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Abstract

Let G be a group and A be a ring. There is a stable equivalence of orthogonal spectra
THH(A) A N¥(G), — THH(A[G])

between the topological Hochschild homology of the group algebra A[G] and the smash
product of the topological Hochschild homology of A and the cyclic bar construction
of G. This thesis generalizes this result to a twisted group algebra AT[G]. As an A-
module, A™[G] = A[G], but the multiplication is given by ag-a’g’ = ag(a’)- g¢’, where
G acts on A from the left through ring automorphisms. The main result is given in
terms of a variant THHY(A) of the topological Hochschild spectrum that is equipped
with a twisted cyclic structure inherited from the cyclic structure of the cyclic pointed
space THH(A)[—]. We first define a parametrized orthogonal spectrum E(A, G) over
the cyclic bar construction N9 (G). We prove there is a stable equivalence of spectra
between the associated Thom spectrum of E(A, G) and THH(A"[G]). We then prove
there is a stable equivalence of orthogonal spectra

\/ EG. Acg(q) THH?(A) = THH(AT[G)),
(9)
where the wedge-sum on the left hand side ranges over the conjugacy classes of ele-

ments of G and the equivalence depends on a choice of representative g € (g) of every
conjugacy class of elements in G.
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Title: Associate Professor of Mathematics
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Chapter 1

Introduction

Let G be a group and A be a ring. The topological Hochschild homology spectrum
of the group algebra A[G] is determined by the cyclic bar construction of the group
G and the topological Hochschild spectrum of the ring A. More precisely, there is a

stable equivalence of orthogonal spectra
THH(A) A N¥(G), — THH(A[G))

[5, Prop. 4.1]. This thesis generalizes this result to a twisted group algebra AT[G].
Let G act on A from the left through ring automorphisms. Then as an A-module,
AT[G] = A[G], but the multiplication is given by ag - a’g’ = ag(a’) - g¢’. The result
is stated in terms of a variant THHY( A) of the topological Hochschild spectrum that
we now describe. The topological Hochschild spectrum is defined as the geometric

realization
THH(A4; $*) = |[k] — THH(A; SY)[K]|

of a cyclic orthogonal spectrum THH(A4;S*)[k]. Similarly,
THHY(A; $*) = |[k] — THH?(A; S*)[]|

where

THHY(A; S*)[k] = THH(A; S*)[k]
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with the usual cyclic structure maps except that the zeroth face map is replaced by
the composite dj = dgo (1,9,1,...,1),. Here, if (go, .-, gx) is a k-tuple of elements
of the group G, '

(90, - - -» gr)+ - THH(A)[k] — THH(A)[K]

is the map induced by g; acting on the ith factor and dj is the usual face map. A
more precise definition of the map (go, - - ., gk )+ is given in §3.1. We then prove the

following result.

Theorem 1.0.1. Let G be a group that acts on a ring A, and let AT[G] be the twisted

group algebra. Then there is a stable equivalence of orthogonal spectra

@ : \/ EG., Acy(e) THH(A) > THH(A"[G]),
{9)
where the wedge-sum on the left hand side ranges over the conjugacy classes of el-
ements of G. The map ® depends on a choice of representative g € (g) of every

conjugacy class of elements in G.

We first prove a form of this equivalence that is independent of the choice of conju-
gacy class representatives. For each non-negative integer k, we define a parametrized

orthogonal spectrum FE(A, G)[k] with A-th space given by
E(A, G)[K]x = B(4, G; S)[K] = THH(4; S))[K] x N¥(G)[K].

We then define cyclic operators d] g, s7 g, and tf . For 0 < 7 < k, the degeneracy op-
erator s] p is given as the product of the i-th degeneracy operator of the cyclic pointed
space THH(A, S*)[—] and the i-th degneracy operator of the cyclic set N¥(G)[—],
respectively. Similarily, the cyclic operator ¢} g is the product of the cyclic operator
of THH(A; S*)[~] and the cyclic operator of N%¥(G)[—]. The face operators, how-
ever, are replaced by twisted face operators defined in §3,1. At each simplicial level k,
E(A, G)[k] is a parametrized orthogonal spectrum over N%¥(G)[k] but it is not a cyclic

object in a category of parametrized orthogonal spectra over a fixed base. Fixing A
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and letting k& vary, we have a cyclic space, E(A, G)[—]x. The geometric realization of
E(A, G)[—])\ is

At each level k, the projection map of the parametrized space E(A, G)[—]x commutes
with the operators dj g, $] g, and ¢ 5. Thus for varying k the projection maps form a
cyclic map. Similarly the level k section maps form a cyclic map. Since the geometric
realization is a functor, it follows that F(A, G), is a parametrized space over N¥(G).
Letting \ vary then gives a parametrized orthogonal spectrum E(A, G) over N%¥(G)
in the sense of Def. 2.2.1. The space E(A, G), is also a bundle over N¥(G) with the
fiber over a vertex g € (g) denoted by E(A, G)3. The fiber E(A, G)3 is itself obtained
as the realization of a cyclic set E(A, G)9[—]. We discuss this in §3.2.

In general, if 7, denotes the category of pointed spaces and 7p the category of
parametrized spaces over a base B, there exists an adjoint pair of functors (fi, f*)
between parametrized spaces and pointed spaces, fi : 7Tg — 7, the associated Thom
space, and f* : 7, — 7p, the change of base functor. Applying the Thom space
functor f levelwise to a parametrized orthogonal spectrum gives us an orthogonal
spectrum [12, Thm. 11.4..1). Since the functor f, is a left adjoint, it preserves
colimits. Thus for the parametrized spectrum E(A, G), the Thom spectrum fiE(A, G)
is given by the realization of a cyclic orthogonal spectrum whose orthogonal spectrum

in simplicial degree k has A-th space given by THH(A; S*)[k] A N¥(G)[k]...

Theorem 1.0.2. There exists a canonical stable equivalence of orthogonal spectra
VU : fiE(A,G) = THH(A"[G)).

By Connes’ theory of cyclic sets, the realization of a cyclic set is a T-space. Since
the topological Hochschild homology spectrum is defined as the realization of a cyclic
orthogonal spectrum, it is equipped with an action of the circle; see [8]. In partic-
ular, the spectrum THH(A"[G]) is an orthogonal T-spectrum as defined in [10] and
Thm. 1.0.2 can be extended to an equivalence of orthogonal T-spectra. However, this

extended result would require an understanding of the fixed point sets of an equiv-
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ariant Thom spectrum, fiE(A,G), and these fixed sets are notoriously difficult to

understand.

There is a deep connection between topologicial invariants and K-theory. An

instance of this connection is the cyclotomic trace map,
K(A4) £ TC(A)

from the K-theory spectrum of the ring A to the topological cyclic homology spec-
trum TC. See [2]. The spectrum TC is constructed from a pro-spectrum TR that
is obtained from the topological Hochschild homology spectrum THH . Namely, the
topological Hochschild spectrum THH(A) has an action of the circle and we can thus
consider fixed-point spectra given by finite subgroups of the circle. For a fixed prime

p the pro-spectrum TR has pro-system level n spectrum given by
TR™(4;p) = THH(A)%1,

where Cpn-1 C T is the cyclic group of order p"~!. Between these spectra there are
restriction maps, R, and Frobenius maps, F. The maps R and F are defined from

TR™ to TR™ . To define the topological cyclic homology, we first define the spectrum
TR(A4;p) = holim TR™(A4; p).

Then the topological cyclic homology of A at the prime p is defined to be the homotopy
fixed points of TR(A;p) under the action of the additive monoid N, which acts via
the powers of the Frobenius map: TC(A;p) = TR(A; p)"N.

The study of group algebras is important in K-theory and indeed, group algebras
are among the first objects studied within the field of algebraic K-theory. A particular

example is the theorem of Dundas. Dundas theorem states that given a space X, if
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A(X) is Waldhausen’s K-theory functor, the diagram

A(X) —= > TC(X)

|

K(Z[m X]) == TC(Z[m X])

is a homotopy Cartesian diagram after profinite completion. A proof of Dundas
theorem is given in [9, Thm. 3.5.1]. Another example is given when the ring A is
a finite algebra over the Witt vectors of a finite field k of characteristic p. In this
case, given a finite group G, the group algebra A[G] is also finite and the homotopy
groups of the K-theory spectrum are isomorphic to the homotopy groups of the TC

spectrum,
Ki(A[G); Z,)  TCy(A[G}; Z,).

Here K; denotes the homotopy groups of the K-theory spectrum and TC; denotes
the homotopy groups of the spectrum TC. Further development on the K-theory of
(untwisted) group algebras may be found in [9, §5.1].

