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Abstract
Let G be a group and A be a ring. There is a stable equivalence of orthogonal spectra

THH(A) A NCY(G)+ THH(A[G])

between the topological Hochschild homology of the group algebra A[G] and the smash
product of the topological Hochschild homology of A and the cyclic bar construction
of G. This thesis generalizes this result to a twisted group algebra AT [G]. As an A-
module, Ar[G] = A[G], but the multiplication is given by ag. a'g' = ag(a') gg', where
G acts on A from the left through ring automorphisms. The main result is given in
terms of a variant THH9(A) of the topological Hochschild spectrum that is equipped
with a twisted cyclic structure inherited from the cyclic structure of the cyclic pointed
space THH(A)[-]. We first define a parametrized orthogonal spectrum E(A, G) over
the cyclic bar construction NC(G). We prove there is a stable equivalence of spectra
between the associated Thom spectrum of E(A, G) and THH(AT [G]). We then prove
there is a stable equivalence of orthogonal spectra

V EG+ AcG(g) THH9 (A) THH(A-[G]),
(g)

where the wedge-sum on the left hand side ranges over the conjugacy classes of ele-
ments of G and the equivalence depends on a choice of representative g E (g) of every
conjugacy class of elements in G.

Thesis Supervisor: Lars Hesselholt
Title: Associate Professor of Mathematics
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Chapter 1

Introduction

Let G be a group and A be a ring. The topological Hochschild homology spectrum

of the group algebra A[G] is determined by the cyclic bar construction of the group

G and the topological Hochschild spectrum of the ring A. More precisely, there is a

stable equivalence of orthogonal spectra

THH(A) A NCY(G)+ THH(A[G])

[5, Prop. 4.1]. This thesis generalizes this result to a twisted group algebra AT [G].

Let G act on A from the left through ring automorphisms. Then as an A-module,

AT[G] = A[G], but the multiplication is given by ag a'g' = ag(a') gg'. The result

is stated in terms of a variant THHg(A) of the topological Hochschild spectrum that

we now describe. The topological Hochschild spectrum is defined as the geometric

realization

THH(A; SA) = [k] " THH(A; S) [k]

of a cyclic orthogonal spectrum THH(A; SA) [k]. Similarly,

THH9(A;SA) = [k] '- THH9(A;SA)[k][

where

THH 9(A; SA)[k] = THH(A; SA)[k]

9



with the usual cyclic structure maps except that the zeroth face map is replaced by

the composite do = do o (1, 9, 1,.. , 1)*. Here, if (go, ... , 9k) is a k-tuple of elements

of the group G,

(go90, . - , gk)* THH(A)[k] , THH(A)[k]

is the map induced by gi acting on the ith factor and do is the usual face map. A

more precise definition of the map (go,..., gk)* is given in §3.1. We then prove the

following result.

Theorem 1.0.1. Let G be a group that acts on a ring A, and let A'[G] be the twisted

group algebra. Then there is a stable equivalence of orthogonal spectra

: V EG+ ACG(g) THHg(A) ~, THH(A-[G]),
(g)

where the wedge-sum on the left hand side ranges over the conjugacy classes of el-

ements of G. The map depends on a choice of representative g E (g) of every

conjugacy class of elements in G.

We first prove a form of this equivalence that is independent of the choice of conju-

gacy class representatives. For each non-negative integer k, we define a parametrized

orthogonal spectrum E(A, G)[k] with A-th space given by

E(A, G)[k], = E(A, G; SA)[k] = THH(A; SA)[k] x NcY(G)[k].

We then define cyclic operators diE, STE, and tkE. For 0 < i < k, the degeneracy op-

erator sTE is given as the product of the i-th degeneracy operator of the cyclic pointed

space THH(A, SA)[-] and the i-th degneracy operator of the cyclic set NCY(G)[-],

respectively. Similarily, the cyclic operator tE is the product of the cyclic operator

of THH(A;SA)[-] and the cyclic operator of NC(G)[-]. The face operators, how-

ever, are replaced by twisted face operators defined in §3,1. At each simplicial level k,

E(A, G)[k] is a parametrized orthogonal spectrum over NC(G) [k] but it is not a cyclic

object in a category of parametrized orthogonal spectra over a fixed base. Fixing A

10



and letting k vary, we have a cyclic space, E(A, G)[-]A. The geometric realization of

E(A, G)[-] is

E(A,G)A = [k] - E(A,G)[k]xI

At each level k, the projection map of the parametrized space E(A, G)[-] commutes

with the operators dE, sT,E, and tE. Thus for varying k the projection maps form a

cyclic map. Similarly the level k section maps form a cyclic map. Since the geometric

realization is a functor, it follows that E(A, G)\ is a parametrized space over NCY(G).

Letting A vary then gives a parametrized orthogonal spectrum E(A, G) over NCY(G)

in the sense of Def. 2.2.1. The space E(A, G)\ is also a bundle over NCY(G) with the

fiber over a vertex g E (g) denoted by E(A, G)9. The fiber E(A, G)9 is itself obtained

as the realization of a cyclic set E(A, G)9[-]. We discuss this in §3.2.

In general, if T. denotes the category of pointed spaces and TB the category of

parametrized spaces over a base B, there exists an adjoint pair of functors (f!, f*)

between parametrized spaces and pointed spaces, f!: TB ) T, the associated Thom

space, and f*: T* , TB, the change of base functor. Applying the Thom space

functor f! levelwise to a parametrized orthogonal spectrum gives us an orthogonal

spectrum [12, Thm. 11.4..1]. Since the functor f! is a left adjoint, it preserves

colimits. Thus for the parametrized spectrum E(A, G), the Thom spectrum f!E(A, G)

is given by the realization of a cyclic orthogonal spectrum whose orthogonal spectrum

in simplicial degree k has A-th space given by THH(A; SX)[k] A NcY(G)[k]+.

Theorem 1.0.2. There exists a canonical stable equivalence of orthogonal spectra

: fE(A,G) THH(AT [G]).

By Connes' theory of cyclic sets, the realization of a cyclic set is a T-space. Since

the topological Hochschild homology spectrum is defined as the realization of a cyclic

orthogonal spectrum, it is equipped with an action of the circle; see [8]. In partic-

ular, the spectrum THH(Ar[G]) is an orthogonal T-spectrum as defined in [10] and

Thin. 1.0.2 can be extended to an equivalence of orthogonal T-spectra. However, this

extended result would require an understanding of the fixed point sets of an equiv-
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ariant Thom spectrum, f!E(A, G), and these fixed sets are notoriously difficult to

understand.

There is a deep connection between topologicial invariants and K-theory. An

instance of this connection is the cyclotomic trace map,

K(A) tc TC(A)

from the K-theory spectrum of the ring A to the topological cyclic homology spec-

trum TC. See [2]. The spectrum TC is constructed from a pro-spectrum TR that

is obtained from the topological Hochschild homology spectrum THH. Namely, the

topological Hochschild spectrum THH(A) has an action of the circle and we can thus

consider fixed-point spectra given by finite subgroups of the circle. For a fixed prime

p the pro-spectrum TR has pro-system level n spectrum given by

TRn(A;p) = THH(A)Cpn-1,

where Cpn-I C T is the cyclic group of order pn-1. Between these spectra there are

restriction maps, R, and Frobenius maps, F. The maps R and F are defined from

TR n to TRn - 1. To define the topological cyclic homology, we first define the spectrum

TR(A;p) = holim TRn(A; p).

Then the topological cyclic homology of A at the prime p is defined to be the homotopy

fixed points of TR(A; p) under the action of the additive monoid N, which acts via

the powers of the Frobenius map: TC(A; p) = TR(A; p)hoN.

The study of group algebras is important in K-theory and indeed, group algebras

are among the first objects studied within the field of algebraic K-theory. A particular

example is the theorem of Dundas. Dundas theorem states that given a space X, if

12



A(X) is Waldhausen's K-theory functor, the diagram

A(X) trc o TC(X)

l l
K(Z[irlX]) trc TC(Z[i1 X])

is a homotopy Cartesian diagram after profinite completion. A proof of Dundas

theorem is given in [9, Thm. 3.5.1]. Another example is given when the ring A is

a finite algebra over the Witt vectors of a finite field k of characteristic p. In this

case, given a finite group G, the group algebra A[G] is also finite and the homotopy

groups of the K-theory spectrum are isomorphic to the homotopy groups of the TC

spectrum,

Ki(A[G]; zp) TC(A[G]; Zp).

Here Ki denotes the homotopy groups of the K-theory spectrum and TCj denotes

the homotopy groups of the spectrum TC. Further development on the K-theory of

(untwisted) group algebras may be found in [9, §5.1].

