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Chapter 1

Introduction

In 1978, Yau [Y] proved the Calabi Conjecture, by showing existence and uniqueness of

Kiahler metrics with prescribed Ricci curvature on compact complex manifolds. Here

the complex manifolds in question are already supposed to admit a K/ihler metric

whose Ricci form satisfies the natural conditions arising from Chern-Weil theory.

Following this work, Tian and Yau [TY1] settled a non-compact version of Cal-

abi's Conjecture on quasi-projective manifolds that can be compactified by adding a

smooth, ample divisor. In a subsequent work ([TY2]), they extended their result for

the case where the divisor has multiplicity greater than one, and is allowed to have

orbifold singularities. This generalization was done independently by Bando [B] and

Kobayashi [I(]. Later, Joyce [J] provided the sharp asymptotics for the decay of the

solutions provided in [TY2].

Once the existence problem is solved, an interesting question that arises is about

the behavior of those complete metrics near the divisor. This question is also posed

by Tian and Yau in [TY1].

The aim of this thesis is to provide an answer to the mentioned question, therefore

refining the main result in [TY1]. More precisely, we shall first construct explicitly

a sequence of complete K/Ihler metrics with special approximating properties on a

quasi-projective manifold (in our case, the complement of a smooth, ample divisor

on a compact complex manifold). Then by using these approximating metrics, we

are going to study the solution of a complex Monge-Ampare equation on the open
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manifold. A careful analysis of the complex Monge-Ampere operator will allow us to

describe asymptotic properties of the solution. As a matter of fact, the reader will

note that our results apply equally well to divisors having orbifold-type singularities.

To state the main results of this thesis, let us consider a compact, complex man-

ifold M of complex dimension n. Let D be an admissible divisor in M, ie, a divisor

satisfying the following conditions:

* Sing MC D.

* D is smooth in M\ Sing M.

* For any x E Sing M, let IIx: U -U be its local uniformization with Ux E Cn.

Then I 1(D) is smooth in Ux.

Let Q be a smooth, closed (1, l1)-form in the cohomology class C1(K 1 0 LD1),

where KM stands for the canonical line bundle of M, and LD for the line bundle

associated to D. Let S be a defining section of D on LD and let M be the open

manifold M = M \ D. Consider a hermitian metric IIII on LD.

Fefferman, in his paper [F], developed inductively an n-th order approximation to a

complete Kiihler-Einstein metric on strictly pseudoconvex domains on Cn with smooth

boundary, and he suggested that higher order approximations could be obtained by

considering log terms in the formal expansion of the solution to a certain complex

Monge-Ampere equation. This idea was used by Lee and Melrose in [LMI, where

they constructed the full asymptotic expansion of the solution to the Monge-Ampere

equation introduced by Fefferman.

Motivated by this work, we construct inductively a sequence of rescalings J.I I:=

e~m/21.11. of a fixed hermitian metric 11-11 on LD, which will be the main ingredient of

the proof of the following result.

Theorem 1.1 Let M, Q and D be as above. Then for any > O, there exists an

explicitly given complete Kdhler metric g, on M such that

Ric(g) - = 00f, on M, (1.1)
2ir
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where f is a smooth function on M that decays to the order of O(llSllI). Further-

more, the Riemann curvature tensor R(g,) of the metric g, decays to the order of

O((-n log IISl 2)- 1).

Remark: In the above statement, it should be emphasized that the metric in question

is explicit. In other words, this result provides complete metrics that are "approximate

solutions" to the Calabi problem, but that have the advantage of being explicitly

described.

So far, there has been a large amount of work concerned with deriving asymp-

totic expansions for Kahler-Einstein metrics in different contexts: after Cheng and

Yau [CY1] proved existence and uniqueness of K/ihler-Einstein metrics on strictly

pseudoconvex domains in Cn with smooth boundary (in addition to results on the

regularity of the solution), Lee and Melrose [LM] derived an asymptotic expansion for

the Cheng-Yau solution, which completely determines the form of the singularity and

improves the! regularity result of [CY1]. On the setting of quasi-projective manifolds,

Cheng and Yau [CY2] and Tian and Yau [TY3] showed the existence of Kahler-

Einstein metrics under certain conditions on the divisor, and Wu [Wu] developed the

asymptotic expansion to the Cheng-Yau metric on a quasi-projective manifold (also

assuming some conditions on the divisor), as the parallel part to the work of Lee and

Melrose [LM.

However, in the context of quasi-projective manifolds, an asymptotic description

of complete :Kihler metrics with prescribed Ricci curvature was still lacking. This is

provided by our results below.

In [TY1], the result of existence of a complete Kahler metric (in a given Kihler

class) with prescribed Ricci curvature is achieved by solving the following complex

Monge-Amp!re equation

2 ( all +7r c/= gt9 u) = e f n ' (1.2){ + =00u > 0 u C (M, IR),

11



where f is a given smooth function satisfying the integrability condition

(ef - 1)w = 0. (1.3)

Our main result describes the asymptotic behavior of the solution to (1.2), by

showing that the approximate metrics given in Theorem 1.1 are asymptotically as

close to the actual solution as possible.

Theorem 1.2 For each E > 0, let g, and f be given by Theorem 1.1.

Consider the solution u, to the problem

9 (+ge ±+ 1 = efew, (1.4)

WgE + OT UE > 0, uc C C (M, R).

Then the solution u, decays as O(llIS ) near the divisor.

This theorem has an important, straightforward corollary.

Corollary 1.1 Let M be a compact Kdhler manifold of complex dimension n, and

let D be a smooth anti-canonical divisor. Then for any E > O, there exists a complete

Ricci-flat Kdhler metric on M = M \ D that can be described as

= g + 2 WU,

where g, is the Kdhler metric constructed in Theorem 1.1, and u is a smooth function

on D, with bounded derivative, such that u decays at least to the order of O(ISl).

The structure of this thesis is as follows. In Chapter 3, we construct inductively

a sequence of hermitian metrics { 11.11m}mcN on LD such that the closed (1, 1)-form

1l+1/n IS2n-1
Wm- 2 n + 1

0 ( - log IS ) n (1.5)

is positive definite on a tubular neighborhood Vm of D in M.

12



The Kiahler form wam defines a Kiahler metric gm on Vm such that Ric(gm) - =

-r fOaf, for a smooth function fm on M that decays to the order of O(]lSJJm ).

An important technical result for this construction is Lemma 3.2 whose proof is the

object of Chapter 4.

In Chapter 5, we use the constructions of Chapter 3 to complete the proof of

Theorem 1.1. First, we shall obtain the necessary estimates on the decay of the Rie-

mann curvature tensor of the metrics g. Then we shall proceed to the construction

of approximating metrics that are defined on the whole manifold (and not only on a

neighborhood of the divisor at infinity).

Finally, Chapter 6 is devoted to the asymptotic study of the Monge-Ampere equa-

tion 1.2. By using the maximum principle for the complex Monge-Ampere operator,

and the construction of a suitable barrier, we shall complete the proof of Theorem 1.2.

13
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Chapter 2

Background

In order to understand the main problem considered in this thesis, we shall start from

its original motivation.

Let M be a compact, complex manifold of complex dimension n, and consider g,

a hermitian metric defined on M. Note that g is a complex-valued sesquilinear form

acting on TM x TM, and can therefore be written as

g = S- 21 w 9 ,

where S and -w are real bilinear forms.

If (zl,... , z) are local coordinates around a point x G M, we can write the metric

g as E gi-dz i dJz. Then, it is easy to see that in these coordinates

Wg = gidz A d i.
i,j=l

The form wg is a real 2-form of type (1, 1), and is called the fundamental form of the

metric g.

Definition 2.1 We say that a hermitian metric on a complex manifold is Kahler

if its associated fundamental form wg is closed, ie, dw, = O. A complex manifold

equipped with a Kdhler metric is called a Kahler manifold.

