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Abstract

AIGaAs/InGaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) are widely used in
satellite communications, military and commercial radar, cellular telephones, and other RF power
applications. One key figure of merit in these applications is RF power output. Increasing the
gate-to-drain length (LRD) of the PHEMT leads to an increase in its breakdown voltage. This
should theoretically allow the selection of a higher drain operating voltage and consequently
result in higher output power at microwave frequencies. However, experimentally, a decrease in
output power and peak power-added efficiency is generally observed with increasing LRD. In
order to understand this, we have studied in detail the RF power performance of industrial
PHEMTs with different values of LRD. We have found that there is an optimum value of LRD
beyond which the maximum RF power output that the device can deliver drops. In addition, we
have found that the output power of long LRD devices declines significantly with increasing
frequency. We explain the difference in RF power behavior of the different devices through the
evolution of load lines with frequency, LRD, and operating voltage. We have found that the
presence of oscillations in the NDR region limit the maximum allowable operating voltage of long
LRD devices through catastrophic burnout. The maximum voltage of short LRD devices is limited
by electrical degradation. Pulsed I-V measurements have revealed that long LRD devices
increasingly suffer from surface state activity that limit the maximum drain current under RF
operation. A delay time analysis has shown an increasing extension of the depletion region
toward the drain with increasing LRD that limits the frequency response of long LRD devices.
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Chapter 1: Introduction

1.1 GaAs PHEMTs for high-frequency power applications

AIGaAs/InGaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) are widely used in

satellite communication modules, transmit receive modules for military radar applications, and

cellular telephones. Due to the relative maturity of GaAs PHEMT technology, excellent RF power

performance can be achieved at reasonable cost [1, 2].

In RF power applications, the most important figures of merit are power gain, output power, and

power added efficiency (PAE) at a certain frequency. The gain can be expressed as the ratio of

different powers; for instance, the transducer power gain GT is represented by the ratio of the

power delivered to the load and power available from the source. The output power is usually

specified at a certain gain compression level (i.e., 3-dB), which occurs as the device enters large-

signal operation. Lastly, the PAE is one way to measure amplifier efficiency and takes into

U Ls Lrd

Source Gate Drain

suppy~ae An~aAs

A- IGaAs
suLy layer

Fig. 1-1: Schematic cross-section of doubled-doped PHEMT.
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account the input power.

One key attribute of a good power PHEMT is high output power, which can be achieved with a

higher drain bias. To provide a high drain bias voltage, the drain-gate breakdown voltage BV 0ff

should be made as high as possible, which is especially critical when the device is biased in

Class AB operation. Fig. 1-1 shows the cross section of a typical RF power PHEMT. An

increase in BV 0ff can be obtained by a double-recess gate design (shown in Fig. 1-1) that

effectively widens the separation between the gate and drain electrodes and thereby reduces the

peak electric field in the gate-drain region. For the devices studied in this thesis, increasing the

wide gate-drain recess length (LRD) leads to a corresponding increase in BV)ff. In turn, the

increase in BV 0ff allows an increase in output power due to the increased operating voltage that is

possible.

However, previous studies have reported that the output power actually decreases with

increasing LRD partly due to drain current degradation [3] and a degraded frequency response [4,

5]. Other studies performed varying LRD and the gate-source wide recess LRS simultaneously

have shown similar results and have asserted that the RF degradation is a result of the parasitic

extension of the depletion region located between the gate and drain due to surface states [6, 7].

Intrinsic gmn and maximum available gain (MAG) have been reported to decrease along with

increasing LRD. In addition, the longer LRD devices experience a steeper drop in output power as

a function of frequency. One explanation is a potential correlation between the drain delay and

the transconductance generator in the small signal equivalent circuit model [8]. This will be

explored in this thesis. The consensus in the literature remains that increasing LRD improves BV 0ff

but degrades RF large signal behavior, although the exact mechanism relating delay and output

power has not been identified.

Another perplexing feature of the studied devices is the presence of negative differential

resistance (NDR) in the DC measurements when LRD is sufficiently long and the gate is forward
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biased (Fig. 1-2). Interestingly, it is most prominent for intermediate forward gate voltages. Since

IG does not increase in a corresponding way as ID decreases, the possibility of real space transfer

of electrons from the 2DEG into the gate electrode has been ruled out [9]. We have explored a

possible connection between the appearance of NDR and power degradation since, under some

conditions, the load line may pass through the NDR region.

To understand the full impact of LRD on RF power performance, we will map out in detail the RF

power characteristics of PHEMTS as a function of LRD and study the evolution of output power

with operating voltage and frequency to identify the physical origin of the obtained characteristics.

Lastly, we will provide suggestions for designing optimum LRD PHEMTs.

500

400

300

200

100

0
0

-- Lrd = 0.3 um
'--Lrd = 0.9 um

0.5 1 1.5 2 2.5 3 3.5 4

VDS [V]

Fig. 1-2: ID VS. VDS for the LRD = 0.3 and 0.5 um Al gate PHEMT. VGS is stepped from -0.8 V to 0.8 V in 0.2 V

increments.

21

E

E

Vgs = 0.8 V

Vgs = 0 V



1.2 Outline of Thesis

This thesis is organized in the following manner. Chapter 2 will describe the experimental

devices and measurement setup used to perform the RF measurements on the PHEMTs. The

load pull optimization methodology is described in detail and the RF figures of merit used to

monitor RF performance are defined. The de-embedding procedure used to extract the intrinsic

equivalent circuit model from the S-parameter measurements is also explained.

Chapter 3 presents experimental results showing the impact of LRD on the RF performance

across ID, VDD, and frequency through large signal measurements. We will show that there are

consistent trends in large signal performance as a function of LRD. In an attempt to maximize VDD

for each transistor design, we will track the degradation that results from operation at high VDD for

each device. In order to do this, verification measurements will be carried out to monitor the

device characteristics at a benign VDD and at the same impedance points after each successive

optimization. In addition, we will investigate the impact of LRD on small signal performance by

extracting equivalent circuit models. Performing a delay time analysis will provide further insight

into the device physics.

Chapter 4 discusses the negative differential resistance and other anomalous behavior observed

in the forward biased gate region of the longer LRD devices. In this region, we will investigate

oscillations under DC conditions using a spectrum analyzer, power meter, and through

examination of the transfer characteristics. Evidence of unstable behavior will also be

investigated through S-parameter measurements, which may provide a clue to their physical

origin.

In Chapter 5, we link the presence of oscillations with the anomalous behavior shown in the large

signal measurements to explain the limiting factors to RF performance. We will introduce the
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concept of load lines and present on- and off-state breakdown data. Load lines will be shown

across LRD, VDD, and frequency.

In Chapter 6, the conclusions of this work are presented with the identified origins of the

anomalous trends in the RF power characteristics. This section also contains suggestions for

choosing an optimum LRD and other possible sources of further investigation regarding this

research topic.

The appendix will discuss the DC and large signal results obtained from buried WSi PHEMTs with

different LRD. Similar to the Al gate devices, they also exhibit anomalous behavior with increasing

LRD. We seek to explain the origins of this behavior through load line analysis.
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Chapter 2: Experimental

2.1 Introduction

This chapter first describes the experimental GaAs PHEMTs that are studied in this thesis. Then

the experimental setups for the various measurements are also presented. The load pull

methodology, key RF figures of merit, and small signal analysis are also discussed.

2.2 Device Technology

The GaAs PHEMT under study was designed and fabricated by Mitsubishi Electric. Figure 2-1

shows the epitaxial layer structure of the device. The foundation of any good power transistor lies

within its material stack and geometry. The channel consists of a narrow band-gap InGaAs layer

sandwiched between 6-doped wide band-gap AIGaAs layers. The 6-doped supply layers provide

the carriers for current conduction in the InGaAs channel while the undoped AIGaAs spacers

minimize Columbic scattering. A conduction band discontinuity (AEc) exists between the InGaAs

and AIGaAs layers, which confines electrons to the narrow band-gap material. The n+ and n-

GaAs contact layers prevent the underlying AIGaAs Schottky layer from oxidizing and thus greatly

reduces the access resistance and a double recess gate structure enables a high breakdown

voltage [3, 10, 11]. With power applications in consideration, the top 6-doped supply layer is the

most critical [11]. The PHEMT structure allows high maximum channel current, good carrier

confinement within the channel, low output conductance, and solid pinch-off [12, 13].
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Fig. 2-1: Schematic cross-section of Al gate GaAs PHEMT under study

The PHEMT studied has a Mo/Ti/Al gate with a Schottky barrier height 4B of 0.8 eV, determined

by analysis of the C-V characteristics [14]. The gate length of the device is 0.25 pm and the gate

width is 160 pm (4 fingers x 40 pm). Devices with LRS = 0.4 um and four different values of LRD

will be measured (0.3, 0.5, 0.7, 0.9 um) while all other dimensions are held constant.

For a typical standard Al gate PHEMT, a typical value of the source resistance is Rs = 0.59 f)-

mm, while the drain resistance is RD = 0.73 KI-mm. The drain current at VDs = 1.2 V and VGS = 0

V is IDSS = 205.9 mA/mm, and the threshold voltage is -0.66 V. The maximum current IMAx that

can be extracted from the device is 465 mA/mm and occurs when VDs = 1.0 V and VGS = 0.8 V.

The peak transconductance (gm2 = 430 mS/mm) occurs at VDS = 1.2 V and VGS = 0.07 V. In

addition, the output conductance go2 = 16.8 mS/mm at this bias point. The off-state breakdown

voltage BVOff is 15.1 V.
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2.3 Measurement Setup

Under small signal power conditions, the power transfer characteristic (POUT/PIN) is linear and is

equal to the small signal gain of the device. As the power level is increased and the transistor

enters large signal operation, the power gain is reduced and the device experiences gain

compression. Eventually, the output power saturates and it is not possible to attain higher power

with higher drive. The primary focus of this research is to characterize the large signal

performance of the devices under study via load pull measurements and determine trends across

LRD, VDS, and frequency. The small signal measurements and their subsequent analysis via

equivalent circuit extraction and delay time decomposition provide a means of understanding the

device physics behind large signal operation.

2.3.1 RF Large Signal Measurements

The principle of large-signal characterization, namely, the "source pull/load pull" technique, is to

present adjustable impedances at both ports of the transistor and determine the impedances

required to extract the most efficient transfer of power by a transistor under large signal

Fig. 2-2: MIT load pull station experimental setup.
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conditions. Load-pull measurements are a well-known technique for characterizing the nonlinear

behavior of microwave power transistors. For these nonlinear applications, it is necessary to

characterize the performance of the device when terminated with source or load impedances

other than 50 Q. A schematic of the load-pull measurement system is shown in Fig. 2-2. It

consists of an 8" Cascade Microtech on-wafer probe station equipped with Maury Microwave

automated tuners and a 10 W TWT-PA supplying up to 200 mW at the DUT. Measurements can

be made between 2-18 GHz. Directional couplers detect the incident and reflected waves at the

device input and output ports in terms of voltage. Attenuators inserted in the coupled signal line

provide control over the measurable power levels of the device under test (DUT). A range of load

impedances is presented to the DUT by controlling the magnitude and phase of the signal

injected into the output port of the DUT. The device output impedance is a function of the

injected signal and the transfer function of the DUT. Loss present in the system restricts the

range of measurable impedances that can be presented at the input and output of the device; as

a result, typical values for the maximum IFsI and IFLI available are 0.87 and 0.78, respectively.

In our load pull optimization methodology, we tuned the source and load impedances for

maximum PAE at the 3-dB compression point (Fig. 2-3). This procedure was automated using a

program developed by Joerg Scholvin at MIT in Microsoft Visual Basic. Some of the advantages

of this automated program over commercial Maury Microwave software include the ability to load

a test plan for long-term measurements, make verification measurements to track device

degradation during a VDS sweep, and save the history (source pull/load pull iterations,

intermediate power sweeps, etc.) of the optimization procedure.

In the measurement plan, optimizations were initially carried out at VDD = 2 V and subsequently

VDS was ramped in 1 V steps, with each measurement using the impedance points determined by

the previous optimization as a starting point. Since the optimal impedance points do not change

much when VDs is increased by small increments, an optimization consisting of one source pull

and one load pull measurement converges at a speed of approximately 20 minutes per VDD. For
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both device types under study, the RF induced lG was limited to -10 mA/mm for the devices

under study in order to prevent excessive damage to the device under high RF drive and to

prolong its ability to deliver repeatable measurements. For all of the measurements, VGS is

selected to attain the desired 'D under small signal conditions (IDO) as specified by the user. To

achieve IDO = 100 mA/mm, VGS was typically around -0.2 V for all of the devices under study.

Once VGS is set, it does not change during the optimization procedure.

Another load pull procedure attempted during the course of this research was optimizing for POUT

at the 3-dB compression point. Since optimizing for POUT is synonymous with optimizing for gain,

the optimized impedances would have small signal gains in excess of 20 dB, which is undesirable

because it can cause oscillations and early gain compression. To get around this problem, we

limited the small signal gain to 15 dB but this added restriction made the data difficult to automate

and time consuming to obtain. We found that the same phenomena observed with the data

obtained with this methodology could also be observed using the methodology for maximum PAE
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Fig. 2-3: Typical RF power measurement showing the definition of the 3-dB compression point.
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at the 3 dB compression point. Hence, we have focused primarily on collecting large signal data

using a load pull procedure that optimizes for PAE. We will now describe three figures of merit

used to assess large signal performance: Pou, gain, and PAE.