The proof of Thm. 1.0.2 employs the definition of THH and the base change

functors (fi, f*) from parametrized homotopy theory. It is independent of the twisting

in the simplicial structure in that the equivalence does not depend on a preselected

choice of element g E (g) as is the case for Thm. 1.0.1. The proof of Thm. 1.0.1

involves an explicit analysis of the cyclic structure of the cyclic bar construction and

is inspired by a study of the linear case of the Hochschild homology that we include in

Appendix A. Another formula for the (ordinary) Hochschild homolgy of twisted group

algebras is given in [3, §4], but note that we use a different system of coordinates for

the cyclic bar construction (see §3.1).

We use the following notational conventions throughout this exposition. By a

space we mean a compactly generated space (weak Hausdorff k-space) and by a

pointed space we mean a compactly generated space with a choice of base-point. Let

13



S be the category of sets. We denote both a given cyclic set

and a given simplicial set

X: A\°P ) S

by X[-]. We will always state whether we are considering a simplicial set or a cyclic

set so that no confusion arises. We also let X denote both the geometric realization

of a simplicial set X[-] and the geometric realization of the cyclic set X[-], defined

as the geometric realization of the underlying simplicial set. Finally, whenever we

make use of the functors f! and f*, f will always be the map sending the base to the

one point space unless explicitly stated otherwise.

14



Chapter 2

Parametrized Orthogonal Spectra

2.1 Parametrized Spaces

We discuss parametrized spaces and define the adjoint functors f! and f* that we use

in Thm. 1.0.1 and Thm. 1.0.2. We will also define a right adjoint to f*, denoted

f*. The reference for this material is [12].

Definition 2.1.1. Let B be a fixed base space. A parametrized space X over B

consists of a space X together with projection and section maps, p: X B and

s: B - X respectively, such that p o s = idB.

The category of parametrized spaces TB over a fixed base space B has objects

parametrized spaces over B. The morphisms of TB are maps of the total spaces that

commute with both the section and projection maps, or commutative diagrams:

x

B f

y

P1

We construct the parametrized mapping space FB(-,-) and parametrized smash prod-

uct to make TB a closed symmetric monoidal category with unit SB = B x SO. The
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zero object *B in TB is the space B with projection and section maps given by the

identity. Let TB(X, Y) be the set of all morphisms in TB from X to Y. We topolo-

gize this set as a subspace of the space of all unbased maps of unbased total spaces

X - Y. We note that the space TB(X, Y) is a based space with basepoint the map

S2 oP l: X , Y. This is the unique map factoring through *B in TB. Thus the cate-

gory TB is enriched over T. It is also based topologically bicomplete in the sense of [12,

§ 1.2]. Constructing FB( -, -) requires us to first construct the unbased parametrized

mapping space MapB(-,-). To do this, we introduce a subtle preliminary notion.

For a space Y E T (unbased), the partial map classifier is Y = Y U {w} where w is a

disjoint basepoint. It is topologized as the space with basis {U U {w}: U E U} where

U is a basis for Y [12, Def. 1.3.10]. We note that the point cw is not closed and Y is

not weak Hausdorff [12, Def. 1.1.1]. Also the closure of {w} is all of Y. The point w

is analagous to a generic point of a variety. The space Y is known as the partial map

classifier because of the bijective correspondence between maps f A Y with

A C X a closed subset, and corresponding maps f: X - Y defined by

if x A4
f(x) = ifxgA

xf(a) ifxeA.

For a space p: X B over B we define a map : B - Map(X, B) by

[bif x eXb
((b)(x)= b fX

(b)(x)= otherwise.

Here Xb denotes the fiber p-1(b) over b E B. The map ~ is the adjoint of the map

f: X x B > B obtained as f A-l'(p x id(X x B)) B where p x id: Xx B -

B x B and A : B > B x B denotes the diagonal embedding. We now have the

following.

Definition 2.1.2. [12, Def. 1.3.11] Let p: X B and q: Y > B be spaces

over B and Map(X, Y) the space of unbased maps from X to Y. Then MaPB(X, Y)

16



is defined to be the pullback of the following diagram,

MaPB(X, Y) > Map(X, Y)II
B - Map(X, B).

We note that as a point-set,

MaPB(X, Y) = I Map(Xb, Yb)
beB

We may now define the parametrized mapping space,

Definition 2.1.3. [12, Def. 1.3.16] The parametrized mapping space FB(X,Y) of

two parametrized spaces X and Y is the pullback of the following diagram,

FB (X, Y) , MapsB(X, Y)

I (
82

B , Y , MapB(B, Y)

where sl and S2 are the sections of X and Y, respectively, and Y -- ) MapB(B, Y) is

the canonical isomorphism.

Again we note that as a point-set,

FB(X, Y) = F(Xb, Yb).
b6B

The parametrized mapping space is thus the subspace of MapB(X, Y) consisting

of maps that restrict to based maps between the fibers Xb and Yb with respective

basepoints sl(b) and s2(b).

Given a map of spaces f: A - B we define a pair of adjoint functors,

f! TA TB

17



and

f T B ) TA

by the following pushout and pullback diagrams, respectively.

A f B f*Y y

X -f!X A ,B

where X E TA and Y E TB. Of particular interest is the example where f: B - *

is the map sending B to the one-point space. In this case, for a parametrized space

X over B, one obtains the pointed space f!(X) = X/s(B) with basepoint provided

by the class of the section. Similarly, given a pointed space Z with basepoint zo E Z,

one has the parametrized space f*(Z) over B with total space Z x B and projection

provided by projecting onto the second factor. The section s: B Z x B is then

defined by s(b) = (z0, b). The functor f*, has a right adjoint, f*: TA , TB defined

as follows. Let t: B , MapB(A,A) be the adjoint of the map A XB B , A

sending (a, f(a)) - a. Then for X c TA we define f*X as the pullback

fX > MaPB(A,X)

4 I

B & , MapB(A,A).

In the case where f: B - *, fX is the space of all sections on X with basepoint

the section s: B - X.

Within the category of parametrized spaces, we can define parametrized versions

of the wedge and smash products by taking the usual wedge and smash products

fiberwise. More precisely, we have the following definition.

Definition 2.1.4. 12, Def. 1.3.8] Let X, Y E TB.

(1) The product of spaces X and Y over B, X x B Y, is the pullback of the following

18



diagram,

X XBY -X
4 jPi

Y P2 >B

(2) The wedge of spaces X and Y over B, X VB Y, is the pushout obtained from

the following diagram,

B sl X
s21 

Y - X VB Y

(3) Finally, we have the inclusion map X VB Y - X XB Y defined by sending

x i- (, s 2pI(x)) and y - (slp2(Y), y). It is easy to check that it is well-defined.

We then define the smash product of X and Y over B, X AB Y, to be the

pushout,

XVBY > X XBY

1 1I

B ->X ABY

Since every fiber has a basepoint given by the section, each of the above construc-

tions for the product, wedge product, and smash product, is given the parametrized

space structure that gives us fiberwise product, wedge product, and smash product,

respectively.

2.2 Parametrized Orthogonal Spectra

Let A be a finite dimensional real inner product space and let SA be the one-point

compactification of A. A topological category is a category enriched in the symmetric

monoidal category of pointed spaces and smash product. Let I be the topological

category with objects all finite dimensional real inner product spaces A and morphism

spaces given by the pointed space of linear isometries from A to A',

Homz(A, A') = O(A, A')+.

19



Let

E(A, A')c - O(A, A') x A'

I _ _ _ _ _ _ _ p ri

O(A, A') O(A, A')

be the sub-bundle of pairs (f, x) such that x E A' - f(A), the orthogonal complement.

Let J be the topological category with the same objects as I but with morphism

spaces Homj(A, A') defined to be the Thom space of the vector bundle E(A, A') over

O9(A, A'). Composition is defined

Homj(A', A") A Homj(A, A') , Homz(A, A")

via ((g, y); (f, x)) - (g o f, g(x) + y). The inclusion of the zero-section in E(A, A')

induces a map of Thom spaces Homz(A, A') ) Homj(A, A') and this map is an

isomorphism if the dimensions of A and A' are equal. These maps constitute a functor

I .J. A pointed-topological functor is a functor enriched over pointed spaces. By

definition an orthogonal spectrum is a pointed-topological functor

X:J T*.

The topological Hochschild homology spectrum THH defined in §3.1 is an example

of an orthogonal spectrum.

We recall that the category TB is enriched in the symmetric monoidal category of

pointed spaces and smash product. Let SXB = f*(S).

