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Abstract

Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both

water conveyance and mass transport. The plant canopy affects both mean and

turbulent flow structure, and thus both advection and dispersion. Accurate prediction

of the fate and transport of nutrients, microbes, dissolved oxygen and other scalars

depends on our ability to quantify vegetative impacts. In this thesis, the focus is

on longitudinal dispersion, which traditionally has been modeled by drawing analogy

to rough boundary layers. This approach is inappropriate in many cases, as the

vegetation provides a significant dead zone, which may trap scalars and augment

dispersion. The dead zone process is not captured in the rough boundary model.

This thesis describes a new theoretical model for longitudinal dispersion in a veg-

etated channel, which isolates three separate contributory processes. To evaluate the

performance of the model, tracer experiments and velocity measurements were con-

ducted in a laboratory flume. Results show that the mechanism of exchange between

the free stream and the vegetated region is critical to the overall dispersion, and is pri-

marily controlled by the canopy density. A numerical random walk particle-tracking

model was developed to assess the uncertainty associated with the experimental data.

Results suggest that the time scale required to obtain sound experimental data in

tracer studies is longer than the commonly used Fickian time scale.

Thesis Supervisor: Heidi M. Nepf
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction: The Role of

Vegetation in Waterways

Traditionally, vegetation has been removed from waterways to improve conveyance

[64]. Coupled with increased nutrient loading and deteriorating water quality, this has

led to a decline in submerged aquatic vegetation populations worldwide [25]. This

is highly unsatisfactory, since submerged vegetation is both an indicator of, and a

contributor to, good water quality [79, 25]. It is known that vegetation directly im-

proves the quality of coastal and inland waters through nutrient uptake and oxygen

production [48]. Submerged aquatic vegetation also plays an important ecological

role, providing habitat, food and breeding grounds for finfish, shellfish, crustaceans

and waterfowl [25, 23, 90, 79]. Dense, submerged plant stands afford refuge to zoo-

plankton from predatory fish [102]. Roots, leaves and stems of aquatic vegetation

provide complex anoxic-oxic interfaces on which microbiota thrive [82], and stabilize

sediments containing invertebrate life. Thus channelization activities, while highly

effective at reducing flood risk [8], introduce serious ecological implications through

the removal of vegetation cover. This illustrates the conflicts faced by hydraulic

engineers in relation to vegetated aquatic systems. Understanding of the interplay

between physical, biological and chemical processes in these systems will facilitate

more sustainable water resource management. This chapter examines the role of veg-

etation in waterways, and motivates a closer investigation of the effects of submerged
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vegetation on mass transport, which is the underlying theme of this thesis.

In aquatic systems, the primary impact of submerged vegetation is an increase in

flow resistance and subsequent reduction in conveyance capacity [54, 103, 104, and ref-

erences therein]. Therefore, the conventional approach to flood management has been

to dredge river and channel beds to improve hydraulic efficiency [8]. However, tIis

may alter natural channel processes, and deprive channel banks of sediments crucial

to the maintenance of floodplain elevations [23]. Constructed levees and bank stabi-

lization practices reduce connectivity between rivers and their floodplains, preventing

natural flooding and sedimentation, which are critical to the survival of riparian wet-

lands. Such wetlands promote sedimentation and increase bank resistance, thereby

providing a natural defense against flooding. In addition, riparian wetlands help to

dissipate storm surge, and dampen the impacts of waves [23]. Removal of biomass

from channel beds adversely affects channel ecology and bed stability, as experienced

in the Mississippi river, a prime example of the negative effects of channelization [7].

Improved conveyance of the Mississippi river and its tributaries through channeliza-

tion has resulted in the sediment load being deposited further downstream [23]. This

is a potential contributor to severe eutrophication in the Gulf of Mexico (second only

to the Baltic Sea in terms of hypoxic area [89]), due to enhanced nutrient loading

carried with the sediments and loss of riverine wetlands as nutrient sinks. In recent

times, river restoration projects have commonly involved planting of aquatic vege-

tation to enhance biodiversity and improve bed stability [7, 8]. Further research is

needed to establish the long-term impacts of such schemes on riverine water quality

and on ecosystems in general [8].
Water quality is heavily influenced by aquatic vegetation. Submerged macrophytes

sequester nitrogen and phosphorus, such that some researchers have advocated wide-

spread planting in waterways [66]. The fate and transport of contaminants is also

indirectly affected by the presence of vegetation, which dramatically alters flow dy-

namics [36]. Reduced velocities due to canopy drag cause particulate matter, such

as sediment grains, heavy metals and pesticides to settle out of the water column

[58, 59, 63, 83]. Bed shear stress is also reduced, preventing resuspension of polluted
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sediments [97]. The baffling effect of vegetation suppresses turbulence [69], which

influences the growth and distribution of organisms such as phytoplankton [57]. Res-

idence time within the canopy is affected by vegetation density [80, 97, 47], which has

implications for the transport of dissolved substances and chemical kinetics.

Constructed wetlands containing emergent species of vegetation have found wide-

spread use for treatment of wastewater and contaminated stormwater [48]. The ability

of wetlands to remove a variety of contaminants, ranging from heavy metals [81] to

nitrogen [111], make them particularly effective at treating diffuse sources of pollu-

tion [26], typically arising from activities such as agriculture, mining and forestry.

However, it has been difficult to achieve high phosphorus removal efficiencies using

wetlands containing only emergent species [26]. This is because phosphorus is typ-

ically retained in plant tissue (or sediments at the bed) [66, 26], unlike nitrates for

example, which are subject to removal in the gas phase through denitrification. The

result is that the land areas required to remove large quantities of phosphorus are

prohibitive [111, 26], such that in many countries constructed wetlands are used only

to perform tertiary "polishing" treatments [42]. However, recent research has shown

that phosphorus removal may be greatly enhanced by the presence of submerged veg-

etation [66, 26]. Submerged macrophytes can absorb phosphorus directly from the

water column, whereas emergent vegetation is limited to supply from the sediment

[40]. Almost the entire surface area of a submergent plant is exposed to water, allow-

ing for greater contaminant removal than that by an emergent plant, which is mostly

above the surface [66]. Therefore, there is potential for improved wetland design

and channel management, through incorporation of submergent plant species such as

Triglochin huegelii, Najas guadalupensis and Ceratophyllum demersum [66, 26].

The ability of vegetation to remove pollutants from contaminated water is directly

linked to the time which each particle spends in close contact with the plants [61].

The mean residence time is often used to characterize the average time spent by wa-

ter particles in a given system. For uniform flow conditions, mean residence times

increase with vegetation density [47], which could be thought of as favorable for wa-

ter treatment purposes. However, the real measure of hydraulic efficiency for water
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quality control is the distribution of residence times about the mean. If all water

particles spend the same amount of time in a system (and thus receive the same level

of treatment), 'plug flow' conditions exist [120]. However, in real vegetated flows, lon-

gitudinal mixing will result in a distribution of residence times, such that individual

water particles will experience varying levels of treatment. Therefore, understanding

residence time distributions is critical to implementation of efficient water quality

control. The longitudinal dispersion coefficient is a widely used parameter in wa-

ter quality modeling that describes the rate of mixing in the longitudinal direction.

The fact that it provides estimates which are cross-sectional averages makes it an

extremely useful parameter in the context of rivers and other environments where

flow is essentially unidirectional. Since residence times are affected by longitudinal

mixing, accurate prediction of the longitudinal dispersion coefficient will improve our

ability to quantify contaminant removal by submerged vegetation. A review of longi-

tudinal dispersion theory is given in Chapter 2, with particular reference to riverine

applications.

The water depth-to-plant height ratio is another important hydrodynamical con-

straint [74], and dictates the availability of light [25], oxygen and nutrients to the

vegetation. Responses to water level change vary according to the type of vegetation

[45]. Fluctuations in the free surface elevation affect flowering, seed dispersal and

plant growth rates [66, 10, and references therein]. Submergent macrophytes may

adapt to changes in water level by changing their morphologies and biomass distri-

butions, depending on species [39]. This affects the plant surface area available for

nutrient uptake and as habitat for micro-organisms [66]. Many species of submerged

aquatic vegetation are native to coastal waters, where they are subject to continuously

changing water depths (due to waves, tides and seasonal changes) [79]. Thus over

very short periods, the flow regime may change from a simple boundary layer (corre-

sponding to thoroughly submerged vegetation and a logarithmic velocity profile) to a

complex flow through emergent stems and leaves. To date, no studies have examined

the effect of changes in water level on mass transport processes in flows containing

submerged vegetation. This study addresses this issue, by developing a predictive
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model for the dispersion coefficient in the transition between flows containing deeply

submerged and emergent vegetation. The hydrodynamics of this transition have been

investigated previously in detail [34, 74], and this provides a useful starting point.

In addition, recent work has shown in more detail how submerged vegetation

dramatically alters the mean and turbulent structure of the flow [46, 37, 85]. In

particular, the velocity profile is far from logarithmic over the full depth, so that

traditional treatments of longitudinal dispersion in open channels cannot be directly

applied to vegetated channels. Flow within vegetated zones is distinct from that in

unobstructed regions. Aquatic plants are sinks for momentum and scalars, creating

dead zones, which affect dispersion. While dispersion in flows with emergent vegeta-

tion has been studied [72, 122, 62], the effects of submerged vegetation on dispersion

have not to date been fully investigated.

The aim of this thesis is to develop a predictive model for the longitudinal dis-

persion coefficient in flows containing submerged vegetation. Insight into dispersion

in vegetated flows will provide a basis for greater understanding of the transport of

contaminants, nutrients and sediments in natural channels. This is critical to im-

proving channel management and water quality control methodologies. A secondary

objective is to develop a particle-tracking model, which will eventually be a useful

tool for predicting residence times and pollutant uptake by submerged vegetation.
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Chapter 2

Theory

There have been many studies of the hydrodynamics of flow in systems containing

both submerged [29, 64, 74, 71, 35, 36, 37, 38, 11, 84, 54, 65] and emergent [121, 62,

73, 69, 41, 67] vegetation. Initially, analyses were limited to flow above submerged

vegetation, and in-canopy flow was neglected. Velocity profiles were observed to be

logarithmic at some distance above the vegetation [54, 74, 11], suggesting a rough

boundary layer form. Later work focused on flow within emergent arrays, which

provided a greater basis for understanding the effects of vegetation on hydrodynamics.

More recently, flow at the top of a canopy has been shown to closely resemble a mixing

layer [36, 35], containing an inflection point in the velocity profile. Both the boundary

layer and mixing layer analogies provide useful insights to mass transport processes

in vegetated channels. In this chapter, we explain the terminology used to describe

vegetated flows, develop theory for the transport of momentum and mass, and show

how it leads to a model for a dispersion coefficient for vegetated channels.

2.1 Canopy Morphology

In this study, the term "canopy" refers to an array of aquatic vegetation, which we

model by rigid circular cylinders (see e.g., [69, 38, 122]). Rigid, cylindrical stems

have similar physical properties to salt-marsh vegetation species, such as Spartina

alterniflora and Juncus roemerianus, which are relatively stiff and emergent [69, 58].
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However, most submergent vegetation in rivers and natural channels exhibits some

degree of bending. Previous attempts have been made to match the flexural rigidities

of model vegetation to prototypes [74, 36, 54, 46, 103, 115, 12]. As discussed in

[116], flexible vegetation can be associated with significant plant-flow interaction (e.g.

monami - a periodic waving of the vegetation [74, 36]). To first order, these dynamics

are considered less important than the mean flow structure, in particular the difference

between canopy and overflow. Therefore, for simplicity we adopt a simple model

canopy of rigid, circular cylinders.

Plant-geometry and stem packing-density are important parameters that describe

canopy morphology. We assume that stems are uniformly distributed, but in a random

configuration, i.e. the average density is spatially constant but the stems are not

aligned in any regular pattern. The physical impedance that real vegetation provides

to the flow is a function of vertical position within the canopy [116, 74, 58, 62].

Therefore, for a vertical slice i of thickness Zi, we introduce the canopy density

parameter

NA (z)
AXyz (z) (2.1)

[74]. Here, N is the number of plants in a plan area Ax by Ay. Ai is the frontal

area of the vegetation in the slice. Terrestrial canopy studies usually adopt a vertical

average of a(z), so that a single parameter can be used to describe the canopy. A

common metric is the leaf area index [91, 74, and references therein] LAI, given by

LAI = j a(z) dz. (2.2)

For a canopy consisting of vertical cylinders, a $ f(z), such that a is the frontal area

per unit volume of the entire canopy. Of course, a will be spatially inhomogeneous in

a real canopy and this may greatly influence mass transport [62, 58]. For simplicity,

this is not considered here. The dimensionless density, ad (where d is the mean

diameter of the vegetation), represents the solid volume fraction within the canopy.

Field values of ad range from sparse (ad < 0.1) in rivers, lakes and salt marshes, to

extremely dense (up to ad ~ 0.4 [67]) in mangrove swamps.
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The total height of the canopy, h, is another important descriptor of vegetation

morphology. Specifically, the ratio of the canopy height to the water depth (H)

is of critical importance to flow hydrodynamics [74]. The height of vegetation in

the field is expected to range from 0(1 cm) in rivers and surface-flow wetlands to

O(1 m) - O(10 m) in kelp forests [20].

2.2 Vegetated Flow Hydrodynamics

2.2.1 Momentum Balance

Transport of momentum in vegetated flows is governed by the Navier-Stokes equations

for incompressible flow of an isothermal Newtonian liquid with constant density and

viscosity, namely
Dv

pP-+1 V2v_+pg (2.3)

and continuity,

V-v = 0. (2.4)

Here and afterwards, a single underbar represents a vector quantity and a double

underbar denotes a tensor. v = (u, v, w) is the velocity vector, defined in terms of

a right-handed cartesian co-ordinate system with position vector components, x, y,

and z in the downstream horizontal, transverse horizontal, and vertical directions,

respectively. p is the mechanical pressure, p is the dynamic viscosity of the fluid

(which is assumed to be water), and p is the fluid density. g = (g sin 3, 0, g cos 0)

is a body force vector in which only gravitational forces are considered, i.e., g is the

acceleration due to gravity and /3 is the bed slope. V =(, , ) is the del operator,

V 2 = _V.V is the Laplacian, and D denotes the material derivative, defined by
Dt

D - k+v-V. 
(2.5)

Dt &t - -

Flow in field conditions is usually turbulent to some degree. To resolve mean

quantities in turbulent flows, it is necessary to separate variables in (2.3) into mean
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and temporally fluctuating components. This process, known as Reynolds' decompo-

sition, yields

V = (u, v,w) = (U', + -', W7 + w') (2.6)

and

p = -+ p', (2.7)

where overbars and primes denote temporal averages and fluctuations, respectively.

The decomposed variables are substituted into (2.3) and (2.4) and then all terms are

time-averaged. All of the terms containing single fluctuation components conveniently

drop out, since they time average to zero. Continuity becomes

_V - = 0. (2.8)

For brevity and clarity, it is convenient to consider only the x-component of the

non-conservative, time-averaged momentum equation:

ai ai aii ai u'u' an'v' au'w'

at ax ay Ol~Z± ax +ay
1 J2 ± L (a 2fi a 26 a2 U
= a+ - + + a)+ g sin3. (2.9)
p 1X p ax2 ay2 aZ2

All of the steps that follow are completely analogous for the y- and z-components of

the Navier-Stokes equation. Although the last three terms on the left-hand side of

(2.9) are generated by Reynolds' averaging of the convective inertial terms in (2.3),

the convention is to combine them with the viscous terms on the right-hand side,

such that they are viewed as stresses. The resulting x-momentum equation is

aii 6_ aI 8p a2 2i a2

at ax 19y az pax ax2 ay 2  az2

1 (a (-pu'u'] a (-pu'v') a [-pu'w' N
+ a + ay + a ) +gsinQ, (2.10)

p( ax ay az
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where v = t/p is a kinematic viscosity. This equation can also be written as

a+ au + au + - _ a 1 (a- + + a iNX+ g sin 3 (2.11)
+ ax +ay+a/at ax 9y az p ax p ax ay az

where we define

aXX = pu'U' (2.12)
ax

/YX =t- PU'V' (2.13)
ay

rzz = It - pu'w'. (2.14)

The terms in (2.12)-(2.14) that contain the auto- and co-variances of the turbulent

velocity fluctuations are thus referred to as Reynolds' stresses, even though they

originate from convective acceleration terms. Further simplifications can be made if

we assume steady (j = 0), uniform (- = 0), two-dimensional (a = 0) flow in the

longitudinal direction. From continuity and the no-flux boundary condition at the

bed, di(z = 0) = 0, the temporal mean of the vertical velocity is zero everywhere,

such that (2.11) reduces to

0 = - + g sin . (2.15)

Similarly, the z-momentum equation simplifies to

_ iap 1a8p
g= - + - cos3. (2.16)

p az p Oz

Integrating (2.16) with respect to the vertical and applying the boundary condition

jj= 0 at z = H, we obtain the pressure distribution

i = pg cosf (H - z) + T . (2.17)

Except for just at the surface (i.e., z = H), we would expect that hydrostatic pressure

completely dominates the stress due to tuirbulent fluctuations in the vertical velocity

component. Furthermore, aw/az = 0 from conservation of mass, so we conclude that
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Uz = 0. (2.17) then reduces to

i = pg cosf (H - z) . (2.18)

Thus far, we have considered the equations of fluid motion at a single point, and

the effects of vegetation on the governing equations have not been considered. The

presence of an array of cylinders introduces heterogeneities in the velocity field at

scales that are too small to be of interest if we want to consider dispersion on the

scale of many water depths. To characterize transport on a macroscopic scale, some

sort of spatial averaging needs to be applied to the governing equations. This is

generally carried out directly after the Reynolds' decomposition and time-averaging.

The spatial-averaging process is completely analogous to the Reynolds' averaging and

results in the generation of additional dispersive terms due to spatial deviations from

the mean in-canopy velocity [64]. These are parameterized by a bulk drag coefficient,

defined as

CD (2.19)
~a(2)'

where FD is the drag force per unit mass of fluid and angle brackets denote spatial

averaging in the horizontal plane over a scale larger than the stem spacing.

Lopez and Garcia [64] emphasize that the drag term arises as a consequence of the

spatial averaging process, which does not require artificial introduction of a quadratic

drag expression into the momentum equation (as in, e.g., [56]). In any event, the

one-dimensional, spatially-averaged, x-component of momentum becomes

0 = I a ( Z-) + g sin3 -1 CDa(U2 ) (2.20)
p Oz 2

Strictly speaking, the gravitational term should be modified to account for reduced

body force in the fluid due to the volume occupied by cylinders. However, this correc-

tion is generally expected to be negligible for sparse canopies [74]. For high Reynolds'

number flows (which occur at moderate velocities in water, since the viscosity is rela-
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tively low'), viscous stresses are only important in very narrow boundary layers [95,

pp. 79]. Therefore, (2.20) can be simplified further, yielding

0 (7w ) + g sin 3- -CDa(u2). (2.21)
az 2

For clarity, we will henceforth denote the channel slope by S, such that S = sin /3.

If we consider a channel containing submerged vegetation (as shown in Figure

2-1), we can divide the flow into two vertical layers: (i) The unvegetated region,

h < z < H, and (ii), the in-canopy zone, 0 < z < h. Evaluating (2.21) for the

unvegetated zone, we see that the drag term is zero. We are then left with a balance

between gravity and Reynolds' stress. Assuming that (u'w') H = 0 and integrating

with respect to z over the entire layer, we find

gS(H - h) = W) = u . (2.22)

u, is a friction velocity, which characterizes the momentum flux at the top of the

canopy. Note the distinction from the classic friction velocity for an open channel,

which is given by U*H = VgSH [33, pp. 21].

Now, focusing our attention on flow within the canopy region, and integrating

(2.20) over the vertical, we obtain

gSh = -U + CDa dz. (2.23)

Bed drag is ignored, since it is negligible in comparison to vegetation drag for dimen-

sionless densities ad > 0.01 [69]. As discussed in [74], (2.23) or (2.21) can be used

to estimate the bulk drag coefficient for an array of plants, once mean and turbulent

velocity statistics are known.

'See 2.2.2 for a full discussion of Reynolds' numbers.
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Figure 2-1: Schematic of channel containing submerged vegetation

2.2.2 Reynolds' Number

From §2.2.1, it should be clear that the full Navier-Stokes equations are too complex

for many practical applications, and it is necessary to make simplifying assumptions

(e.g., the neglect of viscous terms in §2.2.1). Such assumptions can be formally

justified by non-dimensionalizing (2.3) with carefully chosen length (L), velocity(V)

and pressure (P) scales. Using these scales, we introduce the dimensionless variables

x Vx* = = , _* = P*=-
L IV P

The Navier-Stokes equations then become

Dv*- -V*P* + V *2V* +gL (2.24)
Dt* - L P - V 2

V = 0, (2.25)
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where t* = _*/V* and V* = LV. For inertia-dominated flows, the pressure scale can

be chosen as P = pV 2 , such that (2.24) yields

Dv* -V*P* + ( ) V*2v* + (b . (2.26)
Dt* -- pVL -- V2

If appropriate scales have been chosen, every term in (2.26) with a '*' superscript

is of order unity. Thus, the relative importance of each term depends only on the

dimensionless coefficients, which are

Re - pVL - VL inertial forces
y1 v viscous forces

Fr2 
= - body forces (Froude Number) 2 .

V2 inertial forces

In §2.2.1, we assumed Re > 1, such that viscous forcing was negligible.

The Reynolds' number is a very powerful descriptor of flow characteristics but

its usefulness is entirely dependent on choice of the appropriate length and velocity

scales, L and V, respectively. For example, in vegetated flows, there are many relevant

length scales (plant diameter, plant height, water depth, etc.) and velocity scales (e.g.,

mean channel velocity, in-canopy velocity). Thus, the choice of parameters needs to

be tailored to specific analyses.

The Reynolds' number is often used to characterize whether a flow is laminar,

transitional or turbulent. For pipes, turbulent flow can be expected for Re > 4000,

where the mean cross-sectional velocity and diameter are the relevant scales. Assum-

ing that this transfers easily to open channel flow by replacing the diameter with the

hydraulic radius, RH, we find that turbulence should exist for Re > 1000 [13, pp.

120]. For an infinitely wide channel, RH~H, and we can define a critical water-depth

Reynolds' number as

ReH,Cr UH - 1000, (2.27)

where H is the water depth and U = f H(u) dz. ReH ranges from 0(1) to O(10')

in coastal and freshwater vegetated flows [58, 59, 61], depending on factors such as

the degree of tidal inundation, rainfall, and location.

