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Abstract

This thesis develops a merging model that captures the gap acceptance behavior of drivers

that merge from a ramp into a congested freeway. Merging can be classified into three

types: normal, forced and cooperative lane changing. The developed merging model uses a

single critical gap function, which incorporates explanatory variables that capture all three

types of merging behavior. Thus, the model combines all three types in a single model.

The merging gap acceptance model is estimated using the maximum likelihood method

with detailed trajectory data that was collected on two freeway sections in California.

Estimation results show that the merging gap acceptance model is affected by traffic

conditions such as average speed in the mainline, interactions with lead and lag vehicles,

and urgency of the merge. Transferability tests for the stability of the model parameters

between the two datasets are conducted. The single level gap acceptance model is

implemented and compared with an existing gap acceptance model in the microscopic

traffic simulation model, MITSIMLab. The results show that the proposed model is better

than the existing gap acceptance model.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Traffic Congestion

Traffic congestion has been one of the major challenges facing contemporary cities around

the world. Not only does traffic congestion continue to grow in urban areas, but also in

suburb areas. According to the Urban Mobility Report (Schrank and Lomax, 2005), the

total cost of congestion incurred in 85 major areas in the U.S. was 62 and 63 billion dollars

in 2002 and 2003, respectively. Furthermore, the worst congestion level increased from

12% to 40% during peak hours. The total of drivers experiencing congested situations

during peak hours has doubled from 32% to 67% over twenty years from 1982 to 2003,

implying two out of three drivers suffer from traffic congestion during rush hours.

One way to suppress the continual increase in the congestion level is to build more

infrastructures. Effectiveness of road construction, however, is relatively low due to its high

cost as well as the phenomenon of latent traffic (Small and Gomez-Ibanez, 1999). As

Figure 1.1 illustrates, the TTI report (2005) shows that not even half of the roadway

required to maintain a constant congestion level is built over twenty years, demonstrating

that the rate of road construction lags greatly behind the growth of traffic congestion.
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Figure 1.1 Comparison of roadway added to needed

(Source: Urban Mobility Report, TTI 2005)

Due to such inefficiency of road construction, many researchers and engineers have

considered traffic management as an alternative solution. The main idea of traffic

management is to take advantage of roads and traffic systems that are already built to

efficiently minimize the congestion and maximize the safety. In fact, the emergence of

Intelligent Transportation Systems (ITS), which integrates technologies such as

communications, control, and electronics into transportation system, have enabled great

improvements in transportation systems, such as advanced traffic management systems

(ATMS) as a main part of ITS.

1.2 Traffic Management at Merging Area

As a significant amount of daily commuting time is spent on freeways, freeway

management has emerged as one of major branches of ATMS. Freeway management is also

a good example of advanced ITS, which entails surveillance, ramp control, lane
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management, information dissemination, enforcement, and special event transportation

management (U.S. DOT, 2006). An interesting section of the freeway that also plays a

significant role in determining the amount of traffic in freeway is the merging area, where

traffic from local roads merges into a freeway. This thesis explores such merging areas in

freeways.

Various strategies of ramp control exist to improve the traffic congestion and safety at the

merging areas with ITS technologies. The three main freeway management technologies

used at the merging areas are ramp metering, ramp closures, and priority access. (U.S. DOT,

2006). Ramp metering controls the flow of vehicles entering from on-ramp to main freeway

sections by adaptively controlling traffic signals. For example, if traffic volumes in a

mainline are heavy, the traffic signal installed at the on-ramp stops vehicles from entering

the freeway.

Another management technique to control traffic conditions in freeway is called ramp

closures. Using surveillance and control systems, the system allows temporary closures of

freeway ramps to avoid the worst traffic conditions during peak hours or to avoid accidents

under bad weather conditions.

The last management system often used is priority access, which gives right-of-way to the

first priority vehicles, such as emergency or transit vehicles. This access is achieved

through communication between a traffic management center and the vehicles such that the

first priority vehicles enters freeway regardless of the status of the ramp metering or closure

controls.

1.3 Motivation

Many traffic management systems such as ones mentioned in the previous section have

been suggested and implemented to improve the traffic congestion in freeway. However,

12



evaluating performance and results of traffic management technologies in the field are

difficult due to high installation costs, safety problem, and lack of public acceptance. To

overcome the difficulties, microscopic traffic simulation tools that model, analyze, and

evaluate possible traffic scenarios are becoming more important in developing ATMS.

Microscopic traffic simulation tools have an environment where different scenarios can be

provided and evaluated in a controlled setting without installation in real traffic systems.

Furthermore, these tools can evaluate complex traffic conditions (i.e., traffic signal, ramp

metering, incidents, and traveler information) at the same time. The apparent advantages of

the microscopic traffic simulation tools have encouraged researchers to study traveler

behaviors for accurate modeling.

Modeling lane changing behavior, in particular, plays an important role in microscopic

traffic simulation tools. Lane changing model consists of lane selection model, which

concerns driver's decision in changing lanes, and gap acceptance model, which concerns

the decision to execute the lane-change. These existing models have been developed under

the assumption that a driver makes an independent decision to change lane without any

interference from other vehicles in the destination lane (Hidas, 2002). However, Hidas

(2002) argued that the assumption no longer holds in congested merging areas. In fact,

certain dependent behaviors (e.g., interference and yielding) have been observed in merging

areas.

Merging is a special instance of lane changing where vehicles have to move to a target lane

because of lane closure or incidents. Merging can be classified into three types: normal,

forced and cooperative lane changing, in particular congested conditions. Modeling

merging behaviors in congested conditions is difficult because three different types are

observed in the merging areas, and the types require complex decision-making processes.

Thus, modeling driver's merging behaviors in congested situations is necessary for

accuracy.
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1.4 Objectives

This thesis develops a gap acceptance model for freeway merging under congested

conditions. Such a merging model combines all lane changing types: normal, courtesy, and

forced lane changing into a one-stage model, which includes explanatory variables to

capture normal, courtesy and forced merging. Once designed, the model is then estimated

using maximum likelihood method on two different trajectory data sets, 1-80 and U.S. 101,

containing information such as vehicles' speed, acceleration, and position. To apply the

model in all congested situations, the hypothesis that the goodness of fit in the combined

dataset is not significantly different from the individual datasets is tested. Finally, the

merging gap acceptance model is implemented into MITSIMLab, which is a microscopic

traffic simulator.

1.5 Thesis Outline

This thesis consists of seven chapters. Chapter 2 reviews the literature on merging models

and existing lane-changing models, followed by explanation of the model framework and

the likelihood function of the proposed model in Chapter 3. Chapter 4, then, describes data

analysis of the trajectory data sets, U.S. 101 and 1-80., where the estimation results of the

proposed models and the results of likelihood ratio test of the estimated models are

presented in Chapter 5. In Chapter 6, the proposed model is implemented into MITSIMLab,

which a microscopic simulator, and the result of implementation is discussed. Finally,

conclusions and direction of further research are summarized in Chapter 7.
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Chapter 2

Literature Review

Modeling gap acceptance at freeway merging areas incorporates lane changing models,

such as the lane selection and gap acceptance models. Some of these models have been

developed and demonstrated in past literature, and a thorough review is necessary to

motivate and place this thesis work in its context. This chapter, thus, describes these

existing models in the chronological order: merging, lane selection, and gap acceptance

models.

2.1 Merging models

Modeling freeway merging behaviors in a congested situation is difficult due to

involuntary lane changing behaviors, such as forced merging and courtesy merging. Thus,

little literature on the merging models at freeway sections have been published.

Nevertheless, the existing merging models, such as those developed by Skabardonis

(1985), Kita(1999), Ahmed (1999), and Hidas (2002), provide a good foundation and

motivation for this thesis work.

Skabardonis (1985) developed a microscopic simulation model to examine the relations

between traffic and geometric variables. In this model, geometric parameters, such as slip

road length, gradient, and acceleration lane length, are used as input data. In addition, he

developed the merging process of single driver behavior and queuing-multiple entries

considering lead and lag times. Skabardonis' model adopts the following mechanisms in

a queuing situation:

* When a driver of a queuing vehicle arrives at the merging area, he evaluates the

mainstream gaps only if the leading vehicle decides to merge.

* Given a large mainstream gap, many queuing vehicles accept the same lag at the

same time.
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These mechanisms were implemented in Fortran IV, and were calibrated and validated

using a large number of video clips collected during the peak hours in the U.K. With the

successful validation, Skabardonis demonstrated the effectiveness of his model in

evaluating traffic control strategies at the merging area.

While Skabardonis based his model on geometric parameters, Kita (1999) developed a

model based on game theory. In particular, Kita modeled the interaction between through

vehicles in mainlines and merging vehicles from on-ramps as a two-person non-zero-sum

non-cooperative game. A vehicle entering from an on-ramp has two options: merging

into the mainlines or staying in a merging lane (i.e., acceleration lane). A through vehicle

in a mainline also has two options: giving a way to the merging vehicle and going

through the merging areas without giving courtesy to the merging vehicle. Based on

game theory, Kita estimated the merging probability of a merging vehicle and the

giveway probability of a through vehicle using a maximum likelihood estimation

technique.

In addition, his model incorporated several explanatory variables for the estimation, such

as distance between a merging car and the end of the acceleration lane, speed of a

merging car, time to collision of a merging car to a through car, and time headway

between two consecutive through cars. Kita claims in his paper that the model has

capabilities to capture merging and giveway behaviors in the real world.

Ahmed (1999) developed a lane changing model that captures both mandatory lane

changing (MLC) and discretionary lane changing (DLC) situations. An MLC situation

occurs when a driver must leave current lane, such as due to lane-drop situation or

merging situation from on-ramp. A DLC situation occurs when a driver decides that

driving conditions in a target lane are better than those in the current lane. Since it is

difficult to explain drivers' behavior in MLC situations, Ahmed estimated the parameters

of the discretionary and mandatory components of the model separately. The MLC

component was estimated for a special case of vehicles merge onto a freeway from the

on-ramp. The estimation results from the MLC situation are summarized in Table 2.1.
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Table 2.1 Estimation results for MLC model proposed by Ahmed (1999)

Variable Parameter value

Utility of mandatory lane change

Constant -0.654

First gap dummy -0.874

Delay (sec.) 0.577

Lead critical gap

Constant 0.384

,,eadMLC 0.859

Lag critical gap

Constant 0.587

Min (0, lag speed - subject speed), rn/sec. 0.0483

Max (0, lag speed - subject speed), m/sec. 0.356

0."l-,MLC 1.073

In addition to this lane changing model, Ahmed (1999) developed and estimated a forced

merging model, which captures drivers' lane changing behaviors in heavily congested

traffic conditions.

lag
vehicle

adjacent gap
for the subject lead

vehicle

target
lane

subject

Figure 2.1 Definition of adjacent gap by Ahmed (1999)
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The model assumes that after a driver evaluates traffic conditions in his target lane, such

as adjacent gaps between lead and lag vehicles. (Figure 2.1), the driver changes lanes

either through courtesy yielding of the lag vehicle in the target lane or by forcing the lag

vehicle to slow down. Important variables affecting this behavior include lead relative

speed, the remaining distance to the point where the lane change must be completed by,

and existence of a total clear gap in excess of the subject vehicle length. The estimation

results from the forced merging situation are summarized in Table 2.2.

Table 2.2 Estimation results of the forced merging model by Ahmed (1999)

Variable Parameter value

Constant -3.16

Min(O, lead veh. speed - subject speed) (m/s) 0.313

Remaining distance impact x 10 2.05

Total clear gap divided by 10 (meters) 0.285

Hidas (2002) developed merging algorithms incorporating both forced merging and

courtesy merging under congested traffic conditions in SITRAS. The lane changing

procedures in SITRAS are as follows (Figure 2.2):

" Check whether a driver needs necessary lane changing

* Select a target lane into which the driver wants to move

* Evaluate whether lane changing to the target lane is feasible

* Simulate driver courtesy in the target lane if lane changing to the target lane is

not feasible

* Execute lane changing to the target lane

18
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Target Lane

Reman inChange to
Presnt aneTarget La *

Figure 2.2 Summary flowchart of the lane changing process in SITRAS by Hidas (2002).

