
Optimizing the Closures Development Process Using the
Design Structure Matrix

by

Eric Andrew McGill

BS Mechanical Engineering, University of California at Berkeley (1999)
BA Economics, University of California at Berkeley (1999)

MS Mechanical Engineering, Stanford University (2000)

Submitted to the Sloan School of Management and the Engineering Systems Division in Partial
Fulfillment of the Requirements for the Degrees of

Master of Science in Engineering Systems
Master of Business Administration

In Conjunction with the Leaders for Manufacturing Program at the
Massachusetts Institute of Technology

June 2005

© Massachusetts Institute of Technology, 2005. All Rights Reserved.

Signature of Author
Eic A. McGill

Engineering Systems Division
Sloan School of Management

May 6, 2005

Certified by
Daniel E. Whit~jI lTiSupervisor

Senior Lecturer,.Enggineering Systems Division

Certified by ..
.--"Janice Klein, Thesis Supervisor

Senior Ldcturer, Sloan School of Management

Accepted by
Richard de Neufville, ProCessor of En ieg Systems

Chair, Engineering System Divirducation Committee

Accepted by
David Capodipo,excu 1i e Director of Aasters Program

Qlran r, hnrl nf naanrpmprnt
MASSACHUSETTS INSTITTE

OF TECHNOLOGY

SEP 01 2005

LIBRARIES

. k 1~ll fi ~I - IL l.l.llC Ill. I V - gl Ill ~ 1..1.

1,A-., IYO,

[This page intentionally left blank.]

2

Optimizing the Closures Development Process Using the
Design Structure Matrix

By

Eric Andrew McGill

Submitted to the Sloan School of Management and the Engineering Systems Division in Partial
Fulfillment of the Requirements for the Degrees of

Master of Science in Engineering Systems
Master of Business Administration

Abstract

Product development processes are inherently complex sets of activities that involve a vast
number of connections between participants. Engineers, designers, marketers, financial analysts,
and manufacturers all have to receive information, process it, and distribute their decisions back
into the system. These paths create information loops that are hidden from the participants on a
long time scale and generate non-linear feedback. An analysis of the closures product and
process development tasks at a major US automaker prompted the creation of new tools to
optimize the ordering, identification of coupled blocks, prioritization of interactions, allocation
of resources, and modeling of multiple projects. Ultimately, the analysis predicted a reduction in
the average completion time of -80%, a reduction in standard deviation of -95%, and potential
savings of--$5B.

Unfortunately, many of the suggestions from the analysis run headlong into the organization's
structural, political, and cultural environment. Structurally, the automaker is a matrix
organization split along functions and program lines, constantly attempting to balance between
being a strong component designer and a quality assembler. However, the functional divisions
create trouble in viewing and communicating across the entire system, whether that system is the
vehicle to be designed or the organization itself. Politically, the atmosphere is dominated by a
strong functional orientation, authoritative traditions, and a rigid hierarchy. Culturally, the
people seem to be jaded and somewhat fatalistic about the company's future. Managing change
in this environment requires effort from the top and bottom of the organization, and must draw
on those people inside the organization that can provide an outsider's perspective when
addressing both the macro and micro challenges that will appear. Success will require using the
organization against itself in order to create the initial changes that will ultimately bring about a
long-term turnaround.

Thesis Supervisor: Daniel E. Whitney, Senior Lecturer
Thesis Supervisor: Janice Klein, Senior Lecturer

3

[This page intentionally left blank.]

4

,Acknowledgements

I'd like to acknowledge the Leaders for Manufacturing Program for its support of my work, and
the following people for their contributions...

Daniel Whitney
Jan Klein
Chip McDaniel
Tony Zambito
Pat Babcock
John Wheeler
Melissa White
Todd Dishman
Al Ver

...and the following for their incomparable contributions to my well-being...

Jenny McFadden
Chris McFadden
Maisy McFadden
Heath Holtz
Ashton Holtz

... thank you all!

5

Table of Contents

Optimizing the Closures Development Process Using the Design Structure Matrix 1
Abstract ...3
Acknowledgements ... 5

Table of Contents ..6
I. Introduction and Context 8.................. ... 8
II. Design Structure Matrix ...9

Basic Information and Setup ... 9
Ordering the DSM ... 12
The New Algorithm .. 14
Sensitivity and Randomization ... 22
Timing Calculations..23

Sequential Time (Smith and Eppinger, August 1997) .. 23
Signal Flow Graphs (Eppinger, Nukala, and Whitney, 1997) .. 25
Parallel Time (Smith and Eppinger, March 1997) .. 26
Simulation (Browning, 2002) .. 27
Simulation Extension .. 30
Comments on Possible Further Extensions ... 38

Reducing the DSM ... 40
Eigenvalue Tearing ... 44
Advanced Eigenvalue Tearing 49

III. Magma Analysis ... 50
Data Sources & Methods ... 52
Data Estimation ... 56

Task Duration ... 56
Strength of Interaction ... 56

DSM Analysis ... 59
R eordering... 60
Dominant Design Mode 62
T earing .. 70
Summary ... 73
Resource Model ... 74
Error Rates and Early System Involvement ... 77

Magma's Sensitivity to Expected Interaction Values ... 77
Organizational Implications from the DSM Analysis 81
DSM Recommendations and Financial Implications 87
Implementation Challenges ... 89
Final Context for Product Development: Real Options ... 90

IV. Organizational Analysis ... 91
Description and Context ... 92
Structural .. 93......... 93

Internal Processes ... 96
Structural Dynamics ... 98
Industry and Market Dynamics ... 103

6

Political .. 106
Power of Finance .. 108
Political Change . .. 110

Cultural ... 111
Short Term Outlook .. 112
Deferential to Hierarchy .. 113
Sense of Fatalism and Depression 115

Synthesis and the Framework for Change .. 117
G ap A nalysis ... 120
Plan for the Future .. 125

V . C onclusion ... 127
VI. Table of Figures: ... 129
VII. Table of Equations: .. 131
VIII. References: ... 132
IX. Appendix 1: Top 50 Eigenvalue Tears .. 134
X. Appendix 2: Code .. 135

Ordering Matrices ... 135
dsm order.m ... 135
dsmordernoswap.m .. 139

Timing Calculations 142
para.m 142
seq.m ... 142
signalflow.m 143

Reducing Matrices .. 144
dsmcombine.m 144
combine.m 145

Eigenvalue Tearing ... 147
Dsmoptimize.m 147
dsmtear.m .. 149
dsmmode.m 150

Simulation 150
dsmsimulate.m .. 150

Resource Model .. 153
dsmsimulateres.com 153
dsmsimulateresrelaxfactor.m .. 155

Multiple Projects 159
dsmsimulateresmult.m .. 159
dsmsimulateresmultopt.m .. 163
dsmsimulateresmultrelaxfactor.m 1..... 167

7

I. Introduction and Context
Product development processes are inherently complex sets of activities that involve a vast

number of connections between participants. Engineers, designers, marketers, financial analysts,

and manufacturers all have to receive information, process it, and distribute their decisions back

into the system. Consequently, the work of any one participant can affect the work of many

others, often through non-intuitive paths in the overall structure. These paths create information

loops that are hidden from the participants, since most assume that the development process is

linear. As a result, many participants and managers are surprised to find themselves caught in

iterative loops where they are performing the same job because someone else "made a mistake."

In reality, no mistake was made at the time. Rather, the task was finished with incomplete

information and iteration was required for the design to converge. Understanding these iterative

loops is absolutely fundamental to understanding the overall design process and how to improve

both speed and quality of development.

Magma Motor Company is a large US automaker that has a standing relationship with MIT to

apply analytical models and tools to their processes. As part of this broader relationship, the

LFM and SDM programs have performed a variety of analyses in a series of theses. Several of

these past analyses have used the design structure matrix (DSM) tool to analyze the closures

development process, most notably on doors and hoods. However, the number of tasks included

in these matrices has typically been rather small in number, ranging from 30 to 50. In addition,

the previous work has been confined to just the product development process. In this thesis, the

primary intent was to combine both the product and process development, covering not only the

specification of what is going to be built, but also how to build it. Once again, the area of

closures was chosen to be a sufficiently complicated area for a reasonable analysis, but also as a

tractable problem that would produce general results suitable for expansion to other development

processes. Combining the entire closures product and process development processes generates

upwards of 750 tasks, and ultimately required new methods for analyzing DSM's for

computational reasons.

8

II. Design Structure Matrix
The design structure matrix (or DSM) is the fundamental process tool that will be used to

examine Magma's closures development process.

Basic Information and Setup
The design structure matrix is a simple tool used to represent a complex design process in matrix

form. Fundamentally, the DSM method assumes that a design process can be broken down into

a set of individual tasks that must be completed to produce a design. However, these tasks are

rarely independent from each other. Rather, the tasks are inevitably connected by a set of

relationships that determine the core dynamics of the overall process. Some tasks will be

precedents for future tasks, and some tasks will be dependents of previous tasks. The DSM takes

these relationships and places them into a matrix form, as shown in Figure 1.

102 3 4 : 5 6 7 8 9 10

...... d.......! v. i... ;. :

,4-~ ~~~~~_~~.... ?.l~i.. J.I~I.........,.�.~.. .. ?..j

6............M.. i. : v................. v:

3!0 i i 1 1 l ! ~ I ~

Figure 1: Sample Design Structure Matrix

The interpretation of the DSM becomes easy with a bit of practice. Initially, the tasks are placed

in symmetrical order on the rows and columns according to the current order of execution. The

interior cells of the matrix are then marked with a value to describe the relationships between

tasks, leaving the diagonal blank because a task cannot be dependent upon itself. In the above

matrix, each of the 15 precedent and dependent relationships is marked with a in the

intersection cell. Precedent relationships are labeled across the rows, while dependent

relationships are labeled down the columns. For example, reading across the rows reveals that

task #8 requires information from tasks #3 and #4 before its work can be completed. In other

words, tasks #3 and #4 are the precedents of task #8. Similarly, reading down the column

9

reveals that task #7 delivers information to tasks #3 and #5. In other words, tasks #3 and #5 are

the dependents of task #7.

In the above matrix, a quick examination of the interior reveals that there are some significant

loops contained in the current order of task execution. For example, task #2 requires information

from tasks #4 and #5 before its work can be completed. In a real project, this would result in

task #2 being finished with incorrect or incomplete information, which would require task #2 to

be redone after tasks #4 and #5 are completed later. Repeating task #2 would then require task

#3 to be redone as well. Obviously, these relationships create a loop that is less than ideal, since

tasks are going to be iterated with significant delays and extra tasks within the loops. It is

exactly this iterative behavior that analysis of the DSM seeks to eliminate. With a little bit of

thought, it's simple to realize that the ideal DSM would have all relationships below the diagonal

of the matrix. This would result in an order of execution that delivers dependents to future tasks

before they are actually needed, thereby preventing the creation of iterative loops. However, we

will see that it is not always possible to push every interaction below the diagonal by simply

reordering tasks. Further measures, such as deleting dependencies or adding tasks, may be

required to create a purely dependent task order.

As an analytical tool, the design structure matrix is not limited to simple binary relationships in

its interior. An improved DSM contains quantitative information both on the strength of

interactions and on the duration of tasks, as shown in Figure 2.

10 1 2 3 4 5 6 7. 8 9 10

'.......^.... F ; i......

5;.1 535 05 20 0.3

3 .. 0 ,i 1 0 i 5 7t : .5 0.2

18 0 .7 i2 i2.. .. .i

Figure 2: Improved Design Structure Matrix

10

Interpretation of the improved DSM is also relatively straightforward. The numbers on the

central diagonal represent the durations of the tasks in the chosen time unit. It is important to

point out that the durations are for the task holding everything else constant, or assuming perfect

information. Any additional time required to (re)process iterations will be taken into account

during the timing calculations later. In a purely sequential process with no interaction above the

diagonal and therefore no iterative loops, the total time to complete all ten tasks would be the

sum of the individual times. However, if two tasks are executed in parallel, then the time would

be the maximum of the two tasks. Finally, if a set of tasks must be completed in an iterative

loop, the time would be the result of some unknown function of the individual times, based on

the expected number of iterative loops until the tasks converge to completion. Combining all of

these scenarios gives a general time to completion of

I(sequential times) + Max(parallel times)

where either the sequential or parallel times could be the result of an iterative loop and a parallel

time could be the sum of several sequential times. Obviously, the calculation can get quite

complicated, so the details will be left for later.

The other improvement to the DSM is the inclusion of quantitative information on the strength of

interactions. Giving the interior cells a value between 0 and 1 allows for a large range in

describing the chance that one task will affect another. Traditionally, the value is interpreted as

the percent chance that changing one task will create work for another task, either forward or

backward in the process. In Figure 2, an example is that changing task #3 has an 80% chance of

affecting its dependent task #8, whereas changing task #8 has only a 40% chance of affecting its

dependent task #3. These values provide much more information than the previous 's, because

they reveal that the loop between tasks #3 and #8 actually has a chance of exiting at some point

due to the 40% chance of task #8 returning to #3. Previously, the 100% values ensured that the

project would keep cycling between tasks #3 and #8 infinitely. In fact, values less than 1 are

vital to the later timing calculations, otherwise all of the iterative loops would be infinite and

calculating a time would be impossible.

11

Previous DSM work has further augmented the level of information contained in the matrix,

chiefly by breaking up the relative strength measure into smaller components. Zambito (2000)

broke his task volatility into two components,

Task Volatility = Task Sensitivity x Information Volatility

or

Expected Value of Interaction = Probability of Change * Impact of Change

where information volatility described the likelihood that information from a task would changed

after its initial release, and task sensitivity described how sensitive a task would be to that

changing information. Given the extreme size of the DSM that is used in the door design

process, I chose to ignore this extra detail and limited myself to the single relative strength

measure. However, it became necessary to estimate the split between probability and impact for

the simulation of completion time.

Ordering the DSM
After an initial design structure matrix is set up, a quick glance will generally reveal that the

current process order is less than optimal. More interactions are above the diagonal than are

required, thereby creating unnecessary iterative loops. In addition, the tasks involved in any

given iterative loop are also spaced out unnecessarily, thereby inserting extra delays in the loop

and involving tasks in the loop that do not need to be there. The ordering and partitioning of a

DSM seeks to resolve these issues by following 3 simple rules:

1. Place tasks with no precedents (only dependents) at the beginning

2. Place tasks with no dependents (only precedents) at the end

3. Identify coupled tasks that must be executed in a loop and group them together as closely

as possible in the middle

Rules 1 and 2 are relatively straightforward to execute, since empty rows and empty columns in

the DSM can be identified very easily. Once identified, it is then a simple matter to swap tasks

around to place these items either at the beginning or the end of the overall process. However,

12

the identification of the interior loops can be much more difficult. Thus far, I have found 3

separate methods for tracking the iterative loops in a DSM (http://www.dsmweb.org):

1. Path Searching

2. Powers of the Adjacency Matrix

3. Reachability Matrix

First, path searching is clearly the simplest to understand, yet one of the more annoying to handle

computationally. In the path searching method, the flow of information is traced either forward

or backward until a task is encountered twice. Once a set of tasks is discovered, they are

collapsed into one task as long as loops do not intersect, and the process is repeated.

Second, the powers of the adjacency matrix method relies on raising the matrix to various

powers to identify the loops by reading the values on the diagonal, as shown in Figure 3.

DSM

A 00 1i

VYIDV Fo VlboofD|OI1°1°1°
ioTH i

Square

jD OJOf 0
1 5lT f i1 j

1

1

V

Cube

IABJ CIE

BIOI1o O i iI
[0iii lo0l
!' oTlo o'T6o

'E10 0 OT

Figure 3: Example of Adjacency Matrix Method

As is shown by the highlighted cells, the squared matrix reveals that tasks A and C are in a two

step loop. Similarly, tasks B, D, and E are in a three-step loop. Additional powers can be

calculated to find higher order relationships, but none are revealed in this example. Once all of

the step loops are identified, the DSM can then be ordered and partitioned.

Third, the reachability method treats the DSM as a multi-level hierarchy that ranks tasks by how

many "levels" down in the DSM they are. The top level tasks are independent from the other

tasks by the virtue of having no precedents. After top level tasks are identified, they are removed

13

A IlIrlrn

A l TIOU
IBIOIO 1!'1B ' ."],I... ...

- f

F

and the next top level of the sub-matrix is identified. The ultimate order is then reassembled by

using successive top levels. The process takes the following form:

1. Construct a table with four columns and give each diagonal element of the DSM a value
of 1.

a. In the first column, list all the elements in the matrix.
b. In the second column, list the set of all the input elements for each row in your

table.
c. In the third column, list the set of all output elements for each row in your table.
d. In the fourth column, list the intersection of the input and output sets for each

element in your table.
2. Identify top level elements and remove them and their connections from the table. An

element is in the top level hierarchy of the matrix if its input (row) set is equal to the
intersection set.

3. Go to step 1.

Several of these tools are available on the web either in Java form or as downloadable

spreadsheets. In initial testing, all of them produced the same order and appeared to have no

trouble executing any DSM given to them. However, all of the tools took an incredibly long

time to order the DSM, ranging from a few seconds for a 10 by 10 matrix to few minutes for a 50

by 50 matrix. Considering that the first DSM for the door design process was 773-by-773, the

initial estimate of calculation time (increases as n2) was -15 hours. This time was unacceptable,

so I had to come up with an improved algorithm to greatly reduce the computational time

required to generate a reordered DSM. Furthermore, the most capable tool was limited to a 255-

by-255 matrix because it was written in Microsoft Excel.

The New Algorithm
When I began breaking down the code in the Excel-based tool, it quickly became apparent that

the code was not optimized for computational speed. The spreadsheet was using just one of the

DSM methods (the reachability matrix) and applying it to the entire matrix without searching for

empty rows and columns first. This required Excel to raise an n-by-n matrix to the nth power by

hand. Even with the best computational tricks, Excel is simply not well equipped to deal with

this level of matrix mathematics. After deconstructing the existing code, I came up with three

significant computational improvements:

1. Use a much more capable platform, such as Matlab, for the matrix manipulation.

14

2. Follow the complete 3-step DSM optimization process and move empty rows and

columns before identifying couplings.

3. Iterate the 3-step process after finding top level tasks only in the coupling step.

'The first recommendation is relatively straightforward, since Matlab can handle matrices well

above 255-by-255 and can process a 773-by-773 matrix to the 773th power in a few seconds

versus several hours for Excel. The second recommendation appears to correct an oversight in

the creation of the original code, since searching for empty rows and columns as a first step is an

easy way to reduce the size of the matrix that needs to be raised to a power. However, it's quite

possible that the original authors never anticipated dealing with matrices larger than 100-by- 100,

so the computational difficulties may not have been as important. Regardless, not searching for

empty rows and columns in a large sparse matrix unnecessarily increases the computational time

by several orders of magnitude. The third recommendation came from an insight into the

reachability matrix method. After the first set of top level tasks are identified and removed from

the matrix, the original method simply proceeds to do the same set of calculations on a smaller

matrix and identify the second level of tasks. Again, this fails to examine the smaller matrix for

empty rows and columns before proceeding on to the coupling identification. From a little bit of

experimentation, it was clear that removing the top level tasks and their connections would

generally create a set of empty rows and columns in the remaining matrix. This would then

further simplify the tasks and result in an even smaller matrix for the next reachability

calculation. With these three recommendations, I created an iterative process that was able to

quickly identify and group sets of independent and coupled tasks.

In general, the new algorithm is a purer implementation of the original 3-step DSM optimization

process, simply designed to search for empty rows and columns more often while using the

reachability matrix method to identify coupled tasks. Since empty rows are written to the front

of the order, empty columns to the back, and the top level tasks to the middle, the main challenge

of the new algorithm was keeping track of new positions and extracting the correct portion as the

next sub-matrix for further processing. However, by writing from both ends toward the middle,

the new algorithm was able to further improve the processing speed. Graphically, the process

looks as follows:

15

' ' i i

10 1 6 2 3 4 $. ^1 .0 j 8
1 1 1 1

Figure 4: Identify and move empty rows 1 and 6, and empty column 8

10 1 6 2: 3 4 5 7 9 10 . 8

I

J 3
4

: 71
9

.1 0

i -- --
I I

i ...--............
t
I

:8I

..

I

. ..,. I

s^1

.........I , 4__L" s -.

1 ..i - -^ -- e

i
.I...-

1

!.. !i . ! I

1

i 1

i

' _ v.. '...

i, ·· 1

...x

s 1....._..^.^.........

I " '"`""

..... ,,.,? _

Figure 5: Mark sub-matrix, then identify and move empty rows 9 and 10, and empty column 3

10 1 6 , 9:10 2 4: 5 7 :3 8

910 1 It 2 1 -s

. ^ s .N . . - _-. ^ . . s vs- . . ^.^. ^ Figure 6: Mark sub-matrix, then identify and move empty row 7
Figure 6: Mark sub-matrix, then identify and move empty row 7

16

I,I... I -

I. - - .·

1. ... 1-11-1-

...I.... 1

...I...I.

......
ii L ..Z_-

.6 i~~~~~~~~~~~~~~~~~

...... .�:

I

.1. ,, ,.. ,, ,,z ,,,,,,, ^e _- _ ^-- i ^

.......
I

Is ...-1.1-1 I---- ... 11 ...·-...1·

........r. . !
S I5 5 5 ...T ?

-11.1 111.-'. . i -- "..,....~...?i... x. .. S

10 :1 :6: 9 10: 7 2 4 6 5 3 8

.-~.~ ·......'"...~r.~,~, , -.~,,~ ,

::.' i : t t i

1i 1
:4 60 I- t ' 1 1

' V

Figure 7: Mark sub-matrix, then identify tasks 2, 4, and 5 as coupled top level tasks using reachability

At this point, the original DSM optimization tools stopped. In fact, this is the exact order that is

output from the Excel based tool for this particular example. However, much more can be done

with the ordering information. Up until this point in the analysis, there has been nothing to

distinguish one DSM from another in terms of quality. Changing the order of the tasks does

nothing to change the core relationships, so eigenvalues cannot be used to separate one DSM

from another. Also, calculating a completely parallel execution time does not produce a

distinction for ordered DSM's, because all of the ordered DSM's have grouped the tasks in the

same way and all tasks are assumed to be executed at the same time. The only meaningful

difference between ordered DSM's can be seen in a calculation of the sequential times, assuming

that tasks are done in order and repeated as necessary. An even better comparison would be

generated by running an actual simulation of the task execution.

Assuming sequential execution, my hypothesis was that minimizing the weighted sum of

"distances" from the diagonal to each feedback interaction is a meaningful optimization

criterion. This minimization criterion also has some significant organizational interpretations.

Since it is rare for an organization to run tasks purely in parallel (e.g. a group working together in

a big conference room), especially if the tasks are fairly general and the teams are large, the

sequential case must be considered for large-scale project management. In this scenario,

minimizing the sum of weighted distance above the diagonal means that each instant of rework

will cover a shorter distance "back in time" to the previous tasks. This means that fewer tasks

will need to be repeated and the time to completion will be reduced. Mathematically, the

following optimization equation is being used,

17

Minimize E E wu ·d
i j>i

where wij is the interaction strength and dij is the distance from the diagonal. The minimization

is done by swapping tasks in the sub-matrix until the smallest aggregate distance is found.

Because of the weighting, the minimization will tend to bring the stronger interactions toward

the diagonal, where their more frequent feedbacks will cover fewer tasks. After running the

swapping routine on the example DSM, the output is the following:

10 1 6 9 10/ 7 A5: 4. 2. 3 8

l i ce i w ! - ~ { f

10 i 1 %' ! i i I
,5~i1 ;¢w a v i i 1-. ,'o;, t I ~'~'....i vt .

3 i

8 i i 1 I

Figure 8: Optimized DSM through swapping

As can be seen, the previous order of 2 4 5 is now switched to 5 4 2. This reordering does

absolutely nothing to affect the core relationships (or eigenvalues) of the matrix, but it does

create two 1-step feedbacks instead of one 1-step and one 2-step in the previous solution. This

further reordering changes the process so that completing the third task in the sub-sequence does

not automatically require reworking the first. In other words, two 1-step feedbacks give the

process an extra chance to escape rework. Of course, the above example has 100% chance of

feedback, so completion is not possible in any case. To better illustrate, an example of the

differences using all 30% chances follows:

18

:1 8 9 10 .%7 2 4 5 3 8 Before

. N {S {AN zxw ww~~~~~~~> ,s ~.......... ,. 1 .t
I- ~0.3 i 1
!]1'v vj..l^q j';;10~)i?;aw]ij'jwj',7£ '?~ jo

, M.rvo .. ww ._W~.4

.7! 3 i 0.3
1- ' '''. ·@ V................ ..

2! 0.3 i
31.............i

5s i .~~,..
8', , ,_, ,, f,^% . .v. i

0.3
iS ni

.I .Max Eigenvalue:....... ,.,1,. .^ - -

0.3

Parallel Time:
Simulated Time:
Sequential Time:

0.39
5.87
6.69

10.90

1_ , _ .- w 1 I. -. ' '"''

I

0.3 1 1
s.........,,,,,, a wsov.. s

1, ' '' 6 9: ..10 ' 7 : 5 4'::: 2 3 8 After
1.1 ..~... :: ~ ~, ~ ~ ~ ~ ~ Max Eigenvalue:

8 , ' 1 . . . S Parallel Time:~~~~.' . . C ~ ~ ~ ~ ~ ~ ~ v v v. S~~~~~--
9 0. 3 1 i .~ > .Simulated Time:

1t0; i0.°3 ! 1 ' . . Sequential Time:
7 i 0.3 1 i 'D ! i ;

............. 5 . 0.3 0.3 1 0.3f1

-31 0.3 0. .3 0 0.3
SW~~~~~~~~~~~~~~~~~ -·· - · ·S · -·· · · · ·--s ·-- · · · · ·- · · · · · 4 ·r- -^- -·-:·- · vSIm, ss v-

0.39
5.87

7.55
10.87

Figure 9: Comparison of DSM results after minimization of distances

For the above timing calculations, a quick summary of the terms is useful:

1. Parallel Time. Assumes all tasks are worked in each time period until work is complete,

and can be used as a lower bound.

2. Sequential Time: Assumes tasks are worked in their stated order, and follows a Markov

chain of paths until the end is reached. Typically, this calculation is performed using

signal flow graphs and can be used as an upper bound.

3. Simulated Time: Performs an actual simulation of the work, beginning each task when its

upstream precedents are complete and generating rework based on interaction

probabilities. Times are distributed between the upper and lower bounds, and can be

viewed as the best representation of the actual completion times.

As shown in the above comparison, there is a slight improvement in the sequential time when the

algorithm minimizes the weighted distance above the diagonal. In this particular case, the

19

"i':: ' "1{

'". ':.,: :'":9
: .,, 1

0. 3
W¢.N..........0.3

[0.3

1- -~r--------

+ -- -- w 4
_ _ '

1-1- -- --1.
i·· · ······- ····

7Z _
S ...

--

--- 1

... -1 ... 1. -11.-11-1 ... I----

0.3i:7ifwM

_ .. ^._.AW.
.. ^._.AW.... a

.............
......
.... f1

..................

. i.

improvement is negligible, but comes for free since the maximum eigenvalue and parallel time

calculations do not change. Unfortunately, the simulated completion time shows a remarkable

increase in the second matrix, largely due to the extra wait that task 2 experiences. In the first

matrix, task 2 can begin after task 1 completes since there is only one upstream precedent.

However, the second matrix gives task 2 three upstream precedents (tasks 1, 5, and 4) and

therefore requires task 2 to wait until all three are complete to begin. This delay propagates

through the simulation and ultimately is responsible for the increased simulation time. Further

testing with other sample matrices revealed a similar trend for the difference between the

swapped and un-swapped matrices, thereby causing me to reject my hypothesis about

minimizing the weighted sum of distances above the diagonal. Consequently, the new algorithm

will not be using the swapping operation.

The final step in the new algorithm is establishing the relevant blocks of activities and reducing

the matrix into a viewable form. In the process of running the algorithm, the code builds the

final DSM order as follows:

[fl(l-?) mI f 2(1-?) m 2 f 3 (1-?) m 3 b 3(1-?) b 2(1-?) bl(-?)]

where each letter represents a series of tasks that was pulled to the front, back, or middle of the

new order. The second subscript on each front and back series indicates that each major block

can have several smaller series pulled to the front before work starts on the middle series. Each

of these smaller series is a set of tasks that can be executed in parallel. In the case of the front

and back series, the tasks are all independent of each other - no precedents or dependents within

the smaller series - thereby allowing the tasks to be executed in parallel and to be completed in

the maximum individual time. However, f will almost surely have dependents in f 2 or ml, so

fi 1 must be completed before those following blocks can start. In the case of the middle series,

the tasks are a coupled set of tasks that must be executed in parallel and complete a number of

iterations before convergence. Therefore, the completion time for middle block follows a

simulation or parallel function of the individual task times and interaction. After calculating all

of the parallel times, the total time for the process is the simple sum of the parallel blocks

executed sequentially. Graphically, the blocking looks as follows:

20

.' . .;'. .: : :. 9 . 1 . 7 :' '2.' : ... '

[~:~. >~ Ioh w I l In I iA\

t 1 17 w mvwt'w ww win

Vvwooww vk W.. .A. i.WVi 11~~

·I
..t·'~~~ _.··^..WM _...t .%.^. ··.. N' ·~" ^.^.? W W·1-·· ·- ··- · ·k-·-. AW.OV·-··

! .i 1 . 1- [. I

Figure 10: Blocked DSM to show tasks executed in parallel

In concept, these blocks are quite similar to the banding discussed in Browning, 2002. These

blocks are excellent gates for the organization in the real process, because each block should be

completed before work begins on the next block. In fact, it makes sense to have organization

structured around these blocks, with sign-offs and approvals located at the end of each major

iterative interaction. These sign-offs should be quite hard, so as to not allow a non-converged

design to pass through. If a non-converged design passes the gate, then its subsequent

completion will force changes in other blocks and essentially destroy the entire benefit of

ordering and blocking in the first place. For this reason, a simple process chart or check-off

sheet is simply not enough to enforce compliance with the iterative blocks. Rather, system

integrators should be assigned to these blocks with the responsibility and authority to manage the

convergence. In reality, system integrators might also need to be able to restrict access to data

before and after the current block so that the structure isn't violated. Ultimately, each of these

blocks can then be reduced to an equivalent single task representation to simplify the

interpretation of the DSM:

1' 9'. 7 2 3 8

. , E I .i- . ..

8i M R dc 1 1
Figure 11: Reduced DSM

21

II' I' :":::':1

j

3 ____

21 1.; I

It-_9wwe ow

.... AO
..U

-. 1. ' - - 1- , i : · - -11 - - . _ - -.. _ . _ ..
i i

-Me

Xr X :-· · : ·r· r -r -- -- i --- I-·-- · ·

''`^�^�x�'·�·� *�* ·̂ �·' ····' '?'·`-·- `�·`-'-I
i

·--····--- ·-- �··-··-· ······--· �-·-··· · ········ r

·-···---- · ·· a---· ·. ---. ·.J-_�� ..._...,, i
I

·II i

1

11.1.11 . 11 4i

..... ~~~~~~~~~~ I......... I.... - -... ..--l-11-l

. M

In this representation, each group of tasks has been reduced to a single task by simulating the

duration and combining the interactions. Interactions were taken to be the average of the non-

zero items across the rows and columns. From examining the reduced matrix above, it's clear

that the reduced DSM is a purely sequential process with individual tasks representing the

condensed parallel execution of a series of tasks. Of course, the diagonal values would contain

the new times instead of the original independent task times.

Computationally, the new algorithm has vastly outperformed the original DSM tools. In a

straight calculation of an order, the Excel-based code processed the base 773-by-773 matrix in 3

hours on a standard 2.4 Ghz PC with some input and output tricks across worksheets. On the

same machine, the new algorithm took 2-3 minutes to produce the same final order with the

swapping and minimization of distance turned off.

Sensitivity and Randomization
Much of the data inherent to a DSM is difficult to accurately measure and is frequently

accompanied by a high standard deviation. For these reasons, initial data such as durations and

interaction strengths must be taken as averages of triangular distributions. For computational

purposes, I created a separate SD matrix to track and combine as the core DSM was reordered.

The basic rules for creating the standard deviations were:

SDduration = 0.25 * duration

SDstrength =0. 15 strength

Equation 1: Standard deviation conventions

As a rough proxy, these SD's gave an excellent representation of the sensitivity of the DSM to

changes in the durations and interaction strengths. For the example DSM, the starting SD matrix

follows:

22

10 1- 2 3 4 {i 7 8 9 10

, 1,3Za,@.WS.-ww v

8 0 0.05 0.2 0j 0.05 5 0.05 .4 3 1 0 .05 0 0.25

pi"''~ t- w 0.05 0. .25 0.05 ;

''.u ' " t | _a.0................. 0.5 0.5-i- ~005 0
10IL ..i~...................L 0. o5wwows v ..M. ww.....o w-2.

'tO j.V 0.05 X...25

Figure 12: Starting SD matrix for example DSM

Timing Calculations
Although the parallel and sequential methods of calculating time to completion have been

mentioned up to this point, further detail is useful in understanding exactly what assumptions and

methods are used.

Sequential Time (Smith and Eppinger, August 1997)
In the sequential model of completion, each task is assumed to be completed in order with a

finite probability of affecting the other tasks. In the example DSM below, task C has a 50%

chance of affecting task B, while A has a 40% chance of affecting task B.

A B C

A [41 0.2

8 0.4 7 051
C 00301 61

Figure 13: 3-Stage example

This method also assumes that there are no errors or delays in the execution of any task. If these

were present, the DSM would have to be adjusted appropriately. In reality, this DSM is a matrix

representation of a Markov chain that leads to completion of the process after task C is finished.

This Markov chain can be completely drawn as follows:

23

Stage 1 Stage 2 Stage 3

Figure 14: Complete Markov chain for 3-stage example

The time is calculated by proceeding backwards through the chain - first finding the expected

time in node C at stage 3, then B at stage 2, then A at stage 1. For node C in stage 3, a set of

linear equations can be written to describe the expected time:

rA = 0.4r B + 0. 3r + 4

rB =0. 2 rA +O.lr + 7

rc = 0.5rB + 6

Equation 2: Markov linear equations

where the equations come from the columns of the DSM and charge each node with its base task

time and the weighted average of its dependents. Solving this set of equations reveals that the

time rc is 11.21. Similar sets of equations can be constructed for node B and A in stages 2 and 1,

respectively. Solving these sets reveals rB to be 8.48 and rA to be 4. Summing the individual

times gives a total time of 23.69. This method can also be reduced to a simple matrix

computation that forgoes the construction of many sets of linear equations (Eppinger and Smith,

August 1997).

24

Signal Flow Graphs (Eppinger, Nukala, and Whitney, 1997)
Signal flow graphs are well known tools for circuit analysis and discrete event systems. The

graphs begin with a similar depiction of the Markov chain shown in Figure 14, except the

probabilities are replaced with z-transform functions.

