
A Theory and Toolkit for the Mathematics of Privacy:
Methods for Anonymizing Data while Minimizing Information Loss

Hooman Katirai
BASc., Computer Engineering (2000)

University of Waterloo

Submitted to the
Engineering Systems Division and the

Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements
for the Degrees of

Master of Science in Technology and Policy and
Master of Science in Electrical Engineering and Computer Science ,

at the

Massachusetts Institute of Technology
June 2006

I I MAY 3 1 2006 I I
LIBRARIES

J

02006 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute
publicly paper and electronic copies of this thesis and to grant others the right to do so.

......................* Signature of Author. ., , .-.,
May 1 lth, 2006

Engineering Systems Division and
Department of Electrical Engineering & Computer Science

Certified by. r.v -. .;
Peter Szolovits

,, Professor of Electrical Engineering & Computer Science and
/

/' / ,Y ,./ , P r O o f ~ of H9t.h Sciences & Technology

7-.. Accepted by. . .,, , ,-. - ,, y- - -y -
.J

Arthur C. Smith
Chairman, EECS Department Committee on Graduate Theses -

................ Accepted by
Dava J. Newman

and Engineering Systems
Director, Technology and Policy Program

A Theory and Toolkit for the Mathematics of Privacy:

Methods for Anonymizing Data while Minimizing Information Loss

by

Hooman Katirai

Submitted to the Engineering Systems Division

and the Department of Electrical Engineering and Computer Science

on May 1 1,2006 in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Technology and Policy and

Master of Science in Electrical Engineering and Computer Science

ABSTRACT

Privacy laws are an important facet of our society. But they can also serve as formidable barriers to
medical research. The same laws that prevent casual disclosure of medical data have also made it
difficult for researchers to access the information they need to conduct research into the causes of
disease.

But it is possible to overcome some of these legal barriers through technology. The US law known
as HIPAA, for example, allows medical records to be released to researchers without patient
consent if the records are provably anonymized prior to their disclosure.

It is not enough for records to be seemingly anonymous. For example, one researcher estimates that
87.1 % of the US population can be uniquely identified by the combination of their zip, gender, and
date of birth - fields that most people would consider anonymous.

One promising technique for provably anonymizing records is called k-anonymity. It modifies each
record so that it matches k other individuals in a population - where k is an arbitrary parameter.
This is achieved by, for example, changing specific information such as a date of birth, to a less
specific counterpart such as a year of birth. Previous studies have shown that achieving k-
anonymity while minimizing information loss is an NP-hard problem; thus a brute force search is
out of the question for most real world data sets.

In this thesis, we present an open source Java toolkit that seeks to anonymize data while minimizing
information loss. It uses an optimization fiamework and methods typically used to attack NP-hard
problems including greedy search and clustering strategies.

To test the toolkit a number of previously unpublished algorithms and information loss metrics have
been implemented. These algorithms and measures are then empirically evaluated using a data set
consisting of 1000 real patient medical records taken from a local hospital.

The theoretical contributions of this work include:

(1) A new threat model for privacy - that allows an adversary's capabilities to be modeled using a
formalism called a virtual attack database.

(2) Rationally defensible information loss measures - we show that previously published
information loss measures are difficult to defend because they fall prey to what is known as the
"weighted indexing problem." To remedy this problem we propose a number of information-loss
measures that are in principle more attractive than previously published measures.

(3) Shown that suppression and generalization - two concepts that were previously thought to be
distinct - are in fact the same thing; insofar as each generalization can be represented by a
suppression and vice versa.

(4) We show that Domain Generalization Hierarchies can be harvested to assist the construction of
a Bayesian network to measure information loss.

(5) A database can be thought of as a sub-sample of a population. We outline a technique that
allows one to predict k-anonymity in a population. This allows us, under some conditions, to release
records that match fewer than k individuals in a database while still achieving k-anonymity against
an adversary according to some probability and confidence interval.

While we have chosen to focus our thesis on the anonymization of medical records, our
methodologies, toolkit and command line tools are equally applicable to any tabular data such as the
data one finds in relational databases - the most common type of database today.

Thesis Supervisor: Dr. Peter Szolovits

Title: Director, MIT Clinical Decision Making Group

To Taymour, Mitra, Shadi and Justin

Table of Contents

Foreword .. 7

.. Acknowledgements 9

Motivation .. 11

The Proliferation of Anonymization Systems in the Medicine 11

... Statement of Claims 13
. Organization of thls dissertation 1 4

.. A threat model for privacy 1 4

... Methods of Anonymizing fields 1 7

.. Method 1 : Ranging 17

.. Method 2: Binning 1 7

... Method 3 : Generalization 1 7

Related Work ... 23

... Attacks on k-anonymity 24

Unsorted Matching Attack (Sweeney 2002) ... 24

Linking Attack ... 24

.. Complementary Release Attack 25

... Temporal attack 25

Attributes Occurring Less Than k Times Attack .. 25

... Measure Functions 26

..................... A method for utilizing a Bayesian model as a measure function 31

... The DSG Privacy Toolkit 3 4

.. Configuration Files 35

... Posets -35

Columns.XML File .. 46

... Arnbiguators 47

... Synthetic Data Generation 51

... Command Line Interface 51

.. Experiments 52

... Context 52

The Data Set ... 54
. . Majonty Rule Voting ... 73

Condorcet Voting ... 73

.. Experimental Conclusions: 77

.. Conclusion 78

Future Directions 1 Questions .. 78

.. Appendix 1 : 80

References ... 8 5

Foreword

Who would have thought that a Computer Science thesis could be inspired by a

lecture on public policy? That lecture was given by Frank Field, I11 in a class called

"Introduction to Technology & Policy." During that lecture he assigned us the task of

devising a system for allocating kidneys to patients. That is, he handed us a stack of

simulated medical records and asked us to write a memo outlining a system that would

determine who should get the kidney first.

Knowing 111 well that the class was largely composed of engineers, Frank knew

we would instinctively appeal to quantitative measures of need. Students in the class

created mathematical expressions that would take into account a person's age, the time they

had been on a waiting list, and so forth, to determine who was in line to get the kidney first.

One team stood in front of the class talking about how their system was "highly

objective" on the basis that anyone could enter the same numbers into their equation and

get the same ranking.

Frank correctly pointed out that behind all these so-called "objective" systems" lay

the highly subjective weights that we had assigned to different criteria such as a subject's

age. More generally, he said there is no objective way of summing heterogeneous

quantities or criteria into a single score. In fact, he showed us examples where the ranking

completely reversed itself - depending on which of several plausible methods were used

for turning the criteria into scores. He therefore admonished us to stop using words like

"objective" to describe our rankings and to instead admit what was taking place was a

political process.

I carried this lesson with me while doing research for Staal Vinterbo at Harvard

Medical School. Staal had recently devised an elegant formal framework for anonymizing

information, His framework sought to anonymize information while maximize the value of

the information for machine learning and statistical purposes.

Staal commissioned me and Robert Fischer to write a toolkit that implemented his

ideas. And it is in the course of writing this toolkit that I developed the experiments laid out

in this dissertation. I continued working on the problem in the following year when I joined

Peter Szolovits' Clinical Decision Making Group at the MIT Computer Science and

Artificial Intelligence lab. It was Peter's former student, Latanya Sweeney, whose seminal

thesis had created the entire field of what we now know as Computational Disclosure

Control.

While implementing the toolkit I discovered that a scoring system Staal had

published was based on weights - making it subject to the same weighted indexing

problems pointed out earlier in that Public Policy lecture by Frank Field. I later examined

other measures in the literature including Latanya Sweeney's PREC metric and found it too

was a weighted index because it could be interpreted as giving a weight of 1.0 to every

column. It in effect assigns an equal score (or weight) to knowing if someone had HIV for

example, or knowing if they were male of female.

These observations inspired a search for a more rationally defensible basis for

valuing information loss in the anonymization process. The result may be described as a

theory and toolkit described in this thesis.

Acknowledgements

I am deeply grateful to the many people and organizations who made this thesis

possible.

First and foremost, I'd like to thank Peter Szolovits, from the MIT Clinical

Decision Making Group and my principal advisor. There is nothing more I could have

asked for from an advisor. In just about every endeavor I did - I sought his wise counsel

and advice. I am deeply grateful for his encyclopedic knowledge, for his sage advice and

for introductions into his vast contact network. Peter greatly enriched my experience, and

for this I will be forever gratell.

I would also like to thank Dr. Staal Vinterbo, from the Decision Systems Group at

Brigham & Women's Hospital and Harvard Medical School, for fimding me and advising

me during my first year, teaching me new ideas and for inventing the theory that inspired

this thesis. Staal has throughout my tenure at MIT offered many helpful suggestions and

helpful criticism.

I am indebted to Dr. Megan Dirks, fiom Beth-Israel Deaconess Medical Center

without whom access to real patient data would not have been possible. She single-

handedly navigated the Institutional Review Process that resulted in the release of the data

and helped me to understand the data's nuances.

I am also grateful to Isaac Kohane, MD-PhD, and Ken Mandl, MD-MPH from the

Children's Hospital Informatics Program at Harvard Medical School for fimding me for a

summer internship to work on one of their projects called PING - a project that seeks to

make multi-institution medical records a reality in a number of countries.

I would like to thank my colleague Stanley Trepetin, PhD from the MIT Clinical

Decision Making group for valuable conversations and advice, and for help using DxCG (a

software package used by healthcare companies to predict future costs).

I would also like to acknowledge the contribution of Dr. Robert Fischer, formerly

fiom Harvard's Decision Systems Group at Brigham & Women's Hospital who wrote

approximately 3400 of the 7200 lines of source code in the project. Robert authored the

Partition algorithm, and wrote most of the code for the MatrixLattice, DefaultLattice, and

RangeLattice classes. He also wrote algorithms to parse US Census data to build priors for

synthetic data generation. I am deeply gratell to Robert for his mentorship and for

numerous helpful conversations. My contributions constitute the remainder of the library

from 2003 to 2006 including the Greedy algorithm, the Command Line Tool, and all other

Posets.

I would also like to thank the admission committee at the Technology & Policy

program and the Department of Electrical Engineering and Computer Science for admitting

me, and Stephanie Perrin (author of Canada's privacy law), Russell Sarnuels (my former

Director at Zero-Knowledge), and Dr. Kostas Kontogiannis of the University of Waterloo

for writing the letters of recommendation that helped get me here.

I am also grateful to my friends who greatly enriched my graduate school

experience including: Emanuel Abbe, Vladmir Bychcovsky, Safa Sadeghpour, Carine

Simon, Oleg Shamovsky, Armando Valdez and the members of The MIT Baha'i

Association (Benjamin and Alison Dahl, David Gray, Rahmat Cholas, Ravi P, Zeba

Wunderlich, and Dom Ziai).

I also would like to also acknowledge DxCG Inc. who provided me and Stanley

Trepetin a discounted copy of Risksmart - an industrial grade software used by health

insurance companies to predict patient costs for the purposes of disease management.

Lastly I would like to express my deep gratitude for having had all my expenses at

MIT paid for by professors who ultimately received h d s from the National Institutes of

Health (NIH). In particular I would like thank Peter Szolovits who filnded me during most

of my tenure at MIT under NLM contract number NO 1 -LM-3 -3 5 1 5, and Staal Vinterbo

from Harvard Medical School for finding me during my first year under NLM contract

RO 1 -LM07273.

Motivation

Privacy laws are an important facet of our society. But the same laws that prevent

the casual disclosure of medical records have also made it increasingly difficult for

researchers to obtain the information that they need to conduct research into the causes of

disease. In this thesis, we present a theory and method for anonymizing information with a

focus on the medical domain.

While we have chosen to focus our thesis on the anonymization of medical records

the same techniques could potentially be used in any sector that seeks to anonymize tabular

data (the type of data one finds in relational databases - the most common type of database

today).

The Proliferation of Anonymization Systems in the Medicine

Data privacy systems are quickly becoming an integral part of a broad range of

medical systems. This is true for a number of reasons.

First, the disclosure of health information is strictly regulated in many jurisdictions

and institutions are often legally required to apply privacy-enhancing transformations to

health data prior to their disclosure to researchers. In the United States, for example, the

Health Insurance Portability and Accountability Act (HIPAA) requires data to undergo

either one of two privacy-enhancing processes prior to its disclosure.

In the first process, which may be termed de-identijkation, certain pre-specified

fields such as name, address and social security number are removed. Although this process

is sufficient to satisfy legal standards (United States Office of Health And Human Services

2003), the output of this process may still contain information that can be used to uniquely

identify a member of the population. For instance, in one study, Sweeney estimated that

87.1% of the US population can be uniquely identified by the combination of their 5-digit

zip code, gender, and date of birth (Sweeney 2002) because such records can be linked to

publicly available databases such as voter lists, and driving records. To prove her point,

Sweeney re-identified a series of supposedly anonymous medical records including one

belonging to William Weld - the governor of Massachusetts at the time - using a voter list

she purchased from the city of Cambridge, Massachusetts for a mere $20 (Sweeney 2002).

The ease with which she obtained the public records she needed to re-identify his

record bears eloquent testimony of the inadequacy of de-identification techniques for

preserving privacy. This motivates our discussion of the second privacy-preserving process

acceptable under the HIPAA: anonymization.