The proof of Thm. 1.0.2 employs the definition of THH and the base change
functors (fi, f*) from parametrized homotopy theory. It is independent of the twisting
in the simplicial structure in that the equivalence does not depend on a preselected
choice of element g € (g) as is the case for Thm. 1.0.1. The proof of Thm. 1.0.1
involves an explicit analysis of the cyclic structure of the cyclic bar construction and
is inspired by a study of the linear case of the Hochschild homology that we include in
Appendix A. Another formula for the (ordinary) Hochschild homolgy of twisted group
algebras is given in [3, §4], but note that we use a different system of coordinates for

the cyclic bar construction (see §3.1).

We use the following notational conventions throughout this exposition. By a
space we mean a compactly generated space (weak Hausdorff k-space) and by a

pointed space we mean a compactly generated space with a choice of base-point. Let
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S be the category of sets. We denote both a given cyclic set

X:A? — S

and a given simplicial set
X A% — 8

by X[—]. We will always state whether we are considering a simplicial set or a cyclic
set so that no confusion arises. We also let X denote both the geometric realization
of a simplicial set X[—] and the geometric realization of the cyclic set X[—], defined
as the geometric realization of the underlying simplicial set. Finally, whenever we
make use of the functors fi and f*, f will always be the map sending the base to the

one point space unless explicitly stated otherwise.
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Chapter 2

Parametrized Orthogonal Spectra

2.1 Parametrized Spaces

We discuss parametrized spaces and define the adjoint functors f; and f* that we use
in Thm. 1.0.1 and Thm. 1.0.2. We will also define a right adjoint to f*, denoted

f+. The reference for this material is [12].

Definition 2.1.1. Let B be a fired base space. A parametrized space X over B
consists of a space X together with projection and section maps, p : X — B and

s : B — X respectively, such that pos =idp.

The category of parametrized spaces 7p over a fixed base space B has objects
parametrized spaces over B. The morphisms of 75 are maps of the total spaces that

commute with both the section and projection maps, or commutative diagrams:

X
N
B f B

N A

Y

We construct the parametrized mapping space Fg(—, —) and parametrized smash prod-

uct to make g a closed symmetric monoidal category with unit S% = B x S°. The
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zero object *p in 7p is the space B with projection and section maps given by the
identity. Let 7p(X,Y’) be the set of all morphisms in 75 from X to Y. We topolo-
gize this set as a subspace of the space of all unbased maps of unbased total spaces
X — Y. We note that the space 75(X,Y) is a based space with basepoint the map
s20p, : X — Y. This is the unique map factoring through *g in 7g. Thus the cate-
gory 7p is enriched over 7,. It is also based topologically bicomplete in the sense of [12,
§1.2]. Constructing Fg(—, —) requires us to first construct the unbased parametrized
mapping space Mapg(—,—). To do this, we introduce a subtle preliminary notion.
For a space Y € 7 (unbased), the partial map classifieris Y =Y U {w} where w is a
disjoint basepoint. It is topologized as the space with basis {U U{w} : U € U} where
U is a basis for Y [12, Def. 1.3.10). We note that the point w is not closed and Y is
not weak Hausdorff [12, Def. 1.1.1]. Also the closure of {w} is all of ¥. The point w
is analagous to a generic point of a variety. The space Y is known as the partial map
classifier because of the bijective correspondence between maps f : A — Y with

A C X a closed subset, and corresponding maps f:X — Y defined by

. w ifzg A
flz) =
fla) ifze A

For a space p : X — B over B we define a map € : B — Map(X, f?) by

b ifze X,
£(b)(z) =

w otherwise.

Here X, denotes the fiber p~1(b) over b € B. The map ¢ is the adjoint of the map
f: X x B — Bobtained as f : A~}(p xid(X x B)) — B where pxid: X x B —
B x B and A : B — B x B denotes the diagonal embedding. We now have the

following.

Definition 2.1.2. [12, Def. 1.8.11] Letp: X — B and q : Y — B be spaces
over B and Map(X,Y') the space of unbased maps from X toY. Then Mapp(X,Y)

16



is defined to be the pullback of the following diagram,

Mapp(X,Y) — Map(X,Y)

|k

B Map(X, B).

We note that as a point-set,

Mapp(X,Y) = [ | Map(Xs, ).
beB

We may now define the parametrized mapping space,

Definition 2.1.3. [12, Def. 1.8.16] The parametrized mapping space Fg(X,Y) of

two parametrized spaces X and Y is the pullback of the following diagram,

Mapp(X,Y)

1 o

B—=2—Y "> Mapg(B,Y)

where s, and s, are the sections of X and Y, respectively, and Y — Mapg(B,Y) is

the canonical isomorphism.

Again we note that as a point-set,

Fs(X,Y) = [ F(X., ¥3).
beB

The parametrized mapping space is thus the subspace of Mapg(X,Y) consisting
of maps that restrict to based maps between the fibers X, and Y, with respective
basepoints s;(b) and sq(b).

Given a map of spaces f : A — B we define a pair of adjoint functors,

fi: Ty —Tp

17



and
F:7p — Ty

by the following pushout and pullback diagrams, respectively.

A—1-p Y —y
| | b
X —fiX A—L.B

where X € 74 and Y € 7. Of particular interest is the example where f : B — *
is the map sending B to the one-point space. In this case, for a parametrized space
X over B, one obtains the pointed space fi(X) = X/s(B) with basepoint provided
by the class of the section. Similarly, given a pointed space Z with basepoint 2y € Z,
one has the parametrized space f*(Z) over B with total space Z x B and projection
provided by projecting onto the second factor. The section s : B — Z x B is then
defined by s(b) = (20,b). The functor f*, has a right adjoint, f, : 74 — 7p defined
as follows. Let ¢« : B — Mapg(A, A) be the adjoint of the map A xp B — A
sending (a, f(a)) — a. Then for X € 74 we define f, X as the pullback

f*X - MapB(A;X)

1 l

B —~ Mapg(4, A).

In the case where f : B — %, f, X is the space of all sections on X with basepoint

the section s : B — X.

Within the category of parametrized spaces, we can define parametrized versions
of the wedge and smash products by taking the usual wedge and smash products

fiberwise. More precisely, we have the following definition.
Definition 2.1.4. [12, Def. 1.3.8] Let X,Y € Tp.

(1) The product of spaces X andY over B, X xgY, is the pullback of the following

18



diagram,

XXBY-——>

Ik

(2) The wedge of spaces X and Y over B, X Vg Y, is the pushout obtained from

p2

the following diagram,

31

B X
|
Y—XVpY
(8) Finally, we have the inclusion map X Vg Y — X xpY defined by sending
x — (x, s2p1(x)) and y — (s1p2(y),y). It is easy to check that it is well-defined.
We then define the smash product of X and Y over B, X AgY, to be the
pushout,

X\/BY—'—>X XBY

L

B X ABY.

Since every fiber has a basepoint given by the section, each of the above construc-
tions for the product, wedge product, and smash product, is given the parametrized
space structure that gives us fiberwise product, wedge product, and smash product,

respectively.

2.2 Parametrized Orthogonal Spectra

Let X be a finite dimensional real inner product space and let S* be the one-point
compactification of A. A topological category is a category enriched in the symmetric
monoidal category of pointed spaces and smash product. Let Z be the topological
category with objects all finite dimensional real inner product spaces A and morphism

spaces given by the pointed space of linear isometries from A to X,

Homz(A, X') = O\ X))y

19



Let
EM\XN)Y— O\ XN) x X

[

O\, ) O\ N)

be the sub-bundle of pairs (f, z) such that £ € X' — f()), the orthogonal complement.
Let J be the topological category with the same objects as Z but with morphism
spaces Hom (), )') defined to be the Thom space of the vector bundle E(A, X') over
O(\, X). Composition is defined

Hom (N, \") A Homz(A, ') — Homz(A, \')

via ((9,%); (f,z)) — (g o f,9(x) + y). The inclusion of the zero-section in E(A, X')
induces a map of Thom spaces Homz(A, \') — Hom(\, \') and this map is an
isomorphism if the dimensions of A and ) are equal. These maps constitute a functor
I — J. A pointed-topological functor is a functor enriched over pointed spaces. By

definition an orthogonal spectrum is a pointed-topological functor
X:J—T,.

The topological Hochschild homology spectrum THH defined in §3.1 is an example
of an orthogonal spectrum.
We recall that the category 7p is enriched in the symmetric monoidal category of

pointed spaces and smash product. Let S} = f*(S?).

Definition 2.2.1. A parametrized orthogonal spectrum over B is a pointed-topological
functor
X: j —> TB.

