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Abstract
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Chapter 1

Introduction

In 1978, Yau [Y] proved the Calabi Conjecture, by showing existence and uniqueness of
Kahler metrics with prescribed Ricci curvature on compact complex manifolds. Here
the complex manifolds in question are already supposed to admit a Kahler metric
whose Ricci form satisfies the natural conditions arising from Chern-Weil theory.

Following this work, Tian and Yau [TY1] settled a non-compact version of Cal-
abi’s Conjecture on quasi-projective manifolds that can be compactified by adding a
smooth, ample divisor. In a subsequent work ([TY2]), they extended their result for
the case where the divisor has multiplicity greater than one, and is allowed to have
orbifold singularities. This generalization was done independently by Bando [B] and
Kobayashi [K]. Later, Joyce [J] provided the sharp asymptotics for the decay of the
solutions provided in [TY2].

Once the existence problem is solved, an interesting question that arises is about
the behavior of those complete metrics near the divisor. This question is also posed
by Tian and Yau in [TY1].

The aim of this thesis is to provide an answer to the mentioned question, therefore
refining the main result in [TY1]. More precisely, we shall first construct explicitly
a sequence of complete Kahler metrics with special approximating properties on a
quasi-projective manifold (in our case, the complement of a smooth, ample divisor
on a compact complex manifold). Then by using these approximating metrics, we

are going to study the solution of a complex Monge-Ampeére equation on the open
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manifold. A careful analysis of the complex Monge-Ampére operator will allow us to
describe asymptotic properties of the solution. As a matter of fact, the reader will
note that our results apply equally well to divisors having orbifold-type singularities.

To state the main results of this thesis, let us consider a compact, complex man-
ifold M of complex dimension n. Let D be an admissible divisor in M, ie, a divisor

satisfying the following conditions:
e Sing MC D.

e D is smooth in M\ Sing M.

e For any = € Sing M, let I, : U, — U, be its local uniformization with I, € C".
Then II;!(D) is smooth in I,

Let Q be a smooth, closed (1,1)-form in the cohomology class ¢; (Kﬁ1 ® Lp'),
where K77 stands for the canonical line bundle of M, and Lp for the line bundle
associated to D. Let S be a defining section of D on Lp and let M be the open
manifold M = M \ D. Consider a hermitian metric ||.|| on Lp.

Fefferman, in his paper [F], developed inductively an n-th order approximation to a
complete Kahler-Einstein metric on strictly pseudoconvex domains on C™ with smooth
boundary, and he suggested that higher order approximations could be obtained by
considering log terms in the formal expansion of the solution to a certain complex
Monge-Ampére equation. This idea was used by Lee and Melrose in [LM], where
they constructed the full asymptotic expansion of the solution to the Monge-Ampere
equation introduced by Fefferman.

Motivated by this work, we construct inductively a sequence of rescalings ||.||4,, =
e?n/2||.|| of a fixed hermitian metric ||.]| on Lp, which will be the main ingredient of

the proof of the following result.

Theorem 1.1 Let M, Q and D be as above. Then for any € > 0, there ezists an

explicitly given complete Kdahler metric g. on M such that

Ric(g.) — Q= %35& on M, (1.1)
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where f. is a smooth function on M that decays to the order of O(||S||). Further-

more, the Riemann curvature tensor R(g.) of the metric g. decays to the order of

i),

al
5

O((—nlog ||

Remark: In the above statement, it should be emphasized that the metric in question
is explicit. In other words, this result provides complete metrics that are “approximate
solutions” to the Calabi problem, but that have the advantage of being explicitly
described.

So far, there has been a large amount of work concerned with deriving asymp-
totic expansions for Kahler-Einstein metrics in different contexts: after Cheng and
Yau [CY1] proved existence and uniqueness of Kahler-Einstein metrics on strictly
pseudoconvex domains in C™ with smooth boundary (in addition to results on the
regularity of the solution), Lee and Melrose [LM] derived an asymptotic expansion for
the Cheng-Yau solution, which completely determines the form of the singularity and
improves the regularity result of [CY1]. On the setting of quasi-projective manifolds,
Cheng and Yau [CY2] and Tian and Yau [TY3] showed the existence of Kahler-
Einstein metrics under certain conditions on the divisor, and Wu [Wu] developed the
asymptotic expansion to the Cheng-Yau metric on a quasi-projective manifold (also
assuming some conditions on the divisor), as the parallel part to the work of Lee and
Melrose [LM].

However, in the context of quasi-projective manifolds, an asymptotic description
of complete Kéhler metrics with prescribed Ricci curvature was still lacking. This is
provided by our results below.

In [TY1], the result of existence of a complete Kéahler metric (in a given Kahler
class) with prescribed Ricci curvature is achieved by solving the following complex

Monge-Ampeére equation

(w + g@gu)n =efwn,

(1.2)
w+ X190u > 0, u € C®(M,R),

11



where f is a given smooth function satisfying the integrability condition

/M(ef - Hw" =0. (1.3)

Our main result describes the asymptotic behavior of the solution to (1.2), by
showing that the approximate metrics given in Theorem 1.1 are asymptotically as

close to the actual solution as possible.

Theorem 1.2 For each € > 0, let g. and f. be given by Theorem 1.1.

Consider the solution u. to the problem

(wgs + %05%) = efewge’ »
wy. + %2200, > 0, u. € C°(M,R).

Then the solution u. decays as O(||S||¥) near the divisor.

This theorem has an important, straightforward corollary.

Corollary 1.1 Let M be a compact Kihler manifold of complex dimension n, and
let D be a smooth anti-canonical divisor. Then for any € > 0, there exists a complete

Ricci-flat Kihler metric on M = M \ D that can be described as

where g is the Kahler metric constructed in Theorem 1.1, and u is a smooth function

on D, with bounded derivative, such that u decays at least to the order of O(||S||?).

The structure of this thesis is as follows. In Chapter 3, we construct inductively

a sequence of hermitian metrics {||.||m}men on Lp such that the closed (1, 1)-form

— I+1/n 1
VIR 5(— log [ISIR) S (1.5)

Wm o n+ 1

is positive definite on a tubular neighborhood V,, of D in M.
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The Kahler form w,, defines a Kahler metric g, on V,, such that Ric(g,,) — 2 =
%65 fm, for a smooth function f,, on M that decays to the order of O(]|S||™).
An important technical result for this construction is Lemma 3.2 whose proof is the
object of Chapter 4.

In Chapter 5, we use the constructions of Chapter 3 to complete the proof of
Theorem 1.1. First, we shall obtain the necessary estimates on the decay of the Rie-
mann curvature tensor of the metrics g,,. Then we shall proceed to the construction
of approximating metrics that are defined on the whole manifold (and not only on a
neighborhood of the divisor at infinity).

Finally, Chapter 6 is devoted to the asymptotic study of the Monge-Ampére equa-
tion 1.2. By using the maximum principle for the complex Monge-Ampére operator,

and the construction of a suitable barrier, we shall complete the proof of Theorem 1.2.
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Chapter 2

Background

In order to understand the main problem considered in this thesis, we shall start from

its original motivation.

Let M be a compact, complex manifold of complex dimension n, and consider g,
a hermitian metric defined on M. Note that g is a complex-valued sesquilinear form

acting on TM x T M, and can therefore be written as
g=295—2v—-1wy,

where S and —w are real bilinear forms.
If (21,...,2,) are local coordinates around a point € M, we can write the metric

g as Yy g;;dz' ® dz’. Then, it is easy to see that in these coordinates
V—1 <& S
Wy = —5— ”z;l g;;dz" NdZ.

The form wy is a real 2—form of type (1, 1), and is called the fundamental form of the

metric g.

Definition 2.1 We say that a hermitian metric on a complex manifold is Kahler
if 1ts associated fundamental form wy is closed, ie, dw, = 0. A complezx manifold

equipped with a Kdhler metric is called a Kahler manifold.
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The reader will find in the literature a number of equivalent definitions for a
Kahler metric. We will keep this choice for convenience of the exposition.

We point out that on a Kahler manifold, the form wj is uniquely determined by
the metric g, and vice-versa.