Definition 2.2.1. A parametrized orthogonal spectrum over B is a pointed-topological

functor

X: TB

(Compare [12, Def. 11.2.3]). This amounts to a pointed-topological functor (that

we denote by the same symbol)

X: I TB

20



together with continuous natural transformations

0x\\: x(;)ABSf .X(ADA:)

of pointed-topological functors from 27 x I to TB such that

,o: X(A) AB SB X(A O)

is the canonical isomorphism, and such that the diagram

X(A) AB S' AB S " Ai X(A A') AB SB"

X(A) AB S'\" A,'A X(A A'D A")

commutes. Here the left-hand vertical map is the canonical isomorphism. We note

that in Def. 2.2.1 when B= *, we obtain the usual definition of an orthogonal

spectrum.

We recall from §2.1 that a map of spaces f: A ) B gives rise to adjoint functors

f!: A TB, f*: TB , TA and f,: TA , TB, which is right adjoint to f* .For the

category of parametrized orthogonal spectra over A and the category of parametrized

orthogonal spectra over B, levelwise application of the functors fi!, f*, and f* gives

rise to adjoint functors (that we also denote f!, f* and f*) between the categories of

parametrized orthogonal spectra over A and parametrized orthogonal spectra over B

[12, Thin. 11.4.1]. Furthermore, if g: B - C is another map of spaces, then there

are canonical isomorphisms,

(g o f)!E , g!f!fE, (g o f)*E' ' f *g*E', (g o f )E f" fE,

where E is a parametrized orthogonal spectrum over A and E' is a parametrized

orthogonal spectrum over C.

Let B[-] be a simplicial (or cyclic) space. Suppose for all non-negative integers

21



k, we have a parametrized orthogonal spectrum E[k] over B[k], and for every map

0: [m] > [n] in the simplicial index category, we have a map of parametrized

orthogonal spectra over Bn],

OE: E[n] - OsE[m].

Here 0* is the base-change functor associated with the map of spaces OB B[n] 

B[m]. We shall require that if 0: [m] > [n] and 0': [n] > [p] are two composable

maps in the simplicial index category, then the following diagram of parametrized

orthogonal spectra over B[p] commutes:

E[p] o ( Oi)*E[m]

O[*E[n] °OB ° 9*0*E[m]

Here the right-hand vertical map is the canonical isomorphism. We recall that the

realization B of B[-] is defined to be the coequalizer

fB k B11 Ban] x Am ZJ B[k] x B
0: [ml- n] [k]

where, on the second summand indexed by 0: [mI] [n], the map fB is the unique

map that, for every map : [m] [n] in the simplicial index category, makes the

following diagram commute:

B[n] x Am OBxid > B[m] x A m

|ino inlim]

U B[l] x Ak D I B[k] x Ak.
m: [k]-[I] [k]

The map g9B is defined similarly as the unique map that, for every map 0: [m] [n]

22



in the simplicial index category, makes the following diagram commute:

B[n] x A-m idxOA > B[n] x A-

1ino linln]

U B[l] x Ak g J B[k] x k.
p: [k]i--] [k]

Let e- = BOfB =- eBogB. Let prm,n : B[n]xAIm , B[n] and prk: B[k] x Ak , B[k]

be the canonical projections. We then have the parametrized orthogonal spectrum

prm n E[n] over B[n] x Am and the parametrized orthogonal spectrum pr* E[k] over

B[k] A k . Let

H in[ki! Pr* E[k]
[k]

denote the coproduct of the parametrized orthogonal spectra in[k]! pr* E[k] over I[k] B[k] x

Ak and let

J ino! pr*, n E[n]
0: [m][n]

denote the coproduct of the parametrized orthogonal spectra in0 ! Prmn E[n] over

U0: [m]--I B[n] x Am . We then define the parametrized spectrum E over B to be

the following coequalizer of parametrized spectra over B:

Uf. ino! Pr , [] fE-6
eB.( H in0, Prm n E[n]) CB!( J in[kl! Pr* E[k]) > E.gEk

0: [m]-[n] 9E [k]

Here, on the summand indexed by 0: [m] , [n], fE is defined as follows. First, the

functor fB! commutes with coproducts since it has a right-adjoint functor fB. We

define a map

fE: fB! in! prm, E[n] ' U inlk]! pr E[k]
0: m]---[n] [k]

of parametrized orthogonal spectra over LI[k] B[k] x Ak to be the unique map such

that, for every map 0: [m] > [n] in the simplicial index category, the following

23



diagram of parametrized orthogonal spectra over 11[kl B[k] x Ak commutes:

ino

[ fB! in! pr
w: [k]-[l

in[m]

E[l] J> Pr E[k].
[k]

Here the map fo is defined to be the following composite map:

fB! ino! prm n E[n] -- in[m]!(sB x id)! Prm n E[n]

in[m]! prm OB!E[n] in[m ! pr* E[m]

The first map is the unique natural isomorphism fB! in0! - in[m!(OB id)! that

exists because

fB o ino = (B X id)o in[m: B[n] x Atm B[k] x Ak
[k]

The second map is induced from the unique natural isomorphism of [12, Prop. 2.2.9],

(OB X id)! pr*, ~ pr* OB!, that exists because the following diagram is a pull-back:

B[n] x Am Bxid B[m] x A m

I Prmn

B[n]

I Prm

B[m].

Finally, the last map is induced by the map O: OB!E[n] - E[m] that is the adjoint

of the given map OE: E[n] --+ OE[m]. Then fE is defined to be the map eB!fE. To

define the map gE, again, we define a map

gE: J gB! in0 ! prm n E[n] ) II inlk]! pr E[k]
0: [m]--4[n] [k]

of parametrized orthogonal spectra over LI[k] B[k] x Ak to be the unique map such
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that, for every map 0: [m] ) [n] in the simplicial index category, the following

diagram of parametrized orthogonal spectra over H[k] B[k] x Ak commutes:

9B! in! pr rm n in]! r E[n]' 

jino jin[n]

. pr* E[k].II g "! in! pr;,/ El] At Hr *~]
m: [kl- [tl [k]

The map go is defined to be the following composite map:

9B! in0! prmn E[n] -Z, in[n]!(id X0A)! pr n E[n] in[n]! pr* E[n].

The first map is the unique natural isomorphism 9B! il0! in[nlI(id x0A)! that exists

because

gB o in0 = in[n] o(id x0A): B[n] x A m B[k] x k
[k]

The second map is induced from the map

(id x 0A)! prmn E[n] - prn E[n]

that is the adjoint of the unique natural isomorphism

Prm~n E[n] ~ (id xA)* prn E[n]

which exists because

prm,n = prn o(id x0z): B[n] x A m B[n].

Then YE i defined to be the map eB!9'. The parametrized orthogonal spectrum E

over B has the following mapping property, the proof of which follows directly from

the definition of the parametrized orthogonal spectrum E over B.

Proposition 2.2.2. Let X be a parametrized orthogonal spectrum over B. Then
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giving a map : E , X of parametrized orthogonal spectra over B is equivalent

to giving, for every non-negative integer k, a map of parametrized orthogonal spectra

over B[k] x Ak

ak: pr E[k] (eB in[k])*X

such that, for every map 0: [m] [n] in the simplicial index category,

(OB id)*a = (id x0A)*an: prm n E[n] - (eB o ine)*X.

To understand the A-th space Ex of the parametrized orthogonal spectrum E over

B we note that limits, colimits, and the functors f!, f*, and f* are defined levelwise.

The space E, is therefore given by the following coequalizer diagram of parametrized

spaces over B:

fE,A

eB!( J Prm E[n]A) E B!(JJ pr E[k]A) >- Ex.B. m~~~~~n 9~~E,A> 

0: [m--n] EA [k]

We recall the space O*E[m]A is defined by a pullback diagram. Hence, there is a

canonical map of spaces pr: O*E[m] - E[m]A, and we define

O, = pr OE,A: E[n]A - E[mA].

The map O#x is a map of spaces and the following diagrams commute:

E ~ ~ ~~AE

E[n]A - E[m]A E[n]A 0, E[mIA

ZP IP sl s

B[n] oB B[m] B[n] B > B[m].

Let EA be the space defined by the following coequalizer diagram:

f#
E~~~~~~~,.p rmnE[n]A I- Pr E[k]A , E.

0: [m]-4n] gE,x [k]
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Then there is a canonical map E\ -* E, and we claim that this map is a homeomor-

phism. Indeed, this is a special case of the following more general statement:

Proposition 2.2.3. Let X[-] and B[-] be two diagrams of spaces indexed by a small

category I, and let X = colimI X[-] and B = colim, B[-]. Let p[-]: X[-] B[-]

and s[-]: B[-] ) X[-] be natural transformations such that p[-] o s[-] is the

identity natural transformation of B[-]. Then each canonical map LB,a: B[a] > B

gives rise to a parametrized space (B,a)!X[a] over B and the induced map

colim(LB,a)!X[a] - X
I

is an isomorphism of parametrized spaces over B, where the induced maps p: X - B

and s: B , X provide the projection and section maps for the parametrized space

X over B.