We have defined POUT,3-dB as the POUT when the small signal gain is reduced by 3-dB as the

device is driven into compression under high RF drive (Fig. 2-4). POUT,3-dB is a figure of merit that

will be used frequently as a means of comparison between the behavior of different devices and

is commonly used in the trade.

The gain referenced in this research is defined as the transducer power gain GT and is

represented by

P
V41S

where PL is the power delivered to the load and PAVS is the power available from the source.

The power added efficiency (PAE) is defined as

PAE = POUT - PIN _ OUT -PIN

Pi)C I 1)S + IG GS

where PIN is the RF drive power. In general, the gain should be greater than 10 dB or else the

drain efficiency, which is the same as PAE but without the PIN term in the numerator, will suffer as

a result. We will also track ID and IG with increased drive level. Unfortunately, due to the

limitations of the biasing system (HP 6628A), the gate current resolution is only 1 mA.
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2.3.2 Small Signal Measurements

A HP 8510B vector network analyzer (VNA) is used to measure the S-parameters of the devices

under small signal conditions from 0.05 - 40 GHz. The VNA generates a calibrated RF signal

and measures the incident, reflected, and transmitted voltages. The RF signal generator of the

VNA provides the sinusoidal test signal and the output is calibrated in dBm using a 50 Q load.

The devices are probed on a Cascade Microtech probe station using Picoprobe GGB 40A

microwave probes. Incident power on the device input was -20 dBm to ensure small-signal

operation. A short-open-line-thru (SOLT) calibration is performed using a standard ceramic

substrate supplied by Cascade. WinCal software allows repeatable, accurate VNA calibrations.

In the following sections, we will describe two important frequencies of merit: ft and fmax.

2.3.2.a fT

The short-circuit transit frequency fT is an important figure of merit that is defined as the frequency

at which |H 2 11 = 1. It can be estimated by calculating H2 1 from the S-parameters and assuming
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Fig. 2-4: Typical measurement to determine fT on a LRD = 0.3 um device at VDS = 5 V, ID = 100 mA/mm.
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that IH2 1 | rolled off at -20 dB/dec with frequency according to the following relationship:

fT =H 21 .f

f-r is the frequency where IH2 1 I approximates 0 dB (Fig. 2-4). If the parasitic elements are not de-

embedded correctly, the slope of IH211 versus frequency will deviate from the theoretical -20

dB/dec slope because of feedback inductances and capacitances at high frequencies and diode

conductance in parallel with the input capacitance at low frequencies [15]. Typically, the extrinsic

fT (fText) will be less than the intrinsic fT (fTi). To extract fTi, the parasitic elements must first bede-

embedded from the raw S-parameters to extract the intrinsic components. Plots of fTi versus bias

provide insight into the effect of bias on high frequency performance. In addition, the time

constants of the intrinsic device can be extracted from fri.

2.3.2.b fmax

The maximum frequency of oscillation fmax is an important figure of merit for power gain and is

defined as the frequency at which the unilateral power gain GTU is unity. It was estimated by
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extrapolating GTu to the frequency where it is equal to one (Fig. 2-5). Since fmax encompasses

parasitic as well as the intrinsic element values [16], the GTu roll-off can deviate strongly from -20

dB/dec. Plots of fmax vs. bias help select the optimum bias point for high-frequency operation.

2.3.2.c Small Signal Equivalent Circuit Extraction

The extraction of a small signal equivalent circuit of the PHEMT is critical to understanding the

evolution of the device physics with VDS and LRD. To analyze the bias dependence of the intrinsic

small signal equivalent circuit elements, the S-parameters are measured at several bias points

and used to extract equivalent circuit values for each point. However, an excellent fit of the

model to as-measured S-parameters is not sufficient to ensure that the equivalent circuit values

were accurately determined. To correctly identify physical values, the device must be modeled

over a broad range of bias conditions.

Extracting the intrinsic equivalent circuit elements is a twofold process with involves first

extracting the pad parasitic capacitances (i.e., CPG and CPD) and secondly extracting the rest of

Intrinsic device

LG RG GD

G G

CGS

CDS RDS

R T
Rs

im g, exp(- }Ojfr )Vg
Ls

S

Fig. 2-6: PHEMT equivalent circuit model.
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the extrinsic elements (i.e., Ls, LG, LD, RS, RG, RD) [17-19]. The small signal model shown in Fig.

2-6 represents the PHEMT equivalent circuit model. Using a HP 8510 vector network analyzer

and 40A GGB Picoprobes, S-parameter measurements were measured from 0.05 to 40 GHz.

The parasitic gate and drain capacitances were estimated from the low-frequency (<5 GHz) Y-

parameters of the device biased beyond pinch-off at zero drain voltage [20]. Ideally, the pad

parasitic elements should be measured using a special open structure of the pad structure

without the device [19]. However, such a structure was not available on the wafer and we were

not able to proceed with this version of the de-embedding of the pad parasitics. In general, since

the pad capacitances are on the same magnitude as the intrinsic capacitances, they should be

de-embedded from the as-measured Y-parameters of the device under test before proceeding to

the extrinsic elements.

Using a procedure described by Caddemi, we extracted the extrinsic elements from the Z-

parameters of the device with VDS = VGS = 0 V [19]. After de-embedding the parasitic

capacitances and extrinsic elements, we extracted the small signal circuit elements using the

following formulations [16]:

Y, = Y + Yu111 12(1

gd 12-Y (2)

Y, Y + Y (3)

Ygin Y - 2 (4)

C -(5)
CO -Im1/ Y

R. 1 (6)
'ReY, 5

Cgd = - 1/ (7)
gd *
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R 1 = 1 (8)
Re(Yds

g g,( -e * = Yt (1+=j- m,) (9)

g= Y>,, -(I+ j *1m ,) (10)

Til= z(Y,, -(1+ j- o- r ))-1 (11)
te)

In the equation (9), tgm models the roll-off of Ygm at high frequencies. Since the values for the

circuit elements are only approximate, we enlisted the aid of HP Advanced Design Software

(ADS) to refine our values to get as accurate a fit as possible. Using the extracted values as

initial values, we performed an optimization against the raw S-parameters while allowing the

intrinsic component values to vary by 50% and extrinsic component values by 10%. The extrinsic

value components did not vary much in the optimization, which is as expected and provides

evidence that the initial values were accurate starting points.

2.3.2.d Delay Analysis

To gain insight into what factors contribute to the performance of the PHEMT, it is useful to

extract the intrinsic delay -ior from fTi. After performing the de-embedding procedure described in

section 2.3.2.c, we determine fTi from the -20 dB/dec roll-off of the current gain and compute the

intrinsic delay with the following formula:

int =2/"" 2 rc fT,

where tint can be decomposed into two components as a function of VDs: the drain delay (ttrd)

associated with carrier transport across the depletion region on the drain side and the intrinsic

transit delay (Ttrji) associated with carrier transport across the gate region [21]. As an example, Tint

of the LRD = 0.3 um device is plotted against Vos. The minimum int at roughly VOS,SAT represents
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Fig. 2-7: Intrinsic delay tint versus VDS of a LRD = 0.3 um device. VGS was chosen to be -0.2 V to attain the

smallest Tint possible for this device.

Ttri while the increase in Tint with increasing VDS is attributed to ttr,d (Fig. 2-7). An in-depth

discussion of the delay analysis is described in Chapter 3.

2.4 Conclusions

We will be performing large signal measurements on a load pull station that utilizes automated

and commercially available Maury Microwave software. We will also be measuring and analyzing

S-parameter measurements performed over a wide range of biases. To determine the intrinsic

small signal equivalent circuit elements, we must strip the pad parasitic and extrinsic elements

from the as-measured S-parameters in a twofold process. From the intrinsic equivalent circuit

model, we can determine f-i and extract Tint. In addition, we can take the small signal analysis a

step further by decomposing Tint into its individual components.
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Chapter 3: Impact of LRD on RF Measurements

We will investigate the RF performance of PHEMTs with different values of LRD under two modes

of operation: small signal and large signal. We have examined the impact of bias current, bias

voltage, and frequency. The goal is to identify the optimum LRD as a function of frequency and to

uncover the physical origin of the RF performance of the devices.

3.1 Large Signal Measurements

We have performed load pull measurements on devices with different LRD and seek to identify

trends in the large signal behavior across IDO, LRD, VDD, and frequency.

3.1.1 Across IDO

At 8 GHz, we have conducted load pull measurements with small signal drain currents IDO = 100

mA/mm, 150 mA/mm, and 200 mA/mm to explore their impact on power performance on devices

with different values of LRD (Figs. 3-1 to 3-8). For all of the measurements, we have optimized the

source and load impedances for maximum PAE at the 3-dB compression point. Comparing the

gain compression behavior when IDO is varied from 100 mA to 200 mA in Figs. 3-1 through 3-4,
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Fig. 3-1: Gain and PAE of LRD = 0.3 um device with VDD= 6
V and IDo = 100, 150, and 200 mA/mm.
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there is very little improvement in POUT,3-dB (no more than 0.2 dBm for all four devices). The PAE

at the 3-dB compression point suffers as IDO is increased due to the increase in DC power

consumption; in fact, the drop in PAE at the 3-dB compression point is much more severe across

I DO the longer LRD becomes. This is one reason why it is more advantageous to bias a device at

a high VDD, low IDO rather than a low VDD, high [DO for RF power applications. For a given device,

the rise in IG occurs at approximately the same POUT regardless of IDO; however, the degree of

self-bias appears to lessen as IDO is increased (Figs. 3-5 to 3-8).

These results suggest that there is no significant advantage in increasing IDO to attain higher

POUT,3-dB- In general, the devices experience greater self-bias as IDO decreases. Even though the

self-biased ID at the 3-dB compression point is slightly higher when IDO = 200 mA/mm, this

condition does not ensure a greater POUT,3-dB. Between class A and class AB operation, POUT,3-dB

is roughly constant [22].
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3.1.2 Across LRD

As LRD is increased from 0.3 to 0.9 um at 12 GHz, the gain compresses in an increasingly

premature fashion, leading to a decrease in POUT,3-dB (Fig. 3-9). The LRD = 0.9 um device also

exhibits very soft compression compared to the LRD = 0.3 um device. In addition, the PAE at the

3-dB compression point decreases with increasing LRD; for instance, the PAE at the 3-dB

compression point decreases from 47% for the shortest LRD device to 28% for the longest LRD

device (Fig. 3-9).

The different LRD devices also exhibit different RF induced biasing behavior; the shorter LRD

devices (0.3, 0.5 um) devices consistently experience a higher degree of self-bias than the longer

LRD (0.7, 0.9 um) devices as they are driven into compression (Fig. 3-10). For all device types, IG

increases dramatically as the gain approaches the 3-dB compression point despite key

differences in BVoff. The longer LRD is, the sooner the devices experience an increase in IG- This

is consistent with the premature compression of the long LRD devices.
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Fig. 3-9: Gain and PAE versus POUT for devices with Fig. 3-10: Drain and gate current versus POUT for

varying LRD at 12 GHz and VDD = 5 V, IDo = 100 devices with varying LRD at 12 GHz and VDD = 5 V, ID

mA/mm. = 100 mA/mm. The resolution of the gate current is 1
mA.
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3.1.3 Across VDD

We have studied in more detail the behavior of the shortest LRD (0.3 um) and longest LRD (0-9 ur)

device as a function of VDDat 12 GHz. In general, increasing VDD directly translates into a higher

PoUT,3-dB. The gain compression behavior is softer at higher VDD for the LRD = 0.9 um device than

the LRD= 0.3 urn device (Figs. 3-11 to 3-12). The PAE at the 3-dB compression point is

consistently higher for the LRD = 0.3 um device than the LRD = 0.9 um device; for instance, at VDD

= 6 V, it decreased from 41 % to 33% as LRD is increased from 0.3 to 0.9 um.
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A useful indicator of the physical mechanism dominating power saturation is the RF induced gate

current as a function of PIN. If reverse breakdown is dominating power saturation, IG will be

negative [23]. The gate breakdown mechanism places a fundamental limit upon the RF power

capability of the device by limiting the maximum swing of the drain voltage and current

waveforms. As the drain voltage waveform enters the breakdown voltage region, significant

waveform clipping occurs and IG increases rapidly as holes generated by impact ionization exit

the gate. The RF performance soon degrades, limiting the magnitude of the drain bias that can

be applied. On the other hand, if the drain bias is too low, power saturation will be dominated by

either forward conduction or the RF-IV curves hitting VDSSAT. If forward conduction occurs, we

expect that the sign of the RF induced IG will be positive; if the RF-IV curves are hitting VDSSAT, IG

will not rectify as the device enters saturation [23]. Rectification of IG is accompanied by a shifting

of the quiescent point, which occurs with a rise in ID. The rise in ID with RF drive is referred to as

the self-bias and generally increases as the device enters compression.

