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ABSTRACT

Network security ensures the consistency, integrity, and reliability of telecommunications

systems. Authorized network access prevents fraudulent communications and maintains the

availability of the systems. However, limited development time, cost reduction pressure and

requirement for high reliability in software development have forced mobile carriers to
implement the insufficient and inflexible authentication mechanisms. Technical specifications

including network architecture, network protocols, and security algorithm are widely available

to the public. In addition, both secured and unsecured networks are interconnected by global

roaming services. The inadequate system design will make the mobile systems vulnerable to

unauthorized access to mobile communications.

Compared with GSM mobile systems, 3G mobile systems are equipped with more

robust and flexible security mechanisms. The official position taken by mobile carriers, such as

NTT DoCoMo, KDDI, and Vodafone, is that fraudulent communications, usually in the form

of cloned mobile phones, are impossible with their 3G mobile systems. Examining the NTT
DoCoMo's case, however, we find that this statement is based on weak security assumptions.

In order to avoid potential threats and to secure the 3G mobile systems, this thesis (1)

explores the security architecture and mechanisms in 3G systems, (2) analyzes the current

platform architecture and platform innovations of the network software, and (3) suggests a

secure system design and development.

Thesis Supervisor: Michael A. Cusumano

Title: Sloan Management Review Professor of Management
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1 Introduction

Network security ensures the consistency, integrity, and reliability of telecommunications

systems. Authorized network access prevents fraudulent communications and maintains the

availability of the systems. Security is an essential part of network communications and has

always been an issue for mobile systems. When first generation analog systems were designed,

little attention was paid to network security [1][2], and insecure systems allowed eavesdropping

in user traffic and mobile phone cloning [3][4]. Calls from cloned mobile phones were charged to

the original subscriber's account. Against fraudulent communications, second generation digital

systems were designed to apply digital ciphering mechanisms. Global System for Mobile

communications, GSM, deployed in 1990, was the first public mobile communication system to

implement integrated cryptographic mechanisms using a smart card or Subscriber Identity

Module (SIM). According to the GSM Association [6], GSM technology is currently used by

more than one-sixth of the world's population. It is estimated that over 1,296 million GSM

subscribers existed across more than 210 countries/areas of the world at the end of December

2004.

Security features implemented in GSM have contributed to preventing fraudulent

communications. However, some of the security mechanisms in GSM already have become

insufficient and outdated. For example, COMP128, one of the main authentication algorithms in

GSM, was broken in 1998 when Ian Goldberg and David Wagner of the University of California

at Berkeley demonstrated a flaw in it [7]. Replay attacks on the security algorithm (called "A8")

demonstrated by Goldberg and Wagner took just 219 queries, roughly 8 hours. This flaw

allowed attackers to make a cloned mobile handset and then make fraudulent calls charged to the

target user's account. Clearly, more advanced security mechanisms will be required for the next
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generation systems.

Security for the Universal Mobile Telecommunications System (UMTS) builds on the

success and lessons learned in GSM systems. The basic authentication procedure is similar to

GSM, but UMTS systems focus on mutual authentication between mobile handset and serving

network to avoid fraudulent communications. Security algorithms have become more

sophisticated, and new and longer security parameters have been applied. A new security

message has also been implemented to detect potentially fraudulent communications.

As of January 2005, more than 60 3G/UMTS networks using W-CDMA (Wideband Code

Division Multiple Access) technology are operating commercially in 29 countries (see Figure

1-1). In its initial phase, UMTS offers theoretical bit rates of up to 384 kbps in high-mobility

situations, rising as high as 1.5 Mbps in stationary/nomadic user environments. High Speed

Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)

technologies are already standard, and HSDPA with around 14Mbps downlink speed will be

released in 2006.

Number of UMTS Networks Worldwide

50

-' 40 

30

1 20 -

10 _._ ......i

2001 2002 Year 2003 2004

Source: Based on the UMTS Forum, 2005, "3G/UMTS Commercial Deployments."

Figure 1-1: Number of UMTS Networks Worldwide (Total as of January 2005)
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Every time subscribers use mobile handsets for such things as call setup, location update,

web browsing, voice/movie message, and short message services, the security functions are

executed. Enhanced security features employed in 3G mobile systems are expected to secure

these true mobile broadband communications.

Previous research has focused on security mechanisms, specific security technologies and

potential security holes ([1][2][3][4][5]), but no research has bridged the gap between security

principals and actual implementation. Examining the NTT DoCoMo's case, this thesis will fill

this gap and suggest a secured system design and development on the basis of platform thinking.

1.1 Operation of the 3G Systems

In order to investigate security issues in 3G mobile systems, Japan is the best example, for

Japan has a longest history in the operation of 3G mobile systems and has implemented the most

advanced 3G systems.

The first mobile carrier worldwide to initiate 3G services was NTT DoCoMo, the largest

mobile communications carrier in Japan with nearly 50 million subscribers (see Figure 1-2).

DoCoMo launched FOMA (Freedom of Mobile multimedia Access) 3G services based on

W-CDMA on October 1, 2001. KDDI, Japan's second largest mobile carrier with 20 million

subscribers, began its 3G services which uses CDMA2000 1X on April 1, 2002. Vodafone,

Japan's third largest mobile telecommunications carrier with almost 15 million subscribers,

initiated its Vodafone Global Standard 3G service, which uses W-CDMA and the latest version of

3GPP (Third Generation Partnership Project) standards, on December 20, 2002. In total, nearly

40 million subscribers enjoy 3G services in Japan (see Figure 1-3).
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Market share of Japanese mobile subscribers (All)
Tu-Ka

., I £1 i3.8%
V in'one

16.8%

KDD
23.4/

DoCoMo
55.9%

DoCoMo KDDI Vodafone Tu-Ka Total

Number of subscribers 49,994,300 20,939,000 14,996,000 3,435,900 89,365,200

arket share 55.9% 23.4% 16.8% 3.8% 100%

Note: Tu-Ka is a subsidiary of the KDDI group.

Source: Telecommunications Carriers Association (TCA).

Figure 1-2: Market Share of Japanese Mobile Subscribers (Total as of October 2005)

Market share of Japanese 3G mobile subscribers

Vodafone

KDDI
50.5%

DoCoMo
44.7%

DoCoMo KDDI Vodafone Total

Number of subscribers 17,584,400 19,849,500 1,894,900 39,328,800

Market share 44.7% 50.5% 4.8% 100%
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In November 2003, a Japanese mobile subscriber filed a suit against her mobile carrier to

be reimbursed for huge packet communication charges that she had not used. The plaintiff was a

junior high school student. She checked her usage logs after receiving huge bills and found that

some calls were made during classroom hours. The plaintiff claimed that cloned mobile phones

had charged huge amounts of communication fees to her account. A non-profit organization

checked plaintiff's mobile phone, and then put it inside a safe for a month, but no fraudulent

communications were found. Mobile carriers including DoCoMo, KDDI and Vodafone made an

official announcement that such fraudulent communications, mainly using cloned mobile phones,

are impossible in 3G mobile systems.

3G mobile systems were not stable in 2003, and billing systems sometimes had software

defects. The junior high school student's huge bill was considered a software defect in the billing

systems. However, the key issue was that all the mobile carriers officially denied the existence of

this type of fraudulent communications, stating categorically that the network access security

mechanism implemented in 3G systems is "perfect." After investigating the case of DoCoMo, I

found that this statement needs to be reconsidered.

1.2 Purpose of This Thesis

This thesis aims to accomplish three goals: (1) explore the security architecture and

mechanisms in 3G systems, (2) analyze the current platform architecture and platform

innovations of the network software, and (3) suggest a secured system design and development.

Telecommunication today is a basic service for individuals and corporations, and security

ensures the integrity, reliability, and consistency of the network. During the connection setup

phase authentication procedure is always executed to provide session keys for confidentiality and
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integrity protection. Exploring the security mechanisms standardized in 3G systems, we can

identify the strengths and weaknesses of the 3G network architecture.

Under short time-to-market and cost reduction pressure, network software must satisfy

various requirements, such as high reliability, security, compatibility, real-time response and

configurability. Platform architecture and platform thinking are fundamental factors to fulfill

these requirements. Applying the DoCoMo's current platform architecture, I would like to show

the innovation styles of network software. In particular, this thesis focuses on why (1)

architectural innovations are difficult to accomplish, (2) the current platform has resulted in

insufficient implementation and (3) platform renewal is crucial to break through the old

constraints.

DoCoMo's case and interviews with network engineers' in other 3G systems suggest that

huge differences exist between global standards and actual implementation. Even a single

security breach can result in critical and costly failures. Thus, insufficient security features means

more vulnerable against fraudulent communications. Examining the existing network software,

this thesis clarifies the possible security threats and suggests a secured system design and

development.

As of this writing, no cloned mobile handsets have been found in 3G mobile systems.

However, it is crucial to design and develop flexible systems that prevent future fraud before we

encounter unexpected problems. By addressing potential architectural and implementation

problems beforehand, mobile carriers can manage many of tomorrow's security problems.

1. These engineers are involved in Nokia, Ericsson, KDDI and Vodafone.
16



1.3 Scope of This Thesis

First, this thesis focuses on developing network software in mobile communications,

especially "core network" software (Figure 1-4). The core network provides switching, routing,

location management, and database functions. All data from handsets is transferred via the core

network. Core networks are slightly different from UMTS (3GPP) and CDMA2000 (3GPP2)

networks, but examining these differences is beyond the scope of this thesis, as is hardware

(infrastructure) and software in handsets.

Second, the analysis herein is based on NTT DoCoMo's 3G mobile systems in Japan, for

the following reasons: (1) DoCoMo is the dominant mobile carrier and its security systems have

major impacts on the 3G networks, (2) the 3G systems in Japan is the most advanced and has the

longest history worldwide and (3) cooperating with other manufacturers, such as NEC, NTT

Comware, and Fujitsu, DoCoMo builds its network software in-house. Other mobile carriers

(KDDI and Vodafone) outsource the network software development. Compared with its

competitors, DoCoMo has considerable knowledge about network software and security issues.

Third, this thesis focuses on network access security. Five security feature groups are

defined in 3GPP specifications: (1) network access security, (2) network domain security, (3)

user domain security, (4) application domain security, and (5) visibility and configurability of

security. Each of these feature groups meets certain threats and accomplishes certain security

objectives. Among the security feature groups network access security, especially user

authentication and network authentication, is directly related with fraudulent communications.

Finally, this thesis applies the underlying platform concepts and innovations in mobile

network software. Meyer and Lehnerd define platform as "a set of subsystems and interfaces that

form a common structure from which a stream of related products can be efficiently developed

and produced" [8]. Therefore, in this thesis "platform" means the core network software that

17



provides fundamental communication services for end users. Due to the limited scope of this

study, operating system and contents-based services (e.g., web application services) are not

included.

1.4 Overview of the Core Network

The core network is divided into two domains: (1) circuit switched (CS) domain and (2)

packet switched (PS) domain. The circuit-switched elements are Mobile services Switching

Center (MSC), Visitor Location Register (VLR), and Gateway MSC (GMSC). Packet switched

elements are Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN).

Both CS/PS domains share some network elements such as Home Location Register (HLR) and

Authentication Center (AuC) (see Table 1-1).

Table 1-1: Network Entities in 3G Systems
No. Network Entity Major Functions Note

The VLR/MSC are
MC1 Switching services, controlling calls The VLR/MSC are

Mobility management for the subscribers usually implemented inthe same node.
The VLR/MSC are

2 VLR Temporary subscriber database usually implemented in
the same node.
DoCoMo's network

SGSN integrates the SGSN
Mobility management for the subscribers integrates the VLR/MSC

Connects to the PSTN
4 GMSC Gateway of circuit switching services ISDNand ISDN

5 GGSN Gateway of packet switching services Connect to the Internet

Management of the subscriber database The HLR/AuC are
6 HLR Location management usually implemented in

Call handling the same node.
The HLR/AuC are

7 AuC Authentication of the subscriber usually implemented in
the same node.

Source: Based on 3GPP

29.002 V6.8.0 [11].

TS 23.002 V6.6.0 [9], 3GPP TS 09.02 V7.9.0 [10] and 3GPP TS

18



Figure 1-4 illustrates the core network. The responsibilities of 3GPP core network are the

followings:

* Mobility management

* Call connection control between user equipment and the core network

* Core network signaling among the core network nodes

* Inter-working functions between the core network and external networks

* Packet-related functions

* Operation and Maintenance (O&M) functions to maintain the network systems [9][10].

19
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4* 91 X 

I
I GMSC
I
I
I
I, 
I CS Domain 4 

4

=GGSN 1 1I

/~~~~~~~~~~~ I

/ PS Domain
1'2

A

Note: 3GPP2 systems also have similar architecture

Source: This network architecture is based on 3GPP TS 23.002 V6.6.0 [9], 3GPP TS 09.02

V7.9.0 [10] and 3GPP TS 29.002 V6.8.0 [11].

Figure 1-4: Core Network in 3G (UMTS) Systems

* Location Management (from handset A): 1, 2, 3, 4, 5, 6, 7, 8 (1, 2, 3', 4', 5', 6', 7, 8)

The main task of location management is to keep track of the subscriber's current

location. When mobile handsets connect to a wireless network, the VLR (SGSN) updates the

20
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location information in the HLR and stores the subscriber data sent by the HLR.

* Authentication (from handset A): 1, 2, 3, 4, 5, 6, 7, 8 (1, 2, 3', 4', 5', 6', 7, 8)

3G mobile networks utilize a challenge-response mechanism to ensure that only

authorized subscribers can access the network. Authentication information is made in the

HLR/AuC and sent back to the VLR (SGSN). The VLR (SGSN) verifies the information and

enables the service.

* Call Handling (circuit switched): 9,10, 5-8, 1-4, 10', 9'

After receiving the message from the GMSC, the HLR searches the subscriber

location in its database (DB) and requires the VLR to provide a roaming number. This

routing information is sent back to the GMSC and the GMSC handles the routing.

* Packet Handling (to handset A): 11, 12, 12', 13, 6', 7, 8

After receiving the message from the GGSN, the HLR searches for the subscriber

location in its database. This information is sent back to the GGSN and the GGSN sends a

confirmation message to the SGSN, which then connects the mobile handset via the RNC.

* Operation and Maintenance (between VLR/MSC (SGSN) and HLR): 4,5 (4', 5')

Several operations are used to maintain consistency between network entities. If the

VLR (SGSN) loses the subscriber data, it requests the latest subscriber information from the

HLR.
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1.5 Thesis Structure

Chapter 1 provides general information about mobile communications and network

security (number of subscribers, market share, general security issues, and network architecture).

Chapter 2 illustrates the network security mechanisms in 3G mobile systems. Focusing on the

network software, Chapter 3 explores the unique characteristics of telecommunication services.

This chapter also describes platform principles and provides a framework upon which to analyze

platform innovation processes in network software. Chapter 4 analyzes the actual network

software to investigate the security mechanism, and examines performance tradeoffs that mobile

carriers face when implementing security features. Building upon Chapter 4, Chapter 5 suggests

how mobile carriers can manage software development to secure their networks. Chapter 5

examines software development strategies that can reduce future threats. Figure 1-5 provides a

graphic illustration of the thesis structure.

In this thesis the major data such as development size, development time, number of

dynamic steps and CPU performance, is based on the actual project information.

Chapter l: Introduction (General Information)

Security Overview Technology aspects
.

