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Abstract

Since the mid-90s, the computer industry has been very modular with respect to both
product architecture and industry structure. The growing market size of mobile
computers means that the challenges facing this segment are starting to affect the
direction of the industry. It is argued in this paper that power management in mobile
computers is forcing the industry in the direction of more integral product solutions and,
hence, a more integral industry structure. That is to say, the industry is assuming a
structure similar to the early days of mainframe computers when one firm delivered the
entire proprietary integral system. Furthermore, this trend towards more integrality in
mobile computer systems is due to fundamental physical attributes of the system;
specifically, that information transfer systems lend themselves more readily to modular
architectures than systems that transfer significant power. Thus, as processors and
mobile computers become more powerful, they start to behave more like power transfer
systems and side effects of this power, such as heat, require a more integral approach to
managing it. A "free body" diagram framework is presented which provides a way of
thinking about how integrality forces are acting on an industry's trajectory. Evidence is
presented showing how the dominant player in the computer supply chain, Intel, is
exhibiting this vertical/integral behavior in a number of ways.

Thesis Advisor: Daniel E. Whitney
Title: Senior Research Scientist
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1 Introduction

1.1 A Systems Approach

This thesis attempts to explain changes taking place in the mobile computer industry by

examining dynamic forces acting on it in the context of a framework established herein.

The treatment of these technology- and market-driven forces, as well the theoretical basis

for the framework that is used to conceptualize the consequences of the forces, are drawn

from the literature. As with most systems thinking approaches, the goal here is to "get

one's mind around" a complex phenomenon with many layers and nuances by

" breaking down the phenomenon into its fundamental component parts

" providing a tool to help strip away some of the complexity through visualizations

and links that the human mind can more easily comprehend and manipulate.

Specifically, this systems approach involves the description of the driving forces and the

subsequent development of a framework that attempts to link changes in modularity of

design to changes in the organization of firms in the mobile computer industry.

Throughout this thesis, the discussion will focus primarily on a single firm: Intel

Corporation (Nasdaq: INTC). Thus, the approach is to look at firms in the mobile

computer industry, primarily through analysis of the forces acting on Intel's strategy,

development efforts, and investments. This simplification is possible because:

10



" Intel has over 80% market share in desktop and mobile PC microprocessors

* Intel is a tier one supplier of the module that controls the value chain (since the

microprocessor is the most important value-add component)

Thus, the forces acting on Intel are a good approximation of the forces acting on the

mobile computer industry because they control the value chain. So, to a large extent, the

direction Intel takes is necessarily the direction the mobile computer industry takes.

11



1.2 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 describes the literature and gives some background information. First, the

concept of modularity is introduced and defined for the context of the argument presented

herein regarding product architecture and industry structure. Second, the fundamental

differences between information and power systems and the direct impact on achievable

levels of modularity for each type of system are discussed. This is followed by a

discussion of the "double helix" of industry organization, which deals with the cyclical

nature of product architecture between integral and modular and industry structure

between vertical and horizontal. Lastly in Chapter 2, Moore's Law and its implications

for the computer industry and society at large are reviewed.

Next, a brief history of the computer industry's structure is given in Chapter 3, including

the major turning points in the transition from vertical to horizontal. This is followed by

the history of the mobile computing trend and a description of the challenges facing this

small form factor version of the PC. Chapter 4 continues the discussion started in the

previous chapter with a detailed description of some of the technical challenges that the

industry is presently facing with regard to power management. It is seen that continued

traditional electronic circuit scaling will lead to chip peak power densities that cannot

cost-effectively be cooled in a laptop and average system power ratings that cannot be

powered by existing battery technology for a meaningful amount of time.

12



The following chapter, number 5, presents a framework for thinking about how the forces

acting on an industry will affect the modularity of the product architecture and the

trajectory of the industry going forward. This includes introducing the important effect

of transaction costs. The framework is then applied to the computer industry in the

context of the forces created by the solutions to the power management problems

mentioned in the previous chapters. It is seen that the computer industry is moving from

a ''modular cluster" organization to one with a more integral product architecture and a

more integral industry structure.

Chapter 6 provides recent evidence that the mobile computer industry is, in fact, moving

along the trajectory predicted by the framework. Examples are cited from Intel and their

numerous vertical expansions, many of which are a direct result of the aforementioned

power management issues. The final chapter summarizes the arguments of the previous

chapters and suggests areas for future research by posing some unanswered questions that

this thesis raises.

13



2 Background and Literature

2.1 Modularity and Integrality

Fundamental to the way development projects, firms, and even entire industries are

organized is the architecture of the products they are designing and producing. A simple

definition of architecture is the way something is put together. More specifically, it is all

the components of a system and their interconnections.' Modularity, then, is defined as a

property of the system that describes how closely the elements of form map to the

elements of function. An architecture that is more modular has elements of form that are

closely matched to the elements of function. For example, most software programs (see

Figure 1) are highly modular with each subroutine dedicated to a specific function. An

architecture that is less modular, or more integral, has elements of form that are not

closely matched to the elements of function. A bridge is one such system with all

structural members working together to deliver the load bearing function and many of the

members working together to deliver the path for transportation function. The following

sections below describe these definitions in greater detail.

14
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LIBABBR = h
LIBpATH . /r/p/payne/liT
BIN = /u~rIlocal/bin
FMpIN = /ra/p Mepayn(Zbkn
. e NPATH = /asy/atn/ega
LIB = S(LIBPETH)1ThE8(LIBBBR)a
CLIBEBEB = coord
CIB - $ (LIBPETH) /Lib$ (CLIBEBEB).
!TLAGS - -u -0 -f68681 -LS(LIBPATH)

5u.su B (LIB) S(11,18)
f77 $IFFLABS) su' I -1$(LIBEBBR) -1$(CLIBABBR) -o s

m-f S(NYBIN)/s.WC.
In sun $(MYBIN)/sun

r-f $(BIN)/sun
cp sn$ (BIN)/u 0,.n

r-f $(NENPAT)/sun I
cp s .1 $ (BENPATH)

Figure 1: Example of a Modular (FORTRAN code) and Integral (Zakim Bridge in Boston) System

2.1.1 Definitions of Modularity and Integrality

Ulrich and Eppinger describe a modular architecture as one in which "each physical

chunk2 implements a specific set of functional elements and has well-defined interactions

with other chunks." This definition can be used to inspect every architecture that has

physical parts, but others, such as software architectures, are perhaps better suited by

removing the "physical" adjective. Thus, a completely modular architecture is one in

which each functional element of the system is accomplished by exactly one structural

element, or chunk. Conversely, integrality in architecture requires that the system have at

least one of the following:

" Functional elements implemented using more than one chunk

* A single chunk which implements many functions

2 "Chunks" are the major structural elements of a system that together accomplish the product's main
function(s)
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0 Ill-defined interactions between chunks.3

Figure 2 below illustrates this distinction. Notice that in a completely modular

architecture, there is a clean 1-to-I mapping of the functions to the chunks all the way

down through the hierarchy. That is to say, Sub-function 1 is implemented by Large

Chunk 1, Individual Function 4 is implemented by Small Chunk 4 and so on. However,

in an integral architecture, this is not the case. For example, Individual Function 4 is

implemented by Small Chunk 3 and Large Chunk 2. Furthermore, Small Chunk 3 also

helps implement Individual Functions 1 and 2, while Large Chunk 2 serves the additional

purposes of implementing Individual Functions 2 and 5.

Modular Architecture Integral Architecture

System System System System
Function / f1 - si \ Structure Function f1 --- s Structure
Hierarchy F1 f2 --- s2 S1 Hierarchy Hierarchy F1 f2 s2 S1 Hierarchy

F--------------- -s- sF ------ SF2 - -------- S F-----------

F2 f4 -- s4 f4 F2

f5 -- s5 f5

F = Main System Function; S = Entire Structure of System
F1, F2 = System Sub-functions; S1, S2 = Large Chunks

fl, = Individual Functions; s1, ... = Small Chunks
------- = Connections

Figure 2: Modular vs. Integral Architecture4

3 [Ulrich and Eppinger, 2000]

4 Adaptation of a figure from [Fujimoto, 2002]

16



Baldwin and Clark define modularity in terms of interdependence within and

independence among modules plus management of complexity by information hiding

within each module.5 Thus, the design becomes a collection of abstractions and

interfaces (modules and connections) that can be designed independently by describing a

set of design rules.

Clearly, a modular architecture is more easily understandable or at least decomposable

into less complex parts. However, the next sections will illustrate that a modular system

architecture is not always the best choice. Indeed, there are fundamental limitations to

some systems that prohibit a conscious choice altogether.

2.1.2 Arguments For / Against Modularity

The laundry list of pros and cons in modularity of architecture is best summarized in a

table format, shown below.

