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Abstract

Hyperspectral sensors observe hundreds or thousands of narrow contiguous spectral
bands. The use of hyperspectral imagery for remote sensing applications is new
and promising, yet the characterization and analysis of such data by exploiting both
spectral and spatial information have not been extensively investigated thus far. A
generic methodology is presented for detecting and compensating anomalies from
hyperspectral imagery, taking advantage of all information available – spectral and
spatial correlation and any a priori knowledge about the anomalies. An anomaly is
generally defined as an undesired spatial and spectral feature statistically different
from its surrounding background.

Principal component analysis (PCA) and the Iterative Order and Noise (ION)
estimation algorithm provide valuable tools to characterize signals and reduce noise.
Various methodologies are also addressed to cope with nonlinearities in the system
without much computational burden. An anomaly compensation technique is applied
to specific problems that exhibit different stochastic models for an anomaly and its
performance is evaluated. Hyperspectral anomalies dealt with in this thesis are (1)
cloud impact in hyperspectral radiance fields, (2) noisy channels and (3) scan-line
miscalibration. Estimation of the cloud impact using the proposed algorithm is es-
pecially successful and comparable to an alternative physics-based algorithm. Noisy
channels and miscalibrated scan-lines are also fairly well compensated or removed
using the proposed algorithm.

Thesis Supervisor: David H. Staelin
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Chapter 1

Introduction

The evolution of passive remote sensing has witnessed the collection of measurements

with significantly greater spectral breadth and resolution. Hyperspectral sensors col-

lect a spectrum from each point in a scene. They differ from multispectral sensors

in that the number of bands is much higher (hundreds or even thousands) and the

spectral bands are generally contiguous. For remote sensing applications, they are

typically deployed on either aircraft or satellites. The data product from a hyperspec-

tral sensor is a three-dimensional array or “cube” of data with the width and length

of the array corresponding to spatial dimensions and the spectrum of each point as

the third dimension. Figure 1-1 shows a 224-spectral-band image cube observed from

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [46]. Hyperspectral

imaging from airborne or spaceborne sensors has broad applications in resource man-

agement, agriculture, mineral exploration, environmental monitoring, and weather

forecasting.

1.1 Problem statement

One of the challenges associated with the analysis and processing of a hyperspectral

image is that it often contains undesired attributes. Real-world data often have

unwanted artifacts of several different natures. They can be various types of noise or

instrument miscalibration, or just contributions from a benign but unwanted source.

17



Figure 1-1: Hyperspectral image cube from Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) [46]

For example, if it is only atmosphere that we are investigating, then the surface effect

needs to be eliminated, or vice versa. In the thesis, I will establish an efficient method

to detect and compensate for the unwanted contributions in hyperspectral images.

An anomaly is defined as an unwanted spatial and spectral signature that is sta-

tistically distinct from its surrounding. The statistics and a priori knowledge about

an anomaly and its surrounding background is specific to an application at hand.

A hyperspectral data set, X, in “radiance” or reversibly “brightness temperature”

as will be discussed in the subsequent chapter, can be represented as a I × J matrix,

with I being the number of channels, and J the number of pixels. Each element of

data matrix X has an additive anomaly component:

xi,j = x̃i,j + δi,j (1.1)

where x̃i,j is original anomaly-free data at i-th pixel and j-th channel and δi,j rep-

resents an anomaly, an element of the anomaly matrix, ∆. Given X and a priori

information about ∆, what is the best estimate of ∆, or equivalently X̃, and how is

it obtained? A priori information about an anomaly can have different forms:

18



• Statistical description, e.g. mean, covariance matrix, n-dimensional PDF of an

anomaly pixel, and covariance with respect to neighboring anomalies. This sta-

tistical information is often unavailable in practice, thus needs to be estimated

with ensemble of observations.

• Spatial structure or texture, e.g. having mostly high-frequency components.

• Joint spatial/spectral statistical description.

A (near) optimum solution may be obtained by cooperatively combining spatial

and spectral processing so that the signal-to-noise ratio (SNR) of an anomaly of in-

terest is successively enhanced, thereby making it increasingly prominent, permitting

its removal. The preliminary results of spectral processing based on the ONA (Order,

Noise and mixing matrix A) algorithm [33], for example, show that noise can be ef-

fectively suppressed solely using spectral information of a data set without using any

prior knowledge about an underlying physical model that represents the data. Spatial

structures of the data can, in turn, be employed to further increase the SNR [23].

1.1.1 Examples of anomalies

A generic anomaly detection technique will be applied to specific hyperspectral prob-

lems that exhibit different stochastic models for an anomaly:

• Cloud perturbation in a hyperspectral radiance field.

• Noisy channels.

• Scan-line miscalibration.

Each of these applications will be dealt with in depth in subsequent chapters.

1.2 Prior art

Since hyperspectral sensor technology is emerging and new, only in the past decade

has there been much active research on hyperspectral data analysis in the remote-

sensing communities [16, 21, 22, 36, 38]. Most of this work, however, has focused on
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the reflective regime of the radiance data (not the emissive one) and on the problem

of classifying objects, so-called spectral unmixing, located on a surface (not in the

atmosphere). Moreover, it has emphasized applying algorithms intended for multi-

spectral data to hyperspectral data by reducing the number of spectral bands used for

processing. These algorithms fall into three basic categories: spatial-only, spectral-

only, and spatial-spectral algorithms. The spectral-only algorithms almost all rely on

a known spectral signature for the target or targets of interest. Basically, they are

classification rather than detection algorithms. Algorithms that fall into this category

are the spectral matched filter [16], spectral angle mapper [22], and linear mixture

models [21]. The main limitation of these spectral-only algorithms is that, in addition

to ignoring the available spatial information, they require a known target signature.

Reliable target signatures are difficult to ascertain due to variations in the target

signature that result from atmospheric and illumination effects.

Principal component analysis (PCA) is most often used prior to another detection

or classification algorithm for purposes of reducing the dimensionality of the hyper-

spectral data sets, thus making the applied detection and classification algorithms

more efficient computationally.

In general, spatial-spectral algorithms can be further divided into local anomaly

and global anomaly detectors.

Local anomaly detectors process small spatial windows of the hyperspectral image

in order to compare the spatial and spectral properties of the centrally located pixels

in the window (target region) with the properties of the perimeter pixels (clutter

region). Those pixels that are spatially-spectrally different from their surrounding

backgrounds are considered detections. Reed and Yu [35] derived an algorithm com-

monly referred to as the RX-algorithm. This is the benchmark anomaly detection

algorithm for multispectral data, which, in contrast to hyperspectral data, is char-

acterized by less than about 20 spectral bands. The RX-algorithm is a maximum

likelihood (ML) anomaly detection procedure that spatially whitens the clutter. The

RX-algorithm uses a binary hypothesis approach to detection, and implements a

generalized likelihood ratio test (GLRT). Evaluation of the ML-detection statistic re-
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quires full spectral sample covariance matrices to be estimated and then inverted, or

the evaluation of their determinants. Suppose that J is the number of spectral bands

and x is an J×1-column pixel vector in a multispectral image. Then the RX-detector

implements a filter specified by:

RX(x) = (x− µ)TC−1
xx (x− µ) (1.2)

where µ is the global sample mean and Cxx is the sample covariance matrix of the

images.

Extending application of the RX-algorithm from multispectral to hyperspectral

imagery suffers from two major limitations. First, the clutter model implemented in

the RX-algorithm is restricted to being spatially uncorrelated, or spatially white. This

model neglects the potentially valuable spatial correlation information of the clutter.

Second, its computational cost arises from the expensive inversion of the covariance

matrix of the data under each of the hypotheses. The computational complexity of

this detector increases as J3 where J is the number of spectral bands, making it

difficult for hyperspectral images.

Ferrara [17] presented an adaptive spatial-spectral detection method in which it is

originally assumed that the clutter is fully spatially and spectrally correlated. How-

ever, in evaluating the spatial-spectral covariance matrix the cross-covariance terms

are neglected in order to reduce the computational cost of the algorithm. This al-

gorithm suffers from the same computational complexity as the RX-algorithm when

applied to hyperspectral imagery: It requires taking the inverse of a spectral co-

variance matrix that has dimensions equal to the number of spectral bands used for

processing.

In global anomaly detection, the image scene is first segmented into its constituent

classes, then detection is achieved by determining the outliers of these classes. In

general, the algorithms vary in the method of segmentation, but tend to use ML-

detection once the classes are determined. One approach to global anomaly detection

is stochastic expectation maximization (SEM) coupled with ML-detection [39]. This

21



algorithm uses the stochastic expectation maximization clustering algorithm as a pre-

processing stage to the detector. The number of classes is assumed to be known a

priori. There is need for computationally efficient detectors for hyperspectral sen-

sors that can jointly process all the available spectral bands, and that can exploit

simultaneously the spatial and spectral correlation properties of the anomaly.

The majority of global anomaly detectors employ two-dimensional Markov random

field (MRF) modeling in order to incorporate spatial features into the segmentation

process, since MRFs have been proven to be quite powerful models in the classification

of 2-D images [36].

In [44], surface prior information reflectance estimation (SPIRE) algorithms esti-

mate additive and multiplicative illumination noise vectors by exploiting both spatial

and spectral information. The spatial SPIRE algorithm spatially filters out the addi-

tive noise, moves to log space, and then spatially filters out the multiplicative noise.

The spectral SPIRE algorithm uses variant forms of the PC transform to reduce noise.

The combined spatial-spectral algorithm takes advantage of both algorithms in that

only a selection of PC images are spatially filtered. For all cases, prior information

is employed to compensate for the signal constituent that may have been filtered out

as noise.

In the context of the compression of hyperspectral data, [7] also takes advantage

of spatial and spectral information. By treating data compression as a noisy source

coding problem, the noise source is modeled by an additive mixture of Gaussian noise

and impulsive noise, and is estimated by using both spectral and spatial knowledge

of the data.

1.3 Thesis outline

Chapter 2 is reserved to briefly explain the satellite instruments, the Atmospheric

Infrared Sounder and the Advanced Microwave Sounding Unit (AIRS/AMSU), that

provide the brightness temperature data in the infrared and microwave range, re-

spectively, and the radiative transfer equation which links the atmospheric and ter-
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restrial parameters to hyperspectral data. In Chapter 3, we shall explore useful

signal-processing tools as to how to characterize hyperspectral data, and reduce noise

and artifacts. They are applied to hyperspectral data set from AIRS to demonstrate

their capability to cope with various types of artifact in hyperspectral data. The

physics governing the radiative transfer is nonlinear; thus, the estimation of physical

parameters must deal with the nonlinear physics. We shall review the mathematical

foundation of nonlinear estimation and powerful techniques to handle nonlinearities

in Chapter 4. Chapter 5 describes a stochastic approach to estimate cloud perturba-

tions in the hyperspectral infrared brightness temperatures, or equivalently, to infer

the brightness temperatures that would be observed in the absence of clouds. The

evaluation and validation of this stochastic cloud-clearing algorithm using four dif-

ferent validation schemes are covered in Chapter 6. In Chapter 7, the stability of the

infrared sensor, AIRS, relative to the microwave sensor, AMSU, is analyzed. Chap-

ter 8 provides the summary and contributions of this study, and the suggestions for

future work.
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Chapter 2

Background

The framework of the anomaly detection and compensation proposed in this study

can be applied to any multivariate data. Examples of such data include remote sens-

ing data, manufacturing data, multiple-antenna wireless commutation data, financial

data, and so forth. Although only hyperspectral satellite data will be covered in this

thesis, one can develop a specific methodology to characterize and compensate for a

multivariate anomaly model at hand. In this chapter, the satellite instruments that

produce the data set used in this thesis will be introduced. Also, the physics of ra-

diative transfer that links environmental parameters to the hyperspectral data will

be explained.

2.1 Instruments

2.1.1 AIRS/AMSU/HSB sounding suite

The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit

(AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track

scanning temperature and humidity sounding system on the Aqua satellite of the

Earth Observing System (EOS) [2]. AIRS is an infrared spectrometer/radiometer

that covers 2378 spectral channels in the 3.74–4.61-µm, 6.20–8.22-µm, 8.8–15.4-µm

infrared wavebands at a nominal spectral resolution of λ/∆λ = 1200. The AIRS
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Figure 2-1: Weighting function peak versus wavenumber for 2378 AIRS channels for
US standard atmosphere

instrument also includes four visible/near-IR (Vis/NIR) channels between 0.40 and

0.94 µm, with a 2.3-km field-of-view (FOV). Figure 2-1 shows the temperature weight-

ing function peaks versus wavenumber for 2378 AIRS channels. The temperature

weighting function roughly represents the contribution of pressure level (or height)

to an observed radiance, and will be defined later in this chapter. AMSU on Aqua

is composed of two separate sensor units, AMSU-A1 and AMSU-A2 with co-aligned,

synchronized, and equal-size FOV, and covers between 23 and 89 GHz microwave

spectrum with 15 channels. See Table 2.1 for the AMSU channel specification. HSB1

is a four-channel microwave radiometer that makes measurements between 150 and

190 GHz. Figure 2-2 illustrates the AIRS/AMSU/HSB scan geometry and pattern [2].

In one 3.3◦ AMSU footprint, there are 3-by-3 1.1◦ AIRS and HSB footprints. Table 2.2

and Table 2.3 list the high-level parameters for AIRS and AMSU/HSB instruments [2].

In addition to supporting the National Aeronautics and Space Administration’s

1The HSB instrument ceased operation on February 5, 2003 due to a mirror scan motor failure.
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Channel Channel frequencies Bandwidth Weighting function
(MHz) (MHz) peak height (km)

1 23,800±72.5 2×125 0
2 31,400±50 2×80 0
3 50,300±50 2×80 0
4 52,800±105 2×190 0
5 53,596±115 2×168 4
6 54,400±105 2×190 7
7 54,940±105 2×190 10
8 55,500±87.5 2×155 12
9 57,290.344±87.5 2×155 17
10 57,290.344±217 2×77 21
11 57,290.344±322.2±48 4×35 24
12 57,290.344±322.2±22 4×15 28
13 57,290.344±322.2±10 4×8 35
14 57,290.344±322.2±4.5 4×3 40
15 89,000±1000 2×1000 0

Table 2.1: AMSU-channel specification

Size 116.5 × 158.7 × 95.3 cm (when deployed)
Mass 177 kg
Power 220 Watt

Data rate 1.27 Mbits/sec
Spectral range IR: 3.74–4.61-µm, 6.20–8.22-µm, 8.8–15.4-µm

2378 channels with λ/∆λ = 1200 resolutions
VIS/NIR: 0.4–0.94 µm with 4 channels

Instrumental FOV IR: 1.1◦ (13.5 km at nadir from 705 km altitude)
VIS/NIR: 0.2◦ (2.3 km at nadir from 705 km altitude)

Swath width 99◦ (1650 km from 705 km altitude)
Scan sampling IR: 90samplesat1.1 degree

VIS/NIR: 720samplesat0.2 degree

Table 2.2: High-level AIRS parameters
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Instrument AMSU-A1 AMSU-A2 HSB

Size 72 × 34 × 59 cm 73 × 61 × 86 cm 70 × 65 × 46 cm
Mass 49 kg 42 kg 51 kg
Power 77 Watt 24 Watt 56 Watt

Data rate 1.5 Kbits/sec 0.5 Kbits/sec 4.2 Kbits/sec
Spectral range 50–90 GHz 23–32 GHz 150–190 GHz

Number of channels 13 2 4
Instrumental FOV 3.3◦ (40.5km at 3.3◦ (40.5km at 1.1◦ (13.5km at

nadir from 705 km) nadir from 705 km) nadir from 705 km)
Swath width 100◦ (1690 km 99◦ (1650 km 99◦ (1650 km

from 705 km) from 705 km) from 705 km)
Scan sampling 30× 3.33 degree 30× 3.33 degree 90× 1.1 degree

Table 2.3: High-level microwave instrument (AMSU-A1/AMSU-A2/HSB) parameters

interest in process study and climate research, AIRS is the first hyperspectral in-

frared radiometer designed to support the operational requirements for medium-range

weather forecasting of the National Ocean and Atmospheric Administration’s Na-

tional Centers for Environmental Prediction (NCEP) and other numerical weather

forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers,

will achieve global retrieval accuracy of atmospheric temperature profiles to better

than 1 K, with 1-km vertical layers, and humidity soundings with 10% accuracy in

2-km layers in the troposphere. The limiting effects of cloud contamination in the

FOV of the AIRS were quickly recognized. Cloudy infrared radiances are difficult to

use in retrieval or radiance assimilation schemes since they do not generally provide

accurate information on the thermodynamic state of the atmosphere below the cloud.

Thus, detection and compensation for possible cloud contamination within a FOV

is critical. There are several ways to deal with the cloud effects, including carefully

detecting and rejecting FOVs from cloud-contaminated footprints or eliminating the

effects of clouds from the data.

Figure 2-3 shows typical AIRS brightness temperature spectra of adjacent 3-by-3

FOVs (called a golfball), overlaid on top of each other. It is seen that some FOVs are

warmer than others because of the true temperature variation, or, more probably

because each FOV has different cloud properties such as cloud fraction or cloud
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Figure 2-2: AIRS/AMSU/HSB scan geometry and pattern

Figure 2-3: AIRS spectra for adjacent 3-by-3 FOVs
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altitude.

2.2 Physics of radiative transfer

A sensor high above the Earth’s surface receives emission from the Earth and its

atmosphere, along with any reflected components of solar and cosmic background

radiation. Measurements of this emission allow the retrieval of many atmospheric

parameters, including the temperature and water vapor profiles, the amount of cloud

liquid water, rain rates, and sea surface temperatures. In this section, the radiative

transfer equation that links environmental parameters to the hyperspectral data, will

be briefly explained.

2.2.1 Blackbody radiation

The physics of atmospheric temperature sounding begins with the Planck radiation

law which relates the intensity of the radiation emitted by a blackbody to the physical

temperature of the blackbody. A blackbody is defined to be a perfectly absorbing

body that emits radiation with an intensity that is solely dependent on the temper-

ature of the body and not on any other physical properties. Spectral brightness is a

measure of how much energy a body radiates at a specified frequency per unit receiv-

ing area, per transmitting solid angle, per unit frequency. The spectral brightness of

a blackbody is a function of its physical temperature T (K) and frequency f (Hz)

and is given as:

I(f, T ) =
2hf3

c2(ehf/kT − 1)
Wm−2ster−1Hz−1 (2.1)

where h is Planck’s constant, k is Boltzmann’s constant, and c is the speed of light.

The Planck equation exhibits a nonlinear relationship between intensity and temper-

ature. The degree of the nonlinearity is dependent on frequency, shown in Figure 2-4.

The nonlinearity is most severe at the higher frequencies and almost nonexistent at

the microwave frequencies.

The preceding discussion dealt with radiation from ideal blackbodies. However,
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Figure 2-4: Nonlinearity of the Planck function as a function of wavelength.

a real object at temperature T can emit radiation that differs significantly from the

corresponding blackbody at temperature T . Specifically, the non-ideal nature of the

surface of the earth must be taken into account when performing radiative transfer

calculations. To correct for the non-ideal nature of the earth’s surface, a scaling factor

is introduced. The reflectivity, ρ, of an object is defined to be the fraction of incident

power reflected from the object. By using conservation of energy principles, a dual

quantity, named the emissivity, ε, can also be defined such that

ρ + ε = 1. (2.2)

For a blackbody, ρ = 0 and ε = 1 by definition.

2.2.2 Equation of radiative transfer

The electromagnetic radiation that arrives at a sensor at the top of the atmosphere

will have been emitted by and transmitted through the atmosphere. As the radiation

travels through the atmosphere, it gets absorbed by interactions with the matter.

Emission from the matter, assumed in local thermodynamic equilibrium at temper-

31



Atmosphere

Space

z

3
L

1

4

2

θ

Figure 2-5: Four components of the radiative transfer equation

ature T , also takes place. The emission and absorption of electromagnetic radiation

in the atmosphere is described by the equation of radiative transfer. The upwelling

electromagnetic radiation at the top of the atmosphere is the sum of the four contri-

butions shown in Figure 2-5. The four terms correspond to:

1. The upwelling atmospheric radiation.

2. The upwelling radiation emitted by the surface.

3. The downwelling atmospheric radiation which is reflected upward by the surface.

4. The downwelling cosmic background radiation which is reflected upward by the

surface.