Hidas (2005) developed a more advanced lane change model incorporating explicit

merging behavior based on his previous research (Hidas, 2002) in ARTEMiS. This model

includes three lane change situations in a congested traffic environment-free,

cooperative, and forced lane change situation-and selects one of the three lane change

behaviors using a set of conditions. To determine if a lane change is feasible, Hidas

focused on the minimum space gap, which is a function of the subject vehicle's speed.

Thus, each lane changing behavior in the model was formulated by minimum acceptable

gaps with respect to the speed, acceleration, and deceleration of the subject vehicle and

the follower vehicle (Figure 2.3).

19



Subject Lane

Target LamneF

Foil-Gap Lead-Gap

gap-

Figure 2.3 Basic notations for a lane change maneuver by Hidas (2005).

2.2 Limitations of existing merging models

Little literature related to merging models at freeway sections have been published

because modeling freeway merging behaviors in a congested situation is difficult and

complex. The existing merging models are either formulated as a deterministic way or

estimated with a number of simplifications. There are no estimation results with the

detailed vehicle trajectory except Ahmed's model. However, Ahmed separately estimated

the normal gap acceptance model and forced merging model. Furthermore, the vehicle

trajectory data for the estimation is free flow, not congested conditions.

2.3 Lane-changing models

This section summarizes the literature on two important lane-changing models: lane-

selection and gap acceptance models.

2.3.1 Lane selection models

Gipps (1986) introduced the first lane changing model under various urban driving

situations, in which traffic signals, transit lanes, obstructions and the presence of heavy

vehicles affect drivers' lane selection. In this work, Gipps categorized lane selection as

20



either physically feasible, necessary, or desirable. Gipps assumed that the driver's

behavior is governed by two basic considerations: attaining the desired speed and being

in the correct lane to perform turning maneuvers. Based on these, Gipps classified a

driver's behaviors into three patterns. The first pattern is when a turn is out-of the way

and the driver focuses on maintaining his desired speed. The second pattern is when the

driver enters the zone and begins to ignore maintaining his speed and attempts to drive

closer to his turning lanes or lanes that are adjacent to them. The third pattern is when the

driver focuses only on maintaining the correct lane without considering his desired speed.

CORSIM (Halati et al 1997, FHWA 1998), a microscopic traffic simulation model,

which includes a lane changing model, was developed by FHWA. This model classifies

lane change as either mandatory (MLC) or discretionary (DLC), and computes a risk

factor for each potential lane change and for both the subject vehicle and the intended

follower. The risk factor is calculated primarily by the deceleration a driver must apply

if its leader is to brake to a stop, and subsequently compared to a threshold value, which

is determined by the type of lane change and the urgency. Variability in gap acceptance

behavior, however, is ignored in this model.

Yang and Koutsopoulos (1996) implemented a rule-based lane changing model for the

first time in MITSIM, in which lane changes are again classified as mandatory (MLC) or

discretionary (DLC). MLC is modeled with an assumption that the driver has four goals

in performing MLC: to move to the next destination on their travel path, to bypass a lane

blockage, to avoid a restricted-use lane and to comply with signs. If there are conflicting

goals, probability based on utility theory models is used to resolve, then, DLC, on the

other hand, is modeled with the assumption that the primary goal of the driver in

changing lanes is to achieve desired speed.

Hidas and Behbahanizadeh (1999) implemented a similar model with MLC and DLC

classification in the micro-simulator SITRAS. The two distinct features that make their

model unique are a new definition of goals for DLC and the introduction of cooperative

lane changing in MLC. In addition to the speed advantage in DLC, similar to Yang and
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Koutsopoulos' model, a queue advantage was added as a motivation for DLC. In other

words, if the adjacent lane provides a faster speed or a shorter queue, a driver has a

motivation to change lanes.

The second interesting feature of Hidas' model is the cooperative lane changing. In

heavily congested traffic conditions, MLC may occur through cooperation with the

intended follower. If the intended follower is less aggressive and willing to allow the

subject vehicle into his lane (Figure 2.3), he begins to follow the subject vehicle while the

subject vehicle starts following the intended leader in the target lane. As a result of this

cooperation, the subject vehicle is now able to change lanes into the gap opened up in the

target lane.

A general lane changing model that captures both MLC and DLC situations was

developed by Ahmed et al (1996) and Ahmed (1999). The lane changing process is

modeled in three-steps. First, a decision to consider a lane change is modeled using a

discrete choice framework. Then, selection of a target lane is captured by Logit models.

Lastly, the acceptance of gaps in the target lane is modeled using different gap

acceptance parameters for DLC and MLC situations.
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Figure 2.4 - Structure of the lane changing model proposed by Ahmed (1999)

As Figure 2.4 illustrates Ahmed model first considers decisions made in an MLC

situation. The utility of responding to an MLC situation is affected by two factors: time

delay since the MLC situation arose, and a bias against using the first gap available to the

driver. If an MLC situation does not apply or the driver decides not to respond to the

MLC situation, then a decision whether to consider a DLC is made using a two-step

decision process. First, drivers evaluate their satisfaction with the current driving

conditions, which is affected by the difference between the subject speed and its desired

speed. Second, if the driver is not satisfied with the current driving conditions, he then

compares conditions in neighboring lanes in order to decide the target lane and whether

to change lane. The utilities of neighboring lanes are affected by two factors: the speeds

of the lead and lag vehicles, and the current and desired speed of the subject vehicle.

23



This model also incorporates special situations into the structure. For example, different

behaviors are implemented for heavy vehicles and are modeled in the presence of

tailgating vehicles. This lane changing framework also includes a gap acceptance model,

which is discussed in more detail in Section 2.3.2. The estimation results for the MLC

and DLC models are summarized in Table 2.3 and Table 2.4, respectively.

Table 2.3 - Estimation results for the DLC model proposed by Ahmed (1999)

Variable Parameter value

Utility of unsatisfactory driving conditions

Constant 0.225

(Subject speed - desired speed), m/sec. -0.0658

Heavy vehicle dummy -3.15

Tailgate dummy 0.423

Utility of left lane

Constant -2.08

(Lead speed - desired speed), m/sec. 0.0337

(Front speed - desired speed), m/sec. -0.152

(Lag speed - subject speed), rn/sec. -0.0971

Desired speed model

Average speed, m/sec. T 0.768

Lead critical gap

Constant 0.508

Min (0, lead speed - subject speed), rn/sec. -0.420

0 -Iead,DLC 
0.488

Lag critical gap

Constant 0.508

Min (0, lag speed - subject speed), m/sec. 0.153

Max (0, lag speed - subject speed), m/sec. 0.188

0 .lag,DLC 0.526
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Table 2.4 - Estimation results for the MLC model proposed by Ahmed (1999)

Variable IParameter value

Utility of mandatory lane change

Constant -0.654

First gap dummy -0.874

Delay (sec.) 0.577

Lead critical gap

Constant 0.384

a-leadMLC 0.859

Lag critical gap

Constant 0.587

Min (0, lag speed - subject speed), m/sec. 0.048

Max (0, lag speed - subject speed), m/sec. 0.356

,lag,MLC 1.073

Despite the efforts to integrate MLC and DLC situations in one model, Ahmed (1999)'s

model had separate estimations for DLC and MLC situations. Toledo (2003) was to the

first to overcome the difficulties in joint estimation, and developed an integrated lane-

shift model that allows joint evaluation of mandatory and discretionary considerations. In

this model, explanatory variables such as the distance to the off-ramp vary the relative

importance of MLC and DLC considerations. The awareness to the MLC situation is,

then, represented more realistically as a continuously increasing function rather than as a

step function.
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Lane shift LEFT CURRENT RIGHT

Gap NO CHANGE NO CHANGE NO
acceptance CHANGE LEFT CHANGE RIGHT CHANGE

Figure 2.5 - Structure of the lane-changing model proposed by Toledo (2003)

As Figure 2.5 illustrates, the model consists of two levels: choice of a lane shift and gap

acceptance decisions, where latent choices are enclosed with ovals and observed ones are

enclosed with rectangles. The first step in the decision process, lane shift, is latent since

the target lane choice is unobservable and only the driver's lane-changing actions are

observed. The first level depicts the driver's two options: to stay in the current lane or to

move to an adjacent lane. The CURRENT branch corresponds to a situation where the

driver decides to stay in the current lane. In the RIGHT and LEFT branches, the driver

decides that changing lanes would improve driving conditions, such as speed and path

plan. In these cases, the driver evaluates the adjacent gap in the target lane and decides

whether gap acceptance is acceptable to execute lane-change (CHANGE RIGHT or

CHANGE LEFT) or not (NO CHANGE). This two-level decision process is repeated

every time step.

The explanatory variables used in this model are neighborhood variables, path plan

variables, network knowledge and experience, and driving style and capabilities. Since

information about the driver's style and characteristics is not available, individual

specific error terms are introduced to capture unknown information. The parameters of

the model were estimated jointly using second by second trajectory data collected in a

section of 1-395 Southbound in Arlington, VA. The estimation results of the integrated

lane shift model are summarized in Table 2.5.
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Table 2.5 - Estimation results for the lane shift model (Toledo, 2003)

Parameter
Variable t-statistic

value

Shift direction model

CL constant 2.490 3.74

RL constant -0.173 -0.51

Right-most lane dummy -1.230 -3.89

Subject speed, m/sec. 0.062 1.59

Relative front vehicle speed, m/sec. 0.163 3.02

Relative Lag speed, m/sec. -0.074 -1.30

Front vehicle spacing, m. 0.019 3.42

Tailgate dummy -3.162 -1.68

Path plan impact, 1 lane change required -2.573 -4.86

Path plan impact, 2 lane changes required -5.358 -5.94

Path plan impact, 3 lane changes required -8.372 -5.70

Next exit dummy, lane change(s) required -1.473 -2.30

9MLC -0.378 -2.29

7ri 0.004 0.46

/T2 0.009 0.77

aCL 0.734 4.66

aRL 2.010 2.73aL

Lead Critical Gap

Constant 1.353 2.48

Max(AV'ead (t),o), m/sec. -2.700 -2.25

Min (A V,,'ad (t), 0), m/sec. -0.231 -2.42

alea"d 1.270 2.86

0 -lead 1.112 2.23

Lag Critical Gap
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Constant 1.429 6.72

Max(A V"g(t),0), m/sec. 0.471 3.89

a'"ag0.131 0.64

0 -lag 0.742 3.68

Choudhury (2005) developed a lane-changing model with explicit choice of target lane,

and estimated jointly using a maximum likelihood estimator and detailed vehicle

trajectory data. The model consists of two levels of decision-making: the target lane

choice and the gap acceptance. The structure of the model is shown in Figure 2.6.

Target Lane 1

Lane

Right

Iimediate Lane Lane

Gap Ga
Gap Acreptance

Change No
Right Change

Lae 2 Lane 34

Current Left Left
Lane Lane Lane

No No Change No Change
Change Change Left Change Left

Figure 2.6 - Example of the structure of the Choudury(2005) lane-changing model

The lane-changing decision process is latent, and only the driver's actions are observed.

Latent choices are shown as ovals and observed choices are represented as rectangles.