For Modularity / Against Integrality Against Modularity / For Integrality
Product variety and change (substantial Product sophistication, integrity, and
reduction in the fixed costs of introducing higher performance
architecture variants)
Must use for "open" architecture products, Can help protect intellectual property for
but can also be used for "closed" "closed" architecture products

17
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Must use for a delayed differentiation Products may not be competitive if too
strategy many compromises are made to make the

patform6 module(s) fit the product
Platform components can benefit from Modular platforms may have longer
economies of scale since production development time since requirements for
volume for these components is the total of many products are considered, as opposed
the production volume of the products in to a single set of product requirements
which the platform components are used
Design reuse can shorten development time Designers have a hard time with reuse and
and for evolutionary (as opposed to tend to de-value "old" ideas, so they can do
revolutionary) products something "creative" and "novel"
Axiomatic Design (see below) Modularity implies the use of "design

rules" in the design process; this adds extra
tasks to the development effort since the
design must be checked against these rules

More reuse leads to more focus on the For a "white space" or revolutionary
overall design, which translates into better design, modularity can result in too great a
architecture, tighter integration of focus on sub-system improvements, rather

components, and lower unit costs than system-level innovation
Re-use of complex components designed The upfront costs of developing a platform
previously to make an even more complex are substantial and the market may not bear
"meta-system" of systems that would have the resulting cost; related to this point is
been too complex to build from scratch that low-end variants of the architecture are

typically over-designed and are more
expensive to produce on a per unit basis

Making money on products that are near Many variants of a product, some of which
commodities may require differentiation have a low profit margin, can cannibalize a
through offering many variants firm's sales
Some ideas in the table from these references:? 8 9

Table 1: Pros and Cons of Modularity and Integrality

6 Platform modules are hardware or software components that are reused in more than one product.

7 [Robertson and Ulrich, 1998]

8 [Meyer and Lehnerd, 1997]

9 [Dalziel, 2002]

10 [Krishnan and Gupta, 2001]
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A more "scientific" argument in favor of modularity is that given by Suh"I with his

concept of axiomatic design. This is a decomposition process going from customer needs

to functional requirements (FRs), to design parameters (DPs), and then to process

variables (PVs), thereby crossing the four domains of the design world: customer,

functional, physical, and process. Axiomatic design is based upon two basic axioms.

The first is that FRs must be independent of each other. The goal of this exercise is to

identify DPs so that each FR can be satisfied without affecting the other FRs. The second

axiom is that the information content of the design must be minimized. That's

"information" as in the measure of one's freedom of choice, the measure of uncertainty,

which is the basis of information theory. Information content is the logarithm of the

inverse of the probability of delivering the FR.

In the diagram below, functional requirements are mapped to design parameters in matrix

form. The diagram shows that in order for a design to be decoupled, this matrix must be

triangular and to be completely uncoupled, it must be diagonal.

19
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FRII1 X 0 0 0 DP11

FR21 0 X 0 0 DP21

FR22 0 0 X 0 DP22

FR31L 0 0 0 X DP31

Uncoupled

Decoupled

0
-X

X

0
X

Coupled -

Figure 3: Modularity in Axiomatic Design

Baldwin and Clark tout the power of modularity in their seminal work. In fact, their book

focuses on how modularity has affected the computer industry. The effect of

modularization on this industry has been so positive that "today, this highly evolved,

decentralized social framework allows tens of thousands of computer designers to work

on complex, interrelated systems in a decentralized, yet highly coordinated way."" This

thesis identifies trends that make this decentralization harder to maintain.

2.1.3 Definitions of Types of Modularity for This Thesis

This research defines two types of modularity that are important to the discussion. There

is product architecture modularity, which is the degree to which a product can be broken

into components that can be individually designed and manufactured according to

20
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predetermined design rules; and there is industry structure modularity, which is the

degree to which those individual components are designed and manufactured by different

firms. Thus, the terms "modular industry structure" and "horizontal industry structure"

will be used interchangeably throughout this thesis, as will "integral industry structure"

and "vertical industry structure," or "vertical integration."

Equally useful for the following discussion is this definition of modularity: modular

systems have the property that all important interactions occur across defined interfaces,

while integral systems are those in which significant interactions between chunks occur

across both defined interfaces and undefined interfaces, sometimes called "sneak

paths." 13 It will be seen that this is especially true as the discussion of information and

power systems begins in the following section.

It should also be pointed out that integrality has a different meaning than what most

microelectronics industry insiders refer to as integration. Integration means putting more

functions on a single die, or computer chip, or packaging more chips together so that

there is less slow down in propagating the signals off-chip and onto another one within

the computer system. The trade-off is between the amount of performance benefit the

architect can obtain through integrating more functions and the cost of the integration in

either yield (a larger die will have more probability of being scrapped due to defects) or

13 Discussion with Dan Whitney, January 16, 2004.

21



testing costs (placing more chips in a single package and doing so reliably). While this

can be considered one form of integrality, it only addresses the chip level. When dealing

with the entire computer system, there are many other architecture decisions that make

the system more integral beyond simply integrating more functions on a chip. This will

become evident in the discussion of power management below.

22



2.2 Information and Power Systems

Many have written on the topic of the inherent differences between mechanical and

information systems. Whitney14 extensively explores this topic in the context of

integrality versus modularity of design. Information systems', such as software or digital

hardware (signal processors), value-related function is information transfer; complex

electro-mechanical systems' (CEMs) main function is significant power transfer (see

Table 2). This fundamental difference in system function has significant consequences

for modularity of architecture. Specifically, signal processors lend themselves to almost

complete modularity of design and all of the design automation efficiencies (component

libraries, design rule checking) that go along with it, while mechanical systems are

"stuck" with integral designs that require complex interactions of subsystems and

components and, therefore, significant redesign and consideration of system-level side

effects when part of the design is changed. Table 2 shows some examples of each of

these types of systems and their associated peak powers.

23
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SIGNAL PROCESSORS PROCESS AND TRANSMIT
SIGNIFICANT POWER

four digit mechanical gear gas meter dial (1 Polaroid camera (30W peak?)
mW?)
ball-head typewriter (30 mW peak at the missile seeker head( 50W peak?)
ballhead?)
sewing machine (1 W?) laser printer (1 KW, much of which is heat)

Marchand calculator (I1OW?) automobile automatic transmission (50
KW+)
automobile (100 KW+)(half or more
dissipated as heat from engine)
airplane (10 MW )
ship (40 MW+)

Table 2: Examples of Signal Processors and Power Processors 15

One of the main reasons for this difference is the impedance of the connections between

components. VLSI circuits and software component modules can easily be designed so

that there is significant impedance mismatching and, hence, no "backloading" occurs. In

other words, since the information can be transferred at low power, the output of one

module is not significantly affected by the input of the next module(s) in an undesirable

way. Thus, information systems can be verified to a large extent at the component level

because the components will behave in a predictable way when they are assembled.

Conversely, systems that transfer significant power cannot be cost-effectively designed to

mismatch impedances to the point where system-level side effects become unimportant.

24
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The classic analogy is that in order to obtain such a ratio of input to output impedance,

for a CEM (in this case, a jet engine), "the turbine would be the size of a house and the

propeller the size of a muffin fan. No one will build such a system. Instead, mechanical

system designers must always match impedances and accept backloading. This need to

match is essentially a statement that the elements cannot be designed independently of

each other." 1 6 In other words, there is necessarily a limit to the amount of modularity of

architecture due the backloading in CEMs.

This limit to the modularity of systems that transmit significant power has profound

consequences for the future design of mobile computers and, indeed, the entire computer

industry. As will be seen in the following chapters, not only does the relentless pursuit of

Moore's Law require more and more power from computer systems, but also meeting the

demands of mobile computing customers requires better system-level power management

solutions. Thus, the limitations that affect the modularity of CEMs will come to bear on

mobile computers because they will become CEMs.

25
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2.3 The Fine / Whitney Framework for the Dynamic Modularity of Industries

One of the most important aspects of systems thinking is the dynamic nature of both the

internal components and connections comprising the system and external forces acting on

the system. An interesting framework for the dynamic nature of the modularity or

integrality of product architectures and the subsequent horizontal or vertical organizations

of firms in the industry is presented by Fine and Whitney.1 7

Their argument follows this reasoning:

Outsourcing creates two different kinds of dependency: least risky is the dependency for

capacity (the firm retains the knowledge); the most risky is the dependency for that

knowledge. However, the degree of risk in either of these two cases is influenced by the

degree to which the architecture is modular. This is summarized Table 3 below:

26
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MATRIX OF DEPENDENCY AND OUTSOURCING

DEPENDENT FOR
KNOWLEDGE

A POTENTIAL
OUTSOURCING

TRAP

YOUR PARTNERS
COULD SUPPLANT

YOU. THEY HAVE AS
MUCH OR MORE

KNOWLEDGE AND CAN
OBTAIN THE SAME

ELEMENTS YOU CAN.

U-j

0
2
0

L

C0
w

DEPENDENT FOR
CAPACITY
BEST OUTSOURCING

OPPORTUNITY
YOU UNDERSTAND IT, YOU CAN

PLUG IT INTO YOUR PROCESS OR
PRODUCT, AND IT PROBABLY CAN

BE OBTAINED FROM SEVERAL
SOURCES. IT PROBABLY DOES
NOT REPRESENT COMPETITIVE
ADVANTAGE IN AND OF ITSELF.

BUYING IT MEANS YOU SAVE
ATTENTION TO PUT INTO AREAS
WHERE YOU HAVE COMPETITIVE

ADVANTAGE. SUCH AS
INTEGRATING OTHER THINGS

CAN LIVE
WITH

OUTSOURCING

YOU KNOW HOW TO
INTEGRATE THE ITEM SO YOU

MAY RETAIN COMPETITIVE
ADVANTAGE EVEN IF OTHERS

HAVE ACCESS TO THE
SAME ITEM.

Table 3: The Effect of Modularity on Outsourcing Decision1 8

The work goes on to show that the structure of the product and that of the industry can be

quite similar; both may tend to be integral/vertical or modular/horizontal at any one time.

More importantly, these configurations appear to be unstable for a variety of related

technical and economic reasons, and have been found in several industries to cycle from

27

WORST OUTSOURCING
SITUATION

YOU DON'T
UNDERSTAND WHAT

YOU ARE BUYING OR HOW
TO INTEGRATE IT.

THE RESULT COULD
BE FAILURE SINCE YOU
WILL SPEND SO MUCH
TIME ON REWORK OR

RETHINKING.

