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ABSTRACT 

Privacy laws are an important facet of our society. But they can also serve as formidable barriers to 
medical research. The same laws that prevent casual disclosure of medical data have also made it 
difficult for researchers to access the information they need to conduct research into the causes of 
disease. 

But it is possible to overcome some of these legal barriers through technology. The US law known 
as HIPAA, for example, allows medical records to be released to researchers without patient 
consent if the records are provably anonymized prior to their disclosure. 

It is not enough for records to be seemingly anonymous. For example, one researcher estimates that 
87.1 % of the US population can be uniquely identified by the combination of their zip, gender, and 
date of birth - fields that most people would consider anonymous. 

One promising technique for provably anonymizing records is called k-anonymity. It modifies each 
record so that it matches k other individuals in a population - where k is an arbitrary parameter. 
This is achieved by, for example, changing specific information such as a date of birth, to a less 
specific counterpart such as a year of birth. Previous studies have shown that achieving k- 
anonymity while minimizing information loss is an NP-hard problem; thus a brute force search is 
out of the question for most real world data sets. 

In this thesis, we present an open source Java toolkit that seeks to anonymize data while minimizing 
information loss. It uses an optimization fiamework and methods typically used to attack NP-hard 
problems including greedy search and clustering strategies. 

To test the toolkit a number of previously unpublished algorithms and information loss metrics have 
been implemented. These algorithms and measures are then empirically evaluated using a data set 
consisting of 1000 real patient medical records taken from a local hospital. 



The theoretical contributions of this work include: 

(1) A new threat model for privacy - that allows an adversary's capabilities to be modeled using a 
formalism called a virtual attack database. 

(2) Rationally defensible information loss measures - we show that previously published 
information loss measures are difficult to defend because they fall prey to what is known as the 
"weighted indexing problem." To remedy this problem we propose a number of information-loss 
measures that are in principle more attractive than previously published measures. 

(3) Shown that suppression and generalization - two concepts that were previously thought to be 
distinct - are in fact the same thing; insofar as each generalization can be represented by a 
suppression and vice versa. 

(4) We show that Domain Generalization Hierarchies can be harvested to assist the construction of 
a Bayesian network to measure information loss. 

(5) A database can be thought of as a sub-sample of a population. We outline a technique that 
allows one to predict k-anonymity in a population. This allows us, under some conditions, to release 
records that match fewer than k individuals in a database while still achieving k-anonymity against 
an adversary according to some probability and confidence interval. 

While we have chosen to focus our thesis on the anonymization of medical records, our 
methodologies, toolkit and command line tools are equally applicable to any tabular data such as the 
data one finds in relational databases - the most common type of database today. 

Thesis Supervisor: Dr. Peter Szolovits 

Title: Director, MIT Clinical Decision Making Group 
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Foreword 

Who would have thought that a Computer Science thesis could be inspired by a 

lecture on public policy? That lecture was given by Frank Field, I11 in a class called 

"Introduction to Technology & Policy." During that lecture he assigned us the task of 

devising a system for allocating kidneys to patients. That is, he handed us a stack of 

simulated medical records and asked us to write a memo outlining a system that would 

determine who should get the kidney first. 

Knowing 111  well that the class was largely composed of engineers, Frank knew 

we would instinctively appeal to quantitative measures of need. Students in the class 

created mathematical expressions that would take into account a person's age, the time they 

had been on a waiting list, and so forth, to determine who was in line to get the kidney first. 

One team stood in front of the class talking about how their system was "highly 

objective" on the basis that anyone could enter the same numbers into their equation and 

get the same ranking. 

Frank correctly pointed out that behind all these so-called "objective" systems" lay 

the highly subjective weights that we had assigned to different criteria such as a subject's 

age. More generally, he said there is no objective way of summing heterogeneous 

quantities or criteria into a single score. In fact, he showed us examples where the ranking 

completely reversed itself - depending on which of several plausible methods were used 

for turning the criteria into scores. He therefore admonished us to stop using words like 

"objective" to describe our rankings and to instead admit what was taking place was a 

political process. 

I carried this lesson with me while doing research for Staal Vinterbo at Harvard 

Medical School. Staal had recently devised an elegant formal framework for anonymizing 

information, His framework sought to anonymize information while maximize the value of 

the information for machine learning and statistical purposes. 

Staal commissioned me and Robert Fischer to write a toolkit that implemented his 

ideas. And it is in the course of writing this toolkit that I developed the experiments laid out 

in this dissertation. I continued working on the problem in the following year when I joined 

Peter Szolovits' Clinical Decision Making Group at the MIT Computer Science and 

Artificial Intelligence lab. It was Peter's former student, Latanya Sweeney, whose seminal 



thesis had created the entire field of what we now know as Computational Disclosure 

Control. 

While implementing the toolkit I discovered that a scoring system Staal had 

published was based on weights - making it subject to the same weighted indexing 

problems pointed out earlier in that Public Policy lecture by Frank Field. I later examined 

other measures in the literature including Latanya Sweeney's PREC metric and found it too 

was a weighted index because it could be interpreted as giving a weight of 1.0 to every 

column. It in effect assigns an equal score (or weight) to knowing if someone had HIV for 

example, or knowing if they were male of female. 

These observations inspired a search for a more rationally defensible basis for 

valuing information loss in the anonymization process. The result may be described as a 

theory and toolkit described in this thesis. 
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Motivation 

Privacy laws are an important facet of our society. But the same laws that prevent 

the casual disclosure of medical records have also made it increasingly difficult for 

researchers to obtain the information that they need to conduct research into the causes of 

disease. In this thesis, we present a theory and method for anonymizing information with a 

focus on the medical domain. 

While we have chosen to focus our thesis on the anonymization of medical records 

the same techniques could potentially be used in any sector that seeks to anonymize tabular 

data (the type of data one finds in relational databases - the most common type of database 

today). 

The Proliferation of Anonymization Systems in the Medicine 

Data privacy systems are quickly becoming an integral part of a broad range of 

medical systems. This is true for a number of reasons. 

First, the disclosure of health information is strictly regulated in many jurisdictions 

and institutions are often legally required to apply privacy-enhancing transformations to 

health data prior to their disclosure to researchers. In the United States, for example, the 

Health Insurance Portability and Accountability Act (HIPAA) requires data to undergo 

either one of two privacy-enhancing processes prior to its disclosure. 

In the first process, which may be termed de-identijkation, certain pre-specified 

fields such as name, address and social security number are removed. Although this process 

is sufficient to satisfy legal standards (United States Office of Health And Human Services 

2003), the output of this process may still contain information that can be used to uniquely 

identify a member of the population. For instance, in one study, Sweeney estimated that 

87.1% of the US population can be uniquely identified by the combination of their 5-digit 

zip code, gender, and date of birth (Sweeney 2002) because such records can be linked to 

publicly available databases such as voter lists, and driving records. To prove her point, 

Sweeney re-identified a series of supposedly anonymous medical records including one 

belonging to William Weld - the governor of Massachusetts at the time - using a voter list 

she purchased from the city of Cambridge, Massachusetts for a mere $20 (Sweeney 2002). 

The ease with which she obtained the public records she needed to re-identify his 



record bears eloquent testimony of the inadequacy of de-identification techniques for 

preserving privacy. This motivates our discussion of the second privacy-preserving process 

acceptable under the HIPAA: anonymization. 

An anonymization process renders a record "not individually identifiable" i.e. the 

record's information cannot be used by an adversary "alone or in combination" with other 

"reasonably available information" to uniquely identify an individual (United States Ofice 

of Health And Human Services 2003). This thesis is focused on this second process: 

anonymization. - 

Unlike the first process, which could output data matching a single person in a 

relevant population, an anonymization process outputs records that match at least k 

individuals in a database of N records, where 1 5 k 5 N. Because k is an arbitrary 

parameter, it can be increased or decreased according to the sensitivity of the information 

and the needs of the application. For example, for an online advertising firm a low value of 

k may suffice, whereas in the healthcare domain, a higher value may be required. 

The second reason for the proliferation of anonymization systems is that institutions 

are often hesitant, if not unwilling, to disclose private health information to third parties 

owing to legal liability and the possibility of negative publicity. Although, institutions will 

typically require third parties to sign confidentiality agreements, such assurances cannot 

defend against hacker attacks (Chin 2001), accidental disclosure (Walls 2000), or theft 

(Hines 2006) from insiders or outsiders. And because breaches in confidentiality can 

impede the original data provider's ability to collect the data in the first place (John Hagel 

and Singer 1999; Mandl, Szolovits et al. 2001), while also exposing the original data 

provider to legal liability (Hodge, Gostin et al. 1999), institutions have strong incentives to 

mitigate such risks by anonymizing data prior to its disclosure. 

Another motivation for pursuing anonyrnization systems is the long term vision of 

providing medical researchers, public health officials and policy makers with unfettered 

access to medical information without violating patient privacy (Gostin 1997). In many 

jurisdictions including the United States, researchers must justify their use of data to a 

review board prior to getting access to medical data - in what amounts to a slow and 

cumbersome process. 



Research in automated record anonymization could speed the pace of medical 

research. For example, every hospital could have a record server that could offer 

anonymized records to researchers on-demand thus eliminating the scarcity of medical 

data. 

Moreover, such anonymization systems could allow researchers to more freely 

engage in speculative and exploratory studies. Whereas current practice requires 

researchers to justify every information disclosure to a review board - a process that 

encourages researchers to limit requests to only their most promising studies, review boards 

may feel more comfortable releasing data for more speculative and exploratory studies with 

the advent of anonymization systems. In short, anonymization algorithms may provide the 

key to unlocking stores of medical information. 

Statement of Claims 

In this dissertation I have introduced a number of new idea and technologies; in 

particular, I have: 

1. Presented a new threat model for privacy and a concept called a "Virtual Attack 

Database" which can be used to formally model certain privacy threats. 

2. Outlined a toolkit that can anonymize data and can measure the performance of 

various approaches to anonymizing data 

3. Introduced new anonymization algorithms and new measures of anonyrnization 

performance (to guide such algorithms) that are in principle more attractive than 

previously published measures. 

4. Empirically measured the performance of various anonymization measures and 

algorithms on 1000 real hospital patient records. 

5. Proposed a Bayesian network that can estimate (with a high degree of confidence), 

the k-anonymity of a record in a larger population. This enables researchers to 

safely release records that match less than k records in a database while still 



assuring k-anonymity in a larger population. In sum, this procedure allows 

researchers to preserve more data. 

6. Shown that generalization and suppression; which heretofore, have been thought to 

be distinct concepts are in fact the same thing insofar as every generalization can be 

represented as a suppression and vice versa. This was made possible by introducing 

a concept called an "augmented table" which includes all the fields implied by an 

original table. 

Organization of this dissertation 

First, we will introduce a threat model for privacy. Once the threat model has been 

defined, we examine various methods of defending against these threats, including the 

technique of k-anonymity. Next, we examine how these methods fare under different 

scenarios, leading to a formal definition of the problem we wish to solve. We then 

introduce the Vinterbo framework for privacy, which attempts to anonymize rows in a table 

while maximizing the information value of each row according to some measure function 

for a desired level of k-anonymity. We then examine several measure functions present in 

the literature and discover that current measure functions are difficult to defend rationally, 

leading us to propose several new measure functions. Next we introduce several new 

algorithms for achieving k-anonymity. Our discussion then moves to a toolkit created by 

the author and Robert Fischer that implements our algorithms and measure functions. The 

performance of various algorithms and measures is then empirically evaluated according to 

a number of measures (both new and old) over both real and synthetic patient data We then 

enter a discussion of how some of our initial assumptions can be relaxed to preserve more 

data. 

A threat model for privacy 

We now define a threat model for privacy which we will refer to later in this paper. 

Before defining the problem formally, we will begin with a less formal definition. We 

begin by defining privacy risk. 

The "privacy risk" of a piece of data (or datum) could be described as its "risk of 

re-identification." It represents the risk of identifying an individual from a piece of 



information given all other information available to an adversary (United States Office of 

Health And Human Services 2003). 

For the purposes of developing a threat model we distinguish between electronic 

privacy and non-electronic privacy. To explain the difference, we concoct an example. 

Suppose you knew I liked to wear tall green hats (a rate trait). You could use this 

information to identify me in a public square. But unless this information (alone or in 

combination with other information available to my adversary) can be linked to some 

identifier in an electronic database, you cannot use this information to identify me using 

techniques such as "record linkage" (Felligi and Sunter 1969). This leads to a problem 

definition. 

