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ABSTRACT

Managing the product development process is of vital concern to corporations. A critical
aspect of product development that negatively impacts program cost and timing is
rework. Unfortunately, in large organizations with successive development cycles, the
product, process and organizational complexity preclude simple solutions. Even given
sufficient data, many organizations do not understand what constitutes good and bad
performance relative to rework. Through research at General Motors Truck Product
Group, a model was developed that forecasts expected total rework. The model assumes
rework is a function of: 1) The product portfolio and timing; 2) The complexity of each
product program; 3) The pattern of rework over time for product programs; 4) The
“lifecycle age” of each product program. The model has four potential uses: A) To aid in
portfolio/project planning; B) To provide a rework performance baseline for
management; C) To evaluate initiatives with regards to their impact on design rework; D)
To identify leverage targets for management attention and improvement.
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Thesis Supervisor:  Steven D. Eppinger
Title: Associate Professor of Management Science and Engineering
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Introduction

Competition for faster product life-cycles has motivated companies to “optimize” product
development processes. In the automotive industry, efforts to accelerate product
development are complicated by product complexity (a typical production vehicle may
have more than 5000 parts and subassemblies), and by the successive product
development cycles (auto manufacturers are striving towards fourteen product launches

per year). A significant roadblock to efficient product development is design rework.

Rework has many definitions, but it usually refers to situations in which work is repeated
due to a design error or a product change. In contrast, within the development process,
there are often planned periods of work repetition. For instance, marketing and
engineering will go back and forth reconciling product requirements with engineering
capabilities and cost. Because this is an essential product development technique, we
consider this planned work repetition good for the product and worth the time and cost.
We distinguish it from rework by using the term design iteration. This paper is
concerned with rework, which we define as any change to a part/configuration or as any
adjustment affecting a supplier or assembly process that occurs after a release date.” We
purposely kept our definition of rework broad so that it encompasses as much
information as possible. We also observed that any attempt to narrow the definition, say
by excluding supplier changes, potentially underestimates rework and fails to deliver a
clear performance picture. Figure 1 shows a schematic representation of the product
development process and illustrates the difference between design iteration cycles and

design rework situations.

' The release date is a management tool used to schedule the design process. It is determined by the
portfolio planning group and is based on process bottlenecks and marketing concems.
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Figure 1 Schematic Representation of Design Iteration and Rework

There are many causes of rework. In fact, as product and process complexity increases
beyond that of a simple object, the number of potential causes increases exponentially.
Unfortunately, sifting through a myriad of causes may be untenable. However, a more
tractable way of looking at rework is to identify factors that greatly influence the amount
of rework for a given product. We distinguish causes from factors such that causes are
tactical while factors are strategic. In other terms, factors are at a higher level of
abstraction than causes.” For instance, a rework cause might be that a design problem
was not caught with computer-aided analytical tests, but it was discovered in a later stage
prototype. On the other hand, a rework factor may be that the timing of destructive
testing relative to prototype build cycles determines overall product rework. Another
way to the understand the difference is to observe that factors are more systemic and
suitable for an analytical predictive model while causes are less suitable for simulation

because they often evoke debate and controversy. In the course of this research,

> The concept of varying the level of abstraction to provide better insight is championed by Shoji Shiba in
A New American TQM. See references.




numerous causes were uncovered through data analysis and interviews. A more detailed

discussion of rework causes is included in Appendix A.

Our research uncovered four factors that explained a majority of observed rework even
when looking at different vehicle models and platforms. While each factor by itself is not
descriptive enough for management decisions, combining them together may provide an
accurate and useful model. The first factor is the number and timing of product
development programs (known as a product portfolio). The second factor is the
relationship between product complexity and product rework. The third factor is the
distribution of rework over time; we found that this distribution is determined by the
management process and is independent of the product type. The last factor is the age of
the product platform. In other words, a vehicle built on a mature platform will exhibit
less rework than one built on a new platform. Since effective product development
requires effective management of rework for the whole organization, it is necessary to
know when the organization is performing well and when it is performing poorly. The
rework model developed in this paper provides such insight. The remainder of this paper
is organized as follows:

Section 1 motivates the problem, provides definitions and surveys related literature.

Section 2 presents factors that impact rework in a product development process.

Section 3 motivates and then describes the rework management model.

Section 4 offers suggestions for extending the model.

Section 5 concludes, discusses the project’s potential impact, and offers final

suggestions for minimizing rework based on the model.

Appendices amplify the research, the data and the model.






1.1 Rework in the Vehicle Development Process

At the time of this research, General Motors Company employed a 24-month vehicle
development process (VDP). The VDP is under constant refinement including attempts
to compress individual steps, to eliminate steps through employment of computer aided
tools, and to overlap steps such that development is accelerated. A simplified
representation of the VDP is provided in Figure 2. The design iterations and rework

detailed in Figure 1 occur during the later half of the VDP.

Merketing

Portfolio Design

Sting Chrter *

Release
Researchand Engineering
Development
Figure 2 Schematic Representation of the Vehicle Development Process

During the period of design iterations, engineering and design learning occurs, and
design, engineering and assembly limitations are reconciled. After this iterative
development, parts are released for production. In other words, construction of
production tools is started. In practice, parts are released on a staggered basis depending
on prototyping and production lead-time requirements. Any changes after this part

release milestone are considered rework, and are handled through a process and



document called an Engineering Work Order (EWO).® These documents have a myriad
of purposes including but not limited to tracking work progress, obtaining approval, and
notifying affected departments within the organization. Lastly, because the VDP isin a
constant state of flux, no two programs follow exactly the same process. While this
supports continuous improvement, the effect of so much change on organizational

learning and progress is unknown.