0

0
a

L

0

0
w

0l

0
C,)
H
0

I-

1-
2
w.0
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one form to the other and back. The bottom line is that no outsourcing or architecture

modularity policy that seems suitable at a given time is likely to remain suitable, due to

such upsetting factors as technological advances, regulatory changes, and other economic

shifts. This is summarized in the "double helix" 9 model below:

IN-HOUSE SEPARABILITY
KNOWLEDGE'-- OF THE

REQUIREMENTS INTEGRAL MODULAR ~~ PRODUCT EASE OF
PRODUCT. PRODUCT, OUTSOURCING
VERTICAL HORIZONTAL

CO INDUSTRY INDUSTRY MODULES
COMPETENCIES - BECOME

COMMODITIES SKILL FCOHEREN E DIFFICULTY OF SUPPLIERSOF PRODUCT MANAGING PROFIT bN
& PROCESS DEVELOPMENT EACH MODULE

CORE , PRESSURE TO INC TIVE TO AOILT F DEPENDENC
RIGIDITIES DIS-NTEGRATE INTEGRATE O PCKR

OFF

MARKET SKILLS OF TECHNICAL
CHANGES SUPPLIERS--* ADVANCES

TECHNICAL
ADVANCES

Figure 4: The Fine / Whitney "Double Helix"2 0

Fine's follow-up work on the double helix further enumerates the forces of integration

and disintegration, summarized in Table 4 below: 2 '

'9 The shape more closely resembles a figure-8, however, the "double helix" nomenclature, like many
names in the domain where science meets business, has stuck despite the obvious misuse. It seems to have
stemmed from an attempt to relate the study of business and biology.
20 From [Fine and Whitney, 1996]
21 [Fine, 1998]
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Incentive to Integrate Incentive to Dis-integrate
Technical advances in one subsystem can The relentless entry of niche competitors
make that the scarce commodity in the hoping to pick off discrete industry
chain, giving market power to its owner segments
Market power in one subsystem encourages The challenge of keeping ahead of the
bundling with other subsystems to increase competition across the many dimensions of
control and add more value technology and markets required by an

integral system
Market power in one subsystem encourages The bureaucratic and organizational
engineering integration with other rigidities that often settle upon large,
subsystems to develop proprietary integral established companies
solutions

Table 4: Forces in the Double Helix

The next three chapters will discuss power management as a technical problem that

cannot be solved solely within a module as a new driving force of industry integration.

These would best fit in the double helix model as a new integration incentive force: "the

inadequacy of a modular architecture to overcome technical barriers."
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2.4 Moore's Law: Cultural Icon, Industry Driver, and Corporate Monument

2.4.1 The Original Law

One of the most important influences in the microelectronics and computer industries

over the past 40 years has been Moore's Law. This idea that the circuit density and,

hence, speed of microelectronics will continue to double every 18 months is based

loosely on a statement made by Intel founder Gordon Moore in a 1965 article. Part

observation, part prognostication, his exact quote is, "The complexity for minimum

component costs has increased at a rate of roughly a factor of two per year. Certainly

over the short term this rate can be expected to continue, if not to increase. Over the

longer term, the rate of increase is a bit more uncertain, although there is no reason to

believe it will not remain nearly constant for at least 10 years." 22

In the 1975 IEEE International Electron Devices meeting, Moore revised his statement to

the number of transistors on a chip doubling every two years. Somewhere along the way,

it became 18 months, as this is the approximate actual time period of density doubling

over the past 30 years (see Figure 5).
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2.4.2 The Real Law

Regardless of the preservation (or lack thereof) of his original wording, Moore's Law has

had a profound impact on the computer user's psyche, the industry marketplace, the

industry's roadmap, and, thus, computer component product development. Exploring

each of these aspects to the complex phenomenon that is Moore's Law helps to set the

context for the complex industry dynamics that are currently taking place in the computer

industry.

transistors
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Figure 5: Circuit Density of Intel Microprocessors 1970-200013

0

Although quite obviously not a "law" in the traditional scientific sense, Moore's Law is

at once a cultural icon, industry driver, and corporate monument. Even though it is often

23 Figure from: http://www.intel.com/research/silicon/mooreslaw.htm. Accessed December 2003.
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incorrectly quoted to mean the doubling of processor speeds every 18 months, this is the

standard which consumers have come to expect from the marketplace. See Figure 6 for a

plot of both raw processor speed (external clock rate in MHz) and "true" processor speed

(amount of processing the chip can do in one second in Millions of Instructions Per

Second or MIPS) over time. A regression analysis of both of these lines yield a slightly

different exponential trend than the 1.5 years that is most frequently quoted: that raw

2speed (in MHz) over time doubles only every 2.9 years (R = 0.95) and that the true

speed (in MIPS) doubles only every 2.1 years (R 2  0.95).

10000 -

1000

100 -
-+- Clock speed (MHz)

10 m MIPS
10

0.1
1970 1980 1990 2000

Figure 6: Speed of Intel Microprocessors 1970-200024

24 Data obtained from: http://computer.howstuffworks.com/microprocessor l.htm. Accessed November
2003.
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2.4.3 The Self-Fulfilling Prophecy

Furthermore, Moore's Law (combined with the marketing strength of "Intel Inside") has

made the processor type and speed the most important parameter in consumers' personal

computer purchase decisions. The average consumer virtually ignores important

parameters such as memory size and frontside bus speed, which can affect the computer

system performance just as much as the processor speed.

The aforementioned market influences are important because these, combined with

industry roadmaps and software developers, help to make Moore's Law a self-fulfilling

prophecy. The International Technology Roadmap for Semiconductors is a document

prepared by a consortium of chipmakers, equipment/material suppliers, and research

institutions that lays out the next 15 years of semiconductor technology in order to help

guide investments and research efforts "as [they] strive to extend the historical

advancement of semiconductor technology and the integrated circuit market." 25

The document even goes so far as to mention Moore's Law by name. Thus, the law's

influence has become so great that it actually has become the worldwide target for

technology development.

Another positive feedback loop that helps to guarantee the persistence of Moore's Law

has been the software industry. Wirth's Law, which states: "Software gets slower faster

25 International Technology Roadmapfor Semiconductors, 2003 Edition, Executive Summary, page i.
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than hardware gets faster," 2 6 sums up why Intel has been able to push MHz onto the

marketplace. In order to run the more recent, more bloated software applications with

even more unneeded features than the last version, a faster processor is deemed

necessary. However, in reality, only some additional memory is probably sufficient for

most users who will never tap into "bloatware" such as the visual basic features of

Microsoft WordTM.

2.4.4 The Method Behind the Madness

But why all the emphasis and hype surrounding Moore's Law? With an 82.9% market

share in x86 (IBM-compatible) microprocessors in 2003, Intel's strategy is aimed just as

much at expanding the overall PC market as it is at capturing market share from its chief

rival, AMD (15.4% market share).2 7 Therefore, Intel attempts to drive a 3-year

replacement cycle for desktop PCs and a 2-year replacement cycle for notebook PCs.

Much of the Intel marketing machine over the past 10 years has been focused on pushing

speed upgrades onto consumers who already own an older PC at the rate of Moore's Law.

Convincing consumers that these upgrades are necessary becomes even more critical for

26 Nicklaus Wirth is a retired professor from the Swiss Federal Institute of Technology in Zurich. Also
commonly stated as, "Intel giveth and Microsoft taketh away."
27 Dean McCarron, principal analyst at Mercury Research as quoted in "Intel, AMD comfy during fourth
quarter", on CNET News.com, February 3, 2004: http://news.comn.com/'2100-1006-5152255.html.
Accessed February 2004.
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Intel to maintain their profits in the face of decreasing average selling prices for state-of-

the-art processors.

This strategy has served Intel very well as they have obtained their dominant position in

the industry. However, the concept of trying to "push" faster and more powerful

microprocessors onto the customers is very much in contrast with a fundamental tenet of

the Lean Enterprise: the "pull" philosophy.28 This makes Moore's Law, in the language

of lean, a "corporate monument" an ideal or policy that has been passed down and

seems too powerful to change. Perhaps this is summarized best by Michael Malone's

February 2003 article in Red Herring:

Industry watcher Donald Luskin noted earlier this year that even Intel is
finding itself being slowly crushed by Moore's law. He pointed out that just to
keep its revenue level, Intel must convince its customers to double their power
every 18 months or to stick with its current offerings and find twice as many
customers.

That was a lot simpler five years ago, when the economy was strong,
much of the market was still untapped, and wafer fabs, which double in price
every four years (jokingly called "Moore's second law"), were a lot cheaper.

"That's why Intel's revenue growth just imploded, even as they ship record
volume," said Mr. Luskin. "In this deep recession, Intel just can't keep up with the
law named after its founder." Mr. Luskin wasn't talking about ever-more-powerful
Pentiums-Intel can do that-but ever-hungrier customers. Even Intel can't
manufacture them.

As Mr. Schmidt points out in his notes, with Intel's research and
development costs doubling every 18 months (apparently R&D follows Moore's
law as well), in another 20 years the company's R&D costs will be $31 trillion
annually. Something must give long, long before then.

But give the last word to Mr. Moore himself, who once said, "Obviously,
you can't just keep doubling every couple years. After a while the numbers just
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become absurd. You'd have the semiconductor industry alone bigger than the
entire GDP of the world."

Clearly, this "manufacturing" of customers is not indefinitely sustainable, but even if it

were, the industry is about to hit some major fundamental physical challenges in the form

of power management for mobile computers. The next chapter will set the stage with

some background information on the history of the mobile computer industry, while the

subsequent one will detail the technical barriers to maintaining Moore's law facing the

industry today.
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3 The Mobile Computer Industry

Since mobile computers (some would say there are still no truly mobile computers) have

not been around for long, it is useful to first briefly look at the history of the computer

industry structure before mobile computers. Then, the state of the industry when mobile

computers entered the picture will be explored. This is essentially where the industry is

today, but, as this thesis proposes, this has been slowly changing and is expected to

continue to do so going forward.

