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Abstract

The Programmable LEGO Brick is a tiny, portable computer for kids

which is capable of interfacing to the physical world in a large variety of

ways. It is designed to support rich learning activities, motivated by the

constructionist view of learning. The programmable brick breaks new

ground for programming environments for kids: it connects programming

to the "real world" in a much broader way than have previous systems,

due to its portability and large number of input/output modalities. This

thesis discusses goals for the programmable brick project, the design
decisions made for the programmable brick, experiences with people
using the brick, and the technical implementation of the brick.
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Chapter 1:
Introduction

The Programmable LEGO Brick is a tiny, portable computer, designed to

be used primarily by kids. In contrast to most other portable computers,

the programmable brick is capable of interfacing to the physical world in

a large variety of ways, using various sensors and actuators. The brick is

designed to support rich learning activities, motivated by the

constructionist view of learning.

The programmable brick breaks new ground for programming

environments for kids: it connects programming to the "real world" in a

much broader way than have previous systems, due to its portability and

large number of input/output modalities. One goal of the programmable

brick project is to make available to kids new constructionist activities,

which may let kids explore new ideas and new ways of thinking.

This thesis discusses goals for the programmable brick project, the

design decisions made for the programmable brick, and experiences with

people using the brick.



1.1 What is a Programmable Brick?

As seen in the figure 1, the Programmable LEGO Brick is a computer

small enough to fit into a pocket, and yet it has more I/O connections

than a Macintosh A/V computer. I/O ports can be found on five of its

six sides (the sixth side, bottom, is used to snap to LEGO).

Four ports for attaching
LCD screen .LEGO-compatible sensors

Four actuator ports for
attaching motors or lights Microphone

Knob for user input

-- Six infrared transmitters

O"-Six infrared receivers
9v battery access

Four ports for attaching __ Network connectors
custom sensors [connects to desktop

computer for programming]

Buttons for user input Speaker

Figure 1.1: The programmable LEGO brick

The programmable brick has a multitude of I/O modalities: built-in

speaker, microphone, infrared communications, a small LCD screen,

buttons and a knob, and twelve ports for add-on I/O devices such as

motors, and a wide variety of sensors. Users can download programs to

the brick from a desktop computer, and the programs then run

autonomously on the brick.



1.2 Why a Programmable Brick?

1.2.1 LEGO/Logo: The Next Generation

The programmable brick can be seen as a logical next step from the

successful LEGO/Logo system developed together by the LEGO company

and the MIT Media Laboratory. But a goal of the project is that this step

in features would bring a leap in the range of computer-control activities

and, more importantly, change the way children think about

computation in general.

Before LEGO/Logo, computer programming for kids was generally limited

to affecting things displayed by a computer screen. Computation could

be applied only to things that could be represented inside the computer

(and isolated from things outside the computer).

LEGO/Logo made an important step toward connecting programming for

kids to the real world [Resnick, Ocko, Papert 1988]. Using LEGO/Logo,

kids could connect a desktop computer to a motorized LEGO device,

such as a conveyor belt or merry-go-round, and then write a program to

control it. No longer was computation's effect limited to the computer

screen.

But LEGO/Logo connects to the real world in a somewhat limited way.

One problem is that the LEGO creations being controlled must be tied by
wires to a desktop computer. Most of the real world simply doesn't sit on

the desktop next to the desktop computer. Another problem is that

LEGO/Logo has limited I/O modalities (can sense only pressure and

light, and actuate with movement or light, and no modalities designed for

communication). Lots of what goes on in the real world simply can't be

connected to LEGO/Logo because the I/O modalities are not broad

enough. Although LEGO/Logo makes the first step toward connecting

computation to things that are real, it still suffers from a similar

limitation to the pre-LEGO/Logo system: computation can still only be

applied to a limited set of things.



The programmable LEGO brick is specifically designed to address the
limitations of LEGO/Logo. The brick, through its portability, can be
brought to, and even be left in, the real world. And through its larger
variety of I/O modalities, it can be interfaced to a relatively large
percentage of the things it can be brought to. Kids can program a brick
to adjust a thermostat based on time of day and amount of activity in a
room, or put a brick in a forest to try and attract animals by making
animal noises and then record or even react to noises heard in return.

The programmable brick not only breaks us free of the desktop
computer, it breaks us free of the desktop computer mentality: that
computation created by kids be isolated to interaction with things inside
the desktop computer, or things outside the computer but on the
desktop itself. The programmable brick brings to kids the revolution of
ubiquitous computing: computation connected to and spread throughout
the environment. But it brings the revolution with a twist: kids are the
designers, not just users, in this new realm.

1.2.2 Why design and build?

The major underlying motivation for the programmable brick is to get
kids to design and build, a goal of the educational approach known as
constructionism [Papert 80].

Constructionism starts with Piaget's theory of constructivism, which
states, simply, that learners actively construct their own knowledge. A
learner isn't just a tabula rasa, or blank slate, upon which knowledge
can be written. Learners actively analyze what they see, then either
assimilate their observations into their earlier mental models, or are
sometimes forced to change their mental models to accommodate new
observations which were inconsistent with their earlier ideas.

Papert takes constructivism a step further, in an approach he calls
constructionism. Papert states that a particularly good way for a learner
to construct knowledge is to construct things. Designing and building
things is a very rich way to interact with materials and ideas. The



learner must think up ideas about how to build something. And it's

usually the case that the learner finds his ideas, when implemented,
don't work exactly as he had planned. This gives the learner an

opportunity to add to or change his model of what's going on to account

for the discrepancy, and try to think up new ideas about how to make it

work. This back-and-forth between the learner and the artifacts he is

trying to create keeps the learner engaged in the cycle of observation,

then assimilation or accommodation, described by Piaget.

But even without this abstract, theoretical model of what's going on

inside the learner's mind, it's easy to see reasons that designing and

building can be good activities for learning. This list of reasons is taken
from "Towards a Practice of 'Constructional Design"', by Mitchel Resnick

[Resnick, in press]:

o Design activities engage students as active participants, giving
them a greater sense of control (and responsibility) over the
learning process, in contrast to traditional school activities in
which teachers aim to "transmit" new information to the students.

o Design activities encourage reflection and discussion, since the
artifacts that students design can serve as "props" for students to
reflect on and talk about.

o Design activities encourage a pluralistic epistemology, avoiding
the right/wrong dichotomy prevalent in most school math and
science activities, suggesting instead that multiple strategies and
solutions are possible (Turkle & Papert, 1990).

o Design activities are often interdisciplinary, breaking down the
barriers that typically separate subject domains in school.

o Design activities provide a sense of authenticity, suggesting
stronger connections to "real-world" activities (since most real-
world activities involve design-oriented strategies, not the rule-
driven, logic-oriented analyses that underlie many school
activities).

o Design activities can facilitate personal connections, since
students often develop a special sense of ownership (and caring) for
the artifacts that they design.

o Design activities promote a sense of audience, encouraging
students to consider how other people will use and react to the
artifacts they create.



1.3 The rest of this document

The rest of this thesis goes into detail about the ideas behind the brick,
the design of the brick, and experiences with the brick.

Chapter 2 is the "Multiple" chapter: it explores a common thread
important to many of the different motivations behind the design of the
brick: the desire for multiple sensor modalities on a brick, multiple
computational processes running on a brick, multiple bricks interacting,
and multiple activities for bricks.

Chapter 3 explores connections between this project and previous
constructionist work, as well as connections between this project and the
emerging area of ubiquitous computing.

Chapters 4 and 5 discuss the software and hardware design of the brick,
exploring design decisions and tradeoffs, as well as describing in detail
the product of the decisions: the brick itself.

Chapter 6 discusses experiences with learners using bricks in various
situations and environments.

Chapter 7 explores some untried learning-rich activities designed around
the brick, suggesting some possible future directions for explorations
with the programmable brick.

Chapter 8 concludes this thesis, recapping the successes and failures,
and pointing to future directions suggested by this work.



Chapter 2:
"Multiple"

For lack of a better name, this is the "Multiple" chapter: it explores a

common thread important to many of the different motivations behind

the design of the brick: the desire for multiple input/output modalities

on a brick, multiple computational processes running on a brick,

multiple bricks interacting, and multiple activities for bricks.

2.1 The Need for Multiple Activities for Bricks

Having the brick support many varied activities is important for many

reasons. One important reason is that it allows a larger fraction of

people to become interested in using the programmable brick. If some

connection can be made between the programmable brick and a person's

interests, it will make that person more likely to try the brick out.

One example of this was an experience at The Computer Museum in

Boston, where this author was attempting to interest junior high

students to try out using the brick to make programmable musical

instruments. But the kids lost interest quickly, and were drawn to a

LEGO train set at the other end of the room. The programmable brick

could be interfaced to the train as well, and once it was, the kids became

much more interested in programming.

But not only can the brick be used for a variety of different activities,

these different activities can often be merged, or connected, through use

of the brick. People who start to use the brick for familiar and

comfortable activities may get drawn into activities that are new. A kid

comfortable with building a LEGO car but unfamiliar with computers

may get drawn into programming to control the car. The same kid might

program the car to make a simple tone when it hits a wall, and then get

drawn into how to design increasingly complex sound effects.



Another advantage is that different people, with different backgrounds,
can link up and combine their talents to make new projects. For
example, a person with musical experience might work with person with
sensor expertise to make a musical instrument with a nice user-interface
for playing.

2.2 The Need for Multiple Input/Output Modalities

The programmable brick attempts to connect computing to the "real
world" in as broad and deep a way as possible. But in order to connect
with the real world, the brick must be able to act on it and react to it.
The more ways the brick can sense or act on the world, the more broadly
it connects to the real world, and the wider the variety of activities that
can be done with it.

In fact, the variety of activities that can be done with a programmable
brick does not increase simply linearly with the number of things the
brick can connect to. Many of the simple and interesting applications of
the brick can be thought of as living at the intersections between things
the brick can sense and things the brick can actuate. Of course, more
complex applications would use more than just one input and output.
Figure 2.1 shows a grid of sample activities brainstormed for the brick,
organized by sensor and actuator modalities. If this simple
representation were the correct model for defining activities, then the
number of activities might grow with the square of the number of sensor
and actuator modalities. In fact, since more complex applications will
use several modalities, and each modality can in fact interface to many
different things in the real world, the number of possible activities grows
at a much larger rate.



Output Speaker Motor
Modality:

Input Modality

Microphone Tape recorder Artificial LEGO creature
Fake watch dog scared of loud sounds
bark when a noise is heard

Tone detection Birds in a jungle Mechanical musical
multiple bricks hear and accompaniment
respond to each other. brick listens for notes and

accompanies different ones by
hitting a glass bottle or
xylophone, etc.

Touch sensor Programmable saxophone
Remote control Ventriloquist Remote controlled car

signal brick to play back
sampled speech at a distance

Knob & button Sound Effect player Adjustable motorized fan
different sounds depending on
different settings of knob

Light sensor Greet people coming in Artificial roach
room creature that is afraid of light.
detect people walking through a
doorway and react to them.

Infrared person Alarm system Artificial creature that
detector Haunted house follows people

try to scare people with spooky
noises as they walk by in a
dark room

Angle/rotation Programmable LEGO
sensor trombone

angle sensor can measure in
and out movement of the slide
of a home-brew LEGO
trombone.

Temperature Temperature alarm Adjust a radiator knob to
sensor brick can act like a teakettle, or regulate temperature

warn of freezing temperatures
at pipes.

