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Abstract
This thesis studies two key properties of learning algorithms: their generalization
ability and their stability with respect to perturbations. To analyze these properties,
we focus on concentration inequalities and tools from empirical process theory. We
obtain theoretical results and demonstrate their applications to machine learning.

First, we show how various notions of stability upper- and lower-bound the bias
and variance of several estimators of the expected performance for general learning
algorithms. A weak stability condition is shown to be equivalent to consistency of
empirical risk minimization.

The second part of the thesis derives tight performance guarantees for greedy
error minimization methods - a family of computationally tractable algorithms. In
particular, we derive risk bounds for a greedy mixture density estimation procedure.
We prove that, unlike what is suggested in the literature, the number of terms in the
mixture is not a bias-variance trade-off for the performance.

The third part of this thesis provides a solution to an open problem regarding
the stability of Empirical Risk Minimization (ERM). This algorithm is of central
importance in Learning Theory. By studying the suprema of the empirical process,
we prove that ERM over Donsker classes of functions is stable in the L1 norm. Hence,
as the number of samples grows, it becomes less and less likely that a perturbation of
o(v/-) samples will result in a very different empirical minimizer. Asymptotic rates
of this stability are proved under metric entropy assumptions on the function class.
Through the use of a ratio limit inequality, we also prove stability of expected errors
of empirical minimizers. Next, we investigate applications of the stability result. In
particular, we focus on procedures that optimize an objective function, such as k-
means and other clustering methods. We demonstrate that stability of clustering,
just like stability of ERM, is closely related to the geometry of the class and the
underlying measure. Furthermore, our result on stability of ERM delineates a phase
transition between stability and instability of clustering methods.

In the last chapter, we prove a generalization of the bounded-difference concentra-
tion inequality for almost-everywhere smooth functions. This result can be utilized to
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analyze algorithms which are almost always stable. Next, we prove a phase transition
in the concentration of almost-everywhere smooth functions. Finally, a tight concen-
tration of empirical errors of empirical minimizers is shown under an assumption on
the underlying space.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor of Brain Sciences

4



TO MY PARENTS

5



Acknowledgments

I would like to start by thanking Tomaso Poggio for advising me throughout my years

at MIT. Unlike applied projects, where progress is observed continuously, theoretical

research requires a certain time until the known results are understood and the new

results start to appear. I thank Tommy for believing in my abilities and allowing me

to work on interesting open-ended theoretical problems. Additionally, I am grateful

to Tommy for introducing me to the multi-disciplinary approach to learning.

Many thanks go to Dmitry Panchenko. It is after his class that I became very

interested in Statistical Learning Theory. Numerous discussions with Dmitry shaped

the direction of my research. I very much value his encouragement and support all

these years.

I thank Andrea Caponnetto for being a great teacher, colleague, and a friend.

Thanks for the discussions about everything - from philosophy to Hilbert spaces.

I owe many thanks to Sayan Mukherjee, who supported me since my arrival at

MIT. He always found problems for me to work on and a pint of beer when I felt

down.

Very special thanks to Shahar Mendelson, who invited me to Australia. Shahar

taught me the geometric style of thinking, as well as a great deal of math. He also

taught me to publish only valuable results instead of seeking to lengthen my CV.

I express my deepest gratitude to Petra Philips.

Thanks to Gadi for the wonderful coffee and interesting conversations; thanks to

Mary Pat for her help on the administrative front; thanks to all the past and present

CBCL members, especially Gene.

I thank the Student Art Association for providing the opportunity to make pottery

and release stress; thanks to the CSAIL hockey team for keeping me in shape.

I owe everything to my friends. Without you, my life in Boston would have been

dull. Lots of thanks to Dima, Essie, Max, Sashka, Yanka & Dimka, Marina, Shok,

and many others. Special thanks to Dima, Lena, and Sasha for spending many hours

fixing my grammar. Thanks to Lena for her support.

6



Finally, I would like to express my deepest appreciation to my parents for every-

thing they have done for me.

7



8



Contents

1 Theory of Learning: Introduction 17

1.1 The Learning Problem .......................... 18

1.2 Generalization Bounds .......................... 20

1.3 Algorithmic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Overview .................................. 23

1.5 Contributions ............................... 24

2 Preliminaries 27

2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Estimates of the Performance ..................... ......... . 30

2.2.1 Uniform Convergence of Means to Expectations ....... . 32

2.2.2 Algorithmic Stability . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Some Algorithms ............................. 34

2.3.1 Empirical Risk Minimization .................. ........ . 34

2.3.2 Regularization Algorithms . .................. 34

2.3.3 Boosting Algorithms ....................... 36

2.4 Concentration Inequalities ................................. . 37

2.5 Empirical Process Theory ........................ 42

2.5.1 Covering and Packing Numbers ................. 42

2.5.2 Donsker and Glivenko-Cantelli Classes ............ ..... . 43

2.5.3 Symmetrization and Concentration . ............. 45

9



3 Generalization Bounds via Stability

3.1 Introduction. .....................

3.2 Historical Remarks and Motivation .........

3.3 Bounding Bias and Variance .............

3.3.1 Decomposing the Bias ...........

3.3.2 Bounding the Variance ............

3.4 Bounding the 2nd Moment ..............

3.4.1 Leave-one-out (Deleted) Estimate ......

3.4.2 Empirical Error (Resubstitution) Estimate: 

3.4.3 Empirical Error (Resubstitution) Estimate .

3.4.4 Resubstitution Estimate for the Empirical I

Algorithm ..................
3.5 Lower Bounds ....................

3.6 Rates of Convergence ................

3.6.1 Uniform Stability ...............

3.6.2 Extending McDiarmid's Inequality .....

3.7 Summary and Open Problems ............

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Replacement Case

. . . . . . . . . .

Risk Minimization

47

47

49

51

51

53

55

56

58

60

62

64

65

65

67

69

4 Performance of Greedy Error Minimization Procedures

4.1 General Results ..............................

4.2 Density Estimation ............................

4.2.1 Main Results ...........................

4.2.2 Discussion of the Results .....................

4.2.3 Proofs ...............................

4.3 Classification ...............................

5 Stability of Empirical Risk Minimization

5.1 Introduction................

5.2 Notation..................

5.3 Main Result ................

71

71

76

78

80

82

88

over Donsker Classes 91

................ .....91

................ .....94

................ .....95

5.4 Stability of almost-ERM ....

10

98

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .



5.5 Rates of Decay of diamM ) ...........

5.6 Expected Error Stability of almost-ERM .....

5.7 Applications. ....................

5.7.1 Finding the Least (or Most) Dense Region

5.7.2 Clustering .................

5.8 Conclusions .....................

101

104

104

105

106

112

115

115

120

121

126

6 Concentration and Stability

6.1 Concentration of Almost-Everywhere Smooth Functions.

6.2 The Bad Set .........................

6.2.1 Main Result ....................

6.2.2 Symmetric Functions ...............

6.3 Concentration of Measure: Application of Inequality of Bobkov-Ledoux 128

131A Technical Proofs

11

......................

...........

...........

...........

...........

. . . . . . .

. . . . . . .

. . . . . . .



12



List of Figures

2-1 Fitting the data ...................... 32

2-2 Multiple minima of the empirical risk: two dissimilar functions fit the

data ..................................... 35

2-3 Unique minimum of the regularized fit to the data .......... . 36

2-4 Probability surface ............................ 41

4-1 Step-up and step-down functions on the [0,1] interval ........... . 75

4-2 Convex loss upper-bounds the indicator loss .............. 89

5-1 Realizable setting .............................. 96

5-2 Single minimum of expected error ..................... 96

5-3 Finite number of minimizers of expected error .............. 96

5-4 Infinitely many minimizers of expected error ............... 96

5-5 The most dense region of a fixed size ................... 105

5-6 The clustering objective is to place the centers Zk to minimize the sum

of squared distances from points to their closest centers ....... . . 108

5-7 To prove Lemma 5.7.1 it is enough to show that the shaded area is

upperbounded by the L1 distance between the functions hal,...,a and

hbl,...,bK and lower-bounded by a power of d. We deduce that d cannot

be large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6-1 Function f defined at the vertices as -1 or 1 such that Ef = 0 .... 122

13



6-2 n-dimensional cube with a {-1, 1}-valued function defined on the ver-

tices. The dashed line is the boundary separating the set of -l's from

the set of l's. The points at the boundary are the "bad set" ...... 123

6-3 The boundary is smallest when the cube is cut in the middle. The

extremal set is the set of points at most n/2-Hamming distance away

from the origin ........................................... 123

14



List of Tables

2.1 Table of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

15



16



Chapter 1

Theory of Learning: Introduction

Intelligence is a very general mental capability that, among other things, involves the

ability to reason, plan, solve problems, think abstractly, comprehend complex ideas,

learn quickly and learn from experience. It is not merely book learning, a narrow

academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability

for comprehending our surroundings -"catching on," "making sense" of things, or

'figuring out" what to do. [30]

The quest for building intelligent computer systems started in the 1950's, when

the term "artificial intelligence" (AI) was first coined by John McCarthy. Since

then, major achievements have been made, ranging from medical diagnosis systems to

the Deep Blue chess playing program that beat the world champion Gary Kasparov

in 1997. However, when measured against the definition above, the advances in

Artificial Intelligence are still distant from their goal. It can be argued that, although

the current systems can reason, plan, and solve problems in particular constrained

domains, it is the "learning" part that stands out as an obstacle to overcome.

Machine learning has been an extremely active area of research in the past fifteen

years. Since the pioneering work of Vapnik and Chervonenkis, theoretical foundations

of learning have been laid out and numerous successful algorithms developed. This

thesis aims to add to our understanding of the theory behind learning processes.

The problem of learning is often formalized within a probabilistic setting. Once

such a mathematical framework is set, the following questions can be attacked:
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How many examples are needed to accurately learn a concept? Will a given system

be likely to give a correct answer on an unseen example? What is easier to learn and

what is harder? How should one proceed in order to build a system that can learn?

What are the key properties of predictive systems, and what does this knowledge tell

us about biological learning?

Valuable tools and concepts for answering these questions within a probabilistic

framework have been developed in Statistical Learning Theory. The beauty of the

results lies in the inter-disciplinary approach to the study of learning. Indeed, a

conference on machine learning would likely present ideas in the realms of Computer

Science, Statistics, Mathematics, Economics, and Neuroscience.

Learning from examples can be viewed as a high-dimensional mathematical prob-

lem, and results from convex geometry and probability in Banach spaces have played

an important role in the recent advances. This thesis employs tools from the theory

of empirical processes to address some of the questions posed above. Without getting

into technical definitions, we will now describe the learning problem and the questions

studied by this thesis.

1.1 The Learning Problem

The problem of learning can be viewed as a problem of estimating some unknown phe-

nomenon from the observed data. The vague word "phenomenon" serves as a common

umbrella for diverse settings of the problem. Some interesting settings considered in

this thesis are classification, regression, and density estimation. The observed data is

often referred to as the training data and the learning process as training.

Recall that "intelligence ... is not merely book learning." Hence, simply memo-

rizing the observed data does not qualify as learning the phenomenon. Finding the

right way to extrapolate or generalize from the observed data is the key problem of

learning.

Let us call the precise method of learning (extrapolating from examples) an al-

gorithm or a procedure. How does one gauge the success of a learning algorithm? In
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other words, how well does the algorithm estimate the unknown phenomenon? A

natural answer is to check if a new sample generated by the phenomenon fits the

estimate. Finding quantitative bounds on this measure of success is one of the main

problems of Statistical Learning Theory.

Since the exposition so far has been somewhat imprecise, let us now describe a

few concrete learning scenarios.

One classical learning problem is recognition of hand-written digits (e.g. [24]).

Such a system can be used for automatically determining the zip-code written on

an envelope. The training data is given as a collection of images of hand-written

digits, with the additional information, label, denoting the actual digit depicted in

each image. Such a labeling is often performed by a human - a process which from

the start introduces some inaccuracies. The aim is to constrict a decision rule to

predict the label of a new image, one which is not in our collection. Since the new

image of a hand-written digit is likely to differ from the previous ones, the system

must perform clever extrapolation, ignoring some potential errors introduced in the

labeling process.

Prescribing different treatments for a disease can be viewed as a complex learning

problem. Assume there is a collection of therapies that could be prescribed to an ill

person. The observed data consists of a number of patients' histories, with particular

treatment decisions made by doctors at various stages. The number of treatments

could be large, and their order might make a profound difference. Taking into account

variability of responses of patients and variability of their symptoms turns this into a

very complex problem. But the question is simple: what should be the best therapy

strategy for a new patient? In other words, is it possible to extrapolate a new patient's

treatment from what happened in the observed cases?

Spam filtering, web search, automatic camera surveillance, face recognition, finger-

print recognition, stock market predictions, disease classification - this is only a small

number of applications that benefited from the recent advances in machine learning.

Theoretical foundations of learning provide performance guarantees for learning algo-

rithms, delineate important properties of successful approaches, and offer suggestions
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for improvements. In this thesis, we study two key properties of learning algorithms:

their predictive ability (generalization bounds), and their robustness with respect to

noise (stability). In the next two sections, we motivate the study of these properties.

1.2 Generalization Bounds

Recall that the goal of learning is to estimate the unknown phenomenon from the

observed data; that is, the estimate has to be correct on unseen samples. Hence, it is

natural to bound the probability of making a mistake on an unseen sample. At first,

it seems magical that any such guarantee is possible. After all, we have no idea what

the unseen sample looks like. Indeed, if the observed data and the new sample were

generated differently, there would be little hope of extrapolating from the data. The

key assumption in Statistical Learning Theory is that all the data are independently

drawn from the same distribution. Hence, even though we do not know what the

next sample will be, we have some idea which samples are more likely.

Once we agree upon the measure of the quality of the estimate (i.e. the error on

an unseen example), the goal is to provide probabilistic bounds for it. These bounds

are called performance guarantees or generalization bounds.

Following Vapnik [73], we state key topics of learning theory related to proving

performance guarantees:

* the asymptotic theory of consistency of learning processes;

* the non-asymptotic theory of the rate of convergence of learning processes.

The first topic addresses the limiting performance of the procedures as the number

of observed samples increases to infinity. Vaguely speaking, consistency ensures that

the learning procedure estimates the unknown phenomenon perfectly with infinite

amount of data.

The second topic studies the rates of convergence (as the number of samples

increases) of the procedure to the unknown phenomenon which generated the data.

Results are given as confidence intervals for the performance on a given number of
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samples. These confidence intervals can be viewed as sample bounds- number of

examples needed to achieve a desired accuracy.

The pioneering work of Vapnik and Chervonenkis [74, 75, 76, 72], addressed the

above topics for the simplest learning algorithm, Empirical Risk Minimization (ERM).

Vapnik-Chervonenkis (VC) dimension, a combinatorial notion of complexity of a bi-

nary function class, turned out to be the key to demonstrating uniform convergence

of empirical errors to the expected performance; the result has been extended to the

real-valued function classes through the notion of fat-shattering dimension by Alon et

al [1]. While the theory of performance of ERM is well understood, the algorithm is

impractical. It can be shown (e.g. Ben-David et al [9]) that minimizing mistakes even

over a simple class of hypotheses is NP-hard. In recent years, tractable algorithms,

such as Support Vector Machines [72] and Boosting [65, 27], became very popular off-

the-shelf methods in machine learning. However, their performance guarantees are

not as well-understood. In this thesis, we obtain generalization bounds for a family

of greedy error minimization methods, which subsume regularized boosting, greedy

mixture density estimation, and other algorithms.

The theory of uniform convergence, developed by Vapnik and Chervonenkis, pro-

vides a bound on the generalization performance in terms of the empirical performance

for any algorithm working on a "small" function class. This generality is also a weak-

ness of this approach. In the next section, we discuss an algorithm-based approach

to obtaining generalization bounds.

1.3 Algorithmic Stability

The motivation for studying stability of learning algorithms is many-fold. Let us

start from the perspective of human learning. Suppose a child is trying to learn the

distinction between Asian and African elephants. A successful strategy in this case

is to realize that the African elephant has large ears matching the shape of Africa,

while the Asian elephant has smaller ears which resemble the shape of India. After

observing N pictures of each type of elephant, the child has formed some hypothesis
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about what makes up the difference. Now, a new example is shown, and the child

somewhat changes his mind (forms a new hypothesis). If the new example is an

'outlier' (i.e. not representative of the populations), then the child should ignore it

and keep the old hypothesis. If the new example is similar to what has been seen

before, the hypothesis should not change much. It can therefore be argued that a

successful learning procedure should become more and more stable as the number of

observations N increases. Of course, this is a very vague statement, which will be

made precise in the following chapters.

Another motivation for studying stability of learning processes is to get a handle

on the variability of hypotheses formed from different draws of samples. Roughly

speaking, if the learning process is stable, it is easier to predict its performance than

if it is unstable. Indeed, if the learning algorithm always outputs the same hypothesis,

The Central Limit Theorem provides exponential bounds on the convergence of the

empirical performance to the expected performance. This "dumb" learning algorithm

is completely stable - the hypothesis does not depend on the observed data. Once this

assumption is relaxed, obtaining bounds on the convergence of empirical errors to their

expectations becomes difficult. The worst-case approach of Vapnik and Chervonenkis

[74, 75] provides loose bounds for this purpose. By studying stability of the specific

algorithm, tighter confidence intervals can sometimes be obtained. In fact, Rogers,

Devroye, and Wagner [63, 21, 23] showed that bounds on the expected performance

can be obtained for k-Nearest Neighbors and other local rules even when the VC-based

approach fails completely.

If stability of a learning algorithm is a desirable property, why not try to enforce

it? Based on this intuition, Breiman [17] advocated averaging classifiers to increase

stability and reduce the variance. While averaging helps increase stability, its effect on

the bias of the procedure is less clear. We will provide some answers to this question

in Chapter 3.

Which learning algorithms are stable? The recent work by Bousquet and Elisseeff

[16] surprised the learning community by proving very strong stability of Tikhonov

regularization-based methods and by deducing exponential bounds on the difference
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of empirical and expected performance solely from these stability considerations. In-

tuitively, the regularization term in these learning algorithms enforces stability, in

agreement with the original motivation of the work of Tikhonov and Arsenin [68] on

restoring well-posedness of ill-posed inverse problems.

Kutin and Nyiogi [44, 45] introduced a number of various notions of stability,

showing various implications between them. Poggio et al [58, 55] made an important

connection between consistency and stability of ERM. This thesis builds upon these

results, proving in a systematic manner how algorithmic stability upper- and lower-

bounds the performance of learning methods.

In past literature, algorithmic stability has been used as a tool for obtaining

bounds on the expected performance. In this thesis, we advocate the study of stability

of learning methods also for other purposes. In particular, in Chapter 6 we prove

hypothesis (or L1) stability of empirical risk minimization algorithms over Donsker

function classes. This result reveals the behavior of the algorithm with respect to

perturbations of the observed data, and is interesting on its own. With the help of

this result, we are able to analyze sensitivity of various optimization procedures to

noise and perturbations of the training data.

1.4 Overview

Let us now outline the organization of this thesis. In Chapter 2 we introduce notation

and definitions to be used throughout the thesis, as well as provide some background

results. We discuss a measure of performance of learning methods and ways to esti-

mate it (Section 2.2). In Section 2.3, we discuss specific algorithms, and in Sections

2.4 and 2.5 we introduce concentration inequalities and the tools from the Theory of

Empirical Processes which will be used in the thesis.

In Chapter 3, we show how stability of a learning algorithm can upper- and lower-

bound the bias and variance of estimators of the performance, thus obtaining perfor-

mance guarantees from stability conditions.

Chapter 4 investigates performance of a certain class of greedy error minimization

23



methods. We start by proving general estimates in Section 4.1. The methods are

then applied in the classification setting in Section 4.3 and in the density estimation

setting in Section 4.2.

In Chapter 5, we prove a surprising stability result on the behavior of the empirical

risk minimization algorithm over Donsker function classes. This result is applied to

several optimization methods in Section 5.7.

Connections are made between concentration of functions and stability in Chapter

6. In Section 6.1 we study concentration of almost-everywhere smooth functions.

1.5 Contributions

We now briefly outline the contributions of this thesis:

* A systematic approach to upper- and lower-bounding the bias and variance of

estimators of the expected performance from stability conditions (Chapter 3).

Most of these results have been published in Rakhlin et al [60].

* A performance guarantee for a class of greedy error minimization procedures

(Chapter 4) with application to mixture density estimation (Section 4.2). Most

of these results appear in Rakhlin et al [61].

* A solution to an open problem regarding L1 stability of empirical risk minimiza-

tion. These results, obtained in collaboration with A. Caponnetto, are under

review for publication [18].

* Applications of the stability result of Chapter 5 for optimization procedures

(Section 5.7), such as finding most/least dense regions and clustering. These

results are under preparation for publication.

* An extension of McDiarmid's inequality for almost-everywhere Lipschitz func-

tions (Section 6.1). This result appears in Rakhlin et al [60].

* A proof of a phase transition for concentration of real-valued functions on a

binary hypercube (Section 6.2). These results are in preparation for publication.
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* A tight concentration of empirical errors around the mean for empirical risk

minimization under a condition on the underlying space (Section 6.3). These

results are in preparation for publication.
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Chapter 2

Preliminaries

2.1 Notation and Definitions

The notion of a "phenomenon", discussed in the previous chapter, is defined formally

as the probability space (Z, 5, P). The measurable space (Z, 5) is usually assumed

to be known, while P is not. The only information available about P is through the

finite sample S = Z 1,..., Zn} of n E Z+ independent and identically distributed

(according to P) random variables. Note that we use upper-case letters X, Y, Z to

denote random variables, while x, y, z are their realizations.

"Learning" is formally defined as finding a hypothesis h based on the observed

samples Z1, . . , Zn. To evaluate the quality of h, a bounded real-valued loss (cost)

function is introduced, such that (h; z) indicates how well h explains (or fits) z.

Unless specified otherwise, we assume throughout the thesis that -M < e < M for

some M > 0.