Proof. We have commutative diagrams

X [a] ' X X[a] ' X
IploX] F TS[aL IS

Boa] Blot B B[a] ""cB B.

It follows that we obtain a parametrized space (B,a)!X[ca] over B together with a

map x,.: (B,c)!X[] - X of parametrized spaces over B. The parametrized spaces

(B,a)!X[a] over B form an I-diagram of parametrized spaces over B, and the maps
Tx,a give rise to the following map of parametrized spaces over B:

l: colim(B,a)!X[a] -+ X-
I

Now the general statement is that this map is an isomorphism of parametrized spaces

over B. Indeed, the canonical maps

9a: X[a] - (B,.)!X[] -+ colim(bB,,X)!X[6]I
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give rise to a map

Ap: X = colimX[ca] -+ colim(B,Q)!X[a]
I I

which is the inverse of the map i. 0

Corollary 2.2.4. Let w: B - * be the map from B to the one-point space and let

wk: B[k] * be the map from B[k] to the one-point space. The Thom spectrum

w!E of the parametrized orthogonal spectrum E over B is canonically isomorphic to

the realization of the simplicial orthogonal spectrum given by the Thom spectra of the

parametrized orthogonal spectra E[k] over B[k],

with simplicial structure maps induced from the maps E[k]

with simplicial structure maps induced from the maps 0 as.
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Chapter 3

Topological Hochschild Homology

3.1 Definition and Structure of the Parametrized

Orthogonal Spectrum E(A, G)

In general, for any symmetric ring spectrum E as defined in [7], we can define the topo-

logical Hochschild homology spectrum THH(E) following the approach of Bdkstedt

[1]. Further details of this construction may be found in [5, §1-§2]. We now recall the

definition of THH(E). Initially we define an index category I by declaring the objects

ob(I) to be the class of all finite sets, = 1, 2,.. ,i},i > 1 and 0 = 0. We then

declare our morphisms to be all injective maps. We note that every morphism is the

composite of the standard inclusion m - m and an automorphism of the target set,

albeit non-uniquely. We now have, for each symmetric ring spectrum E and pointed

space X, a functor Gk(E; X): Ik+l , T,. This is defined on objects as

Gk(E;X)(,.. , k) = F(Si° A A S ik, Eio A .. A Eik AX)

the space of based maps in T. We define a cyclic pointed space with k-simplices

THH(E; X)[k] = hocolim Gk(E; X).
ik+1
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We define the pointed space THH(E; X) as the realization of the above cyclic pointed

space

THH(E;X) = [k] - THH(E;X)[k]I.

Let A be a finite dimensional inner product space and let SA be the one point com-

pactification of A. Then we define the orthogonal spectrum THH(E) with A-th space

THH(E)A = THH(E; S) = [k] F- THH(E; S)[k]j

where

THH(E; SA)[k] = hocolim Gk(E; SA).

For fixed k and varying A, each THH(E)[k] forms an orthogonal spectrum and

THH(E) is the geometric realization of the resulting cyclic orthogonal spectrum.

To define the face operators d: THH(E; S\)[k] - THH(E; SX)[k- 1], let

IXI )I

be the concatenation functor sending (, i') to the set U i'. Let 0 : ik+l > Ik be

the functor defined by0OU0(.(../,' ,{ . . D ir[- r+,,k) if O <r<ko~( / _o,~~~~11... I =-
(7ik U L,' t~v* ** zk1) if r = k.

Similarly for the degeneracies and cyclic operator, let Sr I k + I k + 2 be the functor

defined on objects by

s( .*.. , k) = (,0 ... , r+l . +. ,k)

for 0 < r < k, and tk: Ik , Ik by
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We then define natural transformations

J,:Gk(E;S) ) Gk_ (E;SA) oOr

C :Gk(E; SA) Gk+l(E; SA) o sr

Trk :Gk(E; SA) Gk(E; SA) tk

as follows. The natural transformation 6J, takes the map f E Gk(E;SA)(io,... ,k)

given by

Si A ... ASikAEio A* A Eik

to the map J,(f) E Gk-l(E; SA)(9,r(0, ... , k)) given by the composition

Si A A Si +" + A... A S k, S° A... Si" A Sir+ A .. A Sk

f EoA ... A E E+ . A Eik A S

Eio A ... A Eir+ir+ A ... A Eik A SA

if 0 <r < k and

Si k +i A S i l A ... A S k- 1 S iO A ... A Si k- 1 A S ik

f Eio A . . . A Eik_l A Eik ASA

EikAE. A E A ASA

Ek+o A E, . .. A Eik A SA

if r = k. The natural transformations (, and rk are defined similarly. The face map

dr: THH(E; SA)[k] THH(E; SA)[k- 1] is then defined as the composite

hocolimGk(E; SA) , hocolimGk-i(E; SA) o r !; hocolim Gk- (E; SX).
ik+I Ik+1 ik

For any ring A, we have an associated symmetric ring spectrum A, the Eilenberg-

MacLane spectrum, with level n obtained as the realization of the following simplicial
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set:

An = I[k] - A{S'[k]}/A{so[k]},

where we put the usual simplicial structure on the sphere,

Sn[- ] = (A'1[]/aI 1[-]) A.. A (I[-]/A 1[])

with n smash factors and basepoint so[-] Sn[-]. We then define the topological

Hochschild spectrum of the ring A to be the topological Hochschild spectrum of the

Eilenberg-MacLane spectrum A associated to the ring A, and simply write THH(A)

for this spectrum.

Definition 3.1.1. Let E be a connective symmetric ring spectrum and let G be a

discrete group. A left action of G on the spectrum E is a continuous map

a: G+ A En En

such that the following diagrams commute

G+ A E A E idAL G A E+n ,

AAidAid a

G+ G+ A Em A En Em+n

A A
G+ A Em A G+ A E ,Aa > Em A En

and

G+ A Sm idA G+ A Em

pr -a
S 71 'R > Em.

We note in the definition that E is not necesarily the Eilenberg-MacLane spectrum

of a ring and that we do not require the ring spectrum to be connected (0-connected)

but only connective (-1-connected). Also, the commutativaty of the these two dia-
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grams implies the diagram

G+A En A Sm â id E A Sm

id^am,n 0amn

G+ A Em+, a ' Em+n

commutes. Here m,n is the structure map in the symmetric ring spectrum E. We

now define the twisted group ring spectrum to be the symmetric ring spectrum with

level n space given by

(ET [GI)n = En A G+.

We define the multiplication (ET[G])mA (ET [G])n , (ET [G])m+n as the composition

Em A G+ A En A G+ idAAAidAid A G A G A En A G+

idAidAaAid) Em A G+ A n A G+

id~twAididtAid, EmAEnAG+AG+

A.0tAG ) Em+n A G+

where PE and PG are the multiplication maps for E and G respectively. We define

the unit map 7: Sm , (Er[G])m to be the composite

Sm ~ SmASO ~_^G) Em A G+

where 71E : Sm Em is the unit map for the ring spectrum E and 1G : S o 0 G+

is the constant map to the identity of the group G.

We relate this definition of a twisted group ring spectrum to the usual Eilenberg-

MacLane spectrum of a twisted group algebra by the following proposition.

Proposition 3.1.2. Let A be a ring, let G be a discrete group, and let A4 be the

Eilenberg-Lane spectrum associated to A. Then there exists a canonical weak equiva-

lence of ring spectra

AT [G] A [].
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Proof. The canonical map is given by the composition

T 0/\~~~~~Aidr T
(AT[G]) = AN A G+ ^ (Ar[G]). A G+ >- (AT[G])n

where is induced from the ring homomorphism : A - AT[G] defined by (a) =

a 1 and the map (- A h) is induced from the ring homomorphism rh: AT[G] 

AT[G] defined by rh(a.g) = a.gh. This composition induces isomorphisms of spectrum

homotopy groups and is thus a weak equivalence. O

Let (go, .. , gk) be a tuple of elements of G. We define a map

(go, . .. , gk) : THH(A) [k] THH(A) [k].

Let f Gk(A)(io, . . . ,k) be given by

S A ...ASk AioA.. A Aik.

We define a natural transformation y by sending f to the composite

SioA . S ik f4oA'A4iSto A ... A Ajo A ... A ik

9 G+ A Ao A-.. A G+ A Aio

, Aio A.-. A Aik

where tg(aiO A ... A aik) = go A ao A ... 9k A aik, and the last map is cio A . A ik.