The decision structure shown on the top is for a vehicle that is currently in the second

lane to the right (Lane 2) in a four-lane road. Therefore, Lane 3 and Lane 4 are on its left,

and Lane 1 is on its right. At the highest level, the driver chooses the target lane. In

contrast with existing models the choice set constitutes of all available lanes in the road

(Lane 1, Lane 2, Lane 3, Lane 4 in this example). The driver chooses the lane with the
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highest utility as the target lane. If the target lane is the same as the current lane (Lane 2

in this case), no lane change is required (No Change). Otherwise, the direction of change

is to the right (Right Lane) if the target lane is Lane 1, and to the left (Left Lane) if the

target lane is either Lane 3 or Lane 4. If the target lane choice dictates a lane change, the

driver evaluates the gaps in the adjacent lane corresponding to the direction of change

and either accepts the available gap and moves to the adjacent lane (Change Right or

Change Left) or rejects the available gap and stays in the current lane (No Change).

Explanatory variables affecting the target lane utilities of a driver are lane attributes,

surrounding vehicle attributes, and path plan. Information about the driver's style and

characteristics is however not available and is captured by introducing individual specific

error terms.

The parameters of the model were estimated jointly using second by second trajectory

data collected in a section of 1-395 Southbound in Arlington, VA. The estimation results

of the target lane model are summarized in Table 2.6.

Table 2.6 - Estimation results of the target lane model

Variable Parameter value t-statistic

Target Lane Model

Lane 1 constant -1.696 -3.03

Lane 2 constant -0.571 -1.68

Lane 3 constant 0.059 1.16

Lane density, vehicle/km -0.013 -1.21

Average speed in lane, m/sec 0.176 1.59

Front vehicle spacing, m. 0.024 3.86

Relative front vehicle speed, rn/sec. 0.115 1.46

Tailgate dummy -4.935 -1.96

CL dummy 2.686 1.55

1 lane-change from the CL -0.845 -1.15
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Each additional lane-change from the CL -3.338 -1.91

Path plan impact, 1 lane change required -2.549 -4.57

Path plan impact, 2 lane changes required -4.953 -2.19

Path plan impact, 3 lane changes required -6.955 -1.65

Next exit dummy, lane change(s) required -0.872 -1.35

9MLC -0.417 -2.48

7, 0.001 0.68

I2 0.086 1.38

alanel -1.412 -2.29

a'""e2 -1.072 -0.50

a'""n3 -0.071 -3.61

aane4  -0.089 -1.56

Lead Critical Gap

Variable Parameter value t-statistic

Constant 1.541 5.59

Max(AS'n",0) ,rm/sec. -6.210 -3.60

Min (AS'd 0) -0.130 -2.09rn/sec.

alead -0.008 -3.17

-.lead 0.854 1.29

Lag Critical Gap

Constant 1.426 5.35

Max(ASI,,a ,0) m/sec. 0.640 3.36

alag -0.205 -0.48

o-lag 0.954 4.80
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Number of drivers = 442 L(0) = -1434.76

Number of observations = 15632
LI/Ip = -875.81

Number of parameters = 31
2 = 0.368



2.3.2 Gap acceptance models

One of the interesting and important behaviors modeled in lane-changing is gap acceptance.

Once a target lane is selected, the driver evaluates the positions and speeds of the lead and

lag vehicles (see Figure 2.7), and decides whether the gap between them is adequate to

execute a lane-change.

subject
Vehicle

lag H- H - H lead
vehicle lag gap lead gap vehicle

Figure 2.7 - Gap acceptance elements

Gap acceptance is formulated as a binary choice problem as shown below:

W ifG ,(t) > Gc (t) (2.1)
0 if G, (t) < Gc'(t)

,where Y, (t) is the choice indicator variable, G,, (t) is the available gap and G,'(t) is

the critical gap. The driver accepts (Y (t)=1) or rejects (Y, (t)=O) the observed gap by

comparing the gap to an unobserved critical gap:

The key parameter of this formulation is critical gap, Gr (t). Due to the probabilistic

nature of gap acceptance decisions, critical gaps are modeled as random variables. Various
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distributions have been suggested in the past, such as exponential by Herman and Weiss

(1961), lognormal by Drew et al (1967), normal by Miller (1972) and multivariate normal

by Daganzo (1981). In particular, Daganzo (1981)'s multivariate normal distribution

captures critical gap variation in the population as well as in the behavior of a driver over

time. To estimate parameters of the multivariate normal distribution of critical gaps, he

used a multinomial probit model formulation appropriate for panel data. The critical gap for

driver n at time t is given by:

G," (t)= G, + _" (t) (2.2)

where Gn is a driver specific random component of the critical gap, which captures the

within driver variability over time. e'(t) is the random term associated with variability

across drivers. Gn and 6cr(t) are assumed to be mutually independent normally

distributed random variables.

In the same year, Mahmassani and Sheffi (1981) introduced impatience functions to gap

acceptance models, which capture the impatience and frustration of drivers standing at the

stop lines. The model was estimated for a stop-controlled intersection under the assumption

that critical gaps are normally distributed and that the mean of distribution is a function of

explanatory variables. They were the first to show that the number of rejected gaps (or

waiting time at the stop line) was found to have a significant impact on gap acceptance

behavior.

Further works on the impatience function were followed by Madanat (1993) and Velan

(1996). While Madanat et al (1993) used total queuing time to model impatience, Velan and

Van Aerde (1996) employed a decaying critical gap function. Velan (1996) showed that

critical gaps decay linearly with waiting time through implementation in INTEGRATION,

a mesoscopic traffic simulator.
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Cassidy et al (1995) captured gap acceptance behavior at stop controlled T-intersections

using a logit model. They achieved a great improvement in the fit of the gap acceptance

model by differentiating lags (the first gap) from subsequent gaps and gaps in the near lane

from gaps in the far lane.

Gap acceptance models are often embedded in the overall lane changing model. For

example, Kita (1993) estimated a logit gap acceptance model for the case of vehicles

merging to a freeway from a ramp in his lane-changing model. He found that important

factors are the length of the available gap, the relative speed of the subject with respect to

mainline vehicles and the remaining distance to the end of the acceleration lane.

Ahmed (1999) also postulated a gap acceptance model within the framework of the lane

changing model described in Section 2.1 and 2.3.1. Ahmed postulated that drivers consider

the lead gap and the lag gap separately and only execute lane change if both gaps are

acceptable. This behavior is mathematically formulated as below:

G." 9 (t) = exp( X, (t)p +av, + , (t)) g=lead, lag (2.3)

where X,(t) and fig are vectors of explanatory variable and the corresponding

parameters, v,, is an individual specific random term with normal distribution, and aj is

the parameter of v,. Ef9 (t) is also a normally distributed generic random term.

The critical gap functional form is shown above guarantees that it is always non-negative.

These gap acceptance parameters were estimated jointly with other components of the

model. A similar critical gap approach was used by Toledo (2003) in the lane-shift model

and by Choudhury (2005) in the target lane model.
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2.4 Summary

In this chapter, the existing merging models are reviewed and general lane changing model,

lane selection and gap acceptance models, are studied. There exist only a few studies

related to the merging gap acceptance model in congested situations. Furthermore, there are

no rigorous estimated results of the merging models using detailed vehicle trajectory data

except Ahmed's model. Ahmed developed the model without data including the congested

traffic conditions, and separately estimated normal and forced merging models. Therefore,

it is important to develop a merging gap acceptance model combining all three types,

normal, cooperative, and forced merging, in a single model using the detailed vehicle

trajectory data.
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Chapter 3

Modeling Framework

In this chapter, the concept of the merging gap acceptance model is presented. Next, the

model framework and structure are presented.

3.1 The model concept

Lane changes are classified into two types: mandatory lane changing (MLC) and

discretionary lane changing (DLC). Discretionary lane changing is defined as the case

when a driver makes a lane change to improve perceived driving conditions. On the other

hand, mandatory lane changing is defined when a lane change is required due to a lane drop

or lane closure. Merging is a case of mandatory lane changing situations because a driver

has to change lanes into a target lane through the available gaps. Merging can be classified

into three types: normal, forced, and cooperative lane changing. Normal lane changing

occurs when vehicles normally make a lane change through available gaps without

interfering with other vehicles. Forced lane changing occurs when merging by a subject

vehicle forces the lag vehicle to slow down. Cooperative lane changing occurs when the lag

vehicle yields to allow the change to take place. These three types are more often observed

in congested situations. The merging gap acceptance model has been developed for

congestion situations. The model combines all three lane type, normal, cooperative, and

forced lane changes, in a single level model. The model is formulated as a binary choice

problem: change and no change. The driver will either accept or reject an available gap

based on a comparison of the gap with an unobserved critical gap under mandatory lane

changing situation. The three lane changing types of the merging model are described by

explanatory variables that capture interactions between the subject vehicle and other

vehicles.
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3.2 Modeling Framework

The framework of the one stage model is summarized in Figure 3.1. The model

hypothesizes one level of decision-making: gap acceptance (lane change if adjacent gaps

are acceptable, no lane change if not). The decision process about gap acceptance is latent,

and only the end action of the driver is observed. Latent choices are shown as ovals, and

observed choices are represented as rectangles.

MLC to target lane
Target Lane

Gap Adjacent gaps Ajacent gaps not
Acceptance acceptable acceptable

Lane Action

Figure 3.1- Modeling framework of merging gap acceptance model

In the figure, the driver evaluates the available gaps in the direction of the target lane for

gap acceptance. In the case of merging from the on ramp, the target lane is the right most
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lane of the mainline. If the available lead and lag gaps are acceptable, the driver makes a

lane change under gap acceptance in the immediate time step. The model combines all

three lane changing types, normal, cooperative, and forced, in a one stage model including

variables that capture courtesy and forced merging. Variables such as acceleration of lag

vehicle and remaining distance to MLC point can capture courtesy and forced merging

behaviors.

3.3 Model Structure

The gap acceptance model indicates whether a lane change is possible or not using the

adjacent gaps. The merging driver first compares the available lead and lag gaps to the

corresponding critical gaps for gap acceptance. An available gap is acceptable if it is greater

than the critical gap. Critical gaps can be modeled as random variables. Their means are

functions of explanatory variables. The estimation data is likely to include repeated

observations of drivers' merging behaviors over time period. Thus, it is important to capture

the correlations among the choices made by a given driver over time and choices

dimensions. However, the characteristics of the drivers and their vehicles: aggressiveness,

vehicle's speed, and acceleration capabilities are not likely to be included in the data.

Therefore, it is necessary to introduce individual-specific latent variables. The individual

specific random term captures correlations between the critical gaps of the same driver over

time. The individual specific random term can be assumed that conditional on the value of

the latent variable, the error terms of different utilities are independent. Critical gaps are

assumed to follow lognormal distributions to ensure that they are always non-negative:

In ( G'")= BgX,, +agv, +cg g e {lead,1ag} (3.1)

where G;" denotes critical gap g of individual n at time t for gap acceptance,

g e {lead,lag}. Xn, is a vector of explanatory variables corresponding to the adjacent gap

for individual n at time t. 89 is corresponding vector of parameters for gap acceptance. ,
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is random term for gap acceptance of individual n at time t: E,,, - NOO r). vn denotes

driver specific random term. a' is coefficient of the driver specific random term for gap

acceptance.

The gap acceptance model assumes that the driver must accept both the lead gap and the lag

gap to change lanes. The probability of a lane change through gap acceptance, conditional

on the individual specific term v, is therefore given by:

P (l, Iv,, )=
P (accept lead gapIv, ).P (accept lag gap I o) (3.2)

= p (G''"" > G,',""d'" I ,, ).p (G'"a" > lG'"c' |V,

Where, l,, is lane-changing indicator of individual n at time t , 1 if a lane-change is

performed by individual n at time t , 0 otherwise. G " is available lead gap of individual n

at time t, and G,,'g is available lag gap of individual n at time t.

Assuming that critical gaps follow lognormal distributions, the conditional probabilities

that gap g e {lead, lag} is acceptable is given by:

P (G > G, |c r = P (In (Gg, )> In (G,'" )|r,)=[ ln (G 6)g X, +ag")] (3.3)

cD [-] denotes the cumulative standard normal distribution.