Stage 1 Stage 2 Stage 3

Figure 15: Example Markov chain with z-transforms

For each branch of the Markov chain, the z-transform coefficient represents the probability of

traveling down that branch and the z-transform exponent represents the time used to traverse the

branch. In general, the z-transform simplifies the math required in calculating the overall

transmission time, since the coefficients will be used to multiply the probabilities and the

exponents will be used to add the times.

The simplification of the signal flow graph follows four simple rules to develop the system of

equations:

1. Signals travel only in the direction of arrows

2. A signal traveling along a branch is multiplied by the transmission value of that branch

3. The value of any node is the sum of all signals entering that node

4. The value of any node variable is transmitted along all branches leaving that node

25

Once the system of equations is written down, the equations can be combined to successively

eliminate variables until a generic transform function between the start and finish nodes is found.

For the example shown above, the transform equation between the start and finish is:

T = 17 3z15 - 85z"2 -15024 - 70027 -1000
sf = _'2500 - 400z2 - 1252 3 _ 75z27 + 10 24 6228 + 162 2

Equation 3: Transform for 3-stage example

This transform equation contains all of the information to generate a histogram of transmission

times, but in practice only the mean and variance will be used. It is relatively simple to calculate

the mean and variance using the following equations:

E(L)= dTf
dzz=1

Var(L) = - E(L)2

z=l

Equation 4: Expected value and variance from transform equation

Following these equations, the mean of the transmission time is 23.69, and the variance is 62.27,

implying a standard deviation of 7.89. As you will note, the mean time calculated here is exactly

equal to the standard sequential time calculated above. Since the new DSM algorithm assumes

that all iterative blocks are executed in parallel for organizational purposes, the sequential

calculation is only used at the end of the timing calculation when everything is a series of

parallel blocks. For this reason, I chose to use the sequential time calculation presented from

Smith and Eppinger, August 1997 for computational simplicity.

Parallel Time (Smith and Eppinger, March 1997)
In the parallel model of completion, all tasks are assumed to be worked on at the exact same

time. However, the DSM is treated as a work transformation matrix that will tend to create some

work (or rework) for another task in the process. This implies that the process will eventually

26

converge to a solution over time as the percentages create a steady state. This behavior can be

represented as a changing work vector u.

Ut+1 = Au,

or

u t, = A'uo

Equation 5: Work transformation matrix relationship

where A is the matrix that describes the pattern of rework and u0 is a vector with the original task

times. A is essentially the DSM matrix with the diagonal elements set to zero, and u is the

diagonal of the DSM in vector form. The total work vector U is then the sum of all the

individual ut's from each time to completion. If A has linearly independent eigenvectors, then it

can be decomposed, and the solution can be found as the time intervals approach infinity.

A = SAS-'

A' = SA'S - '

U= ZA'o = S(A')S-'uo

limU = S(I- A)-1 S - lu o

Equation 6: Completion time calculation

The completion time for the process is the maximum of the work vector U since the operation is

occurring in parallel. Calculation of the eigenvalues and eigenvectors also allows for the

determination of the dominant modes and convergence limits (Smith and Eppinger, March

1997).

Simulation (Browning, 2002)
Unfortunately, each of the above timing calculations has a variety of shortcomings. The parallel

time calculation assumes that every task can be worked in each time period, which is unrealistic

both from an information and resource perspective. The sequential and signal flow calculations

are fundamentally using an OR-gate assumption by allowing a task to begin if any of its

precedents sends a signal. In reality, all of the upstream precedents are required to be complete

before a task can begin. As a consequence of these inherent assumptions, the parallel and signal

27

flow times become lower and upper bounds on the true completion time distribution. Thus,

simulation is the only way to properly identify the distribution, with each run calculated as

follows (Browning, 2002):

1. Generate task duration times from a triangular distribution of the minimum, most likely,

and maximum times for each task as the initial work values

2. Work tasks that have work remaining and all of their upstream precedents complete

3. For each completed task, generate rework based on the rework probability, impact, and

learning curve

4. Loop steps 2 and 3 until there is no work remaining

By running the simulation a number of times, a distribution of completion times can be obtained.

In practice, these times are a blend of parallel and sequential task execution and fall between the

previously described upper and lower bounds. In addition, the distributions tend to be long-

tailed to the right, suggesting that there are finite chances for quite long completion times. For

the example matrix, the following gives a summary of the timing calculations with the learning

curve turned off:

1 6 9 10 7 2 4 5 3 8
~15~ 1 I S < . "Max Eigenvalue: 0.39

.eS i .e: ^ i ... i
.:8, "?. 1 45" ,'5 Parallel Time: 5.87

9.g 0.3 1. e 5 5 i . Simulated Time: 6.69

102 !I 0.3 .. i " ' I Sequential Time: 10.90
7, ~ ,0.3 1_ .
2 0.3 1 0.3 0.33 1
4. .. 03 1
8- i ^@ 0.3 0.3 1I

's ·- -,··· l~· ·· ··......
3 i i 0.3 0.3' 0.3 1

8~~~_~~~~~~~~~j;~~ ~~ ,_~~~~~0.3 0.3 i 1

Figure 16: Timing Calculations for the Example DSM

In addition, the completion time distribution for 500 simulations is as follows, using a probability

of 30%, an impact of 100%, and no learning:

28

45
45

40-

35

30

5 25

20

10

15

0 - O I LLr aL
5 6 7 8 9 10 11 12

Completion Tme

Figure 17: Simulation Results for the Example DSM

As the image shows, the distribution is a right-hand long tail because of the continuous

possibility for generated rework. Overall, the distribution appears to be lognormal with a fixed

minimum (i.e., a lognormal distribution offset by the minimum of the actual distribution).

Modeling the distribution in this fashion will prove to be quite useful in the future calculations.

Activating the learning curve such that task times are decreased by 40% if executed more than

once gives the following results:

3

3

2

o

1

Completion lime
0

Figure 18: Simulated DSM with learning of 40%

29

�n_______�

As can be seen, the addition of learning primarily truncates the right-hand tail of the distribution

because extremely long outcomes are less likely. For the rest of the calculations in this thesis,

the simulation model will be used.

Simulation Extension
Although the basic simulation method is quite useful for estimating completion times for a single

project, it does not address resource constraints, utilization rates, or multiple projects. Thus, the

model was extended to cover all of these cases.

Resource Constraints

For resource constraints, a simple

each task:

matrix was created to outline the resource requirements for

Task: A B .

Figure 19: Sample Resource Requirements for the Example DSM

30

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1

In the above table, each entry represents the amount of each resource type (A, B, or C) required

to begin work on the given task. These resource requirements are then matched against the level

of available resources to determine whether or not work can begin. Obviously, the number of

resource types can be extended as necessary. Other than this tracking of resources in use, the

extended model is not materially different from the Browning model. To illustrate the effect of

resource constraint, the example matrix was simulated with the minimum amount of resources

available to actually run (1 for each of resource type A, B, and C):

35

30

25

20

15

10

5

I ii

I

.1
I_.LL__ILLI

Completion Time

Figure 20: Simulation Results for Resource-Constrained Example DSM

As the distribution illustrates, the resource constraints have a dramatic effect on the completion

time - moving the most likely time from -6.5 in Figure 17 to -10.5 days in Figure 20.

Essentially, there is no parallel activity occurring at all because only the minimum amount of

resources is available.

In the course of simulating the DSM under resource constraints, it is relatively easy to track the

resource needs and subsequently relax the model until there are no resource needs during the

simulation. Ultimately, a trade-off is created between having more resources available for the

duration of the project and reducing the time to complete the project. Graphically, this ends up

being a cost curve with resources available * time on the y-axis and completion time on the x-

axis. The following graph shows the simulation results of relaxing the example DSM from a

starting point of 1 for each resource type:

31

----- ------- 7 -~- i- --

Vn

65

80

F
o 55

.50

5 45
m

I8
2 40~

355

,n1

6 7 8 9
Aage Completion Time

10 11 12

Figure 21: Resource Relaxation for the Example DSM

As the above figure shows, applying more resources to the DSM will reduce the completion

time, but at the expense of paying much more for those resources to be available over the

duration. Naturally, this trade-off creates a curve that can be optimized through the use of a

budget constraint to find the appropriate tangent point:

8 0
Aeamge Completion Time

10 11 12

Figure 22: Budget Constraints Applied to Resource Curves

As the above figure shows, a budget constraint can be used to estimate the optimum level of

resources to have available for a given project. If a company values time more and uses budget

32

A60

55

(3so

A 45

240

35

6

u

constraint A, then they will choose to allocate a higher level of resources, incur a higher cost, and

receive a completion time of -7.3 days in return. However, if a company values time less and

uses budget constraint B, they will choose a lower level of resources, a lower cost, and receive a

completion time of -8.2 days. Each choice is perfectly valid, but should be made with a specific

value of time in mind.

'Utilization Factors

Next, the model was extended to include a concept of utilization by introducing a factor that

adjusted the amount of resources applied to the tasks. For example, a factor of 1.5 would

multiply the resource requirement by 1.5 but also divide the task duration by 1.5. Naturally, this

assumes that tasks are completed by finishing a given amount of person-days of work and that

there is a trade-off between days and people. However, the reality is that a finite amount of time

is required to complete a task in order to prevent a situation with infinite resources and zero

completion time. Thus, the factor is limited to a maximum of two, or a minimum duration of

50% of the original specification. In the simulation, the intent is to determine whether splitting

resources between tasks and working each slower or dedicating them to work one task faster is

more effective in reducing the completion time. The following chart shows the progression of

the simulation from a factor of 0.5 to 1, using a base resource level of 1 for each resource type:

factor = 0.5 +

E

.o 44't

E]
8 I

P 42

Z 40
i
15
I

3

38
I

factor = 1.0

. I I ____

11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
Average Completion Time

Figure 23: Simulation Results for a Variety of Factors

33

In general, the above figure shows a general downward progression as the factor increases from

0.5 to 1.0. This suggests that dedicating resources and speeding the execution of individual tasks

is the preferred course of action, at least until the resource constraint is reached at a factor of 1.0.

If the resource relaxation routine is then run after reaching the resource constraint at the farthest

downward and leftward point, the complete picture is as follows:

60

F
C 55

E
8

50

45-

i

' 40

35

More tasks at
once, but slower

Fewer tasks at
once, but faster

30- _------ __l _ '
6 7 8 9 10 11 12 13 14 15 16

Average Completion Time

Figure 24: Factor Progression and Resource Relaxing for Example DSM

As the above figure shows, relaxing the resource constraint after reaching a factor of 1 creates a

similar trade-off as illustrated in Figure 21. Again, this develops a frontier that can be used with

a budget constraint to optimize the resource allocation. However, combining the factor behavior

and resource relaxation creates an interesting phenomenon. If the prescribed action is to always

use the highest factor possible until the resource limit is reached and then to relax the resource

limit, why wouldn't this behavior continue forever? I.e., once relaxing the resource limit, the

factor should increase again until the new resource constraint is reached, then the resources limit

is relaxed once more. In this pattern, the simulation should continue looping down the cost and

completion time indefinitely. However, the simulation here contains an internal limit of task

durations - namely 50% of the original duration. Consequently, a final frontier will be reached

when the tasks are being completed as fast as they can, which happens to be 50% of their initial

duration in this simulation. Any additional resources added after this point will merely increase

the cost. Thus, running the simulation over a variety of resource levels and factors produces the

following master chart:

34

OJ/ r I~~

Figure 25: Master Simulation Chart for Example DSM

In the above figure, the different series represent the different starting values for the resources

available. For example, the 50% series begins with a resource level of 0.5 for each type, and the

utilization factor can only reach 0.5 before the constraint hits and resource relaxation begins. In

contrast, the 250% series begins with a resource level of 2.5 for each type, and the factor ranges

from 0.5 to 2.5 before the relaxation begins. As the series show, there are any number of

resource and factor combinations that can produce a given completion time and cost. Also, any

increase above 200% is useless because of the cap on the factor at 2 and the impossibility to

improve past a 50% reduction in completion time. This restriction causes the 250% series to

basically produce the same completion times as the 200% series, just at the higher costs of

maintaining extra resources that aren't used. Overall, the point of the chart is that a frontier can

be built for the DSM by considering the points furthest to the down and left. If connected, these

points create the following curve:

35

I U

o 90

8080
0

70
0
L 60

E 50

0 40

s 30

p 2020

0

0

* 50%

in 100%

150%

. 200%

x 250%

0 5 10 15 20 25

Average Completion Time

--

4nn

Figure 26: Production Frontier for the Example DSM

As the above figure shows, the frontier is bounded on the left by the resource relaxation curves

as tasks reach their theoretical minimum times and on the bottom by the resource constraint

positions. Obviously, choosing a point inside the frontier is sub-optimal, since reductions in

either completion time or cost can be obtained by moving towards the frontier. Interestingly, the

bottom of the frontier appears to be a horizontal line, implying that the effort to minimize cost

can result in a wide range of completion times depending on the starting level of resources. So,

if a company has a zero value for time (or a flat budget curve), they should pick the minimum

completion time from the set of tangent points, which would be the point where the frontier

begins to turn upwards. Thus, it is possible to truncate the frontier to just the curved portion,

after which the budget curve can be used to pick the relevant tangent point. Presumably, the

frontier would then shift down and to the left as the minimum completion times of the tasks are

reduced through better information processing, technologies, databases, communication tools,

etc. In addition, calculating the new curve can help determine the marginal benefit of investment

in the acceleration of the development process.

36

IUU

O 90

o
u 70
0

,. 50e
40

30
')
2 20

10

0

* 50%

100%

150%

;: 200%

x250%

0 5 10 15 20 25

Average Completion Time

rnn

70

Figure 27: Shifting development frontier

Overall, these theoretical results have significant implications for managing a development

process. First of all, it pays to use dedicate resources on single tasks as long as task times are

reduced proportionally by the increase in resources. Essentially, this means that firms should be

continuously pursuing efforts to reduce task times, either through the application of resources or

more efficient use of those resources. If this action is taken, then the firm will always be on the

frontier of its development process. Secondly, a budget constraint can be used to determine the

optimal amount of resources to carry above the minimum. Significantly, this implies that

resources should always be available in the development process, either to work on the next task

in the sequence or to be ready for the next push in productivity. Unfortunately, companies are

usually operating in a resource constrained environment, especially in a multiple program

scenario.

Multiple Programs

Finally, the model was extended to multiple programs building off the resource additions.

Essentially, the simulation tracks the work on separate programs (which are not required to be

identical) as they draw resources from the same resource pool. The programs are offset by

specified delays, and completion is reached when the work remaining on the last program is

finished. Other than these additions, the model is the same as previously outlined. One notable

37

C
0
* 60
0.
E
0
o 50

00)C 40
B 30

< 20

3 10

Frontier

0 5 10 15 20 25

Average Completion Time

consequence of this addition is that the delay between projects can be optimized for a given

resource level. The goal is to find the delay that streamlines the even use of resources rather than

combining peaks and valleys. In other words, the desire is destructive interference, not

constructive interference. A sample simulation follows:

12.2

12.1

12

E
I 11.9
o

E 11.8

P11.7

11.8

11.5

11.4

11.3 I 0.5 1 1.5 2 2.5
Delay Between Projects

Figure 28: Simulation Results of Multiple Programs versus Delays

In the above figure, two identical projects were run with a resource constraint over a variety of

delays. As the results show, the expected completion time for the combined projects was nearly

identical for a delay of 0 or 1 day. However, a delay of 0.5 days would lengthen the overall

completion time because of the pattern of resource use in the programs. In this manner, it's

relatively easy to identify the optimum delay between projects for a given resource level.

Comments on Possible Further Extensions
Obviously, the model extensions are still fairly basic and do not include many of the more

complicated items that affect resource allocation. Training time, errors, pre-planning, and

systems engineering are only implicitly assumed, at best. However, the resource model does

provide a method for optimizing the resource allocation based on a budget constraint. Notably,

any budget constraint that values time above zero requires the project to maintain a resource

level greater than the minimum required to do the project. Thus, the model is essentially telling

companies to maintain a buffer of resources to work on more than one task at a time, or else they

will be sacrificing performance. Presumably, these resources would need to be experienced

38

--�------ ---- r ----- r -7�

,________,

engineers that have been on the project for some time so that they avoid the burdens of training,

inadequate pre-planning and errors. In order to meet this level of experienced staff, the project

Ihas to been staffed much earlier that would normally be thought (Repenning, 2001).

Not surprisingly, it is better to have more people on a project early so that they can build

experience and discover errors early in the process. Mathematically, this can be represented by

decomposing the interaction values in the DSM to the sum of two values:

Interaction = Base Interaction + Error Rate

Equation 7: Base and error rate decomposition

In this form, the 30% used as the example interaction value could be comprised of 25% base

interaction probability with a 5% error rate across the entire system. If this error rate could be

reduced, the total interaction value would fall and result in a lower likelihood of iterations for the

entire matrix and a lower resultant completion time. In fact, the assumptions used thus far in the

example DSM (i.e., the same value for all interactions) generate a straightforward non-linear

relationship between the assumed interaction value and the resulting iterations for the example

I)SM. The exploding relationship is similar in form to Little's Law for queue time as the

utilization approaches 100%:

160- -

140

120

100

, "
80 V

60-

40F -I

20L ' I

0 0.1 0.2 0.3 0.4 0.5 0. 0.7 0.8
Interaction Value

Figure 29: Non-linear relationship between iterations and interaction value

39

I

As the figure shows, reducing the interaction value from 30% to 25% by eliminating the errors

will reduce the number of iterations from 1.64 to 1.5. Obviously, this benefits the convergence

of the DSM and will result in a lower completion time. However, the improvement is highly

dependent on the starting position of the DSM. In fact, the closer to non-convergence (or infinite

iterations) that a system starts, the greater the benefit of reducing the error rate. Naturally, this

should be a huge incentive to reduce the inherent error rate of the projects, or at the very least,

create an incentive to discover errors early in the project. As Repenning showed in his system

dynamics analysis, the best way to reduce these error rates and promote error discovery is to staff

a project early with a large number of systems engineers dedicated to integration. This should

also be combined with early staffing of the engineering team to promote early training and

building experience on the project. One possible future extension is to incorporate error

reduction methods into the simulation.

Reducing the DSM
In the course of dealing with larger DSM's, it became clear that reducing the DSM to a more

manageable form would be useful. The primary assumption in this reduction will be that each

identified block of tasks will be treated as one task and collapsed to equivalent values. This

reduction needs to cover all of the variables in the matrix, including the durations, interaction

values, and resource requirements. Obviously, as the DSM is reordered, the durations,

interactions, and resources assigned to each task travel with the reordering. So, at the end of the

new algorithm, the final example DSM looks as follows:

i 6 9 10 7 2 4$.3 8 Resources

6 1 3 e 3 . . ; 1
9 0.31 1

7 0.3 I i i i 3
0. 1 0.L93 03 . 1

3 1 173 . 0.31 r 1 . 1.,................. _ 1
2i3 E03 1 0 3 .3 0.3 11 1
3 . 0.3 0.3

Figure 30: Base resource configuration

In this particular example, 1 's are used for both the task duration (in days) and the number of

resources (in persons), thereby implying that each task takes 1 person-day to complete.

40

Interaction values outside of the blocks simply mean that the block is delivering information to

another block. As the DSM is subsequently reduced, all of the variables need to be tracked

appropriately. For the durations and interaction strengths, the reductions are relatively simple.

New durations are calculated by simulating the blocks and replacing the set of tasks with the new

,duration and standard deviation. The only significant difference is that the data for a simulated

block is now modeled using a lognormal distribution instead of the triangular distribution from

the base simulation. The lognormal distribution is required to capture the effects of the long-tail

distribution that a simple normal or triangular would miss. The lognormal distribution is also

truncated at the minimum simulated time so that no zero durations are calculated. Otherwise,

interaction strengths are reduced by taking the average of the non-zero items within the rows and

columns.

However, the resource reduction takes a bit more work after determining the completion time. If

the block were done in perfectly sequential order, the equivalent resource allocation (r') would

be found by taking the sumproduct of the individual durations and resource requirements and

dividing by the sum of the durations, essentially implying that one resource can bounce from task

to task in order:

riti

zti

Equation 8: Sequential resource calculation

In contrast, a completely parallel time calculation would assume that all resources are working at

the same time. Thus, the resource allocation would be found by taking the sumproduct of the

individual durations and resource requirements and dividing by the maximum individual

duration:

riti
r= i

max(t)

Equation 9: Parallel resource calculation

41

Naturally, these resource allocations for purely sequential and purely parallel times mark the

lower and upper bounds for the real resource allocation from the simulation. In the case of the

simulation, the equivalent resource allocation will be found by dividing the sumproduct by the

average simulated time:

rit i
' i

simulation(ti)

Equation 10: Simulated resource calculation

However, there is a chance that this resource allocation could be below the largest required

resource level for any given task, so this calculated resource level is compared to the

requirements and the maximum value of the two is chosen:

max(r)

Equation 11: Improved simulated resource calculation

With this technique, the number of resources required for a particular set of tasks can be tracked

as the DSM is reduced to a more viewable form. For the example matrix, the reduction is below:

9' 1 9 7 2 3 8 j

'0.3, " 1..

2' 0.3i i 0.3 i,3.8 1,3

3 i 0.3 0.3 0.3

F u3 Rs...i..i... :_ :i ̂ _

Figure 31: Reduced DSM with simulated times and

Resourc.es
2
2
1

1

1

1

resources

As this new matrix shows, both the completion time and number of person-days in the reduced

DSM is higher than in the original representation shown in Figure 17. This new matrix has 10.8

person-days of work because the iterative block 2' has been reduced to one representative task,

and the completion time is 8.8 days. These differences are due to the blocking of the matrix,

42

rl

which essentially forces a block to obey the most restrictive set of rules of its component tasks.

In this particular case, the original simulation allows task 2 to proceed after its single upstream

task 1 is complete. However, blocking and reducing the matrix essentially makes task 7 an

upstream precedent for task 2, since task 7 is a precedent for task 5 and the assumption is that

tasks 2, 4, and 5 are going to be worked together. Consequently, task 2 must now wait and this

waiting drives up the overall completion time.

Overall, this increase in completion time is a result of the tightly coupled tasks inside a block

being executed sequentially in the simulation. However, this calculation is open to discussion

because of the assumption of sequential execution. If a manager were unaware of the

relationships between the three tasks (2, 4, and 5), then the sequential assumption is probably

valid - the tasks will proceed in order and generate rework as appropriate. However, a priori

knlowledge of the relationships could prompt the manager to execute the tasks in a purely parallel

arrangement, essentially by throwing everyone into a conference room and getting them to work

jointly on the three tasks. If this purely parallel assumption is followed, then the reduced matrix

is the following:

11 9'i 7 2. 3 8 8 Resources
1)7 1 33 X 3 l@9^9v'v5>t<^vdv9;*w4 2

a,, 03. ['" ' 1 ' 2

2' 0.3 0.3 3 I iA..: ..
3 0.3 0.3 0.3 I i 1

Figure 32: Reduced Matrix with Parallel Times and Resources

In this version of the reduced matrix, the completion time is 6.9, and the number of person-days

is 12.7. Also notice that the resource allocation follows the convention for the purely parallel

time since the assumption is that everyone is working in each time period. Conveniently, this

second method of calculating provides another illustration of the trade-off between completion

time and cost. The extra 1.9 resource-days are essentially used to buy the 1.9 days reduction in

completion time. Although this calculation is interesting, it's unlikely that managers will be able

to approach the lower bound of the completion time for a given set of tasks, even if they know

the a priori relationships. For this reason, the model will continue to use the simulation times for

43

the reduction and the additional time penalty will be included as part of the trade-off for

additional clarity in blocking and gating the development process.

Throughout the process of reordering and collapsing the core DSM matrix, the SD, impact, and

probability matrices were processed similarly. Standard rules were used to combine the

individual deviations by summing variances where applicable, and simulation was used to

determine the new deviation when a direct calculation was not possible. For the example matrix,

the final SD matrix became the following:

. . '
1' 0.05 0 ,5 0 0 0
9' 0 05 s 0.25 0 o 0 0.
7. 0 0.05 .;2:5: 0 0 0

2' 0.05 00 005 .87 0 0
3 0 0.05 0.05 0.5 02
8_ 0...... 05< 0.05 025.

Figure 33: Final collapsed SD matrix for example DSM

Finally, it's important to recognize that the reduced DSM's are completely sequential. As such,

the simulation will generate results that are a straightforward sum of the durations since all of the

iterations have been taken into account by considering each block of tasks separately. This

sequential nature hampers many of the previous resource calculations, mostly because tasks are

not being run in parallel anymore. However, the resource calculations will be useful again for

combining multiple projects that pull from the same resource pool.

Eigenvalue Tearing
In general, there are three methods for reducing the completion and convergence time for a DSM

in addition to reordering and adjusting resource levels:

1. Reduce the individual task times

2. Reduce the number of iterations

3. Eliminate tasks

44

All policy and tool recommendations for any project or process will fall into one of these three

categories. First of all, enhanced databases, real-time information, and communication tools are

merely a few examples of tools designed to reduce task times. They generally allow the same

number of iterations to be performed faster, thereby reducing the overall development time.

Secondly, standards and company policies are often designed to eliminate interactions and

:reduce the number of required iterations for convergence. A great example is the use of a

standard car hinge for all car doors and a standard truck hinge for all truck doors, as opposed to

developing a new hinge for each program. Thirdly, elimination of tasks through policies or

standards is one of the most powerful options to improve performance.

In general, the second option is a more effective and permanent way to improve a process and

the best way to prioritize the reduction of iterations is through eigenvalue tearing. The

eigenvalues of the matrix control the rate of convergence, and the tearing process examines each

interaction to figure out which ones have the greatest effect when removed. As discussed in

Smith and Eppinger, the eigenvalues and eigenvectors of the DSM can be used to identify the

dominant modes of work. The eigenvalues represent the geometric rate of convergence of the

given mode, with a real value less than 1 representing convergence, a real value greater than 1

representing divergence, and a complex value representing oscillation that can diverge or

converge as well. Eigenvectors contain information on the relative importance of each task in a

given design mode, allowing us to identify the dominant sub-problems within each parallel

block. The interpretation of eigenvalues and eigenvectors in an organizational context is very

similar to a physical system such as electronics, biology, chemistry, or geology. Because of the

coupled non-negative structure of the DSM, the largest magnitude eigenvalue must be real and

positive (Smith and Eppinger, March 1997). By extension, the eigenvector associated with this

eigenvalue will also have positive elements. Therefore, the slowest design mode, which

corresponds to the largest eigenvalue, will be relatively easy to interpret. It is not certain that the

other design modes will be so simple to interpret, as they may include complex numbers and

oscillating behavior. Regardless, the overall behavior of the process convergence will be

determined by the largest eigenvalue, so the analytical focus is best reserved for that area.

45

Following the example matrix, the base example DSM has an eigenvalue of 0.39. A rough

approximation for the upper bound on the number of iterations to completion comes from the

following formula:

iterations= 1 i < 1

Equation 12: Controlling limit of iterations

where X is the maximum real eigenvalue. In the example, this formula suggests that the process

will have to iterate 1/(1-.39) = 1.64 times before converging. As far as DSM's go, this is a

relatively small number. Initial cuts of the base DSM at Magma suggest a maximum eigenvalue

in the range of 0.8-0.9, generating 5 to 10 iterations before a design converges. Since no

engineer reasonably expects to perform his same job 5 to 10 times as part of a repeating loop

before declaring it complete, it is highly likely non-converged designs are passed on.

In light of the importance of the eigenvalue and its dependence on the interaction values within

the DSM, the tearing process is designed to systematically examine all interactions for their

contribution to the maximum eigenvalue. In general, this process is conducted in reverse by

removing an interaction above the diagonal from the DSM and calculating the new maximum

eigenvalue. The largest change is kept, the DSM is reordered if necessary, and then the process

repeats until a threshold value is reached. In this manner, all of the controlling interactions can

be identified and removed until a given target is reached.

For the example matrix, the two possible scenarios as shown below:

46

2 : 0.3

,'0 $ 0:1'0.3

. .,, . :.,

' I .' ':.3$: ! 0.3 i 0.3

':'':' ::' ,,g8,'" 10' 4: 7 2 4 2:. 8' ' " 3'. '80P on tl ,

.. i

0.3 0.3

0 .

.,
0.3.

Max Eigenvalue:

.... ... 3 i

, ' . .:10: 7 ' :'2 4 8' 3 8Option2
I'""`~~~~~~^"T'''~'~~"'~ i'~'~"'~""~~~"~^~"~~ ~r~~"~" ~ ~ ';''~'~''~~~'"i~"'~Max Eigenvalue: 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~?..... .......·0 0.31:. i
I0 0.3 I

, 2 0.3 0.3 0.3

'6 ,, ' :5 ! i 0.3 J i 0.3 
'3 i ..... ' 00.3 0.31 0.3 0.3_ _" " .. .............i ..i ...i ..3 0 " 0.3

Figure 34: Examples of eigenvalue tearing

where the gray zeros mark the interactions that were removed. As can be seen, the second option

is preferable over the first because the second eliminates all precedents from task #4 and creates

a perfectly sequential process. Whereas the first option still requires 1.43 iterations to converge,

the second requires only 1. In fact, reordering the second matrix would produce the following:

10:.. 1 6 4 9 10 7 6 2 3 8

tl 1~~~~~1~~_~~~~~~~~ .... ~ ...... ...;......;....... 

4 4 ~~~~~' ~ 1...........

9' 0.3 , 1 31 I

···· · ········-·0.3 i i............, i.................
0.3 03 0!3

3 ~~~ ~~~ ~~~~~~03 0.3 0.3 0.3
8 3 03 0.3 I
.......... .~ ............. 3 ..... .... ... . ..... . .. ........... ... .. ,. . .... .

Figure 35: Final torn and reordered matrix

Clearly, this torn matrix is vastly preferable to the previous one because all iterations are

removed. The process must only be completed once to reach a converged design, and it requires

7' days instead of the simulated 8.8 days for the original blocked example in Figure 31.

However, the completion time is actually slightly slower than the version using a parallel time

47

0.3

0.3 1 ' 

.1..'-- -.'11- ' 1 ....... 1-1-- .1 ... 1.1 - 1 - -l·-· x · . .



calculation in Figure 32. Forcing tasks #5 and #2 to be sequential adds a fraction of time to

increase the total to 7 days from the previous 6.9 days. However, this trade-off is usually

preferable for the additional certainty in the final product. In fact, this trade-off between

completion time and certainty can be explored further.

As a DSM is torn apart, the removal of the interactions breaks apart coupled blocks into smaller

and smaller pieces. As a general rule, de-coupling the iterative blocks will decrease the

eigenvalue of the system and result in a smaller number of iterations and a smaller completion

time. However, when the removal of an interaction creates the opportunity for reordering and a

separation of one block into two, thereby allowing the completion time to actually increase since

the first block must be completed before the second block starts. If the blocking were not

considered and the full simulation were run, then the time would universally decrease. Taken to

the extreme, the removal of all interactions and retaining blocking will reduce the system to a

simple sequential order of tasks. Graphically, it looks as follows for the example matrix as

interactions are torn out:

IU. 

10
0

E 9.5

C 90
i 8.5

0.
E 8-

7.5

7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Eigenvalue

Figure 36: Variation of completion time as eigenvalue decreases

Regardless of this variation in the expected completion time, the standard deviation of the time

and the sensitivity to changes in interaction strength falls continuously. This makes for a non-

intuitive solution, as there may be cases where increased certainty is preferred over a lower

average. For this reason, the 0.6 eigenvalue in the above chart may be better than the 0.65

eigenvalue, in spite of the higher average duration.

48

-IA r

� · ... . . ' .... ::....i., � . . ; .....

.. ;..: .. . ... :.

· : ':' .. · · · ·.. .. ·.. ·... .i...·..: · ..
.: ··

· ��� . · ' ' · �. .·i..·

i



After tearing has been used to find the controlling interaction(s), the primary challenge is

determining the standard or policy that will eliminate the interaction or reduce it to zero time.

Often, a creative solution can be found by talking to the parties involved in the primary design

mode that is associated with the eigenvalue. For the example DSM, the design mode reveals that

the most work is being done by tasks #5, 4, 2, 3, and 8. Examining these tasks together with the

people involved would likely reveal some interesting insights into the difficulties and sources of

iteration.

Advanced Eigenvalue Tearing
In the course of developing the complete dataset for Magma's closures process, it became clear

that the traditional method of eigenvalue tearing would be inadequate. Quite simply, the initial

central coupled block of the process included 450 tasks, which is far too large to check every

interaction for the best one to remove. As a result, some amount of prioritization was required to

speed the computation of the tearing process.

From example matrices and practice tears, it was clear that the best interactions to remove were

always related to the tasks being iterated the most (as shown by the eigenvector). So, rather than

test every interaction, it made sense to first identify the tasks working the most and then pursue

their precedent and dependent interactions as the best tearing options. Naturally, these tasks

were identified by calculating the eigenvalue and eigenvector matrices and examining the results.

Ultimately, the new algorithm for tearing the re-ordered DSM became:

1. Identify maximum real eigenvalue and the accompanying eigenvector

2. Find maximum value in eigenvector and the associated task

3. Identify set of one-step interactions related to chosen task above the diagonal

4. Find best single interaction to remove and remove it

5. Check for reordering of DSM

6. Go to step 1

Steps 1-4 are fairly self-explanatory because they are used to process the behavior of the DSM

and identify the most likely places for an interaction to be removed. It's not surprising that the

49



best interactions to remove involve the tasks being iterated the most. However, it was not

initially obvious that the DSM would need to be reordered after each removal. In retrospect, the

reordering is required to remove tasks that are no longer part of the core coupled block. If this is

not done, then the original task will still show up as a highly worked task and mislead the tearing

process. In practice, the operation looks as follows for the same sub-matrix tom above:

1 2 3

2 0 3
3. 0.3 0.3

Figure 37: Example DSM matrix for advanced tearing

Eigenvalue : 1- 2 : : .. 3

11 0.3974 0 0
2i 0 -0.1987+ 0.1687 i 0
3v 0 0 . -0.1987 - 0.1687i

Eigenvector 2 ...... 3
'11 ~ ......-0.414 0.6559 0.6559

2 -0.5484 i -0.4344 + 0.3688i -0.4344 - 0.3688i i
-0.726'5 0.0804 - 0.4885i 0.0804 + 0.48851

Figure 38: Steps 1-2 of advanced tearing process

From the above tables, it's clear that the maximum real eigenvalue is 0.39, and that the

associated eigenvector is in column 1. In the eigenvector, the task performing the most work is

#3, suggesting that the interactions up for consideration are 3-1, 3-2, and 2-3. Of this set, only 2-

3 is above the diagonal, so it is the best choice for removal. Individually checking the removal

of each listed interaction would also produce the same results, since the new eigenvalues would

be 0.3, 0.3, and 0, respectively.

Ill. Magma Analysis
As presented in the introduction and context, Magma wants to focus on improving its closures

development process, which is mired in a traditional project management negative loop.