In general, as VDD is increased, the device experiences a higher degree of self-bias and higher

levels of IG due to a greater interaction with the breakdown voltage region. At VDD = 2 V, only a

very slight rise in IG or self-bias is observed for either the LRD = 0.3 or 0.9 um device (Figs. 3-13

and 3-14). Since the load line does not interact with the breakdown voltage at VDD = 2 V, it

makes sense that ID and IG did not change much from their respective DC levels. However, as

VDD increased to 4 and 6 V, the LRD = 0.3 um device (Fig. 3-13) experiences an increasing level

of degree of self-bias and IG than the LRD = 0.9 um device (Fig. 3-14). This is most likely

attributed to the lower BV 0ff of the LRD = 0.3 um device.

The next step is to compare POUT,3-dB for the different devices as a function of drain bias. At 8

GHz, the highest POUT,3-dB can be achieved with the LRD = 0.7 um device at VDD = 9 V due to the

higher allowable maximum VDD that is possible before the device degrades rapidly; however, a

higher POUT,3-dB could not be achieved with the LRD = 0.9 um device at a drain bias of 10 V (Fig. 3-
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15). At 12 and 16 GHz, the LRD = 0.5 um device yields the highest POUT,3-dB across drain bias

(Figs. 3-16 and 3-17). At these two frequencies, catastrophic burnout limited the maximum drain

bias that can be applied to the longer LRD devices. This will be explored in further detail in

Section 3.1.5. At 8 GHz, the LRD = 0.3 um device consistently exhibits higher PAE than the LRD =

0.9 um device across VDD (Fig. 3-18). At 12 and 16 GHz, the PAE at the 3-dB compression point

is very close for the LRD = 0.3 through 0.7 um devices while the longest LRD device consistently

exhibits the lowest PAE (Figs. 3-19 and 3-20).
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3.1.4 Across Frequency

If we consider the output power as a function of frequency, the steepness of the decline in POUT,3-

dB depends strongly on LRD (Fig. 3-21). The LRD = 0.3 um device experiences virtually no change

in POUT,3-dB when the frequency is increased from 8 to 16 GHz; however, a progressively larger

spread in POUT,3-dB is observed as LRD is increased. The spread is the largest for the LRD = 0.9 Ur

device, with POUT,3-dB decreasing from 18.3 dBm at 8 GHz to 16.8 dBm at 16 GHz. The steep

decline in POUT,3-dB device for the LRD = 0.9 uM is a anomalous feature that cannot be explained

by large signal models [8]. The drop in POUT,3-dB may be attributed to the extension of the

depletion region with increasing LRD as seen later in Section 3.2.4. There is a frequency

response associated with the mechanisms responsible for this extension of the depletion region

[24]. The exact nature of this behavior is highly dependent on the severity of surface states,

which we will explore in further detail in Section 5.4.
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Fig. 3-21: POUT,3-dB versus LRD at small signal bias Of VDD = 6 V and IDO = 100 mA/mm. POUT,3-dB for the
LRD =0.3 and 0.5 um do not fluctuate much with frequency. However, the 0.7 and 0.9 um devices
experience an increasingly larger drop in POUT,3-dB with increasing frequency.

3.1.5 Reliability Study

We are interested in defining what mechanism limits the maximum VDD that can be applied to the

devices under study. This is because the higher the VDD, the higher the power that can be

extracted from the device. In each load pull measurement plan, VDD was ramped starting at 2 V

and was increased in 1 V increments. The source and load impedances were optimized for PAE

at the 3-dB compression point. After a full RF characterization was performed at the target VDD

point, a verification measurement was performed at a benign bias of VDD = 2 V and IDO = 100

mA/mm at the initial optimized impedances after each load pull measurement to track the degree

of resultant degradation experienced by the device. As VDD is increased, the device experiences

increasing damage as evidenced in the change in VGS, gain, PAE, and POUT,3-dB. Although we do

not change the initial optimized impedances used for each verification measurement, these

impedance points no longer reflect the true optimum impedances at VDD = 2 V as the device

degrades. Ultimately, we found that the maximum VDD possible for each device is limited by

either excessive degradation or catastrophic burnout. The measurements shown here are from
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data taken at 8 and 16 GHz. Unfortunately, we were only able to collect verification data for the

LRD = 0.5 uM up to VDD = 4.5 V at 8 GHz due to probe problems.

3.1.5.a VT

As the device degrades during the VDD sweep, IDO Slowly increases and causes VGS to increase in

order to maintain the same 'DO as before. In other words, the threshold voltage VT shifts negative

as degradation is occurring. At 8 GHz, all four devices experience degradation evidenced by the

change in VT (Fig. 3-22). The onset of VT shift increases with increasing LRD and the maximum

allowable VDD is set by degradation for all of the devices under study. At 16 GHz, as LRD

increases from 0.3 to 0.5 um, the onset of degradation is also postponed due to the increase in

BVOFF. However, when LRD is increased to 0.7 and 0.9 um, the device suddenly experiences

catastrophic burnout (as indicated by the black symbols shown in Fig. 3-23) before they reach the

same level of maximum VGS degradation observed for the smaller LRD devices and at 8 GHz. The

different limiting factors for attaining maximum VDD for the long LRD devices at 8 and 16 GHz imply

that these mechanisms are frequency dependent.
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Fig. 3-22: Difference between initial VGS measurement at 2 V needed to maintain IDO = 100 mA/mm and

subsequent gain measurements at 2V following measurements at higher VDD indicated on the x-axis at 8
GHz.
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subsequent gain measurements at 2V following measurements at higher VDD indicated on the x-axis at 16
GHz. The black marks indicate catastrophic burnout for the LRD = 0.7 and 0.9 um devices.

3.1.5.b POUT,3-dB

Fig. 3-22 tracks the degradation of POUT,3-dB with increasing VDD as the device is being slowly

damaged by the invasive load pull procedure at 8 GHz. Due to its lower BVoff, the LRD = 0.3 ur

device experiences a sharp decrease in POUT,3-dB as VDD approaches 6 V. The longer LRD

devices appear more robust than the LRD = 0.3 um device, with the LRD = 0.9 um device showing

relatively little fluctuation in PoUT,3-dB up to VDD = 10 V. For all four devices at this frequency, the

maximum allowable VDD centers the operating point between VDS,SAT and BVff and is given by

[25]:

VDD (VDSSAT + BV,/2

At 16 GHz, the LRD = 0.3 and 0.5 um devices experience a sharp drop in POUT,3-dB when VDD

becomes high enough (Fig. 3-25). Consequently, it is not possible to attain a higher POUT,3-dB with

a higher VDD. On the other hand, the LRD = 0.7 and 0.9 um devices have very little variation in
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POUT,3-dB at voltages where the LRD = 0.3 and 0.5 um devices are experiencing sharp degradation.

Hence, it was surprising to find that they burned out during the load pull optimization at VDD = 8 V.

Even when the optimization was performed on virgin long LRD devices on different chips at VDD =

8 V, they still burnt out during the load pull procedure. This leads us to believe that this effect is a

universal problem for longer LRD devices at higher frequencies.
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Fig. 3-24: Difference between initial POUT,3-dB verification measurement at 2 V and subsequent PouT,3-

dB measurermzents at 2V following measurements at higher VDD indicated on the x-axis at 8 GHz.
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Fig. 3-25: Difference between initial POUT,3-dB verification measurement at 2 V and subsequent
POUT,3-dB measurements at 2V following measurements at higher VDD indicated on the x-axis at 16
GHz. The black marks indicate catastrophic burnout for the LRD = 0.7 and 0.9 um devices.
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3.1.5.c Gain

Similar to the trends shown in the POUT,3-dB measurements, the devices suffer a decrease in gain

as they are being slowly damaged by the load pull measurement at higher VDD. At 8 GHz, the LRD

= 0.9 um device seems to be the most robust of the group; the longer LRD is, the less the gain

drops for a given VDD (Fig. 3-26). At 16 GHz, the LRD = 0.3 um device first experiences a

decrease in gain at VDD = 4 V (Fig. 3-27). The LRD = 0.5 um device also experiences a decrease

in gain but in a less steep fashion than the LRD = 0.3 um device. Finally, the gains of the LRD

0.7 and 0.9 um devices do not fluctuate more than 0.1 dB before they burn out during the

optimization performed at VDD = 8 V.
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Fig. 3-26: Difference between initial gain verification measurement at 2 V and subsequent gain

measurements at 2V following measurements at higher VDD indicated on the x-axis at 8 GHz.
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Fig. 3-27: Difference between initial gain verification measurement at 2 V and subsequent gain

measurements at 2V following measurements at higher VDD indicated on the x-axis at 16 GHz. The black

marks indicate catastrophic burnout for the LRD = 0.7 and 0.9 um devices.
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3.1.5.d PAE

At 8 GHz, the devices show large fluctuations in PAE (±5%) that are most likely due to poor

contact between the probes and pads, making it difficult to distinguish a trend (Fig. 3-28). These

probing issues were resolved by the time we took the 16 GHz measurements. At 16 GHz, the

PAE decreases from its nominal value as the device degrades from load pull measurements

performed at successively higher VDD (Fig. 3-29). The LRD =0.3 and 0.5 um devices begin to

show an increase in APAE starting at VDD = 4 V while the LRD = 0.7 um device shows little

fluctuation before burnout at VDD = 8 V. Strangely enough, the APAE for the LRD= 0.9 um device

appears to increase as high as 5% as VOD goes from 2 to 4.5 V; the large fluctuation is most likely

due to a bad initial reading at VOD = 2 V. The low lG resolution of 1 mA may also contribute to the

rough APAE readings.
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Fig. 3-28: Difference between initial PAE verification measurement at 2 V and subsequent PAE

measurements at 2V following measurements at higher VDD indicated on the x-axis at 8 GHz.
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Fig. 3-29: Difference between initial PAE verification measurement at 2 V and subsequent PAE
measurements at 2V following measurements at higher VDD indicated on the x-axis at 16 GHz. The black
marks indicate catastrophic burnout for the LRD = 0.7 and 0.9 um devices.

3.2 Small Signal Measurements

The ability to model and simulate the small signal characteristics under a wide range of biases is

essential to understanding the operation and device physics of the PHEMT. Physical models that

predict the Y-parameters of PHEMTs can be used for designing better PHEMTs; for instance,

understanding the behavior of fT vs. bias is important for finding the optimum bias point. Using

the procedure described in Chapter 2, we have extracted an equivalent circuit model using S-

parameters measured between 0.05 to 40 GHz. This technique has allowed us to extract

extrinsic elements at fixed bias points under "short" and "open" conditions and intrinsic elements

at the operating bias.
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3.2.1 Equivalent Circuit Extraction

Each element of the small signal equivalent circuit model provides insight into the operation of the

PHEMT (Fig. 2-6). The transconductance gm represents the multiple conductive paths (i.e.

InGaAs channel, AIGaAs spacer, etc.) that are possible in the device structure. The output

resistance Rds is the inverse of the output conductance gds, which is the incremental change in ID

with respect to VDD while VGS is held constant. The delay time Tt represents the intrinsic delay

for the electrons to traverse underneath the gate and across the depletion region on the drain

side of the device. The gate-to-source capacitance CGS represents the depletion region under the

gate and channel carrier concentration, which depends on VGS and lateral channel potential, and

is connected to the channel by a resistance R. The gate-to-drain capacitance CGD represents the

coupling between the gate and drain. Lastly, the drain-to-source capacitance CDS is

representative of the multiple paths of electron conduction within the device structure. Extrinsic

inductances Ls, LG, LD and extrinsic resistances Rs, RG, and RD are included to model the gold

bonding pads. In addition, extrinsic package capacitances between the gate electrode and

source substrate and drain electrode and source substrate are modeled by CPG and CPD,

respectively.

Equivalent circuit extraction was performed at ID = 100 mA/mm and VDD = 3, 5, and 7 V for all

four devices with LRD varying between 0.3 and 0.9 um. In regard to accuracy, the extraction of

the five main intrinsic parameters of the LRD = 0.3 um device (CGS, CGD, CDS, gm, gds) are the most

accurate because the associated simulated Y-parameters are in good agreement with the

experimental data (Figs. 3-30 to 3-33). As LRD increases, it becomes more difficult to maintain

the accuracy in fit at high frequencies using the same equivalent circuit model and optimization

weights. The comparison between measured and modeled Y-parameters for the LRD = 0.9 um

device is shown in Figs. 3-34 to 3-37.
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Fig. 3-30: Comparison between measured and modeled Y11 for the LRD = 0.3 um device at VDD = 5 V and

IDO = 100 mA/mm.
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Fig. 3-31: Comparison between measured and modeled Y12 for the LRD = 0.3 um device at VDD = 5 V and

IDo = 100 mA/mm.
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Figs. 3-38 to 3-41 shows the evolution of the small signal parameters Ls, LD, LG, Rs, RD, RG, CPG,

and CPD versus LRD at VDD = 3, 5, and 7 V and ID = 100 mA/mm. The extrinsic inductances and

resistances are independent of bias, with the exception of RD, which tends to increase with

increasing LRD.

