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Abstract
We begin by present a new Hopf algebra which can be used to compute the tmf
homology of a space or spectrum at the prime 3. Generalizing work of Mahowald and
Davis, we use this Hopf algebra to compute the tmf homology of the classifying space
of the symmetric group on three elements. We also discuss the E 3 Tate spectrum of
tmf at the prime 3.

We then build on work of Hopkins and his collaborators, first computing the
Adams-Novikov zero line of the homotopy of the spectrum eo4 at 5 and then gener-
alizing the Hopf algebra for tmf to a family of Hopf algebras, one for each spectrum
eopl1 at p. Using these, and using a K(p- 1)-local version, we further generalize the
Davis-Mahowald result, computing the eop_1 homology of the cofiber of the transfer
map BEp -+ So.

We conclude by computing the initial computations needed to understand the
homotopy groups of the Hopkins-Miller real K-theory spectra for heights large than
p- 1 at p. The basic computations are supplemented with conjectures as to the
collapse of the spectral sequences used herein to compute the homotopy.

Thesis Supervisor: Michael J. Hopkins
Title: Professor of Mathematics, Harvard University
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Chapter 1

Introduction and Applications

1.1 Introduction

In this thesis, we will develop and analyze various computational tools to better
understand the Hopkins-Miller higher real K-theories EO,. The Hopkins-Miller the-
orem produces for each finite subgroup G of the extended Morava stabilizer group,
Gn, a spectrum EO,(G) which sits between the Lubin-Tate spectrum En and the
K(n)-local sphere [18]. These spectra serve as useful approximations to the very
complicated K(n)-local sphere, and for small values of n, they have been beneficial
in producing small resolutions of LK(n)S° , allowing for a relatively complete under-
standing of the homotopy [6, 13, 16]. However, for n > 2, the homotopy groups of
EOn are largely mysterious. One of the goal of this thesis is to provide a complete
description of the homotopy ring of EO4 at the prime 5, indicating how the com-
putations work at larger primes. Building on this, we provide a new Hopf algebra
suitable for computing not only the homotopy ring of EOp_1 at p, but also the EOp_1

homology of any space, knowing only the homology of the space as a comodule over
the dual Steenrod algebra.

1.1.1 Chromatic Height 2 and tmf

The case of n = 2 is well studied. Using the machinery of elliptic curves, Hopkins
and his collaborators produced a global spectrum tmf that K(2)-localizes to EO2
at 2 and at 3, where in each case, we take a maximal finite subgroup of 62 which
contains a maximal p-subgroup [19]. The spectrum tmf has several advantages over
the spectra EO2, in that it is an f.p. spectrum in the sense of Mahowald and Rezk [24]
and the homotopy ring is finitely generated over Z. Moreover, the close connection
between elliptic curves and tmf allows one to show that there is a Hopf algebroid for
computing tmf homology using the Weierstrass form of an elliptic curve. However,
in practice, this is difficult to use at best.

Hopkins and Mahowald showed for tmf at 2 there is an Adams spectral sequence
for computing tmf homology similar to that for ko.
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Theorem (Hopkins-Mahowald). There is a spectral sequence of the form

ExtA(2). (F2, H(X)) > tmf(X )

for cell complexes X.

For primes bigger than 3, there are similar results, using the splitting

tmfw V Fp()BP (2),

where p(k) and the number of wedge summand are determined by the combinatorics
of tmf .

Davis and Mahowald have computed ExtA(2). for a large number of spaces, includ-
ing truncated projective spaces [8]. At the time, many of these computations were
viewed as academic exercises, since Davis and Mahowald thought that there was no
spectrum with cohomology A//4(2) [10].

The computational machinery established by Davis and Mahowald can also be
modified using filtration arguments similar to those of Chapter 2 to prove results
similar to the following.

Proposition. As graded groups and as modules over Z[C4],

7r*(tmftE2) = II 8k ko.

The missing piece of the computability puzzle for tmf is what happens at the
prime 3. The form of the Hopf algebra required for the Adams spectral sequence was
conjectured by Henriques and the author and is proved in Chapter 2. Results similar
to those of Davis and Mahowald are also proved in Chapter 2, together with a result
analogous to the previous proposition.

1.1.2 Heightp-1 atp
For n > 2, there is a geometric model similar to that of elliptic curves which was
developed by Hopkins, Mahowald, and Gorbounov. It provides a Hopf algebroid
analogous to the Weierstrass Hopf algebroid and will be discussed in Chapter 3. This
Hopf algebroid was used by Hopkins to show that the higher Adams-Novikov filtration
elements of 7r, EOp_1 are very simple. Moreover, it can be used to compute the entire
Adams-Novikov zero line, producing a complete description of the homotopy algebra.
However, this computation is quite lengthy and is worked out in full only for the
prime 5 in Chapter 3.

While the Hopkins-Gorbounov-Mahowald Hopf algebroid is useful in proving re-
sults about the homotopy of EOp_1 and has been used by others to prove results as
diverse as the non-existence of certain Smith-Toda complexes [28], it is not well suited
to doing actual computations of the EOp_1 homology of spaces or spectra. Addition-
ally, the spectra are K(p- 1)-local, making their homotopy algebras complete local
rings. In Chapter 4, we discuss an analogue of tmf for height p - 1 at the prime p.

12



We then prove results analogous to those of Chapter 2 for both a conjectural connec-
tive f. p. spectrum eop-l and for the non-connective, non-K(p- 1)-local spectrum
eopl [A-']. Applications of such a computation are also included, demonstrating the
ease of use of the techniques.

1.1.3 Higher Heights

Most of the previous discussion has involved the spectra EOp_l at the prime p. For
larger heights divisible by p- 1, very little is known about the spectra EOn. The
maximal finite subgroups of Gn are known by a theorem of Hewett [15], but the com-
plexity of the action of G on 7rEn has prevented actual computations. In Chapter 5,
we work out some of the higher cohomology of 7//p with coefficients in a distinguished
module, the symmetric powers of a direct sum of copies of the reduced regular repre-
sentation. Devinatz and Hopkins has shown that as a 7//pk-module, r.Epk-i(p_l) has
a filtration such that the associated graded is essentially the symmetric algebra on
the reduced regular representation for this group [12]. Restricting to the copy of Z/p
reduces the computation required to the computation we present. This computation
should provide a basis for future work on the higher homotopy of EOn beyond the
current knowledge of EOpl.

1.2 Applications of the Computations

1.2.1 The tmf and EOp_1 Hopf Algebras

Mahowald's computation of ko,(RP ° ) has proved useful in a variety of contexts at
the prime 2. In particular, Mahowald used ko,(RP n) and ko,(RP°/RPk) to get infor-
mation about v1 metastable homotopy theory in the EHP sequence [23]. Mahowald
has also used ko,(RP °°) to detect elements in his rj family [22]. At the prime 3, the
role of the spectrum ko is most naturally played by the spectrum tmf. To generalize
these results of Mahowald's, the initial piece of data needed is the tmf homology of
BE3.

A theorem of Arone and Mahowald shows that v. periodic information is captured
by the first pf stages of the Goodwillie tower [3]. This recasts Mahowald's result from
[23] into a more readily generalizable form. To get v2 periodic information at the
prime 3, the initial data needed comes in part from QS ° and Q(BE33 ), where BE3'
is a particular Thom spectrum of BE3 . Just as Mahowald uses knowledge of the ko
homology of stunted projective spaces to reduce the questions involved to ones of J
homology, we hope that a similar analysis, using Behrens' Q(2), spectrum will allow
an analysis of the v2 primary Goodwillie tower at 3 [6].

Minami shows that the 3 primary T7j family will be detectable in the Hurewicz
image of the tmf homology of the n-skeleton of BE3 for appropriate choices of n
[27]. While determining the full Hurewicz image is a trickier task, understanding the
groups and simple tmf operations on them could help determine if the conjectural Tb
elements actually survive at the prime 3.

13



Minami actually shows that for all primes p > 2, the Tj family will be detectable
in the Hurewicz image of the eop_1 homology of an appropriate skeleton of BEp. The
computations in Chapter 4 provide a starting point for applying this program.

1.2.2 The Homotopy of eo4

The computation has two main immediate applications. The first is the interest in its
own right: this solves an invariant problem considered "bad" by algebraists in a way
that allows similar analysis for other metacyclic groups. The second, perhaps more
interesting, application is to the existence of self maps realizing multiplication by vk
on the Smith-Toda complex V(2) at the prime 5.

This story has many antecedents. Hopkins and Mahowald used the spectrum
tmf and computations in its homotopy to correct a result of Davis and Mahowald,
showing that the complex M(1, 4) at the prime two has a self map that induces v232
multiplication in K(2)-homology [17, 9]. Behrens and Pemmaraju demonstrated the
similar results at the prime 3, again using tmf to show that V(1) has a self-map
inducing multiplication by v in K(1)-homology [7]. The methods of Chapter 3 lend
themselves to computing the eo4 homology of V(2) at the prime 5. By using tricks
similar to those employed by Hopkins-Mahowald and Behrens-Pemmaraju, we should
be able to compute the appropriate power of v3 which exists on V(2) at 5.

14



Chapter 2

The 3-local tmf homology of BE3

2.1 Organization of Chapter

In §2.2, we introduce the main computational Hopf algebra A, Ext over which is
the Adams E2 term for computing tmf homology. In §2.3, we review Mahowald's
computation of the ko homology of RP°° , presenting it in a manner which can be most
readily generalized. In §2.4, we carry out one of the computational steps analogous to
Mahowald's, computing the tmf homology of the cofiber of the transfer map, and in
§2.5, we complete the computation of tmf.(BYE3). Rounding out the computations,
in §2.6, we compute the tmf homology of the finite skeleta of R, giving additional
results about that of the finite skeleta of BE3. The last section presents conjectures
as to further results. A computation of the homotopy of the E3 Tate spectrum for
tmf is presented in §2.7.

2.1.1 Conventions and Notation

We restrict attention to the prime 3 and assume that all spaces and spectra are 3-
completed except in §2.3. For ease of readability, let H be HZ/3. If X is a space or
spectrum, let X n] denote its n-skeleton.

For ease of readability, we also will write P° for BE3 . If we are dealing with a
truncated classifying space with cells between dimensions n and m, we will write the
spectrum as pm .

Finally, we need some tmf specific notation. To describe it, we begin with a picture
of the Adams E2 term which we will derive in §2.2 in which all of the elements in
question will be labeled (Figure 2-1).

Let I denote the ideal of the Adams E2 term for tmf. generated by v, 4 and c6.
Let denote the ideal of tmf. generated by 3, 4, 6, and their A and A2 translates.
I is the annihilator ideal of the elements ca and /. For brevity, the reader is asked
to always assume the relations I = 0 and I/3 = 0 in all Adams E2 terms, unless
explicitly stated otherwise. Moreover, the relation c 3 -C2 = 27A always holds and
will not be explicitly stated.
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2.2 Fundamental Hopf Algebra

2.2.1 The Adams Spectral Sequence for R-modules

We begin by quickly reviewing the variant of the Adams spectral sequence we will
use. Most of the statements are immediately provable using Adams' original work,
and full details can be found in [4].