15



The reader will find in the literature a number of equivalent definitions for a

Kdahler metric. We will keep this choice for convenience of the exposition.

We point out that on a Kihler manifold, the form w9 is uniquely determined by

the metric g, and vice-versa.

Let R(g) = RiJk be the Riemann curvature tensor of the metric g written in the

coordinates described above. We define the Ricci curvature tensor of the metric g as

the trace of the Riemann curvature tensor. Its components in local coordinates can

be written as

RicklT = g - log det(gi). (2.1)
i,j=l

We also define the Ricci form associated to g as being the form given in local coordi-

nates by
n

Ric = E Ric~idz' A d'j.
i,j=l

Now, given a metric g, we can define a matrix-valued 2-form Q by writing its

expression in local coordinates, as follows

n

QJ = S gjPRipkjlzk A dzl. (2.2)
i,p=l1

This expression for Q gives a well-defined (1, 1)-form, to be called the curvature form

of the metric g.

Next, consider the following expression

det Id = 1 + t(g) + t22(g) +...

where each qi(g) denotes the i-th homogeneous component of the left-hand side,

considered as a polynomial in the variable t.

Each of the forms qi(g) is a (i,i)-form, and is called the i-th Chern form of

the metric g. It is a fact (see for example [We] for further explanations) that the

cohomology class represented by each i(g) is independent on the metric g, and hence

is a topological invariant of the manifold M. These cohomology classes are called the

16



Chern classes of M and they are going to be denoted by ci(M).

There are analogous definitions for the curvature form of a hermitian metric on

a general complex vector bundle E on a complex manifold, and we can also define

in the same fashion the Chern class c (M, E) of a vector bundle, which will also be

independent on the choice of the metric. In fact, we say that the Chern classes ci(M)

of the manifold M are the Chern classes c(M, TM) of the tangent bundle of M.

We will restrict our attention to the first Chern class cl (M). Note that the form

01 (g) represents the class c (M), and that $1(M) is simply the trace of the curvature

form:

q 1(g)= 27Z=7r E igiPRf dzk A dl (2.3)
i=1 ip=l

On the other hand, notice that the right-hand side of (2.3) is equal to =Rickl, in

view of (2.1). Therefore, we conclude that the Ricci form of a Kiihler metric represents

the first Chern class of the manifold M.

A natural question that arises is: given a Kihler class [w] E H 2 (M, R) nH','(M, C)

in a compact, complex manifold M, and any (1, 1)-form Q representing c1(M), is that

possible to find a metric g on M such that Ric(g) = Q? This question was addressed

to by Calabi in 1960, and it was answered by Yau [Y] almost 20 years later.

Theorem 2.1 (Yau, 1978) If the manifold M is compact and Kdhler, then there

exists a unique Kdhler metric g on M satisfying Ric(g) = Q.

This theorem has a large number of applications in different areas of Mathematics

and Physics. Its proof amounts to solving an elliptic differential equation, as explained

below.

Fix a K/ihler form w E [w] representing the previously given Kihler class in

H 2(M, R) n HlI,(M, C). In local coordinates, we can write w as w = gij-dzi A d2j.

Also it was seen that both Ric(w) and Q represent the same cohomology class, namely

cl (M). Therefore, due to the famous 0-Lemma, there exists a function f on M such

that

Ric(w) - = 2r f ,

17



where f is uniquely determined after imposing the normalization

(e - 1) n = 0. (2.4)

Notice that f is fixed once we have fixed and Q.

Any other metric in the same cohomology class [w] will be written as w + 000q,

for some function q E CX(M, R). Hence, we are trying to find a representative

+ '-0q of the class [w] that satisfies

Ric + 4000> = Q = Ric(w) - (2.5)
27r 27r

Rewriting (2.5) in local coordinates, we have

-00 log det (gij + A - -00 log det (gi) - 0f,

or
det (gig + a-

00 log = Oaf. (2.6)
det (gi3)

Even though this is a local expression, the term on the left-hand side of (2.6) is

well-defined globally, and gives rise to the global equation

(W + 0c,)n = ern, (2.7)

called the Monge-Ampbre equation.

Notice that the resulting (1, 1)-form given by w' = +00gq defines a Kahler metric

g', which, in turn, satisfies Ric(g') = Q. So, in order to find metrics that are solutions

to Calabi's problem, it suffices to determine a solution b to (2.7).

The celebrated Yau's Theorem in [Y] determines a unique solution to (2.7) when

f satisfies the integrability condition (2.4), and therefore provides a satisfatory an-

swer to the problem of finding Ricci-fiat metrics when the underlying manifold M is

compact. Calabi's Problem, though, has a very natural generalization for the case of

18



a special class of open manifolds. However, we will need to make minor modifications

to the original conjecture.

Suppose that M is a compact, Kihler manifold, and let D be a smooth divisor in

M. We are now interested in constructing complete Kihler metrics with prescribed

Ricci curvature on the open manifold M, defined as the complement of the divisor D

in M.

If g' is a metric defined on M, then the metric det(g') (given locally by det(g') =

det(gj)dzldz1 ... dznd2n) is a metric defined on the canonical line bundle KM of M.

Consider the line bundle LD associated to D, let S be a defining section of D in

LD, and finally, let h define a hermitian metric on LD. Let us write h, in the previous

choice of local coordinates, as a positive function a.

With the preceding notations, the line bundle given by KM 0 -LD has a metric

defined locally by det(g.)a-'. Indeed the reader will note that this expression makes

sense globally on M. In turn, the metric det(g)a-' can be written as det(g'j)a-' =

det(2¢), where bn = a. In particular, we have a new metric g defined on M (and

also on M) which is given in local coordinates by gij = g- . Naturally the Ricci form

of the metric g is a representative of the first Chern class cl(-K 0 -LD). On the

other hand, we would like the resulting metric g to be complete on the open manifold

M. Strictly speaking, this will never happen since g is also a metric on the closure

M. Nonetheless, this construction suggests a natural way to try to obtain complete

metrics. Namely we let the metric h conveniently degenerate on the divisor D. This

implies that the function a will vanish on D and thus that the metric g will become

unbounded near D. So we may hope to find complete metrics on M by this procedure.

Note also that the class of the Ricci form of g is not affected by the "degeneration"

of h.

Summarizing what precedes, to generalize Calabi's Conjecture to open mani-

folds, we begin by fixing a representative Q E c(-K ® 0 -LD). From our previous

discussion, the Ricci form of a Kiihler metric defined on M is a representative of

Cl (-KM 0 -LD). Now we want to study the converse problem, namely:

Question: Fixed a K/ihler class [w] in the manifold M, pick any representative of

19



the first Chern class cl(-KMj 0 -LD). Can we construct a complete Kiihler metric g

on M such that Ric(g) = Q?

There are some results on the existence of such metrics (to be discussed in the next

chapters), and the main purpose of this thesis is to provide a better understanding of

complete Ricci-fiat Kihler metrics, a problem of great interest by both physicists and

geometers. For that, we will discuss the behavior of such metrics near the divisor in

the remainder of this work.

20



Chapter 3

Approximating Kihler metrics

Let M be a compact kihler manifold of complex dimension n, and let D be an

admissible divisor in M.

The divisor D induces a line bundle LD on M. We will assume that the restriction

of LD to D is ample, so that there exists an orbifold hermitian metric on LD such

that its curvature form D is positive definite along D.

Consider a closed (1, 1)-form Q in the Chern class c(-KM - LD). The goal of

this section is to construct a complete k/ihler metric g such that

Ric(g)- = - f on M, (3.1)
27r

for a smooth function f with sufficiently fast decay, where M = M \ D and Ric(g)

stands for the Ricci form of the metric g.