The intrinsic small signal elements exhibit both positive and negative trends for microwave

performance as a function of varying LRD- CGD decreases monotonically with increasing LRD,

which is beneficial to fT (Fig. 3-42). Effects detrimental to microwave performance include the

increase in CGS with increasing LRD (Fig. 3-42). The rise in CGS seems to increase with the

extension of the depletion region on the drain side with increasing LRD, which will see in the next

section [16]. Additionally, the increase in CGs may also be attributed to the drain contact being

effectively more isolated from the channel with increasing LRD, therefore increasing the gate-

channel coupling through the source [26]. We also observe that CDs remains relatively constant

(Fig. 3-43) and gm decreases with increasing LRD, which is accounted for in Section 5.4 (Fig. 3-

44). For all devices, 't increases slightly with increasing LRD (Fig. 3-44), which is also correlated

with decreasing f-r and is also discussed in further detail in section 3.2.2. A favorable effect of

increasing LRD is the decrease in gds (Fig. 3-45).

3.5 - - - 3.0

3.0 2.5
2.55
2.20 2.0

2 - 1.5 2
1.51

1.0
1.0 -+-Vds=3V 

-- Vds=5V 0.5
0.55

0.0 Vds = 7 V

0.0 0.0

0.3 0.5 0.7 0.9

LR [umI

Fig. 3-38: Series resistance Rs and gate resistance
RG for devices with varying LRD at VDD = 3, 5, and 7 V
and IDO = 100 mA/mm.
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Fig. 3-39: Drain resistance RG and inductance LD for
devices with varying LRD at VDD = 3, 5, and 7 V and IDO
= 100 mA/mm.
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Fig. 3-42: Gate-to-source capacitance CGS and gate-to-
drain capacitance CGD for devices with varying LRD at
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Fig. 3-41: Pad-to-gate parasitic capacitance CPG for
devices with varying LRD at VDD = 3, 5, and 7 V and IDO

100 mA/mm.
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3.2.2 fT

The short-circuit current-gain cut-off frequency fT was extracted from de-embedded S-parameter

measurements (Fig. 3-46). For all devices, fT increases rapidly with increasing drain voltage

when VDD is below VDS,SAT; however, as the devices begin to operate in the saturation region, fT

peaks and begins to decline as VDD is increased. The longer LRD is, the steeper the drop in fT.

For the LRD = 0.3 um device, fT remains relatively flat as VDD increases to 7 V. On the other hand,

the LRD = 0.9 um device experiences a steep drop with increasing VDD; fT drops by nearly half

from VDD = 0.9 V to 7 V.

LRD directly affects the behavior of fT vs. VDD because a longer LRD translates to a longer depleted

cap layer. This in turn can lead to a drastic degradation of fT at high VDD [27]. The LRD= 0.3 um

device exhibits behavior that is closely correlated to a PHEMT with a partially depleted cap, which

is desirable for RF power operation. As LRD increases to 0.5 um, the cap layer becomes

increasingly depleted. When LRD is increased further to 0.7 and 0.9 um, the effects of deep

surface depletion are evident in the drop in peak fT and steeper decline in the fT characteristic

with increasing VDD-
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Fig. 3-46: fT versus VDD for devices with varying LRD and IDO = 100 mA/mm.

3.2.3fmax

The maximum frequency of oscillation fmax was extracted from S-parameter measurements for

devices with varying LRD (Fig. 3-47). In general, across the range of VDD measured, the smallest

LRD device has the smallest fmax while the largest LRD device has the largest fmax. Unlike the large

variation observed in the fT measurements, the spread in frequency for all of the fmax

measurements is relatively small at approximately 10 GHz. For all of the devices under study, it

is remarkable that fmax stays relatively constant while f-r decreases sharply across VDD. The

reason for this behavior can be attributed to the fact that the gm/gds ratio increases with increasing

LRD. Although gm was shown to decrease with increasing LRD, 9ds decreases at a faster rate and

hence offsets the decrease in f-r at a given VDD [281. For instance, at VDD = 5 V, the gm/gds ratio

nearly doubles from 20.2 to 37.9 when LRD is increased from 0.3 to 0.9 um. The same trends in

gm/gds are also observed at VDD = 3 and 7 V; hence, similar behavior in f max is shown by the data

obtained from the equivalent circuit models extracted at VDD = 3 and 7 V in Section 3.2.1.
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Fig. 3-47: fmax versus VDD for devices with varying LRD and IDO = 100 mA/mm.

3.2.4 Delay Time Analysis

The total delay t is extracted from the as-measured S-parameters and is increasing as a function

of 1 /lD due to the presence of the parasitic delay Tpar, defined as r - Tint (Fig. 3-48). To prevent Tpar

from affecting the extrapolation of the drain delay -ttr,d, we must de-embed the extrinsic elements

and pad parasitic capacitances to extract the intrinsic delay lint. From Fig. 3-48, cint only slightly

increases with 1/D, which indicates that it still contains the channel charging time tcc as predicted

by Moll [21]. Using Moll's method of extrapolating Tint, Icc is the source/drain charging time

associated with the parasitic resistance and capacitance in the access region. For the devices

under study, it is largely negligible compared to tpar.

Fig. 3-49 shows the evolution of the Tint with increasing VDS for devices with varying LRD and is the

sum of ttr,i and 'rtr,d. The minima Of Tint can be interpreted as tr,i, which represents the transit of

electrons under the gate, and the difference between Tint and Ttri with increasing VDD represents

Ttrd, which is associated with the extension of the depletion region on the drain side [29]. Since

the gate length is 0.25 um, we expect that ttr,i is the same for all four devices. As VDS increases,
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ttrd increases for each device. In addition, Ttrd increases considerably as LRD is increased with

Ttr,d of the LRD = 0.9 um device approximately 1 ps longer than the LRD = 0.3 urn device at VDD= 4

V.

The sharp increase in ttrd suggests that the depletion region is extending farther toward the drain

with increasing LRD, which is the most significant finding of the delay time analysis. Due to traps

in the gate-drain region (see Section 5.4), the depletion region cannot respond instantaneously to

microwave frequencies. The additional delay shown by the longer LRD devices may explain why

POUT degrades more rapidly with these devices at higher frequencies. Additionally, this behavior

will also translate to a higher drain resistance and VDS,SAT under RF operation [25].
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Fig. 3-48: Total and intrinsic delay versus 1/ for a LRD = 0.5 urn device. To obtain the smallest Tint, VGS was
chosen to be -0.2 V.
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Fig. 3-49: Intrinsic delay time tint versus Vos for a LRD = 0.5 um device with gate length of 0.25 um. To

obtain the smallest tint, VGS Was chosen to be -0.2 V.

A comparison of the small signal equivalent circuits extracted from S-parameters revealed key

differences between the intrinsic elements with increasing LRD: an increase in CGS, Tint, and RDS

and a decrease in CGD and gm. The decrease in gm and increase in CGs directly translate to a

decrease in fT with increasing LRD. However, an increasing gm/gds ratio with LRD causes fmax to

remain relatively constant across LRD.
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3.3 Conclusions

At 8 GHz, the LRD = 0.7 urn device delivered the highest POUT,3-dB at VOD = 9 V while at 12 and 16

GHz, the LRD = 0.5 urn device delivered the highest POUT,3-dB at VDD = 8 V. From the verification

measurements, it appears that the longer LRD (0.7, 0.9 um) devices are the most robust out of the

group at 8 GHz. However, at 12 and 16 GHz, the longer LRD (0.7, 0.9 um) devices are much less

robust than the shorter LRD (0.3, 0.5 um) devices during large signal operation and are

susceptible to catastrophic burnout. In Chapter 5, we will explore the role of oscillations in the

unexpected catastrophic burnout of these long LRD devices at moderate VDD. As LRD increases,

we have also seen that POUT,3-dB decreases at a steeper rate with frequency. We find that this is

due to the degradation in high-frequency characteristics that arises from an extension of the drain

depletion region with increasing LRD and that they may be frequency dependent mechanisms

associated with it.

A comparison of the small signal equivalent circuits extracted from S-parameters revealed key

differences between the intrinsic elements with increasing LRD: an increase in CGS, Tint, and RDS

and a decrease in CGD and gm. The decrease in gm and increase in CGS directly translate to a

decrease in fT with increasing LRD. However, an increasing gm/gds ratio with LRD causes fmax to

remain relatively constant across LRD.
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Chapter 4: Impact of LRD on Device Stability

We have investigated the stability of the different LRD devices under DC and RF operation. The

LRD = 0.7 and 0.9 um devices have exhibited anomalous behavior relating to stability that have

appeared in the form of NDR, positive 1S221, negative gds, output spectra under DC conditions,

and large unstable regions shown by the stability circles. Since the stability has a profound

impact on the large signal characteristics, it is important to understand the different ways

oscillations manifest themselves and the conditions under which they occur.

4.1 DC Measurements

We have discovered anomalous behavior in the DC characteristics of the devices that is

exacerbated by increasing LRD and is most likely due to device instability. This behavior may be

responsible for the premature burnout of devices with LRD = 0.7 and 0.9 urn that was found in

Chapter 3.

4.1.1 NDR in the Output Characteristics

A comparison between the output characteristics of the different LRD devices reveals dramatic

differences in the forward biased gate region as a function of LRD (Fig. 4-1). In general, for VDS>

1.5 V and VGS > 0 V, a prominent negative differential resistance region (NDR) is seen in the

output characteristics of the devices with LRD = 0.7 and 0.9 um. To ensure that the NDR

originates from the device and not the experimental setup, the output characteristics were

measured in a 50 Q environment to prevent circuit instability.
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Fig. 4-1: Output characteristics of different LRD devices. VGS = -0.8 to 0.8 V in 0.2 V increments.

The NDR appears to be a function of both VGS and VDS, which seem to indicate that it could be

potentially due to real space transfer (RST) of carriers from the InGaAs channel to the AIGaAs

donor layer as a result of thermionic emission at high drain fields and thermally assisted tunneling

at high gate fields followed by electron extraction by the gate [30]. Phenomena concurrent with

real space transfer have been reported to be excess gate current due to hot electrons resulting

from impact ionization [31], gate-controlled NDR in the drain current [9], and high frequency, high-

field instability [32]. However, for the longest LRD device, a decrease in 'D is not simultaneously

accompanied by an increase in IG, the hallmark of RST (Fig. 4-2). Other studies reporting RST

have shown that as VDS is lowered, a higher VGS is required for the onset of NDR and beyond a

high enough VGS, no NDR is observed [33, 34]. These trends in NDR were also observed in the

long LRD devices.

The appearance of NDR in the LRD = 0.7 and 0.9 um devices is significant because it could

potentially be related to the catastrophic burnout of these devices at high VDs and high frequency.

Since the load line may pass through the NDR region, anomalous behavior in this region will

affect the large signal characteristics. This warrants a thorough investigation into the anomalies
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Fig. 4-2: IG and lD VS. VDS for the LRD = 0.9 um device at VGS = 0.6 V.

that have been observed in other aspects of the DC and RF characteristics of the long LRD

devices. For the rest of this chapter, we explore anomalous behavior in the characteristics of the

long LRD devices that might be associated with the NDR observed in the output characteristics

and the appearance of oscillations.

4.1.2 Impact Ionization in the Transfer Characteristics

At a given bias voltage, as LRD is reduced, the peak electric field becomes larger in the drain-gate

region. When the electric field in a semiconductor is increased above a certain value, the carriers

gain sufficient energy to generate electron-hole pairs by impact ionization. While the electrons

are accelerated toward the drain by the high drain-gate field, the generated holes flowing toward

the source may surmount the valence band discontinuity and form a negative gate current as they

are collected by the gate electrode. Since the maximum VDG possible for a device increases with

LRD, we expect that the impact ionization rate would decrease with increasing LRD-
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To explore the role of impact ionization, we have measured the transfer characteristics to

compare the behavior of Al gate devices with different LRD at several values of VDS (Figs. 4-3 to 4-

5). The bell-shaped IG-VGS curve is a classic characteristic of impact ionization. Impact ionization

appears to decrease as LRD is increased from 0.3 to 0.5 um but then begins to increase as LRD is

increased from 0.5 to 0.7 and 0.9 um at VDS = 6 V (Fig. 4-3). However, impact ionization

appears to be slightly less for the LRD = 0.7 um than the LRD = 0.5 um device when VDS is
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VGS M

0

-+- Lrd=0.3 um
+ Lrd=0.5 um

-+- Lrd=0.7 um

- Lrd=0.9 um
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Fig. 4-3: IG Vs. VGS at VDS = 6 V for devices with different LRD.
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Fig. 4-4. IG Vs. VGS at VDS = 6.5 V for devices with different LRD.
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Fig. 4-5. IG Vs. VGS at VDS = 7 V for devices with different LRD-

increased to 6.5 V (Fig. 4-4). At high enough VDS, the impact ionization is clearly less for the LRD

= 0.7 urn device than the LRD = 0.5 um device, although the LRD = 0.9 um device consistently

displays a higher level of impact ionization regardless of VDS (Fig. 4-5). This anomalous increase

in impact ionization is most likely attributed to oscillations that appear in the NDR region of the

output characteristics. With the rapid increase in IG with VGS, it is unlikely that the increase in

impact ionization is a true phenomenon for the longer LRD devices.