Let R be an Eo~ ring spectrum, and let E be an Aoo R algebra (ie an Ao~ monoid
in the category of R modules). For any R module M, we can cosimplicially resolve M
using E in the category of R modules, just as with the ordinary cosimplicial Adams
resolution over the sphere spectrum. In other words, we can form the cosimplicial
spectrum

i.. .... ..... ......; .........; ;; 

EARS ARM :=EAR M EAR EARM ===. · ·

as with the ordinary Adams resolution. . .This cosimplicial resolution gives rise to a
. . .. . .. ... . .. . .. . .. . .. . .. .. . .. . .. . .. . . . . . ...... . . . . . . . . . .

~~~~~~~. . . . .. ...... . .. ........... . . . ...

0 2 4 6 8 to 12 14 16 18 20 22 24

FigBousfield-Kan spectral sequene 2-1:of the Adams tfor tmf

2.2 Fundamental Hopf( Algebra M)) (M).

2.2.1We again call this spectral sequence the Adams spectral sequence. Again, just asR-modules

We begin by quickly reviewingth the variant of theary Adams spectral sequence, if we have certain flatness assumptionsll
usthen we can identifyof the staE 2tents are immediately stprovable result, we need a sm' originall bit of,
notation: l etails can be foundote in [4].Let R be an E. ring spectrum, and let E be an A. R algebra (ie an A monoid

Proposition 2.2.1. ategory of R modules). For any n E module, the n (Ecosimplicially resolve Ma Hopf

algebroid and the Adams E2 term is

Ext (E.,s.s) (E., E.M).

As we shall see, the Hopf R malgebroid (Es, EjustE) is ioften quite cosimpliciale to work with.Adamsresolution over the sphere spectrum. In other words, we can form the cosimplicial
spectrum

E AR-AR M= E AR M E AR EAR M

2.2.2 The tm f ERHopf AR M is the E nilpotent completion of M, , jusbraas with the ordinary Adams resolution. This cosimplicial resolution gives rise to a
Bousfield-Kan spectral sequence of the form

Tot(7r,(E AR' AR M)) =4 7r.(ME)-

We again callpply the machinery of the previous sectioral sequence to the Adams spectral sequence. Agatmf, E = H,just and

wiM =th tmf A X. The Adams spectralum H is made into an E tmf algebra by coassumposing thes,then we can identify the E2 term. To cleanly state the result, we need a small bit of
notation: let ERM denote 7r*, (E AR M) 

Proposition 2.2.1. If ERE is flat as an E module, then (E., ERE) is a Hopf
algebroid and the Adams E2 term is

Ext (E* ERE) (E., E* M).

As we shall see, the Hopf algebroid (E., E RE) is often quite simple to work with.

2.2.2 The tmf Hopf Algebra
We apply the machinery of the previous section to the case R = tmf, E = H and
M = tmf A\ X. The spectrum H is made into an E,,,c tmf algebra by composing the
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zeroth Postnikov section of tmf with the reduction modulo 3. In other words, we take
the composite

tmf - HZ H.

Since each of these is a map of Eo~ ring spectra, the composite is. Moreover, since
every module is fat over H, we need only identify

A := Htmf H.

Theorem 2.2.2 (Henriques-Hill). As a Hopf algebra,

A = A(1)* 0 E(a2),

where a2 = 9, and A(1) = F3 []/6l 0 E(0o, l) is dual to the subalgebra of the
Steenrod algebra generated by 3 and Pl. The elements in A(1)* have their usual
coproducts, and

A(a2) = 1®a2 + rl ( T1 - +2 () a2 1.

Proof. We begin with an observation of Hopkins and Mahowald, as formulated by
Behrens [6]. If we let

C = S o UcI e4 Uc1 e8 ,

then smashing with tmf gives

tmf A C = tmf0(2),

where tmfo0 (2) is an Eoo ring spectrum corresponding to elliptic curves together with
a choice of an order 2 subgroup. As an algebra,

,r*(tmfo(2)) = Z3[a 2 , a4],

where a2 = vl and a = v2 modulo (3, v1) [6]. The ideal (3, a2, a4 ) is a regular ideal,
and we can pass to the quotient of tmfo0 (2) by it in an A, way, realizing H as a
tmfo0 (2) spectrum [2].

Spelled out more cleanly, we have realized H as the cofiber of the map a4 on the
spectrum tmfo0 (2) A V(1).

To finish the proof, we smash this cofiber sequence with H over tmf, giving the
cofiber sequence

]8 H Atmf (tmfo(2) A V(1)) -4 H Atmf (tmfo(2) A V(1)) H Atmf H.

We begin by analyzing the homotopy of the first two tmf modules in this resolution:

r* (H Atmf (tmfo(2)A V(1))) = H, (C A V(1); Z/3).

The structure of this as a graded vector space is that of A4(1)*. Since A is a
commutative Hopf algebra, the Borel classification of Hopf algebras over a finite field
ensures both that a4 is zero in homology and that the structure of this as an algebra
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is as listed [26]. This follows from considering the degrees of the elements, since odd
elements must be exterior classes and the element in degree 4 must be the generator
of a truncated polynomial algebra.

Since the unit map S - tmf is a 6-equivalence, the natural map

HAso H H Atmf H

is a 6-equivalence. This implies that the induced map in homotopy is a Hopf algebra
isomorphism in the same range, and this gives the coproducts on the elements r0, r
and f.

To determine the coproduct on a2, we will endow A with a filtration such that a2

is primitive in the associated graded. This filtration gives rise to a spectral sequence

EXtGr,(A)(F3, IF3) * EXtA(F 3 , F3)

converging to the E 2 term of the Adams spectral sequence which computes 7r,(tmf).
We shall use the known computation of r(tmf) to deduce differentials in this alge-
braic spectral sequence, and this will determine the coproduct on a2.

We first filter A by letting A(1), have filtration 0 and letting a2 have filtration 1.
The initial piece of data needed is the cohomology of A(1). As an algebra

EXtA(l). (F3, IF3) = IF3[VOV,3 = vo 2 = 0, 12 = VO).

This is pictorially represented in Figure 2-2.
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Figure 2-2: ExtA(l). (F3 , F3 )

Since a 2 is primitive in the associated graded Hopf algebra, we know that

EXtGr(A) (F3, F3) = ExtA(l). (F3, F3) [ 4].

This Ext group is the E1 page of a spectral sequence converging to the Adams E2

term ExtA(F3, F3). Since there is nothing in dimension 7 in tmf*, we know that the
element a2 must be killed. The only possible way for to achieve this is for dl (c4) = 2

This E1 page is given together with this necessary dl differential in Figure 2-3.
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Figure 2-3: ExtGr((A) (F3, 3)

At this point, we rename some of the remaining elements:

c4 =vo C4, C6 = V1, =4 .

Lemma 6.2.1 gives the d2 differentials:

d2([a242]) = v3, and d2 ([vo42]) = V3a.

The E2 page with the d2 differentials is included as Figure 2-4.
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: :i : : ... 2 

C--6 44 
4 . . . ~~[hour ]

10 . 1
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.
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4C65 .

'........... .. ... . .. ....... ......:......... ....
20

2 2 2 28 :3
22. '2'4 . ... .
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Figure 2-4: May E2 page for ExtA(F 3, F3)

For the d to have the appropriate form, we must have

4(a2) = 1 a2 + a2 ( 1 0l 1 -12 T o).

If the sign is negative, then we can simply replace a2 by -a 2 to correct this. []

One can ask if there is a formal group interpretation to the Hopf algebra given
in Theorem 2.2.2, similar to the interpretation of the Steenrod algebra as the auto-
morphisms of the super additive formal group. This seems to be the case. If E is an
elliptic spectrum, then the homotopy groups of E Atmf E are the automorphisms of
the formal group of E that extend to automorphisms of the associated elliptic curve.
For the case E = H, we can proceed only by analogy, since the additive elliptic curve
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is not in the moduli stack used in the construction of tmf. However, if we consider the
automorphisms of the additive formal group which extend to automorphisms of the
additive elliptic curve, then we reconstruct the truncated polynomial part of Theorem
2.2.2. We conjecture that a full results can be recovered by considering super formal
groups and super elliptic curves.

Corollary 2.2.3. There is a spectral sequence with E2 term

EXtA (F3, H.(X))

converging to the 3-completed tmf homology of a space or spectrum X.

2.3 Review of ko,(RP°°)

In [21], Mahowald uses the homology of cofiber R of the transfer map BE 2 -+ So

to compute its ko homology and the ko homology of IRPo. Since the method we
will employ to handle tmf,(BE3) is similar, we quickly review Mahowald's technique
here. For this section only, all computations will be done at the prime 2.

2.3.1 General Results and Definitions
The homology of R sits as an extension of the homology of ERP by the homology
of S°, and let ei denote the generator of Hi(R). The coaction of the dual Steenrod
algebra on H,(R) is determined by the comodule structure on H,(FEP °O) and the
coaction formula

P(e2) = 2 e + 1 e2.

Let A(1) be a spectrum whose cohomology is a free A(1)-module of rank 1. Smash-
ing A(1) with ko gives a presentation of HIF2 as a ko-module spectrum. Applying
the Adams spectral sequence machinery introduced earlier reestablishes the following
classical result, normally proved using a change of rings argument.

Proposition 2.3.1. There is a spectral sequence converging to the ko homology of a
space X with E2 term ExtA(l), (F2, H,(X))

2.3.2 The ko homology of R

Mahowald's key observation was that there is a filtration of H,(R) such that the
associated graded is a sum of comodules over A(1), whose Ext groups are easy to
compute.

Proposition 2.3.2. There is a filtration of H,(R) such that the associated graded is

00

Gr= Gr(H*(R)) = 4kM
k=0

where M is the A(1), comodule A(1)* OA(0), F2.
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The proposition shows that if we compute Ext of Gr, then we see that it is torsion
free, with a Z in dimensions congruent to 0 mod 4 (Figure 2-5).

:11,11.11", 1.1,111:1 : ' .... ' ..... i.... '1 1 ..... '.. .... i .... 1 ' 1: 1 1..1' 1 .... 11:' ... ... .... 1: 1 , .... I. ..... ..... ...'.. . ..

. .............:, .............. ... ..................... ...........'..! ........ ... ................ . .............64 : . ............. ...... ...
............. · . .................... . .. .... , ..... . . ... ' ..... ..... . . .....

. .......... ... .............................. ...... ...... ...... ...... ........

6~~~~
4 .. .. .... ;... . . . ..2 . ,. . . l i

o ;i... ..... ..... i'i.... ..... !.... ................ - - - .- - ..8....S.....!.....^.........................---! ---- -
...' .. : .... .... ..... ... .... .... .... ... .... .'. ..- .... .... ... 'l' .... .... .... ... ....

0 2 4 6 8 10 12 14 16 18 20

Figure 2-5: Ext.A(). (F 2, Cr)

Since this is concentrated in even degrees, both the algebraic extension spectral
sequence and the Adams spectral sequence collapse. There are non-trivial extensions,
though, as a ko,-module.

Lemma 2.3.3. As a module over ko.,

ko.(R) =Z2[y]

Remark. This lemma shows that Mahowald and Davis' result in [11] that ko A R
splits as a wedge of copies of HZ is not true in the category of ko-module spectra.

2.3.3 Computing ko,(IRPc )

Computing ko,(RP') requires looking at the long exact sequence in ko homology for
the cofiber sequence

SO --+ R -+ ERP '.

The first map is the inclusion of the zero cell, and takes 1 to 1. From this, the result
is easily determined (Figure 2-6).

.................................... .......... ................ .............. i ...................

4
...... ..... .......... .......... :.....:....... ........... ..... ":............. .... ". ..... : ......... : "~~~~~~~~.... ............. 
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Figure 2-6: ko,(llP~)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......... ~.X_..
4 : . . . . .. . . . ., . . . .,. . . . . .* ,....... ....... ..... . . . . . . .

.. . .. . ... . ... . . ........
.. .... .. .. . . ... .. . . .. .... . ... .. . .... . . . ... ....:.
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............... .................................. .... ............. .... ....... .......... .

2 6 . ; 12 14 16 :

Figure 2-6: ko* (RP°°)
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2.4 The tmf Homology of the Cofiber of the Trans-
fer P So

Homologically, the situation at the prime 3 is analogous to the computation at 2.
Let R denote the cofiber of the transfer map P - S. The homology of R sits
as an extension of the homology of EP' by the homology of S° , and again let ej
denote the generator of Hi(R). The coaction of the dual Steenrod algebra on H,(R)
is determined by the comodule structure on H(EP) and the coaction formula

b(e4) = - e 1 ® e4.