Suppose there exists a hypothetical database consisting of the amalgamation of all 

possible databases available to an adversary. Suppose this database also includes all fields 

that could be inferred by our adversary. We refer to this database as the virtual attack 

database. This virtual attack database is virtual in the sense that it may not actually be 

assembled but it could be constructed, if one or more databases were linked together using 

the fmily of record linkage techniques first described by Felligi and Sunter (Felligi and 

Sunter 1969). 

This leads us to the notion of privacy risk, which could also be referred to as the 

risk of re-identification. If a field's value does not exist in an adversary's virtual attack 

database, then consequently there can be no electronic privacy risk associated with that 

data item for that given adversary. It is still possible, however, that another adversary will 

have a virtual attack database that could be linked to my field. But if no database fields in 

any virtual attack database could be linked to or inferred from my penchant for wearing tall 

green hats, then this knowledge about me does not cany any electronic privacy risk 

whatsoever. 

Nonetheless, the knowledge that a person likes to wear tall green hats in a certain 

city still poses a risk insofar as such information could potentially be used to identify that 

person in a public square. We term this risk, a general privacy risk - as it requires no 

database to exist (or potentially exist) for a risk to be present. Put another way, the General 

Privacy of a datum encompasses both its electronic and nonelectronic privacy risk. 



In this thesis, we are solely focusing on reducing electronic privacy risk. For many 

applications, a consideration of general privacy reduces to an exercise in minimizing the 

electronic privacy risk. In other applications - particularly where an adversary can use a 

piece of information without the need to correlate it with data in a database - a general 

privacy risk exists in absence of an electronic privacy risk. 

Having defmed the problem informally, we now define the problem of electronic 

privacy risk formally. Let U represent the universal set from which individuals in a 

database are drawn. This universe will vary according to the application. For instance, if 

the database belongs to a small local clinic, the universe might consist of only the 

individuals living in the surrounding geographic areas served by the clinic, whereas if the 

database belongs to a mid-sized hospital, the universe may include individuals in a larger 

geographic area. 

Let SSU represent the subset of individuals from the universe with records in a 

database, D. And let f(s) return a vector representing the fields in the database for record s. 

For simplicity, we overload notation to writef; to represent the vector representing the ith 

individual in S where 1 s IS1 (assuming S has at least one record). 

Today, one can readily buy a number of public records such as voter lists, birth 

records, driving records, and credit reports. Therefore, let us suppose an adversary has 

access to a "virtual attack database" containing records associated with a set of individuals 

R EU. Let g(r) represent a function that returns a vector whose elements represent the 

fields for the individual r=R in the attack database. For simplicity we write gi to represent 

the record corresponding to the ith individual in R. Also let us suppose that the fields 

returned by g() include a social security number or any other group of one or more fields 

that in combination could uniquely identify a member of the population. Such collections 

of identifying fields we will hereafter term quasi-identifies (Dalenius 1986) because such 

fields can be used in combination to uniquely identify an individual. In order for a group 

of fields to qualify as a quasi-identifier, the collection of fields must exist in a database that 

either exists or could be potentially be constructed by an adversary. Otherwise the 

adversary will have no way of using these fields to uncover the respondent's identity. 

If there are some overlapping fields in f(s) and g(r), then the adversary can attempt 

to use record linkage techniques (Felligi and Sunter 1969) to link the records corresponding 



to people in S to the individuals in R. We wish to find a privacy enhancing data 

transformation Ai() for each record i=S such that each transformed record will match at 

least k individuals in U. We, however, cannot be sure what data the adversary has; i.e. the 

fbnction g() is unknown and thus also unknown are the quasi-identifiers used by the 

adversary. What we can be sure of, however, is that if there are at least k elements in S for 

whom information in f(s) matches A($) then there are at least k individuals in U that match 

that same criteria. Consequently, if we only release information matching k individuals in 

S, the adversary can narrow down the search to at most k individuals in R. In general, if a 

given record matches k records in R, we say that the record has "k-anonymity" - a phrase 

first coined by Sweeney (Sweeney 2003). A record's k-anonymity can generally be 

increased by increasing the granularity of fields within the record. This parameter k, may be 

thought of as a quantifiable measure of privacy. The higher the number, k, the greater 

anonymity of the records output of the anonymization process. 

Methods of Anonymizing fields 

In order to motivate the row anonymization algorithms in our toolkit we will go 

over some methods of anonymizing individual fields: 

Method 1: Ranging 

Ranging achieves k-anonymity by subsuming two ranges into a new range. For 

example, the two age ranges [10,25] and [8,20] could be ranged into [8,25]. 

Method 2: Binning 

Binning refers to the process of assigning various inputs into bins according to 

some criteria. A simple example of this is the discretization of ages such as 10 and 15 into 

pre-specified mutually exclusive age ranges such as [lo, 121 and [ 13,151. 

Method 3: Generalization 

Generalization refers to the replacement of one data value, with a "more general, 

less specific value, that is faithful to the original" (Sweeney 2003). For example a city can 

be generalized to a less specific locale such as a county or a state; while a date of birth 

could be generalized to a year of birth or interval such as [25,30] representing an age range. 



The generalizations that are possible for each attribute in a database S can be represented 

through a partially ordered set known as a Domain Generalization Hierarchy (DGH) 

(Sweeney 2003). Given an attribute A of a private table PT, Sweeney defines a domain 

generalization hierarchy (DGH) for an attribute A as a set of functionsfh : h=O, ..., N-1: 

such that A=Ao and lANl = l .  The latter requirement ensures that the final transformation 

generalizes to a single value - a useful trait to model deletion of the data, which in the 

statistical literature is referred to as "cell suppression." 

The DGH formalism models some hierarchies well but it fails to model others. 

Consider for example the hierarchy for zip code illustrated in Figure 1. 

Figure I :  An example of a domain generalization 
hierarchy, representing the possible generalizations 
of some US zip codes. 

This generalization hierarchy is perfectly captured by a DGH. On the other hand, 

there are some generalizations that a DGH cannot handle - particularly when a single 

value can generalize to more than one value. These situations are not merely theoretical 

curiosities; rather they do occur in real practice. 

Consider for example, the generalization hierarchy corresponding to data 

distributed by the US Census Bureau (shown in Figure 2). In this example we see that a 



census block can have multiple possible generalizations. In fact, Figure 2 illustrates that a 

census block can be generalized to no less than 13 different designations including a Zip 

Code or a Place (which encapsulates cities, boroughs and other geographic designations). 

Another example demonstrating the need for multiple generalizations occurs 

when one wishes to discretize continuous values into a data structure called a lattice. The 

need for such a data structure arises, for example, when one wishes to bin ages into an 

age range - while still allowing those age ranges to be further generalizable to still wider 

age ranges. While one could impose a hierarchy where every single age range had only a 

single parent, the additional flexibility afforded by the lattice may capture more 

information. 

Figure 2: Generalization Hierarchy for the US 
Census Database. 



0-80 

I \ 

0-60 1 1-80 

I \ I \ 

0-40 1 1-60 20-80 

I \ I \ I \ 

0-20 1 1-40 2 1 -60 41-80 

I \ I \ I \ I \ 

0-10 1 1-20 2 1 -40 4 1 -60 60-80 

Figure 3: An Age Lattice demonstrating that the ability for 
each node to have more than one parent is highly useful. 

Figure 3 illustrates how such a lattice could be constructed to handle a continuous 

variable such as age. It can be seen upon inspection that such a lattice can be constructed 

for any arbitrary dicretization quanta. 

The need for a lattice also becomes apparent when one wishes to use information 

theoretic measures such as mutual information as measures of information loss. Because 

such measures are not defined for continuous values, it becomes necessary to discretize 

the data. A lattice provides an elegant generalization hierarchy for discretizing such 

continuous values. 

The latter three examples (age discretization, census generalization, and mutual 

information calculation) highlight the inadequacy of the DGH formalism to model 

multiple generalizations. To this end, we define a formalism called a Value 

Generalization Partially Ordered Set or VG-POSET. For simplicity we refer to this data 

structure as a Poset hereafter. A Poset is similar to a DGH, but it allows a single attribute 

to be generalized onto multiple possible attributes. 

Definition 1: Value Generalization Partially Ordered Set 

Formally, a Partially Ordered Value Generalization Hierarchy (VG-Poset) for an 

attribute A is defined as a set of functions J;,: 1;J: Ai ---+ Aj such that mi>j and for 

every i there exists at least oneJj, and IANI =l. Again we use the latter requirement on AN 

to force a single ultimate generalization representing the deletion of the cell. 



Definition 2: Measure function k c )  

A measure function r(r) for a record r returns a real number representing the utility 

(or value) of the record r to the user, where 0 < I.(.) < m, with 0 representing the best 

possible score, and larger scores representing increasingly lower information value. 

Properties of a Measure Function 

We assume that one or many measure functions could be used. However, we wish 

to specify two minimum properties that a measure function should satisfy. 

First, we require monotonicity; that is, if there exists a function& in the domain 

generalization hierarchy (meaning that A, is a more general form than Ai and that 

consequently A, has less information content) and rl €Ai and r2 €A, then i(rS < z(r2). 

Second, we require transitivity. Let X= (rl, r2,. . , rl) represent a vector of arbitrary 

length I.  If each of the ri represents an element in the {A$ such that for every pair (ri,ri+$ 

there exists a f u n ~ t i ~ n f ; ~ + ~ . ,  then the measure function must provide that for all u>v, z(rJ > 

z(rJ. Put another way, if the vector X represents a path through the PODGH, then every 

generalization is required to have a "worse" score than its more specific predecessor; i.e. 

we are requiring strict monotonicity among these scores. 



Definition 3: Least Upper Bound (LUB) 

We define the Least Upper Bound of two values vl, and v2, i.e. L UB(vl, v2) for a 

Poset, D as follows. Let A={al,a2,a3, ... , aA$  be the set of values in D that are the ancestors 

of both vl and v2. For every element in A, let us take the measure of that value. Let M be 

the minimum measure value among these measures. Then the LUB of vl and v2 is the 

subset of A whose measure values are equivalent to the lowest measure value; i.e.: 

LUB(v1,v2) ={ ai I z(aJ < z(aJ for all j E{1,2, ... lAI) ) 

Similarly we define the LUB of two records X and Y as the painvise LUB between the 

elements of X and Y; i.e. : 

Notice however that the LUB of two records is a set whose elements are also sets. This 

resultant, we term a "LUB set." 

Definition 4: Least Upper Bound of a LUB Set and a Record R 

Let LS ={{XI1,Xl2, ... X/,' {X21,X22, ..., XZk), ... {xNhXN2, ..., XNL}) be a LUBSet and 

let r = <Xl,X2, .. .,XN> be a record. For simplicity of notation we re-define the LUBSet as 

{Z1,Z2. ... ZN} where the Zi are sets of rows, and let F = {Zl x{Xl), ZzX{X2}. ... , ZNX{XN)). 

Again for convenience we re-name the sets F is composed of as F=(FI, F2, .... FN). We 

now define the LUB of the LUBSet LS and a record r as: 

where LUBi(xy) represents the LUB of the ith element of set X with the vector 

representing a record y and i is chosen such that z(LUBi(Fl x F2 x . x FN, R)) is 

minimized. 



We also define the LUB of more than two rows, written rl,r2, .. . , r~ as: 

LUB(rl,rZ,rS ,.., rN) = LUB( ... (LUB(LUB(rl,rz),r3) ... ),rN) 

An optimization problem 

Let T represent a table where the columns represent attributes and the rows 

represent individuals in the population (i.e. patients, customers, et cetera). We wish to 

create a new table T' by replacing each row, r,  in T with the LUB of the original row and 

k-1 other rows, written rl, r2, ... , rk-1 such that the measure, z() for the LUB(r, r r  r2, .. , rk. 

1) is minimized. 

As shown in Vinterbo (Vinterbo 2002), achieving k-anonymity is an NP-hard 

problem. As a result, all practical algorithms must make numerous choices at various points 

in the arnbiguation process. What attributes should be sacrificed (i.e. generalized) and 

which should be kept? Unless the algorithm has some notion of information value, it has no 

basis to guide such decisions. 

Our Extensions to the Vinterbo Framework 

The Vinterbo framework provides an elegant way of modeling the k-anonymity problem. 

But a researcher using the Vinterbo framework is faced with the problem of defining zt), the 

measure function. In this dissertation we explore different measure functions, in search of ones that 

are rationally defensible. 

Related Work 

1. DataFZy (Sweeney) - DataFly was the first published k-ambiguity algorithm. It has 

no notion of information value and is therefore a blind algorithm. 