The equation of radiative transfer in a non-scattering, plane parallel, vertically strat-

ified atmosphere is given by [12]. A sensor at height L above the earth’s surface
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looking down at the atmosphere will observe the following radiation intensity:

I(f, L) = sec(θ)

∫ L

0

I(f, z)α(f, z)e−
R L

z α(f,z) sec(θ)dzdz

+ (1− ρ(f))Isurfacee
−τ0 sec(θ)

+ ρ(f) sec(θ)e−τ0 sec(θ)

∫ L

0

I(f, z)α(f, z)e−
R z
0 α(f,z) sec(θ)dzdz

+ ρ(f)Icosmice
−2τ0 sec(θ)

(2.3)

where θ is a scan angle, I(f, z) is the intensity of atmospheric radiation at frequency

f and height z, α(f, z) is the energy absorption coefficient at frequency f and height

z, ρ(f) is the reflectivity of the surface at frequency f , Isurface is the radiation emitted

by the surface at frequency f , τ0 is the opacity through the entire atmosphere, i.e.

τ0 =
∫ L

0
α(f, z)dz, and Icosmic is the cosmic background radiation. The four terms in

Equation 2.3 correspond to the radiation paths shown in Figure 2-5 in the absence of

any scattering within the atmosphere by clouds, etc.

Note that the relationship between the intensity of radiation and blackbody tem-

perature in microwave regime is almost perfectly linear. This can be verified analyt-

ically by approximating Equation 2.1 with its first order Taylor expansion, yielding:

I(f, T ) ∼=
2kf 2

c2
T. (2.4)

This approximation is valid when hf � kT which is true for microwave frequencies

and typical atmospheric or terrestrial temperatures. This linear approximation is not

applicable with infrared frequencies where hf > kT .

With this simplification, the intensity of the radiation emitted by a blackbody is

proportional to its physical temperature. For this reason, it is common to characterize

the microwave radiation intensity of real objects (i.e. non-blackbodies) by the tem-

perature of an equivalent blackbody. This Raleigh-Jeans approximation can be used

to write Equation 2.3 in terms of physical temperatures and brightness temperatures
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instead of radiation intensities:

T (f, L) = sec(θ)

∫ L

0

T (f, z)α(f, z)e−
R L

z α(f,z) sec(θ)dzdz

+ (1− ρ(f))Tsurfacee
−τ0 sec(θ)

+ ρ(f) sec(θ)e−τ0 sec(θ)

∫ L

0

T (f, z)α(f, z)e−
R z
0 α(f,z) sec(θ)dzdz

+ ρ(f)Tcosmice
−2τ0 sec(θ)

(2.5)

Thus, in the microwave case, the temperature profile of the atmosphere, T (f, z),

appears explicitly in the radiative transfer equation.

2.2.3 Weighting function

The first term in Equation 2.3 can be recast in terms of the transmittance function

T (f, z) [5]:

I(f, L) =

∫ L

0

I(f, z)
(
α(f, z) sec(θ)e−

R L
z α(f,z) sec(θ)dz

)
dz

=

∫ L

0

I(f, z)

(
dT (f, z)

dz

)
dz.

(2.6)

The derivative of the transmittance function with respect to altitude is called the

Planck weighting function:

W (f, z) =
dT (f, z)

dz
. (2.7)

and gives the relative contribution of the radiance emanating from each altitude. It is

useful to define a temperature weighting function (WT (f, z)), where the temperature

profile is weighted directly. One approach is to express the radiance intensity in

terms of a blackbody-equivalent brightness temperature and linearize about a nominal

temperature profile (T0(z)) and corresponding radiance:

WT (f, z) =
dI(f, z)−1

dW (f, z)

dW (f, z)

dI(f, z)

dI(f, z)

dT (z)

∣∣∣∣
T0(z)

. (2.8)

The difference between the Planck weighting function and the temperature weight-
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Figure 2-6: The Planck radiance weighting function and the temperature weighting
function for two infrared channels [5].

ing function can be significant for short-wavelength channels, as shown in Figure 2-

6 [5]. The temperature weighting functions are sharper and peak lower in the at-

mosphere. Hereafter a weighting function (or weighing function peak) will refer to a

temperature weighing function (or temperature weighting function peak).

2.2.4 The atmospheric absorption spectra

Microwave frequency

Figure 2-7 shows the atmospheric absorption spectrum for microwave frequencies [5].

Notable features include the water vapor absorption lines centered at 22.235, 183.31,

and 325.15 GHz (lines at 380.20 and 448.00 GHz are difficult to identify on the plot)

and oxygen absorption lines near 60, 118.75, 368.50, 424.76, and 487.25 GHz.

Infrared frequency

The atmospheric absorption spectrum for infrared wavelengths between 3.6 and 16.1 µm

is shown in Figure 2-8 [5]. It is noted that water vapor affects most of the infrared
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Figure 2-7: The microwave absorption spectrum. Two calculations for the percent
transmission (nadir view) using the 1976 Standard Atmosphere are shown, one as-
suming no water vapor and one assuming 1.5 g/cm2 [5].
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Figure 2-8: The thermal infrared absorption spectrum. Two calculations for the
percent transmission (nadir view) using the 1976 Standard Atmosphere are shown,
one assuming no water vapor and one assuming 1.5 g/cm2 [5].

spectrum, especially 6–7 µm.

There are four regions over which water vapor, ozone, and carbon dioxide exhibit

a significant absorption spectrum. CO2 absorbs IR radiation in the 15 µm band from

about 12.5 µm to 16.7 µm (600 to 800 cm−1). In addition, CO2 also absorbs radiation

in the 4.3 µm region that overlaps with solar radiation. Absorption due to ozone is

primarily confined to the 9.6 µm band. Water vapor exhibits absorption lines over

the entire infrared spectrum. The most pronounced absorption occurs in the 6.3 µm

vibrational-rotational band and in the pure rotational band with wavenumbers less

than about 20 µm (500 cm−1). From about 8.3 µm to 12.5 µm (800 to 1200 cm−1),

referred to as the atmospheric window, absorption due to atmospheric gases shows
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a minimum, except in the 9.6 µm ozone band. There are also absorption bands for

various greenhouse gases that can be used for their determination by remote sensing:

the CH4 7.6 µm band, the N2O 7.9 µm band, and some CFC lines in the window.
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Chapter 3

Signal Characterization and

Reduction of Noise and Artifacts

3.1 Signal characterization

Many multivariate signals in the real world have correlated components. A hyper-

spectral image usually has highly correlated channels such that only a small fraction

of components can explain the most of the variability. The principal component anal-

ysis (PCA) or Karhunen-Loève expansion has been widely used in the enhancement

and characterization of multispectral remote-sensing data [29]. It has the significant

property that it concentrates the data variability to the maximum extent possible

with any number of components. Several variants of PCA will also be discussed in

the following subsections.

3.1.1 Principal component analysis

Let us assume that a multivariate signal of interest, x, is a vector of dimension m.

The basic idea of PCA is to find the components, y1, y2, ..., yn, so that they explain the

maximum amount of variance of x possible by n linearly transformed components.

Since PCA is often used to reduce the dimension of the data, one usually chooses

n � m. PCA can be defined in an intuitive way using a recursive formulation.
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Define the direction of the first principal component, say w1, by

w1 = arg max
||w||=1

E(wTx)2 (3.1)

where w1 is of the same dimension m as the random data vector x. Thus the first

principal component is the projection on the direction in which the variance of the

projection is maximized. Having determined the first k−1 principal components, the

k-th principal component is determined as the principal component of the residual:

wk = arg max
||w||=1

E[wT (x−
k−1∑
i=1

wiw
T
i x)]2 (3.2)

The principal components (or principal component scores) are then given by yi =

wT
i x. In practice, computation of the wi can be simply accomplished using the

covariance matrix E[xxT ] = Cxx. The wi are the eigenvectors of Cxx that correspond

to the n largest eigenvalues of Cxx. For convenience we define a m-by-n matrix

W = [w1|w2| . . . |wn], thus yielding:

y = WTx. (3.3)

The major application of PCA is the reduction of the dimensionality. Such a

reduction in dimension has important benefits. First, the computational overhead of

the subsequent processing stages is reduced. Second, noise may be reduced, as the

data not contained in the first n components may be mostly due to noise. Third, a

projection into a subspace of a very low dimension, for example, two, is useful for

characterizing and visualizing the data.

It can be proven that PCA guarantees to minimize the expected value of the

squared error of the original data vector with respect to its reconstruction, i.e.

C(·) = E[(x− x̂)T (x− x̂)], (3.4)

where the reconstructed estimate of x, x̂ = WWTx [29]. Note that if n = m, then
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WWT = I and x̂ = x.

3.1.2 Noise-adjusted principal components

Because the variability of the data is scale-dependent, PCA is sensitive to the scaling

of the data to which it is applied. For example, if one of the multispectral bands is

arbitrarily doubled in amplitude, its contribution to the variance of the data set will

be increased fourfold, and it will therefore be found to contribute more to the earlier

eigenvalues and eigenvectors. To some extent the scaling of the multispectral bands

is arbitrary, or even the physical unit of each element can differ. The noise-adjusted

principal component (NAPC) transform is equivalent to a transformation of the data

to a coordinate system in which the noise covariance matrix is the identity matrix,

followed by a principal components transformation. Thus, it provides a normalization

where the noise is each band is equal in magnitude and uncorrelated with the noise in

any other. The cost function which is minimized by employing NAPC can be proven

to be the mean squared error of the original noiseless data vector, z = x − n with

respect to its reconstruction [29]:

C(·) = E[(z− ẑ)T (z− ẑ)]. (3.5)

Figure 3-1 plots variance of each PC and NAPC in a decreasing order with respect

to eigenvalue index of a typical AIRS image1. Such a graph is called a scree plot.

Note that only first 400 (out of 2378) eigenvalues are shown to highlight the difference

of scree plots for PC and NAPC in the knee region. NAPC shows a sharper knee and

flatter noise plateau than PC, which demonstrates its better performance to separate

the signal component and the noise component. Figure 3-2 shows the explained

variance of the data with respect to the number of eigenvectors, for the same data

set. The explained variance is simply the accumulation of the eigenvalues normalized

by the sum of all eigenvalues. Figure 3-2 shows that the first 6 principal components

1The data set used for the analysis is 12,150 AIRS observed brightness temperature spectra,
observed on August 21, 2003.
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Figure 3-1: Typical scree plot for AIRS data

Figure 3-2: Percent cumulative explained variance
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Figure 3-3: Sample AIRS observation images and NAPC images

account for 99.82% and 99.67% of the total variance for NAPC and PC, respectively.

Thus, NAPC is expected to capture more energy in the signal than PC, with the same

degrees of freedom. Figure 3-3 shows sample AIRS brightness temperature images

and noise-adjusted principal component (NAPC) images. Images on the left show

AIRS observed images for four different channels. Right images correspond to the

first to third, and 50th NAPC images. Note that the first NAPC image has much

higher dynamic range than the rest.

3.1.3 Projected principal component analysis

The cost function to be minimized for PCA is the mean-squared error of the original

vector and its reconstruction. Cost functions other than Equation 3.4 are sometimes
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used in practice. Suppose we want to find the n-by-m transform matrix W which

gives components that, when regressed against a geophysical state vector s, minimize

the resulting sum-squared error for any ordered subset of components y given by

y = WTx. (3.6)

The estimate of s in terms of y is

ŝ = CsyC
−1
yyy

= CsxW[WTCxxW]−1WTx
(3.7)

and the cost function to be minimized is given by

C(·) = E[(s− ŝ)T (s− ŝ)], (3.8)

where Csx is the cross-covariance of s and x. It can be shown [5] that the W’s that

minimize Equation 3.8 are the n right eigenvectors with highest singular values of the

reduced-rank regression matrix M:

M = KKTCsxC
−1
xx , (3.9)

where K = [k1|k2| . . . |kn] are the n most significant eigenvectors of CsyC
−1
yyCT

sy. This

transform is called the Projected Principal Components (PPC) transform because the

measurements x are projected into an n-dimensional subspace of s spanned by K.

3.2 Blind signal separation

NAPC analysis requires that the noise variances are known. If noise variances are

unknown, which is often the case, they need to be estimated to apply NAPC analysis.

Iterative Order and Noise (ION) estimation algorithm [27] is an efficient technique

for blind signal separation and for the estimation of noise variances when the signal

order is also unknown. ION blindly separates signal and noise components of noisy
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jointly Gaussian multivariate signal x = Ap + Gn where A is the mixing matrix, p

is the signal of unknown dimension k, G is the diagonal noise covariance matrix, and

n is the white Gaussian noise with unit variance. It is difficult to accurately estimate

the signal order, k, without prior knowledge of the noise variances, trace(G), or

to estimate noise variances without knowledge of the signal order. Thus, ION is an

iterative algorithm which takes advantage of progressively improved estimates of both

signal order and noise variances to further improve the estimates of both parameters.

The plot of eigenvalues with respect to eigenvector index, or scree plot, reveals the

noise plateau in most practical cases, thus allowing estimation of the signal order. In

the previous scree plot (Figure 3-1), for example, noise plateau is seen to be beyond

∼ 30-th eigenvalues for NAPC, and ∼ 80-th eigenvalues for PC.

The expectation-maximization (EM) algorithm is the most successful known sep-

aration technique for Gaussian signals, so it is used to estimate the noise variances

based on the previous estimate of the signal order.

3.3 Artifacts in AIRS data

Real-world data often have several different sources of artifacts, either expectedly

or unexpectedly. Observations from AIRS sensor have unwanted artifacts of several

different natures. Among many possible sources of artifacts, three different types will

be discussed in this chapter:

1. Instrumental white noise.

2. Consistently noisy channels.

3. Scan-line miscalibration, resulting in striping patterns along scan-lines.

3.3.1 Instrument white noise

Instrument white noise is unavoidable due to the combination of the thermal noise

and shot noise in a spectrometer. In remotely sensed imagery, the most important
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information is often concentrated in the spatially low-frequency region. In this case,

a useful approach to suppress white noise is to use some type of low-pass filter. PC

or NAPC filtering is an effective and intuitive method to implement a low-pass filter.

Principal component analysis is analogous to Fourier transform in that the data

is described in terms of the coefficients of a predetermined orthogonal set. Rather

than using complex exponentials, the orthogonal set in PCA is determined adaptively

based on the analyzed data set. In particular, PCA derives the directions of a set of

orthogonal vectors that point into the direction of the highest variance of the data,

which often corresponds to the direction of spatially slowly varying components in re-

mote sensing applications. The corollary is that a first few PC’s (or NAPC’s) capture

most of the variance of the data, and the last few PC’s (or NAPC’s) generally con-

tain the noisiest component of the data. It is logical to filter out the PC’s associated

with the least eigenvalues and subsequently transform back to the original coordinate

system. The resulting PC filtered version of a given multivariate signal (x) is:

x̂ = WWTx (3.10)

where W is an m-by-n matrix discussed in Section 3.1.1. This is called PC filtering

as seen in the previous section, or NAPC filtering when proper normalization is done

before PC filtering. The threshold for how many PC’s to retain should be judicially

chosen. One effective method is to scrutinize a scree plot to locate the noise plateau

as shown in Section 3.2.

NAPC filtering is performed in many different stages in the proposed cloud-

clearing algorithm as will be discussed later in the context of more explicit appli-

cations.

Figure 3-4 shows a typical noise pattern in AIRS data. Each black dot represents

more than 0.2 K absolute error using NAPC filtering with PC cutoff threshold of

n = 50, i.e. |xi,j − x̂i,j| > 0.2 where xi,j is AIRS observation at channel i for j-th

pixel, and x̂i,j is the corresponding NAPC-filtered AIRS observation using n = 50.

(Note that m, the number of channels is 2378.) In this plot, y-axis is channel number
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Figure 3-4: Typical noise pattern for AIRS brightness temperature data

(1–2378), and x-axis is spatial index (1–12,150). The RMS error can be expressed as:

εRMS =

√∑
i,j(xi,j − x̂i,j)2

IJ
, (3.11)

where I = 2378 (number of channels), and J = 12, 150 (number of pixels). The RMS

(or the standard deviation) error for this AIRS data is 0.4302 K. In this figure, the

channels that are consistently noisy over most of pixels are evident. Also, the periodic

patterns in spatial dimension suggest there may exist scan-line artifacts.

3.3.2 Noisy channels

In Figure 3-4, we have seen that some channels are consistently noisy. Figure 3-5

shows the counts of pixels having more than 2.151 K error (5 times RMS error), for

all AIRS channels. The y-axis (noisy pixel counts) is truncated at 100 in this plot

because most of the channels having more than 100 counts are noisy for all 12,150

pixels. In this analysis, 545 channels (or 23% of all channels) have at least one
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Figure 3-5: Count of pixels having more than 5 times RMS error, for all AIRS channels

noisy pixel having more than error of 2.151 K. Figure 3-6 shows the histogram of the

NAPC filtering error (in K) over all pixels and all channels, in order to illustrate the

consistency of the bad channels in a different way. This histogram is intended for the

contrast with a Gaussian distribution. As many as ∼ 0.55% of pixels fall outside of

5σ-tails whereas in a Gaussian world, only 5.73× 10−5% would have.

The consistently noisy channels will deteriorate any type of estimation of physical

parameters. Thus, these channels need to be excluded before a retrieval stage to

ensure the accurate estimation. The detection of noisy channels can be implemented

in a number of ways, depending on the definition of a noisy pixel and the proce-

dure to flag a noisy channel given a number of samples. Figure 3-7 illustrates the

block diagram of a proposed noisy channel detector based on NAPC/ION filtering.

NAPC/ION filtering provides a simple and computationally efficient method to de-

tect noisy channels [7, 11]. Let us denote X an AIRS observation matrix where its

element, xi,j, is an AIRS observation at channel i for j-th pixel. The ION algorithm

estimates the noise variances for all channels, or trace(G). Then, the noise-adjusted
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Figure 3-6: Histogram of NAPC filtering residual (original TB - NAPC filtered TB)
for all 12,150 pixels and all 2378 channels, observed on August 21, 2003 (Granule
# 76). The horizontal axis is the residual in degrees K, and the vertical axis is the
counts.

Estimated
noise variance

Image
  TB ION

NAPC
Filter

Detect
bad channel

+

Figure 3-7: Block diagram of NAPC/ION filtering
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data is found as:

XNA = G−1/2X (3.12)

where the subscript “NA” represents a noise-adjusted version. The NAPC filtered

version of XNA is:

X̂NA = WWTXNA (3.13)

Thus, the error matrix is given by:

E = G1/2(XNA − X̂NA)

= X−WWTX

= (I−WWT )X.

(3.14)

Pixels for which original and NAPC filtered differ more than 2.151 K (5 times

standard deviation of the error), are flagged bad, and any channels exceeding the this

threshold even once were defined as bad. For the test and evaluation of the bad-

channel detector, 320 channels in 4-µm and 15-µm spectrum, are arbitrarily selected.

More (or all) channels can be used in this analysis; however, the selected subset of

channels are sufficient for the sake of the validation purpose. The data set used for

this analysis is 900 FOVs in Northern America observed on September 6, 2002 (AIRS

L1B version 2.9.6). Within the test set of 320 frequencies, the NAPC/ION algorithm

detected 80 noisy channels using 2 K threshold.

The AIRS science team has compiled their own list of channel properties based on

the pre-launch and in-flight calibration of AIRS measurements, available for download

at [47]. Out of 320 selected channels used in this analysis, the AIRS team flagged

21 channels as problematic for various physical reasons. Among these 21 channels,

15 channels are also detected in the proposed algorithm. Table 3.1 summarizes the

detection rates for different types of bad channels. The second column shows the

number of channels AIRS team declares bad, out of the 320 channels used in this

analysis. The third column lists the number of channels the proposed NAPC/ION

algorithm flags as bad, out of 320 channels. Note that the spectral response function
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Number of Number detected
Type of NASA bad by NAPC/ION % detected Description

bad channel channels algorithm
Noise 5 5 100% Detector has high noise

Bad SRF 1 0 0% Detector spectral response
functions (SRF) centroid
does not match model

Poor SRF 13 8 61.5% Detector SRF shape does
not match model

Popping 2 2 100% Detector response has shown
unexpected steps

Total 21 15 71.4%

Table 3.1: Detection rates for each type of noisy channel

(SRF) flaws are generally not a source of serious noise, unlike bad channels and

popping channels, all of which were detected.