Software level

Chapter2: Network Security in 3G Chapter3: Network Software Development
Mobile Systems

Case Study Support Software level

Chapter4: Analysis of the Existing Network Software

Learning

Chapter5, 6: Suggestions and Conclusion

Figure 1-5: Thesis Structure
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2 Network Security in 3G Mobile Systems

Ideally, network security should prevent unauthorized network access and fraudulent

communications. Since the beginning of the first generation systems, there have been discussions

about security solutions. The central questions are: how is security defined; how should security

architecture be designed; and how should security mechanisms work. As a first step to analyzing

the security mechanisms in 3G mobile systems, it is essential to explore fundamental principles

of security.

2.1 Security Principles

The fundamental principles of security have remained unchanged since the OECD

proposed essential guidelines for security in 1992, which suggested, "the objective of security of

information systems is the protection of the interests of those relying on information systems

from harm resulting from failures of availability, confidentiality, and integrity [12]." Availability,

confidentiality, and integrity comprise the three key security principles of information systems.

In other words, a breach of any one of the three principles can have serious consequences for a

system. 3G mobile systems define similar security features based on these OECD principles.2

Although OECD's concepts have already become classic and traditional [13], network systems

continue to follow this simple but strong security model.

2. ISO [24] also defines security as follows: "The capability of the software product to
protect information and data so that unauthorized persons or systems cannot read or modify them
and authorized persons or systems are not denied access to them."
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1) Availability

The characteristic of data, information, and information systems being accessible and usable

on a timely basis in the required manner

2) Confidentiality

The characteristic of data and information being disclosed only to authorized persons, entities,

and processes at authorized times and in the authorized manner

3) Integrity

The characteristic of data and information being accurate and complete and the preservation

of accuracy and completeness

2.2 3G Security Features

The first generation analog mobile systems had few security features to protect the systems

and the users. The second generation digital systems incorporated improved security features and

contained entity authentication and confidentiality protection. However, it has now been fifteen

years since the first GSM system was deployed. Security features have become obsolete and

need to be updated to prevent existing and potential security threats. With the advent of 3G

mobile systems, a serious effort is underway to create a consistent security architecture based on

the threats and risks that 3G systems face [5].

The Universal Mobile Telecommunications system (UMTS) is the newest evolution of the

Global System for Mobile Communications (GSM). Therefore, the security of UMTS systems is

built on security from GSM, making use of proven GSM security features. UMTS aims to
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maintain the robustness of existing GSM security features, enhance the existing security

mechanisms, and correct perceived weaknesses in 2G systems (see Table 2-1).

Table 2-1: Comparison of 3G (UMTS) and 2G (GSM) Security
3G Network Security GSM Network Security

Authentication Mutual authentication between a Unilateral authentication of user to
Procedure mobile handset and network network
Scope Network to network, RNC Mainly among base stations
Data Integrity Explicit Implicit
Key Length 128 bits 32 bits-64bits
Algorithm KASUMI, MAC, MILENAGE COMP 128 (already broken)
Design method Open design Closed design
Key Parameters Mechanisms to secure key parameters No mechanisms to secure cipher keys
Transmission within and between networks and authentication values
Upgrading Flexible Inflexible
Fraud Detection Explicit mechanisms Implicit mechanisms

Source: Based on Howard, M Walker, T Wright, 2001 [14].

3GPP categorizes possible security threats to 3G systems: (1) unauthorized access to

sensitive data (violation of confidentiality), (2) unauthorized manipulation of sensitive data

(violation of integrity), (3) disturbing or misusing network services (leading to denial of service

or reduced availability), (4) repudiation, and (5) unauthorized access to services. Fraudulent

communications mainly result from "unauthorized access to services," but intruders 3

masquerading as users or network entities have the potential to trigger other threats.

2.3 Security Architecture

The UMTS network can be observed from physical entities and logical (protocol-related)

3. 3GPP defines intruders as follows: a party who attempts to breach the confidentiality,
integrity, or availability of 3G, or who otherwise attempts to abuse 3G in order to compromise
services or defraud users, home environments, serving networks, or any other party. An intruder
may, for example, attempt to eavesdrop on user traffic, signaling data and/or control data, or
attempt to masquerade as a legitimate party in the use, provision, or management of 3G services.
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aspects. Physical entities are modeled using the domain concept4 and logical aspects are

modeled using the stratum concept.5 Each domain has its own functions and protocol interface

(see Figure 2-1). Communication data is transferred between these domains and security features

are defined to protect the data against attacks.

pJCi LLpl A..UYlI%,.LL UJ.JLiULII IlIfaSLTutlLU iJUIlIUIIIl

Source: Based on 3GPP TS 33.102 V.6.3.0 [15].

Figure 2-1: UMTS Domains

Five security feature groups are defined in UMTS and each of these feature groups meets

certain threats and accomplishes certain security objectives [15]. An overview of the complete

3G security architecture is shown in Figure 2-2. Network access security ensures the user identity,

user/network authentication, confidentiality, data integrity, and mobile equipment identification.

4. Domain: The highest-level group of physical entities.
5. Stratum: Grouping of protocols related to one aspect of the services provided by one or

several domains.
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This thesis will focus on network access security between Universal Subscriber Identity Module

(USIM), Serving Network (SN), and Home Environment (HE).6
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Source: 3GPP TS 33.102 V6.3.0 [15], p. 11, Figure 1.

Figure 2-2: Overview of the UMTS Security Architecture

1) Network access security (I)

The set of security features that provide users with secure access to 3G services, and which

protect against attacks on the (radio) access link.

2) Network domain security (II)

The set of security features that enable nodes in the provider domain to securely exchange

signaling data, and protect against attacks on the wire line network

6. To simplify the discussion, we can consider that USIM is a mobile handset, SN is
VLR/SGSN, and HE is HLR/AuC.
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3) User domain security (III)

The set of security features that secure access to mobile stations

4) Application domain security (IV)

The set of security features that enable applications in the user and provider domains to

securely exchange messages

5) Visibility and configurability of security (V)

The set of features that enables the user to inform himself whether or not a security feature is

in operation, and whether the use and provision of services should depend on the security

feature

2.4 Network Access Security Mechanisms

2.4.1 Authentication Procedure

The general procedure for authentication between a mobile handset and the network is

illustrated in Figure 2-3. This security mechanism is designed to achieve mutual authentication

between the mobile user (handset) and the network by showing knowledge of a pre-shared secret

key7 "K" (128 bits) shared in the USIM and the AuC. This two-way authentication procedure

allows UMTS to increase network security compared with GSM by eliminating false base station

problems. 8

K is not transferred in the network between the mobile handset to HLR/AuC, but it is

possible to attack the USIM in the mobile handset (especially when retailers register the

subscriber information). If K is exposed to intruders, cloned mobile phones become quite

possible.

7. Definitions of these security parameters are given in Table 2-2.
8. In GSM mobile handsets cannot reject the false base stations, which can unscramble

mobile phone calls.
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The authentication data contains sensitive information, such as cryptographic keys and

random challenge-response codes. Thus, the transfer of authentication data between the

HLR/AuC and the VLR/SGSN needs to be secured against eavesdropping and modification.9

Authentication Request (No. 1-4 in Figure 2-3)

The basic authentication procedure is carried out between the user equipment (USIM, MS)

and the core network (VLR/SGSN and HLR/AuC). User-oriented transactions, such as call setup

and location update, initiate the authentication procedure. Authentication data request (operation

name: Send Authentication Info) is sent from VLR/SGSN ° to HLR/AuC and AuC generates

authentication vectors (AV). At the same time AuC increases the SQNHE and stores the value in

its database. l l

Authentication Response (No. 5-8 in Figure 2-3)

The AV consists of five vectors: a random number (RAND), an expected user response

(XRES), a cipher key (CK), an integrity key (IK), and an authentication token for network

authentication (AUTN). After receiving these authentication vectors, VLR/SGSN sends two

vectors (RAND and AUTN) to the mobile handset and verifies the response from the handset.

9. In order to protect against fraud, MAPsec (Mobile Application Part security) has been
developed by 3GPP

10. If the call setup is made in the circuit domain, VLR sends the authentication request
(Send Authentication Info) to HLR. If the call setup is made in the packet domain, SGSN sends
the authentication request (Send Authentication Info) to HLR.

11. This procedure is not implemented in the DoCoMo's 3G systems.
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Verification and Failure Report (No. 9-12 in Figure 2-3)

The mobile handset also checks the MAC' 2 and SQN in AUTN to verify the network. If

authentication fails in the mobile handset, the error message (Authentication Failure Report) is

generated and sent to HLR/AuC. This message is used to analyze fraudulent communications.

Re-synchronization (No. 13-20 in Figure 2-3)

If the mobile handset fails to verify 13 the SQN sent from HLR/AuC, a re-synchronization

procedure'4 is initiated to match the counter between SQNHE and SQNMs. HLR/AuC checks the

SQN and MAC in the AUTS and resets the SQNHE value to SQNMs. After re-synchronization,

HLR/AuC sends "Send Authentication Info ack" 15to VLR/SGSN, which completes the

re-synchronization procedure.

Network Authentication (No. 21-28 in Figure 2-3)

After checking MAC and SQN, the mobile handset computes RES and sends the result to

VLR/SGSN, which also compares the RES with the XRES received from the HLR/AuC and

finishes the network authentication. If RES differs from XRES, VLR/SGSN sends

"Authentication Failure Report" showing the cause of failure. If RES is equal to XRES,

VLR/SGSN selects the CK and IK for connection setup. The mobile handset also computes CK

and IK and stores the SQN.

12. Given the real time constraints, 3GPP relies on conventional methods based on MAC.
13. Unlike MAC failure, SQN failure is basically considered as lost synchronization not as

an authentication error.
14. This procedure is not implemented in DoCoMo's 3G systems.
15. "Ack" means "acknowledgement" and shows the response of the message.
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Table 2-2: Definitions of Security Parameters in 3G Systems

Source: Based on 3GPP TS 29.002 V6.8.0 [11], 33.102 V6.3.0 [15].

16. Other use, such as changing sequence number verification parameters, is also possible.
31

Stand for Purpose From/To Message
Encrypt the

K Encryption key authentication (Only stored in the (Only stored in the HLR/AuC
parameters HLR/AuC and USIM) and USIM)
Random number to
scramble the HLR/AuC to VLR/SGSN Send Authentication Info
authentication VLR/SGSN to MS User Authentication Request
message

XRES Expected response Authentication of the HLR/AuC to VLR/SGSN Send Authentication Info
mobile handset
Cipher the data

CK Cipher Key Cipher the data HLR/AuC to VLR/SGSN Send Authentication Info
(confidentiality)

IK Integrity Key Protect the integrity HLR/AuC to VLR/SGSN Send Authentication Info
of the control data

AUTN Authentication Authentication of the HLR/AuC to VLR/SGSN Send Authentication Info
Token network

Protect against HLR/AuC to VLR/SGSN Send Authentication Info
SQN Sequence number replay attacks MS to HLR/AuC Synchronization Failure

Conceal the HLR/AuC to VLR/SGSN Send Authentication Info
AK Anonymty Key sequence number MS to HLR/AuC Synchronization Failure

Authentication Support multiple
AMF Authenbca ld authentication HLR/AuC to VLR/SGSN Send Authentication Info

management field algorithms 16

Ensure the
authenticity and

MAC The message integrity of the HLR/AuC to VLR/SGSN Send Authentication Info
authentication code authentication token MS to HLR/AuC Synchronization Failure

and the random
challenge

Authentication Re-synchronization HLR/AuC to VLR/SGSN Send Authentication Info
AUTS Token for Authentication of the

AUTS Token for Authentication of the MS to HLR/AuC Synchronization Failure
Re-synchronization network
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Source: Based on 3GPP TS 33.102 V6.3.0 [15].

Figure 2-3: Authentication Mechanisms (Key Agreement)

32

P-

Ik �---·---,

.

1 I

r
. .

!

.

I 1

!

II II

, . M~~~~~

.-

.I .

. .

I I

1v

I

-

I I

' " T _

vl~ heck-

I I

I

I Ms 
i

HLR/AC I
-



2.4.2 Verification of Sequence Number (SQN) against Replay Attacks

Replay attacks-attacks on the system where messages have been intercepted and then

retransmitted (replayed) later-are fierce attacking mechanism that results in masquerading. To

overcome this threat, 3GPP technical specifications describe the use of a Sequence Number

(SQN). An SQN is the counter (48 bits) possessed by both USIM and AuC to ensure network

authentication. The sequence number, SQNHE, is an individual counter for each user stored in

HLR/AuC, and the sequence number SQNMs denotes the highest sequence number that the

USIM has accepted. In the authentication process, the USIM and the HLR/AuC keep track of

counters SQNMs and SQNHE, respectively, and compare the SQNs (SQNHE - SQNMS<A7 and

SQNHE >SQNMs). If the received SQN is out of range, a re-synchronization procedure will be

initiated to match the counter between SQNHE and SQNMs.

Verification of SQN is one of the essential mechanisms to maintaining network access

security. The occurrence of a re-synchronization procedure is treated as lost synchronization and

not as an authentication error, but it suggests possible fraudulent access.

Only the true USIM and HLR/AuC know the right SQN. SQN always changes with user

transactions, and it is almost impossible for intruders to copy the SQN in real-time transactions.

Any arbitrary jumps in sequence numbers can mean possible fraudulent access (see Figure 2-4).

17. Mobile carriers can choose the appropriate value of A. However, it is recommended
that the value of A uses 228 in the 3GPP TS 33.102 (Annex C) [15].
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Source: Author, 2005.

Figure 2-4: Verification of the SQN

The management of SQN is challenging for mobile carriers. Both the time-based and

non-time-based SQN generation functions require complex software development. In terms of

systems operation, operational difficulty exists in SQN management [16]. HLR/AuC has to store

the latest SQNs for each subscriber and implement real-time backup functions for SQN. A crash

in the database systems causes tremendous amount of re-synchronization procedures in the

network, which results in severe network congestion.

In addition, mobile carriers have to execute the re-synchronization procedure when the

USIM detects that the sequence number is not in the correct range. The re-synchronization

procedure should not occur too frequently for performance reasons. Verification of the freshness

of the sequence number helps mobile carriers detect potential fraud. However, it is costly and

takes time to implement and manage this function. In fact, DoCoMo simplified this mechanism
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in order to reduce software complexity, development time, and development costs.

2.4.3 Generation of Authentication Vectors

The generation of authentication vectors promises the central authentication functions to

secure the system. The HLR/AuC starts by generating a fresh SQN as well as an unpredictable

challenge RAND (see Figure 2-5). Deriving K from the subscriber database and applying SQN,

AMF, and RAND to the cryptographic functions (f-f5), the HLR/AuC generates MAC, XRES,

CK, IK, and AK. AUTN is also created from SQN, AK, AMF, and MAC. Consequently, an

authentication vector (AV) with RAND, XRES, CK, IK, and AUTN is produced in the HLR/AuC.

The HLR/AuC repeats this procedure up to five times per authentication request.

I Generate SQN

I -n DAT I

RAND

K

MAC XRES CK IK

AUTN := SQN ED AK II AMF II MAC

AV := RAND II XRES II CK II IK I AUTN

Source: 3GPP TS 33.102 V6.3.0 [15], p. 20, Figure 7.