2. K-Similar (Sweeney) - K-similar also achieves k-anonymity. K-similar, unlike 

DataFly, does utilize a notion of information value; however, we show that the 

information measure used by the K-similar algorithm falls into a category known as 

a "weighted index" that is difficult to justify rationally; we later present measure 

functions which have a more sound rational basis. 



3. p-argus and r-argus (Hunderpool, et al.) - Developed at Statistics Netherlands, this 

system was proven by Sweeney to not provide sufficient k-anonymity. 

Our work differs fiom the others through (1) the use of a formal framework; (2) our 

exposition on why the measure hc t ions  of existing algorithms cannot be defended (3) the 

introduction of new ambiguation algorithms and defensible measure functions (4) the use 

of empirical measures of real data and (5) the theoretical contributions listed in our 

statement of claims (see page 13). Further the source code for this project has been released 

as an open source project, whereas the source code for the above projects are not available. 

Attacks on k-anonymity 

Having defined how we intend to achieve k-anonymity, we now define attacks 

against our system. 

Unsorted Matching Attack (Sweeney 2002) 

A table can be k-anonymized in many different ways. Thus it is possible to release 

many different anonymized versions of the same table. If the rows in those anonymized 

tables are listed in the same order; than one can combine the rows from different tables to 

infer more information that was otherwise possible by examining each individual row. To 

thwart this attack one can simply randomize the order in which the rows are released in 

each disclosure. 

Linking Attack 

This Attack (Felligi and Sunter 1969) recognizes that records in different databases 

can be linked together. The attack begins by calibrating a probability model whose 

parameters include the probability of finding similarities and differences between two 

records referring to the same individual. The similarities might include factors such as 

"having the same last name" while the differences might include "having a spelling error 

with a string edit distance of 1." Using this model one can estimate the probability that 

records in two different databases refer to the same individual. An arbitrary probability 

threshold is set above which two records are said to be a match. For example, one might 

declare that "all records with 95% likelihood of being a match will be considered a match." 



Complementary Release Attack 

This attack recognizes that if one discloses an anonymized version of a table then 

that table should be considered to be "joining external information" available to an 

adversary (Sweeney 2002). The implication is that if one releases some portion of a table in 

the present (which we shall call PT) that may limit one's ability to safely release an 

anonymized version of the same table in the future (which we shall call FT). One solution 

to this problem is to based FT on PT; or to consider PT as a part of the quasi-identifier. 

Temporal attack 

Because tables tend to change over time, subsequent releases of a table may allow 

one to draw inferences (Sweeney 2002). The solution is to not anonymize the current table 

but instead base the disclosure on the union of the previously disclosed tables and the new 

rows added to the table. 

Attributes Occurring Less Than k Times Attack 

Attributes occurring less than k times can possibly lead to re-identification 

(Sweeney 2002). Consider, for example, a table corresponding to the inhabitants of a 

village where all people have the race "white" whereas one person has the race "black." In 

a k-anonymized version of the original table, the black person's race will be the only one 

that is suppressed. Thus, we can readily re-identify this record, even if the race attribute is 

suppressed and regardless of how high a level of k was selected. One can defend from this 

attack by deleting all rows containing values occurring less than k times. 



Measure Functions 

There are a number of possible measure functions of information value. In the 

context of a hierarchy, Sweeney proposed the PREC measure for a table as follows: 

Where: 

R 

IPfl 

INAl 

IDGq ~i 

is a released row 

is the number of rows in the original table, 

is the number of columns in the original table, 

is the height in the domain generalization hierarchy for attribute i 

where the leaves are considered height 0. 

is the height of the node in the Domain Generalization Hierarchy 

corresponding to the value of the cell (ij) in the generalized table. 

To gain insight into the workings of the PREC measure, we introduce equation 2. 

Whereas equation 1 is a measure that applies to an entire table, the measure listed in 

equation 2 can be interpreted as the PREC measure for an individual row. Put another way, 

when averaged over all rows, Equation 2 reduces to the PREC measure listed in Equation 

(1)- 

Although the PREC measure would seem to be a reasonable measure of 

information value it falls into a category of measures called "weighted indexes" which are 

known to be rationally indefensible. We illustrate this by example. Suppose we have a 

database with three attributes; namely has-renalfailure, has-hiv (a binary field indicating 



the presence of the HIV virus) and gender. Assume all three fields are associated with a 2 

level domain value hierarchy shown in Figure 4. 

* * * 
I \ I \ I \ 

male female yes no true false 

Figure 4: Domain Generalization Hierarchies for gender, 
has-renal-failure and has-hiv 

Now consider the rows of Figure 5. The first row of the table represents the 

original row, while the second, third and fourth rows respectively represent the original row 

where the fields of gender, HIV or renal failure have been generalized. The PREC measure 

does not distinguish between these three generalizations insofar as it assigns the same 

PREC score to each of these three rows. More pointedly, to the PREC measure the fields 

gender, HIV and renal failure are equally valuable. 

But upon what basis does this algorithm assign the same value to preservation of 

the gender field as it assigns to the preservation of HIV? And if HIV shouldn't be equally 

valuable as gender, how many times more valuable should HIV be than gender? Whatever 

answers are given to these rhetorical questions are likely to lack a rational basis. 



Figure 5: The frailty of weighted indexing. The first row 
represents the original row, whereas each subsequent row is 
a mirror of the original but with a different attribute 
suppressed. Although rows two through four suppress 
different attributes of the original row, their PREC measure 
is the same. This indicates that the PREC measure 
implicitly considers the columns Gender, HIV and Renal 
Failure to be of equal value. 

The problem just outlined is sometimes referred to as the "weighted indexing 

problem" and it arises whenever quantities of non-convertible heterogeneous units are 

summed into a single unit. It fails to be resolved if heterogeneous units are multiplied by a 

weight before the summation takes place. A treatment of this problem is found in Field's 

PhD thesis (Frank Remson Field 1985). Field shows that weighted indexing cannot be 

rationally defended as a measure of utility, and that neither normalization nor the 

conversion to ranks can solve the fundamental problem. 

Another possible weighting method is presented as an example by Vinterbo 

(Vinterbo 2002). In this system the leaves of the Poset (or Domain Generalization 

Hierarchy) are assigned a value of 0 (which is considered a perfect score) while subsequent 

levels are assigned progressively higher values such that the monotonicity property of the 

measure function is satisfied. To compute the value of a row one sums the values of nodes 

corresponding to values in each column. This again constitutes a weighted index (with a 

weight of 1 .O) for each column. 

Description 

Original Row 

Gender Cell Generalized 

Gender Cell Generalized 

Gender Cell Generalized 

Renal Failure 

True 

True 

True 

* 

PREC 

1 .OO 

0.66 

0.66 

0.66 

Gender 

M 

* 

M 

M 

HIV 

False 

False 

* 

False 



In many respects, this metric mirrors Sweeney's PREC metric insofar as the value 

of a data item is totally dependent on its level in the hierarchy. In fact, if one sets the 

measure of each node in the hierarchy to its height in the hierarchy, one obtains the same 

result as that illustrated in Figure 3 - where the fields HIV, gender, and renal failure are 

implicitly considered by the measure function to be equally valuable. 

If weighted indexes cannot be rationally defended are there any information 

measures that can be defended? We propose a number of measures in order of increasing 

defensibility. 

Proposed Measure 1: Mutual Information Of A Column With Respect To A Target Variable 

Since the purpose for disclosing the data in the first place is to build predictive 

models, we propose using the Mutual Information with respect to the predicted variable as 

a column weight. Of course, this assumes we know in advance what variable we wish to 

predict. In such a situation this would seem to be a more rational approach than simply 

using a weight of 1.0 for all columns, as was done in earlier examples. The mutual 

information between a variable X and a predicted class variable C is defined as: 

where X is a random vector representing the rows in the database, and C is a class variable 

we wish to predict. The above equation however is a metric for an entire column; whereas 

we need a measure for a specific row. We propose that the mutual information scores for 

each column be summed, in order to calculate this metric for a row. 

For example, suppose we have a table where each row represents a patient and 

where the columns represent attributes of a patient. If one of the columns is a binary 

variable representing the diagnosis of cancer, then we can use the mutual information of all 

variables with respect to the binary variable cancer as our information measure. 

The use of mutual information as an information value measure is not a panacea. It 

requires us to declare in advance one or more variables that will be predicted by the 

predictive models that the data will be used to build. But in many applications, we simple 



may not know how the data will be used and so will be unable to determine what variable 

should be optimizd. 

Moreover, the use of the mutual information metric may have unexpected effects 

on l tu re  disclosures owing to the consequences of the Complementary Release Attack 

(Sweeney 2002) discussed on page 25. In the context of using mutual information, the 

implication of this attack takes on additional connotations: by releasing a table optimized 

for predictive modeling of one variable, we may also limit our ability to release information 

optimized for other variables 

The mutual information metric also suffers from another serious problem. If the 

table we are trying to anonymized has more than one column (other than the column we are 

trying to predict) we are again faced with the weighted indexing problem when summing 

the measures from the individual columns into a measure for the entire row. It is perfectly 

defensible to sum the mutual information scores of the columns into a single score if the 

columns contain no redundant information (or put another way, if the columns were 

generated wholly independent of each other). But this assumption is almost certainly 

violated in practice. Nonetheless, the fact that there are situations where the columns can be 

defensibly summed, and the fact that the weights are generated from the data itself, makes 

this measure more defensible than totally arbitrary weight of 1.0. 

Proposed Measure 2: The Degradation in Performance of a Predictive Model 

Suppose we know in advance the variable that the data will be used to predict. 

Suppose we also have a predictive model that can handle missing values (although this 

assumption will be later relaxed). If the output of the model for each row on the l l l y  

identifiable data is taken as a "gold standard" - then deviations from this output can be seen 

as error introduced by the anonymization process. This measure can be calculated at the 

individual row level (as the deviation from the gold standard) or at a table level (using 

measures such as the mean, average, total error and standard deviation). Predictive models 

particularly suited to this purpose include Bayesian networks and Decision trees since they 

can both handle missing information. 



It is also possible to use predictive models that cannot normally handle missing 

input values if the missing data consist of categorical values (as opposed to continuous 

ones). Techniques for handling missing information include the Expectation Maximization 

(Dempster, Laird et al. 1977), Gibbs Sampling (Geman and Geman 1984), Multiple 

Imputation (J.L Schafer 1999) and Robust Bayes Estimation (Ramoni and Sebastiani 

2001). 

A method for utilizing a Bayesian model as a measure function 

Here we propose a method for a constructing a Bayesian model that could serve as 

the predictive model for measure 2. It will also be shown that this model can also be used 

to predict missing values. The basic idea is to harvest the structural information inherent in 

a DGH or Poset to aid the discovery of the structure of our model. 

Before getting into the details we first introduce the idea of impliedfields in a table. 

The concept of implied fields is useful when modeling generalization using a Poset or 

DGH. Consider for example a simple table such as that found in Figure 6, and suppose that 

Race and HIV cannot be generalized (except by suppression) but that the field Zip can be 

generalized according to the DGH set out in Figure 1. Suppose however, that we augment 

this table with the "implied fields" zip4, and zip3 representing the 4-digit and 3-digit 

generalizations of the 5-digit zip codes in column zip5. We call this table, an augmented 

table because the original table has been augmented to include all implied fields. 

Figure 6: Original Table 

i 

Zip5 

021 39 

021 38 

98052 

Race 

White 

Black 

Asian 

HIV 

Yes 

No 

Yes 



Figure 7: An Augmented Table for a simple table 
containing a Zip code where the first row has been 
generalized to a 4 digit zip. 

Herein lies the elegance of this model. In this augmented table, every generalization 

is represented by exactly one cell suppression. In Figure 7 for example, a row had the value 

"02139" in the zip5 field. To generalize this field into its four-digit counterpart (i.e. 

"0213") we simply suppress the zip5 field while leaving the values in the zip4 and zip3 

intact. It can also be seen upon inspection that every suppression can be represented as a 

generalization in an augmented table. 

Earlier, we mentioned that the information loss of an anonymization algorithm on a 

data set can be measured using a predictive model; however, we have not show how to 

build such a model. As will be shown, one can harvest the structure of a DGH (using an 

Augmented Table) to build a Bayesian Network which can serve as the predictive model. 