3.3.3 Striping patterns

AIRS/AMSU sensor suite operates in a scanning mode. Hence, miscalibration of a

detector in one scan-line relative to another will cause striping artifacts in an observed

image. Left three images in Figure 3-8 show observed AIRS brightness temperature

(TB) images at 14.12 µm, 14.35 µm, and 14.78 µm, respectively. The stripy artifacts

are more or less evident for all three channels. Figure 3-9 illustrates the block diagram

of a stripe-removing algorithm. TB image cube is fed into a 1-dimensional high-pass

spatial filter2 with respect to the along-track dimension. The resulting high-pass

filtered image cube is transformed to NAPC images in order to capture the striping

features in a small number of high-order NAPC images. An experiment showed that

only 20 significant NAPC’s contain the striping artifacts. Lower-order NAPC images

which may have some stripes are considered negligible also because their contributions

to the variance in the original image domain is very small — for example, 0.2% in

Figure 3-2. The 20 highest-order NAPC images are processed with the low-pass

2The high-pass filter is implemented with Parks-McClellan equiripple FIR filter design, with order
10 and cutoff frequency of 0.15 times the Nyquist frequency.
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Figure 3-8: TB images before and after removing striping patterns for three different
channels
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Figure 3-9: Block diagram of a stripe-removing algorithm

filter3. Then, the resulting images in NAPC domain are then transformed back into

brightness temperature images in the original domain. The low-pass component of

the original TB image will be added back. Right images in Figure 3-8 illustrate the

post-processed AIRS TB images at 14.12 µm, 14.35 µm, and 14.78 µm, respectively,

using the proposed stripe-removing algorithm. It is observed that most of the striping

patterns are effectively removed by the algorithm. The RMS stripe error for each

channel can be defined as:

∆RMS(i) =

√∑
j(xi,j − xstripe removed

i,j )2

J
, (3.15)

where J is a number of pixels. Figure 3-10 shows ∆RMS as a blue curve and the

noise-equivalent delta temperature (NeDT) at a scene temperature of 250 K as a red

curve, with respect to the wavelength. NeDT on the measurements was independently

obtained during the preflight radiometric assessment [34]. It is noted that the stripes

are present for all 15 µm channels, and that ∆RMS closely follows the shape of NeDT.

Roughly half of NeDT can be compensated by using the algorithm.

3This low-pass filter is complementary to the high-pass filter2, i.e. with order 10 and cutoff
frequency of 0.15 times the Nyquist frequency.
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Chapter 4

Nonlinear Estimation

Retrieval of a geophysical parameter often involves nonlinear estimation when the

underlying physics is nonlinear and the statistics are not jointly Gaussian. Underly-

ing physical model for cloud contamination in the infrared radiance is, for example,

complex and nonlinear. Scatter plots in Figure 4-1 illustrates typical relationships be-

tween various pairs of principal components for AIRS brightness temperature data1.

The first PC and the second PC, for example, are by construction uncorrelated, but

have a strong non-Gaussian relationship.

Nonlinear estimation techniques are generally superior to linear methods when the

relationship between the observed and desired parameters is nonlinear, or when the

statistics characterizing the problem are non-jointly-Gaussian. A simple illustration

of the superiority of nonlinear estimator is provided in Figure 4-2, which characterizes

the nonlinear physical relationship between the parameter to be estimated, x, and

the observed data, y, in terms of a scatter plot representing the outcomes of multiple

observations. However, nonlinear estimation is generally challenging because Bayesian

least-square estimator requires a complete statistical representation of the relationship

between the observed and desired parameters which is challenging except for the

jointly-Gaussian problem, and also because the computation load is much higher than

linear estimation method, for example, linear regression. In this chapter, various

1The data set used for the analysis is 12,150 AIRS observed brightness temperature spectra,
observed on August 21, 2003.
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Figure 4-1: Typical scatter plots of different principal component coefficients

y

x

Best linear fit

Figure 4-2: Best-fit linear regression line for a finite set of training data characterizing
a nonlinear physical relationship between the parameter to be estimated, x and the
observed data y
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techniques of nonlinear estimation are explored. In the following section we shall

review the linear least-square estimator, which can be a basis of nonlinear estimator.

4.1 Maximum a posteriori estimator

Estimation problems generally involve the formulation of an estimate of a random

vector x given an observation of another random vector y [43]. In estimation theory,

the estimator is chosen to minimize a suitable cost function. One well-known cost

function is:

C(x, x̂) =

 1 if |x− x̂(y)| > ε

0 otherwise.
(4.1)

which uniformly penalizes all estimation errors with magnitude bigger than ε. The

solution for this particular cost function for ε → 0 leads to a maximum a posteriori

(MAP) estimator [43]:

x̂MAP(y) = arg max
x

px|y(x|y) (4.2)

Hence, the MAP estimate of x based on observation y is the mode of the posterior

density px|y(x|y). This is closely related to maximum likelihood (ML) estimation.

We can use the fact that log is strictly monotonic to obtain the following:

x̂MAP(y) = arg max
x

log px|y(x|y)

= arg max
x

(
log py|x(y|x) + log px(x)− log py(y)

)
= arg max

x

(
log py|x(y|x) + log px(x)

)
.

(4.3)

In dropping the last term, we use the fact that it does not depend on x. If the prior

distribution of x is uniform, the MAP estimate reduces to the ML estimate.
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4.2 Bayesian least-square estimator

In Bayesian estimation theory, another widely used cost function is least square error:

C(x, x̂) = E[(x− x̂(y))T (x− x̂(y))]. (4.4)

The optimum Bayes’ estimator for this cost criterion is:

x̂BLS(y) = E[x|y], (4.5)

which is simply the mean of the posterior density px|y(x|y). Hence, it is trivial to

check that a Bayesian least-square (BLS) estimator is the MAP estimator for a uni-

modal and symmetric probability density such as a Gaussian. The calculation of

the Bayesian least-squares estimator requires knowledge of the complete statistical

characterization of the relationship between x and y. Often this characterization is

not available, and suboptimal estimators must be used. One suboptimal estimator

which requires only a partial characterization of the relationship between x and y

can be obtained by constraining the estimator to be a linear function of the observed

data, i.e.,

x̂LLS(y) = Ay + b. (4.6)

This estimator is referred to as the linear least-squares (LLS) estimator. A and b

can be determined by plugging Equation 4.6 into the cost function, Equation 4.4, and

minimizing it. The LLS estimator is then given by:

x̂LLS(y) = CxyC
−1
xx (y − E[y]) + E[x]. (4.7)

From Equation 4.7, it can be seen that only first- and second-order statistics are

needed to calculate the LLS estimate. Usually these statistics must be estimated from

an ensemble of observations, i.e. training set of x-y pairs; the mean vector and the

covariance matrix need to be replaced by the sample mean and the sample covariance

matrix. In this context, a linear least-squares estimator becomes a linear regression.

58



A special property of jointly Gaussian case [43] is:

x̂MAP(y) = x̂BLS(y) = x̂LLS(y). (4.8)

In other words, the linear least-squares estimate for a Gaussian case is as good as the

Bayesian least-squares estimate.

4.3 Nonlinear estimation

The underlying physics for geophysical parameters is often nonlinear and the statistics

are seldom jointly Gaussian. One simple way to observe and characterize nonlinearity

is to inspect a scatter plot in an observation and parameter space. However, this

method may not be suitable for high dimensional data such as hyperspectral data

unless only a handful of representations such as PC scores can capture the most

variability of the data. We shall discuss a number of general nonlinear estimation

techniques.

Before we explore the various techniques to deal with a nonlinear relationship

between the unknown parameter and the observed data points, it is important to

note that there can be a case that a linear estimator yields a perfect answer even

though the observation-parameter relationship is nonlinear. Consider the case where

a single parameter x is to be estimated based on two observed pieces of data, y1 and

y2, where

y1 = a0 + a1x + a2x
2 (4.9)

y2 = b0 + b1x + b2x
2. (4.10)

Assuming the data is noiseless, the relationship among x, y1, and y2 is linear:

y1 = (a0 −
a2b0

b2

) + (a1 −
a2b1

b2

)x +
a2

b2

y2

= c0 + c1x + c2y2.

(4.11)
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This example involving two observations, y1 and y2, and second-order polynomials

in x can be generalized to k-th order nonlinearities where x can be expressed as a

linear function of y1, . . . yk. The cloud clearing algorithm proposed in Chapter 5 is

based solely on linear regression estimators, yet validated to perform very successfully,

partly because the nonlinear-term cancellation like an example above may take place,

also because the nonlinearities are well treated using the combinations of nonlinear

estimation techniques described in the subsequent sections.

4.3.1 Linear regression using augmented nonlinear term

Mildly nonlinear estimators can be implemented by a linear estimator using a data

vector augmented with simple polynomials, trigonometric functions, or other nonlin-

ear elements which efficiently represent the kind of nonlinearity at hand.

4.3.2 Iterative linear estimation

Iterative linear algorithm is best understood by referring to Figure 4-2. It is clear that

a single linear estimator will be non-optimum if we know that the desired parameter is

in a region where the linear estimator is biased. If, however, the first linear estimate of

the desired parameter y is followed by a second linear estimator which is conditioned

on the revised probability distribution, which is much more narrowly focused on a

limited range of x, the second estimate should be much better. This process can be

iterated more than once, particularly if the random noise is small compared to the

bias introduced by the problem nonlinearities.

4.3.3 Stratified estimation

Figure 4-3 illustrates the stratified estimation. Based on an observation input, two

different linear estimators are trained using different training sets. Once trained on

local data samples, an estimation of x given y first entails data segmentation based

on y (in this one-dimensional case, the test: y ≷ y0). A local linear regression

estimator will then be used to provide an estimate of x. However, in generally there
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Figure 4-3: Stratified estimation using two local linear regression estimators

is discontinuity at the threshold, y0, i.e.:

x̂(y0 − ε) 6= x̂(y0 + ε). (4.12)

There are several methods to reduce or remove this discontinuity, including: (1) by

allowing some overlapping region for training of linear fits, and (2) by the constraint

that the two linear regression lines must meet. This technique is a straightforward

extension of linear regression, and is useful when the dimensionality of the data or its

representation is relatively small. For hyperspectral data it is generally a demanding

task to segment a data set in a physically meaningful way.

4.3.4 Neural networks

Arithmetic neural networks, modeled in part after biological neural networks, com-

pute complex polynomials with great efficiency and simplicity, and provide a means

for matching the polynomials to given training ensembles so as to minimized mean-

square estimation error. Neural nets can be used to learn and compute functions for

which the relationships between inputs and outputs are unknown or computationally

complex. A multilayer neural network is shown in Figure 4-4 [13]. In Figure 4-4,

yi is the ith input, n is the number of inputs, wij is the weight associated with the
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Figure 4-4: A 2-layer feedforward neural net with one output node [13]

connection from the ith input to the jth node in the hidden layer, bi is the bias of

the ith node, m is the number of nodes in the hidden layer, f is the transfer function

in the hidden layer, vi is the weight between the ith node and the output node, c is

the bias of the output node, g is the transfer function of the output node, and x is

the output. Then, x can be expressed as:

x = g

(
m∑

j=1

vjf

(
n∑

i=1

wijyi + bj

)
+ c

)
. (4.13)

A sigmoidal function is often used for f .

4.4 Characterization of nonlinearity

4.4.1 Physics-based characterization

In some cases where the underlying physics is known or predictable, one might be

able to characterize nonlinearity by examining the physical relationship between the
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observed and the to-be-estimated parameter. An example of physics-based char-

acterization of nonlinearity is a scan angle effect on cloud perturbation. We saw

in Chapter 2 the sounding equation, Equation 2.6, where the weighting function,

W (f, z) = sec(θ)α(f, z)e−
R L

z α(f,z) sec(θ)dz. Although the weighting function has the

complicated dependence on the secant of scan angle, sec(θ), a scan angle has some

multiplicative dependence on the cloud impact on the observed brightness tempera-

ture; this fact will be exploited in the cloud clearing algorithm later in this thesis.

4.4.2 Data-based characterization

Often the underlying physics is too complex or unyielding to model, in which case

a data-driven approach may be available to characterize the nonlinear relationship.

One simple example of such a characterization of nonlinearity is the use of a scatter

plot of an observation vs a parameter. In case of hyperspectral image, their principal

component scores can be used instead.

4.5 Summary

We have seen that the Bayesian least-square estimator is in general a nonlinear func-

tion of the observed data, and computing this estimator requires a complete statisti-

cal representation of the relationship between the observed and desired parameters.

Thus, the BLS estimator is not practical either because implementing the nonlinear

estimator is computationally exorbitant, or because a complete statistical character-

ization of the relationship between the observed and desired parameters (specifically,

the posterior density for the parameters given observations) is unavailable from which

to compute the estimator.

One alternative suboptimal estimator is linear least-square (LLS) estimator, or

linear regression. In a jointly-Gaussian case, an LLS estimator turns out to be an

optimum BLS estimator. A number of extensions of linear regression were addressed

to capture the nonlinearities of the input/output relationship within the simplicity

and practicality of the linear regression framework: Namely, the stratification, the
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augmented nonlinear terms, and the iterative estimation. In this thesis, we use a

linear regression and its variants for the linear and mildly nonlinear estimation of

parameters.
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Chapter 5

Stochastic Cloud-Clearing

Algorithm

5.1 Background

In Section 2.2.4, it was shown that infrared radiance is severely affected by water va-

por or clouds. In order to retrieve accurate atmospheric temperature or water vapor

profiles from infrared data obtained from satellites, detection and compensation of

possible cloud contamination within a field of view (FOV) is critical. Cloudy infrared

radiances (or, reversibly, brightness temperatures) are difficult to use in retrieval or ra-

diance assimilation schemes since they do not generally provide accurate information

on the thermodynamic state of the atmosphere below the cloud. Therefore if clouds

cover a portion of the FOV of an infrared radiometer, an accurate treatment of the

effects of clouds on the observed IR radiances is imperative for obtaining accurate

soundings.

5.2 Prior work on cloud-clearing

There are several approaches for treating cloud effects on the infrared observations:

• Look for only clear spots and therefore avoid the problem.
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Figure 5-1: Physical cloud clearing flow diagram [10]

• A physics-based attempt to solve for the radiative effects of clouds directly in

the inversion process.

• Attempt to infer what the radiances in the clear portions of the scene would be,

called clear-column (or cloud-cleared) radiances, from observations in a number

of adjacent FOVs.

The second and the third approach will be described hereafter.

5.2.1 Physical cloud-clearing

A physics-based method generally is computation-intensive because it requires itera-

tion between estimation of physical parameters (retrieval) and calculation of observed

radiance (radiative transfer) for a chosen number of passes or until some convergence

criterion is met. Figure 5-1 shows an example flow diagram of AIRS physical cloud-
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clearing algorithm [10], to illustrate the complexity of this approach. In this exam-

ple, cloud-clearing involves two-pass correction processes and the estimation of cloud

height and cloud fraction.

5.2.2 Adjacent-pair cloud-clearing

The key assumption made in this approach is that while there may be many types

of clouds in the different FOVs, the radiative properties of a given type of cloud are

identical in adjacent FOVs regardless of channels and the FOVs differ only in the

relative amounts of these cloud types. FOVs containing clouds with the same optical

properties but at different heights, or clouds at the same height but with different

optical properties, can be considered as having multiple cloud types. The other key

assumption of the approach is that the FOVs have the same characteristics in the

clear portions of their scenes, with unknown temperatures, humidities, etc. that we

are trying to solve for.

One well-known example of this approach is the N∗ method [8, 9]. In [8], the

radiances emerging from two adjacent FOVs are considered to have different fractional

cloud covers at the same height; the difference between the cloud-cleared radiance R̂i

and the measured radiance Ri for a pair of adjacent FOVs is:

R̂i,1 −Ri,1 = N1Gi,1

R̂i,2 −Ri,2 = N2Gi,2

(5.1)

where Ri,k (or R̂i,k) is for the channel i observation in FOV k, and Gi,k contains all

the radiative transfer properties of the clouds, and N1 and N2 are the fractional cloud

covers in the first and second FOVs respectively. If the two FOVs are contiguous, we

can assume

R̂i,1 ≈ R̂i,2 ≈ R̂i (5.2)

where R̂i is defined as a clear radiance for the two FOVs. We can then reconstruct
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the clear radiance R̂i by substituting Equation 5.2 into Equation 5.1 to obtain:

R̂i = Ri,1 + η[Ri,1 −Ri,2] (5.3)

where η is N1/(N2 −N1) for N1 6= N2 and is independent of channel i. In principle,

η can be determined from a knowledge of the clear-column radiance at any channel,

i′ as

η =
R̂i′ −Ri′,1

Ri′,1 −Ri′,2
. (5.4)

Note that neither FOV must be clear. Chahine [9] has also expanded this to the

case of K − 1 adjacent FOVs. Observations in K FOVs yield channel i clear-column

radiances R̂i:

R̂i = Ri,1 +
K−1∑
k=1

ηk(Ri,1 −Ri,K+1−k). (5.5)

The advantage of this approach is that it does not have the clear-sky sampling bias

of the first approach, nor does it require the ability to accurately model the spectral

emissive, reflective, and transmissive properties of the clouds, and their dependence

on the vertical microphysics and geometry, as required by the physics-based approach.

Blackwell evaluated and tested the physical and adjacent-pair approaches, but

with eight adjacent pixels [5]. The better algorithm is implemented in two stages.

First, a projected principal components (PPC) transform is used to reduce the dimen-

sionality of the 9-pixel data set while preserving the geophysical profile information

from the data. Second, a multilayer feedforward neural network (NN) is used to es-

timate the desired cloud-free radiance. It was trained on simulated data. Based on

this cloud-clearing method, cloud-clearing RMS error for altitudes from 0 to 10 km

ranged from 0.1 K to 1.25 K for 15 µm channels, and from 0.05 K to 0.8 K for 4 µm

channels.

5.2.3 Other methods

Another approach to cloud-clearing involves the detection of clear FOVs, and esti-

mation of cloud-cleared FOVs using spatial filtering assuming that a clear radiance
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field must have some horizontal homogeneity at a fixed altitude. The approach maps

the cloud-clearing to a problem of restoration or interpolation of two-dimensional ra-

diance field from sparse clear data. In [1], the clear-sky mean latitudinal variation is

restored using two-dimensional Gaussian low-pass filter.

There is an alternative approach for cloud-clearing, in which observations from an-

other sensor usually having finer spatial resolution is utilized to help cloud-clearing.

For example, the Moderate Resolution Imaging Spectroradiometer (MODIS), also

on the Aqua satellite, provides colocated clear radiances at several spectrally broad

infrared bands with 1-km spatial resolution. Thus, an optimal cloud-correction al-

gorithm extends the traditional N∗ technique, based on the fact that AIRS cloudy

footprints may contain clear MODIS pixels [26]. In this work, about 30% of AIRS

cloudy FOVs are successfully cloud-cleared with the help of MODIS high spatial res-

olution data. The MODIS imager provides a cloud mask for AIRS FOVs while the

multispectral MODIS IR channels yield clear radiance observations to synergistically

determine N∗.

Note that a data-fusion approach can enhance the cloud-clearing performance

of any of the other cloud-clearing methods described above when used together. A

practical issue with using another sensor to assist cloud-clearing or retrieval of physical

parameters is that the collocation and alignment of two sensors, both in time and

space may be challenging.

5.3 Description of stochastic cloud-clearing algo-

rithm

5.3.1 Overview of method and rationale

Stochastic cloud-clearing methods rely on stable multivariate statistical relation-

ships between AIRS observations and the brightness temperatures within each 45-km

AMSU FOV that would have been observed in the absence of clouds [15]. Hereafter

these Stochastic Clearing methods are designated “SC” algorithms. The cloud-free
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spectra are estimated using European Center for Medium range Weather Forecasting

(ECMWF) weather data plus a rapid radiative transfer program. The radiative trans-

fer program, Stand-Alone Radiative Transfer Algorithm (SARTA) v1.05 available for

download at [45], is one of an evolving series tuned to AIRS channels, an early version

of which was described by [41]. Inputs to the Radiative Transfer Algorithm include

temperature profile, water vapor profile, representative ozone profile, scan angle, and

surface level altitude. Another important input is the cloud fraction which is set to

zero to simulate cloud-cleared brightness temperature. The infrared spectral emis-

sivity is assumed to be characteristic of water and modeled as the representative IR

emissivity of water. The SARTA program, then, estimates brightness temperature

spectra for the 2378 AIRS channels.