Distance sensor Computer Museum
"height" exhibit
Boston Computer Museum has
an exhibit that measures a
person's height and speaks the
measurement to the person.

Time Cuckoo clock Open blinds at 8 am to
wake up room occupants

Figure 2.1, part 1 of 3
Activities at intersections of input and output modalities



Output Light or light switch Infrared remote control
Modality: output

Input Modality
Microphone The "clapper" VCR: try to skip

clap to turn lights on or off commercials on the basis
of volume

Tone detection Musical light show Scan radio stations
turn lights on and off in searching for favorite
response to music detected songs

Touch sensor Turn on light when door Mute television when
is opened phone is off hook

Remote control Turn lights off from bed Remote control repeater
replay remote control signals
sensed. several repeaters can
allow controlling a stereofrom
several rooms away.

Knob & button Programmable remote
control

Light sensor Turn on night light when Detect mouse crawling to
it gets dark cheese bait, and record

with camcorder

Infrared person Turn on light when Record people who walk
detector person is detected by with camcorder
Angle/rotation Turn off TV if exercise
sensor bike isn't being ridden

Temperature Control a heat lamp to
sensor regulate temperature

Distance sensor

Time Deter burglars Turn off stereo after an
write a program to turn lights hour
on and off at somewhat random play music until personfalls
times asleep

Figure 2.1, part 2 of 3
Activities at intersections of input and output modalities
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Output Screen
Modality:

Input Modality

Microphone Record how often your
phone rings

Tone detection Musical tuning aid
Light sensor See if fridge light really

goes off when you close
the door.

Infrared person Count people passing by
detector

Angle/rotation Measure motor RPM
sensor

Temperature Thermometer
sensor

Distance sensor Electronic tape measure
Networking Send secret messages to

someone else with a brick
Time Digital clock

Figure 2.1, part 3 of 3
Activities at intersections of input and output modalities

This grid of activities is not intended to be complete by any means.

Rather, it is indented to show the breadth of applications enabled by a

wide variety of input/output modalities.

2.3 The Need for Multiple Processes

Prior to the design of the programmable brick, experience with children

using the LEGO/Logo system suggested that programs would often be

short and simple, and when they became complex, it was not complexity

in terms of data structures, but rather in terms of program control flow.

In other words, programs didn't often record and store up data in

complex ways. The simplest programs sequenced a set of actions to be

taken by actuators: turning motors and lights on and off. Programs of



medium complexity would generally react to sensor inputs and modify
the sequence of actions taken by actuators in simple ways.

2.3.1 Multiple Processes Simplifies Programs

The most complex programs written using LEGO/Logo would generally
react to many sensors and modify actuation based on these. However, in
many cases, these programs, which looked complex, were intended to
perform multiple, simple functions. The complexity was caused by trying
to do more than one thing at once, inside a programming model that
allowed only one thing to happen at a time.

One such case encountered by this author was during a LEGO/Logo
workshop of fifth graders in which the goal was to create a make-believe
"candy factory." One workshop participant had created a set of
connected conveyor belts to move candy, and a "masher" in the middle of
the conveyor belt to squish down the candy when it came by.

The program started off simple, with a light sensor placed in such a way
that the program would know when a piece of candy was coming by the
masher, and pushed the masher down for a while, then back up, like so:

to factory
listento 7
waituntil [sensor?] Waits until candy in front of light sensor (sensor 7)
talkto "a
onfor 5 Tum masher motor onfor halfa second (forward)
rd Reverse masher motor
onfor 5 Turn masher motor for half a second (backward)
rd Reverse masher motor
factory Start back over from beginning

end

The participant had many problems with the mechanical structure of his
linked conveyor belts -- some belts were high, some were low, and all
were hooked to a single motor through rubber bands on pulleys. After
spending some time trying to reinforce the structure, the participant
decided to turn the "bug" of the somewhat unreliable conveyor system
into a sort of "feature" -- he wanted to add to his program a test for when

22



the belt stopped running, and set off an alarm. He asked how to do this

at the same time as his first program, and needed help to create a

contorted program similar to the following, which checked a rotation

counter connected to an axle on the last conveyor belt to make sure it

kept spinning:

to factory
wait -for-candy
talkto "a
onfor 5
check-for-breakdown
rd
onfor 5
check-for-breakdown
rd
factory

end

to wait-for-candy
check-for-breakdown
listento 7
if not sensor? [wait-for-candy]

end

to check-for-breakdown
resetc Reset the counter
wait 5 Waitfor half a second
if counter = 0 [tone 500 10] If the counter hasn't

incremented,
sound the alarm

end

The flow of control for this program has become much more complex.
Breakdowns are checked throughout the code. Even so, the code doesn't
do exactly what the participant wanted: occasionally a piece of candy
would pass by the masher's sensor during the execution of check-f or-
breakdown, since the breakdown check took half a second to run.
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With a programming environment that allowed multiple threads of
execution to be run at once, the participant could have simply added the
following to his first program:

to check-for-breakdown
resetc
wait 5
if counter = 0 [tone 500 10]
check-for-breakdown

end

check-for-breakdown and factory could then be run at the same time,
either by starting them manually, or with a procedure like this:

to start
launch [factory]
launch [check-for-breakdown]

end

By running check-for-breakdown and factory at the same time, the

correct effect is achieved, with shorter and much simpler code, and
without the bug of sometimes missing the candy.

2.3.2 Having Multiple Processes Allows for New Complexity

In addition to making some previously complex programs simpler, having
multiple processes allows for new types of complexity. New language
features allowing interaction between processes enables new models of
computation to be explored.

One form of interaction between processes is the behavior model used by
Brooks for programming robots [Brooks 89]. A primary feature of this
model is that processes can effectively enable and inhibit each other.
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Consider the following case, based one workshop participant's

programming of an "artificial creature" using the programmable brick.

The participant had developed two separate processes, or behaviors, like

so:

to follow-light
Follow a bright light. sensor A is a light sensor mounted on the left side of the
robot, and sensor B is a light sensor mounted on the right

If light is brighter on left, steer to the left.
if sensora < sensorb [motora, on motorb, off]

If light is brighter on right, steer to the right.
if sensora > sensorb [motora, off motorb, on]

end

to avoid-obstacles
Goforward until thefront bumper is hit (touch C). When bumper is hit, take
evasive measures

if touchc [ motora, rd on
motorb, rd on Back up
wait 20 Wait 2 seconds
motora, rd Spin
wait 5 Wait half a second
motorb, rd] Goforward again

end

The process mechanism given by the programmable brick made an

implicit "loop" for each process: a procedure would be repeated while the

its process was turned on. At first the user turned on and off the

processes manually, only using one at a time. After some time, the

participant decided he wanted the robot to do both. But running both

processes at the same time led to bad behavior: when avoid-obstacles

saw that touch sensor C was pressed, it first tried to run both motors full

reverse, and wait for two seconds. Unfortunately, during the two

seconds, follow-light had usurped control of the motors, turning one

or the other off based on the light readings. What was needed was a way

to have one of the processes inhibit the other.
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With some help, the participant fixed his problem with a change to
avoid-obstacles similar to the following:

to avoid-obstacles
if touchc [ disable-follow-light1  Temporarily disable the

follow light process.
motora, rd on
motorb, rd on Back up
wait 20 Waft
motora, rd Spin
wait 5 Wait
motorb, rd Forwards again
enable-follow-light 2 ] Re-enable thefollow

light process.
end

Now, the avoid obstacles behavior could turn off the follow-light behavior
when it wanted to force the robot to back up and spin in order to get
around an obstacle, thus keeping the follow-light process from interfering
with motor control.

Although this example was quite simple, many processes can be
intricately connected in this manner -- simple behaviors can be

combined in different ways to produce more complex actions.

2.4 The Need for Multiple Bricks Interacting

One motivation behind the programmable brick project is the ability for
multiple bricks to interact with one another, either through various
signaling technologies (such as infrared or sound), or through modifying
and then sensing the state of the environment. One motivation for doing
this comes from previous research with StarLogo, designed by Mitchel
Resnick [Resnick 91]. StarLogo is a software environment for
experimenting with virtual worlds that have many interacting entities.

1The actual primitive used was stop-menu-1. In this version of the brick software
environment, each process had a menu item on the brick's control panel, and the user
could manually turn these processes on and off by selecting them with the knob and
clicking the button to start or stop. Thus, it was a natural to add primitives to allow
the user to start and stop menu items from program control.
2 start-menu-1 was used here.
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People using StarLogo can explore how many simple things can interact
to produce complex behavior. This complex behavior can appear

organized, even though there is no organizing entity: the organization

emerged from the interacting parts. For example, StarLogo has been

used to explore how ants, even with extremely simple rules governing

their behavior, can exhibit complex and seemingly organized behavior in

a colony. People are often surprised by the idea that organization can

arise without an explicit plan or mechanism for control.

The programmable brick, through its ability to interact with other bricks,

can take these sort of experiments out of the computer and place them in

the real world.

27
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Chapter 3:
Background

3.1 Ubiquitous Computing

The idea of "ubiquitous computing," of computing capability spread

throughout the environment, has received great interest in recent years

[Weiser 1991] [Wellner, Mackay, Gold 1993]. As the size of the

electronics required for computers gets ever smaller, it becomes easy to

include computing in electronic items that previously had none, or even

in devices that weren't previously electronic at all. Microwave ovens of a

few years ago could only be set to cook at a certain power for a certain

time; today, microwaves commonly do things like automatically defrost

meat based on its weight by calculating an optimal sequence of different

cooking powers over time. Until recently, cars used mechanical systems

to adjust the intake of air to match fuel; today, many cars use

computers to precisely adjust the fuel/air mixture to reduce exhaust

pollutants based on dynamic feedback from sensors in the emissions

system.

But sometimes by embedding computing into an everyday artifact, we see

more than just a simple optimization of its existing functionality.

Ordinary white boards, with computing and sensing built in, might be

able to record and remember things drawn on it, and a smart telephone

system, connected to person-tracking sensors, can direct incoming calls

to the phone closest to where a person happens to be at the time.

The programmable brick is in many ways inspired by the ubiquitous

computing movement. One way in which the programmable brick

extends the body of work in ubiquitous computing is that it focuses on

how kids would use ubiquitous computing. But perhaps more

importantly, the programmable brick project differs in that it focuses on
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kids designing and creating, rather than just using, ubiquitous
computing artifacts.

Most of the thinking about ubiquitous computing has focused on people
using ubiquitous computing as consumers, rather than as builders. This
is natural since probably the closest relative to ubiquitous computing
today is personal computers, and most people who use desktop
computers today are consumers, rather than programmers or computer
hardware designers. But there are a few reasons it might be important to
consider people creating and programming their own ubiquitous
computing artifacts.

Consider the history of personal computing: in its infancy, a very large
fraction of its users were programmers. Personal computers came with
programming languages built in. The wide variety of ideas that came out
of those days helped make personal computers the widespread and
important tools they are today.

But another point to consider is this: ubiquitous computing may be
fundamentally different from desktop personal computing. Today, there
are only a few "killer" applications for personal computers -- applications
which people on the whole spend most of their time using. Today, these
are word processors, spreadsheets, graphics and presentation software,
and telecommunications software.

Perhaps the uses of ubiquitous computing, though, can't be boiled down
easily into a few killer applications. If ubiquitous computing turns out to
be characterized by a large variety of often transient uses, as possibly
suggested by the previous chapter, the user may wish to have a general-
purpose tool like the programmable brick, which lets the user make a
custom solution to each custom problem.