27



The stem-diameter Reynolds number, Red, is used to describe dispersion on the

scale of individual plant elements. We define Red = (d for flow in a random cylinder

array, where (ii) is the temporally and horizontally averaged velocity and d is the

diameter of the cylinders. For Red < 1, flow past an isolated cylinder is essentially

laminar (see Figure 2-2). As the Reynolds' number increases to Red > 4, the vorticity

on the downstream face becomes sufficiently strong to generate two steady recircu-

lating eddies [55, pp. 346]. Just beyond Red = 40, the wake becomes unstable and

oscillates gently, until the vortices roll up and shed periodically (in alternate fash-

ion) at around Red = 55. These vortices are carried downstream by the mean flow

in what is known as a von Karman 2 vortex "street" (since they resemble staggered

footprints). For Red > 200, the vortices themselves become turbulent and irregular,

until any remaining periodicity becomes barely distinguishable for Reynolds' numbers

greater than about 5000 [55, pp. 349]. This illustrates that the flow around a circu-

lar cylinder is extremely complex, resulting in non-linear mass transport processes,

particularly when multiple cylinders are in such close proximity that their wakes in-

termingle and interact with one another [30, 28, 122]. The latter may result in a

transition to turbulent vortices at Red < 200 for arrays of cylinders, particularly in

finite, bounded canopies [122]. For real vegetated flows, 0(100) < Red < O(103)

[61, 58, 59], such that the majority of flow conditions are in the regime where vortex

shedding occurs.

2.2.3 Drag Coefficient

The bulk drag coefficient defined in §2.2.1 describes the ratio of total canopy drag

to the dynamic pressure force. Much research has focused on determining the drag

coefficient for isolated circular cylinders as a function of Red. The following curve fit

from [123] provides an accurate prediction for an infinitely long, isolated cylinder:

CD,isolated = 1 + 10.ORed 2/3, 1.0 < Red < 2 x 10 5  (2.28)

2 After the Hungarian scientist, Theodore von Karman.
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Figure 2-2: Regimes of flow past a circular cylinder.

However, the bulk drag coefficient for a submerged array is likely to differ from this,

due to wake interaction [69] and free-end effects [37, 129]. For Red > 200, [69] showed

that CD decreases with increasing ad. The reverse has been observed for low Reynolds

numbers (Red < 50), i.e. CD increases with increasing solid volume fraction when

viscous drag dominates [51].

2.2.4 Boundary-Layer and Mixing-Layer Theory

As discussed at the beginning of this chapter, the first analyses of vegetated flows

were based on rough boundary-layer theory. The concept of boundary-layer theory

was first put forward by Ludwig Prandtl in August 1904. Prior to this, fluid me-

chanicians had focused on solving the inviscid Euler equation, due to inherent math-

ematical difficulties in solving the Navier-Stokes equations for viscous flow. Prandtl

showed that it was possible to analyse real flows for a number of special cases and

that, in particular, the Navier-Stokes equations could be greatly simplified within the

boundary layer. This breakthrough essentially brought together the divergent fields
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Figure 2-3: Typical shape of the Reynolds' stress and velocity profiles in a vegetated

shear layer

of hydraulics and theoretical hydrodynamics. Blasius, a student of Prandtl, used

similarity solutions to solve the boundary-layer equations for two-dimensional flows

over a flat plate and a circular cylinder [55, pp. 330]. Then, in 1921, Theodore von

Karman (another Prandtl student) integrated the boundary-layer equations across

the thickness of the layer, allowing the theory to be applied to more complicated sce-

narios. The ubiquity of boundary layers in engineering applications and in everyday

life has prompted extensive research, both theoretical and empirical. An exhaustive

review of boundary-layer theory is given in Hermann Schlichting's classic text [95].

Many boundary-layer concepts have been applied to flows in the region above

submerged vegetation [1, 11, 54, 2, 103, 12, 56]. However, a better mechanistic un-

derstanding of flow within vegetation [69, 73, 62, 80, 122] has prompted some revision

of the philosophy concerning vegetated flows. As first presented by Raupach et al.

[91], flows near the top of submerged vegetation more closely resemble mixing layers,

rather than boundary layers (see Figure 2-3). A mixing layer is a confined region

of shear (of size tin) that separates two regions of approximately constant velocity.

The total velocity difference across the layer is denoted by AU. The mean velocity

profile is closely approximated by a hyperbolic tangent [36], and contains an inflec-
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tion point, which is a source of instability. Reynolds' stress profiles exhibit a sharp

peak near the top of the canopy, and decay rapidly towards the bed and free surface

[92, 36, 74, 64, 11, 115]. As in a free-shear-layer (e.g., [43]), the shear layer produced

in vegetated flow is characterized by a street of coherent Kelvin-Helmholtz (K-H)

vortices that dominate vertical transport between the canopy and overlying layer

[46, 38]. These coherent structures do not always grow to encompass the entire flow

depth [74]. Consequently, as shown in Figure 2-3, the canopy is often separated into

an upper region of rapid vortex-driven transport (the "exchange zone") and a lower

region with greatly reduced mixing [74]. Denoting the canopy height as h and the

bottom of the shear layer as z1, the exchange zone spans zi < z < h. Vertical mixing

in the exchange zone is characterized by strong "sweeps" (inflows of high momentum

fluid at the downstream end of the vortices) and "ejections" (upward flows out of

the canopy from the tail of the vortices), as evident from periodicity in Reynolds'

stress profiles (see Figure 9 of [36]). Vertical transport in the lower region (termed

the "wake zone", 0 < z < z1) is dominated by stem-wake turbulence, with signifi-

cantly smaller length and velocity scales than the shear-layer vortices. Consequently,

the diffusivity in the wake zone (D,) is typically an order of magnitude lower than

that in the exchange zone [38]. Nepf et al. [70] showed that the penetration of shear

(h - zi) into a vegetation canopy is inversely proportional to the drag coefficient and

the canopy density parameter,

(h - zi) ~ 0.2(CDa - (2.29)

The extent of vortex penetration, given by (2.29), is expected to have a tremendous

impact on the overall rate of dispersion in the flow.
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2.3 Fundamentals of Mass Transport

2.3.1 Governing Equations

This section reviews the equations of mass transport in incompressible fluid flows. It

should be observed that many of the steps in the derivation of the three-dimensional

mass transport equation are analogous to procedures in §2.2, where the transport of

momentum is described. This is expected, since the only difference is that we are

now dealing with the transport of scalars, instead of vectors.

The equation that governs the transport of scalar quantities (such as mass, thermal

energy and electrical charge) is the advective-diffusive equation,

D c
D = DmV 2 c + Zr (2.30)Dt

where Dm is a molecular diffusion coefficient, assumed to be constant and isotropic.

c(x, t) is the concentration of the scalar quantity of interest. r represents production

(+) or decay (-) and will be neglected in the following derivations to avoid compli-

cation. The instantaneous conditions represented by (2.30) can be decomposed into

mean and temporally fluctuating components, in a manner completely analogous to

the Reynolds' decomposition applied in §2.2, i.e.,

V = V + v' (2.31)

c = 1 + c'. (2.32)

Similar to before, we substitute (2.31) and (2.32) into (2.30) and time-average. This

removes terms with a single prime such that the governing equation for the transport

of mean scalar quantities is

+ = V -v'c' + DmV 2 5. (2.33)

The usual assumption is that the turbulent dispersive term can be represented by an
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equivalent Fickian diffusion, i.e.,

-V - al' + a [-v' + a [-w'c'

O x ac D- (2.34)
ax (Dx y y az az

where Dx, DY, and D2 are non-isotropic, Fickian, eddy diffusivities. In turbu-

lent flows, DX, DY, D > Dm (except very close to boundaries where turbulence is

damped), such that

+V - v= aDx + - (Dy - + D (2.35)at - - ax ax 1  ay &ay az Oazj

This step, where molecular diffusion is ignored, is analogous to the neglect of viscous

contributions to the momentum flux in §2.2. (2.35) is the mass conservative form of

the three-dimensional advective-diffusive equation.

2.3.2 Turbulent Schmidt Number

In 1877, Boussinesq first defined a turbulent eddy viscosity (by analogy to the kine-

matic viscosity for laminar stresses),

--(u'w') (2.36)

which describes the rate at which momentum is diffused in a fluid. This parameteri-

zation of turbulent transport works very well, provided that eddies are smaller than

the scale of the reference frame being considered. It should be clear from inspection

of (2.35) and (2.36) that turbulent diffusivities are the mass transport analogues of

the eddy viscosity. Since there is reasonably good understanding of the transport of

momentum in turbulent flows, it is desirable to parameterize mass transport with this

in mind. The dimensionless turbulent Schmidt number, Sc, is the ratio of turbulent

viscosity to turbulent diffusivity:

Sc = . (2.37)
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Sc varies considerably across the width of boundary layers, from about 0.4 at the

outer edge to 0.9 at the wall [53], with an average around 0.8 [38]. Sc ~ 0.54 for

mixing layers and Sc ~ 0.47 for vegetated shear layers [38].

2.4 Longitudinal Dispersion

While (2.35) provides an accurate description of mass transport in bodies of water,

resolution of concentration distributions in three dimensions is not usually necessary

(or desired) for most engineering applications. This is especially the case in long, slen-

der water bodies such as rivers, estuaries and wetland channels, where information

about longitudinal concentration distributions is usually sufficient. The use of (2.35)

under these conditions would be overkill, and possibly too computationally expensive,

for most practical applications. Only transport in the x-direction need really be con-

sidered. Therefore, some spatial averaging is required to reduce the complexity of the

governing equation. This idea led G.I. Taylor to investigate longitudinal dispersion, a

concept that reduces scalar transport to a balance between differential advection and

transverse diffusion, through cross-sectional averaging. Taylor first analyzed disper-

sion in laminar pipe flow in 1953 [106]. Aris corroborated Taylor's results with a more

formal analysis in 1956 [3]. Taylor extended his theory to turbulent pipe flow [107]

and Elder completed an analysis for open channels [31]. Much effort has gone into

developing the theory for application to natural channels (see [32, 33] for reviews) but

agreement between theory and observations is rare [118, 77, 22, 16, 49]. The following

section reviews the derivation of the advection-dispersion equation, with the aim of

applying it to real vegetated flows.

First, we define a cross-sectional average concentration as

C= - dz, (2.38)
H 0

and vertical perturbations from this mean as (e(z))" = (6(z)) - C. Applying simi-

lar decomposition to the velocity field, ii(z, t), we substitute these expressions into
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(2.35) to obtain a mass transport equation that is an average over the cross section.

Assuming that the flow is non-divergent (i.e., no lateral inflow or outflow) and the

cross section does not change appreciably over short distances in x, this yields

+ U-- = ( (Dx) ' ("c") . (2.39)at ax ax ax

The assumption that gives rise to the definition of a longitudinal dispersion coefficient

is that mass transport due to the spatial covariance, (u"c"), approximately follows

Fick's second law. Thus, it can be approximated by a constant times a concentration

gradient, i.e.,

-(u"c) K ac (2.40)
ax,

where Kx is an average longitudinal dispersion coefficient for the entire cross-section.

Taylor showed that the covariance term representing differential advective mass trans-

port in (2.39) is much more important than diffusive transport in the longitudinal

direction. Therefore, (Dx) < K2, and the diffusive term in (2.39) can be dropped,

yielding
ac+ U ac= K2 (2.41)
at ax - X2

which is the one-dimensional advection-dispersion equation.

Employing a moving co-ordinate system [33, pp. 83], Taylor showed that (after

some initial time) the two-dimensional mass transport equation reduces to a balance

between longitudinal advective transport and transverse diffusive transport, from

which (u"c"), and hence K2, can be determined. The result is that Kx can be found

by a triple integration, which for an open channel is given by

Kx - j i)"jo ii)dz dz dz (2.42)K= H z z

[31]. Elder evaluated (2.42) for an infinitely wide, straight open channel by assuming

a logarithmic velocity profile and found that Kx ~- 6uHH. However, Fischer [33,
pp.128] showed that transverse horizontal velocity shear can have more of an effect

than vertical shear on dispersion in real rivers. Under such conditions, he found that

35



experimentally determined dispersion coefficients could be up to three times greater

than Elder's prediction. Elder's analytical prediction compares well to dispersion

coefficients observed in very wide (wc/H - 0(10), where w, is the channel width),

straight, rough-bottomed laboratory channels [32]. However, these conditions do not

hold in most aquatic systems. For example, lateral nonuniformities in rivers and

estuaries such as bends and dead zones can result in significant lateral shear and dra-

matically increased dispersion [22, 77, 21]. Likewise, the drag imparted by submerged

vegetation generates velocity profiles and vertical mixing that differ significantly from

those in a logarithmic boundary layer [38], invalidating several assumptions behind

Elder's analysis. Discrepancies on the order of a factor of five between observed dis-

persion coefficients and rates predicted by (2.42) are not uncommon [22]. Even from

a theoretical standpoint, a comparison of Taylor's [107] result for turbulent pipe flow

to Elder's expression for the dispersion coefficient in an open channel (in terms of

hydraulic radii) reveals substantial quantitative differences. This illustrates the point

that, in practice, dispersion is highly dependent on channel geometry. Therefore,

in channels with complex geometries, or with vegetated beds, a more complex and

careful analysis of dispersion is required.

2.5 Dead-Zone Dispersion

Transient storage or dead-zone models were developed to explain observations of per-

sistently skewed concentration distributions in natural channels [22, 77, 114]. Channel

observations have led to widespread consensus that an accurate analysis of longitudi-

nal dispersion must explicitly consider the effects of "dead", or "slow" zones [113, 19].

A dead zone is a region of reduced velocity and diminished turbulence caused by irreg-

ularities in channels or pipes, such as the inside of bends [101, 24, 99, 98, 32], channel

sidearms [96], pools and riffles [98, 113], pockets in gravel beds [68, 6], hyporheic

zones [68, 125, 126], wakes of bank structures [112, 33, 119], the viscous sub-layer [14]

and vegetated regions [41, 88, 87, 125, 126]. Dead zones tend to trap scalars and hold

them up relative to the main channel flow, thereby increasing longitudinal dispersion.
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The idea that zones of reduced velocity could affect dispersion was first developed

during the application of dispersion theory to gas chromatography and distillation.

In 1959, Aris [4] found that the stationary phase of a tubular chromatographic col-

umn behaved as a thin retentive layer, which increased the dispersion coefficient in

proportion to the quantity of mass retained. He derived the dispersion coefficient for

a column of gas flowing within an annulus of liquid as a simple case and then general-

ized for co-axially flowing streams of arbitrary cross-section. A plethora of multi-layer

models have since emerged (e.g., [108, 100, 19, 17, 93]), attempting to characterize

the effect of transverse variability in pipe and open channel hydraulics. The basis for

most of these analyses involves the application of coupled advection-dispersion equa-

tions to each region of the flow. There are numerous ways to approach the solution

of these equations (see e.g., [19, 93]) but here we adopt a similar method to the one

given by [18].

In 1986, Chikwendu [18] presented a prediction for the asymptotic longitudinal

dispersion coefficient in a flow divided into an arbitrary number of layers. For sim-

plicity, we will show the result for a two-layer system only, but the theory is easily

extended for additional zones. The conceptual model is shown in Figure 2-4, which

shows a two-dimensional (x and z) flow in an open channel divided into an upper

fast zone (h, < z < H) and a slow zone near the boundary (0 < z < hi). Constant

mean velocities, U1 and U2 ), are assumed for the slow and fast zones, respectively.

The two zones are assumed to be well-mixed with concentrations C1 and C2. The

Taylor dispersion coefficients for the layers, K1 and K 2, are obtained by evaluating

(2.42) for each zone separately. Exchange between the zones is characterized by the

exchange coefficient, b, with dimensions T- 1. Thus, the coupled advection-dispersion

equations for each zone are

aC1 ac1  a2C1+ U, K1_ + b -- ) (C2 - C1) (2.43)at ax ax2 h1

aC2  aC2  a22  H__
a +U2 a = (K2  C2+ b ()(C1 - C2). (2.44)at + 2 x = 28x2 H - h1
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Figure 2-4: Slow zone model for an open channel.

The only difference between these equations and (2.41) is the inclusion of an additional

coupling term to account for transfer of mass across the boundary of the zones (z

hi).

The solution of this set of equations proceeds as follows. The Fourier transforms

(see [105] for a review of Fourier transformations) of Ci(x, t) and C2(x, t) are defined

as

(2.45)01 (kt) = j C(x, t)e-ikxdx

0 2 (kt) = C 2 (x,t) e-ikdx,

and

(2.46)

respectively. Substitution of (2.45) and (2.46) into the partial differential equations,

(2.43) and (2.44), reduces the problem to a system of ordinary differential equations:

at ikU1 C1 = -k 2 K 10 1 + b (02 - 01) (2.47)

(2.48)-k 2 K 2C 2 + b H (1 - 02).
(H-h1)

Chikwendu and Ojiakor [19] assumed exponential solutions of the form 01 = f(k)e (k)t
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and 02 = g(k)e7(k)t, giving a characteristic equation of the system,

-2+y ik(U + U2) + k2(K+ K2)+b (H+ H)

+ [ik3(UK 2 +U 2K1)+ k2(k2K1K 2 -U1U 2)+ikb U1H +U2 = 0.
H-h1 h1i

(2.49)

Since we are only interested in the dispersion coefficient in the Fickian limit3 as

t - o0, higher order terms in k disappear and -y.ikB - k2A, where A and B are

constants. We then plug this value for -y back into the expressions for C1 and 02.

Taking an initial condition of 01 (k, 0) = 02(k, 0) = Co (i.e., a line source), we invert

Ci and 02 to find that the concentration distributions in the two layers are equal at

long times and are given by

Co F-(x - Bt)2 -C(xt)= exp . (2.50)
v/4,~t _ 4At _

This resembles a Gaussian solution with mean velocity, B U = ( ) Ui + (H hi) U2,

and asymptotic dispersion coefficient, A = K,. Chikwendu [18] determined these

constants analytically by substituting y back into (2.49) and, setting the coefficients

of k' to zero, for i = 0, 1 and 2. This confirmed that B = U and yielded a final

solution for the longitudinal dispersion coefficient,

(hL)2(H-h1)2(U2 - UI) 2 + ( K (H - h,) K(.

KX = H H + K, + K2 ( 2.51 )

2.6 The Method of Moments

In 1956, Aris [3] first applied moment-generating equations to show that some of the

conditions on (2.41) could be relaxed. Moment-generating equations allow (2.41) to

be expressed in terms of the spatial variance of the concentration distribution, which

is of great practical use. The ith spatial moment of a concentration distribution is

3See §2.7 for a discussion of the Fickian limit.
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given by

S= j xic(x, t)dx. (2.52)

The various moments provide useful information about the properties of a concentra-

tion distribution. For example:

MO = constant = mass (2.53)

= X(t) = center of mass (2.54)

MM
2 x 2 = UX (t) 2  spatial variance of the distribution (2.55)

MO

= G(t) = skewness coefficient (2.56)

M4= i(t) = kurtosis. (2.57)
0~2

The first three statistical quantities are fairly well known. However, the parameters

containing higher-order moments are not so commonly understood. They are gener-

ally used to describe the deviation of a particular distribution from Gaussianity. The

skewness coefficient provides a measure of the asymmetry of a concentration distri-

bution [86]. A perfect Gaussian has zero skewness. A negative skewness coefficient

(G < 0) indicates a distribution biased to the right (i.e., the peak is to the right of

the center of mass) and a positive skewness coefficient indicates left bias. If temporal

moments are used to define the skewness coefficient, positive skewness indicates bias

to short times. The kurtosis of a distribution describes the sharpness of its peak

[86]. Because comparisons are usually made to Gaussian distributions, which have a

kurtosis of 3, the kurtosis "excess",

Ke = K - 3, (2.58)

is a more commonly used parameter. re > 0 indicates a high peak and is referred to

as leptokurtic. ke < 0 represents a flatter distribution, termed platykurtic.
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A useful application of the moment-generating equations relates to the 1-D advection-

dispersion equation given by (2.41). First, we switch to a moving co-ordinate system

that travels at the mean velocity U, i.e.,

= x- Ut and T = t (2.59)

(e.g., [33, pp. 83]). By the chain rule of calculus, we find that

a aEa aTa 9 a
09X OX ax aT a

a _ aa a'Ta _ a a
at at aataT a aT

(2.60)

(2.61)

In the new co-ordinate system, (2.41) then becomes

ac= K a 2 C (2.62)
aT (a<2

Now, we multiply each of the terms by $2 and integrate over -oc < < oc to obtain

fl 02 d . (2.63)

The right hand side of (2.63) can be integrated by parts [3] such that Kx can be

expressed as

K2= a
2 ar

Ec Cf2d <
fc C d

(2.64)

which, by analogy with (2.55) is

1 a
2 aT

(2.65)

Note, the term in (2.55) representing the center of mass vanishes, since the new

co-ordinate system travels with the center of mass. Thus, transformation back to

our original co-ordinate system yields the spreading-rate of a tracer cloud in the
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longitudinal direction,
1 8U2

KX X (2.66)
2 at

If the variance of a concentration distribution in a channel is known at any time, t1 ,

then the variance at any subsequent time, t2 , can be estimated from

UX(t2)2 = UX(t1) 2 + 2Kx(t 2 - t1 ) (2.67)

[33, pp. 42], provided that Kx z f (t). In the event of a time-varying dispersion

coefficient, (2.67) is also true if (t 2 - t1 ) -* 0.

2.7 Fickian Time Scales

Some time after the release of a mass of tracer into a channel, o2 increases linearly

with time, such that Kx is constant, from (2.66). Prior to this time, known as the

Fickian limit, differential advection will dominate and the rate of increase in the

variance will not be linear. Non-linear growth of variance is indicative of anomalous

diffusion [50, 127]. At short times, variance growth in unbounded unidirectional shear

flows is generally superdiffusive (i.e., o2ta, where a > 1). The characteristic rate of

variance growth for vegetated channels will be discussed later in Chapter 4.

Fischer [32] proposed that a "reasonable practical criterion" for the onset of a

Fickian regime is that the dimensionless time scale for cross-sectional mixing,

- 1H f0 "D, dz]
H 2 = (2.68)

should be greater than 0.4. This is the standard and most widely accepted criterion.

However, Chatwin and Allen [16] point out that this bulk estimate ignores the effects

of reduced mixing in dead zones. The depth average Dz,a = H f1 H D, dz in (2.68)

underestimates the contribution from zones of significantly reduced diffusivity (this is

a resolution issue, as discussed by Thacker [108]). Chatwin [15] proposed that t= 1.0

is the minimum time scale for an accurate analysis.
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Practical considerations often limit the number of sampling stations in experi-

mental tracer studies. And, concentration measurements at a single location dictate

the approximation of (2.66) by Z (where t is the mean travel time of a tracer cloud

over a particular reach), which will remain an inaccurate estimator of K, until some

time after the onset of a Fickian regime. Therefore, a more stringent criterion may

be required for experimental work.

2.7.1 P6clet Number

In §2.2.2, we showed that the Navier-Stokes equations could be non-dimensionalized

to generate important dimensionless parameters such as the Reynolds' number and

Froude number. Similar methodology can be applied to the equations of mass trans-

port, such as (2.41), to yield interesting and useful results. Again, we begin by

introducing dimensionless variables,

* x U C tL
x* -) U* = - C* = - * - .