3.1 A Brief History of the Computer Industry's Structure

Most accounts of the history of the computer industry tell the story of the architecture

changes from the standpoint of the type of system delivered: the design of room-sized

calculation machines made of vacuum tubes in the 1940s; the emergence of IBM and its

mainframe computers in the 1950s and 1960s; the arrival of the minicomputer in the

1970s; the personal computer in the 1980s; the internet in the 1990s 29; and now the era of

mobile/ubiquitous computing that has yet to be completely defined. However, important

to this discussion is the change in the underlying modularity of the systems delivered, and

this story has two major turning points.
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First, in 1964, IBM introduced the System/360, the first truly modular design. Before

this time, designs were not modular; a business bought a computer by choosing among a

group of integral mainframe systems with no mix-and-match capability of components.

However, the System/360 was a completely proprietary modular design with all

components initially designed and manufactured by IBM. This was strategically

important to IBM because, "once a user was committed to the System/360 family of

machines, a complex instruction set and even more complex operating system made it

expensive to switch to another vendor's system. This was not a big problem for most

users, however, because the breadth of the family, made possible by its modular design,

made such switches unnecessary." 30 The proprietary nature of the System/360 meant that

although the design was modular, the industry structure was still vertical. Figure 7

illustrates the situation, which lasted approximately until the mid-80s. However, the

seeds were sown for the growing number of component manufacturers to "capture the

rents" when the second major turning point occurred.
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Figure 7: Computer Industry Structure Prior to 19853"'32

In August of 1981 and in response to the growing market for personal computers fueled

by successes such as the Apple II33, IBM released the PC. It was not the first personal

computer, but it was the first IBM computer with an open architecture. 34 This means that

the components were made by third-party companies using freely available interface

standards. This is significant because, for the first time, there could be open competition

3 From [Fine and Whitney, 1996] The original is attributed to Andrew Grove, CEO of Intel from 1987-
1998.
32 DEC is Digital Equipment Corporation, BUNCH is an acronym for the five second-tier computer
suppliers: Burroughs, Univac, NCR, Control Data, and Honeywell

33 [Fine, 1998]

3 "Inventors of the Modem Computer: The History of the IBM PC - International Business Machines",
About.com: http:/inventors.about.com/library/weekly/aaO3l599.htm, Accessed Feb 2004.
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among the component manufacturers. This led to higher quality components from

companies such as Intel and Microsoft and loss of control in defining the value-add

components by IBM. In fact, the market capitalization of Microsoft passed IBM's for the

first time in 1995.35 The horizontal industry structure created is shown in Figure 8. It

had its roots in the modular system architecture of the System/360 and completed the trip

around to the horizontal / modular side of the double helix with the advent of the open

architecture PC, which "let Intel inside."

Horizontal Industry Structure
Computer Industry Example, 1985-95

Microprocessors Intel IAMD TI Fl
Operating Systems Microsoft Mac Jnix

Peripherals HP Canon Samsung Etl

Applications SoftwarE Microsoft Lotusj Borland etc

Network Services Novell Lotus EDS etc

Assembled Systems HP Corm pa IBM Toshiba tc

Figure 8: Computer Industry Structure After 198536
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3.2 Along Comes the Mobile

From niche market beginnings in the Grid Compass, a computer used by NASA on the

space shuttle program in the early 1980's that was one fifth the weight of any model

equivalent in performance (see Figure 9), the mobile computer industry has exploded into

a nearly $100 billion per year industry. In fact, laptop sales eclipsed U.S. retail dollar

sales of PCs for the first time in May 2003.

Figure 9: The 1979 Grid Compass (left) and the 1989 NEC UltraLite (right)

In 1989, the NEC UltraLite (also pictured in Figure 9) was released, considered by most

to be the first "notebook style" computer, resembling most of the machines sold today.38

The trend apparent in the form factor of these mobile computers is that the profile and

hence, internal volume of the machine, becomes less and less. Meanwhile, the power

37 [Alexander, 2003]
38 "History of Laptop Computers ", About.com: http://inventors. about.conllibrary/inventors/bI laptop.htm.
Accessed Feb 2004.
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needed by the processor and other components has increased at an exponential rate. As is

discussed in the following chapter, this limits the amount space for a cooling solution and

the volumetric airflow through the cooling device. Furthermore, the desired trend is for

lighter machines that run longer without plugging in to an AC power outlet, meaning

there is less space and weight available for a portable power source. Both of these design

constraints are power management issues, one that deals with heat dissipation and the

other with battery life.

In the early days of personal computing, under the DOS and CP/M operating systems,

there was no power management-computers either used 100 percent of their power

requirements or were switched off. Personal computer power management history dates

back at least to 1989, when Intel shipped processors with technology to allow the CPU to

slow down, suspend, or shut down part or all of the system platform, or even the CPU

itself, to preserve and extend battery life. Thus, the mobile computer platform started the

drive for PC power management. Early attempts at mobile PCs, including the Grid

Compass and other "luggables" with heavy cathode ray tubes, drew so much power that

they had no alternative but to plug into external AC power sources. In the late 1980s, the

development of low cost, reliable liquid crystal displays (LCDs) made battery powered

laptops possible, and once hardware technology crossed that line, a sequence of hardware
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and software improvements began that have combined to increase the performance and

battery lifetime of laptops."

The first attempt at using component manufacturer cooperation to reducing PC power

consumption was the Advanced Power Management (APM) specification, introduced in

1992 by Intel, IBM, and Microsoft. APM was aimed at coordinating the power

management activities of the operating system and the BIOS (Basic Input / Output

System). However, APM was flawed in a number of ways and gave way to the

Advanced Configuration and Power Interface (ACPI) specification of 1997, allowing

centralized control of power management by the operating system. "ACPI required Intel

and other chipset developers to provide management capabilities in the hardware,

Microsoft to implement functionality in Windows, motherboard designers to use the

ACPI chipsets and provide the related support, power supply suppliers to implement dual

mode supplies, and driver writers to support power management functions."40 Hence, the

integrality of design required to deal with power management in mobile computers had

already started to increase in the early 90s as is evidenced by the greater amount of

cooperation needed among the component manufacturers (i.e. a greater number and

complexity of interconnections among modules). In other words, as the problems with

high power side-effects become greater, so does the need for integral solutions.

39 [Kolinski, Chary, Henroid, and Press, 2001]
40 [Kolinski, Chary, Henroid, and Press, 2001]
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3.3 A Short Reprise Before the Punch Line

Now that this thesis has discussed:

" the theory of modularity;

" fundamental differences between information processing and power transfer

systems that enable a greater extent of modularity and design automation for

information systems;

" the dynamic nature of the integrality and modularity of a product architecture and

its effects on the industry structure;

" Moore's Law and its implications for industry and society;

" firm dynamics of the computer industry and its present modular architecture /

horizontal structure; and

" new design challenges facing the computer industry with the advent of the mobile

platform;

the next chapter will explore the two major forces acting on the product architecture of

mobile computers that are paving the way to change the industry structure back to

integral / vertical.
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4 Power as a Chief Limiter in Mobile Computer Modularity

The Japanese are a tough lot to please when it comes to gadgets. So when
NEC Corp.'s stand at the WPC Expo computer trade show in mid-September
started to draw crowds like Tokyo's Shinjuku Station at rush hour, it was clear
something extraordinary was on display.

It turned out to be a fuel-cell-powered laptop. The 4 1/2-lb. computer can
go five hours before its cell needs to be refilled with methanol. That performance
beats all but the hardiest of laptops running on regular batteries.

The above speaks volumes about the two major forces acting on the mobile computer

industry structure:

" Push: There is a major power crisis looming for mobile computers and in order to

continue with their strategy of driving a 2-year replacement cycle for laptop

processors, Intel must overcome this system limiter. So, in order to continue

pushing MHz onto the market, Intel must find new ways to overcome the power

constraints; many of these solutions involve altering other parts of the system than

the processor itself and, therefore, require an increased level of product

architecture integrality.

* Pull: Users are willing to put a flammable liquid into their laptops to get a mere 2

extra hours of operation: this demonstrates that users are starting to value other

product features than MHz and are willing to spend their money on ancillary

system features, such as battery life. Thus, Intel is forced to design and sell other

high-margin components as users become unwilling to spend their money on the
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cutting-edge microprocessors. By requiring that Intel diversify its method of

value delivery from MHz to true mobility (light weight, long battery life, wireless

connectivity), the mobile computer users are pulling an increased level of

diversification and, hence, vertical integration out of the firm.

As will be seen below, both of these forces will cause a more integral industry structure

because the solutions to these problems require a more integral approach to the design of

mobile computers. Furthermore, both of these forces are a direct result of difficulties

with power management at the microprocessor and the system level. That is, mobile

computers are turning into CEMs that transmit significant power. However, this case is

different than traditional CEMs in that the significant power is a side effect of the

information processing function of the mobile computers. Thus, according to Whitney's

theory, the mobile computers are at risk of becoming non-modular because of

transmitting significant power, but are made even more so because important interactions

are occurring across "sneak paths" rather than defined interfaces. The challenge of the

mobile computer system designer, then, is to make these significant power interfaces

more well-defined so that power can be minimized and released from the densely packed

system in an orderly way.
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4.1 Pushing Moore's Law: CMOS Scaling and Power

As described in Section 2.4, Moore's Law has fulfilled its promise of cheaper and faster

computers over the last 40 years. Engineers and scientists have achieved this primarily

through shrinking the fundamental building block of the microelectronic circuit, the

CMOS (complementary metal-oxide-silicon) transistor. Shrinking the size alone enables

a transistor that switches faster and uses less power per switch at the cost of the new

equipment to make the smaller circuits. However, these advantages are meaningless

without increasing the number of switches per unit time, or the frequency, that the device

performs. Furthermore, the number of devices per unit area is increased, as each

transistor now occupies less total area. This allows the increase in "complexity for

minimum component costs" that Moore wrote about; more transistors can be cost-

effectively put on the same chip.