The tmf analogue M is again the comodule A4(1)0A(0). F3, where A(O) is the
exterior algebra on the Bockstein.

Lemma 2.4.1. H.(R) admits a filtration for which the associated graded is

00

Gr(H*(R)) = 12 kM
k=O

Proof. The -kth stage of the filtration is given by taking the subcomodule generated
by the classes in dimensions 12n + 1 for all n > k. An elementary computation in
the cohomology of the symmetric group shows that the associated graded is exactly
what is claimed. 

Lemma 2.4.2.
EXtA(F3, M) = F3 [O0 , 64].

Proof. To prove this lemma we apply a long sequence of spectral sequences. First
filter A as before by letting A(1)* have filtration 0 and a2 have filtration 1. This
filtration extends to a filtration of M in an obvious way, letting M have filtration 0,
and we have a spectral sequence

Extcr(A) (F3, M) = ExtA(F3 , M).

As a Hopf algebra, Gr(A) is very simple: the algebra structure stays the same, and
now a2 is primitive. Now we can use the two short exact sequences of Hopf algebras

A(1)* -+ Gr(A4) - E(a2) and E(a2) - Gr(A) -- A(1)*

to get a spectral sequence that converges to this Ext group and starts with

EXtE(a2) (3, ExtA(1). (F3, M))

A final change of rings argument shows that

ExtA4(1) (F 3, M) = ExtA(o) (F 3 , IF3 ) = IF3 [vo],
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and this forces the result in question, since the target of any differential on the
polynomial generator is zero for degree reasons. LI

Since this algebra is concentrated in even degrees and since each of the graded
pieces starts an even number of steps apart, the spectral sequence starting with Ext
of the associated graded for H,(R) collapses (Figure 2-7). There are non-trivial
extensions.

'...~' ..............................8: i 6 4~~~~~~~~~~~~~~~~~~~
2

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 2-7: ExtA (3, H.(R))

Lemma 2.4.3.
00

EXtA (F3 , H*(R)) = IF3 [Vo, 64] el2k/C6el2k = Voe12(k+1).

k=O

Proof. We show this by returning to the cobar complex. Since the homology of R
has the very simple pattern of copies of M connected by a To comultiplication on the
top class in each hitting the bottom class in the next, it will suffice to show that in
the first copy, c6 on the 0 cell is cohomologous to 27 on the 12 cell.

For simplicity, we will let i denote the class in dimension n in M. In the cobar
complex for ExtA(1). (F 3, M), there is an element 16 such that

X16= To T TO i13 + ... and d(x16) = c6 io.

The class x16 can be found by considering the Ext implications of the short exact
sequence of comodules:

F3{io, i4, i8} -+ M --+ F3 {i 5 , i, i 13}.

When we add in the next copy of M, we change the coproduct on i 3 to

(i13) = (1 ®i9 +60i 5 +1 i8 + T1 ®i4 +2 1 ®io+ 1 i13) +T0 i 12-

This is the only change to the coproducts in our comodule, so when we consider
again x1 6 and take its boundary, the only change is the addition of terms coming
from this new term in the coproduct. However, the only instance of i13 in 16 i the
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one coming from To0 0 T i13 , so the real boundary is

d(x 6) = C6 i + T0 To 0 To 0 i12.

In other words, c6 on the base class is (up to a sign) v3 times the class in dimension
12. E

Theorem 2.4.4. The Adams spectral sequence for the tmf homology of R collapses,
and as a tmf,-module,

tmf.(R) = Z3 [3, ].

Proof. The Adams E2 term is concentrated in even topological degrees, and this
implies the collapse of the Adams spectral sequence. The previous lemma solved the
extension problem, and the proof of Theorem 2.2.2 shows that c4 gives the element
CA 

3.

2.5 The tmf Homology of P°

The most difficult of the computations now behind us, we can compute the tmf
homology of P 0 by simply considering the long exact sequence induced by applying
tmf, to the cofiber sequence

SO R poo.

The first map is the inclusion of the zero cell into R, and so this map in tmf-
homology just takes 1 to 1. Since this is a map of tmf,-modules, we see immediately
that this map is injective on elements of Adams-Novikov filtration 0, with image

3 [ 4 , C6, [3A], [ 4 ][3A2], [c4A2], [c6A], [c6A2], A3] /(27 = c 3 -C6) C c3[3 7].13 [9A 2 1 A, [CA, C (7 C 271

Additionally, since a and /3 act as zero on all of the classes in tmf,(R), the kernel
of this first map is the submodule of tmf, generated by a, 3 and their A translates.
These together establish the following theorem about the tmf homology of EP'.

Theorem 2.5.1. The tmf homology yPo sits in a short exact sequence

0 - Gn - tmfn(EP') tmf _1 - 0,

where tmf._ 1 is the subgroup of tmfn_ 1 of Adams-Novikov filtration at least 1 and
Gn, the cokernel of the map tmfn - tmfn(R), is given by

Z/3 ffm=lZ/36m k- _, 2 mod3, i + j = O
fk 7Z/36m+3j+i k- 0 mod 3(Mm=O"/

G24k+12j+8i- ~k / 3 6m+3j+i k 1 2 mod 3 i +j > O'

0 otherwise

24



where j < 2, and i < 3. The sequence is split as a sequence of groups. There is
a hidden a extension originating on the copy f 32 in tmf 20 and hitting the Z/3
summand of G 24 .

Proof. This short exact sequence is just a restatement of the earlier comments about
the long exact sequence in tmf homology. It is split because the elements coming from
Gn have Adams-Novikov filtration 0, and the convergence of the Adams-Novikov
spectral sequence ensures a map of groups from tmf*(EPOO) to Gn which is a left
inverse to this inclusion.

The structure of the groups Gn is easy to show. A basis for tmf (R) is given by
the collection of monomials of the form Aki6E, where i < 3, and 27E6 = 6 , 3 4 = C4 .

This is simply because if we can solve the relation on A in tmf (R). A basis for the
Adams-Novikov filtration 0 subring of tmf, is given by the monomials

Akc6c fork-- 0 mod 3 or k =- 1, 2 mod 3, i + j >0, [3A]Ak, and [3A 2 ]Ak

Recalling that
Akcc = 33J+iAk

and collecting all terms of the same degree yields Gn.
The hidden extension can most readily been seen by considering the long exact

sequence in Ext induced by the cofiber sequence. In this situation, A from the
ground sphere kills A in the Adams E2 term for tmf,(R), and a3 2 on the ground
sphere survives. O

Remark. The proof of this theorem also shows that the transfer induces a bijection
between the elements of higher Adams-Novikov filtration of tmf, and the elements
of tmf,(P°) of Adams-Novikov filtration at least one (together with the Z/3 coming
from the 3-cell). This exactly repeats the situation at the prime 2, where the transfer
maps the higher Adams-Novikov elements in ko,(GRP°) bijectively onto those in ko.

2.6 The tmf Homology of the Finite Skeleta of R
For completeness, we include the tmf-homology of the finite skeleta of R. These
computations serve as starting points for the program of Minami to detect the 3-
primary m family [27].

2.6.1 The Skeleta of R

Let n = 12k + i, for 0 < i < 12. We wish to compute the tmf-homology of R[n.

Lemma 2.6.1. There is a filtration of H,(R[12 k+i]) such that the associated graded is

k-1 \
Gr(H*(R[12k+i])) ( E12nM) G E12kMi,

n=O
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where Mi is the subcomodule of M generated by all classes of degree at most i for
i < 12, and M12 is M9 plus a primitive class in dimension 12.

Proof. The required filtration is just the restriction of the filtration used in the proof
of Lemma 2.4.1 to the subcomodule H,(R[l2k+il). 0

The comodules Mi are the homology of R[i], and this splitting result and the
follow theorem demonstrates that knowing their tmf-homology gives that of all finite
skeleta. The proof of Theorem 2.4.4 shows the following

Theorem 2.6.2. As a module over tmf.,

tmf*(R[12k+i]) = Z3 [3] {eo, .e12.. ., e12(kl)} ( AMiel2k/(c6el2j - 2 7e12(j+l)),

where Mi is the tmf-homology of spectrum R[i.

The remainder of the section will be spent computing the modules Mi. To save
space, in what follows we use two indices: which ranges from 0 to 2 and e which
ranges from 0 to 1. When these appear, it means that all possible values of the index
are actually present.

Proposition 2.6.3. The spectra R[1], R[2], and R[3] are simply So. This implies that

Mi = tmf*, 1<i<3.

Lemma 2.6.4. The spectrum R[4] is the cofiber of a,. The tmf-homology of this is
the extension of the module generated by [eo] and [e 4] and subject to the relations

a[cae4] = 3eo, a[Aeo] = - 2 [a0e4], ae0 = 3 [Aeeo] = I[ae 4] = B4[ae4]

by the module
7Z3 [c4 , c6 , A]{[3e 4 ], [C4 e4], [c6 e4 ]}.

The extension is determined by the two relations

c4 [3e4] = 3[c 4e4 ] ± c6 eo, c6 [3e4] = 3[c6 e4] ± c4e 0 .

Proof. Since the spectrum M4 is the cone on a1, we can use the long exact sequence
in Ext to compute the Adams E2 term (Figure 2-8).

As a module over the Adams E2 term for tmf*, this E2 term is the extension of

-3[Vo, 4 , C6, A, 3]{eo}

by
F3 [vo, c4 , C6 , A]{[voe4 ], [ 4 e 4 ], [ 6 e4 ]} ( F3 [A, 3]{[ae 4]},

subject to the relations

c4[VOe4] = vo[c4e4] ± c6eo, c6[voe4] = Vo[C6e4] c42eo, /[/e 4] = ,
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Figure 2-8: The Long Exact Sequence for Ext(M4 )

and depicted in Figure 2-9.

6

Thsasspectral sqec oh seuecsaseta oueovrteAassetae

d2( () = a 32 d3([aA2]) = 305,

imply that Aeo and /. 2eo are d2 cycles and that the following differentials hold:

d2 (L\[Ce4]) = 3'eo, d3(oA2 [ae4]) = /35[ae4].

This last d3 implies that in fact,

d3(A 2eo) = 0[el

using the relation involving a multiplication on ae4]. L4 3

Lemm .The spectra 1, .[6. ..and "':e ....... cb o ..... e ..... 

.... ... . . . :........ .. .:...... .. : .. ... ... .......... : .. - . .. . . . : . ............... .. .. ..

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 2-9: The Adams E2 term for tmf,(R [4] )

This Adams spectral sequence is a spectral module over the Adams spectral se-
quence f or the tmf-homology of the sphere, and the Adams
spectral sequence for the sphere,

d2(a\) = a/32, ¢3([at2]) = ¢,)

imply that /Aeo and A\2eo are d2 cycles and that the following differentials hold:

d,(a\[og4]) = ¢¢0o, d3(al/¢[~¢4]) = ¢5[a4].

This last da implies that in fact,

d3(A\2eo)= _-/410e4],

using the relation involving oa multiplication on [ae4]. 0]

Lemma 2.6.5. The spectra R[5], R[6], and R[7] are the coibet of the extension of ae
over the mod 3 Moore spectrum. The tmf -homology of these spectra, Mi is the tmf ,
module generated by

[ 3A\eo], [3Ai\eo], [A~eeo], [oe4], [/~es],
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and subject to the relations

o3e5 ] = i3[3eo], [[oe4] = eo, a[Aeo] = 0. e4

(a,133)eo = ([ae 4], [e 5]) = 34[ae4] = 0.

Proof. In the long exact sequence in Ext induced by the inclusion of the 4-skeleton
into R[5], the inclusion of the 5-cell kills the element [voe4] (Figure 2-10).

'- :' .... i -itt

· ' ..... ...... ,' : T
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24 26 28

Figure 2-10: The Long Exact Sequence for Ext(M 5 )

The elements [c4e4] and [c6e4] survive, and the relations in the Ext term for the
4-skeleton ensure that in the Adams E2 term for M5 ,

vo[c4 e4] = 6eo, vo[c 6 e4 1] = Ceo.

Moreover, since a and fi multiplications on the class [vOe4] are trivial, the classes [aes]
and [3e5] survive to the Adams E2 page (Figure 2-11).
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Figure 2-11: The Adams E2 term for tmf,(R [5 ])

A computation in the bar complex establishes that

vo[ae 5] = C4 eO-

This shows that the Adams E2 page, as a module over that for tmf,, is

F3 [vo, c4 , C6 , A, ]3{eo, [4eo], [eo], []e4, [/e 5]}

/(a[oe4] -- ,3eo, [c4 eo] - o[3e5] aeo, I([3e51, [e4]))
LV 0 
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The differentials again follow from those in the Adams spectral sequence of tmf.
L

At this point, the patterns of extensions and differentials repeats. This makes the
final computations substantially easier.

Lemma 2.6.6. The spectrum RN8] is the spectrum C from§2.2, where the middle
cell is replaced by the mod 3 Moore spectrum. The module M8 sits in a short exact
sequence

0 - tmf,{[3A 6eo], [ A6 eo], [ 6eo], [3es]/((a, /3)([eA 6 eo], [A6 eo]), I[fes])

- Ms -+ 3[c4, C6, A]{[3e8], [ 4 e8], [6es]} 0,

where the extension is determined by the two relations

c4[3e8] = 3[c4e8] ± c4 [3eo], C6 [3e 8] = 3[c 6 e4] ± C4[ 3eo].

Proof. The long exact sequence in Ext coming from the short exact sequence in
homology induced by the inclusion of R[ 5] into R I81 is determined by the connecting
homomorphism which takes e8 to [ae4] (Figure 2-12). The linearity of this map shows

...... . . . . . . . . . .

....... .... ..... ..... .; .. .

.. ..... . . . . ...... .:.
10 1

... . ... .. . .. . .

. .. . ;. ... ...... .. ..... ... 