Currently, high levels of hidden errors are present in the system, as evidenced by the large

amount of work required of the pre-production launch teams for each program. This forces the

best engineers and management to be diverted to launch teams, where their input and expertise is

50



rightfully valued. However, their presence on the launch teams precludes their involvement on

the systems portion of programs in the beginning stages, thereby creating the hidden errors that

they will be forced to solve at the last minute on the next launch. The following figure

generically illustrates the reinforcing loop:

Resource Diversion-
to Firefight

Upfront System
Engineering

rs R

Volume of
Early Management Rework

Intervention Number of
Non-converged Desi

Time to Deadline

Figure 39: Firefighting reinforcing loop

From this simple diagram, it is simple to see several methods to escape the loop. First of all,

deadlines can be extended to reduce the number of non-converged designs. Secondly, extra

resources can be added to both firefight and do upfront engineering at the same time. Finally,

DSM's or other reengineering tools can be used to speed up the development time so that the

rework is completed before the deadline. However, Magma has been reluctant to slip deadlines

(which damage the product timeline), add resources (which are expensive), or implement the

changes from prior DSM analysis (which requires dramatic changes to decades old processes).

Consequently, Magma has managed to address the same set of problems (i.e., water leaks, wind

noise, NVH, etc.) over decades for successive programs without ever resolving the root causes.

In some respects, the use of surrogate vehicles has enhanced this problem, since those surrogates

inevitably contain the very same problems that Magma is trying to solve in the next generation

vehicle. Ultimately, Magma has a development process that does not naturally converge in a

51



closed fashion, but rather requires significant management interference to produce a product at

the end of the day. Unfortunately, this entire vehicle development process is much too large to

analyze in a short time frame. For that reason, the closures process (doors, trunks, and hoods)

was chosen to be a meaningful and significant, yet tractable, piece of analysis.

Data Sources & Methods
Fortunately, Magma has a massive amount of process data that can be co-opted for project

management analysis. As a basis for their vehicle development process, Magma uses the Magma

Product Development System (MPDS) as a general guideline for activities, milestones, and

requirements. MPDS is primarily designed as a massive timeline, covering up to -4 years before

the launch of Job #1 off the assembly line. The basic outline of the MPDS process follows:

10

It" CO- O 0

New Vehicle 0.0% 5.8% 19.2% 30.8% 35.6% 42.3% 51.0% 63.5% 72.1% 84.6% 91.3% 93.8% 100.0%
New Exterior, Modified Structure 0.0% 6.0% 18.0% 28.0% 33.0% 40.0% 49.0% 62.0% 71.0% 84.0% 91.0% 93.5% 100.0%
New Exterior 0.0% 7.0% 14.0% 20.9% 25.6% 33.7% 41.9% 57.0% 67.4% 81.4% 89.5% 92.4% 100.0%
Moderate Freshening 0.0% 7.9% 15.8% 34.2% 42.1% 52.6% 63.2% 78.9% 88.2% 100.0%
Minor Fresheing 0.0% 14.3% 1 1 28.6% 1 39.3% 53.6% 64.3% 78.6% 87.5% 100.0%
Trim 0.0% 14.3% 23.8% 33.3% 47.6% 61.9% 76.2% 83.3% 100.0%

Design Work (Area of Focus ) Troubleshooting, Rework, and Final Ch nges

Figure 40: MPDS outline of timing and salability

whe r the percentages in the table represent the progression towards Job #1 in each phase. In

reality, not all of the MPDS process is new engineering work. In fact, the engineering and

product design Job #1 occurs at product readiness (<PR>), with the troubleshooting and rework

beginning shortly thereafter. If the system were running in perfect fashion to produce converged

designs at <PR>, then the confirmation prototypes produced in the next phase should be just that:

confirmation of the current design. Unfortunately, the confirmation prototypes are often where

many of the initial mismatches and mistakes are discovered, prompting a significant amount of

rework. By itself, this official pattern suggests that Magma is certainly not generating converged

designs at <PR> from the product development side, much less the combination of product

development and manufacturing. Nevertheless, this realization allows me to restrict my analysis

to the time frame before <PR>, where the tasks producing the final design are executed.

52



In addition to the MPDS, the major sources of data were:

1. Feasibility Checkpoint (FC) process

2. Magma Manufacturing Development System (MMDS)

3. Manufacturing Design Specifications (MDS)

4. Other Interactions (interviews and common sense)

By far, the most useful piece of data was the FC process. As part of his work at Magma, Tony

Zambito performed a DSM analysis on the product development process for the entire vehicle.

This analysis generated a DSM of 920 tasks, complete with individual task durations. However,

interaction strength was not captured in the analysis. From this base DSM, Zambito was able to

re-order the MPDS tasks and generate significant parallel iterative blocks. At the end of each of

these blocks, a feasibility checkpoint (FC) was created to ensure that one block was complete

before the next began. In this manner, five major checkpoints were added to the MPDS process.

Unfortunately, the FC results were also forced into the standard timeline format by adding extra

dependencies, thereby eliminating much of the iterative information discovered in the original

analysis.

The MMDS process is a set of work designed to capture the entire manufacturing development

process. In the same way that the product design engineers are generating a design, the

manufacturing engineers are generating a process design to match the product. The MMDS is a

flowchart representation of the manufacturing design process, showing the progress along the

MPDS timeline. A sample portion of the MMDS is below:

53



Figure 41: Sample portion of the MMDS: <KO> to <SI>

As is shown, the flowchart is quite convenient for establishing precedents and dependents within

the MMDS process.

By themselves, the FC process and MMDS process gave me all of the tasks required to complete

the product and process development for closures. The closures related tasks were extracted

from the overall FC process by Todd Dishman as part of a system integrators project, and the

entire MMDS process was used because of its general nature. Essentially, the MMDS describes

the process of developing an assembly line and is universally applicable to any part of the

vehicle development process. The FC and MMDS data also allowed me to initially fill in a large

portion of the interactions in the final DSM. Graphically, the data up to this point looks as

follows:

54

rY0 W4 % We,1kdrOW Lewt r2



: I f C . P :: r e.::s ':. . VO-PD

Vehicle Operations
M Ds: :. ro:e:' :

Figure 42: Initial closures DSM from FC and MMDS data

As can be seen from the figure, each set of data makes up part of overall closures DSM.

However, nothing is currently in either the upper right or lower left boxes of the DSM, which

essentially means that none of the major interactions from PD to VO or vice versa are being

represented. Some of these interactions can be filled in by examining the MMDS process

closely, for part of the flowchart lists "external" inputs that come from the FC process. These

external inputs tend to be one-way interactions, since PD is flowing specifications and inputs to

VO, or other inputs are coming in from the outside. In addition, there are also a few tasks that

are exactly duplicated between the two data sets, allowing their interactions to be summed and

one task to be eliminated. A sample duplicate is the Global Architecture Strategy, which is

essentially a completely outside input to both the product development and manufacturing

organizations. However, the remaining interactions must be gleaned from the last two data

sources.

The Manufacturing Design Specifications (MDS) are set up to be a direct feed of information

from the Vehicle Operations group back to Product Development. By design, there are certain

specifications that product development activities must meet before a design can be approved. In

general, most of these MDS's are being combined with another set of specifications that PD must

follow, but the combination isn't complete yet. As a result, the MDS was used to fill in a portion

of the VO-PD box in the overall DSM. These interactions are distinctly one-way interactions,

since an MDS specification flows only from VO to PD, and PD cannot change an MDS. Finally,

the last data source is simply a set of interviews that generated a list of likely interactions

55

PD-VO



between VO and PD, covering a range of tasks and activities. In general, these interactions

covered two-way iterative loops, where PD could affect VO as much as VO could affect PD. An

example is the product and process feasibility check in the MMDS process, which verifies that

the product design can actually be produced in the factory. If the product cannot, VO feeds

information back to PD, which often has to change the clay models and base design of the

vehicle. Obviously, this new clay model then feeds back into the product and process feasibility

for a reevaluation. As such, these interactions have to be mapped both to the upper right and

lower left of the new DSM. Graphically, the complete data set looks as follows:

Figure 43: Complete closures DSM

At this point, all of the tasks and the interactions have been included for the closures DSM.

However, the overall strengths of the interaction and the duration of the MMDS tasks still remain

unknown.

Data Estimation

Task Duration
For the vast majority of tasks, durations came from the original FC process. For those tasks

missing duration values, the FC tasks were used as guidelines to estimate durations before

checking those durations with more experienced people.

Strength of Interaction
Typically, DSM analyses ask executors of tasks to rank their dependency on other tasks on a

scale of 1-3 or perhaps 1-9. These ratings are then mapped to a range of interaction probabilities,

56

Product Development TWo-Way Interactions
(C Pro;ces) VO-PD

MMDS External Inputs& Two-Way Interactions - r:. : ::
(PD-VO)

,, :. ., :: :. ~~i:.. ni:,



typically 10%-50%. The DSM can then be analyzed for completion times and number of

iterations, based on the inherent Markov chain represented within the matrix. Unfortunately, the

initial creation of the DSM for the FC database did not capture any strength of interaction

metrics.

As a result, I had to determine another method for estimating the strength of interaction for the

773-by-773 closures matrix. Because of the matrix size, repeating interviews was simply not a

viable option in the allotted time. Rather, an examination of the sensitivity of the timing

calculations had to be used to establish a likely range for the strength. Fortunately, a couple of

assumptions and clues exist to help narrow the range. Although the proprietary data for the

current process must be protected, it is widely known in the automotive world that design

processes generally take about 4 years to complete because of a standard product cycle. With

--250 working days in each calendar year, this implies that a generic target of 1,000 days is

useful for reference purposes during the analysis. Furthermore, this generic target of 1,000 days

will be taken as the desired maximum time for convergence of the design process. However, I

know that the current process is probably not converged because of the large number of errors

that are fixed during the vehicle launch. Thus, some iteration is being skipped in the actual

process, and the theoretical time must be greater than 1,000 days. Second, I assume that the

parallel time to execute the tasks is shorter than the sequential time, owing to the fact that

processing tasks in parallel should be faster than in series. Of course, I know this result won't

always be true as the DSM approaches an eigenvalue of 1, but this switch will prove useful in

helping me identify the appropriate range of behavior. Third, I created a current task order as

best as possible, by ordering the tasks according to their start date listed in the original FC

database. Finally, I have to assume that every interaction has the same strength for simplicity of

analysis.

In order to begin the examination, a graph of the purely sequential and purely parallel times was

produced by varying the interaction value uniformly across the matrix:

57



1 UUUU

10000

E
' 1000
0

. 100
E
8

10

1

_ Sequential
a Parallel

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Interaction Value

Figure 44: Timing sensitivity to strength of interaction (as-is order)

As the above chart shows, the parallel and sequential curves are both above 1,000 days after

interaction strength of 10%. However, they cross at 14.5% as the parallel timing calculation

shoots off to infinity as the eigenvalue approaches 1. As a consequence, the timing calculations

suggest that the appropriate range for interaction strength is somewhere between 12% and 13%

mainly because this range fits the a priori assumptions about the process. However, a reality

check clearly indicates that this value is somewhat low, at least for individual interaction values

on the level of tasks that are included in this DSM. For example, changing the plant layout

probably has a greater expected value of interaction with the assembly order than 12.5%.

However, the use of a generic interaction value as an average does tend to produce different

results than actually simulating the combination of varying values. Since it is impossible to

obtain the actual values in the allotted time frame, the analysis will be conducted with a generic,

equivalent, value for all interactions. An expanded view on the sensitivity of this assumption

follows in the plot of the eigenvalue against the generic interaction strength:

58

I-----



0.9

0.8

0.7

_ 0.6
c 0.5

. 0.4

0.3

0.2

0.1

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Interaction Strength

Figure 45: Plot of eigenvalue vs. interaction strength for closures DSM

As an extrapolation of the chart shows, a more realistic assumption of 25% for the interaction

strength would generate an eigenvalue of-1.6 for the closures DSM. This would imply that the

product and process development would never converge to a solution in any amount of time if

the expected value of 25% is the true value across the entire matrix. Obviously, this revelation

has huge implications for the organization. Most significantly, this means that Magma's

development process cannot produce a converged design by itself, as long as the DSM is

capturing the true reasons for non-convergence. In other words, there will always be significant

launch issues that affect basic system interactions and customer requirements. Thus, significant

management involvement will be needed to force convergence by the deadline. As we will see,

one set of solutions to this predicament is massive standardization of architectures, elimination of

tasks, and improved analytical tools. Alternatively, dramatically increasing manufacturing

flexibility or creating more consistent specifications can help to reduce the number of iterations.

DSM Analysis
Before processing the DSM, an interaction value had to be assumed for calculation purposes.

After examining the eigenvalues associated with a 25% assumption, it seems possible that

Magma is maintaining a non-converging process. However, processing the DSM would be

impossible with an eigenvalue greater than 1. For this reasons, all of the following calculations

were performed with a base interaction value of 12.5% to model the overall process, as

59

I 

I



developed above. Only at the end will the scenario including a 25% interaction value be

revisited.

However, simply settling on the expected value of interaction was not sufficient to begin

calculations using the simulation. Rather, the expected value of 12.5% needs to be broken out

into a probability and impact value because the probabilities act as a gate in the simulation. In

fact, an equal expected value of 12.5% will produce two different completion times if the

probability and impact are 12.5% and 100% versus 25% and 50%, respectively. The method for

estimating the split between probability and impact relied on the existence of the lower and

upper bounds from the parallel and signal flow calculations. Running the simulation to match

these upper and lower bounds through trial and error produced the following table:

Lower Bound_ .Upper Bound
Time (days) 3,200 15,400
Probability 19.0% 22.0%
Impact 65.8% 56.8%
Expected Value 12.5% 12.5%

Figure 46: Bounding table for probabilities and impacts

As the table shows, the probability and impact values that produce the lower and upper bounds

are not substantially different from each other. In addition, they both correspond to a rework

impact value of -60%, which makes intuitive sense. Reworking 100% of a task after an

interaction is unrealistic, but so is 10%. Because of the relatively narrow range of the two

values, choosing a middle value seems to be safe. Thus, the Magma calculations are being done

with a probability of 20% and an impact of 62.5% for each interaction.

This assumption essentially gives Magma a converging process that takes between 3,200

(parallel) and 15,400 (sequential) days to reach completion (from Figure 44). Running the as-is

order through the simulation generates an average time of 6,500 days, a standard deviation of

4,300 days, and a minimum of 3,200 days (lognormal distribution).

Reordering
Reordering the base closures DSM using the algorithm described above produced the following

reduced matrix in which each single task represents a block of tasks from the original matrix:

60



DSM

r

.,

.,

.. .

.: II:

. , I

: I 
. .I

:1 138 a 7 36 ') o o o311 440 0 0 0 0 0 0 0 0 0 0 0
1 0.125 0 0 0 0 0 0 0 0 0 0 0

38 0.125 0.125 30 0 0 0 0 0 0 0 0 0
37 0 0.125 0.125 . .20 0 0 0 0 0 0 0 0
36 0 0 0.125 0.125 15' 0 0 0 0 0 0 0
279 0.125 0.125 0 0.125 0.125 20 0 0 0 0 0 0
278 0 0.125 0 0.125 0 0.125 20 0 0 0 0 0
311 0 0.125 0 0 0 0 0.125 1 5 0 0 0 0

4 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 7. 8i 0 0 0
065 0 0 0 0 0 0 0 0.125 15 0 0

.64 0.125 0 0 0 0 0 0 0 0.125 0.125 30 0
159 0.125 0.125 0 0 0 0 0 0 0.125 0 0.125 20

Figure 47: Base re-ordered & reduced closures DSM

As the level of reduction suggests, the base DSM is actually a highly coupled set of interactions.

Each parallel block was reduced to a single task, implying that all 773 tasks were reduced to a set

of 12 blocks. This level of coupling is incredibly high, and is dominated by a central block of

391 tasks represented by task #4 above. The matrix of standard deviations is shown below:

t'18. :1 38 3: 37 ; 36: : 279 278 311 : 4 665 564 259
18 :0 0 0 0 0 0 0 0 0 0 0
1 0.01875 7.5 0 0 0 0 0 0 0 0 0

38 0.01875 0.01875 7.5 0 0 0 0 0 0 0 0 0
0 0.01875 0.01875 .. 0 0 0 0 0 0 0 0
0 0 0.01875 0.01875 31 0 0 0 0 0 0 0

0.01875 0.01875 0 0.01875 0.01875 5 0 0 0 0 0 0
7_ 0 0.01875 0 0.01875 0 0.01875 0 0 0 0 0

.11 0 0.01875 0 0 0 0 0.01875 3.5 0 0 0 0
.4 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 1.085;33535 0 0 0

0 0 0 0 0 0 0 0 0.018751 3.75 0 0
0.01875 0 0 0 0 0 0 0 0.0187 0.01875 0 .75 0

59 0.01875 0.01875 0 0 0 0 0 0 0.018751 0 0.01875 5

Figure 48: Standard deviation of re-ordered & reduced closures DSM

As a note to the calculation methods, the complex number in the SD matrix is used to signify a

lognormal distribution and to store the two parameters required (1.085 + 3535i). The real

portion of the complex is the standard deviation of the lognormal, and the imaginary portion is

the minimum of the distribution from the simulation. These two parameters, when paired with

the average of the lognormal in the DSM matrix (7.668), allow the retention of the lognormal

behavior in the reduced DSM. When the DSM is randomized using the average and standard

deviation matrices, the following truncated lognormal distribution is generated for 1,000 runs:

61

SD

.': .. ' '
2

'-:
: , 2:. :

1F . W .' 1· : :: : 3'·8 '' : i'· .36 :. . 27 ... g 3f .31 · , 4



180

160

140

120

100

80

60

40

20

A _ . - -I
0 1 2 3 4 5 6

Completion Time x lo

Figure 49: Histogram of reduced closures DSM completion times

The statistical result of this distribution is an average completion time of 7,345 days with a

standard deviation of 4,815 days. Notably, these numbers are higher than the original as-is order

because of the time penalty paid for blocking and gating the ordered matrix. Even more

indicative of the variability than the high standard deviation, the range is between 3,849 days and

56,700 days. Thus, if the cumulative probability function is calculated for the graph in the above

figure, then there is a 0% chance of completing the closures development process on time (i.e.,

before 1,000 day target). This means that the project will be late 100% percent of the time due to

the inherent structure of the system. Quite simply, there is no control in the current process, even

if tasks are re-ordered to reduce delays. Also, keep in mind that these numbers are for an

interaction value of 12.5%, and are simply being used to determine the level of improvement for

subsequent calculations. Regardless, the reordering does nothing to help diagnose or improve

the underlying structure. For this purpose, the eigenvalues and eigenmodes must be examined.

Dominant Design Mode
In order to determine the dominant design mode, the first step is identifying the maximum real

eigenvalue. The eigenvector associated with this eigenvalue can then be used to identify and

diagnose the dominant mode of the system. After determining this controlling eigenvector,

which can be viewed as a vector of work percentages, the individual values were weighted by

task durations and then used to calculate an overall weighted percent of work. Of this list, the

62

XoA

7 ---- -- --- I

0 L



tasks performing the most work are the best candidates for improvement, either by shortening

their durations or removing key interactions. For the closures DSM, two scenarios were

interesting: first processing just the FC tasks (just product development), and then processing the

entire closures DSM (all of product development and vehicle operations).

FC inTlsOn' ' ':' ' ':'' :'. . . Percento Worn '. Complete closures DSM Percent of Work
Prog Strategy Program Mission And Vision Frozen 10................. .Virtua! series 32%..... ... . ........
Prog Strategy -Theme Design Concepts Defineq 5.9%'Product & Proces Feasibilit... .. i. 3.1%.~~~ ~ ~~~ ~ ~~~~~~~~ ~~~~~~~~ ... ......... ..q .:9%?~rpduct. .& .roes . '~s!1!iY .... ..................... ...............31..:
!Prog Strategy - Finance - ABS Defined ; 5p.9%Manufacturing Plan 2.9%:
Prog Strategy - Applicable.Shared Platform Strategy Defined 5.0% Plant Layout 2.7%:

:Veh Arch - Overall - Prelim Pkg .W/Target Ranges Defined 3.8% Develop Discrete Event Simulation Models 2.4%i.r.. "te'-'.... pic b e"S h r d"Siaf~ ' ' S r t e '' Dei ... ... ........ } .... ... ........ ... 5 .. A i in 'L yu ........ ..... .. .... .... ... Y - .. ... ...... .. ....... ........... 2.4O% o
Prog Strategy- Purchasing - Global Sourcing Strategy Defined 3.7%: Develop Proram Specific Bill o Process 2.3%:
Prog Strategy - Program Assumptions (PDL) Defined .............. . 3.4% Implem et Manufacturing Plan . 1.9%

iSurf - Ext - Bodyside Surf Defined For FC2 . 3.0% Theme - Ext - Multiple Themes Defined 1.9%
Surf - Ext - Initial (Global) Surface Defined For FCO 2.8% Material Flow Plan 1.8%
Prog Strategy -Mfg Strategy Defined 1 .: D¢evelopSpecific VirtualAssembly Simu!ations 1.7.
DocC En:v - Overall - Prelim Pkg."W! Ta"..?rgetR:'nges bDefined. ... ' '..!........2.5%: Labor Optimization 1.7%.
Closures - Frt.Door -Swing Study Results Defined . .. . ... 2.4% Manfacturing Targets .. 1.6%
Surf- Glass - Side Glass Plane Defined 2.3% Preliminary Process Design ______1.5%
Closures - Rr Door - Swing Study Results.. Defined 2.1%. Cost Study 1.3%:

Figure 50: Comparison table of top 15 hardest working tasks

As the table shows, there are a few tasks in each DSM that truly dominate the work. For the FC

process alone, the top few tasks truly represent the determination of the original targets for the

program. The program strategy (defining themes, setting finance targets, determining visions,

setting shared platforms, working out a manufacturing plan, etc.), the vehicle architecture and

surface, and the swing and glass studies are the key tasks that control the entire convergence of

the system. This makes intuitive sense because they are the core factors that determine the shape

of the door and how it interacts with the broader vehicle system. Program strategies determine

the overall theme for the vehicle - whether it's an SUV or a coupe, what the general design

should look like, and how it's going to be made. Vehicle architectures and surfaces are the CAD

drawings of surfaces that allow the design group to fit the parts together in space. Finally, the

glass and swing studies are dynamic analyses that determine how the door will move in space

and whether the window will be able to roll down.

However, the addition of the manufacturing tasks to the complete DSM dramatically changes the

behavior of the system. The tasks that originally dominated the FC process are now pushed

down by another set of tasks that dominate the combined process. The top few tasks are now

concentrated on the translation of the product design into the manufacturing process design,

specifically whether it can be produced (virtual series, product & process feasibility, simulation

models, cost study), and how to produce it (manufacturing plan, plant layout, bill of process,

63



labor optimization). This set of tasks covers nearly the entire manufacturing process, implying

that one of the most complicated sets of tasks is being iterated multiple times during the vehicle

design process. Naturally, this causes dramatic problems during the development of any vehicle.

Upon further examination of the underlying interactions and structure, it becomes clear that the

manufacturing tasks are the real "bottlenecks" of the development process. Whereas a typical

program strategy or vehicle architecture task has -10 precedents and dependents, the

manufacturing plan and related tasks have -40. Essentially, there are many more paths to the

manufacturing process development tasks, since every product design change must eventually be

vetted against the company's ability to make it. This makes the manufacturing plan and its

connections the effective bottleneck for the entire process. Unfortunately, Magma's current

system is ill-equipped to deal with the rigors of rapidly producing and evaluating a

manufacturing process. Fortunately, there are two methods to relieve the bottleneck.

1. Reduce task durations

2. Move the bottleneck and break interactions

First of all, the durations of the manufacturing development tasks could be improved by creating

some improved analytical tools. Conducting a virtual series, simulation, plant layout, or cost

study currently takes 8-12 weeks to complete, during which the input data is frozen and outputs

are unknown. This represents a large chunk of time in which work is progressing before

precedents are known to the remaining tasks. Ideally, Magma should be able to complete an

iteration of any one of these tasks in 1 week. This would allow the process to iterate much faster

and allow current data to be used in the work, thereby avoided massive rework problems. In

concept, this is identical to Microsoft compiling its code nightly. Issues and problems are

identified quickly, and work does not progress on broken code. Numerically, reducing the

duration of these tasks to 1 week creates a process the following matrices:

64



: 40 0 0 0 0 0 0 0 0 0 0 0
0.125 : 0 0 0 0 0 0 0 0 0 0 0

3' 0.125 0.125 30 0 0 0 0 0 0 0 0
0 0.125 0.125: ' 20 0 0 0 0 0 0 0 0

36 0 0 0.125 0.125 '" 0 0 0 0 0 0 0
279 0.125 0.125 0 0.125 0.125 0 0 0 0 0 0 
., 278 0 0.125 0 0.125 0 0.125 0 0 0 0 0 0
:311 0 0.125 0 0 0 0 0.125: 15 0 0 0 0

4 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 '7 3 0 0 0
:6 ' 0 0 0 0 0 0 0.125 1X. 0 
2.,0 * 0.125 0 0 0 0 0 0 0 0.125 0.125 . . 0
:6' 0.125 0.125 0 0 0 0 0 0 0.125 0 0.125 

: 1.':: 38 3:' : ' " 36 :' ' 278 . 4 5$64 :: 296
1 t 0 0 0 0 0 0 0 0 0 o o o
' 0.01875 7. 0 0 0 0 0 0 0 0 0 0

38 0.01875 0.01875 7. 0 0 0 0 0 0 0 0
?'37 0 0.01875 0.01875 5 0 0 0 0 0 0 0 0
3 0 0 0.01875 0.01875 3.75 0 0 0 0 0 0 0

279 0.01875 0.01875 0 0.01875 0.01875 5 0 0 0 0 0 0
278 0 0.01875 0 0.01875 0 0.01875 5 0 0 0 0 0
311 0 0.01875 0 0 0 0.01875 . 3.75 0 0 0

4 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 061 +3555, 0 0 0
56O__s 0 0 0 0 0 0 0 0 0 0.01875 0 0

0.01875 0 0 0 0 0 0 0 0.01875 0.01875 7 0
269 0.01875 0.01875 0 0 0 0 0 0 0.01875 0 0.01875

Figure 51: Reduced matrices after reducing task durations to 1 week

As the matrices show, the primary change came in task #4. Ultimately, the new matrices

produce the following histogram:

50

40

30

I

1c

4~ _ 1L 4A 4 , 4
1 1 d 1^ 

U.O U.o i I.Le i.i IC.u 

Completion Tme 1o4

Figure 52: Histogram for reduced DSM with shorter task durations

The new statistics are an average completion time of 6,109 and a standard deviation of 1,613

days. The range of the statistics is smaller, with a minimum of 4,050 and a maximum of 17,485.

65

SD

i ': 3 _.IDSN . . . . . : ':'3 .' 279 2718 , 311 ~f : .4 1 56. . IF4

I

I
U.4



The most notable changes after reducing the task durations to 1 week is the dramatically smaller

range and standard deviation. Completing tasks faster makes the consequences of iterations be

much less drastic, as is intuitively expected. Although improved, this system is still well off its

target, even with the reduced assumption of a 12.5% interaction value. Most importantly, none

of the duration reductions from improved tools actually change the underlying structure of the

system, so the same behavior results.

The second option is to move the bottleneck to the front of the overall process. Essentially, most

of the difficulty in Magma's development process occurs when a vehicle is first designed and

then fit into a manufacturing plant. This order of execution makes the product design a

precedent for the process design, thereby requiring the manufacturing plant to adjust. Obviously,

the plant will not be able to exactly make the designed vehicle, and a number of costly iterations

ensue as the product and process attempt to converge. Eventually, a measure of convergence is

forced at the very end when the launch team is brought on to solve the remaining problems. In

the current process, these iterations are really combining two broad sets of tasks into an infinite

loop. The process development is not only evaluating the production feasibility of a given

design, but also participating in product and process evolution:

Process Evolution (long time scale)

: Product- Poess
Deveopment DevelopmentTasks . Product

as s . Evolution Tasks
:.. : _ __ __ _ _.' (long tim e

scale)

&

Product
Feasibility

(short time
scale)

Figure 53: Schematic of primary non-converging loops

As the schematic shows, there are truly two sets of tasks that occur between the product and

process development. Unfortunately, these two sets of tasks operate on completely different

66



time scales. Production feasibility and decisions can happen within months, but the joint

evolution of product and process capabilities can take years. There is a continuous back and

forth between product and process design as designers and engineers balance the desire to make

a particular product with their ability to actually make it. Naturally, this product and process

combination evolves over time, but it is unwise to combine the evolution into the production

decisions. This essentially embeds a longer time scale process in a situation that requires rapid

execution, thereby crippling the product development process. Even worse, this evolution is

happening separately with each product and process combination in Magma's portfolio, creating

a divergent pattern of evolution that reduces commonality and precludes standardization,

economies of scale, and the creation of system architectures. The only solution to this

predicament is to separate the time scales and activities:

.,, di:d .- .: ''' ' ' Pr 'oduct"Stanidard. ze . . . Product: .

Fliexible Product Development
Processes Feasibility Tasks 

(short time
scl)-___________

Research
(Years)

scale)

Production
(Months)

.Standardized
-, I .

Processes. .

Joint Evolution

Figure 54: Schematics of separated time scales in development

67

Product
X 1sav rrnnnrt

Goals I 11 1I

Goals

_ ! . ,, , . _ J t

=k6 _
PI



Fundamentally, the intent of the separation is to split the two time scales present in the current

process. For production decisions and rapid execution, is makes sense to choose the

manufacturing plant or process first, and then design a vehicle to fit that process. This move

breaks the precedent connections from the product design to manufacturing and reverses them.

However, this move must be made extremely carefully, since Magma would not want to design

its cars to fit a non-standardized and inflexible process that is characteristic of the plant layouts

today. Rather, the manufacturing process should be redesigned first and then standardized as a

basis for future product designs. This would then allow the second loop to function, evolving the

process facilities on a longer time scale with dedicated resources to determining the correct

balance of product and process capability across Magma's vehicle portfolio. Presumably, this

evolution could also be used to converge Magma's disparate processes into a unified

development and production philosophy. Numerically, this change would be the equivalent of

eliminating all precedent relationships from manufacturing to PD (or eliminating the

manufacturing tasks from the overall closures DSM), which would give the following reduced

DSM and histogram:

DSM 1 39 38 $7 36 27t 278 311 . 4. 27 :. 16
1 40 0 0 0 0 0 0 0 0 0 0

39 0.125 30 0 0 0 0 0 0 0 0 0
38 0.125 0.125 20 0 0 0 0 0 0 0 0
37 0.125 0 0.125 .20 0 0 0 0 0 0 0
36 0 0 0.125 0.125 25 0 0 0 0 0 0

'279 0.125 0.125 0 0.125 0.125 ':20 0 0 0 0 0
278 0 0.125 0 0.125 0 0.125 ':' 20 0 0 0 0
311 0 0.125 0 0 0 0 0.125 5 0 0 0

4 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 .:2356 0 0
270 0.125 0 0 0 0 0 0 0.125 .' 20 0

1 6 0.125 0.125 0 0 0 0.125 0.125 0.125 0.125 0.125 40

SD 3 M 37 6t 279 2 278 311 4 :270 16
I .10 0 0 0 0 0 0 0 0 0 0

39 0.01875 7.8 0 0 0 0 0 0 0 0 0
38 0.01875 0.01875 5 0 0 0 0 0 0 0 0
$7 0.01875 0 0.01875 5. 0 0 0 0 0 0 0
36 0 0 0.01875 0.01875 : 625 0 0 0 0 0 0

278 0.01875 0.01875 0 0.01875 0.01875 5 0 0 0 0 0
278 0 0.01875 0 0.01875 0 0.01875:": 5 0 0 0 0
311 0 0.01875 0 0 0 0 0.01875 :7 0 0 03.7
: :4 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0537+330: 0 0

270 0.01875 0 O 0 0 0 0 0 0.01875 : 5 0
16 0.01875 0.01875 0 0 0 0.01875 0.01875 0.01875 0.01875 0.01875 10

Figure 55: Reduced DSM for standardized manufacturing

68



60

1200 1400 1600 1

1200 1400 1600 1800 2000
Completion Timne

Figure 56: Histogram for standardized manufacturing

The histogram indicates that standardizing the manufacturing architectures produces a

dramatically improved performance with an average completion time of 798 days and a standard

deviation of 127 days, since most of the manufacturing tasks are removed from the short time-

scale production decisions. The range is also greatly improved, with a minimum of 612 and a

maximum of 1903 days. Even more importantly, the cumulative percentage analysis reveals that

there is a 94% chance of completing the project in less than 1,000 days. Obviously, 94% is

clearly better off that the starting position of 0%, implying that there are only a few scenarios in

which the project wouldn't be naturally converged by the deadline and would require heavy

management interference. If the additional techniques of task duration reduction and eigenvalue

tearing were employed on the standardized manufacturing DSM, the subsequent benefits would

be even more dramatic.

Finally, implementing the manufacturing changes reduces the core eigenvalue of the system

from 0.79 to 0.49, moving the maximum number of iterations from 5 to 2! When scaled up to

the more realistic assumption of a 20-25% interaction value, the standardized manufacturing

DSM would have an eigenvalue of 0.78-0.98. The good news is that standardizing

manufacturing would dramatically improve the process and almost assuredly create a converging

system. However, the number of maximum iterations would range from 5 to 50, creating a high

69

-I-

r:



probability that the project could still not be completed reliably within 1,000 days. In this

situation, another round of standardization, duration reduction, and eigenvalue tearing would be

required to further improve the process.

Tearing
After analyzing the dominant mode, it's also useful to take the DSM through the eigenvalue

tearing process to figure out which interactions are the best to remove. This analysis could

provide alternatives to the major standardization discussed above. The results are in the

following table:

ask.... . .... .. :..R esutng g vau
Prog, Strategy - Theme - Design Concepts Defined . ......... ess Fasibility 0.78275
Product & Process Feasibitity, .... TDevelo p' rog-r-am- S peciflic Bill of Process 0.7757
:Product & Process Feasibility Manufacturing Targets 0.76852

.. .t .. , rce .s.e s b !t ............ ... ....... .. ........ . ...... ....... ........ ...... ... .. ....... M ~ n ufa ,t rn......o .e. sus..e,.e .......... .......... ..... ......... L.... .. ........... .. . ....: { 27 ....... ..............Product & Process Feasibility Manufacturing Consensus Review 0.76267
:.~ r~~~~~~~~~~d. U~,.&..P..... Fa . s~l t ........... I......... na . , P. ce s sDeig .............. .... .................. 5 4 .. .. .. ... ........ ... ........ ....... ............ ........... .......Product-& Proceis'Fea sibility ~Preliminary Process Design 0.75645 ......