L V Cre V

Substitution into (2.41) then yields

VCref (C* *C*) KXCref ac (2.69)
L ( t* ax* L2 aX*2

If we multiply (2.69) by (LiVCref), we obtain

ac* Uac* 1 a&2C*
+ * Fe(2.70)at* ax* Pe ( x*2 (270

where

VLPe = . (2.71)Kx

Pe is a dimensionless dispersion Peclet number. It is the ratio of the time scale

for dispersion (L 2 /Kx) to the time scale for advection (L/V). From the magnitude

of Pe, we can determine the relative importance of advection and dispersion. For

example, Pe > 1 implies an advection-dominated system. As with the Reynolds'
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number, appropriate choices of velocity and length scales are critical to the P~elet

number's usefulness. K. may also be replaced by a molecular or turbulent diffusion

coefficient, depending on the relevant P~elet number. The Peclet number is the mass

transport analogy to the Reynolds' number, which describes the relative importance

of advection and diffusion of momentum.

2.8 Dispersion in Vegetated Channels

Diminished velocity and turbulence in the canopy region of a vegetated channel make

it distinct from the overflowing water. We therefore propose a two-zone model for

the vegetated channel with a division at the top of the canopy (z = h), as shown in

Figure 2-5. Constant velocities, U1 and U2, are assumed for the lower and upper zones,

respectively. K, and K2 are the independent dispersion constants in the slow and

fast zones, respectively. Scalar transport between the two layers is again characterized

by the layer exchange coefficient, b. Thus, from (2.51), the longitudinal dispersion

coefficient for a vegetated channel at large times is given by

( )2(H-h)2(U2 - U1) 2  hH -- h K
K = H + - K, + K2. (2.72)

b H H

This form highlights three different processes that contribute to dispersion in channels

containing submerged vegetation. The first term of (2.72) represents dispersion that

arises from inefficient exchange between the fast zone (h < z < H) and the slow zone

(0 < z < h). In other words, scalars trapped in the slow zone are held up relative

to those in the fast zone, increasing the spread in the longitudinal direction. For

simplicity, we assume

(U2 - U1 ) = Q1AU, (2.73)

where #1 is an 0(1) scale constant. We test this assumption in Chapter 4, where we

will also show that AU-UH. The second and third terms in (2.72) represent the

dispersion in the canopy layer and the overflow layer, respectively.

By definition, the exchange coefficient, b, is the inverse of the time scale for vertical
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Figure 2-5: Slow zone model for a vegetated channel.

mixing across the two layers. Thus, we expect that

z2 (h - zi) (H - h)2

b-1 ~ 1 + . (2.74)
Dw k - H D, dz

The first term in (2.74) represents the time scale for turbulent-diffusive transport

across the wake zone. The second term represents the time scale for vortex-driven

flushing of the exchange zone, for which Ghisalberti and Nepf [38] determined the

exchange velocity, k = AU/40. Finally, the last term in (2.74) is the time scale

for transport across the fast zone. In the limit of a rough boundary layer where

H>h > z1 , the first two terms of (2.74) are negligible and we are left with

b (2.75)

[HfoH Dz dzl

which is the usual Fickian time scale for vertical mixing in an open channel, defined

earlier in (2.68). As H-+h, and the vegetated region begins to occupy a significant
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fraction of the flow depth, the boundary-layer approximation is less appropriate.

Thus, for H/h-O(1), mass transport across the unvegetated layer is so fast that the

last term in (2.74) vanishes. §2.8.1 considers the regime where K-H vortices dominate

exchange between the layers, such that the first and last terms on the right hand side of

(2.74) are negligible. §2.8.2 deals with exchange that is limited by turbulent diffusion

in the canopy, i.e., b = D,/z.

The second term in (2.72) represents dispersion in the slow zone. K1 is the dis-

persion coefficient that would be obtained for 0 < z < h, if this region were detached

from the flow above. If K1 is assumed equivalent to the dispersion coefficient in an

emergent canopy, it can be represented by

K1 = Kvs + Kd, (2.76)

where K,, and Kd represent the in-canopy vertical shear [evaluated using (2.42)] and

stem-scale contributions to dispersion, respectively. In sparse canopies (ad < 0.1),

Kd results primarily from velocity heterogeneity due the presence of cylinders, and

can be approximated by

K = C 1/3U d (2.77)
2D 1

[62, 122]. In denser canopies (ad > 0.1), stem-scale dispersion will be dominated by

the trapping and release of mass within the boundary-layers and wakes of individual

cylinders [122]. White and Nepf [122] found that the dispersion coefficient in an

emergent random array of densely-packed cylinders is proportional to the volume of

primary cylinder wakes, the wake residence times and the square of the velocity within

the array. Thus, for a dense canopy,

Kd =U2Tres, (2.78)

where

E = the total fractional volume of primary cylinder wakes

and
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Tres = the mean residence time within a primary wake.

As discussed in §2.2.2, the majority of field conditions exhibit stem-diameter Reynolds'

numbers (Red) that are greater than 40, such that vortices are shed from the down-

stream side of the canopy elements [95, 122]. In this regime, engulfment by shed

vortices, rather then diffusion, dominates the transport of scalars into and out of

the primary wakes. Therefore, the residence time, Tres, must be inversely propor-

tional to the shedding frequency, f, [122]. The shedding frequency for our canopy

elements is given by f, = StU1 /d, where the Strouhal number, St, is a function of

Reynolds' number. For Reynolds' numbers of interest (40 < Red < 104), we find that

0.16<St<0.21 [95, pp. 32], so we assume an approximate value of St = 0.2. It follows

that Tres ~ 5-1-. In addition, it is reasonable to assume that the fractional volume of
U1

primary wakes is proportional to the cylinder density [122], i.e., crad. Thus, we can

approximate the stem-wake dispersion within a dense (ad > 0.1) canopy at Red > 40

by

Kd ~ 5adU1 d. (2.79)

Of course, this approximation will only hold in the Fickian limit, which is reached

after all tracer particles have sampled a trapping wake at least once. The time to

reach the Fickian limit is then given by

t >Tres 5 (2.80)
e aU1

The third term in (2.72) contains K2 , which represents the longitudinal dispersion

in the fast zone due to large-scale velocity shear in this region. Above the canopy,

the velocity profile reverts to a logarithmic profile for z > h, with a virtual bottom

boundary near z = h [54, 74, 11]. Thus, Elder's simple analytical expression is

expected to hold in the region h < z < H, yielding

K2 = 5.9u,(H - h) (2.81)

where u,, is obtained from (2.22). Although the analysis of Nepf and Vivoni [74]
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suggests that z = zi is a more appropriate choice for the lower limit to the logarithmic

profile, simplicity and practical applicability of the model dictate the use of z = h.

It should be mentioned that (2.72) is consistent with established dispersion theory

for boundary layers, as it reduces to (2.81), in the limit of H/h > 1. Similarly, in

the limit of emergent vegetation (H/h -a 1), Kx = K 1 .

2.8.1 Vortex-Driven Exchange

If (zi/h) < 1, canopy exchange is driven by the K-H vortices, which penetrate almost

to the bed. Scaling arguments and experiments by Ghisalberti and Nepf [38] show

that vortex-driven exchange yields an exchange coefficient

A U
b= . (2.82)

40h

Physical laboratory constraints, such as flume size, allowed a maximum experimental

value of zi/h = 0.6 to be obtained here, such that most of the experiments fall in this

regime.

We can now begin to simplify the slow zone model, given by (2.72). When zi<h,

the contribution of K1 to the overall dispersion is expected to be small, so the second

term in (2.72) is neglected for vortex-driven exchange. The exchange term is sim-

plified by substitution of (2.82), (2.73) and the scaled constant /32 = AU/U*H, to be

determined by experiment. Finally, K 2 is replaced by the right hand side of (2.81),

yielding
h 2 (H - h 2  (H - h)2

Kx = 403,2 -- huH + 5.9 U. (2.83)
H H H

For convenience, we combine the constants in the first term into a single parameter,

/3. Then, we divide through by u,(H - h) and rearrange, allowing us to obtain a

nondimensional coefficient of longitudinal dispersion given by

Kx h ( H -h) 1/2 + (H - h) (2.84)

U*( H - h) H H H
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Alternatively, normalization by UHH gives

Kx ( (H-h)2  H -(h)5 / 2

= 0( - )( )+ 5.9 (2.85)
u,,HH H H H '

which may be preferable for practical application.

2.8.2 Diffusion-Limited Exchange

In dense canopies (zi/h) ~_ 1, and vortex penetration is so limited that in-canopy

diffusion controls exchange between the layers, such that

b ~ . (2.86)

This introduces the wake-zone vertical diffusivity, Dw. We assume that this is equiv-

alent to the diffusivity in an emergent canopy and can be approximated by

DW = a /CDadUld, (2.87)

where a = 0.1 - 0.2 [62].

It is not obvious that stem-scale dispersion will be negligible in this regime.

Initially therefore, we do not neglect K 1, as done in § 2.8.1. (zi/h) -+ 1 implies

weak shear within a presumably dense canopy, such that K,, can be neglected and

K1 ~ 5adU1 d from (2.76) and (2.79).

Substituting these expressions for K1 and Dw into (2.72) and applying similar

simplifications to those in § 2.8.1, we obtain

K I_ U2 _- U1)2 (L) 4(H - h)1/2H1/2U*H
u*(H - h) a u*H OICDadUld

(h) 5ad2 U (2.88)
H (H - h)u*

+ H5.9( -h
H

Following arguments made in §2.8.1, we expect [(U 2 - U1)/u*H] to be constant.
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From the momentum transport arguments that led to (2.23), we can deduce the

following relationships between U1 and the friction velocities:

UH _ (CDah 1/2  (2.89)
U1 2)

u* (CDah) (H - h)] 1/2 (2.90)
U1 2 H _

Substitution into (2.88) then yields

-Kx -=( h )'(H - h )3/2 (h)43(ah1/
U*(H -h) H H d

v2(h 2 ( H )/2 d (ad) (2.91)
H H - h h (CDah)1 / 2

+5.9 (H h)

where
I (U 2 Ui) 2  

(2.92)
V/Za U*H

is a constant. Note that for zi/h > 0.9 we would expect CDah > 2 from (2.29). Also,

(2.91) only applies for dimensionless densities ad > 0.1 and Red > 40.

The ratio of the exchange coefficient in (2.82) to that given by (2.86) is

AU/40h _ AUh
Dw/h 2  40D(.

This ratio has the form of a Peclet number and represents the relative magnitude of

vertical advective (i.e., vortex-driven) and diffusive transport across the slow zone.

Typically in the field, AU-O(1 - 10cm/s), h-O(1 - 100cm), and DW-O(0.1cm2 /s),

such that Peb > 1. Thus, we anticipate that the exchange term is even more dominant

in the diffusion-limited exchange regime. For consistency, it is then appropriate to

neglect the slow-zone term in (2.91), as we did in §2.8.1 (although we recognize that

in both regimes, K1 will be important in the extreme limit of H/h -* 1). (2.91) then

50



simplifies to

K h 3 (H- h 3/2 (h) 4/ 3 (CDah) 1/6

u(H - h) H H d (2.94)

(H - h)+5.9 (H ,
H

which is slightly preferable to (2.91), since it reduces the number of independent

variables by one. Furthermore, there are no restrictions on ad or Red if (2.94) is used,

in contrast to (2.91), which requires ad > 0.1 and Red > 40.

2.8.3 Random Walks

Often, it is not the concentration distribution of a scalar quantity that is of interest,

but integrated properties such as residence time, or variance. Under such conditions,

it is often prudent to adopt a Lagrangian approach, where transport processes are

related directly to the behavior of individual particles [27]. This introduces the con-

cept of a random walk, which can be used to provide an alternative to the Eulerian

representation of mass transport given by (2.41).

Consider the hypothetical scenario of a single particle diffusing under the influence

of stationary (not decaying in time), homogeneous turbulence. Although turbulent

motion is not entirely random, it is sufficiently unpredictable at small scales that it

can be viewed as such. The velocity of a particle undergoing the random walk is

up(t), such that the position of the particle is given by x,(t) = fJ u,(t')dt' [55, pp.

571]. The variance of the particle's position is simply U2 = XP(t) 2 , where, for this

section only, we use an overbar to denote an ensemble average instead of a temporal

average. From (2.66), we can define a dispersion coefficient for the particle,

K 1,. a( --. (2.95)
2 9t - at
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However, - is simply the particle's mean velocity, such that (2.95) becomes

Kxp = up(t) j up(t')dt'. (2.96)

Since turbulent velocities are correlated (a fact that gives rise to Reynolds' stress),

we can define a normalized autocorrelation function that is a function of the time

difference a = t' - t,
UP(M UP (t + a)

r() .(t (2.97)
u, (t)2

Thus, (2.96) can be written as

KX,P = Up (t) 2 r (QV) d. (2.98)

This is a result of Taylor's (1921) theory (see e.g., [55, pp. 569]), which shows that

the variance of particles in stationary, homogeneous turbulence increases linearly with

time, after sufficient time has elapsed for the particles to lose memory of their ini-

tial velocities (or become uncorrelated). This time is known as the "Lagrangian time

scale", TL =f r(a)da. It should be obvious that this time scale is heuristically simi-

lar to the Fickian time scale that was discussed previously for an Eulerian framework,

and much research has focused on relating the two time scales [52, 78]. The purpose

of this exercise is to show that diffusion (and hence dispersion) can be approached

from either an Eulerian or a Lagrangian perspective, and is analogous to a random

walk.

The equation used to model transport of a particle as a random walk, is the

Fokker-Planck equation,

+V(Af) =V2 (BBTf), (2.99)
at (2-

where f_(x, t) is the probability density function of the particle's position, A is a vector

of deterministic forces acting on the particle, and B is a second order tensor (with

transpose BT) that characterizes the "random" forces due to turbulence [27, 75, 44]. A
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time step, At > TL, can be chosen such that the motions of a particle are uncorrelated

in time. Then, (2.99) can be represented by the discrete Ito stochastic differential

equation,

Ax = X(tj) - _(ti_ 1) = A(!(ti_1 ), ti_ 1)At + B(I(ti-1 ), ti_1 )RAt (2.100)

[27], where R is a random number generated from a Gaussian probability distribution

with zero mean and unit standard deviation [44]. (2.100) is an exact representation

of (2.99) for At -+ 0 and an infinite number of particles.

Now, for (2.99) to be equivalent to (2.41), we require

A = U

B = V2Kx

f= C,

such that (2.100) becomes

Ax = U((ti_1 ), ti_1 )At + Rf 2KxAt (2.101)

The first term on the right hand side of (2.101) represents advection of the particles,

and the second term represents longitudinal dispersion.

If we are interested in the dispersion of particles before full cross-sectional mix-

ing is achieved, the sectionally averaged approach given by (2.101) is inappropriate.

However, a similar analogy can be drawn between the Fokker-Planck and the 2-D

(x and z) advective-diffusive equation. This generates additional deterministic terms

such that the particle positions are given by 4

dD
AX zt At + X At + R 2DxAt (2.102)

dx
dD

Az = CDAt + z At + R 2DzAt. (2.103)
dz

4For clarity, A is used to denote a total derivative here.
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Utilizing Taylor's assumption that longitudinal diffusion is negligible, we can neglect

terms containing D,. We also assume that there is no mean flow in the vertical (i.e.,

77 = 0), yielding

Ax = iiAt (2.104)

dD
Az = z At + R V2DzAt. (2.105)

dz

In the absence of a gradient in the vertical diffusivity field, we see that (2.104) and

(2.105) constitute transport of individual particles by longitudinal advection, with

random vertical jumps superimposed to imitate transverse turbulent diffusion [1191.

The attractiveness of this representation is illustrated by the fact that it concurs with

Taylor's concept of longitudinal dispersion as a balance between differential advection

and transverse diffusion.

In most situations there will be at least some gradient in the diffusivity field, such

that the first term on the right hand side of (2.105) cannot be neglected. In the

extreme case of a stepped Dz profile, d -+ oc at the step, such that (2.105) breaks

down. Thus, considerable care is necessary when using the random walk formulation

close to boundaries and diffusivity interfaces [110]. This will be discussed in more

detail in Chapter 3.

It is worth pointing out that the Lagrangian time scale for turbulent diffusion is

likely to be much shorter than that for longitudinal dispersion. In other words, the

time scales of turbulent fluctuations will be less than the time required for mixing

across a channel cross-section. Thus, the constraint At > TL permits shorter time

steps in (2.104) and (2.105) than in the cross-sectionally averaged example, since

TL - tFick = 0.4H 2 /Dz,a for (2.101).
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Chapter 3

Materials and Methods

3.1 Experiments

Laboratory experiments were designed to evaluate the two-layer dispersion theory

proposed for aquatic vegetation in Chapter 2. In particular, the experiments aimed

to show the performance of the model across a broad range of vegetation densities,

Reynolds' numbers and water depth-to-plant height ratios, corresponding to values

observed in the field.

3.1.1 Laboratory Setup and Methods

Experiments were conducted in a 24-m-long x 38-cm-wide x 58-cm-deep, glass-walled

recirculating flume (Figure 3-1). The flow rate in the flume was controlled by a

Weinman 3G-30P14 pump, with a capacity that ranged from 600 cm 3/s to 15,000

cm 3 /s. A Signet flow gauge, with ±200 cm 3/s accuracy, provided estimates of flow

rate. A number of measures were taken to ensure smooth inlet conditions. A dense,

0.5-m-long array of emergent wooden dowels was used to break up turbulence. A

mat of rubberized coconut fiber extended throughout the cross-section of the flume,

to further dampen the turbulent inlet jet. Honeycomb flow-straighteners eliminated

swirl, providing unidirectional flow in the downstream direction.

The model plant canopy consisted of maple cylinders (diameter, d = 6mm), in-
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Table 3.1: Summary of experimental conditions.

Run Q, x10-2 cm 3 s-1 h, cm H, cm a, cm- 1 d, cm

A
B
C
D
E
G
H
I

A6
B6
C6
Al
BI
C1
A2
B2
C2
A3
C3
A5
C5

C6D
C2D
A2D
A3D

A4
X4D

48
17
74
48
143
48
143
94
17
94
48
17
94
48
17
94
48
17
48
17
48
48
48
17
17
17
17

14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0

46.7
46.7
46.7
46.7
46.7
46.7
46.7
46.7
29.8
29.8
29.8
23.6
23.6
23.6
14.0
14.0
14.0
10.5
10.5
8.8
8.8
29.8
14.0
14.0
10.5
5.0
5.0

0.025
0.025
0.034
0.034
0.040
0.040
0.080
0.080
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.080
0.080
0.080
0.080
0.025
0.080

0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
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serted in a random configuration into perforated Plexiglas boards, which covered the

entire length of the flume (see Figure 3-2). Duct tape was fixed to the underside of

the boards, so that a uniform depth of penetration could be achieved. Plastic cable

ties were used to secure the boards to each other. The canopy density was varied

between ad = 0.015 and ad = 0.048, within a range representative of dense aquatic

meadows, as cited in [37]. Two canopy heights were employed, 7 cm and 14 cm.

Preliminary velocity profiles were taken by three acoustic Doppler velocimeter

(ADV) probes at different transverse locations in the flume. The results confirmed

that a single profile at mid-width approximated the lateral mean to within 10 %,

provided that the probe was not positioned directly downstream of a dowel. Velocity

profiles for runs A-I (see Table 3.1) were taken from laterally-averaged ADV mea-

surements in [37]. For the remaining runs, velocity measurements were taken by a

two-dimensional (2-D) laser Doppler velocimeter (LDV). This technology is described

in §3.1.2. Vertical profiles, taken at mid-width in the flume, consisted of five-minute

records at spacings of between 0.5 cm and 2 cm, depending on the water depth and the

precision required. Previous testing by [34] and [61] showed that this record length

was sufficiently long to obtain acceptable mean velocity and turbulence statistics. All

measurements were taken sufficiently far downstream of the start of the canopy such

that the flow was fully developed (i.e., a/ax= 0). The 60 mm-diameter LDV probe

was positioned on an automated aluminium traverse outside the flume and the beams

were directed perpendicularly towards through the glass sidewall. The refraction of

the beams as they passed through the glass was taken into account when positioning

the probe. Part of the attractiveness of the LDV system was that it was non-invasive,

thereby preventing artificial disturbance of the velocity field. In addition, the posi-

tioning of the probe outside the flume allowed its movements to be motorized and

controlled by Compumotor motion control software. The traverse system, which was

connected to a processor, allowed precise maneuvering in the vertical and horizontal

planes. A horizontal segment (approximately 10 cm wide) of dowels had to be re-

moved to prevent obstruction of the laser beams as they entered the flume. However,

since this segment length was on the order of the dowel spacing, it is unlikely that
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Figure 3-1: Experimental setup (not shown to scale).

Figure 3-2: Photographs of model canopy and flume setup (h = 7 cm and ad = 0.048).

58

Rubberized
oconut

Fiber Mat

U - 1

Emergent
Dowel
Array

Flow
Straightener

H

/ II. ... .. .. . ..1,,,....



the mean velocity and turbulent statistics were significantly affected [46, 37]. To help

maintain optimal sampling rates, the flume was lightly seeded with 10 Pm particles.

Since the data rate is a function of the number of particles impinging on the fringe

pattern, better sampling rates were achieved under higher velocity conditions. Data

rates ranged from - 5 Hz for slow flow near the bottom boundary to > 100 Hz above

the canopy in fast-flowing conditions. Efforts were made to optimize the voltage,

validation and bandwidth settings on the FVA unit to achieve optimal data rates (see

e.g., [34]).

Twenty-seven different flow scenarios were investigated (Table 3.1), with varying

values of discharge, Q, and canopy density, ad. The water depth-to-canopy height

ratio, H/h, was also varied between 1 and 4.25 to model vegetation conditions ranging

from emergent to thoroughly submerged. The water-depth Reynolds number (ReH =

UH/v) was between - 1,900 and 41,000 for the experiments. These values of ReH are

consistent with those observed in natural vegetated channels [58]. The stem-diameter

Reynolds number (Red = Uid/v) defines dispersion in the slow zone, and values

within the experimental range Red - 20 - 580 correspond well to field conditions.

Tracer experiments were conducted by releasing a small pulse of fluorescent dye

at the top of the canopy, 6 m downstream of the leading edge. This longitudinal posi-

tion was observed to be well within the region of fully developed flow, determined by

measured velocity profiles. The tracer consisted of a mixture of Rhodamine WT dye

and isopropyl alcohol, with the latter added to render the solute neutrally buoyant

in the flume. The dye was injected manually with a 60-ml syringe, through micro-

tubing (1-mm inner diameter) that was glued to the top of a dowel at mid-width

and oriented parallel to the mean flow. The micro-tubing extended approximately 2

cm downstream of the dowel, such that tracer was not introduced directly into the

primary wake. Care was taken to match the injection speed with the local water ve-

locity, to limit near-field mixing effects. The duration of the injection was minimized,

to mimic a pulse, and subsequent leakage of tracer into the flow was eliminated by

withdrawal of the syringe.