4.2 POUT under DC Conditions

If oscillations exist, RF power will appear at the output of the device in the absence of RF drive.

To examine the occurrence of oscillations in the devices under study, we have used a power

meter to monitor the amount of reflected power at the output of the devices under DC conditions.

In an ideal PHEMT, when VDS is increased to approximately VDS,SAT, POUT increases from the

noise floor and plateaus off to a constant level depending on the VGS applied. This constant level

represents the noise generated in the channel as a result of conduction. Under normal

conditions without the presence of oscillations, the output power should remain constant when

the device is operated in the saturation regime.
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Normal behavior is shown for the LRD = 0.3 um device in the NDR region (Fig. 4-6). However, as

LRD is increased, we begin to observe the increasing presence of anomalous behavior as soon as

the device enters saturation. For the LRD = 0.5 um device, POUT exhibits spikes when VGS = 0 and

a slight increase when VGS = 0.4 V and VDS is between 2-5 V (Fig. 4-7). As LRD is increased

further to 0.7 and 0.9 um, the degree of reflected power becomes very high. When VGS is

between 0.2 and 1.0 V, the LRD= 0.7 um device outputs power as high as -22 dBm (Fig. 4-8).

The LRD= 0.9 um device is capable of producing even higher output power for all values of VGS;

at VDS = 1.7 V, VGS = 0.4 V, the output power was -10 dBm (Fig. 4-9).

l-1 -n-----
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Vgs 1.0 V
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Figure 4-6: Output power vs. VDs for Al gate device with LRD = 0. 3 ur
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Figure 4-7: Output power vs. VDS for Al gate device at LRD = 0.5 uM
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We have mapped out the presence of anomalously high reflected power on the output

characteristics for the LRD= 0.7 and 0.9 um devices (Figs. 4-10 and 4-11). For both devices, they

occur primarily within the NDR region.
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Figure 4-10: Presence of reflected power (red X's) mapped against the output characteristics of the

LRD = 0.7 um device. VGS is from -0.8 to 0.8 V stepped in 0.2 V increments.
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Figure 4-11: Presence of reflected power (red X's) mapped against the output characteristics of the

LRD = 0.9 urn device. VGS is from -0.8 to 0.8 V stepped in 0.2 V increments.
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4.3 Spectrum Analyzer

In addition to the NDR in the DC I-V curves, oscillations have been observed at microwave

frequencies when VGS is forward biased. To analyze the frequency dependence of the spurious

signals, we attached an Agilent 8595E spectrum analyzer to the RF terminal of the output bias

tee and measured the output spectra up to 6.5 GHz. For maximum visibility of the spectra, the

resolution bandwidth, which affects how closely a small signal can be seen in the presence of a

large one, was 3 MHz and the video bandwidth, which determines the stability of the signal, was

1 MHz. If no oscillations are present, POUT should be at the noise floor (approximately -60 dBm)

throughout the entire frequency scan.

For all four devices, the negatively biased gate region did not exhibit oscillations. The forward

biased gate region, particularly within the NDR region for the longer LRD devices, revealed

different behavior among the different LRD devices. Aside from the spurious signal at 0 GHz that

is present in all of the measurements due to the instrumental settings, the shorter LRD devices

(0.3, 0.5 um) did not exhibit any anomalous output spectra (Fig. 4-12).

10:54:25 AUG 27, 2004
4f7
REF .0 dBm AT 10 dB
PEAK
LOG
0.

dB/

RES BW
1.R MHz

Fig. 4-12: Snapshot of the spectrum analyzer display for the LRD = 0.5 urn device at Vos = 4 V and VGS=
0.6 V.

72



Output spectra were examined outside and within the NDR region for the longer LRD devices (0.7,

0.9 urm). For the LRD = 0.7 um device, no anomalous output spectra were observed at forward

biased gate voltages; there was no difference between the spectral output within and outside the

NDR region (Fig. 4-13). However, the LRD = 0.9 um device burst into oscillations as soon as it

entered the saturation region, with prominent spurious signals clearly shown at 3.9 and 4.4 GHz

(Fig. 4-14). In fact, for all values of VGS, spurious signals were consistently present at

approximately 0.5, 3.9, and 4.4 GHz.
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Fig. 4-13: Output spectra of the LRD = 0.7 urn device within the NDR region (VDS = 2.0 V, VGS

0.8 V) and outside the NDR region (VDS = 4.0 V, VGS = 0.4 V).
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Fig. 4-14: Output spectra of the LRD = 0.9 urn device within the NDR region (VDS = 2.5 V, VGS

0 V) and outside the NDR region (VDS = 2.25 V, VGS = 0.6 V).
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The frequencies at which oscillations appear may give a clue to their origin. For the LRD = 0-9 uM

device, Figs. 4-15 to 4-18 track the difference between the output power of the spurious signal

and the noise floor at a constant value of VGS. No spurious signals were seen at VGS = 0 V.

When VGS = 0.2 V, only three spurious signals were observed of relatively slight but varying

magnitude depending on VDS (Fig. 4-15). However, when VGS is increased to 0.4 V (Fig. 4-16)

and 0.6 V (Fig. 4-17), the output spectra contains many more signals at different frequencies.

Depending on VDS, the magnitudes of the oscillations at various frequencies vary in magnitude.

When VGS =0.8 V, the presence of spurious signals drops dramatically but gradually increases at

VDS approaches 3.75 V (Fig. 4-18).
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Fig. 4-15: Difference between POUT and noise floor for the LRD = 0.9 urn device at VGS = 0.2 V

30

25
-- f = 0.455 GHz

20 --- f = 0.553 GHz
-a-f = 0.958 GHz

15 -*- f = 2.4 GHz015 2;
C.-L f = 3.9 G Hz

-4-f = 4.4 GHz
O 10 --- f = 4.9 GHz

f = 5.4 GHz

5

0
1.5 2 2.5 3 3.5 4

vDS [v]

Fig. 4-16: Difference between POUT and noise floor for the LRD = 0.9 Urn device at VGS = 0.4 V
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Fig. 4-17: Difference between POUT and noise floor for the LRD = 0.9 um device at VGS = 0.6 V
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Fig. 4-18: Difference between POUT and noise floor for LRD = 0.9 um device at VGS = 0.8 V
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It is possible that the oscillations may be due to the Gunn effect, which has been observed in

Gunn diodes and some GaAs MESFETs with long drift regions [35]. However, the appearance of

spurious signals at many frequencies indicates that this may not be the case. Gunn domains are

typically characterized by a constant transit time that is determined by the geometry of the high

field region and velocity of the domain and does not vary much with VDS [36]. In addition, we can

rule out the possibility of the kink effect as the source of NDR because it is related to trapping and

plays no role at microwave frequencies [37].

To summarize the results of our spectral analysis, we have mapped our findings at each

measured bias point against the output characteristics of the LRD = 0.9 um device, the only device

under study to exhibit such behavior (Fig. 4-19). Multiple spectra at the output of the device

were observed frequently throughout the NDR region and lend significant evidence to the

existence of oscillations.
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Fig. 4-19: Summary of the occurrence of output spectra in the forward biased gate region of the LRD

0.9 um device. VGS is from -0.8 to 0.8 V in 0.2 V increments.
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4.4 S-parameter Analysis

The S-parameters of the LRD = 0.7 and 0.9 um devices were measured in the NDR region from

0.05 to 40 GHz. The S22 of a two-port PHEMT, with the gate defined as the first port and the

drain defined as the second port, represents the ratio between the reflected and incident power at

the drain with the gate terminated at 50 n. In a two port network, oscillations are possible when

either the input or output port present a negative resistance. This situation occurs for a unilateral

device (defined as a transistor with S12 equal to zero) when ISiiI> 1 or IS2 21 > 1. When S22 is

greater than unity, an amplified RF signal is delivered to the drain.

The LRD = 0.7 um device exhibited IS221 > 1 when VDS = 2 V and VGS = 0.4 V (Fig. 4-20). The LRD

= 0.9 um device also experienced S221> 1 under certain bias conditions and a higher degree of

instability; when VDS ranges from 2 to 3.25 V, IS2 2 1 is larger than unity depending on VGS (Fig. 4-

21). However, when VDS is lower than 2 V or greater than 3.25 V, 1S221 is always less than one.

' 1

V, -t 2 V I

VGS 0. 4 V

VGS = 0.6 V
V = 0.8 V

V1=

V8 4V

Fig. 4-20: S22 of the LRD = 0.7 urn device at different bias points.

77



P1=1

V0 s = 15V a

VDS=a 3.25 V
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VDS= 4 V

Fig. 4-21: S22 of the LRD = 0.9 urn device at different bias points.

To obtain a better idea of the behavior of the NDR versus bias, we have plotted the magnitude of

S22 against VDs for the LRD =0.9 urn device at 6 GHz (Fig. 4-22). The figure indicates that 1S221

peaks at VDS = 2 V and decreases as VDS is increased to 4 V. When VGS = 0.6 V, the device

experiences its highest degree of instability. As 1S221 becomes higher, the data points become

more scattered as the instability increases. Despite the frequent occurrence of 1S221 > 1, JiiIl did

not change much with bias within the NDR region, indicating that the instability exists within the

output (or drain) circuit. These problems with stability may have to be accommodated or

prevented for short gate length, high power PHEMTs [331.
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Fig. 4-22: IS221 of the LRD = 0.9 urn device at 6 GHz as a function of VDs.

We have summarized our findings and compared them to their respective locations in the positive

VGS region of the output characteristics (Figs. 4-23 and 4-24). In the NDR region, the LRD = 0-9

um device exhibits many more occurrences of IS2 2 1> 1 than the LRD = 0.7 um device. Since the

NDR region encompasses a much larger region of the output characteristics for the LRD = 0-9 um

device than the LRD= 0.7 um device, these observations make sense.
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Fig. 4-23: Summary of |S221 behavior in the forward biased gate region of the LRD = 0.7 um device. VGS is from
-0.8 to 0.8 V in 0.2 V increments. Red X: |S221 > 1, Blue X: 1S221 < 1.
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Fig. 4-24: Summary of 1S221 behavior in the forward biased gate region of the LRD = 0.9 um device. VGS is from

-0.8 to 0.8 V in 0.2 V increments. Red X: |S221> 1, Blue X: |S 221 < 1.

4.5 Negative gds

The intrinsic S-parameters were converted to Y-parameters [38] and analyzed at forward gate

voltage biases. For a typical low-noise device at low frequencies (less than 5 GHz), the output

conductance gds is the real part of Y22 [18]. At low frequencies (<10 GHz), gds remains positive for

the LRD = 0.3 um device regardless of bias (Fig. 4-25). However, for the LRD = 0.9 um device,

there is a strong correlation between negative gds and the existence of a NDR region. For

instance, when VGS = 0.4 V, gds remains negative until VDS = 4.0 V and the device is no longer in

the NDR region (Fig. 4-26). When VGS = 0.8 V, gds is mostly positive for all values of VDS (Fig. 4-

27). This effect significantly affects the magnitude of S22, which was discussed in the previous

section.

Figs. 4-28 and 4-29 summarize our results regarding gds for the LRD = 0.7 and 0.9 um devices.

The appearance of negative gds exists within the NDR region of the output characteristics and

indicates anomalous behavior. The occurrence of negative gds is much more prevalent with the

LRD = 0.9 um device than the LRD = 0.7 um device.
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Fig. 4-25: gds versus frequency for the LRD= 0.3 um device at VGS =0.2 V.
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Fig. 4-26: 9ds versus frequency for the LRD = 0.9 um device at VGS = 0.4 V.
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Fig. 4-27: gds versus frequency for the LRD = 0.9 um device at VGS = 0.8 V.
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Fig. 4-28: Summary of gds behavior in the forward biased gate region of the LRD 0.7 um device.

VGS is from -0.8 to 0.8 V in 0.2 V increments. Red diamond: gds < 0, blue diamond: gds > 0.
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Fig. 4-29: Summary of gds behavior in the forward biased gate region of the LRD = 0.9 um device.

VGS is from -0.8 to 0.8 V in 0.2 V increments. Red diamond: gds < 0, blue diamond: gds > 0.
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4.6 Stability Circles

When the two-port network in Fig. 4-30 is potentially unstable, passive source and load

terminations exist that can produce input and output impedances with a negative real part. These

values of Fs and FL can be determined via a graphical procedure that maps the location of the

stability circles. This graphical analysis is useful in the analysis of potentially unstable transistors.

ES FIN FOUT FL

zs

Es Two port network ZL

ZIN ZOUT

Fig. 4-30: Stability of a two-port network.

First, the circular regions where Fs and FL can produce FINI = 1 and FOUTI = 1 must be

determined. The radii and centers of these circles are given by [39]:

FL values for |WFIN| = 1 (Output Stability Circle):

Sus
rL= 1 21 (radius)

Sa - -
I22

CL= S2 2 - AS (center)
L S 2 2 - A1

r's values for |IFouT| = 1 (Input Stability Circle):

r1= 21 (radius)
2L::::: jf JAL
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= (S 2 2 -AS* 1
L 1 1

2 - A12 (center)

where A = S,1 S2 - S12S21. With the S-parameters of a two-port device at one frequency, the

stability circles can be plotted out on the source and load planes and the set of values

corresponding to IFINI = 1 and IFoUTI = 1 can be obtained. On one side of the source stability

circle boundary, we will have IFINI < 1 and on the other side IFINI > 1. Likewise, on one side of

the load stability circle boundary, we will have IFOUTI < 1 and on the other side IFouTI > 1.