The above is known as transistor scaling and there are two other key historical scaling

factors that are important to the power discussion:

1. Vdd, or the drive voltage, is decreased to offset the power added to the chip42 by

increasing the frequency and the number of transistors. This is because the

42 It is also necessary to scale the drive voltage to increase the reliability (continued operation over time) of
the transistors. This aspect of scaling started to become prevalent only in the early 90's; drive voltages had
been kept relatively constant prior to that time.

47



switching, or active, power is proportional to the square of the drive voltage. This

relationship is given by the equation:

4CTIVE TOTALVdd2

where CTOTAL is the total capacitance of the loads (the gates and wires) on the chip

being charged and discharged at each switching andf is the frequency of the

switching.

2. V,, or the threshold voltage of each transistor in the given technology, must also

be scaled along with Vdd in order to maintain the same transistor switching speed.

This is because the switching speed is a direct result of IDS, or the drain to source

current, of the transistor. The drain to source current when the device is on is

proportional to the square of the difference between Vdd and V, given by this

equation:

IDS = a(Vd -dV, )2

where a is a constant for any given transistor that depends on the physical

properties of the silicon and the dimensions of the transistor gate and oxide

thickness.

However, decreasing V, has another side effect that has not been important until recently.

This increases the non-switching, or standby, power that the transistor consumes while it
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is not performing any useful function. The predictive equations for standby power are

quite complex44, but this quantity can be measured empirically by:

PSTANDBY = sb dd

where I, is the standby current produced when the chip is powered on but not switching.

Figure 10 illustrates the relationships described above in a causal loop diagram.

Total Processor
Undesired Side-Effeci Power

Processor Active Processor Standby
Power Power

Leakage Current

Processor Total Transistors +
Desired R sul Frequency Per Chip

Transistor Speed
Vt Scaling

Transistor

Dimension Scaling

Vdd Scaling

Figure 10: Causal Loop Diagram of Traditional Scaling's Effect on Power

44 For a thorough discussion of transistor leakage (standby current) mechanisms, see: Roy, Mukhopadhyay,
and Mahmoodi-Meimand, "Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-
Submicrometer CMOS Circuits", Proceedings of the IEEE, Vol. 91, No. 2, February 2003.
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Thus, there is a tradeoff that must take place among these scaling parameter as each new

successive technology generation is architected. Table 5 below describes the typical

scaling factors that have been used.

Parameter Scaling Factor Effect on Power
Transistor Dimension 0.70 decrease
Frequency 1.43 increase
Number of Transistors 2.00 increase
Drive Voltage, Vdd 0.75 decrease
Threshold Voltage, V, 0.75 increase

Table 5: Recent Approximate CMOS Scaling Factors

The standby power had been orders of magnitude less than the active power until

recently. Figure 11 illustrates the microprocessor power trends that historical CMOS

scaling has produced.
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Microprocessor Power Trends
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Figure 11: Emergence of Standby Power as Significant Design Parameter44

The exponential trend in Figure 11 illustrates that total power and standby power are

becoming significant design parameters for microprocessor. In the words of Kerry

Bernstein of the IBM Watson Research Center in his keynote address at the 36th

International Symposium on Microarchitecture in December of 2003, "Power has become

the predominant limit to scaling; new technologies have only limited ability to mitigate

power."47 The next two sections show this to be the case for the two main power

management issues for mobile computers: cooling and battery life.

45 [Rusu, 2001]
46 [Thompson, Packan, and Bohr, 1998]

47 [Bernstein, 2003]
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4.2 Peak Power Density and Cooling Costs

The real issue is not that the power itself is increasing at an exponential rate, but that

power dissipation produces heat, and the heat adversely affects the performance of the

chip. Each transistor and wire on the chip acts as a resistor that produces heat when a

current passes through it. The amount of heat generated is proportional to the resistance

of the circuit element, the amount of current going through the element, and the length of

time that the current is going through it. Specifically, the heat produced, measured in

Joules, is given by the equation:

Heat = 12 Rt

where I is the current in Amperes, R is the Resistance in Ohms, and t is the time in

seconds.

Heat adversely affects the performance of transistors and, hence, the microprocessor in a

number of ways and the effects are both long-term and short-term. Over time, high

device temperatures cause hot carrier degradation (HCD), which shifts the Vt and lowers

the IDS of the transistors, resulting in slower performance and higher standby currents.

HCD can even eventually lead to total device failure. 48 To make matters worse, HCD

increases as device dimensions decrease with transistor scaling. Another long-term effect

of heat is electromigration, which is the movement of metal in wires that sustain high

48 [Mahapatra, Parikh, Rao, Viswanathan, and Vasi, 2000]
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currents and temperatures. This can eventually lead to open connections (disconnected

wires) and the failure of circuits.

Second, and most important for this discussion, is short-term performance degredation of

the computer system caused by heat. This happens when the processor experiences a

throttling or an Fmax failure event.49 An on-board sensor monitors the chip temperature

and halts the execution of instructions if the maximum operating temperature is reached.

This is known as throttling and it degrades the operating performance, but prevents the

chip from overheating and potentially destroying itself. An Fmax failure event occurs

when the processor becomes too hot to function normally at the frequency that it is set to

run. Transistors and interconnects slow down as temperature increases and this can result

in information output by one circuit not being ready in time for use at the input of the

next circuit. Efforts are made before the processors are shipped to insure that each chip

will rarely experience an Fnax failure, but they still do happen, especially since users do

not always operate the processors within the rated temperature and frequency range.

In other words, a microprocessor designed to operate at 3GHz can only do so if the heat it

generates is removed from the system. A summary of the design tradeoffs for removing

heat from a mobile computer is illustrated in Figure 12. As can be seen, major limitations

are imposed by the cooling solution costs and the small form factor of a laptop.
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These Quantities are Severely Restricted in a Laptop

Cost of Cooling Laptop Size
Solution

+ +
+ Space for Cooling

Airflow Solution

Effectiveness of

Cooling Solution

Allowable Peak Power
Density of Processor

Processor
Frequency

Laptop Speed

Figure 12: Causal Loop Diagram of Cooling Cost and Size Constraints for a Laptop

Temperature is the result of power density sustained for approximately five or more

seconds. 50 Thus, it is actually the peak power density (heat flux) that is important in

determining the type of cooling solution needed for a particular processor. Figure 13

below shows the trend in peak power density of processors and the limits of each of the

respective cooling solutions, as well as the cost of each of those solutions.
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Figure 13: Processor Power Limits for Present Cooling Technology 5'

As can be seen, the cost of cooling will become prohibitively large in the near future

(within 3 years) given the current peak power density trend. Thus, continuing along the

trajectory of Moore's Law is already becoming difficult in the small form factor platform

of mobile computers as cost-effective cooling limits have almost been reached. In the

words of Intel fellow Shekhar Borkar, "Today you are limited by power. The practical

limit is around 75 watts, because if you look at the cost of cooling, that too will start
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increasing exponentially. No one is going to buy a thousand-dollar refrigerator to cool a

thousand-dollar PC!"52

The situation has reached a point that the new G5 chip from IBM cannot be put into a

Powerbook (Apple's mobile computer product) because it cannot be cost-effectively

cooled. In fact, nine fans are required for the G5 in a desktop platform.53 Clearly,

modifications to the Powerbook architecture are needed beyond advanced cooling

solutions to solve the problem of putting the latest processor inside.

5 2 interview with Intel Fellow Shekhar Borkar "Delaying 'Forever' - The Future of Moore's Law."
http://www.intel.comlabs/features/mi0303 I.htm. Accessed January 2004.

5 [Salkever, 2003]
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4.3 Market Pull: Average Power and Battery Life

Equally important to the mobile computer user is the separate but related power

management issue of battery life. Again there is a tradeoff that occurs, but this one,

dealing with supplying portable power to a laptop, has to do with limiting size and weight

rather than limiting temperature.

Processor
Frequency

Laptop Speed

Processor Power

Battery Life

Battery Weight

Laptop Weight

User's Utility

Figure 14: Causal Loop Diagram of Laptop Speed / Weight / Size Tradeoff

Batteries are rated to support an amount of average power for given amount of time. This

is measured in Watts x Hours. Thus, the higher the average power of the entire computer
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system (including the processor), the shorter "unplugged" operating time the laptop will

have. However, more WxH means a battery is heavier and larger. The causal effect of

these tradeoffs on the user's utility is shown in Figure 14.

The current typical lithium-ion battery technology provides 24 to 72 WxH of capacity.

The other components in a mobile platform except for the processor consume about 12W

of average power.54 Thus the 12W can be added to the expected future average power

trend of microprocessors to yield a graph of system power over time, as shown in Figure

15. The starting point is the 1W average power of the Pentium M5 5 of today and the

trend follows the same exponential presented in Figure 11. The total unplugged

operation time can then be computed for both ends of the capacity envelope (24 and 72

WxH), also shown in Figure 15. As can be seen in the figure, the life of even the best

performing batteries of today will come nowhere near meeting the power demands of

tomorrow's laptops unless the power trend is halted. Within the next 10 years, even the

72 WxH batteries, the heaviest and most expensive, will last less than 2 hours. This may

seem like a long time horizon, but bear in mind that the current solution is already not

satisfactory to most laptop users: the current choice is between a lightweight machine

with about 2-3 hours of battery life or a heavier machine with up to 6 hours.

5 [Gochman, et al, 2003]

5 The Pentium is the runaway leader in performance for power of mobile processors available today and it
has already begun to sacrifice speed for power, so it is a realistic starting point for a "new" exponential
trend that will not have a discontinuity due to a shift in Intel's strategy of offering a power optimized
processor.
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Figure 15: Processor Power Limits for Present Mobile Supply Technology

The impending doom of Figure 15 is spelled out pretty well by this article from

Newsweek.com mourning the absence of a new battery technology in the face of an

urgent need for one:

Let's face it: the biggest challenge for advanced road warriors today isn't
finding the nearest WiFi hotspot. It's making sure that the battery doesn't run out
in the middle of a crucial download. Ironically, in our headlong rush to create
sophisticated untethered computing, the most problematic technology turns out
also to be the oldest: those nondescript metal cylinders that never seemed to be
included with our Christmas toys.