Fix an orbifold hermitian metric 11 11 on LD such that its curvature form is

positive definite along D. We shall need to rescale the metric by a suitable factor

which will be determined in the following discussion. Let us begin by observing

that the restriction QID of Q to D belongs to cl(D) since, by assumption, Q C

cl(-K- - LD). Hence, there exists a function co such that &D + aO06p defines a

metric YD verifying Ric(gD) = QID. So, by rescaling 11.11 by an appropriate factor, we

may assume that D, when restricted to the infinity D, defines a metric 9D such that

Ric(gD) = Q ID

21



Next denote by S the defining section of D, and write 11.110 = e-0/2 [11· for the

rescaling of II. I, where 0 is any smooth function on M.

We define

-1n1,/n - | |) n1/

27 n+1 
(3.2)

Then, it follows that

wc = (-n log IISI ) l/n2 + (-n log S1 _I_ 21-01 g HS A olog [1 l,

where c is the curvature form of the metric I -1. From this expression, we can see

that, as long as DO is positive definite along D, w is positive definite near D.

For further reference, we compute here

v/ -IOlog I ISA +1 A log I SI10W= (-nlog ISI1[)w) A ( 2w (-nlog SII (3.4)

We state here the main result of this chapter.

Proposition 3.1 Let M be a compact Kdhler manifold of

let D be an admissible divisor in M. Consider also a form 

LD is the line bundle induced by D.

Then there exist sequences of neighborhoods {Vm}mrc

Kahler metrics wm on (Vm \ D, O(Vm \ D)) (as defined on

complex dimension n, and

Q cl(-KM-LD), where

of D along with complete

(3.2) such that

Ric(wm)- Q = 2-O3f m on Vm \ D (3.5)
27r

where fm are smooth functions on M = M \ D. Furthermore, each fm decays on the

order of O(IIS1 m). In addition, the curvature tensors R(gm) of the metrics gm decay

to the order of at least (-nlog nS 12) n near the divisor.

The remainder of this chapter will be devoted to the proof of Proposition 3.1.

If = -= 1 00 log IISI2 is the curvature form of .11, then for any Kahler metric2,7r lglS1 S h uwuefr o II, te o ayI lrmti

22

(3.3)



g' on M, Ric(g')- EG cl(-KMW - LD).

function T such that

Q= Ric(g')

Definition .3.1

Hence, up to constant, there is a unique

- C+ d-2- .
27r

(3.6)

f(x) = -log I SI2 - log( ) -_ ,

where w' is the kdhler form of g'.

Lemma 3.1 The function fo(x) converges uniformly to a constant if and only if

Ric(gD) = QID.

Proof: The proof of this lemma is analogous to the proof of [TY2], Lemma 2.1, and

for completeness, we sketch it here. Choose a coordinate system (zl,..., Zn) around

a point x near D such that the local defining section S of D is given by {zn = 0}.

In these coordinates, write X; = o as (hij)l<ij<n, g' as (gij)l<ij<n, and 1I.1 as a

positive function a.

By definition,

-= -log (l 11W ) -(x)=

= -log (adet(hij)lij<j n-l (x)
det(g'I) <ij<n

- '(x) + O(llS(x) I),

for x near D.

Since a- ' det(gj)l<i,j< nlD is a well defined volume form on D, it makes sense to

write

a det(hij)l<ij:nfo(x) = -log(a det(hg)I<iS<n-e )(zO) + O(IS(x)11))

for x = (z', z,,). Hence, limxD fo(x) is a constant if and only if adet(hij)<i<n-le ( 0)
det(gi)l<ijn

is constant. I[n other words, limx+D fo(x) is a constant if and only if

004 = - log det(hij)l<i,j<n_1 - log a det(g'j)l<i,j<n.

23
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Since Q = Ric(g') - + 0 , lim,,D fo(x) is a constant if and only if Ric(gD) =

QID °

An appropriate choice of T allows us to assume in the sequel that fo(x) converges

uniformly to zero as x - D.

The function fo(x) was only defined for x near D, but we can extend it smoothly

to be zero along D, because S 2won is a well-defined volume form over all M. Hence,

there exists a o > 0 such that, in the neighborhood Vo := {x C M; IIS(x)II < 6o0, fo

can be written as

fo= S -ul+S u,

where ul is a C" local section in (Vo0, LD1).

Our goal now would be to construct a function q1 of the form S 1 + S 01,

so that the corresponding f = fl vanishes at order 2 along D, and then proceed

successively to higher order. Unfortunately, there is an obstruction to higher order

approximation that lies in the kernel of the Laplacian on LD1 restricted to D. In order

to deal with this difficulty, one must introduce (- log I S 12) terms in the expansion of

q1, as pointed out in [F] and [LM], where the similar problem of finding expansions of

the solution of the Monge-Ampere equation on a strictly pseudoconvex domain was

treated. Further details can be found in the next section.

3.1 Inductive construction of the metrics { .| Im}m>

Following the tecniques in [TY2], we now construct inductively a sequence of hermi-

tian metrics l.I llmm>o on LD such that, for any m > 0, there exists a m > 0 such

that:

1. The corresponding kiihler form w,,m associated to I .llm (as defined in (3.2)) is

positive definite in V,m := {x E M; IS(x)ll < 6m}; and

2. The function fm associated to wm (as in the definition (3.1)) can be written in

24



Vm as
ek

f m = S )uke(-logIIS Im)f, (3.7)
k>m+l e=O

where lke are smooth functions on Vm that vanish to order k on D. In particular,

the functions uke can be written as

Uk = Z S Oj SjOij,
i+j=k

(3.8)

for ij G r(Vm, L iD () LD ).

For simplicity, we will refer to functions that can be written in the form (3.8) as

functions decaying to the order of O(IISllk).

We define I.[llo = 11·11, and it is clear that I-0llo satisfies the Conditions 1 and

2 above. Now we proceed on the inductive step: assuming the existence of 11.llm,

we construct I I.ll+l- The next lemma gives a relation between fm and f, where

11.l1 = e-0/2 .llm, and f is associated to a smooth function ¢q on Vm of the form

for k > m+ 1.= ( siij + SjSOij ) (-log IS )k
i+j=k

Lemma 3.2 Let f,(x) be defined as in Definition 3.1, associated to

2w- I nl/no(- log )n+a = 2asr n+ l nca(-log to ,, n 

and f associated to . Then

f = fm+nm+ (-log lSII) ((-log IISI) m-) +

+(_ ISI2 ) k-1 SijJij + SjS ij )+
i+j=m+1

+(-log s'M) [-2(n + 1)j (SiSJoij + S Oij) + SS ZLm9ij + SFSmij] }
ek/

+ 5 Ike(- log SI 2) (3.9)
k'>m+2 e=O
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where lm = tr,, (DmDm) is the laplacian of the bundle LD1 ® LD' on D with respect

to the hermitian metric I11 Im, and the functions ukle decay as O(IlSllk').

The proof of the lemma will be postponed to the next chapter, so that we can

now proceed to our inductive construction.

Proof of Proposition 3.1:

We want to find a function b such that 1.1 Im+l = e-0/2 l.lm satisfies the Conditions

1 and 2, ie, we need to eliminate the terms zM=O+- um+l,e(-log lSllm1) from the

expansion of fm. Each of the um+l,e, 0 < < m + 1 will be eliminated successively,

as follows.

Step 1: Write um+l,em+ as

Um+l,em+l= E SiSj(vij + vj) + Sj(ij - vij),
i+j=m+1

where vl ID E Ker([lm

to that kernel.

+ n(m + 1) - 1 - 2(n + 1)j) and vijID is perpendicular

If there is some i, j (i +j = m+ 1) such that v'j ID 0, we use Lemma 3.2 with

k = aem+ + 1 and 6ij = -.k(m+l) Note that the constant k(m+l) was chosen soI m "I -1-i-2 -1-ij
as to eliminate the kernel term from the expression of um+l,em+.