..... . ...

..14 16 18 20... .. .. ......... 14 16 18 20
.. .. . . . . .. ... ..

22 24 26 28

Figure 2-12: The Long Exact Sequence for Ext(Ms)

that the Adams E2 term for M8 (Figure 2-13)is an extension of

3[Vo C4, c 6, ]{eo, [ eo], [ 3eo]} D3[A, 3] 0 E(a){[/3e s]}

by
F3 [Vo, C4 , C6 , Al]{[voes], [c4 e8], [ 6 e 8 ]},

subject to the extensions

c4[voe8] = Vo[c4 es] + c4 3e0 , c6 [voe8] = Vo[C6 es] + 6 3e.O-

The differentials are again determined by those of tmf*. The only classes which
support non-trivial a multiplication are multiples of [e 5], and here, the differentials
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Figure 2-13: The Adams E2 term for tmf (R[8I])

are the same as for M5:

d2(Ai[Oe5]) = io 2Ai-l [/e51, d3 ([aA2 ][/e5]) = 35 [fe5].

El

Lemma 2.6.7. The spectra R[91, R0], and RI" ] are the cofiber of the may from
E 4 C(a) to C which is multiplication by 3 on the 4 and 8 cells. The module M9 can
be expressed via the short exact sequence

0 -* tmf{[aeg]} -+ M -* z3 [4]eo -+ 0,
{[ ]} [C4]~[ 

where the only extension is given by

c6eo = 9[oe9 ].

Proof. The cofiber sequence coming from the inclusion of RM8] into R[9] induces a long
exact sequence on Ext (Figure 2-14). The connecting homomorphism is

eq [voe8] + [3eo].
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Figure 2-14: Long Exact Sequence for Ext(M 9 )

This is a map of modules over the Adams E2 term for tmf,, and just as before,
the element [ae9 ] is in the kernel of this map. This gives hidden extensions analogous
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to the ones for M4 and M5 in the Adams E2 term for Mg:

a[ae9] = /3e5, vo[ae] = [eo].

The c4 and c6 extensions coming from [voes] give two more extensions:

vo[c 4e8] = c4 [3eo], vo[C 6 es] = c4 [ eo].

This establishes that the Adams E2 term is given by the extension of

F3[oV, C4, C6, [eg]

by
¢2

F3 [Vo, C4, C6 , ]{eo, [Feo], eo]},

where c6eO = v2 [ae 9] (Figure 2-15).
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Figure 2-15: The Adams E2 term for tmf (R[91)

Just as before, the ordinary Adams differentials determine the differentials, recall-
ing that [-eo] = [eg]:

V0

d2(Ak[=eo]) = k 2 A-l[eo] = 2[,e5], d3(A2 [e 5]) = [].

The Adams differentials here preserve the exact sequence, and this establishes the
statement of the Lemma. O

Remark. For completeness, we note that if it were possible to include a 13-cell,
attaching it to the 9-cell via a, then the attaching map in long exact sequence in tmf
homology would take the copy of tmf, coming from the 13-cell isomorphically onto
the factor tmf,{[aeg]}.

Proposition 2.6.8. Since the twelve dimensional class is primitive in M12, we con-
clude that as a tmf.-module,

M12 Mo ED E 12tmf .
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2.6.2 The Skeleta of P°

The analysis of the preceding section allows us to completely determine the structure
of the groups tmf (Pn). However, due to the complexity of the combinatorial prob-
lem, explicit demonstration of these groups in unenlightening. We instead present
the following theorem concerning bounds on the orders of these groups.

Theorem 2.6.9. If n = 12k + i, then 3 3k+2 annihilates the torsion subgroup of
tmf,(Pn). Moreover, if i > 5, then there are elements of order exactly 3 3k+1, and if
i > 9, then there are elements of order exactly 3 3k+2 .

Proof. This is immediate with the consideration that the large torsion subgroups are
generated by high powers of 2. If we consider only a finite skeleton of POO, then we

27
include only finitely many powers of this element. The largest such element occurs in
dimension 12k. If i is at least 5, then we have the element 3 on this element. If i is

3
2

at least 9, then we have the element i on this element. These provide the elements
of exact order. [

2.7 The 3 Tate Homology of tmf

The analysis used to compute the tmf homology of R applies to compute the homo-
topy of

tmftE3 = E (tmf A P°°)_oo = lim (tmf A P).

A mod 3 form of James periodicity shows that as A(1),-comodules,

po = y]-12kH, p-.H* (PZ'12k+3) = 3 (i3 ).

The Adams spectral sequence argument in §2.5 shows that the map

ir, (tmf A P'12(k+l1)+3) -+ 7r, (tmf A Pc12k+3)

is surjective on the G, summand and zero on the tmf, summand. This implies
that there are no lim1 terms coming from the inverse system of homotopy groups.
Moreover, this is a system of tmf,-modules, and considering the action of c4 and c6

in each of the modules in the inverse system allows us to conclude

Theorem 2.7.1. The homotopy of the E3 Tate spectrum of tmf is an indecomposable
tmf, module, and

1r(tmf tEa) - 3 3 4 6

3where I is the ideal in 7ro(tmft 3) generated by elements of positive Adams filtration.
where I is the ideal in -go(tMftE3) generated by elements of positive Adams filtration.
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Chapter 3

The 5-local Homotopy of eo4

3.1 Organization of the Chapter
In §3.2, we review the Gorbounov-Hopkins-Mahowald Hopf algebroid and the stacks
associated with it. In §3.3, we apply the techniques from the previous section to
compute the rational homotopy of eop_1. In §3.4, we state the theorem which the
rest of the chapter will be spent proving. The middle sections of the paper compute
the Adams-Novikov E2 term for the homotopy of eo4, loosely following Bauer's com-
putation of the 3-local homotopy of tmf [5]. We introduce the Bockstein spectral
sequences needed for computation in §3.5, and we carry out the prime independent
computations. In §3.6, we restrict attention to the prime 5, competing the compu-
tations for eo4. We try to present proofs that follow formally from Massey product
considerations, and if we have not included proofs of any required lemmas, we also
include proofs from the bar complex. Finally, in §3.7, we compute the Adams differ-
entials.

3.2 The Geometric Model for EOp-1

The success of the geometric model of elliptic curves for building a geometric model
for EO2 and for building a connective version eo2 leads to a search for analogous
models for primes bigger than 3.

Manin showed that the Jacobian of the Artin-Schreier curve over p

yp-1 = XP-X

admits a formal summand of height p- 1 [25]. Since this is the first interesting
height at the prime p, Hopkins, Mahowald, and Gorbounov used this fact to build a
geometric model analogous to the story of elliptic curves and tmf at the prime 3, and
they show that the formal completion of the Jacobians of the family of curves over
W(pP-l )

YP- = x + axP- + *+ ap, x x + r, (x, y) ~-4(AP-' , APy) (3.1)
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carries the Lubin-Tate universal deformation of the Honda formal group, together
with an action of Z/p M Z/(p- 1)2, a maximal finite subgroup of Gp_1 [14]. Such
curves are non-singular if the discriminant A of the polynomial

xP + alx P-1 + + ap

is a unit.

The scaling action on the Artin-Schreier family given by Equation 3.1 allows us
to split off a graded Adams summand. This splitting is algebraically realized by
considering Equation 3.1 as a homogeneous graded equation, where xl = 2(p- 1),
IyI = 2p, Ir = 2(p- 1) and ai = 2i(p- 1), and the A action fixes the graded pieces.
The degree of the discriminant is 2p(p- 1)2.

3.2.1 The Moduli Stacks Used

Lurie's derived algebraic geometry produces sheaves of Eoo ring spectra over various
moduli stacks associated to this family of curves. Since the global sections are all
closely related, we briefly introduce the stacks involved. In all cases, stackification
takes place in the flat topology. Since this is not the topology to which Lurie's
machinery applies, we show that there are natural tale, affine covers. We first note
that curves of the form given by Equation 3.1 are corepresented by the graded Hopf
algebroid

(A, F) = (Zp[al, ... , ap, A[r])

The first stack considered was the stackification of the Hopf algebroid associated
to corepresenting non-singular curves of the form given by Equation 3.1, completed
at the maximal ideal I of the degree zero part. In other words, the stack we consider
is

Mp-1 Stack(Proj(A[A-1]'), Proj(F[A-1]A)).

This is essentially the stack first considered by Hopkins, Gorbounov, and Mahowald,
as it singles out the height p- 1 information, and the global sections of the sheaf
associated to this stack is the K(p- 1)-local spectrum EOp_1 described earlier.

Part of the power of Lurie's machinery is that we can weaken the conditions on our
stack, looking not only at a formal neighborhood of the maximal ideal of the degree
zero part but rather at the entire ring corepresenting non-singular curves of the form
given by Equation 3.1. Better said, Lurie's machinery produces an appropriate sheaf
of Eoo ring spectra Op-1 over the stack

Apl = Stack(Proj(A[A-]), Proj(Fr[A-])).

The global sections of this sheaf is an HFp local spectrum denoted eopl[A- 1 ].
It is hoped that a connective version of this spectrum can be constructed. The

stack we consider is the full weighted projective space given by

Meopl = Stack(Proj(A), Proj(r)).
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While Lurie's machinery does not apply directly to this moduli problem, it seems
likely that there does exist an appropriate sheaf on this moduli stack extending the
sheaf Op-l. The global sections of this sheaf would be a spectrum local with respect
to K(1) V K(2) V...K(p-1).

Let M be one of any of the three stacks described above, and let B be the
corresponding cobbject ring. The natural map

Proj(B) - M

is flat but not 6tale, since a polynomial ring on one generator is not a finitely generated
module. However, in the case for smooth curves, we can make a faithfully flat base
change to give an 6tale cover.

Proposition 3.2.1. Let B be the quotient B/(ap), and let r = B 0 B F ®B B. Then
the map

Proj(B) M
is an tale cover.

Proof. We prove the result by showing that there is a faithfully flat extension of B
such that any curve of the form (3.1) can be translated to one which has ap = 0.
However, this is readily done. Let

B = B[t]/(tP + altp - + ... + ap).

The extension B - B is faithfully flat. However, given any curve of the form (3.1),
we can transform it into one represented by B (suitably extended) by applying the
transformation x -k x + t. This shows that the stackification of the Hopf algebroid
(B, ) is M.

The proof that this is an tale cover is almost the same. We again need only
show that B r is tale. This, however, again follows from the invertibility of
the discriminant, since A is divisible by ap-1, implying that the discriminant of the
polynomial

rp + -+ ap_lr

never vanishes modulo any maximal ideal of B. C1

All computations are done over this affine cover. We moreover assume that there
is a suitable extension of this cover to MeopI which has the same form (though here
6taleness is more difficult to show). Lurie's machinery ensures that the E 2 term of
the Adams-Novikov spectral sequence for the homotopy of the global sections of our
sheaf of E~ ring spectra over M is

Ext(~,i) (B, B).

With all of this in place, we could provide a definition of eopl1 . The Adams-
Novikov spectral sequence for the sheaf over M,op_, would show that the negative
homotopy groups are concentrated in dimensions at most p(p 2 - 2) and that the
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product of negative dimensional elements with positive dimensional elements is never
a non-zero element of non-negative dimension. This would allow us to safely take the
connective cover of the global sections, producing the spectrum eopl, and because
the positive and negative dimensional elements do not interact, we can deduce that
the Adams-Novikov spectral sequence for eopl1 has E 2 term

Ext(,p) (A, A).

3.3 Rational Computations
Because they will prove useful for later computations, we list formulas for the right
unit in the Hopf algebroid (A, r). At an arbitrary prime, we have

I7R(ai) = (P ajri.
j=0

At the prime 5, this gives

/7R(al) = al + 5r,
/R(a2) = a2 + 4air + 10r2 ,

77R(a3) = a3 + 3a2r + 6axr2 + 10r3,

77R(a4) = a4 + 2a3r + 3a2r 2 + 4air3 + 5r4 ,
2 3 4 5

rR(a5) = a5 + a4r + a3r + a2r + ar 4 + r.

3.3.1 Rational Information

The rational case is substantially easier to compute.

Lemma 3.3.1. There are classes ci of degree 2i(p- 1) in A such that

H*(A Q, rF® Q) = H(A 9 Q, r® Q) = Q[ 2,...,cpl.

Proof. Since p is a unit, we can transform Equation 3.1 into one of the form

yp-1 = XP + a2XP-2+ .. _+ ap

by applying the morphism x - x - . There are no translations in x which preserve
p

