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Abstract
We define and study the structure of SUSY Lie conformal and vertex algebras. This
leads to effective rules for computations with superfields. Given a strongly conformal
SUSY vertex algebra V and a supercurve X, we construct a vector bundle 2Y/ on X,
the fiber of which, is isomorphic to V. Moreover, the state-field correspondence of V
canonically gives rise to (local) sections of these vector bundles. We also define chiral
algebras on any supercurve X, and show that the vector bundle 1',, corresponding
to a SUSY vertex algebra, carries the structure of a chiral algebra.
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Chapter 1

Introduction

1.1. Vertex algebras were introduced about 20 years ago by Borcherds [9]. They
provide a rigorous definition of the chiral part of 2-dimensional conformal field theory,
intensively studied by physicists. Since then they have had important applications to
string theory and conformal field theory, and to mathematics, by providing tools to
study the most interesting representations of infinite dimensional Lie algebras. Since
their appearance, they have been extensively studied in many papers and books (for
the latter we refer to [17], [18], [22], [21], [16], [5]).

Vertex algebras also appeared in algebraic geometry as Factorization Algebras on
complex curves [5], [16]. In the last five years, numerous applications of this deep
connection between factorization algebras and vertex algebras have been exploited,
notably in the study of the moduli spaces (of curves, vector bundles, principal bundles,
etc) arising in algebraic geometry. There are also connections between the theory of
vertex algebras and the geometric Langlands conjecture [16, ch. 17]. Vertex alge-
bras have also given new invariants of manifolds [25], [27] and applications to mirror
symmetry [10].

Even though these approaches have been successful in formalizing 2-dimensional
conformal field theories, it has been known for some time to physicists, that in order
to describe super symmetric theories, similar objects should be defined on supercurves
instead of simply curves (cf. [14], [11], [3]). With this motivation, mathematicians
have studied in detail the supergeometry of manifolds, and in particular supercurves
(cf. [13], [28], [29], [34] among others).

The purpose of this thesis is to generalize the above objects to describe chiral and
factorization algebras over supercurves. To accomplish this, we first need to define
supersymmetric (SUSY) vertex algebras in such a way that the state-field correspon-
dence includes the odd coordinates of the supercurve as formal parameters, that is,
to any vector a in a SUSY vertex algebra, we associate a superfield

S

Y(a, z, 01,. . ON) (1.1.1)

such that structural properties, similar to those of ordinary vertex algebras, hold.
Given a SUSY vertex algebra V and a supercurve X, we want to assign a vector

bundle ' over X in such a way that the fiber at a point x G X is identified with

9



$

V. Moreover, we would like Y to canonically define sections of this vector bundle
(more precisely, its restricted dual). Here we find the first difference with the clas-
sical theory, namely, supercurves come in different flavors: general 11n dimensional
supercurves and superconformal 11n supercurves. The latter are to the former what
holomorphic curves are to compact connected 2-manifolds. The upshot is that we
define two different versions of what a SUSY vertex algebra is, one which will local-
ize to give vector bundles on a general lln-dimensional supercurve (called Nw = n
SUSY vertex algebras) and another which gives vector bundles on superconformal
supercurves (called NK = n or symply N = n SUSY vertex algebras). The latter are
generated by superfields in the sense studied by physicists [14], the former seem to
be new objects.

There are several relations between these different SUSY vertex algebras. As a
basic example, let us consider the cases with low odd dimensions. Roughly speaking,
a general N = 1 supercurve is the data of a curve X and a line bundle .Y over it,
sections of this line bundle are considered to be the values of a coordinate in the odd
direction. Similarly, an (oriented) superconformal N = 2 supercurve consists of a
curve X and two line bundles Y and Jf over it such that f 0 J is the canonical
bundle w of X. It follows that an N = 1 supercurve gives rise canonically to another
N = 1 supercurve (interchanging Yf with w 0 .A-l) and to a superconformal N = 2
supercurve (by taking 3£ = w®Y- 1 ). On the algebraic side, any (conformal) Nw = 1
SUSY vertex algebra gives rise to a (conformal) N = 2 SUSY vertex algebra (this
corresponds to the isomorphism between the superconformal Lie algebras K(1, 2) and
W(1, 2)) and both of them correspond to vertex algebras with N = 2 superconformal
structure. It follows that any such vertex algebra gives vector bundles in both N = 1
supercurves and in the corresponding superconformal N = 2 supercurve. These three
vector bundles are intimately related as we will see in section 4.3.

As in the ordinary vertex algebra case, the vector bundles we construct (more
precisely quotients of them) are extensions of (powers of) the Berezinian bundle of
X (a super analog of the canonical bundle). The algebraic properties of V reflect
in geometric properties of 1' as in the ordinary vertex algebra case. We obtain
thus superprojective structures, affine structures, global differential operators, etc. as
splittings of these extensions. In particular, the state-field correspondence itself gives
such splittings (locally).

1.2. After constructing these vector bundles, it is natural to ask if they carry the
structure of a chiral algebra on a supercurve. It is shown that the usual definitions
carry over to the super case with minor difficulties, and that the vector bundles
obtained from V are indeed chiral algebras. This allows us to define the coinvariants
and conformal blocks of a SUSY vertex algebra in a coordinate independent way as
in [16].

1.3. The organization of this thesis is as follows: In chapter 2 we recall some well
known notions about vertex algebras and supercurves. In section 2.1 we recollect
notation and examples of vertex algebras and we give the basic examples of SUSY
vertex algebras from the point of view of ordinary vertex algebras. We also define
two families of SUSY vertex algebras, postponing their detailed study until chapter

10



3. In section 2.2 we collect definitions and examples of supercurves. In particular
we recall the duality of N = supercurves, the notion of superconformal curves and
the relations between oriented superconformal N = 2 curves and general N 1
supercurves.

In chapter 3 we systematically study the structure theory of SUSY vertex alge-
bras. We define Nw = n and NK = n SUSY vertex algebras, and we derive all the
basic results and identities, analogous to those in the case of ordinary vertex algebras,
along the lines of [22]. Though a SUSY vertex algebra is an ordinary vertex alge-
bra with additional structure, the presence of supersymmetry considerably simplifies
calculations.

In chapter 4 we construct a vector bundle with a flat connection associated to a
Nw = n SUSY vertex algebra, over any N = n supercurve. We also construct vector
bundles associated to NK = n SUSY vertex algebras over oriented superconformal
N = n supercurves. In this chapter we follow closely [16]. In section 4.1 we define the
groups AutO of changes of coordinates and the Aut&-torsor Autx for a supercurve.
In section 4.2 we construct the vector bundles themselves and their sections. In
particular we show that the state-field correspondence for a SUSY vertex algebra is
a section of the dual of the corresponding vector bundle. In section 4.3 we compute
explicitly some examples of vector bundles over supercurves of low odd dimension.

In chapter 5 we define chiral algebras over supercurves and we prove that the vector
bundles constructed from SUSY vertex algebras are examples of chiral algebras. We
also define the spaces of coinvariants in a coordinate independent way.

In appendix A we give a brief description of a family of representations of the Lie
algebra 9[(111) and their realizations as fibers of certain natural vector bundles over
N = supercurves.

11
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Chapter 2

Basic notions

2.1 Vertex algebras

In this section we recall some notation and basic results on vertex algebras. We
also give the first examples of SUSY vertex algebras constructed via ordinary vertex
algebras. The reader is referred to [22] for an introduction to the vertex algebra
theory.

Definition 2.1.1. Let W be a Lie superalgebra. An s-valued formal distribution is
a formal expression of the form:

B(z) B(n) (2.1.1.1)
nEZ

where B(n) E have the same parity for all n E Z; this parity is called the parity of
B(z). The coefficients B(n) are called the Fourier modes of B(z), and z is a formal
parameter. A pair of formal distributions B(z), C(w) is local if

(z - w)N[B(z), C(w)] = 0 for N > 0. (2.1.1.2)

If = End(V), where V is a vector superspace, we say that B(z) is a field if, for
every v E V, B(n)v = 0 for large enough n.

Definition 2.1.2. A vertex algebra is a quadruple (V, 0>, T, Y) where

* V is a vector superspace,

* 10>e V is an even vector,

* T c End(V) is an even operator,

* Y is a parity preserving linear map from V to the space of End(V)-valued fields:
a '- Y(a, z).

This data should satisfy the following axioms:

13



* vacuum axioms:
Y(a,z)jO>= a + O(z), TIO>= 0; (2.1.2.1)

* translation invariance axiom:

[T,Y(a,z)] = O~Y(a,z); (2.1.2.2)

* locality axiom:

(z - w)"[Y(a, z), Y(b, w)] = 0 for n > 0. (2.1.2.3)

We will denote a vertex algebra by its underlying vector space V when there is no
possible confusion.

The map Y is called the state-field correspondence and we will use this map to
identify a vector a e V with its corresponding field Y(a, z). The vector 10> is called
the vacuum vector and the endomorphism T is called the translation operator.

A morphism of vertex algebras f f: V1 -~ V2 is a linear map f such that:

f o T = T2 o f (2.1.2.4)
Y 2 (f(a),z)f(b) = f(Y (a,z)b) Va, b V1.

2.1.3. Given a vertex algebra V we denote

a(n)b = a(n) (b),
Ak

[aAxb] = E k a(k)b, (2.1.3.1)
k>O

ab: = a(_l)b.

The first operation is called the n-th product, the second is called the A-bracket and
the third the normally ordered product.
2.1.4. For each n e Z, define the n-th product of End(V)-valued fields A(z) and B(z)
as follows. Denote by iz, the expansion in the domain Izj > IwI:

izwmwn ZW) k m~kWni l W) k (_J)k mkjniz m ( - w)k = zm+kzni (i-W) = (=)i ( ,) z Wm+kwn. (2.1.4.1)
j>0

Define

A(w)(n)B(w) = rest (i,(z - w)nA(z)B(w)-

-iw,z(z- w)(-1)P(A)P(B)B(w)A(z)), (2.1.4.2)

where p(A) denotes the parity of A(w). It can be shown that the following n-th
product identity holds (cf. [22, prop. 4.4])

Y(a(n)b, z) = Y(a, z)(n)Y(b, z) Vn E 2, (2.1.4.3)

14



hence,
Y(Ta, z) = &~Y(a,z). (2.1.4.4)

2.1.5. In a vertex algebra V we have the following commutator formulas [22, pp 112]

[a(m), b(.)] = I (X) (a(3)b) (n+n-j)X

(2.1.5.1)

[a(m), Y(b, w)] -- 3m Y(a(j)b, w).
j>o j

This formula shows that the space of Fourier modes of all fields of a vertex algebra is
closed under the Lie bracket, and, moreover, the commutation relations are expressed
in terms of j-th products.

Definition 2.1.6. A Lie conformal algebra is a super C[0]-module equipped with
a parity preserving bilinear map

[,A] : -® 9 -- C[A] ® ,,, (2.1.6.1)

satisfying the following axioms:

* Sesquilinearity:

[Oab]=-A[aAb], [a\ob]= (6 + A)[aAb]. (2.1.6.2)

* Skew-commutativity:

[ba\a] = - )P(~)P(b)[a_o_xb]. (2.1.6.3)

* Jacobi identity:

[aA,[bc]] = [[ab],+,uc] + (- 1 )P(a)P(b)[b, [axc]], (2.1.6.4)

for all a, b, c E .
Given a Lie conformal algebra t, we can associate to it a vertex algebra V(g)

(cf. [22], [2]) called the universal enveloping vertex algebra of M. If .9 is generated
by some vectors {ail} as a C[O]-module, we say that V(g) is generated by the same
vectors. If C C is a central element such that OC = 0, given any complex number
c, we denote by Vc(R) the quotient of V(g) by the ideal (C- c)V(g).

One can show [22] that a vertex algebra V is canonically a Lie conformal algebra
with the A-bracket defined in (2.1.3.1) and 0= T.

Example 2.1.7. The Virasoro vertex algebra Virc is generated by an even field L
satisfying:

C3
[LAL] = ( + 2A)L + c A (2.1.7.1)

12The complex number c is called the central charge.The complex number c is called the central charge.

15



The Fourier modes of L satisfy the commutation relations:

[L(m), L(n)] = (m - n)L(m+n-1) + 6m+n,-2 m ( m - 1)(m - 2) c (2.17.2)
12

Letting Ln, = L(n-l), we obtain the familiar commutation relations of the Virasoro
Lie algebra.

Example 2.1.8. Let g be a finite dimensional Lie superalgebra with a non-degenerate
invariant supersymmetric bilinear form (,) and let k E C. The universal affine vertex
algebra Vk(g) at level k, corresponding to g, is generated by fields a E g and the
commutation relations:

[aAb] = [a, b] + Ak(a, b). (2.1.8.1)

When g is simple and k ~ -hv (the negative of the dual Coxeter number, i.e. 1/2
of the value of the Casimir operator on g) we have an injective morphism of vertex
algebras Vir' e- Vk(g) where

_ksdimg

c = ks+img(2.1.8.2)
k +h v

This morphism is given by the Sugawara construction (cf. [22, Thin 5.7]):

L - 2(k hv) : aai: (2.1.8.3)

where {ail is a basis of g and {ai} is its dual basis with respect to (,), i.e. (ai, aj) =
ji'j.

Identifying L with its image in Vk(g) we see that L(o) = T E End(Vk(g)) which
follows from the fact that all the currents a C g satisfy the commutation relations:

[Lxa] = ( + A)a. (2.1.8.4)

It follows from (2.1.8.4) and (2.1.5.1) that the operator L(1) acts diagonally on Vk(g)
with non-negative integer eigenvalues.

A vertex algebra V with a vector v V such that the corresponding field
L(z) = Y(v,z) satisfies (2.1.7.1) and moreover L(o) = T and L(1) acts diagonally
with eigenvalues bounded from below is called a conformal vertex algebra. A field a,
satisfying

[Lxa] = ( + AA)a, (2.1.8.5)

for some A E C, is called a primary field of conformal weight A.

Example 2.1.9. A commutative associative unital superalgebra is naturally a vertex
algebra with 10>= 1, T = 0 and a(n)b = 6n,_lab. More generally, a commutative
associative unital superalgebra with an even derivation T is naturally a vertex algebra,
the state field correspondence is given by:

Y(a,z)b = (eZTa)b. (2.1.9.1)

16



Example 2.1.10. Let V and W be vertex algebras, a E V, b E W. We define
a(n) 0 b(m) E End(V 0 W) by

(a(n) 0 b(m)) (v ® w) (-l)P(a)P(b)a(,)v 0 b(m)w. (2.1.10.1)

With this definition we construct a vertex algebra structure in V 0 W by extending
the state field correspondence as Y(a 0 b, z) = Y(a, z) 0 Y(b, z) and defining the
translation operator as T = Tv Id + Id OTw where Tv (resp. Tw) is the translation
operator in V (resp. W).

Example 2.1.11. The Neveu Schwarz (NS) vertex algebra is generated by an even
virasoro field L (satisfying (2.1.7.1)) and an odd primary field G of conformal weight
3/2 (i.e. (2.1.8.5) holds with A = 3/2), satisfying the commutation relation:

A2

[GAG] = 2L + -c. (2.1.11.1)

If we expand the corresponding fields

L(z) L - -"
nEZ

nEZ ~~~~~~~~~(2.1.11.2)
G(z)= Gnz-3 / 2- (2.1.11.2)

nEl/2+Z

then the coefficients of such expansions satisfy the following commutation relations
(which can be seen from (2.1.5.1)):

m3 -m
[Lm, Ln] = (m - n)Lm+n + m,-n 12C

12 c

[Gm, Ln] = m - -) Gm+n, (2.1.11.3)
m 2 1/4

[Gm, Gn] 2Lm+n + m,-.n _ 3 c.

Given a NS, we define the superfield (cf. [22, (5.9.5)]), where 0 is an odd
indeterminate, 02 = 0, Oz = zO:

$
Y(a, z, 6) = Y(a, z) + OY(G(o)a, z). (2.1.11.4)

Note in particular that if v -= L(_1)I0> and r- = G(-1)10> we have

S~~~
Y(v,z, ) = L(z) + -0&zG(z),

2,z,6) (2 .11.5)
Y(r, z, 0) = G(z) + 2L(z).

17



Using (2.1.5.1), we can prove easily that

8 8

[L(o),Y(a,z, )] = azY(a,z, ),
s 8

[G(o), Y(a, z, 0)] = ( - 09z)Y(a, z, 0).

(2.1.11.6a)

(2.1.11.6b)

Similarly we have:

(2.1.11.7a)
s s
Y(L(o)a, z, ) = Y(a, z, 0),
s s

Y(G(o)a, z, ) = (o + 0l0z)Y(a, z, ). (2.1.11.7b)

2.1.12. Motivated by (2.1.11.6), we are ready to define an N = 1 (rather NK = 1)

SUSY vertex algebra (cf. 3.5.14). Let V be a vector superspace over C. An End(V)-
valued (N = 1) superfield is a formal sum of the form

A(z, 0) = E A(nl)z- 1-n + 0 E A(n,o)z- 1-n
neZ nEZ

(2.1.12.1)

where A(n,i) E End(V) are such that for each v E V we have A(n,i)v = 0 for n > 0
and all i = 0,1.

An N = SUSY vertex algebra structure in V consist of

* I0>E Vo is an even vector,

* S E End(V)l is an odd endomorphism,

8

* Y is a parity preserving C-linear map from V to End(V)-valued superfields

a '- Y(a, z, 0),

such that the following axioms hold:

* vacuum axioms:

8

Slo>= o, Y(a, Z, 9)Io>= a + O(z, ), (2.1.12.2)

where O(z, ) denotes a V-valued formal power series in z and 0 with zero
constant coefficient,

* translation invariance:
S S

[S, Y(a, z, 9)] = (-oo 9)Y(a, z, 0), (2.1.12.3)

* locality:

s s

(z - w)n[Y(a, z, 0), Y(b, w, ()] = 0 for n >> O, (2.1.12.4)

were z and w commuting even indeterminates and 0 and C are anticommuting
odd indeterminates commuting with z and w.

18



Morphisms of N 1 SUSY vertex algebras are defined in the same way as for ordinary
vertex algebras.

Remark 2.1.13. Given a N = 1 SUSY vertex algebra V, letting T= S2 and puting

$

Y(a,z) - Y(a,z,O), (2.1.13.1)

we obtain a vertex algebra (V, O>,T,Y).

Example 2.1.14. The vertex algebra NS constructed in 2.1.11 has an N - I SUSY
structure given by (2.1.11.4) and S= G_2.

Definition 2.1.15. An N - I SUSY vertex algebra V with a vector T C V such that
$

the corresponding superfield Y(T, z, 0) - G(z) + 20L(z) satisfies the commutation
relations (2.1.11.3) of the Neveu-Schwarz algebra, and moreover, T(0,1) S, Tr(0,0) = 2T
and the operator T(i,o) acts diagonally with eigenvalues bounded from below, is called
a superconformal N = 1 SUSY vertex algebra. The vector will be called the
superconforrmal vector.

Remark 2.1.16. Let V be a vertex algebra with an N = 1 superconformal vector T

(cf. [22, definition 5.9]). Namely, the Fourier modes of the fields

G (z) = (, z) X G -3/
nCl/2+

L 1 (2.1.16.1)

2 nZ

satisfy the relations (2.1.11.3) of a Neveu-Schwarz algebra for some c C, L(=
G21/2) -= T and the operator L0 is diagonalizable with eigenvalues bounded below.
Then V carries a structure of an N = 1 SUSY vertex algebra with S = G 1/2 and
superfields

S

Y(a, z, 0) - Y(a, z) + OY(G_1/2a, z). (2.1.16.2)

It is, of course, a superconformal N = 1 SUSY vertex algebra with the superconformal
vector T, which is automatically a superconformal vector for this N = 1 SUSY vertex
algebra structure.

Below we give some examples of vertex algebras with a superconformal vector.
By the above remark, they are automatically N = 1 SUSY vertex algebras with a
superconformal vector.

Example 2.1.17. [22, ex. 5.9a] Let V be the universal envelopping vertex algebra
of the Lie conformal algebra generated by an even vector (free boson) a and an odd
vector (free fermion) , namely

[a\a]- A,

['xp] = 1, (2.1.17.1)
[CAW] - 0.

19



Then V is a (simple) vertex algebra with a family of N = 1 superconformal vectors

T = ((-1)O(-1) + m((- 2))[0>, m E C, (2.1.17.2)

of central charge c = 3- 3m2 .
2

Example 2.1.18. [23] [22, thm 5.9] Let g be a finite dimensional Lie algebra with a
non-degenerate invariant symmetric bilinear form (,), and let hv be the dual Coxeter
number. We construct a vertex algebra Vk(gsuper) generated by the usual currents
a, b E g, satisfying

[aAb] = [a, b] + (k + hV)A(a, b), (2.1.18.1)

and the odd super currents {a} C g with reversed parity, satisfying:

[aAb] = [a, b],
(2.1.18.2)

[aAb] = (k + hV)(a, b).

Let {a i } and {bi } be dual bases of g. Provided that k y~ -hv the vertex algebra
Vk(gsuper) admits an N= 1 superconformal vector

1 1T = i - - - a], -r' b10, r l>,T = k + hV (I a(_l)b(-l) + 3(k + hV) Z[a, a, a)u(_)_) (_ 10>,(-1b(-) +3(k + hv ) ,

(2.1.18.3)
of central charge

kdimg 1
Ck -k + hv + dimg. (2.1.18.4)

k +hv 2
This is known as the Kac-Todorov construction. The formulas in [22] should be
corrected as above.

Example 2.1.19. [22, Thin 5.10] The N = 2 vertex algebra is generated by a Virasoro
field L of central charge c, an even field J, primary of conformal weight 1, and two odd
fields G±, primary of conformal weight 3/2. The remaining commutation relations
are:

[JAJ] = 3A, [GG-] = 0, [JG-] = ±G',
- 1.~J+A+.A2 c(2.1.19.1)

[G+G - ] = L + 0J+Aj+ _A2+

This vertex algebra contains an N= 1 superconformal vector:

r = G_1)10> +G-_1)[0> . (2.1.19.2)

Also, this vertex algebra admits a Z/2Z x C* family of automorphisms. The generator
of Z/2Z is given by L -+ L, J -+ -J and G + ~- Go7. The C* family is given by
G+ ~-+/zG+ and G- - -G-. Applying these automorphisms, we get a family of
N = 1 superconformal structures.
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By expanding the corresponding fields

L(z) = E Lnz-2-n
nEZ

G-(z) = E Gnz
nEl/2+Z

J(z) E jnZ--,
nEZ

we get the
remainning

commutation relations of the Virasoro operators L, and the following
commutation relations

[J, Jn] = 6,-nC [ G] = G[, sGnI m+n,

[Gm, Ln] = (m - ) Gm+ [Lm, Jn] = -nJm+n,

[G+ , G ] = Lm+n + m Jm+n + (m2M n 2 --- 6

Sometimes it is convenient to introduce a different set of generating fields for this
vertex algebra. We define L = L- 1/20J. This is a Virasoro field with central charge
zero, namely

[LxL] = ( + 2A)L. (2.1.19.5a)

With respect to this Virasoro element, G+ is primary of conformal weight 2 and G-
is primary of conformal weight 1; J has conformal weight 1 but is no longer a primary
field. To summarize the commutation relations, we write

Q(z) = G+(z) = E Q --
nEZ

H(z) G(z) = z) = Hnz-1-n, (2.1.19.5b)
nEZ

L(z) = E nZ--
nEZ

The corresponding A-brackets of these fields are given by:

[LL] = ( + 2A)L,
A2

[LJ] = (a + )J- -c,
(2.1.19.5c)[LQ] = ( + 2A)Q,

[L,H] = ( + A)H,

[H\Q] = L- AJ + A '.
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The commutation relations of the coefficients in (2.1.19.5b) are:

[Tm, Tn] = (m - n)Tm+n, [Qm , Qn] = [Hm, Hn] = 0, (2.1.19.5d)

[Tm, Hn] = -nHm+n, [Tm, Jn] = -nJm+n m(m + 1) m,-n, (2.1.19.5e)
12

[Tm, Qn] = (m - n)Qm+n,[Hm, Qn] = Tm+n -mJm+n + m(m - 1)6m ,n
(2.1.19.5f)

2.1.20. The definition in 2.1.12 can be extended to the general N = n case (cf.
3.5.14) by requiring the existence of n odd endomorphisms S1, .. , Sn and changing
correspondingly the translation invariance axioms, as follows.

Let V be a vector superspace over C. Let z be an even indeterminate and
01,..., 9 N be odd anticommuting indeterminates which commute with z. For an
ordered subset I = (il,... , ik) c {1,... , n}, we will write 9' = il ... Sik and let N\I
be the ordered complement of I in {1, . . , n}.

An End(V)-valued superfield is a expression of the form:

A(z, 01',. .. 'in) = E N\IA(nlI)zl-n (2.1.20.1)
(nlI),neZ

where I runs over all ordered subsets of the set 1, ... , N}, A(,ji) E End(V), and
for each I and v E V we have A(nlI)v = 0 for n large enough. We will usually write

A(z, 0) or simply A(Z) for this field, where Z = (z, 01, ... ,ON).

Definition 2.1.21. An NK = n (or simply N = n) SUSY vertex algebra consists of a
vector superspace V, an even vector 0 >E V, n odd endomorphisms Si, . , Sn (super
translation operators) satisfying [Si, Sj] = 26ijT for some even endormorphism T, and

S

a parity preserving linear map Y from V to the space of End(V)-valued superfields
$

a - Y(a, z, 0), satisfying the following axioms:

* vacuum axioms: $
Y(a, z, 0)10> = a + O(z, 0), (2.1.21.1)

SilO> = 0, i = 1,..., n,

* translation invariance

[Si Y(a, z, 0)] = (i- i9O9) Y(a, z, 0), (2.1.21.2)

* locality

$ $
(z - w)k[Y(a, z, 0), Y(b, w, ()] = 0, for k > 0, (2.1.21.3)

where, as before, 9i and (i anticommute, and all of them commute with z and
w.
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Morphisms of N = n SUSY vertex algebras are defined in the same way as for N = 1
a

SUSY vertex algebras. As before, (V,IO>,T,Y(a,z) Y(a,z,O)) is an ordinary
vertex algebra.

Example 2.1.22. As in the N = case, we can give the N = 2 vertex algebra, as
defined in 2.1.19, the structure of an NK = 2 SUSY vertex algebra. To do this, we
define the operators S' = (G;) + G-)) and S2 = i(Go) - G-)). With these definitions
the state field correspondence is given by

Y(a,z, 0l, 2) = Y(a, z) + 01Y(Sla, z) + 02Y(S 2a, z)+

+ 0201y(S1S 2a, z). (2.1.22.1)

All the properties required in the definition are easy to check. We also note that

s 8
Y(Sia, z, 01, 02) = (0,i + -i'O) Y(a, z, 01, 02),

a s

Y(L(o)a, Z, 01,02) = zY(a, z, 01,02).
(2.1.22.2)

Also we check directly that letting

T-- V/'J(-l)1O>, (2.1.22.3)

we get:

Y( z i) = TJ(z) + G 2 (z) 02G(z) + 2 2L(z)
Y (r, z, O') = v--iJ(z) + O'G(() - 0G(1) (z) + 2012L (z) (2.1.22.4)

where G()(z) = G+(z) + G-(z) and G(2)(z) = i(G+(z) - G-(z)). It follows that
°7(1o) = 2T, r(011) = -S 1 and T(012) =-_S2 (cf.3.6.6 below).

We note that G( i) are primary of conformal weight 3/2, and J is primary of
conformal weight 1. The other commutation relations between the generating fields
L, J, G(i) are

c2

[G(i)xG(i)] = 2L + c)
3'

[G(1),G(2)] = -i ( + 2A) J, (2.1.22.5)(2~~~~~~~(212.)
[JAG(')] = -iG(2)

[JAG(2)] =- iG(),

or equivalently

[G$2), Gn)] = 2Lm+n + (m2
- 3 ,-n,

[G), Gn2)] = i (n - m) Jm+n,

[Jm, Gnl')] = -iGm+n,

[Jm, Gn2)] = iGm)+n

(2.1.22.6)

Definition 2.1.23. An NK = 2 SUSY vertex algebra with a vector r V such
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that the corresponding field is as in (2.1.22.4), satisfying (2.1.22.5), (2.1.22.6), and
moreover (010) = 2T, (0oji) = -S1, r(012) = _S2 and r(110) acts diagonally with
eigenvalues bounded below, is called a superconformal N = 2 SUSY vertex algebra
(cf. 3.6.6 below). The vector T is called the N = 2 superconformal vector.

Example 2.1.24. [22, ex. 5.9d] Consider the vertex algebra generated by a pair
of free charged bosons a± and a pair of free charged fermions ad where the only
non-trivial commutation relations are:

-a±a- a+ A, (2.1.24.1)
[qo+qoF] = 1.

This vertex algebra contains the following family of N = 2 vertex subalgebras

G =: v · +mO'o, m E C,
J =: o+--m(a++ a-),
L =: a+ - + : : o+o- + (2.1.24.2)

2

+ +: 2O-P -(a + a-).
2 2

The vector r given by (2.1.22.3) provides this vertex algebra with the structure of a
superconformal NK = 2 SUSY vertex algebra, by letting T = L_1 and Si = G(i)/.

Remark 2.1.25. In the super case, a formula like (2.1.4.4) can be proved (cf. Theorem
3.5.19 below):

S~~~~~~~~~~~
Y(S ta, z, 9) = (i + 9i'a)Y(a, z, 9), (2.1.25.1)

$ $
thus, unlike in the ordinary vertex algebra case, [Si, Y(a, z, 0)] Y(Sia, z, 0).

2.1.26. The definition of an NK = n SUSY vertex algebra formalize the notion of
supersymmetry in CFT as widely known in the physics literature. As we shall explain
later on, this notion is closely related to the K series of superconformal Lie algebras.
Now we will define the Nw = n SUSY vertex algebra, related to the W series of
superconformal Lie algebras, by replacing the differential operators co - 0z by the
simpler 0s.

Definition 2.1.27. Let V be a vector superspace. A Nw = n SUSY vertex algebra
structure on V consists of an even vector 10>E V, n anticommuting odd operators
Si (the odd translation operators), an even operator T commuting with all the Si

$
(the even translation operator), and a parity preserving linear map Y from V to the

$
space of End(V)-valued superfields a H- Y(a, z, 0), staisfying the following axioms:

* vacuum axioms:
S

Y(a, z, 0)10> = a + O(z, 0), (2.1.27.1)
TIO>= SilO> = 0, i = 1,...,n.
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* translation invariance
S$ $

[s, Y(a, z, 0)] = ooiY(a, z, 0), (2.1.27.2)
8 8 ~~~~~~~~~(2.1.27.2)

[T, Y(a, , 0)] = Y(a, z, 0).

* locality

8 8

(z - w)k[Y(a,z,O),Y(b,w,()] = 0 for k > 0. (2.1.27.3)

Morphisms of Nw = n SUSY vertex algebras are defined as before.

Example 2.1.28. We show here that the N = 2 vertex algebra carries a structure
of a Nw = 1 SUSY vertex algebra. We will use the generating fields L, Q, H, and J
with the commutation relations (2.1.19.5f). Define the superfields:

S

Y(a, z, 0) = Y(a, z) + OY(Qla, z), (2.1.28.1)

and let T = Ll, S = S1 = Q-1. The vacuum axioms and the locality axioms are
clear. For translation invariance, we have:

8

[T, Y(a, z, 0)] = [T, Y(a, z)] + O[T, Y(Qla, z)] = 6:Y(a, z) + O6zY(Q_la, z),
(2.1.28.2)

proving the even translation invariance axiom. For the odd translation invariance we
have by (2.1.5.1) (recall that Q_ = Q(0))

s
[Q(o),Y(a, z, O)] = [Q(o),Y(a,z)]- O[Q(o), Y(Q(o)a,z)] = Y(Q(o)a, z). (2.1.28.3)

Note that defining the vectors v = H(_1) 10 > and r -J(-1) 0 > we have in particular

$

Y(v, z, 0) = H(z) + 6(L(z) + 6:J(z)), (2.1.28.4)

Y(T, z, 0) -J(z) + OQ(z).

Therefore, if we consider the Fourier modes as defined in (2.1.20.1), we have

V(,o) = T, T(oO) = S. (2.1.28.5)

Moreover, it is easy to see that the field L(z) + 6OJ(z) is also a Virasoro field and
the conformal weights of the generating fields L, H, Q, J are positive with respect to
this Virasoro field as well. It follows that the operator v(i,o) acts diagonally with
non-negative eigenvalues.

This example motivates the following definition.

Definition 2.1.29. A superconformal Nw = 1 SUSY vertex algebra is a Nw =
1 SUSY vertex algebra with two vectors v, r satisfying the properties in the last
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example, i.e. (2.1.28.4), (2.1.28.5), where H, L, J and Q satisfy (2.1.19.5c), and v(,o)
is diagonalizable with real spectrum bounded below.

Example 2.1.30. More generally, we can define a conformal Nw = N SUSY vertex
algebra for each N as follows. Consider the superalgebra A = C[t, t- , ,...,N]
where t is even and are odd indeterminates. Let W(lIN) be the Lie superalgebra
of derivations of this algebra, and define the following collection of W(l1N)-valued
formal distributions:

a= aJ(z) = E(taaj)z-1-", a E A, j , ... , , (2.1.30.1)
nEZ

where Oj = 0j if j > 0 and 0o = 9 t. The pair (W(1IN), 9) is a formal distribution
Lie superalgebra (cf. [15] and [22]). We can construct a Lie conformal superalgebra
from a formal distribution Lie superalgebra according to [22]. In this case it is the
C[&]-module generated by the vectors a, with a E A and j = 0,..., N, and the
following A-brackets:

[aibj] = (a0ib)j + (-1)P(a)((0ja)b)i, i,j > 1,

[aixb°] = (a0ib)° - (1)P(b)(ab)i A, (2.1.30.2)

[a0Ab0] = -0(ab) o - 2(ab)°A.

Let WN be the associated universal enveloping vertex algebra. The field

n

L(z) =-1°(z) + E Oa(oi)(z), (2.1.30.3)

is a Virasoro field, and the elements (i) j are primary of conformal weight 1, while
the elements -P are primary of conformal weight 2. We will need later its Fourier
modes, which are given by:

Ln =- -t"n+lat -(n + 1) E tnoi (2.1.30.4)

We define v = L(_l)10>) and T = L(o) = L- 1 = -at. In order to be consistent with
previous notation we define the fields Qi(z) = -1l(z) and write down their Fourier
modes which are

Qn = -tn 1 0. (2.1.30.5)

In particular, we define Si = Q/ 1 for i> 1 and note that (Si)2
- 0.

In order to construct an Nw = N SUSY vertex algebra from the vertex algebra
WN we proceed as before, defining the superfields

Y(a, z, N) = (-1) '( Iy(Sil . .Sisa, z), (2.1.30.6)

Iwhere the summation is taken over all ordered subsets I = (i i) of 1.. N.
where the summation is taken over all ordered subsets I = (il,... , i8 ) of {1, ... , N}.
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$
It is straightfoward to check that the data (WN, T, Si, 10>, Y) is indeed an Nw N
SUSY vertex algebra. We shall return to this example in 3.6.1.

Example 2.1.31. We can similarly construct an NK = N SUSY vertex
any N. For this we define a subalgebra K(1IN) of W(1IN), of those
operators preserving the form w = dt + I OidOi up to multiplication by
It consists of differential operators of the form:

N
Df ffo + 1()P(f) E (i 0o + i)(f)(0io + ai),

i=1

algebra for
differential
a function.

(2.1.31.1)

for f C A. These operators satisfy

[Df, D9] = D{fg} (2.1.31.2)

where

{f,g} (f
N

-Zoaif
i=1

)0g Oof (9 oi1) + (-N)f2 Oig.Oilgig + (1)fE'9i:1i
i=1

In particular K(I1N) contains the operators

Ln = -tn+ot - n + ltnE 0Lizi n E Z,
2'

G$) - t+/ (- O'9ot) + (n+1) tn-1/2i 1nC +Z.
2

It is easy to see that the operators Ln span a centerless Virasoro Lie algebra.
As in the W(lIN) case, we construct the corresponding Lie conformal superalgebra

as follows. It is the C[0]-module generated by vectors a E C[01 ,..., on], with the
following A-brackets [15]

b n
o(ab) + ( )r _2E

i=1

iaoib) + r + s - 2) ab, (2.1.31.5)

where a = 0i, .. i, b = Oj . .Oj.
We denote by KN its universal enveloping vertex algebra, and we define the op-

erators T= L_1 and Si = G()/ 2. Now we define the state-field correspondence as in
(2.1.30.6):

Y(a,z,0) = Z(-1) 2 i0'Y(S'a,z).
I

(2.1.31.6)

All the properties of an NK = N SUSY vertex algebra are straightforward to check
as in the previous cases. In particular we note that the Lie subalgebra of regular
derivations preserving w acts in this SUSY vertex algebra as Fourier coefficients of
vertex operators, we call this subalgebra the anihilation subalgebra of K(1IN). We
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(2.1.31.4)
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will return to this example in 3.6.5.