Now, Lemma 3.2 implies

I := =(E Si 3vij + Sj UiV) (-logIISIIm, +
i+j=m+l 

fm+l- ek'

+ E um+i,(- log IlSllm)e + Z uk'e(- log IlISllI).
e=o k'>m+l e=o

(3.10)

After Step 1, we can assume (by replacing fm by f in (3.10)) that f m has an
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expansion of the form

Utm+lm+l = S Si (Vij) + S (ij)-
i+j=m+ 1

Step 2: Now we can solve

(Eml + n(m + 1) - 1 - 2 (n + 1)j) Oij = viji D on D,

for Oij F(Vm, LDX ) L).- Next, let us extend Oij to M, and then apply again

Lemma 3.2 with k = im+l and Oij as above.

The new fm will have an expansion of the form

em+l-1

fm= E Um+,(-log lS Im) + O(llSI m+2)
e=o

By repeating Steps 1 and 2 above, we are able to eliminate all the terms

/m=o+l Um+,, (- log IS1 2)e from the expansion of fm.

Finally, let qm be the sum of all functions used in Steps 1 and 2, and define the

new metric 11.11m+1 by I-IIm+ = e-O/2 1.lllm. Clearly the resulting metric satisfies

Conditions 1 and 2 of (3.7). This completes the proof of the proposition. O-
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Chapter 4

Proof of Lemma 3.2

This chapter is entirely devoted to proving Lemma 3.2, therefore completing the

inductive co:nstruction of the metrics 11.1m

According to Definition 3.1, we have

(5)
- - fm - log (n). (4.1)

Hence, we just need to compute the quotient .

Denote by Dm (resp. DO) the covariant derivative of the metric .1 Im (resp. . 0)I 

Similarly, let cDm and Ad denote the corresponding curvature forms.

relations are well-known:

DS

The following

= DS- S

¢ = wm + -aa0 (4.2)

For simplicity, set m = (-n log IIS Im) and a = (-nlog IISIIl) = am + n. By

(3.4), we obtain

= a Dn-l Am m (&m +

1 JIDml 1)-- OLMOS~~n 1 +IS-
29

fo(x) - log lS1 12

n
m

n\/- DS A DS
2ram IS12

(4.3)



CO = OLOwC-1 A
( nv' DSA DS =

2+27Xao IS12= (m + n) (nrq

n v-1
±2wca

2a~g

-1 _\n-1

(DmS - A -

S

A [(m + 27w )±

9mS-S&3G)]

= (m + n(o) (Cm + 2w~c%5)"1

n/-l D DmS DmS DS -s+ ^D ]
+2t( IS12 - A S S-aoA S +aA

Using the definition of 0, we get

ao= E (-logllSIl)k (DmSisjij +DmS S ij+iDmOij+
i+j =m+ 1

+-Si DmOij)) + k(-log IlS 12)k-l(SiiOij+ SjSiij) DmS~~~j-i'm S

DmS
A

(i)
I

E (-log IS [m)k (isisoij + jsjyoij)
i+j=m+1 

DmS2 DmS) + (SiSiDmOij + SiS DmOij)IS12

(-log 
- -log II SI 12)J

(DmS A DmS)
IS1 2

+ O(llSI 2 m+2). (4.6)

We will also need the expression for 00 o . After some computations using (4.5), it
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A (D +
27w

(4.4)

so that

(4.5)



follows that

a = (-] og Il )k 
i+j=m+l

{i (Ss3 Oij + Si7;i' )

+(jSI Sj)mO ij -+SJS DmOij) + DS + DA (i(+ S

(SiS3JDmDmOij ± SS DmDmij) - (-1ogI))
}j (-log SI)

- k(-log IISI )k1-

i+j =m+ 1

{(SiS DmOij +

DmS A DmS +
IS12 ±

Si DmOij + jSjS DmOij)+

+ k(k -1)0 DmS DmS
+(-log I IS 12)2 S2

Sj DmOij) A mS

+-(SS 'DmgOij + SJ7Dmij) A mS (4.7)

We can therefore conclude from a simple analysis of (4.7) that

2S ( )e A- C- = IO(I S112m+2) for > 2. (4.8)

The above ingredients are going to be used in the completion of the proof of

Lemma 3.2.

Proof of Lemma 3.2:

Recall that we only need to compute the quotient -. Formulas (4.3) and (4.4) then

provide

-_S| mt

im(ISH I + /amlIDmSIm)nm
n-1r ~, c~-2irA { + 21Faa +

DmS A DmS A
|S12 04)A

DmS
S

DmS
c-q AS ±&Aae] } }

Recall the relation (4.8), that allows us to simplify the expression above to
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(&m IISI Im +

am +

|m 2 . { [tm-1 + (n-- n)w-2 A 0d0] A
IIDmI Im)m [ 1

- -
2w Oq

nl (DmS A DS
+tSra IS1 _~l

DmS + O( I Ism+2) (4.10)

Notice that

DmS
A - +

S3

DmS
o A Ss

DmS A DmS
IS12

+ O(m + 1),

since the term (i) overbraced in (4.6) (that appears reflected with respect to i and j

for the conjugate expression) will give rise to the term involving (m + 1)q. Hence,

wn - l l ISt o

Wrn am(IISI12 + 16qnJIDS12)(D

[nL1 + (n - )Dn;-2a00)] A

-(m + 1)q -log ) l
Wm + 2iT00+

)mS A DS
IS12

+ 0 t( a0
(,)

+ o(IISllm+ 2 ) (4.11)

Notice that the term (*) underbraced above is of order of at least O(ISim+ 2 ). Thus,

II Q112 ,,
II m n lm IA

&m(IIS Im + 1/Imll1DmSI1Im)°mX

[Om + 2 o + 2 (1-(m+1)0 -

+(n- 1)m - 2 A ( 2Orq$
2wr

DmS A DmS]

IS12 J +

+ nvT-- DS DS) }+

+ o(llSi+2). (4.12)

Recall that
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m

Dm S
S

n27 (2w5-/(1 }+

n

°m

2ko 
log IlS I J
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nf/77DmS A DmSA 
27ro, IS12

- S (I I± iD2nS ,,)

= Wm~ 0e 4s + iDmS Im- s IISIO(IISlm±+2)

- ( m±

lslim (>m IIDmSI 12)llll J + O(llSllm+2 )

S1m(2 II mDms

{nw A --( -21- 
27w

[-n-l A

+(n - 1)2 A (-00a-))m A Oqq

) +((m ( ) (- log I ISI2 ))

nf/77 DmS A DmS +
2ro---T IS12 

A 2 1a IS12 + O(L ;llm+2) =

= ((m± 1) (- log lSlI ) 

( (a)

as,, .(IA /l1 A, I) I
am(l I SI +1 /1 I + IDm S 12 )n 1 m 2 )m m m~~~~2~,, 

(b)

(n - 1),n-2 A (T--lja6)A (nVmm/- DS A DS)
\2To¢, I g~2 

}

+ O(lISll+2). (4.14)

So, we have
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(4.13)

n
Cm

Is
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(a) = {(-logISII)k E
i+j=m+

[ij(Si-gej+ ±3SBoi

A n(v/' DmSAr DS2

and

(b) = n(n - 1) n -2 A (fV DmS A DmS) A

(- logI SI 2)k

i+j=m+1
{( (SiWjDmDmOij + SS DmDmOij) +

+ (SiDmDmSij + DmDmmS 3ij) })

= + -( + 1) - (_ log S) IlSIlml 
Om(11SII + 1/m[IIDmSII12 )C

*(-log IISII)k 5 [ij(sis oijo + SJOij)] (&jn-1
i+j =m+1

( n-- DmS A DmS + IS1 |IC
2m )S)2 ± am(IISH1m + 1/amIIDmSII2 )m

(*)

n(m + 1)k n(k- 1)k n-1
(-log I S ) (-logS I IsI)2 '

A n v/-2Ao
2ir~

DmS A DS +
S12 J (b), (4.17)

and the term (*) can be simplified via (4.13), giving

-( ) k(m-1) + (k - )k-(m 1)+ (- log SII) (-log IS1I )2

S(IISI {_(-log I±ISI ) k

am(1sil~ + /amIIDmSlI m)Cm m

[ij(si Sioijj)] } m1 AI J ij)] + n(/2'l DS A DS (b)2--ao IS12+(b

34

+ (m+ 1)k + (k- 1)k5 -n-I
(-log SI I) (- log IISI 1 )2 m

(4.15)

So,

n

m

(4.16)

w 1

W m

i+j=m+l
(4.18)



Observe that the relations

DmDmS3

DmDmfij

imply that

(SisjDmDm ijj + sJiODmDmij) =

{ (isiDmDmij + ssDmD'ij) -(Sisoi- SJS ij) (i- j)}).

