
Probabilistic Geometric Grammars for
MASSACHUSEs iTEObject Recognition OFTECHNOLOGY

by MARV 2006
Margaret Aida Aycinena

UIBRARIES
Submitted to the Department of Electrical Engineering and 6omputer

Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

@ Margaret Aida Aycinena, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Department of Electrical Eng neering and Computer Science

A I 1 nirnrrr

Certified by..................
Leslie Pack Kaelbling

Professor

C ertified by
Tgmas Lozano-P ez

rofessor
pervisor

Accepted by
. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

Probabilistic Geometric Grammars for
Object Recognition

by
Margaret Aida Aycinena

Submitted to the Department of Electrical Engineering and Computer Science
on August 1, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

This thesis presents a generative three-dimensional (3D) representation and recogni-
tion framework for classes of objects. The framework uses probabilistic grammars to
represent object classes recursively in terms of their parts, thereby exploiting the hier-
archical and substitutive structure inherent to many types of objects. The framework
models the 3D geometric characteristics of object parts using multivariate conditional
Gaussians over dimensions, position, and rotation. I present algorithms for learning
geometric models and rule probabilities given parsed 3D examples and a fixed gram-
mar. I also present a parsing algorithm for classifying unlabeled, unparsed 3D exam-
ples given a geometric grammar. Finally, I describe the results of a set of experiments
designed to investigate the chosen model representation of the framework.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor

Thesis Supervisor: Tomis Lozano-Perez
Title: Professor

3

4

Acknowledgments

I have been extremely fortunate in the support I have received in this research. My
first acknowledgements go to my advisors, Leslie Kaelbling and Tomas Lozano-P6rez.
The work presented in this thesis is directly based on their previous work on learning
three-dimensional models for objects, so they deserve much of the credit for the con-
tent. Furthermore, Leslie and Tomas have been wonderful advisors - they have shown
great patience as I explored new topics, offered helpful ideas and encouragement when
I was stuck, even checked my math.

Second, I owe a huge debt of gratitude to my lab and office mates: Michael Ross,
Sam Davies, Han-Pang Chiu, Luke Zettlemoyer, Sarah Finney, Natalia Hernandez-
Gardiol, Kurt Steinkraus, Nick Matsakis, and James McLurkin. They have provided
enlightenment on all aspects of machine learning, probability theory, computer vision,
natural language processing and linguistics, experimental methods, and research in
general, as well as political food-for-thought and afternoon frozen yogurt runs.

Third, I am deeply grateful to my family and friends. My parents, Peggy and Alex,
have not only supported and encouraged me in everything I have done, but proofread
and edited every page of this document (any remaining errors are my own). My
sister and brother, Diana and Alex, have been incredibly supportive, were always
willing to listen, and made well-timed phone calls for maximum middle-of-the-night
encouragement. Finally, my boyfriend Shaun has been an invaluable sounding board
and source of strength, for ideas, successes, and frustrations, in research and in life.

5

6

Contents

1 Introduction
1.1 O bjectives
1.2 Grammars for Language and Objects

1.3 M otivation
1.3.1 Three-Dimensional Models
1.3.2 A Parts-Based Approach
1.3.3 Capturing Structural Variability With
1.3.4 A Final Motivation

1.4 Related Work
1.4.1 Approaches to Object Recognition
1.4.2 Cognitive Science Perspectives

1.4.3 Context-Free Grammars
1.5 Strengths and Weaknesses

Grammars

The Probabilistic Geometric Grammar Framework
2.1 An Introduction to PGGs
2.2 Incorporating Geometric Information

2.2.1 Variables and Constant Symbols
2.2.2 Issues With Geometric Grammars
2.2.3 Representing Object Parts as 3D Boxes . . .
2.2.4 Types of Geometric Models

2.3 Root Geometric Models
2.3.1 Multivariate Gaussians Over Quaternions .
2.3.2 Multivariate Gaussians Over Object Parts

2.4 Part Geometric Models
2.4.1 Conditional Multivariate Gaussians Over Magnitudes

2.5
2.6

2.4.2 Conditional Multivariate Gaussians
2.4.3 Conditional Multivariate Gaussians
Conditional Independence Assumptions
The Likelihood of a Parsed Instance

2.6.1 PGG Parse Trees
2.6.2 Calculating the Likelihood

Over
Over

Quaternions
Object Parts

7

2

15
16
17
19
19
22
22
23
23
23
26
26
27

29
30
32
32
32
33
34
35
35
36
37
37
38
41
43
44
44
45

.

3 Learning in the PGG Framework 49
3.1 Matching Tree Fragments to Rules 49

3.1.1 Tree Fragm ents . 50

3.1.2 Matching To Rules . 50

3.2 Learning Expansion Probabilities on Rules 51

3.3 Learning Geometric Models . 51

3.3.1 Estimating Multivariate Gaussians over Quaternions 52

3.3.2 Estimating Multivariate Gaussians over Object Parts 53
3.3.3 Estimating Conditional Multivariate Gaussians over Object Parts 55

3.3.4 An Algorithm For Learning Geometric Models From Examples 56
3.4 Training D ata . 58

4 Parsing in the PGG Framework 59

4.1 Geom etric Parsing . 59
4.1.1 The Unordered Nature of 3D Space 59
4.1.2 Chomsky Normal Form for PGGs 60
4.1.3 Subtree Notation . 61

4.1.4 The Bounding Box: An Approximate Maximum Likelihood . . 62
4.1.5 A Penalty For Clutter Parts 64

4.2 The Inside Algorithm for PGGs . 65

4.2.1 Calculating the Likelihood of a Set of Object Parts 65

4.2.2 Finding the Most Likely Parse of a Set of Object Parts 69

4.2.3 Log Likelihoods . 71

4.3 Complexity Concerns . 71

5 Experimental Results 73

5.1 Hypothesis and Approach . 73

5.2 PGG Implementation . 75

5.3 Experimental Setup . 75

5.3.1 Baseline M odels . 75

5.3.2 Object Classes . 76

5.3.3 Synthetic Data . 77
5.3.4 Training and Testing Procedure 77

5.4 Results and Discussion . 78

6 Conclusion 87

6.1 Future W ork . 87
6.1.1 R ecognition . 87
6.1.2 Representation . 89
6.1.3 Learning . 89

6.2 In Conclusion . 90

8

A Background
A. 1 Probabilistic Context-Free Grammars

A.1.1 An Introduction to PCFGs for Language . . .
A.1.2 Parsing in PCFGs: The Inside Algorithm . . .
A.1.3 Sources and Related Work

A.2 Representing Rotation with Quaternions
A.2.1 Representation Choices for Rotation
A.2.2 An Introduction to Quaternions
A.2.3 Gaussian Distributions Over Unit Quaternions
A.2.4 Parameter Estimation in Gaussians Over Unit
A.2.5 Sources and Related Work

A.3 Conditional Multivariate Gaussian Distributions . . .
A.3.1 Partitioned Matrices
A.3.2 Marginalizing and Conditioning
A.3.3 Sources and Related Work

A.4 Estimating The Minimum Volume Bounding Box . .
A.4.1 An Approximation Algorithm
A.4.2 Sources and Implementation

B Experiment Models

Quaternions

9

91
91
92
94
97
97
97

100
104
106
109
110
110

.111
112
113
113
113

115

10

List of Figures

1-1 The distinction between the gross shape and structure of an object
versus detailed shape and texture information. This thesis focuses on
capturing shape information at the level of the left image, rather than
the right. [22] . 16

1-2 A context-free grammar for a tiny subset of English noun phrases. . . 17

1-3 Parse trees for the English noun phrases the big red barn and the big
red ball. 17

1-4 A simple context-free grammar for chairs. 18

1-5 The same object can appear drastically different when observed from
different viewpoints. [8] . 19

1-6 Man-made objects exhibit a large amount of structural variability [6]. 20

1-7 The distinction between objects with the same class but different shapes,
and objects with the same shape but different appearances. [22] . . . 21

1-8 A simple probabilistic context-free grammar for chairs. 23

2-1 A PGG for chairs . 30

2-2 A PGG parse tree for a chair with four legs and no arms. 31

2-3 Assumed indexing of nodes for the derivation of the likelihood of a
parse tree. 46

4-1 If B = {bg,. . ., bg,}, then E(B) is defined to be the minimum vol-
ume bounding box of the parts at the leaves of the tree, leaves(t) =
{bhi, .-. . , bhm , rather than the actual parts in B. 63

4-2 The growth of the Stirling numbers of the second kind S(m, n). . . . 71

5-1 Performance of the PGG framework and the baseline models on all
12 ground classes, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show
asymptotic performance. 78

5-2 Performance of the PGG framework and the baseline models on the
chair-with-legs ground class, for increasing amounts of training data.
The graph on the right is a zoomed-in version of that on the left, to
better show asymptotic performance. 79

11

5-3 Performance of the PGG framework and the baseline models on the
chair-with-legs-and-arms ground class, for increasing amounts of train-
ing data. The graph on the right is a zoomed-in version of that on the
left, to show asymptotic performance. 80

5-4 Performance of the PGG framework and the baseline models on the
chair-with-3-wheels ground class, for increasing amounts of training
data. The graph on the right is a zoomed-in version of that on the left,
to better show asymptotic performance 81

5-5 Performance of the PGG framework and the baseline models on the
chair-with-3-wheels-and-arms ground class, for increasing amounts of
training data. The graph on the right is a zoomed-in version of that
on the left, to better show asymptotic performance. 82

5-6 Performance of the PGG framework and the baseline models on the
chair-with-5-wheels ground class, for increasing amounts of training
data. The graph on the right is a zoomed-in version of that on the left,
to better show asymptotic performance 82

5-7 Performance of the PGG framework and the baseline models on the
chair-with-5-wheels-and-arms ground class, for increasing amounts of
training data. The graph on the right is a zoomed-in version of that
on the left, to better show asymptotic performance. 83

5-8 Performance of the PGG framework and the baseline models on the
bench ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show
asymptotic performance. 83

5-9 Performance of the PGG framework and the baseline models on the
bench-with-arms ground class, for increasing amounts of training data.
The graph on the right is a zoomed-in version of that on the left, to
better show asymptotic performance. 84

5-10 Performance of the PGG framework and the baseline models on the
stool ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show
asymptotic performance. 84

5-11 Performance of the PGG framework and the baseline models on the
table ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show
asymptotic performance. 85

5-12 Performance of the PGG framework and the baseline models on the
coffee-table ground class, for increasing amounts of training data. The
graph on the right is a zoomed-in version of that on the left, to better
show asymptotic performance. 85

5-13 Performance of the PGG framework and the baseline models on the
lamp ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show
asymptotic performance. 86

12

A-1 A probabilistic context-free grammar for a tiny subset of English noun
phrases. 92

A-2 Probabilistic parse trees for the English noun phrases the big red barn
and the big red ball. 93

A-3 A depiction of an inductive step in the calculation of the inside prob-
ability of a substring wpq........ 95

A-4 In a Gaussian distribution over quaternions, the distribution is defined
in the three-dimensional tangent space to the four-dimensional unit
hypersphere at the mean, and then the tails of the distribution are
"wrapped" back onto the hypersphere to produce a spherical distribu-
tion. Here, for illustrative purposes, the 4D hypersphere is depicted as
a 2D circle and the 3D tangent space as a ID tangent line. We also
ignore the other peak of the bimodal distribution. [22] 104

B-1 The PGG used in the experiments (continued in next figure). The
learned expansion probabilities are shown. The presence of a learned
root geometric model is denoted with a #, and the presence of a learned
part geometric model with a %. 115

B-2 The PGG used in the experiments (continued). 116
B-3 The fully connected models used in the experiments. The learned

prior structural probabilities over models are shown. The presence of
a learned geometric model is denoted with a #. 117

B-4 The Bayes net models used in the experiments (continued in next fig-
ure). The learned prior structural probabilities over models are shown.
The presence of a learned root geometric model is denoted with a #,
and the presence of a learned part geometric model with a %. 118

B-5 The Bayes net models used in the experiments (continued). 119

13

14

Chapter 1

Introduction

In this thesis, we present a generative parts-based three-dimensional (3D) represen-
tation and recognition framework for classes of objects.

By generative, we mean that the framework explicitly models a sufficient number of
properties of each object class that new members of an object class can be "generated"
given a model.1 The term parts-based means that classes of objects are represented in
terms of their parts, and three-dimensional means that the geometric characteristics
of object classes are modeled in three dimensions, independent of viewpoint.

This thesis is organized as follows:

Chapter 1 introduces and motivates the approach of this thesis, as well as discusses
previous related work.

Chapter 2 describes the probabilistic geometric grammar (PGG) framework, and
the form of the geometric models used by the framework.

Chapter 3 presents algorithms for learning geometric models and rule probabilities
given parsed 3D examples and a fixed grammar.

Chapter 4 describes a parsing algorithm for the PGG framework, which allows the
classification of unlabeled 3D instances given a learned geometric model.

Chapter 5 describes the experiments that were conducted to test the framework
and algorithms, and the results of these experiments.

Chapter 6 concludes and discusses future work.

Appendix A presents the fundamentals of several topics on which this thesis is
built, including probabilistic context-free grammars, quaternions, and condi-
tional multivariate Gaussians.

'The use of generative models for classification contrasts with the use of discriminative models,
which is the other major classification paradigm in machine learning and artificial intelligence.
Discriminative models represent enough information about each class to "discriminate" members of
that class from those of other classes, but not enough information to generate new examples of the
class from scratch.

15

I)

Figure 1-1: The distinction between the gross shape and structure of an object ver-
sus detailed shape and texture information. This thesis focuses on capturing shape
information at the level of the left image, rather than the right. [22]

1.1 Objectives

The focus of this work is to design a representation framework for classes of objects
that captures structural variability within object classes. We use the term object class
to refer to a "basic" semantic class of physical objects, such as "chair" or "lamp".
Structural variability within an object class, then, refers to discrete variations in the
existence, number, or arrangement of the parts of objects within a single class-these
differences can be thought of as defining possibly overlapping subclasses within the
object class, such as "chairs with legs and arms", "chairs with wheels and arms", and
"chairs with legs and no arms".

In Section 1.3, we argue that structural variability is highly related to the number
and type of the parts and their physical relationships with one another. Therefore,
we are more interested in the gross overall shape and structure of the object parts
than in the details of their precise shapes, materials, or textures. See Figure 1-1 for
an example of this distinction.

Thus, the primary objectives of this thesis can be summarized as follows:

" to design a representation framework for classes of objects that cap-
tures gross structural shape and structural variability within object
classes;

* to investigate algorithms for learning models and recognizing in-
stances in this framework; and

* to demonstrate that this framework learns more quickly (performs
more effectively given fewer training examples) than baseline ap-
proaches.

16

NP - ART NP ART - the
NP - ADJ NP ADJ - big
NP F- N ADJ - red

N - barn
N - ball

Figure 1-2: A context-free grammar for a tiny subset of English noun phrases.

NP NP

ART NP ART NP

the ADJ NP the ADJ NP

big ADJ NP big ADJ NP
II I I

red N red N

barn ball

Figure 1-3: Parse trees for the English noun phrases the big red barn and the big red
ball.

The probabilistic geometric grammar (PGG) framework is designed with these objec-
tives in mind. The framework uses probabilistic context-free grammars to recursively
represent classes of objects, such as chairs and tables, in terms of their parts. In
Chapter 5, we shall show that the PGG models can indeed outperform the baseline
models when trained with fewer examples.

More generally, however, this work seeks to combine previous approaches that
have been used in object recognition in the past. In particular, we shall discuss in
Section 1.4 that the (deterministic) use of 3D models was quite common in older object
recognition work, but has largely given way in more recent work to highly statistical
2D methods. By applying modern probabilistic machine learning techniques to the
older three-dimensional approaches, we hope to leverage the strengths of both, while
avoiding some of the weaknesses inherent to each when used alone.

This thesis is focused on recognition and learning given three-dimensional input,
although eventually recognition and learning must occur from two-dimensional im-
ages; see Chapter 6 for possible future work in this area.

1.2 Grammars for Language and Objects

Before we present the motivations for our approach, let us informally discuss how
grammars, such as those used to model natural and theoretical languages, might be
used to represent classes of objects.

The concept of a context-free grammar (CFG) is borrowed from theoretical com-

17

chair - top base
top - seat back

top - seat back arm arm
base - leg leg leg leg
base - axle wheel-leg wheel-leg wheel-leg

Figure 1-4: A simple context-free grammar for chairs.

puter science, linguistics, and natural language processing. In these fields, a grammar
for a language is a formal specification of the strings or sentences that are members
of that language. Parsing is the process by which a sentence is analyzed to decide
whether it is a member of the language, and its structure determined according to
the grammar [1]. An example of a grammar for a tiny subset of noun phrases in the
English language is shown in Figure 1-2.

A crucial feature of a context-free grammar for a language is its ability to represent
the structure of a sentence recursively. Thus the big red barn is a noun phrase, but
it is also composed of the article the and the noun phrase big red barn, which is in
turn composed of an adjective big and the noun phrase red barn, and so on. The
context-free aspect of a CFG allows a compact representation of substitution-both
barn and ball are nouns, so either can serve as the object of the modifying phrase the
big red. (See Figure 1-3.)

When using grammars for object recognition, visual two- or three-dimensional
images of objects are analogous to sentences, and parsing is the recognition mechanism
by which an object's class and internal part structure are determined.

Using CFGs for object recognition exploits the hierarchical and substitutive struc-
ture inherent to many types of objects. For example, almost all chairs can be divided
into a "top" and "base", but on some chairs the base consists of four legs, while on
others it consists of a central post (an "axle") and some number of low horizontal
branches with wheels on the ends ("wheel-legs"). An example of a simple context-free
grammar for chairs is given in Figure 1-4.

Unlike strings in a language, objects in the world have geometric properties that
must be modeled as well. The PGG framework incorporates geometric information
into the grammar itself; it models the 3D geometric characteristics of object parts
using multivariate conditional Gaussians over dimensions, position, and rotation. The
approach is explained in full in Section 2.2.4.

Another major difference between strings in a language and objects is that, unlike
the words of a sentence, the parts of an objects do not have a natural or inherent
ordering. There is no "correct" order in which to match the four legs of a chair to
the four "leg" parts on the right side of a rule-all possible assignments must be
considered. This introduces a significant additional level of complexity to the parsing
problem for objects, for which there is no analogy in language.

18

.A' J

.'

Figure 1-5: The same object can appear drastically different when observed from
different viewpoints. [81

1.3 Motivation

Given the objectives of this thesis as outlined above, the PGG framework shall com-

bine several traditional approaches: the use of three-dimensional models, a parts-

based approach, and the use of probabilistic grammars to capture structural variabil-

ity. In Section 1.4, we shall briefly outline previous work in each of these areas. In

this section, however, we explain our motivation for the choice of each approach.

1.3.1 Three-Dimensional Models

As we have mentioned, the majority of the current work in object recognition is

largely image based. Thus, because of its rarity, the use of three-dimensional (3D)
models must be motivated, and we do so in several ways.

View-based versus Structural Variation

First, the infinite variations in the appearance of objects in a class can be loosely
separated into two categories:

o variations that occur between multiple views of the same object instance-
including pose (see Figure 1-5), illumination, etc.; and

19

Figure 1-6: Man-made objects exhibit a large amount of structural variability [6].

e variations that occur between different instances of a single object within its

class of objects-including structure (see Figure 1-6), material, texture, etc.

Another way of thinking about this distinction would be to consider a set of
different images of objects with the same class. The variation among some of the
images is due to differences in the inherent shape of the objects represented by the
images, while the variation among other images is due to differences in appearance,
despite the images representing objects with the same shape. For a visual example,
see Figure 1-7.

The drastic contrasts in the appearance of a single object instance from viewpoint
to viewpoint and under different lighting conditions, can be explained more compactly
and accurately as the composition of the 3D shape of the object with the viewing
projection and illumination, than as a collection of views.

Different instances of an object class are subject to countless sources of variation
in appearance, as well. The sources of variation include structural variability within
the object class, as well as differences in material, texture, and reflectance properties.
Certainly there are some classes of objects that are primarily defined by these "image-
based" variations like texture, such as paintings.

In this thesis, however, we are focused primarily on capturing this structural vari-

ability within object classes. Thus, with this goal, and with classification and learning
in mind, the most natural way to represent the object class is with the characteristics

shared by all members of the class, which are generally three-dimensional character-
istics such as shape and relative position of parts. These are the characteristics of the

class that we would expect to generalize most effectively to unseen instances of the
class, so a three-dimensional representation may enable more efficient learning from

20

K

Same class, different shapes

Class

Same shape, different appearance

d Appearance

Figure 1-7: The distinction between objects with the same class but different shapes,
and objects with the same shape but different appearances. [22]

fewer examples.

Parts-based Recognition

Second, the use of three-dimensional models can allow a much more intuitive parts-
based approach to recognition (motivated in Section 1.3.2), because such strategies
allow the spatial relationship between parts to be modeled independent of viewpoint.
The use of 3D models can also lead to a principled way of dealing with occluded
or missing parts; although this thesis does not explore this opportunity, future work
certainly will do so.

Because, as mentioned above, we are more interested in the gross overall struc-
ture of the object parts than in the details of their shapes or textures, we choose
to represent all primitive parts as simple three-dimensional boxes; this choice is dis-
cussed further in Section 2.2.3. However, the framework could be extended to richer
representations of 3D shape, similar to those described by Forsyth and Ponce [13].

Three-dimensional Interaction

Third, the long term goal of object recognition is to allow interaction between an
intelligent agent and the recognized objects in three-dimensional space. The modeling
and recognition of the function of object classes is intimately involved in this goal
and is best described three-dimensionally. Like the handling of occlusion and missing
parts, the goal of enabling interaction between agents and objects is also not addressed

21

I

d Shape I

in this thesis, but that long-term goal provides further motivation for the acquisition
of three-dimensional information about objects and scenes.

1.3.2 A Parts-Based Approach

Unlike three-dimensional models, a parts-based approach to recognition is relatively
common in modern computer vision, as we discuss below. Representing and recog-
nizing objects in terms of their parts is attractive for several reasons. Many object
classes are too complex to be described well using a single shape or probabilistic dis-
tribution over a single shape. However, such objects can be naturally modeled as a
distribution over a collection of shapes and the relationships between them.

Another reason to consider a parts-based approach is because it offers a natural
way to integrate image segmentation and object recognition, which are related but
often artificially separated tasks.

1.3.3 Capturing Structural Variability With Grammars

We have already informally suggested how grammars might be used to model classes
of objects, but here we attempt a more thorough motivation of the use of grammars
to capture structural variability within an object class.

There is high variability in shape among instances of an object class, especially
in classes of objects made by humans, like furniture (refer again to Figure 1-6).
The structure of human-made objects is often defined only by functional constraints
and by custom. Therefore, unlike many natural object classes, such as animals, the
variability among instances of a human-made object class cannot be described well
using a prototype shape and a model over variations from this single shape.

The variability is highly related to the parts (further motivating the part-based
approach described in Section 1.3.2) and displays certain modular, hierarchical, and
substitutive structure. There is structure in the type and number of parts that are
present; for example, a chair consists of a back, seat, and four legs, or a back, seat,
two arms, and four legs, but not a back, seat, one arm, and three legs.

There are also conditional independences in the presence and shape of the parts;
whether a chair has arms or not is independent of whether its base consists of four
legs or an axle and wheel-legs, given the location of the seat and back.

Context-free grammars are ideal for capturing structural variability in object
classes. They model hierarchical groupings and substitution of subparts, and can
naturally represent conditional independences between subgroups with the context-
free assumption. They also allow a compact representation of the combinatorial
variability in complex human-made shapes. Refer again to the simple context-free
grammar for chairs in Figure 1-4.

An extension to basic CFGs, probabilistic context-free grammars (PCFGs) allow
the specification of distributions over the combination of subparts by attaching prob-
abilities to the rule expansions for a given head class (see Figure 1-8). PCFGs are
the basis on which PGG models will be built.

22

1.0 chair a top base
0.4 top - seat back

0.6 top - seat back arm arm

0.7 base - leg leg leg leg
0.3 base - axle wheel-leg wheel-leg wheel-leg

Figure 1-8: A simple probabilistic context-free grammar for chairs.

1.3.4 A Final Motivation

We conclude this section with a final motivation for the combined use of a three-
dimensional representation and probabilistic grammars. In the previous sections, we
argued that three-dimensional models enable a more natural parts-based approach to
recognition because such models effectively represent the spatial relationship between
parts independent from the viewpoint and lighting conditions. This line of reasoning
applies equally well to the use of grammars. Grammars are more suitable for use with
a 3D representation than with one in 2D because the grammatical structure can focus
on modeling only the structural variability due to the combination and shape of parts,
and not on modeling view-based variation in the object class, which is systematic and
independent from the structural variability.

1.4 Related Work

The visual recognition and classification of objects by computers has been the subject
of extensive research for decades. Because of the enormous amount of literature in
this area, we only provide a brief survey of general approaches to the problem here.
We also focus on previous work that is closely related to the approaches used in
this thesis: the use of three-dimensional (3D) models, a parts-based approach, and
context-free grammars.

1.4.1 Approaches to Object Recognition

Three-Dimensional Models

In the 1970's and 80's, object recognition research was largely characterized by the
use of high-level three-dimensional models of shape.