Figure 2-5: Generation of the Authentication Vectors (AuC)
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After receiving the authentication vectors from HLR/AuC, the USIM in the mobile

handset checks the received value (see Figure 2-6). Applying the K in the USIM and extracting

the RAND and AUTN, the USIM calculates the XMAC, RES, CK, and IK. In the mobile handset,

the USIM verifies the MAC and the range of the SQN. The cryptographic functions (f-f5*) are

used in this Authentication and Key Agreement (AKA) procedure and these functions are

exclusively implemented in the USIM and AuC (see Table 2-3).

Source: 3GPP TS 33.102 V6.3.0 [15], p. 22, Figure 9.

Figure 2-6: User Authentication Function (USIM)
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Table 2-3: Cryptographic Functions in UMTS

Algorithm Purpose/Usage 0: Operator Specifc LocationS: Fully Standardized

f0 Random challenge generating function O AuC

fl Network authentication function O - (MILENAGE) USIM and AuC

fl * Re-synchronization message O - (MILENAGE) USIM and AuC
authentication function

f2 |User challenge-response authentication 0 (MILEN
function

f4 Cipher key derivation function O - (MILENAGE) USIM and AuC

f4 Integrity key derivation function O - (MILENAGE) USIM and AuC

Anonymity key derivation function for
normal operation

f5* Anonymity key derivation function for O - (MILENAGE) USIM
re-synchronization

f6 MAP encryption algorithm S MAP nodes

f7 MAP integrity algorithm S MAP nodes

f8 UMTS encryption algorithm S - (KASUMI) MS and RNC

f9 UMTS integrity algorithm S - (KASUMI) MS and RNC

Note: MILENAGE and KASUMI are names of security algorithms

Source: Koien, G. M, 2004 [5], p. 10, Table 1.
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2.5 Security Issues about 3G Mobile Networks

Securing mobile systems sufficiently remains a challenging issue because (1) for

performance reasons, 3G mobile systems have to rely on conventional security methods, (2) both

secured and unsecured networks are interconnected by global roaming services and (3) it is still

difficult to upgrade security features to protect against brand-new and unexpected network

attacks.

Security mechanisms must perform within short setup time (practically maximum: 15 sec).

In order to avoid setup delays, the 3GPP security working group decided to rely on conventional

security methods based on MAC functions, which were already in use in GSM and GPRS

networks [5]. Applying the conventional challenge response mechanisms instead of using latest

security technologies, 3G security has succeeded to reduce the network delays, but this

procedure also makes the system less secure.

Backward compatibility also can result in a security hole in 3G networks. Secured and

unsecured networks are connected via several services. Unauthorized network access can occur

via other networks that support weaker security mechanisms. While data integrity is mandatory

in 3G networks, data encryption is not mandatory in the systems. For example, China is one

prominent example of a country that does not use encryption in mobile handsets. Some other

countries may also turn off encryption due to export restriction reasons. The Wassenaar

agreement allows export of handsets with 128-bit encryption, but other network facilities (e.g.,

RNC) will be subject to Wassenaar restrictions [17]. Although backward compatibility between

different carriers is not mandatory, commercial demands for new services, such as global

roaming, force mobile carriers to implement this feature.

3G security builds on the success and lessons learned in GSM systems. Therefore, the

scope is limited to well-known security issues. In order to enhance security features and deal
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with future security threats, 3G security is designed to expand security features. Practically,

however, it is very challenging to improve security features. Alternating the security functions

requires architectural changes' 8 in both the mobile handsets (embedded in IC chips) and the

HLR/AuC. Compared with GSM, 3G has more flexibility, but upgrading network software and

renewing USIM cards (over 17 million cards) are not an easy task.

Furthermore, the 3G technical specifications, including network architecture, network

protocols, and security algorithms, are widely available to the public. 3GPP also provides sample

source codes and simulation data for security algorithms. On the basis of the Kerckhoffs's law

[18], open-design architecture helps create better security standards, but at the same time it may

help intruders find security holes in the system. Potential intruders also have the opportunity to

investigate the software closely to identify its vulnerabilities. Given that most of the network

attacks are based on software flaws and design errors, an inadequate system design will make the

mobile systems vulnerable to unauthorized access to mobile communications.

18. Sometimes platform extension is applied and sometimes platform renewal is crucial.
We will discuss this topic in Chapter 3.2.
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3 Network Software Development

3.1 Requirements for Network Software

Software Engineering: The establishment and use of sound engineering principles (methods) in
order to obtain economically software that is reliable and works on real machines (Bauer, 1972

[19]).

Software Engineering: The practical application of scientific knowledge in the design and
construction of computer programs and the associated documentation required to develop,
operate, and maintain them (Boehm, 1976 [20]).

Software engineering is the technological and managerial discipline concerned with systematic
production and maintenance of software products that are developed and modified on time and
within cost estimates (Fairley, 1985 [21]).

Software engineering is more than just writing and debugging code. As Boehm, Bauer, and

Fairley state, the fundamental principles of software engineering include quality, cost

(economics), delivery, and the application of knowledge and discipline. These definitions

indicate that software engineering should create high-quality software in a systematic, controlled,

and efficient manner. Under the quality models identified in IS09126 and ISO9126-1 (see Figure

3-1), network software19 development strongly requires such fundamental principles.

ISO's quality attributes are global standards that allow us to comprehensively evaluate

software quality. The comparison of network software with other application software suggests

that network software differs in the areas of functionality, reliability, efficiency and

maintainability (see Figure 3-2). In particular, requirements for reliability, such as maturity

(perfection = zero defects) and availability, distinguish network software from other application

software [22][23]. Network software must guarantee the critical functions of telecommunications

19. Network software means telecommunications software, but network software provides
not only telecommunications but also more sophisticated and value-added communication
services. Security features work on network software to protect against attacks.
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systems. Thus, reliability is one of the most essential requirements in network software. On the

other hand, usability, such as understandability and attractiveness, is considered less important

than other quality attributes because network software is designed to satisfy specific needs of

telecommunications carriers rather than end users.

Source: ISO/IEC, 9126-1, 2001 [24], p. 7, Figure 4.

Figure 3-1: Quality Model for External and Internal Quality

Functionality

availability)

ability,
s)

n software I
Efficiency

(Time behavior, resource management) Network software

Note: technical terms in use are based on ISO9126-1 [24]

Source: Author, 2005.
Figure 3-2: Comparison in Quality (Application Software and Network Software)
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On the basis of the existing ISO standards, we shall now take a closer look at specific

quality attributes that required in network software development.

3.1.1 Reliability (Maturity and Availability)

Every industry in the world depends on some form of telecommunications. Along with

energy, financial services, transportation, and vital human services, telecommunications systems

are part of the nation's critical infrastructure. Each critical infrastructure is increasingly

interdependent on other complex systems. In addition, telecommunications infrastructure itself

forms a complex interconnected networked system that stretches over a large geographical area

to reach every household and economic entity in a region. Failure of the network software (e.g., a

local disturbance in one system) causes large-scale failure via cascading events that can have

unexpected and catastrophic consequences. For example, emergency services, such as calls to

police, ambulance, and firefighters, also depend on telecommunications systems. If the telephone

network goes down, even for a short time, most businesses and individuals could experience

severe consequences.

Telecommunications systems must be significantly robust [25]. In theory, a switching

system should be available for all but two hours within a 40-year period [26]. Today,

telecommunications systems are required to support up to 5 or 6 nines (or 99.999 to 99.9999%)

reliability, which translates to between 30 seconds (6 nines) and 5 minutes (5 nines) of downtime

per year [27].

However, maintaining the high reliability is a quite challenging issue in network software

development. Telecommunications systems are subject to hidden failures-hardware or software

failures that only become apparent when a system or some portion of a system is highly stressed

due to congestion or fault. In other words, hidden failures are typically not revealed before the
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system is perturbed. Furthermore, in every transaction, received messages, subscriber

information and execution timing vary in the same environment. Thus, it is quite difficult to

examine and fix the software failures in operation [28].

New features also increase behavioral complexity [29] and might destroy existing

functions (called feature interaction problems [30][31][32]) in telecommunications systems.

Thus, new features are carefully designed and tested for "unfailing reliability" before upgrades

are implemented. Early detection of failures, flexibility in the architecture (easy upgrading), and

redundancy (fault tolerance system) are keys to minimize the serious effects of hidden failures

and achieve unfailing reliability.

3.1.2 Security

In every transaction, network software manages sensitive subscriber data including

telephone number (MSISDN), identification number (IMSI), time, and location information.

Thus, network software should be designed to protect against unauthorized network access,

manipulation of data, and repudiation of services. Advanced mathematical algorithms, such as

cryptographic functions (f0-f5 in Table 2-3), are applied to ensure the authorized users and

prevent interception. These security features make fraudulent communications impossible, and

communication messages traveling across networks cannot be obtained or read by anyone other

than the authorized users.

In addition to this direct authentication mechanism, network software should facilitate a

threat/risk analysis, which identifies imminent and potential risks in 3G systems. Specific threats,

such as fraudulent network access and masquerading as another user, are analyzed to eliminate as

much as possible threats to the network. Protocol analysis functions help investigate questionable

message flows. For example, if HLR receives a number of "Authentication Failure Report"
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messages (failure messages in user authentication) from VLR/SGSN, it is an indication of

unauthorized accesses to the network.

The accumulated experiences of mobile carriers using first generation (analog) systems

and second generation (especially GSM or PDC) systems also help to understand current and

future threats to mobile systems. For the threat analysis network software must implement strong

risk assessment functions (traffic analysis, data trace, and protocol analysis) to help operators

identify fraudulent communications.

3.1.3 Compatibility (Interoperability)

Telecommunications carriers have to maintain compatibility2 0 in four ways: (1) between

generations in the same carrier, (2) in the same generation in the same carrier, (3) between

generations in different carriers, and (4) in the same generation among different carriers (see

Figure 3-3).

Different

generation

Same

generation

Same carrier

Support several protocols to maintain

the previous fiunctions (1)

E.g., PDC and UMTS

E.g., PDC and cdmaOne

E.g., PDC and CDMA2000

Support the same protocols and

improve functions/services (2)

E.g., PDC + new services

E.g., UMTS + new services

E.g., CDMA2000 + new services

Different carriers

upport seveal protocols-t:

keep and expand mobtiity (3)

E.g., GSM and UMTSl

E.g.,. cdmaOne and CD A2000

Support the same protocols to

keep and expand mobility (4)

E.g., UMTS-UMTS

E.g., CDMA2000- CDMA2000

Source: Author, 2005.

Figure 3-3: Compatibility in Telecommunications Systems

20. In this thesis compatibility means "interoperability."
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Among these compatibilities, (3) is the most challenging requirement for network software.

Mobile carriers must support at least two protocol versions and verify the availability,

confidentiality, and integrity of the services with only limited information. In particular, it is

almost impossible to identify the capacity of other networks. Some mobile networks in Europe

still support only GSM, while other mobile networks, such as Vodafone and DoCoMo in Japan,

provide UMTS services. DoCoMo supports the Extended UniData (XUDT, max= 2048bytes)

messages, but other 2G networks only support UniData (UDT, max= 256bytes) messages. In

order to achieve compatibility, mobile carriers are often forced to make fundamental changes to

the system architecture.

Security functions also have their own versions in the UMTS networks. UMTS defines

two versions of application contexts for security functions: (1) infoRetrievalContext-v2 for GSM

network (triplet), and (2) infoRetrievalContext-v3 for UMTS network (quintuplet). The message

protocol is the same, but mobile carriers have to change the security functions in accordance with

the parameter (see Figure 3-4).

Source: Based on 3GPP TS 29.002 V6.8.0 [11].

Figure 3-4: Authentication Set List (Message Protocol: Send Authentication Info)
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authenticationSetList CHOICE {
tripletList [0] IMPLICIT SEQUENCE (SIZE( 1 .. 5 )) OF"0" means GSM

SEQUENCE {

rand OCTET STRING ( SIZE( 16)),
sres OCTET STRING ( SIZE( 4)),
kc OCTET STRING ( SIZE( 8)),

!qintpt~- St [1] IMPLICIT SEQUENCE ( SIZE( 1 .. 5 ) ) OF4"1" means UMTS
SEQUENCE {

OCTET STRING ( SIZE( 16)),
ixrs OCTET STRING ( SIZE( 4 .. 16)),

ek OCTET STRING ( SIZE( 16 )),
ik OCTET STRING ( SIZE( 16 )),
autn OCTET STRING ( SIZE( 16 )),

. } OPTIONAL,



Much of the work with the UMTS access architecture has been focused on backward

compatibility with GSM/GPRS networks. From a security viewpoint, however, backward

compatibility with GSM networks is undesirable because they support weaker security

mechanisms than UMTS. Such backward compatibility can result in critical security holes in 3G

mobile systems.

Although backward compatibility between different carriers is not mandatory, commercial

demands for new services, such as global roaming, are key features of 3G systems. Thus, mobile

carriers cannot ignore these compatibility requirements (see Figure 3-5).

rupport both '
av2nd v3)

Previ

GSM networks UMTS networks

Global roaming

Source: Author, 2005.

Figure 3-5: Backward Compatibility in Security functions

3.1.4 Real-time Response (Time Behavior)

Telephony is real-time application software that requires the system to respond

immediately to its requests even in overload situations.2 1 The generic requirements for switching

21. Overload condition means that CPU use exceeds 70%.
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systems specify deadlines for various responses, such as high-call throughput and low-call setup

delays [33][34][35]. In DoCoMo's 3G systems, the performance requirement is 600

transactions/second.2 2 In particular, security functions require 2-10 times higher performance

than other management functions,23 such as location management and supplementary service

functions. The security message (Send Authentication Info) reaches 540 octets in length, which is

the second largest message in the whole MAP protocol. In addition, traffic involving "Send

Authentication Info" is estimated to constitute 17.2% of total traffic2 4 between HLR and

VLR/SGSN. In order to manage huge volume of transactions, many carriers apply the C/C++

programming language.

System performance is important, but mobile carriers must concentrate on both system

reliability and performance. If they focus only on system reliability, the network software will

require so many error-detecting functions that eventually system performance will deteriorate.

On the other hand, if network engineers focus on only system performance, the software will

lack architectural design and finally lose configurability and reliability. Under the short

development time, it is challenging to fulfill both requirements of performance and reliability.

The requirement for real-time response makes it difficult to develop the system design and

implement new versions.

3.1.5 Configurability for Geographical Distribution of the System (Maintainability)

In today's switching systems, a call may be distributed among several sites. Heterogeneous

clusters of nodes cooperate with each other to set up and complete the call. Network software

must not only cover general routing functions but also operate differently in its own environment.

22. This is the requirement for HLR.
23. This data is based on the DoCoMo's project.
24. This data is based on the DoCoMo's network.
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Thus, software engineers must design simple network software configurations to manage the

network systems.

Network software for the HLR is distributed to all of the HLRs in 3G systems; network

software for the MSC, VLR, and SGSN2 5 is delivered to all of the MSCs, VLRs, and SGSNs.

For example, the number of the HLRs in DoCoMo's network exceeds 140. The total number of

CPUs is over 500. Furthermore, a duplex system is applied in each system. In Japan, 91 million

calls are generated every day26 among mobile handsets. A single critical defect in the network

software will create hundreds of defects across the entire network and prevent communication

services.

In the United States, AT&T's long-distance telephone switching centers crashed on

January 15, 1990. A single software defect in the switching center (switching relays) caused

cascading failures in the distributed networks. Sixty thousand people lost their telephone service

completely for nine hours [36]. Such a disaster shows that broad geographical distribution of the

system often magnifies the negative effects of software defects. Configurability is an essential

requirement for limiting failures in the entire network.