Let R(g) = R;j; be the Riemann curvature tensor of the metric g written in the
coordinates described above. We define the Ricci curvature tensor of the metric g as
the trace of the Riemann curvature tensor. Its components in local coordinates can

be written as
2

0
R‘lckl Zg szkl 6 8 logdet‘(gz]) (21)

i,j=1
We also define the Ricci form associated to g as being the form given in local coordi-
nates by
n
Ric = )" Ricjjdz' Ad7'.

ij=1
Now, given a metric g, we can define a matrix-valued 2-form by writing its

expression in local coordinates, as follows

Z 9P Rigdz" A dZ. (22)
i,p=1
This expression for 2 gives a well-defined (1, 1)-form, to be called the curvature form
of the metric g.

Next, consider the following expression

det (Id + £Q> = 1+tdi1(g) + t2ha(g) +

where each ¢;(g) denotes the i-th homogeneous component of the left-hand side,
considered as a polynomial in the variable t.

Each of the forms ¢;(g) is a (4,7)-form, and is called the i-th Chern form of
the metric g. It is a fact (see for example [We] for further explanations) that the
cohomology class represented by each ¢;(g) is independent on the metric g, and hence

is a topological invariant of the manifold M. These cohomology classes are called the
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Chern classes of M and they are going to be denoted by c;(M).

There are analogous definitions for the curvature form of a hermitian metric on
a general complex vector bundle E on a complex manifold, and we can also define
in the same fashion the Chern class ¢;(M, E) of a vector bundle, which will also be
independent on the choice of the metric. In fact, we say that the Chern classes ¢;(M)
of the manifold M are the Chern classes ¢;(M,TM) of the tangent bundle of M.

We will restrict our attention to the first Chern class ¢;(M). Note that the form
¢1(g) represents the class ¢ (M), and that ¢;(M) is simply the trace of the curvature
form: . .

510 =L 0= VLY Rt n e (23)
i=1 i,p=1

On the other hand, notice that the right-hand side of (2.3) is equal to 3§Rickl~, in
view of (2.1). Therefore, we conclude that the Ricci form of a Kahler metric represents
the first Chern class of the manifold M.

A natural question that arises is: given a Kahler class [w] € H*(M,R)NH“(M,C)
in a compact, complex manifold M, and any (1, 1)-form {2 representing c; (M), is that
possible to find a metric g on M such that Ric(g) = Q? This question was addressed
to by Calabi in 1960, and it was answered by Yau [Y] almost 20 years later.

Theorem 2.1 (Yau, 1978) If the manifold M is compact and Kdhler , then there
exists a unique Kdhler metric g on M satisfying Ric(g) = Q.

This theorem has a large number of applications in different areas of Mathematics
and Physics. Its proof amounts to solving an elliptic differential equation, as explained
below.

Fix a Kahler form w € [w] representing the previously given Kéahler class in
H*(M,R) N H“(M,C). In local coordinates, we can write w as w = g;;dz* A dz’.
Also it was seen that both Ric(w) and €2 represent the same cohomology class, namely
c1(M). Therefore, due to the famous d3-Lemma, there exists a function f on M such
that

V-1

Ric(w) — Q2 = —27651”,
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where f is uniquely determined after imposing the normalization

/M (ef —1)w"=0. (2.4)

Notice that f is fixed once we have fixed w and €.

Any other metric in the same cohomology class [w] will be written as w+ g@éé,
for some function ¢ € C*(M,R). Hence, we are trying to find a representative
w + %6’5¢ of the class [w] that satisfies

Ric (w + %a(%) = = Ric(w) — gaa f. (2.5)

Rewriting (2.5) in local coordinates, we have

2

_ 0 _ _
—00 log det (gij + W) = —00 log det (gﬁ) — 00f,

or
2
det (913 + az?afj)

aet (30) = 00f. (2.6)

00 log

Even though this is a local expression, the term on the left-hand side of (2.6) is
well-defined globally, and gives rise to the global equation

(w + 85¢)n =efum, (2.7)

called the Monge-Ampere equation.

Notice that the resulting (1, 1)-form given by w’ = w+00¢ defines a Kahler metric
¢’, which, in turn, satisfies Ric(g’) = €. So, in order to find metrics that are solutions

to Calabi’s problem, it suffices to determine a solution ¢ to (2.7).

The celebrated Yau’s Theorem in [Y] determines a unique solution to (2.7) when
f satisfies the integrability condition (2.4), and therefore provides a satisfatory an-
swer to the problem of finding Ricci-flat metrics when the underlying manifold M is

compact. Calabi’s Problem, though, has a very natural generalization for the case of
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a special class of open manifolds. However, we will need to make minor modifications
to the original conjecture.

Suppose that M is a compact, Kiahler manifold, and let D be a smooth divisor in
M. We are now interested in constructing complete Kahler metrics with prescribed
Ricci curvature on the open manifold M, defined as the complement of the divisor D
in M.

If ¢ is a metric defined on M, then the metric det(g’) (given locally by det(g’) =
det(g;;)dz1dz1 . . . dzndZy) is a metric defined on the canonical line bundle K77 of M.

Consider the line bundle Lp associated to D, let S be a defining section of D in
Lp, and finally, let h define a hermitian metric on Lp. Let us write h, in the previous
choice of local coordinates, as a positive function a.

With the preceding notations, the line bundle given by K37 ® —Lp has a metric
defined locally by det( gﬁ;)a‘l. Indeed the reader will note that this expression makes
sense globally on M. In turn, the metric det(gj;)a™" can be written as det(g;)a™"! =
det(g—éi), where b" = a. In particular, we have a new metric g defined on M (and
also on M) which is given in local coordinates by 9i; = %J- Naturally the Ricci form
of the metric g is a representative of the first Chern class ¢;(— K3 ® —Lp). On the
other hand, we would like the resulting metric g to be complete on the open manifold
M. Strictly speaking, this will never happen since g is also a metric on the closure
M. Nonetheless, this construction suggests a natural way to try to obtain complete
metrics. Namely we let the metric h conveniently degenerate on the divisor D. This
implies that the function a will vanish on D and thus that the metric g will become
unbounded near D. So we may hope to find complete metrics on M by this procedure.
Note also that the class of the Ricci form of g is not affected by the “degeneration”
of h.

Summarizing what precedes, to generalize Calabi’s Conjecture to open mani-
folds, we begin by fixing a representative Q € ¢;(—K3; ® —Lp). From our previous
discussion, the Ricci form of a Kéahler metric defined on M is a representative of

c1(—K37 ® —Lp). Now we want to study the converse problem, namely:

Question: Fixed a Kahler class [w] in the manifold M, pick any representative Q of

19



the first Chern class ¢;(— K37 ® —Lp). Can we construct a complete Kéhler metric g
on M such that Ric(g) = 27

There are some results on the existence of such metrics (to be discussed in the next
chapters), and the main purpose of this thesis is to provide a better understanding of
complete Ricci-flat Kéhler metrics, a problem of great interest by both physicists and
geometers. For that, we will discuss the behavior of such metrics near the divisor in

the remainder of this work.
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Chapter 3

Approximating Kahler metrics

Let M be a compact kihler manifold of complex dimension n, and let D be an
admissible divisor in M.

The divisor D induces a line bundle Lp on M. We will assume that the restriction
of Lp to D is ample, so that there exists an orbifold hermitian metric ||.|| on Lp such
that its curvature form & is positive definite along D.

Consider a closed (1,1)-form 2 in the Chern class ¢;(—K3; — Lp). The goal of
this section is to construct a complete kdhler metric g such that

V=1

Ric(g) — Q= ?185]” on M, (3.1)

for a smooth function f with sufficiently fast decay, where M = M \ D and Ric(g)
stands for the Ricci form of the metric g.