In tackling the rework problem, the first question we asked was how much rework is
occurring? While a simple question, there is no simple answer. Tracking different
metrics can yield entirely different results. For instance, if we analyze the number of
EWOs (the number of documents), we see a fairly constant trend over the past few years,
whereas counting the number of reworked parts shows statistically significant variation.

As an example, Figure 3 shows a graph of reworked parts over time.
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Figure 3 GM Truck Group Engineering Rework

* Other organizations refer to these as Engineering Change Notices (ECN).
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However, looking at this graph, we asked a more important question: how are we doing?
Unfortunately, looking at this graph, we cannot ascertain whether we are doing well or

poorly.*

1.2 Rework Metrics

These questions first led to an investigation of rework metrics. While we held the
premise that process management relies on metrics, identifying the appropriate ones is
easier said than done. In an ideal product development scenario, one would track the root
cause, the direct costs (such as part/tooling and design hours), the indirect costs (such as
inventory depletion), and the impact costs (such as quality and time effects, and the
potential to cause the rework of additional parts). We may also want to know the impact
on designers, engineers, planners, human resources, and other functions. Just as
important, the metrics must reflect the nature of the product and the process. For
instance, do products with more parts take more design effort? Unfortunately, such
metrics are seldom available. See Appendix B for a discussion of the difficulties of
defining and maintaining effective metrics. Our objective in this work was to identify
what currently collected data (or synthesis of currently collected data) could be used as an
effective metric for total system rework. Based on the discussion of Appendix B, we
identified three basic requirements for our metric:

(a) The metric must be related to the process and to the product.

(b) The metric must be easy to understand.

(¢) The metric must be easy to collect, and the collection process must be disciplined.’

* Data Collection in a complex process is difficult. Throughout the study, we were careful to maintain
representative data while at the same time eliminate sets that were grossly inconsistent due to anomalies
with the database or with the vehicle program. For instance, data from a vehicle program that was cancelled
would have been eliminated from the study because it is not representative of a typical product nor of the
process. Likewise, changes to the data collection systems required some adjustments. Lastly, the database
used for the research starts in 1992. This results in the initial ramp in rework shown in Figure 3. The ramp
is an artifact of the data collection process, not a performance indicator.

5 A disciplined collection process is one that not only has minimal statistical variance, but also has the
understanding and support of the engineers. This support helps to minimize erroneous data entry.

11



1.3 A Useful Rework Model

Attempting to evaluate how well or poorly the organization is performing with respect to
rework motivates the development of a rework model. Ideally, the model would provide
insight to the following three questions about rework:

(a) How much rework will occur for a given product?

(b) When will this rework occur during the product development process?

(c) How much will this rework impact the organization in terms of cost, effort and time?

All will be addressed in Section 3. Next, we review the relevant research literature.

1.4 Literature Review

There are four key research areas related to this paper. As a starting point, product
development and design engineering publications analyze the foundation of engineering
design management. By examining these underlying principles and methodologies, we
may better understand why current problems exist. The second key area is, of course,
design iterations. While the majority of literature focuses on planned design iterations,
these papers still provide insight into causes and factors of design rework. Third, there is
a growing interest in engineering change management. A couple papers were found to
provide useful introductions to terms and approaches although practical solutions are
scarce. Finally, there is a wealth of literature about complex system modeling. While
many of the best references come from studies conducted outside product development,

looking for similarities in complex systems, and then adopting appropriate techniques can

shed insight.

Literature on product development and engineering design is extensive and often fairly
general, but we found two texts particularly useful. An excellent starting point is Joseph

E. Shigley’s seminal text, Engineering Design. Although somewhat dated as it was

published in 1963, this text succinctly defines the design problem in section six. Shigley
is one of the first to propose design optimization—the process of planning and
automating development steps to arrive at the optimum solution with regards to product
performance, speed and cost. Shigley believed that further advances in computers and

optimization routines would continue to benefit engineering design. Extending from this

12



belief, engineers and managers have spent the past four decades striving for this design
utopia in which design iterations, both planned and unplanned, are minimized. A more

modern review of product development is Product Design and Development by Ulrich

and Eppinger. In addition to presenting a tractable development methodology, the text
summarizes much of what has been done in the field of product development, explains
current technologies and includes an extensive reference section. Another overview can
be found in the recent article, “A Survey of Design Philosophies, Models, Methods and
Systems,” by Evbuomwan, Sivaloganathan and Jebb. The authors summarize the past
four decades of design methods and theories, and then define terms and chart
developments in the field. Lastly, the product development consulting firm Pittiglio
Rabin Todd & McGrath (PRTM), has numerous resources and references available at no
charge on their web site (http://www.prtm.com). Notably, they complete an annual
benchmarking study (PRTM 1997 Product Development Benchmarking Study) which

surveys industry accomplishments and trends.