Then

(go, *k). : THH(A)[k] THH(A)[k]

is the induced map

hocolim Gk(A) 7* hocolim Gk(A).
Jk+1 i k+1

The topological Hochschild spectrum is defined as the geometric realization

THH(A) = [k] -+ THH(A; S) [k] 
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of the cyclic orthogonal spectrum THH(A, SA)[- ] with cyclic operators dr, Sr, and

tk as defined above. We now define the cyclic orthogonal spectrum THHg(A) that

depends on a choice of element g E G. For g E G let THH 9 (A)[- ] be the cyclic

orthogonal spectrum with k-simplices

THH 9(A)[k] = THH(A; SA)[k]

and cyclic structure maps

d = do o (1, g, 1... 1). if r = 0,

d, if 0<r< k,

= , and t9 = tk. The geometric realization is the orthogonal spectrum with A-th

space

THH9(A)x = [k] '- THH9(A) [k],|.

The cyclic bar construction of a group G is the cyclic set Ncy(G)[ - ] with k-

simplices

NCY(G)[k] = G x ... x G
k+l

and face and degeneracy maps given by

di(go,...,gk) = (go, .,g9i9i+'1, ..,gk)
(gkgo90, , , gk-1)

if 0 <i < k

if i = k

Si (o, . . , k) = (90 .... , gi, 1, 9i+1 ,. , 9k) for 0 < i < k.

We also have the cyclic operator, tk, defined by

tk(g90, ... , 9k) = (k, go, .... , gk-1)
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For each non-negative integer k, let E(A, G)[k] be the parametrized orthogonal

spectrum over NCY(G)[k] given by

E(A, G; SA)[k] = wk*(THH(A; SX)[k]) = THH(A; SA)[k] x NCY(G)[k]

where Wk is the unique map from NC(G) to the one-point space. To define the

structure maps of the parametrized orthogonal spectrum E(A, G), we first recall

the spectrum structure maps of the orthogonal spectrum THH(A)[k]. The space

THH(A; SA)[k] is obtained as the homotopy colimit of spaces of the form F(X, YASA),

and the spectrum structure map

axx,: THH(A; S)[k] A - THH(A; Sx)-')[k]

is then obtained from the canonical map

F(X, Y A S) ASA F(X, Y A S A S)

and various canonical isomorphisms. It is clear that this makes THH(A)[k] an or-

thogonal spectrum. We now define the twisted structure maps

0' : E(A, G)[n] , OE(A, G)[m]

of parametrized orthogonal spectra over B[n] = NCY(G)[n]. First we note that we

have corresponding untwisted structure maps

OE: E(A, G)[n] , 9E(A, G)[m]

defined by E = WnOTHH(A). We define

srE = Sr,E E(A, G)[k] ) s,BE(A, G)[k + 1], 0 r < k,

tk,E = tk,E: E(A, G)[k] , E(A, G)[k]
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to be the untwisted maps, and define

dE = dr,E 0 (r: E(A G)[k] - d;,BE(A, G)[k -1], 0 < r < k,

to be the composition of the untwisted map and the automorphism

(Pr: E(A, G)[k] ) E(A, G)[k]

of parametrized orthogonal spectra over NCY(G)[k] defined by

(r(f, (go,.' gk)) = r+l
,r 9 *k = ((tk+ (gr, 1,., 1 ))*(f), (o, gk)).

We verify that the map Or is a map of parametrized orthogonal spectra over B[k] =

NCY(G)[k]; that is, we check that the following diagram of parametrized spaces over

B[k] commutes:

E(A, G; SA)[k] AB[k] S[k] , E(A, G; SA)[k] AB[k] SA[k]

E(A, G; S\x"')[k] E(A, G; S-eA')[k].

Since the commutativity of the above diagram is established by verifying the com-

mutativity of the maps at the point-set level, we can check the diagram one fiber at

a time. The induced diagram of fibers over (go,.. , 9k) E B[k] takes the form

THH(A; SA)[k] A S' (t+(g,...))i THH(A; SA)[k] A SA'

(t+I(g,1 )I
THH(A; SXeA')[k] THH(A; S'eAI')[k].

It commutes since the canonical map

F(X, Y A S)ASA ' , F(X, Y A S ASx')

37



is natural in the variables X and Y. This completes the definition of the twisted

structure maps.

We next show that given composable maps 0: [m] [n] and 0': [n] - [p] in the

simplicial index category, the following diagram of parametrized orthogonal spectra

over B[p] commutes:

E(A, G)[p] o0 > (0B o O')*E(A, G)[m]

1

~B EO *E(A, G)[n] BO O*0 E(A, G)[m].

Again, this can be easily be checked on fibers. Hence, we obtain a parametrized

orthogonal spectrum E(A, G) over NCY(G) with Ath space

E(A, G): = E(A, G; Sx) = [k] -+ E(A, G; S) [k]|

where the simplicial structure maps in the simplicial space on the right-hand side are

the twisted maps O0#. We now present the proof of Thm. 1.0.2.

Proof of Theorem 1.0.2. Let w be the unique map from B = NCY(G) to the one-point

space. We wish to construct a map of parametrized orthogonal spectra over B

4: E(A, G) , * THH(Ar[G])

and show that the adjoint map

x,: w, E(A, G) > THH(A [G])

is a stable equivalence of orthogonal spectra. These maps exist for every symmetric

ring spectrum R with a G-action in the sense of Def. 3.1.1 and with the symmetric

ring spectrum RT [G] as defined in the paragraph immediately following Def. 3.1.1. We

shall work in this generality. As we noted above, the orthogonal spectrum w!E(R, G)
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is the realization of the simplicial orthogonal spectrum with k-th term

Wk!E(R, G)[k] = THH(R)[k] A NCY(G)[k]+

and with simplicial structure maps given by the compositions

0TE · n!E(R, G)[n] E W cn!OE(R, G)[m] , wm! E(R, G)[m].

Here, we recall, W! = m!OB!. The map E : B!0* id is the counit of the adjunction

(0B!, C~) and is given by the map

e = id AOB: THH(R)[m] A NCY(G)[n]+ THH(R)[m] A NcY(G)[m]+.

The map 4 is defined to be the map of realizations obtained from a map of simplicial

orthogonal spectra

'k: THH(R)[k] A NcY(G)[k]+ , THH(R[G])[k]

that we define below. The definition of this map is given in the proof of [6, Thm. 7.1].

It is also shown there that the map is a stable equivalence of orthogonal spectra

(provided that the symmetric ring spectrum R converges; this is the case for R =

A). Hence, it suffices to show that the maps 'k are compatible with the simplicial

structure maps. We first recall that the map

Tk,A: THH(R; SA)[k] A NcY(G)[k]+ , THH(R T [G]; SA)[k].

is the map of homotopy colimits over k+1 obtained from the composite map

F(Si ° A ... A Sik, Ro A . . .Rik A S) A G+ A . G+

~~ A***A4, JAG+A...AG+A SA)
, F(S i° A A S, A... A Rik A G+ A S)

F(S i° A... A S, Ro A G+ A ... A R4~ A G+ A S )
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where the first map is the same canonical map that was used to define the spectrum

structure maps, and where the second map is induced from the permutation

Ri o A... A Pk A G+ A A G+ ' R AG+ A.* A Rk AG+

that maps (ro,.. , rk, g9o,..., 9k) to (ro, g.0, .. , rk, gk). We show the following diagram

commutes:

Wk!E(R, G) , THH(R[G])[k]

W(kl)!E(R, G)[k- 1] k-1 THH(R T[G])[k- 1].

Let ar: 
k+l Ik be the functor defined in the beginning of the section and let

Gk(R; X) be the functor from k +l to the category of pointed spaces also defined

at beginning of the section. Let &r: Gk(R; X) - Gk (R; X) o ar be the natural

transformation used to define the face map of the cyclic pointed space THH(R; X)[-],

again, defined at the beginning of the section. Then the right-hand vertical map in

the above diagram is given by the composite map

hocolim Gk(R [G]; SA) 6* hocolim Gk (R [G]; SA) o r
Jk+ Ik+

ar. hocolim Gkl (R[G]; SA).
Ik

The left-hand vertical map in the diagram above is also a composition, given by

hocolimGk(R; SA) A NCY(G)[k]+ - hocolimGkl(R; S) A NCY(G)[k - 1]+ o arIk+l Ik+1
ar hocolim GkI(R; S') A NCY(G)[k - 1]+

1k

where the natural transformation

6i: Gk(R; X) A NCY(G)[k]+ + (Gk_, (R; X) A NCY(G)[k - 1]+) o 0r
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is defined by

El (f, 0, k)) (r((t k (r, 1, . 1))(f)), dr(g0, 9k)).