And of course the most important reason to focus on people creating,
rather than just using, ubiquitous computing artifacts has been
explained before -- the primary goal of this project was to create a
constructionist learning environment. So, at its core, this project focuses
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on people creating ubiquitous computing artifacts because it focuses on

people learning through creating.

3.2 Related projects

3.2.1 Logo Brick

The Logo Brick was a first attempt at making portable computation for

kids that interfaced to sensors and motors [Martin 88] [Bourgoin 90].

However, it had a lot of failings: it was not robust (requiring MIT people

around to fix it when it broke), was relatively large, and had limited I/O

modalities (touch and digital light sensing were its only inputs). The

brick did not allow for easy user interaction when disconnected; it had

no screen, and had only a single input: the "run" button. The

programmable brick addresses the shortcomings of this project, in

addition to bringing new approaches to software environments, and new

perspectives on the use of portable computation for kids.

3.2.2 MIT LEGO Robot Design Contest

The programmable brick shares some of its underlying hardware design

with the portable robot-controller hardware developed by this author and

Fred Martin for the MIT LEGO Robot Design Contest [Martin, Sargent

92]. The LEGO Robot Design contest is an annual event in which MIT

undergraduates design and build LEGO robots to compete against each

other. Robots typically do things like collect ping pong balls from a small

playing field, or to locate and stack blocks. The hardware from the robot

contest controller board could not be used directly, though: the system

was developed for use by university students comfortable with circuit

building and debugging. It is large -- about twice the size of the

programmable brick (mostly to make it easy to solder by the students). It

has no case, so it has lots of easily breakable wires going everywhere,

which is OK for the university students, who can fix them. The controller

board is also much simpler than the brick, missing much of the brick's

functionality. Finally, the software for the MIT LEGO Robot system (a



variant of the C programming language) seemed to be inappropriate for
younger kids.

3.2.3 Braitenberg Brick System

The "Braitenberg Brick" system, designed by Fred Martin, allows children
to build robots to explore the concepts in Valentino Braitenberg's
'Vehicles." Children build circuits with sensors and logic bricks (such as
and's, or's, and one-shots) that endow their robots with various
behaviors [Hogg, Martin, Resnick 91]. This system shares with the
programmable brick the idea of portable computation that can be hooked
up to the environment. The Braitenberg brick system, however, does not
implement a general-purpose computation model: while it is easy to
make simple "reflexes" that couple sensors to actuators, computation of
the complexity typically seen on computers is at best difficult, and
usually impossible, to implement using the system. The programmable
brick project further differs from the Braitenberg brick system in its
larger variety of I/O modalities and the focus on embedding computation
in the real world.

3.2.4 Multiprocessing Logo

The programmable brick is programmed by kids in a version of the Logo
programming language. The Logo environment for the brick allows
multiple threads of execution to take place simultaneously, following the
ideas of the research environments MultiLogo [Resnick 88] and Video
Game Logo (by this author), and the recent commercial product
Microworlds Logo. The user-interface for the programmable brick
software environment borrows many ideas from Microworlds Logo.



Chapter 4:
Hardware Design

The hardware design of the programmable brick attempts to achieve

several sometimes conflicting goals:

* Brick should be portable:
* Able to fit in pocket

" Low power so can be run from batteries

e Should be able to be left in environment

e Should support large variety of I/O modalities

e Should support desired computation environment

e The brick should be practical to implement

The juggling of these constraints in the design and implementation of the

brick hardware was time-consuming and difficult.

4.1 Processor Selection

One important aspect of the programmable brick hardware design was

the choice of microprocessor. The choice of microprocessor affected ease

of software development, features available to the user, power

management, and size considerations.

After consideration of many processors, two main families emerged. One

was small embedded controllers with good I/O but minimal processing

power. The other was larger processors with higher processing power,

but more limited I/O. A representative from each of these groups was

chosen on the basis of familiarity and ease of software development.

The representative selected from the first group was the Motorola 6811.

This processor had been used in previous hardware designs by this

author and Fred Martin for the MIT LEGO Robot Design Contest. This
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processor was small, had good I/O, and low power consumption, but had
a relatively old instruction set, requiring programming of the core
software in assembly language. However, software developed for the MIT
Lego Robot Design Contest could be adapted for use in a programmable
brick based on this processor.

The representative selected from the second group was the Motorola
68332. Although the 68332 used more power than the 6811, it
incorporated advanced power management techniques that allowed
reduced power consumption during idle times or times with low
processing load. A design with the 68332 would be much larger than a
design with the 6811 due to the increased memory requirements, as well
as the need to add I/O devices.

From a software standpoint, the 68332 used the same instruction set as
the Motorola 68000, so it would likely be able to run versions of Logo
originally written for 68000 machines such as the Macintosh. Using the
68332 would make possible certain processor-intensive primitives such
as sound processing and filtering that would be impossible with a slower
processor such as the 6811. It was felt that since the 68000 could be
programmed in higher-level languages than the 6811, development of
new programming environments for it would be easier, and those
programming environments could have more functionality as a result of
the increased processing power.

The first design for the programmable brick hardware incorporated the
68332, primarily due to the perceived software benefits later on. In the
course of actually trying to lay out the design on circuit boards, it was
found that the 68332 caused a larger size increase over the 6811 than
was originally realized, and entailed a fair bit more complexity as well.
Also, the leading implementation candidate for the brick programming
language at the time had been a modified version of the then-being-
developed Microworlds Logo for the Macintosh, but it was found during
the implementation of Microworlds that it would be too large to fit on the
programmable brick. For these reasons, the 68332 design was
abandoned in favor of a simpler design with the 6811 processor.
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4.2 User Interaction

While the user can interact with the programmable brick through the

host computer when the host is connected, the user is forced to use

other means when the brick is away from the host. However, the brick

clearly did not have room for the standard computer monitor and screen:

even in today's smallest portable computers, a keyboard and monitor

place serious restrictions on their minimum size.

We decided to outfit the brick with a small LCD screen capable of

displaying two short lines of text (and limited graphics), two

pushbuttons, and an easy-to-turn knob. This minimal interface would

allow the user to select items from a menu displayed on the LCD screen

by twisting the knob to the appropriate item, and selecting it by pressing

one of the buttons.

Note that in many applications, the brick is embedded in a project that is

moving or otherwise difficult to access. In this case, the screen, buttons,

and knob are of limited use, although the speaker and infrared remote

control can be used to some extent instead (see section 4.5).

4.3 Integrated vs. Separate Batteries

A big decision in the design of the programmable brick hardware was

related to batteries and motors. While processors could be found that

used very little power, running mechanical LEGO creations with motors

simply required lots of power. The power required to run motors for a

reasonable length of time resulted in batteries larger and heavier than

the electronics circuitry for the brick itself. The power required for

processing, using sensors, using the brick's display, and emitting sound

were relatively quite low, requiring only a small battery.

One of the most obvious uses for the programmable brick is to make

robots and artificial creatures. But, from the beginning of the

programmable brick project, a conscious effort was made to explore uses
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beyond just making mobile, motorized machines. One such application
driving the design of the brick was the idea of taking the brick out into
the world to collect sensor data, such as the pH levels of local streams.
For this application, a small brick that allowed its user to put the brick
in a pocket was very appealing. During the brainstorming for possible
applications for the brick, many other applications were found that either
didn't require motors, or required use of motors very intermittently (such
as mechanically switching on and off a light switch when someone was
sensed to pass through a doorway).

One way of possibly allowing the brick to be small when motors weren't
being used heavily was to incorporate a small alkaline battery into the
brick itself, and have an optional large rechargeable battery pack that
could be attached to the brick only when necessary. This approach had
several advantages and disadvantages.

Advantages of separate processor and battery brick:

e Processor brick would be much smaller when the battery brick
wasn't needed.

e Battery bricks could be recharged while disconnected from
processor brick. Since battery bricks would be cheaper than
processor bricks, more could be made, and allow swapping
batteries when one set ran out, allowing 100% usage of the
processor brick. (A single brick would have to be taken out of
service and recharged when its batteries ran out).

Advantages of a single brick with both the processor and a large set of
batteries:

e More reliable: fewer connectors means fewer problems.
- The single brick would be somewhat smaller in the case when the

large batteries were necessary.
e The double brick solution requires two sets of batteries; the single

only requires one.
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The size of the brick seemed to be the overwhelming consideration, so the

separate brick solution was chosen. During use of the programmable

brick, very efficient, low power motors were found that allowed many of

the traditional, motor-intensive projects to get away with using the

processor brick alone.

4.4 Power Management

Although the electronics of the programmable brick did not use much

power, it was important to consider ways to further reduce the power

used by them. The programmable brick was envisioned to be used in

ways requiring it to be on for large periods of time -- perhaps taking

weather samples over a few days. For this reason, it was important to be

able to slow down or shut off certain functions when not in use to reduce

power consumption.

Many of the sensor systems (including 5 of the 6 infrared inputs) were

placed on a secondary, switchable power supply within the brick. This

allowed the brick's power consumption to be reduced by about 30%

during times the sensors were not required. Even if sensors were being

used as often as once a second, this subsystem could be turned off in

between samples to save power.

The second aspect of power management related specifically to LEGO

type active sensors. LEGO type active sensors were designed to be given

power with a high duty-cycle, with small pauses in the power to take a

reading from the sensor. Through experimentation, it was found that the

sensors could alternatively be powered with a large burst immediately

before a reading, requiring power only when the sensor was actually

being read. This resulted in around an overall 30% power savings for a

brick system that used two active LEGO sensors, such as the light

reflection or angle sensors.

Another way to save power in a processor system is to reduce the

processor clock rate, or stop the processor altogether. The

programmable brick did not incorporate such a feature, although its



circuit board had a connector that could be used for possible future

experiments to add a small circuit to halt the processor for periods of
time.

4.5 I/O Modalities

As stressed in chapter 2, a central feature to the programmable brick is
its large variety of I/O modalities.

In addition to built-in I/O modalities, the brick is designed to attach to
external sensors and actuators, allowing the user to configure the I/O
modalities as desired, and allowing the creation of new types of sensors
and actuators that can be attached to the brick.

One important part of the design for the modalities was deciding which
would be physically built-in to the brick, and which would be separate
and attached to the brick only when needed.

Reasons to physically include specific sensors/actuators in the brick
were:

- Smaller combined size than separate brick and external device
* Increased convenience of using feature
* Increased reliability (more connectors -> less reliability)
e Some devices are difficult to interface through standard

sensor/actuator ports

Reasons to use separate devices for sensors/actuators:
- Device's position needs to be flexible. Motors and many sensors,

such as touch sensors and directional light sensors fall into this
category.

e Device is not used very often. Since space in the brick is at a
premium, unimportant modalities should not be built-in.

" Device is large and would add too much space to the brick.

A discussion of the various modalities included physically in the
programmable brick follows.

38



4.5.1 Sound output

There are two important uses for sound output on the programmable

brick. One use is for providing debugging feedback to the user from

within programs. The other is to treat sound output as an end in itself,

whether for music, communication, playing back sampled sound, etc.

Since the brick would often be embedded in a moving or otherwise

difficult-to-access project, the brick's screen would not always be visible.

Therefore the speaker's ability to give debugging feedback was important

enough to warrant the speaker's placement inside the brick.