Fix an orbifold hermitian metric ||.|| on Lp such that its curvature form @ is
positive definite along D. We shall need to rescale the metric by a suitable factor
which will be determined in the following discussion. Let us begin by observing
that the restriction |p of © to D belongs to ¢;(D) since, by assumption, Q €
c1(—K37 — Lp). Hence, there exists a function ¢ such that @|p + %8(5@ defines a
metric gp verifying Ric(gp) = Q|p. So, by rescaling ||.|| by an appropriate factor, we
may assume that @, when restricted to the infinity D, defines a metric gp such that

Ric(gp) = Q|p.

21



Next denote by S the defining section of D, and write ||.||s = e™%/3||.|| for the

rescaling of ||.||, where ¢ is any smooth function on M.
We define
] n1+l/n B 5 ntl
o = =200 (- log IS12) (3.2)

Then, it follows that

1 V=1 _
55— 0logISI[5 A dlog|SII3, (3.3
(Cnlog IS 27 o7 Iog I3l 3

wg = (—nlog |SI[5)"/ @y +

where @y is the curvature form of the metric ||.||,. From this expression, we can see
that, as long as @, is positive definite along D, wy is positive definite near D.

For further reference, we compute here

V=1 0log||S|IZ A dlog || S]I3
2 (-nlog||SI[3)

wy = (—nlog |}S||?¢)G)g‘l A(Dp+n

). (3.4)

We state here the main result of this chapter.

Proposition 3.1 Let M be a compact Kihler manifold of complex dimension n, and
let D be an admissible divisor in M. Consider also a form Q € ci(— K57 — Lp), where
Lp is the line bundle induced by D.

Then there exist sequences of neighborhoods {Vi,}men of D along with complete

Kahler metrics w,, on (Vi, \ D,0(V;, \ D)) (as defined on (8.2) such that

Ric(wp) — 2 = \/T;_laéfm on Vi, \ D (3.5)

where f,, are smooth functions on M = M \ D. Furthermore, each f, decays on the
order of O(||S||™). In addition, the curvature tensors R(gm) of the metrics gm decay

to the order of at least (—nlog||S||2)% near the divisor.

The remainder of this chapter will be devoted to the proof of Proposition 3.1.

fo= —%?85 log ||S]|? is the curvature form of ||.||, then for any Kéhler metric
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g on M, Ric(g') — & € c¢i(—K37 — Lp). Hence, up to constant, there is a unique
function ¥ such that
V-1

1 -
_ . N~
Q= Ric(g") -0+ 5 00Vv. (3.6)

Definition 3.1 For z in the set where wy is positive definite (x near D), write

wn
fo(z) = = logIS|I* ~ log(=%) — ¥,

where W' is the kdhler form of g'.

Lemma 3.1 The function fo(x) converges uniformly to a constant if and only if

Ric(gp) = Q|p.

Proof: The proof of this lemma is analogous to the proof of [TY2], Lemma 2.1, and
for completeness, we sketch it here. Choose a coordinate system (z, ..., z,) around
a point x near D such that the local defining section S of D is given by {z, = 0}.

In these coordinates, write @ = @ as (hij)i<ij<n, 9' 88 (9);)1<ij<n, and ||.]| as a
positive function a.

By definition,

[IS1Pwg

fola) = ~tog (12028 — weo) -

W™

~ _log <a det (hij)i<ij<n—1
det(g;)1<ij<n

) (2) — U(z) + OIS @),

for x near D.
Since a~! det(ggj)lgi,j5n| p is a well defined volume form on D, it makes sense to

write
adet(hi;)1<ij<n—1€”
det(g;;)1<ij<n

Jo(z) = —log( )(Z,0) + O(lIS@)II),

adet(hij)i<ij<n—1€¥ /s
Wt e (£50)

is constant. In other words, lim,_,p fo(z) is a constant if and only if

V=1 -
?83\11 = — lOg det(hij)ISi,an—l - log adet(gz{j)lsi,jgn.

for x = (¢, 2,). Hence, lim,_,p fo(z) is a constant if and only if
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Since 2 = Ric(¢') -0+ %35\11, lim,_,p fo(x) is a constant if and only if Ric(gp) =
Qlp- U

An appropriate choice of ¥ allows us to assume in the sequel that fy(z) converges
uniformly to zero as x — D.

The function fy(z) was only defined for x near D, but we can extend it smoothly
to be zero along D, because ||S||?w? is a well-defined volume form over all M. Hence,
there exists a dy > 0 such that, in the neighborhood V; := {z € M;||S(2)|| < 6o}, fo
can be written as

f0=S‘U1+§'ﬂ1,

where u, is a C* local section in I'(Vp, L3}).

Our goal now would be to construct a function ¢, of the form S -6, + S - 6,
so that the corresponding fs, = fi vanishes at order 2 along D, and then proceed
successively to higher order. Unfortunately, there is an obstruction to higher order
approximation that lies in the kernel of the Laplacian on Lj! restricted to D. In order
to deal with this difficulty, one must introduce (— log||S||*) terms in the expansion of
$1, as pointed out in [F] and [LM], where the similar problem of finding expansions of
the solution of the Monge-Ampere equation on a strictly pseudoconvex domain was

treated. Further details can be found in the next section.

3.1 Inductive construction of the metrics {||.||,;}m>0

Following the tecniques in [T'Y2], we now construct inductively a sequence of hermi-
tian metrics {||.||m}m>0 on Lp such that, for any m > 0, there exists a d,, > 0 such

that:

1. The corresponding kihler form w,, associated to ||.||, (as defined in (3.2)) is

positive definite in V,, := {z € M;||S(z)|| < ém}; and

2. The function f,, associated to wn, (as in the definition (3.1)) can be written in

24



Vi as

4%
fm: Z Zukf(_log“SH?n)K’ (37)

k>m+1 £=0
where uy, are smooth functions on V,, that vanish to order k on D. In particular,

the functions ug, can be written as

i+i=k
for 0;; € T(Vin, Lyt @ L)

For simplicity, we will refer to functions that can be written in the form (3.8) as
functions decaying to the order of O(||S|[¥).

We define ||.|lo = ||.]|, and it is clear that ||.||o satisfies the Conditions 1 and
2 above. Now we proceed on the inductive step: assuming the existence of ||.||m,
we construct ||.||;m41. The next lemma gives a relation between f,, and fs, where

1.1l = € ?"2|].||lm, and f4 is associated to a smooth function ¢ on V,, of the form

$=( 8§50, +550;)(~loglISIZ)F,  fork>m+1.
it+ji=k

Lemma 3.2 Let f,(x) be defined as in Definition 3.1, associated to

V=1 n

Wy = ———

1/nag( 2 2l
7 —n!/00(~ log |ISI2,4) ™+,

and f, associated to w,,. Then

ko ( k-1 )
= fm +nme¢ + +(m—-1))+
Jo = fmFnmé 4 oy \ Slog sy T ™Y
+(loglisIE) Y0 {i (sF0, + 55,) +
i+j=m+1

+(~log||S|12) [—2(77, 1) (S*"S'jeij + Sf?é;-j) + ST 00 + s@”ﬁm@j] }
»

+ 3 S upe(—log[ISI2)* (3.9)

k'>m+2 =0
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where O, = tr,, (DmDm) is the laplacian of the bundle L' @ L on D with respect

to the hermitian metric ||.|\m, and the functions ug, decay as O(||S||¥).

The proof of the lemma will be postponed to the next chapter, so that we can

now proceed to our inductive construction.

Proof of Proposition 3.1:

We want to find a function ¢ such that ||.||%,,; = e%/2||.||?, satisfies the Conditions
1 and 2, ie, we need to eliminate the terms Zﬁ;"a‘ Um+1,6(—log ||S]|2)¢ from the
expansion of f,. Each of the um414, 0 < £ < m + 1 will be eliminated successively,

as follows.

Step 1: Write umy1,0,,, 85

Um+1,0ms1 — Z S’igj (’Ui]’ + 'U,;j) + Sj?(-ﬁij + Fij))
itj=m+1

where vj;|p € Ker(C, + n(m + 1) — 1 —2(n + 1)7) and v;|p is perpendicular
to that kernel.