The depth-averaged concentration of dye was measured as a function of time, at
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a location 11.3 m downstream of the injection point. This was done using a Seapoint

Sensors Rhodamine fluorometer (see §3.1.2). In all cases, the travel time of the tracer

cloud from its point of injection to the probe was much greater than the time taken to

introduce the dye mixture. This confirmed that the initial condition closely resembled

an instantaneous release. The fluorometer was mounted at mid-width in the flume on

a pulley system that allowed smooth, precise maneuvering in the vertical plane (see

Figure 3-3). As the tracer cloud advected by, the fluorometer was repeatedly raised

and dropped at timed intervals, so that the entire water depth was sampled. The

vertical transverse time was sufficiently short, compared to the time scale of tracer

plume passage, that the vertical profile can be considered an instantaneous snapshot,

and used directly to estimate the instantaneous depth-averaged concentration, C.

Experimental runs were terminated when it was evident that tracer mass in the

leading edge of the cloud had fully recirculated around the flume. This was indicated

by steadily growing, elevated fluorometer voltage readings that greatly exceeded the

normal fluctuations observed as the tail of the plume passed the measurement point

for the first time. The recirculation times determined in this manner correlated well

with rough estimates made using flow gauge and depth measurements. Each tracer

experiment was repeated five times, to reduce random error.

For two runs (A4 and X4D), the dowels pierced the free surface (i.e., representing

an emergent canopy). Because the dowels were only 7 cm long, the maximum flow

depth that could be achieved was 5 cm. Since the dowels pierced the free surface, the

dye injection was carried out at mid-depth (z = 2.5 cm), instead of at the top of the

canopy. A short time after the recirculating pump was switched on, a pronounced

free-surface oscillation was observed. The waves appeared to travel in the longitudinal

and transverse directions, with periods of about 0.5 s and amplitudes of about 0.5

cm. The wavelength in the longitudinal direction was estimated to be - 1 m. It was

postulated that the motion was a manifestation of vortex interaction due to periodic

shedding from the downstream edge of the dowels, and resonant with a shallow water

wave mode in the flume.
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Figure 3-3: Photograph of fluorometer and pulley setup.

3.1.2 Instrumentation

Rhodamine WT Fluorometer

The Seapoint Sensors fluorometer uses modulated green LEDs to emit light, which

is filtered to a narrow band, of wavelength around 540 nm. This wavelength excites

Rhodamine WT particles that are passing through the opening in the fluorometer.

The Rhodamine WT particles then re-emit fluorescent light at a different wavelength

(about 610 nm). The intensity of the re-emitted light, which is detected by a silicon

photodiode in the fluorometer, is proportional to the number of Rhodamine WT

particles present (and is thus proportional to the dye concentration). This is output

in the form of a low voltage signal.

The probe used in the experiments had a diameter of 6.4 cm and was 13 cm long.

It had a sampling rate of 8 Hz and interfaced with a personal computer through an

Ocean Sensors OS200 CTD. The "auto4.exe" program provided with the fluorometer
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software was executed in MS-DOS and stored data in ASCII ("*.asc") files. Crucial

output for this study included the recording time and corresponding voltage readings,

which were tabulated in the ASCII files. These files were later imported to MATLAB

[109] for processing.

The fluorometer was calibrated by Aaron Chow of Massachusetts Institute of

Technology. The results were used to determine a relationship between voltage, V,

and Rhodamine WT concentration, c, namely

C = 1 0 .0 1.54og 1 0 (V,+0.03) + 1.5. [pg/L if V is in volts.] (3.1)

This relationship was only valid in the range 0.5pg/L < c < 320pg/L, so this was

taken into account when preparing the Rhodamine WT solutions. Trial and error was

used to determine the initial concentrations of dye required to produce concentrations

within the calibration limits at the point of measurement.

For a small number of the voltage-time records, pronounced voltage spikes (anom-

alously high or low readings) were observed at discrete points. Eventually, it was

established that the reason for this was a faulty connection between the CTD and

the personal computer. Normal behavior resumed when this was addressed. In any

event, except for the small number of spikes (the durations of which were always less

than a second), the records were consistent with other data. Therefore, a MATLAB

code was written to remove anomalously high or low values (see Appendix B), such

that the adjusted records could be deemed useful.

Laser Doppler Velocimeter (LDV)

The principle of the LDV is based on the phenomenon known as Doppler shift, named

after the mathematician, Christian Doppler. He made the discovery that the wave-

length of light emitted from stars appeared to be different, depending on whether

they were moving towards or away from the observer.

Velocity measurements were made by a 300 mW blue-green argon-ion laser, used in

conjunction with a Dantec 58N40 flow velocity analyzer (FVA) unit. Comprehensive
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reviews of laser Doppler anemometry technology are given by [9] and [34]. However,

the basic operational characteristics of the system used here are as follows. Light

from the laser was split into two beams and a Bragg cell was used to shift one of the

beams by 40 MHz [5]. Both the direct and the shifted beam were then split again into

two beams of wavelength 488 nm and 514.5 nm, one for each velocity component (x

and z). The four beams were focused onto fibre optic cables which eventually led to

the probe, where they exited at 38-mm spacing (vertical and horizontal). The beams

were focused to a single point by an optic lens with a focal length of 310 mm. The

intersecting beams formed an ellipsoid sampling volume (of dimensions 74 Am x 610

Am), a geometry that was a result of the Gaussian light intensity profiles of the laser

beams [5]. Particles flowing through this volume scattered the laser light and returned

it to the lens, where it was fed back through fibre optic cables to a photomultiplier

and a BSA F50 processor [5]. The intensity of the scattered light pulsated with a

frequency proportional to the velocity of the particles moving through the intersection

of the beams (known as the "fringe"). The purpose of the frequency shift induced

by the Bragg cell is to resolve the directionality of the velocity components (or more

specifically, to distinguish between positive and negative velocity readings).

Mean velocity measurements using the LDV were accurate to ±1.4mm/s according

to a previous analysis by [128]. Since only one vertical profile was taken for each run,

this error was expected to be negligible in comparison with errors due to spatial

variability in the mean velocity, particularly within the canopy region. The vertical

separation of the beams exiting the probe prevented velocity measurements from

being taken within 1 cm of the flume bed and free surface.

Acoustic Doppler Velocimeter (ADV)

Initially, a number of velocity profiles were taken using SonTek 3-D ADV probes.

However, the configuration of the ADV probe was such that the top 4.5 cm of the

flow depth could not be sampled'. Thus, velocity measurements using the ADV were

'The probe tip must be fully immersed in water to function, and the sampling volume is approx-
imately 4.5 cm below the tip.
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abandoned, in favor of the non-intrusive LDV. For that reason, a description of the

ADV system is not included here, except to say that it is based on a similar principle as

the LDV, the primary difference being that sound waves are transmitted by the probe

and reflected by particles, instead of laser light. A thorough explanation of acoustic

Doppler velocimetry is given by [35] and [34], and a comprehensive evaluation of

accuracy is given by [117].

3.1.3 Data Analysis

The tabular ASCII files containing fluorometer output were processed in MATLAB,

as mentioned in §3.1.2. MATLAB code was written to read in the columns of data

(see Appendix B). The voltage-concentration relationship given by (3.1) was then

used to develop curves of concentration versus time.

After subtracting out the background concentration (taken to be the mean of

the first four values in the record), the temporal variance, at-2 , of the measured

concentration-time distributions was calculated using the method of moments [3],

2  M 2  M1 2o-,2 = - ( _ ) . (3.2)
MO MO

Here, Mi denotes the ith temporal moment of the distribution, obtained from

Mi = j tic(t)dt. (3.3)

The velocity, Uc, of the tracer center of mass can be expressed as

Uc = X/P (3.4)

where X is the distance between the point of injection and the fluorometer (11.3 m),

and p, the mean arrival time of the solute cloud, is obtained from the relationship

P = M1/Mo. (3.5)
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Combining results from five realizations of each experiment yielded ensemble-averaged

values of U, and ot. The "frozen cloud" approximation [33, pp. 137] was then applied,

meaning that the tracer mass was assumed not to disperse appreciably as it passed the

fluorometer. The spatial variance could then be inferred from the mean Lagrangian

velocity of the tracer,

o = O U2 (3.6)

and longitudinal dispersion coefficients were estimated from Kx = X, an approxi-

mation of (2.66). Here, it was assumed a priori that X was sufficiently large, in all

cases, for the solute to have reached a Fickian dispersive regime.

To allow comparison of the concentration-time curves, the time and concentra-

tion axes were normalized by y and MO (the total recovered mass of the solute),

respectively. Normalization of the concentration data eliminated, so far as was possi-

ble, non-uniformities across realizations caused by slight differences in the masses of

tracer injected [122].

The LDV velocity data was output directly to text ("4*.txt") files as a continuous

(in the sense that vertical location was ignored) record. The files were imported to

MATLAB for processing. A MATLAB code written by Brian L. White was modified

and used to discretize the record by vertical measurement location. Velocity read-

ings that were taken while the probe was being moved from one vertical position to

the next were removed. This was done by considering a window of 30 data points

around multiples of the duration of individual records (i.e., at 300 s, 600 s, 900 s,

etc.). Anomalously high velocity data, corresponding to movements of the probe,

was discarded. The same MATLAB code was then used to provide profiles of mean

velocity (in x and z) and Reynolds' stress and output the data to text files for storage.

The data was imported into Microsoft Excel for analysis and presentation.

Diffusivity profiles were required for input to the random walk particle-tracking

model (described later in §3.2). Experimentally determined D, profiles were avail-

able for runs A-I from [38]. For the remaining runs, vertical diffusivity profiles were

estimated from mean flow and turbulence measurements. Within the wake zone
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(i.e., z < zi), Dz was assumed to take a constant value, obtained from Figure 7 of

[73]. The extremities of the shear layer, z = zi and z = (zi + tmi), were arbitrarily

defined by the vertical locations where the Reynolds' stress was observed to go to

zero. In cases where -u'w' did not reach a zero value, the uncertainty associated

with the LDV measurements defined the lower limit of Reynolds' stress within the

shear layer. If the Reynolds' stress did not drop below these levels in the range

h < z < H, it was assumed that (zi + tmi) = H. Similarly, z1 = 0 was assumed if

non-zero Reynolds' stress persisted to the bed. In the lower 80% of the shear layer

(i.e., zi < z < [zi + 0.8tmi]), the diffusivity was computed from (2.37), after Vt' was

determined from (2.36). The turbulent Schmidt number, Sct, was taken to be 0.49

in accordance with observations for vegetated shear layers (see §2.3.2). In the upper

water column (specifically, z > [zi + 0.8tmi]), where weak shear made (2.36) unstable,

we assume D, = 0.013AUtmi as in [38].

In general, the surface slope was too small to be practically measured using dis-

placement transducers. Therefore, S was estimated using equation (10) in Ghisalberti

and Nepf [37], i.e.,

S = - h < z < (zi + tm). (3.7)

Estimates of the bulk drag coefficient, CD, were then obtained from (2.23), i.e.,

2gS H
CD= h (3.8)

a f0 (f) dz

3.2 Numerical Model

Results from the tracer experiments suggested that the Fickian limit was not reached

in all of the runs (as previously assumed in §3.1.3), due to the constraint imposed

by the length of the flume. For this reason, and to investigate the error introduced

by the approximation of (2.66), a random walk particle-tracking model (RWPT) was

developed.
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3.2.1 Model Description

The starting point was a two-dimensional (x and z) particle-tracking model for flow in

an open channel. This was developed by Brian L. White, at Massachusetts Institute of

Technology, in the Netlogo programming environment [1241. The model was modified

to incorporate the hydrodynamics of vegetated flows, which differ significantly from

those of bare open channels.

First, a rectangular Eulerian grid was initialized, the elements of which were

assigned longitudinal flow velocities ft(z), and vertical diffusivities, Dz(z) (vertical

velocities were assumed negligible). In the Netlogo programming language, the im-

mobile elements of the domain are referred to as "patches". The particles that are

tracked as they move throughout the grid are "turtles" which can be introduced to

this domain as required, and can occupy any position within a patch. The number

of particles per unit area of the domain essentially represents the concentration of a

tracer or pollutant.

In the RWPT model, particles are advected with the mean longitudinal velocity

field [according to Equation (2.104)] and random jumps in the vertical simulate tur-

bulent diffusion [Equation (2.105)]. Longitudinal diffusion is neglected, as it is small

compared to longitudinal dispersion.

For simplicity, a stepped Dz(z) profile was used in the model to represent actual

diffusivity conditions. For z < z1, D, was assumed to have a constant value, obtained

from Figure 7 of [73]. The depth average vertical diffusivity for the shear layer, Dz,s,,

was calculated from the Dz profiles estimated in §3.1.3, specifically

Dz,S1 = l j1 Dz dz (3.9)
H -zi z

and was input to the model for z > z1.

3.2.2 Corrections for Discontinuous Diffusivity Profiles

In RWPT models, a discontinuous diffusivity profile can result in artificial particle

accumulation in regions of low diffusivity [110, 44, 94]. In fact, to correctly apply
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(2.104) and (2.105), Dz(z) and D'(z) should be continuous and differentiable [94]. In

our model, the first term in (2.105) vanishes over most of the domain. However, the

diffusivity gradient is undefined at the bottom boundary, the free surface, and the step

in the diffusivity profile (z = zi). The first two issues were dealt with by implementing

a fully reflecting boundary condition. A different correction was required at z = zi,

where the diffusivity discontinuity interface was treated as a semi-reflecting boundary

(see e.g., [94]).

Zero Flux Boundaries

Boundaries in random walk models, such as at the bed or the free surface, may be

treated as absorbing or reflecting [94]. Here, we adopted the latter approach, such

that the new vertical position of a particle encountering a boundary was given by

z(ti) = z(ti-1 ) + Az ,(ti) , if z(ti) < 0 (bottom boundary)

2H - z(ti) , if z(ti) > H (free surface)

(see Figure 3-4).

Diffusivity Step at z = z,

There are two reasons why discontinuities in the vertical diffusivity profile result in

particle accumulation in the region of lower vertical diffusivity: (i) More particles

approach the discontinuity from a region of high diffusivity than from a region of

low diffusivity, since the distances traveled by individual particles are proportional

to the local diffusivity [i.e., Az~Dz 2 from (2.105)], and (ii), particles that cross the

discontinuity move at velocities 2 corresponding to the local diffusivity at ti_1 (i.e., the

velocity of an individual particle is not updated in response to large changes in the

local diffusivity field, which it experiences at the instant it crosses the discontinuity).

The latter reason implies that a correction must be made to ensure that particle

2 Strictly speaking, particle "velocities" are dependent on the time step, At and therefore have
no physical meaning [110]. However, based on (2.105), it is clear that we can regard the particles as
having velocities governed by a Gaussian distribution [110].
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[x(t,_1 ), z(ti_1)] [x(ti_1), z(ti_))],

[x(t,),

z = H

2H-z(t)]
[x(t) -Z(tj)]

Figure 3-4: RWPT model treatment of the no flux boundaries. (a) The bottom
boundary condition. (b) The free surface boundary condition.

velocities are representative of the instantaneous local diffusivity field. From here on,

the terms "interface" and "discontinuity" will be used to describe the plane at z = zi

where the jump in diffusivity occurs.

A simple criterion to show whether diffusivity interfaces are implemented correctly

in a random walk model is that a uniform distribution of particles should remain

uniform with time [110]. Thus, "mass" flux of particles in the vertical must be

conserved, on average (statistically speaking). Applying this concept, we first imagine

a horizontal slice of infinitesimal thickness 6z, located at z = z, in an infinite domain.

The domain contains a well-mixed concentration of particles, cp (see Figure 3-5). If

all of the particles were to diffuse out of the slice in a single time step, At, we could
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Figure 3-5: The probability distribution of particles crossing z = 0, for a slice of
particles in an infinite, well-mixed domain.

define the flux per unit area as

s = c 6z

At
(3.10)

However, many of the particles may not leave the slice during a single time step,

since the vertical distance they travel is governed by a probability distribution [see

Equation (2.105)]. If P(-z, > Az) is the probability of a particle originating in the

slice at z = z0 crossing z = 0, we can then define the flux per area of particles from

the slice across z = 0 by

rn8,O = At P(-z ;> Az). (3.11)

If we integrate (3.11) over all slices in the range 0 < z < oc, we obtain an expression

for the flux per area of particles across z = 0 from the region z > 0 for a single time

step:

mz== P(-z, > Az) dz0, (3.12)
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or the number of particles per unit area that cross the boundary,

N+= ] P(-z, > Az) dz,. (3.13)
z=0

From (2.105), it is clear that P(-z, > Az) = f(R) is governed by a Gaussian

probability distribution with zero mean and unit standard deviation. Specifically, it

implies that whenever R is less than some critical (negative) value, Rc, for a given

particle at a particular location in z > 0, the particle will cross z = 0 (Figure 3-5).

R, can be determined by imposing A, = -z, on Equation (2.105), yielding

-e= zoR,- Z (3.14)
I/2Dz+At

where D+ is the constant vertical diffusivity in z > 0. Therefore, we can integrate the

Gaussian probability distribution from negative infinity to Rc, to determine P(-zO >

Az), such that (3.13) becomes

N+ cp e-R 2/2 dR dzo. (3.15)
V 2 o,=O =_00

If we evaluate this integral and ignore higher order corrections due the fact that real

flows will not be unbounded, we arrive at the simple expression,

(D+At 1/2
N+ = c Z (3.16)

7r

(Peter Israelsson, personal correspondence). Even if the flow is bounded at z = ZB,

(3.16) will remain accurate provided that ZB> /2D+At. A small enough time step

can usually be chosen such that this is the case. Shifting our focus back to the infinite

domain, we can derive an expression similar to (3.16) for the number of particles (N-)

that cross z = 0 from the region z < 0, such that the ratio of the fluxes from either

side is
N- = (D- / 2  

(3.17)
N+ D +

Thus, it is clear that if no corrections are applied, particle fluxes will not be con-
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served at a step change in diffusivity, as required. If D; < D+ (i.e., O < 1), excess

particle accumulation will occur in z < 0. To avoid this artifact of the random walk

formulation, (1 - p)N+ particles approaching z = 0 from z > 0 need to be prevented

from entering z < 0. Since [110] points out that a solid boundary is simply a step

discontinuity in the diffusivity profile, a similar treatment to the one employed for

zero flux boundaries will be applied here to account for internal discontinuities in the

diffusivity field. In other words, the diffusivity interface will be treated as a semi-

reflecting boundary, with particles from the zone of highest diffusivity being reflected

to conserve flux.

The semi-reflecting boundary at z = z, is implemented by the following procedure.

First, any particle in the region z > z, for which [z(ti_1) + Az] < zi, is assigned a

randomly generated number, 0 < Rd < 1, from a uniform probability distribution.

The new vertical position of the particle is then given by

+ Az 2z, - z(ti) ,if Rd < 1 - sO (reflection)

1z(ti) ,if Rd > 1 - O (transmission).

z(ti) is not modified for particles in the region z < z1 , since all particles with Az >

[z1 - z(ti_ 1)] are required to cross the interface from the zone of lower diffusivity.

This addresses the problem of conserving flux at a diffusivity interface. However,

as previously mentioned, another problem is that the "velocity" of a particle trans-

mitted from z > z1 to z < z, (and vice versa) does not change instantaneously upon

crossing of the interface. Corrections for this can be implemented in a number of dif-

ferent ways, some of which involve applying different time steps in the regions z > z1

and z < z1 (Israelsson, personal communication). However, the method chosen here

is to perform an adjustment midway through the time step.

If a particle is to be transmitted through the diffusivity discontinuity, the time

72



R <1 -(D-/D +) 1/2
d z z

Particle reflected

[x(t,_,), Z(tj_,)]

[x(t), 2z -z(ti)]

---------- ------

Az =z(ti)

Rd>1-(D-/D+) 12
d z z

Particle transmitted
(with mid-step adjustment at z=z1 )

[x(t-z_), z(ti_,)]

----------- --mm-------z=z,

\~.[x(t,), Z(t,)]

[x(t.), z(t,)] - without

mid-step adjustment

Figure 3-6: Corrections to particle positions at a diffusivity discontinuity.

step is split into two components

At+
zi - z(tii) (3.18)

(3.19)At- = At - At+ z(ti) - zi
W-

where w+ and w- are the particle's "velocities" in the regions z > zi and z < zi,

respectively, and are given by

W+ = R I2D ,+At
At

R 2D- At
= At

(3.20)

(3.21)
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The new, corrected position of a transmitted particle is then obtained from

z(ti) =z(ti_1) + Az

=z(ti_1) + [(w+At+) + (w-At-)].

(3.22)

(3.23)

Figure 3-6 illustrates the corrections that apply to a particle approaching z, from a

region of higher diffusivity. While the semi-reflecting boundary correction only affects

particles in the region z > z1, (3.23) applies to particles approaching the diffusivity

interface from either side.

3.2.3 Testing and Validation

DZ(z) U(z) Dz(z)
(I)

U(z)
(ii)

Dz(z)Dz(z) U(z)
(iii) (iv)

U(z)

Figure 3-7: Diffusivity and mean velocity profiles used to test model performance.

The corrections for diffusivity discontinuities discussed in the previous section were

tested by tracking 1000 particles, uniformly distributed over the depth of the model

domain, which was chosen to be 46.7 cm for comparison with some of the experimen-
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tal runs. Four different base cases with various diffusivity and velocity profiles were

chosen, as shown in Figure 3-7: (i) Constant velocity profile, constant diffusivity pro-

file; (ii) Constant velocity profile, stepped diffusivity profile; (iii) Hyperbolic tangent

velocity profile, constant diffusivity profile; (iv) Hyperbolic tangent velocity profile,

stepped diffusivity profile. These cases were chosen, so that bugs in the Netlogo code

could be isolated, based on whether they were linked to the implementation of a par-

ticular velocity or diffusivity profile type. Each diagnostic simulation ran for a period

of 310 s, with At = 1 s. The results were compared to those obtained from identical

simulations using a particle-tracking model developed in Fortran by Peter Israelsson

at MIT (unpublished). A comparison of the results of the simulations is shown in

Table 3.2. There are some discrepancies, so further investigation was needed before

the model could be validated.

Another test was devised to count the number of particles approaching the diffu-

sivity discontinuity from above and below side (N+ and N-). This was done both

for a single time step and for an extended duration of run time. Of the N+ particles,

cumulative fractions (1 - sp) and o were observed to be reflected and transmitted, re-

spectively, after an initial period. Statistically (i.e., after multiple time steps), all N-

particles were transmitted from below. These results suggested that the corrections

for the discontinuous diffusivity profile were performing as expected. However, ex-

actly (1 - c)N+ particles were not always reflected during a single time step, meaning

that 1000 particles were insufficient for statistical convergence. The error for a single

time step decreased when the number of particles was increased from 1000 to 5000,

such that any biased particle migration was attributed to artificial noise created by

the finite number of particles and the fact that R is actually "pseudo"-random in the

model, since numbers are generated in a deterministic fashion by the Netlogo code.
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Table 3.2: Comparison of statistics from Netlogo simulations to Israelsson's model simulations. x_ and x, are the mean
horizontal and vertical particle locations, respectively. g-2 and a-2 are the variances in the longitudinal and vertical directions.
Simulations ran for 310 s with time steps, At = 1 s. 1000 particles were used in each simulation.