4.5.2 Sound input

Through brainstorming uses for the brick, sound input was considered to

be important, although not as important as sound output. Sound input

requires a large amount of support circuitry, although the microphone

element itself can be quite small. It would be annoying to have to make

separate circuit boards as part of an external sound sensor. This factor

led to the decision to place the sound sensor inside the brick.

4.5.3 Infrared input

The two primary uses envisioned for the infrared input were allowing the

user to interact with the brick using standard infrared remote

controllers, and to allow wireless communication between bricks.

Although brick-to-brick communication would probably not be used very

often, the remote control could serve as a keypad for the brick when it

was hard to access. Therefore, as with sound output, infrared input was

considered to be important enough to warrant its inclusion in the brick.

4.5.4 Infrared output

Infrared output is important for wireless communication between bricks,

as well as allowing the brick to control a variety of standard electronic

devices such as TVs and camcorders. Although these features might not
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be used in the majority of brick applications, infrared output requires
special modulation circuitry that would be extremely difficult to interface
with through standard actuator ports. This factor led to the decision to
place the infrared emitters inside the brick.

4.6 Design of ports for external sensors and actuators

The design of the ports to interface with external sensors and actuators
was both made simpler and more complex by the existence of a previous
standard. LEGO had designed a standard two-wire port connector for
motors and sensors. LEGO motors are easy to interface to, but the two -
wire design of the LEGO sensor port led to much complexity both in the
brick and in the sensors themselves.

Figure 4.1 shows the standard LEGO 2-wire connector. The apparent
simplicity of snapping the two connectors together like standard LEGO
blocks is misleading. The shape of the metal contacts is actually quite
clever, allowing the connectors to be put together in any of four relative
orientations without shorting the two signals together. Two of the
orientations connect with one polarity, while the other two orientations
connect with the other polarity.
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Mating Example

Bottom View

Figure 4.1
Standard LEGO 2-wire Connector

This connector is ideal for motors. Motors simply need two wires, and

being able to reverse the polarity of the connection is a big plus, since the

motor's direction depends on the polarity. (Swapping the direction of the

motor doesn't require the user to change his software -- simply rotate the

motor connection).

On the other hand, a two-wire port without guaranteed polarity is

difficult to use for sensors. Some simple, passive sensors can give

feedback through a two-wire system by simply changing their effective

resistance. Some passive sensors, however, such as phototransistors,

require that the direction of current flow be known. In the case of

sensors which require power also, such as a reflected light sensor (which

must shine a light), or the standard LEGO angle sensor (which has a

quadrature break-beam rotation sensor), power of appropriate polarity

must somehow be sent to the sensor in addition to the sensor sending

back its measured value.



The LEGO company solves the problem of powering active sensors by
sending power to the sensor over the two wires, and then periodically
shutting power off and listening for a signal back. This requires some
circuitry on the sensor to store up the power and sense when the power
is off in order to send the signal back. Power and signal are multiplexed
on the same lines. LEGO's scheme for dealing with the unknown polarity
of the sensor connection is to pack the sensor with yet more circuitry to
rectify the incoming current and send back the signal correctly
regardless of the polarity of the connection.

A simpler connector standard, from an electrical standpoint, would
connect three wires of guaranteed polarity between the brick and the
sensor. Two wires would supply the power, and one would be the return
signal from the sensor. This would require no special circuitry at the
sensor to rectify or store up the power, and no circuitry to switch on and
off the transmission of the sensor's measured signal.

A big advantage to adhering to LEGO's sensor standard is that, despite
their internal complexity, LEGO's sensors are very high quality, and it
would be unfortunate (and probably unsuccessful) to have to attempt to
duplicate them ourselves if we chose our own 3-wire standard. However,
it was important to the brick project to be able to design and build our
own sensors, and using the LEGO standard would make this prohibitive
in many cases. We decided each factor was important enough to warrant
the support of two different sensor standards: in the programmable
brick, there are four standard 2-wire LEGO sensor ports, and four 3-wire
sensor ports for our own, home-brew sensors.

4.7 Functional Description of Programmable Brick Hardware

This section gives a functional description of result of the previous design
decisions, and their implementation.

The programmable brick is a small (about 2"x3"x1.5"), battery-powered
computer with a wide variety of I/O features. It uses the Motorola 6811



microprocessor and contains 128K of RAM which is saved on power

down.

I/O features:

e 4 ports for connection to actuators compatible with the 9 volt

LEGO system (motors and lights)

0 4 ports for connection to sensors compatible with the 9 volt LEGO

system (light, touch, rotation, temperature)

e 4 ports for connection to sensors to be made at MIT

e Built-in microphone and speaker for 8-bit sampled audio input

and output. This port will be able to do things like record and play

back sound and detect noise levels. Depending on software, it may

also be able to do rudimentary audio processing such as pitch or

spectrum detection, and various processing effects on the audio

output.

- 6 built-in IR transmitters and receivers for communication between

bricks and to consumer electronics devices that use handheld

remote controls, such as TVs, VCRs, and camcorders.

* Wired network connection for hooking up to host computer, other

bricks, and sources of power (including the battery brick).

e Small, character-based LCD display (16 characters by 2 lines), for

user interaction.

e Two pushbuttons and one knob, for user interaction.
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Chapter 5:
Software Design

In many programming environments, the programming language comes

first, and the user interface for the programming environment is a

secondary consideration. But for the programmable brick, the user

interface and language were equally important. One reason is that a

well-thought-out and easy-to-use interface is particularly important for

computer novices. Another is that, as it turns out, the user interface

design touched on some complex issues, such as the relationship

between the programmable brick and a host desktop computer when the

brick is connected to one.

After the overall software design, two software environments were

created. Although both grew out of the software design which follows,

each has a different underlying implementation, and made slightly

different decisions which affect the user. The first environment was

implemented by this author, the MIT undergraduate Victor Lim, and the

high school student Andrew Blumberg. The second environment was

implemented by Brian Silverman of Logo Computer Systems

Incorporated, who has long worked with our group at the Media Lab.

Both will be discussed in this chapter.

5.1 Programming Language Selection

Several programming environments were considered for use with the

programmable brick. Environments considered included traditional,

text-based programming languages, as well as graphical programming

languages. The Logo programming language was chosen as the first to

implement, primarily because of its design for use by computer novices,

and partly out of familiarity by the implementors.
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Many other approaches were considered, and on the whole, not many

approaches were ruled out. Other interfaces are currently being tried --
there are now several efforts to make visual language environments for
the brick that let the user create programs in new ways, as well as see
and interact with programs as they are running.

Section 5.4 will present the ways in which the traditional Logo language
was modified for use with the programmable brick.

5.2 Programming Environment User Interface

Because the programmable brick has a small screen and no keyboard, it
was decided early on that it would be important to hook the brick to a
host computer. The host computer would be used as a "dumb terminal":
it would lend its screen and keyboard to the brick. This would allow
programs to be typed in, and give the user fuller interaction for viewing
program state and debugging than the brick's small screen, buttons, and
knob would allow for. Later on though, the idea of making the host a
"dumb terminal" to the brick was called into question; this will be
discussed in the next section.

5.2.1 Host Computer Interface

The starting point for the design of the host user interface started with a
then prototype of the Microworlds Logo programming environment from
Logo Computer Systems Incorporated. The Microworlds user interface
consists of several windows, as shown in Figure 5.1.
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Figure 5.1
Microworlds Logo User Interface

The largest window is a place where the user can create and place

various objects, such as buttons, sliders, text boxes, and graphical

turtles. Logo expressions are embedded in buttons to be run when

clicked, and the text boxes are good for things like showing various types

of state, or recording state over time.

The command center is a small window in which Logo commands may be

typed in and tried out interactively. Programs larger than a few

statements are usually written as procedures in Logo; the procedures

page (not shown), is a simple text editor in which the user can enter

these.

5.2.2 Interaction between brick and host

In the early design phases, however, it became clear that there were

certain tradeoffs to the model that the brick simply used the host
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computer as a "dumb terminal" -- perhaps the model of the host and

brick as two communicating computers, with each being programmable,
would lead to more flexibility. One reason the user might want to be able
to program the host in addition to program the brick is that the host is a
more capable computer -- some desired features might simply not be

available on the brick (for an example, see the discussion of turtle
graphics, later in this document). Another reason is that the user might
want to do things like upload sensor data taken from the programmable
brick and analyze it while the brick is off gathering more data.

One concern with the "smart host" approach was that a novice user
might be overwhelmed with the prospect of programming two separate
computers. Whether the two programming environments are in different
applications, in the same application but with disjoint sets of windows,
or sharing the same windows, there would be added complexity along
with the added flexibility. Since the target audience for the brick is
computer novices, raising the threshold for first using the brick seemed
like a bad idea. A secondary concern with the "smart host" approach was
that it would probably take more effort to implement than would a
simpler model.

It seemed like an ideal solution would neither raise the threshold of using
the brick for the majority of the uses which wouldn't need a host Logo,
nor penalize people who wanted the added flexibility of programming the
host also. Here are the different approaches that were considered, and a
short analysis of each.

1. Have the host side not be programmable. Things like off-line
data analysis could be done on the host in an application separate
from the programmable brick interface, such as a spreadsheet, or
programming environment unrelated to the brick. This separate
application wouldn't be able to show data as interactively, though,
so viewing a graph on the fly would be difficult.

2. At the other extreme, have there be no clear distinction between
the host and the brick computers. Programs would by default run on
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the brick, but if the brick were disconnected, the user could keep

interacting and computation started in the command center would

run on the host computer instead. An error would simply be given if

the user tried to execute a brick primitive when the brick wasn't

hooked up. This approach was given up as unworkable -- it would

lead to all sorts of confusing behavior and inconsistencies between

brick and host state.

3. The third approach was to explicitly have a model of two

computers, independently programmable, that communicate with

each other. A given computation explicitly lives in one place or the

other. Some buttons and textboxes would belong to the brick, and

some would belong to the host computer. Perhaps there would be

two separate command centers as well. This approach seemed to

violate the constraint of keeping the environment easy to use for

novices.

4. Anticipate what the user might want to do with the host apart

from the brick, and implement it. If off-line data analysis is expected

to be important, simply pre-package it into the interface.

Unanticipated uses could fall back on approach 1: simply exporting

the data to another environment.

This was the least complex option to the user, but had the least

flexibility as well.

5. Let the user program both the host and the brick, but have the

host programming language be invisible to the user most of the time.

Any pre-packaged graphing and data analysis tools (as in 4) would

be written by the implementors in host Logo, but the casual user of

these tools would never see host Logo code, nor a host Logo

command center. Only the power-users who wanted to write their

own Logo code to make a new data viewing or analysis tool would

ever see the host Logo.

The first programmable brick environment stuck with the simplest of

these implementations, option 1. The second programmable brick
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environment was more like option 5, allowing the power user to use Logo
to allow computation on the host computer.

5.2.3 Host and Brick state

The "smart host" approach complicated another aspect of the brick
environment's user interface. With part of the user's project living in the
host, and part of his project living in the brick, how would the user "save"
his project to re-use at a later date? For example, should it be possible
to store the combined host and brick state in the brick? Should it be
possible to store the combined host and brick state in the host?

Some concrete examples of situations which would take advantage of
these different capabilities follow:

e Brick can store host state:

Sue makes a data-collection program for her programmable brick,
and takes it out into the field for a few days. She now wants to view
the data and change the program using a computer at a different
site. If the brick is capable of reconstructing the state of the host, all
Sue has to do is hook up the brick. Otherwise, she would need to
also bring along a floppy disk on which she had previously saved the
host state.