One approach to modeling the qualitative relationship between solid shapes and
their images is the use of aspect graphs. Introduced by Koenderink and van Doorn in
1976 [20], aspect graphs represent a finite, discrete set of views of a 3D shape, so that
each node of a graph corresponds to a view, and an edge between two nodes means
that a small camera motion may cause a dramatic change in image structure from
one view to the next. However, although they are intuitively appealing, exact aspect
graphs are extremely difficult to build and use in recognition. The use of approximate
aspect graphs has shown more promising results. Forsyth and Ponce describe the

23

mathematics and uses of aspect graphs in Chapter 20 of Computer Vision: A Modern
Approach [13].

Another instance of the use of 3D models is the work on 3D volumetric primitives
that can be used to represent parts of an object, and then connected using relations
among the parts. (We return to the idea of object parts and relations between them,
but in 2D, below.) The most well-known type of volumetric primitives are generalized
cylinders, originally introduced by Binford in 1971 [5], and also known as generalized
cones. A generalized cylinder, informally, is a solid swept by a one-dimensional set of
cross-sections that smoothly deform into one another [13]. Generalized cylinders were
appealing because they provide an intuitive mathematical description for simplified
shape representations for many relatively complex objects.

Currently, however, the use of 3D volumetric primitives and geometric inference on
the relations between them is quite unpopular. This is possibly because the methods
that have been developed do not scale well to large numbers of objects, and because
the simplest approaches do not deal at all with hierarchical abstraction among levels
of object classes or generality between object classes 2 . Furthermore, it is always
difficult to build accurate 3D models of object parts. And, there has been little work
on introducing probabilistic inference and learning to this area, which might help to
overcome some of these limitations.

More generally, the use of three-dimensional models in any form is not common in
current work, with a few exceptions; e.g. the work of Rothganger et al. (2003) [30].

Model-Based Vision

Much of the research in the 1980's and early 90's approached the object recogni-
tion problem by attempting to build libraries of relatively detailed two- or three-
dimensional models of objects, and recognize instances based on these libraries. This
model-based approach to computer vision focuses on the relationship between object
features, image features, and camera models. In particular, there is assumed to be
a collection of geometric models of the objects to be recognized, called the "model-
base". Algorithms solve the problems of alignment, correspondence, and registration
of points and regions between the test and model objects, as well as inferring the pose
of an object from its image and the camera parameters.

Model-based vision encounters problems, again however, because acquiring or
learning the collection of geometric models in the first place is difficult and expensive.
Furthermore, as Forsyth and Ponce say, it "scales poorly with increasing numbers of
models. Linear growth in the number of models occurs because the modelbase is flat.
There is no hierarchy, and every model is treated the same way." [13]

Representative work from this body of research includes that of Huttenlocher and
Ullman (1986) [16], Rothwell et al. (1992) [31], and Beis and Lowe (1993) [3]. Forsyth
and Ponce also offer a survey of model-based vision in Chapter 18 of Computer Vision:
A Modern Approach [13].

2One of the benefits of using grammars for object recognition is that it provides a natural way
to encompass the idea of hierarchical abstraction among levels of object classes.

24

Template Matching

A popular approach to object recognition in recent years has been the use of statistical
classifiers to find 2D templates-image windows that have a simple shape and stylized
content. According to this approach, object recognition can be thought of as a search
over all image windows and a test on each window for the presence of the object.
Thus the recognition task reduces to a machine learning problem in which each image
windows (or some function of it) is an input vector to a statistical classifier.

The most well-known domains for the pure form of this approach are the detection
and recognition of faces, pedestrians, and road signs. Prominent examples include
the eigenfaces face recognition algorithm presented by Turk and Pentland (1991) [36],
Viola and Jones' real-time face detection system (2001) [37], and Papageorgiou and
Poggio's work on pedestrian detection (2000) [26].

Template matching, in its most simple version, has been shown to offer excellent
performance on object classes that can be easily represented two-dimensionally-
hence the success with faces-because it can exploit statistical approaches to discrim-
inate on the basis of brightness and color information. However, template matching
has limited applicability to the recognition of large or complex classes of objects, be-
cause it is purely view-based, usually requires a separate segmentation step, and can
be sensitive to changes in illumination. [13]

Relational Matching and Parts-Based Recognition

A more robust use of templates is as descriptions of parts of objects; then entire
object classes can be described using relations between templates. There is quite a
bit of current work on statistically modeling the relations between object parts, almost
entirely in two dimensions-usually the object parts are simple image patches.

Prominent recent examples include the constellation model of Fergus et al. (2003) [11],
and the K-fans work done by Crandall et al. (2005) [9].

Although relational matching using templates can be more successful than simple
template matching, it is still inherently image and view-based; thus the approach
works well on local patches or simple objects, but it does not provide for generalization
between views of the same object, or within or between object classes.

Besides relational matching, however, there are numerous approaches that can be
considered "parts-based". As we mentioned above, key reason to consider a parts-
based approach is because it offers a natural way to integrate image segmentation
and object recognition, which are related but often artificially separated tasks. An
example of this combination is the work of Tu et al. (2003) [35], in which "generic
regions" can be seen as two-dimensional parts.

Classification versus Recognition versus Detection

Before continuing, we should note that there exists an important distinction between
the tasks of general object classification-that is, assigning a given object instance to
its appropriate object class-and specific object recognition - that is, remembering
that a given object instance is the same as an instance that was seen previously.

25

So, although object recognition is the commonly accepted term for the subfield of
computer vision that deals with both these problems, it should formally refer only to
the second. Furthermore, yet another task that often falls under the umbrella term
of object recognition is object detection-determining the presence and location of
an object in an image.

We use the terms recognition and classification more or less interchangeably in
this document, because of this customary blurring of the distinction in the literature,
but this thesis is actually focused on object classification, rather than recognition.
This thesis also does not consider the task of object detection within an image.

1.4.2 Cognitive Science Perspectives

The field of cognitive science offers some insight into the task of object recognition,
from the perspective of the human vision system. In particular, there is great debate
among cognitive scientists about the form of the representation used by the human
brain for classes of objects. One dimension of the debate is concerned with the 2D
versus 3D nature of the internal representation of object classes.

Some researchers argue that the internal representation is inherently three-dimensional,
possibly supplemented by cached 2D views. Biederman, one of the canonical propo-
nents of this theory, states that "there is a representation of an object's shape inde-
pendent of its position, size, and orientation (up to occlusion and accretion)" (2001)
[4]. He proposes a three-dimensional and hierarchical representation in which geons-
simple 3D geometric shapes-are the primitives from which all complex objects can
be composed. Hummel supports his high-level theory in his paper Where view-based
theories break down: the role of structure in shape perception and object recognition
(2000) [15].

Others, however, insist that a full 3D representation is impossible, and instead
claim that the brain represents a class of objects as a collection of 2D models. Tarr
provides the prototypical voice on this side of the argument, presenting a range of
experimental and computational evidence for viewpoint dependence of basic visual
recognition tasks in humans; thus he concludes that "visual object recognition, re-
gardless of the level of categorization, is mediated by viewpoint-dependent mecha-
nisms" (2001) [34].

In fact, computation models of the human visual recognition system designed
using the collection of 2D models approach have heretofore worked better than those
using the 3D modeling theory. However, as computer scientists, we have the liberty
of using cognitive science perspectives as mere inspiration rather than gospel; much
of this chapter discusses our reasons for using 3D models, albeit supplemented in the
future by 2D view or image-based techniques.

1.4.3 Context-Free Grammars

As discussed in Section 1.2, grammars have been used to model languages and sen-
tence structure in linguistics and natural language processing for decades. Section A. 1
offers an introduction to probabilistic context-free grammars (PCFGs) for language.

26

Thorough surveys of CFGs and PCFGs in natural language processing can be found
in Allen [1], Jurafsky and Martin [19], and Manning and Schiitze [23].

As with three-dimensional models, the use of (deterministic) grammars and syn-
tactic models in computer vision and pattern recognition were quite popular in very
early computer vision research. Rosenfeld's 1973 ACM survey gives a brief description
of contemporary work on syntactic pattern recognition and two-dimensional picture
grammars [29]. However, grammars have all but disappeared from modern computer
vision. Recent notable exceptions are constrained to two dimensions and include Pol-
lak et al., who use PCFGs to classify 2D images (2003) [27], and Moore and Essa,
who use PCFGs to recognize activity sequences from 2D images (2001) [25].

1.5 Strengths and Weaknesses

In this chapter, we have presented a variety of arguments in favor of the approach of
this thesis, but there are naturally inherent weaknesses, in addition to the strengths.
Here we attempt to address these trade-offs explicitly.

A key weakness of the 3D modeling approach is that accurate three-dimensional
models are notoriously difficult to learn-this issue was raised numerous times in
the discussion of previous work above. In large part, this explains the general shift
of the computer vision community away from earlier 3D approaches and towards
image-based object recognition techniques that has occurred in recent years.

Another weakness of the 3D approach is that it is not completely understood how
best to recognize an object from its 2D image using a 3D model, although there has
been a large amount of research on this problem.

However, we have stated that the objectives of this thesis are limited to captur-
ing gross structural information. Thus, we are not attempting to achieve extremely
faithful models in the current framework, because ultimately we will exploit image-
based methods as well. We discuss possible future work on this front very briefly in
Chapter 6. We also propose some possibilities for the interaction between 3D models
and 2D images in that chapter.

Furthermore, the use of 3D models has the host of strengths that we have dis-
cussed. In particular, a 3D modeling approach offers the best hope of capturing the
crucial information necessary to learn quickly and perform robust classification given
the learned models, which is one of the primary objectives of this thesis.

27

28

Chapter 2

The Probabilistic Geometric
Grammar Framework

In Chapter 1, we motivated the use of probabilistic context-free grammars to model
classes of objects. A PCFG allows a compact representation of conditional indepen-
dences between parts, and also defines a probabilistic distribution over instances of
the object classes defined by the grammar.

In this chapter, we describe how probabilistic geometric grammars (PGGs) extend
generic PCFGs by incorporating geometric models into the nonterminals and rule
parts. The chapter is organized as follows:

Section 2.1 defines PGG models as PCFGs, and introduces some new notation and
terminology.

Section 2.2 discusses some issues with incorporating geometric information to a
PCFG, and introduces the two types of geometric models in a PGG.

Section 2.3 describes the form of a root geometric model in a PGG as a multivariate
Gaussian distribution over the space of geometric characteristics of object parts.

Section 2.4 describes the form of a part geometric model in a PGG as a conditional
multivariate Gaussian distribution over object parts.

Section 2.5 discusses the conditional independence assumptions expressed by a PGG,
and their consequences on the expressive power of the framework.

Section 2.6 derives the process of calculating the likelihood of a parsed labeled
object instance according to a PGG model.

Note that this chapter builds directly on the material presented in Appendix A:
the fundamentals of PCFGs, quaternions for rotation, Gaussian distributions over
quaternions, and conditional multivariate Gaussians. The reader who is not familiar
with these topics is encouraged to read Appendix A before continuing.

In the subsequent sections, follow along with the descriptions using the example
PGG for chairs as shown in Figure 2-1. Ignore the variables until Section 2.2, the ps
until Section 2.3, and the Os until Section 2.4.

29

[1] chair[p'].
[1] 1.0 chair(C)

[2] chair-top[p 2].
[1] 0.4 chair-top(CT)
[2] 0.6 chair-top(CT)

[3] chair-bas
[1] 0.5

[2] 0.2

c b[p3].
chair-base(CB) -*

chair-base(CB) -

- [1] chair-top(CT)[111],

[1]
[1]

[3]

[1]
[3]
[1]

chair-back(ck) [211],

chair-back(ck) [#221],

chair-arm(cal) [0223],

[2] chair-base(CB)[q$1 12]

[2] chair-seat(cs) [W 2 12

[2] chair-seat(cs) [222,
[4] chair-arm(ca2) [224.

[2] chair-leg(cl2) [312],
[4] chair-leg(cl4) [314]

chair-leg(cll) [031],

chair-leg(cl3) [0313],
chair-axle(cx) [0321]

[3] 0.3 chair-base(CB) -

[2] chair-wheel-leg(cwl) [#322],

[3] chair-wheel-leg(cw2) [0323],

[4] chair-wheel-leg(cw3) [#32 4].

[1] chair-axle(cx) [0 331 1

[2] chair-wheel-leg(cw l) [332],

[3] chair-wheel-leg(cw2) [#3 33],
[4] chair-wheel-leg(cw3) [q33 4],
[5] chair-wheel-leg(cw4) [#33 5],
[6] chair-wheel-leg(cw5) [#336].

[4]
[5]
[6]
[7]
[8]
[9]

chair-back[p 4].

chair-seat [p 5].

chair-arm[p 6].

chair-leg [p 7].
chair-axle[p 8].
chair-wheel-leg[p 9].

Figure 2-1: A PGG for chairs.

2.1 An Introduction to PGGs

Formally, a probabilistic geometric grammar (PGG) G is defined as a set of object or
part classes1 :

G = {C,...,C N1

A class C' is defined by a set of rules:

Ci = {r i ini

'In Appendix A, we use the terms nonterminal and terminal, because they are traditional in
the CFG literature. For PGGs, however, we use the term part class, or simply class, instead of
nonterminal, and primitive class instead of terminal, because they better reflect the role of these
elements in the grammar - they label and modify primitive or composite geometric parts, rather
than existing as free-standing symbolic entities as in CFGs for language. We use the term object
class to refer to a part class that corresponds to a "basic" semantic class of physical objects, such
as "chair" or "lamp".

30

chair (B 1)(1.0,pi)

chair-top(B2)(0.4,111)

chair-back(bl)("211) chair-seat(b2)(p212) chair-base(B3)(0.54112)

chair-leg(b3)("311) chair-leg(b4)(p312) chair-leg(b5)("313) chair-leg(b6)(0314)

Figure 2-2: A PGG parse tree for a chair with four legs and no arms.

where the class C' is designated as the special starting class. A class is called primitive
if its rule set is empty; i.e., if no rule expands it. Otherwise it is called a composite

class. In Figure 2-1, chair is the starting class, the classes chair, chair-top, and chair-
base are composite, while chair-back, chair-seat, chair-arm, chair-leg, chair-axle, and
chair-wheel-leg are primitive.

The rules of a PGG define how composite part classes are broken down into
subpart classes. A rule r'j E C' maps the head class C' to an ordered sequence of
rule parts 'j with a probability 'yb, and is written in the form:

13Z Cz '3

We will also refer to the sequence of rule parts $'j as the right hand side (RHS) of
the rule r03 .

The kth rule part of jij is written sijk. Each rule part Sijk has an associated class:

class(sck) Cc G

Notationally we shall use the subscript c to indicate the index of the class of sijk in
the PGG. (This is unnecessary when rule parts are written out, as in Figure 2-1.) The
class of a rule part may be primitive or composite. For example, in Figure 2-1, the
classes of both rule parts in the chair rule - chair-top and chair-base - are composite.
In contrast, the classes of all the rule parts in all other rules are primitive.

The expansion probability -y'j is the likelihood Pr(rij Ci) that the rule r'j is
chosen given the head class C'. Thus, the expansion probabilities for all the rules of
a class must sum to one:

VC (E G Z yi=1.

31

Given a PGG, parsing is the process by which the primitive parts of an instance
are analyzed to determine the best possible hierarchical structure according to the
grammar. The hierarchical structure that is produced is called a parse tree, and the
primitive instance parts form the leaves of the tree. A parse tree that could have been
produced by the PGG in Figure 2-1 is shown in Figure 2-2.

2.2 Incorporating Geometric Information

So far, our definition of a PGG has been very similar to that of a simple PCFG for
language. In order to model classes of three-dimensional objects, however, we need
to introduce geometric information into the grammar.

2.2.1 Variables and Constant Symbols

To facilitate the representation of geometric information in the grammar, we add vari-
ables. A variable represents the geometric characteristics of a primitive or composite
part. Notationally, we write "classname(var)" to denote that the class label modifies
the part and its geometric characteristics. Equivalently, the primitive and composite
parts of instances are represented with constant symbols. 2

For convenience, we adopt the convention that lowercase variables and symbols
represent primitive parts, while uppercase variables and symbols represent composite
parts. This parallels the use of lowercase letters for terminals and uppercase letters
for nonterminals that is traditional in CFGs. Variables are in most cases hand chosen
to be reminiscent of the class of the part (e.g., the variable CT for a part of class chair-
top). Symbols, however, are anonymously named b or B with a number appended,
in order to reflect the uncertainty regarding the classes of the instance parts they
represent.

2.2.2 Issues With Geometric Grammars

As we discuss representing geometric information in a grammar, it is important that
the reader fully understand the relationship between the left and right hand sides of
the grammar rules. A rule states that a part of the class on the left hand side of the
rule can be broken up into parts of the number and classes on the right hand side of
the rule. Thus a rule expresses a consists of relationship. Similarly, any composite
instance part in a parse tree also consists of its children - in Figure 2-2, the chair-base
B3 consists of its children, the legs b3, b4, b5, and b6.

2The use of variables and constant symbols will also be semantically helpful when we consider
parsing. The task of parsing is to find the best possible assignment of parts in the instance to rule
parts in the grammar, given the geometric models in the grammar and the geometric characteristics
of the instance parts; this can also be thought of as finding the best possible binding of variables in
the grammar to constants in the instance.

3The consists of relationship that is inherent to context-free grammars is a crucial difference
between the PGG framework and other approaches in object recognition that also use trees to
represent the relationship between object parts, such as Huttenlocher's work on k-fans [9]. In most

32

It is also necessary to understand the context-free nature of a PGG, and its con-
sequences for modeling geometric information. The phrase "context-free" means that
any instance part with a particular class label ci can be matched against any rule
part with the same class label, regardless of the surrounding context; in other words,
regardless of the classes or arrangement of the other rule parts on the right hand side
of that rule.

Because of the consists of relationship between parent and children parts, any
part represented by the left hand side variable must have geometric characteristics
that "summarize" the geometric characteristics of all the parts represented by the
right hand side variables. For example, in the first rule of the chair-top class in the
PGG in Figure 2-1, we could write:

CT = summarize(ck, cs)

while for the second rule of the same class we have:

CT = summarize(ck, cs, cal, ca2)

However, consider the context-free aspect of a PGG: the CT part created by either
of these rules needs to be able to be used in any situation that a part of class chair-
top is called for, independent of the number and arrangement of parts in its internal
structure. Therefore, any candidate summarization function must be able to package
up the geometric characteristics of a set of subparts into a consistent "interface",
with consistent dimensionality, that can be consistently interpreted regardless of the
number of subparts or their individual properties.

In theory, this geometric interface and summarization function must only be con-
sistent across different rules within the same class. In practice, however, a single
interface can be used for all classes throughout the grammar. In the next section, we
will argue that a simple three-dimensional box is a reasonable choice for a geometric
interface and the bounding box function is a good candidate for summarization.

2.2.3 Representing Object Parts as 3D Boxes

The primary focus of this thesis is capturing structural variability within object
classes, which we have argued is highly related to the number and type of the parts
and their physical relationships with one another. Because we are more interested in
the gross overall structure of the object parts than in the details of their shapes or
textures, we choose to represent all primitive parts as simple three-dimensional boxes.

We have also explained the necessity of a consistent geometric interface across all

approaches, including the PGG framework, a tree is used to represent the statistical conditional
independences among the parts. In other approaches, however, all nodes of the tree including
internal ones are primitive parts of the object. In the PGG framework, primitive parts can only
exist at the leaves of the tree, while the internal nodes represent non-primitive composite parts such
as chair-base. This is consistent with the use of grammars in language: actual words can only exist
at the leaves of the parse tree of a sentence, while internal nodes such as NP represent a composite
structure containing multiple words.

33

rules for a given composite part class. Furthermore, just as for primitive parts, the
most important geometric information to capture for composite parts is related to

their general size and position in the scene with respect to other parts. For these

reasons, a three-dimensional box representation is an adequate choice for composite

parts as well.

As an added motivation, the choice of a consistent representation for all parts,
primitive or composite, significantly simplifies the modeling task.

A three-dimensional box can be fully specified with:

" three half-dimensions,

" a three-dimensional center position point, and

" a rotation with respect to a coordinate frame;

i.e., as a vector
d

b =p

of three magnitudes, three reals, and a unit quaternion. (The choice of quaternions

as a representation for rotation is discussed in detail in Section A.2.) Thus we define

the space of all possible primitive and composite parts to be:

B = R+' x R3

Since we have chosen that all primitive and composite parts shall be represented

as 3D boxes, we can use the minimum volume bounding box as a simple, intuitive,
and consistent geometric summarization function. The minimum volume bounding

box of a set of boxes can be efficiently approximated using the algorithm described

in Section A.4. This may seem like a rather arbitrary choice, but we will defend it
further in Chapter 4.

2.2.4 Types of Geometric Models

The geometric models in a PGG are of two types:

" A root geometric model p' is defined for each class C' in the PGG G. It is
probability distribution that describes how the geometric characteristics of the
root part vary, independently of any parent or children parts.

" A part geometric model qOijk, in contrast, is defined for each rule part sijk

on the right hand side of each rule r in G. It is a probability distribution that
describes how the geometric characteristics of the rule part vary conditioned on

the characteristics of its parent part (of class C').

Multivariate Gaussians are a natural choice for the geometric model distributions.

However, because we are modeling all primitive and composite object parts as three-

dimensional boxes, the space of geometric representations of a single part is the set

34

of all possible 3D boxes B. And, vectors in B are not elements-of a Euclidean vector
space Rn - we discuss in Section A.2 that the quaternion group H is not a vector space,
so it would be suspicious indeed if vectors containing quaternions were members of
one.

In the next two sections, we shall discuss how to circumvent this problem in order
to define unconditional and conditional multivariate Gaussians over B.

2.3 Root Geometric Models

A root geometric model p' takes the form of a multivariate Gaussian over the space
of geometric characteristics of object parts. In this section, we first show how to
define a multivariate Gaussian over the group of unit quaternions, and then over the
specialized space of 3D boxes B = R+3 x R3 x f.

2.3.1 Multivariate Gaussians Over Quaternions

Recall that in Section A.2.3 we show how to define a Gaussian distribution over the
group of unit quaternions ft:

P(4) = ; A, E) 2r)3/ /2 exp - n(A*) TE-1 ln(A*)}

where 4 is the query quaternion, A is the mean quaternion, and E is the 3 x 3
covariance matrix defined in the tangent space at the mean.

This result can be easily extended to deal with vectors of quaternions by perform-
ing the mode-tangent operation point-wise with the elements of the mean and query
vectors, and then concatenating the resulting 3-vectors in the tangent space. If the
mean and and query vectors are:

[i q= :

then, with a small abuse of notation, we can write the mode-tangent of [L and q as:

m = ln(p*q) =

[ln(A*f4n)J

The covariance matrix will then have dimensions (3n x 3n), because the logarithmic
map converts each single quaternion into a 3-vector in R3. The resulting density
function can be written as:

p(q) = A(q; L, E) = (2Ir) 3"/ 2 r|1/2 exP ln([*q) T E In(,I *q) . (2.1)

35

2.3.2 Multivariate Gaussians Over Object Parts

Multivariate Gaussians Over IB*

As we discussed above, an object part in a PGG is represented as a vector of three
magnitudes, three reals, and a unit quaternion; b E B. The space B is a subspace of
a more general space:

B* = R+" x R' x ft

for which m = r = 3 and t = 1. Clearly B* is not a Euclidean vector space.

Thus we must define multivariate Gaussians in a space that is the product of
subspaces of the spaces of each parameter. In other words, we apply a mapping to
each element of a vector in B* so that the result is a vector in R', and then define
the Gaussian in that space. This approach is described by Fletcher et al. [12].

Position parameters are already members of R so this mapping is just the identity
function. Half-dimensions are strictly positive so we use log to map them into the
real domain. And of course, we have just seen how to map quaternions (and vectors
of quaternions) into a vector space where they can be treated as normal vectors.

Consider a query vector in B*:

Xd

x xP

xq

where Xd is a vector of m magnitudes, xp
t unit quaternions. We first calculate the
map it into R'; this is like an extended
vector we discuss in Section A.2.3:

log(xd) - log(pt
m= xP-

ln(pLx*q)

is a vector of r reals, and xq is a vector of
deviation of x from the mean p, and then
version of the zero-centered mode-tangent

I log(xd/A)

ln(P*xq)

We can now write the probability density function for x as:

p(x) = J(x; i, E) = I / exp M TE1m}

where n = m+r+3t, and

[Adl [dE= Epd

-Eqd

Fdp
EPP
Eqp

E3 dq1
YEpq
E:qq_

36

(2.2)

Multivariate Gaussians over 1

Based on Equation (2.2), the root geometric models p' that are associated with each
class C' in a PGG take the form:

Pd[~ ~dd

-Eqd qp

~dq1
pq

EZ~q

such that for a simple box

in which d has length 3, p
geometric score of the part

d
b= p

has length 3, and 4 is a single unit quaternion, the root
b given the model p' is calculated as:

log(d/pt)- T

P - It'p(bI p') =(M(b; p)I El) =exp{
(27r)9/2 I i 11/2 2

log(d/p)
) P - P

(2.3)

2.4 Part Geometric Models

Unlike the root geometric models, which are unconditional, the part geometric models

Sijk take the form of conditional multivariate Gaussians. In this section, we first show
how to define a conditional multivariate Gaussian over vectors of strictly positive real
numbers, then over vectors of unit quaternions, and finally over the specialized space
of 3D boxes B - R+3 x R3 X N. In each section, we follow the approach of Section A.3,
in which we factored a multivariate Gaussian over R' into component marginal and
conditional distributions.

