = P$(IP)

RHO = R$(IP)
T = T$(IP)

UCOMP = U$(IP)
GOTO 210

ENDIF

CONTINUE

ENDIF

EXIT STATION

ELSE
P = PRESSE

T = TEMPE
RHO = RHOE

ALPHA = ALPHAE
UCOMP = UE

ENDIF

210 V2

ETRHO

ET

+ DELTAP*XRAT

+ DELTAR*XRAT

+ DELTAT*XRAT

+ DELTAU*XRAT

= UCOMP*UCOMP + VCOMP*VCOMP

= (TFACTR*T +ALPHA*THETAD)/ONEPA1 + V2/2.
= ETRHO*RHO

DPENG2(1) = RHO
DPENG2(2) = DPENG2(1)*UCOMP

DPENG2(3) = DPENG2(1)*VCOMP

DPENG2(4) = ET

DPENG2(5) = DPENG2(1)*ALPHA

WRITE (INPUTD,230) (DPENG2(K), K = 1,
CONTINUE

FORMAT(8G16.7)

WRITE THE ADDITIONAL GRID INFORMATION ON

FOR THE NON-EQUILIBRIUM LIGHTHILL-SHOCK,
BY A PRE-EMBEDDING ROUTINE

C

IF (IGAS .EQ. 2) THEN

OPEN.(UNIT=58, FILE='LHSHOC.INT', STATUS='NEW',

1 FORM='UNFORMATTED')

WRITE(68) NPOINT, NTOTAL

DO 240 IP = 1, NPOINT
UCOMP = U$(IP)
V2 - UCOMP*UCOMP

ETRHO = (TFACTR*T$(IP)+A$(IP)*THETAD)/ONEPA1 +V2/2.
DPENG2(1) = R$(IP)
DPENG2(2) = R$(IP)*U$(IP)
DPENG2(3) = 0.
DPENG2(4) = ETRHO*R$(IP)
DPENG2(6) = DPENG2(1)*A$(IP)

WRITE (58) X$(IP),(DPENG2(K), K = 1, NTOTAL)
240 CONTINUE

ENDIF

C OPTION TO PLOT THE DATA

WRITE(6,*) ' WANT TO PLOT DATA'

READ (5,250) YESNO
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250 FORMAT(A1)

IF (YESNO .NE. 'Y' .AND. YESNO .NE. 'y') STOP ' THE END'

CALL GRINIT(5,6,MTITLE)

REWIND (INPUTD)

N$(1l) - NXRECT

NLINE = 1

IOPT$(l) - 2
INDGR 5 21

PLTITL(1:9) - 'DISTANCE''

DO 260 I - 1, N$(l)

X$(I) = GEOMG2(1,I)

VCOMP - 0.

READ (INPUTD.230) (DPENG2(K). K = 1, NTOTAL)

RHO - DPENG2(l)

UCOMP - DPENG2(2)/DPENG2(1)

ETRHO = DPENG2(4)/DPENG2(1)

ALPHA = DPENG2(S)/DPENG2(1)

V2 = UCOMP*UCOMP + VCOMP*VCOMP

TDUM = ETRHO - V2/2.

TDUM - TDUM*ONEPA1

TDUM = TDUM - ALPHA*THETAD

T$(I) - TDUM/TFACTR

AS(I) = ALPHA

RS(I) = RHO

U$(I) = UCOMP

P$(I) = RHO*T$(I)*(1.+ALPHA)/ONEPA1
260 CONTINUE

270 WRITE(6,280)

280 FORMAT(1X,'THE FOLLOWING VARIABLES CAN BE PLOTTED VERSUS X'/

1 5X,'i. DEGREE OF DISSOCIATION'/

2 5X,'2. PRESSURE '/

3 5X,'3. DENSITY '/

4 5X,'4. TEMPERATURE '/

5 5X,'5. VELOCITY '/

6 5X,'6. EXIT '/ ' ==5> '.$)

READ (5,*) IPLOT

PLTITL(10:22) = E1TAX(IPLOT)

IF (IPLOT .EQ. 1) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,A$,N$)
ELSE IF (IPLOT .EQ. 2) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR.X$,P$,N$)

ELSE IF (IPLOT .EQ. 3) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,R$,N$)

ELSE IF (IPLOT .EQ. 4) THEN

CALL GRLINE(IOPT$,NLINE,PLTITLINDGRX$,T$,N$)

ELSE IF (IPLOT .EQ. 5) THEN

CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,U$,N$)
ENDIF

WRITE (6,*) ' WANT TO PLOT MORE'

READ (5,250) YESNO
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IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') GOTO 270

EXAMPLE FILE : NISHOC.DAT

-1. XMIN

2. XMAX

1. YMAX

-0.5 XCONTA

51 NXRECT
11 NYRECT

0.04 PERCEN

2 IBCSW

3 IBCS

1 IBCSE

1 IBCE

1 IBCNE

3 IBCN

2 IBCNW

2 IBCW

STOP ' THE END'

END

Bend duct

The program BEPIPE generates the initial grid for a circular curved duct with straight

fore and aft ducts. The initial conditions are read from the output of a previous initial

condition generator program.

PROGRAM BEPIPE

PARAMETER (MXX = 1000 , MYY = 500, MNODG2 = 5000)

1
2
3
4

DIMENSION XSOUTH(MXX), XEAST(MYY), XNORTH(MXX), XWEST(MYY),

YSOUTH(MXX), YEAST(MYY), YNORTH(MXX), YWEST(MYY),
DISTW(MXX). DISTE(MXX), GEOMG2(2,MNODG2),

GEOP1(2,MNODG2), GEOP2(2,MNODG2), GEOP3(2,MNODG2),

IBNDG2(5,500) , DPENG2(5)

DIMENSION A$(MXX), P$(MXX), R$(MXX), T$(MXX), U$(MXX), X$(MXX),
I IOPT$(i), N$(1) , E1TAX(6)

CHARACTER MTITLE*80 , PLTITL*80 , E1TAX*12 , YESNO*1
DATA E1TAX/ 'ALPHA '', 'PRESSURE '', 'DENSITY ',

1 'TEMPERATURE-', 'VELOCITY -', ' '/

C
C THIS PROGRAM GENERATES THE BOUNDARIES OF THE COMPUTATION DOMAIN
C FOR A BEND PIPE WITH FORE AND AFT STRAIGHT PIPES INVOLVING A
C MOVING SHOCK. IT ALSO READS THE INITIAL CONDITIONS FOR THIS CASE
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C FROM FILE MOSHOC.IOT FOR A PERFECT OR A LIGHT-HILL GAS. THIS FILE
C MAY HAVE BEEN GENERATED BY EITHER MOSHOC.FOR OR LHSHOC.FOR. THE
C VARIABLES FOR THE CURRENT GEOMETRY ARE READ FROM THE FILE BEPIPE.DAT

C THAT CONTAINS THE MIN/MAX RADII OF THE PIPE, LENGTHS OF THE FORE

C AND AFT PIPES, OVERALL ANGLE OF THE CURVED PIPE, THE POSITION OF
C INITIAL SHOCK AND THE NUMBER OF POINTS ALONG EACH SURFACE OF THE
C PIPE. THE BEND PIPE IS ASSUMED TO START AT X=O AND Y BETWEEN

C [RMINRMAX]. THE GRID IS GENERATED BY AN ALGEBRAIC CONSTRUCTION
C BY SOLDERING THE THREE SECTIONS. FINALLY THE PROGRAM INITIALIZES
C THE DEPENDENT VARIABLES OVER ALL THE NODES.

C THE OUTPUT FILE INPUTG.DAT CONTAINS GRID INFORMATION SUCH AS X

C AND Y COORDINATES AT EACH NODE WHEREAS THE OUTPUT FILE INPUTD.DAT
C CONTAINS DEPENDENT VARIABLE INFORMATION SUCH AT THESE NODES.
C
C SUBROUTINES CALLED: ERRORM UTILITY ROUTINE
C G2IBOG STAR ROUTINE

C GR_INIT GRAFIC ROUTINE

C GR_LINE GRAFIC ROUTINE
C

C

C INITIALIZATION

C

INPIPE = 51

INPUTG 52

INPUTD = 54

JPRINT = 6
IOPIPE = 8

MOSHOC - 9

PI = 3.141592654

RADIAN - PI/180.
NPOINT = 0
MTITLE 'NON-EQUILIBRIUM MOVING SHOCK'

C

C OPEN THE APPROPRAITE UNITS

C
OPEN (UNIT = INPIPE, FILE = 'BEPIPE.DAT', STATUS = 'OLD')

OPEN (UNIT = INPUTG, FILE = 'INPUTG.DAT', STATUS = 'NEW')

OPEN (UNIT = INPUTD, FILE = 'INPUTD.DAT', STATUS = 'NEW')
OPEN (UNIT = IOPIPE, FILE = 'BEPIPE.OUT', STATUS = 'NEW')
OPEN (UNIT = MOSHOC, FILE = 'MOSHOC.IOT', STATUS = 'OLD')

C

C INPUT THE FOLLOWING QUANTITIES FROM FILE BEPIPE.DAT
C
C XBEF X-DISTANCE OF THE FORE PIPE

C XAFT X-DISTANCE OF THE AFT PIPE

C RMIN MINIMUM RADIUS OF THE PIPE

C RMAX MAXIMUM RADIUS OF THE PIPE

C ANGLE ANGLE (DEGREES) OF BEND PIPE
C XCONTA X-DISTANCE FOR THE SHOCK SURFACE
C NXRECT1 NUMBER OF NODES ALONG X-DIRECTION IN FOREPIPE
C NXRECT2 NUMBER OF NODES ALONG X-DIRECTION IN BENDPIPE

C NXRECT3 NUMBER OF NODES ALONG X-DIRECTION IN AFTPIPE
C NYRECT NUMBER OF NODES ALONG Y-DIRECTION
C

READ (INPIPE,*) XBEF
READ (INPIPE,*) XAFT
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READ (INPIPE,*) RMIN

READ-(INPIPE,*) RMAX

READ (INPIPE,*) ANGLE

READ (INPIPE,*) XCONTA

READ (INPIPE.*) NXRECTI

READ (INPIPE,*) NXRECT2

READ (INPIPE,*) NXRECT3
READ (INPIPE,*) NYRECT

C
C READ THE FOLLOWING VALUES FROM MOSHOC.IOT

C
C ALPHAI INITIAL ALPHA AT INLET
C ALPHAE INITIAL ALPHA AT EXIT

C ALPHAR REFERENCE ALPHA

C RHOI INLET NON-DIMENSIONAL DENSITY

C RHOE EXIT NON-DIMENSIONAL DENSITY

C UCOMPI INLET NON-DIMENSIONAL VELOCITY

C UCOMPE EXIT NON-DIMENSIONAL VELOCITY
C PRESSI INLET NON-DIMENSIONAL PRESSURE

C PRESSE EXIT NON-DIMENSIONAL PRESSURE

C TEMPI INLET NON-DIMENSIONAL TEMPERATURE
C TEMPE EXIT NON-DIMENSIONAL TEMPERATURE

C TREFFL REFERENCE TEMPERATURE

C SHKMAC MACH NUMBER OF THE SHOCK

C AGAS IGAS PARAMETER INDICATING TYPE OF GAS

C 1: PERFECT O: LIGHTHILL

C 2: LIGHTHILL GAS FOR NON-EQUILIBRIUM
C

READ (MOSHOC.10) ALPHAI

READ (MOSHOC,10) ALPHAE
READ (MOSHOC.10) ALPHAR

READ (MOSHOC,10) RHOI

READ (MOSHOC,10) RHOE

READ (MOSHOC,10) UBEFOR

READ (MOSHOC,10) UE

READ (MOSHOC.10) PRESSI

READ (MOSHOC.10) PRESSE

READ (MOSHOC,10) TEMPI

READ (MOSHOC,10) TEMPE

READ (MOSHOC,10O) TREFFL

READ (MOSHOC.10) RHORFL

READ (MOSHOC.10) SHKMAC
READ (MOSHOC,10) AGAS

10 FORMAT (E15.8)
C

IGAS - NINT(AGAS)

NTOTAL - 6
TFACTR 3.

C

IF (IGAS .EQ. 1) THEN
C USE PERFECT GAS MODEL FOR THE SHOCK
C READ SOME MORE VALUES FROM MOSHOC.IOT

READ (MOSHOC.10) RGAS

READ (MOSHOC,10) GAMMAI
NTOTAL 4

ALPHAI - O.

ALPHAE - O.
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ALPHAR - O.
TFACTR 1 l./(GAMMAI-1.)

ENDIF

C
IF (IGAS .EQ. 2) THEN

C USE LIGHTHILL GAS MODEL FOR THE NON-EQUILIBRIUM SHOCK
C READ DEPENDENT VARIABLE VALUES FROM MOSHOC.IOT

READ(MOSHOC,*) NPOINT

DO 20 IP - 1, NPOINT

READ(MOSHOC,30) X$(IP),A$(IP),P$(IP),R$(IP),T$(IP),U$(IP)

20 CONTINUE

ENDIF

30 FORMAT(6E16.7)

C
C WRITE DOWN THESE VALUES IN BEPIPE.OUT FOR THE PURPOSE OF KEEPING

C A RECORD
C

WRITE(IOPIPE,40) ALPHAI, ALPHAE, ALPHAR, RHOI, RHOE, TEMPI,
1 TEMPE, PRESSI, PRESSI, TREFFL, RHORFL, XBEF, XAFT, RMIN, RMAX,
2 ANGLE, XCONTA, NXRECT1, NXRECT2,NXRECT3,NYRECT, SHKMAC

40 FORMAT (' INITIAL ALPHA AT INLET =',G14.5/
1 ' INITIAL ALPHA AT EXIT =',G14.5/

1 ' REFERENCE ALPHA =',G14.5/
1 ' RHOI =',G14.6/
1 ' RHOE =',G14.5/

1 ' TEMPI =',G14.6/
1 ' TEMPE =',G14.5/
1 ' PRESSI =',G14.5/
1 ' PRESSE =',G14.5/
1 ' TREFFL ='.G14.5/
1 ' RHORFL =',G14.5/
1 ' LENGTH OF FORE PIPE =',G14.5/
1 ' LENGTH OF AFT PIPE =',G14.65/
1 ' MINIMUM RADIUS OF BEND PIPE = ,G14./
I ' MAXIMUM RADIUS OF BEND PIPE =',G14.5/
1 ' ANGLE OF BEND PIPE ='G14.5/
1 ' X-DISTANCE FOR THE CONTACT SURFACE =',G14.5/
1 ' NUMBER OF X-NODES IN FOREPIPE =',I5/
1 ' NUMBER OF X-NODES IN BENDPIPE -',I5/
1 ' NUMBER OF X-NODES IN AFTPIPE =',I5/
1 ' NUMBER OF NODES ALONG Y-DIRECTION -',IS/
1 ' SHOCK MACK NUMBER =',G14.5/)

NXRECT - NXRECT1 + NXRECT2 + NXRECT3 - 2

C CHECK FOR OVERFLOW IN BOUNDARY NODE ARRAYS

IF (NXREXT .GT. MXX) THEN
ERRI = NXRECT
ERR2 - MXX

CALL ERRORM (4,'G2RECT','NXRECT',ERR1,'MXX ',ERR2,JPRINT.
1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

ENDIF

IF (NYREXT .GT. MYY) THEN
ERRI = NYRECT
ERR2 - MYY
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CALL ERRORM (4,'G2RECT', 'NYRECT',ERR1,'MYY ',ERR2,JPRINT,

1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

ENDIF

C
C SET THE BOUNDARY INFORMATION FOR FORE-PIPE

C THE ORIGIN OF COORDINATES IS THE CENTER OF BEND PIPE CIRCLES

C DELTA-Y IS CONSTANT FOR THE WHOLE PIPE ALTHOUGH DELTA-X MAY

C VARY FROM ONE SECTION TO THE NEXT

C NOW COMPUTE THE STEP SIZES
C

XMAX - 0.
XMIN - -XBEF

YMIN - RMIN

YMAX - RMAX

DELX - (XMAX-XMIN)/(NXRECTl-1)

DELY - (YMAX-YMIN)/(NYRECT-1)
C

C COMPUTE (X,Y) COORDINATES FOR INFLOW/OUTFLOW BOUNDARIES
C

DO 50 IY - 1, NYRECT

XWEST(IY) XMIN
XEAST(IY) XMAX

YWEST(IY) YMIN + (IY-1.)*DELY

YEAST(IY) = YWEST(IY)
50 CONTINUE

C
C COMPUTE (X,Y) COORDINATES FOR TOP/BOTTOM BOUNDARIES

C

DO 60 IX - 1, NXRECT1

XSOUTH(IX) - XMIN + (IX-1)*DELX

XNORTH(IX) - XSOUTH(IX)

YSOUTH(IX) - YMIN

YNORTH(IX) - YMAX
60 CONTINUE

C
C SET INTERIOR GRID FOR FORE-PIPE

C

CALL G2IBOG (NXRECTI, NYRECT, XSOUTH, XEAST, XNORTH, XWEST,

1 YSOUTH, YEAST, YNORTH, YWEST, GEOPI )
C

C PROCESS THE BEND PIPE COORDINATES

ANGLE - ANGLE*RADIAN

XMIN - 0.
C

DO 70 IY - 1. NYRECT

XWEST(IY) - XMIN

YWEST(IY) - YMIN + (IY-1.)*DELY

XEAST(IY) YWEST(IY)*SIN(ANGLE)

YEAST(IY) YWEST(IY)*COS(ANGLE)

70 CONTINUE
C

DTHETA ANGLE/(NXRECT2-1.)

DO 80 IX 1. NXRECT2

THETA - (IX-1.)*DTHETA

XSOUTH(IX) - RMIN*SIN(THETA)

XNORTH(IX) - RMAX*SIN(THETA)
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YSOUTH(IX) RMIN*COS(THETA)

YNORTH(IX) = RAX*COS(THETA)

80 CONTINUE

C

C SET INTERIOR GRID FOR BEND-PIPE

C

CALL G2IBOG (NXRECT2, NYRECT, XSOUTH, XEAST, XNORTH, XWEST,
1 YSOUTH, YEAST, YNORTH, WEST, GEOP2 )

C PROCESS THE AFT-PIPE COORDINATES

DDL = XAFT/(NXRECT3-1.)
C

DO 90 IY 1, NYRECT

XWEST(IY) = XEAST(IY)
YWEST(IY) = YEAST(IY)

XEAST(IY) = XWEST(IY)+XAFT*COS(ANGLE)
YEAST(IY) = YWEST(IY)-XAFT*SIN(ANGLE)

90 CONTINUE

C

DO 100 IX = 1, NXRECT3
DL = (IX-1)*DDL

XSOUTH(IX) =XWEST(1)+DL*COS(ANGLE)

XNORTH(IX) =XWEST(NYRECT)+DL*COS(ANGLE)

YSOUTH(IX) =YWEST(1)-DL*SIN(ANGLE)

YNORTH(IX) =YWEST(NYRECT)-DL*SIN(ANGLE)

100 CONTINUE

C

C SET INTERIOR GRID FOR AFT-PIPE

C

CALL G2IBOG (NXRECT3, NYRECT, XSOUTH, XEAST, XNORTH, XWEST,
1 YSOUTH , YEAST, YNORTH, YWEST, GEOP3 )

C
C SOLDER THE THREE PIPES TOGETHER
C

NNODG2 = 0

NNODP1 = 0

NNODP2 0

NNODP3 = 0
C

DO 140 IY = 1, NYRECT
C
C PROCESS THE FIRST SECTION: INCLUDE ALL POINTS -- INTERIOR AND

C EXTERIOR
C

DO 110 IX 1, NXRECT1

NNODG2 = NNODG2 + 1

NNODP1 = NNODP1 + 
GEOMG2(I,NNODG2) = GEOP1(l,NNODP1)

GEOMG2(2,NNODG2) = GEOPI(2,NNODPI)
110 CONTINUE
C

C PROCESS THE SECOND SECTION: INCLUDE ALL POINTS EXCEPT THE LEFT
C OR INFLOW BOUNDARY

C

NNODP2 NNODP2 + 1

DO 120 IX = 2, NXRECT2
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NNODG2 - NNODG2 + 1
NNODP2 - NNODP2 + 

GEOMG2(1,NNODG2) GEOP2(1,NNODP2)

GEOMG2(2,NNODG2) GEOP2(2,NNODP2)

120 CONTINUE

C
C PROCESS THE THIRD SECTION: INCLUDE ALL POINTS EXCEPT THE LEFT

C OR INFLOW BOUNDARY

C

NNODP3 NNODP3 + 1

DO 130 IX = 2, NXRECT3

NNODG2 = NNODG2 + 1
NNODP3 = NNODP3 + 

GEOMG2(1,NNODG2) = GEOP3(1,NNODP3)
GEOMG2(2,NNODG2) = GEOP3(2,NNODP3)

130 CONTINUE

CONTINUE

READ THE BOUNDARY CONDITION INDICATORS FROM BEPIPE.DAT
DIRECHLET : 2 REFLECTION : 1 WALL : 3

READ

READ

READ

READ

READ

READ

READ

READ

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

(INPIPE,*)

IBCSW

IBCS

IBCSE

IBCE

IBCNE

IBCN

IBCNW

IBCW

INITIALIZE THE SPECIFIC BOUNDARY CONDITION POINTERS
THIS SECTION CAN BE MODIFIED LATER FOR EDGES WITH
MULTIPLE BOUNDARY CONDITION TYPES

NBNDG2 - O

SOUTHWESTERN CORNER

NBNDG2 = NBNDG2 + 1
IBNDG2(6,NBNDG2) IBCSW

SOUTHERN EDGE

DO 150 IBOUND 2,
NBNDG2

IBNDG2(S,NBNDG2)
CONTINUE

NXRECT-1
- NBNDG2 + 1
- IBCS

SOUTHEASTERN CORNER

NBNDG2 - NBNDG2 +

IBNDG2(5,NBNDG2) - IBCSE

1

EASTERN EDGE

DO 160 IBOUND - 2. NYRECT-1
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NBNDG2 = NBNDG2 + 1
IBNDG2(6,NBNDG2) - IBCE

CONTINUE

NORTHEASTERN CORNER

NBNDG2 - NBNDG2 + 1

IBNDG2(5,NBNDG2) - IBCNE

NORTHERN EDGE

DO 170 IBOUND - NXRECT-1, 2. -1
NBNDG2 - NBNDG2 + 1

IBNDG2(6,NBNDG2) - IBCN
CONTINUE

NORTHWESTERN CORNER

NBNDG2 - NBNDG2 + 

IBNDG2(5.NBNDG2) - IBCNW

WESTERN EDGE

DO 180 IBOUND - NYRECT-1,. 2, -1
NBNDG2 - NBNDG2 + 1
IBNDG2(6,NBNDG2) - IBCW

CONTINUE

WRITE ALL THE GEOMETRY INFORMATION ON INPUTG.DAT SO THAT IT
CAN BE READ BY G2INIT LATER ON

WRITE (INPUTG,190)

WRITE (INPUTG,190)
WRITE (INPUTG.200)

190 FORMAT(12I6)

200 FORMAT(4G16.7)

C

NXRECT, NYRECT, NBNDG2, NNODG2

(IBNDG2(6,IB). IB=1.NBNDG2)

(GEOMG2(1,IN),GEOMG2(2,IN), IN=1,NNODG2)

C NOW COMPUTE THE DEPENDENT VARIABLES

C INITIALIZE VALUES FOR OXYGEN FOR LIGHTHILL DISSOCIATING GAS
C

THETAD 

RHOD -

UGASFL -
AMWTA -

THETAD -

RHOD -

59600.
160.E03

8314.3

16.0
THETAD/TREFFL

RHOD/RHORFL
C

ONEPAl I 1. + ALPHAR
C ONEPA1 IS + ALPHAR

C COMPUTE THE GRID AND OTHER QUANTITIES

DO 230 I - 1, NNODG2

XI = GEOMG2(1,I)

YI - GEOMG2(2,I)
VCOMP - 0.

C
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C INLET STATION

C 
IF (XI .LE. XCONTA .AND. YI .GE. RMIN) THEN

P - PRESSI

T - TEMPI

RHO - RHOI
ALPHA - ALPHAI

UCOMP - UBEFOR

IF (I .EQ. 1) GOTO 220
C DO LINEAR INTERPOLATION FOR NON-EQUILIBRIUM LH-SHOCK,

C IF NEED BE, OTHERWISE USE STEP FUNCTION INFORMATION

IF (IGAS .EQ. 2) THEN
DO 210 IP - 1. NPOINT-1

IF (XI .GE. X$(IP+1) .AND. XI .LE. X$(IP)) THEN

XRAT (XI-X$(IP))/(X$(IP+I)-X$(IP))
DELTAA = A$(IP+1) - A$(IP)

DELTAP = P$(IP+1) - P$(IP)

DELTAR = R$(IP+I) - R(IP)
DELTAT - T$(IP+I) - T$(IP)

DELTAU - U$(IP+1) - U(IP)
ALPHA = A$(IP) + DELTAA*XRAT

P = P$(IP) + DELTAP*XRAT

RHO - R$(IP) + DELTAR*XRAT

T = T$(IP) + DELTAT*XRAT
UCOMP = U$(IP) + DELTAU*XRAT
GOTO 220

ENDIF
210 CONTINUE

ENDIF
C
C EXIT STATION
C

ELSE

P - PRESSE

T = TEMPE
RHO - RHOE

ALPHA - ALPHAE

UCOMP - UE

ENDIF

220 V2 = UCOMP*UCOMP + VCOMP*VCOMP

ETRHO - (TFACTR*T +ALPHA*THETAD)/ONEPA1 + V2/2.
ET - ETRHO*RHO

DPENG2(1) RHO

DPENG2(2) - DPENG2(1)*UCOMP

DPENG2(3) - DPENG2(I)*VCOMP

DPENG2(4) - ET
DPENG2(5) - DPENG2(1)*ALPHA

WRITE (INPUTD,240) (DPENG2(K), K = 1, NTOTAL)
230 CONTINUE

240 FORMAT(8G15.7)
C
C WRITE THE ADDITIONAL GRID INFORMATION ON AN UNFORMATTED FILE

C FOR THE NON-EQUILIBRIUM LIGHTHILL-SHOCK, SO THAT IT CAN BE USED
C BY A PRE-EMBEDDING ROUTINE

C
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IF (IGAS .EQ. 2) THEN
OPEN (UNIT=58, FILE='LHSHOC.INT', STATUS='NEW',

1 FORM='UNFORMATTED')
WRITE(58) NPOINT, NTOTAL

DO 250 IP = 1, NPOINT
UCOMP = U$(IP)
V2 = UCOMP*UCOMP

ETRHO = (TFACTR*T$(IP)+A$(IP)*THETAD)/ONEPA1 +V2/2.
DPENG2(1) = R$(IP)
DPENG2(2) = R$(IP)*U$(IP)
DPENG2(3) = O.

DPENG2(4) = ETRHO*R$(IP)

DPENG2(6) = DPENG2(1)*A$(IP)

WRITE (58) X$(IP),(DPENG2(K), K = 1, NTOTAL)
250 CONTINUE

ENDIF

C OPTION TO PLOT THE DATA

WRITE(6,*) ' WANT TO PLOT DATA'

READ (5,260) YESNO
260 FORMAT(A1)

IF (YESNO .NE. 'Y' .AND. YESNO .NE. 'y') STOP ' THE END'

CALL GRINIT(5,6,MTITLE)

REWIND (INPUTD)

N$(1) = NXRECT
NLINE 1= 

IOPT$(1) = 2
INDGR = 21

PLTITL(1:9) - 'DISTANCE-'

DO 270 I = 1, N$(1)

X$(I) = GEOMG2(1,I)
VCOMP = 0.

READ (INPUTD,240) (DPENG2(K), K = 1, NTOTAL)

RHO = DPENG2(1)
UCOMP = DPENG2(2)/DPENG2(1)

ETRHO = DPENG2(4)/DPENG2(1)
ALPHA = DPENG2(5)/DPENG2(1)
V2 = UCOMP*UCOMP + VCOMP*VCOMP
TDUM = ETRHO - V2/2.
TDUM - TDUM*ONEPA1

TDUM - TDUM - ALPHA*THETAD

T$(I) = TDUM/TFACTR
A$(I) = ALPHA
RS(I) = RHO
U$(I) = UCOMP
P$(I) = RHO*T$(I)*(1.+ALPHA)/ONEPA1

270 CONTINUE

280 WRITE(6,290)

290 FORMAT(1X,'T

1 5X,'1
2 5X,'2

3 5X,'3

HE FOLLOWING VARIABLES CAN

. DEGREE OF DISSOCIATION'/

.PRESSURE '/

.DENSITY '/

BE PLOTTED VERSUS X'/
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5X,'4. TEMPERATURE

5X,'5. VELOCITY
5X,'6. EXIT

I/
/ 

./ ===> ',$)

READ (5,*) IPLOT

PLTITL(10:22) = ElTAX(IPLOT)

IF (IPLOT .EQ. 1) THEN

CALL GRLINE(IOPT$.NLINE,PLTITL,INDGR,X$,A$,N$)

ELSE IF (IPLOT .EQ. 2) THEN
CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,X$,P$.N$)

ELSE IF (IPLOT .EQ. 3) THEN

CALL GRLINE(IOPT$,NLINEPLTITL,INDGR,X$,R$,N$)
ELSE IF (IPLOT .EQ. 4) THEN

CALL GRLINE(IOPT$,NLINE,PLTITLINDGRX$,T$,N$)
ELSE IF (IPLOT .EQ. 5) THEN

CALL GRLINE(IOPT$,NLINEPLTITL,INDGR,X$,U$,N$)

ENDIF

WRITE (6,*) ' WANT TO PLOT MORE'

READ (5,260) YESNO

IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') GOTO 280

EXAMPLE FILE

1.
1.
0.5
1.0
90.0
-0.5
11
11
11
6

2
3
1
1
1
3
2
2

: BEPIPE.DAT

XBEF

XAFT

RMIN

RMAX

ANGLE

XCONTA

NXRECT1

NXRECT3

NXRECT3

NYRECT

IBCSW

IBCS

IBCSE

IBCE

IBCNE

IBCN

IBCNW

IBCW

STOP ' THE END'

END
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D.2 Block grid generator

This section contains information on the interactive block grid generator GNBLOC.

D.2.1 Common File

The file GNBLOC.INC includes declaration and common block statements. This

file is to be included with the appropriate INCLUDE statements in the following FORTRAN

code listing.

PARAMETER (MBLOCK=20, MPOINT=100)

COMMON/GENBLO/ NNODEH, NBLOCK. IBE. IBW, IBS, IBN, ISBLOCK,
1 NXBLOCK. NYBLOCK, XSBLOCK, YSBLOCK,

2 XNBLOCK, YNBLOCK, XEBLOCK., YEBLOCK,

3 XWBLOCK, YWBLOCK

DIMENSION IBE(MBLOCK,MPOINT), IBW(MBLOCK,MPOINT),
1 IBS(MBLOCK,MPOINT), IBN(MBLOCK,MPOINT),

2 ISBLOCK(MBLOCK,4) .

3 NXBLOCK(MBLOCK) , NYBLOCK(MBLOCK).
4 XSBLOCK(MBLOCK,MPOINT), YSBLOCK(MBLOCK,MPOINT).
5 XNBLOCK(MBLOCK ,MPOINT), YNBLOCK(MBLOCK.MPOINT),

6 XEBLOCK(MBLOCK.MPOINT), YEBLOCK(MBLOCK,MPOINT),

7 XWBLOCK(MBLOCK,MPOINT), YWBLOCK(MBLOCK,MPOINT)
C This is a set of parameters for use with GR_GET_BIT and
C GRSETBIT
C

PARAMETER (IGR$CALCULATE_SCALES - 1)
PARAMETER (IGRSDEPENDENT_SCALES 2)
PARAMETER (IGRSDRAW_AXES - 4)

PARAMETER (IGRSDRAWGRID - 8)
PARAMETER (IGR$INTERACTIVE = 16)
PARAMETER (IGR$NO_LOGO = 32)

PARAMETER (IGRSNO_MENUS = 64)
PARAMETER (IGRSBIT_CALCULATE_SCALES 1)
PARAMETER (IGRSBIT_DEPENDENT_SCALES = 2)

PARAMETER (IGR$BITDRAW_AXES = 3)
PARAMETER (IGRSBIT_DRAW_GRID = 4)
PARAMETER (IGRSBIT_INTERACTIVE 5)

PARAMETER (IGRSBIT_NO_LOGO 8)
PARAMETER (IGR$BIT_NO_MENUS - 7)

C

C parameters for GRLINE
C

PARAMETER (IGR$CLOSED_CURVE - 1)

PARAMETER (IGRSPLOT_LINE - 2)
PARAMETER (IGRSPLOTSYMBOL - 4)

PARAMETER (IGR*SMALL_SYMBOL - 8)
PARAMETER (IGR$SYMBOLFREQUENCY = 1024)

PARAMETER (IGR$SYMBOL_TYPE = 65536)
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PARAMETER (IGR$BITCLOSEDCURVE = 1)

PARAMETER (IGR$BITPLOTLINE = 2)

PARAMETER (IGR$BITPLOTSYMBOL = 3)
PARAMETER (IGR$BITSMALLSYMBOL 4)

D.2.2 Link information

The file GNBLOC.COM contains link information for the GNBLOC code.

$ LINK GNBLOC, GNSEPB, GNBNDG, GNREDN, ZRGNBN, GNDUMY,-
GNDEBG. GNCONTR, GNGKIN, GNCHAN, GNLNOD, GNCLPO, GNWEDG, GNPINJ.-

PERVAIZ . STAR. OBJ]PSREDU [PERVAIZ.STAR.OBJ]PSWRTU,-
[PERVAIZ. STAR.OBJ] G2DIVU tPERVAIZ.STAR.OBJ] G2CLPU -

[PERVAIZ .STAR.OBJ] G2BPIN, [PERVAIZ.STAR.OBJ]G2NODE,-
[PERVAIZ.STAR.OBJJA2CEWC, PERVAIZTAR.A2CEWC PLT.OBJ]ZRPLTG,-

[PERVAIZ.STAR.OBJ]M2AREA,-

[PERVAIZ.ULT.OBJ]UL2LIB/LIB, [PERVAIZ.GRAFIC1]NEWGRAFIC/LIB

D.2.3 Synopsis of variables

The file GNBLOC.DOC defines some variables in the GNBLOC code. For other

variables consult the third section of this appendix.

SYNOPSIS OF VARIABLES IN GNBLOC

IBS (IB,IP)

IBW (IB.IP)

ISBLOCK(IBIP)

THE ACTUAL NODE VALUE FOR THE POINT "IP" ON THE

SOUTHERN SURFACE OF BLOCK "IP"

THE ACTUAL NODE VALUE FOR THE POINT "IP" ON THE

WESTERN SURFACE OF BLOCK "IP"

CONNECTIVITY ARRAY FOR JOINING SURFACES OF VARIOUS

BLOCKS. "IB" INDICATES A BLOCK AMONG A TOTAL OF

"NBLOCK" BLOCKS. "IS" INDICATES THE SIDE OR SURFACE

WITH THE FOLLOWING MEANING:

1: SOUTH 2: EAST

3: NORTH 4: WEST

THE VALUE OF THE ARRAY HAS THE FOLLOWING MEANING:
>0 SURFACE IS NOT ON A PHYSICAL BOUNDARY

<0 SURFACE IS ON A PHYSICAL BOUNDARY AND INDICATES

BOUNDARY CONDITION TYPE.

POSITIVE VALUE INDICATES THAT THE BOUNDARY POINTS

HAVE BEEN INCLUDED IN THE BLOCK WITH THAT VALUE AND
HENCE MUST NOT BE INCLUDED HERE. A ZERO VALUE
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INDICATES THAT THE BOUNDARY POINTS MUST BE INCLUDED

IN THE CURRENT BLOCK.

TOTAL NUMBER OF BLOCKS

CURRENT TOTAL NUMBER OF NODES

NUMBER OF HORIZONTAL POINTS IN BLOCK IB

NUMBER OF VERTICAL POINTS IN BLOCK IB

XSBLOCK(IB,IP)

YSBLOCK(IB,IP)

XWBLOCK(IB,IP)

YWBLOCK(IB, IP)

X-COORDINATE OF THE POINT

BOUNDARY IN BLOCK "IB"

Y-COORDINATE OF THE POINT

BOUNDARY IN BLOCK "IB"

X-COORDINATE OF THE POINT

BOUNDARY IN BLOCK "IB"

Y-COORDINATE OF THE POINT

BOUNDARY IN BLOCK "IB"

"IP" ON THE SOUTHERN

"IP" ON THE SOUTHERN

"IP" ON THE WESTERN

"IP" ON THE WESTERN

FOR OTHER VARIABLES AND COMMON BLOCK REFER

STAR.DOC IN THE STAR CODE LISTING.

TO THE FILE

D.2.4 Input to GNBLOC

The code GNBLOC requires the specification of the boundary points and coordinates

of each block in the grid structure. It also requires the specification of the connectivity

of the individual blocks in the overall assembly. As an example, a listing of a program

STRUT is provided here that generates this information. Figure (D.2) shows the blocks,

the number of points on each surface and the connectivity of blocks.

PROGRAM STRUT

PARAMETER (MBLOCK-20, MPOINT-IO0)

1

2
3
4
5

DIMENSION XCOR(MBLOCK4), YCOR(MBLOCK,4), ISBLOCK(MBLOCK,4).
NXBLOCK(MBLOCK) , NYBLOCK(MBLOCK),

XSBLOCK(MBLOCKMPOINT), YSBLOCK(MBLOCK,MPOINT),

XNBLOCK(MBLOCK,MPOINT), YNBLOCKR(MBLOCK.MPOINT),

XEBLOCK(MBLOCK,MPOINT), YEBLOCK(MBLOCK,MPOINT),

XWBLOCK(MBLOCK,MPOINT), YWBLOCK(MBLOCK,MPOINT)

C THIS PROGRAM GENERATES THE BOUNDARIES OF VARIOUS BLOCK FOR A

C SCRAM-JET CASE GRID IN THE A. KUMAR PAPER. THE OUTPUT WRITTEN

C BY THIS PROGRAM IS PROCESSED BY GENBLC.
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Figure D.2: Blocks and their connectivity for a two strut geometry.
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IGENBC 51
PI = 3.1415926

RADIAN PI/180.

OPEN (UNIT = IGENBC, FILE = 'GNBINP.DAT', STATUS = 'NEW')

SETUP THE DETAILS OF EACH BLOCK

ALPHA

TANALP

BETA
c BETA

TANBET

= 6.668*RADIAN
= TAN(ALPHA)

= 11.873*RADIAN

= 16.*RADIAN

= TAN(BETA)

C BLOCK 1

XCOR(1,1) =-0.2

XCOR(1,2) = 0.

XCOR(1.3) = 0.
XCOR(1,4) =-0.2

YCOR(1,1) =-0.6

YCOR(1,2) =-0.5
YCOR(1,3) -0.2

YCOR(1,4) =-0.2

NXBLOCK(1) = 3
NYBLOCK(1) = 5
ISBLOCK(1,l) =-3
ISBLOCK(1,2) = 0
ISBLOCK(1,3) = 0
ISBLOCK(1,4) --2

C BLOCK 2

XCOR(2,1) = 0.
XCOR(2,2) = 0.6
XCOR(2,3) = 0.6
XCOR(2,4) = 0.
YCOR(2,1) =-0.s
YCOR(2,2) = YCOR(l,l) + XCOR(2,2)*TANALP
YCOR(2,3) -0.2

YCOR(2.,4) =-0.2
NXBLOCK(2) = 7
NYBLOCK(2) = NYBLOCK(1)
ISBLOCK(2,1) =-3
ISBLOCK(2.2) = 0
ISBLOCK(2,3) - 0

ISBLOCK(2,4) - 1

C BLOCK 3

XCOR(3,1)

XCOR(3,2)

XCOR(3,3)

XCOR(3,4)

YCOR(3.1)

YCOR(3,2)

YCOR(3,4)

= XCOR(2,2)
= 1.7

= XCOR(3,2)

- XCOR(2,3)
- YCOR(2,2)

= YCOR(2,1) + XCOR(3,2)*TANALP
= YCOR(2,3)
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YCOR(3,3) = YCOR(3,4)
NXBLOCK(3) 10

NYBLOCK(3) = NYBLOCK(1)
ISBLOCK(3.1) =-3

ISBLOCK(3,2) = 0
ISBLOCK(3,3) =-3
ISBLOCK(3,4) = 2

C BLOCK 4

XCOR(4,1) = XCOI
XCOR(4,2) - XCOI
XCOR(4,3) - XCOI
XCOR(4.4) - XCOI
YCOR(4,1) = YCOI

YCOR(4,2) = YCO
YCOR(4,3) - -0.:

YCOR(4,4) = YCOI
NXBLOCK(4) = 4
NYBLOCK(4) = NYBI
ISBLOCK(4,1) =-3

ISBLOCK(4,2) = 0
ISBLOCK(4,3) =-3

ISBLOCK(4,4) = 3

C BLOCK 5

XCOR(6,1)

XCOR(5,2)

XCOR(S,3)

XCOR(5,4)

YCOR(S,1)
YCOR(5,2)

YCOR(5,4)

YNEXT
1

YNEXT

YCOR(5.3)

NXBLOCK(6)

NYBLOCK(5)

ISBLOCK(5,1

ISBLOCK(5,2

ISBLOCK(5,:

ISBLOCK(5,4

t(3,2)

R(4,1) + 0.262
R(4,2)

R(3,3)
R(3,2)

R(2,1) + XCOR(,
1625
R(3,3)

LOCK(l)

4,2)*TANALP

= XCOR(4,2)
= 2.3063

= XCOR(5,2)
= XCOR(4,3)
= YCOR(4,2)
= YCOR(2,1) + XCOR(5,2)*TANALP
= YCOR(4,3)
= YCOR(4,4) + (YCOR(4,3)-YCOR(4,4))*

(XCOR(5,2)-XCOR(4,4))/(XCOR(4,3)-XCOR(4,4))

= 0.56*(YNEXT+YCOR(4.3))
= YNEXT
=6

3)

4)

NYBLOCK(1)

-=-3
=-1
=0
=4

C BLOCK 6

XCOR(6,1) = XCOR(5,4)
XCOR(6,2) = XCOR(5,3)
XCOR(6,3) = XCOR(6,2)

XCOR(6,4) = XCOR(6,1)
YCOR(6,1) = YCOR(6,4)
YCOR(6,2) = YCOR(5,3)
YCOR(6,3) =-YCOR(6,2)
YCOR(6,4) =-YCOR(6,1)
NXBLOCK(6) = NXBLOCK(5)
NYBLOCK(6) = 7
ISBLOCK(6,1) = 5
ISBLOCK(6,2) =-1
ISBLOCK(6,3) = 0
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ISBLOCK(6,4) = 0

C BLOC 7
XCOR(7,1) - XCOR(5,4)
XCOR(7,2) - XCOR(5,3)
XCOR(7,3) = XCOR(5,2)
XCOR(7,4) = XCOR(56,1)
YCOR(7,1) =-YCOR(5.4)
YCOR(7,2) =-YCOR(,3)
YCOR(7,3) -YCOR(56,2)
YCOR(7,4) -- YCOR(5,1)
NXBLOCK(7) = NXBLOCK(5)
NYBLOCK(7) = NYBLOCK(5)
ISBLOCK(7,1) 6

ISBLOCK(7,2) =-1
ISBLOCK(7,3) --3

ISBLOCK(7,4) = 0

C BLOCK 8

XCOR(8,1) = XCOR(4,4)
XCOR(8,2) - XCOR(4,3)
XCOR(8,3) = XCOR(4,2)
XCOR(8.4) = XCOR(4,1)
YCOR(8,1) =-YCOR(4,4)

YCOR(8,2) =-YCOR(4,3)

YCOR(8,3) =-YCOR(4,2)
YCOR(8,4) =-YCOR(4,1)
NXBLOCK(8) = NXBLOCK(4)
NYBLOCK(8) = NYBLOCK(4)
ISBLOCK(8,1) =-3
ISBLOCK(8,2) = 7
ISBLOCK(8,3) =-3
ISBLOCK(8,4) = 0

C BLOCK 9

XCOR(9,1) = XCOR(3.4)
XCOR(9,2) = XCOR(3,3)
XCOR(9,3) - XCOR(3,2)
XCOR(9,4) = XCOR(3,1)
YCOR(9,1) =-YCOR(3,4)
YCOR(9,2) =-YCOR(3,3)
YCOR(9,3) =-YCOR(3,2)
YCOR(9,4) =-YCOR(31)
NXBLOCK(9) - NXBLOCK(3)
NYBLOCK(9) - NYBLOCK(3)
ISBLOCK(9,1) =-3
ISBLOCK(9,2) - 8
ISBLOCK(9,3) -- 3
ISBLOCK(9,4) = 0

C BLOCK 10
XCOR(10,1) = XCOR(2,4)
XCOR(10.2) = XCOR(2,3)
XCOR(10,3) = XCOR(2,2)
XCOR(10,4) - XCOR(2,1)
YCOR(10,1) -YCOR(2,4)
YCOR(10,2) -- YCOR(2.3)
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YCOR(10,3) -YCOR(2,2)
YCOR(10,4) =-YCOR(2, l)
NXBLOCK(10) NXBLOCK(2)
NYBLOCK(10) NYBLOCK(2)
ISBLOCK(10,1) - 0
ISBLOCK(10,2) = 9
ISBLOCK(10,3) --3

ISBLOCK(10,4) = 0

C BLOCK 11
XCOR(11,1) = XCOR(1,4)
XCOR(1i.2) = XCOR(1,3)
XCOR(11,3) = XCOR(1,2)
XCOR(11,4) = XCOR(1,1)
YCOR(1ll,1) =-YCOR(1,4)
YCOR(11,2) =-YCOR (1.3)
YCOR(L1,3) =-YCOR(1,2)
YCOR(11,4) =-YCOR(1.1)
NXBLOCK(11) - NXBLOCK(1)
NYBLOCK(11) = NYBLOCK(1)
ISBLOCK(11,1) = 0
ISBLOCK(11,2) = 10

ISBLOCK(11,3) -3
ISBLOCK(11,4) --2

C BLOCK 12

XCOR(12 ,1) -
XCOR(12,2) =
XCOR(12,3) =
XCOR(12,4) =

YCOR(12, 1) =

YCOR(12,2) =
YCOR(12,3) =
YCOR(12,4) =
NXBLOCK (12) =

NYBLOCK(12) -

ISBLOCK(12, 1)
ISBLOCK(12, 2)
ISBLOCK(12,3)
ISBLOCK(12.4)

C BLOCK 13

XCOR(13, 1) =
XCOR(13,2) -
XCOR(13,3) =
XCOR(13,4) =

YCOR(13,1) =
YCOR(13,2) =

YCOR(13,3) =

YCOR(13,4) =

NXBLOCK(13) =
NYBLOCK(13) =
ISBLOCK(13,1)
ISBLOCK(13, 2)
ISBLOCK(13,3)
ISBLOCK(13,4)

XCOR(1,4)
XCOR(1,3)
XCOR(11,2)
XCOR(11, 1)
YCOR(1 4)
YCOR(1,3)
YCOR(11,2)
YCOR(1l, 1)
NXBLOCK (1)

NYBLOCK(6)

-01 

--2

XCOR(2.4)
XCOR(2,3)
XCOR(10,2)
XCOR(10,1)
YCOR(2,4)

YCOR(2.3)
YCOR(10,2)
YCOR(10,1)
NXBLOCK(2)
NYBLOCK(6)
=2
=0
= 10
=12
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C BLOCK 14

XCOR(14,1) - XCOR(3,4)

XCOR(14.2) - 1.2

XCOR(14,3) - XCOR(14,2)

XCOR(14,4) = XCOR(14,1)
YCOR(14.1) = YCOR(3,.4)

YCOR(14,2) = YCOR(14,1) + TANBET*(XCOR(14,2)-XCOR(14,1))
YCOR(14,3) =-YCOR(14,2)

YCOR(14,4) =-YCOR(14,1)
NXBLOCK(14) - 8

NYBLOCK(14) - NYBLOCK(6)

ISBLOCK(14,1) --3
ISBLOCK(14,2) = 0
ISBLOCK(14,3) --3
ISBLOCK(14,4) =13

C BLOCK 16

XCOR(15, 1)

XCOR(15,2)

XCOR(15.3)

XCOR(16,4)

YCOR(15 ,l)

YCOR(lS,2)

YCOR(15,3)

YCOR(16,4)

NXBLOCK(15)

NYBLOCK(15)

ISBLOCK(15,:

ISBLOCK(16,:

ISBLOCK(16,:

ISBLOCK(15,'

C BLOCK 16

XCOR(L,l1) =

XCOR(16,2) =

XCOR(16,3) =
XCOR(16,4) =

YCOR(le,1) =

YCOR(le,2) =

YCOR(16,3) =
YCOR(1e,4) =

NXBLOCK(16) =

NYBLOCK(16) =
ISBLOCK(16,1)

ISBLOCK(16,2)

ISBLOCK(16,3)

ISBLOCK(16,4)

= XCOR(14,2)

= XCOR(15.,1) + 0.0524
= XCOR(15,2)
- XCOR(15,1)

= YCOR(14,2)
= YCOR(1S,1)
=-YCOR(1S,2)

=-YCOR(15,1)
=2
= NYBLOCK(13)

L) =-3
2) - 0

3) -3
1) =14

XCOR(156,2)

XCOR(4,3)

XCOR(7, 1)

XCOR(15,3)

YCOR(15,2)

YCOR(4,3)

YCOR(7,1)

YCOR(15,3)
8

NYBLOCK(13)
--3

.=6
=-3
=15

C
C INPUT THE TOTAL NUMBER OF BLOCKS, NBLOCK, TO BE LINKED
C

NBLOCK 16

WRITE (IGENBC,*) NBLOCK

DO 10 IBLOCK 1, NBLOCK
SOUTHERN BOUNDARY

DX (XCOR(IBLOCK,2)-XCOR(IBLOCK.1))/(NXBLOCK(IBLOCK)-I.)

DY - (YCOR(IBLOCK,2)-YCOR(IBLOCK,1))/(NXBLOCK(IBLOCK)-I.)

C
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DO IX - 1, NXBLOCK(IBLOCK)
XSBLOCK(IBLOCK,IX) = XCOR(IBLOCK,1) + DX*(IX-1)
YSBLOCK(IBLOCK,IX) - YCOR(IBLOCK,1) + DY*(IX-1)

ENDDO
C EASTERN BOUNDARY

DX - (XCOR(IBLOCK,3)-XCOR(IBLOCK,2))/(NYBLOCK(IBLOCK)-1.)
DY - (YCOR(IBLOCK,3)-YCOR(IBLOCK,2))/(NYBLOCK(IBLOCK)-I.)

DO IX = 1, NYBLOCK(IBLOCK)

XEBLOCK(IBLOCK,IX) XCOR(IBLOCK,2) + DX*(IX-1)
YEBLOCK(IBLOCK,IX) = YCOR(IBLOCK.2) + DY*(IX-1)

ENDDO

C NORTHERN BOUNDARY

DX = (XCOR(IBLOCK,3)-XCOR(IBLOCK,4))/(NXBLOCK(IBLOCK)-1.)
DY (YCOR(IBLOCK.3)-YCOR(IBLOCK.4))/(NXBLOCK(IBLOCK)-1.)

DO IX 1, NXBLOCK(IBLOCK)
XNBLOCK(IBLOCK,IX) = XCOR(IBLOCK,4) + DX*(IX-1)
YNBLOCK(IBLOCK,IX) = YCOR(IBLOCK,4) + DY*(IX-1)

ENDDO

C WESTERN BOUNDARY

DX = (XCOR(IBLOCK.4)-XCOR(IBLOCK, 1))/(NYBLOCK(IBLOCK)-i.)
DY (YCOR(IBLOCK,4)-YCOR(IBLOCK, 1))/(NYBLOCK(IBLOCK)-i.)
DO IX - 1, NYBLOCK(IBLOCK)

XWBLOCK(IBLOCK.IX) = XCOR(IBLOCK.1) + DX*(IX-1)
YWBLOCK(IBLOCK,IX) = YCOR(IBLOCK,1) + DY*(IX-1)

ENDDO

10 CONTINUE

C

DO 50 IBLOCK - 1, NBLOCK
C
C INPUT THE NUMBER OF HORIZONTAL AND VERTICAL POINTS IN EACH BLOCK
C

WRITE (IGENBC,*) NXBLOCK(IBLOCK), NYBLOCK(IBLOCK)
C
C WRITE THE GEOMETRY OF SOUTHERN AND NORTHERN BOUNDARY

C

DO 30 IX - 1, NXBLOCK(IBLOCK)

WRITE (IGENBC,*) XSBLOCK(IBLOCK.IX). YSBLOCK(IBLOCK,IX),
1 XNBLOCK(IBLOCK,IX), YNBLOCK(IBLOCK,IX)

30 CONTINUE
C

C WRITE THE GEOMETRY OF EASTERN AND WESTERN BOUNDARY
C

DO 40 IY - 1, NYBLOCK(IBLOCK)

WRITE (IGENBC,*) XEBLOCK(IBLOCK.IY), YEBLOCK(IBLOCK.IY).
1 XWBLOCK(IBLOCK,IY), YWBLOCK(IBLOCK,IY)

40 CONTINUE
C

C INPUT THE CONNECTIVITY ARRAY FOR JOINING SURFACES OF

C VARIOUS BLOCKS, 0 OR >0 MEANS THAT THE SURFACE IS NOT

C ON A PHYSICAL BOUNDARY, WHEREAS <0 MEANS THAT IT IS
C ON A PHYSICAL BOUNDARY (B.C. TYPE IS USED AS NEGATIVE).

C POSITIVE VALUE INDICATES THE ADJASCENT BLOCK, WHEREAS
C ZERO MEANS THE ADJACENT BLOCK DOES NOT MATTER
C

WRITE (IGENBC,*) (ISBLOCK(IBLOCK.JS), JS-1.4)
C
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60 CONTINUE

C

C SPECIAL CORNER BOUNDARY CONDITIONS
C THE NEGATIVE VALUES INDICATE THAT NO CHANGE IS DESIRED

C AT THE CORNER BOUNDARY CONDITIONS

IBCSW - 2

IBCSE 3

IBCNE 3

IBCNW - 2

WRITE (IGENBC,*) IBCSW, IBCSE, IBCNE, IBCNW

END

D.2.5 Listing of GNBLOC code

Main routine

PROGRAM GNBLOC

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[PERVAIZ.TWODO.INCJ
'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO. INC

' PERVAIZ.TWODO.INC)
' [PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]
'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'GNBLOC. INC/LIST'

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC /LIST'

CHCOMN.INC /LIST'

E2COMN.INC /LIST'

FLCOMN.INC /LIST'

G2COMN.INC/LIST'

IOCOMN.INC/LIST'

KYCOMN.INC/LIST'

PRCOMN.INC /LIST'

TICOMN.INC /LIST'

REAL*4 GRDUMY(30), ALIMITS(6), XMIN,XMAX,YMIN,YMAX
DIMENSION ZX(MNODG2), ZY(MNODG2)

CHARACTER PLTITL*96

EXTERNAL ZRGNBN, ZRPLTG

C THIS PROGRAM GENERATES A GRID BY SOLDERING VARIOUS BLOCKS OF

C SUB-GRIDS. EACH SUB-GRID IS GENERATED BY AN ALGEBRAIC METHOD.

C

C INITIALIZE POINTERS FOR ALL LEVELS
C

DO 10 ILEVEL - -MLVLG2, MLVLG2

ILVLG2(1,ILEVEL) - 0

ILVLG2(2,ILEVEL) = 0
ILVLG2(3.ILEVEL) = O

10 CONTINUE
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C
C INITIALIZE THE NEIGHBOUR CELL ARRAY

C _

DO 20 K - 1. 4

DO 20 KN - 1, MNODG2

NEIBG2(K.KN) 0
20 CONTINUE

JPNTRE - 51
JGIVEN = 23
JPRINT - 6
JTERMI = 6
JTERMO - 6

C
MTITLE ' '
WRITE(PLTITL.25)

25 FORMAT(' X-AXIS Y-AXIS GRID PLOT ')

CALL GRINIT(JTERMI, JTERMO, MTITLE)

WRITE(JTERMO,30)

30 FORMAT(SX,'INPUT IFROMU TO INDICATE PLACE FROM WHERE THE',
1 1X,'GRID INFORMATION IS TO BE READ'/

2 10X,'l1. BLOCK BOUNDARY INPUT DATA (GNBINP.DAT) '/

3 O1X,'2. BLOCK OUTPUT DATA (GNBLOC.DAT) '/
4 O1X,'3. ACTUAL PREVIOUS RUN DATA (JPNTRE.DAT) '/
5 lox,'===> ',$)

READ (JTERMI,*) IFROMU

GOTO (40,1100,2100), IFROMU
STOP ' THE END'

C

40 OPEN (UNIT = JPNTRE, FILE = 'GNBINP.DAT', STATUS = 'OLD')

OPEN (UNIT = JGIVEN, FILE = 'GNBINP.OUT', STATUS = 'NEW')
C

C INPUT THE TOTAL NUMBER OF BLOCKS, NBLOCK, TO BE LINKED
C

READ (JPNTRE,*) NBLOCK

DO 70 IBLOCK = 1, NBLOCK
C

C INPUT THE NUMBER OF HORIZONTAL AND VERTICAL POINTS IN EACH BLOCK
C

READ (JPNTRE,*) NXBLOCK(IBLOCK), NYBLOCK(IBLOCK)
C

C READ THE GEOMETRY OF SOUTHERN AND NORTHERN BOUNDARY
C

DO 60 IX - 1, NXBLOCK(IBLOCK)

READ (JPNTRE.*) XSBLOCK(IBLOCKIX), YSBLOCK(IBLOCK,IX),
1 XNBLOCK(IBLOCK,IX), YNBLOCK(IBLOCK,IX)

50 CONTINUE
C

C READ THE GEOMETRY OF EASTERN AND WESTERN BOUNDARY
C

DO 60 IY - 1, NYBLOCK(IBLOCK)
READ (JPNTRE.,*) XEBLOCK(IBLOCK,IY), YEBLOCK(IBLOCK,IY),

1 XWBLOCK(IBLOCK,IY). YWBLOCK(IBLOCK,IY)
60 CONTINUE

C
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INPUT THE CONNECTIVITY ARRAY FOR JOINING SURFACES OF

VARIOUS BLOCKS, 0 OR >0 MEANS THAT THE SURFACE IS NOT

ON A PHYSICAL BOUNDARY, WHEREAS <0 MEANS THAT IT IS
ON A PHYSICAL BOUNDARY (B.C. TYPE IS USED AS NEGATIVE).

POSITIVE VALUE INDICATES THE ADJASCENT BLOCK, WHEREAS
ZERO MEANS THE ADJACENT BLOCK DOES NOT MATTER

READ (JPNTRE,*) (ISBLOCK(IBLOCK,JS), JS=1,4)
C

70 CONTINUE

C

C READ THE SPECIAL BOUNDARY CONDITION POINTERS AT CORNERS
READ (JPNTRE,*) IBCSW, IBCSE, IBCNE, IBCNW

WRITE(JTERMO,80)

80 FORMAT(BX,'INPUT INDGF

I lOX,'-i NEGI

2 lOX,' 0 PLO1
3 lo0X, 1 AUTC

4 lOX,' 2 INPt

5 lOX,' 4 DRAV
6 lo0X,' 8 DRAV

7 lOX,' 16 PLOI
8 lOX,' >100 NO E
8 lOX,'===> ',$)

READ (JTERMI,*) INDGR

{ IN A BINARY-CODED MANNER '/

LTIVE TO SKIP GRAPH'/

r FULL DATA'/
]MATIC SCALE CALCULATION'/

UT YOUR OWN SCALES'/

I AXES'/
I BACKGROUD GRID'/

T ON TERMINAL'/

SYMBOLS'/

Al = -2

IF (INDGR .GE. 100) THEN
INDGR INDGR - 100

Al = O

ENDIF

IF (INDGR .LT. O) GOTO 100

IF (INDGR .NE. O) GOTO 96

INDGR

XMIN

XMAX

YMIN

YMAX

= 22
= 1000.
-1000.
= 1000.

=-1000.

DO 90 IBLOCK 1,

DO 93 IY = 1,
YMIN - MIN

YMAX = MAX
93 CONTINUE

DO 95 IX 1,

XMIN MIN

XMAX = MAX
95 CONTINUE

90 CONTINUE

I NBLOCK
NYBLOCK(IBLOCK)

(YMIN,YSBLOCK(IBLOCK,IY))
(YMAX,YNBLOCK(IBLOCK,IY))

NXBLOCK(IBLOCK)

(XMIN,XWBLOCK(IBLOCK,IX))

(XMAX,XEBLOCK(IBLOCK,IX))

CALL GRSSET (XMIN, XMAX, YMIN, YMAX)

96 CALL GRCONTROL(ZRGNBN, INDGR, PLTITL,
1 Al, A2, A3, A4, AS, A6, A7, A8, Ag, A10)

C
C
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C PROCESS EACH BLOCK FOR NODES AND CELLS; SOME OF THE NODES

C WILL-BE DUPLICATE, BUT THE CELL WILL NOT BE

C

C INITIALIZE THE NUMBER OF CELLS, NODES AND BOUNDARY CONDITION POINTERS

C

100 NBNDG2 = 0
NNODG2 = 0

NCELG2 = 0

DO 110 IBLOCK 1, NBLOCK

C SET ALL THE GRID POINTS FOR THIS BLOCK

CALL GNSEPB (IBLOCK)
NNODG2 = NNODG2 + NNODEH

110 CONTINUE

C

C CHECK FOR OVERFLOW IN NODE AND CELL ARRAYS

C

IF(NNODG2 .GT. MNODG2) THEN
ZER1 NNODG2

ZER2 = MNODG2

CALL ERRORM (6,'GNBLOC','NNODG2',ZER1,

1 'NUMBER OF NODES EXCEEDS ITS LIMIT')
'MNODG2',ZER2,JPRINT,

ENDIF

IF(NCELG2 .GT. MCELG2) THEN

ZER1 = NCELG2

ZER2 MCELG2

CALL ERRORM (7,'GNBLOC','NCELG2',ZER1,'MCELG2',ZER2,JPRINT,

1 'NUMBER OF CELLS EXCEEDS ITS LIMIT')

ENDIF
C

C REMOVE REDUNDANCY OF NODES AT THE BOUNDARIES, FIRST INITIALIZE
C THE NODE KEEP ARRAY

CALL GNREDN

C
C INITIALIZE AUXILIARY CELL INFORMATION

C

DO 120 ICELL = 1, NCELG2

KAUXG2(ICELL) = 0
120 CONTINUE

C

C SET UP THE MULTIPLE-GRID-LEVEL ARRAY FOR THE GLOBAL FINE LEVEL

C

ILVLG2(1,0) = ILVLG2(2,-1) + 1

ILVLG2(2,0) = NCELG2

ILVLG2(3,0) = ILVLG2(2,0) - ILVLG2(1,0) + 1

INITIALIZE THE MULTIPLE-GRID-LEVEL ARRAY FOR ALL EMBEDDED MESHES

DO 130 ILEVEL = 1,

ILVLG2(1.ILEVEL)

ILVLG2(2,ILEVEL)

ILVLG2(3,ILEVEL)
CONTINUE

MLVLG2

= NCELG2 + 1
= NCELG2
J0

SET UP THE BOUNDARY CONDITION POINTERS

C

C
C

130

C

C
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CALL GNBNDG

CORRECT THE BOUNDARY CONDITION POINTERS AT THE CORNERS
NOTE THAT MORE THAN FOUR CORNER POINTERS MAY CREATE A PROBLEM**

DO 140 IB = 1, NBNDG2
IEDGE = IBNDG2(4,IB)
IF (IEDGE.EQ.2 .AND.

IF (IEDGE.EQ.4 .AND.

IF (IEDGE.Eq.6 .AND.

IF (IEDGE.EQ.8 .AND.
140 CONTINUE

C

GOTO 1300

1100 CONTINUE

C

IBCSW.GT.O)

IBCSE.GT.O)

IBCNE.GT.O)

IBCNW.GT.O)

IBNDG2(6,IB)

IBNDG2(5,IB)

IBNDG2(6,IB)

IBNDG2(5,IB)

= IBCSW

= IBCSE

= IBCNE

= IBCNW

C READ THE DATA FROM A PREVIOUSLY DONE CASE WHICH WAS DONE BY

C MANIPULATING THE BOUNDARIES

OPEN (UNIT = JPNTRE, FILE = 'GNBLOC.DAT', STATUS = 'OLD')

OPEN (UNIT = JGIVEN, FILE = 'GNBLOC.OUT', STATUS = 'NEW')

1110 FORMAT(1117)

READ (JPNTRE,1110) NNODG2, NCELG2, NBNDG2

DO 1120 LC = 1, NCELG2

READ (JPNTRE,1110) (ICELG2(IP,LC),
1120 CONTINUE

IP=1,10), KAUXG2(LC)

DO 1130 IB = 1, NBNDG2
READ (JPNTRE,1110) (IBNDG2(IP,IB), IP = 1, 5)

1130 CONTINUE

DO 1140 IN 1, NNODG2
READ (JPNTRE,1110) (NEIBG2(IP,IN), IP = 1, 4)

1140 CONTINUE

DO 1160 LV = -MLVLG2, MLVLG2
READ (JPNTRE,1110) (ILVLG2(IP.LV). IP = 1, 3)

1160 CONTINUE

READ (JPNTRE,1110) (NBCPG2(IP,1),IP=1,4),(NBCPG2(IP,2),IP=1,4)

DO 1160 IN = 1 NNODG2

READ(JPNTRE,1200) GEOMG2(1,IN),GEOMG2(2,IN)
1160 CONTINUE

1200 FORMAT(8E15.6)

1300 CONTINUE

NCELA2 = NCELG2

DO 1310 ICELL = 1, NCELA2
ICELA2(ICELL) ICELL

1310 CONTINUE
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GOTO 3100

2100 CONTINUE

C
C READ THE DATA FROM A PREVIOUSLY WRITTEN CASE FROM JPNTRE.DAT

OPEN (UNIT = JPNTRE, FILE = 'JPNTRE.DAT', STATUS = 'OLD',

1 FORM = 'UNFORMATTED')

CALL PSREDU

PHI - CHNGE2(1,1)

RHOD CHNGE2(1,2)
C

C PLOT THE GRID

C
3100 CONTINUE

C REMOVE THE CORNER BOUNDARY POINTERS FOR THE EMBEDDED DIAMONDS

C OR WEDGES, SUCH AS IN "KUMAR" CASE

IF (IFROMU .LT. 3) THEN
CALL GNWEDG

CALL GNPINJ

ENDIF

WRITE(JTERMO,80)

READ (JTERMI,*) INDGR
XMIN = 1000.

XMAX = -1000.
YMIN = 1000.

YMAX = -1000.

IF (INDGR .LT. O) GOTO 6000

DO 3120 INODE = 1, NNODG2
ZX(INODE) = GEOMG2(1,INODE)

ZY(INODE) = GEOMG2(2,INODE)

XMIN = MIN (XMIN,ZX(INODE))
XMAX = MAX (XMAX,ZX(INODE))
YMIN = MIN (YMIN,ZY(INODE))

YMAX = MAX (YMAX,ZY(INODE))
3120 CONTINUE

IF (INDGR .NE. O) GOTO 181
INDGR = 22

CALL GRSSET (XMIN, XMAX, YMIN, YMAX)

C

181 GRDUMY( 1) = NCELA2
GRDUMY( 2) = NNODG2

GRDUMY( 4) = NBNDG2
GRDUMY( 5) = XMIN

GRDUMY( 6) = XMAX

GRDUMY( 7) = YMIN
GRDUMY( 8) = YMAX

GRDUMY(24) = 0.
GRDUMY(25) = 0.
ZZ7 = IFROMU

CALL GNCONTR (ZRPLTG, INDGR, PLTITL,
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1 ICELG2,ICELA2,KAUXG2,ZX,ZY,GRDUMY,ZZ7,Z8,Z9,Z10)

C

6000 CONTINUE

WRITE(JTERMO.6100)

6100 FORMAT(' INPUT ONE OF THE FOLLOWING'/

1 5X, '1. WRITE OUTPUT FILE'/

2 5X, '2. REPLOT DATA'/

3 5X, '3. EXIT'/' ==> ',$)

READ (JTERMI,*) IP

IF (IP .EQ. 2) GOTO 3100

IF (IP .NE. 1) STOP ' THE END'

GOTO (7000,7000,8000), IFROMU
C

C WRITE DOWN EVERYTHING

C
C INTEGERS FROM G2COMN.INC

7000 WRITE (JGIVEN,1110) NNODG2, NCELG2, NBNDG2

DO 310 LC = 1, NCELG2

WRITE (JGIVEN,1110) (ICELG2(IP,LC), IP=l.10), KAUXG2(LC)

310 CONTINUE

DO 320 IB = 1, NBNDG2

WRITE (JGIVEN,1110) (IBNDG2(IP.IB), IP = 1, 5)

320 CONTINUE

DO 330 IN = 1, NNODG2

WRITE (JGIVEN,1110) (NEIBG2(IP,IN), IP = 1, 4)

330 CONTINUE

DO 340 LV = -MLVLG2, MLVLG2

WRITE (JGIVEN,1110) (ILVLG2(IP,LV), IP = 1. 3)

340 CONTINUE

WRITE (JGIVEN,1110) (NBCPG2(IP,1),IP=1,4),(NBCPG2(IP,2),IP=1,4)

DO 350 IN = 1, NNODG2
WRITE(JGIVEN,1200) GEOMG2(1,IN),GEOMG2(2.IN)

350 CONTINUE

STOP ' THE END'

8000 APASKY(1) - PHI

APASKY(2) = RHOD

OPEN (UNIT - JGIVEN, FILE = 'JPNTWR.DAT', STATUS = 'NEW',

1 FORM - 'UNFORMATTED')

CALL PSWRTU(JGIVEN)
STOP ' THE END'

END

389



GNBNDG

SUBROUTINE GNBNDG

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'GNBLOC.INC/LIST'

PRECIS.INC/LIST'

PARMV2.INC/LIST'

G2COMN.INC/LIST'

HEXCOD.INC

C THIS SUBROUTINE SETS UP THE BOUNDARY CONDITION POINTERS FOR THE
C INTEGRATED ASSEMBLY OF THE VARIOUS BLOCKS

C

DO 270 IBLOCK = 1, NBLOCK

CHECK THE SOUTHERN PHYSICAL SURFACE

NBSURF = ISBLOCK(IBLOCK,1)

IF (NBSURF .LT. O) THEN

CHECK IF END POINTS ARE ALREADY IN THE ARRAY

IBEG = 1

IEND = NXBLOCK(IBLOCK)

NBEG IBS(IBLOCK,IBEG)

NEND IBS(IBLOCK,IEND)

DO 190 IBNODE = 1,. NBNDG2
IF (IBNDG2(1,IBNODE) .EQ.

IF (IBNDG2(1,IBNODE) .EQ.
CONTINUE

NBEG) IBEG = IBEG + 1
NEND) IEND = IEND - 1

CHECK IF THE FIRST LOCAL NODE IS SW CORNER

IF (IBEG .EQ. 1) THEN

NBCEL4 = NEIBG2(4,NBEG)

IF (NBCEL4 .EQ. O) THEN
NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(56,NBNDG2)
IBEG

PRESG2(1)

NBNDG2 + 1

NBEG

NEIBG2(3,NBEG)
0

2

ABS(NBSURF)
IBEG + 1

NBNDG2

KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOB)
ENDIF

ENDIF

CHECK IF THE LAST LOCAL NODE IS SE CORNER
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INCLUDE

INCLUDE

INCLUDE

C

C

C

C

C

C

190

C

C

C

1

C
C

C
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IF (IEND .Eq. NXBLOCK(IBLOCK)) THEN

NBCEL3 NEIBG2(3,NEND)

IF (NBCEL3 .EQ. O) THEN

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,.NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)
IEND

PRESG2(2)

- NBNDG2 + 1

= NEND

= NEIBG2(4,NEND)
=0
= 4
= ABS(NBSURF)

= IEND -

- NBNDG2

KAUXG2(IBNDG2(2,NBNDG2))-

IOR(KAUXG2(IBNDG2(2.NBNDG2)),KL0007)
ENDIF

ENDIF

NOW PROCESS ALL THE REST OF SOUTHERN NODES

- NBNDG2 + 1

- IBS(IBLOCK,IX)

= NEIBG2(4,IBS(IBLOCK,IX))
= NEIBG2(3,IBS(IBLOCK,IX))

= 3

ABS (NBSURF)

DO 200 IX - IBEG, IEND

NBNDG2

IBNDG2(1.NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KL0003)

KAUXG2(IBNDG2(3, NBNDG2))=

IOR(KAUXG2(IBNDG2(3,NBNDG2)),KLOO03)

CONTINUE

ENDIF ! SOUTHERN SURFACE OF THIS BLOCK IS DONE

CHECK THE EASTERN PHYSICAL SURFACE

NBSURF - ISBLOCK(IBLOCK,2)

IF (NBSURF .LT. O) THEN

CHECK IF END POINTS ARE ALREADY IN THE ARRAY

IBEG = 1
IEND - NYBLOCK(IBLOCK)

NBEG - IBE(IBLOCK,IBEG)

NEND - IBE(IBLOCK,IEND)

DO 210 IBNODE 1, NBNDG2

IF (IBNDG2(1,IBNODE) .EQ. NBEG) IBEG - IBEG + 1

IF (IBNDG2(1,IBNODE) .EQ. NEND) IEND = IEND - 1

CONTINUE

CHECK IF THE FIRST LOCAL NODE IS SE CORNER

- NBNDG2 + 
= NBEG

IF (IBEG .EQ. 1) THEN

NBCEL1 - NEIBG2(1,NBEG)

IF (NBCEL1 .EQ. O) THEN
NBNDG2

IBNDG2(1.NBNDG2)
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IBNDG2(2,NBNDG2) = NEIBG2(4,NBEG)

IBNDG2(3.NBNDG2) = 0

IBNDG2(4,NBNDG2) = 4

IBNDG2(6,NBNDG2) = ABS(NBSURF)
IBEG - IBEG + 1
PRESG2(2) = NBNDG2
KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2.NBNDG2)),KL0007)

ENDIF

ENDIF

CHECK IF THE LAST LOCAL NODE IS NE CORNER

IF (IEND .EQ. NYBLOCK(IBLOCK)) THEN

NBCEL4 NEIBG2(4,NEND)

IF (NBCEL4 .EQ. O) THEN
NBNDG2

IBNDG2(1.NBNDG2)

IBNDG2(2.NBNDG2)

IBNDG2(3.NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

IEND

PRESG2(3)

= NBNDG2 + 1
= NEND

= NEIBG2(1,NEND)
=0
=-6

= ABS(NBSURF)

= IEND - 1

= NBNDG2
KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2.NBNDG2)).KLOOOE)

ENDIF

ENDIF

NOW PROCESS ALL THE REST OF EASTERN NODES

DO 220 IY = IBEG, IEND

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

= NBNDG2 + 1
= IBE(IBLOCK,IY)
- NEIBG2(1,IBE(IBLOCK,IY))

- NEIBG2(4,IBE(IBLOCK,IY))
-5

= ABS(NBSURF)
KAUXG2(IBNDG2(2,NBNDG2))-

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOO6)

KAUXG2(IBNDG2(3.NBNDG2))=

IOR(KAUXG2(IBNDG2(3,NBNDG2)).KLOO06)
CONTINUE

ENDIF EASTERN SURFACE OF THIS BLOCK IS DONE

CHECK THE NORTHERN PHYSICAL SURFACE

NBSURF - ISBLOCK(IBLOCK.3)

IF (NBSURF .LT. O) THEN

CHECK IF END POINTS ARE ALREADY IN THE ARRAY

IBEG - I

IEND - NXBLOCK(IBLOCK)
NBEG IBN(IBLOCK,IBEG)

NEND - IBN(IBLOCK,IEND)
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DO 230 IBNODE = 1, NBNDG2

IF (IBNDG2(1,IBNODE) .EQ. NBEG) IBEG = IBEG + 1

IF (IBNDG2(i,IBNODE) .EQ. NEND) IEND IEND -

CONTINUE

CHECK IF THE FIRST LOCAL NODE IS NW CORNER

IF (IBEG .EQ. 1) THEN

NBCEL1 NEIBG2(1,NBEG)

IF (NBCELl .EQ. O) THEN

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(56,NBNDG2)

IBEG

PRESG2(4)

= NBNDG2 + 1

= NBEG

= NEIBG2(2,NBEG)

= 0

=- ABS(NBSURF)

= IBEG + 1
- NBNDG2

KAUXG2(IBNDG2(2,NBNDG2))-

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOD)
ENDIF

ENDIF

CHECK IF THE LAST LOCAL NODE IS NE CORNER

IF (IEND .EQ. NXBLOCK(IBLOCK)) THEN

NBCEL2 = NEIBG2(2,NEND)

IF (NBCEL2 .EQ. O) THEN

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2 (,NBNDG2)

IEND

PRESG2(3)

= NBNDG2 + 1
= NEND

= NEIBG2(1,NEND)
0

= 6
= ABS(NBSURF)
= IEND - 1

= NBNDG2
KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOE)
ENDIF

ENDIF

NOW PROCESS ALL THE REST OF NORTHERN NODES

DO 240 IX - IBEG, IEND
NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(6,NBNDG2)

= NBNDG2 + 1
= IBN(IBLOCK,IX)
= NEIBG2(2,IBN(IBLOCK,IX))

= NEIBG2(1,IBN(IBLOCK,IX))
=7
= ABS(NBSURF)

KAUXG2(IBNDG2(2,NBNDG2))=
IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOC)

KAUXG2(IBNDG2(3,NBNDG2))=

IOR(KAUXG2(IBNDG2(3,NBNDG2)),KLOOOC)
CONTINUE
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ENDIF ! NORTHERN SURFACE OF THIS BLOCK IS DONE

CHECK THE WESTERN PHYSICAL SURFACE

NBSURF - ISBLOCK(IBLOCK,4)

IF (NBSURF .LT. O) THEN

CHECK IF END POINTS ARE ALREADY IN THE ARRAY

IBEG = 1
IEND = NYBLOCK(IBLOCK)

NBEG = IBW(IBLOCK,IBEG)
NEND = IBW(IBLOCK,IEND)

DO 250 IBNODE = 1, NBNDG2
IF (IBNDG2(1,IBNODE) .EQ.

IF (IBNDG2(1,IBNODE) .EQ.

CONTINUE

NBEG) IBEG = IBEG + 1

NEND) IEND = IEND - 1

CHECK IF THE FIRST LOCAL NODE IS SW CORNER

IF (IBEG .EQ. 1) THEN

NBCEL2 = NEIBG2(2,NBEG)

IF (NBCEL2 .EQ. O) THEN
NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

IBEG

PRESG2(1)

= NBNDG2 + 1

= NBEG

= NEIBG2(3,NBEG)
= 0
=2
= ABS(NBSURF)
= IBEG + 1
= NBNDG2

KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOB)

ENDIF

ENDIF

CHECK IF THE LAST LOCAL NODE IS NW CORNER

IF (IEND .Eq. NYBLOCK(IBLOCK)) THEN

NBCEL3 = NEIBG2(3,NEND)
IF (NBCEL3 .EQ. O) THEN

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)
IEND

PRESG2(4)

NBNDG2 + 1

NEND

NEIBG2(2,NEND)
0

8

= ABS(NBSURF)
= IEND - 1

= NBNDG2

KAUXG2(IBNDG2(2,NBNDG2))=
IOR(KAUXG2(IBNDG2(2 ,NBNDG2)),KLOOOD)

ENDIF

ENDIF

NOW PROCESS ALL THE REST OF WESTERN NODES
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DO 260 IY - IBEG, IEND
NBNDG2 = NBNDG2 + 1

IBNDG2(1,NBNDG2) = IBW(IBLOCK.IY)
IBNDG2(2,NBNDG2) = NEIBG2(3,IBW(IBLOCKIY))

IBNDG2(3,NBNDG2) - NEIBG2(2,IBW(IBLOCK,IY))

IBNDG2(4,NBNDG2) = 9

IBNDG2(,5NBNDG2) = ABS(NBSURF)
KAUXG2(IBNDG2(2,NBNDG2))=

IOR(KAUXG2(IBNDG2(2,NBNDG2)).KLOOo9)
KAUXG2(IBNDG2(3,NBNDG2))=

IOR(KAUXG2(IBNDG2(3,NBNDG2)),KLOO9)

CONTINUE

1

1

260

ENDIF ! WESTERN SURFACE OF THIS BLOCK IS DONE
270 CONTINUE
C

C CHECK FOR OVERFLOW IN BOUNDARY NODE ARRAYS

IF(NBNDG2 .GT. MBNDG2) THEN

ZERI = NBNDG2
ZER2 - MBNDG2

CALL ERRORM (8.'GNBLOC','NBNDG2',ZER, 'MBNDG2'.ZER2,JPRINT,

1 'NUMBER OF BOUNDARY NODES EXCEEDS ITS LIMIT')

ENDIF

C

C SET UP THE POINTERS FOR THE FOUR CORNER CELLS
C

DO 290 IX - 1. 4
ICOR - NINT(PRESG2(IX))

ICELL IBNDG2(2,ICOR)
IF (IX .EQ. 1) THEN

C SW CORNER

NODEBF - ICELG2(8,ICELL)

NODEAF ICELG2(4,ICELL)

ELSE IF (IX .EQ. 2) THEN

C SE CORNER
NODEBF - ICELG2(2,ICELL)
NODEAF - ICELG2(,ICELL)

ELSE IF (IX .EQ. 3) THEN
C NE CORNER

NODEBF - ICELG2(4,ICELL)
NODEAF - ICELG2(8,ICELL)

ELSE
C NW CORNER

NODEBF - ICELG2(6.ICELL)
NODEAF - ICELG2(2,ICELL)

ENDIF

DO 280 IBOUND - 1, NBNDG2
IF (IBNDG2(1,IBOUND) .EQ.

IF (IBNDG2(1,IBOUND) .EQ.
280 CONTINUE
290 CONTINUE

NODEBF) NBCPG2(IX,1)=IBOUND
NODEAF) NBCPG2(IX.2)=IBOUND

WRITE(6,*) ' NCELG2-'.NCELG2

WRITE(6,*) ' NNODG2-'.NNODG2

WRITE(6,*) ' NBNDG2='.NBNDG2

395



RETURN

END

GNCHAN

SUBROUTINE GNCHAN (JCELL)

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE 'PERVAIZ.TWODO.INC] PARMV2.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INCJ G2COMN.INC/LIST'
INCLUDE 'GNBLOC.INC/LIST'

DIMENSION MARKBN(MBNDG2)

C
C THIS SUBROUTINE CHANGES THE POINTERS FOR A SPECIFIED CELL
C

C

IF (JCELL .LE. 0 .OR. JCELL .GT. NCELG2) RETURN
IPI - ICELG2(2.JCELL)

IP2 - ICELG2(4,JCELL)

IP3 - ICELG2(GJCELL)
IP4 - ICELG2(8,JCELL)
KX = KAUXG2(JCELL)

WRITE(O, 1000)

READ(5,*) IOPT
IF (IOPT .GE. 5 .OR. IOPT .LE. O) RETURN

IF (IOPT .EQ. 1) THEN

WRITE(8.1100) JCELL,KX

READ(5,1200) KX

KAUXG2(JCELL) - KX
WRITE(6, 1300) JCELL,KX

ELSEIF (IOPT .EQ. 2) THEN

WRITE(6,1400) JCELL,IP1,IP2,IP3,IP4,KX
IF (KX .EQ. O) RETURN

KNODEI - 0

KNODE2 0

KNODEC 0

DO 10 JBND - 1, NBNDG2
IF (JCELL.EQ.IBNDG2(3,JBND)) KNODE2 - JBND

IF (JCELL.EQ.IBNDG2(2,JBND) .AND. IBNDG2(3,JBND).NE.O)

1 KNODE1 - JBND

IF (JCELL.EQ.IBNDG2(2,JBND) .AND. IBNDG2(3,JBND).EQ.O)

1 KNODEC JBND

10 CONTINUE

IF (KNODE1 .NE. O)
I WRITE(6.1600) KNODE1. (IBNDG2(J,KNODE1),J=1,5)

IF (KNODE2 .NE. O)
I WRITE(6,1600) KNODE2, (IBNDG2(J,KNODE2),J=1,5)

IF (KNODEC .NE. O) THEN

WRITE(6,1500) KNODEC, (IBNDG2(J,KNODEC) .J=1,5)
IF (IBNDG2(4,KNODEC) .EQ. 2) THEN

WRITE(6,1600) NBCPG2(1,1), KNODEC, NBCPG2(1,2)
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ENDIF

_ IF (IBNDG2(4,KNODEC) .EQ. 4) THEN

WRITE(6,1600) NBCPG2(2,1). KNODEC, NBCPG2(2,2)

ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 6) THEN

WRITE(6,1600) NBCPG2(3,I), KNODEC, NBCPG2(3,2)
ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 8) THEN

WRITE(6,1600) NBCPG2(4,1), KNODEC, NBCPG2(4,2)
ENDIF

ENDIF

WRITE(6,1700)

READ (,*) KNCHAN

IF (KNCHAN .LT. O) THEN

WRITE(6,*) ' INPUT POINTERS OF NEW BOUNDARY NODE'
NBNDG2 - NBNDG2 + 1

READ (,*) (IBNDG2(JNBNDG2),J=1,5)

WRITE(6,1500) NBNDG2, (IBNDG2(J,NBNDG2),J=1,5)
ENDIF

IF (KNCHAN .EQ. KNODEC .OR. KNCHAN .EQ. KNODE1 .OR.

1 KNCHAN .EQ. KNODE2) THEN

IBNDG2(1,KNCHAN) = -9

C DELETE ALL BOUNDARY CONDITION POINTERS MARKED FOR DELETE

C
NNEW = 0

DO 30 NOLD 1, NBNDG2

MARKBN(NOLD) = 0
IF (IBNDG2(1,NOLD) .NE. -9) THEN

NNEW = NNEW + 1

MARKBN(NOLD) NNEW

C MOVE POINTER INFORMATION

IF (NOLD .NE. NNEW) THEN

DO 20 J = 1, 
IBNDG2(J,NNEW) = IBNDG2(JNOLD)

20 CONTINUE

ENDIF

ENDIF

30 CONTINUE

C
C RESET NUMBER OF BOUNDARY CONDITION POINTERS

C

NBNDG2 - NNEW

DO 60 IEDGE 1, 4

DO 40 IBND 1, 2

NBCPG2 (IEDGE, IBND) MARKBN(NBCPG2 (IEDGE, IBND))

40 CONTINUE

60 CONTINUE

WRITE(6,*) ' NCELG2-',NCELG2

WRITE(8,*) ' NNODG2-',NNODG2

WRITE(6,*) ' NBNDG2-',NBNDG2

ENDIF

ELSEIF (IOPT .EQ. 3) THEN

WRITE(6,1400) JCELL,IP1,IP2,IP3,IP4,KX
KNODE1 - 0
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KNODE2 0

KNODEC 0

DO 60 JBND = 1, NBNDG2
IF (JCELL.EQ.IBNDG2(3,JBND)) KNODE2 = JBND
IF (JCELL.EQ.IBNDG2(2,JBND) .AND. IBNDG2(3,JBND).NE.O)

1 KNODE = JBND
IF (JCELL.EQ.IBNDG2(2,JBND) .AND. IBNDG2(3,JBND).EQ.O)

1 KNODEC = JBND
CONTINUE

IF (KNODE1 .NE. O)
I WRITE(6,1500) KNODE1,

IF (KNODE2 .NE. O)
1 WRITE(6,1500) KNODE2,

IF (KNODEC .NE. O) THEN

WRITE(6,1500) KNODEC,

(IBNDG2(J,KNODE1),J=1,5)

(IBNDG2(J,KNODE2),J=1,5)

(IBNDG2(J,KNODEC),J=1,5)
IF (IBNDG2(4,KNODEC) .EQ. 2) THEN

WRITE(6,1600) NBCPG2(1,1), KNODEC,
ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 4) THEN

WRITE(6,1600) NBCPG2(2,1). KNODEC.
ENDIF

IF (IBNDG2(4,KNODEC) .Eq. 6) THEN

WRITE(6,1600) NBCPG2(3,1), KNODEC,
ENDIF

IF (IBNDG2(4.KNODEC) .Eq. 8) THEN

WRITE(6,1600) NBCPG2(4,1), KNODEC,
ENDIF

ENDIF

WRITE(, 1800)

READ (,*) KNCHAN

NBCPG2(1.2)

NBCPG2(2,2)

NBCPG2(3,2)

NBCPG2(4.2)

WRITE(6,1500) KNCHAN, (IBNDG2(J.KNCHAN).,J=1,5)
WRITE(6,1900)
READ (5,*) (IBNDG2(J,KNCHAN),J=1,6)
WRITE(6,1500) KNCHAN, (IBNDG2(J,KNCHAN) ,J=1,5)

ELSEIF (IOPT .EQ. 4) THEN
WRITE(6,1400) JCELL,IPI,IP2,IP3,IP4,KX
WRITE(6, 1950)
READ(B,*) IOPTI

IF (IOPTI .GE. 3 .OR. IOPT1 .LE. O) RETURN

IF (IOPTI .EQ. 1) THEN

WRITE(6,2000)
READ (6,*) KNODEI

WRITE(6,2100)

READ (5,*) KNODE2
WRITE(6,2200)
DO 70 JQ = 1. NEQNFL

WRITE(6,2300) JQ,DPENG2(JQ,KNODE1),DPENG2(J,KNODE2)

DPENG2(JQ,KNODE1) = DPENG2(JQ.KNODE2)
70 CONTINUE

JQ= 0
WRITE(6,2300) JQ.PRESG2(KNODE1),PRESG2(KNODE2)

WRITE(6,2300) JQ,TEMPG2(KNODE1),TEMIPG2(KNODE2)

PRESG2(KNODE1) = PRESG2(KNODE2)
TEMPG2(KNODE1) = TEMPG2(KNODE2)

ELSEIF (IOPTI .EQ. 2) THEN
WRITE(6,2400) IPI1,DPENG2(4,IP1)
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WRITE(6,2400) IP2,DPENG2(4.IP2)

WRITE(6,2400) IP3,DPENG2(4, IP3)

- WRITE(6,2400) IP4,DPENG2(4,IP4)
WRITE(6,*) ' INPUT THE ADDITIONAL AMOUNT OF ENERGY'

READ (5.*) ADDENG

DPENG2(4,IP1) - DPENG2(4,IPI) + ADDENG

DPENG2(4,IP2) DPENG2(4,IP2) + ADDENG

DPENG2(4,IP3) DPENG2(4,IP3) + ADDENG

DPENG2(4,IP4) = DPENG2(4,IP4) + ADDENG
ENDIF

ENDIF

C

1000 FORMAT(IX.'INPUT ONE OF THE FOLLOWING'/

1 5X,'1. CHANGE AUXILIARY POINTER'/

2 5X,'2. DELETE/ADD BOUNARY POINTER'/
3 5X,'3. CHANGE BOUNARY NODE POINTER'/

4 5X,'4. CHANGE DEPENDENT VARIABLES AT A NODE'/

5 5X,'9. EXIT' / X,' ==-> ',$)
1100 FORMAT(6X,'AUX. POINTER OF CELL:'.I,5X,Z1O/

1 1OX,'INPUT NEW AUX. POINTER'/' 12345678')

1200 FORMAT(ZS)

1300 FORMAT(6X,'AUX. POINTER OF CELL:',I5,6X,Z10)

1400 FORMAT(6X,'POINTERS OF CELL:',I6,6X,4I5,2X,Z10)

1500 FORMAT(7X,'BOUNDARY NODE:',I5.6X,6I5)

1600 FORMAT(7X,'CORNER N. NODE:',SI5)

1700 FORMAT(SX, 'INPUT THE BOUNDARY NODE TO BE DELETED'/

1 5X,'INPUT < 0 IF A BOUNDARY NODE IS TO BE ADDED'/' ===> ',$)
1800 FORMAT(SX,'INPUT THE BOUNDARY NODE WHOSE POINTERS ARE TO BE'

I ' CHANGED'/' ===> ',$)

1900 FORMAT(SX,'INPUT THE NEW POINTERS FOR THIS BOUNDARY NODE',

1 ' ===> ' .$)
1950 FORMAT(IX. 'INPUT ONE OF THE FOLLOWING'/SX.

I '1. ASSIGN DEPENDENT VARIABLES FROM ONE NODE TO OTHER'/5X,

1 '2. ADD ENERGY (TEMPERATURE) TO THE CELL'/5X,

5 '3. EXIT'/5X,' ===> ',$)
2000 FORMAT(6X, 'INPUT THE NODE WHOSE DEPENDENT VARIABLES ARE TO',

i ' BE CHANGED'/6X,' ===>',$)

2100 FORMAT(6X,'INPUT THE NODE WHOSE DEPENDENT VARIABLES ARE ',

1 ' ALLOCATED TO THE PREVIOUS NODE'/6X,' --- >'.$)
2200 FORMAT(/SX,'DPEN OLD',IOX,'DPEN NEW')

2300 FORMAT(15,2G15.6)

2400 FORMAT(IS,G15.6)

RETURN

END

GNCLPO

SUBROUTINE GNCLPO (ICELL)

INCLUDE 'PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PARMV2.INC/LIST'
INCLUDE '[PERVAIZ.TWODO.INC] G2COMN.INC/LIST'
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DIMENSION MEMBER(4)

C

C THIS SUBROUTINE COLLAPSES CELLS ADJACENT TO A SPECIFIED CELL

C PROVIDED THAT IT FINDS A QUADRUPLE OF CELLS WHICH WERE PREVIOUSLY
C CONSTRUCTED FROM A SINGLE CELL.

C

C

IF (ICELL .LE. 0 .OR. ICELL .GT. NCELG2) RETURN
IDBGG2 - 3

ISUPER ICELG2(10,ICELL)

IF (ISUPER .EQ. O) RETURN

IFIRST = ICELL - 5

ILAST - ICELL + 

NOELEM = 0

C

DO 10 JCELL IFIRST, ILAST

IF ( ISUPER .EQ. ICELG2(10,JCELL) ) THEN
NOELEM = NOELEM + 

MEMBER(NOELEM) = JCELL
ENDIF

IF (NOELEM .EQ. 4) GOTO 20
CONTINUE

LESS THAN FOUR CELLS ARE FOUND

RETURN

MEMi = MEMBER(1)

MEM2 - MEMBER(2)

MEM3 = MEMBER(3)

MEM4 - MEMBER(4)

IWARN - 0

CALL G2CLPO (MEM1,
CALL G2NODE

MEM2, MEM3, MEM4, ISUPER, IWARN)

RETURN

END

GNCONTR

SUBROUTINE GNCONTR (GRPKG, INDGR1, PLTITL,

Al,A2,A3,A4,A5,A6,A7,A8,A9,Al0)

INCLUDE '[PERVAIZ.GRAFIC1]GRCOMN.INC/LIST'

INCLUDE '[PERVAIZ.GRAFICl]MPCOMN.INC/LIST'
INCLUDE 'GNBLOC.INC/LIST'

INTEGER QSIZES(8)

DIMENSION ICLINE(128), ICMARK(128),

ICFILL(20) , IBUNDLE(13),

XLINE(128) , YLINE(128) .
XMARK(128) , YMARK(128) ,

IMARKS(128),
INGR(7)

XLINE1(128),
RECTX(10) 

ICTEXT(128),

YLINE1(128),
RECTY(10) 
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ALIMITS(6)

1

2
3

CHARACTER GRORVILLQMS*40 , INFOSTRING*80, JCHAR* ,
QMSDEFAULTFILE*40, QSTRING(8)*64 , JCHAR2*1,

METAFILEDEFAULT*40, LNAME*40 , LNAME1*40,
LNAME2*40 , PLTITL*(*)

C

LOGICAL GRTESTBIT, IQREDRAW. SAVEPORTRAIT
SAVE GRTEXPORTRAIT
DATA QMSDEFAULTFILE /'QMS.QMS'/

DATA METAFILEDEFAULT /'META.FIL'/

DATA GRTEXPORTRAIT /.TRUE./

C

C
C THIS SUBROUTINE CONTAINS THE CONTROL LOGIC FOR GRAPHICS WHEN

C INTERACTIVE GRID GENERATION IS DESIRED

C
C INDGR is a bit collection with the following meanings:

C BIT VALUE OFF ON

C 1 1 Scales in common Calculate scales

C 2 2 Independent scales Dependent scales

8
16
32
64

Auto-hard copy

Put CFD logo on plots

Mouse menus

Draw axes

Draw grid

Interactive plotting

No logo

No mouse menus

GRPKG IS A USER SUPPLIED PLOTTING PACKAGE WHICH CREATES

AN IMAGE BY SUITABLE CALLS TO GRDRAW, GR_MOVE, AND GRANNOTATE

THE CALLING SEQUENCE IS:

CALL GRPKG (IFUN,INDGR,PLTITL,ALIMITS,INFOSTRING,

Al,A2,A3,A4,A5,A6,A7,A8,A9,A)O
IFUN = 0 Initialize

IFUN - Return XMIN,XMAX,YMIN,YMAX in ALIMITS(1)-ALIMITS(4)

IFUN - 2 Return INFOSTRING for X,Y in ALIMITS(1)-ALIMITS(2)

for VALUE command.

IFUN -.3 Plot

C

C INITIALLY THERE IS NO ANNOTATION, LINES ETC.
C

NANOT = O

NLINES = O

NMARKS = O
NPOLYS = O
INDGR - IF

NCHOICE - 2:

INDEXCLINE - 1
INDEXCMARK - 1
INDEXCTEXT - 1
INDEXCFILL - 1
Iaa - I(

Izz = I(

IOUTLN = 0
IFORMU - N:

IDGR1

CHAR('a')
CHAR('z')

INT(A7)
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C
C Init,alize user package

C
CALL GRPKG (O,INDGR,PLTITL,ALIMITS, INFOSTRING,

k AlA2,A3,A4,A5,A6,A7,A8.A9,A1O)

C

DO I - 1,7

INGR(I) = 0
IF (GRTESTBIT(INDGR.I)) INGR(I) = 1

ENDDO

C
C SAVE INDICATOR FOR SCALING
C

INDS=INGR(1)

C
C CALCULATE MINIMUMS AND MAXIMUMS TO PLOT (FULL DATA)
C

30 CONTINUE

CALL GRPKG (1, INDGR,PLTITL,ALIMITS,INFOSTRING,

& Al,A2A3.A4,A5,A6,A7,A8,A9,AlO)
XMIN ALIMITS(1)

XMAX = ALIMITS(2)
YMIN - ALIMITS(3)

YMAX - ALIMITS(4)

C

C OPEN THE APPROPRIATE GRAPHICS MODE
C
50 CONTINUE

IF (INGR(6).EQ.O) IDEVGR = 0

CALL GRMODE (1)

CALL GRMODE (0)
C
C DRAW AXES AND SCALE
C

CALL GRAXES(PLTITL.XMIN.XMAX,YMIN,YMAX,INDS,INDGR)
C

C PLOT WITH EXTERNALLY WRITTEN PLOTTER

C

IF (IDEVGR.NE.41) CALL PLTON

CALL GRPKG (3.INDGR.PLTITL,ALIMITS,INFOSTRING,

& Al,A2.A3.A4,A56,AA7,A8,A9,AlO)
CALL GRLINETYPE (0,0)

IF (IDEVGR.NE.41) CALL PLTOFF
C

DO 70 IANOT 1, NANOT

IF (IFLAGC .NE. O) CALL GRCOLORINDEX(1,ICTEXT(IANOT))

CALL GR_MOVE(XANOT(IANOT) ,YANOT(IANOT). O)
CALL GR_ANNOTATE(CANOT(IANOT))

70 CONTINUE

DO ILINE = 1,NLINES

IF (IFLAGC .NE. O) CALL GRCOLOR_INDEX(2,ICLINE(ILINE))

CALL GR_MOVE(XLINE(ILINE).YLINE(ILINE).O)

CALL GR_DRAW(XLINE1(ILINE) ,YLINE1(ILINE),O)
ENDDO
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DO IMARI - I,NMARKS
IF. (IFLAGC .NE. O) CALL GRCOLORINDEX(3,ICMARK(IMARK))
CALL GRMOVE(XMARK(IMARK),YMARK(IMARK) ,IMARKS(IMARK))

ENDDO

DO IPOLY " 1,NPOLYS
DO II 1, NVERTP(IPOLY)

RECTX(II) XVERTP(IPOLY,II)
RECTY(II) YVERTP(IPOLY,II)

ENDDO
CALL GRFILL( ICFILL(IPOLY), ISTYLE(IPOLY),

1 RECTX, RECTY , NVERTP(IPOLY) )
ENDDO

C
C MENU FOR INTERACTIVE GRAPHICS
C
100 CONTINUE

C
IF (IDEVGR.EQ.41) CALL GKS$UPDATEWS (1,0)

IF (INGR(5).EQ.O) THEN

READ(JINGR,'(A)') JCHAR
ELSE IF(IDEVGR.EQ.41.AND.INGR(7).EQ.O) THEN

CALL GNGKIN(1,NCHOICE,JCHAR,XX,YY)
C CONVERT BACK TO VIRTUAL COORDINATES

XCURSG = XMINGR+(XX-XOFFSET) * (XMAXGR-XMINGR)/GRXTICKS
YCURSG - YMINGR+(YY-YOFFSET)* (YMAXGR-YMINGR)/GRYTICKS

ELSE
CALL GRCURSOR('A B C D L M 0 P Q R S T V W X ?',

1& JCHAR.XCURSG,YCURSG)
C Convert to upper case

IJ ICHAR(JCHAR)
IF (IJ.GE.Iaa .AND. IJ.LE.Izz) JCHAR = CHAR(IJ - 32)

ENDIF

C

IF(JCHAR.EQ.'A') GOTO 200
IF(JCHAR.EQ.'B') GOTO 00
IF(JCHAR.EQ.'C') WRITE (JOUTGR,'(A/)') (' ',I=1,33)
IF(JCHAR.EQ.'D') GOTO 1400
IF(JCHAR.EQ.'G') GOTO 300

C IF(JCHAR.EQ.'E') GOTO 1900
IF(JCHAR.EQ.'H') GOTO 1800

IF(JCHAR.EQ.'I') GOTO 1900

IF(JCHAR.EQ.'L') GOTO 600

IF(JCHAR.EQ.'M') GOTO 700
IF(JCHAR.EQ.'N') GOTO 1700
IF(JCHAR.EQ.'O') GOTO 800
IF(JCHAR.EQ.'P') GOTO 1500
IF(JCHAR.EQ.'Q') GOTO 900
IF(JCHAR.EQ.'R') GOTO 400
IF(JCHAR.EQ.'S') THEN

CALL GRREAL('Enter new symbol size',ASIZE)
CALL GRSETSYMBOLSIZE (ASIZE)

ENDIF

IF(JCHAR.EQ.'T')
IF(JCHAR.EQ.'U')

IF(JCHAR.EQ.'V')
IF(JCHAR.EQ.'W')

GOTO 1200
GOTO 1600
GOTO 1000
GOTO 1100
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IF(JCHAR.EQ.'o') GOTO 1300
IF(JCHAR.EQ.'v') GOTO 2100

IF(JCHAR.EQ.'X') THEN

C
C CLOSE THE GRAPHICS BEFORE EXITING and remove annotations

C
CALL GRMODE(-1)

NANOT - 0

RETURN

ENDIF

C

IF(JCHAR.EQ.'?') THEN

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE
WRITE

WRITE

WRITE

WRITE

WRITE

WRITE
ENDIF

GOTO 100

(JOUTGR,*)

(JOUTGR.*) '
(JOUTGR,*) '

(JOUTGR,*) '

(JOUTGR,*) '

(JOUTGR,*) '

(J0UTGR.*) '

(JOUTGR,*) '
(JOUTGR,*) '

(JOUTGR,*) '

(JOUTGR,*) '

(JOUTGR,*) '
(JOUTGR,*) '

(JOUTGR,*) '
(JOUTGR*) '
(JOUTGR,*) '

(6,*) · S/U

(JOUTGR,*) '

(JOUTGR*) '
(JOUTGR,*) '
(JOUTGR*) '

A = Add feature'
B = Blowup'
C = Clear text plane'
D = Detailed grid information'
H = Eliminate holes -- G2DIVO'
I = Eliminate islands -- G2CLPO'

L = Lasergrafix mode'
M = Min/Max'
N - Locate a Node or cell'

O = Original scales'

P = Put thick outline for blocks'

Q = Query'
R = Remove feature'

S = Set new symbol size'
T = TeX Output'
U = Undo (change) auxilliary pointers'

- Subdivide/Undivide elements. Hit X to do it.'
V = Value'

W = Window'
X = eXit'

? = Help'

C
C

C*****A*****ADD FEATURE
C
C
200 CONTINUE

IF (INGR(5).EQ.O) THEN

READ(JINGR,'(A)') JCHAR2

ELSE IF(IDEVGR.EQ.41.AND.INGR(7).EQ.O) THEN

CALL GKIN2 (1,JCHAR2,'ADD')
ELSE

CALL GRCURSOR('A L M P ?

JCHAR2,XCURSG,YCURSG )

Convert to upper case

IJ = ICHAR(JCHAR2)
IF (IJ.GE.Iaa .AND. IJ.LE.Izz) JCHAR2 CHAR(IJ - 32)

ENDIF

IF (IFLAGC .NE. O) THEN

CALL GKS$INQINDIVATTB (IERRST, LINETYPE, WIDTHLINE,
INDEXCLINE, MARKTYPE, SIZEMARK, INDEXCMARK,
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2

3

IFONT, IPRECISION, EXPFAC, SPACING, INDEXC_TEXT,

INTSTYLE, INDEXFILL, INDEXC_FILL, IBUNDLE)

ENDIF

C

IF(JCHAR2.EQ.'A') GOTO 220

IF(JCHAR2.EQ.'L') GOTO 240

IF(JCHAR2.EQ.'M') GOTO 250

IF(JCHAR2.Eq.'P') GOTO 260

IF(JCHAR2.EQ.'?') THEN

WRITE (JOUTGR.210)

ENDIF

210 FORMAT (' A Annotate'/
1
2
3
4

L Draw Line'/

M = Draw Marker (Symbol)'/

P = Draw Polygon (Fill Area)'/

? = Help'/)
GOTO 100

C*********A**** Annotate

220 IF(NANOT.EQ.128) THEN

WRITE(JOUTGR,230)
GOTO 100

ENDIF

230 FORMAT (' ONLY 128 FEATURES ALLOWED ')

C

IF (IDEVGR.EQ.O) THEN

CALL GRREAL ('Enter

CALL GRREAL ('Enter

X position',XCURSG)

Y position',YCURSG)

ENDIF

NANOT=NANOT+1

XANOT(NANOT)=XCURSG

YANOT(NANOT)=YCURSG

ICTEXT(NANOT)=INDEXC_TEXT + 1

CALL GR_ASCII(' Enter nnotation',64,CANOT(NANOT))

CALL GRMOVE(XANOT(NANOT),YANOT(NANOT),O)

CALL GRANNOTATE(CANOT(NANOT))

C

C

GOTO 100
C

C**********D**** Draw a line

C

C Get other end of line

C

240 IF (IDEVGR.EQ.O) GOTO 100

IF (NLINES.EQ.128) THEN

WRITE (JOUTGR,*) ' Only

GOTO 100

128 lines allowed'

ENDIF

NLINES = NLINES + 1

XLINE(NLINES) = XCURSG

YLINE(NLINES) = YCURSG
ICLINE(NLINES)=INDEXCLINE + 1

IF(IDEVGR.EQ.41) THEN

WRITE(JOUTGR,*) ' INPUT OTHER END'

INPUT 2ND CORNER OF LINE USING GKLOC (LINE TYPE LOCATOR)
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XXC=XOFFSET+GRXTICKS* (XCURSG-XMINGR)// (XMAXGR-XMINGR)

YYC=YOFFSET+GRYTICKS*(YCURSG-YMINGR)/ (YMAXGR-YMINGR)

CALL GKLOC(1,1,4,XXC,YYC,XXNEW,YYNEW)

WRITE(6,*) 'XXC,YYC',XXC,YYC

WRITE(6, *) 'XXNEW,YYNEW' ,XXNEW,YYNEW

CONVERT BACK TO VIRTUAL COORDINATES

XNEW=XMINGR+(XXNEW-XOFFSET) * (XAXGR-XMINGR)/GRXTICKS

YNEW=YMINGR+(YYNEW-YOFFSET)*(YMAXGR-YMINGR)/GRYTICKS
ELSE

CALL GR_CURSOR('OTHER END
JCHAR,XNEW,YNEW)

ENDIF

C

XLINE1(NLINES) = XNEW

YLINE1(NLINES) = YNEW

CALL GRMOVE(XCURSG,YCURSG,O)

CALL GRDRAW(XNEW,YNEW, O)

GOTO 100

C**********M**** Draw a Marker (Symbol)

250 CONTINUE

IF (IDEVGR.Eq.O) GOTO 100

IF (NMARKS.EQ.128) THEN

WRITE (JOUTGR,*) ' Only 128

GOTO 100

markers allowed'

ENDIF

CALL GRINTEGER('Enter symbol number',ISYMBOL)

NMARKS = NMARKS + 1

XMARK(NMARKS) = XCURSG

YMARK(NMARKS) = YCURSG

ICMARK(NMARKS)=INDEXCYARK + 1

IMARKS(NMARKS)=ISYMBOL
C

CALL GRMOVE(XCURSG,YCURSG,ISYMBOL)

GOTO 100
c
C**********P**** Draw a Polygon (Fill area)

260 CONTINUE

if (idevgr .ne. 41) goto 100

IF (NPOLYS.EQ.20) THEN

WRITE (JOUTGR,*) ' Only 20 polygons allowed'

GOTO 100

ENDIF

NPOLYS = NPOLYS + 1

ICFILL(NPOLYS)=INDEXCFILL + 1

CALL GRCOLORINT (1.7,NPOLYS,XX,YY)

GOTO 100

C
C

C*****G*****Color index setup
C
C
300 CONTINUE

if (idevgr .ne. 41) goto 100
IF(INGR(7).EQ.0) THEN

CALL GKIN2 (1,JCHAR2,'INDEX')

ELSE
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CALL GRCURSOR('A L M P ?

& JCHAR2,XCURSG,YCURSG )
C Convert to upper case

IJ - ICHAR(JCHAR2)

IF (IJ.GE.Iaa .AND. IJ.LE.Izz) JCHAR2 = CHAR(IJ - 32)

ENDIF

IF(JCHAR2.EQ.'A') CALL GRCOLORINT (1,3,IDUM,XX,YY)
IF(JCHAR2.EQ.'L') CALL GRCOLORINT (1,4,IDUM,XX,YY)

IF(JCHAR2.EQ.'M') CALL GRCOLORINT (1,5,IDUM,XX,YY)

IF(JCHAR2.EQ.'P') CALL GRCOLOR_INT (1,6,IDUM,XX,YY)

IF(JCHAR2.Eq.'?') THEN

WRITE (JOUTGR,210)

ENDIF

GOTO 100

C
C

C*****R*****Remove Feature
C

C

400 CONTINUE

IF (INGR(b).EQ.O) THEN

READ(JINGR,'(A)') JCHAR2

ELSE IF(IDEVGR.EQ.41.AND.INGR(7).EQ.O) THEN

CALL GKIN2 (1,JCHAR2,'REMOVE')

ELSE

CALL GRCURSOR('A L M P ?

& JCHAR2,XCURSG,YCURSG )
C Convert to upper case

IJ ICHAR(JCHAR2)

IF (IJ.GE.Iaa .AND. IJ.LE.Izz) JCHAR2 = CHAR(IJ - 32)

ENDIF
C

IF(JCHAR2.EQ.'A') then

NANOT = MAX (O,NANOT-1)
GOTO 50

ENDIF

IF(JCHAR2.EQ.'L') THEN

NLINES - MAX (O,NLINES-1)

GOTO 50
ENDIF

IF(JCHAR2.EQ.'M') THEN

NMARKS - MAX (O,NMARKS-1)

GOTO 50
ENDIF

IF(JCHAR2.EQ.'P') THEN

NPOLYS - MAX (O,NPOLYS-1)
GOTO 60

ENDIF

IF(JCHAR2.EQ.'?') THEN

WRITE (JOUTGR,210)
ENDIF

GOTO 100

c
C

C*****B*****BLOWUP
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CALL-GRREAL('ENTER XMIN'.XMIN)

CALL GRREAL('ENTER XMAX',XMAX)
CALL GRREAL('ENTER YMIN',YMIN)
CALL GRREAL('ENTER YMAX',YMAX)

IF(ABS(XMIN-XMAX).LT.1.OE-25) GOTO 100
IF(ABS(YMIN-YMAX).LT.1.OE-25) GOTO 100

C RE-SCALE AND RE-PLOT BASED ON ABOVE VALUES (DO NOT NORMALIZE

C SCALES)
C

CALL GRSETSCALE(XMIN,XMAX,YMIN.YMAX)
INDS=O

GOTO 50

C
C
C*****L*****Lasergraphicu mode

C
C SET TO HARD COPY MODE

C
600 CONTINUE

WRITE (JOUTGR,610) QMSDEFAULTFILE

610 FORMAT (' Default file is ',A)
CALL GRASCII(' Enter file name (QUIT to quit)',40.LNAME)

IF (LNAME.EQ.' ') LNAME=QMSDEFAULTFILE

IF (LNAME.EQ.'QUIT'.OR.LNAME.EQ.'quit') GOTO 100

JHRDGR = 47
C

OPEN(UNIT=JHRDGR,FILE=LNAME,STATUS='NEW',ERR=620)

GOTO 640

C
620

630

640

C

C
C
C

C
c

WRITE(JOUTGR, 630)

FORMAT(' Error opening file, try a different name.')
GOTO 600
CONTINUE

CALL GRMODE(2)

DRAW THE IMAGE TO THE RASTER AND CLOSE IT

CALL GR_AXES(PLTITL,XMIN,XMAXYMIN,YMAX,INDS.INDGR)

CALL GRPKG (3.,INDGR,PLTITL,ALIMITS,INFOSTRING,

k A1,A2,A3,A4,A5.A6,A7,A8A,AA 10)

IF (IOUTLN .Eq. 1) THEN

CALL GRLINETYPE (5.0)

DO 641 IBL - 1, NBLOCK

CALL GR_MOVE (XSBLOCK(IBL,l),YSBLOCK(IBL,1),O)
CALL GR_DRAW (XEBLOCK(IBL.1),YEBLOCK(IBL.1).O)

CALL GR_DRAW (XEBLOCK(IBL,NYBLOCK(IBL)),
1 YEBLOCK(IBL,NYBLOCK(IBL)),O)

CALL GR_DRAW (XNBLOCK(IBL.1),YNBLOCK(IBL,1).0)

CALL GR_DRAW (XSBLOCK(IBL.1),YSBLOCK(IBL,1).0)
641 CONTINUE
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c ENDIF
CALL GRLINETYPE (0,0)

C

C Just in case, call PLTOFF

C
CALL PLTOFF

DO 650 IANOT=1,NANOT

CALL GRMOVE(XANOT(IANOT) YANOT(IANOT),O)

CALL GRANNOTATE(CANOT(IANOT))
650 CONTINUE

DO ILINE - 1,NLINES

CALL GRMOVE(XLINE(ILINE),YLINE(ILINE).O)

CALL GRDRAW(XLINE1(ILINE) ,YLINE1(ILINE),0)
ENDDO

DO IMARK = 1,NMARKS

CALL GRMOVE(XMARK(IMARK).YMARK(IMARK),IMARKS(IMARX))

ENDDO

C

CALL GRMODE (-2)

JHRDGR = 0
C

C RESET TO TERMINAL MODE

C

CALL GRMODE (1)

WRITE(JOUTGR,680) LNAME

660 FORMAT(' Hard copy sent to ',.A40)

GOTO 100
C
C

C*****M*****MIN/MAX
C

C
C CALCULATE MINIMUMS AND MAXIMUMS TO PLOT (FULL DATA)

C
700 CONTINUE

ALIMITS(1) - XMINGR

ALIMITS(2) = XMAXGR
ALIMITS(3) - YMINGR

ALIMITS(4) = YMAXGR

ALIMITS(6) - 0.
ALIMITS(6) - 0.
INFOSTRING ' '

CALL GRPKG (1,INDGR,PLTITL.ALIMITS,INFOSTRING,

& A1,A2,A3.A4,A6,A6,A7,A8,A9,A10)
C

WRITE(JOUTGR.710) (ALIMITS(I),I=1,.4)

710 FORMAT(' MINIMUM'AND MAXIMUM DATA VALUES:'/

& lOX,'XMIN-',Gl6.7,10X,'XMAX-',G15.7 /
& lOX,'YMIN-',G15.7,10X,'YMAX=',G15.7 /)

C

IF (INFOSTRING .NE. ' ') THEN

WRITE (JOUTGR, 1020) INFOSTRING

WRITE(JOUTGR,720) ALIMITS(6), ALIMITS(6)
ENDIF

720 FORMAT( OX.'ZMIN-',G15.7,10X,'ZMAX=',G15.7 )
C
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GOTO 100

C
C -

C*****O*****ORIGINAL SCALES

C
C
800 INDS = 1

GOTO 30

C
C
C -----

C*****Q*****QUERY

C -----

C

900 CONTINUE

IOLDINGR1 INGR(l)

IQREDRAW .FALSE.

C

C%%%%%%%%%%%X%%%%%%%X%%FOR VSII WORKSTATION TERMINALXX%%XXXXX% %%%%%%%%
C SET UP QUERY MENU
910 WRITE(QSTRING(C),920) INGR(1)

WRITE(QSTRING(2),928) INGR(2)

WRITE(QSTRING(3),930) INGR(3)

WRITE(QSTRING(4) ,935) INGR(4)

WRITE(QSTRING() ,940) GRXTICKS

WRITE(QSTRING(6) .945) GRYTICKS

920 FORMAT(' 1. CALC SCALES '.I5)

925 FORMAT(' 2. DPEN SCALES ',I5)

930 FORMAT(' 3. DRAW AXES ',I5)

935 FORMAT(' 4. DRAW GRID ',I5)

940 FORMAT(' 5. X AXIS TICKS ',I5)

945 FORMAT(' 6. Y AXIS TICKS ',I5)

QSTRING(7) = ' 7. QMS OPTIONS'

QSTRING(8) - ' 8. EXIT FROM QUERY'

QSIZES(1)=23

QSIZES(2)=23

QSIZES(3)-23

QSIZES(4)=23

QSIZES()-23
QSIZES(6)=23

QSIZES(7)-23

QSIZES(8)=23

C
C REQUEST QUERY INPUT

C

IF(IDEVGR.EQ.41.AND.INGR(7).EQ.O) THEN
CALL GKCHOIC(1,8,QSTRING,QSIZES, IOPT)

ELSE

WRITE(JOUTGR,'(A)') (STRING(I),I=1,8)

CALL GRINTEGER('ENTER OPTION NUMBER',IOPT)

ENDIF

C
C

IF(IOPT.GE.1 .AND.IOPT.LE.4) INGR(IOPT) 1 - INGR(IOPT)

IF(IOPT.EQ.S) THEN

CALL GRINTEGER ('Enter X Axis ticks (1-20)' ,ITX)

CALL GRSETTICKS (ITX,GRYTICKS)

IQREDRAW - .TRUE.
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ENDIF

IF(IOPT.EQ.6) THEN

CALL GR_INTEGER ('Enter Y Axis ticks (1-20)',ITY)

CALL GRSETTICKS (GRXTICKS,ITY)

IQREDRAW .TRUE.

ENDIF
C

C EXIT OUT OF QUERY

C
IF (IOPT.EQ.8.OR.IOPT.EQ.O) THEN

INLOW - MOD(INDGR,16)

INNEW - INGR(1) + 2*INGR(2) + 4*INGR(3) + 8*INGR(4)

INDGR - 16*(INDGR/16)

INDGR - INDGR + INNEW

IF (IOLDINGRi.NE.INGR(l)) THEN

IQREDRAW - .TRUE.
INDS - INGR(1)

ENDIF

IF (IQREDRAW .OR. INNEW.NE.INLOW) GOTO 50

GOTO 100

C
C

ELSE IF (IOPT.EQ.7) THEN

C
C Do the QMS options

C

960 WRITE(QSTRING(1),955) 1 - INGR(6)

QSTRING(2) = ' 2. Landscape Mode'

IF (GRPORTRAIT) QSTRING(2) ' 2. Portrait Mode'

WRITE (QSTRING(3),960) GRQMSSCALEFACTOR

QSTRING(4) - ' 4. Change default QMS file'

QSTRING(6) ' 5. Exit QMS options'
QSIZES(1)=27

QSIZES(2)=27

QSIZES (3)27
QSIZES(4) =27

QSIZES(6S)-27

C

C REQUEST INPUT
C

IF(IDEVGR.EQ.41.AND.INGR(7).EQ.O) THEN

CALL GKCHOIC(1,5, QSTRING,QSIZES, IOPT)
ELSE

WRITE(JOUTGR,'(A)') (QSTRING(I),I=1,5)

CALL GRINTEGER('ENTER OPTION NUMBER',IOPT)
ENDIF

IF (IOPT.EQ.1) INGR(6) = 1 - INGR(6)

IF (IOPT.EQ.2) GRPORTRAIT = .NOT. GR_PORTRAIT

IF (IOPT.EQ.3) THEN

CALL GRREAL ('Enter new QMS scale factor',FF)
CALL GRSETQMSSCALE (FF)

ENDIF

IF (IOPT.EQ.4) THEN
WRITE (JOUTGR,610) QMS_DEFAULTFILE

CALL GRASCII(' Enter new default name',40,

& QMSDEFAULTFILE)
IF (QMSDEFAULTFILE.. EQ.' ') QMSDEFAULTFILE 'QMS. QMS'
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ENDIF

IF (IOPT.EQ.5.OR.IOPT.E.O0) THEN

- IF (INGR(6).EQ.1) CALL GR_SET_BIT(INDGR,6)

IF (INGR(6).EQ.O) CALL GRCLEARBIT(INDGR,6)

GOTO 910

ENDIF

GOTO 950

ENDIF

C

C ELSE RETURN FOR ANOTHER QUERY

C

955 FORMAT(' 1. Draw CFD Logo ',I1)

960 FORMAT(' 3. Scale Factor ',F5.3)

GOTO 910

C

C*****V*****VALUE
C

C

1000 IF (IDEVGR.EQ.O) GOTO 100

CALL GRMOVE (XCURSG,YCURSG,-2)
C

INFOSTRING =

WRITE(JOUTGR,1010) XCURSG,YCURSG

1010 FORMAT(' CURSOR LOCATION: X ',G14.7/

& ' Y ',G14.7)
ALIMITS (1) = XCURSG
ALIMITS (2) = YCURSG
CALL GRPKG (2,INDGR,PLTITL,ALIMITS,INFOSTRING,

:& A1,A2,A3,A4,A5,A6,A7,A8,A9,AA)

IF (INFOSTRING .NE. ' ') WRITE (JOUTGR,1020) INFOSTRING

1020 FORMAT (A)

C
GOTO 100

C
C

C*****W*****WINDOW
C

C

C GET OTHER CORNER OF WINDOW

C

1100 IF (IDEVGR.EQ.O) GOTO 500

IF(IDEVGR.EQ.41) THEN

WRITE(JOUTGR,*) ' INPUT OPPOSITE CORNER'
C

C INPUT 2ND CORNER OF WINDOW USING GKLOC (BOX TYPE LOCATOR)

XXC=XOFFSET+GRXTICKS*(XCURSG-XMINGR)/(XMAXGR-XMINGR)

YYC=YOFFSET+GRYTICKS*(YCURSG-YMINGR)/(YMAXGR-YMINGR)

CALL GKLOC(1,1,5,XXC,YYC,XXNEW,YYNEW)
C
C CONVERT BACK TO VIRTUAL COORDINATES

XNEW=XMINGR+(XXNEW-XOFFSET)*(XMAXGR-XMINGR)/GRXTICKS

(YYNEWYOFFSET(YMAGR-YR+(NE-YOFFSET)*YMAXGR-YMINGR)/GRYTICKS

ELSE

CALL GRCURSOR ('OPPOSITE CORNER

1 JCHAR,XNEW,YNEW)

ENDIF
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C

1110 XMIN - MIN(XNEW,XCURSG)

XMAX- MAX(XNEW,XCURSG)
YMIN - MIN(YNEW,YCURSG)

YMAX - MAX(YNEW,YCURSG)
C

IF(ABS(XMIN-XMAX).LT.1.0E-25) GOTO 100

IF(ABS(YMIN-YMAX).LT.1.OE-25) GOTO 100
C
C If dependent scaling is enabled then keep it.
C

IF (INGR(2).EQ.1) THEN
DELTAX - XMAX - XMIN
DELTAY - YMAX - YMIN

TIC = MAX (DELTAX/GRXTICKS, DELTAY/GRYTICKS)
XMAX - XMIN + GRXTICKS*TIC

YMAX - YMIN + GRYTICKS*TIC

ENDIF
C
C RESCALE AND REPLOT WITH ABOVE WINDOW
C

CALL GRSETSCALE(XMIN,XMAX,YMIN,YMAX)
C

INDS=O

GOTO 50
C
C

C*****T*****TeX quality output
C

C
1200 CONTINUE

C

C Get scale factors and modes
C

JHRDGR = 47

CALL GRASCII (' Enter file name (no type)'.40,LNAME)
IF (LNAME.EQ.' ') LNAME = 'GRAFIC_TEX'
CALL GRREAL ('Enter plot scale factor',TEXSCALE)

SAVESCALE = GRqMSSCALEFACTOR
CALL GRSETQMSSCALE(TEXSCALE)
SAVEPORTRAIT GRPORTRAIT
GRPORTRAIT - .TRUE.

C

C Open the files and set the mode
C

ILEN - INDEX(LNAME,' ')

LNAME1 - LNAME(i:ILEN-1) // '.TEX'
LNAME2 - LNAME(1:ILEN-1) // '.QMS'
OPEN(UNIT-JHRDGR,FILE=LNAME2,STATUS-'NEW', ERR-1210)
OPEN(UNIT-JHRDGR+1,FILE=LNAME1,STATUS-'NEW', ERl1210)
GOTO 1220

1210 WRITE (JOUTGR,*) ' Error opening files.'
GOTO 1280

1220 CONTINUE
C

CALL GRMODE(3)
C

413



C Initialize the file
C

WRITE (JHRDGR+1,1230) GRSCALEFACTOR
1230 FORMAT(' {\setlength{\unitlength}{',F.3,'in}' )

WRITE (JHRDGR+1,1240) FLOAT(GRXTICKS)+2.56,FLOAT(GRYTICKS) +2

1240 FORMAT(' \scriptsize \begin{picture}(',F.3,',',F6.3,
&

C
C DRAW THE IMAGE

C

CALL GRAXES(PLTITL,XMIN,AX.YMIN,YMAX,INDS,INDGR)

CALL GRPKG (3,INDGR,PLTITL ,ALIMITS, INFO_STRING,

& A1,A2,A3,A4,A5,A6,A7,A8,A9,A10)

CALL GRLINETYPE (0,0)
C
C Just in case, call PLTOFF
C

CALL PLTOFF

DO IANOT=I,NANOT

CALL GRMOVE(XANOT(IANOT),YANOT(IANOT),O)

CALL GR_ANNOTATE(CANOT(IANOT))

ENDDO

DO ILINE = 1,NLINES

CALL GRMOVE(XLINE(ILINE),YLINE(ILINE),O)

CALL GR_DRAW(XLINE1(ILINE),YLINE1 (ILINE),O)
ENDDO

DO IMARK = 1,NMARKS
CALL GRMOVE(XMARK(IMARK).YMARIMARK),IMARKS(IMARK))

ENDDO
C

C Write the include information and close the file
C

WRITE (JHRDGR+1,1250) GRYTICKS,GRXTICKS,GRYTICKS

1250 FORMAT (' \put(O,',I2,') {\begin{picture}('I2,',.',I2,')')

WRITE (JHRDGR+1,1260) LNAME2(1:ILEN+3)

1260 FORMAT (' \special{include(',A,

& ' origin noorigin noorient nofree fortran norelative)}'/

b& '\end{picture}}',/,'\end{picture}}')
CLOSE (JHRDGR+1)

WRITE(JOUTGR, 1270) LNAMEI (1: ILEN+3)

1270 FORMAT(/' TeX file ',A,' created.'/)
C

C Error and normal return

C
1280 CONTINUE

CALL GRMODE (-3)
JHRDGR - 0

CALL GRMODE (1)
CALL GRSETQMSSCALE(SAVESCALE)
GRPORTRAIT - SAVEPORTRAIT
GOTO 100

C
C

C*****o*****METAFILE OUTPUT
C
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1300 CONTINUE
IF (IDEVGR.NE.41) GOTO 100
WRITE (JOUTGR,610) METAFILEDEFAULT
CALL GRASCII(' Enter file name (UIT to quit)',40,LNAME)

IF (LNAME.EQ.' ') LNAME METAFILEDEFAULT

IF (LNAME.EQ.'QUIT'.OR.LNAME.EQ.'quit') GOTO 100
C METFIL 97

C OPEN(UNIT=METFIL,FILE=LNAME,STATUS='NEW',ERR=1320)
C GOTO 1340
C1320 WRITE(JOUTGR. 630)
C GOTO 1300
C
1340 CALL GKS*OPENWS(2,LNAME,2)

CALL GKStACTIVATEWS(2)

c CALL GRMODE (0)
CALL GRAXES(PLTITL,XMIN,XMAX,YMIN,YMAX,INDS,INDGR)
CALL GRPKG (3, INDGR.PLTITL,ALIMITS ,INFOSTRING,

& A1,A2,A3,A4,AS,A6,A7,A8,A9,A10)
C

DO IANOT = 1, NANOT

IF (IFLAGC .NE. O) CALL GR_COLOR_INDEX(1,ICTEXT(IANOT))
CALL GR_MOVE(XANOT(IANOT),YANOT(IANOT),O)
CALL GR_ANNOTATE(CANOT(IANOT))

ENDDO
C

DO ILINE = 1,NLINES

IF (IFLAGC .NE. O) CALL GRCOLOR_INDEX(2,ICLINE(ILINE))
CALL GR_MOVE(XLINE(ILINE),YLINE(ILINE),O)
CALL GR_DRAW(XLINE1(ILINE) ,YLINE1(ILINE),O)

ENDDO
C

DO IMARK = 1,NMARKS
IF (IFLAGC .NE. O) CALL GR_COLOR_INDEX(3,ICMARK(IMARK))
CALL GR_MOVE(XMARK(IMARK) ,YMARK(IMARK),IMARKS(IMARK))

ENDDO
C

DO IPOLY = 1,NPOLYS
IF (IFLAGC .NE. O) CALL GRCOLORINDEX(4,ICFILL(IPOLY))
DO II - 1, NVERTP(IPOLY)

RECTX(II) XVERTP(IPOLY,II)
RECTY(II) - YVERTP(IPOLY,II)

ENDDO
CALL GKS$SET_FILL_INT_STYLE(ISTYLE(IPOLY))
CALL GKStFILL_AREA(NVERTP(IPOLY),RECTX,RECTY)

ENDDO
C

CALL GKS$DEACTIVATE_WS (2)
CALL GKS$CLOSE_WS (2)
GOTO 100

C
C

C*****D*****DETAILED INFORMATION ABOUT GRIDS
C
C
1400 IF (IDEVGR.EQ.O) GOTO 100

ALIMITS(6) - -1.
CALL GR_MOVE (XCURSG.YCURSG,-2)
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C
INFOSTRING ' '
ALIMITS (1) - XCURSG
ALIMITS (2) - YCURSG

CALL GRPKG (2,INDGR,PLTITL,ALIMITS,INFOSTRING,
& A1,A2,A3,A4,AS,A6,A7,A8,A9,A1O)

C

IF (INFOSTRING .NE. ' ') WRITE (JOUTGR,1020) INFOSTRING

JCELL - NINT(ALIMITS(5))

CALL GNDEBG (JCELL)
GOTO 100

C
C

C*****P*****PUT THICK OUTLINE OF BLOCKS

C
C

1500 IF (IDEVGR .EQ. O) GOTO 100

IF (IFROMU .NE. 1) GOTO 100
IOUTLN = 1

CALL GRLINETYPE (56,0)

DO 1510 IBL 1. NBLOCK

CALL GRMOVE (XSBLOCK(IBL. 1) YSBLOCK(IBL, 1),O)
CALL GRDRAW (XEBLOCK(IBL,1) ,YEBLOCK(IBL, 1) ,O)

CALL GRDRAW (XEBLOCK(IBL,NYBLOCK(IBL)),
1 YEBLOCK(IBL,NYBLOCK(IBL)).O)

CALL GRDRAW (XNBLOCK(IBL, 1) YNBLOCK(IBL, 1),O)

CALL GRDRAW (XSBLOCK(IBL, ),YSBLOCK(IBL, 1)O)
1510 CONTINUE

CALL GRLINETYPE (0,0)

GOTO 100

C
C

C*****U*****UNDO (CHANGE) AUX. POINTERS
C

C

1600 IF (IDEVGR.EQ.O) GOTO 100

ALIMITS(6) - -1.

CALL GR-MOVE (XCURSG,YCURSG,O)
C

INFOSTRING -' '
ALIMITS (1) XCURSG

ALIMITS (2) YCURSG

CALL GRPKG (2,INDGR,PLTITL,ALIMITS, INFOSTRING,

& AI,A2,A3,A4,AS,A6,A7,A8,A9,A10)
C

JCELL - NINT(ALIMITS(5))

CALL GNCHAN(JCELL)
GOTO 100

C
C
C*****N*****LOCATE NODE
C

C
1700 IF (IDEVGR.EQ.O) GOTO 100

WRITE (JOUTGR,1710)

1710 FORMAT(
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1 5X,'INPUT NODE (NEGATIVE) OR CELL (POSITIVE) TO BE LOCATED'/

2 6X,'ALSO INPUT SYMBOL TO BE PLOTTED')

READ(5.*) JNODE.IISYM

IISYM - -ABS(IISYM)

CALL GNLNOD (JNODE, IISYM)

GOTO 100

C

C

C*****H*****REMOVE HOLES; GRID DIVIDE
C

C

1800 IF (IDEVGR.EQ.O) GOTO 100

ALIMITS(f) -1.

CALL GRMOVE (XCURSG,YCURSG,O)

C
INFOSTRING - ' '
ALIMITS (1) XCURSG

ALIMITS (2) YCURSG

CALL GRPKG (2. INDGR.PLTITL.ALIMITS. INFOSTRING,

& AiA2,A3sA4,A5,A6,A7,A8,A9,A10)

C
JCELL - NINT(ALIMITS(5))

CALL G2DIVO(JCELLO)

CALL A2CEWC

GOTO 100

C
C

C*****I*****REMOVE ISLANDS; GRID COLLAPSE
C

C

1900 IF (IDEVGR.Eq.O) GOTO 100

ALIMITS(f) - -1.

CALL GRMOVE (XCURSG.YCURSG,O)
C

INFOSTRING = ' '
ALIMITS (1) = XCURSG

ALIMITS (2) - YCURSG

CALL GRPKG (2,INDGR,PLTITL,ALIMITS, INFOSTRING,

& A1,A2,A3,A4,AS,A6,A7A8,A9,A10)
C

JCELL = NINT(ALIMITS(5))

CALL GNCLPO(JCELL)

CALL A2CEWC

GOTO 100

C
C

C*****v*****SPECIAL DUMMY FILES

C

C

2100 CONTINUE

CALL GNDUMY

GOTO 100

C RETURN

END

C to be added later

C*****N*****MOVE NODE
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C
C
C2000
C
C
C
C
C
C
C
C
C
C2010
C
C
C
C
C
C

IF(JqHAR.EQ.'N') GOTO 2000

CONTINUE

WRITE(6,2310) XCURSG,YCURSG

DMIN - 1.E30

NMIN 0
DO 2010 I 1,NN

DD (X(1,I)-XCURSG)**2 + (X(2,I)-YCURSG)**2

IF (DD.LT.DMIN) THEN
NMIN I

DMIN - DD

ENDIF
CONTINUE

CALL MYCURSOR1(' NEW POSITION',JCHAR,XNEW,YNEW)

X(1,NMIN) - XNEW
X(2,NMIN) - YNEW
IF (JCHAR.EQ.'N'.OR.JCHAR.EQ.'n') THEN

CALL GRCURSOR(' NEXT NODE ',JCHAR,XCURSG,YCURSG)
GOTO 2000

C ENDIF

C GOTO 100

C

C*****S/U***** SUBDIVIDE AN AREA / COARSEN AN AREA
C

C IF(JCHAR.EQ.'S') GOTO 2200

C IF(JCHAR.EQ.'U') GOTO 2200

C2200 CONTINUE

C IF (JCHAR.EQ.'U') THEN

C ICFL = 1
C ELSE

C ICFL = 0
ENDIF

NP = 

CALL GRMOVE (XCURSG,YCURSG,O)

XD(,11) XCURSG
XD(2.1) = YCURSG
DO WHILE (JCHAR.NE.'X' .AND. JCHAR.NE.'x' .AND. NP.LT.20)

NP = NP + 1

CALL MYCURSOR1 ('NEXT CORNER ',JCHAR,XD(1,NP),XD(2,NP))
CALL GRDRAW (XD(1,NP),XD(2,NP),O)

ENDDO

IF (NP.LT.3) GOTO 100

IF (ICFL.EQ.O) THEN

CALL GDEMBED (XD,IEMBED,NP.IEMBTYPE)
ELSE

CALL GDCOARSE (XD,IEMBED,NP)
ENDIF

GOTO 50

GNDEBG

SUBROUTINE GNDEBG (JCELL)

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'
INCLUDE '[PERVAIZ.TWODO.INC] PARMV2.INC/LIST'
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INCLUDE '[PERVAIZ.TWODO.INCJ G2COMN.INC/LIST'
INCLUDE 'GNBLOC.INC/LIST'

CHARACTER*8 TYPINF

C**********************************************************************
C
C THIS SUBROUTINE WRITES DETAILED INFORMATION FOR A SPECIFIED CELL
C

C

IF (JCELL .LE. 0 .OR. JCELL .GT. NCELG2) RETURN
IP = ICELG2(2,JCELL)

IP2 ICELG2(4,JCELL)

IP3 = ICELG2(6,JCELL)

IP4 = ICELG2(8,JCELL)

KX = KAUXG2(JCELL)

WRITE(6,10) JCELL,IP1,IP2,IP3,IP4,KX
10 FORMAT(5X,'POINTERS OF CELL:',IS,SX,415,2X,Z10)

WRITE(6,20)

20 FORMAT(5X,'INPUT ONE OF THE FOLLOWING'/

1 6X.' 1. POINTER INFORMATION'/
2 5X,' 2. DEPENDENT VARIABLE INFORMATION'/

3 5X,' ==> ',$)

READ (65,*) INFORM

IF (INFORM .EQ. 1) THEN

WRITE(6,40) IP1,(NEIBG2(J,IP1),J=1,4)

WRITE(6,40) IP2,(NEIBG2(J,IP2),J=1.4)

WRITE(6,40) IP3,(NEIBG2(J,IP3),J=1,4)
WRITE(6,40) IP4,(NEIBG2(J,IP4),J=1,4)
KNODEC - 0

DO 30 JBND = 1, NBNDG2
IF (IPI .EQ. IBNDG2(1,JBND))

1 WRITE(6,50) JBND, (IBNDG2(J,JBND),J=1,5)

IF (IP2 .EQ. IBNDG2(1,JBND))
1 WRITE(6,50) JBND, (IBNDG2(J,JBND),J=1,5)

IF (IP3 .EQ. IBNDG2(1,JBND))
1 WRITE(6,50) JBND, (IBNDG2(J,JBND),J=1,5)

IF (IP4 .EQ. IBNDG2(1,JBND))
1 WRITE(6,50) JBND, (IBNDG2(J,JBND),J=1,5)

IF (JCELL.EQ.IBNDG2(2,JBND) .AND. IBNDG2(3,JBND).EQ.O)
1 KNODEC = JBND

30 CONTINUE

IF (KNODEC .NE. O) THEN
IF (IBNDG2(4,KNODEC) .EQ. 2) THEN

WRITE(6,60) NBCPG2(1,1), KNODEC, NBCPG2(1,2)
ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 4) THEN

WRITE(6,60) NBCPG2(2,1), KNODEC, NBCPG2(2,2)
ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 6) THEN
WRITE(6,60) NBCPG2(3,1), KNODEC, NBCPG2(3,2)

ENDIF

IF (IBNDG2(4,KNODEC) .EQ. 8) THEN
WRITE(6,60) NBCPG2(4,1), KNODEC, NBCPG2(4,2)

ENDIF
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ENDIF
C 

ELSE IF (INFORM .EQ. 2) THEN

TYPINF - ' X-NODE'

WRITE(6,70) TYPINF, GEOMG2(1,IP1), GEOMG2(1,IP2),

1 GEOMG2(1,IP3). GEOMG2(1,IP4)

TYPINF = ' Y-NODE'

WRITE(6,70) TYPINF, GEOMG2(2,IPi), GEOMG2(2,IP2),

1 GEOMG2(2,IP3), GEOMG2(2,IP4)
MAXEQ - MIN (10, NEQNFL)

TYPINF - ' DPEN SW'

WRITE(6,80) TYPINF, PRESG2(IP1), TEMPG2(IP1),
1 (DPENG2(IS,IP1),IS=I,MAXEQ)

TYPINF = ' DPEN SE'

WRITE(W,80) TYPINF, PRESG2(IP2), TEMPG2(IP2),
1 (DPENG2(IS,IP2),IS=1.MAXEQ)

TYPINF = ' DPEN NE'

WRITE(6,80) TYPINF, PRESG2(IP3), TEMPG2(IP3),
1 (DPENG2(IS,IP3),IS=1,MAXE)

TYPINF = ' DPEN NW'

WRITE(6,80) TYPINF, PRESG2(IP4), TEMPG2(IP4),
1 (DPENG2(IS,IP4),IS=I,MAXEQ)

ENDIF

40 FORMAT(7X,'NEIGHBOURS OF:',I5,SX,4I5)
50 FORMAT (7X,'BOUNDARY NODE:',I.5,X,5I5)

60 FORMAT (7X,'CORNER N. NODE:',6I5)
70 FORMAT(2X,A8,2X,4G15.)

80 FORMAT(2X,A8,2X,4G15.5/12X,4G15.5/12X,4G15.5)

RETURN

END

GNDUMY

SUBROUTINE GNDUMY

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PARMV2.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] G2COMN.INC/LIST'

INCLUDE 'GNBLOC.INC/LIST'

C

C THIS SUBROUTINE IS A DUMMY ROUTINE; ANY OTHER ROUTINE CAN BE

C SUBSTITUTED FOR IT IF SOME SPECIAL PROCESSING IS TO BE DONE
C

C

WRITE(6,*) ' INPUT THE MINIMUM TEMPERATURE'

READ (56,*) TEMPMN

DO 10 INODE - 1. NNODG2

IF (TEMPG2(INODE) .LE. TEMPMN) THEN
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XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

CALL GR_MOVE(XNODE,YNODE, -2)

ENDIF

10 CONTINUE

WRITE(6,*) ' IF YOU WHICH TO CHANGE VALUES INPUT 1'

READ (6,*) ICHAN

IF (ICHAN .EQ. 1) THEN

WRITE(6,*) ' INPUT THE NODE WHOSE VALUES ARE TO USED'

READ (6,*) JNODE

DO 30 INODE - 1. NNODG2

IF (TEMPG2(INODE) .LE. TEMPMN) THEN

XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

IF (XNODE.LT.1.2 .AND. XNODE.GT.O.66) THEN

IF (YNODE.LT.0.2 .AND. YNODE.GT.-0.2) THEN

DO 20 IEQ = 1, NEQNFL

DPENG2(IEQ,INODE) = DPENG2(IEQ,JNODE)

20 CONTINUE

PRESG2(INODE) - PRESG2(JNODE)

TEMPG2(INODE) TEMPG2(JNODE)

ENDIF

ENDIF

CALL GR_MOVE(XNODEYNODE,-2)

ENDIF

30 CONTINUE

ENDIF

RETURN

END

GNGKIN

SUBROUTINE GNGKIN (WSID,NCHOICE,CHAR,XX,YY)

parameter (mchoic=25)

INCLUDE '[PERVAIZ.GRAFIC1]GRCOMN.INC'

INTEGER WSID,SIZES(mchoic) .CHOICE

CHARACTER*30 STRING(mchoic)
CHARACTER*1 CHAR

CHARACTER*25 CHOICESTRING

DATA CHOICESTRING /'ABDHILMNOPQRSTUVWGFEX*KYZ'/

C DATA CHOICESTRING /'1234587890123456789012345'/
C

C

C THIS SUBROUTINE WRITES A MENU TO THE VSII SCREEN, ASKS FOR

C CHOICE INPUT, AND IF NECESSARY ASKS FOR LOCATOR INPUT.

C
C PARAMETER:
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C WSID

C CHAR

C XX,Yy

C

C

C

- LOGICAL WORKSTATION IDENTIFIER

- CHOICE LETTER (OUTPUT)

- LOCATOR POINT (OUTPUT)

MAKE MENU

STRING(1)='ADD FEATURE'

SIZES (1)=11

STRING(2)='BLOWUP'

SIZES (2)=6

STRING(3)='DETAILED INFO'
SIZES (3)=le
STRING(4)='GRID DIVIDE'

SIZES (4)=16
STRING(5)='GRID COLLAPSE'

SIZES (5)=16

STRING(6)='LASERGRAFIX MODE'

SIZES (6)=16

STRING(7)='MIN/MAX'

SIZES (7)=7

STRING(8)='LOCATE NODE OR CELL'

SIZES (8)=19
STRING(9)='ORIGINAL SCALES'
SIZES (9)-is

STRING(10O)='THICK OUTLINE OF BLOCKS'
SIZES (10)=23

STRING(1l)='QUERY'

SIZES (11)=6

STRING(12)='REMOVE FEATURE'
SIZES (12)=17

STRING(13)='SET SYMBOL SIZE'
SIZES (13)=15
STRING(14)='TeX OUTPUT'

SIZES (14)=10

STRING(15)='CHANGE AUX. POINTER'
SIZES (15)=19

STRING(16)='VALUE'

SIZES (16)=5

STRING(17)='WINDOW'

SIZES (17)=6

STRING(18)='SET FEATURE COLOR INDEX'
SIZES (18)=23

C
C

C
SET THE NUMBER OF BASIC CHOICES (FOR GRCONTROL)

NBASE = 18

STRING(19)='SET COLOR INDEX IN LUT'

SIZES (19)=22

STRING(20)='GET COLOR REP FROM LUT'
SIZES (20)=22

STRING(21)='EXIT'

SIZES (21)=4

STRING(22)='SPECIAL'

SIZES (22)=7
C

422



C
C INQUIRE MENU CHOICE

CALL GKCHOIC (WSID,NCHOICE,STRING,SIZES,CHOICE)

C

CHAR = CHOICE-STRING(CHOICE:CHOICE)
XX 0O.
YY= O.

C
C

IF (CHAR .EQ. 'X') RETURN

C FIND CURSOR LOCATION FOR CHOICE = (A,D,U,V,W)

IF(INDEX('ADHIUVW',CHAR).NE.O) THEN

WRITE(JOUTGR,*) Input initial cursor location'

CALL GKLOC (WSID,1,2,0.5,.5,XX,YY)

C WRITE(6,*) XX,YY

ENDIF

C
C SPECIAL PROCESSING

IF(INDEX('*',CHAR).NE.O) THEN

CALL GRSPEC (WSID,CHAR)

RETURN

ENDIF

C DO INTERACTIVE COLOR MANIPULATIONS

IF (CHOICE .GT. NBASE) THEN
IGOTO = CHOICE - NBASE

CALL GRCOLORINT (WSID,IGOTO,IDUM,XX,YY)
ENDIF

RETURN

END

GNLNOD

SUBROUTINE GNLNOD (JNODE, IISYM)

C

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PARMV2. INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INCI] G2COMN.INC/LIST'

INCLUDE '[PERVAIZ.GRAFIC1]GRCOMN.INC/LIST'

INCLUDE '[PERVAIZ.GRAFICII1MPCOMN.INC/LIST'

INCLUDE 'GNBLOC.INC/LIST'

DIMENSION RECTX(4), RECTY(4)

IF (JNODE .LT. O) THEN
C THE GIVEN POINT IS A NODE

INODE -JNODE

IF (INODE .EQ. 0 .OR. INODE .GT. NNODG2) RETURN

XCURSG - GEOMG2(1,INODE)

YCURSG = GEOMG2(2,INODE)

CALL GRMOVE (XCURSG,YCURSG,IISYM)
ELSE
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C THE GIVEN POINT IS A CELL

ICELL - JNODE

IP (ICELL .EQ. O .OR. ICELL .GT. NCELG2) RETURN
KSW ICLG2(2ICELG2(2ICELL)

KSE - ICELG2(4ICELL)
KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)

XSW - GEOMG2(1,KSW)

XSE = GEOMG2(1,KSE)

XNE - GEOMG2(1,KNE)

XNW - GEOMG2(l,KNW)

YSW - GEOMG2(2,KSW)

YSE - GEOMG2(2,KSE)

YNE - GEOMG2(2,KNE)

YNW = GEOMG2(2,KNW)

XCURSG 0.25*(XSW + XSE + XNE + XNW)
YCURSG = 0.25*(YSW + YSE + YNE + YNW)

IF (IFLAGC .NE. O) THEN

RECTX(1) = XSW

RECTX(2) = XSE

RECTX(3) = XNE
RECTX(4) = XNW
RECTY(1) = YSW
RECTY(2) - YSE

RECTY(3) - YNE

RECTY(4) = YNW

ISYM = ABS(IISYM)
CALL GRFILL (ISYM.1,RECTX.RECTY,4)

ELSE

CALL GRMOVE (XCURSG,YCURSG,IISYM)
ENDIF

ENDIF
C
C RETURN

END

GNPINJ

SUBROUTINE GNPINJ

INCLUDE 'PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE 'PERVAIZ.TWODO.INC] PARMV2.INC/LIST'
INCLUDE 'PERVAIZ.TWODO.INC] G2COMN.INC/LIST'

INCLUDE '[PERVAIZ.TWODO. INC] HEXCOD.INC

DIMENSION MARKBN(MBNDG2)
CHARACTER*1 YESNO

C***********************************************************************
C

C THIS SUBROUTINE IS USEFUL TO REMOVE THE EXTRA CORNER BOUNDARY

C NODES WHEN THERE ARE EMBEDDED PARALLEL INJECTORS IN THE FLOW-

C FIELD. THESE CORNER POINTS ARE REGARDED AS THE DIRECHLET POINTS,

C FOR EXAMPLE, IN THE "INJECTOR" CASE.
C
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C
C INITIALIZE THE NUMBER OF INTERIOR POINTS

C 
KOUNTI - 0

C
C LOCATE ALL THE INTERIOR CORNER NODES. THESE NODES ARE DEFINED

C AS THE WESTERN INLET BOUNDARIES IN THE INITIAL GRIDS

DO 10 JBND - 1. NBNDG2

INODE - IBNDG2(1,JBND)

IEDGE - IBNDG2(4,JBND)
IBCTYP = IBNDG2(5.JBND)

C CHECK WESTERN BOUNDARY; THIS WOULD BE A REAL WESTERN BOUNDARY

C IF THERE ARE TWO OR LESS NON-ZERO NEIGHBOUR CELLS OF THE NODE

C "INODE", ELSE IT WOULD A REGULAR BOUNDRY NODE. KOUNTN IS THE

C COUNTER FOR NON-ZERO NEIGHBOUR CELLS

KOUNTN - O

IF (IEDGE .EQ. 9 .AND. IBCTYP .EQ. 2) THEN

NBSW - NEIBG2(1,INODE)

NBSE - NEIBG2(2,INODE)

NBNE - NEIBG2(3.INODE)

NBNW NEIBG2(4,INODE)

IF (NBSW .NE. O) KOUNTN = KOUNTN + 

IF (NBSE .NE. O) KOUNTN - KOUNTN + 

IF (NBNE .NE. O) KOUNTN = KOUNTN + 

IF (NBNW .NE. O) KOUNTN = KOUNTN + 1

IF (KOUNTN .EQ. 3) THEN

KOUNTI KOUNTI + 1

MARKBN(KOUNTI) = JBND
ENDIF

ENDIF

10 CONTINUE

C WRITE DOWN ALL THE INTERIOR CORNER BOUNDARY NODES AND QUERY IF
C ANY OF THEM HAVE TO BE CHANGED

IF (KOUNTI .EQ. O) RETURN

WRITE(6, 20)

20 FORMAT(/6X.'THE FOLLOWING INTERIOR CORNER BOUNDARY NODES',

1 ' ARE FOUND FOR PARELLEL INJECTION'/)

DO 30 KOUNT 1, KOUNTI

JBND MARKBN(KOUNT)

WRITE(6,40) JBND, (IBNDG2(J,JBND),J=1,6)
30 CONTINUE

40 FORMAT(7X,'BOUNDARY NODE:',IS,6X,6IS)

WRITE(6.50)

60 FORMAT(/6X,.'WANT TO CHANGE POINTERS OF ANY OF THE CORNER',

1 ' BOUNDARY NODES')

READ (5,60) YESNO
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60 FORMAT(A)

IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') GOTO 70
RETURN

C

C INITIALIZE THE NUMBER OF INTERIOR BOUNDARY NODES TO BE CHANGED

C

70 KOUNTD = 0

C
C SEE IF ANY OF THE CORNER BOUNDARY NODES ARE TO BE DELETED
C

DO 90 KOUNT = 1, KOUNTI
JBND MARKBN(KOUNT)

WRITE(6,.100)

WRITE(6,40) JBND, (IBNDG2(J,JBND),J=1,6)
READ (5,60) YESNO

IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') THEN
KOUNTD = KOUNTD + 1

INODE ' IBNDG2(1,JBND)

IONE = IBNDG2(2,JBND)

ITWO = IBNDG2(3,JBND)
IF (ITWO .EQ. O) GOTO 90

IlSW = ICELG2(2,IONE)

I1NW = ICELG2(8,IONE)
I2SW = ICELG2(2,ITWO)
I2NW = ICELG2(8,ITWO)

C LOCATE THE CELL (B/W IONE AND ITWO) WITH NO BOUNDARY NODES
C THIS CELL WILL BE THE FIRST CELL POINTER, THE OTHER CELL
C POINTER OF THE BOUNDARY NODE WILL BECOME ZERO

K1SW = 0
K1NW = 0
K2SW = 0
K2NW = 0
DO 80 KBND = 1, NBNDG2

IF (I1SW .EQ. IBNDG2(1,KBND)) KSW = KBND
IF (I1NW .EQ. IBNDG2(1,KBND)) KNW = KBND
IF (I2SW .EQ. IBNDG2(1,KBND)) K2SW = KBND
IF (I2NW .EQ. IBNDG2(1,KBND)) K2NW = KBND

80 CONTINUE

IF (KlSW .NE. 0 .AND. K1NW .NE. O) THEN

IF (K2SW .NE. 0 .AND. K2NW .NE. O) WRITE(6,120)
C IBNDG2(2,JBND) = IONE

IBNDG2(3,JBND) - 0
ICHAN = ITWO

ELSE IF (K2SW .NE. 0 .AND. K2NW .NE. O) THEN
IBNDG2(2,JBND) = ITWO
IBNDG2(3,JBND) = 0
ICHAN =IONE

ELSE

WRITE(6,120)
ENDIF

WRITE(6,130) JBND, (IBNDG2(J,JBND),J=I,5)
C

C THE AUXILLARY POINTERS OF SOME OF THE CELLS (ICHAN) PERTAINING
C TO THE BOUNDARY NODES BEING CHANGED MAY HAVE TO BE RESET,
C THE CELL WHOSE AUX. POINTER IS NON-ZERO AND YET IT DOES

426



NOT HAVE ANY ASSOCIATED POINTERS MUST HAVE THE "BOUNDARY
BYTE" OF THE AUX. POINTER AS ZERO

KXO - KAUXG2(ICHAN)

KBXO - IAND(KXO,KLOOOF)

IF (KBXO .EQ. O) GOTO 90

RECOMMEND AN ALTERNATIVE POINTER

KXN = IAND(KXO,KLFFFO)
WRITE(6,150) ICHAN,KXO,ICHAN,KXN

READ(6,160) KX

IF (KX .GE. O) THEN

KAUXG2(ICHAN) = KX
WRITE(6,170) ICHANKX

ENDIF

ENDIF

90 CONTINUE

100 FORMAT(/SX,'WANT TO CHANGE POINTERS OF THE BOUNDARY NODE')
120 FORMAT(5X,'G2PINJ: ERROR IN POINTERS: BOTH IONE AND ITWO HAVE',

1 ' TWO NON-ZERO BOUNDARY NODES')

130 FORMAT(SX,'NEW BOUNDARY NODE POINTERS:',I65,X,5IS)

150 FORMAT(//6X.'OLD AUXILLARY POINTER OF CELL :',IS.6X,Z10/
1 5X,'RECOMMENDED AUX. POINTER OF CELL:',I6,6X,Z10/

2 IOX,'INPUT NEW AUX. POINTER IN Z-FORMAT'/

3 ' 12345678',SX,'INPUT -1 IF NO CHANGE IS DESIRED')
160 FORMAT(Z8)

170 FORMAT(SX,'NEW AUX. POINTER OF CELL:',I,6X,Z10)

RETURN

END

GNREDN

SUBROUTINE GNREDN

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PARMV2.INC/LIST'
INCLUDE 'PERVAIZ.TWODO.INC] G2COMN.INC/LIST'

INCLUDE 'GNBLOC.INC/LIST'

C

C THIS PROGRAM REMOVES REDUNDANCY OF NODES AT THE BOUNDARIES OF THE
C VARIOUS ADJACENT BLOCKS

C

C

C FIRST INITIALIZE NODE KEEP ARRAY

C

DO 10 INODE 1, NNODG2

PRESG2(INODE) = 1.0
10 CONTINUE
C
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DO 60 IBLOCK - 1, NBLOCK
EVALUATE THE SOUTHERN NEIGHBOUR BLOCK, IT EXISTS IF IT

IS-POSITIVE, IN THIS CASE THE SOUTHERN SURFACE OF THE
CURRENT BLOCK WILL BE DELETED

NBSURF - ISBLOCK(IBLOCK,1)

IF (NBSURF .GT. O) THEN

DO 20 IX 2, NXBLOCK(IBLOCK)-1

EVALUATE NODE TO BE DELETED

INODED - IBS(IBLOCK,IX)
EVALUATE NODE TO BE KEPT

INODEK IBN(NBSURF,IX)

MARK THE NODE FOR DELETE

PRESG2(INODED) - -1.0

RESET THE NEIGHBOUR NODE ARRAY

NBCEL3 - NEIBG2(3,INODED)

NBCEL4 = NEIBG2(4,INODED)
NEIBG2(3,INODEK) = NBCEL3

NEIBG2(4,INODEK) = NBCEL4

IF (NBCEL3 .NE. O) ICELG2(2,NBCEL3) = INODEK

IF (NBCEL4 .NE. O) ICELG2(4,NBCEL4) = INODEK

THE FOLLOWING IS NOT REALLY NEEDED, SINCE AFTER THIS
LOOP ONLY THE CORNER CELLS ARE USED

IBS(IBLOCK,IX) IBN(NBSURF,IX)
CONTINUE

ENDIF

EVALUATE THE EASTERN NEIGHBOUR BLOCK

NBSURF - ISBLOCK(IBLOCK,2)

IF (NBSURF .GT. O) THEN

DO 30 IY 2, NYBLOCK(IBLOCK)-i
EVALUATE NODE TO BE DELETED

INODED - IBE(IBLOCK,IY)

EVALUATE NODE TO BE KEPT

INODEK - IBW(NBSURFIY)
MARK THE NODE FOR DELETE

PRESG2(INODED) = -1.0
RESET THE NEIGHBOUR NODE ARRAY

NBCEL1 = NEIBG2(1,INODED)

NBCEL4 NEIBG2(4,INODED)
NEIBG2(1,INODEK) = NBCEL1

NEIBG2(4,INODEK) = NBCEL4

IF (NBCEL1 .NE. O) ICELG2(6,NBCEL1) = INODEK
IF (NBCEL4 .NE. O) ICELG2(4,NBCEL4) = INODEK

IBE(IBLOCK,IY) IBW(NBSURF,IY)

CONTINUE
ENDIF

EVALUATE THE NORTHERN NEIGHBOUR BLOCK

NBSURF - ISBLOCK(IBLOCK,3)

IF (NBSURF .GT. O) THEN

DO 40 IX = 2, NXBLOCK(IBLOCK)-1
EVALUATE NODE TO BE DELETED

INODED - IBN(IBLOCK,IX)
EVALUATE NODE TO BE KEPT

INODEK IBS(NBSURF,IX)
MARK THE NODE FOR DELETE

PRESG2(INODED) - -1.0
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C RESET THE NEIGHBOUR NODE ARRAY

NBCELI - NEIBG2(1,INODED)

. NBCEL2 - NEIBG2(2,INODED)

NEIBG2(1,INODEK) = NBCELi
NEIBG2(2,INODEK) NBCEL2

IF (NBCEL1 .NE. O) ICELG2(6,NBCEL1) = INODEK
IF (NBCEL2 .NE. O) ICELG2(8,NBCEL2) = INODEK

IBN(IBLOCK,IX) = IBS(NBSURF,IX)
40 CONTINUE

ENDIF

C

C EVALUATE THE WESTERN NEIGHBOUR BLOCK

NBSURF - ISBLOCK(IBLOCK,4)

IF (NBSURF .GT. O) THEN

DO 50 IY 2, NYBLOCK(IBLOCK)-1
C EVALUATE NODE TO BE DELETED

INODED - IBW(IBLOCK.IY)
C EVALUATE NODE TO BE KEPT

INODEK IBE(NBSURF,IY)

C MARK THE NODE FOR DELETE

PRESG2(INODED) = -1.0
C RESET THE NEIGHBOUR NODE ARRAY

NBCEL2 = NEIBG2(2.INODED)

NBCEL3 = NEIBG2(3,INODED)
NEIBG2(2,INODEK) = NBCEL2

NEIBG2(3,INODEK) = NBCEL3

IF (NBCEL2 .NE. O) ICELG2(8,NBCEL2) = INODEK
IF (NBCEL3 .NE. O) ICELG2(2,NBCEL3) = INODEK

IBW(IBLOCK,IY) = IBE(NBSURF,IY)
50 CONTINUE

ENDIF

C
60 CONTINUE

C

C NOW MARK THE CORNER NODES

C

DO 140 IBLOCK 1, NBLOCK
C

C SEE IF SW CORNER IS ALREADY DONE
C

NCO IBS(IBLOCK,1)

IF (ISBLOCK(IBLOCK.1).GT.O .OR. ISBLOCK(IBLOCK.4).GT.O)THEN
PRESG2(NCO) - -1.

GOTO 80

ENDIF

XIH - GEOMG2(1,NCO)

YIH = GEOMG2(2,NCO)

C CHECK THE REST OF THE BLOCKS FOR SW CORNER

DO 70 KBLOCK - IBLOCK+1, NBLOCK

KCO IBE(KBLOCK,1)
XKH GEOMG2(1,KCO)

YKH - GEOMG2(2,KCO)

IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(4,KCO)

NEIBG2(4,NCO) = NCELL
IF (NCELL .NE. O) ICELG2(4,NCELL) NCO
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IBE(KBLOCK,1) = NCO

IBS(KBLOCK,NXBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.

ENDIF

KCO = IBN(KBLOCK,1)

XKH = GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)

IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(2,KCO)

NEIBG2(2,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(8,NCELL) = NCO

IBN(KBLOCK,1) = NCO

IBW(KBLOCK,NYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO = IBN(KBLOCK,NXBLOCK(KBLOCK))

XKH = GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(1,KCO)

NEIBG2(1,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(6,NCELL) = NCO

IBN(KBLOCKNXBLOCK(KBLOCK)) = NCO

IBE(KBLOCKNYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.

ENDIF

70 CONTINUE

C

C SEE IF SE CORNER IS ALREADY DONE

C

80 NCO = IBE(IBLOCK,1)

IF (ISBLOCK(IBLOCK,1).GT.0 .OR. ISBLOCK(IBLOCK,2).GT.O)THEN

c PRESG2(NCO) = -1.

GOTO 100

ENDIF

XIH = GEOMG2(1,NCO)

YIH = GEOMG2(2,NCO)

C CHECK THE REST OF THE BLOCKS FOR SE CORNER

DO 90 KBLOCK = IBLOCK+1, NBLOCK

KCO IBN(KBLOCK,1)

XKH = GEOMG2(1,KCO)
YKH GEOMG2(2,KCO)

IF (XIH.EQ.XKH .AND. YIH.Eq.YKH) THEN

NCELL = NEIBG2(2,KCO)

NEIBG2(2,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(8,NCELL) = NCO

IBN(KBLOCK,1) = NCO

IBW(KBLOCK,NYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO = IBW(KBLOCK,1)
XKH = GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(3,KCO)

NEIBG2(3,NCO) = NCELL
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IF (NCELL .NE. O) ICELG2(2,NCELL) = NCO

IBW(KBLOCK,1) = NCO

IBS(KBLOCK,1) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO = IBN(KBLOCK,NXBLOCK(KBLOCK))
XKH = GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(1,KCO)

NEIBG2(1,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(6,NCELL) = NCO

IBN(KBLOCK,NXBLOCK(KBLOCK)) = NCO

IBE(KBLOCK,NYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.
ENDIF

90 CONTINUE

C
C SEE IF NE CORNER IS ALREADY DONE

C

C NCO = IBE(IBLOCK,NYBLOCK(IBLOCK))

100 NCO = IBN(IBLOCK,NXBLOCK(IBLOCK))

IF (ISBLOCK(IBLOCK,2).GT.O .OR. ISBLOCK(IBLOCK,3).GT.O)THEN

c PRESG2(NCO) = -1.
GOTO 120

ENDIF

XIH = GEOMG2(1,NCO)

YIH = GEOMG2(2,NCO)

C CHECK THE REST OF THE BLOCKS FOR NE CORNER

DO 110 KBLOCK = IBLOCK+1, NBLOCK
KCO = IBN(KBLOCK,1)

XKH = GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)

IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(2,KCO)
NEIBG2(2,NCO) = NCELL
IF (NCELL .NE. O) ICELG2(8,NCELL) = NCO

IBN(KBLOCK,1) = NCO

IBW(KBLOCK,NYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO = IBS(KBLOCK,1)

XKH - GEOMG2(1,KCO)

YKH GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.Eq.YKH) THEN

NCELL = NEIBG2(3,KCO)
NEIBG2(3,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(2,NCELL) -= NCO

IBS(KBLOCK,1) = NCO
IBW(KBLOCK,1) = NCO
PRESG2(KCO) = -1.

ENDIF

KCO IBE(KBLOCK,1)
XKH GEOMG2(1,KCO)

YKH = GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN
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NCELL = NEIBG2(4,KCO)

NEIBG2(4,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(4,NCELL) = NCO

IBE(KBLOCK,1) = NCO

IBS(KBLOCKNXBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.

ENDIF

110 CONTINUE

C

C SEE IF NW CORNER IS ALREADY DONE

C

120 NCO - IBN(IBLOCK,1)

IF (ISBLOCK(IBLOCK,3).GT.0 .OR. ISBLOCK(IBLOCK,4).GT.O)THEN

c PRESG2(NCO) = -1.
GOTO 140

ENDIF

XIH = GEOMG2(1,NCO)

YIH = GEOMG2(2,NCO)

C CHECK THE REST OF THE BLOCKS FOR NW CORNER

DO 130 KBLOCK = IBLOCK+1, NBLOCK
KCO IBS(KBLOCK.1)

XKH = GEOMG2(i,KCO)

YKH - GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL - NEIBG2(3,KCO)

NEIBG2(3,NCO) = NCELL
IF (NCELL .NE. O) ICELG2(2,NCELL) = NCO

IBS(KBLOCK,1) = NCO

IBW(KBLOCK,1) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO IBE(KBLOCK,1)

XKH GEOMG2(1,KCO)

YKH - GEOMG2(2,KCO)
IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(4,KCO)
NEIBG2(4,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(4,NCELL) = NCO

IBE(KBLOCK.1) = NCO
IBS(KBLOCK.NXBLOCK(KBLOCK)) = NCO

PRESG2(KCO) = -1.
ENDIF

KCO - IBN(KBLOCK,NXBLOCK(KBLOCK))

XKH - GEOMG2(1,KCO)

YKH - GEOMG2(2,KCO)

IF (XIH.EQ.XKH .AND. YIH.EQ.YKH) THEN

NCELL = NEIBG2(1,KCO)

NEIBG2(1,NCO) = NCELL

IF (NCELL .NE. O) ICELG2(6,NCELL) = NCO

IBN(KBLOCK,NXBLOCK(KBLOCK)) = NCO
IBE(KBLOCKNYBLOCK(KBLOCK)) = NCO

PRESG2(KCO) -1.
ENDIF

130 CONTINUE

140 CONTINUE
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C
C DELETE THE NODES WHICH WERE MARKED EARLIER

C
NNEW - 0

C

DO 150 NOLD = 1, NNODG2

IF (PRESG2(NOLD) .GT. 0.) THEN

NNEW - NNEW + 

KAUXG2(NOLD) NNEW

IF (NOLD .NE. NNEW) THEN
C ADJUST THE GEOMETRY ARRAYS

GEOMG2(1,NNEW) = GEOMG2(1,NOLD)
GEOMG2(2.NNEW) = GEOMG2(2,NOLD)

C ADJUST THE NEIGHBOUR-NODE-ARRAYS

NEIBG2(1,NNEW) = NEIBG2(1,NOLD)
NEIBG2(2,NNEW) = NEIBG2(2,NOLD)

NEIBG2(3,NNEW) NEIBG2(3,NOLD)

NEIBG2(4,NNEW) = NEIBG2(4,NOLD)
ENDIF

ENDIF

150 CONTINUE

C RESET NUMBER OF NODES

NNODG2 = NNEW

C STEP THROUGH ALL CELL POINTERS, WHICH POINT TOWARDS NODES,
C REALIGNING TO NEW NODE NUMBERS. THE NODE NUMBERS CORRESPONDING

C TO COARSE CELLS ARE NOT CHANGED

DO 170 ICELL = 1. NCELG2
C STEP THROUGH EACH CELL POINTER

DO 160 IPNT = 2, 8, 2
IF (ICELG2(IPNT,ICELL) .NE. O) THEN

ICELG2(IPNT,ICELL) = KAUXG2(ICELG2(IPNT,ICELL))
ENDIF

160 CONTINUE

170 CONTINUE

C STEP THROUGH ALL THE BLOCK SURFACE POINTERS REALIGNING TO NEW

C NODE NUMBERS.
C

DO 200 IBLOCK 1, NBLOCK

IBS(IBLOCK.1) = KAUXG2(IBS(IBLOCK,1))

IBE(IBLOCK.1) = KAUXG2(IBE(IBLOCK.1))
IBN(IBLOCK,1) KAUXG2(IBN(IBLOCK,1))

IBW(IBLOCK.1) = KAUXG2(IBW(IBLOCK,1))
IBS(IBLOCK,NXBLOCK(IBLOCK)) =

1 KAUXG2(IBS(IBLOCK.NXBLOCK(IBLOCK)))

IBE(IBLOCKNYBLOCK(IBLOCK)) 
1 KAUXG2(IBE(IBLOCK.NYBLOCK(IBLOCK)))

IBN(IBLOCK,NXBLOCK(IBLOCK)) 

1 KAUXG2(IBN(IBLOCK.NXBLOCK(IBLOCK)))
IBW(IBLOCK.NYBLOCK(IBLOCK)) 

1 KAUXG2(IBW(IBLOCK.NYBLOCK(IBLOCK)))

DO 180 IX - 2, NXBLOCK(IBLOCK)-I
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IBS(IBLOCK,IX) = KAUXG2(IBS(IBLOCK,IX))
-IBN(IBLOCK,IX) = KAUXG2(IBN(IBLOCK,IX))

180 CONTINUE

DO 190 IY - 2. NYBLOCK(IBLOCK)-1

IBW(IBLOCK,IY) = KAUXG2(IBW(IBLOCK,IY))

IBE(IBLOCK,IY) = KAUXG2(IBE(IBLOCK,IY))
190 CONTINUE

200 CONTINUE

C

RETURN

END

GNSEPB

SUBROUTINE GNSEPB (IBLOCK)

INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC/LIST'
INCLUDE 'PERVAIZ.TWODO.INC] PARMV2.INC/LIST'

INCLUDE '[PERVAIZ.TWODO.INC] G2COMN.INC/LIST'

INCLUDE 'GNBLOC.INC/LIST'

DIMENSION DISTVI(1000), DISTE(1000)

C

C THIS SUBROUTINE IS IN-BOUNDARY-OUT-GRID (IBOG); I.E., IT TAKES
C IN THE BOUNDARY INFORMATION AND GENERATES THE INTERIOR GRID

C

C

C COMPUTE THE NODE BEFORE THE FIRST NORTH ONE (L IN FIG.)
C AND THE MAXIMUM NUMBER OF NODES

NXRECT = NXBLOCK(IBLOCK)
NYRECT NYBLOCK(IBLOCK)
NBEFNO NXRECT*(NYRECT-1)

NNODEH - NXRECT*NYRECT

C
C SET SOUTH AND NORTH NODE INFORMATION

DO 10 IX = 1, NXRECT
DETERMINE LOCAL NODES NOS AND NON; THE ACTUAL NODES ARE THESE
PLUS NNODG2 FROM PREVIOUS BLOCK

NOS - IX

NON = IX + NBEFNO

SAVE THE ACTUAL BOUNDARY NODES FOR THIS BLOCK

IBS(IBLOCK,IX) = NOS
IBN(IBLOCK,IX) = NON

C SAVE THE GEOMETRY AT

GEOMG2(1,NOS+NNODG2)

GEOMG2(2,NOS+NNODG2)

GEOMG2(1,NON+NNODG2)

GEOMG2(2,NON+NNODG2)
10 CONTINUE

+ NNODG2
+ NNODG2
THE ACTUAL BOUNDARY NODES

- XSBLOCK(IBLOCK,IX)

= YSBLOCK(IBLOCK,IX)

= XNBLOCK(IBLOCK,IX)
- YNBLOCK(IBLOCK,IX)
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C
C SET WEST AND EAST NODE INFORMATION

DO 20 IY 1, NYRECT

DETERMINE LOCAL NODES NOE AND NOW; THE ACTUAL NODES ARE THESE

PLUS NNODG2 FROM PREVIOUS BLOCK

NOW = + (IY-I)*NXRECT
NOE = IY*NXRECT

SAVE THE ACTUAL BOUNDARY NODES FOR THIS BLOCK

IBE(IBLOCK,IY) = NOE
IBW(IBLOCK,IY) = NOW
SAVE THE GEOMETRY AT

GEOMG2(1,NOW+NNODG2)

GEOMG2(2.NOW+NNODG2)

GEOMG2(1,NOE+NNODG2)
GEOMG2(2.NOE+NNODG2)

+ NNODG2

+ NNODG2

THE ACTUAL BOUNDARY NODES
= XWBLOCK(IBLOCK,IY)

= YWBLOCK(IBLOCK,IY)
= XEBLOCK(IBLOCK,IY)

= YEBLOCK(IBLOCK,IY)
20 CONTINUE

C

C INITIALIZE THE FRACTIONAL DISTANCES ON WEST AND EAST EDGES
C

DISTW(1) = 0.
DISTE(1) = O.

C

C CALCULATE THE TOTAL DISTANCES ON WEST AND EAST EDGES
C

DO 30 J 2, NYRECT

JMi

INDJW

INDJMW

INDJE

INDJME

DXW

DYW

DXE

DYE

-J- 
= 1 + (J -1)*NXRECT

= I + (JMI-1)*NXRECT
=J *NXRECT
= JMI*NXRECT

= GEOMG2(1,INDJW+NNODG2) - GEOMG2(1,INDJMW+NNODG2)

= GEOMG2(2,INDJW+NNODG2) - GEOMG2(2,INDJMW+NNODG2)

- GEOMG2(1,INDJE+NNODG2) - GEOMG2(1.INDJME+NNODG2)
- GEOMG2(2,INDJE+NNODG2) - GEOMG2(2,INDJME+NNODG2)

C

DISTW(J) DISTW(JM1) + SQRT(DXW*DXW + DYW*DYW)

DISTE(J) DISTE(JM1) + SQRT(DXE*DXE + DYE*DYE)

C

30 CONTINUE

C CALCULATE THE

C FOR EACH NODE

FRACTIONAL DISTANCES ON WEST AND EAST EDGES

DO 40 J 2, NYRECT

DISTW(J) = DISTW(J)/DISTW(NYRECT)
DISTE(J) = DISTE(J)/DISTE(NYRECT)

40 CONTINUE

C

C STEP THROUGH EACH INTERIOR LINE

C

DO 60 I = 2, NXRECT-1
FRACI = FLOAT(I-I)/FLOAT(NXRECT-1)

CALCULATE FRACTIONAL DISTANCES FOR EACH INTERIOR POINT

C
C
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DO 50 J = 2,NYRECT-1
FRACJ = (1.-FRACI)*DISTW(J) + FRACI*DISTE(J)

IND = I + ( J-1)*NXRECT

INDN = I + (NYRECT-1)*NXRECT
INDS = I

COMPUTE THE DISTANCE FROM NORTH EDGE TO SOUTH EDGE

DELXNS

DELYNS

= GEOMG2(1,INDN+NNODG2) - GEOMG2(1,INDS+NNODG2)

= GEOMG2(2,INDN+NNODG2) - GEOMG2(2,INDS+NNODG2)

COMPUTE LOCATION OF INTERIOR POINT

GEOMG2(1,IND+NNODG2) = GEOMG2(1,INDS+NNODG2) + FRACJ*DELXNS

GEOMG2(2,IND+NNODG2) = GEOMG2(2,INDS+NNODG2) + FRACJ*DELYNS

CONTINUE

CONTINUE

C
C COMPUTE NUMBER OF CELLS IN EACH DIRECTION ON THE GLOBAL MESH
C

NXCELL = NXRECT - 1

NYCELL = NYRECT - 1

C

C LOOP THROUGH ALL GLOBAL GRID CELLS
C

C

DO 70 JCELL = 1, NYCELL

DO 70 ICELL = 1, NXCELL
C

NCELG2 NCELG2 + 1
C

COMPUTE INDICES OF CORNER OF CELL

ICELG2(2,NCELG2) = ICELL

ICELG2(4,NCELG2) = ICELL
ICELG2(6,NCELG2) = ICELL
ICELG2(8,NCELG2) = ICELL

+ (JCELL-1)*NXRECT

+ 1 + (JCELL-1)*NXRECT

+ 1 + (JCELL )*NXRECT

+ (JCELL )*NXRECT

+ NNODG2

+ NNODG2

+ NNODG2

+ NNODG2

INITIALLY, THERE IS NO NODE IN THE CENTER OF A FINE CELL

ICELG2(1,NCELG2) = 0

THERE ARE NO NODES IN THE CENTER OF THE SIDES OF A FINE CELL

ICELG2(3 NCELG2) = 0

ICELG2(5 ,NCELG2) = 0

ICELG2(7 ,NCELG2) = 0

ICELG2(9 ,NCELG2) = 0
ICELG2(10,NCELG2) O

CONTINUE

SET UP NEIGHBOUR-NODE-ARRAY
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DO 80 LCELL 1,
KSW

KSE

KNE

KNW

NEIBG2(1,KNE)

NEIBG2(2,KNW)

NEIBG2(3,KSW)

NEIBG2(4,KSE)
CONTINUE

NCELG2

= ICELG2(2,LCELL)

= ICELG2(4,LCELL)

= ICELG2(6,LCELL)
= ICELG2(8,LCELL)

= LCELL

= LCELL
= LCELL

= LCELL

NOMENCLATURE

L L L
+ + +.

+---123 -..
1+(NY-1)*NX

+ NORTH

INDJW +E
... + S

1+2*NX + T

i+NX +

E +

NX=NXRECT

NY=NYRECT

L =NBEFNO

NY*NX

(NY-1)*NX = L

INDJE

SOUTH
1 +--+--+--+--+--+--+--

+ 3*NX
+ 2*NX

-+ NX
2 3 ... NX-1

RETURN

END

GNWEDG

SUBROUTINE GNWEDG

INCLUDE '[PERVAIZ.TWODO.INC]

INCLUDE '[PERVAIZ.TWODO.INC]
INCLUDE 'PERVAIZ.TWODO.INC]

INCLUDE '[PERVAIZ.TWODO.INC]

DIMENSION MARKBN(MBNDG2)
CHARACTER*1 YESNO

PRECIS.INC/LIST'

PARMV2.INC/LIST'

G2COMN.INC/LIST'
HEXCOD.INC

C
C THIS SUBROUTINE IS USEFUL TO REMOVE THE EXTRA CORNER BOUNDARY

C NODES WHEN THERE ARE EMBEDDED WEDGES OR DIAMONDS IN THE FLOW-

C FIELD. THESE CORNER POINTS ARE REGARDED AS THE REGULAR POINTS,
C FOR EXAMPLE, IN THE "KUMAR" CASE AND IN THE "PARALLEL INJECTOR"
C CASE.
C

C

C INITIALIZE THE NUMBER OF INTERIOR POINTS
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C

KOUNTI 0
C

C LOCATE ALL THE INTERIOR CORNER NODES. THESE NODES ARE DEFINED

C AS THE NORTHERN OR SOUTHERN SLIP-BOUNDARIES IN THE INITIAL GRIDS

DO 10 JBND = 1. NBNDG2

INODE IBNDG2(1,JBND)

IEDGE IBNDG2(4.JBND)

IBCTYP IBNDG2(5.JBND)

C CHECK SOUTHERN SLIP BOUNDARY

C THIS WOULD BE A REAL SOUTHERN BOUNDARY IF THE SOUTHERN

C NEIGHBOUR CELLS OF THE NODE "INODE" ARE NOT DEFINED,
C ELSE IT WOULD AN INTERIOR NODE

IF (IEDGE .EQ. 3 .AND. IBCTYP

NBSW - NEIBG2(1,INODE)

NBSE - NEIBG2(2,INODE)

IF (NBSW .NE. 0 .AND. NBSE
KOUNTI = KOUNTI + 

MARKBN(KOUNTI) JBND
ENDIF

ENDIF

.Eq. 3) THEN

.NE. ) THEN

C NOW CHECK NORTHERN SLIP BOUNDARY

C THIS WOULD BE A REAL NORTHERN BOUNDARY IF THE NORTHERN

C NEIGHBOUR CELLS OF THE NODE "INODE" ARE NOT DEFINED.
C ELSE IT WOULD AN INTERIOR NODE

IF (IEDGE .Eq. 7 .AND. IBCTYP .EQ. 3) THEN

NBNE NEIBG2(3.INODE)

NBNW NEIBG2(4.INODE)

IF (NBNE .NE. 0 .AND. NBNW .NE. ) THEN

KOUNTI = KOUNTI + 
MARKBN(KOUNTI) = JBND

ENDIF

ENDiF

10 CONTINUE

C WRITE DOWN ALL THE INTERIOR CORNER
C ANY OF THEM HAVE TO BE DELETED

IF (KOUNTI .EQ. ) GOTO 135

WRITE(S.20)
20 FORMAT(/5X.'THE FOLLOWING INTERIOR

1 ' ARE FOUND'/)

BOUNDARY NODES AND UERY IF

CORNER BOUNDARY NODES'.

DO 30 KOUNT - 1, KOUNTI
JBND MARKBN(KOUNT)
WRITE(6.40) JBND. (IBNDG2(J.JBND) .J1=.5)

30 CONTINUE
40 FORMAT(7X.'BOUNDARY NODE:'.I5.X.5I65)

WRITE(6. 0)
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50 FORMAT(/5X,'WANT TO DELETE ANY OF THE CORNER BOUNDARY NODES')

READ (5,60) YESNO

60 FORMAT(A)

IF (YESNO .Eq. 'Y' .OR. YESNO .EQ. 'y') GOTO 70
GOTO 135

C
C INITIALIZE THE NUMBER OF INTERIOR BOUNDARY NODES TO BE DELETED
C

70 KOUNTD = 0
C

C SEE IF ANY OF THE CORNER BOUNDARY NODES ARE TO BE DELETED
C

DO 80 KOUNT = 1, KOUNTI
JBND = MARKBN(KOUNT)

WRITE(6.90)

WRITE(6,40) JBND, (IBNDG2(J,JBND),J=I,5)

READ (5,60) YESNO

IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') THEN
KOUNTD = KOUNTD + 1
IBNDG2(1,JBND) = -9

ENDIF

80 CONTINUE

90 FORMAT(/5X,'WANT TO DELETE THE CORNER BOUNDARY NODE OF')
C

C IF ANY OF THE CORNER BOUNARY NODES ARE REALLY DELETED THEN
C THE REST OF THE BOUNDARY POINTERS HAVE TO BE RE-ALLIGNED
C

IF (KOUNTD .EQ. O) GOTO 135

C SET THE COUNTER FOR ALL BOUNDARY NODES TO KEEP

NNEW = 0

DO 110 NOLD = 1, NBNDG2

MARKBN(NOLD) = 0
C
C MARK THE "KEEP" BOUNDARY NODES AND DELETE ALL BOUNDARY

C CONDITION POINTERS MARKED FOR DELETE

IF (IBNDG2(1,NOLD) .NE. -9) THEN
C

NNEW = NNEW + 1

MARKBN(NOLD) = NNEW
C MOVE POINTER INFORMATION

IF (NOLD .NE. NNEW) THEN

DO 100 J = 1, 5
IBNDG2(J,NNEW) = IBNDG2(J,NOLD)

100 CONTINUE

ENDIF
ENDIF

110 CONTINUE

C RESET NUMBER OF BOUNDARY CONDITION POINTERS

C

NBNDG2 = NNEW
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DO 130 IEDGE - 1, 4

DO 120 IBND - 1, 2

NBCPG2(IEDGE, IBND) = MARKBN(NBCPG2 (IEDGE, IBND))
120 CONTINUE

130 CONTINUE

WRITE(6,*) ' NCELG2-',NCELG2

WRITE(6,*) ' NNODG2=',NNODG2

WRITE(6,*) ' NBNDG2=',NBNDG2
C

C THE AUXILLARY POINTERS OF SOME OF THE CELLS PERTAINING

C TO THE BOUNDARY NODES BEING DELETED MAY HAVE TO BE RESET,
C THE CELL WHOSE AUX. POINTER IS NON-ZERO AND YET IT DOES

C NOT HAVE ANY ASSOCIATED POINTERS MUST HAVE THE "BOUNDARY

C BYTE" OF THE AUX. POINTER AS ZERO

C

135 DO 145 ICELL - 1, NCELG2

IPi = ICELG2(2,ICELL)
IP2 - ICELG2(4.ICELL)

IP3 - ICELG2(6,ICELL)

IP4 - ICELG2(8,ICELL)
KXO - KAUXG2(ICELL)

KBXO - IAND(KXO,KLOOOF)

IF (KBXO .EQ. O) GOTO 145

DO 140 KBND 1, NBNDG2
IF (IP1 .EQ. IBNDG2(1,KBND)) GOTO 145

IF (IP2 .EQ. IBNDG2(1,KBND)) GOTO 145

IF (IP3 .EQ. IBNDG2(1,KBND)) GOTO 145

IF (IP4 .EQ. IBNDG2(1,KBND)) GOTO 145
140 CONTINUE

C NONE OF THE BOUNDARY NODES FOR THIS CELL EXIST, SO
C RECOMMEND AN ALTERNATIVE POINTER

KXN IAND(KXO.KLFFFO)

WRITE(6,150) ICELL,KXO,ICELL,KXN

READ(5,160) KX
IF (KX .GE. O) THEN

KAUXG2(ICELL) = KX
WRITE(6,170) ICELL,KX

ENDIF

145 CONTINUE

150 FORMAT(//6X,'OLD AUXILLARY POINTER OF CELL :',I5,5X,Z10/

5X, 'RECOMMENDED AUX. POINTER OF CELL:',I5,5X,Z10/

2 IOX,'INPUT NEW AUX. POINTER IN Z-FORMAT'/

3 ' 12345678',5X.'INPUT -1 IF NO CHANGE IS DESIRED')

160 FORMAT(ZS)
170 FORMAT(OX. 'NEW AUX. POINTER OF CELL: ',I5,X.,Z10)

RETURN

END
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ZRGNBN

SUBROUTINE ZRGNBN (IFUN, INDGR, PLTITL, ALIMITS,ISTRING,
1 Al. A2, A3, A4, AS, A6, A7, AS, A, A10)

DIMENSION ALIMITS(*)

INCLUDE 'GNBLOC.INC/LIST'

JSYM = NINT(A1)
GOTO (1000,2000,1000,4000), IFUN+1

1000 RETURN

2000 CONTINUE

XMIN = 1000.
XMAX =-1000.

YMIN = 1000.
YMAX -1000.

DO 2030 IBLOCK = 1, NBLOCK

DO 2010 IY = 1, NYBLOCK(IBLOCK)
YMIN = MIN (YMIN,YSBLOCK(IBLOCK,IY))

YMAX = MAX (YMAX,YNBLOCK(IBLOCK,IY))

2010 CONTINUE

DO 2020 IX = 1, NXBLOCK(IBLOCK)
XMIN = MIN (XMIN,XWBLOCK(IBLOCK,IX))

XMAX = MAX (XMAX,XEBLOCK(IBLOCK,IX))
2020 CONTINUE

2030 CONTINUE

ALIMITS(1) = XMIN

ALIMITS(2) = XMAX

ALIMITS(3) = YMIN

ALIMITS(4) = YMAX
RETURN

4000 CONTINUE

if (jsym .eq. 0) goto 4500

DO 4050 IBLOCK 1, NBLOCK

CALL GRMOVE (XSBLOCK(IBLOCK,1),YSBLOCK(IBLOCK,1),JSYM )

DO 4010 IX - 2, NXBLOCK(IBLOCK)

CALL GRDRAW (XSBLOCK(IBLOCK.IX),YSBLOCK(IBLOCK.IX),JSYM )
4010 CONTINUE

DO 4020 IY = 2, NYBLOCK(IBLOCK)
CALL GRDRAW (XEBLOCK(IBLOCK,IY)YEBLOCK(IBLOCK,IY),JSYM )

4020 CONTINUE

CALL GR_MOVE (XWBLOCK(IBLOCK,1),YWBLOCK(IBLOCK,1),JSYM )

DO 4030 IY = 2, NYBLOCK(IBLOCK)

CALL GRDRAW (XVWBLOCK(IBLOCK,IY),YWBLOCK(IBLOCK,IY),JSYM )
4030 CONTINUE

DO 4040 IX = 2, NXBLOCK(IBLOCK)
CALL GRDRAW (XNBLOCK(IBLOCK,IX),YNBLOCKIBLOCK,IX)JSYM )

4040 CONTINUE
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4050 CONTINUE

RETURN

4500 DO 4550 IBLOCK = 1, NBLOCK
CALL GRMOVE (XSBLOCK(IBLOCK,1),YSBLOCK(IBLOCK,1),JSYM )

if (isblock(iblock,l).ge.0) goto 4511

DO 4510 IX 2, NXBLOCK(IBLOCK)

CALL GRDRAW (XSBLOCK(IBLOCK,IX),YSBLOCK(IBLOCK,IX),JSYM )
4510 CONTINUE

4511 CALL GRMOVE (XeBLOCK(IBLOCK,1),YeBLOCK(IBLOCK,1),JSYM )
if (isblock(iblock,2).ge.0) goto 4521

DO 4520 IY = 2, NYBLOCK(IBLOCK)

CALL GR_DRAW (XEBLOCK(IBLOCK,IY),YEBLOCK(IBLOCK,IY),JSYM )
4520 CONTINUE

4521 CALL GRMOVE (XWBLOCK(IBLOCK,1) ,YWBLOCK(IBLOCK,1)JSYM)

if (isblock(iblock,4).ge.0) goto 4531

DO 4530 IY = 2, NYBLOCK(IBLOCK)

CALL GRDRAW (XWBLOCK(IBLOCKIY),YVBLOCK(IBLOCK,IY),JSYM )
4530 CONTINUE

4531 CALL GR_MOVE (XnBLOCK(IBLOCK,1),YnBLOCK(IBLOCK,1),JSYM )

if (isblock(iblock,3).ge.0) goto 4540

DO 4540 IX = 2, NXBLOCK(IBLOCK)

CALL GR_DRAW (XNBLOCK(IBLOCK,IX),YNBLOCK(IBLOCK,IX),JSYM )
4540 CONTINUE

4550 CONTINUE

RETURN

END

442



D.3 STAR Code

This section contains information on the spatio-temporal algorithm STAR.

D.3.1 Common Files

The file ALLINC.INC includes declaration and common block statements. Portions

of this file are to be included with the appropriate INCLUDE statements in the following

FORTRAN code listing.

C PRECIS.INC

C IMPLICIT REAL*4 (A-G.0-Y)

C PARMV2.INC

PARAMETER (
1
2
3

COMMON/MNCOMN/
1

CHARACTER*80

C A2COMN.INC

COMMON/A2COMN/

I NPLCA2,

2 NHNGA2.

3 ICELA2 (

4 ALPHA2,

5 CHNGA2(I

MEQNFL 10

MNODG2 =16000

MLVLG2 5

MMAXTI = 6

NEQNFL, NREAC]
NLVLG2. NEQBA;

MTITLE

NXTDA2,

IDBGA2,

NNODA2,

:MCELG2)

BETAA2.
MCELG2),

, MREACH

, MCELG2

, NIPAKY

- 20 ,
=20000,

= 42 

H, NSPECH, NNODG2,

S, KROGER, MTITLE

MSPECH

MBNDG2

NAPAKY

6 ,
= 1000,
=42 

)
NCELG2, NBNDG2,

METHA2, NCELA2, K1ADA2, K2ADA2,

MITRA2, KCHKA2, MTHRA2, KPLTA2,

ILVLA2(2,0:MMAXTI),

MRKCA2(MCELG2), MRKDA2(MCELG2),

GAMMA2, DELTA2, THRDA2, THRCA2,
WORKA2(MNODG2)

MTYPA2,
KMERA2,

C CHCOMN.INC

COMMON/CHCOMN/
1
2
3
4

6

7
8
9

TREFCH,
PRESCH,

TRIGCH,

YNRTCH,

IDBGCH.
NINRCH,

NEQSCH,

C E2COMN.INC

COMMON/E2COMN/
1

PREECH(MREACH),

PREFCH(MREACH),

PREBCH(MREACH),

FMHTCH(MSPECH),

ENTRCH(MSPECH),

SPBSCH(MSPECH),

RAMWCH(MSPECH),

EXPECH(MREACH), ENEECH(MREACH),

EXPFCH(MREACH), ENEFCH(MREACH),

EXPBCH(MREACH), ENEBCH(MREACH),
SPCPCH(MSPECH), SPCVCH(MSPECH),

YSPECH(MSPECH), AMWTCH(MSPECH),

YMAXCH(MSPECH),

BMIACH(MSPECH,MREACH)

IALPCH(MSPECH.MREACH). IBETCH(MSPECH.MREACH)
IALOCH(MSPECH,MREACH), IBTOCH(MSPECH,MREACH)

NSRKCH(MREACH) , ITABCH(MSPECH,MREACH)

IDBGE2, MITRE2, KSRTE2, NITRE2

KONVE2. KEQNE2, SIGGE2(MNODG2)
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ERORE2,

SDELE2,

RPRNE2.

EPSLE2,
SMAXE2,

RSCHE2,

CHNGE2(MEQNFL,MNODG2),

SMINE2, RREYE2

OMEGE2, GFACE2

C FLCOMN.INC

COMMON/FLCOMN/ TREFFL, PRESFL, UGASFL, AMCHFL, DISTFL, RHORFL,

I UREFFL, FMREFL, WDREFL, AMWTFL, GAMAFL, IDBGFL

C FRCOMN.INC

COMMON/FRCOMN/ RHORFR,. UCOMFR, VCOMFR, PRESFR, PBPIFR,
1 DPENFR(MEQNFL), IDBGFR, KPERFR, MCYCFR, NCYCFR

C G2COMN.INC

COMMON/G2COMN/

IDBGG2,

MALVG2,

NCRSG2.

DPENG2(MEQNFL,MNODG2), TEMPG2(MNODG2).

GEOMG2(2 ,MNODG2), PRESG2(MNODG2),

KAUXG2( MCELG2), ILVLG2(3 ,-MLVLG2:MLVLG2).

NEIBG2(4,MNODG2), ICELG2(10 , MCELG2 ),

IBNDG2(65,MBNDG2). NBCPG2(4.2)

C H2COMN.INC
PARAMETER (MUMDH2-100)

COMMON/H2COMN/
1

IADDH2, NODEH2(MUMDH2), NUMDH2, PHIEH2,

NCELH2, ICELH2(NMDH2), IBASH2

C IOCOMN.INC

COMMON/IOCOMN/

1 JHISTO,

2 JREADF,

JCARDS,

JOUTAL,

JREADG,

JDEBUG, JDUMY1,

JPNTRE, JPNTWR,

JREADI, JREADS,

JDUMY2,

JPRINT,

JTERMI,

JDUMY3. JDUMY4.

JREADC, JREADD,

JTERMO

C JACOMN.INC

COMMON/JACOMN/
I

BGF2JA, BGF4JA. BGG3JA. BGG4JA,
BIGWJA(MEQNFL), DPENJA(MEQNFL)

C KYCOMN.INC

COMMON/KYCOMN/
1

IPASKY(NIPAKY) ,

MARIKY(NIPAKY) ,

APASKY(NAPAKY),

MARAKY(NAPAKY)

C M2COMN.INC

COMMON/M2COMN/

1

C PRCOMN.INC

COMMON/PRCOMN/
I

C SPCOMN.INC
COMMON/SPCOMN/

RVOLM2(MCELG2), PERIM2(MCELG2), DXEWM2(MCELG2).
DYEWM2(MCELG2), DXNSM2(MCELG2), DYNSM2(MCELG2)

AMCHPR, BEPSPR, GAMAPR, PRESPR, RHORPR. SONDPR,

TEMPPR, UCOMPR, VCOMPR, YSPEPR(MSPECH)

LBNDG2. JBNDG2(3.10)
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C TICOMN.INC
COMMON/TICOMN/ CFLNTI, CFLXTI, DTMNTI, EPSOTI, EPSITI, TIMXTI,

I TIMNTI, DTCNTI. FCTRTI, ERRMTI, CELLTI(MCELG2),

2 IMPLTI, KADPTI, KDIFTI, KTIMTI, NGIVTI, NMAXTI,

3 KFACTI, ICELTI(MCELG2), ILVLTI(2,0:MMAXTI)

C TVCOMN.INC

PARAMETER (MUMNTV-100)
COMMON/TVCOMN/ AMPLTV, FLOWTV, FREQTV, NODETV(MUMNTV), NUMNTV

C HEXCOD.INC

DATA KLOOOO /ZOOOOOOOO/,
1 KLOO0003 /Z00000003/,
2 KLOO6 /ZOOOOOO06/,
3 KLOO09 /ZOOOOOO09/,
4 KLOOOC /ZOOOOOOOC/.

5 KLOOOF /ZOOOOOOOF/

DATA KLOO1O /ZOOOOOOO1/,

1 KL0040 /Z00000040/,
2 KLO070 /Z00000070/,
3 KLOOAO /ZOOOOOOAO/,
4 KLOODO /ZOOOOOODO/,

DATA KLO100 /ZOOOOO100/,
1 KL0400 /Z00000400/,
2 KL0700 /Z00000700/,
3 KLOAOO /ZOOOOOAOO/,
4 KLODOO /ZOOOOODOO/,

DATA KL1000 /ZOOOO1000/,

1 KL4000 /Z00004000/,

2 KL7000 /Z00007000/.

3 KLAOO /ZOOOOAOOO/.

4 KLDOOO /ZOOOODOOO/.
DATA KUOOOO /ZOOOOOOOO/,

I KU0003 /Z00030000/,
2 KU0006 /ZO00060000/,
3 KUOO09 /ZO00090000/,
4 KUOOOC /ZOOOCOOOO/,
5 KUOOOF /ZOOOFOOOO/

DATA KUOO10 /ZO0100000/.
1 KU0040 /Z00400000/,
2 KU0070 /Z00700000/,
3 KUOOAO /ZOOAOOOOO/,

4 KUOODO /ZOODOOOOO/.

DATA KUOO100 /ZO1000000/.
1 KU0400 /Z04000000/.

2 KU0700 /Z07000000/.
3 KUOAOO /ZOAOOOOOO/,

4 KUODOO /ZODOOOOOO/.

DATA KU1000 /Z10000000/,
1 KU4000 /Z40000000/,
2 KU7000 /Z70000000/,
3 KUAOOO /ZAOOOOOOO/,
4 KUDOOO /ZDOOOOOOO/,

KLOOO1

KLOO04
KLOO07
KLOOOA
KLOOOD

KL020
KL0060
KL0080
KLOOBO
KLOOEO
KL0200
KL0500
KL0800
KLOBOO
KLOEOO
KL2000

KL5000
KL8000
KLBOOO

KLEOOO

KUOOO1
KU0004
KU0007
KUOOOA

KUOOOD

KUO020
KU0050
KU0080
KUOOBO
KUOOEO
KU0200
KU0500
KU0800
KUOBOO
KUOEOO
KU2000
KU5000
KU8000
KUBOOO
KUEOOO

/ZOOOOOO01/,
/Z00000004/,
/Z00000007/.
/ZOOOOOOOA/,

/ZOOOOOOOD/,

/Z00000020/,
/Z00000050/,
/Z00000080/,

/ZOOOOOOBO/.

/ZOOOOOOEO/.
/Z00000200/.
/z00000600/.
/z00000800/.

/ZOOOOOBOO/.

/ZOOOOOEOO/.
/Z00002000/.
/z0000o000/,
/Z00008000/,
/ZOOOOBOOO/.

/ZOOOOEOOO/.
/ZOOOoo10000oo/,
/Z00040000/.
/Z00070000/,
/ZOOOAOOOO/.
/ZOOODOOOO/.

/Z00200000/.
/Z00o00000/,
/Z00800000/,
/ZOOBOOOOO/.
/ZOOEOOOOO/,
/Z02000000/,
/zOsOOOOo0/,
/z08000000/,
/ZOBOOOOOO/.
/ZOEOOOOOO/,
/Z20000000/,
/Z50000000/.
/Z80000000/.
/ZBOOOOOOO/,
/ZEOOOOOOO/.