* Classification:

Z is defined as the product X x y, where X is an input space and y is a discrete

output space denoting the labels of inputs. In the case of binary classification,

Y = {-1, 1 , corresponding to the labels of the two classes. The loss function e

takes the form (h; z) = e(yh(x)), and h is called a binary classifier. The basic
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example of £ is the indicator loss:

£(yh'(x)) = I(yh'(x) < O) = I(y # sign(h'(x))).

* Regression:

Z is defined as the product X x y, where X is an input space and y is a real

output space denoting the real-valued labels of inputs. The loss function £ often

takes the form £(h; z) = £(y- h(x)), and the basic example is the square loss:

(y-h(x)) = (y- h(x))2 .

* Density Estimation:

The functions h are probability densities over Z, and the loss function takes

the form e(h; z) = t(h(z)). For instance,

t(h(z)) = -log h(z)

is the likelihood of a point z being generated by h.

A learning algorithm is defined as the mapping A from samples zl, ... , z to

functions h. With this notation, the quality of extrapolation from Z, .. , Zn to a new

sample z is measured by (A(zl,.. ., zn); z).

Whenever Z = X x , it is the function h: X - y that we seek. In this case,

A(Z 1,..., Zn): X y. Let us denote by A(Z1,..., Zn;X) the evaluation of the

function, learned on Z1, .. , Z, at the point X.

Unless indicated, we will assume that the algorithm ignores the ordering of S, i.e.

A(Zli,... , Zn) = A(ir(zi,...,zn)) for any permutation r E Sn, the symmetric group.

If the learning algorithm A is clear from the context, we will write (Z 1,..., Zn; )

instead of e(A(Z1,..., Zn); ).

The functions £(h; ) are called the loss functions. If we have a class H of hypothe-
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ses available, the class

L(X) = {e(h;.): h E H}

is called the loss class.

To ascertain the overall quality of a function h, we need to evaluate the loss e(h;.)

on an unseen sample z. Since some z's are more likely than others, we integrate over

Z with respect to the measure P. Hence, the quality of h is measured by

14(h) := E(h; Z),

called the expected error or expected risk of h. For an algorithm A, its performance

is the random variable

.(A(Z1, . Zn)) = E [(A(Zl,.. , Zn); Z)IZ,., Zn].

If the algorithm is clear from the context, we will simply write (Z1 ,..., Zn)

Since P is unknown, the expected error is impossible to compute. A major part of

Statistical Learning Theory is concerned with bounding it in probability, i.e. proving

bounds of the type

((Zi, , Zn) > E) < (En),

where the probability is with respect to an i.i.d. draw of samples Z1, . . ., Zn

Such bounds are called generalization bounds or performance guarantees. In the

above expression, sometimes depends on a quantity computable from the data. In

the next chapter, we will consider bounds of the form

I ( 1Z(Z1 ... , Zn)- 7(Z 1 ,..., Zn) > E) < (e,n), (2.1)

where t(Z 1,..., Zn) is an estimate of the unknown Z(Z1,..., Zn) from the data

Z1, .. , Zn. The next section discusses such estimates (proxies) for 7R. The reader is

referred to the excellent book of Devroye et al [20] for more information.
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Table 2.1: Table of notation

Z Space of samples
X, Y Input and output spaces, whenever Z = X x y
P Unknown distribution on Z
I,..., Zn I.i.d. sample from P
n Number of samples
S The sample {Z1,..., Zn}
e Loss (cost) function

_____ _ Class of hypotheses
IA Learning algorithm
7. Expected error (exp. loss, exp. risk)

Remp Empirical error (resubstitution estimate)
Zi1oo Leave-one-out error (deleted estimate)

lRemp Defect of the resubstitution estimate: Remp = R - lemp

R'loo Defect of the deleted estimate: 7R1oo = R - Rloo
conv () Convex hull of R
convk (7) k-term convex hull of X
Tn(Zi,., Zn) A generic function of n random variables
un Empirical process

2.2 Estimates of the Performance

Several important estimates of the expected error R(h) can be computed from the

sample. The first one is the empirical error (or resubstitution estimate),

1Remp(Zl,... , Zn) := (Zl,..., Zn; Zi).
i=1

The second one is the leave-one-out error (or deleted estimate)',

i n

R.1oo(Zl,, Zn) : - e(Zl,..., Zi-1, Zi+l,., Zn; Zi)-.
i=1

These quantities are employed to estimate the expected error, and Statistical

Learning Theory is concerned with providing bounds on the deviations of these esti-

lit is understood that the first term in the sum is (Z2 ,... , Zn; Zi) and the last term is
f(Z1, ..., Zn-1; Zn)-
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mates from the expected error. For convenience, denote these deviations

Zemp(Zli,..., Zn) i R(Z ,.,Zn) -Zemp(Zl,...,Zn),

oo(Z1 , . . ,Zn) := '(Z, . *,Zn) - zioo(Z1, ***Zn).

With this notation, Equation 2.1 becomes

PE ( Zemp(Z,..., Z.)I >Ž ) < 6(E, n) (2.2)

or

I (zloo(Z,,... ,Zn) > 6) < (e, n) (2.3)

If one can show that fZemp (or .10oo) is "small", then the empirical error (resp.

leave-one-out error) is a good proxy for the expected error. Hence, a small empirical

(or leave-one-out error) implies a small expected error, with a certain confidence. In

particular, we are often interested in the rate of the convergence of hZemp and Zlo to

zero as n increases.

The goal is to derive bounds such that limn-,. 6(e, n) = 0 for any fixed > 0.

If the rate of decrease of 6(e,n) is not important, we will write lRempi I 0 and

I~ool °-O
Let us focus on the random variable Temp(Z1,... , Zn). Recall that the Central

Limit Theorem (CLT) guarantees that the average of n i.i.d. random variables con-

verges to their mean (under the assumption of finiteness of second moment) quite

fast. Unfortunately, the random variables

(z, .. ., Zn; ),X..., (z, .. ., Zn; Zn)

are dependent, and the CLT is not applicable. In fact, the interdependence of these

random variables makes the resubstitution estimate positively biased, as the next

example shows.
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Example 1. Let X = [0, 1], Y = {0, 1}, and

P(X) = U[O, 1], P(YIX) = jY=i.

Suppose (h(x),y) = I(h(x) y), and A is defined as A(Zi,...,Zn;X) = 1 if

X E X 1, ..., Xn} and 0 otherwise. In other words, the algorithm observes n data

points (Xi, 1), where Xi is distributed uniformly on [0, 1], and generates a hypothesis

which fits exactly the observed data, but outputs 0 for unseen points X. This situation

is depicted in Figure 2-1. The empirical error of A is 0, while the expected error is

1, i.e. fZemp(Z1, . . . , Zn) = 1 for any Z1, .. , Z,.

1 @0 0 0 

0 0-0 0 0---
X 1 Xn

Figure 2-1: Fitting the data.

No guarantee on smallness of 7Zemp can be made in Example 1. Intuitively, this is

due to the fact that the algorithm can fit any data, i.e. the space of functions £(7i)

is too large.

Assume that we have no idea what the learning algorithm is except that it picks

its hypotheses from H. To bound lZemp, we would need to resort to the worst-

case approach of bounding the deviations between empirical and expected errors for

all functions simultaneously. The ability to make such a statement is completely

characterized by the "size" of £(7H), as discussed next.

2.2.1 Uniform Convergence of Means to Expectations

The class £(7) is called uniform Glivenko-Cantelli if for every e > 0,
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limsupP sup Et- (Z) > = 0,n--boo i r_) n E
where Zl,..., Z are i.i.d random variables distributed according to IL.

Non-asymptotic results of the form

ED sup Et - - E (zi) > < (, n, (X))

give uniform (over the class £(7X)) rates of convergence of empirical means to expec-

tations. Since the guarantee is given for all functions in the class, we immediately

obtain

PE ~ep(1 * Zn) >) < (F n, L(XH) )

We postpone further discussion of Glivenko-Cantelli classes of functions to Section

2.5.

2.2.2 Algorithmic Stability

The uniform-convergence approach above ignores the algorithm, except for the fact

that it picks its hypotheses from H. Hence, this approach might provide only loose

bounds on Zemp. Indeed, suppose that the algorithm would in fact only pick one

function from X. The bound on Zemp would then follow immediately from The

Central Limit Theorem. It turns out that analogous bounds can be proved even if

the algorithm picks diverse functions, as long is it is done in a "smooth" way. In

Chapter 3, we will derive bounds on both Remp and lZloo in terms of various stability

conditions on the algorithm. Such algorithm-dependent conditions provide guarantees

for Remp and Rloo even when the uniform-convergence approach of Section 2.2.1 fails.
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2.3 Some Algorithms

2.3.1 Empirical Risk Minimization

The simplest method of learning from observed data is the Empirical Risk Minimiza-

tion (ERM) algorithm

A(Z *, Zn) = ag ~mi- f(h; Z,).
h67 n

Note that the ERM algorithm is defined with respect to a class 1t. Although an

exact minimizer of empirical risk in this class might not exist, an almost-minimizer

always exists. This situation will be discussed in much greater detail in Chapter 5.

The algorithm in Example is an example of ERM over the function class

H= Uh.x = (xl,. . .,Xn) E [0, ]n},
n>1

where h,(x) = 1 if x = xi for some 1 < i < n and h:(x) = 0 otherwise.

ERM over uniform Glivenko-Cantelli classes is a consistent procedure in the sense

that the expected performance converges to the best possible within the class of

hypotheses.

There are a number of drawbacks of ERM: ill-posedness for general classes 7-, as

well as computational intractability (e.g. for classification with the indicator loss).

The following two families of algorithms, regularization algorithms and boosting algo-

rithms, aim to overcome these difficulties.

2.3.2 Regularization Algorithms

One of the drawbacks of ERM is ill-posedness of the solution. Indeed, learning can be

viewed as reconstruction of the function from the observed data (inverse problem),

and the information contained in the data is not sufficient for the solution to be

unique. For instance, there could be an infinite number of hypotheses with zero

empirical risk, as shown in Figure 2-2. Moreover, the inverse mapping tends to be
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unstable.

Figure 2-2: Multiple minima of the empirical risk: two dissimilar functions fit the
data.

The regularization method described next is widely used in machine learning

[57, 77], and arises from the theory of solving ill-posed problems. Discovered by

J. Hadamard, ill-posed inverse problems turned out to be important in physics and

statistics (see Chapter 7 of Vapnik [72]).

Let Z = X x , i.e. we consider regression or classification. The Tikhonov regu-

larization method [68], applied to the learning setting, proposes to solve the following

minimization problem

n

A(Z1 ... , Zn) = argmin (h(Xi), Y) + A11hIK,
i=1

where K is a positive definite kernel and 11. is the norm in the associated Reproducing

Kernel Hilbert Space i. The parameter A > 0 controls the balance of the fit to

the data (the first term) and the "smoothness" of the solution (the second term),

and is usually set by a cross-validation method. It is exactly this balance between

smoothness and fit to the data that restores the uniqueness of the solution. It also

restores stability.

This particular minimization problem owes its success to the following surprising

(although simple to prove) fact: even though the minimization is performed over a

possibly infinite-dimensional Hilbert Space of functions, the solution always has the
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Figure 2-3: Unique minimum of the regularized fit to the data.

form
n

A(Z1,.*.*, Zn X) = E3 ciK(Xi, x),
i=1

assuming that depends on h only through h(Xi).

2.3.3 Boosting Algorithms

We now describe boosting methods, which have become very popular in machine

learning [66, 27]. Consider the classification setting, i.e. Z = X x y, y = {-1, 1}.

The idea is to iteratively build a complex classifier f by adding weighted functions

h E , where H is typically a set of simple functions. "Boosting" stands for the

increase in the performance of the ensemble, as compared to the relatively weak

performance of the simple classifiers. The ensemble is built in a greedy stage-wise

manner, and can be viewed as an example of additive models in statistics [32].

Given a class H of "base" functions and the observed data Z1,... , Z, a greedy

boosting procedure builds the ensemble fk in the following way. Start with some

fo = h. At the k-th step, choose ak and hk E X to approximately minimize the

empirical error on the sample. After T steps, output the resulting classifier as

· ~~~~~A(Z1, .. .,Zn) = sign ( i hi)

There exist a number of variations of boosting algorithms. The most popular one,

AdaBoost, is an unregularized procedure with a potential to overfit if left running
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for enough time. The regularization is performed as a constraint on the norm of the

coefficients or via early stopping. The precise details of a boosting procedure with the

constraint on the E1 norm of the coefficients are given in Chapter 4, where a bound

on the generalization performance is proved.

2.4 Concentration Inequalities

In the context of learning theory, concentration inequalities serve as tools for obtain-

ing generalization bounds. While deviation inequalities are probabilistic statements

about the deviation of a random variable from its expectation, the term "concentra-

tion" often refers to the exponential bounds on the deviation of a function of many

random variables from its mean. The reader is referred to the excellent book of

Ledoux [47] for more information on the concentration of measure phenomenon. The

well-known probabilistic statements mentioned below can be found, for instance, in

the survey by Boucheron et al [13].

Let us start with some basic probability inequalities. For a non-negative random

variable X,

EX= j (X > t)dt.

The integral above can be lower-bounded by the product t (X > t) for any fixed

t > 0. Hence, we obtain Markov's inequality:

EXP(X> t) 
t

for a non-negative random variable X and any t > 0.

For a non-negative strictly monotonically increasing function q,

P (X > t) = P (0(X) > 0(t)),

resulting in
EO(x )P(X > t) <qE()

0(t)
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for an arbitrary random variable X.

Setting 0(x) = Xq for any q > 0 leads to the method of moments

(IX- EXI > t) < EJX -EXIq

for any random variable X. Since the inequality holds for any q > 0, one can optimize

the bound to get the smallest one. This idea will be used in Chapter 6. Setting

q = 2 we obtain Chebyshev's inequality which uses the second-moment information

to bound the deviation of X from its expectation:

VarX(IX- EXl > t) < V .

Other choices of b lead to useful probability inequalities. For instance, O(x) = e
x

for s > 0 leads to the Chernoff's bounding method. Since

P (X > t) = P (esx > eat)

we obtain

P (X > t) < Eex
eat

Once some information about X is available, one can minimize the above bound over

s >0.

So far, we have discussed generic probability inequalities which do not exploit any

"structure" of X. Suppose X is in fact a function of n random variables. Instead of

the letter X, let us denote the function of n random variables by T.(Z, . . ., Z).

Theorem 2.4.1 (Hoeffding [34]). Suppose T,(Z, Z* = * = l Zi, where Zi 's are

independent and ai < Zi bi. Then for any e > 0,

-2C
2

P (ITn- ETn I > e) < 2e r?=i(bi-ai)

Hoeffding's inequality does not use any information about the variances of Zi's.

A tighter bound can be obtained whenever these variances are small.
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Theorem 2.4.2 (Bennett [10]). Suppose T(Z 1,..., Zn) = Einl Zi, where Zi's are

independent, and for any i, EZi = 0 and IZi < M. Let 2 = I Z Var{Z}. Then

for any £ > 0,
no 2

IP(ITnI > e) < 2exp -- f
( EM

where 4(x) = (1 + x) log(1 + x) - x.

Somewhat surprisingly, exponential deviation inequalities hold not only for sums,

but for general "smooth" functions of n variables.

Theorem 2.4.3 (McDiarmid [54]). Let T : Z n - R such that

Vz1 , ,Zn, Z1 ... Zn E Tn(zl,. ,Zn) - Tn(Zl,. ,Zi, , n) < Ci

Let Z1, . . ., Z be independent random variables. Then

) > ) < exp (

<-E) < exp (

n 2 c2 i=l 'i

The following Efron-Stein's inequality can be used to directly upper-bound the

variance of functions of n random variables.

Theorem 2.4.4 (Efron-Stein [26]). Let Tn : Z n'-* R be a measurable function of n

variables and define F = Tn(Z1, . . Zn) and F' Tn(Z, . . . Z, ZI, .. , Z n), where

Z,a, . r nm Zvr b e Zn

are i.i.d. random variables. Then

n

Var(Tn) < E E
i=1

A "removal" version of the above is the following:
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Theorem 2.4.5 (Efron-Stein). Let Tn : Z - R be a measurable function of n

variables and T : Z- - R of n - 1 variables. Define r = Tn(Z1, .. , Zn) and

ri = T(Z,..., Zi-1, Zi+,..., Zn), where Z1,..., Zn are i.i.d. random variables.

Then

n

Var(Tn) < E [(r - )2] (2.5)
i=1

A collection of random functions Tn for n = 1, 2, ... can be viewed as a sequence

of random variables {Tn}. There are several important notions of convergence of

sequences of random variables: in probability and almost surely.

Definition 2.4.1. A sequence {Tn}, n = 1,2,..., of random variables converges to

T in probability

Tn __ T

if for each > 0

lim P (ITn - T > ) = 0.
n--oo

This can also be written as

P? (IT - T > e) -- 0.

Definition 2.4.2. A sequence {Tn}, n = 1,2,..., of random variables converges to

T almost surely if

1P ( lim Tn = T) = O.

Deviation inequalities provide specific upper bounds on the convergence of

P(IT --TI > ) -+0.
Assume for simplicity that Tn is a non-negative function and the limit T is 0. When

inspecting inequalities of the type

P (Tn > e) < 6(e,n)
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it is often helpful to keep in mind the two-dimensional surface depicted in Figure 2-4.

For a fixed n, decreasing increases P (Tn > e). For a fixed , P (T, > e) -- 0 as

n - oc. Now, suppose that we would like e to decrease with n. One can often find

the fastest possible decay e(n), such that P (Tn > e(n)) -- 0 as n oo. This defines

the rate of convergence of Tn to 0 in probability. In Chapter 5 we study rates of decay

of certain quantities in great detail.

6

Figure 2-4: Probability surface

Let us conclude this Section by reminding the reader about the order notation.

Let f(n) and g(n) be two functions.

Definition 2.4.3 (Asymptotic upper bound).

f(n) E O(g(n)) if lim f') < X.
Definition 2.4.4 (Asymptotically negligible). g(n)

Definition 2.4.4 (Asymptotically negligible).

f(n) E o(g(n)) if lim f _)=o.

n-oo g(n)
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Definition 2.4.5 (Asymptotic lower bound).

f(n) E (g(n)) if lim f(n) > 0.
n-too g(n)

In the above definitions, "" will often be replaced by "=".

2.5 Empirical Process Theory

In this section, we briefly mention a few results from the Theory of Empirical Pro-

cesses, relevant to this thesis. The reader is referred to the excellent book by A. W.

van der Waart and J. A. Wellner [71].

2.5.1 Covering and Packing Numbers

Fix a distance function d(f, g) for f, g E X.

Definition 2.5.1. Given > 0 and hl,... ,hN E -, we say that hl,...,hN are

e-separated if d(hi, hj) > e for any i # j.
The e-packing number, D(7-, E, d), is the maximal cardinality of an e-separated

set.

Definition 2.5.2. Given e > 0 and h1,..., hN E 7', we say that the set h1 , ... , hN

is an e-cover of 7-I if for any h E 7', there exists 1 < i < N such that d(h, hi) < e.

The e-covering number, A(-, e, d), is the minimal cardinality of an e-cover of X.

Furthermore, log Af(H, e, d) is called metric entropy.

It can be shown that

D(-, 2E, d) < (7, ,d) < D(V(,E, d).

Definition 2.5.3. Entropy with bracketing ArN (7-, e, d) is defined as the smallest num-

ber N for which there exists pairs {hi, h}S_1 such that d(hi, hi) < E for all i and for

any h E 7-I there exists a pair {hj, hj} such that hj < h < hj.
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2.5.2 Donsker and Glivenko-Cantelli Classes

Let P, stand for the discrete measure supported on Z 1, .. , Z,. More precisely,

n= zziX

the sum of Dirac measures at the samples. Throughout this thesis, we will denote

n

Pf = Ezf (Z) and Pnf = f(Zi)
i=1

Define the sup norm as

IIQf II, = sup IQf I
feY

for any measure Q.

We now introduce the notion of empirical process.

Definition 2.5.4. The empirical process vn, indexed by a function class F is defined

as the map
n

f n(f) = -(Pn - P)f = E(f(zi) - Pf 
v\/ni=1

The Law of Large Numbers (LLN) guarantees that Pnf converges to Pf for a

fixed f, if the latter exists. Moreover, the Central Limit Theorem (CLT) guaran-

tees that the empirical process vn(f) converges to N(O, P(f - Pf) 2) if pf 2 is finite.

Similar statements can be made for a finite number of functions simultaneously. The

analogous statements that hold uniformly over infinite function classes are the core

topic of Empirical Process Theory.

Definition 2.5.5. A class F' is called P-Glivenko-Cantelli if

ijPn - PIL P* 0,

where the convergence is in (outer) probability or (outer) almost surely [71].
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Definition 2.5.6. A class F is called P-Donsker if

LEn V

in £oo(), where the limit v is a tight Borel measurable element in £'(F) and "a"

denotes weak convergence, as defined on p. 17 of [71].

In fact, it follows that the limit process must be a zero-mean Gaussian process

with covariance function Ev (f)v(f') = (f, f') (i.e. a Brownian bridge).

While Glivenko-Cantelli classes of functions have been used in Learning Theory

to a great extent, the important properties of Donsker classes have not been utilized.

In Chapter 5, P-Donsker classes of functions play an important role because of a

specific covariance structure they possess. We hypothesize that many more results

can be discovered for learning with Donsker classes.

Various Donsker theorems provide sufficient conditions for a class being P-Donsker.

Here we mention a few known results (see [71], Eqn. 2.1.7 and [70], Thin. 6.3) in

terms of entropy logAf and entropy with bracketing log./'N.

Proposition 2.5.1. If the envelope F of F is square integrable and

j sup logJ\(e IIFIIQ , F, L2 (Q))de < o,

then F is P-Donsker for every P, i.e. is a universal Donsker class. Here the

supremum is taken over all finitely discrete probability measures.

Proposition 2.5.2. If f0 /log0Af (e, , L2(P))de < oo, then F is P-Donsker.