Hence, it suffices to show that the diagram of natural transformations

Gk(R; SI) A NC(G)[k]+ Gk(R.[G]; S)

Gkl(R; SI) A NcY(G)[k - 1]+ o 9,r -_oar >- Gk-l(R T [G]; SA) o ,

commutes. But this follows immediately from the definitions of the natural transfor-

mations involved and from the naturality of the canonical map

F(X, Y) A Z ) F(X, Y Z).

We therefore have the desired map X of orthogonal spectra and its adjoint of

parametrized orthogonal spectra over NCY(G). As we previously stated, it is proved

in [6, Thm. 7.1] (see also [5, Prop. 4.1]) that the maps of orthogonal spectra *k

are stable equivalences, provided that the symmetric ring spectrum R converges. We

wish to also conclude that the induced map of realizations * is a stable equivalence.

It is proved in [11] that this holds, provided the simpicial spaces w!E(R, G)[-] and

THH(R T [G])[-] are properin the sense of [11, Def. 11.2]. This, in turn, is the case, if

the unit maps rij: Si Re are Hurewicz cofibrations. If R = A, then both properties

hold, and hence, the map i is a stable equivalence of orthogonal spectra. [

3.2 The Topological Hochschild Spectrum and Cyclic

Bar Construction

The cyclic set EG[-] is defined by EG[k] = Map([k], G). The face and degeneracy

operators di: EG[k] - EG[k- 1] and si: EG[k] - EG[k + 1], for 0 < i < k, are
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given by

Si(go, * ,, 9k) = (0go,... ,, g,,.., gk),

where the hat symbol indicates that the i-th term is omitted. The cyclic operator is

defined

tk(go90, 9k , ) = (k, 90go, ... , k-1).

We follow [13], and let Gad denote the set G with the group G acting from the left

by conjugation. We note that an element g E G determines an isomorphism of sets

between G/CG(g) and the conjugacy class (g) of the element g given by mapping the

class aCG(g) to ga = aga'. Here CG(g) denotes the centralizer of g. Therefore,

Gad = II G/CG(g) 9 g.
(g)

Then the map

X: EG[-] X G Gad Nc(G)[]

defined on level k by

0([(90,-, gk); 9]) = (9k99 vg9091 ,9091 ,o*l*. *, gk-lgk')

is an isomorphism. The inverse sends a k-simplex (90go,..., 9k) in NCY(G)[k] to the

class [(g91 ... 9k, g2 ' 9k,..., 9k, 1); 9o9 ... 9k]. The adjoint of the composition

T x NCY(G) NCY(G) 7r BG

is a map to the free-loop space of the classifying space of the group,

NCY(G) ABG
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and this map is a weak equivalence [2, Prop 2.6]. The map

7: NcY(G) , N(G)= BG

in the composition is given by the projection

(90,..., k) (91, · ,k)-

Also, the set of connected components of NCY(G) is in one-to-one correspondence

with the set of conjugacy classes of elements in the group G. Given the cyclic set

E(A, G)[-]x defined in §3.1, we now describe the geometric fiber over the connected

component of E(A, G), corresponding to the conjugacy class of the element g E G.

To understand the fiber over the point given by the 0-simplex g E NCY(G)[0], we

evaluate the pullback

E(A, G)9 > E(A, G)A

4 4
A 0 9 > N cy ( G )

where the right-hand vertical map is the projection of the cyclic space E(A, G)[-]x

onto the cyclic bar construction and the bottom horizantal map takes the unique non-

degenerate 0-simplex to g. Recall that geometric realization preserves finite limits [4]

in the sense that the canonical map

|[k] l-| limX,[] |lira [k] X,|

is a homeomorphism, provided that the index category for the limit system is finite.

Hence the geometric fiber E(A, G)9 is the space obtained as the realization of the

following pullback diagram of simplicial spaces

E(A, G)9[-] -- E(A, G)[-]

J l
A_] 9 , C()-
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Here A°[- ] is the standard 0-simplex

A = HomA(-, [0])

and the bottom map takes the identity, [0] ) [0] to the 0-simplex g E NCY(G)[0].

Explicitly, this map takes the map 0: [k] , [0] to 0*g E NCY(G)[k], and since for

each k, there is only one such map 0, 0*g = (g, 1, ... ,1) (k + 1 factors). Thus the

fiber E(A, G)9[-], is given simplical degree-wise by

E(A, G)g[k]\ = THH(A; SA)[k] x {(g, 1,..., 1)} C E(A, G)A[k].

The cyclic structure of the fiber is that of E(A, G)[-],A restricted at each k to the

subset {(g, 1, . . ., 1)} c NCY(G)[k]. Thus as a simplicial set the fiber is canonically iso-

morphic to the simplicial set THH9(A)[-] defined in §3.1. The connected component

of the O-simplex g is obtained as the realization of the cyclic spectrum E(A, G) (g9 [-]A

given on level k by

E(A, G) (g) [k]A = THH(A; S)[k] x {(go, ... ,g9k) 90gog91 k E (g)},

a subset of E(A, G)[k]A. Indeed, a path from g to the zeroth vertex of the k-simplex

(go,... , gk) is given by the 1-simplex (gh -1 , h) E NCY(G)[1].

Lemma 3.2.1. There exists an equivalence of orthogonal spectra

g : EG XCG(g) THH9(A) ~ , E(A, G)lj(9),

between the Borel construction and the spectrum corresponding to the connected com-

ponent indexed by (g). The equivalence depends on the choice of representative g E ().

Proof. We in fact show the stronger statement that we have a degree-wise isomor-

phism between the Borel construction EG[-] x CG(9)THHg(A) [-] and E(A, G) I (g) [-]A
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We define the isomorphism

by

g([(90go, ... , ,9k); [f I]]) = ((g,9k , -, gk-1)*[f]; (g90, ... , 9k)),

where q(g,,,gk) = (gkg gggj t ,.- ,k-lgk ) as above and [f] the class in the

homotopy colimit represented by the map

StIO A... Sk Ao ... Aik.

Since CG(g) acts on EG[-] diagonally from the right and on the fiber diagonally from

the left, we have

[(goh,..., 9kh);[f]] = [(o,..., 9gk); (h,...,h),[f]].

We will first show that the map q9 is well-defined. Given

'gg([goh ., gkh; [f]]) = ((gkh, goh, ,gklh)*.[f]; (g))

we have

0(g) = (gkhg(goh)- ', goh(gjh)-1, ... , gk-l1h(gkh)-')

h- 1 -1= (9k9 o ,9091 ,... Ik 19- 1)

=(9k990 h909 I .. *I* 9k-I9k 1

since h E CG(g). On the other hand, g([(go, ... , gk); (h, ... ,h). [f]])

= ((gk,90g,... , gk-1)* o (h, ... ,h).[f]; $(g'))

= ((gkh, goh, , 9k-h)*[f]; 0(g'))
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where we use that G acts on the spectrum A from the left in the sense of Def. 3.1.1.

We also have (g') = (gkggo l, 9gog09ll,..., gklgk l ) = ). Thus the map b9 is well-

defined. It only remains to demonstrate the commutativity with the cyclic operators.

We check the commutavity of the zeroth operators do x dog and d,E. The other op-

erators of EG[-] xcG(g) THH 9(A)[- ] are the standard product operators of EG[-]

and THH(A)[-]x. These operators do not involve the element g E G, and their com-

mutavity with their corresponding maps drE, SrE and tkE can be checked similarly

to how we check for dE. On level k we wish to show that the following diagram0,E'

commutes

EG[k] XCG(g) hocolimk+1 Gk(A) 9 - hocolimIk+1 Gk(A) x NCY(G)[k]

(1,g,1, 1)*xidj (1,gkggo1,--,1).xid

EG[k] XCG(g) hocolimk+1 Gk(A) hocolimk+1 Gk(A) x NCY(G)[k]

0o x id So xid

EG[k] XCG(9 ) hocolimtk+1 Gk_1(A) o 00 hocolimIk+1 Gk-1(A) o O0 X NCY(G)[k]

(8o0). xdo (ao)* x do

EG[k - 1] x CG(g) hocolimjk Gk-l (A) & - hocolimjk Gkl (A) x NCY(G)[k - 1].