KLOO02
KLOO0005
KLOO08
KLOOOB
KLOOOE

KL0030

KLO6O
KLOO90
KLOOCO
KLOOFO
KL0300
KLOOO
KLO900
KLOCOO
KLOFOO
KL3000
KL6OOO
KL9000
KLCOOO
KLFOOO
KU0002
KUOO05
KU0008
KUOOOB

KUOOOE

KU0030
KUO60O
KUO090
KUOOCO
KUOOFO
KU0300
KUO600
KU0900
KUOCOO
KUOFOO
KU3000
KU000
KU9000
KUCOO

KUFOOO

/ZO0000002/o
/Z00000005/,
/Z00000008/.
/ZOOOOOOOB/,
/ZOOOOOOOE/,

/Z00000030/,
/ZOOOOO060/,
/Z00000090/,

/ZOOOOOOCO/a/zooooooco/.
/ZOOOOOOFO/
/Z00000300/,
/ZOOOOOOO/.

/ZOOO00900/,
/zOOOOOcoo/,
/ZOOOOOFOO/
/Z00003000/.
/ZOOOO6OOO/a
/Z00009000/,
/zOOOOcooo/,
/ZOOOOFOOO/

/Z0020000/,
/z00050000/,
/Z00080000/,
/ZOOOBOOOO/,
/ZOOOEOOOO/,

/Z00300000/,
/Z00600000/.
/Z00900000/.
/ZOOCOOOOO/.
/ZOOFOOOOO/
/Z03000000/,
/ZO6000000/.
/Z09000000/.
/ZOCOOooO/,
/ZOFOOOOOO/
/Z30000000/.
/ZGOOOOOOO/,
/Z90000000/,
/ZCOOOOOOO/,
/ZFOOOOOOO/
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DATA KLFFFO

1 -KLFFF3
2 KLFFF6

3 KLFFFg

4 KLFFFC

5 KLFFFF

DATA KLFFOF

1 KLFF3F

2 KLFF6F

3 KLFF9F
4 KLFFCF

DATA KLFOFF

1 KLF3FF
2 KLF6FF
3 KLFgFF
4 KLFCFF

DATA KLOFFF

1 KL3FFF
2 KL6FFF
3 KL9FFF
4 KLCFFF

DATA KUFFFO

1 KUFFF3
2 KUFFF6
3 KUFFF9

4 KUFFFC

5 KUFFFF
DATA KUFFOF

1 KUFF3F
2 KUFF6F
3 KUFF9F

4 KUFFCF
DATA KUFOFF

1 KUF3FF
2 KUF6FF
3 KUF9FF

4 KUFCFF

DATA KUOFFF

1 KU3FFF
2 KU6FFF
3 KU9FFF
4 KUCFFF

/ZFFFFFFFO/,

/ZFFFFFFF3/,

/ZFFFFFFF6/,

/ZFFFFFFF9/,

/ZFFFFFFFC/,

/ZFFFFFFFF/

/ZFFFFFFOF/,

/ZFFFFFF3F/,

/ZFFFFFF6F/,

/ZFFFFFFgF/,

/ZFFFFFFCF/,

/ZFFFFFOFF/,

/ZFFFFF3FF/,

/ZFFFFF6FF/,

/ZFFFFFgFF/,

/ZFFFFFCFF/,

/ZFFFFOFFF/,

/ZFFFF3FFF/,

/ZFFFF6FFF/,

/ZFFFF9FFF/,

/ZFFFFCFFF/,

/ZFFFOFFFF/,

/ZFFF3FFFF/,

/ZFFF6FFFF/,
/ZFFFgFFFF/,

/ZFFFCFFFF/,

/ZFFFFFFFF/

/ZFFOFFFFF/,

/ZFF3FFFFF/,

/ZFF6FFFFF/,
/ZFFgFFFFF/,

/ZFFCFFFFF/,

/ZFOFFFFFF/,

/ZF3FFFFFF/,

/ZF6FFFFFF/,

/ZF9FFFFFF/,

/ZFCFFFFFF/,

/ZOFFFFFFF/.

/Z3FFFFFFF/,

/Z6FFFFFFF/,
/ZgFFFFFFF/,

/ZCFFFFFFF/,

KLFFF1

KLFFF4

KLFFF7

KLFFFA

KLFFFD

KLFF1F

KLFF4F

KLFF7F

KLFFAF

KLFFDF

KLF1FF

KLF4FF

KLF7FF

KLFAFF

KLFDFF

KL1FFF

KL4FFF

KL7FFF

KLAFFF

KLDFFF

KUFFF1

KUFFF4

KUFFF7

KUFFFA

KUFFFD

KUFF1F

KUFF4F

KUFF7F

KUFFAF

KUFFDF

KUF1FF

KUF4FF

KUF7FF

KUFAFF

KUFDFF

KU1FFF

KU4FFF

KU7FFF

KUAFFF

KUDFFF

/ZFFFFFFF1/,

/ZFFFFFFF4/,

/ZFFFFFFF7/,

/ZFFFFFFFA/,

/ZFFFFFFFD/,

/ZFFFFFF1F/,

/ZFFFFFF4F/,

/ZFFFFFF7F/,
/ZFFFFFFAF/,

/ZFFFFFFDF/,

/ZFFFFF1FF/,

/ZFFFFF4FF/,

/ZFFFFF7FF/,

/ZFFFFFAFF/,
/ZFFFFFDFF/,

/ZFFFF1FFF/,

/ZFFFF4FFF/,

/ZFFFF7FFF/,

/ZFFFFAFFF/.

/ZFFFFDFFF/,

/ZFFF1FFFF/,

/ZFFF4FFFF/,

/ZFFF7FFFF/,

/ZFFFAFFFF/,

/ZFFFDFFFF/,

/ZFF1FFFFF/,

/ZFF4FFFFF/,

/ZFF7FFFFF/,

/ZFFAFFFFF/,

/ZFFDFFFFF/,

/ZF1FFFFFF/,
/ZF4FFFFFF/,

/ZF7FFFFFF/,

/ZFAFFFFFF/,
/ZFDFFFFFF/,

/Z1FFFFFFF/,

/Z4FFFFFFF/.
/Z7FFFFFFF/,

/ZAFFFFFFF/,

/ZDFFFFFFF/,

KLFFF2

KLFFF5

KLFFF8

KLFFFB

KLFFFE

KLFF2F

KLFF5F

KLFF8F

KLFFBF

KLFFEF

KLF2FF

KLFBFF

KLF8FF

KLFBFF

KLFEFF

KL2FFF

KL5FFF

KL8FFF

KLBFFF

KLEFFF

KUFFF2

KUFFF6

KUFFF8

KUFFFB
KUFFFE

KUFF2F

KUFF6F
KUFF8F
KUFFBF

KUFFEF

KUF2FF
KUF5FF
KUF8FF
KUFBFF

KUFEFF

KU2FFF

KU5FFF

KU8FFF
KUBFFF

KUEFFF

/ZFFFFFFF2/,

/ZFFFFFFF5/,

/ZFFFFFFF8/,

/ZFFFFFFFB/,

/ZFFFFFFFE/,

/ZFFFFFF2F/,

/ZFFFFFF5F/,

/ZFFFFFF8F/,

/ZFFFFFFBF/,

/ZFFFFFFEF/

/ZFFFFF2FF/,

/ZFFFFF5FF/,

/ZFFFFF8FF/,

/ZFFFFFBFF/,

/ZFFFFFEFF/

/ZFFFF2FFF/,

/ZFFFF5FFF/,

/ZFFFF8FFF/,

/ZFFFFBFFF/,

/ZFFFFEFFF/

/ZFFF2FFFF/,

/ZFFF5FFFF/,

/ZFFF8FFFF/,

/ZFFFBFFFF/,

/ZFFFEFFFF/,

/ZFF2FFFFF/,

/ZFF5FFFFF/,

/ZFF8FFFFF/,
/ZFFBFFFFF/,

/ZFFEFFFFF/

/ZF2FFFFFF/,

/ZFSFFFFFF/,

/ZF8FFFFFF/,

/ZFBFFFFFF/,

/ZFEFFFFFF/

/Z2FFFFFFF/,

/Z5FFFFFFF/,
/Z8FFFFFFF/,

/ZBFFFFFFF/,

/ZEFFFFFFF/

D.3.2 Link information

The file STAR.COM contains link information for the STAR code.

$ LINK/EXE=STAR

A2GRDN.

A2VALN,

C2PONT,

CHKNN2,

TNODOU,
A2INIT,

A2VOUU,

C2RINT,

CHKPR2,

A2ADUU,
A2MDFU,

C2EQDI,

C2ROCH,

CHKREF,

A2CEWC,

A2MTHU.

C2HELP,

CHKBN2,

CHKSP2,

A2EXTU,

A2THRU,

C2INIT,

CHKMAS,

CHKTM2,

A2GRDC.-

A2VALC,-

C2KCRE,-

CHKNC2,-

CHKYMX,-
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DPINI2,

E202TO,

E2TIMC,

ERINIT,

G2CLPU,

G2LCAT,

G3SMOT,

H2SOLF,

LHINI2,

PSWRTU,

TIPRN2,

E2BCNF,

E2PRMU,

E2TIMU,

FLBGF2.

G2DIVU,

G2NODE,

G4SMOT,

H2SCRI,

M2AREA,
PTIMP2,

TVINIO,

E2CONO,

E2RSRT,

E2UPDF,

FLINI2,

G2FROZ,

G2PRNT,

GETKY2,

H2TRIN,

NODIT2,

ROGERC,

TVINI1,

E2DIFF,

E2SCHO,

E2VARB,

FRINIT,

G2HANG,

G2RESO,

H2FLOT,

H3INIT,

PSRED2,

SETUPU,

WRINI2,-

E2FINI,

E2SOLF,

E2VECT,

FRSOUR,

G2IBLC,

G2SMOT,

H2INIT,

H3SCRN,

PSREDU,

SHORTG,

E2INIO,-

E2SOUU,-

E2ZERO,-

G2BPIN,-

G2INIT,-

G2TIME,-

H2MIXT,-

HSHEAR,-

PSWRT2,-
TIINI2,-

[PERVAIZ.ULT.OBJ]UL2LIB/LIB

D.3.3 Synopsis of variables

The file STAR.DOC defines most of the variables in the common blocks of the STAR

code.

SYNOPSIS OF VARIABLES IN 2-D ROUTINES

REAL NON-ARRAY VARIABLES

ALPHA2 USER DEFINED MAXIMUM ALLOWABLE VALUE OF THRDA2

CONSTANT USED FOR SPATIAL CELL DIVISION

AMCHPR THE MACH NUMBER USED BY 'PRIMITIVE' ROUTINE

AMCHFL REFERENCE MACH NUMBER

AMPLTV AMPLITUDE OF TIME-VARYING MASS FLOW RATE

AMWTFL REFERENCE MOLECULAR MASS

BEPSPR THE ENERGY USED BY 'PRIMITIVE' ROUTINE

BETAA2 MAXIMUM PERCENTAGE POINTS OF # OF CELLS THAT

CAN BE SPATIALLY ADAPTED

BGF2JA FLUX TERM F2 USED IN CONJUNCTION WITH FINDING 

BGF4JA FLUX TERM F4 USED IN CONJUNCTION WITH FINDING 

BGG3JA FLUX TERM G3 USED IN CONJUNCTION WITH FINDING :

BGG4JA FLUX TERM G4 USED IN CONJUNCTION WITH FINDING

CFLNTI MINIMUM CFL NUMBER

CFLXTI MAXIMUM CFL NUMBER

DISTFL REFERENCE FLUID CHARACTERISTIC LENGTH

DELTA2 SPECIFIED PERCENTAGE OF THRCA2 THRDA2*DELTA2

DTCNTI MINIMUM CONSTANT TIME STEP OVER ALL THE CELLS

IF THIS IS LESS THAN OR EQUAL TO ZERO THEN

TEMPORAL ADAPTATION IS USED

DTMNTI MINIMUM TIME STEP OVER ALL THE CELLS
EPSOTI EPSILON CORRECTION FOR ZERO VALUE OF TEMPORAL

CRITERION

EPS1MN MINIMUM ALLOWABLE VALUE OF EPSITI

(GETKY2)

(GETKY2)

(GETKY2)

ITS JACOBIANS

ITS JACOBIANS

ITS JACOBIANS

ITS JACOBIANS

(GETKY2)

(GETKY2)

(GETKY2)

(GETKY2)

(GETKY2)

(GETKY2)

(GETKY2)
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EPS1MX MAXIMUM ALLOWABLE VALUE OF EPSITI (GETKY2)

EPSITI EPSILON USED FOR TEMPORAL RESOLUTION (GETKY2)

EPSLE2 EPSILON : MAGNITUDE OF CRITERIA FOR CONVERGENCE (GETKY2)
ERORE2 TRANSPORTS THE GLOBAL ERROR FROM CONVERGENCE ROUTINE

DEPENDING UPON THE TYPE OF CONVERGENCE

ERRMAX MAXIMUM ERROR ABOVE WHICH EPSITI WILL BE DECREASED (GETKY2)
ERRMTI MAXIMUM ERROR ALLOWED BEFORE TIME-STEPS ARE REDUCED (GETKY2)

ERRMIN MINIMUM ERROR BELOW WHICH EPSiTI WILL BE INCREASED (GETKY2)

FCTRTI FACTOR MULTIPLYING THE TIME-STEPS IF ERROR EXCEEDS (GETKY2)

A USER DEFINED MAXIMUM VALUE (SEE ERRMTI)
FLOWTV INITIAL MASS FLOW OR THE MASS FLOW AT THE END OF

A PERIOD IN A TIME-VARYING BOUNDARY CONDITION

FREQTV FREQUENCY OF OSCILLATIONS IN A TIME-VARYING BOUNDARY
CONDITION

FMREFL REFERENCE FLUID HEAT OF FORMATION

GAMMA2 USER DEFINED MNIIMUM ALLOWABLE VALUE OF THRCA2 (GETKY2)
CONSTANT USED FOR SPATIAL CELL MERGER

GAMAFL REFERENCE RATIO OF SPECIFIC HEATS

GAMAPR RATIO OF SPECIFIC HEATS USED BY PRIMITIVE ROUTINE

GFACE2 A FACTOR INVOLVING GAMMA IN VISCOUS FLOWS (GETKY2)

OMEGE2 TEMPERATURE EXPONENT FOR VISCOSITY (GETKY2)

PHIEH2 EQUIVALENCE RATIO FOR HYDROGEN FUEL INJECTION

PRESCH REFERENCE CHEMISTRY PRESSURE (GETKY2)

PRESFL REFERENCE FLUID PRESSURE (GETKY2)
PRESFR DIMENSIONAL REFERENCE FLUID PRESSURE

PRESPR THE PRESSURE USED BY 'PRIMITIVE' ROUTINE

RHORFL REFERENCE FLUID DENSITY (GETKY2)
RHORFR DIMENSIONAL REFERENCE FLUID DENSITY

RHORPR THE DENSITY USED BY 'PRIMITIVE' ROUTINE

RREYE2 RECIPROCAL OF REYNOLD'S NUMBER (GETKY2)
RSCHE2 RECIPROCAL OF SCHMIDT'S NUMBER (GETKY2)
SDELE2 COEFFICIENT DELTA USED IN THE COMPUTATION OF

ARTIFICIAL VISCOSITY AT A NODE

SMAXE2 MAXIMUM COEFFICIENT OF ARTIFICIAL VISCOSITY (GETKY2)

SMINE2 MINIMUM COEFFICIENT OF ARTIFICIAL VISCOSITY (GETKY2)
SONDPR THE SOUND SPEED USED BY 'PRIMITIVE' ROUTINE

TEMPIC TEMPERATURE FOR DETERMINING EQUILIBRIUM RATES (GETKY2)

TEMP2C TEMPERATURE FOR DETERMINING EQUILIBRIUM RATES (GETKY2)

TEMP3C TEMPERATURE FOR DETERMINING EQUILIBRIUM RATES (GETKY2)
TEMPPR THE TEMPERATURE USED BY 'PRIMITIVE' ROUTINE

THRCA2 COLLAPSE THRESHOLD LIMIT

THRDA2 DIVIDE THRESHOLD LIMIT

TIMNTI STARTING TIME OF THE RUN (GETKY2)

TIMXTI MAXIMUM TIME OF THE RUN (GETKY2)

TREFCH REFERENCE CHEMISTRY TEMPERATURE (GETKY2)

TREFFL REFERENCE FLUID TEMPERATURE (GETKY2)

TRIGCH CHEMISTRY TRIGGER TEMPERATURE (FROZEN BELOW TRIGCH) (GETKY2)

UCOMFR DIMENSIONAL REFERENCE FLUID VELOCITY (U-COMP)
UCOMPR THE VELOCITY COMPONENT USED BY 'PRIMITIVE' ROUTINE

VCOMFR DIMENSIONAL REFERENCE FLUID VELOCITY (V-COMP)
VCOMPR THE VELOCITY COMPONENT USED BY 'PRIMITIVE' ROUTINE
UGASFL UNIVERSAL GAS CONSTANT
UREFFL REFERENCE FLUID VELOCITY

WDREFL REFERENCE FLUID SOURCE TERM

YNRTCH MASS FRACTIONS OF THE INERT SPECIES
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INTEGRAL NON-ARRAY VARIABLES

IADDH2 PARAMETER INDICATING IF SPECIAL FUEL INJECTION IS USED

IBASH2 THE BASE NODE IF FUEL IS TO ADDED AT A PLANE SURFACE

IDBGA2 DEBUG PARAMETER FOR ADAPTATION ROUTINES (GETKY2)

IDBGCH DEBUG PARAMETER FOR CHEMISTRY ROUTINES (GETKY2)

-1 : WRITE EACH STEP

IDBGE2 DEBUG PARAMETER FOR EULER ROUTINES (E2 ROUTINES) (GETKY2)

IDBGFR DEBUG PARAMETER FOR REFERENCE ROUTINES (FR ROUTINES) (GETKY2)

IDBGFL DEBUG PARAMETER FOR FLUID ROUTINES (FL ROUTINES) (GETKY2)

IDBGG2 DEBUG PARAMETER FOR GRID ROUTINES (G2 ROUTINES) (GETKY2)
IDBGTI DEBUG PARAMETER FOR TEMPORAL ROUTINES (TI ROUTINES) (GETKY2)

IMGL CURRENT SPATIAL LEVEL OF CELLS

IMPLTI PARAMETER INDICATING USE OF IMPLICIT SOURCE TERMS (GETKY2)

IMPLTI: 1 FOR EXPLICIT; 0 FOR IMPLICIT

ITGL CURRENT TEMPORAL LEVEL OF CELLS

JCARDS CARD READER
JDEBUG DEBUG UNIT FOR ALL DEBUG DUMPS

JDUMYN DUMMY UNITS (N 1,2,3,4)
JHISTO HISTORY FILE -- STATISTICAL DATA FOR EACH ITERATION

JOUTAL OUTPUT FILE -- CONTAINS ALL THE OUTPUT

JPNTRE CONTAINS ALL THE POINTER INFORMATION FOR RESTART PURPOSES
JPNTWR WRITES ALL THE POINTER INFORMATION FOR RESTART PURPOSES

JPRINT PRINT UNIT

JREADC INPUTC.DAT -- CONTAINS CHEMISTRY VARIABLES

JREADD INPUTD.DAT -- CONTAINS INITIAL DPENDENT VARIABLES

JREADF INPUTF.DAT -- CONTAINS OUTLET CONDITIONS

JREADG INPUTG.DAT -- CONTAINS GEOMETRIC INFORMATION

JREADI INPUTI.DAT -- CONTAINS INPUT RECORDS

JREADS UNIT FOR READING THE SCHEDULE INPUT PROGRAM (GETKY2)

IF A SCHEDULE PROGRAM IS SUPPLIED SET JREADS .NE. 0

JTERMI TERMINAL INPUT

JTERMO TERMINAL OUTPUT

K1ADA2 FIRST KEY VARIABLE FOR SPATIAL ADAPTATION (GETKY2)

K2ADA2 SECOND KEY VARIABLE FOR SPATIAL ADAPTATION (GETKY2)

KADPTI KEY VARIABLE FOR TEMPORAL ADAPTATION (GETKY2)

KCHKA2 PARAMETER FOR CHECKING THE SUPERCELL AND NEIGHBOUR- (GETKY2)
CELL CALCULATIONS. INPUT IN BINARY CODED VALUE

1: CHECK AFTER G2DIVO (DIVIDE CELL)

2: CHECK AFTER G2CLPO (MERGE CELLS)
4: CHECK BEFORE COLLAPSING CELLS

8: CHECK BEFORE DIVIDING CELLS

KDEBUG OUTPUT (DEBUG) PARAMETER
KDIFTI PARAMETER INDICATING THAT TIME-STEPS ARE TO BE (GETKY2)

REDUCED IF THERE EXIST LARGE DIFFERENCES IN SPECIES

MASS FRACTION FOR THE SAME CELL

KDPENI OPTION PARAMETER FOR SETTING DEPENDENT VARIABLES (GETKY2)

IN DPINIT

1: READ FROM INPUT FILE -- AT ALL NODES
2: SET UNIFORM VALUES

3: SET LINEARLY VARYING VALUES FROM INLET TO OUTLET

KEqNE2 INDICATES THE EQUATION NUMBER TO BE USED FOR GENERATING
CONVERGENCE HISTORY DATA

KFACTI PARAMETER INDICATING THAT TIME-STEPS ARE TO BE (GETKY2)

USED IN CONJUNCTION WITH FCTRTI
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KHAFEZ OPTION PARAMETER FOR HAFEZ DOMINANT EIGENVALUE

KMERA2 PARAMETER INDICATING IF THE COLLAPSING OF CELLS IS (GETKY2)

TD BE DONE

KLOOOO-KUEFFF HEXADECIMAL INTEGERS IN HEXCOD.INC

KONVE2 TYPE OF CONVERGENCE CRITERIA

1: AVERAGE ERRORS ARE CHECKED

2: MAXIMUM ERRORS ARE CHECKED

3: RMS ERRORS ARE CHECKED

KORDER PARAMETER INDICATING IF THERE ARE (GETKY2)

NON-ELEMENTARY REACTIONS

KPERFR PARAMETER INDICATING IF PERIODIC BOUNDARY CONDITIONS (GETKY2)

ARE TO BE USED

KPLTA2 PARAMETER INDICATING IF SPATIAL THRESHOLD PLOTS ARE (GETKY2)

NEEDED

KROGER PARAMETER INDICATING TYPE OF CHEMISTRY MODEL (GETKY2)

O: NO SPECIAL MODEL

1: ROGER AND CHINITZ MODEL

2: LIGHT HILL DISSOCIATION MODEL

3: FROZEN IDEAL GAS MODEL

KSRTE2 RESTART PARAMETER (GETKY2)

0 : START A NEW RUN WITH A STRUCTURED GRID

1000 : START A NEW RUN WITH A BLOCK STRUCTURED GRID

1 : RESTART FROM A PREVIOUS RUN AND READ FROM

FORMATTED FILE

1001 : RESTART FROM A PREVIOUS RUN AND READ FROM

UNFORMATTED FILE

KTIMTI PARAMETER INDICATING IF RESULTS AT VARIOUS TIME (GETKY2)

INTERVALS ARE NEEDED

MALVG2 MAXIMUM ALLOWABLE LEVEL FOR FINE CELLS (GETKY2)

MMAXTI MAXIMUM ALLOWABLE TEMPORAL LEVEL FOR CELLS (6)

MBNDG2 MAXIMUM NUMBER OF BOUNDARY POINTS (1000)

MCELG2 MAXIMUM NUMBER OF CELLS (20000)

MCYCFR MAXIMUM NUMBER OF CYCLES FOR PERIODIC B.C.'S (GETKY2)

MEQNFL THE MAXIMUM NUMBER OF EQUATIONS TO BE SOLVED (10)

METHA2 VARIATION METHOD FOR SPATIAL ADAPTATION (GETKY2)

1: NODE BASED VALUE

2: CELL BASED VALUE

3: NODE BASED FIRST GRADIENT

4:. CELL BASED FIRST GRADIENT

5: CELL BASED SECOND GRADIENT

6: CELL BASED, FOR MULTIPLE VARIABLES INVOLVING

GENERALIZED NORMAL DISTRIBUTION ...
MITEPS NUMBER OF ITERATIONS AFTER WHICH EPS1TI IS DECREASED (GETKY2)

MITRA2 NUMBER OF ITERATIONS AFTER WHICH SPATIAL ADAPTATION (GETKY2)

IS DONE; ZERO MEANS NO SPATIAL ADAPTATION

MITRE2 MAXIMUM NUMBER OF ITERATIONS ALLOWED (GETKY2)

MITRPS NUMBER OF TIMES AFTER THE POINTER SYSTEM IS SAVED (GETKY2)

MLVLG2 MAXIMUM NUMBER OF LEVELS OF GRIDS (5)
MNODG2 MAXIMUM NUMBER OF NODES (16000)

MREACH THE MAXIMUM NUMBER OF REACTIONS (20)

MSPECH THE MAXIMUM NUMBER OF SPECIES (INCLUDING INERT ONES) (6)

MTHRA2 THE NUMBER OF TIMES OF SPATIAL ADAPTATION CYCLES (GETKY2)

WHICH AFTER THE THRESHOLD LIMITS WILL BE COMPUTED

MTYPA2 INDICATES CELL/NODE BASED CALCULATION FOR METHA2
O: CELL BASED CALCULATION

1: NODE BASED CALCULATION

MUMDH2 MAXIMUM NUMBER INJECTION POINTS ON A SURFACE (100)
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MUMNTV MAXIMUM NUMBER NODES ON A SURFACE WHERE TIME-VARYING (100)

BOUNDARY CONDITIONS ARE USED

NAPAKY MAXIMUM NUMBER OF REAL KEYS IN GETKY2 (42)

NBNDG2 ACTUAL TOTAL NUMBER OF BOUNDARY NODES

NCELA2 TOTAL NUMBER OF UNDIVIDED CELLS OR CELLS WITH CENTERS

NCELG2 ACTUAL TOTAL NUMBER OF CELLS

NCELH2 TOTAL NUMBER OF INJECTION CELLS

NCRSG2 MAXIMUM ALLOWABLE LEVEL OF COARSE CELLS FOR (GETKY2)

MULTIPLE GRIDS IN STEADY STATE SOLUTIONS

IF NON-ZERO FOR UNSTEADY FLOWS THEN THE SMALLEST

TIME-STEPS ARE USED NEXT TO THE BOUNDARIES

NCYCFR CURRENT NUMBER OF CYCLES FOR PERIODIC B.C.'S (GETKY2)
NEQBAS NUMBER OF BASIC CONSERVATION EQUATIONS (4 FOR 2-D)

NEQNFL ACTUAL NUMBER OF EQUATIONS TO BE SOLVED

NEQSCH ACTUAL NUMBER OF SPECIES EQUATIONS TO BE SOLVED

NGIVTI MAXIMUM GIVEN LEVEL OF TEMPORAL CELLS (GETKY2)

NHNGA2 TOTAL NUMBER OF HANGING NODES (MIDDLE EDGE NODES OF

THE FACES FOR CELLS WITHOUT CENTERS. THESE ARE THE
MIDDLE NODES OF THE SPATIAL INTERFACES

NINRCH ACTUAL NUMBER OF INERT SPECIES (GETKY2)

NIPAKY MAXIMUM NUMBER OF INTEGER KEYS IN GETKY2 (42)
NITRE2 CURRENT NUMBER OF ITERATION FOR TWO DIMENSIONAL CODE

NLVLG2 CURRENT MAXIMUM LEVEL OF FINE CELLS

NMAXTI MAXIMUM CALCULATED LEVEL OF TEMPORAL CELLS

NMOVTI PARAMETER INDICATING NUMBER OF CELLS TO BE MOVED AWAY (GETKY2)
FROM THE NODIT, SO THAT TEMPORAL INTERFACE COULD BE

RELOCATED TO A PLACE WHERE THERE ARE LESS TEMPORAL GRADIENTS
NNODA2 ACTUAL TOTAL NUMBER OF NODES AFTER SUBTRACTING THE HANGING

NODES (SEE NHNGA2)
NNODG2 ACTUAL TOTAL NUMBER OF NODES

NPLCA2 NUMBER OF PLACES FOR CELL/NODE BASED CALCULATIONS

EITHER NNODG2 OR NCELA2

NREACH ACTUAL NUMBER OF REACTIONS IN THE SYSTEM (GETKY2)

NSPECH ACTUAL NUMBER OF SPECIES (INCLUDING INERT ONES) (GETKY2)
NUMDH2 TOTAL NUMBER OF INJECTION NODES

NUMNTV CURRENT NUMBER NODES ON A SURFACE WHERE TIME-VARYING

BOUNDARY CONDITIONS ARE USED

NXTDA2 NUMBER OF CELLS TO BE EXTENDED FOR ADAPTIVE GRIDS (GETKY2)

OR THE NUMBER OF BUFFER LAYER FOR SPATIALLY RESOLVED REGION

REAL ARRAY VARIABLES
__ _____ _____ _____

AMWTCH(S) REFERENCE ATOMIC WEIGHT FOR SPECIES S (INPUTC.DAT)

BIGWJA(J) THE JTH SOURCE TERM FOR FINDING JACOBIANS

BMIACH(IS,IR) THE DIFFERENCE OF STIOCHIOMETRIC COEFFICIENTS FOR
SPECIES IS IN REACTION IR (IBETCH-IALPCH)

CELLTI(LC) THE TIME STEP FOR CELL LC

CHNGA2(PL) THE CHANGE COMPUTED BY THE ADAPTATION ROUTINES AT PL
CHNGE2(J.IN) THE JTH CHANGE COMPUTED BY THE INTEGRATION ROUTINE AT

NODE IN

DPENFR(J) JTH DIMENSIONAL REFERENCE DEPENDENT VARIABLE
DPENG2(J,IN) JTH DEPENDENT VARIABLE AT NODE IN

DPENJA(J) JTH DEPENDENT TERM FOR FINDING JACOBIANS

DXEWM2(IC) METRIC FOR CELL IC (EAST-WEST FOR X)
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DXNSM2(IC) METRIC FOR CELL IC (NORTH-SOUTH FOR X)

DYEWM2(IC) METRIC FOR CELL IC (EAST-WEST FOR Y)

DYNSM2(IC) METRIC FOR CELL IC (NORTH-SOUTH FOR Y)

ENEBCH(S) ENERGY TERM (E/R) FOR REACTION R

(BACKWARD)

ENEECH(S) ENERGY TERM (E/R) FOR REACTION R

(EQUILIBRIUM)

ENEFCH(S) ENERGY TERM (E/R) FOR REACTION R

(FORWARD)

EXPBCH(S) EXPONENT OF TEMPERATURE FOR REACTION R

(BACKWARD)

EXPECH(S) EXPONENT OF TEMPERATURE FOR REACTION R

(EQUILIBRIUM)

EXPFCH(S) EXPONENT OF TEMPERATURE FOR REACTION R

(FORWARD)

ENTRCH(S) REFERENCE ENTROPY FOR SPECIES S, KJ/KMOL/K

FMHTCH(S) HEAT OF FORMATION FOR SPECIES S IN KJ/KMOL

GEOMG2(1,IN) X-COORDINATE AT NODE IN

GEOMG2(2,IN) Y-COORDINATE AT NODE IN

PREBCH(S) PRE-EXPONENTIAL FACTOR FOR REACTION R

(BACKWARD)

PREECH(S) PRE-EXPONENTIAL FACTOR FOR REACTION R

(EQUILIBRIUM)

PREFCH(S) PRE-EXPONENTIAL FACTOR FOR REACTION R

(FORWARD)

PRESG2(IN) PRESSURE AT NODE IN

PERIM2(IC) PERIMETER OF CELL VOLUME FOR CELL IC

RAMWCH(S) RECIPROCAL OF ATOMIC WEIGHT FOR SPECIES S

RVOLM2(IC) RECIPROCAL OF CELL VOLUME FOR CELL IC

SIGGE2(IN) ARTIFICIAL VISCOSITY COEFFICIENT AT NODE IN

SPBSCH(S), SECOND COEFFICIENT IN THE CONSTANT PRESSURE

SPECIFIC HEAT FOR S, KJ/KMOL/K

SPCPCH(S) FIRST COEFFICIENT IN THE CONSTANT PRESSURE

SPECIFIC HEAT FOR S, KJ/KMOL/K

SPCVCH(S) CONSTANT VOLUME SPECIFIC HEAT FOR S,

KJ/KMOL/K

TEMPG2(IN) TEMPERATURE AT NODE IN

WORKA2(IN) TEMPORARY WORK STORAGE FOR A2COMN

YMAXCH(IS) MAXIMUM MASS FRACTION FOR SPECIES S

YSPECH(IS) INITIAL (REFERENCE) MASS FRACTIONS FOR SPECIES S

YSPEPR(IS) MASS FRACTION FOR SPECIES S AT A CERTAIN NODE AS

USED BY THE 'PRIMITIVE' SUBROUTINE

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

(INPUTC.DAT)

INTEGRAL NON-ARRAY VARIABLES

IALPCH(S,R)

IALOCH(S.R)

IBETCH(S,R)

IBTOCH(S,R)
IBNDG2(1,IB)

IBNDG2(2,IB)

IBNDG2(3,IB)
IBNDG2(4,IB)

IBNDG2(5,IB)

ICELA2(LC)

REACTANT COEFFICIENT FOR SPECIES S IN REACTION R (INPUTC.DAT)

ORDER OF REACTION FOR SPECIES S IN REACTION R (INPUTC.DAT)

PRODUCT COEFFICIENT FOR SPECIES S IN REACTION R (INPUTC.DAT)

ORDER OF REACTION FOR SPECIES S IN REACTION R (INPUTC.DAT)

VALUE OF THE BOUNDARY NODE (WHICH IS A NODE ITSELF)

FIRST BASE CELL ADJACENT TO THE BOUNDARY NODE

SECOND BASE CELL ADJACENT TO THE BOUNDARY NODE
BOUNDARY EDGE

TYPE OF BOUNDARY CONDITION USED FOR IBN

SETS THE POINTER ARRAY WHICH HOLDS THE UNDIVIDED CELLS,
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OR CELLS WITHOUT CENTERS

ICELG2(1,LC) CENTER NODE OF CELL LC

ICELG2(2,LC) SOUTH-WEST NODE OF CELL LC

ICELG2(3,LC) SOUTH NODE OF CELL LC

ICELG2(4,LC) SOUTH-EAST NODE OF CELL LC

ICELG2(5,LC) EAST NODE OF CELL LC

ICELG2(6,LC) NORTH-EAST NODE OF CELL LC

ICELG2(7,LC) NORTH NODE OF CELL LC

ICELG2(8,LC) NORTH-WEST NODE OF CELL LC

ICELG2(9,LC) WEST NODE OF CELL LC

ICELG2(10,LC) SUPERCELL OF CELL LC

ICELH2(IH) THE CELL NUMBER FOR THE INJECTION POINT IH

ICELTI(LC) POINTER FOR TEMPORAL CELL LC (ALL CELLS AT SAME LEVEL

ARE CONTIGUOUSLY STORED -- SEE ILVLTI)

ILVLA2(1,LV) FIRST CELL AT TEMPORAL LEVEL LV

ILVLA2(2,LV) LAST CELL AT TEMPORAL LEVEL LV

ILVLG2(1,LV) FIRST CELL AT LEVEL LV

ILVLG2(2,LV) LAST CELL AT LEVEL LV

ILVLG2(3,LV) NUMBER OF CELLS AT LEVEL LV

ILVLTI(1,LV) FIRST CELL AT TEMPORAL LEVEL LV

ILVLTI(2,LV) LAST CELL AT TEMPORAL LEVEL LV

IPASKY(KY) ARRAY PASSING THE INTEGER KEYWORD NUMBER KY IN GETKY2

ITABCH(S,R) TABLE OF REACTION COEFFICIENT FOR SPECIES S IN REACTION R

KAUXG2(LC) AUXILLIARY INFORMATION ABOUT CELL LC

MARAKY(KY) ARRAY PASSING THE REAL KEYWORD NUMBER KY IN GETKY2

IS SET, I.E., IT'S KEYWORD IS CHANGED IN CURRENT SIMULATION

MARIKY(KY) ARRAY PASSING THE INTEGER KEYWORD NUMBER KY IN GETKY2

IS SET, I.E., IT'S KEYWORD IS CHANGED IN CURRENT SIMULATION

NBCPG2(X,1) FIRST BOUNDARY NODE POINTER FOR A CORNER X

NBCPG2(X,2) SECOND BOUNDARY NODE POINTER FOR A CORNER X

X IS 1,2,3,4 FOR SW, SE, NE, NW CORNERS

NEIBG2(1,IN) SOUTH-WEST CELL OF NODE IN

NEIBG2(2,IN) SOUTH-EAST CELL OF NODE IN

NEIBG2(3,IN) NORTH-EAST CELL OF NODE IN

NEIBG2(4,IN) NORTH-WEST CELL OF NODE IN

NODEH2(IH) THE NODE NUMBER CORRESPONDING TO AN INJECTION POINT IH

NODETV(IT) THE NODE NUMBER CORRESPONDING TO A SURFACE POINT IT

WHERE TEMPORALLY VARYING BOUNDARY CONDITIONS ARE APPLIED

NSRKCH(IR) NUMBER OF SPECIES IN REACTION IR

MRKCA2(LI) CONTAINS THE LIST OF CELLS TO BE COLLAPSED, DURING SPATIAL

ADAPTATION MANIPULATIONS. IT ALSO CONTAINS THE LIST OF

NUMBER OF NODES MINUS THE NUMBER OF HANGING NODES

MRKDA2(LI) CONTAINS THE LIST OF CELLS TO BE DIVIDED, DURING SPATIAL

ADAPTATION MANIPULATIONS. IT ALSO CONTAINS THE LIST OF

NUMBER OF HANGING NODES

OTHER VARIABLES

MTITLE CHARACTER*80 TITLE FOR THE CURRENT RUN
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D.3.4 Listing of STAR code

A2ADPO

SUBROUTINE A2ADPO

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'
INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] HEXCOD.INC

INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] TICOMN.INC/LIST'

DIMENSION MEMBER(4)
LOGICAL IWRITE

C

C THIS SUBROUTINE PERFORMS THE GRID REALIGNMENT NEEDED FOR

C ADAPTIVE GRIDDING. IT FINDS THE CELLS WHICH NEED TO BE DIVIDED

C OR COLLAPSED. FINALLY IT FINDS THE QUADRUPLES OF CELLS WHICH

C PREVIOUSLY CONSTITUTED A SINGLE CELL SO THAT THEY CAN BE

C COLLAPSED.

C

C
C THIS ROUTINE SHOULD BE USED INSTEAD OF A2VOUU.FOR IF SOME

C ERRORS ARE EXPECTED OR IF DEBUG PRINT IS DESIRED.

C

C INITIALIZE THE NUMBER OF CELLS TO BE COLLAPSED AND DIVIDED

NCELLC = 0
NCELLD - 0

C

C LOOP THROUGH ALL THE CEWIC CELLS

C THE CELL NEEDNOT BE DIVIDED OR COLLAPSED IF (KCENT .NE. O)

DO 10 JCELL - 1, NCELA2

C FIND THE ACTUAL CELL ICELL

ICELL - ICELA2(JCELL)

C DECIDE UPON CELL OR NODE BASED METHOD

IF (MTYPA2 .NE. O) THEN

CHNGSW - CHNGA2(ICELG2(2,ICELL))

CHNGSE - CHNGA2(ICELG2(4.ICELL))

CHNGNE - CHNGA2(ICELG2(6,ICELL))

CHNGNW - CHNGA2(ICELG2(8,ICELL))

CHNGAV - 0.25*(CHNGSW + CHNGSE + CHNGNE + CHNGNW)
ELSE

C NOTE THAT THE CHANGE IS STORED IN JCELL (NOT ICELL)

CHNGAV - CHNGA2(JCELL)
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ENDIF

CHECK IF CELL DIVISION IS REQUIRED, THE CELL IS TO BE
DIVIDED IF THE CELL CHANGE IS MORE THAN THRDA2;

MAKE A LIST OF SUCH CELLS

IF(CHNGAV. GT.

NCELLD

MRKDA2(NCELL
ENDIF

THRDA2) THEN

= NCELLD + 

D) ICELL

CHECK IF CELL COLLAPSING IS REQUIRED, THE CELL IS TO BE

COLLAPSED IF THE CELL CHANGE IS LESS THAN THRCA2;

THE CELL CAN NOT BE COLLAPED IF (LEVEL .LE. O) OR WHEN

THE MERGE PARAMETER KMERA2 EQUALS ZERO
THE CELL IS ALSO NOT COLLAPSED IF IT WAS GENERATED LESS
THAN SIX TIME-STRIDE UNITS BEFORE
MAKE A LIST OF SUCH CELLS

IF (KMERA2 .NE. O) THEN

IF (CHNGAV .LT. THRCA2) THEN

IF (ICELG2(10,ICELL) .NE. O) THEN

KX - KAUXG2(ICELL)

IF (IAND(KX.KLOOFO) .EQ. O) THEN

NCELLC - NCELLC + 1

MRKCA2(NCELLC) ICELL
ENDIF

ENDIF

ENDIF

ENDIF

CONTINUE

PRINT OUT PARAMETERS

IWRITE - IDBGA2 .EQ. 10 .OR. IDBGA2 .GT. 1000

IF (IWRITE) THEN

WRITE(JDEBUG.1000)

WRITE(JDEBUG.1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1400)

WRITE(JDEBUG,1500)
WRITE(JDEBUG. 1400)

ENDIF

(MRKDA2(I), I - 1, NCELLD)

(MRKCA2(I), I - 1, NCELLC)

C

C EXTEND THE CELLS TO BE DIVIDED, IF NEED BE
C

WORKA2(1) - NCELLD
WORKA2(2) - NCELLC

CALL A2EXTD

C RESET THE NUMBER OF CELLS TO BE DIVIDED OR COLLAPSED

NCELLD - NINT(WORKA2(1))
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NCELLC = NINT(WORKA2(2))

PRINT OUT PARAMETERS

IF (IWRITE) THEN

WRITE(JDEBUG, 1600)
WRITE(JDEBUG, 1400)

WRITE(JDEBUG, 1700)

WRITE(JDEBUG,1400)

ENDIF

(MRKDA2(I), I = 1, NCELLD)

(MRKCA2(I), I = 1, NCELLC)

C

C

C

C

C

MERGER CONFIRMATION

C FIND THE SET OF THE CELLS WHICH MAKE UP A CELL TO BE COLLAPSED

C IF ONLY FEW OF THESE FOUR WANT TO BE COLLAPSED THEN NON CAN

C BE COLLAPSED, I.E, WE MUST FIND FOUR SUBCELLS WITH THE SAME
C SUPERCELL (OBVIOUSLY THE SUBCELLS WILL THEN BE AT THE SAME
C LEVEL). THE CELLS ARE ARRANGED AS QUADRUPLES IN CONTIGUOUS

C AREAS OF MRKCA2 ARRAY.

IFIRST = 1

20 NOELEM = 0

LCELL = MRKCA2(IFIRST)

DO 30 JCELL = IFIRST, NCELLC

ICELL = MRKCA2(JCELL)
IF ( ICELG2(10,ICELL) .EQ.

NOELEM = NOELEM

MEMBER(NOELEM) = JCELL
ENDIF

IF (NOELEM .EQ. 4) GOTO 50

CONTINUE

ICELG2(10,LCELL) ) THEN
+ 1

LESS THAN FOUR CELLS ARE FOUND; SO DESTROY THESE CELLS

DO 40 IELEM = 1i, NOELEM

MRKCA2(MEIIBER(IELEM))

NCELLC

40 CONTINUE

= MRKCA2(NCELLC)

= NCELLC - 1

IF (NCELLC .LE. IFIRST) THEN
GOTO 70

ELSE

GOTO 20

ENDIF

FOUR CELLS ARE FOUND; ARRANGE THEM IN CONTIGUOUS AREA

C

C
C

50 DO 60 IELEM= 0, 3

MDUMMY = MR

MRKCA2(IFIRST+IELEM) = MRI

MRKCA2(MEMBER(IELEM+1)) = MDl
60 CONTINUE

IFIRST IFIRST + 4

IF (IFIRST .LT. NCELLC) GOTO 20

(CA2 (IFIRST+IELEM)
CA2(MEMBER(IELEM+1))

JUMMY
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70 CONTINUE

C
C READJUST THE CELLS TO BE COLLAPSED

C

NCELLC (NCELLC/4)*4

C
C PRINT OUT PARAMETERS

C

IF (IWRITE) THEN

WRITE(JDEBUG,1800)

WRITE(JDEBUG,1900)

DO 80 ISET = 1, NCELLC, 4

MEMI = MRKCA2(ISET )

MEM2 = MRKCA2(ISET+1)

MEM3 = MRKCA2(ISET+2)

MEM4 = MRKCA2(ISET+3)

ISUP1 = ICELG2(1O,MEMl)

ISUP2 = ICELG2(10,MEM2)

ISUP3 = ICELG2(10,MEM3)

ISUP4 = ICELG2(10,MEM4)

WRITE(JDEBUG,2000) MEMI,MEM2,MEM3,MEM4,ISUP1,ISUP2,ISUP3,ISUP4
80 CONTINUE

ENDIF

C
C

C MARK NODES

C

C SINCE THE GRID-DIVIDE AND GRID-COLLAPSE ROUTINES CHANGE THE

C CELL ASSIGNMENT (AND NOT THE NODE ASSIGNMENTS) TRANSLATE

C THE PREVIOUS INFORMATION (LISTS) IN TERMS OF SOUTHWEST NODES

C

DO 90 JCELL = 1, NCELLD

ICELL = MRKDA2(JCELL)
MRKDA2(JCELL) = ICELG2(2,ICELL)

90 CONTINUE

C MARK THE NODES FOR THE CELLS TO BE COLLAPSED

DO 100 ISET = 1, NCELLC, 4

KSWM1 = ICELG2(2,RKCA2(ISET ))

KSWM2 = ICELG2(2,MRKCA2(ISET+I))
KSWM3 = ICELG2(2,MRKCA2(ISET+2))
KSWM4 = ICELG2(2,MRKCA2(ISET+3))
MRKCA2(ISET ) = KSWM1

MRKCA2(ISET+1) = KSWM2

MRKCA2(ISET+2) = KSWM3

MRKCA2(ISET+3) = KSWM4
100 CONTINUE

C

C PRINT OUT PARAMETERS

C

IF (IWRITE) THEN

WRITE(JDEBUG,2100)
WRITE(JDEBUG,1400) (MRKDA2(I), I = 1, NCELLD)

WRITE(JDEBUG,2200)

DO 110 ISET = 1, NCELLC, 4
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KSWM1 - MRKCA2(ISET )
KSWM2 - MRKCA2(ISET+I)
KSWM3 = MRKCA2(ISET+2)
KSWM4 - MRKCA2(ISET+3)

MEM1 = NEIBG2(3,KSWM1)

MEM2 = NEIBG2(3,KSWM2)

MEM3 = NEIBG2(3,KSWM3)

MEM4 - NEIBG2(3,KSWM4)

ISUPI = ICELG2(10,MEM1)

ISUP2 - ICELG2(10,MEM2)

ISUP3 - ICELG2(O1,MEM3)

ISUP4 - ICELG2(10,MEM4)

WRITE(JDEBUG,2000) MEM1, MEM2,MEM3,MEM4.ISUP, ISUP2,ISUP3,ISUP4
110 CONTINUE

ENDIF

C GRID DIVISION

C ----- _______
C CALL THE GRID DIVIDE ROUTINE FOR ALL THE PREVIOUSLY

C COLLECTED CELLS.

DO 120 JNODE - NCELLD, 1, -1

KSW = MRKDA2 (JNODE)

JCELL NEIBG2 (3.KSW)

IWARN - 0
C SEE IF PRINT OUT IS NEEDED IN THE CASE AN ERROR IS DETECTED

C IN THE DEBUG CHECK ROUTINES, IN THE CASE OF NO ERROR THIS

C PRINT OUT WILL BE DELETED

IF (IAND(KCHKA2,KL0008) .NE. O) THEN

JPRINT - JDUMY3

OPEN(UNIT=JPRINT, FILE='G2PRNT.DAT', STATUS='NEW')

WRITE(JPRINT,2400)

CALL G2PRNT(15)
ENDIF

WRITE(6.*) ' A2ADPO: CELL TO BE DIVIDED IS ',JCELL

CALL G2DIVO (JCELL,IWARN)

IF (IWARN .NE. O) THEN

WRITE(JTERMO,2250) IWARN, JCELL

IF (IWARN .EQ. 10) GOTO 116

ENDIF

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOOO) .NE. O) THEN

NERR - 0

CALL CHKBN2 (JCELL, O. 0, 0. O, NERR, 'AFTDIV')

CALL CHKNC2 (JCELL, O. 0. 0. O. NERR, 'AFTDIV')

CALL CHKNN2 (JCELL, O, 0, 0. O. NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O, 0. 0, O, NERR, 'AFTDIV')

ENDIF

115 IF (IAND(KCHKA2,KLOO08) .NE. O) THEN

CLOSE(UNIT=JPRINT, DISP-'DELETE')
JPRINT - 7

ENDIF
120 CONTINUE

C
C

458



C
c
C
C

1

1

GRID COLLAPE

GRID COLLAPSE PROCESSING

DO 130 ISET = 1, NCELLC, 4

KSWM1 = MRKCA2(ISET )
KSWM2 = MRKCA2(ISET+1)

KSWM3 = MRKCA2(ISET+2)
KSWM4 - MRKCA2(ISET+3)

MEM1 - NEIBG2(3,KSVM1)

MEM2 = NEIBG2(3,KSWM2)
MEM3 = NEIBG2(3,KSWM3)

MEM4 - NEIBG2(3,KSM4)

ISUPI - ICELG2(10,NEM1)

ISUP2 - ICELG2(10,MEM2)

ISUP3 = ICELG2(10,MEM3)
ISUP4 - ICELG2(10,MEM4)
IWARN = 0

IF (ISUPI .NE. ISUP2 .OR. ISUP1 .NE. ISUP3 .OR.

ISUPI .NE. ISUP4 ) THEN

ZER1 = ISUP2
ZER2 = ISUP3

CALL ERRORM (21,'A2ADPO','ISUP2 ',ZER1,'ISUP3 ',ZER2,

JPRINT,'SUPERCELLS DO NOT MATCH ' )

ENDIF

C SEE IF PRINT OUT IS NEEDED IN THE CASE AN ERROR IS DETECTED

C IN THE DEBUG CHECK ROUTINES, IN THE CASE OF NO ERROR THIS

C PRINT OUT WILL BE DELETED

IF (IAND(KCHKA2,KLOO04) .NE. O) THEN

JPRINT = JDUMY3

OPEN(UNIT=JPRINT, FILE='G2PRNT.DAT', STATUS='NEW')

WRITE(JPRINT,2300)

CALL G2PRNT(15)

ENDIF

WRITE(6,*) ' A2ADPO: CELL TO BE COLLAPSED IS ',ISUP1,

1 MEMI1,MEM23,ME MM4

CALL G2CLPO (MEM1, MEM2, MEM3, MEM4, ISUPI, IWARN)
C SEE IF DEBUG CHECK IS NEEDED

IF (IWARN .NE. O) WRITE(JTERMO,2250) IWARN, ICELL

IF (IAND(KCHKA2,KLOO02) .NE. O) THEN

NERR = 0

CALL CHKBN2 (ISUPI, MEM1, MEM2, MEM3, MEM4, NERR, 'AFTCLP')

CALL CHKNN2 (ISUP1, MEM1, MEM2, MEM3, MEM4, NERR, 'AFTCLP')

CALL CHKNC2 (ISUP1, MEM1, MEM2, MEM3, MEM4, NERR, 'AFTCLP')

CALL CHKSP2 (ISUPi, MEM1, MEM2, MEM3, MEM4, NERR, 'AFTCLP')

ENDIF

IF (IAND(KCHKA2,KLOO04) .NE. 0) THEN

CLOSE(UNIT=JPRINT, DISP='DELETE')

JPRINT = 7
IF (IWARN .NE. O) THEN

WRITE(JPRINT,2350)

WRITE(6,*) ' A2ADPO: LOOK AT FOR007.DAT OR PRINT OUTPUT UNIT'

CALL G2PRNT(15)
ENDIF

ENDIF

130 CONTINUE
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C -
C DELETE NODES

C -

C
C SEE IF PRINT OUT IS NEEDED IN THE CASE AN ERROR IS DETECTED

C IN THE DEBUG CHECK ROUTINES, IN THE CASE OF NO ERROR THIS

C PRINT OUT WILL BE DELETED

IF (KCHKA2 .EQ. 15) THEN

JPRINT = JDUMY3

OPEN(UNIT=JPRINT, FILE='G2PRNT.DAT', STATUS='NEW')

WRITE(JPRINT,2400)

CALL G2PRNT(15)

ENDIF

C DELETE ALL THE POINTERS CORRESPONDING TO DELETED NODES

IF (NCELLC .GT. O) CALL G2NODE

C SEE IF DEBUG CHECK IS NEEDED

IF (KCHKA2 .EQ. 15) THEN

NERR = 0

CALL CHKBN2 (, 0, 0, 0, O, NERR, 'AFTNOD')

CALL CHKNC2 (, 0, 0. 0, O, NERR, 'AFTNOD')

CALL CHKNN2 (, 0, 0, 0, O, NERR, 'AFTNOD')

CALL CHKSP2 ( 0, 0, 0, O, NERR, 'AFTNOD')

CLOSE(UNIT=JPRINT, DISP='DELETE')

JPRINT = 7
ENDIF

C FORMAT STATEMENTS
C --- _

1000 FORMAT(//lOX, '----------------------- )

1100 FORMAT( IOX,'DEBUG PRINT FROM A2ADPO' )

1200 FORMAT( 10X,'----------------------'/)

1300 FORMAT(/lOX,'CELLS TO BE DIVIDED BEFORE EXTENSION')

1400 FORMAT(20I5)

1500 FORMAT(/1OX,'CELLS TO BE COLLAPSED BEFORE EXTENSION')

1600 FORMAT(/1OX,'CELLS TO BE DIVIDED AFTER EXTENSION')

1700 FORMAT(/1OX,'CELLS TO BE COLLAPSED AFTER EXTENSION')

1800 FORMAT(/lOX,'CELLS TO BE COLLAPSED AFTER MERGE CONFIRMATION'/)

1900 FORMAT( 7X,'CELL 1',4X,'CELL 2',4X.'CELL 3',4X,'CELL 4'.

1 4X,'SUPER1',4X,'SUPER2',4X,'SUPER3',4X,'SUPER4')

2000 FORMAT( 8(X,IS) )

2100 FORMAT(5X,'SOUTHWEST NODES OF THE CELLS TO BE DIVIDED')

2200 FORMAT(5X,'CELLS IN TERMS OF SOUTHWEST NODES TO BE COLLAPSED')

2250 FORMAT(5X,'WARNING #',I3,2X,'ISSUED FOR CELL',I5)

2300 FORMAT(IX,'POINTER SYSTEM JUST BEFORE ERROR OCCURED IN G2CLPO')

2350 FORMAT(1X,'POINTER SYSTEM JUST AFTER ERROR OCCURED IN G2CLPO')

2400 FORMAT(1X,'POINTER SYSTEM JUST BEFORE ERROR OCCURED IN G2DIVO')

RETURN

END
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A2ADUU

SUBROUTINE A2ADPO

C A2ADUU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'TICOMN.INC'

DIMENSION MEMBER(4)

C THIS SUBROUTINE PERFORMS THE GRID REALIGNMENT NEEDED FOR

C ADAPTIVE GRIDDING. IT FINDS THE CELLS WHICH NEED TO BE DIVIDED

C OR COLLAPSED. FINALLY IT FINDS THE QUADRUPLES OF CELLS WHICH

C PREVIOUSLY CONSTITUTED A SINGLE CELL SO THAT THEY CAN BE

C COLLAPSED.

C INITIALIZE THE NUMBER OF CELLS TO BE COLLAPSED AND DIVIDED

NCELLC = 0
NCELLD = O

IWARN = 0
C
C LOOP THROUGH ALL THE CEWIC CELLS

C THE CELL NEEDNOT BE DIVIDED OR COLLAPSED IF (KCENT .NE. O)

DO 10 JCELL = 1, NCELA2

ICELL = ICELA2(JCELL)
C NOTE THAT THE CHANGE IS STORED IN JCELL (NOT ICELL)

CHNGAV = CHNGA2(JCELL)

C CHECK IF CELL DIVISION IS REQUIRED, THE CELL IS TO BE

C DIVIDED IF THE CELL CHANGE IS MORE THAN THRDA2;

C MAKE A LIST OF SUCH CELLS

IF(CHNGAV. GT. THRDA2) THEN
NCELLD = NCELLD + 1

MRKDA2(NCELLD) = ICELL
ENDIF

C CHECK IF CELL COLLAPSING IS REQUIRED, THE CELL IS TO BE

C COLLAPSED IF THE CELL CHANGE IS LESS THAN THRCA2;

C THE CELL CAN NOT BE COLLAPED IF (LEVEL .LE. O) OR WHEN

C THE MERGE PARAMETER KMERA2 EQUALS ZERO

C THE CELL IS ALSO NOT COLLAPSED IF IT WAS GENERATED LESS

C THAN TWO TIME-STRIDE UNITS BEFORE

C MAKE A LIST OF SUCH CELLS

IF (KMERA2 .NE. O) THEN
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IF (CHNGAV .LT. THRCA2) THEN

IF (ICELG2(10,ICELL) .NE. O) THEN

KX KAUXG2(ICELL)

IF (IAND(KX,KLOOFO) .EQ. O) THEN

NCELLC = NCELLC + 

MRKCA2(NCELLC) = ICELL
ENDIF

ENDIF

ENDIF

ENDIF

10 CONTINUE

C

C EXTEND THE CELLS TO BE DIVIDED, IF NEED BE

C

WORKA2(1) = NCELLD

WORKA2(2) = NCELLC
C

CALL A2EXTD

C RESET THE NUMBER OF CELLS TO BE DIVIDED OR COLLAPSED

NCELLD = NINT(WORKA2(1))
NCELLC = NINT(WORKA2(2))

C
C

C

C

C

MERGER CONFIRMATION

C FIND THE SET OF THE CELLS WHICH MAKE UP A CELL TO BE COLLAPSED

C IF ONLY FEW OF THESE FOUR WANT TO BE COLLAPSED THEN NONE CAN

C BE COLLAPSED, I.E, WE MUST FIND FOUR SUBCELLS WITH THE SAME

C SUPERCELL (OBVIOUSLY THE SUBCELLS WILL THEN BE AT THE SAME

C LEVEL). THE CELLS ARE ARRANGED AS QUADRUPLES IN CONTIGUOUS

C AREAS OF MRKCA2 ARRAY.

IFIRST = 1

20 NOELEM 0

LCELL MRKCA2(IFIRST)

DO 30 JCELL = IFIRST, NCELLC
ICELL MRKCA2(JCELL)
IF ( ICELG2(lO,ICELL) .EQ.

NOELEM = NOELEM

MEMBER(NOELEM) = JCELL
ENDIF

IF (NOELEM .EQ. 4) GOTO 50
30 CONTINUE

C

ICELG2(10,LCELL) ) THEN
+ 1

LESS THAN FOUR CELLS ARE FOUND; SO DESTROY THESE CELLSC

C

DO 40 IELEM = 1, NOELEM

MRKCA2(MEMBER(IELEM)) = MRKCA2(NCELLC)
NCELLC - NCELLC - 1

40 CONTINUE

IF (NCELLC .LE. IFIRST) THEN
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GOTO 70

ELSE

GOTO 20

ENDIF

FOUR CELLS ARE FOUND; ARRANGE THEM IN CONTIGUOUS AREA

50 DO 60 IELEM 0, 3

MDUMMY = MRKCA2(IFIRST+IELEM)

MRKCA2(IFIRST+IELEM) = MRKCA2(MEMBER(IELEM+1))

MRKCA2(MEMBER(IELEM+1)) = MDUMMY

60 CONTINUE

IFIRST = IFIRST + 4

IF (IFIRST .LT. NCELLC) GOTO 20

70 CONTINUE

C
C READJUST THE CELLS TO BE COLLAPSED

C

NCELLC = (NCELLC/4)*4

MARK NODES

C SINCE THE GRID-DIVIDE AND GRID-COLLAPSE ROUTINES CHANGE THE

C CELL ASSIGNMENT (AND NOT THE NODE ASSIGNMENTS) TRANSLATE

C THE PREVIOUS INFORMATION (LISTS) IN TERMS OF SOUTHWEST NODES

DO 90 JCELL = 1, NCELLD

ICELL = MRKDA2(JCELL)

MRKDA2(JCELL) = ICELG2(2,ICELL)

90 CONTINUE

C MARK THE NODES FOR THE CELLS TO BE COLLAPSED

DO 100 ISET = 1. 

KSWM1

KSWM2

KSWM3
KSWM4

MRKCA2(ISET )

MRKCA2(ISET+1)

MRKCA2(ISET+2)

MRKCA2(ISET+3)
100 CONTINUE

C
C
C

C

NCELLC, 4

= ICELG2(2,MRKCA2(ISET ))

= ICELG2(2,MRKCA2(ISET+I))
= ICELG2(2,MRKCA2(ISET+2))
= ICELG2(2,MRKCA2(ISET+3))

= KSWM1
= KSWM2
= KSWM3
= KSWM4

GRID DIVISION

C CALL THE GRID DIVIDE ROUTINE

C COLLECTED CELLS.
FOR ALL THE PREVIOUSLY

DO 120 JNODE = NCELLD, 1, -1
KSW = MRKDA2 (JNODE)

JCELL = NEIBG2 (3,KRSW)
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CALL G2DIVO (JCELL,IWARN)

120 CONT;NUE

C

C GRID COLLAPE

C

C
C GRID COLLAPSE PROCESSING

DO 130 ISET = 1, NCELLC, 4

KSWM1 = MRKCA2(ISET )

KSWM2 - MRKCA2(ISET+1)

KSWM3 = MRKCA2(ISET+2)

KSWM4 - MRKCA2(ISET+3)

MEM1 = NEIBG2(3,KSWM1)

MEM2 - NEIBG2(3,KSWI12)

MEM3 = NEIBG2(3,KSWM3)
MEM4 = NEIBG2(3,KSWM4)

ISUP1 = ICELG2(10,MEMI1)
C ISUP2 = ICELG2(10,MEM2)

C ISUP3 = ICELG2(10,MEM3)
C ISUP4 = ICELG2(10,IEM4)

C IF (ISUPI .NE. ISUP2 .OR. ISUPI .NE. ISUP3 .OR.

C 1 ISUPI .NE. ISUP4 ) THEN

C ZER1 = ISUP2
C ZER2 = ISUP3

C CALL ERRORM (21,'A2ADPO','ISUP2 ',ZER1,'ISUP3 ',ZER2,

C 1 JPRINT,'SUPERCELLS DO NOT MATCH '

C ENDIF

CALL G2CLPO (MEM1, MEM2, MEM3, MEM4, ISUPI, IWARN)

130 CONTINUE

RETURN

END

A2CEWC

SUBROUTINE A2CEWC

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

C THIS SUBROUTINE COMPUTES THE NUMBER NCELA2 OF "CEWIC" CELLS,

C CEWIC IS THE ACRONYM FOR 'CELLS WITHOUT CENTER', I.E., THE

C NON-MULTIPLE-GRID CELLS. IT ALSO SETS THE POINTER ARRAY

C ICELA2 WHICH HOLDS THE CEWIC CELLS.
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C INITIALIZE THE NUMBER OF CEWIC CELLS

NCELA2 0

C INITIALIZE THE HISTORY DECRE1IENT FOR THE RECENTLY DIVIDED CELLS

NINCHS = 16
C

C LOOP THROUGH ALL THE CELLS ON ALL THE BASIC AND FINER LEVELS

CVD$ NODEPCHK

DO 10 ICELL = ILVLG2(1,0), NCELG2

C FIND THE CENTER NODE

KCENT = ICELG2(1,ICELL)

IF (KCENT .EQ. O) THEN

C DECREASE THE TEMPORAL LEVEL BYTE IF NEED BE,

C NOTE THAT IF THE CELL WERE DIVIDED MORE THAN ONCE

C THEN THIS TREATMENT IS KEPT FROZEN

KX = KAUXG2(ICELL)

IF (IAND(KX,KLOOFO) .GT. O)

1 KAUXG2(ICELL) = KAUXG2(ICELL) - NINCHS

c IF (IAND(KX,KLFOO0) .EQ. O) THEN
NCELA2 = NCELA2 + 1

ICELA2(NCELA2) = ICELL

ENDIF

ENDIF

10 CONTINUE

C

C PRINT OUT PARAMETERS

C

c IF (IDBGA2 .NE. 13

c WRITE(JDEBUG,1000)

c WRITE(JDEBUG1100)

c WRITE(JDEBUG,1200)

c WRITE(JDEBUG,1300)

c WRITE(JDEBUG,1400)

C
C
C

.AND. IDBGA2 .LT. 1000) RETURN

NCELA2

(ICELA2(I), I = 1, NCELA2)

FORMAT STATEMENTS

1000 FORMAT(//lOX,' -' )
1100 FORMAT( IOX,'DEBUG PRINT FROM A2CEWC' )

1200 FORMAT( lOX,' --------------------- '/)
1300 FORMAT(/1OX,'NUMBER OF CEWIC CELLS = ',I5,/,

1 10X,'THE CEWIC CELL POINTER IS :',/)

1400 FORMAT(20IS)

RETURN

END
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A2EXTU

SUBROUTINE A2EXTD

C A2EXTU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

DIMENSION INB(8)

C THIS SUBROUTINE EXTENDS THE CLUSTER OF CELLS TO BE DIVIDED

C BY A SPECIFIED NUMBER OF CELLS (NXTDA2) ON ALL THE SIDES

C OF THE CELLS UNDER CONSIDERATION. FOR EVERY CELL IN THE

C CLUSTER, ALL ITS NEIGHBOUR CELLS ARE CHECKED, IF THESE

C NEIGHBOUR CELLS ARE NOT IN THE CLUSTER, THEN THEY ARE

C ADDED TO THE CLUSTER LIST. THE NEIGBOUR CELLS ARE THEN

C STORED IN A SEPERATE ARRAY; SUBSEQUENTLY (IF NXTDA2 > 1)
C ONLY THE CELLS IN THIS ARRAY ARE CHECKED.

C

C SET THE NUMBER OF CELLS TO BE DIVIDED, COLLAPSED OR EXTENDED

NCELLD NINT(WORKA2(1))

NCELLC = NINT(WORKA2(2))
NCELDP = NCELLD + 1

NEXTD = 0

C

C CHECK DIVIDE CLUSTER

C

DO 60 JCELL = 1, NCELLD

ICELL = MRKDA2(JCELL)

KSW = ICELG2( 2,ICELL)

KS = ICELG2( 3,ICELL)
KSE = ICELG2( 4,ICELL)
KE = ICELG2( 6,ICELL)

KNE = ICELG2( 6,ICELL)
KN = ICELG2( 7,ICELL)

KNW = ICELG2( 8,ICELL)

KW = ICELG2( 9,ICELL)

C SET UP THE NEIGHBOUR CELLS OF THIS CELL

C
INB(1) NEIBG2(1,KSW)
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INB(2) - NEIBG2(2,KSE)

INB(3) NEIBG2(3,KNE)

INB(4) NEIBG2(4,KNW)

C THE EXTENSION THROUGH A DIVIDED EDGE IS NOT NEEDED

INB(5) = 0

INB(6) = 0

INB(7) = 0

INB(8) = 0

IF (KS .EQ. O) INB(5) = NEIBG2(2,KSW)

IF (KE .EQ. O) INB(6) = NEIBG2(3,KSE)

IF (KN .EQ. O) INB(7) = NEIBG2(4,KNE)

IF (KW .EQ. O) INB(8) = NEIBG2(1,KNW)
C
C IF THE LEVEL OF THE CORNER CELL IS HIGHER THAN THE

C CLUSTER CELL'S LEVEL; THEN EXTENSION THROUGH THE

C CORNER CELL IS NOT NEEDED; FIRST COMPUTE LEVEL (KLEVLC)

C OF THE CLUSTER CELL AND THAT (KLEVLN) OF THE CORNER CELLS

KLEVLC = ISHFT(IAND(KAUXG2(ICELL),KUOOOF),-16)

IF (INB(i) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(1)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(1) = 0

ENDIF

IF (INB(2) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(2)),KUOOOF),-16)
IF (KLEVLN .GT. KLEVLC) INB(2) = 0

ENDIF

IF (INB(3) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(3)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(3) = 0

ENDIF

IF (INB(4) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(4)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(4) = 0
ENDIF

C KELIG INDICATES THE NUMBER OF ELIGIBLE NEIGHBOUR CELLS

C NOTE THAT THE ELIGIBLE CELLS WILL BE EVENTUALLY ALL

C NON-ZERO NOW (ATMOST 8)

KELIG 0

KELIG = KELIG + INB(1)
KELIG = KELIG + INB(2)
KELIG = KELIG + INB(3)
KELIG - KELIG + INB(4)

KELIG = KELIG + INB(5)

KELIG KELIG + INB(6)

KELIG = KELIG + INB(7)
KELIG = KELIG + INB(8)
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IF (KELIG .EQ. O) GOTO 60

NOW CHECK THE REST OF THE DIVIDE CLUSTER

ELIGIBLE CELLS ARE INCLUDED THERE; IF SO

THE ELIGIBLE CELLS.

TO SEE IF THE

THEY ARE NOT

DO 40 KCELL = 1i, NCELLD + NEXTD

LCELL = MRKDA2(KCELL)
IF (INB(1)

IF (INB(2)

IF (INB(3)

IF (INB(4)

IF (INB(5)

IF (INB(6)

IF (INB(7)

IF (INB(8)

CONTINUE

.EQ.

.EQ.

.EQ.

EQ.

.EQ.

Eq.

EQ.

.EQ.

LCELL)

LCELL)

LCELL)

LCELL)

LCELL)

LCELL)

LCELL)

LCELL)

INB(l) = 0

INB(2) = 0

INB(3) = 0

INB(4) = 0

INB(5) = 0

INB(6) = 0

INB(7) = 0

INB(8) = 0

KELIG = 0

KELIG = KELIG + INB(1)

KELIG = KELIG + INB(2)
KELIG = KELIG + INB(3)
KELIG = KELIG + INB(4)

KELIG = KELIG + INB(5)

KELIG = KELIG + INB(6)

KELIG = KELIG + INB(7)
KELIG = KELIG + INB(8)
IF (KELIG .EQ. O) GOTO 60

NOW MARK THE CELLS WHICH ARE TO BE EXTENDED; THE PAINTED

EDGES OR CORNERS (THROUGH WHICH EXTENSION OF THESE BOUNDARY

CELLS WILL NOT BE DONE), IS TEMPORARILY STORED IN WORKA2

IF (INB(1) .NE. O) THEN

NEXTD = NEXTD +

NPOINT = NCELLD +

MRKDA2(NPOINT) = INB(1)

WORKA2(NPOINT) = I
ENDIF

IF (INB(6) .NE. O) THEN
NEXTD = NEXTD +

NPOINT = NCELLD

MRKDA2(NPOINT) = INB(5)

WORKA2(NPOINT) = 3
ENDIF

I
NEXTD

1
+ NEXTD

IF (INB(2) .NE. O) THEN
NEXTD = NEXTD + 1

NPOINT = NCELLD + NEXTD

MRKDA2(NPOINT) = INB(2)
WORKA2(NPOINT) = 2

ENDIF

IF (INB(6) .NE. O) THEN
NEXTD = NEXTD + 1

NPOINT = NCELLD + NEXTD

MRKDA2(NPOINT) = INB(6)

WORKA2(NPOINT) = 6
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ENDIF

IF (INB(3) .NE. O) THEN
NEXTD = NEXTD + 1

NPOINT = NCELLD + NEXTD

MRKDA2(NPOINT) = INB(3)
WORKA2(NPOINT) = 4

ENDIF

IF (INB(7) .NE. O) THEN

NEXTD = NEXTD + 1

NPOINT - NCELLD + NEXTD

MRKDA2(NPOINT) = INB(7)
WORKA2(NPOINT) = 12

ENDIF

IF (INB(4) .NE. O) THEN
NEXTD = NEXTD + 1

NPOINT = NCELLD + NEXTD

MRKDA2(NPOINT) = INB(4)
WORKA2(NPOINT) = 8

ENDIF

IF (INB(8) .NE. O) THEN

NEXTD = NEXTD + 1

NPOINT = NCELLD + NEXTD
MRKDA2(NPOINT) = INB(8)
WORKA2(NPOINT) = 9

ENDIF

C GO BACK FOR NEXT CLUSTER CELL

60 CONTINUE

C

C

C EXTEND BOUNDARY

C

C

C NOW EXTEND THE PREVIOUSLY EXTENDED CELLS; INDCEL INDICATES

C THE EDGES OR CORNERS THROUGH WHICH EXTENSION HAD BEEN

C PREVIOUSLY ACCOMPLISHED
C

DO 130 INEXT = 1, NXTDA2-1

JEXTD = 0

DO 120 IEXTD = 1, NEXTD

NPOINT =

ICELL =

INDCEL -

NCELLD + IEXTD

MRKDA2(NPOINT)

NINT(WORKA2(NPOINT))

SET UP NODE POINTERS FOR THIS CELL

KSW

KS
KSE

KE

KNE

= ICELG2(

- ICELG2(
- ICELG2(

= ICELG2(
= ICELG2(

2,ICELL)

3,ICELL)

4,ICELL)

5,ICELL)

8,ICELL)
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KN = ICELG2(

- KNW = ICELG2(

KW - ICELG2(

7,ICELL)
8,ICELL)

9,ICELL)

SET UP THE NEIGHBOUR CELLS OF THIS CELL

INB(1)

INB(2)

INB(3)

INB(4)

= NEIBG2(1,KSW)

= NEIBG2(2,KSE)
= NEIBG2(3,KNE)
- NEIBG2(4,KNW)

INB(5) = 0

INB(6) = 0
INB(7) = 0

INB(8) = 0

THE EXTENSION THROUGH A DIVIDED EDGE IS NOT NEEDEDC

.EQ. O) INB(S)

.EQ. O) INB(6)

.Eq. O) INB(7)

.Eq. O) INB(8)

= NEIBG2(2,KSW)

= NEIBG2(3,KSE)

= NEIBG2(4,KNE)

= NEIBG2(1,KNW)

DON'T EXTEND THROUGH THE PARTICULAR EDGE OR CORNER

NORTHEAST

IF (IAND(INDCEL,KLOOO1)

INB(6) = 0

INB(3) = 0

INB(7) = 0
ENDIF

.NE. O) THEN

NORTHWEST

IF (IAND(INDCEL,KLOO02) .NE. O) THEN

INB(7) = 0

INB(4) = 0
INB(8) = 0

ENDIF

SOUTHWEST

IF (IAND(INDCEL,KL0004) .NE. O) THEN

INB(8) = 0

INB(1) = 0
INB(5) = 0

ENDIF

SOUTHEAST

IF (IAND(INDCEL,KLOO08) .NE. O) THEN

INB(5) = 0

INB(2) = 0
INB(6) 0

ENDIF

IF THE LEVEL OF THE CORNER CELL IS HIGHER
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C
- KELIG = 0

KELIG = KELIG + INB(1)
KELIG = KELIG + INB(2)

KELIG = KELIG + INB(3)
KELIG KELIG + INB(4)

IF (KELIG .NE. O) THEN

KLEVLC = ISHFT(IAND(KAUXG2(ICELL),KUOOOF),-16 )

IF (INB(1) .NE. O) THEN

KLEVLN ISHFT(IAND(KAUXG2(INB(1)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(1) = 0
ENDIF

IF (INB(2) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(2)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(2) = 0
ENDIF

IF (INB(3) .NE. O) THEN

KLEVLN ISHFT(IAND(KAUXG2(INB(3)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(3) = 0
ENDIF

IF (INB(4) .NE. O) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(4)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(4) = 0
ENDIF

ENDIF

KELIG = 0
KELIG = KELIG + INB(1)
KELIG = KELIG + INB(2)

KELIG = KELIG + INB(3)

KELIG KELIG + INB(4)

KELIG = KELIG + INB(S)
KELIG - KELIG + INB(6)

KELIG KELIG + INB(7)
KELIG = KELIG + INB(8)
IF (KELIG .EQ. O) GOTO 120

C
C NOW CHECK THE REST OF THE DIVIDE CLUSTER

C

DO 100 KCELL = 1, NCELLD + NEXTD + JEXTD

LCELL = MRKDA2(KCELL)

IF (INB(l) .EQ. LCELL) INB(1) = 0

IF (INB(2) .EQ. LCELL) INB(2) = 0
IF (INB(3) .EQ. LCELL) INB(3) = 0

IF (INB(4) .EQ. LCELL) INB(4) = 0

IF (INB(5) .EQ. LCELL) INB(5) = 0

IF (INB(6) .EQ. LCELL) INB(6) = 0
IF (INB(7) .Eq. LCELL) INB(7) = 0
IF (INB(8) .Eq. LCELL) INB(8) = 0

100 CONTINUE

C

C NOW PAINT THE CELLS WHICH ARE TO BE EXTENDED
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C

KELIG = 0
KELIG - KELIG + INB(1)

KELIG = KELIG + INB(2)
KELIG - KELIG + INB(3)

KELIG = KELIG + INB(4)
KELIG = KELIG + INB(5)
KELIG = KELIG + INB(6)

KELIG = KELIG + INB(7)

KELIG - KELIG + INB(8)
IF (KELIG .Eq. O) GOTO 120

C
IF (INB(l) .NE. O) THEN

JEXTD = JEXTD + 1

NPOINT = NCELLD + NEXTD + JEXTD
MRKDA2(NPOINT) = INB(1)

WORKA2(NPOINT) = 1
ENDIF

IF (INB(5) .NE. O) THEN
JEXTD = JEXTD + 1
NPOINT = NCELLD + NEXTD + JEXTD

MRKDA2(NPOINT) = INB(5)
WORKA2(NPOINT) = 3

ENDIF

IF (INB(2) .NE. O) THEN
JEXTD = JE

NPOINT = NC]

MRKDA2(NPOINT) = IN]

WORKA2(NPOINT) = 2
ENDIF

IF (INB(6) .NE. O) THEN
JEXTD = JE

NPOINT = NC]

MRKDA2(NPOINT) = IN]

WORKA2(NPOINT) = 6
ENDIF

IF (INB(3) .NE. O) THEN
JEXTD = JE

NPOINT = NCI

MRKDA2(NPOINT) = IN'
WORKA2(NPOINT) 4

ENDIF

IF (INB(7) .NE. O) THEN
JEXTD = JE

NPOINT = NC'

MRKDA2(NPOINT) = IN 
WORKA2(NPOINT) = 12

ENDIF

XTD + 1

ELLD +

3(2)

NEXTD + JEXTD

XTD + 
ELLD + NEXTD + JEXTD

B(6)

XTD + 1

ELLD +

B (3)
NEXTD + JEXTD

XTD + 1

ELLD + NEXTD + JEXTD

B(7)

IF (INB(4) .NE. O) THEN
JEXTD = JEXTD + 1

NPOINT = NCELLD + NEXTD + JEXTD

MRKDA2(NPOINT) = INB(4)
WORKA2(NPOINT) = 8

ENDIF
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IF (INB(8) .NE. O)
JEXTD

NPOINT

MRKDA2(NPOINT)

WORKA2(NPOINT)

ENDIF

THEN
= JEXTD + 1

= NCELLD + NEXTD + JEXTD

= INB(8)
= g

C GO BACK FOR NEXT MEMBER OF BOUNDARY

120 CONTINUE

C ADJUST THE NUMBER OF CELLS TO BE DIVIDED AND EXTENDED

NCELLD = NCELLD + NEXTD

NEXTD = JEXTD
C

C GO BACK FOR NEXT LEVEL OF EXTENSION

C

130 CONTINUE

C

C

C READJUST COLLAPSE CLUSTER

C

C

READJUST THE LIST OF CELLS TO BE MERGED; SOME OF THE CELLS

THAT ARE TO BE EXTENDED MAY BE ENLISTED HERE

NCELLD = NCELLD + NEXTD

DO 150 JCELL = NCELDP, NCELLD
DO 140 KCELL = 1, NCELLC

IF (MRKCA2(KCELL) .EQ. MRKDA2(JCELL)) THEN

MRKCA2(KCELL) = MRKCA2(NCELLC)
NCELLC = NCELLC - 1

GO TO 150

ENDIF

CONTINUE

CONTINUE

RESET THE NUMBER OF CELLS TO BE DIVIDED OR COLLAPSED

WORKA2(1) - NCELLD

WORKA2(2) = NCELLC

NOMENCLATURE

INB(4) INB(7) INB(3)
+--------+---------+

18 KNW 7 KNE 61
I KN I

INB(8)+9 KW KE 5+INB(6)

I KS I
12 KSW 3 KSE 41
++-----------------+

INB(1) INB(6) INB(2)
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C

C

RETURN

END

A2EXTD

SUBROUTINE A2EXTD

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

DIMENSION INB(8

LOGICAL IWRITI

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC/LIST'

G2COMN.INC/LIST'
HEXCOD.INC

IOCOMN.INC/LIST'

C
C THIS SUBROUTINE EXTENDS THE CLUSTER OF CELLS TO BE DIVIDED

C BY A SPECIFIED NUMBER OF CELLS (NXTDA2) ON ALL THE SIDES

C OF THE CELLS UNDER CONSIDERATION. FOR EVERY CELL IN THE

C CLUSTER, ALL ITS NEIGHBOUR CELLS ARE CHECKED, IF THESE

C NEIGHBOUR CELLS ARE NOT IN THE CLUSTER, THEN THEY ARE

C ADDED TO THE CLUSTER LIST. THE NEIGBOUR CELLS ARE THEN

C STORED IN A SEPERATE ARRAY; SUBSEQUENTLY (IF NXTDA2 > 1)
C ONLY THE CELLS IN THIS ARRAY ARE CHECKED.

C

C THIS ROUTINE SHOULD BE USED INSTEAD OF A2EXTU.FOR IF SOME

C ERRORS ARE EXPECTED OR IF DEBUG PRINT IS DESIRED.

C

IF (NXTDA2 .LT. 1) RETURN
C
C SET THE NUMBER OF CELLS TO BE DIVIDED, COLLAPSED OR EXTENDED

NCELLD - NINT(WORKA2(1))

NCELLC - NINT(WORKA2(2))

NCELDP - NCELLD + 

NEXTD - 0

C WANT DEBUG PRINT ?

IWRITE IDBGA2 .EQ. 11

NTIME - 1
C

C CHECK DIVIDE CLUSTER

C

.OR. IDBGA2 .GT. 1000
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DO 60 JCELL - 1, NCELLD

C FIND THE ACTUAL CELL

ICELL - MRKDA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2( 2,ICELL)
KS = ICELG2( 3,ICELL)

KSE = ICELG2( 4,ICELL)
KE = ICELG2( 56,ICELL)

KNE ICELG2( 6,ICELL)

KN = ICELG2( 7,ICELL)

KNW = ICELG2( 8,ICELL)

KW = ICELG2( 9,ICELL)

C SET UP THE NEIGHBOUR CELLS OF THIS CELL

C

INB(1) = NEIBG2(1.KSW)
INB(2) = NEIBG2(2,KSE)

INB(3) = NEIBG2(3,KNE)

INB(4) = NEIBG2(4,KNW)

C THE EXTENSION THROUGH A DIVIDED EDGE IS NOT NEEDED

DO 10 IK - 1, 4

INB(IK+4) 0
10 CONTINUE

IF (KS .EQ. O) INB(5) = NEIBG2(2,KSW)

IF (KE .EQ. O) INB(6) = NEIBG2(3,KSE)

IF (KN .EQ. O) INB(7) = NEIBG2(4,KNE)
IF (KW .EQ. 0) INB(8) = NEIBG2(1,KNW)

C
C IF THE LEVEL OF THE CORNER CELL IS HIGHER THAN THE

C CLUSTER CELL'S LEVEL; THEN EXTENSION THROUGH THE

C CORNER CELL IS NOT NEEDED; FIRST COMPUTE LEVEL (KLEVLC)

C OF THE CLUSTER CELL AND THAT (KLEVLN) OF THE CORNER CELLS

KLEVLC = ISHFT(IAND(KAUXG2(ICELL),KUOOOF),-16)
DO 20 IK 1, 4

IF (INB(IK) .NE. O) THEN

KLEVLN ISHFT(IAND(KAUXG2(INB(IK)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(IK) = 0
ENDIF

20 CONTINUE

C KELIG INDICATES THE NUMBER OF ELIGIBLE NEIGHBOUR CELLS

C NOTE THAT THE ELIGIBLE CELLS WILL BE EVENTUALLY ALL

C NON-ZERO NOW (ATMOST 8)

KELIG 0

DO 7001 I 1, 8

KELIG ' KELIG + INB(I)
7001 CONTINUE

IF (KELIG .EQ. O) GOTO 60
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NOW CHECK THE REST OF THE DIVIDE CLUSTER TO SEE IF THE

ELIGIBLE CELLS ARE INCLUDED THERE; IF SO THEY ARE NOT

THE ELIGIBLE CELLS.

DO 40 KCELL = 1, NCELLD + NEXTD

LCELL = MRKDA2(KCELL)

DO 30 IK = 1, 8

IF (INB(IK) .EQ. LCELL) INB(IK) = 0

CONTINUE

CONTINUE

KELIG = 0

DO 7002 I = 1, 8

KELIG = KELIG + INB(I)

CONTINUE

IF (KELIG .EQ. O) GOTO 60

NOW MARK THE CELLS WHICH ARE TO BE EXTENDED; THE PAINTED

EDGES OR CORNERS (THROUGH WHICH EXTENSION OF THESE BOUNDARY

CELLS WILL NOT BE DONE), IS TEMPORARILY STORED IN WORKA2

IPROD = 1
IPROD2 = 3
DO 50 IK = 1, 4

IF (INB(IK) .NE.

NEXTD
NPOINT

MRKDA2(NPOINT

WORKA2(NPOINT
ENDIF

IPROD1 = IPROD1*'

IF (INB(IK+4) .NI
IF (IK .Eq. 41

NEXTD

NPOINT

MRKDA2(NPOINT:

WORKA2(NPOINT
ENDIF

IPROD2 = IPROD2*:

CONTINUE

O) THEN

= NEXTD + 1
= NCELLD + NEXTD

)= INB(IK)

) = IPROD1

2

E. O) THEN

) IPROD2 = 9

= NEXTD + 1

= NCELLD + NEXTD

) = INB(IK+4)
) = IPROD2

GO BACK FOR NEXT CLUSTER CELL

CONTINUE

PRINT OUT PARAMETERS

IF (IWRITE) THEN
WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG.1400)
ENDIF

NEXTD, 0

(MRKDA2(NCELLD+I), I = 1, NEXTD)

C
C
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EXTEND BOUNDARY

NOW EXTEND THE PREVIOUSLY EXTENDED CELLS; INDCEL INDICATES
THE EDGES OR CORNERS THROUGH WHICH EXTENSION HAD BEEN

PREVIOUSLY ACCOMPLISHED

DO 130 INEXT = 1, NXTDA2-1

JEXTD = 0

DO 120 IEXTD = 1, NEXTD

FIND THE ACTUAL CELL

NPOINT =

ICELL =

INDCEL =

NCELLD + IEXTD

MRKDA2(NPOINT)

NINT(WORKA2(NPOINT))

SET UP NODE POINTERS FOR THIS CELL

KSW

KS

KSE
KE

KNE

KN

KNW

KW

= ICELG2(

= ICELG2(
= ICELG2(

= ICELG2(

= ICELG2(

= ICELG2(

= ICELG2(

= ICELG2(

2,ICELL)

3,ICELL)

4,ICELL)

5,ICELL)

6,ICELL)

7,ICELL)
8,ICELL)

9,ICELL)

SET UP THE NEIGHBOUR CELLS OF THIS CELL

INB(1)

INB(2)

INB(3)

INB(4)

= NEIBG2(1,KSW)

= NEIBG2(2,KSE)

= NEIBG2(3,KNE)

= NEIBG2(4,KNW)

DO 70 IK = 1, 4
INB(IK+4) = 0

CONTINUE

THE EXTENSION THROUGH A DIVIDED EDGE IS NOT NEEDED

IF (KS .EQ. O) INB(5)

IF (KE .EQ. 0) INB(6)
IF (KN .EQ. 0) INB(7)
IF (KW .EQ. O) INB(8)

= NEIBG2(2,KSW)
= NEIBG2(3,KSE)
= NEIBG2(4,KNE)

= NEIBG2(1,KNW)

DON'T EXTEND THROUGH THE PARTICULAR EDGE OR CORNER
NORTHEAST

IF (IAND(INDCEL,KLOO0001) .NE. O) THEN
INB(6) = 0
INB(3) = 0
INB(7) = 0

ENDIF
C
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C NORTHWEST

C 
IF (IAND(INDCEL,KLOO02) .NE. O) THEN

INB(7) = 0

INB(4) = 0
INB(8) = O

ENDIF

C
C SOUTHWEST

C
IF (IAND(INDCEL,KLOO04) .NE. O) THEN

INB(8) = 0

INB(1) = 0

INB(5) = 0
ENDIF

C
C SOUTHEAST

C

IF (IAND(INDCEL,KL008) .NE. O) THEN

INB(5) 0

INB(2) = 0
INB(6) = 0

ENDIF

C
C IF THE LEVEL OF THE CORNER CELL IS HIGHER . . .
C

KELIG = 0

DO 7003 I = 1, 4

KELIG = KELIG + INB(I)
7003 CONTINUE

IF (KELIG .NE. O) THEN

KLEVLC = ISHFT(IAND(KAUXG2(ICELL),KUOOOF),-16)
DO 80 IK = 1, 4

IF (INB(IK) .NE. 0) THEN

KLEVLN = ISHFT(IAND(KAUXG2(INB(IK)),KUOOOF),-16)

IF (KLEVLN .GT. KLEVLC) INB(IK) = 0

ENDIF

80 CONTINUE

ENDIF

KELIG 0

DO 7004 I = 1, 8
KELIG = KELIG + INB(I)

7004 CONTINUE

IF (KELIG .EQ. O) GOTO 120

C
C NOW CHECK THE REST OF THE DIVIDE CLUSTER
C

DO 100 KCELL = 1, NCELLD + NEXTD + JEXTD

LCELL = MRKDA2(KCELL)
DO 90 IK = 1, 8

IF (INB(IK) .Eq. LCELL) INB(IK) = 0

90 CONTINUE

100 CONTINUE

C

C NOW PAINT THE CELLS WHICH ARE TO BE EXTENDED
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- KELIG = 0

DO 7005 I = 1, 8
KELIG = KELIG + INB(I)

CONTINUE

IF (KELIG .EQ. O) GOTO 120

IPROD1 = 1

IPROD2 = 3

DO 110 IK = 1, 4

IF (INB(IK) .NE. O) THEN
JEXTD = JEXTD + 1

NPOINT = NCELLD + NEXTD + JEXTD

MRKDA2(NPOINT) = INB(IK)

WORKA2(NPOINT) = IPROD1
ENDIF

IPRODI = IPROD1*2

IF (INB(IK+4) .NE. O) THEN

IF (IK .EQ. 4) IPROD2 = 9

JEXTD = JEXTD + 1
NPOINT = NCELLD + NEXTD + JEXTD

MRKDA2(NPOINT) = INB(IK+4)

WORKA2(NPOINT) = IPROD2

ENDIF

IPROD2 = IPROD2*2

CONTINUE

C GO BACK FOR NEXT MEMBER OF BOUNDARY

120 CONTINUE

C ADJUST THE NUMBER OF CELLS TO BE DIVIDED AND EXTENDED

NCELLD = NCELLD + NEXTD
NEXTD = JEXTD

C
C

C

PRINT OUT PARAMETERS

IF (IWRITE) THEN

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1400)

ENDIF

NEXTD, INEXT

(MRKDA2(NCELLD+I), I = 1, NEXTD)

GO BACK FOR NEXT LEVEL OF EXTENSION

C
130 CONTINUE

C
C
C READJUST COLLAPSE CLUSTER

C
C

READJUST THE LIST OF CELLS TO BE MERGED; SOME OF THE CELLS
THAT ARE TO BE EXTENDED MAY BE ENLISTED HERE

NCELLD = NCELLD + NEXTD

DO 150 JCELL = NCELDP, NCELLD
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DO 140 KCELL 1, NCELLC
IF (MRKCA2(KCELL) .EQ. MRKDA2(JCELL)) THEN

MRKCA2 (KCELL) - MRKCA2(NCELLC)
NCELLC = NCELLC - 1
GO TO 160

ENDIF
140 CONTINUE

150 CONTINUE

C
C RESET THE NUMBER OF CELLS TO BE DIVIDED OR COLLAPSED
C

WORKA2(1) NCELLD
WORKA2(2) NCELLC

C FORMAT STATEMENTS

1000 FORMAT(//1OX,' -------------- ---- )
1100 FORMAT( lOX, 'DEBUG PRINT FROM A2EXTD' )
1200 FORMAT( lOX,'-----------------------'/)
1300 FORMAT(5X,'NUMBER OF EXTENDED CELLS',I5,2X,'AFTER PASS',I2/

1 5X,'LIST OF EXTENDED CELLS IS :')
1400 FORMAT(20I5)

C

C NOMENCLATURE

C
C INB(4) INB(7) INB(3)
C +--------+---------+
C IS KNW 7 KNE 61
C I KN I
C INB(8)+9 KW KE +INB(6)
C I KS I
C 12 KSW 3 KSE 41
C +---+--------------+
C INB(1) INB(5) INB(2)
C
C

RETURN

END

A2GRDC

SUBROUTINE A2GRDC

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'
INCLUDE '[.INC] G2COMN.INC/LIST'
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INCLUDE '.INC] IOCOMN.INC/LIST'

C THIS SUBROUTINE CALCULATES THE FIRST DIFFERENCE OF TWO CELL

C QUANTITIES (DEPENDENT VARIABLES) FOR CEWIC CELLS. THESE VARIABLES

C ARE POINTED BY K1ADA2 AND K2ADA2. THE NORMALIZED CELL VALUES

C ARE THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY ONLY NORMALIZED

C "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION OF ADAPTATION.

C
C STEP THROUGH EACH CELL TO ACCUMULATE AVERAGE DIFFERENCE FOR

C EACH SPATIAL ADAPTATION CRITERIA VARIABLE IN TWO DIRECTIONS

AVGU1 = 0.

AVGU2 = 0.

DO 10 JCELL = 1, NPLCA2

C POINT TO THE ACTUAL CELL

ICELL = ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2(2,ICELL)

KSE = ICELG2(4,ICELL)
KNE = ICELG2(6,ICELL)
KNW = ICELG2(8,ICELL)

C SAVE DEPENDENT VARIABLES AT ALL CELL CORNERS

UlSW = DPENG2(K1ADA2,KSW)

UlSE = DPENG2(K1ADA2,KSE)
U1NE = DPENG2(K1ADA2,KNE)

U1NW = DPENG2(KIADA2,KNW)
U1X = UINE + USE -USW - UNW
U1Y = U1NE + UNW - UlSW - UlSE

C COMPUTE THE FIRST DIFFERENCE AT EACH CELL

CHNGA2(JCELL) = U1X + U1Y

AVGU1 = AVGU1 + CHNGA2(JCELL)

10 CONTINUE

C

IF (K2ADA2 .NE. O) THEN

DO 20 JCELL 1, NPLCA2

ICELL = ICELA2(JCELL)

KSW = ICELG2(2,ICELL)

KSE = ICELG2(4,ICELL)
KNE = ICELG2(6,ICELL)

KNW = ICELG2(8,ICELL)

U2SW = DPENG2(K2ADA2,KSW)

U2SE = DPENG2(K2ADA2,KSE)

U2NE = DPENG2(K2ADA2,KNE)
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U2NW =
U2X

U2Y =
WORKA2(JCELL) =
AVGU2 =

20 CONTINUE

ENDIF

DPENG2(K2ADA2,KNW)
U2NE + U2SE - U2SW - U2NW

U2NE + U2NW - U2SW - U2SE

U2X + U2Y
AVGU2 + WORKA2(JCELL)

C COMPUTE THE AVERAGE CHANGE FOR ALL THE CELLS

AVGU1 AVGU1/NPLCA2

AVGU2 = AVGU2/NPLCA2

C COMPUTE THE VARIANCES OF THESE TWO QUANTITES

VARUll = O.
VARU12 = 0.

VARU22 = O.

DO 30 JCELL = 1, NPLCA2

CHNGA2(JCELL) = CHNGA2(JCELL) - AVGU1

VARUll = VARUll + (CHNGA2(JCELL))**2
30 CONTINUE

IF (K2ADA2 .NE. 0) THEN

DO 40 JCELL = 1, NPLCA2
WORKA2(JCELL) = WORKA2
VARU12 = VARU12

VARU22 = VARU22
40 CONTINUE

ENDIF

1

(JCELL) - AVGU2

+ WORKA2(JCELL)*CHNGA2(JCELL)

+ (WORKA2(JCELL))**2

IF (NPLCA2 EQ. 0 .OR. VARUll .EQ. 0.) THEN
ZERi = VARUll

ZER2 = NPLCA2

CALL ERRORM (19,'A2GRDC','VARUll',ZER1,'NPLCA2',ZER2,

JPRINT,'STANDARD DEVIATION ERROR')

ENDIF

VARUll 1

VARU12

VARU22

= VARUll/NPLCA2
= VARU12/NPLCA2

= VARU22/NPLCA2

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM VARU11*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN
DETINV 1./DETERM
DUMMY = VARU22

VARU22 = VARUll*DETINV

VARUll DUMMY *DETINV

VARU12 =-VARU12*DETINV

ELSE

VARUll = 1./VARUll
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ENDIF

C WRITE THE RESULTS FOR SUBSEQUENT PLOTTING

IF (KPLTA2 .NE. O) THEN

JPLOTA = 61
WRITE (JPLOTA,1400) NCELA2,VARU11,VARUVARU12,VARU22,AVGU1,AVGU2

WRITE (JPLOTA,1500 )(CHNGA2(NC), WORKA2(NC),NC=1,NPLCA2)

ENDIF
C T -1

C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X

1

DO 50 JCELL = 1, NPLCA2

TERM1 = VARU1l*CHNGA2(JCELL)**2

TERM2 = VARU22*WORKA2(JCELL)**2

TERM3 = VARU12*WORKA2(JCELL)*CHNGA2(JCELL)
TERM4 TERM + TERM2 + TERM3

IF (TERM4 .LT. 0.) THEN

ZER1 = JCELL
ZER2 = TERM4

CALL ERRORM (20,'A2GRDC','JCELL ',ZER1,'TERM4 ',ZER2,
JPRINT,'COVARIANCE MATRIX IS NOT POSITIVE DEFINATE ?')

ENDIF

CHNGA2(JCELL) - SRT(TERM4)
60 CONTINUE

C

C PRINT OUT PARAMETERS

IF (IDBGA2 .NE. 6 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG.1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1500)

AVGU1, AVGU2, VARUll, VARU12, VARU22

(CHNGA2(I), I = 1, NPLCA2)

C

C FORMAT STATEMENTS
C
C

1000 FORMAT(//lOX,'----------------------- )

1100 FORMAT( lOX,'DEBUG PRINT FROM A2GRDC' )

1200 FORMAT( 0X,'-----------------------'/)

1300 FORMAT(5X,'AVGUl =',G14.5,SX,'AVGU2 =',G14.5/5X,

1 'VARURU2 ',G14.5,5XX,'VARU12 =,G14.5,5X,'VARU22 =',G14.5,

2 /1OX,'CHANGES AFTER NORMALIZATION')

1400 FORMAT(I7,7G14.5)

1500 FORMAT(8G14.5)

RETURN

END
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A2GRDN

SUBROUTINE A2GRDN

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

C THIS SUBROUTINE CALCULATES THE FIRST DIFFERENCE OF TWO NODE
C QUANTITIES (DEPENDENT VARIABLES) FOR CEWIC CELLS. THESE VARIABLES

C ARE POINTED BY K1ADA2 AND K2ADA2. THE NORMALIZED CELL VALUES

C ARE THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY ONLY NORMALIZED

C "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION OF ADAPTATION.

C ZERO OUT THE CHANGE AT EVERY PLACE

DO 10 IPLAC - 1. NPLCA2

CHNGA2(IPLAC) = 0.

WORKA2(IPLAC) = 0.
10 CONTINUE

C
C STEP THROUGH EACH CELL TO ACCUMULATE AVERAGE DIFFERENCE FOR

C EACH SPATIAL ADAPTATION CRITERIA VARIABLE IN TWO DIRECTIONS

DO 20 JCELL 1. NCELA2

C POINT TO THE ACTUAL CELL

ICELL ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2(2,ICELL)

KS - ICELG2(3,ICELL)

KSE - ICELG2(4,ICELL)

KE - ICELG2(5.ICELL)
KNE - ICELG2(6,ICELL)
KN - ICELG2(7,ICELL)

KNW - ICELG2(8.ICELL)

KW - ICELG2(9.ICELL)

C SAVE DEPENDENT VARIABLES AT ALL CELL NODES, SINCE

C VERY ACCURATE CALCULATION IS NOT DESIRED, WE ASSUME
C THE EDGE VALUES AS THE AVERAGE VALUES

UISW DPENG2(K1ADA2,.KSW)
U1SE DPENG2(K1ADA2,KSE)
U1NE DPENG2(K1ADA2.KNE)

UlNW - DPENG2(K1ADA2,KNW)
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= 0.50*(U1SW +
- 0.50*(UlNW +
- 0.60*(U1SE +
= 0.60*(U1SW +
- 0.25*(UlSW +

U1SE)

UlNE)

U1NE)

UINW)

U1SE + U1NE + UINW)

COMPUTE CONTRIBUTION TO FIRST DIFFERENCE AT EACH CORNER NODE

SOUTHWEST CORNER

CHNGA2(KSW) - CHNGA2(KSW)

SOUTHEAST CORNER
CHNGA2(KSE) - CHNGA2(KSE)

NORTHEAST CORNER

CHNGA2(KNE) - CHNGA2(KNE)

NORTHWEST CORNER

CHNGA2(KNW) - CHNGA2(KNW)

+ US + UW - 2.*UISW

+ UE - U1S

- U1N - U1E + 2.*UlSW

+ U1N - U1W

ADD CONTRIBUTIONS IF SIDE NODES EXIST

IF (KS .NE. O) CHNGA2(KS)

IF (KE .NE. O) CHNGA2(KE)
IF (KN .NE. O) CHNGA2(KN)

IF (KW .NE. O) CHNGA2(KW)
C

20 CONTINUE

= CHNGA2(KS)

= CHNGA2(KE)
= CHNGA2(KN)
= CHNGA2(KW)

+UiSE

+UiNE

+UiNE

+U1NW

-UiSW +UIC -UlS

-U1SE +U1E -U1C
-UiNW +UiN -UiC

-UiSW +U1C -UIW

C
C NOW CHECK IF THE SECOND CRITERIA VARIABLE EXISTS

C

IF (K2ADA2 .NE.
DO 30 JCELL =

ICELL

KSW
KS
KSE
KE
KNE
KN
KNW
KW
U2SW

U2SE

U2NE

U2NW

U2a
U2N

U2E

U2W

U2C

WORKA2(KSW)
WORKA2(KSE)

WORKA2(KNE)
WORKA2 (KNW)

O) THEN

1. NCELA2

- ICELA2( JCELL)
- ICELG2(2,ICELL)
- ICELG2(3,ICELL)
= ICELG2(4,ICELL)
- ICELG2(5,ICELL)

- ICELG2(6,ICELL)
- ICELG2(7,ICELL)
= ICELG2(8,ICELL)

= ICELG2(9,ICELL)
- DPENG2 (K2ADA2,KSW)

- DPENG2(K2ADA2,KSE)

- DPENG2(K2ADA2,KNE)
- DPENG2(K2ADA2,KNW)

- 0.50*(U2SW + U2SE)
- 0.50*(U2NW + U2NE)

- 0.60*(U2SE + U2NE)
= 0.60*(U2SW + U2NW)
= 0.25*(U2SW + U2SE +
= WORKA2(KSW) + U2S +
= WORKA2(KSE) + U2E -
- WORKA2(KNE) - U2N -
- WORKA2(KNW) + U2N -

U2NE + U2NW)
U2W - 2.*U2SW

U2S

U2E + 2.*U2sw
U2W

IF (KS .NE. O) WORKA2(KS) =WORKA2(KS) +U2SE -U2SW +U2C -U2S
IF (KE .NE. O) WORKA2(KE) WORKA2(KE) +U2NE -U2SE +U2E -U2C
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IF (KN .NE. O) WORKA2(KN) =WORKA2(KN) +U2NE -U2NW +U2N -U2C
IF (KW .NE. O) WORKA2(KW) =WORKA2(KW) +U2NW -U2SW +U2C -U2W

30 CONTINUE

ENDIF

C COMPUTE THE AVERAGE CHANGE FOR ALL THE NODES

AVGU1 = 0.

AVGU2 - 0.

DO 40 IPLAC - 1, NPLCA2

AVGUI AVGU1 + CHNGA2(IPLAC)
AVGU2 - AVGU2 + WORKA2IPLAC)

40 CONTINUE

C

AVGUI = AVGU1/NPLCA2

AVGU2 = AVGU2/NPLCA2

C COMPUTE THE VARIANCES OF THESE TWO QUANTITES

VARUll - 0.

VARU12 0.

VARU22 0.

DO 50 INODE - 1, NPLCA2

CHNGA2(INODE) CHNGA2(INODE) - AVGU1

VARUll = VARUll + (CHNGA2(INODE))**2
50 CONTINUE

IF (K2ADA2 .NE. O) THEN

DO 60 INODE - 1. NPLCA2

WORKA2(INODE) WORKA2(INODE) - AVGU2

VARU12 = VARU12 + WORKA2(INODE)*CHNGA2(INODE)
VARU22 = VARU22 + (WORKA2(INODE))**2

60 CONTINUE
ENDIF

IF (NPLCA2 .EQ. 0 .OR. VARUll .EQ. 0.) THEN
ZERI - VARUll

ZER2 NPLCA2

CALL ERRORM (19,'A2GRDN','VARUII',ZERI, 'NPLCA2',ZER2,

1 JPRINT,'STANDARD DEVIATION ERROR')
ENDIF

C

VARUll - VARUll/NPLCA2

VARU12 VARU12/NPLCA2

VARU22 - VARU22/NPLCA2

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM = VARU11*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN
DETINV 1./DETERM
DUMMY - VARU22
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VARU22 - VARUll*DETINV

VARU11 - DUMMY *DETINV

VARU12 -VARU12*DETINV

ELSE

VARUll - 1./VARUll

ENDIF

C WRITE THE RESULTS FOR SUBSEQUENT PLOTTING

IF (KPLTA2 .NE. O) THEN

JPLOTA 61
WRITE (JPLOTA.1400) NCELA2,VARUll ,VARU12,VARU22,AVGUI,AVGU2
WRITE (JPLOTAOO1500)(CHNGA2(NC), WORKA2(NC),NC=I,NPLCA2)

ENDIF

C T -1
C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X

DO 70 INODE = 1, NPLCA2

TERM1 VARU1l*CHNGA2(INODE)**2

TERM2 - VARU22*WORKA2(INODE)**2

TERM3 - VARU12*WORKA2 (INODE)*CHNGA2 (INODE)

TERM4 TERM1 + TERM2 + TERM3
IF (TERM4 .LT. 0.) THEN

ZER1 - INODE

ZER2 TERM4

CALL ERRORM (20,'A2GRDN'.'INODE ',ZER1,'TERM4 ',ZER2,

1 JPRINT,'COVARIANCE MATRIX IS NOT POSITIVE DEFINATE 7')
ENDIF

CHNGA2(INODE) SQRT(TERM4)

70 CONTINUE

C

C PRINT OUT PARAMETERS

C
IF (IDBGA2 .NE. 5 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG. 100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300) AVGU1, AVGU2, VARUll, VARU12, VARU22
WRITE(JDEBUG.1600) (CHNGA2(I). I = 1. NPLCA2)

C FORMAT STATEMENTS

1000 FORMAT(///lOX -----------------------' )

1100 FORMAT( lOX,'DEBUG PRINT FROM A2GRDN' )

1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT(5X,'AVGU1 -',G14.5,5X,'AVGU2 -',G14.5/SX,
1 'VARUll -',G14.5,5X.'VARU12 -',G4.5,5X,'VARU22 =',G14.5,
2 /IOX,'CHANGES AFTER NORMALIZATION')

1400 FORMAT(I7,7G14.5)

1500 FORMAT(8G14.5)

RETURN

END
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A2INIT

SUBROUTINE A2INIT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'A2COMN.INC'

'HEXCOD.INC'

'IOCOMN.INC'

'KYCOMN.INC'

CHARACTER*15

DATA METHOD /
1
2

METHOD(6)

'NODE VALUES

'NODE GRADIENTS ',

'NODE LAPLACIANS',

'CELL VALUES ',

'CELL GRADIENTS ',

'MAX CELL DIFF '/

C

C THIS SUBROUTINE INITIALIZES THE CONSTANTS FOR THE ARRAYS USED
C IN THE ADAPTIVE GRID ROUTINES.

C

C

C INITIALIZE THE VARIABLES USED FOR SPATIAL ADAPTATION

ALPHA2

BETAA2

GAMMA2

DELTA2

THRDA2

THRCA2

THRCA2

= APASKY(16)

- APASKY(1e)
- APASKY(17)
- APASKY(18)

- ALPHA2

- GAMMA2*THRDA2

= MIN(THRCA2,DELTA2)

C SPATIAL ADAPTATION CRITERION VARIABLE

K1ADA2 IPASKY(11)

K2ADA2 IPASKY(12)

C METHOD OF SPATIAL ADAPTATION

METHA2 IPASKY( 8)

C NUMBER OF ADAPTATION CYCLES AFTER WHICH

C BE CHECKED

MTHRA2 - IPASKY(1e)

THRESHOLD LIMITS WILL

C PARAMETER INDICATING IF THRESHOLD PLOTS ARE NEEDED

KPLTA2 - IPASKY(20)

C NUMBER OF CELLS TO BE EXTENDED

NXTDA2 - IPASKY(22)

C NUMBER OF ITERATIONS BETWEEN SPATIAL ADAPTATION OPERATIONS

MITRA2 IPASKY(26)
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C DEBUG UNIT

IDBGA2 - IPASKY(15)

C30 PARAMETER INDICATING IF THE COLLAPSING OF CELLS IS TO BE DONE

KMERA2 - IPASKY(30)

C DEBUG CHECK CALCULATION PARAMETER FOR CHKNN2, CHKBN2 AND CHKSP2

KCHKA2 - IPASKY(31)

C CHECK ERRORS FOR METHA2 HERE

C NODE OR CELL BASED CALCULATIONS

MTYPA2 IAND(METHA2,KL0001)

C INITIALIZE THE POINTERS FOR THE CEWIC CELLS

CALL A2CEWC

C

C PRINT OUT PARAMETERS

C
IF (IDBGA2 .NE. .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1400)
I

WRITE(JDEBUG,1500)

ALPHA2,

THRCA2

K1ADA2,

MITRA2,

METHA2,

BETAA2, GAMMA2, DELTA2, THRDA2,

K2ADA2, NXTDA2,

IDBGA2, KMERA2,

METHOD(METHA2)

MTHRA2, KPLTA2,

KCHKA2, MTYPA2

C ------- _
C FORMAT STATEMENTS
C ----- __

1000 FORMAT(//10

1100oo FORMAT( 10

1200 FORMAT( 10

1300 FORMAT(SX,

1 5X.

2 5X,

1400 FORMAT( 6X,

lOX,.

2 5X,

3 lOX,
4 5X,

5 lOX.
6 X,.

7 lOX,
8 5X,
9 lOX,

1500 FORMAT( X,.

X,------------------------- )
X.,'DEBUG PRINT FROM A2INIT' )

x.'----------------------- /)
'ALPHA2 =', G14.6, X, 'BETAA2 =

'GAMMA2 =', G14.5, 5X, 'DELTA2 =

'THRDA2 ', G14.5, 5X, 'THRCA2 =

'SPATIAL ADAPTATION CRITERION

'SECOND VARIABLE

'NUMBER OF CELLS TO BE EXTENDED

'MTHRA2 : # ADAPTATION CYCLES

'KPLTA2 : THRESHOLD PLOTS ?

'MITRA2 : ITERS B/W ADAPTATIONS
'DEBUG UNIT

'KMERA2 : COLLAPSE CELLS ?

'KCHKA2 : CHKNN2 AND CHKSP2 ?
'MTYPA2 : NODE OR CELL BASED
'METHOD OF ADPTATION

RETURN

END
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A2MDFU

SUBROUTINE A2MDIF

C A2MDFU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

C THIS SUBROUTINE CALCULATES THE MAXIMUM FIRST DIFFERENCE OF TWO

C CELL QUANTITIES (DEPENDENT VARIABLES). THESE VARIABLES ARE

C POINTED BY K1ADA2 AND K2ADA2. THE NORMALIZED CELLS VALUES ARE

C THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY ONLY NORMALIZED

C "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION OF ADAPTATION.

C STEP THROUGH EACH CELL TO ACCUMULATE MAXIMUM AVERAGE DIFFERENCE

C FOR EACH SPATIAL ADAPTATION CRITERIA VARIABLE

AVGU =- 0.
AVGU2 = 0.

DO 10 JCELL 1, NPLCA2

ICELL - ICELA2(JCELL)

KSW - ICELG2(2,ICELL)

KSE - ICELG2(4,ICELL)
KNE - ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

C SAVE DEPENDENT VARIABLES AT ALL CELL CORNERS

UlSW = DPENG2(KlADA2,KSW)

UISE - DPENG2(K1ADA2,KSE)

UINE - DPENG2(KlADA2,KNE)

UINW - DPENG2(KlADA2,KNW)

U1AV = 0.25*(UlSW + UISE + UNE + UNW)
U1SW = UlSW - UAV

U1SE - U1SE - UAV
U1NE = ULNE - UAV

U1NW - U1NW - UAV
C COMPUTE MAXIMUM (OR MINIMUM) FIRST DIFFERENCE FOR THE CELL

UlMAX = MAX (UlSW, USE, UNE, UNW)

U1MIN - MIN (UlSW, U1SE, UNE, UNW)

IF (UlMAX .LT. ABS(U1MIN)) UMAX - UMIN

CHNGA2(JCELL) UMAX
AVGU1 = AVGU1 + UMAX
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10 CONTINUE

C
K3ADA2 - K2ADA2

IF (K3ADA2 .NE. O) THEN

IF (K2ADA2 .GT. 100) THEN
K3ADA2 = K2ADA2 - 100

DO 20 JCELL = 1. NPLCA2

ICELL = ICELA2(JCELL)
KSW = ICELG2(2,ICELL)

KSE = ICELG2(4,ICELL)

KNE - ICELG2(6.ICELL)

KNW = ICELG2(8,ICELL)
U2SW = DPENG2(K3ADA2,KSW)/DPENG2(1,KSW)

U2SE = DPENG2(K3ADA2,KSE)/DPENG2(1,KSE)
U2NE = DPENG2(K3ADA2,KNE)/DPENG2(1,KNE)

U2NW = DPENG2(K3ADA2,KNW)/DPENG2(1,KNW)
U2AV = 0.25*(U2SW + U2SE + U2NE + U2NW)
U2SW - U2SW - U2AV

U2SE - U2SE - U2AV
U2NE = U2NE - U2AV
U2NW = U2NW - U2AV

U2MAX = MAX (U2SW, U2SE, U2NE, U2NW)
U2MIN = MIN (U2SW, U2SE, U2NE, U2NW)
IF (U2MAX .LT. ABS(U2MIN)) U2MAX = U2MIN
WORKA2(JCELL) = U2MAX
AVGU2 = AVGU2 + U2MAX

20 CONTINUE

ELSE

DO 25 JCELL 1, NPLCA2

ICELL = ICELA2(JCELL)
KSW - ICELG2(2,ICELL)

KSE = ICELG2(4,ICELL)
KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)
U2SW = DPENG2(K3ADA2,KSW)
U2SE - DPENG2(K3ADA2,KSE)

U2NE - DPENG2(K3ADA2,KNE)

U2NW = DPENG2(K3ADA2,KNW)
U2AV - 0.25*(U2SW + U2SE + Ua
U2SW = U2SW - U2AV

U2SE = U2SE - U2AV
U2NE = U2NE - U2AV

U2NW - U2NW - U2AV

U2MAX - MAX (U2SW, U2SE, U2NE,
U2MIN = MIN (U2SW, U2SE, U2NE,
IF (U2MAX .LT. ABS(U2MIN)) U2MAX - U21

WORKA2(JCELL) U2MAX
AVGU2 = AVGU2 + U2MAX

25 CONTINUE

ENDIF

C ENDIF (K2ADA2 .GT. 100)
ENDIF

C ENDIF (K3ADA2 .NE. O)

C COMPUTE THE AVERAGE CHANGE FOR ALL THE CELLS

2NE + U:

, U2NW)
, U2NW)

(IN

2NW)
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AVGUI - AVGU1/NPLCA2

AVGUR - AVGU2/NPLCA2

C COMPUTE THE VARIANCES OF THESE TWO QUANTITES

VARUll = O.

VARU12 = 0.

VARU22 - 0.

DO 30 JCELL 1 NPLCA2
CHNGA2(JCELL) - CHNGA2(JCELL) - AVGU1

VARUIl - VARUll + (CHNGA2(JCELL))**2
30 CONTINUE

IF (K3ADA2 .NE. O) THEN

DO 40 JCELL = 1, NPLCA2

WORKA2(JCELL) WORKA2(JCELL) - AVGU2

VARU12 = VARU12 + WORKA2(JCELL)*CHNGA2(JCELL)
VARU22 = VARU22 + (WORKA2(JCELL))**2

40 CONTINUE

ENDIF
C

VARUI 

VARU12

VARU22

SD1

SD2

- VARUll/NPLCA2

= VARU12/NPLCA2

- VARU22/NPLCA2

= SQRT(VARUll)
= SQRT(VARU22)

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM - VARUll*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN

DETINV - 1./DETERM
DUMMY = VARU22

VARU22 VARU1l*DETINV

VARUll DUMMY *DETINV

VARU12 -VARU12*DETINV

ELSE

VARUll = 1./VARUII
ENDIF

T -1
C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X

DO 50 JCELL - 1, NPLCA2
TERM1 - VARU1*CHNGA2(JCELL)**2

TERM2 VARU22*WORKA2(JCELL)**2

TERM3 - VARU12*WORKA2(JCELL)*CHNGA2(JCELL)
TERM4 TERMI + TERM2 + TERM3
CHNGA2(JCELL) - SQRT(TERM4)

50 CONTINUE

RETURN

END
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A2MDIF

SUBROUTINE A2MDIF

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

C THIS SUBROUTINE CALCULATES THE MAXIMUM FIRST DIFFERENCE OF TWO
C CELL QUANTITIES (DEPENDENT VARIABLES). THESE VARIABLES ARE

C POINTED BY K1ADA2 AND K2ADA2. THE NORMALIZED CELLS VALUES ARE

C THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY ONLY NORMALIZED
C "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION OF ADAPTATION.

C STEP THROUGH EACH CELL TO ACCUMULATE MAXIMUM AVERAGE DIFFERENCE
C FOR EACH SPATIAL ADAPTATION CRITERIA VARIABLE

AVGU1 - 0.
AVGU2 = 0.
K3ADA2 K2ADA2

IF (K2ADA2 .GT. 100) K3ADA2 = K2ADA2 - 100

DO 10 JCELL 1. NPLCA2

C POINT TO THE ACTUAL CELL

ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2(2,ICELL)
KSE = ICELG2(4,ICELL)
KNE - ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

C SAVE DEPENDENT VARIABLES AT ALL CELL CORNERS

U1SW - DPENG2(KIADA2,KSW)

UISE = DPENG2(K1ADA2.KSE)
UINE = DPENG2(KIADA2,KNE)
UINW = DPENG2(K1ADA2,KNW)

U1AV - 0.25*(U1SW + USE + UNE + UNW)
U1SW = U1SW - UAV

U1SE - UISE - UAV
U1NE - U1NE - UAV
U1NW = UINW - U1AV
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COMPUTE MAXIMUM (OR MINIMJI) FIRST DIFFERENCE FOR THE CELL
UlMAX = MAX (UlSW, UlSE, U1NE, UNW)
U1MIN = MIN (UlSW, UISE, UNE, UNW)

IF (UlMAX .LT. ABS(U1MIN)) UMAX - U1MIN

CHNGA2(JCELL) - UIMAX
AVGUI = AVGU1 + UlMAX

10 CONTINUE

C
IF (K3ADA2 .NE. O) THEN

DO 20 JCELL - 1, NPLCA2
ICELL

KSW

KSE

KNE

KNW

U2SW

U2SE

- ICELA2(JCELL)

- ICELG2(2,ICELL)

- ICELG2(4,ICELL)

= ICELG2(6,ICELL)

- ICELG2(8,ICELL)

= DPENG2(K3ADA2,KSW)
= DPENG2(K3ADA2,KSE)

U2NE - DPENG2(K3ADA2,KNE)

U2NW - DPENG2(K3ADA2,KNW)

IF (K2ADA2 .GT. 100) THEN

U2SW U2SW/DPENG2(1,KSW)

U2SE - U2SE/DPENG2(1,KSE)

U2NE = U2NE/DPENG2(1,KNE)
U2NW - U2NW/DPENG2(1,KNW)

ENDIF

U2AV - 0.25*(U2SW + U2SE + U2NE + U2NW)
U2SW = U2SW - U2AV

U2SE = U2SE - U2AV

U2NE = U2NE - U2AV

U2NW = U2NW - U2AV

U2MAX - MAX (U2SW, U2SE, U2NE, U2NW)

U2MIN = MIN (U2SW, U2SE, U2NE, U2NW)
IF (U2MAX .LT. ABS(U2MIN)) U2MAX = U2MIN

WORKA2(JCELL) - U2MAX
AVGU2 = AVGU2 + U2MAX

20 CONTINUE

ENDIF

C COMPUTE THE AVERAGE CHANGE FOR ALL THE CELLS

AVGU1 - AVGU1/NPLCA2

AVGU2 - AVGU2/NPLCA2

C COMPUTE THE VARIANCES OF THESE TWO QUANTITES

VARUl - 0.

VARU12 - 0.

VARU22 = 0.

DO 30 JCELL - 1, NPLCA2

CHNGA2(JCELL) = CHNGA2(JCELL) - AVGU1

VARUll = VARUll + (CHNGA2(JCELL))**2
30 CONTINUE

IF (K3ADA2 NE. O) THEN

DO 40 JCELL 1, NPLCA2
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WORKA2(JCELL) = WORKA2(JCELL) - AVGU2

yARUi2 = VARU12 + WORKA2(JCELL)*CHNGA2(JCELL)
VARU22 - VARU22 + (WORKA2(JCELL))**2

40 CONTINUE

ENDIF

C
IF (NPLCA2 .EQ. 0 .OR. VARU1i .EQ. 0.) THEN
ZER1 VARUll

ZER2 - NPLCA2

CALL ERRORM (19,'A2MDIF'.'VARUll',ZERl,'NPLCA2',ZER2,

1 JPRINT,'STANDARD DEVIATION ERROR')
ENDIF

VARUll - VARUll/NPLCA2

VARU12 - VARU12/NPLCA2
VARU22 - VARU22/NPLCA2

SD1 - SQRT(VARU11)

SD2 = SQRT(VARU22)

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM - VARUlI*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN

DETINV 1./DETERM
DUMMY = VARU22

VARU22 - VARUll*DETINV

VARUll - DUMMY *DETINV

VARU12 -VARU12*DETINV

ELSE

VARUIl = ./VARUll
ENDIF

C WRITE THE RESULTS FOR SUBSEQUENT PLOTTING

IF (KPLTA2 .NE. O) THEN

JPLOTA 61
WRITE (JPLOTA.1400) NCELA2,VARU1,VARU12,VARU22,AVGU1,AVG U2
WRITE (JPLOTA. 1500) SD1, SD2

WRITE (JPLOTA.1500)(CHNGA2(NC), WORKA2(NC),NC=I,NPLCA2)

ENDIF

C T -1

C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X

DO 50 JCELL 1. NPLCA2

TERM1 VARU11*CHNGA2(JCELL)**2

TERM2 - VARU22*WORKA2(JCELL)**2
TERM3 - VARU12*WORKA2(JCELL)*CHNGA2(JCELL)
TERM4 - TERM + TERM2 + TERM3

IF (TERM4 .LT. 0.) THEN
ZER1 - JCELL

ZER2 TERM4

CALL ERRORM (20.'A2MDIF'.'JCELL '.ZER1I'TERM4 ',ZER2,
1 JPRINT,'COVARIANCE MATRIX IS NOT POSITIVE DEFINATE ?')

ENDIF

CHNGA2(JCELL) - SQRT(TERM4)
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50 CONTINUE

C

C PRINT OUT PARAMETERS

C

IF (IDBGA2 .NE. 8 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,OO1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG.1300) AVGUI, AVGU2, VARUll, VARU12. VARU22

WRITE(JDEBUG,1500) (CHNGA2(I), I - 1, NPLCA2)

C FORMAT STATEMENTS

1000 F----MAT/-- OX---------- )

1100 FORMAT( 1OX,'DEBUG PRINT FROM A2MDIF' )

1200 FORMAT( 1OX,'-----------------------'/)

1300 FORMAT(5X.'AVGUI =',G14.5,5X,'AVGU2 =',G14.5/5X,

1 'VARUll =',G14.5,5X,'VARU12 =',G14.5,5X,'VARU22 =',G14.6,

2 /IOX,'CHANGES AFTER NORMALIZATION')

1400 FORMAT(I7,7G14.5)

1500 FORMAT(8G14.5)

RETURN

END

A2MTHU

SUBROUTINE A2MTHO

C A2MTHU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2 . INC'

INCLUDE 'A2COMN.INC'

C THIS SUBROUTINE CALLS ALL THE OTHER ROUTINES USED FOR SPATIAL

C ADAPTATION, THUS WHENEVER SPATIAL ADAPTATION IS NEEDED ONLY

C THIS ROUTINE MUST BE CALLED.

C INITIALIZE THE NUMBER OF PLACES WHERE CALCULATIONS WILL BE DONE

NPLCA2 NCELA2

C CALL THE PARTICULAR KIND OF METHOD

CALL A2MDIF
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C FIND THE THRESHOLD VALUES

CALLA2THRS

C FINALLY CALL THE ADAPTIVE GRID ROUTINE

CALL A2ADPO

C IF THERE ARE VOIDS IN THE SPATIAL GRIDS, REMOVE THEM

CALL A2VOID

C RESET THE CEWIC CELL ARRAY POINTER

CALL A2CEWC

RETURN

END

A2MTHO

SUBROUTINE A2MTHO

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

C THIS SUBROUTINE DECIDES UPON THE METHOD OF COMPUTING CHANGES

C USED IN THE DECISION PROCESS OF SPATIAL ADAPTATION. IF THE

C PARAMETER MTYPA2 IS EVEN THEN THE CALCULATION IS CELL BASED

C AND WHEN IT IS ODD THE CALCULATION IS NODE BASED. IT ALSO

C CALLS ALL THE OTHER ROUTINES USED FOR SPATIAL ADAPTATION,

C THUS WHENEVER SPATIAL ADAPTATION IS NEEDED ONLY THIS ROUTINE

C MUST BE CALLED.

C CHECK IF YOU WANT TO SKIP THE ADAPTATION ALTOGETHER

IF (K1ADA2 .EQ. O) RETURN

C INITIALIZE THE NUMBER OF PLACES WHERE CALCULATIONS WILL BE DONE

IF (MTYPA2 .EQ. O) THEN

NPLCA2 - NCELA2

ELSE
NPLCA2 - NNODG2

ENDIF

C CALL THE PARTICULAR KIND OF METHOD

IF (METHA2 .EQ. 1) CALL A2VALN

IF (METHA2 .EQ. 2) CALL A2VALC
IF (METHA2 .EQ. 3) CALL A2GRDN
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IF (METHA2 .EQ. 4) CALL A2GRDC
C IF (METHA2 .EQ. 5) CALL A2LAPL

IF (METHA2 .EQ. 6) CALL A2MDIF

C FIND THE THRESHOLD VALUES

CALL A2THRS

C FINALLY CALL THE ADAPTIVE

CALL A2ADPO

GRID ROUTINE

C IF THERE ARE VOIDS IN THE SPATIAL GRIDS, REMOVE THEM

CALL A2VOID

C RESET THE CEWIC CELL ARRAY POINTER

CALL A2CEWC

C
C PRINT OUT PARAMETERS
C

IF (IDBGA2 .NE. 2 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,OO1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300) KADA2, K2ADA2, NPLCA2, NCELA2, MTYPA2, METHA2

FORMAT STATEMENTS

FORMAT(

FORMAT(

FORMAT(

FORMAT(

1
2

4

1
6

x//lox.'----------------------- )
10X,'DEBUG PRINT FROM A2MTHO' )

lox. ----------------------- /)
( X,'SPATIAL ADAPTATION CRITERIA

lOX.'SPATIAL ADAPTATION CRITERIA

5X,'NO. PLACES FOR DATA COLLECTI
O1X,'NUMBER OF CEWIC CELLS

6X,'CALCULATION BASIS (CELL: EVE

lOX,'METHOD OF VARIATION CALCULAT

I ='.I6,
2 =',I5/
ON ',I6,

= ,I5/
N) =', I5,
ION=' ,I6)

RETURN

END

A2PLOT

PROGRAM A2PLOT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[PERVAIZ.TWODO.INCI

'[PERVAIZ.TWODO.INC]
'[PERVAIZ.TWODO.INCI

'[PERVAIZ.TWODO.INCI

PRECIS.INC/LIST'

PARMV2.INC/LIST'
A2COMN.INC/LIST'

IOCOMN.INC/LIST'

PARAMETER (NBIN=201)
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DIMENSION THRESH(NBIN) , FRACTN(NBIN)
DIMENSION IN$(3) , IOPT$(3)
CHARACTER PLTITL*80 . YESNO*i

REAL*4 E1XAX$(MCELG2), EYAX$(MCELG2)

C THIS SUBROUTINE PLOTS THE FOLLOWING CURVES :-

C 1. VARIATION 1 VS VARIATION 2

C 2. REFINEMENT PARAMETER VS FREQUENCY

C THE DATA WAS WRITTEN BY SUBROUTINES A2MDIF AND A2THRS ON

C A SEQUENTIAL FILE.

C*****************************************************************

JPLOTA = 61
JTERMI -
JTERMO 6
IOPT$(1) 12

C READ THE PREVIOUSLY WRITTEN DATA

OPEN (UNIT=JPLOTA, FILE='APLOTS.DAT', STATUS='OLD' )

800 FORMAT(7,.7G14.6)

900 FORMAT(8G14.6)

READ (JPLOTA, 800) NCELA2,VARU11,VARU12,VARU22,AVGUl,AVGU2

READ (JPLOTA,900) SD1, SD2

READ (JPLOTA.900)(CHNGA2(NC), WORKA2(NC),NC=I.NCELA2)

READ (JPLOTA,800) MBIN, THRDA2, THRCA2

READ (JPLOTA.900) (THRESH(IBIN),FRACTN(IBIN),IBIN=1,MBIN)

CLOSE(JPLOTA)

DENOX 1.

DENOY = 1.

IF (SD1 .NE. 0.) DENOX=./SDl

IF (SD2 .NE. 0.) DENOY=1./SD2

WRITE (JTERMO,1000)

1000 FORMAT(/1X,'INPUT THE MAIN TITLE ')

1100 FORMAT(A1)

READ (JTERMI.1200) MTITLE

1200 FORMAT(AS0)

CALL GRINIT (JTERMI, JTERMO. MTITLE)

5 WRITE (JTERMO,*) ' 1. NCELA2 =',NCELA2

WRITE (JTERMO,*) ' 2. VARUll =',VARUll

WRITE (JTERMO,*) ' 3. VARU12 =',VARU12

WRITE (JTERMO.*) ' 4. VARU22 =',VARU22

WRITE (JTERMO,*) ' 5. THRDA2 ='.THRDA2
WRITE (JTERMO,*) ' 6. THRCA2 -',THRCA2

WRITE (JTERMO,*) ' 7. AVGU1 =',AVGU1

WRITE (JTERMO,*) ' 8. AVGU2 ',.AVGU2
WRITE (JTERMO,*) ' 9. DENOX ='.DENOX

WRITE (JTERMO.*) '10. DENOY -' ,DENOY

WRITE (JTERMO,*) ' Give the number of value to be changed'
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READ (JTERMI,*) IVALUE
IF (IVALUE .EQ. 3) READ (JTERMI,*)

IF (IVALUE .EQ. 6) READ (JTERMI,*)

IF (IVALUE .EQ. 9) READ (JTERMI.*)

IF (IVALUE .EQ.10) READ (JTERMI,*)

IF (IVALUE .NE. O) GOTO 5

VARU12

THRDA2

DENOX

DENOY

WRITE (JTERMO,1300)

1300 FORMAT(lX,'DO YOU WANT TO PLOT THE VARIATION1/VARIATION2 PLOT')

READ(JTERMI.1100) YESNO

IF (YESNO.EQ.'n' .OR. YESNO.EQ.'N') GOTO 30

INLIN 3
IN$(1) = NCELA2

IN$(2) = 2*MBIN
IN$(3) = 2*MBIN

c PLTITL 'VARIABLE1-VARIABLE2- DISTRIBUTION OF VARIATIONS'

PLTITL(1:42) 'DENSITY VARIATION'MASS FRACTION VARIATION-'

PLTITL(43:80) - 'DISTRIBUTION OF VARIATIONS'

DO 10 I 1, NCELA2

E1XAX$(I) = CHNGA2(I)*denox
E1YAX$(I) WORKA2(I)*denoy

10 CONTINUE

DISCRI = VARU11*VARU22 - VARU12**2

IF (DISCRI .LE. 0.) THEN

INLIN = 1

ELSE

X2MAX

X2MIN

DX2

C2Sll

RVARll

= THRDA2*SqRT(VARUll/DISCRI)
-X2MAX

- (X2MAX-X2MIN)/MBIN

- THRDA2**2*VARUIl

-= ./VARUllI
IBEG - NCELA2

IEND = NCELA2 +

IBG2 - NCELA2 +

IED2 - NCELA2 +

DO 20 I 1. MBIN

X2

DD

DD

DD

DDI

DD2

X2RVAR

ElXAX$(IBEG+I)

ElXAX$(IEND-I)

E1YAX$(IBEG+I)

E1YAX$(IEND-I)

ElXAX$(IBG2+I)
E1XAX$(IED2-I)

E1YAX*(IBG2+I)

EIYAX$(IED2-I)

2*MBIN + 1
2*MBIN

4*MBIN + 1

- X2MIN + (I-1)*DX2

= C2Sll/(X2*X2) - DISCRI
- SQRT(DD)

= SQRT(abs(DD))
- -VARU12 + DD

- -VARU12 - DD

- X2*RVARI1
= DDi*X2RVAR*denox

= DD2*X2RVAR*denox

= X2*denoy
= X2*denoy

= ElXAX$(IBEG+I)*THRCA2
- EIXAX$(IEND-I)*THRCA2

= E1YAX$(IBEG+I)*THRCA2
- E1YAX$(IEND-I)*THRCA2
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20 CaNTINUE

ENDIF

INDGR = 21

IOPT$(2) = 10
IOPT$(3) = 10

CALL GRLINE(IOPT$,INLIN,PLTITL, INDGR,E1XAX$, EYAX$, IN$)

30 WRITE (JTERMO,1400)

1400 FORMAT(lX,'DO YOU WANT TO PLOT THRESHOLD/FREQUENCY Y,N,Z]')

READ(JTERMI,1100) YESNO
IF (YESNO.EQ.'z' .OR. YESNO.EQ.'Z') GOTO 5

IF (YESNO.EQ.'n' .OR. YESNO.EQ.'N') STOP

DO 40 I = 1, MBIN

ElXAX$(I) = THRESH(I)
E1YAX$(I) - FRACTN(I)

40 CONTINUE

PLTITL 'REFINEMENT PARAMETER'FREQUENCY' CUMULATIVE FREQUENCY'

INLIN - 1

INDGR 21

IOPTS(1) = 14
IN$(1) - MBIN

WRITE (JTERMO,1500) THRDA2, THRCA2

150soo FORMAT(5X,'THRDA2 ',G15.5,SX,'THRCA2 =',G15.6)

CALL PLXSET(IOPTS,INDGR)

CALL GRLINE(IOPT$,INLIN,PLTITL,INDGR,ElXAX$,E1YAX$,IN$)

END

A2THRU

SUBROUTINE A2THRS

C A2THRU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN. INC'

INCLUDE 'IOCOMN.INC'

PARAMETER (NBIN=201)

DIMENSION THRESH(NBIN),

DATA KOUNT /0/
SAVE KOUNT

FRACTN(NBIN)

C THIS SUBROUTINE PICKS THE DIVIDE THRESHOLD (THRDA2) AND

C COLLAPSE THRESHOLD (THRCA2) SUCH THAT:
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C - THRDA2 = MAX (THRSHI, ALPHA2)
C -_ THRCA2 MIN (THRSH2, GAMMA2)

C*********************************************************************

KOUNT - KOUNT + 
IF (KOUNT .GT. MTHRA2) KOUNT = 1
IF (KOUNT .NE. 1 ) RETURN

C
C COMPUTE THE MAXIMUM VARIATION, ASSUUMING THAT THE MINIMUM

C ONE IS ZERO. (AVERAGE VARIATION IS ABOUT 1.2 )

THRMIN - 0.

THRMAX - 0.

DO 10 IPLAC = 1. NPLCA2
THRMAX = MAX(THRMAX.CHNGA2(IPLAC))

10 CONTINUE

DTHRSH = (THRMAX-THRMIN)/(NBIN-1)

C INITIALIZE THRESH AND FRACTN BIN VALUES

DO 20 IBIN = 1, NBIN
THRESH(IBIN) THRMIN + (IBIN-1)*DTHRSH

FRACTN(IBIN) - O.
20 CONTINUE

C ACCUMULATE NUMBER OF POINTS IN EACH THRESHOLD BIN

DO 30 IPLAC = 1, NPLCA2

IBIN 1 + INT(CHNGA2(IPLAC)/DTHRSH)
FRACTN(IBIN) FRACTN(IBIN) + 1.0

30 CONTINUE

C

C CALCULATE (CUMMULATIVE) ACTUAL FRACTION OF POINTS WITH
C VARIATION BELOW THRESH

SUM = 0.
DO 40 IBIN = NBIN, 1, -1

SUM = SUM + FRACTN(IBIN)
FRACTN(IBIN) SUM/NPLCA2

40 CONTINUE

C

C FIND THRESHOLD POINT WHERE CUMMULATIVE FRACTION EQUALS BETAA2
C IF, E.G.. BETAA2-0.2, THEN ATMOST 20X CELLS CAN BE ADAPTED

DO 50 IBIN - NBIN, 1, -1

IF(FRACTN(IBIN) .GT. BETAA2) THEN

THRSH1 - THRESH(IBIN+I)

GOTO 60
ENDIF

50 CONTINUE

C DETERMINE DELETE THRESHOLD CRITERIA

60 THRDA2 - MAX (THRSH1, ALPHA2)
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C FIND COLLAPSE THRESHOLD CRITERIA AS A SPECIFIED PERCENTAGE OF

C THE MAXIMUM THRESHOLD CRITERIA, A TYPICAL VALUE IS 20%

THRSH2 - GAMMA2*THRDA2

C DETERMINE COLLAPSE THRESHOLD CRITERIA

THRCA2 MIN(THRSH2,DELTA2)

RETURN

END

A2THRS

SUBROUTINE A2THRS

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

PARAMETER (NBIN=201)

DIMENSION THRESH(NBIN). FRACTN(NBIN)

DATA KOUNT /0/

SAVE KOUNT

C

C

C

C

THIS SUBROUTINE PICKS THE DIVIDE THRESHOLD (THRDA2) AND

COLLAPSE THRESHOLD (THRCA2) SUCH THAT:

- THRDA2 - MAX (THRSH1, ALPHA2)
- THRCA2 MIN (THRSH2, GAMMA2)

KOUNT = KOUNT + 1

IF (KOUNT .GT. MTHRA2) KOUNT = 1

IF (KOUNT .NE. 1 ) RETURN
C

C COMPUTE THE MAXIMUM VARIATION, ASSUUMING THAT THE MINIMUM
C ONE IS ZERO. (AVERAGE VARIATION IS ABOUT 1.2 )

THRMIN = O.

THRMAX - O.

DO 10 IPLAC - 1. NPLCA2

THRMAX - MAX(THRMAX.CHNGA2(IPLAC))
10 CONTINUE

DTHRSH - (THRMAX-THRMIN)/(NBIN-1)

C INITIALIZE THRESH AND FRACTN BIN VALUES
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DO 20 IBIN 1, NBIN

THRESH(IBIN) = THRMIN + (IBIN-1)*DTHRSH
FRACTN(IBIN) - 0.

20 CONTINUE

C ACCUMULATE NUMBER OF POINTS IN EACH THRESHOLD BIN

DO 30 IPLAC 1, NPLCA2

IBIN = 1 + INT(CHNGA2(IPLAC)/DTHRSH)
FRACTN(IBIN) FRACTN(IBIN) + 1.0

30 CONTINUE

C
C CALCULATE (CUMMULATIVE) ACTUAL FRACTION OF POINTS WITH
C VARIATION BELOW THRESH

SUM 0.
DO 40 IBIN = NBIN, 1. -1

SUM = SUM + FRACTN(IBIN)

FRACTN(IBIN) SUM/NPLCA2
40 CONTINUE

C

C FIND THRESHOLD POINT WHERE CUMMULATIVE FRACTION EQUALS BETAA2
C IF, E.G., BETAA2=0.2. THEN ATMOST 20% CELLS CAN BE ADAPTED

DO 50 IBIN = NBIN. 1, -1

IF(FRACTN(IBIN) .GT. BETAA2) THEN

THRSH = THRESH(IBIN+I)
GOTO 60

ENDIF

50 CONTINUE

C DETERMINE DELETE THRESHOLD CRITERIA

60 THRDA2 = MAX (THRSH1, ALPHA2)

C FIND COLLAPSE THRESHOLD CRITERIA AS A SPECIFIED PERCENTAGE OF

C THE MAXIMUM THRESHOLD CRITERIA, A TYPICAL VALUE IS 20%

THRSH2 - GAMMA2*THRDA2

C DETERMINE COLLAPSE THRESHOLD CRITERIA

THRCA2 = MIN(THRSH2,DELTA2)

C SEE IF THE DATA FOR PLOTTING THRESHOLD GRAPHS IS NEEDED

IF (KPLTA2 .NE. O) THEN

JPLOTA - 61
WRITE(JPLOTA.800) NBIN, THRDA2. THRCA2

WRITE(JPLOTA,900) (THRESH(IBIN),FRACTN(IBIN),IBIN=1,NBIN)

CLOSE(JPLOTA)
ENDIF

C
C PRINT OUT PARAMETERS
C

IF (IDBGA2 .NE. 9 .AND. IDBGA2 .LT. 1000) RETURN
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WRITE(JDEBUG, 1000)

WRITE (JDEBUG. 1100)
WRITE(JDEBUG. 1200)

WRITE(JDEBUG, 1300)

1

WRITE(JDEBUG,1400)

WRITE(JDEBUG, 1500)

ALPHA2,

THRSHI,

THRMAX,

BETAA2, GAMMA2,

THRSH2, THRDA2,

DTHRSH, MTHRA2,

DO 70 IBIN - 1 NBIN

WRITE(JDEBUG, 1600)
70 CONTINUE

IBIN, THRESH(IBIN), FRACTN(IBIN)

C

C FORMAT STATEMENTS
C
C
800 FORMAT(I7,7G14.5)

900 FORMAT(SG14.5)
1000 FORMAT(//lOX,------------------- )

1100 FORMAT( lOX,'DEBUG PRINT FROM A2THRS' )

1200 FORMAT( 10X,'-----------------------'/)

1300 FORMAT(9X,'ALPHA2',8X,'BETAA2',8X,'GAMMA2',8X,'DELTA2',8X,

1 'THRSH1',8X,'THRSH2',8X,'THRDA2',8X.'THRCA2'/5X,

2 8G014.5)

1400 FORMAT(9X,'THRMAX',8X,'DTHRSH',8X,'MTHRA2',8X,'KPLTA2'/5X,

1 2G14.5,3X,I5,8X,I)

1500 FORMAT(/12X,'IBIN',4X.'THRESH',7X, 'FRACTN')

1600 FORMAT(IOX.I5,2G14.5)

RETURN

END

A2VALC

SUBROUTINE A2VALC

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

[. INC]
'[.INC]

[. INC]
[. INC]
[. INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC/LIST'

G2COMN.INC/LIST'

IOCOMN.INC/LIST'

C THIS SUBROUTINE ASSIGNS THE CELL VALUES OF TWO QUANTITIES

C (DEPENDENT VARIABLES) TO THE SPATIAL ADAPTATION CRITERIA
C VARIABLES WHICH ARE POINTED BY KADA2 AND K2ADA2. THE NORMALIZED

C CELL VALUES ARE THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY

C ONLY NORMALIZED "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION
C OF SPATIAL ADAPTATION.

C
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C STEP THROUGH EACH CEWIC CELL TO COLLECT VALUES FOR FIRST

C SPATIAL ADAPTATION CRITERIA VARIABLE

DO 10 IPLAC - 1, NPLCA2

C POINT TO THE ACTUAL CELL

ICELL - ICELA2(IPLAC)

C SET UP NODE POINTERS FOR THIS CELL

KSW ICELG2(2,ICELL)

KSE - ICELG2(4,ICELL)

KNE = ICELG2(8,ICELL)
KNW = ICELG2(8,ICELL)

C SAVE DEPENDENT VARIABLES AT ALL CELL CORNERS

U1SW

U1SE

U1NE

U1NW

= DPENG2(KIADA2,KSW)
= DPENG2(K1ADA2,KSE)

- DPENG2(K1ADA2,KNE)

- DPENG2(K1ADA2,KNW)

COMPUTE THE AVERAGE VALUE AT EACH CELL

CHNGA2(IPLAC) - 0.25*(UlSW + U1SE + U1NE + U1NW)

CONTINUE

NOW CHECK IF THE SECOND CRITERIA VARIABLE EXISTS

IF (K2ADA2 .NE. O) THEN

DO 20 IPLAC - 1, NPLCA2

ICELL = ICELA2(IPLAC)

KSW = ICELG2(2,ICELL)
KSE - ICELG2(4,ICELL)

KNE = ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

U2SW - DPENG2(K2ADA2,KSW)

U2SE - DPENG2(K2ADA2,KSE)

U2NE - DPENG2(K2ADA2,KNE)

U2NW - DPENG2(K2ADA2,KNW)

WORKA2(IPLAC) O0.25*(U2SW

CONTINUE

ENDIF

+ U2SE + U2NE + U2NW)

C COMPUTE THE AVERAGE CHANGE FOR ALL THE CELLS

AVGU1 - O.
AVGU2 - O.

DO 30 IPLAC - 1, NPLCA2
AVGU - AVGU1 + CHNGA2(IPLAC)
AVGU2 - AVGU2 + WORKA2(IPLAC)

30 CONTINUE

C
AVGU1 - AVGU1/NPLCA2

506

C

10
C
C
C

20



AVGU2 - AVGU2/NPLCA2

C
C COMPUTE THE VARIANCES OF THESE TWO UANTITES
C

VARUII - 0.

VARU12 = O.
VARU22 0.

C

DO 40 IPLAC - 1, NPLCA2

CHNGA2(IPLAC) CHNGA2(IPLAC) - AVGU1

VARUll - VARUll + (CHNGA2(IPLAC))**2

40 CONTINUE

C

IF (K2ADA2 .NE. O) THEN

DO 50 IPLAC - 1, NPLCA2

WORKA2(IPLAC) WORKA2(IPLAC) - AVGU2

VARU12 - VARU12 + WORKA2(IPLAC)*CHNGA2(IPLAC)

VARU22 = VARU22 + (WORKA2(IPLAC))**2
50 CONTINUE

ENDIF

C
IF (NPLCA2 .EQ. 0 .OR. VARUll .EQ. .) THEN

ZERI - VARUll

ZER2 - NPLCA2
CALL ERRORM (19,'A2VALC', 'VARUll',ZER1, 'NPLCA2',ZER2,

I JPRINT,'STANDARD DEVIATION ERROR')
ENDIF

C
VARUll - VARU1I/NPLCA2

VARU12 - VARU12/NPLCA2

VARU22 - VARU22/NPLCA2

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM = VARU11*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN

DETINV - 1./DETERM

DUMMY - VARU22

VARU22 - VARU11*DETINV

VARUll DUMMY *DETINV

VARU12 =-VARU12*DETINV

ELSE

VARUll - ./VARUll

ENDIF

C WRITE THE RESULTS FOR SUBSEQUENT PLOTTING

IF (KPLTA2 .NE. O) THEN
JPLOTA - 61

WRITE (JPLOTA.1400) NCELA2,VARUll,VARU12,VARU22,AVGU1,AVGU2

WRITE (JPLOTA, 1500) (CHNGA2(NC), WORKA2(NC) ,NC=-I,NPLCA2)
ENDIF

C T -1
C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X
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DO 60 IPLAC 1, NPLCA2

TERMI VARU1i*CHNGA2(IPLAC)**2

TERM2 - VARU22*WORKA2 (IPLAC)**2

TERM3 VARU12*WORKA2 (IPLAC)*CHNGA2 (IPLAC)

TERM4 - TERM + TERM2 + TERM3

IF (TERM4 .LT. 0.) THEN

ZER1 = IPLAC

ZER2 TERM4

CALL ERRORM (20,'A2VALC','IPLAC ',ZER1,'TERM4 ',ZER2,

1 JPRINT,'COVARIANCE MATRIX IS NOT POSITIVE DEFINATE ?')

ENDIF

CHNGA2(IPLAC) SQRT(TERM4)

60 CONTINUE

C

C PRINT OUT PARAMETERS

C

IF (IDBGA2 .NE. 4 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,OO1100)

WRITE(JDEBUG, 1200)

WRITE(JDEBUG,1300) AVGU1, AVGU2, VARUll, VARU12, VARU22

WRITE(JDEBUG,1500) (CHNGA2(I), I = 1, NPLCA2)

C ----FORMAT STATEMENTS

1000 F T//------------- )
1100 FORMAT( OX,'DEBUG PRINT FROM A2VALC' )

1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT(5X,'AVGUI -',G14.5,5X.'AVGU2 =',G14.5/BX.
1 'VARUll ',G14.5,5X,'VARU12 ',G14.6,6X,'VARU22 ',G14.5,

2 /1OX,'CHANGES AFTER NORMALIZATION')

1400 FORMAT(I7,7G14.5)

1500 FORMAT(8G14.5)

RETURN

END

A2VALN

SUBROUTINE A2VALN

INCLUDE '.INC] PRECIS.INC/LIST'

INCLUDE '.INC] PARMV2.INC/LIST'

INCLUDE '.INC A2COMN.INC/LIST'

INCLUDE '.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'
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C THIS SUBROUTINE ASSIGNS THE NODAL VALUES OF TWO QUANTITIES

C (DEPENDENT VARIABLES) TO THE SPATIAL ADAPTATION CRITERIA

C VARIABLES WHICH ARE POINTED BY K1ADA2 AND K2ADA2. THE NORMALIZED

C NODE VALUES ARE THEN STORED IN CHNGA2 AND WORKA2. SUBSEQUENTLY

C ONLY NORMALIZED "CHI-SQUARE" VARIABLE IS USED FOR THE DECISION
C OF SPATIAL ADAPTATION.

C
C STEP THROUGH EACH NODE TO COLLECT VALUES FOR FIRST SPATIAL

C ADAPTATION CRITERIA VARIABLE

DO 10 IPLAC 1, NPLCA2

CHNGA2(IPLAC) - DPENG2(KIADA2,IPLAC)

CONTINUE

NOW CHECK IF THE SECOND CRITERIA VARIABLE EXISTS

IF (K2ADA2 .NE. O)

DO 20 IPLAC 1,
WORKA2(IPLAC) 

20 CONTINUE

ENDIF

THEN

NPLCA2

i DPENG2(K2ADA2,IPLAC)

C COMPUTE THE AVERAGE CHANGE FOR ALL THE NODES

AVGU1 = 0.
AVGU2 O.

DO 30 IPLAC - 1, NPLCA2

AVGU1 - AVGU1 + CHNGA2(IPLAC)
AVGU2 - AVGU2 + WORKA2(IPLAC)

30 CONTINUE
C

AVGU1 - AVGU1/NPLCA2
AVGU2 AVGU2/NPLCA2

C

C COMPUTE THE VARIANCES OF THESE TWO QUANTITES

C

VARUIl = 0.
VARU12 - 0.
VARU22 O0.

C

DO 40 IPLAC - 1, NPLCA2
CHNGA2(IPLAC) - CHNGA2(IPLAC) - AVGU1
VARUll - VARUll + (CHNGA2(IPLAC))**2

CONTINUE40
C

IF (K2ADA2 .NE. O) THEN

DO 60 IPLAC - 1, NPLCA2

WORKA2(IPLAC) WORKA2(IPLAC) - AVGU2
VARU12 - VARU12 + WORKA2(IPLAC)*CHNGA2(IPLAC)
VARU22 - VARU22 + (WORKA2(IPLAC))**2

50 CONTINUE
ENDIF

IF (NPLCA2 .EQ. 0 .OR. VARUll .EQ. 0.) THEN

509

10
C
C
C



ZER1 VARUll

ZER2 - NPLCA2

CALL ERRORM (19,'A2VALN','VARU11',ZERI,'NPLCA2', ZER2,
1 JPRINT,'STANDARD DEVIATION ERROR')

ENDIF

C

VARUll - VARU1l/NPLCA2

VARU12 - VARU12/NPLCA2

VARU22 = VARU22/NPLCA2

C COMPUTE THE DETERMINANT OF THE VARIANCE-COVARIANCE MATRIX

DETERM - VARU11*VARU22 - VARU12*VARU12

C COMPUTE THE INVERSE OF THE VARIANCE-COVARIANCE MATRIX

IF (VARU22 .NE. 0.) THEN

DETINV - 1./DETERM
DUMMY - VARU22

VARU22 VARUII*DETINV

VARUll - DUMMY *DETINV

VARU12 =-VARU12*DETINV

ELSE

VARUll - ./VARUll

ENDIF

C WRITE THE RESULTS FOR SUBSEQUENT PLOTTING

IF (KPLTA2 .NE. O) THEN

JPLOTA - 61

WRITE (JPLOTA,1400) NCELA2,VARU1,VARU VARU22,AVGU .AVGU2

WRITE (JPLOTA. 1500)(CHNGA2(NC), WORKA2(NC).NC=I,NPLCA2)

ENDIF

C T -1

C REASSIGN THE CHANGE VARIABLES AS AN ONE DIMENSIONAL ARRAY X S X

DO 60 IPLAC - 1, NPLCA2

TERMI - VARUII*CHNGA2(IPLAC)**2

TERM2 VARU22*WORKA2(IPLAC)**2

TERMS - VARU12*WORKA2 (IPLAC)*CHNGA2 (IPLAC)

TERM4 - TERM + TERM2 + TERM3

IF (TERM4 .LT. 0.) THEN
ZERI - IPLAC

ZER2 = TERM4

CALL ERRORM (20,'A2VALN','IPLAC ',ZER1,'TERM4 ',ZER2,
1 JPRINT,'COVARIANCE MATRIX IS NOT POSITIVE DEFINATE ?')

ENDIF

CHNGA2(IPLAC) - SQRT(TERM4)
60 CONTINUE

C
C PRINT OUT PARAMETERS
C

IF (IDBGA2 .NE. 3 .AND. IDBGA2 .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,OO1100)
WRITE(JDEBUG,1200)
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WRITE(JDEBUG.1300) AVGUI, AVGU2, VARUll, VARU12, VARU22

WRITE(JDEBUG,1500) (CHNGA2(I), I = 1, NPLCA2)

C ------FORMAT STATEMENTS

1000 FORMAT(// STATEMENTS)

1000 FORMAT( lOX,'DEBUG PRINT FROM A2VALN' )

1200 FORMAT( 10,'-----------------------'/)

1300 FORMAT(5X,'AVGU1 =',G14.5,5X,'AVGU2 =',G14.5/5X,

1 'VARUll -',G14.5,5X.'VARU12 =',G14.5,5X,'VARU22 =',G14.5,

2 /10X,'CHANGES AFTER NORMALIZATION')

1400 FORMAT(I7,7G14.5)

1500 FORMAT(8G14.5)

RETURN

END

A2VOUU

SUBROUTINE A2VOID

C A2VOUU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'
INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

DIMENSION INB(12)

C********************************************************************

C THIS SUBROUTINE DETECTS THE VOID CELLS AFTER THE PREVIOUS

C ADAPTATION CYCLE OF GRID DIVISION, EXTENSION AND COLLAPSE.

C A VOIDS CELL IS THE ONE WITH ONE OF THE FOLLOWING PROPERTIES:

C 0. HAS FOUR DIVIDED EDGES

C 1. HAS THREE DIVIDED EDGES

C 2. HAS TWO DIVIDED EDGES ON A BOUNDARY

C THE CELLS WITH FOUR DIVIDED EDGES NEED NOT BE STORED FOR

C SUBSEQUENT CHECKING OF NEIGHBOURS FOR VOID CELLS.

C ONLY THE CEWIC CELLS NEED BE CHECKED FOR VOIDS AND ISLANDS.

C NVOID : THE NUMBER OF CELLS WHICH ARE DETECTED TO BE VOID

C CELLS (STORED IN MRKDA2 IN PASS 1 AND IN MRKCA2 IN

C PASS 2)

C
C THE ISLAND CELLS ARE DEFINED TO ONE OF THE FOLLOWING

C 0. HAVE FOUR DIVIDED EDGES

C 1. HAVE THREE DIVIDED EDGES

C NVOID : THE NUMBER OF CELLS WHICH ARE DETECTED TO BE ISLAND

C CELLS (STORED IN MRKDA2 IN PASS AND IN MRKCA2 IN

C PASS 2)
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+ NBNWC I NBNWH + NBNEH I NBNEC +

+ I + I +
+ .--- -+------- -------.+-------+
+ IKNW KN KNEI +
+ NBNWV I NBNEV +

+ . + + +KW ICELL KE + + + +
+ NBSWVI I NBSEV +

+ IKSW KS KSEI +
+..-- -+----.-----------------4.

+ I + I 4-

+ NBSWC I NBSWH + NBSEH I NBSEC +
4.44.4.4.4.4. ++4. +4.4. + 4.4.4.

C INITIALIZE THE NUMBER OF

C NUMBER OF DIVIDED EDGES

VOID CELLS, NDEDGE INDICATES THE

NVOID - 0

NTIME - 1

IWARN - 0

CHECK FOR ISLANDS

DO 190 ICELL - 1, NCELG2

**** CHECKCELLCENTER

IF (ICELG2(1,ICELL) .NE. O) THEN

NDEDGE - 0

KC - ICELG2(1.ICELL)

KS - ICELG2(3,ICELL)

KE - ICELG2(5.,ICELL)

KN - ICELG2(7,ICELL)

KW - ICELG2(9.ICELL)

NBSWH - NEIBG2(1,KS )

NBSEH - NEIBG2(2,KS )

NBSEV - NEIBG2(2,KE )

NBNEV - NEIBG2(3,KE )

NBNEH - NEIBG2(3,KN )

NBNWH - NEIBG2(4,KN )

NBNWV = NEIBG2(4,KW )

NBSWV - NEIBG2(1,KW )

IF (NBSWH .EQ. NBSEH)

IF (NBSEV .EQ. NBNEV)

IF (NBNEH .EQ. NBNWH)

IF (NBSWV .EQ. NBNWV)

NDEDGE - NDEDGE + 1
NDEDGE = NDEDGE + 1

NDEDGE - NDEDGE + 1
NDEDGE - NDEDGE + 1

#### CHECKFORCOLLAPSE
IF (NDEDGE .GE. 3) THEN

NCSW - NEIBG2(1,KC)

NCSE - NEIBG2(2,KC)

NCNE - NEIBG2(3,KC)

NCNW - NEIBG2(4.KC)
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ISUP = ICELG2(10,NCSW)

- %%XX VERIFYSUPERCELL
IF (ISUP .EQ. ICELL) THEN

CALL G2CLPO (NCSW,NCSE,NCNE,NCNW,ICELL,IWARN)

IF (NDEDGE .EQ. 3) THEN
NVOID = NVOID + 1

MRKDA2(NVOID) ICELL

ENDIF

ENDIF

XXX END-VERIFY-SUPERCELL
ENDIF

#### ENDCHECKFORCOLLAPSE
ENDIF

**** ENDCHECKCELLCENTER

CONTINUE

NOW CHECK THE NEIGHBOURS OF THE PREVIOUSLY COLLAPSED CELLS

KVOID 0

DO 210 JCELL - 1, NVOID

ICELL

KS

KE

KN

KW

- MRKDA2(JCELL)

- ICELG2(3,ICELL)

- ICELG2(5,ICELL)

- ICELG2(7.ICELL)

= ICELG2(9,ICELL)

CHECK IF SOUTHERN EDGE NODE EXISTS

**** SOUTHERNEDGE

IF (KS .NE. O) THEN

ISONJ = NEIBG2(1,KS)
IPAPJ - ICELG2(1O,ISONJ)

KCP - ICELG2(1,IPAPJ)

KSP = ICELG2(3,IPAPJ)

KEP = ICELG2(5,IPAPJ)

KNP - ICELG2(7.IPAPJ)

KWP - ICELG2(9,IPAPJ)

NBSWH

NBSEH

NBSEV

NBNEV

NBNEH

NBNWH

NBNWV

NBSWV

NDEDGE

NEIBG2(1,KSP)

NEIBG2(2,KSP)

NEIBG2(2,KEP)

NEIBG2(3,KEP)

NEIBG2(3,KNP)

NEIBG2(4,KNP)

NEIBG2(4,KWP)

NEIBG2(1,KWP)
0

IF (NBSWH .EQ. NBSEH)

IF (NBSEV .EQ. NBNEV)

IF (NBNEH .EQ. NBNWH)

IF (NBSWV .EQ. NBNWV)

NDEDGE
NDEDGE

NDEDGE

NDEDGE

- NDEDGE + 1
= NDEDGE + 1
- NDEDGE + 1

= NDEDGE + 1

#### CHECKFORCOLLAPSE

IF (NDEDGE .GE. 3) THEN
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NCSW = NEIBG2(1.KCP)

NCSE = NEIBG2(2,KCP)

NCNE - NEIBG2(3,KCP)

NCNW - NEIBG2(4,KCP)

ISUP - ICELG2(1O,NCSW)

C
C %%%% VERIFYSUPERCELL

IF (ISUP .EQ. IPAPJ) THEN

CALL G2CLPO (NCSW,NCSE,NCNE, NCNW,IPAPJ, IWARN)

IF (NDEDGE .EQ. 3) THEN

KVOID = KVOID + 1

MRKCA2(NVOID) = IPAPJ
ENDIF

ENDIF

C %%%% ENDVERIFYSUPERCELL
ENDIF

C #### ENDCHECKFORCOLLAPSE

ENDIF

C **** SOUTHERNEDGE

C CHECK IF EASTERN EDGE NODE EXISTS

C **** EASTERNEDGE

IF (KE .NE. O) THEN

ISONJ - NEIBG2(2,KE)
IPAPJ - ICELG2(10,ISONJ)

KCP - ICELG2(1,IPAPJ)

KSP - ICELG2(3,IPAPJ)

KEP - ICELG2(5,IPAPJ)

KNP - ICELG2(7,IPAPJ)

KWP - ICELG2(9,IPAPJ)

NBSWH - NEIBG2(1,KSP)

NBSEH - NEIBG2(2,KSP)

NBSEV - NEIBG2(2,KEP)

NBNEV = NEIBG2(3,KEP)

NBNEH - NEIBG2(3,KNP)

NBNWH - NEIBG2(4,KNP)

NBNWV - NEIBG2(4,KWP)
NBSWV - NEIBG2(1,KWP)
NDEDGE- 0

C

IF (NBSWH .EQ. NBSEH) NDEDGE = NDEDGE + 

IF (NBSEV .EQ. NBNEV) NDEDGE = NDEDGE + 

IF (NBNEH .EQ. NBNWH) NDEDGE NDEDGE + 1

IF (NBSWV .EQ. NBNWV) NDEDGE = NDEDGE + 
C

C #### CHECKFORCOLLAPSE

IF (NDEDGE .GE. 3) THEN

NCSW - NEIBG2(1,KCP)

NCSE - NEIBG2(2,KCP)

NCNE NEIBG2(3,KCP)
NCNW - NEIBG2(4,KCP)

ISUP ICELG2(10,NCSW)
C
C %%XX VERIFYSUPERCELL

IF (ISUP .EQ. IPAPJ) THEN

CALL G2CLPO (NCSW,NCSE,NCNE,NCNW,IPAPJ,IWARN)
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IF (NDEDGE .EQ. 3) THEN

KVOID - KVOID + 1
MRKCA2(NVOID) IPAPJ

ENDIF

ENDIF

C %X%% ENDVERIFYSUPERCELL
ENDIF

C #### ENDCHECKFORCOLLAPSE

ENDIF

C **** EASTERNEDGE

C CHECK IF NORTHERN EDGE NODE EXISTS
C **** NORTHERNEDGE

IF (KN .NE. O) THEN

ISONJ - NEIBG2(3,KN)
IPAPJ ICELG2(10,ISONJ)

KCP = ICELG2(1,IPAPJ)
KSP - ICELG2(3,IPAPJ)

KEP - ICELG2(6,IPAPJ)

KNP - ICELG2(7,IPAPJ)

KWP - ICELG2(9,IPAPJ)

NBSWH - NEIBG2(1,KSP)

NBSEH - NEIBG2(2,KSP)
NBSEV - NEIBG2(2,KEP)

NBNEV - NEIBG2(3,KEP)

NBNEH - NEIBG2(3,KNP)

NBNWH - NEIBG2(4,KNP)

NBNWV - NEIBG2(4,KWP)

NBSWV - NEIBG2(1,KWP)
NDEDGE 0

C

IF (NBSWH .EQ. NBSEH) NDEDGE = NDEDGE + 
IF (NBSEV .EQ. NBNEV) NDEDGE - NDEDGE + 

IF (NBNEH .EQ. NBNWH) NDEDGE - NDEDGE + 1
IF (NBSWV .Eq. NBNWV) NDEDGE NDEDGE + 

C

C #### CHECKFORCOLLAPSE

IF (NDEDGE .GE. 3) THEN

NCSW NEIBG2(1,KCP)

NCSE - NEIBG2(2,KCP)

NCNE NEIBG2(3S,KCP)

NCNW - NEIBG2(4,KCP)

ISUP - ICELG2(lO,NCSW)
C

C %%% VERIFYSUPERCELL
IF (ISUP .EQ. IPAPJ) THEN

CALL G2CLPO (NCSW,NCSE,NCNE, NCNW, IPAPJ, IWARN)
IF (NDEDGE .EQ. 3) THEN

KVOID - KVOID + 1

MRKCA2(NVOID) - IPAPJ
ENDIF

ENDIF

C XX%X ENDVERIFYSUPERCELL
ENDIF

C #### ENDCHECKFORCOLLAPSE
ENDIF
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**** NORTHERNEDGE

C CHECK IF WESTERN EDGE NODE EXISTS

C **** WESTERNEDGE

IF (KW .NE. O) THEN

ISONJ - NEIBG2(4,KW)

IPAPJ - ICELG2(10,ISONJ)

KCP - ICELG2(1.IPAPJ)

KSP - ICELG2(3,IPAPJ)

KEP - ICELG2(6,IPAPJ)

KNP = ICELG2(7,IPAPJ)
KWP - ICELG2(9,IPAPJ)

NBSWH = NEIBG2(1,KSP)

NBSEH = NEIBG2(2,KSP)
NBSEV - NEIBG2(2,KEP)

NBNEV = NEIBG2(3,KEP)

NBNEH - NEIBG2(3,KNP)

NBNWH = NEIBG2(4,KNP)

NBNWV - NEIBG2(4,KWP)

NBSWV = NEIBG2(1,KWP)
NDEDGE - 0

C

IF (NBSWH .EQ. NBSEH) NDEDGE = NDEDGE + 1
IF (NBSEV .EQ. NBNEV) NDEDGE = NDEDGE + 1

IF (NBNEH .EQ. NBNWH) NDEDGE = NDEDGE + 
IF (NBSWV .EQ. NBNWV) NDEDGE NDEDGE + 

C

C #### CHECKFORCOLLAPSE
IF (NDEDGE .GE. 3) THEN

NCSW - NEIBG2(1.KCP)

NCSE NEIBG2(2,KCP)
NCNE - NEIBG2(3,KCP)

NCNW - NEIBG2(4,KCP)

ISUP - ICELG2(1O,NCSW)
C
C %%XXX VERIFYSUPERCELL

IF (ISUP .EQ. IPAPJ) THEN

CALL G2CLPO (NCSW.NCSE,NCNE,NCNW,IPAPJ,IWARN)

IF (NDEDGE .EQ. 3) THEN
KVOID = KVOID + 1

MRKCA2(NVOID) = IPAPJ
ENDIF

ENDIF

C X%%% ENDVERIFYSUPERCELL
ENDIF

C #### ENDCHECKFORCOLLAPSE
ENDIF

C **** NORTHERNEDGE

210 CONTINUE

C UPDATE THE PREVIOUS LIST OF COLLAPSE CELLS
C

NVOID - KVOID

DO 220 JCELL - 1, NVOID

MRKDA2(JCELL) MRKCA2(JCELL)
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220 CONTINUE

NTIME - NTIME + 1
IF (NTIME .GT. 20) GOTO 180

IF (NVOID .NE. O) GOTO 200

180 CONTINUE

CALL G2NODE

NVOID - 0
NTIME -

C
DO 60 ICELL - 1. NCELG2

C *### CHECKONLYDIVIDEDCELLS

IF (ICELG2(1.ICELL) .EQ. O) THEN

NDEDGE 0

DO 10 IEDGE = 3. 9, 2

IF (ICELG2(IEDGE,ICELL) .NE. O) NDEDGE = NDEDGE + I
10 CONTINUE

C

IF (NDEDGE .EQ. 2) THEN

IF (IAND(KAUXG2(ICELL),KLOOOF) .NE. O) THEN
NVOID = NVOID + 

MRKDA2(NVOID) ICELL

CALL G2DIVO (ICELL.IWARN)
GOTO 60

ENDIF

C **** CHECKFIRSTTYPEVOIDCELLS

ELSE IF (NDEDGE .GE. 3) THEN
IF (NDEDGE .EQ. 3) THEN

NVOID = NVOID + 

MRKDA2(NVOID) = ICELL

ENDIF

CALL G2DIVO (ICELL,IWARN)
ENDIF

C **** END CHECKFIRSTTYPEVOIDCELLS

ENDIF

C #### END CHECKONLYDIVIDEDCELLS

60 CONTINUE

C

C NOW CHECK THE NEIGHBOURS OF THE PREVIOUSLY DIVIDED CELLS

C

80 KVOID - 0

DO 160 JCELL 1, NVOID

C FIND THE ACTUAL CELL. ITS NODES AND NEIGHBOUR CELLS

ICELL - MRKDA2(JCELL)

KSW - ICELG2(2.ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)
C
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NBSWV -
NBSWH -

NBSEH -
NBSEV -
NBNEV -

NBNEH -
NBNWH -

NBNWV -

NEIBG2(4,KSW)

NEIBG2(2,KSW)

NEIBG2(I.KSE)
NEIBG2(3,KSE)

NEIBG2(2.KNE)

NEIBG2(4,KNE)

NEIBG2(3,KNW)

NEIBG2(1,.KNW)

NCHECK INDICATES THE NUMBER OF CELLS TO BE CHECKED;

INB() HOLDS THESE CELLS (MAX 8)

NCHECK O0

SOUTHERN EDGE

IF (NBSWH .NE.

NCHECK

INB(NCHECK)
NCHECK
INB(NCHECK)

ELSE IF (NBSWH

NCHECK

INB(NCHECK)
ENDIF

NBSEH) THEN

NCHECK + 1
- NBSWH

= NCHECK + 1
- NBSEH

.NE. O) THEN
- NCHECK + 1
= NBSWH

EASTERN EDGE

IF (NBSEV .NE.
NCHECK

INB(NCHECK)
NCHECK

INB(NCHECK)
ELSE IF (NBSEV

NCHECK

INB (NCHECK)
ENDIF

NBNEV) THEN

= NCHECK + 
- NBSEV

= NCHECK + 1

- NBNEV

.NE. O) THEN

= NCHECK + 1

- NBSEV

NORTHERN EDGE

IF (NBNEH .NE.
NCHECK
INB(NCHECK)
NCHECK

INB(NCHECK)
ELSE IF (NBNEH

NCHECK

INB(NCHECK)
ENDIF

NBNWH) THEN
- NCHECK + 1
- NBNEH

- NCHECK + 1
- NBNWH

.NE. O) THEN

- NCHECK + 1
- NBNEH

WESTERN EDGE

IF (NBNWV .NE.
NCHECK

INB(NCHECK)
NCHECK
INB(NCHECK)

NBSWV) THEN
- NCHECK +
- NBNWV-NCHECK +
NBSWV
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ELSE IF (NBNWV .NE. O) THEN
NCHECK = NCHECK + 1

- INB(NCHECK) - NBNWV
ENDIF

NOW CHECK ALL THE PREVIOUSLY COLLECTED NEIGHBOUR CELLS

DO 140 KCELL 1, NCHECK

LCELL = INB(KCELL)

#### CHECKONLYDIVIDEDCELLS

IF (ICELG2(1,LCELL) .EQ. O) THEN

NDEDGE 0
DO 90 IEDGE = 3, 9, 2

IF (ICELG2(IEDGE,LCELL) .NE. 0) NDEDGE - NDEDGE + 1
CONTINUE

IF (NDEDGE .EQ. 2) THEN

IF (IAND(KAUXG2(LCELL),KLOOOF) .NE. O) THEN
KVOID = KVOID + 1

MRKCA2(KVOID) = LCELL

CALL G2DIVO (LCELL,IWARN)

GOTO 140

ENDIF

**** CHECKFIRSTTYPEVOIDCELLS

ELSE IF (NDEDGE .GE. 3) THEN

IF (NDEDGE .EQ. 3) THEN

KVOID = KVOID + 1
MRKCA2(KVOID) = LCELL

ENDIF

CALL G2DIVO (LCELL,IWARN)

ENDIF

**** END CHECKFIRSTTYPEVOIDCELLS

ENDIF

#### END CHECKONLYDIVIDEDCELLS

CONTINUE

150 CONTINUE

C UPDATE THE PREVIOUS LIST OF CELLS

C

NVOID KVOID

DO 160 JCELL - 1, NVOID

MRKDA2(JCELL) MRKCA2(JCELL)
160 CONTINUE
C

NTIME - NTIME + 1
IF (NTIME .GT. 20) RETURN

IF (NVOID .NE. O) GOTO 80

RETURN

END
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A2VOID

SUBROUTINE A2VOID

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE 't[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] HEXCOD.INC/LIST'
INCLUDE '[.INC] IOCOMN.INC/LIST'

DIMENSION INB(12)
LOGICAL IWRITE

C********************************************************************

C THIS SUBROUTINE DETECTS THE VOID CELLS AFTER THE PREVIOUS

C ADAPTATION CYCLE OF GRID DIVISION, EXTENSION AND COLLAPSE.
C A VOIDS CELL IS THE ONE WITH ONE OF THE FOLLOWING PROPERTIES:

C 1. HAS ATLEAST THREE DIVIDED EDGES.

C 2. HAS TWO DIVIDED EDGES ON A BOUNDARY

C 3. HAS TWO DIVIDED EDGES AND IS CONTIGUOUS TO A SIMILAR CELL

C NOTE THAT THE ISLANDS ARE TOLERATED BUT THE VOIDS AREN'T.

C ONLY THE CEWIC CELLS NEED BE CHECKED FOR VOIDS AND ISLANDS.

C

C NVOID : THE NUMBER OF CELLS WHICH ARE DETECTED TO BE VOID

C CELLS (STORED IN MRKDA2 IN PASS 1 AND IN MRKCA2 IN

C PASS 2)

C NEDG2 : THE NUMBER OF CELLS WITH TWO DIVIDED EDGES WHICH ARE

C ALSO NOT ON THE BOUNDARY (STORED IN WORKA2)

C********************************************************************

C
C WANT DEBUG PRINT ?

IWRITE - IDBGA2 .EQ. 12 .OR. IDBGA2 .GT. 1000
C
C . . .++++ . .+++++ + + . +
C + NBNWC | NBNWH + NBNEH I NBNEC +
C + I + I +
C +-------+-----+---------+------- +
C + IKNW KN KNEI +
C + NBNWVI I NBNEV +
C + * + .KW ICELL KE+ + + + +
C + NBSWV I NBSEV +

C + IKSW KS KSEI +
C +----------- -+- +_------- +
C + I + I +

C + NBSWC I NBSWH + NBSEH I NBSEC +
C . ++ ..+ + + + + + + .++ .
C

C INITIALIZE THE NUMBER OF VOID CELLS, NDEDGE INDICATES THE
C NUMBER OF DIVIDED EDGES

NVOID - 0

NEDG2 - 0
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NTIME - 1

DO 70 ICELL - 1, NCELG2

#### CHECKONLYDIVIDEDCELLS

IF (ICELG2(1,ICELL) .EQ. O) THEN

NDEDGE 0

DO 10 IEDGE - 3, 9, 2

IF (ICELG2(IEDGE,ICELL) .NE. O) NDEDGE - NDEDGE + 1
CONTINUE

**** CHECKTHIRDTYPEVOIDCELLS

IF (NDEDGE .EQ. 2) THEN

IF (IAND(KAUXG2(ICELL),KLOOOF) .NE.

KSW = ICELG2(2,ICELL)

KSE = ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)

NBSWV = NEIBG2(4,KSW)

NBSWH NEIBG2(2,KSW)

NBSEH = NEIBG2(1,KSE)

NBSEV = NEIBG2(3,KSE)

NBNEV - NEIBG2(2,KNE)

NBNEH = NEIBG2(4,KNE)

NBNWH NEIBG2(3,KNW)

NBNWV - NEIBG2(1,KNW)

JCHECK INDICATES THAT

JCHECK O

0) GOTO 60

THE THIRD TYPE VOID CELLS EXIST

SOUTHERN EDGE

IF (NBSWH .EQ. NBSEH) THEN
NDEDGE = 0

DO 20 IEDGE - 3, 9, 2

IF (ICELG2(IEDGE,NBSWH) .NE. O) NDEDGE =NDEDGE+1

CONTINUE

IF (NDEDGE .EQ. 2) JCHECK = 1

ENDIF

EASTERN EDGE

IF (NBSEV .EQ. NBNEV) THEN
NDEDGE 0
DO 30 IEDGE - 3, 9, 2

IF (ICELG2(IEDGE,NBSEV) .NE. O) NDEDGE =NDEDGE+1
CONTINUE

IF (NDEDGE .EQ. 2) JCHECK - 1
ENDIF

NORTHERN EDGE

IF (NBNEH .EQ. NBNWH) THEN
NDEDGE - 0
DO 40 IEDGE - 3, 9, 2

IF (ICELG2(IEDGE,NBNWH) .NE. O) NDEDGE =NDEDGE+I

CONTINUE

IF (NDEDGE .EQ. 2) JCHECK = 1
ENDIF
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WESTERN EDGE

IF (NBNWV .EQ. NBSWV) THEN

NDEDGE = 0

DO 60 IEDGE = 3, 9, 2

IF (ICELG2(IEDGE,NBSWV) .NE. O) NDEDGE =NDEDGE+1
CONTINUE

IF (NDEDGE .EQ. 2) JCHECK = 
ENDIF

IF (JCHECK .NE. O) THEN

NEDG2 - NEDG2 + 

WORKA2(NEDG2) ICELL
ENDIF

**** END CHECKTHIRDTYPEVOIDCELLS

**** CHECKRFIRSTTYPEVOIDCELLS

ELSE IF (NDEDGE .GE. 3) THEN

NVOID = NVOID + 

MRKDA2(NVOID) - ICELL
IWARN = 0

CALL G2DIVO (ICELL,IWARN)

WRITE(6,*) ' A2VOID: DIVIDED CELL IS

IF (IWARN .NE. O) WRITE(JTERMO,1000)
SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOOO1) .NE. O) THEN
NERR = 0

CALL CHKBN2 (ICELL, O, 0. 0. O NI

CALL CHKNC2 (ICELL, O, 0, 0. O. NI
CALL CHKNN2 (ICELL. O. 0. 0. O. NI

CALL CHKSP2 (ICELL, . 0. 0. 0, NI
ENDIF

ENDIF

**** END CHECKFIRSTTYPEVOIDCELLS
ENDIF

#### END CHECKONLYDIVIDEDCELLS

',ICELL

IWARN, ICELL

ERR,

ERR,
ERR,

ERR,

'AFTDIV')

'AFTDIV')

'AFTDIV')

'AFTDIV')

70 CONTINUE

C RESET THE NUMBER OF THIRD TYPE CELLS. ADJUST THE VOID CELL
C ARRAY AND DIVIDE THESE CELLS
C

DO 80 JCELL - 1. NEDG2

ICELL = NINT(WORKA2(JCELL))
IF (ICELG2(1,ICELL) .Eq. O) THEN

NVOID = NVOID + 1

MRKDA2(NVOID) ICELL
IWARN = 0

CALL G2DIVO (ICELL,IWARN)

WRITE(6.*) ' A2VOID: DIVIDED CELL IS ',ICELL
IF (IWARN .NE. O) WRITE(JTERMO.1000) IWARN, ICELL

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOOO1) .NE. O) THEN
NERR - 0
CALL CHKBN2 (ICELL. O, 0. 0. O, NERR,'AFTDIV')

CALL CHKNC2 (ICELL. O0 0. 0. O. NERR,'AFTDIV')
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CALL CHKNN2 (ICELL, O, 0. 0. O, NERR,'AFTDIV')
- CALL CHKSP2 (ICELL, O. 0. 0. O, NERR,'AFTDIV')

ENDIF

ENDIF

80 CONTINUE

NEDG2 - 0

C
C PRINT OUT PARAMETERS

C
IF (IWRITE) THEN

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG, 1300)

WRITE(JDEBUG,1400) NVOID, NTIME

WRITE(JDEBUG,1600) (MRKDA2(I), I = 1, NVOID)
ENDIF

C

C NOW CHECK THE NEIGHBOURS OF THE PREVIOUSLY DIVIDED CELLS
C

90 KVOID - 0

DO 170 JCELL - 1, NVOID

C FIND THE ACTUAL CELL, ITS NODES AND NEIGHBOUR CELLS

ICELL MRKDA2(JCELL)

KSW = ICELG2(2,ICELL)
KSE = ICELG2(4,ICELL)
KNE = ICELG2(6,ICELL)

KNW = ICELG2(8,ICELL)
C

NBSWV NEIBG2(4,KSW)

NBSWC NEIBG2(1,KSW)

NBSWH NEIBG2(2,KSW)

NBSEH - NEIBG2(1,KSE)

NBSEC - NEIBG2(2,KSE)

NBSEV NEIBG2(3,KSE)

NBNEV - NEIBG2(2,KNE)

NBNEC NEIBG2(3,KNE)

NBNEH NEIBG2(4,KNE)

NBNWH = NEIBG2(3,KNW)

NBNWC - NEIBG2(4,KNW)

NBNWV - NEIBG2(1,KNW)

C NCHECK INDICATES THE NUMBER OF CELLS TO BE CHECKED;
C INB() HOLDS THESE CELLS (MAX 12)
C ******* ARE THE CORNER CELLS REALLY NECESSARY ? *******

NCHECK 0

C
C SOUTHWEST CORNER
C

IF (NBSWC .NE. O) THEN
NCHECK - NCHECK + 1

INB(NCHECK) - NBSWC
ENDIF

C
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SOUTHERN EDGE

IF (NBSWH .NE.
NCHECK

INB(NCHECK)
NCHECK

INB(NCHECK)
ELSE IF (NBSWH

NCHECK

INB(NCHECK)
ENDIF

NBSEH) THEN
= NCHECK + 1
I NBSWH
= NCHECK + 1
= NBSEH

.NE. O) THEN
= NCHECK + 1
= NBSWH

SOUTHEAST CORNER

IF (NBSEC .NE.
NCHECK

INB(NCHECK)
ENDIF

O) THEN

= NCHECK + 1
= NBSEC

EASTERN EDGE

IF (NBSEV .NE.
NCHECK

INB(NCHECK)
NCHECK

INB(NCHECK)
ELSE IF (NBSEV

NCHECK

INB(NCHECK)
ENDIF

NBNEV) THEN
- NCHECK + 1
= NBSEV
= NCHECK + 1
= NBNEV

.NE. O) THEN
= NCHECK + 1
= NBSEV

NORTHEAST CORNER

IF (NBNEC .NE.
NCHECK

INB(NCHECK)
ENDIF

O) THEN
= NCHECK + 1
= NBNEC

NORTHERN EDGE

IF (NBNEH .NE.
NCHECK

INB(NCHECK)
NCHECK

INB(NCHECK)
ELSE IF (NBNEH

NCHECK

INB(NCHECK)
ENDIF

NBNWH) THEN
= NCHECK + 1
= NBNEH

= NCHECK + 1
= NBNWH
.NE. O) THEN
= NCHECK + 1
= NBNEH

NORTHWEST CORNER

IF (NBNWC .NE.
NCHECK

INB(NCHECK)
ENDIF

O) THEN
= NCHECK + 1
= NBNWC

C

524

C
C

C
C

C

C

C
C

C
C
C

C
C
C

C
C

C



WESTERN EDGE

IF (NBNWV .NE.

NCHECK

INB(NCHECK)

NCHECK

INB(NCHECK)

ELSE IF (NBNWV

NCHECK

INB(NCHECK)

ENDIF

NBSWV) THEN
- NCHECK + 1

- NBNWV

- NCHECK + 1

= NBSWV

.NE. O) THEN

- NCHECK + 1
- NBNWV

NOW CHECK.ALL THE PREVIOUSLY COLLECTED NEIGHBOUR CELLS

DO 160 CELL 1, NCHECK
LCELL INB(KCELL)
#### CHECKONLYDIVIDEDCELLS

IF (ICELG2(1,LCELL) .EQ. 0) THEN
NDEDGE 0

DO 100 IEDGE 3, 9, 2

IF (ICELG2(IEDGE,LCELL) .NE. O) NDEDGE = NDEDGE + 1
CONTINUE

**** CHECKTHIRDTYPEVOIDCELLS
IF (NDEDGE .EQ. 2) THEN

IF (IAND(KAUXG2(LCELL),KLOOOF) .NE.
JCHECK - 0

O) GOTO 150

SOUTHERN EDGE

IF (NBSWH .EQ. NBSEH) THEN

NDEDGE - 0

DO 110 IEDGE = 3, 9, 2
IF (ICELG2(IEDGE,NBSWH)

CONTINUE

IF (NDEDGE .EQ. 2) JCHECK
ENDIF

EASTERN EDGE

IF (NBSEV .EQ. NBNEV) THEN
NDEDGE = 0

DO 120 IEDGE = 3, 9, 2

IF (ICELG2(IEDGE,NBSEV)
CONTINUE

IF (NDEDGE .EQ. 2) JCHECK

ENDIF

NORTHERN EDGE

IF (NBNEH .EQ. NBNWH) THEN
NDEDGE - 0

DO 130 IEDGE 3, 9, 2

IF (ICELG2(IEDGE,NBNWH)
CONTINUE

IF (NDEDGE .EQ. 2) JCHECK

ENDIF

.NE. O) NDEDGE NDEDGE+I

=1

.NE. O) NDEDGE =NDEDGE+1

=1

.NE. O) NDEDGE =NDEDGE+1

WESTERN EDGE
IF (NBNWV .EQ. NBSWV) THEN
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NDEDGE 0

DO 140 IEDGE = 3, 9, 2

IF (ICELG2(IEDGE,NBSWV) .NE. O) NDEDGE =NDEDGE+l
140 CONTINUE

IF (NDEDGE .EQ. 2) JCHECK = 1
ENDIF

IF (JCHECK .NE. O) THEN

NEDG2 - NEDG2 + 1

WORKA2(NEDG2) = LCELL
ENDIF

C **** END CHECKTHIRDTYPEVOIDCELLS
C **** CHECKFIRSTTYPEVOID_CELLS

ELSE IF (NDEDGE .GE. 3) THEN

150 KVOID = KVOID + 1

MRKCA2(KVOID) = LCELL
IWARN = 0
CALL G2DIVO (LCELL,IWARN)

WRITE(6,*) ' A2VOID: DIVIDED CELL IS ',LCELL
IF (IWARN .NE. O) WRITE(JTERMO,1000) IWARN, LCELL

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOO01) .NE. O) THEN
NERR = 0

CALL CHKBN2 (LCELL, 0, 0. O, O. NERR, 'AFTDIV')
CALL CHKNC2 (LCELL, O. 0. 0, O. NERR, 'AFTDIV')

CALL CHKNN2 (LCELL, 0, 0, O O, O. NERR, 'AFTDIV')

CALL CHKSP2 (LCELL, 0. 0, O. O, NERR, 'AFTDIV')
ENDIF ! DEBUG CHECK

ENDIF
C **** END CHECKFIRSTTYPEVOIDCELLS

ENDIF

C #### END CHECKONLYDIVIDEDCELLS
160 CONTINUE

C

170 CONTINUE

C UPDATE THE PREVIOUS LIST OF CELLS
C

NVOID KVOID

DO 180 JCELL - 1, NVOID

MRKDA2(JCELL) - MRKCA2(JCELL)
180 CONTINUE

C

C RESET THE NUMBER OF THIRD TYPE CELLS, ADJUST THE VOID CELL
C ARRAY AND DIVIDE THESE CELLS

C

DO 190 JCELL - 1. NEDG2

ICELL - NINT(WORKA2(JCELL))

IF (ICELG2(1,ICELL) .EQ. O) THEN
NVOID - NVOID + 1

MRKDA2(NVOID) - ICELL
IWARN = 0

CALL G2DIVO (ICELL,IWARN)

WRITE(6,*) ' A2VOID: DIVIDED CELL IS ',ICELL

IF (IWARN .NE. 0) WRITE(JTERMO.1000) IWARN, ICELL
C SEE IF DEBUG CHECK IS NEEDED
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IF (IAND(KCHKA2,KLOOO1) .NE.
NERR = 0

CALL CHKBN2 (ICELL, O0 0,
CALL CHKNC2 (ICELL, O, 0,

CALL CHKNN2 (ICELL, O, 0,

CALL CHKSP2 (ICELL, O, 0,
ENDIF

ENDIF

190 CONTINUE

NEDG2 = 0

C
C PRINT OUT PARAMETERS
C

NTIME = NTIME + 1

IF (IWRITE) THEN
WRITE(JDEBUG,1400)

WRITE(JDEBUG,15OO)
ENDIF

NVOID, NTIME
(MRKDA2(I), I = 1, NVOID)

IF (NTIME .GT. 20) GOTO 200

IF (NVOID .NE. O) GOTO 90

CHECK FOR ISLANDS

DO 210 ICELL = 1, NCELG2

IF (ICELG2(1,ICELL) .NE. O) THEN
NDEDGE = 0

KC = ICELG2(1,ICELL)

KS = ICELG2(3,ICELL)
KE = ICELG2(5,ICELL)
KN = ICELG2(7,ICELL)

KW = ICELG2(9,ICELL)

NBSWH - NEIBG2(1,KS )

NBSEH = NEIBG2(2,KS )

NBSEV - NEIBG2(2,KE )
NBNEV = NEIBG2(3,KE )
NBNEH = NEIBG2(3,KN )
NBNWH - NEIBG2(4,KN )

NBNWV = NEIBG2(4,KW )
NBSWV = NEIBG2(1,KW )

C
IF (NBSWH .EQ. NBSEH)

IF (NBSEV .EQ. NBNEV)

IF (NBNEH .EQ. NBNWH)

IF (NBSWV .EQ. NBNWV)

NDEDGE = NDEDGE + 1

NDEDGE = NDEDGE + 1

NDEDGE = NDEDGE + 1

NDEDGE = NDEDGE + 1

IF (NDEDGE .EQ. 4) THEN

NCSW = NEIBG2(1,KC)

NCSE = NEIBG2(2,KC)
NCNE = NEIBG2(3,KC)
NCNW = NEIBG2(4,KC)

ISUP = ICELG2(1O,NCSW)
C

IF (ISUP .EQ. ICELL)

CALL G2CLPO (NCSW,NCSE,NCNE,NCNW,ICELLIWARN)1
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O) THEN

0, O, NERR,

0, O, NERR,

0, O, NERR,

0, O, NERR,

'AFTDIV')

'AFTDIV')

'AFTDIV')

'AFTDIV')

C

C

C

C
200

C



210

C
C
C
C
C

ENDIF

ENDIF

CONTINUE

FORMAT STATEMENTS

1000 FORMAT(5X.'WARNING ',I3.2X,'ISSUED FOR CELL',I5)

1100 FORMAT(//1OX,'-----------------------' )
1200 FORMAT( 10X,'DEBUG PRINT FROM A2VOID' )

1300 FORMAT( lOX.'-----------------------'/)

1400 FORMAT(/10X,'NUMBER OF VOID CELLS 'IS,2X,'AFTER PASS',I5/

1 1OX.'THE VOID CELLS ARE :'/)

1500 FORMAT(20IS)

RETURN

END

C2CHEK

PROGRAM C2CHEK

C

PARAMETER (MKOUNT=100)

INCLUDE 'PERVAIZ.TWODO.INC]

INCLUDE 'PERVAIZ.TWODO.INC]

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

C

DIMENSION TEMPER(S), RHS(3), AMAT(3,3), SOLN(3)

DIMENSION TEMP$(MKOUNT), AKEQ$(MKOUNT)
C

C

C THIS PROGRAM CHECKS THE VALIDITY OF THE EQUILIBRIUM RATE CONSTANT
C ARHENIUS MODEL

C

C

C SETUP INPUT/OUTPUT UNITS
C

JTERMI - 6

JTERMO - 6
JPRINT - 7

JNCHEK - 9
C

OPEN (UNIT-JPRINT, FILE-'OUCHEK.DAT', STATUS-'NEW')

OPEN (UNIT-JNCHEK, FILE-'INCHEK.DAT', STATUS-'OLD')
C
C READ THE APPROPRITE INFORMATION FORM JNCHEK

READ (JNCHEK,*) TINIT, TINCR, TFINAL, TREFCH
READ (JNCHEK,*) TEMPER(1). TEMPER(2), TEMPER(S)
READ (JNCHEK,*) NSPECH
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C READ THE REACTION NUMBER AND REACTION COEFFICIENTS, FOR BOTH

C REACTANT AND PRODUCT SIDES FOR EACH REACTION

READ(JNCHEK,*) (IALPCH(IS,1),IS=l,NSPECH)

READ(JNCHEK,*) (IBETCH(IS,1),IS1,NSPECH)

DO 10 IS 1, NSPECH

BMIACH(IS,1) IBETCH(IS.I) - IALPCH(IS,1)

10 CONTINUE

C

C READ THE SPECIES NUMBER IS, ATOMIC WEIGHT, SPECIFIC HEATS

C (CP IN KJ/KMOL/K), HEAT OF FORMATION (KJ/KMOL), AND

C ENTROPY (KJ/KMOL/K) AT THE REFERENCE CONDITIONS FOR EACH SPECIES

C CONVERT SOME OF THESE TO /KG BASIS TO BE CONSISTENT WITH THE

C STAR CODE

C
DO 20 IS 1. NSPECH

READ(JNCHEK,*) ISP, AMWTCH(IS), SPCPCH(IS),
1 FMHTCH(IS), ENTRCH(IS), SPBSCH(IS)

SPCPCH(IS) = 1000.*SPCPCH(IS)/AMWTCH(IS)

SPBSCH(IS) 1000.*SPBSCH(IS)/AMWTCH(IS)

FMHTCH(IS) - 1000.*FMHTCH(IS)/AMWTCH(IS)

ENTRCH(IS) l000.*ENTRCH(IS)

20 CONTINUE

C

C
C
C
C
C
C

C

SEE IF OTHER REFERENCE VALUES ARE AVAILABLE FOR COMPARISION

PURPOSES FOR THE EQUILIBRIUM RATE CONSTANTS
IPOWER > 0 REFERENCE IS AVAILABLE

1 USE FULL REGRESSION MODEL

2 USE ENEREF FOR REGRESSION MODEL
4 USE ENEREF AND EXPREF FOR REGRESSION MODEL

READ (JNCHEK.*) IPOWER

IF (IPOWER .GT. O) THEN

READ (JNCHEK,*) PREREF. EXPREF. ENEREF
ENDIF

C

IF (IPOWER .LE. 1) THEN

DO 30 IT - 1, 3

TEMP 8 TEMPER(IT)

AT = LOG(TEMP)
RT - 1./TEMP

C GET THE LOG OF EQUILIBRIUM CONSTANT FOR REACTION 1

CALL CHKCRE (TEMP, AKEQ)

RHS(IT) AKEQ

AMAT(IT,1) = 1.

AMAT(IT.2) AT

AMAT(IT,3) - -RT
30 CONTINUE

CALL GAUSS2(AMAT,RHS,SOLN,3,3)

PREECH(I) SOLN(1)

EXPECH(1) - SOLN(2)

ENEECH(1) SOLN(3)
ELSE IF (IPOWER .EQ. 2) THEN

ENEECH(1) = ENEREF

DO 40 IT = 1. 3, 2
TEMP - TEMPER(IT)
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AT = LOG(TEMP)

RT - 1./TEMP

C - GET THE LOG OF EQUILIBRIUM CONSTANT FOR REACTION 1
CALL CHKCRE (TEMP, AKEQ)

RHS(IT) = AKEQ + ENEREF*RT
AMAT(IT,1) 1.

AMAT(IT,2) AT

40 CONTINUE

CALL GAUSS2(AMATRHS,SOLN,2,3)

PREECH(I) = SOLN(1)
EXPECH(1) - SOLN(2)

ELSE

ENEECH(1) - ENEREF

EXPECH(1) = EXPREF
ENDIF

C
C WRITE THE CONSTANTS FOR THE MODEL

C
WRITE(JPRINT,50) PREECH(1), EXPECH(1), ENEECH(1)

50 FORMAT(6X,5G14.5)

TEMP = TINIT

SUMKEQ - 0.
NDATA = 0

60 ALOGT ALOG(TEMP)
RTEMP 1./TEMP

C
CALL CHKCRE (TEMP,AKEQ)

C
SUMKEQ =

NDATA =

TEMP$(NDATA) =
AKEQ$(NDATA) -
TEMP =

IF (NDATA .GE.

IF (TEMP .LE.

SUMKE + AKEQ - EXPREF*ALOGT + ENEREF*RTEMP

NDATA + 1

TEMP

AKEQ

TEMP + TINCR

MKOUNT) GOTO 70

TFINAL) GOTO 60

70 IF (IPOWER .EQ. 4) THEN

SUMKEQ SUMKEQ/NDATA

WRITE(JPRINT,*)

WRITE(JPRINT,*) ' AVERAGE
PREECH(1) = SUMKEQ

ENDIF

PRE-EXP FACTOR',SUMKEQ

WRITE(38,*) NDATA

WRITE(39,*) NDATA

DO 80 IDATA = 1, NDATA

TEMP = TEMP$(IDATA)
AKEQ = AKEQ$(IDATA)

ALOGT = ALOG(TEMP)

RTEMP - 1./TEMP
C

AKEMOD PREECH(1) + EXPECH(1)*ALOGT - ENEECH(I)*RTEMP
AKEREF PREREF + EXPREF*ALOGT - ENEREF*RTEMP
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WRITE(JPRINT,50) TEMP. AKEQ, AKEMOD, AKEREF
WRITE(38,*) TEMP, AKEQ

WRITE(39,*) TEMP. AKEREF

80 CONTINUE

EXAMPLE OF INPUT FILE: INCHEK.DAT
_________________________________

1000,100,3000,298

1000,2000,3000

5

0 2 1 0 00 0 0 2 0
1 31.999 30.559

2 17.008 28.071

3 2.016 27.290

4 18.015 32.469

5 28.013 29.282

1

-19.7367 1.0

TINIT,TINCR,TFINAL,TREFCH

TEMPER(1), TEMPER(2), TEMPER(S)

TOTAL NUMBER OF SPECIES

REACTION COEFFICIENTS

0.

39463.

0.

-241827.

0.

-69415

205.142 0.34485E-2 IS, AMWT,CP,HF,SO,BS

183.703 0.30943E-2

130.684 0.33530E-2

188.833 0.86358E-2

191.611 0.30233E-2
REFERENCE VALUES ARE AVAILABLE

CF, ETA, E-TERM (THIS IS POSITIVE!)
C

STOP

END

SUBROUTINE CHKCRE (TEMP, AKEQ)

C

INCLUDE '[PERVAIZ.TWODO.INCJ PARMV2.INC/LIST'

INCLUDE 'PERVAIZ.TWODO.INC] CHCOMN.INC/LIST'
C

DIMENSION GIBBS(MSPECH)
C

C GIBBS(S) IS THE SPECIFIC MOLAL GIBBS FUNCTION FOR SPECIES S
C DELGIB IS THE TOTAL GIBBS FUNCTION CHANGE FOR A REACTION R

C SUMCOF IS THE SUM OF THE COEFFIENTS (DELTAN) USEFUL IN THE
C COMPUTATION OF EQUILIBRIUM CONSTANT

C AKPR IS THE EQUILIBRIUM CONSTANT BASED ON PARTIAL PRESSURES

C AKEQ IS THE EQUILIBRIUM CONSTANT BASED ON CONCENTRATIONS

C
C UNIVERSAL GAS CONSTANT IN J/KMOL/K

UGASFL - 8.31434E03

PRESCH - 1.0125E5

DO 10 IS - 1.

GIBBS(IS) -
1
2
3
4

NSPECH

FMHTCH(IS)*AMWTCH(IS) - TEMP*ENTRCH(IS)

+ SPCPCH(IS)*AMWTCH(IS)*(TEMP-TREFCH)
+ O.S*SPBSCH(IS)*AMWTCH(IS)*(TEMP**2-TREFCH**2)
- TEMP*SPCPCH(IS)*AMWTCH(IS)*LOG(TEMP/TREFCH)

- TEMP*SPBSCH(IS)*AMWTCH(IS)*(TEMP-TREFCH)
C

10 CONTINUE

C

C COMPUTE THE (LOG OF) EQUILIBRIUM CONSTANTS FOR THE REACTION

C

DELGIB O0.
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SUMCOF 0.