From the learning theory perspective, however, the most interesting theorems are

probably those relating the Donsker property to the VC-dimension. For example, if F

is a {0, 1}-valued class, then F is universal Donsker if and only if its VC dimension is

finite (Thin. 10.1.4 of [25] provides a more general result involving Pollard's entropy

condition). As a corollary of their Proposition 3.1, [29] show that under the Pollard's

entropy condition, the 0, 1}-valued class F is in fact uniform Donsker. Finally,
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Rudelson and Vershynin [64] extended these results to the real-valued case: a class

F is uniform Donsker if the square root of its VC dimension is integrable.

2.5.3 Symmetrization and Concentration

The celebrated result of Talagrand [67] states that the supremum of an empirical

process is tightly concentrated around its mean. The version stated below is taken

from [6].

Theorem 2.5.1 (Talagrand). Let F be a class of functions such that IlfII, < b

for every f E F. Suppose, for simplicity, that Pf = 0 for all f E F. Let a2 =

V/isupfE:FVar(f). Then, for every e > 0,

P (I[vnI - Ellv.I]l I> E) < C exp - - log 1+ 2+ bE )lED(§I~nilF-tllonlsl>E)CeX~Kb 0og 21 + bEll V.11 ))

where C and K are absolute constants.

The above Theorem is key to obtaining fast rates of convergence for empirical risk

minimization. The reader is referred to Bartlett and Mendelson [6].

It can be shown that the empirical process

1 n

f -4 vn(f) = (Pn-P)f = /i (f(Z) - Pf)

is very closely related to the symmetrized (Rademacher) process

1 n
f 7n (f) = fI eif(Zi),

i=1

where el, .E. , n are i.i.d. Rademacher random variables, independent of Zl, . . ., Z,

such that P (i = -1) = P (i = +1) = 1/2. In fact, the LLN or the CLT for one

process holds if and only if it holds for the other [71].

Since we are interested in statements which are uniform over a function class, the

object of study becomes the supremum of the empirical process and the supremum of
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the Rademacher process. The Symmetrization technique [28] is key to relating these

two.

Lemma 2.5.1 ([71] Symmetrization). Consider the following suprema:

i n 1
Zn(X,..., Xn) = sup Ef-Z E f(Xi) = 111n11y

and

Rn(Xi, **X) = sup ef(X) |=1 nIF
fEY n.f*(X ?nII

Then

EZn < 2ERn.

The quantity ERP is called the Rademacher average of .F.

Consider functions with bounded Lipschitz constant. It turns out that such func-

tions can be "erased" from the Rademacher sum, as stated in Lemma 2.5.2.

Definition 2.5.7. A function : R - R is a contraction if q(0) = 0 and

10(s) - OWt < s - t .

We will denote fi = f(xi). The following inequality can be found in [46], Theorem

4.12.

Lemma 2.5.2 ([46] Comparison inequality for Rademacher processes). If qi: R R

(i = 1, .., n) are contractions, then

n n

EEsup Zeioi(fi) < 2EEsup Zeifi
fE6 i-1 fEi- 1

In Chapter 4, this lemma will allow us to greatly simplify Rademacher complexities

over convex combinations of functions by "erasing" the loss function.
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Chapter 3

Generalization Bounds via

Stability

The results of this Chapter appear in [60].

3.1 Introduction

Albeit interesting from the theoretical point of view, the uniform bounds, discussed

in Section 2.2.1, are, in general, loose, as they are worst-case over all functions in the

class. As an extreme example, consider the algorithm that always ouputs the same

function (the constant algorithm)

A(Z, ., Zn) = fo, V(Zi,, Z.) E Z .

The bound on Temp(Z,.. , Zn) follows from the CLT and an analysis based upon

the complexity of a class 7T does not make sense.

Recall from the previous Chapter that we would like, for a given algorithm, to

obtain the following generalization bounds

( emp(Zl,...,Zn) > ) < (, n) or (1 00(Z1,...,zn) > ) < (E, n)
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with 6(e, n) -- 0 as n oo.

Throughout this Chapter, we assume that the loss function e is bounded and non-

negative, i.e. 0 < e < M. Notice that Remp and ZIoo are bounded random variables.

By Markov's inequality,

V'E > 0, P (Ifempl _ E) EI7mpl

and also

*1' > 0, EIlZempl < MP (Ifempl > e ) + '.

Therefore, showing

Rzemp L 0

is equivalent to showing

EIlempl- O.

The latter is equivalent to

E(Zemp) 2 + 0

since IlZempl < M. Further notice that

E(lZemp) = Var(emp) + (EZemp)2

We will call ErZemp the bias, Var(Zemp) the variance, and E(Zemp)2 the second mo-

ment of emp. The same derivations and terminology hold for 7f1Zo.

Hence, studying conditions for convergence in probability of the estimators to zero

is equivalent to studying their mean and variance (or the second moment alone).

In this Chapter we consider various stability conditions which allow one to bound

bias and variance or the second moment, and thus imply convergence of Rfemp and

1Zoo to zero in probability. Though the reader should expect a number of definitions

of stability, the common flavor of these notions is the comparison of the "behavior"

of the algorithm A on similar samples. We hope that the present work sheds light

on the important stability aspects of algorithms, suggesting principles for designing
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predictive learning systems.

We now sketch the organization of this Chapter. In Section 3.2 we motivate

the use of stability and give some historical background. In Section 3.3, we show

how bias (Section 3.3.1) and variance (Section 3.3.2) can be bounded by various

stability quantities. Sometimes it is mathematically more convenient to bound the

second moment instead of bias and variance, and this is done in Section 3.4. In

particular, Section 3.4.1 deals with the second moment E(R.1oo)2 in the spirit of [22],

while in Sections 3.4.3 and 3.4.2 we bound E(lZemp)2 in the spirit of [55] and [16],

respectively. The goal of Sections 3.4.1 and 3.4.2 is to re-derive some known results

in a simple manner that allows one to compare the proofs side-by-side. The results

of these sections hold for general algorithms. Furthermore, for specific algorithms

the results can be improved, i.e. simpler quantities might govern the convergence

of the estimators to zero. To illustrate this, in Section 3.4.4 we prove that for the

empirical risk minimization algorithm, a bound on the bias ERemp implies a bound on

the second moment E(Zemp)2. We therefore provide a simple necessary and sufficient

condition for consistency of ERM. If rates of convergence are of importance, rather

than using Markov's inequality, one can make use of more sophisticated concentration

inequalities with a cost of requiring more stringent stability conditions. In Section

3.6, we discuss the most rigid stability, Uniform Stability, and provide exponential

bounds in the spirit of [16]. In Section 3.6.2 we consider less rigid notions of stability

and prove exponential inequalities based on powerful moment inequalities of [15].

Finally, Section 3.7 summarizes the Chapter and discusses further directions and

open questions.

3.2 Historical Remarks and Motivation

Devroye, Rogers, and Wagner (see e.g. [22]) were the first, to our knowledge, to

observe that the sensitivity of the algorithms with regard to small changes in the

sample is related to the behavior of the leave-one-out estimate. The authors were

able to obtain results for the k-Nearest-Neighbor algorithm, where VC theory fails
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because of large class of potential hypotheses. These results were further extended

for k-local algorithms and for potential learning rules. Kearns and Ron [36] later

discovered a connection between finite VC-dimension and stability. Bousquet and

Elisseeff [16] showed that a large class of learning algorithms, based on Tikhonov

Regularization, is stable in a very strong sense, which allowed the authors to obtain

exponential generalization bounds. Kutin and Niyogi [44] introduced a number of

notions of stability and showed implications between them. The authors emphasized

the importance of "almost-everywhere" stability and proved valuable extensions of

McDiarmid's exponential inequality [43]. Mukherjee et al [55] proved that a com-

bination of three stability notions is sufficient to bound the difference between the

empirical estimate and the expected error, while for empirical risk minimization these

notions are necessary and sufficient. The latter result showed an alternative to VC

theory condition for consistency of empirical risk minimization. In this Chapter we

prove, in a unified framework, some of the important results mentioned above, as well

as show new ways of incorporating stability notions in Learning Theory.

We now give some intuition for using algorithmic stability. First, note that without

any assumptions on the algorithm, nothing can be said about the mean and the

variance of fRemp. One can easily come up with settings when the mean is converging

to zero, but not the variance, or vice versa (e.g. Example 1), or both quantities

diverge from zero.

The assumptions of this Chapter that allow us to bound the mean and the variance

of Remp and lZ10oo are loosely termed as stability assumptions. Recall that if the

algorithm is a constant algorithm, fRemp is bounded by the Central Limit Theorem.

Of course, this is an extreme and the most "stable" case. It turns out that the

"constancy" assumption on the algorithm can be relaxed while still achieving tight

bounds. A central notion here is that of Uniform Stability [16]:

Definition 3.2.1. Uniform Stability 3oo(n) of an algorithm A is

P:(n;) := sup A(ZA(z 2,... , Zn; X).
Z1,...,Zn,zEZ,xEX
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Intuitively, if #o~ (n) - 0, the algorithm resembles more and more the constant

algorithm when considered on similar samples (although it can produce distant func-

tions on different samples). It can be shown that some well-known algorithms possess

Uniform Stability with a certain rate on 0,3,(n) (see [16] and section 3.6.1).

In the following sections, we will show how the bias and variance (or second

moment) can be upper-bounded or decomposed in terms of quantities over "similar"

samples. The advantage of this approach is that it allows one to check stability for a

specific algorithm and derive generalization bounds without much further work. For

instance, it is easy to show that k-Nearest Neighbors algorithm is Ll-stable and a

generalization bound follows immediately (see section 3.4.1).

3.3 Bounding Bias and Variance

3.3.1 Decomposing the Bias

The bias of the resubstitution estimate and the deleted estimate can be written as

quantities over similar samples:

Elemp = E [Ezt(Zl,..., Zn; Z)-t (Zl,, Zn; Zi)]
=

= E[e(Zi,...,Zn;Z)-t(Zl...XZn;Z1)]

= E[t(Z,Z2,...,Zn;Zl)-t(Zl,...,Zn;Zl)]-

The first equality above follows because

Et(Z 1,. . . Zn; Zk) = Et(z ,... , Z,; ,Zm)

for any k, m. The second equality holds by noticing that

EX(z . .. , Zn; Z) = Ef(z, Z2,. . ., Zn; Z1)
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because the roles of Z and Z1 can be switched (see [63]). We will employ this trick

many times in the later proofs, and for convenience we shall denote this renaming

process by Z +- Z1.

Let us inspect the quantity

E[f(Z, Z2,. .. Z,; Z) -t(Z,. .,Zn;Z~)] .

It is the average difference between the loss at a point Z, when it is not present in the

learning sample (out-of-sample) and the loss at Z1 when it is present in the n-tuple

(in-sample). Hence, the bias Elemp will decrease if and only if the average behavior

on in-sample and out-of-sample points is becoming more and more similar. This is a

stability property and we will give a name to it:

Definition 3.3.1. Average Stability fbi,(n) of an algorithm A is

ON, (n) := E [t(z, Z2, . . . , Zn; Z,) -t(Z, .. . , Zn; Z,)].
We now turn to the deleted estimate. The bias Efzloo can be written as

E~1oo = E - (E~ze (Zl,. Zn; Z)- (Zl, Zi-l, Zi+l, ., Zn; Zi))
ni=1

= E [(z,..., Zn; Z) -(z2,... , Zn; z Z1)]
= E [(Z 1 ,, *,Z )- R(Z2,..., Zn)]

We will not give a name to this quantity, as it will not be used explicitly later. One

can see that the bias of the deleted estimate should be small for reasonable algorithms.

Unfortunately, the variance of the deleted estimate is large in general (see e.g. page

415 of [20]). The opposite is believed to be true for the resubstitution estimate. We

refer the reader to Chap. 23, 24, and 31 of [20] for more information. Surprisingly,

we will show in section 3.4.4 that for empirical risk minimization algorithms, if one

shows that the bias of the resubstitution estimate decreases, one also obtains that the

variance decreases.
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3.3.2 Bounding the Variance

Having shown a decomposition of the bias of emp and jc.oo in terms of stability

conditions, we now show a simple way to bound the variance in terms of quantities

over "similar" samples. In order to upper-bound the variance, we will use the Efron-

Stein's bounds (Theorems 2.4 and 2.5).

The proofs of the Efron-Stein bounds are based on the fact that

Var(r) < E(r -C) 2

for any constant c, and so

Vari(r) = E.,(r- EZI,,r)2 < E.z,(r - r2.

Thus, we artificially introduce a quantity over a "similar" sample to upper-bound the

variance. If the increments F - I' and F - Fr are small, the variance is small. When

applied to the function T, = fZmp(Z,... ., Z), this translates exactly into controlling

the behavior of the algorithm A on similar samples:

Var(Zemp) < nlE(Remp(Z, . . . , Zn)- Zemp(Z2 ... , Zn)) 2

< 2nE ((Z 1, .. ., Zn) -_ (Z2 ,..., Z)) 2

+ 2lnE (7Zemp(Z2,...,Zn)-lRemp(Zl,..., Zn))2 (3.1)

Here we used the fact that the algorithm is invariant under permutation of coor-

dinates, and therefore all the terms in the sum of Equation (2.5) are equal. This

symmetry will be exploited to a great extent in the later sections. Note that similar

results can be obtained using the replacement version of Efron-Stein's bound.

The meaning of the above bound is that if the mean square of the difference

between expected errors of functions, learned from samples differing in one point, is

decreasing faster than n -1 , and if the same holds for the empirical errors, then the

variance of the resubstitution estimate is decreasing. Let us give names to the above
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quantities.

Definition 3.3.2. Empirical-Error (Removal) Stability of an algorithm A is

2 mp(n) = E Remp(Zi,..., Zn) - Zemp(Zl . . Zi, Zi+l ... , Zn)12.

Definition 3.3.3. Expected-Error (Removal) Stability of an algorithm A is

~e2p(n) := E IR(Zl,..., Zn) - (Z1,..., Zi-1, Zi+l,.., Zn)

With the above definitions, the following Theorem follows:

Theorem 3.3.1.

Var(,Zemp) < 2n(f3p(n) + Iemp(n)).

The following example shows that the ERM algorithm is always Empirical-Error

Stable with Oemp(n) < M(n- 1)-1. We deduce that 7Zemp £_ 0 for ERM whenever

Oexp = o(n-1/2). As we will show in Section 3.4.4, the decay of Average Stability,

Qbia(n) = o(1), is both necessary and sufficient for Zemp _+ 0 for ERM.

Example 2. For an empirical risk minimization algorithm, 3emp(n) < M.
--n--1

Remp(Z2, ... , Zn) - Zemp(Zl, X Zn)
n

< -- E ~(z2 . . Zn; Zi)
i=2
n

< I1 E -(Z2. .. X Zn; Zi)
i=2

M
n - 1

- 1 E ie(z*, * .. , Zn;z) + n-
1 n

- l~E (Zi,-- -Zn; Zi)n--X i<
1 M

n- 1

and the other direction is proved similarly.

We will show in the following sections that a direct study of the second moment

leads to better bounds. For the bound on the variance in Theorem 3.3.1 to decrease,

oexp and Oemp have to be o(n-1/ 2 ). With an additional assumption, we will be able to
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remove the factor n from the bound 3.1 by upper-bounding the second moment and

by exploiting the structure of the random variables R 10oo and Remp.

3.4 Bounding the 2nd Moment

Instead of bounding the mean and variance of the estimators, we can bound the

second moment. The reason for doing so is mathematical convenience and is due to

the following straight-forward bounds on the second moment:

nE(emp)2 - E[Ee(z. . ,Z;Z)]2 E . . , Z; Z) ez ..., Zi)]

+ E [Ze(Zi,..., Zn; Zi)] -E [Eze(Zi... Zn; Z)I -e(Zi,. Zn; Zi)]

E [e(z . ..,Zn; Z)EZ'e(Zl .. Z , ;Z') -Ezi(Z, ... Z;l, ..., Zn; Z Z) ]
+ E [(Z' ...,Z'; Zj)(Z1, .. Zn; 2) -Ezf(Z,..Z; Z)f(Z1,.. .;Z)]1~ ~~~~~~~~~~~~~T =
+ - e(zl(z..., Zn; z). ,

and the last term is bounded by M2 . Similarly,

E(Z100)2 < E [Ez(Zi, . . , Zn; Z)Ez,£(Zi,.. , Zn; Z') - Ez£(Z,.. , Zn; Z)(Z 2,... , Zn; Z1)]

+ E [(Z 2,..., Zn; Z1)(Z 1, Z3,... Zn; Z2) - Ee(Z,. . ., Zn; Z)t(Z 2,... Zn; Z)]

+ -Ee(Z2l.., Zn; Z1)2
n

and the last term is bounded by M.

In the proofs we will use the following inequality for random variables X, X' and

Y:

E [XY -X'Y] < MEX -X'I (3.2)

if -M < Y < M. The bounds on the second moments are already sums of terms of

the type "E [XY - WZ]", and we will find a way to use symmetry to change these
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terms into the type "E [XY - X'Y]", where X and X' will be quantities over similar

samples, and so EJX - X'I will be bounded by a certain stability of the algorithm.

3.4.1 Leave-one-out (Deleted) Estimate

We have seen that

ER.lo = E [Z(Z ,. .. , Zn) - Z(Z 2, ... , Zn)]

and thus the bias decreases if and only if the expected errors are similar when learning

on similar (one additional point) samples. Moreover, intuitively, these errors have

to occur at the same places because otherwise evaluation of leave-one-out functions

£(Z1,... ,Zi- 1,Zi+i,... ,Zn; Z) will not tell us about t(Z 1,... ,Zn; Z). This implies

that the L1 distance between the functions on similar (one additional point) samples

should be small. This connection between L1 stability and the leave-one-out estimate

has been observed by Devroye and Wagner [22] and further studied in [36]. We now

define this stability notion:

Definition 3.4.1. L-Stability of an algorithm A is

,31(n): = IIE(Z, . , Zn; ) - (Z2 , * * , Zn; )I L1()

Ez I(Zi,..., Zn; Z) - (z( 2,..., Zn; Z). 

The following Theorem is proved in [22, 20] for classification algorithms. We give

a similar proof for general learning algorithms. The result shows that the second

moment (and therefore both bias and variance) of the leave-one-out error estimate is

bounded by the L1 distance between loss functions on similar samples.

Theorem 3.4.1.

F ~~~~M2

E(1Zoo00)2 < M(23 1(n - 1) + 4,31(n)) +-

Proof. The first term in the decomposition of the second moment of E(RZ1oo)2 can be
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bounded as follows:

E [f(zl 7 ** * Z; z)t(z,, 7 * ** Zn; zI )- E(Zl.. i ** Zn; Z)f(Z2, * * * Zn; Z1
= E [e(zl, . . , Zn; )e(l, . . , Z; Z') - e(z', Z2, .. , ,; Z)(Z2, ... , Z; ')]
= E[t(Zl, .. Z;Z)(Z1,...,Zn;Z') -(Z 2,... ,z;z)(z 1,... z ,n;z')]

+ E [e(Z2,...,Zn;Z)e(Zl,..., Zn;Z') -e t(Zl, Z2,...,Zn;Z)e(Zl,...,Zn;Z')]

+ E [(z', Z2,. Zn; z)f(z*, Zn; Z') - t(z', Z2,... Zn; z)(z2,.. .Zn;z')]

< 3M,81(n).

The first equality holds by renaming Z' -, Z. In doing this, we are using the fact

that all the variables Zl,..., Zn, Z, Z' are identically distributed and independent.

To obtain the inequality above, note that each of the three terms is bounded (using

Ineq. 3.2) by M,31 (n) .

The second term in the decomposition is bounded similarly:

E [I(Z2,..., Z.; zj )f(z, Z3,..., Zn; Z2) - t(zi, . . , Zn; z)t(z2,. ., Zn; Z,)]

= E [e(z', z3,.. Zn; z)t(z, Z3,.., Z,; Z') - t(z', Z2,. Zn; z)t(z 2, . , Zn; z')]

= E [e(z', Z3, Zn; z)e(z, Z3,... , Zn; Z') - t(Z', Z2,., Z,n; Z)(Z, Z3,..., Z; Z')]

+ E [e(Z', Z2,.. .,Zn; Z)t(Z, Z3,. . ., Zn; Z') - t(Z', Z2,. .. , Zn; Z)(Z3,..., Zn; Z)]
+ E[e(z',z2, ... ,Zn;z)t(z3 . . . ,Zn;z') - t(z', Z2, ...Zn; z)t(z2 ,. Zn;z)]
< MO1(n) + 2M131(n -1)

The first equality follows by renaming Z2 Z' as well as Z1 Z in the first term,

and Z1 -+ Z' in the second term. Finally, we bound the last term by M 2 /n to obtain

the result. 
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3.4.2 Empirical Error (Resubstitution) Estimate: Replace-

ment Case

Recall that the the bias of the resubstitution estimate is the Average Stability,

E7Zemp = Ibis. However this is not enough to bound the second moment E(7zemp) 2 for

general algorithms. Nevertheless, 3 bia measures the average performance of in-sample

and out-of-sample errors and this is inherently linked to the closeness of the resub-

stitution (in-sample) estimate and the expected error (out-of-samnple performance).

It turns out that it is possible to derive bounds on E(1Zemp)2 by using a stronger

version of the Average Stability. The natural strengthening is requiring that not only

the first, but also the second moment of £(Z1,... , Zn; Zi) - (Z1,... , Z ... , Zn; Zi)

is decaying to 0. We follow [44] in calling this type of stability Cross- Validation (CV)

stability:

Definition 3.4.2. CV (Replacement) Stability of an algorithm A is

3cvr := EIt(Z1, . . ., Zn; Z) - (Z, Z2, ... Zn; Z)l,

where the expectation is over a draw of n + 1 points.

The following Theorem was proved in [16]. Here we give a version of the proof.

Theorem 3.4.2.