2.1.32. There is another infinite series of superconformal Lie algebras, namely the
series sn. The corresponding Lie algebra is the Lie algebra of divergence free elements
of wn. Recall that the divergence of the derivation D = P0oat + E Pi&ei is defined to
be

DivD = atP0 + Z(-1)P(Pi)eiPi. (2.1.32.1)

Now we see that the following operators are in particular divergence free:

Lm = -tm+lat - m + ltm 0i E ,
n 1 (2.1.32.2)

1Q(i) = _tm+l/n, m E -- + Z.
n

It is easy to see that the corresponding field L(z) is a Virasoro field (of zero central
charge) and Q(i) (z) are primary fields of conformal weight (n + 1)/n.

With the prescription in [22], we associate to this formal distribution Lie algebra
a Lie conformal superalgebra Sn. We let Sn be the associated vertex algebra and we
see that we get a Nw = n vertex algebra by the above procedure. The difference now
is that if we define v = L(_ 1)10>= L_ 210> then since we have

[L(1), Qi)] = - I(Q(i))(_1) (2.1.32.3)

we get that the superfield associated to v is given by:

S ~~1
Y(v, z, 0) = L(z)+ - E i0zQ()(z)+ O(OiOj ) (2.1.32.4)

n

Remark 2.1.33. It is known that the Lie conformal superalgebra SN constructed above
admits a non-trivial central extension only when N = 2. In this case, considering
the corresponding vertex algebra we obtain what is called the N = 4 vertex algebra.
Not to confuse with the above notation we will call this algebra S2. The even part
of S2 is given by the Virasoro field L, and three currents of conformal weight 1, Ji,
(i = 0,1, 2) generating the current algebra for 1[2. In terms of vector fields as above
we have

Jn1 = tnol 3q,

J2 = tnO20o1 (2.1.33.1)

jn = t (a - 02) .
The odd part is generated by four fields of conformal weight 3/2, their Fourier modes
are given by:

Gn = -tn+l/2 0
i i = 1, 2,

Hn= tn+i/29& t- n+ t91 - 291 92
02, (2.1.33.2)

Hn = tn+l/22at -(n + 1/2) tn-/202019o,
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and the central extension of s2 is given by the following cocycle [15]:

j2C Ca, (L, L)~ Ca~(J~, 6(2.1.33.3)
2 6

tl(J°,J°) c2(G, H) = - (2.1.33.4)63

2.2 Supercurves
2.2.1. For a general introduction to the theory of supermanifolds and schemes, the
reader should refer to [29]. We are going to follow [7] for the theory of supercurves
over a Grassmann algebra A. The deformation theory of superspaces and sheaves
over them can be found in [34]. The relations between superconformal Lie algebras
and the moduli spaces of supercurves was stated in [35]. The reader may also find
useful the notes [13].

Definition 2.2.2. A superspace is a locally ringed space (X, Ox) where X is a topo-
logical space and Yx is a sheaf of supercommutative rings. A morphism of superspaces
is a graded morphism of locally ringed spaces. We will use X to denote such a su-
perspace when no confusion should arise. A superscheme is a superspace such that
(X, Ox,o) is a scheme, where from now on Ox,i denotes the i-th graded part of Ox,
i= 0 1.

2.2.3. Given a superspace (X, Ox) define / = x, + x,2'. Clearly ef is a sheaf
of ideals in (X, Ox) and the corresponding subspace (X, 69x/,/) will be denoted
(Xrd, aXrd) -

Example 2.2.4. Let R be a supercommutative ring, and let J = R1 + R2 be the ideal
generated by RI as above, then (Spec R, R) is a superscheme. Note that as topological
spaces Spec R = Spec R/J since every element in J is nilpotent ( we consider only
homogeneous ideals with respect to the Z/2Z-grading).

Definition 2.2.5 (cf. [29]). A supermanifold is a superspace (X, Ox) such that for
every point x E X there exists an open neighborhood U of x and a locally free sheaf
g of dxrd lu-modules, of (purely odd) rank 0[q such that (U, Oxlu) is isomorphic to
(Urd, SXrd (6) u). Here S(g) denotes the symmetric algebra of a (purely odd) vector
bundle.

2.2.6. An open sub-supermanifold of (X, Ox) consist of an open subset U C X and
the restriction of the structure sheaf, namely (U, xlIu).

2.2.7. In the analytic setting, the situation is easier to describe. The supermanifold
CPIq is the topological space CP endowed with the sheaf of supercommutative algebras
&[O1,... , 0q] where a' is the sheaf of germs of holomorphic functions on CP and Oi
are odd anticommuting variables. A supermanifold is a topological space XI with
a sheaf of supercommutative algebras Yx locally isomorphic to C P l q . Morphisms
of supermanifolds are continuous maps : IXI - IYI together with morphisms of
sheaves O : c*ay Ox'
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Let A = C[al,... , a,] be a Grassmann algebra as before. The Oln-dimensional
superscheme Spec A has as underlying topological space a single point. We will work
in the category of superschemes over A, namely super schemes S together with a
structure morphism S - Spec A. In the case when S is a proper, smooth of relative
dimension q super-scheme, we say that S is a N = q supercurve (over A).

Definition 2.2.8. More explicitly (cf. [7]), a smooth compact connected complex
supercurve over A of dimension uIN is a pair (X, Ox), where X is a topological space
and Ox is a sheaf of supercommutative A-algebras over X equipped with a structure
morphism (X, Ox) -+ Spec A such that:

1. (X, Ogd) is a smooth compact connected algebraic curve. Here 6xd is the
reduced sheaf of C-algebras on X obtained by quotienting out the nilpotents in

Ox

2. For some open sets Ua C X and some linearly independent odd elements 0 of
6x(Ua) we have:

X(U = O 0 A[01,..., ]. (2.2.8.1)

The Us, above are called coordinate neighborhoods of (X, Ox) and Z, = (zn, 1,.. ., 0N)
are called local coordinates for (X, Ax) if za (mod nilpotents) are local coordinates
for (X, xed). On overlaps U n Up we have:

z = F(za, 0), = (za, 09), (2.2.8.2)

where F3a are even and pa are odd. We will write such a change of coordinates as
Z, = p,O(Z~) with p = (F, Ji) where no confusion should arise.

2.2.9. A A-point of a supercurve (X, Ox) is a morphism Ao: Spec A -- (X, A'x) over A,
namely the composition of so with the structure morphism (X, Ox) -* Spec A is the
identity. Locally, a A point is given by specifying the images of the local coordinates
under the even A-homomorphism O: O'x(U,) - A. These local parameters (a =
'O (z,), 7r = Vo (0)) transform as the coordinates do in (2.2.8.2).

2.2.10. The N = q formal superdisk is an ind superscheme as in the non-super situ-
ation, namely, let R = C[t, 01, . . ., Oq] and let m be the maximal ideal generated by
(t, 01,..., Oq). We define the superschemes Dn = Spec R/mn+l and we clearly have
embeddings D (' +1 ) - D('). The formal disk is then

D = lim D . (2.2.10.1)
n-*OO

If we want to emphasize the dimensions of these disks we will denote them by D1 1.

2.2.11. Vector bundles of rank (plq) over a supermanifold (X, Ox) are locally free
sheaves g of Ox-modules over X, of rank plq. That is, locally, g is isomorphic to
AX ED (IHX)q where II is the parity change operator.

An example is the tangent bundle to a plq-dimensional supermanifold (X, Ox); it
is a rank plq vector bundle. Its fiber at the point x E X is given as in the non-super
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case as the subset of morphisms in Hom(D('),X) mapping the closed point in D(1)

to x. The cotangent bundle W of (X, A'x) is the dual of the tangent bundle.
Another example is the Berezinian bundle of a supermanifold (X, tYx). We will

define this bundle by giving local trivializations. Recall [13, §1.10] that given a free
module L of finite type over a supercommutative algebra A, the superdeterminant is
a homomorphism

sdet : GL(L) - GL(1I0) =- AO, (2.2.11.1)

defined in coordinates as follows: for a parity preserving automorphism T of Ap q with
matrix (MNL) we put:

sdet(T) = det(K - LN-1M) det(N) - l. (2.2.11.2)

With this definition we can now define the Berezinian of the module L as the following
A-module denoted Ber(L). Let {el,..., ep+q} be a basis of L where the first p elements
are even and the last q are odd. This basis defines a one-element basis of Ber(L)
denoted by [el ... ep+q] of parity q mod 2. Given an automorphism T of L we put

[Tel ... Tep+q] = sdet(T)[el ... ep+q]. (2.2.11.3)

This makes Ber(L) a well defined rank 110 A-module when q is even and a rank 011
A-module when q is odd. Now we can define the Berezinian bundle of (X, Ox) as
Berx = Ber(f).

The definition of coherent and quasi-coherent sheaves is exactly the same as in the
non-super case, in particular for super manifolds it follows that the structure sheaf is
coherent [34].

2.2.12. Given an N = supercurve (X, O'x) and an extension of Ox by an invertible
sheaf g:

0 &61 --* +g 0g , (2.2.12.1)
we can construct an N = 2 supercurve (Y, Oy) canonically. Its local coordinates
are given by (Z.,0 ,pa), where (z, 0,,) are local coordinates of X and p are local
sections of g. In each coordinate patch U we can construct the form dz, - d p,.
We say that the N = 2 supercurve (Y, Oy) is superconformal if this form is globally
defined up to multiplication by a function.

This happens if on overlaps Ua n U, we have (see (2.2.8.2))

0(o r oo p3 = sdet (0oF o) Pa + O (2.2.12.2)

Here sdet is the superdetermninant of an automorphism defined above, which can be
written as

sdet ( 0 F &Oq) = D DT- (2.2.12.3)

where D = + 0,9.
Conversely, if (2.2.12.2) is satisfied on overlaps, the cocycle condition is satisfied
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and we have an extension as in (2.2.12.1).
Therefore to each N = 1 supercurve (X, ex), we canonically associate a N = 2

superconformal curve (Y, dy).

From (2.2.12.2) we see that we have an exact sequence of sheaves on Y:

0 -- x --* (y -- Berx - 0, (2.2.12.4)

where Berx is the Berezinian bundle on (X, A'x). The last map D : Y - Berx is
given in the above local coordinates, by the differential operator Sp.

Introducing new coordinates

= - pa,
0. = (2.2.12.5)

Pa = Pa,

we obtain on overlaps Ua fl U:

DF(kQ t,3) Ji a,

D(~a ias ) D'I(ia, ~a) (°)g'(2.2.12.6)

,3=

where D = 0 + O&_ in local coordinates (z, 0, p) as above.
We see from (2.2.12.6) that y contains the structure sheaf of another N = 1

supercurve (X, t'i), whose local coordinates are (, &). We call (X, 'k) the dual
curve of (X, A'x).

Finally, we define an N = 1 superconformal curve as an N = 1 supercurve (X, A9x)
which is self-dual. We see from (2.2.12.6) that the transition functions F, I must
satisfy

DF = fTDI', (2.2.12.7)

for (X, Ax) to be superconformal. In this case the operator Do = O0o + aO~, trans-
forms as

Ds3= (D)-D~ (2.2.12.8)

hence in this situation the supercurve (X, A'x) carries a 01 1-dimmensional distribution
D such that D2 is nowhere vanishing (since D2 = ,9 in local coordinates).

Remark 2.2.13. An equivalent definition of N = 1 and N = 2 superconformal curves
was given by Manin [28] (under the name SUSY curves). Let X be a complex su-
permanifold of dimension II N (N = 1 or 2). When N = 1 we say that a locally free
direct subsheaf 31 C x (x is the tangent sheaf of X) of rank 011 for which the
Frobenius form

(g1)®2 -+ S := x/1', tl 0t 2 - [t1,t2] mod V (2.2.13.1)

is an isomorphism, is a SUSY structure on X.

32



When N = 2, a SUSY structure consists of two locally free direct subsheaves
5', '" of $x of rank Ol whose sum in Sx is direct, they are integrable distributions
and the Frobenius form

o't 0 5." - 5-x/(' ,l 5 "), tl t2 - [tl, t2] mod (' E 5") (2.2.13.2)

is an isomorphism.

Let (X, Ox) be an N = 1 supercurve and Da be and a family of vector fields in Ua,
such that Da and D2 form a basis for 5 x on Ua and D = G,gD, on Ua n up, where
Go is a family of invertible even functions. The sheaf defined by 5ll1u = u xD
is a SUSY structure in (X, Ox) [28]. In local coordinates as above, the vector fields
D = o, + 0

Q
0ZG satisfy these conditions when X is an N = 1 superconformal curve

(see (2.2.12.8)).

The N = 2 case is similar. Let (X, Ax) be an N = 2 supercurve and {D', Da}
be a family of vector fields such that D', [D', Da] generate 5 x in Ua and, moreover,
we have:

I2 2 2 f2 (Da)= faDa; (Da)= faDa; (2.2.13.3)
D' = F1,D D, = FaD~ on Ua n up (2.2.13.4)

where and Fa, are even functions. Putting 9'u = 'xD' and 1 juI = O'xD2
we obtain an N = 2 superconformal structure on (X, Ax). If the two distributions
S' and S" can be distinguished globally, the N= 2 superconformal curve is called
orientable and a choice of one of these distributions is called its orientation.

It is clear that the construction given in 2.2.12 gives an oriented N = 2 supercon-
formal curve; conversely, given such a curve, we can consider the functor X - X/S'
(recall that t' is integrable therefore this quotient makes sense). The duality that
was explained in 2.2.12 corresponds to the duality X/,' +-+ X/T '".

2.2.14. Recall [7] that a A-point of an N = 1 supercurve X transforms as an irreducible
divisor of the dual curve X. Indeed, an irreducible divisor of X is given in local
coordinates (zn, Oc) by expressions of the form P, = z, - , - 0,,p,. Two divisors
P. and P are said to correspond to each other in the intersection Uf t Up if in this
intersection we have

P,3(z,,O) = Pg(za,,O a)g(za,Og) (2.2.14.1)

for some even invertible function g(zc,, 0,) (we consider Cartier divisors). It is easy to
see that the parameters i,, pc, transform as in (2.2.12.6), namely as the parameters
of a A-point of X.

2.2.15. We can define a theory of contour integration on an N = superconformal
curve as in [19], [30], [32]. We describe briefly a generalization to arbitrary N = 1
supercurves due to Bergvelt and Rabin (cf. [7]). For simplicity we will work in the
analytic category. Let us define a super contour to be a triple F = (, P, Q) consisting
of an ordinary contour y on the reduction IXI and two Cartier divisors as in 2.2.14
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such that their reductions to IX I are the endpoints of y. If in local coordinates

P = z -P- 0*r, Q = -4-0, (2.2.15.1)

then the corresponding A-points of the dual curve X are given by (, *) and (, ~).
Let z = Prd and z = qrd be the equations for the reductions of these points, i.e. the
endpoints for y. We define the integral of a section w, = Df, of the Berezinian sheaf
of X (here we recall that D: Ax - Ber X) along F by:

rQ rQ
w = j Df = f(q, )- (P,*). (2.2.15.2)

Here we assume that the contour connecting P and Q lies in a single simply con-
nected open set Us. If the contour traverses several open sets then we need to choose
intermediate divisors on each overlap and we have to prove that the resulting integral
is independent of these divisors. In what follows we will only need the integration in
a sufficiently "small" open set U, (the formal disk around a point).

Dually, we can integrate sections of Berk along contours in X. Indeed, let -y be a
path in the topological space IXI and two A-points P, Q of X whose reduced parts are
the end-points of y. Let E Berk(U,) and suppose that -y lies in a simply connected
open Us. Then c2 = Df for some function f E 6'x(U,a), and we put

Q
;J = f(Q) - f(P). (2.2.15.3)

As it is shown in [7], this theory of integration can be understood in terms of a
theory of contour integration on the corresponding N = 2 superconformal curve (cf.
[11]). For this let X and X be an N = 1 supercurve and its dual. Let Y be the
corresponding N = 2 superconformal curve and denote by r and fr the corresponding
projections to X and X respectively. We have two short exact sequences of sheaves
in Y:

0 --* 7r* Ox --* y D-> f* Bert __ 0,o1r* y ~D * Berx -(2.2.15.4)

° -r * -*O 69Y or* Berx 0.

We can define a sheaf operator on effE2 by the component-wise action of the differential
operators (D-, D+). It is shown in [7] that for U a simply connected open in IYI = IXI
and (f, g) a section of #6 2 (U) such that (D-, D+)(f, g) = 0, there exists a section
H E 69y(U), unique up to an additive constant, such that (f, g) = (D-H, D+H). Let
.X be the subsheaf of eyE2 consisting of closed sections (f, g) as above. It follows that
X/ = 7r* Berx *D* Berk . A super contour in Y consists of a triple ( P, Q) where P

and Q are A-points of Y such that their reduced points are the endpoints of -y. If 'y
is supported on a simply connected open set U, then any section w E ,(U) can be
written as (D-H, D+H) and we put

Q = H(Q) - H(P),
Jw = H(Q) -H(P), (2.2.15.5)
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The extension to contours not lying in a single simply connected U is straightforward
but we will not need it.

2.2.16. We will define in general a superconformal N = n supercurve to be a curve
such that in some coordinate system Z, = (, O) the differential form

w = dz, + d O d (2.2.16.1)
i

is well defined up to multiplication by a function. It is easy to show that this definition
agrees with the definition above in the N = 1 and N = 2 cases (cf. §4.1.4 and §4.1.5).

A set of coordinates Z = (z, Oi) such that the form w has the form (2.2.16.1)
(up to multiplication by a function) will be called SUSY coordinates (or coordinates
compatible with the superconformal structure).

2.2.17. Let (X, Ox) be an N = 1 superconformal curve as above. Denote by ?
the sheaf of relative differential operators x -- x over A. If (zn, 0,) is a local
coordinate system, 0 is generated by D, in the sense that any section of 9 can be
locally written as E aD i where ai are A-valued functions. If ad $ 0 is the highest non-
zero coefficient in such expansion, we define the superorder sord of such an operator
to be d/2; in particular sord(.,o) (z) = 1.

Lemma 2.2.18 ([29]Lemma 4.3). Let (z, 0) and (z', 0') be two local coordinates on
an N = supercurve (X, Ox). We denote D = 8o + 0&. and D' = Oe, + 0'8z. The
following are equivalent:

1. (z, 0) and (z', 0') are compatible with the same (local) superconformal structure.

2. D'z = OD'O.

3. For some integer i > 0

sord(,e) ((D') 2 i+ 1 ) = (2i + 1) = sord(Z,,o,)(D 2 i+l). (2.2.18.1)

4. The induced filtrations of 9 by sord(.,0) and sord(z,,o,) coincide.

2.2.19. Let (z, 0) and (z', O') be two local coordinates compatible with a (local) su-
perconformal structure on an N = 1 supercurve (X, tx). Let G be the invertible
function such that

D = GD' (2.2.19.1)

We define the Schwarzian derivative of (z', 0') with respect to (z, 0) to be the (odd)
function

D3G DGD2G
- =2 (2.2.19.2)

Definition 2.2.20. A superprojective structure on an N = 1 superconformal curve
over A is a (maximal) atlas consisting of coordinates (za, 0,) compatible with the su-
perconformal structure (2.2.12.7) and such that its transition functions are fractional
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linear transformations, that is, changes of coordinates of the form:

, az + b+a9
g --

cz + d +/p39'
c 'yz + 6 + e9 (2.2.20.1)

O'= -yz + +eO
cz+ d +/ '

for some even constants a, b, c, d and e E A and some odd constants a, 3, -y and

6 E A, such that
a b al

sdetc d = 1 (2.2.20.2)
5y6 e

Proposition 2.2.21 ([29]Proposition 4.7). Let (z, 0) and (z', O') be two local coordi-
nates on (X, Ax). The following statements are equivalent:

1. (z, 0) and (z', 9') are compatible with a common superconformal structure and
0 = O.

2. (z, 0) and (z', 0') define the same superprojective structure.

2.2.22. Let (X, Ax) be a superconformal N = 1 curve with a superprojective struc-
ture. Let .7 C 5x be the locally free locally direct subsheaf of the tangent sheaf
9 x generated by the distribution D defined above. Put wi = g7(-i) We have an
operator L: w - + w2 defined as

L: aD - D3a* D- 2 (2.2.22.1)

Here D - 2 is a section of w 2 and not an operator. D is defined in terms of a coordinate
system locally as o +00, and the operator L is independent of the coordinates chosen
as long as they define the same superprojective structure. This operator L is called
the associated operator to the superprojective structure.

36



Chapter 3

Structure theory of SUSY vertex
algebras

In this chapter we develop the structure theory of SUSY Lie conformal algebras and
SUSY vertex algebras along the lines of 22] (see also 12] for a better exposition).
Proofs ae rather straightforwards adaptations of those in the vertex algebra case,
the only difficulty being the problem of signs.

3.1 Formal distribution calculus and notation

3.1.1. In what follows we fix the ground field to be the complex numbers C and N to
be a non-negative integer. Let 01,..., ON be Grassmann variables and I = {i 1,, ik}

be an ordered k-tuple: I _< il < ... < ik < N. We will denote

0 = il ... Oi , ON = 0 1. 0 N (3.1.1.1)

For an element a in a vector superspace we will denote (-1)a = ()p(a), where p(a) 
Z/2Z is the parity of a, and, given a k-tuple I as above we will let (-1)I = (l)k.

Given two disjoint ordered tuples I and J, we define or(I, J) = i±1 by

OIOJ = (I, J)OIUJ, (3.1.1.2)

and we define o(I, J) to be zero if In J 4 0. Also, unless noted otherwise, all "union"
symbols "U" will denote disjoint unions1 . It follows easily, by looking at OIOJ0 K, that
for three mutually disjoint tuples, I, J and K we have:

o-(I,J)o(I U J, K) = o(I, J U K)o-(J,K), (I, J) = (- 1)Ja(J, I). (3.1.1.3)

Here and further (-1)IJ stands for (-1)(wO(uJ).
We will denote by N \ I the ordered complement of I in 1, . . ., N} and define

1 This will not be true in section 3.5 where we analize NK = n SUSY vertex algebras
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a(I) := a(I, N \ I). It follows from the definitions then that

0 9IN-I = U() 0
N . (3.1.1.4)

3.1.2. Let Z = (z, 01,.. , N) and W = (w, (1, . . ., (N) denote two sets of coordinates
in the formal superdisk D = D1 1N. As before, all 9t and (J anticommute. We will
denote

Z- = (Z - W, 01 O ~1 oN _ N) znlI = znOI

(Z - W)ylJ = ( - w)i II(0 i (i) (3.1.2.1)
iEJ

Let C[[z]] be the algebra of formal power series in z, its elements are are series

Zn>O anZn with a E C. The superalgebra of regular functions in D is defined as
C[[Z]] := C[[z]] (g C[0 1 ,..., ON]. Similarly, we define the superalgebra C[[Z, W]] :=
C[[Z, W]] ( C[01, . .. , N ,CI , . ( N ] .

For any C-algebra R, we denote by R((z)) the algebra of R-valued formal Laurent
series, its elements are series of the form ZnEz anZn such that an E R and there exists
No E Z such that an = 0 for all n < No. If R is a field, so is R((z)). We denote
R((Z)) := R((z)) Oc C[01, ... , ON]. Denote also by C((Z))((W)) the superalgebra
R((W)) where R = C((Z)); its elements are Laurent series in W whose coefficients
are Laurent series in Z. Similarly we have the superalgebra C((W))((Z)).

Denote by C((z,w)) the field of fractions of C[[z,w]] and put C((Z, W)) :=
C((z,w)) c C[01 ,...,0N,,, O ... ,(N]. One may think of this superalgebra as the
algebra of meromorphic functions in the formal superdisk D212N. Given such a mero-
morphic function, we can "expand it near the w axis", to obtain an element of
C((Z))((W)). Indeed, C[[z,w]] embedds naturally in C((z))((w)) and C((w))((z))
respectively. Since C((z, w)) is the ring of fractions of C[[z, w]] and C((z))((w)) and
C((w))((z)) are fields, these embedding induce respective algebra embeddings

C((z))((w)) C((z,w)) ~ C((w))((z)). (3.1.2.2)

(A concrete example is given by (2.1.4.1)).
Tensoring with the corresponding Grassmann superalgebras, we obtain superal-

gebra embeddings

C((Z))((W)) C((Z, W)) - C((W))((Z)). (3.1.2.3)

Let ' be a vector superspace. An '-valued formal distribution is an expression
of the form

a(Z) = ~ z"Ia.1 , anli E . (3.1.2.4)
(nlI),nEZ

The space of such distributions will be denoted ' [[Z, Z-]]. We denote by C[Z, Z- 1] :
C[z, z-]®C[0l,..., ON ] the superalgebra of Laurent polynomials. A '-valued formal
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distribution is canonically a linear functional C[Z, Z - ] - V. To see this, we define
the super residue as the coefficient of Z-lN:

resza(Z) aN. (3.1.2.5)

This clearly satisfies
resz Oza(Z) = resz9oa(Z) O. (3.1.2.6)

Given a D-valued formal distribution a(Z) we obtain a linear map C[Z, Z - ] -+

given by

f (Z) 4 resz a(Z)f (Z). (3.1.2.7)
Conversely, every formal distribution arises in this way. Indeed we have:

resz Z' lIa(Z) = (I)a-l-njN\I- (3.1.2.8)

Therefore the formal distribution a(Z) can be written as

a(Z) E Z-1-nlN\a(nlI), (3.1.2.9)
(nlI),nEZ

where
a(nlI) = o(I) resz Znll a(Z). (3.1.2.10)

We can similarly define D-valued formal distributions in two variables, as expres-
sions of the form

a(Z, W) = E ZjIJWkIK ajIJ,klK, aIJ,kjK E /. (3.1.2.11)
(jilJ),(klK)

The space of such formal distributions will be denoted / [[Z, Z - ', W W-]].
Note that in the case = C, both algebras C((Z))((W)) and C((W))((Z)) are

embedded in C[[Z, Z -1 , W, W-1)]. We will denote by i,, and i,, the correspond-
ing embeddings of C((Z, W)) in C[[Z, Z - 1, W, W-l]]. When f(Z, W) is a Laurent
polynomial (that is a polynomial in z, z - w, w, w- 1 and the odd variables) then the
embeddings iz,,,f and i,,,,zf coincide on C[[Z, Z -I , W, W-1]]. Indeed, it is mmediate
to see that

C((Z))((W)) n C((W))((Z)) = C[[Z, W]][z- 1 , w-], (3.1.2.12)

where the intersection is taken in C[[Z, Z - ', W, W-l]]. The images under these em-
beddings are different for other functions, as we will see below in the case f(Z, W) =

(Z - W) 11N (cf. 3.1.5).
A eV-valued formal distribution in two variables is called local if there exists a

non-negative integer n such that

(z- w)na(Z, W) = 0. (3.1.2.13)
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3.1.3. Note that the differential operators z, 0 i and uw, ai act in the usual way on
the spaces C((Z,W)), C[[Z,Z-', W, W-l]]. For j E Z+ and J = (il. , jk) we will
denote

o;J = ¢0oi * , 
We define

J(J+Z) J(J+1)

W(IJ) = (- ) 2 ji' z _J)= (-1) 2 Zi lJ. (3.1.3.1)

One checks easily that the embeddings iz,, and iz defined above, commute with the
action of the differential operators MzJ and e9wJ.

Put
9W = (aw, 0¢,, , N) (3.1.3.2)

and for any V'-valued formal distribution f(Z), we define its Taylor expansion as:

f(Z) = e(Z-W)Owf(w), (3.1.3.3)

where
(Z - W)& = (z - w)&w + (Oi - ii

i

Expanding the exponential in (3.1.3.3) we obtain:

f(Z) = (-1)J(Z - W)WJ& IJO f(W). (3.1.3.4)
(jilJ),j>0

Remark 3.1.4. In the definition of formal distributions and super residues, we can
replace C by any commutative superalgebra A, and ' by any g-module. We see
immediately that the residue map is of parity N mod 2, that is, for X E .', and
u(Z) an '-valued distribution, we have:

resz xu(Z) = ( 1)xN reszu(Z). (3.1.4.1)

On the other hand, this residue map is a morphism of right -modules, namely:

reszu(Z)x = (reszu(Z))X (3.1.4.2)

Proposition 3.1.5. There exists a unique C-valued formal distribution 6(Z, W) such
that for every function f e V (Z) we have resz 6(Z, W)f(Z) = f(W).

Proof. For uniqueness, let 6 and 6' be two such distributions, then = 6 - 6'
satisfies resz 3(Z, W)f(Z) = 0 for all functions f(Z). Decomposing O(Z, W) =

/3nl1 ,mIJWmlJz n I, and multiplying by Zk lL we see that 3 -l1-kIN-L,mlJ = 0 for all
mIJ, hence 3 = 0. Existence will be proved below. [
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3.1.6. We define the formal d-function as the C-valued formal distribution in two
variables, given by

J(Z, W) -- (izw iwz)(Z-W) 11N= (iZ,W i,z) (0 ()Z -- W

It follows that

o(n6(Z, W) = !o)6(Z, W) = (iz,, - i.z)(z-W)-1-nN

This distribution has the following properties:

1. (Z - W)mIJO5W(Z, W) = 0 whenever m > n or J D I,

2. (Z - W)ilJ~I")6(z, W) = (I \ J, J) ( j lI \J )
6 (Z, W) if n > j and I D J,

3. J(Z, W) = (1)N6(W Z),

4. lYJ5(Z W) = (-l)i+N+J0/6(W, Z),

5. J(Z, W)a(Z) = 3(Z, W)a(W), where a(Z) is any formal distribution,

6. resz 3(Z, W)a(Z) = a(W),

7. exp ((Z W)A) n'I tIWnIJZ 

7. exp ((Z -W)A) (Z, W) = (A + Ow)nI'(ZW), where A = (A, X1,... , XN),
Xi are odd anticommuting variables, A is even, A commutes with Xi , and we
write

(Z- W)A = (z - w)A + E(O'-i x
i

(A + ow) ( + o, Xi + Ooi).
(3.1.6.3)

Proof. Writting 01 = OC ... O¢k we have

(Z - w)mJ6 l jI (Z, W) =
= (z - w)n! (i, - iz)(z - w)-1-n(0 _- ()JO( _ )N (3.1.6.4)

Now this clearly vanishes if m > 1 + n since then the two embeddings i,,, and iw,z
coincide on the regular function (z- )m- n- 1. The other factor is clearly zero if
J D I since for every j J \ I we have a factor (i0j - (j) in Q~(0 - )N. This proves
(1).
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In order to prove (2) we write:

(Z- W) jlJ a I6(Z, W) =
= n!(iz,w - iwz)(Z- w)j-l-n(O - ()J(- ()N =_

n!( ( j)! (n - j)(izw-iw,z)(Z - w)--(-) x

X (izw iwz)(ZW)--(jI\n-j) (N

J(J+ ) .nI
- (-1) 2 (J I \ J) (n -3I\JS(Z, W). (3.1.6.5)

This implies (2).
(3) is obvious and (4) follows from (3) easily. In order to prove (5) wee see

that from (1) we have z = w therefore we get (Z, W)zk = (Z, W)wk. On the
other hand, also from (1) it follows that (Z, W)Oi = 6(Z, W)( i. Hence (Z, W)OI =
6(Z, W)(I and we have proved that 6(Z, W)ZnII = (Z, W)W n I'. The result follows
by linearity now.

(6) follows by taking residue in (5). To prove (7) we first expand the exponential
in power series:

exp ((Z - W)A) lI 6(Z, W) =

= E (-1)J(Z - W)(J)AJI aIJ (Z, W) (3.1.6.6)
(jlJ),ji>O

Now using (2) we see that this is:

S (n) AiiJ(J, I \ J)wjll\J6(Z, W) (3.1.6.7)
(ijlJ),ijO

On the other hand we can expand the right hand side of (7) as:

(A + aW)nlI = (A + o,)n(x + o()' =

= E ( )Ai,9o-i,(J,I\J)Xa\J=
(jIJ),jO

= ( )AilJa(J, I \ J)w jl'\J (3.1.6.8)
(iIJ),i>0

Comparing with (3.1.6.7) we get the result. O
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Lemma 3.1.7. Let a(Z, W) be a local formal distribution in two variables. Then
a(Z, W) can be uniquely decomposed as

a(Z,W) = E (0wlJ)6(ZW))cjlJ(w), (3.1.7.1)
(jlJ),j>o

where the sum is finite. The coefficients cjlj are given by

cjlj(W) = resz(Z- W)jlja(Z, W). (3.1.7.2)

Proof. First we note that if a(Z, W) is local then the sum on the right hand side is
finite. Let b(Z, W) the difference between the right hand side and the left hand side
of (3.1.7.1). We find:

resz(Z- W)kIKb(Z, W) = resz(Z- W)kIKa(Z, W)-

-resz E (Z - W)kIK (WJ)6(Z, W)) Cjj(W)
(j[J),j>O

= CkIK(W)- resz (-kw J\K)(Z, W)) (j|J)(W)

= ckK(W) - resz d(Z, W)ckIK(W) O
(3.1.7.3)

where in the second line we have used (2) of 3.1.6. It follows that b(Z, W) has no
negative powers of z. Moreover, b(Z, W) is local, since a(Z, W) is, and the right hand
side of (3.1.7.1) is local by (1) of 3.1.6. We can write then

b(Z, W) = E ZjlJbjlj(W), (3.1.7.4)
(jJ),j>o

and since (z - w)nb(Z, W) = 0 we obtain:

z (k)zJlJwn-kbJ-klJ(W) = 0, (3.1.7.5)
j>k>O

which easily shows that b(Z, W) = O. Uniqueness is clear by taking residues on both
sides of (3.1.7.1). [

3.1.8. Let a(Z, W) be a formal distribution in two variables. We define its formal
Fourier transform by:

Z~wa(Z, W) = resz exp ((Z- W)A) a(Z, W), (3.1.8.1)

where A = (A, X,... ,XN), A is an even variable, and x i are odd anticommutative
variables, commuting with A.
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Expanding this exponential we have (recall (3.1.6.6)):

'A wa(Z, W) = resz Z AjlJ(Z - W)(jlJ)a(Z, W)
(jIJ),j>O

= E (-1)JNAjIJresz(Z - W)(J'J)a(Z,W) (3.1.8.2)
(jIJ),j>o

= E (_l)JNA(jlJ)cjlj(W)
(jIJ),j>O

where cjlj are defined by (3.1.7.2) and we write, as before

AiIJ - Xjxjl ... Xjk,A(IJ) ( J ) AilJ. (3.1.8.3)

Proposition 3.1.9. The formal Fourier transform satisfies the following properties:

1. sesquilinearity:

'zA w za(Z, W) = -AA, wa(Z, W) = [, ZA]a(Z W),
ZwOoia(Z, W) = -(-1)N Xizwa(Z, W) = (1)N[ z, w]a(Z, W).

(3.1.9.1)

2. For any local formal distribution a(Z, W) we have:

()N wa(W, Z) = w a(Z, W), (3.1.9.2)

= blzrwa(Z, W)I r=-A-aw, 

where -A -w = (-A - 7w, -Xi - ).

3. For any formal distribution in three variables a(Z, W, X) we have
A P_) 3193

.w9X-,wa(Z,W,X) = (_)NxA+r , Axa(Z, W, X), (3.1.9.3)

where F = (-y, 7 71,..., 7 N), with qi odd anticommutative variables and y is even
and commutes with rg, A + F is the sum (A + y, x i + ri), and the superalgebra
C[A, F] is commutative.

Proof. The proof of the first equality of the first line of (1) follows from (3.1.2.6). For
the second line we have

ZAwia(Z, W) = resz exp ((Z - W)A) 9oia(Z, W)
- resz (o, exp ((Z - W)A)) a(Z, W) (3.1.9.4)

= -resz Xi exp ((Z - W)A) a(Z, W)

= -(-1)NXiZ wa(Z, W)
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For the first equality of the second equation we have:

[,, zAKw]a(Z, W) = (-1 )N (resz 0¢i exp ((Z - W)A) a(Z, W)-

exp ((Z - W)A) o9Cia(Z, W)) =
= (-1I)N resz (¢i exp ((Z - W)A)) a(Z, W) (3.1.9.5)

=- XzAwa(ZW).

To prove (2) it is enough, by Lemma 3.1.7, to prove the statement when a(Z, W) =

(6W~J6(Z, W)) c(W). In this case we have:

o'wa(W, Z) = SAw (Z 6j(W, Z)) (Z) (3.1.9.6)

= Z'w(-l)+J+NwlJ6(Z, W)c(Z).