Gap acceptance is affected by the state of the merging driver and the interaction between

the subject vehicle and the lead and lag vehicles in the adjacent lane. Candidate variables

affecting gap acceptance include:

" average speed in the mainline

" relative speed of the subject vehicle with respect to the lead vehicle
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* relative speed of the subject vehicle with respect to the lag vehicle

* status of the merging driver

* remaining distance to the MLC point

* acceleration of lag vehicle

3.4 Summary

In this chapter, the model framework for this gap acceptance model was developed, and

mathematical formulations of the model have been presented. The model is based on the

assumption that, in heavily congested situations, a vehicle entering from the on-ramp makes

available gaps through explanatory variables to capture normal, courtesy yielding, or forced

lane changing behaviors.
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Chapter 4

Data
In this chapter, the data requirements for estimating the model parameters have been

summarized. The process involves two trajectory data sets obtained from real traffic: 1-80

and U.S. 101, CA. The characteristics of the two datasets are also described in the chapter.

4.1 Data Requirement

In the Section 3.3, the important explanatory variables affecting merging behaviors were

introduced. For the merging gap acceptance model estimation, detailed disaggregate data to

capture normal, courtesy and forced merging behaviors are required. These include

neighborhood variables, traffic conditions, urgency of the merge, and driver specific

attributes:

* Neighborhood variables: The neighborhood variables describe the subject vehicle

and its relations with lead and lag vehicles. The variables also include the

vehicles' speed and acceleration, position of lane, relative speed and spacing

between subject vehicle and lead and lag vehicles in adjacent lanes. In the model

estimation, the variables: relative speed of the subject vehicle with respect to the

lead and lag vehicle, acceleration of lag vehicle are considered as the

neighborhood variables.

* Traffic conditions: Merging vehicles can be affected by the current traffic

condition such as density, average speed in the mainline. For the model estimation,

the average speed in the mainline is considered.

* Driver specific attributes and urgency of merge: The driver specific attributes
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capture the individual characteristics of drivers: aggressive and timid drivers. The

remaining distance to MLC point captures the urgency of the merge.

Trajectory data, which consists of observations of the positions of vehicles at discrete

points in time, provides useful information about some of these variables. Trajectory data

points are equally spaced in time with short time intervals between them, typically 1 second

or less. Speeds, accelerations and lane changes are extracted from the time series of

positions. Additional explanatory variables required by the model, such as relations

between the subject and other vehicles: relative speed, time, and spacing, may also be

inferred from the raw dataset.

4.2 The collection site

4.2.1 1-80 Trajectory Dataset

1-80 trajectory dataset used in this study was collected in April, 2005 by FHWA in a

segment of Interstate freeway 1-80 in Emeryville, California. Data represent travel on

northbound direction of Interstate 80. Seven video cameras are installed on a 30 story-

building, Pacific Park Plaza, which is located in 6363 Christie Avenue. The seven cameras

recorded seven sub-sections of the study area, respectively. 1-80 trajectory dataset has three

data sets each 15 minutes (4:00 p.m. ~ 4:15 p.m., 5:00 p.m. ~ 5:15 p.m., and 5:15 p.m. ~

5:30 p.m.), 45 minutes in total. Figure 4.1 provides the location covered by 1-80 vehicle

trajectory dataset. The study site is approximately 1650 feet in length, with six mainline

including high occupancy vehicle (HOV) lane and with an on-ramp at Powell Street. Thus,

this dataset is particularly useful for estimation of the proposed merging model in

congested situations because the geometric characteristics of the site including merging

area and data are collected during peak hours.
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Figure 4.1- Study area covered by 1-80 vehicle trajectory dataset

(source: NGSIM 2006)
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4.2.2 U.S.101 Trajectory Dataset

Another dataset is U.S. 101 trajectory dataset. U.S. 101 dataset was collected in June, 2005

by FHWA in a segment of U.S. Highway 101, called Hollywood Freeway, in Los Angeles,

California. Data represent travel on southbound direction of U.S. Highway 101. Eight video

cameras are installed on a 36 story-building, 10 Universal City Plaza adjacent to U.S. 101.

Similarly with 1-80, the eight cameras recorded eight sub-sections of the study area,

respectively. U.S.101 trajectory dataset has also three data sets each 15 minutes (7:50 a.m.

8:05 a.m., 8:05 a.m. ~ 8:20 a.m., and 8:20 a.m. ~ 8:35 a.m.), 45 minutes in total (Figure

4.2). The study site is approximately 2100 feet in length, with five mainline and one

auxiliary lane connecting to Ventura on-ramp and Cahuenga off-ramp. This U.S. 101

vehicle dataset is also useful for estimation of the proposed merging model in congested

situations because the geometric characteristics of the site including merging on-ramp and

off-ramp and data are collected during morning peak hours.

Figure 4.2- Study area covered by US 101 vehicle trajectory dataset (source: NGSIM 2006)
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4.3 Characteristics of vehicle trajectory dataset

To generate require variables for the estimation, speeds, accelerations, current lane

identification, positions, and time frame of the various vehicles in the dataset are used. Due

to estimate single level gap acceptance in merging areas, only merging vehicle's trajectory

data and vehicle data in rightmost lane are used.

4.3.1 1-80 vehicle trajectory dataset

Of observed vehicles in 1-80 trajectory dataset, 540 vehicles entering from Powell on-ramp

during 45 minutes are sampled from 1-80 vehicle trajectory dataset. The sample dataset for

the estimation has a total of 17352 observations at a 1 second time resolution. All 540

vehicles entering from Powell on-ramp made a lane change to mainline within observed

data. To execute merging, the vehicles entering from on-ramp, which are subject vehicles,

interact with neighboring vehicles such as lead and lag vehicles in rightmost lane (Figure

4.3).

Vehicles direction

1109

vehilep-"

tOn-ratnp

I end

Lead
Vehnicle

Figure 4.3- The subject, lead, and lag vehicles and related variables
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Table 4.1- Statistics describing the lead and lag vehicles of 1-80 dataset

Variable Mean Std Median Minimum Maximum

Relations with Lead vehicle

Relative speed (m/sec) 0.3 1.2 0.3 -6.2 5.6

(-0.3) (2.2) (0) (-16.8) (8.1)

Average speed - subject 0.03 1.8 0.04 -8.4 5.7

speed (m/sec) (0.4) (2.3) (0.7) (-13.5) (7.3)

Lead spacing (in) 9.9 8.8 7.8 0.13 102.9

(4.8) (8.8) (3.0) (-19.4) (160.6)

Relations with Lag vehicle

Relative speed (m/sec) -0.5 1.6 -0.5 -10.9 5.4

(-0.4) (2.2) (-0.1) (-14.3) (18.1)

Acceleration of Lag 0.11 1.36 0 -3.41 3.41

vehicle (m/sec2 (0.02) (1.45) (0) (-3.41) (3.41)

Lag spacing (m) 11.3 11.4 8.3 0.5 172.9

(5.3) (8.9) (3.4) (-19.9) (178.2)

Relation with Lead and Lag vehicle

Remaining distance to 6.9 3.6 6.6 0 19.6

MLC point (10 m) (13.3) (4.3) (13.6) (0) (26.2)

Statistics are for the accepted gaps only, in parentheses for the entire dataset

Relative speeds with respect to various vehicles are defined as the speed of these vehicles

less the speed of the subject. For example, in lag case, relative speed is that the speed of lag

vehicle in rightmost lane less the speed of subject speed entering from on ramp. In average

speed case in lead gap, the definition is the speed of lead vehicles in rightmost lane less the

speed of the subject entering from on-ramp. Remaining distance to MLC is defined as the

distance from mandatory lane changing point less current position of the subject vehicle.
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Table 4.4 summarizes statistics of the accepted lead and lag gaps (i.e., the gaps vehicle

changed lanes into). Accepted lead gaps vary from 0.13 to 102.9 meters. On average,

vehicles in the merging areas made a lane changing with the lead gaps, 9.9meters. In lag

case, although accepted lag gaps vary from 0.5 to 172.9, the mean of lag gaps is 11.3 and

most observations are between 0 and 20 meters in the distribution of lag gaps. A mean of

average speed less subject speed, 0.03, indicates that the average speed in rightmost lane is

faster than the speed of the subject vehicle entering from on-ramp. With these statistics,

negative spacing values indicate that the subject and the lead vehicles or lag vehicles partly

overlap. It is possible because current conditions are congested, and subject vehicles and

lead vehicles (or lag vehicles) are in different lanes. As expected, the mean accepted gaps

are larger than the mean gaps in the traffic stream. In remaining distance variable, the

average remaining distance is 69 meters. It means that vehicles entering from on-ramp

make a lane changing with the remaining distance on average. A mean of acceleration of

lag vehicle is almost 0.11. In the distribution of the acceleration of lag vehicle, deceleration

of lag vehicles between 0 and -1 m/sec2 is indicated in the merging areas. The distributions

of relative speeds, average speed, remaining distance, and spacing are shown in Figure 4.4,

Figure 4.5, and Figure 4.6, respectively.
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Figure 4.4 Distributions of relative speed and average speed with lead vehicles
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Figure 4.5- Distributions of relative speed, acceleration with lag and remaining distance
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Figure 4.6- Distributions of spacing with respect to the lead and lag vehicles

4.3.2 U.S. 101 vehicle trajectory dataset

In U.S. 101 trajectory dataset, 374 vehicles entering from Ventura on-ramp of observed

vehicles in the trajectory dataset are sampled during 45 minutes. The sample dataset for the

estimation has a total of 3623 observations at a 1 second time resolution. All 374 vehicles

entering from Ventura on-ramp made a lane change to mainline in the trajectory dataset.

The relations between the subject vehicle, merging vehicle from Ventura on-ramp, and the

lead and lag vehicles in the rightmost lane affect the gap acceptance in merging areas. In

the case of U.S. 101, the same variables are considered as in the 1-80 case. Table 4.2
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summarizes statistics of the accepted lead and lag gaps sampled from U.S. 101 trajectory

dataset.

Table 4.2- Statistics describing the lead and lag vehicles of U.S. 101 dataset

Variable Mean Std Median Minimum Maximum

Relations with Lead vehicle

-0.9 2.4 -0.6 -15.2 4.8

Relative speed (m/sec) (-2.9) (3.5) (-2.5) (-19.8) (12.2)

Average speed - subject -1.6 2.4 -1.3 -14.2 4.7

speed (m/sec) (-3.4) (3.2) (-2.9) (-16.7) (13.6)

14.2 16.1 9.5 0 161.3

Lead spacing (in) (10.5) (15.2) (7.0) (-21.5) (168.4)

Relations with Lag vehicle

-1.5 2.3 -1.3 -15.2 4.9
Relative speed (m/sec)

(-3.4) (3.3) (-2.9) (-19.2) (11.5)

Acceleration of Lag 0.03 1.3 0 -3.4 3.4

vehicle (m/sec2) (0.1) (1.4) (0) (-3.4) (3.4)

15.0 14.3 10.6 0.07 131.7
Lag spacing (in) (9.9) (13.6) (6.8) (-7.1) (131.7)

Relation with Lead and Lag vehicle

Remaining distance to 11.6 6.6 13.9 0 22.4

MLC point (10 m) (15.5) (6.1) (17.1) (0) (24.3)

Statistics are for the accepted gaps only, in parentheses for the entire dataset

Accepted lead gaps vary from 0 to 161.3 meters. On average, vehicles in the merging areas

made a lane changing with lead gaps around 14.2 meters. In lag case, the mean of lag gaps

is 15.0 meters and most observations are between 0 and 20 meters in the distribution of lag

gaps. A mean of average speed less subject speed, -1.6, indicates that the average speed in

rightmost lane is slower than the speed of the subject vehicle. In the case of remaining
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distance variable, the average remaining distance is 116 meters. On average, merging

vehicles make a lane change at the remaining distance. A mean of acceleration of lag

vehicle is 0.03 m/sec2. In the distribution of the acceleration of lag vehicle, deceleration of

lag vehicles between 0 and -1 m/sec2 is indicated in the merging areas. The distributions of

relative speeds, average speed, remaining distance, and spacing are shown in Figure 4.7,

Figure 4.8, and Figure 4.9, respectively.
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Figure 4.7- Distributions of relative speed and average speed with lead vehicles
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4.4 Discussion of Datasets

In the previous sub sections, statistical analyses of two trajectory dataset are described for

the model estimation. Two data sets: both 1-80 and U.S. 101 include merging areas such as

merging on-ramp in 1-80 and merging on-ramp and off-ramp in U.S. 101. The two datasets

are in the congested traffic conditions. Thus, two datasets are useful for estimating the

proposed gap acceptance model in congested merging areas.