E(Remp)2 < 6M/3cr(n) + -
n
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Proof. The first term in the decomposition of E(Remp) 2 can be bounded as follows:

E [Ezf(Z,..., z.; Z)Ezt(zi,..., Z,,; Z') - Eze(z1 ,..., Zn,,; z)i(z 1 ,..., Z,; Z2)]

= E [(Zi, Z', Z3,..., z,; Z)t(Zl, Z', Z3,..., Zn; z2)

- E(Zl, , Zn; Z)(Zl, * * , Zn; Z2)]

=E [f(Z, z', Z3,..., Z; z)f(z, z', z3,..., z.; z2)

- E(z, z, Z3,.., Z; z)f(z1, z', Z3,.., z; z2)]

+E[t(ZlZ, Z3,...,z.;z)e(zzZ',z3,.,7 Zn;Z2)

- (z1 -.. , Zn; z)f(z z', Z3... Zn;z2)]
+E[f(z ,..., ,,;z)f(zzZ',z3, .. , Zn; Z2)

- (Zl, , n; z)e(Zl.., Zn; z2)]

< 3M/3cvr(n).

The first equality follows from renaming Z 2 - Z' in the first term. Each of the three

terms in the sum above is bounded by M ,cvr(n).

The second term in the decomposition of E(Remp) 2 can be bounded as follows:

E [(zl,. .. Zn; Zl)e(Zl,. . . ,Zn; Z2) - Eze(Zl,. .. ,Zn; Z)e(Zl,. . . Zn; Zl)]

= E [e(Z, Z2,..., Zn; Z)e(Z, Z2,... Zn; Z2) - e(Zl,..., Zn; Z)e(Zl,..., Zn;Z2)]

= E[t(ZZ2,...,n;Z)t(Z, Z2,...Zn;2)-e(Z1, , Zn;Z)f(Z, Z2, ., Zn;Z2)]

+ E [E(Z,..., Zn; Z)e(Z, Z2,..., Zn; Z2) - e(Zl,..., Zn; Z)e(Z 1, Z, Z 3,..., Zn; 2)]

+ E [e(zl,..., Zn; )e(Zl, Z, Z3,..., Zn;z2) - (Zl,..., Zn; Z)(Z,..., Zn;Z2)]

< 3M6cvr(n).

The first equality follows by renaming Z1 *- Z in the first term. Again, each of the

three terms in the sum above can be bounded by M/3cvr(n).

[]
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3.4.3 Empirical Error (Resubstitution) Estimate

Mukherjee et al [55] considered the removal version of the CV stability defined in

Section 3.4.3, the motivation being that addition of a new point Z' complicates

the cross-validation nature of the stability. Another motivation is the fact that

£(Z,... , Zn; Z,)- (Z2 ,..., Zn,; Z1) is non-negative for Empirical Risk Minimization.

It turns out that this removal version of the CV stability together with Expected

and Empirical Stabilities upper-bound E7Zemp. Following [55], we have the following

definition:

Definition 3.4.3. CV (Removal) Stability of an algorithm A is

/ac~(n) := E(Zl, . . . , Zn; Z) - (z2, . .*, Zn; ZI)[.

The following theorem was proved in [55]. Here we give a version of the proof.

Theorem 3.4.3.

E(Zemp)2 < M(,c.(n) + 4/exp(n) + 2pemp(n)) +--

Proof. The first term in the decomposition of the second moment of E(7Zemp)2 can

be bounded as follows:

E [i(zl, * * * 7 z)t(z1,, zn; z') - t(Z1, Zn; Z)t(Zl, Zn; Zl)]

-= E[e(z',Z2,.. ,Zn;Z)t(Z',Z 2 ,.. ,Zn;Zl) -e(Zl,..---,Zn;Z)e(Zl,. .,Zn;Zl)]

= E [e(z', Z2,..., Z, Z)Ez e(Z', Z2,... , Zn; Z)- (Z', Z27. . . , Zn; z)Eze(z 2,..., Z; Z)]

+ E[Eze(z', 2,.. . ,Z;Z)t(Z2,. . ., Z,; Z1) -EZe(Z2,... ,Z;Z)t(Z2,.. , Zn; Z)]

+ E [Eze(z2,. . . Zn;Z)f(Z2 ,. . ., Zn; Zl) - Eze(Zl,... , Zn; Z)t(Z 27 ... Zn; Zl)]

+ E [(z,... , Zn;Z)t(Z2 ,. .. , Zn;Zl) - (Z1,. .. ,Zn;Z)(Z,.. .Zn;Zl) ]

< M(3,3p (n) + 3cv(n)).

The first equality follows by renaming Z1 +- Z in the first term. In the sum above,
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the first three terms ae each bounded by M3exp(n), while the last one is bounded

by M/3cv(n). Since the Expected (and Empirical) Error stability has been defined in

Section 3.3.2 as expectation of a square, we used the fact that EIXI < (EX 2)1/2.

The second term in the decomposition of E(7Zemp)2 is bounded as follows:

n

.,Zn; Z)Z E f(zi, ,,Zn;zi)
i=1

· , Zn; Z)1n

n

E (Zl, . ., Zn;Zi )
i=1

Zn;Z)Z- e(Z1, * * , Zn;Zi)]
Z=1 n

>-ezlX . , n;Z)-e(z 1 7 .* 
i=1

- (Z,Zn;Z)=1
i=l

.,Zn;Zi)]

.. ,Zn;Zi)]

1 1 

, Zn;zZO- E (Z1,.. ,Zn;Zi)-(Z2 , .. ,Zn;Z)'-_ 1 ...,n~) -. . . . (Z, 
i=l i=2

i=2 i=1
n 1 n

, . ,Zn; Z) -1 e(Zl * * , Zn; Zi) -Ez . .., Zn;Z ) E (Zl, .n n *i=1 i-1

.,Zn;Zi)]

,Zn;Zi)]

* 7 Zn; Zi)]

< M(Ocv(n) + 2/3emp(n) + 3exp(n)).

The first equality follows by symmetry:

1 n

e(zl *... , Zn;zk) - E (z , Zn;zi) = (zi, .
ni= 1

1 n* .,Zn;zm) E e(zi, * * , Zn;zi)
i=1

for all k, m. First term in the sum above is bounded by M/cv(n). The second term is

bounded by Memp(n) (and Z1 *- Z). The third term is also bounded by Memp(n),

and the last term by M/3exp(n). [
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3.4.4 Resubstitution Estimate for the Empirical Risk Mini-

mization Algorithm

It turns out that for the ERM algorithm, Remp is "almost positive". Intuitively, if one

minimizes the empirical error, then the expected error is likely to be larger than the

empirical estimate. Since Zemp is "almost positive", EZemp -- 0 implies RJemp I + 0.

We now give a formal proof of this reasoning.

Recall that an ERM algorithm searches in the function space 7H. Let

f* arg min Ezi(f; Z),
f EN

the minimizer of the expected error'. Consider the shifted loss class

£'(x) = e'(f; .) = e(f; ) - e(f*; )If E 'H}

and note that Ezet'(f; Z) > 0 for any f E X. Trivially, if (Z, ... ,Z,;.) is an

empirical minimizer over the loss class £(7), then e'(f; ) = e(z1,..., Z,; )- (f*;.)

is an empirical minimizer over the shifted loss class £'(H)

n

n~~~~~~i-1
EzX(Zi ,..., Z; Z)- (ZlX,..., Zn; Zi)

n i=1
-Ez(.f * Z Z--E t(Zi)X@*X n i

Tn i=1
-(Eze(f*;z) 1!Ee(f*;Z))

Note that in=l t£'(Z ,... , Zn; Zi) < 0 because C'(7-) contains the zero function.

Therefore, the left-hand side is non-negative and the second term on the right-hand

lIf the minimizer does not exist, we consider -minimizer
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side is small with high probability because f* is non-random. We have

(emp(Zl, **Zn) <-) •Ir (Eze(f*; z) - , Z) <ni1

<e-2ne2M2

Therefore,

ElZempl < ERemp + 2e + 2Me-2ne2/M2

If ERemp -- 0, the right-hand side can be made arbitrarily small for large enough n,

thus proving ElRemp - 0. Clearly, ElZemp 0 whenever EIlRemp - 0. Hence, we

have the following Theorem:

Theorem 3.4.4. For empirical risk minimization, I3bi.(n) - 0 is equivalent to

I.em pI + 0.

Remark 3.4.1. With this approach the rate of convergence of emp(ZlI,... , Zn) to

T(Z 1,... , Zn) is limited by the rate of convergence of 1 En=l e(f*; Zi) to Eze(f*; Z),

which is O(n - 1/2) without further assumptions.

For ERM, one can show that

M
[Nemp(Z ., Zn) - emp(Z2,..., Zn) <- n

Hence, a "removal" version of Average Stability is closely related to Average Stability:

E ((Z1,..., Zn; Z) - (Z2,..., Zn; Zx)) = E (emp(ZX,..., Zn) -9(Z2,..., Zn))

= Obias(n - 1) + E (gemp(Z2,. .. Zn) - emp(Z1,. .Zn)) -

Thus,

E (t(z, ..., Zn; Z) - e(z2, . .. , Zn; Z)) -0

is also equivalent to [Hemp[ 0.
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Furthermore, one can show that

for ERM (see [55]), and so CV (Removal) Stability, defined in Section 3.4.3, is equal

to the above removal version of Average Stability. Hence, 3cv(n) -- 0 is equivalent to

{?emp{ L 0.

Since empirical risk minimization over a uniform Glivenko-Cantelli class implies

that lZeImpI + 0, it also implies that ,Bbiasj(n) -- 0 and /cv(n) -- 0. Thus, ERM over a

UGC class is stable in these regards. By using techniques from the Empirical Process

Theory, it can be shown (see [19]) that for ERM over a smaller family of classes,

called Donsker classes, a much stronger stability in L1 norm (see Definition 3.4.1)

holds: 31 (n) P+ 0. Donsker classes are classes of functions satisfying the Central

Limit Theorem, and for binary classes of function this is equivalent to finiteness of

the VC dimension.

3.5 Lower Bounds

We lower-bound the second moment E(emp) 2 as follows.

1n
E(Zemp)2 (Ee(Zl,...,Zn;Z)-E EZe(Zi,...,Zn;Zi)) 2

emp) ~n
i=1

= (EV(Z, . . ., Zn; Z)-Et(Z~., Zn; Z;)) 2

= (E [(z, Z2,. .. , Zn; Z) - (z,. .., Zn; ZD)]2

= bi.(n)

Therefore, convergence of the Average Stability bia/(n) --+ 0 is a necessary condi-

tion for the convergence of the empirical error to the expected error. For ERM, this

condition is also sufficient, as shown in the previous Section.
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Now, rewrite lZemp as

Remp(Zi,... ,Zn) = (Z1,... , Zn) - emp(Zl,... , Zn)

= Z(Z,..., Zn)- ER(Z,...1,Zn)

+ ER(Z 1, .. , Zn) - EZemp(Zl, . , Zn)

+ ERemp(Zl, ... , Zn) - emp(Zl, .. Zn)

((Z,.. , Zn) - ER(Z1, . , Zn))

+ (emp(Z,. .. ,Zn) - ERemp(Zl,. , Zn))

+ Obias(n)

If for an algorithm one shows that IR - ER1I P 0, then lRemp - ERempi I 0 if

and only if Zemp ° 0. Same holds in the other direction: if empirical errors converge
-Pto their expectations in probability, then Zemp P-+ 0 if and only if the expected errors

also converge.

3.6 Rates of Convergence

Previous sections focused on finding rather weak conditions for proving Zemp 0

and oo - 0 via Markov's inequality. With stronger notions of stability, it is possible

to use more sophisticated inequalities, which is the focus of this section.

3.6.1 Uniform Stability

Uniform Stability (see Definition 3.2.1), is a very strong notion, and we would not

expect, in general, that /6(n) - 0. Surprisingly, for Tikhonov Regularization algo-

rithms
n

A(Z1,., Zn) = arg min 1Z (h; Zi) + Ah[[K
hETH

it can be shown [16] that

L( ) 2An '~(n) < ,
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where Al is a reproducing kernel Hilbert space (RKHS) with kernel K, K(x,x) <

K2 < oo, Vx E X, and L is a Lipschitz constant relating distances between functions

f e 7- to distances between losses e(f) E (-).

Clearly, p3o dominates all stabilities discussed in the previous sections, and so can

be used to bound the mean and variance of the estimators. For this strong stability

a more powerful concentration inequality can be used instead of Markov's inequality.

McDiarmid's bounded difference inequality (Chapter 2, Theorem 2.4.3) states that

if a function of many random variables does not change much when one variable is

changed, then the function is almost a constant. This is exactly what we need to

bound lZemp or lZoo.

Bousquet and Elisseeff [16] applied McDiarmid's inequality to Tn = lemp:

zeImp(Z,... Z,) - lZemp(Z,..., Z,.,Zn)I

< emp(Z. · · , Z) - Remp(Z, Z2, .Zn)I

+ Il(Z,.., Zn)-1I(Z, Z2, Zn)l

1
<-VAZ Zn Z - (ZZ2, Zn; Z){

+ E le(z,...,zn;z) - (Z,Z2 ,-.-,Zn;Z)
nj=2

+ E' {e(Zj,..., Zn; Z') - t(z, Z2,..., Zn; Z')
M

< 2,(n) + - -= n.
n

If 3oo(n) = o(n-1/2), McDiarmid's inequality shows that emp is exponentially

concentrated around EZemp, which is also small:

ERemp =/3bi(n) < o(n).

Therefore,

V > 0, P (Zemp > oo(n) + ) < 2exp (-(2n(n ) + M)2
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Notice that for ERM,

IRemp(Z*,..., Zn) - emp(Z, Z2, ..., Zn) < n

and so it is enough to require

bis 0

and

(Z1, Zn) - R(Z, Z2 .. , Zn)l = o(n 1/2

to get exponential bounds. The last requirement is strong, as it requires expected

errors on similar samples to be close for every sample. The next section deals with

"almost-everywhere" stabilities (see [44]), i.e. when a stability quantity is small for

most samples.

3.6.2 Extending McDiarmid's Inequality

As one extreme, if we know that /3~(n) = o(n-1/ 2), we can use exponential McDi-

armid's inequality. As the other extreme, if we only have information about averages

,8 emp and /3exp, we are forced to use the second moment and Chebyshev's or Markov's

inequality. What happens in-between these extremes? What if we know more about

the random variables Temp(Zli ... Zn) - emp(Z, Z 2 ,... , Zn )? One example is the

case when we know that these random variables are almost always small. Unfortu-

nately, assumptions of McDiarmid's inequality are no longer satisfied, so other ways

of deriving exponential bounds are needed. This section discusses this situation. The

proofs of the results are deferred to Chapter 6.

Assume that for a given /3n, a measurable function Tn: Zn '-_ [-M, M] satisfies

the bounded difference condition

Vi, sup ITn(Z,... , Zn) - Tn(Zl, . .. , z,... Zn) /3 n (3.3)
zEZ
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on a subset G c Z" of measure 1 - 5, while

V(ZI,., Z,) E G,3z' E Z s.t.

< |Tn~zlv . . Z . . . z'. .. X Z,)I < 2M.

Here G denotes the complement of the subset G. Again, denote r = T(Z,.. . ,Zn),

r = T,(Z1,..., Z... , Z,). A simple application of Efron-Stein inequality (Theorem

2.4) shows that

1Var(Tn) < -nE (Tn(Z, . .. , Zn)-Tn(Z' Z2..., Zn))2 (3.4)
1

< 2nE [I(Zl,...,Zn)EG (T(n Z2..) -* Zn))(]

1T+ 2nE [I(Zl,,zn)ETMA... . Z)-Tn(Z, Z2..., Zn)) 2]

2
< _n(On2 + 4M25. ) .

This leads to a polynomial bound on P (ITn - ETnI > e). Kutin and Niyogi [44, 43]

proved an inequality which is exponential when 6n decays exponentially with n, thus

extending McDiarmid's inequality to incorporate a small possibility of a large jump

of Tn. A more general version of their bound is the following:

Theorem 3.6.1 (Kutin and Niyogi [44]). Assume T : Zn -4 [-M,M] satisfies

the bounded difference condition (3.3) on a set of measure 1 - 6n and denote F =

Tn(Z,. . ., Zn). Then for any e > O,

-eC2 2MnS.
( Tn -ETn I > e) < 2exp (82) + 3n (3.5)

Note that the bound tightens only if /3n = o(n - 1/2 ) and 56n//n = o(n - 1). Further-

more, the bound is exponential only if 5n decays exponentially2.

In Chapter 6 we prove the following extension of McDiarmid's inequality.

Theorem 3.6.2 (Chapter 6, Theorem 6.1.4). Assume T : Zn Z - R satisfies the

2By exponential rate we mean decay o(exp(-nr)) for a fixed r > 0.
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bounded difference condition (.3) on a set of measure 1- n, and denote r =

Tn(Z,. Zn). Then for any q > 2 and > O,

P (Tn - ETn > ) < (nq)q/2((2)q/ 2 n + (2M)qn)

where rn c 1.271.

Having proved extension to McDiarmid's inequality, we can use it in a straight-

forward way to derive bounds on P (I~emp > ) and P (f1oo > E) when expected

and empirical quantities do not change "most of the time", when compared on similar

samples (see [44] for examples).

3.7 Summary and Open Problems

We have shown how stability of algorithms provides an alternative to classical Statis-

tical Learning Theory approach for controlling the behavior of empirical and leave-

one-out estimates. The results presented are by no means a complete picture: one

can come up with other notions of algorithmic stability, suited for the problem. Our

goal was to present some results in a common framework and delineate important

techniques for proving bounds.

One important (and largely unexplored) area of further research is looking at

existing algorithms and proving bounds on their stabilities. For instance, work of

Caponnetto and Rakhlin [19] showed that empirical risk minimization (over certain

classes) is L1 stable. It might turn out that other algorithms are stable in this

(or even stronger) sense when considered over restricted function classes, which are

nevertheless used in practice. Can these results lead to faster learning rates for

algorithms?

Adding a regularization term for ERM leads to an extremely stable Tikhonov Reg-

ularization algorithm. How can regularization be used to stabilize other algorithms,

and how does this affect the bias-variance tradeoff of fitting the data versus having a

simple solution?
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Though the results presented in this Chapter are theoretical, there is a potential

for estimating stability in practice. Can a useful quantity be computed by running

the algorithm many times to determine its stability? Can this quantity serve as a

measure of the performace of the algorithm?
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Chapter 4

Performance of Greedy Error

Minimization Procedures

The results of this Chapter appear partially in [61].

4.1 General Results

Recall that the empirical risk minimization principle states that one should search

for a function minimizing the empirical risk within a class Xt:

n

A(Z1,... Zn) = arg min - (h; Zi).
: ~hE n

i=1

In practice, such a procedure is not tractable for two reasons:

* the loss function might not be convex;

* the class H is too large.

Let us discuss the convexity issue. It can be shown (see Arora et al [2], Ben-David

et al [9]) that minimizing the empirical error in the classification setting with the

indicator loss

£(yh(x)) = I(yh(x) < O)
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is computationally intractable even for simple classes of functions. In recent years,

several papers addressed this difficulty. Bartlett et al [5], Lugosi and Vayatis [51],

and Zhang [79] have studied the statistical consequence of replacing the indicator loss

by a convex upper bound . For instance, Bartlett et all [5] showed that for any f,

(R(f) - *) < (f) - R*

for a nondecreasing function 7p [0,1] - [0, oo). Here 7Z (f) = E4(Yf(X)), ZR =

inff Z7(f), and IR* = inffEI(Yf(X) < 0). The latter quantity is called the Bayes

risk. In fact, 0 does not need to be convex for this result, but rather "classification-

calibrated" (see [5]). Hence, minimization of the surrogate risk might not only

alleviate the computational difficulty of minimizing the indicator loss, but also result

in a consistent procedure with respect to the original loss. This type of result provides

one of the first connections between computational and statistical issues in learning

algorithms.

We now turn to the second computational issue related to the size of H. If the

class of functions is large, the search for an empirical minimizer is intractable. A

small class H means we have little hope of capturing the unknown phenomenon, i.e.

the approximation error is large. In this chapter we present an approximate greedy

minimization method, which is computationally tractable. This method allows us to

search in a greedy way over a large class, which is a convex hull of a small class.

The greedy procedure described next goes back at least to the paper of Jones [35].

Variants of it have been used by Barron [3, 49] and Mannor et al [52, 53]. The version

described here is the most general one, appearing in the paper of Zhang [80].

Suppose I is a subset of a linear space. Denote the convex hull of k > 0 terms as

k k 

convk () = aihi ' ai > , oli = 1, hi E H
i=1 i=1
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and the convex hull of as

conv () = Uk>lconvk ().

We would like to minimize a convex functional T over the convex hull conv ().

Define the closeness of a solution g E con () to the optimal by

AT(g) = Y(g) - inf T(v).
vEconv ()

The objective is to find a sequence {9k} of functions such that AT(gk) - 0 and

gk E convk ().

Algorithm 1 Greedy Minimization Algorithm
1: Start with gi E H
2: for k = 2 to N do
3: Find h E H and 0 ak < 1 such that
4: (h, ak) = argmin T((l- ak)gk-1 + akh)
5: Let gk (1 - ak)gk-1 + akh
6: end for

The minimization step can be performed approximately, to within some ek 0

converging to zero:

T((1 - ak)gk-1 + akh) < inf ((1 - d)gk-1 + ekh) + Ek-
&,h

The following Theorem of Zhang [80] states that under very general assumptions

on r, the sequence gk converges to the optimum at the rate 0(1/k).