(Compare [12, Def. 11.2.3]). This amounts to a pointed-topological functor (that

we denote by the same symbol)

X:I——)TB

20



together with continuous natural transformations
oax: XA\ ApSy — XA X)
of pointed-topological functors from Z x Z to 7p such that
ox0: XA A SE — X(A&0)

is the canonical isomorphism, and such that the diagram

L arAid

X(A)Ap Sy Ap Sy ———X(A\@® X)Ap Sy

lN 16A$AI’AH

X(A\) Ap SN 22 Xx(X@ N @ N

commutes. Here the left-hand vertical map is the canonical isomorphism. We note
that in Def. 2.2.1 when B = #, we obtain the usual definition of an orthogonal

spectrum.

We recall from §2.1 that a map of spaces f : A — B gives rise to adjoint functors
fi:Ty — Tp, f* : Tg —> T4 and f, : Ty — Tpg, which is right adjoint to f*. For the
category of parametrized orthogonal spectra over A and the category of parametrized
orthogonal spectra over B, levelwise application of the functors fi, f*, and f, gives
rise to adjoint functors (that we also denote fi, f* and f.) between the categories of
parametrized orthogonal spectra over A and parametrized orthogonal spectra over B
(12, Thm. 11.4.1]. Furthermore, if g : B — C is another map of spaces, then there

are canonical isomorphisms,

(9o fNE — gfiE, (9o f)'E'— f*'g*E', (g0 [)«E — g.f.E,

where E is a parametrized orthogonal spectrum over A and E’ is a parametrized

orthogonal spectrum over C.

Let B[—] be a simplicial (or cyclic) space. Suppose for all non-negative integers
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k, we have a parametrized orthogonal spectrum E[k] over B{k], and for every map
§ : [m] — [n] in the simplicial index category, we have a map of parametrized

orthogonal spectra over B{n|,
0 : E[n] — O0E[m].

Here 0% is the base-change functor associated with the map of spaces 0p : B[n] —
B[m)]. We shall require that if 6 : [m] — [n] and ¢’ : [n] — [p] are two composable
maps in the simplicial index category, then the following diagram of parametrized

orthogonal spectra over B[p] commutes:

Elp) L25 (05 0 05)* E[m]

o T

6" Eln] 225 9. *0%, E[m].

Here the right-hand vertical map is the canonical isomorphism. We recall that the
realization B of B[—] is defined to be the coequalizer

I Bn]xAm HBk]xAk <2, B
0: [m)—n] k]

where, on the second summand indexed by 6 : [m] — [n], the map fg is the unique
map that, for every map 6: [m] — [n] in the simplicial index category, makes the

following diagram commute:

B[n] x A™ —22X, Bim] x A™

J'ino lin[ml
[I Bl x Ak 2] Bkl x a*.

p: [k]-[l) (k]

The map gp is defined similarly as the unique map that, for every map 6: [m] — [n]

22



in the simplicial index category, makes the following diagram commute:

Bln] x Am—2X% _ Blp] x A"

1in9 lin{n]

[ Bl x a*—2-T] B[k x Ak.

@ k][] (k]

Let €); = egofp = egogp. Let pry, ,: Bln]x A™ — Bin] and pr: B[k]x A¥ — Bik|
be the canonical projections. We then have the parametrized orthogonal spectrum
pr}, , E[n] over B[n] x A™ and the parametrized orthogonal spectrum prj, E[k] over
B[k] x A*. Let

H in[k]! pr}; E[k]
(]

denote the coproduct of the parametrized orthogonal spectra inj) pry, E[k] over [ [ B[k]x
AF and let

H ing: pry, , E[n]

8: [m]—[n]
denote the coproduct of the parametrized orthogonal spectra ing pry, , E[n] over
. mj—pm; Bln] x A™. We then define the parametrized spectrum E over B to be

the following coequalizer of parametrized spectra over B:
. . e, . .
e,B!( H g Pry, o, E[n]) = €B!(]'l M) PT, E[k]) = E.
6: [m]—|n] (k]

Here, on the summand indexed by 6 : [m] — [n], fg is defined as follows. First, the
functor fp commutes with coproducts since it has a right-adjoint functor f}. We

define a map

f;;: H f31 inm pr:n,n E[n] —> H in[k]l prz E[k}]
9: [m]—(n] (K}

of parametrized orthogonal spectra over ][, B[k] x A¥ to be the unique map such

that, for every map 6: [m] — [n] in the simplicial index category, the following
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diagram of parametrized orthogonal spectra over [, B[k] x A* commutes:

. Ix .
fing pty, , Eln] —=— injm)s pry, E[m]

lins lin{m]
. fi X
H [ming pry; E[l] — H pry E[k].
v: [k]-{l] (k]

Here the map f% 4 is defined to be the following composite map:

fering pr:‘n’n E [’I’L] = in[m]1(9 B X id) pr;‘n,n E [n]

. . o
[n] inpp pry, 0%

~— i pry, 051 E injm) pr;;, E[m].

The first map is the unique natural isomorphism fg ing — ing(0p x id), that

exists because

fpoing = (6p x id) o injm: Bln} x A™ — J] B[k] x AF.
(k]

The second map is induced from the unique natural isomorphism of [12, Prop. 2.2.9],

(s x id)i pry, , — DI}, 01, that exists because the following diagram is a pull-back:

Bn] x Am — 22, Blm] x A™
Bln] % Blm).

Finally, the last map is induced by the map 0% : 6pE[n] — E[m] that is the adjoint
of the given map fg: E[n] — 65 E[m]. Then fg is defined to be the map epifg. To

define the map gg, again, we define a map

9E: H gpiing pry, , E[n] — Hin[kjg pr;, Efk]
0: [m]—(n] (k]

of parametrized orthogonal spectra over ]__[[k] B[k] x A% to be the unique map such
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that, for every map 6: [m] — [n] in the simplicial index category, the following

diagram of parametrized orthogonal spectra over [ [, B[k] x AF commutes:

7
9E,0

gpiing pry, . Eln] ing,) pr;, En]

lino lin[n]

1 9singpry, Bl —2- ] pri Ek].
©: [k]>ll] (K]

The map gf 4 is defined to be the following composite map:
g ing: pry, . E[n] — inp(id x0a)1 pry, , E[n] — ing, pry, Eln].

The first map is the unique natural isomorphism gp ingr — inpi(id xfa): that exists
because

95 ©ing = iny o(id x0a): B[n] x A™ — [ BlK] x A*.
k]

The second map is induced from the map
(id x0a)1 pry, ,, E[n] — pr;, E[n]

that is the adjoint of the unique natural isomorphism

*

Py, Eln] = (id x64)* prj, En)
which exists because
DIy, = DPr,, o(id x0a): Bln] x A™ — Bin].

Then gg is defined to be the map epigy. The parametrized orthogonal spectrum F
over B has the following mapping property, the proof of which follows directly from
the definition of the parametrized orthogonal spectrum F over B.

Proposition 2.2.2. Let X be a parametrized orthogonal spectrum over B. Then
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giving a map a: E — X of parametrized orthogonal spectra over B is equivalent
to giving, for every non-negative integer k, a map of parametrized orthogonal spectra
over B[k} x A¥

ak: pry Elk] — (e oinp)* X

such that, for every map 0: [m] — [n] in the simplicial index category,

(0B x id)* oy, = (id x0a)*an : pIy, , Eln] — (€p 0 ing)*X.

To understand the A-th space E) of the parametrized orthogonal spectrum F over
B we note that limits, colimits, and the functors fi, f*, and f, are defined levelwise.
The space F) is therefore given by the following coequalizer diagram of parametrized

spaces over B:

TEA €
el H Pry, Bln)) — 63!(H prj, E[k]) =2 E.
0: [m|—s1nl 9B [k]

We recall the space 65 E[m], is defined by a pullback diagram. Hence, there is a

canonical map of spaces pr: 85 FE[m]x, — E[m],, and we define
o

B =Drobgy: Eln]x — E[m]y.

The map Hﬁ, ) is a map of spaces and the following diagrams commute:

i 0%
E [lnh —>E [Ilb E[{]A —>F [}nl,\
Bln] —22> Blm| Bln] —22> B[m).

Let E) be the space defined by the following coequalizer diagram:

* —__>f§’)‘ * eﬁ,)\ 1
I I Py E[n])\ —_— I I P1 E[k]A > E)\'
6: [m]|—n] 9ex K]
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Then there is a canonical map £\ — F, and we claim that this map is a homeomor-

phism. Indeed, this is a special case of the following more general statement:

Proposition 2.2.3. Let X[—] and B[—] be two diagrams of spaces indezed by a small
category I, and let X = colim; X[—] and B = colim; B[-]. Let p[-]: X[-] — B[-]
and s[—]: B[-] — X|[-] be natural transformations such that p[—] o s[—] is the
identity natural transformation of B[—]. Then each canonical map tpq: Blo] — B

gives rise to a parametrized space (tpa 1 X|a] over B and the induced map
colIim(LB,a)gX[a] — X

is an isomorphism of parametrized spaces over B, where the induced mapsp: X — B
and s: B — X provide the projection and section maps for the parametrized space
X over B.