3.2 Platform Innovations in Network Software

Time-to-market pressure, and requirements for high quality and cost reduction, are driving

software development toward more disciplined architecture design styles [37][38]. In the quest to

improve flexibility and manage complex systems, firms in many industries are considering

platform-based product development [39][40][41]. Two keys to this approach are: (1) the sharing

25. The MSC, VLR, and SGSN are often integrated in the same network node. In this case
only one network software carries out the MSC/VLR/SGSN functions.

26. Telecommunications Carriers Association (TCA), 2002.
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of components (modules2 7) and (2) other function blocks (subsystems2 8) across a family of

products.

Like physical products, software consists of myriad subsystems and modules that are

connected to each other via numerous interfaces. Thus, the platform-based approach is quite

effective in software development. Historical success stories such as the Sony Walkman [42][43],

and Microsoft's Windows NT [44] Intel's microprocessors [45] have demonstrated the benefits

and the logic behind the platform concept. Platform thinking-the process of identifying and

exploiting commonalities among services, target markets, and the processes for creating and

delivering offerings-appears to be a successful strategy to create new services at low costs.

In terms of product lifecycle, thinking about platforms for families of products rather than

individual products is a key driver behind the success of short-cycle-time companies. In fact, the

software development cycle in network software has shortened from two years to a half year.

Today, mobile carriers are trying to shorten the software lifecycle from six months to three

months. A clear gap between platform concept and practical issues still exists, however, when it

comes to designing, testing, implementing, and managing product families and their successive

platforms [46].

As a first step to filling the gap between platform concept and practical issues, it is

essential to review major platform thinking. The literature addresses a variety of concepts related

to platform thinking: component standardization, architectural innovation, product architecture,

product platform, and product family [8][38][47][48][49][50][51][52][53].

27. Module is the smallest unit in the software (10-1000 lines).
28. In this thesis, "subsystem" means "function block." A subsystem consists of several

modules.
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3.2.1 Component Standardization

Standardizing the software components enables the use of the same module or subsystem

in multiple subsystems. The use of standard components can lower the complexity, cost, and lead

time for product development. Standardized modular systems also provide the ability to achieve

product variety through combining and standardizing components [54][55]. Standardization can

occur only when (1) a component contains commonly useful functions, and (2) the interface of

the component is identical across more than one product [38].

Database AccessII Dtbece II

Data Trac

Subsystem A Subsystem B

e I Enco ding/Decoding

rotocol Interface

Subsystem C

j -- I Standardized fiunction

I1 ( ]1 Specific function

Source: Author, 2005.

Figure 3-6: Component Standardization in 3G Systems (DoCoMo)
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Source: Author, 2005.

Figure 3-7: Component Standardization after the First Release (DoCoMo)

50

Subsystem A

'l
=11 

Ir ------- 11 4Ztsrnr1-nrf1;-Y,-r1 4�iin,,t;rti

I' 'l

I I

. _.s_ i.,^



Several common functions, such as database access, encoding/decoding, and data trace

functions were standardized in DoCoMo's network software (see Figure 3-6) during the design

phase of the architecture. After releasing the first version, DoCoMo applied component

standardization in order to implement the common resource management function (see Figure

3-7). This standardization took about a year to accomplish, but it allowed DoCoMo to enhance

the software resource efficiency29 and implement more complex message operations.

3.2.2 Architectural Innovation and Product Architecture

Henderson and Clark found that the traditional categorization of innovation as either

incremental or radical is incomplete and potentially misleading [52]. The authors define an

architectural innovation as "innovations that change the way in which the components of a

product are linked together, while leaving the core design concepts (and thus the basic

knowledge underlying the components) untouched" (p.10). They stress that "The essence of an

architectural innovation is the reconfiguration of an established system to link together existing

components in a new way" (p.12). In the network software development, modifications among

several subsystems to create new features can be considered an architectural innovation. For

example, if DoCoMo decides to implement new SQN management mechanisms, several

subsystems have to change interfaces and modify internal functions without changing core

design and concept.

In terms of implementation, the authors argue that architectural innovations may create

organizational resistance or inertia and tend to hinder the successful adoption of future

architectural innovations. In short, once a dominant platform architecture has emerged, the

29. About 25% of the reduction in memory use
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operating platform and accumulated organizational standards come to reflect the core concept of

the product and create organizational resistance toward the change. The central idea is given in

Figure 3-8.

Core Concepts

Reinforced

Incremental Innovation

Architectural Innovation

Overturned

Modular Innovation

Radical Innovation

Source: Henderson, R., Clark, K. B, 1990 [52], p. 12, Figure 1.

Figure 3-8: A Framework for Defining Innovation

Ulrich [38] defined product architecture as (1) the arrangement of functional elements, (2)

the mapping from the functional elements to physical components, and (3) the specification of

interfaces among interacting physical components. He expands on this definition using several

examples and applies it to software development. In a modular architecture, components have

one or few functional elements (one-to-one mapping) and interfaces among components are well

specified. In an integral architecture components show a complex (non one-to-one) mapping

between functional elements and components and interfaces among components are not well

defined. The main argument is that product innovations are linked to the architecture of the

product (see Figure 3-9).

Several scholars view a modular architecture as ideal. Alexander [56] presents that an

optimal design methodology can be achieved by avoiding coupling between components. Suh
52

v.o
U o

Uvl

on X

to

U

O1:$0
W

U



[57] argues that a modular architecture is an axiom of good design that can avoid

manufacturing/design failures. Meyer and Lehnerd [8] point out that achieving modularity while

minimizing the number of interfaces between subsystems is the essence of elegance in software

design. Baldwin and Clark [58] describe that modularity in design can tremendously boost the

rate of innovation.

Software development also requires modularity and flexibility. In the software engineering,

the notion of module cohesion or strength can be considered the one-to-one mapping of

functional elements to components [59]. Modular architecture is expected to increase the reuse

rate and to avoid complex interfaces among components. Modularity also helps localize the

modification of software and enhances software quality. Hac [60] verified that architectural

dependencies between components and degree of parallelism in the components affect the

software reliability. On the other hand, integrated architecture with unspecified interfaces among

components is not desirable for localizing implementation risks.
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- Variety achieved by combinatorial assembly
from relatively few component types.

- Can assemble to order from component
inventories.

- Minimum order lead time dictated by final
assembly process.

- High variety not economically feasible;
would require high fixed costs (e.g. tooling),
high set-up costs, large order lead times,
and/or high inventory costs.

Low

- May fabricate components to order as well
as assemble to order.

- May choose to carry component inventories
to minimize order lead time.

- Infinite variety is possible when components
are fabricated to order.

- Variety can be achieved without relatively
high inventory costs by fabricating
components to order.

- Minimum order lead times dictated by both
component fabrication time and final
assembly time.

- Infinite variety is possible.

High

Component Process Flexibility

Source: Ulrich, K, 1995 [38], p. 430, Figure 8.

Figure 3-9: Product Architecture and Component Process Flexibility
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3.2.3 Product Platform and Product Family

Meyer [8] defines product platform as "a set of subsystems and interfaces that form a

common structure from which a stream of related products can be efficiently developed and

produced." A product platform is often defined in terms of physical components, but a product

platform also can be defined in terms of software. The product platform is the basis for

developing new product variants. Several variants can be found in network software. For

example, the security function for the GSM network is a variant of the original security function

for the UMTS network. The algorithms applied to generate authentication vectors differ, but the

basic architecture of the subsystems is quite similar.

Several authors [8][48][53] define "family" as individual products that share common

technology and address related market applications. According to Simpson [50], a product family

is a group of related products that share common features, components, and subsystems, and

satisfy a variety of market niches. A product family comprises a set of variables, features, or

components that remain constant from product to product (product platform) and others that vary

from product to product [50]. The distinctive aspects between individual product variants are the

difference in their structure. Meyer and Lehnerd [8][48] propose a general framework for

product family development (see Figure 3-10) that represents a single product family beginning

with the initial development of a product platform. This platform is followed by successive major

enhancements to the core product and process technology of that platform, with derivative

product development within each generation. New generations of the product family can be

based on either an extension of the product platform or on an entirely new product platform. In

case of an extension, the group of subsystems and interfaces remains constant.

However, one or more subsystems sometimes must undergo major revision to reduce costs
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or to add new features. An entirely new platform emerges only when its basic architecture

changes and aims at value cost leadership and new market applications (see Figure 3-11).

Systems and interfaces from prior generations may be carried forward into the new design but

are joined by entirely new subsystems and interfaces [8][51].

Time
.. ~ : - . . ::, llJ . ........... ~

Generation I of the Product Family

N

. Generation 2 of the Product Family
Platform Extension

Cost reduction and Derivative Product I
new features

Product 2

as well as Produc 3

I

New market applicaions Product N

Generation 3 of the Product Family

New Product Platform

A newv desin t achi e vative Product 
value cost leadership and
reach new marker applictions Produc 2

The team crriefowdthbes fward the bes3
subsystems of olderplatforms, and
integrates new internal anrt external e
technologies to reach new levels of o
ptice Iprformance. Product N

Source: Meyer and Lehnerd, 1997 [8], p. 36, Figure 2-4.

Figure 3-10: Product Family Evolution
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Figure 3-11: Typology of Platform Change in Product Family Evolution

3.3 Difficulties in Platform Innovation

A variety of requirements can prevent platform innovations of network software. Van Der

Linden and Miiller [61][62] illustrate the architectural requirements for software (see Figure

3-12). Quality (high quality), cost (low development effort), and delivery (short lead time) are
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the fundamental software requirements, and these elements significantly affect other architectural

requirements: extensibility, reusability, configurability, and so on. Each requirement

interconnects and sometimes conflicts with others (e.g., quality vs. cost). In addition, market

demands for flexibility, accountability, and robustness also complicate software requirements,

creating trade-offs and potential difficulties for platform innovation.

Source: Van der Linden and MUller, 1995 [61], p. 52, Figure 1.

Figure 3-12: Requirements for Network Software

3.3.1 Time-to-Market Pressure

Market demands for new services and severe competition in the mobile telecommunication

market create strong pressure to shorten development time. The lead time for platform upgrading

has deceased from two years to six months in DoCoMo's system. In today's market, mobile

carriers are now trying to shorten the software life cycle from six months to three months. In this

situation, mobile carriers are forced to develop several versions of software at the same time (see

Figure 3-13).
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Three problems lie in this software development timeline: (1) the new version is inevitably

based on the imperfect platform of the previous version, (2) the new version is expected to fix all

the defects found in the previous version, and (3) architectural change is almost impossible.

In particular, security functions are fundamental features of the platform. The new

platform architecture needs sufficient testing to confirm performance and reliability. Under the

traditional development process (i.e., the rigid waterfall model) it is quite challenging to alter the

software architecture in such a short time. Today's insufficient development time prevents

platform innovation and renders the platform architecture less reliable and flexible.

Dec Jan Feb Mar Apr May Jun Jul Aug

I I I I I I I I

Designing Coding Testing Release

Develo~pment 1 About three months

Transfer the - Release
parental platform Bugs-Fixed Development 2

Designing * Development 3

Source: Data is based on the firms' Annual Reports and personal interviews [63].

Figure 3-13: Software Development to Satisfy Short Development Time

3.3.2 Pressures for Cost Reduction

Cost reduction pressures also hinder platform innovations. As Voas mentions, it is quite

difficult to achieve better (high quality) and cheaper software in a limited development time [64].

The total budget for software development is also strictly limited. For example, DoCoMo has a

budget limit for each software development project (5-10 billions) and the company slashes

development costs (estimates) by 10-15% across the board. In addition, DoCoMo requires
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partner developers, such as NEC, NTT Comware, and Fujitsu, to reduce their development costs

from ¥10,000 to ¥7,000 per line. In order to reduce development costs, these developers are

forced to implement less functional and less flexible (less modularized) functions. In terms of

security functions, the generation and management of SQN functions are insufficiently

implemented to cut development costs and to meet the delivery deadlines.

Security is part of the fundamental functions in the platform. Software modifications in the

fundamental functions are considered too risky, and such modifications require enormous

development time and cost. In addition, unlike other new services, the security function itself

does not generate profits, so mobile carriers have less desire to upgrade the security mechanisms.

Once security functions are implemented, platform renewal is quite challenging and almost

impossible within limited budgets.

3.3.3 Requirements for High Reliability

Network software operates in real-time telecommunications systems. Critical errors

immediately produce disastrous outcomes worldwide. Therefore, reliability is crucial in any new

platform. However, compared with the existing platform, a new platform is less stable. Before

innovating a platform, network engineers must fix all software problems and improve software

quality. Most engineers do not have time to change the platform architecture. Ironically, after

fixing these problems, network engineers also cannot readily innovate the platform architecture.

The debugged platform is considered more stable than a brand-new platform. The requirement

for high reliability limits architectural platform innovation and results in low extensibility of the

software.
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3.3.4 Complex Architecture

The architecture of network software is very complex. A system is comprised of myriad

small modules and millions of lines of code. Approximately 80 operations3 0 are defined in 3G

networks, and each operation has several versions in order to satisfy backward compatibility.

Message translation (encoding/decoding) functions, message handling functions (scenario

control), and error detection functions (checking for tags, length and values) are individually

designed in the system. From the viewpoint of database access, access interfaces (select, update

and delete) are developed for each database element. Consequently, over 1,000 modules co-exist

in the network software. As the number of supported services increases, the software architecture

and module interfaces become more complex. Extensibility and testability are lost, and platform

innovation in network software becomes very difficult.

than 800

ions

- --- .vluss, _llWS

Source: Author, 2005.

Figure 3-14: Complex Architecture and Interfaces in Network Software

30. The operations are designed for Mobile Application Parts (MAP). Mobile carriers often
implement own operations to satisfy specific requirements in their networks.
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Sometimes module architecture is also complex. Time-critical modules, such as message

operation and network authentication, are designed to maximize system performance. Unlike

other modules, these time-critical modules utilize the knowledge of assembler language and form

the performance-oriented architecture. Only a few software engineers can evaluate the minimum

buffer size, modify the best data type, and apply the most appropriate methods for the operation.

Among the time-critical modules, security functions (see Figure 2-5, Figure 2-6) are

considered some of the most difficult functions in the HLR/AuC. If we investigate the lines of

code for the security functions, we will find that these security functions occupy less than one

percent3 in DoCoMo's system. However, we also find that the code is extremely sophisticated

and that it is quite hard to change the original architecture.

3.3.5 Scalability

Scalability often prevents platform innovations in network software. In order to satisfy the

various requirements for functionality, reliability, efficiency, and maintainability, network

software development requires a huge volume of initial development (often over 800 KLOC32 33)

with highly sophisticated technical expertise in the areas of platform design, protocol, and traffic

management. Furthermore, every six to twelve months new features with 200-500KL are added

to the network software. Griffeth and Lin observed this trend and mentioned that size of the

network software and the number of features are steadily increasing [30]. In DoCoMo's case, the

accumulated source code has reached about 2.5 million lines of code (HLR). Consequently,

31. The security algorithm function (fl) needs only 100 lines of code. Even if we add other
security algorithm functions, such as f2-f5, these security functions are less than 2 KLOC.

32. KLOC means "kilo lines of codes." In this thesis KL also means KLOC.
33. When DoCoMo implemented its 3G systems in 2001, the total development size of the

HLR and the switching center (MSC/VLR/SGSN) reached 835KL and over 1.5ML respectively.
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thousands of subsystems coexist in the same platform, and the interfaces among modules are

increasingly complex. Given the short development time, new features make it difficult to

complete software development and accomplish the platform innovation [65][66].