this form of the curve, so we conclude that rationally, Meop_- is affine. In the language
of Hopf algebroids, we conclude that (A 0 Q, F 0 Q) is equivalent to the trivial Hopf
algebroid A = = [c2,...,Cp], where c = R(ai) evaluated at our choice of r.
However, the trivial Hopf algebroid has no higher cohomology, and H ° is just A.
This in particular shows the first equality.

The second follows quickly from algebraic manipulations. The denominators of
the elements c are powers of p, so we can multiply by a sufficiently high power of p
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to get new generators that actually lie in A:

ci = E (PI)) (-1)iajal-ip.
j=0

At the prime 5, we have the elements c have the following form:

C2 = -2a~ + 5a2

C3 = 4a3 - 15ala2 + 25a3
C4 = -3a4 + 15a2a2 - 50ala 3 + 125a4

C = 4a 5 -25a3a 2 + 125a a3 - 625a1 a4 + 3125a5

3.4 Statement of the Main Result
Recall from §3.2 that we have generators ci that rationally are polynomial generators.
In our p-local context, this means their products can be written as some power of p
times a sum of integral generators. To find the generators of H°(A, F), we have to
add these and the obvious relations. The proof of the following theorem will be one
of the goals for the rest of the chapter:

Theorem 3.4.1. As an algebra over45),

H°(A, F) = 45)[c2, C3, Ai, A 5, A1 8, A]/(rels),

where i ranges from 4 to 22, where the degree of Ai is 8i, and where the expressions
of these elements in terms of the elements ai and their relations are induced by the
formulas from Table 3.1, together with the natural inclusion of H°(A, IF) into A.

This ring has a distinguished ideal:

m = (5, c2, c3, Ai, A/).

The ring H°(A, F) is the zero line of the Adams-Novikov E2 term, and it is easier
to compute the full E2 term and then read off the zero line. The remainder of the
chapter does just that.

3.5 Preliminary, Prime Independent Remarks
We will compute the Adams-Novikov spectral sequence via a sequence of Bockstein
spectral sequences. It is clear from the formulation of the right units that the chain
of ideals

Io = (p) C I = (p,a1 ) C .. C Ip-1 = (p, a... ,ap-1)
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is invariant. The quotients (A/Ik, r/Ik) are therefore Hopf algebroids, and we can
compute using a Miller-Novikov style algebraic Bockstein spectral sequence. If we
filter by powers of these invariant ideals, we get spectral sequences of the form

H*(A/Ik, F/Ik) 04p)[ak-1] = H*(A/Ikl, F/Ikl).

This is a trigraded spectral sequence of algebras. If the degree of a homogeneous
element x is written (s,t, u), where s is the cohomological degree, t is the internal
dimension, and u is the Bockstein degree, then the degree of dr(x) is (s + 1, t, u + r).

The first three Bockstein spectral sequences are the same for all primes.

3.5.1 Computation of H*(A/Ipi, FlIp-l)
The Hopf algebroid (A/Ipl 1, I/Ip_l) is the Hopf algebra (p, rFp[r]/rP). The cohomol-
ogy of this is Fp[b] 0 E(a), where al = (1, 2(p- 1)), Ibl = (2, 2p(p- 1)), and in the
cohomology of the bar complex,

b=(~ ~~P--- ~~~ pZa = rb = (-a [a ir) 
p

3.5.2 Computation of H*(A/Ip_2, F/Ip_2)
We run the Bockstein spectral sequence for adding in ap-1. The E1 term is a poly-
nomial algebra on elements a, b, and ap-1 of tridegrees

IaI = (1, 2(p- 1), 0), Ibl = (2, 2p(p- 1), 0), apl = (0, 2(p- 1)2, 1).

For dimension reasons, all of these are permanent cycles, so the spectral sequence
collapses.

3.5.3 Computation of H*(A/Ip_3, F/Ip-3)
The E1 term of this Bockstein spectral sequence is a polynomial algebra on the
elements from the previous part, together with ap-2. The tridegrees of the elements
a and b are not changed, while the rest are:

lap-lI = (0, 2(p- 1)2,0), ap_21 = (0,2(p- 1)(p-2), 1).

It is also clear that a, b, and ap- 2 are all permanent cycles which do not bound. The
formulation of the right unit shows that

dl(ap-1) = 2aap_2.

This leaves us the following algebra for the E2 page:

Fp[b, apl, ap_2] 0 E(a)/aap_2{1, xl, . . , x(pl)}/(axk, ap_2Xk),
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where the Xk has tridegree (1, 2(1 + k(p- 1))(p- 1), 0) and is represented by aapkl .

Proposition 3.5.1. All of the Xk with the exception of xp_1 are non-bounding per-
manent cycles. We also have dp-1(xp-1 ) = ap-b.

Proof. For dimension reasons, the only possible non-trivial differentials on Xk are of
the form Xk -* bap_2. We therefore have the following dimension computation on the
internal degree:

2(p- 1)(1 + k(p- 1)) = 2(p- 1)(p + n(p- 2)) = (k- 1)(p- 1) = n(p- 2).

This has a unique solution in our range: k = p - 1, n = p- 1.
For the prime 5, we can also show easily the second part via direct computation

in the bar complex:

a4r + 4a3a3r2 + 3aa2r3 + 3a4a3r4 F-+ a4 (r 4Jr + 2r3 Jr2 + 2r21r3 + rlr4) = a4b.

For all primes, this result follows from Lemma 6.2.1:

dp_(xp-) (a, di(ap_), ... , di(ap_ 1)) = (a,.. ap-1 = bai.-1
p-1 p

This gives the following E3 term, which, for dimension reasons, is also the E~
term:

tp[b, ap-2, ap-1] 0 E(a)/(aap-2, ap_2b){1, x1, . . ., xp-2}/axk = ap-2xk).

There are also the following Massey product relations:

/.k+1 a,..)
(Xk, a, ap_2) = Xk+1 = (a-- a)

k+2

These in turn give multiplicative extensions between the elements xi:

ap-2b i+j=p-2
XiXj -2-

otherwise

where x0 = a.
The element aP 1 is a distinguished permanent cycle that we will call A.
We can represent this Ec~ term as a picture for the prime 5 (Figure 3-1), with t/8

given by the horizontal axis and s given by the vertical one. This picture is repeated
polynomially in A, represented by a box, and b, so we will only list the first part.

In the picture, a solid line of positive slope is multiplication by a, one of slope
zero is multiplication by a3 , and the dotted lines are Massey products (a3 , a, .). The
case of the general prime is similar, except that the horizontal axis would be indexed
as t/2(p- 1), and each row above the zeroth would have p- 1 solid dots.
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Figure 3-1: H*(A/Ip_3, F/Ip-3)

3.6 Computation at the Prime 5
From this point on, we will restrict our attention to the prime 5. In this case, we can
find explicit representatives of the elements x1, x2, and x3.

xI = a4r + a3r2, x2 = a4r + 2a3a4r2 + 3a32r3, X3 = a4r + 3a3a2r2 -_ aa 4r3 - 3a3r4.

3.6.1 Computation of H*(A/I1, F/I1 )
The computation here starts largely as before. The elements a, b, a2, xl, and A are
all permanent cycles, for dimension reasons. The element x1 is now represented as
a4 r + a3 r2 + a2r3. However, beyond this the patterns of differentials becomes more
complicated.

For clarity, we will rely on pictures of the Er terms to describe the initial situ-
ations and tell us which elements could support a differential. In these Bockstein
spectral sequences, the dr-differential of any element must be divisible by a (more
generally, by the new element to the rth power). If we make the convention that
a solid horizontal line means multiplication by the new, Bockstein element and an
open circle means a polynomial algebra on this element, then we see that the possible
targets of a dr differential are open circles preceded horizontally by r solid lines. If we
additionally make the convention that circles with dots in them are the non-Bockstein
multiplicative generators, then the differentials are totally determined by their values
on these elements. These conventions will allow us to immediately see which elements
could support a differential.

The d1 Differential

We have a single differential coming immediately from the bar complex:

dl(a 3 ) = 3a2a.

If we extend this by multiplicativity, using the fact that a3a = 0, we see that all
elements of the form ak are d1-cycles. To see if there are any other differentials,
we first look at the picture (Figure 3-2), in which dashed horizontal lines are a3

multiplications.
From this, we see the last possible d, differential:

Proposition 3.6.1. We have dl(x 3 ) ' a2a b.
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Figure 3-2: El page for H*(A/I, r/I1)

Proof. The element X3 can be written as

a3 a>
X3= (a3, a, a, a, a).

From this it follows from a simplification of May's work on Massey products, as
presented in [31] that

dl(x3) = (dl(a),a,a,a,a) = (-a 2a2a,a,a,a,a) =-a 2a2(a,a,a,a,a) =-a 2a3b.

The d2 Differential

From the picture of the E2 page (Figure 3-3), we see immediately that the only
elements that can support a d2 differential are a3 and x2.

41..... ...... .....i. ......................... .....i.............. .... . ...... '.."!-!.........i ..... '...... .......... .......... .... . .......... ........ ......2 i ..... ..... ... ... .. ..... ......................... i
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Figure 3-3: The E2 page for H*(A/I, F/I1 )

Proposition 3.6.2. d2(a3) = -a2xl and d2(x2) = -a2b.

Proof. Again, we have Massey product proofs. The element x2 is the Massey product

X2 (aa7a,a).

This means, by Proposition 6.2.5, that

d2(x 2) (d(a 3), d(a 3 ), a, a, a) = a2b.

In the bar complex, we have

a3 + 3a2a3a4 ~- -a2(a2r3 + a3r2 + a4r) = -a2x1 .
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For the second differential, we appeal to the bar complex:

a4r + 2a3a4r2 + 3a2r3 + 2a2a4r3 + 3a2a3r4 -a2b.

The d3 Differential and Beyond

Given the sparsity of the spectral sequence above the filtration 0 line (Figure 3-4), it
is clear that it now collapses.
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Figure 3-4: H*(A/I1, F/I1)

For computational reasons, we give here some of the full names for some of the
elements listed above. The elements a and b have their usual bar representatives,
while

X1 = a4r + a3r2 + a2r3

[a2] = a2 + 2a 2 a4

[ag] = a + 2a3a3 + a4a 3a43~~~~~~2 322 2
/A = a - 2a4a42 - a2a2a3 + 2a2a4 + aa32a4 + aa4

With these elements, we can also compute the structure of H* as a ring:

Proposition 3.6.3. We have the multiplicative extension 2a[a32] = a2xl, and the full
algebra of H* (A/I, F/I I) is

F5 [a, b, X1 , a2 , [a 3], [a 3], A]/((a, xl) 2 , a(a2 , [a, a]), a2(b, x),,~ ~~ ~~(a [ a], [a 3[a]), a(b, x ),
[a]]5 -[a5] 2 = a3[a2]4 + a6[a3]3 + 2aA, 2a[a 3]2 - a2xIl)

Proof. The algebra structure will follow from the first part by direct computation.
The first part follows from noting that the difference of these two elements is the bar
differential of a3a4. I

3.6.2 Computing H*(A/Io, F/Io)
Because things are so spread out, this is actually easier to compute than the previous
term. We start with the observation that, for dimension reasons, a, b, A, and xl are
all permanent cycles. The bar representative of xl is -r 5 .
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The dl Differential

We first note the differential coming immediately from the bar complex:

di(a2) = -ala.

To continue, we use the picture of E1 (Figure 3-5), marking this differential. We will
use similar notation as before, but here solid lines with represent a multiplications
while dashed lines will represent a2 multiplication. To further simplify the picture,
we use a circled star to indicate a polynomial algebra on both a, and a2.
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Figure 3-5: E1 page for H*(A/Io, r/I 0 )

The picture suggests to us another differential.

Proposition 3.6.4. We have dl([a2]) = 3alxi.

Proof. The element a2 can be realized as (a3, a, a2 ) or (a2 , a, a2, a). Taking dl on this
as on Massey products, we get

dl(a2) = (as, a, a,, a) = alxl,

or
dl(a2) = (a2, a, dl(a2 ), a) = (a2, a, ala, a) = alxl.

Similarly, from the bar complex, we have that [a3] is represented in the bar complex
by a~ + 2a2a4. We also have

2 ~2 3 2 2 2 4a- H 6a2a3r + 2ala3r + ala2r + a2r + a1 r

while
2 3 2 2 42a2a4 -* -a2a3r + a2r + 2ala2r - 2ala4r + ala3r + 2air4.

Adding these gives the result.

The d2 Differential and the E~ Page

At this point, our spectral sequence is again very sparse (Figure 3-6).
We again see that we can have but a single coherent differential.

Proposition 3.6.5. We have d2 (a2x 1 ) = a2b.
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Figure 3-6: E2 Page of H*(A/Io, F/lo)

Proof. On this page, x1 = (a2, a, a, a), so a 2 xl = (a2, a, a, a). Proposition 6.2.5 shows
that

d2((a2, a,a, a)) = (dl(a2), dil(a2), a, a, a) = a2b.

For the bar version, we start by computing the bar differential on a2x1 = ar 3 +
a2a3r2 + a2a4r:

a2xl1 -+ 2a2a3rlr + 4ala4rlr + 3a2r2lr + 3ala3r2jlr + aia2r 31r + a2r4lr
+ 3a2rlr2 + 4ala3rlr2 + 3ala2r2r 2 - a2r3lr2 - 2a2a3rlr

+ 3ala2rlr3 + a2r21r3 - 3a2r2 r - 3a2rlr2.