Now using (7) in 3.1.6 we can express the last expression in (3.1.9.6) as:

(-1) j+J+ N resz(A + 6w)jlJ6(Z, W)c(Z) =
(-l)j+J+JN+N(A + w)jlJ resz 6(Z, W)c(Z)

(-l)j+J+JN+N(A + &w)jJc(W). (3.1.9.7)

On the other hand we have

',wa(Z, W)[r=-A-aw =
= (-1)JN(-A - &w)jlJc(W) 

= (l)j+J+JN(A + aw)jlJc(W). (3.1.9.8)

The proof of (3) is straightforward:

X~wJw = resz exp ((Z - W)A) resx exp ((X - W)r) =
= reszresxexp((Z- W)A + (X- W)F) =

= (-1)N resx resz exp ((Z - X)A + (X- W)(A + F)) =
= (-1)N resx exp ((X - W)(A + F)) resz exp ((Z - X)A) =

- ()l~NdA+Px'Ax (3.1.9.9)
The sign (I-1)N appears when we commute the residue maps (recall that they have
parity N mod 2). C

3.2 SUSY Lie conformal algebras

3.2.1. Let g be a Lie superalgebra. A pair of g-valued formal distributions a(Z), b(Z)
is called local if the distribution [a(Z), b(W)] is local. By the decomposition Lemma
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3.1.7 we have for such a pair:

[a(Z), b(W)] = (jIWJ),6jŽOW ) j1W)

where
cjlj(W) = resz(Z - W)JlJ[a(Z), b(W)].

We define a(W)(jlJ)b(W) = CjlJ(W) and we call this operation the (J) product.
Let us also define the A-bracket of two g-valued formal distributions by

[aAb](W) = 9z'w[a(Z), b(W)], (3.2.1.3)

where zAw is the formal Fourier transform defined in 3.1.8.
definitions and from (3.1.8.2) that

[aAb] = E (-1)JNA(iJM)a(jlJ)b.

(jilJ),i>O

Note also that the A-bracket has parity N

It follows from the

(3.2.1.4)

mod 2 (this follows from the fact that
the residue map has parity N mod 2).

A pair (g, t) consisting of a Lie superalgebra g and a family a of pairwise local
g-valued formal distributions a(Z), whose coefficients span g, stable under all jJ-th
products and under the derivations 9z and 0i is called an Nw = N SUSY formal
distribution Lie superalgebra.

Proposition 3.2.2. The A-bracket defined in (3.2.1.3) satisfies the following prop-
erties:

1. Sesquilinearity for a pair (a(Z), b(W)):

[OZaAb] = -A[aAb]

[(o aAb] = -(-1)NXi[aAb]

[aAWb] = (w + A)[aAb]

[aAa¢ib] = (-1)a+N(a + Xi)[aAb]

2. Skew-symmetry for a local pair (a(Z), b(W)):

[bAa] = -(-1)ab+N[aAawb].

3. Jacobi identity for a triple (a(Z), b(X), c(W)):

[aA[brc]] = (l-)aN+N [[aAb]A+rc] + (-1)(a+N)(b+N)[br[aAc]],

where r = (-y, 71, ... , ,fN) and the superalgebra C[A, r] is commutative.
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Proof. In order to prove the first equation in (3.2.2.2) we expand:

[oiaAb] = zw[oia(Z), b(W)]

=zAw,9i [a(Z), b(W)] (3.2.2.5)

=-(--1) X z [a(Z), b(W)]
-(-l)NX,[aAb].

For the second equation we have:

[aA0¢ib]= 9ZAw[a(Z), ¢ib(W)]

= ZAW'(-)aC, [a(Z), b(W)]
- (-1)a ([Lzw,&i] + (-1)Na¢, w) [a(Z),b(W)] (3.2.2.6)

(1)a+N(Xi + fi)zAW [a(Z), b(W)]

= ( 1 )a+N (i + i ) [aAb].

Skew-symmetry follows from the skew-symmetry property of the Fourier transform
(3.1.9.2) as follows:

[bAa] = 9z,w[b(Z), a(W)]
-- (--l)abZW [a(W), b(Z)]

= _(_j~~~ab+NgjA-Bw ~~~(3.2.2.7)= (- 1 )ab+N
5 A-aw [a(Z), b(W)] ( )

= -- (--1)ab+N[aA-awb].

Finally, to prove the Jacobi identity we write:

[aA[brc]] ZA,w[a(Z), 9,w[b(X), c(W)]]
_IaNgA Pr,= (-1)aN ZwcX [a(Z), [b(X), c(W)]]

: (-)aNz,w.x,w[[a(Z), b(X)], c(W)]+
+ (-1) ab+aNAWXW[b(X), [a(Z), c(W)]] (3.2.2.8)

=_jaN+NgA+P gA= (-1)aN+N ~,+wJx[[a(Z), b(X)], c(W)]+
( l)ab+aN+bN+N g'WP A~-~, .. xXw[b(x)7,F [a(Z), c(W)]]

= (-1)aN+N [[aAb]r+Ac] + ( -1)(a+N)(b+N)[br[aAc]].

Iz

Definition 3.2.3. Let C[T, S] := [T, SI,., SN] be the commutative superalgebra
freely generated by an even element T and N odd elements Si. A Nw N SUSY
Lie conformal algebra is a Z/2Z-graded C[T, S]-module . with a C-bilinear operation
[ ^ ]: ®c 6 -- C[A] ®c 9 of parity N mod 2 satisfying the following three axioms:
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1. Sesquilinearity:

[TaAb] = -A[aAb] [aATb] = (T + A)[aAb] (3.2.3.1)

[SiaAb] = -(-1)NXi[aAb] [aASib] = (1)+N (Si + Xi ) [aAb] (3.2.3.2)

2. Skew-symmetry:
[bAa] =-(-1) ab+N [b-A-va], (3.2.3.3)

where V = (T, Si,... , SN), the A-bracket in the RHS means compute first the
F bracket and then let F =-A- V.

3. Jacobi identity:

[aA[brc]] = (-1)aN+N[[aAb]r+AC] + (-1)(a+N)(b+N)[br[aAc]]. (3.2.3.4)

We will drop the adjective SUSY when no confusion may arise.

Remark 3.2.4. Even though in this case the situation is simple, it is instructive to
realize the A bracket as a morphism of C[A]-modules. Consider the co-commutative
Hopf superalgebra J = C[A] with commultiplication AA = A 0 1 + 1 A, AXi =
Xi 1 + 1 Xi . Note that C[V] - J'. Consider JX as a 3-module with the adjoint
action (which is trivial in this case, given that Xf is super-commutative). Then we
may think of JO' 0 as an 3f module, the action is given by h F- Ah. Similarly

® 0 9 is an 3f-module. The A-bracket is then a y-module homomorphism of
degree (1)N. Namely, let b denote the morphism 9 0 ? -- Jh 0 which is given
by the A-bracket. Then for every h E we have

Obh - (- l)hN hO = 0, (3.2.4.1)

as elements in Hom(M 0 , )f 0 ). Similarly, the Jacobi identity is an identity in

Hom(M ® M ® 9, X ® 9 ® ). (3.2.4.2)

We will expand on this in Remark 3.5.10.

Remark 3.2.5. According to Proposition 3.2.2, given any Nw = N SUSY formal
distribution Lie superalgebra (g, s), the space 9 is a SUSY Lie conformal algebra
where T = A, and Si = ci, and the A-bracket is defined by (3.2.1.3).

Definition 3.2.6. A Lie superalgebra of degree p E Z/2Z is a vector superspace [

with a bilinear operation {, : 0 - of parity p satisfying:

1. Skew-symmetry: a, b} = -(-l1)ab+P{b, a}.

2. Jacobi identity: {a, b, c} } = (-1)aP+P { {a, b}, c} + (1)(a+P)(b +p) {b, {a, c} }.
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Lemma 3.2.7. Let be a Lie superalgebra of degree p E Z/2Z. Define g as a vector
superspace to be if p = 0 mod 2 or with the reversed parity if p = 1 mod 2.
Define the bilinear operation [, ] : g -+ g by:

la, b] = (- )aP+PIa, b} (3.2.7.1)

where the right hand side is computed in and then we reverse the parity if p = i.
Then (, [, ]) is a Lie superalgebra which we will denote as Lie(b).

Proof. We have:

[b,a] = (-1)bP+P{b,a = -(-1)bP+I{a,b} = -(-1)(+P)(b+P)[a,b], (3.2.7.2)

which is skew-symmetry for the Lie algebra provided the parity in g is shifted by p.
To check Jacobi identity we have:

[a, [b, c]] 

(1)Pb+ P{a, {b, c} = (-1)Pb+P{{ a, b}, c} + (-1)ab+P{b, {a, c}} =

(1)Pb+P+(a+b+P)P+aP[[a, b], c] + (-1)°+P+p+ [b, [a, c]] 

= [[a,b],c] + (-1)(a+P)(b+P)[b, [a,c]]. (3.2.7.3)

[

Lemma 3.2.8. Let A be a Nw = N SUSY Lie conformal algebra. Then R/V is
naturally a Lie superalgebra of degree N mod 2 with bracket

{a + V,., b + V I} = [aAb]A=o + V6. (3.2.8.1)

Proof. The fact that the bilinear map {, } is well defined follows from sesquilinearity.
Skew-symmetry and the Jacobi identity follow from the corresponding axioms for the
SUSY Lie conformal algebra . O

Lemma 3.2.9. Let ~2 be an Nw = N SUSY Lie conformal algebra. Let W =
(w, 1, . . , N) be formal variables as before, and consider the superalgebra of Laurent
polynomials C[W, W-']. Then .f := ( C[W, W- 1] is an Nw = N SUSY Lie
conformal algebra with A-bracket:

[a fAb 0 g] = (-)fb[aA+awb] 0 f(W)g(W')w,=w, (3.2.9.1)

and withT = T id + id 90,, and Si = Si id + id 0o¢,.
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Proof. We prove here skew-symmetry, the other axioms are checked in a similar way:

[a 0 fAb 0 g] = (-1)fb[aA+owb] 0 f(W)g(W)[wIw

= -(- )ab+N+fb [b- A-w-Va] f (W)g(W') w=w'

- -(-l)(a+f)(b+g)+N+ga [b-A-w-V-aw,+9, a] 0 g(W')f (W) w=w,
- _(_l)(a+f)(b+g)+N[b 0 g9-At-a f]

(3.2.9.2)
LI

3.2.10. For any Nw = N SUSY Lie conformal algebra ?, we put L(R) = 3/V.
and Lie(.V) := Lie(L(R)) (see Lemmas 3.2.7 and 3.2.8). For each a E , let a<,lI> E
L(R) be the image of a 0 W " I1 . Similarly define a(,lI) E Lie(M) as the image of the
following element of L(R)

(-l)aI r(I)a<,l,>, (3.2.10.1)

and define, for each a E , the following Lie(R)-valued formal distribution

a(Z) = E Z-lilN\Ja(jlJ) Lie(W)[[Z, Z- 1]]. (3.2.10.2)
jeZ,J

Using (3.2.9.1) with f = WWl and g - WkIK and putting A = 0 we compute explicitly
the Lie bracket (of parity N mod 2) in L(R):

{a<]I>, b<k[K>} = E (-)aJ+b(I-J)(n)
j_>O,J

x a(J, I \ J)o(I \ J, K)(a(jlJ)b)<n-j+klKu(I\J)> (3.2.10.3)

It is straightforward to check using Lemma 3.2.7, that the Lie bracket in Lie(R) is
given by:

[a(nlI), b(klK)] = (_l)(a+N - I)(N- K) E (_1)(I-J)(NJ) (n) x
(ilJ),ij>O

x a(I)r(J, I \ J)u (I \ J, (N \ K)\ (I \ J)) (a(jlj)b)(n+k-jIlKu(I\J)). (3.2.10.4)

Proposition 3.2.11. Let be an Nw = N SUSY Lie conformal algebra, a, b two
vectors in 2, and a(Z), b(W) the corresponding Lie(,V)-valued formal distributions
defined by (3.2.10.2). Then

[a(Z),b(W)] = E (OwI')(Z,W)) (a(Jlj)b) (W). (3.2.11.1)
j>O,J
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Proof. First we expand

s)( ,W= ) () (- 1)'-J(J)o(N\I,I\J)Z-l-nlN\Iwn-JlI\J (3.2.11.2)
nEZ,I

Now using (3.2.10.4) we have:

[a(Z), b(W)] = () (-1)(I-J)(N-J)(I)0t(J, I \ J)x
nEZ,J
kEZ,K

x o-(I \ J, (N \ K) \ (I \ J))Z-l-nN\IW-l-kN\K (a(jlj)b)(n+k-jIKu(I\J) (3.2.11.3)

On the other hand we have

W -1 - k lN\K - r(I \ J, (N \ K) \ (I \ J))Wn-jlI\JW-1-k-n+j(N\K)\(I\J) (3.2.11.4)

and, due to (3.1.1.3),

o(I)o-(J, I \ J) = (-1)(I-J)(N-I)o.(N \ I, I \ J)U(J). (3.2.11.5)

Now substituting (3.2.11.4) in (3.2.11.3) and using (3.2.11.5) we obtain (3.2.11.1). l

Proposition 3.2.12. Let A be an Nw = N SUSY Lie conformal algebra, then the
pair (Lie(s), ?) is an Nw = N SUSY formal distribution Lie superalgebra.

Proof. The fact that the family of distributions (3.2.10.2) is closed under (jlJ)-
th products and that they are pairwise local follows from Proposition 3.2.11 since
a(jlj)b = 0 for j > 0 in M. The fact that this family is closed under the derivations
0z, 6 i follows from the following identities wich are straightforward to check

(Ta)(jlj) -ja(j_11J),
(3.2.12.1)

(S'a)(jlJ) o-(ei, N \ J)a(jl\e,).

Li

3.2.13. Recall that we have defined (jIJ)-th products of formal distributions for j > 0
in 3.2.1. In order to define these products for j < 0 we let for a formal distribution
a(Z) = ZJlJajlJ:

a+ (Z) = E Zj lJa j lJ

(j IJ),j >0
=j ),i_ Za(3.2.13.1)

a_(Z) = E ZlJajlj
(jlJ)j<0

It follows easily from the definitions that

a+(W) = resz iz,.(Z -W)-lNa(Z), (3.2.13.2)
a_ (W) = - reszi ,,(Z - W)-llNa(Z).
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Indeed, we have

izw(Z- W)-IN - Z (-l)Jr(J)WmlJz-l-mN\J (3.2.13.3)
(mlJ),m>O

Hence:

resz i,(Z- W)-llNa(Z) =

-resz E (-1)J,(J)WmIJZ-l-mN\JznlIanI =
(mlJ),m>O
(nlI),neZ

=resz E (-1)jo(J)r(N \ J, J)WmIJZlNamj =
(mlJ),m>O

- WmljIamlj = a+(W). (3.2.13.4)
(mIJ),mO

The second equation in (3.2.13.2) follows similarly, or by noting that it is a conse-
quence of the first equation in (3.2.13.2), the definition of the 6 function (3.1.6.1) and
property (5) in 3.1.6. Differentiating (3.2.13.2) we find:

(-l)JN o/J)a(W)+ = o(J) resz iz,w(Z - W)-lI-jiN\Ja(Z),
1_1)JN,9.(jlJ) ~~~~~~~~~~~(3.2.13.5)(-1)JN oIJ)a(W)_ = -(J) resz iw,(Z - W)-l-jlN\Ja(Z).

These equations (3.2.13.5) are called the super Cauchy formulae.

Definition 3.2.14. Let V be a vector superspace. An End(V)-valued formal distri-
bution a(Z) is called a field if for every vector v E V we have a(Z)v E V((Z)), i.e.
there are finitely many negative powers of z in a(Z)v. For two such fields we define
their normally ordered product to be

: a(Z)b(Z) : := a+(Z)b(Z) + (-1)abb(Z)a_(Z) (3.2.14.1)

3.2.15. The normally ordered product of fields is again a well defined field. Indeed,
when applied to any vector v E V the first sumand in (3.2.14.1) clearly has finitely
many negative powers of z since b(Z)v E V((Z)) and a+(Z) has only non-negative
powers of z. For the second sumand we see that a_(Z)v E V[Z, Z-1], namely it is a
Laurent polynomial with values in V, therefore b(Z)a_(Z)v E V((Z)) as we wanted.

Lemma 3.2.16.

a(W)b(W) := resz (iz,(Z- W)-lINa(Z)b(W) -

-(-1l)ab. z(Z-W) l1lNb(W)a(Z)) (3.2.16.1)

52



Proof. By using (3.2.13.2) it follows that

a(W)b(W) : (resziz.,(Z - W)-lINa(Z)) b(W)-

-(-l)"b(W) resz i, (Z- W)lINa(Z) 
resz (iz,(Z- W)-IlNa(Z)b(W)-

-(-l)abi(Z- W)-IlNb(W)a(Z)) (3.2.16.2)

as we wanted. O

3.2.17. Given the last lemma and the Cauchy formulae (3.2.13.5) it is natural to define

a(W)(-1-jlN\)b(W) - (J)(-1)JN : ((j I)a(W)) b(W) . (3.2.17.1)

Differentiating (3.2.16.1) we find:

a(W)(-1-jlN\J)b(W) = resz ((i2,,(Z - W)-1- j N\J) a(Z)b(W)-
-(-l)ab (i,(Z - W) - 1- j lN\J) b(W)a(Z)). (3.2.17.2)

Similarly, from the definition of the jlJ-th products for j > 0 in 3.2.1 we have:

resz ((i,,(Z - W) j lJ) a(Z)b(W) - (-1) ab (iw,z(z - W)j lJ) b(W)a(Z)) 

= resz(Z - W) j lJ (a(Z)b(W)- (1)abb(W)a(Z)) =

= resz(Z - W)jlJ[a(Z),b(W)] = a(W)(jlJ)b(W). (3.2.17.3)

Therefore we have proved that for every j c Z and every tuple J we have:

a(W)(jlJ)b(W) = resz ((i,,(Z- W)j lJ) a(Z)b(W)-

-(-1)"' (i,,(Z-W) j lJ) b(W)a(Z)). (3.2.17.4)

Proposition 3.2.18. The following identities analogous to sesquilinearity for all
pairs j J are true:

(Owa(W))(jlj) b(W) = -ja(W)(_jllJ)b(W)

9W (a(W)(jlJ)b(W)) = (wa(W))(jlj) b(W) + a(W)(jlj)Dwb(W)

(&¢a(W))(jlj) b(W) = o-(J \ ei, ei)a(W)(jlJ\e,)b(W) (3.2.18.1)

Oi (a(W)(jlj)b(W)) = (_I)N-J ((ova(W))(.J)b(W) +

+(-)a5a(W)(lj) (ib(W))) 
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where e is the tuple consisting of only one element {i} and we recall that we are
defining (e, J \ el) to be zero if i V J.

Proof. The first two equations are standard and their proof is similar to the last two.
We will prove the last two equations by using (3.2.17.4). If i V J the result is obvious.

resz i,o(Z- W)JJ1 oia(Z)b(W) =-(-1)j resz (oiz,w(Z- W)ij J) a(Z)b(W)

=-(-1)Jo(ei, J \ ei)resziz,w(Z - W)jlJ\eia(Z)b(W). (3.2.18.2)

Similarly we have:

(-l1 )(a+1)b resz i,z(Z - W)J1Jb(W)Oia(Z) =
= ( 1)ab+ J resz (0iz(Z-W) jl J ) b(W)a(Z) 

= (-I)ab+Jo(ei, J \ ei)resz i,z(Z - W)lJ\eib(W)a(Z). (3.2.18.3)

Adding (3.2.18.2) and (3.2.18.3) we obtain:

(Ocia(TW))iJ) b(W) = -(-1)Jo(ei, J \ ei)a(W)(jl\ei)b(W). (3.2.18.4)

Finally, to prove the last relation in (3.2.18.1) we expand:

9( (a(W)(Jj)b(W)) = &9i resz ( ,(- W)Ja(Z)b(W)-
-(-l)abitz(Z- W)iJlJb(W)a(Z)) =

(-1)N resz (-o(ei, J \ ei)iz,(Z - W)jlJ\eia(Z)b(W)+

+(_l)J+ai .(ZW)jlja(Z)ib(W)-

(-1)a(ei, J \ ei)i.,(Z - W)jlJ\eib(W)a(Z)-
-(-l)ab+Ji..(Z _ W)j- Jib(W)a(Z)) =

=-(-1)Nu(ei, J \ ei)a(W)(jlJ\ei)b(W)+

+ (1)N+J+aa(W)(jlJ)&¢ib(W) =

= (-1) N - J ((0ia(W))(jlj) b(W) + (1)aa(W)(jlJ)0¢ib(W)). (3.2.18.5)

[]

Proposition 3.2.19. The following identity holds for any (J) and any three fields
a = a(W), b= b(W), c = c(W):

[aA(b(jlJ)c)] =

E (-1)(a+K+N)(J+N)or(J K)A(klK)[aAb(j+klJUK)C+
(klK),k>O

+ ()(a+N)(b+N-J)b(jlJ)[aAc]. (3.2.19.1)
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Proof. The left hand side is

resz exp ((Z - W)A) [a(Z), (b(W)(jlJ)c(W))] =

= resz exp ((Z - W)A) ([a(Z),resx i,,(X- W)ljb(X)c(W)]-

-(-1)'[a(Z), resx i.,,(X - W)j lJ c(W)b(X)]) =
(-l)a(N-J) resz resx exp ((Z - W)A) i.,.(X - W)Jlj[a(Z), b(X)c(W)]-

(-)bc+a(N-J) resz resx exp ((Z - W)A) i,x (X - W)j lJ [a(Z), c(W)b(X)]
(3.2.19.2)

Using the identity [a, bc] = [a, b]c + (- 1)abb[a, c] we can write the first term of the
RHS of the last equality as:

(-1l)a(N-J) resz resx exp ((Z- X + X- W)A) x

x i,,(X - W)jlj[a(Z), b(X)]c(W)+
+ (_ 1)a(N- J+b) resz resx exp ((Z - W)A) x

x i,(x - W)jlJb(X)[a(Z),c(W)] =
= (-l)a(N-J)+N+JN resx exp ((X- W)A) i,,.(X- W)lJ[aAb](X)c(W)+

+ ()a(N - J+b)+N+JN+bN resx ix,(X - W)jlJb(X)[aAc](W)
K(K+l)

(- l)( a+ N)(N - J) resx y (-1) AkIKX
(klK),k>O

i,(X- W)klK(x- W)JlJ[ab](X)c(W)+
(l)(a+N)(N - J+b) resx i., (X - W)JJb(X)[aAc](W) =

K(K+1)

: (-1)(a+N)(N- J)resx (-1) 2resx ~ k a(K, J) x
(klK),k>O k!

x AklKi , (X- W)k+JlKUJ[aAb](X)c(W)+

+ (_l)(a+N)(N - J+b) resx i.,(X- w)lb(X)[aAc](W) (3.2.19.3)

Similarly the second term in the RHS of the last equality of (3.2.19.2) can be written
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as:

- (- 1 )bc+a(N-J) resz resx exp ((Z - W)A) x

x i,(X - W)JJ[a(Z), c(W)]b(X) - (l)bc+a(N - J+c) resz res x

x exp ((Z - W)A) iw,x(X - W)J1Jc(W)[a(Z), b(X)] =

= -(-1)bc+a(N-J)+N+JN resx iwx(X- W)jJ[aAc]I(W)b(X)-

- (-1)bc+(a+N )(N-J+c) resx exp ((X - W)A) iw,x(X - W)JlJc(W)[aAb](X)

= (_1 )bc+(a+N)(N-J) resx ix(X- W)jlJ[aAc](W)b(X)-
K(K+l)

- (_)bc+(a+N )(N-J+ c) resx E (-1)k 2 x
(klK),k>O

x o(K, J)AklKi ,x(X- W)k+JKUJc(W)[aAb](X). (3.2.19.4)

Now adding (3.2.19.3) and (3.2.19.4) we get (recall that the A-bracket has parity
Nmod2):

K(K+1+2N)
(_)(a+N)(N-~J) 2 -1 2')(a+N)(NJ) (-1) + (K, J)AkIK[aAb](k+jlJUK)C+

(klK),kO

+ (-)(a+N)(N-J+b)b(jiJ)[aAc]. (3.2.19.5)

[]

Remark 3.2.20. If we multiply both sides of (3.2.19.1) by

J(J+1+2a)

j( 2 ', (3.2.20.1)

and sum over all pairs (jl J) with j > 0 we obtain the Jacobi identity for the A-bracket
that we have already proved in Proposition 3.2.2. Therefore, the identities (3.2.19.1)
for j > 0 are equivalent to the Jacobi identity (3.2.3.4).

Next we note that if we replace b by Ob in (3.2.19.1) we obtain the same identity
with j replaced by j- 1 whenever j < -1. Similarly, replacing b by Oib we obtain the
same identity with J replaced by J \ e. It follows the identity (3.2.19.1) is equivalent
to the Jacobi identity (3.2.3.4) and (3.2.19.1) with (jlJ) = (-1N). In this case the
formula (3.2.19.1) looks as follows:

A k
[aA : bc :1 = -E [aAb](k-1jN)C + (-1)(a+N)b : b[aAc] (3.2.20.2)

k>O

Rewriting the sum as the sum of the k = 0 term and the rest, this becomes:

[A
[aA: bc :] =: [aAb]c: +(-1)(a+N)b : b[aAc]: + [[aAb]rc]dr. (3.2.20.3)
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Here the integral f0A is computed by taking the indefinite integral in the even variable
y of N of the integrand, and then taking the difference of the values at the limits.
This is the super analogue of the non-commutative Wick formula [22]. Thus, the
identity (3.2.19.1) is equivalent to the Jacobi identity plus this non-commutative
Wick formula.

The following lemma is proved as in the ordinary vertex algebra case.

Lemma 3.2.21 (Dong's Lemma). Given three pairwise local formal distributions
a, b, c, the pair (a, b(jIlJ)c) is local for any (j I J).

3.3 Existence theorem.
In this section we define Nw = N SUSY vertex algebras and prove an existence
theorem as in the non-super case [22, thm. 4.5]. Recall the definition of a N = N
SUSY vertex algebra in 2.1.27:

Definition 3.3.1. An Nw = N SUSY vertex algebra consists of a vector superspace
V, an even vector 10>c V, N odd operators Si (the odd translation operators), an
even operator T (the even translation operator), and a parity preserving linear map

s s

Y from V to the space of End(V)-valued superfields a -+ Y(a, Z). The following
axioms must be satisfied:

* Vacuum axioms:

8

Y(a, Z)IO> = a + O(Z), (3.3.1.1)
TIO>= silo> = o, i = 1,..., N.

* Tanslation invariance
S $~~~~~

[St, Y(a, Z)] = &oiY(A, Z), (3.3.1.2)
5 8~ ~~ (3.3.1.2)

[T. Y(a, Z)] = a,,Y(a, Z).

* Locality

(z - w)n[Y(a, Z), Y(b, W)] = 0 for n >> 0 (3.3.1.3)

Morphisms between Nw = N SUSY vertex algebras are linear maps f: V1 - V2 such
that

f o T T2 o f
, (3.3.1.4)

f(Y 1 (a,Z)b) - Y(f(a),Z)f(b) Va,b V.

3.3.2. Given a Nw = n SUSY vertex algebra V, we can define the (J) product of
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two vectors of V as follows. We expand the field Y(a, Z) for a E V:

Y(a, Z) = Z-l-JN\JaUjJ), (3.3.2.1)
(jIlJ),iEZ

and define the jJ-product of two vectors in V as:

a(jj)b := a(jlJ)(b) (3.3.2.2)

This is a C-bilinear product on V of parity N- J mod 2. We can rewrite the axioms
of the vertex algebra in terms of these products. We will need only the vacuum axioms
and translation invariance. The vacuum axioms are equivalent to:

1O>(jIJ) a = j,_16J,Na, a(jlJ)lO> = 0 if j > 0, (3.3.2.3)
T10>= Si1O> = 0, a(_llN)10> = a. (3.3.2.4)

Translation invariance is equivalent to:

[T, a(jlj)] = -ja(jllj),

[S, a(jlJ)] = o(N \ J, ei)a(jlJ\e) if i E J, (3.3.2.5)

[S, a(jlj)] = 0 if i J.

These equations are obtained easily by expanding the fields as in (3.3.2.1) and using
(3.3.1.2).

Of course the fact that Y(a, Z) is a field is equivalent to a(jlj)b = 0 for j > 0,
given a, b E V.

Theorem 3.3.3. Let be a vector superspace and V a space of pairwise local
End(,?)-valued fields such that V contains the constant field Id, it is invariant under
the derivations oz, 0oi and closed under all (jlJ)-th products. Then V is a Nw = N
SUSY vertex algebra with vacuum vector Id, translation operators Ta(Z) = &za(Z)
and Sa(Z) = Ooia(Z), and the (jlJ) products are given by the RHS of (3.2.17.4)
multiplied by a(J)2.

Proof. To check the vacuum axioms we have (we fix j > 0 in these equations):

1l(-lN)a(Z) =: la(Z) := a(Z),

1(-1-jlN\j)a(Z) oc 1 a(Z) '- O,
1(jlj)a(W) = or(J) resz(Z - W)Jlj[1, a(W)] = O, (3.3.3.1)
a(Z)(jlJ)l = (J) resz(Z - W)jlJ[a(Z), 1] = 0,

a(Z)(-llN)l a(Z)(Z)1 := a(Z),
0zl = oi1 = 0.

2 This normalization becomes is necesary because of our choice in (3.2.17.1), see also theorem
3.3.9
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To check translation invariance we have:

oz9(a(Z)(jlj)b(Z)) - a(Z)(jlj)o9zb(Z) (a(Z))(jJ)b(Z), (3.3.3.2)

but this is -ja(Z)(jljj)b(Z), according to (3.2.18.1). Therefore we see that the first
equation in (3.3.2.5) holds (we recover actually this equation multliplied by r(J)).
For the odd tranlation operators we write (note that the parity of a(ijl) is a + N- J

$
since Y is parity preserving and our choice of decomposing the field in (3.3.2.1)):

o'(J) (9o (a(Z)(jjj)b(Z)) - (-1)a+N-Ja(Z)(jIJ) 0oib(Z)) =

= (_I)N-J(J) (O96 a(Z))(jj)b(Z), (3.3.3.3)

and again by (3.2.18.1) we see that this is

(- 1)N o(J)o-(e,, J \ ei)a(Z)(jiJ\e,)b(Z) 

=- a(N \ J, ei)to(J \ ei)a(Z)(jlj\e,)b(Z), (3.3.3.4)

and we have proved the second identity in (3.3.2.5). In order to check locality, we
expand

Y(a(W), X)b(W) = (J)X-l-JiN\Ja(W)(jJ)b(W)
(jlJ),jEZ

= resz E (_1)(N-J)No(J)X-1-j[N\Jx
(jIJ)jEz

X~~~~~~~~~~( I) abi" ' -x (i.,(Z- W)j1ja(Z)b(W) - l)abj (Z - W)jlJb(W)a(Z))

= resz E ()N-J.(J)(iz (Z- W)jlJX-I-jlN\Jx
(jlJ),jEZ

x a(Z)b(W) - (-1)abi~,,(z- W)jlJx--jlN\Jb(W)a(Z))
(3.3.3.5)

We note now that

iz, x E (_l)(N-J)o(J)(Z- W)JlIJX--jlN\J =
(jlJ),jEz

= iz,,6(Z - W, X). (3.3.3.6)

Therefore the RHS of (3.3.3.5) reads:

resz(iz,w(Z- W,X)a(Z)b(W)- (-1)abi~,z(Z - W,X)b(W)a(Z)). (3.3.3.7)

With this last equation we can compute then the commutator [Y(a(W)), Y(b(W))]c(W).With this last equation we can compute then the commutator [Y (a(W)), Y (b(W))]c(W).
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n X
Indeed, the product Y(a(W), X)Y(b(W), Y)c(W) is given by:

resz resu (iu ,wiz,w6(U- WX)6(Z- W, Y)a(U)b(Z)c(W)-

-(-1)b i~,wi - 1W, X)6(Z - W, Y)a(U)c(W)b(Z)-
-(-1)a(b+c)iw,uiz,w6(U - W, X)6(Z - W, Y)b(Z)c(W)a(U)+

+ (-1)a(b+c)+bciuiwz(U -W, X)6(Z - W, Y)c(W)b(Z)a(U)), (3.3.3.8)

S s
and we get a similar expression for the product Y(b(W), Y)Y(a(W), X)c(W). Sub-
stracting we obtain:

$ s
[Y(a(W), X), Y(b(W), Y)]c(W) =

resz resu (iu,wi,w6(U - W, X)b(Z - W, Y)[a(U), b(Z)]c(W)-

-(-)(a+b)ciw,uiwz6(U- W, X)6(Z - W, Y)c(W)[a(U), b(Z)]). (3.3.3.9)

Let n E Z+ be such tht (u- z)n[a(U), b(Z)] = 0. Multliplying (3.3.3.9) by (x - y)n
we obtain that the RHS vanishes. Indeed, using

(x -y) = (z -u) - ((z -w) - ) + ((u -w) -y), (3.3.3.10)
we see that all terms in the expansion of (x- y)n vanish when multiplyed by 6
functions, with the exception of (z- u) n. But this term vanishes when multiplied
by the factors [a(U),b(Z)] in (3.3.3.9). Therefore we have proved locality and the
theorem. [

Corollary 3.3.4. Any identity on elements of an Nw = N SUSY vertex algebra,
holds for any collection of pairwise local fields.

Lemma 3.3.5. Let V be a vector superspace and let 10 > be an even vector of V.
Let a(Z), b(Z) be two End(V)-valued fields such that a(Z)10 >E V[[Z]] and b(Z)10 >E
V[[Z]]. Then for all (jjJ), a(W)(jlJ)b(W)l0>E V[[W]] and the constant term is

or(J)a(jlj )b(_-1N)[0> (3.3.5.1)

Proof. Applying both sides of (3.2.17.4) to the vacuum, we see that the second term
on the RHS of (3.2.17.4) vanishes since it contains only positive powers of z. The
first term in the RHS contains only positive powers of w since iz,,(Z- W)j lJ does
and b(W)0>e C[[W]]. Letting W = 0 we get

a(W)(jlJ)b(W) 10> w=o = resz ZjlJa(Z) (b(-llN)10>) (3.3.5.2)
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It follows from (3.1.2.8) that the RHS of (3.3.5.2) is

0(J)a(jlj) (b(-l1N)jO>). (3.3.5.3)

The following lemma is straightforward

Lemma 3.3.6. Let A and B 1,..., BN be linear operators on a vector superspace
&'. Suppose that A is even and Bi are odd and they pairwise (super) commute, i.e.

ABi = BiA, BiBj = -BjBi. Then there exists a unique solution f(Z) ~[[Z]] to
the system of differential equations:

Of (Z) Af (Z) io, f (Z) = Bi f (Z) (3.3.6.1)

for any initial condition f (O) fo.

Proof. Using (3.3.6.1), the coefficients of f(Z) can be computed by induction, given

fo. [

Proposition 3.3.7. Let V be a Nw = N SUSY vertex algebra. Then for every
a,b V:

S

a. Y(a, Z) 0>= exp(ZV)a.

8 ~~~~~8
b. exp(ZV)Y(a, W) exp(-ZV) i= ,Y(a, Z + W).

8 8 S
c. Y(a, Z)(jlj)Y(b, Z)10>= o(J)Y(a(jlj)b, Z)10>,

where V = (T, S', .. .,SN) and ZV = zT + E OSi.

Proof. We note that both sides in (a) and (c) are elements of V[[Z]] whereas both
sides of (b) are elements of End(V)[[W, W-]][[Z]]. Note that by evaluating at Z = 0
we get equalities in all three cases, the only non-trivial case is (c) but it follows from
Lemma 3.3.5. Let us denote the right hand side in each case by X(Z). It is easy to
show that it satisfies the following systems of equations respectively:

1. 0,X(Z)= TX(Z), and 9oiX(Z) = S'X(Z).

2. o0X(Z) = [T,X(Z)] and i 6oX(Z) [Si,X(Z)] by the translation axioms.

3. a8X(Z) = TX(Z) and 0iX(Z) = SiX(Z) by the translation axioms (recall
TJ0>= SiO>= 0.