(4.20)

Hence,

k(m- 1)
(-log I ISl I)

m = 1+

oJm
+ k(k 1) )) 

Mm(IISI9 l {(- log SIl2) k.
am(lII11 + 1/a11lDm$S1M°:mn M

[aoij(Si 3ij + Siij)n - 1 A (n/-l DmS A DmS +
(2iro IS12 J

(*1)

n-2 n ' Dm. A VDmS
+(-l)m A 2rc S12 A

A(- log IIS12 ) [ _
i+j=m+ 1

(SiSJmDOji + sJiDmDmij) +

- (siso
i+j=m+l

= 1+ -(m+

- (-log IlSIll) k · E
i+j=m+:

+ syi O) (i- j)&m.

1)+ k(m- 1) + 
(log IISI 12 ) (lc

} + O(IISI Im+2) =

k(k-1) 0
)g S 12 I)2

( S TSmOij + SsDmSi,) + (-

* S a,+(n-l)((m+ 1)-2j) (sisij
i+j=m+l (*2)

+SjS0,j) + O(IISlm+2).

Notice that we actually can replace the term (*l) by (*2), since the function is
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= -DmDmS j +jSJi&m

= -DmDmOij - (i - j)Oij&m (4.19)

E
i+j=m+l

i+j=m+l

E
i+j=m+l

log IISI I)kIm'

(4.21)

-(m+l)+



assumed to be of order O(IISllm+l), and a = am + n0. This implies that the

residual term from this substitution will lie in 0(11SIIm+2). Therefore, we conclude

W0 = 1+
(,m

k
n(m + 1)+ + 

+ E (SI
i+j=m+l

+ 2(n- 1)(- log IIS 12 l) k

( k-1 + (

(- log Il) SI IM'

LlmOij + STr-mAij) +

E j (sisiij+si
i+j=m+l

+ (log ISI 12 )k-1 E ij (i 0..,
i+j=m+1

-_SiSi) + O(IISIIm+2).

f = m-log ( =

k
= nmO + (_ log ISI 12 )

+ (-log |lSl2m)k E
i+j=m+l

+ (-logll Sll) k- 1 I
i+j=

- 2(n + 1)(- log ISll=) k E
i+j=m+l

( k- 1 -(
(- log IISIl2)

(S o moij + SsLmij) +

- ij (sisjij - sSi ij ) -
m+l

j (SiS3ij - Sij, ij) + o(IISIIm+2) (4.23)

which proves the lemma.

The inductive construction of the metrics 11.1 Im is now completed.

0
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Chapter 5

Complete KShler Metrics on M

In this section, we shall complete the proof of Theorem 1.1. In particular, it is going

to be necessary to consider the asymptotic behavior of the Riemann Curvature tensor

of the metrics constructed in the last chapter.

For each m > 1, consider the function fm constructed in Chapter 3. For this

choice, let the corresponding

Wm= II(-nlog[[S[[ 12m = 27r(n + 1)a(-nlogSM n

define a (1, 1)-form on M. If 6m is sufficiently small, wm is positive definite on

Vm = {IIS(x)ll < m}, and defines a Kiihler metric gm.

Lemma 5.1 The Kdhler manifolds (Vm, OV, gm) are all complete, equivalent to each

other near D, and for each m > 0, the function

P 2 (-nlog ISI 11) 2n

=n+ l M

is equivalent to any distance function from a fixed point in Vm near D.

Proof: Fix m > 0. We have

IV'p1 2 =V/--ip pA pAwm-'imip(,, 2wn
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Since

ap= n 2n (log lSI ) SD

we have that

2 p A6p A w -1 = (-nlog IS I) n (-n log I ISI I)
21r

1 n--1 /-/t DmnS A DmS
n Am hS (5.1)

(5.1)

So, using (3.4), we have

IVmPIm
1

n-1 /A -- t Dm SADmm A 2-r IS12

(-nlog l SI)+ m Dm-IA/ nT DmSADmS_ 1 IIDmS I -

n (-n log Sl ) + IDmSIl ' (5.2)

Recall that I DmSI I is never zero, and limllsllmo - log IISII . ISII2 = 0, hence

lV pl2 IISllm-o 1

proving that p is equivalent to any distance function from the boundary near D.

Also, since p -+ oo when x - D, the Kihler manifold (Vm, OVm, gm) is complete.

We claim that all the metrics gm are equivalent near D. To check the claim, note

first that each cDm is the curvature form of the metric I .Im, hence, for every m, e N,

Dm is equivalent to e near D. The claim then follows from Equation (3.3), that

relates the expressions for Wm and im.

Finally here is a remark about the volume growth of (Vm, V gm, gin): since w is

equivalent to Dm (-nlog II SI2 ), it suffices to consider the integral

/ (x)le/2n.- + (-n log IS I 2 )m

2n
which is of order pn+ .
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5.1 Decay of the curvature tensor

In the sequel we are going to carry out the estimates of the Riemann curvature

tensor R(gm,) corresponding to the metric gm which are involved in the statement of

Theorem (1.1L). Let us begin with the following lemma:

Lemma 5.2 Let (Vm, aVm, g,) be complete, Kdhler manifolds with boundary defined

as in Lemma 5.1. Then the normn of R(gm) with respect to the metric g decays at

the order of at least (-n log Sm)n near D.

Proof: We will prove the statement in local coordinates, as follows:

There exists a finite covering Ut of D in M such that for each t, there is a local

uniformization Hit: Ut - Ut such that lt-'(D) is smoooth in Ut, and for some local

coordinate system (l,.. .,Zn) in Ut with S = Zn and z' = (z1 ,..., z,)n- coordinates

along D, we have

n

E R(1t*(9))ikt(Z, Zn)(ifkl =
i,j,k,l=1

n

(-nlog Iz12)n E R(t*(gDlnt-l(D)A))i3k ~3(+W
i,j,k,l=l

+ O((-nlog z 12 )-I/n), (5.3)

for any g,-unit vector (l,...,n), where gD is the khler metric defined by the

restriction of the curvature form to the divisor.

Without Iloss of generality, assume Ut n M is smooth.

For any x E UtnM, we will choose local coordinates (z1 ,..., zn) for a neighborhood

of x such that

* The defining section S of the divisor is given by z.

* The curvature form &m of lllm is represented by the tensor (hi-) in those

coordinates, and (hi-) satisfy

h- =i hiJ hi)hi3-(x)=6p - Aj; z () = O ifj<n; 02(x)=O if i < n;
3 7 IO6,k Of 7
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* The hermitian metric II. im is represented by a positive funcion a with a(x) = 1,

da(x) = 0 and d( )(x) = 0.

In order to simplify notation, let us write B = B(zlI) = (-nlog Iznl2 ), and let us

drop the subscripts for the metric 9m, to be denoted by g from now on.