If we add to this -ala 2r4 + a1a3r3 + 2ala4r2, then a little algebra shows us that the
bar differential of this is exactly a2b. l

It is clear that no further differentials are possible, so the spectral sequence col-
lapses here.

3.6.3 H*(A, r)

Everything we have done so far has led us to compute what happens when we add in
the number 5. There is already an obvious differential given by al -+ 5r. Additionally,
xl has survived this long because it has represented r5 which, mod 5, is a cycle since
r is. Now the binomial theorem tells us exactly what it will hit:

r 5 - 5r 4 dr + 10r31r2 + 10r21r3 + 5rlr 4.

In other words, d1(xx) = 5b. This gives us all of the differentials for dimension reasons,
as we immediately see (Figure 3-7).

: ............... .. .......... .. .................. ................. ........... ........... ..........

2 : : !: i i ! ! :i:
........... ...... ..... ...... ................ . ........... .......................

0 2 4 6 8 10 12 14 16 18 20 22

Figure 3-7:E 1 Page for H*(A, F).~~ ~~ ,. . . . . . ..
.. . .. . ...... .. .. ........... i .... ... ..

; ; . . ..... ; ~~ ~~...; ... .... ;.......; .... ;....... .............. .... ........ .
. (3 .. ~~~~~~....... .. *..........

.... > ......................... ~~~~~~~~~............a .. ,...........,... 

0 2 4 6 8 10 12 1 6 18 202

Figure 3-7: E Page for H* (A, IF)
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Since there are no more possible differentials, we conclude that E2 = Eoo. Addi-
tionally, we know the leading terms of the generators of H° , since this is exactly what
the Bockstein spectral sequences have been computing for us.

Corollary 3.6.6. As an algebra, H°(A, F) is as described in Theorem 3.4.1

Proof. The Bockstein spectral sequences demonstrated that the classes given are the
algebra generators. The relations are simple consequences of algebraic manipulations,
so these are also immediate. L

Putting everything we have seen so far together allows us to show the following
theorem.

Theorem 3.6.7. As an algebra,

H*(A, r) = H°[a, b]/(a2, m(a, b)).

Proof. The only surprise relation is m(a,b), and this follows from the earlier fact
that terms dominated in (al, a2, a3 )(a, b) were zero by the time we reached this last
page. [

3.7 Adams Differentials and the 5-local Homotopy
of eo4

In this section, we compute the Adams' differentials for the homotopy of eo4. Since
the unit S - eo4 takes the elements , /3 E r(S ° ) to the classes a,b E 7r(eo4),
and since we have the Toda relation that a/1 p = 0, we must conclude:

Theorem 3.7.1. We have d(A) = ab4.

We can see hidden multiplicative extensions by considering the Massey product
representatives of the "left-over" classes [aA], [aA2], and [aA3 ].

Proposition 3.7.2. We have

[aA] = (, ab4, a)

[aA 2] = (t, ab4, ab4 , a)

[aA3] = (L, ab4, ab4, ab4, a).

Additionally, we have a hidden multiplicative extension

a[aA 3 ] = b 1 3 .

Proof. The first relations are immediate from the form of d9. The hidden extension
follows by "shuffling" in the a and then "shuffling" out the b4 terms. O

Theorem 3.7.3. We have d33([a4]) b17.
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Proof. Proposition 6.2.4 gives

d33(aA 4) = (a, d9(A), d9 (A), d9 (A), d9 (A)) = b17.

The spectral sequence collapses at this point, as there are not enough things in
higher filtration to be the target of any further differentials.

3.8 Formulas Relating the classes Ai

A 4 1 (4c 4 + 3c2 )

A 5 1 (2c5 + c2c3)

A 6 - (4C3- 8c2c4 + 2C32)
A7 5 (c 3A 4 - 2c2A5)
A8 ( -3c2c + 9cc 4 -4c42 + 3C3cs5)
A9 (9c + 32C2 C3 C4 - 9c2C5 + 4C4 C5 )

A10 - (4A5 + 2C2A 4- 15A4 A6)
All ( 3A5A 6 - 2A4 A7 )
A1 2 54c34 - 279c2c3c4 + 216cc - 224c43 + 81cc 3C5 + 144c3c4c5 - 27c2c )

A1A13 A4A9 - 4A5 A8 )
A1 4 10 4C4AO- 6C3 A11 + 15A 6A8 - 15A4 A1 0 + 15c2A12)A 14

A15 5(AS5A1 - 2A4 A1 1 )
ml (162c- 8OC0C3 + 36Oc42c3c4 + 160c3c4 + 252OC2 C3C51o 

A1 5 -216C5c 5 + 1O5cCC5 - 9OOcC4C5 - 27cC 4C5

+720c2c4c5 - 105C2C3C5 -1215C 2C3C4 + 26C5)
A16 (-8A 5A1 -2c 2A4A0 + 15A6A10 - 3c 2A4)
A1 7

1 (- 3c 3 A14 - 2c2 A15 + 20A 8 A9 )

A18 "(2A 5A1 3 -A 1 0 + A4 A6 A8 )

A1 8 1 (2A2 + 8C2A2- 19A8 A1o)

A19 (8A 8A1 1 - A9 A1 0)
A21 (2c 3A1 8 + 12c 2A 19 - 30Alo0 A1 1 + 15A 9 A1 2 )

A22 5 (A9A13 + 2A6 A1 6 + 3A5 A1 7 + A4A18 + A7 A1 5)
15 (-10OC2C2 _ 1354C4 + 4OOc42C + 72OC2C2C3

-640c2c4 + 256C CCc 5 + 80c23c5 +108cc 5 -360C 4C3C4C5

A -63OC 2 C3C4 C5 + 56Oc2 C3C4 C5 - 32OC3C4C5 + 108c2c5

+165c2c2c - 180c23c4c2 + 90c2c 4c52 + 80c 2c42c2

-30c2c3 c3 + c4)

Table 3.1: Generators and Basic Relations for H°(A, F)
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Chapter 4

The eop-l Hopf Algebra

4.1 Introduction

With the understanding of eop-1 developed in the previous chapter, we can turn at-
tention to generalizing many of the results of Chapter 2. In this chapter, we introduce
our conjectures, coupling them with provable statements in the non-connective cases.
The machinery needed will be developed in § 4.3, and in § 4.4, we sketch out the
results analogous to Theorem 2.5.1. We round out the chapter by working K(p- 1)-
locally, producing in § 4.5 a new Hopf algebra that computes the EOp_1 homology of
a space. We also indicate how to compute the EOp_1 homology of BEp, using this
tool.

4.2 A New Spectrum

We begin by noting that the Gorbounov-Hopkins-Mahowald curves come equipped
with an involution which on points looks like (x, y) -k (x,-y). If we consider the
moduli problem of a GHM curve together with a fixed point of the involution , then
we get a moduli stack Mp_1 (t). This moduli stack has a forgetful map to Mp_1 given
by forgetting the fixed point.

A fixed point of the involution is equivalent to the data of a GHM curve together
with a root of the right hand side. By using the morphism x - x + r, we can force
this fixed point to be (0, 0). This means that when we pull back the cover of Mp_
given by the GHM Hopf algebroid to Mp_1 (t), we get the trivial Hopf algebroid

(A, F) = (p[al, . . ., apl][A-1], Zp[al,..., ap_l][A- 1]).

Proposition 4.2.1. The map Mp_1 (t) Mp-1 is tale.

Proof. The proof is similar to that of Proposition 3.2.1. The stack Mp-1 is the
stackification of the Hopf algebroid

(A,F) = (p[al,.. , apl][A-], A[r]/rP + arP-1 + .+. aplr).
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The stack Mp-1(t) is the stackification of the Hopf algebroid (A, A), and the forgetful
map is given by the map that sends r E to 0 E A. This map is tale since the
discriminant is invertible, making the polynomial

r P + * + ap_lr

non-singular. a

The sheaf of E~ ring spectra produced by Lurie's machine is a sheaf in the
6tale topology. Evaluating it on Mpl(t) produces an E~ ring spectrum denoted
eopl(t)[A-1]. Since the moduli stack has a cover by the trivial Hopf algebroid, we
conclude that the Adams Novikov spectral sequence for the homotopy of eop_ (t) [A -']
collapses, and

r*,(eopl()[A-']) = Zp[al,, ap-l][ - 1].

We can actually make a slightly better statement. Let Cp be the p-cell complex

SI Ual e2(p-1) Ual ''' U 1 e2(p-1)2 .

Proposition 4.2.2. As ring spectra,

eopl()[A - 1] = eopl,[A- 1] A Cp.

Proof. This statement is analogous to the ones for p = 2, KU = KO A C(r7), and
p = 3. The proof is identical. We first consider the unit map from the sphere into
eopl(t)[A-1]. Since a, and its Massey powers are trivial in 7r,(eopl(t)[A-']), we
conclude that the unit map extends over Cp. If we then smash this with eopl,[A- 1]

and compose with the action of eopl,[A - ] on eop_,(t)[A-1], then we get a map

eop_,[A-'] A Cp -+eopl(/)[A-1].

However, the element r E F detects al, so algebraically, the result of smashing with
Cp is the addition of the truncated polynomial algebra on r to A. This shows that
the map given is actually an isomorphism in 7r,, making it an equivalence. L

Remark. We believe that this result may also be shown K(p- 1)-locally using a
homotopy fixed point spectral sequence argument. The spectrum EOpl(t) is the
homotopy fixed points of En with respect to the /(p_1)2 part of the finite subgroup
used to define EOp-1. The spectrum EOp-1 could then be reconstructed by taking
the homotopy fixed points with respect to Z/p. The equivalence in the previous
proposition amounts to showing that

EOpl(l) A Cp - EOpl (t) [/p],

just as with KU, KO, and the cone on r.
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4.3 Hopes for eopl

Conjecture 4.3.1. All of the preceding propositions for eopl[A - 1] extend over the
full weighted projective space, giving spectra eopl and eopl (t). These spectra satisfy
the analogous relation

eopl ACp -- eopl ().

Conjecture 4.3.2. As a Hopf algebra,

Aop_, * := 7r,(HZ/p Aeop_, HZ/p) = A(1)* O E(a2 , ... ap-1),

where again A(1)* is dual to the subalgebra generated by 3 and 7l, and where ail =
2i(p- 1) + 1. The elements in A(1) again have their usual coproducts, while

i
( E ( X ad-k + aj 1,

k=O

where al = r1 and do = ro.

Before we can prove this, we need a proposition about algebras in the category of
modules over a structured ring spectrum.

Proposition 4.3.3. Let R - S be a map of E2 ring spectra. If M is an E2 S-algebra,
and N is an E2 M-algebra, then we have a push-out of E2 algebras:

MARS - M ARM.

I l
N NAsM

Proof. This is analogous to the statement in commutative rings that

TorMORs(N, M OR M) Tors(N, M).

The proof is actually identical, using the fact that we can "cancel" terms out of
smashing over a ring spectrum. L

The push-out in commutative ring spectra induces an isomorphism

TOrMR.s(N, MM) -+ NSM.

If M = N is the quotient of S by a regular ideal, then we can can actually
identify many of the terms, since MSM is just an exterior algebra on generators
corresponding to the generators of the ideal. Moreover, if every module is flat of M.,
then the push-out square induces a short exact sequence of Hopf algebras
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To prove Conjecture 4.3.2, let R = eopl1, S = eop_1(t), and M = HFp. Every
module over M. is flat, just as before.

Conjecture 4.3.4. The homotopy ring of H-p Aeop-1 eopl() corepresents the auto-
morphism group of the "additive" Gorbounov-Mahowald curve

yp-l = XP.

In other words,
HFp'p-(eop_()) = rp[e]/el

as a primitively generated Hopf algebra

The spectrum HZp AeP_1 eopl(L) represents the automorphisms of the additive
point in the relative moduli stack (Meop_, Meop1 (0)). The homotopy groups of this
then carves out the truncated polynomial part indicated, by a simple computation
involving quotients of Hopf algebroids.

The last computational piece we will need is the cohomology of A(1) at primes
bigger than 2. To best describe it, we need a small bit of notation for Poincar6 duality
algebras. If A and B are connected, graded Poincar6 duality algebras with top class
in the same dimension and augmentation ideals IA and IB respectively, then we define
a new connected Poincar6 duality algebra A B by taking its augmentation ideal to
be IA (3 IB modulo the relation that the top class in IA is the top class of IB.

Proposition 4.3.5. The algebra ExtA(l). (Fp, Fp) is

rFp[vo, , v1P] (0 E(,i, p-i)/(voi = o,,,_ = 2-p),
i=1

where jail = 2i(p- 1)- 1, I,31 = 2p(p- 1)- 2, and Ivfl = 2p(p- 1). The Adams
filtrations of the elements ci are i, while that of 3 is 2 and that of vP is p.

Indicative Sketch of Conjecture 4.3.2. Proposition 4.3.3 gives a short exact sequence
of Hopf algebras

0 -- p[]/4 - He-H - E(ro, i,d2, ..., ap2) - 0.
The computation of the coproducts is exactly as before. We can filter the Hopf algebra
so that it becomes primitively generated extension of A(1)*. If we compute Ext over
the associated graded, then we get

ExtA(1). (Ip, Fp)[U2,..., Cp_1],

where ci = [ai]. The degrees of the elements ci are all smaller than the degree of 3,
so the possible targets of algebraic or Adams differentials are all greatly restricted by
degree. In fact, since Iil = 2i(p- 1), for degrees less than that of /3, ExtA is zero
except in topological degrees congruent to -1 or 0 modulo 2(p- 1).
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We complete the computation of the coproducts by singling out particular ele-
ments in Ext over the associated graded. The elements a2 and Eial for i < p- 1 are
all present in Ext, and for degree reasons, if they were to survive both the algebraic
and the Adams spectral sequences, the would give rise to p-torsion elements. How-
ever, we know from the work of Hopkins and Miller that the only p-torsion element
in the range we consider is the element a,. This implies that all of these elements
must be killed. They cannot support any differentials for degree reasons, and since