If there is some ,j (i +j = m+1) such that vj;|p # 0, we use Lemma 3.2 with

k=4pt1+1and 0 = v‘_kl(—J_LJI) Note that the constant E;Q_-?:t—?- was chosen so

as to eliminate the kernel term from the expression of Uy 41,6,

Now, Lemma 3.2 implies

f;n = f¢ = ( Z Srgjvij + Sj_g-i'_l}-ij> (— log||S||3n)e'"+1+

i+j=m+1
bm+1—1 fk/
+ > Umpre(—1og|ISIZ) + Y D ure(—logl|S|[Z)- (3.10)
=0 k'>m+1 £=0

After Step 1, we can assume (by replacing fn, by f/, in (3.10)) that f,, has an
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expansion of the form

Unbllmss = D S'S (vy) + S5 (3).

i+j=m+1

Step 2: Now we can solve
(Dm +n(m+ 1) -1- 2(7L+ 1)]) Gij = U,‘le on D,

for 0;; € T(Vo, L' ®f£j). Next, let us extend 6;; to M, and then apply again

Lemma 3.2 with k = ¢,,,4, and 0;; as above.

The new f,, will have an expansion of the form

bmt+1—1

fm=) tmre(=loglIS|[5)" + O(|S|I™*?).

£=0

By repeating Steps 1 and 2 above, we are able to eliminate all the terms
S U p1,0(— log ||S]|2,)¢ from the expansion of fp.

Finally, let ¢,, be the sum of all functions used in Steps 1 and 2, and define the
new metric ||.lms1 by ||-lmsr = € %?||.||m. Clearly the resulting metric satisfies

Conditions 1 and 2 of (3.7). This completes the proof of the proposition. O
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Chapter 4

Proof of Lemma 3.2

This chapter is entirely devoted to proving Lemma 3.2, therefore completing the

inductive construction of the metrics ||.||m-

According to Definition 3.1, we have

f) = —logllsiP - log () - w = g - dog(22). ()

m

Hence, we just need to compute the quotient %,;ﬁ
Denote by D,,, (resp. Dy) the covariant derivative of the metric ||.|| (resp. ||.||4)-
Similarly, let &, and &, denote the corresponding curvature forms. The following

relations are well-known:

DyS = D,S—Sd¢

Dy = @m+———V2;165¢ (4.2)

For simplicity, set a, = (—nlog||S|[5,) and ag = (—nlog||S|[3) = am + n¢. By
(3.4), we obtain

e - nv—-1D,5 A D, S
“n = CnEnA (wm * 2T, |52 )
- L [|DmS|l;
- onit (14252 Y
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and

nv/—=1 DS A D¢S> B

Wi = g @+
¢ Lt < ¢ 2ray |S|?

= (e + 1) (@m + Eaégb) " A me + —‘/—_—6&15)

2

n\/_<DS 504 . DS — 50
27ra¢ S S )]_

= (am + ng) (@m + %a&b) " A { (@m + E@(%) +

ny/—1 {DmSI;\IQDmS_8¢ADTS_8¢A¥+3¢/\0¢]} (4.4)

27 a¢

Using the definition of ¢, we get

=Y (~loglISIIZ)k (DmSigj&j + Dy S'50;; + S'S Db+

i+j=m+1
<2 a B’) 2 \k~1; i T/ i Dy S
+S]SDm9ij))—I—k(—logHSHm) (S50 +5'S8y) (——5— ), (45)
so that
0
D,.S =i e\
0 NTZZ = 3 (~loglIS|R) S (i5F0 +5575D,)

i+j=m+1

DS AD,S =i T 3 D,.S
< e ) + (S’ Dy + S75 DBy ) A z }

(e ) (DmslsAlm ) +ousiE . 4o

We will also need the expression for 00¢. After some computations using (4.5), it
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follows that

5 o =iz ((DmS A DS
21\k .. o —=1 m m
09 = (~log ISR Y {ms 50, + 957, (T‘)

i+j=m+1

DT 22 A (1SS Dynbij + 3575 Do)+

( m+1 k(k —1)¢ )DmS/\DmS
>

C/)

- DS
+(j ST Dibi; + iS5 D) A

(S’ Dy Dii; + S78' Dy D ew

—1og||Sll2 T Clog 15122 |5]?
(ST Dbi; + S8 Dpfls;) A

b
)

— k(= log||S][7)"*

i+j=m+1

@ C/)l
CJ)

+(S'S Dpnbij + S7S DpnBis) A

22}

We can therefore conclude from a simple analysis of (4.7) that

11S112,(00¢)" A @t = & O(]|S|[P™+?) for € > 2. (4.8)

The above ingredients are going to be used in the completion of the proof of

Lemma 3.2.

Proof of Lemma 3.2:

Recall that we only need to compute the quotient %,Zé Formulas (4.3) and (4.4) then

provide

wp 1512 |
o, @151 + 1] DuSIE)GE,

{(wm+_~aa¢) {( ———30¢>

V- [D mS A DS D,, D,,S

S 00 2 6¢5/\T+8¢/\8¢]}} (4.9)

2mag

Recall the relation (4.8), that allows us to simplify the expression above to
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wh 1511206 o .
wn, — {[@n 4 (0 - DR A 00
o~ (@nllSTR,+ (1D, Sz, Lo+ (= DERnoad] »

. v—1_= nv—1 (DS AD,,S
wm+—2-7'r—83¢+ Srag < 'Slz 8¢/\ _S_ —

_og A 2mS L agn aqs” } +0(]|SII™*?)  (4.10)

Notice that

P:S."ﬁJréqs/\DT"“g: <(m+1)¢

O A

2k DS A D,
¢ ) S +O(m+1),

log || 5115, |51

since the term (i) overbraced in (4.6) (that appears reflected with respect to ¢ and j

for the conjugate expression) will give rise to the term involving (m + 1)¢. Hence,

wp 51120 |
o~ (151, + 1ol DuSIR)E,

{ (o5t + (n— 1)@ 2009)] A [@m + ‘\/2§55¢+

- 2k D,,SAD,,S -
nv/—1 <1—(m+1)¢—10g”§“?n> Ib/”\|2 +M}}+

27ra¢
(%

+O()|S||™+?). (4.11)

Notice that the term (*) underbraced above is of order of at least O(||S||™*2?). Thus,

Y _ 151170y e
i om([1S12, + 1/om|| DnSIIZ ),
. V-1 nv/—1

_ %6\ DS ADRS
ot o 00 ey (1"(m+1)¢‘log||5||a) G ]

- V=1 _- - n/~-1D,SAD,S
+(7‘L - 1)wm 2 AN (y@@(ﬁ) A (wm + 27!’04¢ |S|2 ) } +
+O(ISI™*). (4.12)

Recall that
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[1S1Imasin

voa (5 n\/—leS/\DmS>_
™ 2may |S|? B

. D S||2
— S 2 n (Ck + ” m m>
15mm | @ + g2,

o(lIs||m+2)
~n 2 2 2
= Wp am||S||m+“DmS”m_n¢||S||m

D,,,S||?
— s (am i ﬂ]m—“ﬂ) LoUIsIm). (413)
Hence,
. IS112.00 |
o = T (ISR T 1/aml| DaSIE)en,

{n@;;‘l A (—‘2——?6&1&) + ¢ (—(m—l— 1) — ﬁ(ﬁ%ﬁ)
[~n_1 A nv/—1 DS A Dy S]

“mo M oras ISP

+n - 13 8 (Y005 ) 1 (R 2L DeS L oqisis) =

Dy |S|2
=1+<‘("”“) —lgnsu2 )
152 | (ﬂ )
O‘m(HSH?n"'l/am”DmSH?n)(DrrrLz 2

(b)

A\

(n— 1) 2 A (%a&b) A (”‘/ijSAD_’"S) +O(||S]I™*?). (4.14)

27TO£¢ |S|2

So, we have
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<a>={<—1ognsn;)k S [i(sF0,+ 555,

i+j=m+1
(m+ 1)ko (k—Dko I nv/—1D,,S A D,,S

SR (—lognsnw} “n A( 2n ISP ) (4.15)

and

_ oy ~n—2 nv/—-1D,S AN D,,S
() =n(n—Daw, " A ( ooy BE

+

((_mgnsufn)k 3 -{(si?ijmemsjE"Dmmij)

i+j=m+1

+ (SiDmDmsfe,-j + D DpS75'0;

N—r

}) (4.16)

So,
% ( 2k ) 1] s
L =14+ (=-(m+1) - ———5~ | ¢+ —.
o ) = Ciog 1512 ) @ anISTE, + 1oml| DS TE)EE,
(=loglISIZ) D" (ST 0, + 575 Ty)| (@A
t+j=m-+1
N <n\/_—1 DmS/\——DmS>> | 15112, .
2ra, ISP am(IS1E, + 1/l DnSIE)ER,

(*)

N\

- n(m+ 1)k nk— Dk \ oy m/=1DnSAD,S
'¢(<—1og||5||$n) (—log||S||$n>2) <°"m N oy ISP )Hb% (4.17)

and the term (x) can be simplified via (4.13), giving

%=1+(—(m+1)+ km — 1) (k— 1k )¢+

(—=loglISIl5) — (—logllS]I5,)?