The nonlinear aspects of cloud perturbation in IR brightness-temperature spec-

tra must be accommodated. For simplicity the nonlinearities were introduced here

primarily by stratifying the AIRS data into ten categories characterized by different

multi-linear statistics, and use of a few ad hoc nonlinear operators and iterations. The

operational cloud-clearing code described below consists of 664 lines of Matlab script

that can cloud-clear an entire day of AIRS data (314 channels) within 20 minutes on

an 1.7-GHz Pentium PC.

The rationale for SC algorithms relies upon the observed nearly monotonic non-

linear multivariate relationship between cloudy and cloud-cleared TB’s, provided the

FOV being examined is at least partly clear. Although the physical degrees of freedom

include the complex three-dimensional distributions of cloud particle size, phase, and

shape within each FOV, all of which must be modeled for physical retrieval methods,

four degrees of freedom appear to be sufficient in stochastic models. Figure 5-2 illus-

trates that four degrees of freedom capture most of the IR cloud impact. Although

physical methods sometimes characterize FOVs by the altitudes and fractional cov-

erages of two cloud layers [42], stochastic models apparently fold these four degrees

of freedom together with others in an effective but obscure manner. Early SC experi-

ments assumed these four degrees of freedom were linearly related to TB corrections,

but the approach presented below has achieved greater success by assuming these
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Figure 5-2: Eigenvalues (in a decreasing order) versus NAPC index for cloud pertur-
bation

relations are mildly nonlinear.

The SC algorithm presented here accommodates nonlinearities in three ways:

1. A few simple nonlinear operators are inserted between linear matrix multipli-

cations.

2. The data is stratified into a few sub-categories (ten here) which utilize different

linear operators.

3. Nonlinear behavior is exhibited by linear combinations of TB’s that are nonlin-

early and differently related to the desired TB corrections.

The data is stratified into the ten categories depending on (1) land versus sea, (2)

latitude within ±30 degree versus from ±30 to ±70 degree and (3) ascending orbit

(daytime) versus descending orbit (nighttime); there is no stratification by scan angle.

These stratification will be discussed in more detail in the following chapter.
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In this study, the latitude range is arbitrarily restricted to ±70 degrees. The

land/sea distinction is based on a fixed geographic database, and cloudy FOVs are

assumed when the initial estimated TB corrections exceed a threshold. The inserted

nonlinear operators include: 1) computation of the product of an initial TB correction

(a scalar) for each FOV, and the secant of the instrument scan angle, and 2) selection

of the warmest 14-km FOVs to use in estimating the cleared TB’s for each set of nine

such FOVs.

The agreement found here between AIRS and the corresponding time- and space-

interpolated ECMWF TB’s is blind to any stable biases introduced by the equations

of radiative transfer or the instrument. This is because the linear estimators were

trained and tested using global instrument data obtained from the same three days.

The comparison is not statistically “inbred” however, because the thousands of FOVs

used for training and testing are different, interspersed, and not adjacent, and the TB

corrections have only four degrees of freedom across the full spectrum. The results

for the selected channels are therefore indicative of what could be implemented in

operational numerical weather prediction (NWP) systems assimilating satellite TB’s.

The channels validated in this thesis were chosen because of their good agreement

with ECMWF which will be discussed in detail in the following chapter. Extensions

of these methods should be able to clear many of the remaining channels once the

reasons for their divergence are better understood. Significant portions of the bright-

ness temperature discrepancies observed on other AIRS channels are believed due to

residual weaknesses in the ECMWF data involving upper tropospheric water vapor

and the treatment of trace gases and CO2 variations.

5.3.2 Initial linear estimate of TB corrections for cloud and

surface effects

AIRS observes nine ∼14-km FOVs within a single AMSU-A 45-km FOV, which is

called a “golfball”. The stochastic cloud-clearing algorithm produces one set of cleared

AIRS brightness temperatures for each golfball based on inputs that include:
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Figure 5-3: Block diagram of cloud-clearing algorithm

Figure 5-4: Operator for selecting and averaging FOVs for N channels, and operators
A, B, C, and D
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• The N AIRS Level-1B TB’s of interest; the number of channels, N , is generally

more than 300 for each of 9 FOVs as defined later.

• The brightness temperatures for AMSU channels 5, 6, 8, 9, and 10. See Table 2.1

for the channel specification.

• The secant of the instrument scan angle.

• The a priori fraction of land in the golfball FOV.

The SC algorithm tested here is diagrammed in Figure 5-3 and Figure 5-4, and

consists of five main steps:

1. The FOVs to be used for each golfball are selected and their TB’s are averaged

for each of N channels.

2. An initial linear estimate of cloudiness is made (operator A). It is the first PC

score, P1.

3. A nonlinear input related to scan angle (P1secθ) is computed and a second

linear operator (operator B) estimates two ∆ brightness temperatures sounding

low altitudes (927.86 cm−1 peaking at 0.47 km and 715.94 cm−1 peaking at

2.95 km) that are used to classify each golfball as either “less cloudy” or “more

cloudy”.

4. A final estimate of four principal components of the TB correction spectrum is

made using operator C or D for the less or more cloudy golfballs, respectively.

5. This correction spectrum is added in C or D to that of the warmest FOVs for

that golfball to yield the final N cloud-cleared TB’s.

These steps are elaborated below.

The nine AIRS FOVs per golfball offer nine opportunities to avoid or minimize

clouds per sounding. Although one FOV is generally most clear, averaging more

FOVs reduces instrument noise. Brief empirical tradeoffs led to a policy of using

the clearest FOV for weighting functions peaking below 5 km, an average of the
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four clearest FOVs for weighting functions peaking between 5 and 10 km, and an

average of all nine FOVs above that. FOV cloudiness is inferred from the average

TB observed at eleven 4-µm channels having weighting function peak heights 1–3 km

because the warmer FOVs are presumed to be less cloudy. To better characterize

each golfball the TB’s for the most cloudy FOV are also determined, although the

resulting improvement is marginal. Future performance improvements should result

from more elaborate FOV selection and averaging protocols.

Next the N selected warmest infrared TB’s are converted to seven noise-adjusted

principal component (NAPC) scores. As seen previously, NAPC’s are computed for

variables that have been scaled so that the variances of their additive Gaussian noises

are equal; this avoids dominance of the statistics by noisy variables. These seven

numbers are fed to operator A. Also fed to A are the first three NAPC’s for the

warmest minus coldest, together with the land fraction, the secant of the satellite

scan angle, and the brightness temperatures for five AMSU channels from 53.6 to

57.5 GHz that sound tropospheric and lower stratospheric temperatures. AMSU

channels 5, 6, 8, 9, and 10 were used1. Three NAPC’s for the warmest FOV minus

coldest FOV provides possible cloud information if FOVs in a golfball observe different

cloud fractions. The principal components are trained on large ensembles of AIRS

data as will be discussed later. These 17 numbers are fed to a linear operator A

that estimates the value of the first principal component for the infrared correction

spectrum. Operator A simply multiplies the 17-element input vector by the matrix

A. The algorithm for this initial linear estimate of TB corrections is diagrammed in

Figure 5-4.

5.3.3 Final estimate of brightness temperature corrections

for cloud and surface effects

So far only a preliminary TB correction estimate exists, the scalar output of matrix

A. Next a nonlinear operator computes a parameter that approximates the angular

1Channel 7 was too noisy.
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dependence of the TB correction factor; it is the product of the output of operator A

and the secant of the instrument scan angle. The motivation for taking the product

is seen in Section 4.4.1: scan angle has a partly multiplicative relationship with the

cloud perturbation. Although separate estimators could be constructed for each view

angle and other angle dependences could be used, this estimator functions well at all

angles and has the advantage of simplicity. Operator B multiplies matrix B by the

same 17-element input vector plus the multiplied output of operator A. This produces

estimated brightness temperature corrections for 11-µm (927.86 cm−1) and 15-µm

(715.94 cm−1) TB’s (window and temperature channels) having weighting functions

peaking near 0.47 and 2.95 km for the standard atmosphere. The distributions of these

corrections are indicated by the horizontal axis in Figure 5-5. The vertical axis is the

final cloud-clearing error. All golfballs with brightness temperature corrections for

both the 0.47- and 2.95-km channels of less than 2 and 1 K, respectively, are classified

as “less cloudy”; the rest are “more cloudy”. These acceptance thresholds of 2 and

1 K are set arbitrarily for illustration; they will be automatically determined for a

given acceptance rate. For example, for a set of 30% clearest pixels, an acceptance

threshold T11µm for 11-µm channel is found via iterations such that the pixels having

cloud correction less than T11µm are 30% of all pixels. The other acceptance threshold

T15µm for 15-µm is determined in same way. Pixels which pass both tests are, hence,

slightly less than 30%.

Initial studies show that similar performance is obtained for alternate pairs of

similar channels at 4- or 15-µm wavelength. In the Figure 5-5 it is observed that

many outlying pixels with large errors are effectively excluded by the dual threshold

requirement.

The SC estimation process then begins anew, multiplying the same 18-element

input vector by either matrix C or D, depending on whether the golfball classification

is less or more cloudy, respectively. The intermediate outputs of operators C and D are

the scores of the dominant four principal components of the TB correction spectrum.

This correction is the estimated difference spectrum between that observed by AIRS

and that computed by applying the SARTA v1.05 equation of radiative transfer to
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Figure 5-5: Scatter plot of cloud correction and RMS difference. Top panel represents
a scatter plot of cloud-clearing error versus cloud correction for 2.95-km channel
(715.94 cm−1); the bottom panel for 0.47-km channel (927.86 cm−1)
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ECMWF atmospheric fields that have been interpolated in time and space to AIRS

FOV coordinates. Note that for different set of acceptance thresholds, a separate set

of linear estimators C and D are used. Training and test ensembles are discussed

further in the following chapter.

5.4 Summary

The SC algorithms detailed here are only simple examples of what can be implemented

under the SC strategy. Alternative routines could be developed for FOV selection and

averaging, for handling all scan angles, for establishing protocols and thresholds for

classifying golfballs into two or more categories, for incorporating other nonlinearities,

for iterating results, and for training. Neural networks can effectively combine some

of these functions. The essence of SC algorithms is their substitution of stochastic

models for physical ones, although physical reasoning can be incorporated in their

design. The specific configuration of the current SC algorithm is somewhat ad hoc

in that each parameter in the algorithm is optimized separately with no explicit

consideration of possible interactions among various parameters. Number of NAPC’s

used for the cloud correction for example was chosen to be 3 based on the scree plot

(Figure 5-2). Exploring all possible SC algorithm architectures in order to find an

optimum for a specific retrieval problem is combinatorially challenging, so one future

task might be to develop efficient design-of-experiment approaches for this search

process.

In the context of an anomaly compensation theory, the proposed cloud-clearing

algorithm relies on the combination of the following techniques:

• Spectral processing: NAPC to reduce dimensionality and computation; blind

signal separation (ION algorithm) to estimate noise statistics.

• Spatial processing: selection of warmest and coldest FOVs; averaging FOVs to

reduce instrument noise.

• Nonlinear estimations: correction for nonlinear scan angle effect; stratified es-
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timation based on cloudiness.

The current version of the SC algorithm makes very limited use of signal processing

in the spatial domain, and does not rely on any spatial filter to exploit the fact that

a clear brightness temperature field must have some horizontal homogeneity at a

fixed altitude. Rather the current algorithm heavily depends on spectral processing –

NAPC and ION. One can set up a cloud-free temperature-field variation model using

clear atmosphere statistics, and accordingly design a spatial filter which allows the

clearing or reduction of cloud effect. Although this is not sought after in this study,

once the spatial filter is designed, one can further iterate the current cloud-clearing

algorithm and the reliable spatial filtering, or merge these two processes.
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Chapter 6

Validation of Cloud-Clearing

Algorithm

6.1 Classification of AIRS channel behavior

An early SC experiment involved cloud clearing 827 AIRS channels, including all 4-

µm and 15-µm channels plus one-fifth of the rest1, and excluding the noisy channels

detected by the algorithm described in Section 3.3.2. Figure 6-1 shows the RMS

difference between the SC AIRS brightness temperatures (TB’s) and those predicted

by ECMWF/SARTA; the horizontal axis indicates the altitude at which the weighting

function peaks for a US standard atmosphere. The weighting function refers to the

temperature weighting function of a given channel, W (f, z), discussed in Section 2.2.3.

This analysis was restricted to oceans at night in order to minimize surface and other

effects. Three full days (August 21, September 3, and October 21, 2003) of data at

all scan angles were analyzed for latitudes within 40 degrees of the equator. Only

the least cloudy 22% of all golfballs were included in the statistics. In general the

4-µm band exhibits the highest accuracy in the troposphere, whereas the 15-µm band

excels in the stratosphere.

1Specifically, AIRS channel numbers for selected 827 channels are all 101–500 (12.34–14.82 µm),
every fifth from 501–1260 (8.81–12.34 µm), all 1263–1301 (8.09–8.22 µm), every fifth from 1302–1900
(4.52–8.08 µm), all 1900–1975 (4.508–4.517 µm), and every other from 1977–2300 (3.87–4.37 µm).
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Figure 6-1: RMS difference of cloud-cleared estimate and ECMWF (K)

The accuracies for the window and water vapor channels vary considerably. The

systematic peaking of RMS discrepancies for the water vapor channels near 8-km

altitude could very likely be due to decreased ECMWF humidity accuracies there,

suggesting that assimilation of AIRS water vapor data into operational numerical

models could be quite helpful.

The 4-µm channels exhibit RMS errors generally below 0.4 K at all altitudes

between ∼300 meters and 40 km. The larger 4-µm errors and channel absences

evident in the figure at certain altitudes are largely explained by the Planck function;

the weighting function widths and channel sensitivities near 4 µm become problematic

at the low temperatures and reversed lapse rates found in and above the tropopause.

The excellent cloud- and surface-clearing performance below 2 km altitude results

largely from the strong temperature dependence of the 4-µm Planck function and

the ability of multiple channels with different temperature and aerosol sensitivities to

compensate for partially cloudy FOVs, even in the absence of large clear “holes” in

the atmosphere.
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The 15-µm channels exhibit three regimes of behavior. The first regime below

∼3-km altitude exhibits more than twice the variance of those channels in the second

regime sounding higher altitudes. The third regime involves selected channels peaking

near 3–8 km altitude. In general, the low-variance group above 3-km altitude is

behaving as expected, whereas the group below 3 km has additional errors due to

some combination of: 1) imperfections in the SC algorithm, 2) CO2 variability, and

3) instrument anomalies, some of which have since been compensated algorithmically.

The third group of channels appears to be affected in part by one or more variable

trace gases not present in the ECMWF data.

Only four water vapor channels exhibit agreement with ECMWF below 0.5 K,

all in the 3–6 km altitude range (only one-fifth of the water vapor channels appear

in the figure). Most water vapor channels at comparable altitudes exhibit larger

RMS discrepancies, however, due to an unknown combination of trace gas effects,

instrument anomalies, and errors in ECMWF fields and spectroscopy. In contrast,

those water vapor channels below 3 km all behave quite similarly, exhibiting RMS

discrepancies of ∼0.7 K. The group above ∼6 km exhibits RMS errors that exhibit

an arc-like distribution that peaks distinctly near 8-km altitude and 2 K. This arc-

like distribution is even more unambiguous in daytime data, with RMS discrepancies

peaking near 3.6 K. Because all water vapor channels in this altitude range behave

similarly, one likely explanation is imperfections in the ECMWF upper tropospheric

humidity fields.

6.2 Evaluation of selected channels with respect to

ECMWF

The analysis here primarily explores the precision of AIRS since the SC algorithm

is both trained and tested on the same type of data, resulting in cancellation of

multi-day global mean errors [15]. The revealed precision does indicate, however,

the utility of AIRS cloud-cleared TB’s for operational numerical weather predictions.
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Type Description

Coverage Global grid
Date August 21, September 3, and October 12, 2003

Level 2 version 3.0.8
Radiative transfer program used SARTA v1.05

Scan angle All scan angle used
Latitude Up to 70◦ North and South

Orbit Both ascending and descending
Channels analyzed 314 channels including 4- and 15-µm sounding channels,

8-µm window channels, and water vapor channels (See
Appendix A for the full channel listing.)

Land definition Land is defined by land fraction > 0.8 and eleva-
tion < 0.5 km

Table 6.1: Data specification used for the evaluation of selected channels with respect
to ECMWF

The validation standard used here is ECMWF analysis fields processed using SARTA

v1.05 for radiative transfer. Three full days of global data are analyzed here: August

21, September 3, and October 12, 2003, the third day being relatively cloudy. During

this period the instrument appeared to be relatively stable. Level 1B v3.08 AIRS

data within 70◦ latitude of the equator were used in the stratified fashion: FOVs

within 40◦ latitude and FOVs from latitude 30◦ to 70◦ are trained separately using a

different set of estimators, denoted by A, B, C and D, in Figure 5-3. When tested,

the overlapping regions, i.e. FOVs from latitude 30◦ to 40◦, are calculated using the

estimators trained with ±40◦. Table 6.1 summarizes the data specification used for

this evaluation.

For each evaluation approximately half the qualified golfballs were used for train-

ing and half for testing, both sets being arranged in superimposed non-contacting

regular lattices. Since no training or testing golfball was ever adjacent, and since

both land and clouds have correlation distances generally less than ∼100 km, the

two sets can be regarded as largely independent for purposes of evaluating instru-

ment precision. Systematic variable errors in spectroscopy, atmospheric modeling,

and clearing algorithms are evident only as unexplained increases in variance, and

mean errors are not revealed. The variances reported here therefore place only an
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Figure 6-2: Infrared spectral emissivity

upper bound on all systematic variable errors; the instrument could in fact be better.

The ECMWF data consists of temperatures and absolute humidity at the surface

and at 60 pressure levels extending to 0.1 mbar (∼ 66 km). They were interpolated

in time and space to the center of each AIRS golfball. The ECMWF fields utilized

by SARTA did not incorporate any clouds, aerosols, or precipitation. The surface of

both land and sea was assumed to be characteristic of water, varying between 0.95

and 0.99, depending on wavenumber as shown in Figure 6-2 [18]. Since the average

errors in the assumed emissivity partly cancel because they occur both in training and

testing, and because the AIRS observations alone can largely compensate for surface

variations, the assumption of ocean emissivity characteristics everywhere should not

introduce much error.

One of the single most important applications of AIRS data will involve vari-

ational assimilation of AIRS radiances by operational weather forecasting models.

This section therefore focuses on those channels initially best suited to this purpose

— the set of 314 exhibiting RMS TB discrepancies below 0.5 K in Figure 6-1. The

selected 314 channels are listed in Appendix A. The SC algorithm of Figures 5-3,5-4

was again employed over ocean and land using only these 314 channels for all angles
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and both day and night, yielding the results shown in figures in Appendix C if ∼78

and ∼28% of all golfballs are considered, depending on the acceptance threshold used

in the cloudy test (see Figure 5-3). The acceptance thresholds for channels peaking

near 2.7 and 0.47 km are determined based on a given acceptance rate. For example,

if the acceptance rate is set at 30%, each acceptance threshold is iteratively found

to yield the acceptance rate of 30%. The actual percentage of golfballs which pass

both threshold tests are, therefore, less than 30%, usually ∼28% for all categories.

The reason the listed RMS cloud-clearing performance actually improves near the

limb is that somewhat fewer golfballs pass the cloud test there. Note that the agree-

ment would be still better if the performance had not been averaged over all channels

peaking within a given 1-km altitude block, where these channels may include both

water vapor channels and 4- and 15-µm CO2 channels. There are 10 stratifications

depending on land/sea, lower or upper latitude (lower being within ±40◦, upper being

from ±30◦ to ±70◦), and day/night/day+night:

• Land, |latitude| < 40, day.

• Land, |latitude| < 40, night.

• Land, |latitude| < 40, day + night.

• Land, 30 < |latitude| < 70, day.

• Land, 30 < |latitude| < 70, night.

• Land, 30 < |latitude| < 70, day + night.

• Sea, |latitude| < 40, day.

• Sea, |latitude| < 40, night.

• Sea, 30 < |latitude| < 70, day.

• Sea, 30 < |latitude| < 70, night.

A set of five figures on each page in Appendix C represents:
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• 1-km-bin average RMS difference for cloud-cleared TB relative to ECMWF/SARTA

plotted against weighting function peak in km.

• 1-km-bin average RMS difference for cloud-cleared TB when AMSU is elimi-

nated in both training and testing.

