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Abstract
The Scott rank of a countable structure A, denoted sr(A), was observed by Nadel
to be at most wA + 1, where wA4 is the least ordinal not recursive in A. Let T be
weakly scattered and L(a,T) be E2-admissible. We give a sufficient condition, the
Be-hypothesis, under which T has model A with wA = a and sr(A) = a + 1. Given
the B,-hypothesis, an iterated forcing argument is used to obtain a generic T a D T
such that Th has a model with the desired properties.
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Chapter 1

Introduction

Robert Vaught, in a 1961 paper, conjectured that a countable complete theory has,

up to isomorphism, either a countable number of countable models or size continuum

many. Though Knight [5] has proposed a counterexample, Vaught's Conjecture re-

mains open as of this writing. Among the large body of work that grew out of the

conjecture is the study of Scott rank in relation to weakly scattered theories. In this

dissertation, we give a sufficient condition for a weakly scattered theory to have a

model whose Scott rank is the highest possible.

The concept of a scattered theory was introduced by Morley [8]. In his paper,

the first major breakthrough on Vaught's Conjecture, Morley showed that if T has

fewer than 2 many countable models, then T is scattered. It follows that if T is

a counterexample to Vaught's Conjecture, then T is scattered. The focus of this

work is on weakly scattered theories-theories that satisfy a generalized notion of

scatteredness.

Morley's proof makes use of the Scott analysis of a countable structure. Associated

with the Scott analysis is the Scott rank of a structure. An ordinal invariant, Scott

rank measures the model theoretic complexity of a model A. Nadel [9] observed that

the Scott rank of A can be as high as wA'4 + 1, where wA is the least ordinal not

recursive in A.

A previous result, from Sacks [11], on weakly scattered theories and models with

high Scott rank is that a weakly scattered T has a model A of Scott rank wlA + 1, if
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T satisfies the effective k-splitting hypothesis. This was later improved by Goddard

[3] who removed the assumption of the predecessor property from the k-splitting

hypothesis.

Using a finite support iteration of forcing notions, we show that a weakly scattered

T has a model A of Scott rank wA + 1 if what we call the B~,-hypothesis holds for

T. Working in a E2-admissible L(a, T) 1 , generic theories extending T are obtained

via forcing and the Be-hypothesis, which says that it is consistent that the generic

theories have models with arbitrarily high Scott rank, allows the iteration to work.

Preliminaries are covered in Chapter 1. We briefly discuss infinitary logic and ad-

missible sets which are necessary for the definitions of Scott rank and scattered theo-

ries. In Chapter 2, we describe the forcing notions used and state the B0-hypothesis.

The main result is proved in Chapter 3. The terminology and definitions used in this

work matches those in Barwise [1], Keisler [4] and Sacks [11] unless otherwise noted.

1.1 Admissible Sets

Admissible sets were introduced by Kripke [6] and Platek [10] as a general setting for

recursion theory.

Definition 1.1. KP, the Kripke-Platek axiom system, is the theory over the language

{E,... } axiomatized by the universal closures of the following:

Extensionality: Vx(x E a - x E b) - a b;

Foundation: 3xp(x) -+ 3x[p(x) A Vy e x -p(y)] for all formulas (x) in which y does

not occur free;

Pairing: 3a(x E a A y e a);

Union: 3bVy E aVx E y(x E b);

Ao-separation: 3b Vx(x E b ÷- x E a A p(x)) for all A0 formulas in which b does not

occur free;

L(a, T) is G6del's L relativized to T and cut off at a.
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Ao-bounding: Vx E a 3y (x, y) - 3b Vx E a3y E b o(x, y) for all A0 formulas in which

b does not occur free.

An admissible (or El-admissible) set is a transitive set A that is a model of KP.

It can be derived from the above definition that admissible sets also satisfy Al-

separation, El-bounding and 1El-recursion.

Theorem 1.2. (l-recursion) Let A be admissible and G(,) be a function such that

for all a, b E A, G(a, b) A and GJA is E on A. Let tc(x) denote the transitive

closure of x. Suppose F is a function with domain A which is defined recursively by

F(x) = G(x, Fltc(x)) all x E A.

Then F is A1 on A and F maps A into A.

The smallest admissible set is R(w), the hereditarily finite sets. An ordinal a is

admissible if L(a), the set of all sets constructible before a, is admissible. We say A

is En-admissible if A satisfies En-replacement.

1.2 Infinitary Logic

Infinitary logic, C, for infinite cardinals a, 3, is an extension of first order logic that

allows conjunctions and disjunctions of a set with fewer than a formulas and universal

and existential quantification on a set with fewer than /3 variables. We focus on £~,w

which allows countable disjunctions and conjunctions but only finite quantifiers. If

£ is a first order language, then £,W has the same symbols as £ but in W1,W, the

conjunction and disjunction symbols may be applied to countable sets of formulas.

(The symbol £W1,W will denote both the logic and the language.)