2.4.1 Conditional Multivariate Gaussians Over Magnitudes

In Section 2.3.2, we showed how to use log to map half-dimensions in R+, which are
strictly positive, to the real domain R. We use that technique here and also extend
the factorization approach of Section A.3 in order to define a conditional multivariate
Gaussian over vectors of magnitudes in R+'.

We have a vector x of magnitudes of length n, and we would like to partition it
into two subvectors x, and x2 , of lengths n, and n 2 respectively such that ni +n 2 = n:

X2

We can define a joint multivariate Gaussian distribution for p(x) = p(x 1, x 2) using
the approach shown in Section 2.3.2, and we would like to factor the joint into the

37

P i = (tit Ei)

marginal distribution p(x 1) and the conditional distribution p(x 2 xI).

As before, we partition the mean and covariance parameters of the joint Gaussian
in the same way we partitioned x:

and write out the joint Gaussian distribution:

log(x 1 /p1)1
log(x 2 /P 2)J

(A.5) from Section A.3, we can then factor this

p X = (27r)(n1+n2)/ 2 I 1/2 exP{

Using Equations (A.4a) and
expression for the joint, yielding expressions for the marginal and conditional distri-
butions:

P(x 1) = (2.r)n,/ 2 1 1/2 exp

p(x 2 XI) -

- log (,)T

2 X(i~/

1

(2 -F)n2/2 I 1/2

- E 2 1 Aog()
- 2 A1og)

T

}
We can summarize the parameters (4 I", E') of the marginal Gaussian over mag-

nitudes as:

p'7 = li (2.6a)

(2.6b)

and the parameters Kptcll, Ecl,) of the conditional Gaussian as:

(2.7a)

(2.7b)

Ac211 = IL2 exp E21Elog (

211 = E22 - E21 12 .

2.4.2 Conditional Multivariate Gaussians Over Quaternions

Again we follow the now quite familiar approach from Section A.3 of factoring a
multivariate Gaussian over Rn into component marginal and conditional distributions,
this time in order to define a conditional multivariate Gaussian over vectors of unit
quaternions.

38

-1 }

E-1 log

x exp - 1

(2.4)

X2N

(log

log X
(2

(2.5)

E21P 2_

I _log(x1/tZ1) 1 El
2 _l0g(x2/P2)_ IE21

Formal Definition

We have a vector q of unit quaternions of length n, and again we would like to
partition it into two subvectors qi and q2, of lengths ni and n2 respectively such that
ni + n 2 = n

q = .,
Eq2j

We can define a joint multivariate Gaussian distribution for p(q) = p(qi, q2) using
Equation (2.1), and we would like to factor it into the marginal distribution p(qi)
and the conditional distribution p(q 2 qi).

As before, we begin by partitioning the mean and covariance parameters of the
joint Gaussian in the same way we partitioned q:

__ El E12

A2_ _E21 E22_

where fy has length ni + n 2 and E has dimensions 3(ni + n 2) x 3(ni + n 2). Then we
can write the joint Gaussian distribution as:

p(q) =1 {J ln(p*qi)] Ell E12 [ln(L*qi)
(27r)3 (n1+n2)/ 2 JE1/2 e 2 ln(pt*q 2) E21 E22 ln(ptq 2)

Using Equations (A.4a) and (A.5) from Section A.3, we can then factor this
expression for the joint. In the process, we must be extremely careful to respect the
non-commutativity of quaternion multiplication! The factoring yields expressions for
the marginal and conditional distributions:

1 I 1T -
p) (2r)3n1/ 1/2 exp - ln(p/qi)T 1l ln(ptqi) (2.8)

1(27)3n2/21E11/2p(q2 Iql) =

x exp - (ln(pL*q2) - E21EK ln(p qi)) 11)1 (2.9)

x (ln(tL*q2) - E21El1 ln(tt*qi))

Note that these expressions are identical to Equations (2.4) and (2.5), except for
a 3n 2 in the normalizing constant rather than n2, and ln(p*q 2) and ln(pi*qi) terms

rather than log(L) and log(2L) in the expression for the deviation.

A Gaussian in the Tangent Space Only

In Sections A.3 and 2.4.1 we continued on to parameterize a new Gaussian distribu-
tion for the marginal and conditional in terms of the partitions of p and E . In this

39

case, it is clear that the marginal is a Gaussian, parameterized the same as before:

IT = Y-11

and that the covariance of the conditional is also the same as before:

EC = E22 - E21EiE12

However, the mean of the conditional is not so straightforward. (So far we have
been performing point-wise operations on vectors of unit quaternions, but let us switch
to dealing with single unit quaternions 41, Al, 42, and 42 for clarity. We then also
assume that the matrices E21 and El each have dimensions 3 x 3.)

In order to find a mean for the conditional distribution, we need to find a A such
that:

ln(A*42) = ln(A*42) - E 21E- ln(A*4i)

Thus we need to solve for A, while also allowing the 42 on each side to cancel out. We
might try the following approach :

ln(A*42) = ln(A*42) - E21E-1 ln(4*4i)

A*42 = exp(-E21E-1 ln(A*4i) + ln(A*42))

Sexp (-E21E- l n(*4i)) exp (ln(A*42))
A*424 2 = exp(-E21E E ln(4*Q1))4*22

A = exp(-E 1 ln (A *41)) A * .

However, the operation marked with the is in fact incorrect. The problem arises
because quaternion multiplication is not commutative in general, as we have fore-
shadowed. This means the standard identities for exponential and log functions do
not necessarily hold. In particular the identity

exp(p) exp(q) = exp(p + q)

is only allowed if p and q are a commutative subgroup of the quaternion group H.
This, in turn, is true if and only if the vector components of p and q are equal; in
other words, if the quaternions are parallel, which is not the case here.

Another way to think about this is that we are adding a displacement d to the
point ln(ptq 2) in the tangent space at the mean, for d =-E 21Ej ln(piqi). But,
the general operation of adding a displacement to a point in the tangent space cannot
necessarily be described as a rotation on the quaternion hypersphere. Thus, although
f(q 2) = ln(piq 2) - d is a well defined function in the tangent space, it cannot be
described as a rotation, so there can be no p such that f(x2) = ln(p*q2).

What does this mean? Quite simply - there is no beautiful and compact way
of describing the factored conditional distribution of a multivariate Gaussian over

40

quaternions. The conditional distribution given in Equation (2.9) above is still a

perfectly valid probability density function, however, and it is actually still Gaussian
in the tangent space. Therefore, this result is sufficient for our part geometric models.

2.4.3 Conditional Multivariate Gaussians Over Object Parts

We have now demonstrated how to define multivariate distributions over vectors of
reals in R', vectors of magnitudes in R+f, and vectors of unit quaternions. Now,
we can combine these results to define the general form of a conditional multivariate
Gaussian distribution over B* = R+" x R' x $I'.

Conditional Multivariate Gaussians Over B*

Again we consider a query vector in B*:

Xd

X =XP

Xq_

where Xd is a vector of m magnitudes, xp is a vector of r reals, and Xq is a vector of
t unit quaternions. We partition the query vector so that each section of the original
vector is subdivided, and so that x, and X2 refer to the appropriately extracted
portions of x, concatenated together:

Xdl

Xd2

Xpi

Xp 2

XqI

Xq2_

Xdl1

Xl = Xpl

[Xqi J

Xd2

X2 = Xp2 -

Xq2J

Let the lengths of Xdl, xpi, and Xql be min, ri, and ti, respectively, and the lengths of

Xd2, Xp 2 , and Xq2 be M2 , r 2 , and t 2 .

Now, we perform the analogous partitioning with a mean vector and covariance
matrix for a joint multivariate Gaussian over B*:

/ =

pI-d
/-Ld2

/1 p2

j1 q2-

Edld1

Ed2d1

~p1d1
Ep2d1

Eq1d1

Eq2d1

d2

Ed2d2

Epid2

EqW2d
E222

IXdlpl

Xd2pi

~p1p1
Ep2pl

Eq1p1
Eq2p1

Id1dp2

Ed2p2

Xplp2

Fp2p2

Eqlp2

Eq2p2

dlq1

Ed2q1

Ep2q1

Eq1q1
Eq2q1

Ediq2
rXd2q2

Ep1q2

E~Ip2q2

Eqlq2

Eq2q2_

(2.10)

41

[/dl1

Pi =[Ii J
/-4d2

P2 =Pp2J

_Pq2J

[dldl

Ell= Epid

Eqld1

Ed2d1

E21 Ep2dl

Lq2d1

EdIpi
Edlpl

~q1p1

Zd2p1

Ep2pl

Eq2p1

Edlql
Epiq1

EqiqiJ

Ed2q1
Ep2ql

Eq2q1 J

Edid2
E12 - Epid2

Xqld2

Ed2d2
E22 Ep2d2

_Eq2d2

Let

n= m+r+3t ni =ml + ri + 3t, n22 =m2 +r 2 +3t 2 -

Then the covariance matrix dimensions are as follows:

El: ni x ni

E21 : n 2 x ni

E12 : ni x n 2

E22 :n2 x n2.

We can easily factor this joint distribution to parameterize a marginal Gaussian
distribution for p(xi):

p(x1) = .N'(x1; pi, E11)

(27)nl/ 2 rni 11/ 2 2

[0l (xdl /Id)1

XPl - p1P

ln(itxqi) J

T 1log(Xdl //di) 1
1i1 XPl - pPI

ln(pL*lxqi)J

For the factored conditional distribution p(x 2 xi), we define a mode-tangent vec-
tor m which combines all the deviations and mappings for the specialized spaces
that we have seen, as well as the general formula for the deviation in a conditional
Gaussian:

[log (Xd2/Pd2) 1[log(Xdi/'dl)1
m = -Xp2 ~ Pp2 ~ 22II Xpi -ppi .

Wn(ild*l2Xq2) ln(p*lxi)

We can now write the conditional distribution for p(x2|Ix1) as:

p(x 2 I xl) = (27r)n2/ 2 I1/2 exp -ImT (E/E1)-m} (2.14)

where of course
= E22 - E21E'E12 -

Conditional Multivariate Gaussians over B

Now, we can finally define the form of the part geometric model #ijk that is associated
with each rule part s'jk in each rule in a PGG. A part geometric model takes the form:

ZJ'k jk) Ljk7 Ejk' rijk) i~jk j
0ik (1Zkik 2 11 2' L..21 E2

42

Edip2

Epip2

Eqlp2

Ed2p2

Ep2p2

Eq2p2

Ediq2
Ep1q2

Eq1q2J

Yd2q2
Xp2q2

Eq2q2j

(2.11)

(2.12)

E : n x n

(2.13)}

where:

- ijk- -ijk-
dl kd2

ijk ijk ijk ijk
P pI / 2 = p2

ijk ijk
- q1. J q2J

and the covariance matrices have similar internal structure, as shown in Equations (2.11)
and (2.12).

Then for a simple box b2 and its parent part bi:

dii [d2
bi= pi b 2 = 1P2

in which di, d 2 , pi, and P2 each have length 3, and 41 and 42 are single unit quater-
nions, the part geometric score of the part b 2 given its parent b1 and the model #ijk
is calculated as:

p(b 2 I bi, #ijk) = 1 exp Im T(rik/k)-Jm
(27r) 9/ 2 1ijk/ 2 J1/2 2

(2.15)

where
log(Xd 2 / 2k) 1 10(Xd1//k i1

M ijk Eijk ('Eijk\ -1 X ijk

_ln((/<k)*xq 2). _ 2 i [zPl)*xq2)J
and

Eij/Eik= yijk _ Eijk(Eik)-1~ijk

2.5 Conditional Independence Assumptions

Before we discuss how to use a PGG model to calculate the likelihood of a parsed
and labeled object, we must consider the conditional independence assumptions that
are implied by the form of a PGG grammar and geometric models.

First, any context-free grammar assumes that the way a non-primitive class is
expanded (i.e., the choice of rule used) is independent of the way its parent or sibling
classes were expanded. As we have discussed several times, this assumption is the
fundamental one underlying the term "context-free" in standard CFGs and PCFGs.

Second, the PGG framework assumes that, in a fixed parsed instance, the ge-
ometric characteristics of a part are conditionally independent of those of its non-
descendents, given its parents, and of those of its descendents, given its children.
These assumptions are identical to the topological semantics of standard Bayesian
networks, in which a node is conditionally independent of all other nodes, given its
Markov blanket - i.e., its parents, children, and children's parents [32]. Because PGG
models produce only trees, rather than arbitrary directed acyclic graphs, a part's chil-

43

dren will never have any other parents, so the conditional independence assumptions

are the same.
What is the consequence of these assumptions on the expressive power of the PGG

framework? A PGG model cannot directly specify geometric dependencies between
parts of the object that are not related in a child-parent relationship. Of course,
because we have stated that the geometric characteristics of any parent part will be

some "summarization" of its children parts, a PGG model can still indirectly express
many dependencies among siblings, grandparents and grandchildren, and parts with
other non-parent-child relationships.

For example, a PGG model cannot directly specify that the lengths of the the
legs of a chair should be the same; instead, it can specify a distribution over the
dimensions of the entire base of the chair, and then penalize any leg whose length
varies too greatly from the height of the base.

So, what do we gain in exchange for this limitation? As we shall see, a PGG model
requires many fewer parameters than a fully connected model, and allows substantial
sharing of information between models for object classes with similar subparts. These
properties can dramatically increase the speed of learning and improve the learned
model's ability to generalize to unseen instances.

2.6 The Likelihood of a Parsed Instance

Now, we are ready to show how to calculate the likelihood of a labeled parsed ob-
ject instance using a PGG.4 First, we describe the form of parse trees in the PGG
framework.

2.6.1 PGG Parse Trees

Just like a PCFG, a PGG G can both generate new object instances and parse existing
unlabeled objects. In both cases, the resulting structure takes the form of a parse
tree.

In a PCFG parse tree, every node is a simple symbol - a nonterminal for an
internal node, and a terminal for a leaf node. "Bookkeeping information" - recorded
for each node from the rule used during generation or parsing - is limited to a simple
expansion probability associated with each internal node. Refer to Section A.1.1 for
details.

A parse tree t in the PGG framework is a bit more complex; refer again to Figure 2-
2 for an example. Because all parts are represented as 3D boxes, every node af in t
represents an object part with an associated vector of geometric information bf E B.
Notationally, this vector is represented with a constant symbol starting with b or B.

4We use the term likelihood rather than probability when dealing with instances in the PGG
framework. This is because probability formally refers only to discrete probabilities, but in the PGG
framework we combine discrete probabilities on the rules of the grammar with continuous density
functions on the geometric characteristics of parts.

44

Every node also has a class label Ce e G that modifies the part. The class label for
an internal node is composite, while in a leaf node it is primitive.

The bookkeeping information that is recorded during generation or parsing is
also more complex. As in a PCFG parse tree, every internal node has an expansion
probability -ye. In addition, however, every node also has a geometric model; the root
has a root geometric model pe, while a non-root node has a part geometric model Of.

Thus we can represent a node ae e t as a tuple, where the contents vary slightly
depending on the position of ae in t:

ae = (Ce, be, ye, pe) ae is an internal root node

ae = (Ce, be, ye, #f) ae is an internal non-root node

a= (C, be, pe) ae is a leaf root node (a single-part object)

at = (C, be, #f) ae is a leaf non-root node.

Notationally, we assume a1 is the root node. We also define the following functions
on the structure of tree nodes:

" children(ae): returns a (possibly empty) sequence of children nodes of ae.

" child(ae, k): returns the kth element of children(ae), for 1 < k < lchildren(a)J.

" parent(ae): returns the parent node of ae, for f # 1.

and these functions on the structure of parse trees (or subtrees):

root(t) = a,

nonroots(t) = {ae E t f # 1}

internals(t) = {ae E t children(a) # 0}

leaves(t) = {ae E t children(ae) = 0}

2.6.2 Calculating the Likelihood

We can think of a PGG parse tree t as having two general types of information:

" structural information, denoted struct(t), consisting of the hierarchy of the tree
and the class labels on the nodes; and

" geometric information, denoted geom(t), consisting of the geometric character-
istics of the primitive and composite object parts represented by the nodes.

We would like to calculate p(t G). Using the distinction between structural and
geometric information, and then applying the chain rule of probability, we have:

p(t G) = p(struct(t), geom(t)I G)
= p(geom(t) struct(t), G) P(struct(t)I G) .

45

a,

a 2 a3 ...

... am

am+1 an

Figure 2-3: Assumed indexing of nodes for the derivation of the likelihood of a parse
tree.

In the following two sections, we assume without loss of generality that the nodes
in t are indexed such that the ordered sequence a1 , a 2, .. . , an corresponds to a breadth-
first traversal of the tree starting at the root. We also let am be the last internal node,
such that:

internals(t) = {ai,. . . , am}

leaves(t) = {am+,. .. , an}

See Figure 2-3 for a depiction of the assumed indexing of nodes.

Structural Likelihood

The P(struct(t) G) term is equivalent to the probability of a standard parse tree
according to a PCFG. We define the structural likelihood of the tree t as the joint
probability over the class and parent/child relationships between all nodes a in t.
Let [Ce - Cg .. . Ch] denote that nodes ag, . . , ah, with respective classes Cg, .. ., Ch,
are the children of node ae with class Cf in t. Then we can write the joint as:

P(struct(t) I G) = P([C 1 -4 C2 ... C], [C2 - C+l ... C], . .. , [Cm - hC. .. Cn], G)

Now, we use the first conditional independence assumption from Section 2.5. Since
we assume the way a non-primitive class is expanded (i.e., the choice of rule used)
is independent of the way its parent or sibling classes were expanded, we can break
up the conditional expression into a product of independent terms, each conditioned
only on G. Then, each term in the new expression corresponds to the expansion
probability for the rule that was used to expand the head node. Thus we can write:

P(struct(t) IG) = P([C 1 - C2... Ce], [C2 - C +1... C,] ... , [Cm .Ch.. . Cn], G)

= PQ C1 C2 ... C] | G) P([C2 -- C + 1 ... Cg] | G)
x ... x P([Cm - Ch ... C] IG)

= Y172 - -Ym

afEinternals(t)

46

Geometric Likelihood

Next we turn to the p(geom(t) struct(t), G) term. We define the geometric likelihood
of the tree t as the joint density over the geometric characteristics be of all nodes af
in t. Then, we use the chain rule to break up the expression in a convenient order.

p(geom(t) I struct(t), G) = p(bi, . . . , b, I struct(t), G)

= p(b,, I b, . .. b,,_1, struct(t), G)

x p(bn_11 b, ... bn-2, st ruct (t),I G)
x . x p(b 2 I bi, struct(t), G)

x p(bi I struct(t), G) .

Note that in this expression, each part be is conditioned on parts {bg} for 1 < g < E,
i.e., parts which are of the same generation as be, or higher, in the tree. Thus no part
is conditioned on any descendent.

Then, we use the second conditional independence assumption from above. Since
we assume that each part is conditionally independent of all non-descendent parts
given its parent part, we can simplify each conditional term, so that a part be, for
f # 1, is conditioned only on its parent part and G. (For simplicity, let the geometric
characteristics of the parent of a node af be denoted parent(be).)

p(geom(t) I struct(t), G) = p(b, I parent(b,), G) p(b_1 I parent(bn_ 1), G)
x ... x p(b 2 Ibi, G) p(bi I G) .

The struct(t) terms can be safely removed because once the parent of a part has been
determined, the geometric characteristics of that part are no longer dependent on the
general structural information of the tree.

Each of the terms can now be computed using the appropriate root or part geo-
metric model. Thus we have:

p(geom(t) struct(t), G) = p(b, I parent(b,), #) p(bn-i I parent(bn_1), n-_1)

x ... x p(b 2 bi, #2) p(bi pi) (2.17)
= p(bi I pi) 1I p(bf parent(b), Of)

aj Enonroots (t)

Total Likelihood

Thus, combining Equations (2.16), (2.6.2), and (2.17), we have a general expression
for the likelihood of a PGG parse tree:

p(t a G) = e ya p(bi I pi) st p(b parent(ba), nt) .(2.18)
aj E internals (t) ae Enonroots(t)

47

48

Chapter 3

Learning in the PGG Framework

Learning is a crucial element in any artificial intelligence or computer vision system.

In this chapter, we present algorithms for learning the numeric parameters of a PGG

model, given parsed and labeled 3D examples and a fixed grammar structure. In par-

ticular, we show how to calculate the maximum likelihood estimates for the expansion

probabilities on the rules, and demonstrate an algorithm for learning the root and

part geometric models.

The chapter is organized as follows:

Section 3.1 describes the concept of a tree fragment and presents a matching func-

tion which maps a tree fragment to a rule in a PGG.

Section 3.2 describes a simple counting algorithm for calculating the maximum like-

lihood estimates for the expansion probabilities on the rules of a PGG, given

parsed labeled examples and a fixed grammar structure.

Section 3.3 presents an algorithm for learning the root and part geometric models

of a PGG, given parsed labeled examples and a fixed grammar structure.

Section 3.4 briefly discusses possible sources for 3D training data.

Structural learning of the grammar itself is a difficult problem that we are not

considering in this thesis. Thus, given our assumption that the grammar has fixed

structure and that we have been given fully parsed and labeled training examples, the

algorithms presented here are quite straightforward. In future work, we will consider

the problems of learning the parameters of the model from unparsed unlabeled ex-

amples, and structural learning of the grammar; see Chapter 6 for more information.

3.1 Matching Tree Fragments to Rules

In the learning algorithms for the PGG framework, we will find it convenient to have

a function that maps a tree fragment in a parse tree t to its matching rule in a PGG

G. This section presents such a function.

49

3.1.1 Tree Fragments

We define the fth tree fragment of t, denoted &f h, to be a tiny tree consisting of the
internal tree node ae G t and its direct children:

a9h: ae

a9 .. . ah

where children(ae) = ag, ... , ah-
Let I tghj denote the number of children in a h. We also assume for convenience

that the nodes of t are indexed according to a breadth-first traversal, so we have:

la'h| = Ichildren(af)I = h - g + 1

3.1.2 Matching To Rules

A 'matches' Predicate

We say that a tree fragment 6' matches a rule r22 if:

" the class Cf of af equals the head class of r ;

" the number of children of agh equals the number of rule parts |3 on the right
hand side of riu; and

" the class Cg+k-1 of the kth child of afgh equals the class of the kth rule part of
the right hand side of ru.

Formally, we define this as a Boolean predicate on a tree fragment and a rule:

matches(fh, rij) <-* (Cf = C')

A (l f',l = IV)(31A(&~,h~ii.)(3.1)

A(A (Cg+k-i = class(s'ik)

1<k<|{i0|

A 'matching' Function

Let agf be a tree fragment in a parse tree t labeled according to a PGG G. Let
Cl = Cf. Then there must exist a unique rule r" c C' that matches Vih according to
Equation (3.1)-namely, the rule that was used to label, generate, or parse that tree
fragment.

Thus we can define a matching function that returns a single rule in G given a
tree fragment:

matching (b h) = r(E C matches(6'h, r23)

50

(3.2)

3.2 Learning Expansion Probabilities on Rules

If we are given a set of parsed and labeled examples T = {t}, the expansion proba-
bilities on the rules of a PGG G can be estimated using simple counting.

For each rule r'i in each class C' E G, we count all tree fragments in each tree
t E T that match the rule, and then normalize by dividing the count by the total
number of tree fragments for which C' is the class of the root node.

We can summarize this algorithm as:

1. Let G be a PGG.

2. Let T = {t} be a set of parsed examples that were labeled according to G.

3. Initialize training sets. For each class C' E G:

(a) Let i = 0.

(b) For each rule r'i in C', let rij = 0.

4. For each tree fragment 6,h in each example tree t E T:

(a) Let r0J = matching(&'h)

(b) Let rij = r +1

(c) Let cr = o + 1.

5. For each rule r0i in each class C E G, let the expansion probability be:

3.3 Learning Geometric Models

We mentioned previously that one of the benefits of using a Gaussian distribution
is the ability to learn its parameters from example data in an efficient closed-form
manner.

However, recall that the space of object parts in a PGG, B, is a subspace of the
general space:

B* = R- x R' x

in which m = r = 3 and t = 1. And, as we repeated numerous times in Chapter 2,
B* is not a Euclidean vector space. Therefore, the familiar maximum likelihood
estimates for multivariate Gaussian distributions over Rn cannot be applied without
modification.

In this section, we first show how to estimate the parameters of an unconditional
and conditional multivariate Gaussian distribution over unit quaternions and B* from
a set of examples. Then we present an algorithm for learning the root and part
geometric models of a PGG from parsed and labeled training examples.

51

3.3.1 Estimating Multivariate Gaussians over Quaternions

Estimating the Mean

Recall that in Section A.2.4, we present Johnson's algorithm for estimating the quater-
nion mean of a set of unit quaternions [17]. To summarize, if Q is the 4 x N data
matrix with the ith sample unit quaternion 4i as the ith column, A is the maximal
eigenvector of QQT, or its negation. We can apply this algorithm point-wise to a set
of example vectors of unit quaternions qj E Q, and let tp be the resulting vector of
quaternion means.

Thus we summarize the mean estimation algorithm for vectors of unit quaternions
as follows:

1. Let Q = {qi} be a set of sample vectors of unit quaternions, where each
vector qj has length n and the size of Q is N.

2. For j= 1 to n:

(a) Let Qj = {Q4} be a set containing the jth element of
vector qi E Q.

(b) Let Qj be the 4 x N data matrix where the ith column
representation of the ith unit quaternion in Qj.

(c) Let A3 = QjQI.
(d) Let ejk be an eigenvector of Aj with real eigenvalue ajk.