• RMS cloud-clearing difference for all 314 channels using best ∼28% golfballs2.

• RMS cloud-clearing difference for all 314 channels using best ∼28% golfballs, if

AMSU is unavailable.

• 1-km-bin average RMS difference comparisons for best ∼78% and ∼28% with

and without AMSU contribution.

The number of golfballs used for the training is different for each category, but is

more than 1000 for all cases. For all categories, 13,960 golfballs are used for the

training and 13,088 are used for the testing. Figure C-1 and Figure C-8 (best cases

for land and sea, respectively) demonstrate that for the best ∼28% of all golfballs

the RMS discrepancies are generally ∼0.3 K down to ∼5-km altitude, and degrade

to ∼0.5 K at the surface; over land the lowest kilometer exhibits ∼0.85 K differences.

These results could be improved somewhat by being still more selective with channel

selection, as indicated by the discrepancies shown in Figure 6-1 that approach 0.2 K

for some channels. The acceptable percentage of golfballs generally increases with

altitude, particularly above 3–7 km. For example, relative to the 28% group the

variance is very little worse for the best 78% of golfballs for channels peaking above

∼3-km altitude, and for all golfballs for channels peaking above ∼10 km. Over land

the discrepancy in Figures C-2 for all golfballs is less than 0.5 K down to 7 km. The

preliminary implication is that SC methods work reasonably well if any FOVs are

partially clear, and being more selective within that group of golfballs offers little

additional improvement.

2The “best” or “clear” X% golfballs refer to ones which pass the dual-channel threshold test,
thus presumably least cloudy data. These golfballs then go to a linear operator C. For different set
of acceptance thresholds, a separate set of linear estimators C and D are used.
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Weighting Ocean Land
function |Lat| < 40 30 < |Lat| < 70 |Lat| < 40 30 < |Lat| < 70

peak height (km) day night day night day night all day night all

0-1 0.38 0.40 0.86 0.91 1.68 0.77 1.36 1.48 0.78 1.19
1-2 0.27 0.29 0.54 0.57 0.94 0.38 0.75 0.84 0.44 0.70
4-5 0.28 0.30 0.45 0.45 0.34 0.29 0.33 0.41 0.33 0.39
6-7 0.23 0.27 0.34 0.36 0.25 0.24 0.28 0.34 0.26 0.31

10-11 0.24 0.27 0.33 0.35 0.23 0.25 0.26 0.24 0.28 0.27

Table 6.2: Cloud-clearing RMS difference with respect to ECMWF for the best 28%
golfballs

Weighting Ocean Land
function |Lat| < 40 30 < |Lat| < 70 |Lat| < 40 30 < |Lat| < 70

peak height (km) day night day night day night all day night all

0-1 0.70 0.74 1.49 1.47 1.62 1.11 1.53 1.49 1.21 1.39
1-2 0.50 0.53 1.02 0.98 0.90 0.68 0.91 0.92 0.77 0.87
4-5 0.42 0.42 0.65 0.62 0.43 0.44 0.48 0.51 0.46 0.49
6-7 0.36 0.36 0.54 0.49 0.37 0.36 0.42 0.42 0.35 0.40

10-11 0.28 0.30 0.38 0.37 0.29 0.28 0.32 0.25 0.31 0.30

Table 6.3: Cloud-clearing RMS difference with respect to ECMWF for the best 78%
golfballs

In the figures, the improvement for multiplicative scan angle correction is small

and concentrated on 5–10 km for the lower latitude cases. Interestingly, all the upper

latitude results (Figures C-4, C-5, C-6, C-9, C-10) show almost no improvement. In

the previous experiment in which no stratification (based on land/sea, day/night, and

latitude) was used, however, there was significant improvement using multiplicative

scan angle correction. By employing the stratified estimation, the effect of multiplica-

tive scan angle correction diminished.

Tables 6.2,6.3 summarize the SC performance. For ten different stratifications,

cloud-clearing RMS differences are shown in Tables 6.2, 6.3 for best 28% and best

78% golfballs, respectively.

88



Weighting Ocean Land
function |Lat| < 40 30 < |Lat| < 70 |Lat| < 40 30 < |Lat| < 70

peak height (km) day night day night day night all day night all

0-1 0.00 -0.01 0.00 0.06 0.10 0.09 0.21 -0.05 0.21 0.06
1-2 -0.01 0.00 0.01 0.00 -0.06 0.10 0.10 -0.03 0.11 0.00
4-5 0.00 0.00 0.00 -0.02 0.00 0.03 0.03 -0.01 0.02 -0.03
6-7 0.00 0.00 0.02 -0.02 0.00 0.01 0.01 -0.03 0.01 0.00

10-11 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 -0.01 0.01

Table 6.4: Cloud-clearing penalty without using AMSU for the best 28% golfballs

Weighting Ocean Land
function |Lat| < 40 30 < |Lat| < 70 |Lat| < 40 30 < |Lat| < 70

peak height (km) day night day night day night all day night all

0-1 0.01 0.06 0.19 0.35 0.11 0.47 0.13 0.18 0.40 0.34
1-2 0.01 0.04 0.14 0.24 0.10 0.37 0.11 0.15 0.29 0.24
4-5 0.01 0.02 0.08 0.08 0.04 0.15 0.07 0.04 0.07 0.09
6-7 0.01 0.01 0.05 0.03 0.01 0.08 0.06 0.01 0.01 0.04

10-11 0.00 0.00 0.00 0.01 -0.01 0.01 0.01 0.00 -0.01 0.01

Table 6.5: Cloud-clearing penalty without using AMSU for the best 78% golfballs

6.2.1 Cloud-clearing without using AMSU

Also tabulated in Tables 6.4, 6.5 are the RMS AMSU contribution to cloud-clearing,

or equivalently, the cloud-clearing penalty (increase in RMS error) when AMSU is

unavailable, for the best 28% and best 78% golfballs, respectively. It is evident that

microwave contributions are essential, especially for ocean/upper latitude/night case,

and land/night cases, for the best 78% group.

6.2.2 Cloud-cleared images

Figure 6-33 shows original AIRS brightness temperature at 2392.1 cm−1 channel, for

which the weighting function peaks ∼230 meters above the nominal surface. Each

vertical scan-line contains 90 FOVs. This image is intended to illustrate the cloud

patterns present in the observed TB field.

3Be advised that, including this figure, there are several figures in this thesis which are best
viewed in color to convey the maximum amount of information.
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Figure 6-3: Global AIRS original brightness temperature at 2392.1 cm−1

Figure 6-4 characterizes SC performance in another fashion. The SC algorithm

was trained as before on the 314 best channels (see Appendix A for the full channel

listing), and was then applied to typical daytime AIRS orbits obtained August 21,

2003. The top image in Figure 6-4 shows the best ∼78% cloud-cleared brightness

temperatures for the same channel; ∼22% golfballs which failed the “clear” test are

shown as white. Also surface elevation higher than half of kilometer is shown as

white since those are not included in training. We can observe that almost all cloud

patterns are either eliminated as cloudy or effectively cleared.

The discontinuities occur where the edge of one scan overlaps the interior of an-

other due to the scan-angle dependence of the brightness temperature and the effects

of sea ice, which was not included in the training. The bottom image in Figure 6-4

illustrates the spatially Gaussian-high-pass filtered version4 of the SC image above,

4The original image is low-pass filtered with a 2-dimensional Gaussian-shaped impulse function.
The Gaussian impulse function used here has standard deviation of 2 and 8.4 pixels in cross-track
and along-track direction, respectively. The high-pass filtered image is, then, defined as the original
image subtracted by the low-pass filtered image.
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thereby highlighting the fine-scale variations. Figure 6-5 is an enlargement of resid-

ual image in Figure 6-4, in the Southeastern pacific. Features in the residual image

appear to be of true meteorological origin.

The top image in Figure 6-6 shows the original AIRS brightness temperatures

at 2390.1 cm−1, for which the weighting function peaks ∼ 230 meters above the

nominal surface. This data is observed in the Pacific Ocean near Hawaii on July

14, 2003. The baseline has been increased toward the limb by averaging the SC

results for all scans and subtracting that average function of angle from both the

upper and lower images. Since that cleared average is everywhere warmer than the

uncorrected brightness, the original image is everywhere negative, the offset being

∼1 K for the 16 clearest golfballs. As seen in the figure, although some clouds

exhibit 14-km holes, most clouds have no clear 14-km FOVs. The middle image in

Figure 6-6 shows the angle-flattened relative SC cloud-cleared TB’s, most of which

fit within a 2-K dynamic range and, more locally, within a ∼ 0.6 K range. Each

vertical scan-line contains 30 golfballs that have been bilinearly interpolated. The

bottom image shows the sea surface temperature provided by NCEP. It is clear that

most hole-free clouds have been cleared with reasonable accuracy, and that only the

more intense events remain evident in the middle image. The cleared image has a

temperature difference left-to-right of 1.36 K, whereas the corresponding difference

for the NOAA/NCEP-provided sea-surface temperatures was 1.6 K. The NCEP sea

surface data shown in the bottom also exhibit in the same position the sharp thermal

front that is centered in the lower image, thus confirming the horizontal gradient in

the cloud-cleared brightness temperature is meteorologically true. Figure 6-7 shows

similar images as in Figure 6-6, but observed in the Southwestern Indian Ocean on

January 1, 2003, at 2399.9 cm−1, for which the weighting function peaks∼ 230 meters.

This set of images again verifies that the temperature gradient in the cleared image

matches the corresponding sea surface image.
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Figure 6-4: Global AIRS cloud-cleared and residual brightness temperatures
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Figure 6-5: Residual of AIRS cloud-cleared TB’s in Southeastern pacific

6.2.3 Angular dependence of performance

One of the surprising results from these SC experiments is the near lack of performance

degradation at extreme scan angles. Table 6.6 lists the RMS differences between the

SC-corrected AIRS TB’s as a function of scan angle for a representative channel at

2390.1 cm−1 peaking near 1.9 km. All golfballs were tested for three days (August

21, September 3, and October 12, 2003), including day and night, land and sea. The

percentages of golfballs that passed the threshold for each angular group are also

listed. Together the slightly improved performance and reduced yield near the limb

suggest that SC performance is not only nearly independent of viewing angle, but

also largely independent of spatial resolution, for the FOV area increases more than a

factor of three at the extreme viewing angle. This result is expected, however, if the

SC algorithm can indeed successfully use FOVs that are each only partly cloud-free.

Thus this result for the clouds of Figures 6-6,6-7 reinforces the observation earlier

that stochastic cloud clearing appears successful even when golfballs have no totally
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Figure 6-6: AIRS 2390.1 cm−1 angle-corrected relative brightness temperatures (◦K)
near Hawaii (upper image), the corresponding SC cloud-cleared temperatures (middle
image), the sea surface temperature (lower image)
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Figure 6-7: AIRS 2399.9 cm−1 angle-corrected relative brightness temperatures (◦K)
in Southwestern Indian Ocean (upper image), the corresponding SC cloud-cleared
temperatures (middle image), the sea surface temperature (lower image)
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Scan angle AIRS vs Percentage in
(degrees ECMWF clearest 40.6

from nadir) (RMS ◦K) percent
All 0.44 40.6

0–10 0.49 40.6
10–20 0.58 40.1
20–30 0.43 43.0
30–40 0.38 37.6
40–48 0.36 33.5

Table 6.6: RMS TB discrepancies at 2390.1 cm−1 between AIRS and
ECMWF/SARTA as a function of scan angle

clear FOVs.

6.3 NCEP sea surface temperature

The previous validation scheme is based on the training and testing with the same

type of data, ECMWF/SARTA simulated cloud-cleared TB, as ground-truth. Sea

surface temperature (SST) is also a good indicator of cloud-clearing performance

for the window channels [14] because SST should not be affected by clouds. Un-

like ECMWF/SARTA data set which involves radiative transfer program to simulate

cloud-cleared spectra from physical parameters, SST offers a very simple yet reliable

validation tool. The SST data is provided by National Centers for Environmental

Prediction (NCEP) as a part of numerical weather prediction model. The proposed

cloud-clearing algorithm can easily accommodate SST retrieval with a minor modifi-

cation; instead of estimating 4 NAPC scores of cloud-clearing perturbation, the linear

regression estimates a single scalar, SST. Thus, in the cloud-clearing algorithm de-

scribed in Figure 5-3, the output of linear estimator should be SST in order to adapt

the algorithm to predict SST.

For SST retrievals, 1755 and 1365 golfballs collected on January 3, April 9, July

14 in 2003 were used for the training and testing respectively. All the data used in

this evaluation are located in ocean between 40 North and 40 South in latitude. Only

one third of the golfballs close to nadir are used. Table 6.7 summarizes the data
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Type Description

Coverage 24 granules in ocean (each granule covers ∼1800 km by
∼400 km)

Date January 3, April 9, and July 14, 2003
Level 2 version 3.5.0

Scan angle |θ| < 16◦

Latitude Up to 40◦ North and South
Orbit Ascending (daytime)

Number of golfballs 1755 golfballs for training, 1365 different golfballs for
testing

Channels analyzed 294 channels including 4- and 15-µm sounding channels,
8-µm window channels, and water vapor channels

SST data Provided by National Centers for Environmental Predic-
tion (NCEP)

Table 6.7: Data specification used for estimation of NCEP sea surface temperature

specification used for this evaluation. Furthermore, about 29% of all pixels which

passed quality assurance test are used for training and testing. Figure 6-8 shows

RMS differences with respect to the NCEP SST for three different approaches to

retrieving SST. The horizontal axis is percentage of quality assurance (QA) passed

pixels, and pixels are rank ordered using cloud-cleared minus observed TB for an

8-µm (1217 cm−1) window channel. First, SST is calculated by AIRS version 3.5.0

cloud-cleared TB’s, denoted as the red curve. SST is calculated from two window

channels and the zenith angle, φ:

ŜST = TB1231 + 0.28 + 1.2(TB1231 − TB1227)
2 + 1.49sec(φ) (6.1)

where TB1227 and TB1231 refer to the brightness temperature at AIRS channel 1227

and 1231 respectively, and φ is a zenith angle [3]. Second, the stochastic cloud-clearing

algorithm trained with AIRS cloud-cleared TB [10] yields the blue curve, using the

same SST-retrieval calculation with 2 window-channel brightness temperatures. It

follows the AIRS result. Third, SST is directly estimated by the stochastic cloud-

clearing algorithm, which is trained with NCEP SST. This scheme bypassed the

estimation of cloud-cleared TB’s, thus outperforming the first two. Also shown is
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Figure 6-8: SST retrieval difference

the performance of the stochastic SST retrieval without using AMSU. It is clear that

microwave observations are critical for SST retrieval as expected.

6.4 Comparison with physical clearing

6.4.1 Using correlation between cloud-cleared image and Vis-

ible channel 3

AIRS science team developed a physical method for cloud-clearing, involving the

estimation of cloud attributes [42]. In this section, a new SC algorithm is both trained

and tested on the same type of AIRS-team physical cleared data. The purpose of this

analysis is to quantify the stochastic cloud-clearing performance when trained with

physical CC data. The core algorithm used for the cloud-clearing is still the same as

before except only one-pass estimator (only C or D) is used instead of a set of four

estimators (A, B, C, and D) in Figure 5-3. The reason for neglecting the correction
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Figure 6-9: Correlations with AIRS visible channel 3: Note that stochastic (red curve)
refers to the correlation between AIRS visible channel 3 and stochastic cloud-cleared
8-µm channel with respect to a percentage of pixels that are rank-ordered using cloud-
cleared minus observed TB for an 8-µm window channel; AIRS CC (blue curve) refers
to the correlation between AIRS visible channel 3 and AIRS-team physical cloud-
cleared 8-µm channel. The left image is for granule #91 (southern Indian Ocean) on
September 6, 2002, and the right image for granule #144 (east of England) on the
same date.

of nonlinear scan angle effect on the cloud impact in this analysis is to highlight the

difference of the cloud-clearing performance of a simple stochastic method versus a

more complex physical one. If the nonlinear scan angle effect has been accounted

for by employing the full SC algorithm in Figure 5-3, it would only enhance, if any,

the performance of the SC algorithm. The specification of the data set used in

this analysis is the same as the previous SST analysis in Section 6.3 (see Table 6.7)

except that 294-channel AIRS-team CC TB’s are used as the ground-truth instead

of a scalar SST value. The AIRS-team cloud-cleared product used in this analysis is

version 3.5.0. Each plot in Figure 6-9 shows three correlation plots:

1. Correlation between the AIRS visible channel 3 (covering 0.71-0.92 µm) and

stochastic cleared (SC).

2. Correlation between the AIRS visible channel 3 and AIRS-team physical cleared.

3. Correlation between the AIRS visible channel 3 and AIRS observed TB (un-

processed).
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Left panel is for granule #91 (southern Indian Ocean) on September 6, 2002, and

the right panel is for granule #144 (east of England) on the same day. Since visible

channel is sensitive to clouds, the high correlation of a certain image with visible-

channel image is regarded as having clouds in it. The x-axis is a percentage of pixels

used to calculate the correlations; pixels are rank-ordered using cloud-cleared minus

observed TB for an 8-µm window channel. The left image shows much less correlation

for AIRS stochastic CC than for physical CC. Obviously the observed TB has the

highest correlation with the visible channel. For the right graph, the correlation

difference is not as striking as in the left one, but still evident, especially for the

clearest 40% or less pixels.

6.4.2 RMS relative to baseline for stochastic cloud-clearing

Images in Figure 6-10 show the cloud-clearing results in a different fashion: The

leftmost images are AIRS visible channel 3 (0.71-0.92 µm) to visualize the cloud

patterns. (All the data is daytime.) The second images are AIRS observed brightness

temperature images at 13.9 µm (peaking at 2.9 km), 13.1 µm (peaking at 1.7 km),

and 8.2 µm (peaking at 0.2 km), respectively from left to right. The third images are

stochastic cloud-cleared brightness temperature images for corresponding channels.

The fourth images are masks which pass AIRS QA-test. (Blue means cloudy.) The

fifth images are 2-dimensional 3rd-order polynomial fits, so-called baselines, to the

QA-pass SC pixels. The rightmost images are stochastic cloud-cleared brightness

temperatures minus the polynomial fit. A few points are worth mentioning. First,

all the SC images show feasible compensation for the cloud perturbation. Especially

for the 13.9 µm-channel at which weighting peak is 2.9 km, most of the partly cloudy

regions (and even some heavy clouds) seem to be reasonably compensated. For the

8.2 µm window channel, only light clouds are corrected. Second, the spatially-smooth

baseline images model the true temperature field; hence, the residual image between

a SC image and its baseline is important: (1) to visualize the characteristics of the SC

algorithm, and (2) to assess of the RMS deviation as an indicator of SC performance.

It is noted that all three residual images for the 13.9 µm-channel look mostly white
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Figure 6-10: Stochastic cloud-cleared images: April 9, 2003 granule #92 is located at
20◦ South, 63◦ East; both January 3, 2003 granule #208 and July 14, 2003 granule
#208 are located at 10◦ South, 105◦ West.
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13.9 µm 13.1 µm 8.2 µm
Data used (WF peak ∼2.9 km) (WF peak ∼1.7 km) (WF peak ∼0.2 km)

April 9, 2003 #92 0.38 (48%) 0.74 (48%) 0.63 (48%)
January 3, 2003 #208 0.28 (31%) 0.49 (31%) 0.39 (31%)
July 14, 2003 #208 0.26 (34%) 0.51 (34%) 0.49 (34%)

Table 6.8: Stochastically cleared brightness temperatures (◦ K RMS) with respect
the baseline and the percentage pixels used for RMS analysis

Gaussian whereas the residuals for the channels peaking lower in the atmosphere

exhibit underestimated regions as deep blue. Also, the cloud-clearing performance

at extreme scan angles appears as good as at nadir. Table 6.8 summarizes the RMS

with respect the baseline and the percentage pixels used for RMS analysis. RMS

values with respect to baseline are less than 0.74 K for all cases. RMS reflects the

cloud residual left in the cloud-cleared image. It can be seen that 13.9-µm channel

peaking higher in the atmosphere exhibits less cloud residual than the other channels.

Interestingly, the RMS deviation for 8.2-µm channel peaking lower in the atmosphere

is slightly less than 13.1 µm-channel.

6.4.3 Comparison of stochastic cloud-clearing and physical

cloud-clearing using RMS relative to baseline

The correlation comparison in Section 6.4.1 is based on only two granules of data.