Proof. We have commutative diagrams

X[o] 22> x X[o] 22> x
ple] p sla] )[s
Blo] 22+ B Blo] 22> B.

It follows that we obtain a parametrized space (tpq)1X|[a] over B together with a
map ix,q: (taiX[a] — X of parametrized spaces over B. The parametrized spaces
(tBa)1X[0] over B form an I-diagram of parametrized spaces over B, and the maps

Ix give rise to the following map of parametrized spaces over B:
i colIim(l,B,a);X[af] — X.

Now the general statement is that this map is an isomorphism of parametrized spaces

over B. Indeed, the canonical maps

Yo X[a] = (Lo X[a] — colIim(LB,ﬁ)!X[ﬁ]
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give rise to a map

p: X = co!,im X[a] — colIim(LB,a)!X (o]
which is the inverse of the map 7. O

Corollary 2.2.4. Let w: B — * be the map from B to the one-point space and let
wy: Blk] — * be the map from B[k] to the one-point space. The Thom spectrum
wiF of the parametrized orthogonal spectrum E over B is canonically isomorphic to
the realization of the simplicial orthogonal spectrum given by the Thom spectra of the

parametrized orthogonal spectra E[k] over Blk],
w;E ~ I[k] — wkuE[kH

with simplicial structure maps induced from the maps Qﬁi A
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Chapter 3

Topological Hochschild Homology

3.1 Definition and Structure of the Parametrized

Orthogonal Spectrum E(A, G)

In general, for any symmetric ring spectrum E as defined in [7], we can define the topo-
logical Hochschild homology spectrum THH(FE) following the approach of Bokstedt
[1]. Further details of this construction may be found in [5, §1-§2]. We now recall the
definition of THH(E). Initially we define an index category I by declaring the objects
ob(I) to be the class of all finite sets, i = {1,2,---,4},2 > 1 and 0 = 0. We then
declare our morphisms to be all injective maps. We note that every morphism is the
composite of the standard inclusion m — m and an automorphism of the target set,
albeit non-uniquely. We now have, for each symmetric ring spectrum E and pointed

space X, a functor Gx(E; X) : I**' — 7,. This is defined on objects as

Gr(E; X)(ig, -+ - yi) = F(S®A--- AS* E; A+~ ANEj, ANX)

the space of based maps in 7,. We define a cyclic pointed space with k-simplices

THH(E; X)[k] = ho;ﬁllim Gy(E; X).
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We define the pointed space THH(E; X) as the realization of the above cyclic pointed
space
THH(E; X) = |[k] — THH(E; X)[k]|.

Let A be a finite dimensional inner product space and let S* be the one point com-

pactification of A\. Then we define the orthogonal spectrum THH(E) with A-th space
THH(E) = THH(E; $*) = |[k] — THH(E; S*)[¥]|

where
THH(E; SM)[k] = hocolim G (E; 5%).

For fixed k¥ and varying A, each THH(E)[k] forms an orthogonal spectrum and
THH(E) is the geometric realization of the resulting cyclic orthogonal spectrum.
To define the face operators d, : THH(E; S*)[k] — THH(E; S*)[k — 1], let

IxIT-T

be the concatenation functor sending (3,') to the set i LJ¢’. Let 8, : I**1 — I* be

the functor defined by

(igy - iy Uipygy .. 0dy) f0<T <k

(i Uigydys- - - Gg_y) if r = k.

Similarly for the degeneracies and cyclic operator, let s, : 7#+! — 1%+2 be the functor

defined on objects by

37(107 R 7Qk) = (§O7 <. 1ir7grzr+17 s 71k)

for0<r <k, and t: I* — I* by

tk@o:- o ’7_"k) = (Z.Iwioa <. aik-l)'
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We then define natural transformations

6 : Ge(E; 8*) — Gi_1(E;5*) 0 0,
0y : Gi(E; 8*) — G (E; S o s,
Tk : Gi(B; S*) — Gi(E; S*) o i

as follows. The natural transformation &, takes the map f € Gp(E;S*)(4p, - - -, )
given by
Son...AS* L B A-..AE

to the map 0,(f) € Gr—1(E; S*)(8r(4y, - - - ,3;)) given by the composition

SN ASHFI AL ASE 2, G0 AL A S ASHRLA LA S
Ly EgA--ANE, AEy A+ AEy AS

Lo By A ANEj i A NEy, NS
f0<r<kand

SN SHA A S G0 LA G-t A G

L EyA---NE;y_ ANE; AS

k—1

S E,ANE,---NE,_ NS

k-1

n

h— ik+io/\Ei1"'/\Ei /\SA

k—1

if » = k. The natural transformations o, and 7 are defined similarly. The face map

d, : THH(E; S*)[k] — THH(E; S*)[k — 1] is then defined as the composite

hoIc’gllim Gr(E;SY) L, hoﬁ(illim Gir-1(E; S 0 0, @)y hocl(l)clim Gr-1(E; SY).

For any ring A, we have an associated symmetric ring spectrum A, the Eilenberg—

MacLane spectrum, with level n obtained as the realization of the following simplicial
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set:

An = |[k] = A{S"kI}/A{solk1}],

where we put the usual simplicial structure on the sphere,
S™-] = (A'[-]/OAN-]) A--- A (AY=]/0AY-))

with n smash factors and basepoint sp[—] € S™[—]. We then define the topological
Hochschild spectrum of the ring A to be the topological Hochschild spectrum of the
Eilenberg-MacLane spectrum A associated to the ring A, and simply write THH(A)

for this spectrum.

Definition 3.1.1. Let E be a connective symmetric ring spectrum and let G be a

discrete group. A left action of G on the spectrum FE is a continuous map
Q. G+ A En - En

such that the following diagrams commute

idAp

G NEnNE, Gy A Enmin ,
lAMdAid 10

|- k

G NEaZ NG NE, 222> E ANE,

and
G, NS G AE,

1pr 1a

gm U E,.

We note in the definition that F is not necesarily the Eilenberg—MacLane spectrum
of a ring and that we do not require the ring spectrum to be connected (0-connected)

but only connective (—1-connected). Also, the commutativaty of the these two dia-
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grams implies the diagram

G, A E, AS™ 24, B A gm

lidAUm,n 1Um,n
a

G+ A Em+n E'm+n

commutes. Here o, , is the structure map in the symmetric ring spectrum E. We
now define the twisted group ring spectrum to be the symmetric ring spectrum with

level n space given by

(E"[G))n = E, AG4.
We define the multiplication (ET[G])m A (ET[G))n — (ET[G))m-1n as the composition

idAAAidAid
—_—

E, NGy AE, AG, E,ANG. NG NE,AG,

idNidhanid
—_—

Exn NGL ANE NGy

idAtwAid

Ex.NE, NGy NGy

ENLG
__“_"__,E'm+n/\G+

where ug and pg are the multiplication maps for £ and G respectively. We define

the unit map 7 : S™ — (E"[G])m to be the composite
Sm ", gmA S ENS, B oAG,

where ng : S™ — E,, is the unit map for the ring spectrum E and 1g: S° — G,
is the constant map to the identity of the group G.
We relate this definition of a twisted group ring spectrum to the usual Eilenberg—

MacLane spectrum of a twisted group algebra by the following proposition.

Proposition 3.1.2. Let A be a ring, let G be a discrete group, and let A be the
FEilenberg—Lane spectrum associated to A. Then there exists a canonical weak equiva-
lence of ring spectra

AT[G] — A7[G).
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Proof. The canonical map is given by the composition

(A7) = Au A Gy 25 (AT[G))0 A Gy — s (AT[G))n

where ¢ is induced from the ring homomorphism ¢ : A — A7[G] defined by ¢(a) =
a -1 and the map 7(— A h) is induced from the ring homomorphism r,, : A"[G] —
AT[G] defined by r1,(a-g) = a-gh. This composition induces isomorphisms of spectrum

homotopy groups and is thus a weak equivalence. a

Let (go, - - -, gx) be a tuple of elements of G. We define a map
Let f € Gp(A)(dy, - - -, i) be given by

Siopn- ASE L A A AA

('
We define a natural transformation < by sending f to the composite

Sion- NSk Ly A A AA
2 Gy NA A NG A Ay

_,/L.o/\.../\jiik

where tg(ai, A -+ Aai,) = go A @ig A+ gk A ay,, and the last map is a; A -+ A oy,
Then
(90, - -, 9k)s : THH(A)[k] — THH(A)[k]

is the induced map

. T .
hoIckgrlllm Gr(A) — hoﬁﬂlllm Gr(A).
The topological Hochschild spectrum is defined as the geometric realization

THH(A) = |[k] — THH(4; SY)[k]|
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of the cyclic orthogonal spectrum THH(A, S*)[—] with cyclic operators d,, s,, and
tr as defined above. We now define the cyclic orthogonal spectrum THHY(A) that
depends on a choice of element g € G. For g € G let THHI(A)[—] be the cyclic

orthogonal spectrum with k-simplices
THH?(A)[k]» = THH(A; S*)[k]
and cyclic structure maps

doo(l,9,1,...1), ifr=0,
df =

d, if0<r<k,

s = sy, and t§ = t;. The geometric realization is the orthogonal spectrum with A-th
space

THHS(A)» = |[k] — THHS(A)[k]].