The aggregate size of the network software continually increases because of new functions

(services) and requirements for compatibility and robustness. For example, if a new security

function is added, it must consider backward compatibility and numerous semi-normal routes.

When a new feature is added to the network node, it can affect millions of lines of code and tens

or even hundreds of other features. Because of heterogeneity, network carriers must multiply this

effect by the number of different kinds of switches in the network. In order to avoid the

large-scale failure caused by software defects, numerous sensitive tests are inevitably required

(over 10,000 tests in each subsystem). Many network engineers, therefore, hesitate to make

architectural changes in the platform.
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4 Analysis of the Existing Network Software

Four years have passed since DoCoMo launched the first 3G mobile systems in Japan.

DoCoMo initially started 3G services in large cities, such as Tokyo, Kyoto, Osaka, Kobe, and

Nagoya areas, and as of October 2005 3G services were available to approximately 99% of

Japan's population. With a maximum downlink speed of 384 kbps-forty times faster than

conventional wireless data communications-DoCoMo provides smooth and high-capacity

communications for large-volume data such as movie images. Today over 17 million subscribers

enjoy DoCoMo's 3G services without serious problems.

Security functions are used in almost all mobile terminal-oriented services (e.g., call setup,

location update, and supplementary services). Authorized network access prevents fraudulent

communications and maintains systems integrity. However, breaches in the security mechanisms

can result in serious consequences in mobile communications.3 4 DoCoMo recently announced

that no fraudulent communications from cloned mobile handsets had been found in its 3G

systems. In order to maintain this desirable situation, the security features must be correctly and

reliably designed.

Systems performance is also a critical issue in security management. In the near future3 5

DoCoMo plans to migrate completely from its 2G services (PDC) to 3G services (UMTS).

Security functions will have to manage over 10 billion authentication requests generated by 50

million subscribers. Performance will become a bottleneck in DoCoMo's 3G systems.

Examining the DoCoMo's project data from 1998 to 2003 and analyzing the actual source

codes implemented in DoCoMo's network software, I found that DoCoMo's security

34. If fraudulent communications comprise even one percent of traffic revenue, the
damages are ¥212,316 million /year ($202 million/year).

35. The original target was in 2006; however, the migration is likely to longer.
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mechanisms are insufficiently implemented to prevent fraudulent communications and to support

high performance. The platform extension already has reached its limits to solve current

implementation problems. Thus, platform renewal will be crucial for the DoCoMo's network

software. On the basis of the platform concepts discussed previously, this chapter will analyze

the security mechanisms in the existing network software.

4.1 Insufficient Implementation of the Authentication Mechanisms

Several security features in DoCoMo's 3G systems differ from the global standards

defined by the 3GPP. Table 4-1 and Figure 4-1 show the differences between DoCoMo's

implementation and the global specifications. The critical differences are: (1) SQN in the

DoCoMo's network has a fixed value and a re-synchronization procedure is not implemented; (2)

the network software is designed to support only fixed security parameters; and (3) AMF is not

used in DoCoMo's network. In addition, DoCoMo only applies MAP in its network, so the

authentication data between the HLR/AuC and the VLR/SGSN can be eavesdropped. The

important point is that implemented security features are vulnerable to fraudulent

communications (critical security features are missing in the implementation) but no

countermeasures have been taken for so far.

The implemented platform architecture also differs from the desired architecture that

supports sufficient security mechanisms. The original platform is quite simple and well

modularized. If DoCoMo maintains the modularity when implementing new security features,

the desired platform will also become modularized. In reality, however, the implemented

platform lacks sufficient modularity and several important security features. In order to identify

the differences, Figure 4-2 illustrates the original software architecture and the desired software

architecture in DoCoMo's systems.
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Table 4-1: Differences between DoCoMo's Network and 3GPP Specifications

No. DoCoMo Network 3GPP Specifications (UMTS) Notes

HLR contains AuC in the same AuC can be separated from AuC is integrated as one
hardware and software. HLR. subsystem in the HLR.

The number of requested The number of requested
2 authentication vectors is always authentication vectors can vary vectors.

5. from 1 to 5.

DoCoMo applies IMSI to
3 SQN has fixed value. SQN always changes. create SQN.

create SQN.

No re-synchronization Re-synchronization procedure DoCoMo's HLR does not
procedure is implemented. is stipulated. change the SQN.

The size of AUTS is always 16 The size of AUTS varies from DoCoMo only supports
octets. 12 to 16 octets. the fixed value.

The size of XRES is always 16 The size of XRES varies from 4 DoCoMo only supports
octets. to 16 octets. the fixed value.

HLR/AuC stores SQN DoCoMo's HLR does not
7 HLR/AuC does not store SQN. (SQNHE)change the SQN.

(SQNHE). change the SQN.

HLR/AuC does not check DoCoMo's HLR reduces
MAC. the procedure.

AMF is not used in AMF is used to change the Top 4 bits= all 0, other 12
authentication procedure. authentication functions. bits: do not care

Only MAP is implemented to A security extension to MAP contains no security
10 transfer authentication data. called MAPsec is defined functionality against

eavesdropping.

Source: Author, 2005.
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28. Store SQN

4. Authentication Failure Report
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| 26. Select CK(i), IK(i)

Source: Based on 3GPP TS 33.102 V6.3.0 [15].

Figure 4-1: Authentication Mechanisms in DoCoMo's Systems
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Figure 4-2: Comparison of the Software Architecture for Authentication Mechanisms
(The Original Software Architecture (Left) and the Desired Software Architecture (Right))

4.1.1 Insufficient SQN Management

As described in Chapter 2, SQN is applied to protect against replay attacks in the network.

Any arbitrary jumps in sequence numbers means possible fraudulent network access. 3GPP

specifications suggest several methods for generating SQN: partly time-based, entirely

time-based, and not time-based. However, DoCoMo has opted not to implement this mechanism

in order to simplify SQN management (see Figure 4-3).

| SQN 1
Not imf lemented

I 1 i I rv I i I

I D-I r I I r _ Ir I

Source: Author, 2005.

Figure 4-3: Software Architecture in DoCoMo's Network (UMTS)

The SQN in DoCoMo's network has a fixed value based on IMSI (see Figure 4-4 and
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Figure 4-5), a unique fixed number that identifies a certain subscriber worldwide.36 Extracting

X3 7 bits from IMSI, DoCoMo's HLR/AuC generates SQNHE. SQNHE has dummy counters in the

top and the bottom of the value, but these counters are not used to verify the SQN. After

receiving the authentication parameters, USIM in the mobile handset compares the SQNHE with

the same part of the IMSI stored in the mobile handset (SQNMS). The important point is that both

SQNs (SQNHE and SQNMs) are generated from the fixed value (IMSI). SQN does not change in

the DoCoMo's authentication mechanisms. As long as the mobile handset knows its own IMSI,

the SQN comparison is always coincident in the DoCoMo's network (see Figure 4-6).

Consequently, HLR and USIM do not have to store and track the value of SQN (SQNHE and

SQNMs) in the system.

Source: 3GPP TS 23.003 V6.5.0 [67].

Figure 4-4: Structure of IMSI in the DoCoMo's Network

36. IMSI is different from MSISDN (mobile telephone number).
37. This value cannot be given for security reasons.
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IMSI = 15 digits = 8 octets = 64 bits

Don't care X bits from IMSI a bits3 8

Dummy (b bits38) Fixed value (X bits) from IMSI Dummy (c bits38)

SQNHE =48 bits

Source: Author, 2005.

Figure 4-5: Generation of SQN in the DoCoMo's Network

DoCoMo also reduced the re-synchronization procedure, which ensures the accuracy and

freshness of SQN in the systems. Ideally, re-synchronization procedure can help detect potential

fraud. However, as discussed above, the SQN used in the DoCoMo's network always remain the

same value. Comparison of SQN (SQNHE and SQNMs) does not provide any significant

information. Therefore, DoCoMo decided to omit this re-synchronization procedure completely.

· The generation of SQN is based on a fixed value (SQN comparison is always true).
· The HLR and USIM do not store and track the value of SQN.

* The re-synchronization procedure for SQN is not implemented in DoCoMo's network.

38. These values cannot be given for security reasons. b+c = constant.
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SQNHE =48 bits

Dummy (b bits) [i (X -i :. Dummy (c bits)

It A

Compare these values
for SQN verification

W~~~~~~~~~~~ie au (X bts)..' ' ....................... ,'''

SQNMs=48 bits

IMSI = 64 bits

Source: Author, 2005.

Figure 4-6: Verification of SQN in the DoCoMo's Network

4.1.2 Support Only Fixed-length Parameters

Several DoCoMo's functions are designed to support only fixed length parameters. The

authentication procedure in GSM supports only traditional authentication algorithms with fixed

length parameters (see Figure 4-7), and UMTS supports enhanced authentication algorithm with

variable length parameters. In order to enhance the security features, 3GPP specifications

recommend that mobile carriers support variable length security parameters (AUTS and XRES).

However, DoCoMo did not implement this requirement to reduce development time and cost.

Consequently, the authentication message in DoCoMo's network always forms 540 octets in the

same order. When eavesdropping on the authentication messages in DoCoMo's network, one can

easily analyze the message structure.

AuthenticationTriplet ::= SEQUENCE {
rand RAND, --16 octets fixed
sres SRES, --4 octets fixed
kc Kc, --8 octets fixed

Source: 3GPP TS 29.002 V6.8.0 [11], p341.

Figure 4-7: Verification of SQN in the DoCoMo's Network
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From the viewpoint of the software architecture, the AuC functions for GSM networks are

completely integrated in the existing subsystem (see Figure 4-8). In this integral architecture

subsystems form a complex (non one-to-one) mapping between functional elements and

architecture and interfaces or boundaries between subsystems are not defined. The AuC for

UMTS generates the quintuplets (authentication vectors) and derives the triplet for GSM

networks by means of the standardized conversion functions in the subsystem. Changes in the

UMTS authentication functions directly affect the GSM authentication functions. This integrated

software architecture makes network software inflexible.

* DoCoMo only supports fixed length parameters in authentication (Degradation of the

authentication mechanisms).

* The AuC functions are completely integrated in DoCoMo's system (software

architecture is inflexible).

lemented

E PII P I P3 I
l P4 I P I P I

I . I _ I

Source: Author, 2005.

Figure 4-8: Completely Integrated AuC functions

4.1.3 No Support for AMF

The authentication management field, AMF, is a 16-bit component of the authentication
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vector (part of the AUTN). AMF is supposed to enhance the security features of the network.

AMF can be used for purposes, such as support for multiple authentication algorithms,

verification of sequence number freshness, and threshold values to change the lifetime of the

authentication keys. The use of AMF is not standardized by 3GPP but is specified by each

mobile carrier.

Since the first service release in 2001, DoCoMo has not used AMF in its authentication

procedure. The structure of AMF in DoCoMo's network is shown in Figure 4-9. The top four bits

are all set at 0, and the other bits are ignored ("don't care"). Currently, DoCoMo's network

software does not check the top four bits, which means AMF has become an entirely useless

parameter in DoCoMo's network. This inadequate security design will make mobile systems

vulnerable to unauthorized access in mobile communications.

Also, DoCoMo does not apply SQN management mechanisms. Network authentication is

mainly based on the K (secret key) and SQN. Once intruders find out the K by replay attacks, it

is quite possible to enable fraudulent communications. Without using AMF in DoCoMo's

network, it is challenging to enhance security features.

* DoCoMo has not utilized AMF to enhance security features.

· New security algorithms cannot be applied.

* If K is detected by replay attacks, fraudulent communications are possible.

:op~bits'vallO ='.....:Other 12 bits = don't care

Source: Author, 2005.

Figure 4-9: AMF in DoCoMo's Network

4.2 Reasons for Insufficient implementation

As discussed above, DoCoMo's network authentication mechanisms are insufficiently
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implemented to prevent fraudulent communications, and this inadequate system design will

make mobile systems vulnerable to unauthorized access. In order to analyze this situation, I

applied a framework that is designed to highlight the role of organizational processes in complex

social and technical systems [68]. This framework focuses on 5 perspectives-strategic,

economic, engineering, political, and social/cultural-that reflect years of studies, interviews,

observations, research and participation in organization [69].

By integrating the framework above with a fishbone diagram (see Figure 4-10), we can

identify five major reasons for the current situation: (1) pressure of time to market, (2) pressure

of cost reduction, (3) requirement for high reliability, (4) complex architecture, and (5)

insufficient platform thinking.
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4.2.1 Strategic Viewpoint

As a leading mobile carrier, it was critical for DoCoMo to launch the world's first 3G

mobile services. However, in 1999 software development was three months behind schedule. In

order to accelerate software development for launch of 3G services worldwide in May 2001,3 9

DoCoMo had to simplify its security functions and concentrate on software productivity. In 2000

DoCoMo still fell behind schedule (see Figure 4-11), which meant there was no time to improve

the original platform. Time constraints did not allow DoCoMo to apply long-term platform

thinking.

2000 2001

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May '" Oct

Original Designing/Coding/Testing Field Test
Schedule ' Release (final version)

Actual
Schedule

Designing/Coding/Testing Field Test Trial service

3 months delay 6 months delay

Source: Author, 2005.

Figure 4-11: Original Schedule vs. Actual Schedule

Moreover, once security mechanisms are implemented and released to the market, it is

much more difficult to change the software architecture. Security comprises fundamental

functions in the platform, and failures of upgraded functions can produce critical errors. The

software lifecycle has become shortened-from two years, to one year, to three to six months

39. The original release schedule was May 30, 2001, but actual launch was October 2001.
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today. With such insufficient development time, it is too risky to change the original platform. In

addition, several new software versions are developed during the same period of time, and each

modification must work both backward to earlier version and forward to new versions. However,

problems often arise because the network engineers who work on the second (or subsequent)

versions are usually different from those who worked on the first version, which causes

communication problems in the backward/forward reviewing activity. Serious efforts must be

dedicated to modifying the operating platform.

* The first release of the 3G system worldwide was critical for DoCoMo.

* The development fell behind the schedule+Focus on the productivity

· Time constraints did not allow DoCoMo to apply "platform renewal."

* Once implemented, the current platform is considered more reliable and robust.

* Network engineers change from version to version.

* Platform modifications affect other software versions under development.

4.2.2 Economic Viewpoint

Severe market competition continually forces mobile carriers to reduce the software

development costs. In the software development DoCoMo heavily relies on partner companies,

such as NEC, NTT Comware, and Fujitsu (see Figure 4-12). Typically, software development

costs are based on the scale of development. Therefore, DoCoMo strictly restricts the

development size and tries to reduce expenditures to partner companies. In fact, security

functions account for only 5 KLOC, which is less than 1% of KLOC in the total software

development.

Given the insufficiently implemented security mechanisms, the perceived security level is

lower than the desired security level. If there is a high consequence breach of security, the

situation will shift to support more security features (see Figure 4-13). However, no fraudulent

communications have been found to date, which means the level of security can be considered
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sufficient. Moreover, unlike other new services, such as global roaming, auto answering, and call

waiting, the security function is not viewed as generating profits. Lack of understanding of the

importance of security and profit-oriented culture did not allow the organization to implement

sufficient security mechanisms.