Two basic results for first order logic, Compactness and Upward Lowenheim-

Skolem fail for C l,. For example, let co,c 1 ,...,c be constants and consider E,

the set of sentences

VX V (X = Cn), Cw 4 co, CO 74 l . ...

n<w
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Every finite subset of E has a model but E has no model, and Vx V~<(x = c) has

no uncountable model. Because of this and also because L1, has uncountable many

formulas, well behaved countable subsets of LW,W are considered instead. Fragments

are an approximation to those well-behaved subsets.

Definition 1.3. Let £ be a language. A fragment of ~,4 is a set £' of infinitary

formulas and variables such that

1. every finite formula of ,,,, is in L',

2. if o E L', then every subformula and variable of W is in £',

3. if T(v) E L', and t is a term of £ all of whose variables lie in L' then W(t/v)

is in £' ((t/v) is the expression obtained by replacing the variable v with the

term t wherever v occurs free), and

4. if , , v are in £' so are

-ep, 3vp, Vvp, , V , p A4.

If A is admissible, then LA = L, n A is called an admissible fragment of L£,~.

Theorem 1.4. (Barwise Compactness Theorem) Let LA be a countable admissible

fragment of £ ,,. Let T be a set of sentences of LA which is E1 on A. If every

To C T which is an element of A has a model, then T has a model.

The Barwise Compactness Theorem and the Barwise Completeness Theorem (not

stated here) show that admissible fragments have properties similar to ones of ordi-

nary first-order logic.

Theorem 1.5. (Omitting Types Theorem) Let £' be a countable fragment of L£,,

and let T be a set of sentences of £' which has a model. For each n, let n be a set

of formulas of L' with free variables among v, ... , Vkn. Assume that for each n and

each formula b(v1,..., vkn) of L': if

T U {3V1, . . ,Vkn} has a model, so does
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T U {3V1 ... Vk,,l A p} for some (V,.., Vk~) E $n.

Given this hypothesis, there is a model M of T such that for each n < 

M =Vvl, .,v kn V ~(Vl, .Vkn)

With the Omitting Types Theorem, one can construct models that "omit" ele-

ments not satisfying certain infinite disjunctions. As in the following theorem, we use

the Omitting Types Theorem to obtain models that omit an admissible ordinal. The

proof is a variation of one found in Keisler [4].

Theorem 1.6. ("Effective" Type Omitting) Let a > w be a countable admissible

ordinal and let A = L(a). Let Z be the following set of LA sentences:

1. The atomic diagram of L(a), where c is a constant symbol for each ordinal

/ < a.

2. The axioms of El-admissibility.

Then Z has a model that is a proper end extension of L(a) but omits a.

Proof. Let S C a be E but not A on A and let e(x) be the following set of formulas:

Vy(y E x y is an ordinal),

cpE x for each /3 E S,

c,3 E x for each 3 E a - S.

We will use the Omitting Types Theorem to get a model of Z that omits S, ie.,

a model of Z U {-,3x A E)}.
Suppose '(x) E A and Z U {3x 4(x)} has a model. Let F be the set of formulas

W(x) such that Z t +(x) -- p(x). Then F is E on A.

Assume that e C F. Then as F is consistent the sets

s = {,3 < a I(c e x) e r},
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a - S = { < a (-,C, E X) E r}

are both E on A, which is a contradiction as S is not A on A.

Let 0 E e - F. Then Z U {3x(+(x) A -(x))} has a model and by the Omitting

Types Theorem, Z has a model M in which Vx VOEe -, equivalent to -3x A e,
holds and hence omits S.

Now we show that M omits a. Suppose not and that a E M. Let (x) be a

E-definition of S in A

S= {1 < a I M = A(c)}.

By Ao-separation in M, there is an s E M such that

M Vy(y E s aA(y)).

Now we have

M c E s for ,3 E S,

M = -cp E s for E a - S

which contradicts S having been omitted in M.

[]

Let L' be a countable fragment of C,a, and T C £' a set of sentences.

Definition 1.7. T is w-complete in £ if

1. for every sentence p e L', either W E T or (-o) E T, and

2. for any sentence of the form Vi<, i in T, there is an i such that Wi E T.

Definition 1.8. T is finitarily consistent if no contradiction can be derived from T

using only the finitary rules of ,~. We avoid the infinitary step that derives an

infinite conjunction by deriving each of its components. A theory T is w-consistent

if for any sentence V<~ Wi E C', if T U {Vi<~ Mp} is finitarily consistent, then there

is an i such that T U {Ji} is finitarily consistent.
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Proposition 1.9. If T is finitarily consistent and w-complete, then T has a model.

Proof. Note that T is w-consistent. The construction is similar to a Henkin construc-

tion. We first extend £' to £Lo by adding a sequence {ci i < w of constants not

occurring in T. Let {oi(x) I i < w} be an enumeration of formulas (of the extended

language Lo) with at most one free variable x. We construct an increasing sequence

{T/ i < w} of w-consistent sets of sentences that include Henkin axioms.