In order to apply Lemma 3.3.6, we have to show that the left hand side of (a), (b)
and (c) satisfies the same differential equations (1), (2) and (3) respectively;
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1.
S ~~S 

azY(a, Z)10>= [T, Y(a, Z)]10>= TY(a, Z)10>,

and
S 

o0iY(a, Z) = [Si , Y(a, Z)]10>= SiY(a, Z)10>.

by the vacuum and translation invariance axioms.
$

2. In the case of (b), denoting Y(Z) = eZVY(a, W)e - z v we have:

,9zY(Z) = TY(Z) - Y(Z)T == [T, Y(Z)],

and similarly:

, 0Y(Z) = SiY(Z) + (-1)aezvY(a, W)(-Si)e - z v
= Siy(Z) -(-1)aY(Z)Si = [Si,Y(Z)].

8 s
3. Denote Y(Z) = Y(a, Z)(jlj)Y(b, Z)I0> and recall that from Proposition 3.2.18,

the derivatives 0z and 90i are derivations of the (jIJ) products. To simplify
s S

notation, we will denote a(Z) = Y(a, Z) and b(Z) = Y(b, Z). We have:

SiY(W) = Siresz(iz,w(Z- W)JlJa(Z)b(W)IO> -

-(-1ab(Z - W)jlJb(W)a(Z)1O>)

= (1)N +J resz(iz(Z- w)jlJ[si, a(Z)]b(W)O10> +
+ (-1)aj,~(Z - w)lJa(z)[s', b(W)]10> -
-(--1)abiw(Z - w)IlJ[Si, b(W)]a(Z)0>-

- (__ l)ab+bi w,z(Z- W)J13b(W)[S',a(Z)] 10>),

and using SilO0>= 0

= (-1)N+Jresz(iz,w(Z- W)JlJ(Oia(Z))b(W)0O> +

+ (1)aiZ (Z- W)Jl3a(Z)(a¢ib(W))0> --(-l)abiw,z(Z- W)IlJ(aib(W))a(Z)10> -

(_ l)ab+biwz(Z-W)JlJb(W) (Ooia(Z)) 10>)

= (-1)N+J ((&ia(W))(jJ)b(W) + ()aa(W)(jIJ)(O9ib(W))) O>

= oai (a(W)(jlj)b(W)10>).

The proof for T is similar.

[
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Proposition 3.3.8 (Uniqueness). Let V be a Nw = N SUSY vertex algebra and let

a(Z) be an End(V)-valued field such that the pair (a(Z), Y(b, Z)) is local for every
b E V, and a(Z)10>= 0, then a(Z) = 0.

Proof. By locality there exists n E Z+ such that

9 $
(z - w)na(Z)Y(b, W)10>= (_1)ab(z _ W)ny(b, W)a(Z)10>= O. (3.3.8.1)

By proposition 3.3.7 (1) the left hand side is (z- w)na(Z)eWVb, Letting W = 0 we
get zna(Z)b = 0, and this holds for all b, therefore a(Z) =O. 2

As a simple corolary of the previous proposition and proposition 3.3.7 we obtain
the following

Theorem 3.3.9. In an Nw = N SUSY vertex algebra the following identities hold
$ s $

1. Y(a(jlj)b, Z) = o-(J)Y(a, Z)(j1J)Y(b, Z). This identity is called the (jlJ)-th prod-
uct identity.
a S S

2. Y(a(-llN)b, Z) =: Y(a, Z)Y(b, Z) 

3. Y(Ta, Z) = OzY(a, Z).
9a~ S3,

4. Y(S ia, Z) = oiY(a, Z).

5. We have the following OPE formula:

[Y(a, Z), Y(b, W)] = Y a(J)((WJ)6(Z, W))Y(a(jlJ)b, W)
(j,J),jIo

(zw -- i,z)(Z - W)-jlN\JY(a(jlj)b, W)
(jIJ),j>O

(3.3.9.1)
where the sum is finite.

Proof. (1) is the combined statement of Dong's lemma and Propositions 3.3.8 and
3.3.7 (c). (2) follows from (1) by letting jIJ =-11N. To prove (3) we write:

Y(Ta, Z) = Y(a(-2,N)I0>, Z) = Y(a, Z)(-21N) Id =

=: 69Y(a,Z)Id := OZY(a,Z) (3.3.9.2)

(4) follows similarly:

S s
Y(Sa, Z)= Y(a(-,N\e,) 0>, Z) =

(N \ e, e)(e, N \ e) Y(aZ)Id:= iY(aZ) (33.9.3)= -o-(N \ e,,ei)o(e2, N \ e,)(-1)N ' Oo Y(a, Z) Id := 801Y(a, Z). (3.3.9.3)
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Finally (5) follows from (1) and the decomposition Lemma 3.1.7

Corollary 3.3.10. Let ei = {i}. One has:

(Ta)(jlJ) = -ja(j-llJ)
(Sia)(jlj) = o(ei, N \ J)a(jlJ\e,)
T(a(jlJ)b) = (Ta)(jlJ)b + a(jlj)T(b)

S(a(jlJ)b) = (1) N - J ((Sia)(jl)b + (-1)aa(jlj)Sib).

Compare with (3.2.18.1).

Lemma 3.3.11.
i,(X - Z, W) = i",6(X, W + Z).

(3.3.10.1)

(3.3.11.1)

Proof. For simplicity let us assume N = 0, the general result follows easily. Denote:

= ixZixZW(X - W - Z)- 1 E C[[x, x -1, z, z- 1 W, W 1]],

O = iwzix,+z(X - w - z) - 1 E C[[x, x , z, z - , , w-]]
(3.3.11.2)

It is straightforward to check that both : and are elements of K[[z, w]] where
K = C((x)). On the other hand, since both compositions ix,zix-z,w and izixw+z are
algebra morphisms, we have

(x - w - z)(' - o) = 0, (3.3.11.3)

hence 0 = p, since K[[z, w]] has no zero divisors. Similarly, we have:

(ix,zi,~Z_ - iwzi+z,)(x - W - z)- 1 = 0,

[from where the lemma follows.

3.3.12. Taking the generating series in 3.3.9(1) we obtain for the left hand side:

(3.3.12.1)EzW 1-3-JlN\JY(a(JlJ)b, Z)= Y(Y (a , W)b, Z).
(jlJ),jEZ
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On the right hand side we obtain

W W-I-j[N\J(J) resx (ix,z(X -Z)J'Y(a, X)Y(b, Z)-
(jlJ),jEz

_- (_l-)abiz,x(X - Z)jlJb(Z)a(X)) 

- resx E ( 1)N\Ja(J)( ix,z(X - Z)jlJw--jlN\Jy(a, X)Y(b Z)
(jlJ),jEZ

-(-1) (x- Z)jIJW-l-N\JY(b,Z)Y(a,X)). (3.3.12.2)

But, according to (3.3.3.6), this is

a s a 
resx (ix,z6(X - Z, W)Y(a, X)Y(b, Z) - (-1)ai,x6(X - Z, W)Y(b, Z)Y(a, X)).

(3.3.12.3)
Using Lemma 3.3.11, the first term gives

s a

i,,zY(a, W + Z)Y(b, Z). (3.3.12.4)

In order to compute the second term we expand in Taylor series (cf. 3.1.3.3)

iZj(x- Z, W) = E (_l)KXkK(-K)j( - Z, W). (3.3.12.5)
(klK),k>O

Hence the second term in (3.3.12.3) reads:

- (-l)abresx (--)KXklK(klK)6(-Z W)Y(b, Z)X--nlN\Ia(nlII)
(klK),k>O

= -resx > (-1)ab+(N-I)(b+N-K)+Kao(K, N \ I)x
(klK),k>o

x Xk--'qKU(N\'?I)(K)*(--Z W)Y(b, Z)a(nlI) =

(-l)(a+N-K)b+N(4 K)K 6(Z:, W)Y(b, Z)a(klK). (3.3.12.6)
(klK),k>o

Adding this to (3.3.12.4) and changing Z by -Z we obtain the important formula

Y Y(a, W)b,-Z) = i,,zY(a, W - Z)Y(b, -Z)-

- y (-l)(a+N-K)b+N(K)O(klK)(Z, W)Y(b, -Z)a(kIK). (3.3.12.7)
(klK),k>O

Note now that by acting on any vector c E V and multiplying this last equation by
a sufficiently high power of (z - w) the second term vanishes, therefore we obtain

65



associativity for the vertex operators, namely:

(z - w)'Y Y(a, W)b,-Z c = (z - w)'Y(a, W - Z)Y(b, -Z)c, n >> O. (3.3.12.8)

As in [16, 3.2.3] we obtain an equivalent formulation which is called the Cousin
property. Recall the embedding:

iz, C((Z, W)) - C((Z))((W)). (3.3.12.9)

Corollary 3.3.13 (Cousin property). For any Nw = n SUSY vertex algebra V and
vectors a, b, c E V, the three expressions:$ s

Y(a, Z)Y(b, W)c E V((Z))((W))

(--)bzY(b, W)Y(a, Z)c E V((W))((Z)) (3.3.13.1)

Y Y(a, Z- W)b, W) c E V((W))((Z - W))

are the expansions, in the domains Izj > Iwi, wI > zi and Iwl > w - zi respectively,
of the same element of

V[[Z, W]][z- 1, w-1 , (z - w)-l]. (3.3.13.2)

Proof. By the locality axiom, there exists n E Z+ such that:

s s s s

(z - w)Y(a, Z)Y(b, W)c = (-1)ab(z -w)"Y(b, W)Y(a, Z)c. (3.3.13.3)

Since the LHS is an element of V((Z))((W)) and the RHS is an element of V((W))((Z)),
it follows that they are both equal to some %o E V[[Z, W]][z-1 , w-1] (cf. (3.1.2.12)).
Since iz and iwz are algebra morphisms, we get

Y(a, Z)Y(b, W)c = z,w (z , ) (-1 )abY(b, W)Y(a, Z)c = ,,, (z W)(z ~~-
(3.3.13.4)

The rest of the corolary is proved in a similar way, using (3.3.12.8). 0

Theorem 3.3.14 (Skew-symmetry). In an Nw = N SUSY vertex algebra the fol-
lowing identity, called skew-symmetry, holds

Y(a, Z)b = (-1)abeZvY(b, -Z)a (3.3.14.1)
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Proof. By the locality axiom we have for n > 0

(8 )Y(a, Z)Y(b, W)>8 (Z W)n()abY(bW)Y(aZ)0>(z w)"Y(a,Z)Y(b, W) 0>- (z- )"(-)a(b, W)Y(aZ)]O
Now by (1) in proposition 3.3.7 we can write this as:

8s a
(z - w)nY(a, Z)eWVb = (z- w) (_1)abY(b, W)eZVa

(z - w)n(_l)abezve-zvy(b, W)eZVa

(3.3.14.2)

(3.3.14.3)

= (- w)n(- 1)abezviw,zY(b, W- Z)a

where in the last line we used (2) in 3.3.7. Now both sides in (3.3.14.3) are formal
power series in W. Indeed, since b(jlJ)a = 0 for j > 0 we see that by making n large
enough we may assume that there are no negative powers of w in the RHS. We can
then let W = 0 in (3.3.14.3) and multiply by z - to obtain (3.3.14.1). 0

3.3.15. Expanding both sides in (3.3.14.1) we have:

Y(a, Z)b =

E z-l-jlN\Ja(jlJ)b =
(jlJ),jEZ

(-1)abezvY(b,-Z)a

(-l)ab( V(jlJ)zJlJ)x
(jlJ)j>o

( E (_Z)-l-klN\Kb(l)a)
(klK),kEZ

(-l)ab (_1)+k+N-KV(jlJ)X
(iJ).i~o

(klK),kEZ

(3.3.15.1)

x o(J, N \ K)Zj-l-klJU(N\K)b(kiK)a

Taking the coefficient of Z -1 - n lN\I on both sides we get:

j IJn=.iŽo,jnl=O

(_I)I-n+N+J-Ix

x (-V)(jlJ)o(N \ (I U J), J)b(n+jlIuJ)a(3.3.15.2)

In particular, when (nI) = (-1N) in (3.3.15.2) we get:

:ab: -(-)b ' :ba :=(-)' E
j>l

equivalently:

: ab: -(-1)" : ba :

(jT)i b(_l+jlN)a,

= y [aAb]dA.
-v

This last identity (3.3.15.4) is called quasi-commutativity of the normally ordered
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product.
3.3.16. Define the following formal Fourier transform by

FzAa(Z) = resz eZAa(Z). (3.3.16.1)

It is a linear map from the space of V-valued formal distributions in Z to &[[A]]. It
has the following properties which are immediate to check:

FzAz a(Z) = -AFza(Z), (3.3.16.2)

Fzoia(Z) = -(-1)NXiFza(Z), (3.3.16.3)
FA (eZva(Z)) - FA+Va(Z) if a(Z) E i((Z)), (3.3.16.4)

FzAa(-Z) = -FzAa(Z), (3.316.5)

FA (O('iJ)6(Z, W)) = (-l)JNeWAA( j l ) (3.3.16.6)_1)J~~e A~~jlj). ~(3.3.16.6)

Theorem 3.3.17. Let V be a Nw = N SUSY vertex algebra. Then V is a Nw = N
SUSY Lie conformal algebra with A-bracket:

[aAb] = FZY(a, Z)b = (-1)JNo.(J, N \ J)A(jlJ)(a(jlJ)b). (3.3.17.1)
(jilJ),j>O

Proof. The sesquilinearity relations follow from Corolary 3.3.10 for j > 0. Applying
FzA to both sides of (3.3.14.1) and using (3.3.16.4) and (3.3.16.5) we get the skew-
symmetry relation. In order to prove the Jacobi identity, apply FzA to the OPE
formula (3.3.9.1) applied to c, and use (3.3.16.6) to obtain:

[aAY(b, W)c] = (l) abbN(b, W)[aAc] + eWAY([aA b], W)c. (3.3.17.2)

Applying Frw to both sides of this formula we get the Jacobi identity. O

Theorem 3.3.18. Let V be a Nw = N SUSY vertex algebra. The following identity
called "quasi-associativity" of the normally ordered product holds for every a, b, c E V:

:: ab: c: - : a: bc ::= Ea(-2-jN) (b(jlN)c) + (l-)ab E b(-2-jN) (a(jlN)c)
j>O j>O

(3.3.18.1)
Equivalently

ab: c: - : a: bc ::= ( dAa [bAc] + (l)ab ( dAb [aAc], (3.3.18.2)

where the integral is computed as follows: expand the A-bracket, put the powers of A
on the left, under the sign of integral. then take the definite integral by the usual rules
inside the parenthesis.
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Proof. Applying both sides of 3.3.9 (2) to c and taking the constant coefficient, the
LHS is :: ab: c:. By (3.2.14.1), the RHS of 3.3.9 (2) applied to c is

(-j)(N-K)(a+N-J)(N \ J, N \ K)Z-2-J-kIlN\(nK)a(jIj) (b(klK)c) +
j<O,J

k,KUJ=N

+ (1)(N-J)(b+N-)+%.(N \ K, N\ J)Z-2-j-kIlN\(nK)b(kIK) ((jlj)c).
j>oJ

k,KUJ=N

(3.3.18.3)

To compute the constant coefficient in the last formula, we need K J N, and
k -2 -j, we get

a(2-jIN) (b(jlN)c) + (1)ab b(_2-jIN) (a(jIN)c) (3.3.18.4)
j__-i j>0

Noting that the term with j -1 in the first summand in the last formula is: a: bc ::,
the theorem follows. 

We thus arrive to the following equivalent definition of an Nw = N SUSY vertex
algebra (cf. [2])

Definition 3.3.19. An Nw = N SUSY vertex algebra is a tuple (V, T, Si, [A], 10>
,::), i = 1, .. N, where

* (V, T, Si, [A']) is an Nw = N SUSY Lie conformal algebra,

* (V, 10 >, T, Si, ::) is a unital quasicommutative quasiassociative differential su-
peralgebra (i.e. T is an even derivation of :: and Si are odd derivations of

* the A-bracket and the product :: are related by the non-commutative Wick
formula (3.2.20.3).

Proof. We have shown that this definition follows from Definition 3.3.1. For the
converse, we refer the reader to [2], the proof carries over to the SUSY case with
minor modifications. [

Removing the "quantum corrections" we arrive to the following definition

Definition 3.3.20. An Nw = N Poisson SUSY vertex algebra is tuple (V, 10 >
,T,S i,{'A'}, '), where

* (V, T, Si, {.A }) is an Nw = N SUSY Lie conformal algebra,

* (V, 0>, T, Si, ) is an unital commutative associative differential superalgebra,
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* the following Leibniz rule is satisfied:

{aAbc} = {aAb}c + (-1)(a+N)bb{aAc}. (3.3.20.1)

Theorem 3.3.21. Let V be an Nw = N SUSY vertex algebra. For each a, b E V,
k E Z and K C {1, . . ., N}, the following identity, called Borcherds identity holds:

(iZ,W(Z - W)klK) Y(a, Z)Y(b, W) - (-)ab (iwz( - W)kIK) Y(b, W)Y(a, Z) =

= E a(J, K)a(J UK)
j>O,J

(O¢J)6(Z, W)) Y(a(k+jIKuJ)b, W).

Proof. The LHS of (3.3.21.1) is local since multiplied by (z-w) n for n > 0 it is equal
to

(Z - W)+kIK[Y(a, Z), Y(b, W)] = 0, (3.3.21.2)

by the locality axiom. Therefore we can apply the decomposition Lemma 3.1.7 to the
LHS of (3.3.21.1). We have

cjlJ(W) = u(J, K) resz ((i,(Z - W)k +J IKUJ) Y(a Z)Y(b, W)-

-(-1)aba(J, K) (i,z(Z - W)k+jIKUJ) Y(b, W)Y(a,

therefore the theorem follows from (3.2.17.4) and Theorem 3.3.9 (1).

Proposition 3.3.22. Let V be a Nw = N SUSY vertex algebra. Then

8
[a(nl~), Y(b, W)] = S (-1)JN+IN+IJo(J) x

(jiJ),jŽO

X aI) ,0(lJ~nlIY (a(jlj)b, W) (3.3.22.1)

If, moreover, n > 0, this becomes:

[a(),Y(bW)] =
[a(nlI), Y(b, W)] = Y(eS w va(nl )e vb, W ).Yv-w'va WVe , 

Proof. Multiplying the OPE formula (3.3.9.1) by Z n lI and taking residues we obtain
in the left hand side $

o(I)[a(n~,), Y(b, W)]. (3.3.22.3)
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While the right hand side is

resz E (-1)I(N-J)(J)(O([J)6(Z W)ZnI)Y(a(jJ)b, W) 
(uIJ),j>o

= resz E (-)I'(N-J)a(J)(0(WjJ)j(Z' W)WnlI)Y(a(JJ)b' W) =
(ji J),j O

-E (-1)'(N-J)+3Nt(J)(O(jJ)WlI')Y(a(jlJ)b' W ) (3.3.22.4)
(jlJ)j>0

From where (3.3.22.1) follows. To prove (3.3.22.2) we note first that from Dong's
lemma 3.2.21 the commutator on the left hand side is local with all the fields of the
vertex algebra. To apply the uniqueness theorem, we need to check that both sides
agree when valuated at the vacuum vector. The left hand side is given by

B

[a(nl,0 Y(b, W)] 1 >= a(nlI)eWvb, (3.3.22.5)

where we used the fact that a(nlI)0 >= 0 and Proposition 3.3.7 (1). On the other
hand, by the same proposition the left hand side is

$
Y(e - wva(nI)ewv, W) 10 >= ew v e - wva(nlI) e w v O1>, (3.3.22.6)

and (3.3.22.2) follows. []

Remark 3.3.23. As a consequence of (3.3.22.1) we see that by taking the coefficient of
W - 1 - k IN\K we obtain the commutator [a(,II), b(kIK)] as a linear combination of Fourier
modes of fields in V. This rather complicated formula says that the linear span of
Fourier modes of End(V)-valued fields is a Lie superalgebra. In order to compute
explicitly the Lie bracket, we compute the coefficient of W -1 - k lN\K on the left hand
side of (3.3.22.1) to obtain:

(- 1)(a+N-I)(N-K)[a( I) b(kIK)]. (3.3.23.1)

To compute this coefficient on the right hand side we first expand:

JI(J-1)t
(&,J|WnII)W-1-IN-\L (- 1) n(n-j)!

x o(J, I \ J)o-(I \ J, N \ L)Wn- j-l - l I(I\J)u(N\L). (3.3.23.2)

Note that in order for the corresponding term in (3.3.22.1) not to vanish, we must
have J C I and in order for the coefficient of W - 1- k lN\K not to be zero in (3.3.23.2) we
must have KnI C J. Now we set then n-j-l-1 = -1-k and (I\J)U(N\L) = N\K
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and we obtain = n + k - j and L = K U (I \ J). We get then for the right hand side

E (-1)(J+I)(N-J) ( er(J)oa(I)x
(jIJ),j>0o

x u(J I \ J)u(I \ J, (N \ K) \ (I \ J))(a(jlJ)b)(n+k-jlKU(I\J)) (3.3.23.3)

Combining with (3.3.23.1) we obtain:

[a(nlI), b(kIK)] =(-)(a+N-I)(N-K) E (_1)(I-J)(N-J) (n)(J)x
(j[J),j>O

x co(I)o(J, I \ J)a (I \ J, (N \ K) \ (I \ J)) (a(jlj)b)(n+k-jlKu(I\J)) (3.3.23.4)

3.3.24. We can define the tensor product of two Nw = N SUSY vertex algebras in
the usual way, namely, let V and W be two Nw = N SUSY vertex algebras. Their
tensor product is V O W as a vector space. The vacuum vector is I0>v 010 >w. Let

8 $

us denote Yv and Yw the corresponding state-field correspondences. We define the

state field correspondence Y for V 0 W as

s 8 s
Y(a 0 b, Z) = Yv(a, Z) 0 Yw(b, Z) =

= (-1)a(N-K) (N \ K, N \ J)Z-2--kl(N\(JnK))a(jj) 0 b(klK), (3.3.24.1)
(jlJ),(klK)

where the endomorphism a(jlj) 0 b(klK) is defined to be

(a(jlj) 0 b(kIK))(v 0 w) = (_)(b+N-K)va(jlJ)v 0 b(klK)W, (3.3.24.2)

and, as usual, the Z/2Z-grading of V 0 W is the sum of those of V and W. Note
that in order for a not to vanish in (3.3.24.1) we must have J U K = N. Finally, we
let the translation operators be T = Tv ® Id + Id 0 Tw and Si = S ® Id + Id ® Sv.
All the axioms of SUSY vertex algebra are straightforward to check.

Theorem 3.3.25 (Existence). Let V be a vector superspace, 10 >E V an even vector,
T an even endomorphism of V and S i, i = 1,...,N, odd endomorphisms of V, pair-
wise anticommuting between themselves and commuting with T. Suppose moreover
that T0IO>= Sil0>= 0. Let 5 be a family of End(V)-valued fields

aZ(Z) = Z-l-jN\Ja] (3.3.25.1)
jeZ,J

indexed by a E A, such that

1. a(Z)O0> Iz=o = aa E V,

72



2. [T,at(Z)] = &zaa(Z) and [S'i, a(Z)] = Ooia(Z).

3. all pairs (a(Z), a(Z)) are local

4. all the following vectors span V

a j) . . a(rojl1)I . (3.3.25.2)a(j.l U [0

Then the formula

S
vs aY(a"' I j) ... a j j)10>, Z) =

= o (Ji)a" (Z)(38IJ)( a(j2.J 2) (a' ' J1) Id) ... ). (3.3.25.3)

gives a well defined structure of an Nw = N SUSY vertex algebra on V, with vacuum
vector 10>, translation operators T, Si, and such that

$
Y(aa, Z) = aa(Z). (3.3.25.4)

Such a structure is unique.

Proof. Let J be the minimal family of pairwise local End(V)-valued fields containing
5, closed under all (jlJ)-products and closed under the derivations O, and oSi. By
Theorem 3.3.3, $ is an Nw = N SUSY vertex algebra. Define a map ': --+ V
by a(Z) -- a(Z)10 >z=o. This map is injective by the uniqueness Proposition 3.3.8

and surjective by (4). We obtain thus a state-field correspondence Y a - Y(a, Z).
Formula (3.3.25.3) follows from the (jlJ)-product identity in Theorem 3.3.9 (1). [I

3.4 The universal enveloping SUSY vertex algebra
In this section we construct maps o and p' used in the next chapters, and we construct
an Nw = N SUSY vertex algebra attached to each N = N SUSY Lie conformal
algebra.

Definition 3.4.1. Let .W be a unital associative commutative superalgebra with an
even derivation T, odd anticommutative derivations Si, i = 1,... ,N, commuting

with T. Then (', 0>= 1, T, S i, Y(a, Z)b = (ezva) b) is an Nw = N SUSY vertex

algebra, called holomorphic.

3.4.2. Let V be an Nw = N SUSY vertex algebra. According to Theorem 3.3.17
it is a SUSY Lie conformal algebra. It follows by Proposition 3.2.12 that the pair
(Lie(V), V) is an Nw = N formal distribution Lie superalgebra.

Recall that Lie(V) = V/VV where V = V c C[X,X - '] and VV is the space
spanned by vectors of the form:

Ta f(X) + a 0 69f(X), Sia ® f(X) + (-1)aNa O,7 f(X), (3.4.2.1)
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for a E V, f(X) E C[X,X-1].
Let a: Lie(V) - End(V) be the linear map defined by

a<nlr > = a ( Xn' I' (-1)aIa(I)a(nlI), a E V. (3.4.2.2)

Similarly, we construct V ®c C((X)) and consider its quotient Lie'(V) by the vector
space generated by vectors of the form (3.4.2.1). Then (3.4.2.2) defines a map p':
Lie'(V) End(V). Comparing (3.2.10.4) and (3.3.23.4) and noting the extra factor
a(J) in (3.3.17.1) we obtain the following

Theorem 3.4.3. The maps o, and (' are Lie algebra homomorphisms.

3.4.4. Let . be an Nw = N SUSY Lie conformal algebra, and let (Lie(g), 6) be the
corresponding Nw = N formal distribution Lie superalgebra (cf. Proposition 3.2.12).
Recall that the Lie bracket in Lie(s) is given by (3.2.10.4). In particular we see that
Lie(S) has a subalgebra Lie(.)_ spanned by all Fourier modes a(jlJ) with j > 0.
Note also that from (3.2.12.1) it follows that V Lie(S)_ C Lie(g)_. We extend the
derivations T, St to the universal enveloping algebra U(Lie(6)) of Lie(g) by Leibniz
rule.

Theorem 3.4.5. Let 2 be an Nw = N SUSY Lie conformal algebra. Let V = V()
be the quotient of U(Lie(M)) by the left ideal generated by Lie(g)_. Then V admits
an Nw = N SUSY vertex algebra structure whose vacuum vector is the image of 1 in
V. This vertex algebra is called the universal enveloping vertex algebra of M.

Proof. Recall that Lie(g) is an Nw = N formal distribution Lie superalgebra (cf.
Proposition 3.2.12), in particular, the distributions (3.2.10.2) are pairwise local and
translation invariant. We need to check that the distributions (3.2.10.2) are End(V)-
valued fields. Indeed for any b(klK) E Lie(g) we have from (3.2.10.4) that for any
a E A, [a(nlI), b(k,K)] E Lie(g)_ for n >> 0 since a(jlJ)b = 0 for j > 0 hence we can
make n + k - j > 0. It follows that a(Z)b has finitely many negative powers of z. For
products bI(jl) ... b.klj k) we proceed by induction. Now the theorem follows easily
from the existence theorem 3.3.25. LI

3.5 NK = N SUSY vertex algebras
3.5.1. In this section we develop the structure theory of NK = N SUSY vertex
algebras. This algebras have been studied, in some particular cases, in the physics
literature. Roughly speaking an NK = N SUSY vertex algebra is an Nw = N SUSY
vertex algebra, but instead of 0 0i, we consider the differential operators

D = D = 0o, + Oiaz. (3.5.1.1)

To describe the corresponding SUSY Lie conformal superalgebras, perhaps the
language of H-pseudoalgebras is more convenient [1]. On the other hand, we are
interested in their universal enveloping vertex algebras and in particular we want a
description along the lines of the previous sections.
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In order to have a uniform notation between this section and the previous ones,
given two sets of coordinates Z = (z, 0i) and W = (w, (i) we will denote

N\

Z-W= Z-w-EOii Oj-(j)
N=1 (zji~) (3.5.1.2)

(Z-W)jJ= z -E i( ) (Oi 
i=l iEJ

As before, we define
ZJlJ := z j0J .

Note that
N (N )kl

(Z -W -0 =E (z- w)k1 (3.5.1.3)

therefore (Z- W)-1 1N agrees with our previous notation:

(Z - W)-1 1N -= (0 - )N (3.5.1.4)z-w
The differential operators D' satisfy the commutation relations

[DZ, DJz] = 26i,jOZ, (3.5.1.5)

and, as before, we denote for J (jl,..., jk)

J(J+1)

Dz(&,O,..., DzN), DIJ .=O .. Jz, D(jlJ)= (-1) D

(3.5.1.6)
Ocasionaly, when j = 0 in (3.5.1.6) we will write DOJ = DJ.

Finally, in this section we will consider not necessarily disjoint subsets I, J c
{1,... , N} as in the Nw = N case. Given I and J, ordered subsets of {1,..., N}, we
will write IAJ = (I \ J) U (J \ I). We will use the same formal 6 function J(Z, W) as
before. Remarkably, the new binomial (Z- W)j l , given by (3.5.1.2) "behaves" with
respect to the operators DjlJ in the same way as the old binomials (3.1.2.1) with

respect to 9IJ.

Lemma 3.5.2. The following identity is true:

D(1J)6(Z, W) = T(J)(i,,, - i.,z)(Z - W)- 1 - j lN\J. (3.5.2.1)

Proof. Let us assume for simplicity that j = 0, the general case follows easily from
this, differentiating by w. We will prove the lemma by induction on jJ. When J = 0,
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this is the usual formula for (Z, W).
(3.5.2.1) is given by

-D'6(Z, W) =

When J = ei = i}, the left hand side of

+ (- _ (N
(Z W)2

(3.5.2.2)

On the other hand

(Z- W) - l1N\ei=E
k>O

(E i)k (N\ei
(Z - w)k+1(- ¢)N,,,

(9 - ()N\ei 0i¢i+ (o
z - ( - w)2

(o - ¢)N\ei _ (ei, N \ ) (
z--W

c)N\ei

z) (0 () N
_____- N

from where (3.5.2.1) follows when J = ei. To prove the general case, let us assume
that the lemma is valid for J = I \ ei. Since DI = o(ei, I \ ei)Dw D\ei we have by
the induction hypothesis

DI6(Z, W) = a(ei, I \ ei)cr(I\ ei, N \ (I \ ei))(-1) ' 2' X

(3.5.2.4)

We expand the last factor as:

Di(Z -wT)-1N\(I\ei) = _ E
k>l

k(i (z o-w)k+ 1 (0 - )N\(I\ei)_(Z - w)k+l

-a (ei,N\I) E
k>O

( Z 93CJi)k

( -w)k+ ( -)N\I + E(k
k>O

+ )(i (E ojCj)
(z - w)k+(

_ )N\(I\ei)

(3.5.2.5)

Relabeling the indexes we see that the first and last term cancel. Finally we note
that, by (3.1.1.3):

a(ei, I \ ei)u(ei, N \ I)a(I \ ei) = (-1)'Iu(I). (3.5.2.6)

Combining (3.5.2.6), (3.5.2.5) and (3.5.2.4) we obtain the lemma for j = 0. [

3.5.3. Most of the results proved in the previous sections for Nw = N SUSY vertex
algebras carry over to this setting with the following modifications.

* replace 0oi by Di and Oz by Dz,
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* replace Z- W = (z -w,O i - (i) by Z- W = (z-w- Z/L Oia i j
-

* replace (Z - W)jIJ -= (z- w)i liej(Oi- (i) by

N \ 
(z- w)jlj = z- E- (

i=1 iEJ

* replace the commutative associative "translation" superalgebra CT, St] by the
non-commutative associative "translation" superalgebra )ff generated by the
set V = (T, Si, ... , SN), where T is an even generator and S t are odd generators,
subject to the relations:

[T,S. ] = 0, [S, S ] = 2iT; (3.5.3.1)

* replace the commutative associative "parameter" superalgebra C[A, Xi] by the
non-commutative associative "parameter" superalgebra A, generated by the set
A = (A, Xl,...,xN), where A is an even generator and Xi are odd generators,
subject to the relations:

[, X] = 0, IX, X] = -2JijA; (3.5.3.2)

Note that we have an isomorphism df - Y given by V i- -A.

Lemma 3.5.4. The formal 6-function satisfies the properties ()-(7) of 3.1.6 after
replacing 8w by Dw and writing (A + Dw) = ( + 0,, x + DS).

Proof. (1) is clear from Lemma 3.5.2. In order to prove (2) we use Lemma 3.5.2 to
write:

(Z - W)lJDnI')6(Z, W) = o(I)or(J, N \ I)x

x (i z, - i,z)(Z _ W)-1-n+jlN\(I\J) (3.5.4.1)

Applying Lemma 3.5.2 to D(n-JlI\J)6(Z, W) the result follows from the following
property of ao, which follows from (3.1.1.3):

u(J, N \ I)o(I \ J) = o(I)o(I \ J, J). (3.5.4.2)

Properties (3)-(7) are proved as in 3.1.6. 0

Lemma 3.5.5. D (Z- W)ilJ = cr(ei, J \ ei)(Z- W)j l \ei + jor(ei, J)(Z- W)j - Juei
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Proof. We prove the lemma by direct computation when j > 0:

D (Z - W)jj = (i + o6q&) (z - w - 3 oi (6 -Dz~- + (iz) - -Eoi) (o c)
= -j((Z - w) j-l l + (ei, J \ ei)(Z -w)jlJ\ei+

+ Oij(Z - W)j-lJ
= (ei, J \ ei)(Z-w)J\ei + ja(ei, J)(z - w)j - 'lJ

When =-1 we have

Dz(-wZ)-IIJ = ( + i') ( i i(i) (- ()k o (Z- w)k+1

= k (Z °idi)k- (9 -C)
(Z - w)k+l + (e, J \ ei) )x

-0Z (k + 1)
k>O

k, -- W/J

(Zi oi(i)k (0 - )
(z - )k+2

= (ei, J \ ei)(Z - W)- lIJ\ei - (ei, J)(Z - W) -2 1JUei.
(3.5.5.2)

The general case follows from these by considering D z (D) 2 = 3Z hencez 0 hnc

(Z- W)- j-l 1J

Therefore we get for j > 0:

D(Z- w)-j- l ~

= !(D) 2i(z_ W)-
JI

= (Dz)2j+(z- w)-I
3.1 

= (D)2j (U(e,, J \ ei)(Z -W) - I j -

- (ei, J)(Z- W)-2 1JUei)

= o(ei, J \ e,)(Z - W)-,-jlJ\ei_
-(j + 1)o-(e, J)(Z- W)- j -2Ue.

The following decomposition lemma is now proved in the same manner as Lemma
3.1.7:

Lemma 3.5.6. Let a(Z, W) be a local distribution in two variables. Then a(Z, W)
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k>O \ .- u 

= o(ei, J \ ei)(Z - W)- J\ei--(7.J) e (k + ) (Ei '(i)k ( -()JUe,'(k + 1Z, _ /,,, \k+2
k>

(3.5.5.3)

(3.5.5.4)

l

X E (Ei Oi(i)k ( _ (J\ei
( - -,)k+1



can be uniquely decomposed in the following finite sum:

a(Z, W) = E (DlJ)6(Z, W)) c(W). (3.5.6.1)
(jlJ),j>O

The coefficients are given by

cj3 j(W) = resz(Z - W)jlJa(Z, W). (3.5.6.2)

Let (Z - W)A = (z- w - Ei o ii) A + E N=(0i - i)X. Note that -0w, -Dw

satisfy the same commutation relations (3.5.3.2) as A, Xi, therefore -0, -D W gen-
erate an associative superalgebra isomorphic to .°. We will consider as a module
over itself via this identification, by defining:

[Dy Xi] = 2jA, [,, X' [,A] = [Dy, A] = 0. (3.5.6.3)

Lemma 3.5.7.

D exp ((Z - W)A) = X' exp ((Z - W)A) =-[D, exp ((Z - W)A)].