1511200 L
(IS T Vo DuSTEyer L log Sl

} i A (n\/——l D,.SAD.S

3 [z’j(S’Fj 0 + Sf?@j)]

i+j=m-+1

2ran TSP )+(b) (4.18)
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Observe that the relations

DmDpS? = —DpDipnS% + 557,
T);Dmﬂij = ——Dm_;t%j - (2 - j)0,;j(bm (419)
imply that
Z (SiﬁijD_mG,-j + S’?DmDmG,-j> =
i+j=m+1
> {(55'DnDmtii + S8 D D5 ) - (s@"oﬁ — S750) (i — )iom } -
i+j=m+1
(4.20)
Hence,

o k(m — 1) k(k — 1)
o (“"“” D+ gy T 1ogusu,2n)2) o+

Iince (= log ISIE)*
am(|1SI12, + 1/am|| D S| |2,)am, m
Z [ad,ij(S"?jeij + Sjg"gij)]@&—l A nv—1Dp,S A Dy, S
i+j=m+1 o R

_1y~n—2 nv—1D,SND,S
+(n—1)ap A ( Sy TR

A(~log IS]12,)* [— > - (55 DuDnty; + S5 DpDly) +

i+j=m+1

- ¥ .(si§ja,-,-+sf§i§,~j) (i = 5)@m. }+0(||snm+2) =
i+j=m+1

N km=1) | k(k=1) \,
=1+ ( (m+ 1)+ Gog15TE) aogusuz,y) ¢
—(CloglISIE) - Y - (ST00y + STT,B) + (~ log ISIE)*

i+j=m+1

Y amijHn—D(m+1) - 25) (SF6; + 55Ty) + O(IS|[™). (4.21)
‘i+j=m+l?;)_/

Notice that we actually can replace the term (%) by (x2), since the function ¢ is
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assumed to be of order O(||S||™"), and ay = au, + né. This implies that the

residual term from this substitution will lie in O(}|S}|™*2). Therefore, we conclude

Wi _ k k-1 ~
o = 1 nm e De+ TR ((—lognsnm +(m ”) *

+ Z . (S’Fjl:lmeij + Sjgi-[jmaij) +
itj=m+1
+2(n—1)(~loglISIZ 3 i (SF0, +5750,) +
i+j=m+1

+(loglISIZN Y i (S0 - $750;) + O(ISI™?). (4.22)

i+j=m+1

Finally,

fo=fm—1tog (22 =

m

k k—1
=mmé + g I15T) ((— og ISRy~ ™ ”) *

+(-loglISIZ) > - (ST 0y + S5 Tnbly) +
i+j=m+1
+(~loglISIB)et Y i (556, - 575D,) -
i+j=m+1

—2(n+1)(-loglISIB)* > 5 (80, - 55F) + O(IS|™), (4.23)

i+j=m+1

which proves the lemma. 0

The inductive construction of the metrics ||.||,, is now completed.
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Chapter 5

Complete Kahler Metrics on M

In this section, we shall complete the proof of Theorem 1.1. In particular, it is going
to be necessary to consider the asymptotic behavior of the Riemann Curvature tensor
of the metrics constructed in the last chapter.

For each m > 1, consider the function f,, constructed in Chapter 3. For this
choice, let the corresponding

V=1

— a(_ 2 \&tl
wm = Gt 7y 00(-nloglISII7)

define a (1,1)—form on M. If 4,, is sufficiently small, w,, is positive definite on

Vi = {||S(z)|| < 0}, and defines a Kahler metric g,y,.

Lemma 5.1 The Kdhler manifolds (Vy,, Vi, gm) are all complete, equivalent to each

other near D, and for each m > 0, the function

(—nlog||S||%) %

p=n+1

is equivalent to any distance function from a fized point in V,, near D.

Proof: Fix m > 0. We have

V02 _A/=10pAdpAwr?
mPlom = “or wr, '
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Since

0p = ' (~logl|13) 7 22

we have that

55 0 NOp Awr™ = (=nlog||S||m) ™ (=nlog | S||m) = @m™" A =~ |S|2
(5.1)
So, using (3.4), we have
Vo2 = 1 N e =
o = Cnlog ISIB)R, + Gp A BT PaggPat
1 D,.S||?
1 I r [l _ (5.2)
n (—nlog||S||2,) + [|DmS||2

Recall that ||D,,S||2, is never zero, and limygy,,—0 — log||S||2, - ||S||2, = 0, hence

1m0
IVmplg,, ———

1
n?
proving that p is equivalent to any distance function from the boundary near D.

Also, since p — oo when z — D, the Kéhler manifold (V},, 8V,,, g) is complete.

We claim that all the metrics gy, are equivalent near D. To check the claim, note

first that each @y, is the curvature form of the metric ||.||, hence, for every m, £ € N,

Wm is equivalent to @y near D. The claim then follows from Equation (3.3), that
relates the expressions for w,, and @,,.

Finally here is a remark about the volume growth of (V,, 0V, gm): since wy, is

equivalent to & (—nlog||S|]2,), it suffices to consider the integral

_ 2\~n
L CHIOE ST

I 2n_
which is of order p»+T.
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5.1 Decay of the curvature tensor

In the sequel we are going to carry out the estimates of the Riemann curvature
tensor R(g,,) corresponding to the metric g,, which are involved in the statement of

Theorem (1.1). Let us begin with the following lemma:

Lemma 5.2 Let (Vyn, 0Vin, gm) be complete, Kihler manifolds with boundary defined
as in Lemma 5.1. Then the norm of R(g,,) with respect to the metric g,, decays at

the order of at least (—nlog||S||2) 7 near D.

Proof: We will prove the statement in local coordinates, as follows:

There exists a finite covering U, of D in M such that for each ¢, there is a local
uniformization I, : U, — U, such that Ht_l(D) is smoooth in Ut, and for some local
coordinate system (z1,...,2y,) in U, with S = 2, and 2/ = (21,...,2n-1) coordinates

along D we have

S RAL ()il )€ TERE =
i,5,k,0=1

= (—nlog|za)™ >~ R(I(gpln,1(p)iju€ €5+

i,J,k,0I=1

+O((=nlog |z:|*) ™), (5.3)

for any g,,-unit vector (¢',...,€"), where gp is the kihler metric defined by the
restriction of the curvature form @ to the divisor.

Without loss of generality, assume U; N M is smooth.

For any x € U;NM, we will choose local coordinates (21, . . ., z,) for a neighborhood

of x such that

e The defining section S of the divisor is given by z,.

e The curvature form @, of ||.||» is represented by the tensor (h;;) in those

coordinates, and (h;;) satisfy

Oh,: Oh;
hi;(x) = 6ij; ylj(x) =0 if j <my

I () — O if g :
a5, (x) =0 ifi<m;
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e The hermitian metric ||.||m, is represented by a positive funcion a with a(z) =1,

da(z) =0 and d(g—;:)(:c) = 0.

In order to simplify notation, let us write B = B(|z,|) = (—nlog|z,|?), and let us

drop the subscripts for the metric g,,, to be denoted by ¢ from now on.