Inputs Netlogo Model Israelsson Model
Velocity Diffusivity Xx (cm) o- (cm 2) Xx (cm) u- (cm 2) Xx (cm) u- (cm 2) Xz (cm) Z (cm 2)

constant constant 900.0 0.0 24.7 86.3 899.5 0.0 23.2 105.3
shear constant 1,289.0 38,912.8 25.1 89.6 1,292.0 36,110.8 23.6 105.3
constant stepped 900.0 0.0 22.5 202.8 899.5 0.0 23.5 177.9
shear stepped 1,089.0 88,165.4 22.7 203.3 1,143.7 59,631.4 23.6 105.3
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Another reason why perfect (statistical) agreement is not observed between the

model results in Table 3.2 may be that Israelsson's model utilized a multiple-time-

step approach (i.e., a different time step in the regions z > z, and z < zi) to account

for the diffusivity discontinuity, which differs from the mid-step adjustment method

chosen here. This approach is more computationally expensive (Israelsson, personal

communication) and was not considered.

In any event, the model was also validated by comparing the predictions to exper-

imental results. Each of the experimental runs were simulated by the RWPT model,

by introducing 10,000 particles at the top of the canopy and by running the model

with At =1 s. The only constraints on the time step were: (i) it had to be greater

than the Lagrangian time scale and (ii) it had to be small enough that boundary

effects were unimportant (i.e., At < (H - zi)2 /2Dz,,1 from section 3.2.2). Although

greater accuracy is expected as At -* TL, time steps less than 1 s generally resulted

in excessive model run times, due to the high levels of computation required. Predic-

tions of observed dispersion coefficients were made for each of the experimental runs,

at times corresponding to the experimental /t. These values were compared to the

experimentally determined values of K,. Reasonable agreement was found, as shown

in Figure 3-8 and Table 3.3.

3.2.4 Data Processing

For each of the numerical simulations (corresponding to the experimental runs),

10,000 particles (sufficient to provide statistical convergence) were released at z = h

and tracked for 3000 seconds, or until K, = 0.5o/t became approximately constant

with time. The following outputs were written directly to text ("*.txt")) files:

t = time (discretized into increments of At),

Uc(t) = the mean "velocity" of the particles in the longitudinal direction (i.e., the

mean particle x-coordinate divided by t),

o (t) = the variance in the longitudinal direction,
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Table 3.3: Agreement of
determined values.

Kx values predicted by the RWPT model with experimentally

Run Kx,observed, cm2/s Kx,predicted

A6
B6
C6
Al
BI
C1
A2
B2
C2
A3
C3
A5
C5
A
B
C
D
E
G
H
I
C6D
C2D
A2D
A3D

32.4
102.7
60.3
35.2
119.5
63.7
40.6
100.3
57.7
42.4
67.6
31.6
64.6
85.3
18.7

136.2
91.0

287.7
75.3

421.2
212.0
102.7
109.7
50.7
59.2

(Netlogo), cm 2/s

33.7
51.7
87.5
16.8
40.4
69.8
16.8
89.3
81.7
61.1
116.0
16.5
58.7
91.4
42.0
154.8
101.4
294.2
97.4

379.9
278.9
130.3
112.1
56.2
54.7
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Figure 3-8: Agreement of K, values predicted by the RWPT model with experimen-
tally determined values.

G(t) = the skewness of the particle distribution,

ri(t) = the kurtosis of the particle distribution,

A(x, Z, tend) = a matrix containing the spatial co-ordinates of all 10,000

the end of the simulation, t = tend.

particles at

These files were then imported to MATLAB [109], where the data was batch-processed

(see Appendix B for "*.m" files containing code that was written to do this). A

histogram of the x-coordinates provided a depth-average "concentration" distribution

of particles. This was normalized by the number of particles (10,000) for comparison

to the experimentally obtained tracer concentration profiles.
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Chapter 4

Results and Discussion

Table 4.1: Summary of experimental conditions and flow parameters.

Run h, H, a, S, U1, U2, AU, h - zi, Red ReH CD

cm cm cm- 1 x10 5 cm/s cm/s cm/s cm x10 4

A
B
C
D
E
G
H
I
A6
B6
C6
Al
BI
Cl
A2
B2
C2
A3
C3
A5
C5
C6D
C2D
A2D
A3D

14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0

46.7
46.7
46.7
46.7
46.7
46.7
46.7
46.7
29.8
29.8
29.8
23.6
23.6
23.6
14.0
14.0
14.0
10.5
10.5
8.8
8.8
29.8
14.0
14.0
10.5

0.025
0.025
0.034
0.034
0.040
0.040
0.080
0.080
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.080
0.080
0.080
0.080

0.99
0.18
2.50
1.20
7.50
1.30
10.00
3.40
0.30
8.04
2.42
1.06
11.57
4.27
1.73
48.66
30.05
12.44
66.61
28.35
134.04
2.03
36.64
4.74
23.19

1.6
0.5
2.0
1.4
4.2
1.4
3.3
2.1
0.6
3.3
1.7
0.7
4.3
2.2
1.3
7.8
5.0
2.5
6.9
2.8
9.9
0.8
3.0
1.0
2.0

3.7
1.5
5.5
3.8
10.6
3.7
11.1
7.2
1.6
8.4
4.4
1.6
10.2
5.1
2.9
15.5
10.6
5.4
14.7
5.3
18.7
4.6
9.3
3.4
5.2

3.2
1.3
4.9
3.5
9.5
3.3
11.0
7.4
1.6
7.0
3.7
1.4
9.1
4.8
2.4
11.8
7.8
5.5
14.6
3.2
12.6
5.3
9.5
3.4
4.6

12.7
9.1
10.9
12.3
11.6
10.3
11.2
9.8
5.8
7.0
3.4
7.0
7.0
5.1
7.0
7.0
7.0
2.9
7.0
3.9
7.0
7.0
7.0
5.3
5.4

78
30
102
66
210
66
162
102
17
152
83
30
207
111
75
461
283
136
395
163
582
26
142
46
101

1.5
0.6
2.1
1.4
4.1
1.4
4.1
2.7
0.4
2.2
1.1
0.3
2.0
1.0
0.3
1.7
1.1
0.4
1.0
0.3
1.1
1.1
0.9
0.3
0.3

1.0
1.9
1.2
1.2
0.7
1.1
0.7
0.6
2.6
2.5
2.7
5.5
1.7
2.4
1.5
1.3
1.9
2.3
1.7
3.6
1.4
3.2
2.0
2.2
2.1
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4.1 Experimental Results

Flow parameters for the twenty-five experiments that modeled submerged vegetated

flows are listed in Table 4.1. The first eight rows in the table correspond to runs of

the same letter in [37].

Bulk drag coefficients obtained from (2.23), and reported in Table 4.1, show fair

agreement with White's [123] expression for the drag coefficient due to flow around

an isolated cylinder (see Figure 4-1). The scatter at Red < 200 is likely to be due

to estimation of S, the uncertainty of which increased as H/h - 1, since less data

points were available above z = h.

8

0 C = 2gSH/ahU2, a = 0.025 cm-1
D 1'

C = 2gSH/ahU 2 , a = 0.034 cm-1
S,-1

6 C = 2gSH/ahU , a = 0.040 cm~1
0 = 2gSH/ahU2, a = 0.080 cm-

5-D,:solated = 1 + 10.0Re 2 /3

3 - -

0
0 100 200 300 400 500 600 700

Red = Ud/v

Figure 4-1: The bulk drag coefficient determined from (3.8) compared to CD for
an infinitely long, isolated cylinder. Different markers indicate the different dowel
densities used in the experiments. The vertical bars represent the uncertainty in CD,
which was estimated to be approximately 10 % based on values of uncertainty in S
and U1 from [35]. In some instances, the vertical bar is smaller than the marker.

Figure 4-2 shows that u, = fgS(H - h) ~ U'W'lh for the entire range of H/h.

This is not surprising, given that the very definition of a shear velocity is U,=rop
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Z 0 ......
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Figure 4-2: The ratio of the friction velocities, u,, = gS(H - h) (diamonds) and

U*H = VgSH (open circles) to the square root of the Reynolds stress evaluated at the

top of the canopy. Vertical bars represent the estimated uncertainty in u*/ -u'w' h*

where -r is the shear stress at the bottom of a logarithmic layer (see e.g., [55, pp.

552]). As such, this confirms the suitability of the choice of u* as the characteristic

velocity scale for dispersion in the fast zone, rather than U*H, which is seen to vary

considerably over a range of H/h conditions (Figure 4-2). For thoroughly submerged

vegetation (H/h > 5), the flow approaches a rough boundary layer, and u* and U*H

are equally valid velocity scales for dispersion.

Further, as anticipated in §2.8.1 the scaled ratio AU/U*H is reasonably constant

over the range of H/h (see Figure 4-3). The same data shows that AU ~- 6.3u* has

the same statistical accuracy over the entire range of data. However, we see that in

the transition from H/h = 2 to H/h = 1, the region in which the two zone model is

most sensitive to the exchange term of (2.72), AU/u, increases significantly. Thus,

U*H is the more consistent scale for AU. This is because U*H captures the total shear
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Figure 4-3: The ratio of total shear to friction velocity and best fit averages ± standard
deviations.

across the mixing layer, including the contribution from the region z < h, which is

not necessarily negligible.

Figure 4-4 shows the estimated depth average vertical diffusivity (Dz,8S, see §3.2.1)

for the region z > z1, plotted versus the AUtmi scaling proposed by [38]. Aside from

three anomalous values, a fairly linear relationship is observed, and the proportional-

ity constant, Dz,si/AUtm = 0.016, agrees with observations for vegetated shear layers

[38]. A more practical scaling, DzS/AUH, provides a statistical fit that is almost

as good (Figure 4-5). However, the latter relationship (Dz,s, = 0.013AUH) is for

experimental values of tmi/H > 0.6 only. It may not apply in conditions where the

shear layer is confined to a small portion of the flow (tmi < H). No explanation for

the behavior of the three anomalous data points (corresponding to Runs B1, B6 and

C1 - see Table 4.2) could be found. Noise in the velocity measurements was ruled

out as a possible contributor, since in all three cases, the majority of -u'w' values far

exceeded the associated uncertainties.

[21] suggest that the ratio of the tracer velocity to the depth-average fluid velocity

84



14

B6
12- -

10- B

EB1
00

C1

0
4- -

D z'si= 0.016AUtM
2- -0 R 2=0.93

0 50 100 150 200 250 300 350 400

AU t 1, cm2/s

Figure 4-4: Estimates of mean vertical diffusivity in the region z > z, versus AUtmi.
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Figure 4-5: Estimates of mean vertical diffusivity in the region z > z, versus AUH.

85



Table 4.2: Estimated mean vertical diffusivities for the region z > z1 , and relevant
velocity and length scales.

Run D,,,, cm 2 /s AU, cm/s tint, cm H, cm h, cm zI, cm

A 1.67 3.2 32.6 46.7 13.9 1.2
B 0.50 1.3 24.4 46.7 13.9 4.8
C 2.52 4.9 30.1 46.7 13.9 3.0
D 1.68 3.5 31.9 46.7 13.9 1.6
E 5.67 9.5 36.7 46.7 13.8 2.2
G 1.86 3.3 29.2 46.7 13.8 3.5
H 6.33 11.0 34.4 46.7 13.8 2.6
I 4.08 7.4 34.6 46.7 13.8 4.0
A6 0.57 1.6 20.0 29.75 7 1.2
B6 8.96 7.0 25.4 29.75 7 0.0
C6 1.94 3.7 19.1 29.75 7 3.6
Al 0.56 1.4 16.1 23.6 7 0.0
BI 11.8 9.1 23.6 23.6 7 0.0
C1 4.89 4.8 21.7 23.6 7 1.9
A2 0.85 2.4 14.0 14 7 0.0
B2 3.74 11.8 14.0 14 7 0.0
C2 2.05 7.8 14.0 14 7 0.0
A3 0.43 5.5 6.4 10.5 7 4.1
C3 1.38 14.6 10.5 10.5 7 0.0
A5 0.67 3.2 5.6 8.75 7 3.1
C5 1.71 12.6 8.8 8.75 7 0.0
C6D 1.81 5.3 29.8 29.75 7 0.0
C2D 2.20 9.5 14.0 14 7 0.0
A2D 0.82 3.4 12.3 14 7 1.7
A3D 0.72 4.6 8.9 10.5 7 1.6
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Figure 4-6: The ratio of mean longitudinal tracer velocity, Uc(t = p), to the depth-
average fluid velocity, U,
to the Fickian time scale,

versus the ratio of the mean

tFick -0.4 H3 / f7 D2 dz.
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The ratio of mean longitudinal tracer velocity to depth-average fluid
velocity over the range 1 < H/h < 4.5.
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is a good indicator of whether the Fickian limit has been reached. This is an intuitively

valid argument, since we would expect a well-mixed contaminant to travel with the

mean fluid speed. However, this is not borne out by Figure 4-6, which suggests

that the mean travel time of the tracer plume, p, relative to the Fickian time scale,

tFick = 0.4 H 3 / f0H Dz dz, is not well correlated with the ratio of the mean tracer

velocity to the fluid velocity, Uc(t = p)/U. Instead, Figure 4-7 shows a trend of

increasing Uc(t =[ )/U with decreasing H/h, in the range H/h < 2. This may be

explained by a difference between the initial tracer conditions in this study, and those

in [21]. Whereas we injected at a single point, the tracer releases in [21] resembled

well-mixed line sources. Since all of our injections were at z = h, we expect higher

velocities to be sampled more frequently in the near-field for experiments where the

canopy is not deeply submerged. Mixing occurs preferentially in the fast zone, such

that higher velocities are sampled first. This tendency increases as H/h -* 1 and

the K-H vortices become confined by the free surface [74]. Vortex penetration is

reduced (i.e., z1 --+ h), thus preventing mixing to regions of low velocity. Thus,

Uc(t = p)/U > 1 for H/h < 2 (Figure 4-7), since the tracer is more rapidly exposed

to the fast-flowing fluid above the canopy than to the slow-flowing fluid below zi.

The same trend is not observed for H/h > 2, since the K-H vortices are unconfined,

and thus control mixing across the majority of the cross section (i.e., tin ~ H) such

that regions of lower velocity are more readily sampled.

The concentration-time distribution for run A5 is shown in Figure 4-8. Note that

individual realizations are consistent with the average, implying that five repetitions

adequately describe each experiment'. A non-zero skewness coefficient (also shown in

Figure 4-8) reveals a slight deviation from Gaussian form that agrees with observations

in natural channels [77]. The statistics of all temporal concentration distributions

are presented in Table 4.3, along with the dispersion coefficients obtained from the

approximation of (2.66), K, = -. In all cases, Pe = UCX/K, > 1, where Pe is the

longitudinal dispersion P6clet number. This confirms the prevalence of advection-

dominated flow [60], validating the frozen cloud assumption, made in §3.1.3.

'See Appendix A for concentration-time distributions for all the experimental runs
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Table 4.3: Statistics derived from temporal moment analysis of concentration distri-
butions, adjusted dispersion coefficients, and estimated time scales for experimental
accuracy from RWPT simulations.

Run t, s -t, s Pe Kx, EKx*, Kx,NL*, 10%

cm2 s-1 cm2 s-1 cm2 s-1

A
B
C
D
E
G
H
I
A6
B6
C6
Al
B1
C1
A2
B2
C2
A3
C3
A5
C5
C6D
C2D
A2D
A3D

390
1220
252
356
137
382
123
192
729
141
252
567
96.8
192
332
60.7
117
234
89.4
172
70
289
128
326
231

89.1
231
58.4
80.3
34.1
81.0
35.2
48.6
140
21.1
38.9
100
13.0
26.6
48.3
5.9
12.1
29.2
8.7
15.8
5.9
62.2
19.0
52.3
33.8

39
58
37
40
32
45
25
31
55
89
84
65
111
104
95
210
189
129
211
236
281
43
91
77
93

85
19
140
90
290
75
420
210
32
100
60
35
120
64
41
100
58
42
68
32
65
103
110
51
60

±10
±3
±10
±10
±20
±5
±30
±25
±2
±10
±3
±3
±5
±4
±5
±20
±1
±3
±1
±1
±4
±5
±5
±4
±1

130
26
210
150
440
120
690
380
43
110
110
44
130
75
46
110
66
60
75
41
70
130
120
61
65

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.5
1.4
0.5
0.2
2.0
0.3
1.5
1.1
1.2
0.9
1.1
1.0
1.5
0.5
1.5
1.3
1.4

1.0
0.7
0.9
1.2
0.9
1.3
2.2
1.6
1.0
0.9
2.2
0.4
1.5
0.5
1.6
1.6
1.7
2.0
1.2
1.8
1.1
1.1
1.4
2.4
1.3

* EKx is the uncertainty in Kx, corresponding to the standard error of the observed
values. This estimate of uncertainty does not contain any information about the closeness

of the approximation, Kx = 0.5 -, discussed in Chapter 3. This is accounted for by
Kx,NL, which represents subsequently adjusted values of the experimentally observed Kx,
based on RWPT simulation results (discussed later in § 4.2).

**iio% = t10% D and is estimated from RWPT model results (see @ 4.2).
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Figure 4-8: The collapse of the concentration-time curves for run A5. The ensemble
average (solid line) is superimposed on the individual realizations (dotted curves).
The time and concentration axes have been normalized by the mean arrival time
(p) and the total recovered mass of the solute (MO), respectively. Normalization
of the concentration data eliminates, so far as is possible, non-uniformities across
realizations caused by slight differences in the masses of tracer injected [122].

The results from runs A4 and X4D were compared with predictions of the dis-

persion coefficient for emergent vegetation from (2.76). The comparisons are shown

in Table 4.4, which also shows the predicted relative contributions to total disper-

sion by vertical shear (K,,) and stem-scale processes (Kd). Since ad < 0.1 for both

experiments, Kd was assumed to result only from velocity heterogeneity within the

cylinder array. Agreement is reasonably good, although the predicted dispersion rates

are slight underestimates of the observed values. It is possible that this may be par-

tially due to trapping of tracer within empty holes in the Plexiglas boards at the

bed. Although trapping in primary cylinder wakes is expected to be insignificant for

ad < 0.1, and is therefore not included in (2.76), Table 1 of [122] shows that this

process may contribute to some extent for ad < 0.1. The resonant motion of the free
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surface described in §3.1.1, may have enhanced dispersion in the flume, such that the

predictions were too low. In addition, values of K,, are sensitive to the predicted

vertical diffusivity within the array. Here, a value of 0.17Ud was used, based on

field measurements made by [62]. However, the key point is still clear, i.e., both the

predicted and observed dispersion coefficients are generally an order of magnitude

smaller than those for runs with submerged vegetation (Table 4.3). This validates

the assumption made in Chapter 2 that K1 is negligible.

Table 4.4: Comparison of predicted with observed dispersion coefficients for emergent
canopies.

Run Red U, CD * a, H, KX, Kd, KVS, KX = Kd+ Ks,
cm/s cm- 1  cm cm 2 /s cm 2 /s cm 2 /s cm 2 /s

(observed) (predicted)

A4 367 6.1 1.20 0.025 5 7.43 2.40 4.63 7.02
X4D 310 5.2 1.22 0.080 5 6.75 2.09 3.99 6.08

* Calculated from CD= 1 ± 10.ORed2 3 [123], see § 2.2.3.

4.1.1 Dispersion with Vortex-Driven Exchange

The velocity measurements in Table 4.1 show that 01 = (U2 - U1)/AU = 0.68+0.05

is not a function of H/h. Furthermore, Figure 4-3 shows that 02 = AU/U*H 4.5.

Given these values, # = 400202 ~_ 83. In Figure 4-9 the normalized dispersion co-

efficient, K./[u,(H - h)], is plotted versus H/h. The theoretical prediction, (2.84),

is fit to the experimental data using the single parameter /. This yields (with 95%

confidence) a value of / = 93t11, which agrees with our expectations, within uncer-

tainty. The dashed and dash-dot lines in Figure 4-9 represent the contributions of the

exchange and logarithmic-shear dispersion terms, respectively. For low values of H/h

(< 2.5), inefficient exchange is the primary mechanism for dispersion, with fast-zone

shear playing a relatively insignificant role. The overall normalized dispersion peaks

at around H/h = 1.2 where the contribution of the exchange term is at a maximum,

before dropping off rapidly as H/h = 1. Realistically of course, K. will not go to zero

at H/h but will assume a finite value of K1 as the limit of emergent vegetation is
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Figure 4-9: Least squares fit of equation (2.84) to experimental dispersion coefficient
data. The contributions of the first (dash curve) and second (dash dot curve) terms
in (2.51) are shown. The solid curve represents their sum.

approached and stem-scale mixing controls dispersion. Conversely, as H/h increases,

logarithmic-shear dispersion in the fast zone grows in importance and inhibited ex-

change is not as influential. A transition occurs at H/h ~ 2.7, beyond which the

nondimensional dispersion coefficient asymptotes to the rough boundary layer value,

as anticipated. The contribution of the exchange term to the dimensionless dispersion

is negligible (less than 10 % of the total) for H/h > 5.5. Since the total depth average

velocity scales on U*H (see Figure 4-10), it is useful to note that the practical scaling,

KX/UH, is approximately constant (0.97 ± 0.03) over the range 1.5 < H/h < 5.

Also, over the range H/h < 5, K,/[u*HH] is roughly constant (see Figure 4-11) at

about half the value for a logarithmic boundary layer. That is, in flows dominated by

vegetation, the longitudinal dispersion is decreased, compared to a bare bed. For these

experiments, the normalized depth average diffusivity DZ,a/U*HH = 0.073, which is

comparable to DZ,a/U*HH = 0.067 for logarithmic boundary layers [33, pp. 93].
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Figure 4-10: Experimental data showing the approximately constant relationship
between the depth-averaged velocity, U, and the friction velocity, U*H-

This implies that vertical mixing rates are practically equivalent, and the difference

between K, for a bare channel and the value for a vegetated channel of the same depth

must be attributed to the different velocity profiles. From (2.42), the contribution of

the shape of the velocity profile to dispersion can be expressed as

=- (JH1 JZJ u2HH. (4.1)

For logarithmic layers, I = Ib = 0.40u H H 2, from multiplication of the mean diffu-

sivity and longitudinal dispersion constants. For a representative vegetated channel,

we consider a velocity profile with a step at mid-depth, i.e. H/h = 2, with velocities

U2 and U1 in the upper and lower layers, respectively (e.g., see Figure 2-5). For this

profile,
1

=-(U2 - U)2 H2 (4.2)
48
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Figure 4-11: (a) Linear fit to experimental data showing KX/LU*HH ~ 3.3 over the
range of H/h in this study. (b) Variation of KX/U*HH predicted by theoretical model
over a range of H/h.