there are no elements of Adams filtration 0 in the relevant ranges, they can only be
targeted by algebraic differentials. The only element in the appropriate dimension to
kill ciol is ci+1, and this proves the result. C

To facilitate understanding, we include at the end of the chapter series of charts
that show how the above argument plays out for the prime 5.

4.4 The eop_1 homology of BEp
Assuming Proposition 4.3.2, we can reprove most of the results true for the prime 3.
If we again consider the cofiber R of the transfer map BE - S, then there is an
analogue to Lemma 2.4.1

Proposition 4.4.1. There is a filtration of H,(R) such that the associated graded is

00

Gr(H.(R)) = G 2 p(P-l)kM
k=O

The same argument that showed that ExtA of this was torsion free works at other
primes, so we see that ExtA (p, H,(R)) is an evenly generated polynomial algebra.

Conjecture 4.4.2. As an eop_, 1 module,

C2 Cp-2 Cp__ 1 Cp
eOp-l,(R) = Zp ' c pp-3 ' pp-2'

The fractional multiples of the generators will be justified in § 4.5.
We moreover conjecture that the eop_1 image of the transfer map again contains

all of the higher Adams-Novikov filtration elements, since these are generated by a
and ,, and these elements will again not be present in eopl, *(R).

4.5 The EOp_1 homology of BEp
While the previous sections contain only conjectures, if we consider the K(p- 1)-
local version, we can actual make honest statements. We first need a small number
theoretic lemma.

Lemma 4.5.1. If k is an integer, then (k- 1)2 divides k k - l- 1.
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Proof. It is obvious that k - 1 divides kk - l - 1, leaving a quotient of kk- 2 + .. + 1.
We can express the polynomial xk- 2 + ... - + 1 in terms of x - 1, and we get

(X - 1)k-2 + · ·· + (k - 1).

If we evaluate at k, then we get the result of the lemma. D

Let m denote the quotient of k k -l-1 by (k-1)2, and let K(p- 1) denote the A,,
extension of K(p- 1) obtained by adjoining an mth root of vp_1 [1]. This spectrum
is a module over EOp_1 , where the module structure is determined by taking the
quotient of the Ece ring spectrum EOp_1(t) by the regular ideal (p, . . , ap-2). This
result, together with Proposition 4.3.3, proves the following theorem.

Theorem 4.5.2. The homotopy of K(p- 1) AEOp_1 K(p- 1) is the Hopf algebra over
K(p-1),

AEOP_1 * = K(p- 1),[01]/ p 0 E(To, T1, 2, , ap-2),

where ~1, To, and T1 have their usual coproducts, and the coproducts on the elements
ai are those of Conjecture 4.3.2.

The Adams spectral sequence based on K(p- 1), as a module over EOp_1, con-
verges to the homotopy of the K(p - 1) nilpotent completion of EOp_1 AX. If X
is the sphere S°, then the Adams cosimplicial resolution of EOp-1 AX converges to
EOp-1 , since EOpl1, being K(p- 1)-local, is already K(p- 1)-local.

This theorem allows us to immediately prove a result analogous to Theorem 2.4.4
for EOpl*(R).

Theorem 4.5.3. As a module over EOp_1,

E~p,*R)= z [C2 Cp-2 C- 1 , Cp[-]= p[ ... p-3' pp-2, pp I

where I is the maximal ideal of 7roEOp-l.

Proof. The proof is exactly the same as for Theorem 2.4.4. The classes c arise from
various v multiples of the classes arising from ai, with the exception of cp which
corresponds to vP. The earlier statements about the filtration of H,(R) apply equally
well, giving this result. O

Working through the example of X = S o provides an important Adams differen-
tial. The class represented by ap-2 is not a cycle, but the class [ap_2]al is.

Proposition 4.5.4. There is a d2 differential of the form

d2([m VP-1]) = [p-2]a1.

The differentials originating on the root of vp-1 are artifacts of the algebraic dif-
ferentials in the Cartan-Eilenberg spectral sequence for ExtAeo p_ . . This class would
be an algebraic cycle, but for degree reasons, it now is an Adams d2. Since this is a
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spectral sequence of algebras, we know that [ ~ ]p is a d2 cycle. This is the class
A.

There are again two purely topological differentials.

Proposition 4.5.5. There is a d2p-1 differential of the form

d2pl(A) = o1/3P-.

This forces a d 2(p-1)2+1 differential of the form

d2(p-l)2+l1(a Ap-1 )-/(-)+.

4.6 Charts for Computing Ext at 5
To preclude clutter, we introduce the elements Ei one at a time. We begin with
ExtA(1). (-5, F 5) (Figure 4.6). The boxed and arrowed object in position (40, 5) rep-
resents a polynomial algebra on v. The entire picture is repeated starting in this
position, and this is what the box represents.

......................... ............. ............. ... ... ..... .................. .............. ........ ......... ............... .................. .....................................

0 2 4 6 8 10 12 14:16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Figure 4-1: The Ring Ext(i) (- I 5)

If we add &2, we see that there is a single differential

This gives a number of other differentials, including

dl(&362) v0/, d2 (v0~) = 1a, d2(&l) v0f.0 C
......... .................. ............. ................. ... ....... ..... ... .... ... ..... ..........................................................

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28.3.23 6 3 8 042 44

Figure 4-2: The 4-:Spetral Sequence for ExtA(1). E(a)( 5, IF5)

Massey product considerations demonstrate an extension between OllC2 and &3.

This helps resolve the effects of addi ing ifent.
Massey product considerations again show an extension between Oll 3 and v0,3.

This helps complete understanding of the effects of adding in .
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Figure 4-43: The Spectral Sequence for EtA(1)® E(a2 ,a3,) (F5 , F5 )

546->i,............... .......... ... ...... ....... . .......... ...... ..... 

!. .?!- i! - !-- !R---- --t ' i ! t ' i t - -i-i t - ---.- .. ... ....i- ..t'.i.....-.t '4:s : ~~~~~~~~~~~~~~~~~~~~~~~~~. ::::,......... ........... ......... . .T. 2. ..:: :: .:: : : :: . . ..
2-~~~~~~~~~~~~~~~~~~~. . . .. . ... . . ... . . ... . . .:::._.....

..... 4 6 8 10 12 14 16 18 20 22 24 26 28 3.0 ... 32.. 34 ... 36 3 8.. 40 42 44

Figure 4-4: The Spectral Sequence for EXtA,(1).(&E(d2,d3,d4)(F5, F5)
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Chapter 5

Cohomology of Z/pk with
Applications to Higher K-Theory

5.1 Introduction
The previous chapters have sought to improve the understanding and computability
of relatively well-known tools. While the zero line of the homotopy of EOp_1 was
not known, all of the higher filtration elements were understood, and this allowed a
substantial bit of work. For heights beyond p- 1 at p, almost nothing is known. This
chapter establishes some of the pieces needed to complete the analogous computations.

5.2 The Structure of S(kpp-l)

Let Pp-1 denote the quotient of the regular representation pp of Z/p by the obvious
trivial summand. The module we consider is the symmetric algebra Sz(kppl).

We begin by recalling an unpublished result of Hopkins and Miller.

Proposition 5.2.1. As a Z/p-module,

SZ(P-1) = Sz(A) , p-1 } e free,

where A and 1 are one dimensional trivial representations.

The number of free summands can also be computed, using a dimension count.

Proposition 5.2.2. There are

[1 (P + - 2)

permutation summands in Si(pp_1) .

From Proposition 5.2.1 and the simple recollection that the tensor product of a
free module with any other module is again free, we conclude the following lemma.
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Lemma 5.2.3. Modulo free summands, as a Z/p-module, if k is odd, then

S(kpp_)=S(l,.,Hp)@] e (kl)PP-1 l (k2) I ... 3 (1) I(EDPp-1)

If k is even, then

S(kpp_) = S(A,. ..,Ap) ) (D () Pp-1 ( 2 k I . .. () PP-1 E)

Proof. This follows from the proposition immediately, using the binomial theorem
and the fact that the symmetric algebra functor is exponential. The identifications
of the tensor powers of Pp-1 is a classical result. El

5.2.1 Computation of the Tate Cohomology

From Lemma 5.2.3, we can immediately compute the Tate cohomology of Z/p with
coefficients in S(kp_ 1).

Lemma 5.2.4.

H(Z/p; S(kPp_1)) = Fp[x2'l] ( p[A1,..., Akk] ( E(ol,..., Ok),

where the generators ai are in H1 and correspond to the generators of H1(kppl) in
the decomposition in Lemma 5.2.3. The generators Ai are in Ho and correspond to
the trivial summands of the same name.

5.2.2 The Higher Cohomology of Z/p

The computations already done essentially give this result. In dimensions greater
than 0, the Tate cohomology coincides with the ordinary cohomology.

To concisely express the higher cohomology, we need some notation. Let I denote
a subset of the set {1, . . ., k}, and let

,=J ja, IIII =LI~ 1
iEI2

With this notation, modulo the free summands ignored previously, we can com-
plete the computation.

Lemma 5.2.5. As an algebra, the higher cohomology is given by

H*(Z/p; S(kpp_1)) = Fp[x2] Zp[A1,. ., Ak] ) E ( 1I),

modulo the obvious relations involving the expressions a,.
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5.2.3 Concrete Example with H° Information
There is essentially only one example which can be worked out in full, and this
carries interesting topological information. If we let p = 3 and k = 1, then we can
essentially reconstruct the Hopkins-Miller result about the Adams-Novikov E2 term
for the homotopy of tmf. The module P2 can be identified with Z3 {x,y}, and if
(g) = Z/3, then

(y) (--y
One can readily compute the Poincar6 series for the ring of invariants, using the
following observations:

1. If n = 3k, then Sn(p2 ) has a trivial summand, and if n = 3k + 1, then Sn(T2)
has a summand of P2.

2. If n = 3k + j + 2, where 0 < j < 3, then Sn(P2 ) has k + 1 summands of the
regular representation p3.

The first observation is essentially a restatement of Proposition 5.2.1, while the second
follows from this by a dimension count. Together, these give the Poincar6 series for
the ring of invariants:

1 t2 + t3 + t4 1 - t6

1 - t3 (1 - t3)2 (1 - t2)(1 - t3) 2'

where the first summand comes from the trivial factors and the second comes from
the 3 types of regular representations. Direct computation allows us to find three
invariant elements a2 in S2(p2), b3 in the permutation summand of S 3(p2), and A3 in
the trivial summand. With these, it is easy to prove the following proposition.

Proposition 5.2.6.

H (Z/3; S(p2)) = Z3[a2, b3, A3]/4a - b = 27A2.

In the topological setting, these are all graded objects, and there is an action of
group of order 4. The group action sends A to -A, and the elements degrees are 4
times their subscripts. When we pass to the invariants under this final group action,
we can fully recover the Adams-Novikov E2 term for the homotopy of tmf.

5.3 Applications to Higher Real K-Theory
The homotopy groups of EOn(G) are computed using the homotopy fixed point spec-
tral sequence, the E2 term of which is H*(G; En.), and a theorem of Hewett shows
that if pk(p _ 1) divides n and pk+l does not, then the largest p-subgroup of G is
Z/p k + l [15].

The structure of En* as a G module is quite complicated for subgroups G for
which p divides G[, and regrettably, this is also the most interesting case, as these
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subgroups have higher cohomology that is closer to that of 6G. However, if we restrict
attention to n = k(p- 1) for k < p, then the computations of § 5.2 provide a starting
point for the computations of these group cohomology computations. From Hewett's
result, it is clear that the results for k < p have a different flavor than those for k = p,
and we handle them separately.

5.3.1 Height k(p- 1) for k <p

Devinatz and Hopkins compute a recursive formula for the action of Gn on En..
The formula can be recast as showing that there is a filtration of En. such that the
associated graded is simply S(kpp-)A [A-'], where I is a particular ideal which sits in
the free summand of the symmetric group and where A is the product of the trivial
one dimensional representations. This gives a spectral sequence of the form

H*(Zlp; S(kpp-l)[-]) -=: H*(Z/p; Ek(p-l)*). (5.1)

Since I lies in the free summands, it does not affect the higher cohomology in any
way. Similarly, A is a trivial summand, so the result of formally inverting it is simply
to invert the class A in the cohomology. With these observations, however, the higher
cohomology of El term of Spectral Sequence 5.1 is exactly the result of Lemma 5.2.5
with the product of the classes Ai inverted. It remains only to compute the algebraic