Proof. Note that the exponent is a sum of non-commuting terms, hence the derivative
of the exponential is not as obvious as in the Nw N case. Let

N

A = E(Oi - (J)Xj. (3.5.7.1)
j=l

We have:

exp ((Z - W)A) = exp z - - Z V A) exp(A),

Since [A, xi] = 2 (0i- i)A we obtain

k-1
9oiAk = xYAk- 1 _ 2j(O' - )Ak - 2

j=o (3.5.7.3)

= kxiAk - k(k - 1)A(0_ -(')A k 2

therefore
0o9i exp(A) = ( - A(0' - (i)) exp(A) (3.5.7.4)
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from which the first equality of the lemma follows easily. The proof of the second
equality of the lemma is similar. Note that from (3.5.6.3) we have:

[D4, A] = - i - 2A(Oi - (i),(3.5.7.5)

from where it follows as in (3.5.7.4) that

[DW, exp(A)] =-(X' + A(0' - (i))exp(A), (3.5.7.6)

and the lemma follows by a straightforward computation. [

3.5.8. Now we are in position to define the formal Fourier transform and NK = N
SUSY Lie conformal algebras as we did in 3.2. We put

5,wa(Z, W) = resz exp ((Z - W)A) a(Z, W). (3.5.8.1)

which formally looks exactly like (3.1.8.1) but in this expression the variables xi do not
commute and (Z-W) has a different meaning (cf. (3.5.1.2) and (3.1.2.1)). Using this
formal Fourier transform, we define the A-bracket of two formal distributions a(W)
and b(W) as in (3.2.1.3). The NK = N version of Propositions 3.1.9 and 3.2.2 are
proved in the same way as in the Nw = N case with the aid of Lemma 3.5.7. There
is only one subtlety involved in proving the Jacobi identity. Since the exponentials
involved in this case do not commute, the argument in 3.1.9.9 is no longer valid.
Consider the set 'i = (, vl,..., vN), where 4' is an even indeterminate and vi are
odd indeterminates, subject to the relations:

[4, vi] = 0, [vi, vi] = -2ij, (35.8.2)

[A, '] = [A, v] =0, [x, ] = [i, J = 0.

Similarly, define A' to be another copy of Y generated by another copy of standard
generators F = (, 71, . . . , 7 N). We define

~XAW= XW1z=A+r , (3.5.8.3)

where the Fourier transform on the RHS is computed as follows. First compute X':,W
and then replace I by A + = (A + , X1 + , .. ., XN + /N). In order to prove the
Jacobi identity, we need to check W = (1)Nxw x or, equivalently

exp((Z- W)A) exp((X- W)r) = exp((X- W)') exp((Z- W)A)I=A+r. (3.5.8.4)

Note that the RHS of (3.5.8.4) can be computed as

exp((X- W)(A + I)) exp((Z- W)A), (3.5.8.5)

where we have to use the commutation relations

[ 77', Xi] = 2A6i,j, [-y, X'] = [y, A] = [, i'] = 0, (3.5.8.6)
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which follow from (3.5.8.2) after replacing I = A + F.

First, we note that given two operators A, B such that their commutator [A, B] =
C commutes with both A and B, we have

eAeB eCeBeA.e e =e e e (3.5.8.7)

Now we expand:

exp ((Z - W)A)exp ((X - W)F)= exp ((z -

x exp ((Oi - i)) exp ((x -w - E Zrii)?Y)

E Oii)A) x

exp (E (7ri - i)i)

Note also that we have

exp (Z(oi - i)Xi) = f exp ((Oi - (i)xi)

= H(1 + (i - i)Xi)

(iXiX)(I + 0iiA))= H (( + Oixi)(1-
= 7 eO'x'e-(ixieOiCiA

= exp ( Oixi) exp (- Z ixi) exp (Z OiiA),

therefore (3.5.8.8) reads:

exp ((Z - W)A) exp ((X - W)F) = exp ((z - w)A) x

x exp ( O x ) exp (-E ( XS ) exp ((x- w)y) exp ( 7ri7i) exp (- 35.i'i)

(3.5.8.10)

Commuting the exponentials using (3.5.8.7) and (3.5.8.6), (3.5.8.10) can be expressed
as:

exp ((z - w)A + (x - w)'y) exp (- ixi) exp ( 7riri) x

x exp (- i'') exp ( Oxi) exp(-2 O r'A).

Multiplying and dividing by exp(E 7rixi) and using (3.5.8.9) we can express (3.5.8.11)
as

exp ((z - w)A + (x - w)y) exp (-E ( i) exp (E 7ri7i) x

x exp (- (ii) exp ( 7riXi) exp ((oi - 7ri)Xi) exp (-E 0i7riA)

(3.5.8.12)
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Combining again the exponentials it is easy to express this as

exp ((z - w)A + (x - w)y) exp (E(r i - )(Xi + xi)) 

x exp (-E 7r('(A + 7Y)) exp (E(Oi - ri)Xi) exp (-E CiwiA), (3.5.8.13)

which is equal to (3.5.8.5). From this, the Jacobi identity folows as in the Nw = N
case.

Definition 3.5.9. An NK = N SUSY Lie conformal algebra is a Z/2Z-graded Je-
module 6, endowed with a parity N mod 2 C-bilinear map 6 Oc - Oc 6
denoted (as before, we omit the symbol 0 in the A-bracket)

a 0 b -- [aAb] = E (-l ) JNA(iIJ)a(jlJ)b, (3.5.9.1)
j_>,J
finite

where a(jlj)b E M. This data should satisfy the following axioms:

1. sesquilinearity (this is an equality in Y 0 ?):

[S'aAb] = -(-1)NXi[aAb], [aASib] = (-) a+ (S + Xi) [aAb], (3.5.9.2)

where in the RHS of the second equation, to obtain an element of Y 0 6,
we first compute the A-bracket, and then we commute S i to the right using

[Si, xi] = 2ijA.

2. skew-symmetry (this is an equality in Y 06 ):

[aAb] = _(_ 1)ab+N [b-A-va], (3.5.9.3)

where the commutator on the right hand side is computed as follows: first
compute [bra] = Zj>o,J FjIJcjlj E .f 06 ?, where ' is another copy of Y
generated by the set F = (, rl,..., r"N), where y is an even generator, ri are
odd generators, subject to the relations

[-, 7i] = 0, [i, 7] = -2Jijy.

Then replace F by -V - A = (-T - A,-S - X1,... .,-S N- XN) and apply T
and Si to cjlJ E 6.

3. Jacobi identity (this is an equality in i 0 _FI' 0 6):

[aA[brc]] = (-1)aN+N [[aAb]r+AC] + (1)(a+N)(b+N)[br[aAC]], (3.5.9.4)

where [[aAb]A+rC] is computed as follows, first compute [[aAb],c] E iF'®"' ,
where i" is another copy of Y generated by the set I = (, vl, .. .. , vN), where
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?/ is an even generator, vi are odd generators, subject to the relations

[1, vi] = 0, [v, v = -26ijb.

Then replace by A + r = ( + y, 01 + rl,..., ON + N) to obtain an element
of Y ® y ® A.

Remark 3.5.10. We want to give an explanation for the commutation relations [Si, Xi]

26ijA appearing in sesquilinearity. For this, we give an abstract descriptions of the
axioms of a Lie conformal algebra as follows. Let be a co-commutative Hopf
superalgebra with commultiplication A : -fef -- 30 J- and antipode S (note that
this is the case in definition 3.5.9). Let be a (left) 3f-module. The spaces 6 0 R
and f 0 9 are canonically modules with h - Ah and we consider Yf as a
3f-module with the adjoint action. An df-Lie conformal algebra structure in is
a linear map 0 : 0 -® J-' 0X satisfying the following axioms (see [1]):

* 0 is an homomorphism of d'-modules, namely, the following diagram is com-
mutative for any h E :

M®d-- (&® a2s y(3.5.10.1)

Ah| h

* (Sesquilinearity) Let Lh be the operator of left multiplication by h in H. The
following diagram is commutative:

a~ ®---- M "yf ®9 M(3.5.10.2)
hl| ILh®l

* (Skew-symmetry) Let A and B be two 3f-modules. Let a1 2 be the permutation
isomorphism A 0 B _ B 0 A. Let : 0 - be the natural multipli-
cation comming from the d°-module structure in M. The following diagram is
commutative:

Mgsg~~ 0 be~~~~ Of~ @(3.5.10.3)

a124 (SOA0))

* (Jacobi identity) Let us define three morphisms %®a3 -- 3f2~9® corresponding
to the three terms in the Jacobi identity. First, let 1{23} be the composition

3 (sx X g al2(l@q)al2 @2 s (3.5.10.4)
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Similarly, we define 2{13} to be the map

, i,1®3 a 12(,)o2- X ,92 (1, _2 0 . (3.5.10.5)

Finally, let v: · 0 ® - Xr be the multiplication map. We define p{12}3 to
be the map:

~®3 ® ),~2 1®) ®2 (v®l®l)(l®A®l) ®2 Rg. (3.5.10.6)

Now we can state the Jacobi identity as the following axiom:

]1(23} = {12}3 + 2{13} (3.5.10.7)

In the NK = N case, identifying:

Si -X i, T - -A, y F- A, ri A-_ Xi, (3.5.10.8)

and, as in 3.2.7, changing the parity of 9 if N is odd and defining

/(a 0 b) = (-1)aN+N[aAb], (3.5.10.9)

it is straigtforward to check that the axioms of an NK = N SUSY Lie conformal
algebra, as in Definition 3.5.9, get transformed into the axioms of an A-Lie conformal
algebra.

3.5.11. Lemmas 3.2.8 and 3.2.9 hold in this setting replacing 9 w with Dw in (3.2.9.1).
For an NK = N SUSY Lie conformal algebra A, we let L(R) = ?/V. be the
corresponding Lie superalgebra of degree N mod 2 and Lie(g) be the correspoding
Lie superalgebra. For J = (jl,.. , jk), we have

DW= a.( o~ + (&OW) ... (ok + o W)

= E a(K, J \ K) (K +"KIJ\K (3.5.11.1)
KCJ

Let now a<,lI> = a Wa"1 L(g) for each a M. Using (3.5.11.1) and (3.2.9.1)
with f = WnlI, g = Wk lK and letting A = 0, we compute the Lie bracket (of parity
N mod 2) in L(g):

{a<,lZ>' b<klK> } = E (-1 )aJ+b(I-J)+ (Jnr)(JnI-1) + J(J-1) n!
1a~njI~>, 'l~ (n - j - (J I))!j! x

x o(J\I, JnI)a(JnI, I\ J)o(J\I, I\ J)o'(IAJ, K) (a(jlJ)b) <n+k-j-t(J\I)IKU(IAJ)>'

(3.5.11.2)

Defining a(nl) as the image of (1)aIo(I)a<njI> in Lie(g) and using (3.5.11.2) and
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Lemma 3.2.7 we compute the Lie bracket in Lie(S):

(Jni)(Jni-1) + J(J+1)[a(1nI), b(kIK)] (_)(a+N-I)(N-K) E (_l)J(N-I)+IN+JnJn-) 2 2 XJ+
j>O,K

X n! o(AN\( A) (n - j - (J \ I))!j!(IAJ. N \ (K u IAJ))x
x (I)o-(J \ I, J n I)o(J n I, I \ J) x

x o(J \ I, I \ J) (a(jlj)b)(n+kj(J\I)IKU(IJ)) (3.5.11.3)

Substituting (3.2.11.2) in (3.5.11.1) we find:

(Jni)(Jni-1).-4 (~).- .- ~ "-Jnl) I -N-I,,J-, xD(NJ)6(Z, W) E (-1) 2

nEZ,I

n!
(n - j - (J \ I))!j!r(J \ I J n I)o(J n I)x

x o-(I \ J, N \ I)ot(J \ I, I \ J)Z-1-nlN\W n- j- O(J\I)IIAJ. (3.5.11.4)

For each a 9 define the following Lie(g)-valued formal distribution:

a(Z) = E z-l-nlN\Ia(nlI) (3.5.11.5)
nEZ,I

Using (3.5.11.3) and (3.5.11.4) we obtain:

[a(Z), b(W)] = (D(lj)6(Z, W)) (a(jlj)b) (W), (3.5.11.6)
j>O J

Hence Proposition 3.2.12 is valid in this setting.

3.5.12. We can now prove analogous versions for most of the results of section 3.2
with the prescription of 3.5.3. We define the normally ordered product of fields by
the same formula as in the Nw = N case (recall that (Z- W) -1 1N is the same in
both situations) and all the other products by using the derivations Dw instead of

In particular, given an NK = N SUSY formal distribution Lie superalgebra (, 9),
it follows that M is a NK = N SUSY Lie conformal algebra with Si = DW.

Even though the general formula of proposition 3.2.19 is no longer true in this
situation, we see that the proof works in the particular case when (jIJ) = (-11N).
Therefore the non-commutative Wick formula (3.2.20.3) is still true in this context.

We will point out in this section the mayor differences in the proofs, leaving the
particular details for the reader.

Proposition 3.5.13. The following identities analogous to sesquilinearity for all
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pairs (J) are true:

=-(-1) ((ei, J)a(W)(jlj\e,)b(W)+

+ja(ei, J)a(W)(j-llJue,)b(W))

DW (a(W)(jlJ)b(W)) =
(3.5.13.1)

+(-1) a(W)(jIj) (D' b(W))) .

Proof. According to lemma 3.5.5 we have:

resz i,(Z - W)jlJD a(Z)b(W) =
- W)jIlJ ) a(Z)b(W) =

= -(-1)J resz ((ei, J \ ei)iz,(Z - W)ilJ\ei+
+ j((ei, J)iz,(Z - W)j- llJuei) a(Z)b(W) (3.5.13.2)

Similarly we have:

- (-l)(a+1)b resz iw(Z- W)JlJb(W) (D a(Z)) =

(-) ab +J resz (Diwv,(Z- W)jIJ) b(W)a(Z) =
(-1) a+ J resz (U(e/, J \ ei)i,(Z - w)JlJ\ei+

+ jr(ei, J)i,z(Z - W)j- tJuei) b(W)a(Z) (3.5.13.3)

Adding (3.5.13.2) and (3.5.13.3) we obtain:

(D a(W))(jtJ) b(W) = -(-1) ((ei, J \ ei)a(W)(jlJ\ei)b(W)+

+ j(ei, J)a(W)(j-llJu)b(W)) (3.5.13.4)

The fact that Dw is a derivation of all (jlJ)-products is proved in the same way as
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in (3.2.18.5).

Dw (a(W)(jlj)b(W)) D resz (i~,,(Z- W)jlJa(Z)b(W)-
- (_l)ab z,,(Z- W)lJb(W)a(Z)) =

(-1)N resz ((-o(ei, J \ ei)i~,,(Z - W)j lJ\ei - j(ei, J)iz,,,,(Z - W)j -ll JUei) x
xa(Z)b(W) + (-1)J+aiz,,(Z- W)jlJa(Z)D'b(W)+

+(-l) ° ((ei, J \ ei)i,o,(z - W)JlJ\ei + jo(ei, J)i.,o(Z - W)j- lJ 'ei) b(W)a(Z)-
-(-)ab+J,(Z - W)jljDvb(W)a(Z))

= -(-1)Nao(ei, J \ ei)a(W)(jl\e,)b(W) - (-1)Njao(ei, J)a(W)(j-1 1Juei)b(W)+

+ (1)N+J+aa(W)(jlJ)D' b(W) =
-(- 1 )N-J ((Dva(W)) (,jlJ) b(W) + (-1)aa(W)(jlj)D b(W)) (3.5.13.5)

3.5.14. There is a slight change when defining the corresponding NK = N SUSY
vertex algebras. Let D = 0i- 0i0. We define an NK = N SUSY vertex algebra
as the data consisting of a super vector space V, an even vector 10 >E V, N odd

8

endomorphisms S i and a parity preserving linear map Y from V to End(V)-valued

superfields a ~ Y(a, Z), satisfying the following axioms:

* vacuum axioms:
Y(a, Z)10> = a + O(Z), (3.5.14.1)

S210>= , i= 1,...,N,

* translation invariance:
8

[Is, Y(a, Z)] = DzY(a, Z), (3.5.14.2)

* locality:

(z - w)"[Y(a, Z), Y(b, W)] = 0, for somen E Z+. (3.5.14.3)

3.5.15. We define the (jIJ)-products for a NK = N SUSY vertex algebra, as in the
Nw = N case, by (3.3.2.2).

As in 3.3.2 we see easily that the vacuum axioms may be formulated as (3.3.2.4)
and translation invariance is equivalent to:

o(N \ J ), ei)a(j,j\,Oej J[Si, a(j,j)] = o'(N \ (JU ei) e J (3.5.15.1)
jo-(N \ (J U e), ei)a(j-lljuei) ei J
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3.5.16. It follows easily from (3.5.15.1) and the vacuum axioms that

[S, S3] = 26i,jT, [Si,T] = 0, (3.5.16.1)

where T is an even operator satisfying:

[T, a(jlJ)] = -ja(j-llJ) Va, (jIJ), (3.5.16.2)

or equivalently:
s s

[T, Y(a, Z)] = 8zY(a, Z). (3.5.16.3)

With these results we can prove the NK = N version of theorem 3.3.3.

Theorem 3.5.17. Let V/ be a vector superspace and V a space of pairwise local
End(,)-valued fields such that V contains the constant field Id, it is invariant under
the derivations D = ei + O0OZ and closed under all (j I J)-th products. Then V is an
NK = N SUSY vertex algebra with vacuum vector Id, the translation operators are
Sta(Z) = D a(Z), the (j I J) product is the one for distributions multiplied by (J).

Proof. The proof goes like the proof of 3.3.3. To check translation invariance we see
that D'1 = 0 and that

o(J)D' (a(Z)(jJ)b(Z)) - (1)a+N-Ja(z)(jJ)Db(z) =
= (-1)N-Ja(J) (Dza(Z))(jlJ)b(Z). (3.5.17.1)

But in view of (3.5.13.1) this is:

-(-1)Nr(J) ((ei, J)a(Z)(jlJ\ed)b(Z)+

+joi(ei, J)a(W)(j-ljJuei)b(Z)) =

= o(N \ J, ei)a(J \ ei)a(Z)(jjJ\e1)b(Z)
+ ju(N \ (J U es), ei)o(J U ei)a(Z)(j-1jJue)b(Z), (3.5.17.2)

proving equation (3.5.15.1).
Locality is proved in the same way as in 3.3.3. 

Lemma 3.3.5 is still valid for NK = N SUSY vertex algebras. Its proof parallels
the proof for Nw = N SUSY vertex algebras. The proof of proposition 3.3.7 in this
context is more subtle:

Proposition 3.5.18. Let V be a NK = N SUSY vertex algebra. Then for every
a, b E V we have:

s
1. Y(a, Z)I 0>= exp(ZV)a,

s s
2. exp(ZV)Y(a, W) exp(-ZV) = i,zY(a, W + Z),
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s 8 s
3. Y(a, Z)(jlj)Y(b, Z)10>= o,(J)Y(a(jJ)b, Z)10>.

where V = (T, S',..., SN), and ZV = zT + y OiSi. Finally we define W + Z =

W- (-Z) = (+W+Ei ioJ + j)3.

Proof. As in the proof of proposition 3.3.7 we note that both sides of (1) and (3) are
elements of V[[Z]], whereas both sides of (2) are elements of End(V)[[W, W-']][[Z]].
By evaluating at Z = 0 we get equalities in all three cases. Indeed (1) and (2) are
trivial, and (3) follows from the NK = N version of lemma 3.3.5. We need to show
that both sides in each equation satisfy the same system of differential equations.

(1) Similarly to the proof of lemma 3.5.7 we expand:

Di exp(ZV) (0i - Oiz) exp(zT) Z (EOiSi)k
- k!

k>0 . (3.5.18.1)
(Si + TOi) exp(ZV)- OTexp(ZV)

=Sexp(ZV),

from where the right hand side X(Z) of (1) satisfies the system of differential equa-
tions:

Di X(Z) = SiX(Z). (3.5.18.2)

Similarly by translation invariance we have for the left hand side of (1):

i S . 8 s
DZY(a, Z)I0>= [St, Y(a, Z)]I0>= SiY(a, Z)10> . (3.5.18.3)

We also point out that a similar computation to (3.5.18.1) shows that

Di exp(-ZV) -exp(-ZV)S i , (3.5.18.4)

which is not entirely obvious since Si does not commute with the exponential.
(2) By translation invariance we have:

8~~~~~~~~~~~Di Y(a, W + Z) =-

+6+oi- Oicw+z+Exxoi) Y(a, W + Z)

= DW+zY(a, Z + W) = [, Y(a, Z + W)]. (3.5.18.5)

On the other hand, letting Y(Z) = eZVY(a, W)e-Zv we have (cf. (3.5.18.4)):

D~y~) =s'y~)- -~)y(Z)SiD Y(z) = S2Y(Z) - (-)ay(Z)Si (3.5.18.6)
= [si, Y(Z).

(3) For the right hand side we have by translation invariance and the vacuum

3Note that Z+ W $ W+ Z
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axioms:

S'Y(a(jlJ)b, Z)10>= [Si, Y(a(jlJ)b, Z)]1 0>= DzY(a(jlJ)b, Z)10> . (3.5.18.7)

To prove that the left hand side satisfies the same differential equation we proceed
exactly in the same way as in the proof of proposition 3.3.7. We only need the fact
that DI is a derivation of all (jIJ)-products. But 9z = (Di) 2 is a derivation since:

9a(Z)(jij)b(Z) = (-l)N-JD ((Da(Z))(jlJ)b(Z) + (-1)aa(jJ)Db(Z)) =
(9Za(Z))(j3 J)b(Z) + (-1)a+l(Da(Z))(jlJ)D b(Z)+

+ (-l)a(Dza(Z))(jlj)Dzb(Z) + a(Z)(jiJ)Ozb(Z) (3.5.18.8)

therefore Di = Di - 20i0Z is a derivation of all (jlJ)-products. []

The uniqueness proposition 3.3.8 is still valid in this context, As its corollary, we
obtain an analogous version of theorem 3.3.9, namely

Theorem 3.5.19. On an NK = N SUSY vertex algebra the following identities hold

$s ~ ~ ~ S 8 

1. Y(a(jlj)b, Z) = a(J)Y(a, Z)(jlj)Y(b, Z) .
s s s

2. Y(a(- 11N)b, Z) =: Y(a, Z)Y(b, Z) 

s s
3. Y(S'a, Z) = D Y(a, Z).

4. We have the following OPE formula:

[Y(a, Z), Y(b, W)] = E o(J)(D(jJ)6(Z, W))Y(a(jlJ)b, W) (3.5.19.1)
(j,J),j>O

Remark 3.5.20. Note that as a consequence of (3) we obtain

[$i, Y(a, Z)] =& Y(Sia, Z), (3.5.20.1)

in contrast to the Nw = N and, in particular, the ordinary vertex algebra case.

Corollary 3.5.21.

(Sia)(jlJ) = o(ei, N \ J)a(jlJ\e~) - ju(ei, N \ (J U ei))a(j-llJuei){ (ei, N \ J)a(jlj\e) for ei E J (35.21.1)
-jcr(ei, N \ (J U ei))a(j-llJUei) for ei J

Si (a(jlJ)b) = (-l)N -J ((Sa)(jlj)b + (-l)aa(jlJ)Sib)
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3.5.22. We note that

6(Z, W) = E (-l)N-JO(J)ZJiJW-l-JiN\J (3.5.22.1)
(JlJ)

therefore equation (3.3.3.6) is still valid in this context. Also according to our pre-
scription to add coordinates we see that

(X - Z) - W = X - (W + Z) = X - (W- (-Z)). (3.5.22.2)

We also have a Taylor expansion in this context, namely, for any formal power series
a(Z) C C[[Z]] we have:

a(W-f-Z=Z(-1) (J-1) WJila(W+Z)= D-1) j DJ a(Z) =ewDza(Z). (3.5.22.3)
(jlJ)
j>O

Indeed, the usual Taylor expansion is:

a(W+ Z) =a (w+z±+ ECY, i o+0j)
J(J-1) O

Z(-1) 2 j! a(W+Z)w=o. (3.5.22.4)

In this case:

Ow2a(W + Z)lw=o = D"0a(Z), z ~~~~~~~~~~(3.5.22.5)
OWia(W + Z)lw=o = (0 + Oi)a(Z) = D a(Z),

proving (3.5.22.3).
We can now proceed exactly as in 3.3.12 by taking the generating series of 3.5.19

(1) to get the analogous versions of the associativity formulas (3.3.12.7) and (3.3.12.8).
The proofs for skew-symmetry in theorem 3.3.14, quasi-commutativity for the

normally ordered product as in 3.3.15 and quasi-associativity for the normally ordered
product as in theorem 3.3.18 carry over verbatim to the NK = N case. We obtain
then an analogous result to theorem 3.3.17, namely an NK = N SUSY vertex algebra
gives rise to an NK = N SUSY Lie conformal algebra.

Proposition 3.3.22 is proved in the same way for NK = N SUSY vertex algebras.
Following the argument in remark 3.3.23 and using (3.5.11.1) we obtain the commu-
tator formula (cf. (3.5.11.3)) for the Fourier coefficients of the End(V) valued fields
of the SUSY vertex algebra.

As in the NW = N case, we have the following equivalent definition:

Definition 3.5.23. An NK = N SUSY vertex algebra is a tuple (V,T, S', [^], 10>
,::), i = 1,.. .,N, where

* (V, T, Si , [A']) is an NK = N SUSY Lie conformal algebra,
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* (V, 0>, T, Si, ::) is a unital quasicommutative quasiassociative differential su-
peralgebra (i.e. T is an even derivation of :: and Si are odd derivations of

* the A-bracket and the product :: are related by the non-commutative Wick
formula (3.2.20.3).

The rest of section 3.3 carries over to the NK = N case with minor modifications,
in particular we define tensor products of NK = N SUSY vertex algebras as in 3.3.24
and we have an existence theorem as in 3.3.25 that we restate here:

Theorem 3.5.24 (Existence of NK = N SUSY vertex algebras). Let V be a vector
space, I0>E V an even vector, T an even endomorphism of V and Si, i = 1, . . ., N
odd endomorphisms of V, satisfying [SiS, Si] = 2Ji,jT. Suppose moreover that S1O >=
O. Let be a family of fields of the form

a,(Z) = Z-l-jlN\Ja[j) (3.5.24.1)

indexed by a E A, and such that

1. a(Z)10> Iz=o = a e V,

2. [S',at(Z)] = D' aa(Z),

3. all pairs (at(Z), a3(Z)) are local,

4. the following vectors span V

a(js IJ)... a(jlJ 1)IO0> (3.5.24.2)

Then the formula

8

Y(a's J,) ... a [J ) 10>, Z)

= H a(Ji)a's(Z)( Js)( a2IJ2)(Z)(a(,J)(Z)Id) ) ( 3.5243)

defines a structure of an NK = N SUSY vertex algebra on V, with vacuum vector
10>, translation operators Si and such that

$
Y(a', Z) = a'(Z). (3.5.24.4)

Such a structure is unique.

3.5.25. The results in section 3.4 generalize to this context without difficulty. In
particular, we obtain the universal enveloping NK = N SUSY vertex algebra of an
NK = N SUSY Lie conformal algebra. Note that the definition of a holomorphic
NK = N SUSY vertex algebra is straightforward: a unital associative commutative
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superalgebra d with an even derivation T and N odd derivations Si, commuting
with T and satisfying [Si, SJ] = 2ijT defines an NK = N SUSY vertex algebra,

with 10 >= 1, and the state field correspondence given by Y(a, Z)b -= (eZVa) b. In
particular C[W, W- '] and C((W)) are NK = N SUSY vertex algebras with Si = Dw.
We obtain therefore, in the same way as Theorem 3.4.3

Theorem 3.5.26. Let V be an NK = N SUSY vertex algebra. Let ( = C[X, X-1],
define L(V) to be the quotient of V = Oc V by the linear span of vectors of the
form:

Sia ® f(X) + (-1)aa D f (X). (3.5.26.1)

and let L'(V) be its completion with respect to the natural topology in S. Then
L(V) (resp. L'(V)) carries a natural Lie superalgebra of degree N mod 2 struc-
ture. Let Lie(V) (resp. Lie'(V)) be the corresponding Lie superalgebra. The map
p: Lie(V) - End(V) (resp. op': Lie'(V) - End(V)), given by formula (3.4.2.2), is
a Lie superalgebra homomorphism.

3.6 Examples
Example 3.6.1 (WN series). Let X = (x,l,. . ,N), where x is even and (i are odd
anticommuting variables commuting with x. Consider the Lie algebra g = W(1IN)
of derivations of C[X, X-1], it is spanned by elements of the form XJIJc. and XiJO e
(cf. Example 2.1.30). Define the following g-valued formal distributions:

L(Z) =-6(Z,X)Ox, Qi(Z) = -(Z,X)Oe, i= 1,...,N. (3.6.1.1)

A long but straightforward computation shows that these distributions satisfy the
following commutation relations:

[L(Z), L(W)] = (Z, W)&o,L(W) + 2 (OJ6(Z, W)) L(W),

[L(Z), Q1(W)] = 6(Z, W)aQ t (W) + (ei6(z, W)) L(W)+

+ (,06(Z, W)) Qi(W), (3.6.1.2)

[Q2(Z), Qi(W)] = o6(Z, <)aQ(W) + (1)N (6(, ) W) Q(W)-
(1)N (Cj6(Z, W)) Qi(W),

in particular, the distributions (3.6.1.1) are pairwise local. Let 9 be the family of
g-valued formal distributions

,= {cIJL(Z), &clJQi(Z)l j > 0, J C {1, ... , N}, i = 1 ... N}.

Then (, r) is an Nw = N SUSY formal distribution Lie superalgebra.
Let YI"(iiN) be the corresponding Nw = N SUSY Lie conformal algebra. It is

generated as a C[T, Si]-module by a vector L of parity N mod 2 and N-vectors Qi,
i = 1, ... , N of parity N + 1 mod 2 satisfying the following A-brackets (which can
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be easily obtained from (3.6.1.2))

[LAL] = (T + 2A)L

[QiAQJ] = (Si + Xi)Qj - xJQ4 (3.6.1.3)

[LAQi] = (T + A)Q + (-1)NxiL.

When N = 0, this is the centerless Virasoro conformal algebra. It is well known that
it admits a central extension defined by:

A3

[LAL] = (T + 2A)L + 12C (3.6.1.4)

where C is even, central, and satisfies TC = O.
Translating the formulas in [15], it follows that when N = 1, Y//(111) admits a

central extension of the form:

[LAL] = (T + 2A)L

[QAQ] = SQ + X C (3.6.1.5)
3

A 2

[LAQ] = (T + A)Q-XL + C,
6

where C is even, central, and satisfies TC = SC = O.

When N = 2, //(112) admits a central extension given by:

[LAL] = (T + 2A)L
[QiQi] = SiQi

[Q1 Q2] = (1 + x1)Q 2 _ x2 Q1 + A C (3.6.1.6)
A ~~~~~~6

[LA Qi = (T + A)Q' + Xt L

where C is as above. It follows from [24] that these algebras do not admit central
extensions for N > 3.

If N < 2, we let WN be the universal enveloping Nw = N SUSY vertex algebra
of the central extension of Y/(11N) as given by theorem 3.4.5, and let WN be the
quotient of WN by the ideal (C -CIO>)(11N)WVN, where c E C is called the central
charge.

When N = 1, expanding the superfields as

Q(Z) = -J(z) + OG+(z), L(Z) = G-(z) + 0 (L(z) + 2&9J(z)) , (3.6.1.7)

we check that the fields L, J, G± satisfy the commutation relations of the N = 2
vertex algebra as defined in example 2.1.19.

When N > 3, we let WN be the universal envelopping Nw = N SUSY vertex
algebra of 7/(1IN). It follows from the definitions that Lie(*/(1l N)) = W(1IN), the
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Lie superalgebra of derivations of C[X, X-']. Also, Lie(Y/(lIN)) = W(1 IN)_ is the
Lie superalgebra of derivations of C[X]. Denote by W(lN)< = Lie(Y'(1jN))< C
Lie(//(1N))_ the Lie superalgebra of vector fields vanishing at the origin, it is
spanned by vectors of the form XJl'9X and and XjlJ6 ti, with j + J > 0.

Definition 3.6.2. An Nw = N SUSY vertex algebra V is called conformal if there
exists N + 1 vectors v, T 1 ,.. , TN in V such that their associated superfields L(Z) =

s S
Y(v, Z) and Qi(Z) = Y(ri, Z) satisfy (3.6.1.3) (or possibly a central extension) and
moreover:

* (01) T,

* T(Olo0) S i,

* The operator (110) acts diagonally with eigenvalues bounded below and with
finite dimensional eigenspaces.

If moreover, the action of Lie(Y'(1JN))< on V can be exponentiated to the group
of automorphisms of the disk Dl lN , we will say that V is strongly conformal. This
ammounts to the following extra condition

* The operators v(110) and Z-Nl o(ei)Trole) have integer eigenvalues.

If a E V is an eigenvector of v(110) of eigenvalue A, we say that a has conformal
weight A. This happens if a satisfies

[LAa] = (T + AA)a + O(A2) + O(Xl,... , xN), (3.6.2.1)

If, moreover, a satisfies [La] = (T + AA)a we say that a is primary.
As in the ordinary vertex algebra case, the conformal weight A(a) is an important

book-keeping device:

A(Ta) = A(a) + 1, A(Sia) = A(a), A(: ab:) = A(a) + A(b).

Furthermore, if we let A(X) = 0 and A(A) = 1, all terms in [aAb] have conformal
weight A(a) + A(b) - 1.

Remark 3.6.3. It is clear from this definition that the Nw = N SUSY vertex algebra
WN defined in example 3.6.1 is indeed strongly conformal.

Example 3.6.4 (Free Fields). As an example of a strongly conformal N = N
SUSY vertex algebra, we will compute explicitly the free fields case, namely, let a, C
be even vectors and let co be an odd vector. Consider the Nw = N SUSY Lie
conformal algebra generated by these three vectors, where C is central and anihilated
by V, and the other commutation relations are:

[aOA] = C. (3.6.4.1)
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Let FN be its universal envelopping Nw = N SUSY vertex algebra and FN its quotient
by the ideal (C- IO>)(-1jN)FN.

Expanding the superfields

a(Z) = a(z) + O/(z), p(z) = O(z) + ob(z)

we find that the fields a, b, o and ¢ generate the well known bc -E/3y-system, namely,
the non-trivial A-brackets are (up to skew-symmetry):

[baxa] = [\] = 1. (3.6.4.3)

When N = 1, this SUSY vertex algebra admits a Nw = 1 strongly conformal
structure with:

V = a(_21)P(-ll)[0>,
(3.6.4.4~.( AT = -a(-ljo)(p(-1I1)O>, 

s s
and central charge c = 3. The associated fields L = Y(v, Z) and Q = Y(r, Z) are:

L =: (Ta)'p: Q=-: (S)p:.
In order to check the commutation relations (3.6.1.5) we use the non-commutative
Wick formula (3.2.20.3) to find:

(3.6.4.6)

(3.6.4.7)
[QAL] = Ta [(OAL] =

[aAQ] = Sa [OAQ] =

And now by skew-symmetry and sesquilinearity we obtain:

[LAQ] = Ta

[LATa] = (T + A)Ta

[QAJ] = Sa

[QASa] = -XSa.