Suddenly, however, the quest for long-lasting portable power is on
everyone's mind, from blue-chip Silicon Valley venture capital firms to Japanese
giants like Sony and Toshiba. And it looks like there are only two options:
continued improvements in existing technology, or a major breakthrough, most
likely miniature fuel cells that produce electricity using methanol as fuel.

Batteries are a very old technology-2,000 years ago, jewelers in Baghdad
apparently used simple batteries to electroplate their creations with thin layers of
gold or silver. The technology was reinvented early in the eighteenth century,
when Alessandro Volta demonstrated the first Voltaic cell for Napoleon
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Bonaparte, giving us both the concept of the battery and the name of the unit by
which electric potential is measured. In the 200 years since, the fundamental
concept hasn't much changed-only the materials within have evolved, growing
increasingly exotic and culminating in the current power champion, lithium-ion.

But at present there's not another new battery ingredient on the horizon
that can substantially beat lithium-ion. And that's a major problem. Moore's Law
states that the complexity of circuits doubles every 18 months, while on average
battery capacity increases only 5 percent to 10 percent a year. Generally speaking,
the more complex a circuit-specifically, the more transistors on a
microprocessor-the more current it will draw. Now add to that the new demands
of wireless computing, which uses additional power to transmit and receive, and
it's pretty clear we're approaching a major energy crisis in the portable world.56

This power management issue sets the stage for the second major force acting to limit

modularity of mobile computer design: the pull of the market. This topic was explored at

the introduction of this chapter, but is perhaps best summed up industry observer Paul

Boutin:

The confusion over the meaning of Moore's Law led some industry
watchers to raise their eyebrows at Intel's new, unspoken shift in strategy: With
the launch of the Centrino mobile chip set, Intel has abandoned the shorthand
definition of Moore's Law. For the first time in its history, Intel isn't touting the
clock speed of a new CPU. The Pentium M central processor at the core of
Centrino ticks over at a lazy 1.6 gigahertz, 20 percent slower than last year's
mobile version of the Pentium 4. But despite its slower clock speed, Centrino
doesn't mean that Intel has given up on Gordon.

With Centrino, Intel proves that all those transistors can be used for lots of
things, not just sheer speed. Pentium M's all-new design beats the P4's count of 54
million transistors on one chip with a new high of 77 million. It's not double the
old count, but it's a big leap. Instead of cranking up the clock speed and then
hunting for reasons for PC owners to upgrade, Intel has turned around to meet its
customers' biggest grievance: laptops that run out ofjuice. The extra transistors on
the Pentium M bring more memory cache onto the same chip, saving precious
battery power. Other new circuits are dedicated to controlling and conserving
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power. Centrino's built-in Wi-Fi is handled not by the Pentium M but on a
separate chip. Still, integrating it next to the CPU reduces battery drain.

If Centrino-equipped laptops really run five, six, or eight hours on one
battery charge, as claimed, that will be a doubling of another sort. It's unlikely that
the doubling of battery life will become the next shorthand meaning of Moore's
Law, but for laptop users, it's something they need more than another couple of
gigahertz. 57

In other words, mobile computer customers are starting to value other things than MHz

and Intel is trying to deliver these things. Even though this seems to defy the colloquial

shorthand of Moore's Law, "doubling the clock speed every 18 months," it really meets

the criteria of Moore's original wording that the increased complexity for the same cost

will result in performance improvements (if performance improvements are measured in

other ways than just clock speed).

The power management issues outlined above are looming on the near-term horizon and

are already beginning to have a large impact on the industry's research and development

efforts. Technically feasible, cost-effective solutions must be found within the next few

years. Table 6 below provides a list of possible options and the modular or integral

nature of the solution. Note that here, microarchitectural solutions or "integrating" more

logic functions onto a processor, are considered a modular solution since the designers

are solving the problems created by the module (the microprocessor) by altering only the

"hidden" design parameters contained completely within the module. Note also that
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operating the processor at a slower frequency essentially commoditizes high clock speed

designs. Thus, as mentioned in the introduction to this chapter, Intel must get into other

"value-add" features of the processor and other components of the computer system in

order to continue to be profitable. Successfully implementing this new strategy requires

an increased level of vertical integration.

Integral (I) /Description of Solution Modular (M)
Semiconductor process improvements M
Microarchitectural solutions M

Operating the processor at a slower frequency M
More power-efficient software I
Advanced cooling mechanisms / battery technologies I
Lower power components (screen, hard drive, etc) I

Table 6: Options for Mobile Computer Power Management Solutions

For the most part, all of these options are presently being pursued and power

management problems are only getting worse as Intel continues to push megahertz

(although not as vehemently in the mobile platform as before) and users increasingly

desire longer battery life, lighter weight, and smaller size from their laptops. What

this means for system and component designers alike is that all options must continue

to be pursued if the computer industry hopes to deliver a valuable product. This, in

turn, means further integrality of design for mobile computers.
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5 A Framework for the Dynamic Modularity of Industries

Now that that the case has been made for power management as a technological limiter to

modularity of design in mobile computers, this chapter will discuss the business

implications. It is therefore useful to develop a framework for the relationship between

these dimensions (business and technology) as they relate in the domain of modularity.

5.1 The Framework

The framework below relates modularity of design and modularity of the industry by

measuring both of these quantities for a particular industry at a particular point in time

along the continuum of each of two axes (see Figure 16). Thus, the more modular the

architecture of a product produced by an industry is, the farther to the right on the x-axis

it is. Likewise, the more that an industry's firms are organized in a modular fashion, the

closer to the top of the chart it will be. Recall the definitions presented above for each of

these type of modularity:

product architecture modularity - the degree to which a product can be broken into

components that can be individually designed and manufactured according to

predetermined design rules

industry structure modularity - the degree to which those individual components are

designed and manufactured by different firms
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The following two sections describe the terms introduced in Figure 16 in greater detail.

AL

More
Firms

Modularity of
Industry

Less
Firms

Infrastructure Modular

Projects Cluster

IISIPA IISMPA

_ _ _ _ _ _ I _ _ _ _ _ _

More
Integral

Modularity of Architecture

More
Modular

Figure 16: Modularity Framework5 8

(IISIPA = integral industry structure / integral product architecture;
IISMPA = integral industry structure / modular product architecture)

58 The relationship to the double helix model should be apparent and this figure is definitely a cousin of
Figure 8.1 in Clockspeed [Fine, 1998]. However, it is the combination of the two models and the addition
of the transaction costs that allow the novel "free body diagram" approach used here.
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5.2 Transaction Costs

Another concept that will be important to the application of this framework is that of

transaction costs. Simply stated, transaction costs are the costs incurred in transferring

material, resources, or information. As is pictured in Figure 16, these costs increase as

the product architecture becomes more integral and the industry structure becomes more

modular. The reasons for this are as follows:

" The more integral a product architecture, the more ill-defined the interfaces are

between chunks, and the more communication that must occur between designers

of the separate chunks. Also, more unexpected system-level effects will happen

when the chunks are put together, resulting in more iterations (and opportunity for

transaction costs) that must occur to produce a working system.

" The more modular an industry, the more the chunks are designed by separate

firms and, thus, the more expensive the communication is that must take place.

That is to say, transaction costs across the boundary of firm are higher than if the

transaction was to take place completely within the same firm. Transaction costs

are important in that they are an "invisible" third force acting on the trajectory of

most industries at any given point in time. This point will be elaborated further in

applying this framework to the mobile computer industry.
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5.3 The Four Quadrants

Also labeled in Figure 16 is the name of each quadrant. The bottom half of the graph

contains, for lack of more elegant names, "integral industry structure / integral product

architecture" (IISIPA) and "integral industry structure / modular product architecture"

(IISMPA). These are fairly self-explanatory in that they are the lower half of the

modularity of industry axis. In other words, the firms in these industries make all or

many of the chunks that comprise the industry's product. The difference between the two

is then just whether or not the product architecture is integral or modular. It should be

noted here that the modularity of architecture axis does not measure number of chunks or

complexity of the product since integral or modular systems can have greatly varying

degrees of complexity. 59 However, for a given product, a more modular design is, in

general, divided into more chunks. For example, a handbag may be made more modular

by dividing up the design and manufacture of the handle, the fastener, the main carrying

compartment, etc. (note also that this is less expensive in terms of transaction costs than

an integral product architecture for the handbag), but this "modularized" handbag still has

many fewer chunks than a jet engine, which is a highly integral product.

59 Number and complexity of interconnections (not chunks) is, in fact, a good measure of the modularity of
a product. A "quick and dirty" modularity metric from network theory is (number of chunks) / (number of
interconnections), also called the connectivity density ratio. The point here is that "modularity of product"
is not an easy thing to measure; indeed, entire theses can and have been dedicated the topic. Note that the
number of firms is used on the modularity of industry axis because it is, to a first order, a good
approximation of how the product is divided up for design and manufacture among firms in the industry.
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The purest form of a firm in the IISIPA domain is a company that supplies only one type

of raw material. This includes firms like US Steel, DeBeers, and many others that are

probably not as well-known to the average end user of products fabricated from these raw

materials. However, it may also include firms that develop more complex integral

systems almost entirely on their own, such as Nike (athletic footwear) or Pratt & Whitney

(jet engines). IISMPA best describes the computer industry from the introduction of the

IBM System/360 in 1964 until the early 80s, as described above. Another example of an

industry in this quadrant is stereo component manufacturers that make products such as

receivers and speakers.