Theorem 4.1.1 (Zhang [80]). Assume T is differentiable and

d 2
sup 02((1 - O)g' + Og") < c < +o.

g',g"ECOn (),8E(,1) d

Assume that the optimization at step (3) of Algorithm 1 can be performed exactly for

all k > 1. Then
2c

AT(gk) _ 2
k +2'
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Now apply the Algorithm 1 to the empirical error (g) = i=l e(g; Zi) for a

convex (in the first argument) loss £. Hence, we obtain

- T!(gk; Zi) < inf I e(g; Zi) +
n gEconv () n k + 2

i= 1 ~ ~~~~i=1

under the assumptions of Theorem 4.1.1. Denoting

g*= argmin Z(g),
geconv ()

we obtain

7Z(gk) -- R(g*) = lR(gk) - lRemp(gk)

+ Remp(gk) - emp (g*)

+ Remp(g*) - (g*)

<2 sup J()- p(g)l +2c (4.1)
gEconv (s) k + 2

The supremum of the deviation between the empirical and expected averages is

usually bounded, via a Symmetrization and Concentration steps, by Rademacher av-

erages of the function class. Rademacher averages serve as a complexity measure,

which can be upper-bounded by the metric entropy of the function class. Unfortu-

nately, conv () can be large even for small 7X, as the Example 3 shows. This would

imply a loose upper bound on the convergence of 7Z(gk) - 1Z(g*) to zero. Luckily,

under an assumption on the loss function e, we can employ a comparison inequality

for Rademacher Averages [46], obtaining a bound on R(gk) - Z(g*) in terms of the

metric entropy of a small class 'H. The main contribution of this Chapter is the

statistical analysis of the greedy error minimization method utilizing the Contrac-

tion Principle. The idea of employing this method goes back to Koltchinskii and

Panchenko [39, 41, 40].
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1

Figure 4-1: Step-up and step-down functions on the [0,1] interval

Example 3. Let 7- be the class of simple step-up and step-down functions on the [0, 1]

interval, parametrized by a and b, as shown in Figure 4-1. The Vapnik-Chervonenkis

dimension of 7- is two. Let F = cony 7-. First, rescale the functions:

T T~hl
f Z Aihi 2 Ai 1 = 2f'-

i---- i=1

where
T

f = Ai hl
i=1

and
hi hi+ 1

2

We can generate any non-decreasing function f' such that f'(O) = 0 and f'(1) = 1.

Similarly, we can generate any non-increasing f' such that f'(O) = 1 and f'(1) = 0.

Rescaling back to f, we can get any non-increasing and non-decreasing functions of

the form

.f f 2

1

0

-1

-1 I
1

-0

1

-1

1

75



4.2 Density Estimation

In the density estimation setting, we are given i.i.d. sample S = {Z1,..., Z,} drawn

from an unknown density f (for convenience of notation, we will denote this unknown

density by f instead of P). The goal is to estimate f from the given data. We set

the loss function to be (h; Z) = - log h(Z) for a density h. The Maximum Likeli-

hood Estimation (MLE) principle is an empirical risk minimization procedure with

the "- log" loss. Indeed, minimizing = - log h(Zi) is equivalent to maximizing

Ei=1 log h(Zi), which is equivalent to maximizing I=l h(Zi). Based on the method

described in the previous Section, we will perform a greedy stage-wise density estima-

tion procedure. This procedure has been used by Li and Barron [49, 50], where the

authors obtained certain estimation and approximation bounds on its performance.

By employing the Contraction Principle for Rademacher averages, we obtain tighter

and somewhat more general results.

Rates of convergence for density estimation were studied in [11, 69, 70, 78]. For

neural networks and projection pursuit, approximation and estimation bounds can

be found in [3, 4, 35, 56].

Let (Z, Q) be a measurable space and let A be a v-finite measure on g. Whenever

we mention below that a probability measure on g has a density we will understand

that it has a Radon-Nikodym derivative with respect to A.

The choice of negative logarithm as the loss function leads to the Kullback-Leibler

notion of distance. Kullback-Leibler (KL) divergence and Hellinger distance are the

most commonly used distances for densities (although KL-divergence is not, strictly

speaking, a distance). KL-divergence is defined for two distributions f and g as

f f(Z) f__I g~(Z) d' Z lo f(Z)D(f Ig) = f(Z) log -A(Z) = Ezlog g(Z) ~g(z),

Here Z has distribution with density f.

Consider a parametric family of probability density functions

= {fo(x): 0 E 6 C Rd}
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over Z. The class of k-component mixtures gk is defined as

Ck = convk () = {9: g(z) = aiqie,(z),c ai = 1, ai > O, i E e} .
i= 1 i=1

Let us define the class of continuous convex combinations

C = con () = {g: g(z) = j qo(z)P(dO), P is a probability measure on E}.

The class C can be viewed as a closure of the union of all convk ().

Li and Barron prove that a k-mixture approximation to f can be constructed by

the following greedy procedure: Initialize gl = k0 to minimize D(f 1gl), and at step

k construct gk from gk-1 by finding a and 0 such that

D(f gk) < min D(f l(1 - a)gk-1 + aqe).

Note that this method is equivalent to the Algorithm 1 with Y(g) = -E log g. Indeed,

argmin D(f 11g) = argmin E log f = argmin-E logg.
9 9 9 9~~~~~~g g 

The approximation bound of Li and Barron [49, 50] states that for any f, there

exists a gk E Ck, such that

2

D(fllgk) < D(fllC) + cf p (4.2)
k

where cf,p and -y are constants and D(fllC) = infgEc D(fllg). Furthermore, y is an

upper bound on the log-ratio of any two functions o(z), eo,(z) for all ,O',z and

therefore

sup log <(z) < (4.3)
,,z 008 (Z)

is a condition on the class 7H.

A bound similar to the above result follows directly from Theorem 4.1.1 once the

condition on the second derivative of T((1 - 9)g' + 9g") is verified (see [80]).
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Of course, greedy minimization of -E log g is not possible since f is unknown. As

motivated in Chapter 2, we aim to minimize the empirical counterpart. A connection

between KL-divergence and Maximum Likelihood suggests the following method to

compute the estimate §k from the data by greedily choosing Oo at step k so that

n n
aE logNk(Zi) > maxE log[(1 - a)k-l(Zi) + a0b(Zi)] . (4.4)

a,0
i=1 i=

This procedure corresponds to Algorithm 1 with T(g) = - i1 log g(Zi).

Li and Barron proved the following theorem:

Theorem 4.2.1. Let Ok(x) be either the maximizer of the likelihood over k-component

mixtures or, more generally, any sequence of density estimates satisfying (4.4). As-

sume additionally that 0 is a d-dimensional cube with side-length A, and that

d

sup I log Oo(z) - log 0o,(z)l < B E10 - .I (4.5)
zEZ zoo ~~~~~j

for any 0, ' E E. Then

E [D(f10k)] - D(fIIC)< + -- log(nc3 ), (4.6)
k n

where c1, c2, c3 are constants (dependent on A, B, d).

The above bound combines the approximation and estimation results. Note that

the first term decreases with the number of components k, while the second term

increases. The rate of convergence for the optimal k is therefore 0( ajn).

4.2.1 Main Results

We assume that the densities in 7- are bounded above and below by some constants a

and b, respectively. This boundedness naturally extends to the convex combinations

as well. We prove the following results:

Theorem 4.2.2. Suppose a < ke < b for all A E I. For Ok(Z) being either the
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maximizer of the likelihood over k-component mixtures or more generally any sequence

of density estimates satisfying (4.4),

E [D(f 1k)] - D(f C) < + E J log"2 D( d ]

where cl, c2 are constants (dependent on a, b) and D(7 e, , dn) is the e-covering number

of H with respect to empirical distance dn (dn(bl 1, 2 ) = 1 E- i=l (0l(Zi) - 02(Z))2)

Corollary 4.2.1. Under the conditions of Theorem 4.2.1 (i.e. h' satisfying condi-

tion (4.5) and O being a cube with side-length A) and assuming boundedness of the

densities, the bound of Theorem 4.2.2 becomes

IC1 C2E [D(f lk)] - D(f llC) < - + ,

where c and c2 are constants (dependent on a, b, A, B, d).

Corollary 4.2.2. The bound of Corollary 4.2.1 holds for the class of (truncated)

Gaussian densities H = {f,, g,,(z) = exp1 < M, in <

o < max} over a compact domain Z ( Zt,a is needed for normalization).

Remark 4.2.1. Theorem 4.2.2 hides the dependence of constants C1, 2 on a and b for

the sake of easy comparison to Theorem 4.2.1. We now state the result with explicit

dependence on a and b:

D(f lak) - D(f llC) < - (-E [cl log/2 D( , ,dn)dc] + -)

1 8b2

+ V (2vflogb) + 1 - (2 + log )

with probability at least -e
t or, by integrating,

with probability at least 1 - e-t, or, by integrating,
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+- + log ,E [D(f 1k)] - D(f C) < $X (- [ j log"/2 D(H, e, dfl)dE] + + 241og

+k 2 ( a)

where cl is an absolute constant.

Remark 4.2.2. Upper and lower bounds a and b are determined by the class -.

Assume there exists a sequence of truncations {fi} of f, such that ai < f(z) < bi

for all z E Z, and {ai} is decreasing and {bi} increasing. Further assume that each

class 7-Hi contains functions bounded by ai and bi. As the number of samples n grows,

one can choose more and more complex models 'Hi. If ai is a decreasing function of

n and bi is an increasing function of n, Remark 4.2.1 provides the rate for learning

fi, the truncated version of f. This could be applied, for instance, to a sequence of

classes 7-i of Gaussian densities over an increasing domain and an increasing range

of variances.

4.2.2 Discussion of the Results

The result of Theorem 4.2.2 is two-fold. The first implication concerns dependence of

the bound on k, the number of components. Our results show that there is an esti-

mation bound of the order O( ;) that does not depend on k. Therefore, the number

of components is not a trade-off that has to be made with the approximation part

(which decreases with k). The bound also suggests that the number of components

k should be chosen to be O(v/i).

The second implication concerns the rate of convergence in terms of n, the number

of samples. The rate of convergence (in the sense of KL-divergence) of the estimated

mixture to the true density is of the order O(1//i-). As Corollary 4.2.1 shows, for the

specific class 7X considered by Li and Barron, the Dudley integral converges and does

not depend on n. We therefore improve the results of Li and Barron by removing the

log n factor. Furthermore, the result of this paper holds for general base classes 7
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with a converging entropy integral, extending the result of Li and Barron. Note that

the bound of Theorem 4.2.2 is in terms of the metric entropy of 71, as opposed to the

metric entropy of C. This is a strong result because the convex class C can be very

large even for small 7H (see Example 3).

Rates of convergence for the MLE in mixture models were studied by Sara van

de Geer [69]. As the author notes, the optimality of the rates depends primarily on

the optimality of the entropy calculations. Unfortunately, in the results of [69], the

entropy of the convex class appears in the bounds, which is undesirable. Moreover,

only finite combinations are considered.

Wong and Shen [78] also considered density estimation, deriving rates of conver-

gence in Hellinger distance for a class of bounded Lipschitz densities. In their work,

a bound on the metric entropy of the whole class appears.

An advantage of the approach of [69] is the use of Hellinger distance to avoid

problems near zero. Li and Barron address this problem by requiring (4.3), which

is boundedness of the log of the ratio of two densities. Birg6 and Massart ([11],

page 122) cite a counterexample of Bahadur (1958) which shows that even with a

compact parameter space, M.L.E. can diverge when likelihood ratios are unbounded.

Unfortunately, boundedness of the ratios of densities is not enough for the proofs of

this paper. We assume boundedness of the densities themselves. This is critical in

one step of the proof, when the contraction principle is used (for the second time).

Although the boundedness condition seems a somewhat strict requirement, note that

a class of densities that satisfies (4.3), but not boundedness of the densities, has to

contain functions which all go to zero (or infinity) in exactly the same manner. Also

note that on a non-compact domain R even a simple class of Gaussian densities does

not satisfy (4.3). Indeed, the log-ratio of the tails of two Gaussians with the same

variance but different means becomes infinite. If one considers a compact domain X,

the boundedness of densities assumption does not seem very restrictive.

The proof technique of this paper seems to be a powerful general method for

bounding uniform deviations of empirical and expected quantities. The main ingre-

dients of the proof are the Comparison inequality for Rademacher processes and the
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fact that Rademacher averages (as defined in Lemma 2.5.1) of the convex hull are

equivalent to those of the base class.

4.2.3 Proofs

Assume

0 < a < be(z) < b z E Z, Ve E 7t.

Constants which depend only on a and b will be denoted by c with various subscripts.

The values of the constants might change from line to line.

Theorem 4.2.3. For any fixed density f and S = (Z1,... Zn) drawn i.i.d from f,

with probability at least 1 - e- t,

sup - logg(Zi) - E log g < E [ log' 2 D(?-,c, dn)de] + c2
gEc n rn n

where cl and c 2 are constants that depend on a and b.

Proof. First, we apply Lemma 2.4.3 to the random variable

Tn(Z17 , Zn) = sup logg(i)-Elogg
nEc i=

Let t = log g(zi) and ti = log g(zi'). The bound on the martingale difference follows:

]Tn(Zl, .. ... Zn)- Z(Zl, ,Zn)]
1

= sup Elogg--(tl +... + ti +... + tn)
gEC n

1-sup Elogg- - (t +... + ti + .. + tn)
gEC n

1 1 b
< sup - Ilogg(zi) - logg(zi)I < - log - = ci.

gEc n n a

The above chain of inequalities holds because of the triangle inequality and the prop-
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erties of sup. Applying McDiarmid's inequality (see Lemma 2.4.3),

P(Tn-ETn > u) < exp - ) = exp- 2)-2 E] ci 2 (log 

Therefore,

sup -!logg(Zi) -E log g < Esup I logg(Zi) - Elogg + V log -
gEc . = gEC n a n a

with probability at least 1 - et and by Lemma 2.5.1,

E sup 1 log g(Z) -E log g < 2E sup - i log )
gEC gEC elogg(Zi)

Combining,

sup - logg(Z) - E log g < 2Esup - Ei logg(Zi) + log -I
ge n ai=ie n 

with probability at least 1 - et.

Therefore, instead of bounding the difference between the "empirical" and the "ex-

pectation", it is enough to bound the above expectation of the Rademacher average.

This is a simpler task, but first we have to deal with the logarithm in the Rademacher

sum. To eliminate this difficulty, we apply Lemma 2.5.2. Once we reduce our problem

to bounding the Rademacher sum of the basis functions supe 1 i- ei¢(Zi) we

will be able to use the entropy of class 'H.

Let pi = g(x) - 1 and note that a - 1 < pi < b- 1. Consider 0(p) = log(1 + p).

The largest derivative of log(1 + p) on the interval p E [a - 1, b - 1] is at p = a - 1

and is equal to 1/a. So, a log(p + 1) is 1-Lipschitz. Also, (0) = 0. By Lemma 2.5.2
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applied to +(p),

I s
2E sup - Ej logg(Zi)

gEC i=1

s n
- 2E sup - ei(pi)

gec 1

1
< 4-E sup

a gEC

1
< 4-E sup

a 9EC

1
< 4-lEsup

a gEC

n±Z E ig(Zi)

1 n(Zi)

-|- i (Zi)1n
ni=1

The last inequality holds because

1 n1EeL- ei <

Combining the inequalities, with probability at least 1 - e- t

sup -E log g(Zi) -E log 
ECni=1

4 s n
< -E sup 1e g(Z2 )

a gEC n i=1

The power of using Rademacher averages to estimate complexity comes from the

fact that the Rademacher averages of a class are equal to those of the convex hull.

Indeed, consider

with g(z) = fe (z)P(d9).

sup E g(Zi)
gSne i-=1

Since a linear functional over convex combinations

achieves its maximum value at the vertices, the above supremum is equal to

sup li o (Zi) 
i=1
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the corresponding supremum on the basis functions b E . Therefore,

E sup eig(Zi) = E, sup 1 eiie(Zi)
gE n 10E9 

Next, we use the following classical result (see [71]),

Esup -Z| e (zi) < X logs/2 D(,-,d)dH,
qEgn i ~lf0o

where dn is the empirical distance with respect to the set Z1,... Zn.

Combining the results, the following holds with probability at least 1 - et:

sup -E log g(Zi) - E log g
gEC n i1

< [ j logl/ 2 D(7, e, dn)de + c2 -·

Remark 4.2.3. If 7-I is a VC-subgraph with VC dimension V, the Dudley integral

above is bounded by cV/V and we obtain 0(1//V) convergence. One example of such

a class is the class of (truncated) Gaussian densities over a compact domain and with

bounded variance (see Corollary 4.2.2). Another example is the class considered in

[491, and its cover is computed in the proof of Corollary 4.2.1. More information on

the classes with converging Dudley integral and examples of VC-subgraph classes can

be found in [25, 71].

We are now ready to prove Theorem 4.2.2:
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Proof.

D(f jjk) - D(f 119k) = E loggk - E log k

( logk(Zi - I lo k(zi))

+ (1Eloggk-(Z-Elog3 )

<2sup | log (Z) -E log i -E log 1k (Zi)-]E log + "+ g

+[ u log g](Z ) - E log 3(Z)-

if fk is constructed by maximizing the likelihood over k-component mixtures. If it

is constructed by the Algorithm 1, Theorem 4.1.1 shows that 4 k achieves "almost

maximum likelihood". Another proof of this result is given on page 27 of [503, or

section 3 of [493: n ~ ~ ~ in

\IgE C, -1log(4k(Zi))(n)Ž >-log(g(Z 2))(n2) -Y i=1 1

<Here Clp = (1/n) ZlogP 2(d)e <b a nd e = 4g(3/) + 4 log Hence,V/-n~~ ~ ~~~~~~~ n gk(Z)

with probability at least 1 - e- (by Theorem 4.2.3) Note that , 

if D(fk is constructed by maximizing theE [ likelihood over k-component mixtures. If it 

isWe now wriucted by the Algorithm 1, Theorestimating an unknshown density f achieves "althe sumost

of approximation and estimation errors. oThe formersult is given on page 27 of [50], orte

latter is bounded as above. Note again that cp and yin the approximation bound[49:vgE C, E _0(§ (Z) .n)>I lg( Zi)(i 1F
n1i=1nk

p =(1/) n fq2~(zi)P(dO) < b2 ady=4lg3 e)+4ogb. Hence,Here OF6, (/)i-1 (f qo(zi)p(dO)) 2 - -a--f ad7-4o(v)+4o

with probability at least 1 - e- t,

-~~~~C _blogl / 2 'D(?', , dn)df + c2+ '

We now write the overall error of estimating an unknown density f as the sum

of approximation and estimation errors. The former is bounded by (4.2) and the

latter is bounded as above. Note again that c}f,p and in the approximation bound
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(4.2) are bounded above by constants which depend only on a and b. Therefore, with

probability at least 1 - e- t,

D(f k) - D(f C) = (D(f 119k) - D(f C)) + (D(f ) - D(f lgk))

<_ + log' 2D(H,,E, d,)de + c2 (4.7)
- k [ x/nJ o

Remark 4.2.4. Note that we could have obtained the above bound from the Equation

4.1 without the decomposition into the approximation and estimation errors.

Finally, we rewrite the above probabilistic statement as a statement in terms of

expectations. Let S = k + E [c fb log/2 D(7, 6, d,)dE] and D = D(f k)- D(f C).

We have shown that P ( > + c2V) < et. Since ~ > 0,

/I {00 / 0
E[(] = j > u) du+ jP( > u)du < + P (> u + ()du.

Now set u = c2 f. Then t = c3nu2 and E [] < + fOO e-C3nu2du < + .

Hence,

E [D(fllk)] - D(fllC) < +E j logl/2 (, e dn)de]

Remark 4.2.5. Inequality (4.7) is much stronger than the result of Theorem 4.2.2

because it reveals the tail behavior of D(f lk) - D(f lC). Nevertheless, to be able to

compare our results to those of Li and Barron, we present our results in terms of

expectations.

Remark 4.2.6. In the actual proof of the bounds, Li and Barron [50, 491 use a

specific sequence of ai for the finite combinations. The authors take a, = 1, a 2 = 

87



and ak = for k > 2. It can be shown that in this case

~+2 +Y'(m

gk -0kk-1) + -+ -E(M- )OM 9kk(k-1) (2 2 00m=3

so the later choices have more weight.

We now prove Corollary 4.2.1:

Proof. Since we consider bounded densities a < 0e < b, condition (4.5) implies that

Vz, log (e(z) - '() < B -01

This allows us to bound Loo distances between functions in in terms of the L1

distances between the corresponding parameters. Since E is a d-dimensional cube of

side-length A, we can cover e by (A)d balls of Ll-radius d-. This cover induces a

cover of 1-. For any b0 there exists an element of the cover b0,, so that

d (4o, o,) < 4-o - 'oo < be -b = e.

2 lo +1)A d
Therefore, = Bd and the cardinality of the cover is ()d = 21A(Bd+l)

Hence,

log/2V('E' d f)de log l ( + )de.

A straightforward calculation shows that the integral above converges. l

By creating a simple net over the class HY in Corollary 4.2.2, one can easily show

that t has a finite cover D(1t, E, dn) = , for some constant K. Corollary 4.2.2

follows.

4.3 Classification

The analysis of the greedy algorithm (Algorithm 1) in the classification setting fol-

lows along the same lines as that of density estimation. Once the loss function in
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Equation 4.1 is specified, the Concentration and Symmetrization steps can be per-

formed similarly to the proofs of the previous Section. Similar proofs have been done

independently by Mannor et al [53].

Suppose Z = X x y and y = {-1, 1. Let e(g; Z) = e(yg(x)) such that

e(yg(x)) > I(yg(x) < 0)

and £(.) is a convex function with a Lipschitz constant L. For natural convex loss

functions, the Lipschitz constant is finite if the functions g are bounded.

e(yg(x)) '\

I(yg(x) • O) 1

%

0 yg(x)

Figure 4-2: Convex loss £ upper-bounds the indicator loss.

By performing the greedy minimization procedure with T(g) = 1 E'i=l (Yig(Xi))

over the convex hull conv (-), we obtain gk such that, according to the Equation 4.1,

2c
IR(gk)- 7zR(g*) 2 sup I1,(g) - emp(g) +k2

geconv () k + 2

Zhang [80] provides the specific constants c for common loss functions e.

Using the Symmetrization and Concentration steps as well as employing the com-

parison inequality for Rademacher processes, we obtain a result similar to Theorem

4.2.3:
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Theorem 4.3.1. Suppose 0 < (g; ) < M for any g E con (t). Then with proba-

bility at least 1 -e-t,

sup 7(g) emp~~l 'I~ [Cl /M 12

sup I R g) -emp(g) < E _ log /2 D(I, e, dn)de + c2 ,
geconv () / °

where c and 2 are constants which depend on M and L.