[LAP] = ( + T)(p

[LASa] = (S + X)Ta

[QA] = (S + X)9

Formula (3.6.4.8) says that a and o are primary fields of conformal weight 0 and 1
respectively. With these formulas and using again the Wick formula (3.2.20.3) we
obtain

[LAL] = [LA: (Ta) ] =: ((T + A)Ta)p : + : Ta(A + T)c :=

= 2AL+: (T(Ta))p: + : TaTP := (T + 2A)L, (3.6.4.12)

since the integral term obviously vanishes. For the other commutation relations we
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compute:

[QAQ] = -[QA: (Sa)V:] = X: (Sa)o: +: Sa(x + S)p: + [xSar]dr=
~~~~~~A

SaS=: as + (- x)ndr = Q + Ax. (3.6.4.13)

Finally for the last commutator we find:

[LAQ] =-[LA: (Sa) :] = -: ((S+ X)T):-: Sa(A + T)(p: -
rA A

- [(S + x)Tar ]d = TQ- x: (Ta) : +AQ + | - x)ydr =

A2

= (T + A)Q - xL + -2 -. (3.6.4.14)

According to (3.6.1.5) this is a conformal Nw = 1 SUSY vertex algebra with cen-
tral charge 3. It is easy to check that this SUSY vertex algebra is indeed strongly
conformal.

Example 3.6.5 (KN series). Consider now the Lie subsuperalgebra K(1IN) 
W(11N) consisting of those derivations of C[X,X -1] preserving the form

N

w = dx + E ~id i
i=1

up to multiplication by a function (cf. Example 2.1.31). Define the following 0-valued
formal distribution:

N

G(Z) =-26(Z,X)OX -(-1)N (Dx6(Z,X)) Dx. (3.6.5.1)
i=1

It follows from (2.1.31.1) that its Z-coefficients form a basis of K(1IN). A long but
straightforward computation shows that this formal distribution satisfies the following
commutation relation:

[G(Z), G(W)] = 26(Z, W)&OG(W) + (4- N) (O,6(Z, W)) G(W)+
N

+ (1)N Z (Dw (Z, W)) DOG(W), (3.6.5.2)
i=1

in particular, the pair of 0-valued formal distributions (G(Z), G(Z)) is local. Letting

w {JG(z), j > 0, J c {1 ... iN} L 

we see that (g, r) is an NK = N SUSY formal distribution Lie superalgebra.
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Let )X(IiN) be the associated NK = N SUSY Lie conformal algebra. It is
generated as an JX module by a vector G of parity N mod 2 satisfying the following
A-bracket (for the definition of the algebra f see 3.5.3)

N 9
[GAG] = 2T + (4-N) + X XS G (3.6.5.3)

When N < 3, ~X(1IN) admits a non-trivial central extension adding a term

,\3-NXN C
3

to (3.6.5.3), where C is even, central and satisfies TC = SiC = O.

When N = 4, X(114) admits a central extension by adding a term

AC

to (3.6.5.3). It follows from [24] that this algebra does not admit central extensions
when N > 4.

When N < 4, we let KN be the universal enveloping NK = N SUSY vertex
algebra of the central extension of X(1IN) and define KN to be its quotient by the
ideal (C-cIO>)(1N)KN, where c e C is called the central charge. When N > 5, we
let KN be the universal enveloping NK = N SUSY vertex algebra of X(1IN).

In the case N = 1, if we expand the corresponding superfield as

G(z, 0) = G(z) + 20L(z), (3.6.5.4)

we find that the fields G(z) and L(z) generate a Neveu Schwarz vertex algebra of
central charge c as in example 2.1.11.

When N = 2 expanding the corresponding superfield as (cf. 2.1.22.4)

G(z, 01, 02) = /-fJ(z) + 01G2(z) - 02 G'(z) + 20102L(z) (3.6.5.5)

We find that the corresponding fields J, L, G' satisfy the commutation relations of
the N = 2 vertex algebra as in example 2.1.19.

When N = 4 the corresponding NK = 4 SUSY vertex algebra is not simple.
Indeed the SUSY Lie conformal superalgebra X'(114) c X(114) generated by StG,
i = 1,..., 4 is an ideal. The central extension of X(114) described above restrict to
a central extension of X'(114) whose cocycle is given by:

o(S$G, SIG) = -XXJ'C. (3.6.5.6)

This SUSY Lie conformal algebra admits another central extension given by (cf. [15]):

a(SiG, S3G) =- Xlx2x3x4C. (3.6.5.7)

We let KC (resp. KC") be the corresponding NK = 4 SUSY vertex algebras when we
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use the central extension (3.6.5.6) (resp. (3.6.5.7)).
Note that Lie(X(1IN)) = K(1IN) by definition, while Lie(X (1IN)) = K(1IN)_

is the Lie superalgebra of regular vector fields preserving w up to multiplication by
a function. We will denote by K(1IN)< = Lie(X(ll1N))< C Lie(X(l1N))_ the Lie
superalgebra of regular vector fields, preserving w up to multiplication by a function,
and vanishing at the origin, namely

Lie(X(llN))< = Lie(Jg(l{N)) n Lie(Y/(i[N))<.

Finally, a field G satisfying the commutation relations (3.6.5.3) (or a central ex-
tension of it) will be called a super Virasoro field.

Definition 3.6.6. Let N < 4, an NK = N SUSY vertex algebra V is called conformal
if there exists a vector r E V (called the conformal vector) such that the corresponding

B

field G(Z) = Y(r, Z) satisfies (3.6.5.3) (or posibly a central extension) and moreover

* r(o1o) = 2T,

* (OIe,) = o-(N \ ei, ei)Si,

* the operator (ilo) acts diagonally with eigenvalues bounded below and finite
dimensional eigenspaces.

If moreover, the representation of Lie(X(l1N))< can be exponentiated to the
group of automorphisms of the disk D1lN preserving the SUSY structure

N

w = dx + Z ~d~t, (3.6.6.1)
i=l

we will say that V is strongly conformal. This amounts to the extra condition

* the operator 2 r(110) has integer eigenvalues.

If a vector a in a conformal NK = N SUSY vertex algebra V is an eigenvector of
r(01O) with eigenvalue 2A, we say that a has conformal weight A. This happens iff a
satisfies

[GAa] = 2T + 2AA + xiSi a + O(A2), (3.6.6.2)

where O(A2 ) denotes a polynomial in A with vanishing constant and linear terms. If,
moreover, a satisfies

[GPa] = 2T + 2AA + xiSi a,

we say that a is primary. For example, formula (3.6.5.3) says that G has conformal
weight 2- N/2, and it is primary if the central extension is trivial. As in the Nw = N

99



case, the conformal weight is an important book-keeping device

I
A(Ta) = A(a) + 1, A(Sia) = \(a) + 2 A(: ab:) = A(a) + A(b).

Furthermore, letting A(A) = 1 and A(X') = 1/2, all terms in [aAb] have conformal
weight A(a) + A(b) - 1 + N/2.

Remark 3.6.7. The NK = N SUSY vertex algebra KN defined in Example 3.6.5 is
strongly conformal when N < 4, moreover, KC and KC4 are strongly conformal.

Example 3.6.8. (Free fields) The well-known boson-fermion system is an NK = N
vertex algebra generated by one superfield. Let be a vector of parity (-1)N, C
an even vector, and define a NK = N SUSY Lie conformal algebra generated by '
and C where C is central, satisfies TC = SiC = 0 and the remaining commutation
relations are:

[bAI]- AlINC, (3.6.8.1)

when N is even, and
[2A@] = AOINC, (3.6.8.2)

when N is odd. Skew symmetry is clear and the Jacobi identity is obvious since all
triple brackets vanish. We let BN be the corresponding universal enveloping NK = N
SUSY vertex algebra, and let BN be its quotient by the ideal (C- 0>)(-1N)BN.

To show an application of the above formalism as well as the subtleties involved
in calculations we will show explicitly that the NK = 1 SUSY vertex algebra B is
conformal, the corresponding super Virasoro field being

G =: (SI)' I: +mT'I, m E C. (3.6.8.3)

Indeed, from sesquilinearity (3.5.9.2) and skew-symmetry (3.5.9.3) we find

[9ASTJ] = (S + X)X = A, [STA] = -A, (3.6.8.4)

where we used [S, X] = 2A and x2 =-A. Using sesquilinearity once more we get:

[S'AS'PI] = XA, ['IAT'I] = AX. (3.6.8.5)

Now we can use the super version of the non-commutative Wick formula (3.2.20.3)
to find:

[TAG] = (A + xS)T + mAX
[STAG] = A(X - S)T - mA2 (3.6.8.6)

[TTAG] =-A(A + xS)qP -m2X,

where we note that all the integral terms vanish. Using skew-symmetry again we get:

[GAT!] = (A + 2T + XS) -mAX
[GAST] = (A + T)(X + 2S) - mA 2 (3.6.8.7)

[GATT] = (T + A)(A + 2T + XS)V - mA2X.
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With these formulas we can use again (3.2.20.3) to get:

[GAG] : ((A + T)(X + 2S) I-mA 2 ) '-: +
+: SP (A + 2T + XS) - mAX): +m(T + A)(A + 2T + XS)T - m 2 A2X (3.6.8.8)

where again the integral term is easily seen to vanish. Note that from quasi-commutativity
of the normally ordered product we find: B : 0, from where the expression above
reduces to:

2A: (ST) : +X: (TT)T: +2: (S3 I)4: -mA2 I+
+: St ((A + 2T + XS)T - mAX) : +m(T + A)(A + 2T + XS) - m2A2X. (3.6.8.9)

Expanding this expression and after a simple cancellation we find

[GAG] = (2T + 3 + S) G - m 2A2X. (3.6.8.10)

Therefore B] is a strongly conformal NK = 1 SUSY vertex algebra with central charge
-3m 2. Note that, by (3.6.8.7), I has conformal weight 1/2 (but it is not primary).

Note that in this example, if we expand the superfield

T(Z) - p(z) + Oa (z), (3.6.8.11)

we find easily that
[p\p] = 1, [aca] = A, (3.6.8.12)

hence the name boson-fermion system.

Example 3.6.9. (Super Currents) Let be a simple or abelian Lie superalgebra with
a non-degenerate invariant supersymmetric bilinear form (, ). Let N be even, then
we define a SUSY Lie conformal algebra (either NK= N or Nw - N) generated by
g with commutation relations:

[aAb] = [a, b] + (k + hV)(a, b)A Va, b G , (3.6.9.1)

where 2hv is the eigenvalue of the Casimir operator on .
When N is odd we let 0 be with reversed parity, and for each element a we

let a be the same element thought in 0. In this case we define a SUSY Lie conformal
algebra generated by 0 with commutation relations:

[{Ab] = (-1)a [a, b] + (k + h)(a,b) EX . (3.6.9.2)
i:1

We let Vk(g) be the associated universal enveloping SUSY vertex algebra4 , either the

4Here as before, we are considering a central extension of a SUSY Lie conformal algebra, and
then we identify the central element with a multiple of the vacuum vector in the universal enveloping
SUSY vertex algebra.

101



NK = N or the Nw = N vertex algebra, the choice will be clear in each context, as
well as the value of N.

When N = the corresponding NK = SUSY vertex algebra is strongly confor-
mal, the corresponding conformal vector is

~~~~1 -(a, r],ar i )
r = k +hv (-)ai (Sa)b: + 3(k + hv) ([aiv a]ar) Ibr

(3.6.9.3)
where ai} and bi} are dual bases for g with respect to (,). This is known as the
Kac-Todorov construction [23]. This super Virasoro field has central charge

ksdimg sdimg
k+hv 2 '

and the fields a E b have conformal weight 1/2.

Example 3.6.10. (N = 2 vertex algebra) As a vertex algebra it is generated by 4
fields (cf. example 2.1.19). As we have seen in example 3.6.5, this is a NK = 2 SUSY
vertex algebra generated by one field G. On the other hand, the N = 2 vertex algebra
admits an embedding of the N = 1 vertex algebra. Therefore we can view the N = 2
vertex algebra as an NK = 1 SUSY vertex algebra. As such, this algebra is generated
by two superfields G and J, where G is a super Virasoro field of central charge c and
J is even, primary of conformal weight 1. The remaining A bracket is given by:

[JAJ] =- -G ) (3.6.10.1)

Example 3.6.11. (N = 4 vertex algebra) As a vertex algebra it is generated by 8
fields: a Virasoro field, three currents (for the Lie algebra 5[2) and four fermions [22].
This vertex algebra admits and embedding of the Neveu Schwarz vertex algebra,
therefore we can consider a NK = 1 SUSY vertex algebra structure on it. As a
NK = 1 vertex algebra, it is of rank 311, generated by an N = 1 conformal vector
G with central charge c and three even vectors P, i = 1, 2, 3. Each pair (G, Ji)
generates an N = 2 vertex algebra, viewed as an NK = 1 SUSY vertex algebra, as in
the previous example. The remaining commutation relations are:

[JiAJj] = ijk(S + 2X)Jk i j, (3.6.11.1)

where is the totally antisymmetric tensor.

Example 3.6.12. (bc - 0y system) This is a NK = 1 SUSY vertex algebra generated
by n even fields Bi and n odd fields i. The only non-vanishing A-brackets (up to
skew-symmetry) are:

[Bif Ts] = ,ij. (3.6.12.1)

This SUSY vertex algebra is strongly conformal with super Virasoro field

n

G = E (SB)(S') : +: (Ti') (3.6.12.2)
i----
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and central charge 3n. The fields B i (resp. i) are primary of conformal weight 0
(resp. 1/2).

Let oaj, s = 1, 2, 3, be three n x n matrices satisfying

o'io'j = ijko 'k (.s)2 = - Id (3.6.12.3)

The fields
n

- = kSBjk :, i = 1, 2, 3, (3.6.12.4)
j,k=l1

together with C generate an N = 4 vertex algebra as in the previous example (cf.
[6]).

Example 3.6.13. Here we explain briefly the construction of the chiral de Rham
complex of a smooth manifold introduced in [27], using the formalism of NK = 1
SUSY vertex algebras [6]. Let U be a differentiable manifold. Let 7 be the tangent
bundle of U and 9* be its cotangent bundle. We let T = (U, 5) be the space of
vector fields on U and A = (U, 5*) be the space of differentiable 1-forms on U. We
let W = '°°(U) be the space of differentiable functions on U. Denote by

<, >: A ® T --. W (3.6.13.1)

the natural pairing. Finally, we denote by II the functor of change of parity.

Consider now an NK = SUSY Lie conformal algebra 9 generated by the vector
superspace

ED HT IT A HIIA. (3.6.13.2)

That is, we consider differentiable functions (to be denoted f, g, . . . ) as even elements,
vector fields X, Y... as odd elements, and finally we have two copies of the space
of differential forms. For differential forms, which we consider to be even elements,
a, E,... e A, we will denote the corresponding elements of HA by d,, .... The
nonvanishing A-brackets in 9 are given by (up to skew-symmetry):

[XAf] = X(f)
[XAY] = X, Y]Lie

[XAa] - Liex a + A < a, X > (3.6.13.3)
[XAX] = LieX a + X < a, X >

where [, ]Lie is the Lie bracket of vector fields and Liex is the action of X on the space
of differential forms by the Lie derivative. The fact that (3.6.13.3) satisfies the Jacobi
identity is a (long but) straightforward computation.

We let V(U) be the corresponding universal enveloping NK = 1 SUSY vertex
algebra of M. This algebra is too big. We want to impose some relations in V(U).
We let lu denote the constant function 1 in U. Let d: W - A be the de Rham
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differential. Define I(U) c V'(U) to be the ideal generated by elements of the form:

fg: -(fg), 'fX: -(fX), · fa: -(fa), · fo: -(fa), (3.6.13.4)
lu - 10>, Tf - df, Sf - df (3.6.13.5)

Finally we define the NK = 1 SUSY vertex algebra

Qch(U) := V(U)/I(U). (3.6.13.6)

The following theorem is a reformulation of the corresponding result in [26]:

Theorem 3.6.14.

1. Let M C R' be an open submanifold. The assignment U B- Qch(U) defines a
sheaf of SUSY vertex algebras Qc on M.

2. For any diffeomorphism of open sets M' .- + M we obtain a canonical isomor-

phism of SUSY vertex algebras Qch(M) h(,)> Qch(M/). Moreover, given dif-

feomorphisms M" - M' .- + M, we have Qch(T o T') = Qch(,) o Qch(T).

This theorem allows us to construct a sheaf of SUSY vertex algebras in the
Grothendieck topology on Rn (generated by open embeddings). This in turn lets
us attach to any smooth manifold M, a sheaf of SUSY vertex algebras QM. We call
this sheaf the chiral de Rham complex of M.

Example 3.6.15. (Free Fields) We can generalize Examples 3.6.8, 3.6.12, and 3.6.4
as follows. Let A = AO · Al be a vector superspace, and let (, ) be a non-degenerate
bilinear form in A. Recall that the bilinear form (, ) is said to be of parity p E

Z/2Z if (a, b) = 0 unless p(a) + p(b) = p, and it is supersymmetric (resp. skew-
supersymmetric) if (a, b) = (l)ab(b, a) (resp (a, b) = -(-1)ab(b, a)).

Let Jf = C[T, Si ] in the Nw = N case, and let Jf be defined as in 3.5.3 in the
NK = N case. Let

? = 0 A CC,

where C is an even element such that TC = SiC = 0. Given a non-zero homogeneous
polynomial Q(A) of degree s (in PBW basis) and parity p, define the following A-
bracket on A D CC:

[aAb] = Q(A)(a, b)C, a, b E A, and C central, (3.6.15.1)

and extend it to 2 by sesquilinearity. Then the Jacobi identity automatically holds
since all triple brackets are zero. Skewsymmetry holds if and only if

(a, b) = ( 1)ab( 1)N+ (b, a). (3.6.15.2)

Thus, (3.6.15.1) defines a structure of a SUSY Lie conformal algebra, provided that
(3.6.15.2) holds together with the following parity condition:

p+p((, )) = N mod 2. (3.6.15.3)
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Thus, is a SUSY Lie conformal algebra if and only if N + s is even (resp. odd)
and the bilinear form (,) is supersymmetric (resp. skew-supersymmetric) of parity
(N-p) mod 2.

The corresponding free field SUSY vertex algebra F(A, Q) is the quotient of the
universal enveloping vertex algebra V(g) by the ideal (C- 10>)(_-1N)V(G).

Example 3.6.16. (Spin-7) In [33], Shatashvili and Vafa constructed a vertex algebra
associated to any manifold with Spin-7 holonomy. This algebra comes equipped with
an N = 1 superconformal vector, therefore we can view it as an NK= 1 SUSY vertex
algebra. As such, it is generated by a super Virasoro field G of central charge 1/2,
and a field X of conformal weight 2. The corresponding A-brackets are:

[GAX = (2T+XS+4A)X + X G+ A3,[GAX]= ~~~~2 3'

[X^X] = (TSX + T2G + 6: GX:)+ (3.6.16.1)

+8(xT+AS+2A)X+ 1 A(T+A)G+ A3X

Note that this A bracket is quadratic in the generating fields. This in turns is due to
the fact that this SUSY vertex algebra is not the universal enveloping SUSY vertex
algebra of a SUSY Lie conformal algebra.

Expanding these superfields as:

G(Z) = G(z) + 20T(z), X(Z) X (z) + 01M(z) (3.6.16.2)

we obtain the generating fields as in [33].
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Chapter 4

The associated vector bundles

4.1 The groups Auto'

4.1.1. We start this section by describing the groups of changes of coordinates in the
formal superdisk DN. We analize in detail their corresponding Lie superalgebras in
the cases N = 1 and N -= 2. We then define principal bundles for these groups over
any smooth supercurve.

In this section, we let A be a Grassman algebra over C. We will work in the
category of superschemes over A unless explicitly stated. When we work with a
supergroup G, we will be interested in its A-points.

4.1.2. Let SSch/k be the category of superschemes over a field k and let Set be the
category of sets. Fix a non negative integer N and a separated superscheme X of finite
type over k (cf. 2.2.2). Let D(m) be as in 2.2.10 and D l iN be the formal superdisk.
Define a family of contravariant functors Fm SSch/k - Set

Fm(Y) Homk(Y xk D(m),X) (4.1.2.1)

Then these functors are representable by superschemes Xm over k.

Proof. The statement is local in Y therefore we can reduce to the case when Y 
Spec A, where A is a local k-superalgebra. Now the data of a morphism Y X k D(m)
X is local in X so we may replace X by Spec R. We may suppose then that X C A,
and R k[xl,... ,xr+s]/(f I ,... , f+w), where the first u polynomials fi are even and
the last w polynomials are odd; similarly the first r coordinates xi are even and the
last s are odd. Now an element of Hom(Spec A x D(m), X) is given by a morphism
-: k[xi,... xr+s]- A[t, O1,..., ON]/m m +l such that -Y(fi) = 0. These conditions are
equivalent to the vanishing of each of the coefficients of tiOI' in 7(fj) where 0I denotes
as usually the monomial Oil ... OJi for I = (i1,... , ij) C {1,... , N}. These give

(u kw) = ( ) (4.1.2.2)
j=O k=o
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equations. Therefore the map y - (i,jI) where

if(xi) = Yi,j,t3o' (4.1.2.3)
IIl+j<m

gives a closed immersion Xm c- A4l where a (resp. ) is the number of even (resp.
odd) monomials in {y(xi)}. °

Note in particular that X0 = X, and when N = 1 we see that X1 is the total
tangent space of X.

The embeddings D(m) -- D(m+ ) induce projections Xm+, -- Xm and we define
the Jet superscheme of X as

JX = lim Xm (4.1.2.4)
m-+oo

4.1.3. Let us analyze first the case N = 1. Consider the group of continuous (even)
automorphisms of the topological commutative superalgebra A[[Z]], where Z = (z, 0)
are topological generators. Such an automorphism is given by a pair of power series

z -+ al,oz + ao,10 + al,lzO + (4.1.3.1

0 '- bl,oz + b0,10 + bl,lzO +...,

where the matrix (al:oaOl) is in GL(111)1. Denote this supergroup by Aut" 1Y. In
where the matrix (~~~~bl o bo,l 

what follows we will analyze its C-points.
This supergroup is a semidirect product of GL(111) and a pro-unipotent super

group, namely, the subgroup Aut+011' of automorphisms where (b bo,) = Id. In
fact,

Aut+ ll- = lim Spec C[a,l,b,j, a2,0, b2,0, ... an,, b, 1]. (4.1.3.2)
n-oo

Let m be the maximal ideal of C[Z] generated by (z, 0). We have

Aut+6 ll -= lim Aut(C[Z]/mn). (4.1.3.3)
n--oo

Similarly for its Lie superalgebra Der+ 1, we have

Der+ ll = im Der(C[Z]/mn), (4.1.3.4)
n-oo

where for each C-superalgebra R, we denote Der(R) the Lie superalgebra of deriva-
tions of R. The exponential map is an isomorphism at each step, giving an isomor-
phism exp: Der+1 1 - Aut+01".

The linearly compact Lie superalgebra Der0
l ll

- Lie(Aut6111) has the following

'Here and further, GL(plq) is the group of even automorphisms of a plq dimensional module over
A.
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topological basis:

znOz (n > 1) znao (n > 1) (4.1.3.5)
zn06, (n > O) zn00o( n > 0), (4.1.3.6)

or the following one (n > 0):

Tn = _zn+1 . - (n + 1)znO10 Jn = -znO19 (4.1.3.7a)
Qn -= -Z n+ o Hn = znF9z (4.1.3.7b)

It is straightforward to check that these elements satisfy the commutation relations
of the N = 2 algebra (2.1.19.5) (see also Example 3.6.1) for n > 0. In particular, we
see that Der0o 1 is the formal completion of the Lie algebra W(1I1)< (cf. Example
3.6.1 for its definition). The Lie subalgebra Der+6 is topologicaly generated by the
same vectors with n > 1.

4.1.4. We now turn our attention to the superconformal N = 1 case. Consider the
differential form w = dz + OdO on the formal superdisk D 11, and the supergroup
Autw'611 of automorphisms of D"' preserving this form, up to multiplication by
a scalar function. This is a subgroup of Autof T1 whose Lie superalgebra Der"' ' ll

consist of derivations X in DerO ' l l' such that Lxw = fw for some formal power
series f (here Lx denotes the Lie derivative). More explicitly, the linearly compact
Lie superalgebra Der' 0"11 is topologically generated by

L= n + Zno - zn+aLIO, n E Z+
2 1(4.1.4.1)

n+~~1
Gn = -Zn+/2( - Oa.), n 2 + Z+.

We check easily that these generators satisfy the commutation relation of the Neveu-
Schwarz algebra as defined in (2.1.11.3) (see also Example 3.6.5). In particular, we
see that Der' t is the formal completion of the Lie superalgebra K(1 1) <.

An automorphism of the formal superdisk is determined by two power series
F(Z), T (Z) which are the images of the generators Z = (z, 0). Under this trans-
formation we have (recall &o is an odd derivation)

dz + OdO '- 6,Fdz - 0FdO + xJ(9z'Idz + o'PdO) (4.1.4.2)

= (F + J8~',I)dz - (F- Tq)d0

therefore we get that in order for w to be preserved up to multiplication by a function,
we need

(oF - T Oe'1) =-O(&~ F + 0 zIQ), (4.1.4.3)

and this is equivalent to (2.2.12.7).

4.1.5. Finally we turn our attention to the (oriented) superconformal N = 2 case. For
this we consider the differential form w = dz + O'dO' + 02dO2 on the formal superdisk
D l l2 . We want to analyze the group of automorphisms of D'12 preserving this form
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in the sense of the previous paragraph 4.1.4. Such an automorphism is determined
by an even power series F(Z) and two odd power series V(Z) and J 2(Z), where
Z = (z, 01, 0 2 ) are the coordinates on D'12. Under such a change of coordinates, the
differential form w changes to:

6ZFdz - olFdO1 - 62FdO2 + l (Oz6'ldz + 01l xIld 1 02Id02) +

+ ,2 (OJ 2dz + 0o i 2dO1 + 2 2d02) =

= (6zF + ,azI I + , 2az', 2) dz + (-aolF + lao,,l + ,r'2 , o,2) dol+
+ (-02 F + ao201 + T2 o2I2) dO. (4.1.5.1)

Collecting terms, imposing that the form w is preserved up to multiplication by a
function, and defining the differential operators Di = 0i + _itz we obtain that the
automorphisms we are considering satisfy the equations:

DiF = lDi4l + VI2Di 2, i = 1,2. (4.1.5.2)

Note also that a particular case of (4.1.5.1) when F = - 10102, -1 = (02 01

and X 2 = (01 + 02) transforms the form

w '- dz + 02dOl = dz - dOl02 , (4.1.5.3)

hence the supergroup of automorphisms of D 112 preserving the latter form is exactly
the supergroup of changes of coordinates preserving an N = 2 superconformal struc-
ture as in 2.2.12.

The linearly compact Lie superalgebra Der~'t112 = Lie(Autw'112) is topologicaly
generated by:

Ln =- zn+1 - 2 zn (1901 + 92602) n E +
2

G(2) = +zn+l/ 2 (02z _ 62)- ±. 1) n -1/2o192, I + z+
21) 1 (4.1.5.4)

G (1 = +n+1/2 /1 ni\W
1) _ znl/2 -(019 _ O+) + + Zn-1/20 022 , n + Z+

J = _iZn (0209 - 019o02) n E Z+.

We easily check that these operators satisfy the commutation relations of the N = 2
generators as in (2.1.22.6) (see also Example 3.6.5) for n > 0. We see that the Lie
superalgebra Der~' 1 12 is the formal completion of the Lie superalgebra K(112)<.

It is useful to consider complex coordinates = 01 i 2, and derivations D±
(D iD2 ). In these coordinates (z, 9+, 0-), these derivations are expressed as:2

D = o~: + -0z. (4.1.5.5)

2If we change coordinates by p = (F +, -), with = 1i2, the superconformal
If we change coordinates by p = (F, xF+ 'J), with T±F = Tj1 ±i4' 2 , the superconformal
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condition (4.1.5.2) reads

D+F= +D- + D ± -D+~ +. (4.1.5.6)
2 2

With this we can easily see that under a change of coordinates (z, 0) (z3, O),
the operators D± transform as

D - (D1Na )D+ + (DT ,)D. (4.1.5.7)

In the following sections, we will consider only oriented superconformal N = 2 su-
percurves (cf. remark 2.2.13), namely those for which there exists a coordinate atlas
(Ua, z0 , O~) such that on overlaps we have [11]:

DIP -= 0. (4.1.5.8)

In these coordinates, the topological generators of the Lie superalgebra DerJ ll2 are
expressed as:

n+ +1L,--Z+lz n + ozn(0+ + 0-0-), n Z+L~~~~~~~~~n C Z+
2

Jn = -z(O+0o+ - O-o-), n E Z+ (4.1.5.9)

G -= zn+1/2 ri I z n + 1/2 1,20OT+ n 2 + 1 +G -z - - z'O9O, 0+ +i' 2 +
n' 2L~ 2'2

(2)

where as before we have G± = (G ) F iG(2)).

Recall from 2.2.12 that an oriented superconformal N = 2 supercurve (Y, Yy)

projects onto two N - 1 supercurves X and its dual X. Defining new coordinates
on (u, 0+, 0-), where u = - +0- , we see that equations (4.1.5.6), for a change of
coordinates p (G F + l+@-, '+, !-) are expressed in these coordinates as:

D-G - -D-q+
~D+~G -=~~ 0. (4.1.5.10)

D+G_ =0.

Moreover, the operators D± are expressed as

D+ - 0- D- = o+ + 0-X. (4.1.5.11)

Note that the coordinate 0- does not appear in the transition functions for u,0 + ,
therefore these coordinates give the topological space Y the structure of an N 1
supercurve. Let us call this curve X. Similarly, if we define u' = - 20 + 0- we obtain
that u', 0- defines the dual curve (, Ax).

It follows from the above discussion, that given a change of coordinates p 
(G, P+) C Aut&111, we obtain uniquely a change of coordinates p (G, J+, T-) C
Autw'11 2, where - = D-G/D- +. This map induces an isomorphism of super-
groups from AutY111 to the identity component of AutwlI 2. This isomorphism cor-
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responds to the isomorphism of Lie superalgebras K(112) _ W(1I1) (cf. [24]), and
has a geometric counterpart (cf. [35]) relating the moduli space of (oriented) super-
conformal N = 2 supercurves and the moduli space of N = 1 supercurves.

Remark 4.1.6. Let X be a superconformal N = n supercurve. Then for some coordi-
nate atlas Z~ = (zO, 01,. ., o) the form w = dz + Ei=1 0t id9 is globally defined up
to a scalar factor. Let w be that form on the superdisk DIN and on D(m) as well.
Define the functors Fn: SSch/k -- Set by

F (Y) = Hom (Y xk D(m), X) (4.1.6.1)

where Homw denotes the set of morphisms preserving the form W (up to multiplication
by a function). Then it follows in the same way as in 4.1.2 that the functors Fm are
representable by super-schemes X~. This allows us to define the superscheme

JX- = lim X , (4.1.6.2)
m--oo

parametrizing maps D - X preserving the superconformal structure.

4.1.7. Let X be an N = n supercurve and let x E X. If Z - (z, 01, . . ., 0n) is a local
coordinate at x and x denotes the completion of the local ring at x, we have an
isomorphism C~~- C[[Z]]~ ~(4.1.7.1)
where we should replace C by A if X is defined over A. For the purposes of this
section it is enough to consider curves over C, the relative case follows easily. Let
Autx denote the set of local coordinates Z = (z, 

9
i) at x. In the algebraic setting we

mean by coordinates an 6tale map Z: X - Al n. The set Autx is a torsor for the
group AutblI n. The torsors Autx glue to form an Aut 1 1n-torsor Autx. Indeed Autx
consists of pairs (x, Z) where x is a point in X and Z = (z, 

9
t) is a local coordinate at

x. The action of Aut/' 11n on the fibers is by change of coordinates. The torsor Autx
may be described as an open subscheme of JX consisting of jets of maps D --* X
such that their 1-jet is in GL(lIn). Since we can cover X by Zariski open subschemes
U.> and tale maps f: U - Al n we see that the Autt1Jn-torsor Autx is locally
trivial in the Zariski topology (cf. [16, §5.4.2]).

4.1.8. Similarly, let X be a (oriented) superconformal N = n supercurve and x E X.
Let Aut' be the set of SUSY coordinates Z at x (that is, compatible with the super-
conformal structure). It follows that this set is an Aut &1l n- torsor. Moreover these
torsors glue to form an Autw 6lln-torsor Aut - X. As in the previous paragraph,
Aut' is an open sub superscheme of JX ° (cf. 4.1.6) consisting of jets of maps D - X
compatible with the superconformal structure and with invertible 1-jet.

Remark 4.1.9. Let V a finite rank Auto-module (resp. a finite rank Autw'-module),
and let X be an N = n supercurve (resp. a superconformal N = n supercurve). We
define a vector bundle on X by

AutO Autw &
x= Autx x V (resp. AutO x V), (4.1.9.1)
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consisting of pairs (, v) with x in Autx (resp. AutO) and v V with the identifi-
cation ( g,v) (, g. v) for g Auto (resp. g Aut' ). We call 'x the Autx
(resp. AutO) twist of V.

4.2 Vector bundles, sections and connections
4.2.1. In this section we construct vector bundles on supercurves associated with
SUSY vertex algebras following [16]. Briefly, the idea is the same as in [16], namely,
a strongly conformal Nw = n algebra is a module for the Harish-Chandra pair
(Dero0lln, Aut6 1Iln), therefore we can apply the Beilinson-Bernstein localization con-
struction [4] to get a vector bundle with a flat connection over any N = n supercurve.
Similarly, an NK = n strongly conformal SUSY vertex algebra (n < 4), is a module
for the Harish-Chandra pair (Der' 1lln, AutwlIn) 2 , therefore we can construct vector
bundles with flat connections over any oriented superconformal N - n supercurve.

As in [16], it turns out that the state-field correspondence in all these cases can
be thought of as a section of the corresponding bundles. The corresponding change
of coordinates formula (a generalization of Huang's formula [21] ) is proved in this
section.

4.2.2. Let V be a strongly conformal Nw - n SUSY vertex algebra. Therefore we
have N + vectors and T ... ,TN such that their Fourier modes (m,I) and Tm

with m > 0 generate a Lie superalgebra isomorphic to Der 1 1n (cf. example 3.6.1).
The derivation 0z (corresponding to (0o,o)) cannot be exponentiated to the group
Aut 1l In and the Lie superalgebra spanned by v(,I), and 9m for m > 1 if I 0 is(MI
isomorphic to Der0 lln.

In order to exponentiate the representation V of Der0
11 n to a representation of

the group Aut 111n we note as before that this Lie algebra is a semidirect product
of g[(1 n) with the pro-nilpotent Lie subalgebra Der+611[n. Namely, the subalgebra
spanned by zz, 0oj, zOi and 06z is isomorphic to g[(l1 n). It follows from the
definition of strongly conformal SUSY vertex algebras in 3.6.2 and 3.6.6, that we can
exponentiate this representation of g[(1 n) (the fact that the nilpotent part of the Lie
algebra exponentiates follows easily from the OPE formula and the locality axiom).

4.2.3. Let X be an N - n supercurve over a Grassman algebra A, let x C X and x
be the completion of the local super ring at x. Let Z (z, Oi) be local coordinates at
x (recall that in the formal setting Z is an tale map X Alln). With such a choice
of coordinates we get an isomorphism tY -A[[Z]] and the set of coordinates at x,
Autx is an Aut'lln-torsor. Let us work in the analytic setting first for the sake of
simplicity as in [16]. Let Dx be a small disk around x. Let p be a A-point given in the
local coordinates Z (z, i) by Y (y, ai). The coordinates Z induce coordinates
Z- Y (- , - ) at p. Now let p C Aut 11In be a change of coordinates.
Recall that this change of coordinates is given by power series (F(Z), i'(Z)), where
F(Z) C A[[Z]] is even and Pi C A[[Z]] are odd. This change of coordinates induce

2 From now on, we will abuse notation and denote by AutO611n1 its identity component

113



new coordinates at p, given by

p(Z) - p(Y) = (F(Z) - F(Y), I(Z) - Ti(y)) (4.2.3.1)

The coordinates Z - Y = (z - y, 0i - ai) and (4.2.3.1) at p are related by a change
of coordinates py = (Fy, I) satisfying

py(Z - Y) = p(Z) - p(Y). (4.2.3.2)

Therefore, letting W = (w, (i) = Z- Y, we get:

py(W) = p(W + Y) - p(Y). (4.2.3.3)

In the formal setting we can not consider a small disk, but given a point x and
coordinates Z at x, we can still define pz E Aut liln for any p E Aut l11n by formula
(4.2.3.3) with Y replaced by Z.

Let V be a strongly conformal Nw = n SUSY vertex algebra, so that V is an
Aut&lln-module. We will call this representation R.

Theorem 4.2.4. Let V be a strongly conformal Nw = n SUSY vertex algebra, so
that V is a Aut 1 In module. Let p = (F, i) E Aut 1l ln and a E V. The following
change of coordinates formula is true:

$ $q

Y(a, Z) = R(p)Y (R(pz)-la, p(Z)) R(p) - 1 (4.2.4.1)

where by p(Z) we understand the images of z, Oi under p, namely F(z, Oi), (z, Oi).