In this section, the SC algorithm is applied to 14 granules for the comparison to the

alternative physical algorithm for more complete quantitative evaluation. Table 6.9

summarizes the data specification used for this performance comparison.

For this analysis, we used 14 granules or 14129 QA-passed golfballs that pass both

SC algorithm’s best-78% test and AIRS team QA-flag. The 2-dimensional 3rd-order

polynomial fits (baselines) to the least-corrected quarter of the all QA-pass cloud-

cleared golfballs were obtained separately for stochastic-cleared image and physical-

cleared image. The difference between the local baseline and cloud-cleared image

reveal fine-scale structures of the cloud residuals. The RMS relative to local baseline
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Type Description

Date August 28 2005
Granules used #2, #3, #18, #19, #33, #66, #84, #99, #132, #148,

#165, #214, #216, #217 (14129 QA-passed golfballs in
total)

Level 2 version 4.0.9
Scan angle All scan angle used

Channels analyzed 314 channels including 4- and 15-µm sounding channels,
8-µm window channels, and water vapor channels (See
Appendix A for the full channel listing.)

Land definition Land is defined by land fraction > 0.8 and eleva-
tion < 0.5 km

Table 6.9: Data specification used for the evaluation of selected channels for RMS
deviation relative to local baseline

Figure 6-11: RMS relative to local baseline (K) for stochastic cloud-clearing and
physical cloud-clearing
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is shown in Figure 6-11, for SC and physical results. For both stochastic and physical

algorithm, the golfballs are separately rank-ordered within each granule using its own

cloud-cleared minus observed TB for an 4-µm window channel (2223 cm−1). These

RMS values are then combined to yield a total RMS results versus the percentage of

golfballs included. SC results reveal much less RMS (about a half to 65%) than phys-

ical results. For the same RMS, SC algorithm can cloud-clear much more percentage

of golf balls (about twice for up to 0.3 K RMS) than physical algorithm.

6.5 Summary

The SC algorithm is shown to have an excellent agreement with the numerical weather

prediction model, either ECMWF/SARTA cloud-cleared TB or NCEP SST. The

significance of these results is four-fold. First, the ECMWF and AIRS global TB fields

are in remarkable agreement, and therefore presumably quite accurate. Second, they

suggest that AIRS and its successor polar and geosynchronous hyperspectral sounders

will provide TB data of sufficient accuracy and global coverage to materially improve

the quality of operational and scientific numerical weather predictions. Third, since

the cloud-clearing performance reported here is nearly independent of viewing angle

and therefore of the diameter of the FOV, high spatial resolution may not be essential

for good cloud-clearing performance; the area of the 14-km nadirial FOV of AIRS

increases by more than a factor of three at the highest scan angles. Finally, these

cloud-clearing methods developed for selected channels can probably be adapted to

correcting the remainder, which have many potential applications such as monitoring

CO2 variability, trace gases, cloud properties, and humidity profiles.

The unique contribution of this research to cloud-clearing methods involves devel-

opment of data-trained stochastic models for the effects of clouds on infrared TB’s.

This contrasts with conventional cloud-clearing approaches employing physical models

for clouds and radiative transfer. Although physical models work well with instru-

ments having modest numbers of channels, such models currently have insufficient

accuracy to extract all the information available from hundreds or thousands of in-
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frared channels. Stochastic methods apparently access this information better by

virtue of the very large training data sets and computation resources now available,

provided that suitable nonlinear stochastic models are utilized.
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Chapter 7

Stability Analysis

7.1 Motivation

The Atmospheric Infrared Sounder (AIRS) is a novel instrument which has been

operational since May 4, 2002. The quality of the AIRS observed radiances and their

derivative products is being actively validated and improved by the AIRS science

team [34]. The Advanced Microwave Sounding Unit (AMSU), which has been on

several different satellites since 1998, on the other hand, is known to be very stable

within tenths of a degree K. The unique configuration that the AIRS operates in

synchronism with AMSU [2] (see Figure 2-2) allows us to analyze AIRS stability

relative to AMSU, and validate the quality of the cloud-cleared AIRS FOVs in the

following fashion: The AIRS cloud-cleared brightness temperature spectra are put

into a linear regression estimator that predicts AMSU brightness temperatures. The

difference of the AMSU estimate and the true AMSU, when averaged over many

FOVs, will be able to reveal the AIRS’ instrumental drift relative to AMSU, and its

dependence on diurnal cycle, latitude, scan angle, etc. The significance of this stability

analysis is two-fold. First, this can serve as another validation scheme for the AIRS

cloud-clearing algorithm because microwave frequencies are capable of almost total

cloud penetration. Second, the study of drift of AIRS instrument is important in its

own right in order to further improve the AIRS stability.
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Figure 7-1: Block diagram of stability analysis algorithm

7.2 Method

Figure 7-1 illustrates the algorithm for estimating AMSU brightness temperatures.

Noise-adjusted principal component scores of AIRS cloud-cleared brightness temper-

ature for the selected 314 channels are calculated. This set of selected 314 channels

is listed in Appendix A. The 40 most significant NAPC scores are fed to a linear

regression estimator that predicts AMSU brightness temperatures for all 15 channels.

By employing the NAPC transform, the number of inputs to the linear regression

estimator is reduced from 314 to 40, which has two important implications: First,

the degrees of freedom in the linear regression estimator decrease, thus allowing more

stable training of the linear estimator. Second, the truncation of the least significant

NAPCs reduces the noise as seen in Section 3.3.1.

The cloud-cleared AIRS data is from the output of stochastic cloud-clearing algo-

rithm discussed in the previous chapter. For the stability analysis, AMSU estimation

deviation, i.e. the true AMSU minus the predicted AMSU, is averaged over 200

nearby FOVs. Table 7.1 specifies the data used for this evaluation. For this analysis,

the same 10 stratifications as in Section 6.2 are used, depending on land/sea, lower

or upper latitude, and day/night/day+night. The number of golfballs used for the

training is different for each category, but is more than 1000 for all cases. For all

categories, 13,960 golfballs are used in total for the training, and 13,088 are used for

the testing.
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Figure 7-2: Mean deviation (the true AMSU minus the predicted AMSU) for AMSU
channels 5 (top left), 6 (top right), 8 (bottom left), and 9 (bottom right)
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Type Description

Coverage Global grid
Date August 21 2003 (used for training), and August 23 2003

(used for testing)
Scan angle All scan angle used
Latitude Up to 70◦ North and South

Orbit Both ascending and descending
Channels analyzed 314 channels including 4- and 15-µm sounding channels,

8-µm window channels, and water vapor channels. See
Appendix A for the full channel listing.

Land definition Land is defined by land fraction > 0.8 and eleva-
tion < 0.5 km

Table 7.1: Data specification used for the evaluation of selected channels relative to
AMSU

7.3 Results

Figure 7-2 shows the mean deviations (the true AMSU minus the predicted AMSU)

of predicted AMSU with respect to true AMSU, for channels 5, 6, 8, and 9. An x-axis

is the location of the satellite with respect to Earth’s south pole, i.e. 0 to 180 meaning

South pole to North pole in an ascending orbit, and 180 to 360 meaning North pole to

South pole in a descending orbit. AIRS data on August 21, 2003 is used for training,

and the data on August 23, 2003 is used for testing. It is important to note that the

training is done by 78% clearest1 pixels, and the evaluation is based on 28% clearest1

pixels. The initial study shows that when trained with 28% clearest set and tested

with the separate 28% clearest set, the results entail many outliers; these extremes

are very large positive deviations at the edge of heavy clouds, meaning that the cloud

effects were underestimated in the stochastic cloud-clearing algorithm, and that such

small error due to the underestimation of cloud perturbation can be amplified in the

AMSU estimator.

Each point in the plots in Figure 7-2 represents average mean deviation (true

AMSU brightness temperature minus its predict) over 200 FOVs2 in one granule,

1X% clearest pixels are determined by the same acceptance thresholds used in the stochastic
cloud-clearing algorithm in Section 6.2

2Only 200 FOVs are used out of 1350 overall FOVs because 28% of FOVs are available and some
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i.e. 30 scan-lines times 45 FOVs in one scan-line. Overlaid in the figures are the

low-pass filtered version of the mean deviations, using a Gaussian function with the

standard deviation of 4◦ of latitude. For relatively transparent AMSU channels 5

and 6, deviations are in ∼−0.3 and ∼−0.15 K range, respectively, with a common

distinct latitudinal pattern. Especially the latitudinal pattern in an ascending orbit

for channel 5 and 6 shows a striking similarity, thus may be useful to calibrate AIRS

measurements or modify slightly the AIRS cloud-clearing corrections. These channels

also show a small negative bias, meaning AIRS cloud effects are overestimated. More

opaque AMSU channels 8 and 9 show much less deviation and bias. When the mean

deviations are averaged over all latitude within ±60◦ (or points over 30–150 and 210–

330 in the graph) for both ascending and descending orbits, the resulting average

deviations are −0.2627 K, −0.1833 K, −0.0792 K, 0.0065 K for AMSU channel 5,

6, 8 and 9, respectively. Hence, the AIRS instrument is seen to be fairly stable

relative to AMSU instrument although there exists a very small negative deviation.

In this latitude range, the differences between the mean deviations and its low-pass

filtered curve exhibit a Gaussian density3, for all AMSU channels shown. Extreme

south region consistently shows worse agreement than the extreme north region partly

because it is deep winter in the southern hemisphere when this data is collected, and

sea ice was not adequately modeled in the cloud-clearing algorithm. The dependence

of the AIRS/AMSU drift upon latitude was sought in this analysis; yet, a thorough

investigation of its dependence upon other parameters can be done in a similar fashion,

and is left to a future work.

of them may still be missing if elevation is higher than 500 m.
3The goodness-of-fit to the Gaussian density is done with Bera-Jarque parametric hypothesis

test. The Bera-Jarque test uses the skewness and kurtosis of a given data samples to determines
if the null hypothesis that the data is normal is rejected. Significance level of 5% was used in this
analysis.
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Chapter 8

Conclusions

8.1 Summary

A generic methodology is presented for detecting and compensating anomalies from

hyperspectral imagery. Noise-Adjusted Principal component (NAPC) analysis and

blind signal separation technique such as the Iterative Order and Noise (ION) es-

timation algorithm are particularly useful in characterization of signal and estima-

tion/removal of artifacts. Various computationally efficient methodologies are also

addressed to cope with nonlinearities. An anomaly compensation technique has been

applied to specific problems that exhibit different stochastic models for an anomaly.

The performance of each anomaly compensation has been evaluated and validated.

Hyperspectral anomalies in AIRS observation covered in this thesis are

1. Cloud impact in hyperspectral brightness temperature (TB) fields.

2. Noisy channels.

3. Scan-line miscalibration.

Estimation of the cloud impact using the proposed statistical algorithm is proven

successful and comparable or superior to an alternative physical approach, using four

different validation schemes:

1. The RMS cloud-clearing errors with respect to ECMWF data are calculated
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2. Global cloud-cleared images permit visual inspection of the clearing perfor-

mance in various geographical regions.

3. Sea surface temperatures provided by NCEP are used to validate the stochastic

clearing results.

4. The stochastic algorithm is compared with an alternative physical algorithm,

using the correlations with a visible cloud-sensitive channel.

Noisy channels and miscalibrated scan-lines are also well compensated or removed

using the proposed algorithms.

8.2 Contributions

The main contribution of this study are two-fold.

First, a generic approach to characterizing hyperspectral data and to detecting

and compensating anomalies are presented. This approach is based on novel signal-

processing-based techniques utilizing principal component analysis and blind signal

separation. A number of approaches are discussed to cope with nonlinearities in most

of the remote-sensing applications without incurring a heavy computational burden.

Second, the stochastic cloud-clearing algorithm was designed based on the anomaly

compensation and nonlinear estimation techniques. AIRS stochastic cleared (SC)

TB’s are sufficiently consistent with ECMWF analysis fields that a large fraction of

AIRS golfballs could probably be profitably assimilated into operational global models

in the near future. The performance of the SC algorithm is shown to be comparable

to that of the physical algorithm in the SST-based validation scheme. What differen-

tiates the SC algorithm from the physics-based alternative is that the SC algorithm

exploits the cloud information embedded in the given data itself without relying on

the underlying physics of cloud impact, which may be challenging to model accurately.

Once trained with ensembles of observations and estimates, the SC algorithm runs

very fast because it only involves matrix additions and multiplications, whereas the
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physical method generally requires iteration between estimation of physical parame-

ters (retrieval) and calculation of observed radiance (radiative transfer) until a certain

convergence criterion is met. The operational SC program is implemented with 664

lines of Matlab script, and can cloud-clear an entire day of AIRS data for 314 channels

within 20 minutes on a moderately equipped PC. Stochastic cloud-clearing algorithms

also appear to function well a significant fraction of the time even if no FOV is fully

clear, reducing incentives for employing alternate strategies that rely only on totally

clear FOVs. It is found that the cloud-clearing performance at extreme scan angles

is nearly as good as the nadirial results; therefore hole-hunting using high spatial

resolution may not be essential for good cloud-clearing performance.

8.3 Suggestions for future work

This section addresses possible improvements and refinements to the anomaly com-

pensation theories and the current stochastic cloud-clearing algorithm.

8.3.1 Improvements on the anomaly compensation

• Optimization of combining spectral and spatial processing. Spectral and spatial

processing may be merged or iterated to that the signal-to-noise ratio (SNR)

of an anomaly of interest is enhanced. This thesis lacks a thorough study of

optimally combining the two processes in the spatial and spectrum domains and

a study of absolute theoretical limits.

• More extensive spectral processing techniques. More spectral processing tech-

niques may be used instead of or in combination with the techniques discussed

in this thesis. For example, independent component analysis (ICA) may replace

PCA.
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8.3.2 Stochastic cloud-clearing algorithm

• Joint cloud-clearing and retrieval. Cloud-clearing usually precedes retrieval of

physical parameters, for example, vertical temperature and water vapor profiles.

It would be worthwhile to study the performance and the implication of joint

clearing/retrieval relative to the separate approach.

• Analysis and mapping of trace gases. In Figure 6-1 it was seen that a group of

channels appears to be affected by one or more variable trace gases. Using a

blind signal separation techniques and assuming the orthogonality of each trace

gas space, it may be feasible to successfully separate the contribution of the

each trace gas from the given observation. Thus, interestingly these channels

may allow us to monitor the trace gases, and map their concentrations globally.

• Estimation of CO2 variability. CO2, although present in only minute amounts

(0.036%), is nevertheless a meteorologically important constituent of air because

it is an efficient absorber of energy emitted by Earth and thus influences the

heating of the atmosphere [30]. Although the proportion of carbon dioxide in the

atmosphere is relatively uniform, there is a steady increase in its concentration

over the last century due to human activities. AIRS spectrum covers 3.7–15.4-

µm, and different frequencies interact with carbon dioxide differently. Hence,

the carbon dioxide variability may be estimated and monitored over a long

period of time.

• Physical explanation of the behavior of 10 different cases in the ECMWF/SARTA

validation. This study does not include the complete analysis and physical rea-

soning of why 10 different cases (based on latitude, land/sea, and day/night/day+night)

behave the way they do. For example, for ocean, there exists little difference on

the SC performance for daytime and nighttime whereas, for land, the difference

is large.

• Use of stripe-removing algorithm. For the present cloud-clearing algorithm in

Chapters 5 and 6, we did not apply the stripe-removing algorithm in Sec-
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tion 3.3.3. Streak patterns due to miscalibrated scan-lines are less evident with

more recent version of AIRS data. It may be interesting to compare the cloud-

clearing performance of using the original raw TB versus the stripe-removed

data.

• Thorough AIRS stability analysis. A thorough investigation of the dependence

of the AIRS/AMSU drift upon various parameters can be done. This may per-

mit improvements on the AIRS stability, or useful insights on the performance

of the AIRS cloud-clearing algorithm.

• Embracing the outliers. The current SC algorithm does not adequately treat

outliers, thus it was both trained and tested with the latitude lower than ±70◦

and surface elevation lower than 500 m. One may be able to better analyze and

characterize outliers, and come up with a method to accommodate the outliers.

• Better model for nonlinearities. The current SC algorithm accommodates non-

linearities in simple ways based on stratification and multiplicative scan angle

correction. Refinements of the current methods to deal with nonlinearity should

yield accuracy improvements and permit extension to more AIRS channels.

• Optimum architecture for the SC algorithm. For example, the current warmest/coldest

FOV selection and averaging protocols are ad hoc. Exploring all possible SC al-

gorithm architectures in order to find an optimum for a specific retrieval problem

is combinatorially challenging, so one future task might be to develop efficient

design-of-experiment approaches for this search process.

• Comparison with different stochastic approach. Blackwell demonstrated a suc-

cessful stochastic cloud-clearing algorithm based on Projected Principal Com-

ponent (PPC) analysis and neural networks using simulated AIRS data [5].

Whereas the SC algorithm presented in the thesis works in a stratified fash-

ion, using a different estimator for FOVs having different physics (land versus

ocean, low latitude versus high latitude, and day versus night), Blackwell’s
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method replies on a single neural-network estimator for all cases. It would be

worthwhile to compare these two algorithms on the same data.

• More study on the near lack of angular dependence on SC performance. The

performance of SC algorithm does not degrade noticeably for the extreme view-

ing angle, or larger FOV. One relatively easy confirmation of this result would

be to process “super golfballs” consisting of a 3-by-3 average of golfballs near

nadir and check the performance for this case.

• Extending to future sounding systems. The current cloud-clearing algorithm can

be applied to similar future sounding systems including the NPOESS Cross-

track Infrared Microwave Sounding System (CrIMSS) and the GOES-R Hyper-

spectral Environmental Suite (HES).
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Appendix A

314 Selected AIRS Channels

This appendix lists 314 selected AIRS channels used in the evaluation of stochastic

cloud-clearing (Sections 6.1, 6.2) and the AIRS/AMSU stability analysis (Chapter 7).