An anonymization process renders a record "not individually identifiable" i.e. the

record's information cannot be used by an adversary "alone or in combination" with other

"reasonably available information" to uniquely identify an individual (United States Ofice

of Health And Human Services 2003). This thesis is focused on this second process:

anonymization. -

Unlike the first process, which could output data matching a single person in a

relevant population, an anonymization process outputs records that match at least k

individuals in a database of N records, where 1 5 k 5 N. Because k is an arbitrary

parameter, it can be increased or decreased according to the sensitivity of the information

and the needs of the application. For example, for an online advertising firm a low value of

k may suffice, whereas in the healthcare domain, a higher value may be required.

The second reason for the proliferation of anonymization systems is that institutions

are often hesitant, if not unwilling, to disclose private health information to third parties

owing to legal liability and the possibility of negative publicity. Although, institutions will

typically require third parties to sign confidentiality agreements, such assurances cannot

defend against hacker attacks (Chin 2001), accidental disclosure (Walls 2000), or theft

(Hines 2006) from insiders or outsiders. And because breaches in confidentiality can

impede the original data provider's ability to collect the data in the first place (John Hagel

and Singer 1999; Mandl, Szolovits et al. 2001), while also exposing the original data

provider to legal liability (Hodge, Gostin et al. 1999), institutions have strong incentives to

mitigate such risks by anonymizing data prior to its disclosure.

Another motivation for pursuing anonyrnization systems is the long term vision of

providing medical researchers, public health officials and policy makers with unfettered

access to medical information without violating patient privacy (Gostin 1997). In many

jurisdictions including the United States, researchers must justify their use of data to a

review board prior to getting access to medical data - in what amounts to a slow and

cumbersome process.

Research in automated record anonymization could speed the pace of medical

research. For example, every hospital could have a record server that could offer

anonymized records to researchers on-demand thus eliminating the scarcity of medical

data.

Moreover, such anonymization systems could allow researchers to more freely

engage in speculative and exploratory studies. Whereas current practice requires

researchers to justify every information disclosure to a review board - a process that

encourages researchers to limit requests to only their most promising studies, review boards

may feel more comfortable releasing data for more speculative and exploratory studies with

the advent of anonymization systems. In short, anonymization algorithms may provide the

key to unlocking stores of medical information.

Statement of Claims

In this dissertation I have introduced a number of new idea and technologies; in

particular, I have:

1. Presented a new threat model for privacy and a concept called a "Virtual Attack

Database" which can be used to formally model certain privacy threats.

2. Outlined a toolkit that can anonymize data and can measure the performance of

various approaches to anonymizing data

3. Introduced new anonymization algorithms and new measures of anonyrnization

performance (to guide such algorithms) that are in principle more attractive than

previously published measures.

4. Empirically measured the performance of various anonymization measures and

algorithms on 1000 real hospital patient records.

5. Proposed a Bayesian network that can estimate (with a high degree of confidence),

the k-anonymity of a record in a larger population. This enables researchers to

safely release records that match less than k records in a database while still

assuring k-anonymity in a larger population. In sum, this procedure allows

researchers to preserve more data.

6. Shown that generalization and suppression; which heretofore, have been thought to

be distinct concepts are in fact the same thing insofar as every generalization can be

represented as a suppression and vice versa. This was made possible by introducing

a concept called an "augmented table" which includes all the fields implied by an

original table.

Organization of this dissertation

First, we will introduce a threat model for privacy. Once the threat model has been

defined, we examine various methods of defending against these threats, including the

technique of k-anonymity. Next, we examine how these methods fare under different

scenarios, leading to a formal definition of the problem we wish to solve. We then

introduce the Vinterbo framework for privacy, which attempts to anonymize rows in a table

while maximizing the information value of each row according to some measure function

for a desired level of k-anonymity. We then examine several measure functions present in

the literature and discover that current measure functions are difficult to defend rationally,

leading us to propose several new measure functions. Next we introduce several new

algorithms for achieving k-anonymity. Our discussion then moves to a toolkit created by

the author and Robert Fischer that implements our algorithms and measure functions. The

performance of various algorithms and measures is then empirically evaluated according to

a number of measures (both new and old) over both real and synthetic patient data We then

enter a discussion of how some of our initial assumptions can be relaxed to preserve more

data.

A threat model for privacy

We now define a threat model for privacy which we will refer to later in this paper.

Before defining the problem formally, we will begin with a less formal definition. We

begin by defining privacy risk.

The "privacy risk" of a piece of data (or datum) could be described as its "risk of

re-identification." It represents the risk of identifying an individual from a piece of

information given all other information available to an adversary (United States Office of

Health And Human Services 2003).

For the purposes of developing a threat model we distinguish between electronic

privacy and non-electronic privacy. To explain the difference, we concoct an example.

Suppose you knew I liked to wear tall green hats (a rate trait). You could use this

information to identify me in a public square. But unless this information (alone or in

combination with other information available to my adversary) can be linked to some

identifier in an electronic database, you cannot use this information to identify me using

techniques such as "record linkage" (Felligi and Sunter 1969). This leads to a problem

definition.

Suppose there exists a hypothetical database consisting of the amalgamation of all

possible databases available to an adversary. Suppose this database also includes all fields

that could be inferred by our adversary. We refer to this database as the virtual attack

database. This virtual attack database is virtual in the sense that it may not actually be

assembled but it could be constructed, if one or more databases were linked together using

the fmily of record linkage techniques first described by Felligi and Sunter (Felligi and

Sunter 1969).

This leads us to the notion of privacy risk, which could also be referred to as the

risk of re-identification. If a field's value does not exist in an adversary's virtual attack

database, then consequently there can be no electronic privacy risk associated with that

data item for that given adversary. It is still possible, however, that another adversary will

have a virtual attack database that could be linked to my field. But if no database fields in

any virtual attack database could be linked to or inferred from my penchant for wearing tall

green hats, then this knowledge about me does not cany any electronic privacy risk

whatsoever.

Nonetheless, the knowledge that a person likes to wear tall green hats in a certain

city still poses a risk insofar as such information could potentially be used to identify that

person in a public square. We term this risk, a general privacy risk - as it requires no

database to exist (or potentially exist) for a risk to be present. Put another way, the General

Privacy of a datum encompasses both its electronic and nonelectronic privacy risk.

In this thesis, we are solely focusing on reducing electronic privacy risk. For many

applications, a consideration of general privacy reduces to an exercise in minimizing the

electronic privacy risk. In other applications - particularly where an adversary can use a

piece of information without the need to correlate it with data in a database - a general

privacy risk exists in absence of an electronic privacy risk.

Having defmed the problem informally, we now define the problem of electronic

privacy risk formally. Let U represent the universal set from which individuals in a

database are drawn. This universe will vary according to the application. For instance, if

the database belongs to a small local clinic, the universe might consist of only the

individuals living in the surrounding geographic areas served by the clinic, whereas if the

database belongs to a mid-sized hospital, the universe may include individuals in a larger

geographic area.

Let SSU represent the subset of individuals from the universe with records in a

database, D. And let f(s) return a vector representing the fields in the database for record s.

For simplicity, we overload notation to writef; to represent the vector representing the ith

individual in S where 1 s IS1 (assuming S has at least one record).

Today, one can readily buy a number of public records such as voter lists, birth

records, driving records, and credit reports. Therefore, let us suppose an adversary has

access to a "virtual attack database" containing records associated with a set of individuals

R EU. Let g(r) represent a function that returns a vector whose elements represent the

fields for the individual r=R in the attack database. For simplicity we write gi to represent

the record corresponding to the ith individual in R. Also let us suppose that the fields

returned by g() include a social security number or any other group of one or more fields

that in combination could uniquely identify a member of the population. Such collections

of identifying fields we will hereafter term quasi-identifies (Dalenius 1986) because such

fields can be used in combination to uniquely identify an individual. In order for a group

of fields to qualify as a quasi-identifier, the collection of fields must exist in a database that

either exists or could be potentially be constructed by an adversary. Otherwise the

adversary will have no way of using these fields to uncover the respondent's identity.

If there are some overlapping fields in f(s) and g(r), then the adversary can attempt

to use record linkage techniques (Felligi and Sunter 1969) to link the records corresponding

to people in S to the individuals in R. We wish to find a privacy enhancing data

transformation Ai() for each record i=S such that each transformed record will match at

least k individuals in U. We, however, cannot be sure what data the adversary has; i.e. the

fbnction g() is unknown and thus also unknown are the quasi-identifiers used by the

adversary. What we can be sure of, however, is that if there are at least k elements in S for

whom information in f(s) matches A($) then there are at least k individuals in U that match

that same criteria. Consequently, if we only release information matching k individuals in

S, the adversary can narrow down the search to at most k individuals in R. In general, if a

given record matches k records in R, we say that the record has "k-anonymity" - a phrase

first coined by Sweeney (Sweeney 2003). A record's k-anonymity can generally be

increased by increasing the granularity of fields within the record. This parameter k, may be

thought of as a quantifiable measure of privacy. The higher the number, k, the greater

anonymity of the records output of the anonymization process.

Methods of Anonymizing fields

In order to motivate the row anonymization algorithms in our toolkit we will go

over some methods of anonymizing individual fields:

Method 1: Ranging

Ranging achieves k-anonymity by subsuming two ranges into a new range. For

example, the two age ranges [10,25] and [8,20] could be ranged into [8,25].

Method 2: Binning

Binning refers to the process of assigning various inputs into bins according to

some criteria. A simple example of this is the discretization of ages such as 10 and 15 into

pre-specified mutually exclusive age ranges such as [lo, 121 and [13,151.

Method 3: Generalization

Generalization refers to the replacement of one data value, with a "more general,

less specific value, that is faithful to the original" (Sweeney 2003). For example a city can

be generalized to a less specific locale such as a county or a state; while a date of birth

could be generalized to a year of birth or interval such as [25,30] representing an age range.

The generalizations that are possible for each attribute in a database S can be represented

through a partially ordered set known as a Domain Generalization Hierarchy (DGH)

(Sweeney 2003). Given an attribute A of a private table PT, Sweeney defines a domain

generalization hierarchy (DGH) for an attribute A as a set of functionsfh : h=O, ..., N-1:

such that A=Ao and lANl = l . The latter requirement ensures that the final transformation

generalizes to a single value - a useful trait to model deletion of the data, which in the

statistical literature is referred to as "cell suppression."

The DGH formalism models some hierarchies well but it fails to model others.

Consider for example the hierarchy for zip code illustrated in Figure 1.

Figure I : An example of a domain generalization
hierarchy, representing the possible generalizations
of some US zip codes.

This generalization hierarchy is perfectly captured by a DGH. On the other hand,

there are some generalizations that a DGH cannot handle - particularly when a single

value can generalize to more than one value. These situations are not merely theoretical

curiosities; rather they do occur in real practice.

Consider for example, the generalization hierarchy corresponding to data

distributed by the US Census Bureau (shown in Figure 2). In this example we see that a

census block can have multiple possible generalizations. In fact, Figure 2 illustrates that a

census block can be generalized to no less than 13 different designations including a Zip

Code or a Place (which encapsulates cities, boroughs and other geographic designations).

Another example demonstrating the need for multiple generalizations occurs

when one wishes to discretize continuous values into a data structure called a lattice. The

need for such a data structure arises, for example, when one wishes to bin ages into an

age range - while still allowing those age ranges to be further generalizable to still wider

age ranges. While one could impose a hierarchy where every single age range had only a

single parent, the additional flexibility afforded by the lattice may capture more

information.

Figure 2: Generalization Hierarchy for the US
Census Database.

0-80

I \

0-60 1 1-80

I \ I \

0-40 1 1-60 20-80

I \ I \ I \

0-20 1 1-40 2 1 -60 41-80

I \ I \ I \ I \

0-10 1 1-20 2 1 -40 4 1 -60 60-80

Figure 3: An Age Lattice demonstrating that the ability for
each node to have more than one parent is highly useful.

Figure 3 illustrates how such a lattice could be constructed to handle a continuous

variable such as age. It can be seen upon inspection that such a lattice can be constructed

for any arbitrary dicretization quanta.

The need for a lattice also becomes apparent when one wishes to use information

theoretic measures such as mutual information as measures of information loss. Because

such measures are not defined for continuous values, it becomes necessary to discretize

the data. A lattice provides an elegant generalization hierarchy for discretizing such

continuous values.

The latter three examples (age discretization, census generalization, and mutual

information calculation) highlight the inadequacy of the DGH formalism to model

multiple generalizations. To this end, we define a formalism called a Value

Generalization Partially Ordered Set or VG-POSET. For simplicity we refer to this data

structure as a Poset hereafter. A Poset is similar to a DGH, but it allows a single attribute

to be generalized onto multiple possible attributes.

Definition 1: Value Generalization Partially Ordered Set

Formally, a Partially Ordered Value Generalization Hierarchy (VG-Poset) for an

attribute A is defined as a set of functions J;,: 1;J: Ai ---+ Aj such that mi>j and for

every i there exists at least oneJj, and IANI =l. Again we use the latter requirement on AN

to force a single ultimate generalization representing the deletion of the cell.

Definition 2: Measure function k c)

A measure function r(r) for a record r returns a real number representing the utility

(or value) of the record r to the user, where 0 < I.(.) < m, with 0 representing the best

possible score, and larger scores representing increasingly lower information value.

Properties of a Measure Function

We assume that one or many measure functions could be used. However, we wish

to specify two minimum properties that a measure function should satisfy.

First, we require monotonicity; that is, if there exists a function& in the domain

generalization hierarchy (meaning that A, is a more general form than Ai and that

consequently A, has less information content) and rl €Ai and r2 €A, then i(rS < z(r2).