The name for the upper right quadrant is taken from Baldwin and Clark's Design Rules-

the "modular cluster." In this type of industry / product architecture organization, a

group of firms and markets play host to evolution of modular designs. When a product

with a modular design is created in an economy with advanced capital markets,

subindustries of firms and markets organized around modules may emerge and evolve in

parallel with the module designs themselves. This represents the mobile computer

industry over the past 20 years through today.

Lastly, the upper left quadrant is labeled "infrastructure projects." These are the special

case of the framework as this region describes industries that take on projects that would

not be profitable for any one economic entity without outside funding, usually from the
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government. In addition, these projects are typically undertaken for "the betterment of

society," hence the name of infrastructure. For example, the development of the Joint

Strike Fighter is a good example of a large, multi-government funded consortium project

that spans many different firms but requires extreme coordination since the architecture

of ajet airplane is fundamentally integral. In general, many large defense projects fit in

this category as do other infrastructure projects, such as the human genome project. The

amount of information to be gathered in the human genome project was too large for any

one firm to tackle, but the end product required an extreme amount of coordination

among firms and, thus, high transaction costs. The solution to this was government

funding, justified by the possible good that can come out of having a map of human DNA

for future applications of genetic engineering.

As with any framework, some industries do not fit neatly into one of the quadrants and

are hybrids of the industries described above. The auto industry, for example, has a

product architecture and industry structure that is both integral (engine and drivetrain;

frame, chassis and body all integral chunks made by the OEMs) and modular (headlights,

radio, seats, etc. made by suppliers) at the same time.
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5.4 Application of the Framework to the Computer Industry

Now that the fundamentals of the framework have been described, it will be applied to

the current state of the mobile computer industry given the forces acting on it described

above. In doing this, the graph can be used similarly to a two-dimensional free body

diagram in physics or engineering mechanics. By taking the vector sum of the forces

currently acting on the industry, the resultant trajectory can be predicted. This is

illustrated in Figure 17 below.
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Figure 17: Applied Modularity Framework - "Free Body Diagram"

The mobile computer industry presently sits at point A in the modular cluster quadrant.

There are currently three major forces relevant to this domain acting on the industry's

"point mass." As noted above, there are two forces caused primarily by power

management problems that are causing the product architecture to become more integral:

1. As Intel continues to try to push MHz onto the consumers, breaking down the

power density barriers to maintaining the colloquial Moore's Law requires a more

integral product architecture.
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2. As consumers desire more integrated features and value different product

attributes, which include lighter overall weight and smaller size (and, thus, lighter

and smaller batteries) and longer battery life, the market is pulling the industry

toward a more integral architecture to optimize these valuable design parameters.

3. The third force is the invisible transaction cost force described above. It acts in

the direction so as to minimize the transaction costs (down and to the right). This

is analogous to drawing gravity on a free body diagram for physics computations.

All three forces are represented by vectors on the graph. Again analogous to physics, the

sum of the three component vectors can be drawn to obtain the resultant vector indicating

the predicted direction of the industry. Note that the drawing is a simplification in that it

is a snapshot of the forces at one particular instant in time. In order to get the true

dynamic nature of the industry's resultant trajectory over time, the dynamic nature of the

component forces must be captured. However, as noted on the diagram, the transaction

cost minimization force remains constant. Additionally, the pull force is increasing while

the push force is decreasing. Assuming that these are happening at approximately the

same rate, the resultant force over time will remain approximately constant until the

industry ends up at point B, somewhere in the IISIPA quadrant.
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6 Signs of Verticality

Assuming that this framework is actually modeling reality, signs should begin to emerge

that vertical integration is taking place in the horizontal structure of the computer

industry. Figure 18 provides a visualization of this trend, illustrating that firms which

have become leaders in their respective component will begin to "reach across" the

horizontal lines into other modules and eventually become vertically integrated system

suppliers. The following examples from Intel, once just a maker of the microprocessor

component, demonstrate that this is indeed the case in today's computer industry.

Figure 18: Current Industry Structure (Horizontal Going to Vertical)

One way that Intel has reached across the industry prior to the recent age of power

management was in designing entire chipsets. The chipset is the collection of chips that

work together on the motherboard to help the processor deliver its functions and
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communicate with the rest of the system. Clearly this is not a major parlay into system

design, but it was the beginnings of what is today on the cusp of becoming a major

vertically integrated force in the industry. Next came the introduction of the Mobile

Module in the mid-90's:

Notebook PCs have always represented the greatest design challenges for
system makers due to their restrictions on size and weight, and the difficulty in
cooling them. To combat this, the trend has been toward more and more
miniaturization. Intel is continuing this trend by introducing mobile module
packaging, which actually incorporates the processor, secondary cache, and
chipset into a small module. One could argue that this is almost a motherboard in
its own right; it isn't really, but it's pretty close.

Aside from miniaturization, Intel gains from this design tighter control
over the interface between the chipset and processor, and also the electrical
connections between them, which become more important as performance
increases. Of course, it is also a proprietary design, giving Intel marketing
advantages." 60

The mobile module was clearly a precursor to the amount of vertical integration that is

required now that the size, weight, and cooling requirements on laptops have become

even more stringent.

Already mentioned in Section 4.3, the introduction of Centrino marks a major step

towards more integration, as Intel is beginning to respond to the user's value of ancillary

performance metrics, as well as getting into wireless networking chips. As a recent Wall

Street Journal article reports, "Centrino also gives Intel more leverage with the computer

makers that actually buy its chips. In the past, it offered the manufacturers marketing

60 The PC Guide (htV:A/xv.ww.GuJde.comn)
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subsidies if they put the 'Intel Inside' logo on their machines. Now, Intel only provides

the subsidies if computer makers use the three components of Centrino-the Pentium M,

the related chip sets and the Wi-Fi [wireless networking] chips. It marks the first time

that Intel had tied marketing subsidies to chips other than microprocessors." 6' Intel has

also developed a new "runs great on Intel Centrino mobile technology" logo to help users

identify software designed specifically for mobility. Participation in this campaign

requires software vendors to "incorporate online and offline capabilities and meet certain

power management, performance or connectivity criteria" with their software. 62

Additionally, new chipsets with similar integrated power management capabilities are in

the pipeline for Intel. The Alviso chipset, slated for introduction in the second half of

2004, offers low power capabilities that will support Intel High Definition Audio,

reducing power consumption by allowing the processor to remain in a sleep state while

the system plays audio.

Another example of this vertical integration is seen in Intel's explanation of steps it is

taking to solve the power management problem with a "holistic" approach: "Intel

researchers, scientists and engineers are taking a holistic approach by looking at every

possible place where a variable could influence the power equation. That might be from

61 [Clark, 2003]

62 Intel press release, "Intel Silicon, Platform Innovations Speed Advances In Mobile Computing",
February 18, 2004.
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the means, such as the various steps involved in device design and manufacture, to the

ends, including the final application, segment or usage model in which the device will be

used. This holistic approach is comprised of three basic technology focus areas that are

interdependent and build off of each other." Holistic is just another way to say that they

are exploring all options, both modular (the means) and integral (the ends), as can been

see from the large number of system solution listed in Figure 19.
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Figure 19: Intel's "Holistic" Approach to Power Management63

Another enabler of further vertical integration is Intel's participation in the development

and support of standards for low power. First APM, mentioned in section 3.2, and now

ACPI are power management specifications jointly developed by Intel and other

computer component firms. These are significant because it is a first step toward vertical

consolidation. As Intel participates more frequently in these initiatives, it begins to

63 Intel website, Research and Development: Designing for Power: http://www.intel.com/ labs/power.
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develop some of the skills of the other component manufacturers (and vice-versa).

Equally important are that the transaction costs of these integral solutions across multiple

firms becomes readily apparent, causing firms that do it all themselves to question these

costs. Other initiatives relating to integral low power solutions in which Intel is actively

participating include these:

" Standards Panel Working Group (SPWG): develops specifications designed to

help improve the notebook PC display interchangeability, time to market, and

power

* Mobile PC Extended Battery Life (EBL) Working Group: "dedicated to

accelerating the achievement of all-day battery life"64

" Mobilized Software Initiative: provides a comprehensive set of software, tools,

services, architecture specifications and training programs to help design software

for mobility, including power management features

Intel also has a large strategic investment division called Intel Capital that began in the

early 90's and now invests in excess of $1 billion in venture capital for start-up

companies that are producing enabling technologies. 5 Some of the investments in power

management technologies by Intel Capital include those listed in Table 7.

64 Mobile PC Extended Battery Life Working Group website: http://www.eblwg.org.

65 Intel website, Intel Capital, http://www.intel.com/capital.
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Company Name Company Description
a developer of supercapacitors, which are a high power, small

Cap-XX volume, and light weight power supply that utilizes high surface
area carbon to hold charge, instead of the chemical means used in
today's battery power sources
a company based on power management software that extends

Insyde Software battery life through ROM- and Windows-based power
management products
produces revolutionary reflective displays for mobile

Iridigm applications; that have a very high reflectivity in color, ultra low
power, and very low cost

Neah Power Systems developing silicon-based micro fuel cells
provider of low-power, highly integrated RF communication

Silicon Wave system components for the global Bluetooth wireless market,
including single-chip radio processors, stand-alone radio modems,
and software solutions

Table 7: Investments in Power Management Technology by Intel Capital

In many cases, these strategic partnerships go far beyond a simple money infusion by

Intel, which promises "focused Intel knowledge sharing" that includes access to "Intel's

existing processes, policies, templates, and presentations which portfolio companies can

adapt to meet their needs." These strategic partnerships, then, put Intel in position to

more easily acquire the start-ups that are already using their business processes, should

they decide they want to become more vertically integrated but are missing key core

competencies.