(after [33, pp. 93]). Substitution of the experimentally determined relationship (U2 -

U1) = 3 .09U*H into (4.2) yields I = 0.21u2 H 2 for a vegetated channel. Thus,

Ibi/Ic = 1.9. This indicates that for a fixed potential gradient, i.e. u*H = V/gSH,

the logarithmic profile has nearly twice the velocity heterogeneity, directly explaining

why the dispersion is twice as high. The greater velocity heterogeneity is largely due

to the far greater mean velocity that may occur in the comparatively lower drag, bare

channel.

4.1.2 Dispersion with Diffusion-Limited Exchange

Now we consider the regime of turbulent diffusion-dominated exchange (i.e., 2 <

CDah, as discussed in §2.8.2). No experimental data on longitudinal dispersion co-

efficients for submerged, dense (ad > 0.1) canopies are available for comparison to
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(2.91). Therefore, we will examine (2.91) for typical field conditions. Vegetation den-

sities are usually greatest in mangrove forests2 (see e.g., [67]), so we assume ad = 0.4

as a reasonable upper limit. Since vortex-driven exchange is expected to dominate

in sparse canopies (ad < 0.1), we consider a range 0.1 < ad < 0.4 for the regime of

diffusion-limited exchange. We assume a constant aspect ratio, d/h = 0.05, based

on geometric similitude observed among aquatic plants [76]. It is also reasonable to

assume CD ~ 1. Data from the vortex-driven exchange regime (Table 4.1) imply

that [(U 2 - U1)/U*H ] 2 - 9.96 ± 4.38 and we use this as an approximation for the

case of diffusion-dominated exchange. This is a reasonable extrapolation because for

a fixed potential gradient (i.e., U*H = gSH), denser vegetation will require a lower

mean velocity U, offsetting the increased velocity difference due to additional drag.

Finally, we take the proportionality constant for the vertical diffusivity in the slow

zone a = 0.15, and evaluate (2.91). The nondimensional dispersion coefficients for

ad = 0.1 and ad = 0.4 are shown over a range of H/h in Figure 4-12 (solid lines), for

the typical field conditions mentioned above. Also shown are the contributions of the

two terms in (2.91) for the case of ad = 0.1. As expected, logarithmic dispersion in

the fast zone dominates in the limit of H/h-+oo but the contribution of the exchange

term persists for higher values of H/h than in the case of vortex-driven exchange. In

fact, the exchange term does not become negligible (i.e., less than 10 % of the total

dispersion) until H/h > 16 for ad = 0.1 and H/h > 17.5 for ad = 0.4.

We have seen that trapping in the slow zone through inefficient exchange is the

dominant dispersion process, except in the limits as H/h--U and H/h-*oo. This is

the case regardless of the exchange mechanism. However, a comparison of Figure 4-9

and Figure 4-12 reveals that the maximum dimensionless dispersion rate for is an

order of magnitude higher in regimes of diffusion-limited layer exchange than in the

case of vortex-driven exchange. This point is clearly illustrated in Figure 4-13, which

expresses the total dispersion rates for the two regimes in terms of the traditional

boundary layer scaling. Because Peb > 1, as discussed in §2.8.2, much higher rates of

2 Although vegetation in mangrove forests usually emergent, they arguably represent a potential
extreme upper density limit for submerged vegetation.
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Figure 4-12: Nondimensional dispersion in the regime of diffusion-limited exchange,
from (2.91), for typical field conditions. Solid lines represent the total dimensionless
dispersion for ad = 0.1 and ad = 0.4. Broken lines represent the relative contributions
of the two terms in (2.91) to the total dispersion for ad = 0.1.

dispersion occur in systems where inter-zonal transport is limited to diffusion, causing

significant trapping of fluid in the slow zone.

In Figure 4-13, the broken lines represent the dimensionless dispersion when

canopy exchange with the overflow is limited to diffusion alone, and the solid line

represents the limit of entirely vortex-driven dispersion. In reality, a combination of

these exchange mechanisms is likely to occur, such that real dispersion rates will lie

in the region bounded by the broken and solid lines. In other words, it will often be

the case that neither of the first two terms in (2.74) are negligible.

Since the exchange coefficient is the inverse of the time scale for cross-sectional

mixing, Peb = AUh/40D, also represents the comparative magnitude of this time

scale in the two regimes. Peb > 1 implies much shorter mixing times for the vortex-

driven exchange regime. This point is supported by Figure 4-14, which shows that the
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Figure 4-13: Nondimensional dispersion coefficient (with boundary-layer scaling) ver-

sus degree of submergence, illustrating enhanced dispersion rates in the regime of

diffusion-limited exchange.

Fickian time scale decreases with vortex penetration into the canopy, as the exchange

zone occupies more of the flow depth. Thus, even though we expect higher rates of

dispersion when vertical exchange is controlled by diffusion, it takes much longer for

this dispersive regime to take effect.

4.2 Numerical Model Results

The results of the RWPT model simulations suggest that a more stringent criterion

than t > tFick = O.4H 2/Dz,a is required to experimentally determine K. in vegetated

channels. Figure 4-15 shows a model prediction of how the instantaneous dispersion

coefficient, Kx = 0.50o /at, is expected to evolve with time for Run I (the solid

black line). The dashed line represents the dispersion coefficient that would be ob-

tained from the approximation, K = E. At t = p, this represents the value of
2t* =Atirersnstevleo
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Figure 4-14: The relationship between the Fickian time scale, tFick = 0.4H 2 /Dz,a,
and the proportion of the flow taken up by the exchange zone.

K, that would be determined from our tracer experiments. We see that the solid

line begins to stabilize at t ~ tFick, indicating that a constant value of K, has been

reached. However, it is not until t = tio% 4 tFick that the single-point approxima-

tion, K = u, /2t, catches up to the final Fickian value (within 10 % of K,a). This

is consistent with Chatwin's [15] proposal that t = 1.0H2/Dza is the minimum time

scale for an accurate analysis.There are potentially two reasons for this: (i) the depth

average Dz in (2.68) underestimates the contribution from zones of significantly re-

duced diffusivity (this is a resolution issue, as discussed by Thacker [108]), and (ii),

concentration measurements at a single location dictate the approximation of (2.66)

by x, which will remain an inaccurate predictor of Kx until some time after the

onset of a Fickian regime. We propose that tio%, the time when the approximation

of Kx becomes accurate to 10% (see Figure 4-15), is an appropriate value. Under

flow conditions where cross-sectional mixing occurs rapidly (i.e., when H2 is rela-
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Figure 4-15: Results from the RWPT model simulation of Run A2. At t = p, the

approximation K. = K., = E underestimates the asymptotic value of Kx = Kx,,.

Although the regime is Fickian at this point (i.e., P > tFick = 0.4 H2 such that the
Dz,a

solid line, Kx = 0.50o /t, has reached an approximately constant value of Kx,a),
insufficient time has elapsed for Kx = Kx,, to be an accurate approximation. For this
particular run, AKx,, = 2cm 2/s, such that the experimentally determined dispersion
coefficient is expected to underestimate the final Fickian value by 11%.

tively large), tlo%>tFick= 0.4 H This corresponds to large &Kx/at at short times,Dz,a

and a sharp transition to linear growth of variance at about t = tFick. Such rapid

growth in the near-field variance does not immediately propagate to the single-point

approximation (the dashed line in Figure 4-15). A delayed response means that the

single-point approximation does not become accurate until much later, such that tio%

is significantly different from tFick. However, for very low vertical mixing rates, early

growth in Kx is so slow that the single-point approximation keeps up and t1o0%tFick.

This conceptual argument supports the empirical relationship between the two time

scales, shown in Figure 4-16.

Because p < t10% for many of the experimental runs (see Table 4.3), it is likely
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Figure 4-16: Regression and statistics of the fit relating t10% to the Fickian time scale,
tFick = 0.4H 2/Dz,a.

that K values obtained from ( are underestimates of the final Fickian values. Based

on a single RWPT model simulation for each run, we expect underestimations of 5%

to, in a few cases, as much as 45%. If the experimental values of K. are adjusted

upwards accordingly (K,NL in Table 4.3), the best fit of (2.84) yields 3 = 116±15

with 95% confidence. If no fitting parameter is used, and dispersion coefficients for

the experimental runs are calculated directly by substituting measured values of U1,

U2 , and b = A\U/40h into (2.72), we see that the values obtained are higher than those

observed (pluses in Figure 4-17). However, upward adjustment of the observed K

values results in much better agreement, by which we mean that the line of equivalence

runs through the data (circles) in Figure 4-17.

The RWPT simulations were used to assess the suitability of the mean tracer

velocity, the skewness coefficient and the kurtosis excess as indicators of proximity

to the Fickian limit. Figure 4-18 shows the evolution of particle distributions in the
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Figure 4-17: Agreement between dispersion coefficients obtained from the two-zone
model and experimental results, before and after adjustment with RWPT model re-
sults. Two-zone model estimates are made using measured velocity profiles.

RWPT simulation of run B6 (corresponding to the experimental run of the same

label). All length scales have been normalized by the depth, H = 29.75 cm. For

this particular run, zi/H = 0, such that the diffusivity was constant with depth.

10,000 particles were introduced at z/H = h/H = 0.24 (point A in Figure 4-18a)

at t = 0. Figure 4-18b and c show that at x/H = 3.5, the particles are not well-

mixed over depth but accumulate close to the bed in regions of low velocity. This is

simply a result of the position of the source below mid-depth at t = 0. The depth-

average distribution is clearly not Gaussian at this point. There are two peaks in the

longitudinal particle density: The first, closest to x/H = 0 represents the majority of

the particles in low velocities close to z/H = 0; The second peak represents the faster-

moving particles close to z/H = 1. As shown by Figure 4-18c, the particles become

well-mixed over depth with an increasing number of time steps and the depth-average

particle density looks more Gaussian (Figure 4-18b).
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The fluorometer location in the corresponding tracer experiment was at i/H = 38,

where one would expect to sample a reasonably well-mixed concentration distribution

based on this RWPT simulation. However, the traditional Fickian limit prediction

based on i 0.4 predicts a well-mixed cloud at i/H = 10. The RWPT shows

that a Gaussian distribution is unlikely at this early stage. The evolution of typical

indicators of Fickian behavior are shown in Figure 4-19. Although the mean velocity

of the particles is within 10 % of the channel velocity at x/H = 10, deviations greater

than 25 % are never observed even at very early stages in the evolution of the particle

plume. This supports the argument made in §4.1, that Uc/U is most indicative of

the source location, and is not a good metric for establishing Fickian behavior unless

the initial condition is a well-mixed distribution. Both the skewness coefficient, G

(Figure 4-19b), and kurtosis excess, re (Figure 4-19c), approach zero at x/H -> oc as

expected. However, the convergence is so slow that they too are unlikely to provide

useful practical measures of Fickian conditions. Even at x/H = 100 (or 10 times

the distance of the Fickian limit that we would predict), G < -2 and re > 2. In

field conditions, this will be compounded by the fact that G and K are sensitive to

outlying concentrations. Dead-zone residence times are likely to be too long for all

tracer mass to be recovered in real situations, resulting in underestimations of the

mass in the tails of distributions. This will impact significantly on observed higher

order moments, rendering G and Ke inaccurate.

Figures 4-20 and 4-21 show the results of the simulation of run A3. In this

simulation, H = 10.5 cm, zi/H = 0.4, and h/H = 0.7 (point A in Figure 4-20a).

The diffusivity profile was a step, with D, = 0.43 cm 2/s over zi < z < H and

D2 = 0.14 cm 2 /s for 0 < z < zi. Figure 4-20c shows that at i/H = 3.5, the particles

are not mixed uniformly over the total depth. The majority reside in z/H > zi/H,

since they were introduced at z/H = 0.7 and rapid mixing has caused them to

become uniformly distributed over the upper portion of the flow. The depth-average

particle distribution exhibits a distinct double peak, as with run B6 previously. With

progressive time steps, the particles in the faster-flowing region slowly diffuse down

into the zone of lower diffusivity (z/H < zi/H), as evident from Figure 4-20c at
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x/H = 35 and x/H = 105. A spike in the particle density is observed just below

z/H = zi/H at these longitudinal distances. This corresponds to particles that have

just arrived in the zone of lower diffusivity and have not had sufficient time to mix

fully over 0 < z < z1. This spike becomes less pronounced at greater distances

downstream as the particle density approaches uniformity with depth.

The Fickian criterion i = 0.4 would predict a Gaussian distribution of well-mixed

particles at x/H ~ 46 for this simulation. However, even at x/H = 105 (correspond-

ing to i ~ 0.9), the distribution is negatively skewed and not quite uniform over depth

(Figures 4-21b and 4-20c, respectively). Also, because of the asymptotic approach of

G to zero, skewnesses of 0(1) are likely to be observed for very large values of x/H.

Therefore, G is of no real practical use as an indicator of Fickian conditions. ie on the

other hand, approaches zero quite sharply in this case (Figure 4-21c) and could have

practical applications, were it not for the sensitivity to outliers discussed previously.

As for run B6, the mean tracer velocity in run A3 provides little useful information

about the Fickian limit, due to a very gradual approach to the mean channel velocity.

The interesting point to note is that Uc/U -- 1 from Uc/U > 1 (see Figure 4-21a).

This is the exact opposite to the behavior in run B6, where UC/U converges to 1

from below. This rules out the use of UC/U as a Fickian criterion, as suggested by

[21], when point sources are being considered. As the authors suggest, however, this

parameter does give an indication of how much time the tracer has spent in dead

zones versus fast zones. For example, regardless of the injection location, a tracer

plume with Uc/U > 1 must have spent the majority of its time in faster regions of

the flow field. Similarly, Uc/U < 1 implies a bias towards dead zones.
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Chapter 5

Conclusion

A theoretical framework for evaluating the longitudinal dispersion coefficient in vege-

tated flows is proposed. A two-zone model is presented, which identifies three contrib-

utory processes: large-scale shear dispersion above the canopy, inefficient exchange

between the vegetated layer and the overflow, and stem-scale dispersion within the

vegetation. Exchange between the zones is governed by K-H vortices for CDah < 2,

and by in-canopy turbulent diffusion for 2 < CDah.

For vortex-driven exchange, the dispersion coefficient is expressed in terms of easily

measured parameters, such as the water depth, the overflow friction velocity, u", and

the height of the vegetation. Inefficient exchange between the zones and logarithmic

shear in the fast zone dominate dispersion in this regime. A transition from exchange-

driven dispersion to logarithmic-shear dispersion is observed at H/h ~ 3.

When vortex penetration is limited and canopy exchange is dominated by wake-

zone diffusion, prediction of K, requires additional knowledge of canopy morphology

parameters, such as a, CD and d. Delayed exchange between the layers is again the

primary mechanism for dispersion, except in the extreme limits of H/h -+ oc and

H/h -+ 1. Logarithmic dispersion in the fast zone does not become the dominant

dispersive process until approximately H/h > 8. The overall dispersion is an order

of magnitude greater than in the case of vortex-driven exchange. Further work and

additional experiments are required to validate the two-zone model in this regime.

The traditional expression for the Fickian time scale is shown by a numerical

109



model to be reasonably accurate in predicting cross-sectional mixing. However, this

time scale is not long enough to allow K to be accurately determined from tracer

studies. A new time scale is proposed here.

A random walk, particle-tracking (RWPT) model was developed in Netlogo to

simulate dispersion in vegetated flows. This will be a useful tool in the future for

investigating residence times, sedimentation, and solute uptake in channels containing

submerged vegetation.
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Appendix A

Concentration-Time Distributions

Plots of normalized concentration versus time for all twenty-eight tracer experiments.

As discussed in Chapter 4, the time and concentration axes have been normalized by

the mean arrival time (p) and the total recovered mass of the solute (Mo), respectively.

111



X10-3 Run A6

0 1

o7-

S6 -
N =5

curves
5- =729 s

C. -

0skew = 0.53
at= 140 s

4 - CM2/-0 K =32.4 m/
C ) 0x

2 3--

C -

E -

0

z 0

0.4 0.6 0.8 1 1.2 1.4 1.6 1
Nondimensional time, t/p

Run B6
0.06

0.05 --

T0.04 -

N =5curves
o 0.0 =141 s
0 0.03-

- skew = 1.1
-at = 21.1 s

- t 2c K =103 cm /s
. 0 02-

E
-5 0.01-

0
0.8 1 1.2 1.4 1.6

Nondimensional time, t/g

112



Run C6

0.025

0.02-

0.015-

0.01-

0.005-

0

0
CU

0
C

0

0
C

EC

0z

0.4 0.6 0.8 1 1.2
ondimensional time, t/9

1.4 1.6

113

0

0.6 0.8 1 1.2 1.4 1.6 1.E
Nondimensional time, t/g

x 10-3  Run Al

0

8-

6 --
N -6curves
- 567s

4 6skew = 0.42
- a loos

K=35.2 cm2/S
x

2-

0

N =5curves
p = 252 s
skew = 1.0
a 38.9s
K 60.3 cm /s

- x

0

C

0C
U)

C

E

0

0



Run B1

0
4-0

a)
C)

0
-
0

E

0
z

1 1.1 1.2 1.3
Nondimensional time, t/p

1.4 1.5 1.6 1.70.7 0.8 0.9

114

0.05
0

0.04-

0.03-

0.02-

0.01

N =5curves
p = 96.8 s
skew = 0.83

T 13.0 s
t 1K =119 cm

- - x

or I I I I II -
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Nondimensional time, t/g

Run Cl

N 5
curves

p 192 s
skew 0.68

0 t =26.6 sZ. 26
K 63.7 cm /s

- -- -x

-A;L

0

0

4-

1-a
C)

0
C.)

CE0:5

E 0
0z

0.05

0.02

.01E

0.01

.005

C

I I I I I I I I

/s



x 1-3 Run A2

lo-
0

4-'

C

C
0
0

C

C
C

E
C
0z

0.8 1 1.2 1.4
Nondimensional time, t/g

1.6

115

012

f-

N =5curves
332 s

I skew=0.42
a = 48.3 s

2
K =40.6 cm /s

- x

0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Nondimensional time, t/g

Run B2

9-

8- N =5curves

7 p=60.7s
skew = 1.3

5.9 s
6 - -

K =100 cm2/sx
5-

4 -

3-

2-

1 -

--.C-

0.0

C 0.0
C

0.0

0.0

0 0.0

0 0.0
CD00

E
0

C
-o 0.0
c 0.

C
0

1.8
--0.0 .6



Run C2

0.8 0.9 1 1.1 1.2
Nondimensional time, t/

1.3 1.4 1.5

Run A3

1.2
Nondimensional time, t/g

116

0

0-0
4-

aC
0

0
C-)

E:
0
C

E 0
0z

0.04-

.035-

0.03-

.025-

0.02-

.015-

0.01

.005-

0

N 5
curves

JL 117 s
skew = 0.7
a= 12.0 s
K 57.7 c

-

4

m2/s

-0.005'
.7

X1-3

18

16

14

12

10

8

6

4

2

0

C)
C0
4-'

CU

0

C

a
0

CD

0

0

z

skew = 07
= 29.2,

. It

K =42.4cmI- x

- - -

57

C S

0.6 0.8 1.4 1.6

r%

1



Run C3

C)

01
0

C.-

0

CU,

0

-a

a)

0
0

00

o

E

0
C

0

z
76

E
S0

z

117

N 5
curves

89.4 s
skew 0.90

8.7 s
K =67.6 cm2/S

0.05-

0.04-

0.03-

0.02-

0.01 -

0.03-

.025-

0.02-

.015-

0.01

.005

0 I I i 1 ]
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Nondimensional time, t/

Run A5

0

NcurveS

p1~

. .8skew s
at=1
K =3

x

- 6
s
72s
= 0.87
5.8 s

1.6 cm2 /

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Nondimensional time, t/

I I I I I I

I I I I I



Run C5

0.07

0.06-

0.05 -

0.04-

0.03-

0.02[

0.01

0.7 0.8 0.9 1 1.1 1.2
Nondimensional time, t/g

1.3 1.4

Run A4
1 A

0.14

121-

0.1

0.08-

0.06-

0.04-

0.02

0.9 0.95 1 1.05 1.1
Nondimensional time, t/g

118

0

2

C-

C

0

C

0

C
0
0

C
0
CD

E

0z

N =5curves
p =70.3 s
skew = 0.35
at =5.9s
K =64.6 cm2

x

0.

0

0.
C

C

0

L-

C

C

0

C
C
0

C

C
a)
E

0z

-

N =5curves
J= 111s

skew = 3.0
a = 4.0 s

2
K =7.4 cm /sx

1.15

/s

U



Run C6D

0.02k

0

0C)

0C)

0
C0)

E

0
z

0

0.03k

0.025F

0.02k

0.015F

0.01 F

0.6 0.8

N =5curves
= 128 s

skew = 0.70
a= 19.0 s
K =110 cmx

1121

1 1.2 1.4
Nondimensional time, t/

119

1.6

AA.

0.015-

0.01 -

N =5curves
ji=289 s
skew = 0.90

= 62.2 s
2K 103cm2/sx

0.005

0
C I I

0.6 0.8 1 1.2 1.4 1.6 1.8
Nondimensional time, t/p

Run C2D

C
0

4--'
C
C

0

0
Cl
C

E

0
z

0.005F

C

2 /s



0

8

6

4

2

X 10- Run A2D

0

C

C

0
.I-

C
0

0
C.)

0
CD

E

-a

C:
0
z

0

C)

C0

Cz

0
C-)

C

E

0z

0.6 0.8 1 1.2 1.4
Nondimensional time, t/g

1.6

120

N =5curves
t = 325.5278 s
skew 0.5765
a- 52.3269 s
K 50.6772 cm2/s1 x

_ _ _ _

0

0.5 1 1.5 2
Nondimensional time, t/p

-X103  Run A3D
16

14- N =5curves
= 231 s

12 skew = 0.60
t= 33.8 s

K =59.2cm 2/s10 - x-

8-

6-

4-

2-

0



0.08

0.07-

0.06-

0.05-

0.04-

0.03-

0.02-

0.01-

Run X4D

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
Nondimensional time, t/g

Run C6D
2J 5j

0.02-

0.015-

0.01-

0.005-

0

121

0

C

C:
a)

C
0

C
0
C
a)

E.-
C:
0
z

N =5curves
j = 197 s
skew = 3.97
a 9.0 s
K =6.8 cm

x

... .. . .

Ar

N = 5curves
S=289 s

I skew = 0.90
a= 62.2s

1 2
K =103 cm2/s

F..

C

C)
0

4:0

Cz

CC.)

Cd0
0

C

E

0z
I I I I I

0.6 0.8 1 1.2 1.4 1.6 1.8
Nondimensional time, t/p

2/s



Run A

0
4c

U)

0

0
0

0

(D)

E

0z

122

0 0.03

0.025-

0.02 -

0.015

0.01-

0.005

0

0.6 0.8 1 1.2 1.4 1.6 1.8
Nondimensional time, t/p

X10-3  Run B

N =5curves
= 1220 s

skew = 0.10
- a=231 s

zt 2K =18.7cm /s -x

-j

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Nondimensional time, t/g

N -5curves
I =390s
skew = 0.77
at =89.1 s

K =85.3 cm2/sx

-V

06

C)

c 5

0

--0

4

0 30

0 2
CD)
C
CD
E

0Zo0



Run C

r = - III I11

0.6 0.8 1 1.2 1.4 1.6
Nondimensional time, t/g

Run D

N -

N rves

- = 356 s
skew = 0.99

t 80.3 s
K =90 cm2 /s

x

- . -- -..