The cyclic bar construction of a group G is the cyclic set N9(G)[—] with k-
simplices

NY(G)k] =G x -+ x G
k+1

and face and degeneracy maps given by

(901"‘1gigi+17"')gk) 1f052<k
di(go; - - -, 9k) =
(gkgﬂygl) cee )gk—l) ifi=k

S’i(gﬂa"'agk) =(901"'191;1lvgi+17"'7gk;) fOI‘O_<_Z§ k.

We also have the cyclic operator, ti, defined by

tk(gO) cee agk) = (gk: o, - -- 7gk—-1)'
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For each non-negative integer k, let E(A, G)[k] be the parametrized orthogonal
spectrum over N%¥(G)[k] given by

E(A,G; SY)[k] = wy*(THH(A; SY)[K]) = THH(A4; SY)[k] x N¥(G)[k]

where wy is the unique map from N%(G) to the one-point space. To define the
structure maps of the parametrized orthogonal spectrum E(A,G), we first recall
the spectrum structure maps of the orthogonal spectrum THH(A)[k]. The space
THH(A; S*)[k] is obtained as the homotopy colimit of spaces of the form F(X, Y AS?),

and the spectrum structure map
oxx: THH(A; S)[k] A SY — THH(A; S2®Y)[k]
is then obtained from the canonical map
F(X,YASMNASY — F(X,Y AS A SY)

and various canonical isomorphisms. It is clear that this makes THH(A)[k] an or-

thogonal spectrum. We now define the twisted structure maps
0%: E(A,G)[n] — 05E(A, G)[m]

of parametrized orthogonal spectra over B[n] = N%¥(G)[n]. First we note that we

have corresponding untwisted structure maps
0r: E(A,G)[n] — 05E(A, G)[m]
defined by 0r = wyf0tun(4). We define

S g =5rg: E(AG)kl — s, gE(A,G)k+1], 0<r <k,
the = tee: E(A G)k] — E(A, G)[k]
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to be the untwisted maps, and define
di g =drpoyr: E(AG)k] — d;gE(A,G)k—1], 0<r<k,
to be the composition of the untwisted map and the automorphism
r: E(A, G)[k] — E(A, G)[K]
of parametrized orthogonal spectra over N°(G)[k] defined by

(p‘r'(fa (90’ L )gk)) = ((terl(gr, 1’ (RS 1))*(f): (90; o )gk))

We verify that the map ¢, is a map of parametrized orthogonal spectra over Blk| =
N%(G)[k]; that is, we check that the following diagram of parametrized spaces over

Blk] commutes:

, - AAId )
E(A, G; 8*)[K] Apy Spiyg o E(A,G; 5[] ABik SEx

10’A’AI 1‘7),)’

E(A, G; $*°¥)[] RO (A, G; %) [k,

Since the commutativity of the above diagram is established by verifying the com-
mutativity of the maps at the point-set level, we can check the diagram one fiber at

a time. The induced diagram of fibers over (go, ..., gx) € B[k] takes the form

(t’]:+1(g7'711'--’1))*/\id

THH(A; S*)[k] A S

lo’A’A/

THH(A; 57X [k]

THH(A; SV)[k] A S

ldl\')\/
7 (grs1,ee01))u

THH(A; S*®Y)[k].

It commutes since the canonical map

F(X,Y ANSNASY — F(X,Y AS*ASY)
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is natural in the variables X and Y. This completes the definition of the twisted

structure maps.

We next show that given composable maps 6: [m] — [n] and 6': [n] — [p] in the
simplicial index category, the following diagram of parametrized orthogonal spectra

over B[p] commutes:

Tpots

E(A, G)lp] (6 0 05)* E(A, G)[m]

005

9.*E(A, G)[n] 0%:*0% E(A, G)[m).

Again, this can be easily be checked on fibers. Hence, we obtain a parametrized

orthogonal spectrum FE(A, G) over N¥(G) with Ath space
E(A,G)\ = E(A,G;8%) = |[k] — E(A,G; SN)[K]|

where the simplicial structure maps in the simplicial space on the right-hand side are

the twisted maps 02#. We now present the proof of Thm. 1.0.2.

Proof of Theorem 1.0.2. Let w be the unique map from B = N¥(G) to the one-point

space. We wish to construct a map of parametrized orthogonal spectra over B
¥: E(A,G) — w* THH(AT[G))

and show that the adjoint map
V: wE(A,G) — THH(AT[G])

is a stable equivalence of orthogonal spectra. These maps exist for every symmetric
ring spectrum R with a G-action in the sense of Def. 3.1.1 and with the symmetric
ring spectrum R7[G] as defined in the paragraph immediately following Def. 3.1.1. We
shall work in this generality. As we noted above, the orthogonal spectrum wiE(R, G)
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is the realization of the simplicial orthogonal spectrum with k-th term
wnE(R, G)[K] = THH(R)[K] A N%(G)[K].

and with simplicial structure maps given by the compositions

wnfg

67 5 wnB(R, G)n] <22 0,04 E(R, G)[m] 2%, 4, E(R, G)[m).

Here, we recall, wy; = wmifp,. The map € : 05,05 — id is the counit of the adjunction

(0B, 0%) and is given by the map
¢ =id A0g: THH(R)[m] A N¥(G)[n], — THH(R)[m] A N¥(G)[m],..

The map V¥ is defined to be the map of realizations obtained from a map of simplicial

orthogonal spectra
V. THH(R)[k] A N¥(G)[k];. — THH(R"[G])[k]

that we define below. The definition of this map is given in the proof of (6, Thm. 7.1].
It is also shown there that the map is a stable equivalence of orthogonal spectra

(provided that the symmetric ring spectrum R converges; this is the case for R =

A). Hence, it suffices to show that the maps W}, are compatible with the simplicial

structure maps. We first recall that the map
Win: THH(R; S*)[k] A N¥(G)[k], — THH(R'[G]; S*)[k].
is the map of homotopy colimits over I¥+! obtained from the composite map

F(SA---AS™ RigA...Ry, NS AGLA---AG,
—> F(SOA---AS* RigA--- AR, AGy N--- NGy AS)
~—> F(S®A---AS* Ry AGy A--- AR, AGL ASY)
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where the first map is the same canonical map that was used to define the spectrum

structure maps, and where the second map is induced from the permutation

szo/\ARtk/\G+AAG+—’-"RboAG+/\A}?’Lk/\G+

that maps (7o, -- ., 7k 90, - - - » 9) t0 (70, 905 - - -, Tk» 9k)- We show the following diagram

commutes:
Wy,

wiE(R,G) THH(R'[G])[K]

|#rs ld,

wie—1y, E(R, G)[k — 1] 2% THH(RT[G]) [k — 1).

Let 8,: I¥*' — I* be the functor defined in the beginning of the section and let
Gi(R; X) be the functor from I**! to the category of pointed spaces also defined
at beginning of the section. Let d,: Gx(R; X) — Gk-1(R; X) o 0, be the natural
transformation used to define the face map of the cyclic pointed space THH(R; X)[—],
again, defined at the beginning of the section. Then the right-hand vertical map in

the above diagram is given by the composite map

hocolim G (R"[G}; SA) &=, hocolim G+ (R[G]; %) 0 6,

S, hocloklim Gr_1(R7[G]; 8™).
The left-hand vertical map in the diagram above is also a composition, given by

hocolim Gx(R; $*) A N%(G)[k]. S, hocolim Gj1(R; *) A N%(G)[k — 1]+ o 0,

Bre, hocIcl)clim Gi-1(R; S AN (Q)[k — 1]+
where the natural transformation

67+ Gr(R; X) AN¥(G)[k]s — (Gros(R; X) A N¥(G)[k — 1]3) 0 8,
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is defined by

JZ(f) (gO, .. ;gk)) = (JT((t2+l(g1”) 1: IR 1))*(f))1 d’r(g()y oo )gk))'

Hence, it suffices to show that the diagram of natural transformations

Gi(R; $*) A NY(G)[K]. Gi(R"[G]; 5%)

- ]

Gr1(R; SN A NGk — 1] 0 8, —=22 + Gy _1(R7[G]; S 0 8,

commutes. But this follows immediately from the definitions of the natural transfor-

mations involved and from the naturality of the canonical map
FX,)Y)NZ — F(X,Y A Z).