We have computed the stability circles of the LRD= 0.7 and 0.9 um devices at 6 GHz at bias

points within the NDR region. Within these stability circles exist regions of instability. The LRD

0.7 um device does not show stability circles that contain the 50 K point. At VGS = 0.4 and 0.6 V,

the load stability circle for the LRD = 0.9 um device takes up half of the load plane and contains

the 50 Q point (Fig. 4-31). In addition, the VGS = 0.6 V source stability circle begins to intrude

further into the Smith Chart. As we continue to increase the gate bias to VGS = 0.8 V, the device

appears much more stable because the source and load stability circles are now almost outside

of the Smith Chart.

Source stability circles Load stability circles

Fig. 4-31: Stability circles at 6 GHz for the LRD = 0.9 urn device at VoS = 4.0 V and different VGS. Red: VGS

0 V, Blue: VGS = 0.2 V, Magenta: VGS = 0.4 V, Cyan: VGS = 0.6 V, Green: VGS = 0.8 V.
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Figs. 4-32 and 4-33 summarize our results at each bias point measured for the LRD = 0.7 and 0.9

um devices, respectively. The bias points where potential instability is observed (i.e., when the

unstable region of the stability circles includes the 50 Q point) are confined primarily to the NDR

region of the output characteristics.
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Fig. 4-32: Summary of stability behavior as determined by the stability circles in the forward biased gate

region of the LRD = 0.7 um device. VGS is from -0.8 to 0.8 V in 0.2 V increments. Blue triangle: stable.
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Fig. 4-33: Summary of stability behavior as determined by the stability circles in the forward biased gate

region of the LRD = 0.9 um device. VGS is from -0.8 to 0.8 V in 0.2 V increments. Blue triangle: stable, red

triangle: potentially unstable.
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4.7 Conclusions

Our results shown so far provide ample and definitive evidence that the NDR region of the output

characteristics of the long LRD devices is strongly correlated with the presence of oscillations and

other anomalies. The results of all measurements for the LRD = 0.7 and 0.9 devices are

summarized in Figs. 4-34 and 4-35. The appearance of oscillations is much stronger in the LRD

0.9 um device than the LRD = 0.7 um device due to its larger NDR region.

First, we observed significant levels of POUT above the noise floor under DC conditions as LRD

was increased from 0.3 to 0.9 um. Second, we detected numerous oscillation frequencies in the

NDR region via a spectrum analyzer connected to the output of the LRD = 0.9 um device. Third,

we found that IS221 > 1 in the NDR regions of the LRD = 0.7 and 0.9 um devices, causing an

amplified RF signal to be reflected into the drain electrode. Through examination of the Y-

parameters, we found that gds was negative when IS2 21 > 1 for the two aforementioned devices.
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Fig. 4-34: Two affirmative criteria for oscillations plotted against the output characteristics of the LRD = 0.7

um device. X: IS2 21> 1, diamond: negative gd.. VGS is ramped from -0.8 to 0.8 V in 0.2 V increments.

86



VGS = 0.8 V

40D

00

<fVGS 0 V

V, -0.6 V

0 075 1.5 225 3 375 45

VDS [V

Fig. 4-35: Four affirmative criteria for oscillations plotted against the output characteristics of the LRD 0-9

um device. X: IS22 1> 1, diamond: negative ga, triangle: potentially unstable as determined from stability

circles, circle: spurious signals observed with a spectrum analyzer at the output. VGS is ramped from -0.8 to
0.8 V in 0.2 V increments.

Lastly, the stability circles for the LRD = 0.9 um device at 6 GHz show a large intrusion of the load

stability circle into the load plane when VGS = 0.4 and 0.6 V that encompasses the 50 Q point.

The next step is to examine the connection, if any, between the presence of oscillations in the

long LRD devices and their anomalous large signal performance. This is investigated in the next

chapter.
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Chapter 5: Discussion

5.1 Introduction

In this chapter, we will attempt to piece together the anomalous RF behavior with other various

phenomena shown by the devices under study. First, we will analyze the discrepancy between

the calculated and measured POUT,3-dB across LRD and frequency. We seek to explain the

difference in RF power behavior of the different devices through the evolution of load lines with

frequency, LRD, and VDD. To arrive at this understanding, we must first explore the impact of

BVff, BVon, and oscillations as observed in the NDR region on the placement of the load lines.

Pulsed I-V measurements will reveal if the devices under study are besieged by surface states.

5.2 Calculated vs. Measured POUT,3-dB

The presence of significant self-biasing makes a direct comparison between devices difficult. We

have been exploring alternative ways to assess the impact of LRD on the RF power performance.

A way to do this is to look at the difference between the actual measured POUT and the expected

maximum POUT based on the bias point at the 3-dB compression point. A simple estimate of the

maximum saturated output power delivered by the device is given by

oUT.sA - I IDC

where IDC is the self-biased drain current at the 3-dB compression point. This expression

represents a classical class A linear amplifier with a drain efficiency of 50%.
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Fig. 5-2: POUTmeas - POUTcalc versus VDS at 12 GHz.

Using this ideal model, the farther the measured POUT deviates from the calculated POUT, the more

the device deviates from ideal behavior. Figs. 5-1 through 5-3 show the difference between

measured and calculated POUT in dBm (or ratio of calculated to measured POUT) versus VDs at 8,

12, and 16 GHz. POUTMEAS - POUT,CALC may experience changes in polarity because the model is

simplistic and overestimates POUT. As the devices are driven to compression, POUTMEAS -

POUTCALC approaches zero as they self bias to a greater extent. At all three frequencies, the
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Fig. 5-3: POUTmeas - POUT,calc versus VDS at 16 GHz.
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Fig. 5-4: POUTmeas - POUT,calc versus PIN at 8 GHz. The
bias point is VDS = 6 V, IDO = 100 mA/mm.
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Fig. 5-5: POUTmeas - POuT,calc versus PIN at 12 GHz. The
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longest LRD device consistently exhibited the largest

the highest error (Figs. 5-4 through 5-6).
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Fig. 5-6: POUTmeas - POUT,calc versus PIN at 16 GHz.
The bias point is VDS = 6 V, IDO = 100 mA/mm.

deviation from zero with RF drive and hence

Although this method of calculating the maximum saturated power is approximate in nature, the

disparity between measured and calculated output powers is too large to be ascribed to the

calculation procedure or any small experimental errors (typical power measurement errors are <

±0.5 dB). These observations indicate anomalous behavior exists that is most strongly affecting

the longest LRD device and is preventing it from achieving its RF power potential.

5.3 Load Lines

Graphing the load lines provides insight to the behavior under large signal conditions. The

starting point of this discussion begins with the basic, load line-matched, class A amplifier,

optimized for maximum output power (Fig. 5-7). Optimal RF power performance is obtained

when the drain and gate bias center the load line such that the onset of saturation is caused by

the simultaneous and balanced interaction of the load line with the breakdown and forward gate

conduction regions [23]. In other words, the quiescent point must be placed halfway between the
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VDS,SAT and BV0ff as well as 0 and IMAx to maximize the excursions of the peak-to-peak voltage

and current waveforms during linear swing. Beyond the maximum linear swing, a symmetrically

clipped waveform will be generated. The device loading condition governs the slope of load line

and the equation for output power is

By this relation, it follows that the shortest LRD device, which has a BV 0ff of approximately half that

of the longest LRD device, should deliver the least output power. As LRD and BV0ff increases, we

expect POUT, 3-dB to increase as well. Even though we have experimentally established that this

does not occur, we can relate the drop in POUT, 3-dB with the placement of the load lines.

The voltage waveform is a simple Ohm's Law scaling of the current waveform where the load

behaves as sink while the device behaves as a generator. To compute the load resistance RL

and the placement of the load line, we assume that the RF coupled load consists of shunt-

connected parallel resonant RLC circuit with a conceptual harmonic short. In this way, it is

assumed that we are only considering the RF energy of the fundamental. All harmonics of the
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Fig. 5-7: Ideal load line for maximum output power in Class A operation.
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load are shorted and do not generate voltage; therefore, the drain voltage is a sinusoid whose

magnitude will be set by RL to generate the maximum possible waveform excursion. If the load

lines were measured by a Microwave Transition Analyzer (MTA), they would exhibit distortion in

the form of hysteresis as the device enters compression [25]. However, a resistive load analysis

provides a good starting point for understanding the large signal behavior of the PHEMT.

Depending on the device design, either BV 0ft or the on-state breakdown BVon can limit the

maximum allowable drain voltage of a PHEMT [40]. In the next few sections, we will determine

BV 0ff and the placement of the BVon loci of the devices under study to determine which metric

governs the optimum placement of the load line. Since the BVon loci begin at a lower VDS

than BVOff, they are of primary importance when considering the maximum VDS that can be

achieved by the load line.

5.3.1 Off-state Breakdown

The off-state breakdown (BVoff) is a parameter of primary important for power devices and limits

the maximum power density of a PHEMT. A significant body of work has been dedicated toward

understanding the origin of BVOff. As a result, it is possible to engineer PHEMTs with a desired

BV 0ft [40-42]. The gate current injection method was utilized to determine the BV 0ff of the devices

under study [42]. While maintaining a constant ID = 0.1 mA/mm, VGS was swept from 0 to 3.5 V.

BV 0ff is defined as the peak VDG which occurs when Is = 0 mA/mm and ID = -IG = 0.1 mA/mm (Fig.

5-8). A comparison of BV 0ff between the devices under study is shown in Fig. 5-2. Clearly,

increasing LRD is advantageous for BVoff; as LRD is increased from 0.3 to 0.9 um, BV0ff doubles

from 11.5 to 21.2 V. A higher BV 0ff should allow the selection of a higher operating voltage VDD

that ought to lead to a higher POUT.
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Fig. 5-8: Measurement of BVOff for the LRD = 0.5 um PHEMT.

5.3.2 On-state Breakdown

The shape of the on-state breakdown (BVon) locus is critical to a device's power potential and

dictates the placement of the maximum output power load line [23]. To obtain clues for the

physical mechanism that limits power for the devices, the on-state breakdown characteristics

have been extracted for all four devices via the gate current extraction technique described by

Somerville et al [40]. During the measurement, IG was held constant at -0.1 mA/mm while the ID

was ramped up to 150 mA/mm (approximately 30% of IMAX). The gate current extraction method

traces a BVon locus of VDS vS. IG and shows that increasing LRD also increases the onset of the

BVon loci, which is favorable for RF power performance (Fig. 5-9). Unfortunately, only the

smallest LRD device survived this measurement; the rest of the devices were destroyed through

catastrophic burnout before ID could reach 150 mA/mm.

An analysis of the power dissipated in the device during the measurement reveals that the

maximum dissipated power of the three devices that experienced burnout was 1400 mW/mm

while the maximum dissipated power of the sole surviving device was only 1178 mW/mm (Table
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1). For the three devices that were destroyed, we can conclude that burnout was attributed to

thermal destruction. Since the BVon loci begin at VDS lower than their respective BVOff, they may

pose the greater limitation depending on the precise placement of the load line. As the load line

hits against the BVon loci, significant carrier multiplication via impact ionization occurs and causes

the device to degrade.
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Fig. 5-9: BV. versus ID for 100 um (2 x 50 um) PHEMTs for devices with different LRD at IG = -0-1
mA/mm. A constant current is extracted from the gate while the drain current is swept from the off-
state (0.1 mA/mm) to the on-state.