Design iteration is a fairly recent topic for product development research, and most of the
work has focused on planned iterations as opposed to unplanned iterations. While the
work on planned iterations is not exactly the topic of interest, reviewing these papers
provides insight into engineering design, complex systems modeling, and change
management. Furthermore, some authors conjecture that better management of planned
iteration cycles will lead to fewer unplanned iterations. Kulkarni completed an excellent
summary of iteration literature in his report, “Controlling Rework in the Vehicle
Development Process.” He finds that product development research has identified three
key areas for rework management: task scheduling and batching, task sequencing, and
change management. In the area of task sequencing, considerable work has been done
developing design structure matrices (DSM). These tools help identify and plan key
development iteration areas to improve process management. There are several papers
that develop and build DSM techniques, but a key introduction to DSM methodologies
can be found in the paper by Smith and Eppinger: “Identifying Controlling Features of
Engineering Design Iteration.” As a next step, the paper, “A Model-Based Method for
Organizing Tasks in Product Development,” by Eppinger, Whitney, Smith and Gebala



uses the DSM tool to streamline a development program and then create a management

strategy.

Engineering change management is becoming as complex as the underlying product
development processes. Literature topics range from process overviews to clarifying
appropriate metrics. In particular, Mitchell Fleischer’s short paper, "Where are
engineering metrics?” codifies the difficulties in accurately measuring aspects of
engineering design and change management. A more thorough description of the
problem along with some suggestions was presented by C. Terwiesch and C. Loch in
"Managing the Process of Engineering Change Orders: The Case of the Climate Control
System in Automobile Development.” Their paper analyzes the engineering change
systems with respect to strategies for lead time reduction. Lastly, Robert Kaplan and
Robin Cooper present a thorough introduction to integrated metrics in their book, Cost &

Effect: Using Integrated Cost Systems to Drive Profitability and Performance. While the

book is not about product development or change management in particular, they identify

several important principles in establishing administrative and managerial systems.

There is exhaustive literature on parametric modeling of complex processes. While there
is much written in product development, we found it beneficial to look outside
mechanical engineering for generic modeling methodologies. J. Sterman has conducted

excellent work in the field of System Dynamics. His recent book, Business Dynamics:

Systems Thinking and Modeling for a Complex World, is a comprehensive introduction

to systems modeling, and includes numerous case study illustrations. Complex system
modeling is also explored in Sterman’s key paper, “Learning In and About Complex-
Systems.” In this paper, the author emphasizes that models, in order to be effective, must
be built from a box of tools that not only teaches us about complex systems, but also

allows us to model those systems in a manner that improves the decision making process.



2.1 Rework Factors

A key to developing the rework model presented in Section 3 was to identify quantifiable
relationships between various factors and rework. Numerous product-related, process-
driven and organizationally determined factors influence rework. Conducting a literature
review, analyzing data, and performing a series of interviews will yield an endless list.
Based on our research, we hypothesized the existence of many such factors. However,
four factors stood the test of data and common sense, and we focused on them.® The four
factors presented as hypotheses and later supported by data are:

1. The number and timing of product programs is a key determinant of rework.

2. Product complexity drives rework.

3. Rework occurs according to a consistent distribution independent of product type.

4. The “lifecycle age” of a product platform affects the amount of rework.

Appendix C presents a discussion of other factors.

2.2 Metric and Data Used in Analysis

In this study, the metric for rework was Part Count. This refers to the number of parts
listed on the EWO and includes all parts affected by a specific rework case. At General
Motors, any post-release change to the product, configuration, supply chain or assembly
process is initiated through an EWO, and is quantified by part count in addition to other
metrics. A couple examples will help illustrate the metric. If a frame requires redesign,
an EWO is issued that details all affected frames; part count refers to this quantity. As
another example, consider an EWO initiated in response to a supplier that cannot build a
part as initially contracted. Due to the supplier’s changes, General Motors is forced to
alter several adjoining assemblies. Part count quantifies all affected parts regardless of

the cause or complexity of changes.

Up front, we want to stress that the metric choice was not trivial, and in fact was based on

numerous hypotheses and trials. There were many possibilities, but part count was the

° Throughout the paper, the terms factor and driver are used interchangeably. Some of the factors are
clearly rework drivers, while others are merely observed behaviors. Using factors, drivers and observed
behaviors together is one of the unique attributes of this methodology, and it is not our intent to distort
definitions or classifications.



one metric that fulfilled our requirements and yielded the insights of this research. To
justify this metric, we looked at data records of all EWOs from the past six years.
Recalling the discussion in Section 1.2 and in Appendix B, this metric has the following
advantages: it is simple to understand and directly related to the end product, and it is
already 1 use for other purposes. While all organizations differ, most development
processes track individual components, so this, if not some variation, may likely be used.
Unfortunately, the metric does not reflect the nature or cost of the change, nor does it
reflect the type of part affected. In the following sections, we introduce the four factors

hypothesized above. All four factors are quantified with the metric part count.

2.3 The Product Portfolio Drives Rework

The portfolio mix is one of the key determinants of overall engineering rework. The
portfolio mix refers to the sum total of vehicles under development. For instance, the
group might be working on three model years of two small vehicles, three model years of
two medium vehicles, and four model years of large vehicles. While the portfolio
consists of only three distinct programs, the portfolio is made up of ten different vehicles.
Programs and model years are chosen to fulfill marketing strategies and engineering
development needs as determined by the corporation’s strategy board. Recall that the
demands of the strategy board are tempered with development process constraints such as
prototyping and testing capacity, or engineer and designer availability. Figure 4 is an
example of a portfolio matrix. Each platform or program is listed on the left, along with
a brief description of the vehicle type. The rest of the matrix shows the different model

years and their respective launch dates. This matrix will be explained further later in the

paper.
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Model Year
1995 1996 1997 1998 1999 2000 2001