" Host can store brick state:

Bob samples some musical instrument sounds into his
programmable xylophone, and in fact has programmed a feature
where he can record and play back sequences he pounds out on the
xylophone keys. If the host were capable of storing the entire state
of the programmable brick, it would be able to save these sampled
sounds and the recorded songs to a floppy for Bob to get back to
some time in the future.
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At first glance, it seemed nice to be able to save the system state in either

location. On the other hand, having each side able to reconstruct the

other leads to some tricky problems. Consider what happens when the

brick has uploaded its environment to more than one host, or when the

host has downloaded its environment to more than one brick.

First, look at an example where the brick environment gets uploaded to

more than one host:

Bob and Joe are working together at the host while it's hooked up to

their programmable brontosaurus. Bob takes the brontosaurus

away from the computer for a test-drive through the Cretaceous

forest that's been set up on the floor. Joe starts adding some new

procedures at the host (this assumes the host allows editing of

programs while the brick is disconnected). After knocking over half

the forest, Bob decides that he needs to slow down the brontosaurus

by adjusting one of the variables. Seeing Joe in the middle of

hacking on the procedure page on the host, Bob decides to hook the

brick to a different host. The environment is now loaded into this

second host and Bob turns down the speed. Playing with the

dinosaur some more, Bob now adds a button to make the dinosaur

turn around -- again using this second host. When it comes time to

hook the brick back to the host where Joe has now finished his new

procedures, there is a problem -- whose state should the brick now

use?

It would be nice if the system would at least detect that this has

happened, and ask the user before arbitrarily copying the host state to

the brick (or vice versa). One possible further solution would be to try to

automatically merge the changes Bob and Joe have made, which would

probably require storing some previous version history from which a

common ancestor could be taken. Automatic merging was rejected as too

expensive to implement for the benefit it gave, and for the reason that it

probably wouldn't do the right thing all the time.



The second case is where a single host downloads an environment into
more than one brick:

Pat and Shawn are ready to clone their programmable ant a few
times to see if any colony behaviors emerge. They construct new
mechanical copies, each with its own programmable brick. They
then hook each up in turn, one at a time, to the single host in order
to download the environment into each ant. This doesn't seem to
cause any special problems yet. But when Pat and Shawn give each
ant some local state, perhaps different foraging parameters, or the
ability for the ant to learn some behavior through interacting with
the environment, the difficulty begins.

Pat and Shawn hook up ant A and change few lines of code. When
they disconnect and hook up ant B to load the new code, ant B now
receives the complete state of ant A -- it loses what it had learned
before and now instead has all of ant A's learnings.

or

Bob's programmable xylophone gets copied, and each instrument
had a different sampled sound it plays notes with. When Bob wants
to add a volume control to his xylophone program, will he be able to
make the change at the host once, yet have each of the xylophones
keep their unique sounds?

A few different approaches to these situations were considered:

e Let the bricks keep their own individual "data" even when the
"code" is changed from the host. "Data" probably means something
assigned to a variable, while "code" probably means something
defined by the user through the host interface -- such as

procedures, or interface items like buttons. But what about the
contents of a hypothetical text box originally created through the
host but updated by the brick? Even if a division could be made
that makes sense, one disadvantage to this approach is that the
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user would have to understand this possibly tricky division. This
approach of course also has the problem that a brick's state isn't
completely stored in the host. Things like sampled sounds wouldn't

be stored to disk.

* Make code uploads/downloads automatic (the host and brick are

always in sync), but make data uploads and downloads be manual.

This is a very flexible option, but might lead to more difficulty in

using.

* Require that if different bricks won't be identical copies of each

other -- if each has different local state -- that each has to have its

own instance of the host application with which to talk. This would

allow full saves of state on the host, and seemed to be the simplest

model to the user.

As of this date, both brick environments use the simplest solution to the

issue of host versus brick state: procedure definitions live on the host

and are only downloaded to the brick, and data lives on the brick, and is

not downloaded from the host. This means that the complete state of a

brick project is spread between host and brick, neither side able to store

the entire project. This has led to difficulties for users, but dodges many

of the difficult issues brought up in this section.

5.3 Compiler Versus Interpreter for Brick Logo

Section 5.2.2 discusses the pro's and con's of how to divide what

computation runs on the brick, versus what computation runs on the

host, as the user views the computation. However, there are reasons we

might want to make the internal implementation of the division of

computation differ slightly from what is presented to the user.

Since the host computer is much faster and has much more memory

than the brick, it would make sense to trade brick computation for host

computation where it would make sense. It didn't seem to make sense to

let the brick offload subcomputations to the host on the fly -- the

53



communications overhead would probably negate any gains attempted,
and furthermore it would be of questionable use to have the brick be
faster only when it was hooked up to a desktop computer if the main
purpose of the brick is to run while disconnected.

But there was another way in which brick computation could be saved by
extra host computation. By making the host precompile Logo code,
the Logo code could run much more quickly on the brick. If done well,
this would not cause a noticeable delay to the user when programs were
downloaded from the host to the brick.

Here were the different options that were considered:

* Have the host translate Logo code directly into machine code.
This would allow the brick to run Logo code very quickly.
Unfortunately, native code compilers for small processors such as
the 68HC 11 used in the brick are complex to write and produce
rather large code.

* Have the host translate Logo code into a byte code. The host
translation program would be simpler than in the first case, and the
code downloaded to the brick would use much less memory. It
would require that a byte code interpreter be written for the board
(but in fact one was already available). The code in this case would
be a fair bit slower than native code, but it would still be quite
respectable. Multitasking is easier to implement using byte code
than with other approaches.

- Have a Logo interpreter on board. Writing a Logo interpreter in
assembler for the 68HC 11 would be somewhat time consuming,
although source code for a single tasking Logo running on a similar
processor was available. This approach would lead to a much slower
execution speed than either of the compiled approaches.

The second option, compiling Logo into byte code, was chosen for both of
the programmable brick environments implemented. One unexpected
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disadvantage to this approach turned out to be that prototyping new and

experimental host environments for the brick was hampered by the need

to incorporate a compiler into these environments (a relatively complex

piece of code).

Several experimental user interfaces for brick programming have stopped

short of including a compiler and thus being able to download new

programs. Instead, they have used the much less general approach of

changing behavior by changing variables in a resident brick program

created with use of one of the original environments. One example is a

Braitenberg-like creature editor written by Rick Borovoy, using the Apple

Newton. The user can change the behavior of a small LEGO creature

equipped with two motors and two light sensors by drawing connections

between graphical representations of the sensors and motors on the

Newton screen. But the interface does not download new executable

code to the brick. Instead, there is small Braitenberg circuit simulator

on the brick (created with one of the Logo environments). When the user

draws a new circuit, the Newton simply downloads different connections

weights to the brick, changing the simulation. This approach

unfortunately does not allow the user to change the basic topology of the

Braitenberg logic elements.

5.4 Language Differences Between Brick Logo and Previous
Logos

As discussed in chapter 2, experience with children using the

LEGO/Logo system suggested that programs would often be short and

simple, and when they became complex, it was not complexity in terms of

data structures, but rather in terms of program control flow. The

experience further showed that a program in LEGO/Logo with complex

control flow often was only trying to do multiple simple things at one

time.

This prior experience led to the emphasis on multiple processes and new

control flow constructs, and to the de-emphasis of data structures in the

design of the programming language that executed on the brick.
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5.4.1 Multiple Processes

The need for multiple processes was accepted early in the design of the
programmable brick software. What was left to decide was the set of
primitives the user would be given to make use of and control the
multiprocessing of the brick.

Traditionally, the design of multiprocessing languages has been rather
complex, focusing on communication and synchronization between
processes. But it's important in this case to understand how the
programmable brick's reason for using multiple processes differs from
that traditionally emphasized in computer science. Much of the
traditional study of parallelism has been to take problems that can be
easily solved sequentially, and develop algorithms for solving them in
parallel for the purpose of speed. By splitting a problem among multiple
processors, the group of processors may be able to find a solution faster
than a single processor.

The use of multiple processes discussed here is for the purpose of
providing a computational model more appropriate to the task at hand.
By disentangling unrelated or only loosely related control flows, a
program is simpler, and its structure more closely matches the problem
at hand.

Because of the loose or nonexistent coupling of the multiple processes on
the programmable brick, special communication and synchronization
primitives were seen to be unimportant. When necessary, processes
would communicate directly through the modification of global variables.
More often the case was that processes interacted indirectly by modifying
and then sensing physical state outside the computer.

5.4.2 Rules vs. Procedures

Brick programs written to use multitasking often exhibited certain
patterns. It was very common for the user to write simple loops, which
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checked for certain sensor conditions, and then took some action when

the sensor conditions were met.

Here is an example, taken from a case where the programmable brick

was mounted atop a LEGO train, controlling its movement. The train

had two light sensors: one sensed when the train moved by a stationary

light source mounted next to the track before a tight curve, and the other

sensed a taillight mounted to another train occupying the same track.

The goal for the algorithm of the train was, at one point, to slow down for

a short time when the curve marker was detected, and to back up for a

short time (then go forward again) when the other train was detected in

front.

Here is what the program would have looked like with standard

procedures and multitasking:

to check-for-curve
When the side-mounted sensor sees a bright
enough light, reduce speedfor two seconds.

if [sensora < 20] [setpower 4 wait 20 setpower 8]
check-for-curve Back to the beginning

end

to check-for-train
When thefront-mounted sensor sees a bright
enough light, put train in reversefor 3 seconds, then
backforward.

if [sensorb < 20] [rd wait 30 rd]
check-for-train Back to the beginning

end

to go
launch [check-for-curve] start a separate process that runs

check-for-curve
launch [check-for-train] start a separate process that runs

check-for-train
end
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The actual program, in this case, used a new primitive called when, which
simplified this common case of condition-action pairs:

to go
when [sensora <
when [sensorb <

end

20]
20]

[setpower 4 wait 20 setpower 8]
[rd wait 10 rd]

when is simply a syntactic shortcut for launching a loop with an if:

when condition action

is translated into

launch [forever [if condition action ]]

(where forever simply implements a never-ending loop.)

5.4.3 Edge vs. Level Sensitivity

Although condition-action rules seem fairly simple, certain types of bugs

have appeared to creep up often in their use. In fact, one such bug
occurred in the train project some time before the program shown in the
previous example.

In this earlier program, the programmer wanted the train to reverse
directions each time it went by the light beside the track. The intention
was to have the train go around the track once forward, see the light,
then go around the track in reverse, then repeat, going forward and
reverse for consecutive trips around the track.

The first program tried looked like this:

to go
when [sensora < 20] [rd]

end

when side-mounted sensor sees
light, reverse direction
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Although the program seemed simple enough -- reverse whenever the

sensor sees the light beside the track -- the behavior seemed

unpredictable. Although the train would hesitate at the light, it

sometimes chose to continue in the same direction rather than reverse

direction (and sometimes would indeed reverse direction as the

programmer intended).

What in fact is going on in this case is somewhat easier to see when we

dissect how the computer executes the when statement. The computer

checks repeatedly if the condition is satisfied, and as soon as it is

satisfied, the action clause is executed. As soon as the action clause is

finished, the computer goes back to checking the condition over and

over. What happened in this case is that, although the computer did

reverse the train's direction on contact with the light, the computer went

right back to checking for the light. Since the computer is quite fast, the

train was likely still in front of the light, resulting in another reverse

direction. This cycle might go on for some time, until the train finally

broke free of the light.