(e) Choose one of the two eigenvectors ±ej, associated with
eigenvalue aj, as the estimate of the mean [i3.

each sample

is the vector

the maximal

3. Let p' be the estimate of the vector mean, where the jth element is Aj.

Hemispherization

Once the quaternion mean vector has been determined, we must hemispherize each
quaternion vector according to the estimated mean. Again, we simply adapt John-
son's algorithm from Section A.2.4 to operate point-wise on the sample vectors:

1. Let tp be the quaternion mean of the example data Q = {qj}, and let Aj
be the jth element of [t.

2. For each example vector qj C Q:

(a) For j = 1 to n, where n is the length of qi:

i. Let 4ij be the jth element of qi.
ii. If Af -4ij < 0, then let the jth element of qij be -4ij.

52

Estimating the Covariance

As with single unit quaternions, once the quaternion mean vector has been estimated
and the examples have been hemispherized according to it, estimating the covariance
is straightforward.

The estimated covariance matrix E is defined, as before, to be the normalized
outer product of the data matrix. However, the data matrix will consists of vectors
of data quaternions that have each first been hemispherized, then rotated by the
quaternion mean, and finally projected into the tangent space at the mean to be
"linearized", using the logmap.

The covariance estimation algorithm is summarized as follows:

1. Let pi be the quaternion mean of the example data Q = {qi}, and let A/
be the jth element of p.

2. Perform point-wise hemispherization on the example data vectors, and then
project them into the tangent space at the mean. For each example qi E Q:

(a) For j = 1 to n, where n is the length of qi:

i. Let ij be the jth element of qi.

ii. If Af -ij < 0, then 4ij <- -ij.
iii. Let mij = ln(Aft4i).

(b) Let mi be the vector of length 3n, where the jth set of three elements
is mij.

3. Let M be the 3n x N data matrix with the mi as its ith column.

4. Let the estimated covariance matrix be calculated as E = N MMT, where
N is the number of data points.

Note that, after hemispherization, we essentially apply the mode-tangent opera-
tion to the vector of unit quaternions.

3.3.2 Estimating Multivariate Gaussians over Object Parts

In this section we discuss how to estimate the maximum likelihood parameters ti and
E of a Gaussian distribution over B* from a set of sample vectors.

Estimating the Mean

Say that we have a set of sample vectors X = {xi} in B5*, where N = JXJ.
vector xi is of length m + r + t, and has the form:

Each

Xid

xi= xip

Xizq

53

To estimate the mean vector p of X, we estimate the mean of each section of the
vectors independently, and then concatenate the resulting vectors together. (Equiva-
lently, we can think of this as computing the mean of each component of the vectors
individually, where a quaternion is a single component.) Let Xd, Xp, and Xq be
the sets of subvectors of magnitudes {xid}, reals {xip}, and unit quaternions {Xiq},
respectively.

Estimating the mean of X, is trivial; it is simply the sample mean:

,t= xi P (3.3)

To estimate the mean of Xd, we first take the point-wise log of the vectors to map
them into R', and then take the sample mean as usual:

N

Pd = - log(xid) (3.4)

And of course, the mean of Xq is the quaternion vector mean, calculated as in the
previous section.

Thus we can summarize the mean estimation algorithm as:

1. Let X = {xi} be a set of sample vectors in 3*, where the size of X is N

and each vector xi has the form [xid xiP Xiq]

2. Let Pd be: I N

i=1l

where log(xid) is the vector of logs of the components of Xid.

3. Let p be: N

1

4. For j 1 to t, where t is the length of each xiq:

(a) Let Qj be the 4 x N data matrix where the ith column is the vector
representation of the jth element of the quaternion subvector Xiq.

(b) Let Aj = QjQT.
(c) Choose one of the two eigenvectors tej* associated with the maximal

eigenvalue aj, of Aj as the estimate of the mean lt.

5. Let pq be a vector of length t, where the jth element is Aj.

6. Let f be [P'd [L t 1q]T.

54

Estimating the Covariance

Before we can compute the covariance from the sample data X, we must of course
hemispherize the quaternion elements of the sample vectors, as shown in the previous
section. Once that is done, however, we can simply calculate the extended mode-
tangent vector of each sample, as shown in Section 2.3.2:

log(xd/d)1

.ln(t*x)_

for each vector x E X. Then, we take the inner product of a data matrix containing
the mode-tangent vectors as its columns.

The covariance estimation algorithm can then be written as:

1. Let X = {xi} be a set of sample vectors in B* , where each vector xi has

the form [xid xip xiq] . Let m, r, and t be the lengths of Xid, xi,, and

Xiq, respectively.

2. Let yi = [Pid yp pq]T be the mean vector of the example data X.

3. Perform point-wise hemispherization on the quaternion elements of the ex-
ample data vectors. For each Xiq in X, and for j 1 to t:

(a) Let Aj be the jth element of 'qp

(b) Let 4ij be the jth element of Xiq.

(c) If A/ - i < 0, then 4ij +- -4ij.

4. Find the mode-tangent vector mi of each example xi:

[log(xid/td)1

mi = xip - [I .
_ln(L*xiq)

5. Let M be the (m + r + 3t) x N data matrix with mi as its ith column.

6. Let the estimated covariance matrix be calculated as E= NIIMMT, where
N is the number of data points.

3.3.3 Estimating Conditional Multivariate Gaussians over Ob-
ject Parts

Estimating a conditional multivariate Gaussian over B* is quite straightforward once
we have the algorithms we presented above. Given pairs of vectors (xil, xi2), we

55

simply learn a joint Gaussian for p(X1, X2) and then factor the resulting distribution
using Equation (2.14).

The algorithm is:

1. Let X = {(Xi, Xi 2)} be a set of pairs of sample vectors, where each pair

has the form: r. -

(Xil, Xi2K LXidl

Xipl

XiqlI Xid2

Xip2

[Xiq2j

2. For each pair of vectors in X, construct a joint vector xi with the form:

Xidl

Xid2

Xipi

Xip2

Xiql

Xiq2_

3. Learn the parameters (t, E) of a joint Gaussian over the vectors {xi},
where:

/Ad2

Pp2

Jlq2.

d11d1

Ed2d1

Epid1

Ep2d1

Fqild

Eq2d1

Edid2

Ed2d2

Fp1pd2

Ep2d2

Eqld2

Eq2d2

Ed11

Ed2p1

Ep1P1

Ep2p1

Egqp1

Eq2p1

Edip2

Ed2p2

Epip2

Ep2p2

Egqp2

Eq2p2

Edlq1

Ed2q1

Eplql

Ep2ql

Egq11
Eq2ql

Ediq2

Ed2q2

Eplq2

Ep2q2

Eqlq2

Eq2q2_

4. Partition and extract the parameters of the joint to parameterize a condi-
tional multivariate Gaussian as (pti, P12, Eli, I12, E21, E22), where:

t pi/IiJ

pa2

I-L2 = pp2

Jq2-

d81d1

E11 = Ep1dl

Eqld1

E d2d1

E21 = Ep2d1

Eq2d1

Edip1

Ep1p1

Eq1pl

Ed2p1

Ep2p1

Eq2p1

d1q1 1
Ep1ql

1qiqi_

d2q1

Ep2q1

Eq2ql_

Edid2

E12 = Ep1d2

Eqld2

Ed2d2

E22 = Ep2d2

Eq2d2

3.3.4 An Algorithm For Learning Geometric Models From
Examples

Armed with the above algorithms, we can write a procedure for learning the root and
part geometric models of a PGG G from a set of parsed and labeled instances.

56

Ed1p2

Ep1p2

Eqlp2

Ed2p2

Ep2p2

Eq2p2

Ed1q21
Ep1q2

Eqlq2_

Ed2q21

Ep2q2

Eq2q2_

The intuitive approach is similar to the algorithm in Section 3.2.
tree fragment & h in each tree to collect example parent-child data pairs for learning
the part geometric models of the rule in G that matches 5gh. We also learn the root
geometric models from the geometric characteristics of each individual node in each
example tree.

We can summarize this algorithm as:

1. Let G be a PGG.

2. Let T = {t} be a set of parsed examples that were labeled according to G.

3. Initialize training sets. For each class C' E G:

(a) Let TI = {}.

(b) For each rule part s'jk on the RHS of each rule rij in C', let Qijk = {.

4. Collect data vectors. For each tree t E T:

(a) For each node ae E t:

i. Let C' = Cf.
ii. Add be to Ti.

(b) For each tree fragment &agh E t

i. Let rTj = matching(%).

ii. For k = 1 to n, where n = %d'hl
A. Let s k be the kth rule part on the RHS of r'j.

B. Let ak be the kth child node of &fgh.
C. Add the pair (be, bk) to Qijk.

5. Learn geometric models from data. For each class C' E G:

(a) If T i # 0:

i. Let (t, E) be the parameters of a multivariate Gaussian over B,
estimated from the example vectors in Ti.

ii. Let p' = (A, E).
(b) For each rule rTU in Ci:

i. For each rule part sjk on the RHS of ri2 :

A. If Q ik # 0:
* Let P21, p 2 , rJ 12, E21, E 22) be the parameters of a con-

ditional multivariate Gaussian over B, estimated from the
example pairs in Qijk.

* Let #/ijk = (iP, P21 r11, E12, r21, E22).

57

We use each

3.4 Training Data

In this thesis, we constrain the form of the training data to segmented synthetic 3D
objects; the form of the data is discussed further in Chapter 5.

In the future, however, the learning algorithms in this chapter might be trained
on "real" data; for example, segmented or unsegmented CAD models, 3D object scan
examples, or 3D models inferred from range data or complex 3D reconstruction-from-
video algorithms.

Then, as the system recognizes new instances, these examples would be added to
the training set in order to refine the rule and geometric probability models. Ideally,
we would modify the above algorithms to operate incrementally, so that the set of all
training examples need not be maintained indefinitely.

58

Chapter 4

Parsing in the PGG Framework

In Section A.1.2, we present the inside algorithm for PCFGs, which uses dynamic
programming to efficiently calculate the probability or find the most likely parse tree
of a string. In this chapter, we will modify the inside algorithm to work on unlabeled,
unordered sets of object parts, rather than strings of words.

The chapter is organized as follows:

Section 4.1 describes some issues related to parsing 3D objects with geometric char-
acteristics.

Section 4.2 presents the modified inside algorithm for calculating the inside density
and most likely parse of a set of 3D object parts, according to a PGG.

Section 4.3 discusses the exponential complexity of the inside algorithm for 3D
objects, and the resulting efficiency concerns.

4.1 Geometric Parsing

Given a set of unlabeled primitive 3D object parts {bi,..., bM} and a PGG G, we

would like to find:

" the likelihood of {bi,... , bM} given G; and

" the most likely parse tree that yields b1, ... , bM} in some order, given G.

Before we plunge into a discussion of the algorithms themselves, we shall discuss some
issues related to parsing 3D objects (rather than strings in a language), and develop
some notation.

4.1.1 The Unordered Nature of 3D Space

The inside algorithm for PCFGs is worthy of imitation, because it efficiently solves
an exponential problem in polynomial time through its use of dynamic programming.
In adapting a parsing algorithm designed to work on strings in a language to work for

59

object recognition, however, we must consider one of the most important differences
between strings and objects.

In language processing, the input to a parsing algorithm is a one-dimensional string
of words, and assuming reasonably accurate text, there is little ambiguity about the
appropriate order in which to consider the words. In object recognition, however,
there is no inherent ordering on the parts of an object in 3D space; i.e., there is no
"right" way to match the four legs of a chair to the four "leg" parts on the right side
of a rule.

This fundamental difference means that a parsing algorithm for objects must con-
sider all possible assignments of object parts to rule parts, (although, some assign-
ments will be more likely than others, due to geometric constraints).We shall soon
see that this is one of the major necessary modifications to the inside algorithm for
object recognition.

4.1.2 Chomsky Normal Form for PGGs

The derivation of the inside algorithm for PCFGs in Section A.1.2 depends on the
PCFG being in Chomsky Normal Form; i.e., that all rules in the grammar are of one
of two forms:

N' - Ni Nk or N' - wi .

This assumption greatly simplifies the parsing task, because it means that any
single application of a rule produces exactly two subtrees; therefore the parsing algo-
rithm only needs to search over a single split point in the string.

We could make a similar assumption, and require that any PGG be converted into
Chomsky Normal Form before parsing. However, although the resulting PGG would
produce an equivalent "structural language" to the original PGG-one which can
generate sets of primitive boxes with the same class labels-there is no guarantee that
the geometric distributions produced by the two PGGs would be equivalent. We might
expect that the converted PGG would have a more limited ability to express geometric
relationships between parts, because its parse trees would be "taller" in general, rather
than "wider", and we have seen that there are conditional independence assumptions
between generations of the trees produced by the grammar.

On the other hand, requiring PGGs to have some limit on the number of rule parts
in each rule might be helpful, from the standpoint of the complexity of the algorithm.
This is because of the summarization function that is necessary for parsing with a
geometric grammar. By definition, summarization of a set of object parts requires
the identities of the component parts to be fixed. Thus, there is no way to compute
the geometric likelihood of a single part given its parent without committing to the
assignments of the other sibling parts in the tree fragment; e.g. the choice of all four
legs of a chair must be fixed before the geometric score of any individual leg (as well
as the entire chair base) can be determined. This aspect of the model might make
attempts to incorporate aggressive pruning into the parsing process more difficult,
or at least less effective; some general form of a Chomsky Normal Form requirement

60

might allow better pruning.
However, we have not formally or experimentally verified these speculations, so

they are an avenue for future work. Thus, for the purposes of this thesis, we must
further modify the inside algorithm to allow for the non-CNF form of the PGGs.

4.1.3 Subtree Notation

Before we continue discussing parsing in a geometric grammar, let us define some
notation.

We define the fth subtree in a tree t, denoted A, to be a node af E t, and
the tree rooted at it:

f9s1,...,g } 19 .

a.1 agm

where leaves(a . gm) = {agl, . . . , agm} in any order.

Let Iaf I denote the number of leaves of gi so we have:

.gm} = Ileaves(d 9 .)= {agi,...,agm}|= m

As a notational convenience, let bfgi...,gm} denote the unordered set of boxes
{bg, . . . , bgm }. Similarly, if I is a set of integers, let b, be the unordered set of
boxes indexed by the members of I.

As another notational convenience, we shall extend the subtree notation to the
vectors of geometric characteristics of all nodes in the tree, so that leaves(b 9 g)

refers to the set of vectors of geometric characteristics of the leaves of the subtree
rooted at the node af:

leaves(1 9 g) = bfgi...,g = {b 9 1 , ... , bgM}

Finally, we let Cz denote a subtree a- for which Ce = C'. This lets
us index subtrees using the index i of the class C' in the PGG rather than the index f
of the node af in the tree. (This notation also corresponds most closely to the subtree
notation Nq used in standard PCFGs, as described in Section A.1.2, as the internal
nodes in PCFG parse trees are simply nonterminal symbols.)

'Note the distinction between a tree fragment, defined in Section 3.1.1 and denoted i'h and a
subtree as defined here, which is denoted a . A tree fragment consists of an internal node and
its children only, while a subtree is defined for every node in the tree and consists of the node and all
its descendents (possibly none). Furthermore, we made a simplifying assumption in our definition of
tree fragments that the nodes of the tree are indexed according to a breadth-first traversal, but there
is no such assumption here-the indices of the leaf nodes are explicitly included in the unordered
set {gi, - - ., gm}.

61

4.1.4 The Bounding Box: An Approximate Maximum Like-
lihood

The inside algorithm operates in a bottom-up manner. In the adapted version for
PGGs, therefore, an important step will be the construction of new internal nodes
from partially constructed subtrees.

In Section 2.6, we showed how to calculate the geometric likelihood of a parse tree
t. Consider, for the moment, a single tree fragment of t:

af

ag1 ... a

where the nodes ag9 ... a gn may be primitive or composite.
During parsing, we need to actually build a tree of this form, rather than simply

calculate its likelihood. Thus, we need to construct the new internal node af, where
Ce = C', that covers the nodes a91,..., a :

C.

We must consider each rule r2i of the form

Ci = siil sin
C, C,

in the PGG G. We assume for simplicity in this section that the number of children
in the subtree and the number of rule parts on the right side of r'i are the same, and
that we are only considering a single one-to-one assignment of object parts to rule
parts.

In order to sum over or choose between rules, we need to calculate the geometric
likelihood of the children of subtree according to the assignment to rule parts in r'i:

p(b 1 ,... b, G)

And, to calculate this quantity, we must know the value of the geometric character-
istics of the new composite part af that we want to construct:

p(bgl ,...,) bgn, bf IG) = p(bs, ...,I bg. Ibf, G) p(b IG)

(where the equality is due to the chain rule of probability). In parsing, however, we
are given only primitive parts to begin, so where do the composite parts, such as be,
come from?

In fact, we never see direct evidence of composite parts in real world instances
the concept of a "chair base" is, in some sense, an imaginary construct of human
language and thought. The vector of geometric characteristics be for each composite
part ae is actually a hidden random variable in the model. This random variable can
take on an arbitrary vector in B as a value, so we should "sum over" it-i.e., sum the
values of p(b 9 .,..., b 9 n, be G) for all possible values of the root composite part be.

62

t= be

.... b.

b hi-- b hm

Figure 4-1: If B = {bg,, . . . , bg,}, then 0(B) is defined to be the minimum volume
bounding box of the parts at the leaves of the tree, leaves(t) = {bhl, . . . , bhm , rather
than the actual parts in B.

Then we can make a standard assumption that the resulting distribution over values
of be is quite peaked, so therefore it is a sufficient approximation to simply take the
max rather than the sum. We can write these two steps as:

p(b,..., bgj IG) = [p(b1, .. .gn b G)
bjEB

~maxp(b 1, b..., bgnb G)
bt EB

This still seems impossible to calculate, though-regardless of whether we take the
max or the sum we must still consider all values of be in B.

This is where summarization comes in. As we discussed in Section 2.2, we ex-
pect any composite part represented by the left hand side variable of a rule to have
geometric characteristics that "summarize" the geometric characteristics of all the
parts represented by the right hand side variables. So, it is reasonable to assume that
the maximum likelihood value for be might be one which summarizes the component
parts {b 1 ,. . . , b9n}. In particular, the minimum volume bounding box of the com-
ponent parts seems like a good approximation to the maximum likelihood value of
be.

This is the gist of the method for constructing composite parts in the inside al-
gorithm for PGGs. However, because of the dynamic programming assumption, we
must ensure that the value of a composite part is identical for a fixed set of primitive
parts regardless of the internal tree structure. And, since we are using an approxi-
mation algorithm to compute the minimum volume bounding box (as described in
Section A.4, the easiest way to ensure this is to construct each composite part as the
bounding box of all the leaves of the subtree rooted at that composite part. Thus, if
B = {bg, , ... , bg,} is a set of primitive or composite parts, we let E1(B) denote the
minimum volume bounding box of the primitive 3D boxes that constitute the parts
in B. For a visual example, see Figure 4-1.

63

Thus we have:

p(bgl, ... , bb I G) = p(b..., bgnb G)
be e3

~max p(bg,, ... ,b,,b G) (4.1)be EB

p(b,. .. , bD, (b{fg,..,},,) G)
=p(b, , ... , bg, D(b{g,. . },j, G) p(EZ(bfg1,...,g.} I G)

Using a summarization function is a reasonable approach in practice as well. This
is precisely because composite parts are hidden variables, and therefore never have
measurable values in the world, so we must estimate their values even when gathering
and labeling training data. Hence, if we make an effort to train the PGG using data
that has been labeled with a summarization function similar to the one used by the
parsing algorithm, the summarization function will actually produce values very close
or identical to the maximum likelihood values for composite parts.

4.1.5 A Penalty For Clutter Parts

One of the inherent weaknesses of PCFGs is their strong bias towards smaller parse
trees. This bias exists because each internal node in a parse tree introduces a new
expansion probability to the expression for the likelihood of the tree, and expansion
probabilities are discrete and guaranteed to be between zero and one. In a PCFG
parse tree, the result is that a parse tree with more internal nodes will always have
a lower likelihood than a tree with fewer internal nodes-even in cases in which the
larger tree is actually the "correct" answer.

PGGs inherit this problem from PCFGs. Consider again the expression for the
likelihood of a parse tree in Equation (2.18). The 'yf terms multiply to produce a
product that is always smaller for a greater number of internal nodes ae in t. 2 Unless
we compensate for this weakness in the model, the bias towards smaller trees could
have undesirable consequences. For example, the parsing process might always prefer
to ignore the arms of a chair, if the grammar says they are optional, in order to avoid
the additional probabilistic terms that would be accrued by including the arms in a
parse tree.

At the root of this problem is the fact that the likelihoods of two probabilistic
expressions can only be compared if they cover the same random variables. This
means that it is incorrect to compare the likelihoods of two parse trees unless the trees
cover the same set of primitive parts. If we are choosing between two interpretations

2 However, it is not actually the case that the entire likelihood of the parse tree is necessarily
smaller for a greater number of internal nodes. This is because the geometric scores of nodes are
continuous probability densities, and therefore can actually be arbitrary positive values, possibly
much greater than one. This may seem quite unintuitive. To understand how a Gaussian distribution
can produce densities that are greater than one, consider a simple univariate "bell curve". A
Gaussian is normalized such that the volume under the curve integrates to one, but this means
that, if the distribution is quite peaked and the average "width" of the bell curve is much less than
one, the average "height" of the curve could be much greater than one.

64

of a set of parts, we must account for, and provide labels for, all of the parts in both
interpretations-even if some of the labels are actually "clutter".

The ideal way to approach this problem would be to learn a geometric model for
clutter boxes and have a formal clutter class in the PGG. However, this approach
seems problematic because, in many cases, it is not the geometric properties of the
boxes themselves that makes them clutter, but rather a global property of the scene
and the other parts in the scene. If we were considering richer representations of
shape, there might be parts that we know we can safely label as clutter simply on
the basis of their geometric properties. With our simple box representation for parts,
however, we will ignore this possibility for now.

Instead, a reasonable approach might be to propose a low "uniform" distribution
over the space of boxes for the clutter model, so that the parsing process would prefer
to assign boxes to real model parts when it can, but it cannot simply ignore them
altogether. In practice, this is roughly equivalent to a applying a constant "penalty"
for each box we label as clutter. Thus, we introduce a constant clutter penalty K to
a PGG G, which shall represent the likelihood of a single unassigned clutter part. In
our implementations, we choose a fixed value for K which works well empirically, but
theoretically we could use more formal learning methods. We shall discuss how the
clutter penalty is applied in the next section.

4.2 The Inside Algorithm for PGGs

Now, we are ready to present our modified version of the inside algorithm for PGGs.
First, we consider how to calculate the likelihood of a set of primitive object parts,
and then how to find the maximum likelihood parse tree of the primitive parts.

4.2.1 Calculating the Likelihood of a Set of Object Parts

Using All Object Parts

The inside likelihood 13({g,... ,gm}) is the total likelihood of generating the set of
primitive object parts {bgl, . . . , bgm} in some order, given that we begin with a root
class C' and that all m boxes are used. We define the inside likelihood 3 of a scene
of boxes {b,.... ,bM} as:

p(b{i,...,M}I G) = p(Cl * b{1 . M}, G)

= p(b{,.M} C{,...,M} G)

= 31({1, . .. ,M }) .

Now, we calculate the inside likelihood by induction on the set of covered boxes:

Base case: We want to find fi3({g}). This is simply one if the class C is primitive,
and zero otherwise, since in our model, any primitive unlabeled part might be an

65

instance of any primitive class:

/3#{g} = p({bg}I C' , G)

f p(bg I p') if i 1 and C* is primitive
= 1 if i # land C' is primitive

0 otherwise.

Induction: We want to find i({gi, ... , gm}). We do not constrain our grammars to
be in Chomsky Normal Form, so we must consider rules of the general form

Cz _ s T . . s i .
C1 Cn

for n < m. In addition, we must consider all assignments of the primitive parts to
leaves of the subtrees rooted at the parts of the rule, so we must search over all sets
of n partitions of the set of m primitive parts, and all assignments of the sets in each
partition to the rule parts.

Let parts({gi, . . . , gm}, n) denote the set of all partitions of the set of indices

{g,... , gm} into n subsets, so that each member {I1,... , } is a set of mutually ex-
clusive yet collectively exhaustive subsets of the original set. Also, let perms({1, . .. , n})

be the set of all permutations of the set of integers {, . . , n}, such that each member
f maps an integer between 1 and n to its new position between 1 and n. Then we
have:

/3i({gi,...,9,m}) p({bg, .. , bgm} Cg11...,gM}, G)

[O icisl...,sijn]EG i,-In}E fE
for n<m parts({gi,...,gm},n) perms({1,...,n})

p (b , Cj , b , C C C 91 . gm} G)

Then we apply the chain rule of probability to break up the expression:

(4.2)

Oi({gi, . . gm}) = EEY
[Ci sie,...,Sijn]EG i .In}fE

for n<m parts({gi,...,gm},n) perms({1,...,n})

p (b), CI ,(1) . .. , bf(n), CI () g1 ., 19M}, G)

[C il,...,sij G {i -- ,I} fE
for n<m parts({gi.,gm},n) perms({1,...,n})

p(C),. .(.,C C iC c. G)

x p (blm .4 . . ' , fg1C-9. .M G)

x ... x p (bbf(n) , . . .,b CJ , . . . , C" , 0Cg..,g}, G) .