Making changes in the security functions could imply not only the additional expenditure

but also the possibility of failure in the architectural design, which the organization does not wish

to admit. Thus, once the bottom line of the security functions is satisfied, it is far more

challenging to change the organizational mindset and improve existing functions.

System Sofware Program Coding Testing peratns 

Requirements

DoCoMo's Partners (NEC, Fujitsu and other NTT Groups)

DoCoMo supervises all of the processes =6-18 months

Source: Author, 2005.

Figure 4-12: Network Software Development of DoCoMo

Risk

Perceived
Bottom Line

Desired Bottom
Line

DoCoMo Desired State Cost
Source: Author, 2005.

Figure 4-13: Risk vs. Cost for Security Functions
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The cost reduction pressure leads DoCoMo to choose the least cost architecture. A limited

budget and severe market competition cause this pressure, but it is important to point out

DoCoMo's own rule, which is to decrease development costs. Initial development requires

sophisticated expertise, so the original cost (payment to partner companies) for one line of codes

reaches about ¥10,000. However, the second and third versions are less difficult to develop

because the accumulated knowledge allows partner companies to reduce the costs. In the

DoCoMo's rule, the discount rate is 10 to 15% in each version. Consequently, the cost per line of

codes usually drops from ¥10,000 to ¥7,000.

Security functions are extremely difficult to manage. Considering the enormous efforts

required to achieve zero defects, DoCoMo's partner companies tend to avoid changing the

original architecture. The problem is that security mechanisms are mission critical, but DoCoMo

does not distinguish the difference between mission-critical and non-mission-critical functions.

Instead DoCoMo applies the same standards to reduce the development costs.

* In order to reduce the development costs, DoCoMo restricts the software size (scale).
* Security functions are considered less profitable than other services.
* Cost reduction pressure forces DoCoMo to choose the least cost architecture (lack of

platform thinking).

* The 10 to 15% cost reduction rule does not give incentives to improve the insufficient

platform.

* DoCoMo does not distinguish the difference between mission critical and non-mission

critical functions, instead applying the same rule to reduce the development costs.

4.2.3 Engineering Viewpoint

As discussed in Chapter 3.3.4, the architecture of network software is complex with over

1,000 modules in the same platform. These modules are interconnected, and the complexity

increases dramatically when the number of modules increases (see Figure 4-14). Furthermore, in
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order to achieve high performance, several software engineering principles (e.g., less coupling

among modules and strong cohesion) are intentionally disregarded when it comes to the security

functions. Combining the knowledge of the operating system, hardware, and assembler language,

engineers have to develop a performance-oriented architecture. An extremely high level of

expertise is required to modify existing security functions (see Table 4-2). After implementing

the first version and fixing software defects associated with the security functions, very few

engineers can consider changing the basic architecture.

Complexity

6000-8000

2500-3000

300-500

Comnleitv 

100 500 1000 Number of Modules

Note: Complexity is based on the number of interfaces among modules (subsystems)

Source: Author, 2005.

Figure 4-14: Number of Modules and Complexity of the System

Network software operates in real-time telecommunication systems. HLR/AuCs are

geographically distributed in DoCoMo's network (a total of 140 units and 500+ CPUs), and the

same network software operates in different hardware. Like AT&T's case in 1990, critical errors

in mission critical functions immediately cause disastrous outcomes worldwide. Thus, zero

defects are mandatory in any new platform.
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Table 4-2: Examples of the Coding Rules for Time-Critical Modules

No. Requirements Expected Effects Notes

Apply minimum buffer size It depends on the buffer1 400u seconds better
(copy and clear) size.
Use the same the buffer between Modularization rule is not

2 60 ,u seconds better
subsystems applied.

3 Avoid using many variables 2-3 u seconds better O prefers fewer
variables.
It depends on the number4 Check the search logic 10 seconds better of messages.of messages.
NEC OS prefers the

5 Avoid bit calculation 2-3 u seconds better "ULONG" types
"ULONG" types
NEC OS prefers the

6 Avoid CHAR types 2-3 tu seconds better "ULONG" types

Apply "switch-case" instead of NEC OS prefers the
7 "if-else" 2-3 u seconds better "switch-case"

Source: Author, 2005.

In addition, as discussed in Chapter 2, security functions are implemented in both mobile

handsets and HLR/AuC. Over 17 million subscribers enjoy 3G services and the number is

increasing. Changes in the essential security mechanisms (algorithms) lead to significant

modifications in both USIM and HLR/AuC. One software defect can result in critical outcomes.

Under this situation, it is quite challenging to prove the normality and necessity of upgrading the

security features. Today's authentication mechanisms are not sufficient, but the requirement for

high reliability prevents DoCoMo from making architectural innovations in the platform and

leads DoCoMo to focus on incremental innovations.

· The platform architecture and security mechanisms are complex.

· A high level of expertise is required to modify the platform.

· Zero defects are crucial in the new platform (requirement for high reliability).

4 It is quite hard to prove the normality and necessity of new security functions.

· USIM in mobile handsets also needs to change when essential security mechanisms
(algorithms) are modified.
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4.2.4 Political Viewpoint

At present no government agency or investigation is required to verify the security

functions. Implementation and security standards depend entirely on the mobile carriers

themselves. As long as no evidence of fraudulent communication is found, the government does

not impose regulations. If implemented security mechanisms function perfectly, and the network

is secure, the situation remains stable and there is little worry. In the real world, however, no

company can rely on weak security assumptions such as: (1) fraudulent communications can be

detected and traced systematically, and (2) other networks are also secure.

In the discussion of security functions in Chapter 2, I noted that it is possible to track

potential fraudulent communications. An analysis of the "Authentication Failure Report (failure

messages during user authentication)" messages from VLR/SGSN allows mobile carriers to

detect possible fraudulent communications. Data trace functions also help analyze the real traffic

data of the target user.

However, DoCoMo has not utilized these mechanisms. Fraud detection relies heavily on

human recognition by operators. DoCoMo's HLR/AuC can receive error messages from

VLR/SGSN, but no systematic data analysis is conducted. If operators in each location (e.g.,

Tokyo area, Hokkaido area, and Osaka area) overlook the error information, clues about potential

fraudulent communications will be completely lost. In this case only claims or complaints from

end-users will likely trigger an investigation into fraudulent communications.

In addition, receiving unfamiliar messages is often considered a defect in the network

software rather than a clue about fraudulent communications. On the basis of the DoCoMo's

security assumptions (i.e., fraudulent communications are technologically impossible), software

defects are more likely than unexpected problems. Without complaints about fraud from

end-users, operators rarely expect to encounter fraudulent communications.
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DoCoMo proceeds under the assumption that other networks are also secure. Compared

with GSM networks, 3G networks are not as widely deployed around the world. If DoCoMo's

subscribers go to other networks that support only GSM systems, GSM authentication

mechanisms are inevitably applied. Also, some 3G networks do not implement security

mechanisms, such as encryption, in their access links (the air zone between a mobile handset and

the core network). In these cases DoCoMo cannot guarantee perfect authentication. Network

traffic could be subject to eavesdropping and analysis by intruders. DoCoMo's simplified

security mechanisms more easily allow intruders to access the network.

DoCoMo's official position is that fraudulent communications, mainly via cloned mobile

phones, are impossible in 3G mobile systems. However, we can conclude that this statement is

based on weak security assumptions and is not dependable.

* No specific government regulation or investigation exists for security management.

* No sufficient fraud detection mechanisms are applied in DoCoMo's network.

-Risk assessment and risk control40 are insufficient.

+Fraud detection heavily relies on the human recognition.

(We cannot trust the announcement that guarantees "perfect security.")

· Other networks (GSM and sometimes UMTS) are not so secured.
Security holes exist in the communications between DoCoMo and other networks.

4.2.5 Social/Cultural Viewpoint

DoCoMo was spun off from Nippon Telegraph and Telephone Corporation (NTT) in April

1992. Thirteen years have passed, but a basic corporate culture is similar to NTT's, i.e., very

conservative. A peace-at-any-price principle prevails, and changes in fundamental functions are

considered too dangerous. As Henderson and Clark describe [52], architectural innovations

40. Risk assessment mainly involves risk identification and risk analysis. Risk control
consists of risk management planning, risk resolution and risk monitoring [70].
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create organizational resistance or inertia and tend to hinder the successful adoption of future

architectural innovations.

No fraudulent communications mainly via cloned mobile phones have been found so far in

DoCoMo's 3G systems. Current security functions seem to be operating well. In this

conservative culture, it is quite difficult to correct the insufficient authentication mechanisms and

suggest platform innovations in its systems.

* DoCoMo's corporate culture is conservative.
* Organizational resistance tends to hinder platform change.

4.3 Tradeoffs between Performance and Security

4.3.1 Dynamic Steps

Another critical bottleneck in DoCoMo's security mechanisms is performance. Network

software must guarantee a real-time response for transactions. Table 4-3 shows the number of

required transactions in DoCoMo's systems. Security functions are categorized in the basic call

function and must operate at 600 TPS within 70% CPU usage. Above 70% CPU usage, some

messages cannot be delivered on time (i.e., less than 30 seconds) and sometimes these messages

are lost. Among the basic call functions, security functions require the most powerful CPU

resources (see Figure 4-15). The security functions (Send Authentication Info + Send

Authentication Info ack) need 2.7 to 8.7 times higher CPU performance than other functions. In

particular, the generation of authentication vectors (Chapter 2.4) consumes much of the CPU's

time. If the generation function is not required, HLR/AuC can process a single authentication

transaction in 402.5 gu seconds; but if the generation function is implemented, it takes 2,607.4 u

seconds41 (6.5 times higher). The total size of the security functions is small (less than 1% of

41. This data is based on the first version of the software. Thereafter, DoCoMo did not
measure the performance.
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KLOC in the total software development), but the influence becomes significantly large in the

operation.

Table 4-3: Major Differences among Subsystems (Call Functions)

Subsystem Required Spe uired Qul Required Resources
Basic call function High. (max600 TPS2 ) Extremely high Large
(including security)
Supplementary
service function Low (max 200TPS) High Smallservice function

O&M function Very Low Medium Small
(less than 10 TPS)

Notes:
1) Each CPU has to satisfy the required TPS (Transactions Per Second).

2) One transaction equals a pair of messages: receiving and sending.

Source: Author, 2005.

The required number of dynamic steps for the security functions decreased from 209,420

in the first version to 143,861 in the third version. However, this decrease resulted from small

modifications, such as changes in the buffer size and avoidance of bit calculation. Most of the

small modifications had already been applied to the current platform. In fact, after the third

version the number of dynamics steps remained virtually the same. Given the implementation of

new services, the number of dynamics steps is now increasing little by little (146,862 steps in the

sixth version in 2003). Platform extension to improve performance had reached its limits.

* Security functions (especially, generation of authentication vectors) require the highest

CPU performance.

* The lines of codes for security functions are small, but greatly affect the systems
performance.

* Small modifications (platform extension) to improve performance have already reached
the limit.

* New security features face tradeoffs between performance and functionality.
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Steps

250,000

200,000

150,000

100,000

50,000

0

Required Dynamic Steps

*i SAI + SAI ack i
*UL+ISD i

i - - . . - .............. .
Cl 1U acK + UL ack

SRI + PRN
* PRN ack + SRI ack 
*PMS+PMS ack

1st ver. 2nd ver. 3rd ver. 6th ver.

SAI: Send Authentication Info, UL: Update location, ISD: Insert Subscriber Data, SRI: Send

Routing Info, PRN: Provide Roaming Number, PMS: Purge MS

First Second Third Sixth
Version Version Version Version

Send :Authenticaio e 2 420 i!38 143861 46862 Autnic ao .

Authentication6 nfo a _____

Update location + Insert Subscriber Location
55,154 69,482 54,015Data , managements

Insert Subscriber Data ack + Update 37,221 28 Location
location ack management
Send Routing Info + Provide Terminating calls
Roaming Number (From HLR to VLR)

80,871Provide Roaming Number ack + 34,908 22,879 26,412 Terminating calls
Send Routing Info ack (from VLR to HLR)

Purge MS + Purge MS ack 38,294 31,357 28,836 Location and routing
management

Send Routing Info for SM + Send Supplementary
Routing Info for SM ack 47,046 service
MAP CLOSE 20,056 - - Termination
Send Routing Info for GPRS +
Send Routing Info for GPRS ack 31,987 31,987 22,996 28,913 Packet callsSend Routin Info for GPRS ack

Source: Author, 2005.

Figure 4-15: Required Dynamic Steps for Basic Call Functions

42. This location management is DoCoMo's specific operation including both circuit and
packet update location.
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4.3.2 Network Traffic

The network traffic affects the systems performance. Authentication messages influence

the systems by (1) amount of traffic and (2) message length. On the basis of the network traffic

in PDC services, it is estimated that the traffic for "Send Authentication Info (SAI)" constitutes

17.2% of total traffic in HLR (see Table 4-4). Actual traffic data from the Yokohama unit

supports this traffic model (see Figure 4-16). These traffic data suggest that authentication

mechanisms operate more frequently than terminating call functions and short message functions.

Thus, the increase in security traffic will significantly affect systems performance.

Table 4-4: Network Traffic of 3G Services

No. Operation Ratio Max Length Note
Rati (Octets)

....... U. a ... . .. .. .... l.c ........n + :I. .... 9 (U3LocatiOn 
S. bc r.b. ata .... 7.-. 0 tli':: (*)) ._" '._:

Insert Subscriber Data ack + 21 (ISD ack)
Update location ack 33 (UL ack)ocaton management
3 Authentiki- n. . end 1Autheticatio 

....... Autentication. I. a, $40 (S:l a.k) "_ _. -. :_,

Send Routing Info, Send 127 (SRI)
4 Info ack6.1% 151 (SRI ack)Terminating calls

___ Routing Info ack _ _ _ _ _ _ _ _ _)

5 Provide Roamng Number, 3% 137 (PRN) Terminating calls
Provide Roaming Number ack

6 Send Routing Info for GPRS, 97 (SRG)
Send Routing Info for GPRS ack 101 (SRG ack)

7 Others 2.8% 112 (SRS ack) Supplementary services

UL: Update location, ISD: Insert Subscriber Data, SAI: Send Authentication Info, SRI: Send

Routing Info, PRN: Provide Roaming Number, SRG: Send Routing Info for GPRS, SRS: Send

Routing Info for SM

Source: Author, 2005.
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The length of the SAI message also can result in low systems performance. SAI comprises

540 octets of authentication data (the second-largest of all the messages). At the same time, the

capacity and number of physical links are limited (e.g., 384kbps, 16 links in rural area). Thus, a

heavy volume of SAI can create severe traffic congestion in the network. When adding new

security features, network engineers must consider the impact of network traffic in order to avoid

network congestion.

* Security traffic comprises 17.2% of all the network traffic in HLR.
* The message length of the SAI is the second longest.

4 Security messages can cause severe network traffic congestion.
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Figure 4-16: Network Traffic in DoCoMo's 3G Systems
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4.3.3 CPU Usage

The number of dynamic steps and the traffic model help to clarify the relationship between

dynamic steps and CPU usage. The CPU requires a certain amount of dynamic steps in order to

execute the process. If the quantitative relation between these two parameters can be determined,

we can evaluate the impact of new features added to the existing platform.

Integrating data from Figure 4-15 with Table 4-4, we can estimate the required number of

dynamic steps to complete 100 messages (see Table 4-5). The graph of CPU usage is quite linear

(see Figure 4-17). According to the graph, CPU usage increases 9.6%, 9.2% and 8.0% (per 100

transactions) in the first, second and third version respectively. Thus, the relationship between

dynamic steps and CPU usage can be derived as follows.