What the programmer meant when to do in this case was to execute the

action only once for each time the light was seen. What when actually

did was execute the action repeatedly for as long as the light was seen.

With some help, the programmer fixed the problem as follows:

to go
when side-mounted sensor sees light, reverse
direction, and then waitfor 1 second

when [sensora < 20] Erd wait 10]
end

By waiting for one second after changing the train's direction, the train

would have cleared the light by the next check of sensora.

But this solution is unsatisfying. If the train were moving at a different

speed, perhaps the amount to wait would need to be changed. The delay

of an arbitrary period of time seems to be unrelated to the fundamental

problem at hand.
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What is really needed is a way to make explicit the difference between
doing something once for a period of the condition being met, and for
doing something over and over during the period of the condition being
met. The explanation of when (and, indeed, the word itself) is ambiguous
enough to seem to fit either case. The programmer doesn't realize which
he means when he uses when.

This idea is certainly not new; it comes up in all sorts of systems where
conditions are linked on actions. In the world of digital electronics, the
two ways of triggering the event are referred to as "edge-sensitive" and
"level-sensitive" -- meaning, sensitive to a change in the condition, or
sensitive to the condition's current level.

This "edge" versus "level" sensitive bug came up in standard LEGO/Logo,

before the when statement. Typically, a buggy program like the following:

to check
waituntil [sensora < 20] wait until sensor sees light
rd reverse direction
check

end

would be fixed by adding a line to look like this:

to check
waituntil [sensora < 20] wait until sensor sees light
rd reverse direction
waituntil [sensora >= 20] wait until sensor sees dark
check

end

But now that we have the new syntax for when, it seems to be worthwhile
to create two separate primitives with a similar syntax: one for level-
sensitive reaction to the condition, and the other for edge-sensitive
reaction. This would not only simplify the solutions in cases where edge-
sensitivity was needed, it would also, by making explicit the difference
between edge- and level-sensitivity, encourage the programmer to think
about this issue, and thus hopefully avoid having the bug.
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5.4.4 De-emphasis of Complex Data Structures

Although the programmable brick requires a richer set of control flow

structures than Logo previously gave, it required less in the way of data

structures and symbolic processing.

Experience showed that most LEGO/Logo programs reacted to the

current state of the sensors. If an old sensor value was important, its

value was usually encoded into the control flow. For example, to wait for

a touch sensor to be pressed and then released, one might write:

to touch
listento 7
waituntil [sensor?] Wait until button is pressed
waituntil [not sensor?] Wait until button is released

end

Different steps in the control flow imply different sensor histories. For

example, during the second waituntil, we know that the sensor has

previously been held down.

One normally wouldn't see a program that sampled the sensor for a few

seconds, storing the data, and then analyzing the data to look for a press

and a release.

Both Logo languages implemented for the brick did away with the

traditional Logo data structures of sentences and words. This greatly
simplified the language implementation, and improved its efficiency in
terms of speed and memory usage as well.

On the other hand, direct experience with the brick showed that it was

often desirable to store up simple data for later viewing and analysis at

the host. One such project involved graphing the temperature inside a

refrigerator over time. The brick passively recorded sensor values for

later upload to the host. A simple set of primitives, much less general

than the list processing primitives found in standard Logo, was

implemented to record a simple list of data for later upload.
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Chapter 6:
Experiences

The programmable brick has been used in several different situations, by

different sorts of people. Many of the experiences have been with kids

aged 11-18, although some experiences have been with adults.

This chapter will describe several of the situations in which

programmable bricks were used. It will discuss what people have tried to

do (sometimes successfully, sometimes not) with the brick. It will also

try to go a little into what people might have learned while using the

brick. These initial experiences provide some feedback on the design of

the programmable brick, and they suggest future changes to the brick

and its software environment.

6.1 Door/Light Switch

One of the earliest projects with the programmable brick involved three

kids aged 11-15, all of whom had used LEGO/Logo somewhat before:

two had attended a LEGO/Logo workshop at the Boston Science

Museum, and one of which had worked with LEGO/Logo at his school.

We ran a one-day experimental workshop for them, with a rather early

version of the programmable brick.

Two of the kids were intrigued with the idea of making an "active

environment" -- making the environment "come alive" and react to

people. After some consideration, they decided to make a device to flip

on a room's light switch when people entered the room, and flip it off

when people left.

At first, they studied the different possible sensors, trying to figure out

which one could be connected to the door, and how. They decided to try

a "bend" sensor to sense the opening of the door. (The bend sensor is a
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several-inch-long plastic whisker that gives a measure of how much it is
bent.) They first tried mounting it to the wall approximately where the
doorstop was, but then decided it would require people to open the door
very wide to be sensed. They then tried mounting the sensor at the door
hinge in such a way that the sensor was bent in proportion to how widely
the door was opened.

Before programming, the two kids wanted to be able to find the value of
the bend sensor at different times to find out if they had mounted it well,
and if the sensor would really give them the information they wanted.
We hadn't yet introduced the programming primitives, so we wrote a
program with them to simply show the value of connected sensors on the
LCD. (Based on this, we later decided to add a sensor display mode to
the brick itself, without any user programming necessary.)

The next task the two kids undertook was to attach a LEGO motor to the
light switch in such a way that when the motor turned, the switch would
flip. The kids appeared to be already quite comfortable with building
LEGO mechanisms, and quickly built a device with a significant gear-
down and a lever to connect it to the light switch. They designed their
mechanism in such a way that spinning the motor one way would turn
the light on, while the reverse direction would turn the light off.

But while these two participants found making the mechanism easy, they
had a bit more trouble figuring out how to mount it to the wall next to
the switch. They asked for masking tape to connect their creation to the
wall next to the light switch. They ended up using quite a lot of tape,
making it hard to take their project back down for later debugging. "We
need a quick-release system here" one said as he was trying to get the
project down. (Of course, LEGO is a sort of quick release system itself,
but it seemed the problem was caused by the tape not being strong
enough to hold against pulling the LEGO project from its attached base).
Later, we offered double-sided sticky tape to attach the project more
securely to the wall, which helped quite a bit, but this had the later
disadvantage that it left a mark on the wall. In several later projects as
well, attaching LEGO mechanisms to actuate things in the real world has
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been a difficult task, so perhaps some future thought should go into

ways of improving this. (Several people have suggested that the correct

solution is that the world itself is at fault here: everything in the world

should be built of LEGO, or at least have LEGO-compatible attachment

surfaces. Admittedly, some may find this viewpoint extreme.)

As with the sensor, the two kids wanted to try out the motorized device

without writing the full program to implement their desired algorithm of

switching the light switch when the door was opened. We gave them a

standard LEGO battery pack for this purpose, and they made

modifications to their light switcher mechanism until it mostly worked.

At this point, the kids started focusing more on the algorithm for flipping

the light switch when the door opened. They realized there was a

problem: the door sensor only gave the information that the door was

opened. It did not tell whether people were entering or exiting the room.

The kids wanted some sort of sensor to tell whether someone was

entering the room, in which case their machine should turn the light on

(if it wasn't already). They decided if anyone left the room, the light

should be turned off.

After a little thinking, the kids came up with a clever solution: they

attached a LEGO bar to the inside of the door handle that was pulled to

exit the room, and connected a LEGO touch sensor to this bar. In this

way, the programmable brick could tell if people were leaving (in which

case the door would be opened while the touch sensor in the handle was

pressed), or if people were entering (door open but no signal from the

touch switch).
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Once the second sensor was in place and tested, they wanted to program.
Their program turned out to be pretty simple (as was found with many
later programmable brick programs), and worked without too many
iterations. The finished program looked similar to the following:

to light
if door open and handle sensor pressed, turn off light

if (sensora < 105) and touchb [turn-off-light]
if door open and handle sensor not pressed, turn on light

if (sensora < 105) and not touchb [turn-on-light]
end

to turn-off-light
motora, thisway run motorfonvardsfor 3 seconds
onfor 30

end

to turn-on-light
motora, thatway run motor backwards for 3 seconds
onfor 30

end

Once the kids got the project working, they ran in and out of the room
repeatedly, breaking into big smiles each time the lights switched on and
off.

In the end, the light switching project worked with about 50% reliability.
When they decided they were finished with the project, the primary
failure modes were mechanical failure of the LEGO mechanism, and
mechanical failure of the attachment between the LEGO mechanism and
the light switch. (Note that the kids program did not sense the "limits" to
the switcher movement and stop the motor when the switcher was done.
Instead, they relied on the mechanism jamming at the far ends of its
travel, which is one reason for the mechanical failures.)

6.2 Light follower/helicopter

The third participant in our experimental workshop worked alone, and
decided he wanted to build a helicopter with wheels that drove around,
bumped into things, and spun its helicopter blade at various times.
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We already had a motorized, wheeled LEGO base, which we offered for
his use. He then put the brick on top and added the mechanism for the
helicopter blade.

After finishing most of the structure, the participant looked at the

various sensors available to him, and decided he wanted to make

something that reacted to light instead of bumping into things. We

suggested a few possibilities, and the participant decided he wanted to

try to home in on a flashlight. He placed two light-measuring sensors on

the front of his device, one to measure light coming from the left side,

and the other to measure light coming from the right.

In this case, the program was written without first testing the sensors or

the actuators (with the exception of the LEGO wheeled base, which was

known to work). An early version of the program tested each light sensor

to see if each saw brightness over a certain threshold. If neither sensor

saw brightness over the threshold, the helicopter wouldn't move. If one

saw brightness over the threshold, the helicopter would steer towards

that light. If both saw enough brightness, the helicopter would move

straight ahead, spin its propeller, and play tones on the speaker. The

program looked similar to the following:

sensor a and sensor b are connected to light sensors on the left and right,
respectively. Light sensors return lower values as they see brighter lights.

motor d isconnected to the rotor.

to helicopter
if it's brighter to the left, turn left

if (sensora < 20) and (sensorb => 20)
[turn-left motord, off]

if it's brighter to the right, turn right
if (sensora => 20) and (sensorb < 20)

[turn-right motord, off]
if both are bright, go straight, spin the rotor, and beep

if (sensora < 20) and (sensorb < 20)
[go-forward motord, on beep]

if neither is bright, stop
if (sensora => 20) and (sensorb => 20) [alloff]

end
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motors a and b are connected to the left and right wheel sets. steering is
accomplished as in a wheelchair or tank: if both motor a and b goforward, the
helicopter goes forward. if motora and motorb go at different speeds, the helicopter
will turn.

to go-forward
motora, on
motorb, on

end

to turn-right
motora, on
motorb, off

end

to turn-left
motora, off
motorb, on

end

At first, mechanical fixes were required to make the rotor work, but then
the program debugging started. It turned out that the helicopter didn't
work very well: it wouldn't come after a flashlight unless it was
extremely close. After changing the brightness threshold in the program
to be more sensitive, the program had a different bug: now, when the
helicopter came within a few feet of the flashlight, it would stop
correcting its course and just go straight.