Formula (3.3) implies that

n
gij-dz A d = B /'1

i,j=l

n-1( hijdzi
i,j=l

A dz; +dz A 

O(B- l/ n ) if i= j and i < n

g (x) - o(B- l/ n) if i ~ j and i,j < n

O(Izn12B- '/ n) if i = j = n

Computations involving (5.4) lead to

=B/n[ a[Ohi__= o /n .-1

znB
(6knhij+ 6inhk3 + 6in6jnkn

_=Bn{ 02 hij

1 ( _h__-

(- B 6kn 

+ 6jn(6knhil + 6inhki)) +

1

2 B
(ln hA

1Z

± (hkj A+ in '-k
az;dl

13 + n-)-
k &Zk

1+ -n (n(knhi2 + 6inhk3)+
Z; n12B2 

Jin6jn6 kn ln
I Zn 4 B 3 (

1)(1 - 2n) + (1 - n)B +

If (p1,..., ~n) is a g-unit tangent vector, then

I i 2 < CB-1/n if i < n

li 12 < Clzn 2B(n-l)/n if i = n,
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where C is a constant that does not depend neither on the unit vector (l,... ,n)

nor on the point x E D.

Now we have all the ingredients to estimate the decay of the Riemann curvature

tensor. In local coordinates,

R(g)ijk(() (6iejkfl) (X) = [ a2giJ () +-aZka9Z1
uE:9 (x) ()2aL ()U'V= I a k '0'·I

((i3kel) =

(a)

= _Bl/n 2h 
aZkazl

4(1 - n)j{"n 2

+ IZn2B2

+

(d)

x
n

+ B/ E g U(x)
,v=l1

(e)

x
(n-i

B + IZ )

I

(5.6)

We proceed on bounding each of the terms separately.

Using the estimates (5.1) for nl12 and our previous choice of local coordinates, we

obtain, when Zn approaches zero,

(b) <
IZn12 B 2

-(B-l/n + Zn12B(n-l)/n) < CB-(n+2)/n

where C denotes a uniform constant.
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The term (c) can be bounded as follows, as z, - 0:

(c) < lzn 14B(-l)/ (B2+(1-n)B+lzn 12(rn-1)(1-2n)) < CB-1/n(B-l+1) < CB- 1/n
Zn 14 B3

Now, notice that the expression (d) needs special attention,

Iznlj B(n- 1)/2 n (B-/n + B(n-)/2n n 1 1

< C(B-(n+2)/2n + lZnl-lB-l/n), (5.8)

due to the presence of a term involving znl- . However, our estimates for

gu = B- 1/n [(1 - 6unJvn)0(1) + 6un6.nO(IZn 2)]

show that this term is compensated by the last term of the above expression.

The estimate for the decay of (e) is analogous to the case of (d), and will henceforth

be omitted.

In conclusion, we have

R(g)ikT(X)(-i1j- z /n Oh3 k -1 = B- () )( C = B k ()(Xi =j k( ) + O(B /n)

which implies the expression (5.3), and concludes the proof of the lemma. O

The reader may also notice that Lemma 5.2 completes the proof of Proposition 3.1.

The following result is a trivial consequence of Lemma 5.1 combined to Lemma

5.2.

Corollary 5.1 Let (Vm, OVm, gm) be the complete, kdhler manifolds with boundary as

in Lemma 5.2. Then the norm of the cuvature tensor R(gm) with respect to the metric
2

gm decays at the order of p-n+l , where p is any distance function from a fixed point

in Vm near D.

We are finally able to complete the proof of Theorem 1.1.
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5.2 Proof of Theorem 1.1

In what follows, we keep the preceding setting and notations.

Since the divisor is assumed to be ample in M, there exists a hermitian metric

'·I' on LD with its curvature form 5i' positive definite on D.

Fix an integer k > , and write, for E > 0,

Wg, = Wk + C 2a (-IS1 ) ,
2wr

(5.9)

where wk is the Kdihler form defined on Section 3.1. The Kdhler form wg, is positive

definite on Al, and gives rise to a complete kdihler metric g on M.

Let 6 > 0 be such that V3 = {llS(x) I < 6) c Vk. On V, w,, satisfies Ric(g,)-Q =

I Ocf, and we want to estimate the decay of f at infinity.

Also, on V1, Ric(gk)- = - fk, which implies that

nWk
kk

fk - log (wcn + CIIS|II(e-1)wn I A nT- (D'S A D'))

= f - C IS '/2(-1) l I'SI ,

where D'S denotes the covariant derivative of the metric 1 .1'. Hence, in order to

estimate the decay of f, it suffices to study the decay of IID'S Ik To do this, we are

going to introduce a suitable new coordinate system on V.

Because iD is admissible, it follows that total space of the unit sphere bundle of

LD ID (with respect to the metric Il. k) is a smooth manifold of real dimension 2n + 1,

to be denoted by M 1.

Since LD is simply the normal bundle of D in M, there exists a diffeomorphism

': M1 x (0, ) ---* V7

induced by the exponential map of (M, II. lk) along D.
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It is also known that the Kiihler form of gk is given byWk -l /n)) n+
Wk -9 -( - lo g ( l l$ I e 2 )

n
2-7rn +I _

where qbk is a smooth function on M, that can be written as E>, EZEo U(- log I SI ),
where u,e are smooth functions on Vk that vanish to order n on D.

Combining the facts above, the pullback of gk under on M1 x (0, ) is given by

I gk = (-nlog(ll$112))ng(51, I5 log(11511)) +

+ (-nlog(llS1)) d ((-og(1SI2))) h(ISI, ISllog(ISI))+

++ (-nlog(llSl2)) d ((-nlog(ll$S1)) ) u(llSI , I log(ISI1))(5.11)

Here g(.,.), h(.,.) and u(.,.) are COO families of metrics, 1-tensors and functions on

M1, such that for each fixed integer > 0, there exists a constant K that bounds

all covariant derivatives (with respect to a fixed metric h on M1 ) of g(to, t), h(to, tl)

and u(to, tl) up to order , for all to E [0, ], tl E [0, log(6)].

Setting p = (-nlog(SI j2 )) n, (5.11) becomes

2(1--n) 2 2(1-2n) 2

'*gk pn+lg(.,.) + p + d(pn+ )h(, ) + ) d(p u(.,.), 2 (5.12)

and hence we can regard T*93 as being a metric defined on M1 x ((-n log 62)n 00)

Let the function y := I*(S1I')2 T be defined on M1 x ((-nlog 62)n, c). Our

goal is to understand the decay of IlD'Si k, which is equivalent of studying the decay

of IVY7,p-2/(n+1)Ig k (-l(x)), where V denotes the covariant derivative of the metric

p-2/(n+l) XF*gk.

Notice that on M1 x ((-nlog 2)n , ), the function y can be written on the

form

e'(., exp{pnlT }) exp{ -pI l },

where By is a smooth function on M1 x ((-nlogd2) 2,co) with all derivatives

bounded in terms of a fixed product metric.
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Hence, from the expression (5.12), it follows that

n;y/p_|,2/(n+l)~.gk (x-1( )) = O(expi-p+v)), (5.13)

since the curvature tensor of p-2/(n+l) *gk is bounded near T-(z).

Notice also that the equation (5.13) is equivalent to

IID'S11gk = (11S11),

which shows that the metric g, with corresponding K/Shler form w,, defined by (5.9),

satisfies the equation Ric(g,) - Q = 00f,, for f, a smooth function that decays on

the order of at least O([ISll).

In order to complete the proof of Theorem 1.1, it only remains to note that the

curvature estimates for the new metric g, will follow trivially from the estimates on

the curvature tensor R(gm), described on Lemma 5.2. a
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Chapter 6

Asymptotics of the Monge-Ampere

equation on M

This last chapter is intended to provide the proof to Theorem 1.2.