(4.3)

Now, we apply the conditional independence assumptions of the PGG framework,

66

first to simplify the results of the chain rule by using the fact that a node is indepen-
dent of all non-descendents given its parent:

Oi({gi, ., m}) =

[Ciu s...,sc,.]EG
for n<m

I: E
fI-,In}E fE

parts({gi...,9m},n) perms({1,...,n})

p (C(, . .. , C Cg . .gm},G)

x p (b) , C .(1) 1 . 1Cij . C ,G)

x - x p (bf bif , Cj ,1) I . . . C . G)

z E E
S ,...,Scn {Il,-..,In}E fE

for n<m parts({gi,...,gm},n) perms({1,...,n})

p (c ,C- Ci.gm} G)

x p(bif() C , G) x ... x p(b If(CI;) G)

(4.4)

and then to separate the structural and geometric likelihoods of the tree fragment,
and apply the conditional independence among sibling parts given the parent:

[C sif ,... s n]EG {Ii,...,In}E fE
for n<Tm parts({gi.gm},n) perms({1,...,n})

p (C .. . Cnf I Cg , G)

x p (bIf () Cc'

S
1G) x - x p (bf(n I C, Cn, G)

S7 YS
[Cui ,...,S ijn]EG {I1,---,I }C fE

for n<m parts({gi,...,gm},n) perms({1,...,n})

p (,.. C, (bi g1 m} Ci, G)
X p(bIf(,., bf)I, b' ,i"

x p(bIf () Cc'

S

(4.5)... ,)

, G) x -. x p(b If() C ;, G)

E S
[C Si,'...,s ijn]EG {I1,...,In}E fE

for n<m parts({gi,...,gm},n) perms({1,...,n})

p (Ccl., Ccn, I Ci , G)
x p(bil . gm}'

x ... x p(b (n bg 1 ...,g},)

G) x - x p(bf(I CI) , G)

These steps are very similar to the derivation presented in Section 2.6.

And finally, we use the results from Equation (4.1) above to replace the geometric

67

[Ci,-

A f({g1, . - - , gm}) =

x p(bIm I C j

characteristics of the parent node with the bounding box of the children, and then
make the inductive step:

#13 , .f - -, gm}) = EY
[c sicil,...,sijn]EG {I,.In}E fE

for n<m parts({gi,...,gm},n) perms({1,...,n})

p (cc1,..., C' , ,G)

x p (bIf () bf g...,g},

x ... x p (bf(_). b ,...gm iin)

x p (bIf () C c , G) x .. x P(b ,(Cn G)

[Ci s i1,...,8ijn]EG {I1,...,In}E fE
for n<m parts({gi,.,gm},n) perms({1,...,n})

p(Ccl , Ccn, I Ci , G)
x p(bf(l) I (b{9 1,...,gm}), O')

x ... X P(bf() I(b{g1,..., }), if)

x p(bif (1) C , G) x ... x p(bf() Cc, , G)

[ic sji'...,Sc]eG {I,.In} fE
for n<m parts({gi,.,gm},n) perms({1,...,n})

(7 ij !I (p (bIf(k) E (b{9 1,...,gm}) 7"j) /C3 (If(k))
k=1

(4.6)

Although this derivation looks a little terrifying, it represents a straightforward
extension of the inductive step in the original inside algorithm presented in Sec-
tion A.1.2, supplemented by the ideas presented in Section 2.6.

Finally, note that if i = 1, we must also incorporate the root geometric score on
the geometric characteristics of the entire scene, which is only included once for the
entire tree. Thus we can summarize the result of the inductive step as:

[C-sii...,s2 ']eG {i,.In}E fe
for n<m parts({gi,...,gm},n) perms({1,...,n})

(p(D(bg1,...,gm}) p i)

x j n= p (b , E (b fg1,...,g), # iik) c (f)X172 Hk- 1 (Pbf (k) D~b{(I . g(k))

:[C.sj]ic,...,si]EG {1,..,In} E f E
for n<m parts({gi,...,gm},n) perms({1,...,n})

Hk=1 (bf (b g, . ,g}), #iik)c (If(k)))

if i= 1

otherwise.

(4.7)

68

A (f1 -i -.. , gm}) = <

Using All Subsets of Object Parts

The above derivation assumes that all m primitive parts are used in any parse tree.
However, this is a limiting requirement for an object recognition system, as there will
often be clutter elements in a scene that we would prefer to ignore.

As we discussed above, the parsing process is allowed to assign the "clutter" label
to a primitive part in a scene (and therefore not include the part in the resulting
parse tree), if it pays a constant penalty for each clutter part. The clutter penalty r,
represents the approximate likelihood of a single unassigned clutter part; if a tree t
covers only m of the M primitive parts in the scene, we simply multiply the likelihood
of the tree by njM-m)

Nonetheless, the parsing process still must find the parse trees in the first place-
even if they do not cover all the primitive parts. Currently, our rather primitive
approach to addressing this problem is simply to run the above algorithm on all
subsets of m primitive parts in the scene, and then sum the (appropriately penalized)
likelihoods of the results. Clever memoization of intermediate values-partitions and
permutations of index sets, and bounding boxes of subsets of primitive parts-can
help to offset some of the inefficiency of the approach. Clearly, however, this approach
is still intractable for large values of M.

4.2.2 Finding the Most Likely Parse of a Set of Object Parts

Using All Object Parts

As in the original inside algorithm for PCFGs, we can find the most likely parse tree
of a set of object parts by simply taking maxes rather than sums in Equation (4.7),
and then recording the rule, partition, and permutation associated with each max.
In this way, the most likely tree can be constructed at the end.

To implement the dynamic programming, we define an accumulator & ({gi,. . . , gm}),
which stores the highest inside likelihood of a subtree C . We also use a back-
trace i({gi, ... , gm}) to store the rule index j, part index partition {11,. . . , I,}, and
assignment f of rule parts to index subsets that corresponds to the highest likelihood
subtree at any step. Given these variables, the algorithm proceeds inductively much
like above:

Base case:
p(bg I p') if i = 1 and C' is primitive

6 1({g}) = if i 1 and C' is primitive
0 otherwise.

69

Induction:

max[CuS2J1,.st]EG mX (1, ., } max
for n<m

(p(E(bfg ,..,9m}) Ip2)

parts(jg1,...,gmj,n)

f E
perms({1,...,n})

({gi, . . .,gm}) = X'Y"j H =1 (p(bf, I D(b{gi,...m}). ,) C(If(k)) if i = 1

max[cius21,...,s]EG max {1,. max fE
for n<m parts({gi.gm},n) perms({1,...,n})

ij i (p(bifk D1(b{g1,...,gm}) cik) (I())) otherwise.

(4.8)
Store the backtrace:

(f91,...,gm}) = argmax 6i({gi,...,gm})
(,{I,.)

Tree readout: By construction, we know that the likelihood of the most likely parse
tree t of the set of primitive parts rooted at C1 and covering the primitive object
parts {b,. . . , bM} is given by:

p(t I G) = 61({1, . .. , M})D

We know that the root node of t must be a, = C1 Then we use the backtrace
to recursively construct the best set of child nodes of each internal node. If we have
an internal node ae = C , and we have

Mfg1 . g-, D) (J, f{Il,. -In}, f)

in the backtrace, and
Cl Cn

in the PGG, then:

child(ae, 1) Cc

child (af, n) =Cc.
If~

The readout process continues recursively until all the leaf nodes are primitive; then
the most likely parse tree t is complete.

Using All Subsets of Object Parts

Again, our naive approach to allowing the algorithm to ignore boxes in the scene is
simply to find the most likely tree that covers each subset of m boxes in the scene,
where there are M total primitive parts in the scene. Then we choose the tree with

70

growth of stirling numbers of the second kind (log scale)

-e- S(m,2)
-*- S(m,3)

1012 A S(m,4)
-B- S(m,5)
-+- S(m,6)

1010

S 8
C 10

C 106
10

10 -

102
2 4 6 8 10 12 14 16 18 20

m

Figure 4-2: The growth of the Stirling numbers of the second kind S(m, n).

the maximum likelihood, once the clutter penalty r(M-m) has been applied to each
tree.

4.2.3 Log Likelihoods

All the algorithms presented in this chapter, and in Section 2.6, are actually repre-
sented in their log form. The log likelihood is preferable in general to the straight
likelihood, because the probabilities associated with complex models can often be-
come so small that numeric underflow is a serious risk. Thus, the products described
in these equations are actually sums of logs. Furthermore, the sums in the original
equations are computed using the well known "logsumexp" procedure for summing a
set of values that are represented in their log form, while avoiding numerical under-
flow.

4.3 Complexity Concerns

We have seen that, in the modified inside algorithm for PGGs, we must consider
all possible assignments of object parts to rule parts at each level of the dynamic
programming. This is debilitating: the number of possible ways to assign a set of
object parts to the parts on the right side of a rule is exponential in the number of
object parts.

71

M_ MR. WIN P M_ - -, _= ' - -Rt

1 r1

Specifically, if there are n parts in a rule and m object parts in the scene, we
must consider, and compute the summarization function for, O((n!)S(m, n)) possible
assignments. The factorial term (n!) counts the number of permutations of a set of
n elements. The S(m, n) term is a Stirling number of the second kind, defined as:

n-1 (n(n-O
S(m, n) = 1 n-

i=1

which returns the number of ways of partitioning a set of m elements into n nonempty
sets [38]. See Figure 4-2.

So, although the dynamic programming approach of the inside algorithm saves us
from explicitly searching over an exponential number of parse trees, we are still left
with an algorithm that is exponential in the number of object parts in the scene.

A fundamental issue is that the inside algorithm for PGGs offers rotational invariance
the same object can be arbitrarily rotated in 3D space, and the algorithm will parse it
with identical accuracy according to the model. This flexibility is a valuable quality
for a recognition algorithm to have, but perhaps the price of full rotational invari-
ance is higher than we are willing to pay. In particular, many possible approaches to
constraining the search over assignments of object parts to rule parts-for example,
imposing an arbitrary ordering or adjacency constraints on the object parts in the
scene-will compromise some aspect of rotational invariance. 3

Although we do not implement or test any approximate parsing algorithms in this
thesis, we discuss several approaches for further work in Chapter 6.

3Pollak et al. also modify the inside-outside parsing algorithm to apply it to 2D object recognition
in [27]. However, to avoid exponential complexity, the group imposes a left-to-right and top-to-
bottom order on the parts in images, thus sacrificing even two-dimensional rotational invariance.

72

Chapter 5

Experimental Results

In this chapter, we describe a set of experiments conducted to test the choices made
in designing the PGG framework. The current system is limited to purely three-
dimensional representation and recognition. The system also assumes that all parts
are simple 3D boxes, represented as a vector of three half-dimensions, a three-element
position vector, and a unit quaternion rotation. Due to these constraints, we use
synthetic data to approximate real data, and compare the performance of the PGG
framework against the performances of baseline models on the synthetic data.

The chapter proceeds as follows:

Section 5.1 describes the hypothesis that the experiments are designed to test, and
discusses our general approach and performance metrics.

Section 5.2 describes our implementation of the PGG framework.

Section 5.3 discusses the design of the experiments, including the form of the base-
line models, the object classes, the synthetic data, and the training and testing
procedure.

Section 5.4 presents and discusses the results of the experiments.

5.1 Hypothesis and Approach

We have argued in this thesis that the use of context-free grammars to model object
classes enables effective parameter learning from fewer examples and better general-
ization of the learned models to unseen instances. The motivation for this hypothesis
lies in two distinguishable aspects of the PGG framework:

" the conditional independence of each object part from all other parts, given its
parent and children; and

" the sharing of geometric information between models for object classes with
similar subparts.

73

Both of these aspects contribute to the fact that a PGG requires relatively few pa-
rameters to model object classes.

However, any claim that uses comparatives such as "fewer" and "better" must be
evaluated in comparison to a baseline. We choose two baseline models which attempt
to separate the two distinguishable aspects above. Thus, if the PGG framework
in fact offers better performance, we might understand to which property of the
model to attribute the improvement. The baseline models are described in detail in
Section 5.3.1.

We are interested in testing the expressive power and rate of learning of the PGG
framework. Thus, our experiments do not explicitly test the accuracy of the parsing
algorithms we presented in Chapter 4. Instead, the training and test sets contain fully
parsed and labeled geometric instances (described in Section 5.3.3). We measure the
performance of each model by finding the total log likelihood it assigns to the set
of held-out test examples.1 Finally, we measure the rate of learning by varying the
number of training examples the models are given, and comparing the relative values
of the log likelihood score given by each model to the test data.

We mentioned that these experiments do not explicitly test parsing accuracy under
a variety of circumstances or clutter environments. However, we did perform sufficient
testing to ensure that the parsing algorithm performs accurately on simple cases. In
fact, on the synthetic data sets we describe below, it achieves almost flawless parsing
accuracy. When presented with 20 single objects from each of 12 ground object
classes, the algorithm produces the correct parse on 237 out of 240 test instances, for
a parsing accuracy of 98.75%. Any errors appear to be due to an insufficient hand-
chosen clutter penalty (-15.0 log likelihood), resulting in the omission of optional
parts such as chair arms, or the re-ordering of similar object parts with ambiguous
geometric characteristics, such as mixing up the legs of the chair.

Furthermore, as we would expect, the log likelihood that the parsing algorithm as-
signs to the resulting parse tree is (almost always) identical to the likelihood returned
by a simple calculation of the log likelihood of the tree according to Equation (2.18);
the log likelihoods differ on 11 out of the 237 correct parses, or 4.64%. When dif-
ferences occur, they are small relative to the magnitudes of the log likelihoods being
compared, and are due to rounding errors and resulting slight discrepancies in the
choice of unit quaternions to represent rotation by the approximate bounding box
algorithm. Based on these results, we can assume that the log likelihood of a hand-
parsed test instance is equivalent to the log likelihood of the tree that would be
produced by explicitly parsing the unlabeled primitives of the test tree.

This experimental approach is beneficial because the exponential complexity of
the parsing algorithm means that parsing objects with a large number of parts can
be prohibitively time consuming. Parsing a simple chair with four legs and no arms
takes a few seconds, while parsing a chair with five wheel legs and two arms takes
over two hours! The experimental methodology we describe here lets us perform some

'As mentioned in Chapter 4, the log likelihood is preferable in general to the straight likelihood,
because the probabilities associated with complex models can often become so small that numeric
underflow is a serious risk. Therefore, all likelihoods in the implementation are actually represented
in their log form.

74

testing of the model and learning algorithms, even though our parsing algorithm is
not yet tractable.

5.2 PGG Implementation

The PGG framework was implemented in the Java 1.4.2 programming language, sup-
plemented by the Java 3D 1.3.1 package. All elements of the system were implemented
by the author, with two exceptions. First, some core functionality of the computation
of approximate minimum volume bounding boxes was provided by the implementa-
tions described in Section A.4 and [21] and [24]. Second, Michael Ross provided his
implementation of the algorithm for Singular Value Decomposition (SVD), as given
by Numerical Recipes in C [28].

Documentation and an API for the PGG software system may be found at

http://www.csail.mit.edu/~aycinena/obj-rec/docs/

and source code is available from the author upon request.

5.3 Experimental Setup

In this section, we describe the design and set up of the experiments we conducted.
First, we describe the baseline models against which we compared the performance
of the PGG algorithm. Then, we describe the object classes and the form of the
synthetic data used for training and testing. Finally, we present the training and
testing procedure.

5.3.1 Baseline Models

We shall consider two baseline models for comparison in these experiments: a fully
connected model, and a Bayesian network (Bayes net).

A fully connected model specifies a large joint Gaussian distribution over the
geometric characteristics of every primitive and composite part in a test parse tree.
It is called fully connected because the geometric characteristics of any part in the tree
can depend arbitrarily on any other part in the tree-therefore the "tree" is actually
a fully connected graph. (Note, however, that a fully connected model still includes
nodes for the composite parts of test trees, as well as the primitive parts, in order to
define a distribution that is comparable to the tree-based models.)

A Bayes net model, in contrast, is a tree model. A Bayes net specifies a set
of geometric conditional Gaussian distributions at each internal node, and a single
geometric unconditional Gaussian distribution at the root node. The geometric char-
acteristics of each part in a test parse tree are therefore conditionally independent
from those of all other parts, given its parents and children. Note that the geometric
distribution defined by a Bayes net model is identical to the geometric distribution
specified by a PGG over object trees with a fixed structure. (Indeed, if a PGG and a

75

Bayes net are trained on a examples from a single ground class with a fixed structure,
they exhibit identical performance; i.e., they assign identical log likelihoods to test
examples.)

Any single instance of either of these models can represent only a single "ground"
object class, because there is no choice between rules as there is in a grammar.2 There-
fore, in order to test on multiple ground object classes, we must actually compare a
single PGG model against:

" an enumerated set of fully connected models; and

" an enumerated set of Bayes nets;

where there is a model in each enumerated set that corresponds to each structural
parse tree that the PGG can produce. See Appendix B for examples.

Furthermore, both the fully connected models and the Bayes nets only define
geometric distributions, because their structures are fixed. To make the comparisons
valid, we must assign a prior probability to each model in each enumerated set, which
corresponds to the structural likelihood of the corresponding parse tree produced by
the PGG.

Note that neither of these types of baseline models can share geometric information
between models for different ground object classes. And, while the Bayes net has
conditional independence assumptions that are identical to those of a PGG, the fully
connected model does not. Thus we have succeeded in separating these two aspects
of the PGG framework.

The baseline models were implemented in Java.

5.3.2 Object Classes

The experiments were conducted on the following twelve ground object classes:

chair with legs bench
chair with legs and arms bench with arms
chair with 3 wheels stool
chair with 3 wheels and arms table
chair with 5 wheels coffee table
chair with 5 wheels and arms lamp

Some of the ground classes have significant common substructure with other classes

(e.g., the chair and bench classes), while other classes are largely independent (e.g.,
the stool, table, coffee table, and lamp classes).

The PGG for these object classes is shown in Figures B-i and B-2 in Appendix B.
The grammatical structure of the PGG was specified by hand, but the expansion
probabilities and geometric models were learned from the training data, according to

2We will use the terms ground object class or ground class to refer to an object class with a single
fixed structure, such as "chair with four legs and two arms". This contrasts with our use of object
class to refer to general basic semantic classes such as "chair" or "lamp".

76

the process we will describe below. Note which part classes are shared among object
classes.

The equivalent sets of fully connected models and enumerated Bayes nets for the
ground classes are shown in Figures B-3, B-4, and B-5. Again, the structure of the
models was specified by hand and the prior probabilities on each model and the
geometric models were learned from the training data.

5.3.3 Synthetic Data

One of the goals of our experiments is to quantify the tradeoff between representa-
tional power and speed of learning that is implied by the conditional independence
assumptions of the PGG framework. Therefore, the synthetic data used in the ex-
periments was constructed to have as many correlations among the geometric char-
acteristics of object parts as possible.

Five hundred example objects were generated for each of the twelve ground object
classes listed above. To create each example object in each ground class (except the
lamp class), three random dimensions were chosen. The dimensions of each object
part were then set, to either exactly the randomly chosen dimensions or some constant
multiple of them. For each example in the lamp class, a single random dimension
was chosen. The position and rotation of object parts were generated according to a
noisy Gaussian distribution, with hand-chosen parameters inspired by measurements
of real world objects. Other aspects of the data generation process included a random
displacement between the seat and back of chairs, and a random skew of chair legs
outward from the base.

Each example object was then converted into a parse tree using a hard-coded
parsing process (i.e. simple deterministic application of the rules, rather than search),
performed according to a grammatical structure identical to that of the PGG in
Figures B-1 and B-2.

Finally, each set of 500 examples for a ground object class was divided into a pool
of 300 possible training examples and 200 held-out test examples. In the experiments,
training sets were always chosen from the 300 training examples for each object class,
while test sets were always chosen from the 200 held-out examples for each object
class.

5.3.4 Training and Testing Procedure

The training and testing procedure is defined as follows:

1. For each ground class, choose a fixed set of 10 test examples in advance from
the held-out test set for that class. (Thus the entire test set for this procedure
contains 120 examples.)

2. For each increasing even value of n, for n = 2, 4, 6, ... , 50:

(a) Perform the following trial 30 times:

77

Performance of PGG versus baseline models Performance of PGG versus baseline models
2 X 105 all classes of test data X 104 all classes of test data

.CU,

4

- - enumerated bayes nets

-8 T10
-a- enumerated fully connected models

12 - - - enumerated bayes nets
10 1

_00

-12 -14

0 100 200 300 400 500 600 1100 150 200 250 300 350 400 450 500 50 600total # of training instances from all 12 classes total # of training instances from all 12 classes

Figure 5-1: Performance of the PGG framework and the baseline models on all 12
ground classes, for increasing amounts of training data. The graph on the right is a
zoomed-in version of that on the left, to better show asymptotic performance.

1. Randomly choose ri examples from the training set for each class, so
that the training set for this trial contains 12 x training examples.

ii. Train the PGG and each set of baseline models on the training set for
this trial.

iii. For each type of model, calculate the log likelihood of each example in
the test set according to the model, and sum the results over all 120
examples. This produces the joint log likelihood of the test data given
the model.

(b) Take the "logmeanexp" of the set of 30 results (one from each trial) .3 Plot
this value at the nth point on the x-axis of a graph. Thus, the mean (and
standard deviation, for error bars) is calculated correctly for the likelihood
rather than the log likelihood, although the mean log likelihood is actually
plotted.

5.4 Results and Discussion

We ran the training and testing procedure on the data sets described in the previous
section. The results are shown in Figures 5-1 through 5-13. In each figure, the
graph on the left shows the results for increasing numbers of training examples, with

3The "logmeanexp" is similar to the well known "logsumexp" procedure for summing a set
of values that are represented in their log form, while avoiding numerical underfiow. First, the
maximum value in the set is subtracted from each value in the set. Then, the log of the mean of the
exponent of the values is computed, and finally the original maximum value is added back onto the
mean.

78

Performance of PGG versus baseline models
X 104 chair-with-legs test data Performance of PGG versus baseline models

- _.I- _ -Z .r ichair-with-legs test data
0 - -- 3000-

0-> 2500 -

'0 0

C-2- 2000 | ~
O T-- PGG

-0- enumerated fully connected models
--+ - enumerated bayes nets

o 3 - 1500

0-4- 1000 -vi- 4

-500
-.- PGG
-0- enumerated fully connected models
-0 - enumerated bayes nets '

0 100 200 300 400 500 600 100 150 200 250 300 350 400 450 500 550 600
total # of training instances from all 12 classes total # of training instances from all 12 classes

Figure 5-2: Performance of the PGG framework and the baseline models on the chair-
with-legs ground class, for increasing amounts of training data. The graph on the right
is a zoomed-in version of that on the left, to better show asymptotic performance.

numbers varying from 12 x 2 to 12 x 50. The graph on the right shows a zoomed-
in version of the left graph-here the number of training examples from all classes
starts at 96, allowing the viewer to better compare the asymptotic performances of
the models.

To see the varying performance on different ground classes, Figures 5-2 through 5-
13 depict the performance of the models on test examples from a single group class
(although the models are always trained on examples from all twelve classes).

First, we consider the results on test examples from ground classes that share
information with other ground classes-Figures 5-2 through 5-9.

A first observation we can make from these figures is that the PGG clearly pro-
duces markedly better performance than either baseline model for fewer numbers
of training examples. Second, the Bayes net models perform better than the fully
connected models for fewer numbers of training examples.

These observations verify the expectation that using a grammar to model object
classes enables effective parameter learning from fewer examples and better gener-
alization of the learned models to unseen instances. We can attribute some success
here to the conditional independence assumptions-the assumptions allow a model
to learn more quickly because there are fewer parameters to adjust.

We can attribute more of the success, however, to the sharing of geometric in-
formation between models for object classes with similar subparts-a strategy that
allows, for example, the PGG to use the instances of chairs-with-legs-and-arms that
it has seen, to help it make decisions about instances of chairs-with-wheels-and-arms.
It is this kind of generalization of information beyond a single ground class which
explicitly demonstrates the power of a geometric grammar.

Now we consider the results on test examples from ground classes that do not

79

Performance of PGG versus baseline models

1 chair-with-legs-and-arms test data Performance of PGG versus baseline models
x__10_chair-with-legs-and-arms test data

0- 3000 - 11
- PGG

-0- enumerated fully connected models
- - enumerated bayes nets

-1 - 2500 -

Z - 100-

-6-- PGG 10

-0- enumerated fully connected models
*- + - enumerated bayes nets
0 3 0D - B 00

0 100 200 300 400 500 600 100 150 200 250 300 350 400 450 500 550 600
total # of training instances from all 12 classes total # of training instances from all 12 classes

Figure 5-3: Performance of the PGG framework and the baseline models on the

chair-with-legs-and-arms ground class, for increasing amounts of training data. The
graph on the right is a zoomed-in version of that on the left, to show asymptotic
performance.

share information between ground classes-Figures 5-10 through 5-13. Comparing

these results to the earlier results on the "information-sharing" classes offers yet
another way to see the importance of sharing between ground classes with similar
substructure. On the non-information-sharing ground classes, the advantage of the
PGG over the baseline models when trained with fewer examples is limited, and in
fact there may be no advantage at all.

What about our goal of quantifying the tradeoff between representational power
and speed of learning implied by the conditional independence assumptions? The
synthetic data was explicitly generated to have the high levels of correlation among
the parts necessary to test the tradeoff. Clearly, the fully connected models must
have more expressive power than models with aggressive conditional independence
assumptions.