Proof. The proof is similar to the analogous formula in the ordinary vertex algebra
$

case. Namely, the state-field correspondence Y(., Z) is an element in the vector space
Hom(V, 9(V)), where ,(V) is the space of all End(V)-valued superfields. For each
p e AutO'11n consider the linear operator in Hom(V, 9(V)) given by

(TpX)(a, Z) = R(p)X(R(pz)-la, p(Z))R(p) - 1. (4.2.4.2)

It is easy to check that TpX Hom(V, g(V)). Moreover, this action defines a
representation of Aut l n in Hom(V, (V)). Recall that the group structure in
Aut In is given by composition, namely, if p = (F, V) and r = (G, Ej ) then p*-r is
given by H, i where

H(z, 0i) = G(F(z, 0i), k(z, 0i),
Z, Oj), T k (Z' Oj)).(4.2.4.3)E2(z, 0i) = E)(F(z, ) k(z i))

It follows that
PZ * p(Z) = (* T)z. (4.2.4.4)

Indeed, the left hand side, when evaluated in W is given by

Tp(Z) (p(W + Z) - p(Z)) = T (p(W + Z) - p(Z) + p(Z)) - r(p(Z)), (4.2.4.5)
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which is the right hand side.
It follows from this formula that p '- Tp defines a representation of Aut 1 l In. In

fact, we have

(TpX)(a, Z) = R(p * T)X(R((p * )z)-a, T(p(Z)))R(p * )
= R(p)R(-T)X(R(pz * T(z))- 1a, T(p(Z)))R(T)- 1R(p) 

- (p) [R(T)X(R(Tp(z,) nR(pz) -a,T(p(Z)))R(T) -2 R(p)

- [Tp(TTX)](a, Z). (4.2.4.6)

We have reduced the proof of the theorem to show that Y(., Z) is fixed under
this action. Since the exponential map exp: Der0 6111n - Aut6 111 is surjective,

$
we need on]Ly to show that Y(.,Z) is stable under the induced infinitesimal ac-
tion of Derc 11n. For this we let p - exp(ev) where v - v(Z)&z Dero lln,
v(Z) = (f(Z),gl(Z),...,gn(Z)) with f(Z) an even function and g(Z) odd func-
tions of Z. As before z - -(...,&on) and the product v(Z)&z denotes the
scalar product f(Z)&= + Z'41 g'(Z) 0 . We want to compute pz. For this we put
Pz - exp(eu). Expanding pz(W) in powers of e, we get

u v(Z + W)&w - v(Z)Ow -= (eZ'wv(W)) &w - v(Z)Ow. (4.2.4.7)

Noting that the operators corresponding to 0w (0w, 0c1,..., 0¢n) are -V (-T, -S,., -Sn),
we obtain

R(u) = e-ZVR(v)ezv + v(Z)V. (4.2.4.8)
s s

The action of Tp on Y(a, Z) is given then by Y(a, Z) plus the linear term in e,
which in turn is:

S S s

[R(v), Y(a, Z)] - Y(R(u)a, Z) + v(Z)VzY(a, Z). (4.2.4.9)

The first term comes from the adjoint action of R(p), the second term is the e-linear
term in R(pz)- 1 , and the last term comes from the Taylor expansion of the change
of coordinates. The result follows from (4.2.4.7), Proposition 3.3.22 and Theorem
3.3.9. El

4.2.5. Now we can define a vector bundle associated to an Nw = n SUSY super vertex
algebra over any N = n supercurve. Moreover, we will define a canonical section of
this bundle and a flat connection on it. First recall that from any finite dimensional
Aut 1lln-module we can construct a vector bundle over an N = n supercurve X by
twisting this Autylln-module by the Autlln-torsor Autx (see Remark 4.1.9). Given
a strongly conformal Nw = n SUSY vertex algebra V, we have a filtration V<i by finite
dimensional submodules, namely V<i is the span of fields of conformal weight less or
equal than i. By our assumptions these are finite dimensional Aut-submodules of
V. Let /_i be the corresponding Autx twist. These vector bundles come equipped
with embeddlings Y<i -* -/<i+l. The limit of this directed system is a &x-module
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;/x 3. That is
Ox = lim <j. (4.2.5.1)

i--oo1 _00

This Ax-module is quasi-coherent by definition.
On the other hand, the dual modules V<*i come equipped with surjections V 1i+l

V<*i therefore we get a projective system of x-modules _<*i+ - T*. The inverse
limit of this system is by definition Tx, namely:

ax- = lim V<*i . (4.2.5.2)
i-*oo2 _00

Thus, we have defined Ax-modules associated with the SUSY vertex algebra V.
We will call these modules the SUSY vertex algebra bundle and its dual. By con-
struction, the fiber of the bundle 1 at a point x E X is isomorphic as a vector space,
to V.

Similar constructions can be applied when X is replaced by a formal superdisk
near a point x E X. Namely, let Dx be such a formal superdisk, we have as before an
AuteXln-torsor AutD. over Dx. Then YD is the twist of V by this torsor. It is easy
to see that in this case we get XID. = TD.-

Let Aut, be the torsor of coordinates at x as before. Then the fiber of 1 at x is
given by

AutO
2kg, = Aut x V. (4.2.5.3)

Let Dx be the punctured disk at x, that is the formal completion

D x = im Spec(x/mi+l), (4.2.5.4)
i--0oo

where Yx is the ring of fractions of the local ring at x and m is the maximal ideal
defining x. If Z = (z, 0i) are coordinates at x then this is isomorphic to the formal
spectrum of A((Z)).

We will define an End 1/-valued section of f'* on D x . In order to define such a
section it is enough to give its matrix coefficients, namely, for each cp E 'Y*, v E 
and s a section of /YIDx we assign a function on D x , that is an element of Xx, the
fraction field of &x. This assignment is denoted by

op, v, s -< y, /(s) v >, (4.2.5.5)

and should be linear in v and o and O linear in s.
Let Z = (z, 0 i) be coordinates at x, we obtain a trivialization of 1YIDx

iz V[[Z]]-Z r(Dx, 1). (4.2.5.6)

This induces isomorphisms V 1' and V* 1*, where V* is the restricted dual
of V. Let v E V and E V*. Denote their images in 2X and 2l/*, under these

3 When there is no possible confusion, we will denote this bundle simply by T.
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isomorphisms by (Z, v) and (Z, p) respectively. Let s V[[Z]], its image under the
isomorphism iz is a regular section of /' in D.. By &. linearity, we may assume that
s = a E V. To this data, we assign the function

< (Z, ), (iz(a)) (Z, v) >< ao, Y(a, Z)v > . (4.2.5.7)

Theorem 4.2.6. The assignment (4.2.5.7) is independent of the coordinates Z -
(z, o,... on) chosen, i.e. 3/ is a well defined End(1'/)-valued section of 11* on D'.

Proof. The proof follows the lines of the ordinary vertex algebra case in [16]. Let
W = (w, ) be another set of coordinates at x. Then W and Z are related by
p C Auto', p(Z) - W. Given these new coordinates, we construct another assignment
by the same formula (4.2.5.7), namely

< (W, ), *(iw(a)) (W, v) >-< A, Y(a, W)v >. (4.2.6.1)

We need to show that this assignment coincides with A. By definition of the bundle
7 we have

(Z,v) = (p- (W),v) = (W, R(p)-1v), (4.2.6.2)

where R(.) is the representation of Autt ln in V. Similarly (Z, ) = (W, OR(p)).
We need to find how does the section iz(a) transform by this change of coordinates.
Recall from 4.2.3 that in the analytic setting, if we trivialize 7YID. with the coordinates
Z, we can use the coordinates (Z - Y) := (z - y, 0~ - a') at Y -= (y, ai) to identify
7/y with V. 'We obtain:

(Z - Y, a) = (W - p(Y), R(py)-'a), (4.2.6.3)

therefore the section iz(a) is iw(R(pz)-'a) in the W-trivialization.
In the formal setting, we can replace the coordinates by their n-jets, but these in

turn can be extended by definition to a small Zariski open neighborhood of x, in this
case the formula (4.2.6.3) is true as we have shown.

We have reduced then the problem to prove:

$
< , R(p)Y(R(pz)-la, W)R(p)-lv >=< , Y(a, Z)v >, (4.2.6.4)

thus, the theorem follows from Theorem 4.2.4 0

4.2.7. In the superconformal case, the situation is slightly more complicated. Roughly,
the only changes that we have to make in the above prescription are the induced
coordinates at a A-point and consequently the definition of pz.

Like in the NK = n SUSY vertex algebra situation, given two set of coordinates
Z = (z, 01,. . ., n) and W = (, 1,. .. , n) we will write

n
Z- W - (Z _ w oiji, 1 on _ n).

i:1
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Let V be a strongly conformal NK = n SUSY vertex algebra (n < 4), hence V is
an Aut' l l n-module. Moreover, V has a filtration by finite dimensional submodules
Vi1 given by conformal weight as above. Let X be an oriented superconformal N = n
supercurve over A. We constructed an Autw6-torsor Autx over X (see 4.1.8). As
above we can define the vertex algebra bundles /' and '/*. Similarly, we can define the
NK = n SUSY vertex algebra bundles over the superconformal disks D'. The fibers
'/ of these bundles are the Autw-twists of V, where Aut" is the torsor of coordinates
at x, compatible with the superconformal structure (see Remark 4.1.9). We define
and End(Yx)-valued section 9? of 'V* on the punctured disk Dx by formula (4.2.5.7).

Theorem 4.2.8. The assignment M' is independent of the coordinates Z = (z, Oi)

chosen as long as they are compatible with the superconformal structure on X.

Proof. Let us first work in the analytic setting. If p is a A-point in Dx (now a small
analytic disk near x E X) given by local parameters Y = (y, ai), then Z induces local
coordinates at T = (t, r1 i) = Z- Y near p. The coordinates T are compatible with
the superconformal structure. Indeed, we have

n

dt = dz + adO, (4.281)
i=l (4.2.8.1)

dri = dOi.

Therefore

n n n

dt + Ej rdri = dz + E adO + ( + c))dO1 = dz + E OdO. (4.2.8.2)
i=1 i=1 i=1

If W = (w, (i) = p(Z) is another set of coordinates compatible with the supercon-
formal structure at x, for p = (F, Pi) Autw°lIn, then W induces another set of
coordinates at p, namely

P(Z) - p(Y) = (F(z,O) -F(y, o) - E Ji(z,O)T'i(Y, a), J'(z, O) - I4(y, a))

(4.2.8.3)
These are related with the coordinates T by a change of coordinates

py = (Fy, f') Autw 1In. (4.2.8.4)

We have:
py(T) = p(T + Y) - p(Y), (4.2.8.5)

where, as in the NK = n SUSY vertex algebra case, we write T + Y = T - (-Y).
The theorem will follow if we prove formula (4.2.4.1) for p E Aut' lIn. This is

achieved as in the proof of theorem 4.2.4 by first showing that the action Tp (cf. proof
of theorem 4.2.4) is a representation of AuttlIn in Hom(V, 5(V)). For this we first
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note that (p*r)z pz * Tp(z) in exactly the same way as in the Nw = n case. Again

we just have to prove then that Y is fixed under this action, and we check this at
the level of Lie algebras. Denote Dw (, D ,. .. Dn), where D = ci + Sia.
Similarly, denote Dw (0, D ,... /), where D = i - ('. Let p exp(v)
where v v(W)Dw c Der 1la, and put pz = exp(eu). Expanding pz in powers of
e we find:

u = v(W + Z)Dw - v(Z)Dw. (4.2.8.6)

Note that in this context we have two different Taylor expansions:

eZDw f(W) - f(Z + W), eZDw f(W) fI(W + Z), (4.2.8.7)

using the second, we see that

u = (eZbDWv(W)) Dw - v(Z)Dw. (4.2.8.8)

From this and the fact that the operators corresponding to Dw are

-V= (-T,-sl,. -.., S),

we obtain:
R(u) e-zVR(v)eZ v + v(Z)V. (4.2.8.9)

The theorem now follows as in the Nw n case. [

We will construct connections on the vector bundles Y from the previous para-
graphs.

Theorem 4.2.9. Let X be a (N) dimensional supercurve. Let U c X be open
and Z be coordinates in U defining the vector fields 9z and 0i. Let V be a strongly
conformal Nw = N SUSY vertex algebra and -f the associated bundle. Define the
connection operators V : TI'u Y'u for each vector field X in U by

Va = + T Vaoi - 0i + Si. (4.2.9.1)

Then V is a well defined (left) connection on 7' (independent of the coordinates
chosen). Moreover, this connection is flat.

Proof. The proof is verbatim the proof of the analogous statement in [16, 16.1].
Indeed, strongly conformal SUSY vertex algebras are modules for the Harish Chan-
dra pair (DerfflN, Aut6lIN) and this in turn acts simply transitively on the torsor
Autx X. The localization procedure of formal geometry applies without difficul-
ties. O

Remark 4.2.10. Note that this connection endowes 7 with a structure of a left ~x-
module for any supercurve X and any strongly conformal Nw = N SUSY vertex
algebra V.
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Let V be a strongly conformal NK = N SUSY vertex algebra, and let be the
associated vector bundle over an oriented superconformal curve X. For an open U
as before, and superconformal coordinates Z in U we will define the superconformal
differential operators ix(U) to be the super ring of differential operators generated
by all the D . This defines a sheaf of algebras of superconformal differential operators
9x over any (oriented) superconformal curve X. The asignement

D' f(Z)a = (Df (Z))a + (-1l)ff(Z)Sia (4.2.10.1)

gives ' the structure of a left ox-module.

4.3 Examples

4.3.1. In this section we give the first non-trivial examples of the super vector bundles
that arise with the construction of the previous sections. To simplify the notation,
we will use the ordinary description of the involved vertex algebras. For example,
when we analyze the boson-fermion system (cf. example 4.3.2) we will work with
the fermion o and the boson a instead of the superfields I and ST. Note that the
Grassman algebra A is a SUSY vertex algebra (either Nw = N or NK = N) with
T = Si = 0 and 10 >= 1. In this section, given a SUSY vertex algebra V, we will
consider the tensor product W = A 0 V (either of Nw = N or NK = N SUSY vertex
algebras), therefore we can view W as a SUSY vertex algebra over A, namely, W is
a A-module and the vertex operators are A-linear.

Let us start with NK = bundles. For this let X be a super conformal N = 1
supercurve over A. Let Ua and UO be open in X and p = (t, () a A-point in the
intersection. Let V be a strongly conformal NK = 1 SUSY vertex algebra, so that
V carries a representation of Der' 611 that exponentiates to a representation of
AutW'9 1 . Suppose we have coordinates (z.,0a) in Ua and (z,,Oa) in U3 that are
compatible with the superconformal structure. They are related by a change of co-
ordinates pa = (F(z, , 0e), I(z, 0n)) satisfying DF = ID1 where D = 90 + 00QZa, 
These coordinates define coordinates at the point p therefore we obtain different triv-
ializations of the bundle 'Y. The transition functions for the structure sheaf give us
transition functions for ', in particular, they act in the fiber at the point p as R(pp) - 1

(cf. 4.2.6.3).

In order to compute R(pp) we need only to look at the odd coordinate, namely
expand in Taylor series

Tz,O(t, ) = I(t + z + (0, ¢ + 0) - (Z, 0)

= (DT + tD2I + (tD 3 ' + t-D4I +. .
= + w-G ) A 2 (4.3.1.1)

=exp -E(viLi + wiG(i)) A-2L° '
i>

120



where as in (4.1.4.1) we have

n+lL~ - 2-tc¢- ~1t
2 tn tn+l(4.3.1.2)

G(n+l/2) - Gn -tn+/2(- t)

where vi = vi(z, O) are even functions and wi - wi(z, 0) are odd functions. Truncating
the series in (4.3.1.1) at order 2 we have:

g,'(z,o)(t, ) - A (( + tw 1 + tv 1 + t 2 (w 2 + v1w1) +.. ) (4.3.1.3)

From where we get the equations:

A = D wjA D2T (4.3.1.4)

v1A D (w2 + vlwl)A - D4I. (4.3.1.5)
2

We can solve this system to get:

D3 '
v1 - D

D2Wl D J (4.3.1.6)
D 2

W2 - 2 Do (D )
1l(D4'I D3~D2 ~ 2 DTI (DXV)2)2

where or is the N - 1 super-schwarzian defined in (2.2.19.2).

Example 4.3.2 (Free Fields). Recall the strongly conformal NK 1 SUSY vertex
algebra B defined in Example 3.6.8 (see also Example 2.1.17). We will denote this
vertex algebra as B(1). As an ordinary vertex algebra, it is graded with respect to
conformal weight. The fermion p is primary of conformal weight 1/2 and the boson
a has conformal weight 1 but it is not primary unless m = 0. It follows easily from
Wick formulas that the only non-trivial relations with the fermion p are given by:

1
G()g = -m O> Lo = . (4.3.2.1)

Therefore the subspace B(1)<1/2 of B(1) spanned by {I0>,} is an Autw°lIl sub-
module. For a given change of coordinates p = (F, A) we can compute the action of
R(p(.,o)) - . For this we write in the basis { 0>, p}:

R ( p(.,))- A2LO exp ((Vi Li + wi G(i)) (i ((4.3.2.2)
-Twl -m D2,p

0O A J 0 Do T
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Hence, if 4(1) is the vector bundle associated to the Autwfll module B(1) and
4(1)<1/2 is the vector bundle corresponding to B(1)<1/2 we see that the transition
functions that define 4(1)<1/2 are given on the intersections U n U by the functions
(4.3.2.2).

Dually, sections of the bundle .4(1)_1/2 transform by (note that we use the super-
transpose instead of the transpose, as defined in [29, ch. 3 § 3.1])

(i 1) (4.3.2.3)
km-5 D'I.

In particular we have a section k of 4(1)* which projects to a section of 4(1)*1/2.
In the basis { 0>, p} this section is given by

(Id ) (4.3.2.4)

where, according to example 2.1.17, we have

o(z, 0) = Y(o-l/210>, z) + OY(Tr_1 /2_/210>, z). (4.3.2.5)

According to (4.3.2.3) and theorem 4.2.8 we see that the field p(z, 0) transforms as:

,o(z, 0) = R(p)p(p(z, 0))R(p)-lD + m -Id (4.3.2.6)

where p = (F, I). In particular, since X is a superconformal N = 1 curve we have4

D = D ( ) = sdet F z (4.3.2.7)

Therefore when m = 0, p(z, )[dzdO] transforms as an End (1)p-valued section of
the Berezinian bundle of X on the punctured disk DP for any A-point p E X. When
m ~ 0 this bundle is not split and T(z, 0) gives rise to an End (1)p-valued section
of .4(1)l/2 that projects onto the section 1 0 Id of the quotient Ax 0 End 4(1)p and
transforms according to (4.3.2.6) with changes of coordinates. In other words, the
bundle <1/2(1)* is an extension

0 -- Berx -- <1/2(1)* A-- X 0 (4.3.2.8)

which is non-split unless m = 0. In the case when m # 0 the section 9 projects into
the constant section 1 of x.

In analogy to [16] we want to understand the geometric meaning of these sections.
Equivalently, we want to find the set of splittings of the extension (4.3.2.8). This
set, if non-empty, is a torsor over the space of sections of Berx. Recall also that the
operator D = 40 + 90, takes values in Berx for a superconformal N = 1 curve. We

4Here and further, the subscripts z and 0 denote partial derivatives.
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have then

Theorem 4.3.3. The superfield (z, 0) transforms as an odd differential operator
V Berx -- Bere2 locally of the form V = -mDo + ga(za, Oa,), where on the open
subset Ua with coordinates (zo, o) we have D = ea + Azo and g is an odd
function.

Proof. Recall that in a superconformal N = 1 curve the generators [dzodOo] of the
Berezinian bundle transform as

[dzpdO6] = (Do',) [dzodo], (4.3.3.1)

where the change of coordinates is 0O = ,(Za, 0O).
Since V : Berx -4 Ber0 2 we have

Vof. = (Da,. ,.)2Vo ((DaoJe,.)-f.) (4.3.3.2)

Therefore we get

V7f =-mDafa + gafa = -m(Da ,a)D3fa + gof.
- (DRI T,oa)2 (-im (D/ (Do'I',) -1 fo) + g13 (Do~,, 1 f1)

-m (Da'Io,o) Dpfo - m (Do4! a,)2 D3 ((Do ,) - 1) fo+

+ g (D.To,%) f (43.3.3)

-m (Da.T3,a,) D3f, + (D.I,< D j. m+ g (D. ,I,,a ) fa
D2 

ga = (DaqI,) gp + m D,

Hence we find finally
(In (ADDI 0 '\ (1\ (4.3.3.4)

-- , mD* DJ }

thus proving the theorem. 

4.3.4. Given that we can integrate a section of Berx along a super contour as in
2.2.15, we can state [16, 7.1.9] in this situation. We define an affine structure on a
superconformal N = 1 curve to be a (equivalence class of) coordinate atlas Uo with
coordinates (Zo, Oa) such that the transition functions on overlaps satisfy5 :

zo = Fa,.(za, 0) = a2Za + 0Ooa + b (4.3.4.1)
0o = TI,,(Za, Oa) = Oaa + (,

where a, b are even constants with a invertible and ~ is an odd constant (these con-
stants may change with a and /3). Given such an atlas, we can define Vo = -mDoa
and we get from:

-mDo = -rmDo ',Dp (4.3.4.2)
5 These are SUSY changes of coordinates where the odd coordinate changes by affine transforma-

tions.

123



and the fact that D 2I = 0 for these transition functions, that Va is a well defined
operator as in theorem 4.3.3.

On the other hand, suppose we have such a differential operator Va = -mDa+gg.
Consider f[dz,,,dO,] to be a section of Berx in Ua such that f is an even function
and V, fo = 0. Choose a A-point P = (x, wr) of U. and for any other point Q in Uc,
we define the function ~a to be

Q
&(Q)= f-f. (4.3.4.3)

From the definition of this integral we see that is an odd function, indeed, to
compute this integral we need to find Dw = f and then this integral becomes w(Q) -
w(P). By shrinking if necessary the open cover U, we may assume that fa does not
vanish everywhere (it is an even function), therefore it follows that DE is invertible
everywhere. We now solve the differential equation Dw = D6 (we may need to
shrink U, even more) and obtain thus a coordinate atlas U, with new coordinates
(wa, c,). We claim that this atlas is indeed an affine structure on X. We have made
some choices. One is the reference point P which shifts the function 6, by an odd
constant. The other choice was the solution 6, which is unique up to an invertible even
multiple (for this we can apply a version of Cauchy's theorem in super geometry).
Therefore 6 is well defined up to affine transformations of the form 6 -* a6 + (. This
forces w to change to w with

D = (ad + ()D(a6 + () = a26D6 + a(D6 (4.3.4.4)

hence C = a2w + w' with Dw' = Da(6. Finally we see that w' = a(6 + w" where
Dw" = 0, namely the choices made combine into changes of the form:

'-~ a~ + C
6 F-+ a6 + ( ~~~~~~(4.3.4.5)

w '- a2w + a(' + b (4345)

where a, b are even constants (a is invertible) and ( is odd. Since these changes of
coordinates are of the form (4.3.4.1), we have proved:

Theorem 4.3.5. Let X be an N = 1 superconformal curve. For every m ~ 0 the set
of differential operators V : Berx Ber 02 locally defined as V, = -mD, + gc, for
odd functions g, are in one to one correspondence with the set of affine structures on
the curve X. These in turn are in one to one correspondence with the set of splittings
of the extension (4. 3. 2. 8).

Example 4.3.6. The Neveu Schwarz algebra Recall the strongly conformall
NK = 1 SUSY vertex algebra K' defined in Example 3.6.5 (see also Example 2.1.11).
Denote this vertex algebra by K(1). We note that the sub-vector space spanned by
the primary elements of conformal weight less or equal to 3/2, namely the vacuum
vector and the N = 1 vector , is Autwt11l-invariant. In order to compute the
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transition functions we see easily that the relevant relations in this case are:

L(1)T- = T, G(2)T = 2C. (4.3.6.1)

Therefore we can compute in the basis {10>, r}

R(p(z,O)) (10>)- A2L0 exp (z vi Li +wG(i)) (10>)
\i>1 / \/ (4.3.6.2)

(1 2CW2) (10>)

It follows from (4.3.1.6) and (4.3.1.5) that the transition functions for the correspond-
ing bundle X<3/2(1) are given by:

R(p(z,e))- 3(DHi)) (4.3.6.3)

where, as before, (DI) is the super shwarzian derivative. Dualizing, we obtain an
extension:

0 -- Ber 03 -- ,)<3/2(1)* - O'x - 0. (4.3.6.4)

This extension is not split if c $ 0 and, as for the free fields, we see that the section
/ of X< 3/2(1)* projects onto Ox in this case. Denote by r(z, 0) = G(z) + 20L(z) the

8

superfield Y(T,z, 0). By taking the super transpose of (4.3.6.3) we find that r(z, 0)
transforms as:

T(z, ) = R(p)T(p(z, 0))R(p)- (D l) 3- o(D I) (4.3.6.5)

which in turn implies, according to Proposition 2.2.21 the following:

Theorem 4.3.7. The set of splittings of (4.3.6.4) is in one to one correspondence
with the set of superprojective structures in X.

4.3.8. Now we turn our attention to the oriented superconformal N = 2 case. In a
similar way as in 4.3.1 we expand in Taylor series the odd coordinates as:

I1z, l 02)(t, -2) = (D + 2D2 + tD-2+

(I 3 + (23 _ (1(2t2F}4 + )1Ii(Z, 01, 2) (4381+ WItD3 + ¢2tD2- ¢ 2 D1D2 + D+ )(z12) (4.3.8.1)

We want to express these functions as

exp - viLi + uiJi + w)G(j) exp(-BJo)A 2 Lo 7i (4.3.8.2)

j=1,2
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where Di = Oi + 90iO and we have, as in (4.1.5.4):

Ln -tn+lat n + t (U
2

G(2) = +tn+1/2 ( 2 0t - 2) -

G(1) = +tn + ~/2 (da, - ad,) +

9C1 + (2a2)

(n + l)tn-

+1 tn-

(4.3.8.3)

Jn -= -itn ( 2Ol - ClOC2)

the coordinates (z, 0 ± = 01 ± i 2 ) and the change of coordinates p =
'1 + i 2) (cf. 4.1.5) it follows that

++1(+-+-+) ++ z+ -((CO9 +09-O), (+
2

(4.3.8.4)

which we want to expand in Taylor series. Let us do that in detail (here ' denotes
either I+ or T-):

1
-(¢+o- +
2 c-0+)oz + 1((+o- + -o+) 292) .

*I (t+z,(+ + +, - +0 -) - '(Z,0 o + , o-)

1 1(+-+-q 
2(¢ + 9 + 4+) + +-+0-9 ·

(t + z,(+ + + , - + -) - Z, o + , o-)

= [( (o+ +

+ t + +t

1O-az) + ( (ao- + 20+z) +

(ao+ + -a)
+2 

Oaz + -t (- + 2 0+9z ) 9Z+

1 1 1+_0 2
+ (+¢ -(0o-,o+ O-aO,o- + -9O++ 

2 Z +2 Z' 4

= ((+D- + (-D+ + tz + (+tD-O: + (-tD+aO+

+ (D+D- aZ1) + t22 +..,+ +(-(D+D- - -az + 'V ... '
(4.3.8.5)
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where D = 00 + 0'Oz. Since the curve is oriented, this reduces to:

z+ = ((+D- + tD+D- + (+tD-D+D-+

2 2 ) D) + A. ..+(+(- (D+D-) + lt2(D+D-)2) + +...

2 D -T-'za±) = (- D+ + t D -D+ + (-t D +D -D+ +
+ ( (+-(D-D+) + 2t (D-D+ 2)F +.

(4.3.8.6)

We want to express these as the exponential of a vector field. For this we compute

exp (-E viLi + ujJj + w G4)) B-JOA-2 L (4 =

= B A[+t +
: B+1A [- + tl- +

+ (+t(Vl U1 + l:WTWl ) + t 2 (w + wI W(2vl ± u 1 )) + 2" ±(w ] +...,

from where get the equations:

B'A = D rf ±

z z
D- ql8 D i98 ~P ±1 ± D T DF D ±

vl + ul + -wl Wl = D
2 1 DF)rI

W:: - W'(2v ± ul) I D::qt±
2 2 1 2 D:TqfI'

(4.3.8.7)

(4.3.8.8)

We can solve this system to get

1 (D-Tj

vl= 1 D _+ D +I'_ _V~~~~I = ~qt;2 D+ D+'-+ ++-1 = '(+ D+1I Df+J-U1 = -- - D =
2 D xF+ D+x- 2 D-xF+D+xP -

W+ - I I+ _ I (D+XFT + 3Dw2 2T-x=L Z'z 2 D+TF D Ta

(4.3.8.9)

where 2 is the N = 2 schwarzian derivative (cf. [11]).

Example 4.3.9. Free Fields. With the results of the previous sections we can
compute now explicitly some vector bundles over oriented superconformal N 2
curves. Let Y be such a curve and let B(2) be the strongly conformal NK = 2
SUSY vertex algebra described in Example 2.1.24. Let p(2) be the associated vector
bundle over Y. The vector subspace spanned by the vacuum vectors and the two
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fermions (namely the fields with conformal weight less or equal to 1/2) is an Autw lI22
submodule. Let us denote these vectors, as in 2.1.24, by {10>, t} respectively, and
let <1/2(2) be the associated rank 112 vector bundle over Y. In order to compute its
transition functions explicitly we see first that the only nontrivial relations (for our
purposes) are:

G±)cp = Am J0 = i LoW± = (4.3.9.1)

We can therefore compute the transition functions to be

R(p) - 1 (+) = A2LOBJ° exp( vLi+ uJ + wG(i) 1 0)(i~~~~~~~~~~~~~~~~~~~f- ~~~~i>l f1 mw7 -mW+ l>
= BA 0 B- 0 (4.3.9.2)

0 0 B-1 A (p

1 m D+ - -m _q+ +
= D-@F+ 0

00 0 D+ /] J

Recall now that an oriented superconformal N = 2 curve projects onto two N = 1
supercurves X and its dual X (cf. 2.2.12). Using the coordinates (cf. 4.1.5)

(u =z++ 0+0-,+,o-)

we obtain from (4.1.5.11) and (4.1.5.10) that

D+- =D+ D - G )
=D-@+ )=D + a (*+ -* +) (Go+ + O-Gu)

=+ D -9o-,~)(G + +oa) (4.3.9.3)
mT+oGu- xF+Go+

(,F+ )2

=sdet Guo + )+.

Similarly we find

D-+= sdet (G ' 'u (4.3.9.4)

Let us call 7r and * the projections from Y onto X and X respectively. We see
from (4.3.9.4) and (4.3.9.3) that taking the super-transpose in (4.3.9.2) we obtain an
extension (of sheaves on Y):

0 -o 7r* Berx r* Ber£ -- V(2)*1/2 - 0. (4.3.9.5)

128



As in the B(1) case, this extension is not split unless m vanishes. It follows in the
same way as in the N = I case that the set of splittings of this extension corresponds
to affine structures on the N = 2 superconformal curve Y. Indeed, we see that
the pair of fields (+, -) transforms as a differential operator V: Berk E Berx 
Ber 2 fD Berx2 which is locally of the form (mD+ + g+,-mD- + g-) for g odd
functions of (u, 0+) and (u', 0-) respectively. We note that according to 2.2.15 sections
of Berx E Berk can be integrated in Y up to an additive constant. The argument in
the proof of theorem 4.3.5 generalizes to this setting without difficulty.

We will return to this example below (cf. 4.3.12).

Example 4.3.10. The N = 2 vertex superalgebra. Let K(2) := K be the
strongly conformal NK = 2 SUSY vertex algebra described in Example 3.6.5 (see
also Example 2.1.22), and let X(2) be the associated vector bundle over Y. The
vector subspace spanned by primary fields of conformal weight 0 or 1 is an AutwtY112
submodule. Let us denote these vectors as above by {10 >, J} respectively, and let
X(2)5 1 be the associated rank 210 vector bundle over Y. To compute the transition
functions we note that the only non-trivial relations we need are

Lo J= J JiJ=- 30>. (4.3.10.1)

Therefore it follows that the transition functions are given by:

R(pO)_1 10> I Cui 10>

R(p) (10>) ( Ae2( +,T:) 1 (4.3.10.2)
0 D+T-D-F+ V J

It follows as before, by taking the super-transpose, that when c = 0 the superfield
J(z, 0+, 0-) transforms as a section of 7r* Berx ®Or* Ber*, namely in this case we get
an extension

0 - 7r* Berx Qir* Ber - X(2)* - y - 0, (4.3.10.3)

which is split if and only if c = 0. When c i 0 the extension is not split and the
superfield J(z, 0+, 0-) transforms as6

J(z, +,O- ) = (D+I-)(D-I+)J(p(z, +, 0-)) + 3C2(T+ , I-). (4.3.10.4)
3

We see that the section ' is an even section projecting onto 1 E Oy, therefore giving
a splitting of (4.3.10.3). The set of such splittings if non-empty is a torsor for the
even part of 7r* Berx ®r* Ber£.

Analyzing this algebra further we can consider the space spanned by vectors of
conformal weight less than or equal to 3/2, namely K(2)<3/2. This space is spanned

6 Note that this superfield is -iG(Z) in the notation of Example 3.6.5.
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by { 0>, J, G±}. In addition to (4.3.10.1) we have the following relations:

3LoG-=a-G Jo-=G- GG- J
2 (1)

LoG+ = 2G+ JoG+ = G+

C
G%)G-= 1o0>

G- G + = C10 >2) 3 (4.3.10.5)

With these we can compute the transition functions in the basis {0 >, J, G-, G+}
explicitly:

1

the)-1 f tR(p)-I - - i

the first three by three block being:

1

0

0

-~o2(+, )
(D+T-)(D-T+)

0

6D- IF+

3CU1 3CW+ 3Cw2 u 3w2 3 2
A2 A 2 W+ -A2W-
0 A 3 B-1 0 
0 0 A 3B 

(4.3.10.6)

- 1 (D+ +
(2 D+q'-

(D+xF-)@z+ (4.3.10.7)

and the 4,4 entry in (4.3.10.6) is (D+'-)(D-T+) 2. Taking the super-transpose of
(4.3.10.6) it follows that X(2),<3/ 2 fits in a short exact sequence of the form:

0 r* Berx (* Berk)® 2 -4 X'(2),<3/ 2 v* -O (4.3.10.8)

The bundle -4' in turn fits in the exact sequence:

0 - (r* Berx)®2 0 f* Ber£ - jY* -- X(2)< 1 - 0O. (4.3.10.9)

4.3.11. We turn our attention now to the Nw = 1 case. For this let X be a general
N = 1 supercurve. As before, given a change of coordinates p = (F, J) we expand in
Taylor series:

F(Z,o) (t, () = F(t + z, ( + ) - F(z, 9)

2= tFz + Fo + Foxz+ 2Fzz+.
I(Z,O) (t, () = I(t + Z, ( + 0) - (Z, 0)

t 2

= ti + o + (tzo + t- zz.
We need to express these as:

F(Zo))
T(z,0)

= exp (- E viTi
i>1

(4.3.11.1)

hiHi) 

x exp(-qoQo) exp(-hoHo)B-JA -T o
(tA

(J 
(4.3.11.2)
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where, as in (4.1.3.7), we have

Tn = -tn+lt (n + )t n(,
Qn = t+ 9

Expanding (4.3.11.2) up to second order, we find:

F(z,o) = tA(1 + qoho) + (Aho + t2(vI(A + Aqoho) + Aqlho)+
+ (t(A(1 + qoho)hl + 2Aviho + Aulho) +...

T(Zo) = (BA + tqoBA + tBA(2v 1 + ul + hlqo) + t2BA(q + Vlqo) +--...,

(4.3.11.4)
and we get the equations:

A(1 + qoho) = FZ

Aho Fo

vlFz + qlFo = 1FZ
2'

h1i, + (2v1 + U1)'To = To,,

Vliz + q T =

From this we find:

A FTo - ZFo
Fo

FTLo - ,zFoV1 = FZ--,F
2 FPo-ZFo

hi = F,oAo- Tz,oFo
Fz~o- TzFo

B= 0
Fzo- Fo

q0 =

q -- -q = Fz,z1!:-ZOFz
2 Fo.- oFz

Fz,o~z- Tz,oFz +
Fo~z- ToFz

XF,zFo - F,zIe

FzPo- zFo

Example 4.3.12. Free Fields Consider the vertex algebra B(2) as in example 4.3.9
but as a Nw = 1 SUSY vertex algebra. As such, for each N = 1 supercurve X we
obtain a vector bundle 1( 2 )x. Recall that with respect to the Virasoro field L, the
vector - has conformal weight 0. Therefore the vector space spanned by 10> and
o- is an AutO"11 -submodule. We obtain then a rank 111 vector bundle over X, to be
denoted V(2)x,<o. Let us compute explicitly the transition functions for this bundle.
The relevant relations are in this case:

JoP- = -- QOW- = -mjO>. (4.3.12.1)
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Jn = -t ( ¢
Hn = t¢n(t.