DO 20 IS - 1, NSPECH

DELGIB - DELGIB + BMIACH(IS,I)*GIBBS(IS)

SUMCOF - SUMCOF - BMIACH(IS,1)
20 CONTINUE

AKPR = -DELGIB/TEMP/UGASFL

AKEQ = AKPR + SUMCOF*LOG(UGASFL*TEMP/PRESCH)
C

RETURN

END

C2EQDI

SUBROUTINE C2EQDI

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

' [. INC]
' [. INC]
' [.INC]

' [.INC]
' [.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

FLCOMN.INC/LIST'
G2COMN.INC/LIST'

C THIS SUBROUTINE COMPUTES THE EQUILIBRIUM CONCENTRATION FOR THE

C LIGHT-HILL DISSOCIATING GAS MODEL.

IF (KROGER .NE. 2) RETURN

CONSTN - O.5*AMWTCH(1)*EXP(PREECH(1))

ETA = EXPECH(1)
ENERGY =-ENEECH(1)

DO 100 INODE - 1,
RHO

TEMP

TETA

EXTERM

BETA

DISCRI
ALPHAN

ALPHAO

ALPHA

DPENG2(6,INODE)
100 CONTINUE

RETURN

END

NNODG2

- DPENG2(1,INODE)*RHORFL

= TEMPG2(INODE)*TREFFL

= TEMP**ETA
= EXP(ENERGY/TEMP)
- CONSTN*TETA*EXTERM/RHO

" BETA*(BETA + 4.)

= 0.6*(SQRT(DISCRI) - BETA)

= DPENG2(56,INODE)/DPENG2(1,INODE)

= 0.1* (9. *ALPHAO+ALPHAN)

- ALPHA*DPENG2(1,INODE)
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C2EQRC

SUBROUTINE C2EQRC

INCLUDE '.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '.INC] G2COMN.INC/LIST'

C THIS SUBROUTINE USES THE FIRST REACTION OF THE ROGERS AND CHINITZ

C MODEL AS EQUILIBRIUM REACTION.

C THE SUBROUTINE ALSO RECOMPUTES THE PRESSURES AND TEMPERATURES
C

C
C

IF (KROGER .NE. 1 ) RETURN
IF (TRIGCH .GT. 1500.) RETURN

C

C SCAN ALL THE INTERIOR NODES FOR THE ROGERS AND CHINITZ MODEL
C WHERE THE TEMPERATURE EXCEEDS A SPECIFIED VALUE

C

DO 50 INODE 1, NNODG2
C

TEMPD TREFFL*TEMPG2(INODE)
C

IF (TEMPD .LT. TRIGCH) GOTO 50
C

C SKIP BOUNDARY NODES

DO 10 IBND = 1, NBNDG2
IF (IBNDG2(1,IBND) .EQ. INODE) THEN

IF (IBNDG2(5,IBND) .NE. 2) GOTO 20
GOTO 50

ENDIF

10 CONTINUE
C

20 RHORPR - DPENG2(1,INODE)

YO20LD - DPENG2(5.INODE)/RHORPR

YOHOLD - DPENG2(6.INODE)/RHORPR

YH20LD - DPENG2(7,INODE)/RHORPR
AKEQ - 117.31948*EXP(-8992/TEMPD)

YOHNEW - SQRT(YH20LD*YO20LD*AKEQ)

DELTAY - O.s*(YOHNEW-YOHOLD)/AMWTCH(2)

YO2NEW - YO20LD - AMWTCH(1)*DELTAY
YH2NEW - YH2OLD - AMWTCH(3)*DELTAY

C
C RESET THE DEPENDENT VARIABLES
C

DPENG2(6,INODE) - RHORPR*Y02NEW

DPENG2(6,INODE) - RHORPR*YOHNEW

DPENG2(7,INODE) - RHORPR*YH2NEW
C
C DETERMINE THE PRESSURE AND TEMPERATURE

533



C

CALL E2PRMT(INODE,1)

60 CONTINUE

RETURN

END

C2HELP

SUBROUTINE C2HELP

C

INCLUDE '.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] HEXCOD.INC '
INCLUDE '[.INC] IOCOMN.INC/LIST'

CHARACTER CHARBG*120

C

C

C
C THIS SUBROUTINE HELPS IN GENERATING THE CONSTANTS FOR CHEMISTRY
C TO BE READ BY THE UNIT JREADC IN C2INIT. THIS SUBROUTINE IS
C NEEDED BECAUSE THE INPUT FILE BECOMES COMPLICATED DUE TO A
C LARGE NUMBER OF TRANSFER STATEMENTS IN C2INIT.
C

C

JCHELP - 51

KROGER DENOTES

KROGER - 1
KROGER - 2

KROGER - 3

THE SPECIAL TYPE OF REACTION MODEL TO BE USED.
: USE ROGER AND CHINITZ MODEL
: USE LIGHT HILL SINGLE DISSOCIATING GAS MODEL
: USE A SINGLE NON-REACTING GAS

C
C SET UP THE CONSTANTS FOR ROGER AND CHINITZ MODEL., FOR THIS
C MODEL THE SPECIES MUST BE ORDERED AS 02, H20, H2, OH AND N2
C

IF (KROGER .EQ. 1) THEN
NSPECH 5
NREACH = 2

NINRCH 1
ENDIF

C

C FOR THE LIGHT HILL GAS MODEL THE SPECIES ARE ORDERED A, A2
C

IF (KROGER .EQ. 2) THEN
NSPECH - 2
NREACH 1
NINRCH 0

ENDIF

C

IF (KROGER .EQ. 3) THEN
NSPECH 1
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NREACH - 0
NINRCH - 0

ENDIF

C
C WRITE PARAMETER FOR DEBUG PRINTING

C
CHARBG - ' '
CHARBG( 1: ) - 'IDBGCH'

CHARBG(75:99) - '! DEBUG PARAMETER'

WRITE(JCHELP. 1000) CHARBG(1:99)
C
C WRITE THE INITIAL MASS FRACTIONS YSPECH(S) FOR ALL SPECIES S

CHARBG ' '
CHARBG(71:99) '! MASS FRACTION

DO 10 IS 1. NSPECH

CHARBG( 1:10) - 'YSPECH( )'
CHARBG(21:30) - 'YSPECH( )'

WRITE (CHARBG( 8: 9), 1100) IS

WRITE (CHARBG(28:29), 1100) IS

WRITE(JCHELP, 1200) IS.CHARBG(1:99)
10 CONTINUE

C

C WRITE THE REACTION NUMBER AND REACTION COEFFIENTS, FOR BOTH

C REACTANT AND PRODUCT SIDES FOR EACH REACTION

C THE MAXIMUM OF SPECIES THAT CAN BE HANDLED IS 20

CHARBG ' '

DO 40 IR - 1, NREACH

DO 20 IS - 1, NSPECH

INIT - 1 + 6*(IS-1)
IFIN - INIT + 2

CHARBG(INIT:IFIN) - 'ALP'

INIT - IFIN + 

IFIN - INIT + 

IF (IS .LT. 10) THEN

WRITE (CHARBG(INIT:INIT), 1300) IS
ELSE

WRITE (CHARBG(INIT:IFIN), 1100) IS
ENDIF

20 CONTINUE

WRITE(JCHELP,1400) IR, CHARBG(1:120)

DO 30 IS - 1, NSPECH

INIT - 1 + 6*(IS-1)

IFIN - INIT + 2

CHARBG(INIT:IFIN) - 'BET'

30 CONTINUE

WRITE(JCHELP.1400) IR, CHARBG(1:120)
40 CONTINUE

C

C WRITE THE REACTION NUMBER IR, REACTION CONSTANT TYPE IREACT,

C PRE-EXPONENTIAL FACTOR (NATURAL LOG VALUE), EXPONENT OF
C TEMPERATURE AND THE ACTIVATION ENERGY TERM (E/R -- PER DEGREE K)
C FOR EACH REACTION SO THAT REACTION RATES CAN BE DETERMINED.
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C IREACT IS A BINARY CODED VARIABLE WHICH INDICATES THE RATE

C CONSTANTS TO BE READ

C IF IREACT - 1 READ FORWARD RATE CONSTANTS

C IF IREACT - 2 READ BACKWARD RATE CONSTANTS

C IF IREACT - 4 READ EQUILIBRIUM RATE CONSTANTS

C FOR ROGER AND CHINITZ MODEL WRITE THE EQUIVALENCE RATIO PHI

C IN PREFCH(1) AND MEAN TEMPERATURE (TEMPMN) IN PREFCH(2), USE
C IREACT=6 AND NEGATIVE VALUE FOR TEMPMN IF A LINEAR SPECIFIC
C HEAT MODEL (Cp=a+bT) IS DESIRED.
C FOR LIGHT HILL MODEL WRITE THE CONSTANT PHI IN PREFCH(1),
C ETA IN EXPFCH(1), THETAD IN ENEFCH(1) AND RHOD IN PREBCH(1).
C

CHARBG - ' '
CHARBG(58:99) - '! REACTION CONSTANTS'

DO 50 IR 1, NREACH

IF (KROGER .EQ. 2) THEN
IREACT - 5

ELSE

WRITE (3TERMO,1600)
READ (JTERMI,*) IREACT

ENDIF

WRITE(JCHELP,1600) IR, IREACT

IRF IAND (IREACT,KLOOO1)

IRB IAND (IREACT,KLOO02)

IRE = IAND (IREACT,KLOO04)

IF (IRF .NE. O) THEN

CHARBG(1:36) - 'PREFCH( ) EXPFCH( ) ENEFCH( )'

IF (KROGER .EQ. 1 .AND. IR .EQ. 1) CHARBG(1:6) 'PHI EQ'

IF (KROGER .EQ. 1 .AND. IR .EQ. 2) CHARBG(1:6) - 'TEMPMN'

WRITE (CHARBG( 8: 9). 1100) IR
WRITE (CHARBG(21:22), 1100) IR
WRITE (CHARBG(34:35). 1100) IR

IF (KROGER .EQ. 1) CHARBG(8:9) 
IF (KROGER .EQ. 2) THEN

CHARBG(1:36)-'PHI LH ETA THETAD'
ENDIF

WRITE(JCHELP,1700) CHARBG(1:99)
ENDIF

IF (IRB .NE. O) THEN
CHARBG(1:36) 'PREBCH( ) EXPBCH( ) ENEBCH( )'
WRITE (CHARBG( 8: 9), 1100) IR

WRITE (CHARBG(21:22), 1100) IR
WRITE (CHARBG(34:36), 1100) IR
IF (KROGER .EQ. 2) CHARBG(:10) = 'RHOD

WRITE(JCHELP,1700) CHARBG(1:99)
ENDIF

IF (IRE .NE. O) THEN
CHARBG(1:36) 'PREECH( ) EXPECH( ) ENEECH( )'
WRITE (CHARBG( 8: 9). 1100) IR
WRITE (CHARBG(21:22), 1100) IR
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WRITE (CHARBG(34:36), 1100) IR

_WRITE(JCHELP,1700) CHARBG(1:99)

ENDIF

50 CONTINUE

IF (KROGER .EQ. 1) GO TO 70

C WRITE THE SPECIES NUMBER IS, ATOMIC WEIGHT, SPECIFIC HEATS

C (CP AND CV IN KJ/KG/K), HEAT OF FORMATION (KJ/KMOL), AND

C ENTROPY (KJ/KMOL/K) AT THE REFERENCE CONDITIONS FOR EACH SPECIES

CHARBG - ' '
CHARBG(71:99) = '! SPECIES VALUES

DO 60 IS - 1, NSPECH
CHARBG( 1:39) - 'AMWTCH( ) SPCPCH( ) SPCVCH( )

CHARBG(40:78) - 'HTFMCH( ) ENTRCH( ) SPBSCH( )
WRITE (CHARBG( 8: 9). 1100) IS

WRITE (CHARBG(21:22). 1100) IS

WRITE (CHARBG(34:35), 1100) IS

WRITE (CHARBG(47:48), 1100) IS

WRITE (CHARBG(60:61), 1100) IS

WRITE (CHARBG(73:74), 1100) IS

WRITE(JCHELP.1200) IS,CHARBG(1:99)
60 CONTINUE

C

70 CHARBG ' '

C SEE IF THERE ARE ANY NON-ELEMENTARY REACTIONS, IF SO

C WRITE THE REACTION NUMBER AND REACTION ORDER COEFFIENTS.
C FOR BOTH REACTANT AND PRODUCT SIDES FOR EACH REACTION

IF (KORDER .GT. O) THEN

WRITE(JCHELP.1800)

DO 100 IR 1, NREACT

DO 80 IS 1. NSPECH

INIT 1 + 6*(IS-1)
IFIN - INIT + 2

CHARBG(INIT:IFIN) 'ALO'
INIT - IFIN + 1
IFIN = INIT + 1

IF (IS .LT. 10) THEN
WRITE (CHARBG(INIT:INIT), 1300) IS

ELSE

WRITE (CHARBG(INIT:IFIN), 1100) IS
ENDIF

80 CONTINUE

WRITE(JCHELP.1400) IR, CHARBG(1:120)

DO 90 IS - 1, NSPECH

INIT 1 + 6*(IS-1)
IFIN INIT + 2

CHARBG(INIT:IFIN) = 'BTO'
90 CONTINUE

WRITE(JCHELP.1400) IR, CHARBG(1:120)
100 CONTINUE

ENDIF
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CLOSE (JCHELP)

C -----
C FORMAT STATEMENTS

C -

1000 FORMAT (X,A)

1100 FORMAT(I2)

1200 FORMAT(1X,'IS-',I2,3X,A)

1300 FORMAT(I1)

1400 FORMAT(lX.'IR-',I2,3X.A)

1500 FORMAT(//5X,'INPUT THE REACTION CONSTANT TYPE IREACT (BINARY)'/

1 lOX,'l : FOR FORWARD RATE CONSTANTS'/

2 lOX, '2 : FOR BACKWARD RATE CONSTANTS'/

3 lOX,'4 : EQUILIRIUM RATE CONSTANTS'/

4 lOX,'8 : DECIDE ABOUT EACH REACTION SEPERATELY'/ )

1600 FORMAT(1X,'IR- ',I2.' IREACT = ',I2)
1700 FORMAT(1OX,A)

1800 FORMAT(6X,'NREACT' ,61X,' ! NON-ELEMENTARY REACTIONS')

C RETURN

END

C21NIT

SUBROUTINE C2INIT
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'

INCLUDE 'PRCOMN.INC'
C

DIMENSION AKEQ(MREACH) , TEMPER(3 )

1 RHS (3 ) , AMAT (3,3)

2 SOLN(3 )
C

C
C THIS SUBROUTINE READS THE CONSTANTS FOR CHEMISTRY FROM UNIT

C JREADC.

C

C
C GET THE VALUES SET BY GETKY2 SUBROUTINE OR THE DEFAULT VALUES
C

TREFCH - APASKY( 8)
PRESCH = APASKY(10)
TEMPER(i) - APASKY(12)

TEMPER(2) - APASKY(13)

TEMPER(3) - APASKY(14)
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TRIGCH - APASKY(25)

NREACH - IPASKY( 1)

NSPECH - IPASKY( 2)

KORDER = IPASKY( 4)

NINRCH - IPASKY(18)

NEQBAS = 4

C CHECK FOR ERRORS IN PARAMETER STATEMENTS

IF (NREACH .GT. MREACH) THEN

ZER1 = NREACH
ZER2 - MREACH

CALL ERRORM (2,'C2INIT'.'NREACH',ZERI,'MREACH',ZER2,JPRINT,

1 'PARAMETER ERROR IN REACTION NUMBERS')
ENDIF

IF (NSPECH .GT. MSPECH) THEN
ZERI - NSPECH

ZER2 - MSPECH

CALL ERRORM (2,'C2INIT','NSPECH',ZER1,'MSPECH',ZER2,JPRINT,

1 'PARAMETER ERROR IN SPECIES NUMBERS')
ENDIF

C

C EXPLANATION OF NOMENCLATURE

C ------ _____________
C NREACH - NUMBER OF REACTIONS
C NSPECH - NUMBER OF SPECIES
C NINRCH - NUMBER OF INERT SPECIES

C IALPCH(S.R) = REACTANT COEFFIENT FOR SPECIES 8 IN REACTION R

C IBETCH(S,R) - PRODUCT COEFFIENT FOR SPECIES S IN REACTION R
C IALOCH(S,R) - ORDER OF REACTION FOR SPECIES S IN REACTION R
C IBTOCH(S,R) - ORDER OF REACTION FOR SPECIES S IN REACTION R
C ENTRCH(S) = REFERENCE ENTROPY FOR SPECIES S, KJ/KMOL/K
C AMWTCH(S) - ATOMIC WEIGHT FOR SPECIES S

C FMHTCH(S) = HEAT OF FORMATION FOR SPECIES S IN KJ/KMOL
C AT THE REFERENCE TEMPERATURE AND PRESSURE

C SPCPCH(S) = CONSTANT PRESSURE SPECIFIC HEAT FOR S. KJ/KMOL/K
C SPCVCH(S) - CONSTANT VOLUME SPECIFIC HEAT FOR S, KJ/KMOL/K

C PREFCH(S) - PRE-EXPONENTIAL FACTOR FOR REACTION R ( FORWARD)
C PREBCH(S) = PRE-EXPONENTIAL FACTOR FOR REACTION R (BACKWARD)

C EXPFCH(S) - EXPONENT OF TEMPERATURE FOR REACTION R ( FORWARD)
C EXPBCH(S) - EXPONENT OF TEMPERATURE FOR REACTION R (BACKWARD)

C ENEFCH(S) - ENERGY TERM (E/R) FOR REACTION R ( FORWARD)

C ENEBCH(S) - ENERGY TERM (E/R) FOR REACTION R (BACKWARD)
C IDBGCH - DEBUG PARAMETER FOR CHEMISTRY

C -1 : WRITE EACH STEP

C JDEBUG = DEBUG UNIT FOR CHEMISTRY
C TREFCH - REFERENCE TEMPERATURE FOR THE CHEMICAL TERMS (298 K)
C PRESCH - REFERENCE PRESSURE FOR THE CHEMICAL TERMS (0.1 MPA)

C INITIALIZE THE REACTION COEFFICIENTS

DO 10 IS - 1, MSPECH
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DO 10 IR - 1, MREACH

IALPCH(IS,IR) 0
IBETCH(IS,IR) 0

10 CONTINUE

C
C READ INPUTS FROM INPUT CHEMISTRY FILE; READ PARAMETER FOR

C DEBUG PRINTING FIRST

C
READ(JREADC,*) IDBGCH

C
C READ THE REFERENCE AND FREE STREAM MASS FRACTIONS

C (YSPECH(S) AND DPENFR(S)) FOR ALL THE SPECIES S

DO 20 ISP - 1, NSPECH

READ(JREADC,*) IS, YSPECH(IS), DPENFR(IS)

YSPEPR(IS) - YSPECH(IS)

IF (IDBGCH .EQ. -1)

WRITE (JDEBUG,*) IS, YSPECH(IS), DPENFR(IS)

20 CONTINUE

C

KROGER DENOTES

KROGER 1
KROGER 2
KROGER - 3

THE SPECIAL TYPE OF REACTION MODEL TO BE USED.

: USE ROGER AND CHINITZ MODEL

: USE LIGHT HILL SINGLE DISSOCIATING GAS MODEL
: USE A SINGLE NON-REACTING GAS

C
C SET UP THE CONSTANTS FOR ROGER AND CHINITZ MODEL, FOR THIS

C MODEL THE SPECIES MUST BE ORDERED AS 02, H20, H2, OH AND N2

C

IF (KROGER .EQ. 1) THEN
NSPECH - 5
NREACH = 2
NINRCH - 1

ENDIF

C

C FOR THE LIGHT HILL GAS MODEL THE SPECIES ARE ORDERED A, A2
C

IF (KROGER .EQ. 2) THEN
NSPECH - 2

NREACH = 1
NINRCH - 0

ENDIF

IF (KROGER .EQ. 3) THEN
NSPECH = 1
NREACH - 0

NINRCH = 0

TREFCH - 0.

ENDIF

C

IF (IDBGCH .EQ. -1) THEN
WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG.1200)
WRITE(JDEBUG,1300) NREACH, NSPECH

WRITE(JDEBUG,1400)

ENDIF
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C READ- THE REACTION NUMBER AND REACTION COEFFICIENTS, FOR BOTH

C REACTANT AND PRODUCT SIDES FOR EACH REACTION

DO 40 IR - 1. NREACH

READ(JREADC.*) IRP, (IALPCH(IS,IR), IS=1,NSPECH)
READ(JREADC,*) IRP. (IBETCH(IS,IR).IS=.NSPECH)

DO 30 IS 1, NSPECH
BMIACH(IS,IR) IBETCH(IS,IR) - IALPCH(IS.IR)

30 CONTINUE
IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG,1500) IR, (IALPCH(IS,IR),IS=1NSPECH)
WRITE(JDEBUG.1500) IR, (IBETCH(IS,IR),IS=,NSPECH)
WRITE(JDEBUG,1600)

ENDIF

40 CONTINUE

C READ THE REACTION NUMBER IR, REACTION CONSTANT TYPE IREACT,
C PRE-EXPONENTIAL FACTOR (NATURAL LOG VALUE), EXPONENT OF
C TEMPERATURE AND THE ACTIVATION ENERGY TERM (E/R -- PER DEGREE K)
C FOR EACH REACTION SO THAT REACTION RATES CAN BE DETERMINED.
C IREACT IS
C CONSTANTS
C IF IREACT
C IF IREACT

C IF IREACT
C FOR ROGER

A BINARY CODED VARIABLE WHICH INDICATES THE RATE
TO BE READ

= 1 READ FORWARD RATE CONSTANTS

= 2 READ BACKWARD RATE CONSTANTS

= 4 READ EQUILIBRIUM RATE CONSTANTS
AND CHINITZ MODEL READ THE EQUIVALENCE RATIO PHI

IN PREFCH(1) AND MEAN TEMPERATURE (TEMPMN) IN PREFCH(2). USE
IREACT=5 AND NEGATIVE VALUE FOR TEMPMN IF A LINEAR SPECIFIC
HEAT MODEL (Cp=a+bT) IS DESIRED.

FOR LIGHT HILL MODEL READ THE CONSTANT PHI IN PREFCH(1),

ETA IN EXPFCH(1), THETAD IN ENEFCH(1) AND RHOD IN PREBCH(1).

IF (IDBGCH .EQ. -1) WRITE(JDEBUG.2400)

DO 50 IR 1, NREACH

READ(JREADC,*) IRP. IREACT

IRF - IAND (IREACTKLOO01)

IRB IAND (IREACTKLOO02)

IRE IAND (IREACT,KL0004)

FORWARD RATE CONSTANTS ?

IF (IRF .NE. O) THEN
READ(JREADC,*) TERMI, TERM2, TERM3
IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG2600) IRP, IREACT, TERM1,
ENDIF
PREFCH(IR) - TERMI
EXPFCH(IR) TERM2
ENEFCH(IR) - TERM3
IF (IRB .EQ. 0 .AND. IRE .EQ. O) PREBCH(

ENDIF

TERM2, TERM3

IR) = -99.
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BACKWARD RATE CONSTANTS ?

IF (IRB .NE. O) THEN

READ(JREADC,*) TERM1, TERM2, TERM3

IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG,2600) IRP, IREACT, TERM1, TERM2, TERM3

ENDIF

PREBCH(IR) - TERMi

EXPBCH(IR) = TERM2

ENEBCH(IR) = TERM3
IF (IRF .EQ. 0 .AND. IRE .EQ. O) PREFCH(IR) = -99.

IF (IRF .NE. 0 .AND. IRE .EQ. O) THEN

PREECH(IR) PREFCH(IR) - PREBCH(IR)

EXPECH(IR) EXPFCH(IR) - EXPBCH(IR)

ENEECH(IR) ENEFCH(IR) - ENEBCH(IR)
ENDIF

ENDIF

EQUILIBRIUM RATE CONSTANTS ?

IF (IRE .NE. O) THEN

READ(JREADC.*) TERM1, TERM2, TERM3

IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG,2600) IRP, IREACT, TERM1, TERM2, TERM3
ENDIF

PREECH(IR) = TERMI
EXPECH(IR) = TERM2

ENEECH(IR) = TERM3

IF (IRB .EQ. O)

PREBCH(IR) -
EXPBCH(IR) =

ENEBCH(IR) =
ENDIF

IF (IRF .EQ. O)

PREFCH(IR) =
EXPFCH(IR) =
ENEFCH(IR) -

THEN

PREFCH(IR)

EXPFCH(IR)

ENEFCH(IR)

THEN

PREBCH(IR)
EXPBCH(IR)
ENEBCH(IR)

- PREECH(IR)
- EXPECH(IR)
- ENEECH(IR)

+ PREECH(IR)
+ EXPECH(IR)
+ ENEECH(IR)

ENDIF

ENDIF

50 CONTINUE

IF (KROGER .EQ. 1) THEN

C
PHICR 0.1 IS NOT TOLERABLE IN

PHICR - PREFCH(1)
CALL C2ROCH

CALL C2RINT (PHICR,Y02,YH2,YN2)
PREBCH(1) - PREFCH(1) - PREECH(
PREBCH(2) - PREFCH(2) - PREECH(:
YSPEPR(1) - Y02
YSPECH(I) - Y02

YSPEPR(2) O0.
YSPECH(2) - O.

YSPEPR(3) = YH2
YSPECH(3) - YH2
YSPEPR(4) - O.
YSPECH(4) - O.

C2ROCH, BUT IS OK FOR C2RINT

1)
2)
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YSPEPR(5) - YN2

YSPECH() - YN2

IF (YH2 .NE. .) THEN

WRITE(6,*) ' C2INIT

1
ENDIF

SKIP THE SPECIFIC HEAT

GO TO 70

ENDIF

PHICR Y02 YH2 YN2',

PHICRYO2,YH2,YN2

AND SOME OTHER DATA

C
IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG,2000)

WRITE(JDEBUG,.2100)

ENDIF

C READ THE SPECIES NUMBER

C (CP AND CV IN KJ/KG/K),

C ENTROPY (KJ/KMOL/K) AT

DO 60 IS 1, NSPECH

READ(JREADC
1

SPCPCH(IS)

SPBSCH(IS)

SPCVCH(IS)

FMHTCH(IS)

ENTRCH(IS)

IS, ATOMIC WEIGHT, SPECIFIC HEATS

HEAT OF FORMATION (KJ/KMOL), AND
THE REFERENCE CONDITIONS FOR EACH SPECIES

C,*) ISP, AMWTCH(IS), SPCPCH(II
FMHTCH(IS), ENTRCH(II

- 1000.*SPCPCH(IS)

- 1000.*SPBSCH(IS)

= 1000.*SPCVCH(IS)
= l0.*FMHTCH(IS)/AMWTCH(IS)

= 1000.*ENTRCH(IS)

S), SPCVCH(IS),

S), SPBSCH(IS)

1

IF (IDBGCH .EQ. -1) THEN

WRITE(JDEBUG,2200) IS, AMWTCH(IS), SPCPCH(IS),
SPCVCH(IS), FMHTCH(IS), ENTRCH(IS), SPBSCH(IS)

ENDIF

60 CONTINUE

C

70 IF (KORDER .GT. O) THEN
C READ THE NUMBER OF NON-ELEMENTARY REACTIONS

READ(JREADC,*) NREACT
DO 86 IR 1, NREACT

C READ THE REACTION NUMBER AND REACTION ORDER COEFFICIENTS,
C FOR BOTH REACTANT AND PRODUCT SIDES FOR EACH REACTION

READ(JREADC,*) IRP, (IALOCH(IS,IR),IS=l,NSPECH)

READ(JREADC,*) IRP, (IBTOCH(IS,IR),IS=l,NSPECH)
80 CONTINUE

ELSE

DO 90 IR 1, NREACH

DO 90 IS 1, NSPECH

IALOCH(IS,IR) - IALPCH(IS,IR)

IBTOCH(IS,IR) - IBETCH(IS,IR)
90 CONTINUE

ENDIF

DO 120 IR - 1, NREACH

IF (PREBCH(IR) .EQ. -99.) THEN
DO 100 IT - 1, 3

TEMP - TEMPER(IT)

AT - LOG(TEMP)
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RT = 1./TEMP
ALKF = PREFCH(IR) + EXPFCH(IR)*AT - ENEFCH(IR)*RT

C GET THE LOG OF EQUILIBRIUM CONSTANT FOR REACTION IR

C CALL C2KCRE(TEMP, AKEQ, IR)

RHS(IT) = ALKF - AKEQ(IR)

AMAT(IT,1) = 1.
AMAT(IT,2) = AT

AMAT(IT,3) = -RT
100 CONTINUE

CALL GAUSS2(AMAT,RHS,SOLN,3,3)

PREBCH(IR) = SOLN(1)

EXPBCH(IR) = SOLN(2)
ENEBCH(IR) = SOLN(3)

ENDIF

IF (PREFCH(IR) .Eq. -99.) THEN

DO 110 IT = 1, 3

TEMP = TEMPER(IT)

AT = LOG(TEMP)

RT = 1./TEMP
ALKB = PREBCH(IR) + EXPBCH(IR)*AT - ENEBCH(IR)*RT

C CALL C2KCRE(TEMP, AKEQ, IR)

RHS(IT) = ALKB + AKEq(IR)

AMAT(IT,1) = 1.

AMAT(IT,2) = AT

AMAT(IT,3) -RT

110 CONTINUE

CALL GAUSS2(AMAT,RHS,SOLN,3,3)

PREFCH(IR) = SOLN(1)

EXPFCH(IR) = SOLN(2)
ENEFCH(IR) = SOLN(3)

ENDIF

120 CONTINUE

CLOSE (JREADC)
C
C PRINT OUT PARAMETERS

C

IF (IDBGCH .NE. 1 .AND. IDBGCH .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG, 1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300) NREACH, NSPECH

WRITE(JDEBUG, 1400)

DO 130 IR - 1, NREACH

WRITE(JDEBUG,1500) IR, (IALPCH(IS,IR),IS=1,NSPECH)

WRITE(JDEBUG,1500) IR, (IBETCH(IS,IR),IS=1,NSPECH)

WRITE(JDEBUG. 1600)
130 CONTINUE

IF (KORDER .EQ. ) THEN

WRITE(JDEBUG, 1700)

ELSE

WRITE(JDEBUG, 1800)
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WRITE(JDEBUG,1900)

DO-140 IR - 1, NREACH

WRITE(JDEBUG,1500) IR, (IALOCH(IS,IR),IS=I,NSPECH)

WRITE(JDEBUG,1600) IR, (IBTOCH(IS,IR),IS=1,NSPECH)

140 CONTINUE
ENDIF

WRITE(JDEBUG 2000)

WRITE (JDEBUG, 2100)

DO 150 IS - 1, NSPECH

WRITE(JDEBUG,2200) IS, AMWTCH(IS), SPCPCH(IS),

1 SPCVCH(IS), FMHTCH(IS), ENTRCH(IS)

150 CONTINUE

WRITE(JDEBUG, 2300)

DO 160 IR - 1, NREACH
WRITE(JDEBUG,2500) IR, PREFCH(IR), EXPFCH(IR), ENEFCH(IR)
WRITE(JDEBUG,2600) IR, PREBCH(IR), EXPBCH(IR), ENEBCH(IR)

WRITE(JDEBUG,2500) IR, PREECH(IR), EXPECH(IR), ENEECH(IR)

WRITE(JDEBUG, 1600)

160 CONTINUE

WRITE(JDEBUG,2700) TREFCH, PRESCH

C ---FORAT STATEMENTS

1000 FRMAT--- //-- X----------- )
1100 FORMAT( lOX.'DEBUG PRINT FROM C2INIT' )
1200 FORMAT( lOX'-----------------------'/)

1300 FORMAT(SX,'NUMBER OF REACTIONS = ',I5,5X,
I 6X,'NUMBER OF SPECIES = ',Is//)

1400 FORMAT(SX,'REACTION REACTION COEFFICIENTS'/)

1500 FORMAT(SX,16,5X,20I5)

100oo FORMAT(/)
1700 FORMAT(/SX, '-----ALL THE REACTIONS ARE ELEMENTARY -----'/)

1800 FORMAT(/SX, '-----SOME REACTIONS ARE NON-ELEMENTARY -----'/)

1900 FORMAT(SX.'REACTION REACTION ORDER COEFFICIENTS'/)

2000 FORMAT(/SX,'----- PROPERTIES OF SPECIES-----'/)

2100 FORMAT(8X,'SPECIES' ,SX, 'MOL WT',11X, 'CP -- J/KG/K',SX,

1 'CV -- J/KG/K',SX,'HT FM J/KG ',5X,

2 'ENTROPY J/KMOL/K'/)

2200 FORMAT(SX,I5,6X.6E17.6)

2300 FORMAT(/5X,'-----PROPERTIES OF REACTIONS-----'//

I 5X,'REACTION',2X,'PRE-EXPO FAC',6X,'EXPONENT',

2 9X,'ENERGY TERM')

2400 FORMAT(/5X,'-----PROPERTIES OF REACTIONS-----'//
1 X,.'REACTION',2X,'IREACT',4X,'TERMI',12X,'TERM2',

2 12X,'TERM3')

2500 FORMAT(SX,I5,3E17.6)

2800 FORMAT(SX,15,5X,I5,3E17.6)

2700 FORMAT(//SX, 'REFERENCE TEMPERATURE =-',E15.6.SX,

1 X, 'REFERENCE PRESSURE =',E15.6//)
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RETURN

END -

C2KCRE

SUBROUTINE C2KCRE (TEMP. AKEQ, ITYPE)
C

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'. INC]

[. INC]

[.INC]

* [.INC]

[.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

FLCOMN.INC/LIST'

IOCOMN.INC/LIST'

DIMENSION AKEQ(MREACH), GIBBS(MSPECH)

DATA KOUNT /0/

C
C THIS SUBROUTINE COMPUTES THE REACTION CONSTANTS KP AND KC FOR A
C NUMBER OF REACTIONS AT A GIVEN TEMPERATURE TEMP IN DEGREE K.
C

C

C GIBBS(S) IS THE SPECIFIC MOLAL GIBBS FUNCTION FOR SPECIES S

C DELGIB IS THE TOTAL GIBBS FUNCTION CHANGE FOR A REACTION R

C SUMCOF IS THE SUM OF THE COEFFIENTS (DELTAN) USEFUL IN THE
C COMPUTATION OF EQUILIBRIUM CONSTANT

C AKPR IS THE EQUILIBRIUM CONSTANT BASED ON PARTIAL PRESSURES

C AKEQ(R) IS THE EQUILIBRIUM CONSTANT BASED ON CONCENTRATIONS

C ITYPE IS THE PARAMETER INDICATING WHETHER EQUILIBRIUM CONSTANTS

C HAVE TO BE DETERMINED FOR ALL REACTIONS (SET ITYPE < O) OR FOR
C SPECIFIC REACTIONS (SET ITYPE - IR -- THE REACTION NUMBER)
C

1

2
3
4

UGASFL = 8.31434E03
KOUNT - KOUNT + I
DO 10 IS - 1, NSPECH

GIBBS(IS) - FMHTCH(IS)*AMWTCH(IS) - TEMP*ENTRCH(IS)

+ SPCPCH(IS)*AMWTCH(IS)*(TEMP-TREFCH)

+ 0.5*SPBSCH(IS)*AMWTCH(IS)*(TEMP**2-TREFCH**2)

- TEMP*SPCPCH(IS)*AMWTCH(IS)*LOG(TEMP/TREFCH)
- TEMP*SPBSCH(IS)*AMWTCH(*AMWTCH(IS)*(TEMP-TREFCH)

C

10 CONTINUE

C

C COMPUTE THE (LOG OF) EQUILIBRIUM CONSTANTS FOR ALL THE REACTIONS

C

IF (ITYPE .LT. O) THEN

DO 30 IR - 1. NREACH
DELGIB O.
SUMCOF - O.

DO 20 IS - 1 NSPECH

DELGIB - DELGIB + BMIACH(IS,IR)*GIBBS(IS)
SUMCOF SUMCOF - BMIACH(IS,IR)
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20 CONTINUE

AKPR - -DELGIB/TEMP/UGASFL

AKEQ(IR) AKPR + SUNCOF*LOG(UGASFL*TEMP/PRESCH)

30 CONTINUE

GOTO 50

ENDIF

C

C COMPUTE THE EQUILIBRIUM CONSTANTS FOR ALL REACTION IR

C
IR = ITYPE

DELGIB - 0.

SUMCOF = 0.
DO 40 IS - 1, NSPECH

DELGIB - DELGIB + BMIACH(IS,IR)*GIBBS(IS)
SUMCOF SUMCOF - BMIACH(IS,IR)

40 CONTINUE

AKPR - -DELGIB/TEMP/UGASFL

AKEQ(IR) AKPR + SUMCOF*LOG(UGASFL*TEMP/PRESCH)
60 CONTINUE

C

C PRINT OUT PARAMETERS
C

IF (IDBGCH .NE. 2 .AND. IDBGCH .LT. 1000) RETURN

IF (KOUNT .NE. 1 ) GOTO 60

C

WRITE (JDEBUG, 1000)

WRITE (JDEBUG, 1100)

WRITE(JDEBUG,1200)

60 WRITE(JDEBUG,1300)

C

DO 70 IS 1, NSPECH

WRITE(JDEBUG, 1400) IS,GIBBS(IS)

70 CONTINUE
C

WRITE(JDEBUG, 1500)
C

IR ITYPE

C

IF (ITYPE .LT. O) THEN

DO 80 IR - 1, NREACH

WRITE(JDEBUG,1600) IR,TEMP,AKEQ(IR)

80 CONTINUE

ELSE

WRITE(JDEBUG, 1600) IR,TEMP,AKEQ(IR)

ENDIF

C
C

C FORMAT STATEMENTS
C

C
1000 FORMAT(//1iOX,'-----------------------' )

1100 FORMAT( lOX,'DEBUG PRINT FROM C2KCRE' )
1200 FORMAT( lOX, ----------------------- '/)

1300 FORMAT (' GIBBS FUNCTION FOR VARIOUS SPECIES :'/
1 5X,'SPECIES',3X,'GIBBS FUNCTION')

1400 FORMAT(6X,15,5X,E15.7)

1500 FORMAT(/5X,'REACTION',O1X,'TEMPERATURE',4X,'LOG OF EQUIL CONS'/)
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1600 FORMAT( X,I6, 10X,2E15.6)

C
RETURN

END

C2PLOT

PROGRAM C2PLOT

PARAMETER (MNODG2 - 1000, MLINE=10)

DIMENSION TEMP$(MNODG2), CP$(MNODG2)

DIMENSION N(MLINE), IOPT$(MLINE)

CHARACTER FILNAM*40, MTITLE*80, PLTITL*96

C***********************************************************************
C

C THIS PROGRAM PLOTS THE SPECIFIC HEAT AT CONSTANT PRESSURE, BOTH

C THE ORIGINAL DATA AND THE LINEAR REGRESSION FIT. THIS PROGRAM

C FIRST READS THE TWO KINDS OF DATA FROM THE S.DATU FILES WHICH

C MAY HAVE BEEN CREATED BY C2SPCA.FOR FOR A GIVEN NUMBER OF SPECIES

C

JTERMO 6
JTERMI - 6

OFFSET 10.

JOUNT 6

MTITLE = ' '
CALL GRINIT(JTERMI, JTERMO ,MTITLE)
PLTITL = ' '
KOUNTM 0

OFSETM O.

NLINE = 0

WRITE(JTERMO,*) ' INPUT TOTAL NUMBER OF SPECIES'

READ (JTERMI,*) NSPECH

DO 100 ILINE 3 1, NSPECH

FILNAM' '

FILNAM(1:5)"'S.DAT'

WRITE(FILNAM(e:6),1778) ILINE

1778 FORMAT(I1)

OPEN (UNIT-48,FILE-FILNAM,STATUS='OLD',READONLY)

READ(48.*) KOUNT
NLINE - NLINE + 1

IOPT$(NLINE) - 12
N$(NLINE) - KOUNT

DO 1134 I - 1, KOUNT
KOUNTM - KOUNTM + 
READ(48,100. ) TEMP,CP,CPL

TEMP$(KOUNTM) - TEMP

CP*(KOUNTM) - CP + OFSETM
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1134 CONTINUE

OFSETM - OFSETM + OFFSET
1005 FORMAT(3E15.7)

CLOSE(48)

100 CONTINUE

OFSETM 0.

DO 200 ILINE = 1, NSPECH

FILNAM' '

FILNAM(1:6)='S.DAT'

WRITE(FILNAM(6:6),1778) ILINE

OPEN (UNIT=48.FILE=FILNAM, STATUS='OLD',READONLY)

READ(48,*) KOUNT

NLINE = NLINE + 1
IOPT$(NLINE) 2

NS(NLINE) = KOUNT

DO 1136 I " 1, KOUNT

KOUNTM - KOUNTM + 1

READ(48,1006) TEMIP,CP,CPL

TEMP$(KOUNTM) = TEMP
CP$(KOUNTM) = CPL + OFSETM

1135 CONTINUE

OFSETM OFSETM + OFFSET

CLOSE(48)

200 CONTINUE

INDGR 21

CALL GRLINE(IOPT$,NLINE,PLTITL, INDGR,TEMP$, CP$,N$)
STOP

END

C2PONT

SUBROUTINE C2PONT
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'
INCLUDE 'IOCOMN.INC'

LOGICAL INERT

C********************************************************************
C
C THIS SUBROUTINE SETS THE CHEMISTRY POINTER SYSTEM FOR ALL THE

C REACTIONS. THAT IS, IT SETS THE NUMBER OF SPECIES IN EACH

C REACTION NSRKCH(IR) AND A TABLE ITABCH(IS,IR) OF SPECIES
C NUMBERS INVOLVED IN THE KINETIC (OR EqUILILIBRIUM) REACTIONS

C FOR THE SPECIES IS IN THE REACTION IR.
C
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C NONINR COUNTS THE NON-INERT SPECIES

C
DO 20 IR - 1, NREACH

NONINR - 0

DO 10 IS - 1, NSPECH

INERT - IALPCH(IS,IR) .EQ. 0 .AND. IBETCH(IS,IR) .EQ. 0

IF (.NOT. INERT ) THEN
NONINR - NONINR + 1

ITABCH(NONINR,IR) IS

ENDIF

10 CONTINUE

NSRKCH(IR) - NONINR

20 CONTINUE
C

C PRINT OUT PARAMETERS

C

IF (IDBGCH .NE. .AND. IDBGCH .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG, 1100)

WRITE (JDEBUG, 1200)

DO 40 IR - 1, NREACH

WRITE(JDEBUG,1300) IR, NSRKCH(IR)

DO 30 IS - 1. NSRKCH(IR)

WRITE(JDEBUG,1400) ITABCH(IS,IR)

30 CONTINUE

40 CONTINUE

C -----FORAT STATEMETS

1000C ------ FRMAT// OX----------- )
1100 FORMAT( lOX.'DEBUG PRINT FROM C2PONT' )

1200 FORMAT( OX,'-----------------------'/)

1300 FORMAT(/6X,'REACTION #',I2,5X,'SPECIES IN THIS REACTION=',I2/

1 5X,'SPECIES COEFFICIENTS ARE :')

1400 FORMAT(6X, 6013)

RETURN

END
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C2RINT

SUBROUTINE C2RINT (PHI, Y02, YH2, YN2)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'IOCOMN.INC'

C
C THIS SUBROUTINE COMPUTES THE INITIAL CONCENTRATIONS FOR A PRE-

C MIXED FLOW FOR ROGER AND CHINITZ MODEL, I.E., FOR A SCRAMJET
C CALCULATION OF HYDROGEN FUEL IN AIR FOR A GIVEN VALUE OF

C EQUIVALENCE RATIO PHI. THE STOICHIOMETRIC REACTION OF HYDROGEN

C IN AIR IS

C

2 H + ( O + 3.76 N ) <===> 2 H 0 + 3.76 N
2 2 2 2 2

C
C

C

C

C
C

ASSIGN THE MOLECULAR WEIGHTS

AMWTO2

AMWTH2

AMWTN2

= AMWTCH(1)
= AMWTCH(3)

= AMWTCH(5)

C MOLAR RATIO OF NITROGEN AND OXYGEN IN AIR

RN2BO2 = 3.76

AMT02

AMTN2

AMTAIR

AMTH2S

FBAIRS

FBAIR

AMTH2

TOTALM

Y02
YH2
YN2
YH20
YOH
YTOTAL

= AMWT02

- AMWTN2*RN2B02

- AMTN2 + AMT02

- AMWTH2*2.

I AMTH2S/AMTAIR

- PHI*FBAIRS

- FBAIR*AMTAIR
- AMTH2 + AMTAIR

- AMTO2/TOTALM

- AMTH2/TOTALM

- AMTN2/TOTALM

- 0.

- O.
YO2 + YH2 + YN2

PRINT OUT PARAMETERS

IF (IDBGCH .NE. 4 .AND. IDBGCH .LT. 1000)

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,1100)
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WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1400) PHI,FBAIRS,FBAIR,YH2,Y02,YN2,YTOTAL

C -------
C FORMAT STATEMENTS

C ---- ___

1000 FORMAT//10X,---------------' )
1100 FORMAT( lOX,'DEBUG PRINT FROM C2RINT' )
1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT(3X,'PHI',12X,'FUEL/AIR STOI',2X,'FUEL/AIR' ,7X,'YH2',

1 12X, 'Y022X , ' YN2', 2XY2', 'YTOTAL'/)

1400 FORMAT (7E15.6)

RETURN

END

C2ROCH

SUBROUTINE C2ROCH

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'

'IOCOMN.INC'

CHARACTER*4 SPNAME(5)

C
C THIS SUBROUTINE COMPUTES THE PRE-EXPONENTIAL FACTORS FOR THE

C ROGER AND CHINITZ MODEL FOR A GIVEN VALUE OF EQUIVALENCE RATIO

C PHI. IT ALSO SETS UP THE PROPERTIES OF THE SPECIES FOR A GIVEN
C VALUE OF THE MEAN TEMPERATURE TEMPMN

C

C

C DEFINE THE MOLAL SPECIFIC HEAT OF SPECIES IN KJ/KMOL/K

C REFERENCE : VAN WYLEN PAGES 683-684 FOR TEMPERATURES BETWEEN
C 300 AND 3500 KELVIN.

CPN2 (T)-39.060 -
CP02 (T)-37.432 +

CPH2 (T)=56.605 -
CPOH (T)=81.546 -
CPH20O(T)=143.05 -

612.79/T**1.6 + 1072.7/T**2 - 820.4/T**3

0.020102*T**1.5 - 178.57/T**1.6 + 236.88/(T*T)
702.74/T**0.75 + 11665./T - 560.7/T**1.6

59.350*T**0.25 + 17.329*T**0.75 - 4.266*T

183.64*T**0.25 + 82.751*T**0.6 - 3.6989*T

C SET EQUIVALENCE RATIO PHI AND MEAN TEMPERATURE TEMPMN

PHI - PREFCH(1)

TEMPMN PREFCH(2)

IF (PHI .LT. 0.1) PHI - 0.1

552



IF (PHI .GT. 2.0) PHI = 2.0
THE = ABS(TEMPMN)/100.

RPHI = 1./PHI
TENLOG LOG(10.)

A1PHI = 8.917*PHI + 31.433*RPHI - 28.950

A2PHI =-0.833*PHI + 1.333*RPHI + 2.000

PREFCH(1) = LOG(A1PHI) + 44.*TENLOG
PREFCH(2) - LOG(A2PHI) + 58.*TENLOG

EXPFCH(1) - -10.
EXPFCH(2) - -13.

ENEFCH(1) = 2448.42
ENEFCH(2) = 21389.03

C THE SPECIES ARE ORDERED AS 02, OH, H2, H20

SPNAME(1)

SPNAME(2)

SPNAME(3)
SPNAME(4)

SPNAME(5)

= '02 
= 'OH '
= 'H2 '

= 'H20 '
- 'N2 '

C MOLECULAR WEIGHTS

AMWTCH(1)
AMWTCH (2)
AMWTCH(3)
AMWTCH(4)

AMWTCH(S)

= 31.999
- 17.008
= 2.016
= 18.015
= 28.013

C HEAT OF FORMATION IN J/KMOL

FMHTCH(1) = 0.
FMHTCH(2) = 39463.*1000./AMWTCH(2)
FMHTCH(3) = 0.
FMHTCH(4) = -241827.* 1000./AMWTCH(4)
FMHTCH(5) = 0.

C REFERENCE ENTROPY IN J/KMOL/K

ENTRCH(1)
ENTRCH(2)
ENTRCH(3)

ENTRCH(4)
ENTRCH(5)

= 205.142*1000.
= 183.703*1000.
= 130.684*1000.
= 188.833*1000.
- 191.611*1000.

C SPECIFIC HEATS AT CONSTANT PRESSURE IN KJ/KMOL/K

IF (TEMPMN .GT. 0.) THEN

SPCPCH(1) = CP02 (THE)
SPCPCH(2) - CPOH (THE)
SPCPCH(3) CPH2 (THE)
SPCPCH(4) = CPH20(THE)
SPCPCH(5) CPN2 (THE)

553



SPBSCH(1) = O.

SPBSCH(2) - O.

SPBSCH(3) - O.

SPBSCH(4) - 0.

SPBSCH(5) - O.

ELSE

SPCPCH(1) - 30.559

SPCPCH(2) - 28.071

SPCPCH(3) - 27.290

SPCPCH(4) = 32.469
SPCPCH(S) - 29.282

SPBSCH(1) - 0.34485E-2

SPBSCH(2) - 0.30943E-2

SPBSCH(3) - 0.33530E-2

SPBSCH(4) - 0.86358E-2

SPBSCH(5) - 0.30233E-2

ENDIF

C UNIVERSAL GAS CONSTANT IN KJ/KMOL/K

UGASCO=8.31434

DO 10 IS 1, NSPECH

C SPECIFIC HEATS AT CONSTANT VOLUME IN KJ/KMOL/K

SPCVCH(IS) - SPCPCH(IS) - UGASCO

C SPECIFIC HEATS AT IN J/KG/K

SPCPCH(IS) SPCPCH(IS)*1000./AMWTCH(IS)

SPCVCH(IS) SPCVCH(IS)*1000./AMWTCH(IS)

SPBSCH(IS) - SPBSCH(IS)*1000./AMWTCH(IS)

10 CONTINUE

PREBCH(1) - PREFCH(1) - PREECH(1)

PREBCH(2) - PREFCH(2) - PREECH(2)
C
C DEBUG PRINT

C

IF (IDBGCH .NE. 3 .AND. IDBGCH .LT. 1000) RETURN

WRITE(3DEBUG, 1000)

WRITE(JDEBUG. 1100)
WRITE(JDEBUG. 1200)

WRITE(JDEBUG.1210) PHI,TEMPMN

WRITE (JDEBUG. 1300)

DO 20 IS = 1, NSPECH
GAMMA - SPCPCH(IS)/SPCVCH(IS)

WRITE(JDEBUG.1400) ISSPNAME(IS) ,AMWTCH(IS). SPCPCH(IS),

1 SPCVCH(IS).GAMA,FMHTCH(IS),ENTRCH(IS)
20 CONTINUE

C ------FORMAT STATEMENTS

1000 FRMAT//-------------)

1100 FORMAT( lOX,'DEBUG PRINT FROM C2ROCH' )

1200 FORMAT( 10X,'----------------------- /)
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1210 FORMAT (X,'EQUIVALENCE RATIO ',E15.6,6X,

1 6X, 'MEAN TEMPERATURE = ',E15.6/)
1300 FORMAT(lX,'SPECIES' ,X.'MOL WT',7X,'CP J/KG/K',6X,'CV J/KG/K',

1 6X, 'GAMMA',10X,'HT FM J/KMOL',3X,'ENTROPY J/KMOL/K'/)
1400 FORMAT(I2,2X,A4,6E16.6)

RETURN

END

C2SPCA

PROGRAM C2SPCA

PARAMETER (MSPECH 14, MNODG2 = 200)
DIMENSION ATWTCH(MSPECH), N$(2), IOPT$(2)

DIMENSION TEMP$(MNODG2), CP$(MNODG2), CPLINt(MNODG2)

CHARACTER CHARSP*S, SPNAME(MSPECH)*8, YESNO*1, FILNAM*40.

1 MTITLE*80, PLTITL*96

C
C THIS PROGRAM CALCULATES THE SPECIFIC HEAT AT CONSTANT PRESSURE

C FOR SOME SELECTED SPECIES. THE MOLAL SPECIFIC HEAT IS KNOWN

C AS FUNCTION OF TEMPERATURE. THE PROGRAM CAN DETERMINE CP AT

C A GIVEN TEMPERATURE OR THE MEAN CP FOR A RANGE OF TEMPERATURES.

C THE PROGRAM ALSO DETERMINES CP AS A LINEAR FUNCTION OF TEMPERA-

C TURE AND PLOTS THE ACTUAL VARIATION AND THE LINEAR VARIATION

C VERSUS TEMPERATURE.
C

JTERMO - 6
JTERMI 6

NSPECH 0
JSPOUT 7

JOUNT - 0
ITOTAL 0

OPEN(UNIT-JSPOUT, FILE-'SPHEAT.DAT', STATUS='NEW')

C SET UP THE MOLECULAR WEIGHTS

ATWTCH(1 ) - 28.013

ATWTCH(2 ) - 31.999

ATWTCH(3 ) 2.016

ATWTCH(4 ) - 28.01

ATWTCH(S ) = 17.008

ATWTCH(6 ) - 30.006
ATWTCH(7 ) - 18.016
ATWTCH(8 ) - 44.01
ATWTCH(9) - 46.006

ATWTCH(10) - 16.043

ATWTCH(11) - 28.053
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ATWTCH(12) - 30.069

ATWTCH(13) - 44.096

ATWTCH(14) - 68.122

C SET UP THE NAMES OF THE MOLECULES

SPNAME(I ) . 'N2

SPNAME(2 ) - '02

SPNAME(3 ) = 'H2

SPNAME(4 ) - 'CO

SPNAME(5 ) - 'OH

SPNAME(6 ) - 'NO
SPNAME(7 ) = 'H20

SPNAME(8 ) ·'C02

SPNAME(g ) = 'NO2

SPNAME(10) - 'CH4

SPNAME(11) = 'C2H4

SPNAME(12) - 'C2H6

SPNAME(13) - 'C3H8

SPNAME(14) = 'C4H10

C UNIVERSAL GAS CONSTANT IN KJ/KMOL/K

UGASCO - 8.31434

WRITE (JTERMO,1000)

1000 FORMAT(' INPUT INITIAL, INCREMENTAL AND FINAL TEMPERATURES'/
1 .. => ,$)

READ (JTERMI,*) TINIT,TINCR,TFINAL

WRITE (JTERMO,1001)

1001 FORMAT(

1 ' DO YOU WANT TO HAVE ALL VALUES WRITTEN IN FILES EY/N]')
READ(JTERMI,1800) YESNO

IF (YESNO .EQ. 'y' .OR. YESNO .EQ. 'Y') ITOTAL = 1

MTITLE - 'SPECIFIC HEAT VERSUS TEMPERATURE'

CALL GRINIT(JTERMI, JTERMO ,MTITLE)

C READ THE NAME OF THE SPECIES

10 WRITE (JTERMO,1100)
1100 FORMAT(' INPUT THE NAME OF THE SPECIES'/' =-> ,$)

CHARSP - ' '
READ (JTERMI,1200) CHARSP

1200 FORMAT(A8)

DO 20 I 1 MSPECH

IF (CHARSP .EQ. SPNAME(I)) THEN
ITYPE I

GOTO 30

ENDIF

20 CONTINUE

WRITE (JTERMO,1300) CHARSP
1300 FORMAT(' THE SPECIES NAME IS NOT FOUND IN THE LIST : ',A8)
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STOP

30 KOUNT - 0
TEMP - TINIT

NSPECH - NSPECH + 1

SUMCP - 0.
SUMCPT = O.
SUMTM = 0.

SUMTN = 0.

SUMTM2 - 0.

WRITE (JSPOUT,1900) CHARSP
1900 FORMAT(//3X.,'SPECIFIC HEATS FOR : ',A8/)

WRITE (JSPOUT.1400)

1400 FORMAT(//5X, 'TEMPERATURE K',2X'CP KJ/KMOL/K',3X,'CV KJ/KMOL/K',
3X,'CP KJ/KG/K',6X,'CV KJ/KG/K',5X,'GAMMA'/)

40 THE - O.01*TEMP

CP - CPSP(ITYPE,THE)

THEN - O.01*THE

THEN2 = THEN*THEN
CPT = CP*THEN
CV - CP - UGASCO

CPU - CP/ATWTCH(ITYPE)
CVU - CV/ATWTCH(ITYPE)

GAMMA CP/CV
WRITE (JSPOUT,1500) TEMP,CP,CV,CPU,CVU,GAMMA

1500 FORMAT(2X,6E15.6)
KOUNT - KOUNT + 1

SUMCP = SUMCP + CP
SUMTM - SUMTM + TEMP
SUMTN SUMTN + THEN

SUMCPT SUMCPT + CPT
SUMTM2 = SUMTM2 + THEN2
TEMP$(KOUNT) TEMP
CP$(KOUNT) CP
TEMP = TEMP+TINCR

IF (TEMP .LE. TFINAL) GOTO 40
TMAV - SUMTM/KOUNT
CPAV = SUMCP/KOUNT
CVAV = CPAV - UGASCO

GAMMA - CPAV/CVAV
CPU = CPAV/ATWTCH(ITYPE)
CVU - CVAV/ATWTCH(ITYPE)
ANUE - SUMTN*SUMCP - KOUNT*SUMCPT
DENO = SUMTN*SUMTN - KOUNT*SUMTM2

SLOPE - ANUE/DENO

TCEPT - (SUMCP-SLOPE*SUMTN)/FLOAT(KOUNT)
SLOPE = SLOPE*0.0001

WRITE (JSPOUT, 1600)

1600 FORMAT (//3X,'AVERAGE VALUES')
WRITE (JSPOUT. 1500) TMAV,CPAV,CVAV,CPU,CVU.GAMMA

WRITE (JSPOUT,1560) CHARSP, TCEPT, SLOPE

15660 FORMAT(2X,'CP (',A8,' ) = ',G14.5,' + T ',G14.5)

DO 50 IK 1, KOUNT

TEMP$(IK+KOUNT) TEMPS(IK)
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CP$ (IK+KOUNT)

CPLIN*(IK)

60 CONTINUE

- TCEPT + SLOPE*TEMP$(IK)
= TCEPT + SLOPE*TEMP$(IK)

IOPT$(1) - 4

IOPT$(2) - 2

N$(1) - KOUNT

N$(2) - KOUNT
PLTITL " '
NLINE - 2

INDGR - 21

WRITE(JTERMO,1660)

1650 FORMAT(' WANT TO PLOT CURRENT
READ(JTERMI,1800) YESNO

SPECIES DATA [Y/N] ?'/' ==> '.$)

IF (YESNO .EQ. 'y' .OR. YESNO .EQ. 'Y')
I CALL GRLINE(IOPT$,NLINE,PLTITL,INDGR,TEMP$,CP$,N$)

IF (ITOTAL .EQ. O) GOTO 2345
FILNAM-' '

FILNAM(1:6)-'S.DAT'
JOUNT-JOUNT+I

WRITE(FILNAM(6:6),1778) JOUNT

1778 FORMAT(I1)

OPEN (UNIT-48,FILE=FILNAM,STATUS='NEW')

WRITE(48,*) KOUNT

DO 1134 I - 1. KOUNT

WRITE(48,1005) TEMP$(I),CP$(I),CPLIN$(I)

1134 CONTINUE

1005 FORMAT(3E15.7)

CLOSE(48)

2346 WRITE(JTERMO,1700)

1700 FORMAT(' MORE SPECIES [Y/N] ?'/' ==> °,$)
READ(JTERMI,1800) YESNO

1800 FORMAT(A1)

IF (YESNO .EQ. 'y' .OR. YESNO .EQ. 'Y') GOTO 10
C

STOP

END

CHKBN2

SUBROUTINE CHKBN2 (LCELL ,MEM1,MEM2, MEM3,MEM4,NERR, NAME)
C

INCLUDE 'PRECIS.INC'
INCLUDE 'PARMV2.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

CHARACTER NAME*6, ERRTYP*30
C
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C
C THIS SUBROUTINE CHECKS THE ASSIGNMENTS OF THE BOUNDARY NODE
C ARRAi. THESE ASSIGNMENTS ARE PRONE TO ERROR AFTER THE GRID-
C DIVIDE AND GRID-COLLAPSE ROUTINES. HENCE THIS ROUTINE MUST BE
C USED AS A DEBUG CHECK AFTER CALLS TO THESE GRID CHANGING ROUTINES

C IS MADE. LCELL IS THE MOST RECENTLY DIVIDED OR COLLAPSED CELL;
C WHERE THE ERROR MIGHT OCCUR. MEMI THRU MEM4 ARE THE SUBCELLS OF
C LCELL IF IT WERE COLLAPSED. NAME INDICATES WHEN AND WHERE

C THE ERROR OCCURED. NERR COUNTS NUMBER OF ERRORS.
C

C
C COUNT THE PREVIOUS NUMBER OF ERRORS AND SET DEBUG UNIT
C

NERRP NERR

OPEN (UNIT=JDUMY2, FILE='CHKBN2.DAT', STATUS='NEW')
C

DO 160 IBOUND - 1, NBNDG2
C

INODE - IBNDG2(1,IBOUND)

IONE - IBNDG2(2,IBOUND)

ITWO - IBNDG2(3,IBOUND)

IEDGE = IBNDG2(4,IBOUND)
C
C CHECK IF THE BOUNDARY NODE IS MARKED FOR DELETE
C

IF (INODE .EQ. -9) GO TO 150
C

C CHECK OUT THE CELLS ADJACENT TO THE BOUNDARY NODES AND

C ASSIGNMENT OF THE NODE ITSELF
C

GO TO (106,110,115,120,125,130,135,140), (IEDGE-1)

GO TO 150
C

C2 SOUTHWESTERN CORNER

106 ICONE - NEIBG2(3,INODE)
ICTWO - 0
ICNODE - ICELG2(2,ICONE)
GO TO 145

C
C3 SOUTHERN EDGE

110 ICONE - NEIBG2(4,INODE)

ICTWO NEIBG2(3,INODE)

ICNODE - ICELG2(4,ICONE)
GO TO 145

C
C4 SOUTHEASTERN CORNER

115 ICONE - NEIBG2(4,INODE)
ICTWO = 0
ICNODE - ICELG2(4,ICONE)
GO TO 145

C
Cs EASTERN EDGE

120 ICONE - NEIBG2(1,INODE)

ICTWO - NEIBG2(4,INODE)

ICNODE ICELG2(6,ICONE)
GO TO 145
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NORTHEASTERN CORNER

ICONE - NEIBG2(1,INODE)

ICTWO - 0
ICNODE - ICELG2(6,ICONE)

GO TO 145

NORTHERN EDGE

ICONE - NEIBG2(2,INODE)

ICTWO - NEIBG2(1.INODE)

ICNODE - ICELG2(8.ICONE)
GO TO 145

NORTHWESTERN CORNER

ICONE - NEIBG2(2.INODE)
ICTWO - 0
ICNODE - ICELG2(8,ICONE)

GO TO 145

WESTERN EDGE

ICONE NEIBG2(3,INODE)

ICTWO NEIBG2(2.INODE)

ICNODE - ICELG2(2.ICONE)

IF (IONE .NE. ICONE)
ERRTYP = 'ERROR IN
NERR = NERR + 1
WRITE(JDUMY2,1000)

THEN

FIRST ADJACENT CELL '

IBOUND, IEDGE , INODE , lONE ITWO ,

ERRTYP, ICNODE, ICONE, ICTWO

ENDIF

C

IF (ITWO .NE. ICTWO)
ERRTYP - 'ERROR IN

NERR - NERR + 1
WRITE(JDUMY2. 1000)

1

THEN

SECOND ADJACENT CELL '

IBOUND, IEDGE , INODE , ONE , ITWO ,

ERRTYP, ICNODE, ICONE, ICTWO
ENDIF

C

IF (INODE.NE. ICNODE) THEN
ERRTYP - 'ERROR IN NODE ASSIGNMENT

NERR - NERR + I

WRITE(JDUMY2,1000) IBOUND, IEDGE ,

ERRTYP,

ENDIF

INODE , IONE ITWO ,

ICNODE, ICONE, ICTWO

GO BACK FOR NEXT BOUNDARY NODE

CONTINUE

IF (NERR .NE. NERRP) THEN

WRITE(JTERMO.O1100) NAME,NITRE2
WRITE(JDUMY2,1100) NAME,NITRE2

WRITE(JDUMY2,1200) LCELL, MEMI, MEM2. MEM3. MEM4

CLOSE(UNIT-JDUMY2, DISP='KEEP')
ELSE

CLOSE(UNIT=JDUMY2, DISP='DELETE')

ENDIF
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C
C -

C FORMAT STATEMENTS

C -

C
1000 FORMAT(2X.'IBOUND -'I5,5X,'IEDGE =',15,

I 5X.'INODE -',I65,X,'IONE =',I5,X,'ITWO =',IS/2X,
2 A30,6X,'ICNODE ',I5,5X,'ICONEL =',I5,5X,'ICTWO =',I5)

1100 FORMAT(2X,'ERROR ',A6,6X,'AFTER',I5,2X,'ITERATIONS IN CHKBN2'/)

1200 FORMAT(2X,'LCELL -',IS,SX,'MEM1 =',I5,5X,'MEM2 =',I6,

I 5X.'MEM3 =',I6,6X,'MEM4 -',I5/)

RETURN

END

CHKMAS

SUBROUTINE CHKMAS

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

C

C THIS SUBROUTINE CALCULATES THE MASS FLOW RATE AT A VERTICAL

C PLANE STARTING FROM A GIVEN NODE AT THE BOTTOM OF THE PLANE.

C

C READ THE FOLLOWING FUEL QUANTITIES

C IBASE : THE BASE NODE OF THE PLANE OF INJECTION

C

READ (JREADS,*) IBASE

INODE - IBASE

NBTYPE - 0

NB1 - NEIBG2(4,INODE)

NB2 - NEIBG2(3.INODE)

IF (NB1 .NE. O) THEN

NBTYPE - 4

INTYPE - 6
ELSEIF (NB2 .NE. O) THEN

NBTYPE - 3
INTYPE 8

ENDIF
C
C ERROR CONDITION
C

IF (NBTYPE .EQ. O) THEN

ZERI - ISTART
ZER2 - NBTYPE
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CALL ERRORM (46,'H2SCRI','ISTART',ZERI, 'NBTYPE' ,ZER2,JPRINT,

1 'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF

C
C NOW MARCH IN THE APPROPRIATE DIRECTION

C
KOUNT 0
SUMMAS 0.

10 KOUNT - KOUNT + 

C FIND THE NEXT CELL ON TOP OF THE NODE UNDER CONSIDERATION

NBNEXT - NEIBG2(NBTYPE,INODE)
C SEE IF YOU HAVE REACHED THE TOP BOUNDARY SURFACE

IF (NBNEXT .EQ. O) GOTO 20

C CALCULATE THE DENSITY, VELOCITY AND Y-DISTANCE AT THE LOWER NODE

RHOL - DPENG2(1,INODE)

UL = DPENG2(2,INODE)/DPENG2(1, INODE)

YL = GEOMG2(2,INODE)

C FIND THE UPPER NODE AND THE CORRESPONDING QUANTITIES

INODE - ICELG2(INTYPE,NBNEXT)

RHOU = DPENG2(1,INODE)

UU - DPENG2(2,INODE)/DPENG2(1, INODE)

YU - GEOMG2(2,INODE)
C COMPUTE AVERAGE DENSITY AND VELOCITY

RHO - 0.6*(RHOL+RHOU)

U - O.5*(UL+UU)

C SUM THE MASS FLOW RATE FOR THIS CELL

SUMMAS SUMMAS + RHO*U*(YU-YL)

GO TO 10

20 CONTINUE
C WRITE ALL THE OUTPUT

C

WRITE (JTERMO,*) ' ****** WRITTING OUTPUT ON CHKMAS.DAT ******'

OPEN (UNIT=JDUMY1, FILE-'CHKMAS.DAT', STATUS= 'NEW')

WRITE (JDUMY1,30) KOUNT, SUMMAS

30 FORMAT (5X,'TOTAL NODES IN THE PLANE:',I4,5X,

1 ' MASS FLOW RATE',G14.5)

RETURN

END

CHKNC2

SUBROUTINE CHKNC2 (LCELL, MEM1,MEM2, MEM3,MEM4,NERR, NAME)
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

CHARACTER NAME*6
C
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C

C THIS SUBROUTINE CHECKS THE NEIGHBOURS OF THE CORNER NODES OF ALL

C CELLS TAKING ONE CALL AT A TIME. THESE ASSIGNMENTS ARE PRONE TO

C ERROR AFTER THE GRID-DIVIDE AND GRID-COLLAPSE ROUTINES. HENCE

C THIS ROUTINE MUST BE USED AS A DEBUG CHECK AFTER CALLS TO GRID

C CHANGING ROUTINES IS MADE. LCELL IS THE MOST RECENTLY DIVIDED

C OR COLLAPSED CELL; WHERE THE ERROR MIGHT OCCUR. MEMI THRU MEM4

C ARE THE SUBCELLS OF LCELL IF IT WERE COLLAPSED. NAME INDICATES
C WHEN AND WHERE THE ERROR OCCURED. NERR COUNTS NUMBER OF ERRORS.

C
C

C
C COUNT THE PREVIOUS NUMBER OF ERRORS AND SET DEBUG UNIT
C

NERRP = NERR

OPEN (UNIT-JDUMY2, FILE='CHKNC2.DAT', STATUS-'NEW')
C

C THERE IS NO NEED TO CHECK THE NON-CEWIC CELLS SINCE THE

C NEIGHBOUR-CELL ARRAY ONLY POINTS TO THE FINE CELLS

DO 10 ICL - 1, NCELG2

KC - ICELG2(1,ICL)
IF (KC .NE. O) GO TO 10

C COMPUTE THE CORNER NODES

KSW - ICELG2(2,ICL)

KSE - ICELG2(4,ICL)

KNE - ICELG2(6,ICL)

XNW = ICELG2(8,ICL)

C FIND THE NEIGHBOURS (CELLS) OF THESE NODES POINTING INWARD

NB1 = NEIBG2(3,KSW)

NB2 = NEIBG2(4.KSE)

NB3 - NEIBG2(1,KNE)

NB4 - NEIBG2(2,KNW)

C CHECK THE SOUTHWEST-NODE-NEIGHBOUR

IF (NB1 .NE. ICL) THEN

NERR - NERR + 1
NTP - 1
WRITE(JDUMY2,1000) ICL,KSW, KSE, KNE. KNW, NTP, NBI. NB2,NB3, NB4

ENDIF

C CHECK THE SOUTHEAST-NODE-NEIGHBOUR

IF (NB2 .NE. ICL) THEN
NERR - NERR + 1

NTP - 2

WRITE(JDUMY2,1000) ICL,KSW, KSE,KNE, KNW,NTP,NB1,NB2,NB3,NB4
ENDIF

C CHECK THE NORTHEAST-NODE-NEIGHBOUR
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IF (NB3 .NE. ICL) THEN

SERR - NERR + 1

NTP - 3

WRITE(JDUMY2,1000) ICL,KSW,KSE,KNE,KNW,NTP,NB1,NB2.,NB3,NB4

ENDIF

C CHECK THE NORTHWEST-NODE-NEIGHBOUR

IF (NB4 .NE. ICL) THEN

NERR NERR + 1

NTP 4

WRITE(JDUMY2,1000) ICL,KSW,KSE,KNE,KNW,NTP,NB1,NB2,NB3,NB4

ENDIF

C

C GO BACK FOR NEXT CELL

C
10 CONTINUE

C

IF (NERR .NE. NERRP) THEN

WRITE(JTERMO,1100) NAME,NITRE2

WRITE(JDUMY2,1100) NAME,NITRE2

WRITE(JDUMY2,1200) LCELL, MEM1, MEM2, MEM3, MEM4

JPRINT = JDUMY3
CALL G2PRNT(16)

CLOSE(UNIT=JDUMY2, DISP='KEEP')

ELSE

CLOSE(UNIT=JDUMY2, DISP='DELETE')

ENDIF

C
C

C FORMAT STATEMENTS
C

C

1000 FORMAT(2X,'ICL =',I5,6X, 'KSW ',I5,SX,'KSE =',I5,5X,'KNE =',I5,

I 5X, 'KNW -',I5/5X. 'NTP =',I5,5X,'NB ='.I5,5X.'NB2 =' ,I5,
2 5X,'NB3 ',I5,5X,'NB4 ',I5 )

1100 FORMAT(2X,'ERROR ',A6oSX,'AFTER',IS,2X,'ITERATIONS IN CHKNC2'/)

1200 FORMAT(2X, 'LCELL -',I6,X, 'MEM =',I5,BX, 'MEM2 =',I5,

1 5X,'MEM3 =',5,5X, 'MEM4 =',I5/)

RETURN

END

CHKNN2

SUBROUTINE CHKNN2 (LCELL ,MEEM,MEM2,MEM3,MEM4,NERR, NAME)
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'
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CHARACTER NAME*6, ERRTYP*30
LOGICAL CHECKI, CHECK2, CHECK3, CHECK4, CHECKA

C

C
C THIS SUBROUTINE CHECKS THE NEIGHBOURS OF ALL THE NODES TAKING

C ONE NODE AT A TIME. THESE ASSIGNMENTS ARE PRONE TO ERROR AFTER

C THE GRID-DIVIDE AND GRID-COLLAPSE ROUTINES. HENCE THIS ROUTINE

C MUST BE USED AS A DEBUG CHECK AFTER CALLS TO GRID CHANGING

C ROUTINES IS MADE. LCELL IS THE MOST RECENTLY DIVIDED OR

C COLLAPSED CELL; WHERE THE ERROR MIGHT OCCUR. MEMI THRU MEM4
C ARE THE SUBCELLS OF LCELL IF IT WERE COLLAPSED. NAME INDICATES
C WHEN AND WHERE THE ERROR OCCURED. NERR COUNTS NUMBER OF ERRORS.

C

C

C COUNT THE PREVIOUS NUMBER OF ERRORS AND SET DEBUG UNIT

C
NERRP - NERR

OPEN (UNIT-JDUMY2, FILE-'CHKNN2.DAT', STATUS='NEW')
C
C STEP OVER ALL THE NODES TO CHECK NEIGHBOURS

C
DO 30 INODE 1, NNODG2

C

CHECK IF THE NODE IS MARKED FOR COLLAPSE

IF (DPENG2(1,INODE) .EQ. -99.) GO TO 30

COMPUTE THE NEIGHBOUR CELLS

NBSW - NEIBG2(1,INODE)

NBSE - NEIBG2(2,INODE)

NBNE = NEIBG2(S,INODE)
NBNW - NEIBG2(4,INODE)

CHECK IF THE NEIGHBOUR CELLS ARE NOT WITHIN BOUNDS

CHECKI

CHECK2

CHECK3

CHECK4

CHECKA

- NBSW .LT. 0

- NBSE .LT. 0

= NBNE .LT. 0

- NBNW .LT. 0

= CHECKI .OR.

.OR.

.OR.

.OR.

.OR.

CHECK2

NBSW

NBSE

NBNE

NBNW

.OR.

.GT. NCELG2

.GT. NCELG2

.GT. NCELG2

.GT. NCELG2

CHECKS3 .OR. CHECK4

IF (CHECKA) THEN
NERR - NERR + 1
ERRTYP 'OUT OF BOUND NEIGHBOUR CELL

WRITE(JDUMY2,1000) ERRTYP, INODE, NBSW,
GOTO 30

ENDIF

NBSE, NBNE, NBNW

CHECK IF ALL THE NEIGHBOUR CELLS ARE UNDEFINED

CHECK1 
CHECK2 -
CHECKS3 -
CHECK4 -

NBSW .EQ. 0

NBSE .EQ. 0

NBNE .EQ. 0

NBNW .EQ. 0
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CHECKA a CHECKI .AND. CHECK2 .AND. CHECKS .AND. CHECK4
C

IF (CHECKA) THEN

NERR - NERR + 1
ERRTYP - 'ALL NEIGHBOUR CELLS UNDEFINED '

WRITE(JDUMY2,1000) ERRTYP, INODE, NBSW, NBSE, NBNE, NBNW
GOTO 30

ENDIF

C
C IF SOME OF THE NEIGHBOUR CELLS ARE ZERO THEN THE NODE

C MUST BE A BOUNDARY NODE

C
CHECKA CHECKI .OR. CHECK2 .OR. CHECK3 .OR. CHECK4

C

IF (CHECKA) THEN

DO 10 INBND - 1, NBNDG2

IF (IBNDG2(1,INBND) .Eq. INODE) GOTO 20

10 CONTINUE

c this node is not a boundary node; however, it may be a

c corner node of an internal boundary with three non-zero

c neighbour cells

inboun - 0
if (checkl) inboun - inboun + I
if (check2) inboun - inboun + 1
if (checkS) inboun - inboun + 1
if (check4) inboun - inboun + 1

if (inboun .le. 1) goto 20

NERR - NERR + 1
ERRTYP - 'INTERIOR PT HAS ZERO NEIGHBOUR'

WRITE(JDUMY2,.1000) ERRTYP, INODE, NBSW, NBSE, NBNE, NBNW

ENDIF

C

20 IF (NBSW .EQ. O) THEN
NODE1 - INODE

ELSE

NODEI = ICELG2(6,NBSW)

IF (NBSW .EQ. NBNW) NODE1 - ICELG2(5,NBSW)

IF (NBSW .EQ. NBSE) NODE1 ICELG2(7,NBSW)

ENDIF

C

IF (NBSE .EQ. O) THEN
NODE2 - INODE

ELSE

NODE2 - ICELG2(8,NBSE)

IF (NBSW .EQ. NBSE) NODE2 - ICELG2(7,NBSW)

IF (NBSE .EQ. NBNE) NODE2 - ICELG2(9,NBSE)
ENDIF

C
IF (NBNE .EQ. O) THEN

NODES - INODE

ELSE

NODES - ICELG2(2,NBNE)

IF (NBSE .EQ. NBNE) NODES ICELG2(9,NBSE)

IF (NBNE .EQ. NBNW) NODES3 - ICELG2(3,NBNE)
ENDIF

C
IF (NBNW .EQ. ) THEN
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NODE4 - INODE

ELSE -
NODE4 - ICELG2(4,NBNW)

IF (NBSW .EQ. NBNW) NODE4 = ICELG2(6,NBSW)

IF (NBNE .EQ. NBNW) NODE4 - ICELG2(3,NBNE)

ENDIF
C

C CHECK IF ALL THE NEIGHBOUR CELLS AGREE ON NODE ASSIGNMENTS

C

CHECKI = NODE1 .NE. INODE

CHECK2 - NODE2 .NE. INODE

CHECK3 - NODE3 .NE. INODE
CHECK4 NODE4 .NE. INODE

CHECKA - CHECKI .OR. CHECK2 .OR. CHECK3 .OR. CHECK4
C

IF (CHECKA) THEN

NERR - NERR + 1
ERRTYP - 'NODE ASSIGNMENT ERROR

WRITE(JDUMY2,1100) ERRTYP, INODE, NBSW , NBSE , NBNE ,

1 NBNW , NODE1, NODE2, NODE3, NODE4

ENDIF

C

C GO BACK FOR NEXT NODE

C

30 CONTINUE

C

IF (NERR .NE. NERRP) THEN

WRITE(JTERMO,1200) NAME,NITRE2

WRITE(JDUMY2,1200) NAME.NITRE2

WRITE(JDUMY2.1300) LCELL, MEMI, MEM2, MEM3, MEM4
CLOSE(UNIT=JDUMY2, DISP-'KEEP')

ELSE

CLOSE(UNIT=JDUMY2, DISP='DELETE')

ENDIF

C
C

C FORMAT STATEMENTS
C

C

1000 FORMAT(2X.A30,2X,'INODE -',I5,SX,'NBSW ',I,6X,'NBSE =',I5.,

1 5X.'NBNE =',I6,SX.'NBNW =',I5)

1100 FORMAT(2X,A30,2X,'INODE -',I5,5X,'NBSW ',IS,SX,'NBSE ',I5,

1 SX,'NBNE -',I,5SX,'NBNW ',IS/34X,'NODE1 -',I,5X,

2 'NODE2 -',IS,X,'NODE3 ',I5. X.'NODE4 ',I5)

1200 FORMAT(2X,'ERROR ',A6,SX,'AFTER',I5,2X,'ITERATIONS IN CHKNN2'/)

1300 FORMAT(2X.'LCELL -',.I5,X,'MEM1 -',I5,.X,'MEM2 -',IS,

1 SX,'MEM3 -',I6,5X,'MEM4 =',IS/)
C

RETURN

END
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CHKPR2

SUBROUTINE CHKPR2 (INODE)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'
INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'PRCOMN.INC'
DIMENSION DPLEFT(MEQNFL), DPRITE(MEQNFL)

C THIS SUBROUTINE CORRECTS THE CONSERVATIVE VARIABLES AT A GIVEN

C NODE 'INODE', IF THE PRESSURE AT THAT NODE BECOMES NEGATIVE.
C IT IS HOPED THAT SUCH A SITUATION ONLY OCCURS AT A FEW NODES.

C IF THIS OCCURS IN A REGION WITH MORE THAN ONE NODE THAN THE

C CALCULATION WILL BECOME UNSTABLE ANYWAY. SO THIS SUBROUTINE
C IS ACTUALLY FAIL SAFE.

WRITE(JDEBUG,*) ' NODE WITH NEG PR ',INODE

NB1 - NEIBG2(1,INODE)

NB2 NEIBG2(2,INODE)

NB3 - NEIBG2(3,INODE)

NB4 - NEIBG2(4,INODE)

C THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

IF (NB1 .EQ. 0 .AND. NB4 .EQ. O) RETURN
IF (NB2 .EQ. 0 .AND. NB3 .EQ. O) RETURN

C SETUP THE LEFT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN

NBLEFT - NB1

IPLEFT - 8
ELSE

NBLEFT - NB4

IPLEFT 2

ENDIF
C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB1 .EQ. NB4) THEN

IPLEFT 9
IF (ICELG2(9,NBLEFT) .EQ. O) THEN

INLFT1 - ICELG2(2,NBLEFT)

INLFT2 - ICELG2(8,NBLEFT)

XLEFT - 0.5*(GEOMG2(i ,INLFTL)+GEOMG2(1, INLFT2))

YLEFT - 0.5*(GEOMG2(2,INLFT1)+GEOMG2(2,INLFT2))

DO 10 IQ - 1, NEQNFL
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DPLEFT(IQ) - 0.5*(DPENG2(IQ,INLFTI)+DPENG2(IQ,INLFT2))

10 CONTINUE

GOTO 30

ENDIF

ENDIF

C COMPUTE THE LEFT NODE. DISTANCES AND DP VARIABLES

INLEFT - ICELG2(IPLEFT,NBLEFT)

XLEFT - GEOMG2(1,INLEFT)

YLEFT - GEOMG2(2.INLEFT)
DO 20 IQ - 1, NEQNFL

DPLEFT(IQ) - DPENG2(IQ,INLEFT)

20 CONTINUE

30 CONTINUE

C SETUP THE RIGHT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB2 .NE. O) THEN
NBRITE - NB2

IPRITE 6

ELSE

NBRITE - NB3

IPRITE - 4

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB2 .EQ. NB3) THEN

IPRITE -
IF (ICELG2(5,NBRITE) .EQ. O) THEN

INRIT - ICELG2(4.NBRITE)

INRIT2 - ICELG2(6.NBRITE)

XRITE O0.b*(GEOMG2(1,INRIT1)+GEOMG2(1,INRIT2))

YRITE - 0.5*(GEOMG2(2,INRITI)+GEOMG2(2,INRIT2))

DO 40 IQ - 1. NEQNFL

DPRITE(IQ) - 0.6*(DPENG2(IQ.INRIT1)+DPENG2(Iq.INRIT2))
40 CONTINUE

GOTO 60

ENDIF

ENDIF

C COMPUTE THE RIGHT NODE, DISTANCES AND DP VARIABLES

INRITE - ICELG2(IPRITE,NBRITE)

XRITE - GEOMG2(1.INRITE)
YRITE - GEOMG2(2,INRITE)

DO 60 IQ - 1, NEQNFL
DPRITE(IQ) DPENG2(IQ,INRITE)

50 CONTINUE

60 CONTINUE

XNODE - GEOMG2(1,INODE)
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YNODE - GEOMG2(2,INODE)

SNODE2 (XNODE-XLEFT)**2 + (YNODE-YLEFT)**2

SRITE2 - (XRITE-XLEFT)**2 + (YRITE-YLEFT)**2
RATIO - SQRT(SNODE2/SRITE2)

C
C DO THE INTERPOLATION

C

DO 70 IQ - 1, NEQNFL

DPENG2(IQ,INODE) - DPLEFT(IQ) +
c 1 ( DPRITE(Iq) - DPLEFT(IQ) )*RATIO

DPHERE - DPLEFT(IQ) + (DPRITE(IQ) -DPLEFT(IQ))*RATIO

DPENG2(IQ,INODE) 0.5*(DPHERE + DPENG2(IQ,INODE))
70 CONTINUE

C

C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.
C

RHORPR DPENG2(1,INODE)

UCOMPR DPENG2(2,INODE)/RHORPR

VCOMPR DPENG2(3,INODE)/RHORPR

BEPSPR - DPENG2(4,INODE)

BE = BEPSPR/RHORPR
VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C

C COMPUTE THE DIMENSIONAL QUANTITIES
C

BE = FMREFL*BE

VEL02 - FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - O.

YUPPER - 1. - YNRTCH

DO 80 IS - 1 NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/DPENG2(1INODE)

IF (YSPEPR(IS) .LT. 0.) THEN
YSPEPR(IS) - 0.

DPENG2(JS,INODE) O.

ENDIF

IF (YSPEPR(IS) .GT. YUPPER) THEN

YSPEPR(IS) - YUPPER
DPENG2 (JS,INODE) YUPPER*DPENG2(1 ,INODE)

ENDIF

SUMY - SUMY + YSPEPR(IS)

80 CONTINUE

YSPEPR(NEQSCH+I) 1. - SUMY - YNRTCH

C YSPEPR(NEQSCH+I) - ABS(1. - SUMY - YNRTCH)

IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEQSCH+I) = 0.

SYSHFS - 0.
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SYSCPS - 0.
SYSBMS - 0.

BIGAM - O.

COMPUTE THE TEMPERATURE IN DEGREE K

DO 90 IS 

SYSHFS

SYSCPS
SYSBMS

BIGAM

90 CONTINUE

1, NSPECH

- SYSHFS + YSPEPR(IS)*FMHTCH(IS)
- SYSCPS + YSPEPR(IS)*SPCPCH(IS)

- SYSBMS + YSPEPR(IS)*RAMWCH(IS)
- BIGAM + YSPEPR(IS)*SPBSCH(IS)

BIGBM = SYSCPS - UGASFL*SYSBMS

BIGCM - BE - 0.6*VELO2 - SYSHFS + TREFCH*SYSCPS
1 + 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMPPR - BIGCM/BIGBM
ELSE

DISCRI - BIGBM*BIGBM + 2.*BIGAM*BIGCM

TEMPPR ( SQRT(DISCRI)-BIGBM )/BIGAM
ENDIF

C
C NORMALIZE THE TEMPERATURE

C

TEMPPR = TEMPPR/TREFFL

C
C COMPUTE THE DIMENSIONLESS PRESSURE

C

PRESPR RHORPR*TEMPPR*AMWTFL*SYSBMS
C

C SAVE THE PRESSURE AND TEMPERATURE AT THE NODE

C

PRESG2(INODE) - PRESPR

TEMPG2(INODE) - TEMPPR

RETURN
END

CHKREF

SUBROUTINE CHKREF

C
INCLUDE

INCLUDE

INCLUDE
INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'
'E2COMN.INC'

'FLCOMN.INC'

'FRCOMN.INC'

'G2COMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

'PRCOMN.INC'
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C

C THIS SUBROUTINE RE-INITIALIZES THE REFERENCE VALUES FOR DENSITY,

C TEMPERATURE, OR PRESSURE. IT ASSUMES THAT THE NON-DIMENSIONAL

C DENSITY. PRESSURE, TEMPERATURE. AND VELOCITY REMAINS CONSTANT AND

C REASSIGNS THE VALUES OF THE ENERGY (EPSILON) FOR THE WHOLE DOMAIN.

C***********************************************************************
C

C NOTE THAT FOR THIS CASE ONLY REFERENCE TEMPERATURE IS ALLOWED TO

C CHANGE

C

write(6,*) ' old rhorfl',rhorflTREFFL,UREFFL

RHORFL - RHORFL*TREFFL/APASKY(7)*APASKY(9)/PRESFL

TREFFL - APASKY(7)
PRESFL - APASKY(9)
UREFFL SQRT(PRESFL/RHORFL)

write(6.*) ' new rhorfl',rhorfl,UREFFL
FMREFL - UREFFL**2

WDREFL - RHORFL*UREFFL/DISTFL

DO 30 INODE = 1. NNODG2

RHORPR - DPENG2(1,INODE)
UCOMPR - DPENG2(2,INODE)/RHORPR

VCOMPR - DPENG2(S,INODE)/RHORPR
VEL02U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C
C COMPUTE THE DIMENSIONAL QUANTITIES

C
UCOMPD - UCOMPR*UREFFL
VCOMPD - VCOMPR*UREFFL
RHOD - RHORPR*RHORFL

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY = O.
DO 10 IS - 1, NEQSCH

JS = NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/RHORPR

SUMY - SUMY + YSPEPR(IS)
10 CONTINUE

YSPEPR(NEqSCH+1) - 1. - SUMY - YNRTCH

C
C COMPUTE SOME DIMENSIONAL NUMBERS

C

SYSHFS - 0.
SYSCPS - O.

SYSBMS - O.

BIGAM - O.
C

DO 20 IS - 1. NSPECH

SYSHFS - SYSHFS + YSPEPR(IS)*FMHTCH(IS)
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SYSCPS - SYSCPS

SYSBMS - SYSBMS

BIGAM - BIGAM

20 CONTINUE

C

+ YSPEPR(IS)*SPCPCH(IS)
+ YSPEPR(IS)/AMWTCH(IS)
+ YSPEPR(IS)*SPBSCH(IS)

COMPUTE THE TEMPERATURE IN DEGREE K AND PRESSURE IN PA

TEMPD - TEMPG2(INODE)*TREFFL

PRESSD - PRESG2(INODE)*PRESFL

I
BEE - SYSHFS + (TEMPD-TREFCH)*SYSCPS - PRESSD/RHOD

+ 0.5*(TEMPD*TEMPD-TREFCH*TREFCH)*BIGAM
BEE - BEE/FMREFL + O.6*VELO2U

1

BEE - BEE*RHORPR

IF (INODE .LT. 30) write(8,*) ' bee

DPENG2(4,INODE)

new and old',. bee,

DPENG2(4,INODE) BEE

30 CONTINUE

RETURN

END

CHKSP2

SUBROUTINE CHKSP2 (LCELL,MEM1,MEM2 ,MEMMEM4,NERR,NAME)
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

CHARACTER NAME*6

DIMENSION NLEV(O:MLVLG2), LEVEL(O:MLVLG2,MCELG2)

C

C
C THIS SUBROUTINE CHECKS THE ASSIGNMENTS OF THE SUPER-CELL

C ARRAY. THESE ASSIGNMENTS ARE PRONE TO ERROR AFTER THE GRID-

C DIVIDE AND GRID-COLLAPSE ROUTINES. HENCE THIS ROUTINE MUST BE

C USED AS A DEBUG CHECK AFTER CALLS TO THESE GRID CHANGING ROUTINES
C IS MADE. LCELL IS THE MOST RECENTLY DIVIDED OR COLLAPSED CELL;

C WHERE THE ERROR MIGHT OCCUR. MEMi THRU MEM4 ARE THE SUBCELLS OF

C LCELL IF IT WERE COLLAPSED. NAME INDICATES WHEN AND WHERE

C THE ERROR OCCURED. NERR COUNTS NUMBER OF ERRORS.
C

C

C COUNT THE PREVIOUS NUMBER OF ERRORS AND SET DEBUG UNIT

C
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NERRP NERR

OPEN (UNIT-JDUMY2, FILE"'CHKSP2.DAT', STATUS='NEW')

C
C INITIALIZE THE NUMBER OF CELLS IN EACH SPATIAL LEVEL

C

DO 10 N - O. NLVLG2
NLEV(N) - 0

10 CONTINUE

C
C FOR EACH CELL FIND THE LEVEL AND SAVE THE CELLS AT THE SAME

C LEVEL TOGETHER. NLEV(L) CONTAINS THE TOTAL NUMBER OF CELLS

C AT LEVEL L, WHEREAS LEVEL(L,JCELL) CONATINS THE VALUE OF THE

C JTH CELL AT LEVEL L.

C
DO 20 ICELL - 1, NCELG2

KX = KAUXG2(ICELL)

KLEVG = IAND(KX,KUOOOF)

LEVELG = ISHFT(K5LEVG,-16)
NLEV(LEVELG) - NLEV(LEVELG) + 1

NUM = NLEV(LEVELG)
LEVEL(LEVELG,NUM) - ICELL

20 CONTINUE

C

C NOW LOOP THROUGH ALL THE CELLS; IF FOR A CELL SUPERCELL DOES
C NOT EXIST THEN IT IS EITHER A BASE CELL OR A FINE CELL (CEWIC)

C IN WHICH CASE THERE IS NO NEED TO FIND ITS SUUPERCELL. ONCE

C A CELL IS IDENTIFIED AT A CERTAIN LEVEL THEN THE NODES OF THE

C ALL THE CELLS AT A LOWER LEVEL ARE CHECKED. IF THE IDENTIFIED

C CELL (ICELL) AND A LOWER LEVEL CELL (JCELL) AGREE IN NODE

C ASSIGNMENT THEN JCELL IS THE SUPERCELL OF ICELL. ISUPAS

C IS THE ASSIGNED SUPERCELL; ISUPCL IS THE CALCULATED ONE.

C

DO 40 ICELL - 1, NCELG2

ISUPAS - ICELG2(10,ICELL)

IF (ISUPAS .EQ. O) GOTO 40

KX - KAUXG2(ICELL)
K5LEVG I- AND(KX,KUOOOF)

LEVELG - ISHFT(K6LEVG,-16)

IF (LEVELG .EQ. O) GOTO 40

LEVELS - LEVELG-1

ISUPCL - 0
ISW - ICELG2(2,ICELL)

ISE - ICELG2(4,ICELL)
INE = ICELG2(6,ICELL)

INW - ICELG2(8,ICELL)

DO 30 KCELL - 1, NLEV(LEVELS)

JCELL - LEVEL(LEVELS,KCELL)

JSW - ICELG2(2,JCELL)

JSE - ICELG2(4,JCELL)

JNE - ICELG2(6,JCELL)

JNW - ICELG2(8,JCELL)
IF (ISW .EQ. JSW) THEN

ISUPCL - JCELL

GOTO 30

ENDIF

IF (ISE .EQ. JSE) THEN
ISUPCL - JCELL
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GOTO 30

ENDIF

- IF (INE .EQ. JNE) THEN

ISUPCL - JCELL

GOTO 30

ENDIF

IF (INW .EQ. JNW) THEN

ISUPCL - JCELL

GOTO 30

ENDIF

30 CONTINUE

C

IF (ISUPCL .NE. ISUPAS) THEN

NERR - NERR + 1

WRITE(JTERMO.1000) ICELL.ISW,ISE,INE,INW,ISUPAS,ISUPCL

WRITE(JDUMY2,1000) ICELL,ISW,ISE. INE, INW,ISUPAS,ISUPCL

ENDIF

C

C GO BACK FOR NEXT CELL

C
40 CONTINUE

C

IF (NERR .NE. NERRP) THEN

WRITE(JTERMO, 100) NAME,NITRE2

WRITE(JDUMY2,1100) NAME.NITRE2

WRITE(JDUMY2,1200) LCELL, MEMI, MEM2, MEM3, MEM4

CLOSE(UNIT-JDUMY2. DISP-'KEEP')

ELSE

CLOSE(UNIT-JDUMY2, DISP='DELETE')

ENDIF
C

IF (NERR .NE. O) THEN

JPRINT - JDUMY3

CALL G2PRNT(15)

STOP 'ERROR IN CHECK ROUTINES; LOOK ALSO G2PRNT'

ENDIF

C

C

C FORMAT STATEMENTS
C

C

1000 FORMAT(2X,'ICELL -',I6,6X,'ISW -',I5,5X.'ISE =',I5,5X,'INE =',

I IS,6X,'INW -'.I,X,'ISUPAS =',I5,SX,'ISUPCL =',IS)

1100 FORMAT(2X,'ERROR ',A6.6X,'AFTER',I6,2X.'ITERATIONS IN CHKSP2'/)

1200 FORMAT(2X.'LCELL -',I,6X,'MEM1 =',I5,5X,'MEM2 ='.I,5
1 5X,'MEM3 -',I5,5X,'MEM4 ='.Ib/)

C
RETURN

END

CHKTM2

SUBROUTINE CHKTM2 (INODE)
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INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'
INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN. INC'
INCLUDE 'IOCOMN.INC'

C THIS SUBROUTINE CORRECTS THE CONSERVATIVE VARIABLES AT A GIVEN

C NODE 'INODE', IF THE PRESSURE OR TEMPERATURE AT THAT NODE BECOMES
C NEGATIVE. IT IS HOPED THAT SUCH A SITUATION ONLY OCCURS AT A FEW
C NODES. THE DEPENDENT VARIABLES ARE RESET TO THE VALUES OF THE

C NEAREST NODE WHICH HAS POSITIVE PRESSURE AND TEMPERATURE.

WRITE(JDEBUG,*) ' NODE WITH NEG PR OR TEMP-',INODE
C

C FIND THE SURROUNDING CELLS OF THIS NODE

C
NB1 - NEIBG2(1,INODE)

NB2 - NEIBG2(2,INODE)

NB3 NEIBG2(3,INODE)

NB4 - NEIBG2(4,INODE)

WRITE(JDEBUG,*) ' NB1 ETC',NB1,NB2,NB3.NB4
C
C FIND THE SURROUNDING NODES OF THIS NODE
C

NODES - 0

NODEE 0

NODEN 0

NODEW 0
C

IF (NB1 .NE. O) THEN

NODES - ICELG2(4,NBl)

NODEW - ICELG2(8,NBI)

ENDIF

C

IF (NB2 .NE. O) THEN

NODES - ICELG2(2,NB2)

NODEE - ICELG2(6,NB2)
ENDIF

C

IF (NB3 .NE. O) THEN

NODEE - ICELG2(4,NB3)

NODEN - ICELG2(8,NB3)
ENDIF

C

IF (NB4 .NE. ) THEN

NODEN - ICELG2(6,NB4)

NODEW - ICELG2(2,NB4)
ENDIF

WRITE(JDEBUG,*) ' NODES ETC',NODES,NODEE,NODEN,NODEW
C

C COMPUTE THE DISTANCES OF THESE NODES FROM THE CENTER NODE
C

576



XS - l.E10

YS - 1.E10

XE - 1.E10
YE - 1.ElO
XN - 1.E10O

YN - I.E10

XW - 1.E10
YW - i.E10

C
IF (NODES .NE. O) THEN

IF (PRESG2(NODES).GT.O.

XS - GEOMG2(1,NODES)

YS GEOMG2(2,NODES)

ENDIF

ENDIF

IF (NODEE .NE. O) THEN

IF (PRESG2(NODEE).GT.O.

XE GEOMG2(1,NODEE)

YE - GEOMG2(2,NODEE)

ENDIF

ENDIF

IF (NODEN .NE. O) THEN

IF (PRESG2(NODEN).GT.O.

XN - GEOMG2(1,NODEN)

YN - GEOMG2(2,NODEN)
ENDIF

ENDIF

IF (NODEW .NE. O) THEN

IF (PRESG2(NODEW).GT.O.

XW - GEOMG2(1,NODEW)
YW - GEOMG2(2,NODEW)

ENDIF

ENDIF
C

C COMPUTE THE CURVILINEAR DISTANCE

C
XS

XE

XN

XW
XMIN

- (GEOMG2(1,INODE)-XS)**2

- (GEOMG2(1,INODE)-XE)**2

- (GEOMG2(1,INODE)-XN)**2

- (GEOMG2(1,INODE)-XW)**2

- .E8

.AND. TEMPG2(NODES).GT.O.) THEN

.AND. TEMPG2(NODEE).GT.O.) THEN

.AND. TEMPG2(NODEN).GT.O.) THEN

.AND. TEMPG2(NODEW).GT.O.) THEN

+ (GEOMG2(2,INODE)-YS)**2

+ (GEOMG2(2, INODE)-YE)**2

+ (GEOMG2(2,INODE)-YN)**2
+ (GEOMG2(2,INODE)-YW)**2

XMIN - MIN (XS, XE, XN, XW, XMIN)

IF (XS .EQ. XMIN) THEN
NODET - NODES

ELSEIF (XE .EQ. XMIN) THEN

NODET - NODEE
ELSEIF (XN .EQ. XMIN) THEN

NODET - NODEN

ELSEIF (XW .EQ. XMIN) THEN
NODET = NODEW

ELSE

WRITE (JDEBUG,*) ' ORPHAN NODE'
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RETURN

ENDIF

C

C NOW CORRECT THE NODE

C

DO 10 IQ - 1. NEQNFL

DPENG2(IQ,INODE) - DPENG2(IQ, NODET)

10 CONTINUE

WRITE(JDEBUG,*)

1
WRITE(JDEBUG.*)

1

' NEW NODE AND PRESSURE ',.NODET.

PRESG2(NODET), PRESG2(INODE)

' NEW NODE AND TEMPERAT =',NODET,

TEMPG2(NODET). TEMPG2(INODE)

PRESG2(INODE) - PRESG2(NODET)
TEMPG2(INODE) - TEMPG2(NODET)

RETURN

END

CHKYMX

SUBROUTINE CHKYMX

INCLUDE
INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'
'PARMV2.INC'

'CHCOMN.INC'

'G2COMN.INC'

'PRCOMN.INC'

C THIS SUBROUTINE COMPUTES THE MAXIMUM ALLOWABLE MASS-FRACTION FOR

C EVERY SPECIES IN THE REACTION SYSTEM. THIS ROUTINE IS SPECIALIZED

C FOR ROGERS AND CHINITZ MODEL. WHEREAS FOR OTHER REACTION SYSTEM

C SYSTEMS IT DOES A SIMPLER CALCULATION. THE MAXIMUM ALLOWABLE

C VALUES COMPUTED HERE CAN BE USED IN CONJUNCTION WITH THE ROUTINE

C E2PRMT WHICH CHECKS IF A SPECIES IS TRYING TO CROSS THE ALLOWABLE

C BOUNDS IN THE WHOLE SPATIO-TEMPORAL DOMAIN.

C

C FOR THE ROGER AND CHINITZ MODEL

IF (KROGER .EQ. 1) THEN

DO 10 IS 1, NSPECH

YMAXCH(IS) - 0.
CONTINUE

ELSE

DO 20 IS - 1.

YMAXCH(IS)
20 CONTINUE

RETURN

NEQSCH+I
- 1. - YNRTCH
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ENDIF

C

YN2MIN 000.
YN2MAX -1000.

C
C SCAN ALL THE BOUNDARY NODES FOR THE ROGERS AND CHINITZ MODEL

C

DO 40 IBND = 1. NBNDG2

INODE = IBNDG2(1,IBND)

IBCTYP = IBNDG2(5,IBND)

C
C CHECK ONLY THE INFLOW BOUNDARY POINTS

C

IF (IBCTYP .EQ. 2) THEN

RHORPR = DPENG2(1,INODE)

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES AND UPDATE

C THE MAXIMUM IF NEED BE

SUMY = O.
YUPPER - 1. - YNRTCH

DO 30 IS = 1, NEQSCH
JS = NEQBAS + IS

YSPEPR(IS) = DPENG2(JS,INODE)/DPENG2(1,INODE)
YMAXCH(IS) = MAX (YSPEPR(IS), YMAXCH(IS))
SUMY = SUMY + YSPEPR(IS)

30 CONTINUE

YSPEPR(NEQSCH+I) = 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEqSCH+I) = 0.

YMAXCH(NEQSCH+i) = MAX(YSPEPR(NEQSCH+I),YMAXCH(NEQSCH+L))
C
C MINIMUM AND MAXIMUM VALUES OF N2 WILL BE USED TO SEE IF

C THE FLOW IS PRE-MIXED

IF (NEQSCH .EQ. 4) THEN

YN2MIN = MIN(YSPEPR(5),YN2MIN)
YN2MAX - MAX(YSPEPR(5),YN2MAX)

ENDIF

ENDIF

40 CONTINUE

C RATIO OF MOLE/MASS FOR OXYGEN AND HYDROGEN
C

RMM02 - YMAXCH(1)/AMWTCH(1)

RMMH2 - YMAXCH(3)/AMWTCH(3)

RMMOH MIN (RMM02, RMMH2)

YMAXCH(2) - 2.*AMWTCH(2)*RMMOH

RMM02 = 2.*RMM02

RMMH20 - MIN (RMMO2, RMMH2)

YMAXCH(4) = AMWTCH(4)*RMMH20

IF (NEQSCH .EQ. 3) THEN

YMAXCH(5) - YNRTCH
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IALOCH(6,3) - -9
ELSE

fALOCH(6,3) 0
YMAXCH(b) - YN2MAX

IF (YN2MIN .EQ. YN2MAX) IALOCH(6,3) = -9
ENDIF

RETURN

END

CPSPFU

FUNCTION CPSP(ITYPE,T)

C THIS FUNCTION COMPUTES THE MOLAL SPECIFIC HEATS OF VARIOUS
C SPECIES AS A FUNCTION OF TEMPERATURE IN DEGREE KELVIN. THE

C INPUT VARIABLE T IS TEMPERATURE/100.

C SPNAME(1 )
C SPNAME(2 )
C SPNAME(3 )
C SPNAME(4 )
C SPNAME(5 )
C SPNAME(6 )
C SPNAME(7 )

C SPNAME(8 )
C SPNAME(9 )

C SPNAME(10)
C SPNAME(11)
C SPNAME(12)
C SPNAME(13)
C SPNAME(14)

- 'N2

- '02

= 'H2

- 'CO

- 'OH

= 'NO
= 'H20

- 'C02
- 'N02

- 'CH4
- 'C2H4
- 'C2H6
- 'C3H8
- 'C4H10O

C

C MOLAL SPECIFIC HEAT FOR N2 IN KJ/KMOL/K

C

IF (ITYPE .GT. 1) GOTO 10

CPSP-39.060 - 512.79/T**1.5 +
RETURN

1072.7/T**2 - 820.4/T**3

C

C MOLAL SPECIFIC HEAT FOR 02 IN KJ/KMOL/K

C
10 IF (ITYPE .GT. 2) GOTO 20

CPSP-37.432 + 0.020102*T**1.5

RETURN

C
C

- 178.57/T**1.5 + 236.88/(T*T)

MOLAL SPECIFIC HEAT FOR H2 IN KJ/KMOL/K
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C
20 IF (ITYPE .GT. 3) GOTO 30

CPSP-66.60 - 702.74/T**0.75 + 1165./T - 560.7/T**1.5
RETURN

C
C MOLAL SPECIFIC HEAT FOR CO IN KJ/KMOL/K
C
30 IF (ITYPE .GT. 4) GOTO 40

CPSP=69.145 - 0.70463*T**0.75 - 200.77/T**0.5 + 176.76/T**0.75
RETURN

C
C MOLAL SPECIFIC HEAT FOR OH IN KJ/KMOL/K
C

40 IF (ITYPE .GT. 5) GOTO 50
CPSP-81.546 - 659.30*T**0.25 + 17.329*T**0.75 - 4.266*T

RETURN

C

C MOLAL SPECIFIC HEAT FOR NO IN KJ/KMOL/K
C

60 IF (ITYPE .GT. 6) GOTO 60

CPSP-59.283 - 1.7096*T**0.5 - 70.613/T**0.5 + 74.889/T**1.5
RETURN

C

C MOLAL SPECIFIC HEAT FOR H20 IN KJ/KMOL/K
C

60 IF (ITYPE .GT. 7) GOTO 70
CPSP-143.05 - 183.54*T**0.25 +
RETURN

82.751*T**0.5 - 3.6989*T

C

C MOLAL SPECIFIC HEAT FOR C02 IN KJ/KMDOL/K
C

70 IF (ITYPE .GT. 8) GOTO 80
CPSP--3.7367 + 30.529*T**0.5 -
RETURN

4.1034*T + 0.024198*T**2

C
C MOLAL SPECIFIC HEAT FOR N02 IN KJ/KMOL/K
C

80 IF (ITYPE .GT. 9) GOTO 90

CPSP-46.045 + 216.1/T**0.5 - 363.66/T**0.75 + 232.55/T**2
RETURN

C

C MOLAL SPECIFIC HEAT FOR CH4 IN KJ/KMOL/K
C
90 IF (ITYPE .GT. 10) GOTO 100

CPSP--672.87 + 439.74*T**0.25 - 24.875*T**0.76 + 323.88/T**0.5
RETURN

C
C MOLAL SPECIFIC HEAT FOR C2H4 IN KJ/KMOL/K
C
100 IF (ITYPE .GT. 11) GOTO 110

CPSP--96.396 + 123.15*T**0.5 - 35.641*T**0.75 + 182.77/T**3
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RETURN

MOLAL SPECIFIC HEAT FOR C2H6 IN KJ/KMOL/K

IF (ITYPE .GT. 12) GOTO 120
CPSP=6.895 + 17.26*T - 0.6402*T**2 + 0.00728*T**3
RETURN

C
C MOLAL SPECIFIC HEAT FOR C3H8 IN KJ/KMOL/K

C
120 IF (ITYPE .GT. 13) GOTO

CPSP--4.042 + 30.46*T -
RETURN

130

1.571*T**2 + 0.03171*T**3

C

C MOLAL SPECIFIC HEAT FOR C4H10 IN KJ/KMOL/K

C

130 IF (ITYPE .GT. 14) GOTO 140

CPSP-3.964 + 37.12*T -
RETURN

1.833*T**2 + 0.03498*T**3

C ADD OTHER OPTIONS HERE LATTER

140 RETURN

END

DPINI2

SUBROUTINE DPINI2

C
INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'

'E2COMN.INC'

'FLCOMN.INC'

'FRCOMN.INC'

'G2COMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

'PRCOMN.INC'

C THIS SUBROUTINE INITIALIZES THE DEPENDENT VARIABLES OVER ALL THE

C NODES TO A UNIFORM FLOW, AND OTHER OPTIONS.

KDPENI - IPASKY(19)
C

C ERROR CHECK; TYPE OF I.C. SELECTOR
C
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IF (KDPENI .LT. 0 .OR. KDPENI .GT. 3) THEN

ZERI - KDPENI

ZER2 3.

CALL ERRORM (42. ,'ERINIT', 'KDPENI',ZERI, 'MAXVAL' ,ZER2,JPRINT,

1 'ERROR IN INITIAL CONDITION SELECTOR')

ENDIF

C SET THE FINAL MASS FRACTIONS YSPEPR(S) FOR ALL SPECIES S

C INCLUDING INERT ONES, ALSO INITIALIZE THE RECIPROCALS OF
C MOLECULAR MASS FOR EACH SPECIES

DO 10 IS - 1, NSPECH

YSPEPR(IS) - YSPECH(IS)

RAMWCH(IS) - ./AMWTCH(IS)

10 CONTINUE

C
C SEE IF YOU WANT TO READ ALL THE DEPENDENT VARIABLES FROM THE
C FILE INPUTD.DAT
C

IF (KDPENI .EQ. 1) THEN

DO 20 IN - 1, NNODG2
READ (JREADD,1000) (DPENG2(K,IN). K = 1. NEQNFL)

20 CONTINUE

CLOSE (JREADD)
GOTO 130

ENDIF
C
C NOW SEE IF YOU WANT TO SET A UNIFORM DEPENDENT VARIABLES SET

C OR A LINEARLY VARYING ONE

C
C THE INDEPENDENT NORMALIZING QUANTITIES ARE

C RHOI, PRESSURE, MACH # AND SPECIES FRACTIONS
C

RHOI = RHORFR

PRESSI PRESFR

RHOE = RHORFR

PRESSE - PRESFR

AMACHE AMCHFL

UCOMPI - UCOMFR

UCOMPE - UCOMFR
VCOMPI - VCOMFR
VCOMPE - VCOMFR

BEI = DPENFR(4)/RHOI

BEE - BEI
VEL02I - UCOMPI*UCOMPI + VCOMPI*VCOMPI
VEL02E - VEL02I

C

C READ THE (DIMENSIONAL) CONDITIONS AT EXIT IF NECESSARY FOR
C ALL SPECIES. MAKE SURE THAT THE INERT SPECIES ARE INPUTTD
C THE SAME AS IN C2INIT. NOTE THAT THE FINAL MACH NUMBER IS

C BASED UPON U-COMPONENT ONLY
C

IF (KDPENI .GE. 3) THEN

C READ THE FOLLOWING DIEMNSIONLESS QUANTITIES

READ (JREADF,*) RHOE, PRESSE, AMACHE, VCOMPE

DO 30 ISP - 1. NSPECH

READ(JREADF,*) IS, YSPEPR(IS)
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30 CONTINUE

CLOSE (JREADF)

ELSE

GO TO 50
ENDIF

C
C COMPUTE THE INLET AND EXIT DEPENDENT VARIABLES

C

SYSHFE 0.

SYSCPE O.

SYSBMS = 0.
BIGAM - 0.

C COMPUTE THE ENERGY TERM, COMPONENTS OF VELOCITY ETC.

DO 40 IS 1, NSPECH

SYSHFE SYSHFE + YSPEPR(IS)*FMHTCH(IS)

SYSCPE - SYSCPE + YSPEPR(IS)*SPCPCH(IS)
SYSBMS - SYSBMS + YSPEPR(IS)*RAMICH(IS)

BIGAM BIGAM + YSPEPR(IS)*SPBSCH(IS)

40 CONTINUE

C
UGASCO = UGASFL*SYSBMS

TEMPE = (PRESSE*PRESFL)/(UGASCO*RHOE*RHORFL)
BIGAMT = BIGAM*TEMPE
SYSCVE = SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE (SYSCPE + BIGAMT)/SYSCVE

SOUNDE = GAMMAE*PRESSE/RHOE

UCOMPE = AMACHE*SqRT(SOUNDE)
VEL02E UCOMPE*UCOMPE + VCOMPE*VCOMPE

BEE - SYSHFE + (TEMPE-TREFCH)*SYSCPE - UGASFL*TEMPE*SYSBMS

1 + 0.5*(TEMPE*TEMPE-TREFCH*TREFCH)*BIGAM

BEE = BEE/FMREFL + 0.5*VEL02E

50 UlI = RHOI

UIE = RHOE
U2I - U1I*UCOMPI

U2E UE*UCOMPE
U3I i UII*VCOMPI

U3E = U1E*VCOMPE

U4I = BEI*RHOI

U4E = BEE*RHOE
C

DO 60 IS - 1, NEQSCH

YSPEPR(IS) - YSPEPR(IS)*U1E - YSPECH(IS)*U1I
60 CONTINUE

C

DU1 = U1E - U1I
DU2 U2E - U2I

DU3 = U3E - U3I

DU4 = U4E - U4I

C IF KSRTE2 EQUALS 0 THEN GRID INITIALIZATION WAS DONE AN
C ALGEBRAIC GRID GENERATOR.
C LOCATE INLET AND EXIT OF THE RECTANGULAR DOMAIN BY READING

C FROM INPUTG.DAT; WE ASSUME THAT THERE ARE NO EMBEDDED CELLS
C IN THE DOMAIN FOR THIS INITIALIZATION
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NX=NXRECT

NY=NYRECT

L L L
+ + + . . .

1 2 3

1+(NY-I)*NX +----+--+--+--+--+--+
+ NORTH

1+2*NX +
1+NX +

1 + -+--+-+++

E+
A+

T

SOUTH

NY*NX

(NY-1)*NX = L

+ 3*NX
+ 2*NX
-+ NX

2 3 ... NX-1

IF (KSRTE2 .EQ. 0 .OR. KSRTE2 .EQ. 1000) THEN

REWIND (JREADG)

READ (JREADG.1100) NXRECT, NYRECT

CLOSE (JREADG)

SET ALL THE DEPENDENT VARIABLES

DO 90 J - 1. NYRECT
IBEG 1 + (J-I)*NXRECT
IEND - J*NXRECT

XMIN GEOMG2(1,IBEG)

XMAX - GEOMG2(1,IEND)

DX - XMAX - XMIN

DO 80 I - IBEG, IEND

XDIS - GEOMG2(1,I)

ALAM- (XDIS-XMIN)/DX

IF (KDPENI .EQ. 2) ALAM - 0.

DPENG2(1,I) UlI + ALAM*DU1

DPENG2(2,I) - U2I + ALAM*DU2

DPENG2(3,I) - U31 + ALAM*DU3
DPENG2(4,I) U4I + ALAM*DU4

DO 70 JS - NEQBAS+I, NEQNFL

IS - JS - NEQBAS

DPENG2(JS,I) YSPECH(IS)*U1I
CONTINUE

CONTINUE

CONTINUE

ENDIF

+ ALAM*YSPEPR(IS)

IF KSRTE2 EQUALS 3 THEN GRID INITIALIZATION WAS DONE AN
THE ALGEBRAIC BLOCK GRID GENERATOR.

COMPUTE MINIMUM AND MAXIMUM X-DISTANCE FOR THE WHOLE DOMAIN

FOR THE LINEAR TYPE OF INTERPOLATION; WE ASSUME THAT THERE
ARE NO EMBEDDED CELLS IN THE DOMAIN FOR THIS INITIALIZATION

IF (KSRTE2 .EQ. 3 .OR. KSRTE2 .EQ. 1003) THEN

SET ALL THE DEPENDENT VARIABLES
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70

80

90

C
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C
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XMIN - 1.E6

XMAX -- l.E6

DO 100 IN - 1, NNODG2

XMIN - MIN (XMIN,GEOMG2(1.IN))

XMAX - MAX (XMAX,GEOMG2(1,IN))
100 CONTINUE

DX - XMAX - XMIN

DO 120 I - 1, NNODG2

XDIS - GEOMG2(1,I)

ALAM - (XDIS-XMIN)/DX
IF (KDPENI .EQ. 2) ALAM - O.

DPENG2(1,I) - U1I + ALAM*DU1

DPENG2(2,I) - U2I + ALAM*DU2

DPENG2(3,I) U31 + ALAM*DU3
DPENG2(4,I) - U4I + ALAM*DU4

DO 110 JS - NEQBAS+1, NEQNFL

IS - JS - NEQBAS
DPENG2(JS,I) YSPECH(IS)*UII + ALAM*YSPEPR(IS)

110 CONTINUE

120 CONTINUE

ENDIF

130 CONTINUE

C COMPUTE THE PRESSURE AT ALL THE NODES

DO 140 IN - 1, NNODG2

C CALL E2FLUX(IN)

CALL E2PRMT(IN,l1)

140 CONTINUE

C COMPUTE ALL THE JACOBIAN TERMS AT ALL THE NODES

C DO 150 IN - 1, NNODG2
C CALL E2JACO(IN)
C160 CONTINUE

C RESET THE FINAL FRACTIONS YSPEPR(S) FOR ALL SPECIES S. BECAUSE
C THE JACOBIAN ROUTINES WILL CHANGE IT

DO 160 IS - 1. NSPECH

YSPEPR(IS) - YSPECH(IS)
160 CONTINUE

C SAVE THE POINTER SYSTEM FOR THE INITIAL CONDITION ?

IF (KDPENI .NE. 1) THEN

WRITE(JTERM0, 1200)
READ(JTERMI, *) ITYPE

IF (ITYPE .EQ. 1) THEN

IF (KSRTE2 .LT. 1000) THEN

CALL PSWRT2 (JPNTWR)
ELSE

CALL PSWRTU (JPNTWR)
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ENDIF
STOP' POINTER SYSTEM DETAILS WRITTEN ON JPNTRE.DAT'

ENDIF

ENDIF

C

C DEBUG PRINT

C

IF (IDBGFL .NE. 5 .AND. IDBGFL .LT. 1000) RETURN

WRITE(JDEBUG,1300)

WRITE(JDEBUG,1400)

WRITE(JDEBUG,1500)

WRITE(JDEBUG,1600) RHOI,

WRITE(JDEBUG,1700)

DO 170 IS 1, NSPECH

WRITE(JDEBUG,1800) IS,

170 CONTINUE

WRITE(JDEBUG,1900) RHOE,

WRITE(JDEBUG,2000)

DO 180 IN = 1, NNODG2

WRITE(JDEBUG.2100) IN,

180 CONTINUE

UCOMPI, VCOMPI, PRESSI, BEI, AMCHFL

YSPECH(IS), YSPEPR(IS)

UCOMPE, VCOMPE, PRESSE, BEE, AMACHE

(DPENG2(K,IN), K 1, NEQNFL)

C -----------------

C FORMAT STATEMENTS
C -----------------

1000 FORMAT(8G15.7)

1100 FORMAT(215)

1200 FORMAT(SX,'INPUT ONE OF THE FOLLOWING :'/

1 lOX,'1. SAVE THE INITIAL CONDITION POINTER SYSTEM'/

2 lOX,'2. RUN FURTHER WITHOUT SAVING POINTER SYSTEM'/

3 IOX,'--> ')
1300 FORMAT(//1OX,'-----------------------' )

1400 FORMAT( IOX,'DEBUG PRINT FROM DPINI2' )

1500 FORMAT( 10X,'-----------------------'/)

1600 FORMAT(SX,'RHOI -

I 5X,'VCOMPI -
2 5X,'BEI -

1700 FORMAT(/5X,'SPECIES'

1800 FORMAT( 5X, I6, 2X,

1900 FORMAT(6X,'RHOE -

i 6X,'VCOMPE -
2 5X,'BEE -

',G14.5, lOX,'UCOMPI = ',G14.5/
',G14.5, 1OX,'PRESSI - ',G14.6/

',G14.5, OX,'MACHFL = ',G14.5/)
',3X,'MASS FRACTCH',3X,'MASS FRACTPR')
G14.5, X, G14.5)

',G14.5, OX,'UCOMPE = ',G14.5/
',G14.5, 10X,'PRESSE ',G14.5/

',G14.6, O1X,'MACHE - ',G14.5/)

2000 FORMAT(/SX, 'DEPENDENT VARIABLES'/7X, 'NODE',

I 2X, 'DPENI',6X.'DPEN2'.7X.'DPEN3',7X,'DPEN4')

2100 FORMAT(6X.I6,8G12.6)

RETURN

END
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E2BCNF

SUBROUTINE E2BCNO (ITGL)
C E2BCNF

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'
INCLUDE 'H2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'JACOMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'TICOMN.INC'

DIMENSION EIGENU(MEQNFL), EIGENW(MEQNFL), ALVECT(MEQNFL,MEQNFL),

1 DPENSV(MEQNFL), BIGWSV(MEQNFL)

C THIS SUBROUTINE APPLIES THE BOUNDARY CONDITIONS TO THE BOUNDARY

C NODES ( NOT CONCERNED WITH CELLS)

C THE TYPE OF BOUNDARY CONDITIONS ARE :-

C 1: RADIATION : SUPERSONIC EXIT

C 2: DIRECHLET : SUPERSONIC INLET

C 3: SOLID WALL BOUNDARY

C 4: INFLOW/OUTFLOW DETERMINATION
C 6: SUBSONIC INFLOW

C 6: SUBSONIC OUTFLOW

C************************************************************************
C

trgtmp trigch/treffl
C APPLY BOUNDARY CONDITIONS AT EACH BOUNDARY NODE

DO 1600 IBOUND - 1, NBNDG2

C BRANCH OUT ACCORDING TO TYPE

C INODE IS THE BOUNDARY NODE

C IONE IS THE FIRST CELL ADJACENT TO THE BOUNDARY NODE

C ITWO IS THE SECOND CELL ADJACENT TO THE BOUNDARY NODE

C IEDGE IS 2 FOR SW CORNER, 4 FOR SE CORNER, ETC

C ITYPE IS THE BOUNDARY CONDITION TYPE (1 THROUGH 6)

INODE - IBNDG2(1,IBOUND)

IONE - IBNDG2(2,IBOUND)

ITWO - IBNDG2(3.IBOUND)

IEDGE - IBNDG2(4,IBOUND)

ITYPE - IBNDG2(6,IBOUND)
C

C SKIP TO NEXT BOUNDARY NODE IF THE TWO ADJACENT CELLS ARE

C NOT AT THE CORRECT TEMPORAL LEVEL

C
C GO TO (100,200,300,400,500,600,600,800,900,1000,1100)ITYPE
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GO TO (1600,200,300,400,5O0,600,600,800,900,1000,1100),ITYPE
GO TO 1600

RADIATION CONDITION

SUPERSONIC EXIT -- DO NOTHING

100 GO TO 1600

C
C

DIRECHLET CONDITION

HOLD ALL CONDITIONS -- SUPERSONIC INLET

DO 210 IQ - 1. NEQNFL

CHNGE2(IQ,INODE) - O.

CONTINUE

if (tempg2(inode) .lt. trgtmp

dpeng2(B,inode) - 0.

dpeng2(8,inode) 0.
endif

GO TO 1600

.and. kroger .eq. 1) then

SOLID WALL BOUNDARY

IFACTR 2

GO TO (305,310,315,320,32,330,335,340). (IEDGE-1)

GO TO 1600

C2 SOUTHWESTERN CORNER

305 KNODE1 - ICELG2(8,IONE)

KNODE2 - ICELG2(4,IONE)

INBND1 - NBCPG2(1,1)

INBND2 - NBCPG2(1,2)

IF (ITYPE .EQ. IBNDG2(6,INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5.INBND2)) KNODE1 - INODE

IFACTR - 4

GO TO 345

C3 SOUTHERN EDGE

KNODE1 - ICELG2(2,IONE)

KNODE2 - ICELG2(4.ITWO)

GO TO 346

C4 SOUTHEASTERN CORNER

315 KNODEI - ICELG2(2,IONE)

KNODE2 - ICELG2(6,IONE)
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INBND1 - NBCPG2(2,1)

INBND2 - NBCPG2(2,2)

IF'(ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE = INODE

IFACTR - 4

GO TO 345

C5 EASTERN EDGE

320 KNODE - ICELG2(4,IONE)

KNODE2 - ICELG2(6,ITWO)

GO TO 345

C6 NORTHEASTERN CORNER

325 KNODE1 - ICELG2(4,IONE)

KNODE2 - ICELG2(8,IONE)

INBNDI - NBCPG2(3,1)

INBND2 - NBCPG2(3,2)

IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 = INODE

IFACTR 4

GO TO 346

C7 NORTHERN EDGE

330 KNODE1 = ICELG2(6,IONE)

KNODE2 - ICELG2(8,ITWO)

GO TO 345

Ca NORTHWESTERN CORNER

336 KNODE1 - ICELG2(6,IONE)

KNODE2 - ICELG2(2,IONE)

INBND1 = NBCPG2(4,1)
INBND2 - NBCPG2(4,2)
IF (ITYPE .EQ. IBNDG2(5.INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODEI - INODE

IFACTR - 4

GO TO 346

C9 WESTERN EDGE

340 KNODE1 - ICELG2(8,IONE)
KNODE2 ICELG2(2,ITW0)

C DETERMINE THE ANGLE OF THE SURFACE

345 DXSIDE - GEOMG2(1,KNODE2) - GEOMG2(1,KNODE1)

DYSIDE - GEOMG2(2,KNODE2) - GEOMG2(2,KNODE1)

PHYPO - SQRT(DXSIDE*DXSIDE + DYSIDE*DYSIDE)

COSANG - DXSIDE/PHYPO

SINANG - DYSIDE/PHYPO

C CALL E2BCSW (IONE,ITWO,INODE,IBOUND)

DO 350 IQ - 1, NEQNFL
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CHNGE2(IQ,INODE) = IFACTR*CHNGE2(IQ,INODE)
360 COITINUE

RHO - DPENG2(1,INODE) + CHNGE2(1,INODE)
RHOU = DPENG2(2,INODE) + CHNGE2(2,INODE)
RHOV - DPENG2(3INODE) + CHNGE2(3,INODE)

RHOQ - RHOU*COSANG + RHOV*SINANG

U2NEXT RHOQ*COSANG

U3NEXT - RHOQ*SINANG

CHNGE2(2,INODE) U2NEXT - DPENG2(2,INODE)

CHNGE2(3,INODE) U3NEXT - DPENG2(3,INODE)

GO TO 1600

C
C

C INFLOW/OUTFLOW DETERMINATION
C

C

C DETERMINE IF THE FLOW IS ENTERING OR LEAVING THE

C COMPUTATIONAL DOMAIN AND APPLY THE CHARACTERISTIC
C BOUNDARY CONDITIONS ACCORDINGLY

C

400 DO 401 IQ 1, NEQNFL
DPENJA(IQ) DPENG2(IQ,INODE) + CHNGE2(IQ,INODE)

401 CONTINUE

GO TO (405,410,415,420,425,430,435.440), (IEDGE-1)
GO TO 1600

C2 SOUTHWESTERN CORNER

405 KNODE1 - ICELG2(8,IONE)

KNODE2 - ICELG2(4,IONE)

INBND1 - NBCPG2(1,1)

INBND2 - NBCPG2(1,2)

IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 = INODE
IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 = INODE

GO TO 445

C3 SOUTHERN EDGE

410 KNODE1 = ICELG2(a,IONE)

KNODE2 - ICELG2(4,ITWO)

GO TO 446

C4 SOUTHEASTERN CORNER

416 KNODE1 - ICELG2(2.IONE)

KNODE2 - ICELG2(6,IONE)

INBND1 - NBCPG2(2,1)

INBND2 - NBCPG2(2,2)
IF (ITYPE .EQ. IBNDG2(6,INBND1)) KNODE2 INODE

IF (ITYPE .EQ. IBNDG2(6,INBND2)) KNODEL - INODE
GO TO 445

CS EASTERN EDGE
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420 KNODE1 = ICELG2(4,IONE)

KNODE2 - ICELG2(6,ITWO)

GO-TO 445

Ca NORTHEASTERN CORNER

426 KNODE1 - ICELG2(4,IONE)

KNODE2 - ICELG2(8,IONE)

INBND1 - NBCPG2(3,1)

INBND2 - NBCPG2(3,2)

IF (ITYPE .EQ. IBNDG2(6,INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 = INODE
GO TO 445

C7 NORTHERN EDGE

430 KNODEI - ICELG2(8.IONE)

KNODE2 = ICELG2(8,ITWO)

GO TO 445

C8 NORTHWESTERN CORNER

435 KNODE1 - ICELG2(6,IONE)

KNODE2 = ICELG2(2,IONE)

INBNDI - NBCPG2(4,1)

INBND2 = NBCPG2(4,2)

IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 - INODE

IF (ITYPE .EQ. IBNDG2(5.INBND2)) KNODEL = INODE
GO TO 445

C9 WESTERN EDGE

440 KNODEI - ICELG2(8,IONE)
KNODE2 = ICELG2(2,ITWO)

C DETERMINE ANGLE OF THE SURFACE; AND VELOCITY COMPONENTS

446 DXSIDE - GEOMG2(1.KNODE1) - GEOMG2(1,KNODE2)

DYSIDE - GEOMG2(2,KNODE1) - GEOMG2(2.KNODE2)
PHYPO - SQRT(DXSIDE*DXSIDE + DYSIDE*DYSIDE)

COSANG - DXSIDE/PHYPO

SINANG - DYSIDE/PHYPO

UCOMPR = DPENJA(2)
VCOMPR - DPENJA(3)

C

C COMPUTE THE NORMAL COMPONENT OF VELOCITY; IF POSITIVE

C WE HAVE INFLOW; OTHERWISE OUTFLOW
C

RHOQ - UCOMPR*SINANG - VCOMPR*COSANG
C

IF (RHOQ .GE. 0.) THEN
ITYPE 6

GO TO 500
ELSE

ITYPE 6
GO TO 600

ENDIF
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C
GO-TO 1600

C
C ---------
C CHARACTERISTIC INFLOW

C

C REVISE THE FOLLOWING ONCE IT STARTS WORKING

C

600 IF (ITWO .NE. O) GOTO 504

IF (IEDGE .EQ. 2) THEN

DO 502 IQ 1, NEQNFL

DPENG2(IQ,INODE) = DPENG2(Iq,ICELG2(8,IONE))

CHNGE2(Iq.INODE) = 0.

502 CONTINUE

GOTO 1600

ENDIF

C
IF (IEDGE .EQ. 8) THEN

DO 503 IQ - 1, NEQNFL

DPENG2(IQ,INODE) = DPENG2(IQ,ICELG2(2,IONE))

CHNGE2(IQ,INODE) = 0.
503 CONTINUE

GOTO 1600

ENDIF

C

C SET UP THE DEPENDENT VARIABLES

C
504 DO 06 IQ 1. NEQNFL

DPENJA(IQ) DPENG2(IQ,INODE)
505 CONTINUE

C

C COMPUTE THE VELOCITY COMPONENTS, PRESSURE, GAMMA ETC

C
CALL FLBGF2

C
QVELO = SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)

SONDPR = SQRT(GAMAPR*PRESPR/RHORPR)
C
C DETERMINE IF SUPERSONIC INLET

C

IF (VELO .GE. SONDPR) GO TO 200

C

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT
C THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

C ROTATED SYSTEM

COSANG - UCOMPR/qVELO

SINANG - VCOMPR/QVELO

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) 0.
CALL E2VECT(ALVECT)

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

C IS EMANATING

PHYPO = (SONDPR - VELO)*CELLTI(IONE)

XPNT = GEOMG2(1.INODE) + PHYPO*COSANG
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YPNT - GEOMG2(2,INODE) + PHYPO*SINANG
C

C FIND IN WHICH CELL THE POINT (XPNT,YPNT) IS LOCATED AND
C INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

C VALUES IN DPENJA(*)

C
CALL G2LCAT (IBOUND, XPNT, YPNT)

C

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN
C

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) - 0.

C
C COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)

C
CALL FRSOUR

C

C COMPUTE THE PRODUCTS LU AND LW
C

EIGENU(1) - 0.
EIGENW(1) - 0.

DO 510 JQ = 1, NEQNFL

EIGENU(1) = EIGENU(1) + ALVECT(1,JQ)*DPENJA(JQ)
EIGENW(1) - EIGENW(1) + ALVECT(1,Jq)*BIGWJA(JQ)

610 CONTINUE

EIGENU(1) EIGENU(1) + EIGENW(1)*CELLTI(IONE)
C
C NOW COMPUTE THE CHARACTERISTICS FROM EXTERIOR DOMAIN

C FIRST SET THE DEPENDENT VARIABLES

C

DO 515 IQ = 1. NEQNFL
DPENJA(IQ) = DPENFR(Iq)

515 CONTINUE

C
C ROTATE THESE VALUES ALONG THE STREAMLINE AT THE SAME ANGLE

C

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) 0.
C

C NOW COMPUTE THE MATRIX PRODUCTS

C

DO 525 IQ 2, NEQNFL

EIGENU(IQ) O0.

DO 520 JQ - 1, NEQNFL

EIGENU(IQ) EIGENU(IQ) + ALVECT(IQ,JQ)*DPENJA(JQ)

520 CONTINUE

525 CONTINUE

C

C NOW INVERT THIS TO COMPUTE THE REAL VALUES
C

CALL GAUSS2 (ALVECT.EIGENU.DPENJA,NEQNFL,MEQNFL)
C
C RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

C
UCOMPR - DPENJA(2)/DPENJA(1)
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DPENJA(3)/DPENJA(1)

SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)

UCOMPR/QVELO
VCOMPR/QVELO

SINANG*COSNEW+COSANG*SINNEW

COSANG*COSNEW-SINANG*SINNEW

SINDUM

QVELO*COSANG

QVELO*SINANG
UCOMPR*DPENJA(1)

VCOMPR*DPENJA(1)

DO 530 JQ = 1, NEQNFL

CHNGE2(JQ.INODE) = DPENJA(JQ)

CONTINUE

- DPENG2(JQ,INODE)

GO TO 1600

CHARACTERISTIC OUTFLOW

REVISE THE FOLLOWING ONCE IT STARTS WORKING

IF (ITWO .NE. O) GOTO 604
IF (IEDGE .EQ. 4) THEN

DO 602 IQ - 1. NEQNFL

DPENG2(IQ,INODE) - DPENG2(IQ,ICELG2(6,IONE))
CHNGE2(IQ,INODE) = 0.

CONTINUE

GOTO 1600

ENDIF

IF (IEDGE .EQ. 6) THEN

DO 603 IQ 1, NEqNFL

DPENG2(IQ,INODE) DPENG2(IQ,ICELG2(4,IONE))

CHNGE2(IQ,INODE) - 0.

CONTINUE

GOTO 1600

ENDIF

SET UP THE DEPENDENT VARIABLES

604 IFAC 1

DO 605 IQ - 1. NEQNFL

DPENJA(IQ) DPENG2(IQ,INODE)

DPENSV(IQ) DPENJA(IQ)

605 CONTINUE

C

IF (IEDGE .EQ. 3 .AND. DPENJA(3)

DPENJA(3) = O.
DPENG2(3,INODE) = 0.
CHNGE2(3,INODE) - 0.

ENDIF

VCOMPR =

QVELO =

COSNEW -
SINNEW =
SINDUM 

COSANG

SINANG

UCOMPR -

VCOMPR a
DPENJA(2) -

DPENJA(3) -

530

C

C
C
C
C
C
C
C
600

602

C

603

C
C
C

+ IFAC*CHNGE2(IQ,INODE)

.GT. 0.) THEN

C
C

C
COMPUTE THE VELOCITY COMPONENTS, PRESSURE, GAMMA ETC
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CALL FLBGF2

C

QVELO SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)
SONDPR = SQRT(GAMAPR*PRESPR/RHORPR)

C DETERMINE IF SUPERSONIC EXIT

C

IF (QVELO .GT. SONDPR) GO TO 700

C
C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT
C THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

C ROTATED SYSTEM

COSANG - UCOMPR/QVELO

SINANG - VCOMPR/QVELO

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) = 0.
C DPENF2 - QVELO*DPENFR(1)

CALL E2VECT(ALVECT)
C

C DETERMINE THE SOURCE TERMS AT THE BOUNDARY NODE; SAVE THEM
C

CALL FRSOUR

DO 610 Iq - 1, NEQNFL
BIGWSV(IQ) BIGWJA(IQ)

610 CONTINUE

C

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

C WITH SPEED (U+A) IS EMANATING

PHYPO - (SONDPR + QVELO)*CELLTI(IONE)

XPNT - GEOMG2(1,INODE) - PHYPO*COSANG

YPNT - GEOMG2(2.INODE) - PHYPO*SINANG
C

C FIND IN WHICH CELL THE POINT (XPNT,YPNT) IS LOCATED AND

C INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

C VALUES IN DPENJA(*)
C

CALL G2LCAT (IBOUND, XPNT. YPNT)
C

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN
C

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) a 0.

DPENSV(2) - DPENSV(2)*COSANG + DPENSV(3)*SINANG

DPENSV(3) - 0.
C

C COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)
C

CALL FRSOUR
C
C COMPUTE THE PRODUCTS LU AND LW

C

EIGENU(2) 0.
EIGENW(2) 0.

DO 615 JQ 1, NEQNFL
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EIGENU(2) EIGENU(2) + ALVECT(2,JQ)*DPENJA(JQ)
EIGENW(2) = EIGENW(2) + ALVECT(2,JQ)*BIGWJA(JQ)

615 CONTINUE

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC
C WITH SPEEDS U ARE EMANATING

PHYPON QVELO*CELLTI(IONE)

XPNT - GEOMG2(1,INODE) - PHYPON*COSANG
YPNT - GEOMG2(2.INODE) - PHYPON*SINANG

C
C INTERPOLATE VALUES
C

XL = PHYPON/PHYPO
XLM1 = 1. - XL

C

DO 620 IQ = 1, NEQNFL

DPENJA(IQ) DPENJA(IQ)*XL + DPENSV(Iq)*XLMI
BIGWJA(IQ) BIGWJA(IQ)*XL + BIGWSV(IQ)*XLMI

620 CONTINUE

C

C NOW COMPUTE THE MATRIX PRODUCTS
C

DO 630 IQ = 3, NEQNFL

EIGENU(Iq) = 0.

EIGENW(IQ) = 0.

DO 625 JQ = 1. NEQNFL
EIGENU(IQ) = EIGENU(IQ) + ALVECT(IQ,JQ)*DPENJA(JQ)

EIGENW(IQ) = EIGENW(IQ) + ALVECT(IQ,JQ)*BIGWJA(JQ)
625 CONTINUE

630 CONTINUE

C

C CORRECT THE INTERIOR CHARACTERISTICS FOR TIME
C

DO 635 IQ = 2, NEQNFL

EIGENU(IQ) EIGENU(IQ) + EIGENW(IQ)*CELLTI(IONE)
635 CONTINUE

C

C NOW COMPUTE THE CHARACTERISTICS FROM EXTERIOR DOMAIN
C FIRST SET THE DEPENDENT VARIABLES
C

DO 640 IQ 1, NEQNFL
DPENJA(IQ) DPENFR(IQ)

640 CONTINUE

C

C ROTATE THESE VALUES ALONG THE STREAMLINE AT THE SAME ANGLE
C

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG
C DPENJA(2) DPENF2

DPENJA(3) - 0.

EIGENU(1) 0.
DO 645 IQ 1, NEQNFL

EIGENU(1) - EIGENU(1) + ALVECT(1,Iq)*DPENJA(IQ)
645 CONTINUE

C
C NOW INVERT THIS TO COMPUTE THE REAL VALUES

597



C
CALL GAUSS2 (ALVECT,EIGENUDPENJA,NEQNFL.MEQNFL)

C -

C RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

C

UCOMPR = DPENJA(2)/DPENJA(1)

VCOMPR -DPENJA(3)/DPENJA(1)

QVELO = SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)

UCOMPR = QVELO*COSANG
VCOMPR = QVELO*SINANG

DPENJA(2) - UCOMPR*DPENJA(1)
DPENJA(3) - VCOMPR*DPENJA(1)

DO 660 JQ = 1. NEQNFL

CHNGE2(JQ,INODE) = DPENJA(JQ) - DPENG2(JQ,INODE)
650 CONTINUE

C

GO TO 1600

C
C

C CHARACTERISTIC SUPERSONIC OUTFLOW
C ----------

C
C DETERMINE THE SOURCE TERMS AT THE BOUNDARY NODE; SAVE THEM
C

700 CALL FRSOUR

DO 705 IQ = 1, NEQNFL

BIGWSV(IQ) = BIGWJA(IQ)
705 CONTINUE

C

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT
C THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

C ROTATED SYSTEM

C

COSANG UCOMPR/QVELO

SINANG - VCOMPR/QVELO

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) - 0.

CALL .E2VECT(ALVECT)
C
C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

C (U+A) IS EMANATING

PHYPO = (SONDPR + QVELO)*CELLTI(IONE)

XPNT - GEOMG2(1.INODE) - PHYPO*COSANG

YPNT - GEOMG2(2,INODE) - PHYPO*SINANG
C

C FIND IN WHICH CELL THE POINT (XPNT.YPNT) IS LOCATED AND
C INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

C VALUES IN DPENJA(*)
C

CALL G2LCAT (IBOUND, XPNT, YPNT)
C

C THE DIRECTION OF THE STREAM LINE MIGHT HAVE CHANGED, SO
C CORRECT IT

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN
C
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DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) = 0.

DPENSV(2) - DPENSV(2)*COSANG + DPENSV(3)*SINANG

DPENSV(3) - 0.

COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)

CALL FRSOUR

COMPUTE THE PRODUCTS LU AND LW

EIGENU(2) - 0.

EIGENW(2) = 0.

DO 710 JQ - 1. NEQNFL

EIGENU(2) - EIGENU(2)

EIGENW(2) - EIGENW(2)
CONTINUE

+ ALVECT(2,JQ)*DPENJA(JQ)

+ ALVECT(2,JQ)*BIGWJA(JQ)

DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTICS

WITH SPEEDS U ARE EMANATING

PHYPON

XPNT

YPNT

- QVELO*CELLTI(IONE)

- GEOMG2(1,INODE) - PHYPON*COSANG

- GEOMG2(2,INODE) - PHYPON*SINANG

INTERPOLATE VALUES

XL

XLM1

PHYPO

= PHYPON/PHYPO
1. - XL

= PHYPON

DO 715 IQ = 1, NEQNFL
DPENJA(IQ) = DPENJA(IQ)*XL + DPENSV(IQ)*XLM1

BIGWJA(IQ) = BIGWJA(IQ)*XL + BIGWSV(IQ)*XLM1

CONTINUE

NOW COMPUTE THE MATRIX PRODUCTS 

DO 725 IQ = 3. NEQNFL

EIGENU(IQ) = O.

EIGENW(Iq) = O.

DO 720 JQ - 1. NEQNFL

EIGENU(IQ) - EIGENU(Iq)

EIGENW(IQ) = EIGENW(IQ)
CONTINUE

CONTINUE

+ ALVECT(IQ,Jq)*DPENJA(JQ)
+ ALVECT(IQ.JQ)*BIGWJA(Jq)

DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

WITH SPEED (U-A) IS EMANATING

PHYPON

XPNT

YPNT

- (VELO - SONDPR)*CELLTI(IONE)

- GEOMG2(1,INODE) - PHYPON*COSANG

- GEOMG2(2,INODE) - PHYPON*SINANG

INTERPOLATE VALUES
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XL

XLMi
- PHYPON/PHYPO

= 1. - XL

DO 730 IQ 1,

DPENJA(IQ) -

BIGWJA(IQ) -
CONTINUE

EIGENU(1) - 0.
EIGENW(1) - 0.

DO 735 IQ 1.

EIGENU(1) 

EIGENW(1) =
CONTINUE

NEQNFL

DPENJA(IQ)*XL + DPENSV(IQ)*XLMI
BIGWJA(IQ)*XL + BIGWSV(IQ)*XLM1

NEQNFL

EIGENU(1) + ALVECT(I,IQ)*DPENJA(IQ)
EIGENW(I) + ALVECT(1,IQ)*BIGWJA(IQ)

CORRECT THE INTERIOR CHARACTERISTICS FOR TIME

DO 740 IQ = 1, NEQNFL
EIGENU(IQ) - EIGENU(IQ) + EIGENW(IQ)*CELLTI(IONE)

CONTINUE

NOW INVERT THIS TO COMPUTE THE REAL VALUES

CALL GAUSS2 (ALVECT,EIGENU,DPENJA,NEQNFL,MEQNFL)

RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

UCOMPR
VCOMPR
QVELO
UCOMPR
VCOMPR

DPENJA(2)
DPENJA(3)

- DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

- SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)
= QVELO*COSANG
- QVELO*SINANG
= UCOMPR*DPENJA(1)
- VCOMPR*DPENJA(1)

DO 745 JQ 1, NEQNFL

CHNGE2(JQ,INODE) - DPENJA(JQ) - DPENG2(JQINODE)
CONTINUE

GOTO 1600

EQUILIBRIUM BOUNDARY

CONTINUE

JFAC - 2
IF (ITWO .EQ. O) JFAC - 2*JFAC

810 RHORPR
RECDEN
UCOMPR
VCOMPR
VELO2U

C

- DPENG2(1,INODE)
- 1./RHORPR

- DPENG2(2,INODE)*RECDEN

- DPENG2 (3,INODE)*RECDEN
- UCOMPR*UCOMPR + VCOMPR*VCOMPR

COMPUTE THE DIMENSIONAL QUANTITIES

TEMPPR - TEMPG2(INODE)*TREFFL
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C
C SET- THE FIRST FOUR CHANGES AS ZERO'S

C

CHNGE2(1,INODE) O.

CHNGE2(2,INODE) - 0.

CHNGE2(,3INODE) - O.

CHNGE2(4,INODE) 0.

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY O0.

YUPPER - 1. - YNRTCH

DO 820 JS NEQBAS+1, NEQNFL

IS = JS - NEQBAS

DPENG2(JS,INODE) DPENG2(JS.INODE) +JFAC*CHNGE2(JS,INODE)
CHNGE2(JS,INODE) = 0.

YSPEPR(IS) DPENG2(JS,INODE)*RECDEN

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) = O.

DPENG2(JS,INODE) = O.

ENDIF

C IF (YSPEPR(IS) .GT. YUPPER) THEN

C YSPEPR(IS) = YUPPER
C DPENG2(JS,INODE) = YUPPER*DPENG2(1,INODE)
C ENDIF

SUMY = SUMY + YSPEPR(IS)
820 CONTINUE

YSPEPR(NEQSCH+l) - YUPPER - SUMY

C YSPEPR(NEQSCH+1) ABS(1. - SUMY - YNRTCH)

IF (YSPEPR(NEqSCH+I) .LT. 0.) YSPEPR(NEQSCH+1) = 0.
C
C COMPUTE THE ENTHALPY OF THE MIXTURE

C
SYSHFS = O.

SYSCPS 0.
SYSBMS = 0.

BIGAM - O.

DO 830 IS - 1, NSPECH

SYSHFS SYSHFS + YSPEPR(IS)*FMHTCH(IS)
SYSCPS - SYSCPS + YSPEPR(IS)*SPCPCH(IS)
SYSBMS SYSBMS + YSPEPR(IS)*RAMWVCH(IS)
BIGAM - BIGAM + YSPEPR(IS)*SPBSCH(IS)

830 CONTINUE

ENTHAL - SYSHFS + SYSCPS*(TEMPPR-TREFCH) +
1 0.B*BIGAM*(TEMPPR**2-TREFCH**2)

ENTHAL = ENTHAL/FMREFL + 0.5*VELO2U

C COMPUTE THE DIMENSIONLESS PRESSURE
C

PRESG2(INODE) RHORPR*TEMPG2(INODE)*AMWTFL*SYSBMS
C
C COMPUTE THE FOURTH COMPONENT OF STATE VECTOR

C
DPENG2(4,INODE) RHORPR*ENTHAL - PRESG2(INODE)
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GOTO 1600

CORNER BOUNDARY CONDITIONS

CONTINUE

IF (IEDGE .EQ. 2) THEN

INEXTN 8

ELSE IF (IEDGE .EQ. 4) THEN

INEXTN 6

ELSE IF (IEDGE .EQ. 6) THEN

INEXTN 4

ELSE IF (IEDGE .EQ. 8) THEN

INEXTN 2

ELSE

GOTO 1600

ENDIF

NODENB = ICELG2(INEXTN,IONE)

DO 910 JS = 1, NEQNFL

DPENG2(JS,INODE) = DPENG2(JS,NODENB)
CHNGE2(JS,INODE) 0.

CONTINUE

GOTO 1600

RADIATION CONDITION + FACTOR 2

SUPERSONIC EXIT

DO 1010 IQ = 1, NEQNFL

CHNGE2(IQ,INODE) 2.*CHNGE2(IQ,INODE)
CONTINUE

GO TO 1600

VISCOUS WALL BOUNDARY

IFACTR - 2
FFACTR - 2.

GO TO (1105,1110,1105,1110,110,1111105,1110), (IEDGE-1)
GO TO 1600

IFACTR 4

FFACTR 4.

IF (IEDGE .EQ. O) FFACTR = 4./3.

SET THE VELOCITIES ZERO AND OTHER VALUES AS REFLECTION

DO 1120 IQ - 1, NEQNFL

CHNGE2(IQ,INODE) = IFACTR*CHNGE2(IQ,INODE)
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CHNGE2(I, INODE) =

CONTINUE

FFACTR*CHNGE2(IQ,INODE)

CHNGE2(2,INODE) = 0.

CHNGE2(3,INODE) = 0.
DPENG2(2,INODE) - 0.

DPENG2(3,INODE) = 0.

GO TO 1600

GO BACK FOR NEXT NODE

1600 CONTINUE

RETURN
END

E2BCNO

SUBROUTINE E2BCNO (ITGL)

INCLUDE 'I
INCLUDE 'I

INCLUDE 'I

INCLUDE 'I
INCLUDE 'I

INCLUDE 'I
INCLUDE 'I
INCLUDE 'I

INCLUDE 'I

INCLUDE 'I

INCLUDE 'I

INCLUDE 'I
DIMENSION

1
LOGICAL

:.INC]
. INC]
. INC]
[.INC]

[.INC]

[. INC]
[. INC]
.INC]
[.INC]

[. INC]

[.INC]

[. INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

E2COMN.INC/LIST'

FLCOMN.INC/LIST'

FRCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

IOCOMN.INC/LIST'

JACOMN.INC/LIST'

PRCOMN.INC/LIST'

TICOMN.INC/LIST'
EIGENU(MEQNFL), EIGENW(MEQNFL), ALVECT(MEQNFL,MEQNFL),

DPENSV(MEQNFL), BIGWSV(MEqNFL)

IWRITE

THIS SUBROUTINE APPLIES THE BOUNDARY CONDITIONS TO THE BOUNDARY

NODES ( NOT CONCERNED WITH CELLS)
THE TYPE OF BOUNDARY CONDITIONS ARE :-

1: RADIATION : SUPERSONIC EXIT

2: DIRECHLET : SUPERSONIC INLET

3: SOLID WALL BOUNDARY

4: INFLOW/OUTFLOW DETERMINATION
6: SUBSONIC INFLOW

6: SUBSONIC OUTFLOW

IFAC = 1
C
C WANT DEBUG PRINT ?

603

1120

C
C

C

C

C

C

C

C

C

C

C
C



C
IWRITE - IDBGE2 .Eq. 5 .OR. IDBGE2 .GT. 1000

C APPLY BOUNDARY CONDITIONS AT EACH BOUNDARY NODE

DO 1600 IBOUND - 1, NBNDG2

C BRANCH OUT ACCORDING TO TYPE

C INODE IS THE BOUNDARY NODE

C IONE IS THE FIRST CELL ADJACENT TO THE BOUNDARY NODE

C ITWO IS THE SECOND CELL ADJACENT TO THE BOUNDARY NODE

C IEDGE IS a2 FOR SW CORNER, 4 FOR SE CORNER, ETC
C ITYPE IS THE BOUNDARY CONDITION TYPE (1 THROUGH 6)

INODE

IONE

ITWO

IEDGE

ITYPE

- IBNDG2(1,IBOUND)

= IBNDG2(2,IBOUND)

- IBNDG2(3,IBOUND)

- IBNDG2(4,IBOUND)

- IBNDG2(5,IBOUND)

C

C SKIP TO NEXT BOUNDARY NODE IF THE TWO ADJACENT CELLS ARE

C NOT AT THE CORRECT TEMPORAL LEVEL

C

IF (CHNGE2(1,INODE) .EQ. 0.) GOTO 1600
10 GO TO (100,200,300,400,5 00,6 00,600,600,800),ITYPE

GO TO 1500

RADIATION CONDITION

SUPERSONIC EXIT -- DO NOTHING

GO TO 1600

DIRECHLET CONDITION

HOLD ALL CONDITIONS -- SUPERSONIC INLET

200 DO 210 IQ = 1, NEQNFL

CHNGE2(IQ,INODE) = 0.

210 CONTINUE

GO TO 1600

C
C
C
C
C
300

SOLID WALL BOUNDARY

IFACTR 2

GO TO (305,310,316,320,325,330,336,340), (IEDGE-1)
GO TO 1500

C2 SOUTHWESTERN CORNER
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305 KNODE1 - ICELG2(8.IONE)

KNODE2 - ICELG2(4,IONE)

INBND1 - NBCPG2(1,1)

INBND2 - NBCPG2(1,2)

IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 INODE

IF (ITYPE .EQ. IBNDG2(5.INBND2)) KNODE1 = INODE

IFACTR 4

GO TO 345

C3 SOUTHERN EDGE

310 KNODE1 = ICELG2(2,IONE)

KNODE2 ICELG2(4,ITWO)

GO TO 345

C4 SOUTHEASTERN CORNER

315 KNODE1 = ICELG2(2,IONE)

KNODE2 ICELG2(6,IONE)

INBND1 - NBCPG2(2,1)

INBND2 = NBCPG2(2,2)

IF (ITYPE .EQ. IBNDG2(5.INBND1)) KNODE2 INODE

IF (ITYPE .EQ. IBNDG2(6,INBND2)) KNODE1 - INODE

IFACTR - 4

GO TO 346

Cs EASTERN EDGE

320 KNODE1 - ICELG2(4,IONE)

KNODE2 ICELG2(6,ITWO)

GO TO 345

C6 NORTHEASTERN CORNER

326 KNODE1 - ICELG2(4,IONE)

KNODE2 - ICELG2(8,IONE)
INBND1 = NBCPG2(3,1)

INBND2 NBCPG2(3,2)
IF (ITYPE .Eq. IBNDG2(5,INBND1)) KNODE2 INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 INODE
IFACTR - 4

GO TO 345

C7 NORTHERN EDGE

330 KNODE1 - ICELG2(6,IONE)

KNODE2 - ICELG2(8.ITWO)
GO TO 345

C8 NORTHWESTERN CORNER

336 KNODE1 ICELG2(d,IONE)

KNODE2 ICELG2(2,IONE)

INBNDI - NBCPG2(4,1)

INBND2 - NBCPG2(4,2)
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IF (ITYPE .Eq. IBNDG2(5,INBND1)) KNODE2 = INODE

IF_(ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 = INODE

IFACTR = 4

GO TO 345

C9 WESTERN EDGE

340 KNODE1 ICELG2(8,IONE)

KNODE2 = ICELG2(2,IrW/O)

C DETERMINE THE ANGLE OF THE SURFACE

345 DXSIDE -
DYSIDE =
PHYPO =

COSANG =

SINANG =

C

GEOMG2(1,KNODE2) - GEOMG2(1,KNODE1)

GEOMG2(2,KNODE2) - GEOMG2(2,KNODE1)

SqRT(DXSIDE*DXSIDE + DYSIDE*DYSIDE)

DXSIDE/PHYPO

DYSIDE/PHYPO

CALL E2BCSW (IONE,ITWO,INODE,IBOUND)

DO 350 IQ = 1, NEqNFL

CHNGE2(IQ,INODE) = IFACTR*CHNGE2(Iq,INODE)

350 CONTINUE

RHO -

RHOU =

RHOV =
RHOQ

U2NEXT =

U3NEXT =

DPENG2(1,INODE) + CHNGE2(1,INODE)

DPENG2(2,INODE) + CHNGE2(2,INODE)

DPENG2(3,INODE) + CHNGE2(3,INODE)
RHOU*COSANG + RHOV*SINANG

RHOQ*COSANG

RHOQ*SINANG

CHNGE2(2,INODE) = U2NEXT - DPENG2(2,INODE)

CHNGE2(3,INODE) = U3NEXT - DPENG2(3,INODE)

GO TO 1500

C
C
C
C
C
C
C
C
C

INFLOW/OUTFLOW DETERMINATION

DETERMINE IF THE FLOW IS ENTERING OR LEAVING THE

COMPUTATIONAL DOMAIN AND APPLY THE CHARACTERISTIC

BOUNDARY CONDITIONS ACCORDINGLY

400 DO 401 IQ = i, NEQNFL
DPENJA(IQ) = DPENG2(IQ,INODE) + CHNGE2(IQ,INODE)

401 CONTINUE

GO TO (405,410,415,420,425,430,435,440), (IEDGE-1)
GO TO 1500

C2 SOUTHWESTERN CORNER

405 KNODE1 = ICELG2(8,IONE)

KNODE2 = ICELG2(4,IONE)

INBND1 = NBCPG2(l,1)

INBND2 NBCPG2(1.2)
IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 = INODE
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IF (ITYPE .EQ. IBNDG2(6,INBND2)) KNODE1 = INODE
GO TO 445

C3 SOUTHERN EDGE

410 KNODE1 = ICELG2C(2,IONE)

KNODE2 = ICELG2C(4,ITWO)

GO TO 446

C4 SOUTHEASTERN CORNER

415 KNODEl - ICELG2(2,IONE)

KNODE2 - ICELG2(6,IONE)

INBND1 - NBCPG2(2,1)

INBND2 - NBCPG2(2,2)
IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 - INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODEL = INODE
GO TO 445

CS EASTERN EDGE

420 KNODE1 = ICELG2(4,IONE)

KNODE2 - ICELG2(6,ITWO)

GO TO 445

C6 NORTHEASTERN CORNER

425 KNODE1 = ICELG2(4,IONE)
KNODE2 = ICELG2(8,IONE)

INBND1 - NBCPG2(3,1)

INBND2 - NBCPG2(3,2)
IF (ITYPE .Eq. IBNDG2(56,INBND1)) KNODE2 = INODE

IF (ITYPE .EQ. IBNDG2(5,INBND2)) KNODE1 = INODE
GO TO 446

C7 NORTHERN EDGE

430 KNODEI - ICELG2(6,IONE)

KNODE2 - ICELG2(8.ITWO)
GO TO 446

CB NORTHWESTERN CORNER

435 KNODE1 - ICELG2(6,IONE)

KNODE2 - ICELG2(2,IONE)

INBNDI - NBCPG2(4,1)

INBND2 - NBCPG2(4,2)
IF (ITYPE .EQ. IBNDG2(5,INBND1)) KNODE2 - INODE

IF (ITYPE .EQ. IBNDG2(6,INBND2)) KNODEI - INODE

GO TO 446

C9 WESTERN EDGE

440 KNODE1 - ICELG2(8,IONE)
KNODE2 - ICELG2(2,ITWO)

C DETERMINE ANGLE OF THE SURFACE; AND VELOCITY COMPONENTS
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445 DXSIDE - GEOMG2(1,KNODE1) - GEOMG2(1,KNODE2)

DYBIDE - GEOMG2(2,KNODE1) - GEOMG2(2,KNODE2)

PHYPO - SQRT(DXSIDE*DXSIDE + DYSIDE*DYSIDE)

COSANG DXSIDE/PHYPO

SINANG - DYSIDE/PHYPO

UCOMPR = DPENJA(2)

VCOMPR = DPENJA(3)

C

C COMPUTE THE NORMAL COMPONENT OF VELOCITY; IF POSITIVE

C WE HAVE INFLOW; OTHERWISE OUTFLOW
C

RHOQ - UCOMPR*SINANG - VCOMPR*COSANG
C

IF (RHOQ .GE. 0.) THEN

ITYPE - 6
GO TO 600

ELSE

ITYPE = 6
GO TO 600

ENDIF
C

GO TO 1500

C
C

C CHARACTERISTIC INFLOW

C
C REVISE THE FOLLOWING ONCE IT STARTS WORKING

C

500 IF (ITWO .NE. O) GOTO 504

IF (IEDGE .EQ. 2) THEN

DO 502 IQ 1, NEQNFL

DPENG2(Iq,INODE) DPENG2(IQ,ICELG2(8,IONE))

CHNGE2(Iq,INODE) = 0.
502 CONTINUE

GOTO 1500
ENDIF

C
IF (IEDGE .EQ. 8) THEN

DO 503 IQ = 1, NEQNFL
DPENG2(IQ,INODE) DPENG2(Iq.ICELG2(2,IONE))

CHNGE2(IQ,INODE) 0.
503 CONTINUE

GOTO 1600

ENDIF

C
C SET UP THE DEPENDENT VARIABLES

C
504 DO 505 IQ = 1, NEQNFL

DPENJA(Iq) DPENG2(IQ,INODE)

505 CONTINUE
C
C COMPUTE THE VELOCITY COMPONENTS, PRESSURE, GAMMA ETC

C
CALL FLBGF2

C
QVELO - SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)
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SONDPR - SQRT(GAMAPR*PRESPR/RHORPR)

C 
C DETERMINE IF SUPERSONIC INLET

C

IF (QVELO .GE. SONDPR) GO TO 200

C
C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT

C THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

C ROTATED SYSTEM

COSANG - UCOMPR/QVELO

SINANG - VCOMPR/QVELO

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) - 0.

CALL E2VECT(ALVECT)

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

C IS EMANATING

PHYPO (SONDPR - QVELO)*CELLTI(IONE)

XPNT - GEOMG2(1,INODE) + PHYPO*COSANG
YPNT - GEOMG2(2,INODE) + PHYPO*SINANG

C

C FIND IN WHICH CELL THE POINT (XPNT.YPNT) IS LOCATED AND

C INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

C VALUES IN DPENJA(*)

C

CALL G2LCAT (IBOUND, XPNT, YPNT)
C

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN

C

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) 0.

C

C COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)
C

CALL FRSOUR

C

C COMPUTE THE PRODUCTS LU AND LW

C
EIGENU(1) - O.

EIGENW(1) - 0.

DO 610 JQ r 1, NEQNFL

EIGENU(I) = EIGENU(1) + ALVECT(1,JQ)*DPENJA(JQ)
EIGENW(1) = EIGENW(1) + ALVECT(1,JQ)*BIGWJA(JQ)

510 CONTINUE

EIGENU(1) - EIGENU(1) + EIGENW(1)*CELLTI(IONE)
C
C NOW COMPUTE THE CHARACTERISTICS FROM EXTERIOR DOMAIN

C FIRST SET THE DEPENDENT VARIABLES

C

DO 516 IQ 1. NEQNFL
DPENJA(IQ) DPENFR(IQ)

615 CONTINUE

C
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ROTATE THESE VALUES ALONG THE STREAMLINE AT THE SAME ANGLE

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) - 0.

NOW COMPUTE THE MATRIX PRODUCTS

DO 626 IQ - 2, NEQNFL

EIGENU(IQ) = 0.

DO 620 JQ l, NEQNFL

EIGENU(IQ) - EIGENU(IQ) + ALVECT(IQ.JQ)*DPENJA(JQ)
CONTINUE

CONTINUE

NOW INVERT THIS TO COMPUTE THE REAL VALUES

CALL GAUSS2 (ALVECT.EIGENU,DPENJA, NEqNFL.MEQNFL)

RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

UCOMPR

VCOMPR

QVELO

COSNEW

SINNEW

SINDUM

COSANG

SINANG

UCOMPR

VCOMPR

DPENJA(2)

DPENJA(3)

- DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

= SqRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)

- UCOMPR/QVELO

= VCOMPR/QVELO

- SINANG*COSNEW+COSANG*SINNEW

= COSANG*COSNEW-SINANG*SINNEW

= SINDUM

- QVELO*COSANG

- QVELO*SINANG

- UCOMPR*DPENJA(1)

- VCOMPR*DPENJA(1)

DO 530 JQ - 1, NEQNFL

CHNGE2(JQ.INODE) DPENJA(JQ)

CONTINUE
- DPENG2(JQ.INODE)

GO TO 1600

CHARACTERISTIC OUTFLOW

REVISE THE FOLLOWING ONCE IT STARTS WORKING

IF (ITWO .NE. O) GOTO 604

IF (IEDGE .EQ. 4) THEN

DO 602 I 1, NEQNFL

DPENG2(IQ,INODE) - DPENG2(IQ,ICELG2(6.IONE))

CHNGE2(IQ,INODE) - O.
CONTINUE
GOTO 1600

ENDIF

IF (IEDGE .EQ. 6) THEN

DO 603 IQ - 1, NEQNFL

DPENG2(IQ, INODE) - DPENG2(IQ.ICELG2(4.IONE))

610

C
C

C
C

C

620

625

C
C
C

C
C

C

630

C

C
C
C
C
C
C
C
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CHNGE2(IQ,INODE) = 0.
eONTINUE

GOTO 1500
ENDIF

SET UP THE DEPENDENT VARIABLES

IFAC 1
DO 606 IQ 1, NEQNFL

DPENJA(IQ) - DPENG2(IQ,INODE)

DPENSV(IQ) - DPENJA(IQ)

CONTINUE

IF (IEDGE .EQ. 3 .AND. DPENJA(3)

DPENJA(3) - 0.

DPENG2(3S,INODE) 0.

CHNGE2(3,INODE) = 0.

ENDIF

+ IFAC*CHNGE2(Iq,INODE)

.GT. 0.) THEN

COMPUTE THE VELOCITY COMPONENTS, PRESSURE, GAMMA ETC

CALL FLBGF2
C

QVELO = SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)
SONDPR - SQRT(GAMAPR*PRESPR/RHORPR)

DETERMINE IF SUPERSONIC EXIT

IF (QVELO .GT. SONDPR) GO TO 700

ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT
THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

ROTATED SYSTEM

COSANG - UCOMPR/QVELO
SINANG = VCOMPR/QVELO
DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) - 0.

DPENF2 - QVELO*DPENFR(1)
CALL E2VECT(ALVECT)

DETERMINE THE SOURCE TERMS AT THE BOUNDARY NODE; SAVE THEM

CALL FRSOUR

DO 610 IQ 1. NEQNFL
BIGWSV(IQ) BIGWJA(IQ)

CONTINUE

DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

WITH SPEED (U+A) IS EMANATING

PHYPO

XPNT
YPNT

= (SONDPR + QVELO)*CELLTI(IONE)
- GEOMG2(1,INODE) - PHYPO*COSANG

- GEOMG2(2,INODE) - PHYPO*SINANG

FIND IN WHICH CELL THE POINT (XPNT,YPNT) IS LOCATED AND
INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

611

603

C

C
C
604

606
C

C
C
C

C
C

C
C
C
C

C

C
C
C

610
C
C
C

C
C
C



VALUES IN DPENJA(*)

CALL G2LCAT (IBOUND, XPNT, YPNT)

ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN

DPENJA(2) - DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) 0.

DPENSV(2) - DPENSV(2)*COSANG + DPENSV(3)*SINANG
DPENSV(3) - 0.

COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)

CALL FRSOUR

COMPUTE THE PRODUCTS LU AND LW

EIGENU(2) 0.
EIGENW(2) - 0.

DO 615 JQ 1, NEQNFL

EIGENU(2) EIGENU(2)

EIGENW(2) EIGENW(2)

615 CONTINUE

+ ALVECT(2,JQ)*DPENJA(JQ)

+ ALVECT(2,JQ)*BIGWJA(JQ)

DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC
WITH SPEEDS U ARE EMANATING

PHYPON

XPNT

YPNT

- QVELO*CELLTI(IONE)

- GEOMG2(1,INODE) - PHYPON*COSANG

= GEOMG2(2,INODE) - PHYPON*SINANG

INTERPOLATE VALUES

XL

XLMI

= PHYPON/PHYPO
= 1. - XL

C

DO 620 IQ - 1, NEQNFL

DPENJA(IQ) DPENJA(IQ)*XL + DPENSV(IQ)*XLM1
BIGWJA(IQ) - BIGWJA(IQ)*XL + BIGWSV(IQ)*XLM1

620 CONTINUE

C

C NOW COMPUTE THE MATRIX PRODUCTS

C
DO 630 IQ - 3. NEQNFL

EIGENU(IQ) - 0.

EIGENW(IQ) - O.
DO 625 JQ 1, NEQNFL

EIGENU(IQ) = EIGENU(IQ)
EIGENW(IQ) - EIGENW(IQ)

CONTINUE

CONTINUE
625
630

C
C
C

+ ALVECT(IQJQ) *DPENJA(JQ)
+ ALVECT(IQ.JQ) *BIGWJA(JQ)

CORRECT THE INTERIOR CHARACTERISTICS FOR TIME

DO 635 IQ = 2. NEQNFL
EIGENU(IQ) - EIGENU(IQ) + EIGENW(IQ)*CELLTI(IONE)

612

C
C

C
C

C

C
C

C

C
C

C

C
C

C
C

C



836 CONTINUE

C
C NOW COMPUTE THE CHARACTERISTICS FROM EXTERIOR DOMAIN
C FIRST SET THE DEPENDENT VARIABLES

C

DO 640 IQ - 1, NEQNFL

DPENJA(IQ) = DPENFR(IQ)

640 CONTINUE

C

C ROTATE THESE VALUES ALONG THE STREAMLINE AT THE SAME ANGLE

C

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG
C DPENJA(2) - DPENF2

DPENJA(3) 0.

EIGENU(I) = 0.
DO 645 I 1. NEQNFL

EIGENU(I) = EIGENU(1) + ALVECT(1,IQ)*DPENJA(IQ)
645 CONTINUE

C

C NOW INVERT THIS TO COMPUTE THE REAL VALUES
C

CALL GAUSS2 (ALVECT,EIGENU,DPENJA,NENFL ,MEQNFL)

C
C RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

C

UCOMPR = DPENJA(2)/DPENJA(1)
VCOMPR = DPENJA(3)/DPENJA(i)
QVELO = SQRT(UCOMPR*UCOMPR + VCOMPR*VCOMPR)
UCOMPR = QVELO*COSANG
VCOMPR - QVELO*SINANG
DPENJA(2) - UCOMPR*DPENJA(1)
DPENJA(3) = VCOMPR*DPENJA(1)

DO 650 JQ = 1, NEQNFL

CHNGE2(JQ,INODE) = DPENJA(JQ) - DPENG2(JQ.INODE)
6650 CONTINUE

C
GO TO 1500

C
C

C CHARACTERISTIC SUPERSONIC OUTFLOW
C

C
C DETERMINE THE SOURCE TERMS AT THE BOUNDARY NODE; SAVE THEM
C
700 CALL FRSOUR

DO 706 IQ 1, NEQNFL
BIGWSV(IQ) BIGWJA(IQ)

705 CONTINUE

C
C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AT
C THE BOUNDARY NODE AND COMPUTE EIGENVECTOR MATRIX IN THIS

C ROTATED SYSTEM

C
COSANG - UCOMPR/QVELO

SINANG VCOMPR/QVELO
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DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG

DPENJA(3) - 0.
CALL E2VECT(ALVECT)

C

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTIC

C (U+A) IS EMANATING

PHYPO - (SONDPR + QVELO)*CELLTI(IONE)

XPNT - GEOMG2(1,INODE) - PHYPO*COSANG

YPNT - GEOMG2(2,INODE) - PHYPO*SINANG
C

C FIND IN WHICH CELL THE POINT (XPNT,YPNT) IS LOCATED AND

C INTERPOLATE IN CARTESIAN COORDINATES AT THIS POINT STORING

C VALUES IN DPENJA(*)
C

CALL G2LCAT (IBOUND, XPNT. YPNT)
C
C THE DIRECTION OF THE STREAM LINE MIGHT HAVE CHANGED, SO
C CORRECT IT

C ROTATE THE DEPENDENT VARIABLES (NATURAL COORDINATES) AGAIN
C

DPENJA(2) DPENJA(2)*COSANG + DPENJA(3)*SINANG
DPENJA(3) - 0.

DPENSV(2) - DPENSV(2)*COSANG + DPENSV(3)*SINANG
DPENSV(3) O.

C

C COMPUTE SOURCE TERMS AT THE INTERIOR POINT (ROTATED SYSTEM)
C

CALL FRSOUR
C
C COMPUTE THE PRODUCTS LU AND LW

C

EIGENU(2) O.

EIGENW(2) O.

DO 710 J 1, NEQNFL

EIGENU(2) - EIGENU(2) + ALVECT(2,JQ)*DPENJA(JQ)

EIGENW(2) - EIGENW(2) + ALVECT(2,JQ)*BIGWJA(JQ)

710 CONTINUE

C

C DETERMINE THE DISTANCE FROM WHERE THE INTERIOR CHARACTERISTICS

C WITH SPEEDS U ARE EMANATING

C

PHYPON - QVELO*CELLTI(IONE)

XPNT - GEOMG2(1.INODE) - PHYPON*COSANG

YPNT - GEOMG2(2,INODE) - PHYPON*SINANG
C

C INTERPOLATE VALUES
C

XL - PHYPON/PHYPO
XLM1 - 1. - XL

PHYPO - PHYPON
C

DO 716 IQ = 1, NEqNFL
DPENJA(IQ) - DPENJA(IQ)*XL + DPENSV(IQ)*XLM1
BIGWJA(IQ) - BIGWJA(IQ)*XL + BIGWSV(IQ)*XLM1

715 CONTINUE
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NOW COMPUTE THE MATRIX PRODUCTS

DO 726 IQ - 3,. NEqNFL

EIGENU(IQ) - 0.

EIGENW(IQ) - O.
DO 720 JQ - 1. NEQNFL

EIGENU(Iq) EIGENU(IQ)

EIGENW(IQ) - EIGENW(IQ)

CONTINUE

CONTINUE

+ ALVECT(IQ,JQ)*DPENJA(JQ)

+ ALVECT(IQJQ)*BIGWJA(JQ)

DETERMINE THE DISTANCE FROM WHERE THE INTERIOR

WITH SPEED (U-A) IS EMANATING

PHYPON

XPNT

YPNT

CHARACTERISTIC

- (QVELO - SONDPR)*CELLTI(IONE)

- GEOMG2(1,INODE) - PHYPON*COSANG

- GEOMG2(2,INODE) - PHYPON*SINANG

INTERPOLATE VALUES

XL

XLM1

= PHYPON/PHYPO

- 1. - XL

DO 730 IQ - 1,

DPENJA(IQ) 

BIGWJA(IQ) 

CONTINUE

EIGENU(1) - 0.

EIGENW(1) - 0.

DO 736 IQ - 1,

EIGENU(I) -
EIGENW(1) -

CONTINUE

NEQNFL

DPENJA(IQ)*XL

BIGWJA(IQ)*XL

+ DPENSV(IQ)*XLMI

+ BIGWSV(IQ)*XLM1

NEQNFL

EIGENU(1) + ALVECT(1,IQ)*DPENJA(Iq)

EIGENW(1) + ALVECT(1,IQ)*BIGWJA(IQ)

CORRECT THE INTERIOR CHARACTERISTICS FOR TIME

DO 740 IQ - 1. NEQNFL

EIGENU(IQ) EIGENU(IQ) + EIGENW(IQ)*CELLTI(IONE)

CONTINUE

NOW INVERT THIS TO COMPUTE THE REAL VALUES

CALL GAUSS2 (ALVECT,EIGENU,DPENJA,NEQNFL,MEQNFL)

RECOMPUTE THE VELOCITY SO THAT IT CAN BE DISTRIBUTED

UCOMPR

VCOMPR

qVELO

UCOMPR

VCOMPR

DPENJA(2)

DPENJA(3)

- DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

- SQRT(UCOMPR*UCOMPR +
- QVELO*COSANG

- QVELO*SINANG

- UCOMPR*DPENJA(1)

- VCOMPR*DPENJA(1)

VCOMPR*VCOMPR)

DO 745 JQ - 1. NEQNFL
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CHNGE2(JQ,INODE) - DPENJA(JQ) - DPENG2(JQ,INODE)

745 CONTINUE

GOTO 1600

C
C

C EQUILIBRIUM BOUNDARY

C

C
800 CONTINUE

JFAC = 2

IF (ITWO .EQ. O) JFAC ' 2*JFAC

810 RHORPR - DPENG2(1,INODE)

RECDEN - 1./RHORPR

UCOMPR - DPENG2(2,INODE)*RECDEN

VCOMPR DPENG2(3,INODE)*RECDEN
VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C COMPUTE THE DIMENSIONAL QUANTITIES

TEMPPR - TEMPG2(INODE)*TREFFL
C

C SET THE FIRST FOUR CHANGES AS ZERO'S

C
CHNGE2(1,INODE) O.

CHNGE2(2,INODE) = 0.

CHNGE2(3,INODE) - 0.
CHNGE2(4,INODE) - 0.

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY 0.

YUPPER - 1. - YNRTCH

DO 820 JS NEQBAS+1, NEQNFL

IS - JS - NEQBAS

DPENG2(JS,INODE) DPENG2(JS,INODE) +JFAC*CHNGE2(JS,INODE)

CHNGE2(JS,INODE) - O.

YSPEPR(IS) - DPENG2(JS,INODE)*RECDEN

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) = 0.
DPENG2(JS,INODE) = O.

ENDIF

C IF (YSPEPR(IS) .GT. YUPPER) THEN

C YSPEPR(IS) - YUPPER

C DPENG2(JS,INODE) = YUPPER*DPENG2(1,INODE)

C ENDIF

SUMY = SUMY + YSPEPR(IS)
820 CONTINUE

YSPEPR(NEQSCH+I) YUPPER - SUMY

C YSPEPR(NEQSCH+I) - ABS(1. - SUMY - YNRTCH)
IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEQSCH+I) = 0.

C

C COMPUTE THE ENTHALPY OF THE MIXTURE
C

SYSHFS - 0.
SYSCPS O.
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SYSBMS 0.

BIGAM - 0.

DO 830 IS

SYSHFS

SYSCPS
SYSBMS

BIGAM

CONTINUE

- 1, NSPECH

- SYSHFS + YSPEPR(IS)*FMHTCH(IS)

- SYSCPS + YSPEPR(IS)*SPCPCH(IS)

= SYSBMS + YSPEPR(IS)*RAMWCH(IS)

= BIGAM + YSPEPR(IS)*SPBSCH(IS)

ENTHAL SYSHFS + SYSCPS*(TEMPPR-TREFCH) +

O.$*BIGAM*(TEMPPR**2-TREFCH**2)

ENTHAL - ENTHAL/FMREFL + 0.5*VELO2U

COMPUTE THE DIMENSIONLESS PRESSURE

PRESG2(INODE) RHORPR*TDPG2(INODE)*AMWTFL*SYSBMS

COMPUTE THE FOURTH COMPONENT OF STATE VECTOR

DPENG2(4,INODE) - RHORPR*ENTHAL - PRESG2(INODE)

GOTO 1500

CORNER BOUNDARY CONDITIONS

CONTINUE

write(6,*) ' it does come here

IF (IEDGE .EQ. 2) THEN

INEXTN = 8
ELSE IF (IEDGE .E. 4) THEN

INEXTN - 6
ELSE IF (IEDGE .EQ. 6) THEN

INEXTN = 4

ELSE IF (IEDGE .EQ. 8) THEN

INEXTN - 2

ELSE

GOTO 1500

ENDIF

NODENB = ICELG2(INEXTNIONE)

e2bcn0 edge ',iedge,inode

DO 910 JS - 1. NEQNFL

DPENG2(JS.INODE) -
CHNGE2(JS,INODE) -

CONTINUE

GOTO 1500

DPENG2(JSNODENB)
0.

RADIATION CONDITION + FACTOR 2

SUPERSONIC EXIT

DO 1010 I - 1, NEQNFL
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CHNGE2(IQ,INODE) 2.*CHNGE2(IQ,INODE)
1010 CONTINUE

GO TO 1500
C
C
C VISCOUS WALL BOUNDARY

C --

C

Cl100 IFACTR 2

1100 FFACTR = 2.

GO TO (1105,1110,1105,1110,1105,1110,1105,1110), (IEDGE-1)

GO TO 1500

Cl105 IFACTR = 4
1105 FFACTR = 4.

1110 IF (IEDGE .EQ. O) FFACTR = 4./3.

C SET THE VELOCITIES ZERO AND OTHER VALUES AS REFLECTION

DO 1120 IQ 1, NEQNFL

C CHNGE2(IQ,INODE) = IFACTR*CHNGE2(IQ,INODE)

CHNGE2(IQ,INODE) FFACTR*CHNGE2(IQ,INODE)

1120 CONTINUE

CHNGE2(2,INODE) - 0.

CHNGE2(3,INODE) O.

DPENG2(2,INODE) - O.

DPENG2(3,INODE) = 0.

C GO TO 1600

C
C PRINT OUT PARAMETERS

C
1500 IF (IWRITE) THEN

WRITE(JDEBUG,2000)

WRITE(JDEBUG,2100)

WRITE(JDEBUG,2200)

WRITE(JDEBUG,2300) INODE.IONE,ITWO,IEDGE.ITYPE.ITGL

WRITE(JDEBUG,2400)
WRITE(JDEBUG,2600) (DPENG2(IQ,INODE), IQ=,.NEqNFL)

WRITE(JDEBUG,2500)
WRITE(JDEBUG.2600) (CHNGE2(IQ,INODE), IQ=i,NEQNFL)

IF (ITYPE .EQ. 3) THEN

WRITE(JDEBUG,2700) KNODE1,KNODE2,DXSIDE,DYSIDE,

1 COSANG,SINANG,RHOU,RHOV,RHO,RHOQ,U2NEXT,U3NEXT

ENDIF

ENDIF

C GO BACK FOR NEXT NODE

1600 CONTINUE

C FORMAT STATEMENTS
C ---- -----------
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2000 FORMAT(//OX, ' -----------------------' )
2100 FORMAT( 1OX,'DEBUG PRINT FROM E2BCNO' )
2200 FORMAT( 0X, '-----------------------'/)

2300 FORMAT(X, 'INODE ',15,10X,'IONE = ',IS,iOX,'ITWO = ',IS/

1 5X,'IEDGE = ',I5,1OX,'ITYPE = ',I5,1OX,'ITGL = ',I6/)

2400 FORMAT(/5X, 'DEPENDENT VARIABLES')

2600 FORMAT(/5X,'CHANGE VARIABLES')

2600 FORMAT (8G14.5)

2700 FORMAT(OX, 'KNODE1=',I5, lOX, 'KNODE2=',I6,
2 15X, 'DXSIDE=',FlO.5,6X, 'DYSIDE=',F1O.5/

3 5X, 'COSANG-',FlO.5,5X, 'SINANG=',F10.5,

4 lOX, 'RHOU ',FlO.5,65X, 'RHOV =',FIO.5/
5 6X, 'RHO -',FlO.6,X, 'RHOQ ',F1O.5,

6 lOX, 'U2NEXT-',F10.5,5X, 'U3NEXT=',Fl0.5)

c IF (IADDH2 .NE. O) THEN

c WRITE(6.*) ' HEYMAN MAN MUMDH2 IN E2BCNO',numdh2

c CALL H2MIXT(ITGL)
c do j 1 neqnfl

C chnge2(j,21) = 0.

c chnge2(j,22) - 0.
c enddo

c ENDIF

RETURN

END

E2CONO

SUBROUTINE E2CONO (TIME, ITGL, IPASS, IPASSM)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'TICOMN.INC'

DIMENSION ERROR(3)

SAVE ERROR, FACTOR

C***************************************

C THIS SUBROUTINE COMPUTES THE CONVERGENCE HISTORY.

C THE ERRORS ARE COMPUTED FOR THE VARIABLE (EQUATION) KEQNE2,

C THUS, E.G., KEQNE2 - 2 FOR THE MOMENTUM CONSERVATION.

C THE ERROR TYPE CALCULATION IS STORED IN ERORE2, AND ITS TYPE

C IS DETERMINED BY THE VARIABLE KONVE2, WHICH CAN HAVE THE
C FOLLOWING VALUES:

C KONVE2 - 1 =">- AVERAGE ERROR ERROR(1)

C KONVE2 - 2 M--> MAXIMUM ERROR - ERROR(2)
C KONVE2 - 3 -=-> RMS ERROR = ERROR(3)
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C INITIALIZE THE ERRORS

ERORE2 - 100.

ERRORM - 0.

FACTMN - 0.1265

IF (IPASS .EQ. 1) THEN

ERROR(1) - O.
ERROR(2) - O.
ERROR(3) - O.
FACTOR - 1.

JEQM = 0
FCTRTI - MAX (FCTRTI, FACTMN)

ENDIF

C DETERMINE IF THE CELL TIME-STEPS ARE TO BE ADJUSTED

IF (KFACTI .EQ. O) GOTO 30

DO 20 JNODE - ILVLA2(1.ITGL).ILVLA2(2,ITGL)

INODE - MRKDA2(JNODE)

DO 10 JQ - 1. NEQNFL
ABSERR ABS(CHNGE2(JQ,INODE))

IF (ABSERR .GT. ERRORM) THEN
ERRORM - ABSERR

JEqM - JQ

ENDIF

10 CONTINUE

ao CONTINUE

IF (ERRORM .GT. ERRMTI) THEN
FACTOR - ERRMTI/ERRORM

IF (DTCNTI .GT. 0.) THEN

IF (FACTOR .GT. 0.5) THEN
FACTOR - 0.5

ELSEIF (FACTOR .GT. 0.26) THEN
FACTOR 0.25

ELSE

FACTOR - 0.125

ENDIF

ENDIF

FACTOR - MAX (FACTOR. FACTMN)
ENDIF

FCTRTI - MIN (FCTRTI, FACTOR)

C SEE IF YOU WANT TO REALLY COLLECT CONVERGENCE HISTORY ?

30 IF (KONVE2 .EQ. O) THEN
IF (IPASS .EQ. IPASSM) THEN
WRITE (JTERMO,1000) NITRE2.JEQM.FCTRTI.ERRORM.DTMNTI.TIME

ENDIF

RETURN

ENDIF
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C LOOP OVER ALL THE NODES AT THIS LEVEL AND COLLECT ERRORS

DO 50 JNODE - ILVLA2(1,ITGL), ILVLA2(2,ITGL)

C ACTUAL NODE ASSIGNMENTS

INODE = MRKDA2 ( JNODE)

ABSERR = ABS(CHNGE2(KEQNE2,INODE))

ERROR(l) = ERROR(I) + ABSERR
ERROR(2) - MAX (ERROR(2),ABSERR)

ERROR(3) - ERROR(3) + ABSERR*ABSERR
IF (ERROR(2) .EQ. ABSERR) THEN

IP - INODE

ERRMAX - CHNGE2(KEqNE2,INODE)

ENDIF

50 CONTINUE

IF (IPASS .Eq. IPASSM) THEN

ERROR(l) ERROR(1)/FLOAT(NNODA2)

ERROR(3) = SQRT(ERROR(3)/FLOAT(NNODA2))
ERORE2 - ERROR(KONVE2)

WRITE

1:
2:
3:

4:

5:

6:

THE FOLLOWING :

NITRE2 : ITERATION COUNTER

KONVE2 : TYPE OF ERROR

IP : POSITION OF MAXIMUM ERROR

ERROR(1) : AVERAGE ERROR
ERROR(2) : MAXIMUM ERROR
ERROR(S) : RMS ERROR

WRITE (JHISTO.1100)
1

WRITE (JTERMO,OO.1100)
1

NITRE2 ,
ERROR(1),

NITRE2 

ERROR(1),

IP I
ERROR(2),

IP

ERRMAX

KONVE2 , KEQNE2,

ERROR(3), TIME

KONVE2 , KEQNE2,
ERROR(3). TIME

ENDIF

FORMAT STATEMENTS

FORMAT(I6.2X.I2.3X,4G15.6)
FORMAT(2I6.1X.1,I2.X,I22X.4G15.5)

RETURN

END

E2CONF

SUBROUTINE E2CONO (TIME. ITGL, IPASS, IPASSM)
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INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'TICOMN.INC'

DIMENSION ERROR(3)

SAVE ERROR

C******************************************************************

C THIS SUBROUTINE COMPUTES THE CONVERGENCE HISTORY.

C THE ERRORS ARE COMPUTED FOR THE VARIABLE (EQUATION) KEQNE2,

C THUS, E.G., KEQNE2 2 FOR THE MOMENTUM CONSERVATION.

C THE ERROR TYPE CALCULATION IS STORED IN ERORE2, AND ITS TYPE

C IS DETERMINED BY THE VARIABLE KONVE2, WHICH CAN HAVE THE

C FOLLOWING VALUES:

C KONVE2 1 ===) AVERAGE ERROR - ERROR(I)

C KONVE2 = 2 -==> MAXIMUM ERROR = ERROR(2)
C KONVE2 3 -=> RMS ERROR - ERROR(3)

C INITIALIZE THE ERRORS

ERORE2 = 100.

ERRORM = 0.
FCTRTI 1.

IF (IPASS .EQ. 1) THEN

ERROR(I) - 0.
'ERROR(2) = 0.
ERROR(S) = 0.
JEQM = 0

ENDIF

C DETERMINE IF THE CELL TIME-STEPS ARE TO BE ADJUSTED

IF (KFACTI .EQ. O) GOTO 30

DO 20 JNODE ILVLA2(1.ITGL),ILVLA2(2,ITGL)

INODE - MRKDA2(JNODE)
DO 10 JQ 1, NEQNFL

ABSERR ABS(CHNGE2(JQ.INODE))

IF (ABSERR .GT. ERRORM) THEN

ERRORM - ABSERR
JEQM - JQ

ENDIF

10 CONTINUE
20 CONTINUE

C SEE IF YOU WANT TO REALLY COLLECT CONVERGENCE HISTORY ?

30 IF (KONVE2 .EQ. O) THEN
IF (IPASS .EQ. IPASSM) THEN
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WRITE (JTERMO,1000) NITRE2,JEQM,FCTRTI,ERRORM,DTMNTI,TIME

ENDIF

RETURN

ENDIF

C LOOP OVER ALL THE NODES AT THIS LEVEL AND COLLECT ERRORS

DO 50 JNODE ILVLA2(1,ITGL), ILVLA2(2,ITGL)

C ACTUAL NODE ASSIGNMENTS

INODE = MRKDA2 ( JNODE)

ABSERR = ABS(CHNGE2(KEQNE2,INODE))
ERROR(I) = ERROR(l) + ABSERR
ERROR(2) = MAX (ERROR(2),ABSERR)
ERROR(3) = ERROR(3) + ABSERR*ABSERR
IF (ERROR(2) .EQ. ABSERR) THEN

IP INODE

ERRMAX CHNGE2(KEQNE2,INODE)

ENDIF

50 CONTINUE

IF (IPASS .EQ. IPASSM) THEN

ERROR(l) - ERROR(1)/FLOAT(NNODA2)

ERROR(3) SQRT(ERROR(3)/FLOAT(NNODA2))

ERORE2 - ERROR(KONVE2)

C WRITE THE FOLLOWING :
C 1: NITRE2 : ITERATION COUNTER
C 2: KONVE2 : TYPE OF ERROR

C 3: IP : POSITION OF MAXIMUM ERROR

C 4: ERROR(l) : AVERAGE ERROR

C 5: ERROR(2) : MAXIMUM ERROR

C 6: ERROR(S) : RMS ERROR

WRITE (JHISTO.llOO) NITRE2 . IP , KONVE2 , KEQNE2.

1 . ERROR(I), ERROR(2), ERROR(3), TIME
WRITE (JTERMO,11OO) NITRE2 , IP , KONVE2 , KEQNE2,

1 ERROR(l), ERRMAX , ERROR(S3), TIME

ENDIF

C

C

C FORMAT STATEMENTS
C

C

1000 FORMAT(I5,2X,I2,3X,4G16.5)

1100 FORMAT(2IS,X,I2.,X,I2,2X,4G15.6)

RETURN

END
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E2CORB

SUBROUTINE E2CORB

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE 't.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] SPCOMN.INC/LIST'

C THIS SUBROUTINE APPLIES THE BOUNDARY CONDITIONS AT THE SPECIAL

C CORNER NODES. THE VALUES ASSIGNED TO THESE NODES ARE THE VALUES
C OF SOME NEIGHBOURING NODE

C
DO 20 IBOUND 1. LBNDG2

C BRANCH OUT ACCORDING TO TYPE

C INODE IS THE BOUNDARY NODE

C NBP IS THE NEIGHBOUR NODE POINTER OF THE ADJACENT CELL
C ICP IS THE NODE POINTER OF THE ADJACENT CELL

INODE - JBNDG2(1,IBOUND)

NBP = JBNDG(2.2IBOUND)
ICP - JBNDG2(3,IBOUND)

NBCELL - NEIBG2(NBP,INODE)

INEXT ICELG2(ICP,NBCELL)

DO 10 IEQ - 1, NEQNFL

DPENG2(IEQ,INODE) - DPENG2(IEQ,INEXT)
CHNGE2(IEq,INODE) - 0.

10 CONTINUE

20 CONTINUE

RETURN

END

E2CORF

SUBROUTINE E2CORF

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] SPCOMN.INC/LIST'

C**** $***************************$***************** **********j

C THIS SUBROUTINE INITIALIZES THE SPECIAL BOUNDARY CONDITIONS
C POINTERS FOR THE CORNER NODES
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C

DO 20 IBOUND 1, LBNDG2
IBNDG2(1.NBNDG2+IBOUND)

IBNDG2(2,NBNDG2+IBOUND)

IBNDG2(3.NBNDG2+IBOUND)

IBNDG2(5,NBNDG2+IBOUND)

20 CONTINUE

- JBNDG2(1.IBOUND)

- JBNDG2(2,IBOUND)

- JBNDG2(3,IBOUND)

99

NBNDG2 - NBNDG2 + LBNDG2

RETURN

END

E2CORI

SUBROUTINE E2CORI

INCLUDE '[.INC] PRECIS.INC/LIST'
INCLUDE '.INC] PARMV2.INC/LIST'
INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] SPCOMN.INC/LIST'

C THIS SUBROUTINE INITIALIZES THE SPECIAL BOUNDARY CONDITIONS

C POINTERS FOR THE CORNER NODES

C

C

LBNDG2 0

DO 20 IBOUND - 1, NBNDG2

ITYPE - IBNDG2(5,IBOUND)

IF (ITYPE .EQ. 99) THEN
LBNDG2 - LBNDG2 + 

JBNDG2(1.LBNDG2) - IBNDG2(1.IBOUND)

JBNDG2(2,LBNDG2) - IBNDG2(2,IBOUND)

JBNDG2(3,LBNDG2) - IBNDG2(3,IBOUND)

IBNDG2(1,IBOUND) - 0

IBNDG2(2,IBOUND) = 0
IBNDG2(3,IBOUND) - 0

IBNDG2(4,IBOUND) = 0
IBNDG2(5,IBOUND) - 0

ENDIF

20 CONTINUE

NBNDG2 - NBNDG2 - LBNDG2
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RETURN

END _

E2DIFF

SUBROUTINE E2DIFF

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

DATA KOUNT /0/

C THIS SUBROUTINE STEPS THROUGH EACH CEWIC CELL AND COMPUTES THE

C ARTIFICIAL VISCOSITY COEFFICIENT

C SEE IF YOU WANT TO USE A CONSTANT VISOCITY MODEL

IF (SMAXE2 .LE. SMINE2) RETURN

DSIGMX = 0.

C INITIALIZE THE ARTIFICIAL VISCOSITY AT EACH NODE

DO 10 IN - 1, NNODG2

SIGGE2(IN) = SMINE2

10 CONTINUE

C STEP THROUGH EACH CEWIC CELL

DO 20 JCELL 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW ICELG2(2,ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)
KNW ICELG2(8,ICELL)

C STORE DENSITY AT THE FOUR NODES AND EDGES

RSW = DPENG2(1,KSW)
RSE DPENG2(1.KSE)
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RNE DPENG2(1,KNE)

RNW - DPENG2(1,KNW)

RE - RNE + RSE
RW - RNW + RSW
RN - RNE + RNW

RS = RSE + RSW

COMPUTE THE VISCOSITY COEFFICIENT BASED UPON GRADIENTS
NOTE THAT THE FOLLOWING MODEL WILL SET MAXIMUM VISCOSITY
AT THE NODE WHERE DSIGR IS MAXIMUM

DSIGRX

DSIGRY

DSIGT

DSIGMX

SIGNOD

SIGGE2(KSW)

SIGGE2(KSE)

SIGGE2(KNE)

SIGGE2 (KNW)

- ABS(RE-RW)/(RE+RW)
- ABS(RN-RS)/(RN+RS)

= DSIGRX + DSIGRY

- MAX (DSIGT, DSIGMX)
O 0.25*SDELE2*DSIGT

- SIGGE2(KSW) + SIGNOD

= SIGGE2(KSE) + SIGNOD

- SIGGE2(KNE) + SIGNOD

= SIGGE2(KNW) + SIGNOD
C

C THE FOLLOWING IS NEEDED ONLY FOR DEBUG PURPOSE

C
IF (DSIGMX .EQ. DSIGT) ICELSM = ICELL

20 CONTINUE

C ADJUST THE PARAMETER MULTIPLYING THE COEFFICIENTS

IF (DSIGMX .NE. 0.) SDELE2 = (SMAXE2-SMINE2)/DSIGMX

C CORRECT THE ARTIFICIAL VISCOSITY AT THE BOUNDARIES
C

DO 30 IN = 1, NBNDG2

INODE - IBNDG2(1,IN)
SIGGE2(INODE) 2.*SIGGE2(INODE) - SMINE2

30 CONTINUE

C

C PRINT OUT PARAMETERS

C

IF (IDBGE2 .NE. 3 .AND. IDBGE2 .LT. 1000) RETURN

IF (KOUNT .EQ. O) THEN
KOUNT - I

WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)
ENDIF

WRITE(JDEBUG,1300) ICELSM, SMAXE2, SMINE2, DSIGMX. SDELE2

FORMAT STATEMENTS

1000 FORMAT(//OX,'-----------------------' )
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1100 FORMAT( lOX,'DEBUG PRINT FROM E2DIFF' )
1200 FORMAT( OX,'-----------------------/)

1300 FORMAT(6X.'CELL OF MAXIMUM VISCOCITY COEFFICIENT =',IS/
1 5X,'SMAXE2-',G14.6,5X,'SMINE2=',G14.5,

2 5X,'DSIGMX-',G14.6,5X,'SDELE2-',G14.5 )

RETURN

END

E2FINI

SUBROUTINE E2FINI

C

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[.INC]

'[.INC]

' [. INC]
'. INC]

' [. INC]
' [.INC]
' .INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC/LIST'

E2COMN.INC/LIST'

IOCOMN.INC/LIST'

KYCOMN.INC/LIST'

TICOMN.INC/LIST'
C

C

C THIS SUBROUTINE FINISHES THE TWO-DIMENSIONAL PROGRAM BY WRITING
C THE RESULTS AND THE POINTER SYSTEM IN ASCII FORM.

C

C SET THE PRINTOUT PARAMETER

KPRINT - NINT(APASKY(19))

IF (KPRINT .EQ. 2) THEN

WRITE(JOUTAL,1000)

WRITE(JOUTAL,1100) NITRE2, NNODG2, NCELG2, NBNDG2, NCELA2
WRITE(JOUTAL, 1200) TIMNTI

ENDIF

IF (KPRINT .GT. 2) CALL G2RESO

CALL E2CORF

C SAVE THE POINTER SYSTEM FOR THE FINAL TIME

IF (KSRTE2 .LT. 1000) THEN

WRITE(JTERMO,*) ' WRITTING ON FORMATTED I

CALL PSWRT2 (JPNTWR)
ELSE

WRITE(JTERMO,*) ' WRITTING ON UNFORMATTE
CALL PSWRTU (JPNTWR)

ENDIF

C

WRITE(6,1300) TIMNTI,TIMXTI

WRITE(JOUTAL,1300) TIMNTI,TIMXTI
WRITE(JOUTAL, 1400) EPS1TI,NGIVTI

POINTER FILE'

D POINTER FILE'
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CALL-TIMERR (JOUTAL, ZCUM, END OF RUN')

C
C
C FORMAT STATEMENTS

C
C

1000 FORMAT('1'//)

1100 FORMAT(6X,'TOTAL NUMBER OF ITERATIONS

1 5X,'TOTAL NUMBER OF NODES

2 5X,'TOTAL NUMBER OF CELLS

3 5X,'TOTAL NUMBER OF BOUNDARY NODES

4 SX,'TOTAL NUMBER OF CEWIC CELLS

1200 FORMAT(5X,'TIME -',G14.5)

= ',I5.1o0X
= ',I /

= '.I ,1OX,.