Formula (3.3) implies that

n n—1 _
1,j=1 i,j=1 |z'n|
and hence )
O(B~'m) ifi=jandi<n
97(z) = § o(B-1/m) if i jand i,j <n
O(|zp)?B~1") ifi=j=n

Computations involving (5.4) lead to

993 pum [N 1 i i n—1 1
=B % - an 5k:nhij + 5mhkj + 5m53n5k:n B + |Zn|2

6Zk
and
_Ju — n ? _ 5 (%] . i _
o { 37d: 5D < g +0i (9zk)
1 Ohi; Ohy; 1—n
Bl 93 inTo-" == (0 (9 nhi" Oinhis
ZnB ((Skm (921 + 4 aZl + IZn|2B2 ( l ( k 3 + k:])+

5in5jn5kn5ln

PRIV (|zn|2(n -1 -2n)+(1-n)B+ Bz)}_

-+ 6jn(5knhif + 5mhlci)) +
(5.5)

If (£4,...,£™) is a g-unit tangent vector, then

€2 < OB~ ifi<n

|§i|2 < C!znlzB(n—l)/n if 1 = n,
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where C' is a constant that does not depend neither on the unit vector (£1,...,¢&")

nor on the point z € D.

Now we have all the ingredients to estimate the decay of the Riemann curvature

tensor. In local coordinates,

ROau@EPEE)) = | 24 (0) + Z 50) P2 ) 2 (o )J (8 E) =

(a) ®

=g { T Phi e+ X e (}j W)

i=1

(©)

€

AR (|2n)*(n —1)(1 —2n) + 1 —n)B + B?) » +

+

(d)

A\

2/n uv gn i n n—1 1 \
+ B Z.‘] (=) |- B 28" hig + £ 0in T+W X

'u.'u—

©

T o o (n—-1_ 1\)
7B (2§Jhw-+f Ouri (——B +|z—n|2')) (5.6)

X | —

We proceed on bounding each of the terms separately.

Using the estimates (5.1) for |€"|2 and our previous choice of local coordinates, we

obtain, when z, approaches zero,

C,zn|2B(n—l)/n

<
O <=

(B—l/n + Izn|2B(n_1)/n) < CB—(n+2)/n’

where C denotes a uniform constant.
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The term (c) can be bounded as follows, as 2, — 0:

< Clzn|4B(”“ 1)/n

() < |2n|* B3 (B%+(1—n)B+|z|*(n~1)(1-2n)) < CB~Y"(B'4+1) < CB~ .

Now, notice that the expression (d) needs special attention,

|2n| BCD20 o n-1 1

@ < cZlZ___ (p-in ), | gn-D/om +— (5.7)
|2n|B B |2n |2

< C(B_(n+2)/2n+|Zn|_lB—1/n), (5.8)

due to the presence of a term involving |2z,|~}. However, our estimates for
g =Bl [(l — Oundun)O(1) + 5un6,,n0(|zn}2)]

show that this term is compensated by the last term of the above expression.
The estimate for the decay of (e) is analogous to the case of (d), and will henceforth
be omitted.

In conclusion, we have
R(Q)au() €T @) = B () (6igkg) + 0(B7)
9t 02,07 ’

which implies the expression (5.3), and concludes the proof of the lemma. O
The reader may also notice that Lemma 5.2 completes the proof of Proposition 3.1.

The following result is a trivial consequence of Lemma 5.1 combined to Lemma

5.2.

Corollary 5.1 Let (V,,,0Vin, gm) be the complete, kdhler manifolds with boundary as
in Lemma 5.2. Then the norm of the cuvature tensor R(gm) with respect to the metric
gm decays at the order of p‘F%, where p is any distance function from a fized point

in V,, near D.

We are finally able to complete the proof of Theorem 1.1.
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5.2 Proof of Theorem 1.1

In what follows, we keep the preceding setting and notations.

Since the divisor is assumed to be ample in M, there exists a hermitian metric

l|.||" on Lp with its curvature form @&’ positive definite on D.

Fix an integer k£ > ¢, and write, for € > 0,

/T

1 -
. = i + Co—=00(~ 151", C. >0, (5.9)

where wy, is the Kahler form defined on Section 3.1. The Kahler form w,,_ is positive

definite on M, and gives rise to a complete kahler metric g on M.

Let 0 > 0 be such that V5 = {||S(z)|| < 6} C Vi. On Vj, w,, satisfies Ric(g.)— =
%85 f, and we want to estimate the decay of f at infinity.

Also, on Vs, Ric(gr) — = ¥=L08 fy, which implies that

f=[fx—log =

o A £ s C.|| S| VDwp=t A E=L(D'S A D'S)
Wy ¢ wp

= fr — C||S|[*D)| D' S}, (5.10)

where D’S denotes the covariant derivative of the metric ||.||. Hence, in order to
estimate the decay of f, it suffices to study the decay of ||D'S||,,. To do this, we are

going to introduce a suitable new coordinate system on Vj.

Because D is admissible, it follows that total space of the unit sphere bundle of
Lp|p (with respect to the metric ||.]|x) is a smooth manifold of real dimension 2n+ 1,

to be denoted by M;.

Since Lp is simply the normal bundle of D in M, there exists a diffeomorphism
W M x(0,0) > Vs

induced by the exponential map of (M, ||.||x) along D.
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It is also known that the Kahler form of gy is given by

\/:_ln”'l/"

k=5

3(— 2 2¢ ) 2L
o 00~ log(lIS|%€*) ™",

where @, is a smooth function on M, that can be written as D k>e S o uxe(~log ||S) 12,

where u,, are smooth functions on V' that vanish to order x on D.

Combining the facts above, the pullback of g under ¥ on M x (0, d) is given by

Vg = (~nlog(|ISI")=g(lISII, ]IS log(1S11)) +
(~nlog(1SI)*7"d ((=nlog(lISIA)* ) A(ISII, 1511 10g(1IS]])) +

+

o\y 1=2n oy 1) 2

+ (~nlog(lISI)"F*d ((~nlog(lISI*)* ) u(lISlI, S| 10g(lISIN)(G-11)

Here g(.,.), h(.,.) and u(.,.) are C* families of metrics, 1—tensors and functions on

M,, such that for each fixed integer ¢ > 0, there exists a constant K, that bounds

all covariant derivatives (with respect to a fixed metric k on M;) of g(to, t1), h(to, t1)
and u(to, 1) up to order ¢, for all ¢, € [0,4], t; € [0,d1og(d)].

Setting p = (—nlog(||S|[2)) %=, (5.11) becomes

Vg, = pitig(,.) + p mit d(pRDR(, ) + p P d(pm)?u(.,.),  (5.12)
and hence we can regard ¥*g; as being a metric defined on M; x ((—nlog 52)’%—1, oo).
Let the function v := ¥*(]|S||)* be defined on M; x ((—n log 62)%55,00). Our
goal is to understand the decay of ||D’S]||,, , which is equivalent of studying the decay
of [V p-2/ i1 geg, (¥ (2)), where V denotes the covariant derivative of the metric
p_2/(n+1)\I[*gk.
Notice that on M; x ((-—nlog 62)%1, oo), the function 7 can be written on the
form

e(.,exp{p™1}) exp{%p"z_f?},

where 4 is a smooth function on M; x ((—nlog 52)%,00) with all derivatives

bounded in terms of a fixed product metric.
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Hence, from the expression (5.12), it follows that
- _ E 2.
VY] -2/ tma1y g g, (¥ Yz)) = O(exp{ﬁpw1 b, (5.13)

since the curvature tensor of p~"+*DW¥*g, is bounded near ¥~'(z).

Notice also that the equation (5.13) is equivalent to
1D"Slg, = O(IISIIF),

which shows that the metric g., with corresponding Kéhler form w,, defined by (5.9),
satisfies the equation Ric(g.) — Q = 89f., for f. a smooth function that decays on
the order of at least O(||S]|%).