We first verify the commutativity of this diagram for the factors involving EG[-]

and NcY(G)[-]. For the tuple (go, ... gk) in EG[k],

do0(go,.. , 9k)

= do(gkgg99 9gog -,. gk-lgk)

= (gkg9l 1 .gk-19kl)-

On the other hand,

do (go , -, k)

= 0(91, 92 . , k-1, 9k)

-(9k91,..., k-19gl)
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We thus only need to verify the commutativity of the factors involving the homotopy

colimits in the above diagram. Since G acts on the spectrum from the left, we have

(1, gkgg99O, 1, .. , 1) o (k, 90go, , gk-1)- = (k, 9k9, , 9k-1)

For a representative

SO ° A- A S sk Af i o A . . .A A ik

of [f], the natural transformation corresponding to the composite

do (k, gkg,... , gk-1)*[f]

takes f to the composition

S iO+i l A Si l A ... A S 0s iO A .. . A Sikl A Sk

f Aio A" A Aik_, A Aik

G+ A Aio A ... A G+ A Ail

A A* A A * k

Aio+i A Ai2 " A Aik.

where

t(aio A ... A aik) = gk A ao A 9k9 A ail A ... A 9k-1 A aik,

and a is the smash product of each action, aio A... A aik. Via the composition going

the other way, the representative

Sio A . . . A Si k .fAoA.A**A Aik,
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is taken to

Si ° +i l A SiA ... A Sik S i A . A Sik - 1A Sik

I Aio A... AAikl A Aik

G+ A A A... A G+ A Ai,

) Ai( A * * * A Aik

I Aio+il A Ai 2 A Aik

Here

t(aio A ... A aik) = A a A A ai A .. A A aik

It then suffices to prove the following diagram

G^ A Ai A Ail A ... A Aik

+ A Aio A .. AG+ A ik

idAaAid... Aid

(id,fi,id,...,id)AidAk

G+ A Aio A Ail A G+ A Ai 2 A ... AG+AAik

idApAidA...Aid

Gt k A Aio AAil A... AAik

G+ A A Aio A A G+ A Aik

OaA..-ACa1^^
Ai A " A Aik

1AAidA ... Aid

G+ A Aio+i A G+ A Ai2 A... AG+AA AA A. AAikik aA..-Aca Aio+iI A 2 A' i

commutes. Here (id, i, id, ... , id): Ĝ k , Ĝ k sends the class gk A A g9 A -- A gk-1

to the class gk A 9k9 A g1 A... A k-1. and this map is an isomorphism. Hence there

exists a unique isomorphism

(: G+ AAi A .A G+ A Aik G+ AAio A . AG+ A Aik

such that the top four terms form a commutative diagram,

GAkAi A Ai A.. A.l A A Aik

G+ A Aio A A G+ AA ik

Ak(id,fi,id,...,id)Aid GAk A Aio A Ail A .. A Aik

-_-__-. t( A A. A ... A (? A A.
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We also have a map

:G+ A Aio A Ai A G+ A Ai2 A... A G+AA ik Aio A ... A Aik

given by the composition

G+ A Ao A Ai A G+ A Ai2 A ... A G+ A Aik

AAidAk+ 1

)G+ A G+ A Aio A Ai A G+ A Ai2 A ... A Aik

" G+ A Aio A G+ A Ai A ... A Aik

CA k
,Aio A . .. A Ai.k 

Then the diagram

G+ A Aio A Ai, A G+ A Ai, A ... A G+ A Aik > Ao A ... A Aik

idAMAidA---Aid pAidA"'Aid

G+ A Ao+i A G+ A Ai2 A , A G+AA A .Aik A A..Ao 1 Aio+i A Ai 2 A * A Aik

commutes by Def. 3.1.1 and the coherence of smash product, i.e. that the iterated

smash product of commutative diagrams is again a commutative diagram. It only

remains to show that the following diagram commutes:

G+ A Ai A A G+ A Aik > G+ A Aio A A G+ A Aik

I idAAid ... Aid A .A

G+ A Aio A Ai A G+ A Ai 2 A ... AG+A Aik -- Aio A... AAik
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Explicitly, the isomorphism C can be factored as the composition

G+ A Ao G A Ai A ... A Aik

A xidAk
G+ A G+ A Ao A A A Ai ..* A ... A Aik

idAtwAidAk
idAtid G+ A Aio A G+ A G+ A Ai A ... A Aik

idAidAjiAidAll
idAidA AidAk> G+ A Aiio A A Ai A A Aik.

We then have the following diagram

G+ A Ato A + A At A . A A k

+dAidAlAf·A kAtd

G+ AAtO A At A . A Atk &AWAU+1 G+ A G+ A AJ A . A Alk

AAdA2k-1 G+ A G+ A Ato A G+ A All A ... A A tdAtWAtdA2+

G+ A G+ A Ato A At1 A A Atk G+ A At A G+ A G+ A At A ... A Aik

tdAoAtdA2k1- dAtWAWAW tdAtdA/GAidA2k- 

G+ A Ato A . A G+ A Aik G+ A Ato A . . A G+ A Aik

Aio A · A Aik

'
At 0 +tl A A 2 A ... A Ak

that commutes by the following argument. The commutativity of the top right trape-

zoid is clear since the compositions are identical. The bottom portion of the diagram

commutes by the first diagram of Def. 3.1.1 and the coherence of the smash product.

It only remains to show the commutativity of the top left diagram. Namely, we have
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the following diagram

G+ A Ao A G+ A Ai1 A .. A Aik , G+ A Aio A Ai A .. A Aik

iAZidA2k+I AAidA2k+l 

G+AG+AAioAAilA .. AAik G+ A G+ AAio A G+ A Ai A ... A Aik

idAtwAidA 2 k idAtwAidA2 k j
GAAOAG+ A Aio A G+ A G+ A Ai A ... A Aik , G+ A Aio A G+ A G+ A Ail A ... A Aik

where the top horizontal map is id A id A a A idA2k- 2 and the bottom horizontal map

is id Aid Aid A a Aid2k - 2. The commutativity of this diagram follows from the smash

product being a functor in both variables, that is from the commutativity of the more

general diagram of spaces

X AX' f Y AAidXXA' -Y AX'
{idAf' jidAf'

X A Y' f Ai Y A Y'f Aid

giving

(f A id) o (id A f') = f A f' = (id A f') o (f A id).

Namely, the commutativity follows since the diagrams

G+ A Ai, idAid G+ A Ai,

\A idj AAid|

G+ AAA G+ A Aio G+ A G+ A Aio

idAtw idAtwI

G+ A Aio A G+ id > G+ A Aio A G+

and

G+ A Ai A .- A Aik , Ai, A ... A Aik

idA2k| idA2k-1l

G+ A Ail A .. AAik Aio A A Aik

idA2k | idA2k- |

G+ A Ai, A Ai A ... A Aik Ai A G+ A ... A Aik
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both commute. In the last diagram the top and bottom horizontal map is a Aid^ 2k 2.

Thus the map qg commutes with the operators do x d[ and dE. The commutavity

with the other operators is proved similarly. [

We state Lemma 3.2.1 globally as follows. Let X[-]x be the cyclic space with

k-simplices X[k], = Gad x THH9 (A)[k]x and cyclic operators those of THH9 (A)[-]x.

As a set, X[k]x is the disjoint union of all fibers

X[k]A = I THH9 (A)[k]A.
(g)

Now given the Borel construction EG[-] XG X[-]\ with the usual product simplicial

structure, we give a cyclic structure by defining the cyclic operator

t(go,..., gk; 9, f]) = (gkg, 90go, 91g,..., ,gk-1; g9rk, o (1 , 9,'), ).If]),

where Tk is the natural transformation from §3.1. For a k-simplex in EG[-] xGX[-]A,

we define the map

EG[-] x X[- - E(A, G)[-]A

via

(; , [f]) = ((gk, 90go, 91g,..., gk-1).[f]; 0g),

where = (90go,...,gk) and Og = (gkggol,gog 1 ,9gog9, . . ,gk- 1gk-l). We note that

the restriction of this map to the connected component corresponding to (g) and

a choosen representative g E G is the map qg of Lemma 3.2.1. This map is an

isomorphism and we see at once we have the following proposition.

Proposition 3.2.2. There exist canonical homeomorphisms of spaces q and q such

that the following diagram commutes:

EG XG X - E(A, G)A

EG X G a d Ny(G).EG XG Gad NCY(G).
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Proof. The cyclic isomorphism 0 is covered by the cyclic isomorphism ~; that is we

have a diagram of cyclic spaces:

EG[-] XG X[-]l $ I E(A, G)[-]

EG[-] XG Gad > N'Y(G)[-]

where the two horizontal maps are cyclic isomorphisms. After taking geometric real-

ization, the result follows. 0

Corollary 3.2.3. There are canonical homeomorphisms of spaces:

H EG xG THH9(A), -> E(A, G)A
(g)

'I

EG XG J G/CG(g) g NCY(G)
(g)

where the two horizontal maps are the homeomorphisms corresponding to the cyclic

isomorphisms.

Remark 3.2.4. We note that the space E(A, G)A is actually a fiber bundle over

NC(G). In particular, the fibers over two points in the same connected component

are homeomorphic.

We now prove Thm. 1.0.1.