Let To = T. Suppose that Ti has been constructed such that T/ is w-consistent.

Case 1: x is a free variable of Wi(x). Choose k not appearing in Wi(x) nor in Ti. Let

Ti = T U {3xfi(x) (Ck)}-

Case 2: i is a sentence.

Case 2a: Epi is not of the form Vj Oj. If Tj U {pi} is finitarily consistent, Tj+ =

T/ U {ij}; otherwise, Ti+l = Tu{-i}.

Case 2b: (o is of the form Vj %. If Tj U {'pj} is not finitarily consistent, let

T+ = T/ U {-Pi}. Otherwise, T/ U {Vj j} is finitarily consistent. Since

T/ is w-consistent, there exists j such that T/ U {(j} is consistent. Let

Ti+1 =Ti U{ wi,}

Let T, = U{Tj I i < w}.

A model A of T can be constructed from T,. The members of A are equivalence

classes of constant terms occurring in T,. [

Proposition 1.10. Suppose for all 3 < y < A, T is finitarily consistent and w-

complete in the fragment £L3, T C T, and £X3 c £L. Then U{T3 1 /3 < A} is

finitarily consistent and w-complete in the fragment U{£ I 3 < A}.
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1.3 Scott Analysis

Scott [12] showed that for any countable model A for a language £, there is a sentence

so of Lw,w (the Scott sentence) that characterizes A up to isomorphism, that is

A and B I= W = A B.

The canonical Scott sentence o is constructed by an inductive procedure that termi-

nates at a countable ordinal sr(A).

Definition 1.11. The Scott rank of a model A, denoted sr(A), is defined via a

El-recursion.

* LA = L.·

T = complete theory of A in LA.

* LA+1 = least fragment L' of L,w such that L' D LA, and for each n > 0,6+1 ~~~~~~~~~~~~~~~~6'

if p(±) is a non-principal n-type of TA realized in A, then the conjunction

A{ o() I so(±) E p(±)} is a member of L'.

* = U{2 I < A} for A limit.

The Scott rank of A is the least ordinal a such that A is the atomic model of T~,

and the Scott sentence is the one that asserts A is the atomic model of T~.

Note that sr(A) is also the least a such that LA = Aa £a+ 1.

Proposition 1.12. If A is countable, then sr(A) exists and is a countable ordinal.

Proof. Suppose L+~ 6 £+2. We show that there are two n-tuples of A that are

equivalent with respect to all LA formulas but inequivalent with respect to a A+

formula. If L+~ 6 £+2, there must exist a non-principal type p(±) of TA6+ realized

in A. Since p(±) is non-principal, there is a formula b() of LA such that

3x[p(t) A +(x)] and 3x[p(x) A -b()]
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are both in TA+1. Then there are tuples, b, such that

A = p(b) A +(b) and A = p(E) A -b(E).

Hence b, are distinguished by an LA+I formula.

Since A is countable, there can be at most countable distinctions made and sr(A)

exists and is countable. [

Theorem 1.13. (Nadel [9]) A is a homogeneous model of TA , the complete theory

of A in C,,w, n L(wA, A).

Proof. Suppose a and b realize the same type n-type p(x) over TAA. Let q(±, y) D p(±)
Wi

be a n + 1-type of TAA such that
Wi

A = p(a) A p(b) A By q(a, y).

To establish the homogeneity of A, we must show there exists a c E A such that

A = q(b, c). Suppose no such c exists. Let qb(x, y) be the restriction of q(±, y) to £A.
A}$s L(WA,.)

Then the set {q(x, y) 6 <w l} is A. For each c e A, there is a 6 < w such

that -'q6(b, c) and 6 can be defined as a EL(WA) function of c. By the El-admissibility

of L(wj4, A), there is a 6 < A such that A = Vy-'q6. (b, y). As ,b realize the

same n-type, this implies that A = Vy-iq6o (a,y) and we get A - Vy-'q(a,y), a

contradiction.

[]

Let dA be the least ordinal < w such that every distinction ever made between

n-tuples (for all n > 1) is made by a A formula. Then A is the atomic model of

TdA+l. By Theorem 1.13, dA < wl" and we have the following corollary.

Corollary 1.14. sr(A) < ± 1.
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1.4 Scattered Theories

If for some countable fragment Sn(T), the set of complete n-types of T, has cardinality

2w, then T has 2 many countable models because each countable model can realize

at most a countable number of types. Scattered theories, on the other hand, have as

few types as possible over all countable fragments.

Definition 1.15. Let be a countable first order language and Lo a countable

fragment of ,w extending £. Let T C £0 be a complete theory and T' a complete

theory in £L' extending T. Then T is scattered if

1. for all n > 0 and all T' D T, Sn(T') is countable, and

2. for all £', the set {T' T' C L'} is countable.

A theory T is weakly scattered if only (1) holds.