LRD [um] VDS [V] ID [mA] Power [mW/mm]

0.3 7.85 150.1 1178

0.5 12.85 109.1 1402

0.7 16.64 86.1 1432

0.9 20.00 74.1 1482

Table 1: Electrical characteristics at burnout resulting from BVon experiment
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5.3.3 Load lines across LRD

Using the optimized load impedance, we have calculated the load line placement for the different

LRD devices at VDS = 6 V and IDo = 100 mA/mm. At 8 GHz, the shorter LRD is, the more optimal

the load line is for RF power (Fig. 5-10). The load line for the shortest LRD device maximizes the

I-V plane by balancing its placement between Imax and BV 0ff while the load line for the longest LRD

device falls short of both the BV0ff region and Imax. The load lines for the LRD = 0.7 and 0.9 um

devices also appear to be avoiding the NDR region in the output characteristics. The same

trends observed at 8 GHz also appear at 12 and 16 GHz (Figs. 5-11 and 5-12). In general, for a

given bias point, the load lines become more ideal for optimum RF power as LRD decreases.
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Fig. 5-10: Load lines for devices with different LRD at 8 GHz and VDS = 6 V, [DO = 100 mA/mm
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500

450

400

EE

E

350

300

250

200

150

100

50

0
0 2 4 6 8 10 12 14

VDS [V]

Fig. 5-12: Load lines for devices with different LRD at 16 GHz and VDS = 6 V, IDO = 100 mA/mm

96

VGS =0.6 V

LRD= 0.3 um

LRD = 0.5 um

LRD =0.7 um

LRD = 0-9 UM

VGS = 0.6 V

LRD = 0.3 ur

LRD = 0.5 um

LRD =0.7 um

LRD 0-9 UM

No



5.3.4 Load lines across VDD

In this section, we will study the behavior of the load lines as a function of VDD for the shortest LRD

(0.3 um) and longest LRD (0.9 um) device at three different frequencies; the behavior of the other

two devices under study is expected to fall somewhere in between. As VDD is increased, the

device is capable of delivering more power. At 8 GHz, the LRD = 0.3 um experiences a higher

degree of self-bias with increasing VDD, and when VDD = 6 V, the load line is hitting up against

BVon and Imax (Fig. 5-13). Similar load line trends with VDD are also observed for the LRD= 0.3 un

device at 12 and 16 GHz (Figs. 5-14 to 5-15). Since BVoff (10.5 V) occurs at a greater VDD than

the onset of BVO, BVon is the bottleneck and BVoff is of secondary importance when it comes to

placing the optimum power load line [43]. As the devices interact more strongly with the

breakdown region, they are forced into power saturation caused by RF induced gate current

breakdown as holes exit the channel due to impact ionization (see Section 3.1.3). A rise in ID

occurs along with the sharp increase in lG as the devices enter compression. Recall in Section

3.1.5 that the LRD = 0.3 um device incurs severe degradation due to impact ionization under large

signal operation at VDD = 6 V.
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Fig. 5-13: Load lines for the LRD =0.3 urn device at 8 GHz and VDS = 2, 4, 6 V and IDO = 100 mA/mm
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The load line behavior of the LRD = 0.9 um device is drastically different from the behavior shown

by the LRD= 0.3 um device. Due to the much higher BVff and BVon of the LRD = 0.9 um device, it

is possible to apply drain biases as high as 10 V at 8 GHz (Fig. 5-16). However, the ability to

apply a high drain bias is not enough to ensure high output power. Unfortunately, the load lines

do not maximize the I-V plane because the current waveform swing is drastically limited as a

result of the low maximum lD that can be achieved. The same behavior in the load lines is also

observed at 12 GHz, except the maximum allowable VOD before catastrophic burnout was 7 V

(Fig. 5-17). During the successive ramping of VDD on a single LRD = 0.9 um device at 16 GHz,

the maximum allowable VDD before catastrophic burnout was also 7 V; however, an optimization

was successfully performed at VDD = 8 V on a second virgin device after which the device

immediately burned out (Fig. 5-18). The resulting load line at VDD = 8 V passes through the

anomalous NDR region, which most likely caused the catastrophic burnout due to the presence of

oscillations. We conclude that the load lines for the LRD = 0.9 um device are more susceptible to

burnout at higher frequencies due to the device entering its unstable bias region.
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Fig. 5-16: Load lines and BV., locus for the LRD = 0.9 urn device at 8 GHz and VDD

= 2, 4, 6, 8, 10 V and IDO = 100 mA/mm
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5.4 Pulsed IV Measurements

To explore the possibility of drain current degradation due to surface states, pulsed I-V

measurements were carried out at Mitsubishi Electric on the different LRD devices. In these

measurements, pulses of one microsecond duration with a one millisecond duty cycle were made

from a static quiescent bias point (VDSQ and VGSQ) to defined locations in the IV plane. Four

different quiescent bias points were examined. Such a measurement more accurately resembles

RF operation; since charge trapping and detrapping effects do not have sufficient time to occur in

the time scale that is studied, the trap charge state depends only on the choice of quiescent point

[5]. To get a complete picture of the pulsed I-V behavior, the four quiescent points considered

are: (1) VDSQ = 0 V, VGSQ = 0.6 V; (2) VDSQ = 0 V, VGSQ = -0.6 V; (3) VDSQ = 4 V, VGSQ = 0.6 V; (4)

VOSQ = 4 V, VGSQ = -0.6 V. For all of the measurements, the pulse that was applied ramped VDS

from 0 to 5 V while VGS was ramped from -1 V to 0.8 V in 0.2 V increments.

The minimum time constant of the trapping conditions can vary since trapping is dependent upon

the quiescent bias point in RF operation. Due to these variable trapping conditions, the pulsed I-

V measurement gives a more accurate set of I-V curves for a PHEMT that are relevant for RF

power operation [44]. The severity of the surface effects is determined by examining how much

the pulsed I-V measurements deviate from the DC I-V curves. Fig. 5-19 shows that the pulsed I-

V curves of the LRD = 0.3 um device exhibit bias dependence, with the highest drain current

collapse occurring when VDSQ = 4 V, VGSQ= -0.6 V. For the LRD = 0.5 um device, a stronger

collapse occurs in the pulsed I-V curves when VDSQ = 4 V and VGSQ = -0.6 V; however, the I-V

curves appear fairly constant at the other three quiescent points (Fig. 5-20). The LRD = 0.7 um

device shows yet an even stronger collapse in 1D when VoSQ = 4 V and VGSQ = -0.6 V (Fig. 5-21)

but not nearly as high of a degree of sensitivity at the other quiescent points. Finally, the LRD =

0.9 um device is clearly besieged by surface states as demonstrated by the severe current

collapse of the pulsed drain current when VoSQ = 4 V and VGSQ = -0.6 V (Fig. 5-22).
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From the results shown, it is clear that the devices under study become more sensitive to surface

effects the longer LRD becomes despite the double-recess gate structure. Due to the large bias

voltages used during a microwave power measurement, surface states trap electrons and form a

negatively charged parasitic gate in the gate-drain access region [5]. If there exists negative

charge on the surface, the surface potential is made negative, depleting the channel of electrons

and leading to the extension of the gate depletion region toward the drain. Evidence of this gate

depletion region extension is given by the increase in drain delay with increasing LRD (see Section

3.2.4). Due to the slow time constant of the trapping/detrapping transient, it takes time for the

surface charge to be modulated and the extrinsic channel cannot respond instantaneously; as the

bias point swings across the load line. Therefore, the extrinsic drain next to the gate remains with

a surface charge situation that corresponds to the bias condition of the lower right corner of the

load line, where the depletion region is typically wide, the drain current is small, and RD is high.

The traps in the device cause a reduction of the output current as a function of frequency of RF

drive. Since the electrons contained in the surface layer cannot fully modulate the channel

charge during large signal RF operation, the current waveform swing is reduced and adversely

affects the output power. Studies performed on the nature of current collapse when the device is

operated as an amplifier and driven to saturation have shown that the extent of drain current

collapse is larger at larger drain biases [45]. In addition, the higher VDSSAT and reduction in ID and

gm in the DC measurements with increasing LRD can be explained by electron capture at interface

states that exist in the gate-drain region between the GaAs/passivation or in the passivation itself

[7, 46]. To improve the RF power capability of these devices, it is necessary to improve the

screening of the excess surface charges that cause the parasitic gating effect; one possible

option is applying a field-plate process [47].
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5.5 Conclusions

Through comparison of the measured and calculated POUT,3-dB, the longest LRD device consistently

shows the largest discrepancy across frequency and LRD. Across the range of frequencies

measured, the load lines become shallower and less ideal for optimum power performance as LRD

is increased. When VDD was increased from 2 to 6 V, the load line for the LRD = 0.3 um reached

an optimal location in the I-V plane and was eventually limited by the BVO, locus. On the other

hand, the load lines for the LRD = 0.9 um device exhibited reduced current waveform swing

capability across frequency and VDD. At 12 and 16 GHz, the devices experienced catastrophic

breakdown during optimization at VDD = 8 V, most likely due to the load line passing through the

NDR region of the output characteristics.

The pulsed I-V curves of all devices exhibit varying degrees of bias dependence that become

more severe as LRD is increased. This finding suggests that surface effects are present either at

the GaAs/passivation interface or in the passivation itself. The presence of a parasitic gate on

the gate-drain adjoining the gate explains the poor large signal performance since the surface

charge cannot respond instantaneously to microwave frequencies. In addition, the parasitic gate

will also cause a reduction in ID and gm as well as an increase in VDS,SAT, all phenomena which we

have seen in the devices under study.
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Chapter 6: Conclusions and Suggestions for Further

Work

6.1 Conclusions

Using an automated measurement scheme, we have performed an exhaustive analysis of the RF

power performance of GaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) with

different gate-drain gap lengths. Despite the improvement in BVOff with increasing LRD that should

allow a theoretical increase in maximum operating voltage and hence an increase in power, we

have experimentally found that the long LRD devices actually deliver less output power than the

short LRD devices. In addition, the decline in output power is steeper for long devices than short

LRD devices with increasing frequency. At higher frequencies, catastrophic burnout limits the

maximum allowable VDD that can be applied to the long LRD devices. To gain additional

understanding to the origins of these anomalous behaviors, we have also studied the DC, pulsed,

and small signal characteristics to provide insight into the device physics.

In our RF power measurements, we have observed that all things being equal, POUT,3-dB

decreases with increasing LRD. This can be explained by a load line analysis: while the shorter

LRD (0.3, 0.5 um) devices show load lines suitable for optimum RF power, the longer LRD (0.7, 0.9

um) devices exhibit load lines that fall short of this criteria and experience premature current

waveform clipping as a result. We have also shown that the longer LRD is, the steeper the decline

in POUT,3-dB as a function of frequency. In addition, the maximum allowable operating voltage was

limited by degradation for the shorter LRD devices and catastrophic burnout for the longer LRD

devices. At 12 and 16 GHz, the maximum VDD was actually less for the longer LRD devices than

the smaller LRD devices.

Small signal equivalent circuit extraction revealed trends regarding the intrinsic elements with

increasing LRD: an increase in CGS, T, and RDS and a decrease in CGD and gm. As a result, fT
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suffers as LRD is increased. A delay time analysis shows that the increase in drain delay with

increasing VOs becomes more rapid with LRD and can be interpreted as a growing extension of the

depletion region toward the drain. Pulsed I-V measurements show that while all of the devices

exhibit some degree of dependence on the quiescent point, the situation is worst for the long LRD

devices. This finding reveals the existence of a parasitic gate in the gate-drain region due to

surface effects that becomes more prominent with increasing LRD; this detracts from real Imax at

RF frequencies and therefore the devices deliver less power.

An investigation into device stability has shown that the long LRD devices suffer from oscillations

in the region of the output characteristics that is characterized by a NDR region. These

oscillations pose a problem as the load lines might enter this region at high enough VDD. In our

studies, the oscillations manifest themselves as output spectra under DC conditions, negative

RDs, positive 1S22 1, and unstable regions of the stability circles that enclose a large portion of the

source and load Smith charts.

6.2 Suggestions for Further Work

Although our current research on impact of LRD on RF power performance of GaAs PHEMTs has

concluded, there are still many more studies and experiments than deserve further consideration.

They will provide helpful insight into the device physics and mechanisms affecting RF power

performance.

Perhaps the most important concern regarding these devices is mitigating surface effects in the

drain-gate region and eliminating the deleterious "parasitic gate", whose presence becomes

stronger as LRD increases. We have shown that surface states cause the RF performances of the

devices degrade rapidly as LRD increases. Additionally, the influence of surface effects have

been shown to have an adverse effect on reliability in previous studies [48]. To improve the

screening of surface effects from the channel, it is necessary to improve the quality of the device
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passivation using alternative techniques. To further characterize the nature of the surface states,

a deep level transient spectroscopy (DLTS) characterization could be performed that would

reveal the detailed nature of the traps affecting the device [49].

To accurately extract the intrinsic small signal equivalent circuit, it is of primary importance to de-

embed the parasitic pad capacitances from the as-measured S-parameter measurements before

proceeding with the de-embedding of the extrinsic parasitic elements [29]. Since the appropriate

test structure (the probing pads without the active region) was not available, we attempted to

create an equivalent test structure by severing the gold lines connecting the PHEMT to the gate

and drain electrodes via laser ablation. Four such structures were fabricated in the Technology

Research Laboratory (TRL) at MIT and their respective S11 and S22 measurements are shown in

Fig. 6-1. Due to the difficulty in controlling the depth of the cut, the structures exhibit a large

variation in RDS that depend on the connection between the source and drain through the channel

and are not suitable for de-embedding the pad parasitic capacitances. Thus, the only appropriate

structure to use must consist only of the probing pads without an active region.

We initially attempted to create a 2D simulation of the standard PHEMT using ISE TCAD (now

Synopsys) software to gain additional insight into the device physics, especially the impact

110



ionization in the longer LRD devices. However, we were unable to successfully calibrate the

device simulation to measured data within the time constraints of this research; this stringent

procedure required the simultaneous fitting of currents and capacitances extracted from

measured S-parameters as well as the fitting of the necessary transport and interface models [50-

52]. A realistic representation between the ohmic contacts and of the channel based on a SIMS

profile analysis would aid tremendously in future calibration efforts.

In addition, the possibility of the formation of Gunn domains on the drain side of the device, either

dipoles or accumulation layers, has not yet been completely ruled out. Monte Carlo studies done

on AIGaAs/GaAs HEMTs have shown that Gunn dipoles can cause NDR in the output

characteristics and total failure when small alterations to the device design are made [53]. If

Gunn domains indeed exist, an increased understanding of the existence of these dipoles may

lead to preventing their formation and the subsequent adverse effects on the RF performance of

these devices.