Channel AIRS channel SRF centroid Wavelength Channel AIRS channel SRF centroid Wavelength

index number frequency (cm−1) (µm) index number frequency (cm−1) (µm)

1 101 674.414 14.828 2 102 674.673 14.822

3 103 674.931 14.816 4 104 675.189 14.811

5 105 675.448 14.805 6 106 675.707 14.799

7 107 675.966 14.794 8 108 676.226 14.788

9 109 676.485 14.782 10 110 676.745 14.777

11 111 677.005 14.771 12 112 677.265 14.765

13 113 677.526 14.760 14 114 677.786 14.754

15 115 678.047 14.748 16 116 678.308 14.743

17 117 678.570 14.737 18 118 678.831 14.731

19 119 679.093 14.726 20 120 679.355 14.720

21 123 680.142 14.703 22 124 680.404 14.697

23 125 680.667 14.691 24 126 680.930 14.686

25 127 681.194 14.680 26 128 681.457 14.674

27 129 681.721 14.669 28 130 681.985 14.663

29 131 687.601 14.543 30 135 688.680 14.521

31 136 688.950 14.515 32 137 689.220 14.509

33 138 689.491 14.503 34 139 689.762 14.498

35 140 690.033 14.492 36 141 690.304 14.486

37 142 690.576 14.481 38 143 690.847 14.475

39 144 691.119 14.469 40 145 691.391 14.464

41 146 691.664 14.458 42 147 691.936 14.452

43 148 692.209 14.447 44 149 692.482 14.441

45 150 692.755 14.435 46 151 693.029 14.429

47 152 693.303 14.424 48 153 693.576 14.418
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49 154 693.851 14.412 50 155 694.125 14.407

51 156 694.400 14.401 52 157 694.674 14.395

53 158 694.949 14.390 54 159 695.225 14.384

55 160 695.500 14.378 56 161 695.776 14.372

57 162 696.052 14.367 58 163 696.328 14.361

59 164 696.604 14.355 60 165 696.881 14.350

61 166 697.158 14.344 62 167 697.435 14.338

63 168 697.712 14.333 64 169 697.990 14.327

65 170 698.267 14.321 66 171 698.545 14.315

67 172 698.824 14.310 68 173 699.102 14.304

69 174 699.381 14.298 70 175 699.660 14.293

71 176 699.939 14.287 72 177 700.218 14.281

73 178 700.498 14.276 74 179 700.777 14.270

75 180 701.057 14.264 76 181 701.338 14.258

77 182 701.618 14.253 78 183 701.899 14.247

79 184 702.180 14.241 80 185 702.461 14.236

81 186 702.742 14.230 82 187 703.024 14.224

83 188 703.306 14.219 84 189 703.588 14.213

85 190 703.870 14.207 86 191 704.153 14.201

87 192 704.436 14.196 88 193 704.719 14.190

89 194 705.002 14.184 90 195 705.285 14.179

91 196 705.569 14.173 92 197 705.853 14.167

93 198 706.137 14.162 94 199 706.422 14.156

95 200 706.706 14.150 96 201 706.991 14.144

97 202 707.276 14.139 98 203 707.562 14.133

99 204 707.847 14.127 100 205 708.133 14.122

101 206 708.419 14.116 102 207 708.706 14.110

103 208 708.992 14.105 104 209 709.279 14.099

105 210 709.566 14.093 106 211 709.853 14.087

107 212 710.141 14.082 108 213 710.429 14.076

109 214 710.716 14.070 110 215 711.005 14.065

111 216 711.293 14.059 112 217 711.582 14.053

113 218 711.871 14.047 114 219 712.160 14.042

115 220 712.449 14.036 116 221 712.739 14.030

117 222 713.029 14.025 118 223 713.319 14.019

119 224 713.609 14.013 120 225 713.900 14.008

121 226 714.191 14.002 122 227 714.482 13.996

123 228 714.773 13.990 124 229 715.065 13.985

125 230 715.357 13.979 126 231 715.649 13.973

127 232 715.941 13.968 128 233 716.233 13.962

129 234 716.526 13.956 130 235 716.819 13.951

131 236 717.112 13.945 132 237 717.406 13.939

133 239 717.994 13.928 134 240 718.288 13.922

135 241 718.582 13.916 136 242 718.877 13.911

137 243 719.172 13.905 138 244 719.467 13.899
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139 245 719.763 13.893 140 246 720.059 13.888

141 247 720.354 13.882 142 248 720.651 13.876

143 249 720.947 13.871 144 250 721.244 13.865

145 251 721.541 13.859 146 252 721.838 13.854

147 253 722.135 13.848 148 254 722.433 13.842

149 255 722.731 13.836 150 258 723.626 13.819

151 259 723.925 13.814 152 260 724.224 13.808

153 262 724.824 13.796 154 263 725.123 13.791

155 264 725.424 13.785 156 265 725.724 13.779

157 268 726.627 13.762 158 269 726.928 13.757

159 270 727.230 13.751 160 273 728.137 13.734

161 274 728.439 13.728 162 275 728.055 13.735

163 277 728.660 13.724 164 281 729.873 13.701

165 282 730.177 13.695 166 283 730.481 13.690

167 286 731.395 13.673 168 287 731.700 13.667

169 293 733.536 13.633 170 297 734.765 13.610

171 298 735.073 13.604 172 300 735.690 13.593

173 302 736.308 13.581 174 306 737.546 13.558

175 307 737.856 13.553 176 308 738.167 13.547

177 311 739.100 13.530 178 316 740.660 13.501

179 317 740.973 13.496 180 318 741.286 13.490

181 319 741.599 13.484 182 320 741.913 13.479

183 322 742.541 13.467 184 331 745.380 13.416

185 336 746.967 13.387 186 345 749.839 13.336

187 1387 1294.562 7.725 188 1392 1297.427 7.708

189 1402 1303.194 7.673 190 1407 1306.096 7.656

191 1872 2187.850 4.571 192 1877 2192.412 4.561

193 1882 2196.993 4.552 194 1887 2201.592 4.542

195 1892 2206.211 4.533 196 1897 2210.848 4.523

197 1900 2213.640 4.517 198 1901 2214.572 4.516

199 1902 2215.505 4.514 200 1903 2216.439 4.512

201 1904 2217.373 4.510 202 1905 2218.309 4.508

203 1906 2219.245 4.506 204 1907 2220.181 4.504

205 1908 2221.119 4.502 206 1909 2222.057 4.500

207 1910 2222.996 4.498 208 1911 2223.936 4.497

209 1912 2224.877 4.495 210 1913 2225.818 4.493

211 1914 2226.760 4.491 212 1915 2227.703 4.489

213 1916 2228.647 4.487 214 1917 2229.592 4.485

215 1918 2230.537 4.483 216 1919 2231.483 4.481

217 1920 2232.430 4.479 218 1921 2233.377 4.478

219 1923 2235.275 4.474 220 1924 2236.225 4.472

221 1925 2237.176 4.470 222 1926 2238.128 4.468

223 1927 2239.080 4.466 224 1928 2240.033 4.464

225 1929 2240.987 4.462 226 1930 2241.942 4.460

227 1931 2242.897 4.459 228 1932 2243.854 4.457
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229 1933 2244.811 4.455 230 1934 2245.769 4.453

231 1935 2246.728 4.451 232 1936 2247.687 4.449

233 1937 2248.648 4.447 234 1938 2249.609 4.445

235 1939 2250.571 4.443 236 1940 2251.533 4.441

237 1941 2252.497 4.440 238 1942 2253.461 4.438

239 1943 2254.426 4.436 240 1944 2255.392 4.434

241 1945 2256.359 4.432 242 1946 2257.327 4.430

243 1947 2258.295 4.428 244 1948 2259.264 4.426

245 1949 2260.234 4.424 246 1950 2261.205 4.422

247 1951 2262.177 4.421 248 1952 2263.149 4.419

249 1953 2264.122 4.417 250 1954 2265.096 4.415

251 1955 2266.071 4.413 252 1956 2267.047 4.411

253 1957 2268.024 4.409 254 1958 2269.001 4.407

255 1959 2269.979 4.405 256 1960 2270.958 4.403

257 1961 2271.938 4.402 258 1962 2272.918 4.400

259 1963 2273.900 4.398 260 1964 2274.882 4.396

261 1966 2276.849 4.392 262 1967 2277.834 4.390

263 1968 2278.819 4.388 264 1969 2279.805 4.386

265 1970 2280.793 4.384 266 1971 2281.781 4.383

267 1972 2282.770 4.381 268 1973 2283.759 4.379

269 1974 2284.750 4.377 270 1975 2285.741 4.375

271 1981 2291.707 4.364 272 1987 2297.702 4.352

273 1989 2299.708 4.348 274 1991 2301.716 4.345

275 1995 2305.744 4.337 276 1997 2307.763 4.333

277 1999 2309.785 4.329 278 2027 2310.702 4.328

279 2029 2312.530 4.324 280 2031 2314.361 4.321

281 2033 2316.195 4.317 282 2035 2318.031 4.314

283 2037 2319.871 4.311 284 2039 2321.714 4.307

285 2045 2327.260 4.297 286 2059 2340.308 4.273

287 2061 2342.184 4.270 288 2063 2344.063 4.266

289 2065 2345.945 4.263 290 2067 2347.831 4.259

291 2069 2349.720 4.256 292 2071 2351.611 4.252

293 2073 2353.506 4.249 294 2077 2357.305 4.242

295 2081 2361.117 4.235 296 2083 2363.027 4.232

297 2087 2366.858 4.225 298 2089 2368.778 4.222

299 2091 2370.701 4.218 300 2093 2372.628 4.215

301 2095 2374.557 4.211 302 2097 2376.490 4.208

303 2099 2378.426 4.204 304 2101 2380.365 4.201

305 2103 2382.308 4.198 306 2105 2384.253 4.194

307 2107 2386.202 4.191 308 2109 2388.154 4.187

309 2111 2390.110 4.184 310 2113 2392.068 4.180

311 2115 2394.030 4.177 312 2117 2395.995 4.174

313 2119 2397.964 4.170 314 2121 2399.936 4.167

Table A.1: 314 selected AIRS channels
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Appendix B

Selected Cloud-Clearing Source

Code

This appendix lists selected Matlab scripts and functions that were used in the

thesis. Additional source code not listed here may be obtained from the author:

cycho@alum.mit.edu.

B.1 Cloud-clearing algorithm

B.1.1 linear-CC-test.m

function [AIRS_CC,varargout] = linear_CC_test(input_to_CC, channelnumber, CC_pass, CC_parameter, estimator);

%LINEAR_CC_TEST

% This is a core algorithm for stochastic cloud-clearing, using linear regression

%

% Usage:

% [AIRS_CC,varargout] = linear_CC_test(input_to_CC, channelnumber, CC_pass, CC_parameter, estimator)

%

% Input:

% input_to_CC: structure-format inputs to the CC algorithm (’AIRS’, ’AMSU’, ’scanang’, ’landfrac’, ’lat’,

% ’lon’, optional ’more_input’, optional ’correction_pc’)

% channelnumber: AIRS channel index being used (1-2378)

% CC_pass: either ’initial’, ’multiplicative_scanangle’

% CC_parameter: optional ’AMSU_input_channel’, ’num_output_pc_AIRS_correction’, ’verbose_flag’

% - AMSU_input_channel: AMSU channels used for both training and testing

% default = [5 6 8 9 10]
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% - num_output_pc_AIRS_correction: number of output NAPC to keep

% default = 4

% - verbose_flag: when turned on, intermediate results are shown

% default = off

% estimator: structure-format estimator coefficients

%

% Output:

% AIRS_CC: AIRS cloud-cleared brightness temperature

% varargout: corrections

%

% (c) Copyright 2005 Remote Sensing and Estimation Group M.I.T.

% Written by Chuck Cho <cycho@mit.edu>

more off

AIRS = input_to_CC.AIRS;

AMSU = input_to_CC.AMSU;

scanang = input_to_CC.scanang(:)’;

landfrac= input_to_CC.landfrac(:)’;

lat = input_to_CC.lat(:)’;

lon = input_to_CC.lon(:)’;

% input_to_CC.more_input specified?

if isfield(input_to_CC,’more_input’)

more_input = input_to_CC.more_input;

if size(more_input,1) == size(AMSU,2)

more_input = more_input’

elseif size(more_input,2) ~= size(AMSU,2)

error(’"more input" size does not match’)

end

disp(’extra input detected.’);

else

more_input = [];

end

% input_to_CC.correction_pc specified?

if isfield(input_to_CC,’correction_pc’)

correction_pc = input_to_CC.correction_pc(:)’;

elseif strcmp(CC_pass,’multiplicative_scanangle’)

error(’If CC_pass is "multiplicative_scanangle", input_to_CC.correction_pc must be specified.’)

end

% CC_parameter.AMSU_input_channel specified? (default=5,6,8,9,10)

if isfield(CC_parameter,’AMSU_input_channel’)
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AMSU_input_channel = CC_parameter.AMSU_input_channel;

else

AMSU_input_channel = [5 6 8 9 10];

end

% CC_parameter.num_output_pc_AIRS_correction specified? (Number of output PC correction: default 4)

if isfield(CC_parameter,’num_output_pc_AIRS_correction’)

num_output_pc_AIRS_correction = CC_parameter.num_output_pc_AIRS_correction;

else

num_output_pc_AIRS_correction = 4;

end

% CC_parameter.verbose_flag turned on? (default off)

% If turned on, display intermediate results for debugging

if isfield(CC_parameter,’verbose_flag’)

verbose_flag = CC_parameter.verbose_flag

else

verbose_flag = 0;

end

clear input_to_CC;

% load frequency

L2_chan_prop_v6_6_8_freq;

freq = frequency(channelnumber);

% load WF height

load weighting_peak.mat weighting_peak_in_height

height = weighting_peak_in_height(channelnumber);

numgolfball = size(AIRS,2);

height_for_averaging = find(height >= 1 & height <= 3 & freq > 2000 & freq < 2400);

if length(height_for_averaging) == 0

error(’No 4um channels peaking 1-3km’);

end

if verbose_flag

disp([’# of 1-3km 4um channels = ’ num2str(length(height_for_averaging))])

end

% load AMSU noise variances

load amsu_noise

numchannel = length(channelnumber);
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AIRS_warmest = zeros(size(AIRS,1),size(AIRS,2));

AIRS_warmest_4avg = zeros(size(AIRS,1),size(AIRS,2));

AIRS_warmest_9avg = zeros(size(AIRS,1),size(AIRS,2));

AIRS_coldest = zeros(size(AIRS,1),size(AIRS,2));

tmp1 = squeeze(mean(AIRS(height_for_averaging,:,:),1));

if size(tmp1,1) == 9

tmp1 = tmp1’;

end

[tmp2 tmp3] = sort(tmp1,2);

% average warmest 15-km pixels

for i=1:numgolfball

AIRS_warmest(:,i) = AIRS(:,i,tmp3(i,9));

AIRS_warmest_4avg(:,i) = mean([AIRS(:,i,tmp3(i,9)) AIRS(:,i,tmp3(i,8)) ...

AIRS(:,i,tmp3(i,7)) AIRS(:,i,tmp3(i,6))],2);

AIRS_warmest_9avg(:,i) = mean(AIRS(:,i,:),3);

AIRS_coldest(:,i) = AIRS(:,i,tmp3(i,1));

end

clear tmp*

AIRS_all_warmests = { AIRS_warmest, AIRS_warmest_4avg, AIRS_warmest_9avg };

for i=1:length(AIRS_all_warmests)

mean_AIRS = estimator{i}.mean_AIRS;

mean_AIRS_dif = estimator{i}.mean_AIRS_dif;

mean_AMSU = estimator{i}.mean_AMSU;

mean_correction = estimator{i}.mean_correction;

AIRS_pct = estimator{i}.AIRS_pct;

AIRS_dif_pct = estimator{i}.AIRS_dif_pct;

correction_pct = estimator{i}.correction_pct;

P = estimator{i}.P;

% normalize

zm_AIRS = AIRS_all_warmests{i} - mean_AIRS*ones(1,numgolfball);

load airs_noise_1_10_03; noise = airs_noise(channelnumber);

norm_AIRS = zm_AIRS ./ (sqrt(noise) * ones(1,numgolfball));

AIRS_dif = AIRS_all_warmests{i} - AIRS_coldest;

zm_AIRS_dif = AIRS_dif - mean_AIRS_dif*ones(1,numgolfball);

norm_AIRS_dif = zm_AIRS_dif ./ (sqrt(noise) * ones(1,numgolfball));
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zm_AMSU = AMSU - mean_AMSU*ones(1,numgolfball);

norm_AMSU = zm_AMSU ./ (sqrt(amsu_noise’) * ones(1,numgolfball));

number_input_pc_AIRS_warmest = 7;

number_input_pc_AIRS_dif = 3;

input1 = AIRS_pct(1:number_input_pc_AIRS_warmest,:) * norm_AIRS;

input2 = AIRS_dif_pct(1:number_input_pc_AIRS_dif,:) * norm_AIRS_dif;

input3 = norm_AMSU(AMSU_input_channel,:);

if strcmp(CC_pass,’initial’)

input = [input1; input2; input3; sec(scanang*pi/180); landfrac; more_input];

elseif strcmp(CC_pass,’multiplicative_scanangle’)

input = [input1; input2; input3; sec(scanang*pi/180); sec(scanang*pi/180).*correction_pc; ...

landfrac; more_input];

else

error(’invalid CC_pass’);

end

if verbose_flag

disp([’number of inputs to nnet is ’ num2str(size(input,1)) ])

end

output = P * input;

correction = correction_pct(1:num_output_pc_AIRS_correction,:)’ * output + ...

mean_correction*ones(1,size(input,2));

AIRS_CC_tmp{i} = correction + AIRS_all_warmests{i};

end

AIRS_CC = zeros(size(AIRS_CC_tmp{1}));

channels_0_to_5 = find(height <= 5);

channels_5_to_10 = find(height > 5 & height <= 10);

channels_above_10 = find(height > 10);

AIRS_CC(channels_0_to_5 ,:) = AIRS_CC_tmp{1}(channels_0_to_5 ,:);

AIRS_CC(channels_5_to_10 ,:) = AIRS_CC_tmp{2}(channels_5_to_10 ,:);

AIRS_CC(channels_above_10,:) = AIRS_CC_tmp{3}(channels_above_10,:);

if strcmp(CC_pass,’initial’)

foo = P * input;

varargout{1} = foo(1,:);

end
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if strcmp(CC_pass,’multiplicative_scanangle’)

foo = P * input;

varargout{1} = foo(1,:);

varargout{2} = correction_pct(1:num_output_pc_AIRS_correction,:)’ * foo + ...

mean_correction*ones(1,numgolfball);

end

B.1.2 linear-CC-train.m

function [estimator,varargout] = linear_CC_train(input_to_CC, AIRS_CC, channelnumber, CC_pass, CC_parameter);

%LINEAR_CC_TRAIN

% This is a core algorithm to train stochastic cloud-clearing, using linear regression

%

% Usage:

% [estimator,varargout] = linear_CC_train(input_to_CC, AIRS_CC, channelnumber, CC_pass, CC_parameter)

%

% Input:

% input_to_CC: structure-format inputs to the CC algorithm (’AIRS’, ’AMSU’, ’scanang’, ’landfrac’, ’lat’,

% ’lon’, optional ’more_input’, optional ’correction_pc’)

% AIRS_CC: AIRS cloud-cleared brightness temperature

% channelnumber: AIRS channel index being used (1-2378)

% CC_pass: either ’initial’, ’multiplicative_scanangle’

% CC_parameter: optional ’AMSU_input_channel’, ’num_output_pc_AIRS_correction’, ’verbose_flag’

% - AMSU_input_channel: AMSU channels used for both training and testing

% default = [5 6 8 9 10]

% - num_output_pc_AIRS_correction: number of output NAPC to keep

% default = 4

% - verbose_flag: when turned on, intermediate results are shown

% default = off

%

% Output:

% estimator: structure-format estimator coefficients

% varargout: corrections

%

% (c) Copyright 2005 Remote Sensing and Estimation Group M.I.T.

% Written by Chuck Cho <cycho@mit.edu>

more off

AIRS = input_to_CC.AIRS;

AMSU = input_to_CC.AMSU;

scanang = input_to_CC.scanang(:)’;
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landfrac= input_to_CC.landfrac(:)’;

lat = input_to_CC.lat(:)’;

lon = input_to_CC.lon(:)’;

% input_to_CC.more_input specified?

if isfield(input_to_CC,’more_input’)

more_input = input_to_CC.more_input;

if size(more_input,1) == size(AMSU,2)

more_input = more_input’

elseif size(more_input,2) ~= size(AMSU,2)

error(’"more input" size does not match’)

end

disp(’extra input detected.’);

else

more_input = [];

end

% input_to_CC.correction_pc specified?

if isfield(input_to_CC,’correction_pc’)

correction_pc = input_to_CC.correction_pc(:)’;

elseif strcmp(CC_pass,’multiplicative_scanangle’)

error(’If CC_pass is "multiplicative_scanangle", input_to_CC.correction_pc must be specified.’)

end

% CC_parameter.AMSU_input_channel specified? (default=5,6,8,9,10)

if isfield(CC_parameter,’AMSU_input_channel’)

AMSU_input_channel = CC_parameter.AMSU_input_channel;

else

AMSU_input_channel = [5 6 8 9 10];

end

% CC_parameter.num_output_pc_AIRS_correction specified? (Number of output PC correction: default 4)

if isfield(CC_parameter,’num_output_pc_AIRS_correction’)

num_output_pc_AIRS_correction = CC_parameter.num_output_pc_AIRS_correction;

else

num_output_pc_AIRS_correction = 4;

end

% CC_parameter.verbose_flag turned on? (default off)

% If turned on, display intermediate results for debugging

if isfield(CC_parameter,’verbose_flag’)

verbose_flag = CC_parameter.verbose_flag

else

verbose_flag = 0;

end
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clear input_to_CC;

% load frequency

L2_chan_prop_v6_6_8_freq;

freq = frequency(channelnumber);

% load WF height

load weighting_peak.mat weighting_peak_in_height

height = weighting_peak_in_height(channelnumber);

numgolfball = size(AIRS,2);

height_for_averaging = find(height >= 1 & height <= 3 & freq > 2000 & freq < 2400);

if length(height_for_averaging) == 0

error(’No 4um channels peaking 1-3km’);

end

if verbose_flag

disp([’# of 1-3km 4um channels = ’ num2str(length(height_for_averaging))])

end

% load AMSU noise variances

load amsu_noise

numchannel = length(channelnumber);

AIRS_warmest = zeros(size(AIRS,1),size(AIRS,2));

AIRS_warmest_4avg = zeros(size(AIRS,1),size(AIRS,2));

AIRS_warmest_9avg = zeros(size(AIRS,1),size(AIRS,2));

AIRS_coldest = zeros(size(AIRS,1),size(AIRS,2));

tmp1 = squeeze(mean(AIRS(height_for_averaging,:,:),1));

[tmp2 tmp3] = sort(tmp1,2);

% average warmest 15-km pixels

for i=1:numgolfball

AIRS_warmest(:,i) = AIRS(:,i,tmp3(i,9));

AIRS_warmest_4avg(:,i) = mean([AIRS(:,i,tmp3(i,9)) AIRS(:,i,tmp3(i,8)) ...