While a scattered theory can have at most w1 many countable models, a weakly

scattered theory can have up to 2 many such models.
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Chapter 2

Notions of Forcing

Given a weakly scattered theory T satisfying the Ba-hypothesis and L(a, T) 2-

admissible, we use an a-stage iteration with finite support to obtain T a , an extension

of T, with a model A4 such that wA = a and sr(A) = wA4 + 1. In this chapter, we

describe the forcing notions used and state the B,-hypothesis. We also show that the

iteration preserves E2-admissibility.

2.1 Raw Hierarchy

Before the notions of forcing can be described, the raw hierarchy of a weakly scattered

theory needs to be introduced. Let T be a complete theory over £0, a countable

fragment of Lw,,w.

When T is scattered, it is possible to give a El enumeration of the models of T

(Sacks [11]). A tree can be constructed in L(wl,T) with height at most wl and with

at most countably many nodes on each level. Each node is a finitarily consistent and

w-complete theory in a fragment T, with T C T' and C T'. The countable

models of T are exactly the atomic models of the nodes.

Because a weakly scattered theory can have up to 2 many models, it may not be

possible to enumerate in L(wl, T) all the theories whose atomic models are exactly

the countable models of T. Still, it is possible to arrange the countable models of T

in a tree hierarchy.

15



For notational purposes, define

{ -1 if 6 is a successor,

6 if 6 is not a successor (i.e., 0 or a limit ordinal).

Definition 2.1. Let T be a weakly scattered theory in C, a countable fragment of

£W, for some first order language £. The raw hierarchy of T, denoted RTH(T), is

defined as follows:

Level 0: Every To D T that is a finitarily consistent, w-complete theory of o is a

node on level 0. Define CO(T0 -) to be £0.

Level 6 + 1: Assume T extends a unique theory T6_ on level - and £6 (T 6_) is

countable. If all n-types (for n > 0) are principal, then £6+1(T6) is undefined

and T has no extensions on level + 1. Otherwise, let L+ (T6) be the least

fragment of £, extending L 6(T 6_) and having as a member the conjunction

A{(x) I p() e p(x)} for every non-principal n-type p(±) (n > 1) of Ti.

T6 +l is on level + 1 of R7H(T) if T6 +l is a finitarily consistent, w-complete

theory of C6+1(T6 ) extending T6 .

Level A limit: T is on level A if there is a sequence (T6 I 6 < A) such that:

1. T is on level 6,

2. T C T if ,3 < 6 < A,

3. T = U{T 6 I 16 < A}.

Define £A(TA) to be U{C(T 6_) I 6 < A}.

A is a countable model of T if and only if A is the atomic model of T6 for some

6. The raw tree rank of a model A is defined as

rtr(A) = least [A is the atomic model of T6].

16



An analysis of a model A can be done with respect to the raw hierarchy of T.

This analysis is very similar the Scott analysis of A.

* T(O, A) = theory of A in Lo and T(O,A) = 4O. Contrast T(O,A) = LO with

A = £ in the definition of Scott rank (Definition 1.11).

* T(6+1,A)= least fragment of C,, extending T(6,A) and containing the con-

junction A{T(x) I T(x) e p(X)} for every non-principal n-type p(x) (n > 1) of

T(J, A).

* T(6 + 1, A) = theory of A in T(6+1,A)

* T(A, A) = u{T(o, A) I m < A}

* T(A,A) = U{£T(,A) I < }.

The following relationships between rtr(A) and sr(A) were established by Sacks

in [11].

Proposition 2.2. rtr(A) < sr(A).

Proof. The proposition follows if we show A is the atomic model of T(sr(A),A).

The fragment LA and theory TA were defined in Definition 1.11. By induction on 6,
£ C T(6,A) and, consequently, T(A) C T(sr(A), A). By definition, A is the atomic

6 - s~~~~~~Tr(A) C

model of T~(A) and, hence, a homogeneous model of TA(A). A is also a homogeneous

model of T(sr(A), A). If T is an atom of T8(A), then T is an atom of T(sr(A), A).

It follows that A is an atomic model of T(sr(A), A). C

Proposition 2.3. If L(a, (T, A)) is El-admissible, then rtr(A) <a - sr(A) < a.

Proof. For each < a < 1 , T(6,A) and T(6, A) are in L(a, (T, A)). Suppose the

proposition fails and that rtr(A) < a and sr(A) > a. Then the set D of all distinc-

tions between n-tuples of A made by formulas of £T(rtr(A),A) belongs in L(a, (T, A)).

Let f be the map that carries each distinction d D to the least such that d is

made by some formula of £A. Then f is an unbounded EL(a,(TA)) map of D into a,
which violates the ~-admissibility of L(O, (T,.4)). O

which violates the El-admissibility of L(a, (T, A)). El
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By Proposition 2.2, if T has an extension on level a of its raw hierarchy, then T

has a model with Scott rank at least a.