Second, we require transitivity. Let X= (rl, r2,. . , rl) represent a vector of arbitrary

length I. If each of the ri represents an element in the {A$ such that for every pair (ri,ri+$

there exists a f u n ~ t i ~ n f ; ~ + ~ . , then the measure function must provide that for all u>v, z(rJ >

z(rJ. Put another way, if the vector X represents a path through the PODGH, then every

generalization is required to have a "worse" score than its more specific predecessor; i.e.

we are requiring strict monotonicity among these scores.

Definition 3: Least Upper Bound (LUB)

We define the Least Upper Bound of two values vl, and v2, i.e. L UB(vl, v2) for a

Poset, D as follows. Let A={al,a2,a3, ... , aA$ be the set of values in D that are the ancestors

of both vl and v2. For every element in A, let us take the measure of that value. Let M be

the minimum measure value among these measures. Then the LUB of vl and v2 is the

subset of A whose measure values are equivalent to the lowest measure value; i.e.:

LUB(v1,v2) ={ ai I z(aJ < z(aJ for all j E{1,2, ... lAI))

Similarly we define the LUB of two records X and Y as the painvise LUB between the

elements of X and Y; i.e. :

Notice however that the LUB of two records is a set whose elements are also sets. This

resultant, we term a "LUB set."

Definition 4: Least Upper Bound of a LUB Set and a Record R

Let LS ={{XI1,Xl2, ... X/,' {X21,X22, ..., XZk), ... {xNhXN2, ..., XNL}) be a LUBSet and

let r = <Xl,X2, .. .,XN> be a record. For simplicity of notation we re-define the LUBSet as

{Z1,Z2. ... ZN} where the Zi are sets of rows, and let F = {Zl x{Xl), ZzX{X2}. ... , ZNX{XN)).

Again for convenience we re-name the sets F is composed of as F=(FI, F2, FN). We

now define the LUB of the LUBSet LS and a record r as:

where LUBi(xy) represents the LUB of the ith element of set X with the vector

representing a record y and i is chosen such that z(LUBi(Fl x F2 x . x FN, R)) is

minimized.

We also define the LUB of more than two rows, written rl,r2, .. . , r~ as:

LUB(rl,rZ,rS ,.., rN) = LUB(... (LUB(LUB(rl,rz),r3) ...),rN)

An optimization problem

Let T represent a table where the columns represent attributes and the rows

represent individuals in the population (i.e. patients, customers, et cetera). We wish to

create a new table T' by replacing each row, r, in T with the LUB of the original row and

k-1 other rows, written rl, r2, ... , rk-1 such that the measure, z() for the LUB(r, r r r2, .. , rk.

1) is minimized.

As shown in Vinterbo (Vinterbo 2002), achieving k-anonymity is an NP-hard

problem. As a result, all practical algorithms must make numerous choices at various points

in the arnbiguation process. What attributes should be sacrificed (i.e. generalized) and

which should be kept? Unless the algorithm has some notion of information value, it has no

basis to guide such decisions.

Our Extensions to the Vinterbo Framework

The Vinterbo framework provides an elegant way of modeling the k-anonymity problem.

But a researcher using the Vinterbo framework is faced with the problem of defining zt), the

measure function. In this dissertation we explore different measure functions, in search of ones that

are rationally defensible.

Related Work

1. DataFZy (Sweeney) - DataFly was the first published k-ambiguity algorithm. It has

no notion of information value and is therefore a blind algorithm.

2. K-Similar (Sweeney) - K-similar also achieves k-anonymity. K-similar, unlike

DataFly, does utilize a notion of information value; however, we show that the

information measure used by the K-similar algorithm falls into a category known as

a "weighted index" that is difficult to justify rationally; we later present measure

functions which have a more sound rational basis.

3. p-argus and r-argus (Hunderpool, et al.) - Developed at Statistics Netherlands, this

system was proven by Sweeney to not provide sufficient k-anonymity.

Our work differs fiom the others through (1) the use of a formal framework; (2) our

exposition on why the measure hc t ions of existing algorithms cannot be defended (3) the

introduction of new ambiguation algorithms and defensible measure functions (4) the use

of empirical measures of real data and (5) the theoretical contributions listed in our

statement of claims (see page 13). Further the source code for this project has been released

as an open source project, whereas the source code for the above projects are not available.

Attacks on k-anonymity

Having defined how we intend to achieve k-anonymity, we now define attacks

against our system.

Unsorted Matching Attack (Sweeney 2002)

A table can be k-anonymized in many different ways. Thus it is possible to release

many different anonymized versions of the same table. If the rows in those anonymized

tables are listed in the same order; than one can combine the rows from different tables to

infer more information that was otherwise possible by examining each individual row. To

thwart this attack one can simply randomize the order in which the rows are released in

each disclosure.

Linking Attack

This Attack (Felligi and Sunter 1969) recognizes that records in different databases

can be linked together. The attack begins by calibrating a probability model whose

parameters include the probability of finding similarities and differences between two

records referring to the same individual. The similarities might include factors such as

"having the same last name" while the differences might include "having a spelling error

with a string edit distance of 1." Using this model one can estimate the probability that

records in two different databases refer to the same individual. An arbitrary probability

threshold is set above which two records are said to be a match. For example, one might

declare that "all records with 95% likelihood of being a match will be considered a match."

Complementary Release Attack

This attack recognizes that if one discloses an anonymized version of a table then

that table should be considered to be "joining external information" available to an

adversary (Sweeney 2002). The implication is that if one releases some portion of a table in

the present (which we shall call PT) that may limit one's ability to safely release an

anonymized version of the same table in the future (which we shall call FT). One solution

to this problem is to based FT on PT; or to consider PT as a part of the quasi-identifier.

Temporal attack

Because tables tend to change over time, subsequent releases of a table may allow

one to draw inferences (Sweeney 2002). The solution is to not anonymize the current table

but instead base the disclosure on the union of the previously disclosed tables and the new

rows added to the table.

Attributes Occurring Less Than k Times Attack

Attributes occurring less than k times can possibly lead to re-identification

(Sweeney 2002). Consider, for example, a table corresponding to the inhabitants of a

village where all people have the race "white" whereas one person has the race "black." In

a k-anonymized version of the original table, the black person's race will be the only one

that is suppressed. Thus, we can readily re-identify this record, even if the race attribute is

suppressed and regardless of how high a level of k was selected. One can defend from this

attack by deleting all rows containing values occurring less than k times.

Measure Functions

There are a number of possible measure functions of information value. In the

context of a hierarchy, Sweeney proposed the PREC measure for a table as follows:

Where:

R

IPfl

INAl

IDGq ~i

is a released row

is the number of rows in the original table,

is the number of columns in the original table,

is the height in the domain generalization hierarchy for attribute i

where the leaves are considered height 0.

is the height of the node in the Domain Generalization Hierarchy

corresponding to the value of the cell (ij) in the generalized table.

To gain insight into the workings of the PREC measure, we introduce equation 2.

Whereas equation 1 is a measure that applies to an entire table, the measure listed in

equation 2 can be interpreted as the PREC measure for an individual row. Put another way,

when averaged over all rows, Equation 2 reduces to the PREC measure listed in Equation

(1)-

Although the PREC measure would seem to be a reasonable measure of

information value it falls into a category of measures called "weighted indexes" which are

known to be rationally indefensible. We illustrate this by example. Suppose we have a

database with three attributes; namely has-renalfailure, has-hiv (a binary field indicating

the presence of the HIV virus) and gender. Assume all three fields are associated with a 2

level domain value hierarchy shown in Figure 4.

* * *
I \ I \ I \

male female yes no true false

Figure 4: Domain Generalization Hierarchies for gender,
has-renal-failure and has-hiv

Now consider the rows of Figure 5. The first row of the table represents the

original row, while the second, third and fourth rows respectively represent the original row

where the fields of gender, HIV or renal failure have been generalized. The PREC measure

does not distinguish between these three generalizations insofar as it assigns the same

PREC score to each of these three rows. More pointedly, to the PREC measure the fields

gender, HIV and renal failure are equally valuable.

But upon what basis does this algorithm assign the same value to preservation of

the gender field as it assigns to the preservation of HIV? And if HIV shouldn't be equally

valuable as gender, how many times more valuable should HIV be than gender? Whatever

answers are given to these rhetorical questions are likely to lack a rational basis.

Figure 5: The frailty of weighted indexing. The first row
represents the original row, whereas each subsequent row is
a mirror of the original but with a different attribute
suppressed. Although rows two through four suppress
different attributes of the original row, their PREC measure
is the same. This indicates that the PREC measure
implicitly considers the columns Gender, HIV and Renal
Failure to be of equal value.

The problem just outlined is sometimes referred to as the "weighted indexing

problem" and it arises whenever quantities of non-convertible heterogeneous units are

summed into a single unit. It fails to be resolved if heterogeneous units are multiplied by a

weight before the summation takes place. A treatment of this problem is found in Field's

PhD thesis (Frank Remson Field 1985). Field shows that weighted indexing cannot be

rationally defended as a measure of utility, and that neither normalization nor the

conversion to ranks can solve the fundamental problem.

Another possible weighting method is presented as an example by Vinterbo

(Vinterbo 2002). In this system the leaves of the Poset (or Domain Generalization

Hierarchy) are assigned a value of 0 (which is considered a perfect score) while subsequent

levels are assigned progressively higher values such that the monotonicity property of the

measure function is satisfied. To compute the value of a row one sums the values of nodes

corresponding to values in each column. This again constitutes a weighted index (with a

weight of 1 .O) for each column.

Description

Original Row

Gender Cell Generalized

Gender Cell Generalized

Gender Cell Generalized

Renal Failure

True

True

True

*

PREC

1 .OO

0.66

0.66

0.66

Gender

M

*

M

M

HIV

False

False

*

False

In many respects, this metric mirrors Sweeney's PREC metric insofar as the value

of a data item is totally dependent on its level in the hierarchy. In fact, if one sets the

measure of each node in the hierarchy to its height in the hierarchy, one obtains the same

result as that illustrated in Figure 3 - where the fields HIV, gender, and renal failure are

implicitly considered by the measure function to be equally valuable.

If weighted indexes cannot be rationally defended are there any information

measures that can be defended? We propose a number of measures in order of increasing

defensibility.

Proposed Measure 1: Mutual Information Of A Column With Respect To A Target Variable

Since the purpose for disclosing the data in the first place is to build predictive

models, we propose using the Mutual Information with respect to the predicted variable as

a column weight. Of course, this assumes we know in advance what variable we wish to

predict. In such a situation this would seem to be a more rational approach than simply

using a weight of 1.0 for all columns, as was done in earlier examples. The mutual

information between a variable X and a predicted class variable C is defined as:

where X is a random vector representing the rows in the database, and C is a class variable

we wish to predict. The above equation however is a metric for an entire column; whereas

we need a measure for a specific row. We propose that the mutual information scores for

each column be summed, in order to calculate this metric for a row.

For example, suppose we have a table where each row represents a patient and

where the columns represent attributes of a patient. If one of the columns is a binary

variable representing the diagnosis of cancer, then we can use the mutual information of all

variables with respect to the binary variable cancer as our information measure.

The use of mutual information as an information value measure is not a panacea. It

requires us to declare in advance one or more variables that will be predicted by the

predictive models that the data will be used to build. But in many applications, we simple

may not know how the data will be used and so will be unable to determine what variable

should be optimizd.

Moreover, the use of the mutual information metric may have unexpected effects

on l tu re disclosures owing to the consequences of the Complementary Release Attack

(Sweeney 2002) discussed on page 25. In the context of using mutual information, the

implication of this attack takes on additional connotations: by releasing a table optimized

for predictive modeling of one variable, we may also limit our ability to release information

optimized for other variables

The mutual information metric also suffers from another serious problem. If the

table we are trying to anonymized has more than one column (other than the column we are

trying to predict) we are again faced with the weighted indexing problem when summing

the measures from the individual columns into a measure for the entire row. It is perfectly

defensible to sum the mutual information scores of the columns into a single score if the

columns contain no redundant information (or put another way, if the columns were

generated wholly independent of each other). But this assumption is almost certainly

violated in practice. Nonetheless, the fact that there are situations where the columns can be

defensibly summed, and the fact that the weights are generated from the data itself, makes

this measure more defensible than totally arbitrary weight of 1.0.

Proposed Measure 2: The Degradation in Performance of a Predictive Model

Suppose we know in advance the variable that the data will be used to predict.

Suppose we also have a predictive model that can handle missing values (although this

assumption will be later relaxed). If the output of the model for each row on the l l l y

identifiable data is taken as a "gold standard" - then deviations from this output can be seen

as error introduced by the anonymization process. This measure can be calculated at the

individual row level (as the deviation from the gold standard) or at a table level (using

measures such as the mean, average, total error and standard deviation). Predictive models

particularly suited to this purpose include Bayesian networks and Decision trees since they

can both handle missing information.

It is also possible to use predictive models that cannot normally handle missing

input values if the missing data consist of categorical values (as opposed to continuous

ones). Techniques for handling missing information include the Expectation Maximization

(Dempster, Laird et al. 1977), Gibbs Sampling (Geman and Geman 1984), Multiple

Imputation (J.L Schafer 1999) and Robust Bayes Estimation (Ramoni and Sebastiani

2001).