The upper bound on the convergence of 7 Z(gk) to 1Z(g*) as (k -- oo and n -+ oc)

follows immediately.
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Chapter 5

Stability of Empirical Risk

Minimization over Donsker Classes

The results of this Chapter appear partially in [18, 19].

5.1 Introduction

Empirical risk minimization (ERM) algorithm has been studied in learning theory to

a great extent. Vapnik and Chervonenkis [74, 76] showed necessary and sufficient con-

ditions for its consistency. In recent developments, [6, 8, 7, 38] proved sharp bounds

on the performance of ERM. Tools from empirical process theory have been success-

fully applied, and, in particular, it has been shown that the localized Rademacher

averages play an important role in studying the behavior of the ERM algorithm.

In this Chapter we are not directly concerned with rates of performance of ERM.

Rather, we prove some properties of ERM algorithms, which, to our knowledge, do

not appear in the literature. The analysis of this Chapter has been motivated by

the study of algorithmic stability: the behavior of a learning algorithm with respect

to perturbations of the training set. Algorithmic stability has been studied in the

recent years as an alternative to the classical (complexity-oriented) approach to de-

riving generalization bounds [16, 45, 55, 58, 60]. Motivation for studying algorithmic

stability comes, in part, from the work of [22]. Their results indicate that for any al-
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gorithm, the performance of the leave-one-out estimator of expected error is bounded

by Ll-stability of the algorithm, i.e. by the average L1 distance between hypotheses

on similar samples. This result can be used to derive bounds on the performance of

the leave-one-out estimate for algorithms such as k-Nearest Neighbors. It is impor-

tant to note that no class of finite complexity is searched by algorithms like k-NN,

and so the classical approach of using complexity of the hypothesis space fails.

Further important results were proved by Bousquet and Elisseeff [16], where a

large family of algorithms ( Tikhonov regularization based methods) has been shown to

possess a strong Loo stability with respect to changes of single samples of the training

set, and exponential bounds have been proved for the generalization error in terms

of empirical error. Tikhonov regularization based algorithms minimize the empirical

error plus a stabilizer, and are closely related to ERM. Though ERM is not, in general,

LO-stable, it is Ll-stable over certain classes of functions, as one of the results below

shows. To the best of our knowledge, the outcomes of the present Chapter do not

follow directly from results available in the machine learning literature. In fact we

had to turn to the empirical process theory (see Section 2.5) for the mathematical

tools necessary for studying stability of ERM.

Various assumptions on the function class, over which ERM is performed, have

been considered recently to obtain fast rates on the performance of ERM. The im-

portance of having a unique best function in the class has been shown by [48]: the

difficult learning problems seem to be the ones where two minimizers of the expected

error exist and are far apart. Although we do not address the question of performance

rates here, our results does shed some light on the behavior of ERM when two (or

more) minimizers of expected error exist. Our results imply that, under a certain

weak condition on the class, as the expected performance of empirical minimizers ap-

proaches the best in the class, a jump to a different part of the function class becomes

less and less likely.

Some algorithmic implications of our results are straight-forward. For example, in

the context of on-line learning, when a point is added to the training set, with high

probability one has to search for empirical minimizers in a small Ll-ball around the
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current hypothesis, which can be a tractable problem. Moreover, it seems plausible

that Ll-stability can have consequences for computational complexity of ERM. While

it has been shown that ERM is NP-hard even for simple function classes (see e.g. [9]),

our results could allow more optimistic average-case analysis.

Since ERM minimizes empirical error instead of expected error, it is reasonable to

require that the two quantities become close uniformly over the class, as the number

of examples grows. Hence, ERM is a sound strategy only if the function class is

uniform Glivenko-Cantelli, that is, it satisfies the uniform law of large numbers. In

this Chapter we focus our attention on more restricted family of function classes:

Donsker classes (see Section 2.5). These are classes satisfying not only the law of

large numbers, but also a version of the central limit theorem. Though a more

restricted family of classes, Donsker classes are still quite general. In particular,

uniform Donsker and uniform Glivenko-Cantelli properties are equivalent in the case

of binary-valued functions (and also equivalent to finiteness of VC dimension). The

central limit theorem for Donsker classes states a form of convergence of the empirical

process to a Gaussian process with a specific covariance structure (e.g. [25, 71]).

This structure is used in the proof of the main result of this Chapter to control the

correlation of the empirical errors of ERM minimizers on similar samples.

This Chapter is organized as follows. In Section 5.2 we introduce the notation

and background results. Section 5.3 presents the main result, which is proved in

the appendix using tools from empirical process theory. In Section 5.4, we show L1-

stability of ERM over Donsker classes as an application of the main result of Section

5.3. In Section 5.5 we show an improvement (in terms of the rates) of the main result

under a suitable Komlos-Major-Tusnady condition and an assumption on entropy

growth. Section 5.6 combines the results of Sections 5.4 and 5.5 and uses a uniform

ratio limit theorem to obtain fast rates of decay on the deviations of expected errors

of almost-ERM solutions, thus establishing strong expected error stability of ERM (see

Chapter 3). Several further applications of the results are considered in Section 5.7.

Most of the proofs are postponed to the Appendix. Section 5.8 is a final summary of

the results.
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5.2 Notation

Let (Z, G) be a measurable space. Let P be a probability measure on (Z, 5) and

Z1,..., Zn be independent copies of Z with distribution P. Let F be a class of

functions from Z to R. In the setting of learning theory, samples Z are input-output

pairs (X,Y) and for f E F, f(Z) measures how well the relationship between X

and Y is captured by f. Hence, F is usually the loss class of some other function

class 7-, i.e. F = £(7) (see Section 2.1). The goal is to minimize Pf = Ef(Z)

where information about the unknown P is given only through the finite sample

S = (Z1,..., Zn). Define the empirical measure as Pn Z i1 z, .

Definition 5.2.1. Given a sample S,

fs := argmin Pnf = argmin f (Zi)
f E. fEYF n =1

is a minimizer of the empirical risk (empirical error), if the minimum exists.

Since an exact minimizer of the empirical risk might not exist, as well as for

algorithmic reasons, we consider the set of almost-minimizers of empirical risk.

Definition 5.2.2. Given ~ > 0 and S, define the set of almost empirical minimizers

M = {f E F: Pnf - inf Png < }
gEF -

and define its diameter as

diamM = sup illf- gl.
f,gEM

Note that M C Me whenever < '. Moreover, if f, g E M and h =

(1 - )A)f + Ag E F, then h E Me by linearity of the average. Hence, if F is convex,

so is M for any > 0.

The 11'11 in the above definition is the seminorm on F induced by symmetric
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bilinear product

(f, f') = P (f - Pf) (f' - Pf')

This is a natural measure of distance between functions, as will become apparent

later, because of the central role of the covariance structure of Brownian bridges in

our proofs. The results obtained for the seminorm .11-11 will be easily extended to the

L2 (P) norm, thanks to the close relation of these two notions of distance.

5.3 Main Result

We now state the main result of this Chapter.

Theorem 5.3.1. Let F be a P-Donsker class. For any sequence ~(n) = o(n-1/2),

diamM Sn ) P 0.

The outer probability P* above is due to measurability issues. Definitions and

results on various types of convergence, as well as ways to deal with measurability

issues arising in the proofs, are based on the rigorous book of [71].

Before turning to the proof of Theorem 5.3.1, let us discuss the geometry of the

function class Y and its relation to the results. Recall that P-Donsker class F is also

a P-Glivenko-Cantelli class, and so empirical risk minimization on F is consistent:

as n -- oo,

Pfs P* inf Pg.
gE$

For simplicity, assume for a second that functions f E F are the square loss functions

over some class H and Z = X x :

F = f (z) = t(h, z) = {(h(x) - y)2 h E A} = (H)

Figures 5-1 through 5-4 depict four important possibilities regarding the geometry of

the function class.
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7/

Figure 5-1: Realizable setting.

7H

Figure 5-2: Single minimum of ex-
pected error.

H .

i, 0 h*
oI

Figure 5-3: Finite number of minimiz-
ers of expected error.

Figure 5-4: Infinitely many minimizers
of expected error.

The simplest situation, that of realizable setting, occurs when the target function

h* (the function achieving the zero expected error) belongs to the class H. In this

case, one can show that the empirical minimizers converge to this function in L2(P)

distance and, by the triangle inequality, the distance between two empirical minimiz-

ers over different sets converges to zero in probability. In fact, one can upper-bound

the rate of this decrease. Similar behavior can be shown for non-realizable settings

when there is a single (Figure 5-2) best function in the given class. For a finite number

(Figure 5-3) of best functions in the given class, one can show, based on the binomial

result, that £Q(v/n) changes is enough to induce a large jump of the empirical mini-

mizer. Nevertheless, in this case empirical minimization is still stable with respect to

o(V/n) changes. Hence, n - 1/ 2 is the rate defining the transition between stability and

instability in the case of the finite number of minimizers of the expected error. Once
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the number of minimizers is infinite (Figure 5-4), the problem of showing closeness

of two empirical minimizers is difficult, and this is the situation addressed by this

Chapter. Of course, we do not expect the distance between empirical minimizers over

completely different sets to decay to zero. For example, if one is searching for the

least (or most) dense region in an interval, where the data is drawn from the uniform

distribution, one expects the least (most) dense regions to be different for completely

different samples (see Section 5.7). Nevertheless, from the results of this Chapter it

follows that the n- 1/ 2 rate again defines the transition between stability and insta-

bility. We stress that the situation of infinitely-many minimizers of expected error

is not artificial since the measure P defining these "distances" is unknown. Further-

more, we prove results for very general classes of functions, not necessarily obtained

by composing the square loss with a function class.

The proof of Theorem 5.3.1 relies on the almost sure representation theorem [71,

Thm. 1.10.4]. Here we state the theorem applied to vn and v.

Proposition 5.3.1. Suppose F is P-Donsker. Let vn : Zn -+ £OO(F) be the empirical

process. There exist a probability space (Z', 5', P') and maps v ' '-+ t (F) such

that

au1. Z,'- v'

2. E*f(vn) = E*f(vn) for every bounded f ' t( ) -4 R for all n.

Lemma 5.3.1 is the main preliminary result used in the proof of Theorem 5.3.1

(and Theorem 5.5.1 in Section 5.5). We postpone its proof to Appendix A.

Lemma 5.3.1. Let vn : Z n F-+ t°(F) be the empirical process. Fix n and assume

that there exist a probability space (Z', g', P') and a map v': Z' -* £((Y) such that

E*f(vn) = E*f(vn) for every bounded f: £co(.) -+ R. Let v' be a P-Brownian bridge