The set of sentences B is designed so that every model of Ba constitutes a node

on level a of RT-(T). The axioms of Ba are:

1. T C To and To is a finitarily consistent, w-complete theory of Lo.

2. For all 5 < a, T6 has a non-principal n-type for some n.

3. For all < a, T6 C T6+1 and T6+1 is a finitarily consistent, w-complete theory

of £6 +1 (T).

4. For all limit ordinals A, TA = U{T6I5 < A} and £A(T) = U{£C6(T6_) I 6 < A}.

It is possible to construct £6 (T6_) from T6_ via an ordinal defined by a L(aT)

recursion on < a ([11, Section 8]). Because of this, Ba is L(,T)

2.2 Initial Stage

2.2.1 Set Forcing

We give a streamlined review of some forcing terminology. The definitions matches

those in Baumgartner [2] and Kunen [7].

Definition 2.4. Let (P, <) be a partial ordering. (P, <) is called a notion of forcing

and the elements of P are forcing conditions. If p, q E P, then p extends q or p is

stronger than q if p < q. Two forcing conditions p and q are compatible if there exists

r E P such that r < p, q; and otherwise they are incompatible. The maximum element

of Pisdenotedby 1. Aset D C P is dense inP if VpE P 3q E D q <p.

Forcing is always considered to be taking place over V, the universe of all sets, or

some transitive model M.

Definition 2.5. A set G C P is P-generic over a class M if

1. Vp,q E G3r E Gr<p,q;

18



2. VpE GVq E P ifp < q then q EG;and

3. ifDEMand D isdensein P then GD $0.

A name is a set xi E M consisting of pairs (,p) where is a name and p E P.

If G is generic, let M[G] denote the generic extension. M[G] = G I is a name}

where G = {y (y,p) E x,p E G}.

The forcing language consists of E plus constant symbols x for all names x in M.

If ~(x1... ,x) is a sentence of the forcing language then M[G] t ~p if (O is true in

M[G] when xi is interpreted as iIG.

Definition 2.6. We define the (strong) forcing relation IF between p E P and sen-

tences p of the forcing language as follows:

1. p y if and only if for some q > p and for some , (, q) E and p IF x = z.

2. p F x ~ y if and only if for some q > p and some z, either (, q) E and

p IF o y, or (, q) y andpl -F .

3. p IF - if and only if Vq < p it is not the case that q IF- p.

4. p IF -o A if and only if p IF and p I-F .

5. p I- 3x(x) if and only if p IF- p(/) for some y.

If p IF p, we say that p forces 9p. The symbol IFp denotes forcing with respect to

P and IF-p p means that for all p E P p IF-p p (or 1 IF-p p).

Proofs of the following lemmas can be found in Kunen [7].

Lemma 2.7. (Extension) If p IF- p and q < p, then q IF- p.

Lemma 2.8. (Definability) For any formula p(xl,. . , x,), the set

{ (p, b1,e oXn) p F 9(X · .. Xn) )

is definable over M.
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Lemma 2.9. (Truth) For all P-generic filters G C P,

M[G] so 3p E Gp I-F A.

2.2.2 Tree of Sentences

Let Lo be a countable fragment of £L,W for some countable first order language

L such that T C L0 is a theory with a model. Suppose T is consistent with B,.

We approximate a theory on level 0 of lZl(T) by augmenting T with finite sets of

sentences. The sentences are arranged in a tree 'o, shown in Figure 2-1. We now

describe the construction of F0 .

As Lo is countable, enumerate its sentences as 5oo, s°1,..., ,o .... The initial node

of Fo is T (i.e., all sentences of T). There are two branches extending from the initial

nodes, and on the first level there are two nodes, one for each of o90 and -'00. At each

step of the construction, we add branches for a sentence and its negation. Extra care

is taken in the 2s + 1 step if o = Vi<~ Pi.

2s step: Take the next sentence soj in the enumeration and, at every terminal node,

add branches for soj and -ypj.

2s + 1 step: If the oj used at the 2s-step is of the form Vi<~ Pij, then, at each positive

soj node, add an infinite number of branches, one for each Pi. The -oj nodes

are left untouched.

A node p on the tree can be thought of as the set of the sentences along the finite

path from the initial node to p.

. L(ca,T)Proposition 2.10. The relation ' is consistent with B" is iL(T) 

Proof. The predicate "P is a deduction from BU{p} of o" is defined by a El-recursion
AL(,'T) So

and is A(T) SO

3P[P is a deduction from B0 U {p} of o]

is L(a,T)is El1
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9 91 991 -91\/ \/
(Po 'o

T

Figure 2-1: ro when oj = Vi<~ Oi

The relation "p is consistent with B0" holds if and only if

-,3P[P is a deduction from B U {p} of (I A -)]

E]

The notion of forcing is the collection Qo of nodes on o consistent with B0, along

with the partial ordering q < p if and only if p C q. The maximal element in the

ordering is the initial node of Fo. If L(a, T) is E2-admissible, then Qo E L(a, T) by

A2-separation.