A method for utilizing a Bayesian model as a measure function

Here we propose a method for a constructing a Bayesian model that could serve as

the predictive model for measure 2. It will also be shown that this model can also be used

to predict missing values. The basic idea is to harvest the structural information inherent in

a DGH or Poset to aid the discovery of the structure of our model.

Before getting into the details we first introduce the idea of impliedfields in a table.

The concept of implied fields is useful when modeling generalization using a Poset or

DGH. Consider for example a simple table such as that found in Figure 6, and suppose that

Race and HIV cannot be generalized (except by suppression) but that the field Zip can be

generalized according to the DGH set out in Figure 1. Suppose however, that we augment

this table with the "implied fields" zip4, and zip3 representing the 4-digit and 3-digit

generalizations of the 5-digit zip codes in column zip5. We call this table, an augmented

table because the original table has been augmented to include all implied fields.

Figure 6: Original Table

i

Zip5

021 39

021 38

98052

Race

White

Black

Asian

HIV

Yes

No

Yes

Figure 7: An Augmented Table for a simple table
containing a Zip code where the first row has been
generalized to a 4 digit zip.

Herein lies the elegance of this model. In this augmented table, every generalization

is represented by exactly one cell suppression. In Figure 7 for example, a row had the value

"02139" in the zip5 field. To generalize this field into its four-digit counterpart (i.e.

"0213") we simply suppress the zip5 field while leaving the values in the zip4 and zip3

intact. It can also be seen upon inspection that every suppression can be represented as a

generalization in an augmented table.

Earlier, we mentioned that the information loss of an anonymization algorithm on a

data set can be measured using a predictive model; however, we have not show how to

build such a model. As will be shown, one can harvest the structure of a DGH (using an

Augmented Table) to build a Bayesian Network which can serve as the predictive model.

Race

M i t e

Black

Asian

The Bayesian Network can be constructed using the following process:

HIV

Yes

No

Yes

Zip5

02138

98052

1. Construct a model using the fully identifiable information.

This model is constructed using techniques commonly used by Bayesian

practitioners. One common practice is to split a data set into two parts (Mitchell

1997). The first (the "training set") is used to discover the structure of the Bayesian

network and to train the model. The second, (the "test set") is used to test the

model. The Bayes network is often constructed by beginning with no fields, and

Zip4

0123

0213

9805

Zip3

021

012

980

adding fields (one at a time) ordered by their mutual information scores with

respect to the variable being predicted1. As each field is added to the Bayesian

Network, the Bayesian network is retrained using the training set. When the

performance of the model on the training set begins to decrease, no M e r fields

are added and the performance of the network is then tested on the test set. If the

model performs well on the test set, the model is said to be "generalizable" insofar

as it performed well on a data set on which it was neither constructed nor trained.

2. Enhance the Bayesian Model using Implied Fields and Information from the

Poset

Suppose in the last step a simple model was constructed with a node configuration

as follows:

Zip5 - HIV

A / Race

For every field in the model constructed at step 1, we add nodes in the Bayesian

network corresponding to its parents in the DGH or Poset. For instance, in the latter

example we would have:

Zip3 + Zip4 9 Zip5 9 HIV

/
Race

That is, 3-digit zip code would try to predict the 4-digit zip code (when the 4-digit

zip code was missing), and the 4-digit zip code would try to predict the 5-digit zip

code (when the 5-digit zip code was missing).

' A procedure mentioned by Marco Ramoni, a Bayesian specialist and Professor of Pediatrics and Medicine at Harvard
Medical School.

3. Add Further fields to the model as appropriate

One may discover, for example, that the field "race" may help predict one or more

of zip3, zip4 or zip5 Thus, it is appropriate to have a third step where one adds

nodes to the Bayes network, using the Mutual Information procedure outlined in

step 1. The final outcome of this process may look like something like this:

Zip3 + Zi 4 9 Zip5 + HIV

f0GG
Race

The link from race to Zip5 and Zip4 would seem to indicate that race can

predict one's zip codes with a certain specificity - an unsurprising conclusion when

one considers that many neighborhoods contain a preponderance of people from a

given race.

The above procedure is but one way of discovering the structure of a Bayesian network;

however, we believe this procedure is advantageous insofar as it harvests the structure of

the DGH to aid the discovery process. Given that there is, at present, no generally accepted

method for discovering the structure of a Bayesian network, it would seem that this

procedure offers a good start.

It would also seem that such a network could also be used to attack k-anonymity,

however, such application is beyond the scope of this dissertation.

The DSG Privacy Toolkit

The DSG Privacy Toolkit is a Java API and a collection of command line tools

written by the author and Robert Fischer that anonymizes information using an extended

version of the Vinterbo framework. We now outline the toolkit and some of the design

choices made.

As noted earlier, the DSG Privacy Toolkit achieves k-ambiguity via generalization.

In order to ambiguate data using the toolkit 3 things need to be specified: (1) the data to be

anonymized (2) partially-ordered generalization hierarchies for each attribute, and (3) an

ambiguation algorithm. We now outline each of these thee aspects in greater detail.

Value Generalization Partially Ordered Set (VG-Posets or Posets for short)

Generalization is implemented via the Least Upper Bound (LUB) operator (as

earlier defined). In order to specify the Least Upper Bound operator for an attribute a

partially ordered set (Poset) is necessary. Our toolkit has several built-in Posets, all of

which implement the Poset interface.

Different fields can be better represented by different kinds of Partially Ordered

Sets. In the DSG toolkit, these Posets are represented by classes implementing the Poset

interface. Moreover, each type of Poset has associated with it a particular type of node that

is used to represent values in the hierarchy. These nodes inherit from the PosetNode class.

Configuration Files

The DSG toolkit's command line interface uses two configuration files -

Column.xm1 and Hierarchy.xm1. Both are required to load data from a Comma Separated

Values (CSV) file. The Hierarchy.xm1 file specifies VG-Posets and Domain Generalization

Hierarchies; whereas the Colurnns.xm1 file binds these aforementioned Posets to specific

columns in a CSV file. In the examples that follow we describe all built-in Posets

supported by the toolkit and how the configuration files can be configured to instantiate

each possible Poset.

Posets

Here we present different classes associated with different types of Posets. For each

Poset we present an overview of how it works and the situations in which it is usem. The

toolkit can be used in two different ways: as an API and as a command line tool. As a result

we provide two ways of instantiating each class (1) via source code (which is useful when

the toolkit is being used via an API) and (2) via the Hierarchy.xm1 configuration file, when

the toolkit is being used as a standalone anonymization tool.

RangePoset and RangeNode

A RangePoset is useful for describing attributes that represent ranges. In particular

it implements ranges that satisfy the property that the LUB of [A,B] and [C,D] is

[min(A,C), max(B,D)] where A,B,C, and D are double precision floating point numbers

that were encapsulated into a RangeNode class. A RangePoset is particularly suited for

describing a hierarchy of age ranges because the upper bound of two age ranges such as

[10,20] and [15,30] satisfies the latter property (i.e. the upper bound would be [10,30]). We

do not call the latter, however, a least upper bound, because age ranges do not always

satisfy the above LUB property. Consider, for example, the non-overlapping age ranges

[lo, 121 and [14,15]; here the LUB is not [10,151 since the element 13 is not included in the

least upper bound Nonetheless [lo, 151 can be considered an upper bound, and so a

RangePoset can be used in that manner. RangePoset can be constructed as follows:

RangePoset(doub1e low, double high) where low and high respectively represent the lower and

upper limits of allowable values. The LUB function of the RangePoset class accepts

RangeNode objects or a LUBset class.

// create a new RangePoset that can hold
// people within the ages of 10 to 90
RangePoset AgeRangePoset = new RangePo~et(10~90);

// Create a node representing an
// age range from 10 to 30 years of age
RangeNode AgeRangel = new RangeNode(10,30);

// Create a node representing an
// age range from 20 to 34 years of age
RangeNode AgeRange2 = new RangeNode (20,35) ;

// find the LUB of the two age ranges
RangeNode result = AgeRangel.lub(AgeRange2);

Example 1: How a RangePoset and RangeNode are used

The following is an example of how one might create a RangePoset in the Hierarchy.xm1 file:

I I

Example 2: How a RangePoset can be instantiated in the Hierarchy.xm1 file

In the above example we have created a RangePoset called "Age-rangegoset"

whose ranges can span from 0 to 120 and where the maximum difference in ages before the

RangeNode assumes an information value of 0 is 25.

MatrixPoset and MultiNode

Partially ordered sets that can take on a finite number of values (such as the one

shown in Figure 3) can be thought of as a directed graph represented by a collection of

nodes and directed edges. The nodes represent items in the hierarchy, and the edges

represent less than or equal to relationships within the hierarchy. The MatrixPoset allows

one to specify such Posets. It uses the MatrixNode class to specify specific nodes in the

Poset. To speed computations, the less than or equal to relationship (LEQ) is pre-computed

for all possible pairs of values in the MatrixLattice. To more rapidly calculate this table, we

note that the lookup table listing the LEQ relationship is the transitive closure of the

adjacency matrix between all nodes - a realization that enables us to take advantage of

relatively efficient algorithms for transitive closure in the literature. While such pre-

computation increases the initial start-up time for our anonyrnization process, we have

found that pre-computation resulted in considerable performance improvements - changing

our run times fiom hours to minutes.

/ / create a MatrixPoset to represent a hierarchy
/ / of ZIP codes

/ / create a new MatrixPoset that can hold 8 nodes
MatrixPoset MP = new MatrixPoset (8) ;

// add the nodes
MP. addNode (*" ,4) ;
MP. addNode (\\021ff, 3) ;
MP. addNode (w0213N ,2) ;
MP. addNode ("0214" ,2) ;
MP. addNode (n02139w, 1) ;
MP. addNode (\\02138", 1) ;
MP.addNode ("02140", 1) ;
MP. addNode (n02141w, 1) ;

// set the less than or equal to relationships

MP. setLeq(MP. getNode (\ \ * I f) , MP. getNode (\\02lW)) ;

MP. setLeq (MP. getNode (\\02lW) , MP. getNode (\\0213ff)) ;

MP. setLeq (MP. getNode (\\021ff) , MP. getNode (\\0214")) ;

MP.~etLeq(MP.getNode(\\0213~~) ,MP.getN0de(\\02138~~)) ;

MP.~etLeq(MP.getNode(\\0213~~) ,MP.getN0de(~02139~~)) ;

MP. ~etLeq(MP.getNode(\\0214~~) ,MP.getNode ("02140ff)) ;

MP. ~etLeq(MP.getNode(\\0214~~) ,MP.getNode(\\02141ff)) ;

// pre-calculate LUB values

MP. setTclosure () ;

// find the LUB of 0213 and 0214

Matridode MN1 = new Matridode (MP. getNodet\0213")

MatrixNode MN2= new MatrixNode (MP. getNode\\0214")

LUBSet result = MP.getLubset (MNl,MN2);

/ / result now holds a LubSet containing the node "021N

Example 3: How a MatrixPoset is used

'The following is an example of how one might create a MatrixPoset in the Hierarchy.xm1 file:

<MatrixPoset Name="ICD9-Codes" RootNoar -"ID9000000">
<Node I D="ID9000000 Name=" - Value="l " Parents="ID9000000"/>
<Node ID="ID9000001" Name="008" Value="l" Parents="ID9000000"/>
<Node ID="ID9000002" Name="03IM Value="lW Parents="ID9000000"/>
<Node ID="ID9000003" Name="038" Value="l" Parents="ID9000000"/>

</MatrixPoset>
,-

Example 4: How a MatrixPoset can be Instantiated in the Hierarchy.xm1 file

In the latter example, we have a MatrixPoset of 3 Diagnostic Related Grouping

(DRG) codes representing different medical procedures. The root node in the hierarchy

represents the suppression of the cell. As always, this root node is its own parent and we've

given it the name "*" (a symbol often used to denote a wildcard) to denote that a deleted

cell could match any value. The remaining three nodes represent the DRG codes allowable

in the data set - all of whom list the root node as their parent.

PowerPoset

A group of one or more binary fields can be represented by a PowerPoset. The

PowerPoset assumes that the LUB of two bit-vectors a and b is a A b, where the A operator

represents a bitwise AND operator. As an example, let us suppose that a and b are both

two-bit bit vectors, where the first bit represents the presence of "HIV" and the second

represents the presence of renal failure. The LUB of a and b will be the traits common to

both vectors a and b. In other words, the LUB of a and b is analogous to a set intersection

operator.

/ / create a new PowerSet that can hold
// 3 boolean fields
PowerSet PS = new PowerSet(3);

/ / Create 2 power nodes of length 3
/ / (initialized to binary '000')
PowerNode PN1 = new PowerNode (3) ;
PowerNode PN2 = new PowerNode(3) ;

// set the second and fifth positions of
// the two Boolean vectors to '1' .
PNl.set(2,l); / / turns on the second bit of PN1
PNl.set(3,l) ; // turns on the third bit of PN1
PN2.set(3,1) ; // turns on the third bit of PN2

PowerNode result = PS . lub (PN1, PN2) ;
// result now holds a PowerNode with binary value 011

Example 5: How a PowerPoset is used

The following is an example of how one might create a PowerPoset in the Hierarchy.xrn1

file:
-

<PowerPoset Name="Has-HIV" Bits="l "I>

Example 6: How a PowerPoset can be instantiated in the Hierarchy.xm1 file

In the latter example, we initiated a Poset for a single Boolean bit that will store

whether or not a person has HIV.