= ',I5 /
-= '.I5 /)

1300 FORMAT( ' TIME ',G14.6,5X,'TIMAX ',G14.5)

1400 FORMAT( ' EPSITI ',G14.56,5X,'NGIVTI =',I5)

STOP ' THE END'

END

E2INIO

SUBROUTINE E2INIO

C
INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[.INC]

' [. INC]
' [. INC]
'[. INC]

'[.INC]

'[.INC]

'[.INC]

' [. INC]
[. INC]

' [. INC]

PRECIS.INC/LIST'

PARMV2. INC/LIST'

CHCOMN.INC/LIST'

E2COMN. INC/LIST'

FRCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

IOCOMN.INC/LIST'

KYCOMN.INC/LIST'

TVCOMN. INC/LIST'

THIS SUBROUTINE INITIALIZES ALL THE COMMON BLOCK ARRAYS THAT

ARE TO BE USED IN THE TWODO PROGRAM. KSRTE2 INDICATES THE

RESTART PARAMETER WITH THE FOLLOWING MEANINGS

0 : A FRESH START USING G2INIT (ALGEBRAICALLY GENERATED GRID)

1 A RESTART CASE

2 : FOR GENERATING C2HELP FILE

3 : A FRESH START USING G2IBLC (THE BLOCK GENERATED GRID)

THE ABOVE VALUES PLUS 1000 MEAN THAT THE INPUT/OUTPUT OF THE

DATA (PSREDU AND PSWRTU) IS DONE IN UNFORMATTED FORM, OTHERWISE

THE DATA (PSRED2 AND PSWRT2) IS IN FORMATTED FORM

C
C SETUP INPUT/OUTPUT UNITS

C
CALL SETUPU
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C
C SET UP INITIAL VALUES FOR REFERENCE TEMPERATURE TREFFL AND
C PRESSURE PRESFL; SO THAT A RESTART CASE MAY BE ABLE TO CHANGE
C THESE IF NEED BE

C
APASKY(7) - 0.
APASKY(9) = O.

C
C SET EITHER THE DEFAULT OPTIONS OR READ THEM
C

CALL E2OPTO

CLOSE (JREADI)

C SET THE RETART PARAMETER

KSRTE2 - IPASKY( )

C SET THE PRINTOUT PARAMETER

KPRINT - NINT(APASKY(19))

C SET THE FUEL INJECTION PARAMETER

IADDH2 - IPASKY(38)
C

C SEE IF YOU WANT TO RESTART FROM A PREVIOUS RUN

IF (KSRTE2 .EQ. .OR. KSRTE2 .EQ. 1001) THEN
C

IF (KSRTE2 .EQ. 1) THEN

CALL PSRED2
ELSE

CALL PSREDU
ENDIF

C

C IF VARIABLE INLET BOUNDARY CONDITIONS ARE DESIRED THEN SET
C THE VALUES FROM A PREVIOUS RUN

C

IF (KPERFR .EQ. 1) CALL TVINI1
C

C IF THE OPTION ROUTINES DID NOT SET THE FOLLOWING VALUES THEN

C SET THESE ACCORDING TO THEIR PREVIOUS VALUES; OTHERWISE THEY
C HAVE THE NEWLY RECOMMENDED VALUES WHICH CAN BE CHANGED BY THE
C ROUTINE CHKREF
C

IF (APASKY(7) .EQ. 0.) APASKY(7) TREFFL

IF (APASKY(9) .EQ. 0.) APASKY(9) - PRESFL
C

CALL E2RSRT
CALL E2CORI

C
C TRANSPORT VALUES OF PHI AND RHOD WHICH WERE READ IN PSRED2
C

APASKY(1) - CHNGE2(1,1)

APASKY(2) - CHNGE2(1.2)
GO TO 5

C
ENDIF

C SKIP THE INITIALIZATION PROCESS UNDER SPECIAL CONDITIONS, SUCH
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C AS WHEN GENERATING A C2HELP.DAT FILE

IF (KSRTE2 .EQ. 2) RETURN
C
C SETUP THE MAXIMUM AND MINIMUM VALUES OF ARTIFICIAL VISCOSITY

SMAXE2 = APASKY( 1)

SMINE2 APASKY( 2)

SDELE2 = 0.
C

C SET THE EPSILON VALUE FOR CONVERGENCE CRITERION
EPSLE2 APASKY( 4)

C
C SET THE RECIROCAL OF REYNOLDS NUMBER

RREYE2 - APASKY(36)
C
C SET THE RECIROCAL OF PRANDTL NUMBER

RPRNE2 = APASKY(37)
C
C SET THE RECIROCAL OF SCHMIDT NUMBER

RSCHE2 - APASKY(38)

C SET THE POWER FOR VISCOSITY POWER LAW

OMEGE2 APASKY(39)

C SET THE GAMMA FACTOR FOR ENERGY EQUATION (G/(G-1))
GFACE2 - APASKY(40)

C
C SET THE PARAMETER FOR CONVERGENCE VARIABLE
C 1: AVERAGE 2: MAXIMUM 3: RMS

KONVE2 IPASKY(25)
C

C SET THE PARAMETER FOR CONVERGENCE EQUATION VARIABLE
C 1: MASS 2: MOMENTUM 3: ENERGY ETC.

KEQNE2 IPASKY(29)
C
C
C SET THE MAXIMUM NUMBER OF ITERATIONS ALLOWED

MITRE2 - IPASKY(5)

C SET THE CURRENT NUMBER OF ITERATIONS

NITRE2 0

C
C SET THE PARAMETER INDICATING MAXIMUM NUMBER OF TEMPORAL CELL
C LEVELS TO BE USED

KHAFEZ - IPASKY(28)
C
C INITIALIZE THE VALUES FOR THE CHEMISTRY ARRAYS

C
CALL C2INIT

INITIALIZE THE

CALL C2PONT

INITIALIZE THE

CALL FLINI2

CHEMISTRY POINTER SYSTEM

VALUES FOR THE FLUID ARRAYS
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INITIALIZE THE LIGHT HILL MODEL VALUES IF NECESSARY

CALL LHINI2

INITIALIZE THE VALUES FOR THE GRID ARRAYS

IF (KSRTE2 .EQ. 3 .OR. KSRTE2

CALL G2IBLC
.EQ. 1003) THEN

ELSE

CALL G2INIT

ENDIF

IDBGE2 IPASKY(14)

CHECK IF THE INITIAL GRID IS O.K.

NERR -
CALL CHKBN2 ( 0, 0, 0, 0.

CALL CHKNN2 (, 0, 0, 0, 0,

CALL CHKNC2 (O. 0. 0. 0. O.
IF (NERR .NE. O) WRITE(6,*) '

NERR, '

NERR, '

NERR, '
WARNING:

')

')
)

INITIAL GRID ERROR'
C
C INITIALIZE THE VALUES FOR THE FREESTREAM VARIABLES
C

CALL FRINIT

C
C INITIALIZE THE MAXIMUM ALLOWABLE SPECIES MASS-FRATIONS FOR

C ALL SPECIES

C
DO 4 IS = 1, MSPECH

YMAXCH(IS) = 1.

4 CONTINUE

C
C INITIALIZE THE VALUES FOR THE DEPENDENT VARIABLE ARRAYS

C

CALL DPINI2

C

C INITIALIZE THE VALUES

C ADAPTATION PROCEDURE

C
CALL A2INIT

C
C INITIALIZE THE VALUES

C ADAPTATION PROCEDURE
C

FOR THE ARRAYS USED IN SPATIAL

FOR THE ARRAYS USED IN TEMPORAL

CALL TIINI2

C
C NCRSG2, FOR THE TIME ACCURATE PROBLEMS WILL INDICATE IF
C CHARACTERISTIC BOUNDARY CONDITIONS ARE USED

C

5 DO 10 IN 1, NBNDG2

IF (IBNDG2(6,IN) .GE. 4 .AND. IBNDG2(5,IN) .LE. 7) THEN
C IF (IBNDG2(5,IN) .GE. 3 .AND. IBNDG2(5,IN) .LE. 7) THEN

NCRSG2 - 1
GO TO 20

ENDIF
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10 CONTINUE

C
C CALCULATE THE MAXIMUM ALLOWABLE SPECIES MASS-FRATIONS FOR

C ALL SPECIES; FIRST INITIALIATION MAY HAVE TO BE DONE FOR THE

C RESTART CASE

C
C
C INITIALIZE THE MAXIMUM ALLOWABLE SPECIES MASS-FRATIONS FOR

C ALL SPECIES

C

DO 15 IS - 1, MSPECH

YMAXCH(IS) 1.
15 CONTINUE

C

CALL CHKYMX

C
C INITIALIZE THE CHANGE VARIABLES

C
20 DO 40 IQ 1, MEQNFL

DO 30 IN 1, MNODG2

CHNGE2(IQ.IN) = 0.

30 CONTINUE

40 CONTINUE

C CALL A2CEWC

C
C INITIALIZE THE ARTIFICIAL VISCOSITY AT EACH NODE

DO 50 IN = 1, MNODG2

SIGGE2(IN) SMINE2
60 CONTINUE

CALL E2DIFF

CALL E2DIFF

C INITIALIZE THE JACOBIAN METRICS, CELL VOLUMES (RECIPROCALS).

C AND PERIMETERS FOR EACH CELL IN THE SPATIAL DOMAIN

CALL M2AREA(O)

C INITIALIZE THE RECIPROCALS OF MOLECULAR MASS FOR EACH SPECIES

DO 60 IS 1, NSPECH
RAMWCH(IS) 1./AMWTCH(IS)

60 CONTINUE
C
C WRITE THE INITIAL PARAMETERS OF THE RUN

C

IF (KPRINT .GT. O) CALL WRINI2
CALL ERINIT

IF (KONVE2 .GT. O) THEN
C OPEN (UNIT-JHISTO, FILE='JHISTO.DAT', STATUS='NEW')

WRITE (JHISTO.1500) MTITLE
ENDIF

CALL TIMERR (JOUTAL, ZCUM, 'INITIALIZATION COMPLETED')
C
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PRINT OUT PARAMETERS

IF (IDBGE2 .NE. 1 .AND. IDBGE2 .LT. 1000) RETURN
WRITE(JDEBUG.1000)

WRITE(JDEBUG, 1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

1
WRITE(JDEBUG.1400)

WRITE(JDEBUG,15600)

KSRTE2,

KHAFEZ,

SMAXE2,
MTITLE

KONVE2,

IDBGE2,

SMINE2,

MITRE2, NITRE2, KEQNE2,

IADDH2

SDELE2. EPSLE2

FORMAT STATEMENTS

1000 FORMAT(/

1100 FORMAT(

1200 FORMAT(

/1OX,' ----------------------- )
lOX,'DEBUG PRINT FROM E2INIO' )

lox, ----------------------I /)
1300 FORMAT(5X,'KSRTE2 -

1 5X,'MITRE2 -

2 6X,'KEQNE2 -

3 5X,'IDBGE2 

1400 FORMAT(6X,'SMAXE2 

65X,'SDELE2 -
1500 FORMAT(A80)

',IS,15X,'KONVE2 

',I5,15X,'NITRE2 

',IS,15X,'KHAFEZ 

',IS,16X,'IADDH2 

',G15.65,X,'SMINE2

',G15.5,5X,'EPSLE2

',I5/

',I6/

= '.G16.5/
- '.G15.6)

RETURN
END

E20PTO

SUBROUTINE E2OPTO

C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'
C

C
C THIS SUBROUTINE SETS THE DEFAULT OPTION PARAMETERS AND THEN

C READS THE PARAMETERS TO BE CHANGED FROM GETKY2.
C
C*************************************** **************************
C
C
C LIST OF PARAMETERS

C THE FOLLOWING PARAMETERS COULD BE SET BY SUBROUTINE GETKY

C
C
C
C

KYWRDA

1. 'SMAXE2-'
3. 'CFLNTI-'

DEFINED BY APASKY

I 2. 'SMINE2='
4. 'EPSLE2-'
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5. 'AMCHFL='
7. 'TREFFL='
9. 'PRESFL='
ll. 'DISTFL='
13. 'TEMP2C='
15. 'ALPHA2='
17. 'GAMMA2='
19. 'PRINTO='
21. 'PBPIFR='
23. 'EPSOTI='
25. 'TRIGCH='

27. 'ERRMTI='
29. 'EPS1MX='
31. 'UCOMFR='
33. 'PRESFR='
35. 'DTCNTI='

37. 'RPRNE2='
39. 'OMEGE2='
41. 'CFLXTI='

1.

3.
5.
7.
9.
11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.
35.
37.
39.
41.

KYWRDI

'NREACH='

'KROGER='

'MITRE2='

'NGIVTI='

'JREADS='

'K1ADA2='

'KDEBUG='

'IDBGA2='

'KFACTI='

'KDPENI='

'IDBGFR='

'MALVG2='

'KONVE2-'

'MITRPS='

' KENE2='
'KCHKA2='

'IMPLTI='
'KPERFR='
'IDBGG2='
'KDIFTI='

.

6. 'RHORFL='
8. 'TREFCH='

10. 'PRESCH='
12. 'TEMP1C='

, 14. 'TEMP3C='
, 16. 'BETAA2='
, 18. 'DELTA2=-'

20. 'TIMXTI='
22. 'EPS1TI='
24. 'TIMNTI='

26. 'ERRMIN='

28. 'EPS1MN='
30. 'RHORFR='
32. 'VCOMFR='

, 34. 'FCTRTI='
36. 'RREYE2='

, 38. 'RSCHE2='
40. 'GFACE2='

. 42. ' ='

DEFINED BY IPASKY

, 2. 'NSPECH='

, 4. 'KORDER='
, 6. 'KSRTE2='

, 8. 'METHA2='
10. 'KTIMTI='

, 12. 'K2ADA2='

, 14. 'IDBGE2='

, 16. 'MTHRA2='
18. 'NINRCH='

20. 'KPLTA2='

22. 'NXTDA2='
24. 'KADPTI='

26. 'MITRA2='

28. 'KHAFEZ='
30. 'KMERA2='
32. 'MITEPS='
34. 'IDBGTI='

, 36. 'MCYCFR='
38. 'IADDH2='
40. 'KBLOCK='

42. ='

DEFAULT VALUES : REAL VARIABLES

SET THE DEFAULT VALUES FIRST : REAL VARIABLES

MAXIMUM COEFFICIENT OF ARTIFICIAL VISCOSITY
SMAXE2 = 0.1

MINIMUM COEFFICIENT OF ARTIFICIAL VISCOSITY
SMINE2 - 0.05

MINIMUM CFL NUMBER CFL

635

C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C
C

C
C

C

C
C

C

C
C

C

C

C

C

C

C
C
C

C

c

C

C

C

C

C

C

C
C

C
C
C
C
cc

C
C2

C
C3



CFLNTI - 0.9

C
C4 MINIMUM CRITERIA FOR CONVERGENCE

EPSLE2 - 1.E-4

C
CS REFERENCE MACH NUMBER

AMCHFL - 1.
C
Cd REFERENCE FLUID DENSITY

RHORFL 1.

C
C7 REFERENCE FLUID TEMPERATURE

TREFFL = 1.
C
C8 REFERENCE CHEMISTRY TEMPERATURE

TREFCH = 298.
C
C9 REFERENCE FLUID PRESSURE

PRESFL - 1.
C

C10 REFERENCE CHEMISTRY PRESSURE
PRESCH .E05

C
Cll REFERENCE FLUID CHARACTERISTIC LENGTH

DISTFL - 1.

C
C12 TEMPERATURE USED TO DETERMINE BACKWARD (OR FORWARD) RATES

TEMP1C 298.
TEMP2C - 2000.
TEMP3C 3000.

C
C1i CONSTANTS FOR ADAPTATION

ALPHA2 - 1.

BETAA2 = 1.25
GAMMA2 - 0.75
DELTA2 - 0.25

C19 SEE IF YOU WANT TO WRITE EXTRA OUTPUT (G2RESO AND WRINI2)
PRINTO - 2.

C20 MAXIMUM TIME OF THE RUN

TIMXTI - 1.

C21 BACK PRESSURE RATIO (PBd/PREFFL OR PB/PRESFR)
PBPIFR - 0.

C22 EPSILON USED FOR TEMPORAL RESOLUTION
EPSITI - 1.

C23 EPSILON CORRECTION FOR ZERO VALUE OF TEMPORAL CRITERION

EPSOTI - 0.1

C24 MINIMUM TIME OF THE RUN

TIMNTI - O.

C25 TRIGGER TEMPERATURE FOR CHEMISTRY (FROZEN BELOW TRIGCH)
TRIGCH - O.
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C28 MINIMUM ERROR BELOW WHICH EPSITI WILL

ERRMIN - 1.E-6

C27 MAXIMUM ERROR ABOVE WHICH EPSITI WILL

ERRMTI - 0.1

C28 MINIMUM ALLOWABLE VALUE OF EPSiTI

EPS1MN - 0.5

C29 MAXIMUM ALLOWABLE VALUE OF EPSITI

EPSlMX - 0.00001

C30 FREE STREAM DENSITY (NON-DIMENSIONAL)
RHORFR - 1.

C31 FREE STREAM VELOCITY

UCOMFR 0.

C32 FREE STREAM VELOCITY
VCOMFR 0.

C33 FREE STREAM PRESSURE

PRESFR 1.

C34 FACTOR FOR ADJUSTING

FCTRTI 1.

BE INCREASED

BE DECREASED

(NON-DIMENSIONAL X COMPONENT)

(NON-DIMENSIONAL Y COMPONENT)

(NON-DIMENSIONAL)

THE CELL TIME STEPS

C35 SET THE CONSTANT CELL TIME STEP; NEGATIVE
C A LOCAL VALUE WILL BE COMPUTED

DTCNTI -1.

C36 SET THE RECIROCAL

RREYE2 - O.

C37 SET THE RECIROCAL

RPRNE2 - 1.

C38 SET THE RECIROCAL

RSCHE2 - 1.

C39 SET THE POWER FOR
OMEGE2 - 1.

VALUE MEANS THAT

OF REYNOLDS NUMBER

OF PRANDTL NUMBER

OF SCHMIDT NUMBER

VISCOSITY POWER LAW

C40 SET THE GAMMA FACTOR FOR ENERGY EQUATION (G/(G-1))
GFACE2 - 3.5

MAXIIMUM CFL NUMBER CFL
CFLXTI - 2.0

C*** SET UP THE ABOVE CONSTANTS IN THE PASS VARIABLE ***

APASKY( 1)
APASKY( 2)
APASKY( 3)
APASKY( 4)

- SMAXE2
- SMINE2

- CFLNTI

- EPSLE2
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APASKY( 5) - AMCHFL

APASKY( 6) - RHORFL

APASKY( 7) - TREFFL

APASKY( 8) - TREFCH
APASKY( 9) - PRESFL
APASKY(10) - PRESCH
APASKY(l1) - DISTFL

APASKY(12) - TEMPIC

APASKY(13) - TEMP2C

APASKY(14) - TEMP3C

APASKY(16) - ALPHA2

APASKY(16) - BETAA2

APASKY(17) - GAMMA2

APASKY(18) - DELTA2

APASKY(19) - PRINTO

APASKY(20) - TIMXTI

APASKY(21) - PBPIFR

APASKY(22) = EPSITI

APASKY(23) - EPSOTI

APASKY(24) - TIMNTI

APASKY(25) - TRIGCH

APASKY(26) ERRMIN

APASKY(27) = ERRMTI

APASKY(28) - EPS1MN

APASKY(29) - EPSlMX

APASKY(30) - RHORFR

APASKY(31) - UCOMFR

APASKY(32) - VCOMFR

APASKY(33) - PRESFR

APASKY(34) - FCTRTI

APASKY(36) - DTCNTI

APASKY(36) RREYE2

APASKY(37) - RPRNE2

APASKY(38) - RSCHE2

APASKY(39) - OMEGE2

APASKY(40) - GFACE2

APASKY(41) - CFLXTI

C

C DEFAULT VALUES : INTEGRAL VARIABLES
C

C
C SET THE DEFAULT VALUES : INTEGER VARIABLES
C
C1 NUMBER OF REACTIONS

NREACH - 0

C
C2 NUMBER OF SPECIES (INCLUDING INERT SPECIES)

NSPECH 0
C
C3 PARAMETER INDICATING THE TYPE OF CHEMISTRY MODEL TO BE USED

KROGER 0
C
C4 PARAMETER INDICATING IF THERE ARE NON-ELEMENTARY REACTIONS

KORDER O0
C
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C5 MAXIMUM NUMBER OF ITERATIONS

MITRE2 - 10000

C
Co PARAMETER INDICATING IF THE FLOW IS TO RE-STARTED

KSRTE2 - 0
C
C7 MAXIMUM GIVEN LEVEL FOR TEMPORAL EMBEDDING

NGIVTI 0
C
CS VARIATION METHA2 FOR ADAPTATION

C (VALUE, GRADIENT, LAPLACIAN, MARSHA BURGER -- EVEN FOR CELLS)

METHA2 4

C

C9 UNIT FOR READING THE SCHEDULE INPUT PROGRAM

JREADS - 0

C
CIO PARAMETER INDICATING IF RESULTS AT VARIOUS TIME INTERVALS

C ARE NEEDED

KTIMTI - 0

C

Cli KEY VARIABLE FOR SPATIAL ADAPTATION -- DPENG2(1,I)

KIADA2 1
C
C12 KEY VARIABLE FOR SPATIAL ADAPTATION -- DPENG2(1,I)

K2ADA2 = 0

C

C13 OUTPUT (DEBUG) PARAMETER

KDEBUG = 0

C

C14 DEBUG PARAMETER FOR EULER ROUTINES (E2 ROUTINES)

IDBGE2 0

C

C1i DEBUG PARAMETER FOR ADAPTIVE ROUTINES (A2 ROUTINES)

IDBGA2 - 0

C

C6 THE NUMBER OF TIMES OF ADAPTATION CYCLES AFTER WHICH THE

C THRESHOLD LIMITS WILL BE COMPUTED

MTHRA2 - 1

C
C17 PARAMETER INDICATING IF THE CELL TIME STEPS ARE TO RE-ADJUSTED

KFACTI - 0

C

C18i NUMBER OF INERT SPECIES

NINRCH - 0
C
C19 OPTION PARAMETER FOR SETTING DEPENDENT VARIABLES

C 1: READ FROM INPUT FILE -- AT ALL NODES

C 2: SET UNIFORM VALUES

C 3: SET LINEARLY VARYING VALUES FROM INLET TO OUTLET

KDPENI 1
C
C20 PARAMETER INDICATING IF THRESHOLD PLOTS ARE NEEDED

KPLTA2 0

C

C21 DEBUG PARAMETER FOR FREE STREAM CONDITIONS

IDBGFR - 0
C
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C22 NUMBER OF CELLS TO BE EXTENDED FOR ADAPTIVE GRIDS
NXTDA2 - O

C
C23 NUMBER OF MAXIMUM FINE LEVELS TO BE USED FOR ADAPTIVE GRIDS

MALVG2 - 3
C
C24 KEY VARIABLE FOR TEMPORAL ADAPTATION -- BIGWG2(4,I)

KADPTI - 4

C
C25 CONVERGENCE CRITERIA TYPE VARIABLE

C 1: AVERAGE 2: MAXIMUM 3: RMS

C DEFAULT IS ZERO (NONE) FOR TIME-ACCURATE PROBLEMS
KONVE2 - 0

C
C26 THE MAXIMUM NUMBER OF TIMES BEFORE SPATIAL ADAPTATION IS DONE

MITRA2 - 100
C
C27 THE MAXIMUM NUMBER OF TIMES BEFORE THE POINTER SYSTEM IS SAVED

MITRPS - 100
C
C28 OPTION PARAMETER FOR HAFEZ DOMINANT EIGENVALUE

KHAFEZ - 0
C
C29 PARAMETER DENOTING THE EQUATION FOR WHICH CONVERGENCE HISTORY
C IS WRITTEN BY ROUTINE E2CONO, DEFAULT IS MOMEMTUM EQUATION

KEQNE2 - 2

C
C30 PARAMETER INDICATING IF THE COLLAPSING OF CELLS IS TO BE DONE

KMERA2 1

C

C31 DEBUG PARAMETER FOR CHECKING THE SUPERCELL AND NEIGHBOUR-

C CELL CALCULATIONS. INPUT IN BINARY CODED VALUE

C 1: CHECK SUPERCELL 2: CHECK NEIGHBOUR-CELL

C 4: CHECK BEFORE COLLAPSE

KCHKA2 - 0

C32 MAXIMUM NUMBER OF ITERATIONS AFTER WHICH EPSITI IS DECREASED

MITEPS - 10

C33 PARAMETER INDICATING IF IMPLICIT SOURCE TERMS ARE TO BE USED
C IMPLTI: 1 FOR EXPLICIT; 0 FOR IMPLICIT

IMPLTI - 1

C34 DEBUG PARAMETER FOR TEMPORAL ROUTINES (TI ROUTINES)
IDBGTI - 0

C35 PARAMETER INDICATING IF PERIODIC BOUNDARY CONDITIONS ARE TO BE

C USED

KPERFR - 0

C36 MAXIMUM NUMBER OF CYCCLES FOR PERIODIC BOUNDARY CONDITIONS
MCYCFR - 20000

C
C37 DEBUG PARAMETER FOR GRID ROUTINES (G2 ROUTINES)

IDBGG2 - 0
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C
C38 FUEL INJECTION PARAMETER

C O : NO FUEL
C 1 FUEL INJECTED FOR FIRST TIME

C 2 : FUEL INJECTED AFTER FIRST TIME (RESTART CASE)
IADDH2 - 0

C39 PARAMETER INDICATING IF A DIFFERNCE OF MASS FRACTION CRITERIA

C (SHEAR LAYER CRITERIA) IS TO BE USED FOR LIMITING CELL TIME-STEPS

KDIFTI - 0

C40 PARAMETER INDICATING IF A SMALL BLOCK OF CELLS IS TO BE INTEGRATED

C AT ONE TIME. INSTEAD OF THE WHOLE DOMAIN. THIS IS USEFUL IN

C ACCELERATING THE CONVERGENCE TO STEADY STATE AND FOR PROBELMS

C WHICH ARE PREDOMINANTLY "PARABOLIC" IN NATURE

KBLOCK - 0

C*** SET UP THE ABOVE CONSTANTS IN THE PASS VARIABLE ***

IPASKRY( 1) - NREACH
IPASKY( 2) - NSPECH

IPASKY( 3) - KROGER

IPASKY( 4) - KORDER

IPASKY( 5) - MITRE2

IPASKY( 6) - KSRTE2

IPASKY( 7) - NGIVTI

IPASKY( 8) - METHA2

IPASKY( 9) - JREADS

IPASKY(10) - KTIMTI

IPASKY(11) - KIADA2

IPASKY(12) - K2ADA2

IPASKY(13) - KDEBUG

IPASKY(14) - IDBGE2

IPASKY(1I) - IDBGA2

IPASKY(16) - MTHRA2

IPASKY(17) - KFACTI

IPASKY(18) - NINRCH

IPASKY(19) - KDPENI

IPASKY(20) - KPLTA2

IPASKY(21) - IDBGFR

IPASKY(22) - NXTDA2

IPASKY(23) - MALVG2

IPASKY(24) - KADPTI

IPASKY(25) - KONVE2

IPASKY(26) - MITRA2

IPASKY(27) - MITRPS

IPASKY(28) - KHAFEZ

IPASKY(29) - KEQNE2
IPASKY(30) - MERA2
IPASKY(31) - KCHKA2
IPASKY(32) - MITEPS

IPASKY(33) - IMPLTI
IPASKY(34) - IDBGTI

IPASKY(35) - KPERFR
IPASKY(36) - MCYCFR

IPASKY(37) - IDBGG2
IPASKY(38) - IADDH2
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IPASKY(39) - KDIFTI

IPASIY(40) - KBLOCK

ECHO PRINT

C ECHO PRINT THE INPUT PARAMETERS -- ALL COMMENTS MUST HAVE AN

C ASTERISK IN THE FIRST COLUIMN

CALL IMAGEI (JOUTAL.JREADI,MTITLE)

C GET THE CHANGED VARIABLES

CALL GETKY2

C

C KEEP THE FOLLOWING VARIABLES ALWAYS IN INPUTI.DAT FOR
C INDENTIFICATION

NREACH - IPASKY( 1)

NSPECH - IPASKY( 2)

KROGER - IPASKY( 3)

JREADS - IPASKY( 9)

NINRCH - IPASKY(18)

PRINT OUT PARAMETERS

KDEBUG - IPASKY(13)

IF (KDEBUG .NE. 2 .AND.

WRITE(JDEBUG.1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG.1200)

WRITE(JDEBUG.1300)

WRITE(JDEBUG.1400) (APA

WRITE(JDEBUG.l500)

WRITE(JDEBUG.1600) (IPA

KDEBUG .LT. 1000) RETURN

SKY(K) ,K=1,40)

4SKY(K),K=1,40)

C
C
C

1000
1100
1200

1300

1400

1500

1600

FORMAT STATEMENTS

FORMAT(//1OX,'----------------------- )

FORMAT( IOX,'DEBUG PRINT FROM E20PTO' )

FORMAT( OX'..-----------------------'/)

FORMAT( lOX.'APASKY ARRAY'/)

FORMAT( 8E15.6)

FORMAT( 10X,'IPASKY ARRAY'/)

FORMAT( 1615)

C ALTERNATE VALUES FOR IPASKY AND APASKY

C IPASKY(12) : IDBGA2

RETURN
END
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E2PRMU

SUBROUTINE E2PRMT (INODE, ITYPE)
C E2PRMU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'IOCOMN.INC'

C THIS SUBROUTINE COMPUTES THE PRIMITIVE VARIABLES AT A GIVEN

C NODE 'INODE'. THE VARIABLE 'ITYPE' DETERMINES THE TYPE OF

C CALCULATIONS THAT MIGHT BE NEEDED.

RHORPR - DPENG2(1,INODE)

UCOMPR - DPENG2(2,INODE)/RHORPR

VCOMPR - DPENG2(3,INODE)/RHORPR

BEPSPR DPENG2(4,INODE)

BE - BEPSPR/RHORPR
VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C
C COMPUTE THE DIMENSIONAL QUANTITIES

C

BE - FMREFL*BE

VELO2 FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY -0.

DO 10 IS 1. NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) DPENG2(JS,INODE)/DPENG2(1,INODE)

IF (YSPEPR(IS) .LT. 0.) THEN
YSPEPR(IS) 0o.

DPENG2(JS,INODE) - 0.
ENDIF

IF (YSPEPR(IS) .GT. YMAXCH(IS)) THEN

YSPEPR(IS) - YMAXCH(IS)

DPENG2(JS,INODE) - YMAXCH(IS)*DPENG2(1,INODE)
ENDIF

SUMY - SUMY + YSPEPR(IS)
10 CONTINUE
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YSPEPR(NEQSCH+1) 1. - SUMY - YNRTCH

C YSPER(NEQSCH+1) ABS(1. - SUMY - YNRTCH)

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEQSCH+I) = O.

IF (YSPEPR(NEQSCH+1) .GT. YMAXCH(NEQSCH+1))

1 YSPEPR(NEQSCH+1) YMAXCH(NEQSCH+1)

SYSHFS - 0.
SYSCPS - O.

SYSBMS - O.

BIGAM - 0.
C
C COMPUTE THE TEMPERATURE IN DEGREE K
C

DO 20 IS - 1, NSPECH

SYSHFS - SYSHFS + YSPEPR(IS)*FMHTCH(IS)

SYSCPS - SYSCPS + YSPEPR(IS)*SPCPCH(IS)
SYSBMS - SYSBMS + YSPEPR(IS)*RAMWCH(IS)

BIGAM - BIGAM + YSPEPR(IS)*SPBSCH(IS)
20 CONTINUE

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM - BE - 0.5*VELO2 - SYSHFS + TREFCH*SYSCPS
1 + 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMP = BIGCM/BIGBM
ELSE

DISCRI BIGBM*BIGBM + 2.*BIGAM*BIGCM

TEMP - ( SQRT(DISCRI)-BIGBM )/BIGAM

ENDIF

C
C NORMALIZE THE TEMPERATURE

C

TEMPPR - TEMP/TREFFL
C
C COMPUTE THE DIMENSIONLESS PRESSURE

C
PRESPR - RHORPR*TEMPPR*AMWTFL*SYSBMS

C IF (PRESPR .LE. 0.) CALL CHKPR2(INODE)
C
C SAVE THE PRESSURE AND TEMPERATURE AT THE NODE

C

PRESG2(INODE) - PRESPR

TEMPG2(INODE) - TEMPPR

GOTO (40,30,30),ITYPE
C
30 BIGAMT - BIGAM*TEMP

SYSCVS - BIGBM + BIGAMT

GAMAPR - (SYSCPS+BIGAMT)/SYSCVS

SONDPR - GAMAPR*PRESPR/RHORPR
SONDPR - SQRT(SONDPR)

IF (ITYPE .EQ. 2) RETURN
AMCHPR - SqRT(VELO2U)/SONDPR

40 RETURN
END
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E2PRMT

SUBROUTINE E2PRMT (INODE, ITYPE)

INCLUDE '[.INC]

INCLUDE '.INC]

INCLUDE '[.INC]

INCLUDE 't.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

INCLUDE '[.INC]

DATA KOUNT /O/

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

E2COMN.INC/LIST'

FLCOMN.INC/LIST'

G2COMN.INC/LIST'

PRCOMN.INC/LIST'

IOCOMN.INC/LIST'

C THIS SUBROUTINE COMPUTES THE PRIMITIVE VARIABLES AT A GIVEN

C NODE 'INODE'. THE VARIABLE 'ITYPE' DTERMINES THE TYPE OF

C CALCULATIONS THAT MIGHT BE NEEDED.

C

RHORPR -
UCOMPR -
VCOMPR -
BEPSPR 

BE -

VELO2U 

DPENG2(1,INODE)

DPENG2(2,INODE)/RHORPR

DPENG2(3,INODE)/RHORPR

DPENG2(4,INODE)

BEPSPR/RHORPR
UCOMPR*UCOMPR + VCOMPR*VCOMPR

C

C COMPUTE THE DIMENSIONAL QUANTITIES
C

BE = FMREFL*BE
VELO2 FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.
YUPPER - 1. - YNRTCH

DO 10 IS - 1, NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/DPENG2(1.INODE)

IF (YSPEPR(IS) .LT. 0.) THEN
YSPEPR(IS) = 0.

DPENG2(JS,INODE) - 0.
ENDIF

IF (YSPEPR(IS) .GT. YUPPER) THEN

YSPEPR(IS) - YUPPER
DPENG2(JS,INODE) - YUPPER*DPENG2(1,INODE)
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ENDIF

SUMY - SUMY + YSPEPR(IS)

10 CONTINUE

YSPEPR(NEQSCH+1) 1. - SUMY - YNRTCH
C YSPEPR(NEQSCH+I) - ABS(1. - SUMY - YNRTCH)

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEQSCH+1) = 0.

SYSHFS 0.

SYSCPS 0.
SYSBMS - 0.

BIGAM = O.

C
C COMPUTE THE TEMPERATURE IN DEGREE K
C

DO 20 IS 

SYSHFS

SYSCPS
SYSBMS

BIGAM

20 CONTINUE

1, NSPECH

- SYSHFS +
- SYSCPS +
- SYSBMS +-BIGAM + YSPEPR(IS)*FMHTCH(IS)/AMWTCH(IS)

YSPEPR(IS)*SPCPCH(IS)

YSPEPR(IS)/AMWTCH(IS)

YSPEPR(IS)*SPBSCH(IS)

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM - BE - 0.5*VEL02 - SYSHFS + TREFCH*SYSCPS

+ 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMP - BIGCM/BIGBM
ELSE

DISCRI

TEMP

ENDIF

- BIGBM*BIGBM + 2.*BIGAM*BIGCM
- ( SRT(DISCRI)-BIGBM )/BIGAM

NORMALIZE THE TEMPERATURE

TEMPPR - TEMP/TREFFL

COMPUTE THE DIMENSIONLESS PRESSURE

PRESPR - RHORPR*TEMPPR*AMWTFL*SYSBMS

IF (PRESPR .LE. 0.) CALL CHKPR2(INODE)

SAVE THE PRESSURE AND TEMPERATURE AT THE NODE

PRESG2(INODE) - PRESPR
TEMPG2(INODE) TEMPPR

GOTO (40.30,30).ITYPE

SYSCV -

GAMAPR -
SONDPR -

BIGBM + BIGAM *TEMP

SYSCPS/SYSCV8

GAMAPR*PRESPR/RHORPR

IF(SONDPR .LT. 0.) THEN
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ZER1 - SONDPR

ZEl2 - TEMPPR

WRITE(JDEBUG,1000) RHORPR,BEPSPR.UCOMPR,VCOMPR,TEMPPR,PRESPR,

1 GAMAPR,80SNDPR,GEOMG2(1,INODE),GEOMG2(2,INODE) INODE

CALL ERRORM(3,'E2PRMT','SOUND2',ZER1,'TEMP ',ZER2,JPRINT,

1 'SPEED OF SOUND IS NEGATIVE')

ENDIF

SONDPR - SQRT(SONDPR)

IF (ITYPE .EQ. 2) GOTO 40

AMCHPR - SQRT(VELO2U)/SONDPR

C
C PRINT OUT PARAMETERS

C

40 IF (IDBGE2 .NE. 7 .AND. IDBGE2 .LT. 1000) RETURN

IF (KOUNT .EQ. O) THEN

KOUNT - 1

WRITE(JDEBUG,OO1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG.1300)

ENDIF

WRITE(JDEBUG,1400) INODE, RHORPR, BEPSPR, UCOMPR, VCOMPR,

1 TEMPPR, PRESPR, YNRTCH

IF (ITYPE .NE. 1) THEN

WRITE(JDEBUG,1500) GAMAPR, SONDPR, AMCHPR

ENDIF

C
C
C
C
1000

1100
1200

1300

1400

1500

FORMAT STATEMENTS

FORMAT(' RHORPR -',E16.8,10X,' BEPSPR ',E15.6/

1 ' UCOMPR '.E15.8.10X,' VCOMPR ='.E15.6/

1 ' TEMPPR -'.E15.,10X,' PRESPR -',E15.6/

i ' GAMAPR -',E15.8,10X,' SOUND2 =',E15.6/

I ' XDIS -',E15.6,l0X,' YDIS -',E15.6/

5 ' NODE '.Il0O)

FORMAT(//IOX,'-----------------------' )
FORMAT( lOX,'DEBUG PRINT FROM E2PRMT' )
FORMAT( lOX,'-----------------------'/)

FORMAT(SX, 'NODE ', I6, 10X, 'RHORPR-', 014

1 5X, 'BEPSPR-', G14.6, 5X, 'UCOMPR=', 014

1 5X, 'VCOMPR-', G14.5, 5X, 'TEMPPR-', 014

2 5X, 'PRESPR-', 014.5, 5X, 'YNRTPR-', G14

FORMAT(6X, 'GAMAPR-', G14.6, 6X, 'SONDPR-', G14

1 5X, 'AMCHPR-', G14.5

.5,

.5/

.5/

.6/ )

.5.

)

RETURN

END
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E2RSRT

SUBROUTINE E2RSRT

C
INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'A2COMN.INC'

'CHCOMN.INC'

'E2COMN.INC'

'FLCOMN.INC'

'FRCOMN.INC'

'G2COMN.INC'

'H2COMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

'TICOMN.INC'

CHARACTER*7

DATA KYWRDA/

1
2
3
4
5

6
7
8

9
*

KYWRDA(NAPAKY)

'SMAXE2-', 'SMINE2=',

'AMCHFL=', 'RHORFL-',
'PRESFL='. 'PRESCH=',

'TEMP2C-', 'TEMP3C-'.

'GAMMA2=', 'DELTA2-',

'PBPIFR='. 'EPS1TI=',

'TRIGCH-', 'ERRMIN=',

'EPS1MX',. 'RHORFR=',

'PRESFR-'. 'FCTRTI=',

'RPRNE2',. 'RSCHE2=',

'CFLXTI-'. ' -'/

KYWRDI(NIPAKY)

'CFLNTI',. 'EPSLE2-',

'TREFFL-',. 'TREFCH-',
'DISTFL=', 'TEMPIC=',
'ALPHA2-',. 'BETAA2=',

'PRINTO-', 'TIMXTI-',

'EPSOTI=', 'TIMNTI=',

'ERRMTIs'. 'EPS1MN-',

'UCOMFR-', 'VCOMFR=',

'DTCNTI-', 'RREYE2-',

'OMEGE2-', 'GFACE2-',

DATA KYWRDI/

1
2
3
4
5

6
7
8
9
*

C
C THIS SUBROUTINE INITIALIZES ALL THE

C RESTART CASE, THESE PARAMETERS ARE

C WANT TO CHANGE SECOND TIME AROUND.

C IN THE EARLIER AND CURRENT RUN THEN

C TIMES IN THE INPUT FILE INPUTI.DAT;

C HAPPENS TO BE THE DEFAULT VALUE.
C

OPTION PARAMETERS FOR THE

THE ONES WHICH YOU MIGHT

IF A PARAMETER IS DIFFERENT
IT MUST BE DEFINED BOTH THE

UNLESS IF THE PARAMETER
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'NREACH-',.

'MITRE2',.

'JREADS-',

'KDEBUG-'.

'KFACTI-',
'IDBGFR=° ,

'KONVE2-',

'KEQNE2-'.
'IMPLTI-'.

'IDBGG2-'.

'NSPECH=',

'KSRTE2-',

'KTIMTI-'.

'IDBGE2-',

'NINRCH-',

'NXTDA2-',

'MITRA2-',

'KMERA2-'.

'IDBGTI-',

'IADDH2-',
. ./

'KROGER',
'NGIVTI-',

'K1ADA2s',

'IDBGA2'.,

'KDPENI-',
'MALVG2-',

'MITRPS=',
'KCHKA2-'.,
'KPERFR',
'KDIFTI-'.

'KORDER=',

'METHA2-',

'K2ADA2-',

'MTHRA2-',

'KPLTA2',
'KADPTI-',

'KHAFEZ-',

'MITEPS',
'MCYCFR-',

'KBLOCK=',

C



C

IF ( IARIKY( 5)
IF ( MARIKY( 6)
IF ( MARIKY( 7)
IF ( MARIKY( 8)
IF ( MARIKY( 9)

IF ( MARIKY(1O)

IF ( MARIKY(ll)
IF ( MARIKY(12)

IF ( MARIKY(13)

IF ( MARIKY(14)

IF ( MARIKY(15)
IF ( MARIKY(16)

IF ( MARIKY(17)

IF ( MARIKY(20)

IF ( MARIKY(21)
IF ( MARIKY(22)

IF ( MARIKY(23)
IF ( MARIKY(24)

IF ( MARIKY(25)
IF ( MARIKY(2e)

IF ( MARIKY(27)

IF ( MARIKY(28)
IF ( MARIKY(29)
IF ( MARIKY(30)
IF ( MARIKY(31)
IF ( MARIKY(33)

IF ( MARIKY(34)

C IF ( MARIKY(35)

IF ( MARIKY(38)
IF ( MARIKY(37)

IF ( MARIKY(38)
IF ( MARIKY(39)

IF ( MARIKY(40)

IF ( MARAKY( 1)

IF MARAKY( 2)

IF ( MARAKY( 3)
IF ( MARAKY( 4)
IF ( MARAKY(1)

IF ( MARAKY(16)
IF ( MARAKY(17)

IF ( MARAKY (18)
IF ( MARAKY(20)
IF ( MARAY(22)
IF ( MARAKY(23)
IF ( MARAKY(25)
IF ( MARAKY(27)
IF ARAKY(36)

IF ( MARAKY(36)
IF ( MARAKY(37)
IF ( MARAKY(38)
IF ( MARAKY(39)
IF ( MARAKY(40)
IF ( MARAKY(41)

C

.NE. O)

.NE. )

.NE. O)

.NE. O)

.NE. )

.NE. )

.NE. O)

.NE. O)

.NE. O)

.NE. 0 )

.NE. 0 )

.NE. 0 )
.NE. 0 )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. )
.NE. O)

.NE. )

.NE. O )

.NE. 0 )

.NE. )

.NE. )

.NE. o )

.NE. 0 )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. )

.NE. O)

.NE. )

.NE. )

.NE. )

.NE. o )

.NE. 0 )

.NE. )

MITRE2 = IPASKY( 5)
KSRTE2 = IPASKY( 6)

NGIVTI = IPASKY( 7)

METHA2 = IPASKY( 8)

JREADS = IPASKY( 9)

KTIMTI = IPASKY(10)

K1ADA2 = IPASKY(ll)

K2ADA2 - IPASKY(12)

IDBGFL = IPASKY(13)

IDBGE2 = IPASKY(14)
IDBGA2 - IPASKY(15)

MTHRA2 - IPASKY(1e)

KFACTI = IPASKY(17)

KPLTA2 = IPASKY(20)

IDBGFR - IPASKY(21)

NXTDA2 - IPASKY(22)

MALVG2 - IPASKY(23)

KADPTI - IPASKY(24)

KONVE2 = IPASKY(25)

MITRA2 = IPASKY(26)

MITRPS - IPASKY(27)

KHAFEZ IPASKY(28)
KEQNE2 - IPASKY(29)

KMERA2 - IPASKY(30)

KCHKA2 - IPASKY(31)

IMPLTI - IPASKY(33)

IDBGTI = IPASKY(34)

KPERFR = IPASKY(35)

MCYCFR = IPASKY(36)

IDBGG2 = IPASKY(37)
IADDH2 - IPASKY(38)

KDIFTI = IPASKY(39)

KBLOCK = IPASKY(39)

SMAXE2 - APASKY( 1)

SMINE2 - APASKY( 2)

CFLNTI - APASKY( 3)

EPSLE2 - APASKY( 4)

ALPHA2 - APASKY(15)

BETAA2 - APASKY(le)

GAMMA2 - APASKY(17)

DELTA2 = APASKY(18)

TIMXTI - APASKY(20)

EPS1TI = APASKY(22)

EPSOTI -APASKY(23)

TRIGCH - APASKY(25)

ERRMTI - APASKY(27)

DTCNTI - APASKY(36)

RREYE2 - APASKY(36)
RPRNE2 = APASKY(37)

RSCHE2 - APASKY(38)

OMEGE2 - APASKY(39)

GFACE2 = APASKY(40)

CFLXTI - APASKY(41)
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SOME VALUES CAN NOT BE CHANGED --- THEY MUST BE READ FROM

JPNTRE.DAT

IF ( MARAKY(24) .NE. 0 )

IF ( MARAKY(34) .NE. 0 )
MARAKY(24) - 0
MARAKY(34) - O

TIMNTI APASKY(24)

FCTRTI - APASKY(34)

CHANGE REFERENCE TEMPERATURE IF NEED BE

IF ( MARAKY(7) .NE. 0 ) THEN
IF (ABS(TREFFL-APASKY(7)) .GT. 1.)

CALL CHKREF

GOTO 10

THEN

ENDIF

ENDIF

CHANGE REFERENCE PRESSURE IF NEED BE

IF ( MARAKY(9) .NE. 0 ) THEN

IF (ABS(PRESFL-APASKY(9)) .GT. 1.) CALL CHKREF

ENDIF

CHANGE REFERENCE DISTANCE

IF ( MARAKY(11) .NE. 0 ) THEN

IF (ABS(DISTFL-APASKY(11)) .GT. 0.001) THEN

DISTFL APASKY(11)

WDREFL RHORFL*UREFFL/DISTFL

ENDIF

ENDIF

PRINT OUT PARAMETERS

IF (IDBGE2 .NE. 2 .AND. IDBGE2 .LT. 1000)

WRITE(JDEBUG, 1000)

WRITE(JDEBUGOO1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300) KSRTE2, KONVE2, MITRE2
±
2

3

4
5

WRITE(JDEBUG,1400)
1

2
3
4

IDBGTI,

IDBGFL,

NGIVTI,

KFACTI,

K2ADA2,

SMAXE2,
BETAA2,

EPS1TI,

DTCNTI,
GFACE2

METHA2,

MALVG2,

MITRPS,

KCHKA2,

IADDH2

SMINE2,
GAMMA2,
EPSOTI,
RREYE2,

IDBGA2,

KADPTI,

KHAFEZ,

IMPLTI,

CFLNTI,
DELTA2,

TRIGCH,

RPRNE2,

WRITE(JDEBUG. 1500) MTITLE

WRITE(JDEBUG, 100)
DO 20 IKEY - 1, NIPAKY

IF (MARIKY(IKEY) .NE. 0) THEN

WRITE(JDEBUG,1800) KYWRDI(IKEY), IPASKY(IKEY)
ENDIF
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C

C

C

C

C

C
C

C

C
C

C

C
C
C
10

C
C

C

RETURN

NITRE2,

NXTDA2,

JREADS,
KEQNE2,

IDBGFR,

EPSLE2,

TIMXTI,

ERRMTI,

RSCHE2,

IDBGE2,

MITRA2,

KTIMTI,

KMERA2,

K1ADA2,

ALPHA2,

TIMNTI,

FCTRTI,

OMEGE2,

I



20 CONTINUE

WRITEIJDEBUG,1700)

DO 30 IKEY - 1, NAPAKY

IF (MARAKY(IKEY) .NE. O) THEN

WRITE(JDEBUG,1900) KYWRDA(IKEY), APASKY(IKEY)

ENDIF

30 CONTINUE

C
C

C

FORMAT STATEMENTS

1000 FORMAT(//lOX,' ----------------------- ' )
1100 FORMAT( lOX.'DEBUG PRINT FROM E2RSRT' )

1200 FORMAT( lOX,'-----------------------/)
1300 FORMAT(5X,'KSRTE2 -

1 BX,'MITRE2 -
2 X, 'IDBGE2 -
3 5X,'METHA2 -

4 5X, 'NXTDA2 '
S 5X,'IDBGFL -
6 5X,'KADPTI -
7 5X,'KTIMTI -
8 5X,'MITRPS -
9 5X,'KEqNE2 -* 5X,'KFACTI -
I 5X,'IMPLTI -
2 5X,'K1ADA2 

3 5X,'IADDH2 -
1400 FORMAT(SX,'SMAXE2 -

1 6X,'CFLNTI -
2 5X,'ALPHA2 -
3 5X,'GAMMA2 

4 5X,'TIMXTI 

5 5X,'EPSITI 
6 5X,'TRIGCH 
7 5X,'FCTRTI -
8 5X,'RREYE2 -
9 SX, 'RSCHE2 -
* 5X,'GFACE2 -

1500 FORMAT(A80)
1600
1700
1800
1900

',IS,15X,'KONVE2 -

',IS,15X,'NITRE2 -

',I5,15X,'IDBGTI =

',I6,15X,'IDBGA2 =

',I6,15X,'MITRA2 -
',IS,15X,'MALVG2 -

',IS,15X,'JREADS -

',I6,15X,'NGIVTI -

',I6,15X,'KHAFEZ -
',I5,16X,'KMERA2 -
',IS,15X,'KCHKA2 =

',IS,1X.'IDBGFR -
',IS,15X,'K2ADA2 -

',I5,15X,' =

',G16.5,5X,'SMINE2

',G15.5,SX,'EPSLE2

',G16.5,6X,'BETAA2

',G15.5,X,'DELTA2

',G15.S,5X,'TIMNTI

',G1S.5,5X,'EPSOTI

',G15.5,5X,'ERRMTI

',G15.5,SX,'DTCNTI

',G15.5,SX,'RPRNE2

',G16.5,6X,'OMEGE2

',G15.5

',I5/

'.15/
',15/

'.I5/',16/
',15/

G16/',I6/
',I5/

,I5/

,I5/
' GIS /
',16/)

',G16.6/

- ',G16.5/
' '.G15.5/
- ',G15.5/

',G1S.5/
- ',G1.S/

,G15.5/

, ',G1S.5/

)

FORMAT(/SX.'THE FOLLOWING INTEGER KEYS WERE ACTUALLY CHANGED')

FORMAT(/SX,'THE FOLLOWING REAL KEYS WERE ACTUALLY CHANGED')

FORMAT(10X,A7,2X,I7)

FORMAT(1OX,A7.2X,.G1.6)

RETURN

END

E2SCHO

SUBROUTINE E2SCHO
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INCLUDE '[
INCLUDE '[

INCLUDE 'I
INCLUDE '[

INCLUDE '[
INCLUDE 'I

INCLUDE 'I

INCLUDE 'I

INCLUDE 'I

INCLUDE 'I
INCLUDE 'I

C INCLUDE 'I

INCLUDE 'I

DIMENSION
CHARACTER

LOGICAL

:.INC]

:.INC]
:.INC]
:.INC]

:.INC]

[.INC]

. INC]
:.INC]
:.INC]

:.INC]

:.INC]
[.INC]
C.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC/LIST'

CHCOMN.INC/LIST'

E2COMN.INC/LIST'

FLCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'
HEXCOD.INC I

IOCOMN.INC/LIST'

KYCOMN.INC/LIST'
PRCOMN.INC/LIST'

TICOMN.INC/LIST'
XVERT(2,6), DPENLH(MEQNFL, 1000), X(1000)
COMAND*6. FILNAM*12. RECORD*132

IWRITE

C THIS SUBROUTINE FINDS THE COMMANDS AND EXECUTES THEM FOR

C SPECIAL SITUATIONS. FOR A NORMAL RUN THIS SUBROUTINE IS

C NOT NEEDED.

C
C WANT DEBUG PRINT ?

IWRITE = IDBGE2 .NE. 4 .AND. IDBGE2 .LT. 1000
IWRITE - .NOT. IWRITE

IF (IWRITE) THEN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG.1200)

WRITE(JDEBUG,1300) JREADS

ENDIF

C FOR A NORMAL RUN THERE IS NO SCHEDULE PROGRAM

IF (JREADS .EQ. O) RETURN

C READ THE COMMAND AND THE FILENAME (IF NECESSARY)

10 READ(JREADS,1400,END-40) COMAND, FILNAM

IUNITS - 91

IF (IWRITE) THEN
WRITE(JDEBUG.1500) COMAND. FILNAM

ENDIF

PRE-EMBEDD

DO THE PRE-EMBEDDED OF GRIDS ACCORDING TO INITIAL CONDITIONS

I.E., ADAPATATION BEFORE INTEGRATION
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IF (COMAND .EQ. 'PREEMB') THEN
C
C INPUT THE INTERPOLATION INDICATOR AS NEGATIVE VALUE IF

C SPECIAL INTERPOLATION IS DESIRED FOR DIVIDED CELLS,

C THIS MAY BE USEFUL WITH PROBLEMS WHERE A STEP FUNCTION
C IS INTRODUCED AS AN .C. NOTE THAT THE SHOCK IS REGARDED
C TO BE A PART OF LEFT HAND REGION AND CORRECTION IS ONLY

C MADE ON RHS.

READ(JREADS,*) NVERT1
C INPUT THE NUMBER OF CELLS TO BE EXTENDED; IT IS DESIRABLE

C TO HAVE LARGER EXTENSION HERE; IF THE SAME NUMBER OF

C CELL EXTENSION IS TO BE USED THEN INPUT ZERO

READ(JREADS,*) NXTD

NDUMMY - NXTDA2

IF (NXTD .GT. O) NXTDA2 - NXTD

NCELP - NCELG2

C NOW PRE-EMBEDD

CALL A2MTHO

C RESET THE EXTENSION CELL NUMBER

NXTDA2 - NDUMMY

IF (IWRITE) THEN
WRITE(JDEBUG, 600) NVERT

WRITE(JDEBUG,1700) NXTD. NXTDA2

ENDIF

C

C FROZEN OR EQUILIBRIUM SHOCK

C
C ---*___*____*
C I I I I

C I JCELL NBI
C --I I …--- -I 
C I IEDGE1 IEDGE2 IOUT

C I
C I----*…____*…_ _
C
C
C

C CORRECT THE INTERPOLATION IF NEED BE

DO 30 ICELL - NCELP+I, NCELG2, 4

C FIND THE SUPERCELL

JCELL - ICELG2(10,ICELL)

IF (NVERT1 .LT. 0 .AND. JCELL .GT. O) THEN

IEDGE2 - ICELG2(4 JCELL)
NB1 - NEIBG2(3,IEDGE2)

IF (NB1 .NE. O) THEN

IEDGE - ICELG2(2,JCELL)

IOUT - ICELG2(4.NBI)
IF(DPENG2(1,IEDGE).EQ.DPENG2(1,IEDGE2) )GOT030

IF (DPENG2(1,IEDGE2).EQ.DPENG2(1,IOUT)) THEN

PRESG2(ICELG2(1,JCELL)) - PRESG2(IOUT)

PRESG2(ICELG2(3, JCELL)) - PRESG2 IOUT)

PRESG2(ICELG2(7,JCELL)) - PRESG2(IOUT)

TEMPG2(ICELG2(1.JCELL)) - TEMPG2(IOUT)
TEMPG2(ICELG2(3.JCELL)) - TEMPG2(IOUT)

TEMPG2(ICELG2(7,JCELL)) - TEMPG2(IOUT)

DO 20 I - 1, NEQNFL

DPENG2(I,ICELG2(1,JCELL)) - DPENG2(I,IOUT)
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DPENG2(I,ICELG2(3,JCELL)) = DPENG2(I,IOUT)

DPENG2(I,ICELG2(7,JCELL)) = DPENG2(I,IOUT)

20 CONTINUE
ENDIF

ENDIF

ENDIF

30 CONTINUE

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOO01) .NE. O) THEN

NERR 0

CALL CHKBN2 (JCELL, O, 0, 0, ., NERR, 'AFTDIV')

CALL CHKNC2 (JCELL, O. 0, 0, O, NERR, 'AFTDIV')

CALL CHKNN2 (JCELL, O0 0, 0, , NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O. 0, 0, O, NERR, 'AFTDIV')

ENDIF

C
ENDIF

C
C -
C CHEMISTRY INPUT HELP

C

C

C2 HELP IN WRITTING THE FILE INPUTC.DAT

C

IF (COMAND .Eq. 'C2HELP') CALL C2HELP (IUNITS)

C

C

C END OF RUN

C

C

C3 FINISH THIS RUN

40 IF (COMAND .EQ. 'FINISH') CALL E2FINI

C

C

C SPECIFIC GRID DIVISION
C

C

C4 DIVIDE'THE GRID FOR SPECIFIED CELLS

IF (COMAND .EQ. 'G2DIVO') THEN

READ(JREADS,*) NOCELL

IF (IWRITE) WRITE (JDEBUG,1800) NOCELL

DO 50 I - 1, NOCELL

READ(JREADS,*) ICELL

IF (IWRITE) WRITE (JDEBUG,1900) I, ICELL

IWARN - O

CALL G2DIVO (ICELL, IWARN)

IF (IWARN .NE. O) WRITE(JTERMO,2000) IWARN, ICELL

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOO01) .NE. O) THEN

NERR - 0

CALL CHKBN2 (JCELL, O. 0. 0, O, NERR, 'AFTDIV')

CALL CHKNC2 (JCELL, O. 0, 0O., 0 NERR, 'AFTDIV')

CALL CHKNN2 (JCELL, O, 0. 0, O, NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O, 0, 0O. 0, NERR, 'AFTDIV')

ENDIF
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60 CONTINUE

C SET THE CEWIC CELL POINTERS

CALi A2CEWC

ENDIF

C
C
C PRINT GRID DETAILS

C
C
C6 PRINT THE DETAILS OF GRIDS

IF (COMAND .EQ. 'G2PRNT') THEN

C READ THE OPTION PARAMETER

READ(JREADS,*) IOPTGP

CALL G2PRNT (IOPTGP)

ENDIF

C

C

C PRINT GRID SUMMARY

C

C
Cs WRITE A SUMMARY OF GRIDS

IF (COMAND .EQ. 'G2SUMY') THEN

WRITE(IUNITS,2100)

CALL G2SUMY (IUNITS)

CLOSE (IUNITS)

ENDIF

C

C7 WRITE THE OUTPUT FOR SUBSEQUENT PLOTTING AT VARIOUS TIME

C STATIONS; ALSO OPEN THE UNIT WHERE THE OUTPUT WILL BE

C WRITTEN. IF THE FILE IS OLD (RESTARTED CASE) GOTO THE

C END OF THE FILE

C

IF (COMAND .EQ. 'G2TIME') THEN

IF (KTIMTI .NE. 2) KTIMTI - 1

TIME - TIMNTI

C IF (KSRTE2 .EQ. 0 .OR. KTIMTI .EQ. 2) THEN

C OPEN (UNIT-JCARDS, FILE='G2TIME.DAT', STATUS='NEW')

C CALL PSSUMY

C ELSE

OPEN (UNIT-JCARDS, FILE-'G2TIME.DAT', STATUS-'OLD')

60 READ (JCARDS, 2200, END-70) FILNAM

GO TO 60
C ENDIF

70 CALL G2TIME (TIME, 1)

ENDIF

C

C

C REGIONAL GRID DIVISION
C

C
CS DIVIDE THE GRIDS IN THE SPECIFIED POLYGONAL REGION

C MANUAL SPATIAL EMBEDDING (MAXIMUM POLYGON : HEXAGON)

IF (COMAND .EQ. 'MANUAL') THEN

C READ THE NUMBER OF VERTICES OF THE POLYGONAL REGION,

C INPUT NEGATIVE VALUE IF SPECIAL INTERPOLATION IS

C DESIRED FOR DIVIDED CELLS, THIS MAY BE USEFUL WITH
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C PROBLEMS WHERE A STEP FUNCTION IS INTRODUCED AS AN I.C.

C NOTE THAT THE SHOCK IS REGARDED TO BE A PART OF LEFT

C HAND REGION AND CORRECTION IS ONLY MADE ON RHS.

READ(JREADS. *) NVERT1

NVERT - ABS(NVERTI)

IF (IWRITE) WRITE(JDEBUG.2300) NVERT
C NOW READ THE COORDINATES OF THESE VERTICES

DO 80 IVERT - 1, NVERT

READ(JREADS,*) XVERT(1,IVERT), XVERT(2,IVERT)

IF (IWRITE) WRITE(JDEBUG.2400) IVERT,

1 XVERT(1,IVERT), XVERT(2,IVERT)

80 CONTINUE
C INITIALIZE THE NUMBER OF CELLS TO BE DIVIDED

NCELLD - 0

C LOOP THROUGH ALL THE CEWIC CELLS; A CELL WILL BE DIVIDED IF THE

C CENTER OF THE CELL LIES WITHIN THE SPECIFIED POLYGON

DO 90 ICELL 1, NCELG2

KC - ICELG2(1.ICELL)
IF (KC .Eq. O) THEN

KSW - ICELG2 (2, ICELL)

KSE - ICELG2 (4, ICELL)

KNE - ICELG2 (6. ICELL)

KNW - ICELG2 (8, ICELL)

XSW - GEOMG2 (1, KSW )

XSE - GEOMG2 (1, KSE )

XNW - GEOMG2 (1, KNE )

XNW - GEOMG2 (1. KNW )

YSW - GEOMG2 (2, KSW )

YSE - GEOMG2 (2. KSE )

YNW - GEOMG2 (2, KNE )

YNW - GEOMG2 (2. KNW )

XC - 0.25*(XSW + XSE + XNE + XNW)

YC - 0.25*(YSW + YSE + YNE + YNW)
IIN -0
CALL INSIDE (IIN, XVERT, NVERT, XC, YC)

C MARK THE NODE IF THE CELL IS IN THIS REGION

IF (IIN .EQ. 1) THEN

NCELLD - NCELLD + 1

MRKDA2(NCELLD) - KSW
ENDIF

ENDIF

90 CONTINUE
C DEBUG WRITE

IF (IWRITE) THEN

WRITE(JDEBUG.2600) NCELLD
WRITE(JDEBUG. 2600) (NEIBG2(3, MRKDA2(JN)) ,JN-1 ,NCELLD)

ENDIF

C CALL THE GRID DIVIDE ROUTINE FOR ALL THE PREVIOUSLY

C COLLECTED CELLS.

DO 120 JNODE - NCELLD, 1. -1

KSW - MRKDA2 (JNODE)

JCELL - NEIBG2 (3.KSW)

IWARN - 0

CALL G2DIVO (JCELL, IWARN)
IF (IWARN .NE. O) WRITE(JTERMO.2000) IWARN, JCELL

C CORRECT THE INTERPOLATION IF NEED BE

IF (NVERT1 .LT. O) THEN
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NBI - NEIBG2(3,ICELG2(4,JCELL))

- IF (NBI .NE. O) THEN

IEDGE1 - ICELG2(2,JCELL)

IEDGE2 - ICELG2(4,JCELL)

IOUT - ICELG2(4,NB1)

IF(DPENG2(1,IEDGE1).EQ.DPENG2(1,IEDGE2))GOT0110

IF (DPENG2(1,IEDGE2).EQ.DPENG2(1,IOUT)) THEN

PRESG2(ICELG2(1,JCELL)) - PRESG2(IOUT)

PRESG2(ICELG2(3,JCELL)) - PRESG2(IOUT)

PRESG2(ICELG2 (7JCELL)) = PRESG2(IOUT)

TEMPG2(ICELG2(1,JCELL)) - TEMPG2(IOUT)

TEMPG2(ICELG2(3.JCELL)) - TEMPG2(IOUT)

TEMPG2(ICELG2(7.JCELL)) - TEMPG2(IOUT)

DO 100 I 1, NEQNFL

DPENG2(I,ICELG2(1,JCELL)) DPENG2(I,IOUT)

DPENG2(I,ICELG2(3,JCELL)) - DPENG2(I,IOUT)

DPENG2(IICELG2(7,JCELL)) DPENG2(I,IOUT)

100 CONTINUE

ENDIF

ENDIF

ENDIF
C SEE IF DEBUG CHECK IS NEEDED

110 IF (IAND(KCHKA2,KLOOO1) .NE. O) THEN

NERR - 0

CALL CHKBN2 (JCELL, O. 0. 0. O. NERR, 'AFTDIV')

CALL CHKNC2 (JCELL, O 0 0 O NERR, 'AFTDIV')

CALL CHKNN2 (JCELL, O. 0, 0, 0 NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O, 0, 0, O. NERR, 'AFTDIV')

ENDIF

120 CONTINUE

C REMOVE THE VOIDS

CALL A2VOID

C SET THE CEWIC CELL POINTERS

CALL A2CEWC

ENDIF

C
C

C NORMAL RUN

C

C

C9 DO THE "NORMAL" RUN

IF (COMAND .EQ. 'NORMAL') THEN

READ(JREADS,*) NIT

IF (NIT .NE. O) MITRE2 - NIT

RETURN

ENDIF

C
C
C PRINT RESULTS
C
C
CLO PRINT ALL THE RESULTS

IF (COMAND .EQ. 'PRINTO') THEN

C SET THE PRINTOUT PARAMETER

KPRINT - NINT(APASKY(19))
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CALL WRINI2

IF (KPRINT .EQ. 2) THEN

'WRITE(JOUTAL, 2700)

WRITE(JOUTAL,2800) NITRE2., NNODG2, NCELG2, NBNDG2, NCELA2

WRITE(JOUTAL,2900) TIMNTI

ENDIF

IF (KPRINT .GT. 2) CALL G2RESO

ENDIF

C

C

C WRITE POINTER SYSTEM

C

C

Cli WRITE THE WHOLE POINTER SYSTEM ON THE SPECIFIED FILE

IF (COMAND .EQ. 'PSWRT2') THEN

IF (KSRTE2 .LT. 1000) THEN

CALL PSWRT2 (JPNTWR)

ELSE

CALL PSWRTU (JPNTWR)

ENDIF

CLOSE (JPNTWR)

ENDIF

C
C

C CHANGE B.C. TYPE

C
C

C12 CHANGE THE TYPE OF BOUNDARY CONDITIONS AT THE SPECIFIED BOUNDARY

IF (COMAND .EQ. 'CHNBND') THEN

C READ THE SPECIFIC BOUNDARY (SURFACE) WHERE CHANGE IS DESIRED
C ISURFC-3 FOR SOUTH; 5 FOR EAST; 7 FOR NORTH; 9 FOR WEST

READ(JREADS.*) ISURFC

C READ THE OLD AND NEW BOUNDARY TYPES

READ(JREADS.*) IBCOLD. IBCNEW

DO 130 INB - 1. NBNDG2

IF (IBNDG2(4.INB) .EQ. ISURFC) THEN

IF (IBNDG2(5,INB) .EQ. IBCOLD) THEN

WRITE(JTERMO.2950) INB, ISURFC, IBCOLD, IBCNEW

IBNDG2(5,INB) - IBCNEW
ENDIF

ENDIF
130 CONTINUE

ENDIF

C
C ---------------

C CHANGE DISSOCIATION PHI
C
C

C13 CHANGE DISSOCIATION PHI IN THE MIDDLE OF A RESTART CASE
IF (COMAND .EQ. 'DISPHI') THEN

C SEE IF THE APPROPRIATE MODEL IS BEING USED

IF (KROGER .NE. 2) GO TO 10

PHIOLD - CHNGE2(1,1)

RHOD - CHNGE2(1.2)

IF (PHIOLD .EQ. 0.) THEN

PHIOLD - APASKY(l)
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RHOD - APASKY(2)

ENDIF

write(S,*) ' phiold-'.phiold
write(6,*) ' rhod -',rhod

C READ THE NEW PHI

READ(JREADS,*) PHI

CHNGE2(I,I) " PHI

ETA - EXPFCH(1)

THETD - ENEFCH(1)

TOETA - TREFFL**ETA

UNITCF - UREFFL/(TOETA*RHORFL*DISTFL)

CFBMA - UNITCF*PHI

CF - CFBMA*AMWTCH(1)

PREFCH(1) - LOG(CFBMA)

PREBCH(1) - LOG(0.6*CF/RHOD)
APASKY(1) - PHI

ENDIF

C
C
C CHECK POINTERS
C
C
C14 CHECK THE POINTER SYSTEM GLOBALLY

C
IF (COMAND .EQ. 'CHKPNT') THEN

NERR - 0

CALL CHKBN2 (JCELL, O. 0. 0, O. NERR, 'AFTDIV')
CALL CHKNC2 (JCELL, O, 0, 0O. 0. NERR, 'AFTDIV')

CALL CHKNN2 (JCELL. O, 0. 0. O, NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O. O. 0, 0, NERR, 'AFTDIV')
ENDIF

C
C
C SMOOTH THE NODES
C
C
C15 CHECK ALL THE NODES FOR KINKS OR OSCILLATIONS

C

IF (COMAND .EQ. 'G2SMOT') CALL G2SMOT
IF (COMAND .EQ. 'G3SMOT') CALL G3SMOT

IF (COMAND .EQ. 'A2CEWC') CALL A2CEWC
IF (COMAND .EQ. 'TVINIO') CALL TVINIO

IF (COMAND .EQ. 'ROGERC') CALL ROGERC

IF (COMAND .EQ. 'G4SMOT') THEN

C READ THE VARIABLE WHICH IS TO BE SMOOTHENED

READ(JREADS,*) IT

CALL G4SMOT(IT)

IF (IWRITE) WRITE (JDEBUG,*) ' goes to g4smot'
ENDIF

IF (COMAND .EQ. 'E2DAMP') CALL E2DAMP

C
C

C INTERPOLATION FOR BOUNDARY NODE CELLS - REGION
C

C

CIG SET THE BOUNDARY NODE CELLS IN A REGION (WHOLE SURFACE) FOR

C SPECIAL INTERPOLATION FUNCTIONS
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SBNCBG :- Set Boundary Node Cell in ReGion

IF (COMAND .Eq. 'SBNCRG') THEN

WRITE(JTERMO .3000)
READ THE SPECIFIC BOUNDARY (SURFACE) WHERE CHANGE IS DESIRED

ISURFC-3 FOR SOUTH; 5 FOR EAST; 7 FOR NORTH; 9 FOR WEST

READ(JREADS,*) ISURFC

READ THE NEW INTERPOLATION FUNCTION INDICATOR INTERF

INTERF=1 FOR qUADRATIC; =2 FOR CUBIC; =3 FOR CIRCULAR ARC

READ(JREADS,*) INTERF

IF (ISURFC .EQ. 7) ISURFC 12

ONLY NORTH AND SOUTH BOUNDARIES CAN BE ADJUSTED HERE

IF (.NOT.(ISURFC .EQ. 3 .OR. ISURFC .EQ. 12)) GOTO 10

SET THE EDGE POINTERS FOR THE BOUNDARY CELLS

IF (ISURFC .EQ. 3) THEN

IEDGE - 2

IEDGE2 - 4

ELSE

IEDGE1 - 6
IEDGE2 - 8

ENDIF

SET THE THIRD BYTE INTEGER FOR IOR FUNCTION

KNTERF 0
IF (INTERF .EQ. 1) KNTERF - KLOIOO

IF (INTERF .EQ. 2) KNTERF KL0200

IF (INTERF .EQ. 3) KNTERF - KL0300
C

DO 140 ICELL 1. NCELG2

KX - KAUXG2(ICELL)

KTEST IAND(KX,KLOOOF)

C CHECK IF ON THE CORRECT BOUNDARY SURFACE

IF (KTEST .EQ. ISURFC) THEN

X1 = GEOMG2(1,ICELG2(IEDGE1,ICELL))

X2 - GEOMG2(1.ICELG2(IEDGE2,ICELL))

Y1 - GEOMG2(2,ICELG2(IEDGE1,ICELL))

Y2 - GEOMG2(2.ICELG2(IEDGE2,ICELL))

C NO CHANGE IS REQUIRED FOR HORIZONTAL OR VERTICAL BOUNDARIES

DXTEST - ABS(XI-X2)

IF (DXTEST .LT. 1.E-8) GOTO 140

DXTEST - ABS(Y1-Y2)

IF (DXTEST .LT. I.E-8) GOTO 140
C OVERLAY THE THIRD BYTE ONTO KAUXG2

KAUXG2(ICELL) - IOR(KAUXG2(ICELL),KNTERF)

WRITE(JTERMO,3100) ICELL, KX, KAUXG2(ICELL), X,YI,X2,Y2
ENDIF

140 CONTINUE

ENDIF

C
C

C INTERPOLATION FOR A SINGLE BOUNDARY NODE CELL
C

C
SET A GIVEN BOUNDARY NODE CELL FOR SPECIAL INTERPOLATION
FUNCTIONS

SBNCIN :- Set Boundary Node Cell INdividually
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IF (COMAND .EQ. 'SBNCIN') THEN

WRIYE(JTERMO.3000)
READ THE SPECIFIC CELL UNDER CONSIDERATION

READ(JREADS,*) ICELL

READ THE NEW INTERPOLATION FUNCTION INDICATOR INTERF

INTERF-1 FOR QUADRATIC; =2 FOR CUBIC; =3 FOR CIRCULAR ARC

READ(JREADS,*) INTERF

XX - KAUXG2(ICELL)

KTEST - IAND(KX,KLOOOF)

ONLY NORTH AND SOUTH BOUNDARIES CAN BE ADJUSTED HERE

IF (.NOT.(KTEST .NE. 3 .OR. KTEST .NE. 12)) GOTO 10
SET THE EDGE POINTERS FOR THE BOUNDARY CELLS

IF (KTEST .EQ. 3) THEN

IEDGE1 - 2

IEDGE2 - 4

ELSE

IEDGE1 6
IEDGE2 - 8

ENDIF

SET THE THIRD BYTE INTEGER FOR IOR FUNCTION

KNTERF - 0

IF (INTERF .EQ. 1) KNTERF = KLO100

IF (INTERF .EQ. 2) KNTERF - KL0200

IF (INTERF .EQ. 3) KNTERF - KL0300

Xl - GEOMG2(1,ICELG2(IEDGE1,ICELL))

X2 GEOMG2(1,ICELG2(IEDGE2,ICELL))

Y1 - GEOMG2(2,ICELG2(IEDGE1,ICELL))

Y2 - GEOMG2(2.ICELG2(IEDGE2,ICELL))

NO CHANGE IS REQUIRED FOR HORIZONTAL OR VERTICAL BOUNDARIES

DXTEST - ABS(X1-X2)

IF (DXTEST .LT. 1.E-8) GOTO 10

DXTEST - ABS(Yi-Y2)

IF (DXTEST .LT. 1.E-8) GOTO 10

OVERLAY THE THIRD BYTE ONTO KAUXG2

KAUXG2(ICELL) - IOR(KAUXG2(ICELL) ,KNTERF)
WRITE(JTERMO,3100) ICELL, KX, KAUXG2(ICELL). X,Yl,X2,Y2

ENDIF
C
C

C SAVE PREVIOUS CONVERGENCE HISTORY
C

C

C18 FOR A RESTART CASE IN WHICH CONVERGENCE HISTORY IS IMPORTANT,
C THE CALCULATIONS OF THE PREVIOUS RUN MUST BE APPENDED TO THE

C PRESENT CASE
C

IF (COMAND .EQ. 'SHISTO') THEN

IF (KSRTE2 .EQ. 0 .OR. KSRTE2 .EQ. 1000) GOTO 10

OPEN (UNITJDUMY4, FILE-'JHISTO.DAT;-I', STATUS-'OLD')
C READ THE PREVIOUS TITLE AND DISCARD IT

READ (JDUMY4, 3200, END-160) RECORD
C READ THE REST OF THE FILE AND KEEP IT

160 READ (JDUMY4, 3200, END-160) RECORD

WRITE(JHISTO, 3200) RECORD
GOTO 150
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160 CLOSE (JDUMY4)
ENDIF

C
C 
C CHANGE FORMAT PSWRIT

C -
C
C19 CHANGE THE FORMAT OF THE POINTER SYSTEM FILE (PSRED2 OR PSREDU)

IF (COMAND .EQ. 'PSCHAN') THEN

C INPUT THE VARIABLE NVERT1 TO INDICATE IF

C 1. TO CHANGE FROM FORMATTED TO UNFORMATTED FORM
C 2. TO CHANGE FROM UNFORMATTED TO FORMATTED FORM

READ(JREADS,*) NVERT1

ZCUM WORKA2(3)

WRITE (6.,*) ' ZCUM IN WORKA2(3) = ',ZCUM

MRKDA2(3) -99

IF (NVERT1 .EQ. 1) THEN

CALL PSWRTU (JPNTWR)

ELSE

CALL PSWRT2 (JPNTWR)
ENDIF

CLOSE (JPNTWR)

STOP ' THE END'
ENDIF

C
C

C ADD FUEL AT A GIVEN PLANE LOCATION

C

C
C20 THIS PROCEDURE INJECTS THE FUEL AT A GIVEN VERTICAL PLANE,

C ONLY THE LOWERMOST POINT OF THE PLANE IS NEEDED

IF (COMAND .EQ. 'FUELH2') THEN

C INPUT THE INITIAL POINT OF INJECTION ON THE PLANE

READ(JREADS. *) ISTART

C INPUT THE EQUIVALENCE RATIO FOR THE FUEL ADDITION

READ(JREADS,*) PHICR

IBASH2 = ISTART

PHIEH2 PHICR

CALL H2INIT

ENDIF
c

IF (COMAND .EQ. 'FUELH3') THEN

CALL H3INIT
ENDIF

IF (COMAND .EQ. 'SCREEN') THEN

CALL H2SCRI

ENDIF

IF (COMAND .EQ. 'PUTSCR') THEN

CALL H2SCRN
ENDIF

IF (COMAND .EQ. 'CHKMAS') THEN
CALL CHKMAS

ENDIF

IF (COMAND .EQ. 'PUTH2I') THEN
CALL H2TRIN
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ENDIF

IF (COMAND .EQ. 'H2FLOT') THEN

CALL H2FLOT

ENDIF

IF (COMAND .EQ. 'HSHEAR') THEN

CALL HSHEAR
ENDIF

IF (COMAND .Eq. 'PSWCOR') THEN

CALL PSWCOR(JPNTWR)

ENDIF

IF (COMAND .EQ. 'CHANKE') THEN

C READ THE REACTION NUMBER FOR WHICH THE CHANGE OF KE IS DESIRED

READ(JREADS,*) IR

WRITE(6,*) ' OLD KE',PREECH(IR)

READ(JREADS,*) PREECH(IR)

WRITE(6,*) ' NEW KE',PREECH(IR)

ENDIF

IF (COMAND .EQ. 'CHKTM2') THEN

DO 165 INODE = 1, NNODG2

IF (PRESG2(INODE).LT.O. .OR. TEMPG2(INODE).LT.O.)

1 CALL CHKTM2(INODE)
165 CONTINUE

ENDIF

C
C

C PRE-EMBEDD II

C
C

C DO THE PRE-EMBEDDED OF GRIDS ACCORDING TO INITIAL CONDITIONS

C21 I.E., ADAPATATION BEFORE INTEGRATION; FOR NON-EQUILIBRIUM

C SHOCKS THE INTERPOLATION TYPE OF 'PREEMB' DOES NOT HOLD SINCE

C THE SHOCK IS NO LONGER A STEP FUNCTION. LINEAR INTERPOLATION

C IS DONE WHICH IS BASED UPON A PREVIOUSLY WRIITEN FILE WITH
C FINE X-STEP SIZE. THE INTERPOLATION IS VALID ONLY FOR STRAIGHT

C CHANNELS. THE NAME OF OLD FILE IS LHSHOC.INT

C

IF (COMAND .EQ. 'PREEM2') THEN

C INPUT THE NUMBER OF CELLS TO BE EXTENDED; IT IS DESIRABLE

C TO HAVE LARGER EXTENSION HERE; IF THE SAME NUMBER OF
C CELL EXTENSION IS TO BE USED THEN INPUT ZERO

READ(JREADS,*) NXTD
NDUMMY - NXTDA2

IF (NXTD .GT. O) NXTDA2 NXTD
NCELP - NCELG2

C NOW PRE-EMBEDD

CALL A2MTHO

C RESET THE EXTENSION CELL NUMBER

NXTDA2 NDUMMY
IF (IWRITE) THEN

WRITE(JDEBUG, 1600) NVERT
ENDIF

C
C NON-EQUILIBRIUM SHOCK
C
C --- *....… --

C I ELL INB
C | IJCELL I NB1
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C I---------I I- -- I
C IEDGE1 IEDGE2 IOUT

C -

C *----*_*…*
C
C
C
C READ THE ADDITIONAL GRID INFORMATION FROM THEUNFORMATTED FILE

OPEN (UNIT=68, FILE"'LHSHOC.INT', STATUS='OLD',
1 FORM-'UNFORMATTED', READONLY)

REWIND (58)

READ(58) NPOINT. NTOTAL

DO 210 IP - 1. NPOINT

READ (8) X$(IP),(DPENLH(K,IP), K i, NTOTAL)
210 CONTINUE

C CORRECT THE INTERPOLATION IF NEED BE

DO 240 ICELL - NCELP+1, NCELG2, 4
C FIND THE SUPERCELL

JCELL - ICELG2(10.ICELL)

IF (JCELL .GT. O) THEN
IEDGE1 - ICELG2(2,JCELL)

IEDGE2 - ICELG2(4,JCELL)

IF(DPENG2(1.IEDGE1).EQ.DPENG2(1,IEDGE2) )GOT0240
XI - GEOMG2(1,ICELG2(1,JCELL))

DO 230 IP = 1, NPOINT-1

IF (XI .GE. X$(IP+I) .AND. XI .LE. X$(IP)) THEN
XRAT = (XI-X$(IP))/(X$(IP+I)-X$(IP))
DO 220 IQ - 1. NEQNFL

DELTAA - DPENLH(IQ,IP+I) - DPENLH(IQ,IP)

ALPHA 3 DPENLH(IQ,IP) + DELTAA*XRAT

DPENG2(IQICELG2(1,JCELL)) ALPHA

DPENG2(IQ,ICELG2(3,JCELL)) - ALPHA
DPENG2(IQ,ICELG2(7,JCELL)) = ALPHA

C CORRECT THE PRESSURE AND TEMPERATURE

CALL E2PRMT (ICELG2(1,JCELL),1)

CALL E2PRMT (ICELG2(3,JCELL),I)

CALL E2PRMT (ICELG2(7,JCELL),1)
220 CONTINUE

GOTO 240

ENDIF ! XI TEST

230 CONTINUE

ENDIF ! SUPERCELL EXITS

240 CONTINUE

C SEE IF DEBUG CHECK IS NEEDED

IF (IAND(KCHKA2,KLOOO1) .NE. O) THEN
NERR 0

CALL CHKBN2 (JCELL, O. 0, 0. O. NERR, 'AFTDIV')
CALL CHKNC2 (JCELL, O, 0. 0. O, NERR, 'AFTDIV')

CALL CHKNN2 (JCELL, O. 0, , 0O, NERR, 'AFTDIV')

CALL CHKSP2 (JCELL, O. 0, 0. O. NERR, 'AFTDIV')
ENDIF

C
ENDIF END OF TEST
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C
C
C GO BACK FOR MORE COMMANDS

GO TO 10

C FORMAT STATEMENTS

1000 FORMAT//10X,'------------ --------- ' )
1100 FORMAT( lOX,'DEBUG PRINT FROM E2SCHO' )
1200 FORMAT( lOX.'-----------------------/)

1300 FORMAT(SX.'JREADS - ',17)

1400 FORMAT(A6,4X,A12)

1500 FORMAT(SX,'COMAND '.A8.10X,'FILNAM = ',A12)
1600 FORMAT(65XX, 'INTERPOLATION INDICATOR',I5)

1700 FORMAT(6X, 'EXTENSION CELLS (NEW AND OLD)',215)

1800 FORMAT(SX,'# OF CELLS TO BE DIVIDED :',I5)

1900 FORMAT(6X,'CELL',I5,2X,' TO BE DIVIDED :',I5)

2000 FORMAT(X, 'WARNING #'.,I3,2X, 'ISSUED FOR CELL',I6)

2100 FORMAT(' ****** SUMMARY OF GRIDS ******'/)

2200 FORMAT(A12)

2300 FORMAT(5X,'SPATIAL EMBEDDING IN POLYGON OF SIDES :',I2)

2400 FORMAT(SX,'VERTEX :',I2,7X,'X -=',G14.5,10X,'Y =',G14.5)

2500 FORMAT(SX,'NO. OF CELLS TO BE DIVIDED :',I5/

1 6X,'THE CELLS TO BE DIVIDED ARE :'/)

2600 FORMAT(2015)

2700 FORMAT('1'//)

2800 FORMAT(5X,'TOTAL NUMBER OF ITERATIONS = ',I,i1OX,
1 5X,'TOTAL NUMBER OF NODES = ',I5 /

2 5X,'TOTAL NUMBER OF CELLS = ',I5 ,1OX,

3 SX,'TOTAL NUMBER OF BOUNDARY NODES = ',IS /

4 SX,'TOTAL NUMBER OF CEWIC CELLS = ',I5 /)

2900 FORMAT(5X,'TIME =',G14.5)

2950 FORMAT(SX.'IBN=',5I6,X,'ISURFC'I5.,X.'IBCOLD=',I5,

1 5X,'IBCNEW=',I5)

3000 FORMAT(4X,'ICELL',.X,'KX'.6X,'KXNEW',6X.'X1'.8X.

1 'Y' .8X.'X2'.sxX,'Y2')

3100 FORMAT(2X,I6,2X,2Z10,4F10.3)

3200 FORMAT(A)

END

E2SOLF

SUBROUTINE E2SOLO (ITGL)

C E2SOLF

INCLUDE 'PRECIS. INC'

INCLUDE 'PARMV2.INC'
INCLUDE 'CHCOMN.INC'
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INCLUDE 'E2COMN.INC'
INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'JACOMN.INC'

INCLUDE 'M2COMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'TICOMN.INC'

COMMON/WUCOMN/ WUJACO

DIMENSION BIGFS (MEqNFL)

BIGFN (MEQNFL)

BIGGS (MEQNFL)

BIGGN (MEQNFL)

DELSW (MEQNFL)

DELNW (MEQNFL)

BWCELL(MEQNFL)
FUJACO (MEQNFL, MEqNFL)

WUJACO (MEQNFL, MEQNFL)

DIMENSION UTOP

WTOP
(MEQNFL)

(MEQNFL)

BIGFE (MEQNFL)

* BIGFW (MEQNFL)

BIGGE (MEQNFL)

BIGGW (MEQNFL)

, DELSE (MEqNFL)

DELNE (MEQNFL)

DPENFA(MEQNFL,4)

GUJACO(MEQNFL,MEQNFL)

DUCELL(MEQNFL)

TOTAL (MEQNFL)

a WBOT (MEqNFL)

DATA FUJACO /100*0./

DATA GUJACO /100*0./

DATA WUJACO /100*0./

DATA BWCELL /10*0./

C THIS SUBROUTINE STEPS THROUGH EACH CELL ON THE SPATIAL LEVEL ITGL

C AND APPLIES NI'S SCHEME. I.E., INTEGRATES OVER ALL CELLS ON ITGL.

C IT ALSO COMPUTES THE ANALYTICAL AS WELL NUMERICAL JACOBIANS,

C BECAUSE THEIR STORAGE IS COSTLY. THIS SUBROUTINE CAN BE USED

C FOR GRIDS WHICH HAVE NOT BEEN EMBEDDED YET.

C DPENFA : VALUES OF DEPENDENT VARIABLES AT THE FACES

C DPENG2 : VALUES OF DEPENDENT VARIABLES AT THE NODES
C DPENJA : VALUES OF DEPENDENT VARIABLES FOR COMPUTING JACOBIANS

C !!!!!! THIS SUBROUTINE IS SPECIALIZED FOR MEQNFL=10 !!!!!

IMPLTI - 0 MEANS DO IMPLICIT

1 MEANS DO EXPLICIT
2 MEANS DO EXPLICIT

SOURCE TERMS

SOURCE TERMS

SOURCE TERMS WITH FROZEN CHEMISTRY

GOTO (310,10,610) IMPLTI+1

C RETURN

C USE EXPLICIT SOURCE TERMS

C STEP THROUGH EACH CELL AT THIS LEVEL

C
CVD* NOLSTVAL

10 DO 160 JCELL - ILVLTI(1,ITGL). ILVLTI(2,ITGL)

CELL/NODE DETERMINATION
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FIND THE CELL TO BE INTEGRATED

ICELL - ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2( 2,ICELL)

KSE = ICELG2( 4,ICELL)
KNE ICELG2( 6,ICELL)

KNW = ICELG2( 8,ICELL)

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW = GEOMG2(1,KSW)
YSW = GEOMG2(2,KSW)

XSE = GEOMG2(1,KSE)
YSE = GEOMG2(2,KSE)

XNE = GEOMG2(1,KNE)
YNE = GEOMG2(2,KNE)

XNW = GEOMG2(1,KNW)
YNW = GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME

DTDVOL = CELLTI(ICELL)*RVOLM2(ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF = O.5*PERIM2(ICELL)*DTDVOL

FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS = 0.5*( PRESG2(KSW) + PRESG2(KSE) )

PRESSE 0.5*( PRESG2(KSE) + PRESG2(KNE) )
PRESSN = 0.5*( PRESG2(KNW) + PRESG2(KNE) )
PRESSW = 0.5*( PRESG2(KSW) + PRESG2(KNW) )

NOLSTVAL

DO 20 IQ = 1, NEQNFL
DPENFA(IQ,1) 0.5*(

DPENFA(IQ,2) - O.5*(

DPENFA(IQ,3) = 0.5*(
DPENFA(IQ,4) - 0.5*(

CONTINUE

DPENG2(IQ,KSW)
DPENG2(IQ,KSE)

DPENG2(IQ,KNE)
DPENG2(Iq,KNW)

+ DPENG2(IQ,KSE) )
+ DPENG2(IQ,KNE) )
+ DPENG2(IQ,KNW) )
+ DPENG2(IQ,KSW) )

UCOMPS = DPENFA(2,1)/DPENFA(1,1)

667

C

C

C

C
C

C

C
C

C

C

C

C

C

C

CVD$

20

C



VCOMPS - DPENFA(3,1)/DPENFA(,11)

UCOMPE = DPENFA(2.2)/DPENFA( 1.2)

VCOMPE - DPENFA(3,2)/DPENFA(1,2)
UCOMPN - DPENFA(2,3)/DPENFA(1,3)

VCOMPN - DPENFA(3,3)/DPENFA(I.3)

UCOMPW DPENFA(2,4)/DPENFA(1,4)

VCOMPW - DPENFA(3.4)/DPENFA(1,4)

C ---FLUX TERMS

C -----SOUTH

BIGFS(i) DPENFA(2.1)

BIGFS(2) - DPENFA(2.1)*UCOMPS + PRESSS
BIGFS(3) - DPENFA(2,1)*VCOMPS

BIGFS(4) - UCOMPS*(DPENFA(4.1) + PRESSS)

BIGGS(i) = DPENFA(3,1)

BIGGS(2) = BIGFS(3)

BIGGS(3) = DPENFA(3,1)*VCOMPS + PRESSS
BIGGS(4) - VCOMPS*(DPENFA(4,1) + PRESSS)

C EAST

BIGFE(1) - DPENFA(2,2)

BIGFE(2) = DPENFA(2,2)*UCOMPE + PRESSE
BIGFE(3) = DPENFA(2,2)*VCOIPE

BIGFE(4) = UCOMPE*(DPENFA(4,2) + PRESSE)

BIGGE(i) - DPENFA(3,2)

BIGGE(2) = BIGFE(3)
BIGGE(3) = DPENFA(3,2)*VCOMPE + PRESSE
BIGGE(4) - VCOMPE*(DPENFA(4.2) + PRESSE)

C NORTH

BIGFN(i) - DPENFA(2,3)

BIGFN(2) - DPENFA(2,3)*UCOMPN + PRESSN

BIGFN(3) - DPENFA(2,3)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(4,3) + PRESSN)

BIGGN(l) - DPENFA(3,3)

BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3.3)*VCOMPN + PRESSN

BIGGN(4) - VCOMPN*(DPENFA(4,3) + PRESSN)

C WEST

BIGFW(i) - DPENFA(2,4)

BIGFW(2) - DPENFA(2,4)*UCOMPW + PRESSW

BIGFW(3) = DPENFA(2,4)*VCOMPW

BIGFW(4) = UCOMPW*(DPENFA(4,4) + PRESSW)
BIGGW(1) - DPENFA(3.4)

BIGGW(2) - BIGFWC3)
BIGGW(3) - DPENFA(3,4)*VCOMPW + PRESSW
BIGGW(4) - VCOMPW*(DPENFA(4,4) + PRESSW)

C OTHER FLUX TERMS ASSOCIATED WITH CHEMISTRY
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CVD$ NOLSTVAL

CVD$ NOVECTOR
DO 30 JS - NEQBAS+1. NEQNFL

BIGFS(JS) - DPENFA(JS,1)*UCOMPS

BIGGS(JS) DPENFA(JS,1)*VCOMPS
BIGFE(JS) = DPENFA(JS,2)*UCO~MPE
BIGGE(JS) - DPENFA(JS,2)*VCOMPE

BIGFN(JS) = DPENFA(JS,3)*UCOMPN

BIGGN(JS) = DPENFA(JS,3)*VCOMPN

BIGFW(JS) DPENFA(JS,4)*UCOMPW

BIGGW(JS) = DPENFA(JS,4)*VCOMPW
30 CONTINUE

C JACOBIAN TERMS

C ---- ----------
C DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

CVD* NOLSTVAL

DO 40 IQ - 1, NEQNFL

DPENJA(IQ) - 0.25*( DPENFA(IQ,1) + DPENFA(IQ.2) +

1 DPENFA(IQ,3) + DPENFA(IQ,4) )
40 CONTINUE

C SET UP THE QUANTITIES NEEDED TO COMPUTE SOURCE TERMS AND
C JACOBIANS

CVD$ NOLSTVAL
CVD$ NOVECTOR

DO 50 IQ NEQBAS+1, NEQNFL

DELTA - O.001*DPENJA(IQ)
IF (DELTA .EQ. 0.) DELTA = 0.001

UTOP(IQ) - DPENJA(IQ) + DELTA

TOTAL(Iq) - DELTA

50 CONTINUE

C

C NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES

C UCOMPR, VCOMPR, GAMAPR, YSPEPR ETC. AND GET THE SOURCE TERMS

C FOR THE CELL
C

SONDPR - CELLTI(ICELL)

CALL FRSOUR

C
CVD$ NOLSTVAL
CVD$ NOVECTOR

DO 60 JS - NEQBAS+1, NEQNFL

BWCELL(JS) - BIGWJA(JS)

60 CONTINUE

UCOMPC - UCOMPR

VCOMPC VCOMPR
U2 - UCOMPR*UCOMPR

V2 - VCOMPR*VCOMPR

GM1 - GAMAPR - 1.
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GM3 = GM1 - 2.

PAEBR - (BEPSPR+PRESPR)/RHORPR

FUJACO(1,2) = 1.
GUJACO(1,3) = 1.

GUJACO(2,1)

GUJACO(2,2)

GUJACO(2,3)

FUJACO(3,1)

FUJACO(3,2)

FUJACO(3,3)

FUJACO(2,1)

FUJACO(2,2)

FUJACO(2,3)

FUJACO(2,4)

GUJACO(3,1)

GUJACO (3,2)
GUJACO(3,3)

GUJACO(3,4)

FUJACO(4,1)
FUJACO(4,2)

FUJACO(4,3)

FUJACO(4,4)

GUJACO(4,1) =
GUJACO(4,2) =
GUJACO(4,3) -
GUJACO(4,4) =

= -UCOMPC*VCOMPC

= VCOMPC

= UCOMPC

= GUJACO(2,1)

= GUJACO(2,2)
= GUJACO(2,3)

= 0.5*(GM3*U2 + GM1*V2)
= -GM3*UCOMPR
= -GM1*VCOMPR
= GM1

= FUJACO(2,1)
= FUJACO(2,2)
= FUJACO(2,3)
= FUJACO(2,4)

- V2 + U2

- 2.*UCOMPC

- 2.*VCOMPC

= UCOMPR*(FUJACO(2,1) + U2 - PAEBR)

= PAEBR - 2.*U2 + UCOMPR*FUJACO(2,2)

= UCOMPR*FUJACO(2,3)
= UCOMPR*(FUJACO(2,4) + 1.)

VCOMPR*(FUJACO(2,1) + U2 - PAEBR)
VCOMPR*(FUJACO(2,2) - 2.*UCOMPR)

VCOMPR*FUJACO(2,3) + PAEBR

VCOMPR*(FUJACO(2,4) + 1.)

NOLSTVAL

NOVECTOR

NODEPCHK

DO 70 JS = NEQBAS + 1, NEQNFL

= DPENJA(JS)/DPENJA(1)

FUJACO(JS,1 ) -UCOMPC*YS
FUJACO(JS,2 ) = YS

FUJACO(JS,JS) = UCOMPC

GUJACO(JS,1 )
GUJACO(JS,3 )

GUJACO(JS,JS)

= -VCOMPC*YS
= YS
= VCOMPC

CONTINUE

F2BOT DPENJA(2)*UCOMPC + PRESPR

NOLSTVAL
NOVECTOR

DO 80 JS = NEQBAS + 1, NEQNFL

WBOT(JS) = BIGWJA(JS)
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80 CONTINUE

COMPUTE THE NUMERICAL JACOBIANS BY TAKING FORWARD DIFFERNCES

NOLSTVAL

NOVECTOR

DO 110 LS - NEQBAS+1, NEQNFL

COMPUTE VALUES AT TOP

UDUMMY - DPENJA(LS)

DPENJA(LS) UTOP(LS)

CALL E2SOUR

F2TOP = BGF2JA

NOLSTVAL

NOVECTOR

DO 90 JS = NEQBAS + 1, NEQNFL

WTOP(JS) = BIGWJA(JS)
CONTINUE

RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(LS) UDUMMY

NOW TAKE FORWARD DIFFERENCES

FUJACO(2.LS) - (F2TOP - F2BOT)/TOTAL(LS)
GUJACO(3,LS) - FUJACO(2,LS)

FUJACO(4.LS) FUJACO(2,LS)*UCOMPC

GUJACO(4.LS) - FUJACO(2,LS)*VCOMPC

NOLSTVAL

NOVECTOR

DO 100 JS = NEQBAS + 1, NEQNFL
WUJACO(JS,LS) (WTOP(JS) -

CONTINUE
WBOT(JS))/TOTAL(LS)

110 CONTINUE

C

FIRST ORDER CELL CHANGE DUCELL

CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

NOLSTVAL

DO 120 J - 1. NEQNFL

DUCELL(J) - BWCELL(J)*CELLTI(ICELL) + DTDVOL*(
BIGFW(J)*(YNW-YSW) - BIGGW(J)*(XNW-XSW) +
BIGFN(J)*(YNE-YNW) - BIGGN(J)*(XNE-XNW) +

BIGFE(J)*(YSE-YNE) - BIGGE(J)*(XSE-XNE) +
BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )

120 CONTINUE

JACOBIAN CHANGE BLOCK
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COMPUTE CHANGES DUE TO JACOBIANS

CVD$ NOLSTVAL

DO 140 J - 1, NEQNFL

DFCELL - 0.

DGCELL - 0.

DWCELL - 0.

DO 130 K = 1, NEQNFL

DFCELL - DFCELL + FUJACO(J,K)*DUCELL(K)

DGCELL - DGCELL + GUJACO(J,K)*DUCELL(K)
DWCELL - DWCELL + WUJACO(J.K)*DUCELL(K)

130 CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF = DFCELL

DFCELL DTDVOL*( TEMPF*DYNSM2(ICELL)

1 -DGCELL*DXNSM2(ICELL))

DGCELL DTDVOL*(-TEMPF*DYEWM2 (ICELL)

1 +DGCELL*DXEWM2(ICELL))

DWCELL - 0.5*CELLTI(ICELL)*DWCELL

C DIFFUSION TERMS

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW = SIGGE2(KSW)*DPENG2(J.KSW)

SIGGSE = SIGGE2(KSE)*DPENG2(JKSE)
SIGGNE = SIGGE2(KNE)*DPENG2(J.KNE)
SIGGNW - SIGGE2(KNW)*DPENG2(J,KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL- 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)

SIGGSW SIGCEL - SIGGSW

SIGGSE SIGCEL - SIGGSE

SIGGNE SIGCEL - SIGGNE

SIGGNW SIGCEL - SIGGNW

C
SIGGSW = DSDIFF*SIGGSW

SIGGSE DSDIFF*SIGGSE

SIGGNE - DSDIFF*SIGGNE

SIGGNW DSDIFF*SIGGNW

C -------COMPUTATION OF CHANGES

C FOCIT S DUCELL; FIND SOCT AND CORNER CHANGES

SOCITSW I -DFCELL - DGCELL + DWCELL
SOCITNW - DFCELL + DGCELL + DWCELLSOCITNW - DFCELL + DGCELL + DWCELL

672

C



SOCITNE + DFCELL + DGCELL + DWCELL
SOCITSE - + DFCELL - DGCELL + DWCELL

DELSW(J)

DELNW(J)
DELNE(J)

DELSE(J)

- 0.25*( DUCELL(J)
- 0.25*( DUCELL(J)

- 0.25*( DUCELL(J)
- 0.25*( DUCELL(J)

+ SOCITSW

+ SOCITNW

+ SOCITNE

+ SOCITSE

+ SIGGSW )
+ SIGGNW )
+ SIGGNE )
+ SIGGSE )

CONTINUE

DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

CVD* NOLSTVAL

DO 150 J - 1, NEQNFL

CHNGE2(J,KSW) - CHNGE2(J,KSW)

CHNGE2(J,KNW) CHNGE2(J,KNW)

CHNGE2(J,KSE) = CHNGE2(J,KSE)
CHNGE2(J,KNE) CHNGE2(J,KNE)

150 CONTINUE

+ DELSW(J)
+ DELNW (J)

+ DELSE(J)

+ DELNE (J)

CONTINUE

RETURN

USE IMPLICIT SOURCE TERMS

STEP THROUGH EACH CELL AT THIS LEVEL

CVD* NOLSTVAL
310 DO 560 JCELL

C
C
C

C

s ILVLTI(1.ITGL). ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL - ICELTI(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)
KSE - ICELG2( 4.ICELL)
KNE - ICELG2( 6,ICELL)

KNW - ICELG2( 8,ICELL)

C
C
C
C

C

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)
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YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1,KNE)

YNE = GEOMG2(2,KNE)

XNW = GEOMG2(1,KNW)
YNW = GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME

DTDVOL - CELLTI(ICELL) *RVOLM2 (ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF - O.5*PERIM2(ICELL)*DTDVOL

FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS - 0.6*( PRESG2(KSW) + PRESG2(KSE) )
PRESSE - 0.5*( PRESG2(KSE) + PRESG2(KNE) )
PRESSN - 0.5*( PRESG2(KNW) + PRESG2(KNE) )

PRESSW - 0.5*( PRESG2(KSW) + PRESG2(KNW) )

NOLSTVAL

DO 320 IQ 1, NEQNFL

DPENFA(IQ.,) - 0.5*( DPENG2(Iq,KSW)

DPENFA(IQ,2) = 0.5*( DPENG2(Iq,KSE)

DPENFA(IQ,3) = 0.5*( DPENG2(IQ,KNE)

DPENFA(IQ.4) = 0.s*( DPENG2(IQ,KNW)
CONTINUE

+ DPENG2(IQ,KSE) )
+ DPENG2(IQ,KNE) )
+ DPENG2(IQ,KNW) )
+ DPENG2(IQ,KSW) )

UCOMPS

VCOMPS

UCOMPE

VCOMPE

UCOMPN

VCOMPN

UCOMPW

VCOMPW

= DPENFA(2,1)/DPENFA(l,1)

- DPENFA(3.1)/DPENFA(1.1)

- DPENFA(2,2)/DPENFA(1,2)

- DPENFA(3,2)/DPENFA(1,2)

- DPENFA(2,3)/DPENFA(1,3)

- DPENFA(3,3)/DPENFA(1,3)

- DPENFA(2,4)/DPENFA(1,4)

- DPENFA(3,4)/DPENFA(1.4)

FLUX TERMS

SOUTH

BIGFS(1)

BIGFS(2)

BIGFS(3)

BIGFS(4)

- DPENFA(2.1)

3 DPENFA(2,1)*UCOMPS + PRESSS
5 DPENFA(2,1)*VCOMPS
- UCOMPS*(DPENFA(4,1) + PRESSS)

BIGGS(1) DPENFA(3,1)
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BIGGS(2) - BIGFS(3)

BIGGS(3) - DPENFA(3,1)*VCOMPS + PRESSS

BIGGS(4) - VCOMPS*(DPENFA(4,1) + PRESSS)

C EAST

BIGFE(1) - DPENFA(2.2)

BIGFE(2) - DPENFA(2,2)*UCOMPE + PRESSE

BIGFE(3) - DPENFA(2,2)*VCOMPE

BIGFE(4) - UCOMPE*(DPENFA(4,2) + PRESSE)

BIGGE(1) - DPENFA(3.2)

BIGGE(2) - BIGFE(3)

BIGGE(3) - DPENFA(3,2)*VCOMPE + PRESSE

BIGGE(4) - VCOMPE*(DPENFA(4,2) + PRESSE)

C NORTH

BIGFN(1) - DPENFA(2.3)
BIGFN(2) - DPENFA(2,3)*UCOMPN + PRESSN
BIGFN(3) - DPENFA(2,3)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(4,3) + PRESSN)

BIGGN(1) - DPENFA(3,3)

BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3.3)*VCOMPN + PRESSN

BIGGN(4) - VCOMPN*(DPENFA(4.3) + PRESSN)

C WEST

BIGFW(1) = DPENFA(2,4)
BIGFW(2) DPENFA(2,4)*UCOMPW + PRESSW
BIGFW(3) = DPENFA(2,4)*VCOMPW

BIGFW(4) = UCOMPW*(DPENFA(4,4) + PRESSW)

BIGGW(1) = DPENFA(3,4)

BIGGW(2) = BIGFW(3)

BIGGW(3) = DPENFA(3,4)*VCOMPW + PRESSW

BIGGW(4) - VCOMPW*(DPENFA(4,4) + PRESSW)

C OTHER FLUX TERMS ASSOCIATED WITH CHEMISTRY

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 330 JS - NEQBAS+I, NEQNFL

BIGFS(JS) = DPENFA(JS.l)*UCOMPS

BIGGS(JS) - DPENFA(JS,1)*VCOMPS

BIGFE(JS) = DPENFA(JS,2)*UCOMPE
BIGGE(JS) - DPENFA(JS,2)*VCOMPE

BIGFN(JS) - DPENFA(JS,3)*UCOMPN

BIGGN(JS) - DPENFA(JS.3)*VCOMPN

BIGFW(JS) - DPENFA(JS,4)*UCOMPW

BIGGW(JS) - DPENFA(JS,4)*VCOMPW
330 CONTINUE

C JACOBIAN TERMS

C --------------
C DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL
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NOLSTVAL

Dd 340 IQ - 1, NEQNFL
DPENJA(IQ) - 0.25*( DPENFA(IQ,1) + DPENFA(IQ,2) +

DPENFA(IQ,3) + DPENFA(IQ,4) )

CONTINUE

SET UP THE QUANTITIES NEEDED TO COMPUTE SOURCE TERMS AND

JACOBIANS

NOLSTVAL

NOVECTOR

DO 350 IQ = NEQBAS+I, NEQNFL

DELTA - 0.001*DPENJA(IQ)

IF (DELTA .EQ. 0.) DELTA = 0.001
UTOP(IQ) = DPENJA(IQ) + DELTA

TOTAL(IQ) = DELTA

CONTINUE

NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES

UCOMPR, VCOMPR, GAMAPR, YSPEPR ETC. AND GET THE SOURCE TERMS
FOR THE CELL

SONDPR - CELLTI(ICELL)
CALL FRSOUR

NOLSTVAL

NOVECTOR

DO 360 JS - NEqBAS+1, NEQNFL

BWCELL(JS) - BIGWJA(JS)
CONTINUE

UCOMPC
VCOMPC
U2
V2

GMI

GM3
PAEBR

- UCOMPR
- VCOMPR

- UCOMPR*UCOMPR

- VCOMPR*VCOMPR

= GAMAPR - 1.

- GM - 2.
= (BEPSPR+PRESPR)/RHORPR

FUJACO(1,2) - 1.

GUJACO(1,3) - 1.
C

GUJACO (2,1) -UCOMPC*VCOMPC
GUJACO(2,2) = VCOMPC

GUJACO(2,3) - UCOMPC

FUJACO(3,1) - GUJACO(2,1)

FUJACO(3,2) - GUJACO(2,2)

FUJACO(3,3) - GUJACO(2,3)

FUJACO(2,1) = 0.5*(GM3*U2 + GM1*V2)
FUJACO(2,2) - -GM3*UCOMPR
FUJACO(2,3) - -GMI*VCOMPR

FUJACO(2,4) - GM1
C
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= FUJACO(2,1) - V2 + U2

= FUJACO(2,2) - 2.*UCOMPC

= FUJACO(2,3) - 2.*VCOMPC

= FUJACO(2,4)

= UCOMPR*(FUJACO(2,1) + U2 - PAEBR)

= PAEBR - 2.*U2 + UCOMPR*FUJACO(2,2)

= UCOMPR*FUJACO(2,3)

= UCOMPR*(FUJACO(2,4) + 1.)

= VCOMPR*(FUJACO(2,1) + U2 - PAEBR)

= VCOMPR*(FUJACO(2,2) - 2.*UCOMPR)
= VCOMPR*FUJACO(2,3) + PAEBR

= VCOMPR*(FUJACO(2,4) + 1.)

NEQBAS + 1, NEQNFL

= DPENJA(JS)/DPENJA(1)

FUJACO(JS,1 )
FUJACO(JS,2 )
FUJACO(JS,JS)

GUJACO(JS,1 )
GUJACO(JS,3 )

GUJACO(JS,JS)

= -UCOMPC*YS

= YS

= UCOMPC

= -VCOMPC*YS

= YS

= VCOMPC

370 CONTINUE

F2BOT = DPENJA(2)*UCOMPC + PRESPR

CVD$ NOLSTVAL

CVD$ NOVECTOR
DO 380 JS

WBOT(JS)

380 CONTINUE

C

CVD$

CVD$

= NEqBAS + 1,

= BIGWJA(JS)

NEqNFL

COMPUTE THE NUMERICAL JACOBIANS BY TAKING FORWARD DIFFERNCES

NOLSTVAL

NOVECTOR

DO 410 LS 

C

NEQBAS+I, NEQNFL

COMPUTE VALUES AT TOP

UDUMMY = DPENJA(LS)
DPENJA(LS) = UTOP(LS)
CALL E2SOUR

F2TOP = BGF2JA

CVD$

CVD$

NOLSTVAL

NOVECTOR

DO 390 JS

WTOP(JS)
CONTINUE390

= NEQBAS + 1, NEQNFL
= BIGWJA(JS)

C

C

GUJACO(3,1)

GUJACO(3.2)

GUJACO(3,3)

GUJACO(3,4)

FUJACO(4.1)

FUJACO(4,2)

FUJACO(4,3)

FUJACO(4,4)

GUJACO(4,1)

GUJACO(4,2)

GUJACO(4,3)

GUJACO(4 4)

NOLSTVAL

NOVECTOR

NODEPCHK

DO 370 JS =

C

CVD$

CVD$

CVD$

YS
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RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(LS) - UDUMMY

C NOW TAKE FORWARD DIFFERENCES

FUJACO(2,LS) = (F2TOP - F2BOT)/TOTAL(LS)

GUJACO(3.LS) = FUJACO(2,LS)

FUJACO(4,LS) - FUJACO(2,LS)*UCOMPC

GUJACO(4,LS) = FUJACO(2,LS)*VCOMPC

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 400 JS - NEQBAS + 1. NEQNFL

if (abs(total(ls)) .gt. 1.e-20) then

WUJACO(JS,LS) - (WTOP(JS) - WBOT(JS))/TOTAL(LS)

else

WUJACO(JS,LS) = 0.

endif

400 CONTINUE

410 CONTINUE

C FIRST ORDER CELL CHANGE DUCELL

C CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

CVD$ NOLSTVAL

DO 420 J = 1, NEQNFL

DUCELL(J) = BWCELL(J)*CELLTI(ICELL) + DTDVOL*(

1 - BIGFW(J)*(YNW-YSW) - BIGGW(J)*(XNW-XSW) +

1 BIGFN(J)*(YNE-YNW) - BIGGN(J)*(XNE-XNW) +

1 BIGFE(J)*(YSE-YNE) - BIGGE(J)*(XSE-XNE) +

1 BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )

420 CONTINUE

C

C JACOBIAN CHANGE BLOCK
C

C COMPUTE CHANGES DUE TO JACOBIANS

CVD$ NOLSTVAL

DO 440 J - 1. NEQNFL

DFCELL - 0.

DGCELL - O.

DO 430 K 1. NEQNFL

DFCELL DFCELL + FUJACO(J.K)*DUCELL(K)

DGCELL DGCELL + GUJACO(J,K)*DUCELL(K)
430 CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME
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TEMPF = DFCELL

- DFCELL - DTDVOL*( TEMPF*DYNSM2(ICELL)

-DGCELL*DXNSM2(ICELL))

DGCELL = DTDVOL* (-TEMPF*DYEM2 (ICELL)
+DGCELL*DXEWM2(ICELL))

DIFFUSION TERMS

COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW

SIGGSE

SIGGNE

SIGGNW

- SIGGE2(KSW)*DPENG2(J,KSW)

= SIGGE2(KSE)*DPENG2(JKSE)

5 SIGGE2(KNE)*DPENG2(J.KNE)
= SIGGE2(KNW)*DPENG2(J.KNW)

COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL- 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)
SIGGSW = SIGCEL - SIGGSW

SIGGSE SIGCEL - SIGGSE

SIGGNE SIGCEL - SIGGNE

SIGGNW - SIGCEL - SIGGNW

SIGGSW

SIGGSE

SIGGNE

SIGGNW

- DSDIFF*SIGGSW

- DSDIFF*SIGGSE

= DSDIFF*SIGGNE

- DSDIFF*SIGGNW

COMPUTATION OF CHANGES

FOCIT IS DUCELL; FIND SOCIT AND CORNER CHANGES

SOCITSW

SOCITNW
SOCITNE

SOCITSE

- - DFCELL
- DFCELL

= + DFCELL
+ DFCELL

- DGCELL

+ DGCELL
+ DGCELL
- DGCELL

- 0.25*( DUCELL(J)

= 0.25*( DUCELL(J)

- 0.25*( DUCELL(J)
- 0.25*( DUCELL(J)

+ SOCITSW + SIGGSW )
+ SOCITNW + SIGGNW )
+ SOCITNE + SIGGNE )
+ SOCITSE + SIGGSE )

CONTINUE

DO IMPLICIT SOURCE TERMS

CALL PTIMP2 (KSW, ICELL,

CALL PTIMP2 (KSE, ICELL.

CALL PTIMP2 (KNW, ICELL,
CALL PTIMP2 (KNE. ICELL.

C
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DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

CVD$ NOLSTVAL

DO 450 J - 1, NEQNFL

CHNGE2(J,KSW) - CHNGE2(J,KSW)

CHNGE2(J.KNW) - CHNGE2(J.KNW)
CHNGE2(J.KSE) CHNGE2(J.KSE)

CHNGE2(J,KNE) CHNGE2(J,KNE)

460 CONTINUE

+ DELSW(J)

+ DELNW(J)

+ DELSE(J)

+ DELNE(J)

CONTINUE

RETURN

USE EXPLICIT SOURCE TERMS, KEEPING THE CHEMISTRY FROZEN
STEP THROUGH EACH CELL AT THIS LEVEL

NOLSTVAL
DO 710 JCELL - ILVLTI(1,ITGL), ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL - ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)

KSE - ICELG2( 4,ICELL)

KNE - ICELG2( 6.ICELL)

KNW ICELG2( 8.ICELL)

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1.KSW)

YSW - GEOMG2(2.KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1.KNE)
YNE - GEOMG2(2.KNE)

XNW GEOMG2(1.KNW)
YNW - GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME
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DTDVOL = CELLTI(ICELL)*RVOLM2 (ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF 0.5*PERIM2(ICELL)*DTDVOL

FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS = 0.5*( PRESG2(KSW)
PRESSE = 0.5*( PRESG2(KSE)
PRESSN - 0.5*( PRESG2(KNW)

PRESSW = 0.5*( PRESG2(KSW)

+ PRESG2(KSE) )
+ PRESG2(KNE) )
+ PRESG2(KNE) )
+ PRESG2(KNW) )

NOLSTVAL

DO 620 IQ 1, 4

DPENFA(Iq,.) = 0.5*( DPENG2(IQ,KSW)

DPENFA(Iq,2) = 0.5*( DPENG2(IQ,KSE)

DPENFA(IQ,3) = 0.5*( DPENG2(IQ,KNE)

DPENFA(IQ,4) = 0.5*( DPENG2(IQ,KNW)

CONTINUE

UCOMPS

VCOMPS

UCOMPE

VCOMPE

UCOMPN

VCOMPN

UCOMPW

VCOMPW

FLUX TE

SOUTH

BIGFS(1

BIGFS(S

BIGFS(2
BIGFS(4

BIGGS(1)

BIGGS(2)

BIGGS(3)

BIGGS(4)

+ DPENG2(IQ,KSE) )
+ DPENG2(IQ,KNE) )
+ DPENG2(IQ,KNW) )
+ DPENG2(IQ,KSW) )

= DPENFA(2,1)/DPENFA(1,1)

= DPENFA(3,1)/DPENFA(l,1)
- DPENFA(2,2)/DPENFA(1,2)

= DPENFA(3,2)/DPENFA(1,2)

- DPENFA(2,3)/DPENFA(1,3)

= DPENFA(3.3)/DPENFA(1,3)
- DPENFA(2,4)/DPENFA(1,4)

- DPENFA(3,4)/DPENFA(1.4)

ERMS

L) DPENFA(2,1)

2) DPENFA(2,1)*UCOMPS + PRESSS

3) - DPENFA(2,1)*VCOMPS
4) UCOMPS*(DPENFA(4,1) + PRESSS)

- DPENFA(3,1)
- BIGFS(3)

- DPENFA(3,1)*VCOMPS + PRESSS

- VCOMPS*(DPENFA(4,1) + PRESSS)

EAST

BIGFE(I)

BIGFE(2)

BIGFE(3)

BIGFE(4)

BIGGE(1)

BIGGE(2)

- DPENFA(2,2)

- DPENFA(2,2)*UCOMPE 

= DPENFA(2,2)*VCOMPE
= UCOMPE*(DPENFA(4.2)

- DPENFA(3,2)

= BIGFE(3)

+ PRESSE

+ PRESSE)
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BIGGE(3) - DPENFA(3.2)*VCONPE + PRESSE
BIGGE(4) - VCOMPE*(DPENFA(4,2) + PRESSE)

BIGFN(I)

BIGFN(2)

BIGFN(3)

BIGFN(4)

BIGGN(1)

BIGGN(2)

BIGGN(3)
BIGGN(4)

WEST

BIGFW(1)

BIGFW(2)

BIGFW(3)

BIGFW(4)

BIGGW(1)

BIGGW(2)

BIGGW(3)

BIGGW(4)

-DPENFA(2,3)
- DPENFA(2,3)*UCOMPN + PRESSN
- DPENFA(2,3)*VCOMPN

- UCOMPN*(DPENFA(4,3) + PRESSN)
- DPENFA(3,3)

- BIGFN(3)

- DPENFA(3,3)*VCOMPN + PRESSN
- VCOMPN*(DPENFA(4,3) + PRESSN)

- DPENFA(2.4)

- DPENFA(2,4)*UCOMPW + PRESSW

- DPENFA(2,4)*VCOMPW

- UCOMPW*(DPENFA(4.4) + PRESSW)
- DPENFA(3.4)

- BIGFW(3)

- DPENFA(3,4)*VCOMPW + PRESSW

- VCOMPW*(DPENFA(4,4) + PRESSW)

JACOBIAN TERMS

DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

NOLSTVAL

DO 630 IQ - 1, 4

DPENJA(IQ) - 0.25*( DPENFA(Iq,1)

DPENFA(IQ,3)

CONTINUE

NOW COMPUTE THE ANALYTIC JACOBIANS;

UCOMPC, VCOMPC. GAMAPR, YSPEPR ETC.
FOR THE CELL

UCOMPC -
VCOMPC -
U2

V2 -

BEPSPR -
BEU -
VELO2U 

+ DPENFA(IQ,2) +
+ DPENFA(IQ,4) )

INITIALIZE THE VALUES

AND GET THE SOURCE TERMS

DPENJA(2)/DPENJA(1)

DPENJA(3)/DPENJA(1)
UCOMPC*UCOMPC
VCOMPC*VCOMPC

DPENJA(4)

BEPSPR/DPENJA(1)
U2 + V2

COMPUTE THE DIMENSIONAL QUANTITIES

BE - FMREFL*BEU

VEL02 - FMREFL*VELO2U

COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.
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DO 640 IS - 1. NEQSCH

JS = NEQBAS + IS

- YSPEPR(IS) - DPENJA(JS)/DPENJA(l)

SUMY - SUMY YSPEPR(IS)

640 CONTINUE

YNEXT = 1. - SUMY - YNRTCH

IF (YNEXT .LT. 0.) YNEXT - O.

YSPEPR(NEQSCH+I) - YNEXT
C

SYSHFS - 0.

SYSCPS - 0.

SYSBMS O.
BIGAM = 0.

C
C COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

C

DO 660 IS - 1, NSPECH

SYSHFS = SYSHFS + YSPEPR(IS)*FMHTCH(IS)
SYSCPS = SYSCPS + YSPEPR(IS)*SPCPCH(IS)
SYSBMS = SYSBMS + YSPEPR(IS)*RAMWCH(IS)
BIGAM = BIGAM + YSPEPR(IS)*SPBSCH(IS)

650 CONTINUE

C

C COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

BIGBM = SYSCPS - UGASFL*SYSBMS
BIGCM = BE - 0.6*VELO2 - SYSHFS + TREFCH*SYSCPS

1 + 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. i.E-1O) THEN

TEMP - BIGCM/BIGBM

ELSE

DISCRI = BIGBM*BIGBM + 2.*BIGAM*BIGCM
TEMP - ( SQRT(DISCRI)-BIGBM )/BIGAM

ENDIF

BIGAMT BIGAM *TEMP

SYSCVS - BIGBM + BIGAMT
GAMAPR - (SYSCPS+BIGAMT)/SYSCVS

C

C NORMALIZE THE TEMPERATURE
C

TEMPU - TEMP/TREFFL
C
C COMPUTE THE DIMENSIONLESS PRESSURE
C

PRESPR - DPENJA(1)*TEMPU*AMWTFL*SYSBMS

GM1 - GAMAPR - 1.
GM3 - GM - 2.

PAEBR - (DPENJA(4)+PRESPR)/DPENJA(1)

FUJACO(1,2) - 1.
GUJACO(I.3) - 1.

C

GUJACO(2,1) - -UCOMPC*VCOMPC

GUJACO(2.2) - VCOMPC
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GUJACO(2,3) - UCOMPC
C

FUJACO (3,1)
FUJACO(3,2)

FUJACO (3.3)

FUJACO(2,1)

FUJACO(2,2)

FUJACO(2 ,3)
FUJACO(2,4)

GUJACO(3.1)

GUJACO(3.2)

GUJACO (3.3)
GUJACO(3,4)

FUJACO (4,.1)
FUJACO (4,2)
FUJACO(4,3)

FUJACO (4.4)

GUJACO (4. 1)
GUJACO (4,2)
GUJACO(4, 3)
GUJACO(4,4)

- GUJACO(2,1)

= GUJACO(2,2)
= GUJACO(2.3)

= 0.5*(GM3*U2 + GM1*V2)
= -GM3*UCOMPC
- -GM1*VCOMPC

= GM1

- FUJACO(2,1)
- FUJACO(2,2)

= FUJACO(2,3)
= FUJACO(2,4)

- V2 + U2
- 2.*UCOMPC
- 2.*VCOMPC

- UCOMPC*(FUJACO(2,1) + U2 - PAEBR)
- PAEBR - 2.*U2 + UCOMPC*FUJACO(2,2)
- UCOMPC*FUJAC0(2.3)

- UCOMPC*(FUJACO(2,4) + 1.)

- VCOMPC*(FUJACO(2,1) + U2 - PAEBR)
- VCOMPC*(FUJACO(2,2) - 2.*UCOMPC)
- VCOMPC*FUJACO(2.3) + PAEBR
- VCOMPC*(FUJACO(2.4) + 1.)

FIRST ORDER CELL CHANGE DUCELL

CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

NOLSTVAL

DO 660 J - 1, 4
DUCELL(J) = DTDVOL*(

BIGFW(J)*(YNW-YSW)

BIGFN(J)*(YNE-YNW)

BIGFE(J)*(YSE-YNE)

BIGFS (J) * (YSW-YSE)
CONTINUE

- BIGGW(J)*(XNW-XSW) +
- BIGGN(J)*(XNE-XNW) +
- BIGGE(J)*(XSE-XNE) +
- BIGGS(J)*(XSW-XSE) )

JACOBIAN CHANGE BLOCK

COMPUTE CHANGES DUE TO JACOBIANS

NOLSTVAL
DO 680 J - 1, 4

DFCELL 0.

DGCELL 0.

DO 670 K - 1, 4
DFCELL DFCELL + FUJACO(J, K)*DUCELL(K)
DGCELL - DGCELL + GUJACO(J,K)*DUCELL(K)

CONTINUE
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C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF = DFCELL
DFCELL DTDVOL*( TIPF*DYNSM2(ICELL)

I -DGCELL*DXNSM2(ICELL))

DGCELL = DTDVOL*(-TEMPF*DYEWM2(ICELL)
1 +DGCELL*DXEM2 (ICELL))

C

C DIFFUSION TERMS

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW SIGGE2(KSW)*DPENG2(J,KSW)

SIGGSE - SIGGE2(KSE)*DPENG2(J,KSE)

SIGGNE SIGGE2(KNE)*DPENG2(J,KNE)

SIGGNW = SIGGE2(KNW)*DPENG2(J,KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL= 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)

SIGGSW SIGCEL - SIGGSW

SIGGSE SIGCEL - SIGGSE

SIGGNE = SIGCEL - SIGGNE

SIGGNW - SIGCEL - SIGGNW
C

SIGGSW DSDIFF*SIGGSW

SIGGSE DSDIFF*SIGGSE

SIGGNE = DSDIFF*SIGGNE

SIGGNW DSDIFF*SIGGNW

C COMPUTATION OF CHANGES
C - -

C FOCIT IS DUCELL; FIND SOCIT AND CORNER CHANGES

SOCITSW = - DFCELL - DGCELL

SOCITNW = - DFCELL + DGCELL

SOCITNE = + DFCELL + DGCELL

SOCITSE = + DFCELL - DGCELL

DELSW(J) = 0.25*( DUCELL(J) + SOCITSW + SIGGSW )

DELNW(J) - 0.25*( DUCELL(J) + SOCITNW + SIGGNW )

DELNE(J) = 0.25*( DUCELL(J) + SOCITNE + SIGGNE )

DELSE(J) - 0.25*( DUCELL(J) + SOCITSE + SIGGSE )

680 CONTINUE

DO 690 J = 5, NEQNFL

DELSW(J) = DELSW(1)*YSPEPR(J-4)

DELNW(J) DELNW(1)*YSPEPR(J-4)

DELNE(J) DELNE(1)*YSPEPR(J-4)

DELNW(J) = DELNW(1) *YSPEPR(J-4)
690 CONTINUE

685



DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

NOLSTVAL

DO 700 J - 1 NEQNFL

CHNGE2(J,KSW) - CHNGE2(J,KSW)

CHNGE2(J,KNW) - CHNGE2(J,KNW)

CHNGE2(J,KSE) - CHNGE2(J,KSE)
CHNGE2(J,KNE) - CHNGE2(J,KNE)

CONTINUE

+ DELSW(J)

+ DELNW(J)

+ DELSE(J)

+ DELNE(J)

710 CONTINUE

C

RETURN

END

E2SOLO

SUBROUTINE E2SOLO (ITGL)

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

' [.INC]

. INC]
'[.INC]
' [.INC]

' [.INC]
[. INC]

' [.INC]
[. INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

E2COMN.INC/LIST'

G2COMN.INC/LIST'
JACOMN.INC/LIST'

M2COMN.INC/LIST'

PRCOMN.INC/LIST'

TICOMN.INC/LIST'

COMMON/WUCOMN/ WUJACO
DIMENSION BIGFS (MEQNFL)

BIGFN (MEQNFL)

BIGGS (MEQNFL)

BIGGN (MEQNFL)

DELSW (MEQNFL)

DELNW (MEQNFL)
BWCELL(MEQNFL)

FUJACO(MEQNFL,MEQNFL)

WUJACO(MEQNFL,MEQNFL)

DIMENSION UTOP
WTOP

(MEQNFL)

(MEQNFL)

BIGFE (MEQNFL)

BIGFW (MEQNFL)

* BIGGE (MEQNFL)

BIGGW (MEQNFL)

* DELSE (MEQNFL)

* DELNE (MEQNFL)
DPENFA(MEQNFL,2:9)

GUJACO(MEQNFL.MEQNFL) 
DUCELL(MEQNFL)

TOTAL (MEqNFL)

WBOT (MEQNFL)

C THIS SUBROUTINE STEPS THROUGH EACH CELL ON THE SPATIAL LEVEL ITGL

C AND APPLIES NI'S SCHEME, I.E., INTEGRATES OVER ALL CELLS ON ITGL.
C IT ALSO COMPUTES THE ANALYTICAL AS WELL NUMERICAL JACOBIANS,
C BECAUSE THEIR STORAGE IS COSTLY.
C DPENFA : VALUES OF DEPENDENT VARIABLES AT THE FACES
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C DPENG2 : VALUES OF DEPENDENT VARIABLES AT THE NODES

C DPENJA : VALUES OF DEPENDENT VARIABLES FOR COMPUTING JACOBIANS

C
C INITIALIZE THE JACOBIAN TERMS

DO 20 JEQ - 1, NEQNFL

DO 10 IEQ - 1, NEQNFL

FUJACO(IEQ,JEQ) = O.

GUJACO(IEQ,JEQ) = 0.
WUJACO(IEQ,JEQ) = 0.

10 CONTINUE

20 CONTINUE

C

C INITIALIZE THE SOURCE TERMS

C

DO 30 JS - 1, NEQBAS

BWCELL(JS) - 0.

30 CONTINUE

C
C STEP THROUGH EACH CELL AT THIS LEVEL

C
DO 300 JCELL - ILVLTI(1,ITGL). ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL = ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW -
KS -

KSE -
KE -

KNE -
KN 

KNW -

KW -
KX 

ICELG2(

ICELG2(

ICELG2 (
ICELG2 (
ICELG2(

ICELG2(
ICELG2(
ICELG2(

KAUXG2(

2.ICELL)

3. ICELL)
4.ICELL)

5,ICELL)

6,ICELL)

7. ICELL)
8.ICELL)

9, ICELL)
ICELL)

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2,KSE)
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XNE - GEOMG2(1,KNE)

YNE GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

C
C THE RATIO DELTA-t TO CELL VOLUME

DTDVOL - CELLTI(ICELL)*RVOLM2(ICELL)

C COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF - 0.5*PERIM2(ICELL)*DTDVOL

C FACIAL VALUES

C

C COMPUTE THE DEPENDENT VARIABLES AT THE FACES

C FIRST COMPUTE THE VALUES AT THE CORNER NODES
C

DO 40 IQ 1, NEQNFL

DPENFA(IQ,2) - DPENG2(Iq,KSW)
DPENFA(IQ,4) - DPENG2(IQ,KSE)

DPENFA(Iq,6) - DPENG2(IQ,KNE)

DPENFA(IQ,8) - DPENG2(IQ,KNW)

40 CONTINUE

C VALUES AT SOUTH NODE

IF (KS .EQ. O) THEN

PRESSS 0.5*(PRESG2(KSW) + PRESG2(KSE))
DO 50 IQ = 1, NEQNFL

DPENFA(IQ,3) = O.5*(DPENG2(IQ,KSW) + DPENG2(IQ,KSE))
50 CONTINUE

ELSE

PRESSS = PRESG2(KS)
DO 60 IQ - 1, NEQNFL

DPENFA(Iq,3) - DPENG2(IQ,KS)

60 CONTINUE

ENDIF

C VALUES AT EAST NODE

IF (KE .Eq. O) THEN

PRESSE - 0.5*(PRESG2(KSE) + PRESG2(KNE))
DO 70 IQ - 1 NEQNFL

DPENFA(IQ,6) - 0.5*(DPENG2(Iq,KSE) + DPENG2(IQ,KNE))

70 CONTINUE

ELSE

PRESSE - PRESG2(KE)
DO 80 IQ - 1, NEQNFL

DPENFA(IQ,6) - DPENG2(IQ,KE)
80 CONTINUE

ENDIF

C VALUES AT NORTH NODE

IF (KN .EQ. O) THEN
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PRESSN - 0.5*(PRESG2(KNW) + PRESG2(KNE))

DO 90 I 1, NEQNFL

DPENFA(IQ,7) 0.65*(DPENG2(IQ,KNW) + DPENG2(IQ,KNE))

90 CONTINUE

ELSE

PRESSN - PRESG2(KN)
DO 100 IQ = 1, NEqNFL

DPENFA(Iq,7) = DPENG2(IQ,KN)

100 CONTINUE

ENDIF

C VALUES AT WEST NODE

IF (KW .EQ. O) THEN

PRESSW = O.5*(PRESG2(KSW) + PRESG2(KNW))
DO 110 IQ = 1, NEQNFL

DPENFA(IQ,9) = 0.5*(DPENG2(Iq,KSW) + DPENG2(IQ,KNW))
110 CONTINUE

ELSE

PRESSW = PRESG2(KW)
DO 120 I = 1, NEQNFL

DPENFA(IQ,9) = DPENG2(IQ,KW)

120 CONTINUE

ENDIF

C VALUES AT THE WHOLE FACES CAN BE DETERMINED NOW

C SOUTH FACE

PRESSS - 0.25*( PRESG2(KSW) + 2.*PRESSS + PRESG2(KSE) )

DO 130 IQ - 1, NEqNFL

DPENFA(Iq,3) = 0.25*( DPENFA(IQ,2) + 2.*DPENFA(IQ,3) +
1 DPENFA(IQ,4) )

130 CONTINUE

UCOMPS = DPENFA(2,3)/DPENFA(1,3)

VCOMPS - DPENFA(3,3)/DPENFA(1,3)

C EAST FACE

PRESSE - 0.25*( PRESG2(KSE) + 2.*PRESSE + PRESG2(KNE) )
DO 140 IQ - 1, NEQNFL

DPENFA(IQ,5) 0.25*( DPENFA(IQ,4) + 2.*DPENFA(IQ,5) +

1 DPENFA(IQ,6) )

140 CONTINUE

UCOMPE - DPENFA(2,5)/DPENFA(1,5)

VCOMPE - DPENFA(3,5)/DPENFA(1,5)

C NORTH FACE

PRESSN - 0.25*( PRESG2(KNW) + 2.*PRESSN + PRESG2(KNE) )

DO 150 IQ 1, NEQNFL

DPENFA(IQ,7) 0.25*( DPENFA(IQ,6) + 2.*DPENFA(IQ,7) +

1 DPENFA(IQ,8) )

150 CONTINUE

UCOMPN = DPENFA(2,7)/DPENFA(1,7)

VCOMPN - DPENFA(3,7)/DPENFA(1,7)

C WEST FACE
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PRESSW - 0.25*( PRESG2(KSW) + 2.*PRESSW + PRESG2(KNW) )
DO' 160 IQ - 1. NEQNFL

DPENFA(IQ,9) - 0.25*( DPENFA(Iq,8) + 2.*DPENFA(Iq,9) +
1 DPENFA(IQ,2) )

160 CONTINUE

UCOMPW - DPENFA(2,9)/DPENFA(1,9)

VCOMPW - DPENFA(3,9)/DPENFA(1,9)

C FLUX TERMS

C SOUTH

BIGFS(1) - DPENFA(2.3)
BIGFS(2) - DPENFA(2,3)*UCOMPS + PRESSS
BIGFS(3) = DPENFA(2,3)*VCOMPS

BIGFS(4) - UCOMPS*(DPENFA(4,3) + PRESSS)

BIGGS(1) - DPENFA(3,3)

BIGGS(2) - BIGFS(3)
BIGGS(3) - DPENFA(3,3)*VCOMPS + PRESSS
BIGGS(4) - VCOMPS*(DPENFA(4,3) + PRESSS)

C EAST

BIGFE(1) - DPENFA(2.5)
BIGFE(2) - DPENFA(2,5)*UCOMPE + PRESSE

BIGFE(3) - DPENFA(2,5)*VCOMPE

BIGFE(4) - UCOMPE*(DPENFA(4,5) + PRESSE)
BIGGE(1) - DPENFA(3,5)

BIGGE(2) - BIGFE(3)

BIGGE(3) - DPENFA(3,5)*VCOMPE + PRESSE
BIGGE(4) - VCOMPE*(DPENFA(4,5) + PRESSE)

C NORTH

BIGFN(1) - DPENFA(2.7)

BIGFN(2) - DPENFA(2.7)*UCOMPN + PRESSN
BIGFN(3) - DPENFA(2,7)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(4.7) + PRESSN)
BIGGN(C) = DPENFA(3,7)
BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3,7)*VCOMPN + PRESSN
BIGGN(4) - VCOMPN*(DPENFA(4,7) + PRESSN)

C WEST

BIGFW(1) - DPENFA(2,9)

BIGFW(2) - DPENFA(2.9)*UCOMPW + PRESSW
BIGFW(3) - DPENFA(2,9)*VCOMPW
BIGFW(4) - UCOMPW*(DPENFA(4,9) + PRESSW)
BIGGW(1) = DPENFA(3.9)
BIGGW(2) - BIGFW(3)
BIGGW(3) - DPENFA(3,9)*VCOMPW + PRESSW
BIGGW(4) - VCOMPW*(DPENFA(4,9) + PRESSW)
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C OTHER FLUX TERMS ASSOCIATED WITH CHEMISTRY

DO 170 JS = NEQBAS+1, NEQNFL
BIGFS(JS) - DPENFA(JS,3)*UCOMPS

BIGGS(JS) = DPENFA(JS,3)*VCOMPS

BIGFE(JS) = DPENFA(JS,5)*UCOMPE

BIGGE(JS) = DPENFA(JS.5)*VCOMPE

BIGFN(JS) - DPENFA(JS.7)*UCOMPN

BIGGN(JS) - DPENFA(JS,7)*VCONPN

BIGFW(JS) = DPENFA(JS,9)*UCOMPW

BIGGW(JS) = DPENFA(JS,9)*VCOSfPW

170 CONTINUE

C

C
C

C

C

1

JACOBIAN TERMS

DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

DO 180 IQ = 1. NEQNFL

DPENJA(IQ) = 0.25*( DPENFA(IQ,3) + DPENFA(IQ,5) +
DPENFA(IQ,7) + DPENFA(IQ,9) )

180 CONTINUE

SET UP THE QUANTITIES NEEDED TO COMPUTE SOURCE TERMS AND

JACOBIANS

DO 190 IQ =

DELTA

IF (DELTJ
UTOP(Iq)

TOTAL(IQ:
190 CONTINUE

C

C

C
C

C

NEQBAS+1, NEQNFL

= 0.001*DPENJA(IQ)

A .EQ. 0.) DELTA = 0.001

= DPENJA(IQ) + DELTA

) = DELTA

NOW COMPUTE THE ANALYTIC JACOBIANS;

UCOMPR, VCOMPR, GAMAPR, YSPEPR ETC.
FOR THE CELL

INITIALIZE THE VALUES

AND GET THE SOURCE TERMS

CALL FRSOUR
C

DO 200 JS - NEQBAS+1, NEQNFL

BWCELL(JS) BIGWJA(JS)
200 CONTINUE

UCOMPC

VCOMPC

U2

V2

GM1

GM3

PAEBR

- UCOMPR
- VCOMPR

= UCOMPR*UCOMPR

- VCOMPR*VCOMPR

= GAMAPR - 1.

= GM1 - 2.

= (BEPSPR+PRESPR)/RHORPR

FUJACO(1,2) = 1.
GUJACO(1,3) - 1.

C

GUJACO(2,1) = -UCOMPC*VCOMPC

691

C
C



GUJACO(2,2)

GUJACO(2,3)

C
FUJACO(3,1)

FUJACO(3,2)
FUJACO(3,3)

C

FUJACO(2,1)

FUJACO(2,2)

FUJACO(2,3)

FUJACO(2,4)

GUJACO(3,1)

GUJACO(3,2)

GUJACO(3,3)

GUJACO(3,4)

FUJACO(4,1)

FUJACO(4,2)

FUJACO(4,3)

FUJACO(4,4)

GUJACO(4,1)

GUJACO(4,2)

GUJACO(4,3)

GUJACO(4,4)

= VCOMPC

= UCOMPC

= GUJACO(2,1)
= GUJACO(2,2)
= GUJACO(2,3)

= 0.5*(GM3*U2 + GM1*V2)
= -GM3*UCOMPR

= -GM1*VCOMPR

= GM1

= FUJACO(2,1)

= FUJACO(2,2)
= FUJACO(2,3)
= FUJACO(2,4)

- V2 + U2

- 2.*UCOMPC

- 2.*VCOMPC

= UCOMPR*(FUJACO(2,1) + U2 - PAEBR)-PAEBR - 2.*U2 + UCOMPR*FUJACO(2.2)
- UCOMPR*FUJACO(2,3)

- UCOMPR*(FUJACO(2,4) + 1.)

= VCOMPR*(FUJACO(2.1) + U2 - PAEBR)

- VCOMPR*(FUJACO(2,2) - 2.*UCOMPR)
= VCOMPR*FUJACO(2,3) + PAEBR
= VCOMPR*(FUJACO(2,4) + 1.)

C

DO 210 JS = NEQBAS + 1, NEQNFL

YS = DPENJA(JS)/DPENJA(1)

FUJACO(JS, ) = -UCOMPC*YS
FUJACO(JS,2 ) = YS

FUJACO(JS,JS) = UCOMPC

GUJACO(JS, ) = -VCOMPC*YS
GUJACO(JS,3 ) = YS

GUJACO(JS,JS) = VCOMPC

210 CONTINUE

F2BOT = DPENJA(2)*UCOMPC + PRESPR

DO 220 JS

WBOT(JS)
CONTINUE

= NEQBAS + 1, NEQNFL
= BIGWJA(JS)

COMPUTE THE NUMERICAL JACOBIANS BY TAKING FORWARD DIFFERNCES

DO 250 LS = NEQBAS+I, NEqNFL

COMPUTE VALUES AT TOP

UDUMMY = DPENJA(LS)

DPENJA(LS) = UTOP(LS)
CALL E2SOUR

F2TOP = BGF2JA
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DO 230 JS = NEqBAS + 1, NEQNFL
WTOP(JS) BIGWJA(JS)

230 - CONTINUE

C RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(LS) UDUMMY

C NOW TAKE FORWARD DIFFERENCES

FUJACO(2.LS) (F2TOP - F2BOT)/TOTAL(LS)

GUJACO(3,LS) FUJACO(2,LS)

FUJACO(4,LS) - FUJACO(2.LS)*UCOMPC

GUJACO(4.LS) - FUJACO(2.LS)*VCOMPC

DO 240 JS = NEQBAS + 1, NEQNFL
WUJACO(JS,LS) = (WTOP(JS) - WBOT(JS))/TOTAL(LS)

240 CONTINUE

250 CONTINUE

C

C FIRST ORDER CELL CHANGE DUCELL

C

C CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

DO 260 J 1, NEQNFL

DUCELL(J) = BWCELL(J)*CELLTI(ICELL) + DTDVOL*(

1 BIGFW(J)*(YNW-YSW) - BIGGW(J)*(XNW-XSW) +

1 BIGFN(J)*(YNE-YNW) - BIGGN(J)*(XNE-XNW) +

1 BIGFE(J)*(YSE-YNE) - BIGGE(J)*(XSE-XNE) +

1 BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )
260 CONTINUE

C JACOBIAN CHANGE BLOCK

C COMPUTE CHANGES DUE TO JACOBIANS

DO 280 J - 1, NEQNFL
DFCELL - O.

DGCELL - 0.

DWCELL 0.

DO 270 K - 1. NEQNFL

DFCELL - DFCELL + FUJACO(J.K)*DUCELL(K)

DGCELL DGCELL + GUJACO(J,K)*DUCELL(K)
DWCELL DWCELL + WUJACO(J,K)*DUCELL(K)

270 CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF - DFCELL

DFCELL - DTDVOL*( TEMPF*DYNSM2(ICELL)
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1 - DGCELL*DXNSM2(ICELL))

DGCELL - DTDVOL*(-TEPF*DYEWM2(ICELL)

1 - + DGCELL*DXEWM2(ICELL))

DWCELL - 0.5*CELLTI(ICELL)*DWCELL*IMPLTI

C 
C DIFFUSION TERMS

C ---

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW = SIGGE2(KSW)*DPENG2(J,KSW)
SIGGSE = SIGGE2(KSE)*DPENG2(J,KSE)

SIGGNE SIGGE2(KNE)*DPENG2(J,KNE)

SIGGNW SIGGE2(KNW)*DPENG2(J,KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL= 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)

SIGGSW = SIGCEL - SIGGSW

SIGGSE = SIGCEL - SIGGSE

SIGGNE = SIGCEL - SIGGNE

SIGGNW = SIGCEL - SIGGNW

C
SIGGSW - DSDIFF*SIGGSW

SIGGSE DSDIFF*SIGGSE

SIGGNE DSDIFF*SIGGNE

SIGGNW - DSDIFF*SIGGNW

CTEST

C SIGGMX O.1*ABS(DUCELL(J))

C SIGGMN - -SIGGMX

C SIGGSW = MIN(SIGGSW,SIGGMX)

C SIGGSE MIN(SIGGSE,SIGGMX)

C SIGGNE MIN(SIGGNE,SIGGMX)

C SIGGNW MIN(SIGGNW,SIGGMX)

C SIGGSW - MAX(SIGGSW,SIGGMN)

C SIGGSE = MAX(SIGGSE,SIGGMN)

C SIGGNE - MAX(SIGGNE,SIGGMN)

C SIGGNW - MAX(SIGGNW,SIGGMN)
CTEST

C COMPUTATION OF CHANGES

C FOCIT IS DUCELL; FIND SOCIT AND CORNER CHANGES

SOCITSW = - DFCELL - DGCELL + DWCELL
SOCITNW = - DFCELL + DGCELL + DWCELL
SOCITNE = + DFCELL + DGCELL + DWCELL
SOCITSE = + DFCELL - DGCELL + DWCELL

DELSW(J) - DF.25*( DUCELL(J) + SOCITSW + SIGGSW )
DELNW(J) = 0.25*( DUCELL(J) + SOCITNW + SIGGNW )

DELNE(J) - 0.25*( DUCELL(J) + SOCITNE + SIGGNE )
DELSE(J) = 0.25*( DUCELL(J) + SOCITSE + SIGGSE )DELSE(J) - 0.25*( DUCELL(J) + SOCITSE + SIGGSE)
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280 CONTINUE

C WANT TO DO IMPLICIT SOURCE TERMS ?

IF (IMPLTI .EQ. O) THEN

CALL PTIMP2 (KSW, ICELL, DELSW)

CALL PTIMP2 (KSE, ICELL, DELSE)

CALL PTIMP2 (KNW, ICELL, DELNW)

CALL PTIMP2 (KNE, ICELL, DELNE)

ENDIF

C --

C DISTRIBUTION OF CHANGES

C DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

DO 290 J = 1, NEQNFL

DELS - 0.5*( DELSE(J) + DELSW(J) )

DELN = 0.5*( DELNE(J) + DELNW(J) )
DELW - 0.5*( DELSW(J) + DELNW(J) )

DELE = 0.5*( DELSE(J) + DELNE(J) )

CHNGE2(J,KSW) = CHNGE2(J,KSW) + DELSW(J)
CHNGE2(J,KNW) = CHNGE2(J,KNW) + DELNW(J)

CHNGE2(J,KSE) = CHNGE2(J,KSE) + DELSE(J)

CHNGE2(J,KNE) = CHNGE2(J,KNE) + DELNE(J)

IF(KN .NE. 0) CHNGE2(J,KN) = CHNGE2(J,KN) + DELN
IF(KS .NE. O) CHNGE2(J,KS) = CHNGE2(J,KS) + DELS

IF(KW .NE. O) CHNGE2(J,KW) = CHNGE2(J,KW) + DELW

IF(KE .NE. O) CHNGE2(J,KE) = CHNGE2(J,KE) + DELE

290 CONTINUE

300 CONTINUE

C
C

C NOMENCLATURE

C

C

C

C BIGFN BIGGN

C
C KNW KN KNE

C + . .....+-+----------+
C 18 7 61
C B B I ICELL I B B

C I I I I

C G G KW + +1 5+ KE G G

C G F KC I F G

C WW EE
C 12 3 41
C +---+--------------------+
C KSW KS KSE

C
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C

RETURN

END

E3SOLF

SUBROUTINE E2SOLO (ITGL)

C E3SOLF

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

' [.INC]

'[.INC]
' [.INC]

'[.INC]

' [.INC]

[.INC]

' [.INC]
[.INC]

[C.INC]

' .INC]
' [. INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

E2COMN.INC/LIST'

FLCOMN.INC/LIST'

G2COMN.INC/LIST'

HEXCOD.inc

JACOMN.INC/LIST'

M2COMN.INC/LIST'

PRCOMN.INC/LIST'

TICOMN.INC/LIST'

COMMON/WUCOMN/ WUJACO

DIMENSION BIGFS (MEQNFL)

BIGFN (MEQNFL)

BIGGS (MEQNFL)

BIGGN (MEQNFL)

DELSW (MEQNFL)

DELNW (MEqNFL)

BWCELL(MEQNFL)

FUJACO(MEqNFL,MEQNFL)

WUJACO(MEQNFL,MEQNFL)

DIMENSION DVISC

DIMENSION UTOP

WTOP

(MEQNFL)

(MEQNFL)

(MEQNFL)

BIGFE (MEQNFL)

BIGFW (MEQNFL)
, BIGGE (MEQNFL)

BIGGW (MEQNFL)

, DELSE (MEQNFL)

* DELNE (MEqNFL)

DPENFA(MEQNFL,4)
GUJACO(MEQNFL,MEQNFL)

DUCELL(MEQNFL)

TOTAL (MEQNFL)
WBOT (MEQNFL)

DATA FUJACO /100*0./

DATA GUJACO /100*0./

DATA WUJACO /100*0./

DATA BWCELL /10*0./

C THIS SUBROUTINE STEPS THROUGH EACH CELL ON THE SPATIAL LEVEL ITGL

C AND APPLIES NI'S SCHEME, I.E., INTEGRATES OVER ALL CELLS ON ITGL.
C IT ALSO COMPUTES THE ANALYTICAL AS WELL NUMERICAL JACOBIANS,
C BECAUSE THEIR STORAGE IS COSTLY. THIS SUBROUTINE CAN BE USED
C FOR GRIDS WHICH HAVE NOT BEEN EMBEDDED YET.

C DPENFA : VALUES OF DEPENDENT VARIABLES AT THE FACES

C DPENG2 : VALUES OF DEPENDENT VARIABLES AT THE NODES
C DPENJA : VALUES OF DEPENDENT VARIABLES FOR COMPUTING JACOBIANS
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C i !!!!! THIS SUBROUTINE IS SPECIALIZED FOR MEQNFL=10

C

C IMPLTI - 0 MEANS DO IMPLICIT SOURCE TERMS
C 1 MEANS DO EXPLICIT SOURCE TERMS
C 2 MEANS DO EXPLICIT SOURCE TERMS WITH FROZEN CHEMISTRY

GOTO (310,10,610) IMPLTI+1
C RETURN

C USE EXPLICIT SOURCE TERMS
C STEP THROUGH EACH CELL AT THIS LEVEL

NOLSTVAL

DO 160 JCELL - ILVLTI(1.ITGL). ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL - ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)

KSE - ICELG2( 4,ICELL)

KNE - ICELG2( 6,ICELL)
KNW - ICELG2( 8.ICELL)

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE GEOMG2(1,KSE)
YSE - GEOMG2(2,KSE)

XNE - GEOMG2(1,KNE)
YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME

DTDVOL - CELLTI(ICELL)*RVOLM2(ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF - O.5*PERIM2(ICELL)*DTDVOL
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FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS = 0.5*( PRESG2(KSVI) + PRESG2(KSE) )
PRESSE 0.5*( PRESG2(KSE) + PRESG2(KNE) )

PRESSN 0.5*( PRESG2(KNW) + PRESG2(KNE) )
PRESSW - 0.6*( PRESG2(KSW) + PRESG2(KNW) )

NOLSTVAL

DO 20 I = 1. NEQNFL
DPENFA(IQ.1) = 0.5*( DPENG2(IQ,KSW)

DPENFA(IQ,2) = 0.5*( DPENG2(IQ,KSE)

DPENFA(IQ,3) = 0.5*( DPENG2(IQ,.KNE)
DPENFA(IQ,4) 0.5*( DPENG2(IQ,KNW)

CONTINUE

+ DPENG2(IQ,KSE) )
+ DPENG2(IQ,KNE) )
+ DPENG2(IQ,KNW) )
+ DPENG2(IQ,KSW) )

BIGFS(1) =

BIGFS(2) =
BIGFS(3) 

BIGFS(4) 

DPENFA(2,1)

DPENFA(3,1)

DPENFA(2,2)

DPENFA(3,2)

DPENFA(2.3)

DPENFA(3,3)

DPENFA(2.4)

DPENFA(3,4)

/DPENFA(1,1)

/DPENFA(1,1)

/DPENFA(1,2)

/DPENFA(1,.2)

/DPENFA(1,3)

/DPENFA(1,3)

/DPENFA(1,.4)

/DPENFA(1,4)

DPENFA(2, 1)
DPENFA(2,1)*UCOIPS + PRESSS

DPENFA(2,1)*VCONIPS

UCOMPS*(DPENFA(4.1) + PRESSS)

- DPENFA(3,1)
= BIGFS(3)

= DPENFA(3,1)*VCOMPS + PRESSS
- VCOMPS*(DPENFA(4,1) + PRESSS)

= DPENFA(2,2)

- DPENFA(2,2)*UCOMPE + PRESSE

- DPENFA(2,2)*VCOMPE
- UCOMPE*(DPENFA(4,2) + PRESSE)
= DPENFA(3,2)

- BIGFE(3)
- DPENFA(3.2)*VCOMPE + PRESSE

= VCOMPE*(DPENFA(4,2) + PRESSE)

NORTH

BIGFN(1) = DPENFA(2,3)
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20

UCOMPS 

VCOMPS =
UCOMPE =

VCOMPE =
UCOMPN =

VCOMPN -

UCOMPW =

VCOMPW 

C

C

C

C

FLUX TERMS

SOUTH

BIGGS(1)

BIGGS(2)

BIGGS(3)

BIGGS(4)

EAST

BIGFE(1)

BIGFE(2)

BIGFE(3)

BIGFE(4)

BIGGE(1)

BIGGE(2)
BIGGE(3)

BIGGE(4)

C

C



BIGFN(2) - DPENFA(2,3)*UCOMPN + PRESSN
BIGFN(3) - DPENFA(2.3)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(43) + PRESSN)
BIGGN(1) - DPENFA(3,3)

BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3,3)*VCOMPN + PRESSN
BIGGN(4) - VCOMPN*(DPENFA(4.3) + PRESSN)

C WEST

BIGFW(1) - DPENFA(2.4)

BIGFW(2) - DPENFA(2,4)*UCOMPW + PRESSW

BIGFW(3) - DPENFA(2,4)*VCOMPW

BIGFW(4) = UCOMPW*(DPENFA(4.4) + PRESSW)

BIGGW(1) - DPENFA(3,4)

BIGGW(2) - BIGFW(3)

BIGGW(3) - DPENFA(3,4)*VCOMPW + PRESSW

BIGGW(4) - VCOMPW*(DPENFA(4.4) + PRESSW)

C OTHER FLUX TERMS ASSOCIATED WITH CHEMISTRY

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 30 JS - NEQBAS+i, NEQNFL

BIGFS(JS) - DPENFA(JS,1)*UCOMPS

BIGGS(JS) - DPENFA(JS,I)*VCOMPS

BIGFE(JS) - DPENFA(JS,2)*UCOMPE

BIGGE(JS) - DPENFA(JS,2)*VCOMPE

BIGFN(JS) - DPENFA(JS,3)*UCOMPN

BIGGN(JS) - DPENFA(JS.3)*VCOMPN

BIGFW(JS) - DPENFA(JS,4)*UCOMPW

BIGGW(JS) - DPENFA(JS,4)*VCOMPW

30 CONTINUE

C JACOBIAN TERMS

C --------------
C DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

CVD* NOLSTVAL

DO 40 IQ - 1. NEQNFL

DPENJA(IQ) - 0.25*( DPENFA(IQ,1) + DPENFA(IQ,2) +

1 DPENFA(IQ,3) + DPENFA(IQ,4) )

40 CONTINUE

C SET UP THE QUANTITIES NEEDED TO COMPUTE SOURCE TERMS AND
C JACOBIANS

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 50 IQ NEQBAS+1, NEQNFL

DELTA O0.00i*DPENJA(IQ)

IF (DELTA .EQ. 0.) DELTA - 0.001

UTOP(IQ) - DPENJA(IQ) + DELTA

TOTAL(IQ) - DELTA
60 CONTINUE
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NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES

UGOMPR, VCOMPR, GAMAPR, YSPEPR ETC. AND GET THE SOURCE TERMS
FOR THE CELL

SONDPR - CELLTI(ICELL)

CALL FRSOUR

NOLSTVAL

NOVECTOR

DO 60 JS NEQBAS+1, NEQNFL

BWCELL(JS) - BIGWJA(JS)
CONTINUE

UCOMPC

VCOMPC

U2
V2

GMI

GM3

PAEBR

- UCOMPR
- VCOMPR
- UCOMPR*UCOMPR

- VCOMPR*VCOMPR

- GAMAPR - 1.

- GM1 - 2.

= (BEPSPR+PRESPR)/RHORPR

FUJACO(1,2) = 1.
GUJACO(1.3) 1.

C

GUJACO(2,1)

GUJACO(2,2)

GUJACO(2,3)

FUJACO(3.1)

FUJACO(3,2)

FUJACO(3,3)

FUJACO(2,1)

FUJACO(2.2)

FUJACO(2,3)

FUJACO(2.4)

GUJACO(3.1)

GUJACO(3,.2)

GUJACO(3,3)

GUJACO(3,4)

FUJACO(4,1)
FUJACO(4,2)

FUJACO(4.3)

FUJACO(4.4)

GUJACO(4,1)

GUJACO (4,2)
GUJACO(4,3)

GUJACO(4,4)

- -UCOMPC*VCOMPC
= VCOMPC
- UCOMPC

= GUJACO(2,1)
- GUJACO(2,2)

- GUJACO(2,3)

- 0.5*(GM3*U2 + GM1*V2)
- -GM3*UCOMPR

- -GMI*VCOMPR

- GMI

- FUJACO(2,1)

= FUJACO(2.2)
- FUJACO(2,3)

= FUJACO(2,4)

- V2 + U2
- 2.*UCOMPC

- 2.*VCOMPC

- UCOMPR*(FUJACO(2,1) + U2 - PAEBR)
- PAEBR - 2.*U2 + UCOMPR*FUJACO(2,2)
= UCOMPR*FUJACO(2,3)
= UCOMPR*(FUJACO(2,4) + 1.)

- VCOMPR*(FUJACO(2,1) + U2 - PAEBR)

- VCOMPR*(FUJACO(2,2) - 2.*UCOMPR)
- VCOMPR*FUJACO(2.3) + PAEBR
- VCOMPR*(FUJACO(2.4) + 1.)
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DO 70 JS = NEQBAS + 1, NEQNFL

- DPENJA(JS)/DPENJA(1)

FUJACO(JS,1 )
FUJACO(JS,2 )
FUJACO(JS,JS)

GUJACO(JS,1 )
GUJACO(JS,3 )
GUJACO(JS.JS)

= -UCOMPC*YSP
= YSP

= UCOMPC

= -VCOMPC*YSP
= YSP
= VCOMPC

CONTINUE

F2BOT = DPENJA(2)*UCOMPC + PRESPR

NOLSTVAL

NOVECTOR

DO 80 JS = NEQBAS + 1, NEQNFL

WBOT(JS) = BIGWJA(JS)
CONTINUE

COMPUTE THE NUMERICAL JACOBIANS BY TAKING FORWARD DIFFERNCES

NOLSTVAL

NOVECTOR

DO 110 LS = NEQBAS+1, NEqNFL

COMPUTE VALUES AT TOP

UDUMMY = DPENJA(LS)
DPENJA(LS) = UTOP(LS)
CALL E2SOUR

F2TOP = BGF2JA

NOLSTVAL

NOVECTOR

DO 90 JS = NEQBAS + 1,

WTOP(JS) BIGWJA(JS)

CONTINUE

NEQNFL

RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(LS) = UDUMMY

NOW TAKE FORWARD DIFFERENCES

FUJACO(2,LS) (F2TOP - F2BOT)/TOTAL(LS)

GUJACO(3,LS) FUJACO(2,LS)
FUJACO(4.LS) FUJACO(2,LS)*UCOMPC

GUJACO(4,LS) = FUJACO(2,LS)*VCOMPC

NOLSTVAL

NOVECTOR

DO 100 JS = NEQBAS + 1, NEqNFL

WUJACO(JS,LS) (WTOP(JS) - WBOT(JS))/TOTAL(LS)
CONTINUE
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110 CONTINUE

C ------ _-_- _ _ _-

C FIRST ORDER CELL CHANGE DUCELL
C -------------- _--_------------

C CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

CVD$ NOLSTVAL

DO 120 J - ,1 NEQNFL

DUCELL(J) BWCELL(J)*CELLTI(ICELL) + DTDVOL*(

1 BIGFW(J)*(YNW-YSW) - BIGGW(J)*(XNW-XSW) +

I BIGFN(J)*(YNE-YNW) - BIGGN(J)*(XNE-XNW) +
1 BIGFE(J)*(YSE-YNE) - BIGGE(J)*(XSE-XNE) +

1 BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )
120 CONTINUE

C COMPUTE THE DISTANCES FOR THE CELL UNDER CONSIDERATION

XSO = 0.5*(XSW+XSE)
XEO = 0.5*(XSE+XNE)

XNO = 0.5*(XNE+XNW)
XWO = 0.5*(XNW+XSW)

YSO - 0.5*(YSW+YSE)

YEO - 0.5*(YSE+YNE)

YNO - 0.5*(YNE+YNW)

YWO - O.5*(YNW+YSW)

C COMPUTE THE VELOCITY COMPONENTS AT SPECIAL POINTERS FOR

C VISCOUS CALCULATIONS

USW - DPENG2(2,KSW)/DPENG2(1.KSW)

USE - DPENG2(2.KSE)/DPENG2(1.KSE)

UNE = DPENG2(2.KNE)/DPENG2(1,KNE)

UNW = DPENG2(2.KNW)/DPENG2(1,KNW)

USO - 0.5*(USW+USE)

UEO - 0.5*(USE+UNE)
UNO - 0.6*(UNE+UNW)

UWO - 0.5*(UNW+USW)

UCO - 0.25*(USW+USE.UNE+UNE+UNW)

USt - 0.6*(USW+USO)

US2 - 0.5*(USO+USE)

UE1 - O.5*(USE+UEO)

UE2 - O.5*(UEO+UNE)
UN1 - 0.5*(UNE+UNO)

UN2 - 0.56*(UNO+UNW)

WI O 0.5*(UNW+UWO)

UW2 = 0.5*(UWO+USW)

VSW = DPENG2(3,KSW)/DPENG2(1.KSW)
VSE - DPENG2(3,.KSE)/DPENG2(1.KSE)

VNE = DPENG2(3,.KNE)/DPENG2(1.KNE)

VNW = DPENG2(3.KNW)/DPENG2(1.KNW)

VSO = 0.56*(VSW+VSE)

VEO = 0.6*(VSE+VNE)
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VNO = 0.5*(VNE+VNW)
VWO - 0.5*(VNW+VSW)

VCO - 0.25*(VSW+VSE+VNE+VNW)

VS1 - O.5*(VSW+VSO)

VS2 - O.6*(VSO+VSE)

VE - 0.56*(VSE+VEO)

VE2 - O.5*(VEO+VNE)

VNI - O.6*(VNE+VNO)
VN2 - O.5*(VNO+VNW)

VW1 - 0.5*(VNW+VWO)

VW2 0. 6* (VWO+VSW)

THE TEMPERATURE

- TEMPG2(KSW)

= TEMPG2(KSE)

- TEMPG2(KNE)
- TEMPG2(KNW)

FOR VISCOUS CALCULATIONS

TSO = 0.5*(TSW+TSE)

TEO 0.5*(TSE+TNE)

TNO a 0.5*(TNE+TNW)

TWO - 0.6*(TNW+TSW)

TCO - 0.25*(TSW+TSE+TNE+TNW)

TS1 a O.5*(TSW+TSO)

TS2 = 0.5*(TSO+TSE)

TEI = 0.5*(TSE+TEO)

TE2 - 0.6*(TEO+TNE)

TN1 - 0.5*(TNE+TNO)

TN2 = O.S*(TNO+TNW)

TWi = 0.6*(TNW+TWO)

TW2 = O.5*(TWO+TSW)

COMPUTE THE VELOCITY GRADIENTS FOR VISCOUS CALCULATIONS

DUDXW - 2.*RVOLM2(ICELL)*
1

I

I

I

-
DUDXN = 2.*RVOLM2(ICELL)*(

DUDXE = 2.*RVOLM2(ICELL)*(

DUDXS - 2.*RVOLM2(ICELL)*(
+

UWO*(YSW-YNW) +

UCO*(YNO-YSO) +

UWI*(YWO-YNW) +

UE2*(YNE-YEO) +

UCO*(YSO-YNO) +

UEO*(YNE-YSE) +

UW2*(YSW-YWO) +
UEI*(YEO-YSE) +

UN2*(YNW-YNO)

USl*(YSO-YSW) )

UNO*(YNW-YNE)

UCO*(YEO-YWO) )
UN * (YNO-YNE)

US2*(YSE-YSO) )
UCO*(YWO-YEO)
USO*(YSE-YSW) )

DUDYW =-2.*RVOLM2(ICELL)
1

1

1

DUDYN a-2.*RVOLM2(ICELL)*

DUDYE --2.*RVOLM2(ICELL)

DUDYS --2.*RVOLM2(ICELL)
1

( UWO* (XSW-XNW)
+ UCO*(XNO-XSO)

*( UW1*(XWO-XNW)
+ UE2*(XNE-XEO)

*( UCO*(XSO-XNO)

+ UEO* (XNE-XSE)
*( UW2*(XSW-XWO)

+ UE1*(XEO-XSE)

+ UN2*(XNW-XNO)

+ USl*(XSO-XSW) )
+ UNO*(XNW-XNE)

+ UCO*(XEO-XWO) )
+ UN1*(XNO-XNE)

+ US2*(XSE-XSO) )
+ UCO*(XWO-XEO)

+ USO*(XSE-XSW) )

DVDXW - 2.*RVOLM2(ICELL)*( VWO*(YSW-YNW) +

+ VCO*(YNO-YSO) +
DVDXN - 2.*RVOLM2(ICELL)*( VWI*(YWO-YNW) +

VN2*(YNW-YNO)

VSl*(YSO-YSW) )
VNO*(YNW-YNE)
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1

1
DVDXE - 2.*RVOLM2(ICELL)

DVDXS = 2.*RVOLM2(ICELL)-

1

+ VE2*(YNE-YEO)

*( VCO*(YSO-YNO)

+ VEO*(YNE-YSE)

*( VW2*(YSW-YWO)

+ VEI*(YEO-YSE)

+ VCO*(YEO-YWO) )
+ VNl*(YNO-YNE)
+ VS2*(YSE-YSO) )
+ VCO*(YWO-YEO)

+ VSO*(YSE-YSW) )

DVDYW --2.*RVOLM2(ICELL)*( VWO*(XSW-XNW) +

+ VCO*(XNO-XSO) +
DVDYN --2.*RVOLM2(ICELL)*( Vgl*(XWO-XNW) +

+ VE2*(XNE-XEO) +
DVDYE --2.*RVOLM2(ICELL)*( VCO*(XSO-XNO) +

+ VEO*(XNE-XSE) +
DVDYS =-2.*RVOLM2(ICELL)*( VW2*(XSW-XWO) +

+ VE1*(XEO-XSE) +

VN2*(XNW-XNO)

VSi*(XSO-XSW) )

VNO*(XNW-XNE)

vCO*(XEO-XWO) )

VNl*(XNO-XNE)

VS2*(XSE-XSO) )
VCO*(XWO-XEO)

VSO*(XSE-XSW) )

COMPUTE THE TEMPERATURE GRADIENTS FOR VISCOUS CALCULATIONS

DTDXW - 2.*RVOLM2(ICELL)*

DTDXN - 2.*RVOLM2(ICELL)

DTDXE - 2.*RVOLM2(ICELL)*

DTDXS - 2.*RVOLM2(ICELL)

1

1

1

1

( TWO*(YSW-YNW)
+ TCO*(YNO-YSO)

*( TW* (YWO-YNW)
+ TE2*(YNE-YEO)

*( TCO*(YSO-YNO)

+ TEO*(YNE-YSE)

*( TW2*(YSW-YWO)

+ TEl*(YEO-YSE)

+ TN2*(YNW-YNO)
+ TSl*(YSO-YSW) )
+ TNO*(YNW-YNE)
+ TCO*(YEO-YWO) )
+ TNI*(YNO-YNE)

+ TS2*(YSE-YSO) )
+ TCO*(YWO-YEO)

+ TSO*(YSE-YSW) )

DTDYW --2.*RVOLM2(ICELL)*( TWO*(XSW-XNW) +

+ TCO*(XNO-XSO) +
DTDYN --2.*RVOLM2(ICELL)*( TWI*(XWO-XNW) +

+ TE2*(XNE-XEO) +
DTDYE --2.*RVOLM2(ICELL)*( TCO*(XSO-XNO) +

+ TEO*(XNE-XSE) +
DTDYS --2.*RVOLM2(ICELL)*( TW2*(XSW-XWO) +

+ TE1*(XEO-XSE) +

COMPUTE THE VISOCITY COEFFICIENT AS GIVEN BY

FOR VISCOUS CALCULATIONS

AMSW - TEMPG2(KSW)**OMEGE2

AMSE - TEMPG2(KSE)**OMEGE2

AMNE - TEMPG2(KNE)**OMEGE2

AMNW - TEMPG2(KNW)**OMEGE2

TN2*(XNW-XNO)

TSl*(XSO-XSW) )

TNO*(XNW-XNE)

TCO*(XEO-XWO) )

TNI*(XNO-XNE)

TS2*(XSE-XSO) )

TCO*(XWO-XEO)
TSO*(XSE-XSW) )

THE POWER LAW

AMSO
AMEO
AMNO
AMWO

- O.5*(AMSW+AMSE)

- 0.6*(AMSE+AMNE)

- O.* (AMNE+AMNW)
- O.6*(AMNW+AMSW)

COMPUTE THE THERMAL CONDUCTIVITY AS GIVEN BY THE POWER LAW
TIMES THE GAMMA FACTOR FOR VISCOUS CALCULATIONS
CNSO - AMSO*GFACE2
CNEO - AMEO*GFACE2
CNNO - AMNO*GFACE2

CNWO = AMWO*GFACE2

COMPUTE THE VISOUS TERMS FOR MOMENTUM EQUATIONS

AVISXX - AMWO*(2. *DUDXW-DVDYW)* (YNW-YSW) +
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1 AMNO*(2.*DUDXN-DVDYN)*(YNE-YNW) +

1 AMEO*(2.*DUDXE-DVDYE)*(YSE-YNE) +

1 - AMSO*(2.*DUDXS-DVDYS)*(YSW-YSE)

AVISXY = AMWO*(DUDYW+DVDXW)*(XNW-XSW) +

1 AMNO*(DUDYN+DVDXN)*(XNE-XNW) +

1 AMEO*(DUDYE+DVDXE)*(XSE-XNE) +

1 AMSO*(DUDYS+DVDXS)*(XSW-XSE)

AVISYX AMWO*(DUDYW+DVDXW)*(YNW-YSW) +

1 AMNO*(DUDYN+DVDXN)*(YNE-YNW) +

1 AMEO*(DUDYE+DVDXE)*(YSE-YNE) +

1 AMSO*(DUDYS+DVDXS)*(YSW-YSE)

AVISYY =AMWO*(2.*DVDYW-DUDXW)*(XNW-XSW) +
1 AMNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +

1 AMEO*(2.*DVDYE-DUDXE)*(XSE-XNE) +

1 AMSO*(2.*DVDYS-DUDXS)*(XSW-XSE)

C COMPUTE THE VISOUS TERMS FOR ENERGY EQUATIONS

AENEXi = AMWO*UWO*(2.*DUDXW-DVDYW)*(YNW-YSW) +
1 AMNO*UNO*(2.*DUDXN-DVDYN)*(YNE-YNW) +

1 AMEO*UEO*(2.*DUDXE-DVDYE)*(YSE-YNE) +

1 AMSO*USO*(2.*DUDXS-DVDYS)*(YSW-YSE)

AENEX2 - AMWO*VWO* (DUDYW+DVDXW)* (YNW-YSW) +

1 AMNO*VNO*(DUDYN+DVDXN)*(YNE-YNW) +

1 AMEO*VEO*(DUDYE+DVDXE)*(YSE-YNE) +

1 AMSO*VSO*(DUDYS+DVDXS)*(YSW-YSE)

AENEX3 - RPRNE2*( CNWO*DTDXW*(YNW-YSW) +

1 CNNO*DTDXN*(YNE-YNW) +

1 CNEO*DTDXE*(YSE-YNE) +

1 CNSO*DTDXS*(YSW-YSE) )

AENEY1 AMWO*UWO* (DUDYW+DVDXW)* (XNW-XSW) +

1 AMNO*UNO*(DUDYN+DVDXN)*(XNE-XNW) +

1 AMEO*UEO*(DUDYE+DVDXE)*(XSE-XNE) +
1 AMSO*USO*(DUDYS+DVDXS)*(XSW-XSE)

AENEY2 - AMWO*VWO*(2. *DVDYW-DUDXW) * (XNW-XSW) +

1 AMNO*VNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +

1 AMEO*VEO*(2.*DVDYE-DUDXE)*(XSE-XNE) +

1 AMSO*VSO*(2.*DVDYS-DUDXS)*(XSW-XSE)

AENEY3 = RPRNE2*( CNWO*DTDYW*(XNW-XSW) +

1 CNNO*DTDYN*(XNE-XNW) +

1 CNEO*DTDYE*(XSE-XNE) +

1 CNSO*DTDYS*(XSW-XSE) )

TFACTOR -RREYE2*DTDVOL

DVISC(1) = 0.
DVISC(2) TFACTOR*(2./3.*AVISXX - AVISXY)

DVISC(3) - TFACTOR*(AVISYX - 2./3.*AVISYY)

DVISC(4) TFACTOR*((2./3.*AENEXI+AENEX2+AENEX3) -

1 (2./3.*AENEY2+AENEY1+AENEY3) )
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COMPUTE THE VISCOUS TERMS PERTAINING TO SPECIES EQUATIONS

DO 125 J - NEQBAS + 1, NEQNFL
AYSW - DPENG2(J,KSW)/DPENG2(1,KSW)

AYSE - DPENG2(J,KSE)/DPENG2(1,KSE)

AYNE - DPENG2(J,KNE)/DPENG2(1,KNE)

AYNW = DPENG2(J,KNW)/DPENG2(1,KNW)

AYSO - 0.5*(AYSW+AYSE)

AYEO = 0.5*(AYSE+AYNE)

AYNO - 0.5*(AYNE+AYNW)

AYWO - 0.6*(AYNW+AYSW)

AYS1 - 0.5*(AYSW+AYSO)

AYS2 = 0.5*(AYSO+AYSE)

AYE1 = 0.5*(AYSE+AYEO)
AYE2 = O.5*(AYEO+AYNE)
AYN1 = O.6*(AYNE+AYNO)

AYN2 = O.5*(AYNO+AYNW)

AYW1 - O.5*(AYNW+AYWO)

AYW2 = O.5*(AYWO+AYSW)

DADXW - 2.*RVOLM2(ICELL)*(AYWO*(YSW-YNW)

1 +AYN2*(YNW-YNO) +AYCO*(YNO-YSO) +AYSI*(YSO-YSW))

DADXN 2.*RVOLM2(ICELL)*(AYWi*(YWO-YNW)

1 +AYNO*(YNW-YNE) +AYE2*(YNE-YEO) +AYCO*(YEO-YWO))

DADXE = 2.*RVOLM2(ICELL)*(AYCO*(YSO-YNO)

1 +AYNI*(YNO-YNE) +AYEO*(YNE-YSE) +AYS2*(YSE-YSO))

DADXS 2.*RVOLM2(ICELL)*(AYW2*(YSW-YWO)

1 +AYCO*(YWO-YEO) +AYE1*(YEO-YSE) +AYSO*(YSE-YSW))

DADYW =-2.*RVOLM2(ICELL)*(AYWO*(XSW-XNW)

1 +AYN2*(XNW-XNO) +AYCO*(XNO-XSO) +AYSI*(XSO-XSW))

DADYN =-2.*RVOLM2(ICELL)*(AYWI*(XWO-XNW)

1 +AYNO*(XNW-XNE) AYE2*(XNE-XEO) +AYCO*(XEO-XWO))

DADYE =-2.*RVOLM2(ICELL)*(AYCO*(XSO-XNO)

1 +AYN1*(XNO-XNE) +AYEO*(XNE-XSE) +AYS2*(XSE-XSO))

DADYS -2.*RVOLM2(ICELL)*(AYW2*(XSW-XWO)

1 +AYCO*(XWO-XEO) +AYE1*(XEO-XSE) +AYSO*(XSE-XSW))

ADIFX = AMWO*DADXW*(YNW-YSW) + AMNO*DADXN*(YNE-YNW) +

1 ~AMEO*DADXE*(YSE-YNE) + AMSO*DADXS*(YSW-YSE)

ADIFY - AMWO*DADYW*(XNW-XSW) + AMNO*DADYN*(XNE-XNW) +
1 AMEO*DADYE*(XSE-XNE) + AMSO*DADYS*(XSW-XSE)

DVISC(J) TFACTOR*RSCHE2*(ADIFX - ADIFY)

125 CONTINUE

C ----JACOBIAN CHANE BLOCK

C COMPUTE CHANGES DUE TO JACOBIANS

CVD$ NOLSTVAL

DO 140 J 1, NEQNFL
DFCELL - 0.
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DGCELL - O.
DWCELL - 0.

DO 130 K 1, NEQNFL

DFCELL DFCELL + FUJACO(JK)*DUCELL(K)

DGCELL - DGCELL + GUJACO(J,K)*DUCELL(K)
DWCELL - DWCELL + WUJACO(J,K)*DUCELL(K)

130 CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF - DFCELL

DFCELL = DTDVOL*( TEMPF*DYNSM2(ICELL)

1 -DGCELL*DXNSM2(ICELL))

DGCELL - DTDVOL* (-TEMPF*DYEWM2 (ICELL)

1 +DGCELL*DXEWM2(ICELL))

DWCELL - O.S*CELLTI(ICELL)*DWCELL

C DIFFUSION TERMS

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW SIGGE2(KSW)*DPENG2(J.KSW)

SIGGSE - SIGGE2(KSE)*DPENG2(J, KSE)

SIGGNE - SIGGE2(KNE)*DPENG2(J,KNE)

SIGGNW - SIGGE2(KNW)*DPENG2(J, KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL- 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)
SIGGSW - SIGCEL - SIGGSW

SIGGSE - SIGCEL - SIGGSE

SIGGNE - SIGCEL - SIGGNE

SIGGNW - SIGCEL - SIGGNW

C
SIGGSW - DSDIFF*SIGGSW

SIGGSE - DSDIFF*SIGGSE

SIGGNE - DSDIFF*SIGGNE

SIGGNW - DSDIFF*SIGGNW

C ----COMPUTATON OF CHANGES

C FOCIT IS DUCELL; FIND SOCIT AND CORNER CHANGES

SOCITSW m -DF CELL -DGCELL + DWCELL
SOCITNW - - DFCELL DGCELL + DWCELL

SOCITNE - + DFCELL + DGCELL + DWCELL
SOCITSE - + DFCELL - DGCELL + DWCELL

DELSW(J) - 0.+ *(DUCELL(J) +DVISC(J) +SOCITSW +SIGGSW)

DELNW(J) - 0.25*(DUCELL(J) +DVISC(J) +SOCITNW +SIGGNW)

DELNE(J) = 0.25*(DUCELL(J) +DVISC(J) +SOCITNE +SIGGNE)DELNE(J = 0.26*(DUCELL(J) +DVISC(J) +SOCITNE +SIGGNE)
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DELSE(J) - 0.25*(DUCELL(J) +DVISC(J) +SOCITSE +SIGGSE)

140 CONTINUE

DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

CVD$ NOLSTVAL

DO 150 J - 1, NEQNFL

CHNGE2(JKSW) - CHNGE2(J,KSW)
CHNGE2(J,KNW) CHNGE2(J,KNW)

CHNGE2(J,KSE) CHNGE2(J,KSE)

CHNGE2(J,KNE) - CHNGE2(JKNE)
150 CONTINUE

+ DELSW(J)

+ DELNW(J)
+ DELSE(J)
+ DELNE(J)

CONTINUE

RETURN

USE IMPLICIT SOURCE TERMS

STEP THROUGH EACH CELL AT THIS LEVEL

NOLSTVAL

DO 560 JCELL - ILVLTI(1,ITGL), ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)

KSE ICELG2( 4,ICELL)

KNE - ICELG2( 6,ICELL)

KNW - ICELG2( 8,ICELL)

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1.KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1.KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)
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XNW - GEOMG2(1,KNW)

YN - GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME

DTDVOL - CELLTI(ICELL)*RVOLM2(ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF - O.5*PERIM2(ICELL)*DTDVOL

FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS - 0.5*( PRESG2(KSW) + PRESG2(KSE) )
PRESSE - 0.5*( PRESG2(KSE) + PRESG2(KNE) )
PRESSN - 0.5*( PRESG2(KNW) + PRESG2(KNE) )
PRESSW - 0.5*( PRESG2(KSW) + PRESG2(KNW) )

NOLSTVAL

DO 320 IQ - 1, NEQNFL
DPENFA(IQ.1) - 0.6*(

DPENFA(IQ,2) 0.6*(
DPENFA(IQ,3) 0.6*(

DPENFA(IQ.4) - 0.5*(

CONTINUE

DPENG2(IQ,KSW)

DPENG2(IQ,KSE)

DPENG2(IQ,KNE)

DPENG2(IQKNW)

+ DPENG2(IQ,KSE) )
+ DPENG2(IQ,KNE) )
+ DPENG2(Iq,KNW) )
+ DPENG2(IQ,KSW) )

UCOMPS -

VCOMPS -

UCOMPE -
VCOMPE -
UCOMPN -
VCOMPN -
UCOMPW 
VCOMPW -

FLUX TER1

SOUTH

BIGFS(1)
BIGFS(2)

BIGFS(3)

BIGFS(4)

BIGGS(1)

BIGGS(2)

BIGGS(3)

BIGGS(4)

DPENFA(2, 1)/DPENFA(L.1)

DPENFA(3,1)/DPENFA(ll)

DPENFA(2,2)/DPENFA(1,2)

DPENFA(3,2)/DPENFA(1,2)

DPENFA(2, 3)/DPENFA(1,3)

DPENFA(3,3)/DPENFA(1,3)

DPENFA(2,4)/DPENFA(1,4)

DPENFA(3,4)/DPENFA(1,4)

NS

- DPENFA(2.1)

- DPENFA(2,1)*UCOMPS + PRESSS

- DPENFA(2.1)*VCOMPS

- UCOMPS*(DPENFA(4,1) + PRESSS)

- DPENFA(3,1)

- BIGFS(3)

- DPENFA(3,1)*VCOMPS + PRESSS

- VCOMPS*(DPENFA(4,1) + PRESSS)

BIGFE(1) - DPENFA(2,2)
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BIGFE(2) - DPENFA(2,2)*UCOMPE + PRESSE
BIGFE(3) - DPENFA(2,2)*VCOMPE

BfGFE(4) - UCOMPE*(DPENFA(4,2) + PRESSE)
BIGGE(1) - DPENFA(3.2)

BIGGE(2) - BIGFE(3)

BIGGE(3) - DPENFA(3.2)*VCOMPE + PRESSE
BIGGE(4) = VCOMPE*(DPENFA(4,2) + PRESSE)

C NORTH

BIGFN(1) - DPENFA(2,.3)

BIGFN(2) - DPENFA(2,3)*UCOMPN + PRESSN
BIGFN(3) - DPENFA(2,3)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(4,3) + PRESSN)
BIGGN(I) - DPENFA(3.3)
BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3,3)*VCOMPN + PRESSN
BIGGN(4) - VCOMPN*(DPENFA(4,3) + PRESSN)

C WEST

BIGFW(1) - DPENFA(2,4)

BIGFW(2) - DPENFA(2,4)*UCOMPW + PRESSW
BIGFW(3) - DPENFA(2.4)*VCOMPW

BIGFW(4) - UCOMPW*(DPENFA(4,4) + PRESSW)
BIGGW(1) - DPENFA(3,4)

BIGGW(2) - BIGFW(3)
BIGGW(3) - DPENFA(3,4)*VCOMPW + PRESSW

BIGGW(4) - VCOMPW*(DPENFA(4,4) + PRESSW)

C OTHER FLUX TERMS ASSOCIATED WITH CHEMISTRY

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 330 JS - NEQBAS+1, NEQNFL

BIGFS(JS) - DPENFA(JS,I)*UCOMPS

BIGGS(JS) = DPENFA(JS,I)*VCOMPS
BIGFE(JS) - DPENFA(JS,2)*UCOMPE

BIGGE(JS) - DPENFA(JS,2)*VCOMPE

BIGFN(JS) - DPENFA(JS,3)*UCOMPN

BIGGN(JS) - DPENFA(JS,3)*VCOMPN

BIGFW(JS) - DPENFA(JS,4)*UCOMPW

BIGGW(JS) - DPENFA(JS,4)*VCOMPW

330 CONTINUE

C JACOBIAN TERMS

C --- __________

C DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

CVD* NOLSTVAL
DO 340 IQ - 1. NEQNFL

DPENJA(IQ) 0.26*( DPENFA(IQ.,) + DPENFA(IQ.2) +
1 DPENFA(IQ,3) + DPENFA(IQ,4) )

340 CONTINUE
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SET UP THE QUANTITIES NEEDED TO COMPUTE SOURCE TERMS AND
JACOBIANS

NOLSTVAL

NOVECTOR

DO 350 IQ - NEQBAS+I, NEQNFL

DELTA - 0.001*DPENJA(IQ)

IF (DELTA .EQ. 0.) DELTA 0.001
UTOP(IQ) - DPENJA(IQ) + DELTA
TOTAL(IQ) - DELTA

CONTINUE

NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES
UCOMPR, VCOMPR. GAMAPR, YSPEPR ETC. AND GET THE SOURCE TERMS
FOR THE CELL

SONDPR - CELLTI(ICELL)

CALL FRSOUR

NOLSTVAL

NOVECTOR

DO 360 JS - NEQBAS+I, NEQNFL

BWCELL(JS) = BIGWJA(JS)

CONTINUE

UCOMPC = UCOMPR
VCOMPC - VCOMPR

U2 - UCOMPR*UCOMPR

V2 - VCOMPR*VCOMPR

GM1 - GAMAPR - 1.

GM3 - GM1 - 2.

PAEBR = (BEPSPR+PRESPR)/RHORPR

FUJACO(1,2) - 1.

GUJACO(1,3) - 1.
C

GUJACO(2,1)

GUJACO(2,2)
GUJACO(2,3)

FUJACO (3,1)
FUJACO(3,2)
FUJACO (3,3)

FUJACO(2,1)
FUJACO(2,2)
FUJACO(2,3)
FUJACO(2,4)

GUJACO(3,1)
GUJACO(3.2)
GUJACO(3,3)
GUJACO(3,4)

- -UCOMPC*VCOMPC

- VCOMPC

- UCOMPC

- GUJACO(2,1)
- GUJACO(2,2)
- GUJACO(2,3)

- 0.5*(GM3*U2
- -GM3*UCOMPR

- -GMI*VCOMPR
- GM1

- FUJACO(2,1)

- FUJACO(2,2)
- FUJACO(2,3)
- FUJACO(2,4)

+ GM1*V2)

- V2 + U2
- 2.*UCOMPC

- 2.*VCOMPC

C

FUJACO(4,1) - UCOMPR*(FUJACO(2.1) + U2 - PAEBR)

FUJACO(4,2) PAEBR - 2.*U2 + UCOMPR*FUJACO(2,2)

711

C
C

CVD$
CVD$

350

C
C
C
C
C

C
CVD$

CVD$

360

C

C

C



FUJACO(4,3) - UCOMPR*FUJACO(2,3)

FUJACO(4,4) UCOMPR*(FUJAC0(2,4) + 1.)
C

GUJACO(4.1)

GUJACO(4.2)

GUJACO(4,3)

GUJACO(4,4)

NOLSTVAL

NOVECTOR

NODEPCHK

DO 370 JS -

- VCOMPR*(FUJACO(2,1) + U2 - PAEBR)

- VCOMPR*(FUJACO(2,2) - 2.*UCOMPR)

- VCOMPR*FUJACO(2,3) + PAEBR
- VCOMPR*(FUJAC0(2,4) + 1.)

NEQBAS + 1, NEQNFL

- DPENJA(JS)/DPENJA(1)

FUJACO(JS,1 )

FUJACO(JS.2 )

FUJACO(JS,JS)

GUJACO(JS,1 )
GUJACO(JS,3 )
GUJACO(JS,JS)

- -UCOMPC*YSP

= YSP
= UCOMPC

- -VCOMPC*YSP

- YSP
- VCOMPC

370 CONTINUE

F2BOT - DPENJA(2)*UCOMPC + PRESPR

NOLSTVAL

NOVECTOR

DO 380 JS

WBOT(JS)
CONTINUE

- NEQBAS + 1,
- BIGWJA(JS)

NEQNFL

COMPUTE THE NUMERICAL JACOBIANS BY TAKING FORWARD DIFFERNCES

NOLSTVAL

NOVECTOR

DO 410 LS NEQBAS+I. NEQNFL

COMPUTE VALUES AT TOP

UDUMMY - DPENJA(LS)

DPENJA(LS) - UTOP(LS)
CALL E2SOUR

F2TOP - BGF2JA

NOLSTVAL

NOVECTOR

DO 390 JS
WTOP(Js)

CONTINUE

- NEQBAS + 1,
- BIGWJA(JS)

NEQNFL

RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(LS) = UDUNMY

NOW TAKE FORWARD DIFFERENCES
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FUJACO(2.LS) - (F2TOP - F2BOT)/TOTAL(LS)

- GUJACO(3,LS) - FUJACO(2,LS)
FUJACO(4,LS) - FUJAC0O(2,LS)*UCOMPC

GUJACO(4,LS) - FUJACO(2,LS)*VCOMPC

CVD$ NOLSTVAL

CVD$ NOVECTOR

DO 400 JS - NEQBAS + 1, NEQNFL

WUJACO(JS,LS) - (WTOP(JS) - WBOT(JS))/TOTAL(LS)
400 CONTINUE

410 CONTINUE

C ------FIRST ODER CELL CHANE DUCELL

C CALCULATE CHANGE AT CELL CENTE------- BY PERFORMING A FLUX BALANCE

CVD$ NOLSTVAL

DO 420 J - 1, NEQNFL
DUCELL(J) - BWCELL(J)*CELLTI(ICELL) + DTDVOL*(

1 BIGFW(J)*(YNW-YSW) - BIGGW(J)*(XNW-XSW) +

I BIGFN(J)*(YNE-YNW) - BIGGN(J)*(XNE-XNW) +
1 BIGFE(J)*(YSE-YNE) - BIGGE(J)*(XSE-XNE) +

1 BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )
420 CONTINUE

C COMPUTE THE DISTANCES FOR THE CELL UNDER CONSIDERATION

XSO - O.6*(XSW+XSE)
XEO - 0.5*(XSE+XNE)
XNO - 0.6*(XNE+XNW)
XWO = 0.6*(XNW+XSW)

YSO = 0.5*(YSW+YSE)
YEO - 0.5*(YSE+YNE)

YNO - 0.6*(YNE+YNW)

YWO - 0.5*(YNW+YSW)

C COMPUTE THE VELOCITY COMPONENTS AT SPECIAL POINTERS FOR

C VISCOUS CALCULATIONS

USW - DPENG2(2,KSW)/DPENG2(1,KSW)

USE - DPENG2(2,KSE)/DPENG2(1,KSE)

UNE - DPENG2(2,KNE)/DPENG2(1,KNE)

UNW - DPENG2(2.KNW)/DPENG2(l,KNW)

USO - 0.5*(USW+USE)

UEO - 0.5*(USE+UNE)

UNO - 0.6*(UNE+UNW)

UWO - 0.6*(UNW+USW)

UCO - 0.26*(USW+USE+UNE+UNW)

US1 = 0.6*(USW+USO)

US2 - 0.5*(USO+USE)
UE1 - 0.5*(USE+UEO)
UE2 - 0.5*(UEO+UNE)
UNI - 0.6*(UNE+UNO)
UN2 - 0.6*(UNO+UNW)
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- O.5*(UNW+UWO)

- O.5*(UWO+USW)

- DPENG2(3,KSW)/DPENG2(1,KSW)

- DPENG2(3,KSE)/DPENG2(1. KSE)

- DPENG2(3,KNE)/DPENG2(1 KNE)
- DPENG2(3.KRNW)/DPENG2(1.KNW)

- O.5*(VSW+VSE)

- O.5*(VSE+VNE)

- 0.5*(VNE+VNW)

- 0.5*(VNW+VSW)

- 0.26*(VSW+VSE+VNE+VNW)

- O.5*(VSW+VSO)
0. 5*(VSO+VSE)

= 0.6*(VSE+VEO)

= 0.6*(VEO+VNE)

- 0.5*(VNE+VNO)

- O.5*(VNO+VNW)

0. 5*(VNW+VWO)

= 0.6*(VWO+VSW)

THE TEMPERATURE
- TEMPG2(KSW)

- TEMPG2(KSE)
- TEMPG2(KNE)
- TEMPG2(KNW)

FOR VISCOUS CALCULATIONS

TSO - 0.6*(TSW+TSE)
TEO O0.5*(TSE+TNE)

TNO - 0.6*(TNE+TNW)

TWO 0. 5*(TNW+TSW)
TCO - 0.25*(TSW+TSE+TNE+TNW)

TSI O0.5*(TSW+TSO)
TS2 - O.5*(TSO+TSE)

TEl - 0.5*(TSE+TEO)

TE2 = 0.5*(TEO+TNE)
TN1 - 0.5*(TNE+TNO)

TN2 - 0.6*(TNO+TNW)

TWI -O.5*(TNW+TWO)
TW2 - 0.6*(TWO+TSW)

COMPUTE THE VELOCITY GRADIENTS FOR VISCOUS CALCULATIONS

DUDXW - 2.*RVOLM2(ICELL)*

DUDXN - 2.*RVOLM2(ICELL)
1

DUDXE - 2.*RVOLM2(ICEL)*
1

DUDXS - 2.*RVOLM2(ICELL)*
1

*( UWO*(YSW-YNW)
+ UCO*(YNO-YSO)

*( UW1*(YWO-YNW)
+ UE2*(YNE-YEO)

*( UCO*(YSO-YNO)
+ UEO*(YNE-YSE)
*( UW2*(YSW-YWO)

+ UEI*(YEO-YSE)

+ UN2*(YNW-YNO)
+ USl*(YSO-YSW) )
+ UNO*(YNW-YNE)
+ UCO*(YEO-YWO) )
+ UN1*(YNO-YNE)+ US2*(YSE-YSO) )
+ UCO*(YWO-YEO)
+ USO*(YSE-YSW) )

DUDYW --2.*RVOLM2(ICELL)*( UWO*(XSW-XNW) + UN2*(XNW-XNO)
+ UCO*(XNO-XSO) + US1*(XSO-XSW) )

714

UWI

UW2

VSW
VSE
VNE

VNW

VSO
VEO

VNO

VWO
VCO

VS1

VS2
VE1
VE2

VN1

VN2
VW1

VW2

C COMPUTE

TSW

TSE

TNE

TNW

C

I

I



DUDYN

DUDYE
1

=-2.*RVOLM2(ICELL) * (

--2.*RVOLM2(ICELL) *(

DUDYS --2. *RVOLM2(ICELL)* (
1

UWl* (XWO-XNW)

UE2*(XNE-XEO)

UCO*(XSO-XNO)

UEO* (XNE-XSE)

UW2* (XSW-xwo)

UEI*(XEO-XSE)

+ UNO*(XNW-XNE)
+ UCO*(XEO-XWO) )
+ UNI*(XNO-XNE)

+ US2*(XSE-XSO) )
+ UCO*(XWO-XEO)
+ USO*(XSE-XSW) )

DVDXW - 2.*RVOLM2(ICELL)*

1

I

1

1

,(

DVDXN - 2.*RVOLM2(ICELL)*(

DVDXE - 2.*RVOLM2(ICELL)*(

DVDXS - 2.*RVOLM2(ICELL)*(

VWO* (YSW-YNW)

VCO*(YNO-YSO)

VW1 *(YWO-YNW)

VE2*(YNE-YEO)

VCO*(YSO-YNO)

VEO*(YNE-YSE)

VW2* (YSW-YWO)

VEI* (YEO-YSE)

+ VN2*(YNW-YNO)
+ VSl*(YSO-YSW) )
+ VNO*(YNW-YNE)

+ VCO*(YEO-YWO) )
+ VNl*(YNO-YNE)

+ VS2*(YSE-YSO) )
+ VCO*(YWO-YEO)

+ VSO*(YSE-YSW) )

DVDYW --2.*RVOLM2(ICELL)

DVDYN =-2.*RVOLM2(ICELL)*
1

DVDYE --2.*RVOLM2(ICELL)
I

DVDYS -- 2 .*RVOLM2(ICELL)
I

( VWO*(XSW-XNW) +
+ VCO*(XNO-XSO) 4

*( VWi*(XWO-XNW) +
+ VE2*(XNE-XEO) +
(t VCO*(XSO-XNO) +
+ VEO*(XNE-XSE) +
*( VW2*(XSW-XWO) +
+ VEl*(XEO-XSE) +

VN2*(XNW-XNO)

vsl*(xso-xsw) )

VNO*(XNW-XNE)

VCO*(XEO-XWO) )

VN1*(XNO-XNE)

VS2*(XSE-XSO) )

VCO*(XWO-XEO)
vso*(XSE-XSW) )

COMPUTE THE TEMPERATURE GRADIENTS FOR VISCOUS CALCULATIONS

DTDXW - 2.*RVOLM2(ICELL)*( TWO*(YSW-YNW)

+ TCO*(YNO-YSO)

DTDXN - 2.*RVOLM2(ICELL)*( TWl*(YWO-YNW)

+ TE2*(YNE-YEO)

DTDXE - 2.*RVOLM2(ICELL)*( TCO*(YSO-YNO)

+ TEO*(YNE-YSE)

DTDXS - 2.*RVOLM2(ICELL)*( TW2*(YSW-YWO)

+ TEI*(YEO-YSE)

+ TN2*(YNW-YNO)

+ TSI*(YSO-YSW) )
+ TNO*(YNW-YNE)

+ TCO*(YEO-YWO) )
+ TNl*(YNO-YNE)
+ TS2*(YSE-YSO) )
+ TCO*(YWO-YEO)
+ TSO*(YSE-YSW) )

DTDYW -- 2.*RVOLM2(ICELL)4
1

(

DTDYN --2.*RVOLM2(ICELL)*(

DTDYE --2.*RVOLM2(ICELL)*(

DTDYS --2.*RVOLM2(ICELL)*(
4

TWO* (XSW-XNW)
TCO*(XNO-XSO)

TWl*(XWO-XNW)

TE2*(XNE-XEO)

TCO*(XSO-XNO)

TEO* (XNE-XSE)

TW2*(XSW-XWO)

TE1*(XEO-XSE)

+ TN2*(XNW-XNO)

+ TS1*(XSO-XSW) )
+ TNO*(XNW-XNE)

+ TCO*(XEO-XWO) )
+ TNI*(XNO-XNE)

+ TS2*(XSE-XSO) )
+ TCO*(XWO-XEO)
+ TSO*(XSE-XSW) )

COMPUTE THE VISOCITY COEFFICIENT AS GIVEN BY THE POWER LAW

FOR VISCOUS CALCULATIONS

AMSW - TEMPG2(KSW)**OMEGE2

AMSE - TEMPG2(KSE)**OMEGE2

AMNE - TEMPG2(KNE)**OMEGE2

AMNW - TEMPG2(KNW)**OMEGE2

AMSO

AMEO

AMNO

AMWO

- 0.6*(AMSW+AMSE)

- 0.6*(AMSE+AMNE)

- 0.6*(AMNE+AMNW)

- O.5*(AMNW+AMSW)
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C COMPUTE THE THERMAL CONDUCTIVITY AS GIVEN BY THE POWER LAW
C TIMES THE GAMMA FACTOR FOR VISCOUS CALCULATIONS

ClSO - AMSO*GFACE2
CNEO - AMEO*GFACE2
CNNO - AMNO*GFACE2

CNWO - AMWO*GFACE2

C COMPUTE THE VISOUS TERMS FOR MOMENTUM EQUATIONS

AVISXX - AMWO*(2.*DUDXW-DVDYW)*(YNW-YSW) +
1 AMNO*(2.*DUDXN-DVDYN)*(YNE-YNW) +
1 AMEO* (2.*DUDXE-DVDYE)*(YSE-YNE) +
1 AMSO*(2.*DUDXS-DVDYS)*(YSW-YSE)

AVISXY - AMWO*(DUDYW+DVDXW)*(XNW-XSW) +
I AMNO*(DUDYN+DVDXN)*(XNE-XNW) +
1 AMEO*(DUDYE+DVDXE)*(XSE-XNE) +

1 AMSO*(DUDYS+DVDXS)*(XSW-XSE)

AVISYX - AMWO* (DUDYW+DVDXW)*(YNW-YSW) +

1 AMNO*(DUDYN+DVDXN)*(YNE-YNW) +

1 AMEO*(DUDYE+DVDXE)*(YSE-YNE) +
1 AMSO*(DUDYS+DVDXS)*(YSW-YSE)

AVISYY - AMWO*(2.*DVDYW-DUDXW)*(XNW-XSW) +
AMNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +

1 AMEO*(2.*DVDYE-DUDXE)*(XSE-XNE) +

1 AMSO* (2.*DVDYS-DUDXS)*(XSW-XSE)

C COMPUTE THE VISOUS TERMS FOR ENERGY EQUATIONS

AENEX1 - AMWO*UWO*(2.*DUDXW-DVDYW)*(YNW-YSW) +

1 AMNO*UNO*(2.*DUDXN-DVDYN)*(YNE-YNW) +

1 AMEO*UEO*(2.*DUDXE-DVDYE)*(YSE-YNE) +
1 AMSO*USO*(2.*DUDXS-DVDYS)*(YSW-YSE)

AENEX2 - AMWO*VWO* (DUDYW+DVDXW)* (YNW-YSW) +
1 AMNO*VNO*(DUDYN+DVDXN)*(YNE-YNW) +

1 AMEO*VEO*(DUDYE+DVDXE)*(YSE-YNE) +
1 AMSO*VSO*(DUDYS+DVDXS)*(YSW-YSE)

AENEX3 - RPRNE2*( CNWO*DTDXW* (YNW-YSW) +

1 CNNO*DTDXN*(YNE-YNW) +
1 CNEO*DTDXE*(YSE-YNE) +

CNSO*DTDXS*(YSW-YSE) )

AENEYI - AMWO*UWO* (DUDYW+DVDXW)* (XNW-XSW) +
1 AMNO*UNO*(DUDYN+DVDXN)*(XNE-XNV) +
1 AMEO*UEO*(DUDYE+DVDXE)*(XSE-XNE) +
1 AMSO*USO*(DUDYS+DVDXS)*(XSW-XSE)

AENEY2 - AMWO*VWO* (2. *DVDYW-DUDXW) * (XNW-XSW) +
1 AMNO*VNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +
i AMEO*VEO*(2.*DVDYE-DUDXE) * (XSE-XNE) +
1 AMSO*VSO*(2.*DVDYS-DUDXS)*(XSW-XSE)

AENEY3 - RPRNE2*( CNWO*DTDYW*(XNW-XSW) +
1 CNNO*DTDYN*(XNE-XNW) +
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1 CNEO*DTDYE*(XSE-XNE) +

1 CNSO*DTDYS*(XSW-XSE) )

TFACTOR - -RREYE2*DTDVOL

DVISC(1) O0.