However, there exist some limitations to the two dataset. In the case of 1-80 trajectory data,

the width of lane 6, which is rightmost lane, becomes wider from 12 ft to 24 ft near the

merging area without an auxiliary lane connecting between on-ramp and rightmost lane

(Figure 4.10).

1650 ft = 502.92m

1

5

8 Ashby
Off-Ramp

Figure 4.10- Wider width of rightmost lane in the study area of 1-80

In the wider merging area, it is obvious that entering vehicles make lane changes into the

mainline, but it is ambiguous when the vehicles entering from on-ramp make lane merges

into the mainline and how the vehicles define the merging point. In not so congested
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situations, the definition of the merging point does not result much difference since the

execution of the lane change generally takes less than one time step. However, in the

situations with high congestion level and low speeds, whether or not the merge is

completed strongly depends on the choice of this point. Therefore, assume that the lane

demarcation, imaginary line, is denoted by the line that connects the end point of the

physical lane marks of the on-ramp to the MLC point where the normal width of lane

becomes 12 ft (3.6 meters) (Figure 4.11). Assume that defining the merge is complete when

the center point of the vehicle has crossed the imaginary lane separating lane 6 and the on-

ramp/wider extension of lane 6.

1650 ft a 502.92m

I I
EB 40 2 2

4 4
5 5

On-Ramp Off-Ramp

Figure 4.11- Imaginary line of rightmost lane in the study area of I-80

In the case of U.S. 101 vehicle trajectory dataset, there exists clear lane identification

because an explicit acceleration lane exists between on-ramp and rightmost lane in mainline.

However, average density in merging area of U.S. 101 is relatively lower than that of 1-80.

In the case of 1-80, average density of down stream and of up stream in rightmost lane are

62.2 veh/km/lane and 60.6 veh/km/lane respectively. On the other hand, that of down

stream and of up stream in U.S. 101 are 45.6 veh/km/lane and 46.8 veh/km/lane. In the

variable of average speed in rightmost lane, the difference of average speed between U.S.
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101 and 1-80 dataset is doubled. The average speed of U.S. 101 dataset is much faster than

that of 1-80 dataset. (Table 4.3) Thus, the U.S. 101 dataset may not be representative of

highly congested situations.

Table 4.3- Statistics comparison between 1-80 and U.S. 101 dataset

Variable Mean Std Median Minimum Maximum

1-80 dataset

Average density down stream 62.2 15.3 60 0 126.7

(veh/km/lane)

Average density up stream 60.6 22.8 60 0 126.6

(veh/km/lane)

Average speed (m/sec) 4.6 1.9 4.3 1.1 15.4

U.S. 101 dataset

Average density down stream 45.6 15.2 46.7 0 93.3

(veh/km/lane)

Average density up stream 46.8 15.7 46.7 0 100

(veh/km/lane)

Average speed (m/sec) 9.8 3.0 10.3 2.8 17.4
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4.5 Combined dataset

Combined dataset is needed to test transferability for the stability of the model parameter

between two datasets: U.S. 101 and 1-80. This dataset combines two vehicle trajectory data

sets: 1-80 and U.S. 101. Total merging vehicles are 914 which are 374 vehicles from U.S

101 dataset and 540 vehicles from 1-80 dataset. The number of observations is 20975: 3623

from U.S. 101 and 17352 from 1-80 dataset. Table 4.4 summarizes statistics of combined

dataset, and the distributions of relative speeds, average speed, remaining distance, and

spacing are shown in Figure 4.12, Figure 4.13, and Figure 4.14, respectively.

Table 4.4- Statistics describing the lead and lag vehicles of combined dataset

Variable Mean Std Median Minimum Maximum

Relations with Lead vehicle

Relative speed (m/sec) -0.2 1.9 0.01 -15.2 5.6
(-0.7) (2.6) (-0.05) (-19.8) (12.2)

Average speed - subject speed -0.7 2.2 -0.5 -14.3 5.7

(m/sec) (-0.2) (2.8) (0.4) (-16.7) (36
Lead spacing (m) 11.7 12.6 8.5 0.0 161.3

__(5.8) (10.4) (3.5) (-21.5) (168.4)
Relations with Lag vehicle

Relative speed (m/sec) -0.9 1.9 -0.7 -15.2 5.4
(-0.9) (2.7) (-0.4) (-19.1) (18.1)

Acceleration of Lag vehicle 0.1 1.3 0 -3.4 -3.4

(m/sec 2 ) (0.03) (1.4) (0) (-3.4) (3.4)

Lag spacing (m) 12.9 12.9 9.3 0.0 172.9

(6.1) (10.1) (3.8) (-19.9) (178.3)
Relation with Lead and Lag vehicle

Remaining distance to MLC point 8.9 5.6 7.7 0.0 22.4
(10 m) (13.7) (4.8) (13.9) (0.0) (26.2)

Statistics are for the accepted gaps only, in parentheses for the entire dataset
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Figure 4.12- Distributions of relative speed and average speed with lead vehicles
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4.6 Summary

In this chapter, the data requirements: neighborhood variables, traffic conditions, urgency

of merge, and driver specific attribute for the model estimation have been discussed. The

detailed two disaggregated datasets: 1-80 and U.S. 101 are analyzed, and discussed some

limitations of the data sets: ambiguous merging definitions in 1-80 dataset and less

congested traffic conditions in US 101 dataset. However, the two datasets are both in the

congested traffic conditions and include merging areas. Thus, it is appropriate for the

merging gap acceptance model in the congested traffic situations. To test transferability of

the stability of the model parameter between two datasets, combined dataset including two

trajectory dataset is also analyzed. The three datasets will be used to estimate the model

parameters.
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Chapter 5

Estimation

The estimation results of the proposed gap acceptance model in the congested merging area

using the 1-80, U.S. 101, and combined dataset are presented in this chapter. The proposed

model has been estimated using a maximum likelihood estimation procedure. Six models

are estimated: two models with 1-80 and U.S. 101, respectively, four models with combined

dataset. The estimation results are presented first. Next, the estimated models are compared

with likelihood ratio test.

5.1 Likelihood Function

In this section, the likelihood function of lane-changing actions observed in the data is

presented. The single level gap acceptance model assumes that a driver evaluates the

available gaps in a target lane which the driver wants to move into. The driver decides

whether to change lanes immediately or not. For example, a driver entering from on-ramp

evaluates the available gaps such as lead gap and lag gap in the rightmost lane of mainline.

If the both gaps are available, the driver changes lanes immediately.

Available gap

ag Lag gap Lead gap ead
vehicle vehicle

Subject
vehicle Traffic direction

Figure 5.1 - The available gap, subject, lead and lag vehicles and the lead and lag gaps
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The single level gap acceptance behavior is conditioned on the individual-specific

characteristics v.. At time t, the probability of individual n being performing lane action

(lf,) is given by:

P (,, Iv ) = P (accept lead gap v, ).P (accept lag gap v,
(5.1)

= p (G't" > Geadcr U ).p (GIa > Gagcr IV

where, G'a" and G,"a denote the lead and lag gaps of individual n at time t, respectively.

in, denotes lane changing action of individual n at time t.

If a driver is observed over his trajectory, a sequence of consecutive time interval, the

combined probability of observing a lane change can be expressed as:

PQ,,|V" ) = FP (1,,,|V,,) (5.2)

The unconditional individual likelihood is obtained by integrating over the distributions of

the individual specific variables:

Ln= JP(I,, Iv)f()dv (5.3)
U

where, f(v) is the standard normal probability density function.

Assuming that the observations from different drivers are independent, the log-likelihood

function for all N individuals observed is given by:

N

L = ln(L,) (5.4)
ni=1

The maximum likelihood estimates of the model parameters are found by maximizing this

function. For the model estimation, the statistical estimation software GAUSS (Aptech

Systems 1994) has been used. To find maximizing the likelihood function, the Broyden-
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Flectcher-Goldfarb-Shanno (BFGS) optimization algorithm is used. BFGS is a quasi-

Newton method, which maintains and updates an approximation of the Hessian matrix

based on first-order derivative information (see, for example, Bertsekas 1999). The

integrals in the likelihood function were calculated numerically using the Gauss-Legendre

quadrature method (Aptech Systems 1994) because numerical integration only the

explanatory variables values for the points used for the integration need to be calculated.

The likelihood function is not globally concave. To avoid obtaining a local solution,

different starting points have been used in the optimization procedure.
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5.2 Estimation Results

The merging gap acceptance model is estimated using a maximum likelihood estimation

procedure as described in the previous section. In this section, the six estimation results of

the merging model: two models with 1-80 and U.S. 101, respectively, are presented and

discussed. The estimation results of four models with the dataset combining 1-80 and U.S.

101 are also described.

5.2.1 Estimation results with 1-80 dataset

Model 1: Merging gap acceptance model with the 1-80 dataset

The estimation results of the proposed model with 1-80 dataset are presented in Table 5.1.

Table 5.1 - Estimation results for the Model 1

Final log likelihood -1639.69

Number of vehicles 540

Number of observations 17352

Number of parameters 17

Variable Parameter value t-statistic

Lead gap Constant 0.182 0.20

Max(0,A V,"',), m/sec 1.45 4.60

Min (0,AV,'a), m/sec -0.571 -3.54

dnad, 10 meters 1.03 4.29

y RemDist lead 0.798 2.66

Constant, dad -0.492 -0.81

plead -0.00016 -0.0033
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alead 4.28 5.86

Constant 0.379 0.89

Max(0,AVI'"), m/sec 0.179 1.36

Min (0, A V,""), m/sec 0.0909 0.71

dig, 10 meters 0.179 1.74

Lag gap VRemDistIag 2.88 0.73

Constant, d, -2.22 -0.55

Max(0, aag), m /sec 2  0.0766 0.81

Vag -0.00011 -0.0025

"lag 0.91 5.63

The lead critical gap is a function of the average speed in the mainline relative to the

subject vehicle's speed, the relative speed of the lead with respect to the subject and the

remaining distance to the mandatory lane changing point. The lag critical gap is a

function of the subject relative speed with respect to the lag vehicle, the remaining distance

to the mandatory lane changing point and the acceleration of the lag vehicle.

The variable relative average speed is assumed to follow the functional form:

P
1 + exp(-Max(0, A V"'/))

where, AV,," is relative speed of the average mainline speed with respect to the subject.

Estimated 8 is 1.45. General functional form of the relative average speed is tested for

the model estimation, but the estimated values of the parameters are not significant. The

general functional form is the following:

P
1 +exp(-yMax(0, A Vv )+a)

where, estimated values and t-statistics of a, fl, and y are 1.98 (3.21), 3.55 (0.89), and

-0.463 (-0.83).
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The functional form of the relative average speed applied in this model implies that if

average speed in the mainline is faster than a driver's speed in the merging areas, the driver

needs larger gaps to adjust his speed to the speed of the mainline and the effect of relative

average speed is less when it is larger than a certain threshold. The lead critical gap is also

larger when the subject vehicle is faster than lead vehicle to minimize the risk of collision.