Race 

M i t e  

Black 

Asian 

The Bayesian Network can be constructed using the following process: 

HIV 

Yes 

No 

Yes 

Zip5 

02138 

98052 

1. Construct a model using the fully identifiable information. 

This model is constructed using techniques commonly used by Bayesian 

practitioners. One common practice is to split a data set into two parts (Mitchell 

1997). The first (the "training set") is used to discover the structure of the Bayesian 

network and to train the model. The second, (the "test set") is used to test the 

model. The Bayes network is often constructed by beginning with no fields, and 

Zip4 

0123 

0213 

9805 

Zip3 

021 

012 

980 



adding fields (one at a time) ordered by their mutual information scores with 

respect to the variable being predicted1. As each field is added to the Bayesian 

Network, the Bayesian network is retrained using the training set. When the 

performance of the model on the training set begins to decrease, no M e r  fields 

are added and the performance of the network is then tested on the test set. If the 

model performs well on the test set, the model is said to be "generalizable" insofar 

as it performed well on a data set on which it was neither constructed nor trained. 

2. Enhance the Bayesian Model using Implied Fields and Information from the 

Poset 

Suppose in the last step a simple model was constructed with a node configuration 

as follows: 

Zip5 - HIV 

A / Race 

For every field in the model constructed at step 1, we add nodes in the Bayesian 

network corresponding to its parents in the DGH or Poset. For instance, in the latter 

example we would have: 

Zip3 + Zip4 9 Zip5 9 HIV 

/ 
Race 

That is, 3-digit zip code would try to predict the 4-digit zip code (when the 4-digit 

zip code was missing), and the 4-digit zip code would try to predict the 5-digit zip 

code (when the 5-digit zip code was missing). 

' A procedure mentioned by Marco Ramoni, a Bayesian specialist and Professor of Pediatrics and Medicine at Harvard 
Medical School. 



3. Add Further fields to the model as appropriate 

One may discover, for example, that the field "race" may help predict one or more 

of zip3, zip4 or zip5 Thus, it is appropriate to have a third step where one adds 

nodes to the Bayes network, using the Mutual Information procedure outlined in 

step 1. The final outcome of this process may look like something like this: 

Zip3 + Zi 4 9 Zip5 + HIV 

f0GG 
Race 

The link from race to Zip5 and Zip4 would seem to indicate that race can 

predict one's zip codes with a certain specificity - an unsurprising conclusion when 

one considers that many neighborhoods contain a preponderance of people from a 

given race. 

The above procedure is but one way of discovering the structure of a Bayesian network; 

however, we believe this procedure is advantageous insofar as it harvests the structure of 

the DGH to aid the discovery process. Given that there is, at present, no generally accepted 

method for discovering the structure of a Bayesian network, it would seem that this 

procedure offers a good start. 

It would also seem that such a network could also be used to attack k-anonymity, 

however, such application is beyond the scope of this dissertation. 

The DSG Privacy Toolkit 

The DSG Privacy Toolkit is a Java API and a collection of command line tools 

written by the author and Robert Fischer that anonymizes information using an extended 

version of the Vinterbo framework. We now outline the toolkit and some of the design 

choices made. 

As noted earlier, the DSG Privacy Toolkit achieves k-ambiguity via generalization. 

In order to ambiguate data using the toolkit 3 things need to be specified: (1) the data to be 



anonymized (2) partially-ordered generalization hierarchies for each attribute, and (3) an 

ambiguation algorithm. We now outline each of these thee aspects in greater detail. 

Value Generalization Partially Ordered Set (VG-Posets or Posets for short) 

Generalization is implemented via the Least Upper Bound (LUB) operator (as 

earlier defined). In order to specify the Least Upper Bound operator for an attribute a 

partially ordered set (Poset) is necessary. Our toolkit has several built-in Posets, all of 

which implement the Poset interface. 

Different fields can be better represented by different kinds of Partially Ordered 

Sets. In the DSG toolkit, these Posets are represented by classes implementing the Poset 

interface. Moreover, each type of Poset has associated with it a particular type of node that 

is used to represent values in the hierarchy. These nodes inherit from the PosetNode class. 

Configuration Files 

The DSG toolkit's command line interface uses two configuration files - 

Column.xm1 and Hierarchy.xm1. Both are required to load data from a Comma Separated 

Values (CSV) file. The Hierarchy.xm1 file specifies VG-Posets and Domain Generalization 

Hierarchies; whereas the Colurnns.xm1 file binds these aforementioned Posets to specific 

columns in a CSV file. In the examples that follow we describe all built-in Posets 

supported by the toolkit and how the configuration files can be configured to instantiate 

each possible Poset. 

Posets 

Here we present different classes associated with different types of Posets. For each 

Poset we present an overview of how it works and the situations in which it is usem. The 

toolkit can be used in two different ways: as an API and as a command line tool. As a result 

we provide two ways of instantiating each class (1) via source code (which is useful when 

the toolkit is being used via an API) and (2) via the Hierarchy.xm1 configuration file, when 

the toolkit is being used as a standalone anonymization tool. 



RangePoset and RangeNode 

A RangePoset is useful for describing attributes that represent ranges. In particular 

it implements ranges that satisfy the property that the LUB of [A,B] and [C,D] is 

[min(A,C), max(B,D)] where A,B,C, and D are double precision floating point numbers 

that were encapsulated into a RangeNode class. A RangePoset is particularly suited for 

describing a hierarchy of age ranges because the upper bound of two age ranges such as 

[10,20] and [15,30] satisfies the latter property (i.e. the upper bound would be [10,30]). We 

do not call the latter, however, a least upper bound, because age ranges do not always 

satisfy the above LUB property. Consider, for example, the non-overlapping age ranges 

[lo, 121 and [14,15]; here the LUB is not [ 10,151 since the element 13 is not included in the 

least upper bound Nonetheless [lo, 151 can be considered an upper bound, and so a 

RangePoset can be used in that manner. RangePoset can be constructed as follows: 

RangePoset(doub1e low, double high) where low and high respectively represent the lower and 

upper limits of allowable values. The LUB function of the RangePoset class accepts 

RangeNode objects or a LUBset class. 

// create a new RangePoset that can hold 
// people within the ages of 10 to 90 
RangePoset AgeRangePoset = new RangePo~et(10~90); 

// Create a node representing an 
// age range from 10 to 30 years of age 
RangeNode AgeRangel = new RangeNode(10,30); 

// Create a node representing an 
// age range from 20 to 34 years of age 
RangeNode AgeRange2 = new RangeNode (20,35) ; 

// find the LUB of the two age ranges 
RangeNode result = AgeRangel.lub(AgeRange2); 

Example 1: How a RangePoset and RangeNode are used 

The following is an example of how one might create a RangePoset in the Hierarchy.xm1 file: 

I I 

Example 2: How a RangePoset can be instantiated in the Hierarchy.xm1 file 



In the above example we have created a RangePoset called "Age-rangegoset" 

whose ranges can span from 0 to 120 and where the maximum difference in ages before the 

RangeNode assumes an information value of 0 is 25. 

MatrixPoset and MultiNode 

Partially ordered sets that can take on a finite number of values (such as the one 

shown in Figure 3) can be thought of as a directed graph represented by a collection of 

nodes and directed edges. The nodes represent items in the hierarchy, and the edges 

represent less than or equal to relationships within the hierarchy. The MatrixPoset allows 

one to specify such Posets. It uses the MatrixNode class to specify specific nodes in the 

Poset. To speed computations, the less than or equal to relationship (LEQ) is pre-computed 

for all possible pairs of values in the MatrixLattice. To more rapidly calculate this table, we 

note that the lookup table listing the LEQ relationship is the transitive closure of the 

adjacency matrix between all nodes - a realization that enables us to take advantage of 

relatively efficient algorithms for transitive closure in the literature. While such pre- 

computation increases the initial start-up time for our anonyrnization process, we have 

found that pre-computation resulted in considerable performance improvements - changing 

our run times fiom hours to minutes. 



/ /  create a MatrixPoset to represent a hierarchy 
/ /  of ZIP codes 

/ /  create a new MatrixPoset that can hold 8 nodes 
MatrixPoset MP = new MatrixPoset (8) ; 

// add the nodes 
MP. addNode (\\*" ,4) ; 
MP. addNode (\\021ff, 3) ; 
MP. addNode (w0213N ,2) ; 
MP. addNode ("0214" ,2) ; 
MP. addNode (n02139w, 1) ; 
MP. addNode (\\02138", 1) ; 
MP.addNode ("02140", 1) ; 
MP. addNode (n02141w, 1) ; 

// set the less than or equal to relationships 

MP. setLeq(MP. getNode ( \ \ * I f )  , MP. getNode (\\02lW) ) ; 

MP. setLeq (MP. getNode (\\02lW) , MP. getNode (\\0213ff) ) ; 

MP. setLeq (MP. getNode (\\021ff) , MP. getNode (\\0214") ) ; 

MP.~etLeq(MP.getNode(\\0213~~) ,MP.getN0de(\\02138~~)) ; 

MP.~etLeq(MP.getNode(\\0213~~) ,MP.getN0de(~02139~~)) ; 

MP. ~etLeq(MP.getNode(\\0214~~) ,MP.getNode ("02140ff) ) ; 

MP. ~etLeq(MP.getNode(\\0214~~) ,MP.getNode(\\02141ff) ) ; 

// pre-calculate LUB values 

MP. setTclosure () ; 

// find the LUB of 0213 and 0214 

Matridode MN1 = new Matridode (MP. getNodet\0213") 

MatrixNode MN2= new MatrixNode (MP. getNode\\0214") 

LUBSet result = MP.getLubset (MNl,MN2); 

/ /  result now holds a LubSet containing the node "021N 

Example 3: How a MatrixPoset is used 



'The following is an example of how one might create a MatrixPoset in the Hierarchy.xm1 file: 

<MatrixPoset Name="ICD9-Codes" RootNoar -"ID9000000"> 
<Node I D="ID9000000 Name=" - Value="l " Parents="ID9000000"/> 
<Node ID="ID9000001" Name="008" Value="l" Parents="ID9000000"/> 
<Node ID="ID9000002" Name="03IM Value="lW Parents="ID9000000"/> 
<Node ID="ID9000003" Name="038" Value="l" Parents="ID9000000"/> 

</MatrixPoset> 
,- 

Example 4: How a MatrixPoset can be Instantiated in the Hierarchy.xm1 file 

In the latter example, we have a MatrixPoset of 3 Diagnostic Related Grouping 

(DRG) codes representing different medical procedures. The root node in the hierarchy 

represents the suppression of the cell. As always, this root node is its own parent and we've 

given it the name "*" (a symbol often used to denote a wildcard) to denote that a deleted 

cell could match any value. The remaining three nodes represent the DRG codes allowable 

in the data set - all of whom list the root node as their parent. 

PowerPoset 

A group of one or more binary fields can be represented by a PowerPoset. The 

PowerPoset assumes that the LUB of two bit-vectors a and b is a A b, where the A operator 

represents a bitwise AND operator. As an example, let us suppose that a and b are both 

two-bit bit vectors, where the first bit represents the presence of "HIV" and the second 

represents the presence of renal failure. The LUB of a and b will be the traits common to 

both vectors a and b. In other words, the LUB of a and b is analogous to a set intersection 

operator. 



/ /  create a new PowerSet that can hold 
// 3 boolean fields 
PowerSet PS = new PowerSet(3); 

/ /  Create 2 power nodes of length 3 
/ /  (initialized to binary '000' ) 
PowerNode PN1 = new PowerNode (3) ; 
PowerNode PN2 = new PowerNode(3) ; 

// set the second and fifth positions of 
// the two Boolean vectors to '1' . 
PNl.set(2,l); / /  turns on the second bit of PN1 
PNl.set(3,l) ; // turns on the third bit of PN1 
PN2.set(3,1) ; // turns on the third bit of PN2 

PowerNode result = PS . lub (PN1, PN2) ; 
// result now holds a PowerNode with binary value 011 

Example 5: How a PowerPoset is used 

The following is an example of how one might create a PowerPoset in the Hierarchy.xrn1 

file: 
- 

<PowerPoset Name="Has-HIV" Bits="l "I> 

Example 6: How a PowerPoset can be instantiated in the Hierarchy.xm1 file 

In the latter example, we initiated a Poset for a single Boolean bit that will store 

whether or not a person has HIV. 

DateOfiirthPoset 

A DateOfBirthPoset is useful in situations where one wants to preserve as much 

information about a date of birth as possible. Its LUB operator preserves as much 

information as is common to its two inputs. If the two dates of birth do not occur in the 

same year, it converts both inputs into age ranges to see if they fall into the same range, 

in which case it returns the date of birth of a person who was born at the midpoint of that 

age range. Finally, if no commonality can be found at the age range level, it suppresses 

the cell. The DateOJBirthNode keeps track of the granularity of the node (i.e. day of 

birth, month of birth, year of birth, age range, or suppression). The purpose of this to 



facilitate calculating LUBSets. A LUBSet of several different dates of birth falling into 

the same age range will not change if an additional DateOfBirthNode falling within the 

same age range is added. 