Let (M, g) be a complete Kahler manifold, with Kihler form A. Consider the

following Monge-Ampere equation on M:

( W+ BEA U )n = e/ c n (6.1)

t + V 10u > O, u E COO(M,R),

where f is a given smooth function satisfying the integrability condition

IM(ef - 1)w = 0. (6.2)

As discussed in Chapter 2, if u is a solution to (6.1), then the (1, 1)-form +

2~100du satisfies Ric(w + -00u) = f. So, in order to define metrics with prescribed

Ricci curvature, it is enough to solve equation (6.1).

In [TY1], Tian and Yau proved that (6.1) has, in fact, solutions modulo assuming

certain conditions on the volume growth of g as well as on the decay of f at infinity.

For the convenience of the reader, we state here their main result.

Theorem 6..1 (Tian, Yau, [TY1]) Let (M, g) be a complete Kdhler manifold, sat-
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isfying:

* Sectional curvature of g bounded by a constant K;

* Volg(BR(Xo)) < CR2 for all R > 0 and Vol9(Bj(xo)) > C-1(1 + p(x))- 3, for a

constant A, where Volg denotes the volume associated to the metric g, BR(xO)

is the geodesic ball of radius R around a fixed point xo G M, and p(x) denotes

the distance (with respect to g) from Xo to x.

* There are positive numbers r > O, rl > r2 > 0 such that for any x C M, there

exists a holomorphic map x : x C (Cn , 0) Br(X) such that OXx(0) = x;

Br2 C x C Brl, where B- :={z C CEn; Izl < r}; and q$zg is a Kdhler metric

in Ux, such that its metric tensor has derivatives up to order 2 bounded and

1/2-H6lder-continuously bounded.

Let f be a smooth function, satisfying the integrability condition (6.2) and such

that

sup{|Vsf, Agf, } < C If(x)l < C(1 + p(x)) - N, (6.3)
M

for some constant C, for all x in M, where N > 4 + 2/3.

Then there exists a bounded, smooth solution u for (6.1), such that w, + 090u

defines a complete Kdhler metric equivalent to g.

An interesting question posed by Tian and Yau in the same paper is that whether

we can prove that the resulting metric is asymptotically as close to g as possible if we

assume further conditions on the decay of f. We provide an answer to this problem

in the remainder of this thesis.

We are interested in studying the Monge-Ampere Equation (6.1) for the Kthler

manifold (M, wg,) constructed in Chapter 5. More precisely, for any E > 0, we want

to understand the asymptotic behavior of a solution u to the problem

(g+ u) e (6.4)
wt9 + hu > 0, u C(M,R).
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In order to guarantee existence of solution to (6.4), we need to check that the

function fge (defined on Theorem 1.1) satisfies the integrability condition (6.2).

Lemma 6.1 There exists a number A > 0 such that, by replacing 0 by 0 + A in the

definition (3.1) of fo, we have

M(ef g - 1)wg = 0. (6.5)

Proof: Recall the definition of wge:

VI'_1 n1+1/ _ -+1-

Wge = 2 n1 a(- log l SII2) n +C a9(-I SI ')2e, (6.6)

we

for 0 chosen as in Section 3.1, so that the corresponding f decays faster than

o(lSlli).
A direct computation using integration by parts shows that IM wg -wW = O. Also,

the definitions of wg and wo imply that efgewn = efiwon. Therefore,

J/(efg - _)wn= / (em - )w.

On the other hand, Definition 3.1 gives

ef, = ilSll . (6.7)

Notice that the function I remains unchanged if we replace 0 by 0 +A, since &a =

wc4+x. Therefore, the right-hand side of (6.7) is invariant under the transformation

c-40q + A.

On the other hand, a direct computation using (3.4) shows that

W++> =I (I+A(- log S n (6.8)

(= n 0 (- log IISII) n - n A(jn, (6.9)2r n + log
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where we recall that &, is the curvature form of the hermitian metric 1 .1¢.

Therefore, by redefining f by

f = -log IISI12 - log Mv+ - T,

we have that

M(ef - 1) = - - nA J. (6.10)

Since the first integral in the above expression is finite, and independent of A, we

can choose the number A so as to make the right-hand side of (6.10) equals to zero.

This establishes the lemma. D

The previous lemma shows that each fge satisfies the conditions on the existence

theorem of Tian and Yau. Also, the estimates on the decay of the Riemann curvature

tensor (Lemma 5.2) and the observation on the volume growth of the metric g, (see

the remark after Lemma 5.1) show that (M,g g) is a complete Khler manifold in

which Theorem 6.1 can be applied.

Therefore, for each > 0, there exists a bounded and smooth solution u, to the

problem (6.4). Our goal now is to understand the asymptotic behavior of u,.

Denote by wn the Kihler form on M given by Theorem 6.1, when we use g (given

by Theorem 1.1) as the ambient metric:

WIvQ = W~ + - -00u.27

Clearly, it suffices to prove the asymptotic assertions on u, for a small tubular neigh-

borhood of D in M. Recall from the proof of Theorem 1.1 that on V, \ D,

Wg = Wm + CE 2m ( S |i)e,

for some m > fixed.

Since wm and Wg are cohomologous, there exists a function ur such that we can
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write, on the neighborhood Vm \ D,

WO = WM+ 2 ir aaUm. (6.11)

On the other hand, if fm is the function defined by (3.1), (6.11) implies that u,

satisfies

2ir o m
= efmwvnrnw on Vm\D,

where we remind the reader that Ifmlgm is of order of O(lISIIm).

Therefore, in order to study the desired asymptotics, we will turn our attention

to solving (6.12).

The following lemma is a necessary ingredient in the proof of Theorem 1.2, pro-

viding barriers to the solution um of (6.12).

Lemma 6.2 On the neighborhood Vm \ D = {0 < I SlIrm < 6m}, we have

{m + 2-r0 (C [sisij + SiSjij] (-nlog(IlIs m))k) } =

= [ 1 + C-lgm)) {ij(-nlog(IIS12m))2 [SiSJoij + SSJij] -

-(-nlog(lISJlm)) [(k(i + j) + j(n- 1)) SiSJOij + (k(i + j) + i(n- 1)) $Sjij]

+k(k - n)} + O(IISII+j+)], (6.13)

where Oij is a C° local section of Lt i 0 L j on Vm.

Proof: In order to simplify notation, define B = (-nlog(I SI 1)). Computations11 V~l~VVyllrl~J IVVIILII U111 U- (IV61Ulm/·VVI+UUILVI
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(CBk [SiSij + ±Ssj]) =
= Wm {CB k- 1

- TDmS A DmS rC
2r 1S12 C

+ CBk- 1 2 [(ji
+ CBk 2ir

q CBk-
2-7 S

[(-jB + k) jOij] + [(-iB + k) SSjjo] } +

3k -2 [SSJiiij + gs'ij] [ijF2 - k(i + j)F + k(k - 1)] } +

- k) SiSDOij + (iB- k) S SDmOij] ADS +

S A-A [(iB k) S'31DmOij + (jB - k) SSiDmij1

+ CBk Vr
2-7

+

[iSJDm.DmOij + SJ Dm.Dm6ij] , (6.14)

where Dm stands for the covariant derivative with respect to the hermitian metric

I]-m, and where Cm is its corresponding curvature form.

Using (3.3), we may conclude that

-x-
27r

+ 2 (clDmOij +

(CBk [sisJ ij + S Sij] ) =[am 4

C2DmOij) A - +
S

v/-'-- DmS

27r S

~-b DmS A DS-b -S
2(7r S 2 +

(diDmOii + d2Dm~ij) +

+ e 2Or DmDmOij
n

, (6.15)

where

a = B' [1-CBk t[(jB- k)SiS Oij (iB - k)S3iOj+]]

b = Bn [1 + CBk- - [SiSJj + SJij] [ijF2- k(i + j)F+k(k-1)]]

c = CSi Bk-IB - k], c = CSiJBk-I[iB - k] (6.16)

d = CSiSJBk-l[iB - k], d2 = CSSjBk-liB - k]

e = CSiSj Bk.
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Now, we proceed on estimating each of the terms on (6.15).

n-n Bn1 [1-CnBnk- n+ [(jB- k)SSij + (iB k)SJoij] +

+O(IS I|?j++)] (. (6.17)

Also,

nan-b = - C(n- 1)Bk- n [(jB- k)SiS3Oij + (iB - k)Sij+]] ·

[1- + CBk- n' [isioij + io Jij] [ijF2 - k(i + j)F + k(k - 1)] =

= 1 + CBk - n {ijB2 [sis ii j + s S -ij] -

-B [(k(i + j) + j(n - 1)) SiSjOij + (k(i + j) + i(n - 1)) SJOij]+ k(k- n)}

+ o(l SI IM+ j + l) (6.18)

The expressions for the other terms are analogous, and will henceforth be omitted.