Indeed, as the number of training examples increases, the fully connected model
outperforms the other two types of models on all twelve classes. However, the differ-
ence in asymptotic performance between the fully connected models and the others is
small, particularly when compared with the advantage of the conditionally indepen-
dent models over the fully connected models when trained fewer training examples
and tested on "information-sharing" ground classes.

It is also interesting to note that, for "oddly shaped" classes, such as benches or
lamps, the PGG performs slightly worse in the limit than either baseline model. This
is due to the root geometric model, which attempts to model a prior distribution over
the geometric characteristics of arty object, including characteristics such as scale,
aspect ratio, and position. Thus, since a full half of the training examples on each
iteration are chairs, we would expect a lower score for objects that have a different

80

Performance of PGG versus baseline models
4 chair-with-wheels test data Performance of PGG versus baseline models

x 1 ZMchair-with-wheels test data
0 3000 -+-_PGG

* -PGG
-o- enumerated fully connected models

5 - enumerated bayes nets
S1 2500

> 2

Z-2 - > 2000 -

4>1000 {-5 1500 -4

- -0PGG --- -

-0- enumerated fully connected models

6 - - enumerated bayes nets
0 100 200 300 400 500 600 100 150 200 250 300 350 400 450 500 550 600

total # of training instances from all 12 classes total # of training instances Irom all 12 classes

Figure 5-4: Performance of the PGG framework and the baseline models on the

chair-with-3-wheels ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show asymptotic

performance.

general shape or size than chairs. In the future, we probably would prefer to have

a "null" root geometric model for the scene class, and instead consider the object
class node (e.g. chair, bench, etc.) as the root, for the purpose of calculating the

geometric score.
Finally, to understand the significance of these results, consider the importance of

learning from fewer examples in an object recognition system. Large numbers of high

quality labeled training examples, especially in 2.5 or 3D, are extremely expensive

to obtain. In order to adequately scale to recognizing instances from many general

classes of objects, a system must be able to exploit information from previously seen

objects-even if the new objects are not absolutely identical in structure to those the

system has seen before.

81

Performance of PGG versus baseline models
chair-with-wheels-and-arms test data

0

0

1

-2

0 -3

'a

-4

0

S-25

-5

o -

0

t

.21

100 200 300 400
total # of training instances from all 12 classes

3000-

> 2500
0
'0

a 2000-

0 1500

-8 1000-

500-
-0'

500 600 -100 150

Performance of PGG versus baseline models
chair-with-wheels-and-arms test data

-- PGG
-0- enumerated fully connected models
-+ - enumerated bayes nets

C--
4<-

- I

200 250 300 350 400 450 500
total # of training instances from all 12 classes

Figure 5-5: Performance of the PGG framework and the baseline models on the chair-
with-3-wheels-and-arms ground class, for increasing amounts of training data. The
graph on the right is a zoomed-in version of that on the left, to better show asymptotic
performance.

Performance of PGG versus baseline models
chair-with-5-wheels test data

-7 T_ Y I I I I T

-- PGG
-0- enumerated fully connected models
-0 - enumerated bayes nets

0 100 200 300 400
total # of training instances from all 12 classes

3000

2500
0

CD

2000

0 1500-

-0 1000-

500-

.4

Performance of PGG versus baseline models
chair-with-5-wheels test data

-0- PGG
- -0- enumerated fully connected models

+ - enumerated bayes nets

I,-
I-.,

500 600 100 150 200 250 300 350 400 450 500
total # of training instances from all 12 classes

-

550 600

Figure 5-6: Performance of the PGG framework and the baseline models on the
chair-with-5-wheels ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show asymptotic
performance.

82

x 104

If

- PGG
-0- enumerated fully connected models
+ - enumerated bayes nets

II -

*t~A
0

,.-0

550 600

4x 10,

_V..

II

D
0

o -1

-2

C

o -3
"a

-4
0

0,-5
0

n - - I I I -i

4

4

I,I

It

'

Performance of PGG versus baseline models
4 10, chair-with-5-wheels-and-arms test data

." 0 - - . _ ..- d- M -&- M -M- Q --&- 0 -Q.- Q ..2- Q 3 000 r

I

0

0)
1)

a -2

*0
o -3

-4a

-50-2a

0 100 200 300 400
total # of training instances from all 12 classes

25000

50

0)

- 2000Ca

"0

05 1500

-a

-10000
0

~)500 H

IT.

Performance of PGG versus baseline models
chair-with-5-wheels-and-arms test data

- PGG
-o- enumerated fully connected models
-+ - enumerated bayes nets

>-

I-,4

.4 '- 4

500 600 100 150 200 250 300 350 400 450 500
total # of training instances from all 12 classes

,-0

550 600

Figure 5-7: Performance of the PGG framework and the baseline models on the chair-
with-5-wheels-and-arms ground class, for increasing amounts of training data. The
graph on the right is a zoomed-in version of that on the left, to better show asymptotic
performance.

Performance of PGG versus baseline models
1 bench test data

x 1t 1

-
3000-

2500-
0

S2000-M
-a
~0
0 1500

- 1000
0

500
- PGG

-o- enumerated fully connected models
+ - enumerated baves nets

0 100 200 300 400
total # of training instances from all 12 classes

"IT

500 600 100 150

-4

Performance of PGG versus baseline models
bench test data

PGG
-0- enumerated fully connected models
-+- enumerated bayes nets

* 4-A-0&-0 1- 0

200 250 300 350 400 450 500
total # of training instances from all 12 classes

Figure 5-8: Performance of the PGG framework and the baseline models on the bench
ground class, for increasing amounts of training data. The graph on the right is a
zoomed-in version of that on the left, to better show asymptotic performance.

83

-

'I
'I

-4- PGG
-o- enumerated fully connected models
1 -0 - enumerated bayes nets

I

'I

I'

0

~0

a-2

03

-ao -3

-4
0

A~ 5

.5

SI?

) --0'-I

4-.-

550 600

F

1(

A

Performance of PGG versus baseline models
bench-with-arms test data- - - - - - - - - - - - - - -

3000-

2500-

O 2000

0

0)CD

c -2
-2

0 -3

-0 --4

0>-50

0 100 200 300 400
total # of training instances from all 12 classes

-o

1500

*0

-1000

> 500

~

*1

|-

-4

Performance of PGG versus baseline models
bench-with-arms test data

-4- PGG
-0- enumerated fully connected models
-* - enumerated bayes nets

k -- 4

-_4

1- 4

~. .- q

500 600 100 150 200 250 300 350 400 450 500
total # of training instances from all 12 classes

4-4

550 600

Figure 5-9: Performance of the PGG framework and the baseline models on the
bench-with-arms ground class, for increasing amounts of training data. The graph
on the right is a zoomed-in version of that on the left, to better show asymptotic
performance.

Performance of PGG versus baseline models
stool test data

X 1 .L . 3

-0- PGG
-0- enumerated fully connected models
-+ - enumerated bayes nets

3000-

S2500-
0

'> 2000-a

'0

0 1500

1000

500

:4
-'A

Ii

3 I . I

0 100 200 300 400 500 600 100 150
total # of training instances from all 12 classes

Performance of PGG versus baseline models
stool test data

-- PGG
-0- enumerated fully connected models

- enumerated bayes nets

-4

200 250 300 350 400 450 500
total # of training instances from all 12 classes

Figure 5-10: Performance of the PGG framework and the baseline models on the
stool ground class, for increasing amounts of training data. The graph on the right
is a zoomed-in version of that on the left, to better show asymptotic performance.

84

x 10,

-4- PGG
-o- enumerated fully connected models
-0 - enumerated bayes nets

.D 0

0

-2

o -3

3 -4
0

F-5

.21

]

,--0

550 600

-. - . -

4A

)4x 1

1- 4

Performance of PGG versus baseline models
1 table test data

- 4 .4 1 1#f fff f

-

3000r

> 2500
0

70

Ca
_0

_0 2000

00~0

c' 500

-a PGG
-0- enumerated fully connected models
+ - enumerated bayes nets -4

c

100 200 300 400 500 600 '100
total # of training instances from all 12 classes

Figure 5-11:

I)

/

I
Performance of PGG versus baseline models

table test data

I
- PGG

-o- enumerated fully connected models
enumerated bayes nets

'-.4 I -I

4- .4

t

150 200 250 300 350 400 450 500
total # of training instances from all 12 classes

IT

550 600

Performance of the PGG framework and the baseline models on the
table ground class, for increasing amounts of training data. The graph on the right
is a zoomed-in version of that on the left, to better show asymptotic performance.

Performance of PGG versus baseline models
coffee-table test data

j

-a- PGG
-o- enumerated fully connected models
-+ - enumerated bayes nets

0 100 200 300 400
total # of training instances from all 12 classes

3000-

2500-
0
CD

0> 2000-Ca r

C6

0 1500
'D

-8 1000
0

C' 500

F

A

Performance of PGG versus baseline models
coffee-table test data

~-.4
/ -4

I
-a- PGG
-0- enumerated fully connected models
* - enumerated bayes nets

'-I

4-.,

'-.4

-4

'-4

.4
4 -4

500 600 'i00 150 200 250 300 350 400 450 500
total # of training instances from all 12 classes

-0

550 600

Figure 5-12: Performance of the PGG framework and the baseline models on the
coffee-table ground class, for increasing amounts of training data. The graph on the
right is a zoomed-in version of that on the left, to better show asymptotic performance.

85

0
a

o-1
0)

a -2

o 3
'a

-4
0

0

-5

0

x 104

r0

a
0

0)aO
aD
>

-1

-2

C6

o -3
"a

0 -4
0

O-5
0.2

S V 8 V

-

t t

T

Performance of PGG versus baseline models
lamp test data

r,1uuu vu '' . w uu uu u ' u' ' 3000

0

0

250
0

200

0' 150

50
-.- PGG
-o- enumerated fully connected models
-0 - enumerated bayes nets

Performance of PGG versus baseline models
lamp test data

-- PGG
-o- enumerated fully connected models
--0 - enumerated bayes nets

0 J-
I-u

'0- ti l TI 717
0 100 200 300 400 500 600 100 150 200 250 300 350 400 450 500 550 600

total # of training instances from all 12 classes total # of training instances from all 12 classes

Figure 5-13: Performance of the PGG framework and the baseline models on the
lamp ground class, for increasing amounts of training data. The graph on the right
is a zoomed-in version of that on the left, to better show asymptotic performance.

86

*0

a -

0 -3

8g -4
0

-5

0

.21

X< 104

I

Chapter 6

Conclusion

In this chapter, we discuss avenues for further research in the PGG framework, and
then conclude.

6.1 Future Work

6.1.1 Recognition

A Tractable Parsing Algorithm

As we described in Chapter 4, a heuristic approach to parsing in the PGG framework
is essential in order to achieve tractability. Therefore, our first priority in future work
is the development of a polynomial time parsing algorithm. There are several possible
approaches we might consider.

One possibility is to use the part geometric scores to aggressively prune unlikely
assignments or subtrees, so that they are not considered at higher levels of the dynamic
programming. However, recall that the summarization process means that there is
no way to compute the geometric likelihood of a single part given its parent without
committing to the assignments of the other sibling parts in the tree fragment. It is not
clear whether this aspect of the PGG framework will make pruning approaches using
the part geometric models more difficult. As we suggested in Chapter 4, imposing
a limit on the number of rule parts in each rule might address this issue, should it
prove to be problematic.

Alternatively, a pruning strategy could use the root geometric models at lower
levels of the tree to eliminate unlikely assignments or subtrees. This would be purely a
heuristic approach-although the conditional independence assumptions of the PGG
framework are aggressive, a part's geometric characteristics are still assumed to be
very much dependent on those of its parent. However, the root geometric models
might be extremely useful as heuristics, especially for certain kinds of information,
such as the aspect ratio of parts.

Both of these pruning strategies require learning a likelihood threshold to define
"unlikely" subtrees. Each geometric model would probably require its own threshold,
but the limited scope of each threshold might make its value easier to calibrate. The

87

threshold could even be a function of some aspect of the geometric model itself, such
as the likelihood value some number of standard deviations away from the mean of
the Gaussian.

The unordered rotationally invariant problem is so hard, however, that it is prob-
ably computationally infeasible to even consider all possibilities and combinations of
groupings and assignments. Therefore, we must consider approaches that can elim-
inate possibilities without actually looking at them. A simple ordering constraint,
such as the left-to-right and top-to-bottom ordering imposed by Pollak et al. in [27],
would achieve this, but would sacrifice any hope of rotational invariance.

A slightly more sophisticated approach might be to limit the size of the problem
that the algorithm is allowed to consider at any time. For example, we could create
an adjacency graph, where the primitive parts in the scene are nodes in the graph,
and parts that are "close enough" to one another are connected with an edge. Then,
we could set a threshold on the maximum length of the path that can connect any
set of nodes that are combined using a rule. We would then have to learn or calibrate
parameters to determine the meaning of "close enough" and the threshold on path
length in the adjacency graph.

Testing Parsing Accuracy

There are a number of experiments beyond those presented in this thesis that we would
like to try, to test various aspects of the PGG framework and its parsing abilities. In
most cases, these tests would be quite difficult without a tractable parsing algorithm.

First, we would like to parse full scenes with multiple objects. A grammar could
nicely describe arrangements of furniture just as it describes arrangements of object
parts, and we would like to test this possibility.

Second, we would like to test the robustness of the framework by testing its
resistance to distracting clutter. Extensive development on scenes with clutter would
also allow us to better tune the clutter penalty of the PGG.

Third, we would like to parse "real" data, such as segmented CAD objects or 3D
scans of actual objects. The logistics of obtaining such data aside, this would let us
determine to what degree the conditional independence assumptions of the framework
apply to the geometric characteristics of actual objects.

Finally, the assumption that "real" data would be segmented is a strong one.
Furthermore, it seems like any successful segmentation approach would need a fair
amount of top down information, so it might be best to approach the segmentation
and parsing problems in parallel, or at least with significant feedback between the
two processes.

Beyond Three Dimensions

As stated in the introduction, this thesis is focused on recognition and learning given
three-dimensional input, but eventually recognition and learning must occur from
two-dimensional images. It is not yet clear how best to approach this problem.

88

One possibility is to perform recognition of 2D or 2.5D images, given a 3D model,
by searching over viewpoints and matching the projection of the model against the
image. Clever use of feature, part, or region detectors at the 2D image level could
guide the search over viewpoints.

However, how should parsing occur in 2D recognition? It could happen as an
outer loop at the level of the 3D model, where searching over projections occurs for
a fixed structure of the object. An alternative would be to perform the parsing in
projected space. Although this seems mathematically and computationally daunting,
it seems worth investigation.

6.1.2 Representation

The PGG framework, as presented in this thesis, limits primitive and composite object
parts to simple three-dimensional boxes. A natural next step would be to consider
richer representations of shape, such as generalized cylinders or geons [13].

Another aspect of the framework we might reconsider is the aggressiveness of
the conditional independence assumptions. It might be beneficial to consider ways to
allow the sharing of information among parts that cannot be directly specified in a tree
format. This would allow us to say explicitly, for example, that the length of the arms
of a chair should be the same as the length of the legs, which is not directly possible
in the current framework. We might look to the concepts of augmented grammars
or head phrase structure grammars in natural language processing for inspiration [1].
However, it is possible that the richer expressive power offered by these additions
might not be worth the requisite computational complexity for supporting them.

Finally, we might consider supplementing the 3D model of a PGG with some
view-based representation or caching system, to aid in 2D recognition or learning.

6.1.3 Learning

The learning algorithms we presented in Chapter 3 are not particularly sophisticated,
so there are a number of ways in which we could extend research in the area of
learning.

A natural first step might be to learn expansion probabilities and geometric models
from unparsed but labeled examples. An algorithm to address this problem could be
based on the EM approach used by the natural language processing to learn the
probabilities on rules in a PCFG from an unparsed training corpus, in which parse
trees are considered a hidden variable. The next step after that would be learning
from unparsed and unlabeled examples.

We discussed the recognition problem on "real" data above; the analogous problem
exists for learning. Additional work might include learning geometric models from seg-
mented or unsegmented CAD or 3D object scan examples, range data, reconstructed-
from-video models, or from 2D or 2.5D images.

Also, we discussed briefly in Chapter 3 the issue of incremental learning. As the
system recognizes new instances, these examples might be added to the training set
in order to refine the rule and geometric probability models. Thus, an important area

89

of future work is the modification the learning algorithms in Chapter 3 to operate
incrementally, so that the set of all training examples would not need to be maintained
indefinitely.

Finally, there is the problem of learning the structure of the grammar itself. We
mentioned in Chapter 3 that grammar induction is known to be a quite difficult prob-
lem in natural language processing. However, it would be interesting to consider how
the structural learning problem might be approached with the addition of geometric
information. For example, the variance or entropy-the "flatness"-of the geometric
models might help us decide when to split a grammar class into subclasses.

6.2 In Conclusion

This thesis has presented the probabilistic geometric grammar framework, which is
a generative parts-based three-dimensional representation and recognition framework
for classes of objects. We have explained the ways in which a PGG is similar to,
and differs from, a PCFG, and described and derived the form of the geometric
models. We have presented algorithms for learning and parsing in the framework. We
have also shown empirically that using context-free grammars to model object classes
allows effective parameter learning from fewer examples and better generalization
of the learned models to unseen instances than baseline models. Finally, having
demonstrated that the PGG framework warrants further research, we have proposed
possible avenues for such future work.

90

Appendix A

Background

This appendix presents the fundamentals upon which the PGG framework is built.
A review of these concepts is essential to a full understanding of this thesis.

The appendix is organized as follows:

Section A.1 describes basic probabilistic context-free grammars (PCFGs) for lan-
guage, and presents the inside algorithm for efficient parsing in PCFGs.

Section A.2 motivates the choice of the quaternion representation for rotation, de-
scribes basic quaternion algebra, discusses how unit quaternions are used to
represent rotation, and shows how to model and estimate Gaussian distribu-
tions over unit quaternions.

Section A.3 derives the process of factoring a multivariate joint Gaussian over R'
into marginal and conditional Gaussian distributions.

Section A.4 describes an algorithm for estimating the minimal bounding box of a
set of 3D boxes.

This material is presented as part of the thesis to serve as convenient background
material for the reader, because an understanding of this material is necessary for the
comprehension of my work. I owe much of my own understanding and explanation
in these areas to the sources I cite. There is a brief description of these sources
and related work at the end of each section, to which I refer interested readers for
additional information on each topic.

A.1 Probabilistic Context-Free Grammars

A probabilistic geometric grammar (PGG) is a probabilistic context-free grammar
(PCFG) augmented with geometric information. Therefore, readers must be familiar
with PCFGs in order to understand the PGG framework.

In Chapter 1, we briefly introduced context-free grammars (CFGs) and their prob-
abilistic equivalents. In this section we will give a more formal introduction to PCFGs
as used in linguistics and natural language processing, and then present the inside
algorithm for efficient parsing in PCFGs.

91

0.3 NP - ART NP 1.0 ART i the
0.3 NP - ADJ NP 0.5 ADJ - big
0.4 NP -*N 0.5 ADJ - red

0.2 N - barn

0.8 N - ball

Figure A-1: A probabilistic context-free grammar for a tiny subset of English noun
phrases.

A.1.1 An Introduction to PCFGs for Language

In Figure 1-2 we gave an example of a very simple context-free grammar for English
noun phrases. In Figure A-1, we add probabilities to the rules of the same grammar
to produce a PCFG.

Formal Definition

Formally, a PCFG G consists of:

" aset of terminals V= {wl,...,wIV}

" a set of nonterminals N.. N. ,n

" a set of rules {ri2} for each nonterminal N; and,

" a designated start symbol N'.

A rule rzj maps the head nonterminal N' to a sequence of terminals and nonterminals
$' with a probability -y', and is written in the form:

The expansion probability -y'i of a rule r'j is the likelihood P(r1 I N2) that the
rule is chosen given the head nonterminal N'. Thus, the expansion probabilities for
all the rules for a nonterminal must sum to one:

VNE G Z j = I.

As the terms suggest, a nonterminal can be expanded, or "rewritten", using its
rules, but a terminal is a primitive symbol which cannot be further rewritten. We also
use the term preterminal for a nonterminal which can only be rewritten into single
nonterminals using unary rules.

For example, in the grammar in Figure A-1, the start symbol is NP; the nonter-
minals are NP, ART, ADJ, and N; the preterminals are ART, ADJ, and N; and the
terminals are the, big, red, barn, and ball.

92

ti: NPO.3 t 2 : NPO.3

ART.O NPO.3 ART1 .o NPO.3

the theADJO.5 NPO.3 ADJO.5 NPO.3

big ADJO.5 NPO4 big ADJO.5 NPO.4
I I I I

red No.2 red No.

barn ball

Figure A-2: Probabilistic parse trees for the English noun phrases the big red barn
and the big red ball.

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form (CNF) if each rule in the gram-
mar takes one of two forms:

N' '-+ Ni Nk or N' - wi

i.e., if the right hand side of the rule consists of exactly two nonterminals or exactly
one terminal. It can be proved that any CFG can be written as a weakly equivalent
CFG in Chomsky Normal Form. 1

Parse Trees

A PCFG is a generative model for a language. To generate new strings with a
PCFG, first write down the designated start symbol N'. Then recursively rewrite each
nonterminal using a rule randomly chosen according to the expansion probabilities
on the rules of that nonterminal. The string is complete when only terminals remain.
A string of terminals is written w, ... wm and abbreviated wim.

The recursive rewriting of nonterminals can be represented structurally as a parse
tree t, in which the internal nodes are nonterminals and the leaves are terminals.
There is also some "bookkeeping" information stored in the tree during the generation
or parsing process. In particular, each nonterminal in the tree is subscripted with the
probability of the rule that was chosen to expand it. Figure A-2 shows two examples
of parse trees that could have been generated by the grammar in Figure A-1.

We say that a tree yields the string of terminals at its leaves. We also say that
each internal nonterminal N' covers the terminals wjk at the leaves of the subtree of

which it is root; this is written as N' Wk .

'Two grammars G, and G2 are weakly equivalent if they both generate the same language, (with

the same probabilities on strings for stochastic equivalence). Two grammars are strongly equivalent

if they also assign strings the same tree structures (with the same probabilities, for the stochastic
case). [23]

93

A PCFG defines at least one tree structure over every string in the language.
Furthermore, a PCFG defines a probability distribution over all possible parse trees.

The probability of a tree is calculated by taking the product over the expansion

probabilities of all rules used-essentially, the probabilities on all internal nodes in the

tree. A simple product is possible because of the aggressive context-free assumptions
of PCFGs, which enforce the conditional independence of a nonterminal from all

ancestors and siblings given its parent, and from all descendents given its children.
For example, in Figure A-2 the probabilities of t1 and t 2 can be calculated as:

P(ti) = 0.3 x 1.0 x 0.3 x 0.5 x 0.3 x 0.5 x 0.4 x 0.2

= 0.00054

P(t 2) = 0.3 x 1.0 x 0.3 x 0.5 x 0.3 x 0.5 x 0.4 x 0.8

= 0.00216 .

Note that we computed P(ti) rather than P(the big red barn). Often a PCFG will
be ambiguous, meaning that it defines more than one valid tree structure for a single
string. Thus the total probability of a string wlm must be calculated as the sum over
the probabilities of all the possible parse trees t that yield that string:

P(Wim) = P(Wim, t)
t

E P(t).
{t:yield(t)=wjm }

A.1.2 Parsing in PCFGs: The Inside Algorithm

Given a PCFG G and a string wlm, we naturally might want to find:

* the total probability of wlm given G; and

" the most likely parse tree of wlm given G.

Naively, we might attempt both tasks by explicitly searching over all possible
parse trees that yield the string wlm, and then either summing or maximizing over
the associated probabilities. However, in general the number of possible parse trees
for an arbitrary string will be exponential in the length of the string, so this approach
is intractable.

Instead, we present a well-known dynamic programming method called the inside
algorithm, which efficiently calculates the probability of a string or finds the most
likely parse without explicitly searching over trees. Rather than taking exponential
time, the inside algorithm takes only O(m 3n3) time, where m is the length of the
string and n is the number of nonterminals in the grammar.

In this section, we assume all PCFGs are in Chomsky Normal Form. Also, given
a parse tree that covers a string wlm, we use the notation NPq to denote a subtree of
the tree rooted by the nonterminal Ni that covers the substring Wpq.

94

Ni

Nr Ns

WP. .. Wd W+1 ... Wq

Figure A-3: A depiction of an inductive step in the calculation of the inside probability
of a substring wpq.

Calculating the Probability of a String

The inside probability O3(p, q) is the total probability of generating the substring
WP. . . Wq given that we begin with the nonterminal N3. We define the inside proba-

bility 3 of a string wlm as: 2

P(wim G) = P(N'*Wi nj M G)

= P(wim Nim, G)

=01(1,m) .

We calculate the inside probability of a substring by induction on the length of
the substring:

Base case: We want to find 13j(k, k), which is simply the probability that a rule of
the form Ni -4 Wk exists:

O3(k, k) = P(wk Nk, G)

=P(Ni - wk |G)

Induction: We want to find 3j(p, q) for p < q. Because we are assuming that G is
in Chomsky Normal Form, we know the first rule must be of the form Ni - N'Ns,
so we can simply search over the possible ways to divide the string Wpq into two

substrings Wpd and W(d+1)q, and then sum the recursive result of the algorithm on
each substring. A visual summary of the inductive step is given in Figure A-3.