DVISC(2) = TFACTOR*(2./3.*AVISXX - AVISXY)

DVISC(3) ' TFACTOR*(AVISYX - 2./3.*AVISYY)

DVISC(4) - TFACTOR*((2./3.*AENEX1+AENEX2+AENEX3) -
1 (2./3.*AENEY2+AENEY1+AENEY3) )

C COMPUTE THE VISCOUS TERMS PERTAINING TO SPECIES EQUATIONS
DO 425 J - NEQBAS + 1, NEQNFL

AYSW = DPENG2(J,KSW)/DPENG2(1,KSW)
AYSE = DPENG2(J,KSE)/DPENG2(1,KSE)
AYNE - DPENG2(J,KNE)/DPENG2(1,KNE)

AYNW - DPENG2(J,KNW)/DPENG2(1, KNW)

AYSO - 0.5*(AYSW+AYSE)
AYEO O.65*(AYSE+AYNE)

AYNO ' 0.6*(AYNE+AYNW)

AYWO - O.6*(AYNW+AYSW)

AYS1 - 0.5*(AYSW+AYSO)

AYS2 - 0.5*(AYSO+AYSE)
AYE1 = 0.5*(AYSE+AYEO)
AYE2 - 0.6*(AYEO+AYNE)

AYN1 - O.6*(AYNE+AYNO)

AYN2 - O.5*(AYNO+AYNW)

AYW1 - 0.6*(AYNW+AYWO)

AYW2 - 0.5*(AYWO+AYSW)

DADXW - 2.*RVOLM2(ICELL)* (AYWO* (YSW-YNW)

1 +AYN2*(YNW-YNO) +AYCO*(YNO-YSO) +AYSl*(YSO-YSW))

DADXN - 2.*RVOLM2(ICELL) * (AYW* (YWO-YNW)
1 +AYNO*(YNW-YNE) +AYE2*(YNE-YEO) +AYCO*(YEO-YWO))

DADXE - 2.*RVOLM2(ICELL)* (AYCO* (YSO-YNO)

1 +AYN* (YNO-YNE) +AYEO*(YNE-YSE) +AYS2*(YSE-YSO))

DADXS - 2.*RVOLM2(ICELL)*(AYW2*(YSW-YWO)

1 +AYCO*(YWO-YEO) +AYE1*(YEO-YSE) +AYSO*(YSE-YSW))

DADYW -2.*RVOLM2 (ICELL)* (AYWO* (XSW-XNW)

1 +AYN2*(XNW-XNO) +AYCO*(XNO-XSO) +AYS1* (XSO-XSW))

DADYN --2. *RVOLM2(ICELL) * (AYW* (XW-XNW)
1 +AYNO*(XNW-XNE) +AYE2*(XNE-XEO) +AYCO*(XEO-XWO))

DADYE -2.*RVOLM2(ICELL)* (AYCO* (XSO-XNO)

1 +AYN* (XNO-XNE) +AYEO*(XNE-XSE) +AYS2*(XSE-XSO))

DADYS --2.*RVOLM2 (ICELL) * (AYW2*(XSW-XWO)

1 +AYCO*(XWO-XEO) +AYE1*(XEO-XSE) +AYSO*(XSE-XSW))

ADIFX - AMWO*DADXW* (YNW-YSW) + AMNO*DADXN* (YNE-YNW) +

1 AMEO*DADXE*(YSE-YNE) + AMSO*DADXS*(YSW-YSE)

ADIFY - AMWO*DADYW* (XNW-XSW) + AMNO*DADYN* (XNE-XNW) +

1 AMEO*DADYE*(XSE-XNE) + AMSO*DADYS*(XSW-XSE)

DVISC(J) TFACTOR*RSCHE2*(ADIFX - ADIFY)

426 CONTINUE
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C -------------- ----
C JACOBIAN CHANGE BLOCK
C ------- _______ ---

C COMPUTE CHANGES DUE TO JACOBIANS

CVD* NOLSTVAL
DO 440 J " 1. NEQNFL

DFCELL - 0.

DGCELL - 0.

DO 430 K - 1, NEQNFL

DFCELL - DFCELL + FUJACO(J,K)*DUCELL(K)
DGCELL - DGCELL + GUJACO(J,K)*DUCELL(K)

430 CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND

C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF - DFCELL

DFCELL - DTDVOL*( TEMPF*DYNSM2(ICELL)

1 -DGCELL*DXNSM2(ICELL))

DGCELL - DTDVOL* (-TEMPF*DYEWM2(ICELL)

1 +DGCELL*DXEWM2(ICELL))

C DIFFUSION TERMS

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW - SIGGE2(KSW)*DPENG2(J,KSW)

SIGGSE - SIGGE2(KSE) *DPENG2(J,KSE)

SIGGNE - SIGGE2(KNE) *DPENG2(J,KNE)

SIGGNW - SIGGE2(KNW)*DPENG2(J,KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL- 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)

SIGGSW - SIGCEL - SIGGSW

SIGGSE - SIGCEL - SIGGSE

SIGGNE - SIGCEL - SIGGNE

SIGGNW - SIGCEL - SIGGNW

C
SIGGSW - DSDIFF*SIGGSW

SIGGSE - DSDIFF*SIGGSE

SIGGNE - DSDIFF*SIGGNE

SIGGNVW DSDIFF*SIGGNW

C COMPUTATION OF CHANGES

C FOCIT IS DUCELL; FIND SOCIT AND CORNER CHANGES

SOCITSW - - DFCELL - DGCELL
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SOCITNW

SOCITNE

-SOCITSE

DELSW(J)

DELNW(J)

DELNE(J)

DELSE(J)

- DFCELL + DGCELL-+ DFCELL + DGCELL
+ DFCELL - DGCELL

- 0.25*( DUCELL(J)

- 0.25*( DUCELL(J)

- 0.25*( DUCELL(J)

- 0.25*( DUCELL(J)

+ SOCITSW

+ SOCITNW

+ SOCITNE

+ SOCITSE

+ SIGGSW )
+ SIGGNW )
+ SIGGNE )
+ SIGGSE )

CONTINUE

DO IMPLICIT SOURCE TERMS

CALL PTIMP2

CALL PTIMP2

CALL PTIMP2

CALL PTIMP2

(KSW, ICELL,

(KSE, ICELL,

(KNW, ICELL.

(KNE. ICELL,

DELSW)

DELSE)

DELNW)

DELNE)

DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

CVD$ NOLSTVAL

DO 450 J = 1, NEQNFL

CHNGE2(J,KSW) - CHNGE2(J,KSW)

CHNGE2(J,KNW) - CHNGE2(J,KNW)

CHNGE2(J,KSE) - CHNGE2(J,KSE)

CHNGE2(J,KNE) - CHNGE2(J,KNE)
450 CONTINUE

+ DELSW(J)

+ DELNW(J)

+ DELSE(J)

+ DELNE(J)

CONTINUE

USE EXPLICIT SOURCE TERMS., KEEPING THE CHEMISTRY FROZEN
STEP THROUGH EACH CELL AT THIS LEVEL

NOLSTVAL

DO 710 JCELL - ILVLTI(1,ITGL). ILVLTI(2,ITGL)

CELL/NODE DETERMINATION

FIND THE CELL TO BE INTEGRATED

ICELL - ICELTI(JCELL)

SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)
KSE ICELG2( 4,ICELL)

KNE - ICELG2( 6,ICELL)

KNW - ICELG2( 8,ICELL)
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GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2,KSE)

XNE - GEOMG2(1,KNE)

YNE GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

THE RATIO DELTA-t TO CELL VOLUME

DTDVOL - CELLTI(ICELL)*RVOLM2(ICELL)

COMPUTE THE AVERAGE COEFFICIENT FOR DIFFUSION

DSDIFF - 0.5*PERIM2(ICELL)*DTDVOL

FACIAL VALUES

COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS - 0.5*( PRESG2(KSW) + PRESG2(KSE) )

PRESSE 0.5*( PRESG2(KSE) + PRESG2(KNE) )

PRESSN - 0.5*( PRESG2(KNW) + PRESG2(KNE) )

PRESSW - 0.6*( PRESG2(KSW) + PRESG2(KNW) )

CVD$ NOLSTVAL

DO 820 IQ - 1, 4
DPENFA(IQ,1) - 0.5*( DPENG2(IQ,KSW) +

DPENFA(IQ,2) = 0.5*( DPENG2(IQ,KSE) +

DPENFA(IQ,3) 0.5*( DPENG2(IQ,KNE) +

DPENFA(IQ,4) - 0.5*( DPENG2(IQ,KNW) +

820 CONTINUE

UCOMPS 

VCOMPS -

UCOMPE -
VCOMPE 

UCOMPN 

VCOMPN -

UCOMPW 
VCOMPW 

DPENG2(IQ,KSE) )

DPENG2(IQ,KNE) )

DPENG2(IQ,KNW) )

DPENG2(IQ,KSW) )

DPENFA(2.1)/DPENFA(1.1)

DPENFA(3.1)/DPENFA(l,1)

DPENFA(2,2)/DPENFA(1.2)

DPENFA(3,2)/DPENFA(1,2)
DPENFA(2.3)/DPENFA(1.3)

DPENFA(3.3)/DPENFA(1,3)

DPENFA(2.4)/DPENFA(1,4)
DPENFA(3.4)/DPENFA(1.4)

FLUX TERMS

SOUTH
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BIGFS(1) - DPENFA(2,1)

BIGFS(2) - DPENFA(2,1)*UCOMPS + PRESSS
BIGFS(3) - DPENFA(2.1)*VCOMPS

BIGF8(4) - UCOMPS*(DPENFA(4,1) + PRESSS)

BIGGS(1) - DPENFA(3.1)

BIGGS(2) - BIGFS(3)

BIGGS(3) - DPENFA(3,1)*VCOMPS + PRESSS
BIGGS(4) - VCOMPS*(DPENFA(4.1) + PRESSS)

C EAST

BIGFE(1) - DPENFA(2,2)

BIGFE(2) - DPENFA(2.2)*UCOMPE + PRESSE
BIGFE(3) - DPENFA(2,2)*VCOMPE

BIGFE(4) = UCOMPE*(DPENFA(4,2) + PRESSE)
BIGGE(1) - DPENFA(3,2)

BIGGE(2) - BIGFE(3)

BIGGE(3) - DPENFA(3,2)*VCOMPE + PRESSE

BIGGE(4) - VCOMPE*(DPENFA(4,2) + PRESSE)

C NORTH

BIGFN(1) - DPENFA(2,3)

BIGFN(2) - DPENFA(2.3)*UCOMPN + PRESSN

BIGFN(3) = DPENFA(2,3)*VCOMPN

BIGFN(4) - UCOMPN*(DPENFA(4.3) + PRESSN)
BIGGN(I) - DPENFA(3,3)

BIGGN(2) - BIGFN(3)

BIGGN(3) - DPENFA(3.3)*VCOMPN + PRESSN
BIGGN(4) - VCOMPN*(DPENFA(4.3) + PRESSN)

C WEST

BIGFW(i) - DPENFA(2.4)

BIGFW(2) - DPENFA(2,4)*UCOMPW + PRESSW

BIGFW(3) - DPENFA(2.4)*VCOMPW

BIGFW(4) - UCOMPW*(DPENFA(4.4) + PRESSW)
BIGGW(1) - DPENFA(3,4)
BIGGW(2) - BIGFW(3)

BIGGW(3) - DPENFA(3.4)*VCOMPW + PRESSW
BIGGW(4) - VCOMPW*(DPENFA(4.4) + PRESSW)

C JACOBIAN TERMS

C --- _________
C DEFINE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

CVD$ NOLSTVAL
DO 630 IQ - 1. 4

DPENJA(IQ) 0.25*( DPENFA(IQ,1) + DPENFA(IQ,2) +
1 DPENFA(IQ,3) + DPENFA(IQ.4) )

630 CONTINUE

C

C NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES
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UCOMPC. VCOMPC, GAMAPR, YSPEPR ETC. AND GET THE SOURCE TERMS
FOR THE CELL

UCOMPC -

VCOMPC -
U2

V2 -

BEPSPR -
BEU -
VELO2U 

DPENJA(2)/DPENJA(1)

DPENJA(3)/DPENJA(1)

UCOMPC*UCOMPC

VCOMPC*VCOMPC

DPENJA(4)

BEPSPR/DPENJA(1)

U2 + V2

COMPUTE THE DIMENSIONAL QUANTITIES

BE - FMREFL*BEU

VEL02 - FMREFL*VELO2U

COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY 0.
DO 640 IS 1, NEQSCH

JS - NEQBAS + IS
YSPEPR(IS) - DPENJA(JS)/DPENJA(1)

SUMY - SUMY + YSPEPR(IS)
CONTINUE

YNEXT - 1. - SUMY - YNRTCH

IF (YNEXT .LT. O.) YNEXT - 0.
YSPEPR(NEQSCH+I) - YNEXT

SYSHFS - 0.

SYSCPS - O.
SYSBMS - 0.

BIGAM - 0.

COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

DO 650 IS
SYSHFS

SYSCPS

SYSBMS

BIGAM

CONTINUE

- 1. NSPECH
- SYSHFS

- SYSCPS
- SYSBMS

- BIGAM

+ YSPEPR(IS)*FMHTCH(IS)

+ YSPEPR(IS)*SPCPCH(IS)

+ YSPEPR(IS)*RAMWCH(IS)

+ YSPEPR(IS)*SPBSCH(IS)

COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

BIGBM s SYSCPS - UGASFL*SYSBMS

BIGCM BE - 0.5*VELO2 - SYSHFS + TREFCH*SYSCPS
+ O.5*TREFCH*TREFCH*BIGAN

IF (BIGAM .LT. .E-10) THEN

TEMP - BIGCM/BIGBM
ELSE

DISCRI

TEMP

ENDIF

- BIGBM*BIGBM + 2.*BIGAM*BIGCM

- ( SQRT(DISCRI)-BIGBM )/BIGAM

BIGAMT - BIGAM *TEMP

SYSCVS - BIGBM + BIGAMT
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GAMAPR - (SYSCPS+BIGAMT)/SYSCVS

NQRMALIZE THE TEMPERATURE

TEMPU - TEMP/TREFFL

COMPUTE THE DIMENSIONLESS PRESSURE

PRESPR - DPENJA(1)*TEMPU*AMWTFL*SYSBMS

GM1

GM3
PAEBR

- GAMAPR - 1.

- GMI - 2.

- (DPENJA(4) +PRESPR)/DPENJA(1)

FUJACO(1,2) - 1.
GUJACO(1,3) - 1.

C

GUJACO(2,1) -
GUJACO(2,2) -
GUJACO(2,3) -

FUJACO(3,1) -
FUJACO(3,2) -
FUJACO(S,S3) -

FUJACO(2,1) -
FUJACO(2,2) -
FUJACO(2,3) -
FUJACO(2,4) -

GUJACO(3S,1) -
GUJACO(3S,2) -
GUJACO(3,3) -

GUJACO(3,4) =

FUJACO(4,1) -

FUJACO(4,2) =
FUJACO(4,3) =
FUJACO(4,4) -

GUJACO(4,1) -
GUJACO(4,2) -
GUJACO(4,3) -
GUJACO(4.4) -

-UCOMPC*VCOMPC

VCOMPC
UCOMPC

GUJACO(2,1)

GUJACO(2,2)

GUJACO(2,3)

0.5*(GM3*U2 + GMl*V2)
-GM3*UCOMPC
-GMI*VCOMPC

GM1

FUJACO(2,1)

FUJACO(2.2)

FUJACO(2,3)

FUJACO(2,4)

- V2 + U2
- 2.*UCOMPC

- 2.*VCOMPC

UCOMPC*(FUJACO(2,1) + U2 - PAEBR)
PAEBR - 2.*U2 + UCOMPC*FUJACO(2,2)
UCOMPC*FUJACO(2,3)

UCOMPC*(FUJACO(2,4) + 1.)

VCOMPC*(FUJACO(2,1) + U2 - PAEBR)

VCOMPC*(FUJACO(2,2) - 2.*UCOMPC)

VCOMPC*FUJACO(2,3) + PAEBR
VCOMPC*(FUJACO(2,4) + 1.)

FIRST ORDER CELL CHANGE DUCELL

CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

NOLSTVAL

DO 660 J 1, 4

DUCELL(J) - DTDVOL*(

BIGFW(J)*(YNW-Ysw)

BIGFN(J)*(YNE-YNW)

BIGFE(J)*(YSE-YNE)

- BIGGW(J)*(XNW-XSW) +
- BIGGN(J)*(XNE-XNW) +
- BIGGE(J)*(XSE-XNE) +
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BIGFS(J)*(YSW-YSE) - BIGGS(J)*(XSW-XSE) )
660 CCNTINUE

C COMPUTE THE DISTANCES FOR THE CELL UNDER CONSIDERATION

XSO - 0.6*(XSW+XSE)

XEO - O.5*(XSE+XNE)

XNO - O.5*(XNE+XNW)

XWO -O.5*(XNW+XSW)

YSO - 0.5*(YSW+YSE)

YEO - 0.5*(YSE+YNE)

YNO - 0.5*(YNE+YNW)

YWO - O.5*(YNW+YSW)

C COMPUTE THE VELOCITY COMPONENTS AT SPECIAL POINTERS FOR
C VISCOUS CALCULATIONS

USW - DPENG2(2,KSW)/DPENG2(1.KSW)

USE - DPENG2(2,KSE)/DPENG2(1,KSE)
UNE - DPENG2(2.KNE)/DPENG2(1.KNE)

UNW - DPENG2(2,KNW)/DPENG2(1,KNW)

USO - 0.5*(USW+USE)

UEO - O.65*(USE+UNE)

UNO - O.5*(UNE+UNW)

UWO - O.5*(UNW+USW)

UCO - 0.25*(USW+USE+UNE+UNW)

USI - O.6*(USW+USO)

US2 - O.6*(USO+USE)

UE1 - 0.6*(USE+UEO)
UE2 - O.6*(UEO+UNE)

UNI - O.5*(UNE+UNO)

UN2 - 0.6*(UNO+UNW)
UWI - O.5*(UNW+UWO)

UW2 - O.5*(UWO+USW)

VSW - DPENG2(3,KSW)/DPENG2(1,KSW)

VSE. - DPENG2(3,KSE)/DPENG2(1,KSE)

VNE - DPENG2(3,KNE)/DPENG2(1,KNE)
VNW - DPENG2(3,KNW)/DPENG2(1,KNW)

VSO - 0.6*(VSW+VSE)
VEO - O.5*(VSE+VNE)

VNO - O.S*(VNE+VNW)

VWO - O.6*(VNW+VSW)
VCO - 0.256* (VSW+VSE+VNE+VNW)

VS1 - O.6*(VSW+VSO)
VS2 - O.56*(VSO+VSE)

VE1 - O.5*(VSE+VEO)
VE2 - O.5*(VEO+VNE)
VNI - O.6*(VNE+VNO)

VN2 - O.56*(VNO+VNW)

VWI - 0.5*(VNW+VWO)

VW2 - 0.6*(VWO+VSW)

C COMPUTE THE TEMPERATURE FOR VISCOUS CALCULATIONS
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TSW - TEMPG2(KSW)
TSE - TEMPG2(KSE)

TNIE - TEMPG2(KNE)

TNW - TEMPG2(KNW)

TSO 0O.6*(TSW+TSE)

TEO - O.6*(TSE+TNE)

TNO - 0.6*(TNE+TNW)

TWO - O.5*(TNW+TSW)

TCO - O.26*(TSW+TSE+TNE+TNW)

TS1 - O.5*(TSW+TSO)

TS2 - O.5*(TSO+TSE)

TEl - 0.5*(TSE+TEO)

TE2 - O.6*(TEO+TNE)

TN1 - O.5*(TNE+TNO)

TN2 - 0.6*(TNO+TNW)

TWI - O. *(TNW+TWO)

TW2 - O.5*(TWO+TSW)

COMPUTE THE VELOCITY GRADIENTS FOR VISCOUS CALCULATIONSC

DUDXW - 2.*RVOLM2(ICELL)*( UWO*(YSW-YNW) +

+ UCO*(YNO-YSO) +
DUDXN - 2.*RVOLM2(ICELL)*( UWI*(YWO-YNW) +

+ UE2*(YNE-YEO) +
DUDXE - 2.*RVOLM2(ICELL)*( UCO*(YSO-YNO) +

+ UEO*(YNE-YSE) +
DUDXS - 2.*RVOLM2(ICELL)*( UW2*(YSW-YWO) +

+ UEI*(YEO-YSE) +

UN2*(YNW-YNO)

USl*(YSO-YSW) )
UNO*(YNW-YNE)

UCO*(YEO-YWO) )
UN* (YNO-YNE)

US2*(YSE-YSO) )
UCO*(YWO-YEO)

USO*(YSE-YSW) )

DUDYW --2.*RVOLM2(ICELL)4

1
DUDYN --2.*RVOLM2(ICELL) 

1

DUDYE --2.*RVOLM2(ICELL)

1
DUDYS -- 2.*RVOLM2(ICELL)

I

k( UWO*(XSW-XNW)

+ UCO*(XNO-XSO)

,( UWl*(XWO-XNW)

+ UE2*(XNE-XEO)
*( UCO*(XSO-XNO)

+ UEO*(XNE-XSE)
*( UW2*(XSW-XWO)

+ UEl*(XEO-XSE)

+ UN2*(XNW-XNO)
+ USI*(XSO-XSW) )
+ UNO*(XNW-XNE)
+ UCO*(XEO-XWO) )
+ UNI*(XNO-XNE)
+ US2*(XSE-XSO) )
+ UCO*(XWO-XEO)
+ USO*(XSE-XSW) )

DVDXW - 2.*RVOLM2(ICELL), 4(

DVDXN - 2.*RVOLM2(ICELL)*(

DVDXE - 2.*RVOLM2(ICELL)*(

DVDXS - 2.*RVOLM2(ICELL)*(

DVDYW --2.*RVOLM2(ICELL) * (

DVDYN --2.*RVOLM2(ICELL)*(

DVDYE --2. *RVOLM2(ICELL)*(

DVDYS -- 2. *RVOLM2(ICELL) *(
4.

VWO* (YSW-YNW)

VCO*(YNO-YSO)

VWl*(YWO-YNW)

VE2*(YNE-YEO)

VCO*(YSO-YNO)

VEO*(YNE-YSE)

VW2* (YSW-YWO)

VEt* (YEO-YSE)

VWO* (XSW-XNW)
VCO*(XNO-XSO)
VW1* (XWO-XNW)

VE2* (XNE-XEO)
VCO* (XSO-XNO)

VEO* (XNE-XSE)

VW2* (XSW--xo)
VEI*(XEO-XSE)

+ VN2*(YNW-YNO)+ VSl*(YSO-YSW) )
+ VNO*(YNW-YNE)+ VCO*(YEO-YWO) )
+ VNl*(YNO-YNE)
+ VS2*(YSE-YSO) )
+ VCO*(YWO-YEO)
+ VSO*(YSE-YSW) )

+ VN2*(XNW-XNO)
+ VSl*(XSO-XSW) )
+ VNO*(XNW-XNE)
+ VCO*(XEO-XWO) )
+ VNI*(XNO-XNE)
+ VS2*(XSE-XSO) )
* VCO*(XWO-XEO)
+ VSO*(XSE-XSW) )
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COMPUTE THE TEMPERATURE GRADIENTS FOR VISCOUS CALCULATIONS

DTDXW - 2.*RVOLM2(ICELL)*(

DTDXN - 2.*RVOLM2(ICELL)*(

DTDXE a 2.*RVOLM2(ICELL)*(

DTDXE - 2.*RVOLM2(ICELL)*(
4.

DTDYW --2.*RVOLM2(ICELL)*(

DTDYN --2.*RVOLM2(ICELL)*(

DTDYE '-2.*RVOLM2(ICELL)*(

DTDYS --2.*RVOLM2(ICELL) * (
4.

TWO* (YSW-YNW)

TCO*(YNO-YSO)

TWl*(YWO-YNW)

TE2*(YNE-YEO)

TCO*(YSO-YNO)

TEO*(YNE-YSE)

TW2* (YSW-YWO)

TEl *(YEO-YSE)

TWO*(XSW-XNW)

TCO*(XNO-XSO)

TW* (XWO-XNW)

TE2*(XNE-XEO)

TCO*(XSO-XNO)

TEO*(XNE-XSE)

TW2*(XSW-XWO)
TEI*(XEO-XSE)

+ TN2*(YNW-YNO)

+ TSI*(YSO-YSW) )
+ TNO*(YNW-YNE)

+ TCO*(YEO-YWO) )
+ TNI*(YNO-YNE)
+ TS2*(YSE-YSO) )
+ TCO*(YWO-YEO)

+ TSO*(YSE-YSW) )

+ TN2*(XNW-XNO)
+ TSl*(XSO-XSW) )
+ TNO*(XNW-XNE)

+ TCO*(XEO-XWO) )
+ TNI*(XNO-XNE)

+ TS2*(XSE-XSO) )
+ TCO*(XWO-XEO)

+ TSO*(XSE-XSW) )

COMPUTE THE VISOCITY COEFFICIENT AS GIVEN BY

FOR VISCOUS CALCULATIONS

AMSW - TEMPG2(KSW)**OMEGE2

AMSE - TEMPG2(KSE)**OMEGE2

AMNE - TEMPG2(KNE)**OMEGE2

AMNW - TEMPG2(KNW)**OMEGE2

THE POWER LAW

AMSO
AMEO
AMNO

AMWO

- 0.5*(AMSW+AMSE)

- O.6*(AMSE+AMNE)
- 0.5*(AMNE+AMNW)
- 0.5* (AMNW+AMSW)

COMPUTE THE THERMAL CONDUCTIVITY AS GIVEN BY THE POWER LAW

TIMES THE GAMMA FACTOR FOR VISCOUS CALCULATIONS

CNSO - AMSO*GFACE2
CNEO - AMEO*GFACE2

CNNO - AMNO*GFACE2

CNWO. - AMWO*GFACE2

COMPUTE THE VISOUS TERMS FOR MOMENTUM EQUATIONS

AVISXX - AMWO*(2. *DUDXW-DVDYW)* (YNW-YSW) +

AMNO*(2. *DUDXN-DVDYN)* (YNE-YNW) +

AMEO*(2. *DUDXE-DVDYE)* (YSE-YNE) +

AMSO* (2. *DUDXS-DVDYS) * (YSW-YSE)
AVISXY - AMWO* (DUDYW+DVDXW) *(XNW-XSW) 

AMNO*(DUDYN+DVDXN)*(XNE-XNW) +

AMEO* (DUDYE+DVDXE)* (XSE-XNE) +

AMSO* (DUDYS+DVDXS)* (XSW-XSE)

AVISYX - AMWO*(DUDYW+DVDXW) *(YNW-YSW) +

AMNO* (DUDYN+DVDXN)* (YNE-YNW) +

AMEO*(DUDYE+DVDXE) *(YSE-YNE) +
AMSO* (DUDYS+DVDXS)* (YSW-YSE)

AVISYY - AMWO*(2.*DVDYW-DUDXW)*(XNW-XSW) +

726

1

1

1

1

I

I

1

I

C
C

C
C

C

1
1
i

1
1
1

i
1
1

C



1 AMNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +

1 - AMEO*(2.*DVDYE-DUDXE)*(XSE-XNE) +

1 - AMSO*(2.*DVDYS-DUDXS)*(XSW-XSE)

C COMPUTE THE VISOUS TERMS FOR ENERGY EQUATIONS

AENEXI = AMWO*UWO*(2.*DUDXW-DVDYW)*(YNW-YSW) +

1 AMNO*UNO*(2.*DUDXN-DVDYN)*(YNE-YNW) +

1 AMEO*UEO*(2.*DUDXE-DVDYE)*(YSE-YNE) +
1 AMSO*USO* (2 .*DUDXS-DVDYS)*(YSW-YSE)

AENEX2 - AMWO*VWO*(DUDYW+DVDXW)*(YNW-YSW) +

1 AMNO*VNO*(DUDYN+DVDXN)*(YNE-YNW) +
1 AMEO*VEO*(DUDYE+DVDXE)*(YSE-YNE) +

1 AMSO*VSO*(DUDYS+DVDXS)*(YSW-YSE)

AENEX3 - RPRNE2*( CNWO*DTDXW*(YNW-YSW) +

1 CNNO*DTDXN*(YNE-YNW) +

1 CNEO*DTDXE* (YSE-YNE) +

1 CNSO*DTDXS*(YSW-YSE) )

AENEYi - AMWO*UWO* (DUDYW+DVDXW)* (XNW-XSW) +

1 AMNO*UNO*(DUDYN+DVDXN)*(XNE-XNW) +

1 AMEO*UEO*(DUDYE+DVDXE)*(XSE-XNE) +

1 AMSO*USO*(DUDYS+DVDXS)*(XSW-XSE)

AENEY2 - AMWO*VWO*(2. *DVDYW-DUDXW)* (XNW-XSW) +

1 AMNO*VNO*(2.*DVDYN-DUDXN)*(XNE-XNW) +

1 AMEO*VEO* (2. *DVDYE-DUDXE)*(XSE-XNE) +

1 AMSO*VSO*(2.*DVDYS-DUDXS)*(XSW-XSE)

AENEY3 - RPRNE2*( CNWO*DTDYW*(XNW-XSW) +

1 CNNO*DTDYN*(XNE-XNW) +

1 CNEO*DTDYE*(XSE-XNE) +

1 CNSO*DTDYS*(XSW-XSE) )

TFACTOR ' -RREYE2*DTDVOL

DVISC(1) - 0.

DVISC(2) - TFACTOR*(2./3.*AVISXX - AVISXY)

DVISC(3) - TFACTOR*(AVISYX - 2./3.*AVISYY)

DVISC(4) - TFACTOR*((2./3.*AENEX1+AENEX2+AENEX3) -

1 (2./3.*AENEY2+AENEY1+AENEY3) )

C JACOBIAN CHANGE BLOCK

C COMPUTE CHANGES DUE TO JACOBIANS

CVD NOLSTVAL
DO 680 J 1, 4

DFCELL - 0.

DGCELL - 0.

DO 70 K 1, 4

DFCELL - DFCELL + FUJACO(J,K)*DUCELL(K)

727



DGCELL DGCELL + GUJACO(J,K)*DUCELL(K)
670 - CONTINUE

C TRANSFORM THE JACOBIAN CHANGES (ONLY FU AND GU) AND
C MULTIPLY WITH THEIR RESPECTIVE SCALINGS OF TIME

TEMPF - DFCELL

DFCELL - DTDVOL*( TEMPF*DYNSM2(ICELL)

i -DGCELL*DXNSM2(ICELL))
DGCELL - DTDVOL*(-TEMPF*DYEWM2(ICELL)

1 +DGCELL*DXEWM2(ICELL))

C DIFFUSION TERMS

C COMPUTE THE DIFFUSION TERMS FOR THE FOUR EDGES

SIGGSW - SIGGE2(KSW)*DPENG2(J.KSW)

SIGGSE - SIGGE2(KSE) *DPENG2(J.KSE)

SIGGNE - SIGGE2(KNE)*DPENG2(J,KNE)

SIGGNW SIGGE2(KNW)*DPENG2(J.KNW)

C COMPUTE THE DIFFUSION TERM FOR THE WHOLE CELL

SIGCEL- 0.25*(SIGGSW + SIGGSE + SIGGNE + SIGGNW)
SIGGSW - SIGCEL - SIGGSW

SIGGSE - SIGCEL - SIGGSE

SIGGNE SIGCEL - SIGGNE

SIGGNW - SIGCEL - SIGGNW
C

SIGGSW - DSDIFF*SIGGSW

SIGGSE - DSDIFF*SIGGSE

SIGGNE - DSDIFF*SIGGNE

SIGGNW - DSDIFF*SIGGNW

C ------COMPUTATION OF CHANGES

C FOCT IS DUCELL; FIND SOCIT AND CO-------NE CHANGES

SOCITSW - - DFCELL - DGCELL
SOCITNW - - DFCELL DGCELL
SOCITNE - + DFCELL + DGCELL
SOCITSE - + DFCELL - DGCELL

DELSW(J) - 0.25*( DUCELL(J) + SOCITSW + SIGGSW )

DELNW(J) - 0.25*( DUCELL(J) + SOCITNW + SIGGNW )

DELNE(J) - 0.26*( DUCELL(J) + SOCITNE + SIGGNE )
DELSE(J) - 0.25*( DUCELL(J) + SOCITSE + SIGGSE )

680 CONTINUE

DO 690 J - 6, NEQNFL
DELSW(J) - DELSW(1)*YSPEPR(J-4)
DELNW(J) - DELNW(1)*YSPEPR(J-4)
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DELNE(J) - DELNE(l)*YSPEPR(J-4)
_ DELNW(J) - DELNW(I)*YSPEPR(J-4)

CONTINUE690

DISTRIBUTION OF CHANGES

DISTRIBUTE CONVECTIVE AND DIFFUSIVE CHANGES

CVD$ NOLSTVAL

DO 700 J - 1, NEQNFL
CHNGE2(J,KSW) - CHNGE2(J,KSW)

CHNGE2(J,KNW) - CHNGE2(J,KNW)

CHNGE2(J,KSE) CHNGE2(J,KSE)
CHNGE2(J,KNE) - CHNGE2(J,KNE)

700 CONTINUE

+ DELSW(J)

+ DELNW(J)

+ DELSE(J)

+ DELNE(J)

710 CONTINUE

C
RETURN

END

E2SOUU

SUBROUTINE E2SOUR
C E2SOUU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'JACOMN.INC'
INCLUDE 'PRCOMN.INC'

DIMENSION WREACT(MREACH)

DOUBLE PRECISION PROD1. PROD2, CONCEN(MSPECH)

C THIS FUNCTION COMPUTES THE SOURCE TERMS SO THAT THE JACOBIAN
C TERMS COULD BE COMPUTED. IT ALSO COMPUTES SOME FLUX TERMS, ONLY
C TWO FLUX TERMS. F2. F4 AND G3. G4 ARE NEEDED FOR NUMERICAL
C COMPUTATION OF FLUX JACOBIANS. WHEREAS ALL THE SOURCE TERMS ARE
C NEEDED FOR SOURCE JACOBIANS. THE TEMPORALLY VARYING VARIABLES ARE
C STORED IN THE JA COMMON VARIABLES, I.E.,
C DPENJA(J) - DPENGI(J,INODE)
C FOR THE GIVEN NODE INODE.

C THE DIFFERENCE BETWEEN THIS ROUTINE AND E2FLUX IS THAT IN THAT
C ROUTINE WE DO NOT CONSIDER VARIATIONS W.R.T. STATE VARIABLES.

C
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RHO

UCOMP
VCOMP

BEPS 

BEU

VEL02U

= DPENJA(1)

= DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

DPENJA(4)

= BEPS/RHO

= UCOMP*UCOMP + VCOMP*VCOMP

COMPUTE THE DIMENSIONAL QUANTITIES

BE

VEL02

RHOD

= FMREFL*BEU

= FMREFL*VEL02U

= RHO*RHORFL

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY = 0.

DO 10 IS 1, NEQSCH

JS = NEQBAS + IS

YSPEPR(IS) = DPENJA(JS)/DPENJA(1)

SUMY = SUMY + YSPEPR(IS)
10 CONTINUE

YNEXT = 1. - SUMY - YNRTCH

IF (YNEXT .LT. 0.) YNEXT = 0.
YSPEPR(NEQSCH+l) = YNEXT

SYSHFS = 0.

SYSCPS 0O.
SYSBMS 0.

BIGAM = 0.

COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

COMPUTE THE CONCENTRATIONS OF ALL THE SPECIES IN KMOL/(M**3)

DO 20 IS = 1,
SYSHFS

SYSCPS
SYSBMS

BIGAM

CONCEN(IS)

BIGWJA(IS)
20 CONTINUE

NSPECH

= SYSHFS + YSPEPR(IS)*FMHTCH(IS)

= SYSCPS + YSPEPR(IS)*SPCPCH(IS)

= SYSBMS + YSPEPR(IS)*RAnWCH(IS)

= BIGAM + YSPEPR(IS)*SPBSCH(IS)

= RHOD*YSPEPR(IS)*RAMVICH(IS)
= 0.

C

C COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

C

BIGBM = SYSCPS - UGASFL*SYSBMS

BIGCM = BE - 0.5*VELO2 - SYSHFS + TREFCH*SYSCPS

1 + 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMP = BIGCM/BIGBM
ELSE

DISCRI

TEMP

ENDIF

= BIGBM*BIGBM + 2.*BIGAM*BIGCM

= ( SQRT(DISCRI)-BIGBM )/BIGAM

ALOGT = LOG(ABS(TEMP))
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RTEMP - 1./TEMP

C

C NORMALIZE THE TEMPERATURE
C

TEMPU - TEMP/TREFFL
C
C COMPUTE THE DIMENSIONLESS PRESSURE

C
PRESS - RHO*TEMPU*AMWTFL*SYSBMS

C COMPUTE THE FLUX VARIABLES

BGF2JA - DPENJA(2)*UCOMP + PRESS

C BY-PASS THE REACTION CALCULATIONS

C TRIGGER TEMPERATURE

IF TEMPERATURE IS LESS THAN

IF (TEMP .LT. TRIGCH) RETURN
RECWDR - 1./WDREFL

C

C CORRECT THE RATE COEFFICIENTS FOR ROGERS AND CHINITZ MODEL
C

IF (KROGER .EQ. 1) THEN

IF (YSPEPR(3) .LE. 0.) RETURN

PHI = YSPEPR(3)*34.048/(1.-YSPEPR(3))

IF (PHI .LT. 0.1 ) PHI = 0.1

IF (PHI .GT. 2.0 ) PHI 2.0

RPHI = 1./PHI

TENLOG = LOG(10.)

AIPHI = 8.917*PHI + 31.433*RPHI - 28.95

A2PHI - -0.833*PHI + 1.333*RPHI + 2.00

PREFCH(1) - LOG(AIPHI) + 44.*TENLOG
PREFCH(2) = LOG(A2PHI) + 68.*TENLOG
PREBCH(1) = PREFCH(1) - PREECH(1)

PREBCH(2) = PREFCH(2) - PREECH(2)

USE THE FIRST REACTION AS EQUILIBRIUM REACTION, IF THE

CONCENTRATIONS ARE FAR AWAY FROM EQUILIBRIUM

AKEQ - 117.31948*EXP(-8992./TEMP)

YOHEQ SRT(YSPEPR(3)*YSPEPR(1)*AKEQ)

DELTAY - YOHEQ-YSPEPR(2)

IF ( DELTAY .GT. O.O1*YMAXCH(2) .AND.

YSPEPR(4) .LT. O.50*YMAXCH(4)) THEN
DELTAY = 0.6*DELTAY*RAMWCH(2)

Y02EQ = YSPEPR(1) - AMWTCH(1)*DELTAY
YH2EQ - YSPEPR(3) - AMWTCH(3)*DELTAY

CONCEN(1) - RHOD*YO2EQ*RAMWCH(l)

CONCEN(2) - RHOD*YOHEQ*RAMWCH(2)
CONCEN(3) - RHOD*YH2EQ*RAMWCH(3)

ENDIF

REACTION 1

ALNKFR - PREFCH(1) + EXPFCH(1)*ALOGT - ENEFCH(1)*RTEMP
ALNKBR - PREBCH(1) + EXPBCH(1)*ALOGT - ENEBCH(1)*RTEMP
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ALNKFR =

ALNKBR 

AKB2 =
AKBB2 -

PROD1 =

PROD2

OMEGAF 

OMEGAB =

WREACT(1) =

O.5*ALNKFR

0.5*ALNKBR

EXP(ALNKFR)

EXP(ALNKBR)

CONCEN(1)*CONCEN(3)

CONCEN(2)*CONCEN(2)
AKFB2*PROD1*AKFB2

AKBB2*PROD2*AKBB2

OMEGAF - OMEGAB

FIND NENSPEC FOR THIS REACTION

DENFAC O.

RMIN = -10.

IF (WREACT(1) .LT. 0.) THEN

NENSPEC IS OH

IF (CONCEN(2) .GT. 1.E-6) THEN

ROM = 2.*WREACT(1)/CONCEN(2)

IF (ROM .LT. RMIN) DENFAC = SONDPR/CONCEN(2)*2.*OMEGAB

ENDIF

C
ELSE

NENSPEC IS EITHER H2 OR 02

IF (CONCEN(1) .GT. 1.E-6) THEN
ROM = -WREACT(I)/CONCEN(1)
IF (ROM .LT. RMIN) THEN

RMIN RMON

DENFAC = SONDPR/CONCEN(1)*OMEGAF
ENDIF

ENDIF

IF (CONCEN(3) .GT. 1.E-6) THEN

ROM = -WREACT(1)/CONCEN(3)

IF (ROM .LT. RMIN) THEN
RMIN = RMON

DENFAC = SONDPR/CONCEN(3)*OMEGAF
ENDIF

ENDIF

ENDIF

ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(1) = WREACT(1)/(1.+DENFAC)

REACTION # 2

ALNKFR

ALNKBR

ALNKFR

ALNKBR

= PREFCH(2) + EXPFCH(2)*ALOGT - ENEFCH(2)*RTEMP

- PREBCH(2) + EXPBCH(2)*ALOGT - ENEBCH(2)*RTEMP
= 0.5*ALNKFR

= O.5*ALNKBR
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AKFB2
AKBB2
PRODI
PROD2
OMEGAF

OMEGAB
WREACT(2)

- EXP(ALNKFR)
= EXP(ALNKBR)
- CONCEN(3)*CONCEN(2)*CONCEN(2)
- CONCEN(4)*CONCEN(4)
- AKFB2*PROD1*AKFB2

- AKBB2*PROD2*AKBB2

- OMEGAF - OMEGAB

FIND NENSPEC FOR THIS REACTION

RMIN - -10.

DENFAC - 0.

IF (WREACT(2) .LT. .) THEN

NENSPEC IS H20

IF (CONCEN(4) .GT. 1.E-6) THEN
ROM - 2.*WREACT(2)/CONCEN(4)
IF (ROM .LT. RMIN) DENFAC = SONDPR/CONCEN(4)*2.*OMEGAB

ENDIF

ELSE

NENSPEC IS EITHER H2 OR OH

IF (CONCEN(2) .GT. 1.E-) THEN
ROM = -2.*WREACT(2)/CONCEN(2)

IF (ROM .LT. RMIN) THEN

RMIN RMON

DENFAC = SONDPR/CONCEN(2)*2.*OMEGAF
ENDIF

ENDIF

IF (CONCEN(3) .GT. 1.E-6) THEN

ROM = -WREACT(2)/CONCEN(3)
IF (ROM .LT. RMIN) THEN

RMIN - RMON

DENFAC - SONDPR/CONCEN(3)*OMEGAF
ENDIF

ENDIF

ENDIF

ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(2) - WREACT(2)/(1.+DENFAC)

COMPUTE THE SOURCE TERMS

BIGWJA(5) -
BIGWJA(8) 
BIGWJA(6) -
BIGWJA(7) -

-AMWTCH(I)*RECWDR* WREACT(1)
2.*AMWTCH(4) *RECWDR* WREACT(2)

2.*AMWTCH(2)*RECWDR*(WREACT1) -WREACT(2))
-AMWTCH(3)*RECWDR*(WREACT() +WREACT(2))

RETURN

ENDIF
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COMPUTE THE CONTRIBUTION WREACT TO THE SOURCE TERMS FROM ALL

THE REACTIONS

DO 50 IR - 1 NREACH

ALNKFR = PREFCH(IR) + EXPFCH(IR)*ALOGT - ENEFCH(IR)*RTEMP

ALNKBR - PREBCH(IR) + EXPBCH(IR)*ALOGT - ENEBCH(IR)*RTEMP

ALNKFR - 0.5*ALNKFR

ALNKBR 0.6*ALNKBR

AKFB2 = EXP(ALNKFR)

AKBB2 EXP(ALNKBR)

PRODI - i.DO

PROD2 - 1.DO
NSRK - NSRKCH(IR)

DO 30 IS 1., NSRK

ISP = ITABCH(IS IR)

IPI = IALOCH(ISP,IR)

IP2 = IBTOCH(ISP,IR)

IF (IPI .NE. O) PRODI - PROD1*CONCEN(ISP)**IP1

IF (IP2 .NE. O) PROD2 - PROD2*CONCEN(ISP)**IP2

CONTINUE

OMEGAF = AKFB2*PRODI*AKFB2
OMEGAB = AKBB2*PROD2*AKBB2

WREACT(IR) - OMEGAF - OMEGAB

FIND NENSPEC FOR THIS REACTION

RMIN = -10.

DENFAC O.

DO 40 IS = 1, NSRK

ISP - ITABCH(IS IR)

IF (CONCEN(ISP) .GT. 1.E-6) THEN

ROM - BMIACH(IS,IR)*WREACT(IR)/CONCEN(ISP)

IF (ROM .LT. RMIN) THEN

IP1 = IALPCH(ISP.IR)

IP2 - IBETCH(ISP,IR)

RMIN - RMON

DENFAC - SONDPR/CONCEN(ISP)*(IPI*OMEGAF+IP2*OMEGAB)
ENDIF

ENDIF

CONTINUE

ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(IR) - WREACT(IR)/(1.+DENFAC)

CONTINUE

C COMPUTE THE SOURCE TERMS

DO 70 IS - 1. NEQSCH
JS = NEQBAS + IS
SUMWT - 0.

DO 60 IR - 1, NREACH

SUMWT - SUMWT + BMIACH(IS,IR)*WREACT(IR)
60 CONTINUE
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BIGWJA(JS) = AMWTCH(IS)*SUMWT
IF (KROGER .EQ. 2) BIGWJA(JS) - BIGWJA(JS)*RHOD

BrGWJA(JS) - BIGWJA(JS)*RECWDR
70 CONTINUE

RETURN

END

E2SOUR

SUBROUTINE E2SOUR

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] JACOMN.INC/LIST'
INCLUDE '[.INCJ PRCOMN.INC/LIST'

DIMENSION WREACT(MREACH)

DOUBLE PRECISION PROD1, PROD2, CONCEN(MSPECH)

C THIS FUNCTION COMPUTES THE SOURCE TERMS SO THAT THE JACOBIAN

C TERMS COULD BE COMPUTED. IT ALSO COMPUTES SOME FLUX TERMS, ONLY
C TWO FLUX TERMS, F2, F4 AND G3. G4 ARE NEEDED FOR NUMERICAL
C COMPUTATION OF FLUX JACOBIANS, WHEREAS ALL THE SOURCE TERMS ARE
C NEEDED FOR SOURCE JACOBIANS. THE TEMPORALLY VARYING VARIABLES ARE

C STORED IN THE JA COMMON VARIABLES, I.E.,
C DPENJA(J) DPENG1(J,INODE)
C FOR THE GIVEN NODE INODE.

C THE DIFFERENCE BETWEEN THIS ROUTINE AND E2FLUX IS THAT IN THAT
C ROUTINE WE DO NOT CONSIDER VARIATIONS W.R.T. STATE VARIABLES.

RHO - DPENJA(1)

UCOMP - DPENJA(2)/DPENJA(1)

VCOMP - DPENJA(3)/DPENJA(1)

BEPS - DPENJA(4)

BEU = BEPS/RHO
VEL02U - UCOMP*UCOMP + VCOMP*VCOMP

C

C COMPUTE THE DIMENSIONAL QUANTITIES
C

BE = FMREFL*BEU

VEL02 - FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.
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DO 5 IS 1, NEQSCH

is - NEQBAS + IS

YSPEPR(IS) - DPENJA(JS)/DPENJA(1)

SUMY - SUMY + YSPEPR(IS)

5 CONTINUE

YNEXT -

IF (YNEXT .LT. O.)

YSPEPR(NEQSCH+1) -

1. - SUMY - YNRTCH

YNEXT - 0.

YNEXT

SYSHFS - O.
SYSCPS - O.
SYSBMS - 0.

BIGAM 0.

COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

COMPUTE THE CONCENTRATIONS OF ALL THE SPECIES IN KMOL/(M**3) ·

C
C

C

DO 10 IS - 1.

SYSHFS

SYSCPS

SYSBMS

BIGAM

CONCEN(IS)

10 CONTINUE

NSPECH

- SYSHFS + YSPEPR(IS)*FMHTCH(IS)/AMWTCH(IS)

- SYSCPS + YSPEPR(IS)*SPCPCH(IS)

= SYSBMS + YSPEPR(IS)/AMWTCH(IS)

- BIGAM + YSPEPR(IS)*SPBSCH(IS)

= RHO*RHORFL*YSPEPR(IS)/AMWTCH(IS)

C

C COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM - BE - 0.5*VEL02 - SYSHFS + TREFCH*SYSCPS

+ O.S*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. 1.E-10) THEN

TEMP = BIGCM/BIGBM

ELSE

DISCRI

TEMP

ENDIF

ALOGT - I
RTEMP 

- BIGBM*BIGBM + 2.*BIGAM*BIGCM

- ( SQRT(DISCRI)-BIGBM )/BIGAM

LOG(TEMP)

1 ./TEMP

NORMALIZE THE TEMPERATURE

TEMPU - TEMP/TREFFL

COMPUTE THE DIMENSIONLESS PRESSURE

PRESS - RHO*TEMPU*AMWTFL*SYSMS

C COMPUTE THE FLUX VARIABLES (FIRST FOUR)

BGF2JA - DPENJA(2)*UCOMP + PRESS
BGG3JA - DPENJA(3)*VCOMP + PRESS

BGF4JA - (BEPS+PRESS)*UCOMP

BGG4JA - (BEPS+PRESS)*VCOMP
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C BY-PASS THE REACTION CALCULATIONS IF TEMPERATURE IS LESS THAN

C TRIGGER TEMPERATURE

FROZEN - 1.

IF (TEMP .LT. TRIGCH) THEN

FROZEN - 0.
GO TO 45

ENDIF

C
C CORRECT THE RATE COEFFICIENTS FOR ROGERS AND CHINITZ MODEL

C

IF (KROGER .1
PHI

IF (PHI .I

IF (PHI .(

RPHI

TENLOG

AIPHI

A2PHI

PREFCH(1)
PREFCH(2)
PREBCH(1)
PREBCH(2)

ENDIF

;Q.

LT.

;T.
m

ms

ms

1) THEN

YSPEPR(3)*34.048(1. -YSPEPR(3))

0.1 ) PHI = 0.1
2.0 ) PHI = 2.0

1./PHI

LOG(10.)

8.917*PHI + 31.433*RPHI - 28.95

-0.833*PHI + 1.333*RPHI + 2.00
LOG(A1PHI) + 44.*TENLOG

LOG(A2PHI) + 58.*TENLOG
PREFCH(1) - PREECH(1)

PREFCH(2) - PREECH(2)

C

C COMPUTE THE CONTRIBUTION WREACT TO THE SOURCE TERMS FROM ALL

C THE REACTIONS

DO 40 IR -
ALNKFR -
ALNKBR -
ALNKFR -
ALNKBR -
AKFB2 -
AKBB2 -

PROD1 -

PROD2 -
NSRK -
DO 30 IS

ISP =

IPI "
IP2 a

IF (IP1

IF (IP:
30 CONTINUE

OMEGAF

OMEGAB

WREACT(II
40 CONTINUE

1. NREACH

PREFCH(IR) + EXPFCH(IR)*ALOGT - ENEFCH(IR)*RTEMP

PREBCH(IR) + EXPBCH(IR)*ALOGT - ENEBCH(IR)*RTEMP

O.S*ALNKFR
O.5*ALNKBR

EXP(ALNKFR)

EXP (ALNKBR)
1.DO
1.DO

NSRKCH(IR)
- 1. NSRK
* ITABCH(IS IR)
· IALOCH(ISP,IR)

* IBTOCH(ISP,IR)

I .NE. O) PRODI - PRODI*CONCEN(ISP)**IPI

.NE. ) PROD2 - PROD2*CONCEN(ISP)**IP2

- AKFB2*PRODI*AKFB2

- AKBB2*PROD2*AKBB2
- OMEGAF - OMEGAB

C COMPUTE THE SOURCE TERMS

46 DO 60 IS - 1, NEQSCH
JS - NEQBAS + IS
SUMWT - O.

DO 50 IR - 1, NREACH

SUMWT - SUMWT + BMA_CH(IS,IR)*WREACT(IR)
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50 CONTINUE

BIGWJA(JS)

IF (KROGER
BIGWJA(JS)

60 CONTINUE

C
C
C

- AMWTCH(IS)*SUMWT*FROZEN

.EQ. 2) BIGWJA(JS) - BIGWJA(JS)*RHO*RHORFL

- BIGWJA(JS)/WDREFL

PRINT OUT PARAMETERS

IF (IDBGE2 .NE. 8 .AND. IDBGE2 .LT. 1000) RETURN

WRITE(JDEBUG, 1000)
WRITE(JDEBUG,OO1100)
WRITE(JDEBUG, 1200)

WRITE(JDEBUG, 1300) BGF2JA,BGF4JA,BGG3JA,BGG4JA

DO 70 IS - 1, NEQNFL

WRITE(JDEBUG,1400) IS, DPENJA(IS), BIGWJA(IS)
70 CONTINUE

C
C

C
FORMAT STATEMENTS

1000 FORMAT(//lOX ----------------------- )
1100 FORMAT( lOX.'DEBUG PRINT FROM E2SOUR' )
1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT( 5X, 'BGF2JA-', G14.5, SX, 'BGF4JA-', G14.5/
1 5X. 'BGG3JA=', G14.5, 5X, 'BGG4JA-', G14.5/

2 5X, 'IS', X, 'DPENJA',10X,'BIGWJA')

1400 FORMAT(SX, I,2G14.6)

RETURN

END

E2TIMU

SUBROUTINE E2TIMO

C E2TIMU

PARAMETER (GAMMAX-1.66.
INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'JACOMN.INC'

INCLUDE 'M2COMN.INC'
INCLUDE 'PRCOMN.INC'

ZBASLG=0.69314718, TENLOG=2.302585093)
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INCLUDE 'TICOMN.INC'

DIMENSION NCEL(MMAXTI), ICELTT(MMAXTI,MCELG2), CELLBN(MMAXTI)

DIMENSION WREACT(MREACH)

DOUBLE PRECISION PRODI, PROD2, CONCEN(MSPECH)

C THIS SUBROUTINE STEPS THROUGH EACH CELL ON THIS LEVEL AND

C COMPUTES THE CELL TIME STEP AS A FIRST STEP. THE CELL TIME-

C STEPS ARE REASSIGNED AS MULTIPLES OF INTEGRAL POWERS OF 2

C TIMES THE GLOBAL MIMIMUM TIME-STEP IF ATLEAST A FACTOR OF

C 2 EXISTS BETWEEN GLOBAL MIMIMUM AND GLOBAL MAXIMUM VALUES.

C INITIALIZE QUANTITIES

DTMNTI - 1000.

DTMAX =- 0.
MAXCHR = 4
kadphr kadpti

if (kadphr .eq. 99) kadphr = 0
C ZBASLG - LOG(2.)

C STEP THROUGH ALL THE CEWIC CELLS AND FIND CELL TIMESTEPS

C
C

C CFL CONDITION
C
C
CVD$ NOLSTVAL

CVD$ NODEPCHK

DO 10 JCELL - 1, NCELA2

C CELL/NODE DETERMINATION

C FIND THE ACTUAL CELL NUMBER

ICELL ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW ICELG2(2,ICELL)
KSE - ICELG2(4.ICELL)
KNE - ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

C

C CELL CENTER VALUES

C ------- __________

C DETERMINE THE DEPENDENT VARIABLES (DENSITY, PRESSURE, AND
C VELOCITY COMPONENTS) AT THE CENTER OF THE CELL

C AVERAGE VALUES AT THE CENTER
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DPENJA(1) 0.25'

DPENJA(2) - 0.25 

DPENJA(3) - 0.25

*( DPENG2(1,KSW)

+ DPENG2(1,KNE)

*( DPENG2(2,KSW)

+ DPENG2(2,KNE)
*( DPENG2(3,.KSW)

+ DPENG2(3,KNE)

+ DPENG2(1,KSE)

+ DPENG2(1,KNW) )
+ DPENG2(2,KSE)
+ DPENG2(2,KNW) )
+ DPENG2(3,KSE)

+ DPENG2(3,KNW) )

GET THE PRESSURE FOR THE CELL

PRESPR - 0.26*( PRESG2(KSW) + PRESG2(KSE) + PRESG2(KNE)
+ PRESG2(KNW) )

COMPUTE THE VELOCITY COMPONENTS AND SPEED OF SOUND

UCOMPC

VCOMPC

SOUND

SOUND

- DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

- ABS(GAMMAX*PRESPR/DPENJA(1))

- SQRT(SOUND)

COMPUTE AVERAGE DISTANCES

DISTEW - SQRT(DXEWVM2(ICELL)*DXEWM2(ICELL)

DYEWM2(ICELL)*DYEWM2(ICELL)
DISTNS - SQRT(DXNSM2(ICELL)*DXNSM2(ICELL)

DYNSM2(ICELL)*DYNSM2(ICELL)

+
)
+
)

COMPUTE THE CFL CONDITION IN THE TWO DIRECTIONS

DTEW - ABS(UCOMPC*DYEWM2(ICELL) - VCOMPC*DXEWM2(ICELL))
1 + SOUND*DISTEW

DTNS - ABS(UCOMPC*DYNSM2(ICELL) - VCOMPC*DXNSM2(ICELL))
1 + SOUND*DISTNS

EIGEN - MAX(DTEW,DTNS)

FOR COARSER CELLS INCREASE 1
TWO FOR EACH SPATIAL LEVEL 

KX - KAUXG2(ICELL)
K6LEVG - IAND(KX,KUOOOF)
LEVELG - ISHFT(KSLEVG,-16)
ILEVEL - NLVLG2 - LEVELG
IFACTR - 2**ILEVEL
CFLTT - CFLNTI*IFACTR

CFLTT - MIN (CFLXTI.CFLTT)

THE CFL NUMBER BY A FACTOR OF

CAORSENING

CELLTI(ICELL) - CFLTT*FCTRTI/(EIGEN*RVOLM2 (ICELL))

CONTINUE

LOCAL CFL CONDITION

THIS IS AN ATTEMPT TO HANDLE STEADY-STATE PROBLEMS

IF (KADPTI .EQ. 99) THEN
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NGIVTI - 0
NMAXTI - 0

DO 15 JCELL - 1, NCELA2
ICELL - ICELA2(JCELL)
ICELTI(JCELL) - ICELL

16 CONTINUE

ILVLTI(1,0) - 1
ILVLTI(2.0) - NCELA2

RETURN

ENDIF

C

C TEMPORAL RESOLUTION

C
C SKIP THE TEMPORAL RESOLUTION IF KADPTI EQUALS ZERO OR USE THE

C APPROPRIATE FLUXES FOR CONTINUITY, MOMENTA OR ENERGY EQUATIONS

C

GOTO (190, 20, 40, 60, 80), KADPTI+1
C

C IF (KADPTI .GT. NEQNFL) GOTO 190

C USE SPECIES EQUATION FOR TEMPORAL RESOLUTION

GOTO 100

C
C RESOLUTION BASED UPON CONTINUITY EQUATION

CVD$ NOLSTVAL

CVD$ NODEPCHK

20 DO 30 JCELL - 1. NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6.ICELL)

KNW - ICELG2(8,ICELL)

C GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,RKSE)

YSE - GEOMG2(2,KSE)

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2.KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)
C
C DETERMINE THE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

DPENJA(KADPTI) - 0.25*( DPENG2(KADPTI,KSW)
1 + DPENG2(KADPTI.KSE)

2 + DPENG2(KADPTI.KNE)

3 + DPENG2(KADPTI,KNW) )
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C NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

C CORRESPONDING TO THE CONTINUITY EQUATION

BIGFSW - DPENG2(2,KSW)

BIGFSE - DPENG2(2.KSE)

BIGFNE - DPENG2(2,KNE)

BIGFNW - DPENG2(2,KNW)

BIGGSW - DPENG2(3.KSW)

BIGGSE - DPENG2(3,KSE)
BIGGNE - DPENG2(3.KNE)

BIGGNW - DPENG2(3,KNW)

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO - (BIGFSW-BIGFNE)*(YNW-YSE) +

1 (BIGFNW-BIGFSE)*(YNE-YSW) +

2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE) * (XSW-XNE)

DENO 0.5*DENO*RVOLM2(ICELL)

DTR - 1000.

IF (DENO .NE. 0.)

1 DTR - (EPSOTI+EPS1TI*DPENJA(KADPTI))/ABS(DENO)

CELLTI(ICELL) - MIN (CELLTI(ICELL), DTR)

30 CONTINUE

GOTO 190

C RESOLUTION BASED UPON X-MOMENTUM EQUATION

CVD$ NOLSTVAL

CVD* NODEPCHRK

40 DO 60 JCELL - 1. NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)

KNW - ICELG2(8.ICELL)

C GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2.KSW)

XSE - GEOMG2(1. KSE)

YSE - GEOMG2(2,KSE)

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1.KNW)

YNW - GEOMG2(2,KNW)
C
C DETERMINE THE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

DPENJA(KADPTI) 0.25*( DPENG2(KADPTI,KSW)
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1 + DPENG2(KADPTI,KSE)
2 + DPENG2(KADPTI,KNE)
3 + DPENG2(KADPTI,KNW) )

C NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

C CORRESPONDING TO THE X-MOMENTUM EQUATION

BIGFSW - DPENG2 (2,KSW)*DPENG2(2,KSW)/DPENG2(1,KSW) +
1 PRESG2(KSW)

BIGFSE - DPENG2 (2.KSE)*DPENG2(2,KSE)/DPENG2(. KSE) +

1 PRESG2(KSE)

BIGFNE - DPENG2(2.KNE)*DPENG2(2, KNE)/DPENG2(1,KNE) +
1 PRESG2(KNE)

BIGFNW - DPENG2(2.KNW)*DNW)/D(2,KN)/DPENG2(1.KNW) +
1 PRESG2(KNW)

BIGGSW = DPENG2(2.KSW)*DPENG2(3.KSW)/DPENG2(1 .KSW)

BIGGSE - KSE)G2(2,KSE)*DPENG2(3,KSE)/DPENG2(1,KSE)

BIGGNE - DPENG2(2,KNE)*DPENG2(3.KNE)/DPENG2(1,KNE)

BIGGNW DPENG2(2.KNW)*DPENG2(3,KNW)/DPENG2(1,KNW)

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO - (BIGFSW-BIGFNE)*(YNW-YSE) +

1 (BIGFNW-BIGFSE)*(YNE-YS/W) +
2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE)*(XSW-XNE)

DENO - 0.5*DENO*RVOLM2(ICELL)

DTR - 1000.

IF (DENO .NE. 0.)
1 DTR (EPSOTI+EPSlTI*DPENJA(KADPTI))/ABS(DENO)

CELLTI(ICELL) - MIN (CELLTI(ICELL), DTR)

50 CONTINUE

GOTO 190

C RESOLUTION BASED UPON Y-MOMENTUM EQUATION

CVD$ NOLSTVAL

CVD$ NODEPCHK

60 DO 70 JCELL - 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)

RSE = ICELG2(4,ICELL)
KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)

C GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1.KSW)
YSW - GEOMG2(2,KSW)

XSE GEOMG2(1,KSE)

YSE GEOMG2(2,KSE)
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XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

C
C DETERMINE THE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

DPENJA(KADPTI) - 0.25*( DPENG2(KADPTI.KSW)

1 + DPENG2(KADPTI,KSE)
2 + DPENG2(KADPTI,KNE)
3 + DPENG2(KADPTI,KNW) )

C NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

C CORRESPONDING TO THE X-MOMENTUM EQUATION

BIGFSW - DPENG2(2,KSW)*DPENG2(3,KSW)/DPENG2(1,KSW)

BIGFSE - DPENG2(2,KSE)*DPENG2(3,KSE)/DPENG2(1. KSE)

BIGFNE - DPENG2(2,KNE)*DPENG2(3,KNE)/DPENG2(1,KNE)

BIGFNW - DPENG2(2,KNW)*DPENG2(3,KNW)/DPENG2(1.KNW)

BIGGSW - DPENG2(3,KSW)*DPENG2(3,KSW)/DPENG2(1,KSW) +
1 PRESG2(KSW)

BIGGSE - DPENG2(3,KSE)*DPENG2(3,KSE)/DPENG2(1,KSE) +
1 PRESG2(KSE)

BIGGNE - DPENG2(3,KNE)*DPENG2(3.KNE)/DPENG2(1,KNE) +
1 PRESG2(KNE)

BIGGNW = DPENG2(3,KNW)*DPENG2(3,KNW)/DPENG2(1,KNW) +
1 PRESG2(KNW)

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO - (BIGFSW-BIGFNE)*(YNW-YSE) +

1 (BIGFNW-BIGFSE)*(YNE-YSW) +
2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE)*(XSW-XNE)

DENO - O.5*DENO*RVOLM2(ICELL)

DTR - 1000.

IF (DENO .NE. 0.)

1 DTR - (EPSOTI+EPS1TI*DPENJA(KADPTI))/ABS(DENO)

CELLTI(ICELL) - MIN (CELLTI(ICELL), DTR)

70 CONTINUE

GOTO 190

C RESOLUTION BASED UPON ENERGY EQUATION

CVD$ NOLSTVAL

CVD$ NODEPCHK

80 DO 90 JCELL- 1, NCELA2

C FIND THE ACTUAL CELL NUMBER
ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2(2.ICELL)
KSE - ICELG2(4,ICELL)
KNE - ICELG2(6,ICELL)
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KNW ICELG2(8.ICELL)

C GEOMETRY OF ALL CELL CORNERS
XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2,KSE)

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2.KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2.KNW)
C
C DETERMINE THE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

DPENJA(KADPTI) - 0.25*( DPENG2(KADPTI,KSW)
I + DPENG2(KADPTI,KSE)

2 + DPENG2(KADPTI,KNE)

3 + DPENG2(KADPTI.KNW) )

C NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

C CORRESPONDING TO THE X-MOMENTUM EQUATION

BIGFSW - ( DPENG2(4,KSW) + PRESG2(KSW) )*
1 DPENG2(2.KSW)/DPENG2(1KSW)

BIGFSE - ( DPENG2(4,KSE) + PRESG2(KSE) )*
1 DPENG2(2,KSE)/DPENG2(1,KSE)

BIGFNE - ( DPENG2(4,KNE) + PRESG2(KNE) )*
1 DPENG2(2,KNE)/DPENG2(1.KNE)

BIGFNW - ( DPENG2(4,KNW) + PRESG2(KNW) )*
1 DPENG2(2.KNW)/DPENG2(1,KNW)

BIGGSW - ( DPENG2(4KSW) + PRESG2(KSW) )*
1 DPENG2(3.KSW)/DPENG2( ,KSW)

BIGGSE - ( DPENG2(4,KSE) + PRESG2(KSE) )*
1 DPENG2(3,KSE)/DPENG2(1,KSE)

BIGGNE - ( DPENG2(4,KNE) + PRESG2(KNE) )*
1 DPENG2(3.KNE)/DPENG2(1.KNE)

BIGGNW ( DPENG2(4,KNW) + PRESG2(KNW) )*
1 DPENG2(3.KNW)/DPENG2(1.KNW)

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO (BIGFSW-BIGFNE)*(YNW-YSE) +

1 (BIGFNW-BIGFSE)*(YNE-YSW) +

2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE) * (XSW-XNE)

DENO - 0.5*DENO*RVOLM2(ICELL)
DTR - 1000.

IF (DENO .NE. 0.)

1 DTR - (EPSOTI+EPS1TI*DPENJA(KADPTI))/ABS(DENO)

CELLTI(ICELL) MIN (CELLTI(ICELL). DTR)

90 CONTINUE

GOTO 190

C
C USE SPECIES EQUATION FOR TEMPORAL RESOLUTION
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100 IF (KDIFTI .NE. O) GOTO 181

DO 180 JCELL - 1, NCELA2

C FIND THE ACTUAL CELL NUMBER
ICELL ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW ICELG2(2.ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)

C GEOMETRY OF ALL CELL CORNERS

XSW GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1.KNE)

YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

C

C DETERMINE ALL THE DEPENDENT VARIABLES AT THE CENTER

C OF THE CELL

C

DO 110 IQ 1, NEQNFL

DPENJA(IQ) 0.25*( DPENG2(I,KSW) + DPENG2(IQ,KSE)

1 + DPENG2(IQ,KNE) + DPENG2(IQ,KNW) )

110 CONTINUE

C GET THE TEMPERATURE FOR THE CELL

TEMPPR - 0.25*( TEMPG2(KSW) + TEMPG2(RKSE) +

1 TEMPG2(KNE) + TEMPG2(KNW) )

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.

DO 120 IS 1, NEQSCH

JS - NEQBAS + IS
YSPEPR(IS) - DPENJA(JS)/DPENJA(1)

SUMY - SUMY + YSPEPR(IS)
120 CONTINUE

YNEXT - 1. - SUMY - YNRTCH

IF (YNEXT .LT. 0.) YNEXT - O.

YSPEPR(NEQSCH+I) - YNEXT

C COMPUTE THE CONCENTRATIONS OF ALL THE SPECIES IN KMOL/(M**3)

DO 130 IS - 1, NSPECH

CONCEN(IS) - DPENJA(1)*RHORFL*YSPEPR(IS)*RAMWCH(IS)
130 CONTINUE

C

C COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

TEMP - TEMPPR*TREFFL
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ALOGT LOG(TEMP)

RTEMP - 1./TEMP

BY-PASS THE REACTION CALCULATIONS IF TEMPERATURE IS LESS

THAN TRIGGER TEMPERATURE

IF (TEMP .LT. TRIGCH) THEN
BIGWCE O.
GOTO 170

ENDIF

CORRECT THE RATE COEFFICIENTS FOR ROGERS AND CHINITZ MODEL

IF (KROGER .EQ.

PHI =

IF (PHI .LT.

IF (PHI .GT.

RPHI =

TENLOG -

AlPHI =

A2PHI -

PREFCH(1) =
PREFCH(2) -
PREBCH(1) -

PREBCH(2) -
ENDIF

1) THEN

YSPEPR(3)*34.048/(1.-YSPEPR(3))

0.1 ) PHI = 0.1
2.0 ) PHI = 2.0
1./PHI
LOG(10.)

8.917*PHI + 31.433*RPHI - 28.96

-0.833*PHI + 1.333*RPHI + 2.00

LOG(A1PHI) + 44.*TENLOG

LOG(A2PHI) + 568.*TENLOG
PREFCH(1) - PREECH(1)

PREFCH(2) - PREECH(2)

COMPUTE THE CONTRIBUTION WREACT TO THE SOURCE TERMS

FROM ALL THE REACTIONS

DO 150 IR = 1, NREACH

ALNKFR - PREFCH(IR) +EXPFCH(IR)*ALOGT -ENEFCH(IR)*RTEMP
ALNKBR - PREBCH(IR) +EXPBCH(IR)*ALOGT -ENEBCH(IR)*RTEMP
ALNKFR - 0.5*ALNKFR

ALNKBR - 0.5*ALNKBR

AKFB2 - EXP(ALNKFR)

AKBB2 - EXP(ALNKBR)
PRODI - 1.DO
PROD2 = 1.DO
NSRK - NSRKCH(IR)

DO 140 IS - 1, NSRK

ISP - ITABCH(IS ,IR)

IPi - IALOCH(ISP,IR)

IP2 - IBTOCH(ISP,IR)

IF (IPI .NE. O) PRODI - PRODI*CONCEN(ISP)**IP

IF (IP2 .NE. O) PROD2 PROD2*CONCEN(ISP)**IP2

140 CONTINUE

OMEGAF = AKFB2*PROD*AKFB2
OMEGAB - AKBB2*PROD2*AKBB2

WREACT(IR) = OMEGAF - OMEGAB
160 CONTINUE

COMPUTE THE SOURCE TERMS

SUMWT - 0.
DO 160 IR - 1, NREACH

SUMWT - SUMWT + BMIACH(IS,IR)*WREACT(IR)
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160 CONTINUE

BIGWCE - AMWTCH(IS)*SUMWT/WDREFL

IF (KROGER .EQ. 2) BIGWCE BIGWCE*DPENJA(1)*RHORFL

C NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

C CORRESPONDING TO THE X-MOMENTUM EQUATION

170 BIGFSW - DPENG2(KADPTIKSW)*DPENG2(2,KSW)/DPENG2(1 KSW)

BIGFSE - DPENG2(KADPTI,KSE)*DPENG2(2,KSE)/DPENG2(1,KSE)

BIGFNE - DPENG2(KADPTI,KNE)*DPENG2(2,KNE)/DPENG2 (1,KNE)

BIGFNW - DPENG2(KADPTI,KNW)*DPENG2(2, KNW)/DPENG2(1,KNW)

BIGGSW - DPENG2(KADPTI,KSW)*DPENG2(3,KSW)/DPENG2(1,KSW)

BIGGSE - DPENG2(KADPTI,KSE)*DPENG2(3,KSE)/DPENG2(1.KSE)

BIGGNE - DPENG2(KADPTI,KNE)*DPENG2(3, KNE)/DPENG2 (1. KNE)
BIGGNW = DPENG2(KADPTI,KNW)*DPENG2(3,KNW)/DPENG2(1,KNW)

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO - (BIGFSW-BIGFNE)*(YNW-YSE) +
1 (BIGFNW-BIGFSE)*(YNE-YSW) +

2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE) * (XSW-XNE)

DENO - BIGWCE + 0.5*DENO*RVOLM2(ICELL)
DTR - 1000.
IF (DENO .NE. 0.)

1 DTR - (EPSOTI+EPS1TI*DPENJA(KADPTI))/ABS(DENO)
CELLTI(ICELL) - MIN (CELLTI(ICELL). DTR)

180 CONTINUE

GOTO 190

181 DO 185 JCELL - 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL
KSW ICELG2(2,ICELL)

KSE ICELG2(4,ICELL)

KNE ICELG2(6,ICELL)

KNW - ICELG2(8,ICELL)
C

C DETERMINE THE MASS FRACTIONS AT THE CORNERS
C

YSPKSW - DPENG2(KADPTI.KSW)/DPENG2(1, KSW)

YSPKSE - DPENG2(KADPTIKSE)/DPENG2(1 ,KSE)

YSPKNE DPENG2(KADPTI,KNE)/DPENG2(1,KNE)

YSPKNW DPENG2(KADPTI.KNW)/DPENG2(1.,KNW)
C

C DETERMINE THE MAX/MIN MASS FRACTION VARIATIONS
C

YSPMAX - MAX (YSPKSW, YSPKSE, YSPKNE, YSPKNW)

YSPMIN - MIN (YSPKSW, YSPKSE, YSPKNE, YSPKNW)
YSPMIN - YSPMAX - YSPMIN

IF (YSPMIN .LE. 1.E-6) GOTO 185
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C
C THE GREATER THE DIFFERENCE OF MASS FRACTIONS AMONG NEIGHBOURING

C CELLS THE GREATER WILL BE THE FACTOR BY WHICH THE CELL TIMESTEP

C WILL BE REDUCED; WITH A MAXIMUM FACTOR OF 16

YSPMIN - YSPMIN/YSPMAX

DENO - 1. + 15* YSPMIN

CELLTI(ICELL) - CELLTI(ICELL)/ABS(DENO)

186 CONTINUE

C
C

C GLOBAL MINIMUM/MAXIMUM TIME STEPS
C

C

190 DO 200 JCELL - 1. NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

DTMNTI - MIN ( DTMNTI, CELLTI(ICELL) )

DTMAX - MAX ( DTMAX , CELLTI(ICELL) )
200 CONTINUE

C
C
C BOUNDARY NODE CELLS

C

C
C SKIP THE NEXT SECTION IF NO CHARACTERISTIC B.C'S ARE USED

C

IF (NCRSG2 .EQ. O) GO TO 250

C
C RESET THE CELL TIME STEPS FOR THE BOUNDARY CELLS INVOLVED

C WITH CHARACTERISTIC BOUNDARY CONDITIONS. FIRST INITIALIZE

C NUMBER OF CELLS IN EACH BOUNDARY TYPE AND THEIR TIME STEPS

C

DO 210 N 1, MMAXTI

NCEL(N) - 0
CELLBN(N) - 1000.

210 CONTINUE

C
C COLLECT THE NODES WITH SPECIFIC CHARACTERISTICS

C ONLY TYPES OF KIND 4, 5. 6 WILL BE CONSIDERED

C

DO 220 IBND - 1, NBNDG2

ITYPE - IBNDG2(5,IBND)
c N - ITYPE - 2

N - ITYPE - 3
IF (N .GT. 0 .AND. N .LE. MAXCHR) THEN

NCEL(N) - NCEL(N) + 1

ICELTT(N,NCEL(N)) - IBND

TIMCL1 - CELLTI(IBNDG2(2.IBND))

IF (IBNDG2(3.IBND) .NE. O) THEN

TIMCL2 - CELLTI(IBNDG2(3,IBND))

ELSE

TIMCL2 - 1000.

ENDIF
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CELLBN(N) - MIN (CELLBN(N), TIMCL1, TIMCL2)

ENdIF
CONTINUE

NOW RESET THE CELLS ASSOCIATED WITH BOUNDARY

THE MINIMUM TIME STEP OVER A PARTICULAR TYPE

DO 240 N - 1. MAXCHR

DO 230 JBND - 1, NCEL(N)
IBND

CELLTI(IBNDG2(2.IBND))

CELLTI(IBNDG2(3,IBND))
CONTINUE

CONTINUE

NODES TO HAVE

- ICELTT(N,JBND)

= CELLBN(N)

- CELLBN(N)

MAXIMUM TEMPORAL LEVEL

COMPUTE THE MAXIMUM TEMPORAL LEVEL OF CELLS

250 AKMAX - DTMAX/DTMNTI

KMAX - 10000
IF (AKMAX .LT. 1.E4) KMAX NINT(AKMAX)
ZKK - KMAX
ZZ - LOG (ZKK) / ZBASLG
N - INT (ZZ)
NMAXTI - MIN (N,NGIVTI,MMAXTI)

TEMPORAL LEVEL CELLS GROUPINGS

C INITIALIZE THE NUMBER OF CELLS IN EACH LEVEL

NCELO - 0

CVD$ NOVECTOR

CVD$ NOLSTVAL

DO 260 N - 1, MMAXTI

NCEL(N) - O
260 CONTINUE

C REASSIGN THE CELL TIME STEPS AS INTEGRAL MULTIPLES OF 2

CVDt NOLSTVAL
CVDS NODEPCHK

DO 270 JCELL
ICELL
K
AK
IF (AK .LT.

ZKK
ZZ
N
N
IP

- 1, NCELA2

- ICELA2(JCELL)
- 10000
- CELLTI(ICELL)/DTMNTI

1.E4) K - NINT(AK)
. -K
= LOG (ZKK) / ZBASLG
- INT (ZZ)

- MIN (N,NMAXTI)

- 2**N

750

220
C
C
C
C

C
230

240

C
C
C
C
C
C

C
C
C

C
C



CELLTI(ICELL)

270 CONTINUE

s IP*DTMNTI

C SEE IF YOU WANT TO TRANSLATE NODITS, OR WANT TO LIMIT THE
C CELL TIME STEPS BY FACTORS OF FOUR AT MOST

IF (NMAXTI .GT. 1 .and. kadphr .ne. O) CALL NODIT2

DO 280 JCELL

ICELL

AK
K
ZKK

N

N

- 1. NCELA2

- ICELA2(JCELL)

- CELLTI(ICELL)/DTMNTI

- NINT(AK)
- K

- LOG (ZKK) / ZBASLG
- INT (ZZ)

- MIN (N.NMAXTI)

IF (N .EQ. O) THEN
NCELO = NCELO + 1
ICELTI(NCELO) = ICELL

ELSE

NCEL(N)

ICELTT(N.NCEL(N))
ENDIF

280 CONTINUE

= NCEL(N) + 1
- ICELL

C NOW SET UP THE POINTER SYSTEM FOR TEMPORAL ADAPTATION

ILVLTI(l,O) 1

ILVLTI(2,0) - NCELO

CVD$ NOVECTOR
CVD$ NOLSTVAL

DO 300 N 1,
NCELT

ILVLTI(1,N)

ILVLTI(2,N)

DO 290 JCELI

NCELO

ICELTI(NCI
290 CONTINUE

300 CONTINUE

NMAXTI

- NCEL(N)

- ILVLTI(2,N-1) + 1
- ILVLTI(1,N ) + NCELT -
L 1, NCELT

" NCELO + 
MLO) - ICELTT(N,JCELL)

RETURN

END

E2TIMO

SUBROUTINE E2TIMO

INCLUDE '[.INC] PRECIS.INC/LIST'
INCLUDE '[.INC] PARMV2.INC/LIST'
INCLUDE 't.INC] A2COMN.INC/LIST'
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INCLUDE '[.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] JACOMN.INC/LIST'

INCLUDE '[.INC] TICOMN.INC/LIST'

DIMENSION NCEL(MMAXTI), ICELTT(MMAXTI,MCELG2), CELLBN(MMAXTI)

C THIS SUBROUTINE STEPS THROUGH EACH CELL ON THIS LEVEL AND

C COMPUTES THE CELL TIME STEP AS A FIRST STEP. THE CELL TIME-

C STEPS ARE REASSIGNED AS MULTIPLES OF INTEGRAL POWERS OF 2

C TIMES THE GLOBAL MIMIMUM TIME-STEP IF ATLEAST A FACTOR OF

C 2 EXISTS BETWEEN GLOBAL MIMIMUM AND GLOBAL MAXIMUM VALUES.

C INITIALIZE QUANTITIES

DTMNTI - 1000.

DTMAX - 0.
GAMMA 1.66

MAXCHR - 4

C STEP THROUGH ALL THE CEWIC CELLS AND FIND CELL TIMESTEPS

DO 20 JCELL - 1, NCELA2

C CELL/NODE DETERMINATION

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

C SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)
KSE - ICELG2(4.ICELL)
KNE - ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

C GEOMETRY

C

C GEOMETRY OF ALL CELL CORNERS
C

XSW - GEOMG2(1,KSW)

YSW - GEOMG2(2,KSW)
C

XSE - GEOMG2(,.KSE)

YSE - GEOMG2(2,KSE)
C

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)
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C -

XN31 - GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)

C COMPUTE THE PROJECTIONS OF CELL FACES AND THE SIZE OF THE CELL

DXEW - 0.5*(XNE + XSE - XNW - XSW)

DYEW - 0.6*(YNE + YSE - YNW - YSW)

DXNS - 0.6*(XNW + XNE - XSW - XSE)

DYNS - O.5*(YNW + YNE - YSW - YSE)

DVOL - 0.5*( (XSE-XNW)*(YNE-YSW) - (YSE-YNW)*(XNE-XSW) )
C

C CELL CENTER VALUES

C
C DETERMINE THE DEPENDENT VARIABLES AT THE CENTER OF THE CELL

C COMPUTE FIRST THE DEPENDENT VARIABLES AT THE FACES

DO 10 IQ - 1. NEQNFL

DPENSW - DPENG2(IQ.KSW)

DPENSE - DPENG2(IQ,KSE)

DPENNE - DPENG2(IQ,KNE)

DPENNW - DPENG2(IQ,KNW)

C AVERAGE VALUES AT THE CENTER

DPENJA(IQ) = 0.25*( DPENSW + DPENSE + DPENNE + DPENNW )

10 CONTINUE

C GET THE PRESSURE FOR THE CELL

PRESSW - PRESG2(KSW)

PRESSE - PRESG2(KSE)

PRESNE - PRESG2(KNE)

PRESNW - PRESG2(KNW)

C AVERAGE VALUE AT THE CENTER

PRESPR - 0.25*( PRESSW + PRESSE + PRESNE + PRESNW )

C

C CFL CONDITION

C -- __________

C COMPUTE THE VELOCITY COMPONENTS AND SPEED OF SOUND

UCOMPC - DPENJA(2)/DPENJA(1)
VCOMPC - DPENJA(3)/DPENJA(1)

SOUND - GAMMA*PRESPR/DPENJA(1)

SOUND - SQRT(SOUND)

C COMPUTE AVERAGE DISTANCES
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DISTEW - SQRT(DXEW*DXEW + DYEW*DYEW )

DISTNS - SQRT(DXNS*DXNS + DYNS*DYNS )

COMPUTE THE CFL CONDITION IN THE TWO DIRECTIONS

DTEW

DTNS

EIGEN

DTN

- ABS(UCOMPC*DYEW - VCOMPC*DXEW) + SOUND*DISTEW

= ABS(UCOMPC*DYNS - VCOMPC*DXNS) + SOUND*DISTNS

- MAX(DTEW,DTNS)

- CFLNTI*DVOL/EIGEN

CELLTI(ICELL) - DTN*FCTRTI

IF (DTN .LE. 0.) THEN

ZERI - ICELL

ZER2 - DVOL

CALL ERRORM (4,'E2TIMO'.'ICELL ',ZER1,'DVOL

'CELL TIME STEP IS ZERO')

ENDIF

',ZER2,JPRINT,

TEMPORAL RESOLUTION

SEE IF YOU WANT TO SKIP THE TEMPORAL RESOLUTION

IF (KADPTI .NE. O) THEN

COMPUTE THE SOURCE TERM AT THE CELL CENTER

CALL E2SOUR

BIGWCE - BIGWJA(KADPTI)

NOW COMPUTE THE FLUX TERMS AT THE FOUR CORNER NODES

UCOMPSW - DPENG2(2,KSW)/DPENG2(1,KSW)

UCOMPSE DPENG2(2,KSE)/DPENG2(1.KSE)

UCOMPNE - DPENG2(2,KNE)/DPENG2(1,KNE)

UCOMPNW - DPENG2(2,KNW)/DPENG2(1,.KNW)

VCOMPSW - DPENG2(3,KSW)/DPENG2(1,KSW)

VCOMPSE - DPENG2(3,KSE)/DPENG2(1,KSE)

VCOMPNE - DPENG2(3,KNE)/DPENG2(1,KNE)

VCOMPNW - DPENG2(3,KNW)/DPENG2(1.KNW)

BIGFSW - UCOMPSW*DPENG2(KADPTI.KSW)
BIGFSE - UCOMPSE*DPENG2(KADPTI.KSE)

BIGFNE - UCOMPNE*DPENG2(KADPTI,KNE)

BIGFNW - UCOMPNW*DPENG2(KADPTI,KNW)

BIGGSW - VCOMPSW*DPENG2(KADPTI,.KSW)

BIGGSE - VCOMPSE*DPENG2(KADPTI,.KSE)

BIGGNE - VCOMPNE*DPENG2(KADPTI,KNE)
BIGGNW - VCOMPNW*DPENG2(KADPTI.KNW)

IF (KADPTI .EQ. 2) THEN

BIGFSW - BIGFSW + PRESG2(KSW)

BIGFSE - BIGFSE + PRESG2(KSE)
BIGFNE - BIGFNE + PRESG2(KNE)

BIGFNW - BIGFNW + PRESG2(KNW)

ENDIF

IF (KADPTI .EQ. 3) THEN

BIGGSW - BIGGSW + PRESG2(KSW)
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BIGGSE = BIGGSE + PRESG2(KSE)

BIGGNE - BIGGNE + PRESG2(KNE)

BIGGNW - BIGGNW + PRESG2(KNW)

ENDIF

IF (KADPTI .EQ. 4) THEN

BIGFSW = BIGFSW + PRESG2(KSW)*UCOMPSW

BIGFSE = BIGFSE + PRESG2(KSE)*UCOMPSE

BIGFNE = BIGFNE + PRESG2(KNE)*UCOMPNE
BIGFNW - BIGFNW + PRESG2(KNW)*UCOMPNW

BIGGSW - BIGGSW + PRESG2(KSW)*VCOMPSW

BIGGSE - BIGGSE + PRESG2(KSE)*VCOMPSE

BIGGNE - BIGGNE + PRESG2(KNE)*VCOMPNE

BIGGNW = BIGGNW + PRESG2(KNW)*VCOMPNW

ENDIF

C COMPUTE THE FIRST ORDER CHANGE (/CELLTI)

DENO - (BIGFSW-BIGFNE)*(YNW-YSE) +

1 (BIGFNW-BIGFSE)*(YNE-YSW) +

2 (BIGGSW-BIGGNE)*(XSE-XNW) +

3 (BIGGNW-BIGGSE)*(XSW-XNE)

DENO - BIGWCE + 0.5*DENO/DVOL

UCELL - DPENJA(KADPTI)

DTR - 1000.

IF (DENO .NE. 0.) THEN

DTR - EPSITI*(EPSOTI+UCELL)/ABS(DENO)

ENDIF

IF (DTR .LE. 0.) THEN

ZER1 - ICELL

ZER2 DVOL

CALL ERRORM (4,'E2TIMO','ICELL ',ZER1,'DVOL ',ZER2,

1 JPRINT,'CELL TIME STEP IS ZERO')

ENDIF

CELLTI(ICELL) - MIN (DTN, DTR)

ENDIF

C COMPUTE THE GLOBAL MINIMUM AND MAXIMUM TIME STEPS

DTMNTI - MIN ( DTMNTI, CELLTI(ICELL) )

DTMAX - MAX ( DTMAX , CELLTI(ICELL) )

C GO BACK FOR NEXT CEWIC CELL
C
20 CONTINUE

C
C

C BOUNDARY NODE CELLS
C

C
C SKIP THE NEXT SECTION IF NO CHARACTERISTIC B.C'S ARE USED

C
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IF (NCRSG2 .EQ. O) GO TO 70

C
C RESET THE CELL TIME STEPS FOR THE BOUNDARY CELLS INVOLVED

C WITH CHARACTERISTIC BOUNDARY CONDITIONS. FIRST INITIALIZE

C NUMBER OF CELLS IN EACH BOUNDARY TYPE AND THEIR TIME STEPS

C

DO 30 N 1, MMAXTI
NCEL(N) - 0
CELLBN(N) - 1000.

30 CONTINUE
C
C COLLECT THE NODES WITH SPECIFIC CHARACTERISTICS

C ONLY TYPES OF KIND 4, 5. 6 WILL BE CONSIDERED
C

DO 40 IBND - 1, NBNDG2

ITYPE - IBNDG2(6,.IBND)

N - ITYPE - 2

C N -ITYPE - 3

IF (N .GT. 0 .AND. N .LE. MAXCHR) THEN

NCEL(N) = NCEL(N) + 1
ICELTT(N,NCEL(N)) - IBND

TIMCL1 - CELLTI(IBNDG2(2,IBND))

IF (IBNDG2(3,IBND) .NE. O) THEN

TIMCL2 - CELLTI(IBNDG2(3,IBND))

ELSE

TIMCL2 - 1000.

ENDIF

CELLBN(N) - MIN (CELLBN(N), TIMCL1, TIMCL2)

ENDIF

40 CONTINUE

C

C NOW RESET THE CELLS ASSOCIATED WITH BOUNDARY NODES TO HAVE

C THE MINIMUM TIME STEP OVER A PARTICULAR TYPE

C

DO 60 N - 1, MAXCHR

DO 60 JBND 1, NCEL(N)

IBND - ICELTT(N.JBND)

CELLTI(IBNDG2(2,IBND)) - CELLBN(N)

CELLTI(IBNDG2(3.IBND)) - CELLBN(N)

50 CONTINUE

60 CONTINUE
C
C --------- _______-

C MAXIMUM TEMPORAL LEVEL
C

C
C COMPUTE THE MAXIMUM TEMPORAL LEVEL OF CELLS

70 AKMAX - DTMAX/DTMNTI
KMAX - 10000
IF (AKMAX .LT. 1.E4) KMAX - NINT(AKMAX)

IF(KMAX .LE. O) THEN

ZERI - KMAX
ZER2 - DTMAX

CALL ERRORM (5,'E2TIMO','KMAX ',ZER1,'DTMAX ',ZER2.JPRINT,

1 'ERROR IN MAXIMUM TEMPORAL LEVEL CALCULATION')
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ENDIF

NMAXTI - IBASE2(KMAX,MMAXTI)

NMAXTI MIN(NGIVTI,NMAXTI)

TEMPORAL LEVEL CELLS GROUPINGS

C INITIALIZE THE NUMBER OF CELLS IN EACH LEVEL

NCELO - 0
DO 80 N - 1, MMAXTI

NCEL(N) - 0
80 CONTINUE

C REASSIGN THE CELL TIME STEPS AS INTEGRAL MULTIPLES OF 2

DO 90 JCELL

ICELL

K

= 1, NCELA2
= ICELA2(JCELL)

= 10000
AX - CELLTI(ICELL)/DTMNTI

IF (AK .LT. 1.E4) K NINT(AK)

N = IBASE2(K,NMAXTI)
IP = 2**N

CELLTI(ICELL) = IP*DTMNTI
90 CONTINUE

C SEE IF YOU WANT TO TRANSLATE NODITS, OR WANT TO LIMIT THE
C CELL TIME STEPS BY FACTORS OF FOUR AT MOST
C **** NODIT2 DOESNOT TRANSLATE NODITS IN 2-D YET ****

IF (NMAXTI .GT. O) CALL NODIT2

DO 100 JCELL

ICELL

AK
K

N

- 1, NCELA2

- ICELA2(JCELL)

- CELLTI(ICELL)/DTMNTI

- NINT(AK)

- IBASE2(K,NMAXTI)

IF (N .EQ. O) THEN

NCELO - NCELO + 1

ICELTI(NCELO) - ICELL
ELSE

NCEL(N) - NCEL(N) + 
ICELTT(N.NCEL(N)) = ICELL

ENDIF

100 CONTINUE

C NOW SET UP THE POINTER SYSTEM FOR TEMPORAL ADAPTATION

ILVLTI(l,0) - 1
ILVLTI(2.0) - NCELO

DO 120 N - 1,
NCELT

ILVLTI(1.N)

ILVLTI(2.N)

NMAXTI

- NCEL(N)
- ILVLTI(2,N-1) + 1
- ILVLTI(1,N ) + NCELT - 1
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DO 110 JCELL - 1,

NCELO

fCELTI(NCELO) -
110 CONTINUE

120 CONTINUE

NCELT

NCELO + 1

ICELTT(N.JCELL)

IF (IDBGE2 .GT. 1000 .AND.

CALL TIPRN2 (JDEBUG)

ENDIF

NMAXTI .GT. O) THEN

RETURN
END

E2TIMC

SUBROUTINE E2TIMC

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] HEXCOD.INC
INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] TICOMN.INC/LIST'
DIMENSION NCEL(MMAXTI), ICELTT(MMAXTI,MCELG2), CELLBN(MMAXTI)

C THIS SUBROUTINE SETS THE TIME-STEP OF EACH BASE LEVEL CELL AS A

C CONSTANT; WHEREAS HIGHER CELLS CELLS HAVE CORRESPONDINGLY
C LESSER TIME-STEPS.

C INITIALIZE QUANTITIES

MAXLEV - 0
MAXCHR 3

C STEP THROUGH ALL THE CEWIC CELLS AND FIND CELL TIMESTEPS

DO 20 JCELL - 1. NCELA2

FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

FIND THE LEVEL LEVELG OF THE GIVEN CELL

KX - KAUXG2(LCELL)
KSLEVG - IAND(KX,KUOOOF)

LEVELG - ISHFT(KSLEVG.-16)
IDENO - 1

IF (LEVELG .GT. O) IDENO - 2**LEVELG
MAXLEV - MAX (MAXLEV, LEVELG)
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CELLTI(ICELL) - DTCNTI/IDENO*FCTRTI

C GO BACK FOR NEXT CEWIC CELL

C

20 CONTINUE

C COMPUTE THE GLOBAL MINIMUM AND MAXIMUM TIME STEPS

DTMNTI - DTCNTI/(2**MAXLEV)
DTMAX - DTCNTI

C

C BOUNDARY NODE CELLS

C
C SKIP THE NEXT SECTION IF NO CHARACTERISTIC B.C'S ARE USED

C
IF (NCRSG2 .EQ. O) GO TO 70

C

C RESET THE CELL TIME STEPS FOR THE BOUNDARY CELLS INVOLVED

C WITH CHARACTERISTIC BOUNDARY CONDITIONS. FIRST INITIALIZE

C NUMBER OF CELLS IN EACH BOUNDARY TYPE AND THEIR TIME STEPS

C

DO 30 N 1, MMAXTI

NCEL(N) - 0

CELLBN(N) 1000.

30 CONTINUE

C

C COLLECT THE NODES WITH SPECIFIC CHARACTERISTICS

C ONLY TYPES OF KIND 4, 5, 6 WILL BE CONSIDERED

C

DO 40 IBND - 1, NBNDG2

ITYPE - IBNDG2(6,IBND)
N - ITYPE - 3

IF (N .GT. 0 .AND. N .LE. MAXCHR) THEN

NCEL(N) - NCEL(N) + 1
ICELTT(NNCEL(N)) - IBND

TIMCL1 - CELLTI(IBNDG2(2,IBND))

IF (IBNDG2(3,IBND) .NE. O) THEN

TIMCL2 = CELLTI(IBNDG2(3,IBND))

ELSE

TIMCL2 - 1000.

ENDIF

CELLBN(N) - MIN (CELLBN(N). TIMCL1, TIMCL2)

ENDIF

40 CONTINUE

C
C NOW RESET THE CELLS ASSOCIATED WITH BOUNDARY NODES TO HAVE

C THE MINIMUM TIME STEP OVER A PARTICULAR TYPE

C

DO 60 N - 1. MAXCHR

DO 60 JBND - 1, NCEL(N)

IBND - ICELTT(N,JBND)

CELLTI(IBNDG2(2,IBND)) - CELLBN(N)
60 CONTINUE

60 CONTINUE

C
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C

C

C

C

MAXIMUM TEMPORAL LEVEL

C COMPUTE THE MAXIMUM TEMPORAL LEVEL OF CELLS

70 AKMAX - DTMAX/DTMNTI

KMAX - NINT(AKMAX)

NMAXTI - IBASE2(KMAX,MMAXTI)

NMAXTI - MIN(NGIVTI,NMAXTI)

C
C INITIALIZE THE NUMBER OF CELLS IN EACH LEVEL
C

NCELO - 0
DO 80 N 1, MMAXTI

NCEL(N) - 0
80 CONTINUE

DO 100 JCELL

ICELL

AK
K
N

- 1. NCELA2
- ICELA2(JCELL)

- CELLTI(ICELL)/DTMNTI

- NINT(AK)

- IBASE2(KNMAXTI)
IF (N .EQ. O) THEN

NCELO ' NCELO + 
ICELTI(NCELO) - ICELL

ELSE

NCEL(N)

ICELTT(N,NCEL(N))

ENDIF

CONTINUE

- NCEL(N) + 1
- ICELL

NOW SET UP THE POINTER SYSTEM FOR TEMPORAL ADAPTATION

ILVLTI(1,O) - 1
ILVLTI(2.0) - NCELO

DO 120 N - 1. NMAXTI
NCELT - NCEL(N)

ILVLTI(1,N) - ILVLTI(2,N-1) + 1
ILVLTI(2.N) - ILVLTI(1,N ) + NCELT - 1

DO 110 JCELL - 1, NCELT

NCELO - NCELO + 1

ICELTI(NCELO) - ICELTT(N.JCELL)
110 CONTINUE

120 CONTINUE

RETURN

END
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E2UPDF

SUBROUTINE E2UPDO (ITGL)
C E2UPDF

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'

'A2COMN.INC'
'E2COMN.INC'

'FLCOMN.INC'

'G2COMN.INC'
'PRCOMN.INC'

C THIS SUBROUTINE UPDATES THE DEPENDENT VARIABLES AT EACH NODE

C ASSOCIATED WITH A CELL ON THIS AND ALL FINER CELLS

C LOOP OVER ALL HANGING NODES AND INTERPOLATE

DO 20 J - 1, NEQNF]

DO 10 JNODE - 1,

INODE

ICORI

ICOR2

DPENG2(J,INODI

CHNGE2(J,INOD

10 CONTINUE

20 CONTINUE

NHNGA2

- MRKCA2(JNODE)

- NINT(WORKA2(JNODE))

- NINT(CHNGA2(JNODE))

E) O. 5*(DPENG2(J,ICOR1)
E) - O.

+ DPENG2(J,ICOR2))

C
C A SIMPLER MODEL IS USED FOR PRESSURE AND TEMPERATURE TO

C AVOID EXPANSIVE CALCULATIONS.

DO 30 JNODE - 1,

INODE

ICOR1

ICOR2

PRESG2(INODE)

TEMPG2(INODE)

30 CONTINUE

C
C

NHNGA2

- MRKCA2(JNODE)

- NINT(WORKA2(JNODE))

- NINT(CHNGA2(JNODE))

- 0.5*(PRESG2(ICOR1) + PRESG2(ICOR2))
- 0.5*(TEMPG2(ICOR1) + TEMPG2(ICOR2))

C LOOP OVER ALL THE NODES AT THIS LEVEL AND UPDATE THEM

DO 50 J 1, NEqNFL

DO 40 JNODE - ILVLA2(1,ITGL), ILVLA2(2,ITGL)

INODE - MRKDA2(JNODE)

DPENG2(J,INODE) DPENG2(J,INODE) + CHNGE2(J,INODE)

CHNGE2(J,INODE) - O.

CONTINUE
CONTINUE

NOW COMPUTE AND CORRECT THE PRIMITIVE VARIABLES

40
50
C
C

761



C
DO 90 JNODE - ILVLA2(1,ITGL). ILVLA2(2,ITGL)

C -

INODE - MRKDA2(JNODE)

RHORPR a DPENG2(1.INODE)
UCOMPR DPENG2(2.INODE)/RHORPR

VCOMPR - DPENG2(3.INODE)/RHORPR

BEPSPR DPENG2(4.INODE)

BEU - BEPSPR/RHORPR

VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR
C
C COMPUTE THE DIMENSIONAL QUANTITIES

C
BE - FMREFL*BEU

VELO2 - FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY O.

DO 60 IS - 1. NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/DPENG2(1.INODE)

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) - O.

DPENG2(JS,INODE) 0.

ENDIF

IF (YSPEPR(IS) .GT. YMAXCH(IS)) THEN

YSPEPR(IS) - YMAXCH(IS)

DPENG2 (JS. INODE) - YMAXCH(IS) *DPENG2( , INODE)
ENDIF

SUMY - SUMY + YSPEPR(IS)
60 CONTINUE

YSPEPR(NEQSCH+I) - 1. - SUMY - YNRTCH
C YSPEPR(NEQSCH+I) - ABS(1. - SUMY - YNRTCH)

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEQSCH+l) - 0.

IF (YSPEPR(NEQSCH+I) .GT. YMAXCH(NEQSCH+1))

1 YSPEPR(NEQSCH+I) - YMAXCH(NEQSCH+I)

IF (KROGER .EQ. 1) THEN

C
TEMPD - TEMPG2(INODE) *TREFFL

IF (TEMPD .LT. TRIGCH) GOTO 70
C

C USE THE FIRST REACTION AS EQUILIBRIUM REACTION, IF THE

C CONCENTRATIONS ARE FAR AWAY FROM EQUILIBRIUM
C

AKEQ - 117.31948*EXP(-8992./TEMPD)
YOHEQ - SQRT(YSPEPR(3)*YSPEPR(1)*AKEQ)

DELTAY - YOHEQ-YSPEPR(2)
C

IF ( DELTAY .GT. 0.01*YMAXCH(2) AND.
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1 YSPEPR(4) .LT. 0.50*YMAXCH(4)) THEN

DELTAY = 0.5*DELTAY*RAMWCH(2)

YO2EQ = YSPEPR(1) - AMWTCH(1)*DELTAY

YH2EQ = YSPEPR(3) - AMWTCH(3)*DELTAY

C RESET THE DEPENDENT VARIABLES

DPENG2(5,INODE) = RHORPR*Y02EQ
DPENG2(8,INODE) - RHORPR*YOHEq

DPENG2(7,INODE) = RHORPR*YH2EQ
YSPEPR(1) = Y02EQ

YSPEPR(2) = YOHEQ

YSPEPR(3) - YH2EQ

ENDIF
C

ENDIF

C
70 SYSHFS - 0.

SYSCPS - 0.
SYSBMS 0.
BIGAM - 0.

C
C COMPUTE THE TEMPERATURE IN DEGREE K
C

DO 80 IS = 1, NSPECH
SYSHFS = SYSHFS + YSPEPR(IS)*FMHTCH(IS)

SYSCPS - SYSCPS + YSPEPR(IS)*SPCPCH(IS)

SYSBMS - SYSBMS + YSPEPR(IS)*RAMWCH(IS)

BIGAM BIGAM + YSPEPR(IS)*SPBSCH(IS)
80 CONTINUE

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM - BE - O.5*VEL02 - SYSHFS + TREFCH*SYSCPS

1 + O.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMPD - BIGCM/BIGBM

ELSE
DISCRI - BIGBM*BIGBM + 2.*BIGAM*BIGCM
TEMPD - ( SRT(DISCRI)-BIGBM )/BIGAM

ENDIF
C

C NORMALIZE THE TEMPERATURE
C

TEMPPR TEMPD/TREFFL
C
C COMPUTE THE DIMENSIONLESS PRESSURE

C
PRESPR - RHORPR*TEMPPR*AMWTFL*SYSBMS

C IF (PRESPR .LE. 0.) CALL CHKPR2(INODE)
C
C SAVE THE PRESSURE AND TEMPERATURE AT THE NODE

C
PRESG2(INODE) = PRESPR
TEMPG2(INODE) - TEMPPR

90 CONTINUE

C

RETURN
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END

E2UPDU

SUBROUTINE E2UPDO (ITGL)
C E2UPDU

INCLUDE '[.INC] PRECIS.INC/LIST'
INCLUDE

INCLUDE

INCLUDE

INCLUDE
INCLUDE

INCLUDE

' . INC]
· [.INC]

. INC]
' [. INC]
' [.INC]

[. INC]

PARMV2. INC/LIST'

E2COMN.INC/LIST'

G2COMN.INC/LIST'
HEXCOD.INC

IOCOMN .INC/LIST'

TICOMN.INC/LIST'

DIMENSION MARK(O:MNODG2)

C THIS SUBROUTINE UPDATES THE DEPENDENT VARIABLES AT EACH NODE

C ASSOCIATED WITH A CELL ON THIS AND ALL FINER CELLS

C MARK ALL THE NODES FOR THE CASE FOR SUBSEQUENT UPDATING

MARK(O) 0
DO 10 INODE - i, NNODG2

MARK(INODE) - 1

10 CONTINUE

C LOOP OVER ALL THE CELLS AT THIS LEVEL AND UPDATE THE

C CORRESPONDING NODES

DO 100 JCELL - ILVLTI(1ITGL). ILVLTI(2.ITGL)

NODE/CELL ASSIGNMENTS

ICELL

KSW

KS

KSE

KE

KNE

KN

KNW

KW

- ICELTI

- ICELG2

- ICELG2

- ICELG2

- ICELG2

- ICELG2

- ICELG2

- ICELG2

- ICELG2

( JCELL)
(2,ICELL)

(3, ICELL)
(4. ICELL)
(S,ICELL)

(6, ICELL)
(7, ICELL)

(S. ICELL)

(9. ICELL)

CHECK IF UPDATING IS TO BE DONE AT THE SOUTHWESTERN NODE

IF ( MARK(KSW) .NE. 0 ) THEN
MARK(KSW) - O
DO 20 J 1. NEQNFL

DPENG2(J.KSW) - DPENG2(J.KSW) + CHNGE2(J,KSW)
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CHNGE2(J,KSW) - O.
20 - CONTINUE

- CALL E2PRMT (KSW, 1)
ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE SOUTHERN EDGE

IF ( MARK(KS) .NE. 0 ) THEN

MARX(KS) - 0

DO 30 J 1, NEQNFL

DPENG2(J,KS) DPENG2(J,KS) + CHNGE2(J,KS)
CHNGE2(J.KS) - O.

CTEST

c DPENG2(J,KS) - 0.5*(DPENG2(J,KSW) + DPENG2(J,KSE))
CTEST

30 CONTINUE

CALL E2PRMT (KS, 1)

ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE SOUTHEASTERN NODE

IF ( MARK(KSE) .NE. 0 ) THEN
MARK(KSE) - O
DO 40 J - 1, NEQNFL

DPENG2(J,KSE) - DPENG2(J,KSE) + CHNGE2(J,KSE)
CHNGE2(J,KSE) 0.

40 CONTINUE

CALL E2PRMT (KSE. 1)
ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE EASTERN EDGE

IF ( MARK(KE) .NE. 0 ) THEN
MARK(KE) - O
DO 0 J - 1, NEQNFL
DPENG2(J,KE) - DPENG2(J,KE) + CHNGE2(J,KE)
CHNGE2(J,KE) - O.

CTEST

c DPENG2(J,KE) - 0.5*(DPENG2(J,KSE) + DPENG2(J,KNE))
CTEST

50 CONTINUE

CALL E2PRMT (KE, 1)
ENDIF

C CHECK IF UPDATING I8 TO BE DONE AT THE NORTHEASTERN NODE

IF ( MAR(KNE) .NE. 0 ) THEN
MARX(KNE) - 0
DO 60 J ' 1, NEQNFL

DPENG2(J,KNE) - DPENG2(J,KNE) + CHNGE2(J.KNE)
CHNGE2(J,KNE) - 0.

60 CONTINUE

CALL E2PRMT (KNE, 1)
ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE NORTHERN EDGE
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IF ( MARK(KN) .NE. ) THEN

- MARX(N) -

- DO 70 J 1. NEQNFL

DPENG2(J,KN) - DPENG2(J,KN) + CHNGE2(J,KN)
CHNGE2(J,KN) - 0.

CTEST

c DPENG2 (J .KN) - 0. 5* (DPENG2(J,KNW) + DPENG2(J,KNE))
CTEST

70 CONTINUE

CALL E2PRMT (KN, 1)
ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE NORTHWESTERN NODE

IF ( MAR(KNW) .NE. 0 ) THEN
MARK(KNW) - 0

DO 80 J - 1. NEQNFL

DPENG2(J,KNW) - DPENG2(J,KNW) + CHNGE2(JKNW)
CHNGE2(J,KNW) - O.

80 CONTINUE

CALL E2PRMT (KNW, 1)

ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE WESTERN EDGE

IF ( MARK(KW) .NE. 0 ) THEN
MAR(KW) - 0
DO 90 J - 1, NEQNFL

DPENG2(J,KW) - DPENG2(J.KW) + CHNGE2(J,KW)
CHNGE2(J,KW) - 0.

CTEST

c DPENG2(J,KW) O.* (DPENG2(J, KSW) + DPENG2(J,KNW))
CTEST

90 CONTINUE

CALL E2PRMT (KW, 1)
ENDIF

100 CONTINUE

C

RETURN

END

E2UPDO

SUBROUTINE E2UPDO (ITGL)

INCLUDE .INC] PRECIS.INC/LIST'
INCLUDE 'E.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] E2COMN.INC/LIST'
INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] HEXCOD.INC

INCLUDE '[.INC] IOCOMN.INC/LIST'
INCLUDE '[.INC] TICOMN.INC/LIST'
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DIMENSION MARK(O:MNODG2)

LOGIGAL IWRITE

DATA KOUNT /0/

C THIS SUBROUTINE UPDATES THE DEPENDENT VARIABLES AT EACH NODE

C ASSOCIATED WITH A CELL ON THIS AND ALL FINER CELLS

C CHECK IF DEBUG PRINT IS NEEDED

IWRITE - IDBGE2 .NE. 6 .AND. IDBGE2 .LT. 1000

IWRITE - .NOT. IWRITE

IF (KOUNT .EQ. O) THEN

KOUNT -
IF (IWRITE) THEN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,O100)

WRITE(JDEBUG, 1200)

ENDIF

ENDIF

C MARK ALL THE NODES FOR THE CASE FOR SUBSEQUENT UPDATING

MARK() = 0
DO 10 INODE 1, NNODG2

MARK(INODE) - 1
10 CONTINUE

C LOOP OVER ALL THE CELLS AT THIS LEVEL AND UPDATE THE

C CORRESPONDING NODES

DO 100 JCELL - ILVLTI(1,ITGL). ILVLTI(2,ITGL)

C NODE/CELL ASSIGNMENTS

ICELL - ICELTI ( JCELL)
KSW - ICELG2 (2.ICELL)
KS - ICELG2 (3.ICELL)
KSE - ICELG2 (4,ICELL)
KE - ICELG2 (6,ICELL)
KNE - ICELG2 (O,ICELL)
RN - ICELG2 (7,ICELL)

KNW - ICELG2 (8,ICELL)

KW - ICELG2 (9.ICELL)

C CHECK IF UPDATING IS TO BE DONE AT THE SOUTHWESTERN NODE

IF ( MARK(KSW) .NE. 0 ) THEN

MARK(KSW) - O

DO 20 J - 1. NEQNFL

DPENG2(J. KSW) - DPENG2(J,KSW) + CHNGE2(J.KSW)
C IF (IWRITE) THEN

C IF ( ABS(CHNGE2(J.KSW)) .GT. 1. ) THEN
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WRITE(JDEBUG,1300) J, KSW, ITGL, CHNGE2(J,KSW)

- ENDIF

- ENDIF

CHNGE2(J,KSW) - O.

CONTINUE

CALL E2PRMT (KSW, 1)

ENDIF

CHECK IF UPDATING IS TO BE DONE AT THE SOUTHERN EDGE

IF ( MARK(KS) .NE. 0 ) THEN
MARK(KS) -
DO 30 J - 1, NEqNFL

DPENG2(J,KS) - DPENG2(J,KS) + CHNGE2(J,KS)

CHNGE2(J,KS) - O.

CONTINUE

CALL E2PRMT (KS, 1)

ENDIF

CHECK IF UPDATING IS TO BE DONE AT THE SOUTHEASTERN NODE

IF ( MARK(KSE) .NE. 0 ) THEN

MARX(KSE) - 0

DO 40 J - 1, NEQNFL

DPENG2(J,KSE) - DPENG2(J,KSE) + CHNGE2(J,KSE)

CHNGE2(J,KSE) - 0.

CONTINUE

CALL E2PRMT (KSE, 1)

ENDIF

CHECK IF UPDATING IS TO BE DONE AT THE EASTERN EDGE

IF ( MARR(KE) .NE. 0 ) THEN

MARK(KE) - 0
DO 50 J 1. NEQNFL

DPENG2(J,KE) - DPENG2(J,KE)

CHNGE2(J,KE) = O.

CONTINUE

CALL E2PRMT (KE, 1)
ENDIF

+ CHNGE2(J,KE)

CHECK IF UPDATING IS TO BE DONE AT THE NORTHEASTERN NODE

IF ( MARK(KNE) .NE. 0 ) THEN

MARE(KNE) - 0

DO 60 J - 1. NEQNFL

DPENG2(J.KNE) - DPENG2(J,KNE)

CHNGE2(J,KNE) - 0.
CONTINUE

CALL E2PRMT (KNE. 1)

+ CHNGE2(J.KNE)

ENDIF

CHECK IF UPDATING IS TO BE DONE AT THE NORTHERN EDGE

IF ( MARK(KN) .NE. 0 ) THEN
MARK(KN) - 0
DO 70 J - 1. NEQNFL
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40

C
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DPENG2(J,KN) DPENG2(J,KN) + CHNGE2(J,KN)

- CHNGE2(J,KN) - 0.

70 - CONTINUE

CALL E2PRMT (KN, 1)

ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE NORTHWESTERN NODE

IF ( MARK(KNW) .NE. 0 ) THEN

MARK(KNW) - 0

DO 80 J - 1, NEQNFL

DPENG2(J.KNW) - DPENG2(J.KNW) + CHNGE2(J,KNW)

CHNGE2(J,KNW) - o.
80 CONTINUE

CALL E2PRMT (KNW, 1)
ENDIF

C CHECK IF UPDATING IS TO BE DONE AT THE WESTERN EDGE

IF ( MARK(KW) .NE. 0 ) THEN

MARK(KW) - 0

DO 90 J - 1, NEQNFL

DPENG2 (J.KW) DPENG2 (J,KW) + CHNGE2(J.KW)
CHNGE2(J,KW) - O.

90 CONTINUE

CALL E2PRMT (KW, 1)
ENDIF

100 CONTINUE

C

C PRINT OUT PARAMETERS

C

IF (IWRITE) THEN

ICELL - ICELTI( ILVLTI(I,ITGL) )

DTITGL - CELLTI(ICELL)

WRITE(JDEBUG.1500) ITGL, DTITGL, DTMNTI
ENDIF

C ------FORMAT TATEMENTS

1000C ------ FRMAT//----------- )
1100 FORMAT( 1OX,'DEBUG PRINT FROM E2UPDO' )

1200 FORMAT( lOX,'-----------------------'/)

C1300 FORMAT(SX,'EQ. # ', I2. X, 'WEST NODE I', I5, 6X.

C 1 'TEMPORAL LEVEL -', IS, X, 'CHANGE -', G14.5)

C1400 FORMAT(6X,'EQ. # ', I2, X, 'EAST NODE -', IS, X,
C 1 'TEMPORAL LEVEL -', I, 5X, 'CHANGE -', G14.5)

1500 FORMAT(SX, ' ITGL-',I,5X.,'DT-ITGL -',G14.65,X,'DTMNTI -',G14.5/)

RETURN

END
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E2VARB

SUBROUTINE E2VARB (TIME)

INCLUDE 'PRECIS . INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN. INC'
INCLUDE 'IOCOMN.INC'

INCLUDE 'TVCOMN.INC'

C

C THE SUBROUTINE APPLIES THE PERIODIC BOUNDARY CONDITIONS.

C AT FIRST ONLY OSCILLATIONS IN THE INLET MASS FLOW RATE

C ARE CONSIDERED. THE ROUTINE CAN BE GENERALIZED LATTER.

C
C********************************************************************
C

C COMPUTE THE TIME VARYING QUANTITIES

C

OMEGAT - FREQTV*TIME*6.2831863

SINWT - SIN(OMEGAT)

RHOU - FLOWTV*(1.+AMPLTV*SINWT)

INODE - NODETV(I)

DPENG2(2,INODE) - RHOU

CALL E2PRMT(INODE,1)

PRESPR - PRESG2(INODE)

TEMPPR - TEMPG2(INODE)

DO 1000 ITV 2, NUMNTV

INODE - NODETV(ITV)

DPENG2(2,INODE) - RHOU

PRESG2(INODE) - PRESPR
TEMPG2(INODE) - TEMPPR

1000 CONTINUE

RETURN

END

E2VECT

SUBROUTINE E2VECT (ALVECT)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'JACOMN.INC'

INCLUDE 'PRCOMN.INC'

DIMENSION UTOP(MEQNFL), TOTAL(MEQNFL), F2JACO(MEQNFL),

1 UBOT(MEQNFL), DUMY (MEQNFL), ALVECT(MEQNFL,MEQNFL)
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C THIS SUBROUTINE COMPUTES THE LEFT EINVECTOR MATRIX OF THE FLUX
C F IN THE STREAMWISE COORDINATE SYSTEM AT A GIVEN PLACE.

C

C COMPUTE THE CENTRAL DIFFERNCE NUMERICAL JACOBIANS BUT FIRST

C SET UP THE QUANTITIES NEEDED TO ACCOMPLISH THIS

DO 10 IQ - NEQBAS+1, NEQNFL

DELTA - O.01*DPENJA(IQ)
IF (DELTA .EQ. 0.) DELTA - 0.01

UTOP(IQ) - DPENJA(IQ) + DELTA
UBOT(IQ) - DPENJA(IQ) - DELTA

TOTAL(IQ) - 2.*DELTA

CONTINUE10
C

DO 20 IQ - NEQBAS+.1, NEQNFL

COMPUTE VALUES AT TOP

UDUMMY
DPENJA(Iq)
CALL
F2TOP

- DPENJA(IQ)

- UTOP(IQ)

FLBGF2

= BGF2JA

COMPUTE VALUES AT BOTTOM

DPENJA(IQ)
CALL
F2BOT

- UBOT(IQ)
FLBGF2

- BGF2JA

RESET THE VALUE OF THE DEPENDENT VARIABLE

DPENJA(IQ) - UDUMMY

NOW TAKE CENTRAL DIFFERENCE

F2JACO(IQ) - (F2TOP - F2BOT)/TOTAL(IQ)

CONTINUE

NOW COMPUTE THE ANALYTIC JACOBIANS; INITIALIZE THE VALUES

UCOMPR. VCOMPR. GAMAPR, YSPEPR ETC.

CALL FLBGF2

U2
V2
SONDPR
GMI
GM3
PAEBR

- UCOMPR*UCOMPR

= VCOMPR*VCOMPR

- SQRT (GAMAPR*PRESPR/RHORPR)
- GAMAPR - 1.
- GM1 - 2.
- (BEPSPR+PRESPR)/RHORPR

F2JACO(1) - 0.6*(GM3*U2 + GMI*V2)
F2JACO(2) - -GM3*UCOMPR
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F2JACO(3) - -GMI*VCOMPR

F2JACO(4) - GM1

C 
C F4JAC1 - UCOMPR*(F2JACO(1) + U2 - PAEBR)

F4JAC2 - PAEBR - 2.*U2 + UCOMPR*F2JACO(2)
C F4JAC3 - UCOMPR*F2JACO(3)
C F4JAC4 - UCOMPR*(F2JACO(4) + 1.)
C
C INITIALIZE THE EIGENVECTOR MATRIX
C

DO 40 IQ - 1 NEQNFL

DO 30 JQ 1, NEQNFL

ALVECT(IQ,JQ) - 0.
30 CONTINUE

40 CONTINUE

C EIGENVECTERS FOR U - A

ALVECT(1 .2) -(SONDPR/F2JACO(4) + UCOMPR)

ALVECT(1,3) -VCOMPR

ALVECT(1,4) - 1.
SUMALY = O.

DO 50 JQ NEQBAS+1, NEQNFL

IQ = JQ - NEQBAS

ALVECT(1,JQ) = F2JACO(JQ)/F2JACO(4)
ALVECT(2,JQ) - ALVECT(1.JQ)
SUMALY - SUMALY + ALVECT(I,JQ)*YSPEPR(IQ)

50 CONTINUE

1
ALVECT(1.1) ALVECT(l,2)*(UCOMPR - SONDPR

V2 - F4JAC2 - SUMALY
- F2JACO(2)) +

C EIGENVECTERS FOR U + A

1

ALVECT(2,2) - (SONDPR/F2JACO(4) - UCOMPR)
ALVECT(2,3) - -VCOMPR
ALVECT(2,4) - 1.

ALVECT(2,1) - ALVECT(2.2)*(UCOMPR + SONDPR
V2 - F4JAC2 - SUMALY

- F2JACO(2)) +

C EIGENVECTERS FOR U FOR Y-MOMENTUM EQUATION

ALVECT(3,1) -VCOMPR
ALVECT(3.3) - 1.

C EIGENVECTERS FOR U FOR CONTINUITY EQUATION

ALVECT(4,1) - UCOMPR*(F2JACO(2) -
ALVECT(4.2) - -UCOMPR
ALVECT(4.4) - 1.

UCOMPR) - F4JAC2

C EIGENVECTERS FOR U FOR SPECIES EQUATION

DO 60 IQ - NEQBAS+1,. NEQNFL

ALVECT(IQ, ) - -YSPEPR(IQ-NEQBAS)

ALVECT(IQ,IQ) - 1.
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60 CONTINUE

C GRAM-SCHMIDT PROCESS

C CALL GRAMSM (ALVECT,DUMY,NEqNFL,NEQNFL)

RETURN

END

E2ZERO

SUBROUTINE E2ZERO

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'E2COMN.INC'

C THIS SUBROUTINE INITIALIZES THE CHANGES AT ALL THE NODES TO

C ZEROS, IT IS DIFFERENT FROM E2ZER1 IN THE SENSE THAT IT IS

C GLOBAL.

DO 10 J 1, NEQNFL

DO 10 IN 1, NNODG2

C IF (CHNGE2(J,IN) .NE.

CHNGE2(J,IN) O.

C ENDIF

10 CONTINUE

O. ) THEN

RETURN

END

ERINIT

SUBROUTINE ERINIT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'A2COMN.INC'

'CHCOMN.INC'

'E2COMN.INC'

'G2COMN.INC'

'H2COMN.INC'

'IOCOMN.INC'

'TICOMN.INC'
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C THIS-SUBROUTINE PERFORMS THE INITIAL ERROR CHECKS FOR THE TWO-
C DIMENSIONAL CASE.

C

C CHECK MAXIMUM NO. OF EQUATIONS, I.E., IF NEQNFL MEQNFL ?

IF (NEQNFL .LE. 0 .OR. NEQNFL .GT. MEQNFL) THEN

ZERI - NEQNFL

ZER2 - MEQNFL
CALL ERRORM (24,'ERINIT','NEqNFL',ZER1,'MEQNFL',ZER2,JPRINT,

1 'NUMBER OF EQUATIONS IS SET WRONG')

ENDIF
C

C MAXIMUM GIVEN SPATIAL LEVEL OF CELLS

C
IF (MALVG2 .LT. 0 .OR. MALVG2 .GT. MLVLG2) THEN

ZERI - MALVG2

ZER2 - MLVLG2

CALL ERRORM (25,'ERINIT', 'MALVG2',ZERI, 'MLVLG2' ,ZER2,JPRINT,

1 'ERROR IN MAXIMUM GIVEN SPATIAL LEVEL')

ENDIF
C
C CHEMISTRY TYPE SELECTOR KROGER

C

IF (KROGER .LT. 0 .OR. KROGER .GT. 3) THEN

ZERI - KROGER

ZER2 - 3

CALL ERRORM (26,'ERINIT', 'KROGER',ZER1, 'MODMAX' ,ZER2,JPRINT,

1 'CHEMISTRY MODEL IS SET WRONG')

ENDIF

C

C MAXIMUM NUMBER OF CELLS TO BE EXTENDED

C

IF (NXTDA2 .LT. 0 .OR. NXTDA2 .GT. 7) THEN

ZER1 - NXTDA2

ZER2 - 7

CALL ERRORM (27,'ERINIT', 'NXTDA2',ZER1, 'MAXEXT',ZER2,JPRINT,

1 'MAXIMUM NUMBER OF EXTENSION CELLS IS WRONG')

ENDIF
C

C METHOD OF SPATIAL ADAPTATION

C METHA2 IS SET ZERO IF YOU WANT TO SKIP ADAPTATION LOOP

C

IF (METHA2 .LT. 0 .OR. METHA2 .GT. 6) THEN
ZER - METHA2

ZER2 - MTYPA2

CALL ERRORM (28,'ERINIT','METHA2',ZER1, 'MTYPA2' ,ZER2,JPRINT,

1 'METHOD OF ADAPTATION IS SET WRONG')

ENDIF

C
C CHECK THE SPATIAL ADAPTATION CRITERIA VARIABLES

C KIADA2 - O. IS NOT NEEDED SINCE THE SPATIAL ADAPTATION IS
C BY-PASSED BY SETTING MITRA2 - 0
C
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IF (KIADA2 .LE. 0 .OR. K1ADA2 .GT. NEQNFL) THEN

ZERI - K1ADA2
ZER2 - NEQNFL

CALL ERRORM (29,'ERINIT','K1ADA2',ZERI, 'NEQNFL',ZER2,JPRINT,
1 'SPATIAL ADAPTATION CRITERIA IS NOT SET CORRECTLY')

ENDIF

C

IF (K2ADA2 .LT. 0 .OR. K2ADA2 .GT. 100+NEQNFL) THEN

ZER1 - K2ADA2

ZER2 - NEQNFL

CALL ERRORM (29,'ERINIT', 'K2ADA2',ZER1. 'NEQNFL' ,ZER2,JPRINT,

1 'SPATIAL ADAPTATION CRITERIA IS NOT SET CORRECTLY')

ENDIF

C

C ERROR CHECK FOR G2CLPO AND G2DIVO
C

IF (KCHKA2 .LT. 0 .OR. KCHKA2 .GT. 15) THEN

ZER1 - KCHKA2
ZER2 15.
CALL ERRORM (30, 'ERINIT', 'KCHKA2',ZERl, 'MAXVAL' ,ZER2,JPRINT,

I 'SUPERCELL/NEIGHBOUR-CELL CHECK INDICATOR IS WRONG')

ENDIF

C

C SPATIAL ADAPTATION TUNING PARAMETERS
C

IF (BETAA2 .LE. O. .OR. BETAA2 .GT. 0.6) THEN

ZERI - BETAA2

ZER2 - ALPHA2

CALL ERRORM (31, 'ERINIT', 'BETAA2',ZERI, 'ALPHA2' ,ZER2,JPRINT,
1 'SPATIAL ADAPTATION PARAMETER IS SET WRONG')

ENDIF
C

IF (GAMMA2 .LE. O. .OR. GAMMA2 .GT. 0.9) THEN
ZER1 - GAMMA2
ZER2 DELTA2

CALL ERRORM (31,'ERINIT','GAMMA2',ZER1,'DELTA2',ZER2,JPRINT,

1 'SPATIAL ADAPTATION PARAMETER IS SET WRONG')

ENDIF
C
C TYPE OF CONVERGENCE HISTORY

C KONVE2 IS SET ZERO FOR TIME ACCURATE PROBLEMS (SKIP CONVERGENCE)

C
IF (KONVE2 .LT. 0 .OR. KONVE2 .GT. 3) THEN

ZERI - KONVE2

ZER2 - 3.

CALL ERRORM (32,'ERINIT', 'KONVE2'.ZER, 'MAXVAL',ZER2,JPRINT,

1 'CONVERGENCE TYPE IS UNKNOWN')

ENDIF

C

C EQUATION USED IN THE ABOVE CONVERGENCE TYPE

C
IF (KEQNE2 .LE. 0 .OR. KEQNE2 .GT. NEQNFL) THEN

ZER1 - KEQNE2

ZER2 - NEQNFL

CALL ERRORM (33,'ERINIT', 'KEQNE2',ZERI, 'NEQNFL',ZER2,JPRINT,

1 'CONVERGENCE EQUATION SELECTOR IS WRONG')

ENDIF
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C
C COURANT NUMBER

C
IF (CFLNTI .LE. O. .OR. CFLNTI .GT. 1.) THEN

ZERI - CFLNTI

ZER2 - 1.

CALL ERRORM (34,'ERINIT','CFLNTI',ZER, 'MAXVAL',ZER2,JPRINT,

1i 'CFL NUMBER IS SET WRONG')

ENDIF

C

C IMPLICIT/EXPLICIT SCHEME SELECTOR
C

IF (IMPLTI .LT. 0 .OR. IMPLTI .GT. 2) THEN

ZERI - IMPLTI

ZER2 - 0.

CALL ERRORM (35.'ERINIT', 'IMPLTI',ZER1,'NIL ',ZER2,JPRINT,

1 'IMPLICIT/EXPLICIT SCHEME SELECTOR IS WRONG')

ENDIF

C
C CHECK THE TEMPORAL RESOLUTION CRITERIA VARIABLE

C KADPTI IS SET ZERO IF YOU WANT TO SKIP IT

C
IF (KADPTI .LT. 0 .OR. KADPTI .GT. NEQNFL) THEN

IF (KADPTI .EQ. 99) GOTO 10

ZER1 KADPTI

ZER2 - NEQNFL

CALL ERRORM (36, 'ERINIT', 'KADPTI',ZER1, 'NEQNFL' ,ZER2,JPRINT,

1 'TEMPORAL ADAPTATION CRITERIA IS NOT SET CORRECTLY')

ENDIF

C

C MAXIMUM GIVEN TEMPORAL LEVEL OF CELLS

C

10 IF (NGIVTI .LT. O .OR. NGIVTI .GT. MMAXTI) THEN

ZERI - NGIVTI

ZER2 - MMAXTI

CALL ERRORM (37,'ERINIT', 'NGIVTI',ZER1,'MMAXTI',ZER2,JPRINT,
1 'ERROR IN MAXIMUM GIVEN TEMPORAL LEVEL')

ENDIF

C
C CHECK THE MASS FRACTION OF THE INERT SPECIES

C

IF (YNRTCH .LT. O. .OR. YNRTCH .GT. 1.) THEN
ZERI - YNRTCH

ZER2 - 1.
CALL ERRORM (38,'ERINIT', 'YNRTCH',ZER, 'MAXVAL' ,ZER2,JPRINT,

1 'INERT SPECIES MASS FRACTION ERROR')
ENDIF

C

C MAXIMUM NUMBER OF SPECIES EQUATIONS
C

IF (NEQSCH .LT. 0 .OR. NEQSCH .GT. MEQNFL-NEQBAS) THEN
ZERI - NEQSCH

ZER2 - MEQNFL - NEQBAS

CALL ERRORM (39,'ERINIT', 'NEQSCH',ZER, 'MAXVAL',ZER2,JPRINT,
1 'NUMBER OF SPECIES EQUATIONS IN ERROR')

ENDIF
C
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C RESTART PARAMETER; O:FRESH :RESTART 2:C2HELP

C 
IF (RSRTE2 .LT. 0 .OR. KSRTE2 .GT. 1003) THEN

ZER1 - KSRTE2

ZER2 - 2.

CALL ERRORM (40,'ERINIT', 'KSRTE2',ZER1, 'MAXVAL',ZER2,JPRINT,

1 'ERROR IN RESTART PARAMETER')

ENDIF

C
C NUMBER OF INERT SPECIES

C

IF (NINRCH .LT. 0 .OR. NINRCH .GT. NSPECH) THEN
ZERi - NINRCH

ZER2 - NSPECH

CALL ERRORM (41, 'ERINIT', 'NINRCH',ZER1, 'NSPECH' ,ZER2,JPRINT,

1 'NUMBER OF INERT SPECIES IS WRONG')

ENDIF

C
C CHECK IF FUEL INJECTION IS NEEDED FOR ANYTHING OTHER THAN THE

C ROGERS AND CHINITZ MODEL

C

IF (KROGER .NE. 1 .AND. IADDH2 .NE. O) THEN

ZERI - KROGER

ZER2 IADDH2

CALL ERRORM (42. 'ERINIT','KROGER',ZERI,'IADDH2',ZER2,JPRINT,

I 'FUEL INJECTION IS ONLY ALLOWED FOR ROGERS k CHINITZ MODEL')

ENDIF

RETURN

END

FLBGF2

SUBROUTINE FLBGF2

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'IOCOMN.INC'
INCLUDE 'JACOMN. INC'
INCLUDE 'PRCOMN. INC'

C THIS SUBROUTINE COMPUTES THE SECOND COMPONENT OF THE FLUX VECTOR

C F IN THE USUAL (X,Y) COORDINATES. THIS IS NEEDED HERE FOR

C COMPUTING JACOBIANS OF F2. WE DO NOT USE E2SOUR BECAUSE THAT

C ROUTINE ALSO SOLVES FOR THE SOURCE TERMS WHICH ARE NOT NEEDED

C HERE. THE TEMPORALLY VARYING VARIABLES ARE SUPPOSED TO BE

C STORED IN THE JA COMMON VARIABLES, I.E., IN DPENJA(J).
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RHORPR

UCOMPR

VCOMPR

BEPSPR

BEU

VEL02U

= DPENJA(1)

- DPENJA(2)/DPENJA(1)

- DPENJA(3)/DPENJA(1)

- DPENJA(4)

= BEPSPR/RHORPR
= UCOMPR*UCOMPR + VCOMPR*VCOMPR

C
C COMPUTE THE DIMENSIONAL QUANTITIES

C
BE - FMREFL*BEU

VELO2 FMREFL*VELO2U

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY 0.

DO 10 IS = 1, NEQSCH
JS = NEQBAS + IS

YSPEPR(IS) - DPENJA(JS)/DPENJA(1)

SUMY - SUMY + YSPEPR(IS)
10 CONTINUE

YNEXT 

IF (YNEXT .LT. O.)

YSPEPR(NEQSCH+I) 

1. - SUfMY - YNRTCH

YNEXT 0.

YNEXT

SYSHFS = O.
SYSCPS = O.

SYSBMS - 0.

BIGAM = 0.

COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

C
C
C

DO 20 IS = 1, NSPECH

SYSHFS - SYSHFS +

SYSCPS - SYSCPS +

SYSBMS - SYSBMS +

BIGAM BIGAM +

CONTINUE

YSPEPR(IS)*FMHTCH(IS)

YSPEPR(IS)*SPCPCH(IS)

YSPEPR(IS)*RAMWCH(IS)

YSPEPR(IS)*SPBSCH(IS)

COMPUTE TEMPERATURE IN DEGREE K AND NORMALIZE IT

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM = BE - 0.6*VEL02 - SYSHFS + TREFCH*SYSCPS

+ 0.5*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMP - BIGCM/BIGBM
ELSE

DISCRI

TEMP

ENDIF

= BIGBM*BIGBM + 2.*BIGAM*BIGCM

( SQRT(DISCRI)-BIGBM )/BIGAM

BIGAMT = BIGAM *TEMP
SYSCVS BIGBM + BIGAMT

TEMPU - TEMP/TREFFL
C
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C COMPUTE THE DIMENSIONLESS PRESSURE
C -

PRESPR - RHORPR*TEMPU*AMWTFL*SYSBMS

C COMPUTE THE FLUX VARIABLE

BGF2JA - DPENJA(2)*UCOMPR + PRESS
GAMAPR (SYSCPS+BIGAMT)/SYSCVS

C
C PRINT OUT PARAMETERS
C

IF (IDBGFL .NE. 5 .AND. IDBGFL .LT. 1000) RETURN

WRITE(JDEBUG, 1000)
WRITE(JDEBUG, 1100)
WRITE(JDEBUG,1200)

WRITE(JDEBUG, 1300) BGF2JA

DO 30 IS - 1, NEQNFL

WRITE(JDEBUG.1400) IS, DPENJA(IS)
30 CONTINUE

C FORMAT STATEMENTS

1000 FORMAT(//IOX,'----------------------- )
1100 FORMAT( 0OX,'DEBUG PRINT FROM FLBGF2' )
1200 FORMAT( 1X,'-----------------------/)
1300 FORMAT( X. 'BGF2JA-', G14.5)
1400 FORMAT( X,56,G14.5)

RETURN

END

FLINI2

SUBROUTINE FLINI2

INCLUDE 'PRECIS.INC'
INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FLCOMN. INC'
INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'
INCLUDE 'KYCOMN.INC'

C********************************************************************

C THIS SUBROUTINE INITIALIZES THE COMMON BLOCK FLCOMN IT ALSO
C INITIALIZES THE DEPENDENT VARIABLES OVER ALL THE NODES TO A
C UNIFORM FLOW
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C GET THE VALUES SET BY GETKY2 SUBROUTINE OR THE DEFAULT VALUES

AMCHFL

RHORFL

TREFFL

PRESFL

DISTFL

- APASKY( 5)

- APASKY( 6)

- APASKY( 7)

= APASKY( 9)
- APASKY(11)

IDBGFL - IPASKY(13)

NEQBAS 4

C SET UP THE NUMBER OF EQUATIONS TO BE SOLVED

NEQNFL - NSPECH + NEQBAS - NINRCH - 1

C SETUP THE NUMBER OF SPECIES EQUATIONS

NEQSCH NEQNFL - NEqBAS

C SET UP THE UNIVERSAL GAS CONSTANT

UGASFL 8.31434E03

COMPUTE THE MOLECULAR MASS AND GAMMA OF THE MIXTURE

SYSCPS - O.
SYSBMS O.

BIGAM - 0.
C

DO 10 IS 1. NSPECF

SYSCPS - SYSCPS

SYSBMS - SYSBMS

BIGAM - BIGAM

10 CONTINUE

+ YSPECH(IS)*SPCPCH(IS)

+ YSPECH(IS)/AMWTCH(IS)

+ YSPECH(IS)*SPBSCH(IS)

C COMPUTE THE OTHER REFERENCE qUANTITIES

C AT-LEAST TWO OF THE FOLLOWING REFERENCE MUST

C TREFFL, PRESFL, RHORFL

IF (PRESFL
IF (RHORFL

IF (TREFFL

IF (KPRT

.NE. 1.)

.NE. 1.)

.NE. 1.)

.EQ. 7 )

BE SET BY GETKY2

KPRT - IOR(KLOOO1,KPRT)

KPRT - IOR(KLOOO2,KPRT)

KPRT - IOR(KL004,KPRT)
KPRT 3

UGASCO UGASFL*SYSBMS

IF (KPRT .EQ.

IF (KPRT .EQ.

IF (KPRT .EQ.

3) TREFFL - PRESFL/

5) RHORFL - PRESFL/

8) PRESFL - RHORFL*

(UGASCO*RHORFL)

(UGASCO*TREFFL)

(UGASCO*TREFFL)

- SQRT(PRESFL/RHORFL)
- UREFFL**2

- RHORFL*UREFFL/DISTFL

- 1./SYSBMS
- SYSCPS + BIGAM*TREFFL
- SYSCPS - UGASFL*SYSBMS

- SYSCPS/SYSCVS

C
C
C

UREFFL

FMREFL
WDREFL

AMWTFL

SYSCPS
SYSCVS
GAMAFL
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C COMPUTE THE MASS FRACTIONS YNRTCH OF THE INERT SPECIES, WHICH

C ARE SUPPOSED TO BE STORED AT THE TRAILING END OF YSPECH.

YNRTCH O.

NFINAL s NSPECH - NINRCH + 1

DO 20 IS - NSPECH,

YNRTCH - YNRTCH

20 CONTINUE

WRITE(JOUTAL,1300)

WRITE(JOUTAL,1400)

1

WRITE(JOUTAL, 1460)

1

NFINAL, -1

+ YSPECH(IS)

PRESFL.

AMCHFL,
WDREFL,

GAMAFL,

TREFFL.

DISTFL,

AMWTFL,

NEQNFL,

RHORFL,

UREFFL,

YNRTCH,

NEQSCH,

WRITE(JOUTAL,1500)

WRITE(JOUTAL,1700)

DO 30 IS - 1,NSPECH

WRITE(JOUTAL.1800) IS.YSPECH(IS)
30 CONTINUE

C
C DEBUG PRINT

C
IF (IDBGFL NE. 3 .AND. IDBGFL .LT. 1000)

UGASFL,

FMREFL

NEQBAS, NINRCH

RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1400)

I

WRITE(JDEBUG,1450)
1

WRITE(JDEBUG, 1600)

WRITE(JDEBUG,1700)

PRESFL,

AMCHFL,

WDREFL,

GAMAFL,

UGASCO,

TREFFL,

DISTFL,

AMWTFL,
NEQNFL,

NEQSCH,

RHORFL, UGASFL,

UREFFL, FMREFL

YNRTCH,
NEQSCH, NEQBAS, NINRCH

NEqBAS

DO 40 IS 1,NSPECH

WRITE(JDEBUG, 1800) IS,YSPECH(IS)
40 CONTINUE

C -------FORMAT STATEENTS

C -----------------

1000 FORMAT(//1OX,'---------------- ----- )

1100 FORMAT( 10X,'DEBUG PRINT FROM FLINI2' )
1200 FORMAT( lOX,-----------------------/)

1300 FORMAT(' THE DIMENSIONAL QUANTITIES WHICI

1 'THIS OUTPUT ARE'//)

1400 FORMAT( X, 'PRESFL - ', G14.6, 3X, 'PA

1 5X, 'TREFFL - ', G14.5, 3X, 'K

2 5X, 'RHORFL - ', G14.5, 3X, 'KG/

3 5X, 'UGASFL ', G14.5., 3X, 'J/K
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4 5X, 'AMCHFL - ',
6 - 6X, 'DISTFL - '
6 - 6X, 'UREFFL -',
7 6X, 'FMREFL -',

1450 FORMAT( SX, 'WDREFL -'
2 6X, 'AMWTFL -
3 6X, 'YNRTCH - '
4 5X, 'GAMAFL -',
5 SX, 'NEQNFL ',

6 6X, 'NEQBAS - ',
1500 FORMAT(' THE REST OF THE

G14.56, 17X

G14.6, 3X,

G14.56, 3X,

G14.6, 3X,

G14.6, 3X,

G14.6, 3X,
G14.6, 3X,

G14.6, 3X,

IS, 31X,

IS, 31X.

'M

'M/S

'(M.M)/(S.S)
'KG/(M3.S)
'KG/KMOLE

I/

a )

. ',I/

'NEQSCH ', I5,/
'NINRCH - ', IS,// )

OUTPUT IS IN NON-DIMENSIONAL FORM'//)

1600 FORMAT(6X,'UGASCO - ',G14.6,3X.'J/KG/K '/
1 5X,'NUMBER OF SPECIES EQUATIONS ',IS,10X,
2 'NUMBER OF BASIC CONSERVATION EQUATIONS -',I5 )

1700 FORMAT(/SX,'REFERENCE SPECIES MASS FRACTIONS'/
1 10X,'SPECIES',3X,'MASS FRACTION')

1800 FORMAT( X,16,G14.6)

RETURN

END

FRINIT

SUBROUTINE FRINIT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'

'FLCOMN.INC'

'FRCOMN.INC'

'IOCOMN.INC'

'KYCOMN .INC'
'PRCOMN.INC'

C THIS SUBROUTINE INITIALIZES THE COMMON BLOCK FRCOMN, WHICH HOLDS
C FREE STREAM CONDITIONS. COMMON BLOCK FLCOMN HOLDS CORRESPONDING
C DIMENSIONAL VALUES.

C
C GET THE VALUES SET BY GETKY2 SUBROUTINE OR THE DEFAULT VALUES
C
C FREE STREAM DENSITY

RHORFR - APASKY(30)
C
C FREE STREAM VELOCITY COMPONENTS

UCOMFR - APASKY(31)
VCOMFR - APASKY(32)

C

C FREE STREAM PRESSURE
PRESFR - APASKY(33)
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C
C BACK -PRESSURE RATIO

PBPIFR - APASKY(21)

C
C SET THE DEBUG PARAMETER FOR FR ROUTINES

IDBGFR IPASKY(21)

C WANT TO USE PERIDIC BOUNDARY CONDITIONS

KPERFR IPASKY(35)
C
C MAXIMUM NUMBER OF CYCLES

MCYCFR = IPASKY(36)
C
C CURRENT NUMBER OF CYCLES

NCYCFR 0

FREE STREAM VECTOR

SAVE THE MASS FRACTIONS

DO 10 IS = 1, NSPECH
YSPEPR(IS) = DPENFR(IS)

CONTINUE

DETERMINE THE FIRST COMPONENT
DEPENDENT VARIABLE VECTOR

OF THE FREE STREAM

DPENFR(1) RHORFR
C

C COMPUTE THE COMPONENTS PERTAINING TO SPECIES EQUATIONS

C
DO 20 IS = 1, NEQSCH

JS = NEqBAS + IS

DPENFR(JS) - RHORFR*YSPEPR(IS)
CONTINUE

COMPUTE MIXTURE SPECIFIC HEATS

SYSHFS O0.

SYSCPS 0.
SYSBMS = 0.
BIGAM - 0.

DO 30 IS 

SYSHFS

SYSCPS

SYSBMS

BIGAM

CONTINUE

1, NSPECH

- SYSHFS + YSPEPR(IS)*FMHTCH(IS)

- SYSCPS + YSPEPR(IS)*SPCPCH(IS)
- SYSBMS + YSPEPR(IS)/AMWTCH(IS)
- BIGAM + YSPEPR(IS)*SPBSCH(IS)

COMPUTE THE DIMENSIONAL TEMPERATURE

UGASCO UGASFL*SYSBMS

TREFFR - (PRESFR*PRESFL)/(UGASCO*RHORFR*RHORFL)
C
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C SEE IF YOU WANT TO COMPUTE THE VELOCITY COMPONENTS FROM

C THE GIVEN MACH NUMBER

C -

IF (UCOMFR .Eq. 0.) THEN

SYSCVS SYSCPS + BIGAM*TREFFR - UGASFL*SYSBMS

GAMAPR - (SYSCPS+BIGAM*TREFFR)/SYSCVS

SONDPR - GAMAPR*PRESFR/RHORFR

UCOMFR - AMCHFL*SQRT(SONDPR)

ENDIF

C
VEL02I = UCOMFR*UCOMFR + VCOMFR*VCOMFR

BEPSPR - SYSHFS + (TREFFR-TREFCH)*SYSCPS
1 - UGASFL*TREFFR*SYSBMS

1 + O.5*(TREFFR*TREFFR-TREFCH*TREFCH)*BIGAM

BEPSPR - BEPSPR/FMREFL + 0.5*VEL02I
DPENFR(2) = RHORFR*UCOMFR

DPENFR(3) - RHORFR*VCOMFR

DPENFR(4) - RHORFR*BEPSPR

C

C DEBUG PRINT
C -

C

IF (IDBGFR .NE. 1 .AND. IDBGFR .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG, 1200)

WRITE(JDEBUG,1300) RHORFR, UCOMFR, VCOMFR, PRESFR, PBPIFR,

1 GAMAPR, SONDPR, BEPSPR, TREFCH, TREFFR,

2 IDBGFR, KPERFR, MCYCFR

WRITE(JDEBUG. 1400)

DO 40 IS - I,NSPECH

WRITE(JDEBUG,1500) IS,YSPEPR(IS)

40 CONTINUE

C FORMAT STATEMENTS
C ---

1000 FORMAT(//OX,'----------------------- )
1100 FORMAT( OX,'DEBUG PRINT FROM FRINIT' )

1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT( 5X, 'RHORFR ', G14.5, 1OX, 'UCOMFR ', G14.5/

1 5X, 'VCOMFR- ', G14.5, 10X, 'PRESFR- ', G14.5/

2 6X, 'PBPIFR - ', G14.5, 1OX. 'GAMAPR- ', G14.5/

3 5X, 'SONDPR ', G14.5, 10X, 'BEPSPR - ', G14.5/

4 5X, 'TREFFR ', G14.5, 10OX, 'TREFCH ', G14.5/

5 SX, 'IDBGFR- ', IS, 5X, 'KPERFR- ', IS 

86 X. 'MCYCFR- ' IS )

1400 FORMAT(/5X,'FREE STREAM SPECIES MASS FRACTIONS'/

lOX,' SPECIES',3X, 'MASS FRACTION')

1500 FORMAT( 5X,ISG14.5)

RETURN

END
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FRSOUR

SUBROUTINE FRSOUR

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FLCOMN. INC'
INCLUDE 'JACOMN.INC'

INCLUDE 'PRCOMN.INC'

DIMENSION WREACT(MREACH)

DOUBLE PRECISION PROD1, PROD2, RHOD, CONCEN(MSPECH)

C THIS FUNCTION COMPUTES THE SOURCE TERMS AT A GIVEN LOCATION.

RHORPR - DPENJA(1)

UCOMPR - DPENJA(2)/DPENJA(1)

VCOMPR - DPENJA(3)/DPENJA(1)

BEPSPR - DPENJA(4)

BEU - BEPSPR/RHORPR
VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C
C COMPUTE THE DIMENSIONAL QUANTITIES
C

BE - FMREFL*BEU

VEL02 - FMREFL*VELO2U
RHOD - RHORPR*RHORFL

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.

DO 10 IS - 1, NEQSCH

JS - NEQBAS + IS
YSPEPR(IS) DPENJA(JS)/DPENJA(1)

SUMY - SUMY + YSPEPR(IS)
10 CONTINUE

YNEXT - 1. - SUMY - YNRTCH

IF (YNEXT .LT. 0.) YNEXT O.

YSPEPR(NEQSCH+1) - YNEXT
C

SYSHFS - O.
SYSCPS - O.
SYSBMS - 0.
BIGAM - 0.

C

785



COMPUTE THE TEMPERATURE IN DEGREE K AND ALSO

COMPUTE THE CONCENTRATIONS OF ALL THE SPECIES IN KMOL/(M**3)

DO 20 IS - 1. NSPE

SYSHFS - SY

SYSCPS - SY

SYSBMS - SY

BIGAM - BI'

CONCEN(IS) - RH

BIGWJA(IS) - O.
20 CONTINUE

CH

SHFS + YSPEPR(IS)*FMHTCH(IS)

SCPS + YSPEPR(IS)*SPCPCH(IS)

SBMS + YSPEPR(IS)*RAMWCH(IS)

GAM + YSPEPR(IS)*SPBSCH(IS)

OD*YSPEPR(IS) *RAMWCH(IS)

C

C COMPUTE TEMPERATURE IN DEGREE K AND SOME RELATED QUANTITIES

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM - BE - O.5*VELO2 - SYSHFS + TREFCH*SYSCPS
1 + O.S*TREFCH*TREFCH*BIGAM

IF (BIGAM .LT. .E-10) THEN

TEMPD - BIGCM/BIGBM
ELSE

DISCRI - BIGBM*BIGBM + 2.*BIGAM*BIGCM

TEMPD - ( SQRT(DISCRI)-BIGBM )/BIGAM

ENDIF

BIGAMT

SYSCVS
GAMAPR

ALOGT

RTEMP

- BIGAM *TEMPD

- BIGBM + BIGAMT
- (SYSCPS+BIGAMT)/SYSCVS

- LOG(ABS(TEMPD))

- 1./TEMPD
C
C NORMALIZE THE TEMPERATURE
C

TEMPU - TEMPD/TREFFL
C

C COMPUTE THE DIMENSIONLESS PRESSURE

C
PRESPR - RHORPR*TEMPU*AMWTFL*SYSBMS

C BY-PASS THE REACTION CALCULATIONS IF TEMPERATURE IS LESS THAN

C TRIGGER TEMPERATURE

IF (TEMPD .LT. TRIGCH) RETURN
RECWDR - 1./WDREFL

C

C CORRECT THE RATE COEFFICIENTS FOR ROGERS AND CHINITZ MODEL
C

IF (KROGER .EQ. 1) THEN

IF (YSPEPR(3) .LE. 0.) RETURN
PHI - YSPEPR(3)*34.048/(1.-YSPEPR(3))

IF (PHI

IF (PHI
RPHI

TENLOG
AIPHI

A2PHI

.LT.

.GT.
li

ee

ee

PREFCH(1) -
PREFCH(2) -

0.1 ) PHI - 0.1

2.0 ) PHI - 2.0

1./PHI
LOG(10.)

8.917*PHI + 31.
-0.833*PHI+ I..

433*RPHI - 28.95

333*RPHI + 2.00

LOG(AiPHI) + 44.*TENLOG
LOG(A2PHI) + 68.*TENLOG
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PREBCH(1) -
PREBCH(2) -

PREFCH(1) - PREECH(1)

PREFCH(2) - PREECH(2)

USE THE FIRST REACTION AS EQUILIBRIUM REACTION, IF THE

CONCENTRATIONS ARE FAR AWAY FROM EQUILIBRIUM

- 117.31948*EXP(-8992./TEMPD)

- YSPEPR(3)*YSPEPR(1)*AKEQ

- SRT(YOHEQ)
- YOHEQ-YSPEPR(2)

IF (ABS(DELTAY)

YSPEPR(4)

DELTAY -

YO2Eq -

YH2EQ =

CONCEN(1) -
CONCEN(2) -
CONCEN(3) -

ENDIF

.GT. O.O1*YMAXCH(2) .AND.

.LT. 0.50*YMAXCH(4)) THEN

0.6*DELTAY*RAMWCH(2)

YSPEPR(1) - AMWTCH(1)*DELTAY

YSPEPR(3) - AMWTCH(3)*DELTAY

RHOD*YO2EQ*RAMWCH(1)

RHOD*YOHEQ*RAMWCH(2)

RHOD*YH2EQ*RAMWCH(3)

REACTION # 1

ALNKFR

ALNKBR

ALNKFR

ALNKBR

AKFB2

AKBB2

PROD1
PROD2

OMEGAF

OMEGAB

WREACT(1)

- PREFCH(1) + EXPFCH(1)*ALOGT - ENEFCH(I)*RTEMP

= PREBCH(1) + EXPBCH(1)*ALOGT - ENEBCH(1)*RTEMP
O0.5*ALNKFR

= O.6*ALNKBR

= EXP(ALNKFR)

- EXP(ALNKBR)

- CONCEN(1)*CONCEN(3)
= CONCEN(2)*CONCEN(2)

- AKFB2*PRODI*AKFB2

- AKBB2*PROD2*AKBB2

= OMEGAF - OMEGAB

FIND NENSPEC FOR THIS REACTION

DENFAC - 0.

RMIN = -10.

IF (WREACT(1) .LT. 0.) THEN

NENSPEC IS OH

IF (CONCEN(2) .GT. 1.E-6) THEN

ROM = 2.*WREACT(1)/CONCEN(2)
IF (ROM .LT. RMIN) DENFAC SONDPR/CONCEN(2)*2.*OMEGAB

ENDIF

ELSE

NENSPEC IS EITHER H2 OR 02

IF (CONCEN(I) .GT. 1.E-6) THEN

ROM - -WREACT(1)/CONCEN(1)

IF (ROM .LT. RMIN) THEN
RMIN - RMON
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DENFAC - SONDPR/CONCEN(l)*OMEGAF

ENDIF

-ENDIF

IF (CONCEN(3) .GT. 1.E-6) THEN

ROM - -WREACT(1)/CONCEN(3)

IF (ROM .LT. RMIN) THEN
RMIN - RMON

DENFAC = SONDPR/CONCEN(3)*OMEGAF

ENDIF

ENDIF

C
ENDIF

C
C

C
ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(1) - WREACT(1)/(1.+DENFAC)

REACTION 2

- PREFCH(2) + EXPFCH(2)*ALOGT - ENEFCH(2)*RTEMP

- PREBCH(2) + EXPBCH(2)*ALOGT - ENEBCH(2)*RTEMP
- 0.5*ALNKFR

- O.5*ALNKBR

- EXP(ALNKFR)

- EXP(ALNKBR)

- CONCEN(3)*CONCEN(2)CONCNCEN(2)

- CONCEN(4)*CONCEN(4)
- AKFB2*PROD1*AKFB2
- AKBB2*PROD2*AKBB2

- OMEGAF - OMEGAB

ALNKFR

ALNKBR

ALNKFR

ALNKBR

AKFB2

AKBB2

PROD1

PROD2

OMEGAF

OMEGAB

WREACT(2)

FIND NENSPEC FOR THIS REACTION

RMIN - -10.

DENFAC - 0.

IF (WREACT(2) .LT. 0.) THEN

NENSPEC IS H20

IF (CONCEN(4) .GT. 1.E-8) THEN

ROM - 2.*WREACT(2)/CONCEN(4)

IF (ROM .LT. RMIN) DENFAC SONDPR/CONCEN(4)*2.*OMEGAB
ENDIF

ELSE

NENSPEC IS EITHER H2 OR OH

IF (CONCEN(2) .GT. 1.E-6) THEN

ROM - -2.*WREACT(2)/CONCEN(2)

IF (ROM .LT. RMIN) THEN
RMIN - RMON

DENFAC - SONDPR/CONCEN(2)*2.*OMEGAF
ENDIF
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ENDIF

-IF (CONCEN(3) .GT. 1.E-6) THEN
ROM - -WREACT(2)/CONCEN(3)

IF (ROM .LT. RMIN) THEN

RMIN - RMON

DENFAC - SONDPR/CONCEN(3)*OMEGAF

ENDIF

ENDIF

ENDIF

ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(2) - WREACT(2)/(1.+DENFAC)

COMPUTE THE SOURCE TERMS

BIGWJA(6) -
BIGWJA(8) -

BIGWJA(6) -

BIGWJA(7) -

-AMWTCH(1)*RECWDR* WREACT(1)

2.*AMWTCH(4)*RECWDR* WREACT(2)

2.*AMWTCH(2)*RECWDR*(WREACT(l)-WREACT(2))

-AMWTCH(3)*RECWDR*(WREACT(1)+WREACT(2))

RETURN

ENDIF
C

C COMPUTE THE CONTRIBUTION

C THE REACTIONS

WREACT TO THE SOURCE TERMS FROM ALL

DO 40 IR 1, NREACH

ALNKFR - PREFCH(IR) + EXPFCH(IR)*ALOGT - ENEFCH(IR)*RTEMP

ALNKBR PREBCH(IR) + EXPBCH(IR)*ALOGT - ENEBCH(IR)*RTEMP

ALNKFR - O.5*ALNKFR

ALNKBR = 0.*ALNKBR

AKFB2 - EXP(ALNKFR)

AKBB2 - EXP(ALNKBR)
PRODI - 1.DO

PROD2 = 1.DO

NSRK = NSRKCH(IR)
DO 30 IS = 1, NSRK

ISP = ITABCH(IS IR)

IP1 = IALOCH(ISP.IR)
IP2 = IBTOCH(ISP,IR)

IF (IPI .NE. O) PROD1 = PRODl*CONCEN(ISP)**IP1

IF (IP2 .NE. O) PROD2 = PROD2*CONCEN(ISP)**IP2
CONTINUE

OMEGAF = AKFB2*PROD1*AKFB2

OMEGAB - AKBB2*PROD2*AKBB2

WREACT(IR) - OMEGAF - OMEGAB

FIND NENSPEC FOR THIS REACTION

RMIN = -10.

DENFAC - 0.

DO 3 IS - 1, NSRK

ISP - ITABCH(IS ,IR)
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IF (CONCEN(ISP) .GT. I.E-6) THEN
ROM - BMIACH(IS,IR)*WREACT(IR)/CONCEN(ISP)

- IF (ROM .LT. RMIN) THEN
IPI - IALPCH(ISP,IR)

IP2 - IBETCH(ISP,IR)

RMIN - RMON

DENFAC - SONDPR/CONCEN(ISP)*(IP1*OMEGAF+IP2*OMEGAB)

ENDIF

ENDIF

35 CONTINUE

C

ADJUST THE REACTION CONTRIBUTION FOR NENSPEC

WREACT(IR) = WREACT(IR)/(1.+DENFAC)
C
40 CONTINUE

C COMPUTE THE SOURCE TERMS

DO 60 IS - 1, NEQSCH

JS = NEQBAS + IS
SUMWT = O.

DO 50 IR = 1, NREACH

SUMWT - SUMWT + BMIACH(IS,IR)*WREACT(IR)
50 CONTINUE

BIGWJA(JS) - AMWTCH(IS)*SUNMWT

IF (KROGER .EQ. 2) BIGWJA(JS) = BIGWJA(JS)*RHOD
BIGWJA(JS) = BIGWJA(JS)*RECWDR

60 CONTINUE

RETURN

END

G2BPIN

SUBROUTINE G2BPIN (IBNODE.INTERF)

INCLUDE 'PRECIS.INC '

INCLUDE 'PARMV2.INC '

INCLUDE 'G2COMN.INC '

DIMENSION AGEOMB(4,4), YGEOMB(4),

DIMENSION IBNODE(S)

COEFFB(4)

C

C

C THIS SUBROUTINE DOES THE INTERPOLATION AT A BOUNDARY NODE FOR A
C NEWLY DIVIDED CELL. INTERF INDICATES THE INTERPOLATION FUNCTION
C TO BE USED FOR THE GEOMETRY (Y-COORDINATE) OF THE NEWLY CREATED
C NODE ON THE BOUNDARY. INTERF-1 FOR QUADRATIC, =2 FOR CUBIC AND
C =3 FOR A CIRCULAR ARC.
C THE GEOMETRY AT THE FOLLOWING NODES IS KNOWN:
C
C 4 2 0 1 3 IBNODE
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C
C + + ! + +
C + + ! + +
C

C
Xi - GEOMG2(1,IBNODE(1))

X2 - GEOMG2(1,IBNODE(2))

X3 - GEOMG2(1.,IBNODE(3))

X4 - GEOMG2(i.IBNODE(4))

XO - GEOMG2(I.IBNODE(5))

Yi - GEOMG2(2,IBNODE(i))

Y2 - GEOMG2(2.IBNODE(2))

Y3 - GEOMG2(2.IBNODE(3))

Y4 - GEOMG2(2,IBNODE(4))

YO - GEOMG2(2.IBNODE(5))

GO TO (100, 100, 300), INTERF

RETURN

C
C

C SETUP FOR CUBIC INTERPOLATION
C

C

100 CONTINUE

Xi - X - XO

X3 - X3 - XO

X4 - X4 - XO

X3 - X3/X1

X4 - X4/XI

X3P2 - X3*X3

X3P3 - X3*X3P2

X4P2 = X4*X4

X4P3 - X4*X4P2

AGEOMB(1,1) - 1.

AGEOMB(1.2) - 1.

AGEOMB(1,3) - 1.

AGEOMB(1,4) - 1.

AGEOMB(2.3) - 1.

AGEOMB(2.2) --1.

AGEOMB(2.3) - 1.

AGEOMB(2,4) --1.

AGEOMB(3,1) - 1.

AGEOMB(3,2) - X3

AGEOMB(3,3) - X3P2

AGEOMB(34) - X3P3

AGEOMB(4.I) - 1.

AGEOMB(4,2) - X4

AGEOMB(4,3) - X4P2

AGEOMB(4,4) - X4P3
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YGEOMB(1) - Y1

YGEOMB(2) Y2

YGEOMB(3) Y3

YGEOMB(4) - Y4
C
C QUADRATIC INTERPOLATION WILL BE USED IF THE SECTIONS 4-2 OR

C 1-3 ARE EITHER HORIZONTAL OR VERTICAL LINE SEGMENTS

C
IQUAD = 1

DYTEST - ABS(Y4-Y2)

IF (DYTEST .LT. I.E-8) GOTO 200

DYTEST - ABS(Y3-Y1)

IF (DYTEST .LT. i.E-8) THEN

IQUAD 2

GOTO 200

ENDIF

DYTEST ABS(X3-X1)

IF (DYTEST .LT. 1.E-8) THEN

IQUAD - 2

GOTO 200

ENDIF

CALL GAUSS2(AGEOMB,YGEOMB,COEFFB.4,4)

C
C SET THE RESULT FOR CUBIC INTERPOLATION

C

GEOMG2(2.IBNODE(5)) - COEFFB(1)

RETURN

C
C ----------

C SETUP FOR QUADRATIC INTERPOLATION

C

C

200 CONTINUE

C

C IF (INTERF .NE. 1) RETURN

C

C SEE IF NODE 4 IS TO BE INSTEAD OF NODE 3

C

IF (IQUAD .EQ. 2) THEN

AGEOMB(3,2) X4

AGEOMB(3,3) X4P2

AGEOMB(3,4) - X4P3

YGEOMB(3) - Y4

ENDIF

CALL GAUSS2 (AGEOMB,YGEOMB,COEFFB,3,4)

C

C SET THE RESULT FOR QUADRATIC INTERPOLATION

C

GEOMG2(2,IBNODE(S)) - COEFFB(1)
RETURN

C
C

C SETUP FOR CIRCULAR ARC INTERPOLATION (USE 12 AND 4)

C
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300 CONTINUE

C SEE I POINTS 1 2, AND 3 WILL BE USED FOR THE ARC

DYTEST - ABS(Y4-Y2)

IF (DYTEST .LT. .E-8) THEN
X4 - X3
Y4 - Y3

ENDIF

X12 - X1 - X2

X42 = X4 - X2
Y12 - Y1 - Y2

Y42 = Y4 - Y2

RR1 - O.5*(XI*X - X2*X2 + Y*Y -Y2*Y2)
RR2 - 0.5*(X4*X4 - X2*X2 + Y4*Y4 - Y2*Y2)

YC - (X42*RRi-X12*RR2)/(X42*Y12-X12*Y42)

XC = (RR1-Y12*YC)/X12
RC2 - (X1-XC)**2 + (YI-YC)**2
YRAD - SQRT ( RC2 - (XO-XC)**2 )
YPLUS - YC + YRAD
YMINUS - YC - YRAD

C

C SEE WHETHER TO USE POSITIVE OR NEGATIVE SIGN DEPENDING UPON

C WHICHEVER SOLUTION IS CLOSER TO THE LINEAR ONE
C

IF ( ABS(YPLUS-YO) .LT. ABS(YMINUS-YO) ) THEN
JSIGN - 1

YO - YPLUS

ELSE
JSIGN --1

YO ' YMINUS
ENDIF

C

X12P2 - X12**2

Y12P2 = Y12**2
BIGA - 1. + Y12P2/X12P2
BIGB - 2.*(XC*Y12/X12 - RRI*Y12/X12P2 - YC)

BIGC = RRl**2/X12P2 - 2.*RRI*XC/X12 + XC*XC + YC*YC - RC2
YO - 0.5*(-BIGB+JSIGN*SQRT(BIGB**2-4.*BIGA*BIGC))/BIGA
XO - (RR1-Y12*YO)/X12

GEOMG2(1,IBNODE(5)) - XO

GEOMG2(2,IBNODE()) - YO

RETURN

END

G2CLPU

SUBROUTINE G2CLPO (LSUB1, LSUB2, LSUB3, LSUB4, LCELL, IWARN)
C G2CLPU
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INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC '

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'
INCLUDE 'M2COMN.INC '

C THIS SUBROUTINE COLLAPSES THE FOUR SUBCELLS LSUBI, LSUB2, LSUB3,
C LSUB4 WHICH MAKE UP CELL 'LCELL' AND PERFORMS ALL NECESSARY

C POINTER SYSTEM REALIGNMENTS

C FIND THE FOUR CELLS COMPRISING LCELL

LMSE - 0

LMNE - 0
LMSW - MIN (LSUB1, LSUB2, LSUB3, LSUB4)

LMNW - MAX (LSUB1. LSUB2, LSUB3, LSUB4)

LDUM - LMSW + 1

IF (LSUB1 .EQ. LDUM) LMSE - LSUB1

IF (LSUB2 .EQ. LDUM) LMSE - LSUB2

IF (LSUB3 .EQ. LDUM) LMSE - LSUB3

IF (LSUB4 .EQ. LDUM) LMSE - LSUB4

LDUM - LMNW -

IF (LSUBl .EQ. LDUM) LMNE - LSUB1

IF (LSUB2 .EQ. LDUM) LMNE - LSUB2
IF (LSUB3 .EQ. LDUM) LMNE - LSUB3

IF (LSUB4 .EQ. LDUM) LMNE - LSUB4

C

C SEE IF THE GIVEN SUBCELLS LMSW, LMSE, LMNE k LMNW ARE CONTIGUOUS?
C

IF (LMSE.NE.(LMSW+I) .OR. LMNE.NE.(LMSW+2)

1 .OR. LMNW.NE.(LMSW+3) ) RETURN

C INTERCHNAGE INFORMMATION

C INTERCHANGE (LMSW WITH NLAST), (LMSE WITH NLAST)-------

C (LMNE WITH NLAST3), (LMNW WITH NLAST4)

NLAST4 - NCELG2

NLAST3 - NLAST4 - 1
NLAST2 - NLAST3 - 1

NLAST1 - NLAST2 - 1

C IF THE CELL TO BE DIVIDED IS ITSELF ONE OF THE LAST CELLS

C THEN SIMPLY EXIT FOR NOW

IF (LCELL .GE. NLAST1) RETURN
C
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C SAVE THE CELL POINTERS

C 

C - ICELG2(1,LCELL)

KSW - ICELG2(2.LCELL)

KS - ICELG2(3.LCELL)

KSE - ICELG2(4.LCELL)

KE - ICELG2(6.LCELL)

KNE - ICELG2(6.LCELL)

KN - ICELG2(7,LCELL)
KNW - ICELG2(8,LCELL)
KW - ICELG2(9,LCELL)
IX - KAUXG2(LCELL)
RXSW - KAUXG2(LMSW)
KXSE - KAUXG2(LMSE)
KXNE - KAUXG2(LMNE)

KXNW - KAUXG2(LMNW)

K5LMSW - IAND(KXSW,KUOOOF)

K5LMSE - IAND(KXSE,KUOOOF)
KBLMNE - IAND(KXNE,KUOOOF)

K5LMNW - IAND(KXNW,KUOOOF)
C

C A CELL WHICH IS PERMANENTLY MARKED FOR THE FUEL INJECTION
C CAN NOT BE COLLAPSED
C

IF (IAND(KX,KL2000) .NE. O) RETURN

C
C IF THE COMPONENT CELLS ARE BASE CELLS THEN THEY CAN NOT BE

C COLLAPSED

IF (K5LMSW .EQ. 0 .OR. KLMSE .EQ. 0 .OR.
1 K5LMNE .EQ. 0 .OR. KSLMNW .EQ. ) RETURN

C FIND THE LEVEL LEVELG OF THE GIVEN CELL LCELL

C OLD AND NEW LEVELS; LEVELO > 0

LEVELO - ISHFT(KLMSW,-16)
LEVELG - LEVELO -
K5LEVG .- IAND (KX,KUOOOF)

C IF THE COMPONENT CELLS HAVE DIVIDED NEIGHBOURS THEN

C THEY CAN NOT BE COLLAPSED (%%XX)

IF (ICELG2(3LMSW) .NE. O) RETURN

IF (ICELG2(9,LMSW) .NE. O) RETURN

IF (ICELG2(3,LMSE) .NE. O) RETURN
IF (ICELG2(5,LMSE) .NE. O) RETURN
IF (ICELG2(5,LMNE) .NE. O) RETURN

IF (ICELG2(7,LMNE) .NE. O) RETURN

IF (ICELG2(7,LMNW) .NE. O) RETURN

IF (ICELG2(9,LMNW) .NE. O) RETURN

C
C FIND CELLS WHICH BOUND DIVIDED CELL
C

C I---------------- I--------- I
C I I I I K FOR NODE
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I

I 
I 

I L FOR CELL

+LCNW I LHNW + LHNE ILCNE +

+ I + I

+------ ------------ ------- ----- +----

+LVNW
.4.4.
+LVSW
+

IKNW KN KNEI +

I LMNW LMNE ILVNE +
+KW LCELL KE + + .
I LMSW LMSE ILVSE +
IKSW KS KSEI +

I M:CENTER (MIDDLE)

I C:CORNER (ADJACENT)
I H:HORIZONTAL (ADJAC)

I V:VERTICAL (ADJACENT)
I

4------------------ ------- ----- 4.---
+ I + I 4.

+LCSW I LHSW + LHSE ILCSE +4.4.+++4.4.+ +.++ .+ .+ +.4 
I I

I------------I--------------- I---------

LVSW - NEIBG2(4,KSW)

LCSW - NEIBG2(1,KSW)

LHSW - NEIBG2(2,KSW)

LHSE - NEIBG2(1,KSE)

LCSE - NEIBG2(2,KSE)

LVSE - NEIBG2(3,KSE)

LVNE - NEIBG2(2,KNE)

LCNE - NEIBG2(3,KNE)

LHNE - NEIBG2(4,KNE)

LHNW - NEIBG2(3,KNW)

LCNW - NEIBG2(4,KNW)

LVNW - NEIBG2(1,KNW)

C IF THE COMPONENT CELLS ARE JUST OUTSIDE EMBEDDED REGION THEN

C THEY CAN NOT BE COLLAPSED; THIS WILL BE SO IF THE LEVELS OF

C THE NEIGHBOURHOOD CELLS DIFFER BY MORE THAN ONE

C FIRST DO THE CORNER CELLS

IF (LCSW .NE. O) THEN

KLCOR - IAND(KAUXG2(LCSW),KUOOOF)
LEVELC ISHFT(KSLCOR,-16)

IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN
ENDIF

IF (LCSE .NE. O) THEN

KSLCOR IAND(KAUXG2(LCSE),KUOOOF)

LEVELC ISHFT(KSLCOR,-16)

IDLC a LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN
ENDIF

IF (LCNE .NE. O) THEN

K5LCOR IAND(KAUXG2(LCNE),KUOOOF)

LEVELC ISHFT(KBLCOR,-16)
IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN
ENDIF

IF (LCNW .NE. O) THEN

KSLCOR - IAND(KAUXG2(LCNW),KUOOOF)
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LEVELC - ISHFT(K6LCOR.-16)
IDLC ' LEVELC-LEVELG

IF-(IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF

MARK NODE AT CENTER OF CELL FOR DELETION

DPENG2(1,KC) - -99.

MARK SOUTHERN NODE FOR DELETION IF NEED BE

IF (LHSW .EQ. LHSE) THEN

DPENG2(1.KS) - -99.

KSS - KS

KS - O

LS = LHSW

ELSE IF (LHSW .EQ. 0 .OR.

DPENG2(1,KS) - -99.

KSS - KS
KS - 0
LS - O

ELSE

LS

ENDIF

LHSE .EQ. O) THEN

- ICELG2(1O0,LHSW)

C MARK EASTERN NODE FOR DELETION IF NEED BE

IF (LVSE .EQ. LVNE) THEN

DPENG2(1.KE) - -99.
KEE - KE

KE - O
LE - LVSE

C ELSE IF (LVNE .EQ. 0 .OR.

C DPENG2(1.KE) - -99.
C KEE - KE

C KE - 0

C LE - 0

ELSE

LE - ICELG2(1
ENDIF

LVSE .Eq. O) THEN

O,LVSE)

C MARK NORTHERN NODE FOR DELETION IF NEED BE

IF (LHNE .EQ. LHNW) THEN

DPENG2(1.KN) - -99.
KNN KN

KN = 0
LN - LHNE

ELSE IF (LHNE .EQ. 0 .OR.

DPENG2(1.KN) -99.
KNN - KN
KN = 0
LN - 0

ELSE

LN - ICELG2(1

ENDIF

LHNW .EQ. O) THEN

O,LHNE)
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C MARK WESTERN NODE FOR DELETION IF NEED BE

IF (VNW .EQ. LVSW) THEN

DPENG2(1,KW) -99.
KWW KW

KW -0
LW - LVNW

C ELSE IF (LVNW .EQ. 0 .OR.

C DPENG2(1,KW) - -99.

C KWW - KW

C KW - 0

C LW -O

ELSE

LW - ICELG2(1

ENDIF

LVSW .EQ. O) THEN

O,LVNW)

C ----INTERCNAGE NFORMATION

C UPDATE NODES (PLUS SUPERCELL) OF THE INTERCHANGED CELLSC UPDATE NODES (PLUS SUPERCELL) OF THE INTERCHANGED CELLS

DO 10 IP - 1, 10

ICELG2(IP,LMSW)

ICELG2(IP,LMSE)

ICELG2(IP,LMNE)

ICELG2(IP,LMNW)

10 CONTINUE

- ICELG2(IP,NLAST1)

- ICELG2(IP,NLAST2)

- ICELG2(IP,NLAST3)

- ICELG2(IP,NLAST4)

C INTERCHANGE THE AUXILLIARY POINTERS

KAUXG2 (LMSW)

KAUXG2 (LMSE)

KAUXG2 (LMNE)

KAUXG2 (LMNW)

- KAUXG2(NLAST1)

- KAUXG2(NLAST2)

- KAUXG2(NLAST3)

- KAUXG2(NLAST4)

C INTERCHANGE THE RECIPROCAL VOLUME POINTERS

RVOLM2 (LMSW)

RVOLM2 (LMSE)

RVOLM2 (LMNE)

RVOLM2 (LMNW)

- RVOLM2(NLAST1)
- RVOLM2(NLAST2)

- RVOLM2(NLAST3)

- RVOLM2(NLAST4)

C INTERCHANGE THE PERIMETER POINTERS

PERIM2(LMSW)

PERIM2(LMSE)

PERIM2(LMNE)

PERIM2(LMNW)

- PERIM2(NLAST1)

a PERIM2(NLAST2)
- PERIM2(NLAST3)

- PERIM2(NLAST4)

C INTERCHANGE THE METRIC POINTERS

DXEWM2 (LMSW)
DXEWM2 (LMSE)
DXEWM2(LMNE)

DXEWM2(LMNW)

- DXEWM2(NLAST1)

- DXEWM2(NLAST2)

- DXEWM2(NLAST3)

- DXEWM2(NLAST4)
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DYEWM2(LMSW)

DYEWM2 (LMSE)

DYEWM2(LMNE)

DYEWM2 (LMNW)

DXNSM2(LMSW)

DXNSM2(LMSE)

DXNSM2 (LMNE)
DXNSM2(LMNW)

DYNSM2(LMSW)

DYNSM2(LMSE)

DYNSM2(LMNE)

DYNSM2(LMNW)

= DYEWM2(NLAST1)

- DYEWM2(NLAST2)

- DYEWM2(NLAST3)

- DYEWM2(NLAST4)

- DXNSM2(NLAST1)

- DXNSM2(NLAST2)

- DXNSM2(NLAST3)

- DXNSM2(NLAST4)

- DYNSM2(NLAST1)

- DYNSM2(NLAST2)
- DYNSM2(NLAST3)

- DYNSM2(NLAST4)

FIND THE NEIGHBOURS OF THE LAST FOUR CELLS AND

CHECK IF CELLS AGREE ON THE NODE ASSIGNMENTS

JC

JSW

JS1

JS

JS2

JSE

JEi

JE

JE2

JNE

JN1

JN

JN2

JNW

JW1

JW

JW2

= ICELG2(6,NLAST1)

- ICELG2(2,NLAST1)

- ICELG2(3,NLAST1)

- ICELG2(4,NLAST1)

- ICELG2(3,NLAST2)

- ICELG2(4,NLAST2)

- ICELG2(5,NLAST2)
- ICELG2(6,NLAST2)

- ICELG2(5,NLAST3)

- ICELG2(6,NLAST3)

- ICELG2(7,NLAST3)
- ICELG2(8,NLAST3)
- ICELG2(7,NLAST4)

- ICELG2(8,NLAST4)

- ICELG2(9,NLAST4)

- ICELG2(2,NLAST4)
- ICELG2(9,NLASTI)

FIND THE CELLS PERTINENT

CELLS MIGHT BE DIVIDED

JNW JN2 JN JN1 JNE

I-----+ ----- +-----+ ----- +
IN4NW N4NE IN3NW N3NE I

JWI+ NLAST4 * NLAST3 +JE2

IN4SW N4SE IN3SW N3SE I
JW----- *---JC-----*-----+JE

IN1NW N1NE N2NW N2NE I
JW2+ NLAST * NLAST2 +JE1

INISW NiSE IN2SW N2SE I
I-----+----- I---------- I

JSW JS1 JS JS2 JSE

TO THE ABOVE NODES; SOME OF THESE

KNW KN KNE

I------------------------

I I
I LMNW I LMNE I

~~I ~~i I
KW----------KC------+-----KN

I I I
I LMSW I LMSE I

I Il I … I

KSW KS KSE

C

C INITIALIZE MIDDLE EDGE NODES (INDICATED BY *'S) OF THE LAST
C FOUR CELLS

ISTAR - 0
ISTAR2 - O
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ISTAR3 - 0
ISTAR4 - 0

C 

IF (ICELG2(1.NLASTt) .NE. O) THEN

ISTAR4 - ICELG2(7,NLAST1)

ISTARI - ICELG2(6.NLAST1)
ENDIF

C

IF (ICELG2(1,NLAST2) .NE. O) THEN

ISTAR - ICELG2(9,NLAST2)
ISTAR2 - ICELG2(7,NLAST2)

ENDIF
C

IF (ICELG2(1,NLAST3) .NE. O)
ISTAR2 - ICELG2(3,NLAST3)
ISTAR - ICELG2(9,NLAST3)

ENDIF

IF (ICELG2(1.NLAST4) .NE. O)
ISTAR3 - ICELG2(.NLAST4)

ISTAR4 - ICELG2(3.NLAST4)
ENDIF

THEN

THEN

NOW UPDATE THE NEIGHBOURS OF THE INTERCHANGED CELLS

IF (NEIBG2(3.JSW)

IF (NEIBG2(4,JS )
IF (NEIBG2(1.JC )
IF (NEIBG2(2,JW )

IF (NEIBG2(3,JS )
IF (NEIBG2(4,JSE)
IF (NEIBG2(1,JE )
IF (NEIBG2(2,.JC )

IF (NEIBG2(3,JC )
IF (NEIBG2(4,JE )
IF (NEIBG2(1,JNE)

IF (NEIBG2(2.JN )

IF (NEIBG2(3.JW )
IF (NEIBG2(4.JC )
IF (NEIBG2(1,JN )
IF (NEIBG2(2,JNW)

.EQ.

.EQ.
.EQ.
.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.
.EQ.

.EQ.

NLAST1)
NLAST1)
NLAST1)
NLAST1)

NLAST2)
NLAST2)
NLAST2)
NLAST2)

NLAST3)
NLAST3)
NLAST3)
NLAST3)

NLAST4)
NLAST4)
NLAST4)
NLAST4)

NEIBG2(3,JSW)

NEIBG2(4.JS )
NEIBG2(I.JC )
NEIBG2(2,JW )

NEIBG2(3.JS )
NEIBG2(4,JSE)
NEIBG2(1.JE )
NEIBG2(2,JC )

NEIBG2(3,JC )
NEIBG2(4,JE )
NEIBG2(1,JNE)

NEIBG2(2,JN )

NEIBG2(3,JW )
NEIBG2(4,JC )
NEIBG2(1,JN )
NEIBG2(2,JNW)

- LMSW

- LMSW
- LMSW
= LMSW

- LMSE
- LMSE

- LMSE
- LMSE

- LMNE
- LMNE
- LMNE

- LMNE

- LMNW
- LMNW
- LMNW

- LMNW

UPDATE STAR EDGE POINTS

IF (ISTARI .NE. O) THEN
IF (NEIBG2(1,ISTARI)
IF (NEIBG2(4,ISTARI)
IF (NEIBG2(2.ISTARI)
IF (NEIBG2(3,ISTAR1)

ENDIF
IF (ISTAR2 .NE. O) THEN

IF (NEIBG2(1.ISTAR2)

IF (NEIBG2(2,ISTAR2)
IF (NEIBG2(3. ISTAR2)

.EQ.

.EQ.

.EQ.

.EQ.

NLAST1)
NLASTI)
NLAST2)

NLAST2)

.EQ. NLAST2)

.EQ. NLAST2)

.EQ. NLAST3)

NEIBG2(1,ISTAR1)

NEIBG2(4.ISTAR1)

NEIBG2(2.ISTARl)
NEIBG2(3,ISTARI)

- LMSW
= LMSW
- LMSE
- LMSE

NEIBG2(I,ISTAR2) - LMSE
NEIBG2(2,ISTAR2) - LMSE

NEIBG2(3.ISTAR2) - LMNE
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IF (NEIBG2(4.ISTAR2)

ENDIF

IF (ISTAR3 .NE. O) THEN
IF (NEIBG2(2,ISTAR3)

IF (NEIBG2(3. STAR3)

IF (NEIBG2(4,ISTAR3)
IF (NEIBG2(1. ISTAR3)

ENDIF

IF (ISTAR4 .NE. O) THEN

IF (NEIBG2(3.ISTAR4)

IF (NEIBG2(4,ISTAR4)

IF (NEIBG2(1,ISTAR4)

IF (NEIBG2(2, ISTAR4)

ENDIF

.EQ. NLAST3) NEIBG2(4,ISTAR2) LMNE

.EQ. NLAST3) NEIBG2(2,ISTAR3) - LMNE

.EQ. NLAST3) NEIBG2(3,ISTAR) - LMNE

.EQ. NLAST4) NEIBG2(4,ISTAR3) - LMNW

.EQ. NLAST4) NEIBG2(1,ISTAR3) - LMNW

.EQ. NLAST4) NEIBG2(3,ISTAR4) - LMNW

.EQ. NLAST4) NEIBG2(4,ISTAR4) - LMNW

.EQ. NLASTI) NEIBG2(1,ISTAR4) - LMSW

.EQ. NLAST1) NEIBG2(2,ISTAR4) = LMSW

UPDATE THE OTHER NON-ZERO MIDDLE EDGES

IF (JSi .NE. O) THEN

IF (NEIBG2(3,JS1)

IF (NEIBG2(4,JS1)

ENDIF

IF (JS2 .NE. O) THEN

IF (NEIBG2(3,JS2)

IF (NEIBG2(4.JS2)

ENDIF

IF (JEl .NE. O) THEN

IF (NEIBG2(1.JE1)

IF (NEIBG2(4,JE1)

ENDIF

IF (JE2 .NE. O) THEN

IF (NEIBG2(1,JE2)

IF (NEIBG2(4,JE2)
ENDIF

IF (JN1 .NE. O) THEN

IF (NEIBG2(1,JN1)

IF (NEIBG2(2.JNI)

ENDIF

IF (JN2 .NE. O) THEN

IF (NEIBG2(1,JN2)

IF (NEIBG2(2,JN2)

ENDIF

IF (JWl .NE. O) THEN

IF (NEIBG2(2.JW1)

IF (NEIBG2(3.JW1)
ENDIF

IF (JW2 .NE. O) THEN

IF (NEIBG2(2,JW2)

IF (NEIBG2(3,JW2)
ENDIF

.EQ. NLAST1) NEIBG2C(3,JSI) - LMSW

.EQ. NLAST1) NEIBG2(4,JS1) - LMSW

.EQ. NLAST2) NEIBG2(3,JS2) - LMSE

.EQ. NLAST2) NEIBG2(4,JS2) - LMSE

.EQ. NLAST2) NEIBG2(1.JE1) = LMSE

.EQ. NLAST2) NEIBG2(4.JE1) = LMSE

.EQ. NLAST3) NEIBG2(1.JE2) = LMNE

.EQ. NLAST3) NEIBG2(4,JE2) = LMNE

.EQ. NLAST3) NEIBG2(1,JN1) = LMNE

.EQ. NLAST3) NEIBG2(2.JNI) - LMNE

.EQ. NLAST4) NEIBG2(1,JN2) - LMNW

.EQ. NLAST4) NEIBG2(2,JN2) = LMNW

.EQ. NLAST4) NEIBG2(2,JWI) - LMNW

.EQ. NLAST4) NEIBG2(3,JWI) - LMNW

.EQ. NLASTI) NEIBG2(2,JW2) - LMSW

.EQ. NLAST1) NEIBG2(3,JW2) - LMSW

C
C IF ANY OF THE LAST FOUR CELLS IS DIVIDED. THEN IT IS THE
C SUPERCELL OF SOME OTHER CELLS NSONJ AND ITS SUPERCELL

C WILL HAVE TO BE UPDATED
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IF (ICELG2(I,NLAST1) .NE. 0 .OR. ICELG2(1,NLAST2) .NE. 0 .OR.

IZCELG2(1,NLAST3) .NE. 0 .OR. ICELG2(1,NLAST4) .NE. O) THEN

DO 16 NSONJ - ILVLG2(2,O), NCELG2
ISUP - ICELG2(1O,NSONJ)

IF (ISUP .GE. NLAST1) THEN

IF (ISUP .EQ. NLAST1) ICELG2(10,NSONJ) - LMSW

IF (ISUP .EQ. NLAST2) ICELG2(10,NSONJ) LMSE

IF (ISUP .EQ. NLAST3) ICELG2(10.NSONJ) LMNE

IF (ISUP .Eq. NLAST4) ICELG2(10,NSONJ) LMNW

ENDIF

15 CONTINUE

ENDIF

C
C ADJUST ANY BOUNDARY CONDITION POINTERS WHICH POINT TO CELLS

C JUST INTERCHANGED

C

IF (IAND(KAUXG2(NLAST1),KLOOOF) .NE. 0 .OR.

1 IAND(KAUXG2(NLAST2),KLOOOF) .NE. 0 .OR.

2 IAND(KAUXG2(NLAST3),KLOOOF) .NE. 0 .OR.

3 IAND(KAUXG2(NLAST4),KLOOOF) .NE. 0 ) THEN

DO 20 IB - 1, NBNDG2

IF (IBNDG2(2,IB) .GE. NLAST1) THEN

ND1 - IBNDG2(2,IB) - NLASTI

IBNDG2(2.IB) - LMSW + ND1

ENDIF

IF (IBNDG2(3,IB) .GE. NLAST1) THEN

ND1 - IBNDG2(3,IB) - NLAST1

IBNDG2(3,IB) - LMSW + NDI
ENDIF

20 CONTINUE

ENDIF

C

C SET THE NEIGHBOUR-NODE-ARRAY OF THE NEW SUPERCELL

C

NEIBG2(3,KSW) - LCELL

NEIBG2(4.KSE) - LCELL

NEIBG2(1,KNE) - LCELL

NEIBG2(2,KNW) - LCELL

NEIBG2(1,KC ) 0 O
NEIBG2(2,KC ) - 0
NEIBG2(3,KC - 0
NEIBG2(4,RKC ) - 0

C

IF (KS .NE. O) THEN

NEIBG2(3.KS) - LCELL

NEIBG2(4,KS) - LCELL

ELSE

NEIBG2(1.KSS) - 0
NEIBG2(2,KSS) - 0
NEIBG2(3,KSS) - 0
NEIBG2(4,KSS) - 0

ENDIF
C

IF (KE .NE. O) THEN
NEIBG2(1,KE) - LCELL

NEIBG2(4,KE) - LCELL

ELSE
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NEIBG2(1,KEE) - 0
NEIBG2(2,KEE) - 0
NEIBG2(3,KEE) - 0
NEIBG2(4.KEE) - 0

ENDIF

C
IF (KN .NE. O) THEN

NEIBG2(1.KN) - LCELL

NEIBG2(2,KN) - LCELL

ELSE

NEIBG2(1,KNN) - 0

NEIBG2(2,KNN) - 0
NEIBG2(3.KNN) - 0

NEIBG2(4.KNN) - 0

ENDIF
C

IF (KW .NE. O) THEN

NEIBG2(2,KW) - LCELL

NEIBG2(3.KW) - LCELL

ELSE

NEIBG2(1,KWW) - 0
NEIBG2(2.KWW) - O

NEIBG2(3,KWW) - O

NEIBG2(4,KWW) - 0
ENDIF

C
C ADJUST TOTAL NUMBER OF CELLS
C

NCELG2 - NCELG2 - 4
C

C ADJUST THE MAXIMUM LEVEL IF NEED BE
C

ILVLG2(3,LEVELO) - ILVLG2(3,LEVELO) - 4
IF (ILVLG2(3,NLVLG2) .LE. O) NLVLG2 - NLVLG2 - I

C UPDATE THE DIVIDED CELL POINTERS

C

ICELG2(1.LCELL) - 0
ICELG2(3,LCELL) - KS
ICELG2(5,LCELL) - KE

ICELG2(7,LCELL) - KN

ICELG2(9,LCELL) - KW

C RESET EDGE NODE POINTERS OF ALL NEIGHBOURING CELLS

IF (LS .NE. O) ICELG2(7,LS) - KS
IF (LE .NE. O) ICELG2(9,LE) - KE

IF (LN .NE. O) ICELG2(3.LN) - KN
IF (LW .NE. O) ICELG2(5,LW) - KW

C

C SCAN THROUGH ALL BOUNDARY CONDITION POINTERS, LOOKING FOR
C POINTERS TO THE DIVIDED CELL, SKIP THIS SECTION IF LCELL IS
C NOT A BOUNDARY CELL

ITWO - 0
IMD2 - 0
ICEN - 0
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IMD1 0

IONg - 0

320 300
+4.------------- 4

113D 12C
340 +9 KAUXG2

111B 3

200

280

14EI

6+ 260
71

220

360 : ERROR

240 GO TO STATEMENTS

C
C BRANCH OUT DEPENDING ON BOUNDARY TYPE

C (3,S),(o,E),(7,SE),(9,W).(11,SW),(12,N),(13,NW),(14,NE)
C

IGOTO - IAND (KX,KLOOOF) + 1
GOTO (370, 360, 360, 220, 360, 360, 260, 240,

1 360, 340, 360, 200, 300, 320, 280, 360), IGOTO

SOUTHWESTERN CORNER

DO 210 B - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

CONTINUE

KNW)

KWW)
KSW)
KSS)
KSE)

IONE

IMDI

ICEN

IMD2

ITWO

IB

- IB
- IB
- IB

IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(1.1) - IONE

NBCPG2(1,2) - ITWO

GO TO 368

SOUTHERN SIDE

220 DO 230 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

230 CONTINUE

GOTO 369

KSW) IONE - IB

KSS) ICEN - IB

KSE) ITWO - IB

SOUTHEASTERN CORNER

DO 250 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

CONTINUE

KSW)
Kss)
KSE)
KEE)

KNE)

IONE - IB

IMD1 - IB

ICEN - IB
IMD2 - IB

ITWO - IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

804

C

C

C

C

C

C

C
C

C

C
C
C
200

210

C
C
C

C
C
C

C
C
C
240

250

C
C
C



NBCPG2(2.1) - IONE

NBCPG2(2,2) - ITWO

GO TO 368

EASTERN SIDE

260 DO 270 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1.IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

270 CONTINUE

GOTO 369

KSE) IONE = IB

KEE) ICEN - IB

KNE) ITWO = IB

NORTHEASTERN CORNER

DO 290 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.
CONTINUE

KSE)

KEE)

KNE)

KNN)

KNW)

IONE IB

IMD1 - IB

ICEN IB

IMD2 - IB

ITWO = IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(3,1) - IONE

NBCPG2(3,2) - ITWO
GO TO 388

NORTHERN SIDE

300 DO 310 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1.IB) .EQ.

310 CONTINUE

GOTO 369

KNE) IONE - IB

KNN) ICEN - IB

KNW) ITWO - IB

NORTHWESTERN CORNER

DO 330 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

CONTINUE

KNE)
KNN)

KNW)
KWW)
KSW)

IONE - IB

IMD1 - IB

ICEN - IB

IMD2 - IB

ITWO - IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(4,1) - ZONE
NBCPG2(4,2) - ITWO
GO TO 368

WESTERN SIDE

DO 350 IB - 1, NBNDG2
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IF (IBNDG2(1,IB)
IP (IBNDG2(1,IB)
IF(IBNDG2(1,IB)

350 CONTINUE

GOTO 369

.EQ. KNW) IONE = IB

.EQ. KWW) ICEN - IB

.Eq. KSW) ITWO IB

C
C CHECK THE EDGE CELLS

368 IF (IONE .EQ. 0 .OR. IMD1 .EQ. 0 .OR. ICEN .EQ. 0

1 .OR. IMD2 .EQ. 0 OR. ITWO .Eq. O) GOTO 360

C
C MARK FOR DELETE

IBNDG2(1,IMD1) - -9
IBNDG2(1,IMD2) - -9

C REASSIGN POINTERS

IBNDG2(3,IONE) - LCELL
IBNDG2(2,ICEN) - LCELL

IBNDG2(2,ITWO) LCELL

GOTO 370
C
C CHECK THE EDGE NODES

C369 IF (IONE .EQ. 0 .OR. ICEN

369 IF (ICEN .Eq. ) GOTO 360

C

.EQ. 0 .OR. ITWO .Eq. O) GOTO 360

C MARK FOR DELETE

IBNDG2(1,ICEN) = -9

C REASSIGN POINTERS

c IBNDG2(3,IONE) LCELL
if (ibndg2(3,ione) .ne. O) then

IBNDG2(3,IONE) LCELL

else

IBNDG2(2,IONE) - LCELL

endif
IBNDG2(2,ITWO) LCELL

GOTO 370
C
C ERROR IN BOUNDARY CELL POINTERS

360 ZERI - LCELL
ZER2 - IGOTO

CALL ERRORM (17,'G2CLPO','LCELL ',ZER1,'IGOTO ',ZER2,JPRINT,
1 'ERROR IN BOUNDARY NODE CALCULATION')

370 CONTINUE
C
C CHECK IF THE CELL HAS FUEL INJECTED TO IT
C

IF (IAND(KX,KL1000) .EQ. O) RETURN
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KUMDH2 - 0

DO 380 IB 1, NUMDH2
IF (NODEH2(IB) .EQ. Kee) THEN

IBHERE - IB
GOTO 390

ENDIF

380 CONTINUE

390 DO 400 IB - IBHERE. NUMDH2-1

NODEH2(IB) - NODEH2(IB+1)

400 CONTINUE

NUMDH2 - NUMDH2 - 1

RETURN

END

G2CLPO

SUBROUTINE G2CLPO (LSUB1, LSUB2, LSUB3, LSUB4, LCELL. IWARN)

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
LOGICAL

[. INC]

[. INC]
'[.INC]
'[.INC]

[t.INC]
IWRITE

PRECIS.INC/LIST'

PARMV2.INC/LIST'
G2COMN.INC/LIST'
HEXCOD.INC

IOCOMN.INC/LIST'

C THIS SUBROUTINE COLLAPSES THE FOUR SUBCELLS LSUB1, LSUB2. LSUB3.
C LSUB4 WHICH MAKE UP CELL 'LCELL' AND PERFORMS ALL NECESSARY
C POINTER SYSTEM REALIGNMENTS

MPOINT - 10
NADCEL 4

C ---- _------------

ERROR CONDITIONS
________________

C FIND THE FOUR CELLS COMPRISING LCELL

LMSE - 0
LMNE - 0
LMSW - MIN (LSUB1,

LMNW - MAX (LSUBI,
LSUB2, LSUB3, LSUB4)
LSUB2, LSUB3, LSUB4)

LDUM - LMSW + 
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IF (LSUB1 .EQ. LDUM) LMSE - LSUB1

IF (LSUB2 .EQ. LDUM) LMSE - LSUB2

IF (SUB3 .EQ. LDUM) LMSE LSUB3
IF (LSUB4 .EQ. LDUM) LMSE LSUB4

LDUM LMNW - 1
IF (LSUB1 .EQ. LDUM) LMNE - LSUBI
IF (LSUB2 .EQ. LDUM) LMNE - LSUB2
IF (LSUB3 .EQ. LDUM) LMNE - LSUB3
IF (LSUB4 .EQ. LDUM) LMNE - LSUB4

C

C SEE IF THE GIVEN SUBCELLS LMSW, LMSE, LMNE LMNW ARE CONTIGUOUS?
C

IF (LMSE.NE.(LMSW+I) .OR. LMNE.NE.(LMSW+2)
1 .OR. LMNW.NE.(LMSW+3) ) THEN

ZERI - LMSW
ZER2 - LMNW
CALL WARNIN (13'G2CLPO'.'LMSW ',ZER1,'LMNW ',ZER2,JPRINT.