From (3.4), we deduce that

n IISS12 B- '

"'m" I ISlIm + B-IIDmSI Im

and since

IlSlIm
jIslI + B-1 HDmSHI jISIB ( o(ISllB-'),IHIDmSH % 1 + )II SI = OJj~~jm 1D.11

all the terms in (6.15) will decay at the order of at least O(IISIi+j+'), with the
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exception of the term (6.18), which will be written as:

an-lb { n-1 n/- DmS A DS } = anl b I SIIm na-1 b

man-lb IIDSIIb2 _ _LASI_ _ lVIlS + -lllDmSmI1
= wm [1 + CB {i ss ] -

-B [(k(i + j) + j(n - 1)) SiSOij + (k(i + j)+ i(n- 1))SSjij] + k(k- n)}

+O( IS Im+J+l)] (6.19)

Therefore,

[w+ 7 o CSiO1ijBk) [ + CB n ijB2 [S+iSij +Ssi3 ij]-

-B [(k(i + j) + j(n- 1))siioij + (k(i + j) + i(n- 1))±S Sjij] + k(k-n)}

+O(|ISM +i+'l)], (6.20)

completing the proof of the lemma. El

Proposition 6.1 Let um be a solution to the Monge-Ampere equation (6.12). If

urn(x) converges uniformly to zero as x approaches the divisor, then there exists a

constant C = C(m) such that

lum(X)l < CIISllMM+ on vm \ D. (6.21)

Proof: It suffices to prove (6.21) in a neighborhood of D. Apply Lemma 6.2 for

i = m + 2 and j = -1, and choose the section ij so that the function SiS3 Oij +
OsiSij is positive on V, \ D. Note that there is, in fact, a C°'-section Oij satisfying

this condition. Indeed, a local section on a trivializing coordinate can clearly be

constructed by means of a bump function. In particular we can consider finitely

many local sections as above such that the union of their supports covers the all of D.

Since the positivity condition is naturally respected by the cocycle relations arising
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from the change of coordinates, the desired section ij can simply be obtained by

adding these local sections.

With the above choices, we have

=rm + 2 -r C [SS ± ij + S {S[ij] (-nlog(Ill

= w [1 - C(m + 2)(-nlog(l|S| |)) k+ n { [1

11I2))k =

+ o(1)] [sisJoij + ± siOij] } +
(6.22)

On the other hand,

efmWo = [1 + O(IISlIm+)]Iw: on V\D. (6.23)

More precisely, we can write on Vm \ D

em+l

efmw = [1 + E{Sioij + sSjiO)(- log IS1l)e + 0o(|| s+2) ]w,
e=o

(6.24)

for sections Oij G r(Vm \ D, LDi ® LDj).

Let E > 0, and define Ci = £?, where C := supxEvm\D(luml + 1), and C = -C~.

Then, for all x E Vm \ D verifying

(S m+2 lm +2,-1 +S -Lm,,+2,-1(-nlog(}SI))m+l) () = 6Om+2,-l S M~~~ (6.25)

it follows that

Ci (Sm+2S Om+ 2,-1 ± Om+2,-1(-n log(S llm)) £m+l) (X) > IUm(X)l.

Furthermore, if is sufficiently small, then on the subset

{ E Vm \ D; (Sm+2S-1 0m+2, + o+lS-lam+2,( llS ))m+ ) () < 4)I~~~~~~~~~~~~~~(x 
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we have (for i = m + 2 and j = -1)

[,m + 20C1 [SiS30ij + rsisij] (nlog(lSl m)) tm+L- n < efmw,, and

[ur + 2 &OC 2 [S soij + Sij] (-n >log(SII))em ] Ž> efmw

Finally, by using the hypothesis on the uniform vanishing of um on D, the propo-

sition follows from the maximum principle for the complex Monge-Ampere operator:

we obtain the following bound

IUml < C [siso ij + Siij ] (-nlog(ISllm)) (6.26)

on the neighborhood given in (6.25), where C = max{C1,-C2}. This completes the

proof of the proposition. [1

Finally, the last step in the proof of Theorem 1.2, which consists of showing that

the solution to the Monge-Ampere equation (6.12) actually converges uniformly to

zero.

Proposition 6.2 For a fixed m > 2, let Um be a solution to (6.12). Then un(x)

converges uniformly to zero as x approaches the divisor D.

Proof: In [TY1], the solution um to the Monge-Ampere equation (6.1) is obtained as

the uniform limit, as E goes to zero, of solutions um,e of the perturbed Monge-Ampere

equations

(W-um + 2r = e fm +eWn

WJm + /--1ou > O,

(6.27)
u E C°°(M,R).
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On the neighborhood Vm, Lemma (6.2) applied for i = 2, j = -1 and k = 0, gives

Wm + 27r
(c ~[s26,1n+S~s-,I~(C [S2- -1 + S_1-#2,_1] ) _ 

= m [1- 2C(-nlg(Sll )) n {(-nlog(ISm))2 [S 102 1 + S2S-10 2,-1] -

-(-nlog(lIS[[m)) [(1- n)S2S 1 02,-1 + 2(n - 1)S-02,_S ] } + O(IlSll)] 

(6.28)

Again, we can choose appropriate local C'-sections 02,-1 such that

[S2S- 02,-1 + S S-102,_1]

is a positive function on a neighborhood of the divisor, and use this function as a

uniform barrier to the sequence of solutions (um,}.

Note that efm+eum,6 = 1 + O(IIS ,I). Hence, as in the proof of Lemma 6.2, we can

define, for a fixed a > 0, Ci = -, where Ci := supxEvm\D(lum,El+1) and C2 = -Ci. A

priori, C' could depend on , but it turns out (see [TY1] for details) that supM lum,El

can be bounded uniformly by a constant independent on . Then, for all x E Vm \ D

such that

(S2-- 2,-1 + S2S-1 2 _,) () = 6,

we have that

In addition, in the neighborhood {x Vm \ D; (S2-1 02 , 1_

for a fixed sufficiently small, we have

V/r--
2w7

+ S - 2, 1_) () < 6},

[S S 2,-1 + S2S-102, 1 ]] < efm+C[S2 S 2,-1+S2S-162 , 1-]('

_f2 0 (8C2 [S2- 02,-1

57

[m -

and

Im±

C� (S2-3- -102,-I) (X) > IUme(x)I-'02,-1 + 92S

> fm+CC[S23 102,-l +32S-1#2,_lnU> e, IWM.~~m
+s~s-',~~,] n



Since um,e vanishes at D (see [CY1]), we can apply the maximum principle to

conclude that there exists a C independent of E such that, near D,

-C [S2-1 02,-1 + SS 02,-1] < Um,e < C [2S-102,- 1 S S2,-1]

Now, since the neighborhood {x E Vm \ D; (S2S-102,1 + S2 -10 2, 1 ) (x) < 6} is a

fixed set, independent of e, and the constant C above is also independent of e, we

can pass to the limit when E goes to zero, obtaining the claim. [1

Proof of Theorem (1.2): It follows immediately from the combination of Proposi-

tions (6.1) and (6.2). D
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