For all nonterminals Ni, and for all possible substrings wpq where 1 p< q m,
we calculate the inside probability 13 (p, q) at this level of the induction. First, we
search over possible rules to expand the N3 and possible division indices d for the
substring wpq. We then use the chain rule for probability to break up the large joint
expression into smaller conditional expressions. Finally, we exploit the context-free

2 The inside probability of a string is calculated bottom up. There is also the concept of an outside
probability aj (p, q), which is calculated top down and is defined as the total probability of beginning
with the start symbol N 1 and generating the nonterminal Ngq and all the words outside wp ... Wq.

For the purposes of this thesis, we shall be focusing on bottom-up parsing, so inside probabilities
will be sufficient.

95

assumptions of PCFGs to simplify these expressions and perform the inductive step:

O/3(p, q) = P(wpq N,, G)
q-1

P(wpd, Nd, W(d+1)q, Nd+1)q |Npj,, G)
r,s d=p

q-1

- Y P(N,, N~ia+)q JV G) P(wd I Njq, N', Nid+1)q, G)

x P(W(d+1)q |N q, N,'d, Ng'd+1)q, Wpd, G)

P(N,', N(d+l)q |Nq G) P(wpd | G)
r,s d=p

x P(W(d+1)qI Np+1)q, G)q-1

P(Ni - NrN)or (p, d)13s(d + 1, q)
r,s d=p

Thus the inside probability of a string can be efficiently calculated bottom up,
starting with the base case and then recursively applying the inductive step.

Finding the Most Likely Parse

Intuitively, we can find the most likely parse tree for a string with a few simple
extensions to the inside algorithm. First, we take the max rather than the sum over
rules and division indices. Second, we record the rule and division index associated
with each max and use these to reconstruct the most likely tree at the end.3

To implement the dynamic programming, we define an accumulator 6i(p, q), which
stores the highest inside probability of a subtree N q. We also use a backtrace 4i (p, q)
to store the rule and division index corresponding to the highest probability subtree
at any step. Then the algorithm proceeds inductively much like above:

Base case:
6i (p, p) = P (N' wp)

Induction:
6i(p,q)= max P(N' -+ Ni Nkj (p,r)6k(r + 1,q)

1<j,ksn
pir<q

Store the backtrace:

0i(p, q) = argmax P(N - NJ N k) 6j(p, r)6k(r + 1,q)
(j,k,r)

Tree readout: By construction, we know that the most likely parse tree of the string

3 The resulting algorithm is similar to the Viterbi algorithm for finding the most likely path
through a Hidden Markov Model (HMM).

96

wlm rooted at the start symbol N' is given by P(t) = m(1, i), and that the root

node of t must be Nim. Then we use the backtrace to recursively construct the left
and right child nodes of each internal node, in a top down manner. If we would like
to find the children nodes of a node N q, and we have bi(p, q) = (j, k, r), then:

leftchild(Npq) = N

rightchild(N g NN .

The readout process continues recursively until all the leaf nodes are nonterminals,
when the most likely parse tree is complete.

A.1.3 Sources and Related Work

There are a number of excellent references on PCFGs and parsing in natural lan-
guage processing. James Allen's book Natural Language Understanding [1] covers
CFGs, PCFGs, and several approaches to parsing, including top-down, bottom-up,
chart parsing, and best-first parsing. Jurafsky and Martin, in Speech and Language
Processing [19], also present CFGs and PCFGs, and discuss the Earley algorithm for
parsing with dynamic programming in CFGs and the efficient CYK algorithm for
parsing in PCFGs.

Finally, Manning and Schiitze's book Foundations of Statistical Natural Language
Processing [23] offers extensive coverage of PCFGs, and a thorough treatment of the
inside algorithm we presented in this section. They also discuss general issues of
parsing in PCFGs, and evaluation of parsing methods.

A.2 Representing Rotation with Quaternions

In Chapter 1 we described the motivation for a three-dimensional approach to ob-
ject recognition. However, three-dimensional models require a method for handling
three-dimensional rotations. The PGG framework uses unit quaternions to repre-
sent rotation, but there are a variety of options, so the choice must be considered
thoroughly.

In this section we will motivate the use of unit quaternions, and offer a brief
introduction to the mathematics of quaternions for rotation. We will then show
how to define and learn a Gaussian distribution over rotations represented as unit
quaternions, and finally describe how to sample uniformly from the space of unit
quaternions.

A.2.1 Representation Choices for Rotation

Euler's theorem states that:

Every displacement (or orientation with respect to a fixed frame) of a rigid
body can be described as a rotation by some angle 0 around some fixed
axis n. [17]

97

Although this offers a simple and elegant mathematical representation for rotations,
it does not necessarily suggest the best representation from a computational point of
view.

There are four standard choices for the computational representation of rotations
in three-dimensional Euclidean space R3:

" the coordinate matrix representation, in which a rotation is represented as a
member of SO(3), the group of special orthogonal 3 by 3 matrices;

" the axis-angle representation, in which a rotation is represented as a pair of
the form (fi, 0) which directly corresponds to Euler's theorem above;

" the Euler angles representation, in which a rotation is represented as a se-
quence of three rotations (01, 02, 03) around the principal orthogonal axes of the

coordinate frame (x, S, i); and

" the quaternion representation, in which a rotation is represented as a point
on the four-dimensional unit hypersphere, or equivalently as a complex number
with one real and three imaginary components q = w + xi + yj + zk.

Each of these representations has advantages and disadvantages.

Coordinate Matrix

Coordinate matrices leverage basic knowledge about linear algebra and are used ex-
tensively throughout computer vision and graphics; hence the matrix representation
has familiarity on its side. The representation also makes it easy to map a point from
one coordinate frame to another, using simple matrix multiplication. Yet another
benefit in using this representation is the one-to-one mapping between members of
the space of all rotations and members of the space of coordinate matrices. In fact,
the mathematical group SO(3) is used to refer to both spaces.

However, coordinate matrices can be difficult to work with in a computational
setting because they are inefficient and redundant (nine parameters are required to
represent three degrees of freedom), and because a rotation is hard to visualize when
written in matrix form. The most important drawback, however, is that it is very
difficult to define a distribution over the space of coordinate matrices because SO(3)
is not a vector space. This means that linear superpositions of elements are not
necessarily closed under the space (see Johnson [17] for a more formal definition), so
many familiar mathematical operations, such as basic linear interpolation, are not
valid without modification. 4

40f course, since we have stated that SO(3) is actually the group of all rotations in three-
dimensional Euclidean space itself, the fact that it is not a vector space is relevant in all these

representations. Quaternions are the preferred choice of representation precisely because they offer
a reasonable way of dealing with the non-vectorness of SO(3).

98

Axis-Angle

The axis-angle representation seems appealing because it directly corresponds to Eu-
ler's theorem, but as we have already suggested, it is mathematically elegant but
computationally quite inconvenient. There are several types of inherent redundancy
in the formalism; for example, the identity rotation can be represented by a rotation
of zero around any axis n.

In order to compensate for some of this redundancy, the axis fn is often constrained
to be of unit length, and the angle 0 limited to the range -7 to - or 0 to 27.
This in turn, however, introduces discontinuities into the representation that make
interpolation (and thus defining distributions) extremely difficult. As Johnson [17]
says:

If we choose to keep the angle in a fixed range, the interpolation cannot
be continuous-at some point it needs to "jump" through the boundary
from -7 to 7r or from 0 to 2-. These discontinuities wreak havoc on

most interpolation and numerical integration schemes that are unaware
of them. [17]

Euler Angles

Euler angles have historically been used in physics and animation because they are
intuitively easy for a human user to visualize and define. They also appear to be
efficient because they require only a minimal three parameters to specify three degrees
of freedom. However, the minimal representation means they have a major inherent
singularity-one that actually exists in any rotation representation with only three
parameters. If, during the three rotations around the axes, one of the three axes

(e.g., k) aligns with the original direction of either of the other two axes (e.g., z),
any configuration produced by rotating around the axis pointing in this direction (k)
could have produced by simply rotating around the original axis that pointed in that
direction (i). Thus a degree of freedom has been lost. This singularity (which is a
singularity of the representation, not of the space it represents) is often called gimbal
lock, and interpolation through this singularity is very difficult.

Another way to think about this singularity is as a "factorization of SO(3)".
Again, Johnson describes this well:

If you rotate something around x and then around S, there will always be
a component of in the result. [17]

Euler angles are an attempt to factor 3D rotations into three independent ID rota-
tions, but in fact this is not a mathematically accurate representation and thus will
always have problems.

If an application can afford to maintain special cases for the inherent singularities,
then Euler angles provide an adequate representation. But for the purposes of this
research, the singularities of the Euler angle representation are problematic. Thus we
turn to our fourth and best option for the representation of rotations: quaternions.

99

A.2.2 An Introduction to Quaternions

The Irish mathematician Sir William Rowan Hamilton discovered quaternions while
walking home from work in Dublin on October 16, 1843. He had been searching for
a way to extend ordinary complex numbers of the form a + bi to higher dimensions

(e.g., a + bi + cj), but he could not understand how to create a consistent number
system with only one real term and two imaginary terms.

Complex numbers, when written in polar form, can be thought of as a point in a
two-dimensional plane, represented as a length r and an angle 0, and thus multipli-
cation of complex numbers acts as a scaling and rotation around the origin of that
plane. In three dimensions, however, two numbers are required to specify an axis (of
unit length) around which to rotate, one is required to specify the angle of rotation,
and a fourth is required to specify the scaling factor. [7]

While walking that day, Hamilton realized that four dimensions were required,
instead of three, and was so excited that he inscribed the discovery into a rock. The
site of his discovery can still be seen in Dublin today.5

Basic Quaternion Algebra

A quaternion is a "hypercomplex" number-it has one real component and three
imaginary components, while standard complex numbers have only one of each. A
quaternion q can be written as: 6

q = w + xi + yj + zk

such that the coefficients are real:

w,x,y,zCER

and the imaginary numbers can be combined as with normal complex numbers:

2 2=k 2=ijk=-1

and

ij = -ji= k
jk = -kj =i

ki=-ik=j

5Lest the reader be confused-as the author was-that four numbers should be required to specify
a rotation that has only three degrees of freedom, note that only unit quaternions are necessary to
represent rotation, and therefore only three degrees of freedom are actually being expressed. This
is explained in further detail below.

6 Although it is standard with ordinary complex numbers as well as quaternions, the use of a +
to denote the combination of real and imaginary terms is misleading-it would be more accurate to
write them as an ordered tuple of the real and imaginary components. However, we use the standard
notation for consistency.

100

A quaternion can also be thought of as a pair of a real scalar w and a real vector

v E R3
q =w +v

or expanded out on the imaginary axes:

q=w+xi+yj+zk

As Johnson does, we use H to denote the quaternion group.

The conjugate of a quaternion is formed by negating the imaginary part:

q* = w -v .

The magnitude (also called "norm") of a quaternion is found by multiplying it
with its conjugate:

|q| qq*

=q*q

=w2 +v-v

A unit quaternion has a magnitude of one, and is denoted with a hat, q. The subgroup
of unit quaternions is written as fH.

Just as with ordinary complex numbers, addition of quaternions is performed
by summing corresponding components. The quaternion group H is closed under
addition, but the subgroup of unit quaternions H is not.

Multiplication of quaternions is performed with a Cartesian product of the quater-
nions as if they are polynomials in terms of the imaginary numbers:

qiq 2 = ((wiW 2 - X1x 2 - y1Y2 - ziz2)+

(y 1z 2 - y2 z1 + w 1x 2 + w 2 x1)i+

(X2zI - X1z 2 + wiy 2 + w2 yI)j+

(Xiy 2 - X2y1 + wIz 2 + w2 zi)k)

or in the vector notation:

qIq2 = (wiw 2 - vi - v 2 , vI x v 2 + w 1v 2 + w 2 vi)

Quaternion multiplication is associative but not commutative, which we would expect
for a formalism that can represent rotations.7

The quaternion inverse is taken as:

-1 *

7The non-commutativity of quaternion multiplication is important in Section 2.4, when we derive

a conditional multivariate Gaussian distribution over quaternions.

101

The inverse of a unit quaternion is just its conjugate:

4-1 = 4* .

Representing Rotation: The Polar Form

A quaternion can be written in its polar form as:

fio 0cs 0iin1
q=re 2 =r COS-+ n2

where r is called the magnitude, is called the angle, and fn is called the axis and is
a 3-vector of unit length, or equivalently, a "pure" unit quaternion (one that has a
zero real component).

For a unit quaternion the magnitude r is simply one. Thus a unit quaternion
written as

0 0 ,~0
q=e 2 = cos - + sin -

2 2
expresses a rotation in three-dimensional space of the angle 0 around the unit axis i.

To rotate a vector x E R3 by a unit quaternion 4, pretend that x is actually a
pure quaternion, and perform the following quaternion product:

x' = 4xw-

The product x' will always be a pure quaternion (and thus a 3-vector in R3) if x is

pure and 4 is unit. And, most importantly for our purposes, x' will be the result of
rotating x by 0 radians around the axis n.

A rotation of 0 radians around the axis fn is equivalent to a rotation of -O radians
around the axis -i. Thus a unit quaternion 4 and its negation -4 represent the
same rotation, and the quaternion group provides "double coverage" of the space of
possible rotations in three dimensions. The resulting symmetry of the space is called
antipodal symmetry.

Just as with coordinate matrices, multiplying two unit quaternions that each
represent a rotation produces a new unit quaternion that represents the composition
of the two rotations. We can also find the shortest rotation that will rotate an
orientation 41 into another orientation 42 by taking the product *42; this is somewhat
like a (non-commutative) "subtraction" operation for rotations, so we shall refer to
the resulting quaternion as the rotational difference between 4i and 42.

Tangent Spaces on the Hypersphere

As we said above, a unit quaternion 4 E I can be thought of a 4-vector with unit
magnitude. Thus the unit quaternion group can be represented as the surface of a
four-dimensional unit hypersphere. The surface of the hypersphere has three degrees
of freedom, although it is embedded in four-dimensional space, so the hypersphere
is often written as S3 . Thus, this representation makes clear the fact that, although

102

quaternions have four parameters, unit quaternions use only three degrees of freedom

to represent rotations in three dimensions. It also makes it easy to visualize the

antipodal symmetry of the unit quaternion space-points on opposite sides of the

hypersphere (i.e., the two points where a line through the origin intersects the surface)
represent the same rotation.

The hypersphere representation will also be helpful computationally-thinking
of unit quaternions as points on the surface of a unit four-dimensional hypersphere
provides a geometric way to visualize and analyze algorithms using quaternions. In

particular, two important operations, the exponential map and the logarithmic map,
are much easier to visualize using the hypersphere representation for ft.

The exponential map provides a way to convert any arbitrary 3-vector in R3 into
a unit quaternion:

0-i
q=ex = e2 .

Its inverse operation, the logarithmic map, maps any unit quaternion into a 3-vector
in R3

In4 = In en =_ n
2

This can be implemented computationally using the "rectangular", rather than polar,
form of quaternion 4 = w + v as:

V
In q^ =

sinc (0)

where
2 = arccos(w)
2

and sinc is the "sink" function sin(x)/x whose limit at x = 0 exists.
We can think of the logmap ln 4 of the unit quaternion 4 as living in the 3-

dimensional tangent space at the identity of the quaternion hypersphere S 3. We can
choose an arbitrary location P on the hypersphere for this tangent space by rotating
the sphere to align the chosen location with the identity before taking the log:

Inp(Q) = ln(P*4) .

The subscript P denotes the "tangent point"-the location on the hypersphere for the
tangent space. We will write the tangent space at a point P as tanp(S 3); we will omit
the subscript when the tangent point is the identity.

The logarithmic mapping is invertible, such that:

exp(() =ft e

The ability to perform the logmap at an arbitrary point on the hypersphere is im-
portant since the logmap is effectively a local linearization, so it is best nearest the
center of the map.

Thus we have an important result: the tangent space of the quaternion hyper-

103

Figure A-4: In a Gaussian distribution over quaternions, the distribution is defined
in the three-dimensional tangent space to the four-dimensional unit hypersphere at
the mean, and then the tails of the distribution are "wrapped" back onto the hy-
persphere to produce a spherical distribution. Here, for illustrative purposes, the 4D
hypersphere is depicted as a 2D circle and the 3D tangent space as a ID tangent line.
We also ignore the other peak of the bimodal distribution. [22]

sphere is in R3 and, crucially, it is a vector space. The tangent space also has the
following useful properties:

1. The distance from a point to the identity on the hypersphere is preserved in the
tangent space; and

2. The angle between two quaternions and the identity is preserved as the angle
between the mapped vectors in the tangent space.

This means that an ellipse around the tangent point on the hypersphere will be
preserved as an ellipsoid in the tangent space. We will exploit these facts below in
order to define a Gaussian distribution over quaternions.

A.2.3 Gaussian Distributions Over Unit Quaternions

In Chapter 2, we show how the geometric models of a PGG take the form of mul-
tivariate Gaussian distributions over the space of object parts. In this section, we
will lay the first building block for PGG geometric models by discussing Gaussian
distributions over rotations that are represented as quaternions.

As before, we refer to Johnson [17] for help with quaternions. He describes how to
model and estimate Gaussian distributions over unit quaternions, in a manner that
intuitively parallels Gaussians over real numbers.

Intuitive Approach

Here, thinking of quaternions as points on the four-dimensional unit hypersphere
S 3 is important. We define the Gaussian distribution in the tangent space at the
mean tanA (S 3), and then "wrap" the tails of the distribution onto the quaternion

104

hypersphere, using the exponential map, to produce a spherical distribution. See
Figure A-4 for a depiction of this concept, where the 4D hypersphere is simplified to
a 2D circle.

To understand why this approach produces a reasonable result, recall that it is
an important property of tangent spaces of the quaternion hypersphere that ellipses
around the tangent point on the hypersphere are preserved as ellipsoids in the tangent
space. This means that the isocontours of a distribution we define in the tangent space
will be preserved when mapped onto the hypersphere, so the distribution will provide
meaningful density values for query points.

Because of the antipodal symmetry of the quaternion hypersphere, learning a
wrapped Gaussian distribution over quaternions will actually produce a bimodal dis-
tribution, with peaks at each pole of the hypersphere (where the mean quaternion and
its negation serve as the "north" and "south" poles). To handle this symmetry, we
learn a wrapped Gaussian distribution over only one hemisphere of the hypersphere.
We then flip any query or example quaternion to the appropriate hemisphere before
using the distribution.

Formal Definition

Now, we consider how to mathematically express and calculate a Gaussian over
quaternions. Recall that the probability density function for Gaussian distributed
multivariate vectors is written as:8

p(x) = P(x; t,) = (exp -(x -)T Ei 1 (x - 1) (A.1)

where x is the query vector, yi is the mean vector, E is the covariance matrix, and n
is the dimensionality of the vector space. We can define a Gaussian distribution on
unit quaternions in terms of this basic definition on multivariate vectors by using the
exponential map.

The mean is simply a unit quaternion, A. The covariance matrix E is defined in
the tangent space at the mean, because as we discussed above, tanf,(S 3) is a vector
space, so vector multiplication is well defined. The dimensions of E are 3 x 3 for the
univariate quaternion case, because the logarithmic map converts a single quaternion
to a 3-vector in R3. Like all covariance matrices, E is symmetric and positive definite.

The deviation quantity (x - i) in the original function should be the "distance"
of the query quaternion ^ from the mean quaternion A. It can be computed on
the hypersphere as the rotational difference between the two quaternions, and then
projected into the tangent space using the logarithmic map. This allows the tangent
space to be located at the mean, so that the covariance is for a zero-mean normal
distribution and distortion is minimized. Following Johnson, we will call the result of

8We use a lowercase p to denote a continuous probability density, rather than the uppercase P
for discrete probabilities such as those we encountered in Section A.1.

105

projecting the deviation into the tangent space at the mean the mode-tangent vector:

m = ln(A*4) .

1
The quantity is a normalizing constant, necessary to ensure that

(27r)n/2 I 1/2

the density function integrates to one over S3 . It is computed entirely in the tangent
space, and, just as with standard multivariate Gaussians, we can calculate it in ad-
vance because it does not refer to the query quaternion at all. For the case of a
Gaussian over single quaternions, we have that n = 3.

Thus we can define a Gaussian distribution over unit quaternions in terms of the
mode-tangent as:

p (4) = /V W; A, E) = exp -I MT E-I
li~ ~ = (27r) 3/2 11/ 2 x{~m Xm

or using quaternion algebra:

p(4) = (; A, E) (2)/ exp - ln(A*)T 1ln(A*4) . (A.2)

A.2.4 Parameter Estimation in Gaussians Over Unit Quater-
nions

One of the benefits of using a Gaussian distribution is the ability to learn its pa-
rameters from example data in an efficient closed-form manner. In this section we
discuss how to estimate the maximum likelihood parameters A and E of a Gaussian
distribution over quaternions from a set of sample quaternions.

Estimating the Mean

Before we show how to estimate the quaternion mean of a set of quaternions, consider
why we cannot use the familiar sample mean:

[1 7 j3XiN

i=1

First, the sample mean does not take into account the antipodal symmetry of the
quaternion hypersphere at all. This is clearly problematic, as we would like two oppo-
site quaternions 4 and -4 to be considered equal, but this equation will average them
to zero. Second, the sample mean produced by this equation for an arbitrary set of
quaternions will not necessarily lie on the hypersphere, and renormalizing the result-
ing quaternion to unit length will not solve the first problem of antipodal quaternions.

Instead, Johnson proposes finding the unit quaternion that minimizes the squared
distances between it and all the quaternion data points [17]. The distance function
we will minimize is defined between two quaternions, and gives the distance from the

106

first argument to the closer of the two possible signs of the second, according to the
"rotational difference" distance metric we defined above; i.e.,

dist(, 4) =min dist(P, d)
IS31 a= ,_q S3

where
dist(j, 4j) = ln(4*4j)j.

S3

Say that our data is a 4 x N matrix Q of unit quaternions 4i (which form the
columns of Q). Then the mean f is defined to be the unit quaternion P that minimizes
the squared distance from P to all the data points:

N

A = argmin dist (P, i) 2

Unfortunately, this function is non-linear, so a closed-form minimization is dif-
ficult. Fortunately, Johnson shows (pages 115-116, [17]) that minimizing the above
expression is equivalent to minimizing:

N

A = argmax (& _ qi)2
&ES 3 i=1

Johnson presents a formal argument as well, but intuitively, this equation says that
we would like to maximize the directional match between the unit quaternions, which
is what the dot product does, and the square allows the sign to be ignored.

However, we also need to constrain &, to be a unit quaternion, so we add a Lagrange
multiplier:

N

E(P) = E(p. 4,d)2 + A ((P -P) 2 _ i)
i:=1

Switching to vector notation in R4, we have:

N

E(p) = (pq) 2 _ A(p'p - 1)

N

= pT(q'q) p +A(p'p -1)

We defined Q to be the 4 x N data matrix, so we can say:

E(p) = pTQQTp - A(pTp - 1)

Then to minimize this expression, we take the derivative and set it equal to zero:

d
d E(p)=2QQTp +2Ap=0

dp

107

Now, it is simply an eigenvector problem:

Ax = Ax

where x = p and A = QQT, with dimensions 4 x 4. The eigenvectors and eigenvalues

can be found using Singular Value Decomposition (SVD), and the maximum value
p of the expression is then the eigenvector (or possibly its negation) associated with
the maximum eigenvalue of A. Because A has constant dimensions of 4 x 4, SVD is
not computationally expensive.

Johnson summarizes the mean estimation algorithm as follows [17]:

1. Let qj be the column vector representation of the unit quaternion sample

4i.

2. Let Q be the 4 x N data matrix, where the ith column qi is the ith sample.

3. Let A = QQT.

4. Let ej be an eigenvector of A with real eigenvalue aj.

5. Choose one of the two eigenvectors ±e, associated with the maximal eigen-
value a, as the estimate of the mean p.

Hemispherization

We have mentioned several times that, because of the double coverage of rotations in
SO(3) by unit quaternions on the hypersphere, a learned Gaussian distribution will
actually be bimodal. For simplicity, we define the distribution to be valid over only
one of the two hemispheres of the hypersphere. The choice of hemisphere is defined
by the mean quaternion p, as argued by Johnson (pages 118-119, [17]).

The mean quaternion is estimated according to the above algorithm, and either
f or its negation -A is a valid choice. But, once that choice has been made, we
must hemispherize, or flip, all the data points qj to the appropriate hemisphere before
the covariance is estimated. The choice of qj or -4i is made according to which one

minimizes the directional match with the mean.
Thus the hemispherization algorithm is written as:

1. Let A be the quaternion mean of the example data.

2. For each example 4j:

(a) If A -6i < 0, then j +- -4j.

Furthermore, any query quaternion that is encountered must also be hemispher-
ized before its density can be calculated according to the distribution. In this way,
we ensure that the distribution is in fact defined over only one of the hemispheres.

108

Estimating the Covariance

Once the quaternion mean has been estimated and the examples have been hemi-
spherized according to that mean, estimating the covariance is straightforward. The
estimated covariance matrix E is defined to be the normalized outer product of the
data matrix, according to the standard maximum likelihood estimation approach
for multivariate Gaussians. Note, however, that the data matrix will consists of data
quaternions that have first been hemispherized, then rotated by the quaternion mean,
and finally projected into the tangent space at the mean to be "linearized", using the
logmap.