Program Complexity Launch Date
1{truck |Medium Aug-94| Aug-05| Aug-96| Sep-97| Sep-98| Jul-99] Oct-00
2{truck [Small Aug-94 | Aug-95| Aug-96 | Aug-97 | Aug-98| Aug-89| Aug-00
3ltruck |Small Aug-94| Aug-95 | Aug-96] Aug-97 | Aug-98} Aug-99| Aug-00
4ltruck |Small Aug-94| Aug-95| Aug-96 | Aug-97| Aug-98| Aug-99| Jan-01
5|truck |Medium Aug-94| Aug-95[ Aug-96 | Aug-97| Jun-98| Aug-99| Aug-00
6/truck |Medium Aug-981 Aug-99| Aug-00
9|truck |Medium Dec-84| Aug-95] Aug-96 | Aug-67| Aug-98| Aug-99| Aug-00
23|truck |Large Aug-94 | May-95] Aug-96§ Aug-97 | Aug-98| Aug-89| Aug-00|
24 truck {Large Aug-94| Aug-95| Aug-96 | Aug-97 | Aug-98| Aug-991 Nov-00
25|truck |Large Aug-94 | Aug-95} Aug-96| Aug-97| Aug-98| Aug-99| Nov-00

Figure 4 Sample GM Truck Group Portfolio Matrix

2.4 Complexity Drives Rework

Complexity occurs on many levels ranging from the sheer size of a product to the
functional interrelations of components. It is necessary to simplify these issues and
identify a clear definition. Based on interviews and on a study of the internal
organization, we identified three vehicle classifications of complexity. While this is a
simplification, and inevitably some vehicles may be inappropriately grouped, it provides
a tractable framework. More importantly, it is a starting point. For each vehicle, the
number of production parts was tallied, and then each vehicle was grouped according to
three easily differentiated categories: high (or large) complexity, medium complexity and
low (or small) complexity.” Production parts are defined as the number of parts actually
used in a final vehicle. Figure 5 illustrates the different part categories and their relative
quantities in a vehicle development process. While the figure is qualitative, it shows the
relative quantities of parts that occur during development. This variance motivated us to
focus on one category throughout the research. Based on current improvement initiatives
and data collection processes, we focused on production parts. For each complexity

group, an average and a range were determined.

7 The high complexity group is comprised of GM’s medium duty trucks; the medium complexity group is
equivalent to GM’s full size trucks, and the low complexity group is equivalent to GM’s mid-size trucks.
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Relative Part Quantity

Planned Experimental  Prototype Production
Vehicle Development Stages

Figure 5 Comparison of Part Quantities During Product Development

Theoretically, a key driver in rework should be product complexity. While this is
intuitively obvious, representing complexity with a metric is not trivial. Moreover,
showing a consistent relationship between complexity and rework is inherently difficult
due to data variance. In Figure 6, we show a graph of rework as a function of production
parts. From this, we observe two phenomena: first, on average, each part will be
designed, released and then reworked once, if not more, during the remainder of vehicle
development; second, rework increases more than linearly with an increase in product
complexity. The data used to generate this graph was the set of four platforms for which
we found new platform year data. We could not use later development years because this

data is influenced by other factors.
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Figure 6 Relationship Between Complexity and Rework®

2.5 Experience Reduces Rework

Many applications of learning curves have been identified in manufacturing
environments. Notable is Boeing's use of the learning curve to price airplanes. The
learning curve gives a relationship between marginal effort and cumulative effort. For
production, the cost of each unit decreases as cumulative production increases. So, if the
first plane cost $250 Million, the hundredth plane may cost $175 Million. In Boeing's
case, they may competitively price the planes at $200 Million. While there are many

sources of this reduction, when the effect is aggregated, it is difficult and unnecessary to

drill down the detail.

Automotive manufacturing uses platforms to improve development costs and quality. A
platform is a basic vehicle architecture that is used as a skeleton for several different
products. Extending the learning curve phenomena to product development, we
conjecture that the design rework should decrease as the platform matures. If we
measure platform maturity by looking at successive development years, we find a

consistent 15% annual reduction in the number of reworked parts. The decrease in

¥ Complexity is measured by Production Parts. The graph is based on the first development year of four
separate platforms. The equation is the best fit approximation for the data.
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rework is caused by numerous factors including learning on behalf of the engineer and
the designer, reduction of parts through design refinement, and an increase in the ratio of
carryover parts to total parts.9 The graph in Figure 7 shows this behavior for six
platforms, and we observe that the 15% annual reduction is consistent in the long-run
even though in the short-term, individual models might experience an increase in rework

over the previous year. This annual variation is due to specific model year changes.
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Figure 7 Six GM Truck Programs in which Experience Reduces Rework'’

The starting point for each curve in Figure 7 depends on the respective platform’s

complexity. The trend lines clearly indicate the similarity of their behavior.

2.6 Rework Occurs According to a Distribution
Accepting that rework occurring during the vehicle development process is distributed in
a manner that depends on the product and the process, we can speculate over the shape of

the distribution and whether the bulk of rework occurs early or late in the development

? Carryover parts are parts that are reused from model year to model year. The metric, considered a
measure of part robustness, is commonly used to compare automobile companies.

' The data samples are from six unique platforms. The equation is a best fit regression calculated with a
simple non-linear optimization routine. The y, is the initial level of rework (the first year a platform is in
use), the x term represents the number of years the platform is in development (x=0 is the first year, x=1 is
the second year, etc...).
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process.'' In the study at General Motors, the distribution shown in Figure 8 was

uncovered.'?

0.25
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0.00 !
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Figure 8 Distribution of Rework Relative to Vehicle Launch Quarter

In addition to the consistency of this distribution, it is noteworthy that nearly 30% of the

rework occurs after product launch during a period lasting one year.