DateOfiirthPoset

A DateOfBirthPoset is useful in situations where one wants to preserve as much

information about a date of birth as possible. Its LUB operator preserves as much

information as is common to its two inputs. If the two dates of birth do not occur in the

same year, it converts both inputs into age ranges to see if they fall into the same range,

in which case it returns the date of birth of a person who was born at the midpoint of that

age range. Finally, if no commonality can be found at the age range level, it suppresses

the cell. The DateOJBirthNode keeps track of the granularity of the node (i.e. day of

birth, month of birth, year of birth, age range, or suppression). The purpose of this to

facilitate calculating LUBSets. A LUBSet of several different dates of birth falling into

the same age range will not change if an additional DateOfBirthNode falling within the

same age range is added.

Here we give a formal definition for the LUB operator. Let a date be composed of the

triplet (d,m,y) where:

d is the day

m is the month

Y is the year

And let a], a2, . . . , a~ represent a series of ordered pairs, (al 1 ,al2), . . . , (a ~ l ,a~2), representing

age ranges [al ,,al2], . . . , [aNl,a~2] such that ail = qi-lp + 1.

And let D~=(d~,rn~,y~) represent a base date against which other dates will be compared

(dl,ml,yl) ifDI=D2= ...= DN

(15, m1,y3 if the days are different but the months and years are the same

(1 5,6,~1) if the months are different but the years are the same

((7, r9 if the years are different, Dl, D2, .. represent the age of someone

who at Db will be greater than ail years of age and less than ai2 years

of age and q,r, and s respectively represent day, month and year of

birth of a person who is (ail + ai2)/2 years of age at time Db.

// age ranges corresponding to [0,5], [6,10]
// [11,15] , [16,20] ... etc ...
int [I rgAge = new int [I {5,10,15,20,25,30,35,40,45,50);

// creates Poset using today's date as the base date
DateOfBirthPoset DOBP = new DateOfBirthPoset

(new GregorianCalendar () , rgAge) ;

// illustrates creating DateOfBirth nodes using
// different date formats
DateOfBirthNode A = new ~ateOfBirthNode (112/13/197811, rgAge) ;
DateOfBirthNode B = new DateOfBirthN0de(~~19780213~~, rgAge) ;
DateOfBirthNode C = new DateOfBirthNode (111978020111, rgAge) ;
DateOfBirthNode D = new DateOfBirthNode ("1 978111311, rgAge) ;
DateOfBirthNode E = new DateOfBirthN0de(~~19791013~~, rgAge) ;

DateOfBirthNode T1 = A.lub(B,rgAge); / / result: 19780213
DateOfBirthNode T2 = C.lub(A,rgAge); / / result: 19780215
DateOfBirthNode T4 = D.lub(E,rgAge); // result: date of birth

// corresponding to
/ / midpoint of age range
/ / [25,301

Figure 8: How a DateOfBirthPoset is used

The following is an example of how one might create a PowerPoset in the Hierarchy.xm1 file:

cDateOfBirthPoset Name="AgeH BaseDate="20060101" AgeRanges="5,30,50,70,90"1~

I I
Example 7: How a PowerPoset can be instantiated in the Hierarchyam1 file

In the above example we have create an DateOfBirthPoset with a base date of Jan

1 st, 2006. The age ranges it uses are [0,5], [6,30], [3 1,501, [5 1,701, and [7 1,901.

SparseMatrixPoset

A SparseMatrix is sparse in the sense that it compactly represents a matrix. The

matrix it represents has all possible values of a MatrixPoset on one axis, and some quantity

(such as fiequency) on the other. A SparseMatrixPoset is usell when one needs to perform

a join between two or more tables. Consider for example the case where a patient's

demographic details reside in one table, and their diagnostic codes reside in another.

The SparseMatrixPoset can represent these diagnoses as a set of pairs (MN,f) where

MN is a MatrixNode and f is the frequency that the contents of the node appears. For

example, if a patient has 10 cardiac dysrhythas (which are represented by the ICD9-CM

code 427.89) then that would be represented by the pair: (427.89, 10). A

SparseMatrixPoset then can be used to hold the frequencies of occurrence of all diagnoses

in the diagnosis table for each patient.

In order to create a SparseMatrixPoset one must specify the maximum number of

(m, f) pairs that can occur in a given row in addition to passing a reference to a an

instance of a MatrixPoset class (which in our latter example would define all possible

ICD-9-CM codes).

In the Hierarchy.XML Configuration file one can create a SparseMatrixPoset as

follows:

Where:

Name

MatrixLatticeName

Columns

is the name given to this SparseMatrixPoset

is the matrix lattice used to define the LUB of the

MatrixNodes stored in this Poset.

is the maximum number of Name-Value pairs that

can be stored in a given row.

The following is an example of how one might create a SparseMatrixPoset in the

Hierarchy.xm1 file:

<SparseMatrixPoset ' ="SparseMatrixPoset-ICD9 Matri~LatticeName=*'ICD9~Codes" Columns="39/>

Example 8: How a PowerPoset can be instantiated in the Hierarchy.xm1 file

In the above example, we have created a SparseMatrixPoset. The values it can

assume are defmed in the MatrixPoset named ICD9-Codes. This SparseMatrixPoset

contains 39 pairs of columns. Each pair stores an ICD9 code of a diagnosis together with

the frequency with which that diagnoses occurred for that patient.

PassThroughPoset

A PassThroughPoset is useful when one wishes to add fields to a row that should

not be anonyrnized. The LUB of a PassThroughNode and another node is the unchanged

original node. The measure of a PassThroughPoset is always 0 because its information

can never be degraded.

I I

Example 9: How a PassThroughPoset can be instantiated in the Hierarchy.xm1 file

MultiPoset and MultiNode and MultiL UBSet

Tabular data is often represented in a table where the rows represent patient records

and the columns represent attributes. A MultiNode is used to represent a data row and an

array of MultiNodes is used to represent a table. A MultiPoset is used to fmd the LUB of

one or more rows, as follows:

Where A and B are two MultiNodes representing two different patient records. i.e. the LUB

of a MultiPoset is simply the pair-wise LUB of the constituent elements of its inputs.

To define a MultiPoset, one must fmt construct Posets of other types such as

RangePosets, PowerPosets. These individual Posets are then aggregated into a MultiPoset.

A MultiNode in turn is constructed by aggregating Node classes corresponding to the

individual columns. Since the LUB of two MultiNodes may not have a unique value, we

introduce the MultiLUBSet class, whose sole data member is an array of LUBSets. Each

LUBSet in the array represents the possible generalizations of an attribute.

// Assume the code for examples 1,2 and 3 appears above

// create a 3 column MultiPoset
MultiPoset MP = new MultiPoset (3) ;

// add the nodes
MP . setCol ("Age RangeM, RL ,I)
MP.setC~l(~Has HN"IPLI1)
MP. setcol (mZipw,ML, 1)

1;
// Assume table columns are "age rangen, "zipu, and

// three Boolean fields representing renal failure,

// HIV and colon cancer

// create two MultiNodes

// the first with values <lo-30 years, 0213*, (F,T,T)>

// the second with values <20-35 years, 02134*, (FIFIT) >
MultiNodel MN1 = new MultiNode (3) ;

MultiNode2 MN2 = new MultiNode (3) ;

MNl. set (1, (PosetNode) RL1) ; // Age range: 10-30 years
MNl . set (2, (PosetNode) ML1) ; // Zip Code: 0213*
MNl . set (3, (PosetNode) PL1) ; // (False, True, True)
MN2. set (1, (PosetNode) RL2) ; // Age range 20-35 years

MN2. set (2, (PosetNode) ML2) ; // Zip Code: 0214*
MN2. set (3, (PosetNode) PL2) ; // (False, False, True)

LUBSet result = MP.getLubset (MNl,MN2);

// result now holds a LubSet containing a MultiNode

// < [10f35] I "021**", (FITIT)>

Example 10: How a MultiPoset and MultiNode can represent a table

Unlike other Posets, MultiPosets are never declared in the Hierarchy.xm1 file. Rather, they

are used internally by the toolkit to store rows.

Columns.XML File

Heretofore we've explained how to create various Posets in the Hierarchy.xm1 file,

but we have not explained how to load data associated with these Posets from a file. Here

we show how one can load data from a Comma Separated Values file (CSV) into an array

of MultiNodes. But before one can load a CSV file one must first bind one or more Posets

to specific columns in the file. This is done via the Columns.xm1 file.

<Column Name="Age-Year' :"Defal llf' ?t="Age-range~oset" Weigh 3.023" I>
<Column Name="Gender" H Default - - "MvSuppressionPoset" W e i ~ ="988.823 />
<Column Name="Ethnic Ori ="Defauli "M ySuppressionPoset" 18.176/>
<Column Name="mrnM "Defaun Poset="MyPassThroughPoset" Weight="(
<Column Name="total-chrg' erarchy="~efauk' ~set="MyPassThroughPoset' feic ="0/>
<Column Name="high-exp" Hierarchy="Default" Poset="MyPassThroughPoset" Weight="O"P
<Column Name="total_chrg_04" Hierarchy="Default" Poset="MyPassThroughPoset" Weight="O/>
<Column h ie="other-dx-code" Hierarchy="Default" Poset="SparseMatrixPoset-lCD9

-deight="2.566 />
CLolumn Name="principal~xXcode" Hierarchy="Default" Poset="SparseMatrixPosetcODRG"

Weight="7.2263 />
<lTableDescription>

Example 11: How to use the Columns.xml file to bind Posets to specific columns

As shown in the example above, the columns are declared in same order as they

appear in the CSV file. The relative weights for each row can also be specified here. These

weights are multiplied by the measure to give the value of any particular data item. At first

glance it may seem that the toolkit is founded on weighted indexing but this is not so.

While we do provide the facility to implement weighted indexed measures, this facility is

optional and left to the discretion of the user. Implementing such a facility also allows us to

empirical compare weighted indexes against other measures.

The Hierarchy.xm1 file allows one to define namespaces, so that multiple Posets

could be, for example, defined with the same name. By specifying Hierarchy= "Default" in

each column we are declaring that the Poset specified can be found within the default

namespace.

Ambiguators

An ambiguator is a class that implements an algorithm for transforming a table

stored in a DataSet class into a table that has k-anonymity. We use the terms like

ambiguate and ambiguator rather than anonymize and anonymizer because k-anonymity

does not always lead to anonymity (as shown on page 24).

The DSG toolkit is based on the Vinterbo optimization fnunework for

anonymization. All k-anonymization algorithms must implement the Ambiguator class and

receive their data in the form of a DataSet class - a class that simply contains an array of

MultiNodes (which represents an m y of rows) and a generalization hierarchy of

MultiNodes.

1 public class DataSet I
I public MultiPoset MP;

public MultiNode[] data;

I J

Figure 9: Data members of the DataSet Class

Each Ambiguator returns its results as an AmbigRun object whose basic data

members are listed in Figure 10.

public class AmbigRun

{

/ / The original data set that was ambiguated
public DataSet origData;

// Ambiguator used to ambiguate this data
public Ambiguator ambig;

// Final data --- filled in by Ambiguator
public Mu1 tiLUBSet [I ambigData ;

1

Figure 10: AmbigRun Member Functions

The DSG Toolkit contains three ambiguators: Greedy, Greedy-DXCG and Partition

and the toolkit is extensible to allow for the addition of other algorithms. Each Ambiguator

must implement the Ambiguator class. The basic data members of this class are listed in

Figure 12. We have abstracted the arguments to each ambiguator as an AmbigArgs class.

This abstraction enables a series of arnbiguators to be called using the same data in a loop

(enabling side-by-side comparisons of performance). We now explain in greater detail the

built in algorithms.

The Greedy Algorithm

The Greedy ambiguation algorithm was written by the author. It is essentially a hill

climbing algorithm. Given a row, it creates a LUBSet containing the row, and successively adds

rows that least increase the measure of the LUBSet until the LUBSet contains k rows. To arnbiguate

an entire table, it simply repeats the steps above for each row. The pseudo-code for the Greedy

algorithm is shown in Figure 1 1.

ALGORITHM NAME: Greedy

INPUTS: k Value representing desired level of k-

anonymity

MP A MultiPoset.

LUB(X,y,MP) A function, that returns the least upper

bound of the set of rows X and the row y

according to the Poset MP.

Measure (X) A function which returns the information

value of the set of rows X.

RETURNS: items[] an array of sets where items[i] contains

the k integers representing the row

number to be lubbed with row i.

BEGIN

rows f [l,N]

cols f [l,k-1]

for V i € rows {

items[i] f {i}

for V j € columns {

rowWtoWadd f argmin r,At+i measure (LUB (items [i] , t)

items[i] = f items[i] U {row-to-add}

1

1
return items

END

Figure 11: Greedy Algorithm Pseudo-code

The Partition Algorithm

The partition algorithm was written by Robert Fischer. It finds clusters of size at

least k. It functions by recursively splitting rows of a table into two partitions. Initially the

whole data set is regarded as one partition. The algorithm then repeatedly replaces each

partition with two new partitions that were created by splitting the original partition. The

process by which a partition is split is outlined as follows. First, the two elements that are

"farthest apart" from one another are identified. The distance metric used for determining

how far apart two nodes, A and B is as follows:

distance = 2 * [Measure (LUB(A,B))] - [Measure(A) + Measure(B)]

Where Measure(*) is some function that satisfies the properties defined on page 26.

The two nodes found to be farthest apart respectively represent the first elements of the two

initial partitions. The remaining elements are then assigned to the partition closest to them.