Proposition 2.11. For every sentence p E £o the set D = p E Qo I O E p or -(p 

p} is dense in Qo.

Proof. Qo is non-empty because T is consistent with B, by supposition. If p E Qo

and p is on level a of o, then p can be extended to a node p' on level + 1 such

that p E Qo. From p there are either branches for X9, -so for some Lo0 -sentence s or

branches for 4)i (i < w), if the sentence associated with p is of the form Vi<,W Oi. Since

p is consistent with B0, p can be extended by one of so or -o or some Hi and remain

consistent with B.
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Fix (, and let q E Qo. Then q can be extended to a node p consistent with B,,

such that either O E p or - E p. D

If T is consistent with B, then a Qo-generic will be a path through the tree by

Proposition 2.11 and will be w-complete by step 2s + 1 of the tree construction. Let

T1 be a Qo-generic and let L(ct, T, T') denote the generic extension of L(a, T) by T1 .

2.3 Iteration

In Section 2.2.2, we described how to obtain a generic theory on level 0 of R7-(T). By

an iterated forcing argument, this process is repeated to get theories on levels 6 < a.

2.3.1 Iterated Forcing

It is possible to express the generic extension of a generic extension as a single generic

extension. Suppose P is a partial ordering and 1kp Q is a partial ordering. Let

P * Q {(p, ) P E P and Ip q E Q}. (P1, ql) < (P2, q2) if and only if P1 < P2 and

Pi IF q < 2. Then forcing with P * Q is the same as forcing with P and then with

Q. This can be extended to an a-stage iteration. We will use a as an abbreviation

for IkpH.

Definition 2.12. Let a > 1. A partial ordering P< is an a-stage iteration if Pa, is a

set of a-sequences satisfying the following conditions:

1. If = 1, then there is a partial ordering Qo such that p P if and only

p(O) E Qo and p < q if and only p(0) < q(0). So P1 QO0.

2. If ca 3 + 1, /3 > 1, then Po = {p/3 : p P} is a 3-stage iteration and

there is Q3 such that IF- Q3 is a partial ordering; and p E P if and only if

pl E P and I-f, p(/3) Q. Moreover, p < q if and only if p/3 < q/3 and

pj/3 IF p(/3) < q(3). Thus P, v eP * Q .

3. If a is a limit ordinal, then V/3 < a P = {pl/3 : p E P,} is a /3-stage iteration,

and
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(a) i c P~, where i(y) i for all y < a (recall that i is the maximal element

of Q~).

(b) if < , p E P,, q Po and q < pl3, then r E P, where r3 = q and

r(y) = p(y) for A < y < o.

(c) for all p, q e Pa, p < q if and only if for all /3 < , p < q .

At limit stages A, PA is not uniquely determined. The types of limits taken needs

to be specified. We say that Pa is the direct limit of (P : 3 < a) if p E FP if and

only if there is some 3 < a such that p I3 e 1P and V7y(/3 < y < a => p(y) = i).

If p E Px, the support of p is defined by support(p) = {/3 < A: p(/) $ i}.

2.3.2 -stage Iteration

We now use an a-stage iteration with finite support to get a theory T' on level a of

Z'H(T). As before, L0 is a countable fragment of £L, and T C Lo.

We define Qa by induction on . Suppose T is consistent with B,. When = 0,

Q0 - P1 is the notion of forcing described in Section 2.2.2.

Let T be a Pa-generic and let Ba,T6 be the set of sentences whose axioms are:

1. T = T6 and L6(T6_) is a countable fragment of L,, such that T6 C L6(T6_).

2. For all ~ such that 6 < < a, To has a non-principal n-type for some n.

3. For all ~ such that < < ce, T C Tg+1 and Tg+1 is a finitarily consistent,

w-complete theory of L+i(Tg), the least fragment of £L, extending LQ(T_)

containing the conjunction A{(p() (t) E p(i)} for every non-principal n-type

p(x) of T~ (n > 1).

4. T = U{T I 6 < < A} and £LA(TA) = U{£(T~_) | 6 < A}, for all limit

ordinals A such that < < ca.

The sentences of B.,Ta say that T a has models of arbitrarily high rank.
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Now suppose that T is consistent with Ba,T6, that is

1f- "T3 is consistent with Ba,Tb";

and that the language £ is such that

IF3 "C is the least fragment of £,,,, extending the language of T5 and having as a

member A{f( I 7(t) e p(t)} for every non-principal type p(t) of T6".

In L(ca, T, T), construct Fs, a tree of La sentences. The construction of F is

nearly identical to the construction of Fo save for the initial node and the sentences

that are used at each step.

Enumerate the sentences of £ as o, 71, ... , 7n, ... The initial node of F3 is T.

On the first level, there are two nodes, one for 90 and one for y;0. At each step of

the construction, we add branches for a sentence and its negation.

2s step: Take the next sentence 79j in the enumeration and, at every terminal node,

add branches for 79j and -j.