' See “Frontloading: Shortening Development Time at Toyota Through Intensive Upfront Effort,” by
Tadaaki Jagawa.

"> To generate this distribution, over thirty completed vehicle programs were sampled. Each vehicle’s
rework was plotted over time relative to its launch date. To normalize the samples, each was then
converted to a percentage of rework. The distribution was calculated as the average of all the trials. Itis
very consistent.
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3.1 Engineering Rework Model

So far, we have introduced four factors that greatly influence the rework occurring during

General Motors Truck vehicle development process. Each factor has been hypothesized,

explained, and insofar as possible, supported with evidence. In what follows, the four

factors will be combined into the rework model. As purported in the introduction, using
the model’s objective output, we can do four things:

A. Assist the portfolio planning group in scheduling and gating vehicle development.

B. Evaluate the performance of the organization with respect to rework by providing a
baseline of performance.

C. Evaluate group initiatives. Considerable resources are expended in improvement
activities intended to reduce rework. Unfortunately, there is seldom an objective way
to evaluate progress. Now we can identify when a program performs better than
expected, and if it does, we may use that knowledge to make changes across the
organization.

D. Identify leverage areas. The debate will no longer reside with the metrics, and will

instead focus on the problem.

3.2 Model Inputs

The key input to the model is the product portfolio matrix. This matrix includes every
product either under development or planned. Recall, to keep the model simple, the
products were classified into three complexity groups: high, medium and low. It 1s also
essential to know the product platform’s history. For instance, if the product is based on
a three-year old platform, we need to include the previous products so that we capture the
experience effect. We also want to know each product’s launch date. This allows us to
overlap distributions for multiple products based on the launch calendar. An example
matrix was shown in Figure 4. In this product portfolio matrix, each vehicle is listed with
its complexity group, launch date and platform age. In this example, all vehicles except

for program six were based on platforms launched in calendar year 1995." To clarify,

" The distinction between model year and calendar year can be confusing. In order to build an accurate
model, the distinction must be clear.
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look at 2000 model year vehicles: program six trucks are based on a two-year old

platform, while program four trucks are built on an older, six-year platform.

Also included in the portfolio information is a description of annual product changes.
For instance, sometimes a platform might undergo major redesign, while in others, it
might experience minor, non-structural changes. There are numerous degrees of change,
so a simplification is in order. We classify vehicles as being based on either anew
platform, a platform undergoing minor change, or a platform undergoing major change.
Based on these categories, two factors were calculated from historical data. For major
changes, the increase factor is approximately 1.4, while for minor changes, the factor is
approximately 1.0. This factor is easily incorporated into the model as will be shown
later. To model the effect of organizational experience, we use a constant annual
reduction term. Based on Figure 7, the reduction is approximately 15%.'* The final key

input is the rework distribution shown in Figure 8.

3.3 Model Algorithm and Formulation

The model relies on a simple algorithm. First, for each product type, the complexity is
determined based on our complexity groupings. For instance, if the vehicle is highly
complex, the vehicle is assumed to have 6500 production parts. Second, based on
complexity, the amount of rework is determined for an all-new version of the product.
Third, if the product is based on an aged platform, the amount of rework is reduced by
the experience factor one time for each year of platform age. Fourth, depending on the
nature of the model-year change (i.e., minor versus major), the amount of rework is
adjusted by the change multiple (1.0 and 1.4 respectively). Fifth, the overall amount of
rework is then distributed in time according to the rework distribution. Finally, the
contributions of each program are summed. A simple example will help clarify the

model’s algorithm.

The example is shown graphically in Figure 9. Say we have a single product—a medium

sized, multi-optioned truck. We assume that this vehicle is built on a two-year-old

'* A simple non-linear program was used to determine the variable that best fits all curves in Figure 7.
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platform, and we further assume that the vehicle only has minor changes from the
previous year. We want to estimate the associated rework. The first step is to classify
the product’s complexity, so assume the vehicle is of medium complexity. Based on this,
we approximate the final production parts at 4500. The second step is to determine the
amount of rework that will likely occur. Given the exponential relationship between
complexity and rework, we use the curve of Figure 6 to estimate that this 4500 part
vehicle will have 6500 reworked parts during its development. But recall that this
vehicle is built on two-year-old platform. The experience curves tells us that the
organization improves 15% per year, so the total amount of rework is reduced to 5525.
Now, to determine the impact of minor versus major changes, we simply multiply by the
appropriate adjustment factor. In this case, given that the changes are minor, the factor is
1.0, and the amount of rework is unchanged. Lastly, we want to find out when the
rework occurs. Using the distribution curve of Figure 8, we can determine what
percentage of rework occurs in each quarter relative to the vehicle’s launch date. For the
launch quarter, the distribution leads us to expect 12% of the total rework. For our

example, that results in 663 reworked parts.
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Figure 9 Illustration of Rework Model
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This single vehicle example illustrates how the model functions. From here, it is trivial
to extend the calculation to a multi-product scenario. The algorithm calculates each
product in the portfolio mix separately as above. Then the model aggregates the rework

by adding the rework distributions according to calendar date.