I I I

1 1.2 1.4
Nondimensional time, t/g

0.6 0.8 1.6 1.8

123

0

0
-.

0C

0

0

0

Co

C
0)

E
-

N =5curves
252 s

skew = 0.80
a =58.4s

- OtI 2
K =136 cm2/sI X

-z

0.03

0.025-

0.02 -

0.015-

0.01-

0.005 -

0

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

0

LD

4

C
0

4-C0
C

0
C

0

0

z



Run E

N =5curves
p 137 s
skew = 0.97
a 34.1 s
Kt 2

- -K =288 cm /s
- x

0

0

C)

0

0

0
C

E
-
0
z

0

0.6 0.8 1.2 1.4 1.6 1.81
Nondimensional time, t/p

124

0.07-

0.06-

0.05-

0.04-

0.03-

0.02-

0.01 -

0 -

0.6 0.8 1 1.2 1.4 1.6 1.8
Nondimensional time, t/g

Run G

5-

2-

N =5curves

5 -i=382 s
- skew = 0.98

a 81.0 s
K 75.3cm2/s1x

5-

0 1I

0
.I..A

0
0C

0
CD)

E

0z

0.02

0.0

0.01

0.0

0.00



0.6 0.8

1 1.2 1.4 1.6
Nondimensional time, t/g

Run I

-N 5curves
= 192 s

skew = 1.0-
Z. 48.6 s03(It

K =212 cm2/
- x

1.2 1.4
Nondimensional time, t/

125

00.12

0.1

0

C 0.08
C

0.06
0
-
CZ 004
C
0Cn

C 0.02a)
E
C 0
0z

-0.02'-
0.6

Run H

N =5curves
p=123 s
skew=1.0
a= 35.2 s

- t 2
K =421 cm/sx

7.

0.8 1.8 2

0.04-

).035-

0.03-

).025-

0.02-

).015-

0.01-

).005-

0
2
C

0
I-
C

C
C.)

C
0

c

C

*

0

z
-0.005'

1.6 1.8

--

1



126



Appendix B

Matlab Programs

B.1 removeblips.m

% Program to remove spurious data from fluorometer recordings

% 24 June 05

% Input: 'filename' (No extension)

function removeblips(filename)

% Load data

file-string=char(strcat(filename,' as c'));

fid=fopen(file-string);

data=fscanf(fid,%f ',[11,inf]); 10

data=data.';

fclose(fid);

1-=size(data, 1);

datanew(1,:)=data(1,:);

j=2;
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% Search for rows of data with order of magnitude differences from the

% previous row. Remove these rows from ASCII file.

20

for i=2:1,

if abs(data(i,6)) > 10.*(abs(data(i-1,6)))

data(i,:)=data(i-1,:);

elseif abs(data(i,11)) > 10*(abs(data(i-1,11)))

data(i,:)=data(i-1,:);

elseif abs(data(i,6)) < 0.1.*(abs(data(i-1,6)))

data(i,:)=data(i-1,:);

elseif abs(data(i,11)) < 0.1.*(abs(data(i-1,11)))

data(i,:)=data(i-1,:);

elseif abs(data(i,10)) < 0.1.*(abs(data(i-1,10))) 30

data(i,:)=data(i-1,:);

elseif abs(data(i,10)) > 10*(abs(data(i-1,10)))

data(i,:)=-data(i-1,:);

else

datanew(j,:)=data(i,:);

j=j+1;

end

end

m=j-1;

40

% Print new rows of data to file with "corrected" appended to filename.

file-output=strat(char(filename),' corrected. txt ');

fout = fopen(file-output, ' wt');

for i=1:m

fprintf(fout,'%12.9f 712.9f %12.9f %12.9f %12.9f %12.9f'

'%12.9f %12.9f %12.9f %12.9f %12.9f\n',datanew(i,:));
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end

fclose(fout);

B.2 compilecurves.m

function [tavgcomposite,Ubarcomposite,sigmatcomposite,sigmax,skewcomposite,

seriestime, avgC, Crmscomposite, Kx, Mo] =compilecurves(file)

% Program to read ASCII files output from fluorometer, adapted from

% "curveslinedup.m" by Anne Lightbody.

% Requires accompanying program, "individualcurve.m" (also modified from

% version created by Anne Lightbody), which processes each individual

% fluorometer record.

% This program also requires an accompanying text file

% with a row for each realization in ensemble, and with the following 10

% columns:

% "filename", "injection time", "#", "#", "approximate start time of

% record", "approximate end time of record", "distance from injector to

% fluorometer", "#", "#" "# , "# ". # are unimportant numbers.

% Example:

% FL060102.ASC 2.00 33 33 3.00 7.97 1130 0.143 0.143 4 2

% Input: file = file designation, e.g. 'A5'

% Output: curves of normalized concentration versus time and statistics

% of concentration distribution.

20

if nargin<2, toggle1=0; end

if nargin<3, toggle2=0; end

if nargin<4, X=O; end
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if nargin<5, R=O; end

if nargin<6, M=0; end

if nargin<7, SITE=0; end

% Load data

prep=strcat(char(file), Iprep. txt ');

[filename,T,Vstart,Vend,Tstart,Tend,x,r,m, site, dye] 30

=textread(prep, ' %sf %f %ff %f %nnnnn');

tot aln=length(filename);

Trelease=T. *60

Tstart=Tstart.*60

Tend=Tend.*60 % convert time to s

% Check to make sure that there are no errors in prep file

if exist(find((Tend-Tstart)<0))~=0; 40

error('At least one Tstart value is greater than its Tend value');

end

if exist(find((Vstart-Vend)<0)) =0;

error('At least one Vend value is greater than its Vstart value');

end

if exist(find((Tstart--Trelease) <0)) ~=0;

error('At least one Trelease value is greater than its Tstart value');

end

ncurves=totaln; 50

for i=1:1:ncurves

index(i)==i;

end
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% Use individualcurve.m to evaluate each curve listed in prep file,

% creating matrices of C and time (in seconds) with all the results and

% O's filling the empty spaces

disp('Now processing: ')

disp(filename(index(1)))

[timematrix, Cmatrix,tavg,sigmat,skewness, Mo] 60

=individualcurve(filename(index(1)), Trelease(index(1)),Tstart (index(1)),

Tend(index(1)), dye(1),0);

timematrix(:,1)=timematrix(:,1)/tavg(1);

for i=2:ncurves

disp(filename(index(i)))

longest =size(timematrix, 1);

[timetemp, Ctemp,tavg(i), sigmat(i),skewness(i), Mo(i)]

-individualcurve (filename (index(i)), Trelease(index(i)),

Tstart (index(i)),Tend(index(i)),dye(i),0); 70

if length(timetemp) >longest

timematrix= [timematrix;zeros ((length(timetemp) -longest),(i-1))];

timematrix(:,i)=timetemp/tavg(i);

Cmatrix= [Cmatrix;zeros((length(timetemp) -longest),(i-1))];

Cmatrix(:,i)=Ctemp;

else

timematrix(:,i)=

[timetemp/tavg(i);zeros((longest -length(timetemp)), 1)];

Cmatrix(:,i)= [Ctemp; zeros ((longest -length(timetemp)),1)]; 80

end

end
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x=x(:); tavg=tavg(:); sigmat=sigmat(:); skewness=skewness(:);

clear Ctemp; clear timetemp;

% Line up the curves so that they all have values at the same points

dt=min(timematrix(20,:) -timematrix(19,:));

timemin = min(nonzeros(timematrix))-2*dt; 90

timemax = max(max(timematrix))+2*dt;

seriestime = linspace(timemin,timemax,(timemax-timemin)/dt)';

for i=1:ncurves

timetemp=

[seriestime();timematrix(,i)-dt;nonzeros(timematrix(:,i));...

max(nonzeros(timematrix(:, i))) +dt; seriestime(end)];

Ctemp=[O;O;Cmatrix((1:length(nonzeros(timematrix(:,i)))),i);0;0];

Cmatrixnew(:,i)=interplq(timetemp,Ctemp,seriestime);

end 100

ubar=x./tavg; % units of cm/s

sigmax=sigmat.*ubar; % units of cm

avgC=mean(Cmatrixnew,2); % units of ug/L

Crms=std(Cmatrixnew-repmat(avgC,1,ncurves)); % units of ug/L

relCrms=Crms./mean(Cmatrixnew,1); % nondimensional

figure(1); clf; hold on

for i=1:ncurves

plot(seriestime, Cmatrixnew(:, i),'k: ','LineWidth',1) 110

end

tavgcomposite=mean(tavg);

132



skewcomposite=mean(skewness);

sigmatcomposite=mean(sigmat);

Kx = 0.5*(((1130/tavgcomposite)^2)*((sigmatcomposite)^2))/tavgcomposite;

Ubarcomposite=mean(ubar);

Crmscomposite=mean(relCrms);

plot(seriestime,avgC, 'k-', 'LineWidth',3) 120

plot([1 1],[0 (max(max(Cmatrixnew))+0.001)],'k--','LineWidth',1)

plot([0 max(seriestime)],[0 0],'k-')

xlabel('Nondimensional time, t/\mu', 'FontSize',22)

ylabel('Nondimensional concentration, C/Mo', 'FontSize',22)

title(horzcat('Run ',file(1),file(2)), 'FontSize',22)

text(1.2, (max(max(Cmatrixnew))+0.001),strvcat((horzcat( 'Ncurves} =

num2str(ncurves))),horzcat(' \mu = ',num2str(tavgcomposite),' s'),

horzcat('skew = ',num2str(skewcomposite)),

horzcat(' \sigmat = ',num2str(sigmatcomposite),' s'), 130

horzcat('K-x = ',num2str(Kx),' cm^2/s')), 'FontSize',16)

set (gcf, 'PaperPositionMode', 'manual'); set(gcf, 'PaperPosition',

[0.5 0.5 7.5 10]); orient portrait;

hold off

B.3 individualcurve.m

function [time, Ccorrect ,tavg,sigmat,skewness, mO]

=individualcurve(filename, Trelease, Tstart,Tend,dyetype,toggle)

% Program to read voltage-time output from a single fluorometer ASCII file,

133



% convert to a concentration-time distribution, and calculate statistics of

% the distribution. Modified version of program written by Anne Lightbody.

% Input: filename = name of the data record entered as a string

% Trelease = release time in decimal seconds after start of time

% record 10

% Tstart = time of start of peak after start of time record (in

s)

Tend = time of end of peak after start of time record (in s)

dyetype = indication of which calibration curve to use

%/10 (1 = Rhodamine 6G, 2 = Rhodamine WT)

% toggle = graph switch (default 1, graphs)

%//0 toggle2 = print switch (default 0, records not saved to file)

% Output: time = vector containing values of time, measured in seconds

after Trelease 20

Ccorrect = vector containing nondimensional concentration

tavg = average cloud passage time

sigma = standard deviation of the curve of concentration vs.

time

skewness = skewness of the concentration curve vs. time

if nargin<5, toggle=1; end

file-string=char (filename); 30

fid=fopen(file -string);

data=fscanf(fid, ' %f ',[11,inf]);

data=data.';

fclose(fid);
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hour=data(:,3);

minute=data(:,4);

second=data(:, 5);

snew=splitsecond(second);

% correct for having the CTD record multiple readings at one time 40

timeraw= (hour+(minute. /60) +(snew. /3600)). *3600;

% recorded time in seconds

timefromstartlong= (timeraw-timeraw(1));

% time in seconds after start of record

Vwithneg=data(:,10);

Vraw=Vwithneg(Vwithneg>-0.03);

timefromstart=timefromstartlong(Vwithneg> -0.03); 50

if dyetype==1; Craw=10.^(1.5423*log1O(Vraw+0.03) + 1.4529);

elseif dyetype==2; Craw=10.^(1.9905*loglO(Vraw+0.03) + 2.1029);

end

minindex=min(find(timefromstart>=Tstart));

maxindex=max(find(timefromstart<=Tend));

timesingle=timefromstart (minindex:maxindex) -timefromstart (minindex);

% time only in peak counting from start of peak

60

Csingle=Craw(minindex:maxindex);

% concentration of this peak only

n=length(Csingle);
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data=[ ];

hour=[];

minute=[];

second=[1;

snew=[];

timeraw=[];

timefromstart=[];

Vraw=[];

Craw=[];

% clears data to release memory

70

startlevel-mean(Csingle(1:4));

endlevel=mean(Csingle((end- 3):end));

C=Csingle-startlevel;

% subtracts out background concentration (rectangular)

%diagnostic plot to see if concentration correction is working

if toggle~=O

figure(1); clf; hold on;

plot(timesingle, Csingle, ' c-' ,timesingle, C, 'k-');

xlabel('Time after start of peak (seconds)');

ylabel('Concentration (\mug/L) ')

plot (timesingle(1),startlevel, 'r+' ,timesingle(end),endlevel, 'r+')

legend('Raw concentration data',

'Concentration data with baseline subtracted out','Baseline',

'Baseline start and end points')

hold off

end
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time=timesingle+(Tstart-Trelease);

% Calculate statistics from moments of the peak

100

Ccorrect = C./trapz(time,C);

% C nondimensionalized by total mass measured

mO=trapz(time, C);

% calculate moments of the peak

tavg = trapz(time,time.*Ccorrect);

% calculates time of passage, mu

sigmat = sqrt (trapz(time, (((time-tavg). 2). *Ccorrect))); 110

% standard deviation

skewness = trapz(time, (((time-tavg). 3). *Ccorrect/sigmat. 3));

% skewness

% diagnostic plot to see if time and concentration corrections are working

if toggle~=O

figure(2); clf; hold on;

plot(time, Csingle, ' b-',time,C, 'r-',time, Ccorrect, 'k-') 120

axis([O max(time) min(C) (max(Csingle)+1)])

xlabel('Time after start of peak (seconds)');

ylabel('Concentration (\mug/L) ')

plot([(Tstart-Trelease) (Tstart-Trelease)], [0 (max(Csingle)+1)],' b: ');
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plot([tavg tavg],[0 (max(Csingle)+1)], 'r: ');

legend('Raw concentration data',

'Concentration data with baseline subtracted out',

'Nondimensional concentration, C/M-o','Start & end of curve',

'Tavg (Mi/MO)')

plot ([(Tend-Trelease) (Tend-Trelease)], [0 (max(Csingle)+1)], 'b: '); 130

hold off;

end

B.4 plotraw.m

function plotraw(filename)

% Program written by Anne Lightbody, spring 2003

% Plots voltage vs. time for fluorometer data

% Input: filename = text name of file to plot in single quotes

% (e.g., 'O00zO6r.asc')

fid=fopen(filename);

data=fscanf(fid, '%f ',[11,inf]);

data=data.'; 10

fclose(fid);

hour-data(:,3);

minute=data(:,4);

second=data(:,5);
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snew=splitsecond(second);

% correct for having the CTD record multiple readings at one time

time=hour+ (minute./60) + (snew. /3600);

% recorded time in hours

timemin=(time. *60 -(time(1)*60)) -2; 20

% time in minutes after start of record

V=data(:,10);

Vzeroed=V-min(V);

figure(2); clf;

plot (timemin,V, 'k-');

xlabel('Time after start of record [min]')

ylabel('Voltage [VI')

B.5 nlogo.m

% 22 January 2006

% Enda Murphy

% Program which reads in Netlogo data and outputs useful statistics

% Inputs: filename - name of Netlogo text file prefix, eg. 'A6'

%0 pnumber - number of particle coordinates output from, eg. 1000

% (pnumber is needed to sort text file)

% Dz - average diffusivity /cm2/s]

% (used to calculate Fickian time)

% H - water depth [cm]

% mu - mean passage time of tracer cloud in tracer experiment, 10

%0 rounded to the nearest second.
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% Ubar - average velocity of patches in Netlogo [cm/s]

%070 graphtoggle - 0 = default (no graphs)

function [tfick,mu,tagreement, Kx-longtime, Kx-meas, Ubar, Ucloud, skew-mu,

kurt-mu,time, Kxinst, Kx-approx, skewfinal,kurtfinal, Ucomfinal, t-inst]

=nlogo (file, Dz, H,mu, Ubar,graphtoggle)

if nargin<7, graphtoggle=O; end

tid=strcat(char(file), 'time .txt ');

varid=strcat (char(file), 'var. txt ');

skew-id strcat(char(file), 'skew. txt ');

kurt -id=strat(char(file), 'kurt .txt ');

Ucom-id=strcat(char(file), 'Ucom. txt ');

time=load(t id);

var=load(var-id);

skew-=load(skew-id);

kurt-load(kurt id);

Ucom-load(Ucom-id);

time=time.';

var=var.' ;

skew=skew.';

kurt=kurt. ;

Ucom=Ucom.';

tend=max(time);

tfick=0.4*H*H/Dz;

%loads Netlogo output files

30

40

%calculates fickian timescale
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tbefend=tend-1;

% Now, calculate instantaneous Kx versus time

for i=1:1:tbefend

dvar(i,1)=var(i+1)-var(i);

dt(i,1)=time(i+1)-time(i);

Kx-inst(i,1)=0.5*((dvar(i,1)))/(dt(i,1));

t-inst(i, 1)=time(i)+0.5;

end 50

% Now calculate Kx approximation (ie. value that would be got from a tracer

% experiment)

for i=1:1:tend

Kxapprox(i, 1)=0.5*(((var(i)))/time(i));

end

tf-sec=round(tfick);

for i=tLsec: 1:tbefend

KxIimit(i-tLsec+1)=Kxinst(i); 60

end

KxIongtime=mean(KxIimit);

% The value that Kx should asymptote to

Kxmeas=Kxapprox(mu);

% Kx that you should measure for a tracer experiment for the given input mu

Ucloud=Ucom(mu);

% The mean Lagrangian velocity of the tracer cloud at time mu

70

skew-mu=skew(mu);
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% skew at t = mu

kurt-mu=kurt(mu);

% kurt at t =- mu

tagreement=0;

for i=1:1:tend

if Kx-approx(i) >= (0.9*Kx-longtime) 80

tagreement=time(i);

break;

end

end

if tagreement == 0

disp(horzcat

('K-x approximate does not converge to within 10% of the final value'

'within ', tend, ' seconds.'))

end

skewfinal=skew(tend);

kurtfinal=kurt(tend);

Ucomfinal=Ucom(tend);

%if graphtoggle == 1

100

figure(1);
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plot (time, Kx-approx)

hold on

plot(t-inst, Kxinst, 'r-')

plot([tfick; tfick], [;max(Kxinst)],'r--')

plot([mu; mu], [;max(Kx-inst)],'k-')

plot([0;tend],[Kx-longtime;Kx longtime], 'k--')

plot ([tagreement;tagreement], [0;max(Kx-inst)],' b: ')

xlabel('time, secs')

ylabel('Kx, cm^2/s') 110

title(horzcat

('Evolution of longitudinal dispersion coefficient in Netlogo: Run ',

char(file)))

legend('K-x = \sigma-x^2(t)/t','Kx = \partial{\sigma-x^2}/ \partial{t}',

't_{Fickian}=0.4*H^2/D-z','\mu','asymptotic K_x', 't_{agreement}',

' Location', 'SouthEast ')

hold off

120

figure(2);

plot(time,skew)

hold on

xlabel('time, secs')

ylabel('skewness coefficient')

title(horzcat('Evolution of skewness in Netlogo: Run ',char(file)))

hold off

figure(3);

plot(time,Ucom) 130

hold on
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plot([O;tend],[Ubar;Ubar], r--')

xlabel('time, secs')

ylabel('Mean Lagrangian velocity of particle cloud, cm/s')

title(horzcat('Evolution of velocity of particle cloud in Netlogo: Run ',

char(file)))

hold off

%end

B.6 nlogobatch.m

% 22 January 2006

% Enda Murphy

% Function to batch process Netlogo runs - requires nlogo.m and prep file

% containing input columns "run name (eg.A6)",

% "average diffusivity (in Netlogo)", "water depth, H", "tmu, the mean

% passage time of the tracer in the corresponding lab experiment", and

% "average velocity of patches in netlogo, Ubar".

% Inputs: prepfilename - name of batchfile as string (eg.

% 'RunsA6toC5.txt')

10

function [tfick,mu,tagreement,Kxlongtime, Kxmeas, Ubar, Ucloud, skewmu,kurtmu,

timematrix,Kxinstmatrix,Kxapproxmatrix,skewfinal,kurtfinal,Ucomfinal,

tinstmatrix] =nlogobatch(prepfilename)

[filename,Dz,H,tmu,U]=textread(prepfilename, '%sf%fd%f');

totaln=length(filename);
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longest=7000; % longest time that simulations ran for

disp('Now processing: ') 20

disp(filename(1))

[tfick,mu,tagreement, Kxlongtime, Kxmeas, Ubar, Ucloud, skewmu,kurtmu,

timematrix(:,1),Kxinstmatrix(:,1),Kxapproxmatrix(:,1),skewfinal,

kurtfinal,Ucomfinal, tinstmatrix(:,1)]=nlogo(filename(1),Dz(1),H(1),

tmu(1),U(1), 0);

for i=2:1:totaln

disp(filename(i))

longest =size(timematrix, 1);

longestinst=size(Kxinstmatrix, 1); 30

[tfick(i), mu(i) ,tagreement (i), Kxlongtime(i), Kxmeas(i), Ubar(i), Ucloud(i),

skewmu(i),kurtmu(i),timetemp,Kxinsttemp,Kxapproxtemp,skewfinal(i),

kurtfinal(i), Ucomfinal(i),tinsttemp] =nlogo(filename(i), Dz(i), H(i),

tmu(i),U(i), 0);

if length(timetemp) >longest

timematrix= [timematrix;zeros((length(timetemp) -longest),(i-1))];

timematrix(:,i)=timetemp;

Kxapproxmatrix= [Kxapproxmatrix;zeros((length(timetemp) -longest),

(i-1))]; 40

Kxapproxmatrix(:,i)=Kxapproxtemp;

else

timematrix(:, i) = [timetemp;zeros ((longest -length(timetemp)), 1)];

Kxapproxmatrix(:,i)=[Kxapproxtemp;

zeros((longest-length(timetemp)),1)];

end
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if length(Kxinsttemp) >longestinst

Kxinstmatrix= [Kxinstmatrix;zeros ((length(Kxinsttemp) -longestinst), 50

(i-i))];

Kxinstmatrix(:, i)=Kxinsttemp;

tinstmatrix= [tinstmatrix;zeros ((length(Kxinsttemp) -longestinst),

(i-1))];

tinstmatrix(:,i)=tinsttemp;

else

tinstmatrix(:, i) = [tinsttemp;zeros ((longestinst -length(tinsttemp)), 1)];

Kxinstmatrix(:, i)= [Kxinsttemp;zeros ((longestinst - length(tinsttemp)), 1)];

end

end 60

tfick=tfick(:); mu=mu(:); tagreement=tagreement(:);

Kxlongtime=Kxlongtime(:); Kxmeas=Kxmeas(:);

Ubar=Ubar(:); Ucloud=Ucloud(:); skewmu=skewmu(:); kurtmu=kurtmu(:);

skewfinal=skewfinal(:); kurtfinal=kurtfinal(:); Ucomfinal=Ucomfinal(:);

clear Kxinsttemp; clear Kxapproxtemp; clear timetemp; clear tinsttemp;

B.7 readnetlogo.m

% 13 March 2005

% Enda Murphy

% function to read in x-coordinates and z-coordinates of particles from

% Netlogo output text file.