I 'THE GIVEN FINE CELLS ARE NOT CONTIGUOUS')

IWARN - 13
ENDIF

C

C CHECK IF THE FOUR BASE CELLS HAVE THE SAME SUPERCELL LCELL
C

IF (LCELL.NE.ICELG2(10,LMSW) .OR. LCELL.NE.ICELG2(10,LMSE) .OR.

i LCELL.NE.ICELG2(10,LMNE) .OR. LCELL.NE.ICELG2(10,LMNW)) THEN

ZER1 LCELL

ZER2 - LMSW

CALL ERRORM (14, 'G2CLPO' 'LCELL ' .ZER1. 'LMSW ',ZER2,JPRINT,
1 'THE SUBCELLS DO NOT HAVE SUPERCELL LCELL')

ENDIF
C

C INTERCHNAGE INFORMMATION

C INTERCHANGE (LMSW WITH NLAST1), (LMSE WITH NLAST2)
C (LMNE WITH NLAST3), (LMNW WITH NLAST4)

NLAST4 - NCELG2
NLAST3 - NLAST4 - 1
NLAST2 - NLAST3 - 1
NLAST1 - NLAST2 - 1

C IF THE CELL TO BE DIVIDED IS ITSELF ONE OF THE LAST CELLS
C THEN SIMPLY EXIT

IF (LCELL .GE. NLAST1) RETURN
C
C SAVE THE CELL POINTERS
C

KC - ICELG2(1.LCELL)

KSW - ICELG2(2,LCELL)
KS - ICELG2(3,LCELL)
KSE - ICELG2(4,LCELL)
KE - ICELG2(5.LCELL)
KNE - ICELG2(6.LCELL)
KN - ICELG2(7.LCELL)
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KNY
KW -
KX 
KXSW
KXSE

KXNE

KXNW

K6LMSW

KSLMSE
KSLMNE

K5LMNW

- ICELG2(8,LCELL)

- ICELG2 (9LCELL)
= KAUXG2(LCELL)
- KAUXG2(LMSW)
- KAUXG2(LMSE)

- KAUXG2(LMNE)

- KAUXG2(LMNW)

- IAND(KXSW,KUOOOF)

- IAND(KXSE, KUOOOF)

- IAND(KXNE.KUOOOF)

- IAND(KXNW,KUOOOF)

A CELL WHICH IS PERMANENTLY MARKED FOR THE FUEL INJECTION
CAN NOT BE COLLAPSED

IF (IAND(KX,KL2000) .NE. O) RETURN

C IF THE COMPONENT CELLS ARE BASE CELLS THEN
C COLLAPSED

THEY CAN NOT BE

IF (KSLMSW .EQ. 0 .OR. KLMSE .Eq. 0 .OR.
1 K5LMNE .EQ. 0 .OR. K5LMNW .EQ. 0 ) RETURN

C

C CHECK SOME OF THE NODE ASSIGNMENTS
C

IF (KSW .NE. ICELG2(2,LMSW)) THEN
ZER1 - KSW

ZER2 - LMSW

CALL ERRORM (12.'G2CLPO','KSW
'ERROR IN NODE ASSIGNMENT')

ENDIF

IF (KSE .NE. ICELG2(4,LMSE)) THEN
ZERI - KSE

ZER2 - LMSE

CALL ERRORM (12,'G2CLPO','KSE
'ERROR IN NODE ASSIGNMENT')

ENDIF

IF (KNE .NE. ICELG2(6,LMNE)) THEN
ZERI - KNE

ZER2 - LMNE
CALL ERRORM (12.'G2CLPO','KNE

'ERROR IN NODE ASSIGNMENT')
ENDIF

IF (KNW .NE. ICELG2(8,LMNW)) THEN
ZERI - NW
ZER2 - LMNW

CALL ERRORM (12,'G2CLPO'.'KNW
'ERROR IN NODE ASSIGNMENT')

ENDIF

',ZER1,'LMSW

',ZER1,'LMSE

',ZER1, 'LMNE

',ZER1,'LMNW

',ZER2,JPRINT,

'.ZER2,JPRINT,

',ZER2,JPRINT,

',ZER2,JPRINT,

C FIND THE LEVEL LEVELG OF THE GIVEN CELL LCELL
C OLD AND NEW LEVELS; LEVELO > 0

LEVELO - ISHFT(KSLMSW,-16)
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LEVELG - LEVELO -
K6LEYG - IAND (KX,KUOOOF)

C CHECK IF LEVELG=ISHFT(K6LEVG,-16)

IF (LEVELG .NE. ISHFT(KSLEVG,-16)) THEN
ZER - LEVELG

ZER2 - ISHFT(KSLEVG,-16)

CALL ERRORM (156,'G2CLPO'.'LEVELG',ZER, 'LEVELC',ZER2,
1 'ERROR IN LEVEL CALCULATION')

ENDIF

C IF THE COMPONENT CELLS HAVE DIVIDED

C THEY CAN NOT BE COLLAPSED (%%%%)

IF (ICELG2(3.LMSW)

IF (ICELG2(9,LMSW)

IF (ICELG2(3.LMSE)

IF (ICELG2(5.LMSE)

IF (ICELG2(5.LMNE)

IF (ICELG2(7,LMNE)

IF (ICELG2(7,LMNW)

IF (ICELG2(9.LMNW)

.NE.

.NE.

.NE.

.NE.

.NE.

.NE.

.NE.

.NE.

NEIGHBOURS THEN

O) RETURN

O) RETURN

O) RETURN

O) RETURN

O) RETURN

O) RETURN

O) RETURN

O) RETURN

C

C FIND CELLS WHICH BOUND DIVIDED CELL

C

I------------I---------------I------------

.+ 4.4.. + +.. +4.4. + + + 4.
+LCNW I LHNW + LHNE ILCNE +

+ I + I

I K FOR NODE

I L FOR CELL

I
+ I

I------------------4-------4---------
+ IKNW KN KNEI +

+LVNW I LMNW LMNE LVNE +
+ . + KW LCELL KE+ + + +
+LVSW I LMSW LMSE ILVSE +

+ IKSW KS KSEI +

I--------------- - ------ - -I
+ I + I +
+LCSW I LHSW + LHSE ILCSE +

I------- I----I I
------------ I --------------- I------------

LVSV
LCSw

L.HS
LHSE

LCSE

LVSE

LVNE

LCNE

LHNE

LHNW

LCNW

LVNW

M:CENTER (MIDDLE)

C:CORNER (ADJACENT)

H:HORIZONTAL (ADJAC)
V:VERTICAL (ADJACENT)

- NEIBG2(4.SW)
= NEIBG2(1.KSW)
- NEIBG2(2.KSW)

- NEIBG2(1.KSE)

- NEIBG2(2,KSE)
- NEIBG2(3,KSE)

- NEIBG2(2,KNE)

- NEIBG2(3,KNE)

- NEIBG2(4.KNE)

- NEIBG2(3,KNW)

- NEIBG2(4,KNW)

- NEIBG2(1,KNW)
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C IF THE COMPONENT CELLS ARE JUST OUTSIDE EMBEDDED REGION THEN

C THEY-CAN NOT BE COLLAPSED; THIS WILL BE SO IF THE LEVELS OF

C THE NEIGHBOURHOOD CELLS DIFFER BY MORE THAN ONE

C FIRST DO THE CORNER CELLS

IF (LCSW .NE. O) THEN

KSLCOR IAND(KAUXG2(LCSW) ,KUOOOF)

LEVELC s ISHFT(KSLCOR,-16)

IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF

IF (LCSE .NE. O) THEN

KSLCOR - IAND(KAUXG2(LCSE),KUOOOF)

LEVELC = ISHFT(K5LCOR,-16)
IDLC = LEVELC-LEVELG

IF (IDLC .LT. 0 OR. IDLC .GT. 1) RETURN
ENDIF

IF (LCNE .NE. O) THEN

KLCOR - IAND(KAUXG2(LCNE),KUOOOF)
LEVELC = ISHFT(K5LCOR,-16)
IDLC = LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF

IF (LCNW .NE. O) THEN

KSLCOR = IAND(KAUXG2(LCNW),KUOOOF)

LEVELC = ISHFT(K5LCOR,-16)

IDLC = LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF
C

C NOW DO EDGE CELLS

C ****** THIS IS PROBABLY NOT NEEDED DUE TO (%%%%) ******
C

IF (LHSW .NE. O) THEN

K6LEDG IAND(KAUXG2(LHSW),KUOOOF)

LEVELC ISHFT(K5LEDG,-16)

IDLC = LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF

IF (LVSE .NE. O) THEN

K5LEDG - IAND(KAUXG2(LVSE),KUOOOF)

LEVELC - ISHFT(KSLEDG,-16)

IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF

IF (LHNE .NE. O) THEN

KSLEDG IAND(KAUXG2(LHNE),KUOOOF)

LEVELC ISHFT(K5LEDG,-16)
IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN

ENDIF
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IF (LVNW .NE. O) THEN

K5hEDG - IAND(KAUXG2(LVNW),KUOOOF)

LEVELC - ISHFT(KLEDG,-16)
IDLC - LEVELC-LEVELG

IF (IDLC .LT. 0 .OR. IDLC .GT. 1) RETURN
ENDIF

DEBUG PRINT

PRINT OUT PARAMETERS BEFORE CELL MERGER

IWRITE IDBGG2 .EQ. 3 .OR. IDBGG2 .GT. 1000

IF (IWRITE) THEN
WRITE(JDEBUG,1000)
WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

GENERAL INFORMMATION

WRITE(JDEBUG,1400) NNODG2, NCELG2, NBNDG2, LEVELO

POINTERS OF MAIN CELL LCELL

WRITE(JDEBUG,1500) LCELL, KC , KSW, KS , KSE, KE,
KNE, KN , KNW, KW , KX

WRITE(JDEBUG,l1600) (ICELG2(I,LCELL),I=l,10),KAUXG2(LCELL)

CELLS TO BE DESTROYED (REASSIGNED)

WRITE(JDEBUG,1700) LMSW, LMSE, LMNE, LMNW
WRITE(JDEBUG,1800) (ICELG2(I,LMSW),I=i,10),KAUXG2(LMSW)
WRITE(JDEBUG, 1900) (ICELG2(I,LMSE),Il,lO10),KAUXG2(LMSE)
WRITE(JDEBUG,2000) (ICELG2(I,LMNE),I=1,lO),KAUXG2(LMNE)
WRITE(JDEBUG,2100) (ICELG2(I,LMNW),I=0llO ),KAUXG2(LMNW)

NEIGHBOUR CELLS AND THEIR POINTERS

WRITE(JDEBUG,2200) LVSW, LCSW, LHSW, LHSE, LCSE, LVSE,

LVNE, LCNE, LHNE, LHNW, LCNW, LVNW

IF (LVSW .NE. O) THEN

WRITE(JDEBUG,2300) (ICELG2(I,LVSW),I=l,10).KAUXG2(LVSW)
ENDIF

IF (LCSW .NE. O) THEN

WRITE(JDEBUG,2400) (ICELG2(I,LCSW)I=1,O10),KAUXG2(LCSW)
ENDIF

IF (LHSW .NE. O) THEN

WRITE(JDEBUG,2500) (ICELG2(I,LHSW),I-,110),KAUXG2(LHSW)
ENDIF

C

IF (LHSE .NE. O) THEN

WRITE(JDEBUG.2600) (ICELG2(I,LHSE),I=1.10),KAUXG2(LHSE)
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ENDIF

IF (LCSE .NE. 0) THEN

- WRITE(JDEBUG,2700)

ENDIF

IF (LVSE .NE. O) THEN

WRITE(JDEBUG,2800)

ENDIF

IF (LVNE .NE. O) THEN

WRITE(JDEBUG,2900)

ENDIF

IF (LCNE .NE. O) THEN

WRITE(JDEBUG,3000)

ENDIF

IF (LHNE .NE. O) THEN

WRITE(JDEBUG,3100)
ENDIF

IF (LHNW .NE. O) THEN

WRITE(JDEBUG.3200)
ENDIF

IF (LCNW .NE. O) THEN

WRITE(JDEBUG,3300)

ENDIF

IF (LVNW .NE. O) THEN

WRITE(JDEBUG,3400)

ENDIF

(ICELG2(I,LCSE),I=,IO ),KAUXG2(LCSE)

(ICELG2(I,LVSE),I=i,10),KAUXG2(LVSE)

(ICELG2(I,LVNE),I=1,lO),KAUXG2(LVNE)

(ICELG2(I,LCNE),I=1,lO),KAUXG2(LCNE)

(ICELG2(I,LHNE),I=1,10),KAUXG2(LHNE)

(ICELG2(I,LHNW),I=l,10),KAUXG2(LHNW)

(ICELG2(I,LCNW).I=1,10),KAUXG2(LCNW)

(ICELG2(I,LVNW),I=1,10),KAUXG2(LVNW)

NEIGHBOURING CELLS OF ALL NODES OF LCELL

WRITE(JDEBUG,3500)

WRITE(JDEBUG,3600)

WRITE(JDEBUG,3700)

WRITE(JDEBUG,3800)

WRITE(JDEBUG,3900)

WRITE(JDEBUG,4000)

WRITE(JDEBUG,4100)

WRITE(JDEBUG,4200)

WRITE(JDEBUG,4300)

ENDIF

(NEIBG2(I,KC ),I=1,4)

(NEIBG2(I,KSW),I=1,4)

(NEIBG2(I,KS ),I=1,4)

(NEIBG2(I,RKSE),I=1,4)

(NEIBG2(I,KE ),I=1,4)

(NEIBG2(I,KNE).I=1,4)

(NEIBG2(I,KN ),I=1,4)

(NEIBG2(I,KNW),I=1,4)

(NEIBG2(I,KW ),I=1,4)

! IWRITE

MARK NODE AT CENTER OF CELL FOR DELETION

DPENG2(1,KC) = -99.

MARK SOUTHERN NODE FOR DELETION IF NEED BE

IF (LHSW .EQ. LHSE) THEN

DPENG2(1,KS) = -99.

KSS = KS
KS = 0
LS = LHSW

ELSE IF (LHSW .EQ. 0 .OR. LHSE .EQ. O) THEN

DPENG2(1,KS) -99.
KSS KS
KS = 0
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=O

- ICELG2(10,LHSW)

C MARK EASTERN NODE FOR DELETION IF NEED BE

IF (LVSE .EQ. LVNE) THEN

DPENG2(1,KE) - -99.
KEE = KE

KE = 0

LE = LVSE
C ELSE IF (LVNE .EQ. 0 .OR.
C DPENG2(1,KE) -99.
C KEE - KE
C KE - 0
C LE = 0

ELSE

LE - ICELG2(1

ENDIF

LVSE .EQ. O) THEN

O.LVSE)

C MARK NORTHERN NODE FOR DELETION IF NEED BE

IF (LHNE .EQ. LHNW) THEN

DPENG2(1,KN) -99.
KNN - KN

KN = 0

LN = LHNE

ELSE IF (LHNE .EQ. 0 .OR.

DPENG2(1,KN) -99.
KNN = KN
KN = 0

LN = 0

ELSE

LN = ICELG2(i
ENDIF

LHNW .Eq. O) THEN

O,LHNE)

C MARK WESTERN NODE FOR DELETION IF NEED BE

IF (LVNW .EQ. LVSW) THEN

DPENG2(1I,W) - -99.
KWW - KW
KW - 0
LW - LVNW

C ELSE IF (LVNW .EQ. 0 .OR.
C DPENG2(1,KW) - -99.
C KWW - KW

C KW - 0
C LW O0

ELSE

LW - ICELG2(1
ENDIF

LVSW .EQ. O) THEN

O,LVNW)

INTERCHNAGE INFORMMATION
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C UPDATE NODES (PLUS SUPERCELL) OF THE INTERCHANGED CELLS

DO 10 IP - 1. MPOINT

ICELG2(IP,LMSW) ICELG2(IP,NLAST1)

ICELG2(IP,LMSE) - ICELG2(IP,NLAST2)

ICELG2(IP,LMNE) ICELG2(IP,NLAST3)

ICELG2(IP,LMNW) - ICELG2(IP,NLAST4)

10 CONTINUE

KAUXG2(LMSW)

KAUXG2(LMSE)

KAUXG2 (LMNE)

KAUXG2(LMNW)

- KAUXG2(NLAST1)

- KAUXG2(NLAST2)

- KAUXG2(NLAST3)

- KAUXG2(NLAST4)

C INTERCHANGE THE RECIPROCAL VOLUME POINTERS

RVOLM2 (LMSW)

RVOLM2 (LMSE)
RVOLM2 (LMNE)
RVOLM2 (LMNW)

= RVOLM2(NLAST1)

- RVOLM2(NLAST2)

- RVOLM2(NLAST3)

- RVOLM2(NLAST4)

C INTERCHANGE THE PERIMETER POINTERS

PERIM2 (LMSW)

PERIM2(LMSE)

PERIM2 (LMNE)

PERIM2(LMNW)

- PERIM2(NLAST1)
- PERIM2(NLAST2)

- PERIM2(NLAST3)

- PERIM2(NLAST4)

C INTERCHANGE THE METRIC POINTERS

DXEWM2(LMSW) -

DXEWM2(LMSE) =

DXEWM2(LMNE) =
DXEWM2(LMNW) -

DYEWM2(LMSW) -
DYEWM2(LMSE) -
DYEWM2(LMNE) -
DYEWM2(LMNW) -

DXNSM2(LMSW) -

DXNSM2(LMSE) -
DXNSM2(LMNE) -

DXNSM2(LMNW) -

DYNSM2(LMSW) -
DYNSM2(LMSE) -
DYNSM2(LMNE) -
DYNSM2(LMNW) -

DXEWM2(NLAST1)
DXEWM2(NLAST2)

DXEWM2 (NLAST3)

DXEWM2 (NLAST4)

DYEWM2(NLAST1)
DYEWM2(NLAST2)

DYEWM2(NLAST3)

DYEWM2(NLAST4)

DXNSM2(NLAST1)

DXNSM2(NLAST2)

DXNSM2(NLAST3)

DXNSM2(NLAST4)

DYNSM2(NLAST1)

DYNSM2(NLAST2)

DYNSM2(NLAST3)

DYNSM2(NLAST4)

FIND THE NEIGHBOURS OF THE LAST FOUR CELLS AND
CHECK IF CELLS AGREE ON THE NODE ASSIGNMENTS

JC
JD1

JD2
JD3

- ICELG2(6,NLAST1)

- ICELG2(S,NLAST2)

- ICELG2(2,NLAST3)
- ICELG2(4.NLAST4)
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C

IF (JC .NE. JD1 .OR. JC .NE. JD2 .OR. JC .NE. JD3) THEN

ZERL - NLAST1

ZER2 - NLAST2

CALL ERRORM (1, 'G2CLPO','NLAST1',ZER1,'NLAST2',ZER2,JPRINT,

'ERROR IN CENTER NODE ASSIGNMENT OF THE LAST FOUR CELLS')
ENDIF

JSW - ICELG2(2,NLAST1)

JS1 - ICELG2(3.NLAST1)
JS - ICELG2(4,NLASTI)
JS2 - ICELG2(3.NLAST2)
JD1 - ICELG2(2,NLAST2)
JSE - ICELG2(4.NLAST2)

IF (JS .NE. JD1) THEN
ZER1 = NLAST1
ZER2 - NLAST2
CALL ERRORM (16.'G2CLPO','NLASTl',ZERI, 'NLAST2',ZER2,JPRINT,

'ERROR IN SOUTH NODE ASSIGNMENT OF THE LAST FOUR CELLS')
ENDIF

JEl - ICELG2(5,NLAST2)

JE ICELG2(6,NLAST2)

JE2 ICELG2(5,NLAST3)
JD1 ICELG2(4,NLAST3)

IF (JE .NE. JD1) THEN

ZER1 NLAST2
ZER2 - NLAST3

CALL ERRORM (1e,'G2CLPO','NLAST2', ZER,'NLAST3',ZER2,JPRINT,

'ERROR IN EAST NODE ASSIGNMENT OF THE LAST FOUR CELLS')

ENDIF

JNE ICELG2(6,NLAST3)

JN1 - ICELG2(7,NLAST3)

JN = ICELG2(8,NLAST3)

JN2 = ICELG2(7,NLAST4)

JD1 = ICELG2(6,NLAST4)

JNW ICELG2(8,NLAST4)

IF (JN .NE. JD1) THEN
ZERI - NLAST3

ZER2 - NLAST4

CALL ERRORM (16,'G2CLPO','NLAST3',ZER, 'NLAST4',ZER2,JPRINT,
'ERROR IN NORTH NODE ASSIGNMENT OF THE LAST FOUR CELLS')

ENDIF

JWi - ICELG2(9,NLAST4)

JW - ICELG2(2,NLAST4)

JW2 - ICELG2(9.NLASTI)
JD1 - ICELG2(8.NLASTi)

IF (JW .NE. JD1) THEN
ZER1 - NLAST4
ZER2 - NLAST1
CALL ERRORM (16, 'G2CLPO'. 'NLAST4' ,ZERI,'NLAST1' ,ZER2,JPRINT,
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1 'ERROR IN WEST NODE ASSIGNMENT OF THE LAST FOUR CELLS')
ENDIF

C
C

C FIND THE CELLS PERTINENT TO THE

C CELLS MIGHT BE DIVIDED

C

JNW JN2 JN JNi JNE

I-------------------- +
IN4NW N4NE N3NW N3NE I

JW1+ NLAST4 * NLAST3 +JE2

IN4SW N4SE N3SW N3SE I
JW -----*----JC-----* ------JE

INNW NINE N2NW N2NE I
JW2+ NLAST1 * NLAST2 +JE1

INISW NSE IN2SW N2SE I
I-----+-----I-----+----- I

JSW JS1 JS JS2 JSE

ABOVE NODES; SOME OF THESE

KNW KN KNE

I----------------+-----++
I I

I LMNW I LMNE I

KW----------KC-----------+KI I
KWI - KC - +KN

KSW

I LMSW I LMSE I
I I I
I-----------I-----------I

KS KSE

C

C INITIALIZE MIDDLE EDGE NODES (INDICATED BY *'S) OF THE LAST
C FOUR CELLS

ISTAR1 = 0
ISTAR2 - 0
ISTAR3 O0

ISTAR4 - 0
C

C IF THE LAST FOUR CELLS ARE DIVIDED, THEN ABOVE CELLS ARE

IF (ICELG2(1,NLAST1) .NE. O) THEN

ISTAR4 - ICELG2(7.NLAST1)

ISTAR1 - ICELG2(6,NLAST1)
ENDIF

IF (ICELG2(1,NLAST2) .NE. O) THEN

ISTAR1 = ICELG2(9,NLAST2)

ISTAR2 - ICELG2(7.NLAST2)

ENDIF

IF (ICELG2(1,NLAST3) .NE. O) THEN

ISTAR2 - ICELG2(3,NLAST3)
ISTAR3 - ICELG2(9,NLAST3)

ENDIF

IF (ICELG2(1,NLAST4) .NE. O) THEN
ISTARS - ICELG2(6,NLAST4)
ISTAR4 - ICELG2(3,NLAST4)

ENDIF
C
C -----
C DEBUG PRINT
C -----
C

PRINT OUT PARAMETERS BEFORE CELL MERGER OF LAST FOUR CELLS

IF (IWRITE) THEN
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POINTERS OF MAIN LAST FOUR CELLS

WRITE(JDEBUG,4400) NLAST1, NLAST2, NLAST3, NLAST4

WRITE(JDEBUG,4500) JC , JSW, JS , JSE, JE, JNE, JN, JNW, JW,

1 ISTARI, ISTAR2, ISTAR3, ISTAR4
WRITE(JDEBUG,4600)1,(ICELG2(I,NLAST1),I=1.10),KAUXG2(NLAST1)

WRITE(JDEBUG,4600)2,(ICELG2(I,NL AST2)),KAUX(NLAST2)
WRITE(JDEBUG,4600)3, (ICELG2(I,NLAST3),I=110),KAUXG2(NLAST3)
WRITE(JDEBUG,4600)4.(ICELG2(I,NLAST4),I=110) ,KAUXG2(NLAST4)

NEIGHBOURING CELLS OF ALL NODES OF LAST FOUR CELLS

WRITE(JDEBUG,4700)

WRITE(JDEBUG,4800)
WRITE(JDEBUG,4900)

WRITE(JDEBUG,5000)

WRITE(JDEBUG,5100)
WRITE(JDEBUG,5200)

WRITE(JDEBUG,5300)

WRITE(JDEBUG,5400)

WRITE(JDEBUG, 5500)

JC ,(NEIBG2(I,JC ),I=1,4)

JSW,(NEIBG2(I,JSW),I=1,4)

JS ,(NEIBG2(I,JS ),I=1,4)

JSE,(NEIBG2(I,JSE),I=1.4)

JE ,(NEIBG2(I,JE ),I=1,4)
JNE,(NEIBG2(I,JNE),I=1,4)

JN ,(NEIBG2(I,JN ),I=1,4)

JNW,(NEIBG2(I,JNW),I=1,4)

JW ,(NEIBG2(I,JW ),I=1,4)

IF (ISTAR1 .NE. O)
WRITE(JDEBUG,5600) ISTARI,(NEIBG2(I,ISTAR1),I=1,4)

IF (ISTAR2 .NE. O)

WRITE(JDEBUG,5700) ISTAR2,(NEIBG2(I,ISTAR2),I=1,4)
IF (ISTAR3 .NE. O)

WRITE(JDEBUG,5800) ISTAR3,(NEIBG2(I,ISTAR3),I=1,4)
IF (ISTAR4 .NE. O)

WRITE(JDEBUG,6900) ISTAR4,(NEIBG2(I,ISTAR4),I=1,.4)

ENDIF ! IWRITE
C
C NOW UPDATE THE NEIGHBOURS OF THE INTERCHANGED CELLS

C

IF (NEIBG2(3,JSW)

IF (NEIBG2(4,JS )
IF (NEIBG2(1,JC )
IF (NEIBG2(2,JW )

IF (NEIBG2(3,JS )
IF (NEIBG2(4,JSE)

IF (NEIBG2(1,JE )
IF (NEIBG2(2,JC )

IF (NEIBG2(3,JC )
IF (NEIBG2(4,JE )
IF (NEIBG2(1,JNE)

IF (NEIBG2(2,JN )

IF (NEIBG2(3,JW )
IF (NEIBG2(4,JC )
IF (NEIBG2(1,JN )
IF (NEIBG2(2,JNW)

.EQ.

.Eq.

.Eq.

.EQ.

.EQ.

.Eq.

.EQ.

.EQ.

.EQ.

.Eq.

.Eq.

oEQ.

.EQ.

EQ.

.EQ.

.Eq.

NLAST1)

NLAST1)

NLAST1)

NLAST1)

NLAST2)

NLAST2)

NLAST2)

NLAST2)

NLAST3)

NLAST3)

NLAST3)

NLAST3)

NLAST4)

NLAST4)

NLAST4)
NLAST4)

NEIBG2(3,JSW)

NEIBG2(4,JS )

NEIBG2(1,JC )
NEIBG2(2,JW )

NEIBG2(3,JS )

NEIBG2(4,JSE)

NEIBG2(1,JE )

NEIBG2(2,JC )

NEIBG2(3,JC )

NEIBG2(4,JE )

NEIBG2(1,JNE)

NEIBG2(2,JN )

NEIBG2(3,JW )
NEIBG2(4,JC )

NEIBG2(1,JN )
NEIBG2(2,JNW)

C
C UPDATE STAR EDGE POINTS
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C

= LMSW

= LMSW
S LMSW
= LMSW

= LMSE
= LMSE

= LMSE

= LMSE

= LMNE
= LMNE

= LMNE
= LMNE

= LMNW

- LMNW
- LMNW

- LMNW



C
IF (ISTAR1 .NE. O) THEN

IF (NEIBG2(1,ISTARI) .EQ. NLAST1) NEIBG2(1,ISTARl) = LMSW

IF (NEIBG2(4,ISTAR1) .EQ. NLAST1) NEIBG2(4,ISTARI) = LMSW

IF (NEIBG2(2,ISTARI) .EQ. NLAST2) NEIBG2(2,ISTARi) = LMSE

IF (NEIBG2(3,ISTAR1) .Eq. NLAST2) NEIBG2(3,ISTAR1) = LMSE

ENDIF

IF (ISTAR2 .NE. O) THEN

IF (NEIBG2(1,ISTAR2) .EQ. NLAST2) NEIBG2(1,ISTAR2) = LMSE

IF (NEIBG2(2,ISTAR2) .EQ. NLAST2) NEIBG2(2,ISTAR2) = LMSE

IF (NEIBG2(3,ISTAR2) .EQ. NLAST3) NEIBG2(3,ISTAR2) = LMNE

IF (NEIBG2(4,ISTAR2) .Eq. NLAST3) NEIBG2(4,ISTAR2) = LMNE

ENDIF

IF (ISTAR3 .NE. O) THEN

IF (NEIBG2(2,ISTAR3) .EQ. NLAST3) NEIBG2(2,ISTAR3) = LMNE

IF (NEIBG2(3,ISTAR3) .EQ. NLAST3) NEIBG2(3,ISTAR3) = LMNE

IF (NEIBG2(4,ISTAR3) .EQ. NLAST4) NEIBG2(4,ISTAR3) = LMNW

IF (NEIBG2(1,ISTAR3) .EQ. NLAST4) NEIBG2(1,ISTAR3) = LMNW

ENDIF

IF (ISTAR4 .NE. O) THEN

IF (NEIBG2(3,ISTAR4) .EQ. NLAST4) NEIBG2(3,ISTAR4) = LMNW

IF (NEIBG2(4,ISTAR4) .EQ. NLAST4) NEIBG2(4,ISTAR4) = LMNW

IF (NEIBG2(I,ISTAR4) .EQ. NLAST1) NEIBG2(1,ISTAR4) = LMSW

IF (NEIBG2(2,ISTAR4) .EQ. NLAST1) NEIBG2(2,ISTAR4) = LMSW

ENDIF

C

C UPDATE THE OTHER NON-ZERO MIDDLE EDGES

C

IF (JS1 .NE. O) THEN

IF (NEIBG2(3,JS1) .EQ. NLAST1) NEIBG2(3,JSI) = LMSW
IF (NEIBG2(4,JSI) .EQ. NLAST1) NEIBG2(4,JSI) = LMSW

ENDIF

IF (JS2 .NE. O) THEN

IF (NEIBG2(3,JS2) .EQ. NLAST2) NEIBG2(3,JS2) = LMSE

IF (NEIBG2(4,JS2) .EQ. NLAST2) NEIBG2(4,JS2) = LMSE
ENDIF

C

IF (JEl .NE. O) THEN

IF (NEIBG2(1,JE1) .EQ. NLAST2) NEIBG2(1,JEI) = LMSE
IF (NEIBG2(4,JE1) .EQ. NLAST2) NEIBG2(4,JE1) = LMSE

ENDIF

IF (JE2 .NE. O) THEN
IF (NEIBG2(1,JE2) .EQ. NLAST3) NEIBG2(1,JE2) = LMNE

IF (NEIBG2(4,JE2) .EQ. NLAST3) NEIBG2(4,JE2) - LMNE
ENDIF

C

IF (JN1 .NE. O) THEN
IF (NEIBG2(1,JN1) .EQ. NLAST3) NEIBG2(1,JN1) LMNE

IF (NEIBG2(2,JNI) .EQ. NLAST3) NEIBG2(2,JN1) = LMNE
ENDIF

IF (JN2 .NE. O) THEN
IF (NEIBG2(1,JN2) .Eq. NLAST4) NEIBG2(1,JN2) = LMNW

IF (NEIBG2(2,JN2) .EQ. NLAST4) NEIBG2(2,JN2) = LMNW
ENDIF

C

IF (JWl .NE. O) THEN
IF (NEIBG2(2,JW1) .EQ. NLAST4) NEIBG2(2,JWI) LMNW
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IF (NEIBG2(3,JW1) .EQ. NLAST4) NEIBG2(3,JW1) = LMNW
ENDIF

IF (JW2 .NE. O) THEN

IF (NEIBG2(2,JW2) .EQ. NLAST1) NEIBG2(2,JW2) = LMSW
IF (NEIBG2(3,JW2) .EQ. NLAST1) NEIBG2C3,JW2) = LMSW

ENDIF

C

C IF ANY OF THE LAST FOUR CELLS IS DIVIDED, THEN IT IS THE
C SUPERCELL OF SOME OTHER CELLS NSONJ AND ITS SUPERCELL
C WILL HAVE TO BE UPDATED

IF (ICELG2(1,NLAST1) .NE. 0 .OR. ICELG2(1,NLAST2) .NE. 0 .OR.
ICELG2(1,NLAST3) .NE. 0 .OR. ICELG2(1,NLAST4) .NE. O) THEN

DO 16 NSONJ ILVLG2(2,0), NCELG2

ISUP - ICELG2(1O,NSONJ)

IF (ISUP .GE. NLAST1) THEN

IF (ISUP .EQ. NLAST1) ICELG2(lO,NSONJ) LMSW

IF (ISUP .EQ. NLAST2) ICELG2(10,NSONJ) LMSE
IF (ISUP .EQ. NLAST3) ICELG2(10,NSONJ) LMNE
IF (ISUP .EQ. NLAST4) ICELG2(1O,NSONJ) LMNW

ENDIF

CONTINUE

ENDIF

15

C
C
C
C

20

ADJUST ANY BOUNDARY CONDITION POINTERS WHICH POINT TO CELLS

JUST INTERCHANGED

IF (IAND(KAUXG2(NLAST1),KLOOOF) .NE. 0 .OR.
I IAND(KAUXG2(NLAST2),KLOOOF) .NE. 0 .OR.

2 IAND(KAUXG2(NLAST3),KLOOOF) .NE. 0 .OR.
3 IAND(KAUXG2(NLAST4),KLOOOF) .NE. 0 ) THEN

DO 20 IB 1, NBNDG2

IF (IBNDG2(2,IB) .GE. NLASTI) THEN
ND1 - IBNDG2(2,IB) - NLASTI

IBNDG2(2,IB) LMSW + ND1
ENDIF

IF (IBNDG2(3,IB) .GE. NLAST1) THEN

ND1 - IBNDG2(3,IB) - NLAST1
IBNDG2(3,IB) - LMSW + ND1

ENDIF

CONTINUE

ENDIF

C UPDATE THE ADJACENT CELLS IF NEED BE

IF (LCSW

IF (LHSW

IF (LHSE

IF (LCSE

IF (LVSE
IF (LVNE

IF (LCNE
IF (LHNE

IF (LHNW
IF (LCNW

IF (LVNW

IF (LVSW

.GE.

.GE.

.GE.

.GE.

.GE.

.GE.

.GE.

GE.

.GE.

.GE.

GE.

.GE.

NLAST1)

NLAST1)

NLAST1)

NLAST1)
NLAST1)
NLAST1)
NLAST1)
NLAST1)

NLASTI)
NLAST1)

NLAST1)

NLAST1)

LCSW

LHSW

LHSE

LCSE

LVSE

LVNE
LCNE

LHNE

LHNW

LCNW

LVNW

LVSW

- LMSW

- LMSW

- LMSW
= LMSW

- LMSW

- LMSW

= LMSW
= LMSW

= LMSW

- LMSW

= LMSW
= LMSW

+ LCSW

+ LHSW

+ LHSE

+ LCSE

+ LVSE

+ LVNE
+ LCNE

+ LHNE

+ LHNW
+ LCNW

+ LVNW

+ LVSW

- NLAST1

- NLAST1

- NLAST1

- NLAST1
- NLAST1

- NLAST1

- NLAST1

- NLAST1

- NLAST1

- NLASTI

- NLAST1

- NLASTI
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C
C SET THE NEIGHBOUR-NODE-ARRAY OF THE NEW SUPERCELL

C

NEIBG2(3,KSW) = LCELL

NEIBG2(4,KSE) - LCELL

NEIBG2(1,KNE) = LCELL
NEIBG2(2,KNW) = LCELL
NEIBG2(1.KC ) = 0
NEIBG2(2,KC ) = 0
NEIBG2(3,KC ) O
NEIBG2(4,KC ) = 0

C

IF (KS .NE. O) THEN

NEIBG2(3,KS) = LCELL
NEIBG2(4,KS) = LCELL

ELSE

NEIBG2(1,KSS) = 0
NEIBG2(2,KSS) = 0
NEIBG2(3,KSS) = 0
NEIBG2(4,KSS) = 0

ENDIF

C

IF (KE .NE. O) THEN

NEIBG2(1,KE) = LCELL
NEIBG2(4,KE) = LCELL

ELSE

NEIBG2(1,KEE) O0

NEIBG2(2.KEE) = 0

NEIBG2(3,KEE) = O0
NEIBG2(4,KEE) = O0

ENDIF

C

IF (KN .NE. O) THEN
NEIBG2(1,KN) = LCELL
NEIBG2(2,KN) = LCELL

ELSE

NEIBG2(1,KNN) = 0
NEIBG2(2,KNN) - 0

NEIBG2(3,KNN) = 0

NEIBG2(4,KNN) = 0
ENDIF

C

IF (KW .NE. O) THEN

NEIBG2(2,KW) = LCELL
NEIBG2(3,KW) = LCELL

ELSE

NEIBG2(1,KWW) - 0

NEIBG2(2.KWW) - 0
NEIBG2(3,KWW) = O
NEIBG2(4,KWW) - 0

ENDIF
C

C ADJUST TOTAL NUMBER OF CELLS
C

NCELG2 - NCELG2 - NADCEL
C
C ADJUST THE MAXIMUM LEVEL IF NEED BE
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C
ILVLG2(3,LEVELO) = ILVLG2(3,LEVELO) - NADCEL

IF (ILVLG2(3,NLVLG2) .LE. O) NLVLG2 = NLVLG2 - 1

C UPDATE THE DIVIDED CELL POINTERS

C

ICELG2(1,LCELL) - O0

ICELG2(3,LCELL) - KS

ICELG2(5,LCELL) KE

ICELG2(7,LCELL) - KN

ICELG2(9,LCELL) = KW

C RESET EDGE NODE POINTERS OF ALL NEIGHBOURING CELLS

IF (LS .NE. O) ICELG2(7,LS) = KS
IF (LE .NE. O) ICELG2(9,LE) = KE

IF (LN .NE. O) ICELG2(3,LN) = KN
IF (LW .NE. O) ICELG2(6,LW) = KW

C

C SCAN THROUGH ALL BOUNDARY CONDITION POINTERS, LOOKING FOR

C POINTERS TO THE DIVIDED CELL, SKIP THIS SECTION IF LCELL IS

C NOT A BOUNDARY CELL

ITWO 0

IMD2 - 0
ICEN = 0
IMDi = 0
IONE 0

C
C

C 320 300 280
C +------+--------+
C 113D 12C 14EI
C 340 +9 KAUXG2 6+ 260

C 111B 3 71 360 : ERROR
C +------+------- +
C 200 220 240 GO TO STATEMENTS
C

C BRANCH OUT DEPENDING ON BOUNDARY TYPE
C (3,S).(,E),( (7,SE),(9,W),(11,SW),(12,N),(13,NW),(14,NE)

C

IGOTO = IAND (KX,KLOOOF) + 1
GOTO (370, 360, 360, 220, 360, 360, 260, 240,

1 360, 340, 360, 200, 300, 320, 280, 360), IGOTO

C
C SOUTHWESTERN CORNER
C
200 DO 210 IB - 1, NBNDG2

IF (IBNDG2(1,IB) .EQ. KNW) IONE = IB

IF (IBNDG2(1,IB) .EQ. KWW) IMD1 = IB
IF (IBNDG2(1,IB) .EQ. KSW) ICEN IB

IF (IBNDG2(1,IB) .EQ. KSS) IMD2 IB
IF (IBNDG2(1,IB) .EQ. KSE) ITWO IB

210 CONTINUE
C
C CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER
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NBCPG2(1,1) = IONE
NBCP2(1,2) = ITWO
GO TO 368

SOUTHERN SIDE

220 DO 230 IB = 1, NBNDG2
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

230 CONTINUE
GOTO 369

KSW) IONE = IB
KSS) ICEN = IB
KSE) ITWO = IB

SOUTHEASTERN CORNER

DO 250 IB 1, NBNDG2
IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) EQ.

CONTINUE

KSW)

KSS)

KSE)

KEE)

KNE)

IONE = IB

IMD1 = IB

ICEN = IB

IMD2 = IB
ITWO = IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(2,1) = IONE

NBCPG2(2,2) = ITWO
GO TO 368

EASTERN SIDE

260 DO 270 IB = 1, NBNDG2
IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .Eq.

270 CONTINUE

GOTO 389

KSE) IONE = IB
KEE) ICEN = IB
KNE) ITWO = IB

NORTHEASTERN CORNER

DO 290 IB 1, NBNDG2

IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.

CONTINUE

KSE)

KEE)

KNE)

KNN)

KNW)

IONE = IB

IMD = IB

ICEN = IB

IMD2 = IB

ITWO = IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(3,1) = IONE

NBCPG2(3,2) = ITWO
GO TO 368

NORTHERN SIDE
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300 DO 310 IB - 1. NBNDG2
IF (IBNDG2(1,IB) .Eq.

IF-(IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .EQ.

310 CONTINUE

GOTO 369

KNE) IONE = IB

KNN) ICEN = IB

KNW) ITWO = IB

NORTHWESTERN CORNER

DO 330 IB = 1, NBNDG2
IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.

IF (IBNDG2(1,IB) .EQ.
IF (IBNDG2(1,IB) .Eq.

IF (IBNDG2(1,IB) .EQ.
CONTINUE

KNE)

KNN)

KNW)

KWW)

KSW)

IONE = IB
IMD1 = IB
ICEN = IB

IMD2 = IB

ITWO = IB

CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER

NBCPG2(4,1) = IONE

NBCPG2(4,2) = ITWO
GO TO 368

WESTERN SIDE

340 DO 350 IB = 1, NBNDG2
IF (IBNDG2(1,IB) .EQ. KNW)

IF (IBNDG2(1,IB) .EQ. KWW)

IF (IBNDG2(1,IB) .EQ. KSW)

350 CONTINUE

GOTO 389

IONE = IB

ICEN = IB

ITWO = IB

CHECK THE EDGE CELLS

PRINT OUT PARAMETERS FOR BOUNDARY NODES

IF (IWRITE) THEN

WRITE(JDEBUG,6000)

WRITE(JDEBUG,6100)

WRITE(JDEBUG,6200)

WRITE(JDEBUG,6300)

WRITE(JDEBUG,6400)

WRITE(JDEBUG,6500)

WRITE(JDEBUG,6600)

ENDIF ! IWRITE

1

IGOTO, KX

IONE, IMD1, ICEN, IMD2, ITWO

(IBNDG2(I,IONE),I=1,5)

(IBNDG2(I,IMDL),I=1,5)

(IBNDG2(I,ICEN),I=1,5)

(IBNDG2(I,IMD2),I=1,5)
(IBNDG2(I,ITWO),I=1,5)

IF (IONE .Eq. 0 .OR. IMDI .EQ. 0 .OR. ICEN .EQ. 0

.OR. IMD2 .EQ. 0 .OR. ITWO .EQ. O) GOTO 360

MARK FOR DELETE

IBNDG2(1,IMD1) = -9
IBNDG2(1,IMD2) -9

C REASSIGN POINTERS

IBNDG2(3,IONE) = LCELL

IBNDG2(2,ICEN) LCELL
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IBNDG2(2,ITWO) LCELL

GOTO -370

CHECK THE EDGE NODES

PRINT OUT PARAMETERS

369 IF (IWRITE) THEN

WRITE(JDEBUG,6000) IGO1

WRITE(JDEBUG,6100) IONE

WRITE(JDEBUG,6200) (IB

WRITE(JDEBUG,6400) (IBE

WRITE(JDEBUG,6600) (IB

ENDIF ! IWRITE

C IF (IONE .EQ. 0 .OR. ICEN

IF (ICEN .EQ. O) GOTO 360

C

BOUNDARY NODES

rO, KX
E, IMD1, ICEN, IMD2, ITWO

NDG2(I,IONE),I=1,5)

NDG2(I,ICEN),I=1,5)

NDG2(I,ITWO),I=1,5)

.EQ. 0 .OR. ITWO .EQ. O) GOTO 360

C MARK FOR DELETE

IBNDG2(1,ICEN) -9

C REASSIGN POINTERS

IBNDG2(3,IONE) - LCELL

IBNDG2(2,ITWO) = LCELL

GOTO 370

C
C ERROR IN BOUNDARY CELL POINTERS

360 ZER1 = LCELL

ZER2 IGOTO

CALL ERRORM (17,'G2CLPO'.'LCELL ',ZER,I'IGOTO ',ZER2,JPRINT,

1 'ERROR IN BOUNDARY NODE CALCULATION')

370 CONTINUE

C
C
C DEBUG PRINT

C
C PRINT OUT PARAMETERS AFTER CELL MERGER
C

IF (IWRITE) THEN

WRITE(JDEBUG,6700)
C
C
C

GENERAL INFORMATION

WRITE(JDEBUG,1400) NNODG2, NCELG2, NBNDG2. LEVELG
C
C
C

POINTERS OF MAIN CELL LCELL

WRITE(JDEBUG,1600) LCELL, KC , KSW, KS , KSE, KE,
1 KNE, KN , KNW, KW , KX

WRITE(JDEBUG,1600) (ICELG2(I,LCELL),I=1,lO),KAUXG2(LCELL)
C
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REASSIGNED CELLS

WRITE(JDEBUG 6800)
WRITE(JDEBUG, 1800)
WRITE(JDEBUG, 1900)
WRITE (JDEBUG, 2000)
WRITE(JDEBUG. 2100)

LMSW, LMSE, LMNE, LMNW

(ICELG2(I.LMSW),I=1,10),KAUXG2(LMSW)

(ICELG2(I,LMSE),I=1,10),KAUXG2(LMSE)

(ICELG2(I,LMNE),I-1,10),KAUXG2(LMNE)
(ICELG2(I,LNW),I=1,10), KAUXG2LMNW)

NEIGHBOUR CELLS AND THEIR POINTERS

WRITE(JDEBUG.2200) LVSW, LCSW, LHSW, LHSE, LCSE, LVSE,
LVNE, LCNE, LHNE, LHNW, LCNW, LVNW

IF (LVSW .NE. O) THEN

WRITE(JDEBUG,2300)
ENDIF

IF (LCSW .NE. O) THEN

WRITE(JDEBUG,2400)
ENDIF

IF (LHSW .NE. O) THEN

WRITE(JDEBUG,2500)
ENDIF

IF (LHSE .NE. O) THEN

WRITE(JDEBUG,2600)
ENDIF

IF (LCSE .NE. O) THEN

WRITE(JDEBUG,2700)
ENDIF

IF (LVSE .NE. O) THEN
WRITE(JDEBUG,2800)

ENDIF

IF (LVNE .NE. O) THEN
WRITE(JDEBUG.2900)

ENDIF

IF (LCNE .NE. O) THEN

WRITE(JDEBUG,3000)

ENDIF

IF (LHNE .NE. O) THEN

WRITE(JDEBUG,3100)

ENDIF

IF (LHNW .NE. O) THEN

WRITE(JDEBUG,3200)
ENDIF

IF (LCNW .NE. O) THEN

WRITE(JDEBUG. 3300)
ENDIF

IF (LVNW .NE. O) THEN

WRITE(JDEBUG.3400)
ENDIF

(ICELG2(I,LVSW),I-alO),.KAUXG2(LVSW)

(ICELG2(I.LCSW).I=l,O10),KAUXG2(LCSW)

(ICELG2(I,LHSW),I=1.10).KAUXG2(LHSW)

(ICELG2(I,LHSE),I-l,10),KAUXG2(LHSE)

(ICELG2(I,LCSE).I10l,O),KAUXG2(LCSE)

(ICELG2(I,LVSE),I=1.10),KAUXG2(LVSE)

(ICELG2(ILVNE),I=1.10)KAUXG2(LVNE)

(ICELG2(I,LCNE),I=1.10).KAUXG2(LCNE)

(ICELG2(I,LHNE),I=1,lO ),KAUXG2(LHNE)

(ICELG2(I,LHNW),I=1.10),KAUXG2(LHNW)

(ICELG2(I,LCNW).I=1,10)KAUXG2(LCNW)

(ICELG2(I,LVNW).I-.10) .KAUXG2(LVNW)

NEIGHBOURING CELLS OF ALL NODES OF LCELL

WRITE(JDEBUG.3500) (NEIBG2(I,KC ),I-1,4)
WRITE(JDEBUG,3600) (NEIBG2(I,KSW) ,I1.4)
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WRITE(JDEBUG,3800) (NEIBG2(I,KSE),I=1,4)

WRITE(JDEBUG. 4000) (NEIBG2 (I ,KNE) ,I=1,4)

WRITE(JDEBUG.4200) (NEIBG2(I,KNW). =1,4)

WRITE(JDEBUG,3700) (NEIBG2(I,KS ) I-1.4)

WRITE(JDEBUG,3900) (NEIBG2(I,KE ) ,I1.4)

WRITE(JDEBUG,4100) (NEIBG2(I,KN ), I=1,4)

WRITE(JDEBUG,4300) (NEIBG2(I.KW ), I=1.4)

C
C BOUNDARY NODES

C

C PRINT OUT PARAMETERS FOR BOUNDARY NODES

C

IF (IGOTO .NE. O) THEN

WRITE(JDEBUG,6100) IONE, IMD1, ICEN, IMD2, ITWO

WRITE(JDEBUG,6100) IONE, ICEN, ITWO

WRITE(JDEBUG,6200) (IBNDG2(I,IONE),I=1,5)

WRITE(JDEBUG,6400) (IBNDG2(I,ICEN),I=1,5)

WRITE(JDEBUG.6600) (IBNDG2(I,ITWO),I=1,5)

IF (IMD1 .NE. O) THEN

WRITE(JDEBUG,6300) (IBNDG2(I,IMD1),I=1,5)

WRITE(JDEBUG,6500) (IBNDG2(I, IMD2) ,I=1,5)
ENDIF

ENDIF

ENDIF ! IWRITE
C
C CHECK IF THE CELL HAS FUEL INJECTED TO IT

C
IF (IAND(KX,KL1000) .EQ. O) RETURN

KUMDH2 = 0

DO 380 IB 1, NUMDH2

IF (NODEH2(IB) .EQ. KWW) THEN

IBHERE = IB
GOTO 390

ENDIF

380 CONTINUE

390 DO 400 IB - IBHERE, NUMDH2-1

NODEH2(IB) = NODEH2(IB+I)
400 CONTINUE

NUMDH2 = NUMDH2 - 1

C
C

C FORMAT STATEMENTS
C

C
1000 FORMAT(//1OX.'-----------------------' )
1100 FORMAT( lOX,'DEBUG PRINT FROM G2CLPO' )

1200 FORMAT( lOX.'-----------------------'/)
1300 FORMAT(/1OX,'***** INFORMATION BEFORE COLLAPSE *****'/)
1400 FORMAT(6X,'NNODG2 ',.I7,6X,'NCELG2 -',I7,.X,'NBNDG2 ' .I7,

1 6X,'LEVEL ',I7 )
1500 FORMAT(X.,'CELL POINTERS FOR LCELL =',I86./X,'KC =',I6,5X.

1 'KSW ',I6,6X.'KS ',I6,X,'KSE =',I6,5X,'KE =',I6/6X,

2 'KNE ',I,BX,'KN -',I6,5X,'KNW ',I6,6X,'KW =',I6,6X,
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3 'KX -'.Z7
1600 FORMAT(SX,'LCELL POINTERS',5X,lOI,6Z10)

1700 FORMAT(SX.'MIDDLE CELLS ARE :'/
1 SX,'LMSW',I6,6X,'LMSE-',I5,SX.'LMNE',I5,

2 SX.'LMNW=',I5

1800 FORMAT(5X.'LMSW POINTERS',SX.lOI6,ZlO)
1900 FORMAT(5X.'LMSE POINTERS',6X.,OI6.Z1O)

2000 FORMAT(6X,'LMNE POINTERS',6SX,OI,Z10)

2100 FORMAT(SX,'LMNW POINTERS'.5X,lOI6,Z10)
2200 FORMAT(SX,'CELLS NEIGHBOURING LCELL :'/

1 SX.'LVSW-',I5.X.'LCSW='.I5,X.'LHSW='.I5,

2 SX,'LHSE-',I5,X,'LCSE-',I5,SX,'LVSE=',I5/

3 5X,'LVNE='.I6,.SX.'LCNE='.I5,SX.'LHNE=',I5

4 5X.'LHNW-'.IS6,6X.'LCNW='.I5.X,'LVNW=',I5

FORMAT(SX,'LVSW

FORMAT(SX,'LCSW

FORMAT(6X,'LHSW

FORMAT(SX.'LHSE

FORMAT(6X,'LCSE

FORMAT (X.'LVSE

FORMAT(SX,'LVNE

FORMAT(SX,'LCNE

FORMAT(SX,'LHNE

FORMAT(SX,'LHNW

FORMAT(SX.'LCNW

FORMAT(SX,'LVNW

POINTERS',6X,lOI6,Z10)

POINTERS',5X,10I6,Z10)

POINTERS',6X,lOI6,Z10)

POINTERS',5X,0OI6,Z1O)

POINTERS'.SX,lOI6,Z10)

POINTERS',SX,lOI6,Z10)

POINTERS',X,O116,Z1O)
POINTERS',SX,1OI6,Z1O)

POINTERS'.SX.1016,Z10)

POINTERS',5X,lOI6,Z10)

POINTERS',SX,OI6,Z10O)

POINTERS',6X,lOI,6Z10)

FORMAT(6X,'NEIGHBOUR CELLS

FORMAT(SX. 'NEIGHBOUR CELLS

FORMAT(SX,'NEIGHBOUR CELLS

FORMAT(X, 'NEIGHBOUR CELLS
FORMAT(SX. 'NEIGHBOUR CELLS

FORMAT(SX. 'NEIGHBOUR CELLS

FORMAT(SX, 'NEIGHBOUR CELLS
FORMAT(SX,'NEIGHBOUR CELLS

FORMAT(SX. 'NEIGHBOUR CELLS

FORMAT(SX,'LAST FOUR CELLS
'NLAST2 -'.I6,6X.'NLAST3

)

)

OF KC :',417)

OF KSW :',417)

OF KS :',417)

OF KSE :',417)

OF KE :',417)

OF KNE :'.417)

OF KN :',417)

OF KNW :',417)

OF KW :'.417)

ARE ',/SX.'NLASTI=',I6.SX,

-',I6,6X.'NLAST4 -',I6)

4600 FORMAT(SX,'NODE POINTERS OF LAST FOUR CELLS ',/5X,'JC
1 I6.5X.'JSW -'.I6,SX,'JS -',I6,5X,'JSE -',I6,SX,'JE
2 5X,'JNE -',I6,SX,'JN -=',I,X,'JNW ',I,6.SX,'JW

3 6X,'ISTAR1',I6,.X,'ISTAR2=',I6,SX.'ISTAR3=',I6,

4 SX,'ISTAR4-',I6)

4600 FORMAT(5X.'CELL POINTERS OF NLAST',I1,6X,10OI6,Z10)

4700 FORMAT(SX,'NEIGHBOUR CELLS OF JC :'.517)
4800 FORMAT(SX.'NEIGHBOUR CELLS OF JSW :',517)

4900 FORMAT(SX.'NEIGHBOUR CELLS OF JS :',517)

5000 FORMAT(SX.'NEIGHBOUR CELLS OF JSE :',517)
6100 FORMAT(SX,'NEIGHBOUR CELLS OF JE :',517)

5200 FORMAT(5X,'NEIGHBOUR CELLS OF JNE :',517)

5300 FORMAT(6X,'NEIGHBOUR CELLS OF JN :',517)
6400 FORMAT(SX,'NEIGHBOUR CELLS OF JNW :',517)
5500 FORMAT(SX,'NEIGHBOUR CELLS OF JW :',517)

5600 FORMAT(SX. 'NEIGHBOUR CELLS OF ISTARI :',517)

5700 FORMAT(SX.'NEIGHBOUR CELLS OF ISTARI :',517)
6800 FORMAT(6X,'NEIGHBOUR CELLS OF ISTAR1 :'.517)

5900 FORMAT(SX,'NEIGHBOUR CELLS OF ISTARI :',517)
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2300

2400

2500

2600
2700

2800

2900

3000

3100

3200

3300

3400

3500

3600
3700
3800

3900

4000

4100

4200

4300

4400

=,,I6/

=', 16/



6000 FORMAT(6X,'IGOTO -'I3,2X,'KX -',Z1O)

6100 FORMAT(X,.'BOUNDARY NODE INFORMATION : '/
1 - X.'IONE ',I6,6X,'IMD1 ',I6,5X.'ICEN ',I6,
2 5X,'IMD2 ',I6.X,'ITWO -',I6)

6200 FORMAT(X,.'B. POINTERS OF IONE :'.5I6)

6300 FORMAT(5X,'B. POINTERS OF IMD1 :',6516)

6400 FORMAT(5X,'B. POINTERS OF ICEN :',516)

6500 FORMAT(5X,'B. POINTERS OF IMD2 :',6516)

6600 FORMAT(X.,'B. POINTERS OF ITWO :',516)
6700 FORMAT(//1OX.'***** INFORMATION AFTER COLLAPSE *****'/)
6800 FORMAT(X.'REASSIGNED MIDDLE CELLS ARE :'/

1 6X,'LMSW-',I,5X.'LMSE=',I5,X,'LMNE=',I5,
2 6X,'LMNW-'.I5 )

RETURN

END

G2DIVU

SUBROUTINE G2DIVO (LCELL, IWARN)
C G2DIVU

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC'

INCLUDE 'HEXCOD.INC'

DIMENSION IBNODE(5)
C

C

C THIS SUBROUTINE DIVIDES CELL 'LCELL' INTO FOUR SMALLER CELLS

C AND PERFORMS ALL NECESSARY POINTER SYSTEM REALIGNMENTS
C
C
C SPECIAL EXPLANATION OF AUXILIARY CELL POINTERS
C

C KAUXG2(LCELL) HAS THE HEXIDECIMAL FORM:
C

C 'X X X X X X X X'
C 87 6 6 4 3 2 1
C

C WHERE:

C X INDICATES THAT CELL IS A BOUNDARY CELL

C 1

C
C X INDICATES THAT THE CELL WAS RECENTLY DIVIDED
C 2 AND HENCE MUST NOT BE COLLAPSED
C
C X INDICATES THE BOUNDARY INTERPOLATION FUNCTION TYPE
C 3

C
C X INDICATES SPECIAL CELLS (E.G., FUEL INJECTION CELLS)
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C 4

C -

C - X INDICATES THE SPATIAL LEVEL OF THE CELL ( <- MLVLG2)

C 6
C

C EXPLANATION OF HISTORY POINTER OF THE CELLS (BYTE 2)

C

C THE CELL WHICH IS DIVIDED CAN ONLY BE COLLAPSED AFTER THREE

C GENERATIONS LATER, NOTE THAT INCHIS=48-2-6+2-4 (I.E., THE

C SECOND BYTE IS SET EQUAL TO 3). AFTER EACH ADAPTATION CYCLE

C (I.E., A CALL TO A2MTHO) THIS POINTER IS REDUCED BY ONE UNTIL

C IT BECOMES ZERO.

C

C EXPLANATION OF SPATIAL LEVEL POINTER OF THE CELLS (BYTE 5)

C
C K6LEVG : 5TH BYTE OF THE GIVEN CELL LCELL

C KSLEVN : 5TH BYTE OF THE NEW CELLS

C LEVELG : LEVEL OF THE GIVEN CELL LCELL

C LEVELN : LEVEL OF THE NEW CELLS (TO BE DIVIDED, LEVELG+1)

C
INCHIS - 48

C

C OVERFLOW CHECK

C ----- ________

C CHECK FOR OVERFLOW IN NODE ARRAYS
C

IF(NNODG2+6 GT. MNODG2) THEN
ZERI - MNODG2

ZER2 - NNODG2

CALL WARNIN (6.'G2DIVO'.,'MNODG2',ZER1,'NNODG2'.ZER2,JPRINT,

1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

IWARN - 6
RETURN

ENDIF

C CHECK FOR OVERFLOW IN CELL LIMIT

IF (NCELG2+4 .GT. MCELG2) THEN
ZER - MCELG2
ZER2 - NCELG2

CALL WARNIN (7, 'G2DIVO','MCELG2' ,ZER1. 'NCELG2'.ZER2.JPRINT,

1 'NUMBER OF CELLS EXCEEDS ITS LIMIT')

IWARN - 7

RETURN

ENDIF

C CHECK FOR OVERFLOW IN BOUNDARY CONDITION ARRAY

IF (NBNDG2+2 .GT. MBNDG2) THEN
ZERi - MBNDG2

ZER2 - NBNDG2

CALL WARNIN (8.'G2DIVO'. 'MBNDG2',ZER1. 'NBNDG2',ZER2.JPRINT,

1 'NUMBER OF BOUNDARY NODES EXCEEDS ITS LIMIT')
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IWARN - 8

RETURN

ENDIF

C FIND THE

KX
KSLEVG -
LEVELG -

LEVEL LEVELG OF THE GIVEN CELL

KAUXG2(LCELL)
IAND(KX.KUOOOF)
ISHFT(KSLEVG -16)

POINTER SAVING

SAVE REST OF CELL POINTERS

KSW - ICELG2(2,LCELL)
KS - ICELG2(3.LCELL)
KSE - ICELG2(4,LCELL)

KE - ICELG2(5,LCELL)
KNE - ICELG2(d,LCELL)
KN - ICELG2(7,LCELL)
KNW - ICELG2(8,LCELL)
KW - ICELG2(9,LCELL)
K5LEVN - K5LEVG + 2**16
LEVELN - LEVELG + 

MAXLEV - MAX(NLVLG2. LEVELN)

IF (LEVELN .GT. MALVG2) RETURN

NEIGHBOUR DETERMINATION

FIND CELLS WHICH BOUND DIVIDED CELL

I------------I---------------I--------- I

4.4.4.
+LCNW

4.+ + 4 + +. .4+ + + +
I LHNW + LHNE ILCNE +

I K FOR NODE
I L FOR CELL

I + I + I
I------------------+------------+----

+ IKNW KN KNEI +
+LVNW I LMNW LMNE ILVNE +

4. 4 + KW LCELL KE. + + +

+LVSW I LMSW LMSE ILVSE +

+ |KSW KS KSEI +

I------------------…---------------- I
4 I 4 I +

+I LCSW LHSW + LHSE ILCSE +
+ + . + + + + + +. + + + +

I I
I ------------ I --------------- I---------

LVSW - NEIBG2(4.KSW)
LCSW - NEIBG2(1.KSW)

LHSW - NEIBG2(2,KSW)

M:CENTER (MIDDLE)

C:CORNER (ADJACENT)

H:HORIZONTAL (ADJAC)

V:VERTICAL (ADJACENT)
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LHSE - NEIBG2(1,KSE)

LCSE- - NEIBG2(2,KSE)

LVSE- - NEIBG2(3,KSE)

LVNE - NEIBG2(2,KNE)

LCNE - NEIBG2(3.KNE)

LHNE - NEIBG2(4,KNE)

LHNW = NEIBG2(3,KNW)

LCNW - NEIBG2(4,KNW)

LVNW - NEIBG2(1,KNW)
C

C LEVEL DIFFERENTIAL CHECK
C ---------------------- _

C

C IF THE COMPONENT CELLS ARE JUST INSIDE EMBEDDED REGION THEN

C THEY CAN NOT BE DIVIDED; THIS WILL BE SO IF THE LEVELS OF

C THE NEIGHBOURHOOD CELLS DIFFER BY MORE THAN ONE

C FIRST DO THE CORNER CELLS

IF (LCSW .NE. O) THEN

KSLCOR IAND(KAUXG2(LCSW).KUOOOF)

LEVELC ISHFT(KSLCOR,-16)

IDFL = LEVELC-LEVELG

IF (IDFL .LT. O) RETURN
ENDIF

C

IF (LCSE .NE. O) THEN

KLCOR IAND(KAUXG2(LCSE) ,KUOOOF)

LEVELC ISHFT(K5LCOR,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. O) RETURN

ENDIF
C

IF (LCNE .NE. O) THEN

KSLCOR - IAND(KAUXG2(LCNE),KUOOOF)

LEVELC - ISHFT(KLCOR,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. O) RETURN

ENDIF
C

IF (LCNW .NE. O) THEN

KLCOR - IAND(KAUXG2(LCNW),KUOOOF)
LEVELC - ISHFT(KSLCOR,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. O) RETURN
ENDIF

C

C NOW DO EDGE CELLS
C

IF (LHSW .NE. O) THEN

KSLEDG - IAND(KAUXG2(LHSW),KUOOOF)
LEVELC - ISHFT(KSLEDG,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. O) RETURN
ENDIF

C
IF (LVSE .NE. ) THEN
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KLEDG -
LEVELC -
IDFL -

IF (IDFL

ENDIF

IAND(KAUXG2(LVSE),KUOOOF)

ISHFT(KLEDG,-16)

LEVELC-LEVELG

.LT. O) RETURN

C

IF (LHNE .NE. 0) THEN

K5LEDG IAND(KAUXG2(LHNE),KUOOOF)

LEVELC ISHFT(K5LEDG,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0) RETURN

ENDIF
C

IF (LVNW .NE. O) THEN

K5LEDG - IAND(KAUXG2(LVNW),KUOOOF)
LEVELC ISHFT(KBLEDG,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. O) RETURN
ENDIF

DIVISION PROCESS

INITIATE THE PROCESS OF CELL DIVISION

UPDATE THE OVERALL MAXIMUM LEVEL POINTER

NLVLG2 = MAXLEV

C UPDATE THE NUMBER OF CELLS AT THE NEW LEVEL

ILVLG2(3,LEVELN) - ILVLG2(3,LEVELN) + 4

C CREATE NODE AT CENTER OF CELL

NNODG2 s NNODG2 + 1

KC = NNODG2

C COMPUTE THE GEOMETRIC QUANTITIES AT THE NEW CENTER NODE

GEOMG2(1,KC) - 0.25*( GEOMG2(1,KSW)

1 GEOMG2(1,KNE)

GEOMG2(2,KC) - 0.25*( GEOMG2(2,KSW)

1 GEOMG2(2,KNE)

+ GEOMG2(1,KSE) +
+ GEOMG2(1,KNW) )
+ GEOMG2(2,KSE) +
+ GEOMG2(2,KNW) )

C LINEAR INTERPOLATION FOR DEPENDENT VARIABLES

DO 10 J - 1, NEQNFL

DPENG2(J,KC) - 0.25*( DPENG2(J,KSW) + DPENG2(J,KSE) +
1 DPENG2(J,KNE) + DPENG2(J,KNW) )

10 CONTINUE

PRESG2(KC) - 0.25*( PRESG2(KSW)
1 PRESG2(KNE)

TEMPG2(KC) - 0.25*( TEMPG2(KSW)

1 TEMPG2(KNE)

+ PRESG2(KSE) +
+ PRESG2(KNW) )
+ TEMPG2(KSE) +
+ TEMPG2(KNW) )

C DOES SOUTHERN NODE ALREADY EXIST; IF NOT CREATE IT
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IF (S .Eq. O) THEN
NNODG2 - NNODG2 + 1
KS - NNODG2

GEOMG2(1,KS) - 0.50*( GEOMG2(1,KSW) + GEOMG2(1,KSE) )
GEOMG2(2,KS) - 0.50*( GEOMG2(2,KSW) + GEOMG2(2,KSE) )
IF (LHSW .NE. 0 .AND. LHSE .NE. 0) THEN

NEIBG2(1,KS) LHSW

NEIBG2(2,KS) - LHSE
ELSE

NEIBG2(1.KS) - 0
NEIBG2(2,KS) - 0

ENDIF

DO 20 J - 1, NEQNFL

DPENG2(JKS) - 0.50*( DPENG2(J,KSW) + DPENG2(J,KSE) )
20 CONTINUE

PRESG2(KS) - 0.50*( PRESG2(KSW) + PRESG2(KSE) )

TEMPG2(KS) - 0.50*( TEMPG2(KSW) + TEMPG2(KSE) )
ENDIF

C DOES EASTERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KE .EQ. O) THEN

NNODG2 = NNODG2 + 1
KE - NNODG2

GEOMG2(1,KE) - 0.50*( GEOMG2(1,KNE) + GEOMG2(1,KSE) )

GEOMG2(2,KE) - 0.50*( GEOMG2(2,KNE) + GEOMG2(2,KSE) )
IF (LVSE .NE. 0 AND. LVNE .NE. O) THEN

NEIBG2(2,KE) = LVSE
NEIBG2(3,KE) = LVNE

ELSE

NEIBG2(2,KE) = 0
NEIBG2(3,KE) 0

ENDIF

DO 30 J 1, NEQNFL

DPENG2(J,KE) - 0.50*( DPENG2(J,KNE) + DPENG2(J,KSE) )
30 CONTINUE

PRESG2(KE) - 0.50*( PRESG2(KNE) + PRESG2(KSE) )

TEMPG2(KE) - 0.50*( TEMPG2(KNE) + TEMPG2(KSE) )
ENDIF

C DOES NORTHERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KN .EQ. O) THEN
NNODG2 - NNODG2 + 1
KN - NNODG2

GEOMG2(1,KN) - 0.50*( GEOMG2(1,KNE) + GEOMG2(1,KNW) )

GEOMG2(2,KN) - 0.50*( GEOMG2(2.KNE) + GEOMG2(2,KNW) )

IF (LHNW .NE. 0 .AND. LHNE .NE. O) THEN

NEIBG2(3,KN) - LHNE

NEIBG2(4,KN) - LHNW
ELSE

NEIBG2(3,KN) - 0
NEIBG2(4,KN) - 0

ENDIF

DO 40 J - 1, NEqNFL

DPENG2(J,KN) - 0.50*( DPENG2(J,KNE) + DPENG2(J,KNW) )
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40 CONTINUE
PRESG2(KN) - 0.50*( PRESG2(KNE) + PRESG2(KNW) )
TEMPG2(KN) - 0.50*( TEMPG2(KNE) + TEMPG2(KNW) )

ENDIF

C DOES WESTERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KW .EQ. O) THEN

NNODG2 = NNODG2 + 
KW = NNODG2

GEOMG2(1,KW) - 0.50*( GEOMG2(1,KNW) + GEOMG2(1,KSW) )
GEOMG2(2,KW) - 0.50*( GEOMG2(2,KNW) + GEOMG2(2,KSW) )
IF (LVSW .NE. 0 .AND. LVNW .NE. O) THEN
NEIBG2(1,KW) = LVSW
NEIBG2(4,KW) LVNW

ELSE

NEIBG2(1,KW) 0
NEIBG2(4,KW) -

ENDIF

DO 60 J - 1, NEqNFL

DPENG2(J,KW) - 0.60*( DPENG2(J,KNW) + DPENG2(J,KSW) )
50 CONTINUE

PRESG2(KW) - 0.50*( PRESG2(KNW) + PRESG2(KSW) )
TEMPG2 (KW) - 0. 50* ( TEMPG2 (KNW) + TEMPG2 (KSW) )

ENDIF

C UPDATE THE DIVIDED CELL -- NEW NODE

ICELG2(1,LCELL) - KC
ICELG2(3,LCELL) - KS
ICELG2(5,LCELL) - KE
ICELG2(7,LCELL) - KN
ICELG2(9,LCELL) - KW

C CREATE THE NEW CELLS

LMSW = NCELG2 + 1
LMSE - LMSW + 1
LMNE - LMSE + 1
LMNW = LMNE + 1
NCELG2 - NCELG2 + 4

ICELG2( ILMSW) - O
ICELG2( 2.LMSW) - KSW
ICELG2( 3,LMSW) - 0
ICELG2( 4,LMSW) - KS
ICELG2( 6,LMSW) - 0
ICELG2( 6,.LMSW) - KC
ICELG2( 7,LMSW) - 0
ICELG2( 8,LMSW) = KW
ICELG2( 9.LMSW) - 0
ICELG2C(O,LMSW) - LCELL

KAUXG2( LMSW) - K6LEVN + INCHIS

ICELG2( I,LMSE) - 0
ICELG2( 2,LMSE) - KS
ICELG2( 3,LMSE) - 0
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ICELG2( 4,LMSE)

ICEL2( 56,LMSE)

ICELG2( 6,LMSE)

ICELG2( 7,LMSE)

ICELG2( 8,LMSE)

ICELG2( 9,LMSE)

ICELG2(10,LMSE)

KAUXG2( LMSE)

ICELG2(

ICELG2(

ICELG2(

ICELG2 (
ICELGa(
ICELG2(
ICELG2(

ICELG2(

ICELG2(

ICELG2(

KAUXG2 (

1,.LMNE)

2.LMNE)

3,LMNE)
4,LMNE)

5,LMNE)
6,LMNE)
7,LMNE)

8,LMNE)

9,LMNE)

10, LMNE)

LMNE)

ICELG2( 1,LMNW) =

ICELG2( 2,LMNW) =

ICELG2( 3,LMNW) -

ICELG2( 4,LMNW) -

ICELG2( 6,LMNW) =
ICELG2( 6,LMNW) -

ICELG2( 7,LMNW) -
ICELG2( 8,LMNW) -

ICELG2( 9,LMNW) -

ICELG2(O,LMNW) =
KAUXG2( LMNW) 

KSE

0

KE

0

KC

0
LCELL

K6LEVN + INCHIS

0

KC

0
KE

0

KNE

0

KN

0

LCELL

K5LEVN + INCHIS

0

KW

0
KC

0

KN

0

KNW

0
LCELL

KSLEVN + INCHIS

C SET EDGE NODE POINTERS OF ALL NEIGHBOURING CELLS

IF (LHSW.NE.O

IF (LVSE.NE.O

IF (LHNE.NE.O

IF (LVNW.NE.O

.AND. LHSW.EQ.LHSE)

.AND. LVSE.EQ.LVNE)

.AND. LHNE.EQ.LHNW)

.AND. LVNW.Eq.LVSW)

ICELG2( 7,LHSW) KS

ICELG2( 9,LVSE) = KE

ICELG2( 3,LHNE) = KN
ICELG2( 5,LVNW) = KW

C UPDATE NEIGHBOUR-NODE-ARRAY

NEIBG2(1,KC ) = LMSW

NEIBG2(2,KC ) - LMSE
NEIBG2(3,KC ) = LMNE

NEIBG2(4,KC ) - LMNW
NEIBG2(3,KSW) - LMSW

NEIBG2(3,KS ) - LMSE

NEIBG2(4,KS ) - LMSW

NEIBG2(4,KSE) - LMSE
NEIBG2(1,KE ) - LMSE

NEIBG2(4,KE ) - LMNE
NEIBG2(1,KNE) - LMNE

NEIBG2(1,KN ) - LMNW

NEIBG2(2,KN ) - LMNE

NEIBG2(2,KNW) - LMNW

NEIBG2(2,KW ) - LMSW
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NEIBG2(3,KW ) - LMNW

BOUNDARY NODE POINTERS

SKIP NEXT SECTION IF LCELL IS NOT A BOUNDARY CELL

IGOTO - IAND(KX,.KLOOOF)

IF(IGOTO .EQ. O) GO TO 290

SCAN THROUGH ALL BOUNDARY CONDITION POINTERS, LOOKING FOR POINTERS
TO THE DIVIDED CELL

IONE - 0
ICOR - 0
ITWO - 0
DO 60 IBND - 1, NBNDG2

IF (IBNDG2(3,.IBND) .EQ.

IF (IBNDG2(2,IBND) .EQ.

1 IBNDG2(3,IBND) .EQ.

IF (IBNDG2(2,IBND) .EQ.

1 IBNDG2(3,IBND) .NE.
60 CONTINUE

C

C SPECIAL INJECTOR CASE

IF (ITWO .EQ. 0 .AND. ICOR
C
C

260 250
+------+------- +

LCELL

LCELL .AND.

0
LCELL .AND.

0

) IONE = IBND

) ICOR IBND

) ITWO = IBND

.NE. O) ITWO = ICOR

240

113D 12C 14EI
270 +9 KAUXG2 6+ 230

11B 3 71
+---- + ------- +

280 : ERROR

C 200 210 220 GO TO STATEMENTS
C

C
C BRANCH OUT DEPENDING ON BOUNDARY TYPE
C

GO TO (280,280,280,210,280, 230,220.

1 280,270,280,200,260,260,240,280), (IGOTO + 1)
GO TO 280

C DIVIDED CELL WAS AT SOUTHWESTERN CORNER

200 IBNDG2(2.ICOR)

IBNDG2(2,ITWO)

IBNDG2(3,IONE)

NBNDG2

IBNDG2( .NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2 (3,NBNDG2)

IBNDG2(4 ,NBNDG2)

IBNDG2 (6, NBNDG2)
NBCPG2(1,2)

- NBNDG2 + 1

- KS

- LMSW
- LMSE
-3
- IBNDG2(6,ITWO)
- NBNDG2

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

- LMSW

- LMSE

- LMNW
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NBNDd2

IBNDUG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

NBCPG2(1,1)

KAUXG2 (LMNW)

KAUXG2 (LMSW)

KAUXG2 (LMSE)

= NBNDG2 + 

= KW
- LMNW

- LMSW

=9
IBNDG2(5,IONE)

= NBNDG2

- IOR(KAUXG2(LMNW),KLOOO9)

- IOR(KAUXG2(LMSW),KLOOOB)

- IOR(KAUXG2(LMSE),KLOOO3)

GO TO 290

C DIVIDED CELL WAS ALONG SOUTHERN EDGE

210 IBNDG2(3,IONE) - LMSW

IBNDG2(2,ITWO) - LMSE

NBNDG2 = NBNDG2 + 1
IBNDG2(1,NBNDG2) KS

IBNDG2(2,NBNDG2) - LMSW

IBNDG2(3,NBNDG2) - LMSE

IBNDG2(4,NBNDG2) 3

ISONE = IBNDG2(5,IONE)
ISTWO - I50NE

IF (ITWO .NE. O) I6TWO = IBNDG2(5,ITWO)

IF (ISTWO .EQ. I50NE) THEN

IBNDG2(5,NBNDG2) IONE
ELSE

IF (I5TWO .EQ. 2) THEN

IBNDG2(5,NBNDG2) - I60NE

ELSE

IBNDG2(5,NBNDG2) ISTWO

ENDIF

ENDIF .

KAUXG2 (LMSW)

KAUXG2 (LMSE)
- IOR(KAUXG2(LMSW),KLOO03)

- IOR(KAUXG2(LMSE),KL0003)

C ONLY SOUTHERN EDGE WILL BE CHECKED FOR SPECIAL INTERPOLATION

K3BOUN - IAND (KX,KLOFOO)

IF (K3B0UN .NE. O) THEN

KAUXG2(LMSW) - IOR (KAUXG2(LMSW),K3BOUN)
KAUXG2(LMSE) - IOR (KAUXG2(LMSE),K3BOUN)

IBNODE(1) - KSE

IBNODE(2) = KSW
IBNODE(3) - ICELG2(4,LVSE)

IBNODE(4) - ICELG2(2,LVSW)

IBNODE(5) - KS
INTERF - ISHFT (K3BOUN,-8)

CALL G2BPIN (IBNODE,INTERF)
ENDIF
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GO T 290

C DIVIDED CELL WAS AT SOUTHEASTERN CORNER

220 IBNDG2(3,IONE) - LMSW

IBNDG2(2,ICOR) - LMSE

IBNDG2(2,ITWO) - LMNE

NBNDG2 = NE

IBNDG2(1,NBNDG2) - KI

IBNDG2(2,NBNDG2) L
IBNDG2(3,NBNDG2) - LI

IBNDG2(4.NBNDG2) - 3

IBNDG2(5,NBNDG2) - II
NBCPG2(2,1) - NI

NBNDG2 - NI

IBNDG2(1,NBNDG2) - KI

IBNDG2(2,NBNDG2) - L

IBNDG2(3,NBNDG2) - L

IBNDG2(4,NBNDG2) - 5

IBNDG2(5,NBNDG2) - II
NBCPG2(2,2) - NI

KAUXG2(LMSW) - IC
KAUXG2 (LMSE) = I
KAUXG2(LMNE) = IC

3NDG2 + 1

4SW

4SE

3NDG2(5,IONE)
3NDG2

3NDG2 + 1

E

4SE

MNE

3NDG2(5,II0)

3NDG2

OR(KAUXG2 (LMSW),KLOOO3)

OR(KAUXG2(LMSE),KLOO07)

)R(KAUXG2(LMNE),KLOOO6)

GO TO 290

C DIVIDED CELL WAS ALONG EASTERN EDGE

230 IBNDG2(3,IONE) - LMSE

IBNDG2(2,ITWO) - LMNE

NBNDG2 - NI
IBNDG2(1,NBNDG2) - KI

IBNDG2(2,NBNDG2) = ui

IBNDG2(3,NBNDG2) - LI
IBNDG2(4.NBNDG2) = 5
IBNDG2(5,NBNDG2) - I]

KAUXG2(LMSE) = II

KAUXG2(LMNE) - II

BNDG2 + 1

E

ASE
ANE

BNDG2(6,ITWO)

OR(KAUXG2 (LMSE), KLOOO6)
OR(KAUXG2(LMNE), KLOOO)

GO TO 290

C DIVIDED CELL WAS AT NORTHEASTERN CORNER

240 IBNDG2(3,IONE) - LMSE
IBNDG2(2,ICOR) - LMNE

IBNDG2(2,ITWO) - LMNW

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2.NBNDG2)

- NBNDG2 + 1
- KE

- LMSE
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IBNDG2(3,NBNDG2) - LMNE

IBND2(4,NBNDG2) - 6
IBNDG2(6.NBNDG2) - IBNDG2(6,IONE)

NBCPG2(3,1) - NBNDG2

NBNDG2 " NBNDG2 + 1

IBNDG2(1,NBNDG2) - KN

IBNDG2(2,NBNDG2) - LMNE

IBNDG2(3.NBNDG2) = LMNW
IBNDG2(4,NBNDG2) - 7

IBNDG2(5,NBNDG2) - IBNDG2(5,ITWO)

NBCPG2(3,2) - NBNDG2

KAUXG2(LMSE)

KAUXG2(LMNE)

KAUXG2CLMNW)

- IOR(KAUXG2(LMSE),KLOO6)
- IOR(KAUXG2(LMNE),KLOOOE)

- IOR(KAUXG2(LMNW),KLOOOC)

GO TO 290

C DIVIDED CELL WAS ALONG NORTHERN EDGE

250 IBNDG2(3,IONE)

IBNDG2(2, ITWO)

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4.,NBNDG2)

- LMNE
- LMNW

- NBNDG2+1

- KN

- LMNE

- LMNW

7

ISONE - IBNDG2(6,IONE)
ISTWO - I60NE

IF (ITWO .NE. O) I5TWO - IBNDG2(b,ITWO)

IF (ISTWO .EQ. IONE) THEN

IBNDG2(,5NBNDG2) - IO5NE
ELSE

IF (ISONE .Eq. 2) THEN

IBNDG2(6,NBNDG2) - IS5TWO
ELSE

IBNDG2(E,NBNDG2) - ISONE
ENDIF

ENDIF

KAUXG2(LMNE)

AUXG2 (LMNW)
- IOR(KAUXG2(LMNE),KLOOOC)

- IOR(KAUXG2(LMNW),KLOOOC)

C ONLY NORTHERN EDGE WILL BE CHECKED FOR SPECIAL INTERPOLATION

K3BOUN - IAND (KX.KLOFOO)
IF (3BOUN .NE. O) THEN

KAUXG2(LMNE) IOR (KAUXG2(LMNE),K3SBOUN)

KAUXG2(LMNW) - IOR (KAUXG2(LMNW).K3BOUN)
IBNODE(1) - KNE
IBNODE(2) - KNW

IBNODE(3) - ICELG2(6,LVNE)

IBNODE(4) = ICELG2(8,LVNW)
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IBNODE(5)

INTERF

CALL G2BPIN

ENDIF

- KN

= ISHFT (K3BOUN,-8)

(IBNODE,INTERF)

GO TO 290

C DIVIDED CELL WAS AT NORTHWESTERN CORNER

260 IBNDG2(3,IONE) - LMNE

IBNDG2(2,ICOR) - LMNW

IBNDG2(2.ITWO) - LMSW

NBNDG2 - NBNDG2 + 1

IBNDG2(1,NBNDG2) - KN

IBNDG2(2,NBNDG2) = LMNE

IBNDG2(3,NBNDG2) = LMNW
IBNDG2(4,NBNDG2) = 7
IBNDG2(5,NBNDG2) - IBNDG2(5,IONE)

NBCPG2(4,1) = NBNDG2

NBNDG2 - NBNDG2 + 1

IBNDG2(1,NBNDG2) = KW
IBNDG2(2,NBNDG2) - LMNW

IBNDG2(3,NBNDG2) - LMSW

IBNDG2(4,NBNDG2) - 9

IBNDG2(5,NBNDG2) - IBNDG2(5,ITWO)

NBCPG2(4,2) = NBNDG2

KAUXG2 (LMNE)

KAUXG2 (LMNW)

KAUXG2 (LMSW)

= IOR(KAUXG2(LMNE)

- IOR(KAUXG2(LMNW)

- IOR(KAUXG2(LMSW)

, KLOOOC)
, KLOOOD)

,KLOO09)

GO TO 290

C DIVIDED CELL WAS AT WESTERN EDGE

270 IBNDG2(2ITWO) = LMSW
IF (IONE .NE. O) THEN

IBNDG2(3,IONE)

ELSE IF (ICOR .NE.

IBNDG2(2,ICOR)

ENDIF

- LMNW

O) THEN
= LMNW

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

KAUXG2 (LMNW)

KAUXG2 (LMSW)

- NBNDG2 + 1

- KW

= LMNW

- LMSW
=9
- IBNDG2(5.6,ITWO)

= IOR(KAUXG2(LMNW),KLOOO9)

- IOR(KAUXG2(LMSW`),KLOO9)

GO TO 290

C ERROR IN BOUNDARY CELL POINTERS
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280 ZERI'- LCELL

ZER2 KX
CALL ERRORM (11,'G2DIVO','LCELL '.ZER1.'KX

I 'ERROR IN BOUNDARY NODE CALCULATION')
290 CONTINUE

',ZER2,JPRINT,

C COMPUTE THE METRICS ETC. FOR THE NEWLY CREATED CELLS

CALL M2AREA (LMSW)
CALL M2AREA (LMSE)
CALL M2AREA (LMNE)
CALL M2AREA (LMNW)

C
C CHECK IF THE CELL HAS FUEL INJECTED TO IT
C

IF (IAND(KX,KL1000) .Eq. O) RETURN
C
C ONLY THE CELLS WHICH ARE VERTICALLY ALLIGNED AND WHICH ARE ON
C THE RIGHT HAND SIDE OF THE PLANE OF INJECTION ARE MARKED
C

KAUXG2(LMSW)

KAUXG2 (LMSE)

KAUXG2 (LMNE)
KAUXG2(LMNW)

= IOR(KAUXG2(LMSW).KL1000)
- IOR(KAUXG2(LMSE),KL1000)

- IOR(KAUXG2(LMNE).KL1000)

- IOR(KAUXG2(LMNW).KLlOO0)

if (levelg .eq. O) then
nbndg2 - nbndg2 + 1
ibndg2(1.nbndg2) - ks
ibndg2(2.nbndg2) 0
ibndg2(3.nbndg2) - 0
ibndg2(4,nbndg2) - 3

ibudg2(5,nbndg2) - 11

nbndg2 - nbndg2 + 1
ibndg2(1,nbndg2) - ke
ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) - 0
ibndg2(4,nbndg2) - 6
ibndg2(5,nbndg2) - 2

nbndg2 - nbndg2 + 1
ibndg2(1.nbndg2) - kn
ibudg2(2.budg2) - 0
ibndg2(3,nbndg2) - 0
ibndg2(4.nbndg2) - 7
ibndg2(5.nbndg2) - 11

nbndg2 - nbndg2 + 1
ibndg2(1,nbndg2) - kw
ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) - 0
ibndg2(4nbndg2) - 9
ibndg2(5.nbndg2) - 11

else
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ibfsw - 0

ibfse = 0
ibfne - 0
ibfnw - 0

do ibnd 1, nbndg2
if (ibndg2(l,ibnd) .eq. ksw) ibfsw = ibnd
if (ibndg2(1,ibnd) .eq. kse) ibfse = ibnd
if (ibndg2(1,ibnd) .eq. kne) ibfne = ibnd
if (ibndg2(l,ibnd) .eq. knw) ibfnw ibnd

enddo

ii (ibfsw .eq. O) then
nbndg2 nbndg2 + 1
ibndg2(,nbndg2) = ke
ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) = 0
ibndg2(4,nbndg2) = 5
ibndg2(5.,nbndg2) - 2

nbndg2 nbndg2 + 1
ibndg2(1,nbndg2) = kn
ibndg2(2,nbndg2) = 0
ibndg2(3,nbndg2) - 0
ibndg2(4,nbndg2) - 7
ibndg2(5,nbndg2) 11

else i (ibfse .eq. O) then
nbndg2 - nbndg2 + 1
ibndg2(1,nbndg2) = kn
ibndg2(2,nbndg2) 0
ibndg2(3,nbndg2) - 0
ibndg2(4,nbndg2) = 7
ibndg2(5,nbndg2) = 11

nbndg2 - nbndg2 + 1
ibndg2(1,nbndg2) - kw
ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) = 0
ibndg2(4,nbndg2) 9
ibndg2(5,nbndg2) - 11

else i (ibfne .eq. O) then
nbndg2 - nbndg2 + 1
ibndg2(1,nbndg2) kw
ibndg2(2,nbndg2) - 0
ibndg2(3.nbndg2) - 0
ibndg2(4,nbndg2) = 9
ibndg2(5,nbndg2) - 11

nbndg2 = nbndg2 + 1
ibndg2(1,nbndg2) ks
ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) = 0
ibndg2(4,nbndg2) 3
ibndg2(56,nbndg2) - 1i

else i (ibfnw .eq. O) then
nbndg2 nbndg2 + 1
ibndg2(1,nbndg2) = ks
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ibndg2(2,nbndg2) O0

ibndg2(3,nbndg2) - 0
ibndg2(4,nbndg2) - 3

ibndg2(5.nbndg2) 11i

nbndg2 - nbndg2 + I
ibndg2(1,nbndg2) - ke

ibndg2(2,nbndg2) - 0
ibndg2(3,nbndg2) - 0
ibndg2(4,nbndg2) 5
ibndg2(5,nbndg2) - 2

else

write(G,*) ' heyman error g2divu'

endif

endif

c NUMDH2 - NUMDH2 + 1

c NODEH2(NUMDH2) - KW

RETURN
END

G2DIVO

SUBROUTINE G2DIVO (LCELL, IWARN)

INCLUDE '.INC] PRECIS.INC /LIST'

INCLUDE '[.INC] PARMV2.INC /LIST'

INCLUDE '[.INC] G2COMN.INC /LIST'

INCLUDE '[.INC] HEXCOD.INC

INCLUDE '[.INC] IOCOMN.INC /LIST'

DIMENSION IBNODE(5)

LOGICAL IWRITE

C

C
C THIS SUBROUTINE DIVIDES CELL 'LCELL' INTO FOUR SMALLER CELLS

C AND PERFORMS ALL NECESSARY POINTER SYSTEM REALIGNMENTS

C
C
C SPECIAL EXPLANATION OF AUXILIARY CELL POINTERS
C

KAUXG2 (LCELL) HAS THE HEXIDECIMAL FORM:

'X X X X X X X '
8 7 6 5 4 3 2 1

WHERE:
X INDICATES THAT CELL IS A BOUNDARY CELL

1

X INDICATES THAT THE CELL WAS RECENTLY DIVIDED
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2 AND HENCE MUST NOT BE COLLAPSED

C

C X INDICATES THE BOUNDARY INTERPOLATION FUNCTION TYPE

C 3
C

C X INDICATES SPECIAL CELLS (E.G., FUEL INJECTION CELLS)

C 4

C

C X INDICATES THE SPATIAL LEVEL OF THE CELL ( <- MLVLG2)

C 5

C

C EXPLANATION OF HISTORY POINTER OF THE CELLS (BYTE 2)

C

C THE CELL WHICH IS DIVIDED CAN ONLY BE COLLAPSED AFTER THREE

C GENERATIONS LATER, NOTE THAT INCHIS=48=2^5+2'4 (I.E., THE

C SECOND BYTE IS SET EQUAL TO 3). AFTER EACH ADAPTATION CYCLE

C (I.E.. A CALL TO A2MTHO) THIS POINTER IS REDUCED BY ONE UNTIL

C IT BECOMES ZERO.

C

C EXPLANATION OF SPATIAL LEVEL POINTER OF THE CELLS (BYTE 5)

C
C K5LEVG : 6TH BYTE OF THE GIVEN CELL LCELL
C K5LEVN : 5TH BYTE OF THE NEW CELLS

C LEVELG : LEVEL OF THE GIVEN CELL LCELL

C LEVELN : LEVEL OF THE NEW CELLS (TO BE DIVIDED, LEVELG+1)
C

C

INCHIS - 48

MPOINT - 10

KVCORR - 2**16

NADCEL - 4

C

C OVERFLOW CHECK

C ------------

C CHECK FOR OVERFLOW IN NODE ARRAYS

C

IF(NNODG2+5 .GT. MNODG2) THEN

ZERI - MNODG2

ZER2 - NNODG2

CALL WARNIN (6.'G2DIVO'. 'MNODG2',ZER1. 'NNODG2',ZER2,JPRINT,

1 'NUMBER OF NODES EXCEEDS ITS LIMIT')
IWARN - 6
RETURN

ENDIF

C CHECK FOR OVERFLOW IN CELL LIMIT

IF (NCELG2+4 .GT. MCELG2) THEN
ZERI - MCELG2

ZER2 - NCELG2

CALL WARNIN (7.'G2DIVO' ,'MCELG2',ZER1. 'NCELG2'.ZER2.JPRINT,

1 'NUMBER OF CELLS EXCEEDS ITS LIMIT')

IWARN - 7

RETURN

845

C



ENDIF

C CHECK FOR OVERFLOW IN BOUNDARY CONDITION ARRAY

IF (NBNDG2+2 .GT. MBNDG2) THEN

ZER - MBNDG2
ZER2 - NBNDG2
CALL WARNIN (8. 'G2DIVO' .'MBNDG2'.ZER1, 'NBNDG2' ,ZER2,JPRINT,

1 'NUMBER OF BOUNDARY NODES EXCEEDS ITS LIMIT')
IWARN - 8

RETURN

ENDIF

C FIND THE LEVEL LEVELG OF THE GIVEN CELL

X - AUXG2(LCELL)
KSLEVG IAND(KX,KUOOOF)
LEVELG ISHFT(K5LEVG,-16)

C HAS CELL BEEN PREVIOUSLY DIVIDED

C THE FOLLOWING ERROR CONDITION IS NOT REALLY NEEDED

KC - ICELG2(1,LCELL)

IF (C .NE. O) THEN

ZER1 - LCELL

ZER2 - KC
CALL WARNIN (9,'G2DIVO','LCELL ',ZERI,' KC ',ZER2,JPRINT,

I 'THE CELL IS ALREADY DIVIDED ')

IWARN 9
RETURN

ENDIF

C

C POINTER SAVING

C --------------
C SAVE REST OF CELL POINTERS

[SW - ICELG2(2LCELL)
KS - ICELG2(3,LCELL)
KSE - ICELG2(4,LCELL)
KE - ICELG2(5,LCELL)
KNE - ICELG2(6.LCELL)
KN - ICELG2(7.LCELL)
KNW - ICELG2(8,LCELL)
KW - ICELG2(9,LCELL)
KSLEVN - X5LEVG + KVCORR
LEVELN - LEVELG + 

MAXLEV - MAX(NLVLG2., LEVELN)

IF (LEVELN .GT. MALVG2) THEN
ZERl - LEVELN

ZER2 - MALVG2
C CALL WARNIN (10,'G2DIVO','LEVELN ',ZERI,'MALVG2',ZER2,JPRINT,
C I 'NEW LEVEL INCREASES BEYOND THE GIVEN LIMIT')

IWARN - 10

846



RETURN

ENDIF

NEIGHBOUR DETERMINATION

FIND CELLS WHICH BOUND DIVIDED CELL

I------------I---------------I----------

I I I I

+LCNW LHNW + LHNE ILCNE +

+ I + I

I-.----------+-------+-------+-----+-----
I + * KNW KN KNEI

I +LVNW I LMNW LMNE LVNE
4+ . + +.KW LCELL KE* + +

I +LVSW I LMSW LMSE ILVSE

I + IKSW KS KSEI

+ I M:CENTER (MIDDLE)
[+ I C:CORNER (ADJACENT)
+ I H:HORIZONTAL (ADJAC)
+ I V:VERTICAL (ADJACENT)
+ I

I-4----- 4.--------------------------------I
I + I + I
I +LCSW I LHSW + LHSE

4.4.4.4.4.4.+4.4.4. +

I

ILCSE +

I

I------------I---------------I ---------- I

LVSW

LCSW

LHSW

LHSE

LCSE

LVSE

LVNE

LCNE

LHNE

LHNW

LCNW

LVNW

= NEIBG2(4,KSW)

- NEIBG2(1,KSW)

- NEIBG2(2,KSW)

- NEIBG2(1,KSE)

- NEIBG2(2,KSE)

- NEIBG2(3,KSE)

- NEIBG2(2,KNE)

- NEIBG2(3,KNE)

- NEIBG2(4,KNE)

- NEIBG2(3,KNW)

- NEIBG2(4.KNW)

- NEIBG2(1,KNW)

LEVEL DIFFERENTIAL CHECK
________________________

C
C IF THE COMPONENT CELLS ARE JUST INSIDE EMBEDDED REGION THEN

C THEY CAN NOT BE DIVIDED; THIS WILL BE SO IF THE LEVELS OF
C THE NEIGHBOURHOOD CELLS DIFFER BY MORE THAN ONE

C FIRST DO THE CORNER CELLS

IF (LCSW .NE. O) THEN

KSLCOR - IAND(KAUXG2(LCSW), KUOOOF)
LEVELC - ISHFT(K5LCOR,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN
ENDIF

C

IF (LCSE .NE. O) THEN
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KSLCOR - IAND(KAUXG2(LCSE),KUOOOF)

LEVELC - ISHFT(K5LCOR,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF

C
IF (LCNE .NE. O) THEN

KLCOR - IAND(KAUXG2(LCNE) ,KUOOOF)

LEVELC - ISHFT(KSLCOR,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF
C

IF (LCNW .NE. O) THEN

KS5LCOR - IAND(KAUXG2(LCNW) ,KUOOOF)

LEVELC ISHFT(K5LCOR,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF

C
C NOW DO EDGE CELLS

C

IF (LHSW .NE. O) THEN

K5LEDG - IAND(KAUXG2(LHSW),KUOOOF)

LEVELC ISHFT(KBLEDG,-16)
IDFL = LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF

C

IF (LVSE .NE. O) THEN

K5LEDG - IAND(KAUXG2(LVSE),KUOOOF)

LEVELC - ISHFT(KLEDG,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF

C
IF (LHNE .NE. O) THEN

KLEDG - IAND(KAUXG2(LHNE) ,KUOOOF)

LEVELC ISHFT(KLEDG,-16)
IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN

ENDIF

C

IF (LVNW .NE. O) THEN

KSLEDG - IAND(KAUXG2(LVNW),KUOOOF)

LEVELC - ISHFT(K5LEDG,-16)

IDFL - LEVELC-LEVELG

IF (IDFL .LT. 0 .OR. IDFL .GT. 1) RETURN
ENDIF

C
C -
C NODE ASSIGNMENTS CHECK

C ---- _____________
C CHECK IF THE CELLS AGREE ON SOME OF THE NODE ASSIGNMENTS

C THIS WILL BE REMOVED LATTER; ONCE THE CODE IS TESTED
C FIRST CHECK CORNER CELLS
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IF (LCSW .NE. O) THEN

IF tICELG2(6.LCSW) .NE. KSW) THEN
ZERI - ICELG2(6.LCSW)
ZER2 - KSW
CALL ERRORM (12,'G2DIVO' ,'KSWCAL',ZERl,KSW ',ZER2,JPRINT,

1 'ERROR IN NODE ASSIGNMENT')

ENDIF

ENDIF
C

IF (LCSE .NE. O) THEN

IF (ICELG2(8.LCSE) .NE. KSE) THEN

ZER1 - ICELG2(8,LCSE)

ZER2 - KSE

CALL ERRORM (12,'G2DIVO' ,'KSECAL',ZERl,'KSE ',ZER2,JPRINT,

1 'ERROR IN NODE ASSIGNMENT')

ENDIF

ENDIF
C

IF (LCNE .NE. O) THEN

IF (ICELG2(2,LCNE) .NE. KNE) THEN

ZERA - ICELG2(2.LCNE)

ZER2 - KNE

CALL ERRORM (12,'G2DIVO' ,'KNECAL',ZER1,'KNE

1 'ERROR IN NODE ASSIGNMENT')

ENDIF

ENDIF

IF (LCNW .NE. O) THEN

IF (ICELG2(4,LCNW) .NE. KNW) THEN

ZER - ICELG2(4,LCNW)
ZER2 - KNW

CALL ERRORM (12,'G2DIVO','KNWCAL',ZERl,'KNW
'ERROR IN NODE ASSIGNMENT')

ENDIF

ENDIF

',ZER2,JPRINT,

',ZER2,JPRINT,

NOW CHECK HORIZONTAL AND VERTICAL ADJACENT CELLS

IF (KS .NE. O) THEN
IF (ICELG2(6,LHSW) .NE. KS) THEN

ZER1 - ICELG2(6.LHSW)
ZER2 - KS

CALL ERRORM (12,'G2DIVO','KS-CAL',ZERI,'KS

'ERROR IN NODE ASSIGNMENT')
ENDIF

IF (ICELG2(8,LHSE) .NE. KS) THEN

ZER1 a ICELG2(S,LHSE)
ZER2 - KS

CALL ERRORN (12,'G2DIVO','KS-CAL',ZERl.'KS
'ERROR IN NODE ASSIGNMENT')

ENDIF

ENDIF

',ZER2,JPRINT,

',ZER2,JPRINT,

IF (KE .NE. O) THEN

IF (ICELG2(8,LVSE) .NE. KE) THEN

ZER1 - ICELG2(8,LVSE)
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ZER2 - KE

CALL ERRORM (12,'G2DIVO' ,'KE-CAL',ZER1,'KE

1 'ERROR IN NODE ASSIGNMENT')

ENDIF

IF (ICELG2(2,LVNE) .NE. KE) THEN

ZERI - ICELG2(2.LVNE)

ZER2 - KE

CALL ERRORM (12,'G2DIVO','KE-CAL',ZER,'KRE

'ERROR IN NODE ASSIGNMENT')
ENDIF

ENDIF

IF (KN .NE. O) THEN

IF (ICELG2(2.LHNE) .NE. KN) THEN

ZER1 - ICELG2(a,LHNE)

ZER2 - KN

CALL ERRORM (12,'G2DIVO', 'KN-CAL',ZER1,'KN

'ERROR IN NODE ASSIGNMENT')
ENDIF

IF (ICELG2(4LHNW) .NE. KN) THEN

ZER1 - ICELG2(4,LHNW)
ZER2 KN

CALL ERRORM (12,'G2DIVO'.'KN-CAL',ZER1,'KN

'ERROR IN NODE ASSIGNMENT')
ENDIF

ENDIF

IF (KW .NE. O) THEN

IF (ICELG2(4,LVNW) .NE. KW) THEN

ZERI - ICELG2(4.LVNW)
ZER2 - KW

CALL ERRORM (12,'G2DIVO'. 'KW-CAL',ZER1. 'KW

'ERROR IN NODE ASSIGNMENT')
ENDIF

IF (ICELG2(6,LVSW) .NE. KW) THEN

ZER1 - ICELG2(6,LVSW)
ZER2 - KW

CALL ERRORM (12,'G2DIVO','KW-CAL',ZER1,'KW

'ERROR IN NODE ASSIGNMENT')
ENDIF

ENDIF

',ZER2,JPRINT,

',ZER2,JPRINT,

',ZER2,JPRINT,

',ZER2,JPRINT,

',ZER2,JPRINT,

',ZER2,JPRINT,

DEBUG PRINT

PRINT OUT PARAMETERS BEFORE DIVISION

IWRITE - IDBGG2 .EQ. 2 .OR. IDBGG2 .GT. 1000

IF (IWRITE) THEN
WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

GENERAL INFORMATION
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WRITE(JDEBUG,1400) NNODG2, NCELG2, NBNDG2, LEVELG

POINTERS OF MAIN CELL LCELL

WRITE(JDEBUG,1500) LCELL, KC , KSW, KS , KSE, KE,
1 KNE. KN KNW, KW , KX

WRITE(JDEBUG,1600) (ICELG2(I,LCELL), I 1, 10)

NEIGHBOUR CELLS AND THEIR POINTERS

WRITE(JDEBUG,1700) LVSW, LCSW, LHSW, LHSE, LCSE, LVSE,

1 LVNE, LCNE, LHNE, LHNW, LCNW, LVNW

C

IF (LVSW .NE. O) THEN
WRITE(JDEBUG,1800) (ICELG2(I,LVSW). I - 1. 10)

ENDIF

IF (LCSW .NE. O) THEN

WRITE(JDEBUG, 1900)

ENDIF

IF (LHSW .NE. O) THEN

WRITE(JDEBUG, 2000)

ENDIF

IF (LHSE .NE. O) THEN

WRITE(JDEBUG . 2100)

ENDIF

IF (LCSE .NE. O) THEN

WRITE(JDEBUG, 2200)

ENDIF

IF (LVSE .NE. O) THEN

WRITE(JDEBUG, 2300)

ENDIF

IF (LVNE .NE. O) THEN

WRITE(JDEBUG, 2400)

ENDIF

IF (LCNE .NE. O) THEN

WRITE(JDEBUG. 2500)
ENDIF

IF (LHNE .NE. O) THEN

WRITE(JDEBUG ,2600)

ENDIF

IF (LHNW .NE. O) THEN

WRITE(JDEBUG,2700)

ENDIF

IF (LCNW .NE. O) THEN

WRITE(JDEBUG.2800)
ENDIF

IF (LVNW .NE. O) THEN
WRITE(JDEBUG.2900)

ENDIF

(ICELG2(I,LCSW), I - 1, 10)

(ICELG2(I,LHSW), I = 1. 10)

(ICELG2(I,LHSE), I = 1, 10)

(ICELG2(I,LCSE), I = 1, 10)

(ICELG2(I,LVSE), I 1 10)

(ICELG2(I,LVNE), I 1. 10)

(ICELG2(I.LCNE) I = 1. 10)

(ICELG2(I,LHNE), I = 1, 10)

(ICELG2(I,LHNW), I = 1, 10)

(ICELG2(I,LCNW). I = 1. 10)

(ICELG2(I,LVNW), I = 1, 10)

NEIGHBOURING CELLS OF ALL NODES OF LCELL

WRITE(JDEBUG,3000) (NEIBG2(I,KSW) ,I1,4)
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WRITE(JDEBUG,3100) (N]

WRITE(JDEBUG,3200) (N]

WRITE(JDEBUG,3300) (N]

IF (KS .NE. O) THEN

WRITE(JDEBUG, 3400)

ENDIF

IF (KE .NE. O) THEN

WRITE(JDEBUG,3500)

ENDIF

IF (KN .NE. O) THEN

WRITE(JDEBUG,3600)

ENDIF

IF (KW .NE. O) THEN

WRITE(JDEBUG,3700)

ENDIF

ENDIF

EIBG2(I,KSE),I=1,4)

EIBG2(I,KNE),I=1,4)

EIBG2(I,KNW),I=1,4)

(NEIBG2(I,KS),I=1,4)

(NEIBG2(I,KE),I=1,4)

(NEIBG2(I,KN),I=1,4)

(NEIBG2(I,KW),I=1,4)

! IWRITE

DIVISION PROCESS

ALL ERRORS (EXCEPT BOUNDARY NODES) HAVE BEEN

INITIATE THE PROCESS OF CELL DIVISION

UPDATE THE OVERALL MAXIMUM LEVEL POINTER

NLVLG2 = MAXLEV

C UPDATE THE NUMBER OF CELLS AT THE NEW LEVEL

ILVLG2(3,LEVELN) = ILVLG2(3,LEVELN) + NADCEL

C CREATE NODE AT CENTER OF CELL

NNODG2 = NNODG2 + 1

KC = NNODG2

C COMPUTE THE GEOMETRIC QUANTITIES AT THE NEW CENTER NODE

GEOMG2(1,KC) - 0.26*( GEOMG2(1,KSW)

1 GEOMG2(1,KNE)

GEOMG2(2.KC) - 0.25*( GEOMG2(2,KSW)

I GEOMG2(2,KNE)

+ GEOMG2(1,RKSE) +
+ GEOMG2(1,KNW) )
+ GEOMG2(2,KSE) +
+ GEOMG2(2,KNW) )

C LINEAR INTERPOLATION FOR DEPENDENT VARIABLES

DO 10 J 1, NEQNFL

DPENG2(J,KC) 0.25*( DPENG2(J,KSW) + DPENG2(J,KSE) +

DPENG2(J,KNE) + DPENG2(J,KNW) )

10 CONTINUE

PRESG2(KC) 0.25*( PRESG2(KSW) +

1 PRESG2(KNE) +

TEMPG2(KC) 0.25*( TEMPG2(KSW) +

1 TEMPG2(KNE) +

PRESG2(KSE) +

PRESG2(KNW) )
TEMPG2(KSE) +

TEMPG2(KNW) )

C DOES SOUTHERN NODE ALREADY EXIST; IF NOT CREATE IT
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IF (KS .EQ. O) THEN

NNODG2 - NNODG2 + 1
KS- - NNODG2

GEOMG2(1,KS) - 0.50*( GEOMG2(1,KSW) + GEOMG2(1,KSE) )

GEOMG2(2,KS) - 0.50*( GEOMG2(2,KSW) + GEOMG2(2,KSE) )

IF (LHSW .NE. 0 .AND. LHSE .NE. O) THEN

NEIBG2(1,KS) - LHSW

NEIBG2(2,KS) = LHSE

ELSE

NEIBG2(1,KS) 0

NEIBG2(2,KS) 0

ENDIF

DO 20 J - 1, NEQNFL

DPENG2(J,KS) - 0.50*( DPENG2(J,KSW) + DPENG2C(J,KSE) )

20 CONTINUE

PRESG2(KS) - 0.50*( PRESG2(KSW) + PRESG2(KSE) )

TEMPG2(KS) - 0.50*( TEMPG2(KSW) + TEMPG2(KSE) )
ENDIF

C DOES EASTERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KE .EQ. O) THEN

NNODG2 - NNODG2 + 
KE - NNODG2

GEOMG2(1,KE) - 0.60*( GEOMG2(1,KNE) + GEOMG2(1,KSE) )

GEOMG2(2,KE) 0.50*( GEOMG2(2.KNE) + GEOMG2(2,KSE) )

IF (LVSE .NE. 0 .AND. LVNE .NE. O) THEN

NEIBG2(2.KE) - LVSE

NEIBG2(3,KE) - LVNE

ELSE

NEIBG2(2,KE) 0

NEIBG2(3,KE) 0

ENDIF

DO 30 J - 1, NEQNFL

DPENG2(J,KE) - 0.50*( DPENG2(J,KNE) + DPENG2(J,KSE) )

30 CONTINUE

PRESG2(KE) - 0.50*( PRESG2(KNE) + PRESG2(KSE) )

TEMPG2(KE) - O.50*( TEMPG2(KNE) + TEMPG2(KSE) )
ENDIF

C DOES NORTHERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KN .EQ. O) THEN

NNODG2 - NNODG2 + 1
KN - NNODG2

GEOMG2(1,KN) - 0.50*( GEOMG2(1,KNE) + GEOMG2(1,KNW) )

GEOMG2(2,KN) - 0.50*( GEOMG2(2,KNE) + GEOMG2(2,KNW) )

IF (LHNW .NE. 0 .AND. LHNE .NE. O) THEN

NEIBG2(3,KN) - LHNE

NEIBG2(4,KN) - LHNW

ELSE

NEIBG2(3,KN) 0

NEIBG2(4,KN) - 0

ENDIF

DO 40 J - 1, NEqNFL

DPENG2(J,KN) - 0.50*( DPENG2 (J,KNE) + DPENG2(J,KNW) )

40 CONTINUE
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PRESG2(KN) - 0.50*( PRESG2(KNE) + PRESG2(KNW) )
TEMPG2(KN) 0.50*( TEMPG2(KNE) + TEMPG2(KNW) )

ENDIf

C DOES WESTERN NODE ALREADY EXIST; IF NOT CREATE IT

IF (KW .EQ. O) THEN
NNODG2 - NNODG2 + 
KW - NNODG2

GEOMG2(1,KW) - 0.50*( GEO
GEOMG2(2,KW) - 0.60*( GEO

IF (LVSW .NE. 0 .AND. LVN
NEIBG2(1,KW) LVSW

NEIBG2(4,KW) - LVNW

ELSE

NEIBG2(1,KW) = 0
NEIBG2(4,KW) = 0

ENDIF
DO 50 J = 1, NEQNFL

MG2(1,KNW) + GEOMG2(1,KSW) )
MG2(2,KNW) + GEOMG2(2,KSW) )

W .NE. O) THEN

DPENG2(J,KW) - 0.50*( DPENG2(J,KNW) + DPENG2(J,KSW) )
50 CONTINUE

PRESG2(KW) - 0.50*( PRESG2(KNW) + PRESG2(KSW) )
TEMPG2(KW) - 0.60*( TEMPG2(KNW) + TEMPG2(KSW) )

ENDIF

C UPDATE THE DIVIDED CELL -- NEW NODE

ICELG2(1,LCELL) - KC

ICELG2(3,LCELL) = KS
ICELG2(5,LCELL) - KE
ICELG2(7,LCELL) = KN
ICELG2(9,LCELL) = KW

C CREATE THE NEW CELLS

LMSW

LMSE

LMNE

LMNW

NCELG2

= NCELG2

= LMSW
- LMSE

= LMNE

= NCELG2

+ 1
+1
+ 1
+ 1

+ NADCEL

ICELG2( 1,LMSW)

ICELG2( 2,LMSW)

ICELG2( 3,LMSW)

ICELG2( 4,LMSW)
ICELG2( 5,LMSW)
ICELG2( 6,LMSW)

ICELG2( 7,LMSW)

ICELG2( 8,LMSW)

ICELG2 ( 9,L4sW)
ICELG2(10,LMSW)
KAUXG2( LMSW)

ICELG2(

ICELG2(

ICELG2(

ICELG2(

1, LMSE)
2, LMSE)
3.LMSE)

4, LMSE)

=0
= KSW
-0
- KS

=O
- KC
=0
= KW
-0
- LCELL
- K5LEVN + INCHIS

=0
= KS

-0
= KSE
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ICELG2( S.LMSE)
ICELG2( 6,LMSE)

ICELg2c( 7LMSE)
ICELG2( 8.LMSE)
ICELG2( 9,LMSE)
ICELG2(10.LMSE)
KAUXG2 ( LMSE)

ICELG2( ILMNE)
ICELG2( 2.LMNE)
ICELG2( S3LMNE)
ICELG2( 4.LMNE)
ICELG2( 5,LMNE)
ICELG2( G.LMNE)
ICELG2( 7,LMNE)
ICELG2 ( 8.LMNE)
ICELG2( 9.LMNE)
ICELG2 (10, LMNE)
KAUXG2( LMNE)

ICELG2( I,.LMNW)
ICELG2( 2.LMNW)
ICELG2( 3,LMNW)
ICELG2( 4.LMNW)
ICELG2( 5.LMNW)
ICELG2( 6.LMNW)
ICELG2( 7,LMNW)
ICELG2( SLMNW)
ICELG2( 9.LMNW)
ICELG2(1O,LMNW)
KAUXG2( LMNW)

-0
- KE
=0
= KC
-0
- LCELL
- K5LEVN + INCHIS

-0
- KC
=,O

= KE
=0
= KNE
-0

- KN
=0
= LCELL
- KLEVN + INCHIS

=0
= KW

=0
= KC
=0
= KN
=0
= KNW

=0
- LCELL
= K5LEVN + INCHIS

C SET EDGE NODE POINTERS OF ALL NEIGHBOURING CELLS

IF (LHSW.NE.O

IF (LVSE.NE.
IF (LHNE.NE.

IF (LVNW.NE.O

.AND. LHSW.Eq.LHSE)

.AND. LVSE.Eq.LVNE)

.AND. LHNE.EQ.LHNW)

.AND. LVNW.EQ.LVSW)

ICELG2( 7,LHSW) KS

ICELG2( 9.LVSE) KE
ICELG2( 3,LHNE) KN

ICELG2( 5,LVNW) KW

C UPDATE NEIGHBOUR-NODE-ARRAY

NEIBG2(1,KC ) - LMSW
NEIBG2(2,KC) = LMSE

NEIBG2(3KC) - LMNE
NEIBG2(4oKC ) - LMNW

NEIBG2(,KSW) - LMSW
NEIBG2(3,KS) - LMSE

NEIBG2(4,S ) - LMSW
NEIBG2(4,KSE) - LMSE

NEIBG2(I,KE ) - LMSE

NEIBG2(4,KE) - LMNE
NEIBG2(1,NE) - LMNE
NEIBG2(1,RN) - LMNW

NEIBG2(2RN ) - LMNE
NEIBG2(2,KNW) - LMNW

NEIBG2(2,KW) - LMSW
NEIBG2(3,KW ) LMNW
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BOUNDARY NODE POINTERS

SKIP NEXT SECTION IF LCELL IS NOT A BOUNDARY CELL

IGOTO - IAND(KX,KLOOOF)
IF(IGOTO .EQ. O) GO TO 290

SCAN THROUGH ALL BOUNDARY CONDITION POINTERS, LOOKING FOR POINTERS
TO THE DIVIDED CELL

IONE - 0
ICOR - 0
ITWO - 0

60 IBND - 1, NBNDG2

IF (IBNDG2(3,IBND)

IF (IBNDG2(2,IBND)

IBNDG2(3.IBND)

IF (IBNDG2(2.IBND)

IBNDG2(3,IBND)
CONTINUE

.EQ.

.EQ.

.EQ.

.EQ.

.NE.

LCELL

LCELL

0
LCELL

0

) IONE IBND
.AND.

) ICOR - IBND

.AND.

) ITWO = IBND

ERROR IF LEFT AND RIGHT POINTERS ARE NOT FOUND

IF (IONE .EQ. 0 .OR. ITWO .EQ. O) GO TO 280

PRINT OUT PARAMETERS FOR BOUNDARY NODES

IF (IWRITE) THEN

WRITE(JDEBUG,3800) IONE, ICOR, ITWO
WRITE(JDEBUG,3900) (IBNDG2(I,IONE),I=15,6)

WRITE(JDEBUG,4000) (IBNDG2(I,ITWO),I=1,6)

IF (ICOR .NE. O) THEN

WRITE(JDEBUG,4100) (IBNDG2(I,ICOR),I1.,5)
ENDIF

ENDIF ! IWRITE

260 250 240
+------- +-----.+
113D 12C 14EI

270 +9 KAUXG2 6+ 230
II1B 3 71
+-------+-------+

200 210 220 GO TO STATEMENTS

BRANCH OUT DEPENDING ON BOUNDARY TYPE

GO TO (280,280,280,210,280,280,230,220,

1 280,270,280,200,250,260,240,280), (IGOTO + 1)
GO TO 280

C DIVIDED CELL WAS AT SOUTHWESTERN CORNER
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200 IBNDG2(2, ICOR)

IBNDG2(2,ITWO)

IBNDG2(3.IONE)

- LMSW

= LMSE

- LMNW

NBNDG2 - NBNDG2 + 1
IBNDG2(1,NBNDG2) - KS
IBNDG2(2.NBNDG2) - LMSW

IBNDG2(3,.NBNDG2) - LMSE

IBNDG2(4,NBNDG2) - 3
IBNDG2(6.NBNDG2) - IBNDG2(6.ITWO)

NBCPG2(1.2) - NBNDG2

NBNDG2 - NBNDG2 + 1

IBNDG2(1.NBNDG2) - KW
IBNDG2(2.NBNDG2) - LMNW
IBNDG2(3,NBNDG2) - LMSW

IBNDG2(4,NBNDG2) = 9
IBNDG2(6,NBNDG2) - IBNDG2(5,IONE)
NBCPG2(1,1) - NBNDG2

KAUXG2 (LMNW) - IOR(KAUXG2(LMNW),KL0009)

KAUXG2(LMSW) - IOR(KAUXG2(LMSW),KLOOOB)

KAUXG2(LMSE) - IOR(KAUXG2(LMSE) ,KL0003)

GO TO 290

C DIVIDED CELL WAS ALONG SOUTHERN EDGE

210 IBNDG2(3.IONE) - LMSW

IBNDG2(2,ITWO) - LMSE

NBNDG2 - NBNDG2 + 1

IBNDG2(1,NBNDG2) KS
IBNDG2(2.NBNDG2) = LMSW

IBNDG2(3,NBNDG2) - LMSE

IBNDG2(4,NBNDG2) 3
IF (ITWO .NE. O) THEN

IBNDG2(5.NBNDG2) - IBNDG2(6,ITWO)
ELSE

IBNDG2(6,NBNDG2) IBNDG2(6,IONE)

ENDIF

KAUXG2 (LMSW)
KAUXG2(LMSE)

C ONLY SOUTHERN

- IOR(KAUXG2(LMSW) ,KL03)
- IOR(KAUXG2(LMSE),KLOO03)

EDGE WILL BE CHECKED FOR SPECIAL INTERPOLATION

K3BOUN - IAND (KX,KLOFOO)

IF (K3BOUN .NE. O) THEN
KAUXG2(LMSW) - IOR (KAUXG2(LMSW),K3BOUN)

KAUXG2(LMSE) - IOR (KAUXG2(LMSE),K3BOUN)
IBNODE(1) - KSE
IBNODE(2) - KSW

IBNODE(3) - ICELG2(4,LVSE)

IBNODE(4) - ICELG2(2.LVSW)

IBNODE(6) - KS
INTERF - ISHFT (K3BOUN,-8)
CALL G2BPIN (IBNODE,INTERF)
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ENDIF

GO TO 290

C DIVIDED CELL WAS AT SOUTHEASTERN CORNER

220 IBNDG2(3,IONE)

IBNDG2(2,ICOR)

IBNDG2(2,ITWO)

= LMSW

= LMSE
= LMNE

NBNDG2 = N]

IBNDG2(1,NBNDG2) = K!
IBNDG2(2,NBNDG2) = LI

IBNDG2(3,NBNDG2) = LI

IBNDG2(4,NBNDG2) = 3

IBNDG2(5,NBNDG2) = II
NBCPG2(2,1) = N]

NBNDG2 = N]

IBNDG2(1,NBNDG2) = KI

IBNDG2(2,NBNDG2) = LI
IBNDG2(3,NBNDG2) = L
IBNDG2(4,NBNDG2) - 5
IBNDG2(6,NBNDG2) - I]

NBCPG2(2,2) = N]

KAUXG2(LMSW) = II

KAUXG2(LMSE) ' II

KAUXG2(LMNE) - II

3NDG2 +

,S

MSW

MSE

1

3NDG2(5,IONE)

3NDG2

3NDG2 + 1

E
MSE

MNE

BNDG2(5, ITWO)
BNDG2

OR(KAUXG2(LMSW),KLOO03)

OR(KAUXG2(LMSE),KL0007)

OR(KAUXG2(LMNE).KLOO06)

GO TO 290

C DIVIDED CELL WAS ALONG EASTERN EDGE

230 IBNDG2(3,IONE) = LMSE

IBNDG2(2,ITWO) = LMNE

NBNDG2 = NI

IBNDG2(1,NBNDG2) = KI

IBNDG2(2,NBNDG2) - LI

IBNDG2(3,NBNDG2) - L

IBNDG2(4,NBNDG2) - 5
IBNDG2(5,NBNDG2) - I]

KAUXG2(LMSE) - Il
KAUXG2(LMNE) - II

3NDG2 + 1

ZE
ASE

ANE

BNDG2(5,ITWO)

OR(KAUXG2(LMSE),KLOOO6)

OR(KAUXG2(LMNE),KLOO06)

GO TO 290

C DIVIDED CELL WAS AT NORTHEASTERN CORNER

240 IBNDG2(3,IONE) = LMSE
IBNDG2(2,ICOR) = LMNE

IBNDG2(2,ITWO) = LMNW

NBNDG2 = NBNDG2 + 1

IBNDG2(1,NBNDG2) = KE
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IBNDG2(2,NBNDG2)
IBNDq2(3,NBNDG2)

IBNDG2(4 ,NBNDG2)

IBNDG2(, NBNDG2)

NBCPG2(3,1)

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)
IBNDG2(3,NBNDG2)

IBNDG2(4.NBNDG2)

IBNDG2 (,NBNDG2)
NBCPG2(3,2)

KAUXG2(LMSE)

KAUXG2(LMNE)

KAUXG2 (LMNW)

- LMSE

- LMNE
-5 6
- IBNDG2(5,IONE)

- NBNDG2

- NBNDG2 + 1

- KN

- LMNE
- LMNW

- 7

- IBNDG2(5,ITWO)
- NBNDG2

- IOR(KAUXG2(LMSE),KLOO06)

= IOR(KAUXG2(LMNE).KLOOOE)
- IOR(KAUXG2(LMNW),KLOOOC)

GO TO 290

C DIVIDED CELL WAS ALONG NORTHERN EDGE

250 IBNDG2(3,IONE)

IBNDG2(2,ITWO)

- LMNE
- LMNW

NBNDG2 - NBNDG2+1

IBNDG2(1,NBNDG2) - KN

IBNDG2(2,NBNDG2) - LMNE

IBNDG2(3,NBNDG2) - LMNW
IBNDG2(4,NBNDG2) - 7
IF (ITWO .NE. O) THEN

IBNDG2(6,NBNDG2) - IBNDG2(5,ITWO)

ELSE

IBNDG2(5,NBNDG2) - IBNDG2(5,IONE)

ENDIF

KAUXG2 (LMNE)
KAUXG2(LMNW)

= IOR(KAUXG2(LMNE),KLOOOC)

- IOR(KAUXG2(LMNW),KLOOOC)

C ONLY NORTHERN EDGE WILL BE CHECKED FOR SPECIAL INTERPOLATION

K3BOUN IAND (KX,KLOFOO)

IF (KSBOUN .NE. O) THEN

KAUXG2(LMNE) - IOR (KAUXG2(LMNE),K3BOUN)

RAUXG2(LMNW) - IOR (KAUXG2(LMNW),K3BOUN)
IBNODE(1) - KNE

IBNODE(2) - KNW

IBNODE(S) - ICELG2(6,LVNE)

IBNODE(4) - ICELG2(8.LVNW)

IBNODE(6) - KN

INTERF - ISHFT (K3BOUN.-8)
CALL G2BPIN (IBNODE,INTERF)

ENDIF

GO TO 290

C DIVIDED CELL WAS AT NORTHWESTERN CORNER
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260 IBNDG2(3.IONE)

IBNDG2(2,ICOR)

IBNDG2(2,ITWO)

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2, NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(6,NBNDG2)

NBCPG2(4,1)

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

NBCPG2(4,2)

KAUXG2(LMNE)

KAUXG2(LMNW)

KAUXG2(LMSW)

- NBNDG2 + 1

- KN

- LMNE

= LMNW
=7
- IBNDG2(5,IONE)

= NBNDG2

- NBNDG2 + 1

= KW

= LMNW

= LMSW

=9
= IBNDG2(5,InO)
= NBNDG2

= IOR(KAUXG2(LMNE),KLOOOC)

= IOR(KAUXG2(LMNW),KLOOOD)

= IOR(KAUXG2(LMSW),KLOOO9)

GO TO 290

C DIVIDED CELL WAS AT WESTERN EDGE

270 IBNDG2(3,IONE) = LMNW

IBNDG2(2,ITWO) = LMSW

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3.NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(6,NBNDG2)

KAUXG2(LMNW)

KAUXG2(LMSW)

= NBNDG2 + 1
- KW
= LMNW

- LMSW
.-9
- IBNDG2(5,ITWO)

= IOR(KAUXG2(LMNW),KLOO09)

- IOR(KAUXG2(LMSW),KLOO09)

GO TO 290

C ERROR IN BOUNDARY CELL POINTERS

280 ZER1 = LCELL

ZER2 - KX
CALL ERRORM (11,'G2DIVO','LCELL ',ZER1,'KX

1 'ERROR IN BOUNDARY NODE CALCULATION')

290 CONTINUE

',ZER2,JPRINT,

C COMPUTE THE METRICS ETC. FOR THE NEWLY CREATED CELLS

CALL M2AREA (LMSW)
CALL M2AREA (LMSE)
CALL M2AREA (LMNE)
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CALL M2AREA (LMNW)

CHECK IF THE CELL HAS FUEL INJECTED TO IT

IF (IAND(KX,KLl000) .EQ. O) RETURN

ONLY THE CELLS
THE RIGHT HAND

KAUXG2 (LMSW)
KAUXG2 (LMNW)
NUMDH2
NODEH2(NUMDH2)

WHICH ARE VERTICALLY ALLIGNED AND WHICH ARE ON

SIDE OF THE PLANE OF INJECTION ARE MARKED

- IOR(KAUXG2(LMSW),KL1000)

- IOR(KAUXG2(LMNW),KLI000)
- NUMDH2 + 1
- KW

DEBUG PRINT
___________

PRINT OUT PARAMETERS AFTER DIVISION

IF (IWRITE) THEN

WRITE(JDEBUG,4200)

GENERAL INFORMATION

WRITE(JDEBUG,1400) NNODG2, NCELG2, NBNDG2, LEVELN

POINTERS OF MAIN CELL LCELL

WRITE(JDEBUG.1500) LCELL, KC , KSW, KS , KSE, KE,
KNE, KN , KNW, KW , KX

WRITE(JDEBUG.1600) (ICELG2(I.LCELL) I - 1. 10)

NEIGHBOUR CELLS AND THEIR POINTERS

WRITE(JDEBUG,1700) LVSW. LCSW, LHSW, LHSE, LCSE, LVSE,

LVNE, LCNE, LHNE, LHNW, LCNW, LVNW

IF (LVSW .NE. 0) THEN

WRITE(JDEBUG.1800) (ICELG2(I.LVSW), I 1, 10)

ENDIF

IF (LCSW .NE. O) THEN

WRITE(JDEBUG, 1900)
ENDIF

IF (LHSW .NE. O) THEN
WRITE(JDEBUG,2000)

ENDIF

IF (LHSE .NE. O) THEN
WRITE(JDEBUG,2100)

ENDIF

IF (LCSE .NE. O) THEN
WRITE(JDEBUG,2200)

ENDIF

IF (LVSE .NE. O) THEN

WRITE(JDEBUG,2300)
ENDIF

(ICELG2(I,LCSW), I = 1, 10)

(ICELG2(I,LHSW), I 1 10)

(ICELG2(I,LHSE), I = 1, 10)

(ICELG2(I,LCSE). I = 1, 10)

(ICELG2(I,LVSE), I = 1 10)
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IF (LVNE .NE. O) THEN

WRITE(JDEBUG, 2400)

ENDIF

IF (LCNE .NE. O) THEN

WRITE(JDEBUG, 2500)

ENDIF

IF (LHNE .NE. O) THEN

WRITE(JDEBUG, 2600)
ENDIF

IF (LHNW .NE. O) THEN
WRITE(JDEBUG. 2700)

ENDIF

IF (LCNW .NE. O) THEN

WRITE(JDEBUG, 2800)

ENDIF

IF (LVNW .NE. O) THEN

WRITE(JDEBUG, 2900)

ENDIF

(ICELG2(I.LVNE). I , 10)

(ICELG2(I,LCNE), I =1, 10)

(ICELG2(I,LHNE). I 1 10)

(ICELG2(I.LHNW), I - 1. 10)

(ICELG2(I,LCNW), I = 1. 10)

(ICELG2(ILVNW), I 1, 10)

NEW CREATED CELLS

WRITE(JDEBUG,4300) LMSW, LMSE, LMNE, LMNW

WRITE(JDEBUG, 4400)

WRITE (JDEBUG,4600)

WRITE(JDEBUG.4600)

WRITE(JDEBUG, 4700)

(ICELG2(I,LMSW).I=,.10)KAUXG2(LMSW)

(ICELG2(I,LMSE),I=l,10),KAUXG2(LMSE)

(ICELG2(ILMNE),I=1,I10)KAUXG2(LMNE)

(ICELG2(I,LMNW), I-1.10),KAUXG2(LMNW)

NEIGHBOURING CELLS OF ALL NODES OF LCELL

WRITE(JDEBUG, 3000)

WRITE(JDEBUG, 3100)

WRITE(JDEBUG, 3200)

WRITE(JDEBUG, 3300)

WRITE(JDEBUG,3400)

WRITE(JDEBUG,3600)

WRITE(JDEBUG, 3600)

WRITE(JDEBUG,3700)

WRITE(JDEBUG 4800)

(NEIBG2(I,KSW),I=1,4)

(NEIBG2(I,KSE).I=1,4)

(NEIBG2(I,KNE),I=1,4)

(NEIBG2(I,KNW),I-1,4)

(NEIBG2(I.KS ),I=1,4)

(NEIBG2(I,KE ),I-1,4)

(NEIBG2(I,KN ),I=1,4)

(NEIBG2(I,KW ),I=1,4)

(NEIBG2(I,KC ),I=1,4)

BOUNDARY NODES

IF (IGOTO .NE. O) THEN

WRITE(JDEBUG,3800) IONE, ICOR, ITWO
WRITE(JDEBUG,3900) (IBNDG2(I,IONE),I-1,5)

WRITE(JDEBUG,4000) (IBNDG2(I.ITWO) ,I-,6)

IF (ICOR .NE. O) THEN

WRITE(JDEBUG,4100) (IBNDG2(I,ICOR),I-1.5)
ICOR - NBNDG2 - 1
WRITE(JDEBUG,4900) ICOR,(IBNDG2(I.ICOR).I-1,5)

ENDIF

WRITE(JDEBUG,4900) NBNDG2,(IBNDG2(I,NBNDG2),I=1,5)
ENDIF

ENDIF ! IWRITE

C
C
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C FORMAT STATEMENTS
C -------- -

1000 FORMAT(//lOX, ----------------------- )
1100 FORMAT( 1OX,'DEBUG PRINT FROM G2DIVO' )

1200 FORMAT( OX,'-----------------------'/)

1300 FORMAT(/IOX,'***** INFORMATION BEFORE DIVISION *****'/)
1400 FORMAT(SX,'NNODG2 ',.I7,X,'NCELG2 =',I7,5X,'NBNDG2 =',I7,

1 5X,'LEVEL =',I7 )
1500 FORMAT(SX,'CELL POINTERS FOR LCELL =',I6,/SX,'KC =',I6,5X,

1 'KSW -'.I6,6X,'KS =',I6.X,'KSE =',I6,5X,'KE =',I6/5X,

2 'KNE -',I6,SX,'KN ',I68,X,'KNW =',I6,SX,'KW =',I68,X,

3 'KX ='.Z7 )
1800 FORMAT(6X,'LCELL POINTERS',6X,1016)

1700 FORMAT(5X,'CELLS NEIGHBOURING LCELL :'/

1 SX.'LVSW-',I6,X,'LCSW=',IS.X,'LHSW='.I,

2 6X.'LHSE-',I6.X.'LCSE-'.I5.SX,'LVSE=',I5/

3 5X,'LVNE-',1,SX,'LCNE=',IS,XX,'LHNE-',IS.

4 5X,'LHNW'.I6,6X,'LCNW=',I5.5X,'LVNW-',I5 )

1800 FORMAT(5X,'LVSW POINTERS',6X,10I6)

1900 FORMAT(6X,'LCSW POINTERS',6X,10I6)

2000 FORMAT(5X.'LHSW POINTERS'.5X,10I)

2100 FORMAT(5X,'LHSE POINTERS'.56X,10I6)

2200 FORMAT(5X.'LCSE POINTERS',SX.10I6)

2300 FORMAT(SX,'LVSE POINTERS'.5X,10I6)

2400 FORMAT(5X.'LVNE POINTERS'.5X.1OI6)

2500 FORMAT(5X.'LCNE POINTERS',SX,1OI6)

2600 FORMAT(5X,'LHNE POINTERS',5X,10I6)

2700 FORMAT(5X,'LHNW POINTERS'.5X,1OI6)

2800 FORMAT(5X.'LCNW POINTERS',6X.10OI)

2900 FORMAT(5X.'LVNW POINTERS'.5X,1OI6)

3000 FORMAT(5X,'NEIGHBOUR CELLS OF KSW :',417)

3100 FORMAT(5X,'NEIGHBOUR CELLS OF KSE :',417)

3200 FORMAT(5X.'NEIGHBOUR CELLS OF KNE :',417)

3300 FORMAT(6X,.'NEIGHBOUR CELLS OF KNW :',417)

3400 FORMAT(5X,'NEIGHBOUR CELLS OF KS :',417)

3500 FORMAT(X. 'NEIGHBOUR CELLS OF KE :',417)

3600 FORMAT(SX.'NEIGHBOUR CELLS OF KN :',417)

3700 FORMAT(5X,'NEIGHBOUR CELLS OF KW :',417)

3800 FORMAT(6X,'BOUNDARY NODE INFORMATION : '/

I 5X,'IONE -',I6.5X.'ICOR ',I6,5X.'ITWO ',I86)

3900 FORMAT(5X.'B. POINTERS OF IONE :'.516)

4000 FORMAT(SX,'B. POINTERS OF ITWO :',516)

4100 FORMAT(5X,'B. POINTERS OF ICOR :'.516)

4200 FORMAT(//lOX,'***** INFORMATION AFTER DIVISION *****'/)

4300 FORMAT(5X,'NEW CREATED CELLS :'/
65X,'LMSW-',I.,5X.'LMSE-',I5,X,'LMNE-',I5,

2 5X,'LMNW-'.I5 )
4400 FORMAT(6X,'LMSW POINTERS'6.5X,lOI6Z10)

4500 FORMAT(5X,'LMSE POINTERS'.56X.1OI6,Z10)

4600 FORMAT(6X,'LMNE POINTERS',6X,lOI6,Z10)
4700 FORMAT(5X,'LMNW POINTERS',SX.1OI6,Z10)
4800 FORMAT(SX, 'NEIGHBOUR CELLS OF KC :'.417)
4900 FORMAT(SX,'B. POINTERS OF ADDED NODE (',I8,')',5X,5I6)

C
RETURN

END
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G2FROZ

SUBROUTINE G2FROZ

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

C THIS SUBROUTINE SCANS THE SPECIES CONCENTRATIONS FOR THE ROGERS
C AND CHINITZ MODEL AND APPLIES CORRECTIVE PROCEDURE FOR FROZEN
C CASE AND WHEN THE CONCENTRATION OF OH BECOMES VERY LARGE

C
C
C IF (KROGER .NE. 1 ) RETURN
C IF (TRIGCH .GT. 1500.) RETURN
C
C ATOMH2 - YMAXCH(3)*RAMWCH(3)

C ATOM02 YMAXCH(I)*RAMWCH(1)

YMAXOH - 0.6*YMAXCH(2)

YMXDIF - O.1*YMAXCH(2)

YMXKNK - YMXDIF

IF (IDBGG2 .EQ. 998) YMXDIF O0.001*YMAXCH(2)

C
C TOTAL NUMBER OF NORTHERN CELLS

NORCEL = 0
C

C TOTAL NUMBER OF NODES WHERE ADJUSTMENT MAY BE NEEDED

NNODAD 0
C

C STEP THROUGH EACH CEWIC CELL

C

DO 40 JCELL s 1, NCELA2
C
C FIND THE ACTUAL CELL NUMBER
C

ICELL - ICELA2(JCELL)
C
C SET UP NODE POINTERS FOR THIS CELL
C

KSW - ICELG2(2,ICELL)
KSE - ICEL&2(4.ICELL)
KNE ICELG2(6,ICELL)
KNW - ICELG2(8,ICELL)

C
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C CHECK IF KSE IS AN INFLOW NODE

C

IF (IAND(KAUXG2(ICELL),KLOOOF) .NE. O) THEN
C

C SCAN ALL BOUNDARY NODES

C
DO 4 IBND - 1. NBNDG2

C
C IS THE BOUNDARY NODE KSE

C

IF (IBNDG2(1,IBND) .EQ. KSE) THEN
C IS IT AN INFLOW NODE

IF (IBNDG2(5,IBND) .EQ. 2) KSW - KSE
GOTO 5

ENDIF

4 CONTINUE

C
C IS THIS A NORTHERN CELL

C

5 IF (IAND(KAUXG2(ICELL),K LOOOC) .NE. O) THEN
C

C SCAN ALL BOUNDARY NODES

C

DO 7 IBND - 1, NBNDG2
C

C IS THE BOUNDARY NODE KNE
C

KNE - ICELG2(6,ICELL)

IF (IBNDG2(1,IBND) .EQ. KNE) THEN
C IS IT AN INFLOW NODE, IF NOT KEEP FOR MORE ...

IF (IBNDG2(5,IBND) .NE. 2) THEN

NORCEL - NORCEL + 1
MRKDA2(NORCEL) - ICELL

NNODAD - NNODAD + 1

MRKCA2(NNODAD) KNE
ENDIF

GOTO 8

ENDIF

7 CONTINUE

ENDIF

8 IF (KSE .EQ. KSW) GOTO 40

ENDIF

NNODAD - NNODAD + 1

MRKCA2(NNODAD) - KSE
C
C
C FOR PRE-MIXED FLOWS ALSO APPLY ATOM CONSERVATION EQUATIONS
C

C IF (IALOCH(6,.3) .EQ. -9) THEN
C

C Y02SE - DPENG2(5,KSE)/DPENG2(1,KSE)

C YH2SE - DPENG2(7,KSE)/DPENG2(1,KSE)
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C COHSE - 2.*C 2.*(ATOMO2-YO2SE*RAMCH(1))

C 1 - (ATOMH2-YH2SE*RAMWCH(3)))
C
C IF (COHSE .LT. 0.) THEN
C DPENG2(5,KSE) - 1.01*DPENG2(6,KSE)

C DPENG2(6,KSE) - O.
C ELSE

C DPENG2(6,KSE) - AMWTCH(2)*COHSE*DPENG2(1,KSE)

C ENDIF

C

C ENDIF

C
C STORE OH DENSITY AT TWO NODES

C

YOHSW - DPENG2(6.KSW)/DPENG2(1,KSW)

YOHSE - DPENG2(6,KSE)/DPENG2(1,KSE)

C

C CHECK IF YOH IS CLOSE TO MAXIMUM POSSIBLE VALUE

C THIS MUST NOT REALLY BE POSSIBLE SINCE SOME OF THE SPECIES

C MUST GET CONSUMED TO PRODUCE H20
C

IF (YOHSW .GT. YMAXOH) THEN

DO 10 IQ 6, NEQNFL

YSPSW - DPENG2(IQ,KSW)/DPENG2(1,KSW)

YSPSE - DPENG2(IQ,KSE)/DPENG2(1,KSE)

YSPSE - 0.5*(YSPSE+YSPSW)

DPENG2(Iq,KSE) - YSPSE*DPENG2(1,KSE)
10 CONTINUE

GOTO 40
ENDIF

C
C CHECK IF DIFFERENCE OF YOH IS LARGE NEAR THE TWO NODES

C THIS IS AN ATTEMPT TO AVOID SUDDEN JUMPS
C

CHECKY ABS(YOHSE-YOHSW)
C

IF (CHECKY .GT. YMXKNK) THEN
DO 20 IQ - 6, NEQNFL

YSPSW - DPENG2(IQ,KSW)/DPENG2(1,KSW)
YSPSE - DPENG2(IQ,KSE)/DPENG2(1,KSE)

YSPSE - 0.5*(YSPSE+YSPSW)
DPENG2(IQ,KSE) - YSPSE*DPENG2(1,KSE)

20 CONTINUE

GOTO 40
ENDIF

C

C CHECK IF THERE IS FROZEN FLOW; IF SO SIMPLY CONVECT THE VALUES

C

TEMP TEMPG2(KSE)*TREFFL
C

IF (TEMP .GT. TRIGCH) GOTO 40
C

IF (CHECKY .GT. YMXDIF) THEN
DO 30 IQ - 5, NEQNFL

YSPSW - DPENG2(IQ.KSW)/DPENG2(1.KSW)

DPENG2(IQ,KSE) - YSPSW*DPENG2(1,KSE)
30 CONTINUE

866



ENDIF

C

40 CONTINUE

C
C REPEAT THE WHOLE PROCESS FOR NORTHERN CELLS

C
DO 80 JCELL - 1, NORCEL

C
C FIND THE ACTUAL CELL NUMBER
C

ICELL - MRKDA2(JCELL)
C
C SET UP NODE POINTERS FOR THIS CELL

C

KNE - ICELG2(6,ICELL)
KNW - ICELG2(8.ICELL)

C FOR PRE-MIXED FLOWS ALSO APPLY ATOM CONSERVATION EQUATIONS
C

C IF (IALOCH(6,3) .EQ. -9) THEN

C

C Y02NE - DPENG2(5,KNE)/DPENG2(1,KNE)

C YH2NE - DPENG2(7,KNE)/DPENG2(1,KNE)

C COHNE - 2.*( 2.*(ATOMO2-YO2NE*RAMWCH(1))

C 1 - (ATOMH2-YH2NE*RAMWCH(3)))
C

C IF (COHNE .LT. 0.) THEN

C DPENG2(S,KNE) - 1.01*DPENG2(5,KNE)

C DPENG2(6,KNE) - 0.

C ELSE

C DPENG2(6,KNE) - AMWTCH(2) *COHNE*DPENG2(I ,KNE)
C ENDIF

C
C ENDIF

C

C STORE OH DENSITY AT TWO NODES
C

YOHNE - DPENG2(6,KNE)/DPENG2(1,KNE)

YOHNW - DPENG2(6,KNW)/DPENG2(1,KNW)
C

C CHECK IF YOH IS CLOSE TO MAXIMUM POSSIBLE VALUE

C THIS MUST NOT REALLY BE POSSIBLE SINCE SOME OF THE SPECIES

C MUST GET CONSUMED TO PRODUCE H20
C

CHECKY - YMAXCH(2) - YOHNE
C

IF (YOHSW .GT. YMAXOH) THEN

DO 50 IQ - 5, NEQNFL

YSPNE - DPENG2(IQ,KNE)/DPENG2(1 KNE)

YSPNW - DPENG2(IQKNW)/DPENG2(1,.KNW)

YSPNE - 0.5*(YSPNW+YSPNE)
DPENG2(IQQ,KNE) - YSPNE*DPENG2(1.KNE)

50 CONTINUE
GOTO 80

ENDIF

C
C CHECK IF DIFFERENCE OF YOH IS LARGE NEAR THE TWO NODES
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C THIS IS AN ATTEMPT TO AVOID SUDDEN JUMPS

C

CHECKY - ABS(YOHNW-YOHNE)
C

IF (CHECKY .GT. YMXKNK) THEN

DO 60 IQ - 6, NEqNFL
YSPNE = DPENG2(IQ,KNE)/DPENG2(1,KNE)

YSPNW = DPENG2(IQ,KNW)/DPENG2(1.KNW)

YSPNE - 0.5*(YSPNW+YSPNE)
DPENG2(IQ.KNE) = YSPNE*DPENG2(1,KNE)

60 CONTINUE

GOTO 80

ENDIF

C

C CHECK IF THERE IS FROZEN FLOW; IF SO SIMPLY CONVECT THE VALUES
C

TEMP - TEMPG2(KNE)*TREFFL
C

IF (TEMP .GT. TRIGCH) GOTO 80
C

IF (CHECKY .GT. YMXDIF) THEN
DO 70 IQ - 56, NEQNFL

YSPNW = DPENG2(IQ,KNW)/DPENG2(1,KNW)

DPENG2(IQ,KNE) - YSPNW*DPENG2(1,KNE)
70 CONTINUE

ENDIF

C
80 CONTINUE

C

IF (NEQNFL .EQ. 8) RETURN

C IF (IALOCH(6,3) .NE. -9) THEN
C DO 99 INODE - 1, NNODG2
CC

C RHORPR = DPENG2(1,INODE)
C Y02 - DPENG2(6,INODE)/RHORPR

C YH2 - DPENG2(7,INODE)/RHORPR
C

C IF (NEQNFL .EQ. 8) THEN

C CH20 - 2.*( -(ATOMO2-YO2*RAMWCH(1))
C 1 +(ATOMH2-YH2*RAMWCH(3)))
C IF (CH20 .LT. 0.) THEN
C DPENG2(8,INODE) = 0.
C ELSE

C DPENG2(8,INODE) AMWTCH(4)*CH20*DPENG2(1,INODE)
C ENDIF
C ENDIF

C99 CONTINUE

C RETURN

C ENDIF
C
C SCAN ALL THE INTERIOR NODES FOR THE ROGERS AND CHINITZ MODEL
C WHERE THE CONCENTRATION OF H20 IS NEGATIVE
C RESET THE DEPENDENT VARIABLES IF NEED BE

C

DO 100 JNODE 1, NNODAD

INODE MRKCA2(JNODE)
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c
RHORPR - DPENG2(1,INODE)

YU2 - DPENG2(5,INODE)/RHORPR

YOH - DPENG2(6,INODE)/RHORPR

YH2 - DPENG2(7,INODE)/RHORPR

YH20 = DPENG2(8,INODE)/RHORPR
YH20 = 1.-YO2-YOH-YH2-YNRTCH

C

IF (YH20 .GT. 0.) GOTO 100

C 2H2 + 02 -- 2H20

C
CON02 - Y02 *RAMWCH(1)

CONH2 - YH2 *RAMWCH(3)

CONH20 --YH20*RAMWCH(4)

XXX = MIN (0.5*CONH2,CON02,0.5*CONH20)

C

Y02 - AMWTCH(1)*(CON02-XXX)

YH2 = AMWTCH(3)*(CONH2-2.*XXX)
YH20 = AMWTCH(4)*(2.*XXX-CONH20)

C
IF (YH20 .GT. 0.) THEN

DPENG2(5,INODE) = RHORPR*Y02

DPENG2(7,INODE) = RHORPR*YH2
GOTO 100

ENDIF

C
C H2 + 20H == 2H20

IF (YH2 .LE. 0.) GOTO 90

CONH2 = YH2 *RAMWCH(3)
CONOH - YOH *RAMWCH(2)
CONH20 --YH20*RAMWCH(4)

XXX = MIN (CONH2,0.5*CONOH,0.5*CONH20)

C

YH2 = AMWTCH(3)*(CONH2-XXX)

YOH = AMWTCH(2)*(CONOH-2.*XXX)
YH20 = AMWTCH(4)*(2.*XXX-CONH20)

IF (YH20 .GT. 0.) THEN

DPENG2(5,INODE) = RHORPR*Y02
DPENG2(6,INODE) = RHORPR*YOH
DPENG2(7,INODE) = RHORPR*YH2
GOTO 100

ENDIF

C

C 40H - 2H20 + 02

90 CONO2 - Y02 *RAMWCH(1)
CONOH - YOH *RAMWCH(2)

CONH20 =-YH20*RAMWCH(4)

XXX - MIN (0.25*CONOH,0.5*CONH20)

Y0H - AMWTCH(2)*(CONOH-4.*XXX)

Y02 = AMWTCH(1)*(CON02+XXX)
YH20 - AMWTCH(4)*(2.*XXX-CONH20)
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C
DPENG2(6.INODE) - RHORPR*YO2

DPENG2(6.INODE) - RHORPR*YOH

DPENG2(7,INODE) - RHORPR*YH2

C

C IF (YH2O .LT. 0.) write(6,*) ' g2froz yh2o still neg',yh2o

C
100 CONTINUE

C
RETURN
END

G2HANG

SUBROUTINE G2HANG

C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'
INCLUDE 'G2COMN.INC'
INCLUDE 'TICOMN.INC'
INCLUDE 'HEXCOD.INC'

DIMENSION MARK(O:MNODG2)

C

C
C THIS SUBROUTINE COMPUTES THE NODES AT VARIOUS TEMPORAL LEVEL

C CELLS. THIS MAKES THE UPDATING AND CONVERGENCE HISTORY

C COLLECTION A LITTLE EASIER AND EFFICIENT.

C

C

C MARK ALL THE NODES FOR SUBSEQUENT COLLECTION
C

MARK(O) - 0
DO 10 INODE - 1, NNODG2

MARK(INODE) - 1
10 CONTINUE

C
C TOTAL NUMBER OF HANGING NODES

NHNGA2 - 0
C
C TOTAL NUMBER OF "NORMAL" NODES

NNODA2 - 0
C
C LOOP OVER ALL THE TEMPORAL LEVELS TO COLLECT NODES

C
DO 30 ITGL - O. NMAXTI

C
C COLLECT THE FIRST NODE AT THIS LEVEL

ILVLA2(1,ITGL) - NNODA2 + 1
C
C LOOP OVER ALL THE CELLS AT THIS LEVEL AND CLASSIFY NODES
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ACCORDING TO THE TEMPORAL LEVEL

DO 20 JCELL - ILVLTI(I.ITGL), ILVLTI(2,ITGL)

NODE/CELL ASSIGNMENTS

ICELL - ICELTI ( JCELL)
KSW - ICELG2 (2,ICELL)

KS - ICELG2 (3,ICELL)
KSE - ICELG2 (4,ICELL)

KE - ICELG2 (5,ICELL)

KNE - ICELG2 (W,ICELL)
KN - ICELG2 (7,ICELL)

KNW - ICELG2 (8,ICELL)

KW - ICELG2 (9,ICELL)
KXB1 - IAND (KAUXG2(ICELL),KL0009)

CHECK IS THE CELL HAS NODES WITH FIXED BOUNDARY CONDITIONS

IF ( KXB1 .EQ. 9 ) THEN
MARK(KNW) - 0
MARK(KW ) - 0
MARK(KSW) 0

ENDIF

CHECK IF COLLECTION IS NEEDED

IF ( MARK(KSW) .NE. 0 ) THEN

MARK(KSW) - 0

NNODA2 - NNODA2 +

MRKDA2(NNODA2) - KSW
ENDIF

CHECK IF COLLECTION IS NEEDED

IF ( MARK(KSE) .NE. 0 ) THEN
MARK(KSE) - 0
NNODA2 - NNODA2 +

MRKDA2(NNODA2) - KSE
ENDIF

CHECK IF COLLECTION IS NEEDED

IF ( MARKCKNE) .NE. 0 ) THEN

MARK(KNE) - 0
NNODA2 - NNODA2 +

MRKDA2(NNODA2) - KNE
ENDIF

CHECK IF COLLECTION IS NEEDED

IF ( MARK(KNW) .NE. 0 ) THEN

MARK(KNW) - 0
NNODA2 - NNODA2 +

MRKDA2(NNODA2) - KNW
ENDIF

AT THE SOUTHWESTERN NODE

I

AT THE SOUTHEASTERN NODE

1

AT THE NORTHEASTERN NODE

1

AT THE NORTHWESTERN NODE

C
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C CHECK IF SOUTHERN NODE IS A HANGING NODE

C

- IF ( MARK(KS) .NE. O ) THEN
MAR(KS) - 0
NHNGA2 - NHNGA2 + 

MRKCA2(NHNGA2) - KS

WORKA2(NHNGA2) - KSW

CHNGA2(NHNGA2) - KSE

ENDIF

C
C CHECK IF EASTERN NODE IS A HANGING NODE

C
IF ( MARK(KE) .NE. O ) THEN

MARK(KE) - O

NHNGA2 - NHNGA2 + 1
MRKCA2(NHNGA2) - KE

WORKA2(NHNGA2) - KSE

CHNGA2(NHNGA2) - KNE

ENDIF

C
C CHECK IF NORTHERN NODE IS A HANGING NODE

C

IF ( MARK(KN) .NE. 0 ) THEN
MARK(KN) = o
NHNGA2 - NHNGA2 + 

MRKCA2(NHNGA2) - KN

WORKA2(NHNGA2) - KNE

CHNGA2(NHNGA2) - KNW

ENDIF

C
C CHECK IF WESTERN NODE IS A HANGING NODE

C

IF ( MARK(KW) .NE. O ) THEN

MARK(KW) - O

NHNGA2 - NHNGA2 + 1

MRKCA2(NHNGA2) - KW

WORKA2(NHNGA2) - KNW

CHNGA2(NHNGA2) - KSW

ENDIF

C

20 CONTINUE

C

C COLLECT THE LAST NODE AT THIS LEVEL

ILVLA2(2.ITGL) = NNODA2
C

30 CONTINUE

C
RETURN
END

G2IBLC

SUBROUTINE G2IBLC
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INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'G2COMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

C

C THIS SUBROUTINE SETS UP THE CELL, BOUNDARY CONDITION, AND
C MULTIPLE-GRID-LEVEL ARRAYS FOR THE GLOBAL MESHES WHICH WERE
C GENERATED BY THE BLOCK GRID GENERATOR
C

C
MALVG2 - IPASKY(23)

IDBGG2 - IPASKY(37)
C

C READ EVERYTHING FROM A PREVIOUSLY WRITTEN FILE
C

C INTEGERS FROM G2COMN.INC

READ (JREADG,1100) NNODG2, NCELG2, NBNDG2

DO 10 LC - 1, NCELG2

READ (JREADG,1100) (ICELG2(IP,LC), IP-l,10), KAUXG2(LC)
10 CONTINUE

DO 20 IB - 1, NBNDG2

READ (JREADG,1100)

20 CONTINUE

DO 30 IN - 1, NNODG2

READ (JREADG,llO0)
30 CONTINUE

(IBNDG2(IP,IB), IP 1, 6)

(NEIBG2(IP,IN), IP - 1, 4)

DO 40 LV - -MLVLG2. MLVLG2
READ (JREADG.1100) (ILVLG2(IP,LV),

40 CONTINUE
IP a 1, 3)

READ (JREADG,1100) (NBCPG2(IP,1),IP=1.4),(NBCPG2(IP.2),IP=1,4)

DO 50 IN - 1. NNODG2

READ(JREADG,1200) (
CONTINUE

;EOMG2(1.IN),GEOMG2(2,IN)

FORMAT STATEMENTS

FORMAT(1I7)
FORMAT(SE15.8)

RETURN

END
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G2IBOG

SUBROUTINE G2IBOG (NXRECT, NYRECT, XSOUTH,XEAST,XNORTH,XWEST,

1 YSOUTH,YEAST,YNORTH,YWEST, GEOMGG)

DIMENSION XEAST (*), XSOUTH(*). XWEST (*). XNORTH(*),

I YEAST (*), YSOUTH(*), YWEST (*). YNORTH(*),

2 GEOMGG(2.*)

DIMENSION DISTW(1000), DISTE(1000)

C
C THIS SUBROUTINE IS IN-BOUNDARY-OUT-GRID (IBOG); I.E., IT TAKES

C IN THE BOUNDARY INFORMATION AND GENERATES THE INTERIOR GRID.

C THIS MAY BE JUST ONE OF THE SECTIONS OF THE OVERALL GRID. EACH

C SECTION IS GRIDDED BY AN ALGEBRAIC CONSTRUCTION. NXRECT, NYRECT

C CONTAIN THE NUMBER OF NODES ALONG EACH COORDINATE DIRECTION.

C THE BOUNDARY INFORMATION IS CONTAINED IN XSOUTH, ..., YWEST.
C THE OUTPUT IS THE TWO-DIMENSIONAL ARRAY GEOMGG THAT CONTAINS

C THE (X.Y) COORDINATES OF THE DOMAIN.

C

C
C
C

COMPUTE THE NODE BEFORE THE FIRST NORTH ONE (L IN FIG.)

AND THE MAXIMUM NUMBER OF NODES

NBEFNO - NXRECT*(NYRECT-1)

NNODG2 - NXRECT* NYRECT

SET SOUTH AND NORTH NODE INFORMATION

DO 10 IX - 1 NXRECT
N8- IX
NON - IX + NBEFNO

GEOMGG(I,NOS) - XSOUTH(IX)

GEOMGG(2,NOS) - YSOUTH(IX)

GEOMGG(1.NON) - XNORTH(IX)

GEOMGG(2,NON) - YNORTH(IX)

CONTINUE

SET WEST AND EAST NODE INFORMATION

DO 20 IY - 1. NYREC

NOW -

NOE

GEOMGG(1,NOW) -

GEOMGG(2,NOW) -
GEOMGG(1,NOE) -

GEOMGG(2,NOE) -
CONTINUE

1 + (IY-1)*NXRECT
IY*NXRECT

XWEST (IY)
YWEST (IY)
XEAST (IY)
YEAST (IY)

INITIALIZE THE FRACTIONAL DISTANCES ON WEST AND EAST EDGES

DISTW(1) - O.

DISTE(1) - O.
C
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C CALCULATE THE TOTAL DISTANCES ON WEST AND EAST EDGES

C 
DO 30 J 2. NYRECT

JM1 - J - 1
C

- I + (J -1)*NXRECT

- 1 + (JMI-1)*NXRECT

- J *NXRECT

- JMI*NXRECT

- GEOMGG(1,INDJW)

- GEOMGG(2,INDJW)
- GEOMGG(1,INDJE)

- GEOMGG(2,INDJE)

- GEOMGG(1,INDJMW)

- GEOMGG(2,INDJMW)

- GEOMGG(1,INDJME)

- GEOMGG(2,INDJME)

DISTW(J) - DISTW(JM1) + SQRT(DXW*DXW + DYW*DYW)

DISTE(J) DISTE(JM1) + SQRT(DXE*DXE + DYE*DYE)

C CALCULATE THE
C FOR EACH NODE

FRACTIONAL DISTANCES ON WEST AND EAST EDGES

DO 40 J 2, NYRECT

DISTW(J) DISTW(J)/DISTW(NYRECT)

DISTE(J) - DISTE(J)/DISTE(NYRECT)

40 CONTINUE

C

C STEP THROUGH EACH INTERIOR LINE

C

DO 60 I - 2, NXRECT-1

FRACI - FLOAT(I-1)/FLOAT(NXRECT-1)

C
C
C

CALCULATE FRACTIONAL DISTANCES FOR EACH INTERIOR POINT

DO 50 J - 2.NYRE(
FRACJ

C

IND
INDN

INDS

C
C

C

CT-1

= (.-FRACI)*DISTW(J) + FRACI*DISTE(J)

I + ( J-I)*NXRECT

I + (NYRECT-1)*NXRECT
I

COMPUTE THE DISTANCE FROM NORTH EDGE TO SOUTH EDGE

DELXNS

DELYNS

C
C
C

C
s0
60

C
C
C

- GEOMGG(1,INDN) - GEOMGG(1,INDS)

- GEOMGG(2,INDN) - GEOMGG(2,INDS)

COMPUTE LOCATION OF INTERIOR POINT

GEOMGG(1,IND) - GEOMGG(1,INDS) + FRACJ*DELXNS

GEOMGG(2,IND) - GEOMGG(2,INDS) + FRACJ*DELYNS

CONTINUE

CONTINUE

NOMENCLATURE
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INDJW

INDJMW

INDJE

INDJME

C
DXW

DYW

DXE

DYE

C

C
30 CONTINUE



L L L
+ + 4 ...
1 2 3

1+(NY-1)*NX +--+--+--+--+--+--+--+

+ NORTH

E+

A+
Q4*

INDJW

... + S
1+2*NX + T
I+NX +

T
SOUTH

2 3 ... NX-1
2 3 ... NX-1

NX=NXRPECT

NY=NYRECT

L =NBEFNO

NY*NX

(NY-i)*NX = L

INDJE

+ 3*NX
+ *NX+ 2*NX
NX

C
C

RETURN

END

G2INIT

SUBROUTINE G2INIT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'G2COMN.INC'

'HEXCOD.INC'

'IOCOMN.INC'

'KYCOMN.INC'

C

C THIS SUBROUTINE SETS UP THE CELL, BOUNDARY CONDITION,
C MULTIPLE-GRID-LEVEL ARRAYS FOR THE GLOBAL MESHES

C

AND

NOMENCLATURE

NX=NXRECT

NY-NYRECT

L =NBEFNOL L L
+ + 4 . ..
1 2 3

1+(NY-S)*NX +--+--------+--+--+
+ NORTH

1+2*NX +
I+NX + SOUTH

+
NY*NX

(NY-1)*NX - L

A +
S + ...
T + 3*NX

+ 2*NX
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C - 2 3 ... NX-1

C

C

MALVG2 IPASKY(23)

IDBGG2 - IPASKY(37)

C READ ALL THE INFORMATION FROM INPUTG.DAT

READ (JREADG.1000)
READ (JREADG,1000)
READ (JREADG,1100)

NXRECT, NYRECT, NBNDG2, NNODG2

(IBNDG2(56,IB), IB=1,NBNDG2)

(GEOMG2(1.KN),GEOMG2(2,KN), KN=1,NNODG2)

C CHECK FOR OVERFLOW IN BOUNDARY NODE ARRAYS

IF(NBNDG2 .GT. MBNDG2) THEN

ZER1 - NBNDG2

ZER2 - MBNDG2

CALL ERRORM (8,'G2INIT','NBNDG2',ZER1,'MBNDG2',ZER2,JPRINT,
1 'NUMBER OF BOUNDARY NODES EXCEEDS ITS LIMIT')

ENDIF

IF(NNODG2 .GT. MNODG2) THEN
ZER - NNODG2

ZER2 - MNODG2

CALL ERRORM (,'G2INIT','NNODG2'ERMNODG,ZER2,JPRINT,

1 'NUMBER OF NODES EXCEEDS ITS LIMIT')

ENDIF

C
C COMPUTE NUMBER OF CELLS IN EACH DIRECTION ON THE GLOBAL MESH

C

NXCELL - NXRECT - 1
NYCELL NYRECT - 1

C

C INITIALIZE THE NUMBER OF CELLS AND BOUNDARY CONDITION POINTERS
C

NCELG2 0
NBNDG2 - 0

C
C

C
INITIALIZE POINTERS FOR ALL LEVELS

DO 30 ILEVEL - -MLVLG2, MLVLG2

ILVLG2(1,ILEVEL) 0
ILVLG2(2,ILEVEL) - 0
ILVLG2(3,ILEVEL) - 0

CONTINUE

LOOP THROUGH ALL COARSER GRID LEVELS (IF ANY)

ISTART - MIN (NCRSG2. MLVLG2-1)

DO 60 ICOARS - ISTART, 1, -1

ISIZE - 2**ICOARS

LOOP THROUGH EACH CELL ON THIS LEVEL
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DO 40 JCELL - 1. NYCELL. ISIZE
DO 40 ICELL i, NXCELL, ISIZE

NCELG2 m NCELG2 + 1

FIND THE CENTER OF THIS CELL

ICELG2(1.NCELG2) - (ICELL+ISIZE/2)+(JCELL+ISIZE/2-1)*NXRECT

COMPUTE INDICES OF ALL BOUNDING NODES

ICELG2(2 ,NCELG2) - (ICELL ) + (JCELL -1)*NXRECT

ICELG2(3 ,NCELG2) - (ICELL+ISIZE/2)+(JCELL -1)*NXRECT

ICELG2(4 ,NCELG2) - (ICELL+ISIZE )+(JCELL -1)*NXRECT

ICELG2(6 ,NCELG2) - (ICELL+ISIZE )+(JCELL+ISIZE/2-1)*NXRECT

ICELG2(6 ,NCELG2) - (ICELL+ISIZE )+(JCELL+ISIZE -1)*NXRECT

ICELG2(7 ,NCELG2) - (ICELL+ISIZE/2)+(JCELL+ISIZE -1)*NXRECT

ICELG2(8 ,NCELG2) - (ICELL )+(JCELL+ISIZE -1)*NXRECT
ICELG2(9 ,NCELG2) - (ICELL )+(JCELL+ISIZE/2-1)*NXRECT

ICELG2(10,NCELG2) - 0

INITIALIZE AUXILIARY CELL INFORMATION

KAUXG2(NCELG2) 0

C

40 CONTINUE

C

C SET UP THE MULTIPLE-GRID-LEVEL ARRAY FOR THIS LEVEL

C
ILEVEL - -ICOARS

ILVLG2(1,ILEVEL) - ILVLG2(2.ILEVEL-1) + 1
ILVLG2(2.ILEVEL) - NCELG2
ILVLG2(3,ILEVEL) - ILVLG2(2.ILEVEL) - ILVLG2(1,ILEVEL) + 1

C
C GO BACK FOR A FINER COARSE LEVEL

C
50 CONTINUE

C
C LOOP TROUGH EACH GLOBAL CELL

C

DO 60 JCELL - 1, NYCELL

DO 60 ICELL - 1. NXCELL
C

NCELG2 - NCELG2 + 1
C

COMPUTE INDICES OF CORNER OF CELL

ICELG2(2.NCELG2) - ICELL
ICELG2(4.NCELG2) - ICELL

ICELG2(6,NCELG2) - ICELL

ICELG2(8.NCELG2) - ICELL

+ (JCELL-1)*NXRECT
+ 1 + (JCELL-1)*NXRECT
+ 1 + (JCELL )*NXRECT

+ (JCELL )*NXRECT

INITIALLY, THERE IS NO NODE IN THE CENTER OF A FINE CELL

ICELG2(1,NCELG2) - O

THERE ARE NO NODES IN THE CENTER OF THE SIDES OF A FINE CELL
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ICELG2(3 ,NCELG2) - 0
ICELG2(6 NCELG2) - 0

ICELG2(7 ,NCELG2) - 0
ICELG2(9 NCELG2) - O0

ICELG2(10NCELG2) O

INITIALIZE AUXILIARY CELL INFORMATION

RAUXG2(NCELG2) - O

CONTINUE

SET UP THE MULTIPLE-GRID-LEVEL ARRAY FOR THE GLOBAL FINE LEVEL

ILVLG2(1,0) - ILVLG2(2,-1) + 
ILVLG2(2,0) - NCELG2
ILVLG2(3,0) - ILVLG2(2,0) - ILVLG2(1,0) + 

C

C INITIALIZE THE MULTIPLE-GRID-LEVEL ARRAY FOR ALL EMBEDDED MESHES
C

DO 70 ILEVEL - 1, MLVLG2

ILVLG2(1,ILEVEL) = NCELG2 + 
ILVLG2(2,ILEVEL) - NCELG2

ILVLG2(3,ILEVEL) - 0

70 CONTINUE
C
C SET UP THE BOUNDARY CONDITION ARRAYS AND SET BOUNDARY POINTERS FOR

C BOUNDARY NODES...

C

C SOUTHWESTERN CORNER
C

NBNDG2 - NBI

IBNDG2(1,NBNDG2) = 1

IBNDG2(2,NBNDG2) - ILI
IBNDG2(3,NBNDG2) = 0
IBNDG2(4.NBNDG2) - 2
KAUXG2(IBNDG2(2,NBNDG2)) - IO]
NBCPG2(1,2) - NBI

SOUTHERN EDGE

DO 80 IBOUND - 2, NXRECT - 1
NBNDG2 = NI

IBNDG2(,NBNDG2) - II

IBNDG2(2,NBNDG2) = I

IBNDG2(3,NBNDG2) - I

IBNDG2(4,NBNDG2) = 3
KAUXG2(IBNDG2(2,NBNDG2))- II
KAUXG2(IBNDG2(3,NBNDG2))- II

CONTINUE

NDG2 + 1

VLG2(2,-1) + 1

R(KAUXG2(IBNDG2(2,NBNDG2)).KLOOOB)
IDG2 + 1

3NDG2 + 
3OUND

LVLG2(2,-1) + IBOUND - 1

LVLG2(2,-1) + IBOUND

JR(KAUXG2(IBNDG2 (2NBNDG2)),KLOO03)
OR(KAUXG2(IBNDG2(3,NBNDG2)),KLOO3)

SOUTHEASTERN CORNER

NBNDG2

IBNDG2(1.NBNDG2)
IBNDG2(2,NBNDG2)

- NBNDG2 + 1
- NXRECT

- ILVLG2(2,-1) + NXCELL
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IBNDG2(3,NBNDG2)
IBNDG2(4,NBNDG2)

KAUX2(IBNDG2 (2, NBNDG2))
NBCPG2(2.1)

NBCPG2(2.2)
C
C EASTERN EDGE

C

DO 90 IBOUND - 2. NYRECT - I
NBNDG2 -
IBNDG2(1.NBNDG2)
IBNDG2(2.NBNDG2)
IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)
KAUXG2(IBNDG2(2,NBNDG2))-
KAUXG2(IBNDG2(3, NBNDG2))-

90 CONTINUE
C
C NORTHEASTERN CORNER
C

-0
4

- IOR(KAUXG2(IBNDG2(2.NBNDG2)), KLOO7)
- NBNDG2 - 1
- NBNDG2 + 

NBNDG2 + 1
IBOUND*NXRECT

ILVLG2(2,-1) + (IBOUND-1)*NXCELL
ILVLG2(2.-1) + IBOUND*NXCELL
5
IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOO6)

IOR(KAUXG2(IBNDG2(3.NBNDG2)),KLOOO6)

NBNDG2 - NBNDG2 + 
IBNDG2(1.NBNDG2) - NXRECT*NYRECT

IBNDG2(2,NBNDG2) - ILVLG2(2.-I) + NXCELL*NYCELL
IBNDG2(3,NBNDG2) - 0

IBNDG2(4,NBNDG2) - 6
KAUXG2(IBNDG2(2,NBNDG2)) - IOR(KAUXG2(IBNDG2(2,NBNDG2)),KLOOOE)

NBCPG2(3.1) - NBNDG2 - 1
NBCPG2(3,2) - NBNDG2 + 1

C

C NORTHERN EDGE

C

DO 100 IBOUND - NXRECT-1, 2. -1

NBNDG2 - NBNDG2 + 1
IBNDG2(1,NBNDG2) - NXRECT*(NYRECT-1) + IBOUND
IBNDG2(2.NBNDG2) - ILVLG2(2,-1) + NXCELL*(NYCELL-1)+IBOUND
IBNDG2(3,NBNDG2) - ILVLG2(2,-1) + NXCELL*(NYCELL-l)+IBOUND-1
IBNDG2(4,NBNDG2) - 7
KAUXG2(IBNDG2(2,NBNDG2))- IOR(KAUXG2(IBNDG2(2,NBNDG2)) ,KLOOOC)

KAUXG2(IBNDG2(3,NBNDG2))- IOR(KAUXG2(IBNDG2(3.NBNDG2)),KLOOOC)
100 CONTINUE

C
C NORTHWESTERN CORNER
C

NBNDG2

IBNDG2(1.NBNDG2)
IBNDG2(2.NBNDG2)
IBNDG2(3.NBNDG2)
IBNDG2(4,NBNDG2)
KAUXG2(IBNDG2(2.NBNDG2))
NBCPG2(4.1)
NBCPG2(4.2)

C
C
C

- NBNDG2 + 
- NXRECT*(NYRECT-1) + 1
- ILVLG2(2,-1) + NXCELL*(NYCELL-1) + 
-O
-8

- IOR(KAUXG2(IND2(2NBG2(2,NBNDG2)).KLOOOD)
- NBNDG2 - 1
- NBNDG2 + I

WESTERN EDGE

DO 110 IBOUND - NYRECT-1,. 2. -1
NBNDG2 - NBNDG2 + 1

IBNDG2(1.NBNDG2) - NXRECT*(IBOUND-1) + 1
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IBNDG2(2,NBNDG2) - ILVLG2(2,-1) + NXCELL*(IBOUND-1) +1
IBNDG2(3,NBNDG2) - ILVLG2(2.-1) + NXCELL*(IBOUND-2) +1
IBNDG2(4.NBNDG2) 9

KAUXG2(IBNDG2(2, NBNDG2))- IOR(KAUXG2(IBNDG2(2,NBNDG2)) ,KL0009)

KAUXG2(IBNDG2(3, NBNDG2))- IOR(KAUXG2(IBNDG2 (3,NBNDG2)) ,KLOO09)
110 CONTINUE

C

C CORRECT THE NEIGHBOUR BOUNDARY CORNER POINTER OF THE FIRST NODE

C

NBCPG2(1,1) - NBNDG2
C
C INITIALIZE THE NEIGHBOUR CELL ARRAY
C

DO 120 K - 1, 4

DO 120 KN - 1, MNODG2

NEIBG2(K,KN) - O
120 CONTINUE

DO 130 LCELL -
KSW
KSE

KNE

KNW

NEIBG2( ,KNE)

NEIBG2(2,KNW)

NEIBG2(3,KSW)

NEIBG2(4,KSE)

CONTINUE

, NCELG2
- ICELG2(2,LCELL)

- ICELG2(4,LCELL)
- ICELG2(6,LCELL)

- ICELG2(8,LCELL)

- LCELL

- LCELL

- LCELL

- LCELL

FORMAT STATEMENTS

FORMAT(12I5)
FORMAT(4G16.7)

RETURN

END

G2LCAT

SUBROUTINE G2LCAT (IBOUND, XPNT, YPNT)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'JACOMN.INC'

DIMENSION RECT(2,6). DPENVA(6,MEQNFL)

C THIS SUBROUTINE DETERMINES IF THE TEST POINT (XPNT.YPNT) NEAR
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C THE BOUNDARY NODE 'IBOUND' BELONGS TO EITHER OF THE NEIGHOURING
C CELLS IONE OR ITWO. IF THE POINT IS NOT LOCATED IN THESE CELLS

C THEN AN ERROR CONDITION OCCURS OTHERWISE A QUADRATIC INTERPOLATION
C BASED ON THE CORNER NODES OF THE LOCATED CELL IS DONE AT THE

C GIVEN POINT.

C
C INITIALIZATION

C
IONE - IBNDG2(2,IBOUND)

ITWO - IBNDG2(3,IBOUND)
C
C CHECK CELL IONE

DO 10 IP - 1, 4

IP2 2*IP

RECT(1, IP) -
RECT(2,IP) -

CONTINUE

GEOMG2(1, ICELG2(IP2.IONE) )
GEOMG2(2, ICELG2(IP2,IONE) )

CALL INSIDE (IN, RECT, 4.

ICELL - IONE

XPNT, YPNT)

NOW CHECK CELL ITWO IF NEED BE

IF (IN .EQ. 0 .AND. ITWO .NE. O) THEN

DO 20 IP - 1, 4

IP2 - 2*IP

RECT(1.IP) - GEOMG2(1, ICELG2(I:

RECT(2,IP) - GEOMG2(2, ICELG2(I'

20 CONTINUE

CALL INSIDE (IN, RECT, 4, XPNT, YPl
ICELL - ITWO

ENDIF

P2, ITWO) )
P2,ITWO) )

NT)

ERROR CONDITION

IF (IN ..EQ. O) THEN

INODE - IBNDG2(1,IBOUND)

IEDGE - IBNDG2(4,IBOUND)

ITYPE - IBNDG2(5,IBOUND)
ZER1 - IONE

ZER2 ITWO

WRITE(JPRINT, 1000) IBOUND,
XPNT

KSW - ICELG2(2,IONE)

KSE - ICELG2(4,IONE)

KNE - ICELG2(6,IONE)

KNW - ICELG2(8,IONE)

XSW - GEOMG2(1,KSW)
XSE - GEOMG2(1.KSE)

XNE - GEOMG2(1,KNE)

XNW - GEOMG2(1,KNW)

YSW - GEOMG2(2,KSW)

YSE - GEOMG2(2,KSE)

YNE - GEOMG2(2,KNE)

INODE. IEDGE, ITYPE. IONE, ITWO.
YPNT
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YNW - GEOMG2(2,KNW)

ICELL - IONE

WRITE(JPRINT,1100) IONE, KSW, XSW, YSW, KSE, XSE, YSE,
KNE, XNE, YNE, KNW, XNW, YNW

IF (ITWO .NE. O) THEN

XC - 0.25*(XSW + XSE + XNE + XNW)
YC - 0.25*(YSW + YSE + YNE + YNW)

DC1 - SQRT( (XC-XPNT)**2 + (YC-YPNT)**2 )
KSW - ICELG2(2,ITWO)

KSE - ICELG2(4,ITWO)
KNE - ICELG2(8,ITWO)

KNW - ICELG2(8,ITWO)
XSW - GEOMG2(1,KSW)
XSE - GEOMG2(1,KSE)

XNE - GEOMG2(1,KNE)

XNW - GEOMG2(1,KNW)

YSW GEOMG2(2,KSW)

YSE - GEOMG2(2,KSE)

YNE - GEOMG2(2,KNE)

YNW - GEOMG2(2,KNW)

XC - O.25*(XSW + XSE + XNE + XNW)
YC - 0.25*(YSW + YSE + YNE + YNW)
DC2 - SQRT( (XC-XPNT)**2 + (YC-YPNT)**2 )
IF (DC2 .LT. DC1) ICELL - ITWO
WRITE(JPRINT,1200) ITWO, KSW, XSW, YSW, KSE, XSE, YSE,

KNE, XNE, YNE, KNW, XNW, YNW
ENDIF

CALL WARNIN (43,'G2LCAT','IONE ',ZER1,'ITWO ',ZER2,JPRINT,

'THE POINT IN QUESTION IS IN NEITHER OF THE TWO CELLS')
ENDIF

SET THE POINT WHERE INTERPOLATION IS DESIRED

RECT(1,5) - XPNT

RECT(2,5) - YPNT

DO 40 IN - 1i, NEQNFL

DO 30 IP - 1, 4

IP2 - 2*IP

DPENVA(IP,IN) -
CONTINUE

CONTINUE

DPENG2(IN, ICELG2(IP2,ICELL) )

INTERPOLATE THE VALUES

CALL INTERP (RECT, DPENVA, NEQNFL)

SET THE VALUES OF THE INTERPOLATED POINT

DO 50 IN - 1, NEQNFL

DPENJA(IN) - DPENVA(6,IN)

BIGWJA(IN) - O.
CONTINUE

FORMAT STATEMENTS
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C -

C
1000 FORMAT(5X,'IBOUND -'. I. 7X,'INODE -',IS,SX,'IEDGE ',I5/

1 5X,'ITYPE ',15, 7X,'IONE -',I6,5X,'ITWO -',I5/
2 65X'XPNT -',G10.3,2X.'YPNT -',GIO.3)

1100 FORMAT(5X.'IONE -',I5.3X,'SW',I17,2G14.5/
I 19X,'SE',I17,2G14.5 /
2 19X,'NE',I17,2G14.5 /
2 19X,'NW',I17,2G14.5 )

1200 FORMAT(6X,'ITWO -',I5,3X,'SW',I17,2G14.5/
i 19X,'SE',17,2G14.5 /
2 19X,'NE',I17,2G14.5 /
2 19X,'NW',117,2G14.5 )

C
RETURN

END

G2NODE

SUBROUTINE G2NODE

INCLUDE 'PRECIS.INC'
INCLUDE 'PARMV2.INC'
INCLUDE 'A2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

C THIS SUBROUTINE COLLECTS ALL THE NODES POINTERS (INTERRIOR AND
C BOUNDARY) MARKED FOR DELETE BY SUBROUTINE G2CLPO OR G2CLP1.
C NOTE THAT THE CELL POINTERS REMAIN THE SAME WHEREAS THE NODE
C POINTERS ARE REALLIGNED.

C
C COUNT THE NUMBER OF NODES TO BE DELETED AND INITIALIZE THE
C LIST MRKDA2 OF NODES NOT TO BE DELETED

C
NDEL 0

DO 10 NOLD - 1, NNODG2
MRKDA2(NOLD) - 0
IF (DPENG2(1,NOLD) .EQ. -99.) NDEL - NDEL + 

10 CONTINUE

IF (NDEL .EQ. O) RETURN

C DELETE ALL NODES MARKED FOR DELETE AND MOVE NODE INFORMATION

NNEW - 0

DO 50 NOLD - 1, NNODG2
IF (DPENG2(I,NOLD) .NE. -99.) THEN

NNEW - NNEW + 1
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MRKDA2(NOLD) NNEW

-IF (NOLD .NE. NNEW) THEN

C ADJUST THE GEOMETRY ARRAYS AT THE MOVED NODES

DO 20 J - 1, 2

GEOMG2(J,NNEW) - GEOMG2(J,NOLD)
20 CONTINUE

C ADJUST THE DEPENDENT VARIABLES
DO 30 J 1. NEQNFL

DPENG2(JNNEW) - DPENG2(J,NOLD)
30 CONTINUE
C ADJUST THE PRESSURE & TEMPERATURE

PRESG2(NNEW) - PRESG2(NOLD)
TEMPG2(NNEW) - TEMPG2(NOLD)

C ADJUST THE NEIGHBOUR-NODE-ARRAYS

DO 40 J 1, 4
NEIBG2(J.NNEW) NEIBG2(JNOLD)

40 CONTINUE

ENDIF

ENDIF

60 CONTINUE

C RESET NUMBER OF NODES

NNODG2 - NNEW

C DELETE ALL BOUNDARY CONDITION POINTERS MARKED FOR DELETE
C

NNEW - 0

DO 70 NOLD - 1, NBNDG2

MRKCA2(NOLD) 0
IF (IBNDG2(I,NOLD) .NE. -9) THEN

NNEW - NNEW + 

MRKCA2(NOLD) - NNEW
C MOVE POINTER INFORMATION

IF (NOLD .NE. NNEW) THEN

DO 60 J - 1, 
IBNDG2(J,NNEW) - IBNDG2(J,NOLD)

60 CONTINUE
ENDIF

ENDIF

70 CONTINUE

C

C RESET NUMBER OF BOUNDARY CONDITION POINTERS

C

NBNDG2 - NNEW

C STEP THROUGH ALL CELL POINTERS, WHICH POINT TOWARDS NODES,
C REALIGNING TO NEW NODE NUMBERS. THE NODE NUMBERS CORRESPONDING

C TO COARSE CELLS ARE NOT CHANGED

DO 90 ICELL - ILVLG2(1,O). NCELG2
C STEP THROUGH EACH CELL POINTER

DO 80 IPNT - 1, 9
IF (ICELG2(IPNT,ICELL) .NE. O) THEN

ICELG2(IPNT,ICELL) - MRKDA2(ICELG2(IPNT,ICELL))
ENDIF

80 CONTINUE
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90 CONTINUE

C STEP THROUGH ALL BOUNDARY CONDITION POINTERS, REALIGNING TO
C NEW NODE NUMBERS
C

DO 100 IBND - 1, NBNDG2

IF (IBNDG2(1,IBND).NE.-9)

I IBNDG2(1,IBND)=MRKDA2(IBNDG2(1,IBND))

100 CONTINUE

DO 120 IEDGE - 1. 4

DO 110 IBND - . 2
NBCPG2(IEDGE.IBND)

110 CONTINUE

120 CONTINUE

- MRKCA2(NBCPG2(IEDGE, IBND))

RETURN

END

G2PRNT

SUBROUTINE G2PRNT (IOPT)

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'G2COMN.INC'

'HEXCOD.INC'

'IOCOMN.INC'

C THIS SUBROUTINE PRINTS ALL ARRAY VARIABLES.
C IOPT SELECTS WHICH TABLES ARE TO BE PRINTED:

C

B.CODE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

IOPT

0
1
2

3

4
6
6
7

8

9

10
11
12
13

14
15

NODE CELL BNDY

X X X
X X

X X
X

X X
X

X

X X X
X X

X X
X

X X
X

X
ALL COMPACT FORM

C
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IF (OPT .EQ. 1i) GOTO 160

C
C ---- ____ ---

C NODE VARIABLES

C --------- ---

C WRITE OUT NODE ARRAYS

IF (IAND(IOPT,KLOOO1) .EQ. O) THEN

C CONDITION IS MET IF IOPT - 0,2.4.6,8,10,12,14

CALL HEADER(JPRINT,'NODE VARIABLES-- GEOMETRY AND NEIGHBOUR',

1 MTITLE)

WRITE(JPRINT,10)

10 FORMAT(7X,'NODE ',9X,'GEOMl',IOX,'GEOM2',11X,

1 'NBSW ',2X,'NBSE ', 2X,'NBNE ', 2X,'NBNW')

DO 30 INODE - 1, NNODG2

WRITE(JPRINT,20) INODE, (GEOMG2(K,INODE) ,K-1,2),

1 (NEIBG2(K,INODE),K-1,4)

20 FORMAT(1X,(I9,6X).2G15.8,2X,4I7)

30 CONTINUE

CALL HEADER(JPRINT, 'DEPENDENT NODE VARIABLES',MTITLE)

WRITE (JPRINT, 40)

40 FORMAT(7X,'NODE',IOX, 'DEPENDENT VARIABLES')

NT - MAX (8, NEQNFL)

DO 60 INODE - 1, NNODG2

WRITE(JPRINT,60) INODE, (DPENG2(K.INODE).K- ,NEQNFL)

50 FORMAT(1X,(I9,6X),8G14.6)
60 CONTINUE

ENDIF
C

C -----CELL VARIABLES

C IE OUT CELL AR-----RAYS

IF (IAND(IOPT,KLOO02) .EQ. O) THEN

C CONDITION IS MET IF IOPT - 0,1,4,6,8,9,12,13

CALL HEADER(JPRINT.'CELL VARIABLES',MTITLE)

WRITE(JPRINT, 70)

70 FORMAT(6X,'CELL ',6X,'CENT ',.X,'SWEST',6X,'SOUTE',6X.'SEAST',

I 5X,'EAST '.6X,'NEAST',6X,'NORTH',6X,'NWEST',.X,'WEST ',

2 6X, 'SUPER' .7X, 'AUXIL')
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DO 90 ICELL - 1, NCELG2

WRITE(JPRINT,80) ICELL,

1 - (ICELG2(K,ICELL) ,K1,10),KAUXG2(ICELL)

FORMAT(iX,11(I7,3X),ZlO )
CONTINUE

ENDIF

BOUNDARY INFORMATION

WRITE OUT BOUNDARY CONDITION ARRAYS

IF (IAND(IOPT,KLOO04) .EQ. O) THEN

CONDITION IS MET IF IOPT = 0,1,2,3,8,9,10,11

BOUNDARY CONDITION ARRAYS

CALL HEADER(JPRINT, 'BOUNDARY CONDITION INFORMATION' ,MTITLE)

WRITE(JPRINT,100)

100 FORMAT(5X,'BOUND',5X,'NODE ',5X,'CELLi',5X,'CELL2',

1 EX,'EDGE ',5X,'TYPE')

DO 120 IBOUND - 1, NBNDG2

WRITE(JPRINT,110) IBOUND, (IBNDG2(K,IBOUND),K=1,5)

110 FORMAT(IX,6(I7,3X))

120 CONTINUE

ENDIF

C

C AUXILIARY INFORMATION
C

IF (IAND(IOPTKL08) .EQ. 0) THEN

C CONDITION IS MET IF IOPT 0,1,2,3,4,5,8,7

C MULTIPLE-GRID-LEVEL ARRAY

WRITE(JPRINT.130)

130 FORMAT(//' MULTIPLE-GRID-LEVEL INFORMATION:'//

1 6X,'LEVEL',4X,'START',6X,'END',5X,'# CELLS')

DO 150 IMGL - -MLVLG2, MLVLG2

WRITE(JPRINT,140) IMGL, (ILVLG2(K,IMGL),Ks1,3)

140 FORMAT(iX,4(I7,3X))

160 CONTINUE

ENDIF

RETURN

160 CONTINUE
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WRITE(JPRINT.*) ' NNODG2 - ',NNODG2

WRITg(JPRINT. 170)

170 FORMAT(4X,'CELL ',2X,'CENT ',2X,'SWEST',2X,'SOUTH',2X,'SEAST',

1 2X,'EAST '.2X.'NEAST',2X,'NORTH',2X.'NWEST',2X,'WEST ',
2 2X,'SUPER',6X,'AUXIL',2X,'NBSW ',2X,'NBSE ',2X,'NBNE '.
3 2X,'NBN '2X.'GEOMi')

180
190

DO 190 ICELL - 1, NCELG2

WRITE(JPRINT,180) ICELL,(ICELG2(K,ICELL) ,K-1,1O),

1 tKAUXG2(ICELL), (NEIBG2(K,ICELL),K1, 4),GEOMG2(I, ICELL)

FORMAT(11(2XI5),ZIO,,4(2X,I5).FO.3)
CONTINUE

END

G2RESO

SUBROUTINE G2RESO

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'PRCOMN.INC'

CHARACTER RECORD*132

C THIS SUBROUTINE WRITES THE FINAL RESULTS FOR THE UNSTEADY

C FLOW PROBLEMS

WRITE(JOUTAL, 1000)

WRITE(JOUTAL,1100) NITRE2, NNODG2, NCELG2, NBNDG2, NCELA2

NT - MIN (8,. NEQNFL)
LT - O

IF (NEQNFL .GT. NT) LT - NEQNFL - NT

RECORD - ' '
RECORD( 2: 5) - 'NODE'

RECORD( 9:18) - 'X-DISTANCE'

RECORD(20:29) - 'Y-DISTANCE'
IBG - 32

DO 10 N - 1. NT
IED - IBG + 4

RECORD(IBG:IED) - 'DEPEN'
IED - IED + 1
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IBG - IED + 8
WRrTE(RECORD(IED:IED), 1200) N

10 CONTINUE

WRITE(JOUTAL, 1300) RECORD

DO 20 I 1, NNODG2

WRITE(JOUTAL,1400) I,(GEOMG2(J, I),J=1,2), (DPENG2(J,I),J=l, NT)

20 CONTINUE

IF (LT .NE. O) THEN

IBG - 33
RECORD(IBG:132) - '
DO 30 N - 1, NT

IED - IBG + 4
RECORD(IBG:IED) - 'DEPEN'

IED = IED + 1
IBG - IED + 7
WRITE(RECORD(IED: IED), 1500) N

30 CONTINUE

WRITE(JOUTAL,1600) RECORD

DO 40 I = 1, NNODG2
WRITE(JOUTAL,1400) I, (GEOMG2(J.I),J=1,2),

1 (DPENG2 (J,I),J=NT+1, NENFL)

40 CONTINUE

ENDIF

WRITE(JOUTAL, 1700)

WRITE(JOUTAL, 1800)

OPEN (UNIT=JDUMY1, STATUS='SCRATCH')

DO 60 I 1, NNODG2

CALL E2PRMT (I,3)
STAGHS (BEPSPR + PRESPR)/RHORPR
WRITE(JOUTAL,1400) I. (GEOMG2(J,I),J=1,2), UCOMPR, VCOMPR,

I TEMPPR, PRESPR, AMCHPR, GAMAPR. BEPSPR, STAGHS

WRITE(JDUMY1,1400) I, (GEOMG2(J,I),J=-,2),

1 (YSPEPR(IS), IS=1, NSPECH)
50 CONTINUE

REWIND (JDUMY1)
RECORD 

RECORD( 2: 5) - 'NODE'
RECORD( 9:18) - 'X-DISTANCE'

RECORD(20:29) - 'Y-DISTANCE'

IBG = 33

NT = MIN (12, NSPECH)

DO 60 N 1. NT
IED = IBG + 4

RECORD(IBG:IED)" 'FRACT'
IED = IED + 1
IBG - IED + 5

WRITE(RECORD(IED: IED) ,1200) N

60 CONTINUE
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WRITE(JOUTAL, 1900) RECORD

DO 70 I - 1, NNODG2
READ (JDUMY1,1400) K,(GEOMG2(J,I),J -1,2 ).

1 (YSPEPR(IS ),ISi1,NSPECH)

WRITE(JOUTAL,1400) K,(GEOMG2(J,I),J =1.2 ),
i (YSPEPR(IS ),IS=1,NSPECH)

70 CONTINUE

C
C
C FORMAT STATEMENTS
C
C
1000 FORMAT('1'//)
1100 FORMAT(SX,'TOTAL NUMBER OF ITERATIONS = ',IS,1OX,

1 5X,'TOTAL NUMBER OF NODES - ',I /
2 5X,'TOTAL NUMBER OF CELLS = '.I5 ,1OX.

3 6X.'TOTAL NUMBER OF BOUNDARY NODES - ',IS /
4 5X,'TOTAL NUMBER OF CEWIC CELLS -',I5 /)

1200 FORMAT(I1)

1300 FORMAT(/' 1',1OX,'GEOMETRY AND DEPENDENT VARIABLES'//A130)
1400 FORMAT (I6,lX,2FlO.5,8G13.6)

1500 FORMAT(I2)

1600 FORMAT(/'l','CONT'//,A132)

1700 FORMAT(/' ',lOX,'PRIMITIVE VARIABLES'/)

1800 FORMAT(2X, 'NODE', 1X, 'X-DISTANCE', 2X,'Y-DISTANCE', 2X,
1 'UCOMPON', 6X. 'VCOMPON', 6X, 'TEMPER', X. 'PRESSURE', X,
2 'MACH NO.', 4X. 'GAMMA', 7X, 'T. ENERGY', 3X, 'STAG ENTH'/ )

1900 FORMAT(/'',IOX, 'CONCENTRATION VARIABLES'//A130)

RETURN

END

G2SMOT

SUBROUTINE G2SMOT

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

DIMENSION DPLEFT(MEQNFL), DPRITE(MEQNFL)
DIMENSION DPBOT (MEQNFL), DPTOP (MEQNFL)

C DATA SMALLP /.E-10/, SMALLN /-1.E-10/

DATA SMALLP /1.E-3/, SMALLN /-1.E-3/

C THIS SUBROUTINE CORRECTS THE CONSERVATIVE VARIABLES AT A GIVEN
C NODE 'INODE', IF THERE ARE OSCILLATIONS AT A NODE. THE OSCILL-
C ATIONS ARE DEFINED TO BE THE ONES WHICH CAUSE DISCONTINOUS
C FIRST DIFFERENCES AT A NODE. IT IS HOPED THAT SUCH A SITUATION
C ONLY OCCURS AT A FEW NODES.
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c******* *** ** *************** **************************************

DO 100 INODE - 1, NNODG2

NB - NEIBG2(1,INODE)

NB2 - NEIBG2(2,INODE)

NB3 - NEIBG2(3,INODE)

NB4 - NEIBG2(4,INODE)

C THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

c IF (NB1 .EQ. 0 .AND. NB4 .EQ. O) GOTO 100

c IF (NB2 .EQ. 0 .AND. NB3 .EQ. O) GOTO 100

IF (NBI .EQ. 0 .or. NB2 .EQ. 0 .or.

I NB3 .EQ. 0 .or. NB4 .EQ. 0 ) GOTO 100

C SETUP THE LEFT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN

NBLEFT - NB1

IPLEFT - 8

ELSE

NBLEFT - NB4

IPLEFT - 2

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.

C
IF (NB1 .EQ. NB4) THEN

IPLEFT - 9

IF (ICELG2(IPLEFT,NBLEFT) .EQ. O) THEN

INLFT1 - ICELG2(2,NBLEFT)

INLFT2 - ICELG2(8,NBLEFT)

XLEFT - O.5*(GEOMG2(1,INLFT1)+GEOMG2(1,INLFT2))

YLEFT - 0.5*(GEOMG2(2,INLFT1)+GEOMG2(2.INLFT2))

DO 10 IQ - 1, NEQNFL
DPLEFT(Iq) - 0.5*(DPENG2(IQ,INLFT1)+DPENG2(IQ,INLFT2))

10 CONTINUE

GOTO 30

ENDIF

ENDIF

C COMPUTE THE LEFT NODE, DISTANCES AND DP VARIABLES

INLEFT - ICELG2(IPLEFT,NBLEFT)

XLEFT - GEOMG2(1,INLEFT)

YLEFT - GEOMG2(2,INLEFT)

DO 20 IQ - 1. NEQNFL

DPLEFT(IQ) - DPENG2(IQ,INLEFT)
20 CONTINUE

30 CONTINUE

C SETUP THE RIGHT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB2 .NE. O) THEN
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NBRITE - NB2

IPRITE - 6
ELSE

NBRITE - NB3

IPRITE - 4

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.

C
IF (NB2 .EQ. NB3) THEN

IPRITE - 5
IF (ICELG2(IPRITE,NBRITE) .EQ. O) THEN

INRIT - ICELG2(4,NBRITE)

INRIT2 - ICELG2(6.NBRITE)

XRITE - 0.5*(GEOMG2(1,INRITI)+GEOMG2(1,INRIT2))

YRITE - 0.5*(GEOMG2(2,INRIT1)+GEOMG2(2,INRIT2))

DO 40 IQ - 1, NEQNFL

DPRITE(IQ) - O.5*(DPENG2(Iq,INRIT1)+DPENG2(IQ,INRIT2))

40 CONTINUE

GOTO 60

ENDIF

ENDIF

C COMPUTE THE RIGHT NODE, DISTANCES AND DP VARIABLES

INRITE ICELG2(IPRITE,NBRITE)

XRITE GEOMG2(1.INRITE)

YRITE - GEOMG2(2,INRITE)

DO 0 IQ - 1. NEQNFL

DPRITE(IQ) - DPENG2(IQ,INRITE)

60 CONTINUE

60 CONTINUE

C NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDLEFT - DPENG2(1,INODE) - DPLEFT(1)

DDRITE = DPENG2(1,INODE) - DPRITE(1)

IF (DDLEFT .GT. SMALLP .AND. DDRITE .GT. SMALLP) GOTO 70

IF (DDLEFT .LT. SMALLN .AND. DDRITE .LT. SMALLN) GOTO 70

GO TO 100

70 XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

SNODE2 - (XNODE-XLEFT)**2 + (YNODE-YLEFT)**2

SRITE2 - (XRITE-XLEFT)**2 + (YRITE-YLEFT)**2

RATIO - SQRT(SNODE2/SRITE2)

C
C DO THE INTERPOLATION

C
DO 80 IQ - 1. NEQNFL

DPHERE - DPLEFT(IQ) + (DPRITE(IQ) -DPLEFT(IQ))*RATIO
DPENG2(IQ,INODE) - 0.5*(DPHERE + DPENG2(IQ,INODE))

80 CONTINUE
C
C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.
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C

CALL E2PRMT(INODE.1)

100 CONTINUE

C NOW REPEAT THE WHOLE PROCESS FOR Y-AXIS

DO 200 INODE - 1, NNODG2

NB1 - NEIBG2(1.INODE)

NB2 - NEIBG2(2,INODE)

NB3 - NEIBG2(3,.INODE)

NB4 - NEIBG2(4.INODE)

C THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

c IF (NB1 .EQ. 0 .AND. NB2 .EQ. O) GOTO 200
IF (NB3 .EQ. 0 .AND. NB4 .EQ. O) GOTO 200

IF (NB1 .EQ. 0 .or. NB2 .EQ. 0 .or.