AIRS(:,i,tmp3(i,7)) AIRS(:,i,tmp3(i,6))],2);

AIRS_warmest_9avg(:,i) = mean(AIRS(:,i,:),3);

AIRS_coldest(:,i) = AIRS(:,i,tmp3(i,1));

end

clear tmp*
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AIRS_all_warmests = { AIRS_warmest, AIRS_warmest_4avg, AIRS_warmest_9avg };

for i=1:length(AIRS_all_warmests)

% normalize

mean_AIRS = mean(AIRS_all_warmests{i}’)’;

zm_AIRS = AIRS_all_warmests{i} - mean_AIRS*ones(1,numgolfball);

load airs_noise_1_10_03; noise = airs_noise(channelnumber);

norm_AIRS = zm_AIRS ./ (sqrt(noise) * ones(1,numgolfball));

AIRS_dif = AIRS_all_warmests{i} - AIRS_coldest;

mean_AIRS_dif = mean(AIRS_dif’)’;

zm_AIRS_dif = AIRS_dif - mean_AIRS_dif*ones(1,numgolfball);

norm_AIRS_dif = zm_AIRS_dif ./ (sqrt(noise) * ones(1,numgolfball));

mean_AMSU = mean(AMSU’)’;

zm_AMSU = AMSU - mean_AMSU*ones(1,numgolfball);

norm_AMSU = zm_AMSU ./ (sqrt(amsu_noise’) * ones(1,numgolfball));

[pc,xx,yy,zz] = princomp(norm_AIRS’);

AIRS_pct = pc’;

AIRS_eigenvalues = yy;

[pc,xx,yy,zz] = princomp(norm_AIRS_dif’);

AIRS_dif_pct = pc’;

AIRS_dif_eigenvalues = yy;

correction = reshape(AIRS_CC - AIRS_all_warmests{i}, numchannel, numgolfball);

mean_correction = mean(correction’)’;

zm_correction = correction - mean_correction * ones(1,numgolfball);

[pc,xx,yy,zz] = princomp(zm_correction’);

correction_pct = pc’;

correction_eigenvalues = yy;

num_input_pc_AIRS_warmest = 7;

num_input_pc_AIRS_dif = 3;

input1 = AIRS_pct(1:num_input_pc_AIRS_warmest,:) * norm_AIRS;

input2 = AIRS_dif_pct(1:num_input_pc_AIRS_dif,:) * norm_AIRS_dif;

input3 = norm_AMSU(AMSU_input_channel,:);

if strcmp(CC_pass,’initial’)

input = [input1; input2; input3; sec(scanang*pi/180); landfrac; more_input];

elseif strcmp(CC_pass,’multiplicative_scanangle’)
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input = [input1; input2; input3; sec(scanang*pi/180); sec(scanang*pi/180).*correction_pc; ...

landfrac; more_input];

else

error(’invalid CC_pass’);

end

if verbose_flag

disp([’number of inputs to nnet is ’ num2str(size(input,1)) ])

end

output = correction_pct(1:num_output_pc_AIRS_correction,:) * zm_correction;

if verbose_flag

disp(’Calculating linear regression’)

end

P = output * pinv(input);

estimator{i}.mean_AIRS = mean_AIRS;

estimator{i}.mean_AIRS_dif = mean_AIRS_dif;

estimator{i}.mean_AMSU = mean_AMSU;

estimator{i}.mean_correction = mean_correction;

estimator{i}.AIRS_pct = AIRS_pct;

estimator{i}.AIRS_eigenvalues = AIRS_eigenvalues;

estimator{i}.AIRS_dif_pct = AIRS_dif_pct;

estimator{i}.AIRS_dif_eigenvalues = AIRS_dif_eigenvalues;

estimator{i}.correction_pct = correction_pct;

estimator{i}.correction_eigenvalues = correction_eigenvalues;

estimator{i}.P = P;

end

if strcmp(CC_pass,’initial’)

foo = P * input;

varargout{1} = foo(1,:);

end

if strcmp(CC_pass,’multiplicative_scanangle’)

foo = P * input;

varargout{1} = foo(1,:);

varargout{2} = correction_pct(1:num_output_pc_AIRS_correction,:)’ * foo + ...

mean_correction*ones(1,numgolfball);

end
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B.1.3 test-all-passes.m

function [AIRS_CC,clear_parameter,varargout] = test_all_passes(input_to_CC, channelnumber, threshold, ...

estimator, CC_parameter);

%TEST_ALL_PASSES

% This script "cloud-clear"s given input using three-pass CC algorithms (calling linear_CC_test.m)

% (1) initial pass: initial pass to obtain cloud-correction

% (2) ’multiplicative_scanangle’ pass: has an additional input to CC algorithm -- cloud-correction

% multiplied by secant of scan angle

% (3) clear-pixel pass: CC for clear pixels

%

% Usage:

% [AIRS_CC,clear_parameter,varargout] = test_all_passes(input_to_CC, channelnumber, threshold, estimator,

% CC_parameter)

%

% Input:

% input_to_CC: structure-format inputs to the CC algorithm (’AIRS’, ’AMSU’, ’scanang’, ’landfrac’, ’lat’,

% ’lon’, optional ’more_input’, optional ’correction_pc’)

% channelnumber: AIRS channel index being used (1-2378)

% threshold: structure-format threshold specification:

% threshold{i}.channel1: 1st channel number for i-th threshold

% threshold{i}.channel2: 2nd channel number for i-th threshold

% threshold{i}.value1: 1st channel upper-bound thresholdvalue (%)

% threshold{i}.value2: 2nd channel upper-bound thresholdvalue (%)

% threshold{i}.lower_threshold_value1: 1st channel lower-bound thresholdvalue (%)

% threshold{i}.lower_threshold_value2: 2nd channel lower-bound thresholdvalue (%)

% estimator: structure-format estimator coefficients

% CC_parameter: optional ’AMSU_input_channel’, ’num_output_pc_AIRS_correction’, ’verbose_flag’

% - AMSU_input_channel: AMSU channels used for both training and testing

% default = [5 6 8 9 10]

% - num_output_pc_AIRS_correction: number of output NAPC to keep

% default = 4

% - verbose_flag: when turned on, intermediate results are shown

% default = off

%

% Output:

% AIRS_CC: AIRS cloud-cleared brightness temperature

% clear_parameter: structure-format parameters, mostly for debugging purpose

% clear_parameter{i}.abs_threshold_value1 = abs_threshold_value1;

% varargout: corrections for all channels (for debugging purpose)

% (c) Copyright 2005 Remote Sensing and Estimation Group M.I.T.

% Written by Chuck Cho <cycho@mit.edu>

133



if isfield(estimator,’prefix’) & isfield(estimator,’dir’)

disp(’Load estimator...’);

load([estimator.dir estimator.prefix ’_A.mat’],’estimator_initial’);

load([estimator.dir estimator.prefix ’_B.mat’],’estimator_multipl_scanangle’);

for i=1:length(threshold)

load([estimator.dir estimator.prefix ’_C’ num2str(threshold{i}.value1) ’.mat’],’estimator_most_clear’);

estimator_most_clear_all{i} = estimator_most_clear;

end

else

estimator_initial = estimator{1};

estimator_multipl_scanangle = estimator{2};

for i=1:length(threshold)

estimator_most_clear_all{i} = estimator{i+2};

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%% first pass (estimator A): initial

CC_pass = ’initial’;

[AIRS_CC_estimate_initial,correction_1st_pc]=linear_CC_test(input_to_CC, channelnumber, CC_pass, ...

CC_parameter, estimator_initial);

%%%%%%%%%%%%%%%%%%%%%%%%%% second pass (estimator B): multiplicative scan angle correction

CC_pass = ’multiplicative_scanangle’;

input_to_CC.correction_pc = correction_1st_pc;

[AIRS_CC_estimate_multipl_ang,correction_1st_pc,correction_all_channel]=linear_CC_test(input_to_CC, ...

channelnumber, CC_pass, CC_parameter, estimator_multipl_scanangle);

%%%%%%%%%%%%%%%%%%%%%%%%%% third pass (estimator C):

% most clear pixels using correction-thresholds for two channels

CC_pass = ’multiplicative_scanangle’;

input_to_CC.correction_pc = correction_1st_pc;

numgolfball = length(correction_1st_pc);

for i=1:length(threshold)

threshold_channel1 = threshold{i}.channel1;

threshold_channel2 = threshold{i}.channel2;

threshold_value1 = threshold{i}.value1; % in percent

threshold_value2 = threshold{i}.value2;

lower_threshold_value1 = threshold{i}.lower_threshold_value1;

lower_threshold_value2 = threshold{i}.lower_threshold_value2;
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ch1_index = find(channelnumber == threshold_channel1);

ch2_index = find(channelnumber == threshold_channel2);

for current_threshold = -30:0.05:0

if length(find(correction_all_channel(ch1_index,:) < current_threshold)) > ...

lower_threshold_value1/100*numgolfball

break

end

end

abs_lower_threshold_value1 = current_threshold;

for current_threshold = -30:0.05:0

if length(find(correction_all_channel(ch2_index,:) < current_threshold)) > ...

lower_threshold_value2/100*numgolfball

break

end

end

abs_lower_threshold_value2 = current_threshold;

for current_threshold = 50:-.005:-20

if length(find(correction_all_channel(ch1_index,:) < current_threshold & ...

correction_all_channel(ch1_index,:) >= abs_lower_threshold_value1)) ...

< threshold_value1/100*numgolfball

break

end

end

abs_threshold_value1 = current_threshold;

for current_threshold = 50:-.005:-20

if length(find(correction_all_channel(ch2_index,:) < current_threshold & ...

correction_all_channel(ch2_index,:) >= abs_lower_threshold_value2)) ...

< threshold_value2/100*numgolfball

break

end

end

abs_threshold_value2 = current_threshold;

clear_parameter{i}.abs_threshold_value1 = abs_threshold_value1;

clear_parameter{i}.abs_threshold_value2 = abs_threshold_value2;

clear_parameter{i}.abs_lower_threshold_value1 = abs_lower_threshold_value1;

clear_parameter{i}.abs_lower_threshold_value2 = abs_lower_threshold_value2;

most_clear_index{i} = find(correction_all_channel(ch1_index,:) < abs_threshold_value1 & ...

correction_all_channel(ch1_index,:) >= abs_lower_threshold_value1 & ...

correction_all_channel(ch2_index,:) < abs_threshold_value2 & ...
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correction_all_channel(ch2_index,:) >= abs_lower_threshold_value2 );

yield{i} = length(most_clear_index{i}) / numgolfball;

input_to_CC_clear.AIRS = input_to_CC.AIRS(:,most_clear_index{i},:);

input_to_CC_clear.AMSU = input_to_CC.AMSU(:,most_clear_index{i});

input_to_CC_clear.correction_pc = input_to_CC.correction_pc(most_clear_index{i});

input_to_CC_clear.scanang = input_to_CC.scanang(most_clear_index{i});

input_to_CC_clear.landfrac = input_to_CC.landfrac(most_clear_index{i});

input_to_CC_clear.lat = input_to_CC.lat(most_clear_index{i});

input_to_CC_clear.lon = input_to_CC.lon(most_clear_index{i});

AIRS_CC_most_clear{i}=linear_CC_test(input_to_CC_clear, channelnumber, CC_pass, CC_parameter, ...

estimator_most_clear_all{i});

end

AIRS_CC{1} = AIRS_CC_estimate_initial;

AIRS_CC{2} = AIRS_CC_estimate_multipl_ang;

for i=1:length(threshold)

AIRS_CC{i+2} = AIRS_CC_most_clear{i};

clear_parameter{i}.yield = yield{i};

clear_parameter{i}.clear_index = most_clear_index{i};

end

if nargout == 3

varargout{1} = correction_all_channel;

end

B.1.4 train-all-passes.m

function estimator = train_all_passes(input_to_CC, AIRS_CC, channelnumber, threshold, save_parameter, ...

CC_parameter)

%TRAIN_ALL_PASSES

% This script is to train stochastic CC estimators for three-pass CC algorithms (calling linear_CC_train.m)

% (1) initial pass: initial pass to obtain cloud-correction

% (2) ’multiplicative_scanangle’ pass: has an additional input to CC algorithm -- cloud-correction

% multiplied by secant of scan angle

% (3) clear-pixel pass: CC for clear pixels

%

% Usage:

% estimator = train_all_passes(input_to_CC, AIRS_CC, channelnumber, threshold, save_parameter,

% CC_parameter)

%
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% Input:

% input_to_CC: structure-format inputs to the CC algorithm (’AIRS’, ’AMSU’, ’scanang’, ’landfrac’, ’lat’,

% ’lon’, optional ’more_input’, optional ’correction_pc’)

% AIRS_CC: AIRS cloud-cleared brightness temperature

% channelnumber: AIRS channel index being used (1-2378)

% threshold: structure-format threshold specification:

% threshold{i}.channel1: 1st channel number for i-th threshold

% threshold{i}.channel2: 2nd channel number for i-th threshold

% threshold{i}.value1: 1st channel upper-bound thresholdvalue (%)

% threshold{i}.value2: 2nd channel upper-bound thresholdvalue (%)

% threshold{i}.lower_threshold_value1: 1st channel lower-bound thresholdvalue (%)

% threshold{i}.lower_threshold_value2: 2nd channel lower-bound thresholdvalue (%)

% CC_parameter: optional ’AMSU_input_channel’, ’num_output_pc_AIRS_correction’, ’verbose_flag’

% - AMSU_input_channel: AMSU channels used for both training and testing

% default = [5 6 8 9 10]

% - num_output_pc_AIRS_correction: number of output NAPC to keep

% default = 4

% - verbose_flag: when turned on, intermediate results are shown

% default = off

%

% Output:

% estimator: structure-format estimator coefficients

% (c) Copyright 2005 Remote Sensing and Estimation Group M.I.T.

% Written by Chuck Cho <cycho@mit.edu>

if isfield(save_parameter,’save_flag’)

save_flag = save_parameter.save_flag;

save_dir = save_parameter.save_dir;

save_prefix = save_parameter.save_prefix;

else

save_flag = 0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%% first pass (estimator A): initial

CC_pass = ’initial’;

[estimator_initial,correction_1st_pc]=linear_CC_train(input_to_CC, AIRS_CC, channelnumber, CC_pass, ...

CC_parameter);

%%%%%%%%%%%%%%%%%%%%%%%%%% second pass (estimator B): multiplicative scan angle correction

CC_pass = ’multiplicative_scanangle’;

input_to_CC.correction_pc = correction_1st_pc;

[estimator_multipl_scanangle,correction_1st_pc,correction_all_channel]=linear_CC_train(input_to_CC, ...

AIRS_CC, channelnumber, CC_pass, CC_parameter);
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%%%%%%%%%%%%%%%%%%%%%%%%%% third pass (estimator C):

% most clear pixels using correction-thresholds for two channels

CC_pass = ’multiplicative_scanangle’;

input_to_CC.correction_pc = correction_1st_pc;

numgolfball = length(AIRS_CC);

for i=1:length(threshold)

threshold_channel1 = threshold{i}.channel1;

threshold_channel2 = threshold{i}.channel2;

threshold_value1 = threshold{i}.value1; % in percent

threshold_value2 = threshold{i}.value2;

lower_threshold_value1 = threshold{i}.lower_threshold_value1;

lower_threshold_value2 = threshold{i}.lower_threshold_value2;

ch1_index = find(channelnumber == threshold_channel1);

ch2_index = find(channelnumber == threshold_channel2);

for current_threshold = -30:0.05:0

if length(find(correction_all_channel(ch1_index,:) < current_threshold)) > ...

lower_threshold_value1/100*numgolfball

break

end

end

abs_lower_threshold_value1 = current_threshold;

for current_threshold = -30:0.05:0

if length(find(correction_all_channel(ch2_index,:) < current_threshold)) > ...

lower_threshold_value2/100*numgolfball

break

end

end

abs_lower_threshold_value2 = current_threshold;

for current_threshold = 50:-.005:-20

if length(find(correction_all_channel(ch1_index,:) < current_threshold & ...

correction_all_channel(ch1_index,:) >= abs_lower_threshold_value1)) ...

< threshold_value1/100*numgolfball

break

end

end

abs_threshold_value1 = current_threshold;
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for current_threshold = 50:-.005:-20

if length(find(correction_all_channel(ch2_index,:) < current_threshold & ...

correction_all_channel(ch2_index,:) >= abs_lower_threshold_value2)) ...

< threshold_value2/100*numgolfball

break

end

end

abs_threshold_value2 = current_threshold;

most_clear_index = find(correction_all_channel(ch1_index,:) < abs_threshold_value1 & ...

correction_all_channel(ch1_index,:) >= abs_lower_threshold_value1 & ...

correction_all_channel(ch2_index,:) < abs_threshold_value2 & ...

correction_all_channel(ch2_index,:) >= abs_lower_threshold_value2 );

yield = length(most_clear_index) / numgolfball;

input_to_CC_clear.AIRS = input_to_CC.AIRS(:,most_clear_index,:);

input_to_CC_clear.AMSU = input_to_CC.AMSU(:,most_clear_index);

input_to_CC_clear.correction_pc = input_to_CC.correction_pc(most_clear_index);

input_to_CC_clear.scanang = input_to_CC.scanang(most_clear_index);

input_to_CC_clear.landfrac = input_to_CC.landfrac(most_clear_index);

input_to_CC_clear.lat = input_to_CC.lat(most_clear_index);

input_to_CC_clear.lon = input_to_CC.lon(most_clear_index);

AIRS_CC_clear = AIRS_CC(:,most_clear_index);

estimator_most_clear_all{i}=linear_CC_train(input_to_CC_clear, AIRS_CC_clear, channelnumber, CC_pass, ...

CC_parameter);

end

estimator{1} = estimator_initial;

estimator{2} = estimator_multipl_scanangle;

for i=1:length(threshold)

estimator{i+2} = estimator_most_clear_all{i};

end

if save_flag

save([save_dir save_prefix ’_A.mat’],’estimator_initial’);

save([save_dir save_prefix ’_B.mat’],’estimator_multipl_scanangle’);

for i=1:length(threshold)

estimator_most_clear = estimator_most_clear_all{i};

save([save_dir save_prefix ’_C’ num2str(threshold{i}.value1) ’.mat’],’estimator_most_clear’);

end

end
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Appendix C

Cloud-clearing performance

C.1 Cloud-clearing performance results for 10 cases

Each page in this Appendix has following five figures:

1. 1-km-bin average RMS difference for cloud-cleared brightness temperature (TB)

relative to ECMWF/SARTA plotted against weighting function peak in km.

2. 1-km-bin average RMS difference for cloud-cleared TB when AMSU is elimi-

nated in both training and testing.

3. RMS cloud-clearing difference for all 314 channels1 using best ∼28% golfballs2.

4. RMS cloud-clearing difference for all 314 channels1 using best ∼28% golfballs,

if AMSU is unavailable.

5. 1-km-bin average RMS difference comparisons for best ∼78% and ∼28% with

and without AMSU contribution.

1See Appendix A for the full channel listing.
2The “best”X% golfballs refer to ones which pass the dual-channel threshold test, thus presum-

ably least cloudy data.
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Figure C-1: Stochastic cloud-clearing results: land, |latitude| < 40, day
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Figure C-2: Stochastic cloud-clearing results: land, |latitude| < 40, night

143



Figure C-3: Stochastic cloud-clearing results: land, |latitude| < 40, day + night
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Figure C-4: Stochastic cloud-clearing results: land, 30 < |latitude| < 70, day
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Figure C-5: Stochastic cloud-clearing results: land, 30 < |latitude| < 70, night
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Figure C-6: Stochastic cloud-clearing results: land, 30 < |latitude| < 70, day + night
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Figure C-7: Stochastic cloud-clearing results: sea, |latitude| < 40, day
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Figure C-8: Stochastic cloud-clearing results: sea, |latitude| < 40, night
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Figure C-9: Stochastic cloud-clearing results: sea, 30 < |latitude| < 70, day
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Figure C-10: Stochastic cloud-clearing results: sea, 30 < |latitude| < 70, night
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