In order to complete the proof of Theorem 1.1, it only remains to note that the
curvature estimates for the new metric g. will follow trivially from the estimates on

the curvature tensor R(g,,), described on Lemma 5.2. O
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Chapter 6

Asymptotics of the Monge-Ampere

equation on M

This last chapter is intended to provide the proof to Theorem 1.2.
Let (M, g) be a complete Kéahler manifold, with Kahler form w. Consider the

following Monge-Ampere equation on M:

(w + g@gu)n =efwn,

(6.1)
w+§35u>0, u € C*(M,R),
where [ is a given smooth function satisfying the integrability condition
/ (ef — Duw™=0. (6.2)
M

As discussed in Chapter 2, if u is a solution to (6.1), then the (1,1)-form w +
3%5511, satisfies Ric(w+ %?ﬁéu) = f. So, in order to define metrics with prescribed
Ricci curvature, it is enough to solve equation (6.1).

In [TY1], Tian and Yau proved that (6.1) has, in fact, solutions modulo assuming
certain conditions on the volume growth of g as well as on the decay of f at infinity.

For the convenience of the reader, we state here their main result.

Theorem 6.1 (Tian, Yau, [TY1]) Let (M, g) be a complete Kahler manifold, sat-
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18fying:
e Sectional curvature of g bounded by a constant K ;

e Voly(Br(zo)) < CR? for all R > 0 and Vol,(Bi(xy)) > C~Y1 + p(z))~?, for o
constant 3, where Vol, denotes the volume associated to the metric g, Br(xo)
is the geodesic ball of radius R around a fived point xg € M, and p(x) denotes

the distance (with respect to g) from xq to x.

o There are positive numbers r > 0, r1 > 13 > 0 such that for any x € M, there
exists a holomorphic map ¢, : U, C (C*,0) — B,(x) such that ¢,(0) = z;
B,, C U, C B,,, where B, := {2z € C"|z| < r}; and ¢%g is a Kihler metric
mn Uy, such that its metric tensor has derivatives up to order 2 bounded and

1/2-Hélder-continuously bounded.

Let f be a smooth function, satisfying the integrability condition (6.2) and such

that
S}\llp{lvgfl, |Agfl} < C |f (@) < C+px)™", (6.3)

for some constant C, for all z in M, where N > 4 + 2.
Then there exists a bounded, smooth solution u for (6.1), such that w,, + %aéu

defines a complete Kahler metric equivalent to g.

An interesting question posed by Tian and Yau in the same paper is that whether
we can prove that the resulting metric is asymptotically as close to g as possible if we
assume further conditions on the decay of f. We provide an answer to this problem
in the remainder of this thesis.

We are interested in studying the Monge-Ampére Equation (6.1) for the Kahler
manifold (M,w,,) constructed in Chapter 5. More precisely, for any € > 0, we want
to understand the asymptotic behavior of a solution u to the problem

Y155\ = foem
(wgs + 35— 38u) el wy (6.4)

wq, + @aéu > 0, u € C*°(M,R).
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In order to guarantee existence of solution to (6.4), we need to check that the

function f,, (defined on Theorem 1.1) satisfies the integrability condition (6.2).

Lemma 6.1 There exists a number A > 0 such that, by replacing ¢ by ¢ + X in the
definition (3.1) of fs, we have

/ (e — 1)l = 0. (6.5)
M

Proof: Recall the definition of wy,:

_\/_—1n1+l/n ,/ 2
wge‘ﬁTn+1a 3(—log ||S]12)™" +C 66( |IS11)%, (6.6)

Ve

we¢

for ¢ chosen as in Section 3.1, so that the corresponding f, decays faster than
O(|IS1F)-
A direct computation using integration by parts shows that [, w 9. —wg = 0. Also,

the definitions of w,, and wy imply that efe Wy = efd’wq,. Therefore,

/ (efse — )it =/ (efs — Dwg.
M M

On the other hand, Definition 3.1 gives

efw] = : (6.7)

Notice that the function ¥ remains unchanged if we replace ¢ by ¢+ A, since @, =
@Wp4+r. Therefore, the right-hand side of (6.7) is invariant under the transformation
=+ A

On the other hand, a direct computation using (3.4) shows that

V=T nt+i/n

o = (G 0B log ISIBF ) = 68)
_ \/_1n1+1n .

- (% L 00(~ log]ISI3)" )—n)\w¢, (6.9)
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where we recall that &F is the curvature form of the hermitian metric ||.|,.

Therefore, by redefining f, by
wn
o= —log[ISI* ~ log “22* —w,

we have that

/M(efcﬁ—l)wg-i-)\:/ <6Kg”;n w¢) n)\/ 5. (6.10)

Since the first integral in the above expression is finite, and independent of \, we
can choose the number X so as to make the right-hand side of (6.10) equals to zero.

This establishes the lemma. O

The previous lemma shows that each f,, satisfies the conditions on the existence
theorem of Tian and Yau. Also, the estimates on the decay of the Riemann curvature
tensor (Lemma 5.2) and the observation on the volume growth of the metric g. (see
the remark after Lemma 5.1) show that (M, g.) is a complete Kahler manifold in
which Theorem 6.1 can be applied.

Therefore, for each £ > 0, there exists a bounded and smooth solution u, to the
problem (6.4). Our goal now is to understand the asymptotic behavior of ..

Denote by wq the Kahler form on M given by Theorem 6.1, when we use g. (given

by Theorem 1.1) as the ambient metric:

+ —_165%.
2

Wo = Wy

&

Clearly, it suffices to prove the asymptotic assertions on u. for a small tubular neigh-

borhood of D in M. Recall from the proof of Theorem 1.1 that on V. \ D,

=1 - .
Woe = wm + Ce——00 (|ISII')",

for some m > ¢ fixed.

Since wy, and w,,_ are cohomologous, there exists a function u,, such that we can
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write, on the neighborhood V,, \ D,

=1 -
wo = Wy + TW—@Bum (6.11)

On the other hand, if f,, is the function defined by (3.1), (6.11) implies that u,,

satisfies

(wm + —é;—laéum) =efmyn on V;, \ D, (6.12)

where we remind the reader that |fn|g,. is of order of O(||S||%).

Therefore, in order to study the desired asymptotics, we will turn our attention

to solving (6.12).

The following lemma is a necessary ingredient in the proof of Theorem 1.2, pro-

viding barriers to the solution u,, of (6.12).

Lemma 6.2 On the neighborhood Vi, \ D = {0 < ||S||m < 0m}, we have

{wm + %a& (c |55, +5 578, (-nlog(||S||$n))k) }n —
= wp, [1+ C(=nlog(IISIE)=F* {ij(~nlog(IISIZ))? [$'5 6 + 558, -
—(=nlog(IIS|2) [(k(G +3) +35(n — 1)) STy + (k(i + ) +i(n — 1) 556
+h(k — n)} + O(IS|EF+Y], (6.13)

where 0;; is a C* local section of Ly ® E;j on Vp,.

Proof: In order to simplify notation, define B = (—nlog(||S||2,)). Computations
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lead to

‘/T":laé (cB* 580, +55%8,]) =
= im {CB*1 [(~jB+ k) ST8,] + [(-iB + 0 T'570,] } +
vV—1D,,5 A D, S

2m |S|?
D,

. i ‘ —
C’Bk—l——2ﬂ_ [(jB — k) S’ Dbij + (iB—k) S S’Dm%] A _S"""'

{CB*2 [$5°0,; + 5590, ] [ifF* — k(i + )F + Kk~ )]} +

L VIID.S .. i L miein
+CBF 1 =222 A [(zB—k) S Dpubi; + (jB — k) 55D,y eij]

+CB Y= [S"SJD Db + 5 8 DDl |, (6:14)

where D, stands for the covariant derivative with respect to the hermitian metric

|-|lm, and where &,y, is its corresponding curvature form.

Using (3.3), we may conclude that

vV=1Dn,S AD,,S
2 |S|2

[wm+ Y1 (cB* 556, + 5 5%, ])]n = | aim +b
f—T S , Y=1DnS
27

D m
2w S

g A (dleaij + dzbme_ij) +

iy, ]n (6.15)

(Clea,'j + Cszéij) A

+

m m
o “

where

a = B[1-cB [(jB — K)S'50,1(iB — k)5 570+
b = B [1 +CBF [s's’e” +5 510”] [i3F? — k(i + §)F + k(k — 1)]]

a = CS'TB*[jB -k, ¢z = C8 SIB¥1[iB — k] (6.16)
d = CS'TBFIiB—k], dy=CSSB*[jB—k
e = CS'SB*.