P roduct & Process Feasibility Process Design 0.75075
Assembly P-rocess - Flow And Tolerances Defined 'Develop Program Specific Bill of Process 0.73223:M anua t ~ are s . ...................... .............. . .......... .. ................ i r alSieManufacturing Targets Virtual Series 0. 72313
Product & Process Feasibility .Mf SM - Process: Pdpd Reqmts Defined 0.71651
:Manufacturing Plan Virtual Series 0.71088. .Ma.u a t r .g.................I ......... ...... .. ....... ... .. ...... ..... .. ........................... ... .e ................ .. .. .. .......... ... ........... ... .. .0 :7 ! .8 ..... . . . . . . . . . .
Confirm Manufacturing Plan Virtual Series 0.70848
. .: . ~..n. .. , a.n u a t n.. ~a ........... ....... .... ...... . . . .. ...... .......... .........; virt ua ....e ...7.. .8.9 ...Implement Manufacturing. Plan Vita eis0.70819

.......... . .... ........... . ........ . . ......... ... .......................................................................................................................................................
:Theme - Ext - Single Theme Selection lProduct & Process Feasibility 0.70205

..... o.......... ... ............. ........... ................... .......... ...................... ..................... .. ...... ......... I . ............... .. .......................Pr o c e s s .6 9 3 2 3anufacturin T rgets ~~~~~Develop Program Specific Bill of Proce s i 0.69323 .......Manu~~,tudn~,a~.es.............................................................................................................................................................. .. ..... S
Cutlines - Frt Door Cutlines Defined Product & Process Feasi 0.68779
Develop Program Specific Bill of Resource :Develop Program Specific Bill of Process 0.6826
'Theme - Ext - Theme Selection For Market Research .Product & Process Feasibility__ 0.67787
Preliminary Process Design :Develop Program Specific Bill of Process 0.67259
:Welding . Weld Patterns, Types, Quality, Class Defined Devel1op Progra'm Specific. Bill. of Pro(es s 0.66876

Figure 57: First 20 removed interactions from the eigenvalue tearing process

By design, the best interactions to remove involve the tasks performing the most work in the

dominant design mode. This calculation has a slight distinction from the dominant mode above,

mainly due to the fact that the eigenvalue tearing process does not weight the eigenvector by the

task duration times. Rather, the pure eigenvector is used to determine the most active tasks and

process the appropriate set of interactions for reducing the eigenvalue. Regardless, it is

interesting to note that relatively few interactions are required to make a significant dent in the

eigenvalue of the system. The first ten tears reduce the eigenvalue from 0.79 to 0.71, which

represents a reduction in iterations from 4.76 to 3.45. After the tears are calculated, it's useful to

examine each dominant mode and determine the hardest working tasks as the interactions are

removed. Tracking the top 10 tasks over the first 20 tears gives the following chart:

70



FSum of Value

s O a) XRa) R Us CEEEEEsn Ee eas)
Decreasing Eigenvalues (More Tears)

[Pagel

Row
Manufacturing Plan

Develop Discrete Event Simulation Models

Develop Program Specific Bill of Process

--- Plant Layout

,x- Develop Specific Virtual Assembly
Simulations

- Material Flow Plan

-+- Labor Optimization

-Virtual Series

.. Implement Manufacturing Plan

Preliminary Process Design

Figure 58: Chart of hardest working tasks as 20 eigenvalue tears are removed

As the chart shows, the hardest working tasks are fairly robust to the removal of interactions.

This is largely due to the fact that most of the tasks up in the top 10 have a vast number of

connections into the overall system. As a result, the simple removal of one or two interactions

will have little effect on the amount of work being fed to them as bottlenecks in the system. The

only exception is the virtual series, which drops out of the top 10 as its key interaction is

removed in the 14 th tear. Examination of this data set confirms the interpretation of the initial

dominant mode analysis. Since the major manufacturing tasks continue to be vital to the system

performance, removing a small number of interactions will not render the DSM to be a tractable

problem. In fact, nearly the entire integrity of the central 391 task parallel block is being

retained. As a further example, here is the reduced DSM with the first 50 tears removed and a

resulting eigenvalue of 0.62:

71

0.04

0.035

0.03

0

a

0.21
Q!

0.025

0.02

0.015

0.01

0.005

0

_mm_ - _ _ _ _ _lmm_ q rr n nr·, i·!··
'·'

:·.:· · ·::· .:: · ·: · ' ·: · :···,· "' .':· : "':·. ·:'·

:r·

.i.

c

.... -...... ?-�: .: .; �.�. rr. ;; .�... _.., .. ,...�,
·.:·

·-. :I

1 -r--i I I I r-- 1 1 r-i i--I 1 7 1 i

.



B: , ,, 40 0 0 0 0 0 0 0 0 0 0 0
0.125 30 0 0 0 0 0 0 0 0 0 0
0.125 0.125 30 0 0 0 0 0 0 0 0 0
0.125 0.125 0.125 20 0 0 0 0 0 0 0 0

0 0 0.125 0.125 : i25 0 0 0 0 0 0 0
0.125 0.125 0 0.125 0.125 ;, i 0 0 0 0 0 0

0 0.125 0 0.125 0 0.125 20 0 0 0 0 0
1 _ 0 0.125 0 0 0 0 0.125 .5 0 0 0 0

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 : - 425. 0 0 0
0 0 0 0 0 0 0 0 0.125 2 0 0

0.125 0 0 0 0 0 0 0 0 0. 125 O30 0

0.125 0.125 0.125 0.125 0 0 0 0 0.125 0.125 20
.... .', 20~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

418 $:8 37 $8 S 3 270 7 311 .4 5 5 .4 259
B 10 0 0 0 0 0 0 0 0 0 0 0;:::::: .......... o..... .. o. 
1 0.01875 05 0 0 0 0 0 0 0 0 0
1 0.01875 0.01875 , 0 0 0 0 0 0 0 0 0

0.01875 0.01875 0.0187 5 0 0 0 0 0 0 0 0
0 0 0.01875 0.01875 .25 0 0 0 0 0 0 _ _0

0.01875 0.01875 0 0.01875 0.01875 :. 0 0 0 0 0 0

0 0.01875 0 0.01875 0 0.01875 0::i:5 _ 0 0 0 0
0 0.01875 0 0 0 00.01875 . 375 0 0 0 0 

1 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.01875 0.018750. 0.+1085i: 0 0 0
0 0 0 0 0 0 0 0 0.01875 [7 ; 7 ::. 0 0

0.01875 0 0 0 0 0 0 0 0.01875 0.01875 75i 0
0.01875 0.01875 0.01875 0.01875 0 O 0 0 0 0.01875 0.01875 0.01875 

Figure 59: Reduced DSM with 50 tears removed

150

100

z

50

-100
100

l

ILi. - .
Completion Time

5000 e0O0 7000

Figure 60: Histogram with 50 tears removed

As the new data shows, the new results are an average is 1761 days, a standard deviation of 493

days. The new range is from a minimum of 1365 to a maximum of 6814 days. Consequently,

there is still a cumulative probability of 0% of finishing before 1,000 days. Removing 50

interactions has clearly had an effect on the system, but not nearly enough to cross the 1,000

days threshold or reduce the standard deviation to a reasonable level. Without a doubt, removing

72

DSM'' '. 1

1

. 3

271
'...' 311

SD

::: 4:::3

..,. . ' 3.1
31

31

:: ,, . 551
2"'' 1A

49 i... I .. - W .- , 31 � U . 179: �.. �':,� 27&. i :%.:. 311 1 11 250

n
or

4~~~~~~. = :w e



more interactions will improve the DSM. Tearing out these extra interactions also allows a

significant amount of reordering to take place, which reduces the coupling and allows smaller

parallel iteration blocks to be formed.

However, a simple examination of the torn interactions reveals that they would be nearly

impossible to eliminate. For example, connections between program strategy and product &

process feasibility are fundamental to the current development process, and cannot be removed

without more basic changes to the structure. In fact, after examining the top connections, it

seems clear that the only way to eliminate this set is to apply the same standardization of

manufacturing processes described above. That would effectively remove the tasks altogether,

which obviously removes all of the associated interactions.

Summary
The statistics after each major change to the DSM are shown below:

Average SD Min Max Eigenvalue Percent Chance
<1000 days

Re-ordered and Reduced 7345 4815 3849 56700 0.79 0%
Faster Key Task Durations 6109 1613 4050 17485 0.79 0%
Standard Manufacturing 798 127 612 1903 0.49 94%
50 Interaction Tears 1761 493 1365 6814 0.62 0%

Figure 61: Summary table for DSM modifications

Overall, the simulation results show that reducing task durations, removing significant

interactions, and eliminating tasks all have beneficial effects beyond a simple re-ordering of the

matrix. However, the only improvement that is large enough to be meaningful to Magma is the

standardized manufacturing. The other improvements, although mathematically significant,

would only serve to reduce the number of hidden errors in a non-converged design that is passed

on once the deadline of 1,000 days is reached. This clearly shows that standardizing

manufacturing is the best alternative to improve the development process performance, and it

should be treated as the fundamental improvement, whereas the other changes can be secondary.

73



Resource Model
Regardless of the eventual modifications to the closures development process, the resource

allocation process can definitely be improved. Unfortunately, resource data for each task was

not collected as part of the work at Magma, so each task was assigned a resource requirement of

1. Running the standardized manufacturing DSM through the resource variation routine gives

the following plot, covering starting resource levels of 50% through 250%:

x 10

E

E8P

a

2
2

Aerage Completion Time

Figure 62: Resource model results for standardized manufacturing DSM

As the figure shows, there is a noticeable lack of resource relaxation curves. Rather, the plot is

primarily showing the effects of shifting utilization factors, and forming the horizontal line at the

bottom of the frontier. Of course, the effect of going over a factor 2 is also shown in the highest

line being a simple increase in cost with no consequent benefit of reduced completion time. The

resource relaxation curves are missing because the DSM's are being processed in their reduced

form for computational reasons (i.e., the effects of iteration are imbedded in the lognormal

distribution assigned to one task) and because of the required resource profile in the reduced

DSM:

74



1,
3

102

z
cc

10

10o

Task Block

Figure 63: Resource profile for reduced DSM

Overall, the reduced DSM is grouping a lot of independent parallel tasks in the beginning of the

order and also satisfying a large parallel block in the middle, and thereby requiring a large

number of resources working on the project. As long as these resources are present and allocated

to the project, there will be no resource constraints for any other tasks, thus explaining the lack

of the resource relaxation curves. There are simply no resource needs in these reduced DSM's.

In contrast to the two high resource level requirements, the other tasks either represent smaller

groups of tasks that require smaller resources or large coupled blocks that work the tasks in the

simulated sequential fashion. Thus, the other coupled blocks only require a key set of resources

(i.e., a core team) that works together on the coupled tasks.

In spite of the limited behavior of the single project, simulating the resource requirements for

multiple programs does generate the anticipated cost and resource behavior. First, the optimum

delay between two projects had to be determined:

75

-I ' I\\
I I I I I I z -~~~~~~~~~~~~~~/

i~J

I '



11000 - --- 

10500 

10000

9500

So / I
8000 /'/

7000

6000 0_
10 20 30 40 50 60 70 80 00 100

Prjedt Olset

Figure 64: Plot of completion time versus delay offset for two projects

Clearly, the delay of 20 days between projects provides the best combination of the projects for

destructive interference under a resource constraint. Using this delay in the resource variation

simulation then generates the following plot:

xo10

8. I 

7

6

Is

4

3

t~~~~~
I

I
+ *+

±4+4- -I +
+ + +

+ +itit ~ +
+ + + I•I I I i

I # 

2 __ L _- t

0 500 1000 1500 2000 2500 3000 3500
Arage Completion Time

Figure 65: Multiple project resource frontier

Overall, this resource use frontier resembles the one developed for the example DSM earlier.

Again, the frontier can be used with a budget constraint to determine the optimum point of

operation for Magma. The frontier does have a relatively sharp curve in this case, which

76



suggests that the range of optimal points will be close together. However, each one of the

optimal points will be above the set of resource constrained points that make up the horizontal

line at the bottom of the frontier, assuming that a value of time greater than zero is used.

Presuming that Magma has a value of time greater than zero, staffing at the optimum resource

level would allow them to adequately handle all of the significant iteration that occurs in the

middle of the larger parallel blocks. However, Magma's general staffing levels would have to

change significantly in practice, since Magma isn't accustomed to (1) retaining people on

plrojects for longer than 2 years, (2) having uneven loading of projects, and (3) being overstaffed.

The uneven loading could easily be dealt with by staffing employees on two staggered programs

at once as modeled by the offset delay, thus allowing them to build experience on both while

using the staggered development schedule to balance their workload. Unfortunately, resolving

the 2-year rotational issue is a much larger organizational problem. Magma has been

accustomed to promoting and rotating personnel on a 2-year schedule for -50 years, and is only

beginning to value technical maturity on projects. Finally, an overstaffed situation would be

incredibly unlikely in a financially driven culture.

Error Rates and Early System Involvement
Finally, addressing the error rate implicit in any development activity could go a long way to

improving Magma's position. Following the error model described earlier, it's useful to assume

that 5% of the 12.5% interaction value is actually due to errors in the development process. If

this error rate were to be eliminated, the interaction value would fall to 7.5%, thereby creating an

eigenvalue of 0.47. This new eigenvalue means that only 1.89 iterations would be required to

reach completion instead of 4.76. This is a savings of over 60% in completion time, achieved by

staffing a project early and focusing on discovering errors and system issues well before launch.

However, as noted before, the level of improvement is highly dependent on the starting position

of the system.

Magma's Sensitivity to Expected Interaction Values
As a summary, it is useful to remind oneself that all of the above calculations were performed

using a 12.5% interaction value to generate a starting eigenvalue of 0.79. This was done to

ensure that errors would not be present in the mathematics owing to eigenvalues greater than 1.

77



However, the lessons learned above will be direct analogues to Magma's actual process, no

matter what interaction value is expected. In reality, the interaction value for Magma's closures

DSM is probably closer to 20-25% (probabilities of 32-40% with an impact of 62.5%), which

seems to be more in line with the types of tasks being analyzed. Unfortunately, these numbers

imply that Magma actually has a naturally non-converging process with an eigenvalue of 1.3-1.6.

From this starting position, reducing task durations would have no impact whatsoever. If a

process cannot converge, it does not matter how fast iterations are completed because they will

last forever. The only way to exit from a non-converging loop is to willingly forego interactions

and loops, or by finishing work with incomplete information. In practice, management is

required to intervene in order to force the process to converge by a given deadline. However,

this forcing is likely to produce hidden errors in the product as decisions are made with

incomplete or non-converged information. As evidenced by the large volume of launch issues

on most Magma programs, this is most likely what's happening in the current process.

Therefore, reducing task times is simply not a solution.

Furthermore, success is still difficult even if Magma eliminates all errors in their current process.

If Magma pursues the systems outlook and early error discovery track, the interaction value

could fall to a range of 15-20%. However, this makes the unlikely assumption that execution is

perfect, with no errors whatsoever. At this perfect level of execution, the eigenvalue would then

be 0.95-1.26, implying that there is a chance for the process to converge. However, an

eigenvalue of 0.95 suggests that 20 iterations would be required to reach convergence.

Operationally, this is entirely unfeasible because the time required to develop a converged design

would be orders of magnitude greater than breaking the non-converging process today. In

addition, no one wants to do the same job 20 times for one vehicle program. Even combined

with the task duration improvements above, the process would still remain intractable. In fact,

very little change would be evident from today's process, since interactions would still have to

be skipped to meet the imposed development schedule. Launch problems would still happen,

and the unproductive loops would continue.

However, if Magma undertakes the standardization recommendation and moves manufacturing

activities to be the unidirectional inputs to the product development, the entire structure of the

78



system changes. In this scenario, the eigenvalue becomes 0.78-0.98 even before the error

reduction and potential eigenvalue tearing. When combined with the error reduction of 5% to

reduce the interaction value to 15-20%, the result becomes 0.59-0.78. At this range, the closures

development process is becoming a tractable problem. The maximum number of iterations

would be 2.5 to 5, which is vastly improved over the initial non-convergence. At this level of

performance, additional task duration reductions become less important since the level of

repetition is lower. However, the ability to process virtual series, simulations, and feasibility

studies faster would allow the system to complete its iterations that much faster and rapidly reach

convergence.

Combining all of the improvements so far for the higher estimate of Magma's interaction value,

the following DSM and histogram representing a solution involving standardized manufacturing,

error reduction, and improved analytical tools are below (with an expected interaction value of

20% - composed of 32% probabilities and 62.5% impacts):

1 .'39 38 ' 37 36. :. 279 278 . 311 4 270 16
1 . 40 0 0 0 0 0 0 0 0 0 0

39 0.2 0 0 0 0 0 0 0 0 0
38 0.2 0.2 20 0 0 0 0 0 0 0 0
37 0.2 0 0.2 20 0 0 0 0 0 0 0
36 0 0 0.2 0.2 25 0 0 0 0 0 0

279 0.2 0.2 0 0.2 0.2 20 0 0 0 0 0
278 0 0.2 0 0.2 0 0.2 200 0 0 0
311 0 0.2 0 0 0 0 0.2 15 0 0

4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 .2 :7048 0 0
270 0.2 0 0 0 0 0 0 0 0.2 20 0
16 0.2 0.2 0 0 0 0.2 0.2 0.2 0.2 0.2 20

1' 39 38. 37 36 279 278 311 4 270 16
I 10 0 0 0 0 0 0 0 0 0 0

39 0.03 0 0 0 0 0 0 0 0 0
38 0.03 0.03 5 0 0 0 0 0 0 0 0
37 0.03 0 0.03 5 0 0 0 0 0 0 0
36 0 0 0.03 0.03 6.25 0 0 0 0 0 0

279 0.03 0.03 0 0.03 0.03 5 0 0 0 0 0
278 0 0.03 0 0.03 0 0.03 5 0 0 0 0
311 0 0.03 0 0 0 0 0.03 3.75 0 0 0

4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0,855+595 0 0
270 0.03 0 0 0 0 0 0 0 0.03 5 0

16 0.03 0.03 0 0 0 0.03 0.03 0.03 0.03 0.03 5

79

DSM

SD

Figure 66: Final reduced DSM for Magma's closures development process



1.5 2 2.5
Completion Time x 1

Figure 67: Final histogram for standardized, error-reduced, analytical tools process

As the above chart shows, using the standardization, error reduction, and improved tools can

reduce the closures development time, even with the increased probabilities in the DSM. The

above distribution has an average of 2,932 days and a standard deviation of 2,267 days, with a

minimum of 921 days and a maximum of 25,685 days. Overall, this distribution has a 1%

chance of completing the process in less than 1,000 days. Unfortunately, it seems that Magma

may still have a process that cannot meet their goals without management intervention, even

with all of the improvements discussed above. However, it is important to note that the process

would not converge at all unless the improvements were made. Undoubtedly, the above

distribution represents progress. Of course, the distribution also illustrates the importance of

data accuracy in these sensitive calculations. An assumption of 12.5% interaction values

generates an average completion time of 798 days, while an assumption of 20% generates 2,932!

The relationship is clearly non-linear, and that may the most important lesson of the entire

analysis.

In summary, it is vital to point out that these modifications to the structure of the closures

development process create a much greater chance of completing the process on time. The

changes also help to reduce the level of management interference that is required to force

convergence and actually roll a product off the line on time. However, there will nearly always

80

'E

I



'be a finite chance of that the project will not be completed on time, or will have hidden errors,

even after all of the improvements. In other words, it is possible that a closures development

project with an average time of 798 days will not be able to converge in the allotted time,

management will have to get involved to force the situation, and launch issues will result. Most

importantly, this failure to converge is no one's fault; rather, it is the consequence of the

system's structure. Quite similarly, a project that converges in 600 days isn't necessarily the

result of anyone's skill in project management, either - probability plays a huge role in the

outcome. In fact, all of the early completions in Magma's history must be due to breaking the

structure, skipping iterations, and neglecting interactions, because the analysis suggests that the

development would never finish in time if it were allowed to complete naturally. The project

manager, or any employee for that matter, is bound to the execution of a development structure

that will inherently vary in its performance, thereby making accurate prediction and execution of

the closures development process nearly impossible. For this reason, managers should be

focusing on iterations and interactions that drive convergence and performance will be a logical

result.

Organizational Implications from the DSM Analysis
After a DSM has been processed and reordered, there are several organizational implications that

arise from the new structure. Most importantly, the task reorder completely changes the path

that a development process takes to completion. Obviously, this change in order can have severe

effects on the jobs of employees and on the power culture determined by the flow and control of

information in any intellectual process. However, the development of the DSM produces several

insights that must be true for a successful implementation:

1. Follow the new order

2. Use analytical tools to speed iterations

3. Do not begin work on a subsequent block before the preceding block is complete

4. Assign people to manage parallel blocks: interactions, convergence, and completion

5. Manage information transfer between programs and through time

The first recommendation is straightforward. If the new order of tasks isn't followed, then the

feedback loops will still have the original delays in them. Simply realizing that the major

81



iterative loops have been identified and instructing the organization to be more disciplined in

their execution will have absolutely no effect on the process whatsoever.

The second recommendation is also relatively straightforward, and its implication is primarily

based on the use of analytical tools as facilitators in the development process. Tools such as

CAE, virtual series, and cost studies are designed to help identify and fix system design issues.

In reality, Magma's current tools are acting as significant delays in the development process

while data is frozen, assumptions are made, calculations are performed, and answers are finally

returned to the original process. In the meantime, work is either on hold or progressing and

creating rework when the results of the studies finally come out. High priority needs to be given

to making these tools run faster, because they are bottlenecks for the development process. In

reality, a faster tool may be nearly impossible because of the huge number of variables that need

to be covered for an accurate analysis. For this reason, some simplifying architectures need to be

developed in line with manufacturing standardization and other system changes. The ultimate

goal should be studies and tools that can run to completion in a matter of days, not weeks. This

will allow the organization to focus on completing iterations and developing a converged design,

not on the tool itself. Keep in mind that none of these tools change the structure of the

development process, so they can only hold up the iterations while everyone waits for their

results.

The third and fourth implications are tied together in a more complicated relationship than the

first two. From the example DSM, the blocking of tasks established which tasks could be

executed in parallel:

82



7:5lf 42: g 3 8

Figure 68: Example DSM with parallel blocks, dashed gates, and integrator assignments

In the above DSM, six parallel blocks have been identified during the reordering process. Each

of these blocks was created to encompass related tasks that could be, or had to be, run in parallel

while also only delivering information downstream to the remaining blocks. In this manner,

there would be no feedback between major blocks in the system. These blocks also provide

natural gates for the overall development process to have sign-offs and reviews in the appropriate

places. However, if this system is violated, much of the benefit of the DSM analysis can be

destroyed. If work begins on block #2 before block #1 is complete, some work will be done

before the precedents are complete. Consequently, when block #1 does complete, the new

information will need to be incorporated into block #2 and some rework will need to be done.

Obviously, this means the initial work done on block #2 was a waste of time and actually

prevented those resources from working on something else constructive. In other words, the

block was not working ahead, and attempting to do so is foolish. By extension of this rationale,

it never makes sense to overlap work on successive blocks. However, this rigidity does prevent

some of the tasks that would normally work ahead without consequence from doing so.

Unfortunately, the current FC process often falls victim to violations of the process gates. When

the original feasibility checkpoints were created, they were placed at the end of large parallel

blocks with the intent to gate the development process and prevent rework. In practice, these

gates are often violated when work isn't complete by a given checkpoint. The project managers

decide to move through the checkpoint and begin work on the next block while the current one

i:sn't finished. Their intent is to get ahead on the remaining work while developing a road map to

83



finish the incomplete block. However, it is clear that they are only creating rework for

themselves. As a result, the enforcement of the FC process, or any DSM-related gate, is vital to

receive the performance gains. Much of this problem could be solved by increased training on

the FC process. Much of the original FC work was done and forced into the current MPDS

process without adequately explaining the reasons for the changes. So, as far as the engineering

staff is concerned, this is simply another set of deadlines to meet. The primary failing of the lack

of training is the understanding that the development process is not strictly linear and cannot be

forced into a Gantt chart.

The fourth implication is primarily an outgrowth of the complicated nature of product and

process development. When large groups of people are required to work in parallel to develop

an idea, it would be ideal to have them all around a large table in a conference room until they

come up with a solution. Being in the same location greatly enhances communication, and often

explains why smaller programs in Magma can execute a development process so well.

Practically, the matter is much more complicated with a full program. The number of people

involved on any full-scale program is far too large to throw into one room. Consequently, it

makes sense to have systems integrators in charge of each parallel block as the development

process moves along. The integrator's role would largely consist of facilitating communication

and interaction amongst parties in the parallel blocks. For this reason, they would need to be

given the responsibility for convergence of the parallel block, and the authority to enforce

decisions within the political environment. System integrators cannot simply advisors to the

process, or have the responsibility with no authority. Their responsibility is to control

interactions, make trade-offs, and generally develop a converged design. For this reason, they

must have power over the process and those people making engineering decisions. By extension,

any integrator must also not be beholden to their original functional departments. Individual

budgets, staffs, and hierarchies will likely be required to force a separation between functional

creation and systems integration.

Unfortunately, the current system integrators are largely mired in firefighting of launch issues

and broader conflict resolution on a variety of programs. Very little is being done in the way of

systems integration on new programs or parallel blocks. In addition, the closures system

84



integrators continue to be paid by their original functional departments and fall under their old

supervisors. This robs them of much of the power that could be given to an integration role, and

leaves them with all of the responsibility and none of the authority. As a consequence, the

system integrators have been structured as "first among equals," which gives advisory power but

little sway over final decisions. In the end, many of the current system decisions have been

overturned by their old functional managers, resulting in more effort to reach the old answer.

The fifth organizational implication is derived from extending the DSM analysis beyond its

current scope of a single program's closures development. In reality, a closures DSM is simply

part of a larger development process, which is also part of a series of developments for a given

vehicle, which are part of a set of vehicles that Magma markets to consumers. Graphically, this

four dimensional problem is represented as follows:

Luxury
Coupe I

Sedan' I

Trucl
SUV

- Leasonn Learned

Surrogate &
Carryover

Figure 69: Basic diagram of vehicle development through DSM's, including information flows

As the diagram shows, there are two major flows of information within Magma's broader

development programs. First of all, information in the form of company wide architecture and

85

!

___. .
-' ~ __ __ ._ __ .. _

//
/

/



standards are passed between vehicle programs. Often, this information can include generic

lessons learned that affect product or process design. Secondly, system and architecture changes

are incorporated into each vehicle, which is then used as a surrogate design for the next major

development cycle of the vehicle program. Surrogates are actually chosen for every vehicle

program, even if the vehicle is theoretically designed from the ground up.

In practice, the transfer of information between programs is often quite low. Programs are

developed first as product designs, each based off of their own surrogate vehicle, and then a

manufacturing plant is customized for production. As a result, each product and process

combination is unique to the vehicle program, and there is a noticeable lack of common

architectures and systems across Magma platforms. Obviously, the lack of common

architectures precludes much of the information sharing that could occur across platforms.

Without a common manufacturing system and process, much less common vehicle platforms, the

information sharing must be limited to generic financial and program management items.

Furthermore, unique process and product combinations totally prevent any load-leveling from

producing the two vehicles in the same plant. All of this leads to a divergent evolution of

product and processes, breeding increasing complexity over time.

In contrast, the use of surrogate vehicles is much more common. The intent of a surrogate is to

provide a basic engineering platform to design the next major iteration of a program. The

surrogates are often chosen to be similar in function, size, and market for the next vehicle in

order to maximize the amount of useful carryover designs. Unfortunately, Magma's inability to

completely solve systems issues on any given program until launch generates last minute fixes or

partially complete solutions. As a result, many of the larger systems issues, such as persistent

water leaks, wind noise, and closing efforts remain embedded in the base design. This design is

then used as the surrogate vehicle for the next program development, setting the stage for repeat

problems. This issue is often complicated by a lack of iteration on the part of the designers, as

they will simply pass along the surrogate design in many cases. In this manner, Magma has

managed to face the same systemic problems for decades in its vehicles. Quite simply, true

solutions are never created, and the problems perpetuate from program to program via vehicle

surrogates.

86



This same continuity from surrogates can also be used to generate a positive evolution for

vehicle programs. If Magma is able to solve a system issue in one generation of the program,

that change will inevitably be incorporated to the vehicle and passed as part of the surrogate.

However, it is vital to point out that evolution is part of the problem that got Magma into its

current situation. Evolution and the creation of system solutions to incorporate into surrogate

vehicles should really be done from a common product and process architecture; otherwise, the

separate evolution of vehicle programs will increase the diversity of solutions. Essentially, the

performance of any new vehicle program is path dependent on the chain of surrogate vehicles.

Magma should use this dependency to pursue a converging set of solutions, not divergent.

DSM Recommendations and Financial Implications
After processing the closures DSM, the following recommendations are clear from the analysis:

1. Separate time scales by standardizing flexible manufacturing processes for production

decisions, and design cars to those processes

2. Address hidden errors with early systems thinking and experience

3. Staff programs according to the new resource model, and retain experienced personnel

4. Reduce task durations where appropriate with analytical tools

5. Address organizational implications of the DSM framework

It is vital to understand that recommendations #2-5 are useless without #1. Unless Magma

addresses the fundamental non-convergence of its current process, changes made at the fringes of

the problem will never be felt or seen in results. However, it is also important to note that

performance is likely to get worse before it gets better. Developing standards, new tools, and

changing the staffing process will be expensive, and new processes take time to learn. However,

reaching the new equilibrium will be well worth the effort.

The best estimate of savings can be gained by actually applying the budget constraint to the

resource curve developed in Figure 65 for two simultaneous projects and an assumption of

12.5% interaction value. The initial estimate of the value of Magma's time can be gleaned from

a simple financial analysis. With annual revenues around $200B, approximately 40 active

87



programs, a net margin of 5%, and closures making up -25% of the total development work,

Magma's value of time could be $200B / 365 days / 40 programs * 5% * 25% = $ 170K per day

for the use of resources in closures development. Also, the calculated curves need to be

calibrated to a best estimate of current costs. Considering that two programs currently use -60

people for a target of 1,000 days at a salary of $100,000 per 250 days, scaling up to the starting

point of the curve (factor of 1, resource constrained) would place the cost at 60 * 2550 * $ 100k /

250 = $61 M if they were to finish the program to convergence. Combining these two rough

analyses generates the following plot:

140

130

120

110

100

90

80

70 

60^

509

I

500 1000 1500 2000 2500 3000
Completion Time

Figure 70: Budget constraint analysis for Magma

As the figure shows, the optimal point for Magma is paying -$70M for a process that takes -580

days to converge two programs. This represents an extra expenditure of $9M that saves time

worth (2550-580) * $170k = $335M. In practice, Magma would only the value of time saved

from its current process, since quantifying the hidden errors and time to market is more difficult.

Thus, the value would be (1000-580) * $170k = $71.4M. Obviously, the return on the

investment for two programs is certainly worth the effort. If this simple calculation were scaled

up to the total 40 programs and to the rest of the development process (not just the 25% for

closures), the base value would be worth $71.4M * 20 * 4 = $5.7B. Although this number is

clearly inaccurate and not discounted for the time value of money, it provides an order of

magnitude estimate for the improvements from the DSM-based recommendations. Undoubtedly,

88



the benefit is even higher due to the avoided hidden errors and potential recalls after a product is

launched with design that has been forced to converge.

Unfortunately, the challenges inherent in completely revamping the product and process

development process make a goal of billions of dollars of annual savings quite difficult to reach.

The level of investment to standardize manufacturing, reduce task durations through system

tools, and set policies is also in the billions, and quantification of those items will not be

attempted here. Rather, this calculation of potential savings could be viewed as a continuing

penalty that Magma pays for having a development process that is inherently flawed.

Implementation Challenges
In spite of the clear recommendations and direction established for Magma, much of the past

work has been faced with substantial organizational barriers to implementation. In discussions

with previous analysts, three primary blocks were described:

1. Lack of authority or official change process

2. No incorporation into a formal process

3. Lack of continuity

First of all, many of the previous change initiatives have fallen victim to a simple lack of

authority in Magma's rigid hierarchy. If a director or VP discovers that there are errors in the

process, the scope of the problem is often out of his immediate control. By itself, this is not

unusual, since many change programs have been built on the back of consensus and convincing.

However, the numbers of levels that must be covered to change a process often result in

solutions that must be approved by the CEO and COO in order to be enacted. This is simply

inefficient, and is a situation in which Magma's rigid hierarchy truly resists change. This

problem is all the more surprising considering that Magma pays strict attention to the change

process for engineering decisions, but gives little credit to an official change process for

development itself.

Secondly, many past studies failed because of the lack of a formal process to support the

execution of the new method. Typically, this happens on any given program when someone

89



develops a tool or checklist that is used to solve a local problem. However, this tool is not

incorporated into anything formal and is lost on the next program, or not transferred amongst

programs. Often this can be a Catch-22, because no one wants to incorporate a new process until

it's proven to work, but proving it requires running two processes at once. Obviously, this

doubles the workload of those involved, and typically ensures the death of the new process.

There is some hope for Magma with the rise of GPDS (the Global Product Development

System), which should be an excellent window to incorporate new lessons into the processes that

will be replacing MPDS. However, Magma must assure itself that GPDS is not being bent to fit

within MPDS.

Finally, the most common reason cited for failure of change initiatives was a lack of continuity.

Quite simply, the people who championed the change are promoted or leave the company.

When combined with the lack of incorporation into a formal process, their departure immediately

deflates the change process and returns the system to its old ways. The most obvious culprit in

this problem is Magma's 2-year promotion cycle that always removes employees from their

previous projects in order to promote them. In an environment that has a 4-year development

cycle at minimum, it is completely counter-productive to promote and rotate project leaders on a

2-year basis.

Final Context for Product Development: Real Options
As anyone in a long product development process will point out, it isn't always wise to commit

to a design too early in the process. Many things can happen in the intervening 4-5 years

between concept and launch, including massive market changes in tastes, prices, and

competition. As a result, there is a real trade-off to be made between the benefits of early

specification and the benefits to waiting. This trade-off can be analyzed using real options to

determine the optimal point to begin project convergence.

As discussed in Ford and Sobek, the value of project follows three central hypotheses:

1. As the delay to convergence initiation time increases, project values increase as

uncertainty decreases

90



2. As convergence initiation time approaches the deadline, project values decrease

development of multiple options becomes costly and less useful in dealing with

decreasing uncertainty

3. As unit value of quality increases relative to development cost, the convergence initiation

time moves later

From these hypotheses, it's simple to realize that there is an optimal time to begin convergence

of a project in order to balance the trade-offs inherent in a real-options analysis. Ideally, the

project plan would be calculated by establishing the deadline, backing up the convergence time,

and then allowing for convergence delay to process a set of multiple options. This would

establish a finite timeline for a project as follows:

Multiple Options Convergence

Deadline
Delay - Choice

Figure 71: Idealized project management representation of real options (Ford and Sobek)

In this view of project management, DSM tools would be used to dramatically reduce the time to

convergence, thereby shortening the second segment of the timeline and allowing projects to

begin closer to their deadline. Presumably, this would have beneficial effects not only for the

fewer resources required to converge, but also in the reduced uncertainty in starting a project

closer to the deadline. In addition, the shorter development cycles would also have substantial

market benefits in terms of time-to-market and product evolution. All in all, the business case

for using DSM results to improve the development process is sound. Valuation of the benefits

could be found using the Black-Scholes formula for option valuation, but that is beyond the

scope of this thesis.