We therefore have the desired map ¥ of orthogonal spectra and its adjoint ¥ of
parametrized orthogonal spectra over N%¥(G). As we previously stated, it is proved
in [6, Thm. 7.1] (see also [5, Prop. 4.1]) that the maps of orthogonal spectra Wy
are stable equivalences, provided that the symmetric ring spectrum R converges. We
wish to also conclude that the induced map of realizations ¥ is a stable equivalence.
It is proved in [11] that this holds, provided the simpicial spaces wiE(R, G)[—] and
THH(R"[G])[~] are proper in the sense of [11, Def. 11.2]. This, in turn, is the case, if
the unit maps7;: S¢ — R; are Hurewicz cofibrations. If R = A, then both properties

hold, and hence, the map ¥ is a stable equivalence of orthogonal spectra. (]

3.2 The Topological Hochschild Spectrum and Cyclic

Bar Construction

The cyclic set EG[—] is defined by EG[k] = Map([k], G). The face and degeneracy
operators d; : EG[k] — EGI[k — 1] and s; : EG[k] — EG[k + 1], for 0 < i < k, are
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given by

di(90, -+ > 9x) = (90, - -+ Gir - - -, 9%)

Si(QOa"'vgk) = (90)"'1gi)gi:"'sgk)7

where the hat symbol indicates that the i-th term is omitted. The cyclic operator is
defined
tk(90; - - -, k) = (9K, 9o, - - - » Gk—1)-

We follow [13], and let G*! denote the set G with the group G acting from the left
by conjugation. We note that an element g € G determines an isomorphism of sets
between G /Cg(g) and the conjugacy class (g) of the element g given by mapping the

class aCg(g) to g® = aga='. Here C¢(g) denotes the centralizer of g. Therefore,

¢ =T]G/Cs(g)-g.
(9)

Then the map
¢ : EG[-] xg G* =5 NY(G)[-]

defined on level k by

#([(90, - 9x); 9]) = (9x995 ", 9097 ", 097 L, - - - Gk-19 ")

is an isomorphism. The inverse sends a k-simplex (go, ..., gx) in N¥(G)[k] to the

class [(g1- - 9k, 92" 9k> - - - » k> 1); 9o - - - gx)- The adjoint of the composition
T x N¥(G) £ N¥(G) - BG
is a map to the free-loop space of the classifying space of the group,

N%(G) — ABG
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and this map is a weak equivalence [2, Prop 2.6]. The map
m: N9(G) — N(G) = BG
in the composition is given by the projection

(90,1 9%) = (91,---, k)

Also, the set of connected components of N%¥(G) is in one-to-one correspondence
with the set of conjugacy classes of elements in the group G. Given the cyclic set
E(A, G)[—]x defined in §3.1, we now describe the geometric fiber over the connected
component, of E(A,G), corresponding to the conjugacy class of the element g € G.
To understand the fiber over the point given by the 0-simplex g € N%¥(G)[0], we
evaluate the pullback

E(4,G); — E(A,G)»

l |

A0 g NY(@G)

where the right-hand vertical map is the projection of the cyclic space E(A4, G)[—]x
onto the cyclic bar construction and the bottom horizantal map takes the unique non-
degenerate 0-simplex to g. Recall that geometric realization preserves finite limits [4]

in the sense that the canonical map
|[K] = lim Xo[~]| — lim |[k] - X

is a homeomorphism, provided that the index category for the limit system is finite.
Hence the geometric fiber E(A, G)? is the space obtained as the realization of the

following pullback diagram of simplicial spaces

E(A,G)[-]x — E(A,G)[-]

J l

A°[~] —— N¥(G)[-].
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Here A[—] is the standard 0-simplex
A® = HOI'IIA(—, [0])

and the bottom map takes the identity, [0] — [0] to the 0-simplex g € N%¥(G)[0).
Explicitly, this map takes the map 6 : [k] — [0] to 8*9 € N%¥(G)[k], and since for
each k, there is only one such map 0, 6*¢g = (g9,1,...,1) (k+ 1 factors). Thus the
fiber E(A, G)9[—]x is given simplical degree-wise by

E(A,G)?[k]y = THH(A; SME] x {(g,1,...,1)} C E(A, G)[K]-

The cyclic structure of the fiber is that of E(A, G)[—], restricted at each & to the
subset {(g,1,...,1)} C N¥(G)[k]. Thus as a simplicial set the fiber is canonically iso-
morphic to the simplicial set THHY(A)[—] defined in §3.1. The connected component
of the 0-simplex g is obtained as the realization of the cyclic spectrum E(A, G) | () [

given on level £ by

E(A,G)| [k = THH(A; SY)[k] % {(g0, 91,-- -, 9%) : gog1 -+~ 9% € (9)},

a subset of E(A, G)[k]x- Indeed, a path from g to the zeroth vertex of the k-simplex
(9o, - - - » k) is given by the 1-simplex (gh~*, h) € N¥(G)[1].

Lemma 3.2.1. There exists an equivalence of orthogonal spectra

& - BG xcy0 THES(A) = E(4,G)|

between the Borel construction and the spectrum corresponding to the connected com-

ponent indexed by {g). The equivalence depends on the choice of representative g € (g).

Proof. We in fact show the stronger statement that we have a degree-wise isomor-

phism between the Borel construction EG[—]x ¢y THH?(A4)[~]x and E(A, G)| ol
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We define the isomorphism
$g : EG[~] Xcg(e) THH(A)[~] — E(4,G)| ,\[~]x

by
&g([(g(h s 1gk); [f]]) = ((gks 90, - 79k—1)*[f]; QS(QO, .. 1gk))’

where ¢(go, - - -, 9k) = (9:995 ", 9091, - - - Gk-195 ") as above and [f] the class in the
homotopy colimit represented by the map
SO A... S _f_,jlz.o/\.../\j.

('S

Since Cs(g) acts on EG[—] diagonally from the right and on the fiber diagonally from

the left, we have

[(goh - - -, gkh); [f1] = [(90s - - - > gw); (hy - B)S[ S]]

We will first show that the map ¢, is well-defined. Given

ng([g()h‘: v ’gkh; [f]]) = ((gkh7 gOh) L. :gk—lh)*[f]; ¢(g))

we have

#(9) = (9ehg(goh) ™", goh(g1h) 7!, ..., ge-1h(gkh)™")
= (9k9"95", 9097, - - - Gk-195")
= (9%996 ", 9097, - - -, Ge—195 ")

since h € Ci(g). On the other hand, ¢,4([(go, - - -, gk); (B, - - ., ). [£]])

= ((9% 90, - -» Gr—1)x © (s ..., h)[f]; 6(g"))
= ((gxh, goh, - - -, gr—1h)<[f]; ¢(g’))
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where we use that G acts on the spectrum A from the left in the sense of Def. 3.1.1.
We also have ¢(¢') = (9x995 " 9091+ - - -, 9k-195 ") = ¢(g). Thus the map @, is well-
defined. It only remains to demonstrate the commutativity with the cyclic operators.
We check the commutavity of the zeroth operators dy x dj and df ;. The other op-
erators of EG[—] x¢g(g THH?(A) [—]‘ are the standard product operators of EG[—]
and THH(A)[—]». These operators do not involve the element g € G, and their com-
mutavity with their corresponding maps df g, s} and t} ; can be checked similarly

to how we check for df ;. On level k we wish to show that the following diagram

commutes

EGIk] X ¢g(g) hocolimr+r Gi(A) L hocolimk+1 G(A) x N¥(G)[k]

1,9,1,...,1)x xid

(1,gk995 L D xid
EGIk] X ¢g(g) hocolimpe+: Gi(A) hocolimx+1 G(A) x N¥(G)[k]
Soxid Soxid
EG[k] X cg(q) hocolimyk+1 G_1(A) 0 8y hocolimyx+1 Gg—1(A) 0 8y x N¥(G)[k]
(B0)« xdo (B0)«xdo

EG[k — 1] X ¢g(g) hocolimx G_1(A) _ %, hocolimx Gx—1(A) x N¥(G)[k — 1].