(4.3.11.3a)

(4.3.11.3b)

BA = 0

qoBA = Tz

h1 FZ + (2V + -Ul)Fo = Fz,o

(4.3.11.5)

(4.3.11.6)

(4.3.11.7)

(4.3.11.8)1:
2 '

(4.3.11.9)

(4.3.11.10)

(4.3.11.11)

(4.3.11.12)



Hence we obtain

R(p) 1 (1o>) =ATOBJO exp(hoHo) exp(qoQo) (10_>) =

= (1 Bi_) (10 ) (4.3.12 2)

which implies

R() - 1 = (4.3.12.3)

Noting that

Sdet F 11Fo- ) ,3 (4.3.12.4)
Fo 'Po Q

we see that by taking the super-transpose in (4.3.12.3) we obtain an extension

0--+ Berx M(2),<0 - x --+ 0. (4.3.12.5)

This short exact sequence is split if and only if m = 0. In that case, we see that
p-(z, )[dzdO] transforms as a section of Berx. On the other hand, when m 0,
(4.3.12.5) is not split and the section M projects into 1 E Ax, giving a splitting of
(4.3.12.5). In order to analyze the splittings of these sequences, we introduce maps
of sheaves V: Ber - Berx 0 Bert which are locally of the form V0 = -mD + + 9g.
Here we consider X with coordinates u, 0+ and X with coordinates u', 0- as in 4.1.5.
We will consistently write f to denote a function of u', 0-. It follows from (4.3.9.4),
(4.3.9.5) and the fact that V maps Berk -* Berx 0 Bert that on overlaps we must
have:

V~fc = (D+x-)(D- +)V3 ((D-I+)-f) (4.3.12.6)

Replacing V in both sides by its local form and using (4.1.5.7) (recall that the super-
conformal N = 2 curve associated to X is oriented), we get:

- mD.+f + g 0 = -mD+af, + m(D-x+)-1 +D- +fa + (D+T-)gaf0.
(4.3.12.7)

Now noting that D+ D - ' + = Mu+ and that

+ + = +UD =It ± ='h - (4.3.12.8)D-xF+ qfo+ + 0- 'F+ xF+0+ w +'

we get

g =sdet (Gu + ) +m (4.3.12.9)g~ =setGo+ x+J + m+

therefore proving the following

Theorem. The set of splittings of (4.3.12.5) for m 0 is in one to one corre-
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spondence with operators V: Ber - Berx ® Ber£ locally of the form -mD + + g,.

Let V be such an operator, and let '4 Berg(U) be a flat even section, namely
Va~,P, = 0. As a section of Berk it can be integrated along any contour in X (cf.
2.2.15), namely, let P be a reference A-point in U~, then for any other A-point in Ua
we put

rQ= p f(4.3.12.10)

The solution b is unique up to an even multiplicative constant, whilst changing the
reference point P changes ( by an additive odd constant, shrinking U, we may assume
that D, is invertible. Choosing any other even function t with invertible differential,
we obtain charts U,, (t, ,a). The transition functions between these charts are clearly
affine functions for the odd coordinates, namely ( = a,c, + eo, for some even
constants a and odd constants . Conversely, given such a covering of X, we define
V = -mD + , where we take ( instead of 0+ and t instead of u in the definition of
D +. It follows from (4.3.12.9) that V is well defined globally since the second term
in the right hand side of (4.3.12.9) vanishes.

Combining the above paragraph with the previous theorem we have

Theorem. The set of splittings of (4.3.12.5) for m $ 0 is in one to one cor-
respondence with (equivalence classes of) atlases U,, zc,, 0,, such that the transition
functions are affine in the odd coordinate, namely O = aOc, + e for some even constant
a and some odd constant e.

Let Y be the superconformal N = 2 curve associated to X. Note that from
(4.3.12.3) and (4.3.9.2) it follows that the following sequences are exact

0 -+ fr* Ber£ -4 ,(2),<1/2 7r* (2)*,<o -- 0
o -Y 7r* Berx -+ 1(2)P<1/2 X*~(2y <~, .- ~ ~(4.3.12.11)

0 ~ 7r* Berx V(2),<V2 - (2)£,<o 0.

The bundle (2)y is the corresponding bundle constructed in Example 4.3.9 from
this vertex algebra, but viewed as an NK = 2 SUSY vertex algebra. These two
extensions show how the different vector bundles constructed from the same vertex
algebras in these three different curves (X, X and Y) are related.

It is instructive to analyze the next graded component of B(2). For this we note
that the vectors of conformal weight 1 are oa- and A+ . The relevant relations are:

HqO ~ + =a- H1~o+ = o> Jog>+ =q +

Qoa-+ = mlO> = (4.3.12.12)
Q~or= Jla- = -mO>.

It follows that the vector space spanned by {10>, p+,a - } is an Aut'llL-submodule.
Let 1' be the associated rank 211 vector bundle over X. We compute easily the
transition functions to be in this case

(1 mhl -mu1
R(p) - 1 - o AB ABqo , (4.3.12.13)

Aho A(1 - hoqo)/
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which, according to 4.3.11.12, is

1 .Fz -4c.,@FO F.F. d-41,O 1F ,zFo-F,.1Po(1 mFze-WzFe -m + Fed -, FzzzI, )
R(p) 1 = FiO F z , (4.3.12.14)

Fo F/

It is clear now that taking the super transpose in (4.3.12.14) we get that * is an
extension

0- - -+ ex --+ 0. (4.3.12.15)

This extension is non-split when m ~ 0. Now let B(2)<1 be the subspace of B(2)
spanned by vectors of conformal weight less or equal than 1. It follows easily from the
above paragraphs that the associated rank 212 vector bundle over X fits in a short
exact sequence of the form:

0 --+ 2: Berx --+ 4(2)*< 1 --+ x -+ 0. (4.3.12.16)

Example 4.3.13. The N = 2 vertex algebra. Let, as before K(2) be the N = 2
super vertex algebra defined in Example 2.1.22, but considered as an Nw = 1 SUSY
vertex algebra. Let X be an N = 1 supercurve. The vector space spanned by the
vacuum vector, the current J, and the fermion H, is an Autt1ll1 -submodule. Indeed,
with respect to the Virasoro field L, the fermion H has conformal weight 1. Denote
the corresponding rank 21 vector bundle over X by >( 2 )x,<. It follows from the
general considerations in appendix A, that the dual of this vector bundle fits in a
short exact sequence of the form:

0 --+ Q 0 Berx / X(2),< - Ox -- 0. (4.3.13.1)

Indeed, the relevant relations are in this case:

ToJ = J TiJ =10> JJ = 10> HoJ = H
3 3 (4.3.13.2)

ToH= H QoH = J JoH=-H Q1H= 10>,
3

therefore the vector space K(2)1 spanned by {J,H} is isomorphic (as a[(l1)-
module) to 7r+(1, 0) (cf.appendix A), and its dual module is then r_(-1, 0) - r+(-1, 0)®
7r_-(1). Also we know that the Autt 1 1-twist of r+(-1, 0) (resp. 7r(1)) is Qx (resp.
Berx).

We can actually compute this transition functions explicitly as before by expo-
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nentiating vector fields:

°>7

R(P)-I 
H/

-= AT° BJ° exp(hoHo) exp(qoQo) x

xexp( vL
i>1

+ uJ +qQi ±h2 Hi). ( >)

1°>
= AT°BJO°exp(hoHo) exp(qoQo). J+ (ul - vl)O>

H+qlclO>3
(1 3(V - Ul) ql

= A AqO J ,
B-1Aho B-A(1 -hoqo) H

which, according to (4.3.11.12), implies

(

R(p)-= 0
kO

c (F,q-q,oF. + 2 Fq'zFo-Fo
3 Fo''z- oFz 2 FPzi 0-zFo J

Fz o- P Fo

F9
reO

6 Fz-IoF,

2 lo
F~ a,0 o-4qFoF.Fz&2

0Z2-~~

(4.3.13.4)

Taking the super-transpose of the lower two by two block we easily see that this block
corresponds to the transition functions in Berx ®Q, proving thus that X (2),,1 is
given by an extension as in (4.3.13.1). This extension is non-split unless c = 0, in
which case the pair of fields {J(z, 0), H(z, 0)} transforms as a section of Berx ®2:
In order to study the splittings of this extension we need to understand the differential
operators appearing in the first row of (4.3.13.4). We leave this to the reader.
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Chapter 5

Chiral algebras on supercurves

In this chapter we follow closely the treatment in chapter 18 of [16]. We note that
most definitions carry over to the "super" case with minor technical changes. In
particular we give a sheaf theoretical interpretation of the OPE formula (3.3.9.1) and
its NK = N analog. We define the superconformal blocks in section 5.2

We will restrict our analysis to the (111) dimensional case for simplicity. All
the results in this chapter can be generalized to arbitrary odd dimensions without
difficulty.

For the definitions of chiral algebras over non-supercurves the reader is referred to
[16] and the original work of Beilinson and Drinfeld [5]. The reader may find useful
the treatement of -modules by Bernstein [8] and [31] in the supermanifold case.

5.1 Chiral algebras

5.1.1. When trying to define chiral algebras on supercurves the first problem that
we encounter is that given a (N) dimensional supercurve X over S, the diagonal
embedding A - X x s X has relative codimension ( N). In particular, the diagonal
is not a divisor in X x s X unless N = 0.

The situation is much simpler in the superconformal case (corresponding to NK =

N SUSY vertex algebras). In this case, we can define canonically a divisor in X xs
X. Basically, all the arguments in the classical case work without change in the
superconformal case, given that we have replaced the diagonal by a super diagonal.

Since we can carry explicitly the computations in the N = 1 case, without intro-
ducing extra notation, we will assume that this is the case in the following.

Lemma 5.1.2 (6.3 [28]). (cf. 5.1.7 below) Let X be a superconformal N = 1 super-
curve. Let J be the ideal defining the diagonal i: A -- X x s X. In local coordinates
J is defined by (z - w, 0 - c). Let A (1) be defined by j2. Let I be the kernel of the
natural map /s Berx/s. Finally we define As by:

~,.= -- A()/i*(I). (5.1.2.1)
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Then A' is a (110) codimensional divisor in X xS X, locally defined by the equation

0 = z- w- 09. (5.1.2.2)

This divisor will be called the super diagonal and we will simply call it the diagonal
when no confusion should arise.

5.1.3. Given an 'x-module X#, we define two extensions of X along the super
diagonal: extension by principal parts in the transversal direction and extension by
delta functions in the transversal direction. The former is given by

A' :=1 M 5'9(~ ./ ) '(5.1.3.1)

and the latter by
w ~ .,k~oo8)
W 1Z.'ff(3OA) X(5.1.3.2)

where w is the Berezinian bundle of X defined in 2.2.11.

5.1.4. As in the non-super case, we have a sheaf-theoretical interpretation of the OPE
formula. For this we let X be a superconformal N = 1 curve over A. Let V be a
strongly conformal NK = 1 SUSY vertex algebra and let I be the associated vector
bundle over X (cf. 4.2.7). Recall that, given any A-point x in X, we have defined
a local section x (cf. 4.2.8). Choose local coordinates Z at x compatible with the
superconformal structure. Using this coordinates we trivialize the bundle 1 in the
formal superdisk D. around x, namely we have an isomorphism iz : V[[Z]] - 1D.

Let W be another copy of Z, so that D' is identified with Spec A[[Z, W]]. The bundle
y1 /(ooAs), when restricted to D', is the sheaf associated to the A[[Z, W]]-module
V 0 V[[Z, W]][(z - w - 09)-1 ]. Similarly, the restriction of the sheaf A' to DX2 is
associated to the A[[Z, W]]-module V[[Z, W]][(z - w - 9()]/V[[Z, W]].

Theorem 5.1.5. Define a map of OD2-modules 2, / [ '(ooA/ ) - AIIby the
formula

2,x(f(Z, W)a b) = f(Z, W)Y(a, Z - W)b mod V[[Z, W]]. (5.1.5.1)

Then /2,, is independent of the choice of the coordinates Z as long as they are com-
patible with the superconformal structure induced in Dx from that of X.

Proof. Exactly as in the non-super case, we reduce the proof of this theorem to the
identity:

$ $
Y(a, Z- W) = R(tpw)Y (R(/pz)-la, /(Z)-/ 1 (W)) R(/w) - ', a E V, (5.1.5.2)

for any E Autw'lil. This identity is equivalent to 4.2.4.1 by substituting Z - W
instead of Z and puw(Z- W) = (Z) - (W) instead of p(Z). ]
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Remark 5.1.6. In order to prove a similar statement for a general N = 1 supercurve
X over A, we could define a "super-diagonal" as follows. Recall that any such curve
X gives rise to an oriented superconformal N = 2 super curve Y (cf. 2.2.12). Recall
also that the curve Y comes equipped with two maps 7rx: Y - X and fr: Y --+ X,
where X is the dual curve. In local coordinates these maps are described by (cf.
4.3.10)

(Z, + ,0 + ,0+,/ (5.1.6.1)

(Z, O+, O- ) r ( z +0 - )

It is easy to show that Y embedds as a (110) codimensional divisor in X XA X. Indeed,
for a A-point x in X given by local parameters Z = (z, 0) the preimage in Y is given
by local parameters (z - 0, 0, ). Similarly, for a point W = (w, ) in X we have
its preimage in Y given by local parameters (w + 0( , 0,(). Then the point (Z, W)
in X x A X is in the image of Y if and only if z - w - 0 = 0. Note in particular that
when X is superconformal, namely X k this "diagonal" Y --+ X x A X agrees with
Manin's super-diagonal given in Lemma 5.1.2.

We could try to repeat the argument given above for superconformal curves, but
the operation 2 turns out to be coordinate-dependent'.

5.1.7. Instead of using the approach in the previous remark, note that we can define
the push-forward A+ and Al even when A is not a divisor. In our case these are easy
to describe. Let A be the diagonal A -+ X xs X. Even though A is not a divisor in
X xs X, it reduction Al is a divisor in IX xs X = IXI xlsl IXI. We have then an
open immersion j: X x X \ A -+ X x X, where X x X \ A is U = XI x IXI \ /l
as a topological space and the structure sheaf is the restriction of tYx2 to U. We can
now define the cooresponding push-forwards of an Ax-module XW as:

A _ i(xw = f (5.1.7.1)

When no confusion can arise, for any sheaf f, we will denote by (ooA) the
sheaf j*j*g.

Remark 5.1.8. As in the non-super case, these pushforwards are in fact the push
forward of left (resp. right) Ox-modules along the diagonal, where in the supercon-
formal case we understand for a Ox module, a module over the ring of differential
operators preserving the contact structure w (see also 5.1.13).

5.1.9. We construct now a morphism of sheaves on D. XA D., 0 : j*j*((/x E x/) *

'It will be nice to find a way of describing the vertex algebra multiplication as an expression
when a point x E X "collides" with a point : E X along the "diagonal" A' C X x X.
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A/ x by the formula:

S

~/2,(f(Z, W)a [ b) = f(Z, W)Y(a, Z - W)b mod V[[Z, W]]. (5.1.9.1)

As in 5.1.5 we have

Theorem 5.1.10. The map 2,X defined by (5.1.9.1) is a well defined map of sheaves
on D XA Dx, i.e. 2, does not depend on the coordinates Z chosen.

5.1.11. We can now generalize all the results in [16, chapter 18] on chiral algebras
without difficulty. For simplicity let us assume that X is a general 1IN-dimensional
supercurve. Suppose that the sheaf ./ on X carries a (left) action of the sheaf
of differential operators 9 x. Let 12 : X 2 - X 2 be the transposition of the two
factors. We obtain a canonical isomorphism of sheaves A+.# _ a* 2A+. given in
local coordinates by the formula

(Z - W)kK e(Z -W)kIK mod X [ Ax, (5.1.11.1)(Z - W)klK (Z WFklK

Where tb is a local section of and V is the connection that we obtain from the
9-module structure in W. When X carries a right action of 9 x, we obtain similarly
an isomorphism A./! _ u 2 A!.. Note that the Berezinian bundle is of rank (011)
if N is odd, hence in the above formula we need to multiply by (-1) ON.

Similarly, if X is a superconformal curve and X carries a (left) action of the sheaf
of superconformal differential operators 2 x (cf. 4.2.10), the above formula defines
isomorphisms as in the general case.

5.1.12. The Berezinian bundle wx is a right Dx-module, the action given by the Lie
derivative [13]. Therefore for any left 2x-module 9 we obtain a right x-module
Fr := 8w®. This operation establishes an equivalence of categories between left and
right 9x-modules [31]. The same results hold for 2x-modules over superconformal
curves in the sense of 4.2.10.

Let X be a supercurve, the sheaf wx wx on X 2 is isomorphic to WX2. The
natural map is expressed in local coordinates as:

dZ [ dW " [dZdW], (5.1.12.1)

where as before dZ denotes the section [dzd01 ... dON] of wx and [dZdW] denotes the
section [dzdwdO1d(. ... dONdC(N] of WX2. We note the skew-symmetry in (5.1.12.1)
since (recall the definition of the Berezinian in 2.2.11)

dZ [ dW -(-1 )N [dWdZ]. (5.1.12.2)

We obtain thus /A!WZ - WX2(oOA)/WX2. Let ,u, denote the composition of the identi-
fication w w(oo/A) _ wx2(xooA) with the projection onto /A!wx. This map is clearly
a morphism of right 9x-modules satisfying the skew-symmetry condition:

Mw 0 0 1 2 = -A.w (5.1.12.3)

140



Note that this formula differs from (5.1.12.2) by a factor (-1)N. Indeed this factor
appears when applying O12, namely the composition in the right hand side of (5.1.12.3)
is given by:

dZ X dW a12 (_l)NdW [ dZ t (-)N[dWdZ] -[dZdW] = -sdZ d.
(5.1.12.4)

Remark 5.1.13. Let X be a supercurve and Z ~- X a closed embedding, We define
the functor 1Fz from the category of sheaves on X to itself by letting sections of
_Fz(,) be sections of 9 supported on Z. This functor is left exact. Let 3Y be the
higher derived functors. In this sense the basic definitions of local cohomologies in
[20] extend in a straightforward way to the super case. Similarly we can define the
relative local cohomologies as the higher derived functors of rz/z, where Z' ~- Z is
another closed embedding and rz/z, is defined in the usual way as the quotient of
sections supported in Z modulo those supported in Z' [20]. From the exact sequence

0 - ( rz() -- -- j*(Iu) - 3f (g) o, (5.1.13.1)
where U = X \ Z and j: U - X is the open immersion, we obtain that

AWx = 1z (Wx2). (5.1.13.2)

This identification of sheaves extended by delta functions on the diagonals with local
cohomology sheaves shows that indeed these are push-forwards of Qx-modules2 .

5.1.14. We have also a dictionary between Qx-modules and delta functions. The space
C[[Z* ', W+']] carries a structure of a module over the algebra of differential operators
C[[Z, W]][Vz, Vw] (here Vz = (z, 00i) in the general case and Vz = (0z, D ) in the
superconformal case). The formal delta-function 6(Z, W) satisfies the relations:

(Z - W)I[°6(Z, W) = 0

(Z - W)leie(Z, W) = 0 (5.1.14.1)

(Vz+ Vw) (ZW) 0

Therefore the C[[Z, Wf]][Vz, Vw]-submodule of C[[Z', W ]] generated by 6(Z, W)
is spanned by VjlK6(Z, W) with j > 0. This module gives rise to a s-module on the
disk D2 = Spec C[[Z, W]] supported on z = w (note that this is also the case in the
superconformal case, where the poles are in z- w- iti)

The assignment

(Z- W)-I-IlN\JdW -4 (J)a(lj)6(Z, W) (5.1.14.2)

induces an isomorphism of left 9-modules on D2 between A+w and the left 9-module
generated by 6(Z, W). Similarly, tensoring with w we obtain an isomorphism of right
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2-modules. In the superconformal case the situation is analogous, the proof follows
from (3.5.2.1).

5.1.15. Recall that from Theorem 4.2.9 and (4.2.10.1), we have a natural (left) action
of differential operators on 1/. It follows then that the push-forward A+/Y is also a
(left) 2-module. Indeed, the action of vector fields locally is given by (a E V):

Oz: f(Z, W)a - (zf(Z, W))a, (5.1.15.1)

w' f(Z, W)a -* (,9f(Z, W))a + f(Z, W)(Ta) (5.1.15.2)
i : f (Z, W)a - (e, (Z, W))a (5.1.15.3)

¢i f(Z, W)a - (f(Z, W))a + (-1)ff(Z, W)Sia, (5.1.15.4)

and similarly in the superconformal case.
Also, we obtain a 2-module structure on the sheaves 1" O1'(ooL\) where Oi acts

as e9i + Si and %i acts as 9ci + Si.

Proposition 5.1.16. The map 32,, commutes with the action of differential operators
on D2, making this map a morphism of 2-modules.

Proof. For a general supercurve X the proof is the same as in the non-super case.
We sketch the proof in the superconformal case where a subtlety arises. Let X =

(x, 1,..., N). The identity

Y(Sia, Z- W)b = D'Y(a, X)blx=zw = D'Y(a, Z- W)b (5.1.16.1)

translates into

Y2,=(Dz f(Z, W)a [ b) = Dz. Y2,x(f(Z, W)a [ b). (5.1.16.2)

On the other hand, consider translation invariance:

[SiY(a, Z- W)]b = (i - 7i7&)Y(a, X)blx=z-w
$

= (-ci + 0%& -1 r7)Y(a, Z - W)blx=zw (5.1.16.3)
= (-0i -( ,9)Y(a, Z - W)b

$

-DwY(a, Z - W)b.

From where we obtain:

S S

Y(a, Z - W)S'b = (-1)aSiY(a, Z- W)b+ (1)aD'Y(a, Z - W)b, (5.1.16.4)

and this translates into:

2,x(Dw f(Z, W)a [ b) = Dw. 2,(f(Z, W)a [ b). (5.1.16.5)(5.1.16.5)
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Remark 5.1.17. Since A+Y is supported on the diagonal, we obtain a global version
&/8 of 2,x by gluing these morphisms in the diagonal with the zero morphism outside
of the diagonal. By the previous proposition, this morphism is a map of 9-modules
on X 2 .

Proposition 5.1.18. The map 2 : 7 7(ooA) -_ A+71 satisfies g/ 2 = 012 o 2

under the canonical identification A+ _ 0.2A+/.

Proof. From the skew-symmetry property of SUSY vertex algebras (3.3.14.1) it fol-
lows:

Y(a, Z- W)b = (-1)abe(ZW)vY(b, W - Z)a (5.1.18.1)

and the exponential e(z - w )v is the coordinate expression for the parallel translation,
using the 9-module structure on 7/, from W to Z (see 5.1.11). [1

5.1.19. In order to define chiral algebras over supercurves, we need to understand the
composition of morphisms like &2. For this we need to understand A 12 31d for any
right 9-module d over X, where A 123 is the small diagonal in X3 where the three
points collide. As in the non-super case, we can write this as a composition

]1231J - A 2 31AJd. (5.1.19.1)

This identity follows from the fact that the push-forward of right 9-modules is exact
for closed embeddings (cf. [8]).

Now let A: ' d (ooA) - A!, be a morphism of 9-modules on X 2 . We define
a composition of i:

A 1{23} : jJ [ J I U -4 A1 2 3 1d (5.1.19.2)

where U = X 3 \ UAij and j: U X 3 is the open immersion. In order to define
such a composition we first apply A to the second and third argument, and then
we apply /t to the first argument and the result (cf. [16, 18.3.1]). We define other
compositions of A by changing the order in which we group the points. As in [16] we
denote these compositions in the following way: given local sections a, b and c of v

and a meromorphic function f(X, Y, Z) with poles along the diagonals, we have:

Al 2 3} (f (X, Y, Z)a N b N c) = pI(f (X, Y, Z)a X p (b M c))

/{12}3(f(X, Y, Z)a N b 0 c) p(,I((f(X, Y, Z)a 0 b) X c) (5.1.19.3)

2{13 } (f(X, Y, Z)a N b 0 c) = (-1)'0c 12 o /(f(X, Y, Z)b IL(a M c)).

With these compositions defined, we can now define a chiral algebra in the usual way:

Definition 5.1.20. A chiral algebra on a 1IN dimensional supercurve X is a right
9-module W equipped with a morphism of 9-modules:

IL: a? t ,(ooA) -+ Afd (5.1.20.1)

satisfying the following conditions:
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* (skew-symmetry) j/t = - o 12.

* (Jacobi identity) /1{23} = {12}3 + 2{13}.

* (Unit) We are given a canonical embedding wx -4 W of the Berezinian bundle
compatible with the homomorphism , defined in 5.1.12.

Remark 5.1.21. Note that this definition is exactly the same as in the non-super case,
namely, the signs appearing when anticommuting odd-elements are taken care by the
symmetric structure of the category of modules over super-rings. That is, given a
super-ring R and two R-modules M and N, the isomorphism : M X N _ N 0 M
is given by:

a: m 0 n ® (-1) m ®n m. (5.1.21.1)

Indeed the only difference with the non-super case is the fact that the unit w is a
rank (011)-bundle when N is odd. From the SUSY vertex algebra point of view, this
is translated into the fact that the A-bracket has parity N mod 2.

In the superconformal case there is a subtlety. We note that the intersection of
two different diagonals in the sense of 5.1.2 depends on the diagonals chosen, namely:

A1 2 n A2 3 1 3 n A2 3 (5.1.21.2)

But despite this fact, the pushforward A12 3 ! is still well defined, independent of the
composition chosen as in (5.1.19.1).

Using the equivalence between left 9-modules and right 9-modules, we obtain
a right 9-module 1/r = WoX 0 1 from any strongly conformal SUSY vertex algebra.
Similarly, this sheaf carries a multiplication = (/ 2 )r obtained from ~/2.

Theorem 5.1.22. The pair (r, p) carries a structure of a chiral algebra over X.

Proof. The proof of this fact is the same as the proof in the non-super case [16, Thm
18.3.3]. Indeed, this follows by considering the Cousin resolution of the Berezinian
bundle in X 3 and the corresponding Cousin property of SUSY vertex algebras that
we proved in 3.3.13. 0

5.2 Conformal blocks

In this section we define the sheaves of coinvariants of SUSY vertex algebras. The
treatment follows [16]. In fact, most results carry over without change to our situation.
We only mention the major differences.

5.2.1. Recall from Theorem 3.3.17 and its NK = N analog that the polar part of
a SUSY vertex algebra is naturally a conformal algebra. We can consider then the
operator 3/,- which is the polar part of 3/. The notion of Lie* algebra over a super
curve is generalized in a straightforward manner from the non-super case.
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5.2.2. Let ' be a right -module, the de Rham sequence of .W is the sequence:

0 -+ JN? 3 -®. - 0 (5.2.2.1)

placed in cohomological degrees 0 and -1, where .7 is the tangent sheaf of X. In
the superconformal case, we do not have an action of the entire tangent sheaf, but
we can act by the subsheaf 93 generated by the derivations D' (i.e. the subsheaf
.1 of remark 2.2.13 in the 111 dimensional case, and the sheaf ' D T" in the 12
dimensional case). We define then the de Rham sheaf h(JY) of v as

h(dW) = //(&. i7). (5.2.2.2)

whereas in the superconformal case we put h(d) = s/(d P).

Proposition 5.2.3. Let (., t) be a chiral algebra. Then

1. h(st)(D') and h(.')(E), for any open x C X are Lie superalgebras, and
there is a natural homomorphism of Lie superalgebras h(O2)(E) -- h(')(Dx).

2. h(.d1)(Dx ) acts on the fiber '.

3. If (a., ) is associated to a SUSY vertex algebra V, then there is a canonical
isomorphism h(Oz)(Dx ) Lie'(V) (see Theorem 3.4.3 for the definition of
Lie'(V) in the Nw = N case, resp. Theorem 3.5.26 in the superconformal
case).

Proof. We can think of d w dz, where Wa is a left 9-module. Since we
can integrate sections of the Berezinian bundle, we see immediately that we have
h(A!,) = Ah(. ). On the other hand the map : ' [ .'(ooA) A!d induces

h(/): h(.') h(W)(ooA)-- h(A,~). (5.2.3.1)

Restricting to regular sections and pulling back along the diagonal we obtain:

[, ]: h() ® h() h(). (5.2.3.2)

The fact that [, ] satisfies the axioms of a Lie superalgebra follows from the skew-
symmetry and Jacobi identity of chiral algebras. The rest of the theorem is proved
in the same way as [16, prop 18.4.12].

(3) follows from the definitions, in formulas (3.4.2.1) for the Nw = N case and
(3.5.26.1) for the NK = N case. Indeed, these formulas are the equivalent of the
corresponding formulas for the action of vector fields on 0l as defined in 4.2.9 and
in (4.2.10.1). ]

Remark 5.2.4. As in the non-super case, for a strongly conformal SUSY vertex algebra
V, we have a natural map

Ozv. Y/1(Dx) - End(P~) _ End z' (5.2.4.1)
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on D'. Namely, given a section s e r (Dr) we obtain the endomorphism /v (s) =
resx < / ,s > on A. If s is a total derivative, this residue vanishes and the
map /v factors through h(Yr)(DX). The resulting Lie superalgebra homomorphism
h(1/r)(D) - End(Yxr) coincides with the homomorphism of Proposition 5.2.3 (2)
and with the homomorphism p' of Theorem 3.4.3 and 3.5.26.

5.2.5. We can now define the spaces of coinvariants for a super vertex algebra. For this
let X be a supercurve and x E X a point. We have a Lie superalgebra Us = h(Zr)(E),
where E = X \ {x} and this Lie superalgebra acts in x.

Definition 5.2.6. The space of coinvariants associated to (V, X, x) is

H(V,X,x) = 1 /(Ur * •). (5.2.6.1)

Remark 5.2.7. The extension of this definition to the multiple point case with arbi-
trary module insertions is straightforward and we leave it for the reader.

Fix N > 0. Let g be the Lie superalgebra of vector fields on the 1IN dimensional
punctured superdisk DX. Let g' be the Lie subalgebra of g consisting of vector fields
preserving the form w = dt + E Ct d( i. Let /[g,1 be the moduli space of smooth 1IN
dimensional genus g, pointed supercurves (here the genus of a supercurve X is the
genus of Xrd). Let 1g,l be the moduli space of triples (X, x, Z), where (X, x) E
'9,1 and Z is a coordinate system at x. Let 1y and g be the superconformal
analogous.

Theorem 5.2.8 ([35]). The Lie algebra g (resp. gw) acts (infinitesimally) transitivelly
on gl (resp. _Aw). This action preserves the fibers of the projection W,l -+ g,1
(resp. 4gw -+ A9w.

It follows from this theorem, by repeating the localization construction in [16, ch.
16] that, given an Nw = n SUSY vertex algebra (resp. an NK = n SUSY vertex
algebra) V, we obtain a left 9-module A(V) on Xg,1 (resp. Awl), whose fiber at
(X, x) is the space of coinvariants H(X, x, V).
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Appendix A

Representations of g[(1 1)

Let us pick a basis of g[(111) such that

(° 1)

o: (: 1)
Q= (0 )

(1 °)

Then the irreducible representations such that T
by

and J act diagonally are classified

* 110 or 011 dimensional: these are representation on C'l 0 or C°1 ' generated by an
even (resp. odd) vector 1 E C such that in this basis we have T =- Q = H = 0
and J = j we call these representations 7r(j).

* 111 dimensional: for each numbers t,j C C there are two irreducible represen-
tations of dimension 111. These are either of highest or lowest weight:

J ( - 1)

J=( j+( 40)

Q=( ;)
o: (o O)Q (O-

H ( )

.(Oo ;)
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(1.0.8.1)

(1.0.8.2)

(1.0.8.3)

T = t 0
0 t

T = t 0
0 t



We note that by taking minus the super transpose we get that the duals of these
representations are given (in the dual basis {v*, w*}) by

( t) (0 -j +1 =_ ) =( 104T=(ot O) j= ( 0 j 1) Q = t 0) H= (0 0) (1.0.8.4)

which in the basis {-t-lv, w} show that 7r±+(t, j)V - 7r(-t,-j)
Finally we note that the parity changed modules are II7r+(t, j) = 7r(t, j TF 1).
On the formal 111 dimensional superdisk with coordinates (z, 0) we have the fol-

lowing realization of these representations. Consider the basis for this Lie algebra
-T = z + 09o, J = -09o, Q = -zo and H = acting on sections of a vector
bundle by the Lie derivative. By analizyng the action of these derivations on the
fibers of the corresponding bundles we obtain:

Aut&
AmQ1 = AutD X 7r+(-m, -m + 1) m -1(2)

Aut&
AmQ1 = AutD X r_ (-m, -m) m -= 0(2) (1.0.8.6)

Aut#
SmfQl=AutD x 7r+(-m, 0)

AutO
BerD=AutD x 7r(1)

148



Bibliography

[1] B. Bakalov, A. D'andrea, and V. G. Kac. Theory of finite pseudoalgebras. Adv.
Math, 162(1):1-140, 2001.

[2] B. Bakalov and V. G. Kac. Field algebras. Int. Math. Res. Not., (3):123-159,
2003.

[3] T. Banks, L. Dixon, D. Friedan, and E. Martinec. Phenomenology and conformal
field theory or can string theory predict the weak mixing angle? Nucl. Phys. B.,
299(3):613-626, 1988.

[4] A. Beilinson and J. Bernstein. A proof of Jantzen conjectures. Advances in
Soviet Mathematics, 16:1-50, 1993.

[5] A. Beilinson and V. Drinfeld. Chiral Algebras. Number 51 in Colloquium Pub-
lications. American Mathematical Society, 2004.

[6] D. Ben-Zvi, R. Heluani, and M. Szcezny. Supersymmetry of the chiral de Rham
complex. preprint. math. QA/0601532, 2006.

[7] M. J. Bergvelt and J. M. Rabin. Supercurves, their Jacobians, and super KP
equations. Duke Math. Journal, 98(1), 1999.

[8] J. Bernstein. Algebraic theory of D-modules. available online.

[9] R. Borcherds. Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat.
Acad. Sci. USA, 83(10):3068-3071, 1986.

[10] L. A. Borisov. Vertex algebras and mirror symmetry. Comm. in Math. Phys.,
215(3):517-557, 2001.

[11] J. D. Cohn. N = 2 super-Riemann surfaces. Nuclear Physics, B284:349-364,
1987.

[12] A. De Sole and V. G. Kac. Finite vs. affine W-algebras. preprint. math-
ph/0511055, 2005.

[13] P. Deligne and J. W. Morgan. Notes on supersymmetry. In Quantum fields and
strings: A course for mathematicians, volume 1. AMS, 1999.

149



[14] S. N. Dolgikh, A. A. Rosly, and A. S. Schwarz. Supermoduli spaces. Communi-
cations in Mathematical Physics, 135(1):91-100, 1990.

[15] D. Fattori and V. G. Kac. Classification of finite simple Lie conformal superal-
gebras. J. Algebra, 258(1):23-59, 2002.

[16] E. Frenkel and D. Ben-Zvi. Vertex algebras and algebraic curves. Number 88 in
Mathematical surveys and monographs. AMS, Providence, RI, 2001.

[17] I. Frenkel, J. Lepowsky, and A. Meurman. Vertex operator algebras and the
Monster, volume 134 of Pure and applied Mathematics. Academic Press Inc.,
1988.

[18] I. B. Frenkel, Y. Huang, and J. Lepowsky. On axiomatic approaches to vertex
operators algebras and modules. Mem. Amer. Math. Soc., 104(494), 1993.

[19] D. Friedan. Notes on string theory and two dimensional conformal field theory.
Proc. Workshop on Unified String Theories, 1986.

[20] R. Hartshorne. Residues and duality. Number 20 in Lecture notes in mathemat-
ics. Springer-Verlag, 1966.

[21] Y.Z. Huang. Two dimensional conformal geometry and vertex operator algebras.
Number 148 in Progress in Mathematics. Birkhhuser Boston Inc., Boston, MA,
1997.

[22] V. G. Kac. Vertex algebras for beginners, volume 10 of University Lecture. Amer-
ican Mathematical Society, 1996.

[23] V. G. Kac and I. T. Todorov. Superconformal current algebras and their unitary
representations. Comm. Math. Phys., 102(2):337-347, 1985.

[24] V. G. Kac and J. van de Leur. On classification of superconformal algebras. In
Strings-88, pages 77-106, 1989.

[25] M. Kapranov and E. Vasserot. Vertex algebras and the formal loop space. Publ.
Math. Inst. Hautes. Etudes Sci., (100):209-269, 2004.

[26] B. Lian and A. Linshaw. Chiral equivariant cohomology I. preprint.
math.DG/0501084, 2005.

[27] A. Malikov, V. Shechtman, and A. Vaintrob. Chiral de Rham complex. Comm.
Math. Phys, 204(2):439-473, 1999.

[28] Yu. I. Manin. Topics in noncommutative geometry. Princeton University Press,
1991.

[29] Yu. I. Manin. Gauge field theory and complex geometry. Springer, 1997.

150



[30] I. N. McArthur. Line integrals on super Riemman surfaces. Phys Lett, B206:221-
226, 1988.

[31] I. B. Penkov. D-modules on super manifolds. Inventiones mathematicae,
71(3):501-512, 1983.

[32] A. Rogers. Contour integration on super Riemman surfaces. Phys. Lett.,
B213(1):37-40, 1988.

[33] S. L. Shatashvili and C. Vafa. Superstrings and manifolds of exceptional holon-
omy. Selecta Mathematica, 1(2), 1995.

[34] A. Yu. Vaintrob. Deformation of complex superspaces and coherent sheaves on
them. Journal of Soviet Math., 51(1), 1990.

[35] A. Yu Vaintrob. Conformal Lie superalgebras and moduli spaces. Journal of
Geometry and Physics, 15(2), 1995.

151