IV. Organizational Analysis
Any set of recommendations from a technical system analysis would be remiss without an

accompanying assessment of the organization. Organizations are simply sets of people working

91



toward a common goal, and they should always be designed to fit the associated strategies for the

marketplace. Consequently, it is simply foolish to recommend sweeping changes in processes

and functions without first recognizing the broader implications of these changes to the overall

organization and the chosen strategy. In light of this concern, the structural, political, and

cultural aspects of Magma's organization must be examined before a path forward can be

determined. Naturally, this analysis is based on the work described above, but will be applied

across the organization as appropriate. In addition, most of the insights are generic to large

bureaucratic, functional organizations.

Description and Context
Magma is a matrix organization split along functional and program lines, as is typical of a large

bureaucratic organization. Automakers, aircraft manufacturers, defense contractors, and giant

technology firms all exhibit the same characteristics. However, Magma's history reaches back to

the beginning of the industrial age, and its legacy is an important part of the structure and

culture. There have also been significant events in its organizational history that have

established the tone of operations for decades into the future. Within this broader structure, I

was under the direct supervision of a manufacturing systems engineering manager, which was 8

levels from the top of the organization. The chain of command is as follows:

1. CEO
2. COO
3. Executive Vice President of the Americas
4. Global Vice President of Manufacturing
5. Vice Presidents

a. Vice President of Advanced and Manufacturing - VOME
b. Vice President of VO Plants and Stamping

6. Director of Manufacturing Engineering
7. Chief Engineer
8. Manufacturing Systems Engineering Manager
9. Intern

The governing hierarchy and command chain in Magma is based on the functional group, which

placed me solidly in the manufacturing engineering domain. From these functional groups,

people are then assigned to vehicle programs to make up the other dimension of the matrix.

These vehicle programs are also structured in a hierarchy to manage all of the required

subsystems and functions for development.

92



Structural
Although Magma is nominally a matrix organization cut by function and vehicle programs, the

current organization is clearly dominated by the functional arm. This domination is partially a

consequence of applying moving assembly line techniques to product development in the early

(lays of the company. When dealing with a complex system such as an automobile, the assembly

is broken down into a variety of subsystems and their "constituent parts." Each worker is then

assigned one task of the assembly to be repeated over and over, enabling a complete car to be

assembled in minutes, rather than hours or days. This base assembly line technique has been

refined over the ensuing decades to encompass lean manufacturing, one-piece flow, and

manufacturing cells, but the core decomposition of a complex product into constituent parts

remains.

When this principle is extended to the engineering and development processes, a similar logic

applies. The complex system is broken into subsystems and smaller parts for engineering and

design, and functions are created around the subsystems. Once these subsystems are designed,

they are assembled in prototypes to figure out if the system is working properly. If the

performance isn't up to specifications, the design process is iterated until the system works

properly. However, there is no express method for feedback in the current intellectual design

system before iterations occur. Most of the current feedback methods cover information

transferred in the form of"lessons learned" or design reviews after deadlines are past. To be

sure, the engineering tasks attempts to gather all of the relevant information for their part, but the

information is not static. Overall, this process lends itself strongly to a functional and

hierarchical layout, with the hierarchy managing the decomposition and reconstitution of the

designs, and the functions executing the required tasks for each part. As Wallach diagrammed in

his thesis, it is natural for a complex and stable product to require such an organizational system:

93



Organize by ' Create function/ 
function/ I ) department

.... // .. subsystem / . metrics /\ . .
o'mpl~x, "'~. /.' 7'. Focus on Support projects

i C.eomplex, a / .......... function / that improve
,meg, ratea anda~~ .~department department

stable product / Tmetrics metrics

Top-down Focus on top-
decisions for Focus on top-/ .I down metricscoordination / /

Figure 72: Casual diagram illustrating the derivation of a functional structure from a complex product
(Wallach, Solving a Corrosion Quality Issue at a Major US Automaker)

However, a complex product by itself is not enough to spur the introduction of a massive

hierarchy and functional breakdown. For example, there are a variety of small-volume car

manufacturers that have much flatter organizations than Magma. These companies will typically

employ smaller and more cross-functional teams of engineers to work on the subsystems for the

one or two cars that they produce. Once a manufacturer begins to produce a variety of products

that all require similar functional tasks to be executed in the design, there are perceived scale

advantages to combining the functional experts and a functional organization emerges. This

organizational structure then serves to complicate the ability to communicate across functions

and ultimately introduces an assembly line technique to product development.

For much of its history, Magma's organizational structure was well suited to the key customer

requirements. From the earliest days of the automobile up until just a few decades ago, the

powertrain was the primary concerns of the customer. Powerful, lightweight, and reliable

engines were the focus of development so that an automobile could be a reliable mode of

transportation. For this reason, structuring the organization into its basic functional subsystems

(body, chassis, engine, transmission, etc.) made sense because the groups of engineers required

to develop a great subsystem for the customer were in the same place with very few barriers to

communication. However, the ensuing 50 years of automobile development have perfected

many of the previous customer requirements. Engines and transmissions are so reliable now that

many people don't ever open their hoods themselves, and won't ever need to. Quite simply, the

automobile has completely satisfied its basic need as a reliable form of transportation, leaving

customers to focus on more refined attributes, such as fit & finish, aesthetics, interior design, and

sensory perceptions of touch, sound, and sight. Unfortunately, many of these new customer

94



requirements cross the existing functional boundaries. For example, dealing with squeaks and

rattles or engineering a specific driving "feel" does not fall just within the engine group.

Said another way, functional decomposition of the automobile was much easier in the past

because of its highly modular architecture. Over time, the product architecture has moved from

modular to integral for a variety of reasons, including uni-body construction, aerodynamic

improvements, and weight reduction efforts. In the terms of the preceding DSM analysis, these

changes mean that the strength of the interactions has increased, thereby increasing the chance of

iterations and rework. This newer integral architecture also requires a more integrated supply

chain and organizational structure. For these reasons, Magma has essentially outgrown its

current organization after mastering the previous customer requirements, and is now in a poor

position to deal with the customer requirements of the broader system.

One consequence of the original approach to organization was the functional nature of the

individual tasks in the subsystems, engineering work, and assembly. Engineers and assembler

were unable to see far beyond their part, and certainly not beyond the subsystem, so

specialization was valued highly. For this reason, Magma has long been staffed with incredibly

talented and experienced engineers who could overcome detailed technical challenges. These

technical achievements were then passed up the hierarchy for approval and combination with

other subsystems. Unfortunately, approval in the hierarchy was a poor substitute for system

engineering, since most practical system engineering then had to be done on the fly during the

launch of a vehicle. Although this organization made for great subsystems, it left many of the

broader system issues undiscovered until the vehicle was being produced for sale. In the past,

this was not much of a problem since customers were more focused on basic subsystem

reliability. However, today's customers are now focused on the very system features that

Magma had been able to ignore for so long.

In some sense, delaying systems engineering and error discovery until launch is the most

reasonable solution for this organization since all errors will be aggregated in one physical place

on a prototype, and only those that affect customer requirements can be addressed. The

alternative would be a serious and prolonged period of error discovery during the development

95



process that would increase the number of iterations and exacerbate the existing problem with

feedback delays. However, delaying error discovery until the prototype phase runs the risk of

leaving significant latent flaws in the design launched to the customer. As Magma has famously

discovered in its history twice before with vehicles it has produced, latent design flaws can cost

the company billions of dollars in recall repairs and countless billions in lost goodwill, brand

image, and future business. Consequently, every effort needs to be made to ensure that the

hierarchical functional organization is not contributing to these design flaws. Because of the

inherent communication difficulties between functional groups, the current organization is ill-

suited to handling systems engineering without increased communication to reduce information

feedback delays.

Internal Processes
Eventually, Magma documented its assembly line treatment of the product development process

in the Magma Product Development System (MPDS). MPDS serves as the final roadmap for the

development of any vehicle, all based on working backward from a set date for the production of

the first car. Fundamentally, MPDS treats the development process as a set of constituent

designs that need to be intellectually "assembled" into a final design. The estimated time

required to complete each design is subtracted from the original deadline, gradually building a

massive Gantt chart of milestones, deadlines, and required tasks that is used to structure, staff,

and prioritize remaining work. This method of development planning makes MPDS the perfect

embodiment of Magma's hierarchical and functional organization, assuming that no rework or

coordination will be required unless mistakes are made. As a result, any systems engineering

occurs within isolated "tech clubs" that bring together a variety of engineers to address a

common problem. However, my brief experience with these "tech clubs" suggests that they are

primarily used to address errors and issues, and do not represent a fundamental change in how

the development process is conducted on a daily basis. When deadlines are missed due to

required rework or unanticipated complications, the subsequent MPDS deadlines are extended

and an acceleration plan is created. There is no concept of loops, feedback, or time delays that

would cause MPDS to be inherently flawed. Rather, the entire structure of the organization is

designed with faith in the assembly line breakdown of development work.

96



Very similar to MPDS, the Magma Manufacturing Design System (MMDS) is a current initiative

to document the manufacturing process development tasks. MMDS is basically a flowchart

representation of the manufacturing tasks involved in designed and finalizing a manufacturing

process and plant layout for vehicle production. The use of flowcharts does allow for feedback

in the documented processes, which gives MMDS a huge boost over MPDS in understanding the

fundamental drivers of rework. However, the MMDS analysis is crippled by its relation to

MPDS, largely because the flowcharts are all staged by existing MPDS milestones. At no point

does the MMDS analysis step away from the structured assembly line process inherent in MPDS

and analyze task relationships without an imposed order. As such, predetermined MPDS

deadlines are baked into the MMDS analysis from the beginning, creating a preordained result

that only documents the current procedures and does little to improve them. Ultimately, this

reduces the MMDS initiative to a flowchart diagram of the current execution of functional tasks,

and bolsters the current view of organizational structure.

However, this is not to say that Magma does not have a handle on its predicament. Rather, a

complex initiative was launched in 1998 by Tony Zambito to understand the basic structure of

the product development tasks. Using the same DSM tools applied in this thesis, Tony sought to

modify the MPDS process by examining tasks and their interactions independent of the imposed

deadlines. In the end, Zambito was able to collect a massive database of -1 000 tasks and all of

their precedents and dependents, and then analyze it using the DSM framework. After the

analysis was done, a new task order had been established, coupled blocks had been identified,

and completion time distributions could be calculated. Much of the results spoke to the inter-

related nature of product development tasks and the need to restructure the development process.

However, for reasons that will be discussed in the political and cultural sections of the

organizational analysis, Tony's structural work was eventually modified to fit into the existing

MPDS framework by the upper management. False dependencies were added to force certain

tasks into designated timeframes that corresponded with the current MPDS process. These false

dependencies had the final result of bending the technical analysis to fit an old process and

ultimately created no meaningful structural change in the organization or process.

97



As a result, Magma is still left with a development process that is fundamentally linear, like an

assembly line. The central flaw in this assembly line breakdown is that the consequences of

actions cannot be seen immediately. Also, the assumption of perfect decomposition implies that

any work on the system level is a pure cost. Furthermore, rework is perceived to be a result of

errors in the process, rather than a natural consequence of the time delays between executions of

inter-dependent tasks. Each worker is focused on a single task or part and is fundamentally

incapable of viewing the entire system. On a physical assembly line, this is not a huge problem

because the time cycle of the process is relatively short. Q&A stations can see the overall system

and can find, diagnose, and solve errors within a matter of a few production units or hours.

However, product development time scales are much, much longer. When an engineer changes a

design, its effect on the system may not be seen for months or until a prototype comes off the

line.

Structural Dynamics
As a result of the long time delays for feedback, the core functional structure of Magma's

development process will naturally restrict the ability to cross-coordinate and will ultimately hide

errors in the system. Some of these errors will be found during the prototyping process, but a

significant fraction will never be discovered or discovered after delivery to the customer. One

potential solution to these hidden errors would be increasing cross-function coordination and

communication to reduce the time delays for feedback. However, the intervening decades have

strengthened Magma's original functional structure into today's rigid hierarchy. Unfortunately,

this rigid hierarchy is ill-equipped to deal with reducing feedback delays because of the

decreased coordination ability that comes with strong hierarchies and functional orientation. The

following diagram summarizes the trade-off between functional strength and cross-coordination

ability:

98



Cross-Function
Coordination Ability

-ge, Mass Market
nufacturers

Strenath of Functinns
& Hierarchy

Figure 73: Trade-off between functional strength and cross-coordination ability

In the absence of any compensating tools or practices to enhance communication across

functions, increasing the strength of a functional hierarchy will reduce the ability to

communicate across functional barriers. In Magma's case, this results in a scenario in which

most cross-functional communication must go up one branch of the hierarchy, across, and then

down the other side (commonly referred to as the "inverted U"). There are some notable

exceptions with the "tech clubs" that get together to solve system problems, but the daily method

of working is unchanged. Undoubtedly, this lack of coordination makes solving complicated

systems problems harder, but it also reinforces an isolated and metric-driven structure. Because

much of the organizational incentives are directed toward the isolated functions, Magma's

hierarchical and functional structure does not lend itself to cross-functional coordination.

However, there is another effect that complicates the loss of coordination ability:

Isolated
Functional
Motivation

he Builders

Fucioa

Functional
Coordination

Figure 74: Trade-off between coordination and motivation

99



As the figure shows, there is also a trade-off between isolated functional motivation and cross-

coordination within a company's functional groups. Essentially, increasing coordination

between functional groups lowers the focus of isolated functions on their specific metrics or

profit incentive. Rather, the increased coordination forces them to cooperate and meet a set of

common goals, but this inevitably hurts the alignment of metrics and their work. In contrast, the

absence of coordination drives individual motivation to achieve their local goal. For a plant or

division, the relevant goal could be profit or cost per unit, but for individual employees or

directors, the goal will be their individual performance metrics. Unless these metrics and

incentives are perfectly aligned, each function will be ultimately working against its compatriots

instead of toward a common system goal of customer satisfaction. Usually, this trade-off is used

to highlight a coordination gap that developed when a functional organization is trying to

motivate its groups with localized metrics.

Connecting the two concepts discussed above, it's simple to see that a matrix organization is

inherently unstable. The following diagram illustrates the concept:

Strength of Functions
& Hierarchy

Matrix Instability Isolated or Separate

Functional Motivation
Cross-Coordination

Ability

Figure 75: Matrix instability from a reinforcing loop

As the image above shows, the two concepts generate a reinforcing loop that can pull a matrix

organization in either direction in the absence of compensating effects. To illustrate,

strengthening a hierarchy & functional orientation will reduce cross-coordination ability, which

will increase individual functional motivation and consequently strengthen the hierarchy &

functional orientation. In the reverse, weakening the hierarchy & functional orientation will

100



increase cross-coordination ability, which will decrease individual functional motivation and

consequently weaken the hierarchy & functional orientation. From these two dynamics, it's

,clear that matrix organizations are naturally an unstable equilibrium, and will tend to tip toward

one side of the matrix unless management constantly strives to maintain the balance.

Currently, Magma's matrix organization is dominated by the functional side, suggesting that

Magma has been traveling down this reinforcing loop for some time without management

correction. As a result, Magma finds itself trapped in a functional orientation that is ill-suited to

address systems engineering problems that bridge its functions. Fortunately, there are a few

options for improvement. First of all, Magma could use the reinforcing loop in reverse to bring

the organization back towards the middle of the matrix. Naturally, this would require a variety

of measures to weaken the functional hierarchy and strengthen the cross-coordination emphasis.

In addition, Magma could also strive to reduce the communication delays in the development

process while still maintaining the deep technical expertise that comes from a functional

organization. Graphically, this could be viewed as pushing out the frontier so that coordination

ability isn't lost as functions gain strength, or as weakening the connection between strength of

function and cross-coordination ability in the reinforcing loop. Finally, Magma could also

weaken the connection between cross-coordination ability and isolated functional motivation by

changing the local metrics. As a note, it is important for Magma to retain technical prowess,

since technical experts are required for system engineering. Overall, there are several options for

improvement:

1. Create a flatter organization with fewer barriers to cross-functional communication,

similar to small-volume manufacturers

2. Create smaller program teams and work in team form

3. Create tools that can increase effective communication, or otherwise reduce time delays

in feedback

4. Create dedicated system engineering function for internal coordination, similar to the

closures system integrators

101



Although all of these solutions are intended to reduce feedback delay time or weaken the

hierarchy & functional orientation, the implementation of a single one may not be enough to

improve the development system. It is entirely possible that several solutions are necessary to

get the required systems expertise, organizational structure, and set of tools to streamline the

overall process. It is also vital to point out that the changes must make cross-functional

communication happen quickly, reliably, and on a regular schedule - otherwise the tool may be

deemed a failure.

One example of a solution back-firing is Magma's virtual series, which is a set of meetings and

virtual analysis intended to provide a testing environment in which the assembly and fit of

designed parts can be assessed before real parts are built. On paper, the virtual series is a

wonderful idea, designed to provide cross-functional feedback to the engineering design teams

on their work without building physical prototypes. However, the virtual series currently takes

about 8 weeks to complete after data is frozen at a specific point, which fundamentally restricts

the frequency of virtual series to at least 8 weeks. Meanwhile, engineering work continues and

decisions are made without feedback from the virtual series. When the virtual series is finally

completed, the engineers typically have to go back and rework decisions that were in the frozen

data and the subsequent decisions that were made while the virtual series was progressing. In

this manner, the 8 week duration of the virtual series actually introduces the very delays that it's

supposed to prevent. Essentially, "working ahead" will result in additional rework. As such, any

communication or system tools must be fast enough to be real-time or that engineering work can

be stopped while waiting for the results. In many cases, the benefit of waiting and avoiding

rework greatly outweighs the opportunity cost of idle labor while waiting, even if that time is 8

weeks. One potential solution for the virtual series is to focus on broad-based compatibility of

assembly before addressing the final complexity. This would dramatically shorten the time to

run a series.

Theoretically, there is an optimal frequency for a systems communication and analysis tool to be

used. As stated above, the frequency cannot be too long because it either (1) creates rework if

people continue working without appropriate feedback, or (2) costs too much in the lost

opportunity of idle labor while people wait for the feedback. In addition, the frequency

102



shouldn't be so short that no new meaningful analysis is generated from the cost of running the

tool. For example, a virtual series run every hour would frequently generate no new results since

it takes a number of days for engineers to produce changes. Ideally, the tool frequency would be

a multiple of the fundamental time scale for completing changes and new work once feedback is

received. In a computer coding environment, the time scale for changes and additions is on the

order of hours, so the frequency for compiling the code (i.e., checking the system) is daily. For

automotive development, the time scale for changes and additions is days, so the likely system

tool frequency should be every few days or weekly. Regardless of the frequency of use, the

systems tool should be able to process the input and generate feedback as quickly as possible. It

doesn't make sense to have a tool take 8 weeks to generate output if the feedback is needed on a

weekly basis. As such, the completion time must be less than the required frequency of use;

otherwise, the system will oscillate out of control. These tools should then be built into the

organizational structure as a bridge between functions.

Industry and Market Dynamics
To further complicate the difficulties with system engineering, Magma's aging organizational

structure is also ill-suited to the company's changing strategy in the marketplace. The trend

towards low-inventory, lean, and flexible manufacturing has prompted Magma to increasingly

outsource more of its design work to suppliers, headlined by the spinning out of internal parts

designers and producers a few years ago. However, the coordination-motivation framework can

help to illuminate some of the resulting structural complications of outsourcing, using the spin-

out as an example:

103



Motivation

ternal

Frnnrrlinatin

Coordination
Gap Opens

Figure 76: Coordination gap from spinning out an organization

As the two positions show, the hope of the spin-out was that the new firm would gain motivation

as an independent company. With profit at stake as an independent supplier instead of internal

Magma metrics, the hypothesis was that the spin-out would become more motivated to succeed

and produce cost-competitive, high-quality parts as their customer set expanded. However, the

increased motivation comes at the expense of coordination between entities. Internal part

producers are generally easier to coordinate and manage than external ones, in spite of internal

political dynamics, and especially when competing interests are at stake. In this particular case,

Magma still has a dramatic structural advantage because it buys 90% of the spin-out's products.

However, once the spin-out gains more independence, Magma will be unable to control or

coordinate the relationship as well.

Ultimately, this leaves Magma with a coordination gap that must be addressed to be an efficient

integrator and assembler of parts. There were a variety of solutions that could be employed to

improve Magma's coordination ability mentioned above, and the principles governing these

solutions should hold true for external coordination. Communication needs to show the results at

the systems level quickly, reliably, and frequently. However, Magma needs to address the

coordination gap or else it can expect systems engineering to get more difficult. One way to

handle the increased external coordination with suppliers is creating a flatter hierarchy with

responsibility pushed down to lower levels, but there are certainly other ways. Furthermore, it is

unreasonable to ask a strictly functional hierarchy to handle systems coordination with suppliers,

because it's unclear what function should hold that responsibility. Rather, Magma should make

104



the vehicle programs a much stronger organizational feature throughout the company (i.e.

bringing the matrix back toward the middle), thereby allowing cross-functional teams to be

formed that manage a relationship with a number of suppliers to ensure that customer

requirements are met for the subsystems. However, Magma needs to be careful with this shift of

the matrix, since over-correcting will result in local optimums for each program cluster, thereby

contributing to the divergence from any central standards. The suppliers themselves would then

be forced to re-aggregate the various requests from Magma program teams into functional

requirements for their own organizations. Program teams would also be responsible for sharing

identified solutions for a set of supplier products between programs.

Without making this transition back toward the middle of the matrix, Magma will be caught

halfway between business models. Their operations are no longer vertically integrated enough to

support the aging functional hierarchy, and the organization has not transformed enough to

support the new operational model. In fact, one of the only major organizational initiatives of

the past few years has been the development of the Technical Maturity Model, which was a well-

designed series of strategies intended to retain technical expertise in the company and encourage

technical maturity on programs. Much of these maturity initiatives were designed to attack the

standard 2-year promotional cycle, which often hampers a 4-year development cycle when talent

running programs either (1) advances out of their program role, or (2) leaves the company for

other opportunities. Overall, retaining this technical talent is vital to Magma's transition to a

newer business model, because technical expertise is a required basis for systems integration.

Without technical talent, Magma will end up having to outsource all design and will become just

a brand name assembler providing little value to the customer. However, Magma does need to

ensure that it also provides the systems tools that are required for technical experts to perform

their design and integration roles properly. Without tools, the cross-functional coordination

problems and supplier coordination gap will remain in place, creating delays in feedback and

hampering the development process.

Throughout its history, Magma should have been spinning out systems that are no longer their

core competency and restructuring the organization along the new functional criteria. If the

original systems of the automobile were the engine, transmission, and chassis, a functional

105



organization along those lines made a ton of sense. However, an organization that is addressing

vague customer requirements such as interior feel, wind noise, closing effort, and drivability

should bear little resemblance to the organization of old. Unnecessary functionality should have

been spun out a long time ago, leaving Magma more streamlined to deal with the newer system

requirements. If this had happened, it would have prevented much of the organizational growth

that was required to design engines and manage the complexity of the combined systems into

customer requirements. However, Magma has not considered any spin-outs until recently,

thereby leaving itself with a massive organization of functional departments that has had

significant trouble addressing customer requirements. Of course, Magma would argue that the

situation is not an "either / or" decision, since quality subsystems and systems engineering are

required to make a quality vehicle.

Magma should have been reassessing its core competency and deciding where to compete on a

continual basis. The past fifty years have changed the marketplace to demand performance that

Magma is no longer providing with its organizational structure. This lack of fit between

organization and strategy is leaving Magma with a major decision as to whether they should be a

subsystem supplier or an assembler, which is a question that blends competencies, capital

investments, market size, and brand. In the end, the alignment between organization and strategy

must be corrected before sustained profitability can be returned.

Political
As is natural, the political environment within Magma is tied to its organizational structure. A

functional hierarchy obviously concentrates political power in the upper echelons of the

organization and creates walls between functions. In addition, the vehicle development process

dictates much of the information flow within the company, establishing Product Development as

inputs to Vehicle Operations. This creates the feeling of one division being subservient to

another, since VO must respond when the inputs from the PD change. Also, because Magma

treats its development process as primarily linear, there is no real mechanism for the VO group

to credibly feed information back into PD. To be fair, there are some mechanisms for

engineering specifications and standards, but the power relationship is most certainly one-way.

As a result, VO seems to be a permanent underling of PD. For these reasons, much of the

106



political power in Magma is concentrated in the higher levels of the studio design and product

design divisions.

The concentration of political power in these two locations has many detrimental effects on the

'organization's ability to function. First of all, it places the manufacturing and plant divisions at

the back end of the process without the political power or organizational mechanisms to exert

much influence over product decisions. As a result, the most capital-intensive area of the

company is forced to respond to the product decisions. From a purely financial perspective, it is

far cheaper to change a product to fit an existing manufacturing process than it is to change a

process to fit a new product. Re-tooling a factory creates a financial burden that must be borne

by the vehicle program and often constrains many of the subsequent decisions on the program

regarding vehicle features and customer requirements.

Secondly, the concentration of political power in the top levels of the hierarchy cripples the

organization's ability to solve system issues without traveling up the entire hierarchy. Because

Magma's organization is structured along functional subsystems, resolving a systems problem

often requires input and changes from a variety of divisions. However, the engineers who would

normally agree on the changes to make to solve the issue do not have the power to make the

changes. Rather, they have to go up a level to their supervisors, who then get together and

discuss the solution, and then present it for approval to their supervisors. Ultimately, systems

decisions must be reviewed by several levels of the hierarchy before they reach the subset of

people (or the one person) that can actually authorize the change. Predictably, this process takes

a long time to meander through the bureaucracy, and also results in frequent changes to the

original decision as people review the data and leave their mark.

An excellent example of this dynamic occurs with the manufacturing and closures systems

integrators (MSI's and CSI's) that are tasked with diagnosing and resolving systems issues such

as wind noise and water leaks on doors. The SI's have frequently complained that their system

improvements have been changed or reversed by the lead functional engineers on the programs,

often leaving existing problems in place without a solution. Unfortunately, this leaves the SI's

responsible for the systems issues but without any authority to enact the changes. As a result, the

107



current state of "first among peers" places SI's in a purely advisory role and is inadequate for

fighting against Magma's political hierarchy. However, it is not immediately clear why the SI's

don't have any power until the broader political structure of Magma is examined.

Power of Finance
In spite of the concentration of political power in the upper level of the design divisions, much of

the true power is held by the finance department. Magma revolves entirely around a set of

financial controls and planning that are governed by the "black box" of the finance department.

Finance is responsible for the allocation and forecasting of all resources, including placing

engineers on vehicle programs, appropriating funds for capital improvements in plants, and

setting profit goals for each program or major project. However, many people will admit to not

understanding how finance arrives at its decisions or models for allocation of resources. As a

result, everyone in the functional divisions is beholden to a set of rules that often seem arbitrary

and contrary to system improvement. In reality, many of the financial allocations come down to

the political power wielded by a vice president. In the case of the system integrators discussed

above, there was a dramatic difference in the push given by each VP in charge. As a result, the

CSI's had much more structure and resource authority than the MSI's did.

To complicate matters more, the MSI's have no separate budget for their activities. Rather, each

MSI is still employed and paid by their "home" functional group, and is viewed as being "on

leave" to work on systems issues. Even worse, the supervisor in charge of their system

integration work has no reporting power over them. This creates a hold-up situation in which an

old functional boss can either call a MSI back to work on their old tasks, can threaten the MSI if

decisions do not help that particular function, or can simply bias the MSI's against other

functions. Obviously, this frequently places the MSI's in an awkward position balancing the

desires of their system integration supervisor versus the demands of their home functional

department. In many ways, this situation is also true for the CSI's, since they still report to their

home product clusters, as well. A separate budget would go a long way to overcoming these

power issues within Magma, but would simultaneously hamper the elimination of walls between

functions with the act of erecting another one.

108



Regardless, the lack of a budget or accountability for systems improvement renders any CSI-type

initiative essentially powerless within Magma. A systems budget would not only allow for

influence within the hierarchy, but it would also mean accountability for the executive

management. As the initiatives currently stand, there seems to be no real plan of execution, no

performance metrics, and no accountability above first level supervisors. Participants are left to

influence, cajole, and reason with their peers and superiors to achieve the goal of system

optimization. Since this method of convincing is in stark contrast to how things normally take

place within the Magma hierarchy, systems initiatives typically stumble along for a while and

then slowly fade away. From talking to many people about past initiatives, it is clear that most

participants view these system initiatives as a side project that, no matter how useful, is a

distraction from the real work to be done. Even worse, it's clear that failure has no

consequences. There are no jobs to lose since everyone is still paid by their functional

departments, there is no money to lose because no budget exists, and there is no promotion to

forfeit. Everyone can walk away from these initiatives no worse for the wear, aside from the

opportunity cost of lost time. In a sense, this attempt at cross-coordination does not break the

link to isolated functional motivation shown in Figure 75, and the matrix instability continues.

Even worse, Magma maintains no central budget for large scale capital or strategic

improvements. Nominally, this budget doesn't exist because it would be the first budget to be

pillaged by a company with a history of dramatic swings in profitability. However, its non-

existence means that complex initiatives that would benefit every vehicle program are required

to be funded by individual programs, and to be within their profit targets. Predictably, this

means that system wide initiatives are never even proposed, because they simply can't be

sustained by a single program alone. In fact, these profit targets are so rigid that vehicle

programs are often held to them even if dramatic changes in assumptions are required in the

middle of the program. One solution to these financial controls would be making system wide

initiatives their own cost centers (or profit centers), or very least their own budgets. The primary

issue is that the positive externalities and benefits to scale are not always seen or valued by the

individual entities within Magma. This would allow Magma to generate benefits that come from

unifying practices, and could make a justifiable business case for the billions of dollars of

investment required to update the facilities. As it currently stands, no vehicle program is

109



profitable enough to undertake a billion dollar investment, and certainly has no incentive to do so

when the benefits would not be completely captured by that single program.

A further example of the financial controls addresses the transition of a vehicle program from

development to production. During the development of the vehicle, the program covers the

product and process specifications with the primary deliverable of a producible vehicle that

meets all of the specifications. At this stage, the vehicle program has a budget that is designed to

cover the development costs to reach launch. However, once the development and initial launch

tests are complete, the vehicle program budget is passed on to the plant for production.

Subsequent production costs, including warranties and recalls, are then borne by the plant. This

transition of budgets removes a dramatic incentive to discover and address system errors,

primarily because the vehicle program that would discover these engineering errors will never

see the costs of their errors. This is a classic time-lag problem of externalities from economics,

correctly predicting that the vehicle programs will ignore problems that other entities bear. In

short, the vehicle programs are "polluting" the plant budgets with extra costs from hidden errors.

Normally, this issue would be correctable in the organization through the metrics, but the

inherent political relationship between the programs and plants will need to be addressed before

simply changing the metrics.

Political Change
Eventually, if Magma credibly changes its structure to match the changing nature of the system

issues that it must resolve to meet customer requirements, then many of these political problems

will disappear. Although structures cannot be guaranteed to dictate the political environment, a

significant enough change will prompt a shift in the politics. As addressed above, a new

structure will have to incorporate several features to encourage and speed feedback between the

major functions, if not changing the definition of functions themselves. If the concepts of

feedback and system engineering are introduced to the development process, it will be

increasingly difficult for the upstream functions to hold power over the downstream functions

simply through the input-output relationship. The entire development process will become much

more circular through the feedback processes, which should even the playing field dramatically.

In addition, Magma needs to push much of the responsibility for systems decisions down into the

ranks of engineers and not require the decisions to travel the entire height of the hierarchy.

110



Reorganizing to empower systems decisions should not only relieve the upper management of

much of the burden of managing the decision process, but also reduce the concentration of

political power in the top. Finally, an improved systems structure would also reduce the power

of the finance department by establishing more general metrics for evaluation that do not so

heavily on individual budgets, cost per unit, and allocations. Single plant, program, and division

profit or cost targets breed political infighting and poor system decisions through actions that

'benefit the individual but not the group.

'Unfortunately, it would be exceedingly rare for the current holders of power to willingly

abandon their positions for the good of the company. Change is usually resisted, and changing

the power structure is always resisted by those destined to loose influence in the new structure.

Rather, these decisions will need to be forced into place as part of a massive revitalization

designed to structure Magma around the customer requirements that need to be perfected in

today's cars. In the end, there are two stages on the path out of the political quagmire in which

Magma finds itself. As discussed above, an immediate solution would be giving budget

authority to the systems integration function. This would give a sense of legitimacy and power

to the systems initiatives, prompting true involvement and accountability for the changes.

However, this tactic largely uses the current organizational structure against itself. Creating a

separate "systems" function with a separate budget plays right into the current functional

structure and could ultimate hurt cross-functional communication by enforcing organizational

walls instead of bridging them. So, a longer term solution to the political problems must focus

on changing the power structure both by reorganizing the functions as discussed in the structural

section, and by shifting towards power through ideas and merit instead of hierarchy and pure

authority.

Cultural

The culture of an organization is exceedingly difficult to divorce from the inherent structural and

political environment, especially when the historical context is taken into account. Organizations

are fundamentally a group of people that have evolved over time, thereby establishing a self-

fulfilling state of existence that is the product of intensely inter-dynamic behavior. However, a

111



static view of the current culture is vital to diagnosing an organization's problems and how best

to address them. Magma's current employee culture is best described by the following three

points:

1. Operates on an extremely short term horizon

2. Defers to hierarchy and rejects operating outside traditional channels

3. Feels a sense of fatalism

Short Term Outlook
First of all, it has been clear in all of our observations that the vast majority of work at Magma is

done on an extremely short time horizon, ranging from launch teams solving immediate daily

problems to a broader focus on metrics for the current quarter or program. This behavior can

largely be traced to the MPDS timeline, the financial metrics for the functional groups, and the

promotional cycle. As mentioned above, the MPDS timeline for development is set by

establishing the date for Job #1 and backing up a series of deadlines to the project start date. As

a result, the experience on a development program becomes a series of short term deadlines and

requirements that are designed to stage completion of the tasks, but actually produce a feeling of

constant stress. Quite frequently, work is hurried to meet these deadlines, often producing errors

that will be fixed by launch teams later, or simply creating work after the deadline. Obviously,

this adds to an already stressful culture and enhances a feeling of completion after a deadline is

passed. In reality, a deadline may be just the beginning of a set of iterations designed to produce

a final converged design, but people are loathe to return to a design after a deadline has been

passed. As a consequence, much of the rework is deferred until the launch team can handle it.