3.4 Model Output

The model output is a graph showing rework over time for the entire portfolio. Rework,
of course, is measured by part count. In Figure 10 we see the model’s prediction of

rework given the actual product portfolio worked at GM Truck Group.
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Figure 10 Sample Output of Rework Model—Entire GM Truck Group Portfolio

The seasonal trend seen in the output graph is a manifestation of using identical
distributions for each product and of using common vehicle launch dates. In Section 4.1,
model extensions are discussed—some of which will likely smooth the output. After
running the model, we used it to compare predicted rework to actual rework. Recall the
graph of Figure 3 in which we see the organizational rework for the past eight years. We
could not determine if the performance was good or bad because we could not decipher
the peaks and valleys. Using the model, we revisited the graph by superimposing the

model’s output on top of the actual data. This is shown Figure 11.
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Figure 11 Comparison of GM Truck Group Rework to Rework Model

The graph shows that the model’s prediction fluctuates around the low points of the
actual data. More importantly, there are three major peaks: 1992-1993, 1995-1996 and
1998-1999. Armed with this information, we investigated the peaks. Without hesitation,
and without much disagreement, managers and engineers explained the 1992-1993 and
1998-1999 peaks. In 1992, there were new emission regulations that required significant
rework of all vehicles under development. In 1998, GMC developed an all-new truck
platform for the first time in over 10 years. While there was no consensus on the 1995-

1996 peak, the following section on uncertainty explains how we handled it.

If we want to know the rework prediction for a specific vehicle, we adjust the portfolio
matrix. For instance, allowing the user to toggle vehicle programs individually or by
groups allows us to look at various levels of detail. We can then compare the subset to

actual data. In Figure 12, we see a comparision of model output to actual data looking

only at medium complexity vehicles.
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Figure 12 GM Truck Group Rework for Medium Complexity Vehicles
Compared to Rework Model’s Prediction

From this graph, the impact of the 1998-1999 new truck model can clearly be seen. The
1995-1996 peak seems to indicate a higher than normal level of rework. From this, we
may deduce that the aggregate rework peak for the same period may be in large part
determined by these medium complexity vehicles. The next steps would be to look at the
other vehicle groupings to verify this assumption, and then to start interviewing managers
with regards to this particular vehicle program. In this manner, insight can be gained

through employment of the rework model.

3.5 Model Validation

After comparing actual data to the model’s output, it was necessary to confirm our belief
in the model’s validity. Clearly, the data fit was most convincing; using four relatively
simple inputs, the mere fact that our model not only resulted in the correct magnitude, but
also showed variation linked to portfolio changes and platform characteristics gave us
confidence in the model’s validity. Extending this to program or vehicle specific charts
further reinforced our confidence because we could assign observed variations to

program changes and externalities.

Secondarily, management review provided a strong vote of confidence. The model’s

simplicity allows everyone to understand it, and at several reviews, the comments were

28



all positive. While this is not scientific, management’s intuition should not be
underestimated. Lastly, we believe final validation will occur with time. The model’s
input to decisions is not exclusive, but rather it is additive, so we feel that watching the
model over the next two to four years will confirm its validity while exposing the

organization to no risk.

3.6 Model Uncertainty

Although the model provides an accurate prediction of rework, many of its inputs are
averages, approximations and distributions. Consequently, we felt it was necessary to
add sensitivity bands based on statistical formula. There are several methods for doing
this including sensitivity analysis and simulation. Looking at the inputs and the

algorithm gave us an indication of which method to employ.

One of the key inputs to the model is vehicle complexity. Recall that we used three
complexity groupings for all vehicles in the portfolio. These groups have average
complexity levels, and this average is subject to uncertainty, especially if it used to
approximate future models. The second key input is the experience curve. While the
15% annual reduction is fairly consistent, we observed that individual programs
experienced anywhere from a 20% to a 10% reduction. The third key input is the annual
change factor: minor or major. This factor is subject to uncertainty and should be
simulated or evaluated for sensitivity. The final key factor, the rework distribution,
already incorporates a degree of variability. For the other factors, it would be prudent to
add a degree of uncertainty. An easy way to factor in uncertainty is to employ a
simulation program like Crystal Ball or @Risk. The goal in using these simulation
programs is to generate control bands similar to those used in a statistical process control
run chart. These bands prevent us from hastily concluding that a program’s rework

differed statistically from predicted levels.
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4.1 Model Extensions

The primary purpose of the model is to assist product and process improvement efforts.
The model provides insight through its holistic view of the development process.
However, if process and product improvements are made, the organization status quo has
changed, and the model would no longer accurately reflect performance. For instance,
we may have accelerated our program learning by adopting knoWledge transfer tools.
Consequently, the model should be reformulated periodically. At a minimum, the
parameters for the model may have to be adjusted. It is unlikely that the factors will
change as they should be independent of these changes. On the other hand, there may be
exceptions. For instance, if the organization decides to use an existing platform for 10
years, it might be hasty to assume annual improvements occur at the same rate
indefinitely. It is more likely that improvement diminishes after a period of time, and the

experience factor will have to be adjusted.

There are numerous ways to extend the model. A probable first extension would be to
determine if the model needs finer granularity. For instance, perhaps more complexity
grouping categories would improve the output. Alternatively, rather than group product
changes as new, major and minor, perhaps a few more categories will provide better
insight. In addition, it may help to shorten the analysis time period from quarters to
months, weeks or days. Further insight may be gleaned by trying to capture more phases
of the development process. One possibility is to refine the correlation between parts and
rework. As Figure 5 shows, there is a relationship between the number of planned,
experimental and production parts. Our model simplifies this relationship by looking
only at production parts. It may be interesting to look at both experimental and planned
parts, and input those relationships. Another extension could focus on the experience
factor. For instance, we may factor the carryover ratio into the algorithm. This ratio
refers to the fraction of parts that are reused in a given vehicle. It might help explain
some of the reduction in rework, and this may give a more accurate representation of not

only the benefits of carryover parts, but also the impact of changing the carryover ratio

from year to year.
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5.1 Conclusion and Impact

As stated before, the real value in the model is the methodology, which can be used to
look at a variety of complex processes. We have already begun to explore how holistic
views of other processes can be obtained through simple metrics. However, the model
has also had a direct impact on the Truck Group. The output is being used as additional
input to aid in portfolio planning. By using the model, rework efforts can be analyzed for

dependence on product type and launch sequence.