We first verify the commutativity of this diagram for the factors involving EG[~]
and N¥(G)[—]. For the tuple (g, ..., gx) in EG[k],

d0¢(90; oo agk)
= do(9x995", 9097 - - - Gk195 )
= (gkggl—l) o ;gk—lglzl)'

On the other hand,
¢do(9os - - -, k)

=¢(91,92-~;9k—1,9k)

= (9k99: "5+ > Gr-1951)-
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We thus only need to verify the commutativity of the factors involving the homotopy

colimits in the above diagram. Since G acts on the spectrum from the left, we have

(L,gr996 " 1, -+ -5 1)a 0 (9ks 90 - - - k—1)x = (9ks GkGs - - -» Gh—1)s-
For a representative
SiOA... A S __f_,j,io/\.../\jdk

of [f], the natural transformation corresponding to the composite

do © (Grs Gk - - - » Ge—1)«[f]

takes f to the composition

St ASHA - ASE TS SO A SR A S
f -~ ~ o~
L AN NAy  AA,
5 G NAg A NGy A A
_a_,;lio/\.../\jiik
25 Aigsiy AAiy -+ N A,

where
Laig Ao Nai) =g Aag Agrg Aag, A--- A gk—a A agy,

and « is the smash product of each action, a;, A - - A a;,. Via the composition going

the other way, the representative

Sion-ASELs A A AA

ik
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is taken to

Gio+it A Gt A LA G T, Glo A LA GHR-1 A Sk

—i—’Aio/\"'/\Aik_l/\Aik
S GiANA A NGLN A,
L A AN A

o Ajgrin Ny - N A

P

Here

Uagy A Nag) =1AagAgAha, N--- A1 Aa,.
It then suffices to prove the following diagram

(id, fiid,...,id)Aid"*

G N Aig NAig N+ N Ay, GYWANAig NAG A N Ay,
G+/\A,~0/\~-/\G+/\Aik G+/\A,~0/\--~/\G+/\Aik
idAanid--Aid an--Aa
G+/\Ai0/\Ail/\G+/\A,i2/\---/\G+/\A,'k Aio/\"'/\Aik
idApNidA--Nid pAidA--Aid

Ajgpiy NAgg A N Ay,

QN A

commutes. Here (id, fi,id, . . .,id) : G™* — G"* sends the class gr AgA g1 A~ - Agr_1
to the class gx A gkg A g1 A -+ - A gr_q. and this map is an isomorphism. Hence there

exists a unique isomorphism
C:GNAg N ANGLNA, S G NAg A NGy A A

such that the top four terms form a commutative diagram,

(¢d,fi,id,...,sd)NidF

G N Ay N A N N Ay, GYEN Aig N Ay N N Ay,

~ ~

G AAg A NGy A A, ~ Gy AAig A AGy A A,
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We also have a map

KZG+/\AiO/\Ail/\G+/\Aiz/\"'/\G+/\Aik———>Ai0/\"'/\A

ik
given by the composition

GiAAig AAiy AGLNA A NGy A A

AnidNE+1

Gi NG ANAig NAZ NG ANAG A+ N Ay,

— G ANAGAGL AN A A+ AN A,

a/\k

— A A A A,

Then the diagram

G ANAGNAGAGLANAG N NG N Ay, u Ay N+ NA;,
idApNIdA---Nid l pAdA-Aid

G+/\Ai0+i1AG+/\A1;2/\"‘/\G+/\Aik A’io+’i1/\A’izA"'/\A‘ik

an--Aa

commutes by Def. 3.1.1 and the coherence of smash product, i.e. that the iterated
smash product of commutative diagrams is again a commutative diagram. It only

remains to show that the following diagram commutes:

GiNAy A NGy A Ay ¢ GiNAy A NGy A Ay,
idAanid--Nid la/\---/\a

GiAAgNAZAGL ANAy A NGy A Ay ——5—— Ay Ao A Ay

49



Explicitly, the isomorphism ¢ can be factored as the composition

G+AAi0/\G+/\Ai1/\"'/\A‘ik

sdnidApnid*
_—

Axidhk
——-—>G+/\G+/\Ai0/\G+/\A,~1-~-A---/\Aik

: : INk
NN G AAy AGLAGL A A, A A A,

Gy AAig AGy AAi A A Ay

We then have the following diagram

G+AA10AG+AA11A"‘AAtk

tdntdaantdN2k= \%x

Gy NAgg ANAgy A-e oA Ay,

AnidN2k—1

G AGLANAjg NAY A N Ay

tdAantd"2k—1

Gy NA@Q A AGL A Ay

W tdntdapgatdh2h—1

AnidN2k+1 GLAGLAA AN Ay

G AGLAAG ANGL NAG AN Ay 1dntwatd 2k

G+AA‘°AG+AG+AAtlAh-'AA'k

tdatwatd 2k tdAtdapgaidh2k—1

G+/\A‘0/\--./\G+/\A¢,c

GLAAfg NGLAGLAAG AN A

Aq

A'“AAik

lu

Aggpty NAgg Ao A Ay

0

that commutes by the following argument. The commutativity of the top right trape-

zoid is clear since the compositions are identical. The bottom portion of the diagram

commutes by the first diagram of Def. 3.1.1 and the coherence of the smash product.

It only remains to show the commutativity of the top left diagram. Namely, we have
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the following diagram

GoAAiZ NGy A Ay Ao A A, G ANAyANAL A A A,

AnidhER+L ANid"2k+1 l
G+/\G+/\A,;0/\A,~1 /\---/\A,-k G+/\G+/\A,-0/\G+/\A@-, /\---/\A,-k
1idl\tw/\id"2k idAtwAid 2k

G+AA¢0AG+/\G+/\A1:1/\"'/\A,’k—>G+/\AiD/\G+/\G+/\Ail/\"'/\A

(1

where the top horizontal map is id A id A @ A id"**~2 and the bottom horizontal map
is id Nid Aid A a Aid"**—2. The commutativity of this diagram follows from the smash
product being a functor in both variables, that is from the commutativity of the more
general diagram of spaces

xax Iy ax

lm/\ 7 lid/\f’

XAY g ¥ A Y’

giving

(f Aid)o (idA f) = F A f' = (id A f') o (f Add).

Namely, the commutativity follows since the diagrams

Gi A Ay —2 G AA;

A/\'idl A/\idl
G+/\G+/\A1'0 G+/\G+/\A’Lo
id/\t’wl id/\twl

GiANAy NGy 45 G, A Ay, NGy

and

GiAAL A NAy A A AA

idAZk l id/\‘lk—ll

GiAAL A AA, Ay A AA

ik

ik
idAZkl id/\Zk-—ll
Gy AAi AAig A ANAy —> A ANGLA---AA

ik
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both commute. In the last diagram the top and bottom horizontal map is a Aid"%*k—2,
Thus the map ¢, commutes with the operators do x d§ and dg - The commutavity

with the other operators is proved similarly. O

We state Lemma 3.2.1 globally as follows. Let X[—]) be the cyclic space with
k-simplices X [k]y = G* x THH?(A)[k], and cyclic operators those of THHY(A)[—],.
As a set, X[k], is the disjoint union of all fibers

X[klx = ]| THHS(A)[k].
(9}

Now given the Borel construction FG[—] x¢ X[—]x with the usual product simplicial

structure, we give a cyclic structure by defining the cyclic operator

t(gﬂ, -y 983 9, [f]) = (gkg)gﬂagl’ -y 9%—1,9, Tk © (1797 )l)*[f])’

where 73, is the natural transformation from §3.1. For a k-simplex in EG[—]x ¢ X[-]»,
we define the map
¢ : EG[-] x¢ X[~]» — E(A,G)[-]x

via
&(ga g, [f]) = ((gka 90,01, .- ,gk—l)*[f]; ¢9)7

where § = (go,...,9x) and &y = (9k995 ", 9097 "> 9097 " - - - » 9k—19% )- We note that

the restriction of this map to the connected component corresponding to (g) and
a choosen representative ¢ € G is the map ég of Lemma 3.2.1. This map is an

isomorphism and we see at once we have the following proposition.

Proposition 3.2.2. There exist canonical homeomorphisms of spaces ¢ and ¢ such

that the following diagram commutes:

EG xg Xy —*~ E(A,G)»

| |

EG xg G —2~ N¥(G).
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Proof. The cyclic isomorphism ¢ is covered by the cyclic isomorphism ¢; that is we

have a diagram of cyclic spaces:

EG[-] xg X[-], —~ E(A,G)[-]x

1 |

EG[-] x¢ G¥ —2— N¥(G)[]

where the two horizontal maps are cyclic isomorphisms. After taking geometric real-

ization, the result follows. O

Corollary 3.2.3. There are canonical homeomorphisms of spaces:

[] EG xg THHY(A), —=> E(A, G)»

{9)

EG xg H G/Cc(9) - 9—— N¥(G)
9
where the two horizontal maps are the homeomorphisms corresponding to the cyclic

isomorphisms.

Remark 3.2.4. We note that the space E(A,G)y is actually a fiber bundle over
N(G). In particular, the fibers over two points in the same connected component

are homeomorphic.

We now prove Thm. 1.0.1.