The financial metrics complicate this short term view by establishing incentives for localized and

short term optimization. For example, a vehicle program will typically have specific cost per

unit metrics to keep the overall price of an automobile under a certain threshold set by the

marketing and finance departments. These cost per unit metrics are often sacred, and many

decisions are made based on whether or not the metric will be violated. Culturally, this breeds

an incredibly cost-conscious culture that will often reject investment opportunities because the

initial cost (which must be borne by an individual program) will hurt in the metric in the short

term in spite of long run benefits. In addition, these metrics bias Magma towards certain

112



solutions, such as heavy automation and the use of robots, which have low cost per unit metrics

during production. However, the automated solutions that have the lowest cost per unit are

typically not the most flexible solutions, creating very high setup costs for the next program to

use the facility. In the end, the financial metrics block a longer term view of flexible investments

that would help multiple programs over time, or even encourage the use of people over robots.

Finally, the 2-year promotion cycle set within a 4-year development cycle creates a self serving

interest for individual. When the rotation of personnel is faster than the cycle for one program,

employees end up leaving programs in the middle of development. Obviously, this means that

program knowledge is walking out the door, leaving the replacements to carry on the original

path. Predictably, there is a significant ramp-up period for new employees coming onto an

existing program, and the reasons for previous decisions are often not understood completely.

Continuity becomes increasingly difficult to maintain, especially without any formal method of

education or training for the program. Unfortunately, the replacements are then tempted to make

their own mark on the program in their 2-year stint, often reversing or modifying previous

decisions and thereby extending the development time. This temptation is completely natural,

because each new person is being evaluated on their impact and performance, not their flawless

continuation of someone else's work. However, their behavior simply enhances the short term

view throughout Magma.

Magma has recognized the problem and has been doing some things to address the 2-year

promotion cycle. The technical maturity model (TMM) is a new promotion track designed to

retain engineering staff on a program, providing advancements and greater responsibility within

a given project. Hopefully, as responsibility on the project increases, the longer term view of the

development will be enhanced. However, Magma needs to be very careful that rewarding

functional and technical expertise does not compromise the broader goal of systems integration

by strengthening the metrics for individual success in one functional area.

Deferential to Hierarchy
In an operational sense, Magma is definitely ruled by its hierarchy. Decisions cannot be made

without your supervisor's approval or by following the official process. Quite frequently in my

initial time here, my requests for services or interviews would be met with the question, "Who's

113



your supervisor?" or "Does your supervisor know what you're doing?" However, when that

information was provided, everything was smoothed over. It became clear that I had no

accountability and that my supervisor was viewed as ultimately responsible. In talking to others

throughout the organization, it was clear that my experience was not unique. This transference

of responsibility to supervisors seems to carry all the way up to the VP's, and was often

compared to a military organization. In fact, much of the current culture was attributed to the

leadership of the Whiz Kids in the 1950's and their institution of many military practices and

strict financial controls, although the contributions of the founder are without comparison. As a

result, even today's employees tend to be incredibly deferential to the hierarchy and the

established ways of doing business. Many seem to think that this is the correct way to run a

disciplined organization, but many others seem resigned to the fact that fighting the hierarchy is

useless and damaging to their careers.

As a result, the established system is rarely questioned in any real form. Many of the engineers

that I interviewed understood and agreed with my identification of the core issues at Magma, but

none seemed ready to stake themselves against the system. Obviously, part of this reaction is

due to the history of failed initiatives at Magma and the inherent complexity of the system, but a

large part seemed to be trapped by the hierarchy. Individually, they didn't have the power or

authority to make the change, and traveling all the way up the hierarchy would be too hard.

Some engineers even seemed fearful of the vice presidents, saying that whenever the higher-ups

were involved it was because something had gone wrong. Magma's culture is also highly

resistant to those operating outside the traditional, or approved, channels. The clearest example

of this behavior lies in the reputation of supervisors who have access to the higher levels of the

organization. These supervisors are often viewed as suspicious because of their connections, and

the ultimate effect undermines the change initiative in spite of an attempt to get the issues in

front of an audience with enough authority to actually change the system.

Magma further enhances the feeling of separation and hierarchy with a variety of perquisites and

status items that apply as one is promoted up the chain. Most notably, the addition of assistants

serves to create a significant barrier between supervisors and managers, especially when the

assistants are used to restrict access to the decision makers. In the basement of the PD building,

114



the restriction actually used to be physical. Every manager's assistant sat between the main

office and the hallway, creating a physical barrier to access. Today, the barriers seem to be

virtual, largely because the assistants handling the blocking over email. Obviously, none of this

is new - assistants have long been the key to the decision makers in organizations - but there is

little feeling of an open door policy on any level. Designated parking spots, executive

conference rooms, washrooms, office size, and provided (and serviced) cars all serve to enforce

the hierarchy and a broader feeling of separation between the levels.

Sense of Fatalism and Depression
Throughout my conversations regarding the systems initiatives, I was unable to bring about a

true sense of enthusiasm from anyone. In spite of their understanding of the core problems,

many people still communicated the feeling that trying to change was useless, and that they felt

trapped in the organization. Some simply felt trapped by the massive organization around them,

largely because they had witnessed many attempts at change and none had succeeded.

Essentially, they were left with a bitter and jaded feeling toward fighting the organizational

inertia built up over decades. At this point, any new ideas to fix Magma are viewed as fads and

aren't trusted. Others were trapped because of a lack of skills or wage transferability, in that

they would prefer to leave Magma but would be unable to find a similar paying job in Detroit

and were unwilling to move their families. All felt secure in the fact that Magma had been

around for 100 years and probably wasn't going anywhere. Ultimately, these feelings created a

focus on job security and meeting their individual performance metrics, obviously hampering the

attempts at systems integration. This sense of fatalism even extended to the issue of bankruptcy,

in which one employee voiced the belief that "the federal government would never let us fail -

there are too many jobs at stake." After witnessing the previous federal bail-outs of industry, the

belief is certainly well founded. The promise of a bail-out creates a massive safety net for

Magma and removes many of the incentives to improve, thus helping to perpetuate the status

quo.

However, the ultimate effect of this attitude has been quite strange. In spite of their rather

obvious organizational depression, most employees still feel a large measure of pride in their

work. They are clearly able to separate their efforts from the troubles of the whole system,

largely with the perception that they're doing a good job even if others are messing things up.

115



Naturally, this breeds a culture of blame and complicates the issue of cross-functional

communication. Even worse, these feelings create a pervasive sense of detachment from the

problems at hand. Employees do not feel involved in the overall product, even if their efforts are

central to the outcome. As a result, Magma seems to be in some sort of organizational denial

when they should be in a crisis mode. One hypothesis is that this is some sort of response to the

continuous stress of trying to catch the competition. The reality is that Magma has been dealing

with their core problems for years, and no one can sustain a sense of urgency for that long.

Rather, employees have become accustomed to the stress and constantly live under it; they're

desensitized and untrusting, much like anyone under continuous stress.

Obviously, the path to this cultural state has taken decades to travel. Much of the trouble began

with the changes that the Whiz Kids put in place in the 1950's to institute a financially

controlled, metric driven, functional hierarchy. However, the history of Magma has served to

exacerbate many of the problems while the marketplace simultaneously moved to render their

organization and culture unfit for the required strategy. Naturally, the reversal of these trends

will take years, if not decades, to rectify. The path out to a healthy culture must include a variety

of changes, covering new system-focused metrics, a less rigid hierarchy, greater responsibility

and accountability in the lower ranks, and an easing of the jaded feeling. However, this will be a

bit of a trick for Magma to complete. Traditionally, companies lacking a sense of urgency need

to have one stilled to motivate employees toward the new goals. In Magma's case, employees

seem so jaded that no threat of change is credible. Perhaps only the threat of bankruptcy and job

loss would be enough to force change within Magma, but those scenarios are currently voided by

the tacit promise of a government bail-out.

One possible tactic is to use the employee culture against itself for some time. A formal process

for organizational change could be instituted that is similar to the change process used in

engineering design. In engineering, there are a variety of systems used to identify, track, and

solve design flaws from the bottom up. If these systems are followed, most of the relevant issues

will be found and solved with the appropriate people involved. Given Magma's faith in the

hierarchy and established ways of business, it's possible that the creation of a formal

organizational change process, when combined with the requisite backing from top management,

116



could actually force change in the organization through an established channel. Unfortunately,

the complex nature of the organization does not lend itself to a solution built from the bottom up.

Regardless, it seems unlikely that this would be a long term solution to the cultural issues.

Magma truly needs to move its culture to be more collaborative and idea-based in order to

identify and meet new customer requirements for vehicles. This is probably only possible when

changes in the organizational structure are coupled with employee turnover for decades.

Synthesis and the Framework for Change

In spite of the value in separating the structural, political, and cultural elements of an

organization, these three pieces are irrevocably linked through an organization's history. When

establishing a company, the organizational structure is typically set first to match a given

strategy and the type of people being hired to execute the strategy. The structure and character

of people then establishes the political power relationships, and sets the company in motion.

Over time, the organization evolves into an entity that perpetuates its structure, politics, and

culture through employee turnover and hiring practices. People are hired that will work well in

the given environment, and the culture ingrains itself. Without outside influence and correction,

the organization will tend to become increasingly homogeneous and set in its ways. In this

manner, Magma has evolved its original functional structure and technical culture into a massive

hierarchy that emphasizes individual metrics and authority.

However, the demands of the marketplace often change faster than an organization's ability to

adapt. Even worse, the time spent in changing the culture can be far longer than changing the

politics, and longer still than changing the structure. As such, Magma finds itself in a position

where its strategy and organization do not fit, and with a long time lag to change the

organization. So, the logical questions become where to begin the change process and what is

the best way to do it? The overall time lag of change makes matching strategy and organization

a moving target, but it's also unclear whether change should begin with the longest time scale

element (culture), or the shortest (structure). Unfortunately, the answers to these questions are

not immediately clear, but Jan Klein's framework for change will help provide some direction

117



(Klein, True Change: How Outsiders on the Inside Make Things Happen in Organization).

Klein categorizes the relationships within an organization along the following three dimensions:

Basis for legitimacy:

Technocratic C > Experience Based

Basis for relationships:

Lateral ~ > Hierarchical

Basis for support:

Merit ~ ~ Authorization

Figure 77: Framework for organizational change (Klein, True Change: How Outsiders on the Inside Make
Things Happen in Organization)

These three dimensions are used to categorize and predict the approach of change that will be

most effective inside an organization. Legitimacy is split between technocratic organizations

that value technical expertise and qualifications versus those that value experience in the

company or industry. Relationships are broken laterally across functions and vertically through

the hierarchy. Finally, the basis for support is split between the merit of an idea, often supported

by data, and the authority to force change.

In Magma's case, the organization is on the right side of all three dimensions. Experience is

clearly valued, with many people proud of their 25 year histories in the automotive industry, and

experience being a fundamental prerequisite for a leadership position. Unfortunately, installing

such experienced people will usually tend to perpetuate existing ways of doing business and

make the organization risk averse. Magma's relationships are also extremely hierarchical, with

only a few places in which lateral relationships are encouraged. Obviously, this is part of the

reason why the broader system issues with vehicles are difficult to resolve. Finally, Magma's

basis for support is almost exclusively authority. Because it is an engineering firm, data is often

required to justify and prioritize the merit of decisions, but change will not happen without

118



authority. Because of the gating effect of authority, Magma must be categorized on the right side

of the spectrum.

'Ultimately, an organization that resides on the far right side of the three dimensions must enact

change through a conduit that (1) has been in the industry for a long time, (2) resides in the top

levels of the hierarchy, and (3) has the authority to reach all parties. Essentially, Magma needs

someone to step in and take the reins to force change down from the top. In such as

organization, the real job of a change agent is pushing from the top, seeding people at the

bottom, breaking a resistant middle, and generally creating an environment for change. This

leaves very few people left in the organization that can undertake changes of the magnitude

addressed in this thesis. If Magma wants to change its vehicle development processes to design

products to the manufacturing processes instead of the reverse, then the only person left to do

that is the CEO. A change of that magnitude covers every major function and requires a

dramatic influx of resources. Lesser changes, such as creating system tools, can be instituted by

the VP's, but changing the entire development process is probably the job of the CEO.

Interestingly, Klein's framework is primarily intended to enact change within a given

organization. If processes need to change or system tools need to be installed, her framework

provides an excellent guideline. But how does one work to change the entire organization itself?

Some of the major recommendations thus far have been to make Magma less experience-based,

less hierarchical, and less authoritative. Much of their current problems are a result of these

inherent features of the organization, and it seems hypocritical to permanently use authority to

force someone to be more merit-based, or to use the hierarchy to force lateral relationships.

Consequently, it seems that the core elements must be used against the organization at first, but

then more permanent changes must be made in the organization itself. Overall, the tactic should

be similar to my initial suggestion to give budget authority to a systems function as a first step to

a truly systems-oriented organization, which would ultimately have an entirely different

structure. As a result, Klein's framework seems to be a starting point for change within an

organization by "working the system," but needs to be extended with longer term solutions that

address the fundamental structural, political, and cultural elements that determine categorization

along the dimensions. Essentially, it's only possible to use an organization against itself for so

119



long before the organization must evolve into its new form. Ultimately, the framework is merely

the basis for the huge changes that are required to realign the fit of an organization and its chosen

strategy in the marketplace.

Gap Analysis
Unfortunately for the prospect of change, there is nearly always a significant gap between an

organization's view of its problem and the root causes. The following diagram illustrates the gap

and its place in the change process:

. Challenge
Persists/ Masked

Push"

Challenge
Resolved

Figure 78: Gap in understanding challenges (Klein, True Change: How Outsiders on the Inside Make Things
Happen in Organization)

As the figure shows, change often occurs when someone pushes a new set of practices or ideals

upon others. Often, this pushing creates substantial resistance and hampers the effort to improve.

In reality, it is much better to find someone on the inside who sees the situation from an outside

perspective to "pull" in the change. These "outsider-insiders" are frequently much more

effective at pulling change into the organization, although some amount of pushing will almost

always be necessary. However, these outsider-insiders must first be able to identify the gap

between the current view of the problem (or the current mental models) and the true cause of the

problems. If no one is able to see the gap or the root cause, then the system will continue to

perpetuate itself and its consequent problems.

In Magma's case, there is still a significant gap in the middle of the organization between the

current view of the problem and the root cause, and this gap seems to be relatively steady in spite

120



of some major initiatives designed to push change through Magma. There are five major reasons

for this sustained gap:

1. Many believe that Magma is close to the optimum and that mistakes are the only problem

2. Organization is extremely risk averse

3. Most feel constrained by the system

4. Few outsider-insiders exist within Magma, and those present are not empowered

5. No one can to see complete system

One of the most widely held beliefs in Magma, especially in upper management, is that the

current problems with vehicle development are execution issues. As a VP and director both said,

"People are making mistakes - if we just did things right the first time, then none of these

problems would happen." Of course, they're right - people are making mistakes and creating

errors that remain hidden until the vehicle is launched. However, their assumptions about the

mistakes are misguided. The mistakes do not derive totally from human error, as they assume,

but from the inherent structure and task relationships in the development process. These

mistakes are unavoidable, and there is no way to "do things right the first time."

Consequently, most people at Magma naturally assume that they are close to the optimum

already, and all that's needed to be the best vehicle manufacturer is to properly execute their

process. Of course, Magma is close to an optimum because it's always possible to optimize any

given process. However, the analysis suggests that Magma's current process happens to be a

local optimum, not the global one. Even if Magma recognizes that it's currently at a local

optimum, there is little chance that the leadership would attempt the level of investment required

to make the move to a better state. Quite simply, the organization is too risk-averse and too

fearful of radical change. Billions of dollars would be required to revamp the manufacturing

plants, processes, structures, and metrics over the ensuing decades, and there's no assurance that

Magma would be able to reach the global optimum. In fact, there is a very real fear that

beginning the change and only making it halfway through would spell the downfall of the

company. Consequently, it seems that much of the leadership believes that it's not sensible to

risk a functioning system that covers thousands of employees and billions of spent capital in the

121



pursuit of lost potential. In addition, risking the system would undoubtedly make Magma worse

before it gets better. The transition is not an immediate one and profit, not to mention individual

performance metrics, would suffer heavily before the situation improved. As a result, many

people seem to view change as career limiting because things are bound to get worse before they

get better. Overall, the feeling is that the inertia of the current system is so high so that Magma

is "too big to fall" and that risking the entire system is a poor decision.

Beyond the fear of change and risk aversion, many would-be leaders also seem to feel

constrained by the system. Functional separations, a strong hierarchy, and individual

performance metrics all tend to limit actions to those approved by the formal processes, which

are not well suited to change. In addition, Magma also lacks a formal change process for

organizational change, thereby robbing any would-be change agents from a formal channel that

would be automatically accepted by the organization. As a result, the complex system that

Magma has designed to execute their development and manufacturing processes ultimately

constrains any attempt at change. So, any change process must begin with a set of outsider-

insiders that truly care about the organization and are in a position to pull in change. These

outsider-insiders will have to work both from the bottom up and the top down in order to change

Magma's culture and formal structure at the same time.

Unfortunately, there is a severe lack of empowered (or visible) outsider-insiders at Magma, and

Magma's organization is not set up to encourage the development and growth of a base set of

these people. First of all, it is tough to retain an outside perspective at Magma because of the

experienced-based, hierarchical, and authoritative nature of the organization. Anyone entering

the organization as an outsider isn't viewed as credible because they don't have experience in the

company, even if they have experience in the industry. In addition, it is simply not possible to

rise within the hierarchy without becoming an insider and conforming to the established

processes. As a consequence, very few people have been able to hold positions in the top of the

hierarchy as an outsider-insider for a long time. Most people either give up their outsider status,

go "underground" and bide their time, or depart the company in frustration. This leaves Magma

without a critical mass of outsider-insiders who are able to comprehend the problems and use

available opportunities to pull in changes. Even worse, these dynamics create a split in hierarchy

122



between the outsider-insiders and the pure insiders. Those outsider-insiders that are still left in

the organization tend to be in the middle or bottom of the organization where they can see the

problems but are left to be frustrated and constrained by the system above them. In contrast, the

leaders in the top of the organization tend to be insiders or outsiders that are hiding their

perspective. Obviously, this is the reverse of the situation that one would hope for in an

organization that needs to change. A far better situation would be allowing the lower levels to

focus on the quick wins and "low hanging fruit" in the operational details of the work, while the

top levels are able to see the bigger system and enact significant reforms.

Even if Magma did have a critical mass of outsider-insiders, there is an additional factor that

inhibits their ability to change. Outsider-insiders are most effective pulling in change when they

are in the "right place at the right time," or otherwise able to take advantage of the challenges

within the company. One way to describe the opportunities is through the following diagram:

Figure 79: Opportunities for change arise from new strategies (Klein, True Change: How Outsiders on the
Inside Make Things Happen in Organization)

As the figure shows, most of the opportunities for change come from broader challenges

presented by shifting strategies. These opportunities are essentially macro and micro

mismatches between the organization and its new strategy. On a macro level, the functional

hierarchy may no longer be the correct structure for a company's new competitive environment,

or the political situation may be spiraling out of control. On the micro level, the working

practices and operational details may no longer be adequate for the quality demands of the

123



marketplace. In either scenario, these mismatches present challenges that outsider-insiders can

seize to bring in their experiences, views, and ideas.

On the surface, Magma is in a perfect position to execute change in the face of these macro and

micro challenges. They are currently in the midst of a massive mismatch between their overall

corporate strategy and their organizational structure. Magma is ripe for outsider-insiders to take

the reins and pull in change. However, change isn't happening, because of the fundamental

inability to see the complete system. It is virtually impossible for one person to get their head

around something as complicated as developing and manufacturing a vehicle. The system is so

complex that we have to break the actions up into thousands of individual tasks, frequently

neglecting many of the important interactions when those tasks are reassembled. In addition, the

functional nature of Magma's processes prevents many people from even having the access to all

of the required data, much less the ability to process it all. As a result, there are a limited number

of people that have been able to take a complete view of product development and process

development activities across the entire firm.

This inability to view the entire system is one of the reasons why the results in this thesis are

bound to be so controversial. When a set of tasks spanning product development and process

development are analyzed together, the results suggest that there is a very high chance that the

system is non-convergent. This mathematical result does make some intuitive sense, and can

predict many of the problems that are experienced in real vehicle programs. However, this

obvious mathematical result is not obvious organizationally. It does not make sense that Magma

could have survived for so long with a fundamentally flawed development process, but that is

exactly what has happened. Even worse, there is substantial evidence that better systems exist in

the Japanese automobile manufacturers, who had the luxury of beginning their systems well after

Magma was already locked into its processes. The development of an organization is highly path

dependent, and Magma simply started off on the wrong foot for today's customer requirements.

As a result, changing the organization to meet today's competitive demands will be exceedingly

difficult for them, even if they were once perfectly aligned with the demands of the marketplace.

124



Plan for the Future
Fortunately, all is not lost for Magma, although they are likely to have a tremendous amount of

difficulty in moving their organization forward. The simultaneous mismatch of the broader

strategy and organization, when coupled with the lack of a critical mass of outsider-insiders,

makes sustaining any change process incredibly difficult. Really, the only reliable way to

produce change is starting from both the bottom and top by obtaining high level backing for

some pilot programs to demonstrate quick improvement. However, Magma needs to ensure that

the change progresses into the middle of the company as well. The following four steps can help

to pull and push change throughout the entire organization.

1. Secure more high level outsider-insiders

2. Use pilot programs for proof of concept

3. Tie promotion and career advancement to change initiatives

4. Encourage the development of outsider-insiders

The first step in the change process has to be securing more outsider-insiders in the top levels of

the hierarchy. As noted in the framework for change, this person is vital to advancing change in

the experience-based, hierarchical, and authoritative Magma organization. Furthermore, the

changes required in Magma are of such magnitude that it would impossible to begin without

some access to resources and high-level approval. Securing a high-level supporter also enables

the process to begin from both the top and bottom. The high-level supporter can work the

system by using the hierarchy to force change throughout the system, but can also enable

changes in strategies that allow people at the bottom to pull in change. One of these changes

should be the use of pilot programs to test use development strategies on vehicle programs.

First and foremost, using pilot programs to demonstrate the proof of concept should provide a

ton of data to justify the risk in moving all of the operations over to process-centric design. Pilot

programs should also provide a series of small wins that can be used to extend the change

initiative. In fact, Magma has already demonstrated that the new development processes work

on the smaller, niche-market vehicle prototypes. Both of these vehicles were developed by small

cross-functional teams working closely together and designed to the manufacturing processes

125



that would be used to build them. Unfortunately, there is a huge catch to the success of both of

these pilot programs. Both of the cars are built by hand and represent a much more flexible

manufacturing process than would be normally available to a product development team.

Magma needs to introduce some pilot programs that develop vehicles according to the processes

already contained in one of their plants. From conversations with some of the manufacturing

engineers, roughly 40% of Magma's current plants have processes that are worth retaining. One

of these plants should be chosen for a pilot program for vehicle development, using the GPDS

development schedule as a guiding influence. GPDS is currently an outsider in the organization,

and it would behoove Magma to bring GPDS to the forefront. Of course, the pilot programs do

not have to begin with the design of a new car. Rather, the pilot programs should start with

product line freshenings and progress up the development schedule in complexity as they are

deemed successful.

Of course, the use of pilot programs should not be confined just to the technical side of the

business. Magma would also do well to use pilot programs to extend the proof of concept to

organizational dynamics. With the proper construction, a pilot program could not only serve to

improve the product, but also the working relationships within the companies. In some ways, the

existing CSI program is a good example because it represents a significant departure from the

traditional way of doing business at Magma. Thus, even if the ultimate product is only

marginally improved, there is a good chance that Magma will still be able to use the CSI

program to illustrate the benefits of a more lateral and merit-based organization.

As the pilot programs grow in size, it is vital to tie the advancement of people to their success on

the pilot programs. If there is no accountability or reward for participating in the programs,

Magma will be clearly communicating that change is merely a side project. Even worse, if the

individual functional performance metrics aren't changed, pulling change into the organization

will still be viewed as detrimental to career advancement. Obviously, this would not encourage

the advancement of outsider-insiders in the organization. Ultimately, Magma should be angling

to establish itself as an organization that is permanently able to adapt its organization to meet the

changing strategies in the marketplace. The only way to do this is by building a set of outsider-

insiders throughout the organization that are able to pull in change when the challenges arise. If

126



Magma does not encourage the development of these people, then the company will be forced to

always push change down from the top.

Although beginning the change process from the top and bottom creates the greatest chance for

success in the changing the vehicle development processes, the timetable for the pilot programs

will be decades. It remains an open question whether Magma wants to take years to slowly

create larger and larger pilot programs that justify process-centric design, especially when there

is a significant chance that the marketplace will change again before their transition is complete.

For example, a new fuel type could return the engine and transmission functions to the forefront.

Magma will also be trying to standardize its parts and processes during this change period, and it

may prove difficult to do that while pilot programs are running that may inform the future

standards. As a result, it may make more sense for Magma to invest in pushing change in one

fell swoop so that the effort can be completed sooner. However, the faster the change, the more

expensive and disruptive it will be to the current process. If Magma decides to move to

standardized flexible manufacturing processes in all of its plants and adjust their development

process accordingly, the cost will run into the billions of dollars and take more than a few years

to complete. In the meantime, Magma is exposing itself to all of the risks that it would like to

avoid in moving away from their local optimum and towards the global one.

V. Conclusion
In spite of the vast range of potential benefits to redesigning their development processes using

DISM tools, Magma appears to be destined for a slow rate of change. The sheer size of the

organization, coupled with the difficulty in agreeing upon standards and communicating new

directions, virtually ensures that the change management process will take decades to fully

complete. However, the problems have also had decades to ingrain themselves, ranging from the

initial application of linear assembly line techniques to product development to the rigid

financial and staffing controls applied in the 1950's. All combined, undertaking the

transformation of product and process development will be met with decreased performance

before improvements are felt. In other words, Magma will definitely get worse before it gets

better, thereby giving the competition ample time to attack during the transition. However, this

should truly be viewed as investment in the future, as a time in which Magma can cede

127



unprofitable market share, use positive cash flows to invest in new processes, and emerge as a

much stronger competitor with an organization matched to its corporate strategy.

More generally, the lessons at Magma illustrate the problems any company can face in

developing rigidities. As Magma grew over time, its organization became highly specialized for

a given set of tasks in developing and producing vehicles. However, this specialization has

proven to be a double-edged sword by significantly restricting Magma's ability to adjust to

changing market demands. As such, the vast majority of the conclusions and recommendations

in the organizational analysis are directly applicable to any industry or firm that has developed

rigidities. Although a framework has been built for choosing the best way to break an

organization out of its rigid system, little work has been done on whether an organization should

change or not. From an efficiency perspective, it is entirely possible that the changes required to

remake Magma are simply too costly. Essentially, this would mean that the market prefers

Magma to be shut down, especially because struggling to save a firm could represent a

significant principle-agent problem. For example, most workers at Magma would be interested

in saving their jobs and livelihoods, although their action represents a lower return for the

shareholders. However, this perspective neglects the short run costs that the economy must bear

in lost jobs, destroyed brand image, etc. Future research should be directed away from the

question of how to change a company in favor of addressing why. When are the costs of change

greater than the benefits? Should externalities be included in the decision? When is it better to

release assets to the market versus being retained in the existing firm? Answering these

questions will help to identify situations in which firms should be shut down instead of being

dragged along in a less optimal state.

128



VI. Table of Figures:

Figure 1: Sample Design Structure Matrix ................................................................. 9
Figure 2: Improved Design Structure Matrix ................................................................. 10
Figure 3: Example of Adjacency Matrix Method ......................................................................... 1 3
Figure 4: Identify and move empty rows 1 and 6, and empty column 8 ...................................... 16
Figure 5: Mark sub-matrix, then identify and move empty rows 9 and 10, and empty column 3 16
Figure 6: Mark sub-matrix, then identify and move empty row 7 . ...................................... 16
Figure 7: Mark sub-matrix, then identify tasks 2, 4, and 5 as coupled top level tasks using

reachability .................................................................. 17
Figure 8: Optimized DSM through swapping .................................................................. 18
Figure 9: Comparison of DSM results after minimization of distances ...................................... 19
Figure 10: Blocked DSM to show tasks executed in parallel ....................................................... 21
Figure 11: Reduced DSM .................................................................. 21
Figure 12: Starting SD matrix for example DSM .................................................................. 23
Figure 13: 3-Stage example .................................................................. 23
Figure 14: Complete Markov chain for 3-stage example ............................................................. 24
Figure 15: Example Markov chain with z-transforms .................................................................. 25
Figure 16: Timing Calculations for the Example DSM ................................................................ 28
Figure 17: Simulation Results for the Example DSM .................................................................. 29
Figure 18: Simulated DSM with learning of 40% .................................................................. 29
Figure 19: Sample Resource Requirements for the Example DSM ............................................. 30
Figure 20: Simulation Results for Resource-Constrained Example DSM .................................... 31
Figure 21: Resource Relaxation for the Example DSM ................................ ............................... 32
Figure 22: Budget Constraints Applied to Resource Curves ........................................................ 32
Figure 23: Simulation Results for a Variety of Factors ................................................................ 33
Figure 24: Factor Progression and Resource Relaxing for Example DSM .................................. 34
Figure 25: Master Simulation Chart for Example DSM ............................................................... 35
Figure 26: Production Frontier for the Example DSM ................................................................. 36
Figure 27: Shifting development frontier .................................................................. 37
Figure 28: Simulation Results of Multiple Programs versus Delays ............................................ 38
Figure 29: Non-linear relationship between iterations and interaction value .............. .......... 39
Figure 30: Base resource configuration .................................................................. 40
Figure 31: Reduced DSM with simulated times and resources .................................................... 42
Figure 32: Reduced Matrix with Parallel Times and Resources ................................................... 43
Figure 33: Final collapsed SD matrix for example DSM ............................................................. 44
Figure 34: Examples of eigenvalue tearing .................................................................. 47
Figure 35: Final torn and reordered matrix .................................................................. 47
Figure 36: Variation of completion time as eigenvalue decreases ............................................... 48
Figure 37: Example DSM matrix for advanced tearing ................................................................ 50
Figure 38: Steps 1-2 of advanced tearing process .................................................................. 50
Figure 39: Firefighting reinforcing loop .................................................................. 51
Figure 40: MPDS outline of timing and scalability .................................................................. 52
Figure 41: Sample portion of the MMDS: <KO> to <SI> ........................................................... 54
Figure 42: Initial closures DSM from FC and MMDS data ......................................................... 55
Figure 43: Complete closures DSM .................................................................. 56

129



Figure 44: Timing sensitivity to strength of interaction (as-is order) ........................................ 58
Figure 45: Plot of eigenvalue vs. interaction strength for closures DSM ................................. 59
Figure 46: Bounding table for probabilities and impacts .............................................................. 60
Figure 47: Base re-ordered & reduced closures DSM .................................................................. 61
Figure 48: Standard deviation of re-ordered & reduced closures DSM ......... ............... 61
Figure 49: Histogram of reduced closures DSM completion times. .................................. 62
Figure 50: Comparison table of top 15 hardest working tasks ..................................................... 63
Figure 51: Reduced matrices after reducing task durations to 1 week ......................................... 65
Figure 52: Histogram for reduced DSM with shorter task durations. .............................. 65
Figure 53: Schematic of primary non-converging loops ............................................................. 66
Figure 54: Schematics of separated time scales in development .................................................. 67
Figure 55: Reduced DSM for standardized manufacturing .......................................................... 68
Figure 56: Histogram for standardized manufacturing ................................................................. 69
Figure 57: First 20 removed interactions from the eigenvalue tearing process ............................ 70
Figure 58: Chart of hardest working tasks as 20 eigenvalue tears are removed .......................... 71
Figure 59: Reduced DSM with 50 tears removed......................................................................... 72
Figure 60: Histogram with 50 tears removed .................................................................. 72
Figure 61: Summary table for DSM modifications .................................................................. 73
Figure 62: Resource model results for standardized manufacturing DSM ................................... 74
Figure 63: Resource profile for reduced DSM .................................................................. 75
Figure 64: Plot of completion time versus delay offset for two projects ...................................... 76
Figure 65: Multiple project resource frontier................................................................................ 76
Figure 66: Final reduced DSM for Magma's closures development process ............................... 79
Figure 67: Final histogram for standardized, error-reduced, analytical tools process .................. 80
Figure 68: Example DSM with parallel blocks, dashed gates, and integrator assignments ......... 83
Figure 69: Basic diagram of vehicle development through DSM's, including information flows 85
Figure 70: Budget constraint analysis for Magma .................................................................. 88
Figure 71: Idealized project management representation of real options (Ford and Sobek) ........ 91
Figure 72: Casual diagram illustrating the derivation of a functional structure from a complex

product (Wallach, Solving a Corrosion Quality Issue at a Major US Automaker) .............. 94
Figure 73: Trade-off between functional strength and cross-coordination ability ....................... 99
Figure 74: Trade-off between coordination and motivation ......................................................... 99
Figure 75: Matrix instability from a reinforcing loop ................................................................. 100
Figure 76: Coordination gap from spinning out an organization ................................................ 104
Figure 77: Framework for organizational change (Klein, True Change: How Outsiders on the

Inside Make Things Happen in Organization) .................................................................... 118
Figure 78: Gap in understanding challenges (Klein, True Change: How Outsiders on the Inside

Make Things Happen in Organization) ........................................ ............................ 120
Figure 79: Opportunities for change arise from new strategies (Klein, True Change: How

Outsiders on the Inside Make Things Happen in Organization) ........................................ 123

130



VII. Table of Equations:
Equation 1: Standard deviation conventions................................................................................. 22
Equation 2: Markov linear equations ............................................................................................ 24
Equation 3: Transform for 3-stage example ........................................ ............................. 26
Equation 4: Expected value and variance from transform equation ............................................. 26
Equation 5: Work transformation matrix relationship .................................................................. 27
Equation 6: Completion time calculation ........................................ ............................. 27
Equation 7: Base and error rate decomposition ..................................................................... 39
Equation 8: Sequential resource calculation ..................................................................... 41
Equation 9: Parallel resource calculation. ..................................................................................... 41
Equation 10: Simulated resource calculation................................................................................ 42
Equation 11: Improved simulated resource calculation ................................................................ 42
Equation 12: Controlling limit of iterations.................................................................................. 46

131



VIII. References:
Browning, Tyson R., Modeling and Analyzing Cost, Schedule, and Performance in Complex
System Product Development, MIT Thesis, 1998.

Browning, Tyson R., and Eppinger, Steven D., "Modeling Impact of Process Architecture on
Cost and Schedule Risk in Product Development," IEEE Transactions on Engineering
Management, Vol. 49, 4: 428-442, November 2002.

Eppinger, Steven D., Nukala, Murthy V., and Whitney, Daniel E., "Generalised Models of
Design Iteration Using Signal Flow Graphs," Research in Engineering Design, 9: 112-123, 1997.

Eppinger, Steven D., and Salminen, Vesa, "Patterns of Product Development Interactions,"
International Conference on Engineering Design, ICED 01 Glasgow, August 21-23, 2001.

Eppinger, Steven D., Whitney, Daniel E., Smith, Robert P., and Gebala, David A., "A Model-
Based Method for Organizing Tasks in Product Development," Research in Engineering Design,
6: 1-13, 1994.