The lag critical gap increases with the relative lag speed: the faster the lag vehicle is

relative to the subject, the larger the critical gap is. The sensitivity of the median critical

gaps as a function of relative average speed, relative speed in the lead, and relative speed is

shown in Figure 5.2, Figure 5.3, and Figure 5.4, respectively.
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Figure 5.2 - Median critical lead gap as a function of average relative speed
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Figure 5.3 - Median critical lead gap as a function of relative speed
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Figure 5.4 - Median critical lag gap as a function of relative speed

The variable, acceleration of lag vehicle indirectly captures the courtesy merging behavior.

If the lag vehicle is decelerating, the merging driver perceives that he is getting courtesy

from the lag. In such cases, he needs a smaller buffer space with the lag and can make a

lane change with a smaller gap. Similarly, the merging driver requires a larger critical lag

gap to avoid collision if the lag vehicle is accelerating. The lag critical gap therefore

increases as the acceleration of the lag vehicle increases. The median critical gap as a

function of the acceleration of lag vehicle is presented in Figure 5.5.
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Figure 5.5 - Median critical lag gap as a function of the acceleration of lag vehicle

This variable, remaining distance to MLC point, indirectly captures the forced merging

phenomena: the driver is willing to accept smaller critical gaps to make a lane change as he
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approaches the endpoint of the on-ramp. The remaining distance to MLC point is a function

of the remaining distance of the subject vehicle and the characteristics of the drivers. To

capture drivers' heterogeneity, individual specific random term has been introduced in the

coefficient of the remaining distance. Aggressive and timid drivers can have different

critical gaps, the remaining distance being equal. For example, all other variables having no

effect, the lead and lag critical gaps as a function of remaining distance for the aggressive

drivers are much smaller than the gaps of timid and normal drivers. Thus, aggressive

drivers can find lead and lag gaps to be acceptable even when they are far from the MLC

point. The timid drivers have large critical gaps till they reach the end of the ramp,

implying that they do not consider lane changes in the beginning of the on-ramp. The

sensitivity of the mean lead and lag critical gaps as a function of the remaining distance

according to the individual characteristics of the driver is shown in Figure 5.6 and Figure

5.7, respectively.
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Figure 5.6 - Median critical lead gap as a function of remaining distance
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Figure 5.7 - Median critical lag gap as a function of remaining distance

Estimated coefficients of the unobserved driver characteristics are negative for both the

lead and lag critical gaps. This implies that aggressive drivers require smaller gap for lane

changing compared to timid drivers.

In summary, the estimated lead and lag critical gaps for the merging gap acceptance model

with 1-80 dataset are given by:

1.45 la0.182+ 1 -0 571Min(0,A ,, t
1 + exp(-Max(0,A V,"' ))

1.03d"' 'd"
G,'r'"a = exp

I+-
1 +exp(-O.492 + .798v.)

10.379 +0.179Max (0, A T,'g)+ 0.0909Min (0, A V'"g)+

G'"ag#c = exp 17d
+ -1"' +0.0766Max(,a'")-0.0001

1 + exp(-2.22 + 2.88v,,)

0.0016U,, nt
) N (5.5)

(5.6)
v + '"

6' ~ad N(0,4.282) and 6't ~ N(0,0.912)

where, Gad'cr and G'".cr denote lead and lag critical gap, respectively. ATV,$' is relative
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speed of the average mainline speed with respect to the subject. AV,,"" denotes relative

speed of the lead vehicle with respect to the subject. d,, is the remaining distance to the

mandatory lane changing point. AJ'," is relative speed of the lag vehicle with respect to

the subject. a,' is the acceleration of the lag vehicle. u,, is unobserved driver

characteristics. e't" and ',g denote random error terms.
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5.2.2 Estimation results with U.S. 101 dataset

Model 2: Merging gap acceptance model with the U.S.101 dataset

The estimation results of the proposed model with U.S.101 dataset are presented in Table
5.2.

Table 5.2 - Estimation results for the Model 2

Final log likelihood -1278.97

Number of vehicles 374

Number of observations 3623

Number of parameters 17

Variable Parameter value t-statistic

Constant -1.26 -0.49

Max(0, A V,'), rn/sec 1.28 1.16

Min (0, AV,'."", m/sec -0.338 -2.41

dt", 10 meters 0.481 1.46
Lead gap yRemDistIead 0.449 1.10

Constant, dlad -0.963 -0.34

Vlead -0.0358 -0.25

OC ld' 0.432 0.21

Lag gap Constant 1.54 5.91

Max(0, A V'"), m/sec 0.151 0.71

Min (0, A ,'), n/sec 0.425 0.56

d' , 10 meters 0.181 1.87

V RemDist,lag 2.83 0.38

Constant, dj' -2.29 -0.37

Max(0, a'), m /sec 2 0.173 1.24
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ylag -0.0317 -0.12

a 3.19 7.63

Table 5.2 shows estimation results of the merging gap acceptance model using the U.S. 101

dataset. The explanatory variables of the model estimation are the same as those of the

model estimation with 1-80. The signs of the estimated coefficients in the model are correct

to what was expected. In this estimation results, the estimated constant in the lag is larger

than that in the lead. It means that drivers consider larger lag critical gaps for their safe

merging. The estimated lead constant, 0.283 meter, is very small. The sigma in lead is

smaller than in lag. The estimated values of sigma in lead and lag are opposite to those in

the 1-80. These may be explained by different driving behaviors of the drivers in the U.S

101. The lead and lag gaps of the aggressive drivers do not have significant differences

according to the remaining distance. On the other hand, the lead and lag gaps of the timid

drivers are affected by the remaining distance. The sensitivity of median lead and lag

critical gaps of U.S. 101 as a function of remaining distance to MLC point with the drivers'

individual characteristics is shown in Figure 5.8 and Figure 5.9.
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Figure 5.8 - Median critical lead gap as a function of remaining distance
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Figure 5.9 - Median critical lag gap as a function of remaining distance

The estimated lead and lag critical gaps for the merging gap acceptance model with U.S.

101 dataset are given by:

Geadcr = exp

G =ag- exp

1.28 (,AV,,d) '-1.26+ .- 0.338Min,
1+ exp(-Max (0, AV,"v)) "

0.481d,16ea
+ "' -0.0358v, +6le"t

1 + exp(-0.963 + 0.449vn)

.54 + 0.15lMax(0, A Vn,,) +0.425Min(0, A V,") +

0. 181dnt lag

1 + exp(-2.29 + 2.83v,)
)-0.0317o,

-,':a'' N(0,0.4322) and sg~N(0,3.192)
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5.2.3 Estimation results with combined dataset

In this section, the merging gap acceptance models have been estimated with the dataset

combining 1-80 and U.S. 101. Four estimation results with the combined dataset are

described. The first result is estimated with the same explanatory variables as in 1-80 and

U.S. 101. The second estimated with two more location specific constants to be allowed.

The third model is estimated with allowing location specific constants and sigmas. Lastly,

the fourth model is estimated with allowing location specific constants, sigmas, and

individual specific random errors in the remaining distance term.

Model 3: Merging gap acceptance model with the combined dataset without allowing

any variables to be different

The merging gap acceptance model is estimated with the dataset combining 1-80 and U.S.

101. The estimated results with the same explanatory variables as in 1-80 and U.S. 101 are

presented in Table 5.3.

Table 5.3 Estimation results for the Model 3

Final log likelihood -3121.31

Number of vehicles 914

Number of observations 20975

Number of parameters 17

Variable Parameter value t-statistic

Lead gap Constant 0.627 1.09

Max(0, A V,-), m/sec 1.90 2.71

Min( , A vletd m/sec -0.314 -5.13

d,'e"d, 10 meters 1.76 0.47
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V RemDistjead 0.282 1.03

Constant, dntad

Vlag -0.00104 -0.0600

.lead 2.72 8.48

Constant 0.509 1.77

Max(0, A V,"a), m/sec 0.116 1.52

Min (0, A V),n m/sec 0.034 0.78

d',, 10 meters 0.560 3.18

Lag gap VRemDistIag 2.21 1.20

Constant, d 1.35 4.12

Max(0, ata), m /sec 2  0.105 2.02

Vlag -0.0004 -0.0190

-lag 0.94 6.49

In the estimation result with combined dataset, the signs of all the explanatory variables are

intuitively correct. If all the variables are being equal, the lead gap is larger than the lag gap.

The magnitude of the estimated values of constant and sigma term is similar to the

estimated values of the model with the 1-80 data. This may cause that two third of all the

observations in the combined data comes from 1-80 dataset. The sensitivity of the median

lead and lag critical gaps as a function of the various variables affecting them is presented

from Figure 5.10 to Figure 5.15.
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In summary, the estimated lead and lag critical gaps for the merging gap acceptance model

with the combined dataset without allowing any variables to be different are given by:

11

Glad,cr = exp

G l'" = exp

0.627+ 1.90- 0.314Min(0, A V,d ) +
1 + exp(-Max (0,AV"))

+ 1.76d"' -0.00104v, + ead
1+exp(2.21+0.282,,)

0.509 + 0.116Max (0, AVa) + 0.034Min (0, AV,") +

+ 0.56d', + 0. 105Max(0, aa) - 0.0004o,
1+exp(1.35+2.21v.)

d ~, VLN(0,2.722) and Eg ~ N(0,0.942)

Model 4: Merging gap acceptance model with the combined dataset allowing location

specific constants to be different

The estimation results with allowing location specific constants to be different are

summarized in Table 5.4.

Table 5.4- Estimation results for the Model 4

Final log likelihood -2972.05

Number of vehicles 914

Number of observations 20975

Number of parameters 19

Variable Parameter value t-statistic

Constant, US101 -1.629 -2.68

Constant, 1-80 -0.042 -0.33
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Lead gap Max(o,AV,,"'7), m/sec 1.82 1.94

Min(0,AV,"), r/sec -0.571 -5.76

d'ad, 10 meters 3.30 4.64

V RemDistjlead 0.43 1.49

Constant, d 2.78 2.83

Vlead -0.00043 -0.02

o-lea 3.61 4.98

Constant, US 101 1.24 3.54

Constant, 1-80 0.898 1.04

Max(0, A V,"a), m/sec 0.111 0.65

Min (0,AV,'), m/sec 0.023 0.48

d,', 10 meters 0.141 3.30
Lag gap V RemDist,lag 0.85 6.44

Constant, djl -0.0134 -0.38

Max(0,ata), m/sec2  0.034 1.03

V'ag -0.0047 -0.25

o-lag 1.84 6.46

In the estimation results, two constants in lead and lag gap are allowed to be different. One

of the two constant is only for 1-80, and another is only for U.S. 101. In other words, if the

observations of the combined dataset come from 1-80, the parameter value of 1-80 constant

is only affected. The magnitude each location specific constant is similar to that of the

estimated results each dataset. From the estimated values of the location specific constants,

drivers in U.S. 101 do not consider lead gaps while making a lane change but consider lag

gaps for their safety. On the other hand, drivers in 1-80 consider both lead and lag gap. In

terms of the goodness of fit, this model is improved than the combined model without

allowing location specific constants.
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In summary, the estimated lead and lag critical gaps for the merging gap acceptance model

with combined dataset allowing location specific constants to be different are given by:

80 1.82
-1. 6 2 98 us101 -0.0423I- + -

"t I+exp(-Max (0, A V,"'' )Gleadcr = exp (5.11)

-0.57Mina 1 3.3d"' - 0.00043 v+ lead
"' + exp(2.78 +0.43on)

1.24,so1 +0.8986,7-80 +0.111Max(0,A Vt')+0.023Min(0,AV,'")+'