Lastly, the resolution of 'G in the load pull measurements could have been improved from 1 mA to

1 nA if we had used a HP 4145 instead of a HP 6628 for our biasing system. Unfortunately, the

HP 4145 would produce oscillations at high RF drive, most likely due to grounding issues

between the coax to triax connections. Resolving this problem would allow us to make better

correlations between the RF induced behavior of 'D and IG-
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Appendix A: Buried WSi PHEMTs

i. Device Structure

In this research, a second type of PHEMT was studied. This device has a similar epitaxial

structure as the Al gate PHEMT but with a buried WSi gate. The gate length of the device is 0.25

pm and the gate width is 600 pm (6 fingers x 100 pm). The large signal measurements of

devices with three different values of LRD (0.6, 1.4, 2.2 um) will be obtained while all other

dimensions are held constant.

For a typical WSi gate PHEMT with LRD = 1.4 um, a typical value of the source resistance is Rs =

1.26 Q-mm, while the drain resistance is RD = 1.63 Q-mm. The drain current at VDS = 1.2 V and

VGS = 0 V is IDSS = 191.4 mA/mm, and the threshold voltage is -0.79 V. The peak

transconductance (gm = 330 mS/mm) occurs at VDS = 1.2 V and VGS = 0.06 V. The output

conductance go = 41.1 mS/mm at this bias point and the drain-gate breakdown voltage BVoff is

12.6 V.

ii. DC Characteristics

The same DC characterization performed on the Al gate device was also done on the buried WSi

gate devices. Within an error of 1 %, the VT for all five devices under study was -0.79 V.

Although BVoff initially increases as LRD increases from 0.4 to 1 um, it was found to decrease as

LRD is increased further to 2.2 um (Fig. A-1). The reason for this anomalous behavior is not

understood. Similar to the Al gate devices, a larger LRD is correlated to a larger RD (Fig. A-1). In

addition, with increasing LRD, a decrease in gm and an increase in gds are observed (Fig. A-2).
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In the output characteristics, there is an increasing presence of NDR as LRD is increased from 0.6

to 2.2 um when the gate is forward biased (Fig. A-3). Note that the collapse in ID is more

dramatic for high values of LRD. In Fig. A-4, the longest WSi gate device shows a slight increase

in IG with a decrease in ID.

The fact that the NDR becomes stronger with small changes in VGS is consistent with the theory

of real space transfer (RST) because a positive VGS applied on the gate will incur an enhanced

injection of electrons from the 2DEG within the InGaAs channel into the AIGaAs subspacer. If we
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Fig. A-1: BVOff and RD for WSi devices with LRD 0.4, 0.6, 1.0, 1.4, 2.2 ur.
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consider the conduction-to-valence band split ratio between Al1. 24 Ga 0.76As and Ino. 15Gao.85As to be

60:40 [54], the conduction band discontinuity AEc is approximately 0.32 eV. To estimate the

energy necessary for momentum transfer between the F point and the next lowest conduction

valley in the 1n0.15Ga 0.85As channel, we can linearly interpolate between 1.16 and 0.31 eV for

GaAs and InGaAs, respectively. This analysis yields a separation energy AEL of approximately

0.44 eV. Since AErL is greater than AEc, it is more likely that the hot electrons will experience real

space transfer from no.15Gao.85As to Al. 2 4 Ga 0.76As before momentum space transfer between

neighboring conduction valleys within the n0 15Ga0 .85As channel and lends supporting evidence

that real space transfer is a possible cause of NDR.
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Fig. A-3: Output characteristics of WSi gate devices with varying LRD. VGS = -0.8 to 0.6 V in 0.2 V increments.
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Fig. A-4: IG and ID vs. VDS for the LRD = 2.2 um gate device at VGS= 0.6 V.

iii. Large Signal Measurements

We now extend our large signal analysis to the 600 um (6 fingers X 100 um) buried WSi gate

PHEMTs with three different LRD (0.6, 1.4, 2.2 um). The devices were tuned for peak PAE at the

3-dB compression point without any restriction on the small signal gain at various drain voltages

and ID = 100 mA/mm. We have performed load-pull measurements at 8, 12, and 16 GHz.

a. Across LRD

At 8 GHz, the gain of the LRD = 0.6 um compresses later than the LRD = 1.4 and 2.2 um devices

and the PAE of the LRD = 0.6 and 1.4 um devices approach 60% (Fig. A-5). Although the small

signal gains of the devices are different, the longer LRD is, the sooner the device compresses at

12 GHz (Fig. A-6). In addition, the PAE at the 3-dB compression decreases slightly as LRD is

increased. At 16 GHz, POUT,3-dB is virtually the same for all three devices at 21.9 dBm (Fig. A-7).
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Likewise, the PAE at the 3-dB compression for the three devices are practically identical. At the

three frequencies examined, it is difficult to observe trends across LRD simply by analyzing the

gain compression and PAE behavior at this particular drain voltage.
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Fig. A-7: Gain and PAE versus POUT for devices with varying LRD at 16 GHz and VDS = 4 V, ID 100

mA/mm.

If we consider the RF induced IG and ID, the three different LRD devices all experience a large

degree of IG as the devices are driven into compression. Similar to the biasing behavior of the Al

gate devices, the longer LRD devices experienced a sharp increase in IG at 8 GHz (Fig. A-8). The

LRD = 1.4 um devices has a much smaller degree of self-biasing as compared to the other

devices, which may possibly be attributed to the selection of non-optimal impedances due to a

poor optimization (Fig. A-8). At 12 GHz, only the LRD = 0.6 and 1.4 urn devices experience a

large increase in IG while the IG of the LRD = 2.2 device barely increases at compression (Fig. A-

9). In addition, the amount of self-bias goes up the smaller LRD becomes, which is behavior that

is also characteristic of the Al gate devices. Lastly, at 16 GHz, there is no significant increase in

IG for any of the devices as they enter compression and the amount of self-bias is reduced from

the levels seen at 8 and 12 GHz (Fig. A-10).
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b. Across VDS

In this section, we will compare the gain, PAE, and RF induced currents of the shortest LRD (0.6

um) and longest LRD (2.2 um) buried WSi gate PHEMT. For the characteristics shown for the LRD

= 0.6 um device at VDS = 6 and 8 V and 8 GHz, the large jump in gain and PAE may indicate RF

induced oscillations. Beyond VDS = 4 V, the PAE at the 3-dB compression point drops off sharply

(Fig. A-14). Similar behavior is also observed for the LRD = 2.2 um device; the compression

behavior varies dramatically depending on VDS (Fig. A-15). At 12 GHz, the power sweeps at VDS

= 10 and 12 V for the LRD= 0.6 um device are limited by their sudden increase in positive gate

current (Fig. A-16). For the LRD = 2.2 GHz device at 12 GHz, gain compression actually occurs

earlier at VDS = 10 and 12 V than it does at VDS = 8 V (Fig. A-17). Under these conditions, these

devices are also accompanied by a sharp increase in positive IG, which we shall show later on in

the section. We only have the gain and PAE characteristics for the LRD = 0.6 um device at 16

GHz and they appear normal (Fig. A-18). For the LRD= 2.2 um device at 16 GHz, gain

compression actually occurs earlier when the device is biased beyond VDS = 8 V (Fig. A-19).

25 -140

-- 120
20

100
-+-Vds = 2 V

1580 -u-Vds = 4 V
-+i- Vds=6V
-4-Vds = 8 V

10 60 -Vds = 10 V
-x-Vds = 12 V

40

5
20

0 10

0 5 10 15 20 25 30

POUT [dBm]
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At 8 GHz, the LRD = 0.6 um device experiences a higher degree of self-bias than the LRD= 2.2 urn

device across VDS (Figs. A-20 to A-21). At VDS = 12 V, lG initially turns positive and then becomes

sharply negative at compression. The initial upswing in positive lG is observed for the LRD= 2.2

um device at VDS = 8, 10, and 12 V appears to accompany reduced self-bias as compared to the

performance at VDS = 6 V (Fig. A-21). At 12 GHz, positive 'G is observed at VDS = 10 and 12 V

for the LRD = 0.6 um device (Fig. A-22) and VDS = 6 - 12 V for the LRD = 2.2 um device (Fig. A-23).

Again, reduced self-bias is observed for the LRD= 2.2 um device when compared the LRD =0.6

um device at 12 GHz. At 16 GHz, there is no fluctuation in 'G and only a slight amount of self-

bias for the LRD = 0.6 um device (Fig. A-24). However, for the LRD = 2.2 um device, lG turns

sharply positive and stays positive at higher VDS at 16 GHz (Fig. A-25).
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Fig. A-21: Drain and gate current versus POUT for device with LRD = 2.2 urn for varying VDs and ID 100
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mA/mm at 16 GHz. The resolution of the gate current is 1 mA.
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c. Across Frequency

Unlike the Al gate devices, the buried WSi devices do not exhibit obviously different trends in

POUT,3-dB when measured up to 16 GHz (Fig. A-26). In order for the devices to manifest different

trends with frequency, it is necessary to measure their large signal characteristics at higher

frequencies and/or drain voltages. Due to the limitations of the measurement equipment, it was

not possible to test under these conditions.
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Fig. A-26: POUT,3-dB versus frequency at small signal bias of VDS = 4 V and ID = 60 mA.
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d. Reliability Study

Load pull measurements were performed with test plans that began at 2 V and ramped up to 13 V

in 1 V increments. To track the degree of degradation at 8 GHz, verification measurements were

performed at a benign VDS = 2 V under the same conditions after each subsequent measurement

at higher VDS. A comparison of the VGS required to maintain ID = 60 mA at VDS = 2 V reveals that

all three devices experience slight shifts in VT as a result of measurements taken at high VDS (Fig.

A-27). The degradation measurements reveal that the LRD =0.6 and 1.4 um devices are very

robust; the POUT,3-dB, gain, and PAE barely fluctuate from their initial levels up to VDS = 13 V. On

the other hand, the LRD= 2.2 um device degrades very rapidly with increasing drain voltage;

POUT,3-dB and the gain drop by 5 dBm and 5 dB, respectively, and PAE is reduced by about 40%

as the drain voltage is increased to 13 V (Figs. A-28 to A-29). It is clear that the longest LRD

device is not as robust as the shorter LRD devices.
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Fig. A-27: Difference between initial VGS verification measurement at 2 V necessary to maintain ID = 60 mA

under smalls signal conditions and subsequent VGS measurements at higher VDD-
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iv. Load Line Analysis

Similar to the procedure described in section 5.2, we have carried out load line analysis for the

LRD = 0.6 and 2.2 um devices as a function of LRD and VDS. Using the optimized load impedance

to extract RL and the position of the load line, we can compare the different load lines at VDS = 6

V, IDO = 60 mA. In Figs. A-30 through A-32, the LRD = 2.2 um clearly maintains a higher load

resistance than the LRD = 0.6 um device and is consequently unable to maximize the IV plane to

achieve maximum power at 8,12, and 16 GHz.

The evolution of the load lines with respect to drain bias is also similar to the results seen with the

Al gate devices. At 12 GHz, the LRD= 0.6 um device exhibits load lines that allow the bias point

to be balanced between the forward and reverse conduction regions (Fig. A-33). On the other

hand, the load lines for the LRD = 2.2 um device show increasing RL with increasing VDS as they

approach the NDR region in the output characteristics (Fig. A-34). The optimum load lines ended

up positioning themselves to avoid the NDR region, which are known to exhibit high frequency

instabilities.
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Fig. A-30: Load lines at 8 GHz and VDSQ = 6 V
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Fig. A-31: Load lines at 12 GHz and VDSQ = 6 V and IDO = 100 mA/mm.
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Fig. A-32: Load lines at 16 GHz and VDSQ = 6 V and IDO = 100 mAlmm.

131

VGS = 0.6 V

LRD = 0.6 urn

LRD =2.2 um

12 14

0



T

-E

500

450

400

350

300

250

200

150

100

50

0
0 2 4 6 8 10 12

VGS = 0.6 V

VDS = 8 V
VDS = 6

VDS = 2 V VDS=4

VDS [V]

Fig. A-33: Load lines at 12 GHz and varying VDSQ and IDO = 100 mA/mm for the LRD = 0.6 um device.
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Fig. A-34: Load lines at 12 GHz and varying VDSQ and IDO = 100 mA/mm for the LRD = 2.2 um device.
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v. Conclusion

Due to their similar epitaxial structure, the Al gate and WSi gate PHEMTs bear many similarities.

The presence of NDR in the output characteristics of the buried WSi PHEMT strengthens with

increasing LRD. The large signal measurements have shown that the longer LRD is, the less

POUT,3-dB the device can deliver. Unfortunately, this could not be shown across a range of

frequencies due to the limitations of the measurement setup. Verification measurements have

shown that the LRD = 2.2 um device is not as robust as the LRD = 0.6 and 1.4 um devices as they

undergo the load pull optimization procedure. We have also shown that the decrease in POUT,3-dB

is related to the position of the load lines. In general, for long LRD devices, RL is higher and the

load lines appear to avoid the NDR region.
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