defined on (Z', 5', P'). FixC > 0, e = min(C3/128, C/4) and suppose > Ev for a

given ~ > O. Then, if F is P-Donsker, the following inequality holds

Pr* (diamM > C) < J(e,.F, 11. 11)2 (1286 + Pr* (sup Vn - > /2)
~~~~~k+ P r(sp t y' 
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We are now ready to prove the main result of this section.

Theorem 5.3.1. Lemma 1.9.3 in [71] shows that when the limiting process is Borel

measurable, almost uniform convergence implies convergence in outer probability.

Therefore, the first implication of Proposition 5.3.1 states that for any 6 > 0

Pr* (sup Iv - v' > 6) -

By Lemma 5.3.1,

Pr* (diamMs a) > C) < A/(E,, 11.11)2 C3 + Pr* sup I v - v'I J 6/2)

for any C > 0, e = min(C 3/128, C/4), and any 6 > (n) iVF. Since (n) = o(n- 1/ 2 ), 6

can be chosen arbitrarily small, and so Pr* (diamM (n) > C) - 0. 

The following corollary, whose proof is given in Appendix A, extends the above

result to L2 (and thus L1) diameters.

Corollary 5.3.1. The result of Theorem 5.3.1 holds if the diameter is defined with

respect to the L2 (P) norm.

5.4 Stability of almost-ERM

The main result of this section, Corollary 5.4.1, shows L2-stability of almost-ERM on

Donsker classes. It implies that, in probability, the L2 (and thus L1) distance between

almost-minimizers on similar training sets (with o(\/-) changes) goes to zero when n

tends to infinity.

This result provides a partial answer to the questions raised in the machine learn-

ing literature by [45, 55]: is it true that when one point is added to the training set,

the ERM algorithm is less and less likely to jump to a far (in the L1 sense) hypoth-

esis? In fact, since binary-valued function classes are uniform Donsker if and only if

the VC dimension is finite, Corollary 5.4.1 proves that almost-ERM over binary VC

classes possesses Ll-stability. For the real-valued classes, uniform Glivenko-Cantelli
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property is weaker than uniform Donsker property, and therefore it remains unclear

if almost-ERM over uGC but not uniform Donsker classes is stable in the L1 sense.

The use of Ll-stability goes back to [22], who showed that this stability is sufficient

to bound the difference between the leave-one-out error and the expected error of a

learning algorithm. In particular, Devroye and Wagner show that nearest-neighbor

rules possess Ll-stability [see also 20]. Our Corollary 5.4.1 implies Ll-stability of

ERM (or almost-ERM) algorithms on Donsker classes.

In the following [n] denotes the set {1, 2, .., n} and A A B is the symmetric

difference of sets A and B.

Corollary 5.4.1. Assume .F is P-Donsker and uniformly bounded with envelope F 

1. For I C N, define S(I) = (Zi)iEI. Let In C N such that Mn := IInA [n]l = o(nl/ 2).

Suppose fn E MA(n) and f' E M(n)) for some (n) = o(n-1 /2 ) and '(n) = o(n-1/2).

Then

1A - ll fn °o

The norm 11. can be replaced by L2 (P) or LI(P) norm.

Proof. It is enough to show that f E M(n) for some &(n) = o(n -1/2) and resultS([n])

follows from the Theorem 5.3.1.

iE[n] iEIn

< Mn + 'In' ( ' (n ) + inf g (zi)
l nt (, 1' 'In'iEIn

< Mn + IIn (n) + E fn(Zi)
n n n iE n

< 2Mn + Inl(n) + 1 E fE(z)
n n n

iE[,q]

Def]ie[n]

Define

,"(n) = 2 Mn + IInl ('(n) + (n).
n n
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Because Mn = o(ni), it follows that "(n) = o(n-1/ 2 ). Corollary 5.3.1 implies con-

vergence in L2(P), and, therefore, in L 1(P) norm. l

Let us now generalize the above result to functions with a bounded Lipschitz

constant. The Lipschitz assumption allows us to study sensitivity of functions with

respect to perturbations of the data points in the space instead of complete removals

or additions.

More precisely, assume that the space Z is equipped with a distance metric d.

Furthermore, suppose Z is compact: say, Z C Bd(O, R). Suppose that F consists of

functions with a bounded Lipschitz constant L:

Vz, z' E Z, Vf E , If(z) -f (z') < Ld(z, z').

Define the "distance" between two sets S, T as follows. For sets S {,... Zn,}

T = {zz,.. , z,} of equal size

Isl

d(S, T) = inf E d(zi, '()).
i=1

If ISI < ITI,
1s

d(S, T) = inf - d(zi, zr(i)) + 2R(ITI - ISI)
i=1

and if SI > ITI,

ITI

d(S, T) = inf - d(z1,(), z') + 2R(}SI - ITI).
i=1

In other words, the "distance" between two sets is defined as the best way to

pair up points from one set with points from the other set, and paying the constant

(diameter of the ball) for each unmatched point.

Corollary 5.4.2. Assume F is P-Donsker and uniformly bounded with envelope F--

1. Suppose JF consists of functions with a bounded Lipschitz constant L and Z c

Bd(O,R). Suppose fs E M(n) and fT E V(n) for some 6(n) = o(n- 1/ 2) and
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~'(n) = o(n-1/2). If d(S,T) -= o(n-1 /2), then

lifs - fTi - -o.

The norm || can be replaced by L2(P) or L1 (P) norm.

Proof. Without loss of generality suppose that n = SI < ITI. Similarly to the proof

of Corollary 5.4.1,

1

n zET

1

n Z fT(z) =
z6T

1

n Z fs(z) -
zET

1+ -E fs(z)
n zES

+ - ZfT(z)
n zES

E fs(z)n zES

-E fT(Z)n zES

-1 fT(z)
zETzET

< - d(zi, z) + 2R(ITI - Sl)+ (n)
n 

i=1

In fact, since we can permute T in any suitable way, we have

1

n
zET

1
fs(z)- -E fT < 2Ld(S, T) + (n).

zET

Since both terms decaying faster than n- 1 / 2 and fT E T'(n), we have that

fs E MT

for "(n) = o(n-1/2). We apply Theorem 5.3.1 to obtain the result.

[]

5.5 Rates of Decay of diamA4M(n)

The statement of Lemma 5.3.1 reveals that the rate of the decay of the diameter

diamM(n) is related to the rate at which Pr* (supF v - vn > ) 0 for a fixed .

A number of papers studied this rate of convergence, and here we refer to the notion of
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Komlos-Major-Tusnady class (KMT class), as defined by [42]. Let vn', Z" - ( e(F)
be the empirical process defined on the probability space (Z', 6', P').

Definition 5.5.1. F is called a Komlos-Major-Tusnady class with respect to P and

with the rate of convergence rn ( E KMT(P; rn)) if F is P-pregaussian and for

each n > 1 there is a version V(n) of P-Brownian bridge defined on (Z', c""""""', P')

such that for all t > O,

Pr* (sup Iv(n)- vnj > rn(t+ Klogn)) <Ae -° t

where K > 0, A > 0 and 0 > 0 are constants, depending only on F.

Sufficient conditions for a class to be KMT(P; n - c) have been investigated in the

literature; some results of this type can be found in [42, 62] and [25], Section 9.5(B).

The following theorem shows that for KMT classes fulfilling a suitable entropy

condition, it is possible to give explicit rates of decay for the diameter of ERM almost-

minimizers.

Theorem 5.5.1. Assume F is P-Donsker and E KMT(P; n- ' ) for some a > O.

Assume A/(E,F, II'11) < (A)V for some constants A, V > . Let ~(n) / = o(n-),

7 > . Then

nYdiamM (n)
-- 0

for any y < 3(2V+1) min(a, ).

Proof. The result of Lemma 5.3.1 is stated for a fixed n. We now choose C, ~,

and 6 depending on n as follows. Let C(n) = Bn - 'Y, where y < 3(2v+1) min(a, )

and B > 0 is an arbitrary constant. Let = (n). Let (n) = n, where 3 =

2(min(a, ) + 3(2V + 1)-y). When/3 is defined this way, we have

min(a, ) > > 3(2V + 1)y

because -y < 3(2+1) min(a,t7) by assumption. In particular, < 7 and, hence,
eventually 6(n) > (n) n) = o(n7).
eventually (n) > (n)V(n) = o(n-7).
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Since C(n) decays to zero and e(n) = min(C(n) 3 /128, C(n)/4), eventually e(n) =

C(n)3 /128 = n -3B 3/128.

Since F E KMT(P; n-a),

Pr* (sup I.(n)- n-(t + Klogn) <Ae-

for any t > 0, choosing t = n6(n)/2 - Klogn we obtain

Pr (sup v(n) - vj > (n)/2) < e-(n /2-Klogn)

Lemma 5.3.1 then implies

Pr* (diamM.A4 > C(n)) < N(~, r , I l)2 (C()- - + Pr* sup IVn - v' > 6/2

B3 J) B3 B3 )

(128A 2V 128 3y(2V+1)- A (128A 2V nk+6-Ve -nJ 3- n + B3

Since a > > 3y(2V + 1), both terms above go to zero, i.e.

Pr* (n-diamMs(n) > B) - 0 for any B > 0.

]

The entropy condition in Theorem 5.5.1 is clearly verified by VC-subgraph classes

of dimension V. In fact, since L2 norm dominates 11 11 seminorm, upper bounds on L2

covering numbers of VC-subgraph classes induce analogous bounds on 11·11 covering

numbers. Corollary 5.5.1 is a an application of Theorem 5.5.1 to this important family

of classes. It follows in a straight-forward way from the remark above.

Corollary 5.5.1. Assume F is a VC-subgraph class with VC-dimension V, and for

some > f E KMT(P, n-"). Let ,(n)v/;i = o(n-7), V > O. Then

nydiamM?( ) P* 0
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for any -y < 3(2V+1)min(,).

5.6 Expected Error Stability of almost-ERM

In the previous section, we proved bounds on the rate of decay of the diameter of

almost-minimizers. In this section, we show that given such a bound, as well as

some additional conditions on the class, the differences between expected errors of

almost-minimizers decay faster than n - /2 . This implies a form of strong expected

error stability for ERM.

The proof of Theorem 5.6.1 relies on the following ratio inequality of [59].

Proposition 5.6.1. Let 5 be a uniformly bounded function class with the envelope

function G _ 2. Assume Af(7, ) = supQ A(2y, , L1 (Q)) < co forO < y < 1 and Q

ranging over all discrete probability measures. Then

Pr* upP Pf - Pf I > 26) < 32A/'(7,!96)exp(-nE?)
( s E(Pn.f I + Plf 1) + 5>

The next theorem gives explicit rates for expected error stability of ERM over

VC-subgraph classes fulfilling a KMT type condition.

Theorem 5.6.1. If .F is a VC-subgraph class with VC-dimension V, Vn/ (n) =

o(n-"7), and .F E KMT(P; n-t), then for any r < min (6(2+1) min(a, 7), 1/2)

n / + sup IP(f- f')l 0.
f,f'EM(( n)

5.7 Applications

We now apply the results of the previous sections to the unsupervised setting. Suppose

we are given n i.i.d. samples X1, . ., Xn from the unknown P and we are interested

in finding out something about P. Clustering and density estimation are two such

tasks. However, let us first consider a simpler example.

104



5.7.1 Finding the Least (or Most) Dense Region

Suppose we are interested in finding the most dense (or least dense) contiguous region

of a fixed size (see Figure 5-5). A natural question is: what is the stability of such

a procedure? Note that finding the most dense contiguous region can be phrased

as an empirical risk minimization procedure, as described in the next paragraph.

If the underlying density has a single mode, we expect that the most dense region

will be located at that mode for large n and will not be significantly shifting with

perturbations of the data. This corresponds to the single-minimizer setting, discussed

in Section 5.3 and depicted in Figure 5-2. However, if there are two equal modes in the

density, we expect the most dense region to jump between the modes with the addition

of Q(nl/ 2) points. This situation corresponds to Figure 5-3. If the underlying density

is uniform, the setting corresponds to the one depicted in Figure 5-4, as any region

of a fixed size is equally good (equally bad) with respect to the uniform density. The

stability of the latter case is difficult to analyze, and we employ the result of Theorem

5.3.1 for this purpose.

I I

Figure 5-5: The most dense region of a fixed size.

Suppose for simplicity that X = [0,1] and Y = {0, 1}. Define

R = 0h[ab] < a < b < 1, b-a < c, h[ab] (x) = I(x ¢ [a, b])

for some fixed c > 0. In other words, the function class consists of binary functions

taking the value 0 on an interval of length smaller than c and the value 1 everywhere

else. Let P(Y = yX) = y=O, i.e. the data has the y-label zero. Let (h(x), Y) =

h(X) - Y = h(X), i.e. the functions in Tc are the losses. Note that h[a,b] makes

mistakes on the data X1, . . ., X, whenever Xi [a, b]. Hence, to minimize the number
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of mistakes, [a, b] has to contain the most number of points out of X1, .. , Xn, which

is the most dense region.

Note that the VC dimension of 7c is 2 for any c > 0. Indeed, no three points

xl < X 2 < X 3 can be shattered, as there is no way to assign 1 to x2 and 0 to xl, x2

with a function from 7Hc.

Hence, 7c is uniform Donsker and we obtain the following result.

Corollary 5.7.1. Let In = {X1,. .. ,Xn} and Jn = {X1,... ,X}, X,X X E [0,1] are

i.i.d. according to P. Suppose that Mn := In/ Jn I = o(n1/2 ). Let [a,, b,] and [aj, bj]

be most dense regions of size c > 0 in In and Jn. Then

la, - aI + lb, - bi P o.

The example extends naturally to d-dimensional axis-parallel boxes or other finite-

VC classes.

Corollary 5.7.2. Let In = {X 1,... , Xn} and Jn = {X1,... ,}, Xi, X E [0, 1]d are

i.i.d. according to P. Suppose that Mn : InAJnl - o(n1/2). Let [a,b] x ... x [ad, b]

and [a', bJ] x ... x [a , bd] be most dense regions in In and Jn such that ai - bi ci.

Then for any 1 < i < d

la- a+ o.

Remark 5.7.1. The following extensions are straightforward:

* The size of the d-dimensional boxes can be restricted in many other ways, de-

pending on the problem at hand.

* The same results hold for the least dense region problem.

* The results hold for k most dense (or least dense) disjoint regions.

5.7.2 Clustering

In the previous section we discussed the connection between the problem of finding the

most (or least) dense region and empirical risk minimization. Furthermore, we showed
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that the underlying density and the function class determine one of the settings

depicted in Figures 5-1 through 5-4. The same reasoning holds for clustering, where

an objective function determines the quality of the clustering (such as the within-point

scatter for K-means). If there is only one best clustering (i.e. the minimum of the

objective function is unique), the situation is represented in Figure 5-2, and we expect

stability of the minimizers of the objective function with respect to complete changes

of the dataset. However, if there are finite number of minimizers, the binomial result

tells us that we expect stability with respect to o(v/n) changes of points, while no

stability is expected for Q(/n) changes. Again, the case of infinitely-many minimizers

cannot be resolved by similar arguments, and we employ the result of Theorem 5.3.1.

Let Z 1, ... ,Z E Rm be a sample of points. A partition function C : Z -4

{1,...,K} assigns to each point Z its "cluster identity". The quality of C on

Z .. .. Zn is measured by the "within-point scatter" (see [33])

K

W(C) =2 E E lZi - Z2. (5.1)
k=l i,j:C(Zi)=C(Zj)=k

Because the similarity of samples is the Euclidean square distance, the within-point

scatter can be rewritten as

K

W(C) = E E |z,- Zkl (5.2)
k=l i:C(Zi)=k

where 2'k is the mean of the k-th cluster based on the assignment C (see Figure 5-6).

The K-means clustering algorithm is an alternating procedure minimizing the

within-point scatter W(C). The centers {Zk}k=i are computed in the first step,

following by the assignment of each Zi to its closest center Zk; the procedure is

repeated. The algorithm can get into a local minima, and various strategies, such as

starting with several random assignments, are employed.

The problem of minimizing W(C) can be phrased as an empirical minimization

procedure. The K-means algorithm is an attempt at finding the minimizer in practice
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ZI12

Z, Z2
11Zk - Zlll

Figure 5-6: The clustering objective is to place the centers Zk to minimize the sum
of squared distances from points to their closest centers.

by an alternating minimization procedure, but the convergence to the minimizer is

not guaranteed.

Let

-K = {hzl,...,zk(z) = liz - zi42, i = argmin lZ- Zj 2 : Zl,... ,ZK E Z C R m }. (5.3)
jE{1...K}

Functions hzl,...,zkk(z) in RK can also be written as

K

hz,",zk(z) = E iz - zi12I(z is closest to zi),
i=1

where ties are broken in some reasonable way.

Hence, functions h,1. ZK E R'K are K parabolas glued together with centers at

Z1,. , ZK, as shown in Figure 5-6. We claim that

n

min W(C) = min h(Zi).
C hE'lK

Moreover, the C* clustering minimizing the left-hand side has to assign each point to

the closest cluster center; hence, if the minimum is unique, C* has to coincide with the

assignment of hz.,....zk minimizing the right-hand side. Unfortunately, the minimum
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of the empirical average minhE Ei= , h(Zi) might not be unique, corresponding to

the scenario depicted in Figures 5-3 and 5-4. In this case, it is interesting to address

the question of stability of this minimization problem.

Let B2 (R) denote an L2 -ball of radius R, centered at the origin. If Z C B2(R) for

some constant R, the functions in 7-K are bounded above by 4R2. Hence, for a fixed

K, the class RK is Donsker. We can apply the result of Corollary 5.4.1 to deduce the

following result.

Theorem 5.7.1. Suppose Z C B2(R). Let ha. .,aK and hbi,...,b be minimizers of

n

min h(Z)
hE7'K

over the sets S and T, respectively. Here HK is defined as in 5.3. Suppose that

IS A T = o(V). Then

P+0
IIhaj,...,aK - hbl,...,bKIIL1(P) .

Stability of ha .... a implies stability of the centers of the clusters with respect to

perturbation of the data Z1,... , Zn.

Definition 5.7.1. Suppose {al,...,aK} and {b,...,bK} are centers of two cluster-

ings. Define a "distance" between these clusterings as

dmax({al,...,aK},{bl,...,bK}) :=max(maxmin ai-bjll,maxmin ai-bjI)' ' ~ ~ ~ ~ ~~~i j i

Lemma 5.7.1. Assume the measure P is bounded away from 0, i.e. P(z) > c for

some c > . Assume further that Z C B2(0, R) for some R < o. Suppose

IIhal,...,aK - hbl,...,bKIILl(P) < .

Then 1/ m

dmax({al,,...,aK},{bl, .... bK}) < ( 1
cc,m,R
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where Cc,m,R depends only on c, m, and R.

Proof. Without loss of generality, assume that dmax(al,...,aK}, {bl,..., bK}) is

attained at a and b such that b is the closest center to a out of {b1,...,bK}.

Suppose dmax = la1 -bill = d. Consider B = B 2(a,d/2), a ball of radius d/2

centered at a1. Since any point z E B is closer to a1 than to b, we have

liz - al 12 < liz - b 112 .

Refer to Figure 5 - 7 for the pictorial representation of the proof.

Note that bj ¢ B for any j E {1 ... K}. Also note that for any aj,

K

liz - all 2 > Iliz - aill2I(ai is closest to z).
i=1

Indeed, trivially, if lz - aI < z - aill for some i, then liz - a li112 > liz - aIll2.

Combining all the information,

I hal,...,aK - hbl,...,bK L (P) = I hai,...,a () - hbl,...,bK (z)l dP(z)

> j hai,...,aK,(z) - hb,...,bK(Z)l dP(z)

= Ihai,...,a, (Z) - IIz - b 112 1 dP(z)

= j (liz - bill2 - ha,...,aK(Z)) dP(z)

l= i z - b1i ll2- lz- aill2 (ai is closest to z) dP(z)
JB i=1

> L (llz - bi12
- IlIz - alll2) dP(z)

> ((d/2)2 - lz - aii2) dP(z)

> c.vol(B(0, R)). ( d/2( )m 27rm/2 (d/2)'m+2
>-c * vol(B2(0, R)) * t~d/2) r(7n2 + 1) (- + 2)r (/2)

= Cc,m,R ' d+
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(d 2

UI1

B(al, d/2)

d

Figure 5-7: To prove Lemma 5.7.1 it is enough to show that the shaded area is
upperbounded by the L1 distance between the functions haj,...,aK and hb,...bK and
lower-bounded by a power of d. We deduce that d cannot be large.

Since, by assumption,

Ihal,...,aK - hbl,...,bKIIL1(P) • £,

we obtain

(C,,)1/rnd <
C, m,R

From the above lemma, we immediately obtain the following Theorem.

Theorem 5.7.2. Suppose Z c B2(0, R) for some R < o. Assume the measure P

is bounded away from 0, i.e. P(z) > c for some c > O. Let al,..., aK and bl,..., bK

be centers minimizing the within-point scatter W(C) (Equation 5.2) over the sets S

and T, respectively. Suppose that IS TI = o(v/;). Then

dmax({al,...,aK}, {bl,...,bK}) -+ O.
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Hence, the minimum of the within-point scatter is stable with respect to pertur-

bations of o(v/i) points. Similar results can be obtained for other procedures which

optimize some function of the data by applying Corollary 5.4.1.

5.8 Conclusions

We have presented some new results establishing stability properties of ERM over

certain classes of functions. This study was motivated by the question, raised by

some recent papers, of Ll-stability of ERM under perturbations of a single sample

[55, 45, 60]. We gave a partially positive answer to this question, proving that, in

fact, ERM over Donsker classes fulfills L2-stability (and hence also Ll-stability) under

perturbations of o(ni ) among the n samples of the training set. This property follows

directly from the main result which shows decay (in probability) of the diameter of

the set of solutions of almost-ERM with tolerance function ~(n) = o(n-2). We stress

that for classification problems (i.e. for binary-valued functions) no generality is

lost in assuming the Donsker property, since for ERM to be a sound algorithm, the

equivalent Glivenko-Cantelli property has to be assumed anyway. On the other hand,

in the real-valued case, many complexity-based characterizations of Donsker property

are available in the literature.

In the perspective of possible algorithmic applications, we have analyzed some

additional assumptions implying uniform rates of the decay of the L1 diameter of

almost-minimizers. It turned out that an explicit rate of this type can be given for

VC-subgraph classes satisfying a suitable Komlos-Major-Tusnady type condition. For

this condition, many independent characterizations are known. Using a suitable ratio

inequality, we showed how Ll-stability results can induce strong forms of expected

error stability, providing a further insight into the behavior of the empirical risk

minimization algorithm.

As in the case of empirical risk minimization, where the geometry of the class

and the underlying measure determine the stability of the minimizers, robustness of

clustering is also related to the number of minimizers of the objective function (i.e.
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best clusters); we applied our result on the Li-stability of ERM to clustering and the

problem of finding the most/least dense region.
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Chapter 6

Concentration and Stability

In Chapter 3, we proved probabilistic bounds on lhemp and Rloo in terms of stability

conditions. The key tools were various deviation and concentration inequalities stated

in Chapter 2.

Recall that the variance of a function of n random variables is small if the function

is not sensitive to changes of each coordinate alone. This corresponds naturally to

the idea of algorithmic stability: the concept learned by the algorithm should not be

sensitive to a change of a training sample. Chapter 3 made the connections between

deviation inequalities and algorithmic stability precise. In the present Chapter, we

provide some further theoretical results on the concentration of functions.

6.1 Concentration of Almost-Everywhere Smooth

Functions

Consider a probability space (Z, 9, ) and the product space (Zn, '). Let

T : Z , [-1, 1].

We are interested in the connection between the concentration of T" around its ex-

pectation and the smoothness properties of Tn.

We start with the following definitions.
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Definition 6.1.1 (Kutin and Niyogi [43]). We say that Tn : Z -+ [-1,1] is strongly

difference-bounded by (/3, ) if there is a subset B C Z n of measure tzn(B) < such

that for any 1 < k < n, if w, w' E Zn differ only in the k-th coordinate, then

ITn(w) - Tn(w')I < 3 whenever w V B. (6.1)

We will call B the bad set.

Remark 6.1.1. While in the literature on the concentration of measure phenomenon

the term "concentration" is used in conjunction with exponential bounds on the prob-

ability, we will use this term to denote any convergence of JTn - ETn[ to zero in

probability.

Definition 6.1.2. We will say that Tn concentrates if for any E > 0

P (T - ETn > e) -, 0

as n -- oo.

Assume that Tn is a bounded function and recall McDiarmid's inequality (Theorem

2.4.3).

Theorem 6.1.1 (McDiarmid [54]). If Tn Z: 1 [-1, 1] is strongly difference-bounded

by (i, 0), then

IP(ITn-ETnI > e) < 2exp (n2)

for any e> O.

Hence, Tn concentrates whenever it is strongly difference-bounded by (n, 0) and

13n = o(n-/ 2 ). We are interested in extensions of McDiarmid's inequality to non-zero

bad sets, i.e. to functions which are strongly difference-bounded by (n, An).

The following extension has been proved by Kutin and Niyogi [43].
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Theorem 6.1.2. If T : Zn -_ [-1,1] is strongly difference-bounded by (, 3n), then

for any E > 0,

P (IT -ETn I > ) <2 exp (8 2 + fn ) (6.2)

Hence, if Tn is strongly difference-bounded by (n, 6n) such that f3n = o(n - / 2)

and 6n == o(i3n/n), then Tn concentrates.

Another straightforward calculation assures that Tn is concentrated under weaker

conditions on Tn

Proposition 6.1.1. If Tn : Z n _ [-1, 1] is strongly difference-bounded by (3n, 6,n),

then for any > 0,
I ( Tn- ETnI > ) < n 2 1 + n6n

-- 2e2

Proof. Denote

r = Tn(Zl,... Zn)

and

r i = Tn(Z1, ,Z . . . , Z n)

By Efron-Stein's inequality,

n

Var(Tn) < _ EE(F i)2
i=1

= E [I(Zl.z,n)B (r- ri)2 + I(Zl,,Zn)EB E(r- ri)2]
~~~~~~=1[1

< I (n3 + ncn)
-2

The result follows from Chebyshev's inequality. [

Hence, if Tn is strongly difference-bounded by (n, 6n) such that fn = o(n-/2)

and 6n = o(n-1), then Tn concentrates.

The bound in Proposition 6.1.1 uses the second moment to upper-bound the prob-

ability of the deviation. Similarly, we can use powerful moment inequalities, recently

117



developed by Boucheron et al [15], to bound the q-th moment of Tn. Moreover, q can

be optimized to get the tightest bounds1.

Define random variables V+ and V as

V+ =E (r - r'2Ir>r ZX, Zn V - E E (r-r,) Ir', jzX*XZn]
i=1 ~

Further, for a random variable W, define

IIWIlq = (E [lWlq])l / q

for q > 0.

Theorem 6.1.3 (Boucheron et al [15]). For Tn : Z ' R, let F = Tn(Z,..., Zn)

For any q > 2,

1(r-Er)+IlIq < Vllgrj IIV-'q, and (r-E)- Iq < V' /IIVWIlq,

where x+ = max(O,x) and n ;- 1.271 is a constant.

This result leads to the following theorem:

Theorem 6.1.4. Assume Tn : Z n -4 R satisfies the bounded difference condition

(6.1) on a set of measure 1 - 6n. Then for any q > 2 and E > 0,

(Tn-ET > -) < (nq) 2((2 )q/2 q + (2M)'6n)-- ~~~Eq

where K S 1.271.

Proof. Note that

EVq/2 = E{IGVq/2 + IoV/ 2} < (n/3)q/2 + (nq(2M)2)/ 265n.

'Thanks to Ggbor Lugosi for suggesting this method.
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By Theorem 6.1.3,

E(r - E)+ < (2sq)q/2EV 2

< (nn2q2n)q/2 + (n(2M)2)q/2n.

Hence,

E -r)q
D (Tn - ETn > E) _EF+

Eq

< (nq)q/2 ((2s)q/2/nq + (2M)q6n)
Eq

The bound of Theorem 6.1.4 holds for any q > 2. To clarify the asymptotic

behavior of the bound, assume = n - v for some y > 1/2, and let

q = E2n-2n -= 2n

for some r/ to be chosen later such that 2 - 1 > r > 0. Assume 6n = exp(n -0 ) for

some 0 > 0. The bound of Theorem 6.1.4 becomes

P(T-ET>E) (nq)q/ 2((2n,)q/ 2/3q + (2M)q6n)AP (Tn- ETn > ,) _< Eq

/2tnq)3n2 q/ 2 ( 4M2rq)q/ 2

_(n +V_-2,) O 21n" 2 ' 0< (2'n -) 2 + (4M2n1+) 2 exp(-n° )
E2\

< exp (1+ (1 + r- 2-y)logn)n 
2

+exp (2log(2M)+(1 + 77)logn)n' -n . (6.3)
2 /

Since 1 + r/- 2 < 0, the first term is decaying exponentially with n. We can now

choose 77 < min(0, 27 - 1) for the second term to decay exponentially. In particular,

let us compare our result to the result of Theorem 6.1.2. With 6n = exp(n -0 ) the
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bound in Equation (6.2) becomes

P (Tn-ETn > e) < exp (En27-1)

+ exp ((log M + ( + 1) logn)-no). (6.4)

Depending on whether 0 < 2 - 1 or not, the first or second term dominates conver-

gence to zero, which coincides exactly with the asymptotic behavior of our bound. In

fact, one can verify that the terms in the exponents of bounds (6.3) and (6.4) have

the same order.

We have therefore recovered the result2 of Theorem 6.1.2 for the interesting case

= exp(-nO) by using moment inequality of Boucheron et al [15]. Note that the

result of Theorem 6.1.4 is very general and different ways of picking q might prove

useful. For instance, if 6 n 0, i.e. the bounded difference condition (6.1) holds over

the whole Zn, we can choose
E2

q =
4nfn2

to recover McDiarmid's inequality.

6.2 The Bad Set

The results of the previous section provide guarantees for the concentration of T in

terms of 6 n and on. However, not every rate of decay of 6n and O, implies that Tn

is concentrated. In fact, this is not due to a weakness in our approach, but rather

due to an apparent phase transition between concentration and non-concentration for

functions of n random variables.

The next example is a negative result: there exists a function Tn with /3,n = 0 and

an = Q(n- 1/2 ) which does not concentrate.

Example 4. Let Z = {-1, 1}. Let

T (Z1, . . . , Zn) majority(Zl, .o , Zn) -.

2This gives an answer to the open question 6.2 in [43].
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In other words, Tn takes the value 1 if the majority (or exactly half) of the coordinates

are 1, and takes the value -1 otherwise. Note that Tn changes the value on the

boundary between 1 's and-1's. Hence, ,un(B) = Q(n-1 /2 ). Clearly, Tn does not

concentrate, as it takes values ±1 while ETn = 0.

While Proposition 6.1.1 assures that functions with ,n(B) = o(n -1 ) do concen-

trate, the above example shows that the rate ,ln(B) = Q(n -1/ 2) is too slow for

concentration.

Can something be said about the concentration of a function with the size of the

bad set decreasing faster than 1/v/E but slower than 1/n? It appears that methods

of the kind used in the proof of Theorem 6.1.4 will not be able to answer this question

due to the way the bad and the good sets are combined together.

In this Chapter we show how the question of the size of the bad set can be

phrased geometrically in terms of the size of certain boundaries. We use isoperimetry

and classical work on the size of extremal sets to derive sharp results connecting the

concentration of functions and the size of bad sets.

6.2.1 Main Result

Consider Example 4 on the discrete cube {O, 1}. More precisely, for x = (x1, ... , xn) E

{0, 1n, let f(x) = 1 if the majority of xi are 's, and f(x) = -1 otherwise. The

cube is partitioned into two regions F+n1 and F21 according to the value of f. When

changing one coordinate of x, the change of the value of f(x) occurs exactly at the

boundary between these two regions, which is at the n/2 Hamming distance from the

origin. This boundary contains Q(2 //i) vertices. The reader will notice that the

boundary is exactly the "bad set", i.e. points such that a change of one coordinate

results in a large jump of the value of f.

Now consider an arbitrary -1, 1}-valued function on the cube. Assume uniform

measure on the vertices of the cube. Notice that f is concentrated around its mean

if and only if Ef = or Ef = -1. Assume that f is not concentrated around its
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mean and that Ef = . Then, clearly,

(F+l) = (F 1 ) = 1/2.

An example of such a function f is depicted in Figure 6-1 below.

-1

+1

-1

-1

-+1

+1

Figure 6-1: Function f defined at the vertices as -1 or 1 such that Ef = 0.

As in the previous example, the value of f(x) changes only at the boundary

between Fl and F 1, but this boundary can be more complex than the one in the

previous example (see Figure 6-2). Moreover, by the isoperimetric result of Harper

[31], the extremal set4 of measure 1/2 is exactly the set

n

{x E { 0, 1}n x i < n/2}
i=1

i.e. Fl of the "majority" example (see Figure 6-3). For more information on extremal

sets see [47], page 31.

Hence, the boundary between two sets of vertices of measure 1/2 has measure

(1/vy). We therefore have the following theorem:

Theorem 6.2.1. If f : {0, l}n - {-1, +1} does not concentrate, then the measure

of the bad set is Q(1//n).

3Throughout this Section we assume, for simplicity, that f is zero-mean, although the proofs are
the same for any non-zero constant mean.