G'"''"r = exp 0. 141d ~ 0O3Mx0ag0047 +6 1qacr __
+t +. I4d lag
+"' +0.034Max(, a") - 0.00047 ++ p7+

I+exp(-0.0134 +0.85v,)

N(0,3.612) and ,"g ~ N (0,1.842 (5.12)

where, Usio denotes location specific dummy variable. USI sis 1 if the observation n at

me t belongs to U.S.101 dataset. Otherwise, 5LsIOI is 0. 3,'- denotes location specific

dummy variable. 5,, is 1 if the observation n at time t belongs to 1-80 dataset. Otherwise

Model 5: Merging gap acceptance model with the combined dataset allowing location

specific constants and sigma's to be different

The estimation results with allowing location specific constants to be different are

summarized in Table 5.5.
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Table 5.5- Estimation results for the Model 5

Final log likelihood -2947.38

Number of vehicles 914

Number of observations 20975

Number of parameters 21

Variable Parameter value t-statistic

Constant, US101 -3.25 -2.40

Constant, 1-80 2.17 3.28

Max(0, A7,"'), m/sec 1.64 1.85

Min (0, A VTd'), m/sec -0.468 -5.88

dad, 10 meters 2.12 4.41
Lead gap vRemDistj1ead 0.19 1.82

Constant, d Id 1.34 2.63

Vl'e"d -0.0467 -0.18

lead 0.205 0.75

,lead 4.98 7.63

Constant, US 101 2.05 6.78

Constant, 1-80 0.221 0.46

Max(0, A <,"), m/sec 0.120 0.96

Min (0, A ,'), m/sec 0.247 5.31

d'1,10 meters 0.180 2.16

Lag gap VRemDist,lag 5.08 0.89

Constant, d'g -1.13 -0.20

Max(0,ag'), m/sec2  0.0084 0.06

lag -0.0471 -0.04

U-lag, 2.78 6.91
US 101

Uag0.97 1.52
1 8011

83



The estimated results of the model have two different constants and sigma in the lead and

the lag, respectively. In estimated sigma, sigma 1-80 in the lead gap is larger than that in the

lag gap. On the other hand, sigma U.S. 101 in the lead gap is smaller than that in the lag gap.

The magnitude of the estimated sigma values is similar to that of the estimated results in

each dataset. All signs of estimated parameters are intuitively correct. The variable to

capture the forced merging behavior, remaining distance to the MLC point, is statistically

significant. In the goodness of fit, this model is improved than the combined models with

and without allowing location specific constants.

In summary, the estimated lead and lag critical gaps for the merging gap acceptance model

with combined dataset allowing location specific constants and sigma's to be different are

given by:

80 1.64-3.259us10 + 2.178'"-"r 
1 + exp(-Max(0, A V," 1 3G''"d'C' = exp ~32si11+.1Sj .4I(5.13)

nt ~2.12dntla
-0.468Min (0,2AV,," ) +' -0.0467vn +6E"J

1+exp(1.34+0.19v,,)

2.056uts'o1 +0.2218,',-18+0.12Max(0, A V,'"g)+0.247Min(0, A T,'a)

Glag ,cr =t nt" =exp 0.18dnt ,
+ "' +0.0084Max(0, a'"a)0. 0471Ivn+ '"

1+exp(-1.13+5.08vn)

-teadUs1O~ N(0, 2.052) and t'e"d''~"8O N(0,4.982) (5.14)

t,ausOI~ N(0,2.782) and c'ag,'-8~ N(0,0.972)

where, 6 'sioi denotes location specific dummy variable. , '1 is 1 if the observation n at

time t belongs to U.S. 101 dataset. Otherwise, gsU1I is 0. 61,-80 denotes location specific

dummy variable. 37'- is 1 if the observation n at time t belongs to 1-80 dataset. Otherwise,

nt- is 0.
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Model 6: Merging gap acceptance model with the combined dataset allowing location

specific constants, sigma's, and individual specific random errors in the remaining

distance to be different

The estimation results with allowing location specific constants, sigmas, and individual

specific random errors in the remaining distance terms to be different are summarized in

Table 5.6.

Table 5.6- Estimation results for the Model 6

Final log likelihood -2925.71

Number of vehicles 914

Number of observations 20975

Number of parameters 23

Variable Parameter value t-statistic

Constant, US101 -3.41 -2.69

Constant, 1-80 0.851 1.20

Max(0, A /,"'9), m/sec 0.81 1.24

Min (0, A V,ea'), i/sec -0.56 -7.92

d'ad, 10 meters 1.83 3.84

Lead gap VRemDistead , US101 0.06 1.16

y RemDist ,lead 
6.82

Constant, dlad 1.03 3.12

Slead -0.569 -2.54

l-ead 0.18 0.92
0
US1 01

lead 3.79 7.490180

Lag gap Constant, US 101 1.96 6.82

Constant, 1-80 0.197 0.74

Max(0, A JV,'"), m/sec 0.263 2.52
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Min(0,AJ/~~), rn/sec 0.236 5.20

10 meters 0.187 5.85

VRemDistjag , US101 5.00 3.03

RemDist,lag 90 1.37
la ,I801.08 1.37

Constant, d -1.08 -1.04

Max(0,a7 ), m/sec2  0.0325 0.49

ylag -0.271 -1.20

a Ula 2.68 8.77
US 01

a181g 1.12 4.20
I80

The estimated results of the model have two different constants, sigma's, individual specific

random errors in the remaining distance term in the lead and the lag, respectively. All signs

of estimated parameters are intuitively correct. To capture drivers' heterogeneity, individual

specific random errors in the remaining distance term are significant in the lead and lag. In

terms of the goodness of fit, this model is improved than the combined models: Model 3,

Model 4, and Model 5.

The estimated lead and lag critical gaps for the merging gap acceptance model with

combined dataset allowing location specific constants, sigma's, and individual specific

random errors in the remaining distance term to be different are given by:

-3.4hs"o1 +0.851'-n" +
1.83

1 +exp(-Max(0, A V,"ag))

-0.56Min (0, AV T"twd + "'3~t11 .0nx 5"-0"'6 0AK 1+ exp(1.03 + 0.06v, x S,7sO1 +1.20v, x

-0.569n +n"lead

(

(5.15)
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1.96,us1o1 +0. 1978,,-0 +0.2 63Max(0,A v,'")+0.236Min(0,ATV,'")+

-G'"' = exp + 1.90d' 0.0325Max(0,a'"9)-
1+exp(-1.08+5.00,v x 5tsO +1.90V, x '- +0

-0.271v,, +e'"9

eadUSIO1 ~ N(0,0.1 nd -0 ~ N(0,3.792) (5.16)

tjguso1 ~ N(0, 2.682) and ,',"a, " ~ N(0,1.122)

where, 8 ,UsIO1 denotes location specific dummy variable. 8 Usio1 is 1 if the observation n at

time t belongs to U.S.101 dataset. Otherwise, 69US1O1 is 0. 3,'-0 denotes location specific

dummy variable. g8'-0 is 1 if the observation n at time t belongs to 1-80 dataset. Otherwise,

1,'-0 is 0.

In summary, six models are estimated with two different datasets: 1-80 and U.S.101 and one

combined dataset. The models are affected by the subject relative speed with respect to the

lead and lag vehicle in the mainline, traffic condition such as average speed in the mainline,

remaining distance to the MLC point, and individual specific random term. The variable,

acceleration of the lag vehicle, indirectly captures the courtesy merging behavior. The

remaining distance terms are statistically very significant in the estimation results and

indirectly capture the forced merging behavior. Furthermore, individual specific random

term has been introduced in the coefficient of the remaining distance to capture drivers'

heterogeneity. The estimation results show that aggressive and timid drivers can have

different critical gaps the remaining distance being equal.

The estimation results for the merging gap acceptance models also indicate that the drivers'

merging behaviors of the two datasets are a little bit different; drivers in both U.S. 101 and

1-80 consider relatively larger critical lag gaps for their safe merges. On the other hand, the

driving behaviors in the lead critical gaps are different. The drivers in U.S. 101 consider

very small lead critical gaps; the drivers in 1-80 consider larger critical lead gaps. These
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different behaviors may be caused by the different level of the congested traffic situations

and the different highway structure of the merging ramps. In the case of 1-80, traffic

condition in the merging areas is extremely congested, so highly frequent stop-and-go

situation and queuing vehicles in the merging on-ramp are observed. On the other hand,

traffic condition in the U.S. 101 is less congested and vehicles merge without queuing in

the on-ramp.
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5.3 Model Comparisons

The merging gap acceptance model is estimated using the maximum likelihood method

with vehicle trajectory dataset. The explanatory variables affect the drivers' merging

behaviors in the congested situations of each dataset. To apply the model in all congested

situations, the estimated models are compared to between combined dataset and individual

datasets: U.S.101 and 1-80 data. The hypothesis that the goodness of fit in the combined

dataset is not significantly different from the individual datasets is tested. The likelihood

ratio test, which is used to compare log likelihood functions for unrestricted and restricted

models of interest, can be used to compare the estimated models. To do the likelihood

ration test, the estimated merging models with the combined dataset are considered as

restricted models and the estimated models with two dataset: 1-80 and U.S. 101 are regarded

as unrestricted models, respectively.

The test statistic for the null hypothesis that the goodness of fit in the combined dataset is

same as the individual dataset: U.S. 101 and 1-80:

-2 (LR -r) (5.17)

which is asymptotically distributed as X2 with r degrees of freedom.

where, LR is log-likelihood function value of the restricted model. LU is log-likelihood

function value of the unrestricted model. r is number of independent restrictions imposed.

Before the likelihood ratio test, recall that the following models were estimated in Section

5.2:

" Model 1: Merging gap acceptance model with the 1-80 dataset.

* Model 2: Merging gap acceptance model with the U.S.101 dataset.

" Model 3: Merging gap acceptance model with the combined dataset without

allowing any variables to be different.

* Model 4: Merging gap acceptance model with the combined dataset allowing
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location specific constants to be different.

* Model 5: Merging gap acceptance model with the combined dataset allowing

location specific constants and sigma's to be different.

* Model 6: Merging gap acceptance model with the combined dataset allowing

location specific constants, sigma's, and individual specific random term in the

remaining distance to be different.

The likelihood values of the estimated models are presented in Table 5.7.

Table 5.7- Summary of likelihood values

Model Likelihood Function Number of Parameters

Unrestricted Model 1 -1641.60 17

Model Model 2 -1278.97 17

Model 3 -3121.31 17

Restricted Model 4 -2972.05 19

Model Model 5 -2947.38 21

Model 6 -2925.71 23

Likelihood ratio test for the Model 3 vs. Model 1 and Model 2:

The likelihood ratio is given by:

-2(-3121.31 - (-1641.60-1278.97)) = 401.48

The number of degrees of freedom is 17 and Z27,o.95= 27.6.

Thus, we can reject the null hypothesis at a 0.95 level of significance. The model with

combined data is significantly different from the model with individual datasets.

Likelihood ratio test for the Model 4 vs. Model 1 and Model 2:

The likelihood ratio is given by:

-2(-2972.05 - (-1641.60-1278.97)) = 102.96

90



2
The number of degrees of freedom is 15 and 15,0.95 = 25.0

Based on the LR test, we can reject the null hypothesis at a 0.95 level of significance. The

model with the combined dataset allowing location specific constants to be different is not

significantly the same as the estimated models with individual datasets.

Likelihood ratio test for the Model 5 vs. Model 1 and Model 2:

The likelihood ratio is given by:

-2(-2947.38 - (-1641.60-1278.97)) = 53.26

The number of degrees of freedom is 13 and X13,o.995= 22.4.

In the comparison between Model 5 and Model 1, 2, we can not reject the null hypothesis at

a 0.95 level of significance. The estimated model with the combined dataset allowing

location specific constants and sigmas to be different is significantly different from the

estimated models with individual datasets.