The participant continued adjusting the threshold values, but didn't get
performance that was much better. After a while, we suggested a
possible fix: to compare the sensors to each other, rather than each to a
threshold. The resulting program seeked the flashlight more reliably.
The helicopter procedure now looked like the following:

to helicopter
if it's brighter to the left, turn left

if (sensora < sensorb) [turn-left motord, off]
if it's brighter to the right, turn right

if (sensora > sensorb) [turn-right motord, off]
if both are the same, go straight

if (sensora = sensorb) [go-forward]
if both are bright, turn on the rotor and beep

if (sensora < 20) and (sensorb < 20)
[go-forward motord, on beep]

end
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The participant was quite pleased with his creation. When asked how

he would compare his experience with the programmable brick to his

earlier experiences with LEGO/Logo, he replied:

It's nice when there are no wires and stuff... Otherwise I can't just
move it [the helicopter] in here... It's hard to move with the wires
on and it's hard to turn and everything.

6.3 Artificial Creatures Workshop

The second workshop for kids using the programmable brick took place

over a 4-day period at the Boston Museum of Science. The five

participants had three hours of workshop time per day, for a total of a 12

hours. Ages ranged from 12 to 16. Although students had varying

amounts of previous experience with LEGO and programming (three

hadn't programmed before at all), all were able to make a working

programmable "creature" by the end of the class.

One focus of this workshop was the use of multiple processes for

multiple behaviors. Different simple programs the participant wrote,

such as "follow light" or "follow wall," could be run as different processes,

and the user could turn these individual programs on and off using the

brick's screen, knob, and buttons. Additionally, primitives were provided

to allow students to turn on and off the different processes from program

control. Thus, processes had the ability to start or stop other processes.

The three participants who had not programmed before made creatures

that used relatively simple software. One made a creature that followed a

line (a piece of tape laid down on the floor). Another made a creature

that simply backed up when it hit an obstacle. The third made a

creature that backed away from bright light (this participant had lots of

fun playing with his creature using a flashlight).

The other two participants, both of whom had programmed before,

managed to progress to the use of multiple, interacting behaviors. (The

issue appeared to be a simple lack of time for the others, who had taken

extra time to get up to speed learning to program. In evaluations written
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by the students at the end of the class, they unanimously replied that
the workshop had been too short.)

One of the projects with multiple behaviors, a combination light-follower
and obstacle avoider, has been previously described in section 2.3.2. To
recap, the participant first made the distinct light-following and obstacle-
avoiding behaviors, and then wanted to make them both run at the same
time. But when both behaviors operated, there were conflicts. The
participant modified the obstacle-avoidance behavior to temporarily turn
off the light-following behavior while the obstacle behavior was navigating
around a detected obstacle.

The other project using multiple behaviors combined an attempt at
navigating a path between several rooms at the museum using timing
only (no sensor feedback), with a lower-level behavior to try to move
around obstacles it inadvertently bumped into (such as chair and table
legs).

The robot started off with a simple path it tried to follow: go forward for
20 seconds, turn left, go forward for 15 seconds, turn left, go forward for
20 seconds. This path was intended to make the robot leave the
classroom, go down the hall, make a left into a different classroom, and
turn left again to try to make it out the other classroom's back door. But
this simple behavior didn't have much of a chance at working: the
second classroom was full of tables and chairs, and the robot invariably
hit one or two and got stuck. Sometimes, also, the timing of the path
was a little off, or the robot drifted off its planned path, and ran into a
wall unexpectedly. For this creature, running into a wall, chair, or table
typically meant getting stuck and progressing no further.
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To try to deal with this problem, the participant added a behavior: when

the creature ran into an obstacle, it attempted to pilot around the

obstacle and end up with roughly the same heading as it had in the first

place. The behavior looked something like this:

to avoid-obstacles
when the bump sensor is pressed, try to steer around the obstacle.

if toucha [ spin-right
wait 10
go-forward
wait 10
spin-left
wait 10
go-forward]

end

The added behavior did not completely solve the navigation problem --

the robot did not navigate its course reliably. However, the robot

typically got much further than without the behavior to get the robot

"unstuck."

6.4 Robot Challenge Workshop

The "robot challenge" workshop also took place at the Boston Museum of

Science3 . It, like the Artificial Creatures workshop, took 12 hours over a

4 day period, and attracted ages ranging from around 12 to 16.

For this workshop, students created a mobile robot to compete in a

contest on the last day. The contest goal was to navigate as fast as

possible the playing field shown in Figure 6.1.

3 This workshop was run by this author and Fred Martin.
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Figure 6.1
Robot Challenge Playing Field

This workshop had a much more structured goal than did the Artificial
Creature workshop. It required a certain minimum level of performance
of the robots in order to successfully complete the course. The high
structure, high expectations, and limited time available unfortunately
seemed to turn off some of the students. As a result, a second category
was created for manually controlled entries for those who were unable to
or did not wish to complete an automatic entry. Six of the twelve
entrants created autonomous robots, while the other six controlled their
entries manually.

A variety of different strategies were attempted by the autonomous
entries. All but one used sensing to follow the line through the first half
of the course, and to try to follow walls in the second half to find the exit.
One entrant attempted to perform the course completely without sensing
-- relying on timing only. While this entry was very fast, it was also very
unreliable (although it came close to finishing sometimes, it never
actually did).

In previous LEGO activities (either with LEGO/Logo, or the MIT LEGO
Robot Competition), participants have often used similar "open loop"
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strategies: trying to do precise things without feedback. These attempts

are characterized by constantly tweaking parameters, trying to zero in on

the precise amount of time a motor should be turned on, etc.

Unfortunately, on different runs, wheels may slip in different ways, or the

batteries might be at different levels of charge, or any of a number of

other things could be different as well. Failed or partially failed attempts

at precision without feedback almost always prove to be instructive, both

to the person who attempted it and also to the people watching and

seeing the problems. People learn to appreciate the imprecision and

uncertainty that often characterizes the physical world. And people learn

that by sensing error and correcting, imprecise parts can be combined to

make a precisely acting whole.

The hardest problem for people in this particular course -- the part that

caused the most robots to fail -- was the transition from following the line

to following walls. Many robots which sensed the line visually would try

to steer to find the line if the robot strayed from the line. Unfortunately it

is difficult to determine whether the robot has lost the line by veering off

of it, or whether the end of the line has been reached. A common

solution to this problem was to start following walls as soon as a bump

sensor was triggered, but this did not always work. For example, some

robots would commonly, in searching for the lost line, manage to make a

u-turn and find the line again, but this time going backwards and find

themselves back at the entrance.

The robot challenge course shared an aspect with the artificial creatures

workshop: students were encouraged to use multiple behaviors. Most

people who wrote programs to successfully navigate the challenge course

used two behaviors: one to follow the line, and the other to try to get out

of the maze at the end (possibly by following a wall). However, unlike the

artificial creatures workshop, the structure of the robot challenge was

such that having multiple behaviors running at the same time was not

beneficial. Here, the main challenge wasn't in how behaviors interacted,

but instead determining when to switch between two mutually exclusive

behaviors.
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6.5 LEGO Train

As mentioned in section 2.1, the programmable brick was brought to The
Computer Museum in Boston. Specifically the brick was used in a
special center for kids at the museum called the Computer Clubhouse.

As explained previously, this author had intended to work with kids at
the clubhouse in making programmable musical instruments out of
programmable bricks. But the kids weren't interested: instead, they
wanted to play with the LEGO train on the other side of the room.
The brick was of course flexible enough to be attached to the train, so the
kids became interested in programming the train once it was hooked up
to the brick.

Kids started off by writing simple programs for the train, such as
switching direction every once in a while. Some wanted to be able to put
a manually controlled train on the track as well, though. By a few simple
modifications to the train on which the brick was mounted (to disconnect
its electronics from the metal track), a manual train powered by the track
could be run independently of the brick train, even on the same track.

Sections 5.4.2 and 5.4.3 discuss in some detail the program that one kid
wrote for the train once the manual train had been put in place. This
program made the train interact in various ways with light markers
placed beside the track, as well as a light marker placed on the manually
controlled train. Several kids enjoyed playing "tag" with the brick-
controlled train by controlling the manual train to come close to the
automatic train, causing the automatic train to stop or change direction.

As described in section 5.4.3, this project showed the desirability of
distinguishing between looking for sensor events on the basis of "edge"
versus "level" sensitivity.
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6.6 Bike Trip

This section discusses a short project done with the brick by Brian

Silverman, and his son, Eric. Brian Silverman was involved with the

design of the brick, and was earlier mentioned as the author of one of the

two programmable brick software environments.

Brian wished to graph the speed of his bicycle over time during his daily

bike trips commuting to and from work. He decided to use a

programmable brick, attached to the handlebar of the bike, to collect the

data. After playing with various sensors to measure the rotation of the

front wheel, Brian and Eric settled on a magnet mounted to the wheel,

and a reed relay (mechanical magnetic sensor) to be mounted next to the

wheel. Once per rotation of the front wheel, the sensor would see the

magnet. The brick was then programmed to record, every two seconds,

both the speed of the wheel, and the total distance traveled.

In order to graph the results, Brian and Eric wrote a special-purpose

program in the host Logo. Although his recorded data measured speed

versus time, they wanted to instead graph speed versus distance

traveled. This is a case where having the host Logo really paid off -- if

some standard graphing tools had been available in the brick

environment, or if Brian and Eric had simply exported the data to a

spreadsheet, these tools likely would have been able only to graph the

speed versus time.

By graphing the bike's speed versus distance, they could superimpose

trips taken on different days. Events at the same location on each trip

(like traffic lights or stop signs) would be at the same place along the X-

axis of the graph. The graph is quite striking: it shows things like train

tracks, where Brian had to slow down every day, and traffic lights, where

he came to a stop only some of the time. (See Figure 6.2 for the graph of

a single trip to work and back).

By plotting his return trips in reverse, and superimposing them, many of

the features (such as slowing down for the train tracks) were in common.



But consistent discrepancies (one stretch of the trip consistently being
faster one direction than the other) indicated something was different
between the trips to and from: consistent differences in speed indicated
an uphill or downhill slope.

C B B R

To work

'""""~- From work (plotted backwards)

I r I

A A

Distance

Points of interest
A: Traffic light (red going to work, green coming home)
B: Traffic light (green going to work, red coming home)
C: Traffic light (red both directions)
H: Hill (downhill towards work, uphill back)
R: Railroad tracks

Figure 6.2
Speed versus distance riding bike to and from work

6.7 Conclusions and the need for further study

One possible failing in the observations with people using the
programmable brick is that they don't go into enough detail. There are
no micro-analyses tracking how individuals engage new concepts. The
observations so far do not provide a clear indicator of the difference
between the learning going on using the programmable brick versus its
predecessors, such as LEGO/Logo or even straight Logo programming.
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On the other hand, there are some important conclusions to be drawn

already. The types of projects described in this chapter are fairly

different from those typically explored in LEGO/Logo (and in many cases

are impossible to explore with LEGO/Logo). These observations indicate

the brick project has met its goal of providing a wider range of learning

opportunities than previous environments.

One big application of the programmable brick so far seems to be for

portable, moving LEGO robots or creatures. This was one of the more

obvious uses anticipated, as similar things had been attempted with

LEGO/Logo but had always been thwarted by the tangling of the wires

leading to the desktop computer.

One possibly new content area uncovered by the experiences so far is

that the brick can support spontaneous scientific inquiry and

experiments, such as graphing the speed of the bicycle. The brick's

portability, and ability to measure and record many different sorts of

sensor input, makes it easy to ask questions of the environment, and try

to find answers.