1 NB3 .EQ. 0 .or. NB4 .EQ. 0 ) GOTO 200

C SETUP THE BOTTOM NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN

NBBOT - NB1

IPBOT 4

ELSE

NBBOT - NB2

IPBOT 2

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB1 .EQ. NB2) THEN

IPBOT 3

IF (ICELG2(IPBOT.NBBOT) .EQ. O) THEN

INBOTi - ICELG2(2,NBBOT)

INBOT2 - ICELG2(4,NBBOT)
XBOT - 0.6*(GEOMG2(1,.INBOTI)+GEOMG2(.INBOT2))

YBOT - 0.5*(GEOMG2(2.INBOT1)+GEOMG2(2,INBOT2))

DO 110 IQ - 1. NEQNFL
DPBOT(Iq) - 0.6*(DPENG2(IQ,INBOT1)+DPENG2(IQ.INBOT2))

110 CONTINUE

GOTO 130

ENDIF

ENDIF

C COMPUTE THE BOTTOM NODE, DISTANCES AND DP VARIABLES

INBOT - ICELG2(IPBOT,NBBOT)

XBOT - GEOMG2(1,INBOT)

YBOT - GEOMG2(2,INBOT)

DO 120 IQ - 1, NEQNFL
DPBOT(IQ) - DPENG2(IQ,INBOT)

120 CONTINUE

130 CONTINUE
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SETUP THE TOP NEIGHBOUR CELL AND ITS NODE POINTER

If (NB3 .NE. O) THEN
NBTOP - NB3

IPTOP 8

ELSE

NBTOP - NB4

IPTOP - 6
ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB3 .EQ. NB4) THEN
IPTOP 7

IF (ICELG2(IPTOP,NBTOP) .EQ. O) THEN

INTOPI - ICELG2(6,NBTOP)

INTOP2 - ICELG2(8,NBTOP)

XTOP - 0.5*(GEOMG2(1,INTOP1)+GEOMG2(1,INTOP2))

YTOP - O.*(GEOMG2(2,INTOPI)+GEOMG2(2,INTOP2))

DO 140 IQ - 1, NEQNFL

DPTOP(IQ) - 0.5*(DPENG2(IQ,INTOP1)+DPENG2(IQ,INTOP2))
140 CONTINUE

GOTO 160

ENDIF

ENDIF

C COMPUTE THE TOP NODE, DISTANCES AND DP VARIABLES

INTOP - ICELG2(IPTOP.NBTOP)

XTOP - GEOMG2(1,INTOP)

YTOP - GEOMG2(2.INTOP)

DO 150 IQ - 1, NEQNFL

DPTOP(IQ) - DPENG2(IQ,INTOP)

150 CONTINUE

160 CONTINUE

C NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDBOT - DPENG2(1,INODE) - DPBOT(1)

DDTOP - DPENG2(1,INODE) - DPTOP(1)

IF (DDBOT .GT. SMALLP .AND. DDTOP .GT. SMALLP) GOTO 170

IF (DDBOT .LT. SMALLN .AND. DDTOP .LT. SMALLN) GOTO 170
GO TO 200

170 XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

SNODE2 - (XNODE-XBOT)**2 + (YNODE-YBOT)**2
STOP2 - (XTOP-XBOT)**2 + (YTOP-YBOT)**2
RATIO - SQRT(SNODE2/STOP2)

C
C DO THE INTERPOLATION

C
DO 180 IQ - 1, NEQNFL

DPHERE - DPBOT(IQ) + (DPTOP(IQ) -DPBOT(IQ))*RATIO

DPENG2(IQ,INODE) - 0.5*(DPHERE + DPENG2(IQ,INODE))

895

C



CONTINUE

NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.

CALL E2PRMT(INODE,1)
200 CONTINUE

RETURN
END

G3SMOT

SUBROUTINE G3SMOT

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'TICOMN.INC'

DIMENSION DPLEFT(MEQNFL), DPRITE(MEQNFL)

DIMENSION DPBOT (MEQNFL), DPTOP (MEqNFL)

DATA SMALLP /1.E-4/, SMALLN /-1.E-4/

C DATA SMALLP /1.E-3/, SMALLN /-i.E-3/

C THIS SUBROUTINE CORRECTS THE CONSERVATIVE VARIABLES AT A GIVEN

C NODE 'INODE', IF THERE ARE OSCILLATIONS AT A NODE. THE OSCILL-
C ATIONS ARE DEFINED TO BE THE ONES WHICH CAUSE DISCONTINOUS

C FIRST DIFFERENCES AT A NODE. IT IS HOPED THAT SUCH A SITUATION

C ONLY OCCURS AT A FEW NODES.

IF (KADPTI .LE. NEQBAS .OR. KADPTI .GT. NEQNFL) RETURN

DO 100

NB1

NB2

NB3

NB4

1

INODE - 1, NNODG2
- NEIBG2(1,INODE)

- NEIBG2(2,INODE)

- NEIBG2(3,INODE)

- NEIBG2(4,INODE)

THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

IF (NBI .EQ. 0 .AND. NB4 .EQ. O) GOTO 100

IF (NB2 .EQ. 0 .AND. NB3 .EQ. O) GOTO 100
IF (NBI .EQ. 0 .or. NB2 .EQ. 0 .or.

NB3 .EQ. 0 .or. NB4 .EQ. 0 ) GOTO 100

SETUP THE LEFT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN
NBLEFT - NB1
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IPLEFT - 8

ELSE

-NBLEFT - NB4
IPLEFT - 2

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.

C
IF (NB1 .EQ. NB4) THEN

IPLEFT - 9
IF (ICELG2(IPLEFTNBLEFT) .EQ. O) THEN

INLFT1 - ICELG2(2,NBLEFT)

INLFT2 - ICELG2(8,NBLEFT)

XLEFT - 0.5*(GEOMGO2(1INLFT1)+GEOMG2(1,INLFT2))

YLEFT 0.5*(GEOMG2(2,INLFTI)+GEOMG2(2,INLFT2))

DO 10 IQ - NEQBAS+1, NEQNFL

DPLEFT(IQ) - O.5*(DPENG2(IQ,INLFT1)/DPENG2(1,INLFT1)

I +DPENG2(IQ,INLFT2)/DPENG2(1, INLFT2))

10 CONTINUE

GOTO 30

ENDIF
ENDIF

C COMPUTE THE LEFT NODE, DISTANCES AND DP VARIABLES

INLEFT - ICELG2(IPLEFT,NBLEFT)

XLEFT - GEOMG2(1,INLEFT)

YLEFT - GEOMG2(2,INLEFT)

DO 20 IQ - NEQBAS+1. NEQNFL

DPLEFT(IQ) DPENG2(IQ.,INLEFT)/DPENG2(1INLEFT)

20 CONTINUE

30 CONTINUE

C SETUP THE RIGHT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB2 .NE. O) THEN

NBRITE = NB2
IPRITE - 6

ELSE

NBRITE - NB3
IPRITE - 4

ENDIF

C
C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.

C

IF (NB2 .EQ. NB3) THEN

IPRITE -
IF (ICELG2(IPRITE,NBRITE) .EQ. O) THEN

INRIT1 - ICELG2(4,NBRITE)

INRIT2 - ICELG2(6,NBRITE)

XRITE - 0.5*(GEOMG2(1,INRIT1)+GEOMG(1,INRIT2))
YRITE - 0.6*(GEOMG2(2,INRIT1)+GEOMG2(2.INRIT2))
DO 40 IQ - NEqBAS+1, NEQNFL

DPLEFT(IQ) - 0.65*(DPENG2(IINRIT1)/DPENG2(1.INRITI)

+DPENG2(I,INIT2)/DPENG2(1INRIT2)/DPENG2(1,INRIT2))
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40 CONTINUE

- GOTO 60

'ENDIF

ENDIF

C COMPUTE THE RIGHT NODE, DISTANCES AND DP VARIABLES

INRITE - ICELG2(IPRITE, NBRITE)

XRITE - GEOMG2(1.INRITE)

YRITE - GEOMG2(2,INRITE)

DO 60 IQ - NEQBAS+1, NEQNFL

DPRITE(IQ) - DPENG2(IQ,INRITE)/DPENG2(1,INRITE)
50 CONTINUE

60 CONTINUE

C NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDLEFT - DPENG2(KADPTI,INODE)/DPENG2(1.INODE) -

1 DPLEFT(KADPTI)

DDRITE - DPENG2(KADPTI,INODE)/DPENG2(1.INODE) -

1 DPRITE(KADPTI)

IF (DDLEFT .GT. SMALLP .AND. DDRITE .GT. SMALLP) GOTO 70

IF (DDLEFT .LT. SMALLN .AND. DDRITE .LT. SMALLN) GOTO 70
GO TO 100

70 XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

SNODE2 - (XNODE-XLEFT)**2 + (YNODE-YLEFT)**2

SRITE2 - (XRITE-XLEFT)**2 + (YRITE-YLEFT)**2

RATIO - SQRT(SNODE2/SRITE2)
C

C DO THE INTERPOLATION
C

DO 80 IQ - NEqBAS+1, NEQNFL

DPINTR - DPLEFT(IQ) + (DPRITE(IQ) -DPLEFT(IQ))*RATIO
DPHERE - DPENG2(IQ,INODE)/DPENG2(1, INODE)

DPENG2(IQ,INODE) - 0.5*(DPHERE+DPINTR)*DPENG2(1 ,INODE)

80 CONTINUE

C

C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.

C
CALL E2PRMT(INODE,1)

100 CONTINUE

C NOW REPEAT THE WHOLE PROCESS FOR Y-AXIS

DO 200 INODE - 1. NNODG2

NB1 - NEIBG2(1,INODE)

NB2 - NEIBG2(2.INODE)

NB3 - NEIBG2(3,INODE)

NB4 - NEIBG2(4,INODE)

C THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS
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c IF (NB .EQ. 0 .AND. NB2 .EQ. O) GOTO 200

c If (NB3 .EQ. 0 .AND. NB4 .EQ. O) GOTO 200
IF (NB1 .EQ. 0 .or. NB2 .EQ. 0 .or.

1 NB3 .EQ. 0 .or. NB4 .EQ. 0 ) GOTO 200

C SETUP THE BOTTOM NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN

NBBOT - NB1

IPBOT - 4

ELSE

NBBOT - NB2

IPBOT - 2

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NBi .EQ. NB2) THEN

IPBOT - 3

IF (ICELG2(IPBOT,NBBOT) .EQ. O) THEN

INBOT1 - ICELG2(2,NBBOT)

INBOT2 - ICELG2(4,NBBOT)

XBOT - 0.5*(GEOMG2(1,INBOT1)+GEOMG2( ,INBOT2))
YBOT - 0.5*(GEOMG2(2,INBOTl)+GEOMG2(2.INBOT2))

DO 110 IQ - NEQBAS+I, NEQNFL

DPBOT(IQ) - 0.5*(DPENG2(IQ.INBOT1)/DPENG2(1,INBOTl)

1 +DPENG2(IQ,INBOT2)/DPENG2(1,INBOT2))
110 CONTINUE

GOTO 130

ENDIF

ENDIF

C COMPUTE THE BOTTOM NODE. DISTANCES AND DP VARIABLES

INBOT - ICELG2(IPBOT,NBBOT)

XBOT - GEOMG2(l.INBOT)

YBOT - GEOMG2(2,INBOT)
DO 120 IQ - NEQBAS+1, NEQNFL

DPBOT(IQ) - DPENG2(IQ,INBOT)/DPENG2(1,INBOT)

120 CONTINUE

130 CONTINUE

C SETUP THE TOP NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB3 .NE. O) THEN
NBTOP - NB3
IPTOP 8

ELSE
NBTOP - NB4

IPTOP - 6
ENDIF

C
C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.

C
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1
140

C

IFr (NB3 .EQ. NB4) THEN

IPTOP - 7
IF (ICELG2(IPTOP.NBTOP) .EQ. O) THEN

INTOP1 ICELG2(6,NBTOP)

INTOP2 - ICELG2(8,NBTOP)

XTOP - 0.5*(GEOMG2(1,INTOP1)+GEOMG2(1,INTOP2))

YTOP - 0.5*(GEOMG2(2,INTOPI)+GEOMG2(2,INTOP2))

DO 140 IQ - NEQBAS+1, NEQNFL

DPTOP(IQ) 0.65*(DPENG2(IQ.INTOP1)/DPENG2(1,INTOP1)

+DPENG2(IQ,INTOP2)/DPENG2(1,INTOP2))

CONTINUE

GOTO 160
ENDIF

ENDIF

COMPUTE THE TOP NODE, DISTANCES AND DP VARIABLES

INTOP

XTOP

YTOP

- ICELG2(IPTOP,NBTOP)

- GEOMG2(1,INTOP)

- GEOMG2(2.INTOP)

DO 160 IQ - NEQBAS+1, NEQNFL

DPTOP(IQ) - DPENG2(IQ,INTOP)/DPENG2(1,INTOP)

150 CONTINUE

160 CONTINUE

C NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDBOT - DPENG2(KADPTI,INODE)/DPENG2(1.INODE) -

1 DPBOT(KADPTI)

DDTOP - DPENG2(KADPTI,INODE)/DPENG2(1,INODE) -

1 DPTOP(KADPTI)

IF (DDBOT .GT. SMALLP .AND. DDTOP .GT. SMALLP) GOTO 170

IF (DDBOT .LT. SMALLN .AND. DDTOP .LT. SMALLN) GOTO 170

GO TO 200

170 XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

SNODE2 - (XNODE-XBOT)**2 + (YNODE-YBOT)**2

STOP2 " (XTOP-XBOT)**2 + (YTOP-YBOT)**2

RATIO - SQRT(SNODE2/STOP2)
C
C DO THE INTERPOLATION

C

DO 180 IQ - NEQBAS+I, NEQNFL

DPINTR - DPBOT(IQ) + (DPTOP(IQ) -DPBOT(IQ))*RATIO

DPHERE - DPENG2(IQ,INODE)/DPENG2(1, INODE)

DPENG2(IQ,INODE) - 0.6*(DPHERE+DPINTR)*DPENG2(1,INODE)

180 CONTINUE

C

C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.

C

CALL E2PRMT(INODE,1)
200 CONTINUE

RETURN
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END

G4SMOT

SUBROUTINE G4SMOT(IT)

INCLUDE 'PRECIS.INC'
INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

DIMENSION DPLEFT(MEQNFL), DPRITE(MEQNFL)

DIMENSION DPBOT (MEQNFL), DPTOP (MEQNFL)

DATA SMALLP /.E-10/, SMALLN /-1.E-10/

C DATA SMALLP /1.E-3/, SMALLN /-1.E-3/

C THIS SUBROUTINE CORRECTS THE CONSERVATIVE VARIABLES AT A GIVEN

C NODE 'INODE', IF THERE ARE OSCILLATIONS AT A NODE. THE OSCILL-

C ATIONS ARE DEFINED TO BE THE ONES WHICH CAUSE DISCONTINOUS

C FIRST DIFFERENCES AT A NODE. IT IS HOPED THAT SUCH A SITUATION

C ONLY OCCURS AT A FEW NODES.

DO 100 INODE - 1. NNODG2

NB1 - NEIBG2(1.INODE)

NB2 - NEIBG2(2.INODE)

NB3 NEIBG2(3.INODE)

NB4 NEIBG2(4,INODE)

C THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

IF (NB1 .EQ. 0 .AND. NB4 .EQ. O) GOTO 100

IF (NB2 .EQ. 0 .AND. NBS .EQ. O) GOTO 100

c IF (NB .EQ. 0 .or. NB2 .EQ. 0 .or.
c 1 NB3 .EQ. 0 .or. NB4 .EQ. 0 ) GOTO 100

C SETUP THE LEFT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NBI .NE. O) THEN

NBLEFT - NB1

IPLEFT - 8

ELSE

NBLEFT NB4

IPLEFT - 2
ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB1 .EQ. NB4) THEN
IPLEFT - 9

IF (ICELG2(IPLEFT,NBLEFT) .EQ. O) THEN
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INLFTI - ICELG2(2.NBLEFT)

- INLFT2 - ICELG2(8,NBLEFT)

-XLEFT - 0.5*(GEOMG2(1,INLFT1)+GEOMG2(1.INLFT2))

YLEFT - 0.5*(GEOMG2(2,INLFT1)+GEOMG2(2.INLFT2))

DO 10 IQ 1, NEQNFL

DPLEFT(IQ) m 0.6*(DPENG2(IQ.INLFT1)+DPENG2(IQ,INLFT2))
10 CONTINUE

GOTO 30

ENDIF

ENDIF

C COMPUTE THE LEFT NODE, DISTANCES AND DP VARIABLES

INLEFT - ICELG2(IPLEFT,NBLEFT)

XLEFT - GEOMG2(1,INLEFT)

YLEFT - GEOMG2(2,INLEFT)

DO 20 IQ - 1, NEQNFL

DPLEFT(IQ) - DPENG2(IQ,INLEFT)

20 CONTINUE

30 CONTINUE

C SETUP THE RIGHT NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB2 .NE. O) THEN

NBRITE - NB2

IPRITE - 6

ELSE

NBRITE - NB3

IPRITE 4

ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB2 .EQ. NB3) THEN
IPRITE - 5

IF (ICELG2(IPRITE.NBRITE) .EQ. O) THEN

INRITI - ICELG2(4,NBRITE)

INRIT2 - ICELG2(6.NBRITE)

XRITE - 0.6*(GEOMG2(l. INRITI)+GEOMG2(1.INRIT2))

YRITE - 0.56*(GEOMG2(2.INRIT1)+GEOMG2(2,INRIT2))
DO 40 IQ - 1, NEQNFL

DPRITE(IQ) - 0.6*(DPENG2(IQ,INRIT1)+DPENG2(IQ,INRIT2))
40 CONTINUE

GOTO 60

ENDIF

ENDIF

C COMPUTE THE RIGHT NODE, DISTANCES AND DP VARIABLES

INRITE - ICELG2(IPRITENBRITE)

XRITE - GEOMG2(1,INRITE)

YRITE - GEOMG2(2,INRITE)

DO 50 IQ - 1, NEQNFL

DPRITE(IQ) - DPENG2(IQ,INRITE)
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CONTINUE

CONTINUE

NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDLEFT - DPENG2(IT,INODE) - DPLEFT(IT)

DDRITE - DPENG2(IT,INODE) - DPRITE(IT)

IF (DDLEFT .GT. SMALLP .AND. DDRITE .GT.

IF (DDLEFT .LT. SMALLN .AND. DDRITE .LT.

GO TO 100

SMALLP) GOTO 70

SMALLN) GOTO 70

XNODE 

YNODE -
SNODE2 -
SRITE2 -
RATIO -

GEOMG2(1,INODE)
GEOMG2(2.INODE)

(XNODE-XLEFT)**2 + (YNODE-YLEFT)**2
(XRITE-XLEFT)**2 + (YRITE-YLEFT)**2

SQRT(SNODE2/SRITE2)

C
C DO THE INTERPOLATION

C
DO 80 IQ - 1, NEQNFL

DPHERE * DPLEFT(IQ) + (DPRITE(IQ) -DPLEFT(IQ))*RATIO
DPENG2(Iq,INODE) 0.6*(DPHERE + DPENG2(IQ,INODE))

80 CONTINUE

C
C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.

C
CALL E2PRMT(INODE,1)

100 CONTINUE

C NOW REPEAT THE WHOLE PROCESS FOR Y-AXIS

DO 200
NB1

NB2

NB3

NB4

INODE - 1. NNODG2

- NEIBG2(1,INODE)

- NEIBG2(2,INODE)

- NEIBG2(3,INODE)

- NEIBG2(4,INODE)

THE CORRECTION IS NOT APPLIED AT THE CORNER BOUNDARY CELLS

IF (NB1 .EQ. 0 .AND.

IF (NB3 .EQ. 0 .AND.

IF (NB1 .EQ. 0 .or.

NB3 .EQ. 0 .or.

NB2
NB4

NB2

NB4

.EQ. O) GOTO 200

.EQ. O) GOTO 200
.EQ. 0 .or.
.EQ. O ) GOTO

SETUP THE BOTTOM NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB1 .NE. O) THEN

NBBOT NB1

IPBOT - 4

ELSE

NBBOT - NB2

IPBOT - 2
ENDIF

FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
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IF (NB1 .EQ. NB2) THEN

'IPBOT - 3

-F (ICELG2(IPBOTNBBOT) .EQ. ) THEN

INBOT1 - ICELG2(2.NBBOT)

INBOT2 - ICELG2(4.NBBOT)

XBOT - 0.5*(GEOMG2(1.INBOTI)+GEOMG2(1,INBOT2))

YBOT - O.6*(GEOMG2(2,INBOT1)+GEOMG2(2,INBOT2))

DO 110 IQ - 1. NEQNFL

DPBOT(IQ) - 0.5*(DPENG2(IQ.INBOT1)+DPENG2(IQ.INBOT2))

110 CONTINUE

GOTO 130

ENDIF

ENDIF

C COMPUTE THE BOTTOM NODE, DISTANCES AND DP VARIABLES

INBOT ICELG2(IPBOT,NBBOT)

XBOT - GEOMG2(1,INBOT)

YBOT - GEOMG2(2,INBOT)

DO 120 IQ - 1, NEQNFL

DPEOT(IQ) DPENG2(IQ.INBOT)

120 CONTINUE

130 CONTINUE

C SETUP THE TOP NEIGHBOUR CELL AND ITS NODE POINTER

IF (NB3 .NE. O) THEN

NBTOP - NB3

IPTOP - 8

ELSE

NBTOP - NB4

IPTOP - 6
ENDIF

C

C FOR SPATIAL INTERFACE, CORRECT THE NODE POINTER, ETC.
C

IF (NB3 .EQ. NB4) THEN

IPTOP - 7
IF (ICELG2(IPTOP,NBTOP) .EQ. O) THEN

INTOPI - ICELG2(6.NBTOP)

INTOP2 - ICELG2(8,NBTOP)

XTOP - 0.5*(GEOMG2(1,INTOP1)+GEOMG2(1,INTOP2))

YTOP - 0.6*(GEOMG2(2,INTOP1)+GEOMG2(2.INTOP2))
DO 140 Iq - 1, NEQNFL

DPTOP(IQ) 0.5*(DPENG2(IQ,INTOPI)+DPENG2(IQ,INTOP2))

140 CONTINUE

GOTO 160

ENDIF

ENDIF

C COMPUTE THE TOP NODE, DISTANCES AND DP VARIABLES

INTOP - ICELG2(IPTOP,NBTOP)

XTOP - GEOMG2(1,INTOP)

YTOP - GEOMG2(2,INTOP)
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DO 10 IQ - 1, NEQNFL

°DPTOP(IQ) DPENG2(IQ,INTOP)
160 CONTINUE

160 CONTINUE

C NOW CHECK FOR DENSITY DIFFERENCES ACROSS THE NODE

DDBOT - DPENG2(IT,INODE) - DPBOT(IT)
DDTOP - DPENG2(IT.INODE) - DPTOP(IT)
IF (DDBOT .CGT. SMALLP .AND. DDTOP .GT.
IF (DDBOT .LT. SMALLN .AND. DDTOP .LT.
GO TO 200

SMALLP) GOTO 170
SMALLN) GOTO 170

170 XNODE - GEOMG2(1,INODE)

YNODE - GEOMG2(2,INODE)

SNODE2 - (XNODE-XBOT)**2 + (YNODE-YBOT)**2
STOP2 - (XTOP-XBOT)**2 + (YTOP-YBOT)**2
RATIO - SQRT(SNODE2/STOP2)

C
C DO THE INTERPOLATION
C

DO 180 IQ - 1, NEQNFL
DPHERE - DPBOT(IQ) + (DPTOP(IQ) -DPBOT(IQ))*RATIO
DPENG2(IQ,INODE) - 0.5*(DPHERE + DPENG2(IQ,INODE))

180 CONTINUE

C
C NOW RECOMPUTE THE PRESSURE, TEMPERATURE ETC.
C

CALL E2PRMT(INODE,1)
200 CONTINUE

RETURN
END

G2TIME

SUBROUTINE G2TIME (TIME, IFIRST)

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE 't[.INC] PARMV2.INC/LIST'
INCLUDE 't.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'
INCLUDE '[.INC] TICOMN.INC/LIST'

PARAMETER (MTIMA - 1000)
DIMENSION TIMA(MTIMA)

SAVE JC. NTIMA. TIMA
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C THIS- SUBROUTINE FIRST DETERMINES THE TIME-STATIONS WHERE THE

C OUTPUT OF A RUN IS FIRST WRITTEN. THESE TIME STATIONS COULD

C BE AFTER EACH ITERATION' OR AFTER SPECIFIED TIME PERIODS.

C IF OUTPUT AT ONLY THE FINAL TIME-PERIOD IS REQUIRED THEN THIS

C ROUTINE I8 NOT REALLY NEEDED.

C INITIALIZATION

IF (IFIRST .EQ. 1) THEN

C SET THE PARAMETER FOR THIS CASE (TO BE USED IN ONEDO)

C KTIMTI - 1

C INPUT THE NUMBER OF STATIONS WHERE RESULTS ARE NEEDED

C INPUT -1 IF RESULTS ARE TO BE WRITTEN AFTER EACH ITERATION

READ(JREADS,*) NTIMA

IF (NTIMA .EQ. -1) THEN

WRITE(JCARDS.1000) NTIMA

TIMA(MTIMA) - -99.

RETURN
ENDIF

JC 1
IF (KSRTE2 .EQ. 0 .OR. KTIMTI .EQ. 2) WRITE(JCARDS,1000) NTIMA

DO 10 IT - 1, NTIMA
C INPUT THE TIME FOR STATION # I

READ(JREADS,*) TIMA(IT)

10 CONTINUE
TIMA(NTIMA+i) - 1000. + TIMXTI
RETURN

ENDIF

IF (TIMNTI .GT. TIMA(JC) ) THEN

JC - JC + 
RETURN

ENDIF

C EACH ITERATION

C

C WRITE RESULTS FOR ALL THE ITERATIONS

IF (TIMA(NTIMA) .EQ. -99.) THEN

TIMA(JC) - TIME
JC - JC + 
WRITE(JCARDS, 1000) JC, NNODG2, NEqNFL, NCELG2 ,TIME,TIMA(JC)

DO 20 IC - 1, NCELG2

WRITE(JCARDS,1100) IC, (ICELG2(J,IC), J - 2, 9)
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20 CONTINUE
DO 30 IN - 1, NNODG2

- WRITE(JCARDS.1200) IN, (GEOMG2(J,IN), J 1, 2 ).

1 (DPENG2(J,IN), J - 1, NEQNFL)

30 CONTINUE
RETURN

ENDIF

C SPECIFIC TIME

C WRITE ONLY THE ITERATIONS AFTER SPECIFIC INTERVALS OF TIME

IF (TIME .GE. TIMA(JC)) THEN
WRITE(JCARDS,1000) JC, NNODG2, NEQNFL, NCELG2. TIME,TIMA(JC)

JC - JC + 1
DO 40 IC - 1, NCELG2

WRITE(JCARDS,1100) IC, (ICELG2(J,IC), J - 2 9)

40 CONTINUE

DO 60 IN - 1. NNODG2
WRITE(JCARDS,1200) IN. (GEOMG2(J,IN), J - 1. 2 ).

1 (DPENG2(J,IN), J - 1, NEQNFL)

60 CONTINUE
ENDIF

C FORMAT STATEMENTS

1000 FORMAT (4---- 2X.2G4.

1100 FORMAT(2016)

1200 FORMAT(I5.2X,8G14.5)

RETURN

END

GETKY2

SUBROUTINE GETKY2

INCLUDE 'PRECIS.INC'
INCLUDE 'PARMV2.INC'
INCLUDE 'IOCOMN. INC'
INCLUDE 'KYCOMN.INC'

DIMENSION IVAL(NIPAKY+NAPAKY)

CHARACTER*7 KYWRDA(NAPAKY) , KYWRDI(NIPAKY)

CHARACTER KEYFRM*15, KEYTRM*7, NTYPE*4

DATA KYWRDA/ 'SMAXE2', 'SMINE2-', 'CFLNTI-', 'EPSLE2-',
1 'AMCHFL', 'RHORFL-'. 'TREFFL-', 'TREFCH-'.

2 'PRESFL-'. 'PRESCH',. 'DISTFL-'. 'TEMPIC-',.
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3 'TEMP2C=', 'TEMP3C=', 'ALPHA2-', 'BETAA2=',
4 - 'GAMMA2-', 'DELTA2=', 'PRINTO=', 'TIMXTI=',

5 'PBPIFR"', 'EPSITI=', 'EPSOTI-', 'TIMNTI=',

6 'TRIGCH-', 'ERRMIN=', 'ERRMTI-', 'EPSIMN-',

7 'EPS1MX-', 'RHORFR-', 'UCOMFR-', 'VCOMFR=',

8 'PRESFR-', 'FCTRTI=', 'DTCNTI'. 'RREYE2-',

9 'RPRNE2-', 'RSCHE2-', 'OMEGE2-', 'GFACE2-'.

* 'CFLXTI-', ' ='/

DATA KYWRDI/ 'NREACH-', 'NSPECH', 'KROGER-', 'KORDER-'.

1 'MITRE2-', 'KSRTE2-', 'NGIVTI-', 'METHA2-',

2 'JREADS-', 'KTIMTI=', 'KIADA2-', 'K2ADA2='.

3 'KDEBUG-', 'IDBGE2-', 'IDBGA2-', 'MTHRA2-'.

4 'KFACTI-', 'NINRCH-', 'KDPENI-', 'KPLTA2-',
5 'IDBGFR-',. 'NXTDA2-', 'MALVG2-', 'KADPTI-',

6 'KONVE2-', 'MITRA2-', 'MITRPS-', 'KHAFEZ-',

7 'KEQNE2-', 'KMERA2-', 'KCHKA2-', 'MITEPS-',

8 'IMPLTI-', 'IDBGTI-', 'KPERFR-', 'MCYCFR-',
9 'IDBGG2-', 'IADDH2-', 'KDIFTI=', 'KBLOCK-',

C THIS SUBROUTINE READS THE INPUT RECORDS, FINDS THE CORRESPONDING
C KEYWORDS AND ASSIGNS VALUES TO THE RESPECTIVE VARIABLES. THE

C INPUT RECORDS CAN BE IN ANY ORDER, HOWEVER THE FOLLOWING CONVENTIONS
C MUST BE OBSERVED :
C

C 1. ALL THE KEYWORDS MUST BE EXACTLY SIX BYTES LONG, IF THERE
C ARE BLANKS IN THE KEYWORD THEN THOSE BLANKS MUST BE IN THE
C TRAILING BYTES

C
C 2. THE SEVENTH BYTE MUST BE THE ASSIGN SYMBOL ''
C
C 3. IF THE KEYWORD IS FOR AN INTEGER THEN IT SHOULD BE

C WRITTEN IN FORMAT 15, I.E., THE INTEGER VALUE BE
C SPECIFIED IN COLUMNS 8-12 FOLLOWING THE FIRST SEVEN

C RESERVED FOR THE KEYWORD NAME

C
C 4. IF THE KEYWORD IS REAL IT MUST BE WRITTEN IN THE G FORMAT

C FOLLOWING COLUMN 7

C***********************************************************************
C

C KEYWORD ASSIGNMENTS

C -------- KYWRDA DEFINED BY AASKY

C KYWRDA DEFINED BY APASKY
C 1. 'SMAXE2-' 2. 'SMINE2-'

C 3. 'CFLNTI=' 4. 'EPSLE2-'

C 5. 'AMCHFL' 6. 'RHORFL-'
C 7. 'TREFFL-' 8. 'TREFCH-'
C 9. 'PRESFL=' 10. 'PRESCH-'
C 11. 'DISTFL-' 12. 'TEMP1C-'
C 13. 'TEMP2C-' 14. 'TEMP3C-'
C 15. 'ALPHA2-' 16. 'BETAA2-'
C 17. 'GAMMA2-' 18. 'DELTA2='
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19. 'PRINTO-'

21. 'PBPIFR='

23. 'EPSOTI='

25. 'TRIGCH='

27. 'ERRMTI='

29. 'EPS1MX='

31. 'UCOMFR='

33. 'PRESFRo'

35. 'DTCNTIs'
37. 'RPRNE2='

39. 'OMEGE2-'
41. 'CFLXTI-'

KYWRDI
1. 'NREACH"'
3. 'KROGER-'

5. 'MITRE2-'

7. 'NGIVTI-'

9. 'JREADS='
11. 'KIADA2-'

13. 'KDEBUG-'

15. 'IDBGA2='

17. 'KFACTI-'

19. 'KDPENI-'

21. 'IDBGFR-'

23. 'MALVG2a'
25. 'KONVE2-='

27. 'MITRPS-'

29. 'KEQNE2-'

31. 'KCHKA2-'

33. 'IMPLTI='
35. 'KPERFR-'

37. 'IDBGG2='

39. 'KDIFTI-'

41. ' -'

20. 'TIMXTI='

22. 'EPS1TI-'

24. 'TIMNTI='

26. 'ERRMIN-'

28. 'EPS1MN-'

30. 'RHORFR-'

32. 'VCOMFR='

34. 'FCTRTI-'

36. 'RREYE2-'

38. 'RSCHE2=-'

40. 'GFACE2-'

42. ' -'

DEFINED BY IPASKY

2. 'NSPECH-'

4. 'KORDER-'

6. 'KSRTE2-'

8. 'METHA2-='

10. 'KTIMTI=-'

12. 'K2ADA2-'

14. 'IDBGE2-'

16. 'MTHRA2='

18. 'NINRCH-'

20. 'KPLTA2-'

22. 'NXTDA2-'

24. 'KADPTI-'

26. 'MITRA2='

28. 'KHAFEZ-'

30. 'KMERA2-'

32. 'MITEPS-'

34. 'IDBGTI='

36. 'MCYCFR-'

38. 'IADDH2-'

40. 'KBLOCK-'

42. ' 

SYNOPSIS OF LETTERS IN THE NAME ASSIGNMENTS

FIRST LETTER

J : STANDS FOR UNITS

N : MAXIMUM VALUE

N : NUMBER OF

K : DECISION PARAMETERS

LAST TWO LETTERS

CH : NUMBERS TO BE INITIALIZED IN CHINIT
FL : NUMBERS TO BE INITIALIZED IN FLINIT

(CHCOMN COMMON BLOCK)
(FLCOMN COMMON BLOCK)

NVALUE - 0

KDEBUG - 1
C

C INITIALIZE ALL THE KEYS TO BE MARKED TO HAVE DEFAULT VALUES. I.E.
C MARIKY-O; IF A KEY IS FOUND HERE IT WOULD BE MARKED TO HAVE NON-
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C DEFAULT VALUES
C 

DO 6 IKEY - 1, NIPAKY

MARIIY(IREY) - 0

6 CONTINUE

DO 6 IKEY - 1, NAPAKY

MARAY(IKEY) -
6 CONTINUE

C MAKE SURE THAT THE FUNCTION ICHAR IS DEFINED ON ALL THE COMPUTERS

NN - ICHAR('N')
II ICHAR('I')

10 READ (JREADI.l000,END=50) KEYTRM, KEYFRM

BACKSPACE (JREADI)

C CHECK IF THE KEYTRM IS AN INTEGER

Ni - ICHAR(KEYTRM(i:l))

IF (NI .GE. II .AND. N1 .LE. NN) THEN
NTYPE - 'INTE'

READ (JREADI,11OO) KEYTRM, IVALKY

ELSE

NTYPE - 'REAL'

READ (JREADI,1200) KEYTM, AVALKY
ENDIF

C NVALUE COUNTS THE NUMBER OF RECORDS CONTAINING THE STANDARD KEYWORDS

NVALUE - NVALUE + 1

IF (NTYPE EQ. 'REAL') GOTO 30

C THE KEYWORD CORRESPONDS TO AN INTEGER VARIABLE

DO 20 J " 1, NIPAKY

IF (KEYTRM .EQ. KYWRDI(J)) THEN

IPASKY(J) - IVALKY
IVAL(NVALUE) - J
MARIKY(J) -
GOTO 10

ENDIF

20 CONTINUE

ZER - NVALUE
ZER2 - IVALKY

CALL ERRORM (1,'GETKY2','REC # '.ZER1,KEYTRM.ZER2,JPRINT,
1 'KEYWORD NOT FOUND')

C THE KEYWORD CORRESPONDS TO A REAL VARIABLE

30 DO 40 J - 1, NAPAKY
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IF (KEYTRM .Eq. KYWRDA(J)) THEN

- APASKY(J) - AVALKY

- IVAL(NVALUE) - J + NIPAKY

MARAY(J) 1

GOTO 10
ENDIF

40 CONTINUE

ZER1 - NVALUE

ZER2 AVALKY

CALL ERRORM (1.'GETKY2'.'REC # ',ZER1,KEYTRM,ZER2,JPRINT,

1 'KEYWORD NOT FOUND')

50 KDEBUG - IPASKY(13)

IF (KDEBUG .Eq. 1 .OR. KDEBUG .GT. 999) THEN

WRITE(JDEBUG,1300)

WRITE(JDEBUG, 1400)

WRITE (JDEBUG, 1500)

WRITE(JDEBUG, 1600)

DO 90 J - 1, NVALUE

IV - IVAL(J)

IF (IV .LE. NIPAKY) THEN

WRITE(JDEBUG,1700) J, IV,KYWRDI(IV).,IPASKY(IV)

ELSE

IV - IV - NIPAKY

WRITE(JDEBUG,1800) J,IV,KYWRDA(IV),APASKY(IV)

ENDIF

90 CONTINUE

ENDIF

C

C FORMAT STATEMENTS

1000 FORMAT(A7,A15)
1100 FORMAT(A7,I6 )
1200 FORMAT(A7,G )
C UNCOMMENT THE FOLLOWING LINE FOR CYBER COMPUTER

C1200 FORMAT(A7,G14 .5)

1300 FORMAT(//OX,'-----------------------' )
1400 FORMAT( lOX.'DEBUG PRINT FROM GETKY2' )

1500 FORMAT( 1OX,'-------------------'/)

1600 FORMAT( 2X,'REC #',5X,'KEYWORD #',4X,'KEYWORD',

1 11X,'KEYWORD VALUE'/)

1700 FORMAT(I5.5X,I6,10X,A7,13X,I7 )

1800 FORMAT(I5,6X,5,10X,A7,13X,G14.5)

RETURN
END
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H2EMBD

SUBROUTINE H2EMBD

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] H2COMN.INC/LIST'

INCLUDE ' . INC] HEXCOD.INC
INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] PRCOMN.INC/LIST'

C
C THIS SUBROUTINE ADDS EMBEDDED CELLS ACROSS THE FUEL ADDITION

C PLANE. THESE CELLS ARE PERMANENTLY DIVIDED AND NEVER ALLOWED

C TO COLLAPSE AGAIN. THE LEVELS OF EMBEDDING ACROSS THE PLANE

C OF INJECTION EQUALS THE CURRENT MAXIMUM EMBEDDING LEVEL

C

C

DO 180 ILEVEL 1, MALVG2

INODE - IBASH2

NBTYP1 = 4
INTYP1 =6
NBTYP2 - 3

INTYP2 - 8

NB1 - NEIBG2(4,INODE)

NB2 - NEIBG2(3,INODE)

C
C ERROR CONDITIONS

C

IF (NB1 .EQ. O) THEN
ZERI - ISTART

ZER2 - NB1

CALL ERRORM (46.'H2INIT'.'ISTART',ZERl,'NBl '.ZER2,JPRINT.

1 'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF

C
IF (NB2 .EQ. O) THEN

ZER1 - ISTART

ZER2 NB2

CALL ERRORM (46,'H2INIT', 'ISTART',ZER1,'NB2 ',ZER2,JPRINT,

1 'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF

C

C NOW MARCH IN THE APPROPRIATE DIRECTION

C
C SAVE THE NODE WHERE THE FUEL IS TO INJECTED

170 NBNXT1 - NEIBG2(NBTYPI.INODE)

NBNXT2 - NEIBG2(NBTYP2,INODE)
IF (NBNXT1 .EQ. O .OR. NBNXT2 .EQ. O) GOTO 180

C MARK THE CELL WHERE FUEL IS TO ADDED

KAUXG2(NBNXTI) - IOR(KAUXG2(NBNXTI) ,KL2000)
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KAUXG2(NBNXT2) - IOR(KAUXG2(NBNXT2),KL2000)

IWARN - 0

CALL G2DIVU (NBNXT1.IWARN)

CALL G2DIVU (NBNXT2,IWARN)

INODE - ICELG2(INTYP1,NBNXT1)
GO TO 170

180 CONTINUE

C
C ADJUST THE ARRAY PERTAINING TO THE INJECTION PLANE

C
CALL H2INIT

RETURN

END

H2FLOT

SUBROUTINE H2FLOT

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

C
C**********************************************************************

C THIS SUBROUTINE ALLOWS THE ASSIGNMENT OF VALUES TO THE NODES AT

C THE RIGHT OF A GIVEN NODE TO THE VALUES OF THE GIVEN NODE ITSELF.

C***********************************************************************
C

C READ THE FOLLOWING QUANTITIES

C NBASE : TOTAL NUMBER OF BASE NODES

C IBASE : THE BASE NODE ITSELF

C

READ (JREADS.*) NBASE

DO 20 II - 1, NBASE

READ (JREADS.*) IBASE
INODE - IBASE

NBTYPE - 0

NB1 - NEIBG2(2,INODE)

NB2 - NEIBG2(3,INODE)

IF (NB1 .NE. O) THEN
NBTYPE - 2
INTYPE - 6

ELSEIF (NB2 .NE. O) THEN
NBTYPE - 3

INTYPE - 4

ENDIF
C
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ERROR CONDITION

IF (NBTYPE .EQ. O) THEN

ZERI - ISTART

ZER2 m NBTYPE
CALL ERRORM (46,'H2FLOT','ISTART',ZER1,'NBTYPE',ZER2,

JPRINT,'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF

NOW MARCH IN THE APPROPRIATE DIRECTION

FIND THE NEXT CELL ON TOP OF THE NODE UNDER CONSIDERATION

NBNEXT - NEIBG2(NBTYPE.INODE)

SEE IF YOU HAVE REACHED THE RIGHT-MOST BOUNDARY SURFACE

IF (NBNEXT .EQ. O) GOTO 20

FIND THE NEXT NODE TO THE RIGHT

INODE - ICELG2(INTYPE.NBNEXT)

ASSIGN THE VALUES

DO 15 IQ 1, NEQNFL

DPENG2(IQ,INODE) - DPENG2(IQ,IBASE)

CONTINUE

PRESG2(INODE) - PRESG2(IBASE)

TEMPG2(INODE) - TEMPG2(IBASE)

GO TO 10

20 CONTINUE

RETURN

END

H2INIT

SUBROUTINE H2INIT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE
INCLUDE

' [.INC]
' . INC]
' [. INC]
' . INC]
'[.INC]
' [. INC]

[.INC]
' [. INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

HEXCOD.INC

IOCOMN.INC/LIST'
PRCOMN.INC/LIST'

C
C THIS SUBROUTINE INITIALIZES THE FUEL ADDITION PLANE (VERTICAL)
C FOR A GIVEN EQUIVALENCE RATIO AND A BASE NODE; SEE E2SCHO AND
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C H2EMBD FOR INITIALIZING THROUGH THIS SUBROUTINE

C

C
INODE - IBASH2

NBTYPE - 0
NB1 - NEIBG2(4,INODE)

NB2 - NEIBG2(3,INODE)

IF (NB1 .NE. O) THEN

NBTYPE - 4

INTYPE - 6

ELSEIF (NB2 .NE. O) THEN
NBTYPE - 3

INTYPE 8

ENDIF

C

C ERROR CONDITION

C
IF (NBTYPE .EQ. O) THEN

ZERI - ISTART

ZER2 - NBTYPE

CALL ERRORM (46,'H2INIT', 'ISTART',ZERI, 'NBTYPE',ZER2 ,JPRINT,

i 'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF
C
C NOW MARCH IN THE APPROPRIATE DIRECTION

C
KOUNT - 0
NCELH2 - 0

170 KOUNT - KOUNT + 1
C SAVE THE NODE WHERE THE FUEL IS TO INJECTED

NODEH2(KOUNT) - INODE

NBNEXT - NEIBG2(NBTYPE,INODE)
IF (NBNEXT .EQ. O) GOTO 180

C MARK THE CELL WHERE FUEL IS TO ADDED

KAUXG2(NBNEXT) - IOR(KAUXG2(NBNEXT). KL1000)
NCELH2 - NCELH2 + 

ICELH2(NCELH2) - NBNEXT

INODE - ICELG2(INTYPE,NBNEXT)
GO TO 170

C SAVE THE TOTAL NUMBER OF FUEL INJECTION POINTS

180 NUMDH2 - KOUNT

C FOR ROGERS AND CHINITZ MODEL THE NUMBER OF EQUATIONS MUST
C BE ADJUSTED

IF (KROGER .EQ. 1 AND. NINRCH .GT. O) THEN

DO 200 INODE - 1, NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - O.
YUPPER - 1. - YNRTCH

RHORPR - DPENG2(1,INODE)

DO 190 IS - 1. NEQSCH

JS - NEQBAS + IS
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YSPEPR(IS) - DPENG2(JS,INODE)/RHORPR

- IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) - 0.

DPENG2(JS.INODE) - O.

ENDIF

IF (YSPEPR(IS) .GT. YUPPER) THEN

YSPEPR(IS) = YUPPER
DPENG2(JS.INODE) - YUPPER*RHORPR

ENDIF

SUMY - SUMY + YSPEPR(IS)

190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 - NEQSCH+I

YSPEPR(NEQSCH+1) - 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+i) .LT. 0.) YSPEPR(NEqSCH+l) - 0.
C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+1,.INODE) - RHORPR*YSPEPR(NEQSCH+1)
200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS
YNRTCH - 0.
NEQNFL NEQNFL + 1

NEQSCH NEQSCH + 1

NINRCH - NINRCH -

ENDIF
C

RETURN

END

H3LNIT

SUBROUTINE H3INIT

C
INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE. 'E2COMN. INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

C INCLUDE 'H2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'

INCLUDE 'PRCOMN.INC'

C

C THIS SUBROUTINE INITIALIZES THE DEPENDENT VARIABLES FOR FUEL

C INJECTION AS WALL POINTS AS A MIXTURE OF FUEL AND AIR.

C THE VALUES NEEDED AT THE WALL POINTS ARE THE PROPERTIES OF THIS

C MIXTURE, I.E., TEMPERATURE, PRESSURE. MACH NO., EQUIVALENCE

C RATIO. AND THE ANGLE OF INJECTION. ALSO NEEDED IS THE TOTAL
C NUMBER OF WALL CELLS AND THE ACTUAL CELL NUMBERS.

916



C
C IF (ROGER .NE. 1) RETURN
C

C READ THE FOLLOWING FUEL QUANTITIES
C TEMPEF : FUEL TEMPERATURE IN DEGREE K
C PRESSF : FUEL PRESSURE IN PASCALS
C AMACHF : FUEL MACH NUMBER
C EQUIVF : EQUIVALENCE RATIO
C ANGLEF : ANGLE OF INJECTION IN DEGREES

C NCELLF : NUMBER OF CELLS WITH FUEL INJECTION
C ICELL : CELLS WHERE FUEL IS INJECTED

C IF EQUIVF > 100 THEN ONLY FUEL IS ADDED AT THE INJECTORS
C

READ

READ

READ

READ

READ

READ

(JREADS,*)

(JREADS,*)

(JREADS,*)

(JREADS,*)

(JREADS.*)

(JREADS,*)

TEMPEF
PRESSF
AMACHF
EQUIVF
ANGLEF
NCELLF

C
C COMPUTE THE ANGLE IN RADIANS

ANGLEF - ANGLEF*3.141592654/180.

C DETERMINE THE MASS FRACTION OF H2 BASED ON EQUIVALENCE RATIO
C AND OTHER MASS FRACTIONS

C YH2 - 2 PHI MH2 / (M_02 + 3.76 MN2 + 2 PHI MH2)

YSPEPR(2) - O.
YSPEPR(4) - 0.

IF (EQUIVF .GT.

YSPEPR(1)

YSPEPR(3)

YSPEPR(5)

ELSE

YSPEPR(1)
YSPEPR(3)

YSPEPR(s)
ENDIF

100.) THEN
- 0.
m 1.

- 0.

- 7.93626/(EQUIVF+34.048)
- EQUIVF/(EQUIVF+34.048)
- 1. - YSPEPR(1) - YSPEPR(3)

C
C DETERMINE THE MOLECULAR MASS AND OTHER QUANTITIES FOR THIS MIXTURE
C

DO 5 I - 1,

SYSBMS 

SYSHFE -
SYSCPE 

BIGAM -
5 CONTINUE

NSPECH

SYSBMS + YSPEPR(IS)*RAMWCH(IS)
SYSHFE + YSPEPR(IS)*FMHTCH(IS)

SYSCPE + YSPEPR(IS)*SPCPCH(IS)
BIGAM + YSPEPR(IS)*SPBSCH(IS)

UGASCO - UGASFL*SYSBMS

C DETERMINE THE DIMENSIONLESS DENSITY OF THE FUEL MIXTURE

RHOF - PRESSF/(UGASCO*TEMPEF*RHORFL)

C DETERMINE THE DIMENSIONLESS PRESSURE OF THE FUEL MIXTURE

PRESSF - PRESSF/PRESFL
C
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C DETERMINE GAMMA FOR THIS MIXTURE
BIGAMT - BIGAM*TEMPEF
SYSCVE - SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE - (SYSCPE BIGAMT)/SYSCVE

C DETERMINE THE OVERALL DIMENSIONLESS VELOCITY OF THE FUEL

VELOF - AMACHF*SQRT(GAMMAE*PRESSF/RHOF)

UCOMPF - VELOF*COS(ANGLEF)
VCOMPF - VELOF*SIN(ANGLEF)
VELO2I - UCOMPF*UCOMPF + VCOMPF*VCOMPF

C DETERMINE THE ENERGY TERM

BEE - SYSHFE + (TEMPEF-TREFCH)*SYSCPE - UGASFL*TEMPEF*SYSBMS

+ O.5*(TEMPEF*TEMPEF-TREFCH*TREFCH)*BIGAM

BEE - BEE/FMREFL + 0.5*VEL02I
C

TEMPEF - TEMPEF/TREFFL

DO 30 JCELL - 1. NCELLF
C READ THE CELL NUMBER FOR THIS VALUE

READ (JREADS,*) ICELLF

KX - KAUXG2(ICELLF)

IEDGE - IAND(KX,KLOOOF)

IF (IEDGE .EQ. KLOO03) THEN

VHERE - VCOMPF

INODEI - ICELG2(2.ICELLF)

INODE2 - ICELG2(4,ICELLF)

ELSE IF (IEDGE .EQ. KLOOOC) THEN

VHERE --VCOMPF

INODE - ICELG2(6,ICELLF)

INODE2 - ICELG2(8,ICELLF)
ELSE

GOTO 30

ENDIF

C SET THE DEPENDENT VARIABLES

DPENG2(1,INODEi) - RHOF

DPENG2(1,INODE2) - RHOF

DPENG2(2,INODEI) - RHOF*UCOMPF
DPENG2(2,INODE2) - RHOF*UCOMPF

DPENG2(3,INODE1) - RHOF*VHERE

DPENG2(3,INODE2) - RHOF*VHERE
DPENG2(4,INODEI) - BEE*RHOF

DPENG2(4,INODE2) - BEE*RHOF

DO 10 JS - NEQBAS+1, NEQNFL

IS - JS - NEQBAS

DPENG2(JS,INODEl) - RHOF*YSPEPR(IS)
DPENG2(JS.INODE2) a RHOF*YSPEPR(IS)

10 CONTINUE

PRESG2(INODE1) - PRESSF

TEMPG2(INODE1) - TEMPEF

PRESG2(INODE2) - PRESSF

TEMPG2(INODE2) - TEMPEF

C SET THE BOUNDARY CONDITION POINTER
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DO 20 JS - 1, NBNDG2

- IF (IBNDG2(1,JS) .EQ. INODE1) IBNDG2(6,JS) = 2

- IF (IBNDG2(l,JS) .EQ. INODE2) IBNDG2(5,JS) = 2

20 CONTINUE

30 CONTINUE

C

C FOR ROGERS AND CHINITZ MODEL THE NUMBER OF EQUATIONS MUST

C BE ADJUSTED

IF (KROGER .EQ. .AND. NINRCH .GT. O) THEN

DO 200 INODE - 1, NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.

YUPPER - 1. - YNRTCH

RHORPR - DPENG2(1,INODE)

DO 190 IS 1, NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) DPENG2(JS,INODE)/RHORPR

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) = 0.

DPENG2(JS,INODE) = 0.
ENDIF

IF (YSPEPR(IS) .GT. 1.) THEN

YSPEPR(IS) = 1.
DPENG2(JS,INODE) = YUPPER*RHORPR

ENDIF

SUMY = SUMY + YSPEPR(IS)

190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 = NEQSCH+1

YSPEPR(NEQSCH+1) = 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEQSCH+1) = 0.

C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+I,INODE) = RHORPR*YSPEPR(NEQSCH+1)
200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS
YNRTCH O0.

NEQNFL - NEQNFL + 1

NEQSCH - NEQSCH + 1

NINRCH - NINRCH - 1

ENDIF

RETURN

END

H2MIXT

SUBROUTINE H2MIXT(ITGL)

INCLUDE '.INC] PRECIS.INC/LIST'
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INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[.INC]

'[.INC]

'[.INC]

'[. INC]

't.INC]

't.INC]
' .INC]

'[.INC]

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

e2COMN.INC/LIST'

FLCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

PRCOMN.INC/LIST'

IOCOMN.INC/LIST'

DIMENSION YSPEH2(MEQNFL), ENTLH2(MEQNFL), KODEH2(MUMDH2)

C THIS SUBROUTINE INJECTS THE FUEL AT THE PREVIOUSLY GIVEN

C LOCATIONS (STORED IN NODEH2)

C

C IF (KROGER .NE. 1) RETURN

C
C DETERMINE THE MASS FRACTION OF H2 BASED ON EQUIVALENCE RATIO

YH2 - PHIEH2/(PHIEH2+34.048)

DO 60 JNODE - 1, NUMDH2

C
C
C

DETERMINE THE ACTUAL NODE OF INJECTION

INODE - NODEH2(JNODE)

IF (CHNGE2(1,INODE) .EQ. 0.) GOTO 50

DETERMINE THE PRIMITIVE VARIABLES BEFORE
CORRECTION

RHORPR
UCOMPR
VCOMPR
BEPSPR
VELO2U

FUEL INJECTION

- DPENG2(1,INODE)

- DPENG2(2,INODE)/RHORPR

- DPENG2(3,INODE)/RHORPR

- DPENG2(4,INODE)
- UCOMPR*UCOMPR + VCOMPR*VCOMPR

COMPUTE THE DIMENSIONAL QUANTITIES

TEMPPR - TEMPG2(INODE)*TREFFL

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - O.

DO 10 IS - 1. NEQSCH

J8 - NEQBAS + IS

YSPEPR(IS) DPENG2(JS,INODE)/DPENG2(1,INODE)

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) - 0.

DPENG2(JS,INODE) - 0.
ENDIF

SUMY - SUMY + YSPEPR(IS)

10 CONTINUE

YSPEPR(NEQSCH+I) - 1. - SUMY

IF (YSPEPR(NEQSCH+l) .LT. 0.) YSPEPR(NEQSCH+1) - 0.
C DETERMINE THE CURRENT MASS FRACTION OF THE FUEL
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YH2P - YSPEPR(3)
C 
C DETERMINE THE FUEL QUANTITIES

C

RHOF - RHORPR*(YH2-YH2P)/(I.-YH2)
PF - RHOF*RHORFL*UGASFL*RAMWCH(3) *TE'PPR/PRESFL

C

AMASSX RHORPR*UCOMPR + RHOF*UCOMPR
FORCEX - RHORPR*UCOMPR*UCOMPR + RHOF*UCOMPR*UCOMPR +

1 PRESG2(INODE) + PF

C DETERMINE THE FACTOR BY WHICH THE MASS FRACTIONS MUST BE
C ADJUSTED

YRAT - (.-YH2)/(1.-YH2P)
C
C COMPUTE THE NEW MASS FRACTIONS, MOLECULAR MASSES AND THE

C ENTHALPY OF EACH SPECIES

C
SYSBMO - O.

SYSBMN - O.
TENTHI - 0.

YSPEH2(3) - YH2
HM - 0.

DO 20 IS - 1, NSPECH

IF (IS .NE. 3) YSPEH2(IS) - YSPEPR(IS)*YRAT

SYSBMO - SYSBMO + YSPEPR(IS)*RAMWCH(IS)

SYSBMN - SYSBMN + YSPEH2(IS)*RAMWCH(IS)
ENTLH2(IS) - FMHTCH(IS) +

1 SPCPCH(IS)*(TEMPPR-TREFCH) +
2 0.S*SPBSCH(IS)*(TEMPPR**2-TREFCH**2)

TENTHI - TENTHI + ENTLH2(IS)*YSPEPR(IS)

HM - HM + FMHTCH(IS)*YSPEH2(IS)
20 CONTINUE

TENTHI - TENTHI/FMREFL + O.5*VELO2U
TENTHF - ENTLH2(3)/FMREFL + O.6*VELO2U

ENRGYX - UCOMPR*RHORPR*TENTHI + UCOMPR*RHOF*TENTHF

C MOLECULAR MASSES

AMASOL - ./SYSBMO
AMASNW - ./SYSBMN

UGASM - UGASFL*SYSBMN

TMRAT - PRESFL/(RHORFL*UGASM)

C INITIAL GUESS FOR DENSITY

RHOM - RHORPR + RHOF
VM - VCOMPR

1001 UM = AMASSX/RHOM
PM - FORCEX - UM*AMASSX

TMD - PM*TMRAT/RHOM

VEL02M - 0.5*(UM*UM+VM*VM)
C
C DETERMINE THE NEW MIXTURE ENTHALPY
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SYSENT - O.
DO-30 IS 1 NSPECH

TENTLH2(IS) - SPCPCH(IS)*(TMD-TREFCH) +
2 O.5*SPBSCH(IS) * (TMD**2-TREFCH**2)

SYSENT - SYSENT + YSPEH2(IS)*ENTLH2(IS)
30 CONTINUE

ENTHM - (HM+SYSENT)/FMREFL
RHOMN - ENRGYX/(enthm+VELO2M)/UM

C COMPA - ABS(RHOM-RHOMN)
RHON R HOMN

C IF (COMPA .GT. .E-4) GOTO 1001

BEN - (ENTHM+VELO2M)*RHOM - pm
C
C ADJUST THE DEPENDENT VARIABLES

C

DPENG2(1,INODE) - RHOM

DPENG2(2,INODE) - RHOM*UM

DPENG2(3.INODE) - RHOM*VM

DPENG2(4,INODE) - BENW

DO 40 IS - 1, NEQSCH

JS = NEQBAS + IS

DPENG2(JS,INODE) - RHOM*YSPEH2 (IS)
40 CONTINUE

60 CONTINUE

CALL H2SOLF (ITGL)
C
C PRINT OUT PARAMETERS
C

IF (IDBGCH .NE. 19 .AND. IDBGCH .LT. 1000) RETURN

WRITE (JDEBUG, 1000)

WRITE(JDEBUG, 1100)
WRITE(JDEBUG. 1200)

WRITE(JDEBUG,1300) RHORPR, RHOM, BEPSPR, BENW,

1 AMASOL. AMASNW. UCOMPR, VCOMPR

DO 0 IS - 1, NSPECH

WRITE(JDEBUG,1400) YSPEPR(IS). YSPEH2(IS)
60 CONTINUE

WRITE(JDEBUG,1600) IADDH2. NUMDH2, PHIEH2

WRITE(JDEBUG. 1600)
WRITE(JDEBUG.1700) (NODEH2(INODE). INODE-1,NUMDH2)

C

C ------FORMAT TATEMENT

1000 FOR--------MAT(//0--------- )
1100 FORMAT( 1OX,'DEBUG PRINT FROM H2MIXT' )

1200 FORMAT( 10X,'-----------------------'/)

1300 FORMAT(1IX,'OLD VALUES' .X,'NEW VALUES'/

1 5X,'DENSITY ',SX,2014.6/

2 5X,'ENERGY '.X,2G14.6/

3 5X,'MOL MASS ',X,.2G14.6/
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4 5X,'VELOCITY ',5X,2G14.6,X,'SAME U V COMPONENTS'/)

1400 FORMAT( X,'MASS FRAC',5X,2G14.6)

1500 FORMAT(/5X,'IAADH2 ',I5,1OX,'NUMDH2 =',I5,
1 10X,'PHIEH2 -',G14.6)

1600 FORMAT (/IOX,'FUEL INJECTION POINTS')

1700 FORMAT (1017)

RETURN

END

H3MIXT

SUBROUTINE H2MIXT

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] e2COMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INCJ H2COMN.INC/LIST'

INCLUDE '[.INC] PRCOMN.INC/LIST'
INCLUDE '[.INC] IOCOMN.INC/LIST'

DIMENSION YSPEH2(MEQNFL). ENTLH2(MEQNFL), KODEH2(MUMDH2)

C THIS SUBROUTINE INJECTS THE FUEL AT THE PREVIOUSLY GIVEN

C LOCATIONS (STORED IN NODEH2)

C

C IF (KROGER .NE. 1) RETURN
C
C DETERMINE THE MASS FRACTION OF H2 BASED ON EQUIVALENCE RATIO

YH2 - PHIEH2/(PHIEH2+34.048)

KNODH2 0

DO 501 JNODE - 1. NUMDH2
C
C DETERMINE THE ACTUAL NODE OF INJECTION

C

INODE - NODEH2(JNODE)

IF (CHNGE2(1,INODE) .NE. 0.) THEN

KNODH2 - KNODH2 + 1

KODEH2(KNODH2) - INODE

DO 301 IS - 1. NEQNFL

DPENG2(IS.INODE) - DPENG2(IS,INODE) + CHNGE2(IS,INODE)
CHNGE2(IS.INODE) - 0.

301 CONTINUE

ENDIF
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601 CONTINUE

DO 50 JNODE - 1, NODH2

C
C DETERMINE THE ACTUAL NODE OF INJECTION

C
INODE - KODEH2(JNODE)

C

C DETERMINE THE PRIMITIVE VARIABLES BEFORE FUEL INJECTION
C CORRECTION

C
RHORPR - DPENG2(1,INODE)

UCOMPR - DPENG2(2,INODE)/RHORPR

VCOMPR - DPENG2(3,INODE)/RHORPR

BEPSPR - DPENG2(4,INODE)
VELO2U - UCOMPR*UCOMPR + VCOMPR*VCOMPR

C
C COMPUTE THE DIMENSIONAL QUANTITIES
C

TEMPPR - TEMPG2(INODE) *TREFFL

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.

DO 10 IS 1, NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/DPENG2(1,INODE)

IF (YSPEPR(IS) .LT. 0.) THEN
YSPEPR(IS) = 0.

DPENG2(JS.INODE) - 0.
ENDIF

SUMY = SUMY + YSPEPR(IS)
10 CONTINUE

YSPEPR(NEQSCH+I) - 1. - SUMY

IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEQSCH+I) O.
C DETERMINE THE CURRENT MASS FRACTION OF THE FUEL

YH2P - YSPEPR(3)
C

C DETERMINE THE FUEL QUANTITIES
C

RHOF - RHORPR* (YH2-YH2P)/(1.-YH2)

PF - RHOF*RHORFL*UGASFL*RAMWCH(3)*TEMPPR/PRESFL
C

AMASSX - RHORPR*UCOMPR + RHOF*UCOMPR
FORCEX - RHORPR*UCOMPR*UCOMPR + RHOF*UCOMPR*UCOMPR +

1 PRESG2(INODE) + PF

C DETERMINE THE FACTOR BY WHICH THE MASS FRACTIONS MUST BE

C ADJUSTED

YRAT - (.-YH2)/(1.-YH2P)
C
C COMPUTE THE NEW MASS FRACTIONS. MOLECULAR MASSES AND THE
C ENTHALPY OF EACH SPECIES
C

SYSBMO - O.
SYSBMN - 0.
TENTHI - 0.
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YSPEH2(3) YH2
HM- -0.

DO 20 IS - 1, NSPECH

IF (IS .NE. 3) YSPEH2(IS) - YSPEPR(IS)*YRAT

SYSBMO - SYSBMO + YSPEPR(IS)*RAMWCH(IS)

SYSBMN - SYSBMN + YSPEH2(IS)*RAMWCH(IS)
ENTLH2(IS) - FMHTCH(IS)*RAMWCH(IS) +

I SPCPCH(IS)*(TEMPPR-TREFCH) +
2 O. *SPBSCH(IS)*(TEMPPR**2-TREFCH**2)

TENTHI - TENTHI + ENTLH2(IS)*YSPEPR(IS)

HM - HM + FMHTCH(IS)*RAMWCH(IS)*YSPEH2(IS)
20 CONTINUE

TENTHI - TENTHI/FMREFL + 0.5*VELO2U
TENTHF - ENTLH2(3)/FMREFL + O.5*VELO2U

ENRGYX - UCOMPR*RHORPR*TENTHI + UCOMPR*RHOF*TENTHF

C MOLECULAR MASSES

AMASOL - 1./SYSBMO

AMASNW - 1./SYSBMN

UGASM - UGASFL*SYSBMN

TMRAT - PRESFL/(RHORFL*UGASM)

C INITIAL GUESS FOR DENSITY

RHOM - RHORPR + RHOF

VM - VCOMPR

1001 UM - AMASSX/RHOM
PM - FORCEX - UM*AMASSX

TMD - PM*TMRAT/RHOM

VELO2M - O.5*(UM*UM+VM*VM)
C
C DETERMINE THE NEW MIXTURE ENTHALPY

SYSENT - O.
DO 30 IS - 1, NSPECH

ENTLH2(IS) SPCPCH(IS)*(TMD-TREFCH) +

2 O. *SPBSCH(IS)*(TMD**2-TREFCH**2)

SYSENT - SYSENT + YSPEH2(IS)*ENTLH2(IS)
30 CONTINUE

ENTHM - (HM+SYSENT)/FMREFL

RHOMN - ENRGYX/(enthm+VELO2M)/UM

C COMPA - ABS(RHOM-RHOMN)
RHOM - RHOMN

C IF (COMPA .GT. 1.E-4) GOTO 1001

BENW - (ENTHM+VEL02M)*RHOM - pm
C
C ADJUST THE DEPENDENT VARIABLES

C

DPENG2(1,INODE) - RHOM

DPENG2(2,INODE) - RHOM*UM

DPENG2(3,INODE) - RHOM*VM

DPENG2(4,INODE) - BENW
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DO 40 IS - 1, NEQSCH

-38 - NEQBAS + IS
1PENG2(JS,INODE) - RHOM*YSPEH2(IS)

40 CONTINUE

CONTINUE

PRINT OUT PARAMETERS

IF (IDBGCH .NE. 19 .AND. IDBGCH .LT. 1000) RETURN

WRITE(JDEBUG, 1000)

WRITE(JDEBUG, OO1100)

WRITE(JDEBUG, 1200)

WRITE(JDEBUG, 1300) RHORPR. RHOM, BEPSPR, BENW

AMASOL, AMASNW, UCOMPR, VCOMPR

DO 60 IS - 1, NSPECH

WRITE(JDEBUG,1400) YSPEPR(IS). YSPEH2(IS)

60 CONTINUE

WRITE(JDEBUG,1500) IADDH2, NUMDH2, PHIEH2

WRITE(JDEBUG,1600)

WRITE(JDEBUG,1700) (NODEH2(INODE), INODE-I,NUMDH2)
C

C

C

C
FORMAT STATEMENTS

1000 FORMAT(//1OX,'----------------------- )
1100 FORMAT( lOX.'DEBUG PRINT FROM H2MIXT' )

1200 FORMAT( lOX,'-----------------------'/)

1300 FORMAT(16X,'OLD VALUES',6X,'NEW VALUES'/

1 5X.'DENSITY ',6X.2GI4.6/

2 5X,'ENERGY '.6X,2G14.6/

3 5X,'MOL MASS ',6X,2G14.68/

4 6X,'VELOCITY '.6X.2Gi4.6.SX,'SAME U

1400 FORMAT( 5X,'MASS FRAC',6X,2Gi4.6)

1600 FORMAT(/6X,'IAADH2 -',I5,1OX,'NUMDH2 ',5,

1 10X,'PHIEH2 ',G14.6)

1600 FORMAT (/lOX,'FUEL INJECTION POINTS')

1700 FORMAT (1017)

k V COMPONENTS'/)

RETURN

END

H2SCRI

SUBROUTINE H2SCRI

INCLUDE

INCLUDE

INCLUDE

C INCLUDE

INCLUDE

' [. INC]
' [. INC]
'[.INC]
'[.INC]

'[.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

IOCOMN.INC/LIST'

60
C
C
C

1
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DIMENSION IFNODE(100)

C

C THIS SUBROUTINE OUTPUTS THE DEPENDENT VARIABLES AT A VERTICAL
C PLANE STARTING FROM A GIVEN NODE AT THE BOTTOM OF THE PLANE.
C WITH THESE NODES KNOWN, A SCREEN OF FUEL ELEMENTS CAN BE
C CONSTRUCTED FOR A COMBINATION OF THESE NODES.

C

C READ THE FOLLOWING FUEL QUANTITIES
C IBASE : THE BASE NODE OF THE PLANE OF INJECTION
C

READ (JREADS,*) IBASE
INODE - IBASE

NBTYPE - 0

NB1 - NEIBG2(4,INODE)

NB2 - NEIBG2(3,INODE)

IF (NB1 .NE. O) THEN

NBTYPE - 4

INTYPE - 6
ELSEIF (NB2 .NE. O) THEN

NBTYPE - 3

INTYPE - 8

ENDIF

C

C ERROR CONDITION
C

IF (NBTYPE .EQ. O) THEN
ZERI - ISTART

ZER2 - NBTYPE

CALL ERRORM (46,'H2SCRI', 'ISTART',ZER1. 'NBTYPE' ,ZER2,JPRINT,

1 'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')
ENDIF

C

C NOW MARCH IN THE APPROPRIATE DIRECTION
C

KOUNT - 0

10 KOUNT - KOUNT + 1
C SAVE THE NODE WHERE THE FUEL MIGHT BE INJECTED

IFNODE(KOUNT) - INODE
C FIND THE NEXT CELL ON TOP OF THE NODE UNDER CONSIDERATION

NBNEXT - NEIBG2(NBTYPE,INODE)
C SEE IF YOU HAVE REACHED THE TOP BOUNDARY SURFACE

IF (NBNEXT .EQ. O) GOTO 20
INODE - ICELG2(INTYPENBNEXT)
GO TO 10

20 CONTINUE

C WRITE ALL THE OUTPUT

OPEN (UNIT-JDUMYI. FILE-'H2SCRI .DAT', STATUS-'NEW')
WRITE (JDUMY1,30) KOUNT

30 FORMAT (SX,'TOTAL NODES IN THE PLANE:',I4//

1 iX,'KOUNT',2X,'NODE',2X,'DENSITY',7X,'U COMP',8X,
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'V COMP',8X,'PRESSURE' ,4X,'TEMPERATURE')

1

DO 40 JNODE - 1, KOUNT

INODE - IFNODE(JNODE)

UCOMP - DPENG2(2,INODE)/DPENG2(1,INODE)

VCOMP - DPENG2(3,INODE)/DPENG2(1,INODE)

WRITE(JDUMY1,60) JNODE, INODE, DPENG2(1,INODE). UCOMP,

VCOMP, PRESG2(INODE), TEMPG2(INODE)
40 CONTINUE

50 FORMAT(2I6,SG14.5)

RETURN

END

H2SCRN

SUBROUTINE H2SCRN

INCLUDE
INCLUDE

INCLUDE

INCLUDE

INCLUDE

C INCLUDE

INCLUDE

INCLUDE

INCLUDE

C

' [.INC]
' [.INC]

' .INC]
'[.INC]

' [. INC]
' [. INC]

[. INC]
'C.INC]

'[.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

CHCOMN.INC/LIST'

FLCOMN.INC/LIST'

G2COMN.INC/LIST'

H2COMN.INC/LIST'

hexcod.INC

IOCOMN.INC/LIST'

PRCOMN.INC/LIST'

C THIS SUBROUTINE INITIALIZES THE DEPENDENT VARIABLES FOR FUEL

C INJECTION AS SCREEN POINTS INSIDE A GIVEN REGION OF AIR FLOW

C FUEL IS ADDED AS A MIXTURE OF AIR AND AT THE INJECTORS.

C THE VALUES NEEDED AT THE SCREEN POINTS ARE THE PROPERTIES OF THIS

C MIXTURE, I.E., TEMPERATURE, PRESSURE, MACH NO., EQUIVALENCE

C RATIO, AND THE ANGLE OF INJECTION. ALSO NEEDED IS THE TOTAL

C NUMBER OF NODES (OR CELLS) AND THE NODES THEMSELVES WHICH ARE
C THE LOWER CORNERS OF THE INJECTOR CELLS.

C

C IF (KROGER .NE. 1) RETURN
C

NBTYPE - 4

INTYPE - 6
C

READ THE FOLLOWING FUEL QUANTITIES
TEMPEF : FUEL TEMPERATURE IN DEGREE K
PRESSF : FUEL PRESSURE IN PASCALS
AMACHF : FUEL MACH NUMBER

EQUIVF : EQUIVALENCE RATIO
ANGLEF : ANGLE OF INJECTION IN DEGREES

MNODEF : NUMBER OF CELLS WITH FUEL INJECTION
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INODE : CELLS WHERE FUEL IS INJECTED
-IF EQUIVF > 100 THEN ONLY FUEL IS ADDED AT THE INJECTORS

READ

READ

READ

READ

READ

READ

(JREADS,*)

(JREADS.*)

(JREADS,*)
(JREADS,*)

(JREADS ,*)

(JREADS ,*)

TEMPEF

PRESSF

AMACHF

EQUIVF
ANGLEF

MNODEF
C
C COMPUTE THE ANGLE IN RADIANS

ANGLEF - ANGLEF*3.141592654/180.

C DETERMINE THE MASS FRACTION OF H2 BASED ON EUIVALENCE RATIO
C AND OTHER MASS FRACTIONS

C YH2 - 2 PHI MH2 / (M_02 + 3.7 MN2 + 2 PHI M_H2)

YSPEPR(2) - O.

YSPEPR(4) - O.

IF (EQUIVF .GT. 100.) THEN
YSPEPR(1) - O.
YSPEPR(3) - .
YSPEPR(6) - 0.

ELSE

YSPEPR(1)

YSPEPR(3)

YSPEPR(5)
ENDIF

- 7.93626/(EQUIVF+34.048)

- EQUIVF/(EQUIVF+34.048)

- 1. - YSPEPR(1) - YSPEPR(3)

C
C DETERMINE THE MOLECULAR MASS AND OTHER QUANTITIES FOR THIS MIXTURE
C

DO 5 IS - 1,
SYSBMS -
SYSHFE -
SYSCPE -
BIGAM -

6 CONTINUE

NSPECH

SYSBMS

SYSHFE

SYSCPE

BIGAM

+ YSPEPR(IS)*RAMWCH(IS)
+ YSPEPR(IS)*FMHTCH(IS)

+ YSPEPR(IS)*SPCPCH(IS)

+ YSPEPR(IS)*SPBSCH(IS)

UGASCO - UGASFL*SYSBMS

C DETERMINE THE DIMENSIONLESS DENSITY OF THE FUEL MIXTURE

RHOF - PRESSF/(UGASCO*TEMPEF*RHORFL)

C DETERMINE THE DIMENSIONLESS PRESSURE OF THE FUEL MIXTURE
PRESSF - PRESSF/PRESFL

C

C DETERMINE GAMMA FOR THIS MIXTURE
BIGAM - BIGAM*TEMPEF
SYSCVE - SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE - (SYSCPE + BIGAMT)/SYSCVE

C DETERMINE THE OVERALL DIMENSIONLESS VELOCITY OF THE FUEL
VELOF - AMACHF*SQRT(GAMMAE*PRESSF/RHOF)

UCOMPF - VELOF*COS(ANGLEF)
VCOMPF - VELOF*SIN(ANGLEF)
VELO2I - UCOMPF*UCOMPF + VCOMPF*VCOMPF
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C DETERMINE THE ENERGY TERM

BEE = SYSHFE + (TEMPEF-TREFCH)*SYSCPE - UGASFL*TEMPEF*SYSBMS

1 - + 0.5*(TEMPEF*TEMPEF-TREFCH*TREFCH)*BIGAM

BEE = BEE/FMREFL + 0.5*VELO2I

C
TEMPEF TEMPEF/TREFFL

C
C

C I I
C IUCELL I
C I I
C ------------- I2NODE

C I I
C IOCELL I
C I I
C ------------- IlNODE

C I I
C ILCELL I
CI I

C
C

NNODEF ABS(MNODEF)

DO 50 JCELL 1, NNODEF

C READ THE LOWER NODE OF THIS CELL

READ (JREADS,*) IINODE

IOCELL NEIBG2(4,I1NODE)

IF (IOCELL .EQ. O) GOTO 50

ILCELL = NEIBG2(1,I1NODE)
I2NODE = ICELG2(6,IOCELL)

IUCELL = NEIBG2(4,I1NODE)
KAUXG2(IOCELL) IOR(KAUXG2(IOCELL),KL10OO0)

C SET THE DEPENDENT VARIABLES

DPENG2(1,IlNODE) = RHOF

DPENG2(1,I2NODE) = RHOF
DPENG2(2,IlNODE) = RHOF*UCOMPF

DPENG2(2,I2NODE) = RHOF*UCOMPF

DPENG2(3,I1NODE) = RHOF*VCOMPF
DPENG2(3,I2NODE) = RHOF*VCOMPF
DPENG2(4,I1NODE) = BEE*RHOF
DPENG2(4,I2NODE) = BEE*RHOF

IF (MNODEF .LT. O) THEN

ICRITE = NEIBG2(3,IiNODE)
DPENG2(l,ICELG2(4,ICRITE)) = RHOF

DPENG2(2,ICELG2(4,ICRITE)) = RHOF*UCOMPF

DPENG2(3.ICELG2(4,ICRITE)) = RHOF*VCOMPF

DPENG2(4,ICELG2(4,ICRITE)) = BEE*RHOF

DPENG2(1,ICELG2(6,ICRITE)) = RHOF

DPENG2(2,ICELG2(6,ICRITE)) = RHOF*UCOMPF
DPENG2(3,ICELG2(6,ICRITE)) = RHOF*VCOMPF

DPENG2(4.ICELG2(6,ICRITE)) = BEE*RHOF

ENDIF

DO 10 JS = NEQBAS+1, NEQNFL

IS = JS - NEQBAS
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DPENG2(JS,IlNODE) = RHOF*YSPEPR(IS)

DPENG2(JS,I2NODE) = RHOF*YSPEPR(IS)

IF (MNODEF LT. O) THEN

DPENG2(JS,ICELG2(4,ICRITE)) = RHOF*YSPEPR(IS)

DPENG2(JS,ICELG2(6,ICRITE)) = RHOF*YSPEPR(IS)

ENDIF

10 CONTINUE

PRESG2(I1NODE) = PRESSF

TEMPG2(I1NODE) = TEMPEF
PRESG2(I2NODE) = PRESSF

TEMPG2(I2NODE) = TEMIPEF

C SET THE BOUNDARY CONDITION POINTER

DO 20 JS = 1, NBNDG2
IF (IBNDG2(1,JS) .EQ. IlNODE) THEN

IBNDG2(6,JS) = 2

GOTO 30

ENDIF

20 CONTINUE

NBNDG2 = NBNDG2 + 1

IBNDG2(1,NBNDG2) = I1NODE
IBNDG2(2,NBNDG2) = IOCELL

IBNDG2(3,NBNDG2) = ILCELL

IBNDG2(4,NBNDG2) = 0

IBNDG2(S,NBNDG2) = 2

30 DO 40 JS = 1, NBNDG2
IF (IBNDG2(1,JS) .EQ. I2NODE) THEN

IBNDG2(5,JS) = 2

GOTO 50

ENDIF

40 CONTINUE

NBNDG2 = NBNDG2 + i

IBNDG2(1,NBNDG2) = I2NODE

IBNDG2(2,NBNDG2) = IUCELL

IBNDG2(3,NBNDG2) = IOCELL
IBNDG2(4,NBNDG2) = 0

IBNDG2(5,NBNDG2) = 2

50 CONTINUE

C

C FOR ROGERS AND CHINITZ MODEL THE NUMBER OF EQUATIONS MUST
C BE ADJUSTED

IF (KROGER .EQ. 1 .AND. NINRCH .GT. O) THEN

DO 200 INODE = 1, NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY = 0.

YUPPER = 1. - YNRTCH

RHORPR DPENG2(1,INODE)
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DO 190 IS = 1, NEQSCH

Js = NEQBAS + IS
' YSPEPR(IS) DPENG2(JS.INODE)/RHORPR

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) = 0.

DPENG2(JS,INODE) = 0.
ENDIF

c IF (YSPEPR(IS) .GT. YUPPER) THEN
c YSPEPR(IS) = YUPPER
c DPENG2(JS,INODE) = YUPPER*RHORPR
c ENDIF

SUMY = SUMY + YSPEPR(IS)
190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 = NEQSCH+1

YSPEPR(NEQSCH+I) = 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEQSCH+I) = 0.
C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+I,INODE) = RHORPR*YSPEPR(NEQSCH+1)
200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS
YNRTCH 0.

NEQNFL = NEQNFL + 1
NEQSCH NEQSCH + 1

NINRCH = NINRCH - 1

ENDIF

C
RETURN

END

H3SCRN

SUBROUTINE H2SCRN

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'
INCLUDE '[.INC] G2COMN.INC/LIST'

C INCLUDE '[.INC] H2COMN.INC/LIST'

INCLUDE '[.INC] hexcod.INC
INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] PRCOMN.INC/LIST'
C

C THIS SUBROUTINE INITIALIZES THE DEPENDENT VARIABLES FOR FUEL
C INJECTION AS SCREEN POINTS INSIDE A GIVEN REGION OF AIR FLOW
C FUEL IS ADDED AS A MIXTURE OF AIR AND AT THE INJECTORS.

C THE VALUES NEEDED AT THE SCREEN POINTS ARE THE PROPERTIES OF THIS
C MIXTURE, I.E., TEMPERATURE, PRESSURE, MACH NO., EQUIVALENCE

C RATIO, AND THE ANGLE OF INJECTION. ALSO NEEDED IS THE TOTAL
C NUMBER OF NODES (OR CELLS) AND THE NODES THEMSELVES WHICH ARE
C THE LOWER CORNERS OF THE INJECTOR CELLS.
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C
C IF (KROGER .NE. 1) RETURN

C

NBTYPE 4

INTYPE 6
C

READ THE FOLLOWING FUEL QUANTITIES
TEMPEF : FUEL TEMPERATURE IN DEGREE K

PRESSF : FUEL PRESSURE IN PASCALS
AMACHF : FUEL MACH NUMBER
EQUIVF : EQUIVALENCE RATIO

ANGLEF : ANGLE OF INJECTION IN DEGREES

MNODEF : NUMBER OF CELLS WITH FUEL INJECTION

INODE : CELLS WHERE FUEL IS INJECTED

IF EQUIVF> 100 THEN ONLY FUEL IS ADDED AT THE INJECTORS

READ

READ

READ

READ

READ

READ

(JREADS.*)

(JREADS,*)

(JREADS,*)
(JREADS,*)

(JREADS,*)

(JREADS,*)

TEMPEF

PRESSF

AMACHF

EQUIVF

ANGLEF

MNODEF
C

C COMPUTE THE ANGLE IN RADIANS

ANGLEF - ANGLEF*3.141592654/180.

C DETERMINE THE MASS FRACTION OF H2 BASED ON EQUIVALENCE RATIO
C AND OTHER MASS FRACTIONS

C YH2 - 2 PHI MH2 / (M_02 + 3.76 MN2 + 2 PHI MH2)

YSPEPR(2) - 0.

YSPEPR(4) = O.

IF (EQUIVF .GT. 100.) THEN

YSPEPR(1) = 0.
YSPEPR(3) = 1.
YSPEPR(5) - 0.

ELSE

YSPEPR(1)

YSPEPR(3)

YSPEPR(5)
ENDIF

= 7.93626/(EQUIVF+34.048)
= EQUIVF/(EQUIVF+34.048)
- 1. - YSPEPR(1) - YSPEPR(3)

C

C DETERMINE THE MOLECULAR MASS AND OTHER QUANTITIES FOR THIS MIXTURE
C

DO 6 IS - 1,

SYSBMS 

SYSHFE 

SYSCPE 

BIGAM -
5 CONTINUE

NSPECH

SYSBMS + YSPEPR(IS)*RAMWCH(IS)

SYSHFE + YSPEPR(IS)*FMHTCH(IS)

SYSCPE + YSPEPR(IS)*SPCPCH(IS)
BIGAM + YSPEPR(IS)*SPBSCH(IS)

UGASCO UGASFL*SYSBMS

C DETERMINE THE DIMENSIONLESS DENSITY OF

RHOF - PRESSF/(UGASCO*TEMPEF*RHORFL)

THE FUEL MIXTURE
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C DETERMINE THE DIMENSIONLESS PRESSURE OF THE FUEL MIXTURE

PRESSF - PRESSF/PRESFL

C
C DETERMINE GAMMA FOR THIS MIXTURE

BIGAMT BIGAM*TEMPEF

SYSCVE - SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE - (SYSCPE + BIGAMT)/SYSCVE

C DETERMINE THE OVERALL DIMENSIONLESS VELOCITY OF THE FUEL

VELOF - AMACHF*SQRT(GAMMAE*PRESSF/RHOF)

UCOMPF - VELOF*COS(ANGLEF)

VCOMPF - VELOF*SIN(ANGLEF)

VEL02I UCOMPF*UCOMPF + VCOMPF*VCOMPF

C DETERMINE THE ENERGY TERM

BEE - SYSHFE + (TEMPEF-TREFCH)*SYSCPE - UGASFL*TEPEF*SYSBMS

1 + 0.5*(TEMIPEF*TEMPEF-TREFCH*TREFCH)*BIGAM
BEE - BEE/FMREFL + 0.5*VELO2I

C

TEMPEF - TEMPEF/TREFFL
C
C

C I I
C | IUCELL I
C I I
C ------------- KNE

C I I
C I IOCELL I
C I I
C ------------- KSE

C I I
C I ILCELL I
C I

C
C

NNODEF = ABS(MNODEF)
DO 56 JCELL - 1, NNODEF

C READ THE LOWER NODE OF THIS CELL

READ (JREADS,*) KSE
IOCELL NEIBG2(4.KSE)

IF (IOCELL .EQ. O) GOTO 56
ILCELL - NEIBG2(1.KSE)

KNE - ICELG2(6,IOCELL)

IUCELL - NEIBG2(4.KNE)

KNW - ICELG2(8,IOCELL)

KSW - ICELG2(2,IOCELL)

KAUXG2(IOCELL) - IOR(KAUXG2(IOCELL),KL1000)
C SET THE DEPENDENT VARIABLES

DPENG2(,.KSE) - RHOF
DPENG2(1.KNE) - RHOF
DPENG2(2.KSE) - RHOF*UCOMPF

DPENG2(2,KNE) - RHOF*UCOMPF

DPENG2(3,KSE) - RHOF*VCOMPF
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DPENG2(3,KNE)

DPENG2(4,KSE)

DPENG2(4.KNE)

DPENG2(2,KSW)

DPENG2(3,KSW)

DPENG2(2,KNW)

DPENG2(3,KNW)

= RHOF*VCOMPF
= BEE*RHOF

= BEE*RHOF
= 0.
= 0.
- 0.
= O.

IF (MNODEF .LT. O) THEN

ICRITE = NEIBG2(3,KSE)
DPENG2(1,ICELG2(4,ICRITE))

DPENG2(2,ICELG2(4,ICRITE))

DPENG2(3,ICELG2(4,ICRITE))

DPENG2(4,ICELG2(4,ICRITE))

DPENG2(1,ICELG2(6,ICRITE))

DPENG2(2,ICELG2(6,ICRITE))

DPENG2(3,ICELG2(6,ICRITE))

DPENG2(4,ICELG2(6,ICRITE))
ENDIF

= RHOF

= RHOF*UCOMPF

= RHOF*VCOSPF

= BEE*RHOF

= RHOF
= RHOF*UCOSPF

= RHOF*VCOMPF

= BEE*RHOF

DO 10 JS = NEQBAS+1, NEQNFL

IS = JS - NEQBAS

DPENG2(JS,KSE) = RHOF*YSPEPR(IS)

DPENG2(JS,KNE) = RHOF*YSPEPR(IS)

IF (MNODEF .LT. O) THEN

DPENG2(JS,ICELG2(4,ICRITE)) = RHOF*YSPEPR(IS)

DPENG2(JS,ICELG2(6,ICRITE)) = RHOF*YSPEPR(IS)
ENDIF

CONTINUE

PRESG2(KSE) = PRESSF
TEMPG2(KSE) = TEMPEF

PRESG2(KNE) = PRESSF
TEMPG2(KNE) = TEMPEF

SET THE BOUNDARY CONDITION POINTER

DO 20 JS - 1, NBNDG2

IF (IBNDG2(1,JS) .EQ. KSE) THEN

IBNDG2(56,JS) = 2
GOTO 30

ENDIF

CONTINUE

NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

= NBNDG2 + 
= KSE

= IOCELL

= ILCELL
=0
=2

DO 40 JS 1, NBNDG2

IF (IBNDG2(1,JS) .EQ.

IBNDG2(5.,JS) = 2
GOTO 50

ENDIF

CONTINUE

KNE) THEN
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NBNDG2

IBNDG2(1,NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

CONTINUE

- NBNDG2 + 1

· KNE

= IUCELL

= IOCELL

=0
=2

DO 51 JS - 1, NBNDG2

IF (IBNDG2(1,JS) .EQ

IBNDG2(5,JS) = 11
GOTO 2

ENDIF

CONTINUE

KNW) THEN

NBNDG2

IBNDG2(1.NBNDG2)

IBNDG2(2,NBNDG2)

IBNDG2(3,NBNDG2)

IBNDG2(4,NBNDG2)

IBNDG2(5,NBNDG2)

= NBNDG2 + 1

- KNW

- IUCELL

- IOCELL

0
= 11

DO 53 JS 1, NBNDG2

IF (IBNDG2(1,JS) .EQ. KSW) THEN

IBNDG2(56,JS) = 11
GOTO 55

ENDIF

CONTINUE

NBNDG2 = NBNDG2 + 1

IBNDG2(1,NBNDG2) = KSW

IBNDG2(2,NBNDG2) - IOCELL

IBNDG2(3,NBNDG2) - ILCELL
IBNDG2(4,NBNDG2) = 0

IBNDG2(6,NBNDG2) - 11

65
C

CONTINUE

C FOR ROGERS AND CHINITZ MODEL

C BE ADJUSTED
THE NUMBER OF EQUATIONS MUST

IF (KROGER .EQ. .AND. NINRCH .GT. O) THEN

DO 200 INODE w 1, NNODG2

COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY O0.

YUPPER = 1. - YNRTCH

RHORPR - DPENG2(1,INODE)

DO 190 IS 1, NEQSCH
JS = NEQBAS + IS
YSPEPR(IS) = DPENG2(JS,INODE)/RHORPR

IF (YSPEPR(IS) .LT. 0.) THEN
YSPEPR(IS) = 0.

DPENG2(JS,INODE) 0.
ENDIF
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c IF (YSPEPR(IS) .GT. YUPPER) THEN

c YSPEPR(IS) = YUPPER
c DPENG2(JS,INODE) = YUPPER*RHORPR
c ENDIF

SUMY - SUMY + YSPEPR(IS)

190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 = NEQSCH+I
YSPEPR(NEQSCH+1) = 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+1) .LT. 0.) YSPEPR(NEqSCH+I) = 0.
C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+I.INODE) = RHORPR*YSPEPR(NEQSCH+i)

200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS

YNRTCH - O.

NEQNFL = NEQNFL + 1

NEQSCH = NEQSCH + 1
NINRCH = NINRCH - 1

ENDIF

C
CALL A2CEWC

RETURN

END

H2SOLF

SUBROUTINE H2SOLF (ITGL)

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] e2COMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] H2COMN.INC/LIST'

INCLUDE '[.INC] M2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE '[.INC] TICOMN.INC/LIST'
DIMENSION YSPEH2(MEQNFL). ENTLH2(MEQNFL), KODEH2(MUMDH2)

DIMENSION BIGFS (MEQNFL) , BIGFE (MEQNFL)
1 BIGFN (MEQNFL) . BIGFW (MEQNFL)

2 BIGGS (MEQNFL) . BIGGE (MEQNFL)

3 BIGGN (MEQNFL) , BIGGW (MEQNFL)

4 DPENFA(MEQNFL.4)

C THIS SUBROUTINE STEPS THROUGH EACH FUEL CELL ON THE TEMPORAL

C LEVEL ITGL AND APPLIES NI'S SCHEME, I.E., INTEGRATES OVER ALL
C THE FUEL CELLS ON LEVEL ITGL. THIS FOR EMBEDDED FUEL INLET

C MODELLING.

937



C

YH2 - PHIEH2/(PHIEH2+34.048)

DO 60 JCELL - 1. NCELH2

C
C DETERMINE THE ACTUAL NODE OF INJECTION

C

ICELL = ICELH2(JCELL)

IF (ICELL.LT.ILVLTI(1,ITGL) .OR. ICELL.GT.ILVLTI(1.ITGL))

I GOTO 50

C SET UP NODE POINTERS FOR THIS CELL

KSW = ICELG2( 2,ICELL)
KSE - ICELG2( 4,ICELL)
KNE = ICELG2( 6,ICELL)
KNW - ICELG2( 8,ICELL)

C ------

C GEOMETRY

C

C GEOMETRY OF ALL CELL CORNERS

XSW GEOMG2(1,KSW)
YSW - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1,KNE)

YNE = GEOMG2(2,KNE)

XNW GEOMG2(1,KNW)

YNW - GEOMG2(2,KNW)
C
C THE RATIO DELTA-t TO CELL VOLUME

DTDVOL CELLTI(ICELL)*RVOLM2 (ICELL)

RHORSW - DPENG2(1,RKSW)

RHORNW - DPENG2(1.KNW)

RHORNE - DPENG2(1,KNE)

RHORSE - DPENG2(1,KSE)

BEPSSW - DPENG2(4,KSW)

BEPSNW - DPENG2(4.KNW)

BEPSNE DPENG2(4.KNE)

BEPSSE - DPENG2(4,KSE)

UCOMSW - DPENG2(2,KSW)/RHORSW
VCOMSW = DPENG2(3,KSW)/RHORSW

UCOMNW - DPENG2(2.KNW)/RHORNW

VCOMNW - DPENG2(3,KNW)/RHORNW

UCOMNE - DPENG2(2,KNE)/RHORNE

VCOMNE - DPENG2(3.KNE)/RHORNE

UCOMSE - DPENG2(2,KSE)/RHORSE
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VCOMSE DPENG2(3,KSE)/RHORSE

PRESSW - PRESG2(KSW)
PRESSE - PRESG2(KSE)

PRESNE - PRESG2(KNE)

PRESNW - PRESG2(KNW)

TEMPSE = TEMPG2(KSE)*TREFFL
TEMPNE - TEMPG2(KSE)*TREFFL

DETERMINE THE FUEL QUANTITIES

YH2PSE - DPENG2(7,KSE)/RHORSE

YH2PNE - DPENG2(7,.KNE)/RHORNE

RHOFSE = RHORSE*(YH2-YH2PSE)/(1.-YH2)

RHOFNE = RHORNE*(YH2-YH2PNE)/(1.-YH2)

PFSE - RHOFSE*RHORFL*UGASFL*RAMWCH(3)*TEMPSE/PRESFL
PFNE = RHOFNE*RHORFL*UGASFL*RAMWCH(3)*TEMPNE/PRESFL

C

RHORSE = RHORSE - RHOFSE

RHORNE - RHORNE - RHOFNE

PRESSE = PRESSE - PFSE

PRESNE = PRESNE - PFNE

BEPSSE = (BEPSSW + PRESSW)*UCOMSW/UCOMSE - PRESSE
BEPSNE - (BEPSNW + PRESNW)*UCOMNW/UCOMNE - PRESNE

C
C
C COMPUTE THE DEPENDENT VARIABLES AT THE FACES

PRESSS

PRESSE

PRESSN

PRESSW

8 0.5*(
- 0.6*(
= 0.5*(
= 0.6*(

PRESSW + PRESSE )

PRESSE + PRESNE )

PRESNW + PRESNE )

PRESSW + PRESNW )

DPENFA(,11) =
DPENFA(1,2) -
DPENFA(1,3) =
DPENFA(1,4) 

0.56*(

0.5*(

0.6*(

0.6*(

RHORSW + RHORSE )

RHORSE + RHORNE )

RHORNE + RHORNW )

RHORNW + RHORSW )

RHORSW*UCOMSW

RHORSE*UCOMSE

RHORNE*UCOMNE

RHORNW*UCOMNW

RHORSW*VCOMSW

RHORSE*VCOMSE

RHORNE*VCOMNE

RHORNW*VCOMNW

+ RHORSE*UCOMSE )
+ RHORNE*UCOMNE )
+ RHORNW*UCOMNW )
+ RHORSW*UCOMSW )

+ RHORSE*VCOMSE )
+ RHORNE*VCOMNE )
+ RHORNW*VCOMNW )
+ RHORSW*VCOMSW )

BEPSSW + BEPSSE )

BEPSSE + BEPSNE )
BEPSNE + BEPSNW )

BEPSNW + BEPSSW )
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DPENFA(2.1)

DPENFA(2.2)

DPENFA(2.3)

DPENFA(2.4)

DPENFA(3.1)

DPENFA(3,2)

DPENFA(3.3)

DPENFA(3.4)

DPENFA(4. 1)
DPENFA(4,2)
DPENFA(4 ,3)
DPENFA(4,4)

= 0.5*C

= 0.6*(
31 0.5*(

- 0.5*(

- 0.5*(
- 0.5*(
- 0.5*(

- 0.6*(
= 0.6*(
= 0.5*(
= 0.65*(



UCOMPS = DPENFA(2,1)/DPENFA(l,1)

VCOMPS = DPENFA(3,1)/DPENFA(1,1)

UCOMPE = DPENFA(2,2)/DPENFA(1,2)

VCOMPE - DPENFA(3,2)/DPENFA(1,2)

UCOMPN DPENFA(2,3)/DPENFA(1,3)

VCOMPN = DPENFA(3,3)/DPENFA(1,3)

UCOMPW = DPENFA(2,4)/DPENFA(1,4)

VCOMPW = DPENFA(3,4)/DPENFA(1,4)

C
C FLUX TERMS

C SOUTH

BIGFS(1) = DPENFA(2,1)

BIGFS(2) = DPENFA(2,1)*UCOMPS + PRESSS

BIGFS(3) = DPENFA(2,1)>VCOMPS

BIGFS(4) = UCOMPS*(DPENFA(4,1) + PRESSS)

BIGGS(1) = DPENFA(3,1)

BIGGS(2) = BIGFS(3)

BIGGS(3) = DPENFA(3,1)*VCOMPS + PRESSS

BIGGS(4) = VCOMPS*(DPENFA(4,1) + PRESSS)

C EAST

BIGFE(1) = DPENFA(2,2)

BIGFE(2) = DPENFA(2,2)*UCOMPE + PRESSE

BIGFE(3) = DPENFA(2,2)*VCOMPE

BIGFE(4) = UCOMPE*(DPENFA(4,2) + PRESSE)

BIGGE(1) = DPENFA(3,2)

BIGGE(2) = BIGFE(3)

BIGGE(3) = DPENFA(3,2)*VCOMPE + PRESSE

BIGGE(4) = VCOMPE*(DPENFA(4,2) + PRESSE)

C NORTH

BIGFN(1) = DPENFA(2,3)

BIGFN(2) = DPENFA(2,3)*UCOMPN + PRESSN

BIGFN(3) - DPENFA(2,3)*VCOMPN

BIGFN(4) = UCOMPN*(DPENFA(4,3) + PRESSN)

BIGGN(1) - DPENFA(3,3)

BIGGN(2) = BIGFN(3)

BIGGN(3) = DPENFA(3,3)*VCOMPN + PRESSN

BIGGN(4) = VCOMPN*(DPENFA(4,3) + PRESSN)

C WEST

BIGFW(1) = DPENFA(2,4)

BIGFW(2) - DPENFA(2,4)*UCOMPW + PRESSW

BIGFW(3) = DPENFA(2,4)*VCOMPW
BIGFW(4) = UCOMPW*(DPENFA(4,4) + PRESSW)

BIGGW(1) = DPENFA(3,.4)

BIGGW(2) = BIGFW(3)
BIGGW(3) = DPENFA(3,4)*VCOPW + PRESSW
BIGGW(4) = VCOMPW*(DPENFA(4,4) + PRESSW)
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FIRST ORDER CELL CHANGE DUCELL

CALCULATE CHANGE AT CELL CENTER BY PERFORMING A FLUX BALANCE

AND DO DISTRIBUTION

DO 120 J 1, 4

DUCELL - 0.25*DTDVOL*(

BIGFW(J)* (YNW-YSW)
BIGFN(J)*(YNE-YNW)

BIGFE(J) * (YSE-YNE)

BIGFS(J)*(YSW-YSE)

- BIGGW(J)*(XNW-XSW) +
- BIGGN(J)*(XNE-XNW) +
- BIGGE(J)*(XSE-XNE) +
- BIGGS(J)*(XSW-XSE) )

CHNGE2(J,KSW) = CHNGE2(J,KSW) + DUCELL

CHNGE2(J.KNW) - CHNGE2(J,KNW) + DUCELL

120 CONTINUE

C CALCULATE CHANGES AT WESTERN NODES FOR SPECIES EQUATIONS

DO 130 J = NEQBAS+I. NEQNFL

CHNGE2(J,KSW) = CHNGE2(1.KSW)*DPENG2(3,KSW)/DPENG2(1,KSW)

CHNGE2(J,KNW) CHNGE2(1,KNW)*DPENG2(J,KNW)/DPENG2(1.KNW)
130 CONTINUE

50 CONTINUE

C
RETURN

END

H2TRIN

SUBROUTINE H2TRIN

C

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'CHCOMN.INC'

'E2COMN.INC'

'FLCOMN.INC'

'G2COMN.INC'

'IOCOMN.INC'

'PRCOMN.INC'

C
C************************************************************************

C THIS SUBROUTINE INITIALIZES THE DEPENDENT VARIABLES FOR FUEL
C INJECTION AS WALL POINTS FOR INTERNAL BOUNDARIES FOR A MIXTURE OF

C FUEL AND AIR. THE VALUES NEEDED AT THE INTERNAL POINTS ARE THE

C PROPERTIES OF THIS MIXTURE, I.E., TEMPERATURE, PRESSURE, MACH NO.,

C EQUIVALENCE RATIO, AND THE ANGLE OF INJECTION. ALSO NEEDED IS THE
C TOTAL NUMBER OF INJECTION POINTS AND THE ACTUAL NODE NUMBERS.
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C
C IF (ROGER .NE. 1) RETURN
C

C READ THE FOLLOWING FUEL QUANTITIES

C TEMPEF : FUEL TEMPERATURE IN DEGREE K

C PRESSF : FUEL PRESSURE IN PASCALS

C AMACEF : FUEL MACH NUMBER

C EQUIVF : EQUIVALENCE RATIO
C ANGLEF : ANGLE OF INJECTION IN DEGREES

C NINJEC : NUMBER OF CELLS WITH FUEL INJECTION

C INODE : CELLS WHERE FUEL IS INJECTED

C IF EQUIVF > 100 THEN ONLY FUEL IS ADDED AT THE INJECTORS
C

READ
READ

READ

READ
READ

READ

(JREADS,*)
(JREADS,*)

(JREADS,*)

(JREADS,*)
(JREADS,*)
(JREADS,*)

TEMPEF

PRESSF

AMACHF

EQUIVF

ANGLEF

NINJEC

C

C COMPUTE THE ANGLE IN RADIANS

ANGLEF - ANGLEF*3.141592654/180.

C DETERMINE THE MASS FRACTION OF H2 BASED ON EQUIVALENCE RATIO

C AND OTHER MASS FRACTIONS

C YH2 - 2 PHI MH2 / (M_02 + 3.76 MN2 + 2 PHI MH2)

YSPEPR(2) 0.
YSPEPR(4) = O.

IF (EQUIVF .GT.

YSPEPR(1)

YSPEPR(3)

YSPEPR(6)
ELSE

YSPEPR(1)

YSPEPR(3)

YSPEPR(5)
ENDIF

100.) THEN

= 0.
= 1.

0.

= 7.93626/(EQUIVF+34.048)

= EQUIVF/(EQUIVF+34.048)
- 1. - YSPEPR(1) - YSPEPR(3)

C

C DETERMINE THE MOLECULAR MASS AND OTHER QUANTITIES FOR THIS MIXTURE

C
SYSBMS O.

SYSHFE O.

SYSCPE - O.

BIGAM - O.

DO 6 IS - 1,

SYSBMS -
SYSHFE -

SYSCPE -
BIGAM =

5 CONTINUE

NSPECH

SYSBMS

SYSHFE

SYSCPE

BIGAM

+ YSPEPR(IS)*RAMWCH(IS)
+ YSPEPR(IS)*FMHTCH(IS)

+ YSPEPR(IS)*SPCPCH(IS)

+ YSPEPR(IS)*SPBSCH(IS)

UGASCO UGASFL*SYSBMS

C DETERMINE THE DIMENSIONLESS DENSITY OF THE FUEL MIXTURE

RHOF - PRESSF/(UGASCO*TEMPEF*RHORFL)
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C DETERMINE THE DIMENSIONLESS PRESSURE OF THE FUEL MIXTURE

PRESSF - PRESSF/PRESFL
C

C DETERMINE GAMMA FOR THIS MIXTURE
BIGAMT BIGAM*TEMPEF

SYSCVE = SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE = (SYSCPE + BIGAMT)/SYSCVE

C DETERMINE THE OVERALL DIMENSIONLESS VELOCITY OF THE FUEL

VELOF - AMACHF*SQRT(GAMMAE*PRESSF/RHOF)

UCOMPF = VELOF*COS(ANGLEF)
VCOMPF = VELOF*SIN(ANGLEF)

VELO2I = UCOMPF*UCOMPF + VCOMPF*VCOMPF

C DETERMINE THE ENERGY TERM

BEE = SYSHFE + (TEMPEF-TREFCH)*SYSCPE - UGASFL*TEMPEF*SYSBMS

1 + 0.5* (TEMPEF*TEMPEF-TREFCH*TREFCH)*BIGAM

BEE = BEE/FMREFL + 0.5*VELO2I

C

TEMPEF - TEMPEF/TREFFL

DO 30 JCELL = 1, NINJEC

C READ THE NODE NUMBER FOR THIS VALUE

READ (JREADS,*) INODEF

C SET THE DEPENDENT VARIABLES AT THIS NODE

DPENG2(1,INODEF) - RHOF

DPENG2(2,INODEF) RHOF*UCOMPF

DPENG2(3,INODEF) = RHOF*VCOMPF

DPENG2(4.INODEF) = BEE*RHOF

DO 10 JS = NEQBAS+i. NEQNFL
IS = JS - NEQBAS

DPENG2(JS,INODEF) = RHOF*YSPEPR(IS)
10 CONTINUE

PRESG2(INODEF) PRESSF

TEMPG2(INODEF) = TEMPEF

C SET THE BOUNDARY CONDITION POINTER

DO 20 JS - 1. NBNDG2

IF (IBNDG2(1,JS) .EQ. INODEF) THEN

IBNDG2(5.JS) 2
GOTO 30

ENDIF

20ao CONTINUE

NBNDG2 = NBNDG2 + 1
IBNDG2(1,NBNDG2) = INODEF
IBNDG2(2,NBNDG2) = 0
IBNDG2(3,NBNDG2) = 0
IBNDG2(4,NBNDG2) - 0

IBNDG2(5,NBNDG2) - 2
30 CONTINUE
C
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C FOR ROGERS AND CHINITZ MODEL THE NUMBER OF EQUATIONS MUST

C BE ADJUSTED

IF (KROGER .EQ. 1 .AND. NINRCH .GT. O) THEN

DO 200 INODE - 1, NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY "0.
YUPPER 1. - YNRTCH

RHORPR - DPENG2(1,INODE)

DO 190 IS 1, NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) = DPENG2(JS,INODE)/RHORPR
IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) = O.

DPENG2(JS.INODE) = 0.
ENDIF

IF (YSPEPR(IS) .GT. 1.) THEN

YSPEPR(IS) = 1.

DPENG2(JS.INODE) = YUPPER*RHORPR
ENDIF

SUMY = SUMY + YSPEPR(IS)

190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 = NEQSCH+I

YSPEPR(NEQSCH+i) 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+l) .LT. 0.) YSPEPR(NEQSCH+I) O.
C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+1,INODE) = RHORPR*YSPEPR(NEQSCH+1)

200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS

YNRTCH = 0.

NEQNFL NEQNFL + 

NEQSCH - NEQSCH + 1

NINRCH NINRCH -

ENDIF

RETURN

END

HSHEAR

SUBROUTINE HSHEAR

C

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'
INCLUDE '[.INC] PRCOMN.INC/LIST'
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C THIS SUBROUTINE INITIALIZES THE

C FLOW. THE VALUES NEEDED AT THE

C PROPERTIES OF THIS MIXTURE, I.E.

C EQUIVALENCE RATIO, AND THE ANGLE

C TOTAL NUMBER OF INJECTION POINTE

DEPENDENT VARIABLES FOR SHEAR

INTERNAL POINTS ARE THE

. TEMPERATURE, PRESSURE, MACH NO.,

E OF INJECTION. ALSO NEEDED IS THE

I AND THE ACTUAL NODE NUMBERS.

READ THE FOLLOWING FUEL QUANTITIES

TEMPEF : FUEL TEMPERATURE IN DEGREE K

PRESSF : FUEL PRESSURE IN PASCALS

AMACHF : FUEL MACH NUMBER

ANGLEF : ANGLE OF INJECTION IN DEGREES

YSPEPR : MASS FRACTION OF ALL SPECIES

NINJEC : NUMBER OF CELLS WITH FUEL INJECTION (INPUT THIS

AS NEGATIVE IF BOUNDARY NODES ARE NOT TO BE SET)

INODE : CELLS WHERE FUEL IS INJECTED

C
READ (JREADS,*) TEMPEF
READ (JREADS,*) PRESSF

READ (JREADS,*) AMACHF

READ (JREADS.*) ANGLEF

DO IQ 1. NSPECH

READ (JREADS,*) YSPEPR(IQ)
ENDDO

READ (JREADS,*) NINJEC
C
C COMPUTE THE ANGLE IN RADIANS

ANGLEF = ANGLEF*3.141592654/180.

C

C DETERMINE THE MOLECULAR MASS AND OTHER QUANTITIES FOR THIS MIXTURE
C

DO 5 IS 1,
SYSBMS -
SYSHFE -
SYSCPE -

BIGAM -
5 CONTINUE

NSPECH

SYSBMS

SYSHFE

SYSCPE

BIGAM

+ YSPEPR(IS)*RAMWCH(IS)
+ YSPEPR(IS)*FMHTCH(IS)
+ YSPEPR(IS)*SPCPCH(IS)
+ YSPEPR(IS)*SPBSCH(IS)

UGASCO - UGASFL*SYSBMS

C DETERMINE THE DIMENSIONLESS DENSITY OF THE FUEL MIXTURE

RHOF = PRESSF/(UGASCO*TEMPEF*RHORFL)

C DETERMINE THE DIMENSIONLESS PRESSURE OF THE FUEL MIXTURE

PRESSF - PRESSF/PRESFL
C
C DETERMINE GAMMA FOR THIS MIXTURE

BIGAMT - BIGAM*TEMPEF

SYSCVE - SYSCPE + BIGAMT - UGASFL*SYSBMS

GAMMAE - (SYSCPE + BIGAMT)/SYSCVE

C DETERMINE THE OVERALL DIMENSIONLESS VELOCITY OF THE FUEL

VELOF - AMACHF*SQRT(GAMMAE*PRESSF/RHOF)
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UCOMPF VELOF*COS(ANGLEF)

VCOMPF - VELOF*SIN(ANGLEF)

VEL02I UCOMPF*UCOMPF + VCOMPF*VCOMPF

C DETERMINE THE ENERGY TERM

BEE = SYSHFE + (TEMPEF-TREFCH)*SYSCPE - UGASFL*TEMPEF*SYSBMS

1 + O.6*(TEMPEF*TEMPEF-TREFCH*TREFCH)*BIGAM
BEE = BEE/FMREFL + 0.6*VEL02I

C
TEMPEF TEMPEF/TREFFL

DO 30 JCELL 1, ABS(NINJEC)

C READ THE NODE NUMBER FOR THIS VALUE

READ (JREADS,*) INODEF

if (inodef .eq. 1) then

write(6,*) ' rho', DPENG2(1,INODEF),RHOF

write(6.*) ' u '. DPENG2(2,INODEF),RHOF*ucompf

write(6,*) ' bee',. DPENG2(4.INODEF).RHOF*bee

write(6,*) ' prs'. presG2(INODEF),pressf

write(6,*) ' tmp'. tempG2(INODEF),tempef
endif

C SET THE DEPENDENT VARIABLES AT THIS NODE

DPENG2(1.INODEF) - RHOF

DPENG2(2,INODEF) RHOF*UCOMPF

DPENG2(3,INODEF) RHOF*VCOMPF
DPENG2(4,INODEF) = BEE*RHOF

DO 10 JS NEQBAS+1, NEQNFL

IS = JS - NEQBAS

DPENG2(JS,INODEF) = RHOF*YSPEPR(IS)

10 CONTINUE

PRESG2(INODEF) = PRESSF

TEMPG2(INODEF) - TEMPEF

C SET THE BOUNDARY CONDITION POINTER

IF (NINJEC .LT. O) GOTO 30

DO 20 JS - 1. NBNDG2
IF (IBNDG2(1,JS) .EQ. INODEF) THEN

IBNDG2(,.JS) 2
GOTO 30

ENDIF

20 CONTINUE

NBNDG2 - NBNDG2 + 1
IBNDG2(1,NBNDG2) = INODEF

IBNDG2(2,NBNDG2) O0

IBNDG2(3,NBNDG2) = 0
IBNDG2(4,NBNDG2) - 0

IBNDG2(6,NBNDG2) = 2
30 CONTINUE

C

C FOR ROGERS AND CHINITZ MODEL THE NUMBER OF EQUATIONS MUST

C BE ADJUSTED
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IF (KROGER .EQ. 1 .AND. NINRCH .GT. O) THEN

DO 200 INODE - 1, NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY = O.
YUPPER = 1. - YNRTCH

RHORPR - DPENG2(1,INODE)

DO 190 IS - 1, NEQSCH

J8 = NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/RHORPR

IF (YSPEPR(IS) .LT. O.) THEN

YSPEPR(IS) = O.

DPENG2(JS,INODE) = 0.
ENDIF

IF (YSPEPR(IS) .GT. 1.) THEN

YSPEPR(IS) = 1.
DPENG2(JS,INODE) = YUPPER*RHORPR

ENDIF

SUMY = SUMY + YSPEPR(IS)
190 CONTINUE

C THE FOLLOWING IS FOR SPECIES 4 = NEQSCH+1

YSPEPR(NEQSCH+I) = 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEQSCH+l) 0O.

C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+1,INODE) RHORPR*YSPEPR(NEQSCH+1)

200 CONTINUE

C NOW ADJUST THE NUMBER OF EQUATIONS
YNRTCH - 0.

NEQNFL = NEQNFL + 1
NEQSCH NEQSCH + 1
NINRCH = NINRCH - 1

ENDIF

RETURN

END

LHINI2

SUBROUTINE LHINI2

C
INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'

C

C
C THIS SUBROUTINE INITIALIZES THE CHCOMN COMMON BLOCK FOR A
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C LIGHT HILL GAS. IT IS ASSUMED THAT THE FOLLOWING QUANTITIES

C ARE STORED :

C - PHI IN PREFCH(l)

C ETA IN EXPFCH(1)

C THETAD IN ENEFCH(1)

C RHOD IN PREBCH(1).

C

C
IF (KROGER .NE. 2) RETURN

PHI - PREFC1

ETA = EXPFCI

THETD - ENEFCI

RHOD = PREBCHI

TOETA - TREFFI

UNITCF = UREFFI
CFBMA - UNITCI

CF - CFBMA,

PREFCH(1) = LOG(CI
PREBCH(1) = LOG(O,
PREECH(1) = LOG(2
TREFCH = 0.

EXPFCH(1) - ETA

EXPBCH(1) - ETA

EXPECH(1) = O.
ENEFCH(1) - THETD

ENEBCH(1) = O.
ENEECH(l) - THETD

RGASA2 = SPCVCI
SPCVCH(2) - SPCVCI

C FMHTCH(1) = RGASA:
FMHTCH(1) = RGASA:

FMHTCH(2) - 0.
APASKY(1) = PHI
APASKY(2) = RHOD

C
C
C

H(1)Ii)
(1)

'L**ETA

'/(TOETA*RHORFL*DISTFL)

rF*PHI

*AMWTCH(1)

FBMA)

.5*CF/RHOD)

.*RHOD/AMWTCH(l))

H(1)/3.

H(1)
2*THETD*AMWTCH ( 1 )
2*THETD

PRINT OUT PARAMETERS

IF (IDBGFL .NE. 4 .AND. IDBGFL .LT. 1000) RETURN

WRITE(JDEBUG,1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG, 1200)

WRITE(JDEBUG, 1300)
1
2

C

C FORMAT STATEMENTS

C
1000
1100
1200
1300

1

PHI, ETA, THETD, RHOD, CF, RGASA2,

SPCVCH(1), FMHTCH(1), PREFCH(1), PREBCH(1).

PREECH(1), EXPFCH(I). ENEFCH(1), ENEECH(1)

FORMAT(//iOX.'----------------------- )
FORMAT( IOX,'DEBUG PRINT FROM LHINI2' )
FORMAT( 1X,'-----------------------'/)

FORMAT(6X,'PHI = ', G14.5, lOX, 'ETA

5X,'THETAD= ', G14.5, lOX, 'RHOD
= ', G14.6/

= ', 14.5/
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2

3

4

6

C
RETURN

END

M2AREA

5X,'CF = ', G14.5,

5X,'CVA - ', G14.6,
5X,'PRE-AM = ', G14.5,
5X,'PRE-Ae = ', G14.5,

5X,'ENERGYF ', G14.5,

lOX,

loX,

lo0X,

lOX,

lo0X,

'RGASA2 =

'HTFMA =

'PRE-Ab =

'EXP-f =

'ENERGYE=

', G14.s/
', G14./
', G14.5/
', G14.5/
', G14.5/)

SUBROUTINE M2AREA (KONTRL)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'M2COMN.INC'

C THIS SUBROUTINE SETS UP THE VOLUME (AREA), PERIMETER, AND THE

C METRICS FOR THE SOLVER ROUTINE

IF (KONTRL .GT. O) GOTO 20
C

C SETUP THE METRICES ETC FOR EACH CELL IN THE WHOLE SPATIAL DOMAIN

C

C

DO 10 ICELL - 1, NCELG2

SET UP NODE POINTERS FOR THIS CELL

KSW ICELG2( 2,ICELL)

KSE ICELG2( 4,ICELL)

KNE - ICELG2( 6,ICELL)

KNW - ICELG2( 8,ICELL)

C

C
C
C
C

GEOMETRY

GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YS - GEOMG2(2,KSW)

XSE - GEOMG2(1,KSE)

YSE = GEOMG2(2,KSE)

XNE GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)
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YNW - GEOMG2(2,KNW)

C COMPUTE THE DISTANCES OF CELL FACES SO THAT ITS PERIMETER
C CAN BE DETERMINED

DXS XSE - XSW

DYS - YSE - YSW

DXE - XNE - XSE

DYE - YNE - YSE

DXN - XNW - XNE

DYN - YNW - YNE

DXW - XSW - XNW

DYW - YSW - YNW

DDS - SQRT ( DXS*DXS + DYS*DYS )
DDE SQRT ( DXE*DXE + DYE*DYE )
DDN SQRT ( DXN*DXN + DYN*DYN )

DDW = SQRT ( DXW*DXW + DYW*DYW )

PERIM2(ICELL) = DDS + DDE + DDN + DDW

C COMPUTE THE PROJECTIONS OF CELL FACES AND THE SIZE OF THI

DXEWM2(ICELL) = 0.5*( XNE + XSE - XNW - XSW )
DYEWM2(ICELL) = 0.6*( YNE + YSE - YNW - YSW )
DXNSM2(ICELL) = 0.5*( XNW + XNE - XSW - XSE )
DYNSM2(ICELL) - 0.6*( YNW + YNE - YSW - YSE )

C THE CELL VOLUME

DVOL - 0.5*( (XSE-XNW)*(YNE-YSW) - (YSE-YNW)*(XNE-XSW) )

C RECIPROCAL OF THE CELL VOLUME

RVOLM2(ICELL) - 1./DVOL

10 CONTINUE

RETURN
C
C SET UP THE METRICS ETC FOR A SPECIFIED CELL

20 ICELL - KONTRL

C

E CELL

SET UP NODE POINTERS FOR THIS CELL

KSW - ICELG2( 2,ICELL)

KSE - ICELG2( 4,ICELL)
KNE - ICELG2( 6,ICELL)

KNW - ICELG2( 8,ICELL)

GEOMETRY
________

C
C

C
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C
C GEOMETRY OF ALL CELL CORNERS

XSW - GEOMG2(1,KSW)

YSW GEOMG2(2,KSW)

XSE = GEOMG2(1,KSE)

YSE - GEOMG2(2.KSE)

XNE - GEOMG2(1,KNE)

YNE - GEOMG2(2,KNE)

XNW - GEOMG2(1,KNW)

YNW - GEOMG2(2.KNW)

C COMPUTE THE DISTANCES OF CELL FACES SO THAT ITS PERIMETER

C CAN BE DETERMINED

DXS - XSE - XSW

DYS - YSE - YSW

DXE XNE - XSE

DYE - YNE - YSE

DXN - XNW - XNE

DYN - YNW - YNE

DXW = XSW - XNW
DYW - YSW - YNW

DDS SQRT ( DXS*DXS + DYS*DYS )

DDE = SQRT ( DXE*DXE + DYE*DYE )

DDN SQRT ( DXN*DXN + DYN*DYN )

DDW - SQRT ( DXW*DXW + DYW*DYW )

PERIM2(ICELL) - DDS + DDE + DDN + DDW

C COMPUTE THE PROJECTIONS OF CELL FACES AND THE SIZE OF THE CELL

DXEWM2(ICELL) 0.6*( XNE + XSE - XNW - XSW )

DYEWM2(ICELL) 0.5*( YNE + YSE - YNW - YSW )

DXNSM2(ICELL) - 0.6*( XNW + XNE - XSW - XSE )

DYNSM2(ICELL) - 0.6*( YNW + YNE - YSW - YSE )

C THE CELL VOLUME

DVOL - 0.* ( (XSE-XNW)*(YNE-YSW) - (YSE-YNW)*(XNE-XSW) )

C RECIPROCAL OF THE CELL VOLUME

RVOLM2(ICELL) I./DVOL

RETURN

END
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NODIT2

SUBROUTINE NODIT2

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE
INCLUDE
LOGICAL

'PRECIS.INC'

'PARMV2.INC'

'A2COMN.INC'

'G2COMN.INC'

'IOCOMN.INC'
'TICOMN.INC'

ZERNOD

C THIS SUBROUTINE CORRECTS THE TIME-STEPS AT NODITS IF NECESSARY.

C NODIT IS THE ACRONYM FOR "NODE OF DIFFERENT TIME-STEPS".

C A FACTOR DIFFERENCE OF ONLY TWO OR FOUR IS ALLOWED BETWEEN

C ADJACENT CELLS.

IF (NMAXTI .LE. 2) RETURN

C SET THE COUNTER FOR THE NUMBER OF NODITS

NNODEM - 0

C SET THE MAXIMUM FACTOR

LCRAT - 4

C

C INTERIOR INITIAL NODES

C ----- ____________
C STEP THROUGH ALL THE NODES AND FIND CELL TIMESTEPS AND NODITS

DO 10 INODE 1, NNODG2

NBSW = NEIBG2(1.INODE)

NBSE - NEIBG2(2,INODE)

NBNE - NEIBG2(3,INODE)

NBNW - NEIBG2(4.INODE)

MAKE SURE ALL THE FOUR CORNER CELLS EXIST;
THAT THE NODE UNDER CONSIDERATION IS NOT A

BOUNDARY NODES WILL BE HANDLED SEPERATELY

I.E., MAKE SURE

BOUNDARY NODE

ZERNOD - NBSW.EQ.O .OR. NBSE.EQ.O .OR.
NBNE.EQ.O .OR. NBNW.EQ.O

IF (.NOT. ZERNOD) THEN

DTSW - CELLTI(NBSW)

DTSE - CELLTI(NBSE)

DTNE - CELLTI(NBNE)
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DTNW - CELLTI(NBNW)

DTMAX MAX (DTSW,DTSE.DTNE,DTNW)

DTMIN - MIN (DTSW,DTSE,DTNE,DTNW)

IFACT - NINT (DTMAX/DTMIN)

IF (IFACT .LE. LCRAT) GO TO 10

FIND THE MAXIMUM ALLOWABLE CELL TIME STEP

DTMAX - LCRAT*DTMIN

C

FIND THE CELL WHICH EXCEEDS THE LIMIT

APPROPRAITE NODES (REMAINING THREE)
CHECK THE SOUTH-WEST NEIGHBOUR CELL

IF (DTSW .GT. DTMAX)

CELLTI(NBSW) =

MRKCA2(NNODEM+I) =
MRKCA2(NNODEM+2) =

MRKCA2(NNODEM+3) =
NNODEM

DTSE

DTNW

ENDIF

AND SAVE THE

THEN

DTMAX

ICELG2(2,NBSW)

ICELG2(4,NBSW)

ICELG2(8,NBSW)

NNODEM + 3
CELLTI(NBSE)

CELLTI(NBNW)

REASSIGNMENT OF THE CELL TIMESTEPS IN THE ABOVE IF-THEN

BLOCK IS NEEDED TO GUARD AGAINST THE CASE WHEN A NODE HAS

LESS THAN 4 NEIGHBOURING NODES (E.G., WHEN NBSE = NBSW)

CHECK THE SOUTH-EAST NEIGHBOUR CELL

IF (DTSE .GT. DTMAX) THEN

CELLTI(NBSE)
MRKCA2 (NNODEM+I)

MRKCA2(NNODEM+2)

MRKCA2(NNODEM+3)
NNODEM

DTNE

ENDIF

= DTMAX

- ICELG2(2.NBSE)

= ICELG2(4,NBSE)

= ICELG2(6,NBSE)
- NNODEM + 3
= CELLTI(NBNE)

CHECK THE NORTH-EAST NEIGHBOUR CELL

IF (DTNE .GT. DTMAX)

CELLTI(NBNE)

MRKCA2(NNODEM+I) -
MRKCA2(NNODEM+2) -

MRKCA2(NNODEM+3) -

NNODEM

DTNW =

ENDIF

THEN

DTMAX

ICELG2(4,NBNE)

ICELG2(6,NBNE)

ICELG2(8,NBNE)
NNODEM + 3
CELLTI(NBNW)

CHECK THE NORTH-WEST NEIGHBOUR CELL

IF (DTNW .GT. DTMAX)

CELLTI(NBNW) =

MRKCA2(NNODEM+I) 
MRKCA2(NNODEM+2) -
MRKCA2(NNODEM+3) =

THEN

DTMAX

ICELG2(2,NBNW)

ICELG2(6,NBNW)

ICELG2(8,NBNW)
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NNODEM = NNODEM + 3
ENDIF

ENDIF

10 CONTINUE

C

C -
C BOUNDARY INITIAL NODES
C

C

C NOW CHECK ALL THE BOUNDARY NODES; FIRST SET THE COUNTER FOR
C THE NUMBER OF BOUNDARY NODES WHICH ARE ALSO NODIT'S

NBODEM = 0

DO 20 INBND = 1, NBNDG2

NBONE IBNDG2(2,INBND)

NBTWO = IBNDG2(3,INBND)

C ATLEAST ONE OF THE ABOVE CELLS MUST BE NON-ZERO

ZERNOD = NBONE.EQ.O .OR. NBTWO.EQ.O

IF (.NOT. ZERNOD) THEN

DTONE CELLTI(NBONE)

DTTWO CELLTI(NBTWO)

DTMAX = MAX (DTONE,DTTWO)
DTMIN = MIN (DTONE,DTTWO)

IFACT = NINT (DTMAX/DTMIN)

IF (IFACT .LE. LCRAT) GO TO 20
DTMAX = LCRAT*DTMIN

C CHECK THE SOUTHERN EDGE

IF (IBNDG2(4,INBND) .EQ. 3) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(NNODEM+I) = ICELG2(6,NBONE)

MRKCA2(NNODEM+2) = ICELG2(8,NBONE)

WORKA2(NBODEM+1) = ICELG2(2,NBONE)

NNODEM = NNODEM + 2

NBODEM = NBODEM + 1

ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX
MRKCA2(NNODEM+1) = ICELG2(8,NBTWO)

MRKCA2(NNODEM+2) = ICELG2(8,NBTWO)
WORKA2(NBODEM+l) = ICELG2(4,NBTWO)
NNODEM = NNODEM + 2
NBODEM = NBODEM + 1

ENDIF

ENDIF

C CHECK THE EASTERN EDGE
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IF (IBNDG2(4,INBND) .EQ. 5) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(NNODEM+i) = ICELG2(8,NBONE)

MRKCA2(NNODEM+2) = ICELG2(2,NBONE)

WORKA2(NBODEM+1) = ICELG2(4,NBONE)

NNODEM =- NNODEM + 2

NBODEM = NBODEM + 1
ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX

MRKCA2(NNODEM+I) = ICELG2(8,NBTWO)

MRKCA2(NNODEM+2) = ICELG2(2,NBTWO)

WORKA2(NBODEM+I) = ICELG2(6,NBTWO)
NNODEM = NNODEM + 2

NBODEM = NBODEM + 1

ENDIF

ENDIF

C CHECK THE NORTHERN EDGE

IF (IBNDG2(4,INBND) .EQ. 7) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(NNODEM+1) = ICELG2(2,NBONE)

MRKCA2(NNODEM+2) = ICELG2(4,NBONE)

WORKA2(NBODEM+1) = ICELG2(6,NBONE)
NNODEM = NNODEM + 2

NBODEM = NBODEM + 1

ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX
MRKCA2(NNODEM+1) = ICELG2(2,NBTWO)

MRKCA2(NNODEM+2) = ICELG2(4,NBTWO)

WORKA2(NBODEM+1) = ICELG2(8,NBTWO)
NNODEM = NNODEM + 2
NBODEM = NBODEM + 1

ENDIF

ENDIF

C CHECK THE WESTERN EDGE

IF (IBNDG2(4,INBND) .EQ. 9) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(NNODEM+1) = ICELG2(4,NBONE)

MRKCA2(NNODEM+2) = ICELG2(6,NBONE)
WORKA2(NBODEM+1) = ICELG2(8,NBONE)
NNODEM = NNODEM + 2

NBODEM = NBODEM + 1
ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX

MRKCA2(NNODEM+1) = ICELG2(4,NBTWO)

MRKCA2(NNODEM+2) = ICELG2(6,NBTWO)

WORKA2(NBODEM+!) = ICELG2(2,NBTWO)
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NNODEM = NNODEM + 2
NBODEM = NBODEM + 1

ENDIF

ENDIF

ENDIF

20 CONTINUE

C
C ERROR CONDITION

C

30 IF (NNODEM .GT. MCELG2) THEN

ZER1 = NNODEM
ZER2 = MCELG2
CALL PSWRTU (JPNTWR)

CALL ERRORM (44,'NODIT2','NNODEM',ZER1,'MCELG2',ZER2,JPRINT,

1 'NUMBER OF NODITS EXCEEDS LIMIT; PSWRTU WRITTEN')

ENDIF
C

C SEE IF EXIT CONDITION IS MET

C
IF (NNODEM .EQ. 0 .AND. NBODEM .EQ. O) RETURN

C

C NEXT SET INTERIOR NODES

C ____________

C PROCESS ALL THE PREVIOUSLY SAVED NODES

KNODEM 0

DO 40 JNODE = 1, NNODEM

INODE = MRKCA2(JNODE)
NBSW = NEIBG2(1,INODE)

NBSE = NEIBG2(2,INODE)

NBNE = NEIBG2(3,INODE)

NBNW = NEIBG2(4,INODE)

ZERNOD = NBSW.EQ.O .OR. NBSE.EQ.O .OR.

1 NBNE.EQ.O .OR. NBNW.EQ.O

IF (ZERNOD) THEN

NBODEM NBODEM + 1

WORKA2(NBODEM) = INODE

ELSE

DTSW = CELLTI(NBSW)
DTSE = CELLTI(NBSE)

DTNE = CELLTI(NBNE)
DTNW = CELLTI(NBNW)

DTMAX = MAX (DTSW,DTSE,DTNE,DTNW)
DTMIN - MIN (DTSW,DTSE,DTNE,DTNW)

IFACT NINT (DTMAX/DTMIN)

IF (IFACT .LE. LCRAT) GO TO 40
DTMAX = LCRAT*DTMIN
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CHECK WHICH CELL AGAIN

IF (DTSW .GT. DTMAX)
CELLTI(NBSW) -
MRKDA2(KNOD4M+1) -
MRKDA2(KNODEM+2) -
MRKDA2(KNODEM+3) =
KNODEM =

DTSE =

DTNW

ENDIF

IF (DTSE .GT. DTMAX)

CELLTI(NBSE) =
MRKDA2(KNODEM+I) =
MRKDA2(KNODEM+2) =
MRKDA2(KNODEM+3) =
KNODEM

DTNE

ENDIF

IF (DTNE .GT. DTMAX)
CELLTI(NBNE) =

MRKDA2(KNODEM+I) =

MRKDA2(KNODEM+2) =

MRKDA2(KNODEM+3) -
KNODEM =
DTNW =

ENDIF

IF (DTNW .GT. DTMAX)

CELLTI(NBNW) =

MRKDA2(KNODEM+1) =
MRKDA2(KNODEM+2) =

MRKDA2(KNODEM+3) =
KNODEM =

ENDIF

THEN

DTMAX

ICELG2(2,NBSW)

ICELG2(4.NBSW)

ICELG2(8,NBSW)

KNODEM + 3
CELLTI(NBSE)

CELLTI(NBNW)

THEN

DTMAX

ICELG2(2,NBSE)

ICELG2(4,NBSE)

ICELG2(6NBSE)
KNODEM + 3

CELLTI(NBNE)

THEN

DTMAX

ICELG2(4,NBNE)

ICELG2 (6NBNE)

ICELG2(8,NBNE)

KNODEM + 3

CELLTI(NBNW)

THEN

DTMAX

ICELG2(2,NBNW)

ICELG2(6.NBNW)

ICELG2(8,NBNW)
KNODEM + 3

ENDIF

CONTINUE

RESET THE NEXT SET INTERIOR NODE SET; BECAUSE THE PREVIOUS
SET HAS SERVED IT'S PURPOSE

NNODEM - KNODEM

DO 50 INODE - 1 NNODEM

MRKCA2(INODE) - MRKDA2(INODE)
CONTINUE

NEXT SET BOUNDARY NODES

PROCESS ALL THE PREVIOUSLY SAVED BOUNDARY NODES
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KBODEM = 0

DO 80 JNODE - 1, NBODEM

JNBND NINT ( WORKA2(JNODE) )
DO 60 IBOUND 1, NBNDG2

IF (IBNDG2(1,IBOUND) .EQ. JNBND) THEN

INBND = IBOUND

GOTO 70

ENDIF

CONTINUE

NBONE

NBTWO

ZERNOD

= IBNDG2(2,INBND)
= IBNDG2(3,INBND)

= NBONE.EQ.O .OR. NBTWO.EQ.O

IF (.NOT. ZERNOD) THEN

DTONE = CELLTI(NBONE)

DTTWO = CELLTI(NBTWO)
DTMAX = MAX (DTONE,DTTWO)

DTMIN = MIN (DTONE,DTTWO)

IFACT = NINT (DTMAX/DTMIN)

IF (IFACT .LE. LCRAT) GO TO 80

DTMAX = LCRAT*DTMIN
C

IF (IBNDG2(4,INBND) .EQ. 3) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(KNODEM+1) = ICELG2(6,NBONE)

MRKCA2(KNODEM+2) = ICELG2(8,NBONE)
CHNGA2(KBODEM+1) = ICELG2(2,NBONE)
KNODEM = KNODEM + 2

KBODEM = KBODEM + 1
ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX
MRKCA2(KNODEM+I) = ICELG2(6,NBTWO)

MRKCA2(KNODEM+2) = ICELG2(8,NBTWO)
CHNGA2(KBODEM+I) = ICELG2(4,NBTWO)
KNODEM = KNODEM + 2

KBODEM = KBODEM + 1
ENDIF

ENDIF
C

IF (IBNDG2(4,INBND) .EQ. 5) THEN

IF (DTONE .GT. DTMAX) THEN

CELLTI(NBONE) = DTMAX

MRKCA2(KNODEM+I) = ICELG2(8,NBONE)
MRKCA2(KNODEM+2) = ICELG2(2,NBONE)
CHNGA2(KBODEM+I) = ICELG2(4,NBONE)
KNODEM = KNODEM + 2
KBODEM = KBODEM + 1

ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX
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MRKCA2(KNODEM+I)

MRKCA2(KNODEM+2)

CHNGA2(KBODEM+1)
KNODEM

KBODEM

ENDIF

ENDIF

= ICELG2(8,NBTWO)

= ICELG2(2,NBTWO)

= ICELG2(6,NBTWO)
= KNODEM + 2

= KBODEM + 1

C

IF (IBNDG2(4,INBND) .EQ. 7) THEN

IF (DTONE .GT. DTMfAX) THEN

CELLTI(NBONE) - DTMAX

MRKCA2(KNODEM+I) = ICELG2(2,NBONE)
MRKCA2(KNODEM+2) = ICELG2(4,NBONE)
CHNGA2(KBODEM+I) = ICELG2(6,NBONE)

KNODEM = KNODEM + 2

KBODEM = KBODEM + 1
ENDIF

IF (DTTWO .GT. DTMAX) THEN

CELLTI(NBTWO) = DTMAX

MRKCA2(KNODEM+1) = ICELG2(2,NBTWO)

MRKCA2(KNODEM+2) = ICELG2(4,NBTWO)

CHNGA2(KBODEM+1) = ICELG2(8,NBTWO)

KNODEM = KNODEM + 2

KBODEM = KBODEM + 1

ENDIF

ENDIF

C
IF (IBNDG2(4,INBND) .EQ

IF (DTONE .GT. DTMAX)

CELLTI(NBONE) -

MRKCA2(KNODEM+1) =

MRKCA2(KNODEM+2) =
CHNGA2(KBODEM+I) =
KNODEM

KBODEM

ENDIF

IF (DTTWO .GT. DTMAX)
CELLTI(NBTWO) -

MRKCA2(KNODEM+i) =

MRKCA2(KNODEM+2) =

CHNGA2(KBODEM+i) =

KNODEM 

KBODEM

ENDIF

ENDIF

9) THEN

THEN

DTMAX

ICELG2(4,NBONE)

ICELG2(6,NBONE)

ICELG2(8,NBONE)
KNODEM + 2

KBODEM + 1

THEN

DTMAX

ICELG2(4,NBTWO)

ICELG2(6,NBTWO)

ICELG2(2,NBTWO)
KNODEM + 2

KBODEM + 1

ENDIF

CONTINUE

RESET THE NEXT SET BOUNDARY
SET HAS SERVED IT'S PURPOSE

NODE SET; BECAUSE THE PREVIOUS

NBODEM - KBODEM

DO 90 INBND - 1, NBODEM

WORKA2(INBND) = CHNGA2(INBND)
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90 CONTINUE

GO TO 30

END

PSRED2

SUBROUTINE PSRED2

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN.INC'

character*80 mtitle2

C***************************************

C THIS SUBROUTINE READS ALL THE INFORMATION ABOUT THE POINTER

C SYSTEM AND ALL THE OTHER ARRAYS FROM UNIT 'JPNTRE'

C

C INITIALIZATION
C

MCELLP 10

MGEOMP - 2

MBONDP - 6
MNEIBP 4

C INITIALIZE ALL THE INTEGER AND REAL ARRAYS

DO 10 LC - 1. MCELG2

KAUXG2(LC) - 0
ICELA2(LC) - 0
CHNGA2(LC) - O.

MRKCA2(LC) - 0
MRKDA2(LC) - 0

10 CONTINUE

DO 20 IN - 1. MNODG2

WORKA2(IN) - 0.
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PRESG2(IN) = 0.
TEMPG2(IN) = 0.
SIGGE2(IN) - 0.

20 CONTINUE

DO 30 IR = 1, MREACH
PREFCH(IR) = 0.

PREBCH(IR) = 0.
PREECH(IR) = 0.
EXPFCH(IR) = 0.
EXPBCH(IR) = O.
EXPECH(IR) = 0.
ENEFCH(IR) - 0.
ENEBCH(IR) = 0.
ENEECH(IR) = 0.

30 CONTINUE

DO 40 IS = 1, MSPECH
SPCPCH(IR) = 0.
SPCVCH(IR) = 0.
SPBSCH(IR) = 0.
FMHTCH(IR) = 0.
YSPECH(IR) = 0.
AMWTCH(IR) = 0.
ENTRCH(IR) = 0.

40 CONTINUE

DO 60 IR = 1, MREACH

NSRKCH(IR) = 0
DO 50 IS - 1, MSPECH

BMIACH(IS,IR) = 0.
IALPCH(IS,IR) = 0
IBETCH(IS,IR) = 0
IALOCH(IS,IR) = 0
IBTOCH(IS,IR) = 0
ITABCH(IS,IR) = 0

50 CONTINUE

60 CONTINUE

DO 80 IQ = 1, MEqNFL
DO 70 IN = 1, MNODG2

CHNGE2(IQ,IN) = 0.
DPENG2(IQ,IN) = 0.

70 CONTINUE

80 CONTINUE

DO 100 IP = 1, MCELLP
DO 90 LC - 1, MCELG2

ICELG2(IP,LC) = 0
90 CONTINUE

100 CONTINUE

DO 120 IP = 1, MBONDP
DO 110 IB = 1, MBNDG2

IBNDG2(IP,IB) = 0
110 CONTINUE

120 CONTINUE
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DO 140 IP - 1, MGEOMP

Db 130 IN = 1, MNODG2

GEOMG2(IP,IN) - O.

130 CONTINUE

140 CONTINUE

DO 160 IP - 1, MNEIBP

DO 150 IN - 1, MNODG2

NEIBG2(IP,IN) = 0
150 CONTINUE

160 CONTINUE

DO 180 LV - -MLVLG2, MLVLG2

DO 170 IP = 1, 3

ILVLG2(IP,LV) = 0
170 CONTINUE

180 CONTINUE

DO 190 LV = 1, MUMDH2

NODEH2(LV) - 0
190 CONTINUE

C

C
C
C

NON-ARRAY INTEGERS
__________________

C READ ALL THE NON-ARRAY INTEGERS FIRST

C INTEGERS FORM PARMV2

READ (JPNTRE.1) NEQNFL, NREACH, NSPECI
1 NLVLG2, NEQBAS. KROGEI

1 FORMAT(SI1O)

C INTEGERS FROM A2COMN

READ (JPNTRE,1) NXTDA2, METHA2, NCELA:

1 NPLCA2. IDBGA2, MITRA
2 KMERA2

C INTEGERS FROM CHCOMN

READ (JPNTRE,1) IDBGCH. NINRCH, NEQSCI

C INTEGERS FROM E2COMN

READ (JPNTRE.1) IDBGE2. MITRE2. KSRTE:

NITRE2 - 1

C INTEGERS FROM FLCOMN

READ (JPNTRE,1) IDBGFL

C INTEGERS FROM FRCOMN

READ (JPNTRE,1) IDBGFR. KPERFR, MCYCF]

I. NNODG2, NCELG2, NBNDG2,

2, KADA2, K2ADA2, MTYPA2,

2., KCHKA2, MTHRA2, KPLTA2,

H

2, KONVE2, KEQNE2

R, NCYCFR
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C INTEGERS FROM G2COMN

READ-(JPNTRE,1) IDBGG2, MALVG2, NCRSG2

C INTEGERS FROM IOCOMN

READ (JPNTRE,I) JTERMI, JTERMO, JPRINT,

1 JREADG, JREADC, JREADD,

2 JHISTO, JGIVEN, JPNTWR,

3 JDUMY3, JDUMY4, JDEBUG,

C INTEGERS FROM TICOMN

1
READ (JPNTRE.1) KTIMTI,

KFACTI
NGIVTI, KADPTI, NMAXTI, IMPLTI,

C ------
C ARRAY INTEGERS
C ------

C INTEGERS FROM A2COMN

READ (JPNTRE,1) (ICELA2(LC), LC = 1, NCELA2)

C INTEGERS FROM CHCOMN

DO 300 IR - 1. NREACH
READ (JPNTRE,1) NSRKCH(IR)

READ (JPNTRE,1) (IALPCH(IS,IR), IS = 1,
READ (JPNTRE,1) (IBETCH(IS,IR), IS = 1,
READ (JPNTRE.1) (IALOCH(IS,IR), IS 1,

READ (JPNTRE.1) (IBTOCH(IS,IR), IS 1,

READ (JPNTRE.1) (ITABCH(IS,IR). IS = 1.
300 CONTINUE

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

C INTEGERS FROM G2COMN

DO 310 LC - 1, NCELG2

READ (JPNTRE,1) (ICELG2(IP,LC),
310 CONTINUE

DO 320 IB - 1, NBNDG2

READ (JPNTRE,1) (IBNDG2(IP,IB),
320 CONTINUE

DO 330 IN I, NNODG2

READ (JPNTRE,1) (NEIBG2(IP,IN),
330 CONTINUE

DO 340 LV - -MLVLG2. MLVLG2

READ (JPNTRE.1) (ILVLG2(IP,LV),
340 CONTINUE

IP - 1. MCELLP), KAUXG2(LC)

IP = 1, MBONDP)

IP = 1, MNEIBP)

IP = 1, 3)

READ (JPNTRE,1) (NBCPG2(IP,1),IP=1,4),(NBCPG2(IP,2),IP=1,4)

NON-ARRAY REAL NUMBERS
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JREADF,
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JREADS

JREADI,
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C

2 FORMAT(8ES1.8)

C REAL NUMBERS FROM A2COMN

READ (JPNTRE,2) ALPHA2, BETAA2, GANMA2, DELTA2, THRDA2, THRCA2

C REAL NUMBERS FROM CHCOMN

READ (JPNTRE,2) TREFCH, PRESCH, YNRTCH, TRIGCH

C REAL NUMBERS FROM E2COMN

READ (JPNTRE,2) SDELE2, SMAXE2, SMINE2, EPSLE2

C REAL NUMBERS FROM FLCOMN

READ (JPNTRE,2) TREFFL, PRESFL,

RHORFL, UREFFL,

GAMAFL

UGASFL, AMCHFL, DISTFL,

FMREFL, WDREFL, AMWTFL,

C REAL NUMBERS FROM FRCOMN

READ (JPNTRE,2) RHORFR, UCOMFR, VCOMFR, PRESFR, PBPIFR

C REAL NUMBERS FROM TICOMN

READ (JPNTRE,2) CFLNTI, TIMXTI, TIMNTI,

DTCNTI, FCTRTI, ERRMTI

EPS1TI, EPSOTI,

C READ THE CPU TIME HERE AND SAVE IT

READ (JPNTRE,2) ZCUM

WORKA2(3) = ZCUM
CALL TIMERR (JOUTAL, ZCUM, 'RESTART')

ARRAY REAL NUMBERS

C REAL NUMBERS FROM CHCOMN

READ (JPNTRE,2)
READ (JPNTRE,2)
READ (JPNTRE,2)

(PREFCH(IR),

(PREBCH(IR),
(PREECH(IR),

IR = 1, NREACH)

IR = 1, NREACH)

IR = 1, NREACH)

READ (JPNTRE,2)

READ (JPNTRE,2)
READ (JPNTRE,2)

READ (JPNTRE,2)
READ (JPNTRE,2)

READ (JPNTRE,2)

(EXPFCH(IR), IR = 1,
(EXPBCH(IR), IR = 1,
(EXPECH(IR), IR = 1,

(ENEFCH(IR), IR = 1,

(ENEBCH(IR), IR = 1,
(ENEECH(IR), IR = 1,

READ (JPNTRE,2) (SPCPCH(IS), IS = 1, NSPECH)
READ (JPNTRE,2) (SPCVCH(IS), IS = 1, NSPECH)
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READ (JPNTRE,2) (SPBSCH(IS),

READ (JPNTRE,2) (FMHTCH(IS),

READ-(JPNTRE,2) (YSPECH(IS),

READ (JPNTRE,2) (AMWTCH(IS).

READ (JPNTRE,2) (ENTRCH(IS),

DO 400 IR - 1 NREACH

READ (JPNTRE.2) (BMIACH(IS,IR),

400 CONTINUE

IS - 1, NSPECH)

IS 1, NSPECH)

IS - 1, NSPECH)

IS = 1, NSPECH)

IS = 1, NSPECH)

IS = 1 NSPECH)

C REAL NUMBERS FROM E2COMN

C READ (JPNTRE,2) (SIGGE2(IN), IN 1, NNODG2)

C REAL NUMBERS FROM FRCOMN

READ (JPNTRE,2) (DPENFR(IN), IN = 1, MEQNFL)

C REAL NUMBERS FROM G2COMN

DO 410 IN 1, NNODG2

READ (JPNTRE,2) (DPENG2(IQ,IN).

410 CONTINUE

DO 420 IN - 1, NNODG2

READ (JPNTRE,2) (GEOMG2(IP,IN),
420 CONTINUE

IQ = 1. NEQNFL)

IP = 1, MGEOMP)

READ (JPNTRE.2) (PRESG2(IN), IN = 1. NNODG2)
READ (JPNTRE,2) (TEMPG2(IN), IN = 1, NNODG2)

C REAL NUMBERS FROM PRCOMN

DO 430 IS 1, NSPECH

YSPEPR(IS) = YSPECH(IS)
430 CONTINUE

C
C

C
OTHER VARIABLES

3 FORMAT(A80)
READ (JPNTRE.3) MTITLE2
READ (JPNTRE,2) PHI, RHOD

C SAVE VALUES SO THAT THEY CAN BE TRANSPORTED TO E2INIO AND WRINI2

CHNGE2(1,1) PHI

CHNGE2(1,2) - RHOD

CLOSE (JPNTRE)

C SEE IF TEMPORALLY VARYING CONDITIONS WERE USED

IF (KPERFR .EQ. 1) THEN
FLOWTV - PBPIFR

FREQTV - EPSLE2

AMPLTV - FLOAT(IDBGFR)/100.
ENDIF
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RETURN

END

PSREDU

SUBROUTINE PSREDU

INCLUDE 'PRECIS. INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN.INC'

character*80 mtitle2

C THIS SUBROUTINE READS ALL THE INFORMATION ABOUT THE POINTER

C SYSTEM AND ALL THE OTHER ARRAYS FROM UNIT 'JPNTRE'

C --------------
C INITIALIZATION

MCELLP - 10

MGEOMP - 2

MBONDP - 5
MNEIBP - 4

C INITIALIZE ALL THE INTEGER AND REAL ARRAYS

DO 10 LC 1, MCELG2

KAUXG2(LC) 0
ICELA2(LC) 0
CHNGA2(LC) - 0.
MRKCA2(LC) - 0
MRKDA2(LC) - 0

10 CONTINUE

DO 20 IN - 1. MNODG2
WORKA2(IN) - 0.
PRESG2(IN) - 0.
TEMPG2(IN) - 0.
SIGGE2(IN) S 0.
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20 CONTINUE

DO 30 IR 1, MREACH
PREFCH(IR) = 0.
PREBCH(IR) - 0.
PREECH(IR) = 0.
EXPFCH(IR) = 0.
EXPBCH(IR) = 0.
EXPECH(IR) = 0.
ENEFCH(IR) = 0.
ENEBCH(IR) - 0.
ENEECH(IR) = 0.

30 CONTINUE

DO 40 IS = 1, MSPECH
SPCPCH(IR) = 0.
SPCVCH(IR) = 0.
SPBSCH(IR) = 0.
FMHTCH(IR) = 0.
YSPECH(IR) = 0.
AMWTCH(IR) = 0.
ENTRCH(IR) = 0.

40 CONTINUE

DO 60 IR 1, MREACH
NSRKCH(IR) = O
DO 50 IS = 1, MSPECH

BMIACH(IS,IR) = 0.
IALPCH(IS,IR) = 0
IBETCH(IS,IR) = 0
IALOCH(IS,IR) = 0
IBTOCH(IS,IR) = 0
ITABCH(IS,IR) = 0

50 CONTINUE
60 CONTINUE

DO 80 IQ = 1, MEQNFL
DO 70 IN = 1, MNODG2

CHNGE2(IQ,IN) = 0.
DPENG2(IQ,IN) = 0.

70 CONTINUE

80 CONTINUE

DO 100 IP = 1, MCELLP
DO 90 LC = 1, MCELG2

ICELG2(IP,LC) = 0
90 CONTINUE
100 CONTINUE

DO 120 IP = 1, MBONDP

DO 110 IB 1, MBNDG2
IBNDG2(IP,IB) = 0

110 CONTINUE

120 CONTINUE

DO 140 IP = 1, MGEOMP
DO 130 IN 1, MNODG2
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GEOMG2(IP,IN) = 0.
130 CONTINUE

140 CONTINUE

DO 160 IP - 1, MNEIBP

DO 150 IN - 1, MNODG2

NEIBG2(IP,IN) = 0

150 CONTINUE

160 CONTINUE

DO 180 LV = -MLVLG2. MLVLG2
DO 170 IP = 1, 3

ILVLG2(IP,LV) = 0
170 CONTINUE

180 CONTINUE

DO 190 LV = 1, MUMDH2
NODEH2(LV) 0

190 CONTINUE

----- _________

NON-ARRAY INTEGERS

READ ALL THE NON-ARRAY INTEGERS FIRST

C INTEGERS FORM PARMV2

READ (JPNTRE)

1

C INTEGERS FROM

READ (JPNTRE)
1

a

NEQNFL,

NLVLG2.

A2COMN

NXTDA2,

NPLCA2,

KMERA2

C INTEGERS FROM CHCOMN

READ (JPNTRE) IDBGCH

C INTEGERS FROM E2COMN

READ (JPNTRE) IDBGE2

NITRE2 1

C INTEGERS FROM FLCOMN

READ (JPNTRE) IDBGFL

C INTEGERS FROM FRCOMN

READ (JPNTRE) IDBGFR

C INTEGERS FROM G2COMN

READ (JPNTRE) IDBGG2

NREACH, NSPECH,

NEQBAS, KROGER

NNODG2, NCELG2, NBNDG2,

METHA2, NCELA2, K1ADA2, K2ADA2, MTYPA2,

IDBGA2, MITRA2, KCHKA2, MTHRA2, KPLTA2,

NINRCH, NEqSCH

MITRE2, KSRTE2, KONVE2, KEqNE2

KPERFR, MCYCFR, NCYCFR

MALVG2, NCRSG2
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C INTEGERS FROM IOCOMN

READ-(JPNTRE) JTERMI,

JREADG,

JHISTO,

JDUMY3,

JTERMO,

JREADC,

JGIVEN,

JDUMY4,

JPRINT,

JREADD,

JPNTWR,

JDEBUG,

JCARDS, JREADI,

JREADF, JOUTAL,

JDUMY1, JDUMY2,

JREADS

C INTEGERS FROM TICOMN

READ (JPNTRE) KTIMTI,

KFACTI

NGIVTI, KADPTI, NMAXTI, IMPLTI,

C
C
C

ARRAY INTEGERS

C INTEGERS FROM A2COMN

READ (JPNTRE) (ICELA2(LC), LC = 1, NCELA2)

C INTEGERS FROM CHCOMN

DO 300 IR = 1, NREACH

READ (JPNTRE) NSRKCH(IR)
READ (JPNTRE) (IALPCH(IS,IR),

READ (JPNTRE) (IBETCH(IS,IR),

READ (JPNTRE) (IALOCH(IS,IR),

READ (JPNTRE) (IBTOCH(IS,IR),

READ (JPNTRE) (ITABCH(IS,IR),
300 CONTINUE

IS = 1, NSPECH)

IS = 1, NSPECH)

IS = 1, NSPECH)

IS = 1, NSPECH)

IS = 1, NSPECH)

C INTEGERS FROM G2COMN

DO 310 LC = 1, NCELG2

READ (JPNTRE) (ICELG2(IP,LC),

310 CONTINUE

DO 320 IB 1, NBNDG2

READ (JPNTRE) (IBNDG2(IP,IB),
320 CONTINUE

DO 330 IN - 1, NNODG2
READ (JPNTRE) (NEIBG2(IP,IN),

330 CONTINUE

DO 340 LV -MLVLG2, MLVLG2

READ (JPNTRE) (ILVLG2(IP,LV),

340 CONTINUE

IP = 1, MCELLP), KAUXG2(LC)

IP = 1, MBONDP)

IP = 1, MNEIBP)

IP = 1, 3)

READ (JPNTRE) (NBCPG2(IP,1),IP=1,4),(NBCPG2(IP,2),IP=1,4)

NON-ARRAY REAL NUMBERS

C REAL NUMBERS FROM A2COMN
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READ (JPNTRE) ALPHA2, BETAA2, GAMMA2, DELTA2. THRDA2, THRCA2

C REAL-NUMBERS FROM CHCOMN

READ (JPNTRE) TREFCH, PRESCH, YNRTCH, TRIGCH

C REAL NUMBERS FROM E2COMN

READ (JPNTRE) SDELE2, SMAXE2, SMINE2, EPSLE2

C REAL NUMBERS FROM FLCOMN

READ (JPNTRE) TREFFL, PRESFL,

RHORFL, UREFFL,

GAMAFL

UGASFL, AMCHFL, DISTFL,

FMREFL, WDREFL, AMWTFL,

C REAL NUMBERS FROM FRCOMN

READ (JPNTRE) RHORFR, UCOMFR, VCOMFR, PRESFR, PBPIFR

C REAL NUMBERS FROM TICOMN

READ (JPNTRE) CFLNTI, TIMXTI, TIMNTI,

DTCNTI, FCTRTI, ERRMTI
EPSITI, EPSOTI,

C READ THE CPU TIME HERE AND SAVE IT

READ (JPNTRE) ZCUM
WORKA2(3) ZCUM
CALL TIMERR (JOUTAL, ZCUM, 'RESTART')

ARRAY REAL NUMBERS

C REAL NUMBERS FROM CHCOMN

READ (JPNTRE)
READ (JPNTRE)
READ (JPNTRE)

(PREFCH(IR),

(PREBCH(IR),

(PREECH(IR).

IR 1, NREACH)

IR 1, NREACH)

IR - 1. NREACH)

(EXPFCH(IR), IR - 1, NREACH)

(EXPBCH(IR). IR = 1. NREACH)
(EXPECH(IR). IR = 1i NREACH)

(ENEFCH(IR), IR = 1, NREACH)

(ENEBCH(IR), IR - 1, NREACH)

(ENEECH(IR). IR - 1. NREACH)

(JPNTRE)
(JPNTRE)
(JPNTRE)
(JPNTRE)
(JPNTRE)
(JPNTRE)
(JPNTRE)

(SPCPCH(IS).
(SPCVCH(IS),
(SPBSCH(IS),

(FMHTCH(IS),
(YSPECH(IS).

(AMWTCH(IS).
(ENTRCH(IS).

DO 400 IR - 1. NREACH

IS 1. NSPECH)

IS - 1, NSPECH)
IS - 1, NSPECH)

IS - 1, NSPECH)

IS - 1, NSPECH)
IS - 1, NSPECH)

IS - 1, NSPECH)
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READ (JPNTRE) (BMIACH(IS.IR),
400 CONTINUE

C REAL NUMBERS FROM E2COMN

C READ (JPNTRE) (SIGGE2(IN).

IS - 1. NSPECH)

IN - 1, NNODG2)

C REAL NUMBERS FROM FRCOMN

READ (JPNTRE) (DPENFR(IN), IN = 1, MEQNFL)

C REAL NUMBERS FROM G2COMN

DO 410 IN - 1, NNODG2
READ (JPNTRE) (DPENG2(IQ,IN). IQ = 1, NEQNFL)

410 CONTINUE

DO 420 IN 1, NNODG2

READ (JPNTRE) (GEOMG2(IP,IN)
420 CONTINUE

, IP 1, MGEOMP)

READ (JPNTRE) (PRESG2(IN), IN = 1, NNODG2)
READ (JPNTRE) (TEMPG2(IN). IN = 1, NNODG2)

C REAL NUMBERS FROM PRCOMN

DO 430 IS 1, NSPECH
YSPEPR(IS) = YSPECH(IS)

430 CONTINUE

C
C
C

OTHER VARIABLES

READ (JPNTRE) MTITLE2
READ (JPNTRE) PHI, RHOD

C SAVE VALUES SO THAT THEY CAN BE TRANSPORTED TO E2INIO AND WRINI2

CHNGE2(1,1) - PHI
CHNGE2(1,2) - RHOD

CLOSE (JPNTRE)

C SEE IF TEMPORALLY VARYING
IF (KPERFR .EQ. 1) THEN

FLOWTV - PBPIFR

FREQTV - EPSLE2

CONDITIONS WERE USED

AMPLTV - FLOAT(IDBGFR)/100.
ENDIF

RETURN

END
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PSWCOR

SUBROUTINE PSWCOR (JGIVEN)

INCLUDE '[.INC] PRECIS.INC/LIST'

INCLUDE '[.INC] PARMV2.INC/LIST'

INCLUDE '[.INC] A2COMN.INC/LIST'

INCLUDE 't.INC] CHCOMN.INC/LIST'

INCLUDE '[.INC] E2COMN.INC/LIST'

INCLUDE '[.INC] FLCOMN.INC/LIST'

INCLUDE '[.INC] FRCOMN.INC/LIST'

INCLUDE '[.INC] G2COMN.INC/LIST'

INCLUDE 't.INC] H2COMN.INC/LIST'

INCLUDE '[.INC] IOCOMN.INC/LIST'

INCLUDE 't.INC] KYCOMN.INC/LIST'

INCLUDE '[.INC] PRCOMN.INC/LIST'

INCLUDE '[.INC] TICOMN.INC/LIST'

C THIS SUBROUTINE WRITES ALL INFORMATION ABOUT THE COARSE POINTER

C SYSTEM AND ALL THE OTHER ARRAYS ON UNIT JGIVEN

C INITIALIZATION

MCELLP 10
MGEOMP - 2

MBONDP - 5
MNEIBP 4

C

C CORRECT THE TOTAL NUMBER OF CELLS

C

NCELA2 a ILVLG2(2,0)

NCELG2 r ILVLG2t2,0)
NLVLG2 O0

MALVG2 - 0
NCRSG2 - 0
NPLCA2 - NCELG2

C

C CORRECT THE CEWIC CELL ARRAY AND THE POINTERS TO EDGE NODES,

C ALSO DETERMINE THE MAXIMUM NODE

C
MAXNOD - 0
DO 100 ICELL - 1, NCELA2

ICELA2(ICELL) - ICELL

KSW - ICELG2(2.ICELL)

KSE - ICELG2(4,ICELL)

KNE - ICELG2(6.ICELL)
KNW - ICELG2(8,ICELL)
MAXNOD - MAX (MAXNOD, KSW, KSE, KNE, KNW)

IF (ICELG2(1,ICELL) .NE. O) ICELG2(1,ICELL) - 0

IF (ICELG2(3.ICELL) .NE. O) ICELG2(3,ICELL) - 0
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IF (ICELG2(6,ICELL)

IF (ICELG2(7,ICELL)

IF (ICELG2(9,ICELL)

CONTINUE

.NE. O) ICELG2(5,ICELL) = 0

.NE. O) ICELG2(7,ICELL) = 0

.NE. O) ICELG2(9,ICELL) = 0

CORRECT THE TOTAL NUMBER OF NODES

NNODOL - NNODG2

NNODG2 = MAXNOD

CORRECT THE TOTAL NUMBER OF BOUNDARY NODES AND THEIR CELL POINTERS

MAXNOD = 0
DO 130 IBND 1, NBNDG2

IF (IBNDG2(1,IBND) .GT. NNODG2) GOTO 130
MAXNOD MAXNOD + 1

IONE - IBNDG2(2,IBND)

ITWO IBNDG2(3,IBND)
110 CONTINUE

IF (IONE .GT. O) THEN

IF (ICELG2(10,IONE) .GT. O) THEN

IONE = ICELG2(10,IONE)
GOTO 110

ENDIF

ENDIF

120 CONTINUE

IF (ITWO .GT. O) THEN
IF (ICELG2(10,ITWO) .GT. O) THEN

ITWO = ICELG2(10,I'TnO)
GOTO 120

ENDIF

ENDIF

IBNDG2(2,IBND) = IONE
IBNDG2(3,IBND) - ITWO

130 CONTINUE

NBNDG2 MAXNOD

C

C CORRECT THE NEIGHBOUR NODE ARRAY POINTERS

C

DO 180 IN - 1, NNODG2

NB1 - NEIBG2(1,IN)

NB2 NEIBG2(2,IN)

NB3 NEIBG2(3,IN)

NB4 - NEIBG2(4,IN)
140 CONTINUE

IF (NB1 .GT. O) THEN

IF (ICELG2(lO,NB1) .GT. O) THEN
C write(8,*) ' nb check',in,nbl,ICELG2(10,NB1)

NB1 - ICELG2(10,NB1)

GOTO 140
ENDIF

ENDIF

150 CONTINUE

IF (NB2 .GT. O) THEN

IF (ICELG2(10,NB2) .GT. O) THEN

NB2 - ICELG2(10,NB2)
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GOTO 150

ENDIF

ENDIF

160 CONTINUE

IF (NB3 .GT. O) THEN

IF (ICELG2(lO,NB3) .GT. O) THEN
NB3 - ICELG2(10,NB3)

GOTO 160

ENDIF

ENDIF

170 CONTINUE

IF (NB4 .GT. O) THEN

IF (ICELG2(1O,NB4) .GT. O) THEN

NB4 ICELG2(10,NB4)

GOTO 170

ENDIF

ENDIF

NEIBG2(1,IN) - NB1

NEIBG2(2,IN) = NB2
NEIBG2(3,IN) NB3

NEIBG2(4,IN) - NB4
180 CONTINUE

C
C
C

190
C
C
C

CORRECT THE LEVEL POINTERS

DO 190 LV - 1,

ILVLG2(1,LV)

ILVLG2(2,LV)

ILVLG2 (3,LV)

CONTINUE

MLVLG2
- NCELG2+1
= NCELG2
=0

CORRECT THE NBCPG2 ARRAY

IBNSW - 0

IBNSE = 0

IBNNE - 0

IBNNW - 0

DO 200 IBND 1, NBNDG2

IF (IBNDG2(4,IBND) .EQ. 2) THEN

IF (IBNSW .NE. O)
IBNSW - IBND

ENDIF

IF (IBNDG2(4,IBND)

IF (IBNSE .NE. O)
IBNSE - IBND

ENDIF

IF (IBNDG2(4,IBND)

IF (IBNNE .NE. O)
IBNNE IBND

ENDIF

IF (IBNDG2(4,IBND)
IF (IBNNW .NE. 0)
IBNNW - IBND

ENDIF

200 CONTINUE

WRITE(6,210) IBNSW, IBND

.EQ. 4) THEN

WRITE(6,220)

.Eq. 6) THEN

WRITE(6,230)

.EQ. 8) THEN

WRITE(6,240)

210 FORMAT(' MORE THAN ONE SW CORNER',2I)

220 FORMAT(' MORE THAN ONE SW CORNER',2I5)
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230 FORMAT(' MORE THAN ONE SW CORNER',2I5)

240 FORMAT(' MORE THAN ONE SW CORNER',216)

IF (IBNSW .EQ.

IF (IBNSE .EQ.

IF (IBNNE .EQ.
IF (IBNNW .EQ.

O) WRITE(6,*) ' NO SW CORNER'

O) WRITE(6,*) ' NO SE CORNER'

O) WRITE(6,*) ' NO NE CORNER'

O) WRITE(6,*) ' NO NW CORNER'

IONE - IBNDG2(2,IBNSW)

DO 250 IBND - 1, NBNDG2

IF (IBNDG2(1.IBND) .EQ.

IF (IBNDG2(1,IBND) .EQ.

250 CONTINUE

IONE - IBNDG2(2,IBNSE)

DO 260 IBND - 1, NBNDG2
IF (IBNDG2(1.IBND) .EQ.

IF (IBNDG2(1,IBND) .EQ.

260 CONTINUE

IONE - IBNDG2(2,IBNNE)

DO 270 IBND - 1, NBNDG2

IF (IBNDG2(1,IBND) .EQ.

IF (IBNDG2(1,IBND) .EQ.
270 CONTINUE

IONE - IBNDG2(2,IBNNW)

DO 280 IBND - 1. NBNDG2

IF (IBNDG2(1.IBND) .EQ.

IF (IBNDG2(1,IBND) .EQ.

280 CONTINUE

ICELG2(8,IONE)) NBCPG2(1.1) IBND

ICELG2(4,IONE)) NBCPG2(1,2) IBND

ICELG2(2,IONE)) NBCPG2(2,I1) = IBND

ICELG2(6,IONE)) NBCPG2(2,2) = IBND

ICELG2(4,IONE)) NBCPG2(3,1) = IBND

ICELG2(8,IONE)) NBCPG2(3,2) = IBND

ICELG2(6,IONE)) NBCPG2(4,1) = IBND

ICELG2(2,IONE)) NBCPG2(4.2) = IBND

NON-ARRAY INTEGERS

C WRITE ALL THE NON-ARRAY INTEGERS FIRST

C INTEGERS FORM PARMV2

1
WRITE (JGIVEN) NEQNFL. NREACH, NSPECH, NNODG2. NCELG2,

NBNDG2. NLVLG2, NEQBAS, KROGER

C INTEGERS FROM A2COMN

1
2

WRITE (JGIVEN) NXTDA2,

MTYPA2,

MTHRA2,

METHA2,
NPLCA2,
KPLTA2,

NCELA2,

IDBGA2,
KMERA2

KIADA2, K2ADA2,

MITRA2, KCHKA2,

C INTEGERS FROM CHCOMN

WRITE (JGIVEN) IDBGCH, NINRCH, NEQSCH

C INTEGERS FROM E2COMN

KSRTE2 - 1001
WRITE (JGIVEN) IDBGE2, MITRE2. KSRTE2, KONVE2, KEQNE2
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C INTEGERS FROM FLCOMN

WRITE (JGIVEN) IDBGFL

C INTEGERS FROM FRCOMN

WRITE (JGIVEN) IDBGFR, KPERFR, MCYCFR, NCYCFR

C INTEGERS FROM G2COMN

WRITE (JGIVEN) IDBGG2, MALVG2, NCRSG2

C INTEGERS FROM IOCOMN

1
2
3

WRITE (JGIVEN) JTERMI.
JREADG,

JHISTO,

JDUMY3,

JTERMO,

JREADC,

JGIVEN,

JDUMY4,

JPRINT,

JREADD,

JPNTWR,

JDEBUG,

JCARDS,

JREADF,

JDUMY1,

JREADS

C INTEGERS FROM TICOMN

1
C
C
C

WRITE (JGIVEN) KTIMTI,

KFACTI

NGIVTI, KADPTI. NMAXTI. IMPLTI,

ARRAY INTEGERS

C INTEGERS FROM A2COMN

WRITE (JGIVEN) (ICELA2(LC). LC - 1, NCELA2)

C INTEGERS FROM CHCOMN

DO 300 IR - 1, NREACH
WRITE (JGIVEN) NSRKCH(IR)

WRITE (JGIVEN) (IALPCH(IS,IR),
WRITE (JGIVEN) (IBETCH(IS.IR).

WRITE (JGIVEN) (IALOCH(IS,IR).

WRITE (JGIVEN) (IBTOCH(IS,IR).

WRITE (JGIVEN) (ITABCH(IS,IR),
300 CONTINUE

IS - 1. NSPECH)

IS - 1. NSPECH)

IS - 1. NSPECH)

IS - 1, NSPECH)

IS - 1, NSPECH)

C INTEGERS FROM G2COMN

DO 310 LC - 1, NCELG2
WRITE (JGIVEN) (ICELG2(IP,LC), IP - 1, MCELLP), KAUXG2(LC)

310 CONTINUE

DO 320 lB - 1, NBNDG2
WRITE (JGIVEN) (IBNDG2(IP.IB). IP - 1, MBONDP)

320 CONTINUE

DO 330 IN - 1. NNODG2

WRITE (JGIVEN) (NEIBG2(IP.IN). IP - 1, MNEIBP)

330 CONTINUE

DO 340 LV - -MLVLG2, MLVLG2
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WRITE (JGIVEN) (ILVLG2(IPLV), IP = 1, 3)

340 CONTINUE

WRITE (JGIVEN) (NBCPG2(IP,1),IP=1,4),(NBCPG2(IP,2),IP=1,4)

C 
C NON-ARRAY REAL NUMBERS
C ----------- -------

C REAL NUMBERS FROM A2COMN

WRITE (JGIVEN) ALPHA2, BETAA2,

C REAL NUMBERS FROM CHCOMN

WRITE (JGIVEN) TREFCH, PRESCH,

C REAL NUMBERS FROM E2COMN

WRITE (JGIVEN) SDELE2, SMAXE2,

C REAL NUMBERS FROM FLCOMN

WRITE (JGIVEN) TREFFL, PRESFL,

1 RHORFL, UREFFL,

2 GAMAFL

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN) RHORFR, UCOMFR,

C REAL NUMBERS FROM TICOMN

WRITE (JGIVEN) CFLNTI, TIMXTI,

1 DTCNTI, FCTRTI,

C WRITE THE CPU TIME HERE

GANMA2, DELTA2, THRDA2, THRCA2

YNRTCH, TRIGCH

SMINE2, EPSLE2

UGASFL, AMCHFL, DISTFL,

FMREFL, WDREFL, AMWTFL,

VCOMFR, PRESFR, PBPIFR

TIMNTI,

ERRMTI

EPS1TI, EPSOTI,

IF (MRKDA2(3) .EQ. -99) THEN

ZCUM = WORKA2(3)
ELSE

CALL TIMERR (JOUTAL, ZCUM, 'PSWRTU')
ENDIF

WRITE (JGIVEN) ZCUM

ARRAY REAL NUMBERS
__________________

REAL NUMBERS FROM CHCOMN

WRITE (JGIVEN) (PREFCH(IR), IR - 1,

WRITE (JGIVEN) (PREBCH(IR), IR 1,

WRITE (JGIVEN) (PREECH(IR), IR 1,

WRITE (JGIVEN) (EXPFCH(IR), IR - 1,

WRITE (JGIVEN) (EXPBCH(IR), IR = 1,

NREACH)

NREACH)

NREACH)

NREACH)

NREACH)
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WRITE (JGIVEN) (EXPECH(IR), IR - 1, NREACH)

(ENEFCH(IR),

(ENEBCH(IR),

(ENEECH(IR),

IR - 1, NREACH)

IR - 1, NREACH)

IR - 1, NREACH)

(SPCPCH(IS), IS = 1,

(SPCVCH(IS), IS = 1,

(SPBSCH(IS), IS = 1,

(FMHTCH(IS), IS = 1.

(YSPECH(IS), IS = 1,

(AMWTCH(IS), IS - 1,

(ENTRCH(IS), IS = 1,

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

DO 400 IR - 1, NREACH

WRITE (JGIVEN) (BMIACH(IS,IR),

400 CONTINUE

IS = 1. NSPECH)

C REAL NUMBERS FROM E2COMN

C WRITE (JGIVEN) (SIGGE2(IN), IN = 1, NNODG2)

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN) (DPENFR(IN), IN = 1, MEQNFL)

C REAL NUMBERS FROM G2COMN

DO 410 IN = 1. NNODG2

WRITE (JGIVEN) (DPENG2(IQ,IN), IQ = 1, NEqNFL)

410 CONTINUE

DO 420 IN = 1, NNODG2

WRITE (JGIVEN) (GEOMG2(IP,IN), IP = 1, MGEOMP)

420 CONTINUE

WRITE (JGIVEN) (PRESG2(IN), IN 1, NNODG2)

WRITE (JGIVEN) (TEMPG2(IN), IN - 1, NNODG2)

OTHER VARIABLES

PHI

RHOD
WRITE

WRITE

- APASKY(1)

- APASKY(2)

(JGIVEN) MTITLE

(JGIVEN) PHI, RHOD

RETURN
END

PSWRT2

SUBROUTINE PSWRT2 (JGIVEN)
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INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC

INCLUDE 'CHCOMN. INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'

INCLUDE 'PRCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN. INC'

C THIS SUBROUTINE WRITES ALL THE INFORMATION ABOUT THE POINTER

C SYSTEM AND ALL THE OTHER ARRAYS ON UNIT JGIVEN

C INITIALIZATION

MCELLP - 10

MGEOMP 2
MBONDP - 5

MNEIBP - 4

EPSOLD - EPSLE2

IDBOLD IDBGFR

C SEE IF TEMPORALLY VARYING CONDITIONS WERE USED

IF (KPERFR .EQ. 1) THEN

PBPIFR - FLOWTV

EPSLE2 - FREQTV

IDBGFR - NINT(l00.*AMPLTV)

ENDIF

C NON-AR----- Y INTEGERS

C WRITE ALL TE NON-ARRAY INTEGERS FIRST

C INTEGERS FORM PARMV2

WRITE (JGIVEN.1) NEQNFL, NREACH, NSPECH. NNODG2, NCELG2,

1 NBNDG2, NLVLG2, NEQBAS, KROGER

1 FORMAT(SI10)

C INTEGERS FROM A2COMN

WRITE (JGIVEN,1) NXTDA2, METHA2, NCELA2, K1ADA2, K2ADA2,

1 MTYPA2., NPLCA2, IDBGA2, MITRA2, KCHKA2,
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MTHRA2, KPLTA2, KMERA2

C INTEGERS FROM CHCOMN

WRITE (JGIVEN,1) IDBGCH, NINRCH, NEQSCH

C INTEGERS FROM E2COMN

KSRTE2 - 1
WRITE (JGIVEN,1) IDBGE2, MITRE2, KSRTE2, KONVE2, KEQNE2

C INTEGERS FROM FLCOMN

WRITE (JGIVEN,1) IDBGFL

C INTEGERS FROM FRCOMN

WRITE (JGIVEN,1) IDBGFR, KPERFR, MCYCFR, NCYCFR

C INTEGERS FROM G2COMN

WRITE (JGIVEN,I) IDBGG2, MALVG2, NCRSG2

C INTEGERS FROM IOCOMN

WRITE (JGIVEN.1) JTERMI,

JREADG,

JHISTO,

JDUMY3,

JTERMO,

JREADC,
JGIVEN,

JDUMY4,

JPRINT,

JREADD,

JPNTWR,

JDEBUG,

JCARDS, JREADI,

JREADF, JOUTAL,
JDUMY1, JDUMY2,

JREADS

C INTEGERS FROM TICOMN

1

WRITE (JGIVEN,1) KTIMTI,
KFACTI

NGIVTI, KADPTI, NMAXTI, IMPLTI,

C --

C ARRAY INTEGERS
C -

C INTEGERS FROM A2COMN

WRITE (JGIVEN,1) (ICELA2(LC), LC - 1, NCELA2)

C INTEGERS FROM CHCOMN

DO 300 IR - 1, NREACH

WRITE (JGIVEN,1) NSRKCH(IR)

WRITE (JGIVEN,1) (IALPCH(IS,IR), IS - 1, NSPECH)

WRITE (JGIVEN,1) (IBETCH(IS,IR), IS - 1, NSPECH)

WRITE (JGIVEN,1) (IALOCH(IS,IR), IS = 1, NSPECH)

WRITE (JGIVEN,1) (IBTOCH(IS,IR), IS - 1, NSPECH)

WRITE (JGIVEN,1) (ITABCH(ISIR). IS - 1, NSPECH)

300 CONTINUE

C INTEGERS FROM G2COMN

DO 310 LC - 1, NCELG2

WRITE (JGIVEN,1) (ICELG2(IP,LC), IP - 1, MCELLP), KAUXG2(LC)
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310 CONTINUE

DO 320 IB - 1, NBNDG2

WRITE (JGIVEN,1) (IBNDG2(IP,IB), IP 1, MBONDP)

320 CONTINUE

DO 330 IN - 1, NNODG2

WRITE (JGIVEN,1) (NEIBG2(IP,IN), IP - 1, MNEIBP)

330 CONTINUE

DO 340 LV - -MLVLG2. MLVLG2

WRITE (JOIVEN,1) (ILVLG2(IP,LV), IP - 1, 3)

340 CONTINUE

WRITE (JGIVEN,1) (NBCPG2(IP,1).IP=1,4),(NBCPG2(IP,2),IP=1,4)

C ------ __
C
C

NON-ARRAY REAL NUMBERS
______________________

2 FORMAT(8E16.8)

C REAL NUMBERS FROM A2COMN

WRITE (JGIVEN,2) ALPHA2,

C REAL NUMBERS FROM CHCOMN

WRITE (JGIVEN,2) TREFCH,

C REAL NUMBERS FROM E2COMN

WRITE (JGIVEN,2) SDELE2,

C REAL NUMBERS FROM FLCOMN

WRITE (JGIVEN,2) TREFFL,

1 RHORFL,

2 GAMAFL

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN,2) RHORFR.

C REAL NUMBERS FROM TICOMN

WRITE (JGIVEN.2) CFLNTI,
I DTCNTI,

C WRITE THE CPU TIME HERE

BETAA2, GAMMA2., DELTA2, THRDA2, THRCA2

PRESCH, YNRTCH, TRIGCH

SMAXE2, SMINE2, EPSLE2

PRESFL, UGASFL, AMCHFL, DISTFL,

UREFFL, FMREFL, WDREFL, AMWTFL,

UCOMFR, VCOMFR, PRESFR, PBPIFR

TIMXTI, TIMNTI,

FCTRTI, ERRMTI

EPS1TI, EPSOTI,

IF (MRKDA2(3) .EQ. -99) THEN

ZCUM - WORA2(3)
ELSE

CALL TIMERR (JOUTAL, ZCUM, 'PSWRT2')
ENDIF

WRITE (JGIVEN.2) ZCUM
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ARRAi REAL NUMBERS

C REAL NUMBERS FROM CHCOMN

(JGIVEN,2)

(JGIVEN,2)
(JGIVEN,2)

(JGIVEN,2)
(JGIVEN,2)

(JGIVEN,2)

(JGIVEN.2)

(JGIVEN,2)

(JGIVEN,2)

(PREFCH(IR), IR = 1, NREACH)
(PREBCH(IR), IR = 1, NREACH)
(PREECH(IR), IR = 1, NREACH)

(EXPFCH(IR), IR = 1, NREACH)
(EXPBCH(IR), IR - 1, NREACH)
(EXPECH(IR), IR = 1, NREACH)

(ENEFCH(IR), IR = 1, NREACH)
(ENEBCH(IR), IR = 1, NREACH)
(ENEECH(IR), IR = 1, NREACH)

(JGIVEN,2)

(JGIVEN.2)
(JGIVEN,2)

(JGIVEN,2)

(JGIVEN,2)
(JGIVEN,2)

(JGIVEN,2)

(SPCPCH(IS),

(SPCVCH(IS),

(SPBSCH(IS),

(FMHTCH(IS),

(YSPECH(IS),
(AMWTCH(IS),

(ENTRCH(IS),

DO 400 IR - 1, NREACH
WRITE (JGIVEN,2) (BMIACH(IS

400 CONTINUE

IS = 1, NSPECH)
IS = 1, NSPECH)
IS = 1. NSPECH)
IS = 1, NSPECH)
IS = 1, NSPECH)
IS = 1, NSPECH)
IS = 1, NSPECH)

,IR), IS = 1, NSPECH)

C REAL NUMBERS FROM E2COMN
C WRITE (JGIVEN,2) (SIGGE2(IN), IN = 1, NNODG2)

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN,2) (DPENFR(IN), IN = 1, MEQNFL)

C REAL NUMBERS FROM G2COMN

DO 410 IN - 1, NNODG2
WRITE (JGIVEN,2) (DPENG2(Iq,IN).

410 CONTINUE

DO 420 IN - 1. NNODG2
WRITE (JGIVEN,2) (GEOMG2(IP,IN),

420 CONTINUE

IQ = 1, NEqNFL)

IP = 1, MGEOMP)

WRITE (JGIVEN,2) (PRESG2(IN), IN = 1, NNODG2)
WRITE (JGIVEN,2) (TEMPG2(IN), IN 1, NNODG2)

OTHER VARIABLES

3 FORMAT(A80)

PHI - APASKY(1)
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RHOD - APASKY(2)

WRITE(JGIVEN,3) MTITLE

WRITE (JGIVEN,2) PHI, RHOD

EPSLE2 - EPSOLD

IDBGFR - IDBOLD

RETURN

END

PSWRTU

SUBROUTINE PSWRTU (JGIVEN)

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'A2COMN.INC'

'CHCOMN.INC'

'E2COMN.INC'

'FLCOMN.INC'

'FRCOMN.INC'

'G2COMN.INC'

'H2COMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

'PRCOMN.INC'

'TICOMN.INC'

'TVCOMN.INC'

C THIS SUBROUTINE WRITES ALL THE INFORMATION ABOUT THE POINTER

C SYSTEM AND ALL THE OTHER ARRAYS ON UNIT JGIVEN

C ------
C INITIALIZATION
C ------

MCELLP - 10

MGEOMP - 2
MBONDP - 5
MNEIBP - 4
EPSOLD EPSLE2

IDBOLD - IDBGFR

C SEE IF TEMPORALLY VARYING CONDITIONS WERE USED
IF (KPERFR .EQ. 1) THEN

PBPIFR - FLOWTV

EPSLE2 - FREQTV

IDBGFR - NINT(1OO.*AMPLTV)
ENDIF
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C -
C NON-ARRAY INTEGERS
C ------

C WRITE ALL THE NON-ARRAY INTEGERS FIRST

C INTEGERS FORM PARMV2

WRITE (JGIVEN) NEQNFL, NREACH, NSPECH, NNODG2, NCELG2,
I NBNDG2, NLVLG2, NEQBAS, KROGER

C INTEGERS FROM A2COMN

WRITE (JGIVEN) NXTDA2, METHA2, NCELA2, K1ADA2, K2ADA2.

1 MTYPA2, NPLCA2, IDBGA2, MITRA2, KCHKA2.,
2 MTHRA2, KPLTA2, KMERA2

C INTEGERS FROM CHCOMN

WRITE (JGIVEN) IDBGCH, NINRCH, NEQSCH

C INTEGERS FROM E2COMN

KSRTE2 - 1001
WRITE (JGIVEN) IDBGE2,

C INTEGERS FROM FLCOMN

WRITE (JGIVEN) IDBGFL

C INTEGERS FROM FRCOMN

WRITE (JGIVEN) IDBGFR.

C INTEGERS FROM G2COMN

WRITE (JGIVEN) IDBGG2,

C INTEGERS FROM IOCOMN

WRITE (JGIVEN) JTERMI,

1 JREADG,
2 JHISTO.,

3 JDUMY3.

C INTEGERS FROM TICOMN

WRITE (JGIVEN) KTIMTI.
1 KFACTI

C
C
C

C

MITRE2, KSRTE2, KONVE2, KEQNE2

KPERFR, MCYCFR, NCYCFR

MALVG2, NCRSG2

JTERMO,

JREADC,

JGIVEN,

JDUMY4,

JPRINT, JCARDS, JREADI,

JREADD, JREADF, JOUTAL,

JPNTWR, JDUMYI, JDUMY2,

JDEBUG, JREADS

NGIVTI. KADPTI, NMAXTI, IMPLTI,

ARRAY INTEGERS
______________

INTEGERS FROM A2COMN

WRITE (JGIVEN) (ICELA2(LC). LC - 1 NCELA2)
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C INTEGERS FROM CHCOMN

DO 300 IR - 1, NREACH

WRITE (JGIVEN) NSRKCH(IR)

WRITE (JGIVEN) (IALPCH(IS,IR),

WRITE (JGIVEN) (IBETCH(IS,IR),

WRITE (JGIVEN) (IALOCH(IS,IR),

WRITE (JGIVEN) (IBTOCH(IS.IR).

WRITE (JGIVEN) (ITABCH(IS,IR),
300 CONTINUE

IS - 1. NSPECH)

IS - 1. NSPECH)

IS - 1, NSPECH)

IS 1. NSPECH)

IS - 1, NSPECH)

C INTEGERS FROM G2COMN

DO 310 LC - 1. NCELG2

WRITE (JGIVEN) (ICELG2(IP,LC).

310 CONTINUE

DO 320 IB - 1, NBNDG2

WRITE (JGIVEN) (IBNDG2(IP,IB),

320 CONTINUE

DO 330 IN - 1. NNODG2

WRITE (JGIVEN) (NEIBG2(IP,IN),

330 CONTINUE

DO 340 LV - -MLVLG2, MLVLG2

WRITE (JGIVEN) (ILVLG2(IP.LV).

340 CONTINUE

IP = 1. MCELLP), KAUXG2(LC)

IP - 1, MBONDP)

IP - 1, MNEIBP)

IP - , 3)

WRITE (JGIVEN) (NBCPG2(IP,1),IP-1,4),(NBCPG2(IP,2),IP-1,4)

C ---- - - - - - -
C NON-ARRAY REAL NUMBERS
C -- _ __ _ _ _ _

C REAL NUMBERS FROM A2COMN

WRITE (JGIVEN) ALPHA2, BETAA2, GAMMA2, DELTA2, THRDA2, THRCA2

C REAL NUMBERS FROM CHCOMN

WRITE (JGIVEN) TREFCH, PRESCH, YNRTCH, TRIGCH

C REAL NUMBERS FROM E2COMN

WRITE (JGIVEN) SDELE2. SMAXE2. SMINE2, EPSLE2

C REAL NUMBERS FROM FLCOMN

WRITE (JGIVEN) TREFFL. PRESFL.

RHORFL, UREFFL,
GAMAFL

UGASFL., AMCHFL. DISTFL,

FMREFL, WDREFL, AMWTFL.

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN) RHORFR. UCOMFR. VCOMFR. PRESFR, PBPIFR
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C REAL NUMBERS FROM TICOMN

WRITE (JGIVEN) CFLNTI, TIMXTI, TIMNTI, EPS1TI, EPSOTI,

1 DTCNTI, FCTRTI, ERRMTI

C WRITE THE CPU TIME HERE

IF (MRKDA2(3) .Eq. -99) THEN

ZCUM - WORKA2(3)

ELSE

CALL TIMERR (JOUTAL,

ENDIF

WRITE (JGIVEN) ZCUM

ZCUM, 'PSWRTU')

ARRAY REAL NUMBERS

C REAL NUMBERS FROM CHCOMN

(PREFCH(IR),

(PREBCH (IR),

(PREECH(IR),

(EXPFCH(IR),

(EXPBCH(IR),

(EXPECH(IR),

(ENEFCH(IR),

(ENEBCH(IR),

(ENEECH(IR),

IR = 1, NREACH)

IR = 1. NREACH)

IR = 1, NREACH)

IR = 1, NREACH)

IR = 1, NREACH)

IR = 1. NREACH)

IR = 1, NREACH)

IR = 1, NREACH)
IR = 1, NREACH)

(SPCPCH(IS), IS = 1.
(SPCVCH(IS), IS = 1,

(SPBSCH(IS), IS = 1.
(FMHTCH(IS), IS - 1,
(YSPECH(IS). IS - 1,

(AMWTCH(IS), IS - 1,
(ENTRCH(IS), IS = 1,

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

NSPECH)

DO 400 IR - 1, NREACH

WRITE (JGIVEN) (BMIACH(IS,
400 CONTINUE

IR), IS = 1, NSPECH)

C REAL NUMBERS FROM E2COMN

C WRITE (JGIVEN) (SIGGE2(IN), IN = 1, NNODG2)

C REAL NUMBERS FROM FRCOMN

WRITE (JGIVEN) (DPENFR(IN). IN = 1, MEQNFL)

C REAL NUMBERS FROM G2COMN

DO 410 IN 1, NNODG2
WRITE (JGIVEN) (DPENG2(IQ.IN). IQ = 1, NEqNFL)

410 CONTINUE
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DO 420 IN - 1, NNODG2

WRITE (JGIVEN) (GEOMG2(IP,IN), IP 1, MGEOMP)
420 CONTINUE

WRITE (JGIVEN) (PRESG2(IN), IN = 1. NNODG2)

WRITE (JGIVEN) (TEMPG2(IN). IN 1, NNODG2)

C ------OTHER VARIABLES

PHI APASY)RIABLE
RHOD - APASKY(2)

WRITE (JGIVEN) MTITLE

WRITE (JGIVEN) PHI, RHOD

EPSLE2 EPSOLD

IDBGFR - IDBOLD

RETURN

END

PTIMP2

SUBROUTINE PTIMP2 (INODE. ICELL, DELN)

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'TICOMN.INC'

COMMON/WUCOMN/ WUJACO
DIMENSION WUJACO(MEQNFL MEQNFL)
DIMENSION DELS (MEQNFL). DELN (MEQNFL), SS (MEQNFL,MEQNFL)

C THIS SUBROUTINE APPLIES THE POINT-IMPLICIT APPROACH TO THE NI

C SCHEME AT THE GIVEN NODE INODE DUE TO THE CELL ICELL

C SET UP THE PRECONDITIONING MATRIX

DO 20 J 1, NEQNFL

DO 10 K - 1, NEQNFL
SS(J.K) - -WUJACO(J,K)*CELLTI(ICELL)

10 CONTINUE

SS(J,J) - 1. + SS(J,J)
DELS(J) - DELN(J)

20 CONTINUE

C NOW INVERT THE PRECONDITIONING MATRIX
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CALL GAUSS3 (SS, DELN, DELS, NEQNFL, MEQNFL)

C NOW AESET THE CHANGE VARIABLE

DO 60 J - 1, NEQNFL

DELN(J) - DELS(J)

60 CONTINUE

RETURN

END

ROGERC

SUBROUTINE ROGERC

C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'PRCOMN.INC'

C

C THIS SUBROUTINE CHANGES THE ROGERS AND CHINITZ MODEL FROM FOUR

C SPECIES TO THREE SPECIES COMPUTATIONS AND VICE VERSA.

C$************************************
C

IF (KROGER .NE. 1) RETURN

IF (NINRCH .GT. O) THEN

WRITE(6,*) ' CHANGING FROM 3 TO 4 SPECIES'

DO 200 INODE - 1. NNODG2

C COMPUTE THE MASS FRACTIONS FOR EACH SPECIES

SUMY - 0.

YUPPER - 1. - YNRTCH
RHORPR - DPENG2(1,INODE)

DO 190 IS - 1, NEQSCH

JS - NEQBAS + IS

YSPEPR(IS) - DPENG2(JS,INODE)/RHORPR

IF (YSPEPR(IS) .LT. 0.) THEN

YSPEPR(IS) - O.
DPENG2(JS,INODE) - O.

ENDIF

IF (YSPEPR(IS) .GT. 1.) THEN
YSPEPR(IS) - 1.

DPENG2(JS,INODE) - YUPPER*RHORPR
ENDIF
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SUMY - SUMY + YSPEPR(IS)
190 CONTINUE

C - THE FOLLOWING IS FOR SPECIES 4 NEQSCH+1

YSPEPR(NEQSCH+l) - 1. - SUMY - YNRTCH

IF (YSPEPR(NEQSCH+I) .LT. 0.) YSPEPR(NEQSCH+1) = O.
C ADJUST THE NEWLY DEFINED VARIABLE AT THIS NODE

DPENG2(NEQNFL+I,INODE) RHORPR*YSPEPR(NEQSCH+1)

200 CONTINUE

NOW ADJUST THE NUMBER

YNRTCH - O.

NEQNFL - NEQNFL + 1

NEQSCH - NEQSCH + 1
NINRCH - NINRCH - 1

OF EQUATIONS

C
ELSE

C

WRITE(6.*) ' CHANGING FROM 4 TO 3 SPECIES'

NOW ADJUST THE NUMBER

YNRTCH - YSPECH(5)
NEQNFL NEQNFL - 1

NEQSCH NEQSCH - 1

NINRCH NINRCH + 1

OF EQUATIONS

ENDIF

RETURN

END

SETUPU

SUBROUTINE SETUPU

INCLUDE 'PRECIS.INC'
INCLUDE 'IOCOMN.INC'

C

C

C THIS SUBROUTINE DOES ALL THE INPUT/OUTPUT UNIT INITIALIZATIONS.
C

C
C
C
C
C
C
C

JTERMI
JTERMO
JPRINT
JCARDS
JREADS

C JHISTO
C JOUTAL

C JREADI
C JREADF

- TERMINAL INPUT

- TERMINAL OUTPUT

- PRINT UNIT

- CARD READER
- FILE CONTAINING THE SCHEDULE PROGRAM

- HISTORY FILE

- OUTPUT FILE

- INPUTI.DAT

- INPUTF.DAT

-- STATISTICAL DATA FOR EACH ITERATION

-- CONTAINS ALL THE OUTPUT

-- CONTAINS INPUT RECORDS

-- CONTAINS OUTLET CONDITIONS
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JREADG 

JREADC -

JREA D -

JDUMYN 

JDEBUG -
JPOINT -

INPUTG.DAT

INPUTC.DAT

INPUTD.DAT

DUNMY UNITS
DEBUG UNIT

POINT.DAT

-- CONTAINS GEOMETRIC INFORMATION

-- CONTAINS CHEMISTRY VARIABLES

-- CONTAINS INITIAL DPENDENT VARIABLES

(N 1,2.3,4)

-- CONTAINS ALL THE POINTER INFORMATION FOR

RESTART PURPOSES

SET THE INPUT/OUTPUT UNIT NUMBERS

JTERMI - 5
JTERMO 6

JPRINT - 7
JCARDS - 8

C
JREADI - 11

JREADG - 12
JREADC - 13
JREADD - 14

JPNTRE - 15

JREADF - 16

C
JOUTAL - 21
JHISTO -22
JPNTWR - 23

JDEBUG - 24

C
JDUMY - 31

JDUMY2 - 32
JDUMY3 - 33
JDUMY4 - 34

C
C INITIALIZE TIMER

C
CALL TIMERR(JOUTAL, ZCUM, ' ')

C
RETURN

END

SHORTG

SUBROUTINE SHORTG(IPATH)

C
INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN. INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN. INC'
DIMENSION VERTEX(2,10)

C

C

C THIS SUBROUTINE DETERMINES A SHORTER GRID DOMAIN FOR INTEGRATION
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C PURPOSES, SO THAT THE CONVERGENCE TO STEADY STATE CAN BE

C HASTENED

C

JPOLYM - 85

JBIGER - 86

JSMALL 87

GOTO (1000.,2000,3000). IPATH

RETURN

C
C INITIALIZE THE GRID

C
1000 CONTINUE

C

C FREEZE THE ADAPTIVE PROCEDURE

C
METHA2 - 0
JREADS - 0

C

OPEN (UNIT-JPOLYM,FILE-'INPUTK.DAT',FORM='FORMATTED'

I STATUS-'OLD')
OPEN (UNIT-JBIGER,FILE-'JBIGER.DAT'.FORM='FORMATTED',

I STATUS-'NEW')

OPEN (UNIT-JSMALL,FILE='JSMALL.DAT',FORM='FORMATTED'.