4A set is called extremal if it has the smallest boundary out of sets with the given measure.
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I
I
I
I

Figure 6-2: n-dimensional cube with a {-1, 1}-valued function defined on the vertices.

The dashed line is the boundary separating the set of -l's from the set of 's. The

points at the boundary are the "bad set".

Figure -3:

extremal set

The boundary is smallest when the cube is cut in the middle. The

is the set of points at most n/2-Hamming distance away from the origin.

We will now extend the above result to [-1, 1]-valued zero-mean functions on the
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binary cube. While for the binary-valued functions, the notion of a "jump" of the

function value was clear, for the [-1, 11-valued functions we need to set the scale. In

particular, we will say that the "bad set" consists of points such that a change of a

coordinate leads to a jump by more than a multiple of n- 1
/2. Let xi E {O, 1}n be the

point obtained by flipping the i-th coordinate of x E {O, 1}n.

Definition 6.2.1. Define

L
Gn(f) = {x e {0 1}n 'Vi, If(x)-f(xi)l < -}

and let the

BL(f) = {O 1 } \G n (f)

be the complement of Gn(f).

Consider the sets

Fc = uf > 0 - (X ... xn) {O 1f: i(X, mn) > }

and

F c = {f < -c} = {(Xl, ,xXn) E {O, 1}n: f(x1,xn) < -c}.

Assume that f does not concentrate around 0, i.e. ~([f[ > c) does not tend to

zero for some fixed c > 0. Define

a - sup{c > 0: 3 s.t. /(F+nc) > for infinitely many n}

and

b = sup{c > 0: 36' s.t. /(Fnc) > 6' for infinitely many n}

where 6, 6' are constants. In other words, a is the largest positive level such that there

is a constant measure of points with function values above this level. Similarly, -b

is the largest negative level. Note that it cannot happen that both of these suprema

do not exist because f is not concentrated. It also cannot happen that one of these
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levels is positive while the other supremum does not exist since Ef = 0 and f is

bounded. Thus, a > 0 and b > 0. Let c = min(a,b). By the definition, (F~_c) > d+

and (17nc) > _, where + and d_ are constants that depend on c only. Choosing

Jc = min{6+,6 _}, we obtain

/i(F+nc) > J. and /i(F2c) > c.

The set {x: -c < f(x) < c} has measure at most 1 - 2c. Consider slices of

[-c, c]:

Ct={ x: f(x)E [-c+t ,-c + (t+1) V1}

for t = 0,..., v/(2c) - 1 These are sets of points on which f takes values within aL

L/vi window. Hence, there exists an interval to such that

I - 2c L(l - 2c)
(Cto) < (2)- vf ( 2c)

L

Consider a new (binary-valued) function g: {0, 1} - {-1, 1} obtained from f as

follows:

1 if f (x) > -c + (to + 1/2) 
g(x) = NM

-1, otherwise

Consider a point x Cto. If a change of any of the coordinates of x results in a

change of the value of g, then the same change of the coordinate results in a change

of the value of f by more than L//in. Therefore, the size of the "bad set" of g is

smaller than the size of the bad set of f plus the size of Cto:

L(1 - 25c)I(B2(g)) < tt(B2(f)) + (Cto) < IL(Bn(f)) + VL-(2c)
L L ~~~~~v~n(2c)

The result then follows from the Theorem 6.2.1:

Theorem 6.2.2. Iff : {0, 1}n - [-1, +1] does not concentrate, then there exists an

absolute constant L such that the size of the bad set BL is Q(1/v'n).
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6.2.2 Symmetric Functions

In this section we give an alternate proof for the special case of symmetric functions.

Although the proof of Theorem 6.2.2 is simpler, the following provides some insight

into the geometry of symmetric functions on the binary cube.

The reasoning in this section will be as follows. Assuming that f does not concen-

trate, we will find two sets of constant measure, on which f is "large" positive and

"large" negative, respectively. Next we will show that at least half of each set has to

be within const/n Hamming distance from the main diagonal of the cube. This will

imply that Q(v/ni) flips is enough to change a point on which f is large positive into

one on which f is large and negative. In order for this to happen, one of the steps

must be large and that's what we will call a part of the "bad set". Due to the nature of

the symmetric functions on the cube, this will imply that a large portion of points is

contained in this "bad set". This establishes the connection between the concentration

of f and the size of the "bad set".

Note that the symmetric function f(xl, ...,xn) can take only n values and these

values are determined by the number of 1's in the bit-string x l, ..., xn. Let

Si = {(Xl, .. , xn) E0, 1} : Exj = i}

and note that f is constant on Si. Since f is symmetric, both F+nC and Fc are unions

of Sj's. Assuming uniform measure, t(Si) = ISil/2n. The size IS[I is exactly (),

while E= 1 ISI = 2 and Pl(Sn/2) = Q(1//n). For x {0, 1}n let IxI denote the

number of l's in x (equivalently, Hamming distance from the origin). By definition,

x E SXl1.

Theorem 6.2.3. Assume f {0, }n - [-1, 1] is symmetric. If f does not concen-

trate around its mean, there exists an absolute constant L such that the size of the

bad set BLn is at least a(1/x/-).

Proof. We define F+nc and FnC as in the previous section and recall that It(F+n) > 6~,

ji(Fnc) > 6c. First, we would like to say that at least half of the set F+nc is within
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rcj/i Hamming distance from the "main diagonal" Sn12, where r is some constant.

From Talagrand's inequality [47] it follows that

(JSi) = ({x dH(x, S) > r yv¶1 ) <erc.
i=j=n/2

So,
i U e < ) c.

({ci= {i=n/2+rc Vn }

The message of the above inequality is that most of the mass in the cube is concen-

trated around the main diagonal Sn/2. Choosing r > l,

({ U SiJ U U Si < C
(i= { i=n/2+r 

and therefore at least half of F+nC and at least half of Fnc are within rcV/ Hamming

distance from Sn/2. Denote these subsets by

H+c =F+n n{x E {,1} Ix E [n/2-rcv/, n/2 + rcv/}

and

Hc = F n {x E 1n Ix E [n/2- rc(0, n/ 2 + rn]

By the above argument, i(HSc) > I and b(Hc) > .+--2 -2'

Both H+c and Hnc are unions of Sj's and j E [n/2- rx-n, n/2 + rv/n]. Thus,

there must be two indices i, j E [n/2 - rCv/n-,n/2 + rcx/i] such that Si C H+c and

Sj C H!_c and by construction, i- j I < 2rc/Y.

Pick a point x E Si c Hnc and change i - jil coordinates to arrive at some

y E S c H-c. Thus, there exists a path of at most 2rv/- steps from x E H+c

to some y E H'c. Note that f(x) > c and f(y) < -c by definition. Therefore,

there is at least one change of a coordinate on this path which results in a jump

of the function value by at least 2c. Assume this jump occurs between some w2,--'Asuehijupocrbten sm 
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and wk on the path between x and y, i.e. If(w)- f(wk)I > r- for some k. Then

w E B . Since f is symmetric, the whole set Sl,,1l belongs to B . By construction,
rc rc

Iw E [n/2 - rc/n, n/2 + rv/i]. It then follows that (S,1,1) = Q(1/V/f) and thus

/L(Bn ) is at least Q(1/V/i). [

6.3 Concentration of Measure: Application of In-

equality of Bobkov-Ledoux

Following Bobkov and Ledoux [12], consider a probability measure on a metric

space (Z, d) and a product measure n on Zn. For g Z n - R, define

IVgI(x) = limsup g(x) - g(y) (6.5)
~_.* d(x,y)

and let IV/g[ denote the gradient with respect to the ith coordinate. We say that 

satisfies a Poincar6 inequality with constant A if, for every g such that f g2d < o

and f IVg 2d < oo,

AVar(g) < J IVgl 2d1L.

Theorem 6.3.1 (Corollary 3.2, 12]). Assume that ,u satisfies 6.5 with A > O. Then

for every bounded function g on Z" such that

n

Z IVigl2 < a2 and max IVigI < 

IL-a.e., and for every t 0

ln (> fdAn + t) < exp(-K min(,2))

where K > 0 and only depends on A > O.

For S = {Z1 ,..., Zn, let fs be an (approximate) empirical minimizer over F.

Similarly, fT is an (approximate) empirical minimizer for the set T = {Zl, ... ,Zk}.
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We will apply the concentration result of Theorem 6.3.1 to

i n

ng(Z1, -, Z)= E ,fs(zi)-i=1

To do so, we need to show that g is smooth.

Note that if S and T differ only in the ith sample,

1 5 :fs(z) -n zES

1 
n

zET
fT(z)

L
• - d(zi, zi)n

by a proof similar to that of Corollary 5.4.2. Hence,

v~~ LIigI<-.n

Now, assume p satisfies the Poincare inequality with A > 0. We now apply

Theorem 6.3.1 to the function g Z n -+ [-2, 2] with oa2 = L2 and = L. We obtainn n

IP (g > Eg + t) < exp (-K

By applying the concentration inequality to -g we can obtain the two-sided inequal-

ity:

IP(g-EgI > t) < 2exp(

Note that Eg is a constant which depends on the problem.

Theorem 6.3.2. Assume satisfies the Poincar6 inequality with A > 0 and that all

functions f E F are Lipschitz with a constant L. For any > 0 and n > K log ,

±SEfs(zi) -
i= 1

On <
KL log2

n

with probability at least 1 - 6. Here n = Esfs(z1) is a data-independent quantity

and K depends on A.

The Poincar6 condition on the measure p is fairly restrictive, as it allows such
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tight concentration of empirical errors. In particular, it follows that for independent

draws of S and T,

|fs(z)- 1 fT(Z) log 
n n ~nzES ZET

with probability at least 1 - 26. Hence, the empirical errors of empirical minimizers

over different samples are very close to each other with high probability. Such behavior

has been observed by Boucheron et al [14] (Theorem 19) and others, although under

different complexity conditions on the function class.
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Appendix A

Technical Proofs

In this appendix we derive some results presented in Section 5.3. In particular, we

prove Lemma 5.3.1, which was used in the proof of Theorem 5.3.1, and Corollary

5.3.1. Let us start with some technical Lemmas.

Lemma A.0.1. Let fo, f E F, IIfo - fill > C/2, Ifll < IlIfoll. Let h: F - R be

defined as h(f') = UVO. Then for any e < C3

C2

inf h- sup h >
B(fo,e) B(fi,e) - 16

Proof.

A := inf h- sup h
(fO,) B(fA,e)

= h(fo) - h(fl) + inf{h(f' - fo) + h(fl - f")lf' E B(fo, E), f" E B(f, E)}

> h(fo) - h(f1 ) - l]ii > h(fo) - h(f) -C

since Ilfoll > C/4.

Finally

C2

2 (fo - fix fo) = lfo - fll2 - Ilfi ll2 + llfoll2 > lfo - fill 2 >-,
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h(fo) - h(fi) C2

- 8lfo11 2 -

which proves that

C2

- 8

8e C2

C- 16-

The following Lemma is an adaptation of Lemma 2.3 of [37].

Lemma A.0.2. Let fo, fl, h be defined as in Lemma A.O.1. Suppose e < 1C8- Let v,

be a Gaussian process on F with mean p, and covariance cov(v,(f), v,(f')) = (f, f').

Then for all > 0

Pr* sup
B(fo,e)

vL- sup vI <
B(fl,e)

Proof. Define the Gaussian process Y(.) = v.(.) - h(.)v~(fo). Since

cov(Y(f'), v,,(fo)) = (f', fo) - h(f') IIfoI = ,

v,(fo) and Y(.) are independent.

We now reason conditionally with respect to Y(-). Define

Ji(z)= sup
B(fh,e)

(Y(.) + h(.)z} with i = 0,1.

Pr* I( sup v, - sup v <6 IY)
B(fo,e) B(fi,e)

= Pr* (Iro(v(fo)) - rl(vA(fo))l < 6).
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Moreover F0 and rLI are convex and

C2

inf DFo - supO+F1 > inf h - sup h >
B+-(fo, ) 3(fl,e) - 16'

by Lemma A.0.1. Then Fo = r 1 in a single point zo and

Pr* (FO(v(fO)) - r(v,(fo))l < ) < Pr* (v,(fo) E [zo - A, zo + A])

with A = 166/C2.

Furthermore,

326
Pr* (.(fo) E [z0 - A, Zo + A]) 2 2rvar(v(fo))

C2V2/2 var- v(f0o))'

and var(vu(fo)) = Ilfo12 > C2/16, which completes the proof. [

The reasoning in the proof of the next lemma goes as follows. We consider a finite

cover of F. Pick any two almost-minimizers which are far apart. They belong to two

covering balls with centers far apart. Because the two almost-minimizers belong to

these balls, the infima of the empirical risks over these two balls are close. This is

translated into the event that the suprema of the shifted empirical process over these

two balls are close. By looking at the Gaussian limit process, we are able to exploit

the covariance structure to show that the suprema of the Gaussian process over balls

with centers far apart are unlikely to be close.

Lemma 5.3.1. Consider the e-covering {fili = 1,... ,(e,F,lll)}. Such a covering

exists because .F is totally bounded in 11 11 norm [see page 89, 71]. For any f, f' E Ms

s.t. Ilf -- f'll > C, there exist k and 1 such that f - fkl < e < C/4, If'- fill < e <

C/4. By triangle inequality it follows that fk - fill > C/2.

Moreover

inf P inf P < Pf < inf P, +
B(fk.,)
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and

inf P < inf P. < Pf' < inf Pn + .
: B(fl,E) :

Therefore,

inf P,
B(fk,e)

- inf P < .
B(fj,c)

The last relation can be restated in terms of the empirical process v.:

sup {-v - Vn-P} - sup {-v - v/n-P} < N V< J.
B(fk ,e) B(f ,,f)

Now,

Pr* (diamM > C) = Pr* (3f, f

s.t. Ifk - fill > C/2, sup {-Vn
B(fk,e)

- vfP} - sup -vn -
B(fz,e)

,qFP} < )

By union bound

Pr* diamM > )

JNO'('11'11)

< E Pr*
k,l=1

1.fk-fL ll>C/2

( sup {-v - Vn-P}
B(fk,e)

We now want to bound the terms in the sum above. Assuming without loss of

generality that fkIl > Ilfill, we obtain

Pr* ( sup {-vn -
B(fk,)

V/nP}- sup {-vn-
B(f ,e)

4P} < )

= Pr*( sup {-vn-x P}- - sup {-v- -P} <•6)
B(fk,e) B(f/,,)

= Pr* ( sup {-v'- V/-P + '- vn}- sup {-v'- /n
B(fk,,e) B(fh,e) <6)
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K Pr* sup -v' - v-P}- sup {-v' - VnP} < 2)
,l3 (fk,c) B(fl,c)

+ Pr* (sup I'v - v'I > 6/2)

<1 286 
<~ +Pr* (sup lv' - v'I >6 /2),

where the first inequality results from a union bound argument while the second

one results from Lemma A.0.2 noticing that -' - v-P is a Gaussian process with

covariance (f, f') and mean -/-\P, and since by construction e < C 3/128.

Finally, the claimed result follows from the two last relations. [

We now prove, Corollary 5.3.1, the extension of Theorem 5.3.1 to L2 diameters.

The proof relies on the observation that a P-Donsker class is also Glivenko-Cantelli.

Corollary 5.3.1. Note that

lf _- fIIL2 = lf _ f112 + ((f - f)) 2

The expected errors of almost-minimizers over a Glivenko-Cantelli (and therefore

over Donsker) class are close because empirical averages uniformly converge to the

expectations.

Pr* (3f , f'E M (n) s.t. If - f' L2 > C)

< Pr* (3f, f'E M s.t. IPf - Pf' > C/V') + Pr* (diamM(") > C/X2 ).

The first term can be bounded as

Pr* (f, f' E 4 ) s.t. Pf- Pf'I > C/v'2)

< Pr* (3f, f E F, Pnf - Pnf' < (n), Pf - Pf'I > C/X/)

< Pr* ( sup (P - P)(f - f') > IC/ vo- - s(n)d
f,f'E.'

which goes to 0 because the class {f- f'If, f' E F} is Glivenko-Cantelli. The second
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term goes to 0 by Theorem 5.3.1.

We now report the proof of Theorem 5.6.1 stated in Section 5.6. We first need to

derive a preliminary lemma.

Lemma A.0.3. Let F be P-Donsker class with envelope function G 1. Assume

AJ(-y, F) = supQK(, , L(Q)) < oo for 0 < y < 1 and Q ranging over all discrete

probability measures. Let M(n) be defined as above with (n) = o(n - 1/2) and assume

that for some sequence of positive numbers A(n) - o(n/ 2 )

A(n) sup PIf-f'I P 0. (A.1)
f,'EM (n)

Suppose further that for some 1/2 < p < 1

\(n)2- - logK(Xn-/2A(n)P-1,F) - +oo. (A.2)
2

Then

Pr* Vr+/isup IP(f - f') < / (n) + 131A(n)P- l 0.
,FEMs(n)

Proof. Define g = {f- f' f, f' E F} and g' = {If- f'l f, f' E F}. By Example

2.10.7 of [71], g = (F) + (-F) and G' = GI C ( A 0) V (-G A 0) are Donsker as

well. Moreover, Af(2y, 5) < A(y, F)2 and the envelope of g is G 2. Applying

Proposition 5.6.1 to the class G, we obtain

Ptr( sup [P -f' ~-'l > 26) < 3$(7/2,p) ~
2exp(-nE7).

ff'E.F E(PnIf - f'A + PIf - f'l) + 5, > 32(y/2, 

The inequality therefore holds if the sup is taken over a smaller (random) subclass

M/(n ).

Pr* ( sup IP(f - f') -I(n) + 5 > 26) < 32JA(y/2, F)2 exp(-ney).f,.EMCs (n) (PnIf - f'l + PIf - f'I) + 5y
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Since SUp. A > SUPx A(x) _ supx A(x)B(x) - supx B(x) - supx B(x)'

Pr*( sup (IP(f
f,,f'eMjn)

-f')l - (n)) > 26 sup (e(Pnjf - f + P f - f') + 5)),,(n)f,f'eMe~n

(A.3)

< 32J1(-y/2, F)2 exp(-ne-y).

By assumption,

A(n) sup
f,f'EM ( n)

PIf -f'IP r 0.

Because g' is Donsker and A(n) = o(nl/2),

A(n) sup JPnIf-f'l-PIf-f'Il )0.
f,f'eM (n )

Thus,

A(n) sup Pnlf - f'I + Pjf - f'I P* 0.

Letting = (n) := n-1/ 2A(n)P, this implies that for any > 0, there exist N3

such that for all n > Ns,

Pr* sup 26e(n) (PnIf - f' + Plf - f'l) > A(n)P- 1)
'EM(n)

< .

Now, choose - = -y(n) := n-l/ 2A(n)P- 1 (note that since p < 1, eventually 0 <

-y(n) < 1), the last inequality can be rewritten in the following form

Pr* (-v/- sup 26 ((n) (PnIf - f + Pif-f'l) + 5(n)) > 131A(n)p-) < 6.
fj'EM >(n)
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Combining the relation above with Eqn. A.3,

Pr*(v/in sup P(f - f') < V'-(n) + 131A(n)P- l)

f,fEM (n )

> 1 - 32A (n-1/2A(n)P-1, )exp(-A(n)2P) - .

The result follows by the assumption on the entropy and by arbitrariness of 6.

We are now ready to prove Theorem 5.6.1.

Theorem 5.6.1. By Corollary 5.5.1,

n'diamMI ) P 0

for any y < min (3(21 min(a, 7), 1/2). Let A(n) = n and note that A(n)= o(v/-),

which is a condition in Lemma A.0.3. First, we show that a power decay of the 1

diameter implies the same rate of decay of the L1 diameter, hence verifying condition

(A.1) in Lemma A.0.3. Proof of this fact is very similar to the proof of Corollary

5.3.1, except that C is replaced by CA(n) - 1.

Pr* (3f, f' E M s.t. Ilf- f'IL 2 > CA(n) -

< Pr* (3f, f' g ) s.t. IPf - Pf' > CA(n)l/x )

+ Pr* (diamM(n) > CA(n)-l/,/)

The second term goes to zero since )A(n)diamM(n ) P 0. Moreover, since A(n) =
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o(v/-) and g is Donsker, the first term can be bounded as

Pr* (3f, f' E ) s.t. Pf - Pf' > CA(n)-l/v5 )

• Pr* (3f, f E F, IPnf - Pnf'l < ((n), IPf - Pf'I > CA(n)-l/V )

< Pr* (sup IP(f - f') - Pn(f - f) > C (n)-1 - l(n)

Pr* (A(n)sup Pg - Pn9l > - ()A(n)(n) -* 0,

proving condition (A.1) in Lemma A.0.3.

We now verify condition (A.2) in Lemma A.0.3. Since F is a VC-subgraph class of

dimension V, its entropy numbers log A(e, F) behave like Vlog A (A is a constant),

that is

logK n- A(n)P-1 ) < const + -V logn + ( - p)Vlog (n).
2

Condition (A.2) of Lemma A.0.3 will therefore hold whenever A(n) grows faster than

(log n) T,-1 for any 1 > p > . In our problem, A(n) grows polynomially, so condition

(A.2) is satisfied for any fixed 1 > p > 1/2.

Hence, by Lemma A.0.3

Pr* (v/- sup
f ,f'EM( n)

IP(f- f')l < v\/(n) + 131nY(P- 1)) - 0.

Choose any 0 < n < /2 and multiply both sides of the inequality by n' . We obtain

Pr* (n'V sup ]P(f - f')l < /n(n)n + 131n(P-1)+K)
f,f'eM (n)

0. (A.4)

Now fix a p such that 1/2 < p < 1- ,/-y. Because 0 < n < 7y/2, there is always such

a choice of p. Furthermore, 1 > p > 1/2 so that the above convergence holds. Our

choice of p implies that 'y(p - 1) + n < 0 and so n (P -1) + - 0. Since c < 'y/2 < ,
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V-(n)n' ---- O. Hence,

n s/ 2+ " sup IP(f- f')I 0
ff'EMc(n)

for any K < min (62+1 min(a,?), 1/2)
(6mi(2V , ~,1/2
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