This process is recursive. That is, the partitions created by this process are also split into

still smaller partitions, and the process repeats until partitions of size less than k emerge, in

which case the last split is reversed.

The Greedy-DXCG Algorithm

The Greedy-DXCG algorithm is similar to the greedy algorithm but it uses a

different measure and has some specific optimizations. Like the greedy algorithm, it

anonymizes a row by turning it into a LUBSet and by successively adding rows that least

increase the measure of the LUBSet until the LUBSet contains k rows.

But unlike the greedy algorithm it contains some special optimizations. These

optimizations were necessary because an API version of the DxCG software was not

available at the time of the experiment! Whereas the greedy algorithm would call the

measure function n!/(n-k)! times, the Greedy-DxCG algorithm is optimized to only spawn

the DxCG process k times -significantly reducing the overhead of creating and destroying

the DxCG process. This reduction in calls to the DxCG software was achieved by inputting

data to the DxCG function in batches - not by reducing the number of rows DxCG had to

process. Nonetheless, it resulted in significant speed gains.

Another difference between the Greedy algorithm and the Greedy-DxCG algorithm

is their flexibility in using different measures. Whereas the Greedy algorithm can use a

variety of measures, the Greedy-DxCG is tied to a single measure; namely, the error

* It's the author's understanding that an API version is planned but not yet released.

-50-

between DxCG's predicted costs and the patient's actual costs in year 2. As a result, this

algorithm cannot be used on tables except those that have year 1 patient data, and a column

containing actual year 2 patient costs. Thus, the Greedy-DxCG algorithm can only be

considered to be a specialized algorithm. Nonetheless, we created it to serve as a "gold

standard" against we can measure other algorithms, and measures.

Synthetic Data Generation

Included in the DSG Toolkit are tools to generate synthetic data fiom distributions.

Our method of generation is fairly primitive: we randomly generate the data independently

of each other based on distributions found in the US census; however, more advanced

techniques for synthetic data generation (such as the technique known as "multiple

imputation") could possibly be implemented in the toolkit by future researchers.

Command Line Interface

The DSG toolkit has a command line interface that makes it easy to create,

generate, evaluate, or ambiguate data. The command line tool is termed "Lubber" - a

reference to the LUB operation. The command line options are long and extensive. We do

not list them here, but the interested reader can find them by typing "java -jar

privacy Tookitejar -help9'.

Figure 12: Data Members of the AmbigRun class

public class AmbigRun

I
// The original data set before ambiguation

public DataSet origData;

// Ambiguator used to ambiguate this data

public Ambiguator ambig;

// Ambiguated Data

public Mu1 tiLUBSet [I ambigData ;

// An array of k integers for each row that explains

// which rows were combined to create each row.

/ / i . e. ambigData [i] = LUB (items [i] [O] , . . . ,items [i] [k])

public int [] [] items;

1

Experiments

7

Context

We wish to simulate a situation where a variety of hospitals will contribute patient

data to a hypothetical researcher who is seeking to construct a model that can be applied in

a wide variety of geographies and hospitals.

The latter definition has a number of implications. A model that is applicable across

a wide variety of geographies and hospitals will typically only use inputs (such as age,

gender, and diagnoses) that are hospital or geography independent.

As a result, we believe our typical researcher would not be interested in fields that

are geography-specific (such as a zip code) or hospital-specific (such as "name of admitting

physician") unless such fields are first converted into a field that is neither hospital nor

geography specific. An example of such a conversion might be converting the geography-

specific field, "zip code" to the more general field "cost-of-living adjusted income."

Following the above logic, we have chosen to exclude hospital-specific or

geography-specific fields from our analysis. This is not to say that such fields are not usell

to some researchers. But rather a reflection that such fields may not be of use to a

researcher trying to create a risk model of risk for a disease. Moreover there is utility in our

choice - by excluding such fields we are likely to increase the information content of

geography and hospital independent fields like gender, age and diagnosis.

To simulate a real application for the data, we have outputted our anonymized data

into RiskSmart 2.0 - a predictive model produced by DxCG Inc., used by health insurers to

predict their expenditures in future years. In particular, the RiskSmart model allows one to

predict the cost of each patient in future years, based on a patient's demographic profile and

diagnoses in the current year. Health insurers typically use Risksmart to identify patients

whom they could select for preventive treatment - a procedure often termed "disease

management." The idea behind disease management is simple: "an ounce of prevention can

save a pound of cure."

The RiskSmart model has a number of outputs. For the purposes of this dissertation

we have elected to consider only its prediction of 2004 costs based on our 2003 data. For

all of our experiments, we measured the performance of the final output on DxGG - by

summing the absolute errors between DxCG's predictions of expenses and the true

expenses for each individual.

The Data Set

We began with real data set consisting of the demographic data, procedures and

diagnosis of inpatients from hospitals in the Boston area. Institutional Review Board (IRB)

approval was obtained for this study.

The data consisted of the following tables:

demo-03 and demo-04: which contain the demographic information of 28,795 and

32,307 inpatients respectively for individuals registered at the health network in the

years 2003 and 2004. The fields in these tables are show in Figure 13.

Namt -
adm-dtl
last-name
first-name
ssn
dob

1

age-month i
age-year
Gender

I

I

ethnic-origin
I

- I

race-full I

religion

language I
marital-status
zipcode

mrn

chra

First name qNy4s4
Wk'l sc3cwrity number al* r .

.5 ;i..'-%

Qate of birth
Deys of age over and above that

Sfjwi in m t h - a ~ e
Manths ofage over and above
Pitiit spedfied in agejeer

I Years of age
Gender
Ethnic Origin expressed as an
Integer
A FulCtext representation of , ;;;;:@in
Preferred language of

I
correspondence
Marital status
Zip code of residence
Mlsdicai records number - a
unique identifier for each patient
Total oost of beating the patient
for .the year

Figure 13: Fields in Tables Demo-03 and Demo-04

&-03 and &-04: these tables contain 932,657 and 1,121,264 diagnoses of

inpatients for the years 2003 and 2004 respectively. Entries in this table are linked

to those in the demographics table through the mrn field - a unique identifier for

each patient. Figure 14 shows the fields for this table.

Name- Descri~tion

disch-dt

M rn
Los
Gender
Zipcode

Uid
principal-px-cd

principal-px
adm-md

other-dx-cd I
Figure 14: Fields in tables dx-03 and dx-04

As shown in Figure 15, there were only a handfbl of unique diagnoses.

I I I I I

Figure 15: There are only a handful of unique diagnoses

Unique Diagnosis

Expressed as a % of total

Unique

Diagnoses

Year Rows in

Diagnosis Table

Approach

To measure information loss in our experiments we propose a variety of measure

functions. These measure functions could be regarded as constituting a spectrum of

defensibility ranging fiom measures that value all fields equally to those that value each

data item based on its predicted information content.

Method 1: Equal weights (all columns have the same value of 1 .O)

This measure function has two parts. The first computes a score for each

field, the second sums the fist measure into a score for each row.

This measure function assigns a score of 0 to all leaf nodes, 1 to each leafs

parent, 2 to the leaf parent's parents, and so on and so forth. Each of these values,

however are divided by M - the height of the highest height in the hierarchy. This

ensures that the scores range fiom 0 to 1.0 - 0 being assigned to the leaves and 1.0

being assigned to the topmost node in Poset or DGH.

The measure for each row is simply the sum of the scores for each field in

the row. This can be interpreted as assigning a weight of 1.0 for each column. In

sum this measure function can be written as

Where:

R is a row consisting of i columns

h is the height of the element in column i within the Poset or DGH

corresponding to column i.

M is the highest height in the DGH or Poset corresponding to column i

or the highest possible range in a RangePoset.

This measure function has properties highly similar to the PREC metric

discussed in Figure 4 insofar as the position of a field in a DGH or Poset

completely determines its score. Such measures would assign the same

score, for example, to knowing if someone had HIV to knowing if they

were male of female.

Method 2: Using empirically estimated column weights

Whereas the last measure weighted all columns equally, this measure

hc t ion assigns a unique weight to each column according to an empirically

derived measure (the mutual information of that column to the variable we are

trying to predict). This empirical measure seeks to estimate the "true" information

the column has with the predicted variable. The greater the amount of reliable data

one has to estimate the mutual information, the greater the confidence one can have

that the estimate of mutual information converges with its true score.

Where wi is defined as the mutual information between column i and the column

we are trying to predict. The mutual information between a column X, and a

column we are trying to predict C, is defined as:

The mutual information is an information theoretic measure. It represents

the decrease in entropy of the random variable C, given the random variable X i.e.:

Method 3: Using an empirically estimated information measure of each value

Unlike the latter measure which assigns a single number to an entire

column, this measure assigns a value to each cell within a table. This assigned value

is the point-wise mutual information with the target variable.

The point-wise Mutual Information between a vector x, and a target variable

C (the column we are trying to predict) is defined as:

PMI(X = x,C = c) = log,
(;:;;:I 1

If the values x and c are statistically dependent, the mutual information will

be positive. Conversely, if the two values are disassociated greater than chance, the

Mutual Information will be negative.

We have chosen to value both evidence of association and disassociation

equally by using the absolute value of the point-wise mutual information as our

measure. Further, because our system seeks to minimize scores we multiplied the

absolute value of the score by -1 - so data values with more information will be

treated as more valuable.

There are some issues with this measure. First, by summing the pointwise

mutual information scores for each column of a row into a single measure, it

assumes that the columns are all independent - i.e. that there is no redundancy in

the information between the columns - an assumption almost certainly violated in

practice. Second, it violates the monotonicity property we required in a measure

function earlier because a generalized value may actually have a higher score than

its ancestors. This discrepancy reflects the fact that our mutual information estimate

is exactly that: an estimate. Had our tables had enough rows, our values would

converge to the true values and monotonicity would be preserved. We therefore

relax our requirement for monotonicity when using this measure.

Method 4: Using the degradation of the predictive model we intend to use as

our measure

This measure is perhaps the most rationally defensible. It uses the

degradation in predictive performance in our intended application as our measure

of information loss. Unlike the other methods, it escapes the weighted index

problem by considering a row in totality rather than by summing individual

measures for each column.

For the purposes of our experiments our final intended predictive model is

DXCG Inch RiskSmart 2.0.

How we calculate mutual information scores:

To the tables dx-03 and demo-03 we added a column called "high-expense." This

column holds a Boolean value that was set to 1 if a patient had expenditures of more than

$25,000 in year 2 (i.e. 2004), and 0 otherwise. This is the target variable for all mutual

information calculations. We also added implied rows to form an augmented table as

describe in Figure 7. This allowed us to calculate a mutual information score for each level

of generalization in all Posets.

Mutual information scores are known to be biased towards rare values. For the sole

purpose of calculating mutual information scores we temporarily removed all values

occurring less than 6 times.

This resulted in the following:

a. 405 zip codes remained out of 1537
b. One age y e a r (14) was removed (it occurred only once)
c. One ethnic group race was eliminated (NATIVE HAWAIIAN which

occurred only once)

A Per1 script was used to calculate these mutual information scores. Its output was portions

of the Hiemrchy.XML configuration file.

Data Cleansing and Data Preparation Procedures

As is typical of most data sets, we discovered a number of inconsistencies in our

data. For example, we noticed that a number of individuals had their ageyear field set to

zero - even though their dates of birth were in the distant past.

In order to prepare our data for anonymization we performed a number of procedures:

1. Removed obvious identifiers - including first name, last name, uid, social security

number, and address.

2. Removed redundant fields - a field is redundant relative to another if knowing the

second field adds no information not already known from the first. For example, the

field ''race_full" adds no information if one already knows the value of the field

"ethnic group." The former is a number representing an ethnic group, the latter,

merely a human readable 111 text version of the first. This resulted in the

elimination of the field race-hll. We also deleted the field principalgx which was

simply a human readable version of the ICD-9-CM code stored in principalgx-cd

and other-dx-cd which was a human readable version of the DRG code stored in

other-dx. We also elected to delete the fields admission date and discharge date

since they had a very low mutual information score and much of their predictive

information seemed to be captured in the field 10s (which stores the length of stay in

the hospital).

3. Set all ages 1 90 to 90+ - this is a common practice and is consonant with the

procedures used to anonymized records in HIPAA.

4. Deleted patients in demo-03 and dx-03 2003 that did not exist in demo-04 -

To test our anonymized data, we programmed DxCG's Risksmart software to

predict the cost of a patient in 2004 based on their profile in 2003. But unless we

have a patient's 2004 data (including their actual 2004 expenses), we have no way

of calculating the error between the predicted and actual costs. Thus for the

purposes of our experiment, we deleted all patients who didn't have both 2003 and

2004 data.

5. Deleted hospital-specific and geographic specific information - This is in line

with our assumption outlined above. Fields purged include zipcode and admitting

physician.

6. Deleted data items with low mutual information ratios - Mutual information

scores are known to be biased towards elements with a large number of possible

values. To counteract this bias, we divided each mutual information score by the

mutual information score of a column with random values chosen from a set with

the same number of possible values. This ratio may be termed the mutual

information gain or MI Ratio for short. We used the MI ratio as a comparison of

information content across fields (see Appendix 1 for a proof that Mutual

Information scores can be compared across tables). To estimate the MI ratio we

computed the value 10 times, and took the average of the 10 runs.