Here we give a formal definition for the LUB operator. Let a date be composed of the 

triplet (d,m,y) where: 

d is the day 

m is the month 

Y is the year 

And let a], a2, . . . , a~ represent a series of ordered pairs, (al 1 ,al2), . . . , ( a ~ l  ,a~2), representing 

age ranges [al ,,al2], . . . , [aNl,a~2] such that ail = qi-lp + 1. 

And let D~=(d~,rn~,y~) represent a base date against which other dates will be compared 

(dl,ml,yl) ifDI=D2= ...= DN 

(15, m1,y3 if the days are different but the months and years are the same 

(1 5,6,~1) if the months are different but the years are the same 

((7, r9 if the years are different, Dl, D2, .. represent the age of someone 

who at Db will be greater than ail years of age and less than ai2 years 

of age and q,r, and s respectively represent day, month and year of 

birth of a person who is (ail + ai2)/2 years of age at time Db. 



// age ranges corresponding to [0,5], [6,10] 
// [11,15] , [16,20] ... etc ... 
int [I rgAge = new int [I {5,10,15,20,25,30,35,40,45,50); 

// creates Poset using today's date as the base date 
DateOfBirthPoset DOBP = new DateOfBirthPoset 

(new GregorianCalendar () , rgAge) ; 

// illustrates creating DateOfBirth nodes using 
// different date formats 
DateOfBirthNode A = new ~ateOfBirthNode (112/13/197811, rgAge) ; 
DateOfBirthNode B = new DateOfBirthN0de(~~19780213~~, rgAge) ; 
DateOfBirthNode C = new DateOfBirthNode (111978020111, rgAge) ; 
DateOfBirthNode D = new DateOfBirthNode ("1 978111311, rgAge) ; 
DateOfBirthNode E = new DateOfBirthN0de(~~19791013~~, rgAge) ; 

DateOfBirthNode T1 = A.lub(B,rgAge); / /  result: 19780213 
DateOfBirthNode T2 = C.lub(A,rgAge); / /  result: 19780215 
DateOfBirthNode T4 = D.lub(E,rgAge); // result: date of birth 

// corresponding to 
/ /  midpoint of age range 
/ /  [25,301 

Figure 8: How a DateOfBirthPoset is used 

The following is an example of how one might create a PowerPoset in the Hierarchy.xm1 file: 

cDateOfBirthPoset Name="AgeH BaseDate="20060101" AgeRanges="5,30,50,70,90"1~ 

I I 
Example 7: How a PowerPoset can be instantiated in the Hierarchyam1 file 

In the above example we have create an DateOfBirthPoset with a base date of Jan 

1 st, 2006. The age ranges it uses are [0,5], [6,30], [3 1,501, [5 1,701, and [7 1,901. 



SparseMatrixPoset 

A SparseMatrix is sparse in the sense that it compactly represents a matrix. The 

matrix it represents has all possible values of a MatrixPoset on one axis, and some quantity 

(such as fiequency) on the other. A SparseMatrixPoset is usell  when one needs to perform 

a join between two or more tables. Consider for example the case where a patient's 

demographic details reside in one table, and their diagnostic codes reside in another. 

The SparseMatrixPoset can represent these diagnoses as a set of pairs (MN,f) where 

MN is a MatrixNode and f is the frequency that the contents of the node appears. For 

example, if a patient has 10 cardiac dysrhythas (which are represented by the ICD9-CM 

code 427.89) then that would be represented by the pair: (427.89, 10). A 

SparseMatrixPoset then can be used to hold the frequencies of occurrence of all diagnoses 

in the diagnosis table for each patient. 

In order to create a SparseMatrixPoset one must specify the maximum number of 

(m, f )  pairs that can occur in a given row in addition to passing a reference to a an 

instance of a MatrixPoset class (which in our latter example would define all possible 

ICD-9-CM codes). 

In the Hierarchy.XML Configuration file one can create a SparseMatrixPoset as 

follows: 

Where: 

Name 

MatrixLatticeName 

Columns 

is the name given to this SparseMatrixPoset 

is the matrix lattice used to define the LUB of the 

MatrixNodes stored in this Poset. 

is the maximum number of Name-Value pairs that 

can be stored in a given row. 



The following is an example of how one might create a SparseMatrixPoset in the 

Hierarchy.xm1 file: 

<SparseMatrixPoset ' ="SparseMatrixPoset-ICD9 Matri~LatticeName=*'ICD9~Codes" Columns="39/> 

Example 8: How a PowerPoset can be instantiated in the Hierarchy.xm1 file 

In the above example, we have created a SparseMatrixPoset. The values it can 

assume are defmed in the MatrixPoset named ICD9-Codes. This SparseMatrixPoset 

contains 39 pairs of columns. Each pair stores an ICD9 code of a diagnosis together with 

the frequency with which that diagnoses occurred for that patient. 

PassThroughPoset 

A PassThroughPoset is useful when one wishes to add fields to a row that should 

not be anonyrnized. The LUB of a PassThroughNode and another node is the unchanged 

original node. The measure of a PassThroughPoset is always 0 because its information 

can never be degraded. 

I I 

Example 9: How a PassThroughPoset can be instantiated in the Hierarchy.xm1 file 

MultiPoset and MultiNode and MultiL UBSet 

Tabular data is often represented in a table where the rows represent patient records 

and the columns represent attributes. A MultiNode is used to represent a data row and an 

array of MultiNodes is used to represent a table. A MultiPoset is used to fmd the LUB of 

one or more rows, as follows: 

Where A and B are two MultiNodes representing two different patient records. i.e. the LUB 

of a MultiPoset is simply the pair-wise LUB of the constituent elements of its inputs. 

To define a MultiPoset, one must fmt construct Posets of other types such as 

RangePosets, PowerPosets. These individual Posets are then aggregated into a MultiPoset. 

A MultiNode in turn is constructed by aggregating Node classes corresponding to the 



individual columns. Since the LUB of two MultiNodes may not have a unique value, we 

introduce the MultiLUBSet class, whose sole data member is an array of LUBSets. Each 

LUBSet in the array represents the possible generalizations of an attribute. 

// Assume the code for examples 1,2 and 3 appears above 

// create a 3 column MultiPoset 
MultiPoset MP = new MultiPoset (3) ; 

// add the nodes 
MP . setCol ("Age RangeM, RL ,I) 
MP.setC~l(~Has HN"IPLI1) 
MP. setcol (mZipw,ML, 1) 

1;  
// Assume table columns are "age rangen, "zipu, and 

// three Boolean fields representing renal failure, 

// HIV and colon cancer 

// create two MultiNodes 

// the first with values <lo-30 years, 0213*, (F,T,T)> 

// the second with values <20-35 years, 02134*, (FIFIT) > 
MultiNodel MN1 = new MultiNode (3) ; 

MultiNode2 MN2 = new MultiNode (3) ; 

MNl. set (1, (PosetNode) RL1) ; // Age range: 10-30 years 
MNl . set (2, (PosetNode) ML1) ; // Zip Code: 0213* 
MNl . set (3, (PosetNode) PL1) ; // (False, True, True) 
MN2. set (1, (PosetNode) RL2) ; // Age range 20-35 years 

MN2. set (2, (PosetNode) ML2) ; // Zip Code: 0214* 
MN2. set (3, (PosetNode) PL2) ; // (False, False, True) 

LUBSet result = MP.getLubset (MNl,MN2); 

// result now holds a LubSet containing a MultiNode 

// < [10f35] I "021**", (FITIT)> 

Example 10: How a MultiPoset and MultiNode can represent a table 



Unlike other Posets, MultiPosets are never declared in the Hierarchy.xm1 file. Rather, they 

are used internally by the toolkit to store rows. 

Columns.XML File 

Heretofore we've explained how to create various Posets in the Hierarchy.xm1 file, 

but we have not explained how to load data associated with these Posets from a file. Here 

we show how one can load data from a Comma Separated Values file (CSV) into an array 

of MultiNodes. But before one can load a CSV file one must first bind one or more Posets 

to specific columns in the file. This is done via the Columns.xm1 file. 

<Column Name="Age-Year' :"Defal llf' ?t="Age-range~oset" Weigh 3.023" I> 
<Column Name="Gender" H Default - - "MvSuppressionPoset" W e i ~  ="988.823 /> 
<Column Name="Ethnic Ori ="Defauli "M ySuppressionPoset" 18.176/> 
<Column Name="mrnM "Defaun Poset="MyPassThroughPoset" Weight="( 
<Column Name="total-chrg' erarchy="~efauk' ~set="MyPassThroughPoset' feic ="0/> 
<Column Name="high-exp" Hierarchy="Default" Poset="MyPassThroughPoset" Weight="O"P 
<Column Name="total_chrg_04" Hierarchy="Default" Poset="MyPassThroughPoset" Weight="O/> 
<Column h ie="other-dx-code" Hierarchy="Default" Poset="SparseMatrixPoset-lCD9 

-deight="2.566 /> 
CLolumn Name="principal~xXcode" Hierarchy="Default" Poset="SparseMatrixPosetcODRG" 

Weight="7.2263 /> 
<lTableDescription> 

Example 11: How to use the Columns.xml file to bind Posets to specific columns 

As shown in the example above, the columns are declared in same order as they 

appear in the CSV file. The relative weights for each row can also be specified here. These 

weights are multiplied by the measure to give the value of any particular data item. At first 

glance it may seem that the toolkit is founded on weighted indexing but this is not so. 

While we do provide the facility to implement weighted indexed measures, this facility is 

optional and left to the discretion of the user. Implementing such a facility also allows us to 

empirical compare weighted indexes against other measures. 

The Hierarchy.xm1 file allows one to define namespaces, so that multiple Posets 

could be, for example, defined with the same name. By specifying Hierarchy= "Default" in 

each column we are declaring that the Poset specified can be found within the default 

namespace. 



Ambiguators 

An ambiguator is a class that implements an algorithm for transforming a table 

stored in a DataSet class into a table that has k-anonymity. We use the terms like 

ambiguate and ambiguator rather than anonymize and anonymizer because k-anonymity 

does not always lead to anonymity (as shown on page 24). 

The DSG toolkit is based on the Vinterbo optimization fnunework for 

anonymization. All k-anonymization algorithms must implement the Ambiguator class and 

receive their data in the form of a DataSet class - a class that simply contains an array of 

MultiNodes (which represents an m y  of rows) and a generalization hierarchy of 

MultiNodes. 

1 public class DataSet I 
I public MultiPoset MP; 

public MultiNode[] data; 

I J 

Figure 9: Data members of the DataSet Class 

Each Ambiguator returns its results as an AmbigRun object whose basic data 

members are listed in Figure 10. 

public class AmbigRun 

{ 

/ /  The original data set that was ambiguated 
public DataSet origData; 

// Ambiguator used to ambiguate this data 
public Ambiguator ambig; 

// Final data --- filled in by Ambiguator 
public Mu1 tiLUBSet [ I  ambigData ; 

1 

Figure 10: AmbigRun Member Functions 



The DSG Toolkit contains three ambiguators: Greedy, Greedy-DXCG and Partition 

and the toolkit is extensible to allow for the addition of other algorithms. Each Ambiguator 

must implement the Ambiguator class. The basic data members of this class are listed in 

Figure 12. We have abstracted the arguments to each ambiguator as an AmbigArgs class. 

This abstraction enables a series of arnbiguators to be called using the same data in a loop 

(enabling side-by-side comparisons of performance). We now explain in greater detail the 

built in algorithms. 

The Greedy Algorithm 

The Greedy ambiguation algorithm was written by the author. It is essentially a hill 

climbing algorithm. Given a row, it creates a LUBSet containing the row, and successively adds 

rows that least increase the measure of the LUBSet until the LUBSet contains k rows. To arnbiguate 

an entire table, it simply repeats the steps above for each row. The pseudo-code for the Greedy 

algorithm is shown in Figure 1 1. 



ALGORITHM NAME: Greedy 

INPUTS: k Value representing desired level of k- 

anonymity 

MP A MultiPoset. 

LUB(X,y,MP) A function, that returns the least upper 

bound of the set of rows X and the row y 

according to the Poset MP. 

Measure (X) A function which returns the information 

value of the set of rows X. 

RETURNS: items[] an array of sets where items[i] contains 

the k integers representing the row 

number to be lubbed with row i. 