* The first version: 7,387,116 steps (100 messages): 9.6% up+ 1.29956E-06 %up/step

* The second version: 7,201,126 steps (100 messages): 9.2% up 1.27758E-06 %up/step

* The third version: 5,797,529 steps (100 messages): 8.0% up4l.3799E-06/oup/step

Average: 1..31901E-06%up/step (7,581 steps added+1% up/100TPS)

Table 4-5: Network Traffic Model and Dynamic Steps

Traffic/100 Traffic * Dynamic Steps
Messages 1st Version 2nd Version 3rd Version

3,602,024- 2t1460 ~,99-. 1,669064
I SAl-SA ack. .:28.8%) (29.8) 88

2 UL-ISD 30.9 1,704,259 890,013 955,892
3 ISD ack-UL ack 30.9 1,150,129 3,412,274 2,474,409
4 SRI-PRN 6.1 350,012 241,298 275,324
5 PRN ack-SRI ack 3.0 104,724 68,637 79,236
6 SRG-SRG ack 9.1 291,082 150,830 134,341
7 SRS-SRS ack 2.8 184,887 291,081 209,264

All Total 100 7,387,116 7,201,126 5,797,529
UL: Update location, ISD: Insert Subscriber Data, SAI: Send Authentication Info, SRI: Send

Routing Info, PRN: Provide Roaming Number, SRG: Send Routing Info for GPRS, SRS: Send

Routing Info for SM

Source: Author, 2005.
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200 TPS 400 TPS 6 TI'S800 TPS
1st version 32.8% 52.3% 70.7 87.6%
2nd version 31.2% 49.8% .7% 85.0%
3rd version 30.7% 46.8% 6 77.2%
4th version 30.9% 46.9% 6 77.5%
5th version 31.0% 47.9% - . 80.3%
6th version 31.3% 48.1% 64.3% 80.5%

Source: Author, 2005.

Figure 4-17: CPU Usage of DoCoMo's 3G Systems

Compared with the number of dynamic steps in current functions (e.g., authentication =

143,861 steps), the number of acceptable dynamic steps is quite small (7,581 steps). The first two

versions had improper memory usage in their security functions, so CPU usage exceeded system

requirements (600 TPS within 70% CPU usage). When implementing the third version, DoCoMo

applied the platform extension to improve the unnecessary functions. This approach helped
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enhance software performance, and CPU usage dropped from 67.7% to 62% (600 TPS).

However, after the improvement, no significant platform innovations have been applied to the

network software. New mobile services force CPU usage to increase little by little. If CPU usage

increases even 1% (600 TPS) in each version,4 3 the platform will be able to accept only six more

versions (through 2006). In particular, the security functions already occupy 28.8% to 48.8% of

the total number of dynamic steps. The number of 3G subscribers is also increasing. This result

indicates that DoCoMo's platform has almost reached its limits. It is quite challenging to

implement new security features without platform innovation (platform renewal).

* The relationship between dynamic steps and CPU usage can be determined

(7,581 steps added1l% increase in CPU usage/IOOTPS)

* DoCoMo's platform will reach the limits of its systems performance around 2006.
* When DoCoMo implements new security features, platform renewal will be crucial.

43. This situation means that increase in 1264 steps/100TPS is acceptable (7581steps/6
=1264).
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5 Securing Against Fraud in Mobile Communications

Since October 2001, mobile carriers have been deploying 3G mobile systems. Today, 61

UMTS commercial services operate worldwide, and more than 33 million subscribers enjoy 3G

services.44 With a global roaming service, 3G networks are becoming more interconnected with

other 2G and 3G networks. In the near future, seamless interoperability among mobile networks

is expected to be achieved. Network access and authentication requests will be generated both

inside and outside the network. Therefore, securing their own mobile systems against

unauthorized access will become even more essential.

To date, no cloned mobile handset or fraudulent communications have been found in 3G

mobile systems. However, the lessons learned from the existing network software (DoCoMo)

suggest that the security mechanisms implemented today are imperfect and vulnerable. In

particular, replay attacks seeking to obtain network authentication can break security codes and

allow fraudulent communications.

To a greater or lesser extent, other mobile carriers have similar problems.4 5 Based on the

lessons learned from the existing software in 3G mobile systems, this chapter will suggest how

mobile carriers can avoid potential fraudulent communications and secure their mobile systems.

5.1 Learning from DoCoMo's Network Software Development

DoCoMo's case offers important lessons: (1) implemented security features are vulnerable

to fraudulent communications, (2) various pressures, such as requirements for a shorter lead time,

cost reduction, and high reliability, prevent sufficient implementation of the security features and

44. UMTS Forum, as of August 2005
45. Interviews with several network engineers in other 3G systems suggest similar security

problems. However, specific information cannot be given for security reasons.
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skew the platform architecture, and (3) the platform has its limits and platform renewal should be

applied in order to break through the old constraints.

First, a clear gap exists between global standards and actual implementation. Several

critical security features, such as SQN management and AMF, are sometimes missing in the

platform. In particular, replay attacks can break security codes and allow fraudulent

communications. Removing the possibility of fraudulent communications requires fixing the

platform architecture for authentication mechanisms. In order to avoid the large-scale failure

caused by software defects, highly sensitive tests are required. Furthermore, upgrading network

software and renewing USIM cards (over 17 million cards) are also necessary, which is neither

easy nor cheap. Indeed, mobile carriers will not choose this option until fraud becomes a major

problem in their networks.

Second, in order to meet delivery schedules and reduce development costs, mobile carriers

tend to reduce the required functions. When developing network software, network engineers are

forced to concentrate on optimizing the current software and tend to overlook extensibility for

the next version. The lack of long-term platform thinking results in complex and inflexible

platform architecture. In such a complex architecture, the current operating platform is

considered more reliable than a new one. In fact, fundamental change may trigger hidden failures

and cause serious consequences in the telecommunications systems. Once the original platform

is implemented, architectural change becomes quite difficult due to organizational resistance. In

fact, in 2001-2002, DoCoMo discussed architectural changes in its operating platform, but

DoCoMo concluded it was too risky to apply such architectural changes. This kind of

organizational resistance and inertia regarding platform modifications remains a key challenge.

Third, DoCoMo's case suggests that platform extension cannot be a fundamental solution

for resolving platform performance problems. Security-related traffic presents 17.2%, and
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security features take up nearly 30% of the CPU performance. If we assume that (1) the number

of 3G subscribers is growing, and (2) that new user-oriented application services will require

more network authentication procedures, platform renewal will be inevitable in order to satisfy

the required performance targets. To improve performance, network engineers can apply a

platform extension strategy by configuring the network software and reducing unnecessary

procedures. However, this method can be effective only once. In DoCoMo's case, after the third

version of network software, no significant improvements in performance have been achieved.

DoCoMo's case also indicates that the extensibility of the platform can be measured by

estimating the number of dynamic steps. Before reaching performance limits, mobile carriers can

take appropriate measures to avoid system failure.

* A clear gap exists between global standards and actual implementation.

* Various pressures (e.g., short lead time, cost reduction) prevent sufficient

implementation of the security features and skew the platform architecture.

* Platform change is difficult owing to organizational resistance and/or inertia.

* The platform has its limits, and platform renewal should be applied in order to break the

constraints.

5.2 Strategies for Securing Mobile Systems

As discussed in Chapter 2.5, securing mobile systems sufficiently remains a challenging

issue. However, mobile carriers can reduce potential risks by understanding current platform

conditions and addressing architectural and implementation problems. Based on the platform

thinking, Figure 5-2 and Figure 5-3 show basic strategies to secure mobile systems4 6. Substantial

differences exist before and after deployment of services, so the classification is below:

* Before deployment: Software development phase based on a waterfall model
· After deployment: Implementation level and platform architecture (see Figure 5-1)

46. More research is needed to support implementation strategies (e.g., research on
Vodafone's case).
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Implementation Levels (Security Features)

Platform
Architecture

Flexible,
modularized
Inflexible,
not modularized

Sufficient

Well-secured
in the long term
Well-secured
in the short term

Insufficient,
not so critical

Secured in the
long term
Secured in the
short term

Critical

Vulnerable in the
short term
Vulnerable in the
long term

Source: Author, 2005.

Figure 5-1: Classification of Security Levels

Source: Author, 2005.

Figure 5-2: Basic Strategies to Secure Mobile Systems (Before Release)
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Figure 5-3: Basic Strategies to Secure Mobile Systems (After Release)

5.2.1 Before Deployment

Design Phase

The design phase directs the future platform architecture. If network engineers focus only
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on satisfying current requirements and overlook the flexibility and extensibility of the future

platform, the platform will lose its potential capabilities. Better designs will require substantially

less rework and redesign [71]. In this sense, the design phase is the most important phase in

software development.

Before coding the software program, mobile carriers should clarify the desired architecture

on the basis of long-term platform thinking. In order to avoid unnecessary defects and improve

productivity, more complete specifications should exist prior to coding phase [72]. In the design

phase, mobile carriers should specify interfaces among subsystems (functional elements) and try

to achieve a modular architecture. Many unnecessary subsystems and redundant interfaces

should be revised or eliminated to reduce complexity and improve extensibility (see Figure 5-4).

When DoCoMo developed its network software, global standards were not fixed and user

requirements often changed, making it very challenging to design the entire systems effectively.

Today, technical specifications and user requirements are virtually fixed, and mobile carriers

planning to deploy 3G systems can design the platform architecture accurately and effectively.

Developing network software on schedule with the lowest possible costs is important, but

mobile carriers should not focus on this requirement to the exclusion of other important

requirements. Organizational resistance after the software release may not allow mobile carriers

to achieve architectural changes in the network software. Thus, a certain amount of time and cost

is necessary in order to satisfy sufficient security levels. DoCoMo's case suggests that security

features require an enormous volume of CPU performance. A flexible and extensible platform

can survive when new services are implemented and the platform confronts the "expansion

phase" (see Figure 5-5).

· A desired architectural design based on long-term platform thinking must be clarified.
-System architecture should be less complex

· Flexibility and extensibility should be considered in the platform.
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* Enough time and cost are required to achieve sufficient security.

* A well-designed platform can survive during the expansion phase.

Complexity

6000-8000

2500-3000

300-500

100

I No platform thinking

,lex /

- _p
-s

-1--------- -------------
500

I

platform

ned platform)

1000 Number of modules

Note: Complexity is based on the number of interfaces among modules (subsystems)

Source: Author, 2005.

Figure 5-4: Long-Term Platform Thinking and Complexity of the System
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Source: Author, 2005.
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Figure 5-5: Phases of Platform Innovation
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Coding Phase

In the coding phase mobile carriers should focus on modularizing the functions and

accumulating development knowledge (e.g., coding and debugging knowledge). Security

features comprise fundamental functions in the platform and require extremely sophisticated

expertise. Modularization helps create the highly complex software and localize the

modifications. Well-designed modules can be used to create similar functions in the next version.

For example, if mobile carriers develop well-modularized UMTS security functions, these

carriers can apply the modules to create GSM security functions as well.

Software development knowledge (information development [73]) will also be

accumulated in this phase. Mobile carriers should list up coding and debugging know-how and

utilize this knowledge in future development. Specific hardware characteristics often restrict

software development. In DoCoMo's case, the NEC OS and Fujitsu OS have different coding

requirements; the same coding and configuration do not work in different machines. Thus,

accumulated knowledge should continue to be accessible through succeeding software

development in order to avoid mistakes found in previous versions. This knowledge will allow

new network engineers working on succeeding versions to understand the coding methods and

improve the platform.

* Mobile carriers should focus on modularization and accumulation of development

knowledge.

· Accumulated knowledge should be accessible to succeeding software versions.

Testing Phase

During the testing phase, mobile carriers should focus on collecting data that identify the
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specific factors underlying and contributing to the problems. Defect analysis47 and retesting

(regression test) are crucial to ensure that the software quality levels are reached [74]. The

ultimate goal of testing phase is to achieve the perfection (zero defects48) of the software.

Testing of security features is quite challenging because data length is very long and the

data itself changes randomly for encryption. Thus, simple data, such as "0000" and "FFFF" is

often applied to test security functions. In DoCoMo's case, the company often temporarily

suspended the security functions in order to reduce complexity for testing.

If mobile carriers simplify the testing too much, it becomes difficult to justify the security

features between mobile handsets and HLR/AuC. A wide variety of testing for security features

should be necessary to guarantee the functions. At the same time, mobile carriers should

establish automated testing systems, including mobile handsets or HLR/AuC simulators, to

effectively test the security features. Sometimes an automated test adds considerable complexity

and requires more efforts from the test team, but it can also provide valuable assistance for

justifying security features in the right environment. In succeeding versions, test results can be

used to confirm the utility and reliability of new functions in a new platform.

* Mobile carriers should test various patterns of security features to justify authentication
mechanisms.

* Automated testing allows various testing patterns and helps confirm security features.

* Accumulated successful test data can confirm the new functions of succeeding

platforms.

Release Phase

Not all of the security features may be implemented in the original version of the software.

47. Defect analysis includes the followings: defect tracking information, defect type, phase
where the defect is injected and removed, and time required to fix the defect.

48. Unexpected software defects are not included.
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However, mobile carriers need to understand what is possible and impossible after the

deployment. For example, modifications related to mobile handsets (USIM) and network

systems are quite challenging (e.g., changes in security algorithms and implementation of SQN

management). Mobile carriers must clarify the differences (see Table 4-1) and evaluate potential

risks, such as eavesdropping, masquerading, unauthorized network access, and manipulation of

messages.

Substantial differences exist prior to and following deployment of services. Strict and

sufficient field tests are crucial to ensure reliability, functionality, and performance. Unexpected

problems associated with critical security features should be recognized and measures should be

taken to minimize negative impacts before final release. In order to improve software quality and

platform architecture, reschedule of a commercial release is acceptable. In addition, DoCoMo's

case shows that security traffic consists largely of network traffic, and security features require

high CPU performance. Mobile carriers should precisely evaluate the systems performance

before deployment.

* Complexity in the platform should be reduced.

4Rescheduling of a final release is acceptable.

* Original version does not have to acquire full security features, but mobile carriers

should clarify the differences between specifications and implementation.

* Strict field testing is crucial to confirm security functions.
* Mobile carriers should evaluate the tradeoffs between security and performance.

5.2.2 After Deployment

Well-Secured Platform (Long/Short Term)

Sufficient security features that cover the full specifications of global standards will enable

mobile carriers to focus on possible unauthorized access by intruders using other 2G or 3G

networks. Compared with the security levels of other 2G and 3G networks, this network can be
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considered more secure. The risks of fraudulent network access are more likely from outside

their own network. Mobile carriers can identify future threats that may not have been anticipated

in the global specifications. This experience will help develop new security features in the global

standards.

At the same time, sufficient security features require high CPU performance and database

resources. Mobile carriers must evaluate the extensibility of the platform and resolve tradeoffs

between security and performance. If the current platform lacks flexibility and modularity,

mobile carriers should improve the platform architecture to satisfy future demands. Given the

fully implemented security features, platform extension is desirable to avoid implementation

risks.

* Risk assessment should focus on network traffic from other networks.

* Mobile carriers can address future threats.

* Platform extension is desirable when mobile carriers add some security features.