We chose to delete all entries with a mutual information gain of less than

2.0. This threshold (two times random chance) was arbitrarily chosen. Our choice

was somewhat supported by the fact that age yea r had a ratio just above three while

age-month and age-day - fields that one would expect would essentially be

random and have little medical causal effect - had MI ratios of 1.73 and 0.83

respectively; thus placing our threshold above random chance, but below a value

known to have medical causality. We also eliminated enc-num - a unique ID

assigned to each patient visit. Figure 16 shows the fields that were kept and

discarded following this procedure.

Field Name
enc-num
adm-dtl
disch-dtl
Ssn
Dob
age-day
age-month
age-year
Gender
ethnic-orig in
Religion
Language
marital-status
Zipcode
M rn
tot-chrg
Los

--
Figu- , - J: Fie

1.635 '
0.077
0.078
0.630
0.576

7; . . - 0 WS . \ , .

!Ids that were kept and disca

In some cases, the same field would appear in both the demographic and

diagnoses tables. In each case, we had to determine which table was best to

estimate the MI-ratio for that field. In the case of demographic fields such as

gender, it would be incorrect to estimate their MI-ratio from the dx-03 table

because the same person will have the gender repeated many times - in effect

giving greater weight to people with more diagnoses.

iyq; "$b
w~~~~ . .

Field Name
ad m-d t
Disch-dt
Enc-num
M rn
Gender
Princi pal-px-cd
Other dx cd 1

usea
MI by

MI MI-random Ratio DxCG? Kept

Figure 17: MI Ratios and fields kept in Dx-03.
An b'N/A" in the "kept" column acknowledges the fact
that the MI could not be appropriately estimated from
this table.

The final result of our data preparation and data cleansing procedures was a

table with two extraneous fields - extraneous to the extent that these fields were not

used by the DxCG predictive model. It should be noted, however, that the single

extraneous field, principalqx-cd (principal procedure code) will later be shown to

translate into 15 separate fields in the final table used for the anonymization

process. This could potentially amplifying the extent of the "damage" this single

field could bring to the anonymization process insofar as the presence of extraneous

fields in the anonymization process are likely to divert the ambiguation algorithm

from preserving data from the fields that will actually be used (in the final

predictive model).

7. Deleted data items occurring fewer than k times - On page 25, we outline an

attack that can be applied to data items occurring fewer than k times. To thwart this

attack all data items occurring fewer than k times in the data set were deleted. For

the purpose of this experiment we have set k to 3.

8. Preserved fields needed to calculate error - we configured our anonymization

software to "pass-through" certain fields whose sole purpose was to facilitate

calculate error. To ensure such fields had no effect on the anonyrnization process,

we set the weight of such fields to zero, and used a "PassThroughPoset.~' Fields in

this category include mrn (a unique medical records identifier), tot-chrg - 04 (the

patient's total expenses in 2004) and high-expense (a Boolean field set to 1 only if

a patient's expense in 2004 > $25,000 and 0 otherwise).

Finally, following these data cleansing and preparation procedures, we randomly

selected 1000 patients and joined their information in the demo-03 and dx-03 tables as

follows. First we noted that a patient had at most 62 distinct diagnoses. However only 17

people had more than 39 diagnoses - allowing us to completely capture the diagnoses of

98311000 = 98.3% of the patients in the data set using two groups of 39 columns for each

person. These two groups represented "name-value" pairs. The first 39 columns (Called

dxFieldName1, dxFieldName2, . . . , dxFieldName39) stored the diagnosis codes (i.e the

names). While the remaining 39 columns (named dxFieldVal1, dxFieldVal2, ... ,
dxFieldVal39) stored the corresponding frequencies for each diagnoses (i.e. the values).

The diagnoses were stored fiom left to right. If a patient did not have as many as 39

diagnoses the rightmost fields would hold one or more blank values. If a patient had more

than 39 diagnoses, the latter diagnoses were purged; however, this only happened in 1.7%

of the cases. These two groups of 39 columns were then loaded into a SparseMatrixNode,

to enable the LUB operation to be performed on them across rows. Figure 18 shows the

final table used for our experiments.

unlque
Field Name Values
age-year
gender
ethnic-origin
mrn
tot-c hrg
hig h-exp
tot-c h rg-04
dxFieldName1
dxFieldVal1

Figure 18: The final table used for experiments

Experimental Setup

1. We seek to answer three questions:

a) Which algorithm is best? Greedy or Partition?

b) Which measure function is best? Vinterbo-1.0, Column-MI or Value-MI?

We have defined three measure functions to guide our anonymization process

(which essentially constitute an optimization problem). Under what

circumstances are any of the measures better than the others? Does the choice

of anonymization algorithm or size of the data set affect the outcome?

c) Can we predict what fields will ultimately be used by the end user to

predict the target variable in their models? To what extent do mistakes in

predicting the fields used by the end-user affect the predictive performance

of the ultimate model?

Most predictive models take as input a certain set of pre-specified fields. The

same is true of our anonymization process. While we may not be able to

anticipate the variables used by researchers to build their predictive models, we

do have control over what fields we wish to keep or purge before we even begin

the anonymization process. Our choices of which fields to keep and which to

discard can have an affect on the accuracy of the end user's predictive model.

That is, if we input extraneous fields (extraneous in the sense that they are not

ultimately used by the end-user), one would expect the anonymization

algorithm to sacrifice some precision in these fields to preserve information in

the extraneous fields. Can we successllly predict the fields that will be needed

by our model? And if not, will mistakes in field selection matter?

We seek to answer these questions by conducting a number of experiments. First, we

compare greedy to partition on synthetic data. Second we compare greedy to partition using

various measure functions on real patient data. Third we compare the performance of these

algorithms on data sets of different sizes.

a) Performance of greedy and partition on synthetic data

A test set of 100 rows was randomly generated based on census data for Hampshire

country, Massachusetts. The fields generated included a census block (the most

finely granular physical location available in the census data as shown in Figure 3),

Age (again based on census data), and 5 randomly generated Boolean fields (the

first which could be interpreted as setting the randomly generated person as male or

female), the remaining 4 being randomly generated and could be thought to

simulate the presence or absence of a disease or condition. A Vinterbo style

measure function was used (where the value of cell is represented by its hierarchy

and all columns are weighted equally).

Information Loss

I I Greedv 11

I Row Number I

Figure 19: Greedy clearly outperforms
Partition on synthetic data

Figure 19, shows that greedy clearly dominates the partition algorithm according to the

Vinterbo measure of information loss. This would seem to indicate that Greedy

outperforms partition on data sets where the fields are generated independently of one

another. However, in the next experiment we'll show that on real data, where there does

exist dependence between fields, Partition clearly outperforms Greedy as measured by the

predictive performance of the outputted data in our final application (DxCG).

In our next experiment we used the dataset of 1000 patients from the 2003 dataset

described earlier. This dataset was anonymized using the greedy and partition algorithms

that were run using 3 different measure functions.

1. Vinterbo-1 .O - where every field is assigned a value according to its position in

the hierarchy for its respective column. The score for a row is simply the sum of

scores for each column. We add the designation "1.0" to the name of the

measure function because it sums scores for each columns with a weight of 1 .O;

and it is only one example of the allowable functions in the Vinterbo

framework; however for brevity, all references hereafter to this measure will

simply be referred to as "Vinterbo."

2. Col-MI - similar to the Vinterbo measure, however each column is assigned a

weight corresponding to the mutual information between that column and the

target variable - in this case high-expense (a Boolean variable which is 1 if a

patient's expenses exceeded $25,000 in 2004, 0 otherwise). To calculate the

value of a row, one calculates the values for each column as per Vinterbo, but

each column value is multiplied by its corresponding weight before the sum is

taken.

3. Value-MI - where every distinct value in a column is assigned a score

according to its point-wise mutual information with the high-expense field.

The output of the anonyrnization process was then fed through a Per1 script, which did a

number of operations to prepare the data for input into DxCG's Risk Smart model:

a) Deleting fields not used by the DxCG model (including ethnic group, and

principaljx-cd)

b) Converting all age ranges (such as [10,20]) into the mean of the range.

c) Duplicating every row with a suppressed gender into two fictitious persons: with all

attributes identical to the original person - except that the first person was assigned

the gender male, the second assigned female. This step is necessary because DxCG

cannot handle individuals with a suppressed gender. Our way of overcoming this

was to input both genders into DxCG and to take the average of the predicted

expenses of the two fictitious persons.

d) After the data was prepared it was passed through the DxCG model which was

programmed to output a prediction of a patient's 2004 expenses based on their

profile from the previous year (2003). The "error" for each individual was

computed as the difference between a person's actual expenses in 2004 and

DxCG's predicted expense. The sum, mean, and standard deviation of all such

errors were taken.

As shown in Figure 20 and Figure 21, the partition algorithm outperformed greedy

both in the presence and absence of extraneous fields.

Best Run of Each Algorithm vs.
Gold Standard When All Fields Used

Thousand

5,000.00
4,500.00
4,000.00
3,500.00
3,000.00

W 2,500.00
2,000.00
1,500.00
1,000.00
500.00

Algorithm I Measure

Figure 20: Best run of each algorithm when all
fields used

As shown in Figure 21, Partition using the Vinterbo measure outperformed greedy

when extraneous fields were inputted into the anonymization process.

Best Run of Each Algorithm vs.
Gold Standard When DxCG Fields Used

Thousand

5,000.00
4,500.00
4,000.00
3,500.00
3,000.00
2,500.00
2,000.00
1,500.00
1,000.00
500.00

Algorithm / Measure

Figure 21: Best run of each algorithm when no
extraneous fields were used

However we notice an interesting result in Figure 22 - that there is no best measure

Mi& Algorithm is Best?
(Input All fields)

Thousand$

5,060.00

5,000.00

4,950.00

EnW 4,900.00

4,850.00

4,800.00

4,750.00

Figure 22: Comparison of Greedy with Partition when
all fields including extraneous ones were used.

per se. Rather, the measure function that is "best" is highly dependent on which algorithm

was used. In fact, a complete rank reversal was observed; the best measure function for the

greedy algorithm (Vinterbo) was the worst measure function for Partition - and vice versa.

Wch Algorittm is Best?
(Input No exmneas fields)

Thousands

Figure 23: Comparison of Greedy to Partition
when no extraneous fields were used

The presence of extraneous fields had a marked effect on our results. When

extraneous fields had been removed, the best measure function for partition was the Col-MI

measure whereas in the presence of extraneous fields, best performance came from the

Vinterbo measure.

Upon reflection this result was not surprising because the extraneous fields (i.e.

principalqx-cd and ethnicsoup) had higher mutual information scores than a critical

field used by DxCG called "other-dx-cd," which stores the ICD9-CM codes associated

with the patient.

This meant that the Col-MI measure function de-emphasized a critical field for

DxCG while simultaneously applying a higher weight to extraneous fields. It is therefore

not surprising, that the Vinterbo measure (which gives equal weight to all fields),

outperformed COL-MI in the previous experiment because the Col-MI measure served to

amplify the negative impact of the extraneous fields whereas the Vinterbo measure did not.

Conversely, when all extraneous fields were removed, one would expect Col-MI (which

recognizes the relative weights of columns) to outperform the Vinterbo measure. This was

also the case.

So far, the partition algorithm has always outperformed the greedy algorithm.

Might the size of the data set affect the outcome? To investigate, we repeated our initial

experiment (which was conducted on a data set of 1000 rows) on data sets of 500,100, and

50 rows. These smaller data sets were created by truncating the original at the desired

number of rows from the one end of the file.

Minimum Error for Greedy & Partition
Across Varying Data Set Sizes

A q Error ($)
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

0

Algorithm 1 Data Set Size

Figure 24: Average Error Across Different Data
Set Sizes (Input: All fields)

As shown in Figure 24, the average error is inversely related to the data set size

regardless of whether partition or greedy is used. This is not surprising because the smaller

the data set, the less likely the algorithm will find k records that are substantially similar.

Thus, in small data sets, the algorithms are forced to combine individuals with little in

common - resulting in the wholesale data loss. But as the data set size grows, the likelihood

of finding similar individuals increases - enabling such individuals to be combined with

less information loss.

Varying the size of our data sets also allows us to analyze the data in another

important way: it allows us to see if the best measure for each algorithm was consistent

across data sets of varying sizes. This in turn enables us to provide some recommendations

for the best measure for each algorithm in a more rigorous fashion than our previous

analysis - which only measured performance on a data set of a fmed size (1000

individuals).

To determine the best measure for each algorithm, we analyzed the performance of the

measures by calculating the overall error across all data set sizes and by ranking the

performance of the measures in each run, and converting the ranks into "votes" using two

voting mechanisms (Johnson 2005):

A) Condorcet Voting (Schulze 2003) - which turns the ranks for each data set size into

a vote.

B) Majority Voting (Green-Armytage 2006) - which counts as a vote only the best

measure for each data set size.

Before proceeding, we will explain the two voting schemes here.

Majority Rule Voting

This is a very common voting scheme and is the voting scheme used in most

political elections. The winner of the vote is the candidate that receives the most votes. In

the context of our experiment, each data set size will cast a vote corresponding to the best

measure for its data set. Two "elections" were held - one to determine the best measure for

the greedy algorithm, the other to determine the best measure for the partition algorithm.

There are, however, some well-known problems with the majority voting scheme.

For instance, it is considered the "least-democratic" among commonly used voting schemes

- in the sense that it is least likely to reflect the will of voters insofar as it can declare a

candidate a winner even though that candidate would have lost against another candidate in

a two-way race. This is a reflection of a limitation in this voting system that allows a voter

to only specify their "first-preference," thus disallowing a voter from transferring their vote

to a second-preference, should their first preference not win.