Likelihood ratio test for the Model 6 vs. Model 1 and Model 2:

The likelihood ratio is given by:

-2(-2925.71 - (-1641.60-1278.97)) = 10.28

The number of degrees of freedom is 11 and Z12

Thus, we can not reject the null hypothesis at a 0.95 level of significance. The model with

the combined dataset allowing location specific constants, sigma's, and individual specific

random terms in the remaining distance be different is not significantly different from the

estimated model with individual datasets.
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The summary of the comparisons is presented in Table 5.8.

Table 5.8- Summary of comparisons

Chi-Squared

Restricted Model Unrestricted Degrees of Likelihood Distribution
Model freedom ratio Test (0.95 Level of

Significance)
Model 3 17 401.48 27.6
Model 4 Model I and 15 102.96 25.0
Model 5 Model 2 13 53.26 22.4
Model 6 9 10.28 19.7

In summary, the results of the likelihood ratio test indicate that the estimated merging gap

acceptance model can not be directly applied to all congested situation. To apply the

estimated model, at least six parameters: constants, sigmas, and individual specific random

errors in the remaining distance term should be changed. For example, the estimated model

with 1-80 dataset can be applied to merging situation of the U.S. 101 after calibrating at least

six parameters: constants, sigmas, and individual specific random errors in the remaining

distance terms.

5.4 Summary

In this chapter, the likelihood function for the merging gap acceptance model observed in

the trajectory data has been derived and estimation results of the model using Gauss

estimation software has been presented.

The six merging gap acceptance models are estimated in this chapter. Two models are

estimated with two different datasets: U.S.101 and 1-80. The merging gap acceptance

decisions are affected by the subject relative speed with respect to the lead and lag vehicle

in the mainline, traffic condition such as average speed in the mainline, urgency of the

merges such as remaining distance to the MLC point, and driving style: individual specific

random term. The variable, acceleration of the lag vehicle, indirectly captures the courtesy
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merging behavior. The remaining distance terms are statistically very significant in the

estimation results and indirectly capture the forced merging behavior.

The likelihood ratio test was performed between the model with the combined dataset as

restricted models and the models with two different datasets as unrestricted models for the

model transferability test. Through the model comparisons, the estimated merging gap

acceptance model can be applied to the congested situation after calibrating at least six

parameters: constants, sigmas, and individual specific random errors in the remaining

distance term.
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Chapter 6

Implementation
In this chapter, the merging gap acceptance model is implemented and evaluated within the

framework of a microscopic traffic simulation tool MITSIMLab. The simulated results of

the merging gap acceptance model are compared with the observed data from the 1-80

vehicle trajectory and the simulated output of normal gap acceptance model. The first

section gives an overview of MITSIMLab. Next, the comparison results with the merging

gap acceptance model are presented.

6.1 Overview of MITSIMLab

MITSIMLab (Yang and Koutsopoulos, 1996) is a simulation-based laboratory that was

developed for evaluating advanced traffic management system designs (ATMS) and

advanced traveler information system (ATIS) at the operational level. MITSIM represents

the real-world with detailed traffic and network elements and individual drivers' behavior.

MITSIMLab consists of three main components:

* Microscopic Traffic Simulator (MITSIM)

* Traffic Management Simulator (TMS)

* Graphical User Interface (GUI)

Traffic Flow Simulator (MITSIM)

MITSIM represents the real world. The traffic and network elements are represented in

detail to capture the sensitivity of traffic flows to the control and routing strategies. The

main elements of MITSIM are:

* Network Components: The road network along with the traffic controls and
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surveillance devices are represented at the microscopic level. The road network

consists of nodes, links, segments, and lanes.

" Travel Demand and Route Choice: The traffic simulator accepts as input time-

dependent origin to destination trip tables. These OD tables represent either

expected conditions or are defined as part of a scenario for evaluation. A

probabilistic route choice model is used to capture drivers' route choice decisions.

" Driving Behavior: The OD flows are translated into individual vehicles wishing to

enter the network at a certain time. Behavior parameters (such as desired speed,

aggressiveness, etc.) and vehicle characteristics are assigned to each vehicle/driver

combination. MITSIM moves vehicles based on car-following and lane-changing

models. The car-following model captures the response of a driver to conditions

ahead as a function of relative speed, headway and other traffic measures. The lane

changing model classifies mandatory and discretionary lane changes. Merging,

drivers' responses to traffic signals, speed limits, incidents, and toll booths are also

captured. Rigorous econometric methods have been developed for the calibration

of the various parameters and driving behavior models.

Traffic Management Simulator (TMS)

The traffic management simulator mimics the traffic control system under evaluation. A

wide range of traffic control and route guidance systems can be evaluated, such as:

* Ramp control

" Freeway mainline control

- lane control signs (LCS)

- variable speed limit signs (VSLS)

- portal signals at tunnel entrances (PS)

* Intersection control

* Variable Message Signs (VMS)

95



0 In-vehicle route guidance

TMS has a generic structure that can represent different designs of such systems with logic

at varying levels of sophistication (from pre-timed to responsive).

Graphical User Interface (GUI)

The simulation laboratory has an extensive graphical user interface that is used for both,

debugging purposes and demonstration of traffic impacts through vehicle animation.

The proposed gap acceptance model has been implemented in MITSIM. The lane selection

model by Choudhury (2005) and acceleration model proposed by Ahmed (1999) have been

used.
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6.2 Implementation Results

For running MITSIMLab, detailed OD data is required, so OD data is calculated from 1-80

vehicle trajectory dataset. 1-80 trajectory dataset is collected from three time sets each 15

minutes (4:00 p.m. ~ 4:15 p.m., 5:00 p.m. ~ 5:15 p.m., and 5:15 p.m. ~ 5:30 p.m.), 45

minutes in total. However, one of the three time sets is not consecutive. Thus, the OD data

of 4:00 p.m. ~ 4:15 p.m. is assumed as the OD data of 4:45-5:00. For comparing with

simulated output of the merging model, the observed data between 5:00-5:30 is only used.

Table 6.1 shows number of input vehicles by lane and time period.

Table 6.1- Number of entering vehicles by lane and time period

4:00- 4:05- 4:10- 5:00- 5:05- 5:10- 5:15- 5:20- 5:25- Sum
4:05 4:10 4:15 5:05 5:10 5:15 5:20 5:25 5:30

Lane 1 110 113 125 121 139 122 127 128 126 1111
Lane 2 116 114 102 112 104 69 84 91 57 849
Lane 3 100 93 82 96 81 48 78 89 38 705
Lane 4 122 95 93 99 93 51 94 89 52 788
Lane 5 96 109 86 104 88 51 96 83 60 773
Lane 6 89 98 65 85 72 49 76 78 48 660
On-ramp 62 64 64 81 71 53 81 71 48 595
Sum 695 686 617 698 648 443 636 629 429 5481

The simulated outputs of the merging gap acceptance model is compared with the

simulated output of Choudhury (2005)'s normal gap acceptance model. The Choudhury's

normal gap acceptance model is re-estimated with 1-80 vehicle trajectory dataset to obtain

parameter values under the same situations. The parameters of the normal gap acceptance

model are subject relative speed with respect to the lead and lag vehicles. The simulated

output of the merging model is also compared with the observed data collected from 1-80

data. Travel time from the time entering on-ramp to the time ending merging, and the

remaining distance to the merging point are used as measures of performance.

Figure 6.1 and Figure 6.2 show the comparison results between the merging gap acceptance

model, normal gap acceptance model, and real data by the travel time and remaining
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distance to MLC point until vehicles merge with the mainline.
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O Single level gap acceptance mode
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Figure 6.1 - Observed and simulated travel time in the 1-80 dataset
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Travel time of the merging gap acceptance model, or single level model, is similar to the

travel time of real data collected from 1-80. However, the travel time of the normal gap

acceptance model is over 100 seconds in all the cases, and does not match with real data of

1-80. It means that normal gap acceptance can not explain the congested merging situations.

In the case of the remaining distance to MLC, 80% vehicles in real data make lane changes

remaining 100 meters or less to the MLC point. The remaining distance to MLC point in

the merging gap acceptance model case is also similar to that of real data. On the other

hand, almost half of all the vehicles in the normal gap acceptance model make lane changes

within 100 meters.

6.3 Summary

The merging gap acceptance model is implemented in a microscopic traffic simulator

MITSIMLab and simulated with data from a section of 1-80, CA network. The performance

of the merging gap acceptance model has been compared with that of normal gap

acceptance model and the observed data from 1-80. The merging gap acceptance model

outputs have better than the simulated outputs of the normal gap acceptance model. In

addition, the simulated outputs of the merging model are a closer match with the observed

data from 1-80 in term of travel time and remaining distance to MLC point. Thus, it can be

concluded that the impact of the merging gap acceptance model has been better captured in

the normal gap acceptance model under the congested merging situation.
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Chapter 7

Conclusions

In this chapter, the contributions of this thesis have been summarized. Suggestions for

future research are suggested.

7.1 Summary

A merging gap acceptance model is presented to capture drivers' behavior in the congested

merging areas. The model structure is formulated as a binary choice problem: make a lane

change and do not make a lane change. The merging gap acceptance model incorporates

explanatory variables that capture all three types of merging behavior: normal, forced, and

courtesy merging. The model is included in a driver-specific random error to capture

unobserved individual-specific random errors such as aggressiveness.

Parameters of the model have been estimated using a maximum likelihood estimator with

detailed vehicle trajectory datasets: U.S.101 and 1-80. In the estimation results, the

explanatory variables affect the drivers' merging behaviors in congested conditions: the

variable, which is remaining distance to the MLC point, captures forced merging behavior

and the variable, the acceleration of lag vehicle, captures courtesy merging behavior. Six

models are estimated with individual trajectory dataset and combined dataset for the

transferability tests for the stability of the model parameters between the two datasets.

Statistical test using the estimation results shows that the model is applied when constants,

sigmas, and individual specific random errors in the remaining distance term are to be

different.

The estimated model is implemented and tested in a microscopic traffic simulator,

MITSIMLab using the observed data from a section of 1-80, CA. The simulated outputs of
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the merging gap acceptance model are compared against the observed data of 1-80 and the

simulated outputs of the normal gap acceptance model. From the comparisons, the merging

gap acceptance model has been better prediction under the congested merging situation in

term of measures of performance: travel time and remaining distance to MLC point.

In summary, the contributions of this thesis are as follows: (i) a merging gap acceptance

model is developed using a single critical gap function. (ii) The parameters of the merging

gap acceptance model are estimated using vehicle trajectory data. Estimation results show

that the estimated model is affected by traffic conditions such as average speed in the

mainline, interactions with lead and lag vehicles, and urgency of the merge. (iii) The

transferability tests for the stability of the model parameters between the two datasets are

conducted. (iv) The estimated is implemented and tested in a microscopic simulator

MITSIMILab. Through the comparison results, the merging gap acceptance model has better

prediction than the normal gap acceptance model under the congested merging situations.

7.2 Future Research

The following are some of the further research issues:

* The framework of the merging gap acceptance model is formulated as a binary

choice problem. Furthermore, forced and courtesy merging behaviors are only

captured by the explanatory variables of the model. Further research for the model

explicitly considering cooperation and competition between merging vehicles and

vehicles on the mainline is required.

* Sensor data, aggregate data, collected from the merging areas were not available.

During this research, the observed data from the trajectory data were used as the

inputs of the implementation. Thus, future research is required to use the sensor

data to implement, calibrate, and validate the merging model.
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* The interaction between the lane-selection and acceleration behavior of the driver

is ignored in this research. However, drivers in the merging areas are likely to

consider not only merging gap acceptance behavior, but also acceleration and lane-

selection behavior. Thus, it needs to develop more detailed merging driver behavior

model with acceleration and lane-selection behavior.
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