% Inputs: filename - name of file input as a string, eg. 'modeldata.txt'

% pnumber - number of particle coordinates output from, eg. 1000
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t - time at which netlogo run was stopped in seconds, eg. 390

(pnumber is needed to sort text file)

% Outputs: xcorzcor - coordinates of particles

% tcortzcor - coordinates converted to temporal 10

function[xcor,zcor,tcor,tzcor] =readnetlogo(filename, pnumber,t)

file-string=char(filename);

fid=fopen(file-string);

% x-coordinates

xcorstart=fscanf(fid,I %s ',1);

limit=pnumber - 2;

xcorm=fscanf(fid, '%f ',[limit, 1]); 20

xcorend=fscanf(fid, 's',1);

lst==length(xcorstart) - 1;

lend=length(xcorend) - 1;

for i=1:lst

xcorstart-short(i)=xcorstart(i+ 1);

end

for i=1:lend

xcorend-short(i) =xcorend(i); 30

end

numi = str2double(xcorstart-short);

num2 = str2double(xcorend-short);

xcor(1,1)=numl;

d=pnumber- 1;
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xcor(2:d,1)=xcorm;

xcor(pnumber, 1)=num2;

40

% z-coordinates

zcorstart=fscanf(fid, ' s ',1);

zcorm=fscanf(fid, '%f ',[limit,1]);

zcorend=fscanf(fid, ' %s' ,1);

lstz=length(zcorstart) - 1;

lendz=length(zcorend) - 1;

for i=1:lstz

zcorstart-short (i) =zcorstart (i+ 1);

end 50

for i=1:lendz

zcorend-short (i)=zcorend(i);

end

numlz = str2double(zcorstart-short);

num2z = str2double(zcorend-short);

zcor(1,1)=num1z;

zcor(2:d,1)=zcorm;

zcor(pnumber, 1)=znum2z; 60

fclose(fid);

xavg=mean(xcor);

uavg=xavg/t;
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ustar=xcor./t;

for i=1:pnumber

tcor(i)=xavg./ustar(i);

end

tzcor=rot90(zcor);

tzcor=rot90(tzcor);

figure(2);

hist(xcor,70)

figure(3);

hist (zor, 70)

figure(1);

plot(xcor,zcor,' b')

title('Locations of particles at t = 310seconds')

xlabel('x, cm')

ylabel('y, cm')

hold on

90

B.8 LDVdata.m

149

70

80

function [Ubar, U-rms, Vbar, VWrms, RS, uvv, vuu, vvv, uuu, y, datarate]



= LDV-data2(L, Velfile, Coordfile, Recfile, peaksgn, tmove, figstart)

%Program, modified from version written by Brian White at MIT, which

%takes raw LDV data file and parses into smaller files, corresponding to

%positions in the traverse

%L: length of each position record in seconds

%Velfile: name of LDV raw data file with extension 10

%Coordfile: text file with traverse y-positions in order of sampling

%Recfile: base file name (w/out extension) for parsed data files

%(corresponding to each traverse position)

%peaksgn is important

Rec = load(Velfile);

y load(Coordfile);

N length(y); %Number of individual position-records

20

Rec(:, 2) = Rec(:, 2)/1000; %Convert time to seconds

Rec(:, 3) = Rec(:, 3)/1000; %Convert transit time to seconds

Rec(:, 4:5) = Rec(:, 4:5)*100; %Convert velocity to cm/s

probedirect = sign(mean(Rec(:,5)));

if probedirect == -1 %adjust for LDV orientation

Rec(:, 5) = -Rec(:, 5);

Rec(:, 4) = -Rec(:, 4);

end

30

figure(figstart)
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plot(Rec(:,2),Rec(:,4),'b.')

hold on

T = L : L : N*L; %array of individual position-record end-times

bias = 0;

begin(1) = 1;

for j = 1:N; 40

j
lowind = find( ( Rec(1:end-1, 2) <= T(j)-15 ) &

( Rec(2:end,2) > T(j)-15 ) );

%lowind and highind form a window around the approximate time when

%the LDV probe was moving

highind = find( ( Rec(1:end-1, 2) <= T(j)+15 ) &

( Rec(2:end,2) > T(j)+15 ) );

%Traverse move time of T(j)

50

if isempty(highind)

highind = size(Rec,1);

end

%%In case lowind is < begin(j+1) - happens if this record is empty

lowind = max(lowind, begin(j));

if N==1

begin(j) = 1;

fin(j) = length(Rec(:,2));

else 60
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[peak, indx] = max( abs(Rec(lowind:highind,4)) );

maxind = indx + lowind - 1;

fin-vect = find( Rec(maxind,2) - Rec(:,2) >= 1);

%Find all samples at least 1 second prior to peak

fin(j) = fin-vect(end);

%Take the first

begin-vect = find( Rec(:,2) - Rec(maxind,2) >= 1);

%Find all samples at least 1 second after the peak 70

if j~=N

begin(j+1) = begin-vect(1);

end

end

%fin(j) is the last point of the previous location-record

%begin(j+1) is the first point of the new location-record

%The traverse move between them is removed

%In case fin(j) < begin(j) - if record is empty

fin(j) = max(fin(j), begin(j)); 80

if j~=N

begin(j+1) = max(begin(j+1), fin(j)+1);

end

plot( Rec( begin(j),2 ), Rec( begin(j),4 ), 'ro')

plot( Rec( fin(j),2 ), Rec( fin(j),4 ), 'ro')

% plot( Rec( begin(j),2 ), Rec( begin(j),5 ), 'ro')

% plot( Rec( fin(j),2 ), Rec( fin(j),5 ), 'ro')

90

datarate(j) = (fin(j) - begin(j))/L;
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newRec = Rec(begin(j) : fin(j), :);

%parse into individual record

newRec(:,2) = newRec(:,2) - newRec(1,2);

%subtract tO

u newRec(:, 5); %u and v for each position record

v = newRec(:, 4); 100

tt = newRec(:,3);

wt = tt/sum(tt);

Ubar(j) = sum(u.*wt);

Vbar(j) = sum(v.*wt);

uprime u - Ubar(j);

vprime = v - Vbar(j);

U-rms(j) sqrt(sum(wt.*uprime.^2));

V-rms(j) = sqrt(sum(wt.*vprime.^2)); 110

RS(j) = sum(wt.*uprime .* vprime);

uvv(j) sum(wt.*uprime .* vprime.^2);

vuu(j) = sum(wt.*vprime .* uprime.^2);

uuu(j) = sum(wt.*uprime.^3);

vvv(j) = sum(wt.*vprime.^3);

fileid = num2str( y(j) );

%file identifier is y-coordinate - convert from fp to text string

ifile = [Recfile char(fileid) '.txt']; 120

%create file name for current position record
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save( ifile, 'newRec', '-ASCII', '-TABS' )
%save position record to new file

end

length(y)

hold off

130
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Appendix C

RWPT Model Code

This is the Netlogo code that implements a random walk particle-tracking model

for a vegetated channel with a stepped diffusivity profile. Comments are indicated

by double semi-colons (;;). A manual which describes the Netlogo language may be

downloaded from http://ccl.northwestern.edu/netlogo/docs/.

C.1 vegetatedchannel.nlogo

globals [step time dt L nsolidcells var xbar scale xnewmax

xnewmin xcmin xcmax xnewbar axmin axmax yhist nhist

histbars Kx-theory Kx-actual passed nsorb ndesorb nsorbed

sorbremain desorbremain nmobile nturtles Uo zi H/h cmscale

phi tml Dtz fluorheight lowerfluor-range upperfluor-range

xbarlocal xm xrange yrange vary ybar nb nbottom nt ntop

ntref ntopreflect ntthru ntopthru nbthru nbotthru nremain

nr effectivePr averagePr dv vo Kx-inst Ucom skew kurtosis]

global variables

10

patches-own [vel Dz] ;; patch variables
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turtles-own

to setup

ca

set-default-shape turtles "circle"

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

nbottom 0

ntop 0

ntopthru 0

ntopreflect 0

nbotthru 0

nremain 0

effectivePr 0

nturtles 10000

nsolidcells 8

nmobile nturtles

[ xc ; unwrapped xcor

yc unwrapped ycor

delx dely xnew Gauss Gx

localvel ; local velocity

phase localDz farDz localturtle-c dzb vi v2 ti t2

dz1 dz2 dzb2 R R2 Prhightolow newdely newdelx

Xi farvel dxl dx2 Prcheck skpar kurtpar]

turtle variables

setup command procedure

clear all

makes the default turtle shape

a circle

30

global variable set to 10000

8 solid cells (red border)

Makes nmobile equal to no. of

turtles (10000).

nsorbed 0

cmscale 1.642857143 no. of patches per realworld cm

sorbremain 0

desorbremain 0

H/h 2 * (screen-edge-y - (nsolidcells + 0.5)) / (h * cmscale)

40
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;; input in cm

set U-o (Ul + U2) / 2

set Dtz 2.201742229

crt nturtles

;; input in cm^2/s

;; creates 10000 (or nturtle)

;; turtles

ask turtles

pd

set color yellow

set phase "mobile"

set heading 90

50

turtles trace path in their own

;; colour.

;; turtles are yellow.

;; writes "mobile" to the turtle

;; variable 'phase'.

;; sets turtles heading horizontally

;; from L to R.

set xcor -1 * screen-edge-x

set xc xcor

set xnew -1.0 * screen-edge-x

;; positions turtles x-coordinate

;; at leftmost side of graphic display.

;; stores x-coordinate in 'xc' variable.

;; stores initial x-coordinate in

; 'xnew' variable.

set ycor -11.5 + (h * cmscale)

I

ask turtle 10 [set color green]
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set z 1 0

60



if line

[ ask turtles with [ who <= 500 ] [ set ycor random-int-or-float

(screen-edge-y - (nsolidcells + 0.5)) ]

ask turtles with [ who > 500 ] [ set ycor random-int-or-float -1.0

* (screen-edge-y - (nsolidcells + 0.5))]

so

;; randomly distributes turtles in a line along the y-axis if 'line'

;; switch is on

ask turtles [
set ye ycor

I

;; stores turtle y-coordinate in 'yc' variable

ask patches with [pycor < ((zi * cmscale) + 0.5 - screen-edge-y

+ nsolidcells) and pycor >= (0.5 + nsolidcells - screen-edge-y )] 90

[set Dz Dw]

;; Initializes wake zone diffusivity

ask patches with [pycor >= ((zi * cmscale) + 0.5 - screen-edge-y

+ nsolidcells) and pycor <= (screen-edge-y - nsolidcells - 0.5)]

[set Dz Dtz]

;; Initializes shear layer diffusivity

ask turtles [set Prhightolow (1 - sqrt( Dw / Dtz ))]

;; sets probability of reflection at diffusivity interface 100

set scale 1
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set nhist 0

set passed 0

set axmin 0

set axmax 2 * screen-edge-x

set dt 1 ;; sets time step

set L (screen-edge-y - (nsolidcells + 0.5))

set phi ((zi * cmscale / (2 * L)) ^ 3) * ((Ul - U2) * tml / Dw) 110

if phi <= 0.5 [set Kx-theory (0.5 * (Ul - U2) * ((L * 2 / cmscale)

^ 2)) / tml]

if phi > 0.5 [set Kx-theory (0.1 * (zi ^ 3) * ((Ul - U2) 2)

* cmscale) / (Dw * 2 * L)]

grid-setup ;; runs grid-setup when 'setup' button is pressed

end

120

to grid-setup ;; Initializes environment

;; Input velocities for each patch in cm/s - sample velocities shown

ask patches with [pycor = ( - 11)]

[set vel 0.726782608

set pcolor scale-color blue vel 0 (1.2 * U1)]

ask patches with [pycor = ( - 10)]

[set vel 2.180347825

set pcolor scale-color blue vel 0 (1.2 * U1)]

ask patches with [pycor = ( - 9)] 130

[set vel 2.378713043

set pcolor scale-color blue vel 0 (1.2 * U1)]
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ask patches with [pycor = ( - 8)]

[set vel 2.387182609

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor = ( - 7)]

[set vel 2.466434783

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor = ( - 6)]

[set vel 2.614452174

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor ( - 5)]

[set vel 2.814043478

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor = ( - 4)]

[set vel 3.144595651

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = ( - 3)]

[set vel 3.606804346

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = ( - 2)]

[set vel 4.372969563

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor = ( - 1)]

[set vel 5.11565652

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor ( 0)]

[set vel 5.845299996

set pcolor scale-color blue vel 0 (1.2 * Ul)

ask patches with [pycor ( 1)]

[set vel 6.920926083

set pcolor scale-color blue vel 0 (1.2 * Ul)

]

F]

F]

160

140

150

160

]
I



ask patches with [pycor = ( 2)]

[set vel 7.85133478

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor ( 3)]

[set vel 8.520352171

set pcolor scale-color blue vel 0 (1.2 * U1)]

ask patches with [pycor = ( 4)]

[set vel 9.088891302 170

set pcolor scale-color blue vel 0 (1.2 * U1)]

ask patches with [pycor = (5)]

[set vel 9.604043477

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = (6)]

[set vel 9.947652172

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor ( 7)]

[set vel 10.35921739

set pcolor scale-color blue vel 0 (1.2 * Ul)] 180

ask patches with [pycor = ( 8)]

[set vel 10.8613913

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = ( 9)]

[set vel 11.4003913

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = ( 10)]

[set vel 11.871

set pcolor scale-color blue vel 0 (1.2 * Ul)]

ask patches with [pycor = ( 11)] 190

[set vel 11.871

set pcolor scale-color blue vel 0 (1.2 * U1)]
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;; Initializes graphics

ask patches with [((- (screen-edge-y - nsolidcells - 0.5))

+ (zl * cmscale) >= pycor) and

(pycor >= (- (screen-edge-y - nsolidcells - 0.5)))]

[ifelse pxcor mod 2 != 0

[set pcolor scale-color blue vel 0 (1.2 * U1)]

[set pcolor green]] 200

ask patches with [((- (screen-edge-y - nsolidcells - 0.5))

+ (zl * cmscale) < pycor) and

(pycor <= (- (screen-edge-y - nsolidcells - 0.5)) + (h * cmscale))]

[ifelse pxcor mod 2 != 0

[set pcolor scale-color blue vel 0 (1.2 * U1)]

[set pcolor green]]

sets colour and velocity of boundary patches to red and zero respectively

ask patches with [pycor > screen-edge-y - nsolidcells - 0.5] 210

[set pcolor white

set vel 0]

ask patches with [pycor < ( - (screen-edge-y - nsolidcells - 0.5))]

[set pcolor red

set vel 0]

end

to go commands that follow are initiated when 'go' button is pressed on

;;GUI 220

move-turtles move-turtles is also initiated when 'go' is pressed
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;; write data to file at end time specified in GUI by Stop-time switch

if stopswitch

[if (time = Stop-time)

ask turtles [set yc (yc / cmscale) + ((H/h * h) / 2)]

ask turtles [set xc (xc + screen-edge-x + 0.5) / cmscale]

set yrange (values-from turtles [yc])

set xrange (values-from turtles [xc]) 230

file-write xrange

file-write yrange

file-close

stop

]]

set step step + 1

;; increments global variables

set time time + dt 240

dt is time step

set var (max list (variance values-from turtles [xc]) 0.000000001)

/ (cmscale ^ 2)

gets variance of current x-coordinates of turtles and stores the the max

;; value in var. The 0.000001 just prevents a zero value

set vary (max list (variance values-from turtles [yc]) 0.000000001)

/ (cmscale ^ 2)

variance in the vertical 250

set xbar ((mean values-from turtles [xc]) + screen-edge-x + 0.5 )
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/ cmscale

distance along x-axis to centre of mass of turtles/tracer

set ybar ((mean values-from turtles [yc]) + 12) / cmscale

set Kx-actual 0.5 * var / time

;; computes Kx as estimated by a tracer experiment

ask turtles [set skpar ( ( ( (xc / cmscale) - xbar ) / ( var 0.5 ) ) 3 )J 260

set skew (mean values-from turtles [skpar])

ask turtles [set kurtpar (((xc / cmscale) - xbar) 4)]

set kurtosis (((mean values-from turtles [kurtpar]) / (var ^ 2)) - 3)

set dv var - vo

set Kx-inst 0.5 * dv ;; calculate change in variance in 1 time step

set Ucom xbar / time ;; calculate mean velocity of particles

;; Output data to text files

file-open "var.txt"

file-write var 270

file-close

file-open "time .txt"

file-write time

file-close

file-open "Ucom. txt"

file-write Ucom

file-close

file-open "skew.txt"

file-write skew

file-close 280

file-open "kurt.txt"

file-write kurtosis

164



file-close

;; GUI outputs

set-current-plot "Growth of Tracer Variance"

set-current-plot-pen "theory" plotxy time 2 * Kx-theory * (time)

;; plots expected variance from theory

set-current-plot-pen "actual" plotxy time var

;; plots calculated variance 290

set vo var

if (step mod 30 = 1)

set-current-plot "Histogram" clear-plot

if (var > 0.000000001)

[ set axmin min values-from turtles [xc] - (min values-from turtles

[xcor] + screen-edge-x) / scale

set axmin round axmin

set axmax max values-from turtles [xc] +

(screen-edge-x - max values-from turtles [xcor]) / scale 300

set axmax round axmax

set-plot-x-range axmin axmax

if (nhist > 0)

[set-plot-y-range 0 yhist]

;;sets max and min values of axes

set-histogram-num--bars 70

histogram-from turtles [xc]

310

set-current-plot "Tracer Concentration Prof ile vs. Gaussian" clear-plot

set-plot-x-range axmin axmax
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if (nhist > 0)

[set--plot--y-range 0 yhist]

set-current-plot-pen "C(x)"

set histbars 70

set -histogram-num-bars histbars

;; options for limiting data output to vertical intervals

set fluorheight (24.5 * cmscale) - (screen-edge-y - nsolidcells - 0.5) 320

;; setting range of fluorometer measurement

set upperfluor-range fluorheight + 2

set lowerfluor range fluorheight - 2

histogram-from turtles with [(ycor <= upperfluor-range) and

(ycor >= lowerfluor-range)] [xc]

set-current -plot -pen "Gauss"

ask turtles I

set Gx axmin + who * (axmax - axmin) / 999 330

set Gauss 1000 * (axmax - axmin) / histbars / sqrt (2 * pi * var)

* exp ( -1 * (Gx - xbar) ^ 2 / (2 * var) )

plotxy Gx Gauss

] ;; plots Gaussian curve

set yhist plot-y-max

set nhist 1

end

340

to move-turtles Assigns rules of particle movements
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change-phase

;ask turtles with [phase = "mobile"]

ask turtles

[set localvel vel-of patch-here

;; assigns velocity of patch to turtle at that patch

350

set delx localvel * cmscale * dt

;; dist = speed * time (spatial step)

set localDz Dz-of patch-here

;; assigns diffusivity of patch to turtle at that patch

set Xi random-normal 0 1

;; chooses random number from distribution with mean of

;; 0 and std deviation of 1

360

set dely sqrt( 2 * localDz * (cmscale ^ 2) * dt) * Xi

set farDz Dz-of (patch-at delx dely)

set dzb ( -11.5 - ycor) ;; sets distance from particle to diffusivity

;; interface (number must be input manually

;; for specific z1 and resolution

set R (dely / dzb)

set R2 ((abs dely) / (abs dzb)) 370

]
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ask turtles with [((R2 >= 1) and (R > 0) and (ycor >= (-11.5)))]

[set Prcheck random-float 1.0000000000000001]

Reflect particles at diffusivity step

ask turtles with [((R2 > 1) and (R > 0) and (ycor > (-11.5)) and

(Prcheck < Prhightolow))]

[set dzb2 (dely - dzb) 380

set newdely (dzb - dzb2)

set newdelx delx]

Transmit particles from high Dz with mid-step adjustment

ask turtles with [((R2 > 1) and (R > 0) and (ycor > (-11.5)) and

(Prcheck > Prhightolow))]

[set vi (dely / dt)

set v2 (Xi * (sqrt(2 * Dw / dt)))

set ti (dzb / vi)

set t2 (dt - ti) 390

set dzl vi * ti

set dz2 v2 * t2

set newdely (dzl + dz2)

set farvel vel-of (patch-at delx newdely)

set dxl (localvel * cmscale * ti)

set dx2 (farvel * cmscale * t2)

set newdelx (dxl + dx2)]

;; Transmit particles from low Dz with mid-step adjustment 400

ask turtles with [((R2 > 1) and (R > 0) and (ycor < (-11.5)))]

[set vi (dely / dt)
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set v2 (Xi * (sqrt(2 * Dtz / dt)))

set v2 (Xi * (sqrt(2 * farDz / dt)))

set ti (dzb / v1)

set t2 (dt - t1)

set dz1 v1 * ti

set dz2 v2 * t2

set newdely (dzl + dz2)

set farvel vel-of (patch-at delx newdely) 410

set dxl (localvel * cmscale * t1)

set dx2 (farvel * cmscale * t2)

set newdelx (dxl + dx2)]

ask turtles with [((R2 <= 1) or (R <= 0))]

[set newdely dely

set newdelx delx]

bound-reflect ;; Implement reflection at free surface and bed

420

ask turtles

set xc xc + newdelx

set yc yc + newdely

set ycor yc

set xnew xnew + newdelx * scale]

set xnewmax max values-from turtles [xnew]

set xnewmin min values-from turtles [xnew]

set xcmin min values-from turtles [xc]

set xcmax max values-from turtles [xc] 430

if (xnewmax > screen-edge-x)
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[ if (xnewmax - xnewmin) > 1.5 * screen-edge-x

[set scale min list 1 (0.67 * screen-edge-x / ( xcmax - xcmin ))
set nhist 0

if messages

[user-message "Zooming out, note change in x-axis limits"]

I

ask turtles [ set xnew scale * (xc - xcmin) - screen-edge-x

440

ask turtles [set xcor xnew]

end

to bound-reflect ;; bed and free surface reflection algorithm

ask turtles[

if ( pcolor-of (patch-at delx dely) = red) or

(distancexy (xcor + delx) (ycor + dely) != distancexy-nowrap

(xcor + delx) (ycor + dely) )

[ set newdely dely - 2 * ( yc + dely - ( L * abs yc / yc ) )

if ( pcolor-of (patch-at delx dely) = white) or

(distancexy (xcor + delx) (ycor + dely) != distancexy-nowrap

(xcor + delx) (ycor + dely) )

[ set newdely dely - 2 * ( yc + dely - ( L * abs yc / yc ) ) ]]

end

460
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