Proof of Theorem 1.0.1. Applying the functor f; to the parametrized spaces over
NF(G),

[1 26 x¢ B(4,G)§ — EG x6 [] G/Calg) = N(G)
(9) {9

and
E(A,G)y — NY(G)
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gives a map of spaces

\/ EG Acye) E(A,G)§ = fiIE(A, G)x — THH(A"[G))s.
{9)

The first map is an isomorphism by Cor. 3.2.3. As A varies, the second map is an
equivalence by Thm. 1.0.2. Hence for varying A, we obtain a stable equivalence of

orthogonal spectra. O
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Appendix A

The Hochcshild Complex and

Cyclic Bar Construction

The proof of Thm. 1.0.1 is inspired by a study of the linear case concerning Hochschild
homology. We briefly present the result for ordinary Hochschild homology. Given a
commutative ring with unity, A, the Hochschild complex of the ring A is defined to

be the cyclic set HH(A)[—] with k-simplices,

HHAK =A® - ® A
k+1

together with face and degeneracy operators defined on generators by

(a0®---®a¢ai+1®---®ak) if0§i<k
diao® - ® a) =
(akao ® a1 -+ @ ag_1) ifi=k

$i(ap® - Qag) =(a® - ®a®1®ai ® - ®ag) for 0<i< k.
The cyclic operator is given by
t(ao® - ®ar) = (M ®a® - @ ax_1).

The geometric realization of the cyclic set HH(A)[—], defined as the geometric real-
ization of the underlying simplicial set, is denoted by HH(A). The homotopy groups
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of this space are then the Hochschild homology groups of the ring A.
The twisted group ring A7[G], has Hochschild complex, HH(AT[G])[—] with k-

simplices

HH(AT[G)IK = AT[G]® --- ® A"[G)
k+1

and face maps defined on generators by

(@090 ® - - - ® 0i9i(0i11)9i9i+1 ® - - argy) f0<i<k
di(aogo ® - -+ ® axgx) =

(axgx(a0)9r90 ® @161 -+ - ® Af_19k-1) ifi=k.

The degeneracies and cyclic operator are the same as the untwisted group algebra.

Let E[—] be the cyclic set with k-simplices,

E[k] = HH(A)[K] x N¥(G)[k]

and with twisted face maps and degenerices given by

di(ao ® -+~ ® ak; go, - - - » Gk)
4

(@ ® - ®aigi(ait1) ® --- ® ak; Go, - - - , GiGi+1, - - - Gk)
f0<i<k

(a’kgk(O/O) Ry ak—l); 9x90, 91, - - - Jgk—l)

\ifi=k

Si(ap ® -+ ® ag; go, - - - » Gk)

=(@® - 6R®1®a11 ® - ® kg0, ---Gir L, Git1,- -1 k)
te(a0 ® - ® ak; 9o, - - - » Gk)

=(0x®a ® *+ ® k15 9ks 1, - - - Gk—1)-

Taking geometric realization, we obtain a space F parameterized over N%¥(G),

with projection map the realization of projecting onto the cyclic bar construction. We
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apply the functor f* to the space H H(A"[G]) obtaining a space over N¥(G), f*HH(A"[G]).

We then define a map of cyclic sets
¢ : E[-] — HH(A'[G])[-] x N¥(G)[-] = f*(HH(AT[G]))
that is given on level k by

k(a0 ® -+ ® ax; 9o, - - -, k) = (A0Go ® - - ® AkGr; 90, - - - » Gk)-

The face operators for E[—] are defined so that ¢ is indeed a map of cyclic sets. By
the adjunction fi - f*, we obtain the map

AE — HH(AT[G)).

This map is the linear analog of the stable weak equivalence in Thm. 1.0.2.

As in §3.2 the the geometric fiber E, is the realization of the following pullback

of simplicial sets,
Ey-] El-]

l J

M| > NUG)[-]

where A%[—] is the standard 0-simplex
A® = Homa(—, [0])

and the bottom map takes the identity, [0] — [0] to the O-simplex g € N¥(G)[0].
Explicitly, this takes the map 6 : [k} — [0] to 6*g € N¥(G)[k] and since for each &,
there is only one such map 6, 6*g = (g,1,...,1) (k+ 1 factors). Thus the simplicial
set Ey[—] is given by

E,[k] = HH(A)[K] x {(1,...,1,9)} C E[k] = HH(A)[k] x N¥(G)[k].
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The connected component of the 0-simplex g is then obtained as the realization of

the simplical set E[~]| , given on level k by

Elk]| , = HH(A)K] x {(90,91,.--,9%) : hgh™" = II g for some h € G} C E[k].
i=0

Indeed, a path from g to the zeroth vertex of the k-simplex (go,- .., gx) is given by
the 1-simplex (gh~!, k) € N%¥(G)[1].

Proposition A.0.5. The simplicial set corresponding to the connected component

indezed by (g),E[~]| ), is isomorphic to the Borel construction,
ég : EG[—] XCal9) E!J[—.] - E[_]I(g)a

where

bg([(o; - - -, 9r); G0 ® - -+ ® ax]) = (gr(a0) ® go(a1) ® - - - ® gr-1(ar); d(gos - - - » G&)),

Hence, the realization E| (q) 18 homeomorphic to the principal bundle EG X cg(g) By

The isomorphism depends on the choice of g € (g).

Proof. We define the isomorphism

(igg : EG[-] XCalg) Ey[~] — E[_”(g)

on level k, by the formula,
$o([(90, - - 9k); 30 ® - - ® ax]) = (gk(a0) ® go(a1) ® - - - ® ge—1(ax); (0, - - -» 9x)),

where ¢(go, ..., 9k) = (9%995 " 9097 s - -+, gk—195") as above. Since Cg(g) acts on
EG[—] diagonally from the right and on the fiber diagonally from the left, we have

[(Qohy o 7gkh)’ @W®- ) ak] = [(gO) oo )gk)v h(a’O) - ® h’(ak)]
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We will first show that the map q~59 is well-defined. Given
bo([goh, - - -, gkh; a0 ® - - ® ax]) = (9xP(0) ® gohg ' (a1) ® - - - ® gr1hg ™ (ar); $(3))
we have

#(9) = (9ehg(g0h) ™", goh(g1h) L. .., gk—1h(geh) ™)
= (9k9"95" 9097, - - - » G195 ")
= (9x995 ", 9097, - - Gr—195 ")

since h € Cg(g). On the other hand, gy([(do, - - -» 9&); h(a0) ® - - - ® h(ax)])

= (grh(a0) ® goh(a1) ® - - - ® gr_19h(ax); p(g'))
= (grh(ao) ® goh(a1) ® - - - ® gr—1h(az); d(g"))

again using that h is in the centralizer of g. We also have ¢(g9’) = ¢(g). Thus the
map @, is well-defined. It only remains to demonstrate the commutativity with the
cyclic operators. We check the commutavity of dy. The other operators are standard

and can be checked similarly. Again, on level &, [(go,.-.,0%);00 ® - - - ® ay]

2 (9x(a0) ® go(a1) ® - - - ® gr-1(ax); (9o, - - -, Gk))
do

> (9%(20)9%99 " 90(a1) ® -+ ® gr—1(ax); dog(g))
= ((9r(a0)9(a1)) ® g1(az) ® - - - ® gx—1(ar); dod(3))

where dod(9) = (9997 ', 9195 - - -, gk—19; ') On the other hand,
[(gOJ . ~‘agk);a0® ®ak]

d
= [(91, 90;---39k),009(01) ® - ® ap-1]

% (gi((ar)9(a0)) ® 01(az) ® -+~ ® g (ax); H(dod))
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where ¢(dog) = ¢(91,---,9%) = (9997, 9193" - -, gk—195"). Thus the map ¢ com-

mutes with the operator di. The commutavity with the other operators is proved
similarly.
a

We state the global linear analog to Lemma 3.2.1 as follows. Let X[—] be the
cyclic set with k-simplices X [k] = G* x A®¥+! and cyclic operators those of E[—].

As a set, X[k] is the disjoint union of all fibers

X[kl =TT Eqlk)

{9)

Now given the Borel construction EG[—] x¢ X[—] with the usual product simplicial

structure, we give a cyclic structure by defining the cyclic operator

t(go,- -, 9k: 9,00 ® - ® ar) = (99, 90, 91, - - - » G—1; 9, Ok ® 9(A0) ® a1 ® + - - ® ag_1).

For a k-simplex in EG[—] x¢ X[—], we define the map ¢ : EG[k] x¢ X[-] — E|[—]
via

$(3; 9,60 ® -+ ® ax) = (9k(a0) ® go(a1) ® - - ® ge_1(ax); Py),

where § = (9o, - --,9%) and ¢; = (k995 "> 9097, 9097, - - - » Gk—195 ") This map is an

isomorphism and hence after realization, we have a homeomorphism between the

corresponding spaces.

Proposition A.0.6. The following diagram of spaces commutes

EGxg X ——~F

| |

EG xg G —2~ N(G).

Here the two horizontal maps are the homeomorphisms corresponding to the cyclic

isomorphisms.
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