Proof of Theorem 1.0.1. Applying the functor f! to the parametrized spaces over

NCY(G),

J O EGXG E(A, G) EG XG JJ G/CG(g) - NCY(G)
(g) (g)

and

E(A, G), NC(G)
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gives a map of spaces

V EG ACG(G) E(A, G)9 -- , f!E(A, G)x , THH(AT [G])A.
(g)

The first map is an isomorphism by Cor. 3.2.3. As \ varies, the second map is an

equivalence by Thin. 1.0.2. Hence for varying A, we obtain a stable equivalence of

orthogonal spectra. 0
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Appendix A

The Hochcshild Complex and

Cyclic Bar Construction

The proof of Thm. 1.0.1 is inspired by a study of the linear case concerning Hochschild

homology. We briefly present the result for ordinary Hochschild homology. Given a

commutative ring with unity, A, the Hochschild complex of the ring A is defined to

be the cyclic set HH(A)[-] with k-simplices,

HH(A)[k] =A A
k+l

together with face and degeneracy operators defined on generators by

dc(ao = (ao ... ® aiai+l ® ... ak) if0<i<k

d (akao al ... ®ak-1) if i = k

si(ao (® ... ® ak) = (ao ® ... ® ai 1® ai+l ®... ® ak) for 0 < i < k.

The cyclic operator is given by

tk(ao ® ... ak) = (ak ® ao 0 ... (® ak-).

The geometric realization of the cyclic set HH(A)[-], defined as the geometric real-

ization of the underlying simplicial set, is denoted by HH(A). The homotopy groups
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of this space are then the Hochschild homology groups of the ring A.

The twisted group ring AT[G], has Hochschild complex, HH(Ar[G])[-] with k-

simplices

HH(AT [G])[k] = A[G] ® A [G]

k+l

and face maps defined on generators by

akgk) = { (aogo ... aigi(ai+)gigi+l 0 ... 0 akgk)

(akgk(ao)gkgo 0 algl ... 0 ak-lgk-1)

if 0 <i < k

ifi =k.

The degeneracies and cyclic operator are the same as the untwisted group algebra.

Let E[-] be the cyclic set with k-simplices,

E[k] = HH(A)[k] x NCY(G)[k]

and with twisted face maps and degenerices given by

di(ao ... ak; 90, . . ., gk)

(aO ... aigi(ai+l1) ... ® ak; go, -

if 0 <i <k

(akgk(ao) ® al . (0 ak-1); kgo, 1,... ,gk-1)

if i = k

= (aO ... ai 1 ®9 ai+l * * * (9 ak; 90, g * g, 1, i+l, ... , 9k)

tk(ao ... ® ak; o, ... ,gk)

= (ak ao ®. * -* ak-1;k, , . . ,gk-1)-

Taking geometric realization, we obtain a space E parameterized over NCY(G),

with projection map the realization of projecting onto the cyclic bar construction. We
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apply the functor f* to the space HH(AT [G]) obtaining a space over Ne'(G), f*HH(A T [G]).

We then define a map of cyclic sets

A: E[-] ) HH(A'[G])[- ] x N(G)[-] =f*(HH(Ar[G]))

that is given on level k by

(ok(ao ® ... ak; 9go, ... ,g k) = (aogo ®... akgk; 90go ,.,g 9k)

The face operators for E[-] are defined so that 'o is indeed a map of cyclic sets. By

the adjunction f! - f*, we obtain the map

fE , HH(Ar[G]).

This map is the linear analog of the stable weak equivalence in Thm. 1.0.2.

As in §3.2 the the geometric fiber Eg is the realization of the following pullback

of simplicial sets,

Eg[-] > E[-]

I l
AO[-] 9, Ney(G)[-]

where A°[- ] is the standard 0-simplex

A° = HomA(-, [0])

and the bottom map takes the identity, [0] [0] to the 0-simplex g E N(G)[O].

Explicitly, this takes the map 0: [k] , [0] to *g e NCy(G)[k] and since for each k,

there is only one such map 0, *g = (g, 1,..., 1) (k + 1 factors). Thus the simplicial

set Eg[-] is given by

Eg[k] = HH(A)[k] x {(1,..., 1, g)} c E[k] = HH(A)[k] x N'Y(G)[k].
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The connected component of the 0-simplex g is then obtained as the realization of

the simplical set El-]l(g ) given on level k by

n7%

E[k]I(g) = HH(A)[k] x {(go, g,... gk): hgh -1 = gi, for some h E G} c E[k].
i=O

Indeed, a path from g to the zeroth vertex of the k-simplex (go, .. ., gk) is given by

the 1-simplex (gh- ', h) E NCY(G)[1].

Proposition A.0.5. The simplicial set corresponding to the connected component

indexed by (g),E[-][(g), is isomorphic to the Borel construction,

: EG[-] xcG(9) Eg[-] E-] ()

where

g([(9o, gk); ao ® ... ® ak]) = (gk(ao) go(al) O 0 gk-1(ak); 0(go, ., gk)),

Hence, the realization E|(g) is homeomorphic to the principal bundle EG xcG(9) Eg.

The isomorphism depends on the choice of g E (g).

Proof. We define the isomorphism

Og: EG[-] xCG(g) Eg[-] 3E[-] (g)

on level k, by the formula,

Og([(90, - , gk); ao ... 0 ak]) = (gk(ao) ® go(al) ® . 0 gk-l(ak); 0(go,..., 9k)),

where 0(90g,gk) = (9kg 9,g90g9 ,-..,gk-lgk ) as above. Since CG(g) acts on

EG[-] diagonally from the right and on the fiber diagonally from the left, we have

[(goh, .. , gkh); ao -. ak] = [(90go,..., gk); h(ao) O - h(ak)]-
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We will first show that the map O9 is well-defined. Given

0g([goh, , 9gkh; ao .. . ak]) = (kh(ao) O gohg-(al) . .. gklhg- 1 (ak); (9))

we have

O() = (gkhg(goh)- , goh(glh)-l, ... , gk-lh(gkh)- 1 )

h-I I-,i1
= (gkg9 9 ,9gog91

1,..., gk-g 1 )

0g -1 9 9-1 -1)=(gkgg ,0gog ,..., gk-lgk')

since h E CG(9). On the other hand, Og([(go, ,g 9k); h(ao) ... h(ak)])

= (gkh(ao) 0 goh(al) ... ® gk-1gh(ak); 0(g'))

= (gkh(ao) 0 goh(al) 0. 0 gk-1h(ak); q(g'))

again using that h is in the centralizer of g. We also have q(g') = q(.). Thus the

map q9 is well-defined. It only remains to demonstrate the commutativity with the

cyclic operators. We check the commutavity of do. The other operators are standard

and can be checked similarly. Again, on level k, [(go, . , gk); ao ®... ®( ak]

- (gk(ao) 0 go(al) ... g k-l(ak); q0(go, , gk))

(gk(ao)gkgg90 go(al) ' "9 ® gk-l(ak); do0 (.))

= ((gk(ao)g(al)) ® g(a 2) ® ... gk-l(ak); do0())

where doq(g) = (9k991 1, glg92 1 ... , gk-lgk). On the other hand,

[(90, , 9k); ao ( ... ® ak]

do
[(glo,..., 9k), ao90 (al) ®... 0 ak-1]

(9k((ak)g(ao)) 9 g(a2) - * * * k-1 (ak); (dog))

59



where O(do) -=(g, , gk) = (gkgg991 1, 1 92 g 1 ... , gk-lgk ). Thus the map (g com-

mutes with the operator dk. The commutavity with the other operators is proved

similarly.

[]

We state the global linear analog to Lemma 3.2.1 as follows. Let X[-] be the

cyclic set with k-simplices X[k] = Ga x A®k+ and cyclic operators those of E[-].

As a set, X[k] is the disjoint union of all fibers

X[k] = II Eg[k]

(g)

Now given the Borel construction EG[-] XG X[-] with the usual product simplicial

structure, we give a cyclic structure by defining the cyclic operator

t(go,., gk; 9, a ® ... ® ak) = (gkg, 90, 91, gk-1; , k ® g(ao) al ... ak-l).

For a k-simplex in EG[-] XG X[-], we define the map A: EG[k] XG X[-] - E[-]

via

0(.; g, a0 0 . *. ak) = (gk(ao) ® g(al) 0.. gk-l1(ak); g),

where = (go,.. .,gk) and Og = (gkgg', 9gog1 , gog9 , ,..., gk-lgk ). This map is an

isomorphism and hence after realization, we have a homeomorphism between the

corresponding spaces.

Proposition A.0.6. The following diagram of spaces commutes

EGxX X E

l l
EG XG Gd(G).

Here the two horizontal maps are the homeomorphisms corresponding to the cyclic

isomorphisms.
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