52



Now, we proceed on estimating each of the terms on (6.15).

a3, = B [1 = CnB*" [ (1B - K)S'T 0, + (iB — k)5 570, +

+O(/|S]lm* )] (6.17)

~ T
m*

Also,

na*1p = {1 —C(n-1)B" [(jB ~ k)S'S0, + (iB — k)?Sjéij+]] :
: [1 + OB [S@"@H + ?Sféij} [iGF? — k(i + §)F + k(k — 1)]} -
=1+ B {ijB? | 550, + 5'570,] -
_B {(k(z' + )+ i(n—1)) S50 + (k(i + 5) +i(n — 1))?"5]‘@-]«] +k(k — n)}

+O(lISIE7*)  (6.18)

The expressions for the other terms are analogous, and will henceforth be omitted.

From (3.4), we deduce that

o lISIEB
™ = ST, + B-IDnSIE,

and since
IE)IE 11S]12,B! 1 -
m —_ m - — O S mB ’
TSTE, + B-1ID51, 10w STE, \ 17 2B, ) ~ OS5

all the terms in (6.15) will decay at the order of at least O(||S||5F*!), with the
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exception of the term (6.18), which will be written as:

an—lb {(I)n_l A ny -1 DmS/\ D;nS} — an—lb”DmS“?n~n _

or ISP E

S (L
1S, ) TSR, + B-IIDnSTE,

=up, [1+CB*" {ijB? [$'50,; + 5'578,] -

_B [(k(i +§) +j(n— 1)) STF6;; + (kG +5) +i(n — 1))?"59‘@,.] +k(k — n)}

+O(|IS|IH*]  (6.19)

Therefore,

[wm + gaé (CS*‘E"G,-,.B'“)]” =up, [14+ B {ijB? [55°0, + 5578, -
_B [(Ic(i + ) +(n — 1)) ST + (k(i +5) +i(n — 1))?"31’@,-] +k(k - n)}
+O([ISIEH*)], (6.20)

completing the proof of the lemma. O

Proposition 6.1 Let u,, be a solution to the Monge-Ampére equation (6.12). If
un(z) converges uniformly to zero as x approaches the divisor, then there exists a

constant C = C(m) such that

lum ()| < CJ|S||m+? on Vi \ D. (6.21)

Proof: It suffices to prove (6.21) in a neighborhood of D. Apply Lemma 6.2 for
i =m+2and j = —1, and choose the section 6;; so that the function Si-S_jG,-j +
5 0;; is positive on Vy, \ D. Note that there is, in fact, a C*-section 6;; satisfying
this condition. Indeed, a local section on a trivializing coordinate can clearly be
constructed by means of a bump function. In particular we can consider finitely
many local sections as above such that the union of their supports covers the all of D.

Since the positivity condition is naturally respected by the cocycle relations arising
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from the change of coordinates, the desired section 6;; can simply be obtained by

adding these local sections.
With the above choices, we have
V=1 - o — "
[w,,, +=00C 559, + 5570, (-nlog(nsnfn))k] =

= uf, [1 = Clm+2)(—nlog(IISIEN**7 {1 +0()] [$'F0; + 5 58,) } +
+O(IISIIZ™)] . (6:22)

On the other hand,
efmwt = [1 4+ O(||S||™*+)]wr, on V,, \ D. (6.23)

More precisely, we can write on V,, \ D

£m+1 3 i .=
efmup, = [L+ ) {5°56,; + 5 578} (= log |ISIin)t + O(IISImt)wp,  (6.24)
=0

for sections 6;; € I'(Vi, \ D, L ® L).

Let € > 0, and define C; = &, where C} := sup,cy,,\p(|tm| + 1), and C} = —C.
Then, for all z € V,,, \ D verifying

(Sm+2_§_19m+2,—1 +§m+25_lém+2,—1(—nlog(HS”?n))em“) (z) =¢, (6.25)
it follows that
Cy (5™78 bsama + 578 By s (~nlog(ISI2)™) (@) > [um(a).
Furthermore, if € is sufficiently small, then on the subset

—=m+2

{z €V \ D; (5m+2§_19m+2,—1 +S 5_15m+2,—1(—n108(||5||72n))£"‘+‘) (x) < e},
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we have (for i =m +2 and j = —1)

[ + Y1000 [575105 + 570, ] (-nlog(ISI) "% | < et and

i + Y2006, [, + 5'598,] (-nlog(SIE)+% | 2 eru

Finally, by using the hypothesis on the uniform vanishing of u,, on D, the propo-
sition follows from the maximum principle for the complex Monge-Ampére operator:

we obtain the following bound
] < C [§5035 + 558, ] (—nlog(||S]12)) "5 (6.26)

on the neighborhood given in (6.25), where C = max{C}, —C,}. This completes the
proof of the proposition. O

Finally, the last step in the proof of Theorem 1.2, which consists of showing that
the solution to the Monge-Ampeére equation (6.12) actually converges uniformly to

Z€TO.

Proposition 6.2 For a fized m > 2, let u,, be a solution to (6.12). Then un(x)

converges uniformly to zero as x approaches the divisor D.

Proof: In [TY1], the solution u,;, to the Monge-Ampeére equation (6.1) is obtained as
the uniform limit, as € goes to zero, of solutions um, . of the perturbed Monge-Ampere
equations
— n
(wm + gaau) = efmteuyn
wm+§65u>0, u € C*°(M,R).

(6.27)
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On the neighborhood V,,, Lemma (6.2) applied for i = 2, j = —1 and k = 0, gives

{wm + %65 (C [523_102,_1 + 525'“152,_1]) }n =

= o, [1 - 20(-nlog(IIS12)) = { (~n1og(IISI2))? [$*5 051 + 5578y ] -

—(—nlog(||S]2)) [(1 —n)S%5 651 +2(n— 1)§2S“62,_1] } + O(IISIIfn)] :
(6.28)

Again, we can choose appropriate local C*®-sections 62 _; such that
[523_102,_1 + _3-25_10—2,—1]
is a positive function on a neighborhood of the divisor, and use this function as a

uniform barrier to the sequence of solutions {un, .}

Note that efm+eume = 14+ O(||S||,). Hence, as in the proof of Lemma 6.2, we can
define, for a fixed § > 0, C; = %i, where C] = sup, ¢y, \p(|[tm,e|+1) and C = —C}. A
priori, C; could depend on ¢, but it turns out (see [TY1] for details) that supy, |um |
can be bounded uniformly by a constant independent on €. Then, for all z € V,,, \ D
such that

(525“92,_1 + Ezs-léz,_l) (z) = 6,

we have that

Ci (52-.5—’_192,_1 +§2S_152,—1) (@) > [tm,e()l-

In addition, in the neighborhood {z € Vn \ D; (50,1 + 5°5710,,1) (2) < 4,
for a fixed ¢ sufficiently small, we have

vV—=1_% —_— — — n =—1 <2015
[w"‘ * _27?13301 [Sﬁs a1+ 525-102,-1} } < fn e[S 4S50 ]
and

[“’"‘ + 5000, [S75 001 + ﬁzs-léz,—x]] > ¢/nteG [S5 0145 ] o

m
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Since um e vanishes at D (see [CY1]), we can apply the maximum principle to

conclude that there exists a C independent of € such that, near D,
-C [52?192,—1 + _5-25_19—2,—1] <upe<C [523-—192,—1 + gzs_léz,—l]

Now, since the neighborhood {z € Vj, \ D; (52?102,_1 + §2S“1§2,_1) (x) <4} isa
fixed set, independent of €, and the constant C' above is also independent of €, we

can pass to the limit when € goes to zero, obtaining the claim. O

Proof of Theorem (1.2): It follows immediately from the combination of Proposi-

tions (6.1) and (6.2). 0
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