Additionally, value will hopefully be realized in the analysis of improvement initiatives.
General Motors Truck Group spends a significant amount of money on vehicle design.
GM generated revenues of over $160 Billion last year, and expenses were around $150
Billion. There are dozens of initiatives on the table for improving vehicle development.
They range from adjusting the number of prototype stages to reordering the manner in
which parts are released for production. While many of these initiatives have merit,
unfortunately it is difficult to evaluate them. Because the model is scalable, we hope to
evaluate such initiatives on whatever level they are implemented. Predicting what should
happen based on the status quo, and then comparing that to what actually happens under
the influence of one of these initiatives should give us an objective appraisal of success.
Doing that before ramping these initiatives out to the entire organization could lead to

tremendous savings.

5.1 Lessons

As stated in the beginning, the most important finding of this research was the
methodology: dissecting a highly complex process into easily understandable and
quantifiable factors. The second lesson of this research was defining the specific rework
factors. We hope the observations about the rework experience curves and the rework
distribution spark additional research in this area. Third, the difficulty in identifying
appropriate metrics for product development should not be underestimated. The general
belief of management is that metrics yield solutions. As we have shown, metrics can be
counterproductive and often misunderstood, and consequently should be chosen with

care, evaluated frequently, and used cautiously in decision making. Finally, the scant
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amount of research in the field of product development management taught us that the

field is ripe for creative research.

5.2 Rework Reduction Suggestions

Based on our research and the insights generated by the model, we offer five simple

suggestions for reducing rework:

1. Use existing platforms and assemblies for as long as possible. The benefit of
experience with a given platform has such a positive impact on the reduction of
rework, that any suggestion to move to a new platform should be weighed carefully.

2. Minimize part count. The relationship between complexity and rework is
fundamental. Modules and sub-assemblies are a move in the correct direction only as
long as specifications and requirements treat the module as a single part in function
and in space.

3. Encourage engineering ownership. By assigning ownership to parts, the move down
the experience curve might be hastened.

4. Factor the rework distribution into scheduling product launches so that the overall
workload remains manageable.

5. Stagger new platform launches as much as possible. The workload impact of

multiple new platforms would likely be unmanageable.
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Appendix A: Discussion of Rework Causes

The following list is not exhaustive, but it does represent some of the more common

product development issues that may adversely affect rework. We have aggregated

problems to a high level in an attempt to keep the list tractable yet insightful. In some

cases, we have included a brief description of a solution, although many suggestions are

based on hypothesis and intuition.

1.

Program change. Usually initiated at the executive level, often motivated by cost or

marketing. Unfortunately, these decisions are rarely communicated clearly and
timely throughout the organization, and consequently they are the most frustrating to
the engineers and designers. The impact on rework can be monumental. For
instance, a recent truck model was set back 12 months in development due a late
decision to offer a different engine option. Reconciling the decisions of high-level
mangers with the functional organizations is the biggest challenge of modemn
management. It is further complicated by the sheer size of the organization and the
related communication costs. We believe that a pseudo-cost function may help align
executive incentives. The cost function would charge programs for engineering
changes even though the exact cost of such changes is difficult to measure.

Supplier conflict. Problems range from suppliers going out of business to suppliers

informing the group that they cannot complete the part as specified. Again, the
impact of such changes is difficult to measure. In some cases, the purchasing
organization is able to develop a speedy workaround, while in others, the vehicle is
held up for redesign and testing. Moving towards concurrent engineering is likely to
minimize the occurrence and the impact of supplier conflicts.

Part failure. Failure is a broad term that encompasses engineering-designing
conflicts, material failures and weight-cost conflicts. These may be identified
through physical or analytical testing. Attempts to improve math-based analytical
testing will likely eliminate late discoveries. However, a simple technique for
improving first-time design is to assign part ownership. In modern organizations,
promotion and rotation is frequent, and many individuals work many parts over the
course of one design or several years. By trying to align designs with individuals, we

feel that ownership will improve the ability of designers to preempt problems.
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4. Assembly failure. Problems of this type arise when the assembly process cannot

complete the product as prescribed and the assembly process cannot be changed. In
addition to the methods of ownership and concurrent engineering introduced above,
improving communications between manufacturing and engineering may help reduce
these problems. Unfortunately, cross-functional communications can be expensive in
terms of time and resources. One suggestion for long-term improvement is to rotate
managers and supervisors through both organizations. While the training costs may
be expensive, the benefits in terms of speed and first-run quality will likely

compensate.
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Appendix B: Discussion of Effective Metrics

There are many problems with conventional metrics that hinder effective product
development management. The first problem we uncovered was the lack of consistent
definitions and the lack of common understanding of metrics. To some, rework was a
measure of product quality, and since our goal was of reducing rework, final product
quality should increase. A converse argument is that development rework is essential to
resolving product problems, and product quality should improve with rework. To others,
rework 1is a throughput metric. As such, a major source of development delay and cost is
rework, so if we reduce rework, we should improve speed to market and cost to market.