Ford, David N. and Sobek, Durward K., "Explaining the Second Toyota Paradox by Modeling
Real Options in Product Development," Submission to IEEE Transactions on Engineering
Management, February 2004

Kanter, Rosabeth, Confidence: How Winning Streaks and Losing Streaks Begin and End, Crown
Press, 2004.

Klein, Janice, True Change: How Outsiders on the Inside Make Things Happen in Organization,
Chapters 1-4, Jossey-Bass, 2004.

Repenning, N., P. Goncalves, and L. Black (2001). "Past the Tipping Point: The Persistence of
Fire Fighting in Product Development," California Management Review, 43, 4: 44-63.

Repenning, N. (2001). "Understanding Fire Fighting in New Product Development," Journal of
Product Innovation Management, 18, 5: 285-300.

Smith, Robert P., and Eppinger, Steven D., "A Predictive Model of Sequential Iteration in
Engineering Design," Management Science, Vol. 43, 8: 1104-1120, August 1997.

Smith, Robert P. and Eppinger, Steven D., "Identifying Controlling Features of Engineering
Design Iteration," Management Science, Vol. 43, 3: 276-293, March 1997.

Teixeira, Marcelo C.M., Marchesi, Henrique F., and Assuncao, Edvaldo, "Signal Flow Graphs:
Direct Method of Reduction and MATLAB Implementation," IEEE Transactions on Education,
Vol. 44, 2: 185-189, May 2001.

132



Thomas, Robert J., What Machines Can 't Do: Politics and Technology in the Industrial
Enterprise, University of California Press, 1994.

Wallach, Jeremy, Solving a Corrosion Quality Issue at a Major US Automaker, MIT Thesis,
2004.

http://www.dsmweb.org

133



IX. Appendix 1: Top 50 Eigenvalue Tears

Task Peednt ResuligEgnau
Prog Statey -Theme -Design Concepts Defined Product & Process Feasibility 0.78275
'Product & Process Feasibility 'Develop Program Specific Bill of Process 0.77577
!Product & Process Feasibility Manufacturing Targets 0.76852
Produ & Process Feasibility Manufacturing Consensus Review 0.76267
Product & Process Feasibility Pre iiayPocs ein0.75645 

Prdc rcess Feasibility 'Process Design 0.75075
?rd.uc...,..r~ces..E.eai!.!!!y ......... ...............-.. ........... ......... .. .. ...... ... ...... ~oes..,g . . .......... ......... .. ......... .. ............. ...... .. ...... ..... .......... ......... .. , ...... ........ ........ o..7..57 ....... ..... ..............

Assembly :Process - Flow And Tolerances Defined . Develop Program Specific Bill of Process 0.73223
LM a u aY r n ..~ re .. .... ... . .... ....... ........ .. ......... ................... ............... I............ Vi u seies I I0.231an ufacturing arges ua S s 0.72313

Product Process Feasibility ,Mfg -SM - Process - Pdpd Reqmts Defined 0.71651
Manufacturing Plan V~~~~~~~~~~~~irtual Series 07088

:Confirm Manufacturing Plan Virtual Series 0.70848
i'im ,"P!"~.m ~~~~en~~i~i:M i~~.' y!~ iy !,~i~ :~' '.n',1.." 1' .. ........ ......'' : .:'. ...".... .'". ' ...... ..s...e's ..'. ..' .: .....i~/'. i".i~..i '.fl '11,'. '"'."...."1 .{. . . . .mpeent anufacturing Plan irulSre 0.70819

Theme - Ext - Single Theme Selection Product & Process Feasibility 0.70205
:M ~~anut'acturi~ ~ ~n.g.T.aes ..... .... . . ........ ..... .... ........................ iee~..rram.SPei f.B i!.°.Poes ......... ............Manufacturing Targets Develop Program Specific Bill of Process -0.69323....... .... ... .. .. .......- ....... ........ . ...... ...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~.-..(. 3.3 ......... . . . . . . .

Cut.ines.-,,Frt Door Cutlines Defined Product & Process Feasibility_ 0.68779
':Develop Program Specific Bill of Resource Develop Program Specific Bill of Process 0.6826.~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ... .. .... .. .. .. .. .. .... 0-§ .2 ... .......... ............ .. .. ....
Theme ..-.Ext - Theme Selection For Market Research Product & Process Feasibility 0.67787? r~~~~~~~~~~~~~~~~~~~~e!~~~~~~~~~~ ~~.i .n...r/p rc. ....g~ ...... ..... .. .... ... .... ......... .............. ........ .,. .. ... .... ..........I...i. eop. ga,..,pe fi ,!!...o Pm..s..... ...........Pr .Imiar Proces Design Develop Program Specific Bill of Process 0.67259

Welding ................ Wel Patterns,.Types,.Quality,.Class Defined 'Develop.rogral s ...... s.6 7 .....
died.ng -Weld Pa,~erns, .Types,,_QUality,,Class Define~d...... !Devyelqp?°, r0~.6,,S687i6B!.O rcs..............i...........

WYelding - Carryovyer/surrogate Weld Data Defined ~ Develop Program Specific Bill of Process0.69:~~~~ ~~~~~~ ~~~ ~....ig.:.c rro e r/ r ogae ... ~ ~ a....ind..... ....... 1. .... ........ i D e x ! P r g~m..Sp.c.tC..i~o . r c .s ............. ........... : ...... ... ......... .......0 -...6.5. ..... .............. ........
Theme - Single Theme Compatible With Primary Pkg Regmt Product & Process Feasibility 0.66129
Gage,&, Monitoring Equipment Development Plant LaYOUt 0.65912
VTTO and Code X/Y Material Budget Forecast Plant Layout0677
Tooling Design :Plant Layout0652Theme....Ext ..Multiple Themes Defined Product &... ProcessFeasiil0..50.
'.Theme..-Ext -Mu.t!ple Themres.Defirn.ed 'Product & Pro.cess.Feasibility ! 0.65096
.Reuse - Carryover Parts In PDM Develop Program Specific Bill of Process 0.64837
Ln Lead Tooling.and FPaciity Proc.u7rement PantLayout 0.64742
Confirm Plant Layout Plant Layout 0.64679
;.S p er. 0 c n ,p a ln aot....... .. ............... ......... .......... ........ ..... . .. .... ... .......Sup~plier SourcingPlan Plant.Layout 0.64617
:Labor Optimization Develop Program Specific Bill of Process 0.64385
:Water Mgt - Doors - Effective Drainage Compliant Product & Process Feasibility 0.64096
:Material Flow Plan 'Develop Program Specific Bill of Process 0.6388
Feasibility Checkpoint #0 Develop Program Specific Bilof Process 0.63725
':Develop Specific Virtual Assembly Simu!ations Devel ProgramSpecific Billof Process 0.63588
:Develop Discrete Event Simulation Models . Develop Program Specific Bill of Process 0.63535
Locators.:Electrical Locators Defined In PDM 'Develop Program Specific Bill of Process : 0 63485
!Safety Assessment Product & Process Feasibility 0.632 6
Product/I Process Capability.Target 'Product & Process Feasibility 0..... ........ .. ..........................
Cutlines - Rr Door - Cutlines Defined Product & Process Feasibility 0.62837
'Locators - Frt End Sm Locators Defined In PDM . Develop Program Specific Bill of Process . 0.62786

MDS#1 ~~~~~~~~~~~~~~~~~~Product & Process Feasibility 0.62657
:M DS..~.! .........................................................................Pr~.. ....... ......s. .....b . .t.........Y.,.............................................I-- ... ...... .... ...... I- I-- I-- I.- I -11-1. -1-~~~~~~~~~~~~~~~~~~~~~~O:.6.657 ................Materi!al :,.SM..:.Spec.And. Thickness Frozen ................... Prod.uCt.&..Process. Feasiblity ..................i............ 0.62544 .............

:Develop Future State Plant Layout , Develop Program Specific Bill of Process 0.62496
Locators - Closures Locators Defined In PDM* Develop Program. Speic BlofPces0.6245 1..oa~s:"(i o sr'~~ a o s De i'd i D ......... .......... .......... .... e~o ...... ~a .SeifC ..I....Pr0 c ' e s .......... ........ .. ....... .. ........ ....... 0' 2"51 .. ....... .. .......... ........ iLocators - Soft Trim Locators Defined In PDM Develop Program Specific Bill of Process 0.6241

:Conduct Formal Target Estimation Product & Process Feasibility 0.62311
Feasibility Analysis Summary Report 'Product & Process Feasibility 0.6221.
:Material - Non SM - Spec And Thickness Frozen Product & Process Feasibility 0.62 144

Locators .' BodyShell Locators Defined In PDM . Develop Program Specific Bill of Process 0.62105
Locators .~Hard Trim Locators Defined In PDM D evelop Pro gram ,Specc Bi!l of Process 0.62069

134



X. Appendix 2: Code

Ordering Matrices

dsmorder.m
% Primary ordering routine for the DSM
function [frontorder,midorder,backorder,order]=dsmorder2(AVG)

%' create order row at bottom of matrix
n=size(AVG,2);
for i=1 :n

AVG(n+l,i)=i;
end

IY Initialize variables and clear diagonal of matrix
frontplace=1;
backplace=n;
DSM=AVG;
for i=1 :n

DSM(i,i)=O;
end

fronts=1;
backs=1;
rnids=1;
frontorder=[];
midorder=[];
backorder=[];

9/oBeginning of main ordering loop
while frontplace<=backplace

,/oMove empty rows
totalmoves=O;
while totalmoves-=- 1
rowsum=sum(DSM,2);
moves=O;
for z=1 :n

if rowsum(z)==O
DSM=swaptasks(DSM,moves+ 1,z);
for i=z:-1 :moves+3

DSM=swaptasks(DSM,i-1 ,i);
end
moves=moves+ 1;

end

135



end
totalmoves=totalmoves+moves;
if moves>O
frontorder(fronts,totalmoves-moves+1 :totalmoves)=DSM(n+1,1 :moves);
fronts=fronts+1;
order(totalmoves-moves+frontplace:totalmoves- 1 +frontplace)=DSM(n+ 1,1 :moves);
DSM=DSM(moves+1 :end,moves+1 :end);
n=size(DSM,2);

else
frontplace=frontplace+totalmoves;
totalmoves=- 1;

end
end

%Move empty columns
totalmoves=O;
while totalmoves-=- 1
colsum=sum(DSM(1 :end-1,:));
moves=O;
for z=1:n

if colsum(z)==O
DSM=swaptasks(DSM,z-moves,n);
for i=z-moves:n-2

DSM=swaptasks(DSM,i,i+ 1);
end
moves=moves+1;

end
end
totalmoves=totalmoves+moves;
if moves>O

backorder(backs,n-moves+1 :n)=DSM(n+1 ,n-moves+1 :n);
backs=backs+1;
order(backplace-moves+1 :backplace)=DSM(n+l ,n-moves+1 :n);
backplace=backplace-moves;
DSM([n+ 1 ,n-moves+ 1], :)=DSM([n-moves+1 ,n+ 1],:);
DSM=DSM(1 :n-moves+1,1 :n-moves);
n=size(DSM,2);

else
totalmoves=- 1;

end
end

%Reachability matrix to compare intersection to row set - first level only
midcount=O;
midflag(1 :n)=O;
reach=DSM(1 :n,:);

136



for i=1 :n
reach(i,i)=1;

end
reach=reachAn;
for z=1 :n
a=reach(z,:)>O;
b=(reach(:,z)>O)';
if a. *b==a

midflag=a; %Match all precedents and dependents, and write out to establish levels
break

end
end

%'(Move midorder to front and separate for swapping
moves=O;
for z=l:n
if midflag(z)==l

DSM=swaptasks(DSM,moves+ 1 ,z);
for i=z:-l :moves+3

DSM=swaptasks(DSM,i- 1 ,i);
end
moves=moves+l;

end
end

%Establish base time calculations for midorder block
MID=DSM(1 :moves,1 :moves);
MID(moves+1,1 :moves)=DSM(n+1,1 :moves);
MIDTEMP=MID;
fbr i=1 :moves

MIDTEMP(i,i)=1;
end
midseq=seq(ones( 1 ,moves),ones( 1 ,moves),MIDTEMP);

%,/Begin swapping loop for midorder segment
bestswap=O;
while bestswap -= -1
clear distances;
distances(1 :moves, 1 :moves)=O;
for i=1 :moves

for j=i+l :moves
if' MID(i,j)>O

distances(i,j)=MID(i,j)*(sin(pi/4-atan(i/j))*(i^2+jA2)A.5)^2;
end

end
end

137



bestdistance=sum(distances(:));
[imax,jmax]=find(distances==max(distances(:)));
jmax=max(jmax);

bestswap=- 1;
for z=1 :moves
if z-=jmax
MID=swaptasks(MID,z,jmax);
distances(1 :moves,1 :moves)=O;
for i=l :moves

for j=i+l :moves
if MID(i,j)>O
distances(i,j)=MID(i,j)*(sin(pi/4-atan(i/j))*(iA2+j^2)A.5)^2;

end
end

end
if sum(distances(:))<bestdistance
bestswap=z;

end
MID=swaptasks(MID,z,jmax);

end
end

if bestswap-=- 
MID=swaptasks(MID,bestswap,jmax);

end
end
%End of swapping loop

%Store values
MIDTEMP=MID;
for i=1 :moves

MIDTEMP(i,i)=I;
end

if seq(ones(1 ,moves),ones(1 ,moves),MIDTEMP)<=midseq
midorder(mids,l :moves)=MID(moves+ 1, I:moves);

else
midorder(mids,l :moves)=DSM(n+ 1,1 :moves);

end

mids=mids+l;
order(frontplace:frontplace+moves- 1 )= mids- 1,1 :moves);
frontplace=frontplace+moves;

138



DSM=DSM(moves+ :end,moves+ 1 :end);
:n=size(DSM,2);

end
%OEnd of ordering loop

dsmordernoswap.m
function [frontorder,midorder,backorder,order]=dsmorder2(AVG)

n-=size(AVG,2);
for i=l:n

AVG(n+l,i)=i;
end

%for i=1 :size(best,1)
% AVG(best(i, 1),best(i,2))=0;
% SD(best(i,1),best(i,2))=0;
%soend

frontplace=1;
backplace=n;
DSM=AVG;
for i=l:n

DSM(i,i)=O;
end

fronts=l;
backs=1;
mids=l;
frontorder=[];
midorder=[];
backorder=[];

while frontplace<=backplace %Beginning of main ordering loop

%O/oMove empty rows
totalmoves=O;
while totalmoves-=- 
rowsum=sum(DSM,2);
moves=O;
fir z=1 :n
if rowsum(z)==O

DSM=swaptasks(DSM,moves+ 1,z);
for i=z:-1 :moves+3

1)SM=swaptasks(DSM,i-1 ,i);

139



end
moves=moves+1;

end
end
totalmoves=totalmoves+moves;
if moves>0
frontorder(fronts,totalmoves-moves+1 :totalmoves)=DSM(n+1,1 :moves);
fronts=fronts+1;
order(totalmoves-moves+frontplace:totalmoves- 1 +frontplace)=DSM(n+ 1,1 :moves);
DSM=DSM(moves+1 :end,moves+1 :end);
n=size(DSM,2);

else
frontplace=frontplace+totalmoves;
totalmoves=- 1;
%fronts=fronts+ 1;

end
end

%Move empty columns
totalmoves=O;
while totalmoves-=- 1
colsum=sum(DSM(1 :end-l,:));
moves=0;
for z=1 :n
if colsum(z)==0
DSM=swaptasks(DSM,z-moves,n);
for i=z-moves:n-2

DSM=swaptasks(DSM,i,i+ 1);
end
moves=moves+1;

end
end
totalmoves=totalmoves+moves;
if moves>0

backorder(backs,n-moves+1 :n)=DSM(n+1 ,n-moves+1 :n);
backs=backs+1;
order(backplace-moves+ 1 :backplace)=DSM(n+ 1l,n-moves+1 :n);
backplace=backplace-moves;
DSM([n+ 1 ,n-moves+ 1], :)=DSM([n-moves+1 ,n+ 1],:);
DSM=DSM(1 :n-moves+1,1 :n-moves);
n=size(DSM,2);

else
totalmoves=- 1;
%backs=backs+l;

end
end

140



NReachability matrix to compare intersection to row set - first level only
midcount=O;
-midflag(1 :n)=O;
reach=DSM(1 :n,:);
for i=1 :n
reach(i,i)=1;

end
reach=reach^n; %Could have infinite number problem here - fix to ones
for z=1 :n

a=reach(z,:)>O;
b=(reach(:,z)>O)';
if a. *b==a
midflag=a; %this version breaks after finding the first match - pulling it and its dependents /

precedents - this does not identify "levels" correctly (could be 2 level l's and it will pull the first)
but it will result in being able to identify the smaller subloops with a larger block by placing
them on separate rows in the midorder array

break
end

end

%COMove midorder to front and separate for swapping
moves=O;
for z=1 :n

if midflag(z)==l
DSM=swaptasks(DSM,moves+l1 ,z);
fir i=z:-1 :moves+3

DSM=swaptasks(DSM,i- 1 ,i);
end
moves=moves+1;

end
end

MID=DSM(1 :moves,1 :moves);
MID(moves+1,1 :moves)=DSM(n+1 ,1 :moves);

midorder(mids,1 :moves)=MID(moves+ 1,1 :moves);

mids=mids+1;
order(frontplace:frontplace+moves- 1 )=midorder(mids- 1,1 :moves);
frontplace=frontplace+moves;

D)SM=DSM(moves+1 :end,moves+1 :end);
n.=size(DSM,2);

end %End of ordering loop

141



Timing Calculations

para.m
% Parallel time calculation based on Eppinger / Smith paper
function [time]=para(A)

n=size(A,2);
A=A(1 :n,:);

for i=l :n
u(i, 1)=A(i,i);
A(i,i)=O;

end

[S,Lambda]=eig(A);

if rcond(S)<l e-25 %if can't be inverted, send to get dominant eigenvalue only
time=para2(u,A);

else
M=(eye(n)-Lambda)\eye(n); %safer to calculate the inverse using G-J method than an inverse

call.
N=S\eye(n);
U=S*M*N*u;
time=abs(max(U));

end

seq.m
% Sequential timing calculation based on Eppinger /Smith paper
function [time]=seq(DSM)

n=size(DSM,2);
DSM=DSM(1 :n,:);

for i=1 :n

for j=l:n
if (i==j)
P(i,j)=l;
B(i, 1 )=DSM(i,j);

else
P(i,j)=-DSM(j,i);

end
end

end

142



[L, U]=lu(P);
D=diag(diag(U));
M=D\eye(n);
-N=L\eye(n);
x=M*N*B;
time=sum(x);

signalflow.m
'%,signal flow graphs
function [avg,var]=seq4(DSM)

n=size(DSM,2);
DSM=DSM(1 :n,:);

times=diag(DSM);
times=[times;O];

for i=l:n
DSM(i,i)=O;

end

adder=O;

%Oinitialize and fill starting values
Net(l,:)=[1 1 2 1 times(l)];
Coeff_Names= { [num2str(1 ) '*z^ ' num2str(times(1 ))] };
NetRow=2;
a=:[2 3];

0/obuild all the loops - average must match seq(A)
for n=1 :size(DSM,2)

A=DSM(1 :n,1 :n);
A(n+ 1, :)=ones( 1 ,n)-sum(A);
for z=l :n

if (A(n+l,z)<O)
A(n+1 ,z)=O;

end
end
[i,j]=find(A-=O);
i=i+ones(size(i, 1), 1);
j=j+ones(size(i, 1),1 );
A:=[O a;a' A zeros(n+l,1)];
for z=1 :size(i,l)

Net(NetRow, :)=[NetRow A(1 ,j(z)) A(i(z), 1) A(i(z),j(z)) times(i(z)-1)];

143



Coeff_Names {NetRow}=[num2str(A(i(z),j(z))) '*z^' num2str(times(i(z)- 1))];
NetRow=NetRow+ 1;

end
b( 1: size(a,2))=(a(1 ,end)+size(a,2)- 1):- 1 :a( 1 ,end);
b(1,end+l)=a(1 ,end)+size(a,2);
a=b;

end

[n,d]=mason2(Net(:,1 :3),Coeff_Names, 1,max(Net(:,3)));
L=diff(simple(sym(n)/sym(d)));
z=sym('z');
M=diff(z*L)-L^2;
z=l;
avg=eval(L);
var=eval(M);

Reducing Matrices

dsmcombine.m
% Script to combine the parallel blocks into single tasks

%Rebuild AVG in the new order and reorder SD
%DSM=builddsm(AVG,SD);
n=size(DSM,2);
for i=1:4

DSM(n+l,:,i)=[1 :n];
end

DSM=DSM([order n+ 1 ],[order],:);
LC=LC([order], 1);
ResourcesRequired=ResourcesRequired([order],:);
%SD(1 :n,1 :n)=SD([order],[order]);
NAMES=NAMES([order],:);
FINAL=NAMES;

%Begin collapse of matrix using combine routine
for i=l :size(frontorder, 1)
if sum(frontorder(i,:)>0)>1

[DSM,LC,ResourcesRequired,NAMES]=combine2(DSM,LC,ResourcesRequired,frontorder(i, [fi
nd(frontorder(i, :)>0)]),4,NAMES);
end

end
for i= 1 :size(midorder, 1)

144



if sum(midorder(i, :)>0)>1

[DSM,LC,ResourcesRequired,NAMES]=combine2(DSM,LC,ResourcesRequired,midorder(i,[fin
,d(midorder(i, :)>0)]),3,NAMES);

end
end
:for i= 1 :size(backorder, 1)

if sum(backorder(i,:)>0)>1

[DSM,LC,ResourcesRequired,NAMES]=combine2(DSM,LC,ResourcesRequired,backorder(i,[fi
nd(backorder(i, :)>0)]),4,NAMES);
end

end

combine.m
C5% Function to perform the mathematics of combining the DSM
function
[DSM,LC,ResourcesRequired,NAMES]=combine(DSM,LC,ResourcesRequired,order,type,NA
MES);

start=find(DSM(size(DSM, 1),:, 1 )==order(1 ));
stop=find(DSM(size(DSM, 1),:,1 )==order(end));

n=stop-start+l1;
SubDSM(1 :n, 1 :n,:)=DSM(start:stop,start:stop,:);
SubLC( 1 :n, 1 )=LC(start: stop, 1);

%Zo Calculate times and resources
if type==3 %calculated blocks - simulated

[WorkTimes,WorkPath,newavg,newsd]=dsmsimulate(SubDSM,SubLC,5,5,[ 1:n]); %keep
original suborder in simulation

%store as lognormal! !! minimum value is stored as imaginary portion of complex SD to avoid
another DSM construct

mu=mean(WorkTimes-min(WorkTimes)); %convert to lognormal parameters
sigma=std(WorkTimes-min(WorkTimes));
newavg=log(muA2/(muA2+sigma^2)A^0.5);
newsd=(log((sigma/mu)A2+1 ))AO^.5+min(WorkTimes)*i; %store as complex...
csvwrite('wt.csv',WorkTimes);
%newavg=para(SubDSM(:,:,1 ));
%newsd=O;
%o[newavg,newvar]=signalflow(SubAVG);

else %shortcut method for front and back calculations (no dependencies) - parallel times and
resources

newavg=max(diag(SubDSM(:,:,1 )));
i=find(diag(SubDSM(:,:, 1 ))==max(diag(SubDSM(:,:, 1))));

145



d=diag(SubDSM(:,:,4));
newsd=max(d(i)); %use max sd of multiple max avg...

end

%Resource combination
NAMES(start,3)=real(sum(NAMES(start:stop,2). *NAMES(start:stop,3)))/real(max(NAMES(sta
rt: stop,2)));
for j=1 :size(ResourcesRequired,2)

%ResourcesRequired(start,j)=real(sum(NAMES(start:stop,2).*ResourcesRequired(start:stop,j)))/
real(max(NAMES(start:stop,2)));

%ResourcesRequired(start,j)=max(ResourcesRequired(start:stop,j));

ResourcesRequired(start,j)=max(real(sum(NAMES(start: stop,2). *ResourcesRequired(start:stop,j
)))/newavg,max(ResourcesRequired(start:stop,j)));
end

%LC Combination - weighted average by durations...
LC(start, 1 )=sum(LC(start:stop, 1).*NAMES(start:stop,2))/sum(NAMES(start:stop,2));

for i=start:stop
forj=1:4

DSM(i,i,j)=O;
end

end

% the actual combination
NAMES(start,5)=max(abs(eig(DSM(start:s start:stop, 1))));

%separate out panes for processing later...
%SD=DSM(1 :end-1,:,4);

% this works for panes 1-3, ok for pane for in triangular distribution (but not normal!) - straight
average of all non-zeros
DSM=[DSM(:,[1 :start- 1],:) sum(DSM(:,start:stop,:),2)./max( 1 ,sum(DSM(:,start:stop,:)>0,2))
DSM(:,[stop+1 :end],:)];
DSM=[DSM([ 1 :start- 1 ],:,:); sum(DSM(start:stop,:,:),1 )./max(1 ,sum(DSM(start:stop,:,:)>0,1));
DSM([stop+1 :end],:,:)];
DSM(start,start, 1 )=newavg;
DSM(start,start,2)=O;
DSM(start,start,3)=O;
DSM(start,start,4)=newsd;
DSM(size(DSM, 1),start,:)=order(1);

% this is for pane 4 if normal distribution
%SD=[SD(:,[1 :start-1]) sum(SD(:,start:stop).A2,2).^0.5 SD(:,[stop+l :end])];

146



'%SD=[SD([1 :start-1],:); sum(SD(start:stop,:).^2,1).^0.5; SD([stop+1 :end],:)];
'%SD(start,start)=newsd;

%'replace SD pane...
%/DSM(1 :end-1 ,:,4)=SD;

%resource combination
NAMES(start,2)=newavg;
NAMES(start,4)=type;
NAMES=[NAMES(1 :start,:); NAMES(stop+1 :end,:)];
ResourcesRequired=[ResourcesRequired(1 :start,:); ResourcesRequired(stop+ 1 :end,:)];

%LC combination
]LC=[LC(1 :start,:); LC(stop+1 :end,:)];

Eigenvalue Tearing

Dsmoptimize.m
buildvar;

/%[AVG,SD,NAMES]=buildraw(input('Interaction Value? '));
%/[frontorder,midorder,backorder,order]=dsmorder(AVG,[]);
threshold=input('Threshold Eigenvalue? ');

%besttasks=csvread('besttasks.csv');
%Ofor k=1 :size(besttasks,1);
%O buildvar;
%//threshold=besttasks(k,3)+.0 1;

Best=[];
BestTasks=[];
i=l;
Lmax=O;

O/%determine if midorder segments need to be rehashed to meet threshold
while i<=size(midorder, 1)

if sum(midorder(i,:)>O)>1
midtemp=midorder(i,[find(midorder(i, :)>0)]);
SubAVG=AVG(midtemp,midtemp);

for j=l :size(Best, 1)
if not(isempty(find(midtemp==Best(j, 1))))

SubAVG(find(midtemp==Best(j, 1 )),find(midtemp==Best(j ,2)))=0;
end

end

147



for j=l :size(SubAVG,2)
SubAVG(j,j)=O;

end

if max(eig(SubAVG))>threshold
[SubAVG,best]=dsmtear(SubAVG,threshold);
for j=1 :size(best,1)

Best=[Best;midtemp(best(j, 1)) midtemp(best(j,2)) best(j,3)];
BestTasks=[BestTasks;NAMES(midtemp(best(j, 1)),1 ) NAMES(midtemp(best(j,2)),1 )

best(j,3)];
end
[forder,morder,border,oorder]=dsmorder(SubAVG);

start=find(order==midtemp( 1,1));
stop=find(order==midtemp( 1 ,length(midtemp)));
order(start:stop)=midtemp(oorder);

midorder(i,[find(midorder(i, :)>0)])=0;

for j=1 :size(forder,1)
n=size(forder,2);
frontorder(end+ 1, [find(forder(j,:)>O)])=midtemp([forder(j,[find(forder(,:)>O)])]);

end
for j= 1 :size(morder, 1)

n=size(morder,2);
midorder(end+1 ,[find(morder(j, :)>O)])=midtemp([morder(j,[find(morder(j,:)>O)])]);

end
for j=1 :size(border, 1)

n=size(border,2);
backorder(end+1 ,[find(border(j,:)>O)])=midtemp([border(j,[find(border(j,:)>O)])]);

end

end

end
i=i+l

end

dsmmode
dsmcombine
%Modes(1 :size(Mode, 1),2*k-1 :2*k)=Mode;
%Eigs(1 ,2*k- 1 )=Eig;
%clear Mode
%clear Eig
%end

148



dsmtear.m
function [SubAVG,best]=dsmtear(SubAVG,threshold);

:n=size(SubAVG,2);
SubAVG=SubAVG(1 :n, 1 :n);

remove=1;

for i=1 :n
SubAVG(i,i)=O;

elnd

L:min=max(real(eig(SubAVG)));

while Lmin > threshold

[i,j]=find(SubAVG<1 & SubAVG>O);
%[i,j]=find(triu(SubAVG)<1 & triu(SubAVG)>O); %if ordered going in

%/o[S,L]=eigs(SubAVG, 1);
%oL:min=L;

%XoSmaxmax(real(S));

for z=1 :length(i)
Temp=SubAVG(i(z),j(z));
SubAVG(i(z),j(z))=O;

L=max(real(eig(SubAVG)));
Ls(z,remove)=L;
if L<Lmin

Lmin=L;
bestindex=z

end
SubAVG(i(z),j (z))=Temp;

end

best(remove, 1)=i(bestindex);
best(remove,2)=j(bestindex);
best(remove,3)=Lmin;
SubAVG(best(remove, 1 ),best(remove,2))=0
remnove=remove+ 1

end

149



dsmmode.m
%kill interactions in Best
for i= 1 :size(Best, 1)

AVG(Best(i, 1 ),Best(i,2))=0;
SD(Best(i, 1),Best(i,2))=0;
%AVG(find(order==Best(i, 1 )),find(order==Best(i,2)))=0;
%SD(find(order==Best(i, 1)),find(order==Best(i,2)))=0;

end

%Pull out maximum eigenvalue and eigenmode (done here after removing the interactions)
for i=l :size(midorder, 1)
if sum(midorder(i,:)>0)>1

midtemp=midorder(i,[find(midorder(i, :)>0)]);
SubAVG=AVG(midtemp,midtemp);
for j=l :size(SubAVG,2)

SubAVG(,j)=0;
end
if max(eig(SubAVG))>Lmax

Lmax=max(eig(SubAVG));
imax=i;

end
end

end

midtemp=midorder(imax,[find(midorder(imax,:)>0)]);
SubAVG=AVG(midtemp,midtemp);

for j=l :size(SubAVG,2)
SubAVG(j,j)=0;

end

[s,l]=eig(SubAVG);
Eig=max(diag(l))
[i,j]=find(l==max(diag()));
Mode(:,2)=s(:,i);
Mode(:, 1 )=midtemp';
for j=l :length(midtemp)

Mode(j ,1 )=NAMES(Mode(j, 1),1 );
end
Mode

Simulation

dsmsimulate.m
function [WorkTimes,WorkPath,avg,sd]=dsmsimulate(DSM,LC,maxruns,timestep,order)

150



n=size(DSM,2);
%Otimestep should be less than or equal to min (duration/2 * impact) to capture work steps...