differentials and any differentials in the homotopy fixed point spectral sequence.

5.3.2 Height p(p - 1)

Here the computations of Devinatz and Hopkins show that there is a filtration of E,,*
such that the associated graded is S(PP(P_))A [A-l], where I is a particular ideal in
the symmetric algebra and A is a distinguished class corresponding essentially to the
norm of the invertible class u. This gives a spectral sequence

H*(Z/p 2; S(Pp(pl))/[A-']) = H*(Z/p2; E*). (5.2)

To compute the E1 term of this spectral sequence, we use the Hochschild-Serre
Spectral Sequence based on the short exact sequence

0 + Z/p -- + Z/p2 _+ Z/p O.

This is a spectral sequence of the form

H*(Z/p;H*(7/p;S(~-l [-l])) Z H* (Z/p2; S(Pp(pi))i[A-1]). (5.3)H* (Zl ~~(p *(Zp- 1))AIA')

This spectral sequence is quite complicated, starting with the computation of the El
term.

We begin by recalling that the restriction of the representation p(p_-) to the
subgroup Z/p is PPp-1. The action of the quotient Z/p on H*(Z//p; pp-pl) is readily
determined to be the regular representation.
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5.4 Recent Work and Indications of Future Devel-
opments

Lemma 5.4.1. Let n = pkf (p - 1) with p If. If g E Gn has order p, then, possibly
after extending scalars to a larger residue field, there exists an element a E Gn such
that apk = g. In other words, after passing to the Witt vectors of the algebraic closure
of Fp, every subgroup of Gn isomorphic to Z/p extends to a subgroup isomorphic to
/pk+l.

Proof. This is essentially a consequence of the Noether Theorem about automor-
phisms of division algebras over Qp.

We first recall the definition of On. This is the group of units of the maximal order
of the division algebra Dn over Qp with Hasse invariant 1. One of the properties ofn
this division algebra is that it contains all extension fields of Qp of degrees dividing n.
In particular, it contains the ramified extension field of Qp given by adjoining the pth

root of one g. We can moreover form the field extension Qp[g][oa], where is a pkth
root of g. Since the degree of this extension is pk(p - 1), this extension is a subring
of Dn. It is moreover a subring of the ring of integers, since g was. This implies that
there is a pkth root of g in Gn, as was required. The extension of scalars ensures that
the previous inclusion can still be satisfied. E

To demonstrate the effectiveness of this lemma, we need to recall the full form of
Devinatz and Hopkins result about the action of the Morava stabilizer group on En*.

Proposition 5.4.2. There is a filtration of Epk(pl), such that the associated graded
is a localization of a completion of the symmetric algebra on pk(p_l). The spectral
sequence of this filtration is of the form

Z(Z/ pkl; )) [-1]) : H (Z/pk+l; Epk(p-l)*) . (54)

Theorem 5.4.3. If there is an element a in E* such that (1- g)(a) = p. unit and
such that IN(u)l divides lab, where

N(u)= J 9(u),
OEZ/pk+l

then possibly after extending scalars, Spectral Sequence (5.4) collapses at the E1 term.

Proof. To prove this, we must produce a new invertible element v in degree 2 whose
trace under the action of Z/pk is 0 and which is not the norm of any other element.

Building v is quite easy. Let m be the quotient of al by N(u)l, and let

p1 (a)
N(u)m

The conditions on a ensure that this has the right degree and that this is well defined.
Moreover, this is a unit in degree 2, meaning that modulo the maximal ideal m in
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ro(En), v - u. The Devinatz-Hopkins result shows

M = (u, UU1,..., uunl) mod p, m 2

is a copy of the Dieudonn6 module. In particular, this is generated as a Z/pk module
by u. The equivalence of u and v modulo m implies that v also generates M. However,
since v is a traceless element, the structure of the Dieudonn. module ensures that
the Z/pk submodule of 7r_2(En) generated by v is isomorphic to M itself. This gives
the collapse of Spectral Sequence (5.4), since it shows that the associated graded of
w,(En) built by Devinatz and Hopkins is equivariantly isomorphic to r,(En). L

5.4.1 Ravenel's Work and Hopes for Elements
Recent work of Ravenel might produce such an element of 7rw(En) [29, 30]. Ravenel
produces two families of deformations of the Artin-Schreier curve

ye = XP-X,

where n= f(p- 1), and e = pf- 1.
The first family is corepresented by the Lubin-Tate ring and the formal comple-

tion of the Jacobian has a one dimensional summand isomorphic to the universal
deformation of the Honda group. This family suffers from the draw-back that there
is no obvious action of Z/p on the curves. Ravenel remedies this problem by increas-
ing the number of curves considered, enlarging the moduli stack to include a larger
family. He shows up to first order that the formal completion of the Jacobian again
has a summand isomorphic to the universal deformation. Moreover, this stack has
an obvious action by Z/p (in fact, multiple copies of Z/p). Regrettably, the natural
6tale cover of this stack is by a ring whose Krull dimension is larger than that of
7r.En. Since Krull dimension is invariant under passing to the invariants under a
group action, this implies that Ravenel's larger moduli stack is not the appropriate
moduli stack for building EOn.

However, it is hoped that the map from the corepresenting ring for Ravenel's
family of curves to the Lubin-Tate ring is Z/p equivariant. It is easy to check that
there is a distinguished element a in the corepresenting ring which transforms as

a - a + pr,

where r is a generator of the comorphism ring. It is also hoped that the element a
(which behaves like vf) maps to a non-zero element in r.En. This element would
satisfy all of the properties required for Theorem 5.4.3.
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Chapter 6

A Computational Lemma for
Differentials in Spectral Sequences

6.1 Introduction

6.1.1 Organization
In §6.2, we prove the key result that, subject to certain hypotheses, makes everything
work out,

d2 (c a b) = (di (c), a, di (b)).

The remainder of the section establishes variants of this in a sequence of propositions.
In §6.3, we use the main Lemma and its variants to reestablish some classical results
and demonstrate other simple applications.

6.1.2 Conventions
All of our algebras will be filtered differential graded algebras. If a is a homogeneous
element of our algebra, then al will denote its degree, and a will denote (-l)lala.
Moreover, all spectral sequences we consider are the spectral sequence associated to
the given given filtration.

6.2 Higher Differentials out of Lower Ones

6.2.1 Main Result
Lemma 6.2.1. Let a, b, and c be elements of A such a E FA, b, c F1 A, and in
Gr(A), d (b) 0 d (c) and

a . d(b) = d(c) a = O.

Then we have
d2(c a. b) E-(-1)[al+lcl(dl(c), a, dl(b)).
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Proof. Ignoring the filtrations of the elements involved, the element c a b visibly
bounds one of the cycle representing the Massey product, since we can just apply the
Leibnitz rule. The subtlety is incorporating the filtrations to allow us to apply this
to spectral sequences.

The condition a dl (b) = 0 implies that there is an element x E F0A such that

d(x) = do(x) = a d1(b).

We similarly conclude that there is an element y E FoA such that

d(y) = do(y) = di(c) a.

The Leibnitz rule ensures that c a b is a dl cycle. This means that we can find an
element in F1 A such that the boundary of c. a- b plus this element lands in filtration
0. The element is easy to find, however, given the bounding elements named above:

(-1)lalC .x + y b.

For filtration reasons, the d2 differential on c a b is determined by taking the
ordinary differential on

c. a b- ((-1)lalc.x +y. b).

This gives

-(-_1)aldi(c) - V. d1(b) = -(-1)aI+cJ (y d (b) - di (c) x).

However, this last term is obviously a representative of the Massey product in ques-
tion.

It should also be noted that any two choices of x and y differ by a cycle. This
change is perpetuated through the proof, giving a different representative of the
Massey product. Conversely, any representative of the Massey product allows us
to determine new choices for x and y, so we can conclude that in fact every element
in the Massey product is the boundary of a representative of c. a- b. [

6.2.2 Variants of the Lemma
This lemma generalizes a great many ways. We can first consider strings of longer
length.

When the algebra is commutative, we can generalize to strings of longer length.

Lemma 6.2.2. Let a E FoA and b E F1A. If for all i < k, (a,di(b),.. ,d(b)) = 0,

with no indeterminacy then

dk(abn) E (-1) (lal- )(k+l) n! (k )nkdk (abn) (.)(IaJ1)(k+1) n - k)! (a, dl(b),... ,di(b))bn - k.
k
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Proof. For i < k, let xi E FoA be such that

d(xi) = (a, d(b),. d (b)).

With this notation, we note that for j < k,

(a, dl(b), .. , dl (b)) = xj -ldi (b).
Y

If a[ is odd, then xil is odd for all i, meaning that x = -xi. If al is even, then
again, so is Ixil. In what follows, for ease of notation, we assume that ai is odd. If
this is not the case, then a sign is introduced at every stage, producing the alternating
signs shown in the statement of the lemma.

Now the proof follows by induction, with the base case being clear. Assume that

dm-l(abn) = (n - m + 1)! (a, d,(b),. . . ,dl(b))bn - m+l.
m-1

The assumptions on the vanishing of these Massey products allows us to complete
abn to a dmi-1 cycle by noting that

dm-1 (abn- )! xm- l bn- m+l) Orn~1a -(n- m+1)

The differential dm is then given by

n! -M ~~~~n!
(n - m + 1)! (n - m + 1)Xm-ldl(b)bn-m ( - )! (Xm-ldl (b))bn-m.

Recalling that xm-ldl(b) is another name for the desired Massey product completes
the proof. [

We can also formulate a form that has applications to Serre type spectral se-
quences, and the proof is exactly analogous.

Proposition 6.2.3. Let c E FA, a E FA, and b E FtA be such that d(c) FoA,
d(a) = 0, and d(b) E FA. Then if the analogous hypotheses of the previous lemma
are satisfied,

ds+t(c a b) E (ds(c), a, dt(b)),

where the Massey product is again viewed as occurring on the E1 page.

If the algebras in question are bigraded algebras, then we can take the internal
grading into consideration if the differential includes it. This type of example occurs
in the Serre and Adams spectral sequences. We assume that the internal differential
has degree -1.
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Proposition 6.2.4. Let c E F8A, a E FoA, and b E FtA be such that d(c) E FoA,
d(a) = 0, and d(b) E FoA. Then if the analogous hypotheses of the previous lemma
are satisfied,

ds+t-1(c.a.b) E (d(c),a,dt(b)),

where the Massey product is again viewed as occurring on the E2 page.

6.2.3 A Massey Product Lemma for Massey Products
We can further generalize Lemma 6.2.1 by considering differentials on higher products.
We begin with a simple form that can be readily proved.

Proposition 6.2.5. If a E FoA and b E F1A, a2 and ab are zero in homology, and
(a, a, di (b)) = 0 in E1 , then

d2((a, a, b2)) = (a, a, d (b), d(b)).

6.3 Applications

6.3.1 Kraines' Results on Massey Powers
Proposition 6.2.4 allows for a quick proof of Kraines' results linking iterated self
products with Steenrod operations at an odd prime [20].

Corollary 6.3.1. If x E H2k+l(X; Fp), then

P kx E ( .x
p

Proof. We show this via universal example, using the Serre spectral sequence for the
fibration

F = K(Ip, 2k) - EK(p, 2k + 1) -+ B = K(rp, 2k + 1).

The element i2k E H 2k(F) transgresses to the element i2k+l e H 2 k+l(B).

The element 2k+l i-2-1 is a d2k+l cycle, and the Kudo transgression theorem
shows that this element transgresses to 3Pki2k+l. However, Propositions 6.2.4 and
6.2.2 show that we then have

/P ki2k+l = (2k+l1,..-, i2k+1).
p

Remark. Kraines shows a slightly stronger result, defining iterated Massey powers
of an element. In this situation, we can modify the proof of Lemma 6.2.1 to reproduce
his actual equality.

We can also prove an analogous statement for the Dyer-Lashof algebra, using
Q(Sn) and the path-space fibration Q(Sn- l ) * -+ Q(Sn).
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Corollary 6.3.2. If X is an infinite loop space and if x E H2n+l(X; Fp), then

'3Qnx = (, · ·,).
Pp

Proof. The proof is again via the Serre spectral sequence, using the example of
Q(S2 n+ l ). The required result follows from simply equating the Massey product
consequence of Proposition 6.2.4 with the consequence of the Kudo transgression
theorem. [
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