2s + 1 step: If the 79j used at the 2s-step is of the form Vi<, ij, then at each positive

pj node, add an infinite number of branches, one for each Hi. The -j nodes

are untouched.

Let Q5 be the collection of nodes on Fr that are consistent with Ba,T6 along with

the ordering q < p if and only if p C q. The maximal element is the initial node of

F1. Let Q be a Pa-name for Q5 and so P6+1 = P * Qu. If T6+1 is a P6+l-generic,

then T6+1 will be a theory on the next level of R1H(T) extending T.

When A is a limit, PA is the direct limit of the P ( < A). The condition

p = (pa I 6 < A) is in PA if for each < A, p16 E P and support(p) is finite.

2.3.3 B,-hypothesis

At each stage 6, we need to make the assumption that T is consistent with BQ,T6

because there is no reason that T should satisfy that condition. We say that the

24



B,-hypothesis holds for T if T is consistent with B, and for all 5 < c,

IFk " 6 is consistent with B,,T6".

2.4 Preserving E2-admissibility

The aim of this section is to show that E 2-admissibility is preserved at every stage of

the iteration. To that end, we first show that when So is a E2 sentence, p IF- p is a E2

property of p and A.

2.4.1 The Forcing Relation

Let P5 be a notion of forcing described earlier and let p E P6. We study the complexity

of the forcing relation.

Proposition 2.13. If p is a A0 sentence, then the set

{(p, W) plp}

is AL(,T)

Proof. A sentence 9 is A0 if it is constructed from atomic formulas by applications

of negation, conjunction and bounded quantification. If is A0 , then by induction

on the complexity of A, the forcing relation is defined by a El-recursion and hence a

AL(aT) property of p and W.

[]

Proposition 2.14. For n > 1, the set

{(p, p): p is a En sentence and p I[- p}

is EnL(a) and the set

{(p, ) : is a in sentence and p IF a}
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is L(a,7T)is r.n

Proof. We prove the proposition by induction on n.

Suppose that so is a E1 sentence 3x4(x) in which 0 is a A0 formula. Then

p 3x O(x)

4= 3 p IF O(c).

The sentence 4(6) is bounded and, from the previous proposition, forcing a A0 sen-

tence is a AL(a,T) property of p and 4(6). Whether p forces so is therefore a L(aT)1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

property. If o is a I 1 sentence Vx4(x), then

p I- Vx O(x)

P pF 3- -x-i0(x)

= Vq < p V -(q -(c)).

Whether q forces -() is a AL(aT) property. Hence forcing a I 1 sentence is a L(aT)

property.

Suppose the proposition holds for n. If 9o is of the form 3xo(x) where O(x) is rln,

then p F o if and only if there is a such that p IF 0(). By induction, p F () is

a IL(a '
T) property and therefore p F is a EnL(+lT) property. And if so is -3x- ,(x)

where O(x) is En, then

p I- 3x-F (x)

V Vq < pW (q 

= Vq < pV -[Vr < q-1(r F ¢0(6))]

Vq < p V6 3r < qr F (6).

By induction, r ~F c) is ZLaT) and so whether p forces s is aLT) property.By induction, r F (6) is E ~ T and so whether p forces 99 is a .n+l rpry
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2.4.2 2-admissibility

Assume the B,-hypothesis holds for T. Let P6 be a notion of forcing described

previously and let T be a P6-generic. We now show that at every stage of the

iteration, E2-admissibility is preserved.

Lemma 2.15. If L(a,T) is E2-admissible, then for all < a L(a,T,T 6 ) is E2-

admissible.

Proof. Suppose (x,y) is a E2 formula and that L(a,T,T 6 ) V E 3y o(x,y).

This holds if and only if there exists a p E T such that p IF Vx E 3y ¢(x, y). Now

we unravel the definition of IF:

p IF Vx E &3 y p(x,y)

<=~ p IF -,(3x E aVy -,qO(x, y))

Vq < p [q IF 3x E dVy -(x, y)]

= Vq < p -,[3 E a q IF Vy-,(6(, y)]

* Vq < p -- [3e E aq IF (3y((, y))]

Vq < p -,[3e E aVr < q -(r I- 3y(6, y))]

V ¥q < p -[3c E ar < q-(3dr IF W(6, d))]

~= Vq < pVe E a 3r < q3dr IF (, d). (2.1)

Since L(a, T) is E2-admissible, the lemma follows if we show that the collection

of conditions P6 is a set in L(a, T). This is because r IF (, d) in equation (2.1) is a

2L(aT) property of r and W by Proposition 2.14. In the case that P6 E L(a, T), the

quantifiers over q and r will be bounded in L((a, T) and as L(a, T) is E2-admissible

there is a bound for d in L(a, T). Letting b be the canonical P6-name for the bound

on d in L(a,T), we have

p IF Vx a 3y E b s(x,y).
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Hence L(a, T, TV) b Vx E a 3y b p(x, y) and L(a, T, T6) is E2-admissible.

We show P6 C L(a, T) by induction on .