More detailed observation of people using programmable bricks is

needed. More exploration into different activities possible with the bricks

is needed as well. I hope that work with the bricks continues to be

active.
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Chapter 7:
More Activities

While children have used the brick in several different activities, some

additional activities have been designed, and not yet tried. This chapter

discusses two such activities, which hopefully might inspire activities to

be tried with kids in the future.

7.1 Computer Clubhouse Wharf

The Computer Museum in Boston, one of the sites at which the

programmable brick has been used, sits atop a wharf on the Boston

Harbor. One activity, suggested by staff members of the computer

museum and the children's museum next door, is to create activities

around exploration of the wharf environment.

There are many things children can explore in the wharf environment.

Hopefully, kids can think of their own questions to ask about the

environment, which will lead them to explorations of their own design.

They will learn things about ecology, and about computation, and the

connections that can be made between them.

In order to explore different questions about the wharf environment, kids

can make special-purpose measuring devices using the programmable

brick. The brick can go places people can't go, and it can measure things

that people can't easily quantify (such as light level or temperature).

(Note that many explorations might involve using the programmable

brick as a submersible probe, which would require some sort of

waterproof case.)



Here is a list of some possible explorations kids might think of doing in
the wharf environment:

" How cold is the water? Does the temperature change with

depth? Does it change with time of day? Does it follow the
temperature above water?

e Are there fish in the water? Use sonar to repeatedly try to sense
nearby objects, and see if the nearby objects change over time.
Are the fish attracted by certain noises? Repelled by others? Do
they make noise? Are they more common at different times of
day? What kinds of bait bring fish close by?

" Teleoperated videocamera. A somewhat sophisticated project
might be to put some propellers and a videocamera on the
programmable brick (with a cable leading back to the surface).
Kids could drive around the water (raising and lowering with the
cable, changing orientation with the propellers), exploring the
bottom, and nooks and crannies around the wharf.

" How dirty is the water? How much sunlight can be sensed at
different depths? How much do different depths block light?
(measure the amount of light transmitted from a submersed light
bulb to a sensor a few inches away) Are there pollutants in the
water? (would require special sensors)

" How fast does the water flow? Is it different at different depths?
Which direction does it go? Does it change at different times of
day?

e How does the water environment change with the weather? Does
a storm make the water murkier? In what ways do the seasons
affect the water?

e Can you hear ships underwater?
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e What kind of stuff is at the bottom? Using LEGO, kids can build
a mechanical scoop that will grab a sample from the harbor

floor. Using appropriate sensors, kids may be able to locate

metal objects on the bottom for retrieval.

This list of activities is not meant to put forward a list of activities that

would be universally enjoyed by kids. Rather, it is intended to indicate

the breadth of activities possible, and some of the interesting things some

of the activities might lead to. The average brick user might not be

intrigued by the average item on the list, but hopefully, the flexibility of

the brick will encourage a potential brick user to think of his own

activity, one for which he will be involved and motivated.

7.2 Computerized Musical Instruments

Using the audio input and output features of the programmable brick,
kids can make their own musical instruments. Not only can kids design

what form of input an instrument might take, but they can also program

in their own personal musical effects.

Through working with these activities, kids could learn about music

theory, and about computation, and how the two can be hooked together.

Here are the sorts of things kids might try with their musical

instruments:

e Make an instrument with 3 buttons, like a trumpet. How do the

buttons affect which note is played in a real trumpet? What are

alternate ways it could work? How is the note on a real trumpet

affected by how you use your lips? What are other ways the

instrument could get input for a similar purpose?



" Make an instrument with a sliding input, like a trombone. How
does the position of the slide affect the note in a real trombone?
What are alternate ways it could work? Can software be written
to make a novice sound nicer?

" Make an instrument be able to record songs and play them back.

" Make an instrument be able to play a song in "rounds." (This
could be done with several programmable bricks communicating
with one another).

e Make an instrument respond to the playing of a certain note
combination. Perhaps it answers with more of the song, or
perhaps could play a duet with the user.

e Make an instrument respond to the microphone input. A pre-
recorded song could be played back at a tempo set by a
drummer. One of ten pre-recorded songs could be played back
by whistling the first few notes (the audio in can do very
rudimentary pitch detection). How can note patterns be
recognized even when they are in a different key? What changes
about the frequencies?

e Make an instrument try to play chords (based on the single notes
being input) that sound "nice." What are some rules to follow?
This could be a good way to start out into some music theory.

e Make an instrument that makes up its own song, or improvises
based on some input from the user. What happens if you have
two programmable bricks, each trying to improvise on what the
other is playing?

- Make an instrument that makes sound based on things sensed
in the environment. Make sound based on the reading of a light
sensor and then put the sensor in front of a TV.
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e Make an instrument with a completely non-standard means of

input. A kid could put sensors all over his body and then dance

to create music.

Again, as with the list of activities located at the Computer Museum

Wharf, this list of musical activities is intended to show the breadth of

possible applications. Hopefully each kid to use the brick would come up

with his own special project.

83



84



Chapter 8:
Conclusions and Future Directions

When I started the programmable brick project, I really had no idea how

much work I was getting myself into. I was very surprised how much

more work the brick hardware was than the LEGO Robot Design Contest

hardware. In retrospect, I realize that trying to fit twice the functionality

into less than half the size was perhaps a little overoptimistic.

In addition to the complex physical packaging and interconnections

problems, I ran into difficult problems with procuring necessary parts.

Unlike the LEGO Robot Design Contest hardware, the parts necessary to
miniaturize the programmable brick are those typically found only in

mass-produced consumer electronics. Many of these parts are difficult

or virtually impossible to obtain in quantities less than a few thousand.

A particular problem was the small LCD screen: I am indebted to Seiko

Instruments Incorporated for allowing us to purchase, in small

quantities, displays normally only manufactured for their hand-held

language translators.

But I think that despite the difficulties with producing the programmable

brick, the brick does appear to have achieved its design goals: it is a
pocket sized computer, capable of running Logo and interfacing in a wide
variety of ways to the real world. It provides new and engaging learning
activities for kids. It seems that the brick makes good on its promise of a
new breadth of activities.

Several of these new areas of application for the programmable brick

were explored in Chapter 6. One big application is the use of the

programmable brick for portable, moving LEGO creatures or robots.

Another application explored was the use of the programmable brick to

embed computing in the environment, to make the environment "come

alive" (as with the example of the automatic light switch). The last



application area that seems to have come from use of the brick is
"impromptu science experiments": the brick's ability to measure and
record sensor input, along with it's portability, makes is easy to ask
questions of the environment, and try to find answers.

But the experience gained from using the brick is in many ways
incomplete: big things such as inter-brick communication still haven't
been tried. Much work still lies ahead in terms of trying different
projects with the brick.

The experience gained from use of the programmable brick points to
more than its breadth of use. The feedback points to some new activities
to try with the brick, and some ways in which we should try to change
the brick, such as the addition of "edge" vs. "level" sensitivity for sensors.

This thesis unfortunately does not show striking educational conclusions
resulting from watching people using the brick. I hope that future work
may delve more deeply into people using the brick in various new
projects, and try to uncover more about what they are learning and how
they are learning it. I believe the observation thus far does show that the
brick provides a rich constructionist learning environment, so I hope the
reader is still convinced of the bricks' educational importance.

Perhaps the most important success to me is that kids have fun using
the brick. The kids' smiles as the light-switcher worked, a kid's
excitement at having his robot successfully complete the Robot Challenge
course: these made all the work worth it. I recognize in many of the kids
I've worked with the same enjoyment and intensity of involvement I had
when I was young and was first introduced to computers. I have
achieved my personal goal: providing kids with a rich learning
environment that they enjoy and voluntarily choose to become engaged
with.
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Appendix I:
Twenty Things To Do with a

Programmable Brick

The document "Twenty Things to do with a Programmable Brick,"

compiled by this author and Mitchel Resnick, is included here to present

some of the breadth of possible applications conceived for the

programmable brick.

1. Build it into a mobile robot, and pretend it's a new life form

exploring its habitat.

2. Take it with you to gather sensor data. For example, measure the pH

of the water at various places along a local stream, or measure the

noise level at various places around a construction site.

3. Connect it to your body and gather data about your heartbeat, etc.

as you run.

4. Connect it to your telephone to keep track of how often your

telephone rings.

5. Attach it to your door frame (with a light sensor) to keep track of

how many people walk through the door. Or program it to greet

people as they walk through the door (with music or digitized

speech).

6. Put it on the roof of the building to gather weather information.

7. Put a bunch of them in a room and program them to make sounds

in response to sound that they "hear," so that they act (somewhat)

like birds in the jungle.
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8. Use it to program your VCR (using IR communication to the VCR
much like a remote control would)

9. Use it like a standard LEGO/Logo interface box.

10. Control a videocamera.

As the brick can control devices controllable with infrared remote
controllers, the brick can talk to many of the newer videocameras.
The brick can tell the camera to record when certain events take
place (like taking anyone's picture for a few seconds when he or she
walks into a room). One can record things that would otherwise
require much patience (make a setup to tape a picture of the mouse
you suspect comes out at night). One can make crude time-lapse
videos by recording a second every so often. The brick can point the
camera -- one could program a sequence of camera movements for a

certain shot. One could even rock or shake the camera for special
effects.

11. Make it into a programmable musical instrument.

Build the instrument with LEGO (does it have buttons like a flute, or
a sliding part like a trombone, or ... ?) Program the instrument to
augment or improvise on your notes, or to simply play another part.
Program the instrument to play a second copy of your notes with a
certain delay to play in rounds.

12. Find out if the light really does go off when you shut the refrigerator
door.

13. Send secret messages across a room to someone else with a brick.

14. Make games where the brick can play an active role.

The games could be "sit down" games (like board games or card
games). The games could be "recess" games (like tag or hide-and-
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seek), where each person could be running around with one of the

bricks.

15. Use many bricks to haunt a haunted house.

Attach one to the door to make creaking noises when the door is

moved. Drop spiders on visitors who trigger a light beam. If

someone screams, repeatedly play back the scream in several voices

to add to the panic. Point a spotlight at a brick animated toy

monster to cast spooky shadows on the wall. Put a brick and wheels

on the pumpkin to allow it to move, and put LEGO lights inside so

the pumpkin can sneak up on people when it's "off', and make a

noise and turn on the lights at the same time when it gets close to

someone.

16. Control lights and appliances.

If one can create the proper LEGO mechanics, one can program the

brick to turn on and off lights or appliances by physically moving the

power switch. Turn on the lights in a room when someone opens a

door. Turn up the heat

17. Water plants.

Make your programmable brick water your plants every few days.

18. Make sound effects.

Make your brick echo what it hears to make you sound like an

announcer in a large stadium. Make it play songs with a sampled

sound, much as a sampling audio keyboard can. Learn the tones

needed to mimic touch-tone phones, and then dial numbers

automatically by placing the brick next to a phone mouthpiece.

Record your dog's bark into your LEGO remote-control car to play to

curious cats in the neighborhood.



19. Put a brick on your pet's collar to record aspects of your pet's daily
life.

What temperature does your pet like? Does your pet spend much
time running around? Perhaps there are patterns to your pet's
activity. With a "GPS" brick (global positioning satellite system,
which can tell location on the earth), find out where your pet roams.
Get into discussions about whether experimenting on your pet is
ethical.

20. Come up with 20 more uses for a Programmable Brick. (The
obligatory recursive call.)
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