BEGIN 

rows f [l,N] 

cols f [l,k-1] 

for V i € rows { 

items[i] f {i} 

for V j € columns { 

rowWtoWadd f argmin r,At+i measure (LUB (items [i] , t) 

items[i] = f items[i] U {row-to-add} 

1 

1 
return items 

END 

Figure 11: Greedy Algorithm Pseudo-code 

The Partition Algorithm 

The partition algorithm was written by Robert Fischer. It finds clusters of size at 

least k. It functions by recursively splitting rows of a table into two partitions. Initially the 

whole data set is regarded as one partition. The algorithm then repeatedly replaces each 



partition with two new partitions that were created by splitting the original partition. The 

process by which a partition is split is outlined as follows. First, the two elements that are 

"farthest apart" from one another are identified. The distance metric used for determining 

how far apart two nodes, A and B is as follows: 

distance = 2 * [Measure (LUB(A,B))] - [ Measure(A) + Measure(B) ] 

Where Measure(*) is some function that satisfies the properties defined on page 26. 

The two nodes found to be farthest apart respectively represent the first elements of the two 

initial partitions. The remaining elements are then assigned to the partition closest to them. 

This process is recursive. That is, the partitions created by this process are also split into 

still smaller partitions, and the process repeats until partitions of size less than k emerge, in 

which case the last split is reversed. 

The Greedy-DXCG Algorithm 

The Greedy-DXCG algorithm is similar to the greedy algorithm but it uses a 

different measure and has some specific optimizations. Like the greedy algorithm, it 

anonymizes a row by turning it into a LUBSet and by successively adding rows that least 

increase the measure of the LUBSet until the LUBSet contains k rows. 

But unlike the greedy algorithm it contains some special optimizations. These 

optimizations were necessary because an API version of the DxCG software was not 

available at the time of the experiment! Whereas the greedy algorithm would call the 

measure function n!/(n-k)! times, the Greedy-DxCG algorithm is optimized to only spawn 

the DxCG process k times -significantly reducing the overhead of creating and destroying 

the DxCG process. This reduction in calls to the DxCG software was achieved by inputting 

data to the DxCG function in batches - not by reducing the number of rows DxCG had to 

process. Nonetheless, it resulted in significant speed gains. 

Another difference between the Greedy algorithm and the Greedy-DxCG algorithm 

is their flexibility in using different measures. Whereas the Greedy algorithm can use a 

variety of measures, the Greedy-DxCG is tied to a single measure; namely, the error 

* It's the author's understanding that an API version is planned but not yet released. 

-50- 



between DxCG's predicted costs and the patient's actual costs in year 2. As a result, this 

algorithm cannot be used on tables except those that have year 1 patient data, and a column 

containing actual year 2 patient costs. Thus, the Greedy-DxCG algorithm can only be 

considered to be a specialized algorithm. Nonetheless, we created it to serve as a "gold 

standard" against we can measure other algorithms, and measures. 

Synthetic Data Generation 

Included in the DSG Toolkit are tools to generate synthetic data fiom distributions. 

Our method of generation is fairly primitive: we randomly generate the data independently 

of each other based on distributions found in the US census; however, more advanced 

techniques for synthetic data generation (such as the technique known as "multiple 

imputation") could possibly be implemented in the toolkit by future researchers. 

Command Line Interface 

The DSG toolkit has a command line interface that makes it easy to create, 

generate, evaluate, or ambiguate data. The command line tool is termed "Lubber" - a 

reference to the LUB operation. The command line options are long and extensive. We do 

not list them here, but the interested reader can find them by typing "java -jar 

privacy Tookitejar -help9'. 



Figure 12: Data Members of the AmbigRun class 

public class AmbigRun 

I 
// The original data set before ambiguation 

public DataSet origData; 

// Ambiguator used to ambiguate this data 

public Ambiguator ambig; 

// Ambiguated Data 

public Mu1 tiLUBSet [I ambigData ; 

// An array of k integers for each row that explains 

// which rows were combined to create each row. 

/ /  i . e. ambigData [i] = LUB (items [i ] [ O ]  , . . . ,items [i ] [k] ) 

public int [ ] [ ]  items; 

1 

Experiments 

7 

Context 

We wish to simulate a situation where a variety of hospitals will contribute patient 

data to a hypothetical researcher who is seeking to construct a model that can be applied in 

a wide variety of geographies and hospitals. 

The latter definition has a number of implications. A model that is applicable across 

a wide variety of geographies and hospitals will typically only use inputs (such as age, 

gender, and diagnoses) that are hospital or geography independent. 

As a result, we believe our typical researcher would not be interested in fields that 

are geography-specific (such as a zip code) or hospital-specific (such as "name of admitting 

physician") unless such fields are first converted into a field that is neither hospital nor 



geography specific. An example of such a conversion might be converting the geography- 

specific field, "zip code" to the more general field "cost-of-living adjusted income." 

Following the above logic, we have chosen to exclude hospital-specific or 

geography-specific fields from our analysis. This is not to say that such fields are not usell  

to some researchers. But rather a reflection that such fields may not be of use to a 

researcher trying to create a risk model of risk for a disease. Moreover there is utility in our 

choice - by excluding such fields we are likely to increase the information content of 

geography and hospital independent fields like gender, age and diagnosis. 

To simulate a real application for the data, we have outputted our anonymized data 

into RiskSmart 2.0 - a predictive model produced by DxCG Inc., used by health insurers to 

predict their expenditures in future years. In particular, the RiskSmart model allows one to 

predict the cost of each patient in future years, based on a patient's demographic profile and 

diagnoses in the current year. Health insurers typically use Risksmart to identify patients 

whom they could select for preventive treatment - a procedure often termed "disease 

management." The idea behind disease management is simple: "an ounce of prevention can 

save a pound of cure." 

The RiskSmart model has a number of outputs. For the purposes of this dissertation 

we have elected to consider only its prediction of 2004 costs based on our 2003 data. For 

all of our experiments, we measured the performance of the final output on DxGG - by 

summing the absolute errors between DxCG's predictions of expenses and the true 

expenses for each individual. 



The Data Set 

We began with real data set consisting of the demographic data, procedures and 

diagnosis of inpatients from hospitals in the Boston area. Institutional Review Board (IRB) 

approval was obtained for this study. 

The data consisted of the following tables: 

demo-03 and demo-04: which contain the demographic information of 28,795 and 

32,307 inpatients respectively for individuals registered at the health network in the 

years 2003 and 2004. The fields in these tables are show in Figure 13. 

Namt - 
adm-dtl 
last-name 
first-name 
ssn 
dob 

1 

age-month i 
age-year 
Gender 

I 

I 

ethnic-origin 
I 

- I 

race-full I 

religion 

language I 
marital-status 
zipcode 

mrn 

chra 

First name qNy4s4 
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.5 ;i..'-% 

Qate of birth 
Deys of age over and above that 

Sfjwi in m t h - a ~ e  
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I Years of age 
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Ethnic Origin expressed as an 
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A FulCtext representation of , ;;;;:@in 
Preferred language of 

I 
correspondence 
Marital status 
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Mlsdicai records number - a 
unique identifier for each patient 
Total oost of beating the patient 
for .the year 

Figure 13: Fields in Tables Demo-03 and Demo-04 

&-03 and &-04: these tables contain 932,657 and 1,121,264 diagnoses of 

inpatients for the years 2003 and 2004 respectively. Entries in this table are linked 

to those in the demographics table through the mrn field - a unique identifier for 

each patient. Figure 14 shows the fields for this table. 



Name- Descri~tion 

disch-dt 

M rn 
Los 
Gender 
Zipcode 

Uid 
principal-px-cd 

principal-px 
adm-md 

other-dx-cd I 
Figure 14: Fields in tables dx-03 and dx-04 

As shown in Figure 15, there were only a handfbl of unique diagnoses. 

I I I I I 

Figure 15: There are only a handful of unique diagnoses 
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Approach 

To measure information loss in our experiments we propose a variety of measure 

functions. These measure functions could be regarded as constituting a spectrum of 

defensibility ranging fiom measures that value all fields equally to those that value each 

data item based on its predicted information content. 

Method 1: Equal weights (all columns have the same value of 1 .O) 

This measure function has two parts. The first computes a score for each 

field, the second sums the fist measure into a score for each row. 

This measure function assigns a score of 0 to all leaf nodes, 1 to each leafs 

parent, 2 to the leaf parent's parents, and so on and so forth. Each of these values, 

however are divided by M - the height of the highest height in the hierarchy. This 

ensures that the scores range fiom 0 to 1.0 - 0 being assigned to the leaves and 1.0 

being assigned to the topmost node in Poset or DGH. 

The measure for each row is simply the sum of the scores for each field in 

the row. This can be interpreted as assigning a weight of 1.0 for each column. In 

sum this measure function can be written as 

Where: 

R is a row consisting of i columns 

h is the height of the element in column i within the Poset or DGH 

corresponding to column i. 

M is the highest height in the DGH or Poset corresponding to column i 

or the highest possible range in a RangePoset. 

This measure function has properties highly similar to the PREC metric 

discussed in Figure 4 insofar as the position of a field in a DGH or Poset 

completely determines its score. Such measures would assign the same 



score, for example, to knowing if someone had HIV to knowing if they 

were male of female. 

Method 2: Using empirically estimated column weights 

Whereas the last measure weighted all columns equally, this measure 

hc t ion  assigns a unique weight to each column according to an empirically 

derived measure (the mutual information of that column to the variable we are 

trying to predict). This empirical measure seeks to estimate the "true" information 

the column has with the predicted variable. The greater the amount of reliable data 

one has to estimate the mutual information, the greater the confidence one can have 

that the estimate of mutual information converges with its true score. 

Where wi is defined as the mutual information between column i and the column 

we are trying to predict. The mutual information between a column X, and a 

column we are trying to predict C, is defined as: 

The mutual information is an information theoretic measure. It represents 

the decrease in entropy of the random variable C, given the random variable X i.e.: 



Method 3: Using an empirically estimated information measure of each value 

Unlike the latter measure which assigns a single number to an entire 

column, this measure assigns a value to each cell within a table. This assigned value 

is the point-wise mutual information with the target variable. 

The point-wise Mutual Information between a vector x, and a target variable 

C (the column we are trying to predict) is defined as: 

PMI(X = x,C = c) = log, 
(;:;;:I 1 

If the values x and c are statistically dependent, the mutual information will 

be positive. Conversely, if the two values are disassociated greater than chance, the 

Mutual Information will be negative. 

We have chosen to value both evidence of association and disassociation 

equally by using the absolute value of the point-wise mutual information as our 

measure. Further, because our system seeks to minimize scores we multiplied the 

absolute value of the score by -1 - so data values with more information will be 

treated as more valuable. 

There are some issues with this measure. First, by summing the pointwise 

mutual information scores for each column of a row into a single measure, it 

assumes that the columns are all independent - i.e. that there is no redundancy in 

the information between the columns - an assumption almost certainly violated in 

practice. Second, it violates the monotonicity property we required in a measure 

function earlier because a generalized value may actually have a higher score than 

its ancestors. This discrepancy reflects the fact that our mutual information estimate 

is exactly that: an estimate. Had our tables had enough rows, our values would 

converge to the true values and monotonicity would be preserved. We therefore 

relax our requirement for monotonicity when using this measure. 



Method 4: Using the degradation of the predictive model we intend to use as 

our measure 

This measure is perhaps the most rationally defensible. It uses the 

degradation in predictive performance in our intended application as our measure 

of information loss. Unlike the other methods, it escapes the weighted index 

problem by considering a row in totality rather than by summing individual 

measures for each column. 

For the purposes of our experiments our final intended predictive model is 

DXCG Inch RiskSmart 2.0. 

How we calculate mutual information scores: 

To the tables dx-03 and demo-03 we added a column called "high-expense." This 

column holds a Boolean value that was set to 1 if a patient had expenditures of more than 

$25,000 in year 2 (i.e. 2004), and 0 otherwise. This is the target variable for all mutual 

information calculations. We also added implied rows to form an augmented table as 

describe in Figure 7. This allowed us to calculate a mutual information score for each level 

of generalization in all Posets. 

Mutual information scores are known to be biased towards rare values. For the sole 

purpose of calculating mutual information scores we temporarily removed all values 

occurring less than 6 times. 

This resulted in the following: 

a. 405 zip codes remained out of 1537 
b. One age y e a r  (14) was removed (it occurred only once) 
c. One ethnic group race was eliminated (NATIVE HAWAIIAN which 

occurred only once) 

A Per1 script was used to calculate these mutual information scores. Its output was portions 

of the Hiemrchy.XML configuration file. 



Data Cleansing and Data Preparation Procedures 

As is typical of most data sets, we discovered a number of inconsistencies in our 

data. For example, we noticed that a number of individuals had their ageyear field set to 

zero - even though their dates of birth were in the distant past. 