Condorcet Voting

This system was invented by the 18th century French mathematician and

philosopher Marie Jean Antoine Nicolas Caritat, who held the title of "the Marquis de

Condorcet." Unlike the prior voting scheme, this voting scheme allows voters to rank

candidates. It has been often presented as an alternative voting scheme in political elections

- and is considered to have fewer irregularities than majority-voting.

The system works as follows. Voters rank candidates in order of preference. For every

possible combination of two candidates, a simulated two-way race is held. In each two-way

race, all the votes in each ballot are discarded except the highest-ranked candidate among

the two being considered. In this fashion, every ballot can vote for a preferred candidate in

every simulated two-way race. The candidate that wins the most two-way races is

considered the winner.

For the purposes of our experiment, the Condorcet voting function offers a convenient

way to convert the ranking of measures for each data set into a vote that captures such

rankings. In particular, every data set size represents a ballot. Each ballot will consist of the

ranking of the measures for that data set size. The winner will be the measure that wins the

most simulated two-way races.

Functior Across r ta ^ ts of Varying "'re:

Total Error
Vinterbo '

Greedy Vinterbo (1 00% Agreement) I

Partition Col-MI (1 00% Agreement) I

Figure 25: Performance of Measures Across Data
Sets of Varying Sizes When No Extraneous Fields
Were Used. The Vinterbo measure was the best
measure for the Greedy algorithm, regardless of what
metric was used. Similarly Col-MI was the best
measure for the Partition algorithm.

As noted before, for small data sets of randomly selected real patients, k-

anonymization is likely to result in wholesale information loss. It is in this vein that we

consider the data set size of 50 a special case. For such a small data set, the LUB operator

will be likely be highly destructive - even for small k values such as 3. Because we surmise

that such small data sets are not representative of the need of real world applications, we

have opted to analyze the question of "which measure is best?' both with and without the

inclusion of the data set of 50 rows.

As shown in Figure 25, when no extraneous fields were used, this separate analysis

made no difference in our conclusions - that is, regardless of which metric was used, the

Vinterbo measure was found to be the best measure for the Greedy algorithm, and the Col-

MI measure was found to be the best measure for the Partition algorithm - regardless of

whether the total error across all runs, the Condorcet voting scheme or the majority win

voting scheme was used.

1
Greedy
Partition

)t 1 1 uded
~ a j * Wn Total Error I
pMl 3 - ,i-;"f+b, *,*/-*::4$-m;p:!h;%;: L,

d ' - L .
L -. A . L . Y Col-MI

Condorcet Majority w Total Error
reedy Te:C&MI,PMI PMl(75%) PMI
art ~n Tie: COMI, PMI PMI (50%) Vinterbo

Not Incl. 50 Data Set Incl. 50 Data Set
Greedy PMI (66%) Pkffl (M%)
Partition Tie: Col-MI, Vinterbo (66% Tie: Vinterbo, Col-MI, PMI (50%) I

Although the inclusion of the data set with 50 rows made no difference in our

results, the same was not true when extraneous fields were added. In particular including

the 50-row data set confused our results - creating a 3 way tie for Partition. Interestingly,

when no extraneous fields were used the Vinterbo metric was best; however, when

extraneous fields were added, the Point-wise Mutual Information (PMI) metric was found

to be better. We surmise the reason for this is that the Point-wise Mutual Information

metric mitigates to some extent the effect of extraneous columns.

Figure 26: Total error for all algorithms across data sets
of varying sizes.

Experimental Conclusions:

Although one would need to repeat this experiment on many data sets to make

strong conclusions, our data suggests the following:

For data sets where all fields are generated independently of each other (something

that rarely occurs in practice):

o Greedy outperforms Partition

For real patient data

o Partition outperforms Greedy

When the fields that will ultimately be used are known (and are the only fields

passed into the anonymization process):

o The best measure for the Partition algorithm is Col-MI.

o The best measure for the Greedy algorithm is Vinterbo.

When the fields that will ultimately be used are unknown:

o The best measure for the Greedy algorithm is PMI

o The best measure for the Partition algorithm is Vinterbo. The Col-MI

measure came in a close second.

Conclusion

In this dissertation we have presented a new threat model for privacy and a toolkit

that allows us to measure the effectiveness of various approaches to achieving anonymity.

We have introduced two new general-purpose algorithms for anonymizing data.

From a theoretical perspective, we have also shown that previously published

measures of information loss are difticult to defend rationally; while also introducing a

variety of measures that in principle are more attractive than previously published

measures.

Our new measures represented a spectrum of defensibility - ranging from the least

defensible to the most defensible. To see if greater rational defensibility actually made a

difference in practice, we empirically tested the performance of our measures on a real

application (predicting future healthcare costs) and using real patient data.

We found that the most defensible measure had significantly better performance

than less defensible measures; while, our less defensible measures only marginally

outperformed their indefensible counterparts.

We have also introduced new theories including the concept of a virtual attack

database for precisely modeling privacy threats. And by introducing the concept of

augmented tables we were able to show that generalization and suppression; heretofore

regarded as distinct operations are in fact the same thing when a table is augmented to

include the fields that are implied by the original table.

Future Directions I Questions

There are several promising avenues for our research. The first possible avenue of

future research involves harnessing the Bayesian model construction techniques outlined

on page 31 to preserve more information in the de-identification process. The theory for

this line of research follows.

First we draw attention to the fact that one can infer a probability model from the

concept of k-anonymity. The probability model is as follows. If an anonymized row has k-

anonymity of k; then the probability of correctly selecting the person among the list of k-

possible candidates is l/k. We call this latter probability the "probability of re-

identification." The reciprocal relationship between the probability of re-identification and

k-anonymity is important because one could potential train a Bayesian network to predict

the probability of re-identification given any given data row. This is in turn could allow one

to train the Bayesian model on a large data set to predict k-anonymity in smaller data sets.

The impact of doing so could be significant because if such a Bayesian network

could be constructed and if its error bounds could be understood, one could construct a

system that could potentially preserve more information in the anonymization process. In

particular, when anonymizing data in a smaller data set, we may no longer need to achieve

k-anonymity within the data set if the Bayesian network can predict with strong confidence

that the data will have k-anonymity within the larger population. In sum, this line of

research may provide the capability to predict k-anonymity of a datum within the larger

population.

The second avenue of research would involve testing the data on different kinds of

data sets. We have only tested the data on medical data sets. What holds true for medical

data, may not hold true for other kinds of data.

A third line of research involves expanding the measure functions included in the

toolkit to include other search algorithms such as tabu search, genetic programming, and a

greedy search that maintains n of the top entries (instead of just one).

Appendix 1: Proof that Mutual Information Scores Can be Compared Across Tables

Are mutual information scores in tables of different lengths comparable?

To answer this question we present the following proof that shows that under certain

conditions the mutual information scores between two variables are independent of table

length. These conditions are namely that (1) the two variables are generated by the same

process in both tables (2) the length of the shorter table is "sufficiently long" to capture the

true probability distribution between the two variables and (3) all combinations of the two

variables that appear in one table, also appear in the other.

The proof follows.

Let TI and T2 be two arbitrary tables with JS1l and IS21 rows respectively (we used the

variable S to denote "sample space.")

Let XI and X2 represent variables in TI and T2 respectively.

Let C1 and C2 represent variables in TI and T2 respectively.

Let MI(Xf; Cf) and MI(X2; C$ respectively represent the mutual information between the

random variables XI and Cl in table 1 and X2 and C2 in table 2.

Let pl(x) , p2(x) respectively represent the probability of the random variables XI and X2

taking on the values X I and x2.

Let pl(c) , pz(c) respectively represent the probability of the random variables Cl and C2

taking on the values cl and c2.

Let pl(x,c), and p2(x,c) represent the probability of finding a row with the X-column

holding value x and C-column holding variable c in tables 1 and 2 respectively.

Let N , , , and N X 2 , represent the frequencies of co-occurrence of the column X holding

value x and the Column C holding value c in tables 1 and 2 respectively.

Let N , and Nx2 represent the frequencies of occurrence of the random variable XI and X2

holding values XI and x2.

Let ISI(, and IS2(respectively represent the number of rows in TI and T2

Let N,, and Nc2 represent the frequencies of occurrence of the random variable CI and C2

holding values cl and c2.

Under the following assumptions:

Al. The pair (xi,cl) is generated by the same random vector (X,C) in both TI and T2

A2. Every pairs (xb ci) is independently generated from the other pairs.

A3. All combinations of (x,c) occurring in TI also occur in T2 and vice-versa (note: this

will probabilistically hold based on A1 and A2 if TI and T2 contain a "large" amount

of rows).

We wish to show that:

1.e. that the same mutual information score will be arrived at in both tables regardless of the

length of each table.

Proof:

Nx ,c, IS1 I Cx, ,, & - l o g , Nx, NCI
--

MI1 (X I ; el) - - Is1 I Is1 I
MI2 (X2 ;c2 1 Nx2 $3

Let t =IS21/1SlI represent the ratio of lines in TI and T2. Thus we have:

By assumption Al, we know that the values for columns X and C were generated

by the same process and by A2, we know the pairs are independently generated.

Based on the latter two assumptions, the occurrence of the pairs is a function of

length. Thus for a sufficiently long3 TI and T2 we can expect that any frequency of

occurrence in TI, can be converted to its counterpart in T2 by multiplying by a

constant; i.e. that:

Substituting (2),(3) and (4) into (1) and noting that by A3, the summation in the

numerator covers the same pairs of values as that in the denominator we have:

Noting that ISII = IS21/t, the above simplifies to:

Suppose we have two tables A and B that contain rows &ith columns X and C and whose rows were generated by the
same random vector modeled after some probability disqibution. If we estimate the probability of occurrence of the pair
(X,C) fiom A, and it so happens that the predicted fiequ4ncy of occurrence of the pair is within the range [0,2] then we
would expect the error to be high - because the error" - i.e. the fractional quantities in the predicted

underlying process.
I

Thus under certain conditions (which are laid out in our assumptions), we have proven that

mutual information values fiom TI and T2 are comparable.

References

Chin, T. (2001). "Hacker gets access to Medical Records." American Medical News.

Dalenius, T. (1986). "Finding a needle in a haystack - or identifying anonymous census
records." Joumal of Official Statistics 2(3): 329-336.

Dempster, A., N. Laird, et al. (1977). "Maximum likelihood from incomplete data via the
EM algorithm." Journal of the Roval Statistical Societv Series B 39(1): 1-3 8.

Felligi, I. and A. Sunter (1969). "A Theory for Record Linkage." Journal of the American
Statistical Association 64(28).

Frank Remson Field, 111. (1985). Application of multi-attribute utility analysis to problems
in materials selection. Department of Materials Science & Engineering. Cambridge, MA,
Massachusetts Institute of Technology.

Geman, S. and D. Geman (1984). "Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images." IEEE Transactions on Pattern Analysis and Machine
Intelligence 6: 72 1 -74 1.

Gostin, L. (1997). "Health care information and the protection of personal privacy: ethical
and legal considerations." Ann Intern Med 127(8 Pt 2): 683-90.

Green-Armytage, J. (2006). "A Survey of Basic Voting Methods."

Hines, M. (2006). "Enterprise Security Threats Increasingly Come from Within."

Hodge, J. G., Jr., L. 0. Gostin, et al. (1 999). "Legal issues concerning electronic health
information: privacy, quality, and liability. " Jama 282(15): 1466-7 1.

J.L Schafer (1999). "Multiple imputation: A primer." Statistical Methods in Medical
Research 8: 3-1 5.

John Hagel, I. and M. Singer (1999). "Net Worth: Shaping Markets When Customers Make
the Rules."

Johnson, P. E. (2005). "Voting Systems."

Mandl, K. D., P. Szolovits, et al. (2001). "Public standards and patients' control: how to
keep electronic medical records accessible but private." Bmi 322(728 1): 283-7.

Mitchell, T. (1997). Machine Learning, McGraw Hill.

Ramoni, M. and P. Sebastiani (2001). "Robust Learning with Missing Data" Machine
Learning 45(2): 147 - 170.

Schulze, M. (2003). "A New Monotonic and Clone-Independent Single-Winner Election
Method." Voting Matters(l7): 9- 19.

Sweeney, L. (2002). "Comments of Latanya Sweeney, Ph.D., To the Department of Health
and Human Services On Standards of Privacy of Individually Identifiable Health
Information. "

Sweeney, L. (2002). "k-anonymity: a model for protecting privacy." Intemational Journal
on Uncertainty, Fuzziness and Knowledge-based Systems lO(5): 557-570.

Sweeney, L. (2003). "Achieving k-anonymity privacy protection using generalization and
suppression, ." Intemational Journal on Uncertaintv, Fuzziness and Knowledge-based
Systems lO(5): 571-588.

United States Ofice of Health And Human Services, 0. o. C. R. (2003). "HIPAA
Privacy/Security/Enforcement Regulation Text. "

Vinterbo, S. (2002). "Privacy: A machine learning view." Decision Systems
Group/Harvard Medical School.

Walls, J. (2000). "Errant E-Mails Violate Privacy of Kaiser Members." San Francisco
Chronicle.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif
	00000076.tif
	00000077.tif
	00000078.tif
	00000079.tif
	00000080.tif
	00000081.tif
	00000082.tif
	00000083.tif
	00000084.tif
	00000085.tif
	00000086.tif