The last class of examples is Intel's design of enabling platforms and little publicized PC

system. These are strong indicators of Intel's drift, whether intentionally or

unintentionally, to the vertical integration domain. Each year at the Intel Developer's
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Forum, Intel introduces reference platform designs to help system designer use Intel's

latest technology more effectively. This past year's featured three new mobile computer

designs (see Figure 20) as part of the Intel Mobile Internet PC 2004 Platform Vision:

The 12-inch model features EMA 66 functionality and converts from a
laptop to a tablet PC, allowing maximum flexibility to balance office and mobile
demands. The 15.4-inch model is designed to enhance worker productivity with
fingerprint and smartcard security, built-in array microphones and camera for
collaboration, and EMA functionality. The 17-inch Mobile Entertainment PC
allows users to communicate and be entertained around the home with a wide-
screen display in a sleek, portable design; a wireless Bluetooth keyboard; built-in
voice-over-IP handset and remote control; integrated array microphones and
camera; and Intel High Definition Audio for high-quality sound.67

Figure 20: Intel Mobile Internet PC 2004 Platform Vision

Next, and perhaps most importantly, the Gateway Media Center computer, pictured in

Figure 21, was designed by Intel's Platform and Architecture Innovations Group, which

is a new group within Intel designed to run like IDEO, the much-lauded industrial design

firm. As part of the Digital Home initiative, the Media Center PC is currently being sold,

66 Extended Mobile Access is technology that enables closed-lid instant access to e-mail and other
information through a secondary display on the lid of notebook PCs. Not coincidentally, Insyde Software
provided the software that enabled the EMA, including allowing the laptop to enter a low-power mode
when the lid is closed, while remaining connected to a wireless enterprise network.
67 Intel press release, "Intel Silicon, Platform Innovations Speed Advances In Mobile Computing",
February 18, 2004.
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but under the Gateway logo. However, the identical product is sold overseas by a

different company.68

Figure 21: The Gateway Media Center Desktop Designed by Intel

The fact that Intel is now designing desktop and laptop systems is important because it

shows that the capability for the vertical integration necessary to deliver a complete

system already exists within the company. The more system prototypes (in the case of

the Mobile Internet PC 2004 Platform Vision) and actual products (in the case of the

Gateway Media Center) that Intel designs, the more they will develop the core

competencies, such as industrial design of consumer products, necessary to deliver an

entire integrated product, and the more tempted they will be to exploit their new

68 Gateway 610 series Media Center product review: http://reviews-
zdnet.con.com/Gateway 610 series Media Center/4505-3118 16-30565073.html
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competencies to "capture the rents" by becoming a vertically integrated proprietary

system supplier.
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7 Conclusion

The discussion in this thesis has examined the nature of forces acting on the mobile

computer industry using a systems thinking approach. First, modularity and integrality of

systems and the industries that produce them were explored. Product architecture

modularity and industry structure modularity were introduced as useful ways of thinking

about the products that an industry makes and way the firms in the industry are organized

to accomplish this. Next, the fundamental differences between information and power

transfer systems was discussed in the context of Whitney's theory that systems that

transmit significant power are inherently more integral. The double-helix framework of

Fine and Whitney was then presented, arguing that the organization of firms in an

industry cycles between horizontal and vertical due to a number of external and internal

pressures, including changes in the modularity or integrality of the industry's product.

The second chapter concluded with a historical perspective of Moore's Law and the

influence it has had on the computer industry and Intel.

Next, the history of the structure of the computer industry from IISIPA to IISMPA to

modular cluster was discussed. It was then hypothesized that changes in the industry

brought about by power management difficulties in the mobile platform will cause more

integral product architectures. The fundamental physical phenomena of increased power

and heat caused by transistor scaling were described next. These side-effects cause the

need for better heat management and extended power supply life solutions. These
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solutions, in turn, will necessarily become more integral as microprocessor become more

like CEMs and the traditional within-module solutions are no longer sufficient to delay

the inevitable power crisis.

Chapter 5 then presents a framework to help conceptualize the changes taking place in

the computer industry. The axes of product architecture modularity and industry

structure modularity form a plane on which any given industry can be plotted. The

concept of transaction costs increasing as the product architecture becomes more integral

and the industry structure becomes more modular is important to the framework. The

computer industry is a point in the modular cluster quadrant of the two-dimensional free

body diagram. The trends toward integrality show up as two different forces acting on

the industry point mass, both pushing and pulling the product architecture modularity in

the more integral direction. The third invisible transaction minimization force acts in the

less industry structure modularity and more product architecture modularity direction.

This means that the computer industry's resultant trajectory is toward the "IISIPA"

quadrant.

These trends toward integrality can be seen at Intel in many ways. The signs of

verticality include: chipset designs with more integrated power management functions;

Intel's "holistic" approach to power management, including many system-level solutions;

leadership and participation in industry consortia to address power concerns; strategic
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partnerships and investments by Intel Capital in start-up companies that are developing

enabling technology for the next generation power management solutions; and the

development of reference and mass market PC products. It is the opinion of the author

that it is only a matter of time before significant consolidation is seen within the

computer industry due the fundamental modularity constraints that these power

management issues cause.

The framework can be a useful systems thinking tool for decision makers at firms in the

computer and other industries. For example, it can be used to:

" Decide what strategic investments to make; which skills to invest in and what

types of knowledge and capacity are important in the future. (i.e. Should the firm

specialize in one component or subsystem or is diversification the best route? For

example, given the resultant trajectory vector of Figure 17, Intel should be (and

is) investing in other parts of the computer system architecture. This allows them

to hedge their investments in the microprocessor component and position

themselves to capture market share in a new, vertically integrated industry

structure in which value is contributed by more than just the microprocessor

component.

" Help indicate the volatility of the industry going forward. (i.e. How quickly have

firms responded to the architecture changes in the past?) For example, based on

the history of the computer industry given in Section 3.1, it took approximately 5-
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10 years for the industry to move from IISIPA to IISMPA after the introduction of

the System/360 and the same length of time to go from IISMPA to a modular

cluster after the introduction of the IBM PC. Given that the significant integrating

force of power management has begun to limit the traditional value metric of

processor speed within the last year in mobile computers (with the introduction of

Centrino), a similar timeframe can be expected for the transition back to IISIPA.

This means that the firms that want to be successful in the new computer industry

must position themselves for success by 2015, at the latest.

Further application of the framework that this thesis does not explore includes:

* Forming a strategy to gain a competitive advantage over other firms in the

industry. (i.e. purposely try to change the trajectory of an industry by enabling

lower or higher transaction costs; this could be done through M&A activity or

divestiture to change the modularity of the industry or through new product

architectures that are more or less integral) For example, Dell could attempt to

protect its position in the industry by decreasing the incentive for Intel and

Microsoft to integrate sales and distribution of computer systems by:

o Keeping transaction costs low for these companies to do business with

Dell

o Enabling new thermal management and battery technologies
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o Working with the component suppliers to define better design rules for

their respective parts of laptop computers (although this would probably

only delay, rather than halt, the transition to IISIPA)

Of course, all of the above are items that decision-makers would ordinarily think about,

but this framework gives them a new context in which to frame their line of reasoning for

questions such as, "What is the best product architecture?", "What skills do we invest in

or buy?", and "How do we keep industry dynamics from creating new competitors or

rendering our expertise obsolete?"

As Intel develops more and more of the skills necessary to become a vertically integrated

supplier of computer systems, they may look to acquire additional skills that are not

among their core competencies by merger or acquisition. For example, once all of the

design skills are in place to produce an integrated mobile computing solution, Intel may

try to acquire supply chain and logistics skills aimed at delivering the systems to end

users by buying Dell or Gateway.

Furthermore, this trip back around the double helix may pave the way for a revolutionary

new system architecture for computers. Christensen's work on "disruptive technologies"

shows that major architectural innovation usually occurs within a vertically integrated
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firm with few suppliers. 69 Thus, whether the firm is an Intel-Dell merger or another new,

yet-unknown giant, once a vertically integrated firm is again able to deliver the entire

computer system to the customer, like the IBM of the early 60's that invented the

System/360, it could lay the foundation for the next wave of computing (and, if the PC

revolution has shown us anything, a change in the way we live our lives).

The complex technological and strategic issues raised in this thesis lead to numerous

unanswered questions that could be explored with further research:

" Do any of the generalizations made about product architecture and industry

structure apply to other industries besides mobile computing? Or is the computer

industry special due being controlled to a large extent by a first-tier supplier?

Does the fact that this first-tier supplier's product is an information processing

device that is becoming more like a CEM make this a unique dynamic or are there

other comparable external forces?

* What does this mean for Dell and Gateway, large PC OEM firms that have only a

supply chain competency? Can these firms even begin to acquire the

semiconductor design and fabrication skills required of a vertically integrated

firm? If not, will these firms be squeezed out of business once a vertically

integrated supplier is able to sell directly to customers or will they retain

69 Christensen, Clayton M., The Innovator's Dilemma, Boston: Harvard Business School Press, 1997.
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significant power as to keep the sales and distribution a horizontal portion of the

industry?

* Will the mobile computer industry's trajectory split from the desktop computer

industry since the forces acting on them are not the same (i.e. the power

management issues, although still present, are not as urgent in desktops)? Or are

the current mobile computing forces just a precursor for a similar trend in the

desktop platform?

" Will the microprocessor become a commodity part in a new, highly integrated

mobile computer architecture? If so, can Intel shift their investments and core

competencies in time to remain a $150B+ market capitalization company?

Whitney's concluding remarks in his 1996 paper about information versus power systems

were that the current materials used for making microelectronics would "no longer be

applicable in two or three process generations (i.e. much beyond 2000).. .That is, VLSI

may not be like VLSI much longer." Although he was speaking of limitations in VLSI

design due to interconnect scaling and not power management, the idea still rings true:

that that information processors are starting to look more like CEMs and becoming more

integral in their architectures. This will inevitably influence the organization of the

industry to become more integral with greater vertical integration within its firms.

Indeed, Intel may not be like Intel much longer.
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