All interpretations are valid; it is important to clarify definitions and goals.

Another common problem is to correctly encompass the problem with a data collection
time scale. Many organizations use financial time periods such as fiscal years, quarters
and months to measure and evaluate engineering projects. In addition, the amount of data
is often inadequate. In the case of vehicle development, looking at three to six months of
data is too short relative to the multi-year development process. It is necessary to go
back as far as possible to identify problems and develop changes. A third problem stems
from incorrectly “focusing the magnifying glass.” Most companies operate is some form
of a matrix organization. Moreover, each functional area may have responsibilities that
defy a two-dimensional chart. So while it may be easy to focus on a group’s or a
project’s metrics, doing so may sub-optimize performance elsewhere. Metrics for
vehicles, which take 24 months to develop, should directly reflect the product and the
time frame. Doing otherwise makes it difficult to show the link between behavior and

results.

Finally is the issue of discipline. General Motors has numerous data systems supporting
vehicle development. These systems range in purpose from data collecting and
benchmarking to administrative systems that process information in support of
development. Many thousands of individuals are involved in data entry and data usage.
Unfortunately, the discipline in system use is poor. Entries are often inconsistent, and

relatively few people understand the purpose and impact of their role. For example,
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EWOs contain reason code fields. This field is intended to record the cause of the change
in order to first expedite approval, and second to learn from the change and to prevent the
change from being required in the future. Unfortunately, not only are the codes too
generic to provide insight, but engineers select the same code, product improvement,
80% of the time. This lack of discipline undermines efforts to understand and improve
the process, and it also makes quantifying many aspects of development and rework

unsuitable for a model.

A costly solution would be to manually collect data, evaluate it and then automate or
institutionalize those metrics that overcome these problems. Of course, there is always a
risk that the data collected does not yield any insight. Alternatively, if we can identify
and use existing metrics that avoid the aforementioned problems, perhaps we can gain
management insight. Many organizations track costs, man-hours, part nambers, supplier

contracts, engineering changes, etc.... The problem is to determine which metric(s) best

represent the product and the process.
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Appendix C: Discussion of Other Rework Factors

There are many factors affecting rework. Recall that factors are distinct from causes in

that they universally apply to products and organizations. While many of factors provide

process and product insight, not all of them can be quantified to a degree suitable for a

predictive model. Others may be quantifiable, but data collection or consistency issues

preclude their inclusion. The following list describes other factors that we hypothesized

influence rework, and explains why they were not included in the model.

1.

Timing Differences. General Motors EWO system is designed to resolve changes

within 90 days. Data confirms that, on average, changes are resolved in this time
frame. We hypothesized changes that occur faster or slower than the average may be
related to notably refined or notably cumbersome systems respectively. We further
hypothesized that factoring in these system and product differences into the rework
model may add valuable information. However, through further analysis and
interviews, we discovered that change timing is influence by too many intangible
factors. For instance, a simple change might sit on an engineer’s desk due to
numerous factors including preferences, program volumes and program focus.
Consequently, EWO process times were not included in the rework model.

Political Factors. Political interests of different organizations complicate developing

vehicles. For instance, the safety and regulatory requirements associated with
automobiles sometimes come into conflict with unrestricted engineering and
development. While an understanding of their play in the product development arena
may make all parties more sensitive to the potential impact, there is no way to
eliminate these factors, nor can we measure their impact on the organization.
Moreover, including these factors into the model is untenable.

Other Metrics. Clearly there are dozens of metrics related to product development
and to rework that may seem suitable. Most obvious would be to track EWO
documents. Initially we set out to do just that with the goal of discovering a
relationship between program complexity, timing and the number of change
documents issued. However, it was discovered that EWOs were a tracked metric, and
furthermore, many managers used the metric to evaluate performance. Engineers

responded by doing everything possible to minimize the number of EWOs issued.
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One common technique for this was to initiate an EWO, and to keep that change
notice open while additional changes, sometimes completely unrelated to the primary
purpose of the EWOQ, are added to the document. In this manner, the administrative
functions of a change are assured, while the benefit of minimizing EWOs is realized.
Other metrics were discovered to have similar problems, and that is why they were
not factored into the model.

Prototypes. GM uses prototype to resolve engineering and design issues. In an
attempt to accelerate the development process, additional prototyping stages have
been added. The idea is that these additional prototypes will identify specific
problems early in the process. In support of the numerous prototypes, release dates
are pre-determined so that development efforts occur when needed. Two behaviors
were observed. First, engineers did whatever is necessary to meet release dates, and
often that included releasing parts that were nothing more than a place holder.
Second, having so many prototypes has clogged the information systems, and the
ability for the system to absorb lessons from a prototype into the next stage is
questionable. For these reasons, and also because the data sample of programs to
prototypes 1s small and inconsistent, the prototype factor was not included in the
model. However, we believe that this area definitely deserves further investigation.

Organizational Change. General Motors is redefining itself on a major scale, and this

is good. Many major processes have been recreated including the rapidly shrinking
Vehicle Development Process, the state-of-the-art Validation Center, and the rotation
of key managers. However, this change has impacted the organization’s ability to
learn about its processes. No vehicle program has been executed with exactly the
same program, nor do many supervisors understand the processes. Likewise,
initiatives for improvement are sprouting up in many places because ownership and
resources have been tangled over the past few years. It is logical to look for
associations between these process and program execution, but many of the major

processes have changed too frequently to factor into the model.
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