P1 E L(a, T) by Proposition 2.10. The case when =/3+ 1 is similar to the base

case. Suppose that Po C L(a, T). Then L(a, T, TV) is E2-admissible. The relation

. yL(o,,T,TO)-sprto.I"p is consistent with B,,T" is ,so Q E L(a, T, T 3) by A\2-separation. It

follows that P3+ = P * Q0 is a set in L(a, T).

If 6 := A where A is a limit, and P C L(a,T) for all/3 < A, then PA E L(a,T)

because we are iterating with finite support.

E]

Lemma 2.16. If L(a, T) is E2 -admissible, then L(a,T, T) is E2-admissible.

Proof. By the above lemma, E2-admissibility is preserved at each stage < . Be-

cause the collection of conditions 1P, is too big to be a set in L(a, T), we cannot

argue as in the previous lemma. Our solution is to make forcing with P, look like set

forcing.

Let p(x, y) be a E2 formula. Then L(a, T, T " ) f= Vx e y p(x, y) if and only if

there exists p E T' such that

p 1- Vx E 3y c(x, y)

X WVCE Vq<p 3rq d r F (6, d). (2.2)

By Proposition 2.14, the relation r F- p(, d) is 2l(,T). Let L(?,T) ( < a) be

an initial segment of L(a,T) that contains t, p and the parameters of p. Consider

the 2L(,T) function f that, given (q, 6) (q < p, e C ), returns the least such (r, d)

satisfying (2.2) above:

f((q, 6)) = least (r,d)[r < q Ar IF p(, od)].

The Z2-admissibility of L(aC, T) implies the closure of L(y, T) under f is contained in

L(A, T) for some A < . Let A be the least such. We show that L(A, T) is a bound

for d in equation (2.2).
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Let q < p. If q is in L(A, T), then f maps (q, c) to the least (r, d) E L(A, T) such

that

r < q and r 1- p(, d).

If q is not contained in L(A, T), we break q up into qa, its part above L(A, T), and qb,

its part in L(A,T), so that

q = qa A qb.

Apply f to (qb, c) to get the least (s, d) E L(A, T) such that

s < qb and s IF (6, d).

Let r = qa A s. Then r extends s and therefore

r < q and r IF o(6, d).

Let b be the canonical Pa-name for L(A, T). We then have

p IF Vx Ed a y p(x, y)

Vd& Vq p 3r < q d C br I-F (6, d)

4 p F VxCEa 3y E b o(x, y)

and L(a, T, T') is E2-admissible. [
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Chapter 3

A Model of High Rank

We now prove our main result.

Theorem 3.1. Suppose T is weakly scattered and L(a,T) is countable and 2 -

admissible. If the B,-hypothesis holds for T, then T has a countable model A such

that wiA = a and sr(A) = + 1.

Proof. Since the B0 -hypothesis holds for T, we do an finite support iteration of length

a with the forcing notions described in Chapter 2. The P,-generic T" is a theory on

level of the raw hierarchy of T and L(o, T, T') is E2-admissible by Lemma 2.16.

To show that T0 has a model A with wl = and sr(A) = + 1, we apply a type

omitting argument.

The argument involves a proper end extension of L(a, T, Ta). Let Z be the fol-

lowing set of sentences:

1. The atomic diagram of L(o, T, T ") in the sense of £W,W.

2. (d > 3) for all/3 < a. d is a constant not appearing in (Z1).

3. Let Td be a theory on level d of 7Z(T). Add A is the countable atomic model

of Td and o c Td for each sentence p C T'.

4. (p(i) is an atom of Td) for each p() that is an atom of T0 ; so(i) is an atom if

(t) generates a non-principal type of T'.
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5. The axioms of El-admissibility.

Any model of Z will be a proper end extension of L(ao, T, T') and will contain a model
vL(TT~) nL(,TT ~)of T . The set Z is E' L(aTT) since the set of T atoms is i L(aTT)

By Barwise Compactness and "effective" type omitting, there is a model M of

Z that is a proper end extension of L(a, T, Tc) but omits . If a < wlA , then c is

recursive in A and a e M; hence wA < a. By Corollary 1.14, sr(A) < + 1.

The structure A is a model of To for all 3 < a, so rtr(A) > a. It follows that

sr(A) > a because, by Proposition 2.2, rtr(A) < sr(A).

We now show that sr(A) = a + 1. Suppose sr(A) = a. Then A is the atomic

model of T0 . Define the rank of an atom (t) to be the least 3 < a such that p()

is an atom of TV. Let f be the function that takes each n-tuple of A to the rank

of an atom of T' realized by the tuple. By (Z4), the atoms of T~ are atoms of Td.

Therefore f is definable from Td and f E M. But lub(range(f)) = a implies a E M,

a contradiction. So sr(A) = + < WlA + 1. From above, wjA < a; consequently,

WA = a.
Wi~~~~~~~~~~~~~~~~~~~~~~~~~~r
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