In order to prepare our data for anonymization we performed a number of procedures: 

1. Removed obvious identifiers - including first name, last name, uid, social security 

number, and address. 

2. Removed redundant fields - a field is redundant relative to another if knowing the 

second field adds no information not already known from the first. For example, the 

field ''race_full" adds no information if one already knows the value of the field 

"ethnic group." The former is a number representing an ethnic group, the latter, 

merely a human readable 111  text version of the first. This resulted in the 

elimination of the field race-hll. We also deleted the field principalgx which was 

simply a human readable version of the ICD-9-CM code stored in principalgx-cd 

and other-dx-cd which was a human readable version of the DRG code stored in 

other-dx. We also elected to delete the fields admission date and discharge date 

since they had a very low mutual information score and much of their predictive 

information seemed to be captured in the field 10s (which stores the length of stay in 

the hospital). 

3. Set all ages 1 90 to 90+ - this is a common practice and is consonant with the 

procedures used to anonymized records in HIPAA. 

4. Deleted patients in demo-03 and dx-03 2003 that did not exist in demo-04 - 

To test our anonymized data, we programmed DxCG's Risksmart software to 

predict the cost of a patient in 2004 based on their profile in 2003. But unless we 

have a patient's 2004 data (including their actual 2004 expenses), we have no way 

of calculating the error between the predicted and actual costs. Thus for the 

purposes of our experiment, we deleted all patients who didn't have both 2003 and 

2004 data. 



5. Deleted hospital-specific and geographic specific information - This is in line 

with our assumption outlined above. Fields purged include zipcode and admitting 

physician. 

6. Deleted data items with low mutual information ratios - Mutual information 

scores are known to be biased towards elements with a large number of possible 

values. To counteract this bias, we divided each mutual information score by the 

mutual information score of a column with random values chosen from a set with 

the same number of possible values. This ratio may be termed the mutual 

information gain or MI Ratio for short. We used the MI ratio as a comparison of 

information content across fields (see Appendix 1 for a proof that Mutual 

Information scores can be compared across tables). To estimate the MI ratio we 

computed the value 10 times, and took the average of the 10 runs. 

We chose to delete all entries with a mutual information gain of less than 

2.0. This threshold (two times random chance) was arbitrarily chosen. Our choice 

was somewhat supported by the fact that age yea r  had a ratio just above three while 

age-month and age-day - fields that one would expect would essentially be 

random and have little medical causal effect - had MI ratios of 1.73 and 0.83 

respectively; thus placing our threshold above random chance, but below a value 

known to have medical causality. We also eliminated enc-num - a unique ID 

assigned to each patient visit. Figure 16 shows the fields that were kept and 

discarded following this procedure. 
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enc-num 
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tot-chrg 
Los 

-- 
Figu- , - J: Fie 

1.635 ' 
0.077 
0.078 
0.630 
0.576 

7; . . - 0 WS . \ , . 

!Ids that were kept and disca 

In some cases, the same field would appear in both the demographic and 

diagnoses tables. In each case, we had to determine which table was best to 

estimate the MI-ratio for that field. In the case of demographic fields such as 

gender, it would be incorrect to estimate their MI-ratio from the dx-03 table 

because the same person will have the gender repeated many times - in effect 

giving greater weight to people with more diagnoses. 
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Figure 17: MI Ratios and fields kept in Dx-03. 
An b'N/A" in the "kept" column acknowledges the fact 
that the MI could not be appropriately estimated from 
this table. 

The final result of our data preparation and data cleansing procedures was a 

table with two extraneous fields - extraneous to the extent that these fields were not 

used by the DxCG predictive model. It should be noted, however, that the single 

extraneous field, principalqx-cd (principal procedure code) will later be shown to 

translate into 15 separate fields in the final table used for the anonymization 

process. This could potentially amplifying the extent of the "damage" this single 

field could bring to the anonymization process insofar as the presence of extraneous 

fields in the anonymization process are likely to divert the ambiguation algorithm 

from preserving data from the fields that will actually be used (in the final 

predictive model). 

7. Deleted data items occurring fewer than k times - On page 25, we outline an 

attack that can be applied to data items occurring fewer than k times. To thwart this 

attack all data items occurring fewer than k times in the data set were deleted. For 

the purpose of this experiment we have set k to 3. 

8. Preserved fields needed to calculate error - we configured our anonymization 

software to "pass-through" certain fields whose sole purpose was to facilitate 

calculate error. To ensure such fields had no effect on the anonyrnization process, 



we set the weight of such fields to zero, and used a "PassThroughPoset.~' Fields in 

this category include mrn (a unique medical records identifier), tot-chrg - 04 (the 

patient's total expenses in 2004) and high-expense (a Boolean field set to 1 only if 

a patient's expense in 2004 > $25,000 and 0 otherwise). 

Finally, following these data cleansing and preparation procedures, we randomly 

selected 1000 patients and joined their information in the demo-03 and dx-03 tables as 

follows. First we noted that a patient had at most 62 distinct diagnoses. However only 17 

people had more than 39 diagnoses - allowing us to completely capture the diagnoses of 

98311000 = 98.3% of the patients in the data set using two groups of 39 columns for each 

person. These two groups represented "name-value" pairs. The first 39 columns (Called 

dxFieldName1, dxFieldName2, . . . , dxFieldName39) stored the diagnosis codes (i.e the 

names). While the remaining 39 columns (named dxFieldVal1, dxFieldVal2, ... , 
dxFieldVal39) stored the corresponding frequencies for each diagnoses (i.e. the values). 

The diagnoses were stored fiom left to right. If a patient did not have as many as 39 

diagnoses the rightmost fields would hold one or more blank values. If a patient had more 

than 39 diagnoses, the latter diagnoses were purged; however, this only happened in 1.7% 

of the cases. These two groups of 39 columns were then loaded into a SparseMatrixNode, 

to enable the LUB operation to be performed on them across rows. Figure 18 shows the 

final table used for our experiments. 



unlque 
Field Name Values 
age-year 
gender 
ethnic-origin 
mrn 
tot-c hrg 
hig h-exp 
tot-c h rg-04 
dxFieldName1 
dxFieldVal1 

Figure 18: The final table used for experiments 

Experimental Setup 

1. We seek to answer three questions: 

a) Which algorithm is best? Greedy or Partition? 

b) Which measure function is best? Vinterbo-1.0, Column-MI or Value-MI? 

We have defined three measure functions to guide our anonymization process 

(which essentially constitute an optimization problem). Under what 

circumstances are any of the measures better than the others? Does the choice 

of anonymization algorithm or size of the data set affect the outcome? 

c) Can we predict what fields will ultimately be used by the end user to 

predict the target variable in their models? To what extent do mistakes in 



predicting the fields used by the end-user affect the predictive performance 

of the ultimate model? 

Most predictive models take as input a certain set of pre-specified fields. The 

same is true of our anonymization process. While we may not be able to 

anticipate the variables used by researchers to build their predictive models, we 

do have control over what fields we wish to keep or purge before we even begin 

the anonymization process. Our choices of which fields to keep and which to 

discard can have an affect on the accuracy of the end user's predictive model. 

That is, if we input extraneous fields (extraneous in the sense that they are not 

ultimately used by the end-user), one would expect the anonymization 

algorithm to sacrifice some precision in these fields to preserve information in 

the extraneous fields. Can we successllly predict the fields that will be needed 

by our model? And if not, will mistakes in field selection matter? 

We seek to answer these questions by conducting a number of experiments. First, we 

compare greedy to partition on synthetic data. Second we compare greedy to partition using 

various measure functions on real patient data. Third we compare the performance of these 

algorithms on data sets of different sizes. 

a) Performance of greedy and partition on synthetic data 

A test set of 100 rows was randomly generated based on census data for Hampshire 

country, Massachusetts. The fields generated included a census block (the most 

finely granular physical location available in the census data as shown in Figure 3), 

Age (again based on census data), and 5 randomly generated Boolean fields (the 

first which could be interpreted as setting the randomly generated person as male or 

female), the remaining 4 being randomly generated and could be thought to 

simulate the presence or absence of a disease or condition. A Vinterbo style 

measure function was used (where the value of cell is represented by its hierarchy 

and all columns are weighted equally). 
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Figure 19: Greedy clearly outperforms 
Partition on synthetic data 

Figure 19, shows that greedy clearly dominates the partition algorithm according to the 

Vinterbo measure of information loss. This would seem to indicate that Greedy 

outperforms partition on data sets where the fields are generated independently of one 

another. However, in the next experiment we'll show that on real data, where there does 

exist dependence between fields, Partition clearly outperforms Greedy as measured by the 

predictive performance of the outputted data in our final application (DxCG). 

In our next experiment we used the dataset of 1000 patients from the 2003 dataset 

described earlier. This dataset was anonymized using the greedy and partition algorithms 

that were run using 3 different measure functions. 

1. Vinterbo-1 .O - where every field is assigned a value according to its position in 

the hierarchy for its respective column. The score for a row is simply the sum of 

scores for each column. We add the designation "1.0" to the name of the 

measure function because it sums scores for each columns with a weight of 1 .O; 

and it is only one example of the allowable functions in the Vinterbo 

framework; however for brevity, all references hereafter to this measure will 

simply be referred to as "Vinterbo." 



2. Col-MI - similar to the Vinterbo measure, however each column is assigned a 

weight corresponding to the mutual information between that column and the 

target variable - in this case high-expense (a Boolean variable which is 1 if a 

patient's expenses exceeded $25,000 in 2004, 0 otherwise). To calculate the 

value of a row, one calculates the values for each column as per Vinterbo, but 

each column value is multiplied by its corresponding weight before the sum is 

taken. 

3. Value-MI - where every distinct value in a column is assigned a score 

according to its point-wise mutual information with the high-expense field. 

The output of the anonyrnization process was then fed through a Per1 script, which did a 

number of operations to prepare the data for input into DxCG's Risk Smart model: 

a) Deleting fields not used by the DxCG model (including ethnic group, and 

principaljx-cd) 

b) Converting all age ranges (such as [10,20]) into the mean of the range. 

c) Duplicating every row with a suppressed gender into two fictitious persons: with all 

attributes identical to the original person - except that the first person was assigned 

the gender male, the second assigned female. This step is necessary because DxCG 

cannot handle individuals with a suppressed gender. Our way of overcoming this 

was to input both genders into DxCG and to take the average of the predicted 

expenses of the two fictitious persons. 

d) After the data was prepared it was passed through the DxCG model which was 

programmed to output a prediction of a patient's 2004 expenses based on their 

profile from the previous year (2003). The "error" for each individual was 

computed as the difference between a person's actual expenses in 2004 and 

DxCG's predicted expense. The sum, mean, and standard deviation of all such 

errors were taken. 



As shown in Figure 20 and Figure 21, the partition algorithm outperformed greedy 

both in the presence and absence of extraneous fields. 

Best Run of Each Algorithm vs. 
Gold Standard When All Fields Used 

Thousand 
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4,000.00 
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W 2,500.00 
2,000.00 
1,500.00 
1,000.00 
500.00 

Algorithm I Measure 

Figure 20: Best run of each algorithm when all 
fields used 

As shown in Figure 21, Partition using the Vinterbo measure outperformed greedy 

when extraneous fields were inputted into the anonymization process. 

Best Run of Each Algorithm vs. 
Gold Standard When DxCG Fields Used 
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4,000.00 
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Figure 21: Best run of each algorithm when no 
extraneous fields were used 

However we notice an interesting result in Figure 22 - that there is no best measure 

Mi& Algorithm is Best? 
(Input All fields) 

Thousand$ 

5,060.00 

5,000.00 

4,950.00 

EnW 4,900.00 

4,850.00 

4,800.00 

4,750.00 

Figure 22: Comparison of Greedy with Partition when 
all fields including extraneous ones were used. 

per se. Rather, the measure function that is "best" is highly dependent on which algorithm 

was used. In fact, a complete rank reversal was observed; the best measure function for the 

greedy algorithm (Vinterbo) was the worst measure function for Partition - and vice versa. 
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Figure 23: Comparison of Greedy to Partition 
when no extraneous fields were used 

The presence of extraneous fields had a marked effect on our results. When 

extraneous fields had been removed, the best measure function for partition was the Col-MI 

measure whereas in the presence of extraneous fields, best performance came from the 

Vinterbo measure. 

Upon reflection this result was not surprising because the extraneous fields (i.e. 

principalqx-cd and ethnicsoup) had higher mutual information scores than a critical 

field used by DxCG called "other-dx-cd," which stores the ICD9-CM codes associated 

with the patient. 