Secured Platform (Long/ Short Term)

Mobile carriers often simplify their security features in order to reduce costs and

complexity. If a missing feature is not critical (e.g., if the platform supports only fixed-length

parameters) and platform architecture is well designed, the existing platform will remain viable.

As discussed earlier, security comprises a fundamental part of the platform. The risks involved in

changing the platform sometimes exceed the benefits gained by adding or fixing security features.

Thus, the criteria should be whether the system can detect and prevent replay attacks, whether

eavesdropping allows intruders to identify the message protocol, and whether the system is

flexible enough to upgrade the security features.

An analysis of network traffic is also necessary. Mobile carriers have to collect the

network data from inside and outside of the network and check possible unauthorized access.
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Mobile carriers also can ask a third party to objectively evaluate the security levels. At the same

time, mobile carriers need to foster a tolerant culture for architectural change in the network

software. It is essential to educate network engineers that architectural change in the platform

does not imply fault on the part of the engineers.

* The current platform remains viable if missing security features are not critical.

* Evaluation criteria must be clear and objective.

* A tolerant culture should be fostered to facilitate necessary architectural changes.

* An analysis of network traffic (inside and outside the network) is required.

Vulnerable Platform (Short Term)

If the current platform lacks critical security features but the existing platform is

modularized and flexible, mobile carriers should fix or add the missing security mechanisms.

Given the implementation risks, platform extension is reasonable to fix security problems. At this

point, however, implementation of new application services, such as multi-calling and

videoconferencing, is not recommended. These new services require complex architecture and it

becomes difficult to identify any defects associated with security features. This platform

extension should focus only on upgrading security features, which means that mobile carriers

sometimes have to delay the launch of new services in order to fix the security problems. Given

today's severe market competition, this decision might be hard to accept. However, mobile

carriers need to understand that an unsecured system ultimately will cost far more than any

benefits gained from new services.

At the same time, mobile carriers should investigate why current situation happened. In

DoCoMo's case, the 10-15% cost reduction rule, too-short lead time, and the requirement for

extremely high reliability removed the incentives for architectural changes based on long-term

platform thinking and resulted in skewed platform architecture. Consequently, authentication
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mechanisms were insufficiently implemented. Some reasons are understandable, but others are

not. Mobile carriers must evaluate these findings and fix the fundamental problems.

* Platform extension for upgrading security features should occur separately from normal

implementation of new application services.

* Mobile carriers should accept the delay in offering new services until updated security

features are stabilized (2 to 6 months).

* Mobile carriers should determine why the existing platform is insufficient.

4Problems should be fixed before applying platform extension.

Vulnerable Platform (Long Term)

If the existing platform lacks critical security features and flexibility, mobile carriers have

to rely on peripheral security mechanisms, such as traffic analysis, data trace, and protocol

analysis. For example, if HLR receives an "Authentication Failure Report" from VLR/SGSN, the

HLR can alert network operators who can identify useful specific information, such as telephone

number (MSISDN), identification number (IMSI), time, and location. These operators can

systematically trace the calls associated with this subscriber and analyze the message protocols.

To be effective, a good system must be simple, accurate, and easy to use [75]. Utilization of

fraud detection mechanisms (risk control) allows early detection of fraudulent communications.

Mobile carries also should listen to the end users and concentrate on software quality from the

customer perspectives [76] because unexpected threats are often implied in end-user claims.

However, this strategy is not a long-term solution. This platform will remain vulnerable.

Replay attacks may decipher encrypted security messages and allow intruders to access the

network. In addition, this platform cannot survive if the required performance rises. At present,

the required performance is at Level "A" in Figure 5-6. As the number of 3G subscribers

increases and new services are added, the required performance will rise to Level "B" or "C".

The platform extension approach in an inflexible platform cannot provide sufficient performance
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for the future. In order to fix this fundamental problem, platform renewal is essential. However,

platform renewal often results in substantial migration risks and organizational resistance to

architectural change. As a first step toward platform renewal, mobile carriers should clarify the

boundaries inside or outside of the subsystems (see Figure 5-7).

Given organizational resistance based on cultural and political reasons, platform renewal

cannot be achieved without top-down decision making. Early decision making is better for

platform renewal because it takes at least two years to accomplish such renewal. Before the

required performance changes from Level "A" to "B" in Figure 5-6, mobile carriers have to (1)

evaluate the capability of the platform (e.g., performance based on dynamic steps), and (2)

forecast performance requirements for the future. Top executives also must stress that a

statement such as "no fraudulent communications have been found so far" does not mean that the

system is secured. Several years may be needed to reorient the mindset of network engineers and

fulfill the platform renewal. However, this step is vital before mobile carriers encounter a wider

range of fraudulent communications.

* Peripheral security mechanisms allow mobile carriers to detect fraudulent
communications.

4The detection mechanisms should be systematic.

* Claims from end users can help identify fraudulent communications.

* Platform renewal is essential as part of long-term strategy.
* Before platform renewal is undertaken, mobile carriers should clarify the boundaries of

the subsystems.

* A top-down approach is required to mitigate organizational resistance and apply
platform renewal.

* Early decision making is essential before required performance exceeds the maximum

performance capability of the platform.
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Figure 5-6: Platform and Required Performance

Source: Author, ZUU.

Figure 5-7: Clarify the Boundaries Inside or Outside of the Subsystems
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6 Conclusion

Fraudulent communications are not new. Ever since the inception of the first generation

mobile systems, mobile carriers have strived to prevent fraudulent communications. Using

digital ciphering mechanisms, GSM systems have contributed to preventing fraudulent

communications. However, some of the security mechanisms in GSM already have become

insufficient and outdated. Given the fraudulent communications found in GSM networks, more

advanced security mechanisms are required in 3G mobile systems. Security algorithms have

become more sophisticated, and new and longer security parameters have been applied. New

security operations have also been implemented to detect potentially fraudulent communications.

6.1 Security in 3G Mobile Systems

Network security ensures the consistency, integrity, and reliability of telecommunications

systems, and authorized network access can prevent fraudulent communications and maintain the

availability of each system. Currently, however, none of the 3G mobile systems is perfectly

secured, for the following reasons.

1) For performance reasons, 3G mobile systems must rely on conventional security

methods, which allow mobile carriers to reduce network delays but also make the

system less secure.

2) Both secured and unsecured networks are interconnected by global roaming services.

Fraudulent network access can be generated from outside networks that support weaker

security mechanisms. 4 9

49. For example, China and some countries turn off encryption due to export restriction
reasons.
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3) As a practical matter, it is difficult to upgrade security features to protect against

brand-new and unexpected network attacks that may not have been anticipated in the

global specifications.

In addition, the 3G technical specifications, including network architecture, network

protocols, and security algorithms, are widely available to the public. 3GPP also provides sample

source codes and simulation data for security algorithms. Open-design architecture helps create

better security standards, but at the same time today's sophisticated intruders can defeat

telecommunication networks by applying the knowledge of 3G specifications. Thus, an

inadequate system design will make mobile systems highly vulnerable to unauthorized access to

mobile communications.

6.2 Lessons Learned in Actual 3G Mobile Systems

To date, no cloned mobile handsets and no fraudulent communications have been found in

3G mobile systems. However, the lessons learned from the existing network software (DoCoMo)

suggest that the security mechanisms implemented today are imperfect and vulnerable. In

particular, replay attacks to obtain network authentication can break security codes and allow

fraudulent communications. DoCoMo's case provides us three important lessons:

1) Critical security features are sometimes missing in implementation (a clear gap exists

between global standards and actual implementation).

2) Limited development time, cost reduction pressure and requirement for high reliability

have forced mobile carriers to implement the insufficient and inflexible authentication

mechanisms and skew the platform architecture.

3) Platform architecture has its limits. However, mobile carriers can take appropriate
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measure by evaluating the extensibility of the platform. In order to satisfy performance

requirements platform renewal should be applied.

6.3 Strategies for Mobile Carriers

Telecommunication is a basic, necessary service for individuals and corporations. Thus,

security features must perform correctly on network software to protect against frauds. Even a

single security breach can result in costly economic damage and serious failure in the critical

infrastructure.

Prevention of such security threats remains a challenging issue. However, mobile carriers

can reduce potential risks by understanding current platform conditions and addressing

architectural problems beforehand.

Before Deployment

Substantial differences exist before and after deployment of the services. Mobile carriers

must remember that architectural change is far more difficult to accomplish after launching the

original platform.

Before deployment, mobile carriers should clarify the desired architectural design based on

long-term platform thinking. The design phase has a direct impact on the future platform

architecture. In this sense, the design phase is the most important phase. Not all of the security

features may be implemented in the original version. However, mobile carriers have to

understand what is possible and impossible after deployment.

Some security features require significant modifications in both mobile handsets and core

network (HLR/AuC and VLR/SGSN). Upgrading the network software and renewing the USIM

cards will be necessary. This upgrading is not easy because mobile handsets and core network
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systems are widely distributed. Serious efforts and several years will be necessary to resolve this

situation. Until such problems are fixed, mobile carriers will have to accept some security holes

in the network.

Mobile carriers also should evaluate whether the platform can survive during the system

expansion phase. Modularization is essential to increase the flexibility and extensibility of the

platform. Well-defined modularization helps localize implementation risks and increase systems

reliability.

Before launching a system, mobile carriers should conduct strict field tests to ensure the

reliability, functionality, and performance of security features. In order to improve software

quality and the platform architecture, it is acceptable to reschedule a commercial release. After

deployment, mobile carriers should take action to secure their own networks based on

implemented levels of security and platform conditions.

After Deployment

Ideally, security features should be well designed and implemented, but as a practical

matter, this situation is hard for mobile carriers to achieve. The security mechanisms

implemented today tend to be imperfect and vulnerable. Based on platform conditions, four basic

strategies can be categorized for securing mobile systems: (1) well-secured, (2) secured, (3)

vulnerable (short term), and (4) vulnerable (long term).

First, in a well-secured platform, mobile carriers must focus on risk assessment. Compared

with the security levels of other 2G and 3G networks, this network is more secure. Mobile

carriers should analyze future threats coming from other 2G or 3G networks. This risk

assessment will help develop new security features to meet global standards. At the same time,

sufficient security features require high CPU performance and database resources. Evaluation of
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the tradeoffs between security and performance is necessary. With fully implemented security

features, platform extension is desirable to avoid implementation risks.

Second, if missing security features are not especially critical, the current platform can be

considered secure and will remain viable. Mobile carriers can ask a third party to objectively

evaluate the security levels. The criteria must be: (1) the system can detect and prevent replay

attacks, (2) messages cannot be identified through eavesdropping on traffic data, and (3) the

system is flexible enough to upgrade its security features. Sometimes architectural innovation is

necessary to achieve better security features. Therefore, mobile carriers should foster a tolerant

culture for architectural change in the network software.

Third, even if the current platform is vulnerable, a modularized and flexible platform

allows mobile carriers to fix or add the missing critical security features. In order to reduce

implementation risks, platform extension should focus only on upgrading security features,

otherwise the upgrade becomes complex, and it will be hard to identify the defects associated

with security features. Today's severe market competition often prevents top executives from

making this painful decision. However, mobile carriers need to understand that an unsecured

system ultimately will cost far more than any benefits gained from new services.

Finally, if the existing platform lacks critical security features and flexibility, mobile

carriers must rely on peripheral security mechanisms to secure the systems. Such fraud detection

mechanisms should be systematic, and include traffic analysis, data trace, and protocol analysis

to identify potential fraud. However, this strategy cannot be a long-term solution. The current

platform will remain vulnerable. Replay attacks can decipher encrypted security messages and

allow intruders to access the network. Furthermore, performance requirements may exceed the

maximum performance capabilities of the platform owing to an increased number of subscribers

and/or the deployment of new services. Platform renewal becomes essential as part of the

111



long-term strategy. However, such renewal may cause substantial migration risks and encounter

organizational resistance. Thus, early decision making by top management (using a top-down

approach) is crucial. At the same time, mobile carriers should foster a tolerant culture for

architectural changes in network software. Such a culture of tolerance will facilitate the

necessary architectural changes. Even so, platform renewal will likely take at least two years to

accomplish, but these steps are essential before mobile carriers encounter further serious and

wide-ranging fraudulent communications

In the near future, communications systems such as wired or wireless networks, satellite

systems, and the Internet will converge via TCP/IP. The boundaries among networks will

diminish, and this convergence will allow many people to access these networks. New

technology developments and telecommunications convergence will represent a major challenge

to the UMTS security architecture.

Four years have passed since the first 3G mobile system was deployed. To date, no

fraudulent communications have been found in 3G mobile networks. At the same time, however,

no perfectly secured system exists in 3G mobile networks. History repeats itself. Just as mobile

carriers experienced fraudulent communications in the first generation and the second generation

networks, it is likely to confront similar situations in 3G mobile networks.

Telecommunication is an essential service in human life, and network security supports the

fundamental features of telecommunications services. By addressing architectural and

implementation problems beforehand, mobile carriers can manage unexpected security problems

in the next generation networks and secure the systems against fraud in mobile communications.

END
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Appendix

Abbreviations and Terminologies

1G:

2G:

3G:

3GPP:

3GPP2:

4G:

5G:

AMPS:

AuC:

bps:

CDMA:

CN:

DB:

EDGE:

EV-DO:

EV-DV:

FDMA:

FOMA:

GGSN:

GMSC:

GPRS:

GSM:

GSM-MAP:

HLR:

HSDPA:

IMT-2000:

IP:

IS-95:

ISDN:

ISUP:

ITU:

the First generation mobile technologies

the second generation mobile technologies

the third generation mobile technologies

The Third Generation Partnership Project (UMTS Network)

The Third Generation Partnership Project 2 (CDMA2000 Network)

the Forth generation mobile technologies

the Fifth generation mobile technologies

Advanced Mobile Phone System

Authentication Center

bits per second

Code Division Multiple Access

Core Network

Database

Enhanced Data GSM Environment

Evolution Data Only

Evolution Data Voice

Frequency Division Multiple Access

Freedom Of Mobile multimedia Access

Gateway GPRS Support Node

Gateway Mobile Switching Center

General Packet Radio Service

Global System for Mobile Communications

Global System for Mobile Communications-Mobile Application Part

Home Location Register

High Speed Downlink Packet Access

International Mobile Telecommunications 2000

Internet Protocol (IPv4: IP version 4 and IPv6: IP version 6)

Interim Standard 95

Integrated Services Digital Network

Integrated Services Digital Network User Part

International Telecommunication Union
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ITU-T:

Kbps:

MAP:

MAPsec:

MC-CDMA:

MS:

MSC:

O&M:

OFDM:

PDC:

PDC-P:

PLMN:

PSTN:

QoS:

RNC:

SCCP:

SCP:

SGSN:

TACS:

TC:

TDMA:

UMTS:

VLR:

VoIP:

W-CDMA:

The ITU Telecommunication Standardization Sector

Kilobits per second

Mobile Application Part

Mobile Application Part security

MultiCarrier-Code Division Multiple Access

Mobile Station

Mobile services Switching Center

Operation and Maintenance

Orthogonal Frequency Division Multiplexing

Personal Digital Cellular

Personal Digital Cellular Packet

Public Land Mobile Network

Public Switched Telephone Network

Quality of Service

Radio Network Controller

Signaling Connection Control Part

Service Control Point

Serving GPRS Support Node

Total Access Communication System

Transaction Capabilities

Time Division Multiple Access

Universal Mobile Telecommunications System

Visitor Location Register

Voice over IP

Wideband CDMA
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