1 STATUS='NEW')
C
C THE CURTAILED GRID IS READ AS A POLYGONAL REGION
C READ THE TOTAL NUMBER OF VERTICES IN THE POLYGON

READ (JPOLYM.*) NVERT

IF (NVERT .LT. 3 .OR. NVERT .GT. 10) RETURN

C READ THE TYPE OF BOUNDARY CONDITION FOR THE LEFT-MOST BOUNDARY

C OF THE BLOCK UNDER CONSIDERATION

READ (JPOLYM,*) IBCTYP

DO 1010 IVERT - 1. NVERT

READ (JPOLYM.*) VERTEX(1,IVERT), VERTEX(2,IVERT)
1010 CONTINUE

CLOSE (JPLOYM)

NPLCA2 - NCELA2

NBNDPV - NBNDG2

NCELA2 - 0
C
C SAVE THE OLD POINTERS

WRITE(JBIGER,667) NPLCA2, NBNDPV

WRITE(JBIGER,667) (ICELA2(JCELL) JCELL-1,NPLCA2)

667 FORMAT(15I7)

DO 1020 JCELL - 1, NPLCA2
C
C FIND THE ACTUAL CELL AND ITS CENTER

ICELL - ICELA2(JCELL)
KSW - ICELG2(2,ICELL)
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KSE - ICELG2(4,ICELL)

KNE - ICELG2(6,ICELL)

KRW - ICELG2(8.ICELL)

XSW - GEOMG2(1,KSW)

XSE - GEOMG2(1,KSE)

XNE = GEOMG2(1,KNE)
XNW = GEOMG2(1,KNW)
YSW = GEOMG2(2,KSW)

YSE - GEOMG2(2,KSE)

YNE = GEOMG2(2,KNE)

YNW = GEOMG2(2,KNW)
XC = 0.25*(XSW+XSE+XNE+XNW)

YC = 0.25*(YSW+YSE+YNE+YNW)
C
C DETERMINE IF THIS CELL IS INSIDE THE POLYGON

CALL INSIDE (IN, VERTEX, NVERT, XC, YC)

IF (IN .EQ. 1) THEN
NCELA2 - NCELA2 + 1

ICELA2(NCELA2) - ICELL

ENDIF

1020 CONTINUE
C
C SET THE INLET BOUNDARY
C

IF (IBCTYP .EQ. 2) THEN

DO 1030 JCELL - 1, NCELA2

C
C FIND THE CELL AND ITS TWO LEFT NODES

ICELL = ICELA2(JCELL)
KSW - ICELG2(2,ICELL)
KNW - ICELG2(8,ICELL)

C FIND THE TWO NEIGHBOR CELLS ON THE LEFT

NB - NEIBG2(4,KSW)

NB2 = NEIBG2(1KNW)

C IF THESE NODES ARE NOT ON A BOUNDARY, AND IF SO CHECK THE

C NODES ON THE LEFT, THEY SHOULD NOT BE IN THE BLOCK ITSELF

IF (NB1 .NE. O) THEN

DO 1021 KCELL - 1, NCELA2

IF (NB1 .Eq. ICELA2(KCELL)) GOTO 1022
1021 CONTINUE
C

C THE CELL IS ON A BOUNDARY, NOW CHECK THE NODE ITSELF

DO 911 IBND- 1 , NBNDG2

IF (KSW .EQ. IBNDG2(1,IBND)) GOTO 1022

911 CONTINUE

C ITS A BOUNADRY POINT AND NOT ALREADY MARKED

NBNDG2 = NBNDG2 + 1

IBNDG2(1,NBNDG2) - KSW
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IBNDG2(5,NBNDG2) 2

- ENDIF

1022 IF (NB2 .NE. O) THEN

DO 1023 KCELL - 1, NCELA2

IF (NB2 .Eq. ICELA2(KCELL)) GOTO 1024

1023 CONTINUE

C
C THE CELL IS ON A BOUNDARY. NOW CHECK THE NODE ITSELF

DO 913 IBND - 1, NBNDG2
IF (KSE .EQ. IBNDG2(1,IBND)) GOTO 1024

913 CONTINUE

C ITS A BOUNADRY POINT AND NOT ALREADY MARKED

NBNDG2 - NBNDG2 + 1

IBNDG2(1,NBNDG2) - KSE

IBNDG2(5,NBNDG2) - 2

ENDIF

1024 CONTINUE

1030 CONTINUE

ENDIF

C
C SAVE THE CHANGED POINTERS

C

WRITE(JSMALL,667) NCELA2, NBNDG2

WRITE(JSMALL,667) (ICELA2(JCELL),JCELL--=1. NCELA2)

CLOSE (JSMALL)
CLOSE (JBIGER)

RETURN

2000 CONTINUE

C
C READ THE FULL DOMAIN AGAIN

C
OPEN (UNIT-JBIGER,FILE-'JBIGER.DAT',FORM-'FORMATTED',

1 STATUS-'OLD')

READ (JBIGER,687) NCELA2, NBNDG2

READ (JBIGER,867?) (ICELA2(JCELL) ,JCELL-1,NCELA2)

CLOSE (JBIGER)

RETURN

3000 CONTINUE
C
C READ THE CURTAILED DOMAIN AGAIN
C

OPEN (UNIT-JSMALL,FILE-'JSMALL.DAT'.FORM-'FORMATTED'.

1 STATUS-'OLD')
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READ (JSMALL.667) NCELA2, NBNDG2

REAa (JSMALL,667) (ICELA2(JCELL) ,JCELL=l,NCELA2)

CLOSE (JSMALL)

RETURN
END

TIINI2

SUBROUTINE TIINI2
C

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC'

'PARMV2.INC'

'TICOMN.INC'

'IOCOMN.INC'

'KYCOMN.INC'

C

C
C THIS SUBROUTINE INITIALIZES ALL THE COMMON BLOCK ARRAYS THAT

C ARE TO BE USED FOR TEMPORAL EMBEDDING

C

C
C SET THE CORANT NUMBER

CFLNTI - APASKY( 3)
C
C SET THE CONSTANT CELL
C A LOCAL VALUE WILL BE

DTCNTI - APASKY(35)
C
C SET THE EPSILON VALUE

EPSITI - APASKY(22)
EPSOTI - APASKY(23)

TIME STEP; NEGATIVE VALUE MEANS THAT

COMPUTED

FOR TEMPORAL EMBEDDING

C MAXIMUM ERROR ABOVE WHICH EPSiTI WILL BE DECREASED
C MAXIMUM ERROR USED IN DETERMINING THE TEMPORAL CELL FACTOR

ERRMTI - APASKY(27)
C
C INITIALIZE THE FACTOR FOR ADJUSTING CELL TIME STEPS

FCTRTI - APASKY(34)
C
C SET THE DEBUG PARAMETER FOR TI ROUTINES

IDBGTI - IPASKY(34)

C SET THE PARAMETER INDICATING WHETHER EXPLICIT OR IMPLICIT

C SOURCE TERMS ARE TO BE USED; :EXPLICIT

IMPLTI - IPASKY(33)
IF (IMPLTI .NE. 1) IMPLTI - 0

C SET UP THE CRITERION VARIABLE TO BE USED FOR TEMPORAL RESOLUTION

KADPTI - IPASKY(24)
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C SET UP THE PARAMETER INDICATING IF RESULTS AT VARIOUS TIME LEVELS
C ARE NEEDED

KTIMTI - IPASKY(tO)

C SET UP THE MAXIMUM GIVEN (TEMPORAL) LEVEL OF CELLS
NGIVTI - IPASKY(7)

C SET THE NUMBER OF CELLS TO BE MOVED AWAY FROM THE NODIT'S
KFACTI - IPASKY(17)

C SEE IF THE DIFFERENCE OF SPECIES MASS FRACTIONS IS TO BE USED

C FOR LIMITING THE TIME-STEPS

KDIFTI - IPASKY(39)

C SET THE MAXIMUM AND MINIMUM TIMES OF THE RUN

TIMXTI - APASKY(20)

TIMNTI - APASKY(24)

C SET THE MAXIMUM CFL NUMBER

CFLXTI - APASKY(41)
C
C PRINT OUT PARAMETERS
C

IF (IDBGTI .NE. 1 .AND. IDBGTI .LT. 1000)

WRITE(JDEBUG, 1000)

WRITE(JDEBUG, 1100)
WRITE(JDEBUG, 1200)

WRITE(JDEBUG,1300) CFLNTI, EPSOTI. EPSITI

ERRMTI,

KADPTI,

FCTRTI,

IMPLTI.

DTCNTI,

KTIMTI.

RETURN

TIMXTI. TIMNTI,

NGIVTI. KFACTI

C --------
C FORMAT STATEMENTS
C ----- __

1000 FORMAT(//1OX,'----------- ---------- ' )
1100 FORMAT( IOX,'DEBUG PRINT FROM TIINI2' )
1200 FORMAT( 10X,'-----------------------'/)

1300 FORMAT( OX. 'CFLNTI

1 5X, 'EPS1TI

2 5X, 'TIMNTI

3 5X, 'FCTRTI

4 X., 'KADPTI

6 SX, 'KTIMTI

6 5X, 'KFACTI

- ', G14.6,
- ', G14.5,
- ', G14.6,
- ', G14.5,
- ', I5,
- , Is,
- , IS

loX,
lo0,

loX,

lo0X,

19X,
19X,

'EPSOTI

'TIMXTI

'ERRMTI

'DTCNTI

'IMPLTI

'NGIVTI

- ', G14.6/
= ', G14.6/

- ', G14.6/
= ', G14.6/

- '. I /
- , I5 /

)

RETURN

END

TIPRN2

SUBROUTINE TIPRN2 (IUNIT)
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INCLUDE '.INCl PRECIS.INC/LIST'

INCLODE '.INC] PARMV2.INC/LIST'

INCLUDE '.INC] G2COMN.INC/LIST'

INCLUDE 't.INC] IOCOMN.INC/LIST'

INCLUDE '.INC] TICOMN.INC/LIST'

C
C THIS SUBROUTINE PRINTS ALL TEMPORAL POINTER ARRAYS ON IUNIT

C

CALL HEADER(IUNIT, 'TEMPORAL CELL VARIABLES', MTITLE)

ICLAST - ILVLTI(2.NMAXTI)
WRITE(IUNIT, 1000) ICLAST, NMAXTI. DTMNTI

WRITE(IUNIT. 1100)

DO 10 JCELL-1, ICLAST

ICELL - ICELTI(JCELL)
NODESW - ICELG2(2,ICELL)
NODESE - ICELG2(4,ICELL)
NODENE - ICELG2(6,ICELL)

NODENW - ICELG2(8,ICELL)

WRITE(IUNIT, 1200) JCELL, ICELL, NODESW, NODESENODENE, NODENW,

1 GEOMG2(1,NODESW). GEOMG2(1,NODESE), GEOMG2(1,NODENE).

2 GEOMG2(1,NODENW), CELLTI(ICELL)

10 CONTINUE

C TEMPORAL-GRID-LEVEL ARRAY

WRITE(IUNIT, 1300)

DO 20 ITGL - O. NMAXTI

NOCELL - ILVLTI(2.ITGL) - ILVLTI(1,ITGL) + 1
WRITE(IUNIT. 1400) ITGL, (ILVLTI(K, ITGL) K-I,2) ,NOCELL

20 CONTINUE

C
C

C FORMAT STATEMENTS

C

C

1000 FORMAT (IX, 'ICLAST',2X,'NMAXTI',SX,'DTMNTI'/217,G14.5)
1100 FORMAT(IX,'JCELL',2X.'ICELL',3X, 'N-SW',2X, 'N-SE',2X,'N-NE',2X

1 'N-NW',SX,'X-DIS-SW',6X,'X-DIS-SE' ,X,'X-DIS-NE' ,X,

2 'X-DIS-NW',OX. 'CELLTI')

1200 FORMAT(X,6(I$,1X) .X,G14.5)

1300 FORMAT(//' TEMPORAL-GRID-LEVEL INFORMATION:'//

1 5X,'LEVEL'.4X,'START',OX,'END',SX,'# CELLS')

1400 FORMAT(IX,4(I7,3X))

RETURN

END
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TVINIO

SUBROUTINE TVINIO

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'CHCOMN.INC'

INCLUDE 'E2COMN. INC'

INCLUDE 'FLCOMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'H2COMN.INC'
INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN.INC'

C

C*************************$***************$$$***************
C

C THIS SUBROUTINE ADDS EMBEDDED CELLS ACROSS THE TEMPORALLY

C VARYING PLANE. THESE CELLS ARE PERMANENTLY DIVIDED AND NEVER

C ALLOWED COLLAPSE AGAIN. THE LEVELS OF EMBEDDING ACROSS THE

C INLET PLANE EQUALS THE CURRENT MAXIMUM EMBEDDING LEVEL

C THE SUBROUTINE ALSO INITIALIZES THE PERIODIC BOUNDARY CONDITIONS

C CONSTANTS
C
C**************************************************************
C
C THE BASE NODE AT THE INLET PLANE IS ASSUMED TO BE 1

C
IBASEN - 1
IF (IADDH2 .NE. 3) RETURN
KPERFR 1

C
C SET INITIAL TIME EQUAL TO ZERO
C

TIMNTI - O.
C
C READ THE MEAN MASS FLOW RATE, FREQUENCY AND PERCENTAGE CHANGE

C

C READ (JREADS.,*) FLOWTV
READ (JREADS,*) FREQTV

READ (JREADS,*) IPERCN

C
C INITIALIZE THE VALUES
C

FLnoWT - DPENG2(2.IBASEN)
AMPLTV - FLOAT(IPERCN)/100.

WRITE(6.*) ' tviniO FLOWTV -',FLOWTV
WRITE(6,*) ' tviniO FREQTV -'.FRETV

WRITE(6.*) ' tviniO ampltv -',.amplTV

WRITE(6,. *)

WRITE(6,*) ' THE FOLLOWING NODES ARE NOTED AS INLET'

PBPIFR - FLOWTV

EPSLE2 - FREQTV
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IDBGFR - IPERCN

NOW COMPUTE AND CORRECT THE PRIMITIVE VARIABLES

RHORPR -

UMASMX -
UCOMPR -
VCOMPR -
BEPSPR 
BEU =

VELO2U 

DPENG2(1,IBASEN)

FLOWTV*(1. + AMPLTV)

UMASMX/RHORPR

DPENG2(3,IBASEN)/RHORPR

DPENG2(4,IBASEN)

BEPSPR/RHORPR
UCOMPR*UCOMPR + VCOMPR*VCOMPR

COMPUTE THE DIMENSIONAL QUANTITIES

BE - FMREFL*BEU

VEL02 FMREFL*VEL02U

SYSHFS - 0.
SYSCPS - 0.
SYSBMS - 0.
BIGAM - 0.

C

DO 80 IS =

SYSHFS

SYSCPS
SYSBMS

BIGAM

80 CONTINUE

1, NSPECH
= SYSHFS +-SYSCPS +
= SYSBMS +

- BIGAM +

YSPECH(IS)*FMHTCH(IS)

YSPECH(IS)*SPCPCH(IS)

YSPECH(IS)*PRAMCH(IS)

YSPECH(IS)*SPBSCH(IS)

1

BIGBM - SYSCPS - UGASFL*SYSBMS

BIGCM = BE - O.5*VEL02 - SYSHFS + TREFCH*SYSCPS

+ 0.5*TREFCH*TREFCH*BIGAM

IF (BIGCM .LT. 1.E-10) THEN

WRITE(6,*) ' VELOCITY DEFECT IS TOO HIGH'

WRITE(6,*) ' IT WILL CAUSE TEMPERATURE TO GO NEGATIVE'
ENDIF

C
C

C

C DIVIDE THE CELLS AT THE INLET AND PERMANENTLY MARK THEM

C
DO 180 ILEVEL 1, MALVG2

INODE - IBASEN

170 NBCELL - NEIBG2(3,INODE)

IF (NBCELL .Eq. 0 ) GOTO 180

KAUXG2(NBCELL) IOR(KAUXG2(NBCELL),KL2000)
IWARN = 0

CALL G2DIVO (NBCELL,IWARN)

INODE - ICELG2(8,NBCELL)
GO TO 170

180 CONTINUE
C
C SAVE THE NODE WHERE VALUES ARE CHANGING
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INODE - IBASEN

NUMNTV - 0
190 NBCELL - NEIBG2(3INODE)

NUMNTV - NUMNTV + 1

WRITE(6,*) NUMNTV, INODE

NODETV(NUMNTV) - INODE

IF (NBCELL .EQ. 0 ) GOTO 200

INODE - ICELG2(8,NBCELL)

GO TO 190

200 CONTINUE

CALL A2CEWC

RETURN
END

TVINI1

SUBROUTINE TVINI1

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'FRCOMN. INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'HEXCOD.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'TVCOMN.INC'
C

C
C THE SUBROUTINE ALSO REINITIALIZES THE PERIODIC BOUNDARY CONDITIONS

C CONSTANTS

C

C

C THE BASE NODE AT THE INLET PLANE IS ASSUMED TO BE 
C

IBASEN - 1

IF (KPERFR .NE. 1) RETURN
C
C INITIALIZE THE VALUES

C
C SAVE THE NODE WHERE VALUES ARE CHANGING

INODE - IBASEN

NUMNTV - 0
190 NBCELL - NEIBG2(3.INODE)

NUMNTV - NUMNTV + 1

NODETV(NUMNTV) - INODE

INODE - ICELG2(8,NBCELL)

IF (NBCELL .EQ. 0 ) GOTO 200
GO TO 190
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200 CONTINUE

RETURN

END

TWODOU

PROGRAM TWODOU
C

INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'

INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'
INCLUDE 'KYCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN.INC'

C

C
C THIS IS THE MAIN CONTROLLING ROUTINE FOR NI'S TECHNIQUE FOR

C SOLVING TWO-DIMENSIONAL EULER'S EQUATION INVOLVING CHEMICAL
C REACTIONS. IN THIS PROGRAM UNIT WE ARE ONLY INTERESTED IN
C SOLVING UNSTEADY FLOW PROBLEMS AND HENCE TEMPORAL ADAPTATION
C IS USED. SPATIALLY EMBEDDED MESHES CAN BE HANDLED BY USING
C A NODE/CELL POINTER SYSTEM SIMILAR TO THAT OF BILL USAB OR
C JOHN DANNENHOFFER. A NEW POINTER SYSTEM IS NEEDED FOR THE
C TEMPORAL ADAPTATION. A THIRD POINTER SYSTEM IS USED FOR
C CHEMICAL SPECIES AND REACTIONS.
C

C THIS PROGRAM MUST BE USED IF A SHORTER GRID THAN WHAT POINTER
C SYSTEM ALLOWS IS NOT TO BE USED. FURTHERMORE IT MUST BE USED
C WHEN TEMPORALLY VARYING INFLOW BOUNDARY CONDITIONS ARE NOT

C TO BE UTILIZED.

C

C

C
C INITIALIZE ALL THE ARRAYS

C

CALL E2INIO

C SET UP THE INITAL TIME FOR THIS CASE
C

TIME = TIMNTI

IF (KADPTI .EQ. 99) TIME - 0.
NTERE 0

NTERT - 0

NTERA = 0

NITRE2 - 0

1000



NCYCFR - 1

OPTION PARAMETERS

SET MAXIMUM NUMBER OF TIMES BEFORE POINTER SYSTEM IS SAVED

MITRPS - IPASKY(27)

C SET MAXIMUM NUMBER OF NGIVTI

KHAFEZ = IPASKY(28)

C MAXIMUM NUMBER OF ITERATIONS AFTER WHICH EPSITI IS DECREASED

MITEPS - IPASKY(32)

C MINIMUM ERROR BELOW WHICH EPSITI WILL BE INCREASED

ERRMIN APASKY(26)

C MAXIMUM ERROR ABOVE WHICH EPSITI WILL BE DECREASED

ERRMTI - APASKY(27)

C MINIMUM ALLOWABLE VALUE OF EPSiTI

EPS1MN APASKY(28)

C MAXIMUM ALLOWABLE VALUE OF EPS1TI

EPSlMX - APASKY(29)

C
C

C NORMAL RUN STARTS HERE
C

C
C SEE IF THE SCHEDULE PROGRAM IS NEEDED

10 CALL E2SCHO

C SET THE DIFFUSION COEFFICIENTS

CALL E2DIFF

20 NTERE

NTERT
NITRE2

AT ALL NODES FOR FIRST TIME

= NTERE + 1

= NTERT + 1
- NITRE2 + 1

C SEE IF THE POINTER SYSTEM IS

C OUTPUT WILL BE WRIITEN

TO BI

IF (NTERE .GE. MITRPS) THEN

NTERE - 0
TDUM - TIMNTI

TIMNTI - TIME

WRITE(JTERMO,*) ' WRITTING UNFOI
READ THE FULL DOMAIN AGAIN IF A

CALL PSWRTU (JDUMY4)
CLOSE (JDUMY4)
TIMNTI - TDUM

JDUMY4 - JDUMY4 + 1
IF (JDUMY4 .EQ. 40) JDUMY4 = 34

ENDIF

E SAVED; IF SO ONLY UNFORMATTED

RMATTED OUTPUT ON'.JDUMY4

CURTAILED DOMAIN WAS USED

1001

C

C
C
C
C
C
C

C



C
C SEE IF SPATIAL ADAPTATION IS NEEDED

C MITRA2 DENOTES THE NUMBER OF ITERATION (OR PASSES) AFTER

C WHICH ADAPTATION IS DONE; ADAPTATION LOOP IS BY-PASSED

C IF METHA2 - 0 (METHOD OF ADAPTATION)

IF (METHA2 .NE. O) THEN

NTERA - NTERA + 1
IF (NTERA .EQ. 1 ) CALL A2MTHO

IF (NTERA .GE. MITRA2) NTERA = 0
ENDIF

C SET ALL CHANGES TO ZERO FOR ALL THE NODES

CALL E2ZERO

C COMPUTE THE TIME STEPS FOR EACH CEWIC CELL

CALL E2TIMO

FCTRTI - 1.

C COMPUTE THE NUMBER OF INTEGRATION PASSES

KMAX - 2**NMAXTI

IPASSM - 2*KMAX - 1

IF (KADPTI .EQ. 99) DTMNTI 0.

C COMPUTE THE CURRENT TIME OF THE RUN

C IF UNSTEADY INLET BOUNDARY CONDITIONS ARE NOT USED THEN

C UNCOMMENT THE FOLLOWING LINE AND COMMENT THE CONDITIONAL

C STATEMENT INSIDE THE LOOP ITSELF FOR EFFICIENT CALCULATION

TIME - TIME + KMAX*DTMNTI

C DETERMINE THE NODES AT ALL TEMPORAL LEVELS

CALL G2HANG

DO 30 IPASS 1. IPASSM
C DETERMINE THE TEMPORAL LEVEL OF CELLS TO BE INTEGRATED

ITGL - ITLEVL(IPASSNMAXTI)

C CALCULATE CHANGE AND DISTRIBUTE FOR ALL CELLS ON THIS LEVEL

CALL E2SOLO (ITGL)

C APPLY BOUNDARY CONDITIONS

CALL E2BCNO (ITGL)

C COLLECT THE CONVERGENCE HISTORY IF NEED BE

CALL E2CONO (TIME, ITGL, IPASS, IPASSM)

C UPDATE ALL NODES AT THIS LEVEL

CALL E2UPDO (ITGL)

C LOOP BACK FOR NEXT TEMPORAL LEVEL CELLS

30 CONTINUE

C
C DETERMINE ARTIFICIAL VISCOSITY COEFFICIENT AT EACH NODE AFTER

C EACH TIME-STRIDE
C

CALL E2DIFF
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SEE IF TEMPORAL ADJUSTMENTS ARE NEEDED

IF (MITRPS .NE. O) THEN

IF (ERORE2 .LT. ERRMIN) THEN

NITEPS - NITEPS + 1

IF (NITEPS .GT. MITEPS) THEN
EPSINW 1.05*EPS1TI

EPS1TI - MIN (EPS1NW, EPS1MX)

NITEPS = 0

IF (NGIVTI .LT. KHAFEZ) NGIVTI = NGIVTI + 1
ENDIF

ELSE
NITEPS 0

ENDIF

IF (ERORE2 .GT. ERRMTI) THEN

EPSINW - 0.95*EPS1TI

EPSITI = MAX (EPSlNW, EPSITI)
WRITE(6,*) ' EPSITI - ',EPS1TI

ENDIF

ENDIF

IF (NITRE2

IF (ERORE2

IF (TIME

C IF (NCYCFR

GO TO 20

.GE.

.LE.

.GE.

.GE.

MITRE2) GOTO 40

EPSLE2) GOTO 40

TIMXTI) GOTO 40

MCYCFR+1) GOTO 40

40 CONTINUE

1

PRINT OUT PARAMETERS

IF (IDBGFL .EQ. 7 .OR.

WRITE(JDEBUG,1000)
WRITE(JDEBUG, 1100)

WRITE(JDEBUG,1200)

WRITE(JDEBUG,1300)

WRITE(JDEBUG, 1400)
1

IDBGFL .GT. 1000) THEN

MITRPS, MITEPS, KTIMTI, MITRA2, NITRE2,
KHAFEZ

ERRMIN, ERRMTI, EPS1MN, EPSlMX, ERORE2,
TIME , EPS1TI

ENDIF

FORMAT(//OX,'.----------------------' )
FORMAT( 10X,'DEBUG PRINT FROM TWODOU' )
FORMAT( lOX,'-----------------------'/)

C1300 FORMAT(6X,'MITRPS =
C i 5X,'KTIMTI -
C 2 5X,'NITRE2 =
C1400 FORMAT(5X,'ERRMIN 

C 1 5X,'EPS1MN =

C 2 5X,'ERORE2 -
C 3 5X.'EPS1TI 

'.,I,10X.'MITEPS = ',I5/
',I,10X,'MITRA2 ',IS/

',I5,10X,'KHAFEZ = ',I5/)
',G14.5,1OX,'ERRMTI - ',G14.5/
',G14.5,0X,'EPSlMX ',G14.5/
',G14.5,10X,'TIME = ',G14.5/
',G14.5,10X, /)

TIMNTI = TIME
IF (JREADS .EQ. O) THEN

CALL E2FINI
STOP ' THE END'

ENDIF
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GOTO 10

END -

TWODBC

PROGRAM TWODOU

C TWODBC.FOR

C
INCLUDE 'PRECIS.INC'

INCLUDE 'PARMV2.INC'
INCLUDE 'A2COMN.INC'

INCLUDE 'E2COMN.INC'

INCLUDE 'FRCOMN.INC'

INCLUDE 'G2COMN.INC'

INCLUDE 'IOCOMN.INC'

INCLUDE 'KYCOMN.INC'

INCLUDE 'TICOMN.INC'

INCLUDE 'TVCOMN.INC'

C

C
C THIS IS THE MAIN CONTROLLING ROUTINE FOR NI'S TECHNIQUE FOR

C SOLVING TWO-DIMENSIONAL EULER'S EQUATION INVOLVING CHEMICAL

C REACTIONS. IN THIS PROGRAM UNIT WE ARE ONLY INTERESTED IN
C SOLVING UNSTEADY FLOW PROBLEMS AND HENCE TEMPORAL ADAPTATION

C IS USED. SPATIALLY EMBEDDED MESHES CAN BE HANDLED BY USING

C A NODE/CELL POINTER SYSTEM SIMILAR TO THAT OF BILL USAB OR
C JOHN DANNENHOFFER. A NEW POINTER SYSTEM IS NEEDED FOR THE

C TEMPORAL ADAPTATION. A THIRD POINTER SYSTEM IS USED FOR

C CHEMICAL SPECIES AND REACTIONS.

C
C USE THIS PROGRAM ROUTINE IF TEMPORALLY VARYING BOUNDARY CONDTIONS

C ARE TO BE USED

C

C
C

C INITIALIZE ALL THE ARRAYS

C

CALL E2INIO

C SET UP THE INITAL TIME FOR THIS CASE

C
TIME - TIMNTI

IF (KADPTI .EQ. 99) TIME - 0.
NTERE - 0

NTERT - 0
NTERD - 0
NTERA - 0
NITRE2 - 0

C NCYCFR - 1
C
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C
C
C
C

OPTION PARAMETERS

C SET MAXIMUM NUMBER OF TIMES BEFORE POINTER SYSTEM IS SAVED

MITRPS = IPASKY(27)

C SET MAXIMUM NUMBER OF NGIVTI

KHAFEZ - IPASKY(28)

C MAXIMUM NUMBER OF ITERATIONS AFTER WHICH EPSITI IS DECREASED

MITEPS = IPASKY(32)

C SEE IF YOU WANT TO USE A CURTAILED DOMAIN FOR INTEGRATION PURPOSE

C AND/OR WANT TO CALCULATE DIFFUSION AFTER AFTER A SPECIFIED

C NUMBER OF ITERATION (KBLOCK SHOULD BE MORE THAN 1)

KBLOCK - IAND(IPASKY(40),1)

NDIFFC - KBLOCK

IF (IPASKY(40) .GT. KBLOCK) NDIFFC = IPASKY(40)

C MINIMUM ERROR BELOW WHICH EPSITI WILL

ERRMIN - APASKY(26)

C MAXIMUM ERROR ABOVE WHICH EPSITI WILL

ERRMTI - APASKY(27)

BE INCREASED

BE DECREASED

C MINIMUM ALLOWABLE VALUE OF EPSITI

EPS1MN - APASKY(28)

C MAXIMUM ALLOWABLE VALUE OF EPS1TI

EPSMX APASKY(29)

C
C

C NORMAL RUN STARTS HERE

C

C

C SEE IF THE SCHEDULE PROGRAM IS NEEDED

10 CALL E2SCHO

C SET THE DIFFUSION COEFFICIENTS AT ALL

CALL E2DIFF

C

NODES FOR FIRST TIME

C SEE IF A CURTAILED GRID IS TO BE USED

IF (KBLOCK .NE. O) CALL SHORTG(1)

ao NTERE - NTERE + 1
NTERT - NTERT + 

NTERD - NTERD + 1

NITRE2 - NITRE2 + 1

C SEE IF THE POINTER SYSTEM IS TO BE SAVED; IF SO ONLY UNFORMATTED

C OUTPUT WILL BE WRIITEN

IF (NTERE .GE. MITRPS) THEN
NTERE - 0
TDUM - TIMNTI
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TIMNTI - TIME

WRITE(JTERMO,*) ' WRITTING UNFORMATTED OUTPUT ON',JDUMY4
C READ THE FULL DOMAIN AGAIN IF A CURTAILED DOMAIN WAS USED

IF (KBLOCK .NE. O) CALL SHORTG(2)

CALL PSWRTU (JDUMY4)

EPSLE2 - EPSOLD
IDBGFR - IDBOLD

C READ THE CURTAILED DOMAIN AGAIN
IF (KBLOCK .NE. O) CALL SHORTG(3)

CLOSE (JDUMY4)
TIMNTI - TDUM

JDUMY4 - JDUMY4 + 1
IF (JDUMY4 .EQ. 40) JDUMY4 34

ENDIF
C
C

C SEE IF SPATIAL ADAPTATION IS NEEDED

C MITRA2 DENOTES THE NUMBER OF ITERATION (OR PASSES) AFTER

C WHICH ADAPTATION IS DONE; ADAPTATION LOOP IS BY-PASSED

C IF METHA2 - 0 (METHOD OF ADAPTATION)

IF (METHA2 .NE. O) THEN

NTERA - NTERA + 1

IF (NTERA .EQ. I ) CALL A2MTHO

IF (NTERA .GE. MITRA2) NTERA - 0
IF (KPERFR .EQ. 1 ) CALL TVINI1

IF (KBLOCK .NE. O) CALL SHORTG(1)
ENDIF

C SET ALL CHANGES TO ZERO FOR ALL THE NODES

CALL E2ZERO

C COMPUTE THE TIME STEPS FOR EACH CEWIC CELL

CALL E2TIMO

FCTRTI = 1.

C COMPUTE THE NUMBER OF INTEGRATION PASSES

KMAX = 2**NMAXTI

IPASSM - 2*KMAX - 1

IF (KADPTI .EQ. 99) DTMNTI O.

C COMPUTE THE CURRENT TIME OF THE RUN

C IF UNSTEADY INLET BOUNDARY CONDITIONS ARE NOT USED THEN

C UNCOMMENT THE FOLLOWING LINE AND COMMENT THE CONDITIONAL

C STATEMENT INSIDE THE LOOP ITSELF FOR EFFICIENT CALCULATION

C TIME - TIME + KMAX*DTMNTI

C DETERMINE THE NODES AT ALL TEMPORAL LEVELS

CALL G2HANG

DO 30 IPASS - 1, IPASSM
C DETERMINE THE TEMPORAL LEVEL OF CELLS TO BE INTEGRATED

ITGL - ITLEVL(IPASS,NMAXTI)

C CALCULATE CHANGE AND DISTRIBUTE FOR ALL CELLS ON THIS LEVEL

CALL E2SOLO (ITGL)
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C DETERMINE THE CURRENT TIME FOR UNSTEADY INLET CONDITIONS

IF (ITGL .EQ. O) THEN

TIME - TIME + DTMNTI

C SEE IF PERIODIC BOUNARY CONDITIONS ARE NEEDED
C COMMENT THIS OUT IF SUCH CONDITIONS ARE NOT USED

IF (KPERFR .EQ. 1) CALL E2VARB (TIME)

ENDIF

C APPLY BOUNDARY CONDITIONS

CALL E2BCNO (ITGL)

C COLLECT THE CONVERGENCE HISTORY IF NEED BE

CALL E2CONO (TIME, ITGL, IPASS, IPASSM)

C UPDATE ALL NODES AT THIS LEVEL

CALL E2UPDO (ITGL)

C LOOP BACK FOR NEXT TEMPORAL LEVEL CELLS

30 CONTINUE
C
C ADD ARTIFICIAL SMOOTHING

C

C SET THE DIFFUSION COEFFICIENTS AT ALL THE NODES

IF (NTERD .GE. NDIFFC) THEN
NTERD - 0
CALL E2DIFF

ENDIF

C SEE IF TEMPORAL ADJUSTMENTS ARE NEEDED

C IF (MITRPS .NE. O) THEN
C IF (ERORE2 .LT. ERRMIN) THEN
C NITEPS - NITEPS + 

C IF (NITEPS .GT. MITEPS) THEN
C EPSINW - 1.05*EPS1TI

C EPSITI - MIN (EPSlNW, EPS1MX)

C NITEPS - 0
C IF (NGIVTI .LT. KHAFEZ) NGIVTI - NGIVTI + 1
C ENDIF

C ELSE
C NITEPS - 0
C ENDIF

CC

C IF (ERORE2 .GT. ERRMTI) THEN
C EPSINW - 0.95*EPSlTI

C EPSITI - MAX (EPS1NW, EPSITI)
C ENDIF
C ENDIF

IF (NITRE2 .GE. MITRE2) GOTO 40

IF (ERORE2 .LE. EPSLE2) GOTO 40

IF (TIME .GE. TIMXTI) GOTO 40
C IF (NCYCFR .GE. MCYCFR+I) GOTO 40

GO TO 20

40 CONTINUE

C PRINT OUT PARAMETERS
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IF (IDBGFL .EQ. 7 .OR.

WRITE(JDEBUG, 1000)

WRITE(JDEBUG,1100)

WRITE(JDEBUG, 1200)

WRITE(JDEBUG. 1300)

WRITE(JDEBUG. 1400)

IDBGFL .GT. 1000) THEN

MITRPS, MITEPS, KTIMTI, MITRA2, NITRE2,

KHAFEZ

ERRMIN, ERRMTI, EPSiMN, EPSlMX, ERORE2,
TIME , EPSITI

ENDIF

FORMAT(//1OX,'----------------------- )
FORMAT( OX,'DEBUG PRINT FROM TWODOU' )
FORMAT( lOX,'-----------------------'/)
FORMAT(6X,'MITRPS - ',I6,10X,'MITEPS =

1 SX.'KTIMTI - ',IS,lOX,'MITRA2 '
2 5X,'NITRE2 - ',IS,10X,'KHAFEZ '

FORMAT(6X,'ERRMIN = ',G14.5,10X,'ERRMTI
1 6X,'EPSlMN ',G14.5,1OX.'EPSlMX

2 5X,'ERORE2 - ',G14.5,10X,'TIME,
3 5X,'EPS1TI = ',G14.5,10X,

,IS/

,I5/
, IS/)
= ',G14.5/

- ',G14.5/
* ',G14.5/

/:

TIMNTI = TIME

IF (JREADS .EQ. O) THEN

C READ THE FULL DOMAIN AGAIN IF A CURTAILED DOMAIN WAS USED

IF (KBLOCK .NE. O) CALL SHORTG(2)
CALL E2FINI

STOP ' THE END'

ENDIF

GOTO 10

END

WRINI2

SUBROUTINE WRINI2

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'PRECIS.INC '

'PARMV2.INC '

'A2COMN.INC '

'CHCOMN.INC '

'E2COMN.INC '

'FLCOMN.INC '

'G2COMN.INC '

'IOCOMN.INC '

'KYCOMN.INC '

'TICOMN.INC '

CHARACTER CHARVA*32

C THIS SUBROUTINE WRITES THE INITIAL INFORMATION ABOUT THIS RUN
C NCRSG2 IS NOT NEEDED HERE ******** REVISE LATTER
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WRITE (JOUTAL,10) MTITLE

10 FORMAT('1'.//.10X.A80/)

IF (KSRTE2 .EQ. 0 .OR. KSRTE2 .EQ. 1000) THEN

CHARVA - 'NEW RUN'

ELSE

CHARVA = 'RESTART'
ENDIF

1
C I

WRITE (JOUTAL,20) NEQNFL, NEQSCH, NREACH,

NXTDA2, MITRE2, KSRTE2, CHARVA,

NXTDA2, MITRE2, KSRTE2, CHARVA,

NSPECH,

MALVG2

MALVG2,

20 FORMAT(6X,'TOTAL NUMBER OF EQUATIONS

1 5X,'NUMBER OF SPECIES EQUATIONS

2 6X,'NUMBER OF REACTIONS

3 5X,'NUMBER OF SPECIES

4 5X,'NUMBER OF INERT SPECIES

5 6X,'NUMBER OF EXTENDED CELLS

6 5X,'MAXIMUM ITERATIONS ALLOWED

7 6X,'RUN STARTING PARAMETER

8 5X,'MAXIMUM ALLOWED FINE LEVELS

C 9 5X,'MAXIMUM ALLOWED COARSE LEVELS

CHARVA

IF (METHA2

IF (METHA2

IF (METHA2

IF (METHA2

IF (METHA2

IF (METHA2

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

0) CHARVA -

1) CHARVA =
2) CHARVA =

3) CHARVA =
4) CHARVA 
6) CHARVA -

'ERROR

'NIL

'NODE BASED
'CELL BASED

'NODE BASED

'CELL BASED

'CELL BASED

=,I5,
=',I6/
=5,I5,

=, IS/-',I6/=',I6,

=',I5,5X.A8/

',I6 )
=',Is )

VALUE

VALUE

FIRST GRADIENT'

FIRST GRADIENT'

MAX DIFFERNCE '

WRITE (JOUTAL,30) METHA2, CHARVA

30 FORMAT(SX,'METHOD OF SPATIAL ADAPTATION '.I5,X.,A32)

IF (IMPLTI .EQ. 1) CHARVA(1:25) 'EXPLICIT SOURCE TERMS

IF (IMPLTI .EQ. O) CHARVA(1:25) = 'IMPLICIT SOURCE TERMS
WRITE (JOUTAL,35) IMPLTI, CHARVA

36 FORMAT(5X,'TYPE OF SOURCE TERM MODELLING =',Is,55XA32)

CHARVA - 'ERROR

IF (K1ADA2 .LE. NEQNFL) THEN
CHARVA(1:18) = 'DEPENDENT VARIABLE '

WRITE(CHARVA(19:20).40) K1ADA2

40 FORMAT(I2)

WRITE (JOUTAL,50) K1ADA2, CHARVA

60 FORMAT(5X.'SPATIAL ADAPTATION CRITERION -',I,6X,A32)
ENDIF

IF (K2ADA2 .LE. NEQNFL .AND. K2ADA2 .GT. O) THEN

CHARVA(1:18) 'DEPENDENT VARIABLE
WRITE(CHARVA(19:20).40) K2ADA2

WRITE (JOUTAL,60) K2ADA2, CHARVA
ENDIF
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CHARVA

IF (KADPTI .GT. 0 .AND. KADPTI .LE. NEQNFL) THEN

CHARVA(1:18) - 'DEPENDENT VARIABLE

WRITE(CHARVA(19:20),40) KADPTI

ENDIF

WRITE (JOUTAL.60) KADPTI, CHARVA

60 FORMAT(6X,'TEMPORAL RESOLUTION CRITERION -',IS,5X,A32)

IF (KROGER .NE. O) THEN

IF (KROGER .EQ. 1) CHARVA - 'ROGER AND CHINITZ MODEL

IF (KROGER .EQ. 2) CHARVA 'LIGHT HILL DISSOCIATION MODEL'

IF (KROGER .EQ. 3) CHARVA - 'FROZEN IDEAL GAS

WRITE (JOUTAL.70) KROGER, CHARVA

70 FORMAT(6X,'TYPE OF CHEMISTRY MODEL =',I5,5X,A32)

ENDIF

IF (KROGER .NE. 3) THEN

WRITE (JOUTAL,80) (IS, IS = 1, NSPECH)

80 FORMAT(/6X, 'REACTION COEFFICIENTS FOR ALL SPECIES '/

1 6X. 'REACTION', 2X. 'TYPE', 5X, 2015 )

DO 100 IR - 1. NREACH

WRITE (JOUTAL.86)

CHARVA 'FORWARD '

WRITE (JOUTAL,90) IR,CHARVA,(IALPCH(IS.IR), IS = 1, NSPECH)

WRITE (JOUTAL,90) IR,CHARVA,(IALOCH(IS,IR), IS - 1. NSPECH)

CHARVA = 'BACKWARD'

85 FORMAT(SX)

WRITE (JOUTAL.90) IR.CHARVA.(IBETCH(IS.IR), IS 1., NSPECH)

WRITE (JOUTAL.90) IR,CHARVA,(IBTOCH(IS,IR), IS 1, NSPECH)

90 FORMAT(6X. I. X, AS, 1X, 20I5)

100 CONTINUE

ENDIF

IF (METHA2 .NE. O) THEN

WRITE (JOUTAL.110) ALPHA2, BETAA2, GAMMA2, DELTA2

110 FORMAT(/5X, 'SPATIAL ADAPTATION PARAMETERS'/

1 6X, 'ALPHA2 - ',G1O.5,5X,'BETAA2 - ',G10.5,

2 5X, 'GAMMA2 - ',G1O.5,6X,'DELTA2 = ',G10.5)
ENDIF

WRITE (JOUTAL.120) TREFCH, PRESCH

120 FORMAT(/X X,'REFERENCE CHEMISTRY TEMPERATURE AND PRESSURE'/

1 6X.'TEMPERATURE - ',G10.6,10X,'PRESSURE ',G10.6 )

WRITE (JOUTAL.130) TREFFL, PRESFL, UGASFL, AMCHFL, DISTFL.

1 RHORFL, UREFFL, FMREFL, WDREFL

130 FORMAT(/X, 'REFERENCE FLUID QUANTITIES '/

1 5X,'TEMPERATURE - ',G10.5,10X,'PRESSURE = 'G10.6/
2 6X,'GAS CONSTANT" ',G10.5,10X,'MACH NO - '.G10.6/

3 5X,'DISTANCE = ',G10.5,O0X.'DENSITY = ',G10.5/

4 6X,'VELOCITY = ',GlO.5,10X.'HT FORM - ',G1O.5/

6 5X,'SOURCE TERMS- ',G10O.6,1X )
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WRITE (JOUTAL,140) SMAXE2, SMINE2, EPSLE2, CFLNTI

140 FORMAT(/sX,'OTHER INFORMATION '/

1 6X,'MAX VISCO - ',G1O.5,10X.'MIN VISCO = ',G10.5/

2 6X.'CONV CRIT - ',G10.5,10X,'CFL NUMBER = ',G10.5)

IF (KROGER .NE. 3) THEN

WRITE (JOUTAL,150)

150 FORMAT(/6X,'ARHENIUS COEFICIENT FOR ALL THE REACTIONS'/

1 6X,'REACTION',4X.'TYPE',9X,'PRE-EXPO',6X,

2 'TEMP-EXPO'.4X. 'ENERGY')

DO 170 IR - 1, NREACH

WRITE (JOUTAL,85)

CHARVA - 'FORWARD '
WRITE (JOUTAL.160) IR, CHARVA, PREFCH(IR)

1 ENEFCH(IR)

FORMAT(SX. I, 6X, A8, 2X, 3G14.5)
CHARVA = 'BACKWARD'

WRITE (JOUTAL,160) IR, CHARVA, PREBCH(IR)

1 ENEBCH(IR)

CHARVA - 'EQUILIBR'

WRITE (JOUTAL.160) IR, CHARVA,

ENEECH(IR)

, EXPFCH(IR),

. EXPBCH(IR).

PREECH(IR), EXPECH(IR),

170 CONTINUE

WRITE (JOUTAL,180)

180 FORMAT(/5X,'PROPERTIES OF ALL THE SPECIES'/

1 5X,'SPECIES',5X,'CV',12X,'CP',IIX,'HT FORM',6X,

2 'MASS FRAC',6X,'MOL WT',8X,'ENTROPY',7X,'BS')

DO 200 IS - 1, NSPECH

WRITE (JOUTAL,190) IS, SPCVCH(IS), SPCPCH(IS),

1 YSPECH(IS), AMWTCH(IS), ENTRCH(IS),

FORMAT(5X, IS, 2X, 70G14.5)
CONTINUE

ENDIF

FMHTCH(IS),
SPBSCH(IS)

IF (KROGER .EQ. 2) THEN

PHI - APASKY(1)

RHOD - APASKY(2)

ETA - EXPFCH(1)

THETD = ENEFCH(1)
TOETA = TREFFL**ETA

UNITCF - UREFFL/(TOETA*RHORFL*DISTFL)
CFBMA - UNITCF*PHI

CF - CFBMA*AMWTCH(1)

WRITE (JOUTAL,210) THETD, RHOD, CF. PHI

210 FORMAT(/SX,'THETAD
1 5X,'CF

'ENDIF

RETURN

END

-',G14.5,10X,'RHOD
-',G14.5,1X.'PHI
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D.4 Utility Routines

This section contains information on the utility routines used in the codes GNBLOC

and STAR.

D.4.1 Link information

The file ULT.COM contains link information for creating a library UL2LIB.

$ LIBRARY/CREATE UL2LIB ERRORM,

IBASE2,

ITLEVL,

WARNIN,

GAUSS2,

IMAGEI,

LINCRS,

BBLSRT,

GAUSS3.

INSIDE,

TIMEIT,
AST

HEADER,-

INTERP, -

TIMERR,-

D.4.2 Listing of routines

AST

C This set of subroutines is VMS specific, and alows the code
C to be interrupted by an AST (Control-C or Control-Y)

C AST stands for asychronous system trap
C

C The AST handler is initialized with INITASTC and/or
C INITASTY which set the AST handlers for CTRL-C and CTRL-Y

C

C After a trap is received, the appropriate flag in the

C common block AST$$$ is set to true. It is up to the

C main program to reset these flags and reinitialize the AST

C
SUBROUTINE SETASTC
COMMON /AST$$$/ ASTC$$.,ASTY$$

LOGICAL ASTC$$.ASTY$$

INCLUDE '($iodef)'

INTEGER SYS$ASSIGNSYS$QIOW

INTEGER*2 INPUTCHANNEL

INTEGER*4 CODE,setc,sety

EXTERNAL DO$_AST

STRUCTURE /IOSTATBLOCK/
INTEGER*2 IOSTAT

BYTE TRANSMIT,RECEIVE,CRFILL.LFFILL,PARITY,ZERO
END STRUCTURE

RECORD /IOSTATBLOCK/ IOSB

C
C

ASTC$$ - .FALSE.
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STATUS - SYS$ASSIGN('SYS$INPUT',INPUTCHAN,,)

CODE - IO$_SETMODE .OR. IO$MCTRLCAST

STATUS - SYSSqIOW (,XVAL(INPUTCHAN),'VAL(CODE),IOSB,

,.,DO$_ASTASTC$$ .. ..
RETURN

END

C
C
C

SUBROUTINE SETASTY
COMMON /AST$$$/ ASTC$$,ASTY$$

LOGICAL ASTC$$ .ASTY$$

INCLUDE '($iodef)'

INTEGER SYS$ASSIGN, SYSQIOW

INTEGER*2 INPUTCHANNEL
INTEGER*4 CODE

EXTERNAL DO$_AST

STRUCTURE /IOSTATBLOCK/

INTEGER*2 IOSTAT

BYTE TRANSMIT.RECEIVE,CRFILL,LFFILL PARITY.ZERO

END STRUCTURE

RECORD /IOSTATBLOCK/ IOSB

C

C
ASTY$$ - .FALSE.

STATUS SYS$ASSIGN('SYS$INPUT',INPUTCHAN,,)

CODE - IO$_SETMODE .OR. IO$MCTRLYAST
STATUS SYS$QIOW (,%VAL(INPUTCHAN),XVAL(CODE).IOSB,

& ,Do$AST,ASTY$....)
RETURN

END

C
C
C

SUBROUTINE DO$_AST (ASTREC)

LOGICAL ASTREC

ASTREC = .TRUE.

RETURN

END

EQUCAL

SUBROUTINE EQUCAL (T.THETAD,RHO,RHOD, ETRAT.RHORAT, ALPHAE)

C

C THIS SUBROUTINE CALCULATES THE EQUILIBRIUM DEGREE OF DISSOCIATION
C FOR A LIGHTHILL GAS.

C

TRAT - THETAD/T

RHORAT = RHO/RHOD

IF (TRAT .GT. 80.) THEN
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ETRAT - 0.
ELSE

ETRAT - EXP(-TRAT)

ENDIF

A = ETRAT/RHORAT

DISCRI - SQRT(A*A+4.*A)

ALPHAE (DISCRI-A)/2.

RETURN

END

ERRORM

SUBROUTINE ERRORM (NERROR ITEXTR

1 ITEXTI , ZER1

2 ITEXT2 ZER2

3 JPRINT , ITEXTM
C
C *********************************************************************
C* *

C * THIS ROUTINE PRINTS AN ERROR MESSAGE ON JTERMO AND JPRINT *
C * NERROR CONTAINS THE ERROR NUMBER *

C * ITEXTR CONTAINS THE ROUTINE NAME *

C * ITEXTI CONTAINS THE FIRST VARIABLE NAME *

C * ITEXT2 CONTAINS THE SECOND VARIABLE NAME *

C * ITEXTM CONTAINS THE ERROR MESSAGE *

C * ZER1 IS THE VALUE OF THE FIRST VARIABLE *

C * ZER2 IS THE VALUE OF THE SECOND VARIABLE *

C * EXCEPT FOR THE COMPUTER IN QUESTION COMMENT ALL THE LINES *

C * BETWEEN THE ------ MARKERS FOR ALL THE COMPUTERS WHICH ARE *

C * NOT BEING USED HERE. *
C* *

C

C VAX/VMS SYSTEM

INCLUDE '[.INC] PRECIS.INC/LIST'

C

CHARACTER*6 ITEXTR, ITEXTI, ITEXT2

CHARACTER*(*) ITEXTM
C

JTERMO - 6
C

WRITE(JTERMO,10) NERROR, ITEXTR,ITEXTM, ITEXT1,ZERI,ITEXT2, ZER2

WRITE(JPRINT, 10) NERROR, ITEXTR. ITEXTM, ITEXTI,ZER1, ITEXT2, ZER2

C

C GET A TRACEBACK; THERE IS NO TRACEBACK ON UNIX SYSTEMS

C

C VAX/VMS SYSTEM

CALL LIB$SIGNAL(%VAL(2))

C ---- _ _ _ _ _
C

1015



C ---------------- ----
C JVNCC --- CYBER 205

C TO BE DONE LATTER
C - -------------------- --

CALL EXIT

C
10 FORMAT(/' ERROR # '.I3,' DETECTED IN ROUTINE ',A8,/5X,A//

1 lX,A,. - '.G16.6, 5X,A6,° - 'oG1.6//)
C

RETURN

END

GAUSS2

SUBROUTINE GAUSS2 (A. R. X. IROW. IMAX)

INCLUDE '[.INC] PRECIS.INC/LIST'

DIMENSION A(IMAXIMAX), R(IMAX). X(IMAX)

C

C THIS SUBROUTINE COMPUTES THE RESULT ( X ) OF
AX R

BY USING THE GAUSS ELIMINATION

ORDER OF A = IMAX x IMAX

ORDER OF X - IMAX x 1

ORDER OF R IMAX x 1

METHOD

COEFFICIENT MATRIX

VECTOR TO BE SOLVED

RHS VECTOR

C

C THE MATRICES A AND R ARE CHANGED ON OUTPUT
C

C
C SAVE THE RHS VECTOR IN CASE OF ILL-CONDITIONED MATRIX
C

DO 10 K 1, IROW

X(K) = R(K)
10 CONTINUE

C
K = 

IROWM1 - IROW - 1
C
C NOTE THAT FOR ILL-CONDITIONED

C REMAINS THE SAME

C

COEFFICIENT MATRIX THE RHS VECTOR

20 IF (A(K.K) .EQ. 0.) RETURN

C

C FIND THE NORMALIZING FACTOR FOR THE Kth ROW
C

TEMP - 1./A(K.K)
C
C NORMALIZE THE Kth ROW OF THE COEFFICIENT MATRIX
C

DO 30 J K. IROW

A(K,J) - A(K,J)*TEMP
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30 CONTINUE
C
C NORMALIZE THE Kth ROW OF THE RHS VECTOR

C

R(K) - R(K)*TEMP

J - K+i

40 TEMP = A(J,K)
C
C ZERO OUT THE Kth COLUMN OF ALL THE REMAINING ROWS
C

DO 50 L - K, IROW

A(J,L) - A(J,L) - A(K.L)*TEMP
50 CONTINUE
C
C APPLY THE SAME TRANSFORMATION ON THE RHS VECTOR
C

R(J) =R(J) - R(K)*TEMP
IF(J .EQ. IROW) GOTO 60
i - J+1
GOTO 40

60 IF (K .EQ. IROWM1) GOTO 70

K = K+1
GOTO 20

70 IF (A(IROW,IROW) .EQ. 0.) RETURN
C

C NOW DO REVERSE SUBSTITUTION
C

X(IROW) - R(IROW)/A(IROW.IROW)
I -1

80 SUM - O.
J = IROW - I + 

90 SUM - SUM + A(IROW-I,J)*X(J)

IF (J .EQ. IROW) GOTO 100
J - J+1
GOTO 90

100 L - IROW- I

X(L) - R(L)-SUM

IF ( I .EQ. IROWM1) GOTO 110
I - I+1

GOTO 80
110 CONTINUE

RETURN

END

GAUSS3

SUBROUTINE GAUSS3 (A, R. X, IROW, IMAX)
INCLUDE '.INC) PRECIS.INC/LIST'

DIMENSION A(IMAX,IMAX), R(IMAX), X(IMAX)

C*************************************** ********
C

C THIS SUBROUTINE COMPUTES THE RESULT ( X ) OF
C AX- R
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C BY USING THE GAUSS ELIMINATION METHOD

C ORDER OF A - IMAX x IMAX COEFFICIENT MATRIX

C ORDER OF X - IMAX x 1 VECTOR TO BE SOLVED

C ORDER OF R - IMAX x 1 RHS VECTOR

C
C THE MATRICES A AND R ARE CHANGED ON OUTPUT

C

KI -5
C
C NOTE THAT FOR ILL-CONDITIONED COEFFICIENT MATRIX THE RHS VECTOR

C REMAINS THE SAME. FURTHERMORE THE ROUTINE ASSUMES THAT THE FIRST

C FOUR COMPONENTS ARE TRIVIAL

C
DO 40 K KI, IROW-1

C

IF (A(K,K) .EQ. 0.) RETURN
C

C FIND THE NORMALIZING FACTOR FOR THE Kth ROW
C

TEMP 1./A(K,.K)
C

C NORMALIZE THE Kth ROW OF THE COEFFICIENT MATRIX
C

DO 10 J K, IROW

A(K.,J) A(K,J)*TEMP
10 CONTINUE

C
C NORMALIZE THE Kth ROW OF THE RHS VECTOR

C

R(K) - R(K)*TEMP
C
C NOW TRANSFORM THE REMAINING ROWS

C

DO 30 J - K+l, IROW
C

TEMP = A(J,K)
C
C ZERO OUT THE Kth COLUMN OF ALL THE REMAINING ROWS

C

DO 20 L - K, IROW
A(J.L) A(J,L) - A(K,L)*TEMP

20 CONTINUE

C
C APPLY THE SAME TRANSFORMATION ON THE RHS VECTOR

C

R(J) = R(J) - R(K)*TEMP

30 CONTINUE

40 CONTINUE

IF (A(IROW,IROW) .EQ. 0.) RETURN
C
C NOW DO REVERSE SUBSTITUTION
C
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x(IROW) - R(IROW)/A(IROW,IROW)

DO 66 - 1i, IROW-1

SUM- O.
DO 60 J - IROW - I + 1, IROW

SUM - SUM + A(IROW-I,J)*X(J)
CONTINUE50
L

X(L)
60 CONTINUE

- IROW - I

- R(L)-SUM

RETURN

END

GRAMSM

subroutine gramsm (aLvect, dvect, ndimen, mdimen)

implicit real*8 (a-h,o-z)
dimension aLvect(mdimen,mdimen), dvect(mdimen)

c This subroutine computes the orthonormal set of vectors from a

c given set of vectors stored in einvector matrix aLvect. The

c vectors are stored as rows in aLvect. (i.e., the jth vector
c is aLvect(j,k) where k varies from 1 to ndimen). The ortho-
c normal set is also returned in aLvect.

do 70 is 1, ndimen

c initialize the summation dummy vector

do 10 k - 1, ndimen
dvect(k) - O.

10 continue

do 40 it - 1, is-1

c determine the dot product of the sth and tth vectors

sdot - O.

do 20 k - 1, ndimen
sdot - sdot + aLvect(is,k)*aLvect(it,k)

20 continue

c multiply this dot product by the tth vector

do 30 k 1, ndimen
dvect(k) dvect(k) + sdot*aLvect(it,k)

30 continue

40 continue
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c subtract off the non-orthogonal components (dvect) from

c the sth vector

snor - O.
do 50 k 1, ndimen

aLvect(is,k) aLvect(is,k) - dvect(k)

snorm - snorm + aLvect(is.k)*aLvect(isk)
50 continue

c normalize the sth vector

snorm - sqrt(snorm)

do 60 k 1, ndimen
aLvect(is,k) - aLvect(is,k)/snorm

60 continue

70 continue

return

end

HEADER

SUBROUTINE HEADER (JUNIT, ITEXT, MTITLE)

C
C ***************************************
C **

C * THIS SUBROUTINE WRITES A HEADER ON UNIT JUNIT *

C * THE HEADER CONSISTS OF THE ACTUAL TITLE OF THE RUN AND THE *

C * SPECIFIC EXTRA HEADING THAT MAY BE REQUESTED, IT ALSO PRINTS *

C * THE CURRENT TIME AND DATE OF THE RUN. *

C * EXCEPT FOR THE COMPUTER IN QUESTION COMMENT ALL THE LINES *

C * BETWEEN THE ------ MARKERS FOR ALL THE COMPUTERS WHICH ARE *

C * NOT BEING USED HERE. *
C* *

C *********************************************************************
C

C VAX/VMS SYSTEM

INCLUDE '[.INC] PRECIS.INC/LIST'

CHARACTER DATECH*9 , TIMECH*8

C

C JVNCC --- CYBER 205

C CHARACTER DATECH*8 , TIMECH*8
C --------------------------

C

C ALLIANT SYSTEM --- ISAAC
C CHARACTER FDATE*24

C
CHARACTER* (*) ITEXT , MTITLE
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GET THE DATE AND TIME VARIABLES

VAX/VMS SYSTEM

CALL DATE (DATECH)

CALL TIME (TIMECH)

WRITE(JUNIT. 10) MTITLE. DATECH.TIMECH, ITEXT
FORMAT('I',.IX, A80, T100, 'ON: ', A9, ' AT: ', A8/ X, A //)

JVNCC --- CYBER 205

DATECH - DATE()

TIMECH - TIME()

WRITE(JUNIT.10) MTITLE,DATECH,TIMECH, ITEXT

FORMAT('I',1X, A80, T100, 'ON: ', A8, ' AT: ', A8/ 1X. A //)

ALLIANT SYSTEM --- ISAAC

WRITE(JUNIT,10) MTITLE.FDATE() .ITEXT
FORMAT('l'.1X, A80, T100, 'ON: ', A24/1X, A //)

RETURN

END

IBASE2

INTEGER FUNCTION IBASE2 (KK. MMAX)
INCLUDE '[.INC] PRECIS.INC/LIST'

C THIS FUNCTION CALCULATES THE TEMPORAL LEVEL OF THE CELLS GIVEN
C THE RATIO

C K DT(CELL)/DTMIN
C TO AVOID TEMPORAL STIFFNESS THE MAXIMUM LEVEL IS LIMITED BY

C MMAX. I.E.. KMAX - 2**MMAX

ZBASE = 2.

ZKK - KK
ZZ - LOG

N - INT

N - MIN
IBASE2 - N

(ZRK) / LOG(ZBASE)

(ZZ)
(N.MMAX)

RETURN

END
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IMAGEI

SUBROUTINE IMAGEI (JOUTPU, JINPUT, MTITLE)

C

INCLUDE '[.INC] PRECIS.INC/LIST'

CHARACTER ICARD*80, ISTAR*1

CHARACTER*(*) MTITLE

DATA ISTAR /*'/
C

C
C THIS SUBROUTINE READS THE INPUT FILE ON JINPUT AND PRINTS

C AN IMAGE OF IT ON THE GIVEN UNIT JOUTPU, IT ALSO INITIALIZES

C THE HEADER TITLE WHICH IS USED WHEN PRINTTING AND PLOTTING.

C

C
C READ THE TITLE

C

REWIND JINPUT
C

READ (JINPUT, 10, END=80) MTITLE

10 FORMAT(A)

C

C REWIND AND PRINT IMAGE OF THE FILE

C

CALL HEADER (JOUTPU. 'image of input file'. MTITLE)

C

WRITE (JOUTPU, 20)

20 FORMAT (11X,40H 1 2 3 4,

1 40H 5 6 7 8/

2 11X,40H1234567890123458789012345678901234567890,
3 40H12345667890123456789012346678901234667890/)

C
REWIND JINPUT

NCARD - 1

C

30 READ (JINPUT. 40. END-0O) ICARD

40 FORMAT (A)

C

WRITE (JOUTPU, 50) NCARD, ICARD

50 FORMAT (' card'.I5, ':', A)

NCARD - NCARD + 1
GO TO 30

C
C WRITE OUT COLUMN HEADINGS AGAIN

C
60 WRITE (JOUTPU. 20)

C

C REWIND AND REPOSITION FILE AFTER TITLE AND COMMENTS

C

REWIND JINPUT

READ (JINPUT, 40) ICARD
70 READ (JINPUT, 40) ICARD

IF (ICARD(1:1) .EQ. ISTAR) GO TO 70

BACKSPACE JINPUT
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C
RETURN

C

C NO INPUT FILE EXISTS

C

80 WRITE (JTERMO, 90)

90 FORMAT (' INPUT FILE DOES NOT EXIST')

C

RETURN

END

INSIDE

SUBROUTINE INSIDE (IIN, X. NSIDES, XX, YY)

INCLUDE '[.INC] PRECIS.INC/LIST'

DIMENSION X(2.*)

C

C THIS SUBROUTINE DETERMINES IF A POINT IS INSIDE A POLYGON OR NOT
C THE BOX IS MADE UP OF THE SEGMENTS 1-2,2-3,...,..NSIDES-1
C XX,YY IS THE TEST POINT

C X IS AN ARRAY CONTAINING THE COORDINATES OF THE VERTICES

C NSIDES IS THE NUMBER OF POINTS IN THE POLYGON
C IIN - 1 IF THE POINT IS IN THE BOX
C

IIN 0- 
C

C (XA,YA) IS THE UPPER RIGHT CORNER AND (XB.YB) IS THE LOWER LEFT
C CORNER OF THE SMALLEST SQUARE CIRCUMSCRIBING THE POLYGON.
C

XA X(1.1)

YA - X(2.1)

DO 10 I - 2. NSIDES

XA - MAX (XA,X(1,I))

XB - MIN (XB,X(1.I))
YA - MAX (YA.X(2,I))

YB - MIN (YBX(2,I))
10 CONTINUE

C

C IF THE POINT IS NOT IN THE CIRCUMSCRIBING SQUARE THEN IT IS NOT
C IN THE POLYGON

C

IF (XX .LT. XB .OR. XX .GT. XA) RETURN

IF (YY .LT. YB .OR. YY .GT. YA) RETURN
C
C FIND A POINT GUARANTEED TO BE OUTSIDE THE BOX BY ADDING THE

C VECTOR (XA,YA)-(XB.YB) TO (XA,YA)
C

XA - XA + XA - XB

YA - YA + YA - YB
C
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C NOW CHECK TO SEE HOW MAY SIDES THE LINE SEGMENT FROM (XX.YY) TO

C (XA,YA) INTERSECTS. IF THERE ARE AN ODD NUMBER OF INTERSECTIONS,

C (XX,YY) IS INSIDE THE BOX.
C

INTRCT - LINCRS (X(1.1),X(2,1),X(1,NSIDES),X(2,NSIDES),

1 XX,YY,XA,YA.S,T)

DO 20 I - 1,NSIDES - 1

INTRCT = INTRCT + LINCRS (X(1,I),X(2,I),X(l,I+i),
1 X(2,I+l),XX,YY,XA,YA,S,T)

IF (S .EQ. 0.) IIN - 1

20 CONTINUE

IF (MOD(INTRCT,2) .EQ. 1) IIN - 1

RETURN

END

INTERP

SUBROUTINE INTERP (RECT, DPENVA, NEqNFL)

INCLUDE '[.INC] PRECIS.INC/LIST'

DIMENSION RECT(2,5), DPENVA(5,*)

C THIS SUBROUTINE INTERPOLATES THE DEPENDENT VARIABLES AT A POINT

C INTERIOR TO A GIVEN QUADRILATERAL. THE CORNERS OF THE QUADRI-

C LATERAL ARE STORED IN (X1,Y1) THROUGH (X4,Y4). THE TEST POINT

C IS (XS,YS). NOTE THAT X RECT(1,*) ETC.

C

C DETERMINE THE COEFFICIENTS OF THE RHS MATRIX
C

All
A21

A31

A12

A22

A32

A3I

A23
A33

= RECT(1.2)

- RECT(1.3)
- RECT(1.4)

- RECT(2.2)

- RECT(2,3)

- RECT(2.4)
- All*A12

- A21*A22
- A31*A32

- RECT(l,l)

- RECT(1,1)
- RECT(I,1)

- RECT(2,1)

- RECT(2. 1)

- RECT(2, 1)

C
C DETERMINE THE DISTANCES FROM THE TEST POINT
C

DX - RECT(l.5) - RECT(1,l)
DY - RECT(2.5) - RECT(2,1)
DXDY - DX*DY

C

C NOW DETERMINE ALL THE 2 x 2 DETERMINANTS
C

Dll - A22*A33 - A23*A32
D21 - A12*A33 - A13*A32
D31 - A12*A23 - A13*A22
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D12
D22

D32

D13

D23

D33

- A21*A33

- All*A33

- AII*A23
- A21*A32

- All*A32

- All*A22

DET All*D11

DET 1./DET

- A23*A31

- A13*A31

- A13*A21

- A22*A31

- A12*A31

- A12*A21

- A21*D21 + A31*D31

DETERMINE THE COEFFICIENTS A, B, C OF THE EQUATION

DO 10 I - 1, NEQNFL

DETERMINE THE RHS VECTOR

R1 - DPENVA(2,I)

R2 - DPENVA(3,I)

R3 - DPENVA(4,I)

- DPENVA(1,I)

- DPENVA(1,I)

- DPENVA(1,I)

AA - (RI*Dll - R2*D21 + R3*D31)*DET
BB -(Rl*D12 - R2*D22 + R3*D32)*DET
CC - (Rl*D13 - R2*D23 + R3*D33)*DET

NOW COMPUTE THE DEPENDENT VARIABLES

DPENVA(5,I) - DPENVA(1,I) + AA*DX + BB*DY + CC*DXDY

10 CONTINUE

RETURN

END

ITLEVL

INTEGER FUNCTION ITLEVL (IPASS,
INCLUDE '[.INC] PRECIS.INC/LIST'

MMAX)

C THIS FUNCTION CALCULATES THE TEMPORAL LEVEL OF THE CELLS TO
C TO INTEGRATED AT PASS IPASS

IBASE - 2

DO 10 N - O, MMAX
IP2NP1 - IBASE**(N + 1)
IP2N - IP2NP1/2

INTEG - (IPASS - IP2N)/IP2NP1
ITEST - INTEG*IP2NP1 + IP2N

IF (ITEST .EQ. IPASS) THEN

ITLEVL - N
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RETURN

ENDIF

10 CONTINUE

C NO LEVEL IS FOUND

ZERI1 IPASS

ZER2 - MMAX

CALL ERRORM (23,'ITLEVL','IPASS 'ZERl,'NMAXTI',ZER2,JPRINT,

I 'ERROR IN TEMPORAL LEVEL CALCULATION')

RETURN

END

LINCRS

INTEGER FUNCTION LINCRS (X1,Yl,X2.Y2,X3,Y3,X4,Y4,S,T)

INCLUDE '[.INC] PRECIS.INC/LIST'

PARAMETER (EPSILON - 1.E-20)

C
C FUNCTION TO DETERMINE IF THE LINE SEGMENTS

C (X1,Yl)--(X2.Y2) AND (X3.Y3)--(X4,Y4) CROSS
C

C THIS IS DONE BY COMPUTING THE PARAMETERIZED INTERSECTION

C AND SEEING IF THE PARAMETERS FOR BOTH LINES ARE IN THE

C INTERVAL [0,1]. USE CRAMER'S RULE TO SOLVE THE EQUATIONS

C (X2-X1) T + (X3-X4) S - (X3 - X1)

C (Y2-Y1) T + (Y3-Y4) S (Y3 - Y1)
C

C IF THERE IS NO SOLUTION, THE LINES ARE PARALLEL SO THEY

C DO NOT CROSS ANYWAY.

C
C S AND T ARE THE PARAMETERS OF THE CROSSING ON EACH LINE SEGMENT

C S GOES FROM O TO I AS WE GO FROM 3 - 4

C T GOES FROM O TO 1 AS WE GO FROM 1 - 2

C

C LINCRS - 1 IF THE LINES CROSS, 0 OTHERWISE

C

C

LINCRS - 0

S -0.
T -0.

XXi - X2 - X1

XX2 - X3 - X4
XXX - X3 - X1
YY1 - Y2 - Y1

YY2 - Y3 - Y4
YYY -Y3 - YI
DET - XX1*YY2 - XX2*YY1

IF (ABS(DET) .LT. EPSILON) RETURN
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T - (XXX*YY2 - XX2*YYY) / DET

S - = (XX1*YYY - XXX*YY1) / DET

C
C CHECK TO SEE IF THERE IS AN INTERSECTION WITHIN THE PARAMETER

C RANGES [0,1]

C
IF (S .GE. . .AND. S .LE. 1. .AND.

I T .GE. O. .AND. T .LE. 1.) LINCRS 1

C
RETURN

END

TIMEIT

SUBROUTINE TIMEIT(TIME)

C

INTEGER*4 ITMLST(4),IRETLN,ICPUTM,IDELTM(2)

INTEGER*2 IWORD(2),ITIMBF(7)

EQUIVALENCE (IWORD(1),ITMLST(1))

C

C
C THIS SUBROUTINE LOOKS UP THE CURRENT CPU TIME IN SECONDS

C THIS WAS ORIGINALLY WRITTEN BY J. DANNENHOFFER

C

C
C

C SET UP ITEM LISTS FOR CALL TO JOB/PROCESS INFO ROUTINES

C

IWORD(1) 4
IWORD(2)='0407'X

C

C COMPUTE THE ADDRESS OF THE STORAGE ELEMENT (ICPUTM) AS AN INTEGER
C

ITMLST(2)=%LOC(ICPUTM)
ITMLST(3) =%LOC(IRETLN)
ITMLST(4)-O

C
C CALL SYSTEM SERVICE ROUTINES
C

CALL SYS$GETJPI(,,,ITMLST,,,)
CALL LIBSEMUL(ICPUTM,-100000,0.IDELTM)
CALL SYSSNUMTIM(ITIMBF,IDELTM)

C

C COMPUTE TIME

C

TIME=86400.00*ITIMBF(3)

1 + 3600.00*ITIMBF(4)

1 + 60.00*ITIMBF(5)

1 + 1.00*ITIMBF(6)
1 + O.O1*ITIMBF(7)

C

C ITIMBF(3) IS THE CPU TIME IN DAYS

C ITIMBF(4) IS THE CPU TIME IN HOURS
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C ITIMBF(S)
C ITIMBF(6)

C ITIMBF(7)
C

RETURN
END

TIMERR

IS THE CPU TIME IN MINUTES

IS THE CPU TIME IN SECONDS

IS THE CPU TIME IN DECI-SECONDS

SUBROUTINE TIMERR (JUNIT. TCUM, ITEXT)
C
C *********************************************************************
C* *

C * THIS SUBROUTINE PRINTS A MESSAGE GIVEN BY ITEXT ON UNIT JUNIT. *

C * IT ALSO PRINTS INCREMENTAL AND TOTAL CPU TIMES. EXCEPT FOR THE *

C * COMPUTER IN QUESTION COMMENT ALL THE LINES BETWEEN THE ------ *

C * MARKERS FOR ALL THE COMPUTERS WHICH ARE NOT BEING USED HERE. *
C* *

C *********************************************************************

ISAAC --- ALLIANT COMPUTER

REAL TTI(2)

CHARACTER ITEXT*(*)

SAVE RESTAR, TSAVE, TSTART

DATA RESTAR/O./

GET THE CPU TIME

ISAAC --- ALLIANT COMPUTER
T1 - ETIME(TT1)
TIME - TT(l)

VAX/VMS SYSTEM
CALL TIMEIT (TIME)

JVNCC --- CYBER 205

TIME - SECOND ()

CHECK IF INITIALIZATION

IF (LEN(ITEXT) .LE. 1) THEN

TSTART TIME

TSAVE - 0.
RETURN

ENDIF
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NORMAL PROCESSING

TCUM IS CUMMULATIVE TIME

TINC'I8 INCREMENTAL TIME

FOR RESTART RUNS TCUM IS READ FROM PSREAD FILE

IF (ITEXT .EQ. 'RESTART') THEN

RESTAR - TCUM

RETURN

ENDIF

TIME
TCUM

TINC

TSAVE

- TIME
- TIME
- TCUM
- TCUM

+ RESTAR
- TSTART

- TSAVE

ENCODE/DECODE

IF(ITEXT .EQ. '.RETURN.') THEN

WRITE(ITEXT,1000) TCUM

ELSE

WRITE(JUNIT,1100OO) TINC, TCUM, ITEXT

ENDIF

FORMAT(F8.2)

FORMAT(' TIMER

' TOTAL
-- CPU INCREMENT ', G14.5, ' SEC',

CPU = ', G14.5, ' SEC', 5X, A

RETURN

END

WARNIN

SUBROUTINE WARNIN

1

2
3

(NERROR

ITEXT1

ITEXT2

JPRINT

ITEXTR

ZER1

ZER2

ITEXTM )
DATA KOUNT/O/

SAVE KOUNT
C
C *********************************************************************
C * *
C * THIS ROUTINE PRINTS A WARNING MESSAGE ON JTERMO AND JPRINT *

C * NERROR CONTAINS THE ERROR NUMBER *
C * ITEXTR CONTAINS THE ROUTINE NAME *
C * ITEXTI CONTAINS THE FIRST VARIABLE NAME *

C * ITEXT2 CONTAINS THE SECOND VARIABLE NAME *

C * ITEXTM CONTAINS THE ERROR MESSAGE *

C * ZERI IS THE VALUE OF THE FIRST VARIABLE *

C * ZER2 IS THE VALUE OF THE SECOND VARIABLE *

C * EXCEPT FOR THE COMPUTER IN QUESTION COMMENT ALL THE LINES *
C * BETWEEN THE - MARKERS FOR ALL THE COMPUTERS WHICH ARE *
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C * NOT BEING USED HERE. *

C *

C
C

C VAX/VMS SYSTEM

INCLUDE '[.INC] PRECIS.INC/LIST'

C
C

CHARACTER*6 ITEXTR, ITEXT1, ITEXT2

CHARACTER*(*) ITEXTM
C

JTERMO = 6
JDEBUG = 24
KOUNT = KOUNT + 1

IF (KOUNT .GT. 10) RETURN

C

WRITE(JDEBUG,10) NERROR, ITEXTR, ITEXTM,ITEXT1, ZER1, ITEXT2, ZER2

WRITE(JTERMO,10) NERROR,ITEXTR, ITEXTM,ITEXTI,ZER1ITEXT2,ZER2

WRITE(JPRINT, 10) NERROR, ITEXTR, ITEXTM, ITEXT, ZERI, ITEXT2, ZER2

C
C GET A TRACEBACK; THERE IS NO TRACEBACK ON UNIX SYSTEMS
C
CC --- _____________
C VAX/VMS SYSTEM

CALL LIB$SIGNAL(VAL(2))
C

C

C JVNCC --- CYBER 206

C TO BE DONE LATTER

C _______________

10 FORMAT(/' WARNING # ',13,' DETECTED IN ROUTINE ',A6,SX,A//

1 1X,A6,' 'G16.8, 5X,A6,' ',G15.6//)

RETURN

END
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D.5 GRAFIC Interface Routines

This section contains information on the GRAFIC interface routines called elsewhere

in the previous sections. The actual routines in GRAFIC are listed here.

D.5.1 Link information

The file PLT.COM contains link information for these files.

$ LINKP2ALLP :=- LINK P2ALLP,

$ LINKP2GRID :==- LINK P2GRID,

$ LINKP2ITER :=- LINK P2ITER,

$ EXIT

PLXSET, ZRDUMY, ZRPLTC,-

ZRPLTG, ZRVECT, ZRPLTL,-

[PERVAIZ.STAR.OBJ]PSRED2,-

[PERVAIZ.STAR.OBJ]PSREDU,-

[PERVAIZ.ULT.OBJ]UL2LIB/LIB,-

[PERVAIZ.GRAFIC1]NEW_GRAFIC/LIB
ZRPLTG,-

EPERVAIZ.STAR.OBJ]PSREDU,-
[PERVAIZ.ULT.OBJ]UL2LIB/LIB,-

[PERVAIZ.GRAFIC1]NEWGRAFIC/LIB

PLXSET,-

[PERVAIZ.GRAFIC1]NEWGRAFIC/LIB

D.5.2 Listing of routines

BINPNT

PROGRAM BINPNT

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

INCLUDE

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]
'[PERVAIZ.TWODO. INC

' PERVAIZ.TWODO.INC]

'[PERVAIZ. TWODO. INC]

'[PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

'(PERVAIZ.TWODO.INC]
'[PERVAIZ. TWODO.INC

.PRECIS.INC

PARMV2.INC

A2COMN.INC

CHCOMN.INC

E2COMN.INC

FLCOMN.INC

G2COMN.INC

IOCOMN.INC

PRCOMN.INC
TICOMN.INC

/LIST'

/LIST'

/LIST'

/LIST'

/LIST'

/LIST'

/LIST'

/LIST'

/LIST'
/LIST'

DIMENSION ZX(MNODG2), ZY(MNODG2), ZDPEN(MEQNFL,MNODG2),

ZP(MNODG2), ZT(MNODG2), ZS(MNODG2)
CHARACTER YESNO*1
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C THIS SUBROUTINE READS ALL THE INFORMATION ABOUT THE POINTER

C SYST1M AND ALL THE OTHER ARRAYS FROM UNIT 'JPNTRE', FROM A

C PREVIOUSLY RUN CASE. THIS ROUTINE IS USEFUL WHEN YOU WANT TO
C TAKE A SECOND LOOK AT SUCH A CASE FOR PLOTTING PURPOSES OR WHEN

C YOU WANT TO GENERATE THE INITIAL CONDITIONS AGAIN.

JTERMI -s 
JTERMO - 6
JPLOTI - 19

JPNTRE - 28
JREADG - 29

JREADD - 30

TIMNTI - 1.

WRITE (JTERMO,1000)

READ (JTERMI,*) ITYPE

IF (ITYPE .EQ. 2) THEN

CALL PSRED2

ELSE

CALL PSREDU
ENDIF

DO 20 IN - 1, NNODG2

ZX(IN) - GEOMG2(1,IN)

ZY(IN) - GEOMG2(2,IN)

ZP(IN) - PRESG2(IN)

ZT(IN) - TEMPG2(IN)

ZS(IN) = SIGGE2(IN)
DO 20 I = 1, NEqNFL

ZDPEN(Iq,IN) - DPENG2(IqIN)
10 CONTINUE

20 CONTINUE

C

IF (ITYPE .EQ. 1) THEN

OPEN (UNIT-JREADG, FILE-'INPUTGG.DAT', STATUS-'NEW')

OPEN (UNIT-JREADD, FILE-'INPUTDD.DAT'. STATUS-'NEW')

NXRECT 0

NYRECT - 0

DO 30 IBN - 1. NBNDG2

IF (IBNDG2(4.IBN) .EQ. 4) THEN

NXRECT - IBN

GOTO 40

ENDIF

30 CONTINUE

40 WRITE (JTERMO.1100)

READ (JTERMI.1200) YESNO
IF (YESNO .EQ. 'N' .OR. YESNO .EQ. 'n') THEN

NYRECT - NNODG2/NXRECT
GOTO 70

ENDIF

DO 50 IBN - NXRECT. NBNDG2
NYRECT - NYRECT + 1

IF (IBNDG2(4,IBN) .EQ. 6) GOTO 60
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50 CONTINUE

60 NNODG2 - NXRECT*NYRECT

NBNDG2 - 2*(NXRECT + NYRECT - 2)

C
C WRITE ALL THE INFORMATION ON INPUTGG.DAT SO THAT IT CAN BE

C READ BY G2INIT LATTER ON; NOTE THAT THE BASE NODES REMAIN

C THE SAME WHETHER ADAPTATION WAS DONE OR NOT

70 WRITE (JREADG,1300) NXRECT, NYRECT, NBNDG2, NNODG2

WRITE (JREADG,1300) (IBNDG2(5,IB), IB=1,NBNDG2)

WRITE (JREADG,1400) (GEOMG2(1,IN),GEOMG2(2,IN), IN= ,NNODG2)

DO 80 IN = 1, NNODG2
WRITE (JREADD,l500) (DPENG2(K,IN), K = 1, NEQNFL)

80 CONTINUE

ENDIF
C

IF (ITYPE .EQ. 2 .OR. ITYPE .Eq. 3) THEN

OPEN (UNIT-JPLOTI, FILE='JPLOTI.DAT', STATUS='NEW',

1 FORM-'UNFORMATTED')

WRITE (JPLOTI) NNODG2, NEQNFL, NEqBAS, NEqSCH, NCELA2,

1 NCELG2, NBNDG2, NLVLG2

WRITE (JPLOTI) GAMAFL, YNRTCH, TIMNTI, TREFFL, RHORFL

DO 90 IN 1, NNODG2

WRITE(JPLOTI) ZX(IN),ZY(IN),ZP(IN), ZT(IN), ZS(IN),

1 (ZDPEN(J,IN), J 1, NEQNFL)

90 CONTINUE

DO 100 IC 1, NCELG2

WRITE(JPLOTI) (ICELG2(IP,IC),IP=1,10)

100 CONTINUE

WRITE(JPLOTI) (KAUXG2(IC) ,IC=1,NCELG2)

WRITE(JPLOTI) (ICELA2(IC),IC=1,NCELA2)

DO 110 IC = 1, NBNDG2

WRITE(JPLOTI) (IBNDG2(IP,IC) ,IP=1,65)

110 CONTINUE

WRITE(JPLOTI) (MTITLE(I:I),I=1,79)

DO 120 IC = 1, NNODG2

WRITE(JPLOTI) (NEIBG2(IP,IC),IP=1,4)

120 CONTINUE

ENDIF

C

C FORMAT STATEMENTS

1000 FORMAT( 5X, 'INPUT ONE OF THE FOLLOWING OPTION :'/

1 1OX,'l. REDO INITIAL CONDITIONS'/

2 1OX,'2. GENERATE PLOTTING DATA FILE FROM FORMATTED'/

3 10X,'3. GENERATE PLOTTING DATA FILE FROM UNFORMATTED'/)

1100 FORMAT( 5X,'HAS THE GRID BEEN PREVIOUSLY ADAPTED ? [Y/N]')

1200 FORMAT(A1)

1300 FORMAT(1216)
1400 FORMAT(4G16.7)

1500 FORMAT(SGIS.7)

STOP

END
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P2ALLP

PROGRAM P2ALLP

PARAMETER (MCURVE - 13)
INCLUDE '[PERVAIZ.TWODO.INC] PRECIS.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PARMV2.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] A2COMN.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] CHCOMN.INC /LIST'
INCLUDE '[PERVAIZ.TWODO.INC] E2COMN.INC /LIST'

INCLUDE 'PERVAIZ.TWODO.INC] FLCOMN.INC /LIST'

INCLUDE 'PERVAIZ.TWODO.INC] G2COMN.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] HEXCOD.INC

INCLUDE '[PERVAIZ.TWODO.INC] IOCOMN.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] PRCOMN.INC /LIST'

INCLUDE '[PERVAIZ.TWODO.INC] TICOMN.INC /LIST'

DIMENSION ZX(MNODG2). ZY(MNODG2), ZF(MNODG2), E1TAX$(MCURVE)

DIMENSION KKOPT(1), KN$(1), IPOINT(MCELG2), IMARKN(MCELG2)

REAL*4 GRDUMY(30), ALIMITS(6), FRACTN(MEQNFL),

1 XYPLOT(MCURVE,MNODG2), CONT(6O),

2 XMIN,XMAX,YMIN,YMAX,UMIN,UMAX,VMIN,VMAX

C
common /ast$$$/ atc$$, asty$$
logical aatc$$, asty$$

CHARACTER PLTITL*96, YESNO*1, IDATE*9, ITIME*8, ISTRING*80,

1 E1TAX$*8 , DEVNAM*5, PLOTTYPE*15

EXTERNAL ZRPLTL, ZRPLTC, ZRDUMY, ZRPLTG, ZRVECT

DATA ElTAX$/'DENSITY ' , 'U VELO ' , 'V VELO

2 'T ENERGY' , 'PRESSURE' , 'TEMPERAT'

3 'ENTHALPY' , 'MACH NO.' . 'MASFRACI'

4 'MASFRAC2' . 'MASFRAC3' . 'MASFRAC4'

5 'MASFRAC6'

C THIS PROGRAM READS ALL THE INFORMATION ABOUT THE POINTER SYSTEM

C AND ALL THE OTHER ARRAYS FROM UNIT 'JPNTRE', FROM A RUN CASE FROM

C FILE JPNTRE.DAT. THIS PROGRAM THEN MAKES THE VARIOUS KINDS OF

C PLOTS FOR THE TWO-DIMENSIONAL CASE. THE PLOTS CAN BE

C 1. COLOR CONTOURS

C 2. LINE CONTOURS

C 3. LINE PLOTS

C 4. VECTOR PLOTS

C 5. GRID PLOTS

C 6. VALUE INFORMATION

C THE MAXIMUM NUMBER FOR SPECIES FRACTIONS IS 5.
C TIME - SQRT(GAMAFL)*TIME
C

C THE LINE PLOTTER GENERATES A STRING OF DATA BY MARCHING

C THROUGH THE FIELD EITHER TO THE NORTH OR TO THE EAST,

C STARTING AT IABS(ISTART)

C IF (ISTART .GT. O) MARCH TO THE EAST

C IF (ISTART .LT. O) MARCH TO THE NORTH
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C
C THIS VECTOR PLOTTER GENERATES DATA ON ONE OF THE

C FOLLOWING TYPES OF NODES, AS INDICATED BY NODTYP

C -2. CORNER NODES OF LEVEL -2 CELLS

C -1. CORNER NODES OF LEVEL -1 CELLS

C O. CORNER NODES OF BASE LEVEL CELLS

C 1. CORNER NODES OF LEVEL 1 CELLS AND ALL BASE NODES

C 99. ALL THE NODES

C

C
KTERMI - 5
KTERMO - 6
MTITLE -'
PLTITL =

JPRINT = 7

ITYPE = 0
JPNTRE - 28

JPLOTD - 57

ITYPE = 1
NODTYP - 1
INCMIN = 44
INCMAX - 225
IBKGRN - 1

C
C THE DEFAULT PARAMETERS OF THIS RUN ARE READ FROM UNIT 57
C

c OPEN (UNIT-JPLOTD, FILE-'[PERVAIZ.PLT.OBJ]DEFAULT.DAT',

OPEN (UNIT=JPLOTD,

1 FILE-'ernst::sys$user:[PERVAIZ.PLT.OBJ]DEFAULT.DAT',

1 STATUS-'OLD' ,FORM-'FORMATTED', READONLY, ERR=11)

C WRITE (KTERMO,10)

ClO FORMAT( 5X, 'INPUT ONE OF THE FOLLOWING OPTION :'/

C 2 10X,'1. GENERATE PLOTTING DATA FILE FROM UNFORMATTED'/

C 3 10X, 2. GENERATE PLOTTING DATA FILE FROM FORMATTED'/)

C

C READ VALUES FOR FORMATTED/UNFORMATTED FILE TYPE; TYPE OF DATE

C CHARACTERS; MAXIMUM AND MINIMUM INDICES FOR COLOR CONTOURS; AND

C THE BACKGROUND COLOR OF THE SCREEN

C

READ (JPLOTD,*) ITYPE
READ (JPLOTD,*) NODTYP
READ (JPLOTD,*) INCMIN

READ (JPLOTD,*) INCMAX

READ (JPLOTD,*) IBKGRN
C

C READ THE POINTER SYSTEM INFORMATION

C

11 IF (ITYPE .EQ. 2) THEN

WRITE(KTERMO,*) ' READING FROM FORMATTED PLOTTING FILE'

OPEN (UNIT-JPNTRE, FILE-'JPNTRE.DAT', STATUS-'OLD',

1 FORM-'FORMATTED', READONLY)

CALL PSRED2
ELSE
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WRITE(KTERMO,*) ' READING FROM UNFORMATTED PLOTTING FILE'

OREN (UNIT-JPNTRE, FILE 'JPNTRE.DAT', STATUS='OLD',

1 - FORM-'UNFORMATTED', READONLY)

CALL PSREDU

ENDIF

C
C SAVE THE CPU TIME FOR THIS RUN

ZCUM - WORKA2(3)

DO 20 IN 1, NNODG2

ZX(IN) - GEOMG2(1,IN)

ZY(IN) - GEOMG2(2,IN)
20 CONTINUE

C

YUPPER - 1. - YNRTCH
NEQSP1 - NEQSCH + 1

C SETUP THE XYPLOT ARRAY

DO 40 I - 1, NNODG2

SOUND

SOUND

DPENG2(2,I)

DPENG2(3,I)

VEL02

SUMY

- GAMAFL*PRESG2(I)/DPENG2(1, I)
- ABS(SOUND)

- DPENG2(2,I)/DPENG2(1,I)

- DPENG2(3,I)/DPENG2(1,I)

= DPENG2(2,I)**2 + DPENG2(3,I)**2
O 0.

DO 30 IS - 1, NEQSCH

JS = IS + NEQBAS
FRACTN(IS) - DPENG2(JS,I)/DPENG2(1,I)

SUMY - SUMY + FRACTN(IS)

30 CONTINUE

IF (NEQSPI .LE. 5)

FRACTN(NEQSP1)

FRACTN(NEQSP1)

FRACTN(NEQSP1+1)

ENDIF

THEN

- YUPPER -
- MAX (.,
- YNRTCH

SUMY
FRACTN(NEqSP1))

NOW SET THESE VALUES IN THE XYPLOT ARRAY

XYPLOT( 1,I) - DPENG2(1,I)

XYPLOT( 2,I) - DPENG2(2,I)

XYPLOT( 3,I) - DPENG2(3,I)

XYPLOT( 4,I) - DPENG2(4,I)

XYPLOT( 6,I) - PRESG2(I)

XYPLOT( 6,I) - TEMPG2(I)

XYPLOT( 7,I) - (DPENG2(4,I)+PRESG2(I))/DPENG2(1,I)
XYPLOT( 8,I) - SQRT(VELO2/SOUND)

XYPLOT( 9,I) - FRACTN(1)

XYPLOT(10,I) = FRACTN(2)

XYPLOT(11,I) - FRACTN(3)
XYPLOT(12,I) - FRACTN(4)
XYPLOT(13,I) - FRACTN(6)
PRESG2(I) - DPENG2(2,I)

TEMPG2(I) - DPENG2(3,I)
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40 CONTINUE

C

C INITIALIZE THE GRAPHICS ROUTINES

C

WRITE(KTERMO,60) NNODG2, NCELA2, NCELG2, NBNDG2, NLVLG2

50 FORMAT(SX,'NNODG2 ',I7,SX,'NCELA2 ',I7,5X,'NCELG2 ',I7/
1 5X,'NBNDG2 ',I7,X, 'NLVLG2 =',I7)

WRITE(KTERMO,60) TIMNTI, MTITLE

60 FORMAT(SX,'THE SPECIFIED TIME IS :',G15.6/
1 5X, 'THE MAIN TITLE IS :'/A79/5X,

2 'IF NO CHANGE IS DESIRED ENTER 1

READ (JPLOTD,70) PLTITL

70 FORMAT(A)

OR ELSE INPUT TITLE')

JFILE 0

IF (PLTITL(1:1) .EQ. '9') THEN

71 WRITE(KTERMO,*) ' INPUT FILE UNIT TO READ TITLE AND SUB TITLE'

READ (JPLOTD,*, ERR=71) JFILE

READ(JFILE,70) PLTITL

IF (PLTITL(1:1) .NE. '1') MTITLE PLTITL

IF (PLTITL(2:2) .Eq. '2') READ(JFILE,70) PLTITL

GO TO 75
ENDIF

IF (PLTITL(I:1) .NE. '1') MTITLE PLTITL
PLTITL = ' '

75 CALL GRINIT(KTERMI, KTERMO, MTITLE)

2001 WRITE(KTERMO,*) ' INPUT TIME OF THE RUN [<O FOR BLANK]'

READ (JPLOTD,*,ERR=2001) RTIME
WRITE(KTERMO,*) ' RTIME',RTIME

C SEE IF THE DEVICE NUMBER IS CORRECT, AND IF SO CHECK IF

C THE TERMINAL IS MONOCHROME
C

CALL LIB$GETSYMBOL(XDESCR('DEV') ,%DESCR(DEVNAM),,)

IF (DEVNAM .NE. 'VR260') THEN
WRITE(KTERMO,80) DEVNAM
IFLAGC - 0
GOTO 90

ENDIF
80 FORMAT(' COLOR CONTOUR ROUTINE CAN NOT BE USED WITH DEVICE ',AS)

CALL GKS$INQCOLORFAC(0, IERRST, NUMCOLOR, IFLAC,

1 NUMINDEX)

C IERRST IS THE ERROR STATUS; IT MUST BE ZERO
C NUMCOLOR IS THE NUMBER OF AVAILABLE COLORS
C IFLAGC IS THE COLOR FLAG; (0: MONOCHROME 1:COLOR)
C NUMINDEX IS THE NUMBER OF PREDEFINED INDICES

90 CONTINUE

C WRITE (KTERMO.100)
100 FORMAT (' INPUT THE VARIABLE TO SET THE DATE AS FOLLOWS:'/

1 5X,' 1. SET TO BLANKS '/

2 5X,' 2. USE TODAY"S DATE'/

3 5X,' 3. DEFINE YOUR OWN CHARACTERS'/ )
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IF (NODTYP .EQ. 1) THEN

IDATE 

ITIME - '
CALL GRSETTIME (IDATE, ITIME)

ENDIF

IF (NODTYP .EQ. 3) THEN

WRITE (KTERMO.110)

READ (KTERMI,120) IDATE, ITIME

CALL GRSETTIME (IDATE, ITIME)

ENDIF

FORMAT(' INPUT DATE AND TIME')
FORMAT(Ag, A8)

INITIALIZE THE MAX/MIN COORDINATES AND VECTOR COMPONENTS

XMIN

XMAX

YMIN

YMAX

UMIN

UMAX

VMIN
VMAX

- 1.E20

--1.E20

- 1.E20

--1.E20

- 1.E20

--1.E20

- 1.E20
--1.E20

FIND THE SCALE FACTORS FOR X AND Y AXES

DO 130 INODE -

XMIN - MIN
YMIN - MIN

XMAX - MAX

YMAX - MAX

UMIN - MIN

VMIN - MIN

UMAX - MAX

VMAX - MAX

CONTINUE

1. NNODG2

(XMIN ,ZX(INODE))

(YMIN ,ZY(INODE))

(XMAX ,ZX(INODE))

(YMAX ,ZY(INODE))

(UMIN ,DPENG2(2,INODE))

(VMIN ,DPENG2(3,INODE))

(UMAX ,DPENG2(2,INODE))

(VMAX ,DPENG2(3,INODE))

SETUP GRDUYMY

GRDUMY( 1) -
GRDUMY( 2) -
GRDUMY( 3) -
GRDUMY( 4) -
GRDUMY( 6) -

GRDUMY( 6) -
GRDUMY( 7) -
GRDUMY( 8) -

GRDUMY( 9) -
GRDUMY(10) -
GRDUMY(ll) -

GRDUMY(12) -

NCELA2

NNODG2

NCELG2

NBNDG2

XMIN

XMAX
YMIN

YMAX

UMIN

UMAX

VMIN

VMAX

SEE IF BLACK BACKGROUND SCREEN IS NEEDED

IF (DEVNAM .EQ. 'VR260' .AND. IBKGRN .EQ. 1) THEN
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CALL GRSETCOLOR(1,1,O .,O .,O.)
CALL GRSETCOLOR(1,2,1.,1.,1.)

ENDIF'

CALL SETASTC
C
C DECIDE UPON THE TYPE OF PLOT THAT IS NEEDED

C

1000 WRITE (KTERMO,1010)
1010 FORMAT (' THE FOLLOWING TYPES CAN BE PLOTTED '//

1 ' 1. COLOR CONTOUR'/
2 ' 2. LINE CONTOUR'/

3 3. GRID PLOT'/

4 4. VECTOR PLOT'/
5 5. LINE PLOT'/

6 ' 6. REQUEST VALUES '/
6 ' 7. BLACK AND WHITE CONTOURS '/

7 ' 8. EXIT'/)
READ (KTERMI,*,ERR-1000) KCTYPE

GOTO (2000, 3000, 4000, 5000, 6000, 7000, 8000, 9001), KCTYPE
GOTO 1000

2000 CONTINUE

INDMIN = INCMIN
INDMAX - INCMAX
GRDUMY(26) = RTIME

C

PLOTTYPE 'COLOR CONTOURS'

C --

C

2002 WRITE (KTERMO,2010) PLOTTYPE

2010 FORMAT (' THE FOLLOWING ',A,' CAN BE GENERATED'//

1 ' 1. DENSITY'/
2 ' 2. U VELOCITY COMPONENT'/

3 ' 3. V VELOCITY COMPONENT'/
4 ' 4. TOTAL ENERGY PER UNIT VOLUME'/

5 5. PRESSURE'/

6 ' 6. TEMPERATURE'/

7 ' 7. STAGNATION ENTHALPY'/

8 '8. MACH NUMBER'/
9 ' 9. MASS FRACTIONS -- 11 TO 15'/)

READ (KTERMI,*,ERR-2002) KCONT
C

C COMPUTE THE MAX/MIN VALUES FOR THE CONTOURS

C
ZMIN - 1.E20

ZMAX --1.E20

NODMIN 0

NODMAX - 0

DO 2020 INODE 1, NNODG2
ZF(INODE) - XYPLOT(KCONT,INODE)
IF (ZF(INODE) .LT. ZMIN) THEN

ZMIN - ZF(INODE)
NODMIN - INODE
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ENDIF

IF (ZF(INODE) .GT. ZMAX) THEN

- ZMAX - ZF(INODE)

NODMAX - INODE

ENDIF

2020 CONTINUE

C

WRITE(KTERMO,2030) ZMIN, ZMAX, NODMIN, NODMAX

2030 FORMAT(' THE MAX/MIN VALUES OF CONTOURS ARE'/

I 5X,'ZMIN -',G14.5,10X,'ZMAX ',G14.5/

2 6X,'NODE OF MIN VALUE -' ,IS,IX,

3 5X,'NODE OF MAX VALUE ' ,I5/)

WRITE(KTERMO,2040)

2040 FORMAT(' WANT TO DEFINE YOUR OWN EXTREMUM VALUES ?')

READ (KTERMI,2100) YESNO

IF (YESNO .EQ. 'z' .OR. YESNO .EQ. 'Z') GOTO 1000

IF (IFLAGC .EQ. 0 .AND. DEVNAM .NE. 'VR260') THEN

WRITE(KTERMO,2050)
GOTO 1000

ENDIF

2050 FORMAT(' COLOR CONTOUR ROUTINE CAN NOT BE USED WITH MONOCHROME')

IF (YESNO .EQ. 'y' .OR. YESNO .EQ. 'Y') THEN

CALL GRREAL('ENTER MIN CONTOUR VALUE',ZMIN)

CALL GR_REAL('ENTER MAX CONTOUR VALUE',ZMAX)

ENDIF

2051 WRITE(KTERMO,2060)

2060 FORMAT(' INPUT THE COLOR KEY INDICATOR'/)

READ (KTERMI,*,ERR-2051) ICOLBL
2061 WRITE (KTERMO,2070)

2070 FORMAT (' INPUT THE MAXIMUM DIFFERENCE OF

READ (KTERMI,*.ERR-2061) INDDFM

GRDUMY(13)

GRDUMY(14)
GRDUMY(15)

GRDUMY(16)

GRDUMY(27)

GRDUMY(28)

C
C
C
C
C2080

TOLERABLE INDICES')

- ZMIN
- ZMAX

- ICOLBL

- INDDFM

- INDMIN

- INDMAX

IF (JFILE .EQ. O) THEN
WRITE(PLTITL.2080) ETAX$(KCONT)

ENDIF

FORMAT(' X-AXIS Y-AXIS CONTOURS OF ',A8)

WRITE(PLTITL,2080) ETAX$(KCONT)
2080 FORMAT(' - - CONTOURS OF ',A8)

KNDGR - 23

KOPT - 2
CALL PLXST2(KNDGR)

C
CALL GKCONTROL (ZRPLTC, ZRPLTL ZRPLTGZRVECT INDFIL,
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1 KNDGR, PLTITL,

2 MBNDG2,ICELG2,ICELA2,ZX,ZYZFGRDUMY,IBNDG2,KAUXG2,IMARKN,

3 ICELG2,ICELA2,ZX,ZY,ZF,GRDUMY,CONTIBNDG2,KAUXG2,IMARKN,

4 ICELG2,ICELA2,KAUXG2,ZX,ZY,GRDUMY,Z7,Z8,Z9,Z10,

5 ZX,ZY,PRESG2,TEMPG2,KAUXG2,GRDUMY,ICELG2,ICELA2,IPOINTIMARKN)

C
WRITE(KTERMO, 2090) PLOTTYPE

2090 FORMAT(' WANT TO GENERATE MORE ',A,' ? [Y/N/D] ')

READ(KTERMI,2100) YESNO

2100 FORMAT(A1)

IF (YESNO .EQ. 'y' .OR. YESNO .EQ. 'Y') GOTO 2002

GOTO 1000

3000 CONTINUE

C
C

PLOTTYPE - 'LINE CONTOURS'

C
C
3001

C
C
C

WRITE (KTERMO,2010) PLOTTYPE

READ (KTERMI,*,ERR=3001) KCONT

COMPUTE THE MAX/MIN VALUES FOR THE CONTOURS

ZMIN - 1.E20

ZMAX -1.E20

DO 3010 INODE -
ZF(INODE) -
ZMIN =

ZMAX =

3010 CONTINUE

1, NNODG2

XYPLOT(KCONT,INODE)

MIN (ZMIN ,XYPLOT(KCONT,INODE))

MAX (ZMAX ,XYPLOT(KCONT,INODE))

C

3011 WRITE(KTERMO,2030) ZMIN, ZMAX

WRITE (KTERMO,3020)

3020 FORMAT(' INPUT THE NUMBER (NCONT) OF CONTOURS DESIRED:'/5X,

1 '1. NCONT < 0 : ABS(NCONT) CONTOURS ARE PLOTTED'/5X,

2 '2. NCONT > 2000 : NCONT-2000 CONTOURS ARE PLOTTED'/5X,

3 '3. 1000 < NCONT < 2000 NCONT-2000 CONTOURS ARE PLOTTED'/

4 5X, 'AUTOMATIC SCALING IS DONE FOR CASES 2 AND 3' )

READ (KTERMI,*,ERR-3011) NCONT
C

NC1 - ABS (NCONT)

IF (NCONT .LT. O) THEN

IDENO - MAX(I,NCI-1)

ZSTEP - (ZMAX-ZMIN)/IDENO
ZCBASE - ZMIN - .E-6
ZCSTEP - ZSTEP + 1.E-8

3021 WRITE (KTERMO,3030) ZMIN, ZSTEP

READ (KTERMI,*.ERR=3031) ZCBASE

READ (KTERMI,*,ERR=3021) ZCSTEP
ENDIF

3030 FORMAT(' CONTOURS ARE DEFINED BY:'/SX,

1 'CONTOUR(I)-ZCBASE + (I-1)*ZCSTEP ; I = 1 TO # CONTOURS'/
2 5X,'DEFAULT ZCBASE AND ZCSTEP',2G14.6

3 6X,'INPUT ZCBASE AND ZCSTEP INPUT A TO SKIP]' )
C

C MCONTS IS THE ACTUAL NUMBER OF CONTOURS, NLABEL IS NUMBER
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C OF LABELS ON THE RHS

C

3031 MCONTS - MOD (NC1,1000)

NC2 - NC1 / 1000

C
NLABEL 0

ICINC = 0

IF (NC2 .EQ. 2) THEN

NLABEL - MIN (10,MCONTS)

ICINC = MCONTS / NLABEL
ENDIF

C

C FIND THE CONTOUR LEVELS (ZCBASE : BASE CONTOUR LEVEL,

C ZCSTEP : CONTOUR INCREMENT )
C

IF (NCONT .GT. O) THEN

CALL GR_SCALE (ZMIN, ZMAX, MCONTS-1, ZCBASE, ZCSTEP)

ENDIF

C

WRITE(PLTITL,3040) E1TAX$(KCONT), ZCSTEP

3040 FORMAT(' X-AXIS Y-AXIS CONTOURS OF ',A8,

1 ' INTERVAL ',G14.3)

KNDGR - 23
KOPT = 2

CALL PLXST2(KNDGR)

3041 WRITE(KTERMO,3050)
3050 FORMAT(' INPUT SYMBOL NUMBER IF INTERFACE MARKS ARE DESIRED')

READ (KTERMI,*,ERR=3041) INTERF

GRDUMY(13) = ZMIN

GRDUMY(14) = ZMAX

GRDUMY(17) - MCONTS

GRDUMY(18) - ZCBASE

GRDUMY(19) - ZCSTEP

GRDUMY(20) - NLABEL
GRDUMY(21) - ICINC
GRDUMY(22) - INTERF

CALL GKCONTROL (ZRPLTL, ZRDUMY,ZRPLTG,ZRDUMY,INDFIL,

I KNDGR, PLTITL,

2 ICELG2,ICELA2,ZX,ZY,ZF,GRDUMY,CONT,IBNDG2,KAUXG2,IMARKN,

3 DUMI,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7,DUM8,DUM9,DUMIO,
4 ICELG2,ICELA2,KAUXG2,ZX,ZY,GRDUMY,Z7,Z8,Z9,Z10,

5 DUMDUM2.DU3,DUM4,DUM ,DUM6,DUM7,DUM8 , DUM9 ,DUM1O)

WRITE(KTERMO.2090) PLOTTYPE
READ(KTERMI, 2100) YESNO
IF (YESNO .EQ. 'y' .OR. YESNO .Eq. 'Y') GOTO 3000
GOTO 1000

4000 CONTINUE

C
C

PLOTTYPE - 'GRID PLOTS'
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C
C

KNDGR -
KOPT -
ZX1 =

ZX2 =
ZYl =
ZY2 =

23

2
XMIN

XMAX

YMIN

YMAX

4001 WRITE(KTERM0,4010)

4010 FORMAT ( X, 'INPUT THE PLOT VARIABLES',/

1 lOX, 'O. USE FULL VALUES'/

2 lOX, '1. SET SCALES OF THE CURVES'/

2 lOX, '2. USE DEFAULT VALUES'/

3 lOX, ' ==> ',$)

READ (KTERMI,*,ERR4001) ITYPE

IF (ITYPE .EQ. 2) GOTO 4030

KNDGR = 22

IF (ITYPE .Eq. 1) THEN

4011 WRITE(KTERMO,4020)

READ (KTERMI,*,ERR=4011) ZXi, ZX2, ZY1, ZY2

ENDIF

4020 FORMAT ( SX, 'INPUT THE SCALE VALUES XMIN, Xi

1 lOX, ' ==> ',$)

CALL GRSSET (ZX1, ZX2, ZY1, ZY2)

C
4030 WRITE(PLTITL,4040)

4040 FORMAT(' X-AXIS Y-AXIS

AX, YMIN, YMAX'/

.)GRID PLOT

GRDUMY( 1) - NCELA2

GRDUMY( 5) = XMIN

GRDUMY( 6) = XMAX
GRDUMY( 7) = YMIN
GRDUMY( 8) = YMAX

GRDUMY(24) = 0.
GRDUMY(25) - 0.

CALL GRCONTROL (ZRPLTG, KNDGR, PLTITL,
ICELG2,ICELA2,KAUXG2,ZX,ZY,GRDUMY,Z7.Z8,Z9,Z10)

WRITE(KTERMO.2090) PLOTTYPE

READ(KTERMI.2100) YESNO

IF (YESNO .EQ. 'y' .OR. YESNO

GOTO 1000

.EQ. 'Y') GOTO 4000

5000 CONTINUE
C
C

PLOTTYPE = 'VECTOR PLOT'

C - - - - -
C

YESNO

NNODGR

5010 CONTINUE

C

= NNODG2

DO 5011 I 1 NNODG2
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PRESG2(I)

TEMPG2(I)

5011 CONTIIUE

C

- DPENG2(2,I)

- DPENG2(3,I)

5012 WRITE (KTERMO,5015)

5015 FORMAT (' INPUT THE TYPE OF NODES TO BE PLOTTED d

1 5X,'-2. CORNER NODES OF LEVEL -2 CELLS'/

2 5X,'-1. CORNER NODES OF LEVEL -1 CELLS'/

3 5X.' O. CORNER NODES OF BASE LEVEL CELLS'/

4 5X,' 1. CORNER NODES OF LEVEL 1 CELLS AND ALL

5 5X,'99. ALL THE NODES'/

READ (KTERMI,*,ERR=5012) NODTYP

C
PLTITL(1:18) ) ' X-AXIS Y-AXIS

KNDGR 23
KOPT 2

CALL PLXST2(KNDGR)
C
C
C

AS FOLLOWS:'/

BASE NODES'/

RESET THE MARKED NODES IF PLOTTING MORE THAN ONCE

IF (YESNO .NE. 'N') THEN

DO 5020 INODE 1, NNODGR

IMARKN(INODE) 0
5020 CONTINUE

NNODGR = NNODG2

ENDIF
C

C

C

C

C

C

C

ALL NODES

SEE IF ALL NODES ARE TO BE USED

IF (NODTYP .EQ. 99) THEN

MAXNOD - NNODGR

DO 5030 INODE 1, NNODGR

IPOINT(INODE) INODE

5030 CONTINUE

GO TO 5110

ENDIF

MULTIPLE GRID NODES

CHECK THE NODES AT MULTIPLE GRID LEVELS -1 OR -2

IF (NODTYP .LT. O) THEN

IPOWER - ABS(NODTYP)

IPOWER - 2**IPOWER

SET THE STARTING NODE

INODE - 1
KOUNTE - 0
FIRST SCAN X-AXIS AND
INITIALIZE THE NO. OF

KOUNTN - 0

NBTYPE - 3

AND INITIALIZE NO. OF ELIGIBLE NODES

COLLECT THE APPRORIATE NODES

NODES TO BE SKIPPED
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INTYPE - 4

5040 NCELL - NEIBG2(NBTYPE,INODE)

6050 IF'(NCELL .EQ. O) THEN
GOTO 6060

ELSE
INODE - ICELG2(INTYPE,NCELL)

KX = KAUXG2(NCELL)
KLEVI - IAND(KX,KUOOOF)
LEVELI - ISHFT(K6LEVI,-16)

IF (LEVELI .EQ. O) THEN

KOUNTN - KOUNTN + 1

IF (KOUNTN .EQ. IPOWER) THEN
KOUNTE = KOUNTE + 1
KOUNTN = O

IPOINT(KOUNTE) = INODE
ENDIF ! APPROPRIATE NODE FOUND

GOTO 6040

ELSE

NCELL = ICELG2(10,NCELL)
GOTO 5050

ENDIF i BASE LEVEL CELL

ENDIF i NEIGHBOUR CELL FOUND

GOTO 5040

C NOW MARCH VERTICALLY FROM EACH X-AXIS NODE COLLECTED PREVIOUSLY

5060 DO 5090 KOUNT - 1, KOUNTE

INODE - IPOINT(KOUNT)

NBTYPE - 3
INTYPE - 8

NCELL = NEIBG2(NBTYPE,INODE)

IF (NCELL .EQ. O) THEN

NBTYPE - 4

INTYPE - 6
ENDIF

C INITIALIZE THE NO. OF NODES TO BE SKIPPED

KOUNTN - 0

5070 NCELL - NEIBG2(NBTYPE,INODE)
6080 IF (NCELL .EQ. O) THEN

GOTO 5090

ELSE

INODE - ICELG2(INTYPE,NCELL)

KX - KAUXG2(NCELL)
KSLEVI - IAND(KX,KUOOOF)
LEVELI - ISHFT(KSLEVI.-16)

IF (LEVELI .EQ. O) THEN
KOUNTN - KOUNTN + 
IF (KOUNTN .EQ. IPOWER) THEN

KOUNTE - KOUNTE + 1
KOUNTN - 0
IPOINT(KOUNTE) = INODE

ENDIF ! APPROPRIATE NODE FOUND

GOTO 6070

ELSE

NCELL - ICELG2(IO,NCELL)

GOTO 5080

ENDIF ! BASE LEVEL CELL
ENDIF ! NEIGHBOUR CELL FOUND

GOTO 6070
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CONTINUE

MAINOD - KOUNTE

GO TO 6110

C
ENDIF ! -1. -2 LEVELS

BASE/HIGHER LEVEL CELLS

CHECK THE NODES AT LEVEL 0 AND 1 ONLY

KOUNT - 0

DO 6100 ICELL - 1, NCELG2

SET THE POINTERS FOR THIS CELL

KC - ICELG2(1,ICELL)

KSW - ICELG2(2,ICELL)

KS - ICELG2(3,ICELL)

KSE - ICELG2(4,ICELL)

KE - ICELG2(6,ICELL)

KNE - ICELG2(6.ICELL)

KN - ICELG2(7,ICELL)

KNW - ICELG2(8,ICELL)

KW = ICELG2(9,ICELL)

KX - KAUXG2(ICELL)
K5LEVI - IAND(KX,KUOOOF)

LEVELI - ISHFT(K6LEVI,-16)

FOR LEVEL ZERO ONLY USE CORNER CELLS IF TYPE 

MARK THE NODES WHICH ARE DONE WITH IMARKN(NODE)=-1

IF (LEVELI .EQ. O) THEN

IF (IMARKN(KSW) .NE. -1) THEN

KOUNT - KOUNT + 

IMARRN(KSW) -1
IPOINT(KOUNT) = KSW

ENDIF

C

IF (IMARKN(KSE) .NE. -1) THEN
KOUNT - KOUNT + 1

IMARN(KSE) - -1
IPOINT(KOUNT) - KSE

ENDIF

C

IF (IMARKN(KNE) .NE. -1) THEN
KOUNT - KOUNT + 1

IMARKN(KNE) - -1
IPOINT(KOUNT) - KNE

ENDIF

C

IF (IMARKN (KNW)
KOUNT

IMARKN(KNW)

.NE. -) THEN

- KOUNT + 
- -1
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IPOINT(KOUNT) = KNW

.ENDIF

C
ENDIF

C

C

C

C

FOR LEVEL ONE ONLY USE CORNER CELLS IF TYPE 2

AND FOR LEVEL ZERO USE ALL THE NODES

IF (NODTYP .EQ. 1) THEN

FIRST CHECK LEVEL CELLS

IF (LEVELI .EQ. 1) THEN

IF (IMARKN(KSW) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARKN(KSW) = -1
IPOINT(KOUNT) = KSW

ENDIF

IF (IMARKN(KSE)

KOUNT

IMARKN(KSE)

IPOINT(KOUNT)
ENDIF

.NE. -1) THEN

= KOUNT + 1

= -1

= KSE

C

IF (IMARKN(KNE) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARKN(KNE) = -1
IPOINT(KOUNT) = KNE

ENDIF
C

IF (IMARKN(KNW)
KOUNT

IMARKN(KNW)

IPOINT(KOUNT)
ENDIF

.NE. -1) THEN

= KOUNT + 1

= -K
- KNW

NOW CHECK LEVEL 0 CELLS

ELSE IF (LEVELI .EQ. 0) THEN

IF (KC .EQ. O) THEN

KOUNT - KOUNT + 1

NNODGR = NNODGR +1
KC = NNODGR

IPOINT(KOUNT)= NNODGR

ZX(NNODGR) = 0.25*(ZX(KSW)+ZX(KSE)+ZX(KNE)+ZX(KNW))

ZY(NNODGR) = 0.25*(ZY(KSW)+ZY(KSE)+ZY(KNE)+ZY(KNW))
PRESG2(NNODGR)- 0.25*(PRESG2(KSW) + PRESG2(KSE) +

PRESG2(KNE) + PRESG2(KNW) )
TEMPG2(NNODGR)- 0.25*(TEMPG2(KSW) + TEMPG2(KSE) +

TEMPG2(KNE) + TEMPG2(KNW) )
IMARKN(KC) = -1
ICELG2(1,ICELL) NNODGR

ELSE

IF (IMARKN(KC) .NE. -1) THEN

1047

C
C

C

C

C

C
C

C

C

I

1



KOUNT = KOUNT + 1

IMARKN(KC) -1

IPOINT(KOUNT) KC

ENDIF

ENDIF ! IF KC = O

IF (KS .EQ. O) THEN

KOUNT 

NNODGR

KS

IPOINT(KOUNT) =

ZX(NNODGR) =

ZY(NNODGR) =

PRESG2(NNODGR) =

TEMPG2(NNODGR) =

ICELG2(3,ICELL) =

IMARKN(KS) =
NCELL

IF (NCELL .NE. O)

ELSE

KOUNT + 1
NNODGR +1

NNODGR

NNODGR

0.5*(ZX(KSW)+ZX(KSE))

0.5*(ZY(KSW)+ZY(KSE))

0.5*(PRESG2(KSW)+PRESG2(KSE))

0.5*(TEMPG2(KSW)+TEMPG2(KSE))
NNODGR

-1

NEIBG2(2,KSW)

ICELG2(7,NCELL) = NNODGR

IF (IMARKN(KS) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARKN(KS) = -1

IPOINT(KOUNT) = KS
ENDIF

ENDIF

IF (KE .Eq. O) THEN

KOUNT

NNODGR =

KE =

IPOINT(KOUNT) =

ZX(NNODGR)
ZY(NNODGR) =

PRESG2(NNODGR) =

TEMPG2(NNODGR) =

ICELG2(6.ICELL) =
IMARKN(KE) =

NCELL =

IF (NCELL .NE. O)

! IF KS = 0

KOUNT + 1
NNODGR +1

NNODGR

NNODGR

0.5*(ZX(KSE)+ZX(KNE))

0.5*(ZY(KSE)+ZY(KNE))

0. 5*(PRESG2(KSE)+PRESG2(KNE))

O.5*(TEMPG2(KSE)+TEMPG2(KNE))
NNODGR

-1
NEIBG2(3,KSE)
ICELG2(9,NCELL) = NNODGR

ELSE

IF (IMARKN(KE) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARKN(KE) = -1
IPOINT(KOUNT) = KE

ENDIF

ENDIF ! IF KE = O

IF (KN .EQ. O) THEN

KOUNT
NNODGR

KN
IPOINT(KOUNT)

ZX(NNODGR)

ZY(NNODGR)

PRESG2(NNODGR)

TEMPG2(NNODGR)

= KOUNT + 1
= NNODGR +1

= NNODGR
= NNODGR
- 0.5*(ZX(KNW)+ZX(KNE))

= 0.5*(ZY(KNW)+ZY(KNE))
= 0.5*(PRESG2(KNW)+PRESG2(KNE))
= 0.5*(TEMPG2(KNW)+TEMPG2(KNE)) .
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ICELG2(7,ICELL) - NNODGR

IMARKN(KN) = -1

NCELL - NEIBG2(4,KNE)
IF (NCELL .NE. O) ICELG2(3,NCELL) NNODGR

ELSE

IF (IMARKN(KN) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARRKN(KN) -1

IPOINT(KOUNT) - KN

ENDIF

ENDIF ! IF KN - 0

IF (KW .EQ. O) THEN

KOUNT - KOI

NNODGR = NN(

KW = NNt

IPOINT(KOUNT) - NN(

ZX(NNODGR) = 0.1

ZY(NNODGR) = 0.1
PRESG2(NNODGR) = 0.1

TEMPG2(NNODGR) = 0.1
ICELG2(9,ICELL) = NN(
IMARKN(KW) = -1
NCELL = NE:
IF (NCELL .NE. O) ICI

JNT + 1
ODGR +1

ODGR

ODGR

5*(ZX(KSW)+ZX(KNW))

5*(ZY(KSW)+ZY(KNW))

5*(PRESG2(KSW)+PRESG2(KNW))

5*(TEMPG2(KSW)+TEMPG2(KNW))
ODGR

IBG2(1,KNW)
ELG2(6,NCELL) - NNODGR

ELSE

IF (IMARKN(KW) .NE. -1) THEN
KOUNT = KOUNT + 1
IMARKN(KW) = -1
IPOINT(KOUNT) KW

ENDIF

ENDIF ! IF KW - 0

C
ENDIF

ENDIF
C
5100 CONTINUE

C
MAXNOD - KOUNT

C
5110 GRDUMY(23) - MAXNOD

C

i IF BASE LEVEL

i IF NODTYP - 1

CALL GRCONTROL (ZRVECT,KNDGR,PLTITL,

& ZX,ZY,PRESG2,TEMPG2,KAUXG2,GRDUMY,ICELG2,ICELA2,IPOINT,IMARKN)

WRITE(KTERMO,2090) PLOTTYPE
READ(KTERMI,2100) YESNO

IF (YESNO .EQ. 'y' .OR. YESNO .EQ.

GOTO 1000
C
6000 CONTINUE
C
C

PLOTTYPE - 'LINE PLOTS'

C
PLTITL ' 

'Y') GOTO 5010
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SCALING = 1.

CDEBUG

6010olo WRITE(KTERMO.6020)

6020 FORMAT(' INPUT NODE FOR WHICH NB IS DESIRED')
READ(KTERMI,*,ERR=6010) INNB

CDEBUG

IF (INNB .LT. O) THEN

6021 WRITE(KTERMO,*) ' INPUT SCALING FACTOR'

READ(KTERMI,*,ERR=6021) SCALING
GOTO 6050

ENDIF

CDEBUG

IF (INNB .NE. O) THEN

WRITE(KTERMO,6030) (NEIBG2(IK,INNB),IK=1,4)

WRITE(KTERMO,6040) (ICELG2(IK,NEIBG2(2,INNB)).IK=2,8,2)
GOTO 6010

ENDIF

6030 FORMAT(2X,'NEIGHBOUR CELLS ',2X,4I5)
6040 FORMAT(2X,'NEIGHBOUR NODES OF SECOND CELL',2X,4I5)

CDEBUG

6050 CONTINUE

WRITE (KTERMO.2010) PLOTTYPE

6051 WRITE(KTERM0,6060)

6060 FORMAT(' INPUT NEGATIVE VALUE TO PLOT CURVILINEAR DISTANCE'

1 /' ===> '.$)

READ (KTERMI,*,ERR=6051) KCONT
C

6061 WRITE(KTERMO,6070)

6070 FORMAT(' INPUT THE STARTING POINT'/

1 ' INPUT NEGATIVE VALUE TO MARCH TO NORTH'/' ===> ',$)

READ (KTERMI,*,ERR=6061) ISTART

INODE - ABS(ISTART)
C

C CHECK IF THE NODE IS A BOUNDARY NODE AT THE APPROPRIATE SIDE

C
IF (ISTART .GT. O) THEN

IEDGE - 9
DO 6080 INBND - 1, NBNDG2

IF (IBNDG2(4,INBND) .EQ. 9) THEN

IF (IBNDG2(1.INBND) .EQ. INODE) GOTO 6100

ENDIF
6080 CONTINUE

ENDIF
C

IF (ISTART .LT. O) THEN
IEDGE - 3

DO 6090 INBND - 1. NBNDG2

IF (IBNDG2(4,INBND) .EQ. 3) THEN

IF (IBNDG2(1,INBND) .EQ. INODE) GOTO 6100
ENDIF

6090 CONTINUE

ENDIF

IF (INODE .EQ. 1) GOTO 6100
C

C WARNING CONDITION

C
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1

ZER - INODE

ZER2 IEDGE

CALL WARNIN (456,'P2LINE','INODE ',ZER1,'IEDGE ',ZER2,JPRINT,
'THE NODE IS NOT ON THE CORRECT BOUNDARY')

6100 IF (ISTART .GT. O) THEN

PLTITL(1:8) = 'X

NB1 = NEIBG2(2,INODE)
NB2 = NEIBG2(3,INODE)
NBTYPE = 0
IF (NB1 .NE. O) THEN

NBTYPE = 2
INTYPE = 6

ELSEIF (NB2 .NE. O) THEN

NBTYPE - 3
INTYPE 4

ENDIF

IF (NB1 .NE. 0 .AND. NB2 .NE. O) THEN
6101 WRITE(KTERMO,6110)

READ(KTERMI,*,ERR=6101) KOPT
IF (KOPT .EQ. 2) THEN
NBTYPE 3
INTYPE = 4

ENDIF

ENDIF

ENDIF

8110 FORMAT(1X,'INPUT ONE OF THE FOLLOWING'/

1 5X,'1. Lower horizontal surface'/
2 5X,'2. Upper horizontal surface'/' ===> ',$)

C

IF (ISTART .LT. O) THEN

PLTITL(1:8) = 'Y
NB1 = NEIBG2(3,INODE)

NB2 - NEIBG2(4,INODE)

NBTYPE - 0
IF (NB1 .NE. O) THEN

NBTYPE 3
INTYPE - 8

ELSEIF (NB2 .NE. O) THEN
NBTYPE 4
INTYPE = 6

ENDIF

ENDIF

C
C ERROR CONDITION
C

1

C
C
C

IF (NBTYPE .EQ. O) THEN
ZER1 - ISTART
ZER2 = NBTYPE

CALL ERRORM (46,'P2LINE', 'ISTART',ZER1, 'NBTYPE',ZER2,JPRINT,
'ERROR IN NEIGHBOUR CELLS OF STARTING POINT')

ENDIF

NOW MARCH IN THE APPROPRIATE DIRECTION

KOUNT - 0
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IF (KCONT .LT. 

KCOT - ABS(K
XPREV - ZX(INI

YPREV - ZY(INI

SMIN = SQRT(:

SSUM = 0.
6120 KOUNT

TEMPG2(KOUNT)

XHERE

YHERE

SHERE

SSUM
XPREV

YPREV

PRESG2(KOUNT)
NBNEXT

IF (NBNEXT .El

INODE

GO TO 6120

ENDIF

O) THEN
CONT)

ODE)

ODE)

XPREV**2+YPREV**2)

= KOUNT + 1
- XYPLOT(KCONT,INODE)

= ZX(INODE)
- ZY(INODE)

= SQRT( (XHERE-XPREV)**2

= SSUM + SHERE
= XHERE

- YHERE

- SSUM
= NEIBG2(NBTYPE,INODE)
q. O) GOTO 6150

= ICELG2(INTYPENBNEXT)

+(YHERE-YPREV)**2 )

IF (ISTART .GT. O) THEN

6130 KOUNT = KOUNT + 1

TEMPG2(KOUNT) = XYPLOT(KCONT,INODE)*SCALING
PRESG2(KOUNT) = ZX(INODE)

NBNEXT - NEIBG2(NBTYPE,INODE)

IF (NBNEXT .Eq. O) GOTO 6150

INODE = ICELG2(INTYPE,NBNEXT)

GO TO 6130

ENDIF

C

IF (ISTART .LT. O) THEN
6140 KOUNT = KOUNT + 1

TEMPG2(KOUNT) = XYPLOT(KCONT,INODE)
PRESG2(KOUNT) = ZY(INODE)

NBNEXT = NEIBG2(NBTYPE,INODE)
IF (NBNEXT .EQ. O) GOTO 6150
INODE = ICELG2(INTYPE,NBNEXT)
GO TO 6140

ENDIF

6150 PLTITL(9:16) ETAX$(KCONT)
KNDGR - 21

KOPT - 2

CALL PLXSET(KOPT, KNDGR)
NLINE - 1
KKOPT(1) - KOPT

KN$(1) - KOUNT

CALL GRLINE(KKOPT,NLINE,PLTITL,KNDGR,PRESG2,T4EPG2,KN$)

WRITE(KTERM0,2090) PLOTTYPE

READ(KTERMI,2100) YESNO
IF (YESNO .EQ. 'y' .OR. YESNO .EQ.

C WRITE OUTPUT DATA

IF (YESNO .EQ. 'd' .OR. YESNO .EQ.

'Y') GOTO 6050

'D') THEN
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ISTRING - ' '
WRITE(KTERMO,*) ' INPUT THE FILE NAME FOR DATA, OR TYPE QUIT'

READ (KTERMI,70) ISTRING

IF (ISTRING(1:4).EQ.'QUIT' .OR. ISTRING(1:4).EQ.'quit')

1 GOTO 6060

OPEN (UNIT=58, FILE=ISTRING, STATUS='NEW',FORM='FORMATTED')

WRITE(KTERM0,.6170) ISTRING

WRITE(58,*) KOUNT

DO 6160 IK = 1, KOUNT
WRITE(58,*) PRESG2(IK), TEMPG2(IK)

6160 CONTINUE

GOTO 6050

ENDIF

6170 FORMAT (X,'WRITING OUTPUT ON ',A)

GOTO 1000

7000 CONTINUE

C
C

PLOTTYPE = 'VALUES'
C

C

7010 WRITE(KTERMO.7020)

7020 FORMAT(' THE FOLLOWING VALUES CAN BE REQUESTED'/

1 5X,'1. CPU TIME'/

2 5X,'2. FCTRTI'/

3 5X,'3. NEQNFL'/

4 6X,'4. NEQSCH'/

5 5X,'5. YNRTCH'/

6 5X,'6. TRIGCH'/)

READ(KTERMI,*,ERR=7010) INNB

IF (INNB .EQ. 1) THEN

WRITE(KTERMO,*) '

ELSEIF (INNB .EQ. 2)

WRITE(KTERMO,*) '

ELSEIF (INNB .EQ. 3)

WRITE(KTERMO,*) '

ELSEIF (INNB .EQ. 4)

WRITE(KTERMO,*) '

ELSEIF (INNB .EQ. 5)

WRITE(KTERMO*) '
ELSEIF (INNB .EQ. 6)

WRITE(KTERMO,*)
ENDIF

CPU TIME ',ZCUM

THEN

FCTRTI ',FCTRTI

THEN

NEQNFL ',NEQNFL
THEN

NEQSCH ',NEQSCH

THEN

YNRTCH ',YNRTCH
THEN

TRIGCH ',TRIGCH

WRITE(KTERMO,2090) PLOTTYPE

READ(KTERMI,2100) YESNO

IF (YESNO .EQ. 'y' .OR. YESNO .Eq. 'Y') GOTO 7010

GOTO 1000

CONTINUE

PLOT_TYPE - 'B&W CONTOURS'
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C ----

C -

INDMIN - 33
INDMAX - 43

8010 WRITE(KTERMO,8020)

8020 FORMAT(' INPUT THE BACKGROUND COLOR'/

1 6X,'1. BLACK'/

2 5X,'2. WHITE')

READ(KTERMI.*,ERR-8010) IBKGRN

IF (DEVNAM .EQ. 'VR260' .AND. IBKGRN
CALL GRSETCOLOR(l,l.0.,O.,0.)

CALL GRSETCOLOR(1,2,.1.1.1.)
ELSE

CALL GRSETCOLOR(ll,1.,.1.,1.)

CALL GRSETCOLOR (1,2,0.,0.,0.)
ENDIF

.EQ. 1) THEN

GOTO 2002

9001 STOP ' THE END'

END

SUBROUTINE PLXST2 (INDGR)
C

SAVE XMIN, XMAX, YMIN, YMAX
C

C
C THIS SUBROUTINE SETS THE SCALES OF THE PLOTS IN THE COMMON

C BLOCKS OF THE GRAFIC ROUTINES.

C

C
C SET THE DEFAULT VALUES

C
KTERMI - 5
KTERMO 6

C

15 WRITE(KTERMO,20)

20 FORMAT ( X,
i 10X,
I lOX,

3 lOX,

5 lOX,

5 lOX,
5 lOX.
6 lOX.

'INPUT THE PLOT VARIABLES',/

'-1. USE PREVIOUS SCALE VALUES'/
' 0. USE DEFAULT VALUES'/

' 1. AUTOMATIC SCALES'/
' 2. SAME STEP SIZE ON BOTH AXES'/

' 4. DRAW AXES'/

' 8. DRAW BACKGROUND GRID'/

= > $)
READ (KTERMI.*,ERR-15) ITYPE

IF (ITYPE .EQ. O) RETURN

IF (ITYPE .LT. O) THEN

CALL GRSSET (XMIN, XMAX, YMIN, YMAX)
RETURN

ENDIF
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INDGK- ITYPE + 16

IF (IAND (ITYPE,'00000001'X) .EQ. O) THEN

31 WRITE(KTERMO. 40)

READ (KTERMI,* ,ERR-31) XMIN, XMAX, YMIN, YMAX

CALL GRSSET (XMIN, XMAX, YMIN, YMAX)

WRITE(KTERMO,50) XMIN, XMAX, YMIN, YMAX

ENDIF

40 FORMAT ( 6X, 'INPUT THE SCALE VALUES XMIN, XMAX, YMIN, YMAX'/

1 lOX, ' > ,$)
50 FORMAT(lOX,'XMIN- ', G14.5, lOX, 'XMAX - ',G14.5/

1 lOX,'YMIN ', G14.5, lOX, 'YMAX ',G14.5)

RETURN

END

P2GRID

PROGRAM P2GRID

'[PERVAIZ.TWODO.INC]

' [PERVAIZ.TWODO.INC]

'[PERVAIZ.TWODO.INC]

' [PERVAIZ.TWODO.INC]
'[PERVAIZ.TWODO.INC]

' [PERVAIZ.TWODO. INC]
'[PERVAIZ.TWODO.INCI

'[PERVAIZ.TWODO.INC]

' [PERVAIZ.TWODO.INC]

'CPERVAIZ.TWODO.INCI

'[PERVAIZ.TWODO.INC]

PRECIS.INC/LIST'

PARMV2.INC/LIST'

A2COMN.INC /LIST'

G2COMN.INC /LIST'

CHCOMN.INC /LIST'

E2COMN.INC /LIST'

FLCOMN.INC /LIST'

HEXCOD.INC

IOCOMN.INC /LIST'

PRCOMN.INC /LIST'

TICOMN.INC /LIST'

DIMENSION NCELGR(O:MLVLG2), ICELTT(O:MLVLG2,MCELG2)

REAL*4 GRDUMY(30), ALIMITS(6)

CHARACTER PLTITL*96 , ISTRING*80, YESNO*1, IDATE*9, ITIME*8

DIMENSION ZX(MNODG2). ZY(MNODG2)
EXTERNAL ZRPLTG

C

C THIS PROGRAM READS ALL THE INFORMATION ABOUT THE POINTER SYSTEM

C AND ALL THE OTHER ARRAYS FROM UNIT 'JPNTRE', FROM A RUN CASE FROM

C FILE JPNTRE.DAT. THIS PROGRAM THEN MAKES THE GRID PLOT FOR THE

C TWO-DIMENSIONAL CASE FOR A GIVEN LEVEL OF CELLS.

C

JTERMI - 5

JTERMO 6

MTITLE = ' '
PLTITL - ' '
JPNTRE - 28

C
C READ THE POINTER SYSTEM INFORMATION
C
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WRITE(JTERMO,*) ' READING FROM UNFORMATTED PLOTTING FILE'

OPEN- (UNIT-JPNTRE, FILE-'JPNTRE.DAT', STATUS='OLD',

1 FORM-'UNFORMATTED', READONLY)

CALL PSREDU
C

C ONLY THE GRIDS FOR THE CEWIC CELLS WILL BE PRODUCED, ALTHOUGH
C ANY PARTICULAR LEVEL OF CELLS CAN BE PRODUCED

C CLASSIFY THE CELLS ACCORDING TO THEIR LEVEL

C
DO 10 IN - 1, NNODG2

ZX(IN) = GEOMG2(1,IN)
ZY(IN) - GEOMG2(2,IN)

10 CONTINUE

DO 20 ILEVEL - O. MLVLG2

NCELGR(ILEVEL) 0
20 CONTINUE

C
DO 30 JCELL 1 NCELA2

C FIND THE ACTUAL CELL NUMBER AND HENCE THE LEVEL AND STORE IT

ICELL

KX
KSLEVI

LEVELI

NCELL

NCELGR(LEVELI)

ICELTT(LEVELI .NCELL)

30 CONTINUE
C

= ICELA2(JCELL)
= KAUXG2(ICELL)
- IAND(KXKUOOOF)
= ISHFT(K5LEVI,-16)
- NCELGR(LEVELI) + 1
= NCELL
- ICELL

C INITIALIZE THE GRAPHICS ROUTINES

C

WRITE(JTERMO,40) MTITLE

40 FORMAT(SX,'THE MAIN TITLE IS :'/A79/5X,
1 'IF NO CHANGE IS DESIRED ENTER 1

READ (JTERMI,50) PLTITL

60 FORMAT(A)

IF (PLTITL(1:1).NE.'l') MTITLE - PLTITL

PLTITL ' '

OR ELSE INPUT TITLE')

CALL GR_INIT (JTERMI, JTERMO, MTITLE)

C
C FIND THE LEVEL OF CELLS TO BE PRINTED

C

60 WRITE (JTERMO,70)

70 FORMAT(/5X,'INPUT THE LEVEL OF CELLS TO BE PLOTTED ?'
1 /5X.'INPUT 99 IF ALL LEVELS ARE DESIRED')

WRITE(JTERMO,.80)
80 FORMAT(6X.'=--> '.$)

READ(JTERMI,*) LEVELI

WRITE (JTERMO.90)
READ (JTERMI,*) NODTYP

90 FORMAT (' INPUT THE VARIABLE TO SET THE DATE AS FOLLOWS:'/
1 5X.' 1. SET TO BLANKS '/
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2 5X,' 2. USE TODAY''S DATE'/

3 SX,' 3. DEFINE YOUR OWN CHARACTERS'/

C

IF (NODTYP .EQ. 1) THEN

IDATE - ' '
ITIME - ' '
CALL GR_SETTIME (IDATE, ITIME)

ENDIF

C
IF (NODTYP .EQ. 3) THEN

WRITE (JTERMO,100)

100 FORMAT(' INPUT DATE AND TIME')

READ (JTERMI,110) IDATE, ITIME

110 FORMAT(Ag, A8)

CALL GR_SET_TIME (IDATE, ITIME)

ENDIF

C

C INITIALIZE THE MAX/MIN COORDINATES
C

XMIN = 1.E20

YMIN = 1.E20
XMAX =-1.E20

YMAX =-1.E20

IF (LEVELI .NE. 99) THEN

C CHECK FOR SPECIFICATION ERROR IN LEVELI

IF (LEVELI .LT. 0 .OR. LEVELI .GT. MLVLG2) THEN

ZER1 = LEVELI

ZER2 = MLVLG2

CALL ERRORM (22,'P2GRID','LEVELI' ,ZER1,'MLVLG2' ,ZER2,

1 JPRINT,'NUMBER OF LEVELS IS WRONG')

GOTO 60

ENDIF

C LOOP THROUGH ALL FOUR CORNERS OF THE CELLS AT THIS LEVEL

C AND COLLECT MAX/MIN INFORMATION AND SET DISTANCE ARRAYS

GRDUMY(1) NCELGR(LEVELI)

DO 130 JCELL - 1, NCELGR(LEVELI)

C FIND THE ACTUAL CELL NUMBER

ICELL = ICELTT(LEVELI,JCELL)
ICELA2(JCELL) ICELL

DO 120 ICORN 2, 8, 2

INODE ICELG2(ICORN,ICELL)

ZXNODE ZX(INODE)

ZYNODE - ZY(INODE)

XMIN = MIN (XMIN ZXNODE)

YMIN = MIN (YMIN ,ZYNODE)

XMAX MAX (XMAX ZXNODE)

YMAX - MAX (YMAX ,ZYNODE)

120 CONTINUE
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130 CONTINUE

ELSE

C LOOP THROUGH ALL FOUR CORNERS OF THE CEWIC CELLS AND

C COLLECT MAX/MIN INFORMATION AND SET DISTANCE ARRAYS

GRDUMY(1) - NCELA2

DO 150 JCELL 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL = ICELA2(JCELL)
ICELA2(JCELL) = ICELL

DO 140 ICORN = 2, 8, 2
INODE = ICELG2(ICORN,ICELL)

ZXNODE = ZX(INODE)
ZYNODE = ZY(INODE)

XMIN = MIN (XMIN ,ZXNODE)

YMIN - MIN (YMIN ,ZYNODE)

XMAX MAX (XMAX ,ZXNODE)

YMAX = MAX (YMAX ,ZYNODE)

140 CONTINUE

150 CONTINUE

ENDIF

WRITE (JTERMO,160) XMIN, XMAX, YMIN, YMAX

160 FORMAT (5X,'XMIN ',G14.5, 5X, 'XMAX = ',G14.5/

1 5X,'YMIN - ',G14.5, 5X, 'YAX ',G14.5)

KNDGR - 23

KOPT = 2

ZX1 - XMIN

ZX2 - XMAX

ZY1 - YMIN

ZY2 = YMAX
C

WRITE(JTERMO.170)

170 FORMAT ( 5X, 'INPUT THE PLOT VARIABLES',/

1 lOX, '0. USE FULL VALUES'/

2 lOX, '1. SET SCALES OF THE CURVES'/

2 lOX, '2. USE DEFAULT VALUES'/

3 lOX, ' ==> ',$)

READ (JTERMI,*) ITYPE

IF (ITYPE .EQ. 2) GOTO 190
KNDGR 22

IF (ITYPE .EQ. 1) THEN

WRITE(JTERMO,180)

READ (JTERMI,* ) ZX1, ZX2, ZY1, ZY2
ENDIF

180 FORMAT ( 5X, 'INPUT THE SCALE VALUES XMIN, XMAX, YMIN, YMAX'/

1 lOX, ' ==> '$)
CALL GRSSET (ZX1, ZX2, ZY1, ZY2)
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C
190 WRITE(PLTITL, 200)
200 FORMAT(' X-AXIS Y-AXIS GRID PLOT ')

GRDUMYC 6) - XMIN
GRDUMY( 6) - XMAX
GRDUMY( 7) - YMIN

GRDUMY( 8) = YMAX
GRDUMY(24) = 0.
GRDUMY(25) - O.

CALL GRCONTROL (ZRPLTG, KNDGR, PLTITL,
i1 ICELG2,ICELA2.KAUXG2ZXZYGRDUMY ,Z7,Z8,Z9,ZO)

WRITE(JTERMO,*) ' WANT TO PLOT MORE ? [Y/N]

READ(JTERMI,210) YESNO
210 FORMAT(A1)

IF (YESNO .Eq. 'y' .OR. YESNO .E. 'Y') GOTO 60
C

END

P2ITER

PROGRAM P2ITER

PARAMETER (MITER = 1000)

DIMENSION ZERROR(MITER), ZITER(MITER), XYPLOT(3,MITER),
1 NNOPT(3), N$(3), E1TAX$(3)

CHARACTER PLTITL*98, YESNO*I, E1TAX$*8, IDATE*9, ITIME*8,
1 MTITLE*80

DATA ETAX$/'ABSOLUTE' , 'MAXIMUM ', RMS

C
C THIS PROGRAM GENERATES THE ITERATION PLOTS
C

JTERMI - 5

JTERMO - 6
MTITLE - ' '
JPRINT - 7
JHISTO - 8

C

C READ THE POINTER SYSTEM INFORMATION
C

OPEN (UNIT=JHISTO, FILE='JHISTO.DAT', STATUS='OLD')

READ (JHISTO,1000) MTITLE

NITER 0

10 READ (JHISTO,1100,END=20) NITRE2, IP , KONVE2, KEQNE2.,
1 ERROR, ERROR2, ERROR3, TIME
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NITER = NITER + 1
ZITER(NITER) - NITER

C
C NOW SET THESE VALUES IN THE XYPLOT ARRAY

C

XYPLOT( 1,NITER) - ERROR1

XYPLOT( 2,NITER) - ERROR2

XYPLOT( 3,NITER) ERROR3

C
GOTO 10

C
20 CONTINUE

C INITIALIZE THE MAX/MIN COORDINATES
C

XMIN 0
XMAX NITER

C
C INITIALIZE THE GRAPHICS ROUTINES

C

WRITE(JTERM0,1200) MTITLE

READ (JTERMI,1300) PLTITL

IF (PLTITL(I:1) .NE. '1') MTITLE = PLTITL

PLTITL ' '

CALL GRINIT(JTERMI, JTERMO, MTITLE)

WRITE (JTERMO,1400)

READ (JTERMI,*) IYPLOT
C

IF (IYPLOT .EQ. 1) THEN

IDATE =

ITIME =
CALL GRSETTIME (IDATE, ITIME)

ENDIF

C

IF (IYPLOT .EQ. 3) THEN

WRItE (JTERMO,1500)

READ (JTERMI,1600) IDATE, ITIME

CALL GRSETTIME (IDATE, ITIME)

ENDIF

30 WRITE (JTERMO,1700)

READ (JTERMI.*) IYPLOT

IYPLOT - ABS(IYPLOT)
C
C FIND THE SCALE FACTORS FOR X AND Y AXES

YMIN 1.E20

YMAX -1.E20

DO 40 INODE - 1, NITER
ZERROR(INODE) XYPLOT(IYPLOT,INODE)

YNODE - ZERROR(INODE)

YMIN = MIN (YMIN ,YNODE)
YMAX = MAX (YMAX ,YNODE)

40 CONTINUE
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WRITE (JTERMO.1800) XMIN, XMAX, YMIN, YMAX

PLTItL(1:10) - 'ITERATION-'
PLTITL(11:19) - ElTAX$(IYPLOT) // ''
INDGR - 21
NOPT 2
CALL PLXSET(NOPT,INDGR)
NLINE 1
NNOPT(1) NOPT
NS(1) - NITER

CALL GRLINE(NNOPT,NLINE,PLTITL,INDGR,ZITER,ZERRORN$)

WRITE(JTERMO,*) ' WANT TO PLOT MORE ? [Y/N]

READ(JTERMI.1900) YESNO

IF (YESNO .EQ. 'n' .OR. YESNO .EQ. 'N') STOP

GOTO 30
C

C FORMAT STATEMENTS

C

1000 FORMAT(ASO)

1100 FORMAT(2I,1X,I2,1X,.I2,2X,4G15.5)

1200 FORMAT(SX,'THE MAIN TITLE IS :'/A80/5X,
1 'IF NO CHANGE IS DESIRED ENTER 1

1300 FORMAT(A)

1400 FORMAT (' INPUT THE VARIABLE TO SET THE

1 6X.' 1. SET TO BLANKS '/
2 6X,' 2. USE TODAY''S DATE'/

3 5X,' 3. DEFINE YOUR OWN CHARACTERS'/

1500 FORMAT(' INPUT DATE AND TIME')

1600 FORMAT(A9, A8)

1700 FORMAT (' THE FOLLOWING VARIABLES CAN BE
1 ' 1. ABSOLUTE ERROR '/
2 ' 2. MAXIMUM ERROR '/
3 ' 3. RMS ERROR '/)

1800 FORMAT (5X,'XMIN - ',G14.5, 5X, 'XMAX 

1 6X,'YMIN - ',G14.6, 5X, 'YMAX 
1900 FORMAT(A1)

END

OR ELSE INPUT TITLE')

DATE AS FOLLOWS:'/

E PLOTTED VS ITERATION'/

'.G14.5/
',G14.5)

PLXSET

SUBROUTINE PLXSET (IOPT$, INDGR)
C

DIMENSION IOPT$ (*)

SAVE IOPTP, INDGRP, XMIN, XMAX, YMIN, YMAX

C

C
C THIS SUBROUTINE SETS THE DISPLAY PARAMETERS FOR THE LINE CURVES
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C AND SETS THE SCALES OF THE PLOTS IN THE COMMON BLOCKS OF THE
C GRAFIC ROUTINES.
C *** HECK ALL THE CALLING ROUTINES AND SET DEFAULT IOPT$(1)

C BEFORE CALLING

C

C
C SET THE DEFAULT VALUES
C

JTERMI - 6
JTERMO - 6

C
WRITE(JTERMO, 20)

READ (JTERMI,*) ITYPE

IF (ITYPE .EQ. O) THEN

INDGR - 21

RETURN

ENDIF

IF (ITYPE .EQ. 4) THEN

INDGR - INDGRP

IOPT$(1) - IOPTP
IF (INDGR .EQ. 22) CALL
RETURN

ENDIF

GRSSET (XMIN, XMAX, YMIN, YMAX)

IF (ITYPE .EQ. 1) INDGR - 21

IF (ITYPE .EQ. 1 .OR. ITYPE
WRITE(JTERMO, 30)

READ (JTERMI,*) IOPT$(1)
ENDIF

.EQ. 3) THEN

IF (ITYPE .EQ. 2 .OR. ITYPE .Eq. 3) THEN

INDGR = 22

WRITE(JTERMO.40)
READ (JTERMI,* ) XMIN, XMAX, YMIN, YMAX
CALL GRSSET (XMIN, XMAX, YIN, YMAX)

WRITE(JTERMO,50) XMIN, XMAX, YMIN, YMAX

ENDIF

INDGRP INDGR

IOPTP = IOPT$(1)

RETURN
C
C

C format statements
C

C
20

1
2
3
4
5

FORMAT ( X,
lo0X,
lo0X,
lo0X,
lOX,
lo0X,.

'INPUT THE PLOT VARIABLES',/
'0O. USE DEFAULT VALUES'/
'I. SET FORM OF THE DISPLAY OF THE CURVES'/
'2. SET SCALES OF THE CURVES'/
'3. BOTH 2. AND 3. '/
'4. USE PREVIOUS VALUES '/
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6 lOX.

30 FORMAT ( 6X
i 6X,
2 lOX.

3 iOX,
4 lOX,
5 loX,

40 FORMAT ( 6X,
1 lOX,

I .=> ' $)
'INPUT THE PLOT DISPLAY PARAMETER'/

'USE THE FOLLOWING OR THEIR COMBINATION'/

'I. CLOSED CURVE'/

'2. SOLID LINE'/

'4. SYMBOLS'/

' => '.*)
'INPUT THE SCALE VALUES XMIN, XMAX, YMIN, YMAX'/
==> '.$)

60 FORMAT(lOX.'XMIN '. G14.5, 10X, 'XMAX = ',G14.5/
I lOX,'YMIN - ', G14.6, lOX, 'YMAX - ',G14.5)

END

ZRDUMY

SUBROUTINE ZRDUMY (IFUN, INDGR, PLTITL, ALIMITS, ISTRING,
1 Al,A2,A3,A4A5,A6,A7,A8,A9,A10)

CHARACTER PLTITL*(*), ISTRING*(*)
DIMENSION ALIMITS(*)

RETURN

END

ZRPLTC

SUBROUTINE ZRPLTC (IFUN. INDGR, PLTITL. ALIMITS, ISTRING,
1 MBNDG2ICELG2ICEA2ZXZY,ZXZY,ZFGRDUMY. IBNDG2,KAUXG2,IMARKN)

C

1
DIMENSION ZX(*). ZY(*). ZF(*), GRDUMY(*). ALIMITS(*),

ICELA2(*). IMARKN(*), KAUXG2(*)

DIMENSION ICELG2(10.*). IBNDG2(5,MBNDG2)

REAL*4 ZX, ZY, ZF. GRDUMY. ALIMITS
CHARACTER PLTITL*96 , ISTRING*80, NUMBER*10
CHARACTER ctime*8

c INTEGER*2 ICELG2. ICELA2, IBNDG2
DIMENSION RX(4).RY(4).XCOR(2.4).FCOR(4),ITWO(8),

1 FV(3),XV(3).YV(3),XP(9),YP(9).FP(9)

C include '[pervaiz.twodO.inc]grcon.inc'

include '[pervaiz.graficl]mpcomn.inc'

common /aat$$$/ astc$$, astySS
logical astc$S, asty$$SS
DATA ITWO /3,4,5,6,7,8,9,2/

C

C

C THIS SUBROUTINE GENERATES A GRID PLOT FOR THE GRID

C CONTAINED IN /G2COMN/
C

C

GOTO (1000, 2000, 3000, 4000, 5000), IFUN+1
C
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C -

C INITIALIZATION

C -
C
1000 CONTINUE

NCELA2 - NINT(GRDUMY(1))

NNODG2 - NINT(GRDUMY(2))

NCELG2 = NINT(GRDUMY(3))

NBNDG2 - NINT(GRDUMY(4))

XMIN - GRDUMY( 5)
XMAX - GRDUMY( 6)

YMIN - GRDUMY( 7)

YMAX - GRDUMY( 8)

ZMIN - GRDUMY(13)

ZMAX - GRDUMY(14)
ILABEL - NINT(GRDUMY(15))

INDDFM - NINT(GRDUMY(16))

IMIN - NINT(GRDUMY(27))

IMAX - NINT(GRDUMY(28))

rtime - grdumy(26)
ctime-, ,

if (rtime .ge. 0.) then

if (10.*rtime .ge. 1.) then

write(ctime,1010) rtime

else

write (ctime, 1020) rtime

endif

endif

1010 format('t - ',f3.1)

1020 format('t - ',f4.2)

JTERMO 6
JTERMI = 6

RETURN
C
C
C
C

C GET LIMITS OF THE DATA

C

C
2000 CONTINUE

C CALL GRGET_LIMITS (ZX,ZY,NNODG2 ,ALIMITS)

ALIMITS(1) - XMIN

ALIMITS(2) - XMAX

ALIMITS(3) - YMIN
ALIMITS(4) - YMAX

ALIMITS(6) - ZMIN

ALIMITS(6) - ZMAX
ISTRING - ' MINIMUM AND MAXIMUM COUNTOUR VALUES:'

RETURN

C -------- __________
C - -------------- --------
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C GET THE VALUE OF A CONTOUR
C -

C
C THE POSITION OF THE POINT IS STORED IN (ALIMITS(1),ALIMITS(2))

C

3000 CONTINUE

VAL 0

DO 3010 JCELL - 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)
C
C STORE CORNERS OF BOX
C

XCOR(1,1) - ZX(ICELG2(2,ICELL))
XCOR(2.1) = ZY(ICELG2(2,ICELL))

FCOR(1) - ZF(ICELG2(2,ICELL))
C

XCOR(1,2) = ZX(ICELG2 (4,ICELL))
XCOR(2,2) = ZY(ICELG2(4,ICELL))

FCOR(2) = ZF(ICELG2(4,ICELL))
C

XCOR(1,3) = ZX(ICELG2(6,ICELL))
XCOR(2,3) = ZY(ICELG2(6,ICELL))
FCOR(3) = ZF(ICELG2(6,ICELL))

C

XCOR(1,4) = ZX(ICELG2(8,ICELL))
XCOR(2,4) = ZY(ICELG2 (8,ICELL))
FCOR(4) = ZF(ICELG2(8,ICELL))

C

C SEE IF THE POINT IS IN THE CELL UNDER CONSIDERATION,

C AND IF SO DETERMINE THE VALUE OF THE CONTOUR HERE

C

CALL GRINSIDE ( IIN, XCOR, 4, ALIMITS(1), ALIMITS(2) )

IF (IIN .EQ. 1) THEN

CALL GRCONTOURVALUE (XCOR, FCOR,

1 ALIMITS(1), ALIMITS(2), VAL)
GOTO 3020

ENDIF

3010 CONTINUE
3020 WRITE (ISTRING,3030) VAL

3030 FORMAT (' Function value =',G15.6)
RETURN

C

C PLOT CONTOURS

C --- _________

C ONLY THE CONTOURS FOR THE CEWIC CELLS WILL BE PRODUCED

4000 CONTINUE
c call set-astc
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c IMAX - 210

c IMIN ' 60
DI - IMAX - IMIN

DF - ZMIN - ZMAX

DIDF - DI/DF
C
C SETUP THE CLIPPING WINDOW AND VIEWPORT (SEE GKDISAT FOR DIMENSIONS)

C AA-XGKOFF; CC-YGKOFF; BB"N-XGKOFF; DD=M-YGKOFF

C
AA - 0.5

BB - 8.5

CC - 0.5

DD = 6.5

AA - XGKOFF

BB - XGKMAX - XGKOFF

CC - YGKOFF

DD - YGKMAX - YGKOFF

ZGKMAX - MAX (XGKMAX.YGKMAX)
C LEAVE SPACE FOR COLOR KEY IF NEED BE

IF (ILABEL .NE. O) BB - BB - 1.

CALL GKS$SETWINDOW(2,AA ,BB,CC,DD)

C AA - AA/9.

C BB - BB/9.

C CC = CC/9.
C DD - DD/9.

AA - AA/ZGKMAX
BB = BB/ZGKMAX
CC - CC/ZGKMAX

DD - DD/ZGKMAX
CALL GKS$SETVIEWPORT(2 ,AA,BB,CC,DD)

CALL GKS$SELECTXFORM(2)

CALL GRGETSCALE (XMINGR,XMAXGR,YMINGR,YMAXGR)

C
C STEP THROUGH EACH BOX

C

DO 4090 JCELL - 1, NCELA2

if (aatc$$) then

write(6,*) jcell

astc$$ - .false.

call setastc

goto 4092

end if

C FIND THE ACTUAL CELL NUMBER

ICELL ICELA2(JCELL)

C SET THE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)

KS - ICELG2(3,ICELL)
KSE - ICELG2(4.ICELL)
KE - ICELG2(5,ICELL)
KNE - ICELG2(6,ICELL)
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KN ICELG2(7,ICELL)

KIW ICELG2(8, ICELL)
KW = ICELG2(9ICELL)

C
C STORE CORNERS OF BOX
C

XP(2) = ZX(KSW)
YP(a) - ZY(KSW)
FP(2) - ZF(KSW)

C
XP(4) = ZX(KSE)
YP(4) - ZY(KSE)
FP(4) - ZF(KSE)

C

XP() - ZX(KNE)

YP(6) - ZY(KNE)

FP(6) = ZF(KNE)
C

XP(8) = ZX(KNW)
YP(8) = ZY(KNW)

FP(8) = ZF(KNW)
C

C CHECK THE LIMITS OF THE RECTANGLE
C

XMIN = MIN (XP(2),XP(4),XP(8),XP(8))
XMAX - MAX (XP(2),XP(4),XP(6),XP(8))
YMIN = MIN (YP(2),YP(4),YP(6),YP(8))
YMAX = MAX (YP(2),YP(4),YP(6),YP(8))
FMIN - MIN (FP(2),FP(4),FP(6),FP(8))

FMAX = MAX (FP(2),FP(4),FP(6),FP(8))
C

IF (XMAX.LT.XMINGR .OR. XMIN.GT.XMAXGR) GOTO 4090

IF (YMAX.LT.YMINGR .OR. YMIN.GT.YMAXGR) GOTO 4090
C

C CHECK IF THE WHOLE QUADRILATERAL CAN BE COLORED
C

FRAT = (FMIN-FMAX)*DIDF
INDDIF = FRAT

FP(1) = 0.25*(FP(2)+FP(4)+FP(6)+FP(8))

IF (INDDIF .LT. 3) THEN

FRAT = (FP(1)-ZMAX)*DI_DF
INDDIF = IMIN + FRAT

XP(1) = XP(2)
XP(2) = XP(4)
XP(3) = XP(6)
XP(4) = XP(8)
YP(1) = YP(2)
YP(2) = YP(4)

YP(3) - YP(6)

YP(4) = YP(8)
CALL GRFILL(INDDIF, 1 ,XPYP,4)
GOTO 4090

ENDIF

C
C NOW STORE EDGES OF BOX
C
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IF (KS .NE. O) THEN
-XP(3) ZX(KS)

YP(3) - ZY(KS)

FP(3) - ZF(KS)

ELSE

XP(3) = 0.5*(XP(2)+XP(4))
YP(3) - 0.5*(YP(2)+YP(4))

FP(3) a 0.5*(FP(2)+FP(4))

ENDIF

C
IF (KE .NE. O) THEN
XP(5) - ZX(KE)

YP(5) = ZY(KE)
FP(5) - ZF(KE)

ELSE

XP(5) = 0.6*(XP(6)+XP(4))
YP(5) = O.6*(YP(6)+YP(4))
FP(5) = 0.5*(FP(6)+FP(4))

ENDIF
C

IF (KN

XP(7)

YP(7)

FP(7)
ELSE

XP(7)

YP(7)
FP(7)

ENDIF

C

IF (KW

XP (9)

YP(9)

FP(9)

ELSE

XP (9)
YP(9)

FP(9)

ENDIF

NE. 0) THEN

= ZX(KN)
= ZY(KN)
= ZF(KN)

= 0.5*(XP(8)+XP(6))
= 0.5*(YP(8)+YP(6))
- 0.5*(FP(8)+FP(6))

NE. O) THEN

- ZX(KW)

= ZY(KW)

= ZF(KW)

= o.5*(XP(2)+xP(8))
= 0.5*(YP(2)+YP(8))
- O.S*(FP(2)+FP(8))

NOW STORE CENTER OF BOX

XP(I) 0.25*(XP(2)+XP(4)+XP()+XP(8))

YP(1) .25*(YP(2)+YP(4)+YP(6)+YP(8))

DIVIDE THE CELL INTO EIGHT TRIANGLES

DO ITRI 2, 9

INXT ITWO(ITRI-1)

XV(i) - XP(ITRI)

YV(1) - YP(ITRI)

FV(1) FP(ITRI)

XV(2)

YV(2)
FV(2)

a XP(INXT)

a YP(INXT)

- FP(INXT)
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XV(3) = XP(1)
YV(3) YP(1)

FV(3) FP(1)

CALL GRSMCOLTRIN (XV,YV,FV,zmIN,zmAX, IMAX, IMIN, INDDFM)

ENDDO

C
C GO ONTO NEXT BOX

C
4090 CONTINUE

C
C RESET THE CLIPPING VALUES

C
4092 CALL GKS$SELECTXFORM(1)

C
C CHANGE THE CLIPPING PARAMETER FOR THE RIGHT BOUNDARY

C
IF(ILABEL.NE.O0) THEN

CALL GRGETCLIP (XMNCGR,XMXCGR,YMNCGR,YMXCGR)
XMXCOL = XMXCGR
XMXCGR - XMAXGR - 0.14*(XMAXGR-XMINGR)
CALL GRSETCLIP (XMNCGR,XMXCGR,YMNCGR,YMXCGR)

ENDIF
C
C DRAW THE BOUNDARIES
C

DO 4095 IB = 1, NCELG2
IMARKN(IB) = 0

4095 CONTINUE

DO 4060 IB 1, NBNDG2
INODE = IBNDG2(1,IB)
NCEL1 = IBNDG2(2,IB)
NCEL2 = IBNDG2(3,IB)
IEDGE IBNDG2 (4, IB)

IF (NCEL1 .EQ. O) GOTO 4060

C CHECK THE CORNER CELLS

IF (NCEL2 .EQ. O) THEN
C IF (IMARKN(NCEL1) .EQ. -1 .OR. KAUXG2(NCEL).EQ.O)
C 1 GOTO 4060

IF (KAUXG2(NCEL).EQ.O) GOTO 4060
IMARKN(NCEtl) - -1
DO 4030 IED = 2, 8, 2

IF (IED .EQ. 8) THEN
INX 2

ELSE
INX IED + 2

ENDIF
IF (IEDGE .EQ. IED .OR. IEDGE .EQ. INX) THEN

XED ZX(ICELG2(IED,NCEL1))
YED ZY(ICELG2(IED,NCEL1))
XNX ZX(ICELG2(INX,NCEL1))
YNX - ZY(ICELG2(INX,NCEL1))
CALL GKMOVE (XED, YED, O)
CALL GKDRAW (XNX, YNX, O)

ENDIF
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4030 CONTINUE
GOTO 4060

ENDIF

C CHECK THE EDGE CELLS
C

IF (IMARKN(NCEL1) .EQ. -1 .OR. KAUXG2(NCELl).EQ.O)

GOTO 4050

IMARKN(NCEL1) -1
DO 4050 IED - 3, 9, 2

IBG - IED - I
IF (IBG .EQ. 8) THEN

INX - 2

ELSE

INX = IBG + 2
ENDIF

IF (IEDGE .EQ. IED) THEN

XBG - ZX(ICELG2(IBG,NCEL1))

YBG = ZY(ICELG2(IBG,NCEL1))
XNX = ZX(ICELG2(INXNCEL1))

YNX = ZY(ICELG2(INX,NCEL1))

CALL GKMOVE (XBG, YBG, O)
CALL GK_DRAW (XNX, YNX, O)

ENDIF
4050 CONTINUE

IF (IMARKN(NCEL2) .EQ. -1 .OR. KAUXG2(NCEL2).Eq.O)
1 GOTO 4060

IMARKN(NCEL2) = -1
DO 4056 IED = 3. 9, 2

IBG = IED - 1

IF (IBG .EQ. 8) THEN

INX = 2

ELSE

INX IBG + 2

ENDIF

IF (IEDGE .Eq. IED) THEN
XBG = ZX(ICELG2(IBG,NCEL2))
YBG = ZY(ICELG2(IBG,NCEL2))

XNX = ZX(ICELG2(IN,NCEL2))
YNX ZY(ICELG2(INX,NCEL2))

CALL GKMOVE (XBG, YBG, O)
CALL GKDRAW (XNX, YNX, O)

ENDIF

4056 CONTINUE

4060 CONTINUE
C
C IF LABELING IS REQUIRED, DRAW THE KEY
C

IF(ILABEL.NE.O) THEN
CALL GRSETCLIP (XMNCGR,XMXCOL,YMNCGRYMXCGR)
XBI - XMAXGR - 0.120*(XMAXGR-XMINGR)
XB2 - XMAXGR - 0.080*(XMAXGR-XMINGR)
YT - YMAXGR - 2./31.0*(YMAXGR-YMINGR)

YB = YMINGR + 2./31.0*(YMAXGR-YMINGR)
DI - IMAX - IMIN
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DY = (YT-YB)/DI
YTT YT

C
DO 5030 INDEX - IMIN, IMAX

RX(1) = XB1

RX(2) - XB2

RX(3) = XB2

RX(4) = XB1

RY(1) = YT

RY(2) = YT

YT = YT-DY

RY(3) = YT

RY(4) = YT
CALL GRFILL(INDEX,1,RX,RY,4)

5030 CONTINUE

CALL GKMOVE(XB1,YT,0)

CALL GKDRAW(XB2,YT,O)
CALL GKDRAW(XB2,YTT,O)

CALL GKDRAW(XB1,YTT,O)

CALL GKDRAW(XB1 ,YT,O)

YT = YTT
C XB2 - XMAXGR - 0.060*(XMAXGR-XMINGR)

NMARK =10

DY1 - (YT-YB)/NMARK

DO 5040 IND = 1, NMARK+1

YRAT = (YT-YTT)/(YB-YTT)
FNO = zmAX + YRAT*(zmIN-zmAX)

IF (ABS(FNO) .LT. 1.E7) THEN

WRITE(NUMBER, 5050) FNO

ELSE

WRITE(NUMBER, 5070) FNO
ENDIF

CALL GKMOVE(XB2,YT-DY,O)
CALL GRANNOTATE(NUMBER)
YT = YT - DY1

5040 CONTINUE

XMXCGR = XMAXGR - 0.14*(XMAXGR-XMINGR)

CALL GRSETCLIP (XMNCGRXMXCGR,YMNCGR,YMXCGR)

ENDIF

5050 FORMAT(F8.2)

5070 FORMAT(G10.2)

if (rtime .ge. O) then

write(6,*) ' xbl xmaxgr xmingr',xbl,xmaxgrxmingr

xbl xbl - 0.25*(xmaxgr-xmingr)
ytt ytt - 2./31.0*(YMAXGR-YMINGR)

CALL GKMOVE(XB .YTT,O)
CALL GRANNOTATE(ctime)

endif

5000 RETURN

END
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ZRPLTG

SUBROUTINE ZRPLTG (IFUN, INDGR, PLTITL, ALIMITS, ISTRING,

1 ICELG2,ICELA2,KAUXG2,ZX,ZY,GRDUMY,Z7,Z8,Z9,Z10)
C

INCLUDE 'PERVAIZ.TWODO.INC] HEXCOD.INC

DIMENSION ZX(*), ZY(*), GRDUMY(*), ALIMITS(*). ICELA2(*)
DIMENSION ICELG2(10.*). KAUXG2(*)
REAL*4 ZX, ZY. GRDUMY, ALIMITS

DIMENSION XCOR(2,4)

common /ast$/ astc$*, astyS$

logical astc$$, asty$$

CHARACTER PLTITL*96 , ISTRING*80

c INTEGER*2 ICELG2, ICELA2

C

C
C THIS SUBROUTINE GENERATES A GRID PLOT FOR THE GRID

C CONTAINED IN /G2COMN/

C

C
JTERMI = 5
JTERMO = 6
NCELA2 - NINT(GRDUMY(1))

NNODG2 - NINT(GRDUMY(2))

XMIN - GRDUMY( 6)

XMAX - GRDUMY( 6)

YMIN - GRDUMY( 7)

YMAX - GRDUMY( 8)

OFFSETX GRDUMY(24)
OFFSETY GRDUMY(25)

GOTO (1000,2000,3000.4000,65000),IFUN+1
C
C

C INITIALIZATION
C

C

1000 RETURN

C
C

C GET LIMITS OF THE DATA
C

C
2000 CONTINUE
C

ALIMITS(1) - XMIN

ALIMITS(2) - XMAX

ALIMITS(3) - YMIN

ALIMITS(4) - YMAX

ALIMITS(S) - NCELA2

ALIMITS(6) - GRDUMY(4)
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ISTRING = ' TOTAL NUMBER OF CEWIC CELLS AND BOUNDARY NODES'

RETUN
C

C

C GET THE VALUE OF THE CELL

C ----------

C

C THE POSITION OF THE POINT IS STORED IN (ALIMITS(l),ALIMITS(2))

C

3000 CONTINUE

ALIMITS(1) = ALIMITS(1) - OFFSETX

ALIMITS(2) - ALIMITS(2) - OFFSETY
ICVAL = 0

ICORN1 = 0
ICORN2 = 0

ICORN3 = 0
ICORN4 = 0

DO 3010 JCELL = 1, NCELA2

if (astc$$) then

write(6,*) jcell

astc$$ = .false.
call set_astc

goto 3020

end if

FIND THE ACTUAL CELL NUMBER

ICELL = ICELA2(JCELL)

STORE CORNERS OF BOX

XCOR(1,1) = ZX(ICELG2(2,ICELL))
XCOR(2,1) ZY(ICELG2(2,ICELL))

C

XCOR(1,2) = ZX(ICELG2(4,ICELL))
XCOR(2,2) ZY(ICELG2(4,ICELL))

XCOR(1,3) ZX(ICELG2(6,ICELL))

XCOR(2,3) - ZY(ICELG2(8,ICELL))
C

XCOR(1.4) ZX(ICELG2(8,ICELL))

XCOR(2.4) - ZY(ICELG2(8,ICELL))

SEE IF THE POINT IS IN THE CELL UNDER CONSIDERATION,
AND IF SO DETERMINE THE VALUE OF THE CELL HERE

CALL GRINSIDE ( IIN, XCOR,
IF (IIN .Eq. 1) THEN

ICVAL - ICELL

ICORNI - ICELG2(2,ICELL)

ICORN2 - ICELG2(4,ICELL)

ICORN3 ICELG2(6.ICELL)
ICORN4 - ICELG2(8,ICELL)
GOTO 3020

ENDIF

4, ALIMITS(1), ALIMITS(2) )
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3010 CONTINUE

C SEE IF DETAILED INFORMATION ABOUT THE CELL IS NEEDED FOR THE

C INTERACTIVE GRID GENERATOR PROGRAM

3020 IF (ALIMITS(6) .LT. O) THEN
ISTRING - ' '
ALIMITS(5) ICVAL

RETURN

ENDIF

C
C USUAL INFORMATION

WRITE (ISTRING.3030) ICVAL, ICORNI. ICORN2, ICORN3, ICORN4

3030 FORMAT (' CELL VALUE -',I6,6X,'CELL CORNER POINTERS :'.4I7)

RETURN
C

C

C PLOT GRIDS
C

C
4000 CONTINUE

C LOOP THROUGH ALL FOUR CORNERS OF THE CELLS AT THIS LEVEL

C AND DRAW THE GRIDS

DO 4010 JCELL - 1, NCELA2

if (astc$$) then
write (,*) j cell
astc$$ - .false.
call setastc
goto 4020

end if

C FIND THE ACTUAL CELL NUMBER

ICELL - ICELA2(JCELL)

C MOVE'TO THE NORTHWEST CORNER OF THIS CELL

INODE - ICELG2(8.ICELL)

ZXNODE ZX ( INODE) + OFFSETX

ZYNODE - ZY ( INODE) + OFFSETY

KX - KAUXG2(ICELL)

CALL GKMOVE(ZXNODE ,ZYNODE ,0)

C DRAW TO ALL FOUR CORNERS OF THIS CELL

C

INODE - ICELG2(2,ICELL)

ZXNODE - ZX (INODE) OFFSETX

ZYNODE - ZY (INODE) + OFFSETY

CALL GKDRAW(ZXNODE,ZYNODE, O)

INODE - ICELG2(4.ICELL)

ZXNODE - ZX (INODE) + OFFSETX

ZYNODE - ZY (INODE) + OFFSETY

CALL GKDRAW(ZXNODE, ZYNODEO)
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IF(IAND(KXKLOOOF) .NE.0) THEN
INODE - ICELG2(8,ICELL)

ZXNODE - ZX (INODE) + OFFSETX

ZYNODE - ZY (INODE) + OFFSETY
CALL GKDRAW(ZXNODE,ZYNODE,O)

ENDIF

IF(IAND(KXKLOOF) .NE.O) THEN

INODE - ICELG2(8,ICELL)

ZXNODE - ZX (INODE) + OFFSETX
ZYNODE = ZY (INODE) + OFFSETY

CALL GKDRAW(ZXNODE,ZYNODE,O)
ENDIF

4010 CONTINUE

4020 RETURN

C

5000 CONTINUE

CALL GRREAL('INPUT X-OFFSET',OFFSETX)

CALL GRREAL('INPUT Y-OFFSET',OFFSETY)

GRDUMY(24) OFFSETX

GRDUMY(25) = OFFSETY

C
RETURN

END

ZRPLTL

SUBROUTINE ZRPLTL (IFUN, INDGR, PLTITL, ALIMITS, ISTRING,

1 ICELG2,ICELA2,ZX,ZY,ZF,GRDUMY,CONT,IBNDG2,KAUXG2,IMARKN)
C

DIMENSION ZX(*), ZY(*), ZF(*), GRDUMY(*), ALIMITS(*),

1 ICELA2(*), CONT(*) , IMARKN(*), KAUXG2(*)

DIMENSION XCOR(2,4). FCOR(4), CCHNGE(60), INDCHN(60)

DIMENSION ICELG2(10,*), IBNDG2(5,*)

REAL*4 ZX, ZY, ZF, GRDUMY, ALIMITS, CONT

co=mon /last$S/ astc$$, asty$$

logical astc$$, asty$$

CHARACTER PLTITL*96 , ISTRING*80, NUMBER*10

c INTEGER*2 ICELG2, ICELA2, IBNDG2

C

C

C THIS SUBROUTINE GENERATES A GRID PLOT FOR THE GRID

C CONTAINED IN /G2COMN/
C

C

JTERMO - 6
JTERMI 5

NCELA2 - NINT(GRDUMY( 1))
NNODG2 - NINT(GRDUMY( 2))
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NCELG2 - NINT(GRDUMY( 3))

NBNID 2 - NINT(GRDUMY( 4))

NCONTS - NINT(GRDUMY(17))

NLABEL - NINT(GRDUMY(2O))

ICINC - NINT(GRDUMY(21))

INTERF NINT(GRDUMY(22))

XMIN = GRDUMY( 5)
XMAX = GRDUMY( 6)
YMIN = GRDUMY( 7)
YMAX = GRDUMY( 8)
ZMIN - GRDUMY(13)

ZMAX = GRDUMY(14)
ZCBASE - GRDUMY(18)
ZCSTEP - GRDUMY(19)

OFFSETX = GRDUMY(24)
OFFSETY - GRDUMY(25)

C

GOTO (1000,2000,3000,4000,5000),IFUN+i

C
C
C
C
C
1000
1010

INITIALIZATION

WRITE(JTERMO,1010) NCONTS

FORMAT(5X,'THE CONTOUR LEVELS ARE :',15)

DO 1030 I 1, NCONTS

CONT(I) = ZCBASE + (I-1)*ZCSTEP
1030 CONTINUE

WRITE(JTERMO,1020) ((I, CONT(I)),I=1,NCONTS)

1020 FORMAT(3(1X,I2,2X,'CONT-',G13.4))

NCHNGE - 0

1040 WRITE(JTERMO,OS1050)

1050 FORMAT(X, 'INPUT NUMBER OF CONTOUR
READ (JTERMI,*) ICHNGE

IF (ICHNGE .EQ. O) THEN

RETURN

ELSE

NCHNGE - NCHNGE + 1

INDCHN(NCHNGE) - ICHNGE

READ (JTERMI,*) CCHNGE(NCHNGE)
GOTO 1040

ENDIF

C
C
C
C
C
2000

C

VALUE TO BE CHANGED OR 0')

GET LIMITS OF THE DATA

CONTINUE

CALL GRGETLIMITS (ZX,ZY,NNODG2,ALIMITS)

ALIMITS(1) - XMIN

ALIMITS(2) - XMAX

ALIMITS(3) - YMIN

ALIMITS(4) YMAX

ALIMITS() - ZMIN
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ALIMITS (6) - ZMAX
ISTRING - ' MINIMUM AND MAXIMUM COUNTOUR VALUES:'
RETURN

C
C ....

C GET THE VALUE OF A CONTOUR
C

C

C THE POSITION OF THE POINT IS STORED IN (ALIMITS(1),ALIMITS(2))
C

3000 CONTINUE

VAL = 0
DO 3010 JCELL 1. NCELA2

if (astc$$) then
write (,*) jcell

astc$$ = .false.
call setastc

goto 3020
end if

C FIND THE ACTUAL CELL NUMBER

ICELL = ICELA2(JCELL)
C
C STORE CORNERS OF BOX
C

XCOR(1,1) = ZX(ICELG2 (2,ICELL) )
XCOR(2,1) = ZY(ICELG2(2,ICELL))
FCOR(1) = ZF(ICELG2 (2,ICELL))

C

XCOR(1,2) = ZX(ICELG2(4,ICELL))
XCOR(2,2) = ZY(ICELG2(4,ICELL) )
FCOR(2) = ZF(ICELG2(4,ICELL))

C

XCOR(1,3) = ZX(ICELG2 (6ICELL))
XCOR(2,3) - ZY(ICELG2 (, ICELL))
FCOR(3) = ZF(ICELG2 (6,ICELL))

C

XCOR(1,4) = ZX(ICELG2(8,ICELL))
XCOR(2,4) = ZY(ICELG2(8,ICELL))
FCOR(4) - ZF(ICELG2(8,ICELL))

C

C SEE IF THE POINT IS IN THE CELL UNDER CONSIDERATION,
C AND IF SO DETERMINE THE VALUE OF THE CONTOUR HERE

C

CALL GRINSIDE ( IIN, XCOR, 4, ALIMITS(I), ALIMITS(2) )
IF (IIN .EQ. 1) THEN

CALL GRCONTOURVALUE (XCOR, FCOR,
1 ALIMITS(1), ALIMITS(2), VAL)

GOTO 3020

ENDIF

3010 CONTINUE

3020 WRITE (ISTRING,3030) VAL

3030 FORMAT (' Function value =',G15.6)

RETURN
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C -

C -- -------

C PLOT CONTOURS

C
C ONLY THE CONTOURS FOR THE CEWIC CELLS WILL BE PRODUCED

4000 CONTINUE

if (xoffset .ne . .or. yoffset .ne. 0.) goto 4001

C
C IF LABELING IS REQUIRED. DRAW THE KEY

C
IF (NLABEL .NE. O) THEN

CALL GR_GETSCALE (XMINGR, XMAXGR. YMINGR, YMAXGR)

CALL GR_GET_CLIP (XMNCGR, XMXCGR, YMNCGR, YMXCGR)
DO 4010 ICONT - 1. NLABEL

XX - XMAXGR - 0.120* (XMAXGR-XMINGR)
YY - YMAXGR - REAL(ICONT*3-1)/31.0*(YMAXGR-YMINGR)

CALL GKMOVE(XX. YY. ICONT)

YY YMAXGR - REAL(ICONT*3)/31.0*(YMAXGR-YMINGR)

WRITE (NUMBER.6000) CONT(1+ICINC*(ICONT-1))

CALL GK_MOVE (XX, YY, O)

CALL GR_ANNOTATE ( NUMBER )

4010 CONTINUE

C CHANGE THE CLIPPING PARAMETER FOR THE RIGHT BOUNDARY

XMXCGR - 0.125*XMINGR + 0.875*XMAXGR

CALL GR_SET_CLIP (XMNCGR,XMXCGR,YMNCGR,YMXCGR)
ENDIF

C

C DRAW THE BOUNDARY. ADDING CONTOUR MARKINGS IF REQUIRED

C

4001 DO 4015 IB 1, NCELG2

IMARKN(IB) 0
4015 CONTINUE

DO 4060 IB - 1, NBNDG2

if (stc$$) then
write(6,*) jcell

astc$$ - .fals.
call setastc
goto 4095

end if

INODE IBNDG2(1,IB)

NCEL1 - IBNDG2(2,IB)

NCEL2 - IBNDG2(3,IB)

IEDGE - IBNDG2(4.IB)

IF (NCEL1 .EQ. O) GOTO 4060
C CHECK THE CORNER CELLS

IF (NCEL2 .EQ. O) THEN
C IF (IMARKN(NCELI) .EQ. -1 .OR. KAUXG2(NCEL1).EQ.O)

C 1 GOTO 4060

IF (KAUXG2(NCELI).EQ.O) GOTO 4060

IMARKN(NCEL1) - -1

DO 4030 IED - 2. 8, 2
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IF (IED .EQ. 8) THEN
INX = 2

ELSE

INX = IED + 2

ENDIF

IF (IEDGE .EQ. IED .OR. IEDGE .Eq. INX) THEN
XED = ZX(ICELG2(IED,NCEL1)) + xoffset
YED = ZY(ICELG2(IED,NCEL1)) + yoffset
FED = ZF(ICELG2(IED,NCEL1))
XNX - ZX(ICELG2(INX,NCEL1)) + xoffset
YNX = ZY(ICELG2(INX,NCEL1)) + yoffset
FNX - ZF(ICELG2(INX,NCEL1))
CALL GKMOVE (XED, YED, O)

CALL GKDRAW (XNX, YNX, O)

DO 4020 ICONT = 1, NLABEL
FCONT CONT((ICONT-1)*ICINC + 1)

CALL GR_CROSS (FED,FNX,FCONT,ALFA)

IF (ALFA.GE.O.0 .AND. ALFA.LE.1.0) THEN

XX = XED*(1.O-ALFA)+ZX(INX)*ALFA
YY = YED*(1.O-ALFA)+ZY(INX)*ALFA
CALL GKMOVE(XX, YY, -ICONT)

ENDIF

4020 CONTINUE

ENDIF

4030 CONTINUE

GOTO 4060

ENDIF

C CHECK THE EDGE CELLS

IF (IMARKN(NCEL1) .EQ. -1 .OR. KAUXG2(NCEL1).EQ.O)

1 GOTO 4050

IMARKN(NCEL1) -1
DO 4050 IED- 3. 9. 2

IBG - IED - 1

IF (IBG .EQ. 8) THEN
INX 2

ELSE

INX IBG + 2

ENDIF

IF (IEDGE .EQ. IED) THEN

XBG - ZX(ICELG2(IBG.NCEL1)) + xoffset

YBG = ZY(ICELG2(IBG.NCEL1)) + yoffset

FBG = ZF(ICELG2(IBG,NCEL1))
XNX ZX(ICELG2(INX,NCEL1)) + xoffset

YNX = ZY(ICELG2(INX,NCELI)) + yoffset

FNX = ZF(ICELG2(INX,NCEL1))
CALL GK_MOVE (XBG, YBG, O)
CALL GK_DRAW (XNX, YNX, 0)
DO 4040 ICONT 1, NLABEL

FCONT CONT((ICONT-1)*ICINC + 1)

CALL GRCROSS (FBG,FNX,FCONT,ALFA)

IF(ALFA.GE.O.O .AND. ALFA.LE.1.0) THEN

XX = XBG*(1.O-ALFA) +XNX*ALFA

YY = YBG*(1.0-ALFA)+YNX*ALFA

CALL GK_MOVE(XX, YY, -ICONT)
ENDIF
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4040 CONTINUE

- ENDIF

4050 CONTINUE

IF (IMARKN(NCEL2) .Eq. -1 .OR. KAUXG2(NCEL2).EQ.O)
1 GOTO 4060

IMARKN(NCEL2) -I

DO 4055 IED = 3, 9, 2

IBG - IED - 1

IF (IBG .EQ. 8) THEN

INX = 2
ELSE

INX - IBG + 2

ENDIF

IF (IEDGE .Eq. IED) THEN

XBG = ZX(ICELG2(IBG,NCEL2)) + xoffset
YBG - ZY(ICELG2(IBG,NCEL2)) + yoffset

FBG = ZF(ICELG2(IBG,NCEL2))
XNX = ZX(ICELG2(INX,NCEL2)) + xoffset
YNX ZY(ICELG2(INX,NCEL2)) + yoffset

FNX = ZF(ICELG2(INX,NCEL2))

CALL GK_MOVE (XBG, YBG, 0)
CALL GKDRAW (XNX, YNX, O)

DO 4054 ICONT 1, NLABEL

FCONT = CONT((ICONT-1)*ICINC + 1)
CALL GRCROSS (FBG,FNX,FCONT,ALFA)

IF(ALFA.GE.O.O .AND. ALFA.LE.1.0) THEN
XX = XBG*(1.O-ALFA)+XNX*ALFA

YY = YBG*(1.O-ALFA)+YNX*ALFA

CALL GKMOVE(XX, YY, -ICONT)
ENDIF

4054 CONTINUE

ENDIF

4055 CONTINUE

4060 CONTINUE

C

C SLIGHTLY MODIFY THE CONTOUR ARRAY TO REMOVE NOISE

C
IF (NCHNGE .NE. O) THEN

DO 4070 ICHNGE 1. NCHNGE

CONT(INDCHN(ICHNGE)) = CCHNGE(ICHNGE)
4070 CONTINUE

ENDIF

C
C STEP THROUGH EACH BOX

C

DO 4090 JCELL 1, NCELA2

ii (astc$$) then

write(6,*) jcell
astc$$ = .false.
call setastc

goto 4095
end if

C FIND THE ACTUAL CELL NUMBER
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ICELL ICELA2(JCELL)

C SET THE POINTERS FOR THIS CELL

KSW - ICELG2(2,ICELL)

KS = ICELG2(3,ICELL)

KSE - ICELG2(4,ICELL)

KE = ICELG2(5,ICELL)
KNE = ICELG2(6,ICELL)

KN = ICELG2(7,ICELL)
KNW ICELG2(8,ICELL)

KW = ICELG2(9,ICELL)
C

C STORE CORNERS OF BOX
C

XSW ZX(KSW) + xoffset

YSW = ZY(KSW) + yoffset
FSW = ZF(KSW)

C

XSE = ZX(KSE) + xoffset
YSE = ZY(KSE) + yoffset
FSE = ZF(KSE)

C

XNE = ZX(KNE) + xoffset
YNE = ZY(KNE) + yoffset
FNE = ZF(KNE)

C

XNW = ZX(KNW) + xoffset
YNW = ZY(KNW) + yoffset
FNW = ZF(KNW)

C

C NOW STORE EDGES OF BOX
C

IF (KS .NE. O) THEN

XS - ZX(KS)

YS = ZY(KS)
FS - ZF(KS)

ELSE

XS - O. 6*(XSW+XSE)
YS - O.5*(YSW+YSE)

FS = O. 5*(FSW+FSE)
ENDIF

C

IF (KE .NE. O) THEN
XE - ZX(KE)

YE - ZY(KE)
FE - ZF(KE)

ELSE

XE - O. 5*(XNE+XSE)

YE - O. 6*(YNE+YSE)
FE O. * (FNE+FSE)

ENDIF

C

IF (KN .NE. O) THEN

XN - ZX(KN)

YN - ZY(KN)
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FN = ZF(KN)
ELSE

XN - O.5*(XNW+XNE)

YN - 0.5*(YNW+YNE)

FN = 0.5*(FNW+FNE)

ENDIF

IF (KW

XW -
YW =
FW -

ELSE

XW -
YW =
FW -

ENDIF

.NE. O) THEN

ZX(KW)

ZY(KW)

ZF(KW)

O.5*(XSW+XNW)

0.5* (YSW+YNW)

0.6*(FSW+FNW)

NOW STORE CENTER OF BOX

XC = 0.25*(XSW+XSE+XNE+XNW)

YC 0.25*(YSW+YSE+YNE+YNW)

FC = 0.25*(FSW+FSE+FNE+FNW)

STEP THROUGH EACH CONTOUR

DO 4080 ICNT = 1, NCONTS
CNT CONT(ICNT)

CALL GR_CBOX(XSW,
I

CALL GRCBOX(XS ,
1

CALL GRCBOX(XC ,

CALL GRCBOX(XW ,

YSW, FSW,

XC , YC ,
YS . FS ,

XE . YE ,
YC , FC ,

XNE, YNE,
YW . FW ,

XN , YN ,

XS ,
FC ,

XSE,
FE ,

XE ,
FNE,
XC ,
FN ,

YS , FS ,
XW , YW,

YSE, FSE,
XC . YC,

YE , FE ,
XN , YN ,
YC , FC ,

XNW, YNW,

CONTINUE

SEE IF YOU WANT TO DRAW INTERFACE MARKS

IF (INTERF .NE. O) THEN

IF (KS .NE. O) THEN
CALL GKMOVE (XS
CALL GKDRAW (XS

ENDIF

IF (KE .NE. O) THEN

CALL GKMOVE (XE

CALL GKDRAW (XE

ENDIF

IF (KN .NE. O) THEN

CALL GKMOVE (XN

CALL GKDRAW (XN
ENDIF

,YS, O)
,YS, INTERF)

,YE, O)

,YE, INTERF)

,YN, O)
,YN, INTERF)

C

IF (KW .NE. O) THEN
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CALL GKMOVE (XW ,YW, 0)
CALL GKDRAW XW ,YW, INTERF)

ENDIF

ENDIF

GO ONTO NEXT BOX

CONTINUE

CONTINUE

6000 FORMAT(F10.4)
RETURN

5000 CONTINUE

C
WRITE (JTERMO,1778)

1778 FORMAT(' INPUT THE NUMBER (NCONT) OF CONTOURS DESIRED:'/5X,

1 '1. NCONT < 0 : ABS(NCONT) CONTOURS ARE PLOTTED'/5X,

3 '2. 1000 < NCONT < 2000 : NCONT-2000 CONTOURS ARE PLOTTED'/

4 5X, 'AUTOMATIC SCALING IS DONE FOR CASES 2 AND 3' )

READ (JTERMI,*) NCONT
C

IF (NCONT .LT. O) THEN

WRITE (JTERMO,1800)

READ (JTERMI, *)

ENDIF

1800 FORMAT(' CONTOURS ARE

1 'CONTOUR(I)-ZCBASE +

2 5X,'INPUT ZCBASE AND

C

ZCBASE, ZCSTEP

DEFINED BY:'/SX,

(I-1)*ZCSTEP ; I =
ZCSTEP'

1 TO CONTOURS'/

)

C NCONTS IS THE ACTUAL NUMBER OF CONTOURS,

C

NC1

NCONTS

NC2

= ABS (NCONT)
= MOD (NC1.1000)

- NC1 / 1000

NLABEL 0
ICINC - 0

FIND THE CONTOUR LEVELS

IF (NCONT .GT. O) THEN

CALL GRSCALE (ZMIN,
ENDIF

(ZCBASE : BASE CONTOUR LEVEL,

ZCSTEP : CONTOUR INCREMENT )

ZMAX, NCONTS-1, ZCBASE, ZCSTEP)

GRDUMY(17) - NCONTS
GRDUMY(18) - ZCBASE
GRDUMY(19) - ZCSTEP
GRDUMY(20) - NLABEL
GRDUMY(21) - ICINC
GRDUMY(22) - 0.

CALL GRREAL('INPUT
CALL GRREAL('INPUT

GRDUMY(24) - OFFSETY

GRDUMY(25) - OFFSETY

X-OFFSET',OFFSETX)
Y-OFFSET',OFFSETY)
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RETUBN

END

ZRVECT

SUBROUTINE ZRVECT(IFUN,INDGR,PLTITL,ALIMITS. ISTRING,

1 ZX,ZY,ZP.ZT.KAUXG2.GRDUMY.ICELG2,ICELA2,IPOINT,IMARKN)
C
c IMPLICIT INTEGER (H)

DIMENSION ZX(*).ZY(*),ZP(*).ZT(*),GRDUMY(*), XCOR(2,4).

1 ALIMITS(4), FCOR(4), KAUXG2(*)

CHARACTER PLTITL*96 , ISTRING*80

c INTEGER*2 ICELG2(10,*)ICELA2(*),IPOINT(*),IMARKN(*)

INTEGER ICELG2(10,*),ICELA2(*),IPOINT(*),IMARKN(*)

INCLUDE '[PERVAIZ.TWODO.INC]HEXCOD.INC'

C

C
C THIS SUBROUTINE GENERATES VECTOR PLOTS

C

C
JTERMO - 6

UMIN - GRDUMY( 9)

UMAX - GRDUMY(10)

VMIN - GRDUMY(lI)

VMAX - GRDUMY(12)

NCELA2 - NINT(GRDUMY( 1))

NNODG2 - NINT(GRDUMY( 2))

NCELG2 - NINT(GRDUMY( 3))

MAXNOD - NINT(GRDUMY(23))

GOTO (1000.2000,3000.4000,6000) IFUN + 1
C
C

C INITIALIZATION
C

C

1000 RETURN

C

C

C GET LIMITS OF THE DATA
C

C

2000 CONTINUE

C CALL GRGETLIMITS (ZX,ZY.MAXNOD ALIMITS)

ALIMITS(1) - GRDUMY( 5)

ALIMITS(2) - GRDUMY( 6)

ALIMITS(3) - GRDUMY( 7)
ALIMITS(4) - GRDUMY( 8)
ALIMITS(S) - GRDUMY(11)

ALIMITS(6) - GRDUMY(12)
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WRITE(ISTRING,2010) UMIN, UMAX

2010 FORMAT(IOX,'UMIN-',G15.7,10X,'UMAX=',G15.7 )

RETURN

C
C 
C GET THE VECTOR VALUE
C

C
C THE POSITION OF THE POINT IS STORED IN (ALIMITS(l) ,ALIMITS(2))

C

3000 CONTINUE

C

UVAL - 0
WAL = 0

C
DO 3010 JCELL = 1, NCELA2

C FIND THE ACTUAL CELL NUMBER

ICELL = ICELA2(JCELL)
C
C STORE CORNERS OF BOX

C

XCOR(1,1) = ZX(ICELG2(2,ICELL))
XCOR(2,1) = ZY(ICELG2(2,ICELL))
XCOR(1,2) = ZX(ICELG2(4,ICELL))
XCOR(2.2) = ZY(ICELG2(4,ICELL))
XCOR(1,3) - ZX(ICELG2(6,ICELL))

XCOR(2.3) - ZY(ICELG2(6,ICELL))

XCOR(1,4) = ZX(ICELG2(8,ICELL))
XCOR(2,4) = ZY(ICELG2(8,ICELL))

C

C SEE IF THE POINT IS IN THE CELL UNDER CONSIDERATION,
C AND IF SO DETERMINE THE VALUE OF THE VECTOR HERE

C

CALL GRINSIDE ( IIN, XCOR, 4, ALIMITS(1), ALIMITS(2) )

C

IF (IIN .EQ. 1) THEN

FCOR(1) ZP(ICELG2(2,ICELL))

FCOR(2) - ZP(ICELG2(4,ICELL))

FCOR(3) = ZP(ICELG2(6,ICELL))
FCOR(4) ZP(ICELG2(8,ICELL))

CALL GRCONTOURVALUE (XCOR. FCOR,

1 ALIMITS(1), ALIMITS(2), UVAL)

FCOR(1) ZT(ICELG2(2,ICELL))

FCOR(2) - ZT(ICELG2(4,ICELL))

FCOR(3) ZT(ICELG2(6,ICELL))

FCOR(4) - ZT(ICELG2(8,ICELL))

CALL GRCONTOURVALUE (XCOR, FCOR,

1 ALIMITS(), ALIMITS(2), VVAL)

GOTO 3020
ENDIF

3010 CONTINUE

C
3020 AMAG - SQRT(UVAL**2 + VVAL**2)

AANG - 0
IF (AMAG .NE. O) AANG - ATAN2D (VVAL, UVAL)
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WRITE (ISTRING,3030) UVAL, WAL, AMAG, AANG

3030 FORMAT (' U',G14.6,3X,'V-',G14.5,3X,'MAG-',G14.5,

1 3X, 'ANGLE-' ,F9.32X, DG')

RETURN

C
C
C PLOT CONTOURS

C

C
4000 CONTINUE

C
C GET THE REQUIRED SYMBOL SIZE

C
CALL GRGETIOINF (DUM,DUM,DUM,LDEV)

IF (LDEV .NE. 41) CALL PLTOFF
SIZE - SQRT(FLOAT(NNODG2))*MAX(UMAX,VMAX)

SIZE 1./SIZE
WRITE(JTERMO,*) ' RECOMMENDED VALUE OF SYMSIZ',SIZE

CALL GRREAL('ENTER SYMBOL SIZE',SYMSIZ)

IF (LDEV .NE. 41) CALL PLTON

SIZE - ABS(SYMSIZ)
C

C SCALE SIZE TO SOMETHING RELATED TO THE DRAWING SCALE

C
CALL GRGETSCALE (X1, X2, Y1, Y2)

SZX = SIZE*(X2-X1)
SZY SIZE*(Y2-Y1)
SIZE - MAX(SZX,SZY)

C

C FOR EACH POINT, CALCULATE FLOW ANGLE AND MAGNITUDE

C AND PLOT BODY OF ARROW.

C

DO 4010 I - 1, MAXNOD

J - IPOINT(I)
UU - ZP(J)

W - ZT(J)
CALL GMOVE ( ZX(J), ZY(J), O)
XX = SIZE*UU + ZX(J)
YY - SIZE*VVW + ZY(J)
CALL GKDRAW ( XX, Y, 0 )

C DRAW THE HEAD OF THE ARROW

IF (SYMSIZ .GE. 0.) THEN

XXI - XX + SIZE*(-.25*UU - .16*W)
YY1 - YY + SIZE*(-.25*WV + .15*UU)

CALL GKDRAW ( XX1, YY1, 0 )

XX2 - XX + SIZE*(-.26*UU + .15*VW)
YY2 - YY + SIZE*(-.25*WV - .15*UU)
CALL GKMOVE ( XX2, YY2, O)
CALL GKDRAW ( XX, YY, O)

ENDIF

4010 CONTINUE
RETURN

C
5000 CONTINUE

C
C RESET THE MARRED NODES IF PLOTTING MORE THAN ONCE

C

1086



DO INODE - 1, NNODG2

INIARKN(INODE) - 0
ENDDd

C
DO 5080 ICELL 1, NCELG2

SET THE POINTERS FOR THIS CELL

KC
KSW
KS
KSE
KE
KNE
KN
KNW
KW
KX
K6LEVI
LEVELI

= ICELG2(1,ICELL)
= ICELG2(2.ICELL)
- ICELG2(3,ICELL)
= ICELG2(4, ICELL)
= ICELG2 (5,ICELL)

= ICELG2 (, ICELL)
= ICELG2(7,ICELL)
- ICELG2(8,ICELL)
- ICELG2(9,ICELL)
= KAUXG2(ICELL)
- IAND(KX,KUOOOF)

- ISHFT(KSLEVI,-16)

MARK THE NODES WHICH ARE DONE WITH IMARKN(NODE)=-1

IF (LEVELI .EQ. O) THEN
IF (IMARKN(KSW) .NE. -1)

KOUNT = KOUNT

IMARKN(KSW) = -1
IPOINT(KOUNT) = KSW

ENDIF

THEN
+ 1

C

IF (IMARKN(KSE) .NE. -1) THEN
KOUNT = KOUNT + 1

IMARKN(KSE) = -1
IPOINT(KOUNT) = KSE

ENDIF

C

IF (IMARKN(KNE)
KOUNT

IMARKN(KNE)
IPOINT (KOUNT)

ENDIF

IF (IMARKN(KNW)
KOUNT

IMARKN (KNW)
IPOINT (KOUNT)

ENDIF

.NE. -1) THEN

= KOUNT + 1
-1

= KNE

.NE. -1) THEN
= KOUNT + 1
= -1
= KNW

ENDIF

CONTINUE

MAXNOD - KOUNT

GRDUMY(23) MAXNOD
C

RETURN
END
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D.6 Sample input files

This section contains the sample files INPUTI.DAT containing the input parameters

and INPUTC.DAT containing the chemistry information for the reacting scramjet inlet

problem in Section (8.3.2).

D.6.1 INPUTI.DAT

2-D REACTING SCRAMJET WITH PREMIXED FUEL INJECTION; M10
* COMMENT
ALPHA2-1.0

AMCHFL-6.6569

BETAA2-0.2

CFLNTI=0.5
CFLXTI-0.6

DELTA2-0.1

EPSOTI-O.01

EPSITI=O.05

EPSLE21. E-10

ERRMTI-1.0

FCTRTI1.O0

GAMMA2-0.4

IMPLTI- 0 1: EXPLICIT
JREADS- 078

K1ADA2- 1

K2ADA2- 0
KADPTI- 99
KDPENI- 2

KEQNE2- 6
KFACTI- 0
KMERA2- 1

KONVE2- 2

KROGER- 1

KSRTE2= 1001

MALVG2- 2

METHA2- 6
MITRA2-10000

MITRE2- 1000

MITRPS- 201

NGIVTI" 2
MTHRA2= 1
NREACH- 2

NSPECH- 5

NXTDA2- 2
PRINTO-O.2

PRESFL-80000.
SMAXE2-0.60
SMINE2-0.05

TIMXTI-10000.
TREFFL-880.
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TRIGCH-1000.

D.6.2 INPUTC.DAT

0
0.2276642
0.0000000
0.0229493
0.0000000
0.7493865

1 0
0 2
0 2
0 0

5

0.2276642
0.0000000
0.0229493
0.0000000
0.7493865

1 0 0
0 0 0
1 0 0

0 2 0

0.8 -10. 2448.4
3.26439 0. 8992.0

2 5
-1600. -13. 18940.6
-19.7367 1. -69415.0
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