This meant that the Col-MI measure function de-emphasized a critical field for 

DxCG while simultaneously applying a higher weight to extraneous fields. It is therefore 

not surprising, that the Vinterbo measure (which gives equal weight to all fields), 

outperformed COL-MI in the previous experiment because the Col-MI measure served to 

amplify the negative impact of the extraneous fields whereas the Vinterbo measure did not. 

Conversely, when all extraneous fields were removed, one would expect Col-MI (which 

recognizes the relative weights of columns) to outperform the Vinterbo measure. This was 

also the case. 



So far, the partition algorithm has always outperformed the greedy algorithm. 

Might the size of the data set affect the outcome? To investigate, we repeated our initial 

experiment (which was conducted on a data set of 1000 rows) on data sets of 500,100, and 

50 rows. These smaller data sets were created by truncating the original at the desired 

number of rows from the one end of the file. 

Minimum Error for Greedy & Partition 
Across Varying Data Set Sizes 

A q  Error ($) 
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Algorithm 1 Data Set Size 

Figure 24: Average Error Across Different Data 
Set Sizes (Input: All fields) 

As shown in Figure 24, the average error is inversely related to the data set size 

regardless of whether partition or greedy is used. This is not surprising because the smaller 

the data set, the less likely the algorithm will find k records that are substantially similar. 

Thus, in small data sets, the algorithms are forced to combine individuals with little in 

common - resulting in the wholesale data loss. But as the data set size grows, the likelihood 

of finding similar individuals increases - enabling such individuals to be combined with 

less information loss. 

Varying the size of our data sets also allows us to analyze the data in another 

important way: it allows us to see if the best measure for each algorithm was consistent 

across data sets of varying sizes. This in turn enables us to provide some recommendations 

for the best measure for each algorithm in a more rigorous fashion than our previous 



analysis - which only measured performance on a data set of a fmed size (1000 

individuals). 

To determine the best measure for each algorithm, we analyzed the performance of the 

measures by calculating the overall error across all data set sizes and by ranking the 

performance of the measures in each run, and converting the ranks into "votes" using two 

voting mechanisms (Johnson 2005): 

A) Condorcet Voting (Schulze 2003) - which turns the ranks for each data set size into 

a vote. 

B) Majority Voting (Green-Armytage 2006) - which counts as a vote only the best 

measure for each data set size. 

Before proceeding, we will explain the two voting schemes here. 

Majority Rule Voting 

This is a very common voting scheme and is the voting scheme used in most 

political elections. The winner of the vote is the candidate that receives the most votes. In 

the context of our experiment, each data set size will cast a vote corresponding to the best 

measure for its data set. Two "elections" were held - one to determine the best measure for 

the greedy algorithm, the other to determine the best measure for the partition algorithm. 

There are, however, some well-known problems with the majority voting scheme. 

For instance, it is considered the "least-democratic" among commonly used voting schemes 

- in the sense that it is least likely to reflect the will of voters insofar as it can declare a 

candidate a winner even though that candidate would have lost against another candidate in 

a two-way race. This is a reflection of a limitation in this voting system that allows a voter 

to only specify their "first-preference," thus disallowing a voter from transferring their vote 

to a second-preference, should their first preference not win. 

Condorcet Voting 

This system was invented by the 18th century French mathematician and 

philosopher Marie Jean Antoine Nicolas Caritat, who held the title of "the Marquis de 



Condorcet." Unlike the prior voting scheme, this voting scheme allows voters to rank 

candidates. It has been often presented as an alternative voting scheme in political elections 

- and is considered to have fewer irregularities than majority-voting. 

The system works as follows. Voters rank candidates in order of preference. For every 

possible combination of two candidates, a simulated two-way race is held. In each two-way 

race, all the votes in each ballot are discarded except the highest-ranked candidate among 

the two being considered. In this fashion, every ballot can vote for a preferred candidate in 

every simulated two-way race. The candidate that wins the most two-way races is 

considered the winner. 

For the purposes of our experiment, the Condorcet voting function offers a convenient 

way to convert the ranking of measures for each data set into a vote that captures such 

rankings. In particular, every data set size represents a ballot. Each ballot will consist of the 

ranking of the measures for that data set size. The winner will be the measure that wins the 

most simulated two-way races. 
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Figure 25: Performance of Measures Across Data 
Sets of Varying Sizes When No Extraneous Fields 
Were Used. The Vinterbo measure was the best 
measure for the Greedy algorithm, regardless of what 
metric was used. Similarly Col-MI was the best 
measure for the Partition algorithm. 

As noted before, for small data sets of randomly selected real patients, k- 

anonymization is likely to result in wholesale information loss. It is in this vein that we 

consider the data set size of 50 a special case. For such a small data set, the LUB operator 

will be likely be highly destructive - even for small k values such as 3. Because we surmise 

that such small data sets are not representative of the need of real world applications, we 

have opted to analyze the question of "which measure is best?' both with and without the 

inclusion of the data set of 50 rows. 

As shown in Figure 25, when no extraneous fields were used, this separate analysis 

made no difference in our conclusions - that is, regardless of which metric was used, the 

Vinterbo measure was found to be the best measure for the Greedy algorithm, and the Col- 

MI measure was found to be the best measure for the Partition algorithm - regardless of 

whether the total error across all runs, the Condorcet voting scheme or the majority win 

voting scheme was used. 
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Although the inclusion of the data set with 50 rows made no difference in our 

results, the same was not true when extraneous fields were added. In particular including 

the 50-row data set confused our results - creating a 3 way tie for Partition. Interestingly, 

when no extraneous fields were used the Vinterbo metric was best; however, when 

extraneous fields were added, the Point-wise Mutual Information (PMI) metric was found 

to be better. We surmise the reason for this is that the Point-wise Mutual Information 

metric mitigates to some extent the effect of extraneous columns. 



Figure 26: Total error for all algorithms across data sets 
of varying sizes. 

Experimental Conclusions: 

Although one would need to repeat this experiment on many data sets to make 

strong conclusions, our data suggests the following: 

For data sets where all fields are generated independently of each other (something 

that rarely occurs in practice): 

o Greedy outperforms Partition 

For real patient data 

o Partition outperforms Greedy 

When the fields that will ultimately be used are known (and are the only fields 

passed into the anonymization process): 

o The best measure for the Partition algorithm is Col-MI. 

o The best measure for the Greedy algorithm is Vinterbo. 

When the fields that will ultimately be used are unknown: 

o The best measure for the Greedy algorithm is PMI 



o The best measure for the Partition algorithm is Vinterbo. The Col-MI 

measure came in a close second. 

Conclusion 

In this dissertation we have presented a new threat model for privacy and a toolkit 

that allows us to measure the effectiveness of various approaches to achieving anonymity. 

We have introduced two new general-purpose algorithms for anonymizing data. 

From a theoretical perspective, we have also shown that previously published 

measures of information loss are difticult to defend rationally; while also introducing a 

variety of measures that in principle are more attractive than previously published 

measures. 

Our new measures represented a spectrum of defensibility - ranging from the least 

defensible to the most defensible. To see if greater rational defensibility actually made a 

difference in practice, we empirically tested the performance of our measures on a real 

application (predicting future healthcare costs) and using real patient data. 

We found that the most defensible measure had significantly better performance 

than less defensible measures; while, our less defensible measures only marginally 

outperformed their indefensible counterparts. 

We have also introduced new theories including the concept of a virtual attack 

database for precisely modeling privacy threats. And by introducing the concept of 

augmented tables we were able to show that generalization and suppression; heretofore 

regarded as distinct operations are in fact the same thing when a table is augmented to 

include the fields that are implied by the original table. 

Future Directions I Questions 

There are several promising avenues for our research. The first possible avenue of 

future research involves harnessing the Bayesian model construction techniques outlined 

on page 31 to preserve more information in the de-identification process. The theory for 

this line of research follows. 

First we draw attention to the fact that one can infer a probability model from the 

concept of k-anonymity. The probability model is as follows. If an anonymized row has k- 

anonymity of k; then the probability of correctly selecting the person among the list of k- 



possible candidates is l/k. We call this latter probability the "probability of re- 

identification." The reciprocal relationship between the probability of re-identification and 

k-anonymity is important because one could potential train a Bayesian network to predict 

the probability of re-identification given any given data row. This is in turn could allow one 

to train the Bayesian model on a large data set to predict k-anonymity in smaller data sets. 

The impact of doing so could be significant because if such a Bayesian network 

could be constructed and if its error bounds could be understood, one could construct a 

system that could potentially preserve more information in the anonymization process. In 

particular, when anonymizing data in a smaller data set, we may no longer need to achieve 

k-anonymity within the data set if the Bayesian network can predict with strong confidence 

that the data will have k-anonymity within the larger population. In sum, this line of 

research may provide the capability to predict k-anonymity of a datum within the larger 

population. 

The second avenue of research would involve testing the data on different kinds of 

data sets. We have only tested the data on medical data sets. What holds true for medical 

data, may not hold true for other kinds of data. 

A third line of research involves expanding the measure functions included in the 

toolkit to include other search algorithms such as tabu search, genetic programming, and a 

greedy search that maintains n of the top entries (instead of just one). 



Appendix 1: Proof that Mutual Information Scores Can be Compared Across Tables 

Are mutual information scores in tables of different lengths comparable? 

To answer this question we present the following proof that shows that under certain 

conditions the mutual information scores between two variables are independent of table 

length. These conditions are namely that (1) the two variables are generated by the same 

process in both tables (2) the length of the shorter table is "sufficiently long" to capture the 

true probability distribution between the two variables and (3) all combinations of the two 

variables that appear in one table, also appear in the other. 

The proof follows. 

Let TI and T2 be two arbitrary tables with JS1l and IS21 rows respectively (we used the 

variable S to denote "sample space.") 

Let XI and X2 represent variables in TI and T2 respectively. 

Let C1 and C2 represent variables in TI and T2 respectively. 

Let MI(Xf; Cf) and MI(X2; C$ respectively represent the mutual information between the 

random variables XI and Cl in table 1 and X2 and C2 in table 2. 

Let pl(x) , p2(x) respectively represent the probability of the random variables XI and X2 

taking on the values X I  and x2. 

Let pl(c) , pz(c) respectively represent the probability of the random variables Cl and C2 

taking on the values cl and c2. 

Let pl(x,c), and p2(x,c) represent the probability of finding a row with the X-column 

holding value x and C-column holding variable c in tables 1 and 2 respectively. 



Let N , , ,  and N X 2 ,  represent the frequencies of co-occurrence of the column X holding 

value x and the Column C holding value c in tables 1 and 2 respectively. 

Let N ,  and Nx2 represent the frequencies of occurrence of the random variable XI and X2 

holding values XI  and x2. 

Let ISI(, and IS2( respectively represent the number of rows in TI and T2 

Let N,, and Nc2 represent the frequencies of occurrence of the random variable CI and C2 

holding values cl and c2. 

Under the following assumptions: 

Al.  The pair (xi,cl) is generated by the same random vector (X,C) in both TI and T2 

A2. Every pairs (xb ci) is independently generated from the other pairs. 

A3. All combinations of (x,c) occurring in TI also occur in T2 and vice-versa (note: this 

will probabilistically hold based on A1 and A2 if TI and T2 contain a "large" amount 

of rows). 

We wish to show that: 

1.e. that the same mutual information score will be arrived at in both tables regardless of the 

length of each table. 



Proof: 
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Let t =IS21/1SlI represent the ratio of lines in TI and T2. Thus we have: 

By assumption Al, we know that the values for columns X and C were generated 

by the same process and by A2, we know the pairs are independently generated. 

Based on the latter two assumptions, the occurrence of the pairs is a function of 



length. Thus for a sufficiently long3 TI and T2 we can expect that any frequency of 

occurrence in TI, can be converted to its counterpart in T2 by multiplying by a 

constant; i.e. that: 

Substituting (2),(3) and (4) into (1) and noting that by A3, the summation in the 

numerator covers the same pairs of values as that in the denominator we have: 

Noting that ISII = IS21/t, the above simplifies to: 

Suppose we have two tables A and B that contain rows &ith columns X and C and whose rows were generated by the 
same random vector modeled after some probability disqibution. If we estimate the probability of occurrence of the pair 
(X,C) fiom A, and it so happens that the predicted fiequ4ncy of occurrence of the pair is within the range [0,2] then we 
would expect the error to be high - because the error" - i.e. the fractional quantities in the predicted 

underlying process. 
I 



Thus under certain conditions (which are laid out in our assumptions), we have proven that 

mutual information values fiom TI and T2 are comparable. 
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