%Osets up parameters for triangular distribution
%'OTaskDist=[diag(AVG)-O*ones(n, 1 ),diag(AVG),diag(AVG)+O*ones(n, 1)];

%/Oget base sequencing order (may be passed in later)
%/'[frontorder,midorder,backorder,order]=dsmordernoswap(DSM(:,:, 1));

%/Oinitialize learning curve
%/LC=ones(n, 1);

0%'6 reorder all matrices before starting runs
DSM=DSM([order],[order],:);
%/oTaskDist=TaskDist([order],:);
LC=LC([order],:);
DSMTemp=DSM;
run=O;

%,/0 loop starts here
while run < maxruns

DSM=DSMTemp;
run=run+l
increment= 1;
time=O;

%sample durations from triangular distribution if not reduced, lognormal if reduced
for i=1 :n

if imag(DSM(i,i,4))==O
DSM(i,i, 1 )=tripdf(DSM(i,i, 1 )-DSM(i,i,4),DSM(i,i, 1 ),DSM(i,i, 1)+DSM(i,i,4)); %here in

lieu of real task dist information!!!
else

DSM(i,i, 1 )=imag(DSM(i,i,4))+1ognrnd(DSM(i,i, 1 ),real(DSM(i,i,4))); %minimum plus
lognormal of difference

end
%TaskDist(i,4)=tripdf(TaskDist(i, 1),TaskDist(i,2),TaskDist(i,3));
for j=l:n

if DSM(i,j,2)-=O
DSM(i,j ,2)=tripdf(max(DSM(i,j ,2)-

DSM(i,j,4),0),DSM(i,j,2),min(1,DSM(i,j,2)+DSM(i,j,4))); %probabilities
DSM(i,j,3)=tripdf(max(DSM(i,j,3)-

DSM(i,j,4),0),DSM(i,j,3),min(1,DSM(i,j,3)+DSM(i,j,4))); %impacts
end

end
end

151



TaskDist=diag(DSM(:,:, 1));

%initialize work variables and storage
WorkRemaining=TaskDist;
WorkedYet=zeros(n, 1);
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+ 1 ,increment,run)=time;

%begin execution of run loop
while sum(WorkRemaining>O)

%sum(WorkRemaining>O)

%figure out what can be worked now (if there's work to do and *upstream* precedents are
complete)

WorkNow=zeros(n, 1);
for i=1 :n

WorkNow(i,1)=WorkRemaining(i,1)>0 & (sum(WorkRemaining(1 :i- 1,1)'.*DSM(i,1 :i-
1,2))==0);

WorkedYet(i, 1)=WorkedYet(i, 1)+WorkNow(i, 1);
end

%process work in time step (just subtract the time)
WorkRemaining=max(O,WorkRemaining-timestep*WorkNow);

%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects), not sampling for added rework duration

for i=1 :n
if WorkRemaining(i, 1)==0 & WorkNow(i, 1)== 1

WorkRe ing=Wng=workRemaining+(rand(n, 1 )<DSM(:,i,2)).*(WorkedYet>O).*LC.*DSM(:,i,3).*
TaskDist;

end
end

%advance and output results at new time
time=time+timestep;
increment=increment+ 1;
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+ 1 ,increment,run)=time;
WorkTimes(run)=time;

end
%Iterations(1 :n,run)=WorkedYet./(TaskDist(: ,4)/timestep);

end

152



hist(WorkTimes, 100)
avg=mean(WorkTimes);
sd=std(WorkTimes);

Resource Model

dsmsimulateres.com
function
[ResourcePath,ResourceNeed,avg,sd]=dsmsimulateres(DSM,LC,ResourcesRequired,ResourcesA
vailable,maxruns,timestep)

n=size(DSM,2);
%0'ResourcesRequired=Resources(1 :n,:);

%O/sets up parameters for triangular distribution
%'TaskDist=[diag(AVG)-0*ones(n, 1 ),diag(AVG),diag(AVG)+0*ones(n, 1 )];

%O/get base sequencing order (may be passed in later)
[ frontorder,midorder,backorder,order]=dsmordernoswap(DSM(:,:, 1));

°%,oinitialize learning curve
%,'LC=ones(n, 1);

/o reorder all matrices before starting runs
DSM=DSM([order],[order],:);
%,'TaskDist=TaskDist([order], :);
L,C=LC([order],:);
ResourcesRequired=ResourcesRequired([order],:);
DSMTemp=DSM;

run=0;

% loop starts here
while run < maxruns

DSM=DSMTemp;
run=run+ 1

increment=1;
time=0;

%sample durations from triangular distribution
for i=1 :n

DSM(i,i, 1 )=tripdf(DSM(i,i, 1 )-DSM(i,i,4),DSM(i,i, 1 ),DSM(i,i, 1 )+DSM(i,i,4));
%TaskDist(i,4)=tripdf(TaskDist(i, 1 ),TaskDist(i,2),TaskDist(i,3)); %durations
forj=1:n

if DSM(i,j,2)-=0

153



DSM(i,j ,2)=tripdf(max(DSM(i,j ,2)-
DSM(i,j,4),0),DSM(i,j ,2),min(1,DSM(i,j ,2)+DSM(i,j ,4))); %probabilities

DSM(i,j,3)=tripdf(max(DSM(i,j,3)-
DSM(i,j,4),O),DSM(i,j ,3),min( 1 ,DSM(i,j,3)+DSM(i,j,4))); %impacts

end
end

end

TaskDist=diag(DSM(:,:, 1));

%initialize work variables and storage
WorkRemaining=TaskDist;
WorkedYet=zeros(n, 1);
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+1 ,increment,run)=time;
%ResourcesAvailable=Resources(n+ 1,:);
ResourcePath(increment,: ,run)=ResourcesAvailable;
WorkThen=zeros(n, 1);

%begin execution of run loop
while sum(WorkRemaining>0)

ResourceNeed(increment,:,run)=zeros( 1 ,size(ResourcesAvailable,2));
%figure out what can be worked now if there's work to do and ((*upstream* precedents are

complete and all resources are available) OR you worked on it the period before))
WorkNow=zeros(n, 1);
for i=1 :n

WorkNow(i, 1 )=(WorkRemaining(i, 1)>0) & (((sum(WorkRemaining(1 :i-
1,1)'.*DSM(i, 1 :i- 1,2))==0) & (prod((ResourcesAvailable-ResourcesRequired(i, :))>=O)))
(WorkThen(i, 1)== 1));

%record resource need, if applicable
if prod((ResourcesAvailable-ResourcesRequired(i,:))>=0)==0 &

(WorkRemaining(i,1)>0) & (sum(WorkRemaining(1 :i-1,1)'.*DSM(i,1 :i-1 ,2))==0) &
(WorkThen(i, 1)==0)

ResourceNeed(increment, :,run)=max(ResourceNeed(increment, :,run),((ResourcesAvailable-
ResourcesRequired(i,:))<O).*(ResourcesAvailable-ResourcesRequired(i,:))*-1); %treats each
max independently

end
WorkedYet(i, 1 )=WorkedYet(i, 1 )+WorkNow(i,1 );

%tie up resources in use immediately so they're not overallocated, also don't double
allocate

if WorkNow(i, 1)== 1 & WorkThen(i, 1)==O
ResourcesAvailable=ResourcesAvailable-ResourcesRequired(i,:);

end
end

154



%process work in time step Oust subtract the time)
WorkRemaining=max(O,WorkRemaining-timestep*WorkNow);

%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects) and clear resources

for i=l :n
if WorkRemaining(i,1)==0 & WorkNow(i, 1)==1

W orkRemaining=WorkRemaining+(rand(n, 1 )<DSM(:,i,2)). *(WorkedYet>O).*LC. *DSM(:,i,3).*
TaskDist;

end
end

%free up resources if work remaining is still zero - must check after dependency loop is
closed to avoid adding back fake resources

for i=1 :n
if WorkRemaining(i, 1)==0 & WorkNow(i, 1)==1

ResourcesAvailable=ResourcesAvailable+ResourcesRequired(i,:);
end

end

%advance and output results at new time
time=time+timestep;
increment=increment+ 1;
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+ 1 ,increment,run)=time;
ResourcePath(increment,: ,run)=ResourcesAvailable;
WorkTimes(run)=time;
WorkThen=WorkNow;

end
%Iterations(1 :n,run)=WorkedYet./(TaskDist(:,4)/timestep);

end

hist(WorkTimes, 100)
avg=mean(WorkTimes);
sd=std(WorkTimes);

dsmsimulateresrelaxfactor.m
function
[ResourcePath,ResourcesNeed,ResourcesBudget,cost,avg,sd]=dsmsimulateresrelaxfactor(DSM,
I C,ResourcesRequired,ResourcesAvailable,maxruns,timestep,factor)

155



factor=max(0.5,min(factor,2)); %factor ranges between 0.5 and 2 only to restrict optimization to
realistic levels
n=size(DSM,2);
%ResourcesRequired=Resources(1 :n,:);

%sets up parameters for triangular distribution
%TaskDist=[diag(AVG)-O*ones(n, 1 )diag(AVG),diag(AVG)+O*ones(n, 1)];

%get base sequencing order (may be passed in later)
[frontorder,midorder,backorder,order]=dsmordernoswap(DSM(:,:, 1));

%initialize learning curve
%LC=ones(n, 1);

% reorder all matrices before starting runs
DSM=DSM([order],[order],:);
%TaskDist=TaskDist([order],:);
LC=LC([order],:);
ResourcesRequired=ResourcesRequired([order],:);
ResourcesBudget=ResourcesAvailable;
DSMTemp=DSM;
x=l;
costincrement=1;

%optimization loop
while x>O

clear ResourcesNeed;
run=O;

% runs loop starts here
while run < maxruns

DSM=DSMTemp;
run=run+1
increment=1;
time=O;

%sample durations from triangular distribution
for i=1 :n

if imag(DSM(i,i,4))==0
DSM(i,i, 1 )=tripdf(DSM(i,i, 1 )-DSM(i,i,4),DSM(i,i, 1 ),DSM(i,i, 1)+DSM(i,i,4)); %here in

lieu of real task dist information!!!
else

DSM(i,i, 1 )=imag(DSM(i,i,4))+lognrnd(DSM(i,i, 1 ),real(DSM(i,i,4))); %minimum plus
lognormal of difference

end

156



%TaskDist(i,4)=tripdf(TaskDist(i, 1 ),TaskDist(i,2),TaskDist(i,3));
%DSM(i,i,1 )=tripdf(DSM(i,i, 1 )-DSM(i,i,4),DSM(i,i, 1 ),DSM(i,i, 1 )+DSM(i,i,4));
for j=l:n

if DSM(i,j,2)-=O
DSM(i,j ,2)=tripdf(max(DSM(i,j,2)-

DSM(i,j ,4),O),DSM(i,j ,2),min(1 ,DSM(i,j ,2)+DSM(i,j,4))); %probabilities
DSM(i,j,3)=tripdf(max(DSM(i,j,3)-

DSM(i,j,4),O),DSM(i,j,3),min( 1 ,DSM(i,j,3)+DSM(i,j,4))); %impacts
end

end
end

TaskDist=diag(DSM(:,:, 1));

%initialize work variables and storage
WorkRemaining=TaskDist;
WorkedYet=zeros(n, 1);
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+ 1 ,increment,run)=time;
ResourcesAvailable=ResourcesBudget;
ResourcePath(increment, :,run)=ResourcesAvailable;
WorkThen=zeros(n, 1);

%begin execution of run loop
while sum(WorkRemaining>O)

%sum(WorkRemaining>0)

ResourcesNeed(increment, :,run)=zeros(1 ,size(ResourcesAvailable,2));
%figure out what can be worked now if there's work to do and ((*upstream* precedents are

complete and all resources are available) OR you worked on it the period before))
WorkNow=zeros(n, 1);
for i=l:n

WorkNow(i, 1 )=(WorkRemaining(i, 1)>0) & (((sum(WorkRemaining(1 :i-
1,1)'.*DSM(i,1 :i-1,2))==0) & (prod((ResourcesAvailable-factor*ResourcesRequired(i,:))>=O)))
(WorkThen(i, 1)== 1));

%record resource need, if applicable
if prod((ResourcesAvailable-factor*ResourcesRequired(i,:))>=0)==0 &

(WorkRemaining(i, 1)>0) & (sum(WorkRemaining(1 :i-1,1)'.*DSM(i,1 :i-1,2))==0) &
(WorkThen(i, 1 )==O)

ResourcesNeed(increment,: ,run)=max(ResourcesNeed(increment,: ,run),((ResourcesAvailable-
factor*ResourcesRequired(i, :))<0). *(ResourcesAvailable-factor*ResourcesRequired(i, :))*- 1);
%'Otreats each max independently

end
WorkedYet(i, 1 )=WorkedYet(i, 1 )+WorkNow(i, 1);

157



%tie up resources in use immediately so they're not overallocated, also don't double
allocate

if WorkNow(i, 1)== 1 & WorkThen(i, 1)==0
ResourcesAvailable=ResourcesAvailable-factor*ResourcesRequired(i,:);

end
end

%process work in time step (just subtract the time)
WorkRemaining=max(O,WorkRemaining-factor*timestep*WorkNow);

%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects) and clear resources

for i=1 :n
if WorkRemaining(i, 1)==0 & WorkNow(i, 1)== 1

WorkRemaining=WorkRemaining+(rand(n, 1)<DSM(:,i,2)).*(WorkedYet>O).*LC.*DSM(:,i,3).*
TaskDist;

end
end

%free up resources if work remaining is still zero - must check after dependency loop is
closed to avoid adding back fake resources

for i=1 :n
if WorkRemaining(i,1)==0 & WorkNow(i, 1)==1

ResourcesAvailable=ResourcesAvailable+factor*ResourcesRequired(i,:);
end

end

%advance and output results at new time
time=time+timestep;
increment=increment+ 1;
WorkPath(1 :n,increment,run)=WorkRemaining;
WorkPath(n+ 1 ,increment,run)=time;
ResourcePath(increment,: ,run)=ResourcesAvailable;
WorkTimes(run)=time;
WorkThen=WorkNow;

end
%Iterations(l :n,run)=WorkedYet./(TaskDist(: ,4)/timestep);

end

%hist(WorkTimes, 100)
avg=mean(WorkTimes);
sd=std(WorkTimes);

cost(costincrement, 1 )=x;

158



cost(costincrement,2)=sum(ResourcesBudget)*mean(WorkTimes);
cost(costincrement,3)=mean(WorkTimes);
costincrement=costincrement+ 1;

%/oAdd needed resources to budget
ResourcesBudget=ResourcesBudget+ceil(mean(mean(ResourcesNeed,3)));
x=sum(mean(mean(ResourcesNeed,3)));

end
cost
plot(cost(:,2),cost(:, 1 ),'b+')

Multiple Projects

dsmsimulateresmult.m
function
[.ResourcePath,ResourceNeed,WorkPath,WorkRemaining,WorkTimes,avg,sd]=dsmsimulateresm
ult(DSM,LC,ResourcesRequired,ResourcesAvailable,delays,maxruns,timestep)

0%'Oone resource pool...

projects=size(DSM,2)
%Oinitialize WorkTimes
WorkTimes=cell( 1 ,projects);

/'Oprepare each project...
fir project=1 :projects

%/,get number of tasks and pull resource requirements
n(project)=size(DSM {project} ,2);
%O/ResourcesRequired {project}=Resources {project} (1 :n(project),:);

%/,get base sequencing order (may be passed in later)
[frontorder,midorder,backorder,order {project} ]=dsmordemoswap(DSM {project} (:,:,1 ));

0/, reorder all matrices before starting runs
DSM {project}=DSM {project}([order{project} ],[order{project} ],:);
%/oTaskDist {project}=TaskDist {project} ([order {project}],:);
LC {project} =LC {project} ([order{project}],:);
ResourcesRequired {project} =ResourcesRequired {project} ([order {project}],:);
DSMTemp {project}=DSM {project};

end

159



run=0;

% loop starts here
while run < maxruns

run=run+l
increment= 1;
time=0;

%reset each project's data
for project=1 :projects

DSM {project}=DSMTemp {project};

%sample durations from triangular distribution
for i=1 :n(project)

if imag(DSM {project) }(i,i,4))==0
DSM {project} (i,i, 1)=tripdf(DSM {project}(i,i, 1)-

DSM {project} (i,i,4),DSM {project}(i,i, 1),DSM {project}(i,i, 1)+DSM {project}(i,i,4)); %here in
lieu of real task dist information!!!

else

DSM {project} (i,i, 1 )=imag(DSM {project} (i,i,4))+1ognmd(DSM {project} (i,i, 1 ),real(DSM {projec
t}(i,i,4))); %minimum plus lognormal of difference

end

%TaskDist {project} (i,4)=tripdf(TaskDist {project} (i, 1 ),TaskDist {project} (i,2),TaskDist {project}
(i,3));

forj=l:n
if DSM {project} (i,j,2)-=0

DSM {project} (i,j,2)=tripdf(max(DSM {project} (i,j,2)-
DSM {project} (i,j,4),0),DSM {project} (i,j,2),min( 1 ,DSM {project} (i,j ,2)+DSM {project} (i,j,4)));
%probabilities

DSM {project} (i,j,3)=tripdf(max(DSM {project} (i,j,3)-
DSM {project} (i,j,4),0),DSM {project} (i,j,3),min(1 ,DSM {project} (i,j,3)+DSM {project} (i,j,4)));
%impacts

end
end

end

TaskDist {project}=diag(DSM {project} (:,:, 1));

%initialize work variables and storage
WorkRemaining {project} =TaskDist {project };

160



WorkedYet {project )=zeros(n(project), 1);
WorkPath {project} (1 :n(project),increment,run)=WorkRemaining {project};
WorkPath {project} (n(project)+ 1 ,increment,run)=time;
%ResourcesAvailable {project} =Resources {project} (n(project)+ 1,:);
ResourcePath(increment,: ,run)=ResourcesAvailable;
WorkThen {project} =zeros(n(proj ect), 1 );
WorkNow {project} =zeros(n(project), 1 );

end

%begin execution of run loop
while sum(sum(cell2mat(WorkRemaining)))>O

sum(sum(cell2mat(WorkRemaining)))

for project=1 :projects %must run all projects
if time>=delays(project) %but only run them after their required delay

ResourceNeed(increment, ,run)=zeros( 1 ,size(ResourcesAvailable,2));
%figure out what can be worked now if there's work to do and ((*upstream* precedents are

complete and all resources are available) OR you worked on it the period before))
WorkNow {proj ect} =zeros(n(proj ect), 1 );
for i=1 :n(project)

WorkNow {project} (i, 1 )=(WorkRemaining {project} (i, 1)>0) &
(((sum(WorkRemaining {project} (1 :i- 1,1 )'. *DSM {project} (i, 1 :i- 1,2))==0) &
(prod((ResourcesAvailable-ResourcesRequired {project}(i, :))>=0))) I
(WorkThen{project}(i,1)==1));

%record resource need, if applicable
if prod((ResourcesAvailable-ResourcesRequired {project} (i,:))>=0)==0 &

(WorkRemaining {project} (i, 1)>0) & (sum(WorkRemaining {project} (1 :i-
1,1)'.*DSM {project} (i, 1 :i- 1,2))==0) & (WorkThen {project} (i, 1)==0)

ResourceNeed(increment,:,run)=max(ResourceNeed(increment, ,run),((ResourcesAvailable-
ResourcesRequired {project} (i,:))<O). *(ResourcesAvailable-ResourcesRequired {project} (i,:))*-
1); %/treats each max independently

end
WorkedYet{projectdYet {project} (i, 1)+WorkNowkN ow ect} (i, 1);
%tie up resources in use immediately so they're not overallocated, also don't double

allocate
if WorkNow {project} (i, 1)== 1 & WorkThen {project} (i, 1)==0

ResourcesAvailable=ResourcesAvailable-ResourcesRequired {project} (i,:);
end

end

%process work in time step (just subtract the time)
WorkRemaining {project} =max(O,WorkRemaining {project} -timestep*WorkNow {project});

161



%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects) and clear resources

for i=1 :n(project)
if WorkRemaining {project} (i, 1)==0 & WorkNow {project} (i, 1)== 1

WorkRemaining {project} =WorkRemaining {project}+(rand(n(project), 1 )<DSM {project} (:,i,2)).
*(WorkedYet {project}>0). *LC {project} .*DSM {project} (:,i,3). *TaskDist {project};

end
end

%free up resources if work remaining is still zero - must check after dependency loop is
closed to avoid adding back fake resources

for i=l :n(project)
if WorkRemaining {project}(i, 1)==0 & WorkNow{project} (i, 1)==1

ResourcesAvailable=ResourcesAvailable+ResourcesRequired {project} (i,:);
end

end

end %end if statement
end %end project loop

%advance time and increment
time=time+timestep;
increment=increment+ 1;

%output results at new time
for project=1 :projects

WorkP ath {proj ect } (1 :n(proj ect),increment,run)=WorkRemaining {proj ect };
WorkPath {proj ect } (n(proj ect)+ 1 ,increment,run)=time;
ResourcePath(increment,: ,run)=ResourcesAvailable;
if sum(WorkPath {project} (1 :n(proj ect),increment,run))==O &

sum(WorkPath {project} (1 :n(project),increment- 1 ,run))>O
WorkTimes {project} (run)=time;

end
WorkThen {project} =WorkNow {project};

end

end %end execution loop
end %end run loop

Work=O;

for project=l :projects
%hist(WorkTimes {project},100)
Work=Work+sum(mean(WorkPath {project} ( 1: n(project),:, :),3));

162



avg(proj ect)=mean(WorkTimes {project));
sd(proj ect)=std(WorkTimes {project});

end

%/oWork(2,:)=[O:timestep:max(WorkTimes {projects})];
%/Oplot(Work(2,:),Work(1 ,:)/max(Work(1,:)))

dsmsimulateresmultopt.m
function
[ResourcePath,ResourceNeed,WorkPath,WorkRemaining,WorkTimes,DelayTimes,avg,sd]=dsm
simulateresmultopt(DSM,LC,ResourcesRequired,ResourcesAvailable,maxruns,timestep)

%/in principle, easily extended to 3 or more projects - just map delays in order...
%also written to do non-indentical projects

%oprepare each project...
projects=size(DSM,2);

for project=1 :projects

%O/get number of tasks and pull resource requirements
n(project)=size(DSM {project} ,2);

,/oResourcesRequired {project }=Resources {project} (1 :n(project),:);

%get base sequencing order (may be passed in later)
[frontorder,midorder,backorder,order{project} ]=dsmordemoswap(DSM {project} (:,:,1));

% reorder all matrices before starting runs
DSM{project}=DSM {project} ([order{project} ],[order{project} ],:);
0 ,TaskDist {project}=TaskDist {project} ([order {project} ],:);
LC {project} =LC {project} ([order {project}],:);
ResourcesRequired {project} =ResourcesRequired {project} ([order {project}],:);
DSMTemp {project}=DSM {project};

end

delayincrement=l;

for delay=O: 10:100 %make sure timestep is less than delay increment!

delays=[0 delay]

%//Oinitialize WorkTimes and clear variables that have changing size (anything with "increment" in
the index)
clear WorkPath;

163



clear ResourcePath;
WorkTimes=cell( 1 ,projects);

run=O;

% loop starts here
while run < maxruns

run=run+l
increment= 1;
time=O;

%reset each project's data
for project=1 :projects

DSM {project}=DSMTemp {project};

%sample durations from triangular distribution
for i=1 :n(project)

if imag(DSM {project} (i,i,4))==0
DSM {project} (i,i, 1 )=tripdf(DSM {project}(i,i, 1)-

DSM {project} (i,i,4),DSM {project}(i,i, 1),DSM {project} (i,i, 1)+DSM {project} (i,i,4)); %here in
lieu of real task dist information!!!

else

DSM {project} (i,i, 1 )=imag(DSM {project}(i,i,4))+1ognmd(DSM {project} (i,i, 1 ),real(DSM {projec
t}(i,i,4))); %minimum plus lognormal of difference

end

%TaskDist{project} (i,4)=tripdf(TaskDist {project}(i, 1 ),TaskDist {project} (i,2),TaskDist{project}
(i,3));

%DSM {project} (i,i, 1 )=tripdf(DSM {project} (i,i, 1)-
DSM {project} (i,i,4),DSM {project} (i,i, 1),DSM {project} (i,i, 1)+DSM {project} (i,i,4));

forj=l:n
if DSM {project}(i,j,2)-=0

DSM {project} (i,j ,2)=tripdf(max(DSM {project} (i,j ,2)-
DSM {project} (i,j,4),0),DSM {project} (i,j,2),min(1 ,DSM {project} (i,j,2)+DSM {project} (i,j,4)));
%probabilities

DSM {project} (i,j,3)=tripdf(max(DSM {project} (i,j,3)-
DSM{project)(ij,4),),DSM {project} (i,j,3),min(0),DSM {project} (i,j,3)DSM {project} (i,j,4)));
%impacts

end
end

end

164



TaskDist {project} =diag(DSM {project} (:,:, 1));

%initialize work variables and storage
WorkRemaining {project} =TaskDist {project};
WorkedYet {project} =zeros(n(project),1 );
WorkPath {project} (1 :n(project),increment,run)=WorkRemaining {project};
WorkPath {project} (n(project)+ 1 ,increment,run)=time;
%ResourcesAvailable {project} =Resources {project} (n(project)+ 1,:);
ResourcePath(increment, :,run)=ResourcesAvailable;
WorkThen {project} =zeros(n(proj ect), 1 );
WorkNow {project} =zeros(n(project), 1);

end

0/obegin execution of run loop
while sum(sum(cell2mat(WorkRemaining)))>O

sum(sum(cell2mat(WorkRemaining)))

for project=1 :projects %must run all projects
if time>=delays(project) %but only run them after their required delay

ResourceNeed {project} (increment,: ,run)=zeros(1 ,size(ResourcesAvailable,2));
%figure out what can be worked now if there's work to do and ((*upstream* precedents are

complete and all resources are available) OR you worked on it the period before))
WorkNow {project} =zeros(n(proj ect), 1);
for i=1 :n(project)

WorkNow {project} (i, 1)=(WorkRemaining {project} (i, 1)>0) &
(((sum(WorkRemaining {project} (1 :i- 1,1)'.*DSM {project} (i,1 :i- 1,2))==0) &
(prod((ResourcesAvailable-ResourcesRequired {project} (i, :))>=0))) I
(WorkThen{project} (i,1)==l));

%record resource need, if applicable
if prod((ResourcesAvailable-ResourcesRequired {project} (i,:))>=0)==0 &

(WorkRemaining {project} (i, 1)>0) & (sum(WorkRemaining {project} (1 :i-
1 ,1)'.*DSM {project} (i, 1 :i- 1,2))==0) & (WorkThen {project} (i, 1)==0)

ResourceNeed {project} (increment,: ,run)=max(ResourceNeed {project} (increment,: ,run),((Resou
rcesAvailable-ResourcesRequired {project} (i,:))<O).* (ResourcesAvailable-
ResourcesRequired {project} (i,:))*- 1); %treats each max independently

end
WorkedYet {project} (i, 1 )=WorkedYet {project} (i, 1 )+WorkNow {project} (i, 1);
%tie up resources in use immediately so they're not overallocated, also don't double

allocate
if WorkNow {project} (i, )==l & WorkThen {project} (i,l )==0

ResourcesAvailable=ResourcesAvailable-ResourcesRequired {project} (i,:);

165



end
end

%process work in time step (just subtract the time)
WorkRemaining {project}=max(O,WorkRemaining {project} -timestep*WorkNow {project});

%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects) and clear resources

for i=l :n(project)
if WorkRemaining {project}(i, 1)==0 & WorkNow {project} (i, 1)==1

WorkRemaining {(rand(nproject, DSMproject}ect), 1 )<DSM {project(:,i,2)).
*(WorkedYet {project}>O). *LC {project} .*DSM {project} (:,i,3). *TaskDist {project};

end
end

%free up resources if work remaining is still zero - must check after dependency loop is
closed to avoid adding back fake resources

for i=1 :n(project)
if WorkRemaining {project} (i, 1)==0 & WorkNow {project} (i, 1)== 1

ResourcesAvailable=ResourcesAvailable+ResourcesRequired {project} (i,:);
end

end

end %end if statement
end %end project loop

%advance time and increment
time=time+timestep;
increment=increment+ 1;

%output results at new time
for project=l :projects

WorkPath {project}(1 :n(project),increment,run)=WorkRemaining{project};
WorkPath {project} (n(proj ect)+ 1 ,increment,run)=time;
ResourcePath(increment,: ,run)=ResourcesAvailable;
if sum(WorkPath {project} (1 :n(proj ect),increment,run))==O &

sum(WorkPath {project} (1 :n(proj ect),increment- 1 ,run))>O
WorkTimes {project} (run)=time;

end
WorkThen {project} =WorkNow {project };

end

end %end execution loop
end %end run loop

166



Work=O;
CumWorkTimes(delayincrement, 1)=delay;

for project= 1 :projects
%/ohist(WorkTimes ({project}, 1 00)
Work=Work+sum(mean(WorkPath {project) (1: n(project),:, :),3));
avg(project)=mean(WorkTimes {project});
sd(project)=std(WorkTimes {project });
CumWorkTimes(delayincrement,project+1 )=avg(project)-delays(project);

end

%/'Oaverage work profile
%0/Work(2, :)=[0:timestep:max(WorkTimes {projects )];
%0/plot(Work(2,:),Work(1 ,:)/max(Work(1,:)))

DelayTimes(delayincrement, 1)=delay;
DelayTimes(delayincrement,2)=max(avg);
D)elayTimes(delayincrement,3)=sd(find(avg==max(avg)));
CumWorkTimes(delayincrement,proj ects+2)=sum(CumWorkTimes(delayincrement,2 :proj ects+
1)');

delayincrement=delayincrement+ 1;

end

plot(DelayTimes(:, ),DelayTimes(:,2)) %time to finish
%figure
%plot(CumWorkTimes(:,l1),CumWorkTimes(:,end)) %cumulative work done (days)
%figure
%//plot(CumWorkTimes(:, ),CumWorkTimes(:,end)./DelayTimes(:,2)) %utilization

dsmsimulateresmultrelaxfactor.m
function
[ResourcePath,ResourcesNeed,ResourcesBudget,WorkPath,WorkRemaining,WorkTimes,cost,av
g,sd]=dsmsimulateresmultrelaxfactor(DSMLCResourcesRequiredResourcesAvailable,delays,
maxruns,timestep,factor)

°%Oone resource pool...
factor=max(0.5,min(factor,2)); %factor ranges between 0.5 and 2 only to restrict optimization to
realistic levels

projects=size(DSM,2)
°/oinitialize WorkTimes
WorkTimes=cell( 1 ,projects);

167



%prepare each project...
for project=1 :projects

%get number of tasks and pull resource requirements
n(project)=size(DSM {project} ,2);
%ResourcesRequired {project}=Resources {project} (1 :n(project),:);

%get base sequencing order (may be passed in later)
[frontorder,midorder,backorder,order {project} ]=dsmordemoswap(DSM {project} (:,:,1 ));

% reorder all matrices before starting runs
DSM{project}=DSM {project} ([order{project} ],[order{project} ],:);
%TaskDist{project}=TaskDist {project} ([order {project}],:);
LC {project} =LC {project} ([order {project} ],:);
ResourcesRequired {project}=ResourcesRequired {project} ([order {project}],:);
DSMTemp {project}=DSM {project};

end

ResourcesBudget=ResourcesAvailable;
x=l;
costincrement= 1;

%budget optimization loop
while x>O

%initialize WorkTimes and clear variables that have changing size (anything with "increment" in
the index)
clear WorkPath;
clear ResourcePath;
WorkTimes=cell( 1 ,projects);
clear ResourcesNeed;
run=O;

% loop starts here
while run < maxruns

run=run+l
increment= 1;
time=O;

%reset each project's data
for proj ect= 1 :projects

DSM {project} =DSMTemp {project};

168



%sample durations from triangular distribution
for i=1 :n(project)

if imag(DSM (project) (i,i,4))==0
DSM {project} (i,i, 1 )=tripdf(DSM {project} (i,i, 1)-

E)SM (project} (i,i,4),DSM {project} (i,i, 1),DSM ({project} (i,i, 1)+DSM {project} (i,i,4)); %here in
lieu of real task dist information!!!

else

E)SM (project} (i,i, 1 )=imag(DSM ({project} (i,i,4))+1ognmd(DSM (project} (i,i, 1 ),real(DSM {projec
t}(i,i,4))); %minimum plus lognormal of difference

end

%TaskDist {project} (i,4)=tripdf(TaskDist {project} (i, 1 ),TaskDist {project} (i,2),TaskDist {project}
(i,3));

%DSM {project} (i,i, 1 )=tripdf(DSM {project)} (i,i, 1)-
DSM {project) (i,i,4),DSM {project) (i,i, 1 ),DSM {project} (i,i, 1 )+DSM {project} (i,i,4));

for j=l:n
if DSM{project} (i,j,2)-=0

DSM {project} (i,j ,2)=tripdf(max(DSM {project} (i,j,2)-
DSM {project} (i,j,4),0),DSM {project} (i,j,2),min(1,DSM {project} (i,j,2)+DSM {project} (i,j,4)));
%/Oprobabilities

DSM {project} (i,j,3)=tripdf(max(DSM {project} (i,j,3)-
DSM {project} (i,j,4),0),DSM {project} (i,j,3),min(1 ,DSM {project} (i,j,3)+DSM {project} (i,j,4)));
0/'Oimpacts

end
end

end

TaskDist {project}=diag(DSM {project} (:,:,1 ));

%initialize work variables and storage
WorkRemaining {project} =TaskDist {project };
WorkedYet {proj ect } =zeros(n(proj ect), 1 );
WorkPath {proj ect} (1 :n(proj ect),increment,run)=WorkRemaining {proj ect };
WorkPath {project} (n(proj ect)+ 1 ,increment,run)=time;
ResourcesAvailable=ResourcesBudget;
ResourcePath(increment, :,run)=ResourcesAvailable;
WorkThen {proj ect } =zeros(n(proj ect),1 );
WorkNow {proj ect } =zeros(n(proj ect), 1 );

end

O/obegin execution of run loop
while sum(sum(cell2mat(WorkRemaining)))>O

%sum(sum(cell2mat(WorkRemaining)))

169



for project=1 :projects %must run all projects
if time>=delays(project) %but only run them after their required delay

ResourcesNeed(increment, :,run)=zeros(1 ,size(ResourcesAvailable,2));
%figure out what can be worked now if there's work to do and ((*upstream* precedents are

complete and all resources are available) OR you worked on it the period before))
WorkNow {project} =zeros(n(project), 1 );
for i=1 :n(project)

WorkNow (project) (i, 1 )=(WorkRemaining (project) (i, 1 )>0) &
(((sum(WorkRemaining {project}(1 :i- 1,1)'.*DSM {project}(i,1 :i- 1,2))==0) &
(prod((ResourcesAvailable-factor*ResourcesRequired ({project) (i,:))>=O))) I
(WorkThen {project} (i, 1 )== 1));

%record resource need, if applicable
if prod((ResourcesAvailable-factor*ResourcesRequired ({project) (i,:))>=0)==0 &

(WorkRemaining ({project} (i, 1)>0) & (sum(WorkRemaining project}(l :i-
1,1)'. *DSM {project}(i, 1 :i-1,2))==0) & (WorkThen {project} (i, 1)==0)

ResourcesNeed(increment,: ,run)=max(ResourcesNeed(increment,: ,run),((ResourcesAvailable-
factor*ResourcesRequired ({project} (i,:))<0).*(ResourcesAvailable-
factor*ResourcesRequired (project) (i,:))*- 1); %treats each max independently

end
WorkedYet {project} (i, 1)=WorkedYet {project} (i, 1 )+WorkNow {project) (i, 1);
%tie up resources in use immediately so they're not overallocated, also don't double

allocate
if WorkNow{project}(i,1)==1 & WorkThen{project}(i,1)==0

ResourcesAvailable=ResourcesAvailable-factor*ResourcesRequired (project) (i,:);
end

end

%process work in time step (just subtract the time)
WorkRemaining ({project) =max(O,WorkRemaining (project} -

factor*timestep*WorkNow {project));

%if just finished in this round, add to dependency work (if probability satisfied, has been
worked already, include learning and impact effects) and clear resources

for i=l :n(project)
if WorkRemaining {project} (i, 1)==0 & WorkNow {project} (i, 1)== 1

WorkRemaining {project}=WorkRemaining {project}+(rand(n(project), 1 )<DSM {project} (:,i,2)).
*(WorkedYet {project} >0). *LC {project} .*DSM {project} (:,i,3).*TaskDist {project};

end
end

%free up resources if work remaining is still zero - must check after dependency loop is
closed to avoid adding back fake resources

170



for i=1 :n(project)
if WorkRemaining{project}(i, 1)==O & WorkNow {project} (i, 1)==1

ResourcesAvailable=ResourcesAvailable+factor*ResourcesRequired {project} (i, :);
end

end

end %end if statement
end %end project loop

%advance time and increment
time=time+timestep;
increment=increment+ 1;

%output results at new time
for project=1 :projects

WorkP ath {project} (1 :n(proj ect),increment,run)=WorkRemaining {project };
WorkP ath {project} (n(proj ect)+1 ,increment,run)=time;
ResourcePath(increment,: ,run)=ResourcesAvailable;
if sum(WorkPath {project} (1 :n(proj ect),increment,run))==O &

sum(WorkPath {project} (1 :n(project),increment- 1 ,run))>O
WorkTimes {project } (run)=time;

end
WorkThen {project} =WorkNow {project };

end

end %end execution loop
end %end run loop

Work=O;

fir proj ect= 1 :projects
%hist(WorkTimes {project} , 100)
Work=Work+sum(mean(WorkPath {project} (1: n(project),:, :),3));
avg(proj ect)=mean(WorkTimes {project });
sd(proj ect)=std(WorkTimes {project });

end

/'OWork(2,:)=[O:timestep:max(WorkTimes {projects})];
%'Oplot(Work(2, :),Work( 1, :)/max(Work( 1,:)));

cost(costincrement, 1 )=x;
cost(costincrement,2)=sum(ResourcesBudget)*max(avg);
cost(costincrement,3)=max(avg);
costincrement=costincrement+ 1;

/'oAdd needed resources to budget

171



ResourcesBudget=ResourcesBudget+ceil(mean(mean(ResourcesNeed,3)));
x=sum(mean(mean(ResourcesNeed,3)));

end %end budget loop
%cost
%plot(cost(: ,3),cost(:,2),'b+')

172