The covariance estimation algorithm is summarized as follows:

1. Let A be the quaternion mean of the example data.

2. Hemispherize the example data points, and project them into the tangent
space at the mean. For each example 4i:

(a) If A - 4i < 0, then qi <- -qi.

(b) Let wi = ln(A*4i).

3. Let W be the data matrix with wi as the ith column.

4. Let the estimated covariance matrix be calculated as E = 1 WWT,
where N is the number of data points.

A.2.5 Sources and Related Work

Berthold Horn briefly describes quaternions for rotation in Robot Vision [141. Ken
Shoemake presents the algebra and calculus of quaternions and how they relate to
rotations in [33]. David Eberly summarizes these ideas in [10]. Andrew Burbanks
describes how the problem of extending complex numbers led Hamilton to the dis-
covery of quaternions and then presents the fundamentals of quaternion algebra and
a C++ implementation in [7].

These contributions notwithstanding, my most important source is Michael John-
son's 2003 dissertation [17]. In that document, Johnson gives an excellent and ex-
tensive description of the intuition and formal mathematics of each of the rotation
representations described above and their computational advantages and disadvan-
tages. He describes quaternions and gives a thorough motivation for their use to
represent rotation. He also presents the approach to defining and learning a Gaus-
sian distribution over quaternions for rotation that I described in this section. I am
greatly indebted to Johnson's work for my understanding of this material-indeed,
much of the explanation in this section is based directly upon his-and I refer the
interested reader to it for more information.

109

A.3 Conditional Multivariate Gaussian Distribu-
tions

In this section, we discuss another important building block that we use when we
develop the geometric models of a PGG in Chapter 2: conditional multivariate Gaus-
sian distributions over R . We will factor a multivariate joint Gaussian into marginal
and conditional distributions, but first we must show how to block diagonalize and
take the inverse of a partitioned matrix.

A.3.1 Partitioned Matrices

Consider a partitioned matrix M:
[E F]

M=G H

where E and H are invertible. We would like to find an expression for the inverse of
M in terms of its blocks.

We start by finding a way to block diagonalize the matrix M; in other words,
manipulate the partitions of M such that we replace F and G each with a block of
zeros. Jordan [18] demonstrates that we can do this by pre- and post-multiplying the
matrix by two other matrices, each which serves to zero out either F or G, but which
miraculously do not interfere with each other:

S 0] [E F] I -E-1F] HE 0 (A.3)-GE--1 I G H 0 I 0 H - GE-1F1

The term in the lower right of the block diagonal matrix is called the Schur com-
plement of M with respect to E. It can be shown to be invertible, and is written
M/E:

M/E = H - GE- 1 F.

Recall that if we have a matrix expression of the form ABC = D and invert both
sides, we obtain B- 1 = CD- 1A. Recall also that the inverse of a block diagonal
matrix is simply the diagonal matrix of the inverse of its blocks.

Now, we apply these facts to take the inverse of both sides of Equation (A.3) for
the block diagonal of M:

G H 0 = [I -E1F] E1] [_1 1] (A.4a)

E + E-F(M/E) 1 GE-1 -E-F(M/E)- 1 (A4b)
-(M/E)-GE-1 M/E-(

Thus we have an expression for M-1 in terms of its blocks, as desired.
If instead we take the determinant of both sides of Equation (A.3), we find:

IMI= |M/E1E1 (A.5)

110

which, as Jordan points out, makes the notation for the Schur complement very
appropriate [181.

A.3.2 Marginalizing and Conditioning

We have a vector x of length n, and we would like to partition it into two subvectors
x, and x2 , of lengths ni and n 2 respectively such that n + n2 = n:

Xix =.

If we have a multivariate Gaussian distribution for p(x), it is natural to ask whether
we can factor it into the marginal distribution p(x 1) and the conditional distribution

p(x2 xI), to exploit the fact that:

p(x) = p(x1,x 2)
=p(x2 Ix) p(xi)

We begin by partitioning the mean and covariance parameters of the joint Gaus-
sian in the same way we partitioned x:

A A[l
IA2

_ E1 12

E21 E22j

This allows us to write a joint Gaussian distribution for p(x) = p(x1, x 2) in terms of

the partitioned forms of p and F:

p(x) = f(x; ji, E)

(2r)(n,+n2)/2 1/2 exp
1

27
xi - /1

_X2 - P21

T
x- - M

X2 - M2_

Ell

E21 } (A.6)

Focusing on the exponential factor first, we apply Equation (A.4a) to write out
the inverse covariance matrix in terms of its blocks:

E11
E21

exp{2
2 1

x1 - /pl I[
_X2 -- P21 0

exp - (xi -

x exp - (x 2

- -1 -

E22_ X2 -P2 }
0

0 }
pi)T1x -E/ -I(l- t)

-[12 - E21EH~1-p) (/ 1) x - M2- 2 (- i

111

exp { /]T
2 _X2 -P21

_1I [1 0 [xi - p-i
-Z21 1 X2 - P2-

where the last step uses the fact that E12 = E21, so:

(x1 - 1 1 = (E 212i(x - 1)

Then, we use Equation (A.5) to similarly factor the normalizing term:

1

(27)(n1 +n2) /2 1i/2

1

(27r) (n1+n2)/2 (/lIX11)1/2

wi ((2 r)n 1/2 1l/ 2 (27)n2/2 I/ll1/2)

And now we can write the desired expressions for the marginal p(x 1) and condi-
tional p(x 2 xI) using the first and second factors of the exponential and normalizing

terms:

p(x1) = (2r)nl/ 2 1/2 exP{2pxi 1 -

p(x2 xi) -
1

(27)n2/ 2 I/Ell 1/2

x exp -(x 2 - A2 - E 21 71
1(x1 --

X X2 - P2 - I21EI (X1 - AD)

Say that (p7j, E') are the parameters of the marginal distribution of x1 , and that

(Pc,, E'll) are the parameters of the conditional distribution of x2 given xl. We can

then write expressions for these parameters in terms of the partitioned parts of ti and

E as:

Marginal:
M r :T = (A .7 a)

EI =Eli (A.7b)

Conditional:

It'l = /12 + E21Ei1 (x1 - i1) (A.8a)

EC= - _21ET 12 (A.8b)

A.3.3 Sources and Related Work

My primary source for multivariate Gaussian distributions is Chapter 13 of Michael
Jordan's An Introduction to Probabilistic Graphical Models [18]. Jordan derives block
diagonalization results for a partitioned matrix, and marginalization and conditioning

112

and

results for a partitioned multivariate Gaussian, but he chooses to factor p(x 1 , x 2) into

p(x 1 x 2) p(x 2). The alternative factorization p(x 2 xI1) P(xi) is equally valid, and is

more intuitive and useful for the PGG framework. Thus the results in this section
are rederived from Jordan's results in order to obtain this alternative factorization.

A.4 Estimating The Minimum Volume Bounding
Box

In Chapter 2, we show that a geometric "summarization function" is necessary in
order to extend context-free grammars with geometric information. We will use the
bounding box as a summarization function in this work for a variety of reasons that
are discussed in subsequent chapters; a primary reason is that it allows a consistent
interface and representation for all primitive and composite parts.

It is a nontrivial task to determine the optimal minimum volume bounding box
of a set of 3D boxes; however, approximate optimality is sufficient for our purposes.

A.4.1 An Approximation Algorithm

This is an algorithm which returns an approximation to the minimum volume bound-
ing box enclosing a set of 3D boxes:

1. Let H be the convex hull of the union of the vertices of the input boxes
B = bi ... bn.

2. Let M be the moment tensor and p be the center of mass of H.

3. Let A = [ai, a2, a3] be the eigenvectors of the moment tensor matrix M.

4. Reorder the columns of A to produce a right-hand coordinate frame R =

[ri, r 2 , r 3]; i.e., one in which r, x r 2 = r3.

5. Let d be the extent of the vertices of B in the frame R.

6. Let b = (d, p, R) be the estimated minimum volume bounding box of B.

It remains to be proved why this algorithm works well, but in practice it seems to
offer reasonable performance nonetheless.

A.4.2 Sources and Implementation

In order to find the convex hull of a set of points, we use John Lloyd's 2004 Java
implementation [21] of Barber, Dobkin, and Huhdanpaa's Quickhull algorithm for
convex hulls [2]. We then use Brian Mirtich's algorithm and C++ implementation
for finding the moment tensor of the convex hull [24].

113

114

Appendix B

Experiment Models

scene(s) [0]#.

0.5 scene(s)[0]

0.0833 scene(s)[1]

0.1667 scene(s)[2]

0.0833 scene(s)[3]

0.0833 scene(s)[4]

0.0833 scene(s)[5]

chair(c)[0]o.

: stool(o)[0]%.

: bench(b)[01%.

: table(t)[0]%.

: coffee-table(f)[01.

: lamp(p)[0]Y.

chair (c) [1]#.

1 chair(c) [0] chair-top(ct) [0]P%, chair-base(cb) El.

chair-top(ct) [2]#.
0.5 chairtop(ct)[0l chairback(ck) [01!, chair-seat(cs)[1].

0.5 chairtop(ct)[1l chairback(ck) [017, chair-seat(cs) [117,

chair-arm(cal)[21, chairarm(ca2)[3]'.

chair-base (cb) [31#.

0.3333 chair.base(cb)[01 chair-leg(c11) [01%, chair-leg(cl2) [11,

chair-leg(cl3) [21, chairleg(c14) [3].

0.3333 chair-base(cb)[1] chairaxle(cx)[01%, chairwheeljleg(cwl)[1]%,

chairwheeljleg(cw2)[2]7, chairwheeljleg(cw3)[3]'.

0.3333 chairbase(cb)[2] chairaxle(cx)[0]', chairwheeljleg(cwl)[1]%,
chairwheeljleg(cw2)[2]%, chairwheeljleg(cw3)[3]!,

chairwheeljleg(cw4)[4]/, chairwheelleg(cw5)[51%.

stool (o) [4]#.

1 stool(o)[0] chair-seat(cs)[0]%, stoolbase(ob) [1].

stool.base (ob) [5]#.
1 stoolbase(ob)[0] :- chair-leg(cll) [017, chair-leg(c12) [117,

chairleg(cl3) [21%, chairjleg(c14) [31%.

Figure B-1: The PGG used in the experiments (continued in next figure). The learned
expansion probabilities are shown. The presence of a learned root geometric model
is denoted with a #, and the presence of a learned part geometric model with a %.

115

chairback(ck)[6]#.

chairseat(cs)[7]#.

chairarm(ca) [8]#.
chairjleg(cl)[9]#.

chairaxle(cx)[10]#.

chairwheeljleg(cw)[11]#.

bench(b)[12]#.

1 bench(b)[0] bench-top(bt)[0]%, benchbase(bb)[1]%.

bench-top(bt)[13]#.

0.5 bench-top(bt)[0]

0.5 bench-top(bt)[1]

benchbase(bb)[14]#.

1 benchbase(bb)[0]

bench-back(bk) [0]%, benchseat(bs) [1]!.

bench-back(bk) [01, benchseat(bs) [1],

bench-arm(bal) [2], bencharm(ba2) [3]'.

bench-leg(bll) [01%, bench-leg(bl2) [1]%,
benchleg(bl3) [2]!%, benchleg(bl4) [31%.

benchback(bk)[15]#.

benchseat(bs)[16]#.

bencharm(ba) [17]#.
benchjleg(bl)[18]#.

table(t) [19]#.
1 table(t)[0] table-top(tt)[0]%, tablebase(tb)[1] .

tablebase(tb) [20]#.
1 tablebase(tb) [0] table-leg(tll) [01, table-leg(tl2) [11,

tableleg(tl3) [21, tableleg(tl4) [31%.

table-top (tt) [21]#.
tablejleg(tl) [22]#.

coffeetable(f)[23]#.

1 coffee.table(f)[0] :- coffee_table-top(ft)[0]%, coffeetablebase(fb)[1]%.

coffeetable.base(fb)[24]#.
1 coffeetablebase(fb)[0] coffeetableleg(fl1)[0]%, coffeetableleg(f12)[1]%,

coffeetableleg(f13)[2]%, coffeetableleg(f14)[3]%.

coffeetabletop(ft)[25]#.

coffeetablejleg(fl)[26]#.

lamp(p)[27]#.

1 lamp(p) [0] lamp-post(pp) [01%, lamp-shade(ps) [1l%, lamp-base(pb) [21%.

lamp.post(pp)[28]#.
lamp-shade(ps)[29]#.
lamp-base (pb) [30] #.

Clutter penalty: 15.0

Figure B-2: The PGG used in the experiments (continued).

116

0.0833 chair(VO)#

0.0833 chair(VO)#

0.0833 chair(VO)#

0.0833 chair(VO)#

0.0833 chair(VO)#

0.0833 chair(VO)#

0.0833 stool(VO)#

0.0833 bench(VO)#

0.0833 bench(VO)#

0.0833 table(VO)#

scene(V1), chair(V2), chair-top(V3), chairback(vO),

chairseat(vi), chairbase(V4), chair_leg(v2), chair-leg(v3),

chairleg(v4), chair-leg(v5).

scene(Vi), chair(V2), chairtop(V3), chairback(vO),

chairseat(vl), chair-arm(v2), chairarm(v3), chair_base(V4),

chairleg(v4), chairileg(v5), chair-leg(v6), chairleg(v7).

scene(V1), chair(V2), chair-top(V3), chairback(vO),

chair-seat(vl), chairbase(V4), chair-axle(v2),

chairwheeljleg(v3), chairwheelleg(v4), chairwheel-leg(v5).

scene(V1), chair(V2), chairtop(V3), chairback(vO),

chairseat(vi), chairarm(v2), chair.arm(v3), chair_base(V4),

chairaxle(v4), chairwheel-leg(v5), chairwheeljleg(v6),
chairwheeljleg(v7).

scene(V1), chair(V2), chair-top(V3), chairback(vO),
chairseat(vi), chairbase(V4), chair-axle(v2),

chairwheelileg(v3), chairwheelleg(v4), chairwheeljleg(v5),

chairwheelileg(v6), chairwheelleg(v7).

scene(V1), chair(V2), chair-top(V3), chair-back(vO),

chairseat(vl), chair-arm(v2), chair-arm(v3), chairbase(V4),

chairaxle(v4), chairwheel-leg(v5), chairwheel-leg(v6),

chairwheeljleg(v7), chairwheelleg(v8), chairwheeljleg(v9).

scene(V1), stool(V2), chair-seat(vO), stool-base(V3),

chairleg(vl), chairleg(v2), chairjleg(v3), chairleg(v4).

scene(V1), bench(V2), bench-top(V3), benchback(vO),

benchseat(vi), benchbase(V4), benchjleg(v2), bench-leg(v3),
benchleg(v4), bench-leg(v5).

scene(Vi), bench(V2), bench-top(V3), benchback(vO),
benchseat(vl), bencharm(v2), bench-arm(v3), bench-base(V4),

benchleg(v4), bench-leg(v5), bench-leg(v6), benchleg(v7).

scene(V1), table(V2), tabletop(vO), tablebase(V3),
tableleg(vi), table-leg(v2), table-leg(v3), tableleg(v4).

0.0833 coffeetable(VO)# :- scene(V1), coffeetable(V2), coffeetabletop(vO),

coffeetable-base(V3), coffeetableleg(vl),

coffeetableleg(v2), coffeetableleg(v3),
coffeetable§leg(v4).

0.0833 lamp(VO)# :- scene(V1), lamp(V2), lamp-post(vO), lamp-shade(vl),
lamp-base(v2).

Figure B-3: The fully connected models used in the experiments. The learned prior
structural probabilities over models are shown. The presence of a learned geometric
model is denoted with a #.

117

0.0833 chair(VO)

+--+ scene(V1)#
+--+ chair(V2)X

+--+ chairtop(V3) 0

I +--+ chair-back(vO)%

I +--+ chair-seat(v1)X
+--+ chairbase(V4)%

+--+ chairleg(v2)A
+--+ chair-leg(v3)A
+--+ chair-leg(v4)%
+--+ chair-leg(v5)A

0.0833 chair(VO)
+--+ scene(V1)#

+--+ chair(V2)%

+--+ chairtop(V3)

I +--+ chair-back(v)
I +--+ chairseat(v)X
I +--+ chair-arm(v2)/0
I +--+ chairarm(v3)%

+--+ chairbase(V4)M
+--+ chair-leg(v4)%

+--+ chair-leg(v5)A

+--+ chair-leg(v6)X
+--+ chairjleg(v7)M

0.0833 chair(VO)
+--+ scene(V1)#

+--+ chair(V2) %
+--+ chairtop(V3)X

+--+ chair-back(vO) 0
I +--+ chair-seat(vl) 0

+--+ chairbase(V4)%
+--+ chair-axle(v2) 0
+--+ chairwheelleg(v3)/
+--+ chairwheelleg(v4)%

+--+ chairwheelleg(v5)%

0.0833 chair(VO)
+--+ scene(V1)#

+--+ chair(V2)X

+--+ chairtop(V3)%

I +--+ chair-back(v)%
I +--+ chair-seat(vi)%
I +--+ chair-arm(v2)/
I +--+ chair-arm(v3)
+--+ chairbase(V4)%

+--+ chair-axle(v4)%

+--+ chairwheelleg(v5)X

+--+ chairwheelleg(v6)/
+--+ chairwheelleg(v7)X

0.0833 chair(VO)
+--+ scene(Vi)#

+--+ chair(V2)X

+--+ chairtop(V3)
I +--+ chair-back(v0)%
I +--+ chair-seat(vl)%

+--+ chairbase(V4)X
+--+ chair-axle(v2)A
+--+ chairwheelleg(v3)/
+--+ chairwheelleg(v4)/
+--+ chair-wheelleg(v5)X

+--+ chairwheelleg(v6)A

+--+ chairwheelleg(v7)

0.0833 chair(VO)
+--+ scene(V1)#

+--+ chair(V2)X
+--+ chairtop(V3)%
I +--+ chair-back(v0)%
I +--+ chair.seat(vi)%
I +--+ chair-arm(v2)X
I +--+ chair-arm(v3)M
+--+ chairbase(V4)%

+--+ chair-axle(v4)%

+--+ chairwheelleg(v5)X
+--+ chairwheelleg(v6)/
+--+ chairwheelleg(v7)M
+--+ chairwheelleg(v8)/
+--+ chairwheelleg(v9)%

Figure B-4: The Bayes net models used in the experiments (continued in next figure).
The learned prior structural probabilities over models are shown. The presence of a
learned root geometric model is denoted with a #, and the presence of a learned part
geometric model with a %.

118

0.0833 stool(VO)
+--+ scene(V1)#

+--+ stool(V2)%
+--+ chairseat(v0)X
+--+ stoolbase(V3)/ 0

+--+ chairleg(v)/ 0
+--+ chairleg(v2)%

+--+ chairleg(v3)A
+--+ chairleg(v4)A

0.0833 bench(VO)
+--+ scene(V1)#

+--+ bench(V2)

+--+ bench-top(V3)%

I +--+ benchback(v0)A
I +--+ benchseat(v)/ 0

+--+ benchbase(V4)A
+--+ benchleg(v2)/0
+--+ benchleg(v3)A
+--+ benchleg(v4)%
+--+ benchleg(v5)A

0.0833 bench(VO)
+--+ scene(Vi)#

+--+ bench(V2)

+--+ bench-top(V3)/ 0
I +--+ benchback(v0)
I +--+ benchseat(v1)/
I +--+ bencharm(v2)/
I +--+ bencharm(v3)/

+--+ benchbase(V4)/
+--+ benchleg(v4)%

+--+ bench_leg(v5)

+--+ bench_leg(v6)

+--+ benchleg(v7)

0.0833 table(VO)
+--+ scene(V1)#

+--+ table(V2)%

+--+ tabletop(v0)%
+--+ table-base(V3)%

+--+ tableleg(v1)X

+--+ table-leg(v2)

+--+ tableleg(v3)%

+--+ tableleg(v4)A

0.0833 coffee-table(VO)
+--+ scene(V1)#

+--+ coffeetable(V2)
+--+ coffeetable-top(vO)
+--+ coffeetable-base(V3)/

+--+ coffee-table-leg(vl)%
+--+ coffeetableleg(v2)/
+--+ coffeetableleg(v3)A
+--+ coffeetable.leg(v4)/

0.0833 lamp(VO)
+--+ scene(V1)#

+--+ lamp(V2)%
+--+ lamp.post(v0)%
+--+ lamp-shade(v1)X

+--+ lamp-base(v2)%

Figure B-5: The Bayes net models used in the experiments (continued).

119

120

Bibliography

[1] James Allen. Natural Language Understanding. The Benjamin/Cummings Pub-
lishing Company, Inc., 1995.

[2] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quickhull
algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4),
December 1996.

[3] Jeffrey S. Beis and David G. Lowe. Learning indexing functions for 3-D model-
based object recognition. In Proc. AAAI Fall Symposium: Machine Learning in
Computer Vision, pages 275-280, 1993.

[4] Irving Biederman and Moshe Bar. Differing views on views: Response to Hay-
ward and Tarr (2000). Vision Res., 40(28):3901-3905, 2000.

[5] Tom Binford. Visual perception by computer. In Proc. IEEE Conf. on Systems
and Control, 1971.

[6] V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, V. Vapnik, and T. Vetter. Com-
parison of view-based object recognition algorithms using realistic 3D models.
In Proc. Artifical Neural Networks, ICANN, pages 251-256, 1996.

[7] Andrew Burbanks. Quaternions in C++. November 1, 1996.

[8] Dave Coverly. Speed Bump Cartoons. 2003. http://www.speedbump.com/.

[9] David Crandall, Pedro Felzenszwalb, and Daniel Huttenlocher. Spatial priors
for part-based recognition using statistical models. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, 2005.

[10] David Eberly. Quaternion algebra and calculus. September 27, 2002.

[11] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2003.

[12] P. Thomas Fletcher, Sarang Joshi, Conglin LU, and Stephen Pizer. Gaussian
distributions on Lie groups and their application to statistical shape analysis. In
Proc. Information Processing in Medical Imaging, pages 450-462, 2003.

121

[13] David Forsyth and John Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2001.

[14] Berthold K. P. Horn. Robot Vision. The MIT Press, 1986.

[15] John E. Hummel. Where view-based theories break down: The role of structure
in shape perception and object recognition. In E. Dietrich and A. Markman, ed-
itors, Cognitive Dynamics: Conceptual Change in Humans and Machines, pages
157-185. Hillsdale, NJ: Erlbaum, 2000.

[16] Daniel Huttenlocher and Shimon Ullman. Object recognition using alignment.
In Proc. Int'l Conf. on Computer Vision, pages 102-111, 1986.

[17] Michael Patrick Johnson. Exploiting Quaternions to Support Expressive Inter-
active Character Motion. PhD thesis, Massachusetts Institute of Technology,
2003.

[18] M. I. Jordan. An Introduction to Probabilistic Graphical Models. 2006.

[19] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice
Hall, 2000.

[20] J. Koenderink and A. van Doorn. The internal representation of solid shape with
respect to vision. Biological Cybernetics, 32:211-216, 1979.

[21] John E. Lloyd. Quickhull3d, 2004. A three dimensional implementation of Bar-
ber, Dobkin, and Huhdanpaa's Quickhull, in Java.

[22] Tomis Lozano-Perez and Leslie Pack Kaelbling. Learning to recognize objects,
2004.

[23] Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural
Language Processing. The MIT Press, 2002.

[24] Brian Mirtich. Fast and accurate computation of polyhedral mass properties.
Journal of Graphics Tools, 1(2), 1996.

[25] Darnell Moore and Irfan Essa. Recognizing multitasked activities using stochas-
tic context-free grammar. In Proc. Workshop on Models versus Exemplars in
Computer Vision, held in Conjunction with IEEE CVPR, 2001.

[26] C. Papageorgiou and T. Poggio. A trainable system for object detection. Inter-
national Journal of Computer Vision, 38(1):15-33, 2000.

[27] I. Pollak, J. M. Siskind, M. P. Harper, and C. A. Bouman. Parameter estimation
for spatial random trees using the EM algorithm. In Proc. IEEE Int'l Conf. on
Image Processing, 2003.

122

[28] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, second edition, 1992.

[29] Azriel Rosenfeld. Progress in picture processing: 1969-71. ACM Computing
Surveys, 5(2), June 1973.

[30] Fredrick Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D
object modeling and recognition using affine-invariant patches and multi-view
spatial constraints. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2003.

[31] C.A. Rothwell, A. Zisserman, J.L. Mundy, and D.A. Forsyth. Efficient model
library access by projectively invariant indexing functions. In Proc. IEEE Com-
puter Vision and Pattern Recognition, 1992.

[32] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[33] Ken Shoemake. Animating rotation with quaternion calculus. In ACM SIG-
GRAPH, Course Notes 10, Computer Animation: 3-D Motion, Specification,
and Control, 1987.

[34] Michael J. Tarr. Visual object recognition: Can a single mechanism suffice? In
M.A. Peterson and G. Rhodes, editors, Perception of Faces, Objects, and Scenes:
Analytic and Holistic Processes. Oxford, UK: Oxford University Press, 2001.

[35] Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, and Song-Chun Zhu. Image pars-
ing: Unifying segmentation, detection, and recognition. In Proc. IEEE Int'l
Conf. on Computer Vision, 2003.

[36] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proc. IEEE
Computer Vision and Pattern Recognition, 1991.

[37] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. In Proc. IEEE Computer Vision and Pattern Recognition,
2001.

[38] Eric W. Weisstein. Stirling number of the second kind. From Mathworld - A
Wolfram Web Resource. http://mathworld.wolfram.com/.

123

